REPORT

of
2760.

THE SUPERINTENDENT

COAST SURVEY,

SHOWING
$Q B$
296
.45
1853
THE PROLES OF THE SURVEY

DURING

WASHINGTON:
ROBERT ARMSTRONG, PUBLIC PRINTER.
1854.

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage (http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 13, 2003

ABSTRACT OF CONTENTS OF REPORT.

Printing order, p. 1. Letter of transmission, p. 1. Arrangement of report, p. 3. Renults of the year, p. 4. Nantuchet shoals, p. 4. Guif Stream sections, p. 5. Facilicies for triangulation, p. 7. Three types of tides, pp. 7, 8. Cuast Survey organization, p. 9. Coast Survey developments and discoveries for 1853, p. 10. Sketches, pp. 11, 12. Congress map, p. 13. Major I. I. Stevens, Capt. H. W. Benhaw, Capt. A. A. Humphries, p. 14. Deaths of Prof. Walker, Lieut. J. S. Totten, U. S. Army, B. F. West, Surgeon D. L. Bryan, U. S. Navy, Assistant Engineers W. II. Nones and George E. Shock, p. 15. Publishing results, p. 16. Pay, p. 17. Sumtmary of work done in oach seetion, pp. 17-21.

Estimates for 1854-'55. Sectious I to XI, pp. 20-25. Florida Reef, p. 25. Wostern coast, p. 25 . Publication of reeords, $p .26$.
Progress of work in-
Section I. General remarks, p. 26. Reconnaiseance, p. 27. Primary triangulation-Sebattis and Mount Blue, pp. 27, 23. Secondary triangulation, p. 29. Topography-Mariha's Vlneyard, Gay Head, Portland, and Cape Ann, pp. 30-32. Hydrography - Minot's ledge, Nantucket shoals, "Sow and Plgs" reef, Monumoy shoals, Portland, Hlymouth, pp. 33-30. Light-house examinations-tides and views, p. 36.
Section II. Genoral remarks, p. 37. Primary triangulation-Hudeon river, p. 37. Topography-Sandy Hook and Hudson river, p. 38. Hydrography-Eudson river and Jersey Flats, p. 38.
Section III. General remarks, p. 39. Astronomical observationn-telegraphic longitudes, p. 40. Primary trianga lation-Cape Henry, p. 40. Becondary triangulation-verification measurement, p. 41. Topography-Maryland and Virginia, p. 43. Hydrography-oftshore Cape Henry, James River, Rappahannock, pp. 44, 45.
Gulf Strean. Plan of exploration, p. 46. Canaveral and Charleston sections, pp. 46, 47. Cape Fear and Cape Hatteras sections, p. 47. Temperature, pp. 48, 49. Form of bottom, p. 50. Bands of stream, pp. 50, 51.
Section IV. General remarks, p. 52. Secundary triangulation, p. 52 . Topography-Back bay, Smith's island, Cape Fear river, and Cape Lookout, p. 53. Hydrography-Cape Fear river ind bar, ppes3est.
Section V. General summary-Prince's reconnaissance from Cape Feal to North Shntee river, p. 55. Telegraphic longitudeb-Charleston and Raleigh, p. 56. Triangulation-Edisto, Winyaw bay, and Georgetown, p. 57. Savanaah river, p. 58. Topagraphy-Georgetown, p. 58. Hydrography-Georgetown harbor, Winyaw bay, p. 59.
Bections VI and VII. Geacral remarks, p. 60. Tides, p. 60. Reconnaissance, p. 61. Triangulation-Key Largo, Key West, and St. Johns, pp. 61, 62. Topography-Apalachicola, Soldier, Sande', Elliott's, and other keys, Boca Chica, and St. John's eutrance, pp. 63, 64. Hydrography-Florida reef, St. Johns, and Fort George inlet, pp. 65, 66.
Geotion VIIL. General remarks, pp. 65, 66. Reconnaiusance from Delta to Atchafalaya, pp. 66, 67. Eecondary triaggulation-Lakes Borgne and Pontchartrain, p. 67. Topography-Lake Borgne, Ship and Dauphine Islands, p. 68. Hydrugraphy-Ship shoal, Hom Istand Pass, Nassaa roads, Mississippi soupdi, p. 69. Light-house aurvaya and tides, p. 70.
Section IX. General remarks, p. 70. Astrepgign and mgnetic observations, pp. 71, 72. Triangulation-Mata-
 Tides, p. 75.
Sections X and XI. General remarks, p. 76. Astronomioal observations and triangulation, p. 77. Topography-San Francisco bay, Santa Catalina, San Pedro, p. 77. Hydrography-San Franciseo bay, Humboldt Creacent City, Port Orford, and Ewing harbore, Unquah river, p. 78. Columbia river, Corver Bank, p. 79. Tiden, p. 79. Lighthouse nurveys. p. 80.
OFFICE WORK. Change of assittant lu charge, p. 80. Organization, p. 80. Fxtract from report of Capt. H. W. Benham, asaistant in charge of the oftice, remarks on. Compating divition, p. 81. Drawing division, pp. 81, 82. Engraving division, p. 82. Slectrotyping, pp. 82, 83. Printing maps, \mathbf{p}. 83. Map and roport distribution, p. 84. Instrument thop, p. 84. © Carpentry, p. 86. Clerical force, p. 85. Archives and library, p. 85. Bpecial dinonsaiong, Pp. 86, 87. Dibburning, p. 87.

CONTENTS OF APPENDIX.

GENERAI LIS IS.

Prge.

* $1-* 6$
*7
$* 7$
No. 1. Distribution of parties in the field during the gear

47

No. 3. List of naval officers on Coast Survey March 1, $1853 . \ldots .$. ${ }^{*} 7$

No. 4. Liet of naral engineers on Coast Survey March 1, 1853.......
No. 4 bis. Jist of naval engituers on Const, Survey September 1, 1853

6. List of infirmation furtished by Coast Suryey in reyty to calls
-10

No. 7. Addicional list of geographical positions determined by Coast Survey
-10

No. 8. List of capes, headiands, harbors, \&e., of which the gengraphical positions have been determioed, topographical sarveys made, and charts and sketches issued, to date of report of 1852.

COAST SURVEX REPORTS AND CORRESPONDENCE.
No. 9. Report of Lieut. Comg. M. Woodhuil, U.S. N., \&e., on the location of surf-boats on the const of Maine and New Hawpehire.
 Massachusetts stracts from a letter of Lient. Comg. H. S. Stellwagen, U S. N., \&c., in relation to a rock in the harbor of Gloucester, Massachusetss
No. 11. Estracts of Gloucester, Massachusetti. H. S. Stellwagen, U S. N., dc., in relation to a rock in the stracts from
nie's ledge tracts fram the report of Sub-Assistant G. A. Fairfield in relation to the establisbment of a tide gauge at Siasconsett
No. 14. Report of Capt. W. R. Palmer, U. S. Top. Eng., \&e., upon the reconnaissance of the Rappahannock river, Virginia, from Fredericksburg to Chesapenke bay-
No. 15. Repurt of Lieut. Comg. J. J. Almy, U.S. N., dec, upon the observations of off-shore tides seaward of Sand Shoal inlet, Virginia
No. 16. Report of Lieut. Comg. J. J. Almy, U. S. N., \&c., upon the determination of two shoale at the entrance into Chesapeake bay
No. 17. Letter of Superintendent to Secretary of the Treasury, reporting the discovery, by Lieuts. Cong. Graven and Maffitt, of a bank lying to the east of the Gulf Stream.
No. 18. Entracts from the report of Lieut. James Totten, U. S. A., \&o., in regard to the clinate, Boin, and character of the Florida keys...... ..
No. 19. Extracts from the report of Assistant F. H Gerdes, on the reconnaiseance of the entrance of Barataria bay, coast of Louisiana
No. 20. Repori of Assistant F. H. Gerdes, on a reconnassance of the entrance inte Timballier bay, coast of Louisiana.
No. 21. Extracts from the report of Assistant F. H. Gerdes, upon the survey of Isle Dernière and Ship shoal, ciast of Lonisiana.

No. 23. Extracts from a letter of Lieut. Comg. J. Alden, U.S. N., \& e., on the resolt of a reconraissance of the coast, harbora, \&c., between San Francisco and the Celumbia river
No. 24. Extracts from the report of Lient. Comg. J. Alden, U. S. N., \&e., upon the determination of the position of Cortez Bank
No. 25. Extracts from the reports of the chiefs of the differeut divisions of the office to the assistant in charge, showing details of the work executed in each division during the year

sPECIAL ACIENTIFIC MATTERS.

No. 26. Tide-tables
No. 27. Notes on tides at Key Weat, Florida. by Professor A. D. Bache
No. 28. Notes on tides at Rineon Point, Califoraik, by Professor A. D. Bache.
71 -76
No. 29. Notes on tides at San Frumcisoo, Cadiifornia, by Profemor A. D. Bache..................................
No. 30. Extraets from letters of Aseiatant L. F. Pourtales upon the examination of specimens of bottom obrained in Gulf Stream by Leutenants Cong. Craven and Maffict-
No. 31. Report of Professor B. Pierce on determination of longitude from observations of moon culminations.
No. 32. Eeport of Professor W. C. Bond on moon culaninations observed by the "American method," with remarks on the performance of the "spring governor," invented by Messrs. Bond.
No. 33. Report of Dr. B. A. Goutd. jr., upon results of observations for the determination of difference of longitude, by telegraph, between Seaton Station, Washington, and Charleston, 8. C.
No. 34. Report of G. P. Bond, Esq., on the computations of the chronometer expeditions for deternining the difference of longitude between Cambinde and Liverpool

Page.

MISCELLANEOUS MATTERS

No. 40. Correspondence between Lieut. Comg. T. A. Craven, U. S. Nary, \&c., and Captain T. E. Bhaw, of the steamer "Ww. Gastun," in relation to astistance rendered that veasel by the Coast Survey steamer "Corwin"
No. 41. Letter of Lieut. Comg. J. Alden, U. S. N., \&c., in regard to the wreck of the ship Aberdeen, lying in the entrance of the harbor of San Francisco, Califorwia
No. 42. Letter of Lieut. Comg. J. Alden, U. S. N., \&c., recognising the services of acting Lieut. . . M. M. Cuyler
in rendering assistance to the steamer Tennessce wrecked uear the entrance of San Francisco harbor
No. 43. Resolutions in relation to the decease of Aseistant S. C. Walker by officers in the Coast Surrey.......
No. 44. Resolutions in relation to decease of Lieut. J. S. Totten, by officers in the Coast Survey.................
No. 45. Resolutions in relation to decease of sub-Assistant B. F. West, by officers in the Superintendent's party

LIGHT-HOUSE MATTERS.

No. 46. Letter of Secretary of Treasury, directing surveys and examinations to be made with reference to the location of lights and uther aids to navigation
No. 47. Table showing the results of re examinations of sites of light-houses, beacons, buoys, \&c., referred to Superintendent by Secretary of Treasury
No. 48. Report of Licut. Comg. H. S. Stellwagen, U. S. N., de., on the lighthouse survey of Minot's ledge, Cohnsmet Rocks, Boston harbor
No. 49. Repurt of Lient. Cong. M. Woodhull, U. S N., \&c., upon the light-house examination of Deep Hule Euck, in Vineyard sound, Mass.
 the "Sow and Fige" Rocks, of Cuttyhnk, Massachusettsthe "Sow and Fige" Rocks, off Cuttyhunk, Massachusetts
No. 51. Report of Edmund Blunt, Esq., upon the selection and marking of positions for range-beacons in New Yoik harbor
No. 52. Report of Lieat. James Totten, U. S. A., \& c., upon the results of his examinations of Coast Survey signals along the Florida reef.
No. 53. Report of Litut. Comg. B. F. Sands, U. S. N., \&cc., upon the light-house examination and survey of the eastern entranee to Pascagoula river, Missisaippi
No. 54. Report of Lieut. Comg. B. F. Sands, U. S. N., dic, upon the light-house examination and survey of Ship shonl, Louisians
No. 55. Reprri of Lient. Comg. J. Wilkinsm, U. S. N., Sc., upan the melection of a aite for a lighthouse at sabine Pasa, Texas; also a letter from Lieut. M. Huat, U. S. Navy, lighthouse inspector.........
No. 56. Report of Lient. Cumg. H. S. Stellwagen, U. S. N., \&c., on the light house examination of Aransan

No. 58. Errata in the hist of geographical positions in the annual report of the Coant Surveg for 1851, diseovered since the publication of hist.

\qquad Alphabetical Index............ ...

LETTER

FROM THE
 SECRETARY OF THE TREASURY,

TRANSMITTING
The report of the Superintendent of the Coast Survey.

Drommerr 31, 1853.-Laid upon the table, and ordered to be printed.

January 3, 1854.-Resolved, That 10,000 copies of the letter of the Secretary of the Treamury communicating the report of the Superintendent of the Coast Survey for the year 1853 , in addition to the usual number, be printed6,000 eopies thereof for the use of the House, and the remainder for diatribution by the Coast Survey Office; and that the same be printed and bound, with the platea, in quarto form, and that the plates be printed under the direction of the Superintendent of the Coast Surver.

Treasury Department,
 December 27, 1853.

SIR: I have the honor to submit, for the information of the House of Representatives, the report made to the department by Professor A. D. Bache, Superintendent of the Coast Survey, showing the progress of said work during the year ending November 1st, 1853, with the accompanying map, prepared at the Coast Survey Office, in accordance with the provision of the âct of Congress approved March 3, 1853.

Very respectfully, yours, \&c.,
JAMES GUTHRIE,

- Secretary of the Treasury.

Hon. Linn Boyd,
Speaker of the House of Representatives.

REP0RT.

Mr. Blue Station, Franklin County, Maine, November 27, 1853.

Sir: In conformity with law and the regulations of the Treasury Department, I have the honor to present a report of the progress of the Coast Survey, under my superintendence, during the past year. This amount of work will bear comparison with that of any preceding year, taking into consideration the expenditure made * and the results obtained.

Progress has been made in every State of the seacoast of the Union, on the Atlantic, the Gulf of Mexico, and Pacific, in field operations, or, where they are completed, in the office work resulting from them. The two Territories on the Pacific have also received a proper share of attention.

My reportion these various operations will be arranged as follows :

1. General statements and remarks.
2. A condensed account of the progress of the survey during the past year, arranged according to geographical sections and to localities.
3. The estimated progress for the next fiscal year, with the estimates for securing that progress.
4. A detailed account of the work done in the field and afloat between November 1,1852 , and the same date in 1853, divided into sections, which correspond with the geographical sections of the coast.

A brief summary of the subjects treated precedes the details in each section, and the operations are classed as they succeed each other in the survey. The work of each of the officers is there noticed, and the statistics given as reported by him.
5. The office work is next stated, following the order of succession of its different parts.
6. In the appendix are given lists, reports, and other data referred to in the body of the report, and classified, for convenience and reference, under several general heads.
7. Sketches of progress in the several sections, and sub-sketches where more detail is necessary, accompany the report, lettered from A onwards-those belonging to the same section bearing the same letter, and the successive sketches in each section being numbered.
8. Sketches are given of important parts of the coast, harbors, channels, shoals, rocks and ledges, diagrams of the Gulf Stream and of tides, \&c., resulting from the work of the year.

A rough estimate of the comparative progress of the work, in different years, may be had from the fact that in 1844 the work was going on in nine States, in 1846 in fifteen; in 1847 it had been extended to eighteen, and now embraces all the States on both Eastern and Western coasts. In 1844 four sketches of octavo size sufficed to show the progress; in 1846 nine were required, in 1850 twenty-six, and now fifty-four are necessary for the same general purpose. There are few localities of
our extended coast, from the St. Croix to the Rio Grande, and from San Diego to Fraser's river, which have not been embraced at least in the preliminary operations of the survey, the information obtained from which is incorporated in the sketches of the yearly report.

It needs but a cursory examination of these to show that the advance towards completion is decided and regular, requiring merely to be steadily followed up to insure its completion within a reasonable time-the system admitting, if it is desired to take the opportunity of our unexampled prosperity to push the survey more rapidly to completion, of ready enlargement to adapt the progress to increased appropriations. While increased means would be used economically and effectively, the estimates are limited to the same total amount as that approved by the department for the last year, and based upon the scale of operations repeatedly sanctioned by the Executive and Congress. I deem it but right to say, that the economy of nearly forty per cent., which was shown in my report of 1850 to have attended the previous enlargement of the work, would receive some increase from a further extension; but as a considerable portion of the work must necessarily be in the southern sections, where the expenses of every kind are higher than in the northern, a proportionate gain could not be expeeted. It would chiefly be in furnishing in a complete form, to commerce and navigation, the great aid of maps and charts, at an earlier day, that such an extension would be beneficial

I proceed to state some of the most interesting and important results of the year, and to make such remarks upon them as are suggested by their connexion with the work generally.

The most difficult piece of hydrography on our coast has been completed during the past season. The area of broken ground east and south of the island of Nantucket is nearly seven hundred square miles in extent, and is spread with dangers, some real and some only apparent. The work which has been prosecuted there perseveringly for some seasons has made the position of the dangers fully known, and has in turn employed the resources and taxed the perseverance of some of the most able hydrographers of the survey. It was commenced in 1846 by Lieut. C. H. Davis, U. S. N., has been continued since 1849 by Lieut. C. H. McBlair, and has this year been completed by Lieut. H. S. Stellwagen. The breaking of the water over these sunken shoals and banks, so admirably explained in his theory of tides and - waves by Professor Airy, and which, under the name of "Rips," occurs extensively over this region, serves, no doubt, to increase the terrors of the spot, though indicating in reality a change of depth, and not absolute shoalness. The outliers of this ground, Fishing Rip and Davis's Bank, have twenty-five and a half feet upon them, while on Great Rip, the Rose and Crown, Old Sonth, and Davis's shoal, there are, respectively, but four, seven, six, and eight feet. The arrangement of these shonls led us to suppose that there must be dangers south of Davis's shoal, and several attempts have been made to look them up. The explorations of Lientenant Commanding Stellwagen this year have completed the search over the space south of Davis's shoal to deep water, without any indication of another tier of banks. The hydrography of such ground as this is truly difficult; it must be surveyed with the minuteness of a harbor, without the facilities which neighboring land affords. The land cannot be seen from the deck of a vessel from Davis's shoal, and yet it must be traversed closely with the soundingline, and the positions of the soundings be closely determined. It is necessary to establish bases from those on land by floating objects, which, like vessels, can be seen at a safficient distance, and to preserve temporarily the positions of these floating stations by buoys. The first severe storm not only stops the actual sounding work, but is apt to break up the system entirely by removing or changing the position of these marks. The weather
fit for surveying on that peculiarly stormy part of the coast is but a small fragment of each summer, and the harbors which must necessarily be sought as a refuge un the coming up of storms, which cannot be weathered in such exposed situations, are distant. It is no small source of congratulation that this difficult work is well through with, and without accident to those who have so faithfully encountered the very dangers which they seek in order to instruct others how to avoid them. The excitement caused by the mere rumor this summer that one of the Atlantic steamers was upon these shoals, shows the well-founded dread which the greatest commercial and navigating community of our country has of them-an excitement which was hardly allayed by the accompanying assurance that the steamer seen was one of the surveying steamers, whose departure to the shoals had been duly published, and whose business it was, therefore, to be just there, and at that time, where and when no passenger steamer should be. The preliminary sketch of these shoals, issued last year from the Coast Survey Office, will be speedily brought up to date and published. If a permanent light could be placed on the Old South shoal, it would, in a great degree, deprive this region of its danger to large vessels bound into New York.

The completion of the primary triangulation of another of the sections of the coast, (the third section,) and the rapid progress of the hydrography of the same section, which now embraces nearly the entire entrance of the Chesapenke bay, are gratifying results of this year. Two shoals have been determined off the Chesapeake entrance, which, if obscurely reported before, were not sufficiently known to be placed upon the charts, and public notice of the determinations has been given to mariners.

One of the most interesting hydrographic results ever obtained in the survey, and which opens a rich field of investigation, and has most important theoretical and practical bearings, is the carrying of soundings for some two hundred miles (with a small interval only) southeast from Charleston, directly off the coast, and the finding of soundings after crossing the Gulf Stream, from St. Simon's, (coast of Georgia,) St. Augustine, and Cape Canaveral, (Florida) The character of the bottom which this work reveals is still more interesting-ranges of mountains and hills, with a general trend resembling that of the coast, and with heights and bases like those above the water in the far interior. The relation of the form of the bottom of the ocean, and especially that of these sections, to the peculiar features heretofore discovered in the Gulf Stream, is well determined by the observations of the year, particularly to those curious divisions of the warm water of the Gulf Stream by intrusive cold water, confirmed by so many observations, and now traced as far south as St. Augustine, in Florida. The discovery of the soundings on the other side of the Gulf Stream was made independently, and within three days of each other, (June 7th and June 10th,) by the parties of Lieuts. Comg.J. N. Maffitt and T. A. Graven, U. S. N., the one sounding across the Gulf Stream from Charleston, the other from Cape Canaveral. On the Charleston section, Lieut. Comg. Maffitt struck soundings in three hundred fathoms, then at eleven miles in six hundred, and again at twelve miles in three hundred and seventy fathoms. The first and second of these soundings represent a mountain eighteen hundred feet in height and eleven miles in base on the off-shore, and very steep on the in-shore side. The development of this subject, as far as it is appropriate to this report, belongs to another part of it, but I may here refer to the profile of the bottom of the sea there given, (Sketch Gulf Stream, No. 2,) as showing the relations of the configaration to that of the land. Lient. Comg. Craven, in a distance of a mile and a quarter, passed from a sounding of four hundred and sixty to one of one thoustad and sixty fathoms across the Stream from Cape Canaveral. A glance at the diagram
just mentioned will show the connexion between the intrusive cold water first discovered by Lieut. Comg. G. M. Bache on the sections from Sandy Hook, Cape Henlopen, and Cape Henry, in 1846, and the figure of the bottom, in reference to which further remarks will be made, as illustrated by diagrams of Lieut. Comg. Craven's work. The existence of "ripples," apparently connected with the irregularities of the bottom, was noticed by Lieut. Comg. Craven.

The observations of this season clearly establish the existence of the polar current below the Gulf Stream, and its proximity to the shore where the depth permits, even where the surface water may be quite warm. They further render it very probable that there are counter-currents corresponding to the cold streaks in the Gulf Stream, which, if established, must be useful in navigation. It can hardly be doubted that this cold water off our Southern coast may be rendered practically useful by the ingennity of our countrymen. The bottom of the sea fourteen miles ENE. from Cape Florida, five hundred and fifty fathoms in depth, was in June last at the temperature of 49° Fahrenheit, while the air was $81^{\circ} \mathrm{Fah}$ renheit. A temperature of 38° (only six degrees above the freezing point of fresh water) was found at one thousand and fifty fathoms in depth, about eighty miles east of Cape Canaveral. The mean temperature of the air at St. Augustine for the year is $69^{\circ} .9$ Fahrenheit, and for the three winter months $57^{\circ} .5$. The importance of the facts above stated, in reference to the natural history of the ocean in these regions, is very great, but, of course, requires to be studied in connexion with other physical data. It has also a bearing upon the important problems of the tides of the coast. This exploration of the Gulf Stream will be steadily prosecuted to its close, the different problems being taken up in turn, or in connexion, as may be found practicable. Too much credit cannot be given to the officers who have by their assiduity and ability developed so far the problem of the temperatures, not only at the surface but to the greatest depths, from the section across the Stream from Cape Cod to that from Cape Canaveral. The limits of the Gulf Stream as now known to us are traced on the map ordered by Congress, showing the progress of the several operations of the Coast Survey, and on the sketch accompanying my report. (Sketch Gulf Stream, No. 1.)

The relation of the tides on shoals at sea, off the coast, to those on the immediate shores, must be a determination of great importance. For several years I have sought for observations of this kind, and they have been frequently attempted, but without success. This year the efforts of Lieut. Comg. Almy have been rewarded by the approximate results which were necessary to connect the soundings at sea, and the tidal reductions of the shore, and which will be detailed in their appropriate place.

The reconnaissance of the coast of parts of North Carolina, Sonth Carolina, Florida, and Louisiana, to determine the plan of work there, has been a valuable result of the last season. With that of the Gulf coast, where existing charts have been made from comparatively loose information, has been connected the approximate determination of astronomical positions, enabling us to give more accuracy to our own progress sketches, and to furnish important geographical data for general use.

The hydrographic reconnaissance of the Western coast, so essential to commerce and navigation there, has been completed from San Francisco north, having been finished this summer. A new edition of the charts based upon it is in progress. The work there is beginning to assume its regular form. Heconnaissances and preliminary surveys have been made in a rapid way, and sketches have been published to meet the immediate wants of the country; accurate surveys and complete maps will in turn speedily take the place of these. The officers on that coast, from the first commencement by the late lamented McArthur to the present time, have
labored most assiduously to give the work the turn required by the wonderful development of the country. The history of sach surveys does not present a case of rapid execution and publication of results which will compare with these which we owe to the Coast Survey parties in California and Oregon, and the office organization on this side.

The more thoroughly the coast is examined, the more effectually do those difficulties to a continuous triangulation, which were so fully believed in the earlier stages of the survey to exist, disappear. By far the largest extent of the coast, as I have shown in my report of 1849 ,* presents great facilities for the work, by high hills near the coast, by islands lying off it, and by sounds of various breadths, only separated from the ocean by narrow strips of land. No portion yet examined, from Passamaquoddy bay to the St. Mary's, from the Capes of Florida to the Tortugas, from Cedar Keys to Atchafalaya bay, and from Galveston to the Rio Grande, though including many places where it was argued that the system would fail, presents any insurmountable obstacles, or requires the system of triangulation to be departed from for methods which are still available when the other fails. The triangulation extends from Cape Small, in Maine, to Old Topsail inlet, North Carolina, (Beaufort,) a distance of fourteen hundred and fifty miles, measuring along the sides of the triangles, with a gap of but twenty-four miles, which we are certain, from the examination of Assistant Cutts and of Major Prince, can be filled up, and which the ordinary progress of the work is gradually closing. The same plan of extension from the bases, in the different sections, will have the same results. Each section rests upon its own base and astronomical determinations, while detached; its survey is complete in itself, as far as it goes; the charts are published as the results come in, and when the triangulations join, the bases will serve to verify each other. In the smaller triangulations the bases will be more numerous, but the principle of the work remains the same. The general reconnaissance, which has made important progress during the last season, will be continned until we know, through its instrumentality, the facilities and difficulties for work along the entire coast, and two or three years, at most, will suffice, at the present rate of progress, to close up the intervals which now exist.

I have appended to the report of this year a list of tidal data for the use of natigators. These results require not only laborious observations to collect, but still greater labor to compute. After trying several different plans for securing, with regularity, the necessary tidal reductions, with but partial success, I have now obtained the desired result by organizing a party expressly for this work, combining the observations and reductions under my own immediate direction. The gradual progress of the observations and their immediate reduction are thus secured. The results are not yet in condition to present as scientific data, but the rapid progress made in bringing them into that shape warrants the belief that they may soon be thus prepared, and in the mean time the tables presented in the Appendix No. 26 have a practical value which induces their publication. The only systematic effort made to determine the progress of the tide-wave along our coast was under the direction of a distinguished foreigner, the master of Trinity College, Cambridge, the Rev. Mr. Whewell. The progress of the hydrography of the coast not only requires such investigation, but the determination of the tidal phenomena peculiar to the principal ports.

It is an interesting fact that the tides of our Atlantic coast, of parts of the Gulf of Mexico, and of the Western coast, are of three different types. Those of the Atlantic coast are of the ordinary type of tides-twice in the twenty-four hours-
having, however, a distinct, though small, difference in height and time between the morning and afternoon tides, known as the diurnal inequality. The Gulf tides are single-day tides, and, until the Coast Survey developments established the contrary, were believed to depend upon the winds which have the character of tradewinds, and, therefore, considerable regularity along that coast. The tides of our Pacific coast ebb and flow twice in the twenty-four hours, but with so large a diurnal inequality in height that the plane of reference of mean low water, commonly used on the charts, would, if employed, be a snare to navigators. A rock in San Francisco bay, which at one low water of the day might be covered to the depth of three and a half feet, might at the next be awash. The observation of the tides on the Atlantic coast having been made in close connexion with the other parts of the hydrography, the stations still wanting will be filled up as we advance. A few stations are still required on the Gulf of Mexico to complete the general determination of its tides from Cape Florida to the Rio Grande. We have already found nearly the dividing position, Cape St. George, Apalachicola, where the tides resemble on one side, eastward, those of Cedar Keys, Key West, and Tampa bay, ebbing and flowing twice each day, with a large diurnal inequality, and on the other, westward, resemble the tides at Mobile entrance, the Delta of the Mississippi, Galveston; ${ }^{\text {and }}$ the Rio Grande entrance, ebbing and flowing, as a general rule, but once in twenty-four hours. Those only who have encountered the vexations incident to imperfect observations-the failure to obtain results from the indifference want of skill, or neglect of observers, not to speak of worse cases-will fully enter with me into the praise bestowed on one of the worthy men to whose patience and accuracy we owe so many of the tidal results in the Gulf of Mexico. On the Western coast I have been able to take up the tidal problem in a more general way than on the Eastern, and expect the best results from the arrangements there made. Already we know that at three important points self-registering gauges of comparison have been established, and that all the zeal and energy of an able officer is devoted to carrying out the plan of continued observations at these stations, with more temporary ones at intermediate points for their connexion. The working up of the observations as they come in goes steadily forward, and the accumulation of results is such that provision should be made for their publication in the most ample detail. The memoirs which I submit from time to time to the judgment of our scientific men in the meetings of the American Association for the Advancement of Science, and which are published in its proceedings, and the table of results accompanying the charts and my report, do not by any means supersede the official publication, which is essential in every public work of this sort, and which must be of a much more detailed character, giving the particular observations from which the general results are deduced.

The tables of geographical positions which were published with my report of 1851* have since received important additions, which are given in the Appendix to the present report (No. 7.) The first list contained the positions of 3,240 points, and the present addition is of some 600. In the monthly reports made to me of the different divisions of the office, in the replies to the numerous inquiries addressed to the division, in the plans for work, results obtained, and reports made, I cannot but recognise that the computing department of the office has obtained a position of efficiency worthy of all praise, and of special mention in enumerating the prominent results of the work, though this has been due not to the efforts of one but of many years, combined with remarkable zeal and assiduity, directed by clear intellect and ample knowledge.

[^0]The reductions of the last chronometer expedition for determining the difference of longitude between a point on our coast and one in Europe have adzanced towards completion, the discussion being of the most thorough sort.

The discussion of the problem of deducing longitudes from observed moon culminations, interrupted by the lamented decease of Professor S. C. Walker, has been undertaken by one of our most eminent mathematicians, and promises to lead to very satisfactory methods of reduction, at once original and practical. This will enable the immediate use of our observations of moon culminations, without the necessity of waiting for the receipt of corresponding results, often productive of much delay; and it will also prevent the loss of valuable observations for the want of actual correspondences of observation, as now constantly happens.

The feature of the reorganization of the survey under the act of Congress of 1843, which secured a close connexion between the science of the country and the work, was most judicious. The tendency of such works is undoubtedly to adopt a routine and to adhere to it, so that sometimes they fall behind the progress of the science of the day. System is so very desirable that its excess, constituting a blind routine, is always a danger to be avoided. When closely in contact with the scientific morement of the country, this becomes impossible, the judgment of men of science being prompt to detect any faltering in the forward course of operations which they understand, and in every improvement which they fully appreciate.

The act just referred to, giving a wise discretion to the Treasury Department, and the regulations established in conformity with it in 1844, have sufficed for the present development of the work with scarcely a necessary supplement.

The advantage of bringing together civilians, officers of the army, and officers of the navy, in one organization, as was done by the act just referred to, under the Treasury Department, which alone could unite them, has been so often dwelt upon in former reports, that I feel it would be out of place here to repeat my observations. I believe, indeed, that it is so generally admitted as not to require any further remark. I therefore simply refer to the reports of 1848, 1850, and 1851 ,* in which the subject is fully discussed.

In execution of the "Directions" for the Coast Survey, approved by the Secretary of the Treasury in June last, instructions have been issued by me to the several chiefs of parties in relation to the work required from them. A list of the field parties, specifying the several localities of work and the operations in which they were engaged during the past year, is given in Appendix No. 1. My own service, as chief of a party, will be found in the same list.
By monthly reports from the parties a supervision of the operations is maintained, providing for their due progress and connexion, and for contingencies arising during the season. I have personally inspected the operations of several of the parties, and when the operations of several were to be combined to effect an immediate purpose, have personally made the necessary arrangements. I was enabled generally to combine the inspections made in Sections III, IV, V, and VI, with my service on the commissions for the improvement of the James and Appomattox rivers, for Cape Fear entrance and river, and for the Savannah river, which had been requested by the War Department, and received the sanction of the Secretary of the Treasury. During the surveying season I visited the parties on the James river, at Raleigh, on the Cape Fear, Winyah bay, the Stono, Savannah river, and the St. John's, and gave personal directions to the parties in Section I, on the way to, and while at, my stations in Maine.

[^1]I visited New York, by request of the Common Council, in relation to the regulation of the water-line of the harbor.

The number of officers of the army attached to the Coast Survey is at present sixteen, namely: of the Corps of Engineers, four; Topographical Engineers, two ; of the line, ten. Under the rules for details, adopted by the Secretary of War, in October, 1853, the service of at least four additional officers will be obtained. These rules will make the number of military and civil assistants equal, as required by the plan of reorganization of 1843 , and will permit these officers to remain a sufficient period on the survey to acquire the necessary experience for usefulness in its operations. This result we were approaching in 1846, when the Mexican war swept off all the officers but two from the Coast Survey. The number of army officers has been steadily increased, as the War Department was willing to detail them to meet our applications. A list of the officers of the army attached to the work in March and in September is given in Appendix No. 2.

The number of officers of the navy attached to the Coast Survey is sixty-four, whose names are given in Appendix No. 3. Besides the sea officers, thirteen engineers are attached to the steam-vessels in commission. I have necessarily dwelt, in my successive reports for the last three years, upon the rapid rotation in the naval parties, and other circumstances by which the efficiency of the hydrography was very much impaired. Justice to the work required that I should point out the facilities which had been withdrawn, and the expenses which the Treasury Department had been required to assume. I have now every reason to expect that the former relations with the Nary Department will be restored, and that full efficiency will be once more given to the hydrographic parties.

A list of developments and discoveries made by the Coast Survey was published in my report of 1851,* and continued in that of $1852+$. Very few portions of the coast are closely examined without yielding discoveries important to navigation. The charts furnished by the surveys are its most important practical results, showing not only the character of the bottom in the sailing tracks of the coast, or the pilot tracks of harbors, but over every portion of the extent of coast and harbor. In the course of the minute investigations required for this purpose, facts of a striking kind are ascertained. During the past year, for example :

1. A ridge connecting Davis's New South shoal and Davis's Bank (Nantucket shoals) has been found.
2. A small bank or knoll, with but five fathoms on it, about five miles east of Great Rip, with twelve fathoms between it and Davis's Bank and Fishing Rip, the water gradually deepening outside of it to the northward and eastward beyond the limits of the series of shoals.
3. A rock, not on any chart, in the inner harbor of Gloucester, Massachusetts, which should be marked or removed.
4. A bank ninety miles eastward from Boston, with about thirty-six fathoms of water upon it-probably a knoll connected with Cashe's ledge, but having deep water between it and the ledge.
5. The inlet at the north end of Monomoy island has diminished considerably in extent since 1848, and in the course of a few years will probably close entirely, a new one being open to the north of Chatham light, which is now the principal entrance to Chatham harbor.
6. Two shoals near the entrance to the Chesapeake-one, four and three quarters nautical miles SE. by E. from Smith's Island light-house, with seventeen feet on it;

[^2]and the other, E. by S. nearly, seven and three quarters miles from the same light-house, with nineteen and a half feet on it.
7. The remarkable discovery of continuous deep-sea soundings off Charleston, and of soundings in the depth of between four and five hundred fathoms beyond the Gulf Stream.
8. The discovery of cold water at the bottom of the sea, below the Gulf Stream, along the coast of North and South Carolina, Georgia, and Florida.
9. The well-ascertained influence of prevailing winds in the movement of the bars at Cape Fear and New Inlet entrances, and the gradual shoaling of the main bar, the latter fact being replete with interest to the extensive commerce seeking this harbor.
10. The changes at the entrance to Winyah bay, Georgetown harbor; the washing away of Light-house Point, at the same entrance.
11. The removal of the East Spit of Petit Bois island in the hurricane of 1852, opening a new communication between the Gulf and Mississippi sound, and the rendering of Horn Island Pass more easy of access by the removal of knolls.
12. The diminution, almost closing, of the passage between Dauphine and Pelican islands, at the entrance of Mobile bay.
13. The accurate determination of Ship shoal, off the coast of Louisiana, in connexion with the site for a light-house.
14. The changes at Aransas Pass, coast of Texas, as bearing upon the question of placing a light-house or light-boat there.
15. The determination of the position and soundings on Cortez Bank, near the island of San Clemente, coast of California.
16. The changes at Humboldt harbor, California.
17. The depth of water on the bars at the entrance of Rogue's river, and of Umquah river, Oregon.
18. The changes in the entrance to Columbia river.
19. The determination of several anchorages on the coast between San Francisco and the Columbia river.

The calls for information from the archives of the Coast Survey have very much increased of late years. During the one just passed eighty-seren applications for copies of maps and charts, and statements founded upon them, have been received and answered under the authority of the Treasury Department, and in pursuance of one of its general regulations. Of these, forty-three copies or tracings of maps were for the use of the officers of the United States government, forty-one were furnished to individuals or associations, and three to State or local authorities. The liberal regulations of the department places the information from the archives of the Coast Survey at the disposal of those who desire it, at the mere cost of copying. A list of the tracings, \&c., furnished from the office, is given in Appendix No. 6.

One hundred and forty-eight maps, charts, and preliminary sketches are now in progress, or have been published; a list of which, showing the class of each, its relative progress, whether in the hands of the draughtsman, engraver, or electrotypist, or published, is given in the Appendix No. 5.
The following maps and sketches, fifty-four in number, will accompany my report:

1 to 10. Progress sketches in the several sections, marked from A to K, inclusive; Section No. 1, A; Section No. 2, B, \&c.
11. Alden's rock, Portland harbor.
12. Minot's ledge, off Boston harbor, (light-house survey.)
13. Nantucket shoals, (hydrography from 1846 to 1853 , inclusive.)
14. Sow and Pigs ledge, Cuttyhunk, Massachusetts, (light-house survey.)
15. Romer shoals and Flynn's knoll, New York harbor, (light-house sketch.)
16. Changes at Sandy Hook, New York harbor.
17. Seacoast of Delaware, Maryland, and Virginia, No. 2.
18. Metomkin inlet, coast of Virginia; Wachapreague inlet, coast of Virginia;

Hog Island harbor, coast of Virginia.
19. Cape Charles and vicinity, coast of Virginia.
20. Cherrystone inlet, coast of Virginia.
21. Pungoteague creek, Virginia, (light-house sketch.)
22. Progress of the survey of Cape Fear river and reconnaissance southward.
23. Cape Fear entrance and New inlet, North Carolina, (preliminary chart.)
24. Chart showing the progress of the survey of the Gulf Stream.
25. Diagrams of the Charleston, St. Simons, and Cape Canaveral sections of the Gulf Stream.
26. Cape Roman shoals, South Carolina.
27. North Edisto entrance, South Carolina.
28. Progress of the survey of Savannah river and Tybee entrance, Georgia
29. St. John's River entrance, Florida.
30. Sub-sketches of progress of survey of Florida reef.

31, 32. Diagrams of tides at Key West.
33. East and West entrances of St. George's sound, Florida
34. Horn Island Pass, Mississippi, from a resurvey.
35. Pascagoula river, Mississippi, (light-house survey.)
36. Rarataria bay, coast of Louisiana.
37. Timballier bay, coast of Louisiana.
38. Isle Dernière and Ship shoal, (light-house survey.)
39. Sabine River entrance, (light-house survey.)
40. Galveston entrance, Texas.
41. San Luis Pass, Texas.
42. Aransas Pass, coast of Texas.
43. Reconnaissance of the coast of California from San Diego to San Francisco.
44. Cortez Bank, off San Clemente island, coast of California.
45. San Diego bay, California.
46. Santa Barbara, coast of California.
47. Progress of the survey of San Francisco bay.
48. Diagrams of tides at Rincon Point, San Francisco bay.
49. Progress of the survey of the Columbia river.
50. Shoal-water bay, Washington Territory.
51. Reconnaissance from Gray's harbor, Washington Territory, to Admiralty inlet.
52. Cape Flattery, Washington Territory.
53. False Dungeness, Washington Territory.
54. Self-registering tide-gauge.

During the past year the following notices have been issued from the Cosst Survey Office, under the authority of the Treasury Department-
No. 1. Of geographical positions on the Western coast.
No. 2. Of the tides in San Francisco bay.
No. 3. Of the position of Cortez shoal, of San Clemente island, coast of California.
No. 4. Of two shoals off Smith's island, coast of Virginia.
No. 5. Of the deep-sea soundings off the coast of Sonth Carolina, Georgia, and Florida, and the discovery of soundings beyond the Gulf Stream.

No. 6. Of the hydrographic reconnaissance of the coast of California and Oregon Territory, embracing notices of Mendocino, Humboldt bay, Crescent City bay, Ewing harbor, Rogue's river, Point St. George, Cape Blanco, Umquah river, and Columbia river.
No. 7. Of a bank south of Cashe's ledge, with thirty-six fathoms on it.
Examinations have been made, under the law of 1851 and 1852, for the lighthouse Board, with minute surveys in cases requiring them, of York harbor, Maine; of Minot's ledge and the Cohasset rocks, off Boston harbor; of Deep-Hole rock, Cotuit, Massachusetts; of the Sow and Pigs reef, off Cuttyhunk, entrance to Buzzard's bay; of Romer shoal, New York harbor; of the Florida reef, in reference to signals or sea-marks; of East Pascagoula entrance, Mississippi ; of Ship shoal, off Last island, (Isle Dernière,) Lonisiana; of Sabine entrance and of Aransas Pass, Texas; of Point Bonita and Humboldt bay, California, and of Umquah River entrance, Oregon.

Examinations for placing surf-boats have been made on the coast of Maine, New Hampshire, and Massachusetts, by request of the Treasury Department.

The reports made on both the foregoing classes of work are given in the Appendix.

Congress at its last session directed that a map should be prepared, showing, as nearly as practicable, the configuration of the coast, the probable limits of the Gulf Stream, the limits of soundings off the coast, and exhibiting, by colors, the progress made in the several operations of the survey, as reconnaissance, triangulation, topography, and hydrography, and in the publication of the maps and charts resulting from the work. Such a map has been compiled from the archives of the survey, as far as they furnish the information, and from other authorities where the Coast Survey has not yet reached. The progress sketches accompanying my reports have shown, year by year, all the details of the field-work in a form suited to engraving, and the engraved sketches have, in part, been prepared in the Coast Survey Office, and generally by the apprentices to the art of engraving there, so as to be ready for publication as early as my report. Besides these, the Congress map, in colors, on a scale of $T, \overline{56} \frac{1}{0}, \bar{\sigma} \sigma=0$, has been prepared in the office to accompany the present report. The very fortunate result of our attempts to explore the Gulf Stream the past year has enabled me to give, from our own data, a very large portion of the hydrography of that remarkable peculiarity of the American coast. The explanations which will accompany the Congress map will dispense with remarks here in regard to its details.

Certain topics in regard to the organization and economy of the Coast Survey, which might be expected to find a place in my report, have been so often discussed by me that a reference to former reports will perhaps be more suitable than any extended notice here. Such subjects are the organization of the parties for different operations, explained in the report of 1845 ;* the advantages of the division of the coast into sections in the report of $1846, \dagger$ and again further developed in 1847, \ddagger and in 1849 ; the order of succession of the operations of the survey explained in 1847, ${ }^{1}$ and again in more detail in $1848 ;{ }^{7}$ the advantages of the triple organization of civilians, army and navy officers, noticed in 1848, ${ }^{3} 1849,{ }^{4}$

[^3]$1850,{ }^{*}$ and $1851 ; \dagger$ the comparative gain by increasing the scale of the work, $1850 ; \$$ the relative cost of the topography and of the land surveys in 18488 and in $1850 ;{ }^{1}$ the relative cost of our own and of foreign surveys, $1849 ; ;^{2}$ the cost of the different operations showing that scientific accuracy is gained at small cost, $1848{ }^{3}$ the plan of working deemed appropriate to the Western coast, 1850^{4} and $1851 .{ }^{5}$

In April last, Brt. Maj. I. I. Stevens, of the Corps of Engineers, the assistant in charge of the Coast Survey Office, was appointed Governor of Washing-: ton Territory, and his new duties, upon which he entered with his characteristic zeal, soon drew him entirely away from us. The gain to the country in his appointment, and especially to that new region to which he has been called, will no doubt be great, but our loss is proportionably great. An administrative ability of a high order was joined to unceasing activity and great force of character; varied general and professional knowledge, to great clearness in discerning ends, and fixedness of purpose in pursuing them; remarkable knowledge of men, and easy control of those connected in business with him, to personal qualities, which rendered official intercourse agreeable to those about him. The system with which he followed up plans, complicated as well as simple, insured success in his administration, and was felt in every department of the office, of which he had thoroughly mastered the details as well as the general working. The experience acquired by such an officer is invaluable to the work, and not soon to be replaced, whatever may be the resources of his successor. In the officer detailed by the War Department to succeed Maj. Stevens, Capt. II. W. Benham, of the Corps of Engineers, it is certain that the qualities will be found, necessary to the charge of the office even in the present varied and extended condition of its operations.

I would here again call the attention of the department to the recommendation made in my former reports in relation to Capt. A. A. Humphreys, U. S. Topographical Engineers, formerly assistant in charge of the Coast Survey Office. This officer was placed in charge when the augmentation of the scale of the Coast Survey was begun, and devoted himself, with untiring assiduity and most remarkable success, to the difficult task imposed upon him. His health suffered so seriously from the accumulated labors which he undertook, that he was finally obliged to leave the work. His services were so fully shown by the condition to which he had brought the office during his charge of it, that I simply discharged a duty in recommending him for a brevet on retiring. The varied and complicated duties of the several departments of office-work require not only professional knowledge of a high order, but intense application, and very considerable administrative power. The new form of organization to be given to the different parts of the office rendered Capt. Humphreys' duty one of even greater than ordinary difficulty, and he discharged it with success, regardless of the gradual undermining of his health. As this duty is imposed by law on the officers of the army, I respectfully submit, that for distinguished execution of it he should have the reward appropriate to the officer, a brevet, and would ask that application may be made representing

[^4]the case of Capt. Humphreys to the honorable Secretary of War for favorable consideration.
The Coast Survey has again, during the past year, suffered severe loss by the death of valued officers. Professor S. C. Walker, who died on the 30th of January last, was in the first rank among those men of science in our country who devote themselves to mathematical and practical astronomy. He had been connected for nearly ten years with the Coast Survey, at first giving a portion of his time to the collection of observations and to computations of longitudes from astronomical observations, after which he was more closely connected as an assistant in charge of the subject just named, and of the telegraphic operations for differences of longitude. While engaged in this duty he invented the application of the galvanic circuit to the recording of astronomical observations, which, under various ingenious modifications, is known as the American method. His researches in physical astronomy are among the most elaborate which our country has produced, and have justly been regarded as models of the practical application of some of the most refined processes of modern analysis. The longitude problem in his hands was in a fair way for solution, the discrepancies having been clearly pointed out and traced in a general way to their origin, when his impaired health gave warning that he must soon cease from his labors, and after a brief struggle with disease he was taken from us. The feelings of his brethren in the Coast Survey are shadowed in the proceedings of the meeting which they held on his decease. (Appendix No. 43.) The loss of such a man is truly irreparable to the work and to the country. He had made a special department of researches his own, and his death leaves a marked vacancy in the ranks of American science.

Lieut. Joseph Swift Totten, U. S. Army, who died in May last, had twice been connected with the survey, his first connexion having shown his adaptation for the work, and having only been given up for service in the Mexican war. He was in bad health when he rejoined us, and though for a time the duty seemed to improve his condition, it was but for a time. He undertook the triangulation of Georgetown barbor when most men would have yielded to the pressure of disease, and almost literally died at his post, only relinquishing the charge of his party a few weeks before the close of his life. The officers of the survey have testified their regard for his memory in the resolutions which accompany my report. (Appendix No. 44.)

Benjamin F. West was one of the most promising of the younger members of the survey. He returned from Texas last spring unwell, but not seriously so. Going north during the summer, on his return from duty at Mt. Washington he became the victim of the disease which carried him off just as he had arrived at his majority. He had been promoted by the Treasury Department as a sub-assistant after his return from the south. The officers of my party, to which he had usually been attached, have united in expressing their regrets at his untimely fate, and their condolence with his parents, who saw him first on his return from his tour of service in Texas after death had marked him for its victim. (Appendix No. 45.)

Daniel L. Bryan, M. D., Passed Assistant Surgeon U. S. Navy, who had been at different times on duty in the survey, arrived in Pensacola in the schooner Morris during the prevalence of the epidemic there, took his position in the Naval Hospital, where his services were much needed, and was himself attacked by the disease and died there. He was an officer of distinguished merit in his profession, and his services were highly prized by the parties with which he was connected.

Second Assistant Engineer Washington H. Nones and Third Assistant Engineer George E. Shock, who also had been on duty in the Gulf of Mexico in the steamer Walker, and were attached to the survey waiting orders, were also both victims of
the disastrous epidemic-the one at Pensacola and the other on the coast of Mississippi. Both officers had rendered acceptable service in the hydrographic parties of the Coast Survey.

Before passing to the estimates, there are two points on which I beg leave to offer remarks: the first is in regard to the policy of publishing the records of the work; and the second in regard to the power now vested in the Treasury Department to regulate the salaries of the assistants and others.

The arrangements of the survey of the coast from the beginning, with ample; means to insure a reasonable degree of progress year by year, and with resources in persons, instruments, equipments, and other appliances, such as are now possessed by the work, is a very different problem from that which has been presented for solution. In such a case, it would have been easy to divide the coast into sections of nearly equal extent of shore-line, or with an extent so proportioned to the facility or difficulty of survey as to advance each one equally, and so to arrange the field parties that their labors would be devoted, during the most profitable portion of the year, in each section, and the office work, that it would keep exact pace with the results produced in the field. The sections of our work were necessarily commenced in turn as means could be procured, and it is only very recently that most of them have been put under survey. It requires a careful study of their relative progress year by year, and the regulation of operations to suit it in the different sections, to bring them ultimately on the same line of advance. It would be unduly expensive to keep up an organization for a limited extent of coast, which is capable of embracing a large portion of it; hence the prominence which I have given for some years to the argument for pushing the survey of the coast of Florida, and for publishing the results and observations made in the progress of the work. The unequal division of the parts of the coast suitable for field work during the summer and winter is a difficulty requiring much time to meet. The very different periods at which the work was begun in the different sections is another difficulty. These are independent of the difficulties strictly professional, presented in the course of the work, and which are of themselves sufficient to employ the resources of all engaged in it. I am satisfied by a careful revision of the progress in each of the sections, made with the sketches and maps before me, that the progress in each is tending to a more just advance, and is in general very satisfactory. These sections and operations, when full means have been furnished, have gone forward in such a way as to convince the most skeptical of the capabilities of this mode of surveying. I need only instance the third section-Delaware, Maryland, and Virginia-in which the whole primary triangulation, the secondary connected with it, and that of the onter coast, have been nearly completed in less than ten years, and the topography and hydrography have kept close upon the triangulation, permitting, now that the main part of the section is finished, its gradual completion with the others. While this section illustrates the position just taken, it also shows the correctness of that in relation to unequal progress, for, while the sections further south were untouched for want of means, this one was in progress. At one period, the means furnished permitted the extension of the work but in one direction, and at a later day but in two directions. At present, on the Atlantic and Gulf coast seven sections are in full activity. Taking the work on the Atlantic and Gulf of Mexico together, I estimate that it is nearly one half done, and that its present rate of progress is between four and six per cent. of the whole work. A small increase of means for the office work, and to push forward sections six and seven, the Florida reefs, keys, and coast, would enable me to be positive of the period of the completion of the Eastern coast. As matters stand, I will do my best to acoomplish the result of the
oniform and speedy completion of the work, recommending the measures necessary to insure it, and taking advantage of all means that may be furnished. The history of such works shows that the observations accumulated during their progress, and which must be published for permanent reference and to give them authenticity, are brought out very slowly. Those who have taken part in them are dispersed, and questions arise which require their aid to answer. However perfectly in theory a work is organized, such questions will arise. The interest in the results is lost, with the responsibility for their accuracy. The present time, when the organization is complete, and the observers are still connected with the work, is the proper time, on every account, to publish the observations. The economy of present publication would be very considerable. I am sustained in these views by the judgment of the scientific men of the country generally. It is my duty to present this subject to the department and to Congress, that the responsibility of the delay, and of the other difficulties which I foresee unless these publications be soon commenced, may not rest with me.

In this connexion I must further observe that, in a temporary work of this sort, the principle of compensation in proportion to the zeal, assiduity, and talent shownin other words, the services rendered-is a cardinal one. The Treasury Department, by law, now regulates the compensation of the employees of the work, and it is, in my judgment, essential to its progress that such should be the case. That this power has been carefully exercised, the comparison of compensations from date to date for the last ten years will show; in fact, at a period when compensations out of the public service are increasing, and where increased expenses of living must be met, the economy has been found to be too stringent, as the resignations of many in the employ of the survey, and their advancement in the positions which they seek, fully prove. I make these remarks with the more freedom, that the subject does not affect me personally. My own compensation has remained entirely stationary since I first received my appointment, and is now fixed by law. The extension of the Coast Survey has at least quadrapled my duties as Superintendent, and I have continued to discharge the duties of Superintendent of Weights and Measures, and have been at the call of the Government whenever it thought my services were important, without any remuneration, even for the necessary expenses of travelling; and this relation I have no desire to change My remarks apply to the compensation of the Assistants and other employees of the survey, and are founded on an experience which cannot be deceptive. To take away the power of regulating the salaries of the Coast Survey officers from the Treasury Department would be vitally injurious to the efficiency of the work. A temporary work should be organized, as such; and when other principles are applied to it, the work under them must take shape accordingly. The legislation which confirmed the re-organization of 1843 wisely looked to the Coast Survey as temporary, and its advance has shown the wisdom of the measures founded on that principle. A cardinal feature of that policy is the regulation by the Treasury Department of the salaries of the employees.
The following is a condensed statement of the progress of the survey in the different geographical sections of the coast, the operations being referred to in the general order of their succession. The particulars of the work, and their relation to the parties and persons employed, are given in the subsequent division of my report.

Sromon L. Coast of Maine, New Hampohire, Massachusetts, and Rhode IslandSebattis Hill, near Lewiston, and Bhe Mountain, in Franklin county, Maine, have been ocoupied as primary stations, the first being also an astronomical point. The line of stations observed upon to the eastward of Mt. Blue extends from the

Camden Mountains, at the mouth of the Penobscot, to Pcaked Mountain, in Amherst. The reconnaissance has been carried to the range of points next the St. Croix. The heights of important points in New Hampshire, and near the southern boundary of Maine, have been measured. The topography of York harbor, Maine, and its vicinity, has been executed, and that of Portland commenced; that of the coast of Massachusetts has been extended from Essex northward towards Newburyport; that of Plymouth harbor, Massachusetts, and its approaches, and of Monomoy Point, Cape Cod, has been completed; that of Cuttyhunk and Gay Head has been finished. The hydrography of Portland harbor has been completed, including a minute survey of Alden's Rock; also, of Plymouth harbor, Massachusetts. Monomoy shoals, north of Nantucket, have been surveyed. The hydrography of the shoals, east and south of Nantucket, has been completed to the inner limits of the deep-sea work; that of the south side of Martha's Vineyard has been executed; that of Gloucester harbor has been commenced. Minute surveys have been made of Minot's ledge, off Boston harbor, and of the Sow and Pigs reef, off the entrance of Buzzard's bay, for the sites of light-houses; and of Deep Hole Rock, for placing a beacon. The regular tidal stations at Boston, Portsmouth, and Portland have been kept up, and temporary stations have been added at Siasconsett, Great Point, and Hyannis, Massachusetts. Views were taken for charts of Salem, Newburyport, and Portsmouth harbors, and examinations have been made in reference to placing surf-boats, for the Treasury Department, on the coast of Massachusetts, New Hampshire, and Maine. The computations of the chronometer expedition between Liverpool and Cambridge have been nearly completed. The computations of the season's work, generally, have been kept up. The chart of Wellfleet harbor, and sketches of Alden's Rock, Portland harbor, Davis's shoals, and other dangers near Nantucket, (6th edition,) and Sow and Pigs reef, between the entrances to Martha's Vineyard sound and Buzzard's bay, have been published within the year. Charts are in progress of Portsmouth, Newburyport, Annisquam, and Ipswich, Salem, Boston, Muskeget channel, and Eastern series Nos. 1, 2, and 3; and a sketch of Minot's ledge, Boston harbor.

Secrion II. Coast of Connecticut, New York, New Jersey, Pennsylvania, and Delaware.-The triangulation of the Hudson has been continued to about six miles above Newburgh; and the topography and hydrography have been extended from above New York city to beyond Sing Sing, to Teller's Point. The Romer shoals and their vicinity, New York harbor, have been surveyed in reference to beacons, and to ascertain if any change has taken place in the \&djacent channels. Sandy Hook shore-line has been retraced to register the changes there. The Jersey flats have been surveyed. Tidal observations at Governor's island have been continued. The off-shore chart, from Gay Head to Cape Henlopen, the chart of the mouth of the Connecticut river, sketches of Romer and Flynn's shoals, and of the changes in Sandy Hook, have been published; and the three sheets of Long Island sound are nearly ready to be issued. The charts of south side of Long Island, Nos. 2 and 3, and a comparative map of Romer shoals and Swash channel, New York harbor, are in progress.

Section III. Coast of Delaware, Maryland, and Virginia.-Telegraphic observations for differences of longitude have been made at Washington for the connexion with Raleigh, and thence to Charleston. The main triangulation of Chesapeake bay has been completed to the Capes. A line of the outer coast triangulation has been measured, and an azimuth determined for verification. Magnetic observations have been made in connexion with the arimuth station. The secondary triangulation of the Chesapeake is nearly complete; that of the James river, from Richmond to Harrison's bar, nearly so; that of the Rappahannock has
been carried from Fredericksburg to Port Royal nearly, and is in progress. The topography of the ocean shore of Maryland and Virginia has been continued; that of the Chesapeake has been extended from Back river to Newport-news Point, and to include the shores of Hampton Roads. The shore-line of the James river has been traced from Richmond to Harrison's bar, below the mouth of the Appomattox; that of the Rappahannock, from Fredericksburg to Port Royal, has been commenced. The verification work on the Patapsco is nearly completed. The hydrography of the outer coast of Maryland and Virginia has been completed to Cape Charles; that of the entrance to the Chesapeake, including both Capes, has been nearly finished; that of the bay, near the entrance, has been in progress. The hydrography of the James river, from Richmond to Harrison's bar, has been completed, and that of the Rappahannock is in progress. The tidal station at Old Point Comfort, Virginia, has been continued, and the tides of James river have been observed from Richmond to City Point. Charts have been published within the year of the seacoast of Delaware, Maryland, and Virginia, No. 1, and sketches of Cape Charles and vicinity, of Watchaprigue, Metomkin, Pungotigue and Cherrystone inlets, and of Hog Island harbor, Virginia. Charts are in progress of Chesapeake bay, Nos. 1, 2, and 3, Patapsco river, Appomattox river, and part of James river. A manuscript map of the Appomattox for the city of Petersburg is nearly completed.

Section IV. Coast of Firginia and North Carolina.-Washington and Raleigh, North Carolina, and Raleigh and Charleston, have been connected for difference of longitude and connexion of Washington and New Orleans. The secondary triangulation has been extended northward of the Virginia and North Carolina line, in Back bay, Currituck sound, also over Core Bank and sound, southward beyond Beaufort harbor, North Carolina, the reconnaissance extending still further south towards New river. The triangulation of Cape Fear river has been made from New inlet to the head of Eagles' island, above Wilmington. The topography of Currituck sound has been carried on at the same time with the triangulation; so also that of Core sound and its vicinity, and of the Cape Fear river. The hydrography of Cape Fear entrance, New inlet, and Cape Fear river, to a point above Wilmington, has been executed. The Gulf Stream has been explored in sections perpendicular to it, from Cape Hatteras and Cape Fear. The tidal observations at Smithville have been continued, and stations for the Cape Fear River tides have been occupied. Charts and sketches have been published wjthin the year of Beaufort harbor, Hatteras inlet (4th edition,) Ocracoke inlet, Cape Fear river, and New inlet; charts are in progress of Albemarle sound, Nos. 1 and 2, and of the same in one sheet on a smaller scale.

Section V. Coast of South Carolina and Georgia.-A general reconnaissance has been made from Cape Fear entrance to the Santee river, South Carolina. Astronomical observations have been continued at the Charleston observatory, which has been connected, for difference of longitude, with Raleigh, North Carolina. The primary triangulation between the Edisto base and Charleston has been continued by the opening of lines and the occupation of stations, and the secondary connected with it has been carried along the Stono and across James's island. The triangulation, determination of shore-line, and hydrography of Winyah bay and Georgetown harbor, have been made. The triangulation of the Savannah river has been carried from the base on Union causeway to the entrance. Additfonal examinations of Charleston bar have been made. The exploration of the Gulf Stream has been continued on a section perpendicular to its direction from Charleston light, and from near Sayannah entrance, (St. Simon's,) Georgia. Tidal observations have been kept up in Charleston harbor. Charts have been
published within the year of Cape Roman shoals and North Edisto entrance and river, South Carolina; and charts are in progress of Charleston harbor, Winyah bay, and Georgetown harbor, of Tybee entrance, and of Savannah river.

Section VI. Coast, keys, and reefs of Florida.-The survey of the St. John's entrance and Fort George inlet, including the triangulation, topography, and hydrography, and the necessary observations of tides and currents, has been made, and furnished to the engineer in charge of the improvement. The triangulation of the Florida keys and reef has been extended from Point Elizabeth, near Carysfort, to Key Tavernier, and from Key West eastward. The topography has been extended from Soldier Key to Old Rhodes Key, and from Key West eastward over Boca Chica, and the marking of the keys required by the Land Office has also been made. The hydrography has been carried from Triumph reef to Turtle reef. The Gulf Stream has been explored in sections from St. Augustine and Cape Canaveral, and in other positions from Cape Florida northward. A report on screw-pile signals for the reef has been made. A preliminary sketch of St . John's river entrance and Fort George inlet, and sketches of the west coast of the Florida peninsula, Channel No. 4 Cedar Keys, have been published, and additions have been made to the chart of Key West, scale 100, bov. A chart of this harbor on a larger scale is in the hands of the engravers, and the chart of Florida Keys and Reef No. 1 is commenced.

Section VII. Coast of Florida.-Special reconnaissances, with astronomical points determined, and hydrography, have been made of the east and west entrances into St. George's sound, harbor of Apalachicola, and a general reconnaissance of St. Audrew's and St. Joseph's bays, and of the coast westward. Tidal observations at Pensacola have been made. Sketches of Cedar Keys and of St. Mark's harbor, and of the east and west entrances to St. George's sound, and of the reconnaissances of St. Joseph's and St. Andrew's bays, with the coast westward, and those resulting from the past season's work, are in progress.

Section VIII. Coast of Alabama, Mississippi, and Louisiana.-The reconnaissance for extending the primary triangulation from Lake Borgne to the Delta of the Mississippi has been made. A general recomaissance of the coast has been made, with the determination of astronomical positions for a sketch of the coast, from the mouths of the Mississippi to Atchafalaya bay. Special reconnaissances for furnishing preliminary charts have been made of Barataria and Timballier bays, Louisiana. The stations of the secondary triangulation have been established and the lines opened for connecting Lake Borgne and New Orleans, and for extending the work to near Madisonville, on Lake Pontchartrain. The topography has determined the shores of Lake Borgne. A complete survey for the location of a light-house, including triangulation, topography, and hydrography, has been made of Last island, (Isle Dernière,) Louisiana, and of Ship shoal in its vicinity. A hydrographic examination of Nassau Roads and Horn Island Pass has been made, to ascertain if changes had occurred from the hurricane of 1852 ; also, of the reported break across Ship island, and of the passage between Little Pelican and Dauphine islands, Mobile bay entrance. The regular hydrography has been carried westward in Mississippi sound, and Pascagoula river entrance has been examined for the site of a light-house. Hourly observations of the tides have been made at the Southwest Pass of the Mississippi and at Last island. The chart of Horn Island Pass, (2d edition,) preliminary sketches of Mobile bay on a small scale with additions, and of Ship shoul, have been published; also, sketches of Grand Pass into Barataria bay, entrance to Timballier bay, and Cat island tidal diagrams. Charts are in progress of Mobile bay, Nos. 1 and 2, Mississippi sound, Nos. 1 and 2, and sketches of Nassau roads, Chandeleur island; Louisiana.

Section IX. Coast of Louisiana and Texas.-Astronomical and magnetic observations have been made at two of the primary stations, determining the latitude and the azimuth of certain lines. The reconuaissance for the secondary triangulation has been carried to Matagorda bay, and the work itself has advanced to the head of the bay. The topography has been carried from the Brazos river to Cany creek, near the limits of the triangulation. The hydrography of Galveston upper bay and of San Luis entrance and bay has been completed. Aransas Pass and the entrance to the Sabine have been examined in reference to sites for lighthouses. The hydrography of the Rio Grande entrance and of part of the river has been executed. Hourly tidal observations have been made at Galveston, and at the Rio Grande and Matagorda entrances. Charts of Galveston entrance and San Luis Pass, a preliminary chart of Galveston bay on a small scale, and sketches of Aransas Pass, from a resurvey, and of Sabine Pass, Texas, have been published within the year.

Sections X and XI. Coast of California, and of Oregon and Washington Territories.-The geographical positions of Punta de los Reyes, Bodega bay, Haven's anchorage, Mendocino city, Shelter cove, Humboldt city and harbor, Trinidad bay, Port St. George, Port Orford, and the mouth of the Umquah, have been determined by preliminary observations in connexion with the general hydrographic reconnaissance of the coast. A preliminary base has been measured at Pulgas, San Francisco county, and the main triangulation of the coast has been commenced. The triangulation of the bays adjacent to San Francisco bay has been completed. A preliminary base has been measured near San Pedro, and the triangulation for connecting the Santa Barbara islands with the main, and furnishing bases for the work on those islands, has been commenced. The triangulation of Humboldt harbor, and the coast near Mendocino city, near Crescent City, under Port St. George, and at the mouth of the Umquah, has been executed, and the preliminary topography made in connexion with it. The topography of San Francisco bay proper has been completed, and that of the adjacent bays is in progress. The topography of the coast near San Pedro, and towards Point Ano Nuevo, has been executed. The topography of Bonita Point has been completed in reference to the site of a light-house there. A hydrographic reconnaissance has been made of the coast north from San Francisco to the Columbia river, and the hydrography of Humboldt harbor, of Mendocino, Trinidad bay, Point St. George, and the mouth of the Umquah, has been executed. A survey has also been made of Columbia river entrance, and the hydrographic reconnaissance of Washington Territory has been extended. An examination of Cortez Bank, near San Clemente island, has been made, and the hydrography of the Santa Barbara islands has been commenced. Tidal stations have been established at San Diego, Monterey, San Francisco, Columbia river, \&c. The following maps, charts, and sketches have been completed, and either published within the year or are ready for publication: Reconnaissance chart from San Francisco to San Diego; San Francisco city; Santa Barbara; Points Conception and Coxo; Catalina harbor; Cape Mendocino. Reconnaissance from Gray's harbow to Admiralty inlet, Straits of Fuca, Cape Flattery and Nee-ah harbor, Shoalwater bay, and False Dungeness harbor, Washington Territory; and Cortez Bank, SW. from San Clemente island. Charts are in progress of San Francisco bay and harbor, of Columbia river, of San Diego bay, and sketches of Umquah river and of Ewing harbor.

The foregoing statement does not include the work done in the compating department of the office, nor in the maps of record and assemblage for the use of the survey, nor the sketches of progress in the different sections, which accompany my amual report, and are in themselves quite numerous.

I proceed next to give an estimate of the progress of the work, which can be executed, under its present organization, \bullet with the means shown in the same estimate. If it is desired to hasten the work to completion, there will be no difficulty in so doing by adding to these estimates. I have, however, adopted the scale heretofore approved by the Executive and by Congress. The expenses of the work on the Western coast are not necessarily as great as in past years. I have made a reduction adapted to the present circumstances there. I have already given the reasons why the survey should be pressed in Section VII; and without increasing the total sum asked for the survey of the Atlantic and Western coasts, I have provided for this section. The very pressing matter of a publication of our records, discussed in this and previous reports, and recommended heretofore by the Treasury Department, I have provided for by an estimate, which is of moderate amount.

The estimates follow the order of the geographical sections of the coast, and of the different operations constituting the field and office-work.

They suppose the same aid which is now furnished, under the law, from the Navy and War Departments, by the detail of officers for the hydrography and land-work respectively.

ESTIMATE FOR THE FLSCAL YEAR 1854-'55.

General expenses for all the sections, namely : rent, fuel, postage ; materials for drawing, engraving, and printing; carpenter's work and materials; blank books, stationery, printing and ruling forms; binding; transportation of instruments; maps and charts, and miscellaneous office expenses; purchase of new instruments, books, maps, and charts
Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island. Fiecd-work.-To extend the primary triangulation in Maine, and the astronomical and magnetic observations connected with it eastward, to the Penobscot, and to complete the reconnaissance to the boundary, including the selection of a site for the base of verification; to continue the secondary triangulation of Casco bay, and across to the Eennebeck, and determine the heights of stations; to continue the topography of the coast between Portsmouth and Portland, and to complete that of Portland harbor and its approaches; to continue the topography of the coast of Massachusetts from between Essex and Newburyport northward; to complete the off-shore hydrography near the Nantucket shoals; to continue that of Nantucket sound and the eastern entrance to Martha's Vineyard; to commence that of the outer coast of Cape Cod; to complete that of the coast of Massachusetts between Boston and Cape Ann; to complete that of the harbors of Chatham and Gloucester, Massachusetts, and of Saco and Kennebunk, Maine; and to commence that of Casco bay, Maine; to continue observations of tides and currents at stations on the coast; and to take the views required for the chart of Bortland. Offtce-work.To make the reductions and computations for the section; to make drawings of harbor charts of Plymouth and Gloucester, Massachusetts, and of York and Portland, Maine; to make a finished drawing of the Nantucket shoals; to complete the engraving of charts of the harbors of Gloucester, Annisquam, and Ipswich, Massachusetts, and to commence that of York and Portland, Maine; to continue the engraving of coast charts, Eastern series Nos. 1, 2, and 3, coast of Rhode Island and Massachusetts-will require

Section II. Coast of Connecticut, New Fork, New Jersey, Pennsylvania, and Delaware-To continue the triangulation, topography, and hydrography of the Hudson, and to execute verification work in the section; to continue observations of tides and currents; to continue the engraving of the third sheet of the south side of Long Island, and of preliminary sketches in the section-will require.
Section III. Coast of Delaware, Maryland, and Virgina. Field-work.To make the astronomical and magnetic observations required at stations on the Chesapeake bay and rivers; to continue the triangulation of the James and Rappahannock rivers; to continue the topography of the lower part of Chesapeake bay, and of the James and Rappahannock rivers, and of the outer coast of Maryland and Virginia ; to commence the off-shore hydrography of the section; to continue that of the Chesapeake bay and of the adjacent bays near the entrance; to continue that of the James and Rappahannock rivers. Office-work.-To make the computations and reductions required by the work of the section; to commence the drawing of the seacosst of Maryland and Virginia, sheet No. 2; to complete that of sheet No. 1, and that of the second series, south of the Potomac, and to continue that of the James and Rappahannock rivers; to continue the engraving of the upper series of the Chesapeake, Nos. 1 and 2, and of a portion of the rivers, and to complete that of the general chart of the bay; and to engrave, in part, No. 2 of the outer coast series-will require
Section IV. Coast of Virginia and North Carolina. Field-wonk.To continue the primary triangulation of Pamplico sound; to make the connexion with the Chesapeake by the secondary triangulation, and to follow with the topography, and to continue that of the coast and the topography between Beaufort and the Cape Fear river; to continue the in-shore hydrography between Cape Henry and Cape Hatteras; to continue that of Pamplico sound; to extend the hydrography south from Beaufort and north from the Cape Fear; to continue the tracing of the Gulf Stream; to make the necessary tidal observations. Office-work.-To make the computations and reductions required by the work of the section; to make the drawings of the preliminary sketches required by the season's work; to complete the drawing of Cape Fear river to the head of Eagles' island; to continue the engraving of the charts of Albemarle sound, Nos. 1 and 2, of Cape Fear entrance and river, and of the preliminary sketches-will require
Section V. Coast of South Carolina and Georgia. Field-work.-To continue the primary triangulation, and the secondary triangulation connected with it, eastward between Charleston and Bull's bay, and to make the necessary astronomical and magnetic observations; to extend the secondary triangulation south of Tybee entrance, and over St. Mary's entrance and river, and Brunswich harbor; to extend the topography east from Charleston harbor, and south from Tybee, following the triangulation; to continue the hydrography of the ocean coast between Charleston and Savannah entrances, from Georgetown entrance south, to include Roman shoals, and of St. Mary's harbor; to continue the exploration of the Gulf Stream in this section, and to continue the tidal observations at Charleston, Savamnah, and along the coast of the section. Office-work. To complete the drawings of Winyah bay and Georgetown harbor, of Savannah river entrance, of

St. Mary's harbor, and of the sketches required by the season's work, and to commence the drawing of the seacoast of South Carolina, south of Charleston entrance; to complete the engraving of Charleston harbor; to commence that of Winyah bay and Georgetown harbor, and of Savannah entrance and river-will require
Section VI. Reefs, keys, and coast of Florida.-(See estimate for usual appropriation for that special object.)
Section VII. Coast of Florida. Field-work.-To make the triangulation of St. Andrew's and St. Joseph's bays, and the necessary astronomical and magnetic observations connected with it; to continue that of Apalachicola harbor and of St. Marks, and the adjacent coast, and to commence that of Pensacola; to complete the topography of the Cedar keys and adjacent coast, and to commence that of St. Andrew's bay and St. George's sound; to complete the hydrography of the Cedar keys and Orystal river offing; to commence that of St. Andrew's bay, St. George's sound, and St. Marks. Ofrice-work.-To make the necessary drawings of preliminary sketches, and to engrave them; to complete the drawing and commence the engraving of the coast sheet, including the Cedar keys and Crystal river affing; to commence the drawings of the harbors and parts of the coast-will require
Section VIII. Coast of Alabama, Mississippi, and Louisiana. Field-work.-To complete the general reconnaissance of this coast; to continue the primary triangulation towards the Delta of the Mississippi; the secondary of the coast from the entrance to Lake Borgne, southward along the group of Chandeleur islands, towards the Mississippi ; to complete the telegraphic connexion of Washington, Mobile, and New Orleans, for difference of longitude; to make the astronomical and magnetic observations required in connexion with the triangulation; to continue the preliminary surveys of the more important bays west of the Mississippi; to continue the topography of the coast and shores of Lake Pontchartrain, and of the Chandeleur islands; to complete the hydrography of Mississippi sound, and to continue that of Louisiana bay; to continue the in-shore and off-shore work south of the islands bounding Mississippi sound; to continue the hydrography of the approaches of the Mississippi, and to make the necessary tidal observations on the coast of Louisiana. Office-wonk.-To make the computations and reductions required by the work of the section; to make the drawings of Mississippi sound, No. 2; to commence one of the sheets of New Orleans and its approaches; to complete the engraving of the chart of Mobile bay; to continue that of Mississippi sound, No. 1; to complete the engraving of sketches of Atchafalaya, Cote Blanche, and Vermilion bays, and of the sketches required by the season's work-will require
Section IX. Coast of Louisiana and Texas. Freld-wonk.-To make particular reconnaissances for the main triangulation; to extend the main triangulation southward and westward, and to make the astronomical and magnetic observations comnected with it; to execute the secondary triangulation and topography of Matagorda and Lavaca bays, and to complete the triangulation, topography, and hydrography at the mouth of the Rio Grande; to execute the hydrography, in-shore and off-shore, from Galveston southward and westward; to commence that of Matagorda bay. Office-work - To make the reductions and
computations required for the section; to complete the drawing of East and West bays in connexion with the chart of Galveston bay; to commence the drawing of the coast sheet south of Galveston; to make the drawing of the Rio Grande entrance; to engrave the preliminary sketches required ; to continue that of Galveston, and East and West bays, and to commence that of the Rio Grande entrance-will require
Sections X and XI.-Western coast, California, Oregon, and Washington. (See estimate provided for, as last year, by special appropriation.)

Total, exclusive of Florida reefs and keys, and of Western coast . . 206,000
The estimate for the Florida coast, reefs, and keys, and for the Western coast, is intended to accomplish the following named results:
Section VI. Reefs, keys, and coast of Florida. Field-work.-To continue the general reconnaissance of the coast; to continue the triangulation of the Florida reefs outside, and keys from Temessee reef towards Key West, and of the keys east of Boca Chica, and to continue that of Barnes' sound; to extend the topography of the keys from Key Rodriguez westward; to continue the hydrography of the reef southward and westward; to execute that of Key Biscayne bay and Card's sound, and to continue the Gulf Stream examinations necessary. Office-work. - To complete the computations and reductions required by the work of the section; to make the drawings and sketches of harbors and shoals from the previous season's work; to complete the drawing of Key West chart, (large scale,) and of sheet No. 1 Florida keys and reefs; to continue the engraving of Key West chart; to commence that of Florida reefs and keys No. I, and to engrave the sketches and preliminary charts-will require
Sections X and XI. California, Oregon, and Washington. Field-wonk. To continue the determinations of geographical positions, absolute and relative, of capes, headlands, \&c., and to determine the position of the forty-ninth parallel on the coast; to complete the triangulation of the Straits of Karquines, Suisun bay, \&c.; to continue the main triangulation of the coast north and south of San Francisco bay, and to follow the triangulation with the topography; to continue the triangulation and topography of the several harbors; to continue the triangulation of the Columbia river and of Puget's sound; to complete the hydrography of San Francisco entrance; to continue that of San Pablo and adjacent bays; to continue the hydrographic reconnaissance of the Straits of Fuca, Puget's sound, \&c., of the harbors of the coast, and of Santa Barbara channel. Ofrice-werk.-To make the computations of geographical positions and others required by the work; to complete the drawing and engraving of revised reconnaissance and harbor charts; to commence the drawing of San Francisco bay and its appendices; of Columbia river, and of the Santa Barbara islands; to continue the engraving of San Francisco bay and of Columbia river; to commence that of the Santa Barbara islands, and new harbors and anchorages developed; to reduce and engrave the sketches resulting from the previous season's work, and from current work-will require
The total mount appropriated for the Eastern and Western coasts for the fiscal year 1853-5 was the same which is now asked for these objects, the distribution 4
being different for reasons stated. The additional sum of twenty thousand dollars is required for the publication of the records and observations of the survey.

The items are as follows:

1. For the coast of the Atlantic and Gulf of Mexico generally : . . . $\$ 206,000$
2. For publishing the records of the work and the observations made during its progress
3. For continuing the survey of the reefs, keys, and coast of Florida . 30,000
4. For continuing the survey of the coast of California, Oregon, and Washington
5. For fuel and quarters, and for mileage or transportation for officers and enlisted men of the army serving on the Coast Survey, in cases no longer provided for by the Quartermaster's Department
The appropriations for the fiscal year 1853-'54 were-
6. For the coast of the Atlantic and the Gulf of Mexico generally . . 186,000
7. For the Florida reefs, keys, and coast 30,000
8. For the Pacific coast 150,000
9. For fuel and quarters, \&c., for officers and men of army, as above . . 10,000

SECTION I.-FROM PASSAMAQUODDY BAY TO POINT JUDITH, INCLUDING THE COAST OF MAINE, NEW HAMPSHIRE, MASSACEUSETTS, AND RHODE ISLAND. (SkEtch A.)

Very satisfactory progress has been made in this section during the year. Besides the regular operations of the work, several special examinations and surveys for the Light-house Board have been made. Eight parties have been engaged during the season: one in primary triangulation; one in reconnaissance and secondary triangulation; one in secondary triangulation and measurement of heights; three in topography, one of which was a double party; and two in hydrography, both parties employing two vessels and a tender. Two points in the main triangulation, Mount Sebattis and Mount Blue, have been occupied, at the former of which astronomical and magnetic observations were made. The reconnaissance for the further extension of this triangulation has been carried to near the boundary, and one or two locations for a proposed base of verification have been examined. An interesting series of observations for the determination of heights by the different methods of levelling, barometrical measurements, boiling-point apparatus, and by the measurement of zenith distances, have been made; and, in connexion with them, others, having special reference to obtaining the co-efficient of refraction over cultivated fields, woodlands, and water. Several points on the sea-shore were occupied for the last purpose, all of which were referred, by the several means above mentioned, to the permanent tide-gauge at Portsmouth, New Hampshire. The topography of Portland harbor has been continued, and that of York harbor, Maine, executed; that of Essex and Ipswich harbors, of Gay Head and part of Martha's Vineyard, of Cuttyhunk, of Plymouth, and Monomoy Point, Massachusetts, has been executed. The important work of the survey of the Nantucket shoals has been completed to deep water, and unfinished portions of former hydrography filled in. Deep-sea soundings have been run out from Old South shoal, and the hydrography of the south side of Martha's Vineyard, of Plymouth, Gloucester, Marblehead, and Lypn harbors, Massachusetts, and of York and Portland harbors, Maine, has been executed. Minute surveys of York harbor, Maine, Minot's ledge, Cohasset rocks, Sow and Pigs, Cuttyhunk, and Deep Hole rock, Cotuit, Massachussetts, have been made for light-house purposes. The position of a shoal lying about ninety miles east of Boston has been determined. A ridge connecting New South shoal and Davis' Bank, a small bank to the cast of Great Rip, and a rock in the harbor of Glowcester,
have been among the discoveries of the season. Examinations and arrangements were made for the location of several life surf-boats along the coast. Views of Salem, Newburyport, and Portsmouth harbors, were taken. Tidal obserrations have been continued at Nantucket, Hyannis, Boston, Portsmouth, and Portland, and have been made at Gloucester. The efforts to obtain tidal observations on the seaward side of Nantucket have at last been successful, a pipe having been laid from deep water to the inner part of the beach, and a tide-gauge connected with it. The chart of Wellfleet, and sketches of Alden's rock, Portland harbor, Davis' shoals and other dangers near Nantucket, and Sow and Pigs rocks, Cuttyhunk, have been published; and charts of Portsmouth, Newburyport, Ipswich, Salem, Boston, Muskeget channel, (Eastern series, Nos. 1, 2, and 3,) and sketch of Minot's ledge, Boston harbor, have been in progress.

Reconnaissance.-The recomaissance for the extension of the primary triangulation eastward was continued last October by Assistant C. O. Boutelle, accompanied by Brt. Major Henry Prince, U. S. Army, assistant in the Coast Survey, and sereral schemes for the continuation of the work were presented.

During the past season Mr. Boutelle and Major Prince have pushed the reconnaissance eastward to near the boundary, and determined the practicability of the lines between Mount Desert, Humpback, Moose à bec, and Western ridge, in Cooper, forming a quadrilateral well adapted to the continuation of the work. I have selected from the various schemes developed by this reconnaissance that on Sketch A, No. 1, as best fulfilling all conditions. It requires but eight stations, besides those to connect with a base of verification, to reach the boundary. On the British side of the frontier two stations, Grand Menan and Chamcook Mount, near St. Andrews, are visible from the last range of points. While prosecuting this reconnaissance, which occupied from September 12 to October 6, examinations were made of two sites, with reference to the selection of a locality for a base of verification, but neither appeared satisfactory, and further reconnaissance for this object will be made during the next season. Mr. Boutelle and Major Prince were accompanied in this work by Sub-Assistant B. Huger, jr. On the 6th of October, after the selection of the points above given, Major Prince commenced preparations for continuing his reconnaissance in Section V, and making that in Section VI, between the St. Marys and Cape Florida, and on the western coast of the Florida peninsula, for which he is under instructions.

Primary triangulation.-In June last the party under my immediate charge, engaged in the extension of the primary triangulation eastward, returned to this section, and on the 18th of that month commenced the occupation of Sebattis mountain, Kennebec county, Maine. (See Sketch A, No. 1.) This station was finished on the 16th of August, during which time eleven horizontal angles were measured by six hundred and thirty (630) observations, with the thirty-inch theodolite, C. S. No. 1, (Troughton and Simms;) one hundred and thirty-nine vertical angles for difference of height, with the micrometer of the same instrument, and twenty-one for absolute elevation, with ten-inch theodolite, C. S. No. 63, (Gambey;) sets of four repetitions being used. This triangulation covers an area, estimated in the usual manner, of three thousand and eight $(3,008)$ square miles: its longest triangle side is about ninety-three miles, and its shortest twenty-seven.

For azimuth and connexion with the triangulation, two hundred and forty-nine observations were made with the thirty-inch theodolite. The stars observed were Polaris, at upper and lower culminations and eastern elongation, and one thousand and seven $(1,007)$ in the Greenwich twelve-year catalogue, at western elongation.

I was assisted in a part of these observations by Assistant J. E. Hilgard, who
made the greater part of the observations for latitude and time, at the station, in connexion with the triangulation. These consisted, for time, of obseryations of sixty-five transits with the thirty-six-inch transit instrument, C. S. No. 9, (Wurdemann;) and for latitude, of observations with zenith telescopes Nos. 1 and 2, (Troughton and Simms,) of twenty-seven pairs of stars with both instruments, and observations upon eight pairs with instrument No. 1, independently, and upon seven pairs with No, 2. The whole number of observations amounted to two hundred and seventeen; and the average number taken with one instru-: ment upon a pair of stars was three. Two determinations of the value of the micrometer were made for each instrument. Mr. Hilgard was assisted in these observations by Mr. J. G. Oltmans, making part of the observations, and Mr. S. Harris.

A meteorological register was kept by Mr. James Searles, jr., at this station, in which one hundred and twenty-three observations of the barometer and wet and dry bulb thermometers were recorded.

A curious fact of personal equation in the use of the zenith telescope was observed at this station, and will be followed up in future observations.

Remarkable local attraction at the immediate station at Mt. Sebattis prevented the observations for magnetic declination, dip and intensity, and they were consequently made at a station about half a mile distant. These were made by Assistant J. E. Hilgard, aided by Messrs. Oltmans and Harris, and consisted of observations on three days for declination, of two sets of experiments of vibration and deflection, for absolute horizontal intensity, with declinometer C. S. No. 2 ; of six sets of observations of dip, with a ten-inch Gambey dip circle.

Upon the completion of this station, on 19th of August, the party was transferred to Mount Blue, Franklin county, Maine, to occupy that point in the primary triangulation, and the station was ready for the observations on the 25 th of August. These were not commenced, on account of the unfavorable state of the weather, until the 29th, and from the same cause were not completed when the operations were closed, on the 22 d of November. At this time Mount Blue and the adjacent mountains were almost constantly, during the day time, surrounded by clouds, preventing the possibility of observing at any considerable distance. Up to that date twelve horizontal angles were measured by four hundred and two observations, with the thirty-inch theodolite, ©. S. No. 1, (Troughton and Simms.) This triangulation covers an area, computed in the usual way, of eight hundred and twentynine square miles.

The height of the mountain was determined by the two methods-by levelling and barometrical measurement. Observations with mountain barometers were simultaneously made at the summit of the mountain and at its base, half-hourly for five hours, and then in connexion at Avon pond and Bates' tavern, in Avon township, the place at which Dr. Jackson set out in his determination of the same elevation in 1838 or '39, every ten minutes for one hour. Similar observations were made simultaneously at the self-registering tide station in Portland, and at the base of the mountain half-hourly for five hours. The barometers were compared at the base before the commencement of the above by half-hourly observations for five hours. The total number of these sets of observations was seventy-six, in connexion with each of which the temperature and evaporating point were observed. These observations were conducted with great care by Assistant George A. Fairfield and Lieut. A. W. Evans, U. S. Army, assistant-the latter making the observations at the base of the mountain, and Mr. Fairfield those at the other points.

The height of the mountain was also determined by Mr. Thos. McDonnell, by
levelling from the summit rock to the spot where the above observations were made at the base, and from thence to the pond, the point there being marked on a prominent rock.

Meteorological observations were made at the base and summit simultaneously throughout the time of occupation of this station, in each of which were registered two hundred and forty-nine observations of the wet and dry bulb thermometers, and Alexander and aneroid barometers.

Mr. Dean assisted in all the geodetic observations, and had special charge of the station and instrument, involving much responsibility and hardship, which he cheerfully sustained.

Secondary triangulation.-Captain T. J. Cram, U. S. Topographical Engineers, assistant in the Coast Survey, who had been engaged during the winter in the reduction and computations of his triangulation of the season previous, resumed field work on the 20th of June, to continue the determination of the heights of several stations of his triangulation, by the different methods of observing reciprocal zenith distance by the barometer and by levelling. The extremitios of these lines have been occupied in the observation of reciprocal, simultaneous and separate zenith distances, with a view to obtain the co-efficient of refraction for long, short, and medium distances across water. The extremities of one other line were occupied in a similar manner ; the line levelled and distanced, and intermediate points occupied in a variety of ways, to obtain, if possible, data for the co-efficient of refraction over cultivated fields and woodland. Another scheme embraced a line upon a sand beach, covered at high and bare at low water. Seven stations were thus occupied; simultaneous and reciprocal observations being made upon each other, upon other stations in sight, and upon the sea horizon, at determinate stages of the tide, in several positions. One thousand one hundred and seventy-four $(1,174)$ vertical angles-and twenty-five horizontal angles were measured.

With two mountain barometers simultaneous observations have been made, at various heights above the level of the sea, in number amounting to one thousand two hundred and thirty-four, (1,234,) and of corresponding thermometric observations two thousand four hundred and sixty-eight, (2,468 .)

Several points, as before remarked, have been connected with lines of levels, and Mt. Washington, the highest peak of the Whitemountains, and on the Atlantic coast, was levelled from the summit to the Atlantic and St. Lawrence railroad summit-a total elevation of five thousand five hundred feet. This range was divided into steps of five hundred fcet: one of these steps was sub-divided into steps of one hundred, and one of these into steps of ten feet. On all these points observations were made with barometer, thermometer, and boiling-point apparatus. This last apparatus was used, besides, in the observations at Mt. Washington, at seven different harbors on the coast, and on sixteen different stations of the Coast Survey triangulation; the elevations of which have been determined heretofore by other methods. One hundred and twenty-four observations were made with this instrument.

In connexion with the above, special observations of tides have been made of four stations, with a view of obtaining the mean level of the sea simultaneously with the zenith distance observations. It is expected to deduce from this extensive and careful series of observations, important data for the co-efficient of refraction under different circumstances, and in relation to the relative advantages in accuracy, time, and other particulars of the different modes of measuring heights.

Since his return from the field, Capt. Cram has been engaged in the computation of the results of his season's labor.

Topography.-Assistant H. L. Whiting, after the close of his work of revision on the Patapsco, noticed in my report of last year, was engaged in inking sevcral sheets of his previous field-work (in Scetions I, III, and V) until the 24th of May, when he received instructions for the season's operations in Section I. '1 hese were commenced at Cuttyhunk (see Sketch A, No. 5) on the 4th of June, for the purpose of showing, in detail, the topography of the southern part of the island and the "Sow and Pigs" rocks, upon which it is proposed to erect a light-house, and to furnish the shore-line and positions to the hydrographic party charged with the minute examination of the rocks and selection of a site for the light-house. This work was completed on the 14th of June; after which, until the 24 th of that month, the party was occupied in the re-establishment of points on the south side of Martha's Vineyard (see Sketch A, No. 1) for the use of the bydrographic party, rendered necessary by the rapid wear of the cliffs there by the ocean.

Mr. Whiting says, in regard to the Nashaquitsa (or Wequobsky) cliffs: "The highest cliffs on Martha's Vineyard are the 'Wequobsky cliffs,' called by Mr. Eakin ' Nashaquitsa cliffs,' on the highest point of which he put his triangulation station. This part of the south shore of the island is rather remarkable, from the fact that these cliffs draw in and form quite a cove, showing that the shore is washed away more at this point than any other, although the cliffs are one hundred and fifty feet high.
"When the signal was first put up in 1844 or ' 45 , it was placed twenty-five feet from the edge of the cliff. Last ycar I went with Lieut. McBlair to show him where the signal was, and found it had been washed away. I noted a large rock, some ten or twelve feet back from the edge of the cliff, as a landmark at the time, and I now find this stone has been reached and has rolled down the cliff. My new station is about sixty feet inside the old point, and thirty-eight feet from the present edge of the cliff, making the encroachments of the sea upon these cliffs, of one hundred and fifty feet in height, some fifty feet (50) in nine years. This encroachment continues for some miles to the westward on the south side of the island. I found the beach washed in at 'Chilmark Pond station' about twenty or twentyfive feet, but this becomes less and less, until at the extreme southeast end of the island the shore seems to have increased, if anything; there is, however, not much change.
"As these and the Gay Head Ciffs are quite known landmarks in this section of our coast, I thought these changes quite interesting facts."

It may be worth inquiry whether some effective means should not be adopted to preserve these landmarks.

Thence the party proceeded to the survey of the vicinity of Gay Head, (see Sketch A, No. 1,) which was finished on the 14th of July. On the height of Gay Head cliffs Mr. Whiting remarks:
"I find the Gay Head cliffs not so high as supposed. Prof. Hitchcock calls them one hundred and fifty feet, which they are generally considered, but they are only from one hundred and twenty to one hundred and thirty-five feet high. There is one small knoll, not on the edge of the cliff, which is one hundred and forty-five feet. The lantern of the light-house I make about one hundred and sixty-seven feet. All these heights are from mean low water. The highest land is near the middle of the Head, and is about one hundred and eighty-five feet."

Upon the completion of this work Mr. Whiting transferred his party to the vicinity of Cape Ann, resuming the topography from the limits of the last season, and carrying it northward as far as Rowley river, including part of the harbor of Essex and that of Ipswich. (See Sketch A, No. 1.) The operations of this party
were closed on the 10th of October, this last work having occupied until that time from the 25th of July.

The statistics of Mr. Whiting's work of the season are given in the following table :

	Area in square miles.	Miles of shore-line.
Essex sheet..	10	14! ${ }^{4}$
Ipswich sheet	24	40
Gay Head, \&ce	15	
Total..	49	542

On the character of the topography of this region, Mr. Whiting makes some interesting remarks, which I give:
"The country surveyed this season has been quite varied. The rocky and broken character of Cape Ann seems to change very abruptly at about Essex river; the masses of rocks, with their pine and cedar growth, disappear entirely, and the country has a soft and fertile appearance; the hills are remarkably smooth and undulating, and are scattered in quite distinct peaks or mounds, sometimes scparated by tracts of marsh or quite level upland. These hills, within the limits of my survey, range from about two hundred to one hundred and twenty feet in height. The immediate shore is also quite different from that of Cape Ann and Massachusetts bay, being more like our southern coast. The long beach and sand-hills of Plum island, with the sound and marshes behind it, is not unlike the coast of North Carolina, and with the same hydrographic characteristics, as the shifting bars of Ipswich and Essex rivers, with their shallow channels, plainly show."

About the middle of October this party was transferred from this section to Section III, to continue the work of revision on the Patapsco, in which it is now engaged.
The topographical sheet of Casco bay and of Portland harbor, Maine, upon which Assistant A. W. Longfellow was engaged in the latter part of 1852, and of which the statistics were given in my report of that year containing his work, joined on its southern boundary that of Richmond Island harbor, which was executed in 1850. It embraces the shore to the northward and westward of that sheet from the light-house on the eastern extremity of Cape Elizabeth to Spurwink river, four miles and a half; thence to the Portland light, situated on Portland Head, a distance of four miles; and thence two miles in a westwardly direction. (See Sketch A, No. 1.)

The character of the topography on this sheet, and of the region in its vicinity, is thus given by Assistant Longfellow in an extract from his report:
"The character of the topography is moulded directly upon that of the geological formation which characterizes this region and the coast of Maine generally. This is a slate formation, with a stratification so much inclined with the horizon as to become nearly vertical. Its prevailing character is micaceous, though of so highly metamorphic a type as to pass in many localities into talcose or chlorite slate and other modifications. It presents to the most casual observer, in its external character, the strongest indications of having been greatly altered by heat. The general direction of the strata is northeast and southwest, as shown upon the map in the shore section; and in the contours of the interior, equally numerous trap dikes intersect the strata, following the direction of its stratification, the most remarkable example being just to the southward of the Portland light, and so
large as to be shown upon the map. This dike having been worn away by the weather and the sea, has left a canal with vertical walls, through which the sea rushes at high tide.
"From the varied character of the rocks results an inequality of hardness: the softer and more friable portions, yielding readily to the power of the elements, are worn down and washed away, leaving small valleys or depressions between; the harder rocks extending generally in the direction of the strata. These give the characteristic form to the relief of the ground, the rock being generally but thinly covered with soil, and in many places entirely bare. In these reaches the decomposed rock forms a rich and warm soil, which affords the best arable land on the саре.
"In the wooded and uncultivated parts, back from the shore, these depressions, not being drained, form swamps and morasses, generally covered with alder bushes.
"The prevailing forest growth on the Cape is the double or black spruce; some hickory and oak are found, and an occasional shrub of red cedar, which here reaches nearly its northern limit of growth."

Mr. Longfellow has, during the past season, been engaged in the topography of York harbor, Maine, including Cape Neddick and Boone island. This was commenced on the 13th of July, and continued until the 3d of September, when his immediate party was transferred to Portland harbor, leaving the completion of the York harbor sheet with Sub-Assistant A. S. Wadsworth. This was finished on the 1st of October, and comprises within its limits an area of nine (9) square miles, and an extent of shore line of thirty-three and a half ($33 \frac{1}{2}$) miles.

Boone island was determined by a detached survey, in regard to which Mr. Longfellow says:
"Boone island, lying too remote from the shore to connect with the triangulation points on the main land, was determined by a detached survey. It is a mass of granite, destitute of soil, reaching, in its highest part, hardly twenty feet above the tide, which breaks over it during storms. There is a reef of rocks lying off its northwest end, and another extending out from its southeasterly point."

The shore-line determined by this party was furnished to the hydrographic officer, who immediately followed in the execution of that portion of the survey.

The work in Portland harbor was commenced by Assistant Longfellow upon his withdrawal from York harbor, and is now in progress.

Upon the completion of the reductions and computations of his work in Section VIII, during the winter, Assistant S. A. Gilbert was instructed to survey the harbor of Plymouth, Massaehusetts, and Monomoy island, off the southern extremity of Cape Cod. (See Sketch A, No. 1.) The first of these surveys was commenced on July 5 , and up to the lst of October two Sheets were nearly completed, embracing, of work done, an area of twenty-seven (27) square miles, and an extent of shore-line of thirty-five (35) miles. On these sheets are included Duxbury beach, the Gurnett, and Clark's island. The survey of Monomoy Point was commenced on the 24th of September, and up to the date of his repoit Mr. Gilbert had completed the survey of five square miles of area, and of fourteen miles of shore-line. In this survey the positions of the new light-house, of the light-vessel on Pollock rip and Shovelful shoals, and of the buoys on the several neighboring shoals, were determined. It was found that the inlet at the north end of the island had closed up, in a degree, since the former survey, and a new one opened to the north of Chatham light, which had become the principal entrance to that harbor. Since the completion of the above work, Mr. Gilbert has receired instructions for
the continuation of his triangulation in Section VIII, for which he is now making preparations.

Hydrography.-Two hydrographic parties have been occupied in this section during the past season, under the charge of Lieuts. Comg. H. S. Stellwagen and M. Woodhull, U. S. Navy, assistants in the Coast Survey. The former party had the steamer Bibb and a tender, and, during a part of the time, the steamer Corwin; the latter, the schooners Madison and Gallatin, and a tender.

The first work of Lieut. Comg. Stellwagen's party was the minute survey of Minot's ledge and adjacent rocks, Cohasset, near Boston harbor, (see Sketch A, Nos. 1 and 3,) for the purpose of the site fora light-house. To obtain the proper information, in an engineering point of riew, in regard to the feasibility of erecting a light-house on these rocks, Captain H.W. Benham, of the Corps of Engineers, assistant in charge of the Coast Survey Office, accompanied Lieut. Comg. Stellwagen. An eligible position, selected by these officers, was indicated upon the chart forwarded to the department in my letter of 21 st November, enclosing the report of Lieut. Comg. Stellwagen upon this survey, and which is given in Appendix No. 48. Next in succession was the filling up of the space of unfinished hydrography to the northeast and southwest of Davis' South shoal, (see Sketch A, No. 4;) next, of that unfmished portion to the northeast of Great Rip, extending the soundings out to twenty-six fathoms; these additions completing the hydrography of the Nantucket shoals to deep water. The party next proceeded to Martha's Vineyard, and carried out the hydrography from No-Man's Land to the eastern end of the island, (see Sketch A, No. 1,) and ran lines of off-shore soundings to a distance of fifteen miles from the beach. A line of deep-sea soundings was then run to the distance of seventy-five miles from the west buoy on Davis' South shoal (see Sketch A, No. 4,) until no bottom was had, with a line of one hundred and sixty fathoms. The course going out was south, by compass, and returning north by west. Additional lines of soundings were also run out a distance of forty miles southwest of Davis' shoal. These were finished on the 28 th of September, since which time Lieut. Comg. Stellwagen has made a supplementary report of the completion of the survey of Gloncester harbor, and of the outside work from Cape Ann, Thatcher's island, to near Manchester; joining the work of Salem harbor. (See Sketch A, No. 1.) The hydrography between Marblehead and Lynn concluded the excellent season's work of this party, on the 28 th of October, when they were driven in by storms, which were becoming so frequent and severe as to render it impracticable to continue longer, and having very nearly completed the entire work directed in the season's instructions.

In addition to the foregoing work, Lieut. Comg. Stellwagen has made examinations and selected locations for a portion of the life surf-boats provided by Congress for the coast east of Long Island sound. His report on these selections was transmitted to the department on the 18th of November, and will be found in Appendix No. 10 of this report.

During the work of this party several interesting discoveries and developments have been made. In sounding northeast and southwest of Davis' South shoal, a ridge was found between, the southern end of Davis' bank and the New South shoal, having four and a half to five fathoms on it In making the soundings northeast of Great Rip, a small bank or knoll was found with but five fathoms on it, about five miles east of Great Rip, and with twelve to thirteen between it and Davis and Fishing Rips, the water gradually deepening outside to the northward and eastward beyond the limits of the series of shoals. In the survey of Gloncester harbor a small rock, coming to a pinnacle at about seven or eight feet from the sur-
face at low water, was determined accurately in the inner harbor. This rock is not indicated upon any existing chart. While the party was at work in this harbor one of the vessels was despatched in search of the shoal reported to be about ninety miles east of Boston, and to which my attention was called by George W. Blunt, Esq., of New York, who gave me the approximate position of the shoal. This was found very little to the northward of the specified spot, and where deep water is shown on the chart. It is a small knoll between Cashe's ledge and Fippenies bank, and probably a part of one or the other of them. It lies about eight miles southwest of shoal water on the chart. There were found thirty-six fathoms on it, the charts placing ninety-five fathoms as the soundings in this locality. The report of the determination of the position of this shoal has been published, and is now appended to this report. (See Appendix No. 12.).

The statistics of the work of this party are given in the following table:

After the completion of the work in Section II, in the early part of the season, the party under charge of Lieut. Comg. M. Woodhull, U. S. Navy, assistant in the Coast Survey, proceeded to Section I to commence the season's work there, of which the first was the minute survey of the "Sow and Pigs" reefs, off Cuttyhunk, Massachusetts, for the purpose of selecting a site for a light-house. This was commenced about the middle of June, and completed on the 1st of July. A more extended notice of this survey is given in Lieut. Comg. Woodhull's report upon it in full, which was transmitted by me on the 3 d of September, and is given in Appendix No. 50. Captain H. W. Benham, of the Corps of Engineers, assistant, was associated with Lieut. Comg. Woodhull on this duty, and these officers united in the selection of the site indicated on the sheet which was transmitted to the department, and is now shown on Sketch A, No. 4.

The survey of Monomoy shoals, (see Sketch A, No. 1,) and their vicinity, was commenced on the 5th of July. The work embraced within its limits covered the shoals known as the Shovelfull, Handkerchief, Dry shoal, Broken Ground, Pollock Rip, and the Great, and Little Round shoal; also the coast on both sides of Monomoy Point from Harwich Port, on the westward, to Chatham, on the east. The importance of this locality seemed to justify the immediate issue of a preliminary chart, which is now in the course of preparation. The value of the light-boat recently placed on Shovelfull shoal is acknowledged by Lieut. Comg. Woodhull, who mentions that Butler's Hole, in consequence of the facility afforded for entering by this vessel, is now much used as a harbor by vessels navigating the sound, bound either to or from the eastward. After this, the survey of Deep Hole rock, at the entrance into Deep Hole harbor, near Cotuit, Massachusetts, was made with a view to placing a beacon upon it. This operation is noticed more fully in
the report communicated, with sketch, to the department on October 31, given in Appendix No. 49.

On the 14th of August the party was divided, the schooner Madison repairing to York harbor, Maine, (see Sketch A, No. 1,) to execute the survey there necessary to the selection of a site for a light-house. The Gallatin at the same time executed the hydrography of Portland harbor, Maine. (See Sketch A, No. 1.) The work in this excellent harbor has been very minute, embracing its numerous islands and channels necessary to form a complete chart.

In speaking of the advantages and capacities of Portland harbor, Lieut. Comg. Woodhull remarks:
"This harbor T look upon as one of the best on our whole coast, remarkable alike for the facility of ingress and egress, with its convenient and safe anchorage. The main entrance is deep and sufficiently wide for sailing-vessels under all circumstances, and the sailing limits so plain that there can be little or no impediment to navigating it with ease and perfect safety. Good ten fathoms of water can be carried from sea to Monjoy Point, and there are from four and a half to five fathoms within the harbor. I have been very particular and minute in sounding the harbor within the breakwater and fronting the city, as I hoped thereby to furnish such facts as would give the citizens of Portland full knowledge of this harbor, and prevent the errors that have been committed in some of our commercial ports, in forcing improvements beyond propriety and a due regard to the safety of the harbor. Already shoals are making, caused, I think, by the irregularity in length of the different piers now existing, behind which eddies are formed. I would urge and recommend that the longest pier be considered the utmost limits of such extension for the future, and that as speedily as convenient the remaining piers should be built out flush with that limit. This would have the effect of preventing eddies, make a uniform and direct flow and ebb of the tide, and thus keep the harbor thoroughly and regularly scoured. Back of the city, and just without the flats, there is good deep water. A little assistance would make this a most safe and excellent steamboat harbor. The depth of water is sufficient, and the channel is straight, wide, deep, and convenient for ingress and egress.
"I would recommend that a small sixth-order harbor light be erected on the extremity of the breakwater; also that a can-buoy be placed on the shoal to the northward of the breakwater: the one now down is too small to serve as a proper mark. I deem the light above mentioned very important; it is absolutely necessary to make a safe entrance into the harbor, and to guard against striking the breakwater itself, which is nearly under water at high tide, and is, therefore, on dark nights difficult to be seen so as to be avoided.?

A minute survey and determination of the position of Alden's rock, lying at the entrance into this harbor, (see Sketch A, No. 2, were made, and the results furnished, by authority of the department, to the Board of Trade of that city, who contemplate taking measures either for its removal or indication by a more appropriate mark than a mere buoy.

The survey of Plymouth harbor, Massachusetts, (see Sketch A, No. 1,) was commenced on the 25 th of September, and finished on the 15th of October. This harbor was very closely sounded, embracing all its approaches; which being finished, the party returned to Monomoy Point and vicinity to complete a portion of the hydrography which had been left undone in the earlier part of the season.

In October Lieut. Comg. Woodhull made examinations of the localities for surfboats on the coast of New Hampshire and Maine, provided for by Congress and referred by the department to this office. His report on the result of these exam-
inations was transmitted to the department on the 24 th of October, and is also given in the Appendix No. 9.

The schooner Madison, of this party, also gave transportation to Captain A. A. Gibson, U. S. Army, assistant in the Coast Survey, in taking views of several harbors along this coast.

After the completion of the above work, the party returned to New York harbor to determine the positions of several buoys in the harbor, which was done at the end of October, when the vessels were laid up and the officers returned to the office to reduce and plot the work of the season in which they are now engaged, having executed with great zeal and assiduity the large amount of work for which they were called upon.

The statistics of that work are given in the following table:

Light-house examinations.-The surveys of York harbor, Maine; of the Minot's ledges, Cohasset, Boston harbor; of the Sow and Pigs rocks, near Cuttyhunk; and of Deep Hole rock, near Cotuit; Massachusetts, were made at the request of the Light-house Board, and by direction of the Treasury Department, ander the law of 1852. The results of these surveys have been transmitted to the department in reports, of which-I append copies, (see respectively Appendix Nos. 48; 50, and 49,) each of which was accompanied by a sketch indicating the position selected for the aids to navigation contemplated.

Tides.-Tidal observations were continued at Portland, Portsmonth, Boston drydock, Hyannis, and Great Point, Nantucket-at the first and last two named places with a self-registering tide-gauge; and were made at Gloucester and Siasconsett, in addition to those temporary observations required for the correction of the soundings.

To obtain reliable tidal observations on the oitside of the island of Nantucket, where the ebb and flow corresponds to that on the shoals, has been a baffling problem. The rise and fall is small, and the surf breaks frequently with very great violence on that very exposed part of the coast. By the perseverance and skill of Sub-Assistant G. A. Fairfield, a gauge was placed near Siasconsett, on the eastern side of the island, connected by a pipe with the sea below low water. This arrangement has worked well, and will probably stand as Yong as is necessary to obtain the tidal data desired. The difficulties encountered, and final arrangements made, are detailed in Mr. Fairfield's report, (Appendix No. 13.) With the experience thus gained he was readily enabled to place a second gauge of the same sort at Great Point, Nantucket, to compare with that at Hyannis, the observations of which of last season did not appear reliable. In this latter case the pipe was connected with a self-registering gauge, and the working of the apparatus was very satisfactory.

Views.-Early in October Captain A. A. Gibson, U, S. Army, assistant in the Coast Survey, made such views of the harbors of Salem and Newburyport, Massa-
chusetts, and Portsmouth, New Hampshire, as were required for the charts of those harbors now in the hands of the engraver. This occupied about ten days, for which time the schooner Madison, of Lieut. Comg. Woodhull's party, was at his disposal to afford transportation from place to place, and the means of obtaining the proper points of view of each harbor.

SECTION H.-FROM POINT JUDITH TO CAPE RENLOPEN, INCLUDING THE COAST OF CONNECTICUT,
NEW YORK, PENNSYLVANIA, AND PART OF DELAWARE. (Sketch B.)
The surveys of the Hudson, of Sandy Hook changes, and of the shoals and channels in that vicinity, have somewhat increased the amount of field-work in this section; two triangulation, one topographical, and two hydrographic parties have been engaged during parts of the season, as their services could be spared from other sections. The triangulation of the Hudson riyer has been extended, and points determined at the entrance of Dona and Mahon's rivers for verification of the hydrographic points of the previous year. The topographical survey of both shores of the Hudson, from Fort Washington to Sing Sing, has been made, noticing the changes in the shore by improvements and other causes since the previous survey; Sandy Hook has been resurveyed, and its changes since the last and former surveys determined. The hydrography of the Hudson river has advanced from the limits of the former work to Croton Point, about twenty miles above Fort Washington, and a resurvey of the Romer shoal, Flynn's Knoll, East and West Swash channels, and a part of Gedney's channel, New York harbor, has been made, with a view to ascertain any changes which may have taken place in their positions or extent, and also to select a location for a beacon to be used in connexion with the present beacons by vessels entering the harbor. The Jersey flats from Constable's Point to. Jersey City have also been sounded over minutely. The tidal observations at Governer's island have been continued.

The off-shore chart from Gay Head to Cape Henlopen, and the chart of the mouth of Connecticut river, have been pablished during the year, and sketches of Romer and Flynn's shoals, and changes in Sandy Hook, Long Island sound, Nos. 1, 2, and 3, south side of Long Island, and comparative map of Romer shoal and Swash. channel, New York harbor, have been in progress.

Triangulation.-The triangulation of the Hudson river, under the charge of Assistant Edmund Blant, has extended during the season to a station (see Sketch B, No. 1) on Constitution island, near West Point, New York. This was commenced in the first part of September, after the withdrawal of the party from the Chesapeake, and continued until November. The work of the season covers an area of forty-two square miles, in which twenty-one stations have bcen occupied, forty-five primary and one hundred and ninety-five secondary angles measured, in two hundred and twenty-nine series, by two thousand and ninety-eight $(2,098)$ observations. These were made with twelve-inch theodolites C. S. No. 11, (Simms,) and C.S. No. 32, (Gambey.)

In addition to this triangulation above noticed, Mr. Blunt determined the position of the light-house at the entrance to Bridgeport, Connecticut, numbered 112 in the list of light-houses, and of that in Newark bay, at the mouth of the Passaic river, numbered-131. He also determined points and re-erected the , necessary signals for the resurvey of Romer shoal and vicinity, New York harbor, (see Sketch B, No. 2,) and marked the points for the range beacons proposed by the late Assistant J. B. Glück, in his report given in Appendix' No. 23 to my report *f 1851. Mr. Blunt's report on this last operation is given in Appendix No. 51.

Hieut. A. H. Seward, U. S. Army, assistant, has been attached to this party during the whole season, and, upon the close of the Hudson river work, received
instructions for the charge of a party triangulating along the inner Florida reef, for which he is now making preparations:

Lieut. D. T. Van Buren, U. S. Army, assistant, who had been attached to the party of Captain Palmer on the Rappahannock, joined Mr. Blunt in September, upon the suspension of the work for the summer in Section III, and continued with him until its resumption in October.

The position of Mahon's river light-house, and of the station at Dona landing, used in the hydrographic survey of last year of Dona and Mahon's rivers, (see Sketch B, No. 1,) by Lieut. Comg. Woodhull, were verified in January last by Assistant J. E. Hilgard, and the points given to the hydrographic party to plot that work. Three other lights were obseryed upon for the same object.

Topography.-Assistant F. H. Gerdes, who had finished inking the several sheets of his reconnaissances in the Southern sections; was detailed to make the resurvey of Sandy Hook, New York harbor, to note what changes had taken place since the survey of November, 1851. Six stone posts were placed in that year in positions for easy reference and comparison in future surveys. Most of these, however, have been removed or lost, and the Hook has changed somewhat, though not materially, in its outline. A comparison of its shore-line of this and former years is given in Sketch B, No. 3. The sheet of this year contains ten miles of shoreline, and three square miles of area.' The great changes on the Hudson river since 1839, the date of the last survey, produced by the innumerable improvements along its whole extent, required that a new determination of its shore-line, and of the topography of its banks, should be made before executing the reduced drawing. Mr. Gerdes was therefore instructed to make this resurvey, which he has accomplished of both shores from Sthg Sing to Fort Washington, (see Sketch B, No. 1.) This is embraced in three sheets completed, and a fourth nearly so, comprising an extent of shore-line of fifty-five miles, and an area of thirty-six square miles.
Mr. Gerdes inked these sheets as he advanced with the field-work, and has since handed them into the office; he also furnished points to the hydrographic party working on this river. The work was closed about the last of October, but will be resamed next* year, and continued to embrace the lower portion of the river, and the shore-line of the city to the battery. Mr. Gerdes is now under instructions for the further prosecution of the reconnaissance of the Gulf of Mexico along the shores of Louisiana and Texas.

Hyarography.-The hydrography of the Hudson niver was commenced during the season by the party of Lieut. Cong. R. Wainwright, U. S. Navy, assistant. The portion surveyed lies between Croton Point and Fort Washington, (see sketch B, No. 1,) a distance of about twenty miles. In its execution thirteen thousand. four hundred and twenty-five $(13,425)$ casts of the lead were made, two hundred and nineteen (219) miles of soundings run, thirty-four (34).square miles of area sounded out, and fifteen hundred and thirty-eight $(1,538)$ angles measured. The above was accomplished after the withdrawal of the party for the summer from Section III, August 5th and October 18th. In connexion with this survey, two. permanent tide-gauges were kept-one for a month and the other for a month and a half-six current stations occupied, and a flood and ebb tide taken at each. In addition to plotting this work, the inking and lettering of the entire season's. survey of the James river was done.

The party is now at work in the Rappahannock river, Virginia.
A resurvey of the Jersey flats, from Constable's Point to Jersey City, (see Sketcl B, No. 1,) was made in April last, by Lieut. Comg. M. Woodhull, U. S. Navy, assistant, and all the rocks, bars, \&c., carefully determined. This was done between
the 20 th of April and 4th of May, in which time eight thousand five handred $(8,500)$ casts of the lead were made, one hundred and seventy (170) miles of soundings run, ten (10) square miles of area sounded out, and one hundred and ninety (190) double angles measured. In connexion with this, hourly observations of tides night and day, at Bedloe's island, were made.

I am indebted to B. Aycrigg, Esq., of Aquackanock, for calling my attention to the necessity for this work, and for putting his minute local knowledge at the disposal of the survey; the value of which Lieut. Woodhull acknowledges in his report.

A resurvey was made of Romer shoal, East and West Swash channeis, of a part, of Gedney's channel, and of Flynn's Knoll, in New York harbor, (see Sketch B, Nos. 1 and 2,) with a view to ascertain what changes had taken place since the last survey, and with special reference to the position of the Romer beacon, and of a new one to be used in connection with it, to guide vessels in passing the shoal and through the Swash channel. This survey was very minute, an area of twenty-five (25) square miles having been sounded with eight thousand (8,000) casts of the lead, two hundred and twenty-five (225) miles of soundings run, and three hundred and seventy (370) double angles measured. The result of this work is published in sketch accompanying this report, and numbered B No. 2.

After this work, lieut. Woodhull proceeded to Section I, to execute that which has been already noticed under the head of that section.

Light-house surveys. -The survey noticed in the preceding paragraph was for light-house purposes.

SECTION III-FROM CAPE HENLOPEN TO CAPE HENRY, INCLUDING THE COAST OF DELAWARE, MARYLAND, AND PART OF VIRGINA. (SkkTCH C.) MARYLAND, AND PART OF VIRGINIA. (Skktch C.)

Twelve parties have been successfully engaged in this section during the whole or part of the season. One was engaged in astronomical observations and the determination of telegraphic differences of longitude; one in primary and secondary triangulation; three in secondary triangulation; four in topography; and two in hydrography. Astronomical observations, in connexion with . those at Charleston and Raleigh in determining the difference of longitude between the former place and Washington, were made. Magnetic and azimuth observations were made at the time of the measurement of a base of verification for the outside triangulation. The main and secondary triangulation of Chesapeake bay, and of those adjacent and of the outer coast, have been finished. The secondary triangulation of the James river from Richmond to below City Point, and of the Rappahannock from Fredericksburg to Port Royal, has been executed. The topography of the outer coast of Virginia is nearly finished; that of the shores of Chesapeake bay advanced; that of the James and Rappahannock rivers has been under execution; work of revision on the Patapsco is nearly completed. The hydrography outside the entrance to the Chesapeake across to Cape Henry has been completed, and that of the bay within the capes has made good progress; that of the James river from Richmond to Harrison's bar has been executed, and that of the Rappahannock commenced at Fredericksburg. A successful series of off-shore tidal observations have been obtained, and the determination of the positions of two important shoals, not laid down in the charts, in the entrance of the bay, has been made and published for the benefit of mariners.

Within the year a chart of the seacoast of Delaware, Maryland, and Virginia, No. 1, and sketches of Cape Charles and vichity, of Wachapreague, Metomkin, Pungoteague, and of Cherrystone inlets, and of Hog Island harbor, Virginia, have been published. Charts of Chesapeake bay, Nos. 1, 2, and 3, Patapsco river,

Appomattox, and part of James river, have been in progress, besides a manuscript map of the Appomattox river for the city of Petersburg, which is nearly completed.

Astronomical observations.-In the determination of the difference of longitude between Washington and New Orleans by telegraph, Seaton station in this section was occupied to connect with Charleston, South Carolina, and afterwards with Raleigh. The observations were made at this station by Assistant L. F. Pourtales, from whose report I quote the following statement of the number of observations made, instruments used, and mode of observing :
"The instruments used were, transit instrument U. S. C. S. No. 6, the Hardy clock, with Mr. Saxton's break circuit apparatus, Bond's spring governor, and a Morse register. A main battery of forty grove cups was used, and a local battery of six jars on Mr. Mathiot's plan. The station communicated with the southern telegraph office by the wire belonging to the Coast Survey attached to the posts of the Magnetic Telegraph Company.
"The telegraphic arrangements' were made by Mr. E. Colton, chief operator at the southern telegraph office. I was assisted in observing by Mr. R. T. Bassett.
"Preparations for working were made on eleven nights, between January 17th and February 18th, without success. During this time eighty-eight transits of stars were observed for instrumental correction and clock's rate.
"Having found it impossible to get a good circuit to Charleston, owing to imperfect insulation of the line, it was resolved to divide the distance, and in consequence Dr. Gould established himself at Raleigh, and was ready for work on the 15th of April.
"Four good working nights were obtained, viz: April 21st, 26th, 28th, and 30th. On those nights eighty stars were exchanged for difference of longitude, sixteen reversals of the transit instrument were made on circumpolar stars for determining the error of collimation, and thirty-one transits observed for clock's rate and azimuth correction. Observations for the same purposes were also made on the nights of April 15th, 18th, 20th, 22d, 27th, and May 2d. On those nights ten reversals on circumpolar stars and thirty-six transits for clock's rate were obtained.
"Before the campaign sixty-two stars were observed for the determination of the personal equation between Dr. B. A. Gould and myself, and eight for the same purpose between Assistant C. O. Boutelle and myself. After the campaign twelve more stars were observed by Dr. Gould and myself, for the same object.
"Daring the year ending October 1, twenty-nine culminations of the first limb of the moon, and seventeen of the second limb, and three hundred and seventy transits of stars in connection with them for comparisons with the Western coast, were observed at Seaton station, chiefly by Messrs. R. T. Bassett and R. P. Kerrison. During the progress of the telegraph operations the moon culminations were only observed when not interfering with them."

These operations are noticed more fully under the head of Section V.
Primary triangulation.-The primary triangulation, and the secondary connected with it, of Chesapeake bay and the adjacent bays, have been brought to a successful completion during the past season to Cape Henry (see Sketch C, No. 1) by Assistant Edmund Blunt, who has extended it from the base on Kent island. The first observation of the season was made on the 5th of July; the early part of the season having been occupied in the general setting of signals; and the last on the 4th of August. During that time twenty-five stations were occupied, three primary angles were measured, and three hundred and ona secondary, with one thousand six hundred and ninety-seven observations, with one handred and seventy-two repetitions. The area covered by the work was sixty-one square miles. The
instruments used were twelveinch theodolites, C. S. No. 11, (Simms,) and C. S. No. 32, (Gambey.) Mr. Blunt, with Lieut. A. H. Seward, U. S. Army, assistant in his party, repaired, on the completion of the above work, to Section II, to continue the triangulation of the Hudson river northward, which has been noticed under its appropriate head. Mr. Blunt is now engaged in marking thoroughly the several station points in this section.

Secondary triangulation.-As stated in my last report, Mr. Farley took the field early in October last, for the purpose of connecting the secondary triangulation of the outer coast of Maryland and Virginia with that of the Chesapeake, at Smith's island, near Cape Charles. (See Sketch C, No. 1.) A satisfactory line of junction was obtained between Smith's island east and Cape Charles station, and the observations completed on the 6 th of November. The triangulation points, up the coast as far as Hardy's Hole station, were then marked with permanent monuments, and some of the topographical stations secured. This duty was terminated by the advance of the season, and from other causes, on November 26. Mr. Farley was occupied with the computations of his season's work during the winter and until March, when they were reported to the office; and he commenced preparations for the triangulation of James river, Virginia, from the limits of the work of last year by Lieutenant William P. Trowbridge. This was begun in April, and continued until the end of July, when it was suspended on account of the sickness of the party. A further account of this work will be given subsequently.

With a view to finally closing up the triangulation of the seacoast of Maryland and Virginia; it was determined to measure one of the sides of the triangulation, as a verification line; and Assistant J. E. Hilgard was detailed to assist Mr. Farley in the measurement of the base and the observation of the azimuth of one of the lines. This operation, which was commenced on the 6th of September, is thus reported by Assistant Farley:
"The measurement was made by Assistant J. E. Hilgard and myself, aided by Mr. Stephen Harris, and completed on the 26th of September.
"The site selected is on the beach, extending about one mile and a quarter northeast and southwesterly from station Dromedary, and opposite to the side Davis-Quilling, to which the measured length has been transferred, by the observation of angles at north base, south base, Davis and Quillingt, with the ten-inch Gambey, No. 31, and the six-inch Brunner theodolite, No. 59.
"The base was measured with two four-metre rods, marked 3 and 4 , and with the apparatus used by Mr. Boutelle at Georgetown, South Carolina.
"The number of bars measured is 977 , and the length of the base 3908.5 m . "The average number of bars measured in an hour was forty-five-the greatest number, ninety.
"Thirty-five angles, each by six repetitions, were measured, to transfer the measured line to the side Davis-Quilling. The work closes in a satisfactory manner.
"In connexion with this work, observations of azimuth and magnetic observations were made by Assistant J. E. Hilgard at station Davis.
"Twelve sets of six repetitions between Polaris and a mark were observed at both elongations of the star, and ten sets to refer the azimuth to the station Quilling, the instrument used being the ten-inch theodolite, C. S. No. 31, (Gambey.)
"The magnetic observations consist of three days of declination, three sets of dip, and one set of horizontal intensity observations."

The first field-work of the season by Mr. Farley's party was the continuation of the triangulation of the James river, Virginia, between Richmond and City Point. This work was carried on by Mr. Farley from the 20th of April to the 19 th of May,
when, on account of his sickness, Sub-Assistant J. R Offley was detailed to assist him. The party continued working under single organization until the 15 th of June, when it was found practicable to double it-Mr. Farley executing the lower portion, in the vicinity of City Point, and Mr. Offley the upper part, working towards each other.

The unhealthiness of the season on the river, both gentlemen becoming sick, rendered it advisable to close the work on July 26, after carrying it as far down the river as the line Longfield-Kingsland; leaving an interval between the triangulations of the two parties of about ten miles, which will be closed by one of them during the coming season.

The number of intersections in this work, by both parties, was one thousand eight hundred and thirty-nine, $(1,839$,$) from seventeen stations occupied. The$ instruments used were the ten-inch theodolite, C. S. No. 15, (Gambey,) and the six-inch theodolite, C. S. No. 60, (Brunner.)

Mr. Farley, upon his recovery, commenced the measurement of a base, with the assistance of Mr. J. E. Hilgard, upon the eastern shore of Virginia, which has been reported under its proper head; Mr. Offley, meauwhile, being engaged in computing the results of the James river triangulation.

The triangulation of the James river, Virginia, was commenced last November by Lieut. Wm. P. Trowbridge, U. S. Engineers, assistant in the Coast Survey, who continued the work until the middle of January, when he was withdrawn for the purpose of making preparations for duty on the Western coast, in which he has been since engaged. A base line of 892.17 metres in length was measured near Richmond, and a triangulation extended from the city down the river to French station. (See Sketch C, No. 1.) A reconnaissance and plan for its further extension was made as far as Warwick. The work executed by this party includes an area of about four square miles, the occupation of ten stations, and the measurement of thirty-nine (39) primary angles, and thirty (30) secondary, by one hundred sets of six repetitions and sixty secondary observations.

The further triangulation of this river has been continued by Assistant John Farley and Sub-Assistant J.R. Offley, the results being as above reported.

The reconnaissance for the secondary triangulation of the Rappahannock river, from Fredericksburg to its mouth, (see Sketch C, No. 1,) was made in the autumn of last year, by Captain Wm. R. Palmer, U. S. Topographical Engineers, assistant in the Coast Survey. An appropriate scheme of triangulation was laid out for each of the three sections into which the river was divided: the first extending from Fredericksburg to Port Royal, the second from Port Royal to Tappahannock, and the third from Tappahannock to the Chesapeake. The report of this reconnaissance, containing interesting information in regard to the river, its shores, villages, \&c., is given in Appendix No. 114.

On the 15th of April Captain Palmer commenced the triangulation of the first section of this river, assisted by Lieut. D. T. Van Buren, U. S. Army, on Coast Survey service. A base line of twelve hundred and forty metres was measured about the middle of the section, and the triangulation first carried up the river towards Fredericksburg. This was finished on the first of June and extended to Falmouth village, about a mile above Fredericksburg, when the party returned to the base and triangulated down the river nearly to Port Royal, discontinaing work at the line Hazelwood-Lewis (see Sketch C, No. 1) on the 6th of July, when the advance of the season required it.

The triangulation of the season extended a distance of eighteen miles directly, following the river shore of thirty miles; twenty-nine stations were occupied, and ninety-six anglës were measured by one thousand two hundred and ninetysix
$(1,296)$ observations upon thirty-one objects. The instrument used was the sixinch theodolite, C. S. No. 58, (Brunner.)

Captain Palmer completed the computations of the work after returning from the field, and Lieut. Van Buren joined Assistant Edmund Blunt in the triangulation of the Hudson river.

The party resumed work here in October, and is now, under the former organization, engaged in extending it into the second section towards the mouth of the river.

Topography.-The topography of the peninsula of Maryland and Virginia has been extended by the party of Assistant George D. Wise. On the 10th of June Mr. Wise accompanied Lieut. Comg. Almy and furnished him the shore-line from Sand Shoal inlet to Cape Charles, (see Sketch C, No. 1,) which completes the shore-line from Cape Henlopen to that point. This finished, the topography of the shores was extended as far as Sand Shoal inlet, comprising, up to the first of October, an extent of shore-line of one hundred and five miles, and an area surveyed of fiftyone square miles.

The topographical party of Sub-Assistant John Seib commenced the survey of the James river, Virginia, in the early part of the past season. The intention was to have taken the field in April, but the accidental grounding of the schooner Wave, the vessel employed by the party, caused a short delay, and they did not reach the field until May 16th; the work was then taken up, and actively prosecuted until June 27 th, when the requisite amount of shore-line was completed and furnished to the hydrographic party at work in that river. This was contained in four sheets, and extended from Warwick, the limits of Sub-Assistant Wainwright's work, to Cogain's Point, below Harrison's bar, (see Sketch C, No. 1,) embracing an* extent of shore-line of eighty-one and a half miles.

Having made a copy of the James river work and sent it to the office, Mr. Seib repaired to the Chesapeake to take up the topography of the unfinished portion of the main shores of that bay. This portion is included in plane-table sheets 53 and 54, to which was added work on sheet No. 56, embracing part of Hampton
. Roads and the mouths of the James and Nansemond rivers, (see Sketch C, No. 1.) Mr. Seib thus describes the limits and progress of each sheet, and the whole amount of work in this vicinity:
"No. 53 includes Pocsin river and a part of Back river; only a small portion of it is done on the northern shore of Back river.
"No. 54 includes part of Back river and of Hampton Roads, with Old Point Comfort, Mill creek, Hampton creek and town, Willoughby's Point, Mason's creek, Sewell's Point, and the lower part of Tanner's creek, at the mouth of the Elizabeth river. This sheet was commenced last year, and is now completed.
"No. 56 includes a part of Hampton Roads, the mouths of Nansemond and James rivers. On this are executed the shore and topography from the limits of sheet No. 54 to Newport-News Point, and the shore with a small portion of the topography from Crany island to within a short distance of Pig Point, at the mouth of Nansemond river.
"The country thus gone over and surveyed is low and even, the highest point above high-water mark scarcely exceeding ten feet; it is much intersected with creeks, coves, and branches, with considerable woodland and marsh, as will be seen from the following statement of the amount of work executed:
"Shore-line of bay, river, and creeks - 101 miles.
"Shore-line of ponds . . . - 161 ${ }^{\frac{1}{2}}$
"Total shore-line - $117 \frac{1 \pi}{2}$ "

The work in this neighborhood was suspended upon the completion of planetable sheet No. 54, about October 5th, when the party was transferred to the Rappahannock river to execute the shore-line corresponding to Captain Palmer's triangulation, in which it has been since engaged.

Before taking the field in the spring, Mr. Seib was occupied in inking the sheets of his previous season's work on the Appomattox river, which were finished and turned into the office.

The topographical party of Sub-Assistant S. A. Wainwright was detailed for the purpose of furnishing shore-line and points to the hydrographic party making the survey of the James river, Virginia. This was done during the month of May, executing about fifteen miles of shore-line from Mayo's Bridge, above Richmond, to Warwick bar, (see Sketch C, No. 1.) Mr. Wainwright also made a survey of Trent's Reach, in this river, to furnish points to the party sounding on the bar there.

When the above work was finished, Mr. Wainwright repaired to the office to finish the inking of his sheets of Georgetown harbor, South Carolina, which has been done, and they have been turned into the office.

Hydrography.-The hydrography of the outer shore of Virginia was resumed, -during the past season, by Lieut. Comg. J. J. Almy, U. S. Navy, assistant in the Coast Survey, from the limits of the last year's work, at a line running from the northeast point of Prout's island, and was extended to Cape Henry light, a distance of thirty-three miles, (see Sketch C, No. 1,) making thas admirable progress. The hydrography of the entrance to the Chesapeake was included within the limits of the sheets, soundings on which were carried off the north point of Prout's island to a distance of fifteen nautical miles, and off Cape Henry to a distance of twenty nautical miles, extending in a line between these outer points, and including an area of fixe hundred and-sixty square miles. One thousand one hundred and seventysix $(1,176)$ nautical miles of soundings were run; eighteen thousand one hundred and six $(18,106)$ soundings were made in from one to fifteen fathoms water; four thousand four hundred and ninety-eight $(4,498)$ angles were measured with a theodolite, and one thousapd two hundred and eighty $(1,280)$ with a sextant. Five current stations were occupied, and one hundred and seventy-three (173) observations taken; seventy-eight high and seventy-seven low tides were observed, and the number of observations made were three thousand five hundred and fortysix, $(3,546$,) and thirty-seven specimens of bottom were obtained.

The same vessels were attached to this party during this season as the last-the steamer Hetzel and schooner Graham. In speaking of the currents as observed, Lieut. Comg. Almy says: "Upon the sketch will be observed the tracks of three bottles which have been thrown overboard and picked up this season. Their cousses, as you will perceive, were nearly due north-the reverse of the courses of the bottles thrown overboard the two previous seasons. The prevailing winds, through almost the entire season, have been from the southward, and there has been very little northerly wind. Not even once during the season has there been what might be called a regular 'northeaster,' which we have frequently had during the two previous seasons. This would seem to show that the current upon the seacoast of Virginia is influenced almost entirely by the winds."

One of the most important results of the season's work of this party has been the determination of the positions of two dangerous shoals lying at the entrance into Chesapeake bay, and which were not laid down upon any existing map. The outer of these two shoals lies at a distance of seven nautical miles, and bearing \mathbf{E}. by S. $\frac{1}{4}$ S. from Smith's Island light-house, with three and one-fourth fathoms of water upon it at low tide, and seven fathoms between it and the land. The inner shoal lies SE. by E., distant four and three quarter nautical miles from the lighthouse, with seventeen feet upon it, and five fathoms between it and the land. The notice of the determinations of these positions was published, by authority of the department, for the benefit of navigators, and is now appended to this report. (See Appendix No. 16.)

A tripod was placed on a shoal at sea, two nautical miles from the tide-staff at Sand Shoal inlet, (see Sketch C, No. 1,) and seven high and seven low waters observed for comparison. As is almost invariably the case in such observations, the differences of time and height of high and low water on the shores and at the inlet were irregular; but the final average result showed a difference much smaller than the irregularities of the phenomena themselves. These observations, though difficult to make, will be resumed on a favorable occasion. Lieut. Almy's report on them is given in Appendix No. 15.

In a supplementary report, Lieut. Comg. Almy gives the result of his work inside the capes in Chesapeake bay. This extends from the limits of last year, at New Point Comfort, northward to Wolf* Trap, thence across the bay, and further north to beyond "Sandy Point." (See Sketch C, No. 1.) The statistics of the work, which was commenced 26 th of September, and finished on November 1, when the advance of the season required its discontinuance, are given as follows:
"Four hundred and twenty-seven nautical miles have been run in soundings; twenty-three thousand nine hundred and fifty-one $(23,951)$ soundings have been taken, in from ofe to seventeen fathoms water. The number of angles taken by the theodolite for hydrographic positions is one hundred and twelve, and the number taken by the sextants for the same parpose is one thousand and eightythree. The number of tides observed is fifty-five high tides and fifty-two low tides, and the number of tidal observations is fourteen hundred and seventy-five. The number of specimens of the bottom taken has been eleven."

This party is now engaged in the office, reducing and plotting the season's work.
On the 22d of April the party of Lieut. Comg. R. Wainwright, U. S. Navy, assistant in the Coast Survey, with the schooner John Y. Mason, resumed the hydrography of James river where it had been suspended in the winter, about five miles below Richmond, and completed it, by the 1st of July, to the junction with the reconnaissance of Harrison's bar made in 1852. (See Sketch C, No. 1.) In the execution of this work, two hundred and thirty (230) miles of soundings were run, twenty-five thousand (25,000) casts of the lead made, one hundred and sixtyfour (164) stations were occupied, and two thousand seven hundred and one (2,701) observations made. Two permanent and nine temporary tide-gauges were established, in connexion with the hydrography, and borings were made in twentyeight positions, varying in depth from one to ten feet below the surface, near Richmond. Upon the close of this work, in July, the party was transferred to the Hudson river, where their operations have been noticed. Since the completion of that, they have been engaged in the hydrography of the Rappahannock river, Vir. ginia, below Fredericksburg.

The general plan of exploration of the Gulf Stream, laid down in 1845, was to observe the phenomena on sections perpendicular to its axis from well-determined points on the coast. In pursuance of this design, sections were run from near Montauk Point, Sandy Hook, Cape Henlopen, Cape Henry, and Cape Hatteras, previous to 1848 . The circumstances of the work did not permit a successful prosecution of the observations from that date until the seasan just past, though instructions were given and preparations were made more than once for the purpose. The direction of Congress to show on a map, to accompany the report of this year, the state of our knowledge in respect to the Gulf Stream, induced me to push the operations even more rapidly than I should in the regular progress of the exploration, and to employ two parties in it during a part of the season.- Lieut. Comg. Craven was directed, in returning from the Florida reef, to run four sections across the stream from near Cape Canaveral, St. Augustine, St. Simons, and Charleston; and Lieut. Comg. Maffitt, after closing his work at Georgetown, South Carolina, to run three sections respectively from Charleston, Cape Fear, and Cape Hatteras. In each section the number of positions was to depend upon the more or less rapid changes met with, and the temperatures were to be observed at the surface at five, ten, twenty, thirty, fifty, seventy, one hundred, one hundred and fifty, two hundred, three, four, five, and six hundred fathoms, with deeper casts in some cases to reach far into the cold polar current shown to undeflie the stream. The Hatteras section having been made in 1848, the new work was connected with the former by retracing this section, taking the former positions as nearly as they could be reached. The Charleston section was to be run by the same two parties, and it was expected that the positions occupied by the one first passing over the section could be communicated to the other in time to join the two sets of observations at nearly the same points.

Great credit is due to both parties, whose chiefs I have already named, for the manner in which the work was executed. The difficulties caused by the use of a sailing-vessel (the Crawford) were entirely overcome by the zeal and perseverance of the officer in immediate charge, Acting Master J. P. Jones. The Crawford began the Charleston section on the 2 d of June and finished it on the 11th, making sixteen positions, the furthest of which was two hundred and seven miles from Charleston light. (See Sketch Gulf Stream, Nos. 1 and 2.)

The Corwin steamer, Lieut. Comg. Craven, made the Canaveral section on the 9th and 10th of June; the St. Augustine on the 10th and 11th; the St. Simons on the 12 th and 13th; and the Charleston on the 16th; not carrying the latter quite as far as her commander intended, from the giving out of the boilers. Including some positions not on these sections, thirty-nine positions were made. The Crawford ran the Cape Hatteras section between the 12th and 16th of July, (both inclusive,) and the Cape Fear between the 19th and 26th, making in both together twentysix positions.

On the Charleston section, bottom was carried from ten fathoms in position A, (see Sketch Gulf Stream, No. 2,) thirty-eight nautical miles southeast from Charleston light, to one hundred fathoms in position I, sixty-five miles from the light. The bottom was not reached in position II at five hundred fathoms, nor at III in six hundred fathoms. In position V, ninety-seven miles from Charleston light, after crossing the warmest water of the Gulf Stream, bottom was struck in three hundred fathoms, on the 7th of June, at 8 p . m., and was kept at variable depths from five hundred to three hundred and seventy fathoms to position X, two hundred and seven miles from the coast. The details are shown on diagram Gulf Stream, No. 2.

The bottom was brought up in every case, and is preserved at the office. The interesting observations of Assistant L. F. Pourtales, in regard to the physical and natural history characters of these and the other specimens of the bottom of the stream, collected during the cruises of this year, are given in Appendix No. 30.

The Corwin's section, just north of this one, and in a direction somewhat inclined to it, gives remarkably accordant determinations for the depths, as will be seen by examining diagram Gulf Stream, Nos. 1 and 2.

After crossing the Gulf Stream on the Canaveral section, on the 10th of June, at 8 a. m., Lieut. Comg. Craven struck soundings at four hundred fathoms in position XII, (see diagram Gulf Stream, Nos. 1 and 2,) sixty-nine miles from the coast, and kept them at position XI, six miles from the former. It appears thus that the existence of soundings of from three hundred to four hundred fathoms, after crossing the Gulf Stream at these two points of our coast, was discovered independently by the two officers whose work I am noticing, within two days and a half of each other. In the subsequent sections run by the Corwin, soundings were struck one hundred and twenty-five miles off St. Simons in five hundred fathoms, and off Charleston in four hundred and eighty fathoms.

The form of the bottom on the Charleston and Canaveral sections is well shown on diagram No. 2, Gulf Stream, shoaling gradually from the shore to fifty-three and thirty-six miles respectively, then suddenly falling off to below the depth of six hundred fathoms. On the Charleston section, ninety-six miles from the coast, is a range of hills steep on the land side, and having a height of eighteen hundred feet and a base of about eleven miles on the seaward side; a second range one hundred and thirty-six miles from the coast, fifteen hundred feet high and twenty-eight miles base towards the shore, and six hundred feet high, with a base of about seventeen miles, on the outer side. Beyond this is a more gradual rise. On the Canaveral section the inner range is sixty-eight miles from the coast. Of course, it may readily be concluded that if the positions at which the soundings were taken had been nearer to each other, a more diversified surface would have been presented. In fact, at position XI, on the Canaveral section, after sounding at the depth of one thousand and sixty fathoms, the steamer drifting about a mile and a quarter, the line showed bottom at four hundred and sixty fathoms. Both are stated to have been good up and down casts. These first observations, while they are merely a foundation to build upon, are undoubtedly in the highest degree interesting and important in their connexion with the phenomena of the Gulf Stream.

On the sections from Cape Fear and Cape Hatteras, after leaving the shoals near the shore, the depths increase very rapidly.

Lieut. Comg. Craven noticed ripples in connexion with the irregularities of the bottom on the Charleston section. Similar ripples were observed on the Sandy Hook section by Lieut. Comg. Geo. M. Bache in 1846, and on the Montauk section by Lieut. Comg. Charles H. Davis in 1845, who compared them to the "Rips" on the Nantucket shoals. These are, however, probably a secondary effect of the irregularities by the changes of current produced.

For the temperature observations, the parties were furnished with Six's selfregistering thermometers for moderate depths, and with Saxton's metallic thermometers for greater depths. More difficulty was had with the instruments than usual, and there are more anomalous observations; but after examining them with care, I think it more probable that the anomalies were real than that they were errors of observation. I have also satisfied myself that they do not interfere materially with the general results. The whole of the computations which I have yet made are,
however, only approximate, to indicate the route to be followed in deriving numerical results, but sufficiently near the more exact ones to guide in future observations.

The results of all the new sections confirm those given by the old ones, namely, that there are alternations of temperatures across the Gulf Stream, cold water intruding and dividing the warm, making thus alternate streaks or streams of warm and cold water. In fact, the Gulf Stream is merely one of a number of bands of warm water separated by cold water. The observations of Mr. Jones on the Hatteras, Cape Fear, and Charleston sections, show a counter current where the cold streaks are found; and as these observations and those for temperature are entirely independent of each other, the coincidence in result is very striking. This fact is of too great importance not to be very carefully followed up. It would appear, from general reasoning, that this was not unlikely to be the case.

The southern sections present, on a small scale, the same phenomena which we formerly traced over a large expanse in the more northern ones. Examining the - Canaveral section, which is the furthest south, we see the cold wall almost as plainly as on that from Sandy Hook; the curve, showing the mean results between seventy and one hundred fathoms, (diagram Gulf Stream, No. 2,) rises some seventeen degrees, from $57 \frac{1}{2}^{\circ}$ to $74 \frac{1}{2}^{\circ}$ Fahrenheit, in the distance of twenty-three nantical miles. The warm water, overlying the cold, is deeper in its overflow towards the shore-that is all. After passing through the warmest water, which, in June last, was only $80 \frac{1}{2}^{\circ}$ Fabrenheit at two fathoms and a half, there is a fall of temperature of several degrees, followed by a rise. On the St. Simons section (see diagram Gulf Stream, No. 2) the cold wall is again well shown, and is the first of those distinct bands of minimum temperature dividing four maxima, of which the greatest body of warm water of the Gulf Stream is the second from the shore. These are particularly distinct in the lower curves of the diagram. Near the surface the first and fourth maxima are the highest; at fifteen fathoms the first and second; at one hundred and fifty fathoms the successive maxima rise as they recede from the shore. The Charleston section presents, as a general feature, between twenty-five fathoms and two hundred and fifty fathoms, four minima and three maxima. Within the cold wall minimum is a decided warm belt, and probably further on in-shore is a cold one. The rise in the curve, showing the mean of the temperatures at twenty and thirty fathoms, is eleven degrees Fahrenheit, namely, from 64° to 75°. There is an intrusive band of cold water between positions III and V , which does not continue to show itself as low down as the curve p. The advantage of not relying on surface temperatures, or those near the surface, where the distribution is so much less regular and marked than below, will be recognised in all these results, and was early provided for in my instructions.

The underlying cold water from the forthern regions is as plain in these southern sections as it was in the more northern. Four hundred fathoms vertically below the warmest water of the Gulf Stream, on the Cape Henlopen section, in August, 1846, the temperature was 49° Fahr., and in the same position off Cape Canaveral, in June, 1853, it was $48 \frac{1}{2}^{\circ}$. The latitude corresponding to the first temperature was about $37^{\circ} 20^{\prime}$, and to the last about $28^{\circ} 20^{\prime}$. Lieut. Charles H. Davis, in October, 1845 , found a temperature of 40° at one thousand fathoms, in latitude $39^{\circ} 25^{\prime}$, and longitude $69^{\circ} 01^{\prime}$, and Lieut. George M. Bache 40° at two thousand one hundred and sixty fathoms, in latitude $34^{\circ} 13^{\prime}$, longitade $68^{\circ} 05^{\prime}$. Lieut. S. P. Lee, in August, 1847, found 37° below the Gulf Stream, at the depth of one thousand fathoms, in latitude $35^{\circ} 26^{\prime}$, longitude $73^{\circ} 12^{\prime}$; and again 48° beyond the Gulf Stream, at the same depth, in latitude $30^{\circ} 10^{\prime}$, and longitude $68^{\circ} 09^{\prime}$. Lieut. Richard Bache, in July, 1848, found a temperature of 42° at one thousand fathoms, in latitude $35^{\circ} 06^{\prime}$, and longitude $74^{\circ} 07^{\prime}$, below the surface of the Gulf Stream.

The fact that the side limits of the polar current recede from the shore as the depth increases, is clearly marked on all the sections. Directly down below the maximum surface temperature we soon plunge into this cold current, the warmer water receding from the shore, and at four hundred fathoms reach temperatures, the differences between which at the north and south are of an order corresponding to the variations of the ocean waters in different years and at different seasons. For example, at the depth of four hundred fathoms, on the Sandy Hook section, in 1846, vertically below the crest of the Gulf Stream the temperature was 51° Fahr.; on the Henlopen section, at the corresponding point, 51°; on the Cape Henry section, $54 \frac{1}{2}^{\circ} ;$ in 1848, on the Cape Henry section, $52 \frac{1}{2}^{\circ}$; and on the Hatteras section, 52°; in 1853 , on the Hatteras section, 51°; and on the Cape Fear section, 54°; all the foregoing observations being made in July and August of the several years. In June of this year, the temperature at the point and depth before noted, on the Charleston section, was 55°, and near Cape Florida, fourteen miles ENE. from the light, was 51°, varying from 54° to 46° in the intermediate localities. The low temperature of 46° was observed on the Canaveral section. The temperature at four hundred fathoms, near Cape Florida, is the same as was observed on the Sandy Hook section in July, 1846:

I remarked that these differences came within the annual changes near the surface. Not to complicate the examination with surface irregularities, if we compare the maximum temperatures at twelve or fifteen fathoms below the surface of the different sections, in the same year, we shall find, as a general rule, an increase of temperature in passing southward, as $81^{\circ}, 83^{\circ}, 82^{\circ}$, from the Sandy Hook to the Cape Henry section; in $1846,75 \frac{1}{2}^{\circ}, 76^{\circ}, 77 \frac{1}{2}^{\circ}, 79 \frac{1}{2}^{\circ}$, from the Charleston section to Cape Canaveral. But in successive years we have for the highest temperature at twelve fathoms, on the Cape Henry section, higher than that of Hatteras; and the temperature in July, 1846, on the axis of the Gulf Stream, higher at Sandy Hook than in June, 1853, at Canaverâl, by a degree and a half, and higher than Charleston by five and a half degrees. It is obvious that here an interesting field of inquiry opens, requiring careful research.

The summer was selected for commencing the researches in the Gulf Stream in part, and chiefly because of the greater facility afforded for observation by the comparatively smooth sea and moderate weather, but also because the changes at the surface of the water by heating would not tend to disturb the equilibrium.

An investigation of the effect of the seasons was postponed until the normal state of the stream was known. It must be, however, obvious that if we know the rate of the Gulf Stream current as it passes along in its course, diminishing its velocity, we can compute the interval of time which must elapse between the passage of water of a oertain temperature at Cape Florida, and its arrival with a gradually diminishing temperature at other points in the course of the stream. In a general way, as far as I have yet carried this comparison, the observed facts answer to what might be expected. The reverse will apply to the cold current from the north.

The lateral overflow of the warm water of the Gulf Stream is seen on either of the diagrams representing the curves of temperature at the same depths as that for Charleston, diagram Gulf Stream, No. 2; the warm water thinning out as it flows rapidly on the in-shore side, more slowly seaward, except near the surface. This prevails in the case before us as low as the curve of 67° Fahrenheit. In this, of course, we must abstract the effect of the irregularities caused by the intrusion of the cold water from below. The recession of the warmest water from the shore, as we reach lower depths, is well shown in the same diagram.

The effect of the form of the bottom of the ocean on the distribution of temperatures, and its connection with the observed alternations of warm and cold water, is the most important and interesting result of this year's explorations. Whether the cause of this distribution is the same in the sections. where soundings have not yet been obtained-and we shall generalize, inferring the form of the bottom there from the distribution of temperature-is a question of temporary importance; for we can explore those depths and determine with certainty what lies below the lowest we have yet reached.

The Charleston section, diagram Gulf Stream, No. 2, shows very well the general effect of elevations and depressions of the bottom-the elevations raising up the cold water of the bottom, the depressions allowing it to settle into them. The curve of 57° illustrates this perfectly, passing obliquely along the in-shore band towards the deepest water, rising again along the slope of the first elevation, and being thrust by it high up towards the surface, descending again into the depression to rise again above the second elevation, and so onward; the current following the reverse order of that just described. That there is not perfect conformity to this law, is merely to say that these observations are like all other physical results. The wonder is that they agree so well when the difficulties of making them are considered. Each observation in each position gives an independent result, and all these cannot reasonably be expected to concur, and yet must be used in representing the phenomena. Theoretical considerations would lead us to expect greater diversities than we actually find in the results, even were the observations absolutely perfect.

The crowding of the cold water towards the inner shore is well shown in the diagram under notice, and the overflow of the warm water. A curious explanation of the sudden change from cold to warm, in passing what in these sections would be the cold wall, is seen obscurely in this diagram, but perfectly on that for St . Simons, where the sudden falling-away of the in-shore slope causes the cold water to rise beyond its position of equilibrium, and thus, after passing through the thin stratum of warm water near the surface, the thermometer indicates a sudden fall; a much lower temperature than is to be found a few miles outside or in-shore. This is merely an extension of the principle before referred to, of the effect of the steep slopes in forcing ap the cold water of the northern stream.

In order to comply with the directions to represent the probable course of the Gulf Stream, I have studied the observations of former years in connection with those of the present, and have determined the approximate result shown on dia. gram Gulf Stream, No. 1, and on the Corfgress map. The axis of the Gulf Stream, or warmest line at the surface, is represented by the strongest line in the diagram. The lines corresponding to the highest temperatures of the different bands, or axes of the bands, into which the surface is divided, are drawn full, like those of the warmest band decreasing in strength from the main line. Those corresponding to the lowest temperatures of these bands, or to the axis of the intrusive cold water, as they may be considered between the warmest bands, are dotted-the strength of the dots varying as the lines recede from the main axis of the Gulf Stream. In the Congress map the bands will be shaded-the dark shades corresponding to higher temperatures. It scarcely need be remarked that the curves are not drawn precisely through the points obtained on the several sections, but in no case but one is the distance from any point as great as the probable error in the determination of the points themselves, as derived from the distance of the positions as under and from the calculation of the different results given upon the trial sections, Which were gone over at different times by different observers, and upon the various lines denoting the temperatures at the same depths.

Are these bands invariable in number and position? If connected with the form of the bottom of the acean, they must be so within moderate limits. But this has only been proved for the sections from Charleston southward. The comparison of the separate results on the trial sections enables us to determine this point numerically from the observations themselves; so also do the separate results as shown by the positions of the maxima and minima at different depths. The results thus deduced, as far as they have been tried, are the following: The axis of the Gulf Stream, marked A, on the Sandy Hook section, diagram Gulf Stream, No. 1, though it recedes from the coast, as a general rule, as the depth increases, is the best determined of all these lines. In cases of the curves of the highest and lowest temperatures in the band, marked B, C, D, and E, where they cross the Sandy Hook section, the order of the difference is the same as that of the distance between the positions, and the probable error considerably less than the average of the halfdistance between the positions in the part of the ocean where the maximum or minimum is found. The actual changes of position, with varying circumstances, are probably of the same order. The eold wall minimum, which generally occurs in the same vertical lines from the surface downwards, is the next best determination to that of the axis of the stream. As these are most definitely marked, and were obtained from positions much nearer each other than the other lines, such a result was to be expected. The remark in regard to limit of uncertainty applies to the two cold streaks outside of the Gulf Stream, C and E, and to the warm one, D, between them.

The position of the next warm streak is quite uncertain, and it is not inserted on the chart, though its occurrence is well made out. In the sections where the soundings for temperature were carried close into the coast, the same regimen of the water is shown as outside, and one maximum inside of the cold wall is clearly indicated in all the sections but one. The minimum nearest the shore on the Sandy Hook section corresponds to the remarkable increase of slope in the ocean bed found in previous soundings, and represented in the sections from Sandy Hook on the off-shore chart of the Coast Sarvey, embracing the coast from Gay Head to Cape Henlopen.
The question as to whether the different points of high and low temperatures, as they succeed each other in the sections, should be joined to represent a continuous line, it a difficult one, especially if the form of the bottom be admitted as controlling the distribution of temperatures, as that form may vary so arbitrarily. - There is hardly a doubt in regard to the continuity of the first cold line B; none as to that of the axis of the stream A; but near to this on the Charleston, St. Simons, and St. Augustine sections, follow a minimum and maximum entirely well defined on each section, and yet which is probably not connected with the next set of similar points observed on Canaveral to the south of them, and Cape Fear to the north. There is a similar set of points on the Cape Henry section. At , present the probability of the case is as I have shown it on the diagram, and any doubt in regard to it must be cleared up by fature observations directed to this point.

By our researches at present, the position of the axis of the stream is traced to $88^{\circ} \mathrm{W}$., and that of the cold wall is carried with considerable degree of probability to $85^{\circ} \mathrm{W}$.

The changes of position of the main and subsidiary streams in different years, with the seasons and with winds and other causes, remain yet to be made out. The observations already made show that these are considerable.

The general conformity of the sweep of the Gulf Stream hitherto admitted is now minutely traced, and shown to be more thorough even than was supposed,
passing into the bight of the coast of Georgia, deflected by Hatteras, turning in towards the capes of the Chesapeake, and, sweeping eastward, deflected by the banks which lie off the coast of New England.

- SECTION IV-FROM CAPE HENRY TO CAPE FEAR, INCLUDING PART OF VIRGINIA AND NORTE CAROLINA. (Sketch D.)

Three parties, each executing triangulation combined with topography, and one hydrographic party, have been employed in this section during the whole or a part of the past season. The secondary triangulation of Back bay, the extension of Currituck sound, has been continued northward to beyond the Virginia line; that of the Cape Fear river carried to a point above the separation of its norfheast and northwest branches; and the tertiary triangulation of Core sound connected with that of previous years, going sonthward from Ocracoke inlet, and northward from Cape Lookout; and the reconnaissance for the extension of the triangulation west of Beaufort, over Bogue sound, made. In connection with these respective triangulations, the topography of the eastern shore of Back bay, as far north as the Virginia line; of Smith's island, at the entrance to Cape Fear river; and of the river shore from Smithville to the head of Eagles' island, above Wilmington, and that of the shores west of Cape Lookout, to connection with sheet of Beaufort harbor, has been executed. The hydrographic survey of the Upper Cape Fear river, interior to the work of last year, was completed from New inlet to the town of Wilmington, and up to Brunswick river. Astronomical observations were made at a station in Raleigh, the State capitol, which was occupied as an intermediate point in determining the difference of longitude between Charleston, South Carolina, and Seaton station, Washington.

The details of these operations will be found in the pages immediately following this.

The drawings of Hatteras and Ocracoke inlets, and of Hatteras and Frying Pan shoals, and of the preliminary chart of Cape Fear entrance, have been completed, and those of the Cape Fear and Albemarle sound have made good progress. The engraving of charts of Beaufort harbor, Frying Pan and Hatteras shoals, of Hatteras and Ocracoke inlets, and Core and Pamplico sonnds, has been completed, and that of Cape Fear has been in progress. The drawings of Cape Fear entrance and New inlet were prepared, with other data, for the commission on the improvement of the entrance and river.

Secondary triangulation.-The secondary triangulation of Back bay, lying in North Carolina and Virginia, which had advanced as far as the line Jones' hillGray's Point, at the close of last scason, was resumed by Assistant J. J. S. Hassler, in December last, and continued until the close of May. The survey has been extended this year northward to the line Wash Flats-Ragged island, beyond the Virginia line. (See Sketch D, No. 1.) This party was also engaged in the execution of topographical work, in connection with the triangulation, and used the. schooner Vanderbilt for transportation and accommodation. The statistics of the triangulation are thus given: number of stations occupied, eight; number of stations determined, seventeen; number of angles measured, two hundred and ninety; number of observations made, seventeen hundred and forty. The instrument used was the six-inch theodolite, C. S. No. 52, (Brunner.)

The secondary triangulation of the Cape Fear river was carried during the past season from Smith's island, line Cape Fear-Bald Head light, (see Sketch D, No. 2,) over the entrance, to above Wilmington, and the separation of the river, at the head of Eagles' island, into the northeast and northwest branches. This work was done by Assistant C. P. Bolles, aided by Sub-Assistant J. W. Gregorie, in the
schooner Meredith, and occupied between October 15 and May 1. In its execution thirty-six stations were occupied, forty-one objects observed upon by two thousand and fifty-three (2,053) repetitions, and one hundred and sixty-two angles measured. The area covered by the triangulation amounts to sixty square miles. The instrument used was the six-inch theodolite, C. S. No. 35, (Gambey.) This party also executed the topography of this vicinity, noticed in its proper place, and since its withdrawal from the field has completed the computations of the season's work.

The triangulation of Core sound was continued northward during the season over Ocracoke inlet, (see Sketch D, No. 1,) to connection with that coming southward. This was commenced by Sub-Assistant A. S. Wadsworth in March, but the weather being particularly unfavorable to triangulation at that time, he proceeded, according to instructions, to execute the topography west of Cape Lookout, which was finished on the 18th of May. The triangulation was resumed, and with favorable weather the occupation of the four stations necessary to make the connection was completed in a few days.

- The triangulation has an extent of eleven and a half miles-comprises an area of twenty-two and a half square miles; four stations were occupied, twelve angles were measured, and seven hundred and forty-one observations made with a sixinch theodolite, C. S. No. 29, (Gambey.) Mr. Bagwell aided Mr. Wadsworth in the work, the party having the use of the schooner Bancroft. The party was discharged on the 2 d of June, when Mr. Wadsworth proceeded to make a reconnaissance of Bogue sound, west of the triangulation of Beaufort harbor. - Good points were selected for stations for next season's observations, and signals erected as far as Bogue inlet, a distance of twenty-five miles westward. Since the close of this work, on the 22d of June, Mr. Wadsworth finished the computations of his season's work, and has been engaged in the topography of York harbor, Maine.

Topography.-The party of Assistant J. J. S. Hassler, engaged in the secondary triangulation of Back bay, North Carolina, executed in connection with it the ${ }_{n}$ topography of its eastern shore as far north as the Virginia line. (See Sketch D, No. 1.) The western shore, and the whole of the topography of the bay lying in North Carolina, will be executed during the next season. The extent of shoreline thus surveyed is thirty-seven miles, and the area covered by the work, which is embraced in two sheets, is forty-three square miles. Since breaking up his party, Mr. Hassler has been engaged in completing the drawing upon these sheets, besides the reduction of work of triangulation.

The topography of Smith's island, and of the shores of the Cape Fear river, (see Sketches D Nos. 2 and 3,) from Smithville to above Eagles' island, was executed by the party of Assistant C. P. Bolles, aided by Sub-Assistant J. W. Gregorie, who together had made the triangulation of the river. The sheets finished comprise an extent of shore-line equal to sixty miles, and an area of thirty-three square miles, and occupied in its execution the time from October 15 to May 1. This sheet has since been inked and turned into the office.

Sab-Assistant Wadsworth commenced the topography of Cape Lookout on March 12, and working westward joined the topographical sheet of Beaufort harbor (see Sketch D, No. 1) on the 18th of May, comprising within the limits of the work one hundred and ten (110) miles of shore-line, and eighteen (I8) square miles of area. Mr. Bagwell aided Mr. Wadsworth in this work. This sheet has been inked and handed in to the office.

Hydrography.-A resurvey of the Cape Fear bars, to ascertain the changes which had taken place since the survey of the previous year, was made soon after the date of his last teport, by Lient. Comg. J. N. Maffitt, U. S. Navy, assistant in the Coast Survey. After this the survey was extended up the river to the junc-
tion of the Brunswick river with the Cape Fear and the northwest branch to the bridge above Wilmington. This was completed in January, as will be seen by the following extract from the report of Lieut. Comg. Maffitt, which also notes the operations connected with it, and the statistics of its execution:
"A series of current observations has been made in conpection with the soundings, which will enable me to project a complete current chart. Tidal observations were made at Smithville, Orton light, and at Wilmington. On the 14th, 15th, and 16 th of January, continuous hourly observations were noted without interruption at Smithville, Orton light, Campbell Island light, Upper West Jettee, and at Point-Peter, opposite Wilmington, The watches were compared twice daily, as the morning and evening steamers passed each station. For this facility, as well as continuous courtesy, the Coast Survey is indebted to Gen. McRea, the president of the Wilmington and Raleigh railroad.

$$
\begin{aligned}
& \text { "No. of miles of soundings run } \\
& \begin{array}{l}
\text { No. } \\
\text { No. of soundings } \\
\text { No. of angles observed }
\end{array} \cdot \\
& \text { N }
\end{aligned} .
$$

In regard to the changes of the bar, which are very remarkable, Lieut. Comg. Maffitt remarks as follows:
"By the Sth of December I had accomplished the work, as well as boring for specimens at different positions on the main bar and at the mouth of New inlet. On the main bar I succeeded in obtaining specimens to the depth of thirteen feet, and to the depth of ten feet at New inlet. These specimens were immediately labelled and forwarded to the Coast Survey office at Washington. The resurvey of the Cape Fear bars exhibits very marked changes, which are characteristic of all sand-bars. I have observed, and had it also attested by the pilots, that a strong northeasterly wind has the effect of deteriorating New inlet bar in depth, and the main and western bars are thereby improved; vice versa, a continuance of southerly or easterly winds shoals the main or western bars, and improves the New inlet. The migratory character of the various shoals in the channel way over these bars, renders it expedient for strangers always to employ a pilot, as the chart sailing directions cannot, under these circumstances, be relied upon for any specific length of time. A comparison of the original chart with the resarvey will exhibit very clearly the character which I have given of the channels at the entrance of the Cape Fear river. A general dimination is also obvious in the short space of twelve months, which, when considered with the great changes as made manifest in other surveys, is a matter of serious consideration for those interested in the commercial prosperity of Wilmington."

On the completion of this work, on the 12th of February, the party proceeded under instructions to execute the hydrography of Georgetown harbor and Winyah bay, South Carolina, which is noticed under the head of Section V.

SECTION V.-FEOM CAPE FEAR TO THE ST. MARY'S RTVER, INCLUDING THE COAST OF THE - STATES OF SOUTE CAROLINA AND GEORGIA. (Sintch E.)

The progress made in this section has been quite satisfactory. In the following pages are given notice of the reconnaissance by Major Prince between the Cape Fear, North Carolina, and the Santee, South Carolina; of the observations by Dr. B. A. Gould, jr., Prof. L. R. Gibbes, and Assistant L. F. Pourtales, for connecting Charleston, Raleigh, and Washington for difference of longitude, by telegraph; of the main and secondary triangulation between the Edisto base and Charleston, by

Assistant C. O. Boutelle; of the triangulation from the base on Savannah river to Tybee entrance, by Capt. E. O. C. Ord; of the triangulation of Winyah bay, Georgetown harbor, commenced by Lieut. Joseph S. Totten, and completed by Assistant C. O. Boutelle and Major Henry Prince; of the topography of the same locality, by Mr. S. A. Wainwright ; of its hydrography, by Lieut. Comg. J. N. Maftitt; and of the further examination of Charleston bar, and continuance of the tidal observations in Charleston harbor, by the same offcer. During the year, charts of Cape Roman shoals and North Edisto entrance and river, South Carolina, have been published, and those of Charleston harbor, Winyah bay and harbor, of Tybee entrance, and of Savannah river, have been in progress.

Reconnaissance-The reconnaissance of Section 1V, which had been extended in 1852 as far as Cape Fear, was resumed during the last season and carried southward into Section V, as far as the North Santee river. This was prosecuted by Bievet Major Henry Prince, U. S. Army, assistant in the Coast Survey, who had commenced it at the limits of Section III, at Cape Henry. The coast reconnoitred during the past season was divided into three sections-the first extending from the Cape Fear river to the North and South Carolina boundary line; the second from thence to the line separating the districts known as Upper and Lower All Saints; and the third from that boundary to the North Santee river. Along nearly the whole of the first section extends a sound separated from the ocean by a narrow strip of sand-hills. Into this. sound are several inlets, of which the principal are Lockwood's Folly, Shallotte, Tubbs and Little river; these were found to have from six to nine feet in them, with practicable entrances and good anchorages. The rivers in the section are mostly mere serpentine creeks, winding through marshes and swamps thickly covered with growth of black gum, tupelo, ash, oak, and pine. The points for the main triangulation, to be found on the sand strip above referred to, will be connected with those in the interior by cutting; which, however, is of a much less expensive character than that already executed in other parts of this section. .

The two other sections resemble each other very much in character, both differing from the first somewhat in the nature and number of the swamp lands; while the growth is thicker, the value of the timber is much less than in the first section.

The neck between the Waccamaw river and the ocean sound is estimated in some places at sixty feet in height; and Brown's hill, on Sandy island, between the Peedee and Waccamaw, and about six miles from the coast, is estimated by Major Prince at ninety feet in height.

A straight line of four and a half miles, which may be used for a base, was examined on the Black river road near Georgetown. No good map of this region. has ever been made, and the results of Major Prince's reconnaissance will be presented on the progress sketch.

In his report Major Prince acknowledges his indebtedness for the kindness which he constantly received, and the facilities for making his examinations which were everywhere afforded him.

Major Prince recommends that a small triangulation be carried first along this part of the coast, by which the stations for the main work may be determined, and the lines be laid off with certainty and without loss of time or expenditure in running or opening experimental lines. This is, in general, the system which experience has shown to be the best on this part of the coast.

About the middle of April Major Prince was called to finish the triangulation of Gporgetown harbor, which will be noticed in its proper place. This was finished on the 8th of June; after which he assisted in the extension of the reconnaissance
for the primary triangulation in the State of Maine, which has been before noticed. (Section I.)

Astronomical observations.-It will be recollected that in the winter of 1850, the late Prof. S. C. Walker made a preliminary determination of the difference of longitude by telegraph between Seaton station, Washington, and Charleston, to give the astronomical position of a point in this section of the survey. As that city was also intended to be used in the connection of Washington and New Orleans, the operations were resumed during the past winter by Dr. B. A. Gould, jr., at Charleston, and by Assistant L. F. Pourtales at the Seaton station: Repeated attempts were made to exchange signals directly between the two stations during the months of December and January, and until the middle of February, the best period, of the year, but it was found utterly impracticable, owing to the condition of the telegraph wires and posts. It was therefore found necessary to establish an intermediate station, which was located at Raleigh, North Carolina, on the ground attached to the State-house; privilege for the occupation of which was granted by the Hon. David S. Reid, governor of the State.

While the station was being erected here, Dr. Gould established a series of experiments for further investigation of the velocity of transmission of telegraphic signals. The line used for these experiments was composed of four wires between New York and Washington, and thence extended to Petersburg, Virginia. Dr. Wolcott Gibbs, of New York, volunteered to assist in the experiments at that place, and Prof. J. F. Frazer those in Philadelphia, which were made on the nights of the 18th and 22d of March. The results of these observations are now being reduced, and will be specially reported upon.

The station at Raleigh having been completed, on the 3d of April Dr. Gould commenced the adjustment of the instruments, and at the first opportunity thereafter the exchange of signals with Mr. Pourtales at Seaton station, and with Prof. Lewis R. Gibbes, who took charge at the Charleston end of the line. These observations were continued on every clear evening, when the business of the line permitted, until the 14th of May, when the required number were obtained. These consisted in the exchange of thirty-four transits of stars with Washington on four uights, and of fifty-nine with Cliarleston on the same number of nights. Transits of sixty-five circumpolar stars with reversal, and of one hundred and nineteen zenith and equatorial stars, were taken, and other observations made for determining instrumental corrections.

The instruments used were, at Charleston, the transit instrument, C. S. No. 8, Kessel's clock, and both Saxton's and Morse's registers; at Raleigh, the transit instrument, C. S. No. 3, and the zenith telescope, C. S. No. 1. This instrument was also used in observations for latitude of the station, which was determined by eighty observations upon fifteen pairs of stars. Careful reference of the station was then made to the State-house to give its latitude and longitude.

Personal equations in observing, between Dr. Gould and Mr. Pourtales, were determined at the Seaton station, and between Dr. Gould and Prof. Gibbes through a comparison made by Assistant C. O. Boutelle at Charleston with Prof Gibbes, and with Dr. Gould at Cambridge.

During the occupation of the Charleston station, and previous to the establishment of the intermediate one at Raleigh, one hundred and one observations were made for time and instrumental adjustment.

Since the close of these operations, Dr. Gould has been engaged in the redaction and discussion of their results, in which he has been assisted by Mr. E. L. Lane, who also aided him in the campaign.

Dr. Gould has also since been engaged in a thorough examination and discussion
of the results of the Coast Survey observations for the determination of personal equations.

The use of the lines employed in the above work was granted gratuitously by the respective presidents, Elam Alexander and William M. Swain, Esqs., to whom our best thanks are hereby returned for their liberality. -

Dr. Gould also acknowledges the efficient aid rendered by the various operators in the Charleston, Raleigh, Columbia, and Petersburg telegraph offices.

Primary triangulation, and secondary connected with it.-Assistant C. O. Boutelle resumed his work of the two last seasons in the extension of the primary triangulation between Edisto and Charleston on the 20th of last December, aided by SubAssistant B. Huger, jr. The first work was the tracing and opening of the line Elliott's cut-Charleston light, (see Sketch E, No. 1,) which was completed by the 8th of January. The signa at the station at Elliott's cut having been prostrated by a severe storm of the autumn of $1852, \mathrm{Mr}$. Boutelle next visited that point to restore it, which was done in a substantial manner, and with considerable improvement in the mode of erecting the signal. This accomplished, the party moved to Mathews' station, and commenced the observations there on the 28th of March, completing them on the 11th of April. Much cutting was required in further opening the line Mathews'-New cut, which had been commenced in 1852. The party then moved to Last base, to occupy that point and obtain additional observations to the number it had been practicable to take in its previous occupation. The satisfactory number was had, and the station finally completed on the 3 d of May. While finishing the primary work of the season, and opening the line Elliott's cut-New cat, Mr. Boutelle was called to execute the secondary triangulation of Georgetown harbor, the necessity for, and results of which are given under another head. In the occupation of the two primary stations, Mathews and East base, forty-two (42) angles were measured by two thousand one hundred and thirtysix $(2,136)$ observations upon twenty-nine (29) objects.

The instruments used by Mr. Boutelle were a ten-inch theodolite, C. S. No. 43, (Gambey,) and an eight-inch, (Gambey,) C. S. No. 24. Mr. Boutelle repeats his acknowledgments to the proprietors of the lands over which his work extends, for offering him every facility of working on the opening of lines, \&c., in furnishing means of transportation from point to point, and in many other ways repeatedly extending to him their kindness and hospitality.

As heretofore, the secondary work has been advanced in connection with the primary, and was resumed at the limits of last year, and carried along the Stono river and over James' island towards the secondary triangulation of the Wadmelaw as far as the line Prentice-Wilkes. (See Sketch E, No. 1.) It was very much desired to bring these triangulations to a connection at Church flats during the past season, but any further time devoted to them would have interfered with the primary work which had been laid out. The same instruments were used in this as in the foregoing work-the ten-inch theodolite, C. S. No. 43, (Gambey,) and a sixinch, C. S. No. 24. Eleven stations were occupied, and eighty-one angles measured upon eighty seven objects by five hundred and thirty-five observations.

The triangulation of Winyah bay and Georgetown harbor (see Sketch E, No. 1) had been commenced by Lieut. J. S. Totten, and prosecuted with zeal until the entire prostration of his health compelled him to abandon it, which he did, yet reluctantly, about the first of May. It was very desirable to complete this work, and before the sickly season, and it was therefore necessary to call upon Mr. Boutelle and Major Prince to push it to completion. It was first proposed to divide the operations, assigning to the latter officer the triangulation of the upper part of the bay, and to Mr. Boutelle the lower part to the entrance; but upon consultation
between those officers, they determined to work together, taking up the upper part of the bay first, pushing it on more rapidly because in conjunction, and thas get into the healthy neighborhood of the sea before the sickly season. This was done, and the triangulation completed to the entrance on the 7 th of June. The base line selected by Liett. Totten in the lower part of the bay was adopted and measured, and upon it the triangulation extended on the scheme proposed by that lamented officer, who had commenced the work. Sub-Assistant Huger, and Mr. C. B. Baker, aided in this work. The statistics show that nineteen stations were occupied, and two hundred and ninety-eight angles measured upon two hundred and forty objects by two thousand six hundred and ninety-six observations.

Since the close of the work in this section, Mr. Boutelle has, with the assistance of Messrs. Huger and Baker, brought up the computation required by it, and, in connection with Major Prince, has extended the recqnaissance for the primary triangulation in Section I nearly to the boundary.

The secondary triangulation of Georgetown entrance and Winyah bay (see Sketch E, No. 1) was commenced about the first of last January, by Lieut. Joseph S. Totten, U. S. Army, assistant in the Coast Survey, aided by Mr. C. B. Baker. Some delay was experienced in procuring a vessel for the party, but they finally succeeded in getting the schooner Ozella, of Baltimore. The reconnaissance for the triangulation was immediately commenced, points selected, and signals erected. The site for a base line was chosen, and Lieut. Totten about to commence its measurement and the observations, when, about the middle of April, his health, which had been very delicate during the whole season, had so materially failed, that at the earnest solicitation of his friends he reported his inability to continue it, and from that time became dangerously ill. His condition seemed to justify the hope that he might yet be able to reach his home while living. This hope was vain-he died on the passage to Baltimore on the 14th of May. A meeting of his fellow-officers of the Survey was held in Washington to pay a tribute of respect to his memory, the proceedings of which are given in Appendix No. 44.

Mr. Boutelle and Major Prince took charge of the party and completed the work which has been noticed above.

The triangulation of the Savannah river, which was left last year at the line Proctor-Fort Jackson, was resumed in March last by Capt. E. O. C. Ord, U. S. Army, assistant in the Coast Survey, and carried from the base on Union Causeway as far as the line Magnetic Point-Mungen. (See Sketch E, No. 4.) The work was continued until the 1lth of June, when the advance of the season rendered it impracticable to prosecute it further. The area covered by this triangulation amounted to thirty square miles; eleven hundred and seventy-six (1,176) observations of secondary horizontal angles were measured, and fifty-six (56) tertiary. The instrument used in these observations was an eight-inch theodolite, C. S. No. 36, (Gambey.)

Upon the close of his field-work in this section, Capt. Ord returned to the office, and there finished the computations required of his season's observations, and turned them into the office previous to his departure for the Western coast to take charge of the triangulation of the Santa Barbara islands.

Topography.-To complete the survey of Georgetown harbor during the season, a topographical party was detailed to follow immediately the triangulation as it advanced, and from these points to furnish at once shore-line for the hydrography. The survey was commenced on the 1st of April and continued ontil the 22 d , when the party broke up, having finished the required shore-line, amounting to sixty-four and a balf miles, extending on both sides of the harbor from the city to the entrance of Winyah bay. This was executed by Sub-Assistant S. A. Wainwright,
*who obtained the means of transportation from the tender Bouncer, of the hydrographic party, through the kindness of Lieut. Comg. Maffitt, to whom the vessel belongs. Mr. Wainwright since his return to the office has been engaged in inking the sheets of this work, and in preparing for work during the coming season.

Hydrography.-The hydrographic survey of Georgetown entrance and Winyah bay, South Carolina, (see Sketch E, No. 1,) in connection with the other operations in that section, noticed above, was made by the party of Lieut. Comg. Maffitt, U. S. Navy, assistant in the Coast Survey. This was commenced on the 14th of February, and completed on the 6th of May, when the Crawford, the vessel used by the party, was despatched in the Gulf Stream explorations, which had been previously noticed. I quote extracts from the report of Lieut. Comg. Maffitt upon the execution of the Georgetown work, giving statistics, \&c.
"On the 12th of February I sailed for Georgetown, South Carolina, and arrived on the 14th. As soon as the siguals could be erected, the survey of the bar and Winyah bay was commenced and vigorously prosecuted to its completion on the 6 th of May. The bar of Georgetown, like the southern bars in general, is subject to constant changes; the absence of previous reliable surveys prevents a comparison by which the changing character of the bar can be judged. Two new channel-ways have recently come into use, both of which will be fully delineated by the Coast Survey; and, with the assistance of buoys and landmarks, can no doubt be navigated with greater facility than the old channel. The evidence of all the pilots goes to prove that 'Mother Norton' shoal is rapidly increasing in a southeasterly direction, which naturally presses the last quarter of the ebb-tide more to the eastward, with the tendency, it is presumed, to improve the northeast or new channel. I am informed by the residents on North island that Lighthouse Point is rapidly wearing away. The pilots also assert that the flat about the northwest buoy is shoaling; and, also, that the Great dry breaker has increased vastly in area for the last ten years. Positive evidence of this, as well as of the change in the main channel, is clearly demonstrated by my finding and determining the site of the two old range-beacons which twenty years ago marked out the channel. That range now strikes across the middle of the Great dry breaker, where the level of the sand at low tide is, at present, twenty inches above the surface of the water. The increase of the Great dry breaker has forced the main channel to the westward, to the destruction of an inner channel, called the Goose Neck channel. At the steamboat wharf on South island I established a permanent tide-gauge, and also one of the same character at Georgetown. The observations were made by reliable and careful men, day and night, and the watches regulated by a meridian mark. An iron gauge was driven into the water at the lower end of the bar, but the general roughness of the sea prevented the nice comparison I had anticipated. Great attention was given to this gauge. A full system of current observations was carried out in the bay and at important points on the bar.

"Number of miles of soundings run	-	-	-	-	-
"Number of angles observed	-	-	-	-	-
"Number of specimens	-	-	-	-	-
"Number of soundings	-	-	-	-	-
"Number of current observations	-	-	-	-	-

The office-work of this party has advanced well in plotting and reducing the sheets of this and the previous section.

The work in Section VI has made satisfactory progress during the past year, and as much has been done in Section VII as our means permitted, there being no particular appropriation for it. Unless the work is systematically commenced in this section, and prosecuted on a similar scale to that of other parts of the coast, it will be found beginning when the others are completed. I have represented this for some years, and have taken advantage of the possible diminution of expenditure in other parts of the coast to introduce an estimate for this section, without swelling the total amount of the Coast Survey appropriation. When these means are received, the work in Section VII will be pressed forward. The importance of a complete survey of St. Andrew's bay has been especially pressed upon me, but the means at my disposal permitted only the completion of the survey of the entrances to Apalachicola, and-some general and special reconnaissance, which will be stated in detail in its place.

The triangulation of the Florida reef and keys has been extended from above Point Elizabeth to Point Charles; the topography from Soldier key to Old Rhodes key; and a minute topographical survey and marking of the keys east of Key West has been commenced. The hydrography of the reef has advanced to near Turtle reef; and soundings for temperature of the Gulf Stream have been made. In occupying a position off Cape Canaveral, a temperature as low as 38° Fahrenheit was found at the depth of one thousand and fifty fathoms; showing that the cold water from the north underlies the warm water even in this latitude of $28 \frac{1}{2}^{\circ}$.
Lieut. Comg. Craven, in making the sections of the Gulf Stream across the axis of the stream from Cape Canaveral, (June 9,) after leaving soundings on the shore and crossing a very deep interval, where no bottom was had at one thousand and fifty fathoms, found bottom on the eastern side at four hundred and sixty fathoms, and struck the bank or ridge thus discovered in the sections made across the stredm from Saint Augustine, Ossabaw entrance, and Charleston. The Gulf Stream explorations have been more particularly noticed in connection with each other in another part of this report; and a more full account is given of the discovery just mentioned in that connection, and in the Appendix No. 17.

A complete survey was made of the entrance to the St. John's river, to furnish data for judging of the practicability of improving the bar ; and the operations are stated, under their several heads, in the part of the report on this section which gives the details.

Of Section VI, a preliminary chart of St. John's river entrance and Fort George inlet, and sketch of the western coast of Florida, have been published within the year, and additions made to chart of Key West, scale $\begin{gathered}\bar{\Pi} \sigma, \bar{\Pi} \sigma \bar{\sigma} \\ \text {; a chart of Key }\end{gathered}$ West, scale $\frac{5}{50} \frac{1}{0} \bar{\pi} \bar{\pi}$, and of Florida keys and reef, No. 1, have been in progress. Of Section VII, sketches of Channel No. 4, Cedar keys and St. Mark's harbors; of east and west entrances to St. George's sound; and of the reconnaissance of St. Joseph's and St. Andrew's bays, have been issued within the year ; others resulting from the past season's work in the section have been in progress.

I have continued the investigations of the tidal phenomena at Key West, with some interesting results. The discussion, as far as it has gone, will be found in Appendix No. 27, in a paper read before the American Association for the Advancement of Science, at their meeting in Cleveland. The tides are intermediate in their type, between those of the Atlantic and the Gulf of Mexico. While they ebb and flow twice in the twenty-four hours, like the Atlantic tides, the difference in height of the two consecutive high or low waters is very considerable, amounting at a
mean to nearly half a foot in a tide of one foot five inches, and reaching nearly ten inches when at the greatest. The method of wave interference, which.I applied to the tides at Cat island and Fort Morgan, has also been used in this, and compared with the ordinary modes of reduction of which these tides admit. The difference in height of two consecutive high tides exceeds, at a mean, that of two low ticies, in the proportion of four to three nearly, or the diumal inequality in the height of low water is but three-fourths that of high water at this place. The diurna! inequality in the interval is not large.

The mean interval between the time of the moon's transit over the meridian of Key ${ }^{W}$ est, and the time of high water, (the corrected establishment,) is nine hours and twenty-two minutes; the greatest interval exceeds this, and the least falls short of it, by thirty-four minutes. Theory shows that these tides correspond to the transit next but one before the time of high water, but practically this is not a matter of importance.

I have been able to trace from these observations the two tides of long period pointed out by Me Airy as resulting from theory, the one having half a lunar month for its period-the other, half a solar year. This result is clear although in part masked by the effect of the wind, the regularity of which, in this region of the trade winds, is striking.

Reconnaissance.-The reconnaissance in Section VII has been extended by Assistant F. II. Gerdes by a general examination of St. Andrew's sound and of the adjaceat coast, including St. Joseph's bay, of which the sketch is incorporated in that of the Section, Sketch G, No. 1, and by a special reconnaissance of St. George's sound, in reference to the selection of points of triangulation, from South Cape to Cape St. Blas.

Triangulation.-A preliminary survey of the entrances into St. George's sound, (main or west and middle entrances,) Florida, has been executed by Assistant F. H. Gerdes. (See Sketch G, No. 2.) In this work two astronomical stations were occupied, and observations made upon seventeen sets of stars, with a transit instrument for time, and upon six pairs of stars with a zenith telescope for latitude; magnetic and azimuth observations were also made. In the triangulation, two preliminary base lines were measured and twelve stations occupied. About twelve miles of shore-line were surveyed with a plane-table, and general soundings made of the bars, entrances, and outer harbor. The depth of water on the main or westera bar was found to be thirteen and a half feet, and on the eastern fifteen.

Mr. Gerdes has furnished the following maps and sketches, resulting from his season's work in Section VII:

Map of the main or west entrance of St. George's sound.
Map of the middle entrance of St. George's sound. -
Map of the special reconnaissance of St. George's sound from South Cape to Cape St. Blas.

Sketch of reconnaissance of St. Andrew's and of the coast including St. Joseph's bay.

The statistics of his work are given in the following table:

*	Observations with zenith telescope.	For time with transitinstrument.	For azimuth.	Magnetic variation.
St. Goorge's island	6 pairs of stars.	12 stars.	Every 5 m . for $2 \mathrm{~b} . .$.	1 pointing.
Dog island-	3 ditto	6 ditto..........		1 ditto.

Mr. Gerdes was assisted during the season by Mr. J. G. Oltmans, and used as means of transportation and accommodation the schooner Gerdes.

The topographical operations of this party are referred to under their proper head.

The triangulation of the reef and keys has been continued southward and westward along Key Largo, during the past season, by the party of Lieut. James Totten, U. S. Army, assistant in the Coast Survey. The work was commenced at station El Camino, above Point Elizabeth, on the 18th of December, and was carried as far: as Point Charles, (see Sketch F, No. 1,) within Rodriguez key, before the 28th of April, when the party was transferred to the vicinity of Key West to furnish points to the eastward for the topographical party of Sub-Assistant R. M. Bache, engaged in surveying and marking the keys for the General Land Office.

Lieut. Totten was assisted during the season by Mr. C. T. Jardella, and employed the schooner Petrel.

He gives the statistics of his season's work as follows:

	$\underset{\text { suonvis }}{\substack{\text { perdnoon } \\ \text { jo }}}$					
Vicinity of Key Largo	19	1,146	6,965	110.94	13987.4	642.5
Vioinity of Key West.	14	586	3,531	108.97	19525.9	1284. 4
Total..	33	1,732	10,496	219.91	,	

The instruments used were the ten-inch theodolite, C. S. No. 27, (Pistor \& Martens,) and six-inch (Gambey) C. S. No. 55.

Lieut. Totten, in reporting his work to the eastward of Key West, makes some interesting remarks upon the climate, quality of soil, and general character, which are appended to this report. (See Appendix No. 18.)

The triangulation of the entrance to St. John's river, of Fort George inlet, and of the island between, was made in the early part of the season, by Sub-Assistant G. A. Fairfield. A base line, of one thousand and eight metres in length, was measured upon a sand-spit of Fort George island, from which the triangulation was carried, embracing the entrance to the river, and including the first bend above Mayport mills; thence across to the Fort George inlet and to its entrance. (See Sketch F, No. 2.) The work was done between the latter part of January and first part of March, and included the occupation of eleven stations, and the measurement of one hundred and five angles upon eighteen objects, by eight hundred and sixty observations. The instrument used was an eight-inch theodolite U. S. C. S., No. 36, (Gambey.)

The observations were computed as the work advanced, and the results furnished to the topographical and hydrographic parties, who immediately followed in execution of their portion of the survey.

Hourly observations of tides were made day and night, at both entrances, to ascertain the differences in the times of high and low water, and in the progress of the tide in the two. The gauges were placed in positions as nearly similar as could be, and the observations were made with great care.

Topography.-The topography executed by Assistant Gerdes, in Section VII, during the past season, has been of the main or west entrance into St. George's,
including the town of Apalachicola, and of the middle entrance into St. George's sound, including Dog island. The amount of shore-line on the former sheet is equal to fifteen miles, and on the latter, to nine. These sheets have been inked by Mr. Gerdes and handed into the office since his return from the southern sections, and before taking up the topography of the Hudson river, upon which he was engaged during the summer. Mr. Gerdes remarks upon the importance of the harbor of Apalachicola, in his report, as follows: "The harbor of Apalachicola, to which both the entrances surveyed lead, is most important, and only second to Mobile, on the Gulf. There were twelve ships anchored at the East Pass, and six near the town, although the business season is nearly over.
"The town exports 150,000 bales of cottou; the commerce is therefore considerable; and as both inlets have been very little known, and erroneously located, their survey seems to attract great attention and to give satisfaction here."

The topography of the Florida keys has been continued during the past season by two parties. That of Sub-Assistant I. H. Adams commenced at Soldier key, the first south of Cape Florida, and completed two sheets, embracing that key, Ragged key, Sands' key, Elliott's key, Old Rhodes key, Cæsar's creek, and ten small keys inside the creek. (See Sketch F, No. 1.) The party took the field about the end of November, and continued until April 15, when the appropriation originally assigned to it was nearly exhausted. The extent of shore-line suryeyed amounts to seventy-three and one-fourth miles, and the area covered by the work to ninety square miles.

Mr. Adams describes these keys as follows:
"Soldier key.-This island, which is five and a half miles below the light-house at Cape Florida, is very small, being only two hundred metres, (218.7 yards,) and about one hundred in breadth, and is formed of coral rock, with a thick growth of mangrove around the edge, the inside being partly cleared. The next group of keys south is called 'The Ragged Keys.' They are five in number, and from four hundred to five hundred metres in length. The outer edge is partly of coral and partly of mangrove, growing out of deep mud.
"Sands' key is next below, and is about one and a half miles long. For one mile from the northern end it is three hundred utres in width, and widens at its lower extremity to three-fourths of a mile. The outside is generally of coral rock, with small intervals of mangrove, extending thickly to the water's edge. In all these patches of mangrove the mud is very deep and sticky, which makes it difficult to get near the shore. The greater portion of the inner shore of this key is of a very deep soft mud, although in a few places the coral extends for short distances. The southern shore of this key makes one side of Sands' cut, which is not more than fifty metres in width. It is important as a guide to vessels coming into this harbor from outside the reef.

- "Elliott's key (next below) is nearly seven miles in length, and varies from one-fourth to one-half of a mile in width. The outer shore is of coral rock, with mangrove and sea grape. This beach is quite good for several miles, and there is not much mud of any great depth. The inner shore was much more difficult to trace accurately from the small number of triangulation points, and from the greater amount of mud, which I found increased as we proceeded south. The creek below Elliott's key (Cæsar's creek) is six hundred metres at the entrance in width. There is a fine harbor on the outside for vessels drawing from six to eight feet, and it is considered the best on this part of the coast. On the inside there are ten keys opposite the opening of the creek, varying from four hundred to five hundred metres in length. Several of them are three or four hundred metres in
breadth. To these keys I was obliged to give names to distinguish then from those below.
"Adams' key is the most northerly, partly covered with mangrove, north side of coral rock.
"Meigs' key, small and covered with mangrove.
"Reid's key, small and covered with mangrove.
"Rubicon keys, surrounded by very deep mud.
"Porgee key, very dense growth of mangrove.
"Totten's key, very dense growth of mangrove, and very deep mud all round.
"The next key (sounth) is Old Rhodes key. It extends two and a half miles below Cæsar's creek, and is from one-half to three-fourths of a mile in width, and covered with thick mangrove growth. Inside of this key is a lagoon, three-fourths of a mile wide, and about two miles in length. It is filled with a quantity of very small keys rising from deep mud. There are twenty of these keys. Totten's key, which is on the western side of the lagoon, is one and a half mile in length, and three-1ourths of a mile in width. For some distance from the shore it is almost impossible to get a boat through the mud."

There being no vessel belonging to the survey available for this party, Mr. Adams chartered the schooner Colonel De Russy to furnish the necessary tronsportation.
Mr. C. M. Bache assisted Mr. Adams during the season in this work. Since leaving the field, Mr. Adams has been engaged in inking his sheets and bringing up his work of the winter.

The surveying and marking of the keys for the General Land Office was commenced as early as the means could be obtained, in April, by Sub-Assistant R. M. Bache. The work was begun at Boca Chica and the adjacent keys lying to the east of Key West, (see Sketch F, No. 3,) embracing on the sheet an extent of shoreline of forty-five miles, and an area of nine square miles.

With reference to the island, Mr. Bache thus speaks:
"Only a small portion of the island of Boca Chica appears to be fit for cultivation; but the survey has shown that there are only two inconsiderable outlats to a very large lagoon in the island, and, consequently, that it can be readily coaverted into a very valuable salt pond. There is another lagoon on the island of about the third of the size of the one just mentioned, and with the same facilities for converting it into a salt pond."

During the early part of the winter, the plane-table party of Sub-Assistant R. M. Bache was employed in the execution of the topography of the shores of the entrances of the St. Johns and Fort George inlet and the vicinity, within the limits of the triangulation. (See Sketch F, No. 2) The amount of shore-line surveyed was forty-six miles, and the area covered by the work was about thirteen square miles.

The party had the use of the Coast Survey schooner Hassler, for purposes of transportation.

A complete map of the survey of these entrances and immediate vicinity, together with the information respecting the tides, has been furnished to Lieut. H. G. Wright, U. S. Corps of Engineers, who had been intrusted by the War Department with the duty of devising a plan for the improvement of the entrance into St. John's river, under the act of Congress of August 30, 1852, making appropriations for river and harbor improvements.

Hydrography.-To make complete the survey of the entrance to the St. John's river and Fort George inlet, Florida, the hydrographic party under Lieut. Comg. T. A. M. Craven, U. S. Navy, assistant in the Coast Survey, immediately followed the other parties, and executed the hydrography of the vicinity. (See Sketch F,

No. 2.) The vessel employed was the steamer Corwin. The statistics of the work, which occupied from the first of March to the middle of April, are thus given:

Number of angles measured							616
Number of soundings made		-	-	-	-	-	9,271
Miles of soundings run		-		-	.		188
Area sounded out, in square miles							17

Observations of tides were made at two stations, and of currents at nine.
Upon the completion of this sunvey, the party of Lieut. Comg. Craven proceeded to the continuation of the hydrography along the general reef. The sheet of this year's work joins that of last year at Triumph reef, (see Sketch F, No. 1,) and extends southward to near Turtle reef. It includes the soundings off Elliott's key, Old Rhodes and Arseniker keys, Long reef, Ajax reef, and Pacific reef. This work was done during the month of May and part of June, and covered an area sounded out, of one hundred and thirteen and a half (113 $\frac{1}{2}$) square miles; seven hundred and fourteen (714) miles of soundings were run; forty-three thousand five hundred and four (43,504) casts of the lead taken; and one thousand eight hundred and eight $(1,808)$ angles measured.

Light-house examinations, $\& c$ - A special examination of the Coast Survey sig. nals along the Florida reef, of their site, and the practicability and cost of making them permanent for the use of navigators, as provided for in the act of Congress of August, 1852, was made by Lieut. Totten, and his report thereon was communicated to the department under date of November 3, and is given in Appendix No. 52.

SECTION VIII-FROM MOBILE POINT TO FERMILION BAY, INCLUDING THE COAST OF ALABAMA, MISSISSIPPI, AND PART OF LOUISIANA. (Exetch H.)

An extended reconnaissance has been made in this section, combining the operations necessary to furnish preliminary charts, with those for the progress of the work itself. Special recomaissances of some of the more important bays west of the Mississippi have also been made, and preliminary charts and sketches founded on these and the work previously mentioned accompany this report. The uncertain character of the information in regard to this part of the coast, and its increasing commerce, rendered such determinations desirable, and next in order of importance to the regular operations intended to connect Mobile and New Orleans. These have steadily advanced: the secondary triangulation from Lake Borgne westward, and the plane-table survey following it closely. The signals for completing the connection with New Orleans are erected, and their occupation will complete this division of the work, until it may be expedient to pass further up Pontchartrain. It seems now probable that the main triangulation can be carried more readily from the head of Lake Borgne to the coast, at the mouth of the Mississippi or its vicinity, than round by the Chandeleur islands. The hurricane of - August, 1852, was reported to have made changes in parts of the coast of which the hydrography had just been executed, and of which charts had been prepared for publication. This proves, however, to be the case to but a limited extent, as will be seen from the detailed account of the progress of this section. Nassau roads and Horn Island Pass showed no considerable changes. The examination of Ship shoals, Louisiana, off Isle Dernière, has been one of the most useful results of this season's work, and has been thoroughly executed by a land survey, with astronomical determinations, which will form a part of the general survey of the coast, and by minute hydrography. This will provide the information necessary to enable the Light-house Board to determine the important question, submitted by law
to them, in regard to the best mode of warning navigators of their approach to these dangerous shoals in the track of commerce between New Orleans and the ports of Texas, and to which public attention has been of late years especially drawn by the loss upon them of the steamer Galveston. The hydrography of Mississippi sound has been carried westward, and the entrance of Pascagoula river closely surveyed in reference to the question of the location of a light-house there. Five sketches and preliminary charts of localities in this section, besides the general sketch of the coast, will accompany the report of this year.

The tidal observations referred to in my report of 1851 , as forming part of the series for the Gulf of Mexico, have been executed. There are, now, results of hourly observations for a year of the tides at Fort Morgan and Cat island, and for four and two months respectively at the mouth of the Mississippi and Isle Derniere. It is almost unnecessary to say that the tides of the last-named stations belong to the single-day class; and that when their relation to those of the more elaborate series east and west of them is established, data will be furnished for computation without the necessity for multiplying the observations at the stations themselves. The results have been worked up in the office, as far as practicable, as the observations were reported.

- The second edition of chart of Horn Island Pass; preliminary sketch of Mobile bay, small scale, and of Ship shoal, Louisiana; Grand Pass; Barataria bay; entrance to Timballicr bay; and diagrams of tides at Cat island, have been published during the year; and charts of Mobile bay, Nos. 1 and 2; Mississippi sound, Nos. 1 and 2; and sketches of Nassau roads, Chandeleur islands, have been in progress.

Reconnaissance.-The general reconnaissance of the coast of this section, of the bays, sounds, lakes, adjacent islands, \&c., for the purpose of determining the scheme of triangulation, was resumed during the past season, by Assistant F. H. Gerdes, and extended westward from the Delta of the Mississippi to Point au Fer, at the entrance to Atchafalaya bay, including the bays of Barataria, Camisade, Lafourche, Vermilion, Bonne Terre, and Caillou. (See Sketch H, No. 1.)

With this reconnaissance were connected determinations for latitude and azimuth, and of longitude by chronometers, to furnish a preliminary sketch of this important part of the coast, which is imperfectly laid down in existing charts. Observations for magnetic variation were also made in the same connection.

Special reconnaissances, including a preliminary triangulation and topographical survey, and the essential soundings, were made of the entrances to Barataria and Timballier bays, (sce Sketches H Nos. 4 and $5 ;$) the reports in relation to which, containing many valuable details, are given in the Appendix, Nos. 19 and 20. On each of these sheets one point has been occupied as an astronomical station.

It was originally determined to turn the main triangulation of the coast of Louisiana southward between the Chandeleur islands and the mdin; but subsequent examination having led to the opinion that it could more advantageously be carried across the main from the head of Lake Borgne to the Delta of the Mississippi, Mr. Gerdes was instructed to make a more minute examination, and to report the plan of triangulation resulting from it. This has in part been executed during the present season.

A survey of Isle Dernière was made for light-house purposes, including the measurement of a short base triangulation, the determinations of latitude and azimuth, the difference of longitude by chronometers, and the topography of the island and its vicinity. The points thus established and the shore-line were furnished at once to Lieut. Comg. Sands, for the execution of the hydrography.

Mr. Gerdes has furnished, as resulting from the work of the season in this section-

1. A preliminary sketch of the coast from the Delta of the Mississippi westward to Point au Fer, with reconnaissance of the principal bays. (See Sketch H, No. 1.)
2. A preliminary chart of the entrance into Barataria bay. (Sketch H, No. 4.)
3. A preliminary sketch of the entrance into Grand Pass, Timballier bay. (Sketch H, No. 5.)
4. A topographical survey of Isle Dernière and its environs, for the chart of Ship shoals, Louisiana. (Sketch II, No. 6.)
5. A sketch of the reconnaissance between Lake Borgne and the mouths of the Mississippi, for the extension of the primary triangulation of the section.

Mr. Gerdes gives the results of his work in these general and special reconnaissances, as in the following table of statistics:

	Observations with zenith teloscope.	For time.	For aximuth.	Magnetic rariation.	Shore-line.
Barataria bay, (FortLivingaton.) Isle Dernidre............	5 pair of stars. 21 pair of stars.	With traneit instrument. 12 stars. 62 stars.	2 pointings. 6 pointings.	Every 5 m . for 2 h . Every 10 m . for 4 h .	12 miles. 33 miles.
Timballier bay		With sextant. 12 stars.			5 milor.

Secondary triangulation.-The progress of this part of the work, notwithstanding the exertions of Assistant S. A. Gilbert, who has had charge of it for the past four years, has, from the difficult character of the country through which it passes, and the obstacles to ready vision from point to point, been comparatively slow. The diagram (Sketch H, No. 1) shows its progress along the shores of Lake Borgne and over the extremity of that lake, and the scheme for its extension to New Orleans, and over Lake Pontchartrain (see Sketch H, No. 1) to near Madisonville. All the signals for this extension have been erected, with the exception of one in the centre of the lake, which it has been found desirable and practicable to construct, and for which Mr. Gilbert has devised a very ingenious plan. The opening of the lines necessary to comect the city of New Orleans with the triangulation, was a tedious part of the season's work.

By an accident occurring in the opening of one of the lines of the triangulation in the early part of the season, Mr. Gilbert was disabled for more than a month and a half, thus throwing his work into a less favorable part of the year.

Mr. Gilbert reports great difficulty in the preservation of the station points on the south and east shores of Lake Borgne, as many of them necessarily placed near the water are liable to its encroachments. Proctor's Point, on Lake Borgne, has been washed away to the extent of fifty or sixty feet in two years. He has taken pains to secure the points as far as practicable.

The party has had the yse of the schooner G. M. Bache for transportation during the season.

The area covered by this triangulation amounts to one hundred and eighty-nine (189) square miles; the number of stations occupied fifteen, (15) and the number of angles measured at them, forty-seven, (47.) The instrument used in these observatious was a ten-inch Gambey theodolite, (U. S. C. S., No. 23.) The reconmaissance covers an area of three hundred and ninety-six (396) square miles.

Mr. Gilbert, upon closing his work in this section, and finishing the computations required, has been employed in the execution of plane-table work in Section I.

Topography.-Assistant Wm. E. Greenwell, who has executed the topography in this section from its commencement, in 1847, resumed that portion of the work in November last, and continued until May, commencing at Isle au Pied, and extending along the southern shore of Mississippi sound and Lake Borgne nearly to the western limit of the lake. (See Sketch H, No. 1.) Two sheets were completed, comprising an area of ninety-eight (98) square miles, and an extent of shore-line of four hundred and twenty-five (425) miles. Re-surveys were also made of part of Ship and Dauphine islands, to ascertain the changes produced by the hurricane of August 23, 1852.

Mr. Greenwell was assisted in this work by Mr. William M. Johnson, and used the schooner Phouix as means of transportation and accommodation of the party.

In his report upon the character of the topography of this region, Mr. Greenwell speaks of the great changes in the position of the shore-line, thus:
"From the experience of the past year, I find that the lake shores of this region, and so likewise the sound shore running from Isle au Pied to Malheureur Point, are fast being cut away, and at the rate of seventy-five to one hundred feet per annum.
"What is worthy of remark also is, that whilst these inland shores, subject to the fierce northers of the winter, are being washed away, the eastern shores of this marshy region, though washed by the heavy waves of the Gulf, are gradually encroaching upon the sea in nearly the same ratio.
"This last may be attributed mainly to the under-tow, which is constantly throwing up sand-banks and reefs outside, which serve to check the force of the waves, and behind which deposites are being made by the eddy at each succeeding gale, until this gradually rises above the surface and becomes linked with the main shore itself. This mass of sand, shells, \&c., is so firmly cemented, as it were, with the marsh mud, as to resist without wash the heavy swell from the Gulf."

Mr. Greenwell repeats his remarks upon the great resources of this country in the article of lumber, and the facilities and inducements for an active and profitable trade in it, which were quoted in my report of last year. He notices the very considerable improvement of the country, and the increase of villages and towns adong the coast from Mobile bay westward, and speaks of the recognised value of the information obtained from the Coast Survey results in this section as guides in projecting and maturing these improvements.

In the course of the season Mr. Greenwell made an examination of Dauphine island, for the purpose of ascertaining what changes had been produced there by the great storm of August, 1852; and also to examine the condition of the termini of the base line measured upon this island, and for the additional security of which, steps had been taken by him in the course of the previous year. The facts which he presented are such as to require a re-examination of the site of the western terminus, which will be made by Mr. Gerdes, who assisted in the measurement of the base. There is at present an opening into Mississippi sound through the island, but not deep enough to be of value to navigation, and one. which it is supposed will close again. The west end of the island is still increasing in extent.

About two miles of the east spit of Petit Bois island has been cut away, opening a new channel, through which from twelve to eighteen feet of water can be carried into the Gulf. This channel will prove one of great importance to the vessels plying between New Orleans and Mobile, as they can, through it, go from the smooth water of Mississippi sound into Mobile bay with only ten miles of outside sailing.

Hydrography.-The hydrographic operations in this section have been conducted by Lieut. Comg. B. F. Sands, U. S. Navy, assistant in the Coast survey, in the Coast Survey steamer Walker. Considerable attention having been attracted to Ship shoal, Louisiana, (see Sketch H, No. 6,) lying in the track of vessels bound from the northern shores of the Gulf and New Orleans to the Texan ports, and upon which the steamer Galveston was lost, and a special appropriation having been made for a survey in connection with the determination of the site of a light-house, Lieut. Comg. Sands was instructed to make a thorough and complete survey of the shoal and adjacent waters as the first work of the season. From his report on the subject, I quote as follows:
"The position of Ship shoal in the track of vessels plying between Texas and New Orleans, makes it a very dangerous one. It shoals suddenly to five feet on the inshore or northern side; the three-fathom curve extending east and west eighteen miles, with a mean breadth of three miles; the northern edge being nine miles from the nearest land, Racoon Point, Dernière island.
"The approach on the northwest and north side is dangerous, and vessels plying between it and the shore should be careful with their lead-line, and go no nearer than four fathoms, from which depth the water shoals rapidly to nine and five feet. There is a channel of five and six fathoms along the northern edge of the shoal, which would serve as a guide for vessels beating along the shore, taking care to tack on their southern course before shoaling from four fathoms. The southern and eastern approach is very gradual from three fathoms."

A special report, by Lieut. Comg. Sands, on this locality, with reference to the site and necessity of a light-house, will be found in Appendix No. 54.

An examination of the entrance to Horn Island Pass, to ascertain whether any changes had been made there by the hurricane of August, 1852, next received attention. After a thorough resurvey of the locality, Lieut. Comg. Sands "found that some of the shoal lumps had been knocked away, taking from the approach some of its dangers, rendering its channel easier of access, but not otherwise changing its depth or rendering it necessary to alter the sailing directions." The square beacon had been washed away, but he erected in its place a large tripod with a barrel on the pole.

Nassau roads, at the north cnd of the Chandeleur islands, was next examined to ascertain what effect the same storm had produced upon the passage there, and whether any changes had taken place since the survey of May, 1852. No material change was found to have occurred in the hydrography of the roads since that time. The light-house had been destroyed by the sea from the northward undermining its base; and there is some slight change of the topography of the point. As the dwelling of the keeper is still standing, it may be used instead of the lighthouse in the sailing directions, as it was adjoining the tower.

The issue of the charts of Nassau Roads and Horn Island Pass, which had been suspended in consequence of the doubt in regard to changes, will now be made at once.

It had been reported that a channel had broken through Ship island; but upon examination it was found that if such had been the case it had filled up again, not being enough water for a whale-boat to pass through at high water, spring tide.

Upon the completion of the above examinations, Lieut. Comg. Sands resumed the general hydrography of the section in Mississippi sound from the western limit of the work of last year, the meridian of Round island, and extended it to a line between Bellefontaine and a mile west of the western point of Horn island, (see Sketch H, No. 1,) including a survey of the mouths of the Pascagoula river, for the purposes of the Light-house Board. It was intended that outside work should
have been done, but the boisterous character of the weather and other circumstances prevented the execution of this part of my instructions.

After the completion of the work in Mississippi sound, Lieut. Comg. Sands, on his way from Section VIII, made an examination of the small passage between Pelican and Dauphine islands, which was, a few years since, used by the steamboats plying between Mobile and New Orleans, and which had been reported as closing. The information derived is as follows:
"Considerable change had been made by the gale of August, 1852; altering the shore-line, and shoaling the pass instead of deepening it, as was reported. A narrow passage of three feet was cut through the middle of the narrow spit of sand running towards Dauphine island, and the northern point was cut off and joined to Dauphine island, making a point where the shore-line was before nearly straight, jutting out towards Pelican island, leaving but six feet in the channel; and steamboats were using the old channel between Great and Little Pelican instead."

The statistics of the work of the party for the season are given in the following table:

Surveys of siles for Light-houses, dec.-Examinations and surveys of Ship shoal and Racoon Point with reference to the location of a light-house, and at the entrance of the East Pascagoula river, were made by the same party, special reports of which will be found in Appendix Nos. 54 and 53. The hydrography of Ship shoal was based on the map of Assistant F. H. Gerdes, a full report of whose work on Isle Dernière and the vicinity is given in the Appendix No. 21.

Tides.-The observations of the tides of the Gulf of Mexico, which had been prosecuted in the preceding section in the earlier part of the season, were continued westward into this section, where two stations have been occupied. Observations were made hourly, day and night, by Mr. Gustavus Würdeman, at the Southwest Pass into Mississippi river, for four lunations, and at Racoon Point, near Ship shoal, Louisiana, for two lunations. The results show the usual care which has characterized Mr. Würdeman's opservations.

SECTION IX-FROM VERMILION BAY TO THE BOUNDARY, INCLUDING PART OE THE COAGT OF loUisiana, and the coast of texas. (Seetch I.)

The organization of parties in this section has been as in the previons year, except that an astronomical party has taken the place of a topographical party, and two additional tidal observers have been employed. Determinations of latitude, azimuth, and of the magnetic elements, have been made at two stations. The secondary triangulation has advanced over a part of Matagorda bay. The topography has been carried from the Brazos to Cany creek, at the head of the same bay. The hydrography of Galveston bay has been continued; that of San Luis Pass and bay, and of the Rio Grande entrance, has been completed. Examinations for the sites of light-houses have been made at Aransas pass, and at the entrance of thę Sabine river. Three tidal stations have been occupied.

The details of these operations are given under the several heads just referred to.
A chart of Galveston entrance, and of San Luis Pass, a preliminary chart, on a small scale, of Galveston bay, and sketches of Aransas Pass, from a re-survey, and Sabine Pass, have been published during the year.

Astronomical and magnetic observations.-The eastern terminus of the base line measured in this section, on Galveston island, in 1850, and Jupiter triangulation station, near Quintana, mouth of the Brazos, (Sketch I, No. 1,) were occupied during the past season for observations of latitude and azimuth, in connection with which, moon culminations and magnetic declination, dip, and intensity, were also observed at each station. Assistant G. W. Dean had charge of the party, and made the observations, in which he was aided by Sub-Assistant B. F. West. The observations for latitude werc commenced at station East Base on February 19, and continued until the 22d of March, when those for azimuth were commenced. Although the elongation mark was erected on a hill rising a few feet above the general level of the prairie, and only about one mile and a quarter from the station, yet, on account of the very great movement of the atmosphere, much difficulty was experienced in observing upon it. The azimuth of this mark was connected with the triangulation of the section, and all the other observations necessary were completed by the 30th of March, and the party was transferred to Jupiter station-a primary point in the triangulation in the vicinity of the town of Quintana. The preparations for the occupation of this station were finished on the 20th of April, when the observations for latitude and time were commenced. On the 4th of May those for azimuth were commenced, and with favorable weather were finished on the 16 th of that month. The elongation mark was at a distance of about three-fourths of a mile from the station, and approximately in line with Velasco primary point. Two severe gales occurred during the season, one on the 14th of April and the other on the 2d of May, which somewhat retarded the work, and caused some slight damage to the camp equipage; but in both instances, in consequence of the precaution taken by Mr. Dean, no injury at all was sustained by the instruments. These gales were very severe, and their effects were felt hearily by the shipping along the whole coast.

The work executed by the party is thus given by Mr. Dean:
"At station East Base, Galveston island. For latitude, 150 observations upon 57 stars with zenith telescope, C. S. No. 5, (Würdeman.) The stars were arranged in 33 sets, 22 of which were from the Greenwich and 11 from the B. A. catalogue.
"The 22 sets from the Greenwich Twelve Year catalogue gave, from the preliminary computations, for the latitude of the instrument - $29^{\circ} 12^{\prime} 53^{\prime \prime} .05 \pm 0^{\prime \prime} .11$ "The 11 sets from the B. A. catalogue gave - $29^{\circ} 12^{\prime} 53^{\prime \prime} .82 \pm 0^{\prime \prime} .20$
"Combining these results by giving weights inversely as the square of errors:
"Latitude of zenith telescope - - - $29^{\circ} 12^{\prime} 53^{\prime \prime} .24$
"Reduction to geodetic station - $0^{\prime \prime} .51$
"Latitude of station - $29^{\circ} 12^{\prime} 52^{\prime \prime} .73$
"The probable error of a single observation was 0 " 35 .
"The value of the micrometer of the zenith telescope was determined by one hundred and ninety-six (196) observations upon Polaris at western elongation. For local time, eighty (80) observations were made upon sixteen (16) stars selected from the Nantical Almanac and Greenwich catalogue, paired as high and low. The instrument used was a forty-eight-inch transit, C. S. No. 4, (Troughton \& Simms.)
"On account of unfavorable weather, only three moon culminations were observed.
"For azimuth, one hundred and seventy-nine (179) obscrvations were made upon Polaris at eastern and western elongations and lower culmination; also upon Lambda Urse Minoris at lowest culmination, with one hundred and eighty-four (184) observations upon the elongation mark. For the connection of the mark with the triangulation, one hundred and four (104) observations were made. The instrument used was the twenty-four-inch theodolite, C. S. No. 2, (Troughton \& Simms.)
"For magnetic declination, one hundred and twenty-five (125) observations were made, upon six different days, from which the variation was. determined to be $8^{\circ} 52^{\prime} .4 \mathrm{E}$., and the diarnal movement of the magnet $8^{\prime} .5$.
"For horizontal intensity, two sets of vibrations and deflections were observed with magnet C. 32, and two with magnet S. δ, upon two different days. For moment of inertia, two sets with each magnet were observed upon the same day. The values of magnet scales were determined with declinometer D, by Jones.
"For magnetic dip, three sets of observations were made on three different days, the instrument used being the dip circle C. S. No. 4, (Barrow \& Co.)
"The mean dip obtained from the results of these observations is $57^{\circ} 40^{\prime} .4$.
"For total magnetic intensity, two sets of observations were made on two different days with Lloyd needles.
"At Jupiter station, near Quintana, the following observations were made: For latitude, one hundred and forty-nine (149) observations upon sixty-five (65) stars, arranged into thirty-seven (37) sets, and selected from the Greenwich Twelve Year and B. A. catalogues.
"The fifteen sets from Greenwich catalogue gave, from the preliminary caleulations, for the latitude of the instrument - $28^{\circ} 54^{\prime} 49^{\prime \prime} .60 \pm 0^{\prime \prime} .10$ and twenty-two sets from B. A. catalogue gave - - - $28^{\circ} 54^{\prime} 49^{\prime \prime} .64 \pm 0^{\prime \prime} .23$
"Combining these results, giving weights inversely as the squares of the errors:
"Latitude of instrument $28^{\circ} 54^{\prime} 49^{\prime \prime} .61$
" Reduction to geodetic station 4 - $0^{*} .87$
"Latitude of station * - . . - - - $28^{\circ} 54^{\prime} 48^{\prime \prime} .74$
"The probable error of a single observation was 0 ". 26 .
"For time, seventy-seven (77) observations were made upon fifteen Nautical Almanac stars, paired as high and low stars.
"For azimuth, one hundred and nine (109) observations were made upon Polaris at lower culmination, and one hundred and twenty-six (126) observations upon the elongation mark, in five positions of the instrument.
"For magnetic declination one hundred and thirty-five (135) observations were made on six different days, from which the variation was determined to be $8^{\circ} 55^{\prime} .4$ E , and the diurnal movement $8^{\prime} .8$.
"For horizontal intensity two sets of vibrations and deflections were observed, with magnet C. 32 , and two with magnet S. \dot{d}, upon two different days. For moment of inertia, two sets with each magnet were observed upon the same day.
"For magnetic dip four sets were observed, which gave the following mean result: $57^{\circ} 11^{\prime} 7^{\prime \prime}$; besides one in various azimuths to test the axes of the needles.
"Two sets were observed for intensity with the Lloyd needles on two different days.
"The instruments used at this last station were the same that were employed at station East Base.
"A meteorological register was kept at both stations, in which two handred and three (203) observations of the barometer and wet and dry bulb thermometers were recorded."

Operations were closed at this station on the 17 th of May, when the party returned from the field. The instruments being properly disposed of, Messrs. Dean and West were engaged in the computation of their season's work until the end of July, when Mr. Dean was called to my party, in Section I, to assist in the observations in the primary triangulation, in which duty he has been since engaged.

Mr. West, who had been upon detached duty to Mt. Washington, after the attachment of Mr. Dean to my party, returned to Portland suffering from disease, which finally assumed a typhoid form, and terminated his hife on the 25th of August, just as he had reached twenty-one years of age. He was an efficient and promising young officer, and was mach esteemed and beloved by his associates and those with whom he was thrown in the performance of his duty. The loss which the Coast Survey and his friends have sustained in his untimely death, is expressed in the resolutions adopted by them, and given in Appendix No. 45.

Primary and secondary triangulation.-These branches of the work have been under the charge of Assistant James S. Williams, aided by Sub-Assistant S. C. McCorkle, and during part of the season by Mr. G. W. Parrish. The reconnaissañce of last year for the triangulation over Matagorda bay, which had extended just beyond the eastern end of the bay, was resumed on the 14th of December, and carried westward to the Colorado river. (See Sketch I, No. 1.) Mr. Williams, in his report, says the "Bay of Matagorda is admirably suited for triangulation; its width is convenient; there is no timber near it, except on the Colorado ; and the depth of water within one hundred yards of the shore, (usually two and a half to three feet, admits the economy and convenience of using vessels." He further says: "From the mouth of Cany creek southwestward, a sandy strip, not anywhere more than a mile wide, extends for sixty miles to Pass Cavallo; this separates the Bay of Matagorda from the Gulf of Mexico. The average width of the bay, for ten miles from its head, is not more than two miles; then it suddenly opens to a width of about four miles; and this continues very uniformly to this place, (Matagorda.) The northern shore of the eastern part of the bay is marshy, and extends back in a prairie far enough, as I judge, to include the interior points of the primary triangulation, giving sides of twelve to fifteen miles.
"Fortunately, there is a piece of dry prairie accessible from the bay, which gives a good position for a secondary point to be connected with 'Kenner,' the westernmost point of my last year's reconnaissance."

The reconnaissance was closed on the 15th of February, when the party was divided-Mr. Williams to occupy the points of the primary triangulation, and Mr. McCorkle those of the secondary. In the occupation of station West Base, Mr. Williams met with very unfavorable weather; and on the 2 d of May a violent hurricane suddenly came up, which prostrated the camp and the observing scaffold, and so injured the instrument-the fourteen-inch theodolite, C. S. No. 53, (Brun-ner)-that the further continuation of the primary work was rendered impracticable, and Mr. Williams commenced the plane-table work which had been assigned him for a later part of the season.

The secondary work was carried from the line Rhodes-Cany, westward, to Bath-live Oak. (See Sketch I, No. 1.) This was continued until June 8, in which time eight stations were occupied, and thirty-nine (39) angles measured, by one thousand and four (1,004) observations. The instrument used was the six-inch theodolite, C.S. No. 56, (Gambey.)

The following statistics are given by Mr. Williams in his report :
Number of stations occupied, nine; angles measured, forty-two, (42;) observations made, one thousand five hundred and nine, $(1,509 ;$) area of triangulation, one hundred and thirty three and three-tenths (133.3) square miles.

Since the return of the parties from the field, Mr. Williams and Mr. McCorkle have made the computations of the season's work.

Topography.-The storm of May 2d, before referred to, having deprived Assistant Williams of the means of extending his triangulation, he removed to Velasco and took up the planetable work west of the Brazos, continuing it to Cany creek, (see Sketch I, No. 1,) mear the head of Matagorda bay, which was reached on the 8 th of June. The sheet embraces an extent of shore-line of forty-six (46) miles, : and covers an area of twenty (20) square miles. Mr. Williams, since his return from the field, has inked this sheet and turned it into the office.

Hydrography.-Lieut. Comg. Craven, who had charge of the hydrography in this section in 1852, having been transferred to Section VI, Lieut. Comg. H. S. Stellwagen, detailed as chief of a hydrographic party, was assigned to its continuance in the Coast Survey schooners Morris and Belle. The work remained under his charge until the close of May, when he was called north for the survey of the Nantucket shoals; leaving the party under command of the senior officer, Lieut. John Wilkinson, U. S. Navy, assistant.

The first work of the season was in San Luis Pass and bay, which was executed by the party in the schooner Morris. In regard to the bar at this place, Lieut. Comg. Stellwagen remarks:
"This bar is a pretty good one; the water nearly the same depth as Galveston; the course straight in, and but a little distance to run. The anchorage inside is limited in extent, but has accommodated considerable shipping; and when the canal connecting Oyster bay with the Brazos river is completed, it will probably be the export harbor for a large and productive region of country, as the bar at the mouth of the Brazos in a great measure obstructs the outlet in that direction."

While the Morris was at work in San Luis bay, the Belle was engaged in Galveston bay, completing the hydrography there.

An examination and survey were made at the mouth of the Sabine river, and a re-examination made of Aransas Pass, with a view to the location at each place of a light-house. These are referred to under their appropriate heads. Upon the completion of these surveys, the schooner Belle was laid up at Galveston, and the party in her transferred to the Morris, for the purpose of bringing the whole force to the completion of the hydrography of the entrance to the Rio Grande river. The survey was made in connection with the operations of the boundary commission, and in pursuance of arrangements made under the sanction of the commissioner by Major W. H. Emory, astronomer and surveyor of the commission, intended to avoid the necessity for a double survey of this locality. The failare to receive my first instructions, the injury sustained by the schooner Morris in the harricane of May 2, while at Galveston, and other circamstances, threw this work into a late period of the year, and made its execution particularly difficult. It is, therefore, due to Lieut. John Wilkinson, to whose energy and perseverance the success of the undertaking is due, that I should express the high sense which I entertain of his efforts, and the ability which insured his success.

The operations were closed on the 20th of August, and it being desirable to avoid a long sea voyage in the then condition of the Morris, she was taken to Pensacola for repairs. My instructions, directing the vessel to be taken to Key West, had not been received. Fiuding that an epidemic prevailed at Pensacola, Lient. Wilkinson transferred part of the officers and the crew of the Morria to a brig ready to sail for New York, and detached the other officers from the vessel, which was laid up under the charge of ship-keepers. Assistant Surgeon Bryan, who remained at the naval hospital at Pensacola, died of the prevailing fever. This
highly esteemed and accomplished medical officer had for several years been attached to the Coast Survey, and his loss is most deeply lamented.

The injuries to the Morris in the hurricane at Galveston, measurably interfered with the progress of the season's work, especially that designed to have been executed on the outside.

The amount of work executed is, however, satisfactory, as is shown by the annexed table of statistics giving the results:

	Miles of soundings.	Number of soundings.	Number of angles.	Area sounded out.
Galveston bay	400\%	19,180	750	80
San Luie.....	213	14,758	884	71
Aransas Pass.	$7{ }^{4}$	320	17	1
Sabine....	$18{ }^{4}$	852	41	14
Rio Grande	100 .	5,085	376	8
Total.	741	40,195	2,068	984

Surveys for sites of light-houses, de. -In accordance with the instructions of the department, a re-examination was made of Aransas Pass, to determine the expediency of placing there a light-house or a light-boat. The result of the examination shows that while the depth of water on the bar has remained very nearly the same, the channel has changed its position nearly the whole breadth of the pass since 1851, when the first survey was made by Lieut. Comg. Craven. (See Sketch I, No. 5.)

These changes are so frequent and great, that it seems very evident that a fixed structure cannot be erected to answer the purpose of guiding vessels over the bar, and that a light-boat is necessary for that purpose. My report on the subject, transmitting that of Lieut. Comg. Stellwagen, who made the examination, will be found in Appendix No. 56.

The survey and selection of a site at the entrance to the Sabine river for a firstclass light-house, appropriated for in the act of Congress of March 3, and referred by the department to this office, was made by Lieut. J. Wilkinsor. A site was selected well calculated to answer the general and local' purposes for which the light-house is intended, and its position was indicated upon a sketch transmitted to the department in my report of July 12, also given in Appendix No. 55, (see Sketch I, No. 2,) with the report of Lieut. Wilkinson, and a letter from Lieut. Montgomery Hunt, light-house inspector of the district.

Tides.-The irregularity of the tides at Galveston required that the observations should be continued there to obtain the necessary information in regard to the rise and fall, and to trace the progress of the tide-wave in the Gulf. It was also deemd necessary to compare these results with determinations at the immediate entrance of the bay, at Bolivar Point, and a self-registering tide-gauge was established there for the purpose. The reductions are made in the office as the results come in, and the records of the two gauges compared. Considerable progress has been made by Mr. Heaton, of the tidal party, in the computations of the observations

- at Galveston.

A tidal station has been established at the mouth of the Rio Grande, in connection with the survey of that entrance, and for continuing the series on the Gulf of Mexico.

The observations have been made by Mr. G. Würdeman, of the Coast Survey, who has observed the tifles at several stations in the Gulf, and takes great interest
in the progress of solution of this Important problem of the Gulf tides. The promptness and fidelity with which he has devoted himself to these observations insures their accuracy and reliability, and has entitled him to repeated acknowledgments. Other points in this section are embraced in the series he occupied as tidal stations to ascertain the phenomena of the tides in the Gülf.
SECTIONS X AND XI-COAST OF CALIFORNIA, AND OF OREGON AND WASHINGTON TERRITORIES.
Prior to the date of my last report, the surveying parties on the Western coast had furnished a preliminary reconnaissance, with sailing directions and other hydrographic notes, from San Francisco to the northern boundary; a more minate gencral reconnaissance, with-astronomical determinations of important points, sailing directions, and other information, from San Francisco to the southern boundary; the astronomical determinations of the positions of twenty-five harbors, capes, and headlands; preliminary surveys of fifteen harbors and anchorages; topographical surveys of eight capes or points for the selection of sites for light-houses, and for purposes of defence, in some cases with the hydrography in connection. The maps, charts, and sketches founded on these, which have been engraved and published, have been twenty-seven in number. A list which shows the particulars of this progress is given in Appendix No. 8.

The operations of the past year have been directed especially to the completion of the more minute hydrographic reconnaissance with astronomical determinations of the principal points from San Francisco to the northern boundary; to the resurvey of Humboldt and Columbia river entrances, and to the survey of Umquah, and several minor ports and anchorages; to a commencement of the survey of the Santa Barbara islands, and their connection with the coast; to the continuation of the survey of San Francisco harbor, in connection with the systematic work on the coast, extending it north and south from that point; to additional astronomical determinations, and to further examinations and surveys for sites of light-houses. The details of these and other results obtained by the parties will be given under the head of the several operations.

A systematic serics of tidal observations has been commenced, intended to develop the phenomena of the tides along our entire Western coast, stations for prolonged series of observations being selected at the most suitable points, as far as the unsettled character of parts of the country will permit, and to be connected by observations at intermediate stations of a more temporary kind.

The present organization on the Western coast includes two triangulation parties; an astronomical party, with instruments for triangulation and for magnetic observations, and an assistant for topographical work; two topographical parties-one under the general direction of the chief of the main triangulation party; a hydrographic party, with a steamer and sailing-vessel, usually at work on different parts of the coast; and a party for tidal observations.

The results are worked up as fast as sent to the office, and the notices and charts rapidly published. The details for the past year will be found in the subsequent pages.

Charts and sketches of the reconnaissance from San Francisco to San Diego, San Francisco city, Santa Barbara, Points Conception and Caxo, Catalina harbor, Cape Mendocino, reconnaissance from Gray's harbor to Admiralty inlet, Straits of Fuca, Cape Flattery, and Nee-ah harbor, Shoal Water bay, and False Dungeness harbor, and Cortez bank, have been completed within the year, and either published or are ready for publication. Charts of San Diego.bay, San Francisco bay and harbor, and Columbia river, and aketches of Umquah river and Ewing harbor, have been in progress.

Astronomical observations and triangulation.-From October until March last, Assistant George Davidson, aided by Sub-Assistant John Rockwell, was engaged in observing moon culminations for longitude near San Francisco. During this time he also determined the latitude of Point Reyes, (Punta de los Reyes,) Sir Francis Drake's bay, by the zenith telescope, and the approximate difference of longitude from San Francisco by chronometer. The lamented decease of Sub-Assistant Ruth also threw upon Mr. Davidson the triangulation for connecting the Santa Barbara islands with the main. A reconnaissance was made in the autumn of last year, and this spring a base of about six and three-tenths miles in length was carefully measured with rods, near San Pedro, and the triangulation was commenced. (See Sketch J, No. 1.) Observations for azimuth were made, and the former astronomical station of Mr. Davidson was connected with the work. Mr. Davidson turned over this work to Captain E. O. C. Ord, U. S. Army, and proceeded with the hydrographic party of Lieut. Comg. Alden to the coast of Oregon, determining approximately astronomical positions, and making sketches of the coast. The latitude and longitude of Bodega bay, Haven's anchorage, Mendocino City, Shelter cove, Humboldt bay, Trinidad bay, Port St. George, Port Orford, and Umquah river entrance, were thus determined. Mr. Davidson also made the triangulation in connection with the hydrography of Mendocino City harbor, Shelter cove, Point St. George, and the entrance of the Umquah, and assisted in determining Cape Blanco reef.

At the last dates from him, August 17, he was with the party of Lieut. Comg. Alden, in execution of instructions for the completion of the survey of the Columbia river, and of part of the coast of Washington Territory.

Triangulation.-After completing the special triangulations of San Francisco and the adjacent bays, Assistant R. D. Cutts commenced the general triangulation of the coast, including the primary and secondary series, and with tertiary points for the plane-table parties which follow him. The site of a base about six and a third miles in length was selected at Pulgas ranch, and the base measured carefully with wooden rods compared with a standard bar. Every precaution was taken to render. this a reliable measurement, and a report with very full details has been received. Messrs. Rociswell and Custer assisted Mr. Cutts in this work, and the latter made a profile of the base. The triangulation is connected with the base by a well-shaped quadrilateral, both diagonals of which are determined. The progress of the triangulation to September 30 is shown in Sketch J, No. 6.

During the last winter permission was given to Mr. Cutts to return to the Atlantic States, and while at the office he rendered valuable service ia regard to the work of publication in progress, and gave minute information in regard to the coast, and the wants of commerce and navigation there. He returned to Section X early in May last.

The temporary employment of Mr. Davidson, in the connection of the Santa Barbara islands with the main, has been stated. Captain E. O. C. Ord, detailed to replace him, left New York on the 20th of July, and on the 26 th of September had commenced the work at the point at which it was left by Mr. Davidson.

Topography.-The topographical party of Assistant A. M. Harrison, in October, Noveraber, and December last, executed the plane-table sheets marked Nos. \mathbf{X} and XI, on Sketch J, No. 6, from Point Lobos, San Francisco entrance, to Point San Pedro, and No. VII, Contra Costa, near Angel island, San Francisco bay, and sent them to the office. They next commenced the survey of Santa Catalina island, and made some progress in it, then removed to the coast near San Pedro, and commenced the survey for light-house parposes, required by the hydrographic party. Mr. Harrison expected to continue his work along the coast to Point Ano Nuevo. In July last he was joined by Sub-Assistant W. M. Johnson, who, after
acquiring the special knowledge of the country which is necessary, will take charge of the party, relieving Mr. Harrison, who was one of the early volunteers for the Western coast, and has faithfully discharged the duties requiged of him there.

The topography of the coast north of San Francisco was carried from Bonita Point to within three miles of Duxbury reef, (sheet No. 9, Sketch J, No. 6,) by SubAssistant Augustus F. Rodgers, and sent to the office on the 15th of April last. During the time of working on this sheet, efficient aid was rendered to the hydrographic party engaged in outside work, by the erection of signals for their use. Having advanced beyond the range of the triangulation, Mr. Rodgers executed, as a basis for his work, the auxiliary triangulation to Duxbury reef, shown on the sketch, occupying five tertiary.stations. Returning in May to San Francisco bay, sheet No. 4 (Sketch J, No. 6) was taken up, completed, and transmitted to the office by the middle of September. During this time also a special survey, in detail, was made for the site of a light-house at Point Bonita, and communicated. Up to September 30, the date of Mr. Rodgers' general report, he had been occupied in revising the shore-line of the map of the city of San Francisco, and in reconnaissance for the main triangulation, under the direction of Assistant R. D. Cutts.

Under the direction of Assistant George Davidson, Mr. James S. Lawson has executed the topography of Point Reyes, Sir Francis Drake's bay, and the profile of the San Pedro base, besides other work in connexion with the hydrographic reconnaissance, and as assistant in Mr. Davidson's party in the operations already referred to.

Hydrography.-After returning from Oregon last winter, Lieut. Comg. Alden, U. S. Navy, assistant in the Coast Survey, in the steamer Active, commenced the survey of San Francisco bay and entrance, which was prosecuted as the weather permitted until June, when the party proceeded on the hydrographic reconnaissance northward, revising the survey of Humboldt harbor, and making new surveys of Crescent City harbor, under Point St. George, the reefs off Point St. George and Cape Blanco, Port Orford, Ewing harbor, the entrance and six miles up the river Umquah. The remarks of Lieut. Comg. Alden on this reconnaissance are as follows: "We found, much to my surprise, good anchorages every night except the one before we got in here, (Columbia river.) At every stoppingplace the observatory was put up and sights obtained. A survey of the anchomage at Mendocino City, which is some seventy miles to the southward of that cape, and of a snug cove forty miles further on, was made. Humboldt bar has been examined; the bay at Crescent City, under Point St. George, surveyed; the hydrography of Point Orford, or Ewing harbor, done; and a survey made of the entrance of the Umquah, including six miles of the river. We found a good wide passage through the reef off Rogue's river, and examined those through the reefs off Point St. George and Cape Blanco; they are all entirely safe and perfectly practicable.
"For steamers bound north, particularly in the summer time, when it is necessary to keep close to the land for shelter from the wind, which blows almost a gale down the coast, such 'cut-offs' will prove invaluable. We have brought a line of soundings up the coast, getting casts at intervals of every two miles, and seldom at a greater distance than one mile from the shore, often within a quarter of a mile, and frequently within two or three hundred metres of the rocks. So you will perceive that our opportunities for giving the coast a thorough examination have been complete. We were delayed in Humboldt seventeen days-two weeks by fogs-before we could get any sights at all, and then three days on aceount of the roughness of the bar, the sea breaking the whola time entirely across. We found the bar pretty nearly as it was when we surveyedit two years ago; but I
am satisfied, from all the information I could get, that it has undergone very important changes in the mean time.
"The entrance to this river, (Columbia,) the Sonth channel-or rather what they call the Point of Sands, or North Spit-has crept down a little towards the beach; but the change is not half so great as I had been led to imagine from the reports of pilots and others. When we came in, or rather when we made the breakers, the fog was very thick. It soon, however, lifted a little, so that one of our marks could be discerned through the mist, and giving the north breaker, or Point of Sands, a wide berth, we crossed the bar in a quarter less five fathoms, more water than I have ever known there before; the tide, too, had been flowing only about one hour. There is a new channel opened into the old North channel, through the middle sands, about half way, which the pilots use now to bring vessels in, drawing twelve or thirteen feet of water; the wind being more favorable in that quarter at this season of the year, it is found very convenient."
"The entrance to the Umquah is narrower than that of Humboldt, and there is less than two and a half fathoms of water on the bar. We went in and came out without difficulty, but drawing only eifht feet of water."

At the close of the working season last year, charts were sent to the office of Columbia river entrance, reconnaissance of the coast from Port Townsend to Columbia river, Nee-ah harbor, False Dungeness or Port Angelo, and Shoalwater bay, which were at once put into the hands of the engraver. These, with the reconnaissance above mentioned, in two sheets, accompany the present report.

In June last, the schooner Ewing, Lieut. Comg. T. H. Stevens, U. S. Navy, attached to this party, was sent to examine the Cortez bank, reported as south of San Nicolas and San Clemente islands, and determined the position and extent of the bank, finding ten fathoms of water on it. The report on this examination, which was immediately published, is in the Appendix No. 24, with a sketch accompanying it marked J, No. 3.

A very exact series of tidal observations were made by Lieut. Comg. Alden at Rincon Point, in January and February of this year, and communicated. The results of my discussion of them are given in Appendix No. 28, and were published in a form suited to practical use by navigators, in a hydrographic notice, also appended to this report, Appendix No. 29.

During the course of the year Lieut. Comg. Alden rendered various acts of service, which were suitably acknowledged. The survey of the city shore-line of San Francisco was communicated to the authorities of the city, and to the agent of the Pacific Mail Steamship Company. The Farallones were visited, at the request of the collector of the port, to prevent the interference of certain parties there with the contractor for erecting the light-house in the landing of the materials intended for that structure. The place where the wreck of the steamer "S. S. Lewis" occurred was visited, and a part of the passengers brought thence to San Francisco. An attempt was made to render assistance to the clipper "Carrier Pigeon," wrecked near Point Año Nuevo. The assistance rendered by Acting Lieut. R. M. Cayler to the passengers of the steamer "Tennessee," wrecked near San Francisco entrance, is acknowledged by Lieut. Comg. Alden, in a report which is appended to this (Appendix No. 42.)

The schooner Ewing has been engaged in furnishing transportation to the parties surveying the Santa Barbara islands, and in the hydrography of that vicinity, and in executing someadditional work required at San Diego.

Tides,-Three tidal stations have been established by Lieut. W. P. Trowbridge, Corps of Engineers, assistant-one at San Diego, one at San Francisco, and one at

Columbia river. These are furnished with self-registering gauges, and are intended as points of comparison for the intermediate temporary stations. In connection with this work, Lieut. Trowbridge will also make the magnetic observations required at the different localities.

Light-houses.-A minute survey of Point Bonita, for the site of a seacoast light, was made by Sub-Assistant Augustus F. Rodgers, under the direction of Assistant R. D. Cutts. The report of these officers, with the accompanying sketch, were forwarded to the Light-house Board, and are appended to this report. (Appendix No. 57.)

Lieut. T. H. Stevens, in the schooner Ewing, was engaged, when advice was last received from him, in the examination of the coast near San Pedro for selecting the best site for a light-house there.

OFFICE WORK.

In the introduction to my report, I stated the change in the assistant in charge, which occurred in March last, by the appointment of Brevet Major I. I. Stevens as governor of the Territory of Washington, and the detail of Captain H. W. Benham, of the Corps of Engineers, to fill his place; and while paying a well-deserved tribute to the distinguished services of Major Stevens, expressed my confidence in the zeal and abilities of his successor. Captain Benham has been industriously occupied in mastering the details of the office and of the survey generally, and in repairing the losses sustained by the resignation of experienced employes, who left the office to join Governor Stevens' exploration of the northern route to the Pa cific. The drawing and engraving divisions of the office suffered especially in this way; and it has required great effort to keep up their usual efficiency, and, while pressing forward the work on the more elaborate charts, to furnish the very numerous sketches, charts, and maps of preliminary surveys required for the immediate publication of current work. It has, however, been effected at but a small sacrifice of the progress of the more finished maps. The compilation of the map ordered by Congress, showing in colors the progress of the survey, has added to the difficulties just referred to; no additional appropriation having been made for its execution.

With the office estimates for each year is presented to the Superintendent a programme for the work of the fiscal year, intended to provide for the execution of the work required by the results of the field parties for that year, and of such back work as remains from previous years. A list of the probable results from the field and hydrographic work is furnished, as the basis of this, from the instructions of the Superintendent. During the progress of the year, the monthly reports show the advance made in this work, and the expenditures for it. At the close of the year, a comparison of the work projected, and of that executed, is reported; and with the new set of estimates, a programme for the next year. Thus a systematic execution of the details, and due responsibility for every portion of them, is insured.

The divisions of the office, as naturally arranged from the character of the operations, are: 1. The computing division; 2. The drawing; 3. The engraving; 4. The electrotyping ; 5. The printing; 6. The publishing, distributing, and sale; 7. The instrument making and carpentry; 8. The archives, library, and clerical force. Under these heads will be given general remarks on each division, chiefly from the report of the assistant in charge of the office, with a statement, in general terms, of the character and kind of work executed by each one in their several divisions. A detailed statement of the results produced, showing the share of each one in the labor, as extracted from the reports of the chiefs of the several divisions
of the office, is given in the Appendix No. 25 , in the same order in which the divisions are here named.
"In the computing division-as I have found it, the best organized portion of the office proper-I am much gratified to say, that every call from parties in the field, as well as from persons not connected with the survey, has been promptly responded to, to the best of the means available. In addition to this, I have the pleasure of stating that the whole of the field-work of last year and of the present, (1853,) as far as received, has been computed, and the revisions made as far as the receipt of the computations of the observers would permit.
"I would state that my own observations led me to unite in the belief of the chief, Assistant Julius E. Hilgard, that 'the industry, zeal, and fidelity of all the gentlemen engaged in the computing department, is deserving of great commendation;' as also to refer to his remark in relation to the extension, care, and improvement in the system of recording the results, made 'chiefly by Mr. Schott,' acting in charge of the computers for the greater portion of the time since I entered the office, to whose anxious, faithful industry I have great pleasure in testifying, as well as in acknowledging the kindly aid and valuable assistance of Mr. Hilgard himself, the regular chief of this division, during the intervals of his field service that he has held the direct charge in the office."

The general distribution of the duties of this division among its members has been as follows: The computations of latitude and azimuth were made by Mr. E. Nulty; their revision, and the reduction of transit observations, were made by $M r$. Main. The work of triangulation was computed by Mr. Werner, and revised by Mr. Rumpf, who also had in charge the registers of geographical positions. Mr. J. E. Nulty and Mr. Wiessner were engaged in different classes of work, as demanded by its occurrence. The clerical work was performed by Mr. Hoover, who also made miscellaneous computations.

Mr. Schott, when not in charge of the computing division, or engaged on special duty, made computations of astronomical work, and discussions of results generally.

A detailed list of the computations made is contained in Appendix No. 25, marked A.
"In the drawing division, the most important, perhaps, of all the others in the office, I have, as previously alluded to, had to regret the want of draughtsmen of the higher class, which in a much greater number, either by regular employment or by contract work, have heretofore been available for the necessities of the office for the preparation of the more finished charts. In addition to this, until quite recently, there has been the still more important deficiency of a proper chief to this division. The former acting head having left in May, for two or three months a temporary charge of the division was of necessity intrusted to persons who were inexperienced in the duties; and, though under the general direction of my assistant, Captain Foster, his time was so occupied with other duties in addition to this, that the division did not show the progress so much to be desired in every case in the office. I am, however, much gratified to state, that this change having been accepted by Captain Gibson about three months ago, there has been since that time a steady improvement and a rapid progress in this division. The different branches of the work were at once taken hold of by Captain Gibson most effectively, and particularly the projects for the different charts, and for the sketches for the annual report, so indispensable for the early diffusion of the knowledge of the useful results of the survey. Of these a large number have been prepared-all indeed, I think, that could be desired or expected; while for the more important maps, preparations are being made for getting in hand, either by contract or otherwise, all those for which we have the available material now in the office."

The duties have been divided as follows: Assistants W. M. C. Fairfax, and M. J. McClery, and Mr. Joseph Welch executing the reductions of topography of the finest class, and in miscellaneous examinations and verifications; Mr. J. J. Ricketts and Mr. J. P. R. Mechlin executing the first class reductions of hydrography; Mr. C. Mahon, Mr. J. Lambert, and Mr. A. Boschke, not now connected with the office, in reductions of topography and hydrography of a finer class; and Messrs. E. Hergesheimer, A. Balbach, E. Freyholdt, L. D. Williams, J. R. Key, W. P. Schulz, and B. Hooe, jr., in miscellaneous reductions, drawings, and tracings. Mr. W. B. Mc-: Murtrie, draughtsman of the hydrographic party of Lieut. Comg. Alden on the Pacific coast, Mr. J. C. Tennent, and Mr. Thomas Adams, have been temporarily engaged at different times in this division; the former of these gentlemen has returned to the Western coast, and the latter is no longer connected with the office.

In the Appendix No. 25 will be found a statement by Captain Gibson of the maps and charts completed, near completion, and in progress, also the details of the distribution of duties among the members of the division by list B, Appendix No. 25.
"In the engraving division the work has progressed steadily, and generally with much faithfulness on the part of the persons employed; and though, from the illness and subsequent loss of the services of one of the principal engravers in the office, the illness of others on contract work, and the loss of the efficient head of this division, and, perhaps, from the unusual issue of last year, we shall not be able to report for this the completion of the usual number of large and finished harbor plates; yet I expect to have prepared for this report an amount of new sketch-plates, as I learn, unprecedented as to the number and the extent of recent results of the survey which they will furnish to the country. Many of the finer maps are, besides, so far advanced, that the number to be completed and published during the ensuing year will make up, with this year, at least the full average desired or expected.
"In this division, during the past month, Lieut. Hunt, of the engineers, has been assigned to the charge for as much of the time as he could spare from his other special duties. Previously the division was under the charge of Mr. J. C. Tennent, from the month of April."

The finest engraving on the large maps and harbor charts has been executed by Messrs. Siebert, Rollé, Dankworth, John Knight, Mc Coy, and Smith, the three first principally executing topography, Mr. McCoy the views, and Messrs. Knight and Smith the lettering ; Messrs. H. Mr. Knight, Woodward, Young, Throop, and apprentice Evens, executing work on harbor charts, and in sanding; apprentices Oehlschlager, Pettit, and J. J. Knight, have been engaged in practice, and in work on the sketches to accompany the annual report.

The engraving executed by each one of this division is shown in list C of Ap. pendix No. 25.

The apprentice system has not worked well during the past year; but Captain Benham has introduced modifications in the details which it is hoped may encourage its continuance as mutually advantageous to the office and to the apprentices themselves.

The reports given in Appendix No. 25, marked C, Nos. 1, 2, 3, and 4, show the plates finished during the year, and now in progress, and all the plates which have been engraved in the Coast Survey office, or that are now in progress of engraving.
"The electrotyping, under the skilful superintendence of Mr. Mathiot, has continued to meet the necessities of the other branches of the office, and it is hoped that by a judicious forethought, and the successful experience obtained in joining portions of engraved plates, for electrotyping additions, the re-engraving of any
considerable portion of work once correctly executed, may in all cases be dispensed with hereafter.
"During the past year, forty-seven electrotype plates have been made; twentythree of which were 'altos' or moulds, and the remaining twenty-four bassos, ready for the printer's use. Five plates have been altered and enlarged by combining with them sixteen pieces by the electrotype process, thus expediting, in a most important degree, the printing of the maps from these plates; while the great expense of the re-engraving of large portions of them has been avoided. In addition to this, about sixty blank plates are reported as having been prepared by the electrotype process for the engraving division.
"The other labors of this branch comprise the electro-gilding of nineteen deepsea thermometers, and parts of some of the other scientific instruments used on the survey, together with the making and graduating of several metre scales."

The labors of Mr. Mathiot, and of his assistant, Mr. Cronin, are shown in the statement marked D, Appendix No. 25.

Mr. Mathiot also rendered acceptable service in arranging the articles sent to the exhibition of the industry of all nations at New York, among which were some admirable specimens of his own skill.

Through the attention of Lieut. Washington A. Bartlett, U. S. Nary, special agent for the Treasury Department, in Paris, for procuring the lens lights for the Western coast, I was placed in communication on the subject of the electrotype process with the Director of the Dépôt de la Guerre of France. An officer of the dépôt had been sent to England to inquire into the electrotype processes in use there, especially with those used for copying engraved plates for maps, first introduced by the officers of the Ordnance Survey. It was a gratifying result of this communication, that the Director, (Colonel Blondel, in acknowledging the memoir sent to him from the Coast Survey office, observed: "The perusal of the memoir has convinced me at once of the superiority of the electrotype methods which are used in the United States. The reproduction in less than three days of a plate of large size, is an improvement of the highest importance." This letter was accompanied by an interesting account of the organization of the Depôt de la Guerre, for which the thanks of the Coast Survey are due to Colonel Blondel.
"In the printing affice, still under the experienced charge of $M r . O$ Brien, an ample supply of the maps, charts, sketches, proofs, \&c., has been constantly in readiness for all the calls from the agents, for sale, for the purposes of distribution to libraries, institutions, and to individuals, and for office purposes, amounting to more than twenty-four thousand sheets in all; in addition to which there have been stretched and prepared for the draughtsmen of the office, and for the topographical parties, nearly five hundred sheets of antiquarian paper, and about sixty original topographical and hydrographic sheets of drawing-paper have been backed with cloth. In this branch of the office, it early occurred to me that much might be saved in convenience and expense, with quite an increase of usefulness, by having portions of all the charts printed upon a strong thin paper. The facility of mailing or otherwise transporting them is so much greater, and particularly for the Western coast of the United States, while the cost of the sheets being generally only about one-fourth of those on thick paper, seem to render such a course very advisable, as a most important advanced step towards distributing the charts of the Coast Survey in the most convenient manner, and at the least possible expense. I have, therefore, directed that, for the present at least, one-half of all impressions of charts of the Western coast shall be taken on such thin paper, and that about onefourth of all the other maps should be so printed. Such maps will be much more
uscful where they ave preferred, as they will often be, and a great gain will result, as mentioned, in the lesser outlay for the material.
"I would also state that repeated efforts have been made within the last few months to accomplish your wishes for the obtaining, if possible, of some suitable strong 'cloth paper,' or cloth-backed paper, ready manufactured to our use, for the parposes of our draughtsmen; and even, as it has been hoped might be possible, for the uses of the topographical parties and the printing office also. This, though unsuccessful as yet, will not be lost sight of in the future. The number of sheets printed by Mr. O'Brien and his assistant, Mr. Rutherdale, are given in the Appendix No. 25, marked E.
"The map room, since January last, has been under the charge of Mr. King, whose care and faithfulness in that duty has given me much satisfaction. There have been furnished from this depository during the year, as shown by the annexed list, (Appendix No. 25, marked F) for sale to the agents in the different cities, nearly four thousand four hundred of our best charts. There have been gratuitously distributed, under the act of Congress, to literary and other institutions, and to individuals throughout our own and other countries, more than seven thousand two hundred copies, making, with nearly eight hundred required in the office, more than twelve thousand four hundred copies in all.
"Mr. King has also been charged with the direct preparation for distribution of the Annual Report of the Coast Survey; of these, besides many copies of former years, there have been gratuitously forwarded from the office, of the report and sketch-maps for 1851, the last yet received from the binder, between three thousand and four thousand copies. The list F, Appendix No. 25, shows that about two thousand of these have been sent already to individuals in the different States; about four hundred to five hundred to literary and other institutions in our own country; nearly five hundred to the officers of the army and navy, and Navy Department for its libraries at navy yards and vessels; nearly three hundred to the public press; and about one hundred and thirty have been forwarded to European countries through the Smithsonian Institution and otherwise; while, through the kindness of the Hon. W. L. Marcy, the Secretary of State, arrangements have been made for forwarding several hundred copies more, through our Legation at London, to commercial and scientific institutions and individuals in England, and to similar institutions and individuals of the Continental nations, through their ministers resident in Great Britain.
"The remaining copies of the report in the office are held for distribution in Texas, California, and Oregon, from whence the preparatory circulars of inquiry, \&c., have not yet been returned, and for the occasional incidental calls and future uses of the office.
"There have also been distributed from this branch of the office about eight hundred copies from different circulars, communicating useful information to the navigation and commerce of the country; besides nearly two thousand five hundred other printed notes to individuals and to institutions in reference to the annual reports, deemed necessary to secure them from being duplicated or lost.
"In the instrument shop much labor upon the many different kinds of instruments in use on the survey has been performed during the past year, under the skilful and faithful direction of Mr. Vierbuchen, with the general superintendence of Mr. Saxton. Some seventy of the most important instruments have received repairs, including in the number fifteen theodolites, twenty-six sextants, seven telescopes, five deep-sea thermometers, two self-registering tide-gauges, seventeen metre-chains, besides a large number of others necessary for the work.
"In addition to this, many valuable instruments have been completed entirely in the shop, such as eight self-registering tide-gauges, eight deep-sea thermometers, two plane-tables, five telescopes, three protractors, with many others, such as scales, metre-rods, a range instrument, and tools of various kinds. I cannot but consider this shop a most valuable, if not indispensable, addition to the survey, from the excellence of the work there performed, the immediate execution of it when necessary, and the undoubted reduction of the expense over the cost of the same work in private establishments.
"In the carpentry shop, where two to three persons have been constantly employed under the direction of, and including, Mr. Wood, a large amount of necessary labor has been performed in the preparing of the wood-work portion of the more valuable instruments, as stands for the theodolites, plane-tables, \&c.; the making of the accurately-fitting cases for the finer and more delicate articles; the boxing of plates, maps, books, \&c.; with considerable work upon the furniture, drawing fixtures, record cases of the office and library, not to dwell upon the large amount of repairing required upon the dilapidated buildings of the main office.
"The charge of the clerical force of the office has been with Mr. Boggs for the last six months, who has likewise attended to the accounts of disbursements, and generally very satisfactorily. The knowledge of the routine of the office possessed by Mr. Whyte, with his faithful services, have been of much value; and Sergeant Uhrlandt, of the engineer detachment, has also acted for a large portion of his time as one of my clerks, in which duty he has proved very useful and reliable, as he also has in the general charge of the messengers and buildings, order and other books, with which he has been intrusted. In addition to the gentlemen above named, Mr. P. C. F. West and Mr. J. L. Ellioth have been engaged in the clerical duty of the office.
"The archives and library have continued during the past year under the charge of Mr. Snow, to whose faithfulness and systematic arrangement their availability for ready reference, and the uses of the survey, are principally due.
"In the archives the tidal records have been rebound, and all original survey maps have been secured in suitable separate cases, distinctly marked for reference.
"In the library, now consisting of above two thousand two hundred volumes, are found most of the books needed for the uses of the survey, and to these additions are constantly made of the best works as they are published from time to time; over five hundred having been purchased during the last two years, while quite a number have been received by donation from individuals and from scientific institutions; and I have the pleasure of stating that the system of foreign exchange, mentioned by Mr. Snow, I have taken measures to carry out, as I trust, to a very considerable extent, and from which I would anticipate most favorable results."

Captain Benham acknowledges the special assistance derived from the general disbursing agent of the survey, Samuel Hein, Esq. ; from the assistant in the Weights and Measures office, Joseph Saxton, Esq. ; and from the following named officers in the Coast Survey office: Captain A. A. Gibson, U. S. Army ; Lieut. E. B. Hurt, of U. S. Corps of Engineers ; Brevet Captain J. G. Foster, of the same corps; and Assistant L. F. Pourtales, in charge of the tidal party. He speaks also with commendation of the services of the clerks in his immediate office, and of the faithfulness of the messengers and watchmen.

The important services of Captain Benham, in relation to the surveys of Minot's Ledge and the Sow and Pigs reef for the erection of light-houses, have been mentioned elsewhere; as also those of Captain A. A. Gibson, in taking views for charts of harbors in Section I.

In his annual report, Captain Benham calls attention to the necessity for the
franking privilege by the superintendent and assistant in charge, and gives facts in relation to the matter of the strongest kind. This is probably the only bureau connected with the Treasury Department which has not the privilege, and the labor of franking which thus comes upon the chief clerk of the Treasury Department is very onerous. Captain Benham thus remarks: "In the six months from the first of July, since which. time I have directed the strictest accountability, and an accurate record of the franks used, they amount to upwards of twenty thousand; of which about eight thousand were required for the distribution of the report of 1851."

I proceed next to notice certain computations and other work not included under the divisions of the office, but executed under my general superintendence.

The valuable aid of Prof. Peirce has been secured in the improvement of the computations of longitudes from observed moon culminations. It is well known that the comparisons of observed results with the lunar ephemeris furnish only determinations of the rudest kind; that the method of comparing observations is unsatisfactory, from the numerous results lost in practice for the want of corresponding ones; and, what is worse, from the nature of the computations. Prof. Peirce determined for each lunation of the year, by the method of least squares, corrections having the form indicated by examination of many years of observation, which, when applied to the longitude of the ephemeris, would cause them to differ less from the observed longitudes than the results of observation would differ among themselves. The least number for the error of observation of a lunar transit was obtained from an elaborate discussion of the observations at Greenwich, Cambridge, Edinburgh, and Washington. The application of this method to the observations of one year has proved very successful, and the further discussion is in steady progress. The interesting report of Prof. Peirce, stating his methods more in detail, is given in Appendix No. 31:

Prof. W. C. Bond has observed, by the "American method," during the past year, for the Coast Survey, fifty-five moon culminations, and has communicated observations chiefly for comparison with corresponding ones on the Western coast. The interesting remarks on the spring governor by Prof. Bond, with the details in relation to the performance of two of these instruments, are given in the Appendix No. 32.

George P. Bond, Esq., of Cambridge, has directed, during the past year, the computations of the observations for difference of longitude by chronometer between Cambridge and Liverpool, which had been made under the immediate supervision of Wm. Cranch Bond, Esq., director of the observatory at Cambridge, with the cooperation of Director Hartnup, of the Liverpool observatory. Mr. George P. Bond presented an elaborate plan of reduction of these results, and has caused its execution to be steadily carried forward, so that I expect to receive, early in the next year, the results of the valuable labors, in a complete form. A report of the progress already made in these computations is appended, No. 34.

Prof. A. G. Pendleton, U. S. Navy, assistant, has continued the computations of longitudes, taking up chiefly those of the Western coast, Point Concepcion, and Nee-ah bay, and of Charleston, S. C.

The tidal party under the direction of Mr. W. W. Gordon, and, since his resignation, under that of Assistant L. F. Pourtales, has been diligently engaged in re-computing the older tidal observations, and bringing them into form, and in reducing the new ones as they come in. This party is under my immediate supervision for the observations and computations. Sub-Assistant George A. Fairfield is attached to it, in charge of tide-gauges, a duty in which he is assisted from time to time by Mr. Henry Mitchell. This branch of the work has been referred to under the head of the several geographical sections. The office-work of the party is fully reported
in Appendix No. 25. The comparisons of the work of former years, and of theory with observation, and the special discussions, have been made by Messrs. Pourtales, Mitchell, and Heaton; and the measurements from the self-registering gauges, the reduction of the work as it comes into the office, by Messrs. Hawley, Nes, Taylor, and Montgomery. Lieut. A. W. Evans, U. S. Army, assistant, has also been temporarily attached to this party, and its numbers and the persons employed have varied much within the year, as occasion required, or the junior members of the survey were disposable for the duty.

Lieut. E. B. Hunt, of the Corps of Engineers, assistant, besides his duties in the office, has rendered valuable service in superintending the transfer and printing of the plates of the Coast Survey report of 1852, for the Senate. In the progress of this work, the art of lithographic transfer, in all its details, has become familiar to him, and his remarks upon the processes, placed in the Appendix No. 36, will be read with interest and with profit. When in New York, Lieut. Hunt superintended the placing of the Coast Survey and Weights and Measures articles in the exhibition of the industry of all nations.

The much lamented decease of Prof. S. C. Walker left Assistant L. F. Pourtales in charge of the special computations of longitude, and of certain telegraph operations, in which he had been engaged. Mr. Pourtales has retained the charge of the Seaton station also, and of the telegraph computations referred to, while directing the labors of the tidal party.

During part of the year, Prof. E. Yulee, and during the remainder, Mr. C. M. Yulee, under his supervision, has been engaged in computations of moon culminations at Washington. The whole series of five years' observations will, it is expected, be computed in a few months.

The disbursements of the Coast Survey have been made with their accustomed regularity by Samuel Hein, Esq., general disbursing agent. All the estimates and the accounts of the parties pass through his hands, and after administrative examination by the Superintendent, are transmitted for audit to the First Auditor, who, after examination, passes them to the First Comptroller. Besides these important duties, Mr. Hein has discharged others, in the care of the property of the survey, and the repairs of the vessels used by the parties.

The usefulness of P. B. Hooe, Esq., as clerk to the Superintendent, deserves my warm acknowledgments.

Respectfully submitted, by
Hon. James Guthrie, Secretary of the Treasury.

A. D. BACHE, Superintendent.

APPENDIX.

APPENDIX No. 1.

Distribution of the parties of the Coast Survey upon the coast of the United States during the surveying season, $1852-$ '53.

	Limits included in the several sections.		Operations.	Persons conducting the operations.	Lacalities of the seversl operations.
I	Passamaquoddy bay to Point Judith, including the coast of Maine, New Hampshire, Massachusetts, and Rhode Island.	1	Primary triangulation, and astronomienl \& magnetic observations.	A. D. Bache, muperintendent; J. E. Hilgard, assistant; G. W. Dean, assistant.	Sebattis, Maine; geodetic, astronomical, and magnetic observations; J. E. Hilgard, assistant. (See also Section III, and office.) Blue Mountain, Maine ; geodetic observations; George W. Dean, assistant. (See also Section IX.)
		2	Reconnaissance ...	C. O. Boutelle, assistant; Brepet Major Heury Prince, U. S. Army, mesistant.	Extension of reconnaissance to line Moose à bec, Range Mountain, Maine, near boundary. (Part of season:: See also Section V.)
		3	Secondary triangulation and measurement of heights.	Captain T. J. Cram, U. S. Topographical Engineers, assistant.	Measurement, of heights; coast of New Hampshire and Maine.
		4	Secondary triangulation.	C. O. Boutelle, assistant; B. Huger, jr., sub-assistant.	Casco bay, continued. (Part of season. See also Section V.)
		5	Topography........	A. W. Longfellow, assistant; A.S. Wadsworth, sub-assistant.	York harbor, Maine; Portland harbor and approaches. (See also Section IV.)
		6	Topography........	Henry L. Whiting, assistant.	Coast of Massachusetts from Ipswich towards Newburyport; part of Cuttyhunk for site of light-house; vicinity of Gay Head, Martha's Viney ard, Massachusetts. (See also Section III.)
		7	Topography Hydrography	S. A. Gilbert, amistant...	Plymouth harbor and approaches; Monomoy Point, Massachusetts, and vicinity. (See also Section VIII.)
		8		Lieutenant Commanding H. S. Stellwagen, U.S. Navy, assistant.	Shouls east and south of Nantucket completed; south side of Martha's Vineyard, from No Man's Land to Maskeget chan-
					DeI; Gloucester harbor, Massachusetts; minate survey of Minot's Ledge for Light-houes Lhard. Lecation of surf-boats. (See also Section IX.)

APPENDIX No. 1-Continued.

	Limitsincluded in the several sections.	菫	Operations.	Persons conducting the operations.	Localities of the aeveral operations.
I	Passamaquoddy bay to Point JudithContinued.	9	Hydrography.....	Lientenant Commanding Maxwell Woodhull, U. G. Navy, assistant.	Shoals north of Nantucket; Portland harbor, Maine ; Plymonth harbor, Massachusetts; minute aurvey of Sow and Pigs reef, off Cuttyhunk, Massachusetta, for location of light-house. Locem tion of surf-boats. (See also Section II.)
		10	Tidal observations.	G. A. Fairfield, sub-aseistant.	Placing tide-gauges at Siasconsett, Great Point, Hyamis, \&c. General charge of tide-gauges at Portland, Portsmouth, Boston, de. (See also Section VI, and office.)
		11	Viems	Captain A. A. Gibson, U. S. Army, assistant.	Entrances to Salem, Newburyport, and Portamouth, N. H., harbors. (See also office.)
		12	Inspection.........	Captain H. W. Benham, corps of engineers, assistant.	Examinations of vicinity of Minot's Ledge, and of Sow and Pigs reef, off Cuttyhunk, Massachusettr, for light-honse sites.
II	Point Judith to Cape Henlopen, including the coast of Connecticut, New York, New Jersey, Penn., and Del.	1	Triangulation	Edmund Blunt, assistant; Lt. D. T. Van Buren, U. S. Army, assistant; Lt. A. H. Soward, U. S. Army, aesistant.	Hudson river continued from line Bear Mount, Dickerson. (Part of season. See also Section II.)
		2	Topography.......	F. H. Gerdes, assistant ; G. G. Oltmans, aid.	Resurvey of shore-line of Sandy Hook for changes. Hudson river from New York city nurthward. (See also Section VIII.)
		3	Hydrography	Lieut. Commanding Maxwell Woodhull, U. S. Navy, sssistant.	Resurvey of Romer shoals, Swash channel, and vicinity, New York harbor, for site of beacon. Ke survey of Jersey flats. (See also Section I.)
		4	Hydrography	Lieut. Com'g R. Wainwright, U. S. Navy, assistant.	Hudson river from junction of Captain Gedney's work. (Seo also Section III.)
		5	Tidal observations.	Tidal observations at Governor's Island continued. (Self-registering gauge.)
III	Cape Henlopen to Cape Henry, including the const of Delaware, Maryland, and Virginia.	1	Astronomical observations.	I. F. Pourtales, assistant.	Observations for telegraphic difference of longitude, Washington and Charleston, Washington and Raleigh. Moon culminations observed at Seaton Station. (See also Sections IV and V, and tidal party, office.)
		2	Azimuth and magnetic observationg.	J. E. Hilgard, annistant; S. Harris, aid.	Observations of azimuth and magnetic elements at Station Davis, Eastern Shore of Maryland. (See also Section I.)
		3	Primary and neeondary triangulation.	Edmund Blunt, assistant; Lieut. A. H. Seward, U. S. Army, assistant. John Farley, assistant; J. E. Hilgard, assistant.	Completion of triaugulation of Chesapeake bay to the Capes. (See also Section II) Measurements of verifeation of triangulation of outer coast between Cape Henlopen and Cape Henry. (Part of season. See also Section I, and office.) James river, Virginia, from Richmond to Harriaon's bar continued. (Part of eeason.)
		4	Secondary triangulation.		
		5	Secondary and tertiary triangulation.	John Farley, assistant; \mathbf{J}. R. Offley, sub-assistant.	

APPENDIX No. 1-Continued.

	Limits included in the several sections.		Operations.	Persons conducting the operations.	Localities of the several operations.
- III	Cape Fenlopen to Cape Heary-Continued.	6	Secondary and tertiary triangula tion.	Lieutenant Wm. P. Trowbridge, Corps of Engineers, assistant.	James river, from Richmond to Warwick bar. (Part of season. See also Sections X and XI.)
		7	Secondary and tertiary triangulation.	Captain W. R. Palmer, U. S. Top. Engineers, assistant; Lt. D.T. Van Buren, U. S. Army, sssistant. H. L. Whiting, assistant..	Rappahannock river, Virginia, from Fredericksburg to Port Royal, nearly; reconnaissance to mouth of river. (See also Section II.)
		8	Topography		Verification work on Patapreo river, Md., continued. (See also Section I.)
		9		Geo. D. Wise, assistant; E. F. Mason, aid.	Outer shore of peninsula of Eastern Shore of Maryland and Virginia, continued.
		10	Topography..---.	John Seib, sub-assistant..	Shore-line of James river, Virginia, from Warwiek bar to Harrison's bar. Continuation of topography of Chesapeake from Back river to Newport News Point, and shores of Hampton Roads.
		11	Topography.......-	S. A. Wainwright, sub-assistant.	Shore-line of James river, Virginia, from Richmond to Warwick bar. (See also Section V.)
		12	Hydrography	Lieut. Commanding J. J. Almy, U. S. Nary, assistant.	Outer coast of Maryland and Virginia completed to Cape Charles; of entrance to Chesapeake, including both capes, nearly completed, and of the bay near the entrance, continued.
		13	Hydrography	Lt. Comg. R. Wainwright, U. S. Nary, assistant.	James river, Virginia, from Richmond to Marrison's bar, completed; Rappabannock river, near Fredericksburg, commenced: idal stations in James river. (See also Section II.)
		14	Tidal observations.		Tidal observations at Old Point Comfirt, Va., continued; tides of verification at Annapolis, Md., and Petersburg, Va.
IV	Cape Henry to Cape Fear, coast of Virginia and North Carolina.	1	Astronomical observations.	Dr. B. A. Gould, jr.......	Difference of longitude of Raleigh, N. C., and Warkington; for longitude determinations between Washington and New Orleans; latitude observations. (See also Section V.)
		2	Secondary triangulation and topography.	J. J. S. Hassler, assistant.	Continuation of Currituck sound; Back bay north of the Virginia and North Carolina line.
		3	Secondary triangulation and topagraphy. Tortiary triangula tion and topography.	C. P. Bolles, assistant; J. W. Gregorie, sub-assistant. A. S. Wadsworth, sub-assistant; Geo. H. Bagwell, aid.	Cape Fear river, from near New Inlet to head of Eagles island, above Wilmington.
		4			Core Bank and sound, N. C., to former survey of Beaufort harbor, N. C.; reconnaissance south of Beaufort, (See also Section I.)
		5	Hydrography	Lt. Comg. J. N. Maffit, U.S. Navy, assistant.	Cape Fear entrance and river, to head of Eagles island, above Wilmington, completed; tidal observations Cape Fear river and Smithville, N. C. (See also Section V.)
		6	Inspection of parties.	A. D. Beche, superintendent.	Cape Fear river, and at Raleigh, N. C.

APPENDIX No. 1-Continued.

	Limits included in the several sections.		Operations.	Persons conducting the operations.	Localities of the several operations.
IV \& V	Gulf Stream.		Hydrography...-	Lt. Coing. J. N. Maffitt, U. S. Navy, assistant; acting master J. P. Jones, U. S. Navy.	Exploration of Gulf Stream on sections across it from Cape Hatteras, Cape Fear, and Charleston harbor entrance. (See also Sections IV and V.)
V	Cape Fear to St. Mary's river, including the coast of South Carolina and Georgia.	1	Reconnaissance ...	Brt. Maj. Henry Prince, U. S. Army, assistant.	From the Cape Fear river, N. C., to the Santee river, S. C.; triangulation of Winyah bay and Georgetown harbor. (Seo also Section I.)
		2	Primary and secondary triangulation.	C. O. Boutelle, assistant; B. Hager, jr., sub-azsistant.	Opening of lines and occupation of primary stations, New Cut, Matthews \& Elliott's Cut, between Eaisto base and Charleston; secondary triangulation of Stono river over James' island; triangulation of Winyah bay and Georgetown harbor, S. C., from the extrance to Georgetown. (See also Section I.)
		3	Astronomical observations.	Dr. B. A. Gould, jr.; Professor Lewis R. Gibbes.	Telegraphic difference of longitude of Charleston and Raleigh, for connexion with Washington and New Orleans. (See also Section IV.)
		4	Secondary triangulation.	Capt. E. O. C. Ord, $ए$. S. Army, aesistant; R. J. Breckenridge, aid.	From the base on Union Causeway to near Tybee entrance. (See also Section X.)
		5 6	Secondary triangulation. Topography........	Lt. Jos. S. Totten, U.S.A., nest.; C. B. Baker, uid. S. A. Wainwright, subassistant.	Entrance and harbor of Georgetown, S. C., commenced. Shore line of Winyah bay and Georgetown harbor. (See also Section III.)
		7	Hydrography.	Lieut.Com'gJ. N.Maffitt, U. S. Navy, assistant.	Additional examination of Charleston bar. Hydrography of Winyah bay and its approaches, and of Georgetown harbor. Tidal stations there, and at Charleston. (See alan Section IV, and Sections IV and V, Gulf Stream.)
		8	Inspection of parties.	A. D. Bache, superintendent.	Near Charleston and at Georgetown harbor, S. C.; on Savannah river, Ga. General examination for commencement of triangulation between the Savaonah and the St. Mary's.
V\& VI	Gulf Stream.........		Hydrography.	Lieut Com'g T. A. M. Craven, U. S. Navy, assistant.	Exploration of Gulf Stream in sections across from Charleston, S. C., and near Savannah entrance, Ga., St. Augnstine and Cape Canaveral, Fla. (See also Section VI.)
VI	FromSt. Mary's river to St. Joseph's bay, coast of Florida.	2	Secondary triangulation.	Lient. Jas. Totten, I. S. Army, assistant; C.T. Jardella, aid.	From Point Elizabeth, near Carysfort reef, to near Key Tavernier; also from Key West eastward, for marking the keys. Report on signale for reef, for Light-house Board.
		2	Secondary triangulation.	George A. Fairfield, subasnistant.	Entrance of St. John's river, Fla., and Fort George inlet. (See slso Section I, and office.)
		3	Topography........	J. Hull Adarns, sub-absistant ; C. M. Bache, aid.	Florida keys continued from Cæsar's creek, Soldier Key to Old Rhodea Key.

APPENDIX No. 1-Continued.

	Limits included in the several sections.		Operations.	Persons conducting the operations.	Localities of the several operarations.
VI	From St. Mary's river to St. Joseph's bayContinued.	45	Topography...-...-	R. M. Bache, sub-arsistant.	Shore-line and togography of entrance to St. John's river, and Fort George inlet, Fla.; of Boca Chica, and marking for Land Office. (Part of reason.)
			Hydrography.	Lieut. Com'g T. A. M. Craven, U. S. Navy, assistant.	Entrance to St. Joltu's river, and Fort George inlet, Fla.; of Florida reef from Triumph reef to Turtle reef. (See also Sections V and VI, Gulf Stream.)
		6	Inspection of parties.	A.D. Bache, superintendent.	Inspection of progress of parties on St. John's river, and general examination of coast to St. Mary's.
VII	From St. Joseph's bay to Mobile bay, including part of the const of Florida and Alabama.	2	Reconnaissance...	F. H. Gerdes, assistant; G. G. Oltmans, aid.	Special reconnaissance with as tronomical positions; eastern and western entrances to St. George's sound, harbor of Apalachicola. General reconnaissance of St. Andrew's and St. Joseph's bays and of the coast westuard.
				G. Wurdeman	Pensacola, Florida.
VIII	From Mobile bay to Vermilion bay, including the coast of Alabama, Mississippi, and part of Louisiana.	1	Reconnaissance...	F. H. Gerdes, assistant; G. G. Oltwans, aid.	General reconnaissance fromLake Borgne to Delta of Mississippi, and of the coast west of the Mississippi to Atchafalaya bay. Special reconnaissance with astronomical positions of Baratsria and Timballier bays, La.
		2	Triangulation and topography.	F. H. Gerdes, assistant; G. G. Oltmans, aid.	Measurement of preliminary base, triangulation and topography of Isle Dernière and vicinity of Ship shoal, La. (See also Section VII.)
		3 4	Secondary triangulation.	S. A. Gilbert, assistant.	West of Lake Borgne to New Orleans, and up Lake Pontchartrain to noar Madisonville, signals erected. (See also Section I.)
		4 5	Topography Hydrography	W. E. Greenwell, assistant; Wm. M. Johnson, sub-assistant. Lieutenant Commanding B. F. Sands, U. S. Navy, assistant.	Shores of Lake Borgne, La. Examination of Dauphine island. (See also Section X.)
		5			Ship shoal, La.; Horn Island Pass; entrances to Pabcagoula river: continuation of hydrography of Missiseippi sound westward; examination of Naso roads, of Ship island, of passage between*Dauphine and Little Pelican islands.
		6	Tidal observations..	G. Wurdeman	Hourly observations of tides at Southwest Pass of the Mississippiriver, and atShipshoal, La.
IX	Vermilion bay to the boundary-part of Louisianas Texss.	1	Reconnaiszance ...	Jas. S. Williams, assistant	Extension of triangulation over Matagorda bay.
		2 3	Astronomical and magnetic observations. Priwary and secondary triangulation, and topography.	George W. Dean, assistant; B. F. West, subassistant. James S. Williams, assistant; S. C. McCorkle, sub-assistant; Geo. W. Parrish, aid.	East base, near Galveston, and Jupiter station, near Velanco. (Siee also Section I.) - Triangulation westward towards Matagorda bay, and over its eastern arm; topography of the Brazos river and of the Gulf shores to Cany creek.

APPENDIX No. 1-Continued.

	Limits included in the several sections.		Operations.	Persons conducting the operations.	Localities of the several operations.
IX	Vermilion bay to the boundary-part of Louisiana and Tex-as-Continued.	4	Hydrography	Lieutenant Commanding H. S. Stellwagen, U. S. Navy, assistant.	Hydrography of San Luis Pass and bay, and of Galveston upper bay; examination for lighthouse at Aransas Pass. (Part of season. See also Section I.)
		4	Hydrography	Lieutenant John Wilkinson, U.S. Navy, assistant.	Hydrography of approaches, entrance, and part of Rio Grande; examination of entrance of Sabine river for site of light-house.
		5	Tidal obserrations.	G. Wurdeman	Hourly tidal observations at the mouth of the Rio Grande, and at Matagorda entrance.
			Tidal observations.	F. Muhr	Hourly tidal observations at Galveston.
$X \& X I$	Western coast of the United States California, Oregon, and Washington.	1	Primary and secondary triangulation. Geographical doterminations.	R. D. Cutts, assistant; John Kockwell, subassistant.	Measurement of preliminary base, and commencement of main triangulation of coast near San Franciseo bay.
		2		George Davidson, assistant: James S. Lawson, aid.	Latitude and longitude of Point Reyes, Bodega bay, Haven's anchorage. Mendocino city, Shelter cove, Humboldt, Trinidad bay, Point St. George; Port Orford, mouth of Umquah; astronomical observations at San Francisco.
		3	Secondary trianglulation.	Geo Davidgon, assistant; James S. Lakron, aid.	Messurement of preliminary base, and commencement of triangulation near Bau Pedro, for connexion of Santa Barbara islands, (part of season.) Triangulation of Humboldt harbor; near Mendocino city, of mouth of Umquah; near Crescent city, under Point Sc. George.
		4 5	Secondary triangulation. Topography.	Captain E. O. C. Ord, U. S. Army, assistant. R. D. Cutts, assistant; A. F. Rodgers, sub-assistant.	Continuation of triangulation just named. (See also Section V.) Shores of San Francisco bay and northward; of Point Bonita for site of light-house.
		6 7	Topography.......	A. M. Harrison, sub-asdistant; Wm. M. Johnson, sub-assistant.	Shores of part of San Frameisco bay \& of Contra Costa; of coast in vicinity ot San Pedro and towards Pt. Año Nuevo; of Santa Barbara islands commenced. (See also Section VIII.)
		7	Topography.......	James S. Lawson	Point Reyes; of Humboldt harbor; of mouth of Umquah, Crescent city: Mendocino city.
		8	Hydrography	Lieut. Commanding $\mathrm{Jam}_{\mathrm{as}}$. Alden, U. S. Navy, assistant.	Revised reconnaissance from San Francisco bay to Columbia river entrance; resurvey of Humboldt entrabce; examination of Mendocino city, Trinidad bay ; Crescent city, under Puint St. George; mouth of Umquah ; resurvey of Columbia river entrance.
			Hydrography-	Lient Thos, H. Stevens, U. S. Navy, assistant.	Examination of bank near San Clemente ialand. Hydrography of Sunta Barbara islands commenced.
		9	Tidal observations.	Lient. W. P. Trowbridge, U. S. Engincers, asistant.	Establlshment of tidal stations at Ban Diego, Monterey, San Frazciseo, Columbia river, \&̌e.

APPENDIX No. 2.

List of army officers on Coast Survey duty March 1, 1853.

Name.	Rank.	Date of attachment.
Thomas J. Cram	Captain topographical engineers	December 7, 1846
Henry Prince.	Captain and brevet major 4th infantr	December 10, 1850
Edward O.C. Ord	Captain 3d artillery	Decemher 30, 1852
Isage I. Stevens	First lieutenant and brevet major engineers	September 14, 1849
William R Palmer	First lieutenant topographical engineers.	March 2, 1852
Augustus A. Gibson	First lieutenant 2d artillery.	January 17, 1851
James Totten...do......- do..	December 10, 1850
Edward B. Hunt	Second lieutenant engineers.	May 5, 1851
John G. Foster.	Second lieutenant and brevet captain engin	March 20, 1862
Joseph S. Totten	First lieutenant \% d artillery	December 2, 1852
Daniel T. Yan Buren do.............d.do.	December 2, 1852
Augustus H. Seward.	Second lieutenant 5th infantr	December 8, 1851
William P. Trowbridg	Second lieutenant engineers	April 18, 1851
Andrew W. Evans.	Brevet second lieutenant 7th infantry.	November 10, 1852

APPE VDIX No. 2 bis.
List of army officers on Coast Survey duty September 1, 1853.

Name.	Rank.	Date of attachment.
Thomas J. Cram.	Captain topographical engineers	December 7, 1846
Heary Priuce.	Captain and brevet major 4th infantry	December 10, 1850
Henry W. Beaham.	Captain engineers............	April 1,1893
Edward O. C. Ord.	Captain \%d artillery	December 30, $18 \overline{2} 2$
William R. Palmer	Captain topographical engineers	March 2, 1898
Augustue A. Gibson	Captain 2d artillery	January 17, 1851
James Totten..	First lieutenant $2 d$ artillery	December 10, 1859
Edward B. Hunt	Second lieutenant engineers.	May 5, 1851
John G. Foster.	Second lieutenant and brevet captain engineer	March 20, 1852
Daniel T. Van Buren	First lieutenant 2d artillery	December 2, 1852
Augustus H. Seward.	Second liertenant 5 th infaintry	December 8, 1851
William P. Trowbridge	Second lieutenant engineers...	April 18, 1851
Audrew W. Evans...	Brevet second lieutenant 7th infantry........................	November 10, 1852

APPENDIX No. 3.
List of navy officers on Coast Survey duty March 1, 1853.

Vessel.	Lucality of service.	Name:	Rank.	Date of attachment.
Schoner Joln Y. Mason.	Section III.	R. Wainwright	Lieutenant commanding	January 31, 1848
		S. D. Trenchard	Lieutenant ...	March 1, 1853
		Edward Brinley,	Acting master.....	March 8, 1852
		John B. Stewart.	Passed midshipman	November 15, 1852
Sehomers Crawford and Bouncer.	Section IV	J. N. Maffitt. A. C. Rhind.	Lieuteuant commanding	$\begin{array}{lr}\text { May } & 9, \\ \text { June } & \text { 20, } \\ \text { J } & 1845\end{array}$
		J. P. Jones.	Actiog	June 20, 1852
		J. C. P. De Krsft	Passed midshipman	December 22,1852
		J. D. Langhomedo....... do.	May $\quad 20,1850$
		J. R. Hamiliondo...... do	August 31, 1852
Steamer Corwin and teader Angle.	Section YI	T. A. M. Craven	Lieutenant eommanding	November 27, 1850
		B. N. Westcott	Lieutenant.	April 3, 1852
		J. S. Duagan	Assistant surgeon	May 12, 1882
		John C. Febiger	Master ..	December 3, 1851
		Julian Myers	Aeting master	November 11, 1849
		Thomas C. Eaton	Pussed midshipman.	July 23, 1852

APPENDIX No. 3-Continued.

Vessel.	Locality of service.	Name.	Rank.	Date of attachment.
Steamer Walker	Section VIII......	B. F. Sands	Lieutenant commanding..	May $14,1 \times 50$
		W. S. Bishop	Passed assistant surgeon.-	May 1, 1851
		J. B. McCauley	Acting master....	October 16, 1850
		J. M. Bradford	Passed midshipman.......	November 17, 1852
		S. S. Bassett.	.-. do....... do.	March 17, 1849
		R. C. Duvall....	...do...... do	November 17, 1852
Schooners Morris and Belle.	Section IX........	H. S. Stellwagen	Lieutenant commanding	October 22, 1852
		John Wilkinson	Lieutenant	November 12, 1852
		M. P. Jones.	Acting master, (Morris)..	August 17,1850 Sept. 26,1850
		Hunter Davidso	Passed midshipman....	January 17, 1852
		George S. King	-...do...... do	November 12, 1852
Steamer Active and schooner Ewing.	Soctions X and XI.	\mathfrak{J} ames Alden.	Lieutenant commanding.	May 18, 1849
		Thomas H. Stevens	Lieutenant.	February 21, 1851
		J. C. Wait do	May 6, 1852
		J. S. Kennard do	May 6, 1852
		R. M. Cuyler	Acting lieutenant.	May 6, 1852
		James Suddards	Assistant surgeon...-	April 3, 1852
	Office.	John J. Almy	Lieutenant commanding	March 12, 1852
	Office.	M. C. Perry, jr	Lieutenant	January 15, 1853
	Office	R. L. Law	Passed midshipman	May 1,1851
	Office	Maxwell Woodhull	Lieutenant commanding	March 30, 1848
	Office	John Rutlenge.	Lieutenant.	May 3, 1852
	Office	A. W. Habersham	Passed midshipman	Deceuber 4, 1852
	Office	A. N. Smith	Master	August 4, 1852
	Office	A. G. Pendleton	Professor of mathematics.	May 8, 1848
	Office.	George W. Doty	Lieutenant	May 1,1851
	Office.	T. B. Huger...	-... do	May 14, 1852

APPENDIX No. 3 bis.
List of navy officers on Coast Survey duty September 1, 1853.

Vessel.	Locality of service.	Name.	Rank.	Date of attachment.	
Schooners Madison \& Gallatio.	Section I...........	Maxwell Woodhull	Lieutenant commanding....	May	30, 1848
		John Rutledge.	Lieutenant.	May	3, 1852
		John Rudenstein-s	Passed assistant surgeon....	June	27, 1853
		Samuel R. Franklin-	Acting master. .-. .-.	April	$2,1853$
		Joseph B. Smith.	...do......do.......	August	4,1852
		John D. Langhorne	Passod midshipman	May	20, 1850
		Hunter Davidson	--..do....... do	January	
Steamers Bibb and Corwin.	Section I...........	S. L. Breese...	Lieutenant commanding.......	August October	$\begin{aligned} & 18,1853 \\ & 22,1852 \end{aligned}$
		T. B. Huger..	Lieutenant	May	14, 1852
		Madison Rush	...- do...-.-.-...	April	5, 1853
		Foxhall A. Parker	...do..-...-...-............	March	31, 1853
		A. N. Smith	- do.	August	4, 1852
		Jacob S. Dungan	Assistant surgeon...........	May	12, 1852
		W. E. Wyshamdo...... do	July	23, 1853
		Charles W. Aby.	Acting master	May	19, 1853
		Edward C. Stont	-... do...... do.......	June	1, 1853
		Edward Renshaw	Pasked midsbipman.........	June	3, 1853
		S. S. Bassett do...... do.......	March	17, 1849
		W. K. Mayo..	. . do...... do	July	9, 1853
		C. E. Thorburn	...do...... do	July	20, 1853
Schooner John Y. Mason.	Section II.........	Richard Wainwright	Lieutenant commanding.	January	31, 1848
		S. D. Trenchard ...	Lieutenant	March	1, 1853
		John B. Stewart ..	Acting master	November	15, 1852
		Gustavas Marrison	Passed midshipman.........	July	29, 1883
Stenmer Hetzel and schooner Graham.	Section LII.......-	John J. Ahay............ M. C. Perry, jr.........	Lieutenant commauding.... Lieutenant	March	12, 1851
		Van R. Morgan.	do.	May	20, 1853

APPENDIX No. 3 bis-Continued.

Vesscl.	Locality of service.	Name.	Rank.	Date of attachment.
Steamer Hetzel and schooner Grabam.	Section III........	D. B. Phillipg	Passed assistant surgeon	April 9,1853
		W. W. Low.-	Acting master, (Graham)..	April 8,1853
		R. L. Law.	-. do.... du...(Hetzel).	May 1,1851
		John T. Walker	Passed midshipman.	April 7,1803
		W. R. Mercer	... do...... do...	. do..........do.
Schooners Crawford and Bouncer.	Section IV	Dawsen Phenix Joha N. Maffitt	Lieutenant commanding	Maydo. 9,1843
		A. C. Rhind.	Master	June $\quad 20,1045$
		J. P. Jenes	Acting mas	June 28, 1852
		W. D. Whiting	Passed midshipman	July 30, 1253
		J. C. P, Dekraft........do...... do.	December 22, 1852
		J. R. Mamilton	-.-do.......do.	August 31, 1852
Sehooners Morris and Belle.	Section IX	John Wilkinson	Lieutenant --..........	November 12, 1852
		D. L. Bryan.	Passed assistant surgeon	December 11, 1852
		M. P. Jones	Acting master.	August 17, 1852
		L. H. Lyne...	...do...... do...	Septber 26, 1852
		George S. King	Passed midshipman	November 12, 1852
Steamer Active and schooner Ewing.	Sections X and $X I$.	James Alden .	Lieutenant commanding	May 18, 1849
		Thomas H. Stevens	Licutenant	February 21, 1851
		J. C. Wait .-.	do	May 6, 1852 do.............
		R. M. Cnyler	Acting lieutenant	June 20, 1845
		James Suddards.	Assistant surgeon	April 3,1852
		Alex. M. De Bree	Acting master.	April 2, 1853
	Office.	B. F. Sauds...	Lieutenant commanding	May 14, 1850
	Office.	J. B. McCauley	Passed midshipman..	October 16,1850
	Office.	R. C. Duvall .-	...do...... do....	November 17, 1852
	Office	T. A. M. Craven	Lieutenant commanding.	Noveuber 27, 1850
	Office.	B. N. Westcott	Lieutenant	April 3,1852
	Office.	J. C. Febiger	...do.-.......	December 3,1851
	Office.	Julian Myers ...	Passed midshipman	November 11, 1849
	Office.	Thomas C. Eaton	...do......do.	July 23, 1852
	Office	A. G. Pendleton	Professor of mathematica	May 8,1848

APPENDIX No. 4.

List of assistant engineers United States Navy on Coust Survey duty March 1, 1853.

Versel.	Name.	Rank.	Date of attachment.
Steamer Corwin...-.......	F. C. Dade	Second assistant engineer	May 14, 1852
	Hiram Haines	Third assistant engineer.	. do........ do.
	J. C. Hull.	.do....... do	do........ do.
Steamer Walker	A. C. Stimers	Second assistant enginee	November 18, 1852
	W, H. Nonesdo.......do..	August 3,1852
	C. Lindsley ...	Third assistant engineer.	November 18, 1852
	George E. Shockdo....... do...-...	..do......... do.
Steamer Active .-..........	N. C. Davis.	First assistant engiveer	Fehruary 22, 1853
	E. A. Whipple...	-...do......-do.......	Apria 10, 1852
	W. A. R. Latimer H. C. Jewell	Second assistant enginee	$\begin{array}{cc} \text { June } & \text { do......... } 1852 \end{array}$
Steamer Hetzel...........	Jamer M. Adams	Second assistant engineer.	June 7, 1850

APPENDIX No. 4 bis.

List of assistant enginecrs United States Navy on Coast Survey dufy Scptcmber 1, 1853.

Vessel.	Name.	Rank.	Dato of attachment.
Steamer Corwin.	F. C. Dade	First assistant engineer.	May 14, 1859
	S. H. Honst	Second assistant engineer	May 13, 1853
	J. C. Hull.	Third assiatant engiueer	May 14, 1852
Steamer Bibb.	E.S. We Lu	First assistant eqgineer.	June 4, 18.3
	A. Broadnix	Second assistant eugineer	. do do.
	H. S. Barker	Third assistant engineer..	June 7, 1853
Steamer Hetzel.	E. W. Manning do...... do	Mny 27, 1853
Steamer Active...	N. C. Davis.	First assistant enginee	February 22, 1853
	E. A. Whipple	...-..do..--. . do	April 10, 185\%
	H. C. Jewell .	Third assistant enginee	June 17, 1852
Steamer Walker	W. H. Nones	Second assistant engineer	Norember 18, 1852
Steamer Legaré	C. W. Geddes	First assistant engineer.	May 19,1853
Watting orders	G. E. Shock.	Third assistant engineer	Norember 18, 1852

APPENDIX No. 5.

List of Coast \mathbb{S} urvey maps, shetches, and preliminary charts, cngraved and engraving.

1. list of maps engraved.

2. LISt of sketches and preliminart crafte engraved.

No．4．Sow and Pigs reef．
Buttermink channel ตกำ
6．Beacon ranges，New York harbor7．Romer and Flynu shoals ．．．．．．．．．．．．．－．．．
8．Changes in Sandy Hook．कण होल
9．Chincoteague inlet
9．Chincoteague inlet 工效祘 工效祘
10．Seacoast of part of Virginia．
2ण७कान 11．Metonkin and Wachaprearue inlets and Hog Island harbor जोगण
12．Entrance of Chesapeake bay एँ解的
13．Cape Charles and vicimity 80 don
14．Cherrystone inlet
वरोज口
वरोज口
16．Fishing or Donoho＇s Battery 10．Fishing or Donoho＇s Battery－．．． TOTNOT17．Hatteras shoals
18．Cape Hatteras．
19．Hatteras inlet－fourth edition चुion
20．Ocracoke inlet． दा⿱土龰卜⿹丁口卄
21．Beaulort harbor． $\pm \mathrm{mb}$
23．New river and bar Th需
23．Frying Pan shoals
40
40
4．Entrance to Cape Fear river and New inlet
10030日
10030日
26．Bulle bay27．North Edisto river－second editionकाती
हता
28．Latrance to Savamah river उTता 0
29．Savannah eity，Front an 1 Bach rivers30．St．Audrew＇s shoulo31．St．Jun＇s river entrance
हुण
32．Mosquito inlet कहोणा
33．Cape Cañaveral tanto
34．Kry West－second edition． ातारण
35．Rebecca shoals पत्रोण
3i．Western coast of Florida T20domo
37．Reconnaissance，vicinity of Cedar Kers． उण्रेत्बत
38．Channel No．4，Cedar Keys उलक्तिए
39．St．Mark＇s bar and chanuel क्ताण

40．Eastern and Western entrances St．George＇s mound | 5010 |
| :---: |
| 0010π |

41．Entrance to Mobile bay
41．Entrance to Mobile bay

43．Hom Island Pass and Grand bay zotomo
44．Horm Island Pass votaso
45．Pascagonla river 20 00
46－55．Cat Island tidal diagrams क्रोतण
67．Delts of the Mississippi हुकाण
58．Barataria bay
8．Barataria bay entrance जुता
60．Isle Derniere． $80 \frac{1}{45}$
8π
61．Entrance to Sabine river
62．Entrance to Galveston bay का
63．Galreston bay－second edition कार्ताप
64．San Luis Pass
65．Aransas Pass उपा
60．Alden＇s reconnaissance of western coast from San Francisco to San Diego ग20000
67．Cortez Bank
68．San Diego entrance－second edition 3500
69．Catalina harbor． Tह
70．Prisoner＇s harbor，Cuyler＇s harbor，and northwest anchorage San Clemente island सणेण
71．Santa Barbara सणोडण
72．San Simeon，Santa Cruz，San Luis Obispo，and Coxo पुणु，याल
73．Puint Concepcion $40^{\frac{1}{0}} 0$
4．Point Pinos．．． शबकेत
5．Monterey harbor वणीज0एotur
77．Sau Fraucisco bay entrance दणगतण०
8．Sau Francisco city－third edition Tतागण
9．Mare Island straits अप्रोण
80．MeArthur＇s recothird edition．
1．Mearthur＇s reconnaissance of western coast from Monterey to mouth of Columbia river－sheet No．2，
third edition．
82．MeArthur＇s reconnaissance of westera coast from Montorey to mouth of Columbia river－sheet No．3，third edition．
3．Humboldt bay उडकार
84．Trinidad bay कणण0
85．Mouch of Columbia river－second edition उताठण
No. 86. Mouth of Columbia river
87. Cape Hancoek, or Disappointment
zodat
88. Shoalwater bay
89. Alden's reconnaisance of western coast from Gray's harbor to Admiralty inlet.
90. Alden's reconutiskance of westem coast from Gray's harbor to Admiralty mlet................................... हии
90. Cape Flattery and Nee-ah harbor.... .. 4 and
91. Harbor of False Dungeness.
ग0 10π
3. LISt of maps engrating.

APPENDIX No. 6.

List of information furnished by Coast Survey under authority of Treasury Department.

APPENDIX No. 6-Continued.

Date.		To whom communicated.	Information communicated.
$\begin{gathered} 1853 . \\ \text { Jamuary } \end{gathered}$			
	10	Captain T. J. Lee, topographical engineers....... Dr. B. A. Gould, jr., editor of Astronomical Journal.	Tracing of Minot's Ledge, Massachusetts. Latitude of Key West, Cedar Keys, and St. Marks, Florida, with the chronometric determinations of longitule of same places.
	13	G. W. Blunt, esq., New York	Copy of reduction of sheet of Albermale sound, N. C. Tracings of Patuxent river, Magotby river, and Middle and Back rivers, Chesapeake bay.
	15	Dr. Thos. H. Buckler, Malliwore, Md.............	
	15	Duff Green, esq., Washington, D. C. Lieut. W. H. C. Whiting, corps of engineers.	A tracing of the interior of a part of Long Island. A tracing of Galveston bay, Texas. Tracing entrauce to Patapsco river, Chesapeake bay, Maryland
	26	Capt. H. Brewerton, corps of engineers	
	26	Lieut. J. F. Gilmer, corps	Map of Sacannah river, Georgia. A tracing of the re-survey of the Patapsco river, Chesagenke bay. A tracing of the topography of the interior of Long Island.
February	12	Capt. H. Brewerton, corps of engineers..........	
	21	Duff Green, esq., Washingt	
March	2	Hon. R. K. Call, Ex-governor of Florida.	Copy of report of Assistant F. H. Gerdes, on the reconnaissance of the bar, river, and habor of St. Marks, Florida.
	7	Authorities of San Francisco, California..........	A tracing of a portion of the hydrographic survey of the harbor of San Francisco.
	7	Lieut. W. H. C. Whiting, corp	Tracing of Trinity river, Texas.
	7	G. W. Blant, esq., New York	Tracing of Chesapeake bay,
	7	Duff Green, esq., Washington,	Tracing interior of Long island-additional topography.
	7	Light-house Board	Tracing Gerdes' recomaissance of Barrataria bay,
	7	Gov. I. I. Stevens, Washington Territo	Map of Washington Territory, compiled from best quthorities.
April	1	Captain Shortland, Royal Navy	Difference of longitude between Cambridge, Mass., and Halifax, N. S. Tracing of Cape Canaveral shoals, Florida.
	12	Captain T. J. Lee, topographical engineers. H. F. Walling, esq., Millville, Mass.	
			Tracing of Cape Canaveral shoals, Flarida. The relative longitudes of City Hall, New York, State Fiouse, Boston, and Greenwich, and a proof of - Narragansett bay.
	20	Tipton Walker, esq., Galveston,	Tracing Galreston city, barbor, bay, and gulf coast.
	20	Lieut. D. N. Couch, U. S. Army	Tracing of Matagorda bay, Texas.
	20	Hon. Jos. S. Cottinan, Maryland.	Tracing of Wicomico, Annemessic, Pocomoke, nnd Manokin rivers, Chesapealse bay. Tracing of Patapseo river, Chesapeake bay.
	20	Capt. H. Brewerton, corps of engineers J. G. Floyd, esq.	
			Tracing of Patapsco river, Chesapeake bay. Tracing of Forge river and Moriche's bay, Long Teland, New York.
	20	G. W. Blunt, esq., New York	Traciug of Albemarle sound and portion of Cherapeake bay.
	20	Board of Improvements	Tracing of Leaufort harbor, North Carolina.
	20	Lieutenant M. Harrison, corps of en	Tracing of Shrewsbury riser, New Jerscy.
	20	Topographical bureau.	Tracing of Cape Camareral, Florida.
	20	Alexander Hamilton, jr., esq., New York	Tracing Riker's ishand, Lang Island sound.
	211	J. Egerton, esq., New Orleans, Louisiana.........	Tracing North coast, Gulf of Mexico.
	20	Dr. Jesse J. Simpkins, Eastrille, Northampton connty, Virginia.	Tracing of Cape Charles and vicinity.
	22	Captain H. W. Bayfeld, Royal Nary .-..........	Telegraphic difference of lngitude between Cambridge, Massachusetts; Bangor, Maine; and Hslifax, Nora Scotia.
May	17	Pacific Mail Steamship Company - .-.-............	Portions of the sheet of sounding of San Francisco bay and harbor.
	18	Hon. R. S. Floyd	Soundings of Eart Pass of Apalachicola.
	24	Smithsonian Institute	Meteorological observations in conrse of work. Reconaaissance of Cedar Kevs. Elevations and plane of beacons. Entrance to St. John's river and Fort George inlet, Florida.
August	1	Lieut. G. G. Meade, U. S. topographical engineers. Do \qquad do. \qquad do. \qquad	
	1	Lieut. H. G. Wright, corps of engineers	
	1	J.J. Shipman, esq., Farmingdale, Long Island, N. Y.	Huntington and Oyster bay, Long Island sound. Curtis creek, Patapsco river, Maryland. Tracing portion of Besufort harbor, North Carolina. Tracing of Susquehaman ricer, Marsłand. Tracing of Narragansett bay, Rhode Island. Tracing Rhode Island from Puint Judith to Beavertail light.
		G. R. Cinnamond, esq., Baltimore, Maryland.	
	1	W. B. Thompson, exf, Newbern, North Carolina.	
	1	J. R. Trimble, esq., Balcimore, Maryland. .	
	1	H. F. Walling, esq., Millville, Massachusett	

APPENDIX No. G-Continued.

Date.		To whom communicated.	Information communicated.
$\begin{array}{r} 18 \cdot 3 . \\ \text { Angust } \end{array}$	1	H. F. Walling, esq., Millille. Massachuset	Tracing Beaver-tail light to Saughkonnet Point.
		Do.......-- do.......... do.	Tracing Saughtmmet river.
	1	F. W. Risque, esq., Washington, D. C	Tracing Point Look-out, Chesapeake bay.
	1	W. C. King, esq., Beaufort, North Carolina	Tracing of Beatort harbor, N. C., and vicinity.
	8	A. Welch, esq, Lambertville, New Jersey.	Tracing of vicinity of Back creek, Elk river.
September	15	Lient. M. Harrison, corps of engineers.	Tracing of Barnegat bay, coast of New Jersey.
	17	Light-house Board-...	Tracing Puint Bonita, San Francisco bay.
	21	Chamber of Commerce, New York city.	Comparative map of Sandy Hook. .
October	4	Hon. R. J. Wakher, Washiugton, D. C.	Tracing West bay of Galveston island and Chocolate bay.
	4	Do............. do	Tracing from San Luis to Jupiter island west of Brazos ricer.
	5	A. Randall, esq., San Francisco, California..	Tracing of Point Reyes, Calfornia.

APPENDIX No. 7.

List of geographical positions deternined by the United Statcs Coast Surrey since July, 1850.

The present list is a continuation of that published in the anmal report for 1851, ad contains the geographical positions of points determined astronomicslly and trignometrically since the date of the former, with the repetition of some puints previously published for convenience of reference. The following explanations will gige all the information requisite for the use of the tables.

For the purposes of the survey, the coast is divided into eleven sections, in all of which the work is carried on simultaneously. The survey being in different stages of progress in the several sections, and new results being added from year to year to those hero given, the same dirisions have been adopted in this publication.

The several sections are defined as follows:
Section I. From Passamaqueddy bay to Point Judith.
Section II. From Point Judith to Cape Henlopen.
Section III. From Cape Ienlopen to Cape Fenry.
Section IV. Fiom Cape Fenry to Cape Fear.
Section V. From Cape Fear to St. Mary's rivere
Section VI. From St. Mary's river to St. Joseph's bay.
Section VII. From St. Joseph's bay to Mobile bay.
Section VIII. From Mobile bay to Vermilion bay.
Section IX. From Vermilion bay to the Rio Grande.
Section X. Coast of California, Sin Diego bay, to $42 d$ parallel.
Section XI. Coast of Oregon, $42 d$ to 49 th parallel.
The tables give the latitudes and longitudes of the trigonometrical points in each section, and their relative azimuths, or bearings and distances.
The mamer in which these data have been obtained may be briefly explained here.
In each section a base line of from five to ten miles is measured with all possible accuracy. A series of triangles, deriving the length of their sides from this base, is then established along the coast by the measurement of the angles between the intervisible stations. In this primary series the triangles are made as large gs the natare of the country will permit, because the liahility to error increases with the number of triangles.
On the bases furnished by the sides of the primary triangles a secondary triangulation is next extablished, extending along the coast, and over the swaller bays and sounds, and determining a large number of points at distances a few miles apart.
The dixtances between the points thus determined, ss given in the tables, are liable to an average error of about one foot in six miles, until a final adjustment between the base lines shall have been made.

In some parts of the survey the base lines for the primary rriangulation have not yet been measured, or the connexion between the secondary and primary triangulation has not yet been made, in which cases the distances dopend on preliminury base lines, measured with great care, and they are lable to an average error of one foot in three miles. This upplies to the positions on Savanah river in Section V, and to those in Sections VI, IX, X, and XI.
As, on the completion of the primary triangulation in each section, the several series form one connected chain, the different bases afford verification of each other, and of the triangulation connectiog them. The first three sections are thus connected.

Observations for latitude and azimuth are made at a number of stations of the primary triangulation in each section. The diferences of latitude, longitude, and azimuth between these and other stations are then computed, under the supposition that the earth is a spheroid of revolution of the following dimensions, which are those determined by Bessel from all the measurements made to the present time, viz:

$$
\begin{aligned}
& \text { Equatorial radius }=6377997.16 \text { metres. } \\
& \text { Polar radius }=636075.96 \text { metres. } \\
& \text { Eeceutricity }=0.08161963
\end{aligned}
$$

It has been fornd that the differences of latitude and longitude, as computed in this manner from the disfance and azimuth betwoen two stations, and which are called geodetic, difler from those obtained by astronomiosl observations at the
several stations, by quantities which are greater than the errors of the observations. Such disagreements are due to local irregularities in the figure and lensity of the earth; and the error resulting from them in the determinations of latitule and of the meridian phane is designated as station error. It amounts, according to the resulta fobabed at present. to betreen one and two seconds of are in the eastern section of the survey, and to about balf a secoud in the sections sounh of the Delaware.

In order to eliminate the influence of station errors on the general results, observations are made at a number of stations, the results are referred to a central station by means of the geodetic differences, and the nean of ah is used for the computation of the positions given in the tables. The geographical positims must therefore be consitered as liable to future changes, from the accumulation of now obsercations, and the final dixenssion of all the results obtained.

The differences of longitude are obtained, as has been stated, by computation foom the distarces, hatirudes, and azimuths of the triangulation. In adding up these differences from atation to station, an accumulation of the ubaynhable errors is probable. They are checked, however, by differences of longitule, determined by means of the clectro-magnec telegraph, in every section where the introduction of the latter makes it practicable.

Saron Station, in Washington city, has been selected as the centre for the telegraphic diferences of longitude. The spctions at present comected by telegraph are Sections I, II, III, and V. The first three being alon commected by triangulation, the check on the geodetic differences of longitude is here ubtaned, and the rqueement is very chase.

The longitudef from Greenwich in these sections depend upon that of Cambridge Ohaeratory, as determined by chronometric differences hetween Livergool and Cambridge, and by occultations, elipses, and nom culminations, obnerved at various observatories in the United Siates, and referred to Cambridge by means of telegraphic differeaces.
'Ihe following statement shows the result ap to the present time :

Longitude of Camhridge from Grecnucich.

By moon culminations observed at Cambridge, Hudson, Ohio, Wilkes' Observatory, and National Observatory. 4 . m. s. 44.2 By eclipses and occulations at Cambridge, Brooklyn, Ptiludelphia, and Wilkes' Obeervatory.................... 44429.6 By chronmmetric differences.. 44480.1 The longitude adopted for the present is 4 h .44 ni . 29.5s., or $71^{\circ} 07^{\prime} 22.50^{\prime \prime}$.
In Sections IV, VI, VIII, and IX, the longitudes are counted from some cantral station in each, for which we have at present the following data, subject to future corrections:

○ " "

Sec. VI. Cape Florida, west of Greenwieh... 840924
Do.... Sand hey, west of Greenwich... 815243
Sec's. VLII and IX. Fort Morgan, Mobile Poiat, west of Greenwich.. 880025
The longitudes in Sections X and XI are reckoned from Greenwich. They depend on moon culminations observed at Point Conception, San Diego, Point linos, Port Orford, Cape Disappointment, and Cape Flatery, compared with corresponding observations at Greenwich and American observatories, and on chronometric differences between the same and other stations.

Explanation of the tables.

The first columin on the left contains the name of the several stations or triangulation points. Their general locality is iutimated by the heading at the top of the page, by means of which they will be readily found on the sketches accompanying the tables. Sub-headings in the first column indicate the locality more minutely where it is practicable.

The stations are generally either prominent objects of permanence, such as spires, light-houses, heacons, de., or they are points on prominent hills, capes, or points of land, where signals have been erected for the purpose of the surver, aud which are marked on the ground. In a small number of cases in the first three sections, but much more freguently in the southern sections, where settlements on the cosst are sparse, and few permanent objects are to be fomd, the stations have no other distinguishing mark than the signal erected on the spot; and after its decay, the mark left on the ground to designate the scation point. The latter generally consists of posts or stones set around the point, while the centre of the station is desiguated by an earthen come or glass bottle buried under the surface of the ground, and marked on top by a stone or post. Where the station is on a rock, a copper bolt, or a hole filled with lead or sulphur, will be found to designate the exact spot.
The sketches showing the configiration of the land as well as the relative positions of the stations, no great difficulty will be experienced in finding the latter when desired for local surveys or reference. In any casc where minute descriptions of particular points are required, they can be had by application addressed to the Coast Survey Office.

The second and third colnmas contain the latitudes and langitudes of the stations uamed.
The fourth column contains the azimuth of the line joining the station named in the first column to that named in the fifth-that is to say: the angle which that line makes with the meridian of the furmer station, reckoned from south around by west, through the whole circle. The sixth column gives the back azinuth of the same line, or the angle which it makes with the meridian of the latter station, reckoned as before; the difference between the azimuths in the fourth and thoso in the sixth column beiag 180°, less the inclination of the meridians at the two stations.

The seventh, eighth, and ninth columns give the distances, in metres, yards, and miles, between the stations named in the first and fifth columas. The relation of the metre to the yard used in obtaining these results is, 1 metre $=1.0935696$ yard, or 39.368505 Lnited States standard inches.

For each statim the azimuths and distances to two other stations are given. In every case the lines so given have actually been observed.

In each section the stations of the primary triangalation are distinguished by being printed in smale capiralg.
In Section IV a number of points previously published are repented, with slight changes in their positions, arising from an adjustment of the triangulation between the Bodies Island base and a prelimiaary base of verification near Beaufort.

Section I.-Coust of New Hampshirc. Shetch A.

UNITED STATES COAST SURVEY.-GEOGRAPEICAL POSITIONS.
Section I.-Coast of Maine. Sketch A.

Name or station.	Latitude.	Longitude.	Azimuth,	To station-	Back azimuth.	Distance.	Distance.	Distance.
Seward.	430409.41	704023.73	$\begin{array}{r} 3294931 \\ 73 \\ 22 \end{array}$	Isles of Shoals.......... New Castic.............	$\begin{array}{r} \circ \\ 149 \\ 252 \\ 253 \\ 20 \\ \hline \end{array}$	Metres. 10575.3 3674.2	Yrards. 11564.8 4018.0	$\begin{array}{r} \text { Miles. } \\ 6.57 \\ 2.28 \end{array}$
Newmarket.	430312.32	705600.94	8271346 3480044	Agamenticus............ Hamptoh Falis.	472354 1680227	$\begin{aligned} & 27833.8 \\ & 16994.7 \end{aligned}$	$\begin{aligned} & 29891.4 \\ & 17928.8 \end{aligned}$	$\begin{aligned} & 16.98 \\ & 10.18 \end{aligned}$
Frost's Hill.	430943.25	704702.81	3233230 310007	Isles of Shoals.......... Stratham Hill.	1433943 21055	$\begin{aligned} & 24158.1 \\ & 15523.6 \end{aligned}$	26418.6 17415.6	15.01 9.89
Wentworth.	430822.94	705132.32	$\begin{array}{r} 852747 \\ 2481556 \end{array}$	Patuccawa.... Frost'e Hill...............	$\begin{array}{r} 2851412 \\ 681905 \end{array}$	$\begin{array}{r} 27029.2 \\ 6699.5 \end{array}$	29338.3 7324.4	16.79 4.16
Great Hill.	430521.87	704500.67	630158 1215401	Stratham Hill........... Wentworth..............	2425697	$\begin{aligned} & 12304.1 \\ & 10584.0 \end{aligned}$	13455.4 11574.4	7.64 6.57
Newington.,................	430550.57	704950.60	$\begin{array}{llll}95 & 00 & 21 \\ 34 & 13 & 24\end{array}$	Patuccawa Stratham Hill.	2744533 21411	29490.2 7828.6	$\begin{array}{r} 32249.6 \\ 8561.1 \end{array}$	$\begin{array}{r} 18.32 \\ 4.88 \end{array}$
Newington Church........	430558.09	704939.41	$\begin{array}{r} 353224 \\ 1500023 \end{array}$	Stratham Hill Wentworth..	$\begin{aligned} & 215 \\ & 329 \\ & 329 \\ & 59 \\ & 14 \end{aligned}$	8012.3 5375.1	8762.0 s87e. 1	$\begin{aligned} & 4.98 \\ & 3.34 \end{aligned}$
Stratham, Orthodox church spire.	430103.72	705444.83	1580358 2032947	Newmarket. Stratham Hil	3380306 43	4510.4	5041.8 3583.3	2.86 2.03
Etratham, Baptist church tower.	430138.57	705419.07	1441449 2320608	Newmarket Stratham Hili.	$\begin{array}{r} 3241339 \\ 520658 \end{array}$	$\begin{aligned} & 3946.1 \\ & 2119.1 \end{aligned}$	$\begin{aligned} & 4315.3 \\ & 2317.4 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 1.31 \end{aligned}$
Woodman's Point	430422.71	705114.17	1005155 3344	Patuceawa... Stratham Hil	$\begin{aligned} & 28038 \quad 04 \\ & 2134247 \end{aligned}$	27992.2 4524.7	30611.4 4943.1	17.39 2.81
Durbam...................	430517.69	705317.76	460305 2574511	Newmarket.............. Newington	$\begin{array}{r} 2260113 \\ 774733 \end{array}$	$\begin{array}{r} 5128.8 \\ 4 \pi 92.2 \end{array}$	$\begin{aligned} & 5608.7 \\ & 5240.6 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 2,98 \end{aligned}$
Durham Epire.............	430757.14	705501.83	$\begin{aligned} & 2990030 \\ & 34543 \\ & 47 \end{aligned}$	Newington.............. Stratham Hill.	$\begin{aligned} & 1190403 \\ & 1654507 \end{aligned}$	$\begin{array}{r} 8045.5 \\ 10709.6 \end{array}$	$\begin{array}{r} 8798.3 \\ 11711.7 \end{array}$	$\begin{aligned} & 5.00 \\ & 6.65 \end{aligned}$
Greenland, Orthodox ch. spire.	430210.70	704940.87	935111 139380	Stratham H Durbam.	2734858 3193608	$\begin{array}{r} 4634.7 \\ 7574.2 \end{array}$	5068.4 8082.9	2.88 4.70
Greenland Academy...+	430200.01	704941.52	1411721 3252736	Durham. Breakfast Hill.	$\begin{aligned} & 3211453 \\ & 14528 \\ & 36 \end{aligned}$	$\begin{array}{r} 7819.0 \\ 3606.8 \end{array}$	$\begin{array}{r} 8550.6 \\ 3944.3 \end{array}$	4.85 $\mathbf{2 . 2 4}$
Mrooks.	430638.86	704658.25	$\begin{array}{rll} 116 & 55 & 36 \\ 91 & 53 & 45 \end{array}$	Wentworth. Patuccawa.	$\begin{aligned} & 2965295 \\ & 271 \end{aligned} 2659$	$\begin{array}{r} 7098.3 \\ 33293.3 \end{array}$	$\begin{array}{r} 7762.5 \\ 36402.5 \end{array}$	$\begin{array}{r} 4.41 \\ 20.68 \end{array}$
Bartlett......	430523.96	704828.86	$\begin{array}{rrr}954450 \\ 128 & 1909\end{array}$	Yatuceawa Wentworth.	275 308 15	34110.7 8912.6	37302.4 9746.6	$\begin{array}{r} 21.19 \\ 5.54 \end{array}$
Poverty Heighta	430455.14	704630.04	$\begin{array}{r} 615907 \\ 18142 \quad 35 \end{array}$	Stratham Hill........... Bartlett	$\begin{array}{rrrr}24154 & 37 \\ 1 & 42 & 36\end{array}$	$\begin{array}{r} 10130.5 \\ 889.5 \end{array}$	11078.4 972.7	6.29 0.54
Osmipee	433517.23	704406.54	3542843	Agamentic	1742843	40747.8	44560.6	25.32
Fletcher's Neck	432650.91	702011.91	484857	Agamenticus.	2283433	37774.4	41309.0	23.47
Frost's Hill.	430943.25	704702.81	3233230	Isles of Shoals.	1433943	24158.1	26418.6	15,01
Pald Head Cliff.	431311.81	703424.79	61229 921022	Isles of Shoals Agamenticus	$\begin{array}{llll} 186 & 11 & 04 \\ 972 & 05 & 44 \end{array}$	26032.8 9180.7	28468.7 10049.6	$\begin{array}{r} 16.17 \\ 5.71 \end{array}$
Sweat's Point.	430711.14	703800.35	$\begin{array}{ll} 159 & 2214 \\ 35201 & 17 \end{array}$	Agamenticus \qquad Isles of Shoals. \qquad	$\begin{aligned} & 3392003 \\ & 1720220 \end{aligned}$	$\begin{aligned} & i 2258.5 \\ & 14895.5 \end{aligned}$	$\begin{aligned} & 13405.5 \\ & 16289.3 \end{aligned}$	$\begin{aligned} & 7.61 \\ & 9.25 \end{aligned}$
Cape Neddock............	431001.52	703537.86	$\begin{array}{r} 1293159 \\ 31906 \end{array}$	Agamenticus Isles of Sboals.	$\begin{aligned} & 309 \\ & 183 \\ & 183 \\ & 18 \end{aligned}$	$\begin{array}{r} 9769.0 \\ 90042.4 \end{array}$	$\begin{aligned} & 10687.0 \\ & 21917.8 \end{aligned}$	6.07 12.45
York.......................	430809.91	703814.67	$\begin{aligned} & 1573134 \\ & 1033712 \end{aligned}$	Agamenticus Frost's Hill .	$\begin{array}{lll} 337 & 29 & 33 \\ 083 & 31 & 11 \end{array}$	$\begin{aligned} & 10452.8 \\ & 1 \times 274.7 \end{aligned}$	$\begin{array}{r} 11430.9 \\ 13423.2 \end{array}$	$\begin{aligned} & 6.49 \\ & 7.62 \end{aligned}$
York Church Epire.	430839.28	703848.66	$\begin{array}{r} 585927 \\ 3194308 \end{array}$	Stratham Hill.........................	$\begin{array}{r} 2384942 \\ 1394331 \end{array}$	22818.5	24734.9 1299.3	14.05 0.73
York, buoy................	430535.10	703509.81	$\begin{aligned} & 1385017 \\ & 15050 \\ & 250 \end{aligned}$	York. Agamenticus.	$\begin{array}{lll} 318 & 48 & 11 \\ 330 & 20 & 17 \end{array}$	$\begin{array}{r} 6346.9 \\ 16569.4 \end{array}$	$\begin{array}{r} 6940.8 \\ 18141.7 \end{array}$	$\begin{array}{r} 3.94 \\ 10.30 \end{array}$
Boon Leimad.	430715.99	702817.58	$\begin{array}{r} 1225949 \\ 364709 \end{array}$	Agamenticus........... . Isles of Shoals.	$\begin{aligned} & 3025059 \\ & 2164153 \end{aligned}$	$\begin{aligned} & 90830.8 \\ & 185945 \end{aligned}$	$\begin{aligned} & 92779.9 \\ & 20334.4 \end{aligned}$	$\begin{aligned} & 12.94 \\ & 11.55 \end{aligned}$
Bron Island Light........	430715.74	$70 £ 815.66$	$\begin{array}{r} 45416 \\ 1825705 \end{array}$	Isles of Shoals. Agamenteus.	$\begin{aligned} & 21648 \\ & 30248 \\ & \hline 14 \end{aligned}$	$\begin{aligned} & 18613.8 \\ & 208 \% 0.1 \end{aligned}$	$\begin{aligned} & 20355.5 \\ & 22020.9 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 12.97 \end{aligned}$
Fairfield Hill.	432349.12	702823.12	$\begin{array}{r} 415636 \\ 1350836 \end{array}$	Agamenticus Ossipce.....................	$\begin{aligned} & 2914749 \\ & 3145747 \end{aligned}$	$\begin{aligned} & 25949.3 \\ & 30001.7 \end{aligned}$	28377.4 328069.4	$\begin{aligned} & 16.12 \\ & 18.64 \end{aligned}$
Cole's Hill.	432034.07	703355.92	$\begin{array}{r} 270 \\ 57 \\ 36 \\ 25 \\ 28 \end{array}$	Kennebunk Point...... Agamenticus.	$\begin{array}{r} 910132 \\ 2162094 \end{array}$	$\begin{array}{r} 8507.0 \\ 16526.3 \end{array}$	$\begin{array}{r} 9303.0 \\ 18072.7 \end{array}$	$\begin{gathered} 5.28 \\ 10.26 \end{gathered}$
Welle Neck................	431715.01	703403.51	$\begin{array}{r} 539857 \\ 1812300 \end{array}$	Agamenticus............ Cole's Hill	$\begin{array}{r} 2339403 \\ 12305 \end{array}$	$\begin{array}{r} 12024.2 \\ 6144.5 \end{array}$	$\begin{array}{r} 13149.3 \\ 6719.4 \end{array}$	$\begin{aligned} & 7.47 \\ & 3.82 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.
Section I.-Coast of Maine. Sketch A.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
Ogunquit	431523.15	703551.48		Bald Head Cliff......... Wells Neck	$\begin{array}{rrr} \circ & 1 \\ 154 & 15 & 07 \\ 35 & 12 & 27 \end{array}$	$\begin{gathered} \text { Motres. } \\ 4499.8 \end{gathered}$	Yards. 4920.9	$\begin{gathered} \text { Miles. } \\ 2.79 \\ 2.62 \end{gathered}$
Summit.	432144.42	702709.44	$\begin{array}{lll} 137 & 4517 \\ 15641 & 17 \end{array}$	Orsipee. Fairfield Hill	$\begin{array}{ll} 317 & 33 \\ 336 & 30 \\ 45 \end{array}$	$\underset{4190.1}{33934.1}$	$\begin{gathered} 37109.3 \\ 45 e 2.2 \end{gathered}$	21.08 2.60
Boolbibey.	432052.37	7192988.56	$\begin{aligned} & 143 \quad 3619 \\ & 242 \quad 50 \quad 17 \end{aligned}$	Ossipese. Summit	$\begin{array}{r} 3239615 \\ 625152 \end{array}$	$\begin{array}{r} 33190.9 \\ 3520.5 \end{array}$	$\begin{array}{r} 36296.6 \\ 3849.9 \end{array}$	20.62 2.19
Kennebunk Point.	432029.31	702730.25	$\begin{aligned} & 1410587 \\ & 1705411 \end{aligned}$	Ossipec. Fatrtield Hill.	3205408 3505341	35258.5 6244.6	38577.6 6888.9	${ }^{21.09}$
Kennebank, Unitarian ch. spire.	432314.90	703154.71	2932927 1433908	Summit Ossipree,	$\begin{aligned} & 1133243 \\ & 3233044 \end{aligned}$	$\begin{array}{r} 7002.7 \\ 27695.9 \end{array}$	$\begin{array}{r} 7658.2 \\ 30287.4 \end{array}$	4.35
Kemebunk, Orthodox ch. spire.	432311.48	703153.88	$\begin{aligned} & 3224039 \\ & 1434514 \end{aligned}$	Boothbey Ossipee.	$\begin{aligned} & 1424219 \\ & 323 \quad 46 \end{aligned}$	$\begin{array}{r} 5396.9 \\ 27793.7 \end{array}$	$\begin{array}{r} 5901.9 \\ 30394.4 \end{array}$	$\begin{array}{r} 3.35 \\ 17.27 \end{array}$
Kenaebulik Port Observa tory.	432120.87	702744.94	44 51 10 2274320	Ogunq Sumin	$\begin{array}{r} 2244536 \\ 474344 \end{array}$	$\begin{array}{r} 15557.8 \\ 1000.1 \end{array}$	$\begin{array}{r} 17013.6 \\ 1181.2 \end{array}$	${ }_{0.67}^{9.66}$
Kennpbunk Port, Orthodos church spire.	432144.60	702820.09	425728 434258	Wells \mathbf{N} Boothb	2925332 12234211	$\begin{array}{r} 11361.1 \\ 2229.8 \end{array}$	$\begin{array}{r} 12424.2 \\ 2438.4 \end{array}$	7.06 1.38
Kenthebunk Port, Baptist chureh spire.	432145.02	702813.67	$\begin{array}{r} 4326 \quad 26 \\ 2704304 \end{array}$	Wells N Summit	$\begin{array}{r} 2232296 \\ 904348 \end{array}$	$\begin{array}{r} 11469.0 \\ 1446.3 \end{array}$	$\begin{array}{r} 12542.2 \\ 1581.6 \end{array}$	$\begin{aligned} & 7.12 \\ & 0.80 \end{aligned}$
Cape Porpoise Light	432126.80	702511.26	552954 1013316	Agamen Summit	2351855	$\begin{array}{r} 26299.9 \\ 2715.4 \end{array}$	$\frac{28760.8}{2369.5}$	$\xrightarrow{16.34} 1$
Wells Church Spire	431933.30	203418.80	$\begin{aligned} & 1944302 \\ & 2590529 \end{aligned}$	Cote's Hin.	$\begin{array}{ll} 1443 \\ 79 & 10 \\ 79 \end{array}$	$\begin{aligned} & 1938.8 \\ & 9164.4 \end{aligned}$	$\begin{array}{r} 2120.2 \\ 10021.9 \end{array}$	1.20
Stage Island.	43514.75	702448.17	$\begin{array}{r} 121 \\ 73 \\ 7653 \\ 36 \end{array}$	Fairfield Hill. Summit	3010125 2333516	5646.5 3315.2	6174.8 $36 \geq 5.4$	3.51 2.06
Timber Istand	432338.60	703331.80	925148 33 36	Fairfield Hill............ stage Island	$\begin{aligned} & 27294828 \\ & 213 \\ & \hline 45 \\ & \hline 24 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6563.6 \\ 3106.0 \end{array} \end{aligned}$	$\begin{aligned} & 717.8 \\ & 3386.6 \end{aligned}$	4.08 1.93
Crow Hill	43215.04	702620.10	$\begin{array}{r} 493657 \\ 2354495 \end{array}$	Summit. Timber	$\begin{array}{r} 2293623 \\ 554622 \end{array}$	$\begin{aligned} & 1458.1 \\ & 4583.1 \end{aligned}$	$\begin{array}{r} 1594.5 \\ 5012.0 \end{array}$	0.90 2.85
Ward	432415,59	702348.97	3417756	Timber Island Stage Island	$\begin{aligned} & 1611808 \\ & 1993918 \end{aligned}$	$\begin{array}{r} 1205.1 \\ 3959.4 \end{array}$	$\begin{gathered} 1317.9 \\ 4329.9 \end{gathered}$	0.75 2.46
Hoyt's Neek.	4324.43 .29	702388.86	$\begin{array}{r} 613308 \\ 2195906 \end{array}$	Ward. \qquad Fletcher's Neck.	$\begin{array}{r} 241 \quad 3290 \\ 40 \quad 00 \quad 50 \end{array}$	$\begin{aligned} & 1793.8 \\ & 5141.0 \end{aligned}$	$\begin{array}{r} 1061.7 \\ 5652.0 \end{array}$	1.119
Biddeford.	432555.91	$70 \mathfrak{2} 17.75$	$\begin{array}{lll} 239 & 01 & 53 \\ 206 & 21 \\ 41 \end{array}$	Fletcher's Neck......... Stage Idand	$\begin{aligned} & 59 \quad 0320 \\ & 268324 \end{aligned}$	7617.2	$\begin{aligned} & 3608.0 \\ & 8329.4 \end{aligned}$	$\begin{aligned} & 2.05 \\ & 4.73 \end{aligned}$
Noson.	432555.74	$70 \cong 12.58$	$\begin{array}{r} 1224725 \\ 73524 \end{array}$	$\begin{aligned} & \text { Ossipe } \\ & \text { Surom } \end{aligned}$	$\begin{aligned} & 3023506 \\ & 1873445 \end{aligned}$	$\begin{array}{r} 28655.1 \\ 9691.2 \end{array}$	$\begin{aligned} & 31336.4 \\ & 105988 \end{aligned}$	17.80 6.02
Vicinity of Portland.								
Moukt Indepembence.	434533.17	7018 53,04						
Fletcher's Neck	432650.91	702011.91	1825506	Mount Independen	2560	34646.0	38887.8	21.53
bline point hill	433308.88	70.114 .72	$\begin{aligned} & 1875128 \\ & 353015 \end{aligned}$	Mount Independence... Fletcher'e Neck..	$\begin{array}{r} 75308 \\ 1730602 \end{array}$	$\begin{aligned} & \mathbf{2 3 1 7 4 . 5} \\ & 11730.9 \end{aligned}$	25342.9 12828.5	$\begin{array}{r} 14.40 \\ 7.29 \end{array}$
Stratten Island.	433021.27	701820.17	$\begin{array}{r} 210941 \\ 1424555 \end{array}$	Fletcher'』 Neck......... Blue Point Hill.	2010825 322435	${ }_{6474.7}^{6960.9}$	7612.2 7080.4	4.83 4.02
Grandy Hill...	433345.22	701537.72	$\begin{aligned} & 254455 \\ & 3006 \quad 28 \end{aligned}$	Fletcher's Neck........ Stratten Island.	$\begin{array}{lll} 205 & 41 & 47 \\ 210 & 04 & 36 \end{array}$	$\begin{array}{r} 14191.8 \\ 7274.0 \end{array}$	$\begin{array}{r} 15519.7 \\ 7954.6 \end{array}$	$\begin{aligned} & 8.82 \\ & 4.52 \end{aligned}$
Relmmond Island.	433225.24	701358.62	$\begin{array}{r} 565646 \\ 1375913 \end{array}$	Stratten Island Grandy Hill	23553.46 3175805	7008.9 332.5	$\begin{aligned} & 7664.7 \\ & 3633.3 \end{aligned}$	$\begin{array}{r} 4.35 \\ 2.07 \end{array}$
John's Hill .	433445.00	701230.64	$\begin{array}{r} 1564913 \\ 754831 \end{array}$	Mount Independence... Slue Point Hill.	$\begin{array}{r} 3364449 \\ 25542429 \end{array}$	$\begin{aligned} & 21730.8 \\ & 12133.1 \end{aligned}$	$\begin{aligned} & 23764.2 \\ & 13268.4 \end{aligned}$	$\begin{array}{r} 13.50 \\ 7.54 \end{array}$
Bramhalls Hill .	433846.43	701813.15	1640329 3261014	Mount Independence... John's IIill.	$\begin{aligned} & 3440139 \\ & 1461239 \end{aligned}$ 1461248	$\begin{array}{r} 13020.8 \\ 8966.6 \end{array}$	$\begin{array}{r} 14241.4 \\ 9805.6 \end{array}$	$\begin{aligned} & 8.09 \\ & 5.57 \end{aligned}$
Mount Joy,	433543.50	701450,95	$\begin{array}{r} 160299 \\ 3490749 \end{array}$	Grandy Hill. Bichmond Island.	$\begin{aligned} & 1960157 \\ & 16908 \quad 25 \end{aligned}$	$\begin{aligned} & 3797.5 \\ & 6 \geq 299.6 \end{aligned}$	$\begin{aligned} & 4152.8 \\ & 6812.5 \end{aligned}$	2.36 3.87
Pleasant Hill.	433539.90	701730.38	$\begin{array}{r} 3242731 \\ 470711 \end{array}$	Grandy Hill. Blue Paint Hill	$\begin{aligned} & 1442849 \\ & 2270436 \end{aligned}$	$\begin{aligned} & 4348.1 \\ & 6872.3 \end{aligned}$	$\begin{aligned} & 4755.0 \\ & 7515.4 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 4.27 \end{aligned}$
Oak Hill, chimney of Capt. J. B. Thonton's house.	433514.65	7019 41.89	$\begin{array}{r} 2964289 \\ 280647 \end{array}$	Grandy Hill. Blue Point Gill.	1164517 2080543	$\begin{aligned} & 6134.4 \\ & 4420.3 \end{aligned}$	$\begin{aligned} & 6708,4 \\ & 4833,9 \end{aligned}$	$\begin{aligned} & \mathbf{3 . 8 1} \\ & \mathbf{2 . 7 5} \end{aligned}$
Bushy-top Pine, on Cape Elixabeth.	43333.31	701558.21	3545533 512442	Grabdy Hill. Pleasant Hill	1745547 2312338	$\begin{aligned} & 5307.1 \\ & 2643.0 \end{aligned}$	5694.3 2890.3	$\begin{aligned} & 3.23 \\ & 1.64 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section I.—Coast of Maine. Sketch A.

Name or station.	Latitude.	Leougitude.	Azimuth.	To station-	Back azimuth.	Distance.	Dislance.	Distance.
Jordan.....................	$\begin{array}{cc} \bullet 3 \\ 43 & 3 \\ 35.47 \end{array}$	$\begin{array}{ccc} \circ & \prime \prime \\ 70 \quad 15 & 44.24 \end{array}$	$\begin{array}{r} 0 \\ 958 \\ 25 \\ 93 \\ 17 \\ \hline \end{array}$	Mount Joy Pleasant Hili.	$\begin{array}{r} \circ \\ 7818 \\ 273164 \\ 276 \end{array}$	sotres. 2583.2	Figrds. 1335.5 8606.2	Miles. 0.76 1.48
White Head...............	433845.05	701109.30	1350009023	Iohn's Hill. Bramhalls Hill		7628.56608.5	$\begin{array}{r} 8342.3 \\ 7266.9 \end{array}$	4.744.10
Moody	434236.51	701314.18	$\begin{array}{lll} 356 & 09 & 27 \\ 145 & 35 & 47 \end{array}$	John's Hill. Mount Independence.	$\begin{array}{lll} 176 & 09 & 56 \\ 365 & 31 & 53 \end{array}$	$\begin{array}{r} 14589.9 \\ 9320.6 \end{array}$	$\begin{aligned} & 15947.4 \\ & 10192.7 \end{aligned}$	9.065.79
Green Msland.	433857.54	700706.58	$\begin{array}{r}127 \\ 43 \\ 43 \\ 09 \\ \hline 18\end{array}$	$\begin{aligned} & \text { Mount Independence. . . } \\ & \text { John's Hilh,................ } \end{aligned}$	$\begin{array}{llll}307 & 31 & 45 \\ 222 & 57 & 44\end{array}$	$\begin{aligned} & 19961.3 \\ & 146.54 .1 \end{aligned}$	21829.111651.0	12.406.62
Dyer......................	433704.53	701511.49	$\begin{aligned} & 2401400 \\ & 1622654 \end{aligned}$	White Head............ Mount Independence. . .	$\begin{array}{rrr} 60 & 16 \\ 342 & 4 \\ 34 \end{array}$	6292.1	6837.117970.1	3.8810.21
Hummiewells House, chim. ney.	433618.70	701927.36	22329429410	Bramball's Hill.......... Pleasant Hill	4341541143231	$\begin{aligned} & 6: 304.6 \\ & 2805.3 \end{aligned}$	6894.5 3155.3	3.911.79
State Reform School, east tower.	433815.00	701808.78	$\begin{aligned} & 3494707 \\ & 2983973 \end{aligned}$	Pleasant Hill............ Dyer.	16947341184155	$\begin{aligned} & 4863.7 \\ & 4530.0 \end{aligned}$	$\begin{array}{r} 5318.8 \\ 4953.9 \end{array}$	3.092.82
Capisick Church Spire	433943.87	701740.16	$\begin{aligned} & 3581917 \\ & 1712834 \end{aligned}$	Pleasant Hull. Mount Independence...	$\begin{array}{llll}178 & 19 & 24 \\ 351 & 21 & 44\end{array}$	$\begin{array}{r} 7532.7 \\ 10872.2 \end{array}$	$\begin{array}{r} 8237.6 \\ 11889.5 \end{array}$	4.686.75
Bennett's house on Brown's Hill, chimney.	433755.59	701649.00	$\begin{aligned} & 2543802 \\ & 2070748 \end{aligned}$	White Head Bramhalis Hill.	784155270803	7764.91763.2	8491.5 1928.2	4.82
								1.09
Poorduck Church..........	433804.79	701405.82	$\begin{aligned} & 1141608 \\ & 1875058 \end{aligned}$	Bramhall's Hill. Moody	29419407513	$\begin{array}{r} 3129.0 \\ 8464.4 \end{array}$	$\begin{array}{r} 3421.8 \\ 9236.4 \end{array}$	1.94
								5.20
Fort Scammel, chimney of block-house.	433859.36	701225.58	$\begin{aligned} & 2849904 \\ & 1704645 \end{aligned}$	Wbite Head Moody	104 350 6811	1765.76789.9	1930.9	1.09
							7424.1	4.21
Peak's Island, west end of Shirling's bazn.	433920.49	701152.34	8051593450123	Bramhalls Hill White Head	$\begin{aligned} & 2604838 \\ & 1650142 \end{aligned}$	$\begin{aligned} & 6599.6 \\ & 1132.3 \end{aligned}$	$\begin{aligned} & 21 \% .1 \\ & 1238.3 \end{aligned}$	4.10
								0.70
Woodbury's Yellow House, north chimney.	433716.60	701341.98	$\begin{aligned} & 129 \quad 1844 \\ & 1833697 \end{aligned}$	Rramhall's Hill. Moody.......................	309170033646	4377.3	4780.910817.3	2.72
								6.15
Longfellow's House, east chimney.	433955.91	701706.00	$\begin{aligned} & 2851607 \\ & 28261813 \end{aligned}$	White Fead Moody.	$\begin{array}{r}105 \\ 46 \\ 46 \\ \hline 20\end{array}$	$\begin{array}{r} 8086.1 \\ 717.1 \end{array}$	9061.4	5.15
							7848.7	4.46
Knubble at Mt. Misery....	433545.75	701320.92	13497002344613	Dyer \qquad Green Island. \qquad	3142344545131	$\begin{array}{r} 2473.5 \\ 10269.0 \end{array}$	3797.4	2.16
							11229.9	6.38
Milton, Dyer's house	433608.70	701242.60	$\begin{aligned} & 2032536 \\ & 2353745 \end{aligned}$	White Head Green Island.	$\begin{aligned} & 239640 \\ & 558137 \end{aligned}$	5058.6	5750.7	3.26
						9158.9	10015.9	5.69
Westirook Academy	434058.87	701786.76	$\begin{aligned} & 337 \quad 1440 \\ & 3380056 \end{aligned}$	Dyer \qquad Bramball's Hill.	$\begin{array}{lll} 157 & 16 & 14 \\ 158 & 01 & 47 \end{array}$	7840.1	8573.7	4.87
						4408.1	4820.6	2.74
Portland, Methodist chureh spire on Pine street.	433907.95	701542.94		Dyer White Head	$\begin{array}{rr} 1693106 \\ 96 & 36 \end{array}$	3873.3	4235.7	2.41
						6172.5	6750.1	3.83
Portland, tall dark spire on Btate street.	433907.51	701536.36	$\begin{aligned} & 351 \quad 3831 \\ & 276 \\ & 34 \end{aligned}$	Dyer White Head	$\begin{gathered} 1713848 \\ 9638 \quad 00 \end{gathered}$	$\begin{aligned} & 3835.8 \\ & 6084.2 \end{aligned}$	$\begin{array}{r} 4194.7 \\ 6587.9 \end{array}$	2.38
								3.74
Portand, Unitarian chureh on Park street.	433906.81	701525.18	$\begin{aligned} & 3552048 \\ & 9763920 \end{aligned}$	Drer \qquad White Head.	175964517	378.5 .7	4139.9	2.35
						5772.9	6313.1	3.59
Portland, tall dark tower on High street.	43391184	701525.17	3558781056	Dyer White Head.	$\begin{array}{r}175 \\ 48 \\ 9813 \\ \hline 19\end{array}$	3940.5	4309.2	2.45
						5792.5	6334.5	3.60
Portland, green spire on Casco street.	433924.49	701524.34	3561050	Tyer	1761059	4328.5	4733.5	2.68
			2061047	Moody	961217	6603.8	7291.7	4.10
Portand, stone church in	433929.12	701509.96	2622	Dyer	1802621	4461.9	4879.4	2.77
Congress street.			2840758	White Head	1041044	\$561.2	6081.6	3.46
Portland, dark spire of third	433932.99	701503.15	473050	Bramhall's Hill	2273002	2126.2	2325.2	1.32
parish church on Congress street.			2854448	White Head.	1054727	5444.7	5954.2	3.38
Portland, low tower of Bap-	433931.36	701500.71	30309	Hyer	1830302	4577.3	4961.9	2.82
tist church on Federal street.			285814	White Head	1052554	5378.4	5881.7	3.34
Portlend, custom-house	433927.56	701457.64	2842132	White Head	1042410	5982.9	5776.2	3.28
			40120	Dye	1840110	4424.5	48 is .5	2.75
Portland, Lowell and Sen-	433924.72	701436.28	9833058	White Head	1033335	5231.3	5720.8	3.25
ter's tramair			43022	Dyer	1843011	4339.8	4745.9	2.69
Portand, church on Midde	433930.14	701449.01	2854548	White Head.	1054820	516.0	5594.7	3.18
atreet, near Willow street.			62353	Dyer	1862337	4521.6	4944.7	2.81
Portland Light;	433721.88	701208.87	2462535	Green Island.	668903	7390.4	8081.9	4.59
			2072834	White Head.	272915	2892.9	3163.6	1.80
Little Hog Fbiand, flag in צee.	433955.07	701218.72	$\begin{array}{r} 680349 \\ 3: 41455 \end{array}$	Bramhall's Hill..	2480107 144 15	5662.7 2662.3	6192.6 2911.4	3.52 1.65

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section I.-Coast of Maine. Sketch A.

Name of etation.	Latitude.	Longitude.	Azimuth.	To station	Back azimuth.	Distance.	Distance.	Distance.
Fort Preble, flag-staff.		$\begin{array}{ccc} \circ & \prime \prime \\ 70 & 13 & 18.05 \end{array}$	$\begin{array}{r}0 \\ 36 \\ 49 \\ 27548 \\ \hline 185\end{array}$		$\begin{array}{rrrr}0 & 1 & \prime \prime \\ 21648 & 39 \\ 95 & 50 & 04\end{array}$	$\begin{aligned} & \text { Metres. } \\ & 4242.5 \end{aligned}$ 2900.0	Yards. 4639.5 3171.4	$\begin{gathered} \text { Mries. } \\ 2.63 \\ 1.80 \end{gathered}$
Mackey's Island, flag in tree	434114.03	701340.42	$\begin{array}{ccc}14 & 51 & 03 \\ 192 & 59 & 40\end{array}$	$\begin{aligned} & \text { Dyer } \\ & \text { Moody. } \end{aligned}$	$\begin{array}{r} 1945000 \\ 125958 \end{array}$	6341.5 2612.3	$\begin{array}{r} 6934.9 \\ 2856.7 \end{array}$	3.94 1.62
Payson's Cottage, chimney	434058.87	701558.01	302 202147 234	White Head. Moody..............	122 50 30	$\begin{aligned} & 7673.7 \\ & 4747.0 \end{aligned}$	$\begin{aligned} & 8391.7 \\ & 5191.2 \end{aligned}$	4.77 2.95
Great Hog Island, tree with tall dark top.	434050.97	701132.36	$\begin{array}{lll} 352 & 46 & 03 \\ 301 & 43 & 53 \end{array}$	White Head............. Green Island.............	$\begin{aligned} & 1794619 \\ & 1214656 \end{aligned}$	$\begin{gathered} 4103.7 \\ 7002.2 \end{gathered}$	$\begin{aligned} & 4487.7 \\ & 7657.4 \end{aligned}$	4.55
Long Island W. End, west end of Cushing's barn.	431102.83	700953.65	214423 315 54	White Head: Green Island.	$\begin{aligned} & 2014331 \\ & 135 \\ & 135 \\ & 54 \end{aligned}$	4577.3 5380.9	5005.6 584.4	2.84 3.34
Litulejohn.	434039.14	700936.97	$\begin{array}{r} 3195535 \\ 302629 \end{array}$	```Green Island........... White Head.```	$\begin{aligned} & 1325719 \\ & 21055 \\ & 25 \end{aligned}$	$\begin{aligned} & 4602,4 \\ & 40 \times 3.6 \end{aligned}$	$\begin{array}{r} 5033.1 \\ 4465.7 \end{array}$	$\begin{aligned} & 2.86 \\ & 2.54 \end{aligned}$
Croteh Island.	434120.18	700627.05	$\begin{aligned} & 119249 \\ & 5253 \\ & \hline \end{aligned}$	Green Island. White Head.	1912215 232 00	4489.7 7930.6	4909.8 8672.7	2.79 4.98
Jewels lsland............	434038.17	700533.36	$\begin{array}{r} 335550 \\ 650852 \end{array}$	$\begin{aligned} & \text { Green Island............. } \\ & \text { White Head. } \end{aligned}$	$\begin{aligned} & 2135446 \\ & 2450500 \end{aligned}$	$\begin{aligned} & 3742.3 \\ & 6296.5 \end{aligned}$	$\begin{array}{r} 4092.5 \\ 9072.8 \end{array}$	$\stackrel{2.32}{5.15}$
Little Green Island.	433957.32	700603.51	372725 71	Green Island............	$\begin{array}{lll} 217 & 26 & 41 \\ 251 & 56 & 15 \end{array}$	2323.8 7205.3	$\begin{array}{r} 9541.2 \\ 7879.5 \end{array}$	$\begin{aligned} & 1.44 \\ & 447 \end{aligned}$
Ram Istand, flag in tree....	433813.89	701051.35	1571735 2550017	White Head. Green Isiand.	3371723 750303	1042.2 5814.2	1139.7 5702.1	0.65 3.24
Halfway Rock	433920.30	700153.16	591951 1164704	Jobn's Hill..... Mount Independence. .	$\begin{array}{ll} 299 & 19 \\ 396 & 35 \\ 985 \end{array}$	$\begin{aligned} & 16635.4 \\ & 25553.0 \end{aligned}$	$\begin{aligned} & 18181.0 \\ & 27944.0 \end{aligned}$	$\begin{aligned} & 10.33 \\ & 15.88 \end{aligned}$
Lang Island.	434159.12	700812.41	114 33 31 158	Mount Independence....	$\begin{aligned} & 2943436 \\ & 2132810 \end{aligned}$	$\begin{array}{r} 15721.9 \\ 7181.1 \end{array}$	$\begin{array}{r} 17193.0 \\ 7853.0 \end{array}$	9.78 4.46
Falmouth, Rev.Mr. Dame's church.	434332.48	701446.88	$\begin{aligned} & 1235219 \\ & 30946 \quad 22 \end{aligned}$	Mount Independence. . . Moordy	$\begin{aligned} & 3034929 \\ & 1294720 \end{aligned}$	$\begin{aligned} & 6631.0 \\ & 2699.9 \end{aligned}$	$\begin{aligned} & 7251.5 \\ & 9052.5 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 1.67 \end{aligned}$
Mark's Island, stone beacon.	434231.57	700133.37	483120 103343	Green Island............ Mount Independence. .	$\begin{array}{lll} 228 & 27 & 30 \\ 283 & 22 & 24 \end{array}$	$\begin{array}{r} 9965.6 \\ 23922.2 \end{array}$	$\begin{aligned} & 10898.1 \\ & 26160.6 \end{aligned}$	$\begin{array}{r} 6.19 \\ 14.86 \end{array}$
Primary Stations.								
Mount Pleagant	440135.17	704900.88	$\begin{array}{lll} 352 & 16 & 41.2 \\ 306 & 12 & 04.6 \end{array}$	Cssippe	$\begin{array}{lll} 172 & 20 & 05.9 \\ 196 & 39 & 59.0 \end{array}$	$\begin{aligned} & 49137.7 \\ & 50109.2 \\ & 2 \end{aligned}$	$\begin{aligned} & 53735.5 \\ & 54797.9 \end{aligned}$	$\begin{aligned} & 30.53 \\ & 31.13 \end{aligned}$
Cape Smaly.	434641.65	695032.71	$\begin{array}{rrr} 86 & 57 & 91.4 \\ 109 & 41 & 33.3 \end{array}$	Mount Independence. .. Mount Pleasaut........	$\begin{array}{lll} 266 & 37 & 38.3 \\ 289 & 00 & 53.7 \end{array}$	$\begin{aligned} & 38308.7 \\ & 8 ¥ 203.2 \end{aligned}$	$\begin{aligned} & 41893.2 \\ & 90988.6 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 51.70 \end{aligned}$
Sbbatitg	440830.37	700422.34	$\begin{array}{ccc} 24 & 31 & 21.6 \\ 77 & 57 & 08.2 \end{array}$	Mount Independence... Mount Pleasant.	$\begin{array}{lll} 204 & 21 & 17.3 \\ 257 & 26 & 03.6 \end{array}$	$\begin{aligned} & 46921.4 \\ & 60985.1 \end{aligned}$	$\begin{aligned} & 51311.8 \\ & 66691.4 \end{aligned}$	$\begin{aligned} & 59.16 \\ & 97.89 \end{aligned}$
Mount Bldr	444340.24	702011.91	$\begin{array}{rrr} 359 & 03 & 40.1 \\ 2619 & 26.9 \end{array}$	$\begin{aligned} & \text { Mount Independence }: . \\ & \text { Mount Pleasant.......... } \end{aligned}$	$\left.\begin{array}{lll} 179 & 04 & 35.1 \\ 205 & 59 & 16.7 \end{array} \right\rvert\,$	$\begin{array}{r} 107661.2 \\ 86818.1 \end{array}$	$\begin{array}{r} 117735.0 \\ 94941.7 \end{array}$	$\begin{aligned} & 66.90 \\ & 53.95 \end{aligned}$
Ragged Moditain .r.....	441243.97	690843.54	814841.6 49 21	$\begin{aligned} & \text { Mount Pleasant......... } \\ & \text { Cape Small............... } \end{aligned}$	$\begin{array}{lll} 260 & 38 & 52.3 \\ 228 & 52 & 04.4 \end{array}$	$\begin{array}{r} 135357.8 \\ 73651.6 \end{array}$	$\begin{array}{r} 148023.3 \\ 80543.1 \end{array}$	$\begin{aligned} & 84.10 \\ & 45.76 \end{aligned}$

Section II.-Hudson River. Sketch B.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimath.	Distance.	Distance.	Distance.
	-	- $1{ }^{\prime \prime}$	- 11		- / 1	Metres.	Yards.	Mrites.
Rownd Hite	410610.65	734005.79	-			
Buttermily	41.0633 .91	734818.96	2733120	Round Hill.	933645	11588.4	12607.1	7.17
Didery.	405759.97	735013.95	1893516	Buttermilk	93732	16078.4	17583.9	0.99
			2230737	Round Hill.	431416	20756.5	22698.7	12.89
Piermont..................	410254.68	735518.66	2352040	Buttermils	55.2516	11903.1	13016.9	7.89
			3215415	Didery....	1415735	11546.7	12627.1	7.17
Hook Mountain............	410784.81	735423.30	84915	Piermont.	188489	8431.7	9200.7	5.24
			3412948	Didery	16132 \%	18389.9	20088.8	11.41
Ryder.,...................	411052.99	734929.67	3482011	Buttermilk	1689058	8159.7	8923.2	5.07
			463130	Hook Mountain.	284817	9386.0	10204.3	5.83

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section 11.-Hudson River. Sketch B.

Section II.-Hudson River. Sketch B.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section II.—Hudson River. Sketch B.

Section II.-Hudson River. Sketch B.

Name or station.	Latitude.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Constitution Istand........		738716	160 230	Stony Point.	$340{ }^{\circ} \mathrm{m}$	Metres. 2188.6	Yards. 2393.4	Miles.
			2363750	Plum Bush.	563852	2632.7	2879.1	
Cold Spring Spire.........	412502.31	735708.26	81892 2642647	Constitution Isla Pium Bush	$\begin{array}{r} 1881757 \\ 812744 \end{array}$	1265.2 2035.5	1383.6 2215.0	0.78 1.26

Section III.—Chesapeake Bay. Sketch C.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section III.-Chesapeake Bay. Sketch C.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Scetion III.-Near Norfolli. Sluctch C.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Bate's Farm.	$\begin{array}{cc} \circ & \prime \prime \\ 370029.11 \end{array}$		$\begin{array}{ccc}0 & \prime \\ 262 \\ 39 & \prime \prime \\ 341 & 31 \\ 30\end{array}$	Old Yoint Comfort Sewalb's Point .	$\begin{array}{rrr}\circ \\ 83 \\ 81 & 41 \\ 161484\end{array}$	Metres. 4227.9 6847.1	Yards. 4683.5 7487.8	$\begin{array}{r} \text { Miles. } \\ 2.63 \\ 4.25 \end{array}$
Cely.......................	365902.64	762316.36	$\begin{aligned} & 2485125 \\ & 30196 \quad 37 \end{aligned}$	Old Point Comfort Sewalls Point	685447 1219999	$\begin{aligned} & 8896.0 \\ & 7343.6 \end{aligned}$	$\begin{aligned} & 9728.4 \\ & 8030.7 \end{aligned}$	5.53 4.56
Segur	370041.26	761921.70	3561017 2661257	Sewall's Point Old Point Comfort	$\begin{array}{r}1761028 \\ 86 \\ \hline 6\end{array}$	6888.4 2502.2	7533.0 2736.3	$\begin{aligned} & 4.28 \\ & 1.56 \end{aligned}$
Hampton Spire	570189.44	762031.20	2872253 345 23	Old Point Comfort Sewall's Point	1072436 1652404	$\begin{aligned} & 8637.3 \\ & 4416.2 \end{aligned}$	9445.5 4829.4	5.37 2.74
Newport New	365748.84	768494.02	281 2892949 27	Sewall's Point Bate's Farm .,	1010801 492928	8089.6 7602.2	$\begin{aligned} & 8846.6 \\ & 8313.6 \end{aligned}$	$\begin{aligned} & 5.03 \\ & 4.72 \end{aligned}$
Free School Tract........	365416.55	762543.58	$\begin{aligned} & 2431549 \\ & 2029549 \end{aligned}$	Sewall's Point Cely	$\begin{array}{ll} 6319 & 49 \\ 22 & 27 \\ \hline \end{array}$	11093.2 9.540 .6	12131.2	6.89 5.93
Craney Island	365319.47	769051.15	1611500 1034104	Cely \qquad Free School Tract	$\begin{aligned} & 3411339 \\ & 2833808 \end{aligned}$	11171.1	12216.4 8147.2	6.94 4.83
Tanner's Point	365411.85	r6 1908.57	$\begin{array}{r} 1453858 \\ 573350 \end{array}$	Cely....................... Crauey Island	$\begin{aligned} & 325 \\ & 23 \\ & 237 \\ & 32 \end{aligned} 29$	10859.1 3009.1	11875.2 3290.7	6.75 1.87
Pig Point.	365415.48	762621.16	$\begin{array}{lll} 207 & 18 & 11 \\ 245 & 07 & 24 \end{array}$	Cely Sewall's Poimt	$\begin{array}{lll} 27 & 20 & 02 \\ 65 & 11 & 48 \end{array}$	11945.2 9962.2	$\begin{aligned} & 13063.6 \\ & 10894.4 \end{aligned}$	$\begin{aligned} & 7.42 \\ & 6.19 \end{aligned}$
Lambert...................	335223.94	761902.92	$\begin{aligned} & 1923427 \\ & 1773596 \end{aligned}$	Craney Island........... Tanner's Point	$\begin{array}{lll} 302 & 93 & 29 \\ 357 & 98 & 23 \end{array}$	3179.9 3328.9	3477.4 3640.4	1.98 2.07
Lovett	385136.90	762014.80	$\begin{aligned} & 1640645 \\ & 2304950 \end{aligned}$	Craney lsland Lanibert.	$\begin{array}{r} 34406 \\ 50 \\ 50 \\ 50 \end{array}$	$\begin{array}{r} 3287.3 \\ 2255.6 \end{array}$	$\begin{array}{r} 3594.9 \\ 2510.4 \end{array}$	$\begin{aligned} & 2.04 \\ & 1.43 \end{aligned}$
Buena Vista...............	365151.93	761832.49	$\begin{array}{r} 793901 \\ 1423827 \end{array}$	Lovet \qquad Lambert.	$\begin{aligned} & 2593800 \\ & 329 \\ & 3808 \end{aligned}$	$\begin{aligned} & 2575.9 \\ & 1241.7 \end{aligned}$	2816.9 1357.9	1.60
Bishop	365112.86	761911.61	$\begin{aligned} & 1152015 \\ & 2184909 \end{aligned}$	Lovett Buena Vieta...............	$\begin{array}{r} 2951934 \\ 384932 \end{array}$	1731.7 1545.5	$\begin{aligned} & 1899.7 \\ & 1690.1 \end{aligned}$	1.08
Colley	365117.08	761749.72	$\begin{array}{r} 862019 \\ 1352349 \end{array}$	Bishop \qquad Buena Vista \qquad	$\begin{aligned} & 2661930 \\ & 315 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 2032.6 \\ & 1508.6 \end{aligned}$	2229.8 1649.8	1.86 0.94
Scotch Creek.	385039.83	761856.72	$\begin{aligned} & 16005 \quad 47 \\ & 235 \quad 1908 \end{aligned}$	Bishop	$\begin{array}{r} 3400539 \\ 651948 \end{array}$	1082.9 2018.3	$\begin{aligned} & 1184.2 \\ & 2207.2 \end{aligned}$	0.67 1.25
Pinner9 Point............	365110.74	761848.61	$\begin{aligned} & 1972725 \\ & 26222 \\ & 27 \end{aligned}$	Buena Vista Colley	$\begin{aligned} & 172734 \\ & 822240 \end{aligned}$	$\begin{aligned} & 1330.7 \\ & 1471.7 \end{aligned}$	1455.1 1609.4	0.83 0.92
Portrmonth, Catholic ch. spire.	365003.37	761754.43	$\begin{aligned} & 1895634 \\ & 12603 \quad 40 \end{aligned}$	Colley Scutch Creek	$\begin{array}{r} 95637 \\ 30603 \quad 09 \end{array}$	$\begin{aligned} & 2274.9 \\ & 1909.0 \end{aligned}$	$\begin{array}{r} 2487.8 \\ 2087.6 \end{array}$	1.37
Porlsmouth, mavy-yard flagstaft.	364932.03	761725.90	$\begin{aligned} & 1694023 \\ & 1325321 \end{aligned}$	Colley Scoteh Creek	$\begin{aligned} & 3494009 \\ & 3125258 \end{aligned}$	$\begin{aligned} & 3291.5 \\ & 3071.1 \end{aligned}$	$\begin{aligned} & 3599.5 \\ & 3538.5 \end{aligned}$	2.04
Portsmouth Hospital	365045.52	761754.53	$\begin{aligned} & 1865907 \\ & 12008 \quad 10 \end{aligned}$	Colley Pinner's Foint	$\begin{array}{r} 65910 \\ 3000737 \end{array}$	$\begin{array}{r} 980.1 \\ 1548.9 \end{array}$	$\begin{aligned} & 1071.8 \\ & 1693.8 \end{aligned}$	0.61 0.96
Fort Norfolk	365119.62	761806.65	$\begin{array}{r} 14716 \\ 751456 \\ 75 \end{array}$	Buena Vista Piuner's Point	$\begin{aligned} & 327 \\ & 16 \\ & 255 \\ & \hline 14 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 1183.6 \\ & 1074.6 \end{aligned}$	$\begin{aligned} & 1294.4 \\ & 1175.2 \end{aligned}$	0.74 0.67
Bunny Side	365105.07	762027.39	2430510 1973810	Buena Vista	$\begin{array}{lll} 63 & 06 & 19 \\ 17 & 38 & 18 \end{array}$	$\begin{aligned} & 3191.4 \\ & 1029.3 \end{aligned}$	$\begin{array}{r} 3490.0 \\ 1125.6 \end{array}$	1.98 0.64
Town Point	365041.97	761726.36	$\begin{array}{r} 985410 \\ 15152: 28 \end{array}$	Hokpital Colley.	$\begin{aligned} & 2785354 \\ & 3315814 \end{aligned}$	$\begin{array}{r} 706.2 \\ 1227.0 \end{array}$	$\begin{array}{r} 772.3 \\ 1341.8 \end{array}$	0.44 0.76
Grices	365016.29	761736.40	$\begin{aligned} & 1533003 \\ & 1972538 \end{aligned}$	Hospital. Town Point	$\begin{array}{r} 3339952 \\ 179544 \end{array}$	$\begin{array}{r} 1006.7 \\ 829.8 \end{array}$	1100.9 007.5	0.62 0.52
Norfolk City Hall	365046.33	761701.40	$\begin{array}{lll} 43 & 07 & 04 \\ 88 & 55 & 05 \end{array}$	Grices. \qquad Hospital.	$\begin{aligned} & 2230643 \\ & 2685433 \end{aligned}$	$\begin{aligned} & 1268.4 \\ & 1316.3 \end{aligned}$	$\begin{aligned} & 1387.1 \\ & 1439.5 \end{aligned}$	0.79 0.82
Norfolk Baptist Church.. .,	365057.07	781655.22	$\begin{array}{r} 585415 \\ 114 \times 40 \end{array}$	Town Point. Colley......................	$\begin{aligned} & 2385356 \\ & 2943305 \end{aligned}$	901.0 1484.1	$\begin{array}{r} 925.3 \\ 1633.0 \end{array}$	0.56 0.92
Quarantine...............	365400.09	761834.24	694416	Crancy Istand. Loveti	$\begin{aligned} & 2494954 \\ & 20925 \quad 20 \end{aligned}$	$\begin{aligned} & 3613.3 \\ & 5067.6 \end{aligned}$	$\begin{aligned} & 3951.4 \\ & 5041.8 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 3.15 \end{aligned}$
Sewsll's Tree.	365645.73	761918.78	$\begin{array}{r} 194705 \\ 1254213 \end{array}$	Crampy Istand.......... Colley......................	$\begin{array}{lll} 199 & 46 & 10 \\ 305 & 39 & 51 \end{array}$	$\begin{aligned} & 6755.4 \\ & 72 \times 4.5 \end{aligned}$	$\begin{aligned} & 7388.1 \\ & 7911,4 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 4.50 \end{aligned}$
Appomattox Riven,								
West Base	371410.78	77936.02						
East Base	371427.21	772135.28	711842	West Base..............	2511809	1580.1	17728.0	0.98
Finm.......................	371443.60	778309.71	$\begin{aligned} & 32003642 \\ & 2821411 \end{aligned}$	Weat Base East Base.	1403702 1021508	$\begin{aligned} & 1308.7 \\ & 2781.2 \end{aligned}$	$\begin{array}{r} 1431.1 \\ 2604.0 \end{array}$	$\begin{aligned} & 0.81 \\ & 1.48 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section III.-Appomattox River. Sketch ©.

Name or stiation.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Roslyn....................	371425.44	772334.86	$\begin{array}{r} a \\ 287 \\ 287 \\ 2754 \\ 2745 \end{array}$	West Base..............Finn	$\begin{array}{rrr} 0 & 1 & \prime \prime \\ 107 & 18 & 31 \\ 47 & 55 & 00 \end{array}$	Metres. 1519.08.55 .1 845.	Yards. 1661.1 913.2	Miles,
Friend.....................	371445.15	77218.98	79874888	$\begin{aligned} & \text { Roslyn. } \\ & \text { Finn } \end{aligned}$	$\begin{aligned} & 2515943 \\ & 267 \\ & 48 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 1966.1 \\ & 1251.0 \end{aligned}$	$\begin{array}{r} 21.50 .1 \\ 1368.0 \end{array}$	1.220.78
Archer....................	372594.85	772238.57	32957153421855	$\begin{aligned} & \text { East Base................ } \\ & \text { Friend } \end{aligned}$	14257531621907	$\begin{aligned} & 2588.8 \\ & 1588.7 \end{aligned}$	$\begin{array}{r} 2831.0 \\ 173 \div .4 \end{array}$	1.61
Waithall	371548.54	772057.82	45402279565	Friend Archer	225 259 $\mathbf{2 5}$ 59 56	$\begin{aligned} & 2796.0 \\ & 2721.0 \end{aligned}$	$\begin{aligned} & 3057.6 \\ & 2756.9 \end{aligned}$	1.741.57
Hare.........	371635.49	772001.72	253124515	Archer Waithall.	$\begin{array}{ll}205 & 4053 \\ 1323618\end{array}$	$\begin{aligned} & 2094.7 \\ & 2138.1 \end{aligned}$	$\begin{aligned} & 2290.7 \\ & 233.7 \end{aligned}$	1.301.33
Gilliam....................	371657.11	772055.27	141565162	Walthall.Hare	${ }_{4}^{181} 41485$	$\begin{aligned} & 2114.5 \\ & 1766.8 \end{aligned}$	$\begin{gathered} 2312.4 \\ 1932.1 \end{gathered}$	1.31
Brick House...............	371715.04	772147.56	1557582931385	Hare \qquad Gilliam	19511311313	$\begin{aligned} & 1268.0 \\ & 1401.3 \end{aligned}$	$\begin{aligned} & 1396.6 \\ & 1532.4 \end{aligned}$	0.790.87
Heth......................	371755.29	772037.38	134836542009	Gilliam Brick House	19348962341927	$\begin{aligned} & 1846.6 \\ & 2127.5 \end{aligned}$	$\begin{aligned} & 2019.4 \\ & 2326.6 \end{aligned}$	1.15
Port Walthall.............	371827.50	772148.39	2993458 359 88	Heth	$\begin{aligned} & 1193541 \\ & 179: 28827 \end{aligned}$	$\begin{array}{r} 2010.9 \\ 2233.6 \end{array}$	$\begin{aligned} & \Omega 199.1 \\ & 2442.6 \end{aligned}$	1.251.39
Buram	371830.63	772003.54	3724261403301	Heth Cobb	217320324305	1371.61596.3	1499.9	0.85
Cobb......................	371910.62	772044.74	4942063553203	Port Walthall........... Heth \qquad	299 175 31 29	$\begin{aligned} & 2054.8 \\ & 9320.1 \end{aligned}$	$\begin{aligned} & 2347.1 \\ & 2547.0 \end{aligned}$	1.281.45
Btrachan.................	371901.73	771917.39	971603495112	Cobb \qquad Buram. \qquad	2771510 229 2044	$\begin{array}{r} 2167.9 \\ 1485.6 \end{array}$	$\begin{aligned} & 2370.7 \\ & 1625.7 \end{aligned}$	1.350.93
Bland....................	371828.77	771814.82	9114071232423	Buram Strachan \qquad	$\begin{aligned} & 2711301 \\ & 3032345 \end{aligned}$	$\begin{aligned} & 2677.7 \\ & 1845.4 \end{aligned}$	$\begin{aligned} & 2924.7 \\ & 2018.1 \end{aligned}$	1.66
Cedar Grove.	371004.08	771829.49	$\begin{array}{r} 850823 \\ 3420352 \end{array}$	Strachan. Bland	2650754 16204 101	$\begin{aligned} & 1183.5 \\ & 1173.2 \end{aligned}$	$\begin{aligned} & 1294.2 \\ & 1283.0 \end{aligned}$	0.740.73
Comer	371828.49	771714.54	12190902988	Cedar Grove Bland	$\begin{array}{lll} 301 & 21 & 43 \\ 270 & 20 & 11 \end{array}$	$\begin{aligned} & 2161.4 \\ & 1484.3 \end{aligned}$	$\begin{aligned} & 2363.6 \\ & 1623.2 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 0.92 \end{aligned}$
Rae.......................	371937.66	771720.29	$\begin{array}{r} 321819 \\ 35611 \quad 54 \end{array}$	Bland \qquad Vomer. \qquad	$\begin{aligned} & 212 \\ & 176 \\ & 176 \\ & 17 \\ & \hline 157 \end{aligned}$	$\begin{aligned} & 2512.3 \\ & 2137.0 \end{aligned}$	$\begin{aligned} & 2747.4 \\ & 2337.0 \end{aligned}$	1.56
								1.33
City Point................	371859.12	771623.68	7108005858	Bland \qquad Comer	251 282 285	$\begin{aligned} & 9891.8 \\ & 1568.3 \end{aligned}$	$\begin{aligned} & 3169.4 \\ & 1715.0 \end{aligned}$	1.89
								0.98
Bolling's House.	371347.25	772349.35	$\begin{aligned} & 1965241 \\ & 2480733 \end{aligned}$	Roslyn............... . .. West Base...............	165950680817	$\begin{aligned} & 1230.3 \\ & 1947.7 \end{aligned}$	$\begin{aligned} & 1345.4 \\ & 2130.0 \end{aligned}$	0.76
								1.21
Petersburg, Catholic church	371335.75	772408.44	$\begin{aligned} & 2082258 \\ & 2443745 \end{aligned}$	Rnstyn...................	$\begin{array}{lll} 28 & 28 & 18 \\ 64 & 38 & 41 \end{array}$	$\begin{aligned} & 1741.0 \\ & 2521.1 \end{aligned}$	$\begin{array}{r} 1903.9 \\ 2757.0 \end{array}$	1.08
								1.57
Petersburg, Methodist ch..	371336.87	772359.89	$\begin{aligned} & 2070914 \\ & 1972315 \end{aligned}$		271000	4066.8	4447.3	2.53
				Roalyn.....	1723	1568.8	1715.6	0.98
Petersburg, Presbyterian	3.1346 .13	772403.56	25055236	East Base.	705406	3867.6	4209.5	2.40
charch spire.			2503538	West Base	703631	2284.5	2501.5	1.42
Petersburg Court-house. . .	371347.85	772357.71	2055510	Rostyn..................	255524	3288.4	1409.0	0.80
			2340056	Friend	540156	3006.7	3288.0	1.87
Dead Tree, at Gilliam's....	371652.95	772103.33	692920 1590930			1535.6 3118.5	1679.3 3410.3	0.95 1.94
			1590930	Port Walthall..........	3390903	3118.5	3410.3	1.94

UNITED STATES COAST SURVEY.-GEOGRAPIICAL POSITIONS.

Section IV.-Scacoast South of Bodie's Island. Sketch D.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	ack azimuth.	Distance.	Distance.	Distance.
					- 11	Metres.	Yards.	Miles.
Bouth End of Bodie's Island Base.	354834.03	E. 03825.44						
Fifth Mile Stone.........	354957.40	03740.89	336282	South End of Bas	1562848	2801.6	3063.8	\% 4
South Duck Msland.	354740.11	03604.94	2444540 2093841	South End of Base Fifth Mile Stone	$\begin{aligned} & 644702 \\ & 2993937 \end{aligned}$	$\begin{aligned} & 3899.3 \\ & 4868.3 \end{aligned}$	$\begin{array}{r} 4564.2 \\ 5323.6 \end{array}$	2.42
Bodie's Island Light-honse.	354780.56	03923.77	1470654	South End of Base..... South Duck Island	3270620 2765152	2696.5 5028.4	$\begin{aligned} & 2948.8 \\ & 5499.9 \end{aligned}$	1.68 3.12
Midget ..	354732.96	03940.78	1345215	South End of Base..... South Duck Island	$\begin{aligned} & 31451 \\ & 272 \\ & 278 \\ & \hline 18 \end{aligned}$	$\frac{2868.4}{5423.7}$	9298.1	1.66
Green Ioland	354557.84	03913.59	1655418 1960636	South End of Base..... Midget.	$\begin{array}{r} 3455350 \\ 130652 \end{array}$	4963.1	$\begin{aligned} & 5427.5 \\ & 2291.3 \end{aligned}$	3.08 1.87
Wreck Saftord	354539.37	04056.19	1029736	Green Island............. Midget.	$\begin{aligned} & 2822636 \\ & 391 \\ & 3441 \end{aligned}$	$\begin{array}{r} 2639.1 \\ 3979.8 \end{array}$	$\begin{aligned} & 2886.7 \\ & 4359.2 \end{aligned}$	1.64 2.47
Salt Pump.	35 4648.87	03949.88	3215228 294112	Wreck Saf Green Island	1415307 2094051	$\begin{gathered} 2729.2 \\ 1810.1 \end{gathered}$	2976.9 1979.5	1.69 1.12
Eagle Nest Point.	354410.60	04017.55	1540436 1193203	Green Island. Wreek Safford	$\begin{array}{r} 3340359 \\ 192926 \end{array}$	3674.6 2902.8	$\begin{aligned} & \text { 4018.4 } \\ & 3174.4 \end{aligned}$	2.28
Gar Isiand	354510.56	03954.45	$\begin{array}{lll} 144 & 50 & 33 \\ 342 & 33 & 39 \end{array}$	Green Island. Eagle Nest Point	$\begin{aligned} & 32450 \\ & 162 \\ & 163 \\ & \hline 33 \end{aligned}$	1782.1 1936.7	1948.9	1.11 1.20
Ethridge's House	354432.66	04116.05	651053 1662146	Eagle Nest Point Wreck Eafford.	2451019 3462134	1019.4 2115.5	1770.9 2313.5	1.01
Brig Adams	354356.45	04144.76	1011	Eagle Nest Point. Wrect Safford.	2811451 3385716	$\begin{aligned} & 2234.3 \\ & 3398.4 \end{aligned}$	$\begin{array}{r} 2443.4 \\ 3716.4 \end{array}$	1.39 2.11
Pea Island.	354237.50	04041.34	1681356 2131329	Eagle Nest Point. Brig Adams	3481342 331406	$\begin{gathered} 2930,6 \\ 29065 \end{gathered}$	$\begin{aligned} & 3204.8 \\ & 3180.7 \end{aligned}$	1.82 1.81
Little Pea Island	354314.27	04033.65	1665303 233 57 29	Fagle Nest Point. Brig Adams.	$\begin{gathered} 346 \\ 538 \\ 58 \\ 58 \\ 54 \end{gathered}$	1782.6 22098	1949.4 2416.6	1.11 1.37
Pea Inland M	354306.41	04120.57	$\begin{array}{r} 2013048 \\ 475437 \end{array}$	Brig Adams. Fealsland.	$\begin{array}{r} 213102 \\ 2275414 \end{array}$	1657.6	$\begin{gathered} 1812.7 \\ 1453.3 \end{gathered}$	${ }_{0}^{1.03}$
New Inlet, North Point...	354200.60	04280.36	$\begin{aligned} & 1143347 \\ & 1655607 \end{aligned}$	Pea Igland. Brig Adams.	$\begin{aligned} & 2943249 \\ & 3455546 \end{aligned}$	2736.4 3680.5	$\begin{aligned} & 2992.5 \\ & 4024.5 \end{aligned}$	1.70 2.90
Jack Shoal.,	354109.05	04113.98	1031459	Pealyland. New Inlet, North Point.	$\begin{array}{r} 3431440 \\ 462436 \end{array}$	2846.8	3113.2 2519.9	1.77 1.43
Now Inlet, South Point...	354103.97	04235.58	$\begin{array}{r} 942201 \\ 1673820 \end{array}$	Jack Shoal. \qquad New Inlet, North Point.	$\begin{aligned} & 2742113 \\ & 3473811 \end{aligned}$	$\begin{aligned} & 2057.4 \\ & 1786.7 \end{aligned}$	$\begin{gathered} 2249.9 \\ 1953.9 \end{gathered}$	1.98
Elacoat from Nhtin het to Capi Hatteras.								
South of New Inlet Signal.	354016.89	04245.88	1244948 1683902	Jack Bhoal. \qquad New Inlet, North Point.	3044854 3483847	2814.7 3259.9	$\begin{aligned} & 3078.1 \\ & 3564.9 \end{aligned}$	1.75 2.02
Loggerhead Inlet.	353814.83	04249.18	1555898 1784416	Jack Shoal. South of New Inlet....	$\begin{aligned} & 335 \\ & 37 \\ & 358 \\ & 44 \\ & \hline 14 \end{aligned}$	5878.3 3762.3	$\begin{aligned} & 6498.3 \\ & 414.3 \end{aligned}$	3.65 2.34
Loggerhead Shaal.	353759.49	04213.60	2420920 19051.04	Loggerhead Tnlet. 8outh of New Inlet....	$\begin{aligned} & 620941 \\ & 10 \$ 123 \end{aligned}$	1012.3	$\begin{aligned} & 1107.0 \\ & 4715.8 \end{aligned}$	0.63 2.88
Chickamicomico North	35311.38	04343.37	$\begin{aligned} & 1455208 \\ & 1601708 \end{aligned}$	Logyerhead shoal......	3255116 3401637	$\begin{aligned} & 4025.2 \\ & 4041.4 \end{aligned}$	$\begin{aligned} & 4401.8 \\ & 4410.6 \end{aligned}$	2.50 2.51
Windmill.	353352.65	04303.47	1751836 2400711	Logxerhead Inlet. \qquad Chickamicomico North.	$\begin{array}{r} 3551898 \\ 60 \quad 0735 \end{array}$	$\begin{aligned} & 4896.4 \\ & 1158.3 \end{aligned}$	4807.8	2.73 0.72
Chickamicomico Main.	353446.87	04319.76	1925117 1683354	Chichamienmico Nerth. Wirdmill	$\begin{array}{r} 12 \\ 348 \\ 343 \\ 35 \\ 35 \end{array}$	2071.3	$\begin{gathered} 2921.3 \\ 2906.9 \end{gathered}$	1.66 1.29
Chickamicomico, (2).	353508.14	0434967	1394245 485731	Windmill. Chickamicomico Main.	$\begin{aligned} & 3194218 \\ & 2285714 \end{aligned}$	$\begin{array}{r} 1798.5 \\ 998.4 \end{array}$	$\begin{aligned} & 1006.8 \\ & 1091.8 \end{aligned}$	${ }_{0}^{1.12}$
Chickamicomico, (3).	353417.73	04346.93	1424229 1823245	Chiokamicomico Main. . Chickamiconico, (2)...	$\begin{array}{r} 3384213 \\ 93946 \end{array}$	$\begin{aligned} & 1128.9 \\ & 1555.2 \end{aligned}$	$\begin{array}{r} 1234.5 \\ 1700.7 \end{array}$	0.70 0.97
Chickamicomico, (4).	353245.10	04333.09	$\begin{aligned} & 1745324 \\ & 1865736 \end{aligned}$	Chickamienmico Main. Chickamicomico, (3)...	$\begin{array}{r} 3545316 \\ 65745 \end{array}$	$\begin{aligned} & 3767.3 \\ & 2875.5 \end{aligned}$	4119.8 3144.6	2.34 1.79
Opening Marsh ..	353305.77	04254.34	2105019 3030802	Chickamicomico, (3)... Chickamicomieo, (4)...	$\begin{array}{r} 305050 \\ 1230824 \end{array}$	$\begin{aligned} & 2582.6 \\ & 1165.3 \end{aligned}$	$\begin{aligned} & 2924.3 \\ & 1274.3 \end{aligned}$	${ }^{1.61}$
Wreck Dolphin..	35 31, 20,35	04305.89	3745307 1944149	Opening Marsh......... Chickamicomico, (4)...	$\begin{array}{r} 3545300 \\ 144205 \end{array}$	3261.6	$\begin{array}{r} 3566.8 \\ \hline 2962.6 \end{array}$	${ }_{1}^{2.63}$
No Efg P	353147.72	E. 04222.53	225 08.29 3073908	Chickamicomico, (4)... Wreck Dolphin \qquad	450910 1273933	$\begin{gathered} 25156.9 \\ 1379.9 \end{gathered}$	$\begin{aligned} & 2741.5 \\ & 1509.0 \end{aligned}$	$\begin{aligned} & 1.56 \\ & 0.86 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section IV.-Seacoast from New Inlet to Cape Hatteras. Shetch D.

Name or station.	Latitude.	Longitude.	Azimuth.	To station -	Back aximuth.	Distance.	Distance.	Distance.
Cedar Hammock Island...	$\begin{array}{rr} \circ \\ 3530 & \prime \prime \\ \hline 57 \end{array}$	E. 0 ¢ 4201.51	$\begin{array}{r} 6 \\ 19350 \\ 23108 \\ 42 \end{array}$	No Egg Point. Wreek Dolphin	135020 510920	Metres. 2213.7 2002.8	$\begin{aligned} & \text { Yurds. } \\ & 2420.8 \\ & 2 \times 271.7 \end{aligned}$	$\begin{aligned} & \text { Miles } \\ & 1.38 \\ & 1.29 \end{aligned}$
Baty Eignal.	35.2949 .60	04247.83	1416358 1891443	Cedar Hammock Island. Wreck Dolphill........	3215331 91454	1891.5 2831.7	2068.5 3096.7	$\begin{aligned} & 1.18 \\ & 1.76 \end{aligned}$
Myrtle Signal.	352817.07	04233.86	$\begin{array}{rrr} 169 & 22 & 00 \\ 92 & 55 & 53 \end{array}$	Cedar Hammock lsland. Gull Isiand..	$\begin{aligned} & 3492141 \\ & 272 \\ & 54 \end{aligned}$	$\begin{aligned} & 4417.6 \\ & 4278.6 \end{aligned}$	$\begin{aligned} & 4831.0 \\ & 4670.2 \end{aligned}$	2.74 2.65
Gull Isiand.	352824.13	03944.67	$\begin{aligned} & 2401537 \\ & 21953 \quad 27 \end{aligned}$	Bay Signal................ Cedar Hammock lsiand.	60 17 39 54 47	5316.0 5366.2	$\begin{aligned} & 5813.4 \\ & 5879.3 \end{aligned}$	3.30 3.34
Little Hill. ,	352620.20	04226.08	1830657 13311		307 313095	3606.9 5481.1	$\begin{aligned} & 3944.4 \\ & 6103.3 \end{aligned}$	$\frac{9.24}{3.47}$
Drain 1sland..............	35.556 .91	04148.74	$\begin{aligned} & 1944509 \\ & 23241 \\ & \hline 20 \end{aligned}$	Myrte Signal Litule Hill..	$\begin{array}{llll}14 & 45 & 36 \\ 52 & 42 & 09\end{array}$	4466.3 1183.9	4884.2	2.78 0.74
Bald Beach................	352519.04	0423.33	14313 1820630	Drain Island. Litue Hill.	$\begin{array}{rrrr}223 & 1319 \\ 20632\end{array}$	1457.3 1885.9	$\begin{aligned} & 1593.7 \\ & 2062.4 \end{aligned}$	0.91
Terrapin Point............	352446.32	04143.95	$\begin{aligned} & 1831043 \\ & 2243431 \end{aligned}$	Drain Ialand............. Baid Beach	31045 443454	2178.7 1415.2	2382.6 1547.6	1.35 0.88
Barnes' Signal.............	352427.20	04218.23	1241645 184364	Terrapin Point Bald Beach.	3041625 4	1046.3 1602.5	$\begin{aligned} & 1141.2 \\ & 1752.4 \end{aligned}$	0.65 1.00
Bog Channel..............	352356.45	04132.10	$\begin{array}{ll} 191 & 00 \quad 49 \\ 230 & 50 \\ 53 \end{array}$	Terrapin Point.......... Barnes' Signal...........	$\begin{array}{ll} 110056 \\ 50 & 51 \\ \hline \end{array}$	1565.6 1500.7	1712.1 1641.1	0.97
Bog Opening*..............	352317.55	04158.10	1511826 19318	Bog Channel............ Barnes' Sighal	3311811 131845	1366.6 2205.5	$\begin{aligned} & 1494.5 \\ & 2411.9 \end{aligned}$	0.85 1.37
Old Tree..................	352243.91	04027.18	$\begin{aligned} & 1831024 \\ & 216.57 \\ & 47 \end{aligned}$		31027 365805	$\begin{array}{r} 2938.9 \\ 1297.5 \end{array}$	2448.4 1418.9	1.39 0.81
Stowe..	352227.92	04146.57	$\begin{array}{lll} 135 & 13 & 19 \\ 190 & 46 & 29 \end{array}$	Old Tree Bog Opening	31513800 104685	694.4 1557.1	759.4 1702.8	0.43 0.97
Mall Creek.	352204.23	04106.70	$\begin{array}{lll} 202 & 55 & 11 \\ 234 & 02 & 31 \end{array}$	Old Tree Stowe \qquad	$\begin{array}{lll} 22 & 55 & 23 \\ 54 & 02 & 54 \end{array}$	1827.6 1243.1	1451.8 1459.4	0.89
Ecarborough...............	352117.06	04118.74	$\begin{array}{lll} 168 & 11 & 21 \\ 197 & 49 & 52 \end{array}$	Mill Creek Stowe \qquad	$\begin{array}{rrr} 348 & 11 & 14 \\ 17 & 50 & 08 \end{array}$	1484.9 2093.5	1623.9 2508.1	0.92 1.43
Lookout, (1)...............	352108.84	04032.66	$\begin{aligned} & 2064315 \\ & 2574239 \end{aligned}$	Mill Creek.............. . Scarborough	$\begin{array}{r} 2643 \quad 34 \\ 774305 \end{array}$	1910.9 1190.6	$\begin{aligned} & 2089.7 \\ & 1302.0 \end{aligned}$	1.19
Lookout, (2)	352038.43	04059.75	$\begin{aligned} & 1435246 \\ & 201 \\ & 50 \end{aligned}$	Lookout, (1)............ Scarborough	3235230 215610	1160.3 1283.5	12688.9 1403.6	0.72
Barnes' Mill.	359004.44	04018.91	1895516 204 285	Lonkout, (1)............. Lookout, (2)	$\begin{array}{r} 955.24 \\ 443217 \end{array}$	$\begin{array}{r} 2014.9 \\ 1420.0 \end{array}$	$\begin{array}{r} 22013.4 \\ 1607.6 \end{array}$	${ }_{0}^{1.93}$
Looknut, (3)	352007.11	0405821	$\begin{array}{r} 8515 \\ 182 \mathrm{cof} \\ 18 \end{array}$	Barnes' Mill............. L.ookput, $(\mathfrak{2}) ~$		995.9 965.8	$\begin{aligned} & 1089.1 \\ & 1056.2 \end{aligned}$	0.62 0.60
Long Point................	351838.96	04021.33	$\begin{aligned} & 1784011 \\ & 1985522 \end{aligned}$	Barnes' Mill	$\begin{array}{r} 3584010 \\ 1855 \quad 43 \end{array}$	$\begin{aligned} & 2634.7 \\ & 2871.8 \end{aligned}$	$\begin{array}{r} 2881.2 \\ 3140.5 \end{array}$	1.64
Jardella.	351812.47	04056.07	$\begin{aligned} & 1644701 \\ & 1325535 \end{aligned}$	Barnes' Mill.............. Long Point	$\begin{array}{lll} 344 & 46 & 40 \\ 312 & 55 & 15 \end{array}$	3575.7 1198.6	3910.3 1310.8	2.22
Log.......................	351654.91	04050.83	$\begin{aligned} & 1665455 \\ & 1831012 \end{aligned}$	Long Point Jardella.	346 34 3 10 15	$\begin{aligned} & 3291.9 \\ & 2393.8 \end{aligned}$	$\begin{aligned} & 3599.9 \\ & 2617.8 \end{aligned}$	2.05 1.49
Paimetto.................	351610.54	03944.93	$\begin{array}{lll} 191 & 21 & 57 \\ 250 & 36 & 39 \end{array}$	Long Point. Log.	$\begin{array}{lll} 11 & 22 & 17 \\ 50 & 37 & 18 \end{array}$	$\begin{aligned} & 4665.1 \\ & 2154.7 \end{aligned}$	5101.6 2356.3	2.90 1.34
Last Signal.........	351551.32	04045.35	$\begin{aligned} & 1111213 \\ & 1840213 \end{aligned}$	Paimetto Log	$\begin{array}{r} 2911138 \\ 40241 \end{array}$	$\begin{aligned} & 1637.8 \\ & 1904.3 \end{aligned}$	1791.1 2148.1	1.02 1.82
Eracoast mom Cape Hatterab to Bravfort Harmor.								
Cape Hatteras Light-bouse	351511.28	04009.33	$\begin{aligned} & 1612037 \\ & 216 \\ & 25 \end{aligned}$	Palmetto..... Last Signal	$\begin{array}{rr} 341 & 20 \\ 36 & 23 \\ 35 \end{array}$	$\begin{aligned} & 1927.4 \\ & 1533.4 \end{aligned}$	$\begin{aligned} & 2107.7 \\ & 1676.9 \end{aligned}$	1.20 0.95
Kins's Point...............	351611.93	03516.53	$\begin{aligned} & 2264828 \\ & 2840901 \end{aligned}$	Barnes' Mill........ Cape Hatteras light....	$\begin{array}{r} 465123 \\ 1041150 \end{array}$	$\begin{array}{r} 10479.8 \\ 7632.7 \end{array}$	11452.8 $8: 346.9$	6.51
Jannet's Mill	351616.79	03852.92	889655	King's Point.............. Barnes' Mill	$\begin{array}{r} 2682450 \\ 171240 \end{array}$	$\begin{aligned} & 5470.4 \\ & 7343.7 \end{aligned}$	$\begin{aligned} & 5982.3 \\ & 8030.9 \end{aligned}$	3.40 4.56
Bare Hill..................	351395.60	03237.81	$\begin{aligned} & 2180222 \\ & 2540298 \end{aligned}$	King's Point. Cupe Hatteras Light. . . .	$\begin{array}{r} 380354 \\ 740649 \end{array}$	$\begin{array}{r} 6508.9 \\ 1870.3 \end{array}$	7118.0 $12981 \text {. } 0$	$\begin{aligned} & 4.04 \\ & 7.38 \end{aligned}$
Wetrs Shoal........	351529.65	E. 08897.88	$\begin{aligned} & 9624639 \\ & 3010913 \end{aligned}$	King's Point. Bare hill	$\begin{array}{r} 895035 \\ 1211137 \end{array}$	$\begin{array}{r} 10409.6 \\ 7364.8 \end{array}$	$\begin{array}{r} 11383.6 \\ 8075.8 \end{array}$	$\begin{aligned} & 6.47 \\ & 4.59 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section IV.-Seacoast from Cape Hatteras to Beaufort Harbor. Sketch D.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section IV.-Seacoast from Cape Hatteras to Beaufort Harbor. Sketch D.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distane
Cedax lulet.		$\begin{array}{llll} & 0 & \prime \prime \\ w & 0 & 09 & 53.08 \end{array}$		Mill Point	$\begin{array}{r} 0 \\ 39409 \\ 4100 \\ 4106 \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Metrees. } \\ 4 \in 93,0 \\ 463.3 \end{array} \end{aligned}$	Yards. 5350.8 4iO6.0	$\begin{gathered} \text { Miles. } \\ 3.04 \\ 2.67 \end{gathered}$
Mill	345216.43	01047.89	$\begin{aligned} & 203 \quad 2648 \\ & 2465952 \end{aligned}$	Cow	1232823 1670023	5058.2 6190.4	$\begin{aligned} & 5531.5 \\ & 6769.6 \end{aligned}$	3.14 3.85
Piney Point	344538.99	01325.03	2251417 2820 204	Mill Point. Cedar Inle:	$\begin{array}{r} 451530 \\ 1+22245 \end{array}$	4578.4	$5006, \mathrm{e}$ $6029,2$	2.85 3.45
Great Is	344631.20	01223.69	$\begin{aligned} & 1645533 \\ & 2194312 \end{aligned}$	Piney Point Cedar Inlet.	$\begin{array}{r} 3445458 \\ 394438 \end{array}$	$\begin{aligned} & 5992.5 \\ & 5989.0 \end{aligned}$	$\begin{aligned} & 6553.2 \\ & 6549.2 \end{aligned}$	${ }_{3.72}^{3.72}$
Davis' Shore	344649.39	01689.16	291 4951	Piney Point Greal Island	$\begin{aligned} & 415136 \\ & 950906 \end{aligned}$	7014.8	7671.2 6852.0	4.36
Horse Point	344329.53	C 1505.50	1605653 $21618 \quad 33$	Davis' Shore Great Ishand.		6515.3 6947.5	7125.0	4.05 4.32
Bell'	344344.78	01828.11	$\begin{aligned} & 507 \\ & 207 \\ & 275 \\ & 2711 \end{aligned}$	Davis' Shere Horse Puint.	$\begin{array}{lll} 98 & 00 & 45 \\ 95 \quad 13 & 24 \end{array}$	$\begin{aligned} & 6442.7 \\ & 5175.5 \end{aligned}$	$\begin{aligned} & 7045.6 \\ & 5659.8 \end{aligned}$	4.00
Davis' Island	344513.89	01749.76	$\begin{array}{r} 1933 \quad 36 \\ 2145056 \end{array}$	Bell's Point. Davis'Shore	$\begin{array}{r} 1993314 \\ 348142 \end{array}$	$\begin{aligned} & 29145.1 \\ & \hline 150 \end{aligned}$	$\begin{aligned} & 3196.8 \\ & 3921.4 \end{aligned}$	1.81
Lone Signal	344048.11	01725.37	$\begin{aligned} & 1633931 \\ & 2153428 \end{aligned}$	Bells Point. Horse Point.	3433855 354548	$\begin{array}{r} 5672.9 \\ 6116.0 \end{array}$	6203.7	3.53 3.80
Sbell Point.	344056.36	03002.13	$\begin{aligned} & 2044430 \\ & 2733806 \end{aligned}$	Bell's Point Lone signa	$\begin{array}{r} 244523 \\ 933935 \end{array}$	5714.1 3998.0	$\begin{aligned} & 6248.8 \\ & 4372.1 \end{aligned}$	$\begin{aligned} & 3.55 \\ & 2.48 \end{aligned}$
Willis Mill	344305.00	01933.39	$\begin{array}{r} 102715 \\ 263 \quad 3904 \end{array}$	Shell Point Horse Poin	$\begin{array}{r} 1902659 \\ 63 \\ 41 \end{array}$	$\begin{aligned} & 4030.6 \\ & 6856.9 \end{aligned}$	$\begin{aligned} & 4407.8 \\ & 7498.5 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 4.26 \end{aligned}$
Cape Looko	343750.40	02026.96	1861742 2200946	Shel3 Point Lone Signa	$\begin{array}{r} 61756 \\ 401729 \end{array}$	5764.7 7166.4	$\begin{array}{r} 6304.1 \\ 7837.0 \end{array}$	$\begin{array}{r} 3.58 \\ 4.45 \end{array}$
Shackelford	343937.79	02321.21	3442702 3064203	Shell Point . Cape Looko	$\begin{array}{r} 642855 \\ 1264342 \end{array}$	5616.4 5535.0	$\begin{aligned} & 6141.9 \\ & 6059.9 \end{aligned}$	3.49 3.44
Cape Lookout Light-house.	343719.73	01957.94	$\begin{array}{lll} 129 & 25 & 47 \\ 211 & 09 & 52 \end{array}$	Shackelford... Lone Sigual...	$\begin{array}{r} 309 \quad 2351 \\ 31 \\ 11 \end{array}$	6699.8	7326.7 8206.3	4.16 4.66
Lynch.	344288.30	02605.61	286 381 38 38	Shell Point. Shackelford	$\begin{aligned} & 1070320 \\ & 1412841 \end{aligned}$	9674.0 6716.3	$\begin{array}{r} 10579.2 \\ 7344.8 \end{array}$	6.01 4.17
Shackelford Base, west en	344045.71	02718.01	2101449 2890828	L.yneh ... Shackelfor	$\begin{array}{r} 301530 \\ 1091043 \end{array}$	3657.3 6381.5	3999.5 6978.6	${ }_{3.97}^{2.27}$
Shackelford Bare, east end	344019.79	02544.99	9892731 1084045	Shackelford West Base	1092853 2843952	$\begin{aligned} & 38<9.4 \\ & 2499.2 \end{aligned}$	$\begin{aligned} & 4245.7 \\ & 2733.1 \end{aligned}$	2.41
North Harkers Island.....	344941.51	02348.69	3525713 561247	Shackelford West Base..	$\begin{aligned} & 17257929 \\ & 2061048 \end{aligned}$	$\begin{gathered} 5703.9 \\ 6410.4 \end{gathered}$	$\begin{aligned} & 6287.6 \\ & 7010.2 \end{aligned}$	3.54 3.93
Fort Macon..............	344143.55	02915.77	3004208 2540451	West Race. Lynch....	$\begin{array}{r} 1204315 \\ 740639 \end{array}$	$\begin{aligned} & 3486.1 \\ & 5031 \end{aligned}$	$\begin{aligned} & 3819.3 \\ & 5502.5 \end{aligned}$	$\begin{aligned} & 2.17 \\ & 3.13 \end{aligned}$
Guthries.	344245.15	02752.93	$\begin{array}{rr} 346 & 25 \\ 48 & 03 \\ 40 & 24 \end{array}$	West Bae Fort Mac	$\begin{aligned} & 166{ }_{25}^{25} 93 \\ & 29 \end{aligned}$	3784, 3 2836.7	$\begin{aligned} & 4138.4 \\ & 3102.1 \end{aligned}$	9.46 1.76
Arendell.,	344310.11	03053.16	3170547 2793020	For Macon Guhtries..	1370642 993203	$\begin{aligned} & 3640.7 \\ & 4649.7 \end{aligned}$	3981.4 5084.8	2.26 2.69
Maffitt.	344143.20	03058.56	$\begin{array}{lll} 179 & 40 & 32 \\ 287 & 56 & 21 \end{array}$	Arendell.. West Base	3594032 107582	$\begin{aligned} & 2677.9 \\ & 5740.0 \end{aligned}$	2928.5 6277.1	${ }_{3}^{1.66}$
Fisherman's Lookout.	344110.24	02717.23	$\begin{aligned} & 1624451 \\ & 1003049 \end{aligned}$	Guthries. Maffit.	3424431 2809847	3062.6 5573.3	$\begin{aligned} & 3349.2 \\ & 6094.8 \end{aligned}$	1.90 3.46
Carrot Istand Signal.	344219.09	02707.37	$\begin{array}{r} 1051915 \\ 52216 \end{array}$	Arendeli........ West Base	2851706 1852210	5956.4 2888.0	6513.7 3158.2	3.70
Midde Marsh.	344132.60	02800.30	$\begin{array}{rrr} 53 & 50 & 00 \\ 127 & 55 & 48 \end{array}$	West Base Guthries.	$\begin{aligned} & 2334916 \\ & 3076444 \end{aligned}$	2449.9 3632.7	2679.1 3972.6	1.52 2.26
Fon Macon Flag-staf.....	344143.08	02916.79	1373357 3001656	Arendell.... West Base..	$\begin{aligned} & 3173300 \\ & 1201804 \end{aligned}$	$\begin{aligned} & 3633.6 \\ & 3501,1 \end{aligned}$	3973.6 3828.7	2.26 2.18
Beaufort Academy Apire ..	344303.17	09825.14	$\begin{aligned} & 971238 \\ & 93 \quad 1539 \end{aligned}$	Fort Macon Areadell...	$\begin{aligned} & 2074209 \\ & 2731415 \end{aligned}$	$\begin{aligned} & 2768.6 \\ & 371.8 \end{aligned}$	$\begin{aligned} & 3027.7 \\ & 4124.7 \end{aligned}$	$\underline{1.72}$
Beaufort Iteam Saw-mill. .	344314.56	02838.50	$\begin{aligned} & 874304 \\ & 184124 \end{aligned}$	Arendell.... Fort Macon.	2 के $^{2} 4147$ 1984103	3428.6 2960.5	3749.4 32374	2.13 1.84
Large House in Lenoxville	34423472	02534.70	$\begin{aligned} & 360427 \\ & 785513 \end{aligned}$	West Base..... Mattitt. \qquad	2180323 2585212	$\begin{aligned} & 4264.0 \\ & 8242.8 \end{aligned}$	$\begin{aligned} & 4663.0 \\ & 9014.1 \end{aligned}$	$\begin{aligned} & 2.65 \\ & 5.12 \end{aligned}$
Beaufort, cournhouse cupois.	344308.76	W. 02821.75	3394704 903757	Wout Bage... Arendell...	$\begin{aligned} & 1594740 \\ & 270 \\ & 36 \end{aligned}$	4695.0 3859.4	5134.3 212.9	$\begin{aligned} & 9.92 \\ & 9.39 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPIICAL POSITIONS.

Section V.-Savannah River. Sketch E, No. 4.

Name or station.	Latitude.	Longitude.	Azinuth.	To station-	Back azimuth.	Distance.	Distance.	Dietance.
	344139.76	W. 02940.55	233 385	Guthries		Metres. 3399.9 189		Miless 2.11 1.14
house.			931829	Maffit.	2731748	1835.6	2007.4	1.14
Phenix..................	344046.99	02800.71	271 271 111 38	West Base.	915658 2913500	$\begin{aligned} & 1087.4 \\ & 4704.0 \end{aligned}$	$\begin{aligned} & 1 \cdot 89.2 \\ & 5144.2 \end{aligned}$	0.68 2.98
Maffits East Base.	344034.94	02644.67	1184839	Fort Mac	2984713	4388.5 6650.7	4799.1 7273.0	${ }_{4}^{2.13}$
Maffitts West Rase.......	344044.70	08719.38	1089335 2268509	Maffitt.... West Base	$\begin{array}{r}288919 \\ 4642 \\ \hline 10\end{array}$	5717.2 47	6252.2 52.2	3.55 0.03
Bogue Signal..	344148.54	03202.31	2751736 2145915	Mafitit. Arendell...	${ }_{3}^{95} 181694$	1782.4 3067.8	1949.2 3354.9	1.11
Fish Hut, west end of Carrot island.	344207.10	09808.37	351545 113451	West Base Guthries..	2151505 2934552	3069.0 2908.0	3356.2 3180.1	${ }_{1.91}$
Thoroughfare Marsh......	344307.42	02945.51	3434036 924542	Fort Macon Arendell. .	1634053 2724503	$\begin{aligned} & 2692.7 \\ & 1723.2 \end{aligned}$	$\begin{aligned} & 2944.7 \\ & 1884.7 \end{aligned}$	1.67
Buog	344004.89	W. 02721.08	1835248 1192307	West Ba Mafitt.	$\begin{array}{r} 33250 \\ 2992107 \end{array}$	$\begin{aligned} & 1288.0 \\ & 6176.5 \end{aligned}$	1380.1 6754.4	0.78 $\mathbf{3 . 8 4}$

Section V.-Savannah River. Sketch E, No. 4.

Name or station.	Latitude.	Longitude.	Azinuth.	To station-	Back azimuth.	Distance.	Dietance.	stance.
Union Ferry ${ }^{\text {N }}$ North Base.		$8 \circ_{0}^{\prime} 022_{6.77}$				etres.	Tarde.	miles.
$\begin{aligned} & \text { Jnion Ferry } \\ & \text { Causeway. } \\ & \text { Nout Base } \\ & \text { Sour } \end{aligned}$	320535.81	810306.90	2025036	North Ba	225052	2034.6	$\underline{2} 25$	1.28
Ch	320624.48	810434.42	2030935 2630252	South Base.............	$\begin{array}{r}1231029 \\ 83 \\ \hline 35\end{array}$	2740.8 3106.7	$\begin{aligned} & 9997.3 \\ & 397.2 \end{aligned}$	1.70 193
Daniell..	320633.20	810309.00	$\begin{array}{r} 3581812 \\ 305134 \end{array}$	South Base.............. Cheves................	1781813 2605049	$\begin{aligned} & 1860.8 \\ & 2 \times 267.9 \end{aligned}$	2034.9 2480.1	1.17 1.43
Fort Jackson.	324457.88	810159.85	$\begin{array}{lll} 102 & 21 \\ 120 \\ 36 \end{array} \frac{9}{90}$	North Base............. Bouth Base. 	3422109 3033554	$\begin{aligned} & 3193.4 \\ & 2110.8 \end{aligned}$	$\begin{aligned} & 3492.2 \\ & 2308.3 \end{aligned}$	1.97
Savannah Exchange	320453.36	810516.85	$\begin{aligned} & 248595858 \\ & 2019709 \end{aligned}$	South Base \qquad Cheves. \qquad	$\begin{aligned} & 690107 \\ & 213731 \\ & 21 \end{aligned}$	$\begin{aligned} & 3649.4 \\ & 3019.1 \end{aligned}$	3990.9 3001.5	$\begin{aligned} & 2.27 \\ & 1.88 \end{aligned}$
Sgrannah, Presbyterian ch. spire.	320437.38	810524.18	2240430 2031604	Daniell. Fort Jackson.	$\begin{aligned} & 440542 \\ & 891753 \end{aligned}$	$\begin{aligned} & 5094.1 \\ & 5394.9 \end{aligned}$	5570.9 5899.7	$\begin{aligned} & 3.16 \\ & 3.35 \end{aligned}$
Fig Istand Light-house	320458.24	810335.16	$\begin{aligned} & 2701453 \\ & 206 \\ & 4659 \end{aligned}$	Fort Jackson North Base	$\begin{array}{ll} 9015 & 44 \\ 26 & 47 \end{array}$	$\begin{aligned} & 2499.0 \\ & 3396.6 \end{aligned}$	$\begin{aligned} & 2732.8 \\ & \$ 714.4 \end{aligned}$	2.55
Steam Anw Mill	320592.32	810555.24	$\begin{aligned} & 2646 \\ & 227 \\ & 23824 \\ & 38 \end{aligned}$	Fouth Base Cheves \qquad	$\begin{aligned} & 84 \quad 3815 \\ & 47 \quad 5407 \end{aligned}$	$\begin{aligned} & 4439.8 \\ & 2856.0 \end{aligned}$	$\begin{aligned} & 4847.6 \\ & 3123.2 \end{aligned}$	2.75
Penayworth Chimne	320615.17	810522.51	$\begin{gathered} 288 \\ 289 \\ 280 \\ 30 \end{gathered} \frac{18}{82}$		$\begin{array}{r} 1085030 \\ 793143 \end{array}$	$\begin{aligned} & 3756,3 \\ & 3559.3 \end{aligned}$	$\begin{aligned} & 4107.0 \\ & 3892.4 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 2.21 \end{aligned}$
Fing in Tree.	320752.79	810313.30	$\begin{aligned} & 3980129 \\ & 357 \\ & 15 \end{aligned}$	Gheves.	$\begin{aligned} & 2180046 \\ & 1771559 \end{aligned}$	$\begin{aligned} & 3452.1 \\ & 2361.7 \end{aligned}$	$\begin{aligned} & 3775.1 \\ & 2582.7 \end{aligned}$	8.14 1.48
Daniells Tall Chimney	350538.32	810345.63	$\begin{aligned} & 1380203 \\ & 20818 \quad 30 \end{aligned}$	Cheves Daniell	$\begin{array}{r} 3180137 \\ 281849 \end{array}$	${ }_{2024.8}^{1912.6}$	$\begin{aligned} & 2091.6 \\ & 2014.2 \end{aligned}$	1.19
Habereham's Winnowing House.	320415.07	810245.19	$\begin{array}{ll} 222 & 02 \\ 167 \\ 166 & 17 \end{array}$	Fort Irckson. South Base	$\begin{array}{r} 420241 \\ 3470609 \end{array}$	$\begin{aligned} & 1775.4 \\ & 2551.1 \end{aligned}$	$\begin{aligned} & 1941.5 \\ & 2789.8 \end{aligned}$	1.10
Shad's Ofd Chimney.	320534.77	810052.88	$\begin{array}{r} 903146 \\ 1250015 \end{array}$	South Base \qquad North Bese \square	$\begin{array}{r} 2703035 \\ 30450 \% 9 \end{array}$	3514.0 3324.7	$\begin{aligned} & 3642.8 \\ & 3635 \end{aligned}$	$\begin{aligned} & 2.18 \\ & 2.06 \end{aligned}$
Jow. Huger's Tall Chimney.	320727.00	810457.97	$\begin{aligned} & 3421321 \\ & 2934240 \end{aligned}$	Cheves. Daniell	1621334 1184338	2021.8	$\begin{aligned} & 2011.0 \\ & 3561.4 \end{aligned}$	${ }_{2}^{1.38}$
Hamilton's Chimacy......	320754.46	810547.30	$\begin{array}{lll} 351 & 51 & 17 \\ 300 & 08 & 50 \end{array}$	Savannah Exchange.. . Daviell \qquad	1715133 1201014	$\begin{aligned} & 5634.4 \\ & 4798.4 \end{aligned}$	$\begin{gathered} 6161.6 \\ 5947.4 \end{gathered}$	3.50 2.88
King.....................	380748.89	810717.93	$\begin{aligned} & 3284147 \\ & 2859646 \end{aligned}$	Savannah Exctiange... North Base \qquad	1484251 105 c 96	$\begin{gathered} 6110.7 \\ 7646.2 \end{gathered}$	$\begin{aligned} & 6682.5 \\ & 8361.6 \end{aligned}$	3.00 4.75
Runith....................	320841.06	810548.01	$\begin{aligned} & 3124195 \\ & 353 \\ & \hline 21 \end{aligned}$	Daniell. Savananh Fxchange.....	1324250 1732133	$\begin{aligned} & 5670.7 \\ & 7060.2 \end{aligned}$	$\frac{6201.3}{7 \pi 90.8}$	$\begin{aligned} & 3.52 \\ & 4.39 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPIIICAL POSITIONS.

Section V.—Saxannah River. Sketch E, No. 4.

UNITED SCATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section F1.—Florida Reef. Sketch F, No. 3.

UNITED STATES COAST SURVEY.-GEOGRAPIICAL POSITIONS.
Section VI.—Florida Ref. ${ }^{\circ}$ Sketch F, No. 3.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Master Key.	252331.62	W.0.04 041.01	$\begin{array}{rrr}0 & 1 & 7 \\ 292 & 38 & 47 \\ 337 & 30 & 35\end{array}$	Christmas Point......... Cessar's Creek loint. . . .	\circ 119 157 38 17 48 42	Metres. 682.1 1233.5	Yards. 746.0 1348.9	$\begin{gathered} \text { Miles. } \\ 0.42 \\ 0.72 \end{gathered}$
Turtle Reef................	251659.32	00310.04	$\begin{aligned} & 186 \\ & 182 \\ & 182 \\ & 02 \end{aligned}$	Cessar's Creek Point.... Elliott's Key, (2)........	62800 20210	11929.8 14762.5	12280.6	6.98 9.17
Angelish Creek...........	251956.29	00602.92	2233039 3192912	Old Rhodes. Turtle Reef.	433106 1393026	2542.1 7444.4	2780.0 8141.0	1.58 4.63
Palo Alto.	252020.93	00555.22	2344412 154006	Old Rhodes., Angelfish Creek.........	544436 1955003	1880.3 788.0	88056	1.17 0.49
Angelfish Key	251921.79	00622.34	$\begin{array}{lll} 295 & 20 & 12 \\ 218 & 17 & 04 \end{array}$	Cresar's Creek Bank. Old Rhodes. \qquad	$\begin{array}{llll}45 & 21 & 54 \\ 38 & 17 & 39\end{array}$	$\begin{aligned} & 9333.7 \\ & 3701.3 \end{aligned}$	$\begin{array}{r} 10207.1 \\ 4047.7 \end{array}$	5.80 2.30
El Camino.	251645.67	00805.63	2195758 2135412	Crsar's Creek Bark.... Old Rhodes.	400024 335531	14830.3 9288.8	16217.9 10158.0	9.28
Carysfort Reef Light.....	251315.25	00320.00	$\begin{array}{lll} 184 & 56 & 26 \\ 169 & 01 & 33 \end{array}$	Cesar's Creek Bank.... El Camino.	45650 3085931	$\begin{aligned} & 17903.7 \\ & 10265.7 \end{aligned}$	19578.9 11248.2	11.13 6.39
Point Perry	251800.57	00722.64	2863211 2162141	Turtle Reef. Old Rhodes.	1063359 362242	$\begin{aligned} & 7371.1 \\ & 6711.6 \end{aligned}$	8060.9	4.58 4.17
Point Elizab	251414.68	00936.95	$\begin{aligned} & 245: 5033 \\ & 2794840 \end{aligned}$	Turtle Reaf. Carystory Reef Light...	$\begin{aligned} & 655318 \\ & 995121 \end{aligned}$	11869.2	12972.2 11708.5	7.37 6.65
Largo North.	251854.86	00700.42	231 29347 206	Angelfish Key........... Point Perry	513003 2003653	1360.8 1765.0	$\begin{aligned} & 1488.1 \\ & 1930.1 \end{aligned}$	0.85 1.10
Busin Bank,	251219.62	00625.01	$\begin{array}{lll}123 & 2341 \\ 161 & 01 & 25\end{array}$	Point Elizabeth El Camino. ${ }^{\text {a }}$. ${ }^{\text {a }}$. .	30312290 3410042	6433.8 8656.9	7035.8 9466.9	4.00 5.38
Basin Hill	251305.60	01024.11	$\begin{array}{lll} 211 & 50 & 08 \\ 281 & 55 & 19 \end{array}$	Point Elizab Basit Bank.	$\begin{array}{r}31 \\ 1015028 \\ \hline 15\end{array}$	2501.8 6840.5	2735.9 7480.6	1.56 4.23
Point	251139.98	01115.64	$\begin{array}{lll} 208 & 41 & 57 \\ 210 & 07 & 14 \end{array}$	Basin Hill Point Elizabeth	$\begin{aligned} & 284219 \\ & 300756 \end{aligned}$	$\begin{array}{r} 3003.4 \\ 5503.1 \end{array}$	3284.4 6018.0	1.87
Sound Point...............	251004.78	01137.92	$\begin{aligned} & 2034540 \\ & 2443827 \end{aligned}$	Point Elizabeth Basin Bank.	$\begin{array}{lll} 23 & 46 & 31 \\ 64 & 40 & 40 \end{array}$	8491.2 9692.9	$\begin{array}{r} 9187.3 \\ 10599.9 \end{array}$	5.23 6.02
The Elbow	250832.02	06615.98	$\begin{aligned} & 1073506 \\ & 1775556 \end{aligned}$	Sound Point Basin Bank.	$\begin{aligned} & 2873249 \\ & 3575552 \end{aligned}$	$\begin{aligned} & 9455.9 \\ & 7007.5 \end{aligned}$	10340.7 7663.2	5.87 4.35
Grecian Shoals.	250722.12	00837.11	$\begin{aligned} & 1340256 \\ & 2012337 \end{aligned}$	Sound Point	$\begin{array}{r} 3140137 \\ 212432 \end{array}$	$\begin{array}{r} 7199.5 \\ 9831.0 \end{array}$	$\begin{array}{r} 7873.2 \\ 10750.9 \end{array}$	4.47 6.11
Garden Cove, (1)	251052.79	01151.17	$\begin{aligned} & 214 \\ & 345 \\ & 354 \\ & \hline 50 \end{aligned}$	Point Mary Sound Point	$\begin{array}{r} 3495 \\ 16553 \\ \hline 52 \end{array}$	$\begin{array}{r} 1759.9 \\ 1523.1 \end{array}$	$\begin{aligned} & 3924.6 \\ & 1665.6 \end{aligned}$	1.09
Garden Cove, (2).........	250959.09	01227.68	$\begin{array}{lll} 211 & 44 \\ 262 & 49 & 51 \end{array}$	Garden Cove, (1)......... Soand Paint...........	31 4439 82 50	1943.0 1404.3	2124.8 1535.7	1.21
Julia lsland, (1)	250939.35	01213.18	$\begin{array}{lll} 146 & 14 & 39 \\ 231 & 36 & 23 \end{array}$	Garden Cove, (2)....... Sound Point............	$\begin{array}{r} 3261424 \\ 3136 \geqslant 3 \end{array}$	$\begin{array}{r} 730.4 \\ 1259.9 \end{array}$	$\begin{array}{r} 798.7 \\ 1377.8 \end{array}$	0.45 0.78
Julia 1sland, (2)...........	250927.05	01248.34	$\begin{aligned} & 2184030 \\ & 2114106 \end{aligned}$	Point Mary............ Garden Cove, (1).......	$\begin{array}{lll} 32 & 41 & 10 \\ 31 & 41 & 31 \end{array}$	$\begin{aligned} & 4859.3 \\ & 3099.9 \end{aligned}$	$\begin{aligned} & 5314.0 \\ & 3390.0 \end{aligned}$	3.09 1.93
Great Mangroves..........	250954.64	01249.00	$\begin{array}{ll} 218 & 52 \\ 252 & 58 \\ 08 \end{array}$	Point Mary............. . Garilen Cove, (1).......	$\begin{aligned} & 3853 \quad 37 \\ & 420833 \end{aligned}$	$\begin{aligned} & 4163.7 \\ & 2412.7 \end{aligned}$	4373.3 $\mathbf{2 6 3 8 . 5}$	2.61 1.50
Point Willie	250810.32	01254.90	$\begin{aligned} & 2345308 \\ & 211 \quad 28 \quad 19 \end{aligned}$	Basin Bank. \qquad Sound Point \qquad	$\begin{aligned} & 545554 \\ & 313852 \end{aligned}$	13342.1	14590.5 4515.3	8.29 2.56
Julia Istand, (3)	250908.15	01207.98	$\begin{array}{r} 2054713 \\ 369717 \end{array}$	Bound Point. Point Willie \qquad	$\begin{array}{r} 254726 \\ 2162657 \end{array}$	$\begin{array}{r} 1935.2 \\ 2211.9 \end{array}$	2116.3 2418.8	1.20
Largo \$ound..............	250757.10	0143104	$\begin{aligned} & 270 \\ & 268 \\ & 261 \\ & 23 \\ & 55 \end{aligned}$	Found Point. Point Wilie. \qquad	$\begin{aligned} & 505935 \\ & 812436 \end{aligned}$	$\begin{aligned} & 6240.1 \\ & 2723.2 \end{aligned}$	$\begin{aligned} & 6824.0 \\ & 2978.0 \end{aligned}$	3.88 1.69
Lower Sound Point.	250618.73	01437.91	$\begin{aligned} & 2591015 \\ & 18338 \quad 05 \end{aligned}$	Grecian Shoals Largo Sound............	$\begin{array}{r} 791250 \\ 33806 \end{array}$	10403.8 3032.5	11377.3 3316.3	6.46 1.88
Magg's Cove..............	250855.10	01248.35	$\begin{array}{r} 2502650 \\ 73557 \end{array}$	Julia Isłand, (3).. Point Willie............	$\begin{array}{r} 792707 \\ 1873534 \end{array}$	$\begin{aligned} & 1199.7 \\ & 1389.9 \end{aligned}$	1311.9 1519.9	0.75 0.86
French teef.	250206.01	01140.78	1472722 169308	Lower Sound Point... Point Willie. \qquad	$\begin{aligned} & 327 \\ & 349 \\ & 39 \\ & 29 \\ & \hline 8 \end{aligned}$	9224.8 11400.5	$\begin{aligned} & 10087.9 \\ & 12467.3 \end{aligned}$	5.73 7.08
Dry Rocks.................	250234.63	01247.74	$\begin{aligned} & 1785312 \\ & 1.555306 \end{aligned}$	Point While Lower Sound Point	$\begin{array}{ll} 358 & 53 \\ 345 & 09 \\ 354 & 19 \end{array}$	$\begin{array}{r} 10330.8 \\ 7554.5 \end{array}$	$\begin{array}{r} 11297.5 \\ 8201.4 \end{array}$	6.42 4.69
Hull Key...................	250828.95	01349.17	$\begin{array}{r} 2903900 \\ 500702 \end{array}$	Point Willie. Largo Bonnd.	$\begin{array}{ll} 11039 \\ 230 & 39 \\ 24 \end{array}$	$\begin{aligned} & 1624.3 \\ & 1528.2 \end{aligned}$	$\begin{aligned} & 1776.3 \\ & 1671.2 \end{aligned}$	1.01 0.94
Leabre	250744.53	W. 01412.72	$\begin{aligned} & 1270033 \\ & 2054516 \end{aligned}$	Largo Sound............ Huil Key	$\begin{array}{r} 3070025 \\ \hline \quad 254526 \end{array}$	$\begin{array}{r} 642.7 \\ 1517.5 \end{array}$	$\begin{array}{r} 702.8 \\ 1659.5 \end{array}$	0.40 0.94

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Scction VI.—Card's Sound. Sletch F, No. 3.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
		- ' "	- ' 11			Metres. 11220.	$\underset{1 \times 207.0}{\text { Yards. }}$	$\begin{aligned} & \text { Miles. } \\ & 0.70 \end{aligned}$
Fetite Coquille.	250:39.88	W.0 1403.20	135 1928885 28	Latgo Sound. Hull key	3155803 128905	1122.9 1824.3	$\underline{12000.5}$	0.79 1.13
Elba	250727.70	01443.60	2390543	Leshos	590559	1007.9	1109.2	0.63
			26.50313	Petite Coquille.........	850330	1135.7	1242.0	0.71
Julia Island, (4).	250746.90	01314.66	3455445	French Reef	165505	10813.3	11885.1	6.73 0.56
Juhia Ysland, ()..........		01514.60	2173024	Point Willie	31303	908.3	993.3	0.56
Jutia Island, (5).	250713.16	01345.65	3394027	French Reef. \times........	1594120 2910909.	10077.3 9224.5	11030.2 2432.6	6.26 1.38
1'oi	250430.86	01714.03	2952921	French Reef.	1153143	10348.6	11316.9	6.43
1	-5 0430.8	0.714 .03	2953516	Dry Rocks..............	1153709	8275.4	9049.7	5.15
Pickle's Reef.	245921.88	01530.63	3630301	Point Charles.	3430217	9938.4	1080\%.3	6.17 3.02
Rils Reef	2450 21.88	,	1863408	Lower Sound Point ...	63430	12910.0	14118.0	
Excelsior	850522.59	01632.21	2413903	Lower Sound Point	613951	3638.4	3978.9	2.26
	23020		3092380	Iry Rocks...	1292455	8140.9	8902.6	. 06
Rodriguez Bank	250251.04	01725.79	1860728	Point Charles.........	60933	3089.0	3378.9	1.92
Rodriguez Bank	2502.11 .01	01725.\%	1975044	Excelsior.	175107	4898.7	5357.1	3.04
Tartarus	250645.37	01538.10	2955514	L.ower Sound Poinl.....	1155540	1874.8	2050.2	1.16
			304548	Exceleior............	2104525	2963.4		
Avemus.	950611.35	01606.71	2644642	Lower Sound Point	844720	2498.1	2781.8	1.55
Avemur.		010	252757	Excelsior.	2052746	1661,6	1817.1	1.05
Styx	250601.55	01524.73	5737	Excetsio	23736	2238.7	2448.2	1.39
,	2500	01521.73	104 2x 20	Avernus	984 2202	1214.1	1327.7	
Eands' Point.	253008.37	0202.90						
Black Point	253207.51	0 9 27.64	2862524	Sands' Point	1062836	12946.4	14157.8	8.04
Turkey Point.	252617.13	$0 \quad 939.89$	1814843	Black Point...........	18848 605314	10786.4 14613.6	11795.7 15981.0	6.70 9.08
¢			240495	Sandes' Point.............	605314	14613.6	15981.0	9.08
Rubicon Poin	252345.24	$0 \quad 528.39$	1563752	Bhek Point	3363609	16840.5	18416.3	10.46
边			1233830	Turkey Point...........	3033642	8438.8	9228.4	5.25
Long Arsenicker Key.	25.2234 .43	0838.74	2474555	Rubicon Point	674716		6285.3	3.57 4.39
Long Arsenicker Key.	22.223 .43	0838.74	1655937	Turkey Point.	3455911	7058.3	718.7	4.39
Cerd's Point	251920.43	01112.39	2294329	Rubicnn Point .	494556	12601.5	13780.6	7.83
Cards Point	21920	01112.89	2154356	Long Arsenicker Key...	354502	7354.2	8042.3	4.57
Snapper Yoint	251984.01	0804.83	e8 4827	Card's Point	2684707	5246.4	5787.3	$\stackrel{3.26}{5.68}$
Snapor Point.	,		2083326	Rubicon Point	283433	9246.1	10001.7	5.68
Pumpkin Key.	251936.35	0818.42	841539		26414×4	4889.5	5\%47.1	3.04
Pumpkin Key.............		0 818.42	1740454	Long Arsenicker Key..	3540445	5508.7	6024.2	3.42
Mangrove Point	252147.12	0939.03	3304422 3045	Pumpkin Key Card's Point	1504456 210011	$\begin{aligned} & 4611.9 \\ & 5: 213.9 \end{aligned}$	$\begin{array}{r} 5043.5 \\ 5701.8 \end{array}$	2.86 3.24
Comorant 1		01104.46	2030039		230141	10419.4	11394.2	6.47
Comorant Foin	20.172 .75	011 04.46	2331329	Enapper Point	532446	6258.2	6843.7	3.89
Little Card's Point	251742.43	01303.25	2254737	Card'\& Point.	454894	4325.0	4729.6	2.69
ards	2 L -		24980808	Snapper Proint	692916	8912.3	9746.2	5.34
Mahogany Point...........	2523 35.02	0934.45	1781502		3581500	4986.1	5452.6	3.10
Manogany Point..........	25 23.02	.	2672434	Rubicon Point	872620	6883.8	7527.9	4.27
Turtle Point	252507.35	01006.55	288 O183	Rubicon Point, .	1080322	8175.1	8940.0	5.08
(Por			3322659	Long Arsenicker	1522737	5306.8	5803.3	3.36
North Arsenicker.	252344.41	0749.89	2694127	Rubicon Point	1294228	3954.8	4324.8	2.46
North Akemicko.........	as 2 小,		25859	Snapper Point	1825853	8022.9	8773.6	4.99
West Arsenicker.	252417.62	0837.97	1544641	Turkey Point.	3544614	4060.3	4440.2	2.52
West Arsenicker..........	3 L 17.62	0 e 3.07	02397	Long Arsenicker. ,	1802327	3175.3	3472.4	1.97
Broad Creek.	259058.38	0612.56	1254250	Long Arsenicker.	3054149	5039.3	5503.2	3.13
Broad Creek...............	25 208.08	12.50	1042413	Mangrove Point.	2842243	5959.5	6517.2	3.70
Shark Point.	259037.63	01033.96	2215141	Long Arsenicker.......	415230	4895.9	5877.5	3.00
Shark Point.			2154107	Maugrove Point.	354131	2632.4	28.8.7	1.64
Angelfish Creek	259006.30	0713.98	152×03	Long Arsenicker.	3323189	5137.0	5617.7	3.19
Angont Creak			1272512	Mangrove Point.	3072409	5106.0	5583.8	3.17
Old Rhodes, (1)	25 2246.69	0556.81	295132	Enapper Point	2095037	7190.2	7864.0	4.47
			340355	Pumpkin Key..........	2140254	7669.0	7730.4	4.39
Old Rhodes, (2)	252233.98	W,0 5 57,80		Snapper Point	2124003	6578.4	7193.9	4.09
Old Ehodes, (2)	25 23.00	W. 5 W.eo	371926	I'umpkin Key...........	917189	6485.0	7091.8	4.03

UNITED STATES COAST SURYEY.-GEOGRAPHICAL POSITIONS.

Section V1.-Card's Sound. Sketch F, No. 3.

Section IX.-Coust southwest of Galveston. Sketch I.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Island East Base	$\begin{gathered} \circ \\ 2912 \\ 29 \\ \hline 12.58 \end{gathered}$	$\begin{array}{cc:c} 0 & \prime \prime \\ \mathbf{W . 6} 54 & 38.11 \end{array}$	- 14			Metres.	Yards.	Miles.
Virginia Point	291912.62	65212.44	183517	Islan	1983405	16818.9	18392.7	0.45
Black Point .	291451.60	65853.86	$\begin{aligned} & 2975547 \\ & 1804838 \end{aligned}$	1.land East BaHighland Bayou	$\begin{array}{rrr} 117 & 57 & 52 \\ 0 & 43 & 55 \end{array}$	$\begin{array}{r} 7817.6 \\ 11741.1 \end{array}$	$\begin{array}{r} 854.1 \\ 12899 \end{array}$	$\begin{aligned} & 4.86 \\ & 7.69 \end{aligned}$
Hatternake	285837.69	71405.00	3831901	Cottonwood. levinsula	$\begin{array}{r} 31902 \\ 505247 \end{array}$	$\begin{aligned} & 10992.7 \\ & 8054.7 \end{aligned}$	$\begin{array}{r} 12021.3 \\ 8808.4 \end{array}$	6.83 5.0 .1
Oyster Creek.	285930.87	71624.98	2058016 2510110	Cottonwood Peninsula.	$\begin{array}{lll} 25 & 21 & 35 \\ 71 & 04 & 10 \end{array}$	$\begin{aligned} & 10331.9 \\ & 10610.6 \end{aligned}$	$\begin{aligned} & 11298.7 \\ & 11603.4 \end{aligned}$	6.42 6.60
Market-house in Galveston.	291826.50	64613.93	$\begin{array}{ll} 98 & 20 \\ 50 \end{array}$	Virginia Point.. Island Eust Base	2781717 2325309	$\begin{array}{r} 97 \pi 3.7 \\ 17060.1 \end{array}$	$\begin{aligned} & 10690.4 \\ & 166.6 .4 \end{aligned}$	6.07 10.60
Belle	291417.46	65103.69	1682745 654336	Virginia Point... Island East Base	$\begin{aligned} & 348 \\ & 248 \\ & 27 \\ & 41 \\ & \hline 11 \end{aligned}$	$9873 . n$ 6352.7	10141.7	5.76 3.95
Morris	291053.98	65713.06	1593540 288518	Black Point. Island East Base	$\begin{array}{cc} 3393453 \\ 48 & 54 \\ \hline 28 \end{array}$	7805.5 5554.3	8535.8 6074.0	4.85 3.45
Velasco	285627.85	71645.55	1853859 2272322	Orster Creek .. Kattlesnake...	$\begin{array}{r} 53909 \\ 472440 \end{array}$	$\begin{aligned} & 5662.1 \\ & 5905.1 \end{aligned}$	6191.9 6457.6	3.59
Brazos	285733.07	71949.65	$\begin{array}{lll} 236 & 46 & 43 \\ 291 & 55 & 31 \end{array}$	Oyster C Velasco.	$\begin{array}{r} 564893 \\ 1115700 \end{array}$	$\begin{aligned} & 6629.5 \\ & 53 \% 3.8 \end{aligned}$	$\begin{gathered} 282.1 \\ 58 \end{gathered}$	4.122
Jupiter	285447.50	71922.22	$\begin{aligned} & 2335558 \\ & 1714235 \end{aligned}$	Velasco Brazos	$\begin{array}{r} 535713 \\ 3514221 \end{array}$	$\begin{array}{r} 5248.3 \\ 5150.6 \end{array}$	5739.3	$\begin{array}{r} 3.26 \\ 3.20 \end{array}$
Bryan.	285609.95	72403.73	$\begin{aligned} & 2493454 \\ & 288243 \\ & 24 \end{aligned}$	Rrazos.. Jupiter .	693657 1082553	$\begin{aligned} & 7349.1 \\ & 8035.5 \end{aligned}$	$\begin{aligned} & 8026.9 \\ & 8787.3 \end{aligned}$	$\begin{aligned} & 4.56 \\ & 4.99 \end{aligned}$
Mernard.	285141.94	72449.41	$\begin{array}{lll} 237 & 1044 \\ 188 & 31 & 34 \end{array}$	Jupiter \qquad Bryan. \qquad	$\begin{array}{r} 57 \\ 83132 \\ 836 \end{array}$	10545.6 8342.8	$\begin{array}{r} 11532.3 \\ 9123.4 \end{array}$	$\begin{aligned} & 6.55 \\ & 5.18 \end{aligned}$
Tom...	285789.21	71535.13	$\begin{array}{r} 16011 \\ 451697 \end{array}$	Oyster Cree Velasco..	3401133 2251552	$\begin{aligned} & 3981.1 \\ & 2684.0 \end{aligned}$	$\begin{aligned} & 4333.6 \\ & 2935.1 \end{aligned}$	$\begin{aligned} & 2.47 \\ & 1.67 \end{aligned}$
McNeel.	285346.23	72927.23	$\begin{array}{ll} 243 & 11 \\ 296 & 55 \\ 32 \end{array}$	Bryan Bernar	$\begin{array}{r} 631345 \\ 1165746 \end{array}$	$\begin{gathered} 98143.5 \\ \hline 815.5 \end{gathered}$	$\begin{array}{r} 10733.9 \\ 9234.0 \end{array}$	6.19 5.25
Mound...	285451.73	72112.57	451019 1172734	Bernard Bryan	2250834 $297 \quad 2611$	$\begin{aligned} & 8285.6 \\ & 5223.8 \end{aligned}$	$\begin{aligned} & 9060.9 \\ & 5712.6 \end{aligned}$	5.15
Cedar Lake.	284913.96	72924.30	$\begin{aligned} & 1792730 \\ & 2383236 \end{aligned}$	MeNeel. Bernard	$\begin{array}{r} 3592799 \\ 583438 \end{array}$	$\begin{aligned} & 8281.8 \\ & 8732.9 \end{aligned}$	$\begin{aligned} & 9166.1 \\ & 9550.1 \end{aligned}$	$\begin{aligned} & 5.21 \\ & 5.42 \end{aligned}$
Uzzell.	285040.96	7×41.85	$\begin{array}{rrr} 58 & 42 & 13 \\ 141 & 51 & 14 \end{array}$	Cedar La McNeel.	$\begin{aligned} & 2384955 \\ & 3214954 \end{aligned}$	$\begin{array}{r} 5153.9 \\ 7253.1 \end{array}$	$\begin{gathered} 5636.2 \\ 7931.8 \end{gathered}$	$\begin{aligned} & 3.21 \\ & 4.51 \end{aligned}$
Rhoden..................	285003.97	73418.90	$\begin{array}{ll} 280 & 53 \\ 289 & 26 \\ 285 & 56 \end{array}$	Cedar La McNeel.	1005548 $4918 \quad 17$	$\begin{array}{r} 8133.0 \\ 10453.9 \end{array}$	$\begin{array}{r} 8894.0 \\ 11432.0 \end{array}$	$\begin{aligned} & 5.05 \\ & 6.50 \end{aligned}$
Cany	284612.12	73452.87	$\begin{aligned} & 1872104 \\ & \mathbf{9} 375016 \end{aligned}$	Rhodes ..:. Cedar Lake.	$\begin{array}{r} 72190 \\ 575854 \end{array}$	7196.2	$\begin{array}{r} 789.6 \\ 11506.6 \end{array}$	4.47 6.54
Kenner.	284900.55	73820.84	$\begin{array}{lll} 268 & 20 & 16 \\ 312 & 34 \end{array}$	Cedar Lak Cany.	882435 13236	14551.6	15913.2	9.04 4.78
Lone Tree................	284857.80	W. 33636.87	$\begin{array}{rrr} 331 & 03 & 08 \\ 91 & 43 & 33 \end{array}$	Cany Keun	1510358 4714243	5×27.9 $\$ 280.1$	6373.2 3084.0	$\begin{aligned} & 3.62 \\ & 1.75 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section IX.-Coast southwest of Galveston. Sketch I.

Name or station.	Latitule.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Prairie	284655.03	$\begin{array}{ccc} \circ & \prime \prime \\ W .7 & 40 & 24.48 \end{array}$	$\begin{array}{rrr} \circ & \prime \prime \\ 220 & 56 & 23 \\ 278 & 19 & 58 \end{array}$	Kenner Cany	$\begin{array}{ccc}\circ & \prime \prime \\ 40 & 57 \\ 98 & 28 \\ 98 & 38\end{array}$	Mrtres. 5115.6 9090.3	Fords. 5594.3 9940.9	$\begin{array}{r} \text { Miles. } \\ 3.18 \\ 5.65 \end{array}$
sargent...................	284343.83	73944.37	1695146 239 89	$\begin{aligned} & \text { Prairie } \\ & \text { Cany.............. } \end{aligned}$	3493126 600127	5985.4 9131.0	$\begin{aligned} & 6545.5 \\ & 9985.4 \end{aligned}$	$\begin{aligned} & 3.72 \\ & 5.67 \end{aligned}$
Canal	284559.43	73745.03	$\begin{array}{r} 374890 \\ 1113611 \end{array}$	Sargent.. Prairie.	2174793 2913454	5282.6 4650.9	$\begin{aligned} & 5.76 .9 \\ & 5086.1 \end{aligned}$	3.28 2.89
Bath.......................	284102.55	74502.43	2144654 24043	Prairie . . Sargent..	344908 600655	13913.8 9957.7	$\begin{aligned} & 14450.2 \\ & 10889.4 \end{aligned}$	8.21 6.19
Smith.....................	284228.35	74218.27	2003600 2405358	Prairie Sargent	203655 605512	8770.4	9591.1 5226.1	5.45 2.97
Ranch.....................	284414.23	74253.14	$\begin{array}{r} 2190928 \\ 28020 \% 8 \end{array}$	Prairie Sargent	39 100 10 21	6384.6 5206.5	6982.0 5683.7	3.97
Live Oak...................	284442.30	W.7 44 : 39.47	$\begin{aligned} & 2392442 \\ & 2823902 \end{aligned}$	Prairie. . Sargent.	$\begin{array}{r} 592645 \\ 1024124 \end{array}$	$\begin{aligned} & 8033.2 \\ & 8206.2 \end{aligned}$	$\begin{aligned} & 8784.9 \\ & 8974.0 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 5 \quad 10 \end{aligned}$

Section X.-Bay of San Francisco. Sketch J, No. 6.

Name or station.	Latitude.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
North End of Base*.......	$375145,17$	$\begin{array}{cc} \circ \\ 122 & 16 \\ 19.30 \end{array}$	* ' "		* $1 /$	Metres.	Yards.	Miles.
Bouth End of	374908.31	1291455.49	1570236	North Bas	3370144	5251.8	5743.2	3.26
Yerba Ruena	374833.77	1222056.50	$\begin{aligned} & 228 \\ & 266 \\ & 263 \\ & 05 \\ & \hline 17 \end{aligned}$	Nonh Base........... South Base	$\begin{aligned} & 485853 \\ & 830918 \end{aligned}$	8985.8 8893.0	$\begin{aligned} & 9826.6 \\ & 9725.6 \end{aligned}$	5.58 5.53
Foint Avisadera.	374330.68	122 20 48,91	219 178 181 14	South Rase............. Yerba Buena.	$\begin{array}{r} 394613 \\ 39511 \end{array}$	13527.9 9398.5	$\begin{aligned} & 14793.7 \\ & 10213.4 \end{aligned}$	8.41 5.80
Rocky Island.	375345.52	1222018.75	$\begin{array}{rrrr}302 & 21 & 33 \\ 5 & 29\end{array}$	North Bame Yerba Buell	$\begin{aligned} & 1222400 \\ & 1852844 \end{aligned}$	6928.4 9654.7	7576.7 10538.1	4.31 6.00
Angel Island Peak	375139.71	1922449.97	$\begin{aligned} & 2691109 \\ & 2393818 \end{aligned}$	North Base \qquad Rocky Island	$\begin{array}{lll} 89 & 16 & 15 \\ 59 & 41 & 04 \end{array}$	12482.4 7678.9	13650.4 8397.4	7.76 4.77
Presidio Hill.	374735.91	122 26 49.65	$\begin{array}{lll} 258 & 18 & 09 \\ 201 & 15 & 52 \end{array}$	Yerba Buena..... Angel Island Peak	$\begin{aligned} & 789145 \\ & 211705 \end{aligned}$	$\begin{aligned} & 8820.6 \\ & 8065.3 \end{aligned}$	$\begin{aligned} & 9645.9 \\ & 8 \pm 20.0 \end{aligned}$	5.48 5.01
Presidio Observatory, (tran sit.)	374736.15	1222615.00	893101 1611153	Presidio Hill \qquad Point de los Cavallos	2693040 893101	$\begin{array}{r} 847.8 \\ 4904.1 \end{array}$	$\begin{array}{r} 927.1 \\ 5363.1 \end{array}$	0.53 3.05
Point San Jose	374823.60	1222439.63	266 41 177 29 6	Yerba Buena. Angel Igland Peak......	$\begin{array}{r} 864346 \\ 3573612 \end{array}$	5466.4 6050.8	$\begin{array}{r} 5977.9 \\ 6617.0 \end{array}$	3.40 3.76
Lime Point Eluff	374937.49	129 2752.68	$\begin{aligned} & 295 \\ & 44 \\ & 2829 \\ & 20 \end{aligned} 18$	Point Gnn Jose. Angel lsiand Peak......	1154616 495801	$\begin{aligned} & 5242.0 \\ & 5843.5 \end{aligned}$	5732.5 6390.3	3.26 3.63
Fort P	374827.06	1222735.18	$\begin{aligned} & 271 \\ & 24 \\ & 324 \\ & 45 \\ & \hline \end{aligned}$	Point San Jose.......... Presidio Hill	$\begin{array}{r} 91 \\ 144 \\ 46 \\ \hline 6 \end{array}$	$\begin{aligned} & 4295.1 \\ & 1930.4 \end{aligned}$	$\begin{aligned} & 4697.0 \\ & 2111.0 \end{aligned}$	2.67 1.20
Point L.obos.	374712.33	1222905.63	$\begin{aligned} & 2573933 \\ & 2014401 \end{aligned}$	Presidio Hill Lime Point Bluff.	$\begin{aligned} & 774056 \\ & 214446 \end{aligned}$	$\begin{aligned} & 3405.0 \\ & 4817.5 \end{aligned}$	$\begin{aligned} & 3793.6 \\ & 5268.3 \end{aligned}$	2.12 2.99
Bird Lock.....	374942.49	1222585.67	$\begin{array}{r} 274603 \\ .33 \\ \hline 3 \end{array}$	Presidio Hill. Point San Jose.	$\begin{aligned} & 2074593 \\ & 15.50934 \end{aligned}$	$\begin{aligned} & 4409.6 \\ & 2680.1 \end{aligned}$	4829.9 2930.9	2.74 1.67
Alcatraz Istand.	374934.08	1222420.61	$\begin{aligned} & 991529 \\ & 120459 \end{aligned}$	Bird Rock \qquad Point San Jose	$\begin{aligned} & 2791449 \\ & 1920447 \end{aligned}$	$\begin{aligned} & 1611.8 \\ & 2229.2 \end{aligned}$	$\begin{array}{r} 1762.6 \\ 2430.1 \end{array}$	1.00 1.38
Telcgraph Hill.	374806.43	1222319.42	$\begin{array}{lll} 105 & 08 & 11 \\ 151 & 01 & 39 \end{array}$	Point fan Jose Alcatras Island..........	$\begin{aligned} & 2850522 \\ & 3310101 \end{aligned}$	$\begin{array}{r} 2082.0 \\ 3088.9 \end{array}$	$\begin{aligned} & 2222.1 \\ & 3577.9 \end{aligned}$	1.26 1.92
Point Diablo...............	374912.50	1222859.73	$\begin{array}{r} 3040691 \\ 21350 \end{array}$	Fort Point. Point Lobos. .	$\begin{array}{lll} 124 & 07 & 13 \\ 182 & 13 & 46 \end{array}$	$\begin{aligned} & 2497.4 \\ & 3707.4 \end{aligned}$	$\begin{aligned} & 2731.1 \\ & 4054.3 \end{aligned}$	1.55 2.30
Point Bonita	374910.04	1293050.54	$\begin{array}{r} 2852858 \\ -3244392 \end{array}$	Fort Point..... Point Lobos.	$\begin{aligned} & 1053058 \\ & 1444426 \end{aligned}$	$\begin{array}{r} 4958.3 \\ 4444.7 \end{array}$	$\begin{aligned} & 5422.3 \\ & 4860.6 \end{aligned}$	3.08 2.76
Point de los Cavallos.......	3750 06.73	1222719.64	309 04 47 351 01 55	Point Ban Jose.......... Preeidio Hill.	$\begin{array}{ll} 189 & 06 \\ 171 & 25 \\ 13 \end{array}$	$\begin{array}{r} 5041.9 \\ 4706.9 \end{array}$	$\begin{aligned} & 5513.7 \\ & 5147.3 \end{aligned}$	3.13 2.93
Angei Imand Northwest...	375137.87	1222539.86	$\begin{array}{r} 3461045 \\ 405814 \end{array}$	Point 8 min Jose.......... Point de los Cavallos...	$\begin{array}{lll} 166 & 11 & 92 \\ 920 & 57 & 13 \end{array}$	$\begin{aligned} & 6167.5 \\ & 3790.7 \end{aligned}$	6744.6 4068.8	3.83 231

[^5]UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.
Section X.—Bay of San Franeisco. Sketch J, No. 6.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Dist.unce.	Distance.
Saucelito......	$\begin{gathered} \circ \\ 37 \\ 20.33 \end{gathered}$	$\begin{array}{cc} \circ & \circ \\ 122 & 27 \\ 48.14 \end{array}$	$\begin{array}{r} \circ \\ 260 \\ 32 \\ 342 \\ 505 \end{array}$	Angel Island Northwest. Point de los Cavallos....	$\begin{array}{r} 0 \\ 80 \\ 13 \\ 162 \\ 56 \end{array}$	Metree. 3181.6 2373.4	$\boldsymbol{Y}_{\text {rerds }}$. 3179.3 2595.5	$\begin{gathered} \text { Milce. } \\ 1.98 \\ 1.48 \end{gathered}$
Saucelito								
Peninsula Hill.............	375211.45	1229657.23	$\begin{array}{r} 2984197 \\ 381733 \end{array}$	Angel Istand Northwest. Sancelito Point..........	$\begin{array}{llll}118 & 24 & 14 \\ 218 & 17 & 0: 4\end{array}$	$\begin{aligned} & 21.55 .6 \\ & 2007.9 \end{aligned}$	$\begin{aligned} & 2357.3 \\ & 9195.8 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.25 \end{aligned}$
Strawberry Hill.	375243.58	1222853.74	$\begin{array}{lll}289 & 10 & 20 \\ 328 & 00 & 04\end{array}$	Peninsula Hill. Sancelito Point..........	109 148 11	$\begin{aligned} & 3014.5 \\ & 3026.1 \end{aligned}$	3296.63309.8	1.871.88
Angel Island Southeast....	375127.93	1222425.36	$\begin{array}{r} 33049 \\ 56 \quad 0745 \end{array}$	Point San Inse Lime Point Bluff.	183 30 40 236 05 28	5693.2610.8	6925.96672.1	3.543.79
Contra Costa, (3)	375302.95	1221748.83	1094336285710	Rocky Inland. Yerba Buena	$\begin{array}{llll}289 & 49 & 04 \\ 208 & 52 & 15\end{array}$	$\begin{aligned} & 3890.9 \\ & 9481.8 \end{aligned}$	$\begin{array}{r} 4235.0 \\ 10369.0 \end{array}$	2.425.89
Shag Rock	375002.86	1222526.08	$\begin{array}{rr} 24 & 1731 \\ 77 & 42 \\ \hline 2 \end{array}$	Presidio Hill. Litne Point Biuff.......	204257425440	$\begin{array}{r} 4969.7 \\ 3669.0 \end{array}$	5431.74012.3	$\begin{array}{r} 3.09 \\ 2.28 \end{array}$
Stony Hill.	374402.42	122 22 03,30	19103081331339	Yerba Buena............. Presidio Hith	$\begin{array}{r} 110344 \\ 3131044 \end{array}$	$\begin{aligned} & 8523.6 \\ & 9614.0 \end{aligned}$	$\begin{array}{r} 9321.2 \\ 10513.6 \end{array}$	5.305.97
San Antomio Point.	374820.24	1221727.56	$\begin{array}{lll} 28 & 56 & 00 \\ 94 & 41 & 12 \end{array}$	Point Antonio. Yerba Buena.	$\begin{aligned} & 2085357 \\ & 2.43904 \end{aligned}$	10190.95127.3	11144.55607.1	$\begin{aligned} & 6.33 \\ & 3.19 \end{aligned}$
San Antonio Creek.......	374727.02	1221322.34	5022221002202	Point Avisadera. Yerba Buena	2361749	$\begin{aligned} & 13132.2 \\ & 11298.1 \end{aligned}$	14351.0 12355.3	8.167.48
Middle Point.	374632.12	1221638.24	4742011904254	Point Avisadera.Yerba Buena............	22739283004016	$\begin{array}{r} 8298.7 \\ 7347.2 \end{array}$	$\begin{aligned} & 9075.2 \\ & 8034.7 \end{aligned}$	5.164.56
Gan Quentin Rock........	374623.35	1222155.90	$\begin{aligned} & 3425123 \\ & 1995200 \end{aligned}$	Point Avisadera......... Yerba Buena.	162520419	$\begin{aligned} & 5554.1 \\ & 4275.3 \end{aligned}$	$\begin{aligned} & 6084.7 \\ & 4675.3 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 2.66 \end{aligned}$
Richmond Point	3754 40.18	122203.17	361413303263	Angel Island Peak....... Rocky Island.............	2161231 123 270	$\begin{array}{r} 6896.8 \\ 3057.0 \end{array}$	7542.13343.1	4.29
								1.90
Molate Imland.............	375548.72	1222449.99	$\begin{aligned} & 3595946 \\ & 298 \quad 3504 \end{aligned}$	Angel Island Peak...... Rocky Island	$\begin{aligned} & 1795946 \\ & 1183751 \end{aligned}$	$\begin{aligned} & 7491.8 \\ & \mathbf{5} 546.0 \end{aligned}$	8192.8 8252.1	4.65
								4.69
High Hill.	375630.67	1222307.16	1539003210312	Angel Idand Peak Rocky Island.............	195375%141045	$\begin{aligned} & 9314.8 \\ & 6544.9 \end{aligned}$	$\begin{array}{r} 10186.4 \\ 7157.3 \end{array}$	5.79
								4.07
Point San Quentin.	375636.16	11922757.73	$\begin{gathered} 2712031 \\ 333 \\ 200 \end{gathered}$	High Hill................. Angel Island Peak.	9123301532201	7095.8	7759.8	4.41
						10225.3	11182.1	6.35
Contra Costa, (4).	375500.72	1222029.53	$\begin{aligned} & 3533115 \\ & 12547 \end{aligned}$	Rocky Island High Hill	$\begin{array}{llll}174 & 31 & 22 \\ 345 & 45 & 23\end{array}$	$\begin{aligned} & 2333.1 \\ & 4744.0 \end{aligned}$	$\begin{array}{r} 2531.4 \\ 5187.9 \end{array}$	1.45
								2.95
Bluff Point.	375316.67	1222545.10	$\begin{aligned} & 2124826 \\ & 1521407 \end{aligned}$	High Hill. \qquad Point San Quentin.	32300331246	$\begin{array}{r} 716.6 \\ 6950.7 \end{array}$	$\begin{aligned} & 7892.5 \\ & 7601.1 \end{aligned}$	$\begin{aligned} & 4.42 \\ & 4.32 \end{aligned}$
California City Point......	375445.80	1222727.98	$\begin{aligned} & 2430335 \\ & 16757 \quad 02 \end{aligned}$	High Hill. \qquad Point San Quentin.	63347864364	$\begin{aligned} & 7142.4 \\ & 3478.7 \end{aligned}$	7810.7	4.44
							3604.2	2.16
Cove Maderia.	375553.18	1228905.64	$\begin{aligned} & 2312224 \\ & 3116243 \end{aligned}$	Point San Quentin...... California City Point...	$\begin{array}{r} 5123 \\ 13103 \\ 106 \\ 43 \end{array}$	$\frac{2122.5}{3162.8}$	$\begin{aligned} & 2321.1 \\ & 3458.7 \end{aligned}$	1.32
								1.96
Marin Ifland...............	375750.67	1222700.04	$\begin{array}{r} 293 \\ 31 \\ 30 \\ 30 \\ \hline 1 \end{array}$	High Hill.	1732827	6196.5	6776.3	3.85
				Point San Quentiz......	2113019	2694.3	2946.4	1.67
Point San Pedro	375913.41	1222504.09	3191559	High Hill.	1391748	6619.5	7238.7	4.11
			294703	Point Aan Quent	2094553	5585.1	6107.7	3.47
Molate Point .	375647.47	1222414.64	862120	Point San Quentin.	2661903	5457.4	5968.0	3.39
			1491638	Point San Pedro.	3291731	5232.3	5721.9	3.25
Point San Pablo	375752.04	1222438.22	642135	Point San Quentin.....	2441033	5402.6	5908.1	3.36
			1400812	Point San Pedro.	3200719	3268.5	3574.3	2.03
Ban Rafael Creck.........	375815.96	1202314.20	3592730	Poiat san Quentin.....	172940	3081.9	3370.3	1.91
		,	2403329	Point San Pedro........	603449	3648.1	3589.4	2.27
Cove..........	375854.47	1222720.68	115987	Point San Quentin.	1915904	4359.0	4706.9	2.71
			2593757	Point San Pedro.	723844	1856.9	2140.0	1.22
Gam Pablo Bay.								
Marst Ifinnd.	375733.62	1222255.81	80751 1234910	Hiph Hill..............	$\begin{array}{llll}188 & 07 & 44 \\ 303 & 47 & 14\end{array}$	1960.5 5529.6	2143.9 6047.0	1.22 3.43
Castro....	375844.02	1222100.36	370149	High Hill.	2170031	5148.8	5830.5	3.20
			965331	Point San Pedra.......	$\underline{276} 5624$	7471.3	8170.4	4.64
Point Penole..............	380040.57	1282059.64	220024	High Hin.	2015906	8308.9	9006.4	5.16
			700811	Point Ean Pedro.......	2500504	7898.3	8637.3	4.91
Petaluma Creek............	380610.36	1202893.85	3130940	Point Pencle............	1331414	14859.9	16243.2	9.23
			3450834	Point San Pedro.........	1651000	13289.0	14543.4	8.26

UNITED STATES COAST SURVEY,-GEOGRAPHICAL POSITIONS.

Scction X.-San Pablo Bay. Sketch J, No. 6.

Name or station.	Latitude.	L.ongitude.	A zimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Long Pond................	$\begin{gathered} \circ \\ 3807 \\ 07.98 \end{gathered}$	$\begin{array}{cc} \circ & \prime \prime \\ 102 & 18 \\ 36.44 \end{array}$	$\begin{array}{lll} 15 & 11 & 11 \\ 35 & 05 & 14 \end{array}$	Point Penole.... Pointan Pedro	$\begin{array}{rrr} \circ & \prime \prime \\ 195 & 09 & 43 \\ 215 & 00 & 38 \end{array}$	$\begin{aligned} & \text { Metres. } \\ & 13333.5 \\ & 19001.3 \end{aligned}$	$\begin{array}{r} \text { Yards. } \\ 145 \% 1.1 \\ 20749.2 \end{array}$	Miles. 8.28 11.81
Grov	380043.54	1222817.52	$\begin{aligned} & 1790723 \\ & 27027 \quad 19 \end{aligned}$	Petalumn [roint......... Point Penole.	359 90 90 31	$\begin{aligned} & 10077.5 \\ & 10681.0 \end{aligned}$	$\begin{aligned} & 11020.5 \\ & 11680.4 \end{aligned}$	$\begin{aligned} & 6.26 \\ & 6.64 \end{aligned}$
Long Point................	380245.31	1202928.02	$\begin{array}{lll} 287 & 11 & 29 \\ 193 & 53 & 17 \end{array}$	Point Penolt Petaluma Creek.......	1071642 135356	12980.2 6512.9	14194.8 7122.3	8.07 4.05
Tolay Creek	380757.00	1222350.69	$\begin{array}{r} 6344 \quad 92 \\ 34246 \quad 14 \end{array}$	Petaluma Creek. Print Periole.	$\begin{aligned} & 2434113 \\ & 1624759 \end{aligned}$	$\begin{array}{r} 7420.7 \\ 14085.9 \end{array}$	$\begin{array}{r} 8115.1 \\ 15403.9 \end{array}$	4.61 8.75
Sonoma Creek	380824.08	1222101.38	690696 3594945	Petaluma Creek Point Perole............	2490153 1794946	11.337 .6 14289.9	$\begin{aligned} & 12617.2 \\ & 15627.0 \end{aligned}$	$\begin{aligned} & 7.17 \\ & 8.88 \end{aligned}$
Valtejo, (3)	380409.75	1221224.14	$\begin{array}{r} 1251921 \\ 625253 \end{array}$	Long Pond \qquad Roint Penole. \qquad	$\begin{aligned} & 3051531 \\ & 24247 \quad 35 \end{aligned}$	$\begin{aligned} & 11111.9 \\ & 14126.5 \end{aligned}$	$\begin{array}{r} 12151.6 \\ 15448.6 \end{array}$	6.90 8.78
Lone Tree Foint.	380216.75	1221520.39	1541554 701839	Long Pond \qquad Point Penole \qquad	$\begin{array}{lll} 334 & 13 & 53 \\ 250 & 15 & 10 \end{array}$	10995.4 8788.5	12024.2 9610.8	6.83 5.45
Wilson	380040.93	1221757.29	$\begin{array}{r} 895213 \\ 17545 \quad 36 \end{array}$	Point Penole............ Long Pond	$\begin{array}{lll} 269 & 50 & 21 \\ 355 & 45 & 12 \end{array}$	4447.5	$\begin{array}{r} 486.3 .6 \\ 14099.1 \end{array}$	$\begin{aligned} & 2.76 \\ & 8.01 \end{aligned}$
Mare Island Southeast....	380434.35	1221416.87	2852509 200320	Vallejo, (3) Lone Tree Point.	$\begin{array}{lll} 105 & 26 \\ 200 & 62 & 41 \end{array}$	$\begin{aligned} & 2850.1 \\ & 4515.7 \end{aligned}$	$\begin{array}{r} 3116.8 \\ 4938.3 \end{array}$	1.77 2.81
Vallejo, (1)	380515.38	1521345.58	$\begin{array}{r} 310523 \\ 3153242 \end{array}$	Mare Island Southeast. . Vallejo, (3)..............	2110504 1353332	$\begin{aligned} & 1477.0 \\ & 2833.9 \end{aligned}$	$\begin{aligned} & 1615.2 \\ & 3099.1 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.76 \end{aligned}$
Mare Isiand Northwest. . ..	380519.19	1221503.90	2733124 3202027	Vallejo, (1)............... Mare Islind Southeast..	$\begin{array}{r} 933212 \\ 1409050 \end{array}$	$\begin{aligned} & 1912.1 \\ & 1795.8 \end{aligned}$	$\begin{aligned} & 2091.0 \\ & 1963.8 \end{aligned}$	1.19
Abbott	380310.52	1221334.88	$\begin{aligned} & 1582354 \\ & 223 \leq 052 \end{aligned}$	Mare Island Southeast. . Vallejo, (3)...............	$\begin{array}{r} 3382328 \\ 432136 \end{array}$	$\begin{aligned} & 2779.7 \\ & 2511.6 \end{aligned}$	$\begin{aligned} & 3039.8 \\ & 2746.6 \end{aligned}$	1.73
Buth Hill.................	380257.90	1221120.79	$\begin{array}{rrrr}145 & 07 & 31 \\ 96 & 47 & 51\end{array}$	Vallejo, (3)................ Ablett	$\begin{aligned} & 3250659 \\ & 9764698 \end{aligned}$	$\begin{array}{r} 2700.3 \\ 3821.9 \end{array}$	$\begin{array}{r} 2953.0 \\ 3599.9 \end{array}$	1.68 2.05
North Bay	380357.14	1220950.84	501305 955790		$\begin{aligned} & 2301210 \\ & 275 \\ & 545 \end{aligned}$	$\begin{array}{r} 2853.7 \\ 3756.7 \end{array}$	$\begin{aligned} & 3120.7 \\ & 4108.2 \end{aligned}$	1.78 2.33
Karquines Point.	380233.50	1220948.52	$\begin{aligned} & 1784452 \\ & 1023003 \end{aligned}$	North Bay............... Bush Hill.	$\begin{aligned} & 35844 \\ & 288 \\ & 299 \\ & \hline 06 \end{aligned}$	$\begin{aligned} & 2579.3 \\ & 2572.0 \end{aligned}$	$\begin{aligned} & 2820.7 \\ & 2594.0 \end{aligned}$	1.60 1.47
Monument Hill.	380332.34	1220825.35	$\begin{array}{r} 481128 \\ 1100930 \end{array}$	Karquines Point North Bay...............	$\begin{aligned} & 998 \quad 1037 \\ & 290 \end{aligned} \frac{08}{97}$	$\begin{aligned} & 2720.7 \\ & 2219.6 \end{aligned}$	2975.3 2427.3	1.69 1.38
Martinez.	380106.86	1220742.84	131.0458 1665928	Karquines Point. Monument Hill	$\begin{array}{lll} 311 & 03 & 40 \\ 346 & 59 & 02 \end{array}$	$\begin{aligned} & 4065.4 \\ & 4603.2 \end{aligned}$	$\begin{aligned} & 4445.8 \\ & 5083.9 \end{aligned}$	$\begin{aligned} & 2.53 \\ & 2.86 \end{aligned}$
Army Point...............	380300.31	1200649.15	$\begin{aligned} & 203131 \\ & 791846 \end{aligned}$	Martinez Karquines Point.	$\begin{aligned} & 20030 \quad 58 \\ & 25 y 1655 \end{aligned}$	$\begin{aligned} & 3734.4 \\ & 4450.5 \end{aligned}$	$\begin{aligned} & 4083.9 \\ & 4866.9 \end{aligned}$	2.32 2.77
Suiqun Point	380201.21	1200607.26	541743 1295124	Martinez Monument Hill	2341644 3494959	2870.6 4384.7	$\begin{array}{r} 3139.2 \\ 4795.0 \end{array}$	$\xrightarrow{1.78}$
IEland Point..............	380147.75	1220527.64	690506 1382309	Martinez: \qquad Army Point.	$\begin{aligned} & 2490343 \\ & 31822 \quad 19 \end{aligned}$	$\begin{aligned} & 3599.9 \\ & 209.0 \end{aligned}$	$\begin{array}{r} 3860.1 \\ 3272.0 \end{array}$	2.19
Benicia, cross on church. .	380310.88	1220823.81	$\begin{array}{r} 3452106 \\ 605048 \end{array}$	Martinez Karguines Point	$\begin{aligned} & 1652131 \\ & 24049 \\ & 49 \end{aligned}$	$\begin{aligned} & 3951.7 \\ & 9364.9 \end{aligned}$	$\begin{aligned} & 4321.4 \\ & \$ 586.2 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 1.47 \end{aligned}$
Coast neat Gan francisco.								
Point Lobos, (2)	374706.17	1228856.05	$\begin{aligned} & 2532819 \\ & 1082299 \end{aligned}$	Presidin Hill Lime Point Bluff \cdots	$\begin{aligned} & 732929 \\ & 182308 \end{aligned}$	$\begin{aligned} & 3225.6 \\ & 4915.8 \end{aligned}$	$\begin{aligned} & 3527.4 \\ & 5375.8 \end{aligned}$	2.00 3.05
Sand Knoll................	374534.71	1222839.95	$\begin{aligned} & 215 \quad 5949 \\ & 1720245 \end{aligned}$	Presidio Hilf............. Point Lobos, (2)	$\begin{array}{r} 358057 \\ \times 3520235 \end{array}$	$\begin{aligned} & 4609.5 \\ & 2849.9 \end{aligned}$	$\begin{aligned} & 5040.8 \\ & 3113.3 \end{aligned}$	2.86 1.77
Black Ridge..............	374510.75	1222711.98	$\begin{aligned} & 1865735 \\ & 1442452 \end{aligned}$	Presidio Hill............. Point Lobros, (2)........	$\begin{array}{r} 65749 \\ 3248348 \end{array}$	$\begin{array}{r} 4508.3 \\ 43.5 .6 \end{array}$	$\begin{aligned} & 4830.2 \\ & 4785.0 \end{aligned}$	2.80
Round Top...............	374604.85	122829.92	$\begin{aligned} & 1316335 \\ & 1992003 \end{aligned}$	Point Lobms, (2) Presidio Hill	3115242 192088	$\begin{array}{r} 2831.1 \\ 2975.2 \end{array}$	$\begin{array}{r} 3096.0 \\ 3253.6 \end{array}$	1.76 1.85
Black mluff.,........,.....	374307.16	1222914.12	1832508 2180654	Point Lobns, (2) Black Ridge	$\begin{array}{r} 38609 \\ 380809 \end{array}$	$\begin{array}{r} 7381.3 \\ 4843.3 \end{array}$	$\begin{aligned} & 8079.0 \\ & 5206.3 \end{aligned}$	4.59 3.01
Abbey Hill	374120.00	1222514.28	$\begin{aligned} & 1575711 \\ & 1199291 \end{aligned}$	Back lidge Black Bluff...................	$\begin{aligned} & 3375559 \\ & 299 \quad 1954 \end{aligned}$	$\begin{aligned} & 7675.0 \\ & 6739.5 \end{aligned}$	$\begin{aligned} & 8693.2 \\ & 7370.2 \end{aligned}$	4.77 4.19
Green Btuff................	374118.80	1222843.23	1671436 1972042	Bhack Bhaff. Black Ridge	3471417 172138	$\begin{array}{r} 3425.3 \\ 7491.5 \end{array}$	$\begin{aligned} & 3745.8 \\ & 8192.5 \end{aligned}$	$\begin{aligned} & 2.13 \\ & 4.65 \end{aligned}$
Catue Hill.................	373624.36	1228555.77	$\begin{aligned} & 2039745 \\ & 1724156 \end{aligned}$	Abbey Hill. Green Bluff \qquad	$\begin{array}{r} 232924 \\ 2524127 \end{array}$	$\begin{aligned} & 9936.5 \\ & 9151.0 \end{aligned}$	$\begin{aligned} & 10066.3 \\ & 10007.3 \end{aligned}$	$\begin{aligned} & 6.17 \\ & 5.69 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section X.-Coast near San Francisco. Sketch J, No. 6.

Section XI.-Columbia River. Sketch K.

Name or station.	Latitude.	Longitude.	Azimuth.	To station-	Back aximuth.	Distance,	Distance.	Distance.
	$\cdots{ }^{\circ} 10$	$\bigcirc{ }^{\prime}$	- $1 /$		-1 1	Metres.	Yards.	Miles.
	461812.74	1235743.01						
	461852.11	123.5955 .78	2930856	East Base	1131031	3089.7	3378.8	1.92
Cape Disappointment.....	461644.05	1240147.43	2422043 2110804		$\begin{array}{llll}62 & 23 & 39 \\ 31 & 09 & 25\end{array}$	5904.4 4619.4	6456.9 5051.6	3.67 $\mathbf{2 . 8 7}$
Haker's Bay...............	461627.50	1235549.17	935058	Cape Disappointment. .	2734633	7066.4	8405.6	4.78
			1430844	East Base................	3230722	4061.2	4441.2	2.52
Searbors' Fill	461590.44	1235414.54	1400143	East Base.	3195912	6943.6	7593.3	4,31
			1045710	Cape Disappointment...	2845143	10034.6	10973.5	6.23
Point Adama	46.1230 .42	1235655.80	1412653	Cape Disappointment. .	3212322	10017.0	10954.3	6.29
			2132012	Scarboro' Hill.	338208	6284.0	6872.0	3.90
Cape Hancock, astronomical station.	$4616 \quad 35.24$	1240200.90	3190715	Praint Adsms...........	1391055	9992.2	10927.2	6.21
			2825832	Scarboro' Hill...........	1030409	10249.0	11207.9	6.37
Band Ishand ${ }^{\text {ce }}$	461434,69	1235831.76	1884823	East Base	84858	6812.6	7450.1	4.23
			2553541	Scarboro' Hill	753847	56 E .2	6219.4	3.53
Astor Point.................	461127.62	1244931.74	1013325	Point Adams...........	2812805	9714.9	10623.9	6,04
			1395342	Scarboro' Hill..	3195018	9401.6	10281.3	5.84
Tansy Point...............	461122.54	1233435.16	1244839	Point Adams.	3044717	3671.9	4015.5	2.98
			2683521	Astor Point	883900	6507.3	7116.2	4.04
Priests House, cross......	461443.51	1235396.76	131755	Tansy Point	1931706	6375.3	6971.8	3.96
			472925	Hoint Adams.	2272654	6078.2	6646.9	3.78
Snith's Point..............	461047.97	1235040.67	1020021	Tanky Point.	2815732	5140.2	5621.2	3.19
			1512011	Scarbono' Mill.	3312337	9579,6	10475.9	5.95
Marsh Point, (1)...........	460931.85	1235144.98	1974029	Tansy Point	3073827	4582.9	5011.7	2.85
			2185643	Smith's Point	3857 \%	2298.2	$24 * 36$	1.38
Bkppernawin Creek......	461024.06	1235339.76	1403944	Tangy Puint	3288904	2161.3	2363.3	1.84
			2590600	Smith's Point..........	740809	3911.2	4277.8	2.43
Younglo Miver.... +.......	460948,44	1294909.83	914831	Marsh Point	9714638	3064.1	3678.9	2.09
			1330907	Smith's Point....	81308	2687.9	2939.4	1.07
Lewis and Clark River....	460999.88	1235051.67	120169	Marsh Point	3001540	1349.0	1475.2	0.84
			1853500	Emith's Point	53568	2424.2	2651.0	1.50
Point minle . .o...t.......	481488.50	1235188.11	693540	Foint Adama.	2423143	7911.6	8651.9	4.98
			525 55 88	Aetor Point.:	1555052	6116.1	6688.4	3.80
	461685.18	1934502.41	30838	Astor Point............	2120624	10848.7	11863.8	6.74
			66883	Potnt Elliee	8462356	9011.1	8854.3	5.80

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section XI.-Columbia River. Sketch K.

APPENDIX No. 8.

List of capes, headlands, harbors, and anchorages on the Western coast of the United States, of which the geographical positions have been determined, topographical surveys made, and charts and sketches issued, to date of report of 1852.

1	False Dungeness	Position determined.	-	
2	Scarboro' or Nee-ah harbor	Position determined.		
3	Cape Flattery	Position determined.		
4	Cape Disappointment	Position determined.	Topographical surrey made...	Sketch issued.
5	Point Adams		Topographical survey made.	
6	Cape Orford, Ewing harbor.	Position determined.		
7	Trinidad bay.	Posicion determined		Sketch issued.
8	Humboldt bay	Position determined		Sketch issued.
9	Fort Point.		Topographical survey made.	
10	Alcatraz Island.		Topographical survey made...	Sketch isated.
11	Mare Island Straits.		Topographical survey made...	Sketch issued.
12	Presidio, San Francisco bay	Position determined.		
13	Santa Cruz.	Position determined		Sketch issued.
14	Point Pinos, Monterey harbor	Position determined	Topographical survey made...	Preliminary chart.
15	San Simeon.	Position determined		Shetch issued.
16	San Luis Obispo	Position determined		Sketch issued.
17	Point Concepcion	Position determined		Sketch issued.
18	Santa Barbara	Fosition determined.		
19	Prisoners' harbor	Position determined.		
20	Cuyler's harbor	Position determined.		Sketch issued.
21	San Pedro.	Position determined.	Topographical survey made.	
22	San Nicolas	Position decermined.		
23	Santa Catalina	Position determined.		Sketch issued.
24	San Clemente	Position determined		Sketch issued.
25	Point Loma, San Diego	Position determined	Topagraphical survey made..	Preliminary chart.

APPENDIX No. 9.

Report of Lieut. Comg. M. Woodhull, United States Navy, assistant in the Coast Survey, to the Superintendent, on the location of surf-boats on the coast of Maine and New Hampshire.

Coast Surtey Station, near Phillips, Maine, October 24, 1853.
Sar: I have the honor to enclose the report of Lit. Conag. M. Woodhull, U. S. Navy, assistant in the Coast Survey, on the location of surf-boats on the coast of Maine and New Hampshire; made in pursuance of instructions to me by the department.
After a careful examination of the localities formerly preferred by him, and visiting others in their vicinity, Lieut. Comg. Woodhall has succoeded in obtaining suitable persons to take charge of the boats, under the bond required by the Treasury Department, at Seal Harbor, near Whitehead light, Maine; Southwest Harbor, Mount Desert, Maiae; Millbridge, Narraguagus Bay, Maine; and Isle of Shoals, near Portsmonth, New Hampshire.
He desired to plsce boats at Cape Small Point harbor, mouth of the Kennebec, Maine, and at Wood island, Saco bay, Maine, and finding no one willing to give the required bond, posted the notice provided in that case by the instructions of the department.
A boat shed should be built over thewe boats for their preservation, and a wooden railway be made to haul them up readily. I would aloo recommend that authority be procured from Congress to pay a small annual sum for the care of the boats, as is done by the Massachusetts Humane Society, providing for their inspection once or twice each year, or else a bounty, such as is proposed by Lieut. Comg. Woodhull.
I am in correspondence with Lieut. Comg. Stellwagen, United States Nary, nssistant in the Coast Survey, in regard to his inquirias into the location of surf-boats within the laydrographic section in which be is eagaged, (the coast of Museachusetts and Rhode Island, and will communicate further with the department as soon as the matter is matured.

With the report of Lieut. Comg. Woodhul, I enclose the bonds referred to. Very respectfully, youra, \&c.,
A. D. BACHE, Superintendent of Coast Surpey.

Hon. James Gothris, Secretary of the Treasury.

U. S. Schooner "Gallativ;" Plymouth, October 15, 1853.

Qra: Your order of September 26, directing me to make examination of certain localities solected for the purpose of miling them life-kont tstions, has been executed. I left on he firat instant, and only returned yetterday. The duty was both ardnows and difficult, and, owing to the peculiar insufficiency of the law creatiog these boate, I was successful only in part in obtaining persons to take charge of them. The following is the result:
Whitekead light was not considered, on examination, a suitable point for the purpose, owing to the attural dificulties of polition and the imporibility of manaing the boet, if everytiting else was favorable. I concluded to place the boat at a mall settlement in Seal harbor, about one and a haff mile from Whitehead light-the place is called St. Georges. Mr. Fogg sighed the bond aemanded by the Secretary of the Treasury. I was obliged, bowever, to promise that a boat-house
would be erected at this point, as otherwise the boat could not be kept in ready serviceable order. I really hope that the department will see the propriety of it, and order the house to be built. Enclosed is the bond.

The next site selected was Southwest harbor, on Mount Desert. Before selecting this site I visited Cranberry islands, but could not find any one willing to take charge of a boat; and, besides, there was the usual difficulty of these outaide places, of getting a sufficient number of persons together to man and manage it. I examined Bass harbor and two or three other points, and finally settled down on Southwest harbor. Mr. Henry H. Clarke undertook the chrrge and safe-keeping of one of these boats, and I forward you his bond, agreeably to the directions of the Secretary of the Treasury.
The next site selected was at Millbridge, in Narraguagus bay. I cannot say that I am altogether satisfied with this selection; but as I could not do better, and as thé people urged the necessity of having a life-boat in that locality, I concluded, after examining Petit Menan island and point, and also Pond island, to gratify them. The facts are, with the exception of the light-house keepers and their families, the Petit Menan and Pond islands are uminhabited. Petit Menan Point is so sparsely inhabited that I did not see more than half a dozen houses, and those from at least one to two miles spart; besides, the people are poor, and disinclined to assume responsibility or more cares. I granted the care of one of the boats to two young persons of respectability and property, J. T. Wallace and A. R. P. Wallace, of Millbridge. Their bond, properly signed, is enclosed.
While at Rockland and at Mount Desert, I made efforts to get a convegance to the Martinicus islands, but was unsuccessful, and, after losing two days, gave it up. At the entrance of the Kennebec I was most unsuccessfal in finding a responsible and respectable man who was sufficiently moved by the interests of humanity to take the care of one of the boats. I visited Parker's Head, but, owing to its position, did not consider it a suitable locality, as was the case with Hannewell Point. I fually decided upon Cape Suall Puint harbor, as the very best site for the object. I saw several persons and endeavored to urge them to take one of the boats, but, I am sorry to say, without the least effect. I, however, published the notice directed by the Secretary of the Treasury, and left with Captain Abernothy Lowell a blank bond in case he changed his mind and might desire to have a boat located in his neighborhood.
At Wood Island harbor my success was as little as in my previous efforts. This is certainly one of the localities that ought ta be furnished with a life-boat, and the persons I talked with on the subject admitted the necessity of such assistr ance during the terrible winter storms, but I could not find any one willing to give the required bond. They were willing to take the boat, and would promise to use it, but would not bind themselves to repair it, or to be responsible for its care; so I published the directiuns of the Secretary of the Treasury, and left a blank bond.

I visited Boone island, but found it totally unfit for a life-boat station, being entirely uninhabited, save by the light-house keeper and family.
The "Isle of Shoals," I think, is the very best locality that could be selected for the purpose, inhabited as it is by a hardy, daring people, ready with heart and band to aid a shipwrecked seaman. I found no difficulty in getting a reliable person to assume the charge and responsibility of such a boat, and obtained from him the required bond, which I send you, signed by Lemuel B. Caswell, of the "Isle of Shoals."

This, sir, is the result of my visit and examination. I wish it might bave been more fortunate; but as I could only use persuasion, I must be satisfied with the success I obtained. I think Congress should provide some compensation for the people who undertake the use and care of these life-boats, not as a direct pay, but as a bounty on lives and property saved. A small allowance would have a good tendency, and might be the means of saviag many valuable lives. I would also suggest the necessity of these boats being provided with sails, particularly on this coast, as they would aid in approaching a distant point of disaster. There is scarcely a moment on this coast that sails would not be useful; and, besides, this means of propulsion is more favorable than perhape a long, wearisome pull with oars. I would urge this on the notice of those having charge of the matter.
All of which is respectfully submitted.
Yours, respectfully,
Prof. A. D. Bachy, Superintendent of Coast Survey, Phillips, Me.
Prof. A. D. Bachy, Superintendent of Coast Survey, Phillips, Me.
M. WOODHULL, Lieutenant Commarding.

APPENDIX No. 10.
Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting the report of Lieut. Comg. H. S. Stellwagen, United States Navy, assistant in the Coast Survey, in regard to the location of surf-boats on the coast of Massachusetts.

Coast Survey Station, niar Philifips, Maine, Nofember 18, 1853.
Sir: I have the honor to enclose to the department a report from Lieutenant H. S. Stellwagen, United States Navy, assistant in the Coast Survey, in regard to the location of surf-boats on the coast of Massachusetta, accompanied by a printed list and sketch showing the location of the boats of the Massachasetts Humane Seciety, and by two bonds signed by persons willing to take charge of boate at Nausett lighthouse and Glades House, Cohansett. I would commend this report to the attention of the department, and, being unacquainted with its general views in the matter, acarcely venture to make definite recommendations under the new circumstances of the case.
It appears to me, however, that the cosst of Maseachuset* being alrasdy well supplied with life-boatif and abasidiary apparatap, under excellent regulations by this noble eociety, other parts of the coast may be furnished. If, however, the number of boats selected for the coast of Massachnsette should be placed there, I think it would be judicioun to put them under the enntrol of this society, if the law permit it-

Should these boats be availabie for other parts of the coast, an officer might again vinit the coast of New Hampshire and Maine, and make selection of as many points as there were boats provided, where the conditions promibed by the department would be accepted.

The desire to make no mistake in this matter, under the new appect of things prodaced by the information obtained by Lieutennt Stellwagen, has delayed my report until this time. The subject has been one of conference and correapondence betwoen Lieutenant Stellmagen and myself, which has only just terminated in the roport of that officex.

> Very respectfully, yours, \&e.,

Hon. Jants Guthaze, Secretary of the Troaswry.
A. D. BACHE, Superintendent.

Philadelpuia, Novemher 12, 1853.
Sir: I have received your letter of the 9 th instant, and respectfully submit the following report concerning the location of life-boats on the coast of Massachusetts.
I visited, according to your instructions, the light-honse stations at Nausett and Cohassett, and st each place found that boats had already been placed by the Massachusetts Humane Society, and subsequently learned officially from R. B. Forbes, esq., and other officers of that society, that some forty or forty-one boats are stationed at intervals along the coast of the State, occupying nearly every suitable and required spot. My own observation at Cape Cod, Gloucester, Cape Ann, Marblehead, Nantucket, \&c., confirms the statement. And I can add, that in addition to the care of selection of places, great judgment is showu in the construction and equipment of the boats and life-preservers, and that howitzers for throwing lines, and all the modern inventions for assisting shipwrecked crews to land, and numerous houses furnished with fuel, \&c., for their preservation and comfort on reaching shore, have been provided by that admirable society, which also pays for the keeping of all the apparatas in good order, and causes a frequent inspection by Captain R. B. Forbes of all the details, with liberal power to repair and improve and re-arrange what may be necessary.

I have sent you a sketch showing the stations occupied, and also printed lists of them.
I have lately been favored by a visit from Captain Forbes. He agrees that all the most important sites are occupied, and says it would require careful consideration to select others. I read to him the instructions to show him the views of the Treasury Department on the subject, and he evinced great interest and zeal in it. He made the very proposition that I previously mentioned to you, viz: that the department should place the boats under the care of the society, which would take the proper care of them, use them to the best advantage, and accept them on the terms proposed.

I am clearly of the opinion that it would be decidedly the best course to pursue, shauld it be determined to devote the four boaks, as originally proposed, to the service of the Massachusetts const; as that may be decided by the greater necessity of other points on the Atlantic sea-board, such as the coast of New Jersey, where so many wrecks occur, the vicinity of Cape Hatteras, \&c., and the number of boats at the disposal of the department, or already placed at the latter points, of which I have not the mesns of information. Should the life-boats be few in proportion to the necessities, it should be borne in mind that the Masachusetts Humane Society have received a donation of $\$ 5,000$ from the general government of the United States some time since.
I forwarded to you agreements sigued by suitable persons at Nausett and Cohassett. But I must observe, that, to have them take the proper care, aome allowance should be made. The use of the boats would be of no service to individuals, except in cases of shipwreck, as they would require so many persons to lannch, manage, and haul them up. They could only be brought into service in some great event in the neighborhood, calling people tugether and exciting them, as the calls of humanity and the prospect of some gain always do our much defamed seacoast men and wreckers, whose skill, daring, and success are themes of admiration to all who hare the best opportunities of judging them.

No difficulty would be found in getting persons to watch over the boats, ventilate and clean them; but it could bardly be expected that they should be at the expense of painting them or building boat sheds. The sheds and wheels for transportation to spots for launching, (which spote vary with direction of gale,) should be furnished as part of the fixtures of the boats. Rough sheds might be built, and truaks provided, for about one hundred or one hundred and fifty dollars each boat, and I recommend that they be provided.

Very respectfully, your obedient servant,
H. S. STELLWAGEN,

Lieutenant United States Navy, Assistant in Coast Survey.
Prof. A. D. Bache,
Superintendent U. S. Coast Survey, near Phillips, Maine.

APPENDIX No. 11%
Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting extracts from a letter of Lieut. Comg. H. S. Stellwagen, United States Navy, assistant in the Coast Surbey, in relation to a rock in the harbor of Gloucester, Massachusetts.

Coast Survey Station, November 22, 1853.
Str: I have the honor to transmit, for the consideration of the Light-house Board, the accompanying extracts from a letter of Lieutenant Commanding H. S. Stellwagen, United States Navy, assistant in the Coast Survey, in relation to a fock in the harbor of Gloucester, Massachusetta, with the additional recommendation that a buoy be placed upon it as early as practicable, uniess its removal is soon provided for. I would request that this letter and its enclosures may be transmitted to the Light-house Beard.

Very respectfully, yours, \&c.,
Hom. James Guterie, Secretary of the Treasury.
A. D. BACEE, Superintendent.
Sir: * * * * * * $\quad * \quad$ Priladelphia, November 20, 1853.

The rock is very manall in diameter, and risea very abruptly. We anchored the boat and took about a hundred soundings the apex conld just be found with a lead or pole, and at a distance of four or five feet the depth would increane from nine sad ten feet suddenly to twenty and twenty-one.
Teut will perceive that it is in the track of veseels which enter by handreds into the inner harbor, particularly in the fikhing meason off the coast. The rock I think can be ossily removed by a blast, and should be attended to soon. The harbor is so good and so important as to merit great consideration.
Only a suffichent number of soundings have been copied on the tracing to show the general depth, \&c., in the neighborhood of the rock.

Very respectfuly, your obedient servant,
II. S. BTELLWAGEN,

Pmf L Lieut, Comg. United States Navy, Assietant in Coast Swroey.
Prof. B. D. Buosis, Superiatendent Coast Survoy.

APPENDIX No. 12.

Letter from the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting extracts from the report of Lieut. Comg. H. S. Stellwagen, United Ntates Navy, assistant in the Coast Survey, upon the discovery of soundings of thirty-six fathoms to the eastward of Fippenies Ledge, east of Boston.

Coast Scrvey Station, fear Peillips, Maine, November 16, 1853.

Sir: I bave the honor to inform the department, that having been apprized by George W. Blunt, esq., of New York, of the supposed existence of a bank of forty fathoms abont ninety milea east by compass from Boston light, the hydrographic party employed on the Nantucket shoals was instracted to seareh for it and determine its position

In accordance with these instructions, Lieut. Comg. H. S. Stellwagen, United States Navy, assistant in the Cosst Survey, in charge of that party, despatched Lieut. T. B. Huger, in the schooner "George Steers," one of the vessels of the party, for that purpose. The report of that officer is enclosed herewith, from which it will be seen that soundings of thirty-six fathous were had near the spot designated, in latitude $42^{\circ} 47^{\prime} \mathrm{N}$, and longitade $69^{\circ} 13^{\prime}$ W., Where one hundred fathoms appear upon the charts. The surface of the spot giving these soundings is about three miles in extent north and nouth, and two east and west, with thirty-eight and forty fathoms around it. This bank is probably Fippenies bank, the true pasition of which is further to the eastward than is laid down in the charts. A further examantion will be made as soon as the season permits.
I would respectfully request authority to publish this notice.
Very respectfully, yours, \&c.,
Hon. James Guthrie, Secretary of the Treasury.
A. D. BACHE, Superintendent.

United States Surveifing Schooner "George Steers,"
Gloucester, Mass., October 19, 1853.
Sir: In obedience to your order of the 12th instant, I proceeded, by courses laid down in a letter from Mr. Blant, (to Prof. Bache,) in search of the shoal apot to the southward and eastward of Fippenies bank. I commenced sounding on line No. 1 about $10 \mathrm{a}, \mathrm{m}$. on the 16 th , but found no bottom with seventy-five fathoms line up and down until between 5 and 6 p . m., when I found seventy fathoms on line No. 6 , haxing in the mean time run over the shoal spot as marked by you on the diagram. The wind belng light and variable, I made the best traverse I could, and sounding as often as practicable with the small number of men 1 had, but found no bottom again uncil a little after meridian on the 17 th, when I struck forty fathoms, and endeavored to follow the line of soundings. I was struck with a strong tide rip, in appearance the same as those off the Nantucket shoals, trending to the northward and westward. I ran one line along the eastern edge, soundiag in thirty-six, thirty-eight, and forty fathoms; another line through the middle of it; and, before leaving the ground, a line on the southern edge. I am disposed to think that there are several different knolls, with a depth varying from thirty to seventy fathoms, not now laid down on the chart. The character of the bottom, as far as I was able to obtain it, was coarse sand in the thirty fathoms water, and soft mud in the deeper water.

I remain, respectfully, \&c., your obedient servant,
T. B. HUGER, Lieut. U. S. Navy.

Lieut. Comg. H. S. Stellyagen,
United States Navy, Assistant in Coast Survey.

APPENDIX No. 13.

Report of George A. Fairfield, Esq., sub-assistant in the Coast Survey, to the Superintendent, upon the location of a tide-gauge on the beach at Siasconsett, on the outside of Nantucket island, Massachusetts.

$$
\text { Nantucket, September 18, } 1853 .
$$

Dear Sir: Your letter of the 12th was received last night, on my return from Hyannis.
In accordance with your request, I make the following report of my operations in eatablishing the tide-gange at Sisconsett.

My first object was to select the most suitable place for laying the pipe. As the beach for m mile or two from Siasoonsett presented the same appearance, and as you wishod it placed as near the village as practicable, I determined to lay it directly opposite, though the shore there is very unfavorable. There is a bluff of about thirty feet in height, againat which the sea breaks sometimes in violent storms. From this bluff the beach, which is of coarse sand, slopes very gradually for about one hundred feet, and then falls off very steep to the water. Just beyond low-water mark the beach again falls off, and forme a ridge.
1 made one or two changes in the plan ent to me, namely: Inatead of leaving the outer or soawari ond of the pipe turned up, with a large strainer upen it, I carried the pipe out atrsight, and let it project abont eight or ten feet beyond the ridge below low-water mark, and in place of the large atrainer, which would present a great murfuce to the water. I plugged up the ond of the iron pipe, and drilled four rows of holes in the pipe, about two inches apart, and wound a pieco. of fine copper netting, with a mesh of about $1-12$ th of an moh, around tho pipa, so as to cover all the holes, and secured it firmly with large copper wire. The advantage of this arrangemont is the small surface for the sea to aet upon, the imposaibility, almost, of this filter ever clogging up with sand or seaweed, and it does away with the necessity of having a berewpile to steady it. The other change was in the vertical part. As the pipe was only two fnches in diameter, I found, by trial, that a flost of that diameter, capable of supporting the staff, which only welgas one pound, would have to be nearly three feet in lengith, which of couree would require that the horizontal pipe be three feot lower than would otherwise be necessary. Inatead, therefore, of vaing the iren pipe for the vertical part, I had a woodon flout box made, witer-bight,
six inches diameter inside, and screwed the iron pipe into it near the bottom. By this means I got a copper float that would support the staff in two inches of water. The pipe is of wrought iron, in lengths of about ten feet, screwed together with irou couplings.
I commenced at the seaward end to lay the pipe. I serewed four lengths of it together; and, stopping the inner end with an iron screw-plug, to prevent the sand from getting in, I succeeded without much difficulty in getting them down below low-water level. Dut the next day, when we went to dig down to screw on another length, we found it to be inpossible, for this reason: we conld not keep the end of the pipe already laid clear enough of sand to enable us to screw on another length; for the moment we got down to the level of the water the sand was all alive, and as fast almost as one shovelful was taken out another would run in. Although we had the trench planked up at the sides and ends, the sand would run in underneath, and the surf would break over. And in that way we were prevented from getting any more lengths on. As we were working in two or three feet of water, we had to go entirely by the sense of feeling; and any sand at all in the thread of the sorew would prevent it from working. I saw at onee that I should encounter the same difficulty with every length, and determined to begin at the inner end, and work out.
For more than a week after this the surf ran so bigh that I could do nothing. Finally, I succeeded in taking up the four lengths already laid, and commenced digging at the inner end. We had to move an immense mass of sand. for the trench higd to be dug thirty feet wide at the top, and about twelve or fifteen deep; and the sand had to be shovelled over three or four times in order to get it out, and to prevent the sides from caving in. Λs soon as we reached water-which we did before we got down to the level of the sea-we planked up the sides, and made a sort of coffer-dam, which we kept digging under and sinking. I saw that I could never get it down in separace lengths, neither could I lay it all in one piece, on account of the surf rushing in upon us if I opened the outer end of the trench, which served as a bulkhead to keep the surf out.
I therefore had a flexible joint made, by taking a piece of lead pipe four feet long, and soldering an iron conpling to each end of it I then screwed together two leagths of pipe, and screwed one end into the wooden float-box, and on the other end screwed the flexible joint; then serewed another length of pipe on the other end of the flexible joint; and then. bending the lead pipe at right-angles, so that the third length of iron pipe was vertical, I placed box, pipe and all, in the trench, and by digging and working the quicksand from under it, and putting weight on the pipe, I succeeded in getting it down below the level of low water.
I then took up my planking, and extended the trench so as to take in three or four more lengths of pipe. After haring dug down until the men were up to their middle nearly in water, I screwed on more pipe and another flexible joint, nad bent the first joint back again, so that the pipe was straight. By using two of these joints, I laid pipe enough to enable me to lay all the rest in one piece at the next digging. After getting it all down in this manner the surf broke in, and washed the sand all in again, and filled up the trench.

Within a day or two after this we had a very remarkable low course of tides. At high water the staff read about what it generally does at low water. There was not more than a foot rise and fall. At the same time, I was told, at New Bedford the tides were very high. The fishermen here said ther had never seen such low tides. The consequence was, that at low water the fleat box was dry. As I had laid the onter end of the pipe nearly a foot lower than the inner end, the strainer was never out of water, but always covered, even at the lowest tide.

I then thought that if I were to dig down to the pipe, and, by bending the inner flexible joint, could aucceed in getting the sand from under the box and the two inner lengths of pipe, and lower them, it woald answer every purpose; for, although the middle lengths of the pipe would be nearly a foot higher than the ends, it would act as a syphon. I adopted this plan; sad by setting seven or eight men at work we succoeded in getting the two lengths and the box down about nine inches lower. We got them down as far as possibie, until we came to red clay, and stones as large as my head. I then tried the staff and float, and found that there was plenty of water at low tide; and, believing that it was as low as it could possibly be got, and that it would embrace any range of tides they will ever have here, I filled in again, and engaged an observer to record the tides. It has now been in operation nearly two weeks, and seems to work very well indeed. The tides are very irregular, and there is not over two feet, and sometimes but one, of rise and fall.

Yours, respectfully, \&c.,
G. A. FAIRFIELD, Sub-Assistant.

Prof. A. D. Baoze, Superintendent Coast Surbey.

APPENDIX No. 14.

Report of Lieut. W. R. Palmer, United States Topographical Engineers, assistant in the Coast Survey, to the Superintendent, upon the reconnaissance of the Rappahannock river, Virginia, from Frederichsburg to Chesapeatie bay.

Baltimore, November 24, 1852.
Drar Sir: In conformity with your instructions of the 17 th instant, I eubmit a report of the result of my first curtory examination of the Bappahamock river.

The Rappahannock may be divided into three sections: first section, from Fredericksburg to Port Royal, thirty five to forty miles. At Frederichsburg the river is one hundred to one hundred and twenty yards wide, and one mile below, at Barnard's, about ninety yards; bence, to Port Royal ita width varies from one hundred and twenty to four hundred yards. The banks of the river are generally higher in this section than below, from thirty to eighty feet; they are usually aloping, but at beveral points are perpendicular, and, becoming undermined, portions fall off into the river. Thay are skirted with wood-oak, chentnut, pine, ash, gum, and sycamore, being the principal varieties, but no beapy timber; between the "Waodyard" and "Hopyard" is trom fifteen to twenty-two miles; below Fredericksburg the wood is quite dense, and considerable cutting may be required here; there are also marshes bare of wood in this section.
The meanderinge of the river are greater here than below, and the obstructions to navigation are more frequent; the first, lesa than one mile below Frederickaburg, at "Hazel's Bar." At ordinary high water, (the tide rimen about three feet nine inchee here, eight feet can be carried oper this bar; it is sandy and lumpy. The second obstruction is as sandy shoal of the same depth two miles below. Third, "Spote's Bar," about eight miles below Frederieksbarg, a shoal of similar character, giving, at ordinary high water, a dopth of nine and a half feet. At very low water, the steamboat Mary Wabhington, drawing seven feot, touches all the way from Frederichsburg to "Spott'i Bar." At "Mosa' Neciv," eight milea
below "Spott's Bar," this shoal extends for two miles, but ten feet can be had at ordinary high water; wandy, perhaps some clay, and lumpy. No other obstructions in this section.

The effect of the freshets is of coitse greater here than below; the spring freshets usually occasion a rise of fifteen feet; in 1846, and again in 1852, the waters rose no less than twenty feet at Fredericksburg; they subside very rapidly, frequently in twenty-fuur hours; freshets alsu take plsce in the fall, but are not so great as those of spring; this year one occurred in July. The water is fresh, or very nearly so, in this portion of the river.
Second section, from Port Royal to Tappahaonock, a distance of thirty-five to forty miles, the width of the river varies from three hundred yards to more than one mile; just below Tappahannock, it spreads to near two miles wide. The banks do not average as great an elevation as in section one, although the highest bluff upon the river is at " Smith's woodyard," about twenty-five miles below Port Royal. This bluff is one hundred and twenty feet high, of clay chiefly; both banks are wooded similar to section one; there are also marshy flats in this section. Although the river is crooked, it is not quite so irregular in its course as above.
The obstructions are, first, at Port Tobago bay, eight miles below Port Royal; between ten and eleven feet can be carried over this bar at ordiary high water, but the channel is narrow. Second, "Green bay," three and a half miles further, of the same depth as at Port Tobago bay. Third, about five miles above Tappahannock, near Taylor's Hole, is a shoal giving at ordinary high water between nine and ten feet only, hard sand intermixed with clay, in lumps, probably a depesite from Tappahannock creek. The channel is crooked here; the water is brackish. There are but two isfands of any size, "Paine's island," a marshy flat, and "Mulberry island," five to eight feet high; this could be cultivated. Each of these contains perhaps one hundred acres.
Third section, from Tappahannock to the mouth of the river, said to be aeventy miles: I estimate it at between fifty and fifty-five. From Tappahannock to Urbanna may be twenty-five to thirty, and from Urbanna to the Chesapeake twenty to twenty-five uiles. Throughout this lower portion, the river is from two to upwards of three miles wide. The banks are generally less elevated-that is, adjacent to the shores-as the higher land recedes, and is often from one to two miles back from the river. Although the river changes its direction in this section, it is much less crooked than in sections one and two.
The obstructions are, first, "Bowlee's Rocks," thirteen miles below Tappahannock; these are said to be banks of oysters conglomerated, only three feet below the surface at low water. The light-boat stationed here warns the navigator from approaching too near them. Below this polnt there seems to be no further obstruction to the navigation of the Rappahannock. The water is salt here. The upper portion of the river is quite muddy; below Tappahamock the water of the Chesapeake predominates. The velocity of the current is about one knot the hour.
The tributaries are Piscatawa river, Toteskey creek, Moratica creek, Curratoma river, and Carter's creek; none can be called very considerable.
There are several small towns or villages on the banks of the Rappahannock: Port Royal, forty miles helow Fredericksburg, contains one thousand inhabitants; Tappahannock, six hundred to eight hundred; and Urbana, one hundred to one hundred and fifty; and others smaller.
No rook formation is to be found between the falls at Falmonth (one mile above Fredericksburg) and its mouth. The distance is said to be, by the pilote and others, one handred and fifty-five miles from Fredericksburg, by the river, to the Chesapeake. I do not think it exceeds one hundred and thirty miles.

I am, very reapectfally, your obedient servant,
W. R. PALMER,

Lieut. Topographical Engineers, and Assistant in U. S. Coast Survey.
Prof. A. D. Bache, Superintendent U. S. Coast Suroey, Wilmingtan, N. C.

APPENDIX No. 15.

Report of Lieut. Comg. J. J. Almy, U. S. Navy, assistant in the Coast Survey, to the Superintendent, upon the observations of off:shore tides, with a gauge secured to a tripod, seaward of Sand Shoal inlet, Virginia.

U. S.Coast Sorvey Steamer "Hetzen,"
Eastyllee, Nortaampton County, Fa., July 12, 1853.

San: It gives me pleasure to report to yon that I have at last been enabled to carry into effect your instructions in regard to observing off-shore tides by the floating tide-rod, in a box secured to a tripod, after the plan of the model which is in the Coast Survey office. Want of time, diadvantage of locality, and other circumstances, have hitherto prevented me from doing this the two previous seasons in which I have superiatended hydrographic operations upen this eoast

Off seaward of Sand Shoal inlet, outside of the bar, partially protected from breakers and high, rolling anff, and from the wind also, whon to the southward I found a comparatively smooth place, having two and two and a quarter fathums of water, and distant exactly two nautical miles from the tide-staff in the inlet, and one and a half nautical males from the nearest land. Upon the second trial, and upoa the second day after commencing work upon it, we succeeded in getting the tripod, with its fifteen hundred pounds ballast, overboard, and to stand upright and firm. That very night, however, we were visited by some terrife squalls, which canted, and partially demolished it. The next day we went out with the stomer, got hold of the several parts of the tripod, hoisted it on board, secured it all arfresh again, got it suceowafuly overboard to stand upright, and where it remained firm and secure, to anable me to have tide obeerved for seven days ont of nine-that is, seven high and seven low tides-and to compare them with tides observed in the inlet. No donbt tha oxperiment trould have been much more satiofactory could the tripod have beon planted farther menward, so as to stand. But I did the best which could have been done, and had considerable difficulty, as it whe, to rig end make it stand socurely.

Herewith I eend you a sketch of ltw position, and the position of the tide-staff in the inlet. I also send a copy of the important pertioni of the records, by which it will be seen that there was bat little difference in the tiraes of high and low water, and the riee and fall of tide.
I will remark that the greatest care was observed in noting the tides at the tripod of thore; thit they were noted by myself, Lleur. Perry, and Acting Master Law-one or the other of us always.

I am, sir, very respectfully, your obedient eervant
JOHN J ALMY,
Liett Comf. U. S. Ni, Asvistant in Coatt Surnep.
Prof. A. D. Bacrix, Brperintendent Coast Bwreey,

Records of tides observed at corresponding times at Sand Shoal inlet, and outside of the bar, seacoast of Virginia, July, 1853.

Date.	Locality.	Time of high water.*	Time of low water.*	Duration of $f\left(\begin{array}{l}0 \\ \text { d }\end{array}\right.$.	Duration of ebb.	Rise.	Fall.
1853.		h. m.	h. m.	h. m.	h. m.	ft. in.	ft. in.
July 2	Tripod off-shore	$415 \mathrm{p} . \mathrm{m}$.	$1015 \mathrm{a} . \mathrm{m}$.	600		38	
$\stackrel{2}{3}$	Tide-staff in inlet.	$590 \mathrm{p} \cdot \mathrm{m}$.	946 ar m .	740		41	
3	Tripod off-shore.	$600 \mathrm{p} . \mathrm{m}$.	1160 am.	700		40	
3	Tide-staf in inlet	5. $30 \mathrm{p} . \mathrm{m}$.	$1110 \mathrm{a} . \mathrm{m}$.	620		38	
4	Triped offeshore.	600 ar m.	$1215 \mathrm{p} . \mathrm{m}$.		615		30
4	Tide-staft in inlet.	$530 \mathrm{ar} . \mathrm{m}$.	$1150 \mathrm{a} . \mathrm{m}$.		620		31
6	Tripod offeshore.	730 a.m.	$145 \mathrm{p} . \mathrm{m}$.		545		36
6	Tide-staff in inlet.	$750 \mathrm{a} . \mathrm{m}$.	$110 \mathrm{p} . \mathrm{m}$.		520		36
7	Tripod off-shore	800 ar m .	$130 \mathrm{p} . \mathrm{m}$.		530		
7	Tide-staff in inlet	$8 \mathrm{dra} \mathrm{a} . \mathrm{m}$.	$200 \mathrm{p.m}$.		600		37
8	Tripod oft-shore.	$845 \mathrm{a} . \mathrm{m}$.	$215 \mathrm{p} . \mathrm{m}$.		530		35
8	Tide-stanfin inlet.	840 ar m.	$230 \mathrm{p} . \mathrm{m}$.		530		
9	Tripod off-shore.	$900 \mathrm{a} . \mathrm{m}$.	$300 \mathrm{p} . \mathrm{m}$.		600		35
9	Tide-staft in inlet.	930 ar m.	$230 \mathrm{p} . \mathrm{m}$.		500		34

*These times of high and low water require a correction (to be added) of $22 \frac{1}{2}$ minutes.
regaritulation.

Date.	Difference of time.		
	High water.	Low water.	Difference of rise or fall.
	h. m.	h. m.	ft. in.
July ${ }^{2}$	105	-0 35	003
	-0 30	010	-0 02
4	-0 30	-025	001
6	$0 \quad 20$	-0 05	$0 \quad 00$
7	000	030	$0 \quad 02$
8	-0 05	015	-0 01
9	030	$-0 \quad 30$	-0 01

Note.-The minus sigh denotes tide-water, or rise or fall greater off shore than in inlet.
Number of observations in which tide was earlier off shore than at inlet 3. and the reverae 3, for high water; number of low waters in which tide was later off shore 3, and the reverse 4. High waters simultaneous once. The sum of the positive differences is 1 h .55 m . for high water, and of the megative 1 h .05 m .; total, 50 m . For low water the sum of the positive differences is $1 \mathrm{~h}, 55 \mathrm{~m}$., and of the negative 1 h .3 mm ; total, 20 m .

These differences, divided by the number of tides, (seven.) gives for high water an average of 8m. nearly, and for low water of 3m. nearly. High water was, on the average, 8m. earlier, and low water 3m. lacer, off shore than at the inlet. Both these are less than the average uncertainty of the difference. For rise or fall there are three positive and three negative results, and one zero. The sum of the positipe results is 6 inches, of the negative 4 inches. Final result 2 inches; which. divided by 7, the number of observations, gives . 3 of an iach for one rise or fall; which is less than the uncertainty of the difference.

APPENDIX No. 16.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting the report of Lieut. Comg. J.J. Almy, U. S. Navy, assistani in the Coast Survey, upon the determinotion of two important and dangerous shoals lying at the entrance into Chesapake bay.

Coagt Survey Station, veak Phielips, Maine, August 29, 1853.
Sin: I have the honor to transmit a copy of a Feport from Lieut. Comg. J. J. Aliny, U. S. Nayy, assistant in the Coast Surrey, upon the determination of the positions of two important and dangerous sholit lying of the eastern shore of Virginia, at the entranoe intw Chesapeake bny, and which are not laid down upon any existing map.

The outer shoal Jies E. by S. 4 S., (true, distant seven naucical miles from Suith's Island light-house, oith 34 fathoms upon it at lov tide, and 7 fathoms between it and the land. This shood hes very nearly in the track of vessels bound in and 7
out of Chesapeake bay, from and to the northward and eastward. The inner shoal hies SE. by E., (true) distant fonr and three-quarter nautical milos from Suith's Island lighthouse, with 17 feet upon it at low water, and 5 fathoms between it and the hand.

I would respectfully request authority to publish this information.
Very respectfully, yours, \&c.,
Hon, James Gutarie, Secretary of the Treasury.
A. D. BACHE, Superintendent.

United States Coast Survey Stramer "Hetzed," Caperille, Northampton Courty, Va., August 17, 1853.
Sir : In the course of my soundings lately off Smith's island, seacoast of Virginia, I have come upon and eatablished the poitions of two important and dangerous shoals. One of these (the outer shoal) lies E. by S. \ddagger S., (true, distant sepen nautical miles from Suith's Island light-house, with 3.4 fathoms upon it at low water, and 7 fithoms water between it and the land. This is a small shoal, with an extent of about 200 feet in a NE. and SW. direction, where $3 \frac{1}{4}$ and $3 \frac{1}{2}$ fathoms are to be found, and with four fathoms exteodiag ton yards, when it deepens of suddenly all around into 5, 6, and 7 fathums water. 'I he other (inner shoal) lies SE. by E., (true) distant four and three-quartcr nautical miles from Smith's Island lighthouse, with 17 feet water upon it at low tile, and 5 fathoms water between it and the land. This is a large shoal in extent, running a quarter of a mile, with not over $3 \frac{1}{2}$ fathoms upon it.

As there is but little variation of the compass, only two degrees less than a quarter of a point, I have given the true bearings, which I think will suthice and prevent confasion. Smith's Island lighthouse is in latitude $37^{\circ} 07^{\prime \prime} 46^{\prime \prime}$ north, and longitude $75^{\circ} 5 \cdot 2^{\prime} 53^{\prime}$ west.
Like all the shoals upon this part of the coast, the direction of their formation is nearly parallel with the lena-northward and eastward, and southward and westward-with hard, sandy botton, coarse light, grey, white, yollow, and red sand, with broken shelis. I do not claim these as discoveries, as there have been reports-vague and contradictory, to be sure-0I shoal-water being in the vicinity of where these have been found. They are not down, however, upon any published chart. Some few sea captains and pilots have reported having been upon these shoals; other captains and pilots have positively denied the existence of them, saying that if there was shoal-water about there, they certainly would have seen it during a course of years which they have been sailing about there. I have crossed these shoals several timea, and also anchored upon them, in order to fully verify their existence and exact position.
By a glance at the chart it will be seen that the onter shoal lies very nearly in the track of vessels going out of Chesapeake bay, bound to the northward and esstward, or coming into the bay from the northward and eastward. I am, sir, very respectfully, your obedient gervant,
U. S. N., Lieut. Comg., Assistant in Coast Survey.

Prof. A. D. Bacres, Superintendent Coast Survey.

APPENDIX No. 17.
Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, reporting the discovery by Liout. Comg. T. A. Craven and Lieut. Comg. J. N. Maffit, U. S. N., assistants in the Coast Survey, of a bank lying to the east of the Gulf Stream.

- Sebattis Stariox, Kennebeo Co., Mane, July $23,1853$.

Szr: I have the honor to communicate the interesting discoveries made by Lieut. Comg. T. A. Crapen and Lient. Comg. J. N. Maffitt, U. S. Navy, assistants in the Coast Survey, in their recent cruises for the exploration of the Gulf Streain south of Charleston. In ruming tho section across the Gulf Stream from Charleston, Pansed Midshipman Jones, of Lieat. Comg. Maffitt's party, in charge of the Coast Survey schooner "Crawford," diseovered that soundinga, could be kept at depthe less than six hundred fathoms entirely across the stream, bottom being brought up. Beyond the Gulf Stream the soundings correspond with those laid down upon the bank struck by Lieut Comg. Craver further south. The "Crawford" was on this bank on the 7 th, 8 th, 9 th, and 10 th. On the 7 th bottom was brought ap from 300 fathoms, in latitide 31037 and longitude $783{ }^{3}{ }^{\prime}$. On the 1 thth of June, in runing the gection of the Guf Strean from Cape Canaveral, Florida, after croseing the atream Lieut. Comg. Craven obtained sonudings in 460 fathoms, and the bottom was brought ap in Latitade '280 24 ${ }^{\prime}$ ' north, and longitude $79{ }^{\circ} 05^{\prime}$ west. The shoal thos independently discovered by Lieuts. Comg. Mafitt and Craven was again struek by the latter in the crose-sections from St. Augurtine, Florida, St. Stmons, Ga-g and Charleston, S. C. A full examination of this ground, which is probably comected with the Bahana Buaks, fill be uade soon. The specimens of botwom brought up are deposited in the Coast Surrey office.

I would reapectiluly request authority to pablish this notice.
Yours respecteully,
Hon. James Gutmrie, Secretary of the Treasury.

APPENDIX No. 18.

Extracts from the report of Lieut. James Totten, U. S. Army, assistant in the Coast Survey, in * regard to the climate, soil, and character of the Florida Keys.

New London, Conn, Ontaber 2, 1853 .
Dear Sif: * * * * * * wemarhe may not be out of place here in regard
to the gegraphieal positions, climate, quality of soil, and general character of the Moxide Keys, now maler comideration,
in view of the lands thereof being thrown into market by the government. A very large number of these heys, and those particularly of which I wish to be understood to speak, lie within the meridians and parallels passing through the two points, Cape Florida and Sand Key. The position of Cape Florida is in latitude $25^{\circ} 39^{\circ} 52^{\prime \prime}$ north, and longitude $81^{\circ} 05^{\prime}$ west, and Sand Key is in latitude $24^{\circ} 27^{\prime} 10^{\prime \prime}$ north, and lougitude $81^{\circ} 52^{\prime} 43^{\prime \prime}$ west. Within the limits mentioned thers may be anywhere between five hundred and one thousand keys or islands, connting large and small. The number has nut yet been ascertained with any degree of accuracy, and cannot be until the survey is completed.
The climate of the keys is perfectly salubrious and pleasant during the winter montha; and even in the summer, owing to the almost constant breezes, much may be said commendatory of it in this respect. Owing to the delightful character of their climate, I am of opinion that it will eventually be ascertaiued and conceded that these keys are particularly well adapted to the residence of those afflicted with pulmonary complaints. Slight changes in temperature, and their regularity, combined with continued mildness, is understood to be what is sought for by invalids of this class, and I believe that such persons will come as near finding this amid the Florida Keys as in any other part of the United States.

The best soil of the Florida Keys cannot be compared in fertility with many parts of that on the main land of Florida, and a large number of them may, without prejudice, be pronounced entirely worthless for any kind of agricultural purposes. The soil on tho better class is composed, in a great measure, of the sand resulting from the grinding up, wearing away, or disintegration of the coral rocks and shells, and of decayed vegetable matter accumulated there during past ages. It is usually found to contain within it large collections of undecayed shells and solid coral rock, and often lies upoo compact and extensive beds of an apparently stratified coral formation. Notwithstandiag the peculiarities of the soil, the better class of the keys are found to yield wany very dexirable and useful tropical fruits in perfection, and also many of the now common and useful vegetables. Vegetables are net, however, produced iu very great perfection upon the keys, and yet they can be cultivated to such as extent as to answer all the wants of those whe may hereafter settle on them. With care and some practical information as to the best means of proceeding in that cliwate and soil, much may be accomplished in raising vegetables on these lands. The lemon, lime, orange, papaya, cocoanat, banana, plantain, pineapple, guava, and tamarind, are some of the tropical fruits which have been coltivated upon the keys with success, and there are many others not yet tried, which it is erident will flourish equally as well in that climate as those I have mentioned.

In the cultivation of fruits on these keys, in fishing in the adjacent waters, in making salt, and in other ocenpations resulting from the sattlement of these islands, they would in a few years become the homes of a useful, hardy, and bappy population, and it would be worth the experiment for government to encourage the project to any reasonable extent within its power. As far as the government itself is concerned, I do uot hesitate to say, emphatically, that these keys can never be of any great utility as long as they are kept out of market, other than what might be derived from them if in private hands. As to the timber upon them, (for which it is said the government has so long held them,) it is not of a quality or quantity to make it worth consideration, when compared with the advantages which would flow to both State and Federal goveraments from having the keys well populated. The timber growing upon these islands, as a general thing, may be stated to be too small for the purposes of strong naval construction. Its character is better adapted to the building of the smaller classes of coasting vessels, such as sloops and schooners, and it is believed there is very little, if any, large enough for heavy ships of war. But admitting that this timber raay be usefal in somo cases to the government, it may be safely asserted that its value will be very little enhanced, if any, by being in private hands, as it is the labor of preparation for, and transportation to market, which must fix its walue, and these expenses the government does not avoid by holding possession of the lands. These being some of the facts relative to the present condition of the Florida Keys, I conceive that the only way in which the government can ever derive any benefit from them is by putzing them into market at once, or by giving them away in small portions to actual settlers. If it is possible to induce a number of people to settle upon the lands for the cultivation of those productionsto which the soil and climate are adapted, the most satisfactory result will be obtained which can ever be reasonably anticipated.

I am, very respectfully,
JAMES TOTTEN,
Prof. A. D. Bache,
Superintendent Urited States Coast Survey.

APPENDIX No. 19.

Report of F. H. Gerdes, Esq., assistant in the Const Survey, to the Superintendeat, on the proliminary survey of the entrance into Barataria bay, coast of Louisiana.

U. S. Surveying Schooner "Gerdes," off Callilou Point, Jamary 26, 1853.

Sir : The Bay of Barataria, opening from the Gulf of Mexico, about fifty miles west of the Balize, affords the first approach to New Orleans on that side of the Mississippi; and between this bay and the metropelis of the south, small steamboats and luggers of light draught are constantly plying.
The inland commusication from the bay is by Bayou St. Denis, or by Grand Bayou, to Little Lake, thence by Bayoa Perot to Lake Washa, mal thence by a canal entering the Missiasippi nearly opposite Carrolton, aboat ton miles above the city; the whole dietance being about one hundred and ten miles.

To defend the harbor, and prevent an approach through this bay to New Orleans, a site for a fortification was selected at the entrance of the bay, and some works have been erected.
A survey of the entrance was made in 1840 by Lieat. (now Major) Beauregard, United States engineers; but the changes tince that time, resulting from the strong weaterly currents of the Gulf, have been eo considerable as to reuder necessary a resurtey in order to furnish a preliminary harbor-shetch for publication, sccording to your instructions. The following are some of the most marked changes:

1. On the west side of the maxn pass inte the bay, there was thirteen yesrs ago a small sand island called the Brass benk, while the point of the western island (Grand Isie) was nearly a mile further to the southwest, leaviag between that point nud the Brase bank a flat, on some parts of which were from seven to nine feet water. All this is now dry land and bench, and the Brass bant forms an actual point of Grand Isle:
2. On the cestem point of the entrance, near the fort, the sea is making heavy inroads. Siace the last sumaer, the beiph has lost more than one huadred Jards, and the new United States quarters for officers are now distant only twentyfive or thitty fardy from high-wgter mark, and perhaps twlee as far from low-water mark. The froat fence of the enclo-
sure is washed away, and the place where it stood is below low-water mark. Any continued easterly storms will endanger all the buildinge extremely, and must prove ultimately fatal even to the fort irself if the action of the water is not checked. 3. A new channel (which I have named the Last channel) has been opened, probably by the combined action of westerly curreats and of the easterly storms of last year, close along the beach at the west point of Grand-terre, separating the east Sambo shoal from the snore by seven feet of water. In 1840, there was only three and a half feet; the depth has been therefore doublen in thisfeen years. This channel is of eary access.
3. On the bar in the main channel, (Grind Pass,) the depth has generally increased. Eight feet can now be carried at low tide, and ten feet at very full tides. The increase averages about one foot.
The entrance of this bay has been carefully surveyed, and the chart can be used as a harbor chart. The following operations were performed by the aid of such instruncuts as you had directed ne to take out, whose results in general were very satisfactory as the joumals of observations and the documents therewith will show.
4. A base line, 1328.15 metres in leggth, was measured twice on the islund of Grand-terre, commenciag on the Gulf shore at the fence of Forstall's sugar plantation, and running across the island in a northwest direction to the old Fort Lafitte.
5. Eight triangulation signals were established by meascrement of angles, at four stations, with a Ginch Gambey theodolite.
6. Seven buiddings and prominent objects were determined by the same means.
7. The shore-lines outside and inside were actually surveyed, and all projecting points determined by theodolite and compass.
8. Soundings over the bar and in the channels were taken by staff, angles determined by sextant, and tidal observations made during the time of sounding.
9. Astronomical observations were taken as follows:
10. December 4 and 5, at Paseagoula. Transits 4 sets stars each.

December 31, Fort Livingston. Transits 12 sets stars each.
1853. Jamary 1, Fort Livingston. Transits 12 sets stars each.

January 11, Fort Livingston. Transits 4 sets stars each.
January 4, Fort Livingston. Observations for latitude, zenith telescope, 1 pair stars.
January 5, Fort Livingston. " " \quad "
January 10, Fort Livingston. Obsertations for motion of the magnet, with declinometer, for two hours, at every five seconds.
January 12, Fort Livingston. For variation of the needle, 3 sets of observations.
7. A preliminary plotting was made, the sonndings laid down, and the topography inserted.

The latitude of the station at Fort Livingstom (eouthwest angle of the main work) is $29{ }^{\circ} 16^{\prime} 43^{\prime \prime} .85$ north; the azimuth thenee rechoned from S. by W. to trigonometrical station at Fort Lafitte, $184^{\circ} 15^{\prime} 52^{\prime \prime}$. 39; approximate longitude 890 54'30"; mag. var. $7^{\circ} 39^{\prime} 22^{\prime \prime}$.
This is guite classical ground in the bistory of the United States. Remains of old Fort Lafitte, and of many buildings, are to be seen still. It was here that the late Commodore Patterson broke up the freebooters and pirates sailing under the Carthagenian fag; he destroyed the fort, which was mounted with twenty pieces of camon, dispersed a force of from eight hundred to one thousand men, of all nations and complexions, and captured seven schooners (one armed, under Carthagenian colors) and one felucca.
The whole gang had been harboring on the Chenaie islands, Grand Isle, and Grand-terre.
The sites and localities for light-houses at the entrance of the pays of Barattia and Timballier, on the Gulf of Mexico, as proposed in thy reports of February and October, $\mathbf{1 8 5 3}$, possess both great advantages, and, as far as I would like to judge frow my prescnt opimion, and from information received from others, they are of nearly equal importance, but both would serve different purposes. A light at the west end of Isle au Grande-terre, (Barataria,) would priucipally be useful for the navigation of the bay and adjacent waters, such as the Bay of Camisada, which contains same settlements of considerable size. For the benefit of communication with New Orleans, this site affords the greatest advantage, and would also give a direct bearing for crossing the bar from the Gulf. As stated in my first report, there are more than one hundred luggers constantly plying between New Orleans and these waters, and most of them have to pass through the Barataria into the Camisada by the bayous of St. John, Fifi, and Rigaud. Coming from New Orleans, either through the Barataria or by the Gulf, it is very difficult to distinguish the inlets of these streams from any part of the low marshy and monotonous coast, and at night it is entircly impossible. A light-house, however, judiciously placed on the opposite beach, would furnish a direct bearing to each of them at any time. The erection of a light-house at the east side of Grand Pass into the bay of Timballier will be of great advantage to the Gulf navigation between New Orleans and Mobile, with the Attakapas sugar

* region and Texas. The enclosed sketch, a reduction of my map of general reconarissance of the Gulf coast west of the Mississippi, will at once sustain this opinion, and also show the eastern extension of the Ship shoal, which, zecording to information, terminates abreast of the Timballier. This bay forms a most excellent harbor of refuge-a fact of which nothing was known, according to the existing charts; and the proposed locality for the site commands also the entrance to the inside Ship-shoal chamnel, so that a vessel might lay her course from the Southwest Pass directly for this light. This line will cut the lurge curve of the Gulf, in which Barataria is situated. It is true that the currents near the Louikiana coast have a northerly tendency, and vessels find themselves not unfrequently in sight of Fort Livingston, Barataria, or at least at a higher latitude than they supposed themselves to be; but whenever the proper investigations have been made, and the currents determined, this will form a difficulty no longer. Having made the light-house at Timballier, ana verified her position, any vessel may follow the coast by a oundings, or even anchor inside the ehoal in perfect safety. I have seen the New Orleans revenue cutter, in company with two large schooners, ride out here a very severe gale of wind of two days' duration, perfectly easy, and without any dragging. Timballier Jight wonld also give a direct bearing for the bar of the bay, on which are eleven or twelve feet at low tide.

Both lighthouses, therefore, will be very usefu-the one at Timballier chiefly for Gulf navigation, and for avoiding danger; the other principally for inland navigation, and facilitating commercial intercouree, sustained by the wishes of a large and thriving community. The cuasting trade with the Attakapas and Texas, and also the inland navigation through Barataria, has become, in the last four years, quite important, the number of vessels employed in them having been more ihan doubled. Their trade, therefore, justly claims and deserves attention.

Very respectfally, yours, \&e,
Prof A. D. Baore, Superirtendent U. S. Coast Surcey.
-F. H. GERDES, Assistant.

APPENDIX No. 20.

Report of F. H. Gerdes, Esq., assistunt in the Coast Survey, to the Superintendent, on a reconnaissance of the entrance into Timballier bry, coast of Louisiona.
U. S. Surveving Schoonfr "Gerdes," off Isle Derniere, Felituary 5, 1853.

Sin: The vast quantity of water eoming through various large channels, such as Bayou Lafourche, Bayou Chenaie, and Bayou Bonne-terre, indicated, as I thought, another outlet to the Gulf than only the West Pass into Timbalige bay, which, according to the charts, has niue feet of water, but actually carries, I suppose, not near so much. At the Grand Pass into Timbulier bay, Blunt's chart shows no water at all, but a flat scretches from isle to isle. I received, howerer, some information to the contrary, which induced me to enter this bay under charge of a pilot. At our first run, with a very low tide, I had ten feet water, and found very good anchorage three and three-quarter miles northwest from the east point of Timballier isle, in fifteen to eighteen feer water, with sticky and soft bottom.
While reconnoitring the bay, I found sufficient water for inflde navigation to Bayou Chenaie and to West Pass for luggers, such as are generally used on this coast. The anchorage appears to me exceedingly useful for a harbor of retuge.
I enclose a tracing of a plotting, yet imperfect, the data for which were derived from chainings and bearings. I had no opportunity for observations for latitudes, which I therefore take from Blunt's chart. On the only clear moming I had, tine was ascertaiped with artificial horizon on Last Point, and five chronometers gave it 2 mm . West of the Barataria astronomical station.
According to the charts, this harbor must have been unknown, and I have therefore forwarded this sketch and report at the earliest date.

Very respectfully, your obedient servant,
F. H. GERDES.

Prof. A. D. Bache, Superintendent United States Coast Survey.

APPENDIX No. 21.

Extracts from the report of $\boldsymbol{F} . \boldsymbol{H}$. Gerdes, Esq., assistant in the Coast Survey, to the Superintendent, upon the survey of Islc Dernierc and Ship shoal, coast of Louisiana.
Sirn * * * * * * New Orleans, La., March, 1853.

The Ship shoal runs east and west, and lies about twelve miles to the south of Isle Dernicre, the west end of the shoal being nearly abreast of Racoon Point, and the east end extending to abont opposite the midde of the island. From the inhabitants of the key, my pilot, and others, I was informed that nine feet of water was the least that could be found ou the shoal. The keeper of the light-boat, Capo. Cuike, who has been in charge two years, told me there was no less than fourteen or fifteen feet to be fouud, and statesthat he had personally made investigations and soundings. The first statement seems, however, to be the more correct one. Breakers on the shoal can only be perceived in southerly wiuds. West of the shoal there scems to be an opening into the Gulf, and it is reported that six or seven fathoms can be brought on it. Another shoal connected with the main ruef makes out to the southwest, and commences from four or five miles from Racoon Point, extending mach further into the Gulf than the Ship shoal, and is by far the more dangerous of the two. Here the steamer Galveston was wrecked several years ago, and some parts of the wreck are still visible. The light-ship is anchored within half a mile of this wreck, and forms in her present position only a guide for keeping off. Where the Galveston lies there seems to be only four feet of water.

On Isle Dernière the following operations were performed by the party under my charge:
A.-Astronamical obserbations.

A station was selected on the sand ridge running lengthwise over the island, about three and three-fourths miles east of Racoon Point, nearly opposite the large and conspicuous dwelling of Mr. Maskel, and a suitable wooden house was erected for an observatory, in which the transit and zenith telescope were firmly, mounted, and the following number of observations made:

1. With the trangit:

1853. February 7th.	
Do.... 9th .	
Do.... 10th	
Do...- 11th	
Do..... 19th	12
Total	62

II. With the zenith telescope:

II. Readings for aximuth were made on each night of transit observations. 1F. Declinometer obeervation, February 20 , daring four hours, every ten minutes, for the motion of the magaetic needle.

B.-Trigonometrical operations.

Statios of secondary and tertiary triangulations were selected, and signals erected on Racoon Point, on different parts of the beach, on the sillage creek, and on the Cayambo; but the land being vecy low, and thickly covered with chaparral, it was very diffeult to get, well-shaped triangles properly connected. The angles were observed with a six-inch Gambey theodolite, and provisionally calculated from the azimuth by rectangular coordinates on the true east and west line of the astronomical stations. Annexed is a list of the same.
C.-Topography.

An accident having happened to the plane-table alidade, the instrument could not be depended upon for running the important south-side shore-line; and as the whole could not be well included in the triangulation, sixteen lines, of nearly one mile ench, were very carefully chained along the coast, and the intermediate angles measured with a six-inch Gambey thendolite, and afterwards calculated by coordinates from the trigonometrical data, and verified by several triangulation points. The survey of the island was extended eastward as far as it has any bearing to the survey of the shoals, viz: eleven miles on the south side, and north for eight miles, from Racoon Point, which makes an average of thirty-three and a quarter miles of shore-line, small streams and numerous ponds not counted. The annexed tracing is an incomplete copy of the topographical sheet.

D.-Tidal abservations.

As Lieutenant Commanding Sands is probably going to observe a regular set of tidal changes, only a few observations were taken, and those on the inland side of the island, although a great differeace exists there and on the Gulf coast. The changes observed within half a moon give a rise of twenty-three inches in average, requiring a time of twenty-five hours from full to full tide.

In regard to the proper name of this island, and also of a great many other keys, points, bays, bayous; there seems to be a great discrepancy in the various existing maps. Isle Dernière is sometimes called "Isle au Vin," (Spanish chart and Com. Moore;) "Ship Island," (Blunt;) "Isle aux Vins," (Blunt;) or "Last Island," (Topographical Engineers;) but it can be maintained that the name "Inle Derniere," as used in this report, is the proper appellation. In 1805, M. C. Baptiste, a French emigrant, landed on this island, which was then entirely uninhabited, sud deseribed it to his friends as the last of a string of islands ruaning from the east to the west; and since then it always went by the name of "Isle Dernière." A passage between the shoal, deep enough for ships, gave rise to the name of "Ship Shoals," and no doubt from this name the island was marked as "Ship Island." The name "Isle au Vin" is undoubtedly incorrect, and probably misspelt from "Isle aux Vins," which is the next one to the last, and called so after a species of creepers peculiar to this coast, and more particularly to that key, a large part of which is covercd with them. This is, however, not the one which is represented by Blunt as such, but is situated to the west of Caillou, and separated from Derniere by a pass of three miles wide. This samo disagreement exists along the coast; the original names are chiefly Spanish or French. I have taken great care to find the proper appellations, and will introduce them in the general map of reconnaissance.

Isle Dermiere is an island of some twenty-two miles in longitudinal extent; on some places more, and on others lễs, than one mile wide. It is entirely level and low, with the small exception of a sand ridge, five or six feet high, ruming along the beach. For eight miles it has been covered with thick chaparral; but daring the last throef or four years the western part has become cleared and thickly settled, and now becoming, during the summer season, a very suitable and fashionable watering place for the large population at the Attakapas and Plaquemines. There are at present, perhapa, sixty houses in the village of Isle Dernière, nearly all owned by planters.

At the trigonometrical stations stone cones were buried; and at the astronomical point a large square stone, with copper bolts, was secured four feet under ground, fastened in a strong cedar frame work. I may as well mention here that at Fort Livingston, in Barataria, the astronomical station was similarly secured, and the proper descriptions of the stations made.

Very respectfully, your obedient servant,
F. H. GERDES.

Prof. A. D. Bache, Superintendent U. S. Coast Surecy.

APPENDIX No. 22.

Extracts from the report of F. H. Gerdes, Esq., assistant in the Coast Survey, to the Superintendent, in relation to the channels of trade of the Attalkapas plantaiions, Louisiana.

Tarrytown, N, X, October, 1853.
 is very great, and the towns of Franklin, Portersville, and others, are fair specimens of growth and improvement in the South. In former times the commercial intercourse was chiefly carried on by the junction of the rivern in the vicinity with the Mississippi, which was certainly a very circuitous and slew route. In later years, however, and chiefly wince the trade has become more lively in the western part of the Gulf, this commereial intercourse has taken another tum, and in carried on mostly by the Atchafalaya and the Gulf, via the Southwest Pass, to New Orleans. More than a hundred vessels arrive annually at the mouth of the Atchafalaya, and receive their cargoes either by lighters or steambonts. Little is known of the entrance of the bays and rivers, except by the branch pilots at Point au Far, or by some old traders; and for this reason I have recommended to you a preliminary survey, grounded apon tertiary trimgulation, and embracing the soundinge of the principal inlets, chamels, and bars. It is said that twelve or chirteen feet can be brought into the Atchafalaya.

Very respectfully, your obedient servant,
Prof. A. D. Baome, Superintendent U. S. Cotest Survey, Washington.
F. H. GERDES.

APPENDIX No. 23.

Letter from the Superintendent of the Coast Survey to the Secretary of the Treasury, communicating extracts from a lotter of Lieut. Comg. James Alden, U. S. Navy, assistant in the Coast Survey, upon the results of an examination of the coast and sexeral harlors and anchorages between Sans Francisco and the Columbia river.

Coast Suryey Station, near Phillips, Franklin Co., Mane, October 11, 1853.
Sir: I have the honor to communicate herewith extracts from a letter of Lieut. Comg. James Alden, U. S. Navy, nssist. ant in the Coast Survey, upon the results of an examination of the coast and several harbors and anchorages between San Francisco and the Columbia river, in his recent trip of reconnaissance northpard, in the Coast Survey steamer "Active." I would respectully request authority to publish this information.

Very respectfully, yours, de.,
Hon. James Guthrie, Secretary of the Treasury.
A. D. BACHE, Superintendent.
U. S. Surveymo Steamer "Actite,"

Columbia River, August 18, 1853.
Dear Sir: We arrived here last Monday evening, after finishing the reconnaissance up to within sixty miles of this place: the weather was so bad just then. that I concluded to let that part stand uutil our return from the north. Mr. Davidson has occupied twelve stations on this part of the coast, including San Francisco and this. We found, much to my surprise, good anchorages every night, except the one before we got in here. At every stopping place the observatory was put up, and sights obtained. A sursey of the anchorage at Mendocino City, which is some serenty miles to the southward of that cape, and of a snug cove, forty miles further on, was made. Humboldt bar has been examined, the bay at Crescent City, under Pt. St. George, surveyed he hydrography of Port Orford, or Ewing harbor, done, and a survey made of the entrance of the Umquah, imelnding six miles of the river. We found a good wide passage through the reef off Rogue's river, and examined those through the reefn off Pt. St. George and Cape Blanco. They are all entirely safe and perfectly practicable. For steamers bound north, particularly in the summer time, when it is necessary to keep close to land-for shelter from the wind, which blows almost a gale down the coast, such "cut-offs" will prove invaluable. We have brought a line of soundings up the coast, getting casts at intervals of every two miles, and seldom at a greater distance than one mile from the shore, often within a quarter of a mile, and frequently within two or three hundred metres of the racks; so you will perceive that our opportunities for giving the coast a thorough examination have been complete. We wore de laved in Humboldt seventeen days-two weeks by fogs-before we could get any sights, and then three days on account of the roughness of the bar, the sea breaking the whole time entirely across. We found the bar pretty nearly as it was when we sarveyed it two years age; but I am satisfied, from all the information I could get, that it has undergone very important changes in the mean time.

The entrance to this river, (Columbia) the soath channel, or rather what they call the Point of Sands, or North Spit, has crept down a little towarde the beach, but the change is not half so great as I had been led to imagine from the reports of pilots and others. When we came in, or rather when we mado the breakers, the fog was very thick; it sowin, however, lifted a little, so that one of our marks could be discerned through the mist, and, giving the north breaker or Point of Sands a wide berth, we crossed the bar in a quarter less five fathoms-more water than I have ever knowu there before; the tide, too, had been flowing only about one hour. There is a new channel opened into the old north channel, through the middle sands, about half way, which the pilots use now to bring vessels in, drawing twelve or thirteen feet of water. The wind being more favorable in that quarter at this season of the year, it is found very convenient.
I was exceedingly desirous of completing the reconnaissance and survey of the Umquah during this season, and was very fortunate in being able to accomplish it. The entrance is narrower than that of Huwboldt, and there is less than two and a half fathoms of water on the bar. We weat in aud came out without diffealty, but drawing only eight feet of water.

With great respect, I am your obedient servant,
JAMES ALDEN,
Lieut. Comg. U. S. Navy, Assistant in U. S. Coast Survey.
Prof. A. D. Baohe,
Superintendent U. S. Coast Survey, Fashington, D. C.

APPENDIX No. 24.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting extracts from the report of Lieut. Comg. James Alden, U. S. Navy, assistant in the Coasi Surrey, upon the determination of the position of a bank in the Pacific, lying in the track of the Panama steamers.

Near Leeds' Station, Maine, July 15, 1853.
Sin: T have the honor to transmit herewith extracts from a report of Lieut. Comg. James Alden, U. S. Navy, assistant in the Coast Sarveg, upon the determination of the position of a bank in the Pacific, lying in the track of the Panama stearmers, and which has been called the Cortez Shoul.
This shoal was frest eeen by Captain Cropper, of the "Cortez," and its position afterwards determined by the commander of the stemmer Pacific, which varies very slightly from that givon by the Cosst Survey officars.

I am indebted to G. W. Blunt, Esq., of New York, for having early called my attention to the discovery of this shoal. The information, houever, had previously reached Lieut. Cong. Alden, who despatched a party to determine its position. The shoal will be immediately indicated upon the charts now on hand and ready for distribution, as well as on all future editions.

I would respectfully request authority to publish the above.
Very respectfally, yours, \&e.,

A. D. BACHE, Superintendent.

Hon. James Gethrie, Secretary of the Treasury, Washington.
U. S. Surifeying Schooner "Ewing," off San Pedro, June 1, 1853.

Sir : I have the pleasure of reporting my return to this place from the shonl to the southward of San Clemente and San Nicolas, of which I have uade a thorough examination, having been five days anchored upon it.
The shoal, or bank, is in latitude $32^{\circ} 30^{\prime}$ north, longitude $119^{\circ} 10^{\prime} 50^{\prime}$ west. The island of San Nicolas bears NW. by N. (by compass) distant 46 miles; istand of San Clemente bears NE. $\frac{1}{2}$ N. (compass) distant 43.2 miles. The nature of the bottom is hard, composed of white sand, broken shells, and coral. The least water found-ten fathoms-would be about nine reduced to low water; and the character of the soundings, as you will find upon reference to the chart which I send herewith, irregular and abrupt.
The weather, while at anchor upon the shoal, we found different from that which ordinarily prevails upon the coast in the vicinity, bearing a strong resemblance to that upon the banks of Newfoundland.
The current is irregular, frequently setting against the wnd, and running with a velocity of nearly two knots per hour, producing a heavy sea, and causing the water probably to break in heavy weather, as has been reported. Very respectfully, your obedient servant,
T. H. STEVENS, Lieut. Comg. U. S. N.

Lieut. Comg. James Alden, U. S. N., Chief of Hydrographic party on Western Coast.

APPENDIX No. 25.

Extracts from the reports of the Chicfs of the different divisions to Capt. H. W. Benham; Corps of Engineers, assistant in charge of the office, showing the details of the work executed in each division.
A.-Computiva Division; J. E. Hilgard, assistant, in charge. Tist of computations made during the past year to November 1, showing the persons of the division by whom they were made.

Dear Sir: The annual report of the computing division of the office is herewith respectfully submitted. The current duties of the computing division consist in computing the results of the work of field parties, in verifying the same by comparing them with those computed by the observers, and in furnishing them for the use of the office, or of field parties, when required. In the performance of these duties, the organization of the division has been very efficient during the past year. All the field-work of 1852 , and all that of 1853 , which has been received, has been computed, and the revisions have been made as far as the compatations of observers have been received.
The project of this class of work is necessarily general in its terms, and no inconvenience arises from the circumstance, us everything is provided for as soon as received. The records of results have been kept up with care, and the system has been extended and improved, chiefly by Mr. Schott. Calls for results or information can be promptly complied with.

As the work in different sections accumalates, as series of triangulations are completed or join with others, as additional astronomical determinations are obtained, further revisions and adjustments of the work become necessary. These are undertaken at tives when the current work does not require the employment of the whole force of computers. The discussion of the primary triangulation in Sections I and III has been advanced, that of the zenith-sector latitudes has been made, the adjustment of the secondary triangulation in Section I has been brought up to date, that of Section III has been commenced, and that of the seaboard triangulation in Section IY has been made as far as existing data required.
The industry, zeal and fidelity of all the gentlemen engaged in the computing division, is deserying of great commendstion. The attendance at the office has been very good, and all appear to take that interest in the success of the work which stimulates to a prompt and faithful performance of duty.
The manner in which the different classes of work are distributed among the computers is, in general, as follows: The computations of latitude and azimuth are made by Mr. E. Nuily; their revision and the reduction of transit observations are made by Mr. Main. The werk of triangulation is computed by Mr. Werner, and revised by Mir. Rumpf, who also has in charge the registers of geographical positions. Mr. J. E. Nuly and Mr. Wiessner are engaged on different classes of work, as demanded by its occurrence. The clerical work is performed by Mr. Hoover, who also makes miscellaneons computations.

Mr. Schott, when not in charge of the computing division, or engaged on special duty, makes computations of astronomical work, and discrissions of results generally.
The occupation of the several computers during the past year is stated below,
Mr. Charles A. Schott was in charge of the computing division during five months, during which I was engaged in field work. He has computed the longitude of Cedar Keys and St. Marks from a chronometer expedition in 1852, and the telegraphic longitude of Cambridge, Bangor, and Halifax; has been engaged in the discussion of the primary triangulation In Section I, the revision and discustion of the zenith soctor Iatitudes, aud the reduction of some nagnetie observations. He has also frequently been engaged on hydrographic duty, in connexion with which he has made reports on tides and currents in Long Island sound and approaches; on currents near the coast of Marylud and Firginia; on carrents in Charlenton harbor; on current and tiden is Savanaah river, and on other matters relating to hydrography.

Eugene Nulfy, Esq, has computed the observations of time and azimuth at stations Mount Pleasant and Cape Small, (Section I, Roslyn, (Section III,) New Cut, (Section V.) Depot Key, (Section VII,) and Tongue Poind Neck, (Section XI, and the observations of latitude at stations Agamenticus, Mount Pleasant, (Section I,) Mount Rose, (Section $\mathrm{LI}_{\text {, }}$) Ruslyn, (Section III,) and Depot Key, (Section VI.)
Assistant Theodore W. Werner has computed the secondary triangulation of Casco bay, 3852, in Section I; in Section II, the triangulation of Hudson river, 1852-53; in Section III, the triangulation of Chesapeake bay, of the Appomattox and Jamer rivers, 1859, and magnetic observations at five stations; in Section 1V, the triangulation of Currituck bound, 1850-'51, and of Core sound, 1852-53; in Section V, the triangulation of Savamah river and of St. Helena sound, 1851-52; in Section VI, the triangulation of Card's gound, 1852, of the Florida reef, 1852-53, and of the St. Joh's river, 1853; in Section VIII, the triangulation of Lake Borgne, 1852; in Section IX, the triangulation of 1e52-53. He has also made a check computation of the triangulation of Narragansett bay, and various miscellaneous computations.

Mr. G. Rumpf has kept the registers of geographical positions, and has been eagaged in preparing the list for the annual report. He has revised all computations of triangilation of the year, and has made the necessary check computations. He has computed the primary triangulation in Section 1, 1851, the secondary triangulation on the seacoast of Virginia, 1852, and that of Georgetown harbor, (S. C.) 1853; the latitude of False Dungeness and Point Hudsm, Section XI, and magnetic observations in Section I; has revised the computation of azimuth at Mount Pleasant, aud the secondary triangulation south of Cape Henlopen, 1844, and has made some progress with the revision of the secondary triangulation of the upper part of Chesapeake bay, besides making many miscellaneous computations required for the use of the office. He has alse made considerable progress in arranging and indexing the books of observations and computations previous to 1844.

Mr. James Main has computed the chronometric difference of longitude of San Diego, Say Franciseo, Punta de los Reyed; (Paint Reyes,) Section X, and Scarboro' harbor, False Dungeness, Port Hudson, Section XI; the latitude of Presidio hill, Section X, and of Agamenticus by zenith sector, Section \mathbf{I}; the transits for longitude at Scarboro' harbor, Section XI, and at Telegraph hill, Section X, and the observations of acimuth at Savamuah. He has revised the domputations of latitude of stations Mount Independence, Monnt Pleasant, Cape Small, Causten, and Roslyn, and thase of azimuth at stations Cape Small and Depot Key. He has also in part computed the longitude of Scarbore' harbor from moon culminations, and has computed the projection for the Congress map.
Mr. J. T. Hoover has performed the clerical duty of the computing division, and has made many mizcellaneons computations, among which are the reduction of horizontal angles at Momat Pleasant and Cape Small hy least squares. computation of places of stars, of mierometer values, of prohable errers of the primary trinngalation in Section I, and reduction of currents. He has also assisted in preparing the list of geographical positions.
Mr. J. E. Nuty joined the computing force in November, 1852. He has assisted other compnters, and has computed the triangulation of Columbia river, Section XI, the latitude of Searboro harbor, that of a beftion in Washington city, and has revised the zenith sector latitude of IIIl's hill.
Mr.J. Wrassner joned the office in January, 1853. He has been priacipally engaged in assisting Messra. Schott and Main, and has made many miner geodetie and astronomical computations.
Ms.E.E. Mason was attached to the computing division until May, when he left for feld-duty. During two months he was prevented from working by sickness. He computed the L. M. Z. of the revised secondary triangulation in Section I, and occasionally siseisted Mr. Rumpf.
Compntations of probable errors and discussions of various kinds were made by A. S. Clements, under the immediate direction of Mr. Hilgata.
Work of duplicating and miscellaneous copying was done by R. Freeman.
B.-Drawing Divisiog. Capt. A. A. Gibson, U. S. Army, to Capt. H. W. Benham, assistant in eliarge of Coant. Strivey office. List of maps and shetches completed or in progress during the year, to November, and by whom they have been drawn.

Drawing Dividion, November 15, 1853. .
SIR : I have the honor to submit the following report of the operations in the draving division of the Coast Survey office during the year ending November 30, 1853.
The diawing division was under the charge of Captain J. G. Foster, corps of engineors, assistant, until the latter part of December, when he was relieved by Mr, J. J. Lee, who discharged this duty until the niddle of May fillowing. Mr. Lee left the office at that time, and Mesirs. Willimes and Hergesheimer were necessarily placed in this position until the duty was assigned to me in August.
The followiag is a statement of work accomplished by the draughtsmen:
Assistant W. M. C. Faitfux has been eugaged upon the reductions of the hydrography of Bomton harlbor, an 1 its; the topo-

 repert on the commerce of the Gulf. In addition to work on the progress stetches he has expended mueh time in the examination and verification of charts, in the reviston of sailing directions; preparing estimates of work, and in many othor subjects of a miscellaneous character, wherein his long experience rendered him eninently useful, and for which there has been an unusual demand for his eervices. By ill health he was prevented from attending to his daties in the uffice from the first of September to the midalle of October.
Assistant M. J. McClery has devoted a large portion of his time to the reduction of the topography of Cherapeake bay, No. 2, so hoo, now nearly completed, He has made some additions to the reduction of Chesapeate bay, No. 3, ro. . . M, and assisted in preparing the map of Savanahh river, tolof, for the Bande of Engineers; the semeonst charfor Delaware, Maryland,
 also the etudy of the tints for their characteristic meaning. In Ferifying, \&e, hie has rendered tome assistance.

Mr. Joseph Welsh was engaged on the raduction of tho topography of the eastern series, No. 2 , उy bov untin July, when he took in hand the reduetion of No. 3 of the mame fecico, or which nearly onenalf of the topography had been pre-
 to finish the map of Savanah river, - . Congreme map. rorot wou, and projections and verifications.
 Rodgere end completed abont ome-half of a sinailar chart of Koy Biseayne, yo con by that ofloer. He reduced the hydrogeaphy of Eey West harbor to a scale of tre toy, agsisted to complete the map of Eapannaly niver, s-dou, nud the compar-
ative map of Flym's shoale, reduced the shore-line of Sandy Hook, a $\begin{gathered}\text { doy, to show its changes, and revised the hydro- }\end{gathered}$ graphy of several preliminary sketches.
Mr. Charles Mahon, on contract, reduced the topography of Mississippi sound, No. 2, 80. $\overline{\text { don }}$, and finished the topagraphy of the eastern sheet of Albemarle sound, 8 co . boo-
Mr. John Lambert, on contract, reduced the topography and hydrography of Santa Barbara, zr- $\frac{1}{2}$, and Cape Flattery and Nee-ah harbor, fro tor. He added some lettering to the reconnaissance of the Western coast. In March he joined the party under Governor Stevens, in the expedition by land to the Territory of Washington, and thereby the Coast Survey lost the services of this raluable draughtsman.
Mr. A. Boschke, on contract, made the reduction of Shoalwater bay, go bon, assisted to complete the map of Savannah river, b. har, and for a short period was employed on miscellaneous work.

MT. J. R.P. Mechin has been employed in the office since Mareh, principally on reductions of the hydrography of
 and other sheets. Commencing the hydrography of Chesapeake bay, sot.ooe, the work was discontinued before he had made sensible progress on it.

Mr. E. Mergesheimer made the reductions of the reconnaissance of the Western coast from Gray's harbor to Admiralty
 mission on ics inaprovement. He has assisted in preparing a similar map of that river for the Chamber of Commerce of the city of Petcrsburg, Va., and made additions to the seacoast chart of Delaware, Maryland, and part of Virginia, 子ob. Tmo. to the listory maps and to the progress sketches. Me has executed much miscellaneous work.

 Fear river, and the mouth of the Columbia river. He has been employed on the Congress raap, 1.506 .000 , and in making projpetions, tracings, and other miscellaneous work.
Dr. L. D. Williams joined the office at the close of the month of March. He has made tho reductions of the prelimi-
 tions to the progress sketches. He was first cmployed as a clerk in the division upwards of one month, and in portions of May and June acted in its charge. With the assistance he has rendered on the Congrese map, the making of projecte and tracings comprise the greater portion of his miscellaneous duties.
 yTh.ovi, and Cape Charles and ricinity, हु. naissance of the coast of Florida, from St. Mark's to St. Andrew's sounds, $60 t-\pi / \pi$; and rendered much assistance in preparing the Congress map, wrod wob. The remainder of his time was been spent in making tracings, \&c.

Mr. Arthur Balbach, on centract, has made the reductions of the entrance to St. John's river, क्ड. ovo; Cherrystone inlet,

Mr. W. P. Sthultz has had in charge the arrangement, registering, and care of the miscellaneous maps. He has also been employed on progress sketches, tracings, projects, the measurement of shore-lines, \&c., of topographic sheets, and other work of this description.
Mr. Bernard Hooe, jr., has niade the reductions of the hydrographic survey of Cortez Bank, rovoe, and the sketch for light-house purposes of the maith of Sabine river, т. ठेण. His chief employment has been on tracings, and, when not otherwise engaged, he has practised drawing topograply.
Mr. W: B. McMurtrie was temporarily assigued to duty in the office from the 6th of September to the 28th of Oetober, when be left to join Lieat. Alden's party on the Western coast. He worked thirty-one days on the statistics for the annal report of this year, and copying viewe of the Western coast.

Mr. J. C. Tcment was employed on the commissioners' map of Appomatox rives, zotan, and on miscellaneous duties Guriag the month of November, 1852, whea he was trasferred to the tidal party on the Appomattox river, and subsequently to the engraping division.
Mr. Thamas Adams was employed in this division as a clerk the first five monthe of the year. In April he left the office to join the party under Governor Stevens, in its expedition to Washington Territory. Since the first of May, Mr. W. B. Staart has been employed as the clerk.
J. N. Camphell and Thomas MeEnery, artificers detached from the company of sappers and miners, have been employed in tracing and copying during the entire year.

The amount of miscellaneone work has been unusually large.
In the discharge of their duty, the draughtsmen merit, in general terms, a favorable notice.

List of maps and shetches compteted, or in progress, during the year ending November, 1853, arranged im the order of sections.

Section L

Section II.

4. Topography south sidetimen Igland, Ko.2; do .. Dompleted.

Seotion III.

Gulf Stream.

1. Progress of Gulf Stream exploration.
 2. Diagrams of the Charleston, St. Simon's, and Cape Canaveral sections

Section IV.

1. Progress sketch, FT l. 000	ed.
2. Progress shetch, Xo. 2, 4	Do.
3. Topography of E. sheet of Alvemarle saind,	Do.
4. Topography of Albemarle sound, זоd. $\overline{0}$,	Do.

Section V.

$\because \therefore \quad{ }^{\text {Section VI. }}$

 Completed.
 2. Preliminary sketah of E. and W. entrances to St. George's sound, $80 \cdot \frac{1}{60}-\ldots . .$.

SECTion IX.

1. Progress sketch, 50.0	Completed.
2. Entrance to Sabine river,	Do.
3. Galveston entrance, $70 \cdot 10$	Do
	Do.
	Do

Sbotmon X.

2. Survey of Cortez Banki π - 3. Preliminary eketch of San Diego bay, $\bar{\pi} 5 \cdot$ Jon (reduetion of hydrography) 4. Prelininary sketch of Santa Barbara, ze. 60 m							

SEOTIon XI.

Pro	.
2. Comparative map of mouth of Columbia river	Do.
3. Preliminary nurvey of Shoal-water bay, is. b \%o	Do.
4. Reconnaissance from Gray's harbor to Admiralty inlet	Do.
5. Preliminary survey of Cape Flattery and Nee-ah harbor, 4 m -	Do.
6. Preliminary survey of False Dungeness, z\%. \%ot	Do

C.-Engaiverg Division. Lieutenant E. B. Hunt, United States corps of engineers, to Capt. H. W. Benham, absistant in charge of Coast Survey office. List of maps and sketehes engraved and engraviug, during the year, to November, with names of the persons by whom they have been done.

November 15, 1853.
This division was continued under the charge of A. W. Tinkham, assistant, from the date of the last report till his resignation from the Coast Survey in April. In Augast, the two divisions of drawing and engraving were placed under the charge of A. A. Gibson, Captain United States army, but in October the engraving was transferred to E. B. Hunt, Lientenait of engineers, United States army, who has continned to the present time. From April to August, Mr. John C. Tennent acted in charge, and subsequently assisted in attending to the details of management.
The additiona to the list of finished maps during the year hare been four in number, viz: Wellfleet harbor, mouth of Connecticut, seacoast of Dedewatre, Maryland, and part of Virginia, and Galveston entrance.
New editions consequent upon exteusive alterations or additions on the plates, have been issued of eight charts, viz: Mobile bay, $\overline{z \pi} \cdot \pi \nabla \pi$, (2 d edition;) Daris' South 'shoals, (6th edition;) Hatteras inlet, (4th edition;) North Edisto river, ($2 d$ edition;) Key West, rod. $\bar{d} n$, ($2 d$ editinn;) San Diego entrance, (2d edition;) and San Franciseo city, (3d edition.)
Besides these there have been twenty-one preliminary aketches; reconnaissances, \&e., engraved, some of them, especially of the Western coast, approaching in character to the style of our finished harbor maps.
Sixteen finished maps have been in progress during the year, of which pumber three have been commenced since the date of last report- These are Newburyport harbor, Albemarle sound, No. 2, wf.tur, and Key West, 5π. dor. For the detailed list of maps finished, engraving, or mewly tatien in hand since last report, I respectfilly refer to acoompanying papers, as also a complete hist of all maps engraved oranaps in progress by the Coast Survey up to the present time.

There have been eight engravors, on very nearly constantwork, engaged during the year, in addition to seven apprentices, (four of who in have come into the office during the year.) Besides, there has been a force of six contractors available, in Philadelphia, New York, and Washington, to do topography or lettering as occasion required. Total-number of engravers and apprentices at present working for the office, six engravers, on salary or per diem in the office, three contractors, and seven apprentices, making sixteen in all.

The copper-plates raceived into the office since the date of Mr, Tinkham's resignation have all been inspected in the engraving division. These plates have been furnished by Mr. A. Burdett of Baltimore, purehased by him in the rolled sheete, generally in New York city, and afterwards hammered thoroughly and planished on the surface in his establishment in Baltimore.

I herewith give a general summary of the werk done upon several of the most important plates during the year, with notes upon their present condition.

Boston Harior.-The mareh, grase, woods ruling of the city of Brston, ome outlines, and a portion of the sand dry at low water, have all been worked upon during the year, thas completing the engraving of the topography, (excepting carrections of a miner character, by Mr. A. Rille, assisted in the marsh ruling by Mr. J. Young. The general lettering has ben partly completed by Mr. John Kuight. There rewain, to complete the plate, the reminining sanding, engraving of views, and lettering.
Solem faybor.-The soundings, bottoms, and general lettering, have been engraved by Mr. S. E. Stul, on contract. The sandiug of six, twelve, and eighteen feet curves, has been aboat half completed by Mr. M. M. Knight. The hills are near completion, by Mr. F: Darkworth. None of the lettering has yet been taken in haud.

Neuburyport Harbor was commenced during the year:" Mr. J. Young engraved the outines and woods; Mr. A. Rolle the hills; apprentice F. C. Evens the sanding; and Ma. S. Siebert the marsh and mud, on contract. Some lettering was done by Mr. W. Smith on contract.

Welffeet Harbor-Finished during the year. Tcpograplly by Mr. S. Siebert; sanding by Mr. E. F. Woodward; and lettering generally $3 y$ Mr. S. E. Stull.
Muskeget Chaynel.-This plate, after the topography and hydrography wore completed, was enlarged, by electrotyping, to its present dimensions; in order to take in additional work; it is ethtit in hands.

Mouth of Connecticat river-Completed during the year and pablinhed.
Long Island Sound, No. I - The remaining work on this to be done is the completion of topography about western part, the lettering of sailing directions, and sandibg of upper shore. Nos. 2 and 3 are essentially finished. New saling directions on each of these, conforming to No. 1, and the abbreviations for the "bottoms" bave been changed in order to maintain uniformity throughout the thre aheets.

Chesapeake Bay, No. 1.-About two months whrk has been done in topography, by Mr. S. Siebert, in the office.
 topography, lettering, \&ed
Mobile Bay, Nos. 1 and 2.-Completed as far as the topography and oundiags, and bottom, are concerned. The two plates are obetut being electrotyped from, to form by junction a single plate of the size of genersl coast chart, taking in the entire bay:

1. The angraving of the following finished maps has been complated during the year, 1. Wolflect harbor, hy S. Siebert, E. F. Woodward, J. Knight, J. S. Pettit, and R. F. Bartle. 2. Mouth of Connecticut niver, by O, A. Lawno, G. McCoy, W. Smith, and J. Knight. 3. Seacoast of Delaware, Margland, und part of Virgizia, (ed edition, by H. C. Evens, L. E. Stull, W. Smith, and J. mad H. M. Knight. 4. Gaibeston entrance, by H. C. Evens and J. Young.
2. The engraving of the folfowing sketehes and prelimiaty charts has been cotnploted during the your: 1. Dapis' South shoal, (6th edition, by ©. E. Smil, J. Knight, and W. Smith. 2. Sow end Pige reff, by J. V. N. Throop, W. Smith, and
 H. M. Knight, H. C. Evens, and J. J. Knight. 5. Watchaprigue and Jietominin viets, and Hag lsland hawar, by J. J,

Knight and W. Smith. 6. Cape Charles and vicinity, by E. Yeager and C. Smith. 7. Hatleras inlet, (4th edition,) by E. F. Woodward, J. J. Knight, T. H. Oehlgohlager, W. Smith, and J. Knight. 8. Ocracoke inlet, by J. H. Goldthwaite, T. H. Ophlschlager, E. F. Woodward, and H. M. and J. J. Kuight. 9. Cape Ecar river and New indet, by H. C. Evens and W. Smith. 10. Nerth Edisto river, (2d edition,) by T. H. Oehlschlager and W. Smith. 11. Key West, Tor. tion,) by E. Yeager and W. Smith. 12. Channel No. 4, Cedar Keys, by T. H. Oahlschlager, H. C. Evens, and W. Smith. 13. East and West entrances St. George's sound, by S. W. Bradley and W. Smith. 14. Mobile bay, हण्ग hod, (2d edition,) by W. Smith and H. M. Knight. 15. Horn Island Pass, by J. S. Pettit, T. H. Oehlschlager, J. H. Goldthwaite, W. Smith, M F. O. Stroble, and H. M. Knight. 16 to 19. Cat Istand tidal diagrams, by H. C. Evens, W. Smith, and H. M. Knight. 20. Barataria bay, by S. W. Bradley, W. Smith, and T. H. Oehlschlager. 21. Tmballier bay eatrance, by J. S. Pettit and W. Smith. 22. Galveston eutrance, (preliminary sketeh,) by H. C. Evens and S. E. Stull. 23. Galveston bay, (2d edition,) by J. Knight, F. M. Knight, H. C. Evens, and M. F. O. Stroble. 24. San Luis Pass, by J. J. Knight, E. Yeager, and H. M. Knight. 25. Alden's reconnaissance from San Francisco to San Diego, by G. McCoy, W. Smith, and T. H. Oehlschlager. 26. Cortez Bank, by W. mad C. Smith. 27. Santa Barbara, by M. F. O. Stroble, J. Young, and W. Smith. 28. San Francisco city, (3d edition,) by M. F. O. Stroble, W. Smith, J. Young, and J. and H. M. Knight. 29. Shoal-water bay, by J. Young, S. E. Stull, and J. Knight. 30. Reconnaissance of Nestern coast, from Gray's harbor to Admiralty inlet, by G. McCoy, E. F. Woodward, W. Smith, and J. Knight. 31. Cape Flattery and Nee-ah harbor, by S. Siebert, S. E. Stull, E. F. Woodward, and W. Smith. 32. False Dungeness, by J. S. Pettit and W. Smith. 33 Self-registering tide-gauge, by H. C. Evens, H. M. Knight, and T. H. Oehlschlager. 34 to 52. Progress and miscellaneous sketches, by sundry engravers. 3. The engraving of the following maps hes been continued during the year: 1. Salem harbur, by H. M. Knight, S. E. Stull, G. McCoy, and F. Dankworth. 2. Boston harbor, by A. Rolle and J. Young. 3. Musheget channel, by W. Smith and J. Young. 4. Long Island sound, No. 1, by J. Knight, S. Siebert, (on contract,) and A: Rollé. 5. Long Island sound, No. 2, by W. Smith and J. Knight. 6. Long Island sound, No. 3, by W. Smith and J. Knight. 7. Chesapeake bay, No. 1, हान. hmo, by S. Siebert. 8. Chatleston hanbor, by F. Dankworth, G. McCoy, and E. Yeager. 9. Mobile bay, No. 1, zo. bod, by S. Siebert, W. Smith, and J. H. Goldthwaite. 10. Mobile bay, No. 2, gr- bț, by S. Siebert and W. Smith.
4. The engraving of the following finished maps has been commenced during the year: 1. Newburyport harbor, by H. M.

5. The following preliminary charts are also in progress: 1. Cherrystone inlet; 2 Pungoteague creek; 3. Cape Roman shoals; 4. St. John's river, entrance; 5. Isle Derniere; 6. Arapsas Pasa, $2 d$ edition, enlarged; 7 to 23 . Sketches showing the progress of the suryey.
D.-Eleftrotype Dtyision. Mr. George Mathiot to Capt. H. W. Benham, assistant in charge of Corst Survey office. Liat of electrotype plates made in alto and basso during the year ending November 1.
There have been forty-seven electrotype plates made, of which twenty-three were alto, or monld plates, and twenty-four were basso, or printing plates, as exhibited by the following list:

Name of plate.	Number of altois.	Number of bassos.
1. Muskeget channel. .	- 1	1
2. Mouth of Connecticut River	2	1
3. New Haven harbor.	1	1
4. Captains ${ }^{\prime}$ island, E. and W.	1	1
5. No. 1, Long Island sound...		1
6. General coast chart .	1 .	2
	3	
8. Edisto...............	2	2
9. Sketch H, in Section VIII.	1	1
10. Mouthe of the Mississippi	1	1 1:
11. Delta of the Mississippi.	1	1
12. Alden's chart of Western coast	3	5
13. San Diego entrance	1	1
14. San Pedro.	1	$\therefore 1^{\text {. }}$
15. Santa Barbara.	1	$1{ }^{\text {: }}$
16. Monterey harbor	1	1
17. Point Pinos views .		+1
18. San Francisco city	1	1
19. Humboldt bay.	1	1
That	-	$\boxed{24}$

The plater of Muskeget channel, Edisto, SLetch FI, in Section VIII, Delta of the Mispisaippi, and Aldents ohart of the Western coast, have been enlarged or formed by the eloctrotype, as follows:

Muekeget channel was enlarged in three directions by joining and incorporating.
Edisto was extended in one direction by one pleee added to the original, and incorporated by the electrotype procese. Sletch H was extended in a aimilar manner.
Delta of the Mississippi was formed by incorporating five pleces.
Alden's chart was also formed of five pieces.
San Pedro had the view set in it by electrotyping.
During the patt year I have also, by the electrotype process, gold-plated nineteen deep-aea therpometers, and the worting parte of the refrectiag pyrometer, used for testing the base apparstas.
The engravizg division has been farnished with mixty blank plates for engraving of oharts, shetches, ece.
I have farnisbed the engipeer corps with six quarter-metre somles. graded on both sides.

E-Continued.

F.-Division for publiseing, distributing, and sale of Maps. Mr. V. E. King to Capt. H. W. Begham, assistant in charge of Coast Survey office.
At the date of the last report, November 1, 1852, forty-two eleets of Coast Survey maps had been published; since then five sheets have been added, viz; Wellfeet harbor; Mouth of Connecticat river; Seacoast of Delaware, Maryland, and part of Virginia; Galveston entran, Alden's reconasissance from San Franciseo to San Diego-making the nuaber now publimhed forty-seren sheets.
There have also been published the following preliminary charts and gketches:

1. Davis' South shoals, 6th edition.
2. Sow-and-Pigs reef.
3. Romer \& Flynn's shonls,

Wachapreagueand Metomkin inlets.
4. $\{$ Hog Ialand harbor.

Cape Charles and vicinity.
5. Chincoteague inlet.
6. Hatteras inlet, 4th edition.
7. Ocracoke inlet.
8. Cape Fear river and New inlet.
9. North Edisto river, $2 d$ edition.
10. Key West harbor and upproaches, teo 1 .000, $2 d$ edition.
11. Channel No. 4, Cedar Keys.
12. East and West entrances to St. George's sound.
13. Mobile bay, $\frac{1}{010} \cdot \overline{006}$, $2 d$ edition.
14. Horn Island Pass.
15. Cat ibland, tidal diagrams.
16. Barataria bay.
17. Timballier bay.
18. Galvesten entrance.
19. Galveston bay.
20. San Luis Pass.
21. Cortez Bank.
22. Santa Barbara.
23. San Francisco city-
24. Shoalwater bay,
25. Reconnaissance of the West coast, from Gray's harbor to Admiralty inlet.
26. Cape Flattery and Nee-sh harbor.
27. False Dungeners.
28. Self-registering tide-gauge.

The fact of a large number of the above-named preliminary charts and sketches not appearing embodied in the accompanying tabular statement of the distribution for the past year, is attributable to their very recent completion.

List of Churts and Shetehes distributed.

Names of charts and sketches.	Tumed over for sale.	For use of office.	Gratuitously distributed.	Total.
Charts.				
1. Richmond Lisland	65	10	$\therefore 126$	201
2. Nantucket harbor	15	7	- 126	-148
3. Hyanmis harbor.	27	7	125	159
4. Edgartown harber	20	12	123	155
5. Holmes' Hole and Tarpaulin cove	22	8	124	154
6. Harbor of New Bedford.......	50	14	127	191
7. General chas of the coast.	442	31	138	611
8. Fisher's Lsland sound	16	13	131	160
9. New London harber	31	13	131	191
10. New Haven harbor	10	16	125	151
11. Harbors of Black Rock and Bridgeport	31	14	123	168.
12. Harbors of Sheffield and Cawhins islands	20	8	124	152
13. Huntington bay	45	$\therefore 10$	123	178
14. Oyster or Syosset bay	10	$\cdots 10$	123	143
15. Harborr of Captain's island, east and west.	20	$\therefore 17$	- 124	161
16. Hart and City islands, and Sachem's Head ha	38	7	124	169
17. Hell Gate	38	13	130	181
18. New York bay and harbor, six sheets		6	23	29
19. New York bay and harbor, $80 . \frac{1}{0} 0$	143	23	130	296
20. Western part of south coast of Long Island	29	5	125	159
21. Litule Egg Larbor	23	12	126.	161
2.. Delaware bay and niver, three aheets	281	17	138	436
23. Seacoast of Delaware, Maryland, and part of	26	11	18	55
24. Harbor of Annapolis and Severn river.......	21	11	126	158
25. Mouth of Chester river...........-	16	9	123	148
26. Pagquotank river.	21	6	121	148
27. Mobile Bay entrance..	39	8	129	176
28. Cat and Ship Island harbors	10	4	83	97
29. Western Coast reconnaissance, (Alden's).	62	18	$\bigcirc 95$	175
30. San Diego bay.............................	40	20	145	205
31. Monterey harbor.	385	24	163	572
32. Westerr Coast reconnaissance, 3 sheets.	46	27	141	214
33. Humboldt bay.	38	- 14	136	188
34. Trinidad bay.-	48	16	140	204
35. Mouth of Columbia river	73	12	149	234
\therefore. . Sketches.				
1. Current chart of Boston harbor	10		40	50
2. Nantucket South shoals.	76	19	36	131
-3. Sundy Hook changes.	23	1	38	62
4. Entrance Chesapeake bay.	36	1	37	74
5. Chincoteague inlet...........	14	3	37	54
6. Fishing or Denohu's battery.	14	1	36	51
7. Hatteras shoals	26	3	35	64
8. Hatteras inlet..				
9. Oeracoke inlet.	14	4	102	120
10, Beaufort harbor.-	33	19	145	197
11. Frying-pan shoals...	31	16	138	185
12. New river and bar.	11	8	138	157
13. Bull's bay.......	26		35	61
14. North Ediato.	28	17	142	187
15. Entrance Savannah river	28	9	143	180
16. Savamiah city	28	3	143	174
17. St. Andrew's shoals.	20		37	57
18. Morquito inlet.	13		37	50
19. Cape Canaveral	15		37	52
20. Key Weet-	122	26	-64	212
21. Rebeoca hhorls.	- 3		37	40
22. Went ceant of Elorida......	50	17	107	174
83. Retamainsamee vicinity of Cedar Keys	13		37	50
24. Channel No, 4, Cedar Keys.........	13	6	37	56
25. St. Marks 26 Mobile bar	8	12	142	162
26. Mobile bay	32	18		
97. Horn Island Pase.	13	- 3	35	$B 1$
98. Pasn Christian	3		36	39
29. Delta of Miesinippi...	87	6	38	7

.List of Charts and Sketches distributed-Continued.

Names of charts and sketches.	Turned over for sale.	For use of office.	Gratuitously distribated.	Total.
30. Galreston bay.	82	97	121	230
31. Aransas Pass..	3	1	35	39
32. Catalina harbor.	259	21	136	416
33. San Pedro...-	159	13	129	301
34. Prisoners' harbor, \&c	159	22	131	312
35. Santa Barbara...	100			100
36. Point Concepcion	20	1	43	64
37. San Simeon, de.	159	16	123	298
38. Point Piaos.......	114		36	150
39. San Franciseo city	161	21	197	379
40. Mare Island straits	114	1	51	166
41. Cape Hancock.	114	1	41.	156
Total	4,375	782	7, 260	12,417

Distribution of Coast Survey Reports and Sketch-maps of 1851.

G.-Aromives and Limary. Mr. C. B. Snow to Capt. H. W. Benham, aesistant in charge of the Coast Surveg office.
U. S. Coast Survey Library and Anohives, October 18, 1853.

During the last two years the internal organization of the archives has been undergoing a change, which is now complete.
The sounding, angle, and tidal observations of the past year's operations have been rebound, and all the original hydrographic and topographic maps placed in single tin tuber.

In compliance with your orders, I have removed the duplicate records to a room in the new buildings just below the fre-proof, which adds greatly to the accommodation of the original manuscripts; but it is to be regretted the originala are not in a building fire-proof inside as well as outside.

The arrangements of the archives for the convenience of the survey are in all respects equal to its wants.

Library.

In the same time, the library has been greatly augmented by the addition of many valuable books relating directly or indirectly to the operations of geodetic and hydrographic surveys.

There are now two thousand two handred and thirty-three volumes belonging to the library; five hundred and twenty-six of which have been purchased, and thirty-four presented, within the past two years. Threo hundred of the books belonging to the library are now in the hands of persons attached to the survey.
The acquisition of the Philosopbical Transactions of the Royal Society of London, in sixty-seven volumes, from 1665 to 1849 , purchased at one-fourth of the cost to subscribers, has proved of great service to the tidal computing department, eontaining, as they do, many valuable papers on subjects of tides which are not to be found elsewhere, or are out of print. They have also been consulted by other branches of the survey.

There are some deficiencios in the series of Greenwich, Edingburgh, and Cambridge astronomical observations, the English nautical and American almanacs, and some of the scientific periodicals, of which I have heretofore given you a list, and the purchase been approved by the Superintendent, but now awaiting the-approval of the estimates by him for the library for the ensuing fiecal year, which, when purchased, will add greatly to the completeness of the library.
I would strongly recommend that a system of exchange be entered into with foreign societies for their publications, by sending them in return the Superintendent's reports and published maps of the survey. They would be of great atility, giving us the latest data upon subjects which would facilitate the operations of the office and field.
H.-Extraots from the report of assistant L. F. Pourtales to Captain H. W. Benham, in charge of the Coast Survey office, on the coroputations made in the tidal party-
The following list will show in their order the names of the stations reduced, with the name of the person by whom reduced, and the class to which it belongs:

Station.	By whom reduced.		Station.	By whom reduced.	
Portland, ${ }^{\text {Pe }}$	Messrs. Oftley \& Heaton.	B.	Sandy Hook, N. J	Mesgrs. Fendall \& Hawley	B.
Do.	Mesrrs. Nes \& Fendall.-	C.	Cold Spring Inlet......	Mr. Hawley	B.
Portamouth, N .	Mr. Taylor.	B.	Higbies.................	-...de.	B.
Do......	Mr. Nen...	C.	Egg Island Light	Mr. Nes	B.
Newhuryport,	Mr. Hawley.	B.	Mahon's Ditch.	do	B.
Salen, Mass	Messrs. Heaton \& Nas...	B.	Cohansey Light	do	8.
Boaton Dry-dock	Lieut. Evans.	B.	Bembay Fook....	do	B.
Boston Light.	Mr. Taylor..............	B.	Philadelphia Navy-yard..	. do.	1.
Natucket, Mas	Mr. Heaton. .-...........	B.	Philadelphia, Walnut-st.		
Hyannis, Mabs.	Mr. Taylor	B.	wharf......-.........	do	B.
Edgartom, Mase	Mr. Wise...--.......-.	13.	Old Point Comfort	Messrs. Offley, Looker \&	
Holmes' Hole, Mas	Messra Fendall A Hawley	B .		Hawley	C.
Tarpaulin Cove	Mr. Fendall.	${ }^{\text {B }}$ B.	Point Lookout.	Mr. Wise...............	${ }_{3} \mathrm{~B}$.
Nobsque Light...........- do...................	B.	Bollin Light.	Messre. Heaton \& Oflley -	B.
Wood's Hole, (three stations)		B.	Añapolis, Md..........	Messrs. Heaton, Hawley \& Taylor.	B.
Dumpling Rock.....-....	Mr. Jones	B.	Do........-.......-	Mr. Oflley-.....	C.
Bird-Isiand Light	. do.	B.	James River (five sta-		
Fort Adams, R. I	do.	B.	tions)................	Mr. Heaton..............	c.
Point Judith, R.	Mebsrs. Wise \& Heston.	B.	Curles Neck	Mr. Nes.	C.
Wateh Hill..	Mr. Taylor	3.	City Point..........-....	do	C.
Montauk Point	Mr. Jones.	B.	Petersburg .-.....	Mr. Ondey ...-. - .	c.
Stonington	Mr. Nes...	B.	Smithville.	Menars. Nes \& Hentom..	B.
New London	Mebers.Mitchell \& Heaton	B.	Cape Fear River........	Mr. Heakon.............-.	C.
Shetfield Island.	Mr. Heaton.	B.	Orton Light........-...	Mr. Montemmery -........-	C.
Hridgeport, Comn	Mr. Hawley	B.	Georgetown (2 stations).	Merars Montgomery \&	
Oyster Bry.....	Mr. Wise..	B.		Fendall...4.t..........	C.
Huntinglon Bay	.-.. do...-...-	B.	Castle Pinckney....- ...	Mr. Nes.r-..	C.
Sands' Puint. .	Mr. Heaton.............	B.	Fort Pulaski.	Mears Offley to Jones..	B.
Throg's Neek.	-...do................	B.	Savannah.	Mearra, Wise \& Evans..	8.
New Rochelle	Messrs. Heaton \& Offer	8.	S. W. Pass, La.	Mr. Hestonsitw.	C.
Hell Gate, N. Y.	Mr. Jones..	B.	Dernicre Imand.	-.-. do	C.
Governor's Island, N. Y. .	Messrs. Jonee \& Hawley.	B.	Galveston, Texas	. do	c.
Do.	Messra, Offiey, Looker \& Hawley	8.	Rincon Point, Cal...-.-..................\|	C.

Comparisons of observations with theory were made by Mr. Mitchell for Old Point Comfort, and by Mr. Meston for Galveston.
The readings of the times and tides from tho sheets of the self-registering tide-gauges were made by Menars. Offley, Looker, and Hawley.

APPENDIX No. 26.

Tide Tables for the United States.

The following tables give the principal elements of the tides for a number of points on the coast of the United States. They are selected from a large number of observations made by the Coast Survey. In makiag this selcotion, none have been used, as a general rule, for which the observations did not extend through at least two lunations.

Explanation of the tables.
Table I gives a list of the stations, beginning at the north and east, and following the coast south and west.
The first three columns of this table need no explanation.
The fourth gives the mean interval between the time of the moon's transit and the time of high water. This is also called the "Corrected Establishment" of a placc. Navigators are in the habit of using the term, "time of high water at full and change of the moon," but this is not equivalent to the mean interval on our coast, where the tide follows the transit of the moon, by which it has been produced, by two days. On the Western cosst, however, the mean interval appears to coincide with the interval at full and change.
The fifth columu gives the difference between the greatest and least intervals. Table III will show at what age of the moon these occur.
The sixth column gives the mean rise and fall or range of the tide. The seventh gives the same for spring tides, and the eighth for neap tides.
The ninth column gives the mean duration of the flood or rise of the tide, and the tenth the mean duration of the ebb or fall of the tide. Buth are rechoned from the middle of one stand to the middle of the next.

The elepenth column gives the mean duration of the stand, also sometimes called slack-water, although the latter term is more usually applied to the cessation of the tidal current than to the cessation of the vertical rise or fall of the surface of the water.

Table II. This table gives the rise or fall of the tide at several stations in the Gulf of Mexico. On this part of the ceast the tides present the following peculiarities: When the moon's declination is zero, or nearly so, there are two small, irregular tides in twenty-four hours; when the moon's declination is greatest, there is generally but one tide in twenty-four hours. Betwecn these two periods, there are sometimes two very small tides of unequal height. This inequality ofen amounts to one foot in the height of low water. In the height of high water, however, the inequality rarely exceeds four or five inches, end more generally manifests itself by the tide standing at about the same height for sevoral hours.

When the time of greatest declination of the moon occurs at full or change, the rise and fall are greatest. When the moon's declination is zero in the first or last quarter, the rise and fall are least.
Table III gives the corrections caused by the half-monthly inequality to be applied to the mean iuterval given in Table I, so as to obtain the intervals at the different ages of the moon.
The first column contains the time of the moon's transit or southing, reckoned from noon or midnight. This quantity is given for every day in the year in the almanacs. The other columns contain the corrections mentioned above. By means of this table, and of Table $I_{\text {, the }}$ the approximate time of high water can be obtained for every day for the stations enumorated in Table III. It will only be necessary for this purpose to take from an almanac the time of moon's southing on the day for which the time of high water is wanted, then take out from Table III the correction corresponding, apply it. with its proper sign to the mean interval of Table I, and add this corrected mean interval to the time of moon's southing before obtained. The time of the preceding low water can bo obtained by subtracting from the time of high water the mean duration of flood given in Table I. By adding to the time of high water the mean duration of ebb, the following low water can be obtained. The quantities given in this table can be used for other places in the neighborhood of those named.

Table IV gives the daily inequality, or the quantity by which the a. m. and p. m. tides of a day differ in time and height from the mean interval and mean height of that day. This inequality is not very important on the Athantic coast. It is more strongly marked at Key West, where, however, the total rise and fall is small. But on the Western coast, the knowledge of this inequality is of the greatest importance, as it is very large. A rock in San Francisco bay may have 34 feet of water on it at the morning high water, and be awash at high water in the afternoon.
At Key West, the high water next following the southing of the moon is higher than the preoeding and following one when the monn's declination is south, and the reverse when north.
At San Francisco the difference of height of two successive tides (either high or law watera) faries with the moon's declination. When the decination is nothing, the difference is nothing, or very small. When the deolination is greatest, Whether north or sonth, the difference is greatest.

When the moon's declination is nearly nothing, the interval in time between two successive high watera, or two sucoessive low waters, is nearly twelve hours, and differs most from this when the moon's declination is greatest.
When the moon's declination is north, the highent of the two high tides of the twenty-fur hours occurs about one hour and a half aftor the moon's croasing the meridian, (southing;) and when the moon's declination is sowith, oncurs about one hour and a half aftor the moon's meridian passage, (southing.)
The lowest of the two successive low waters of the twenty-four hours occurs about seven honrs after the highest of the two high waters.
Table V gives the height of the bench-marks established at some of the stations above mean low water. These quantities will be usefil to compare future series of tidal observations with the present ones, and also to give permanent points of reference for engineers in charge of marine construations, deepening of harbors, \&c.
I.

Station.	Locality.	Etate.	interval between time of -moon's transit (sonthing) and ume of high water.		Rise and fall.			Mean duration of		
			Mean.	Difference between grentest and least.	Mean.	spring.	Neap.	Flood.	Ebb.	Stand.
Coast from Portland to New Yark.										
			II. M	H. M.	Fect.	Feet.	Feet.	H. M.	H. M.	H. M.
Portland	Atlantic wharf.	Me...	1125	- 044	8.8	10.0	7.6	614	612	080
Portsmoath	Fort Constitution.	N. H.	1123	$0 \quad 53$	8.6	9.8	7.2	622	607	$0 \quad 21$
Newburypor	Costom-honse wharf...	Mass	1122	$0 \quad 50$	7.8	9.1	6. 6	516	709	$0 \quad 24$
Snlem .-.		Mass.	1113	$0 \quad 50$	9.2	10.6	7.6	619	606	0.00
Hoston Light		Mass.	1112	035	9.3	10.9	8.1	620	606	$0 \quad 15$
Boston..	Charlestown dry-dock..	Mass.	1122	044	10.1	13.1	7.4	616	618	0
Siasconsett	Nantucket	Mass.	11.53	097	1.0			530	654	113
Nantucket	Commercial wharf.	Mass.	12.24	$0 \quad 37$	3.1	3.6	2.6	623	544	$0 \quad 09$
Edgartown	Light-house pier.	Mass.	1216	---...	2.0	2.5	1.6	651	529	$0 \quad 24$
Holmes' Hole		Mass.	1143	031	1.7	1.8	1.3	641	521	$\begin{array}{ll}0 & 12\end{array}$
Tarpaulin Cov		Miss.	804	$0 \quad 49$	2.4	2.6	2.0	609	617	034
Wood's Itole.	North side.	Mass.	806		3.9			631	551	
Wood's Hole	South side.	Mass.	856		1.5			603	622	
Birde Ieland Light	Buzzard's bay	Mres.	759	045	4.4	5.3	3.5	651	558	
Dumpling Rock.	Light-heuse ..	Mass.	757	$0 \quad 41$	3.8	4.6	2.8	650	533	0 - 42
Newport.	Fort Adams	R.I..	745	$0 \quad 24$	3.9	4.6	3.1	621	603	$0 \quad 23$
Point Judith		N. Y.	732	046	3.1	3.7	2.6	612	610	100
Montauk Point, I		N. Y.	810	142	2.0	2.5	1.4	613	611	
Sandy Hook...		N.Y.	$7 \quad 29$	047	4.8	5.6	4.0	610	615	016
New York..	Governor's island	N.Y.	$8 \quad 13$	046	4.3	5.4	3.4	600	685	028
- Long fsland Sound.										
Watch Hill		R.I..	900	0 23	2.7	3.1	2.4	635	556	014
Stanington	Steamboat wharf	Conn.	9 9\%	$0 \quad 30$	2.3	3.4	2.1	615	610	$0 \quad 25$
Little Gull Island		N.Y.	938	107	2.5	2.9	2.3	601	621	$0 \quad 37$
New London.		Conn.	$9 \quad 28$	052	2.6	3.1	2.1	556	626	$0 \quad 22$
New Haven.		Conn.	1116	108	5.8	6.6	5.1	624	605	
Bridgeport.		Conn.	1111	103	6.5	8.0	4.7	601	607	
Oyster Bay, L. I.		N.Y.	117	051	7.3	9.2	5.4	608	624	
Sands' Point, L. I		N. Y.	$11 \begin{array}{ll}11 & 13\end{array}$	0 01	7.7	8.9	6.4	555	630	$0 \quad 14$
New Rochelle		N.Y.	11 22		7.6	8.6	6.6	551	635	$0 \cdot 12$
Throg's Neck		N. Y.	1180	0 39**	7.3	9.2	6.1	550	633	$0 \quad 43$
Coast of Nexo Jersey.										
Cold Spring Inlet.......		N.S.	732		4.4	5.4	3.6	608	618	
Cape May................	Landing	- \%.	$8 \quad 19$	047	4.8	6.0	4.3	611	615	020
Delavare Bay and River:										
Delaware Breakwater.		Del ...	8.00	$0 \quad 50$	3.5	4.5	3.0	615	606	$0 \quad 26$
Figbies	Near Cape May	N. J.	$8 \quad 33$	$0 \quad 43$	4.9	6.2	3.9	686	600	-..
Egg Island Light		N.J.	9804	$0 \quad 51$	6.0	7.0	5.1	552	627	-....
Mahon's Ditch		Del..	$9 \quad 52$	118	5.9	6.9	5.0	611	611	
Now Castle.		Del...	1153	..	6.5	6.9	6. 6	506	643	047
Philadelphia	Nary-yard	Pa....	1315		6. 1	7.0	5.2	451	705	
Do....-............	Wainut-street wharf.	Pa....	131	042	5.9	6.6	5.1	452	706	--....
Chesapeake Bay.										
Old Point Comfort.		Va...	8 F	050	2.5			601	625	
Point Lookout.		Ma...	$12 \quad 58$	045	1.4	1.9	0.7	559	619	035
Annapolis...	Taylor's wharf.	Md...	16.38	040	0.9	1.0	0.8	611	${ }_{6}^{615}$	0.38
Bodkin Light		Md...	1742	$0 \quad 48$	1.0	1.3	0.8	523	708	
Baltimoze.. James River	Jukken's wharf. City Paint.	Md...	$18 \quad 33$	0.43	1.3	1.5	0.9	554	633	
James River	City Point.	$\|$Va... Va	$\begin{array}{ll}14 & 14 \\ 16 & 88\end{array}$	-	2.6 2.9			528 452	652 7	0 40

I-Continued.

Station.	Locality.	State.	Interval between time of numents transit (sourhing) and time of high wator.		Bise and fall.			Mean duation of-		
			Mean.	$\begin{array}{\|l\|l} \text { Wiference } \\ \text { hetween } \\ \text { greatest } \\ \text { \& least. } \end{array}$	Mean.	Spring.	Neap.	Flood.	Ebb.	stand.
Coast of North Carolina, South Carolina, Georgia, and Florida.										
			H. M.	H. M.	Feet.	Fert.	Feet.	H. M.	H. M.	H. M.
Smithville.	Barracks wharf	N.C.-	$7 \quad 19$	047	4.5	5.5	3.8	601	626	$0 \quad 26$
CLarleston	Castle Minckney.	S. C.-	713	036	5.3	6.3	4.6	635	609	$0 \quad 33$
Savannah River.	Fort Pulaski....	Ga...	790	$0 \quad 41$	7.0	8.0	5.9	549	63	$0 \quad 26$
Savannah City...........	Dry-dock wharf.	Ga...	$8 \quad 13$	$0 \quad 51$	6.5	7.6	5.5	504	792	$0 \quad 14$
Cape Florida-.........-	Key Biseayue...	Fla...	826	044	1.7	1.2	2.1	552	688	
Sand Key................		Fla...	840		1.2	2.0	0.6	631	555	013
Key West................	Fort Taylur...........	Fla...	922	112	1.4	2.3	0.7	659	525	$0 \quad 12$
Tampa Bay*............		Fla...	1229	304	1.7	2.5	0.6			
Cedar Keys..............	Depot Key. .-.........	Fla...	1315	155	2.5	2.8	1.8	612	613	\ldots
Western Coast.										
San Francisco...........	Fincon Point.	Cal...	1203	129	3.9	5.0	2.9	630	552	$0 \quad 30$

II.-Mcan rise and fall of tides at several stations in the Gulf of Mexico.

Stations.	Mean rise and fall of tides.				
	Mean.	At moon's greatest doclination.	At moon's least declination.	Forequinoctial tides, subtract-	For $\begin{aligned} \\ \text { olsticial }\end{aligned}$ tides, add-
	Fcet.	Feet.	Feet.		
St. George's Island.	1.1	1. 8	0.6	--7--......	
Pensacola, Fla....	1.0	1.5	0.4		
Fort Morgan, Mobile bay, Ala.	1.0	1.5	0.4	0.2	0.4
Cat Island, Miss..	1.3	1.9	0.6	0.1	0.3
Southwest Pask, La.	1.1	1.4	0.5		
Isle Dernière, La-	1.4	2.2	0.7		
Galveston, Texas.	1.1	1.6	0.8	0.4	0.1
Brazos Santiago, Texas.	0.9	1.2	0.5		

III.-Table showing the corrections to be applied to the meak interval between the Moon's southing and the time of High Wuter for the different hours of Moon's southing.

Time of moon's southing.	Boston, Mass.	New York, N. Y.	Old Point Cumfort, Va.	$\begin{gathered} \text { Smithville, } \\ \text { N. C. } \end{gathered}$	Charleston, S. C.	Ft. Pulaski, Savaniah river, Ga.	Key West, Fla.	San Francisco, Cal.	
Hours.	Min.		Mirs.						
0	Add 11	Add 7	Add 16	Add 8	Add 18	Add $\quad 10$	Add 4	Add	1
1	" 1	Subtract 2	" 4	Subtract 1	" 5	Subtract 1	Subtract 10	Subt.	22
2	Subtraet 7	" 7	Subtract 8	" 11	Subtract 8	" 9	" 22	,	33
3	" 14	$\cdots \quad 18$	$\cdots \quad 17$	" 16	" 22	" 14	: 31	4	34
4	" 20	" 21	" 25	(6) 17	" 25	: 16	" 33	*	35
5	". 21	44.20	:" 29	* 15	" 25	16	" 25	*	30
6	\% 14	" 14	* "6 24	12	" 20	" 12	5	*	4
7	" 2	" 2	" 10	2	8	4	Add 17	Add	33
8	Add 11	Add 10	Add $\quad 7$	Add 7	Add 11	Add 8	" 30	${ }^{*}$	41
9	$\because \quad 20$	$\because 6$	$4 \quad 23$	$1 \quad 17$	4 24	" 19	34	*	33
10	22	" 22	31	$4 \quad 22$	29	" 23	$4 \quad 29$	${ }^{*}$	27
11	22	18	" $\quad 29$	$4 \quad 17$	24	" 17	" 17	${ }^{\circ}$	19

APPENDIX No. 27.

On the bides at Key West, Florida, from observations made in connexion with the United States Const Survey, by A. D. Buchc, Superintendent.-(Communicated by authority of the Treasury Department.)

Hourly observations of the tides were made at Fort Taylor, Key West, from the 1st of June, 1851, to the 31st of May, 1852 , by Mr. J. W. Goss, and other employés of the Coast Survey assisting him. The tides ebb and flow twice in the twenty-four hours, but the diurnal inequality in height is relatively large, amouating at a mean to 0.55 foot, and reaching, in extreme cases, 0.83 foot. The mean rise and fall of the tide being about 1.4 foot, a knowledge of the laws of the diurnal inequality by which successive high or low waters may differ is very important. The corrected establishment of Key West is 9 h. 22 m . The curves of Plate I, Nos. 1, 2, 3, 4, and 5 , show the normal character of the tides at the maximum and zero of the moon's declination at the syzigies and quadratures, and at a mean of dechnation and six hours of the moon's age. There being two tides in the lunar day, the observations admit of discussion by the ordinary methods, while the large diurnal inequality in beight of high water renders it desirable to pursue the mode which I bave applied to the tides at Cat island, (Louisiana,) and Fort Morgan, (Alabama.) The reductions by the ordinary methods thus become the tests of those by the other mode. The former were made under my immediate direction by Lieutenant Richard Wainwright, U. S. N., and Mr. M. H. Ober, U. S. Coast Survey, and the latter by Mr. W. W. Gordon, assisted by Messrs. Mitchell, Homans, and others, of the Coast Survey.
The half-monthly inequality in time and height as deduced by the usual method is shown in the following Table No. 1, in which the first column contains the moon's age, the second the mean lunitidal interval corresponding, and the fifth the beight.

TABLE No. 1.
Half-monthly inequality of tides at Key West from one year's observations.

The mean interval for this table is 9 h . 22 m ., corresponding to the epoch of the moon's age of 24 minutes, showing that the transit E (of Mr. Lubbock's notation) and not F should be used in the reduction for theoretical purposes.
The comparisen between the results of observation and those from the formula for the balf-monthly inequality is shown in the fourth and seventh columns, the fourth referring to the interval and the seventh to the height. The difference in the mean is inappreciable, and, at a maximum, is but five minutes of interval, and six hundredths of a font of height.
A graphic comparison is made on Plate II. The value of the constant (A) of the formula for the interval, $\operatorname{tang} 2 \psi=\frac{(A) \sin 2 \phi}{1+(A) \cos 2 \phi}$ is 0.325 , and of E in the formula for the height $h=D+E(A) \cos (2 \psi-2 \varphi)+\cos 2 \psi$ is 0,620 .

The values of the diurral inequality of high and low water, both in time and height, were obtained by comparing the mean value of the interval and height for the first and seoend six months, with the individual values; they followed closely the law of change with the moon's declination. The inequality in height of high water at a mean is to that of low water as 79 to 61.
As the observations were only made hourly, and the inequality in the interval of high water is small, the minute changes from day to day could not be expected to show themselves. The inequalities were grouped according to the different declinations of the moon into fourteen periods, and the approximate formula, given by Mr. Labbock, for the variation from the mean, was applied. The agreement with theory, as shown in the annexed table, is very close; G was taken as 1.15.

TABLE No. 2.
Comparison of the diurnal inequality of high water at Key West, with the formula $\mathrm{d} \psi=\frac{G \tan \delta^{\prime}}{1+(\mathrm{A}) \cos 2 \varphi}$.

Moon's declination.	Diurnal inequality.		Difference.
	Observed.	Computed.	
\bigcirc -	Minutes.	Minutes.	Minutes.
355	13	15	-02
7. 15	25	29	-04
1130	48	47	01
1545	61	64	-03
$18 \quad 55$	74	78	-04
$20 \quad 55$	88	87	01
2130	100	91	09
2155	95	92	03
$20 \quad 15$	84	85	-01
1730	83	72	11
1355	52	56	-04
915	37	38	-01
515	25	21	${ }^{0} 04$
255	07	11	-04
			-23 +29
			52

The inequalities of time of high water were also arranged according to the moon's age, but the agreement of the observation with the formula is not as close as in the former case, as must be the case from the small number of observations, and the variation of the inequality following chiefly the law of the declination. The law of change is still evident in the grouping, and the plus and minus quantitier balance nearly.
The discussion of the diurnal inequality in height will be resumed in referring to the diurnal wave, after noticing the decomposition of the curve of observation into a semi-diurnal and diurnal curve.

Decomposition of the curves of observation.
As in the discussion presented for the Cat island tides, the curves of observation at Key West were decomposed into two-one representing the semi-diurnal and the other the diurnal tide. The interval, (\mathbf{E}) which was in the former case assumed to be constant, was here treated as variable. The observed ordinates being referred to the man of high and low water of the day as a zero, were tabulaterd, and the maximum ordinates S and D of the semi-diurnal and diurnal curves of sines found, taking (\mathbf{E}) generally at its mean value. From these the ordinates of each curve for the several hours were obtained, and thence the ordinates of the compound curyes. These were compared with observation, and E was next made to vary until the value was found, which gave the sum of the differences of computation and observation, without regard to sige, the smallest.
It was next intended, treating this as a first approximation, to take a differeat zero-point for the semi-diurnal curve, but the labor necessary has prevented this idea from being followed up thas far, and the agreement of the computed and observed curves is quite satisfactory in the cases in which \mathbf{E} is not varying too rapidly for safe deductions. The labor and uncertainty of deducing E from the observations in the manner just referred to is very considerable, and, after one full comparison made in this way, the values will be deduced from theory, and applied to the curves.
The approximate compound curve was next projected on a diagram of suitable scale, and the outline cat from the paper so as to apply it to the curve of observation, and thas to find its best position in reference to that curve, and to determine the times of high water. The work referred to in the paragraphs preceding the last is mechanical, but this latter requires much judgment, and has been executed by Mr. W. W. Gordon. Supposing that some discrepanciea observed might result from a sort of personal equation in making these comparisons, a second person was eugaged to repent them for verifiontion, and the result showed that the comparison contd be depended upon in individual cases to within sbout five minutes in time in the position of the maximum ordinates.

Specinens of the accordance of observed and computed curves in normal cases are given on Platel. The cases correspond to the greatest and least, and to the mean values of the magnitude of the diurnal and semi-dinmai waven.

Semi-diurnal Tides.

The tises of high water from the semi-diurnal carves being taken from the diagrams, are subject to an error, which Mr Gordon estimates as from four to five minutes. This, however, does not appear in the final results, which agree as well with theory as those for the heights, not subject to any such error of estimates.
The lunitidal iatervals and heights found were tabulated accordiug to the moonid age, as in the following tables, which contain the result for the fixt and second six monthy of the year and for the whole yoar. The fourth and geventh colomes
contain, respectively, the differences in the interval and height drawn from the curves, and from the formula for the halfmonthly inequality referred to in the previous part of this paper:

TABLE No. 3.
First six months.

Moon's age.	Interval.			Height.		
	O.	c.	$\begin{gathered} \text { Difference. } \\ \text { O-C. } \end{gathered}$	0.	C.	$\begin{aligned} & \text { Difference. } \\ & \text { O-C. } \end{aligned}$
H. M.	II. M.	H. M.	M.	Feet.	Feet.	Feet.
$0 \quad 30$	853	$8 \quad 54$	1	0.75	0. 75	0.00
130	838	842	4	. 73	. 72	. 01
230	$8 \quad 29$	830	1	. 64	. 66	. 02
330	$8 \quad 24$	$8 \quad 24$	0	. 60	. 58	. 02
430	8. 28	827	1	. 48	. 49	. 01
530	842	840	2	.45	. 43	. 02
630	906	$9 \quad 03$	3	. 42	. 42	. 00
730	923	923	0	. 44	. 46	. 02
830	931	930	1	. 53	. 54	. 01
930	928	928		. 61	. 62	. 01
1030	920	$9 \quad 19$	1	. 68	. 69	. 01
1130	909	$\begin{array}{ll}9 & 07\end{array}$	2	.75	. 74	. 01
	857					

TABLE No. 4.
Second six months.

TABLE No. 5.
The whole year.

Moon's age.	Interval.			Height.		
	O.	C.	$\mathrm{O}-\mathrm{C}$.	0.	C.	$\mathrm{O}-\mathrm{C}$.
II. M.	II. M.	II. M.	\boldsymbol{M}.	Feet.	Fect.	Fect.
030	853	853	0	0.76	0.76	0.00
130	840	840	0	. 73	. 74	. 01
2 30	828	$8 \quad 29$	1	. 67	. 67	. 00
330	822	822	0	. 59	. 59	. 00
430	825	825	0	. 49	. 50	. 01
530	833	-839	1	. 45	. 43	. 02
630	905	- 903	2	. 41	. 41	. 00
730	$9 \quad 22$	$9 \quad 23$	1	. 45	. 46	. 01
830	931	$9 \quad 31$	0	. 53	. 54	. 61
930	930	988	2	. 62	. 63	. 01
$10 \quad 30$	920	$9 \quad 19$	1	. 69	. 71	. 02
1130	306	9 97	1	. 73	. 75	. 02
	857					

Curves showing the result of these comparisons are given in Plate V. The greatest difference for the whole year between the two sets of results is but one minute of time for the interval, and . 0 foot in the beight.
The resulta are in apparent time, the substitution of which for mean time was, however, appreciable in but a slight degree.

There are several small corrections suggested by the hypothesis which has been adopted, but the small value of the residuals renders the following of them up unnecessary. To the last computations we have reached no greater accuracy than is presented by these residnats, and could not safely buse any conclusions on less quantities.
The ordinates used in the heights are the maximum ordinates of the component curves, and not those of high water of the compound curve; but it is easily shown that when the ralue of (E , when most nearly constant, is, as at Key West, between about nine and nine and a half hours, this difference is inappreciable
The solar day haring been used in this decomporition instead of the lunar, the curves are at a mean twenty-five mimutes behind their true place, and the mean lumitidal interval differs twenty-five minutes from the truth; adding thix quantity, it ugrees, as it should do, with the furmer determination.
For the reason just assigned, these numbers would require correction before using them to determine the constants. This, when made, gives the result as before stated.

Diurnal tides.

The maximum ordinates found for the diurnal tides from the decomposition of the curves of observation were groaped according to the declinations of the moon, by magnitude without regard to siga, as shown in the first and segond columas of Table No. 5.
The maximum ordinates may, in this case, be reduced to high water ordinates by a very simple process, and thus a comparison be established between this mode of reduction and the ordinary one. For $(E)=9$. 3 bm., the high water ordinate is 0.79 , the maximum, provided, as in the case at $K_{e y}$ Wert, the time of high water may be taken as that of the semi-diurbal wave.

The following table shows the mon's declination, the corresponding mean maximum ordinate, twice the high water ordinate deduced from this, (which is the diurnal inequality from our mode of reduction,) the diurual inequality as usually obtained, and the difference.

TABLE No. 6.

Sine twice noon's declination.	Maximum ordinate.	Twice high water ordinate, (C.)	Diarnal ine quality, (C^{\prime}.)	Difference, (C'C.)
	Fset.	Fect.	Feet.	Feet.
11	0.12	0.20	0.19	-. 01
21	. 17	. 27	. 28	. 01
35	. 28	. 44	.44	.09
48	. 38	. 59	. 60	. 01
59	. 46	. 71	. 70	-. 01
66	. 51	. 80	. 79	-. 01
69	.54	. 84	.83	-. 01
Mean.		. 55	.55	

The results are represented in diagram No. 3 .
The statement made above in relation to the high water ordinates is not true for those of low water, as the consideration of the formula $y=C \cdot \cos 2 t+D \cos (t-E)-C$ will show, making $E>9$ hours. The reverse is the case if $E<$ 9 hours, the statement applying then to the inequality of low water and not of high. At Key Wert, while the high water inequality in height is thus readily found from the maximum ordinate, the low water presents a less accordant result; while at Cedar Keys just the reverse accurs, as should be the case.

It is plain, also, that changes in the coefficients C, D, and in E , will cause the inequalities in times and beights to vary, as well as those of high and low water, losing all correspondence with each other, as is also well shown in the annexed diagram. Mr. Gordon suggests that in the value of (E) will be found the full explanation of the peculiarities of the Petropaulofik tides described by the Rer. Mr. Whewell.

In diagram No. 1, Plate V, \mathbf{E} is assumed 9 hours and $\mathrm{S}=\mathrm{D}$, and the inequality of high and low water in interval and height correspond to each other. The same is the chas for $E=15$ hours. In No. $2, E$ is 12 hours, and $S=D$. The inequa'ity in interyal of high water is 0 h ., of low water 4 h ., when that in height of higb water is 2 feet, and of low water 0 feet. For $E, 18$ hours and $S=D$, these inequalities would be reversed, that of interval of high water being 4 h., and of low water Oh, while for height the inequality of high water is feet, and of low water \mathbb{Z} feet

Using the high water ordinates. determined as before stated, instead of the diurnal inequality in height, from which it has been shown not to differ sensibly, the numbers were compared with those of Mr. Lubbock's formula:

$$
d k=\mathrm{B}(\mathrm{~A}) \sin 2 \delta \cos (\psi-\varphi)+\sin 2 \delta^{\prime} \cos \psi
$$

Neglecting the variations of $\cos (\psi-\varphi)$ ens ψ, the cofficients B and (A) B were fomd by least aquares for the separate six months and for the year, agreeing sensibly in the partial and total determinations. From two years result $B=0,56$ and (A) $B=0$. 16. The value of (A) thus obtained is, as it should be, the same as deduced from the halfonothly inequality.

The sum of the squares of the difference of the numbers from the formula, and from the computed high water ordinates, is for the year but 0 . 0187 font; corrected for the moon's parallax, but 0. (07s foot.

The individual results are given in the annexed table, in which the first column contains the monn's age the second the difference between the computed high water ordinates and the corresponding quantities from the formula for the variations of the diarnal inequality in height, corrected for paralax, and the third the same, as uncorrected for parallax.

TABLE No. 7.

Moon's age.	Diumal inequality height; ob servation-theory.	
	Corrected.	Uncorrected.
H. M.		
$0 \quad 30$	005	010
130	005	005
230	-033	-030
330	-035	-035
430	-075	-080
530	-(170	-070
630	-180	-089
739	-090	-090
830	-065	-065
$9 \quad 30$	-020	-020
$10 \quad 30$	-030	-030
1130	+005	010

The residuals are very small, but follow the law of the half-monthly inequality, as was found, also, from the corresponding resulta from the Cat Island obaervations.
The discussion of the value of E , which is in progress, I hope to present at a future meeting of the Associstion.
Changes of mean level.
The mean level of the water at Key West was seen from the observations to undergo remarkable changes from one period of the year to another. A oomparison of the reductions for the first and second six months shows that the high water of neap tides of the first period rises actually to a higher level than the high water of spring tides of the second. The mean level of the high water for the first six months exceeds that for the second by 0.48 foot. The form of the halfmonthly inequality is perfectly regular in each six months. The gauge had remained undisturbed; and in seeking for the . ciplanation, it was observed that the mean level of the water varied very materially in the two periods, there being a ohange which appeared to go through its variations in the course of the year.
The snnexed table shows the heights of high water at the several ages of the moon in the first and second six months, referred to the same zero.

TABLE No. 8.

Moon's age.	Height of high water.	
	First six months.	Second six months.
H. \boldsymbol{M}.	Fest.	Feet.
030	6.63	6.05
130	. 59	. 04
- 230	. 48	- . 02
330	. 38	- 5.97
4.30	. 31	. 86
530	. 26	. 75
630	. 17	. 72
730	. 28	. 72
830	. 26	. 79
930	. 34	. 90
1030	. 43	6.01
1130	. 54	- .06
	6.39	5.91

1 hardly supposed that the numbers representing these changes of level would furnish evidence of the two interesting tides of long period pointed out by Mr. Airy, (Tides and Waves, Ency. Metrop., p. 355;) but they do, and in the case of the moon's action, where the number of averages which can be brought to bear upon a single result is considerable, and the observations run through various parts of the year, the resules bear carrying to numerical comparison with the formula. These tides, as far as am aware, have not been developed from observation, though certain general analogies pointed to their existence. Dividing the numbers showing the daily level of the water into groups of nearly fourteen days, each corresponding to the moon's declination from the maximum to the maximum again, and taking the mean of each set corresponding to the same declination, we obtain a series which is the average of twenty-six numbers in which the irregularities of the depressing and elevating action of the winds will be eliminated, and in which the man's action will be nearly the same. This series presents a tolerable regularity inereasing to a maximum at zero of declination, as shown in the annexed diagram 5, No. 1.
Taking the mean level of the water for each fourteen days, and dividing the results into two groups corresponding to the same declination of the sun, north and south, we have a eeries of numbers which, though lems regular than the qhers, also rise towards the zero of declination, as shown in diagram 5, No. 9.
The results of the first series of computations bear very uell a comparison with the formula given by Mr. Airy :
($1.34 \times \sin ^{2} \mu+0.61 \times \sin { }^{2} \sigma$) (cos $2 \lambda+c$, in which μ and σ are the declinations of the moon and aun respectively, and λ is the latitude of the place. requiring $C=0$. Those of the second present greater discrepancies and require $\mathbf{C}=\frac{1}{3}$, contradicting the former. Though the weight of authority is that in favor of the criterion of the wave theory $C=O$, the result is inconclusive. In eitber case the whole number involved is less than the tenth of a foot, the theoretical lunar tide being 0.095 , and the measured 0.098 , while the theoretical solar tide for $\mathrm{C}=0$ is 0.046 , and the measured is 0.077 .

The regularity of the winds of this region, the trade winds taken in convexion with the form of the barbor, point to their action as a source of explanation of this change of level. The meteorslogical tables kept while the tidal observations were made, furnish means of a complete discussion, which is in progress. I may remark, now, that winds tending to elevate the water in the harbor prevail for six montins, from March to August inclusive, and those tending to depress it, for the other six months, from September to February inchusire. The subject is one in which it is difficult to come to mumerical resulte, becanse the variations in the force of the wind and the duration both enter into the effect, and distant action sometimes causes local effects. The whole rise and fall is nearly threequarters of a foot.

The mean level of the water deduced from the mean of high and low water in each month is shown in the annoxed table
TABLE No. 9.

Month.	Height in feet.	Month.	Height in feet.
June	5.60	December.	5.31
July	. 78	January.	. 11
Angust.	. 63	February	.15
Seprember	. 93	March.	. 20
Oetaber	. 90	April.	. 26
Novomber.	. 73	May..	. 82
	5. 76		5. 24

APPENDIX No. 28.

On the Tides of the Western coast of the United States.-Tides of San Francisco Bay, California, by A. D. Bache, Superintendent U. S. Coast Survey.

Tidal observations hape been made, in connexion with the hrdrography of the Coast Survey, at several points on the Western coast, agreeing in showing the same interesting fact of the large diumal inequality of the tides, already traced by Mr. Whewell in the observations at the Russian settlement of Sitka.
The diurnal inequality in height of the tides on the Atlantie coast is much more considerable than in Europe, and the diurnal inequality of interval is also well marked; but both require numerous carefully made observations to establish their laws, in cousequence of the particular relation between the semi-diurnal and diurnal waves. On the Gulf of Mexico, west of St. George's island, the semi-diurnal tide is almost merged in the diurnal, but the total rise and fall is quite small.
At Key West, and along the western coast of Florida, where the diurnal inequality is large, the whole rise and fall of the tides is small, rendering numerous observations necessary to obtain reliable numerical results. The same is not the case on the Western coast; observations made for a short period through the whole twenty-four hours showing a peculiarly large durnal irregularity as the most remarkable phenomenon of the tides. It becomes one of great practical inportance to the navigator; for, in San Francisco bay, a rock which has three and a half (3.j) feet of water upon it at the morning high water, may be awash at high water of the afternoon; and charts, of which the soundings are reduced to mean low water, will have no accurate significance, being liable to an average error of the soundings, at either low water of the day, of 1.18 foot.

The results which I now present, and propose to discuss, are of two series of tides observed in connexion with the Coast Survey at Rincon Point, in the city of San Francisco, California. The observations were under the direction of Lieutenant Commanding James Alden, U. S. Navy, one of the assistants in the Coast Survey. They were made hourly, except about the times of high and low water, when the regular intervals were fifteen minutes, and the attempt was made to seize the precise time of high and low water.

The first series extended from January 17 to Februarx 15, 1852, and the second from January 23 to February 17, 1853. Another set of similar observations was made at Sauceliw, on the northeru side of the Bay of San. Francisco, but not with the same care which appears to characterize these. The results are in general accordant with those deduced from the Rincon Point series
The reduction of the work of 1852 was made by Mr. W. W. Gordon, and that of 1853 by Messrs. Fairfield, Mitchell, and Heaton, of the tidal party of the Cosst Survey office.

The results of 1852 are projected in the curves shown in diagram A, where the abscisso represent the times from 0 hours midnight, and the ordinates represent the heights. The scale is such that the intervals between the vertical lines correapond to two hours, and between the horizontal lines to half a foot. The curve begins with midnight of the calendar day, January 16, 17, and ends with noon of February 15. The epochs of the moon's phases, and of zero, and maximum declination of the moon, are marked at the head, and the times of transit at the foot of the disgram, the curves upon which, for convenience of the page, have been divided into two parts, so arranged with respect to each other that the days of corresponding declination fall nearly over and under each other. The curves of the series of 1853 present the same general results, with about the same extent of irregularities.

These tides obviously present a case of large diurnal inequality in height; the interference of the diuraal and semi-diurnal waves going to produce one large and one small tide in the twentyfour lunar hours. When the declination of the moon is at its maximum, the difference in the heights of consecutive high and low waters is nearly at its maximum; and When the dechiation is nearly zero; the difference is the smallest.

The diurnal inequality in the interval is also perfectly well marked in these tides, amounting, when greatest, to aboat two hours for high water, and one hour and eleven minutes for low water.

The usanil diseussions of the times and heights, corresponding to the same time of transit of the moon, were made from the two series of observations, a defect haviag been found in the operation of referriag the lecel of one tidegange to the other, the two series of heights were cumbined, by assuming the mean height in each series to hare been the same. The results were plotted on a diagram like B, but on a larger seale, for the purpose of graphical corrections in the mode used by Mr. Whewell.
The ordinates of the diagrams Nos. 1 and 2, (diagram B,) correspond to the lunitidal interrals, and of Nos. 3 and 4 to the heights-the abscissa, in each case, to the hours of the mow's transit. The scale is shown at the top nud side of each diagram. No. 1, diagram B, shows the results for the halfmonthy inequality of interral of high water, and the eurves traced by them; No. 2 the same for low water; No. 3 shows the half monthly inequality in the height of high water, and No. 4 in that of low water; the dots show where the observations fall. The comparison of the curves, with observationg is given in the annexed table:

TABLE No. 1.
Comparison of approximate curves of half-monthly inequality of the tides at Rincon Point, waith observations.

Moons'age.	nivteryal.				Height.				Moon'sage.
	High water.		Low water.		High water.		Low water.		
Transit F.	From ctrve.	Observat'n Curve.	From curve.	Observat'n. Curve.	From curve.	Observat'n. \qquad Curve.	From carve.	Observat'n Curve.	Tramsit F.
H. M.	H. M.	M.	H. M.	M.	\boldsymbol{F}.	Ft.	$F t$.	Ft.	H. M.
030	1159	-10	$17 \quad 45$	-9	7.90	-3	3.02	+ 3	030
130	36	-2	37	-3	. 75	$+4$. 10	-8	130
230	27	0	28	1	. 45	$+2$. 21	-20	230
330	24	7	24	7	. 10	+2	. 38	+29	330
430	28	-4	28	-9	6.90	± 4	.52	-6	430
530	48	- 7	42	18	. 78	$+12$. 68	-29	560
630	1218	-1	1805	-1	. 80	-13	. 70	+20	630
730	43	12	24	-7	7.00	+00	. 67	-18	$7 \quad 30$
830	46.	-12	33	9	-. 30	$+15$.50	-41	836
9	39	-2	27	-6	. 50	-15	. 40	$+27$	930
$10 \quad 30$	27	-1	15	-3	. 69	$+5$. 25	-19	1030
1130	11	8	$17 \quad 57$	-2	. 80	-4	. 10	+16	1130
Mean...	1203	+27 +-39	1755	+35 +40		+39 +40		+114 +106	

The results, both for interval and height, are very good, coasidering the small number of observations (foar, of which each is the mean. The heights are, as usual, less regular than the times, and the results for the inequality of the height of low water are the least regular of all.

The approximate mean lunitidal interval for high water, or corrected eatablishment of Rincon Point, is 12h. 03m. This corresponds to an epoch of 0 hours, showing that the tides belong to the next preceding transit (transit F) of the moon, and not of the fifth preceding, (transit B,) as was foand by Mr. Lubbock for the tides of Great Britain. The epoch for low water corresponds ajso almost exactly to 0 hours. The same thing is shown, less forcibly, however, by the discusvion of the observations before referred to at Saucelito.

From curve No. 1, it appears that the difference in the lunitidal intervals for 3 h . and for 9 h . is $\mathbf{1 \mathrm { h }} .20 \mathrm{~m}$., or (A) of Mr. Lubbock $\left(\tan 20^{\circ}\right)$ is 0.342 . The difference between the heights of high water, at spring and neap tides, is, from diagram No. 3, 1.12 foot, and E of Mr. Lubbock $\frac{1.12}{z(A)}=1.66$. The two series of observations, discusged eparately, gave results which did not differ materially from these. These numbers will serve as a first approximation. \quad.

It should not be forgotten that, the observations baving been made in successive years in the mame month, the moon's age and declination, and the qun's declination, are not very different, and the sun's declination is nearly the same on the corrosponding days.

The diurnal inequality obtained by the usual mothod is given in the annexed table, No. 2. The two series are combined by taking the averages for the days on which the declinations correapond in the two series. Each average is thus the mean of four individual results.

TABLE No. 2.
Diumal inequality of interval and height for Righ and low water, from observations in January, 1852 and 1853, at Rincon Point, San Francisco, California.

These numbers are projected on diagram C. Where the ordinates correspond to the intervals for one curve and to the heights for the other, and the absciseat to the tidal days for both. Notwithstanding the small number of observations, the curves can be traced with tolerable certainty and follow the general law of the inequalities.

Each curve shows an inequality increasing and decreasing with the moon's declination, nearly crosaing the zero line at or near the zero of declination, and reaching a maximum or minimum at the maximum of north or south declination. The observations do not furnish sufficient pridence to decide positively that the epochs of the seversi inequalities coincide with those of the declination or otherwise. - On the average, they are about half a day before the corresponding decimation.
The inequality in the height of high water and in the intorval of low water increase and decrease together, and so of the inequality of high water and height of low water.
The declination of the moon and the inequality in interval of high water and in height of low water hava the same sign ; the reverse is the case with the other two inequalities.
The inequality in the height of low water is in general greater than that of high water, exceeding it when at the maximum in the proportion of two to one (nearly 1.9 to 1.) The same relation existi between the maximum inequality in interval of HIGH water as compared with that of LOW, (1.7 to 1.)

The maximum inequality in the height of low water is 3.60 feet, and of high water 1.65 foot. The maximum inequality of interyal of high water, as shown by che curve, is $1 \mathrm{~h}, 53 \mathrm{~m}$, and of low water 1 h .7 m .
I am indebted to Mr. Heaton, of the tidal party, for the decomposition, under the diroction of Mr. W. W. Gordon, of the carves of the daily observations in 1852 , by the method adopted by me for the discussion of the tides of the Guif of Mexico. Though, from some trids which I have sade, these decompositions may be improved, they are, nevertheless, of great intereat, and thow well the onuses of the forms assumed by the curven of diumal inequality in height and interval, and for high and low water and their relations. When the observatione now in progress on the Weatern coast shall have given additional reanlts, I propose to take up this branch of the subject again. In the mean time, it appeare to me, the resulte now obtained are of sufficient interest to be presented to the Asmociation.
I have taken, as an example of the decomposition, the curye from the observations. of January 21, 1852, the reaults corremponding mearly to the maximum of the moonie decliastion and to full moon.
The dinrail curfe, tha interference of which with the semi-diumal produces the form shown in diagram A, and also ou a larger scale in diagram D, is given on the diagram. Its maximam ordinate, as found by summing the two series of heights from the hourly observatione in which the mame values of the ordinate of the diurnal curve occur with opposite aigus, and referring ta che eurve of sines for their relation to the maximumordinste, in 2.20 feet.

The sum of the squares of the differences between observation and computation is the least when the interference takes place, as shown in diagram \mathcal{D}, the maximum ordinate of the diurnal curve being seven hours and a half from the maximum ordinate of the semi-diurnal curre. Subtracting the ordinates of the diurnal carve, assumed as a curve of sines for the heights given by the hourly observations, we have a residual curve, which is traced on the diagram. The average of the four loops of this curve is almost precisely a curve of sines, of which the maximum ordinate is 2.30 feet.

The tidal curves near the maximum of declination, and for several days each side of it, result from the interference of a semi-diurnal and diurnal wave, which at the maximum of each are nearly equal in maguitude, the crest of the diurnal wave being at that period about eight hours in advance of that of the semi-diurnal wave.

The annesed table gives the comparison made in the diagram. The first column contains the ordinates of the curve of observation: the second, those of the diurnal curve of siues; the third, those of the residual curve; the fourth, the ordinates of the semi-diurnal curve, which most nearly satisfy the residual; and the fiftb, the small remaining differences-on the average, being about 0.14 foot. The crest of the diurnal curve is seven and a half hours from the semi-diuraal, and its maximum ordinate is 2.2 feet.

TABLE No. 3.
Analysis of curve of observations for January 21, 1852. Rincon Point.

Ordinates, curve of observations.	Ordinates, diurnal curve of sines.	Ordinates, residual curve.	Ordinates, semidiurnal curve of sines.	Differences.
Feet.	Feet.	Feet.	Feet.	Feet.
-0.23	-0.28	- -1.05	0,00	-0,05
-1.63	-0.83	-0.80	-1.10	. 30
-2:98	-1.33	-1.65	-1.82	. 17
-3.63	-1.72	-1.91	-2.87	. 36
-4,03	-2.00	-2.03	-2.20	. 23
-3.68	-2. 16	-1,52	-1.70	. 18
-2.73	-2. 16	-0.57	-0.70	. 13
-1.48	-2.00	+0.52	+0.70	-0.18
-0. 23	-1.72	1. 49	-1.65	-0.16.
+0.77	-1.38	2.15	+2.20	-0.05
1.47	-0.83	2.30	+2.30	.00
$-1.72{ }^{\circ}$	-0. 28	2.00	+1.90	. 10
-1.52	+0.28	1.24	+1.60	-0.36
. 77	. 83	-. 06	0.00	-0.06
. 17	1.33	-1.16	-1.30	+0.14
-. 33	1.72	-2.15	- -2.05	. 00
-. 28	2.00	-2.28	-2.28	. 00
+. 07	2.16	-2.69	-2.15	. 06
. 87	2.16	-1.29	-1.50	.91
1.87	2.00	-0.13	-0. 20	. 07
2.72	1.72	+1.00	+1.20	. 20
3. 32	1.33	1.99	+1.97	. 02
3. 27	. 83	2.44	2. 32	. 12
2.62	. 28	2.34	2. 20	. 14

For equal maxinum ordinates of the diurnal curve and semi-diurnal enrve, 2.1 feet we have for $E=8$ honrs; the diuraal inequality in height of high water 2.03 feet, or 18 feet greater than the mean found by the curve of diurual inequality, and of low water 3.57 , or .03 foot less than the value given by the curve. So, also, for the inequality in the intervals of high and low water, we have, respectively, 105 and 61 minntes, instend of 113 and 66 given by the diagram, differing but 8 and 5 minutes, respectively, and having the mame ratio to each other as the latter numbers. The mode of interference thps explains satisfactorily the curious relations of the inequality of both time and height of bigh end low water.
Taking the values of the maximum ordinate of the diurnal curve (D) as deduced by Mr. Heaton, tracing a curve for them and folding this over on its greatest ordinate, as a hinge, we bring five values of D to the determination of each point in the eurve from the observations of 1852. Treating the curve of twice the sibe of the mon's declination in the mame way, wo obtain a curve for comparison with the former. Neglecting the sun'm action, we have for theory main. $2 \delta^{\prime}=\mathrm{D}$. Taking the mean of the values of D , which nearly correspond to each other in the half deolination, and the mesin of the corresponding values of the sine of twice the declination, we obtain m=29 nemry.

The following table, No. 4, gives a comparison of the values of the semi-diurnal ordiaates, and of mef. 28
I have also deduced the diurnal inequality from Mr. Heaton's componad or interference curves, and have compared it in the same way with m sine 2 δ. The value of m found from these, was 3 . 28 . The last columa of Table No. 4 refers to thit oomparison.

TABLE No. IV:
Showing the values of the maximum ordinate of the diurnal curve (D) deduced from analyzing the curves of observation and comparison with theory ; also the value of comparison of the diurnal inequalities measured on the compousd curves.

No.	D.	M sine EF .	Difference.	Diurnal inequality Ht. H. W. from curve.
	Feet.	Feet.		Feet.
1	2.13	2. 17	. 04	2.2
2	2.01	2.00	$-.01$	2.05
3	1.79	1.33	. 04	1.85
4	1.54	1.55	. 01	1.5
	1. 16	1. 20	. 04	1.1
6	0.81	0.76	-. 05	1.6
7	-0.25	0.26	. 01	0.0

The agreement of the several results compared appears very satisfactory.
The changes in the value of \mathbf{E} have been distinctly traced by Mr. Heaton from the observations; but before presenting the conclusion on this subject, I desire to subject them to the test of further computations, which are now in progress.

In order not to interfere with the regular work of the hydrograptic party, a separate tidal party has been organized under the direction of Lientenant Trowbridge, of the corps of engineers, assistant in the Coast Survey, and supplied with the necessary means for a full investigation of the tides of our Western coast. It is proposed to establish three permanent self-registering tide-gauges, under intelligent supervision, at San Diego, San Francisco, and Columbia river entrance, and to connect them by observations at saitable intermediate points. There are difficulties to be overcome in the character of the coust itself, and of the aborigines who still inhabit portions of it, but I expect, nevertheless, entire success from the zeal and ability of Lieutenant Trowbridge.
The following tide table results from the observations already discussed.
Corrected establishment at Rincon Point: High water, 12 hours 3 minutes; low water, 17 hours 51 minutes.
Mean rise and fall of tides, 3 feet 11 inches; of spring tides, 4 feet 11.8 inches; of neap tides, 2 feet 11 inches.
Menn duration of rise 6 hours 30 minutes, including half the stand; fall 5 hours 52 minates, including half the atand; stand, 30 minutss.

Difference in height of highest tide and lowest tide in day : average, 5 feet 11 inchos; greatest, 7 feet 7 inehes.
When the moon's declination is north, the highest of the two high tides of the day is the one which occurs about twelve hours after upper culmination.
I have given elsewhere, for the use of navigators, a set of rules founded on these observations, and containing no technical tom unfamiliar to them.

APPENDIX No. 29.

Notes on the Tides at San Francisco, California, by Professor A. D. Bache, Superintendent U. S. Coast Survey.
 Const Servey Offios, Fobrwary 17, 1853.

Sin 1 I am at present engaged in preparing notes on the thdes of the Western const of the United Statos, and believing that, in advance of them, a statement of the general reatits for San Franeisco, Californis, may be of mervice to navigators, I have the honor to mubmit it herewith, and to request authority forits publication. I have avoided the use of scientific terth, except such as are famillar to seamea.

Notes on the tides at Sar Francisco, California.

Besides the ordinary changes in the time and height of the tides known to all navigators, it is important to note the fol lowing, generally applicable to the Western coast, and particularly to San Francisco bay They relate to peculiarities in the tides which occur on the same day, the necessity for knowing which is shown by the fact that a rock having three feet and n hulf of water upon it at low tide; may, at the succeeding low woter, on the same day, be awash :

1. The tides at Rinoon Point, in San Francisco bay, consist generally of a large and small tide on the same day; so that of two successive high waters in the twenty-four hours one is much higher than the other, and of two successive low waters one is much lower than the other.
2. The difference in height of two successive tides (either high or low waters) varies with the moon's declination, When the declination is nothing, the difference is nothing, or very small. When the declination is greateat, whether euth or north, the difference is greatest. When the moon's decliation is nearly nothing, the intervals between two successive high or two successive low waters are nearly twelve hours, and differ most from this when the moon's decination is greateat. -
3. The nequalities in the heights of successive low waters are more considerable than those of successive high waters; while, onthe contrary, the inequalities in the times of high water are more marked than those of low.

- 4 The average difference between the heights of two successive high watera is one foot four and a half inches; and of two anccessive low waters, two feet and four inches. The average difference of these same heights, when the moon's declination is greatest, is for the suecessive high waters two feet, and for the low waters three feet six incbes.

5. The average variation from twelve hours in the inturval between two successive high waters is three quarters of an: hour, and between two suceessive low waters half an hour. The avergge variations of the same intervals when the moon is furthest from the equator are, respectively, one hour and three quarters of an hour.
6. When the moon's declination is north, the higher of the two high tides of the twenty-for hours is the one which occurs about oleven uad a balf hours ufter the moon crosses the meridian, (sonths) and when the moon's declination is south, the one which occurs about one hour and a half after the moon's meridian passage, (southing.)
6 bis. Or the following rule may be used, which applies when the moon crosses the meridian between midnight and 118 a. m., or between noen and $11 \frac{1}{2} \mathrm{p}$. m: :

If the moon is south of the equator, and passes the meridian (souths) in the morning, the morning high water will be higher than the afternoon high water, if, in the afternoon, the afternoon high water will be the higher.
If the moon is morth of the equator, and passes the meridian (souths) in the morning, the afternoon high water will be the higher; if in the afternoon, the moming high water will be the higher.
7. The lowest of the two saccessive low waters of the twenty four hours occurs about seven hours after the highest of the two high waters.
8. The arerage difference between the height of the highest high water and of the lowest low water is fire feet eleven and a half inches, and the greatest difference is seven feet ten iaches.

> Very respectfully, yours,
A. D. BACHE, Superintendent.

Hon. Thomas Corivin, Secretary of the Treasury.

APPENDIX No. 30.

Extracts from letters of L. F. Pourialcs, Esq., assistant in the Coast Surcey, to the Superintendent, upon the exomination of specimens of bottom oltained in the exploration of the Gulf Stream, by Lieuts. Comg. T. A. M. Craven and J. N. Maffit, U. S. Navy, assistants in the Coast Survey.

Dear Sir : I have in bands, now, the specimeng of bottom from the Galf Stream, obtained by Lientenant Craven, and I can say that they are among the mostinteresting I have ever seen. You reeolleot that I said in my reporta, that with the increase in depth-in the greater deptho-the wameref individuals appeared to inerease. The greatest depth from which I had seen specimens was between two hundred and three hundred fathoms. There the sand contained, perhaps, 50 per cent. of foraminiforx, in bulk. The specimens now before me go to 1,050 fathoms: and there it is no longer sand eontaining foraminiferes but forsminifore containing a hittle or no sand. The grains of sand have to be searched for carefully, under the mieroscope, to be noticed at all. The spocies are the same as found in the deeper soundings in Section H, hut the specimene look fresher; and appear somewhat larger. The Glohigerina rubra of d'Orbigney, which forma the majority, has frequently that delicate pink color to which it owea ite name, but which I cannot recollect to have noticed in more northern specimens. There sre also some pieces of eoral and dead shells frem the depth of 1,060 fathoms. The cornde do not look much worn, but still appear to have been dead. There are some delicate shells of molluses from depths beyond 500 fathome, where they were certainly living.
At your request I have examined the apecinions of bottom obtained by soundings tn the Galf Stream, extecuted lately by Lieutenant T. A. M. Craven, U. S. N., assistent in Coast Survey; and I now beg to make the fellowiag report on the resulte of this examination.
The specimeas are from thirteen localities, on the edge and in the GuIf Stream, off the eastern ooast of the peninsula of Florida. I propose to give now a short description of the characteristies of each of them.
I.-Position 2. Lat. $26^{\circ} 12^{\prime}$, long. $79^{\circ} 54^{\prime}$, depth 500 fathoms. This specimen consiath thate entirely of foramiviforem, with a very suall proportion of quartzose mand, estimated at aboat 19 per cent, in bolk. Glibigerina rubra forma the mass, with a pretty large proportion of Rotalina cultrata, Orbulina universa, and Taxtulonie twithe. It also contains minute gastoropods (natica nawsa) and fragnents of the shell uf a crab. The whole is of a chally white color, ouly a fev of the ghobúgerina being pint.
II.-Position 4. Lat 27037 , long 79019 , depth 600 fathom; has the appearanee of fine white mua, ninxed with yel Low sand. It is composed entirely of foraminifera and their fragmente, fa the form of a fine powder. No nilex. Acidn
dissolve the whole, leaving a flocculent greenieh matter-probably animal matter. The species are the same as in the preceding, with the addition of Marginulina Bachei, (rare, Rotalina Ebrenbergii, a Biloculina and a crinson Rotalina, (both rare;) also small shells, and the habitation of a worm composed of agglutinated foraminiferae.
III.-Position 5. Lat $28^{\circ} 04^{\prime}$, long. $80^{\circ} 13^{\prime}$, depth 15 fathoms. Coarse yellow sand and broken shells; equal proportions of both.
IV.-Position 6. Lat. $26^{\circ} 21^{\prime}$, long. $80^{\circ} 10^{\prime}$, depth 20 fathoms. Dark-gray sand and broken shells; very little quartz The black parts of the sand make a dark-gray mark when crushed, and are dissolved with effervescenco in acida. Prob ably a limestone.
V.-Position 8 . Lat. $28^{\circ} 21^{\prime}$, leng. $79^{\circ} 52^{\prime}$, depth 100 farhoms. Fine dark-gray mud, composed in part of very fine quartzose send. Of organized beinge it contains a bivalve shell, a faw very minute Rotaline, spicule of sponges, and socalled infuseria, of the genera Coscinodiscus and Triceratium.
VI.-Position 11. Lat. $28 \circ 24$ ', long. $79^{\circ} 13$, depth 1,050 fathoms. Composed of foraminifere; silicious sand in almost imperceptible quantity. A small portion taken from the lower part of the specimen, atter shating it with water, ouly showed one or two per cent. of silicious sand after dissolution in acid. Globigerina rubra (white, yellow, and pink-the two first colors predominant) forms the greater bulk. Also, Orbulina universa, Rotulina culirata, Baylcyi and Ehvenbergii. Of other animal remains there wore found pieces of coral, (cariophyllia-?-some white and worn, and some brown, and in better condition;) a piece of a large Gasteropod, eld; and wern pieces of Anatifa, and very small pteropods, (Spiratella.) VII.-Position 14. Lat. $29^{\circ} 22 ;$ logg. $79^{\circ} 59$, depth 150 fathoms. Same kind of bottom as No. V; concains a few Biloculine:
VIII.-Position 15. Lat. $29^{\circ} 43^{\prime} 0^{\prime \prime}$, long. $80^{\circ} 37^{\prime} 0^{\prime \prime}$, depth 19 fathoms. Coarse quartzose sand and broken shelle, like No III.
IX-Position 17. Lat. $29^{\circ} 50^{\prime} 0^{\prime}$, long. $800^{\circ} 6^{\prime \prime}$, depth 300 fathoms. Mud, like Nos. V and VII; contains Globigerine.
X.-Rosition 20. Lat. $290^{\prime} 48^{\prime} 0^{\prime \prime}$, long. $79^{\circ} 31^{\prime} 0^{\prime \prime}$, depth 560 fathoms. Globigerina rubra and Rotalina cultrata, in about equal proportions. No quartzose sand or other material.
XI.-Position 21. Lat. $299^{\circ} 48^{\prime} 0^{\prime \prime}$, long. $79^{\circ} 17^{\prime} 0^{\prime \prime}$, depth 450 fathows. Globigerince, Orbulince, and Rotalina, (R. enltrata.) No quartzose sand. It contains, also, considerable tumbers of very delicate shells of pteropod molluscs, belong. ing to the genera Hyalæa, Spirialis, and Spiratella; also, small piecés of coral.
XII.-Position 27^{\prime}. Lat. $31^{\circ} 2^{\prime} 0^{\prime \prime}$, long. $79^{\circ} 35^{\prime} 0^{\prime \prime}$, depth 150 futhoms. A mixture, in about equal proportions, of Globigerinas and black sand-probably green sand, as it wakes a green mark when crushed on paper.
XIIL-Position 32. Lat. $30^{\circ} 50^{\prime} 0^{\prime \prime}$, long. $78^{\circ} 49^{\circ} 0^{\prime}, 590$ fathoms. Globigerinc, Orbulina, Rotaline, (cieltrata and Ehrch bergii, small shells, (Spirialis Gouldii, Spiratella,) small spines of Echini. No quartzose sand.
A few interesting remarks suggest themselres from the above examination; but before passing over to them the following question has to be answered: Are these small animals actually living in the localities from which they were obtained, or have they been gradually washed down from the reefs near which the current has passed? I feel inclined to answer that they were living where found, from the fact that the greater number of the individuals are perfect, notwithstanding the great delicacy of their shell. The delicate pink color of the Globigerine would scarcely be preserved in specimens transported from a diatance.
*The best argument in favor of this opinion is, perhaps, the fact that the same species are feand in a perfect state as far north as the coast of New Jersey and New York. It is very singular, however, that the same species should also be found Iring on the shores of Cuba, and of some of the other West India islands, under exceedingly diferent circumstances of light and temperatare.

If we admit their living in the great depths where we have found them in such abundance, we are enabled to extend the limits of animal life to a much greater depth than is usually admitted. Prof. Edward Forbes, in his repart on the distribution of Mollasea and Rediata in the Egean sea, (Reports of the British Association, 1843,) supposes that in depths beyond 300 fathoms animal life does not exist. In a former report on this subject (Proceedings American Association Charleston meeting) I remarked that the Globigerince rubra wemed to increase in abuadance with depth, I had then seen specimens from depths not exceeding 267 fathoms, and its greatest abundance did not exceed aboat 50 per ceat. of the mass. We have now fund a maximum of its occurrence at a depth of 1,050 fathoms, where this and allied forms constitute the entire bottom. It is but reasonable to fuppose that still deeper explorations would show a gradual decrease for a considerable depth before it should ccase to appear, as was shown for other species living in more shallow water in the report alluded to
In concluding I would remark, how important a knowledge of the habiation and distribution of tha foraminiferm is for geologists; since, of all classes of the animul kingdom none has contributed no large a share to the farmation of rocisa, at least in the cretaceons and tertiary formations.

I have examined the four specimens of bottom obtained by Lieutenant Commanding J. N. Maffts, in his explorations of the Gulf Stream during the past summer, and subjoin a description of their constitient parts.
Specimen No. 1, Position 5, Section YI, depth from 300 to 400 fathone, lat. $31^{\circ} 32^{\prime}$, long. $70^{\circ} 32$, consists in a small angular piece of dark colored atone.
Specimen No. 2, Seition FL, Position 4, depth 600 fathoms, lat, $31^{\circ} 32^{\prime}$, long. $78^{\circ} 20^{\circ}$, consists in foraminifera and amall cholls, and in fragments of shells and corals. The foraminifere are chiefly larger specimens of a kind of Rotalina, of a rough and heavy appearance. The other kinds found among them present also a similar appearance. The fragments of shells and corals are worm and rounded. Among the sheils a specier of Concholepas is abundant.
Specimen No. 3, Section VI, position 6, depth 450 fathome, lat. $31^{\circ} 16^{\circ} 48^{\circ}$, long. $78^{\circ} 16^{\prime}$. This speeimen is on tallow, and consiste only in a few small foraminifereo.
Spocimon No. 4 , Section VI, Position 9, depth 460 fathoms, lat. $30^{\circ} 41^{\prime} 0^{\prime \prime}$, long. $77^{\circ} 33^{\prime} 3$, foraminifera, small shells, and dead corals, (Cyathophyllia,) and fragments of dark stone, like Syecimen 1. The foraminifers have the amane appearance and belong to the same species as those found in the deepent aoundinge obtained in the Gulf Stream by Lieutenaat C. A. M Criven.

The only apecimen presenting anything pecaliar is Specimen No. 2. The appearanee of the foraminifere, sud the rounded condicion of the corals and fragments of shells, seem to indicate an agitation of the water near the bottom. Very respectfully, your obedient servant,

APPENDIX No. 31.
 Report of Professor Benjamin Pierce, to the Superintendent, on the determination of longitudes from observations of moion culminations.
 Cambridge, October 17, 1833.

Sir: I have the honor to present the following report on the determination of longitudes from investigations made between the first of Oetober of the last and of the present year.
The subject of research which has been hitherto submitted to me, is that of ascertaining a method of determining the longitude from observed transits of the moon, which shall not be involved in the great and irregular errers of the lunar ophemeris. The usual process consists in a simple interpolation of observed transits at standard observatorier. The objections to this method are: 1st. That many observations are lost because there are not the requisite corresponding observations at the fixed observatories. 2d. That the method of differences, by which the interpolation is effected, is piable to introdace errots of a peculiar nature when it is applied to such an irregular sequence as the successive transits of the meon. 3d. That the degree of accuracy of the interpolated result cannot be ascertained.

The obvious substitute for this process consists in the computation of a new ephemeris from an exact theory. The great expense and labor of such an undertaking may not be a sufficient objection to it in a work in which accuracy must be the paramount consideration. But the want of any lunar theory which has heen proved capable of standing the test of observation, is decisive; and it is hoped that the method which is now proposed will be found to meet the demands of scieace.
Iu order to decide upon the merits of this or any other proposed method, some reliable and practicable test must be* devised to which it may be submitted. This is only to be found in observation from which the computed renult must nots differ more than the amount whieh may legitimately be regarded as the error of observation. The probable error, there-: fore, of an observation of this peculiar kind; (that is, of a lumar transit,) nust be ascertained by à comparison of observations. which shall be institated quite independently of the defects of theory. Two observatories which are nearly upon the same meridian, present the best opportanity for such an examination. This has been made, under my direction, by Mr. Edward Goodfellow, sub-assistant in the Coast Survey.". He has compared observations of the transits of each hin h of the . moon, made upon the same night; at Greenwich, Cambridge, and Edinburgh, and he had adso compared the transits obs: served with two different instruments at Washington. Tho probable orror of observation resulting from the three hundred and sixty-seven (367) comparisons which have thus been made, is one tenth of a second of time. This interval may then be assumed as the standard probable error of an obseroation of a lunar transit, made at a fixed observatory, in which, however, it is to be noted that the constant errors to which the observations of the different observatories are liable, and which may arise from peculiarities of the instrument or of the mode of observing, are not included. The probable error of this standard determination of the probable error is only about five-thousandths of a second.

The errors of the moon's latitude are rarely of any sensible influence upon the computed transits:' It was not thought'. proper, however, to neglect them; and the corrections of the inclination of the lunar orbit, and of the longitude of its node, have been derived for each year, by the method of least squares, from the observed errors of latitude given in the Greenwich observations. The corresponding corrections of the moon's right ascension have beon thence oblained for the observed transits.
An attempt was next made to determine empirical corrections of the elements of the lunar motion, which should satisfy all the obseryations of longitude made during a year; but the resnlif was unsatisfscrory, and a more special exacuiuation of the obsersvations, conducted with the aid of diagrams, seemed to indicate that the principai ervors consisted of a constant orror of fpoch and a periodical error, of which the period was half a lunation. For each lunation of the year a special deternination was then made by the methed of least squares-of empirical corrections possessing these characters. The probahle error of observation, which slonld be obtained by comparing the longitudes of the ephemeris thus correoted with the observed longitudes, should not differ much from one second and fine-tenths of arc, which corresponds to the standard of one-tenth of a second of time in the transit. The actual result for the year 1847, was a probable error of one second and fortyeight humbredths. This seems to be a sufficient test of the value of the proposed method of reduction of the hmar trasites, or at least a sufficient warrant for the continuance of the experiment. The Greenwich observations only have hitherto been used; but it is proposed hereafter to include those of Cambridge and Edinburgh in the determination of the longitudes of the esstern coast of America, and also those of Washington in the determination of the longitudes of the Western coast. It is also proposed to introduce corrections of the monn's semi-diameter, corresponding to the corrections of the parallax, which the illustrious astronomer Adams has deduced from Hansen's expression of this paraliax.
All which is regpectfully submitted by
BENJAMIN PLERCE.
Prof. A. D. Baohef
Sugtrintendent United States Coast Sturvey

APPENDIX No. 32.

> Report of Professor W. C. Bond on noon culminations, observed by him during the past year, by the "American method," with remarks on the performance of the "spring governor," the invention of the Messrs. Bond.

Hanvard UnivemartT, Cambindge, Noventer 16, 1853.
Dean Eir: In the course of the year fifty-five moon culminations, with the proper etare, have been observed here, all of them by the "American method" with the axception of the two last, whon the olool wan taken down to apply a now arrangement of the electric circuit. We have alwo observed twelve eccultatione of etars by the moon, about one half of them by two observers, and occationally by three.
I have also trankmitted to Mr. Hein, Profeseor Pendleton, and other oftioen of the Cont Survey, fifty three aheete of former obmervations, ehiefly for the determination of longitadea on the Fentern coust.

The accuracy of the spring-governor records has boen seterally and satisfactorily tested in the course of the year by comparison of a large number of passages of the same star over the wires of eur great equatorial, recorded simultancously by our own apparatus, and one constructed by us on the same principle for the observatory at Haverford, in Pennsylvania, the only difference being in the lengths of their respective pendulums, oue making a vibration in half a second, while the other required six-tenths of a second. The effect of this difference of a tenth of a second in the times of oscillation was to change the relative directions of the motions of the pendulums in regard to each other, as well as to that of the siderial clook, which opened and closed the electric circuit at the same moment for both cylinders, and to show, as evidently would be the case, the sum of the errors, had any such existed, in different parts of a single second, on the supposition that the spring attachment did not fully answer the intended purpose of equalizing the alternate motion and arrest the eacapement while the rotary motion of the fly was under the control of the pendulam. The experiment has shown, by the most serupulous reading of the sheets when taken from the cylinders and compared together, that no discrepancies exceeding three hundred parts of a second could be detected as arising from a defect of this nature.

For your satisfaction on this point I enclose the readings of one hundred and cen observations, as recorded by both cylinders on one circuit. These appear fully to corroborate Mr. Walker's report made to you on the subject in April, 1851 , as well as your own impression at that time in regard to the accuracy of the spring governor.

Respectfully and truly yours,
W. C. BOND.

Profersor A. D. Bafhe,
Superintendent U. S. Coast Suroey.
$+$

Comparison of the records made of the same observation by two spring governors, differing one-tenth of a \because second in the time of vibration of their respective pendulums. (The sheets were read off by a proportional scale.) Transits of Spica observed by W. C. B., at Cambridge, August 26, 1853.

Cambridge instru ment.	Haverf	ford instrument.	Cambridg men	instru- t.	Haverf	ford instrument.	Cambridge men	instru- t.		erford instrument.
H. m. s.	M.	s. s.	H. m.	s.	M.	s. s.	H. m.	s.	M.	s.
$14 \quad 17 \quad 21.33$		$21.32+0.01$	14.21	57.71	21	$51.74-0.03$	$14 \quad 27$	23.50	27	23, $48+0.02$
$\bigcirc 27.13$		$27.10+.03$	22	20.36		20.39-. 03		51.33		51.33 . 00
49.30		$49.27+.03$		26.00		26.00 .00		57.90		67.00 .00
55. 00		$55.05-.05$		49.59		49.59 . 00	28	23. 67		$23.07-.00$
$18 \quad 29.00$		29.00 .00		55.37		55.40-. 03		28.76		$28.72+.04$
- 34.62		34.62 .00	23	17.74		17.75-. 01		52.38		$52.40-.02$
55.60		55.62-.02		23. 32		23.33-.01		58.06		$58.05+.01$
$\bigcirc 1901.20$		$01.18+.02$		50.43		50.44-. 01	29	39.95		$39.90+.05$
26. 40		26.40 . 00		56. 06		56.06 . 00		45.63		$45.63 \quad .00$
32.18		32.18 .00	24	22.56		22.56 . 00	30	41.25		41.25 .00
34. 60		$34.57+.03$		28. 27		28.30-. 03		47.00		47.00 .00
56.48		56.49-. 01		54. 41		54.42-. 01	31	21.26		21.26 . 00
$20 \quad 02.15$		$02.14+.01$	25	00.14		60.14 . 00		27. 12		27.12 .00
- 24.34		$24.32+.02$		26.07		26.07 . 00		54.67		$54.63+.04$
30.29		$30.27+.02$		31.70		31.73-. 03	32	00,37		$00.34+.03$
55.25		$55.23+.02$	26	18.90		$18.90 \quad .00$		23.68		$23.61+.07$
21 01, 60		1.00, 00		24. 66		$24.63+.03$		29.31		$29.30+.01$
26.13		$26.13 \quad 00$		43. 15		$43.14+.01$		53.57		53.57 - 00
31.74		31.79-. 05		49.00		49.00 - 00		59.39		$59.38+.01$
21.52 .00		52.00 . 00	27	17. 74		17.74:.00		13.90	33	$13.88+.02$

The final result of the trial is that-

1. The two spripg governors, c and h, give records which do not differ by a constant quantity aflarge as 0 s.001.
2. The probable difference of the two records, includiag the error of seale readiag, is $= \pm 0$ ons for a single observation and a single reading.
3. As a part of this is to be attributed to errors of scale reading, the probable error of the record of a single observaLion on either of these cylinders must be lees than $\frac{0 \text { s.013 }}{\sqrt{2}}=0.009$.
Probable ercor of a single observation read off from the sheet by a scale, and including error of reading off, is $\mathbf{E}= \pm 0.009 ;$
fncluding those sources of error to be asoribod properly to the method of observing by electro-mannetism
4. Probable error of a reading of the record by an eye estimate$\mathbf{E}= \pm 0.021$,

Comparisons continued.

Cambridge instrument.	Haverford instrument.	Cambridge instrument.	Haverford instrament.	Cambridge instrument.	Haverford instrument.	
H. m. s.	M. 3. S*	H. m. s.	M. s. s.	II. m. s,	M. s. s.	*
143319.49	$3319.48+0.01$	144237.22	4237.22 .09	14.5650 .00	$5650.00-0.00$	
3405.90	$5.93-.08$	42.90	$42.90 \quad .00$	51.10	51.10 .00	
11. 55	11.57-.02	5609.00	5609.00 .00	51.56	51.58-.03	
43.94	$43.32+.02$	11.80	11.83-.03			
49.12	49.12 .00	14.80	14.76+. 04			The mean of 113 scale
3510.84	10.81-.01	17.44	17.46+.02			readings gives, for
$\therefore 16.46$	6.45+.01	19.00	$19.00 \quad .00$			the difference of ab-
$\therefore 3602.80$	$12.81-.01$	21.80	21.85-.05			siolute time of the
$\cdots 8$	$8.41+.02$	25,42	$25.41+.01$			two records made
42.64	$42.62+.02$	54, 30	$54.28+.02$.	by c and $h, \theta-k=$
48. 36	$48.39-.03$	55.00	55.00 . 013			+0.0009 $=08.0012$.
3844.93	$44.90+.03$	- 59.00	$59.00 \quad .00$			*
50.41	$50.43-.02$	5706.10	6.00 .00			
- 3908.95	$8.96-.01$	9.95	10.00-.05		.	
14.66	14.62+. 04	17.30	$17.29+.01$			
42.82	42.86-.04	18.18	18.19-. 01			
48.56	48.57-.01	19.05\%	$19.00 \quad .00$			
4016.26	16. $27-.01$	19.70	19.66+. 04			
22.21	$22.23-.02$	37.54	$37.52+.02$			
51.16	$51.18-.02$	40.00	$46.03-.03$			
56.97	$57.00-.03$	42.10	$42.10 \quad .00$			
41 93. 00 ,	*23.00 . 00	44.19	$44.17+.02$		- .	
33.53	33.53 .00	45.73	$45.72+.01$			
4204.60	$4.57+.03$	48.23	$48.22+.01$			
10. 13	10.12+.61	49.83	49.23, .00		*	

APPENDIX No. 33.
Reprrt of Dr. B. A. Gould, $j r$, to the Superintendent, upon the results of his observutions in the determination of the difference of longitude, by telegraph, between Seaton Station, Washingtom; and Charleston, South Carolina.

Cambringe, September 30, 1853.
DEAR SIR: I have the honor to submit a repert upon the progress of the astronomical and telegraphic operations intrasted to me since my entrance upon the service of the Const Survey, on the first of December last.
A determination of the difference of longitude between Charleston, S. C., and the Seaton Station in Washington, was first to be made, and this deternimation subsequently used as one of a series of similar telegraphic longitude connexions Which should ultimately give the lougitude of the cities of Mobile and Now Orleans with the highest precision attainable.

For this parpose, I remained in Washington sufficiently long to make at the Seaton Station, in comexion with Mr. Pourtales, a somewhat extended series of observations for the measurement of the difference of our personal equations; and went thence to Charleston, whence I was to exchange transits of stare with Mr. Pourtales.

Frofessor Lewis R. Gibbes courteonsly placed the observatory in his garden at the disposal of the Coast Survey, and such changes were made as were found neceseary for the erection of C.S. transit instrument No. 8, and of the Kessels clock, formerly at the Seaton Station, and which, since the fire at that station, had been refitted by Mr. Saxton.

The Saxton register, as well as the ordinary Morse register, were set up, and a battory of forty Grove's caps prepared. A battery of equal paver was used at the Seaton Station, and no difficulty was anticipated in commumicating cirectly with Mr. Pourtales, especially as the late Professor Walker had suceeeded on February 5, 1850, in communitatiag directiy from Washington to Chnileston, aud exchanging some observations at that time.

From the middlo of December until the midde of February I remained in Charleston, actively engaged in the prosecation of this undertaking, observing on every fair night circumpolar atars with reversals, and both zenith aud equatorial stars, chronographically, for the determination of time and instrumental corrections, and, with the nesistance of Mr. Wr. R. Lane, keeping up the reduction of these observations as fast as they were made. Throughout this period, messages coneerning the state of the weather were exchanged with Mr. Pourtales every evening and whenever the sky was unclouded at both stations, the batteries trere set up, and the greater part of the nigbtepent in sttampts by each of us to obtain direct eommunication with the other, excepting on those nights when preseure of businese prevented the Telegraph Company from affording us the use of the hine. This pressure of business ametimes followed tho orrival of a transatlantic steanoer; but on all other oceasions the use of the telegraphic line was gratuitously aforded by the fiberality and public spirit of Elam Alexander, Esq., president of the Washington and Now Orleans Telegraph Company. We were aided by the operators in Washington, Petersburg, Raieigh, and Columbia, those at Washington and Charleston being in sttendance at the astronomical stations.

After a saries of the most varied experiments apon the strength, arrangement, and position of the batheries which wonld afford the greatest efficieney, wo were me last reluctantly forced to the conclasion tist the condition of the telegraph wires and poite was sach that direct telegraphic commanication ulong an unbroken dirouit between the two stations was a phyaleal impomemibility.

By your instructions, I sent an experienced man along the line betweon Charleston and Columbia, with proper implements and assistants, to replace insulators, (c., upon the pesta, and to replace the wire where it had been lifted out of the insulators by storms; a work which I have reason to believe was accomplished with cousiderable thoroughness. I had at the time the honor to report the extent of repairs thus made. The facility of communication between Charleston and Columbia was much augmented; but neither then nor at any other time was I able to receive a siagle signal from Washington, nor Mr. Pourtales one from Charleston. So imperfect, iadeed, was the connexion, that on no occasion was the Charleston, and only once the Soaton Station, able to commumicate with the telegraph office at Raleigh. Although the operators at the intermediate stations were men of experience and skill, and all of them warmly interested in the success of the enterprise, it appeared desirable to omit no means of guarding against any accidental error in the connexion of the wires for Coast Survey work; and the more, inasmuch as the Bulkley "repeaters" used on this line are very complicated in their arrangement, wo that an error of this kind, while it might easily be committed, might also easily eacape detection. For this parpose I visited, by your direction, the offices \&it Raleigh and at Petersburg, and convinced myself, by careful examination, that all the connexious had been correctly made.

It thus became necessary to establish an intermediate station; and one was accordingly erected at Raleigh, N. C., in the grounds of the State-house, permission having been granted by Hon. David S. Reid, governor of the State.

Daring my charge of the station in Charleston, one hundred and one observations were made for time and instrumental adjustment, and the instrumental peculiarities fully determined.
While the astronomical station at Raleigh was in process of erection, I arranged a series of experiments in continuation of the researches of the late Mr. Walker upon the velocity of trausmission of the electro-telegraphic siguals, with a view to the still more precise determination of this velocity, of its modifying infuences and the amount of their effect, and especially to the settlement, if possible, of several important theoretical points concerning the mode and medium of their transmission.

By permission of Wm. M. Swain, Esq., president, and Wm. P. Westervelt, Esq., superintendent, of the Magnetic Telegraph Company, four wires of this company, between Washington and New York, were placed at the disposal of the Coast Survey, and these were so connected at the termini as to form oue continuous line, which was still further exteaded towards the sonth by connecting it with the wire of the Washington and New Orleans Telegraph Company as far as Petersburg, Va.

Experiments were made upon these wires on the nights of March 18 and 22, Dr. Wolcott Gibbs volunteering his assistance in New York, and Professor John F. Frazer in Philadelphia. The reduction of these results is not fully completed, and will be made the subject of a special report.

On the 3 d of April I arrived again in Raleigh, and took charge of the station, then nearly completed, setting up C. S. transit instrument No. 3, and zenith telescope No. 1. I was assisted here, as in Charleston, by Mr. Lane, who rondered valuable service in recording, reading, and reducing observations.
As soon as the requisite observations for proper adjustment of the instruments were completed, I satisfied myself, by experiment that direct communication both with Washington and Charleston was possible, and then commenced a daily exchange of weather-messages with Mr. Pourtales in Washington, and with Professor Gibbes, who assumed the charge of the station in Charleston; and was thus enabled, whenever the weather at Raleigh was favorable and the business of the line did not prevent, to avail myself of a clear sky cilher at Washington or at Charleston.
None but those who have been personally engaged in the telegraphic determination of differences of longitude between distant stations, can appreciate the numerous and singularly annoying obstacles of every kind, against which it is necessary to contend, many of them of a character which would by no means hare been anticipated. I am inclined to believe that in cases where, owing to insufficiency of insulation, or "bad connexions" in the circait, direct telegraphic communication between distant stations becomes dificult, great advantage might be derived from carrying out your suggestion, that the strength of the transmitted current would be materially inereased by an increase in the size of the battery elements, and that the most efficient battery would be one not much exceeding in the number of its elements that which would suffice on a thoronghly insulated and well-connected line, but in which the extent of generatiog surface is largely multiplied.
The $\begin{gathered}\text { eries of observations was completed on the 14th of May, at which time eighty-four transits of stars had been }\end{gathered}$ exchanged with Washington on four nights; fifty-nine exchanged with Charleston on four nights; sixty-five circumpolar stars with reversal, and one hundred and nineteen zenith and equatorial stars observed for instrumental corrections, besides the necessary observations for determining the instrumental constants. These observations are now in course of reduction.

Before passing from this subject, I would avail myself of the opportunity to express my sense of the efficient aid rendered by Messrs. Colton, Dowell, Cameron, Sandford, Lumsden, and DeGrove, operathrs in charge of the emnexious for longitude work at their reepective offices. To Mr. L. W. : aldwell, elief operator at the Charleaton office, I feel especially indebted, not merely for his uniform conrtesy and zeal, but for aid and support, without which the ca:apaign would probably have been much lesti wuccessful, and certainly mueh more protracted.

Obseryations were also made at Raleigh for determining the latitude of the station, the position of which with reference to the State-house was carefully determined. Fifteen pairs of stars were observed with zenith telescope No. 1, and eightyeight observations made.
On retarning North, I again devoted two evenings to obscrvation with Mr. Pourtales. at the Seaton Station in Washington, to obtain our personal difference in registering transits. The comparison with Professor Gibbes, in Cbarleston, was efiected indireetly through the friendly services of Mr. Boutelle; who kindly relieved me from the necessity of risiting Charleston for the purpose, by observing twenty stars with Professor Gibbes in Charleston on the eve of his departure from that city, and again with me in Cambridge immediately after his arrival from Charleston direct.

A number of weeke of the sammer have been devoted to a thorough examination and discusbion of the results of the Cosst Survey observations for the determination of personal equations. The examination and disoussion has only been completed for the chronographic obserrations, upon which I hope soon to be able to present a special report. Some of the chief results were orally commmicated to the American Associstion for the Advancement of Science at its recent meeting in Clevelaud. The observations wore critically serutinized, and the greater parts of them re-read. They afford, also, an excellent means of investigatigg the degree of precision attainable by the American method of observation, and the comparative reliability of the records upon the several kinds of recording apparatus used.

While in Ohio, in attendance upan the meoting of the American Association tor the Advancement of Science, I visited Cmecianati, by four direction, to examine the apparatus of Professor O. M. Mitebell, for recording transits of stars. I have alresdy verbaly reperted to you the reatla of thie examination of an apparatus which has so deservediy added to the reputation of its eminent inventor, and that his wellhtaown ingenuity is acill employed in endeavors to increase atill further the precision and convenience of the apparatus, which already promises so much.
It is a nource of regret that none of the reductions of the year's work are sufliciently advanoed to enable me to commonicate their reanlts, but the great amount of labor attending them, augmented, probably, by my ora want of previous experience in the practical execution of such reductions upon a large seale, renders it impossible.

It hae been my privilege to be associated during the greater part of the campaign with Mr, Pourtales, ansistant frecharge of the Seaton Station, and to his experience, unwearying efforts, and friendly aid, I have been largely indebted since my first connexion with the longitude operations.

I have the honor to remain, with great respect, yery faithfully, yours, w
B. A. GOULD, Je.

Profeasor A. D. Bache,
Superintendent United States Caast Survey.

APPENDIX No. 34.
 Report of George P. Bond, Esq., to the Superintendent of the Coast Survey, on the computavions of the chronometer expeditions for determining the difference of longitude between Cambridge and Liverpool.

Cambridge, Mass., September 30, 1853.

Dear Sir: In compliance with the request contained in your letter of the 2 d instant, 1 communicate the following summary of ny reports of April and August last, on the computation of the results of the chronometric expeditions of 1849, 1850, and 1851, between Cambridge and Liverpool.
The transit observations for the determination of the lecal time, both at Cambridge and Liverpool, had already been reduced in the ordinary course of work at each observatory; but to insure confidence in this element, and especially to guard against any small constant error at either station, they have been re-computed with all possible care, and with express reference to the object to which they were to be applied. In the reduction of the Cambridge observations, the first step was to ascertain the position of the mid-wire in the system of seven wires used in the observations, taking into secount the effect of temperature in changing the mutual relation of the wires, and any gradual changes which may have taken place in the interval between July, 1849, and January, 1852. For this purpose sixty transits of Polaris were used. An examination of the probable errer of observing the passage of a star over a single wire was made at the same time, from which the following values wert obtained:

Declination of star.

$10^{\circ} 23^{\prime}$	$\mathrm{E}= \pm 0.086^{\mathrm{s}}$
$12^{\circ} 49^{\prime}$.088
$38^{\circ} 39^{\prime}$.105
$50^{\circ} 03$.116
$51^{\circ} 30^{\prime}$.118
$62^{\circ} 33^{\prime}$.137
$74^{\circ} 40^{\prime}$.137
$81^{\circ} 31^{\prime}$	± 1.200

The values of a revolution of the micrometer screw were determined by passages of Polaris over whole and half revolutions. Observations for the value of the divisious of the level were twice made during the continuance of the expeditions, and give for one division in seconds of are $\mathrm{d}=1^{\prime \prime} .00+0^{\prime \prime} .0037$, $(b-120): b$ being the length of the bubble in divisions of the scale, d will include the proper corrections for temperatare. The level error of the Cambridge transit has a mean value through the year of $b=0$, very nearly, and the small variations from this mean follow, with tolerable regularity, a uniform law of annusl increase and decrease. The probable error of a single division of the level scale is $\pm 0^{\prime \prime} .036$. That of an ordinary determination of the inclination of the axis is ± 0. 005 ; including errore of figure of the pivots, it is $\pm 0 \mathrm{~s}, 011$. The diameters of the pivots are sensibly equal; that on the illuminated side being least by $0 \mathrm{~s} .003 \pm 0 \mathrm{~m} .004$, by eets of levelling in reversed positions of the axis. The probable deviation of the curve deseribed by the axis of collimation of the instrument from a great circle, as far as the indication of the level can be taken as a test, ig-

> Illumination east $\pm 0 \mathrm{~s}, 009$.
> Illamination west ± 0.011.

Reversam on distant marks combined with star transits, give for the effect of irregularities of the pivots upon the collimation and aximuth errors at the north and south horizon $\delta_{0}=0.010 \pm 08.012$, and $\delta a=0.033 \pm 04.014$.

The epparent places of the stare used for clock and instrumental errors have been derived from a catalogue based upon that of the "Expedition Chronometrique" and the "Positiones Media" of Struve, and upon the "Greenwieh Twelve Year Catalogue." Additional authorities wore employed for nine of the circompolar stars. The probable error ef the right asceasions of the new catalogue does not surpass 408.03 for stars south of a declination of 60°.

The azimuth and collimation errors were derived from between five and six hundred equations of condition farnizhed star transits, each of which was first referred to a common standard of exactness depending on the probable errors of obearvation, and of the tabular places of the stars, the group being combined by least squares. Theme were anited with one hmared and eleven equations afforded by observation of the meridian marks, and the solution of the whole gave the adopted values of the azimuth and oollimation. The following table exhibits the agregate of the probable errors of the azimuth and collimation predicted from the observations of distant terrestrial marks, for the intervals given from the nearest date of observataion. They include errors of measuring the angular distances from the mark to the midurire, the probable instability of the instrument during the interval, and other soarces of weertainty.

A comparison of all the observations upon the terrestrial marks, shows that the variations of lateral refraction, in the present instance, have a powerful effect of less than ${ }^{8} .01$ for all intervals less than an hour.
The persomal equations of the observers at Cambridge and Liverpool have been derived from thirty-eight sets of comparisons of twenty passages each.
A copy of the original data employed for the determination of clock errore at Liverpool, has been furnished by Mr. Harnup for both expeditious. These have been submitted to a thorough examination, following the fame order as was pursued with the Cambridge observations. This has been done fur the reason already given for repeating the reduction of the latter, to insure entire confidence in the important elenent of the local time at each station, although, in fact, alterations in essential particalars have, for the most part, been remdered unecessary by the care taken in the first reduction.
The position of the mid-wife of the Liverpool transit, relatively to the mean of the seven, has been found anew from one hundred and tweaty complere transits, the result agreeing perfectly with that employed by Mr. Hurtaup. The probable errors of an observed transit have been deduced and employed, together with those of the tabnlar right ascensions, in assigning the relative weights of clock errors by stars in different declinations. The inclination of the axis of the transit has always been ascertained at least once for each set of star observatious, and frequently two or three times. The probable error of a single determination of this element, assumed to indicate the state of the instrument witbin four hours of the time of observation, is fos.042. The ordinary values assigatd for the inclination of the axis have a probable error of $\pm 0^{s} .02$. The figure of the picots has been examined by means of the level by Mr. Hartnup; the correction for inequality of diameters is $+\psi^{s} 006$ illumination west, to refer the level readings to the mean sxis. The use of the instrument about equally in each position of the axis has a tendency to elimanate irregularities of figures in the pirots; in which, bowever, no indication has been found in comparing results of transits of stars at different altitudes. The collimation error preserved a nearly constant value during both expeditions, never exceeding the amount of 03.03. In deducing anew the clock errors, the right ascensions have been taken from the catalogue before referred to, and all the results have been combined with regard to their probable errors. A special comparison was made for the azimuth and clock errors, by comparing the transits of stars north and south of the zenith. Instances of discrepancies, exceeding the probable errors of the determinations, have always been re-examined. The probable errors of the final results fur clock errors, both at Liverpool and Cambridge, do nor usually exceed \pm ns 05 for those dates on which star transits occur.

Having thus obtained the local times at each station for the particular clocks and chronometers used for observing star transite, the next step has been to transfer these results to all the athere used on the expeditions; in doing which two sources of crror have been considered, besides those due to errors of observations in the transins. 1st, errors in making the comparisons of each chronometer with the standard clock; ed, irregularities in the rate of the standard clock or chronometers, in the usually short interval berween the star observations and the comparisons. The probable amount of these errors has been made a special subject of investigation for the clucks and fur each of the comparing chronvaters. United with the errors of the transit observations, they indicate, for the probable errors of the values assigued fur the errors on mean solar time of each of the expedition chronometers, an amout not ordinarily exceeding $\pm 15,06$. The method of ascertaining these errors has been to determine experimentally for each chronometor, from a large number of comparisons, the difference between its true error and its error predicted for the same epoch from a previous knowledge of its rate. This, indeed, seems to be the only proper method of fixing on the individual peculiarities of each chronometer. The same principle has been made use of by Strure in the "Expedition Chronometrique."

Of the remainder of the work, the reductions from sidereal to mean solar time are completed for both stations; and the reductions for the direct and coincidence comparisons will be more than half finished by the first of October. A couclusion of the computations may be anticipated by the first of January.

Respectfully and truly yours,
GEO. P. BOND.
Dr. A. D. Bache, Superintendent U. S. Coast Survey.

APPENDIX No. 35.

Letter from John Hewston, jr., Esq., to the Superintendent of the Coast Survey, reporting the results of analyses of two specimens of deposite taken from the boiler of the Coast Suriey steamer Hetzel.

Philadelfian, April 30, 1853.

Drar Sir: The following are the results of the analyses of the two specimens of deposite taken from the boiler of the steamer Hetzel.
The principal mass of the incrustations consists of a fibrous crystalline substance, which the anglysis shows to be anbydrous sulphate of lime, interstratified with a black mass of magnetic axide of iron, which a powerful microscope shows to be amorphous.

The flat scale contains but a single fine streak of black, which was completely removed from the portion analyzed, and the whitish portion alone, subjected to analysis, gave the result below stated.
The irregular scale contained a much larger proportion of black irregularly stratified; and in order to abtain an averaga of it, slices wert sawed from it at right-angles to the stratification, and roughly crushed. The black porion was then removed, as completely as possible, by a magnet. The remaining light colured portion, containing a small quantity of black that could not be removed by the magnet, was subjected to analysis, and gave the result as below stated.

By the magnet the irregular scale was found to consist of 17.5 per cent. black portion; $8 \% .5$ per cent. light portion.
Under the microscope the black streak consists of white and black particles, irregularly distributed, the black predominating. A very pure piece of black, by analysis, was found to contain 92 per aent. magnotio oxide of iron; 7 per cent. of lime, with a trace of magnesia.
The portion here analyzed was less than 0.5 grain, consequently the per-centage cannot be regarded as absolutely oorreet.

Analysis of incrustations.

	Flat scale.	Irregular scale.
Lime	30.116	34.692
Magnesia	13.625	4. 190
Sulphuric acid......................	43.931	53.219
	7.796	3. 064
Chiorride of sodium.	1.379	1. 091
Magnetic oxide of iron..-.-. .-.-. -	1.111	2.078
Alumina	0.850	0.400
Silica	1.675	0.400
	99.883	99.134

No fuorine conld be detected in either assay.
Or, compated in the most probable manner in which the ingredents are combined, the analyses are:

	Flat scale.	Irregular seale.
Sulphate of lime.....	73.1397	\{ 84.252
Sulphate of magnesia.	1.362	\{5.489
Hydrate of maguesia.	19.098	(3.422
Hygroscopic water	1. 869	2. 102
Chloride of sodium.	1. 379	1. 091
Magnetic oxide of iron	1.111)	(2.078
Alumina	0. 450	$\{0.400$
Silex.	1.675	(0.400
	99.883	99.134

From the very small quantity of alumina, and the large proportion of iron, and from the latter being in the state of magnetic oxide, it is evident that the iron in the assay arises from the oxidation of the boiler.
From inspection of the layers of the irregular piece, it would seem as if the crust had been formed from below as well as from above. The iron has probably been oxidized, forming a scale of rust, which has been displaced by water penetrating beneath it and the incrustation there deposited.

The analyses of the two pieces of scale show a most remarkable difference in the relative amounts of lize and mag-nesia-the amount of lime differing only a few per cent., whilst the magnesia is more than three times as great in one as in the other. This is very unaccountable, supposing the deposites to come from the satme boiler, and consequeutly from the same water.

By examination of the results of the two analyses, the effect of high heat. in the presence of water, on sulphate of magnesia, is clearly shown. In the flat scale we find 13.625 magnesia, which would be equivalent to 40.875 sulphate of magnesia, assuming it all to have existed in that state, and there is only 1.362 , or one-thirtieth of the whole, Ieft as sulphate, and that twenty-nine thittieths have been decomposed and converted into hydrate. In the irregular scale the total magnesia is 4.19, equivalent to 12.57 sulphate. The amount of sulphate left in the scale is 5.489 , or very nearly five-elevenths of the whole, and only six-elevenths has been decomposed.

In the flat scale, then, which "came from off the arches above the furnace, was nearest the fire," and consequently exposed to a greater heat, we have nearly the whole of the sulphate of magnesin decomposed and converted into hydrate, whilst in the irregular scale, which "came from the bottom of the upper flues," and where the heat was not so intense, ws find that only about one-half of the sulphate of magoesia has been decomposed. The chloride of sodium is evidently owing to a small quantity of the sea-water that has adhered to the scale. The earthy matter--silica, iron, and alumina-may be regarded as sedimentary matter from muddy water.

Most respectfully and truly yours,

Prof. A. D. Bache,

Superintendent United States Coast Survey.

APPENDIX No. 36.

Notes on lithography and lithographic transfers; by Lieutenant E. B. Hunt, Corps of Engineors, assistant in the Coast Survey.

Lithography owes not only its existence, but its possibility, to the fact that several quarries in the vicinity of Mumich farnish slabs of a limestone uniform in texture, apparenty compact, yet really having a somewhat open grain. Though other localities furnish stores which could be used, the real commerce of lithugraphimabs is limited to the Bavarian
quarries, especially Pappenheim and Solnhofen. These furnish stones of ordinary sizes quite cbeaply, so that new quarries, which are from time to time announced, must evcounter a low market at the atart, unless they are able to furnish, in all the requisite perfection, the largest sizen used. The qualities of a good stone are homogeneonsness, with freedom from veins, specks, and flaws; a yellowish-white or a pearly-gray color which is uniform; a hard, fine, uniform grain; a conchoidal fracture, with a good degree of strength, and a espacity for receiving good grained or polished surfaces, and of being uniformiy acted on by acids. The theory of lithography is briefly this: A grained or polished surface of lithographic stone, haring a porous structure, absorbs and firmly retains both water and oil, or inks made with oils or fats. Hence, if parts of the stone surface are covered with a drawing in oil or fat, the remaining surface may be wetted without wetting the inked parts, and then if ink be rolled over the stone, it will be turned from the wet parts, and will adhere ou the inked parts. Thus any drawing made with fat ink on the stome can have its lines duly charged with ink for printing, while all the rest of the stone continues clear. Impression after impression can thus be taken off by wetting and inkingme stone after each printing. In this process the stone is merely the solid support for the ink and water to adhere w, and the whole manipulation has for its object to ink the ink-lines, and them only. If the stone is used when it is too dry, the whole surface takes the ink and prints, thus totally ruining the drawing.
The lithographic press consists essentially of a frame, on which the bed for the stone is so sustained as to run freely on rollers, being thus drawn by a crank movement under a sharp-edged wooden seraper. The tympan, stretched on an iron frame, is a broad leather cover, which folds down upon and protects the stone and paper by directly receiving the wear of the scraper. By a lever movement the scraper is lifted off, when the stome returns to its place after pulling the impression.
There are three distinct methods of drawing on stone-fist with a erayon, second with a pen or brush, and third with the dry point or graver. Crayon drawings are made on grained surfaces, ground with sand, bat not polished, the quality of the graining requiring to be nicely adapted to the intended subject. The drawing crayons are componaded of some fat basis, usually mutton-tallow and white wax, and of some coloring material, usually lamplack, with some additional ingredients to regulate its consistency. In executing drawings, great care is requisite thoroughly to guard the stone from crayon dust, finger-marks, saliva, de., which will be found to print. In peu or brush drawing a liquid ink is used instead of the crayon and in a similar manner, the same precaution being observed to protect the stone. The stonen in these cases are carefully polished. The finer the graining or polish, the more delicate may the drawing be made. The dry point or graver cannot produce the fimest class of effects, for lines cut in the stone lack the clear, delicate quality which they possess in steel or copper; yot, with sufficient skill, care, and hbor, water-lining, hachures, outlines, \&c., can be cut with such delieacy and character as to render well extremely fine subjects.
Printing in colors involves the use of two or more stones, with partial drawings on each stone, their number depending on the number of inks to be printed. Each slab has a drawing, covering just the parts intended to receive the particular colored ink used in printing from that stone. Several of the final colors are usually produced by the blending of the overlaying tints. The great difficulty in color printing for fine subjects is, in securing a correct register or overlaving of the successive color impressions. If the paper undergoes any sensible change of dimension during these printings, or if there be any lack of care in placing the sheet on the successive stones, a false superposition results, and hence confusion of outline and incorrect coloring. In large sheets these difficulties are much increased. In all these processes, except that of dry-point engraping, the stone, when the drawing on it is complete, is subjected to the action of a dilute acid, which, acting only on the parts of the face not coated with ink, leaves the inked or printing parts in slight rehief, the etching being stopped in time to prevent the relief parts from being eaten away seusibly on their sides. This process is obviously a very critical one, for while its mismangement totally ruins the drawing, its success makes the printing strong and clear. Its utility lies chiefly in its removing all dust from the stone, and in its giving relief, with consequent clearness of impression, to the drawing.

I come now to those lithographic methods in which the drawing is not executed on stone, but is made on paper, steel, or copper, and is thence transferred mechanically and bodily on to the stone. The process of transfer from an engraved stone on to another polished stone, already alluded to, involves no-such important peculiarities as to demand special mention here, it being based, indeed, on the same principles as all other transfer processes. The term transfer is applied to stone on whose polished face the ink from an original writing or drawing, or from an impression on paper, has been so thrown down as to admit of printing in the same manner as a drawing first made on stone, thus indefinitely reproducing an original. By this means an unlimited number of copies can be procured from an engraved plate without sensible wear in the engraving. If the engraved surface be small, several transfers may be pat on one stone, so as to print several on a sheet, and several such stones can be prepared for printing in a short time, thus presenting peculiar facility for multiplying copies rapidly. Parts from different plates, borders, letter-press notes, viewe, \&c., can be separately printed and put into new combinations during the transfer process, so as to make almost any desired re-arrangemeni of materials without reengraving. Indeed, the piecing together of parts from different plates is a too frequent mode of making new maps, in which no single element except the combination is new. Most school atlases are printed by transfer; and generally, when a greater number of impressions is wanted than the engraved plate would give, either an electrotype reproduction of the plate, or a tranefer on to stone, must be resorted to, or else the plate must be wholly re-engraved as many times as there will be plates worn out.

In respect to style of work which transfer printing can now give, it is certain that, with equal care, plate printing gives decidedly the best impressions, though it is poseible even now, by sufficient care, to print transfer impressions fully equal to the ordinary plate impressions. There can hardly be a doubt that such improvemeats will in time be made as to render the style of trasfer printing fearly as strong and delicate as that of plate printing. The existing imperfections are nearly always due to some diseoverable omission of care or lack of skill in managing the numerous details which infiuence the transferring and printing. .
Autographic printing is not now much used, at least in this country, though cases frequently occur in which it is very convenient, or even important. In this method, the writing, drawing, music, or other subject for fac simile, is written or drawn on autographic paper with antographie ink, just as it is to be printed. This manuscript is then placed face downwards on the stone, and rua through the press until the ink firmly adheres, when the paper, by wetting, can be smoothly stripped off, leaving the ink behind. On cleaning the stome, it can be printed as usual. As this process requires for its successful application a careful obsersance of sundry precautions, and a special preparation both of the paper and the ink, all of which belong properly to the professional lithographer, the cases are rare in which amateurs will fid an advantage in attempting the preparation of autographic material for the transerer. Indeed, the lithographer would generally prefer to write or draw any subject on the stone rather than to execnte it on paper, and then have to make a transfer. For these reasons I need nut enlarge on this method.

In the transfer pracess as applied to copper and steel engraved plates, the following are the chief points requiring attantion: First of all, the plates themselves mast be in proper condition, and appropriately engraved for transferring. If it is known frum the fret that a plate is to be printed chiafy by transfer, great care should be taken tw insure the
clear, firm entering of all fine lines into the metal, while the heavy lines should be cut rather shallow, nearly a miform depth being used for all the work. Very lightly cut lines are apt to be lost in transferring and printing, while very deep onee hold so mueh ink that in printing they smash out and spread, giving a blotehed and ragged effect. Water-lining, hachures, machine ruling. scales, \&c., should be engrared firmly, with the lines not too close, as the slightest spreading of cluse lincs canses them to run together and print as a black mass. It is well, when possible, to avoid placing heavy and light parts together, as they are not apt to hamnonize io printing. Clear letters, with firm hair-strokes, with open pointed M's, N's, V's, and open top e's, with the heavy strokes not very broad relative to the light strokes, and in general so cat as to give a rather light and uniform effect, will be found to give better tranefers, which will piot long numbers without filling in or losing hair-lines. By keepiug in mind that transfer impressions are printed from a flat surface, and that the ines hare no relief except what the ink produces, and also that when lines spread so as to unite, there is no chance of restoring distinctuess, un intelligent engraver can generally avoid those tailures of adaptation to transferring which result in blotches or missing lines. Yet this study of adaptation has a grester importance than is generaly attached to it, and the routine methods of engravers make a serious obstacle to insuring it proper attention.

In packing plates for transpertation, the engraved faces should be well wax-coated, and on this coating a piece of fine paper should be stuck down tightly and the plate then embedded in cotton or paper, free from dust, grit, or lumps. The plates should not be accumulated in contact with each other, and but few should be put in one box, and all of these should be so secured as not to be capable of aliding in their beds. Wlaen an engraved plate is to be transferred, all the lines of the engraving should be cleaned, washing, if necessary, with spirits of turpentine, or with a solution of potassa for copperplates. All seratches or spots in the plane surfice should be removed by coaling, in the manner of engravers when removing the burr from engravings, or the burnisher may be used if there be both skill and care.

The iuk employed in taking plate-transfer impreseions requires to be specially prepared for this nse, as the effect of variations in ita composition will be greatly to modify the success and printing qualitien of the transfer. Its consistency must be so fine and suft that it can be furced into all the engraved lines, and yet the transfer must have its lines clear, sharp, and hard, so that at working temperatures the lines will not spread or break. The composition requires to bo Failed somewhat, according to the work to be princed. It usually consist, of lithographic printing ink, (four parts,) what is called transfer ink, (six parts,) mutontallew, (one part,) linseed oil, (two parts,) and weak varnish. (two parts.) The transfer ink is composed of yellow wax, ten parts,) mutton-tallow, (one part,) white soap, (three parts,) resin, (five parts,) weak parnish, (ten parta,) and lampblack enough to give a snfficient shade, though the less of this the better. Great care is requisite in all lithographic operations to procure pure materials, as the effect of impurities cannot be calculated. The method of inking plates is either that pursued by the copperplate printer, when the transferer possesses the requisito skill, or the fillowing, which is the usual mode: The plate is heated over a stove or furnace until it is hot enough to soften the ink; the ink tampon, firmly held in the band, is rabbed sluwly, with a rocking motion, over the entire engraved Rurface of the plate, until all the lines are thoroughly charged with ink; then the plate is carefully wiped with several successive rags, until all the surplus ink is removed from the face, great care being taken not to wipe out too much ink from the lines, but so to manage the quantity left in as to give the best relief to all the lines in the impression.

All things being thus ready, an impression is taken with the ordinary copperplate printing press, and in the ordinary manner, thongh either an unsized China paper or a specially prepared autographic paper is used. The autographic paper is prepared by brushing or sponging over a paper, whieh moisture dues not much affect, a coating of starch or paste, mixed with gum. glue, isinglass, gamboge, and sometimes other ingredients, in proportions varied by each transferer. This paper, when smoothly coated and dricd, is delicately moistened between damp blotters for printing, and takes a very perfect impression, in which all the small scratches and clouds of the plate are reproduced. Inspection shows if an impression is proper for transfer; as in that case atl the parts are clear and perfect, of a light tone of shade, and of uniform character. lmpressions more than a week old are not good for transferring.

Haring obtained a satisfactory impression, the transier proper is then effected. A polished stone of the proper size is carefully dried and bedded on a lithographic press, and all things arranged for printing, the transfer impression being in the mean time moisteded slightly between damp blotters. The backing papera are so arranged as to bring all parta under the requisite pressure. If several pieces from different plates are to be combined in transferring, the parts are pasted together so as to present the final arrangement. If several copies of the plate go on one stone, they are transterred in nuccession. When all is ready, the transfer proof is laid, face downwards, on the stone, the backers and tympan are folded down, and the stone is run under the scraper two or three times, the pressure being increased each time. By this zobans the ink lines are made to adhere firmly to the stone. When water is applied frecly to the back of the transfer proof, the starch or paste preparation on its face becomes so softened as to permit the easy separation of the paper from the stone, teaving the ink lines transferred bodily on the stone. China paper detaches itself and floats off, while aucographic paper is really stripped oft. After this the otone is carefully washed uatil nuly the ink lines remain. Then it is acidulated, gummed, and thoroughly dried, short interval being allowed befure inking. A weak ink is used for the first inking, and is rolled on vary deliberately, the stone being hept well wetted. The stone soon becomes fit to put in the printer's hands, whe needs to manage cuntiously for the first hundred impressions to avoil injurigg the transfer. The first impressions are geteraily too light or gray, the best imprescions being usually the second or chird hundred. A good trausfer mometimes gives as many as five thousand unimpaired impressions, though usually they become too mueh worn after sbout two thousand printings. The priuter can, by skill or the lack of it, greatly affect the durability of any transfer, by looking ont constantly for iucipient defects, aud by a naiform, esay manipulation of the ink-roller.

The quality of paper used has a decided offect, both an the clearness of the printing and the duration of the transfer. Soft, thiek paper, with little or no sizing, is generally used where streugth is not important; but a clear, half-sized paper, not highly calendered, prints very well if it contain no improper ingredients, such as alum or plaster. The paper surface neede to hate a slight harshness of feel, or tooth fur ink, as it is called, else fine lines are apt to be lost. It is only by a careful selection, both of paper and of ink, that even a good printer can do justice to a fine-engraved plate, while with every possible aid a bad printer will prodnce very imperfect work; the general shado of his impressions running quite uneven, and portions of his transfer beiug soon filled in or worn away. The printer must maiatain a proper temperature of his stone, comling it with ited water in hot summer days, and having the room well heated in the winter's cold, or the ink of the transfer will be affected, and blotching will reault. Also, the regulating of printing pressure presents considerable diticulty, and needs watchfuthess. There are many uch details which noke the need of an intelligent and energetic supervision oue of the first necessities for good lithography.

The process uow described is one which, even as it is now practised, must be called eminently useful. Senefelder himself used it, though quite imperfectly, of course; but it is only during the last twenty years that its capacities have been really depeloped The rapid improvements it has experienced make it almost certain that before many years more it will have beecime quite perfect and certain in its results It is now very far advanced in France-the true home of lithographie art and science-as the maps of deparments printed by the government fully eatablish. The plates of the great topo-
graphical survey of the interior of France are re-arranged by transfer into excellent maps of the departments, with special borders and titles, and with full letter-press atatistical notes, printed from moveable types, and tranaferred into the proper spaces. In England and Scotland plate-transfer printing is prosecuted as a business, though with what success I have not the means of knowing. In this country, the great amount of transfor from etone on to stone, in making up checks, bills, labels, \&c., supplies many shops with petty jobs in one species of transfer, but a few ouly are engaged in transferring large steel or copper plates. To do this well requires a man to make plate transferring his business and otherwise, not only will he fail of suceess, but he will be apt to seriously injure and deface plates intrusted to his handling. Our privcipal establishments in which plate-transfer printing is extensively executed are J. Ackerman's, 379 Broadway, New York; D. McLellan's, 26 Spruce street, New Xork; Wagner \& McGuigan's, Franklin square, Philadelphis; and Dural's, Philadelphia.

The plates of the Coast Survey report have been in part printed by each of these establishnents, though sometimes the work has furnished but little evidence of skill in managing this process. It was by being for the last two ceasons azsigned to the charge of inspecting the work on these plates. executed by the twe first-named extablishments, that inas led to such an acquaintance with the subject as to induce me to make this commusication.

APPENDIX No. 37.

Letter of Lieutenant E. B. Hunt, U. S. Corps of Engineers, assistant in the Coast Surory, to the Superintendent, describing an instrument invented and called by him the interranger.

Coast Survey Office,

Washington, Novcmber 11, 1853.
Dear Sir: In compliance with your request, I will now present a descriptive and analytical report on the aew instrumeat to which I have given the thme of the interranger.

This is an exceedingly simple device, having for its main object to facilitate the runing of sounding-boata on lines between signals. It may also prove valuable to ressels entering harbors, \&c., by naking arailable any desirable sailingline indicated by two marks or siguals-one over the bow, and one astern. I am not aware of any means now in use whereby an observer can at a glance, and conveniently, see whether he is on the line joining two opposite stations; and yet, in sounding rivers and narrow bodies of water, this is the case of sounding which mont frequently oceurs. No small inconvenience is iovolved in the necessity of prolonging back from the shore all the boat sounding ranges; and in such instances as in the gorge of the Highlands, or where woods como down on flat shores to the water, it becomes virtually impossible to wake these prolongations. It was to meet this class of cases, and to enable the steersman of a soundingboat to keep hinself in line betoeen fure-and-aft signals, and so to rus with certainty from one point to another without prolonging their range, that I devised this interranger.
It consists simply of two plane-mirrors, set at an angle of $90{ }^{\circ}$, and so mounted as to be held in the hand at the distance of about a foot in front of the eye. The angle of junction between the two mirrors being beld vertical, the opposite images, which are seen in juxtaposition along the junction, belong to objects on opposite sider, and located in the same vertical plane through the mirror-edges; so that if there be two sigal poles or flags which are seen to come tugether on the edge, the observer is correctly aligned between them. If, when one is on the edge, the other is seen some distance off from it, then he is off the line, and must move in the opposite direction to that in which be looks; aud if he can only catch one at a time, he must, move forward unil the second comes in sight. In steering a boat, if the sceeroman, in luoking to the right, sees only one signal, on this being brought to the edge be must change his course to the right until both come in sight on the edge; and if, when one is on the edge, the other be visible off the edge, he must change his course to the left. By tookiug first to the right, and then to the left, he can verity his position very closely. The observer should first bring one signal on the edge, and then look for the other image, when he can govern his course according to its appearance or non appearance.

Fortumately, it does not matter at what angle the oye looks on the edge, as in all cases objects seen in juxtaposition on the edge are in the same right line pasing through it. For this reason, if the edge be turned herizontally, and if the eye look down upon it, the line of interrange is still subject to the same conditions. Thus this device will show if an eminence on which the observer stands is high emough to cut off the line of sight between two opposite eminences or points; and bence in reconoaissance it will serve to test the availability for observation of certain lines without going to the limiting stations. The only case in which the use of the interranger, in sounding, will present difficulties, is when the signals are one or both much above the water. In running between such signals the edge requires, for perfect sccuracy, to bo held vertical, though cawes would be very rare when the ego would not give to this verticality all requisite eccuracy. In this case the signals come on the edge one above the other, when the alignment is correct. The edge, in fact, always gives the picture of objects, located in a plane through the edge, and makiag with the two mirrors, respectively, the same angle as the ray from the eye, perpendicular to their common edge.

In pioparing this instrument for use, its mounting is encased in a semi-cylinder with solid dises at the ends. The rounded part consists of two small doors, closing with a clasp, which protect the mirrors when not in use. These doors, when folded back, form a very convenient handle. The thumb is inserted between them under an elastic band, while the fingers lightly grasp the doors. The mirrors are about an inch square, and when thas borne on the raised hand, the eye can rapidly sweep over the objects in sight. An arrangenent fur a staff mounting is readily attached, but for buat use this is unnecessary. I am expecting soon to have a prism of speculum metal incroduced in place of the two glass mirrors, and in this form I trust it can, with due care, be used at sea without tarnishing too much. If practicnble, this will be better, as it will give a better edge, and as no disarrangement of adjustment will be pussible with a solid prism.

A modification of this mitrovecombination. by whioh it will become both an interranger and an offset instrument, remains to be execated. For this purpose, one of the mirrors must bo extended beyond the other, and a third mirror must be employed to reffect to the eye the image of its pupil when it is on the perpendicuiar to the interrange hine from the edge. By first using the interranger portion, the instrument will be planted at the point where an offset is required. It will then be so tarned as that one of the signals is seen on the prolonged nirror-edge from that position of the ese in which its pupill reflection from the third mirror is bisected by the prolonged edge; the eye then looking past the profonged edge, will see the perpendicalar plane just past this edge. Thus the offet, direction can be iudicated and verifed. By removing the eye as far as compatible with diatinct vision of the pupil and sigual imagex, the offet line will be more aecurately given. A specnlum ment priam is also likely to prove most appropriate for this inter-
ranger and offset instrument, though the third mirror will doubtless have to be a glass one. The special use of this inatrument will be as an aid in surveying those lines, irregular roads, and boundaries, where offsets are employed.

My first idea of an interranger was that of applying the rectangular mirror-combination to the object-glass of the ordinary spy-glass. so that the edge would bisect the field, when the superposed images might be sufficiently distinct to give the destred alignment. Some rials showed that this could be done when the objects were very distinct, and at about equal distances. At quite unequal distances the lack of a special focal adjustment for each view produces too much indistinctness. It was, moteover, difficult to catch the two objecte at once. Abandoning this, I tried placing one of the mirrors opposite to each object-lens of an opera-glass; this gave better results, and a larger field, but the lack of two focal adjustments was again felt. It was interesting to observe the degree of independence in the vision of the two eyes. When the two pictures were illuminated about equally, both were very distinct; but when the light on one was very much the strongest, the other faded from sight. I thought that an effect the reverse of stereoscopic could be observed, or that the natural relief of a view was flattened into a plane pictorial appearance. This device offers some advantages for testing the inter-dependence of the two eyes in vision: and I am confident that some additional knowledge of visual psychology might be gained by careful experiments with the inferranging epera-glass.

I next tried a combination of camera-lucida prisms, so placed that the two faces towards the eye were in one plane, and that their edges joined. This gave highly perfect results, and made a very satisfactory interrange. By so mounting them as to look through a lens, or by superadding a third mirror to image the pupil of the eye, it would serve alao as an offset instrument; but its field is rather limited, and good, correct prisms are too costly. Last of all, I tried the twe plane mirrors, which give the simplest possible form of interranger, and on the whole I think quite the best. When properly mounted in this form, it becomes a convenient pocket instrument, which is brought into play with great facility, and is readily borne on the thumb and in the hand for use; a glance gives the desired indication, and it is not difficult to eatch sight of the two signals at once. Magnifying power is asually quite superfluous. I found it practicable to observe interranges when riding on an omnibus and over a pavement-a case much less favorable for the purpose than any boat in working weather would offer. A little practice in this, as in using the sextant, is necessary for acquiring facility.

For sounding between signals, for sailing on interrange lines in entering harbors, for interrange and offset surveying, the rigbt-angled prismatic mirror is certainly available, and will probably be found useful; it if, however, still only on crial, and the results must be awaited. It will possibly prove of considerable importance in generd navigation, should it afford a sufficieutly ready means of interrange-sailing to anthorize the incorporation of such lines in sailing directions. The appeal must soon be made to a more extensive experience; and I trust this will confirm all present anticipations.

Yours, truly,
E. B. HUNT,

Lieut. U. S. Engineers, Asst. in Coast Survey.
Professor A. D. Bache,
Superintendent United States Coast Survey.

APPENDIX No. 38.

Description, ly Lieutenant E. B. Hunt, U. S. Corps of Engineers, assistant in the Coast Survey, of the self-registering tide-gauge, arranged for the Coast Survey by Jaseph Saxton, Esq.

This gange has for its object to afford a continnous automatic or mechanical record of the exact time and amount of all the risings and fullings of the water surface, produced, in a limited period, by the various tidal movements at its locality. Due allowance being made for the irregular effect of winds, the ocean level at any point is constant, except for the fluctuations due to the tides. The vertical pariations of the surface level, relative to any fixed standard plane, when duly corrected for meteorological conditions, are, therefore, unwixed effects of the general tidal movements, as modified at the locality of observation. In the self registering tide gauge, those vertical oscillations are made to record themselven in a eontinuous curve, whose ordinates undergo variations proportional to the sbsolute rise or fall. The corresponding abscissas are also propertional to the times at which these fluctuations of height occur. The record-curve thus presents to the eye a complete picture of the vertical tidal movements durigg the time of record, as well as a positive measarement of the tide height at each monent of time.
The principle on which the gauge operates, in produciag this result, is simple in idea. A float, rising and falling with the tides, is sy connected with the recording peacil as to cause it to traverse across the record sheet whenever the float moves vertically. A clock-work moves the record sheet lengthwise under the peacil, and prieks into it the hours and half-hours. From these motions of the pencll and the paper, the record-curve results. In arrangiug his tide-gauge according to these principles, Mr. Saxton has drawn entirely from his own resources, his design having been matured in 1845, wholly without knowledge of Mitchell's, Moxton's, Hewitson's, Newman's, or any other, so that his construction is in no sense a reproduction of any other gauge. Whatever semblance may exist is due, not to imitation, but to that almost inevitable similitade of results which the same conditions will most naturally produce under different mater hands. The gauge, ag arranged by Mr. Saxton, is very perfect in its combinations, and it has been found fully adequate to thoroughly reliable recording, when uader the charge of a competent person. Its main featares will be at once seen on inspectiag the drawings. (See Sketch No. 54.)
Two principal movemente are provided for in this gauge, the first being a uniform movement, proportional to time, of the reoord sheet noder the pencil, and the second being a transverse movement of the pencil, strictly proportional to the absolute rise or fall of the float.
To give a unifurm motion to the sheet of paper, a clock-work is used. The moving parts of the old-fachioned eight-day clocks, with the atriking parte taken out, are employed for this purpose, and are found to be woll adapted. The cloek-work gives a uniform motion of rotation to a cylindrical roller, (R^{2}) making it revolve once in twelve bonrs-the connexion between the elock and roller being zate by means of a milled-head clamp-nerew, on loosening which the roller is freed frem the clock. Projecting from the surface of chis roller near its extremities, and soparated by an interval of one foot, are two cirnular rows of sharp steel pointa, twenty-fuar in each circle, and so placed as to gipe on the long sheot or fillet, which runs aver the roller, two parillel straight liues of half-hourly dots, or punctures, one foot apart, and se arranged that the twe dots correaponding to the same time are on the same perpendieular to the hines of dota. These points not only repord
the time, but they also drag the paper with the revolving roller so firmly as to make slipping nearly impossible, and the dots which they make, when in proper adjustment, correspond exactly in time with the indications of the bands on the clock tace. Thus, were the roller fur any reason to revolve irregularly, the clock hands would show it at ouce by an irregular rate The force derived from the clock-weight for governing the movenent of the sheet is almost mull, and is as nearly constant that the clock actually keeps a very unitorm rate during the whole month in which a sheet is receiving its record-curve. The paper used is a long fillet-shaped sheet, about the thickness of beavy quarto book-paper, the leugrh being so determined as to make a single sheet serve for one month. It is wound up smoothly, by the aid of a crank, on the first roller, (R) which has limiting brass disks on its ends, between which the sheet fits rather closely. The outer end of the paper is then passed over the roller (R^{2}) connecting with the clock under the light roller, (R^{3}) which is unshipped for the purpose, and is finally attached to the last roller (\mathbf{R}^{4}) by doubling the end under a amall embedded brass bar. The roller above the sheet (R^{3}) has two small circular grooves around its extremities, ivo which the points fall as they snecessively pierce the paper. Two counterpoising weights (\mathbf{E} and \mathbf{E}) are surpended frow the first and last rollers (\mathbf{R} and \mathbf{K}^{4}) at their ends farthest from the clock. These serve to keep the paper uniformly well stretched, and the one running doun from the receiving roller (R^{4}) is made enough heavior than the other just to propel the record sheet, thus relieving the clock and insuring the smooth winding up of the paper. All the rollers are made of well-seasoned white pine wood, and their mountings are of brass. A study of the drawings will best show how the clock and rollers connect with the supporting frame, as also the character and dimensions of the frame itself. A wooden box-covering (supposed removed in the drawings) protects the clock movements.
The second principal movement in the gange is that which originates in the vertical oscillations of the float, and extends to the recording pencil. The float (F) is an air tight cylindrical or canister-shaped copper box, which is first thuroughly painted for protection. A small ballasting weight is attached to the centre of its bottom. On its top is an eye, in which is fastened the end of a chain, wire, or cord, leading up through the float box. This box is a water-tight wooden case, large enough to pormit a free play of the float, and terminating at the bottom in a fumel, with an orifice at its apex, about one-eighth of an inch in diameter, through which the water can pass as rapidly as necessary, but not so freely as to mako the float oscillate sensibly with the surface waves. The funnel serves also to discharge any sediment which might otherwise interfere with the float. The fustom of the box extends below lowest low tide, and its top comes up to the level of the forr on which the gange stands. The wire, chain, or cord, must be made secure against variations in length. The lower portion may well be of copper wire, but of the upper part a length somewhat exceeding the greatest extent of tide range must be adapted to winding on the receiving wheel above (W). Fine silver wire and silver chain have thus far been used for the winding part, bat it is hoped that a cord, which will not be too much affected in its length by moisture, \&ec, may soon be procured. The varying weight of the chain, as it rums off or winds up, at first gave some trouble, and has led to the use either of light silver wire or of a special counterpoise, either of which sufficiently obviates all derangements from varying weights. On the axle of the receiving wheel, (W) a small cylinder (W ') is attached. The relation between the circumferences of the wheel and cylinder is so adjusted as to mảke the entire record-curve fall between the lines of dots. This is done by making the small cylinder radius somewhat less than $1-\mathrm{n}^{\text {th }}$, that of the wheel, n being the maximum rance of rise or fall expressed in feet. By providing several sizes of cylinders, the same gange can be used in succession at places where the tides range very unequally. A silver chain attached to, and winding on the cylinder, (W') leads up over a pulley (N) to the small brass frame which carries the pencil (P). A small cord leads from the frame over an opposite pulley to a weight ($E^{\prime \prime}$). As the float rises, this weight draws the pencil towards its side of the sheet, and, indeed, keeps the chain and cord always stretched from the weight to the float. On the prolonged axle of the foat-wheel is arranged a fusec, or epiral windiug block, from which is suspended a counterpoise to the float-chain, the spiral being so determined as to make the counterpoising perfect, whatever length of chain be unwound. By this means the weight (E ") which draws back the pencil can be reduced to the value most advantagenus for the pencil chain. The pencil frame slides freely across the paper on the roll, ($g \mathrm{~g}$) and the end bearing the pencil (P) can, at will, be folded back by turning it around the supporting rod as a hinge. A small weight bears down the lead on the paper with the force required for a clear and permanent mark, the bearing being on the top of the time-marking roller (\boldsymbol{R}^{2}). A sof lead is usod, as a hard one soon glazes on the end and slides over the paper without marking.
The two movements now described, with the details requisite for their perfect execution, constitute the whole of the tidegauge proper. In setting it up for a series of records, there are, however, some other matters requiring attention. First of all, its location should be so chosen as to present correctly the tidal characteristics of its vicinity. Its support, should be as solid as practicable, to prevent the irregular effects of shocks and waves in the record, and to save the machinery from jars. There is also a superstructure requisite, of size suffieient to protect the gange fiom the weather, and to afford the requisite access for inspecting and regulating its workings. Then the pencil chain has to be so adjusted by two or three days' trial as to give the record eurve a location midway, or nearly so, between the two lines of dots. A staffgange is also required to be set up as near by as may be, and the corresponding readings observed. A bench-mark, for permanent reference, must always be carefully established, and the self-registering gauge zero referred to it by means of the staff-gauge and a level. All these points being duly attended to, and the gauge being put in operation by a good mechanic, the duty of the attendant or tidal observer begins.

When the gauge is placed near a wharf which in liable to jars from vessels, a separate framing of pile work should be made for its support. These shocke and jars from the waves, and from vessels tonching the wharf, have caused the failure of come of the records by stopping the clock, and otherwise deranging the apparatus.

The difficulties caubed by the freezing of the water in the box at the northern stations duriag the severity of winter, have not entirely been obviated, bat experiments are making which it ip hoped may lead to their removal.

It is the observer's businese, at first, to visit the gauge daily until fully assured that all is proceeding correctly, when a visit every other day will suffice. The duty of supervision involves a careful watch on all the details requisite for the correct workfag of the mechanical arrangements. The rod must be kept well cleaned, and be oiled neaily once a week, care being taken to remove all surplus oil, and not to touch the penell frame or paper. In ganges where the float chain is not counterpoised by a weight suapeaded on a fusee, it may be nocestary, in case of very low tides, to add slightly to the pencil counterpoise. The clook must, of course, be punctually wound, and should never be stoppod except from an absolute necessity, when the time both of stopping and of starting should be diatinctly recorded on the sheet. The clock should keep mean solar time. The observer should record on the sheet the time and date of the first hour-dot on each sheet, and of all stops and starts, the 12 m . hour-dot of the fifth day of each month, H. W. and L. W. reapectively on the high and low water adgea of the bheet at the begioning and end of the curve, the number and seale of the gage, the lucality of observation, and his own name. In case of any clock derangement which iterrupts the oontinuity of record, the staffgage readinge during the break should be entered on the sheot, with a note explanatory of the circumatances. In changing the oheet of paper at the beginning of the month, a time midray between bigh and low water thond be chasen, and the clock should not be stopped.

The sheet whould be wound on to the first roller (R) by running it over the light roller, (R^{3}) and then removing the light roller while it is started on the receiving roller, (\mathbf{K}^{4}.) It is alike iuportant for the observer to do what he can in keeping all the gauge arrangements in perfect order, and to refrain from interferiug with matters beyond his mechanical skill.
In reading the record sheets, they are run over a special reading table, which has two flanges-one fixed and one movo-able-between which the sheet passes under the reading seale fixed at right-angles to the flanges, and mortised through the moveable one. A transparent scale, on which is drawn a set of slightly converging lines corresponding to the fiveminute intervals of a balfhour, is used for taking times intermediate between dots, the divergence serving to make the scale always applicable. Hy this means very rapid readings are made.
This tide-gange has been tested by about eighteen monthe of experience. The minor difficulties eneonntered daring this period are now so generally overcome, that its workings are justly regarded as highly satisfactory. Fourteen gauges have already been put in operation, and a considerable body of curve records has accumulated. Six of these have been sent to the Western coast-three fir permanent and three for moveable stations. The advantages of replacing the discontinuous, imperfect, and not always honest reading of the sfaff-gauge by purely mechanical and continuous records, is so great and obvions, that the self-registering gauge nust come more and more into use. It is not here necessary to compare the two methods, as the points of relative advantage are quite apparent.

APPENDIX No. 39.

Tables for projecting maps, with notes on map projections.*

MAP PROJECTIONS CLASSIFIED AND DEFINED.

That department of descriptive geometry, or analysis, which treats of map and chart projections, has to deal solely whe the terrestrial spheroid, and ospecially with the representation of the parallels and meridians subdividing its surface. As all localitiss, both on land and sea, are most roadily and generally determined by latitude and longitude observations, so it is the most arailable and universal method, in constructing tapa, to refer all positions to meridians and parallels as co-ordi. nate lines.

If we conceive the earth's surface reticulated by a complete framework of parallels and meridians, it is then the specifle and uniform object of all modes of projection to represent these limes on a plane suriace, in the most advantageoun mannor. But, as the spheroid is incapable of direct development on a plane, it only remains to present, in projection, the best approximation to similitude in form, relation, and proportional area in the parts of the earth's surface to be represented.

Ptolemy, Lambert, Euler, Lagrange, De L'Isle, Monge, La Croix, Puissant, Hemry, Gauss, and others, have treated of projections in more or less detail, and some of them by methods of the highest grasp and compass. t This general problem has led to the following modes of projections, (all technically, though some quite incorrectly so called.) each of which has been used, and most of which possess advantages for some descriptions of maps or charts. This classified synopsis will eerve to thow more precisely the relative value and precise character of the polywonic projection.
Class I.-Perspective projections on planes........ $\left\{\begin{array}{l}\text { Orthographic. } \\ \text { Globular, or equidistant. } \\ \text { Stereographic. } \\ \text { Gnomonic, or entral. }\end{array}\right.$
Class IL.-Developed perspective projections...... $\left\{\begin{array}{l}\text { By a tangent cylinder. } \\ \text { By a secant cylinder. } \\ \text { By a tangent cone. } \\ \text { By a secant cone. }\end{array}\right.$
Class III.-Projectiona by developing elements.... $\left\{\begin{array}{l}\text { Cassini's. } \\ \text { Flamstead's. } \\ \text { Bomne's, or the modified Flamstead's. } \\ \text { Polyconic, (US. Coast Survey.) }\end{array}\right.$
Class IV.-Projections conformed to some arbitrary $\left\{\begin{array}{l}\text { The flat chart, with equal latitude degrees. } \\ \text { The flat chart, with latitudes }=\text { radius } \times \text { sine of latitude. } \\ \text { De Lorgna's. } \\ \text { Pwomy's modified conic. } \\ \text { Mercator's. }\end{array}\right.$

CLASS I.
All simple perspective projections are made by supposing the eye at come particular point, and the plane of projection or representation to be pierced by all the rays, or rajs prolonged, between the eye and all points of the parallels and meridians. The curves composed of all these piercing points of rays constitute a perspective projection. A projection. is practicable for any possible pobition of the eye or plane, (except when the eye is in the phne,) but only a few anong this infinite number of perspectives are convenient or eligible for construetion.
In the orthographic projection the eye is assumed at an infinite distance, and the projoeting rays are parallol lives to which the plame of projection is perpendicular at any point desired. By this method cifoles are projected into ellipten, and the outer parte of the projected bemisphere are very much orowded.

[^6]In the globular or equidistant projection, originated by La Hire, the eye is placed at a distance from the centre of the earth $=$ Radius $+\operatorname{sine} 45^{\circ}=\left(1+\sqrt{\frac{1}{2}}\right)$ radius. The plane of projection passes through the centre perpendicular to the central ray. This projection obviates the orthographic contraction or crowding and the stareographic exaggeration in the outer rim of a projected hemisphere.
In the stercographic projection, the eye is taken on the surface of the earth at the pole of the great circle used as a plane of projection. Circles are stereographically projected into circles. An increasing exaggeration of parta from the centre outwards is its great defect.
In the gnomonic or central projection, the projection is on a tangent plane-the eye is taken at the centre of the sphere. Great circles are gnomonically projected into straight lines, and all small circles into curves of the seoond order or conie sections. The entire hemisphere cannot thus be projected, and the portions become rapidly exaggerated in receding from the tangent points.

CLASS II.
Instead of projecting dirsctly on planes, an intermediate cylinder or cone is employed in this class to receive the projection which is there developed or rolled out on a tangent plane. The cylinder and cone being the only surfaces which can be developed by simple rolling out, and without elementary resolution, this class always requires the auxiliary use of one of these surfaces, which may be assumed, subject to several different conditions.
The projection on a tangent cylinder for development is made by placing the eye at the centre of the earth, and projecting the parallels and meridians on a cylioder tangent around the equator. On development, the parallels and meridians are found projected into perpendicular straight lines.
A secant cylinder may be so determined that the entire area of the spherical zone projected shall be exactly equivalent to its projection. These methods are limited in their advantageous application to a moderate equatorial belt.
In projecting perspectively on a tangent cone for development, the eye is assumed at the earth's centre, and the cone is taken tangent around the middle parallel of the zone to be projected. On developing this cone, the meridians apgear as straight lines radiating from its vertex, and the parallels as circular arcs concentric around this point, the middle parallel being in its true length.
A secant conc may be taken which will give two parallels of correct length in the development, and mach reduce the distortion of the extreme belts. This method of Ptolemy was revived by Mercator, and was used by De l'Isle in his map Russia. Murdoch proposed"to make the area of the conic frustrum used equal to that of the projected spherical zonegood condition, though inconvenient in construction. De l'Lsle proposed to use a cone, through the limiting parallels. Euler proposed and determined the cone which equalizes the errors and distortion on the cencral and the two limiting parallels. The use of two conic frustrums-one for the north and one for the south half-has also been attempted, and advocated.

CLASS III.

The class of projections in which positions of the spherical surface are developed by being resolved into their differential elements, which are successively developed, is characterized by a peculiar elegance, and is of the highest importance. By this means, any portion of a spherical or spheroidal surface may be reconstructed on a plane with the most perfect attaibable preservation of the relations and dimensions of its parts. This class of projections is far the best for representing limited axeas, and can even be extended with adrantage in some forms to mappe-mondes, or maps of the entire earth's surface.

Cassini's projection is made by first developing the central meridian of the area for projection into a stragight line. A series of prime verticals or great circles perpendicular to their central meridan is passed at elementary distances along the meridian are, all of which circles intersect in the spheric poles of the central meridisn. These divide the surface into elementary rectangular trosceles triangles, or sectors, basing on the meridian elementa.. When the meridian is developed, these elementary triangles are conceived to be carried with it, and thea to be severally developed into plane triangular elements. The elementary opening out between these developed areas may be neglected for some distance from the central meridian. Accordingly, a series of perpendicular straight lines through the graduations of the developed central meridian is taken as a substitute for parallels, and may be used as farets the opening out between elements can be neglected. Cassini's Map of France is thus projected; but, as its inaccuracy on the extreme east and west sheets amounts to 150 toises in 40,000 . the use of this projection is not to be recommended for aress thus extensive. Du Sejour has developed the theory and formule of this method. As parallels of latitude do notenter, the latitudes of places must be derived indirectly, except on the central meridian.

Klamstead's projection is based on a resolution of the earth's surface into elementary zones or rings by parallels of latitude taken at successive elementary distances laid off along the central meridian of the area to be projected. Having developed this centre meridian on a straight line of the plane of projection, a series of perpendiculars is conceived to be erected at the elementary distances along this line. On or between these perpendiculars the elementary zones are conceived to be developed in their correct relations to each other and to the central meridian. Each zone being of uniform width, occupies a constant breadth along its entire developed length, and consequently the area of the plane projection is exactly equal to that of the spheroidal surfuce thus developed. This demonstration applies directly to an analogons plane development of the surface of all supposable surfaces of revolution, be the generating meridian carve what it may, and even though the generatrit be one of double curvatare. The meridians of the developed apheroid are traced through the same points of the parallels in which they before intersected them. They all cut the parallels obliquely, and are eoncave towards the central meridian. Thus, while each quadrilateral between parallels and meridians contains the amme area and points after development as before, the form of configuration is considerably distorted in receding from the ceatral meridian, and the obliquity of intersections between parallels and meridians grows to be highly unatural.
Bonxe's, or the modified Flamgtean's projection, to a great extent obviates this defect. It is the same as Flamstead'e, exeept that the elementary zones, instead of being developed on right lines, are rolled out on concentric circular ares deceribed from the vertex of the cone tangent along the central parallels for their common contre. The great importanee and wide use of this method induce a more dotailed treatment of it under a subjoined heading.
The polyconic projection, being that for while the following tables are prepared, will be specially explained further on in its proper place.

CLIASS IV.

In addition to the perspective projections, the developed perspective, and the elementary development projections, there Is a class in which sorne extraneous, arbitrary mathenantical oondition is imposed, giving rise to constrainod or distorted celmentions. The tasumed oondition is unally dre to some praetical consideration.

The flat-chart projection, with equal latituds degrees, is a rado method once much in use for charts. Two sets of equidistant perpendicular lines, composing a series of equal equares, were arbitrarily assumed as parallels and meridians to which all localities were referred by latitades and longicudes. Hence resulted a gross distortion of figares, areas, and directions.

Another flat-chart projection was sometimes used, in which equidistant straight lines served as meridians; and for parallels a second set of straight perpendiculars at distances from the equator equal to those of the respective terrestrial parallels for which they stand. This is a radial projestion on the cireurascribing cylinder tangent along the equator, the radii of parallels being the only projecting lines. Hence resulted a very distorted pictare, but one in which each quadrilateral contains an area equal to and corresponding with its spherical correlative-a direct result of the relation between the sphere and circumscribing cylinder. This was the sole recommendation of the method.
De Lorgan's projection is chiefly employed as a polar projection of a hemisphere, for which use it is well adapted. A circle is determined equivalent in area to the hemisphere to be projected. Radii drawn to the graduations of its circumference represent meridians. A radius, graduated into ninety equal parts, is sometimes used as the latitude scale; but the chords of the polar distance of the parallels should be always employed. Hence results equality of areas between the projected and resultant quadrilaterals in general. Outlines are traced by latitudes and longitudes, as asual. For projecting a polar hemisphere, this method is most excellent, as rectangular intersection is combined with conservation both of figure and area.

Ptolcmy's modified conic projection is made by using the concentric parallels of the pure conic development, and tracing curved or elliptical meridians across these in place of radial lines. By tarning the convexities of these curves from the central line, and by skilful choice of curves, much of the distortion dae to the extension of extreme paraliels in development is obviated. This projection has been much used for mape of Asia, Africa, and America.

Mercator's projection is truly invaluable for navigators in laying long courses when out of sight of land, as these courses sre always straight lines on the chart. Meridians are represented by equidistant parallel straight lines, and the parallels by a perpendicular set of parallel straight lines, whose distances from each other increase from the equator towards the poles in preciyely the same ratio as the corresponding longitude degrees diminish. This projection results from the development of a cylmder tangent along the equator; the meridians being projected on their tangent elemente, and the parallels being assumed as circles of right cross section at distancea from the equator equal to the meridian are of latitude divided by the cosine of the latitude-the earth's compression being neglected. By this means the relation of length between the latitude and longitude measurements on the chart is preserved uniformly the same as it is on the earth's surface. Tables of the increasing degrees have been computed, and are in general use for laying down parfllels. Distances and areas ay increasingly extggerated and distorted as this projection is pashed towards the pole, making the scale very variable frow point to point of an extended chart; bnt as the navigator computes his distance run, this variable seale is not by any menna so serious a defect as to offset the invaluable facility with which Mercator's principle enables him to run directly from one point to another. For the polar portion of the earth in which this projeetion totally fails, a central projection can be used to some distanoe. A projection on Mercster's principle might be made relative to the prime meridian instead of the equator, its prime verticals serving as the equidiatant parallels, (as in Cassini's,) and the circles parallel to the prime meridtan being projected by the table of increasing degreds. This would require the investigation of the formula for conversion of coordinates in this case. The parallels and meridians of the earth might then be constracted by points. Another mode woald be to make a radial and concentric circular projection around the pole, in which the length of the latitude degree should be deduced from the same condition as in Mercator's method, the divergence of meridians being duly considered. The amount of distortion in Mercator's projection wholly unfits it for land maps; and the variation of its scale in different parts would give rise to endless inconvenience were it applied to any other parpose than that of nautical off-shore charts, in which direction is so much more important than area or distance.

BONFE'S OR THE MODIFIED HLAMSTEAD'S PROJEOT1OF:

This method of projection is that which has been almost universally applied to the detailed topographical maps based on the trigonometrical surveys of the several States of Europe. It was origitated by Bonne, was thoronghly investigated by Henry and Puissant in connexion with the map of France, and tables for France were computed by Plessis.

In conatructiug a map on this projection, a central meridian and a central parallel are first assumed. A cone tangent along the central parallel is assumed, the central meridian is developed on that element of this cone which is tangent to it, and the cone is then developed on a tangent plane. The parallel falls into an arc with its centre at the vertex, and tho meridian into a graduated right line. Concentric circles are conceived to be traced through points of this meridian taken at elementary distances along its length. The zones of the sphere lying between the parallels through these paints are next conceived to be developed each between its corresponding ares. Thus, all the parallel zones of the sphere are rolled out on a plane in their true relations to each other and to the central meridian, each having in projection the same width, length, and relation to itg neighboring zones, as on the spheroidal surface. As there are no openiags between consecuative develeped elements, the total area must in this case, and in all like developments of surfaces of revolution, remain tholly unaltered by the development. Each meridian of the projaction is so traced as to cut each parallel in the same point in which it infersected it on the sphere.

If the case in hand be that involving the greatest extension of the method, or that of the projection of the entire spheroidal marface, a privie or central meridian must first be chosen, one half of which gives the central straight hine of the development, and the other half cuts the zonea apart, and becomes the outer boundary of the total developed figure. Next, the latitude of the goveruing parallel must be assumed; thus fixing the eentre of all the concentric circles of developraent. Having then drawn a straight line and graduated it from 90° north latitade to 90° bouth hatitude, and baving fixed the vertex or centre of development on it, concentric arcs are traced from this ceatre through each graduation. On each parallel the longicude graduations are then laid off, and the meridians are traced through the corresponding points. There resulte from this process one oblong kidney-shaped thgure, which represents the entire ourth's surface, and thes boundary line of which is the double developed lower half of the meridian firgt assumed. If the vertex of the goterning cone be removed to an infinite distance, the equator becomen the governing parallel, the parallels all fall inte straight lined, and Flamstead's projection results. The kidney-shaped figure becomes an elongated oval, with the haff meridian for one alit, and the whole equator for the other. A somewhat similar figure in obtained by placing the vertex at the pole, and reduciag the tangent cone to a plane. An indented cusp at one end, and a rounding out at the other, will give an approximate pearshape. Ptolemy's modified conic method reaches its full geometrical result in these forms, derived from the condition of preserbing areas in tracing neridian curves.

Bonne's method is rarely applied to areas exceeding the limits of a State, but is invaluablo for topographical maps of this deseription. The projection is made at once for the whole territory of the map, and the rectangular system of sheets laid out on the projection. Each sheet is numbered, and the co-ardinates of the ornery are determined, so that the coordinates of intersection between parallels and meridians falling on each sheet are referred to its neat lines as axes.
This prejection preserves in all cases the areas developed without any change. The meridians intergeet the central parallel at right-angles; and along this, as aloug the central meridian, the map is strictly correct. For moderate areas, tho intersections approach tolerably to being rectangular. All distances along parallels are correct; but distances along the meridians are increased in projection in the same ratio as the cosine of the angle between the radius of the parallel and the tangent to the meridian at the point of intersection is diminished. Thus, in a full earth projection, the boumding meridian is elongated to about twice its original length. While each quadrilateral of projection preserves its area unehanged, its two diagonals become unequal; one increasing and the other diminiehing in receding towards the corners of the map, the greatest inequality being towards the east and west polar corners. Though great circles between stations on the oarth are generally projected into curves, the amount of deviation for moderate limits is very slight on a Bonne projection. The scale is nearly uniform orer the entire projection, being accurate along the parallels and along their radii, but being ton great along one diagonal of the quadrilaterals, and too emall along the other. In on area of 120° longitude and $70 \circ$ latitude, a distance of 7,000 miles is in error but ${ }_{-}^{2}$ 多th. This projection has thus many excellent qualities for topographical maps; and its defects of oblique intersections of unequal diagonals, and of scales varying with the point of the compass, are not very serious in a limited area, as in the map of France, or that of Eagland and Wales. A special set of tables for each central parallel is required in this method; and the extent of these is so rast as to make impracticable the conception of a universal set of tables. The French tables of Plessis are based on the parallel of 50 gr or 45°, and are available for any area contered on this line, except that the old compression was used in computing them. But to construct tables for Bonne's projection for use in the disconnected local maps of our country was impracticable, as no central parallel could be assumed for them all. Were a general topographical map of the United States to be made, a ceatml parallel might be assumed for that purpose; but even in this case the question should be carefully weighed, thether the Bonne projection would be as desirable as the rectangular polyconic.

the polfconio pronection,* its properties and tarietigs.

The operations of the Coast Survey being limited to a narrow belt along the seaboard, and not being intended to furvish map of the country in regular uniform sheets, it is preferred to make an independent projection for each plane-table nd hydrographic sheet, by means of its own central meridian. These sheete embrace areas so limited as to exhibit in projection no sensible distortion of figure, and they individually agree with nature far more perfectly than they would if arranged as parts of a rectangular series projected on Bonne's method. In fact, each sheet is projected strictly as a local map, and its connexion with the djoining sheets is established solely by the points of triangulation. In reductions, including several sheets, the plotting of points is the first step, and the change of seale is then made by corresponding squares. By the aid of the subjoined tables a rectangular polyconic projection can at once be made for each locality or subdivision of the United States, or for the United States as a whole.
The name rectangular polyconic projection is applied to the metbod in which each parallel of the spheroid is developed symmetrically from an assumed central meridian by means of the cone tangent along its circumference. Supposing each element thus developed relative to the common central meridian, it is evident that a projection resulta in which all intersections of parallels and meridians take place at right-anglos.
Let the most general case, or that of the entire spheroid, be first assumed, the development being made, for instance, relative to the meridian of Washington. Starting at the north pole, the tangent cone there has then its limiting form, or it coincides with the tangent plane. Taking then the elementary parallels successively southward, the vertex of the moving tangent cone recedes along the prolonged earth's axis, giving to the developed parallels a receding centre and an increasing radius as the latitude diminishes. At latitude 45° the terrestriak and development radii become equal. At the equator the vertex recedes to an infinite distance north, or the cone becomes a cyliader, and the equator falls in a straight line perpendicular to the meridian. On passing to the south the vertex approaches from an infinite distance south, the parallels change their concavity southward, while the curvature, increasing in an inverse order, becomes infinite at the pole, or the polar parallel falls in a point. There results from this process a binxial figure, with four equal quadrants, the short axis being the rectified Washington meridian, (180 in length) and the long axis being the entire rectified equator, or about twive the length of the shorter one. A re-entering cusp marks the bounding eurve at each pole, and the meridian, 180° from Washington, which circumscribes each half of the figure, is elongated on each side to more than twice its original length by the development. Over the entire area of this projection all parallels and meridians intersect at right-angles, and the diagonals of each projected quadrilateral are everywhere nearly equal to each other. The scale on N. and S. lines near the border is somewhat enlarged, but is very correct on E. and W. lines, while along both diagonals it is somewhat ealarged, though nearly equally so on each. On the whole there resulta from this method much less of local distortion than from Bonne's projection. Equality between the spheroidal and developed areas is not preserved, but the departure from equivalency is not great in amount.
As rectangular intersections and preservation of areat are not both attainable at once, it becomes a question of preference between them in each case. It is,alao a question whether it might not in some cases be advancageous sill farther to sacrifice the preservation of areas so as to make the same scale applicable in all aximuths at each point. This would require the longitude degrees to increase from the centre meridian ontwards in the same ratio as the correapondiug projected merdional degrees. This condition would determine a sew polyconic projection, whose scale, from point to point, (an element which in Bonne's, and the simple polycenic projection, it a function both of the central meridian distance, and azimuth) would become a function of the central meridian distance only, and would increase alike in all directions on receding from this line. Such a projection would reduce dietortion of local coafiguration to an absolute minimum, and the areas in projection would be proportional to the squares of their local graphic degrees. This would enable us to take strict account of those irregularities of scale which now lark in disguise. But it would be a great labor to prepare the tables requisite for its ready use, and there wowld be some valid objections to its results. In a large topographical map thus projeeted, the scale of each sheet could be derived and engraved on its plate, making the sheet quite homageneous on that scale, and perfect in the preservation of its confguration. Were a topographical map of the United States to be undertatea on a hberal scale, this projection might be found superior to any other, as in each sheet areas, dimensions, relations, and rectangular iotersections, would be well preserved aceordieg to its own seale, giviug it the greatest local perfection, whife woald also combine correctly is its proper place. It thend be stated that this projection is novel and untried.

The method of projection in common use in the Coast Survey office for small areas, such as those of plane-table and hydrographic sheets, may be called the equidistant polyconic. This ought to be regarded rather as a convenient graphic approximation, admissible within certam limits, thau as a distinct projection, though it is capable of being extended to the largeat areas, and with results quite peculiar to itself. In constructing such a projection the central meridian and a central parallel are chosen, and they are constructed just as in the rectangular polyconic method. The top or bottom parallel, and a sufficient number of intermediate ones to determine the meridians with proper correctness, are constructed by the tables, and the meridians are drawn. Then starting from the central parallel, the distance to the next parallel is taken from the central meridian and laid off on each other meridian. A parallel is traced through the points thus found. Each parallel is constructed by laying off equal distances on the meridians in like manner, and the tabular auxiliary parallels are, all except the central one, erased. In fact, as only the points of intersection are required, the auxiliary parallels should not be actually drawn. From this process of constrnction results a projection in which equal meridian distances are everyWhere intercepted between the same parallels.

If we conceive this projection extended to include the entire earth, a singular result appears. Taking the equator as the central parallel, all the parallels become concave towards this line; for the distance between parallels measured slong the curved meridians being constructed equal to that along the central straight meridian, it is evident that the parallels must converge in receding from the central meridian. The parallel of 90°, or the polar point, becomes extended into a curve, whose length approaches that of the developed equator. It will be seen that each parallel falls nearer the equator than it would in Flamstead's projection, being, indeed, tangent on the equatorial side of the Flamstead perpendicular. Thus, in this method the projeeted area is less than that of the spheroidal surface. If an equidistant polyconic projection be made on the same central meridian and parallel as a Bonne projection, its area will in like manner be less for each rectangle and for the aggregate; hence this projection, where extended to a great surface, always gives its al ea too small. It also makes its merinian ares unduly short, and the extreme parallels much too long; giving a grotesqueness to the polar regions bordering on that of a Mercator projection. The scale becomes in some parts excessively dependent on azimuth; the distortion in the polar corners is very great; the intersections are far from rectangular, and they are so conditioned as not to be readily computed. From these defects, so gross in the dereloped spheroid, and still great even in a map of the United States, it is clear that the polyconicequidistant projection ought by no menns to be extended beyond the most moderate limits. A square degree, on a scale of rotom, may be taken as a limit, beyond which no convenience of graphic construction should induce the use of this approximation. Beyond this limit the rectangular-polyconic method should be employed, at least in all Coast Survey projections.
The polyconic method of projection has been developed in the Cosst Survey office, and the subjoined tables, prepared for facilitating its use, were there computed, and are now first pablished.

Formulce used for the computation of the Projection Tables in use at the Coast Survey office.
The data upon which the tables are founded are derived from a discussion of the magnitude and figure of the earth; oommenced by Mr. Bessel in "Schumacher's Astronomishe Naohrichten," No. 333, and continued and corrected in No. 438 of the same work by the same writer.

Formula for calculating the elements for the projection of maps
Let a be the equatorial radius;
b the polar radius;
e the eccentricity $=\sqrt{1-\frac{b^{2}}{a^{2}}} ;$
L the geodetic latitude;
D_{m} the length, in metres, of a meridiongl degree;
D_{p} the length, in metred, of a degree of the parallel;

- $\quad R_{m}$ the radius of curvature in the meridian;
R_{p} the radius of curvatare in the parallel.
Then,
$R_{m}=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} L\right)^{\frac{2}{2}}}=\frac{1}{B \sin 1^{\prime \prime}}$
$B=\frac{\left(1-e^{2} \sin ^{2} L\right)^{\frac{1}{4}}}{a\left(1-e^{2}\right) \sin 1^{\prime \prime}}$,
$B=\frac{1}{\mathrm{R}_{\mathrm{m}} \sin 1^{\prime \prime}}$
$R_{p}=\frac{a \cos L}{\left(1-e^{2} \sin { }^{2} L\right)^{\frac{1}{2}}}=\frac{\cos L}{A \sin 1^{\prime \prime}}$
$A=\frac{\left(1-e^{2} \sin ^{2} L\right)^{\frac{1}{2}}}{a \sin 1^{\prime \prime}}$

Leagth of a minate in the meridian $=60 \mathrm{R}_{\mathrm{m}} \sin 1^{\prime \prime}=\frac{60}{\mathrm{~B}}$.
Length of a minute in the parallel $=60 \mathrm{~K}_{\mathrm{p}} \sin 1^{\prime \prime}=\frac{60 \cos \mathrm{~L}}{\mathrm{~A}}$.
Tables containing the values of A and B have been computed in this office, forming a part of tablen for the computation for differencen of geodetic latitudes, lougitudes, and azimuthe.
The following formula may also be used:
$D_{m}=111120^{m} .619-558^{m} .080 \cos 2 L+1^{m} \cdot 168 \cos 4 L-0^{m} .00 \% \cos 6 L ;$
$D_{p}=111399^{\mathrm{ma}} .675 \cos \mathrm{~L}-93^{\mathrm{mi}} .212 \cos 3 \mathrm{~L}+0.116$ cos $5 \mathrm{~L} ;$
or making ain $L=e \sin L_{i}$
$\log D_{D}=5.0465808+\log \cos L_{1}-\log \cos D$.

For the curvature of the parallels we have the following formula:
Radius of curvature equal tangent ending on the minor axis $=\frac{a \operatorname{cotg} L}{\left(1-e^{2} \sin { }^{2} L\right)^{1} .}$
For conveniefice sate, co-ordinates for the curvature have been computed:
Let x^{\prime} be the abscissa from the principal meridian;
. y the corresponding ordinate:
n the number of minutes of loagitude; and
de the corresponding angle between the tangent and the chord, at the intersection of the parallel and middle meridian.
Then,

$$
\begin{aligned}
& \sin \frac{1}{2} \theta=30 n \sin \mathrm{~L} \sin 1^{\prime \prime} ; \\
& x_{1}=60 n R_{\mathrm{p}} \sin 1^{\prime \prime} \cos \frac{1}{3} \theta ; \\
& y=60 n \mathrm{R}_{\mathrm{p}} \sin 1^{\prime \prime} \sin \frac{1}{2} \theta ;
\end{aligned}
$$

n minutea on the arc of parallel $=60 n R_{p} \sin 1^{\prime \prime}$, and subtracting x, we obtain $x=d$ ifference $=\left(1-\cos \frac{1}{1} \theta\right) 60 n R_{p}$ * in 1". This quantity x is to be laid of in a direction towards the middle meridian; x and y may be expressed in the fol lowing convenient form for computation:

$$
\begin{aligned}
& y=\frac{1800 n^{2} \sin L \cos L \sin 1^{\prime \prime}}{A} \\
& x=y\left(15 n \sin L \sin 1^{\prime \prime}\right)
\end{aligned}
$$

which latter ala is very nearly strict; the error $\frac{x^{3}}{y^{2}}$ is not perceptible in any of the maps in use. In order to lay off more accurately the lengths of arcs on the parallels in large projections, the length of the chord may be computed.

Explanation of the tables.

Table I.-This is a table of constants; for use in the conversion of units:
Table II.-To facilitate the conversion of-
A. Metres into statute miles, from 1 to 100,000 .
B. Statute miles into metres, from 1 to 100.

- $\quad . \quad$ C. Metres inte yards, from 1 to 100,000.
D. Yards into metres, from 1 to 100,000 .
E. Yerds into statute miles, from 1 to $100,000$.

Tabne III.-Length of a meridian degree for each 5° of latitude, from 20° to 50° latitude, expressed in statate and nautical miles.
Table IV.-Length of a longitude dègree on each degree parallel, from 17° to 50° latitude, expressed in-
A. Nantical miles.

- B. Statute miles.
C. Metres.

Table V.-For use in projecting mape covering an extended area. It gives the requigite values of the meridian and parallel arcs, (Table Y-A) and of X and of Y, (Table V-B) for 70° in total longitude, on each degree parallel of latitude from 17° to 50° latitude. Taking the meridian of Galveston, or $95^{\circ} \mathrm{W}$. of Greenwich, for the central meridian, this table extends $35^{\circ} \mathrm{E}$. and $35^{\circ} \mathrm{W}$. of it, or from longitude 60° to longitude $130^{\circ} \mathrm{W}$. of Greenmich. This embraces the entire United States, Nova Scotia, and about 5° of the Pacific ocean, in the northern United States latitudes. Th meathern limit, latitude 170 , includes the four principal West India Islands; and the northern limit, latitude 50°, embraces a narrow belt of Britioh America. For projections of go great an extent, the auccessive parallels and meridians will not be less than a degree apart. This table will be fonnd to suffice for extended maps of the United States, in whole or in part. When \& more detailed projection is required, and in all eases of local maps, recourse should be had to the following table:
Table VI-This table presents the requisite lengths of latitude and longitude ares on meridiama, and on parallels, with the correnpanding values of X and of Y, for all local projections of large scale, which can be desired between the parallels 24° and 50°. The ares of parallele are given to secpads for each minute of latitnde, and the other elements to ia correeponding degree of accuracy. The minuter arcs being only required in using large scales, it was unnecensary further to oxtend the aret of parallels. Interpolations may be resorted to if desired.
In Tables $\overline{7}$ and $V L$, the arcs on each page, from $1^{\prime \prime}$ to $6^{\prime \prime}$ of longitude, are obtained by shifving the dacimal peint one place to the left, in the columns from $10^{\prime \prime}$ to $60^{\prime \prime}$.

Having fixed the limits to be covered by the projection, the central meridian is represented by a straight line, as nearly as practicable, through the centre of the sheet. From an assumed starting-point on this line are laid off the successive meridian arcs, as taken from the tables.

Rectangular polyconic method.

Through each point of division on the central meridian, given by these tabular arce, erect a perpendicular to it by means of a well tested right-angled ruler, with twenty-four-inch legs, and a hard pencil; or first carelully construct a single accurate perpendicular by sweeping intersecting arcs with the beam-compass, and then draw on each side a parallel to the central meridian, on which lay off the meridian distance from the perpendicular, and draw the parallel lines through the three equidistant points thus obtained for each. Take from the tables for each required point of intersection between parallels and meridians, its appropriate length of arc of parallel, from which subtract the corresponding \mathbf{X}. Lay off this difference from the central meridian each way on its proper perpendicular, and erect, towards the pole, at the point so formed; a perpendicular equal to the corresponding value of \mathbf{Y} in the tables-its extremity is the point of intersection required. Through all the corresponding points of intersection trace the parallela and the meridians. Erase the auxiliary lines, and write on the margin the numerieal latitude and longitude.

The following mode is more rapid and better checked: Lay off first the longest arcs of parallel, and then take the length of a single subdivision of the parallel in a pair of hair-fpring dividers, and step it off on the perpendicular to the right and left of the central meridian, being careful not to prick the paper. Having adjusted the dividers so as to bring the extreme points thus obtained to a perfect ggreement, prick lightly the subdivision points. Take from the tables the suecessive values of \mathbf{X} for each point, and when these are sensible on the scale used, lay them off back towards the central meridian from the points before obtained, and erect, at the last points, perpendiculars equal to their respective values of Y. As X is always small, and for some entire projections quite insensible, this method is much more convenient than that of all the while using fong distances; but the check of a total measurement on each parallel is quite indispensable, as an insensible error in taking the subdivision distances grows, by repetition, to be very evident in the check measurement.

Equidistant polyconic method-(Inadmissible in projections covering more than one square degree.) Proceed as before to graduate the central meridian, and to construct a central parallel. Construct the points of meridian intersection with the top and bottom parallels, and as many intermediate parallels as are requisite closely to determine the meridians. Through these points then draw the meridians. Starting now from the central parallel, lay off on each meridian the distance to the required parallel equal to that on the central meridian, and trace the parallels through these points. Proceed in like maneer to construct the others, using always the central parallel as a base, and the totals measured from it along the central meridian in laying off.

This method requires much less recourse to the tables than the other, and is sufficiently accurate, within a square degree, . on a scale of roboo. The X and Y may often be neglected as insensible in small projections; but no value of X, which is at all appreciable on the scale used, should be neglected. The Y, for the auxiliary parallels, affects the meridiat less. rapidly, but its palpably sensible values should always be used.

The following quantities are sensible, yet only barely sensible, on the scales affixed:

These quantities are quite overshadowed in large sheets by the expansion and ahrinkage of drawing-paper from day to day. In both methods the X and Y should always be used for good projections when they would be sensible on the scale in use. And it is peculiarly essential to accurate projections that the hygrometric condition of the paper be kept as uniform as possible during all the time that measured distances are being laid down. It is often better to mark simply the intersection points by a small crgss + and to omit the remainder of the parallels and meridians. For plotted points this is also the bost indication, if the crobs linea are stopped on each side of the point, just far enough off to leave the dot distinct

For drawing parallels and meridian curves a long, slender, flexible ruler of straight-grained cedar, or other compact wood, is employed. Its cross section is three sixteenths ($\frac{3}{16}$) of an inch by two sixteenths ($\frac{2}{6}$) of an inch. A specially designod steel ruler might be found preferable. There is a amall groose on the top of the ruler, and its ruling edge is slightly levelled. Leaden, paper-covered, beak weights, of about 4 pounds weight ench, are used to hold the ruler in place from point to point. These are so shaped as not to incommode the hand in ruling, and each has a hooked beak, ending in a knifu-edge, turned downwards, which, resting in the ruler groove, throwa the main bearing of the weiqht on the ruler, while its small end rests on the paper. The beak weights in ase are five (5) inches long, two and one-eighth (2b) wide, and two and one-eighth (2t) deep, the beak being five-eighths (g) of an inch long, and turned down one-fouth (4) inch. The mass of lead is nearer the beak end. Having placed the ruler approximately, it is so adjusted under a boak weight to the first point that the curve will be ruled exactly through it. It is then adjusted under a second weight to the next point, and then bent to the next in like manner, and so on until the entire curve is completed. Before ruling this the eye should criticise it carefully, as a check on graphic errors. For fine projections the hardeat pencils are best; and in inking, the lines should to drawn as delicately as clearvess permits.

When no metre scale is at hand, the tabulated distances can be converted into yards by Table II, or by the constants of Table I; or, when the greatest accuracy is not important, a metre ecale can readily be constructed from a yard or foot scale by proportionality. Thus, rule two parallel scales, one of yards and one of five-mixthe (${ }^{6}$) yards, and draw a third
 the similar graduations draw etraight lines; these will give a metre scale by their intersections. If space permits, a point may be mbitituted for the fivesixths ($\frac{5}{b}$) yard scale. The projection once constructed, may be used independent of the unit of the tables.

TABLE I.
Relation between the measures of length used in different countries.
Derived from 1 metre at 32° Fah. $=39.36850535$ U. S. standard inches at 62° Fah.

Units.	American feet.	English feet.	Metres.
American yard	3.	3. 00017409	0.91443654
American foot.	1.	1. 00005303	0.30481218
English yard	2.99982591	3.	0. 91438347
English foot, (Kator's value)	0.99994197	1.	0.30479449
Metre..	3. 23070878	3. 23089917	
French toise.	6. 394219	6. 394590	1.9490366 ${ }^{-}$

TABLE II.-A.
Table for converting metres into statute miles.
1 metre $=0.000621346$ mile.
[6. 7933335.]

Metres.	Miles.	Metres.	Miles.	Metres.	Miles.	Metres.	Miles.
100000	62.135						
. 90000	55.921.	9000	5.592	900	0.559	90	0.056
80000	49. 708	8000	4.971	800	0.497	80	0. 050
70000	43.494	7000	4.349	700	0.435	70	0.044
60000	37.281	6000	3. 728	600	0.373	60	0.037
50000	31. 067	5000	3. 107	500	0.311	50	0.031
40000	24.854	4000	2.485	400	0.249	40	0.025
30000	1 e .640	3000	1. 864	300	0.186	30	0.019
20000	12.427	2000	1.243	200	0.124	20	0.012
10000	6. 213	1000	0.621	100	0.062	10	0.006

TABLE II.-B.

Table for convering statute miles into metres.
1 mile $=1609.40831$ metres.
[3. 2060665.]

Miles.	Metres.	Miles.	Metres,	Miles.	Metres.	Miles.	Metres.
100	160940.83						
90	144846.75	9	14484. 68	0.9	1448. 47	0.09	144.85
80	128752. 66	8	12875. 27	0.8	1287.53	0.18	128.75
70	112658.58	7	11265.86	0.7	1126. 59	0.07.	112.66
60	96564.50	6	9656.45	0.6	965.65	0.06	96.56
50	81470.41	5	8047. 14	0.5	804. 70	0.05	80.47
40	64376.33	4	6437. 63	0.4	643. 76	0.04	64. 38
30	49282.25	3	48888.23	0.3	482.88	0.03	48. 28
20	32188.17	2	3218.82	0.2	321.88	0.02	32. 19
10	16094. 08	1	1609. 41	0.1	160.94	0.01	16.09

TABLE II-C.
Table for converting metres into yards.
1 metre $=1.09356959$ yard.
[0.0388464.]

Metres.	Yards.								
100000	109356.96								
90000	98421.26	9000	9342.13	900	984.21	90	98.42	9	9.84
80000	87485.57	8000	8748.56	800	874.86	80	87.49	- 8	8.75
70000	76549.87	7000	7654.99	700	765.50	70	76.55	7	7.65
60000	65614.18	6000	6561.42	600	656.14	60	65.61	6	6.56
50000	64678.48	5000	5467.85	500	546.79	50	54.68	5	5. 47
40000	43742.78	4000	4374. 28	400	437.43	40	43. 74	4	4. 37
30000	32307.09	3000	3280.71	300	328.17	30	32.81	3	3. 28
$\therefore 20000$	91871.39	2000	2187.14	200	218.71	20	21.87	2	2. 19
10000	10935.70	1000	1093.57	100	109.36	10	10.94	- 1	1.09

TABLE 1I.-D.
Table for converting yards into metres.
1 yard $=0.91443654$ metre.

$$
[9.9611536 .]
$$

Yards.	Metres.								
100000	91443. 65								
90000	82299. 29	9000	8229.93	900	822.99	90	82.30	9	8.23
80000	73154.92	8000	7315.49	800	731. 55	80	73.16	8	7.32
70000	64010.56	7000	6401.06	700	640. 11	70	64.01	7	6. 40
60000	54866. 19	6000	5486.62	600	548.66	60	54. 37	6	5.49
50000	45721. 83	5000	4572.18	500	457.22	50	45.72	5	4. 57
40000	36577. 46	4000	-3657. 75	400	365.78	40	36. 58	4	3. 66
30000	27433. 10	3000	2743.31	300	274.33	30	27.43	3	2.74
- 20000	18288. 73	2000	1828: 87	200	182.89	20	18.29	2	1. 83
10000	9144. 37	1000	914.44	100	91.44	10	9.14	1	0.91

TABLE II.-E.
Table for converting yards into miles.
1 yard $=0.000568182$ mile.
[6.7544873.]

TABLE V.-B.
Co-ordinates of curvature for each degree of longitude, from 1° to 35°, between the latitudes 17° and 30°.

${ }_{*}^{4}$	Latitude 170.		Latitude $18{ }^{\circ}$.		Latitude 190.		Latitude 900.		Latitude 210.		Latitude 22.		Latitude 23.	
¢	X.	\mathbf{X}.	X .	\mathbf{Y}	\mathbf{x}.	Y.	\mathbf{x}	Y.	X.	Y.	X.	Y.	X.	Y.
0	Metres:		Metres.	Metres. 286	Metres. 0	Metres. 299	Metres.	Metres.	Metres.	Metres.	Matres.	Metres. 338	Metres.	Metres. 350
2	3	1, 087	3	1,142	3	1,196	4	1,249	4	1,300	4	1,350	5	1,398
3	9	2,445	10	2,570	11	2,692	13	2,811	14	2,926	15	3,039	16	8,146
4	22	4,347	25	4,569	27	4,7e6	30	4,997	33	5,202	35	5,400	38	5,593
5	43	6,792	48	7,139	53	7,47\%	58	7,803	64	8,127	69	8,433	75	8.738
6	75	9,780	83	11, 280	92	10,768	101	11,24.3	110	11,744	119	12,151	129	12,583
7	119	13,311	132	13,992	146	14,657	160	15, 3103	174	15,931	189	16,539	204	17, 127
8	178	17, 386	197	18,276	218	19,143	239	19,087	260	20, 807	282	21,602	305	22,371
9	253	22,004	281	23, 130	310	24,228	339	25, 296	370	26, 334	402	27, 341	$4: 5$	24, 312
10	347	27, 166	385	28,556	425	29, 911	466	31, 230	519	32,511	502	33,753	696	34, 954
11	461	32,871	512	34,552	566	36, 193	620	37,789	617	39, 33,	734	40,841	793	42. 294
12	599	39, 119	666	41, 121	734	43,072	805	44,972	879	46, 816	953	48,404	1,020	50, 343
13	762	45,910	846	48,260	934	50, 550)	1,024	52,779	1,117	54,944	1,212	57, 013	1,310	59, 178
14	951	53,245	1, 056	55, 970	1,166	58, 620	1,279	61,211	1,305	63,722	1,514	66, 156	1,6\%	62,510
15	1,170	61, 123	1,300	64,251	1,434	67, 340)	1,573	71, 264	1,716	73,150	1,862	75, 944	2,011	72646
16	1,420	69,545	1,577	73, 103	1,746	76,573],909.	79,950	2,08\%	83,299	2,960	86, 408	2,441	89, 4×2
17	1,703	78,510	1,892	82,526	2, 188	8h, 443	2,290	90, 25\%	2,498	93,958	2,711	97,546	9,928	111, 016
18	2,021	88,017	2,246	92,521	2,479	96,912	2,719	101, 184	2,965	105, 337	3,218	149, 360	3, 475	113,250
19	2,377	98, 169	2,641	103, 087	2,914	107, 980	3,197	112,741	3,487	117,366	3.784	121,84!	4, 1*87	126, 183
20	2,772	118,664	3,480	114,224	3,399	119,645	3,799	124,921	4,067	130, 045	4,414	135, 1131	4,767	189, 215
21	3,210	119,801	3,566	125, 2×3	3,935	131,909	4,316	137, 785	4,718	143,375	5, 110	148,851	6,519	154, 146
22	3,690	131,483	4, 100	1.38,207	4,524	144,770	4,963	151, 159	5,413	157, 355	5,875	163, 364	6,315	199,176
23	4,217	143,708	4,685	151,061	5,176	158, 230	5,171	165, 210	6,185	171,945	6, 713	178, 2084	7,201	184,9175
94	4,791	156,475	5,323	164, 482	5, $\times 74$	172,269	6,443	179,886	7,028	147,266	7,627	194,4i\%	8,2:8	291,334
25	5,415	169,787	6,016	178, 474	6, 689	186,945	7,252	195, 189	7,913	203, 196	8,629	210,907	9,312	218,401
26	6,691	183,641	0,767	103,038	7,463	202,200	8,192	211,116	8,935	219,777	9,697	212, 171	10,474	203,247
27	6,821	198, 144^{4}	7,579	208, 172	8,364	218, 152	9,174	227,663	11, 0106	237,008	10, 8.50	216, 060	11,730	45.813
28	7,608	212,980	8,459	223, 478	9,324	234,504	10,231	244,845	11, 160	2.5,	12,111	204, 624	13, 1×8	274, 137
29	8,452	228,465	9,391	241, 155	10,363	251, 553	11,367	262,646	12,399	273, 4:1	13, 455	283,863	14,531	643, 961
30	9,357	244,493	10,396	257, 0103	11, 472	209, 201	12,564	281,072	13,726	292,612	14, 896	3013,734	16, 190	314,584
31	10,324	261,064	11,470	974,422	12,658	287,447	13, 885	3100,192	15, 145	312,431	16,436	324, 368	17,753	335,906
32	11,356	278, 180	12,617	299,412	13.923	316,291	15,472	319,797	16,6,8	332,916	18,178	345, 631	19, 127	37\%,926
33	12,454	295, 837	13, 837	310, 973	15, 270	325, 733	16,749	34, 097	18,270	354,049	19, 987	$307,5 \pi 1$	21, 116	280,616
34	13,621	314,083	15, 133	330, 106	16,704	34, 754	18,318	361,022	19,981	37:, 832	21,64	309, 185,	23, 492	414,065
3	14, 859	332,782	16,508	349,809	18,218	366, 413	19,982	332,5\%0	21,796	393,261	23, 654	413,475	25, 500	424,183

TABLE V－B．－Co－ordinates of curvature for each degree of longitude，dc．－Continued．

	Latitude 24° ．		Latitude 85° ．		Latitude ${ }^{2} 6^{2}$ ．		Latitude 27° ．		Latitudy 23° ．		Latitule 29° ．		Latitudo 3\％．	
晨品	\mathbf{X} ．	Y．	X．	Y．										
0	Metres．	Atetres．	Metres．	Metres．	Metres．	Mctres．	Metres．	Metres．						
1		361		$3: 2$		323		393		4143		412^{*}	1	
8	5	1，445	5	1，489	6	1， 32	6	1，573	7	1，612	7	1，649	7	1，644
3	17	3，254	19	3，350	81	3，447	21	3,539	22	3，626	24	3，710	27）	3，789
4	41	5，773	44	5，956	45	6，127	50	6，291	53	6.447	56	6，595	59	6，735
5	80	9，128	86	9，317	92	9，574	97	9，8：311	103	111， 073	109	10，315	115	111． 524
6	138	13，101	148	13，401	158	13，\％¢6	108	14，154	178	14，506	189	14， 230	198	15， 154
7	2 ta	17，693	235	18， 241	$2 \cdot 1$	18，26	24	10，260	283	19， 74.4	909	20， 19	315	2， $6: 27$
8	388	23，112	351	23，8\％	375	24， 549	399	25， 164	423	25，783	446	26，380	470	26，941
9	467	29，251	500	31）， 153	534	31， 120	568	31，848	642	32.639	636	33，348	669	34， 0197
10	641	36， 112	686	37， 266	732	32， 296	779	3， 319	885	49， 293	872	41，219	918	42,095
11	853	43， 696	914	45， 044	975	46，334	1，037	47,575	1，099	$4 \times, 755$	1，161	49,475	1， 22.2	50,985
12	1，107	52， 001	1，186	53， 616	1，206	55，146	1，346	56，618	1，426	5\％，02．	1，507	59， 351	1，587	60，617
13	1，408	61， 029	1，518	62， 913	1， 69	64， 724	1，711	66， 448	1，813	$6{ }^{*} \times 09 \mathrm{j}$	1，916	69， 669	2，018	71，111
14	1，7：9	70.780	$1, \sim 81$	72，964	2，010	75， 166	2，137	77，1861	2.283	7×， 975	2， 293	80， 789	2，520	82， 5116
15	2，163	81，252	2，317	83， 759	2，472	80,165	2，629	88.466	2，780	9 1，650	2，943	92，743	3，106	91． 714
16	2，655	92，447	2，816	95， 300	3， 100	93，037	3，190	109， 655	3，331	10：3，1－1	3，571	105，521	3，762	107，76．3
17	3，149	104，364	3，372	107，584	3，600	110，67．	3，827	113，63）	4， 155	116，447	4，284	119，123	4， 512	121，655
18	3，738	117，003	4， 0103	120，614	4， 472	124， 178	4，512	127，3中2	4，814	13：，550	5，085	133， 564	5，350	1：36，3＊8
19	4，396	130，364	4，748	134，387	5， 1.4	134，917	5，312	141，940	5，661	145,479	T1，981	148，801	6，299	151，963
20	5.127	144，449	5，412	142， 906	5，867	153，142	6，231	157，273	6，603	161，173	6，976	161，877	7，317	168，3－7）
21	5， 433	15＇，， 254	6，357	164．167	6，784	168， 884	7，213	173， 394	7，644	177，693	8，075	181，777	8,505	1－5， 6.49
82	6，824	174，782	7，309	180， 176	7，801	145， 351	8，293	1901，3103	8，749	195， 019	9， 284	199，501	9，779	203，740
23	7，793	191，033	8，35\％	106，918	8.912	20， 5884	9，4\％6	217，944	14，166	213， 151	10， 619	218， 050	11，174	200， 623
${ }^{24}$	8， 36.1	218， 145	9，491	214， $4: 4$	10， 126	220， 383	10，767	226， 473	11，410	232， 085	12，054	237， 413	12． 696	212，463
25	10，014	2225， 700	10， 220	232， 665	11，445	239，343	3：2， 170	245，739	12，897	251， 833	13， 624	257， 620	14，349	263， 094
86	11，264	244，117	19， 165	251， 651	12，874	258， 873	13，689	235，792	14， $5!7$	972，380	15，325	278，642	16，141	284，563
87	12，615	26：3，257	13，if：	271，341	14，418	274， 175	15，330	2ง6， 630	16， 216	293， 783	17，16\％	$3110,4 \times 3$	16，076	316，873
23	14， 0169	203， 118	15， 69	291855	16，1－80	3100， 238	17，097	318，25）	18，119	315， 69	19，141	323， 160	21， 160	330， 026
89	15，631	303，712	16，742	313， 174	17，863	32， 060	13，99．3	330，667	21，133	338，806	21，266	346， 654	24， 398	3．44， 11.19
30	17，314	356,008	18，535	355， 1138	19，778	314， 660	21， 128	353， 865	22， 2×6	362， 631	23， 542	370，973	24，796	349，856
31	19， 093	347，036	20， 450	357，746	21， 22.2	36＋， 021	23，203	377，819	21，509	3＊7， 218	25，976	396， 117	27，3，9	404， 5334
32	21， 1901	369，787	22， 494	381,199	94， 043	312，147	25， 123	412，6：21	27，046	412，6123	29， 5 \％ 8	422，085	34， 698	431，1553
33	23， 1131	393，200	24， 669	415， 396	26， 324	417，039	27， 990	425， 176	29， 663	433，793	31，335	448， 817	33． 014	453，416
34	25，190	417，455	26，931	430， 3337	28， 79.	442， 697	30，612	454，521	32，441	465，790	31，271	476,494	36,996	486，619
35	27， 478	442，372	29，432	456，024	31， 406	469，121	33，394	431，649	35， 389	493，592	37，385	504，935	39，375	515，663

TABLE V—B.-Co-ordinates of curvature for each degree of longitude, de.-Continued.

	Latitudo 31 ${ }^{\circ}$.		Latitude 320.		Latitude 33°.		Latitude 34°.		Latitude 35 .		Latitude 36°.		Latitude 37\%.	
	X.	Y.	X.	\mathbf{Y}.										
0	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	Meires.	Metres.	Metres.	Mctres.	Mctres.	Metres	Metres.	Mctes.
1		449		437		444	1	451	1	457	1	462	1	468
2	8	1,717	8	1,743	8	1,776	9	1, 8133	9	1, 497	10	1,850	10	1,870
3	26	3,8,3	27	3,932	23	3,997	$3{ }^{1}$	4,057	31	4, 112	32	4, 162	3:	4, 217
4	62	6,807	65	6,991	68	7,106	70	7,212	73	7,310	76	7,369	79	7. 473
5	121	10, 7311	126	10, 22:3	132	11, 114	137	11, 269	143	11.422	148	11,5,51	153	11,686
6	208	15, 41	218	15,729	238	15, 989	$23:$	16. 288	217	16,448	256	16, 047	265	16,827
7	$3: 1$	21,031	347	21,409	363	21,762	377	22, 1188	392	23, 337	407	22,659	421	12, 90:3
8	494	27,469	517	27, 963	541	28,424	563	24,849	585	29,240	607	29,505	62,	99, 915
9	703	31,765	736	33, 391	769	35,974	802	36, 512	834	37,007	865	3i, 456	895	37, 861
10	$9 \mathrm{Fi5}$	42,920	1,011	43, 692	1,1155	44,412	1,100	45, 077	1,143	4;,688	1,186	46,243	1,227	46,742
11	1,234	51,933	1,345	52,863	1,4)5	53, 738	1,404	54, 544	1,522	55, 28.	1,579	85,954	1,634	56, 55,
12	1,667	61, 816	1,746	62,917	1,824	63,923	1,901	64,911	1,976	6.7,790	2, 14:	66,590	2,121	(i), 304
13	2,119	72, 335	2,200	73,840	2,319	75,030	2,416	76, 181	2,512	77,212	2, 606	78, 151	2,697	7-904
14	2,617	84, 123	2,722	85, 6:37	2,836	87.047	3,018	84,351	3,138	80, 54.3	3,254	97, 636		91, 614
15	7, 25	96,570	3,410	95,316	3, 5162	99, 977	3,712	111, 424	3,8,9	112, 798	4, 103	104, 147	4, 142	105. 169
16	3,951	109,875	4,133	111,85.3	4,323	113,694	4,505	115, 398	4,681	116,961	4,858	113,3\%	5, 10	19, 659
17	4,739	124,033	4,963	126,271	5,185	124,3.30	5, 404	131, 273	5,618	322,038	5, 827	13:342	6, m_{3}	13), 18×4
18	5,635	139,469	5,892	141,563	6, 155	143, 694	6,414	146, 150	6, 669	112, 109	6,917	149, 4.27	7.158	15.443
19	6,616	154,941	6,929	157, 733	7,239	160,327	7,54	168.799	7,813	164,983	8,135	166,9:37	8,417	16. 78.8
20	7,716	171,679	$8,0 \times 2$	174,780	8,443	17i,647	8,799	180, 3:9	9,147	102,752	9,483	184,972	9,819	18i6, 907
21	8,932	189,276	9,356	192,6ヶ3	9,774	197, 856	10, 183	108, 791	11,589	201,491	10, 19×3	203, 93:	11,877	206, 138
20	10,280	217,732	10,757	211,471	11,233	214,983	11,711	218, 174	12, 175	202, 13:	12, 629	9,3, 21: 2	13, 1763	206, 230
83	11,73\%	224,046	12,292	231, 183	12,841	234,939	1:3,382	233, 4.39	13,912	211,639	14,430	911, 625	14,931	947, 244
24	13,334	247,218	13,966	251,663	14, 390	255, 819	15,205	259, 615	15, 817	963, 162	16, 395	266, 350	16,968	260, 23:
25	15, 171	268, 249	15,785	273,177	16,491	277, 574	17, 185	281,733	17,86;	28.7, 550	18,531	$2 \mathrm{ma}, 120$	19,178	242, 130
26	16,902	290, 138	17,756	299, 36)	16.549	3100, 2×3	19,331	314,722	2), 1977	358.80	2),84,	312, 6112	21, 173	315, 974
27	18,935	312,835	19,885	319,518	21,774	323, 762	21,649	324,613	22,516	3\%3, 106	23,341	333, 111	24, 189	310.78
28	21, 173	3366491	22,177	342,518	2.3, 169	343, 189	21,144	353, 406	25, 100	$3.3,194$	96, 0 , 5	362,54,	20, 414	36ii, 456
29	23,524	364,956	24,639	367, 453	25, 710	373,504	2F, 824	379, 100	27,487	341, 235	28, 92,	32, 0104	29,935	363,693
30	26, 04%	386, 278	27,277	393,2\%	28,493	399,707	29, 696	405, 697	31, 973	411,191	32, 12:	116, 187	33,119	421, 6ifis
31	28,734	412,469	3',096	419,884	31, 412	426, 799	32,765	433, 193	34, 104	439, 1061	35,33:	44, 345	36,566	$413,1 \pm 9$
32	31, 6116	439, 499	33, 114	417,410	31,534	454,777	33, 149	461,592	37, 46\%	447, 34,	33, 403	473, 523	41, 219	47, 68:
33	31,662	467, 397	33, 306	475, 810	37,938	483,645	39, 283	490, 848	41, 819	407,541	42, 231	$503,5 \times 6$	44, 169	5097418
34	37,919	496, 158	33, 717	505,021	41, 18\%	513, 101	43,209	- 521,493	44, 311	528.152	46,614	534.570	4n,242	541, 385
35	41,354	52.5, 763	43,315	5.05, 234	45,251	514,045	47, 156	502,198	43,025	559,677	50, 810	606,477	52, 625	572,587

TABLE V -B.-Co-ordinates of curvature for each degree of longitude, de.-Continued.

\bigcirc	Latitude $38{ }^{\circ}$.		Latitude 390.		Latitude 40°.		Latitude 41°.		Latitude $42{ }^{\circ}$.		Latitude 430.		Latitude 44°.	
易号	X.	Y.	X.	Y.	X.	Y.	X.	- Y .	X.	Y.	X.	Y.	X.	Y.
\bigcirc	Metres,	Metres.												
1	1	472	1	476	1	479	1	482	1	4×1	1	485	1	486
2	10	1,887	10	1,903	11	1,916	11	1,927	11	1,935	12	1,941	12	1,945
3	34	4,247	35	4,231	36	4,311	37	4,335	38	4,374	39	4,367	41	4,375
4	81	7,549	84	7,611	86	7,663	83	7,706	97	7,741	92	7,764	94	7,729
5	158	11,796	163	11,892	168	11,974	172	12,041	137	12,093	180	12,131	184	12,154
6	274	16,986	282	17,125	290	17,242	298	17,339	305	17,414	312	17,469	318	17,542
7	437	23, 120	448	23,318	462	23, 469	473	23, 600	44	23,703	495	23,777	505	23,8:2
8	649	311, 193	669	30, 444	689	30, 653	706	30, 824	793	30,959	739	31,055	754	31, 114
9	925	34, 219	952	38,530	979	34,793	1,005	39, 112	1,030	39, 163	1,053	39, 304	1,174	33,378
10	1,267	47, 184	1,306	47,563	1,343	47, 805	1,379	48,163	1,412	48,383	1,444	48,524	1,474	48,615
11	1,687	57, 092	1,739	57,548	1,788	57,953	1,835	58,288	1,880	58,531	1,922	58,713	1,961	58,825
12	2,190	67,944	2,257	68,498	2,321	68, 939	2,3®2	69, 35	2,440	69, 657	2,493	69,874	2,546	70,006
13	2,785	79,740	2,870	86, 390	2,951	80, 942	3,029	81,314	3,103	81,750	3,172	82,005	3,2:37	82, 160
14	3,478	92,480	3,585	93,234	3,636	93,844	3,783	94, 400	3,875	94,811	3,962	95, 107	4,043	95, 286
15	4,278	166, 164	4,408	107,049	4,534	117,764	4,653	108,367	4,767	108,899	4,473	103, 178	4,973	109,385
16	5,192	120,790	5,350	121,775	5, 502	122,611	5,647	123, 293	5,785	123,8:5	5,914	124,221	6,1136	124,435
17	6,927	136,361	6,417	137,472	6,609	133,416	6,774	139, 19:	6,939	139,798	7,004	140,284	7,240	140, 499
18	7,392	152,875	7,618	154, 121	7,833	155, 180	8,041	156,049	8,237	156,768.	8,421	154,217	8,594	152, 514
19	8, 694	170,333	8,939	171,722	9,216	172,901	9,457	173,869	9,687	174,626	9,904	175, 171	10, 107	175, 5112
20	10,140	188,735	10,450	190,273	10,744	191,580	11,030	192,653	11,299	193,492	11, 515	194,095	11,783	194,462
21	11,733	20e, 081	12, 13,97	209,776	12,440	211,217	12,763	212,400	13, 180	213,345	13,372	213,990	13,646	214,394
22	13,496	228,369	13,908	233, 230	14, 304	231,811	14,631	233, 110	15,038	234, 125	15,375	234,855	15,690	235, 299
23	15,422	249,602	15,892	251,696	16, 344	253, 364	16,775	254,784	17,184	255, 893	17,569	256,691	17, 92.9	257, 176
24	17,542	271,778	18,057	273, 993	18,570	27.5,875	19,059	275, 420	19,524	278,628	19,961	279,497	20,370	280, 025
85	19,805	294,898	20,409	297,302	20,989	299, 343	21,542	301, 020	22,064	302, 331	22,562	303,273	23, 024	303, 846
26	22,278	313,962	22,958	321,562	23, 610	323,770	24,232	325, 584	24,823	327,001	25,379	328,021	25, 899	328, 640
27	24,947	343,969	95,710	346, 773	26, 440	319, 154	27,137	351, 110	27,805	322,639	22,421	353,738	29, 0174	354, 417
28	27,824	369,921	28,674	372,936	29,488	375,496	30, 266	377,600	31,003	379.24	31,698	380, 426	32,347	381, 145
29	30,913	396,815	31,857	400, 049	32,762	402,790	33, 626	405, 053	34,445	416,816	35, 217	408,085	35,938	408,856
39	34,223	424,654	35, 267	488, 114	36, 269	431,004	37,226	433, 469	38, 132	435, 356	38,987	436,714	39,786	437, 539
31	37,760	453,436	33,913	457, 131	40, 018	460,270	41,674	462,849	42,674	464, 864	48,017	466, 313	43,893	467, 194
32	41,534	483, 162	42,801	487,099	44, 017	490, 444	45, 178	493, 191	46,279	495, 339	47, 316	496,883	48,285	497,822
33	45,551	513,831	46, 940	518,019	48,274	521,576	49,547	524,498	50,754	526,781	51, 893	528,424	52,355	529,422
34	49,818	545, 444	51,339	549, 889	52,793	553,665	54, 190	556,767	55,509	559, 191	56,753	560,934	57,916	561,994
35	54, 344	578,001	56,003	582,711	57, 894	586,713	59, 113	590, 000	60,553	592,568	61,910	594,416	63,178	595,539

TABLE V-B.-Co-ordinates of curvature for each degree of longitude, dc.-Continued.

TABLE VI.—Projection Tables, giving lotitude and lentude ares, and co-ordinates of curvature, from latitude 24° to latitude 50°.
Latitude $24^{\circ} 00^{\circ}$.

Min.	Length in metres of arces parallel, (arc par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8 \prime$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	$\begin{gathered} X . \\ \text { Arc. par. } \end{gathered}$	Y.
0	197.8:	226.1	254.3	282.6	565.2	847.8	- 1130.4	1413.1	1695. 66	1 '	30.8			
1	7.8	6.1	4.3	2.6	5.1	7.7	0.3	2.9	5. 44	2	61.5	${ }_{2}$	-. 0	. 1
2	7.8	6.0	4.3	2.5	5.1	7.6	0.2	2.7	5.23	3	92.3	2	. 0	- 4
3	7.8	6.0	4.3	2.5	5.0	7.5	0.0	2.5	5.01	4	123.1	4	. 0	. 9
4	7.7	6.0	4.2	2.5	4.9	7.4	1129.9	2.3	4.79					
5	7.7	5.9	4.2	2.4	4.9	7.3	9.7	2.1	4.57	5	153.8	5	. 0	2.5
6	197.7	225.9	254.2	222.4	564.8	847.2	1199. 6	1412.0		6	184.6	6	. 0	3.6
7	7.6	5.9	4.1	2.4	4.7	7.1	112.6 9.4	1412.8 1.8	1694.35 4.13	8	215.3 246.1	7	. 0	4.9
8	7.6	5.9	4. 1	2.3	4.6	7.0	0.3	1.6	3.91	${ }^{8}$	246.1 276.9	8	. 0	6.4
9	7.6	5.8	4. 1	2.3	4.6	-6.8	9.1	1.4	$\stackrel{3}{3.69}$	9	276.9	9	. 0	8.1
10	7.6	5.8	4.0	2.2	4.5	6.7	9.0	1.2	3.47	10	307.6	10	. 0	10.0
11	197.5	225.8	254.0	282.2	564. 4	846.6				20	615.3	15	. 0	22.6
12	7.5	5.7	4.0	2.2	4.3	6.5	18.8	1410.9	1693.23 3.03	30 40	922.9 12315	20	. 0	49.1
13	7.5	5.7	3.9	2.1	4.3	6.4	8.5	10.7	2.81	50	1538. 2	25 30	. 0	62.7
14.	7.5	5.7	3.9	2.1	4.2	6.3	8.4	10.5	2.59	50		30	. 1	90.3
15	7.4	5.6	3.9	2.1	4.1	6.2	8.2	10.3	2.37	$1^{\prime} 00$	1845.8	35	.1	129.9
16	197.4	225.6	$\therefore 253.8$	282.0	564.0	846.1	1122. 1				3601.6	40	. 2	100.5
17	7.4	5.6	- 3.8	2.0	-4.0	846.1	112.1 8.0	1410.9	1092.15 1.93	3	5537.4	45	. 3	213.1
18	7.4	5.6	3. 8	2.0	3.9	5.9	- 7.8	9.8	1.71	5	92.28 .9	50	. 4	256.8
19	7.3	5.5	3.7	1.9	3.8	5.7	7.7	9.6	1.49	6	11074.7	55	. 5	303.5
20	7.3	5.5	3.7	1.9	3.8	5.6	7.5	9.4	1.27			1000	. 6	361.1
21	197.3	225. 5	253.7	281.8	563.7	845.5				7	12920.5	110	1.0	491.5
22	7.3	5.4	3.6	1.8	3. 6		11.4	140.2	1691.05	8	14766. 3	120	1.5	642, 0
23	7.2	5.4	3.6	1.8	3. 5	5.4	7.2	9.0 8.8	0.82 0.611	9 10	16612.1	130	$2 . \%$	812.5
24	7.2	5.4	3.6	1.7	3.5	5.2	6.9	8.8	0.69 0.38	10 11	18457.8	$\begin{array}{ll}1 & 411 \\ 150\end{array}$	3.0 3.9	11013.1
25	7.2	5.4	3.5	1.7	3.4	5.1	6.8	8.5	0.16	12	$2 * 149.4$	2 00	3.9	$\begin{aligned} & 1213.8 \\ & 1414.4 \end{aligned}$
26	197.2	225.3	253.5	281.7	563.3	* 845.0	1126.6	1409.3	1669.94					
27	7.1	5.3	3.5	1.6	3.2	4.9	6.5	8.1	9.71					
28	7.1	5.3	3.4	1.6	3.2	4.7	6.3	7.9	9.49					
29	7.1	5.2	3.4	1. 6	3.1	4.6	6.2	7.7	9.27					
30	7.1	5.2	3.4	1.5	3.0	4.5	6. 0	7.5	9.65					

TABLE VI-Projection Tables-Continued.
Iatitude $24^{\circ} 30$.

$\stackrel{*}{*}$

TABLE VI--Projection Tubles-Continued.
Latitude $25^{\circ} 00^{\prime}$.

TABLE VI.-Projection Tables-Continued.
Iatitude $25^{\circ} 30^{\circ}$.

Min.	Length in metres of arce of the parallel, (arc par.)									Meridonal arcs.		Co-ordinates of curvature. :		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	40"	$50^{\prime \prime}$	60^{\prime}			Minutes of lotigitude.	$\begin{gathered} \mathbf{X} . \\ \text { Arcpar. } \end{gathered}$	Y.
30^{\prime}	195.5	283.4	251.3	279.2	558.5	837.7	1116.9	1396; 2	1675.43	1	30,8	1^{\prime}	-. 0	. 1
31	5.4	3.4	1.3	9.2	8.4	76	6.8	6.0	5. 20	2	61.5	2	. 0	. 4
32	5.4	3. 3	1.2	9.2	8.3	7.5	6. 6	5.8	4.97	3	92.3	3	. 0	. 9
33	5.4	3.3	1.2	9.1	8.2	7.4	6.5	5.6	4.74	4	123.1	4	. 0	1.7
34	5.4	3.3	1.2	9.1	8.2	7.3	6.3	5.4	4.51					
35	5.3	3.2	1.1	9.0	8.1	7.1	6.2	5.2	4.27	5	153.8	5	.0	2.6
	195.3	223.2	251.1	279.0						7	184.6	${ }_{7}^{6}$. 0	3.8
37	198.3 -5.3	22.2	1.1	27.0 9.0	78.9	887.0 6.9	1116.0	1395.0 4.8	1674.04 3.81	7	215.4	7	. 0	5.1
38	5.3	3.1	1.0	8.9	7.9	6.8	$\begin{array}{r}115.9 \\ \hline \quad 5.7\end{array}$	4.8 4.6	3.81 3.58	8	276.9	9	.0	6.75
99	5.2	3.1	1.0	8.9	7.8	6.7	5.6	4.4	3.34					
40	5.2	3.1	1.0	8.8	7.7	6.6	5.4	4.3	3.11	10	307.7	10	. 0	10.5
										20	615.4	15	. 0	23.6
41	195.2	223.1	250.9	278.8	557.6	836,4	1115. 3	1394.1	1672.88	30	.923.31	20	. 0	42.0
42.	5.1	3.0	0.9	8.8	7.5	6.3	5.1	3.9	2,65	40	1230, 8	25	.1	65.6
43	5.1	3.0	0.9	8.7	7.5	6.2	4.9	3.7	2.41	50	1538.5	30	.1	94, 4
44	5.1	3.0	0.8	8.7	7.4	6.1	4.8	3.5	2.18					
45	5.1	2.9	0.8	8.7	7.3	6.0	4.6	3.3	1.95	$1^{10} 00$	1846, 2	35	.1	128.5
										2	3692, 3	40	. 2	168.0
46	195.0	222.9	250.8	278.6	557.2	835.9	1114.5	1393.1	1671.71	3	5538.5	45	. 3	212.4
47	5.0	2.9	0.7	8.6	7.2	5.7	4.3	2.9	1.48	4	. 7384.6	50°	.4	262.3
48	5.0	2.8	0.7	8.5	7.1	5.6	4.2	2.7	1.25	5	9230.8	55	.5	317.3
49	5.0	2.8	0.7	8.5	7.0	5.5	4.0	2.5	1.01	6	11076.9			
50	4.9	2.8	0.6	8.5	6.9	5.4	3.9	2.3	0.78			$1{ }^{10} 00$. 7	377.7
51	194,9	822.7	250.6	278.4	556.8	835.3	1113.7	1392.1	167055	8	12923.1 14769.2	1.10 $1 \quad 20$	1.1	514.0 671.4
52	4.9	2.7	0.6	8.4	6.8	5.2	3.5	1.9	$7{ }^{1} 3$	9	16615.4	130	2.4	849.7
53	4.8	2.7	0.5	8.3	6.7	5.0	3.4	1.7	70.08	10	18461.6	1.40	3.3	1049.1
64	4.8	2.6	0.5	8.3	6.6	4.9	3.2	1.6	69.84	11	20307.7	$1 \cdot 50$	4.4	1269,4
55	4.8	2.6	0.4	8.3	6.5	4.8	3.1	1.4	69.61	12	22153.9	200	5.7	1510.6
56	194.8	222.6	250.4	278.2	556.5	834.7	1112.9	1391.2	1669.37					
57	4.7	2.6	0.4	8.2	6.4	4.6	2.8	1.0	9. 14					
58 59	4.7 4.7	2.5 2.5	0.3 0.3	8.1 8.1	6.3 6.2	4.5 4.3	2.6 8.5	0.8 0.6	8.90 8.67					
60	1.6	2.5	0.3	8.1	6.1	4.2	2.3	0.4	8.43					

TABLE VI.-Projection Tables-Continued.

Latitene $26^{\circ} 00^{\circ}$

Min.	Length in metres of ares of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30 \prime$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	. \mathbf{X} Are par.	Y.
0	194.6	222.5	250.3	278.1	256.1	834.2	1112.3	1390.4	1668.43	1"	- 30.8	1	- 0	. 1
1	4.6	2.4	0.2	8.0	6.1	4.1	2.1	0.2	8.20	2	- 61.5	2	.0	. 4
8	4.6	2.4	0.2	8.0	6.0	4.0	2.0	0.0	7.96	3.	-92.3	3	. 0	1. 0
3	4.6	2.4	0.2	8.0	5.9	3.9	1.8	1389, 8	7.72	4	, 123.1	4	0	1.7
4	4.5	2.3	0.1	7.9	5.8	-3.7	1.7	9.6	7.49					
5	4.5	2.3	0.1	7.9	5.7	3.6	1.5	- 9.4	7.25	5	153.8	5	. 0	2.7
										6	184.6	6	. 0	3.8
6	194.5	222.3	250.1	277.8	555.7	833.5	1111.3	1389. 2	1667.02	7	215.4	7	. 0	5.2
8	4.5	2.2	0.0	7.8	5.6	3.4	1.2	9.0	6.78	8	246.2	8	. 0	6.8
8	4.4	2.2	0.0	7.8	5.5	3.3	1.0	8.8	6.54	9	276.9	9	. 0	8.6
${ }^{9}$	4. 4	2.2	249.9	7.7	5.4	3.2	0.9	8.6	$\because 6.31$					
10	4.4	2.1	9.9	7.7	5.4	3.0	0.7	8.4	6.07	10	307.7	10	.0	10.6
11	194.3	222.1.	249.9	277.6	555.3	839.9		388		20	615.4	15	. 0	23.9
12	4.3			2.6	S0, 3	83.2	111.6	1388.2	1605.83	30	923.1	20	. 0	42.6
13	4.3	2.0	9.8	7.6	5.2	2.8	0.4	8.0	5.6	40	1230.9	25	. 1	66.5
14	4.3	2.0	9.8	$\bigcirc 7.6$	5.1	2.7	0.2	7.8	5. 36	50	1538.6	30	. 1	95.7
15	4.2	2.0	9.7	$\because 7.5$	5.0	2.4	1109.9	7.4	4.88	$1^{\prime} 00$	1846.3	35	. 1	130.3
										2	3692.6	40	. 2	170.2
16	194.2	228.0	249.7	277.4	554.9	832.3	1109.8	1387. 2	1664.65	3	5538.8	45	:3	215.4
17	4.2	1.9	9.7	7.4	4.8	$\because 2.2$	9.6	7.0	4.41	4	7385.1	50	. 4	265. 9
18	4.2	1.9	9.6	7.4	- 4.7	2.1	9.4	6.8	4.17	5	9231.4	55	. 6	331.8
19	4.1	1.9	9.6	7.3	4.6	2.0	9.3	6.6	3.93	6	11077.7			
20	4.1	1.8	9.5	7.3	4.6	1.8	9.1	6.4	3. 69			1000	. 7	383.0
										7	12924.0	110	1.2	521.2
21	194.1	221.8	249.5	277.2	554.5	831.7	. 1109.0	1386.2	, 1663.46	8	14770.2	120	1.7	680.8
92	4.0	1.8	9.5	7.2	4.4	1.6	8.8	6.0	3.22	9	16616.5	$1 \cdot 30$	2.5	861.6
83	4.0	1.7	9.4	7.2	4.3	1.5	8.6	5.8	2.98	10	18462.8	140	3.4	1063.7
84	4.0	1.7	9.4	7.1	4.2	1.4	8.5	5.6	2.74	11	20309.1	150	4.5	1287. 1
25	4.0	1.7	9.4	7.1	4.2	1.2	8.3	5.4	2.50	12	22155.4	200	5.9	1531.8
96	193.9	221.6	249.3	277.0	554.1	831.1	1108.2	1385.2	1662.26					:
27	3.9	1.6	9.3	7.0	4.0	1.0	8.0	5.0	$\bigcirc 2.02$					
28	3.9	1.6	9.3	7.0	3.9	0.9	7.9	$\because 4.8$	- 1.78					
29	3.9	1.5	9.2	6.9	3.8	0.8	7.7	4.6	-1.55					
30	3.8	1.5	9.2	6.9	3.8	0.7.	7.5	4.4	1.31					

TABLE VI.-Projection Tables-Continued.
Latitude $26^{\circ} 30^{\prime}$.

Latitude 27000 .

Min.	* Length in metres of arcs of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	9^{\prime}	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	40*	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	$\left\|\begin{array}{c} X \\ \text { Are par. } \end{array}\right\|$	Y.
0	193.0	2820.5	248.1	275.7	551.3	827.0	1102.7	1378.4	1654. 05	$1^{\prime \prime}$	30.8	$1 '$	-. 0	. 1
1	2.9	0.5	8.1	5.6	1.3	6.9	2.5	8.2	3.81	$\cdots 2$	61.5	2	. 0	. 4
2	9.9	0.5	8.0	5.6	1.2	6.8	2.4	8.0	3.57	3	- 92.3	3	. 0	1.0
3	2.9	0.4	8.0	5.6	1.1	6.7	2.2	7.8	3. 32	4	123.1	4	. 0	1.7
4	2.9	0.4	8.0	5.5	1.0	6.5	2.1	7.6	3.08					
5	2.8	0.4	7.9	5.5	09	6.4	1.9	7.4	2.83	5	153.9 184.7	5	. 0	2.7 3.9
6	192.8	220.3	247.9	275.4	550.9	826.3	1101.7	1377.2	1652. 50	7	215.4	7	. 0	5.4
7	2.8	0.3	7.9	5.4	0.8	6.2	1.6	7.0	2. 34	8	246.2	8	. 0	7.0
8	8.7	0.3	7.8	5.4	0.7	6.0	1.4	6.7	2.10	9	277.0	9	.0	8.8
9	2.7	0.2	7.8	5.3	0.6	5.9	1.2	6.5	1.86					
10	2.7	0.2	7.7	5.3	0.5	5.8	1.1	6.3	1.61	10	307.8	10	. 0	10.9
										20	615.5	15	. 0	24.6
11	192.7	220.2	247.7	275.2	550.5	825.7	. 1100.9	1376.1	1651. 36	30	923.3	20	. 0	43.7
12	2.6	0.1	7.7	5.2	0.4	5.6	. 0.8	5.9	1.12	40	1231.0	25	.1,	68.3
13	2.6	0.1	7.6	- 5.1	C. 3	5.4	0.6	5.7	0.87	50.	1538.8	30	. 1 *	98.3
14	2.6	0.1	7.6	5.1	0.2	5.3	. 0.4	5.5	0.63					
15	2.5	0.1	7.6	5.1	0.1	5.2	- 0.3	5.3	0.38	${ }^{\prime} 00$	1846.5	35	. 2	183.8
										2	3693.1	40	. 2	174.7
16	192.5	220.0°	247.5	275.0	550.0 .	825.1	- 1100.1	1375.1	1650.13	3	55339.6	45	. 3	221.2
17	2.5	0.0	7.5	5.0	0.0	4.9	1099.9	4.9	49.89	4	7386.2	50	. 5	273.0
18	2.5	0.0	7.4	4.9	$\therefore 549.9$	4.8	9.8	4,7	49.64	5	9232. 7	55	. 6	330.4
19	2.4	219.9	7.4	4.9	$\bigcirc 9.8$	4.7	9.6	4.5	49.39	6	11079.2			
20	2.4	9.9	7.4	4.9	9.7	4.6	- 0.4	4.3	49.15			1000	. 8	393.2
										7	12925.8	110	1.2	533.2
21	192.4	219.9	247.3	274.8	549.6	824.5	1099.3	1374.1	1648.90	8	14772.3	1.20	1.8	699.0
22	2.3	9.8	7.3	4.8	9.5	4.3	9.1	3.9	8.65	9	16618.8	130	2.6	884.6
23	2.3	9.8	7.3	4.7	9.5	4. 2	8.9	3.7	8.41	10	18465.4	140	3.6	1092.0
24	2.3	9.8	7.2	4.7	9.4	4. 1	' 8.8	3.5	8. 16	11	20311.9	1.50	4.8	1321.5
25	2.3	9.7	7.2	4.7	9.3	-4.0	8.6	3.3	7.91	12	22158.4	2.00	6.2	1572. 8
26	192.2	219.7	247.1	274.6	549.2	823.8	1098.4	1373.1	1647.67	\because		-		
27	2.2	9.7	7.1	4.6	9.1	3.7	8.3	2.8	7.42					
28	2.2	9.6	7.1	4.5	9.1	- 3.6	8.1	2.6	7.17					
59	2.1	9.6	7.0	4.5	9.0	3.5	8.0	2.4	6. 92					
30	2.1	9.6	7.0	4.4	8.9	3.3	7.8	2.2 -	6.68					

TABLE VI--Projection Tables-Continued.
Latitude $27^{\circ} 30^{\prime}$.

Min.	Length in metres of ares of the parallel, (are par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7 / 1$	$8 \prime$	97	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	Y.
30	192.1	219.6	247.0	274.4	548.9	823.3	1097.8	1372.2	1646.68	$1 "$	30.8	$1^{\prime \prime}$	-. 0	. 1
31	2.1	9.5	7.0	4.4	8.8	3.2	7.6	2.0	6.43	2	61.6	2	. 0	. 4
32	2.1	9.5	6.9	4.4	8.7	3.1	7.5	1.8	6.18	3	92. 3	3	*. 0	1.0
33	2.0	9.5	6.9	4.3	8.6	3.0	7.3	1.6	5.93	4	123.1	4	. 0	1.8
34	2.0	9.4	6.9	4.3	$\therefore 8.6$	2.8	7.1	1.4	5.68					
35	20	9.4	6.8	4.2	${ }^{2} 8.5$	2.7	6.9	1.2	5.43	5	153.9	5	0	2.8
										6	184.7	6	. 0	4.0
36	\% 191.9	219. 4	246.8	274.2	548.4	822.6	1096.8	1371.0	1645.18	7	215.4	7	. 0	5.4
37	-1.9	9.3	6.7	4.2	8.3	2.5	66	0.8	4.94	8	246.2	8	. 0	7.1
38	1.9	9.3	6.7	4.1	- 8.2	2.3	6.5	0.6	4.69	9	277.0	9	. 0	9.0
39	1.9	9.3	6.7	4.1	8.1	2.2	6.3	0.4	4.44					
40	1.8	9.2	6.6	4.0	8.1	2.1	6.1	0.2	4. 19	- 10	307.8 615.5	10	. 0	11.1 24.9
41	191.8	219.2	246.6	274.0	548.0	8×2.0	1096.0	1370.0	1643.94	30	923.3	20	.0	44.2
42	1.8	9.2	6.6	3.9	7.9	1.8	5.8	69.7	3.69	40	1231. 1	25	.1	69.1
48	1.7	9.1	6.5	3.9	7.8	1,7	5.6	9.5	3.44	50	1538.9	30	. 1	99.5
44	1.7	9.1	6.5	3.9	7.7	1.6	5.5	9.3	3.19					
45	1.7	9.1	6.4	3. 8	7.6	1.5	5.3	9.1	2.94	$1_{2}^{\prime} 00$	1846.7 3693.3	35 40	. 2	135.5 176.9
46	191.6	219.0	246.4	273.8	547.6	821.3	1095. 1	1368.9	1642.69	3	5540.0	45	. 3	223.9
47	1.6	9.0	6.4	3.7	7.5	1.2	5.0	8.7	2.44	4	7386.7	50	. 5	276.5
48	1.6	0.0	6.3	3.7	7.4	1.1	4.8	8.5	2.19	5	-9233.3	55	. 6	334.5
49	1.6	8.9	6.3	3.7	7.3	1:0	4.6	8.3	J. 94	6	11080.0			
50	1.5	8.9	6.3	3.6	7.2	0.8	4.5	8.1	1.69	7	12926.7	1000 $1 \quad 10$.8 1.3	398.1 541.9
51	191. 5	218.9	246.2	273.6	547.1	820.7	1094. 3	1367.9	1641.44	8	14773.3	120	1.9	707.8
52	1.5	8.8	6.2	3. 5	7.1	0.6	4.1	7.6	1.18	9	16620, 0	1. 30	2.7	$89 \% .8$
63	1.4	8.8	6.1	3.5	7.0	-0.5	4.0	7.4	0.93	10	18166.7	140	3.7	1105.9
54	1.4	8.5	6. 1	3.4	6.9	0.3	3.8	7.2	0.68	11	20313.3	150	4.9	1332. 1
55	1.4	8.7	6.1	3.4	6.8	0.2	3.6	7.0	0.43	12	22160.0	200	6.4	1592, 5
51	191.4	218.7	246.0	273.4	546.7	820. 1	1093.5	1360.8	1649.18					
57	1.3	8.7	6.0	3.3	6.6	820.0	3.3	6.6	39.93					
58	1.3	8.6	6. 0	3.3	6.6	819.8	3.1	6.4	39.68					
59	1.3	8.6	5.9	3.2	6.5	819.7	3.0	6.2	39.42					
60	1.2	8.6	5.9	3.2	6.4	819.6	2.8	6.0	39.17					

TABLE VI.-Projection Tables-Continued.
Latitides $28^{\circ} 00^{\prime}$.

TABLE VI.-Projection Tables-Continued.
Latitude $25^{\circ} 30^{\prime}$.

Min.	Length in metres of ares of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	$7 \prime$	8'	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
\% 30	190.3	217.5	244.7	271.9	543.8	815.8	1087.7	1359.6	1631.54	1 "	30.8	1^{\prime}	-. 0	. 1
- 31	0.3	7.5	4.7	1.9	3.8	5.6	7.5	9.4	1.29	2	61.6	2	. 0	. 5
32	0.3	7.5	4.7	1.8	3.7	5.5	7.4	9.2	1.03	3	9.2 .3	3	. 0	1.0
33	0.3	7.4	4.6 4.6	1.8	3.6	5.4	7.2	9.0	0.77	4	123.1	4	. 0	1.8
34 35	0.2 0.2	7.4 7.4	4.6 4.5	1.7	3.5	5.3	7.0	8.8	0.52					
35	0.2	7.4	4.5	1.7	3.4	5, 1	6.8	8.6	0.26	5	153.9	5	. 0	2.8
36	190.2	217.3	244.5	271.7	54.3 .3	815.0	-1086.7	1358.3	1630. 00	6 7	184.7 215.5	${ }_{6}^{7}$	0 .0	4. 1
37	0.1	7.3	4.5	1.6	-3.3	815.0 4.9	108.7 6.5	8.1	29.75	8	246.3 24.3	8	. 0	5.5 7.2
38	0.1	7.3	4.4	1.6	3.2	4.7	6.3	7.9	9.49	9	2\%7.0	9	. 0	7.2 9.9
39	0.1	7.2	4.4	1.5	3.1	-4.6	6. 2	7.7	9.23					9.2
40	0.0	7.2	4.4	1.5	3.0	4.5	6.0	7.5	8.97	10	307.8	10	. 0	11.3
41	190.0	217.2	244.3	271.5	542.9					20 30	615.6	15	. 0	25.5
42	0.0	7.1	24.3 4.3	1.4	54.9 2.8	814.4	1085.8	1357.3	1688.71	30	923.3 5	20	. 0	45.3
43	0.0	7.1	4.2	1.4	2.7	4. 1	5. 5	6.8	8.46 8.80	50	1231.3 1539.1	20 30	. 1	79.8
44	189.9	7.1	4.2	1.3	2.6	4.0	5. 3	6.6	7.94		153. 1	30		101.9
45	9.9	7.0	4.2	1.3	2.6	3.8	5.1	6.4	7.68	$1^{\prime} 00$	1846.9	35	2	138.7
										2	3693.9	40	.3	181.2
46	189.9	217.0	244.1	271.2	542.5	813.7	1085.0	1356. 2	1627, 42	3	5540.8	45	. 4	249.3
47	9.8	7.0	4.1	1.2	2.4	3.6	4.8	6. 0	7. 16	4	7337.7	50	. 5	283.1
48	9.8	6.9	4.0	1.1	2.3	3.5	4.6	5.8	6.91	5	9234.7	55	. 7	342.5
49	9.8	6.9	4.0	1.1	2.2	3.3	4.4	5.5	6.65	6	11081.6			
50	9.7	6.9	4.0	1.1	2.1	3.2	4.3	5.3	6.39			1000	. 8	40\%. 6
										7	12928.6	110	1.3	554.8
51	189.7 9.7	216.8 8.8	243.9 3	271.0	542.0	813. 1	1084. 1	1355. 1	1626. 13	8	14775.5	120	2.0	724.7
53	9.7	6.7	3.8 3.8	0.9	1.9	2.9 2.8	3.9 3.8	4.9 4.7	5.87	9 10	16642.4	130 1	2.9	917.1
54	9.6	6.7	3.8	0.9	1.8	2.7	3.6	4.5	5.35	11	20316.3	150 150	3.9 5.2	1132.3 1370.0
55	9.6	6.7	3.8	0.8	1.7	2.5	3.4	4.2	5.09	12	22163.2	200	6.8	1630.5
66	189.6	216.6	243.7	270.8	541.6	812.4	1083. 2	1354.0	1624.83					
57	9.5	6.6	3.7	0.8	1.5	2.3	3.0	3.8	4.57					
58	9.5	6.6	3.6	$\theta .7$	1.4	2.2	2.9	3.6	4.31					
59	9.5	6. 5	3.6	0.7	1.4	2.0	2.7	3. 4	4.05					
63	9.4	6.5	3.6	0.6	1.3	1.9	2.5	3.1	3.79					

TABLE VI.-Projection Tables-Continued.
Latitude $29000^{\prime \prime}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridiomal arcs.		Co-ordinates of currature.		
	\%'	$8^{\prime \prime}$	97	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	40"	50'	$60^{\prime \prime}$			Minutes of longitude.	X . Are par.	Y.
0^{\prime}	189.4	216.5	243.6	270.6	541.3	811.9	1082.5	1353.1	1623.79	1".	30.8	$1{ }^{\prime}$	-. 0	. 1
1	9.4	6.5	3.5	0.6	1.2	1.8	2.4	2.9	3. 53	2	61.6	2	-. 0	. 5
2	9.4	6.4	3.5	0.5	1.1	1.6	2.2	2.7	3. 27	3	92.4	3	.0	1.0
3	9.4	6.4	3.5	0.5	1.0	1.5	2.0	2.5	3.01	4	123.1	4	. 0	1.8
4	9.3	6.4	3.4	0.5	0.9	1.4	1.8	2.3	2.75					
5	9.3	6.3	3.4	0.4	0.8	1.2	1.7	2.1	2.48	5	153.9	5	. 0	2.9
										6	184.7	6	. 0	4.1
6	189.3	216. 3	243.3	270.4	540.7	811.1	1081.5	1351.9	1622.22	7	215.5	7	. 0	5.6
7	9.2	6. 3	3.3	0.3	0.7	1.0	1.3	1.6	1.96	8	246.3	8	. 0	7.3
8	9.2	6.2	3.3	0.3	0.6	0.8	1.1	1.4	1.70	9	$27 \% .1$	9	. 0	9.3
9	9.2	6.2	9. 2	0.2	0.5	0.7	1.0	1.2	1.44					
10	9.1	6.2	3.2	0.2	0.4	0.6	0.8	1.0	1. 18	10	307.8	10	. 0	11.4
						810.5				20	615.7	15	. 0	25.8
12	189.1 9.1	216.1	243.1	270.2	640.3 0.2	810.5 0.3	1080.6 0.4	1350.8	1620.92	30	923.5	20	.0	45.8
13	9.0	6.1	3. 1	0.1	0.1	0.2	0.3	0.5 0.3	0.65 0.39	40 50	1231.4	$\stackrel{25}{30}$. 1	71.6
14	9.0	6.0	3.0	0.0	0.0	0.1	0.1	0.1	0.13			3	.	103.0
15	0.0	6.0	3.0	0.0	00	809.9	1079.9	49.9	1619.87	$1^{\prime} 00$	1847. 1	35	. 2	140.3
										2	3694.1	40	.3	183.2
16	189.0	215.9	242.9	269.9	539.9	809.8	1079.7	1349.7	1619.60	3	5541.2	45	. 4	231.9
17	8.9	5.9	2.9	9.9	9.8	9.7	9.6	9.4.	9.34	4	7388.3	50	. 5	286.2
18	8.9	5.9	2.9	9.8	9.7	9.5	9.4	9.2	9. 118	5	92353	55	. 7	316.4
19	8.9	5. 8	2.8	9.8	9.6	9.4	9.2	9.0	8.82	6	11082.4			
20	8.8	5.8	2.8	9.8	9.5	9.3	9.1	8.8	8.55			1000	. 9	412.2
										7	12929.5	110	1.4	561.0
21	188.8	215.8	242.7	269.7	539.4	809.1	1078.9	1348.6	1612.29	8	14776. 6	120	2.1	732.8
22	8.8	5.7	2.7	9.7	9.3	9.0	8.7	8.4	8.03	9	16623.7	130	2.9	927.4
23	8.7	5.7	2.7	9.6	9.3	8.9	8.5	8.1	$\therefore \quad 7.76$	10	18470.7	140	4.0	1145.0
24	8.7	5.7	2.6	9.6	9.2	8.7	8.3	7.9	7.50	11	20317.8	150	5.4	1385.4
25	8.7	E. 6	\% 2.6	9.5	9.1	8.6	8.2	7.7	7. 23	12	22164.9	200	7.0	1648.8
26	188.6	215.6	242.5	269.5	539.0	808.5	1078.0	1347.5	1616.97					
87	8. 6	5.6	2.5	9.5	8.9	8.4	7.8	7.3	6.71					
20	8.6	5.5	2.5	9.4	8. 8	- 8.2	7.6	7.0	6.44					
89	8.6	5.5	2.4	9.4	8.7	8.1	7.5	6,8	6.18					
30	8.5	5.5	2.4	9.3	8.6	8.0	7.3	6,6	5.91					

TABLE VI.-Projection Tables-Continued.
Latitude $29^{\circ} 30^{\circ}$.

TABLE VI.-Projection Tables-Continued.
Latitude 30000°

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional arcs.		Co-ordinater of curvature..		
	$7^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longituda.	X. Are par.	Y.
0	187: 6	214.4	241.2	268.0	536.0	804.0	1071.9	1339.9	1607.91					
1	7.6	4.4	1.1	7.9	5.9	3.8	1.8	9.7	7.65	$\mathbf{1}^{\prime \prime}$		1^{\prime}	-. 0	. 1
2	7.5	4.3	1.1	7.9	5.8	3.7	1.6	9.5	7.38 7.38	3	61.6 92.4	2 3 3	. 0	.5
3	7.5	4.3	1.1	7.9	5.7	3.6	1.4	9.3	7.11	4	123.2	3	. 0	1.1
4.	7.5	4.2	1.0	7.8	5.6	3.4	1.2	9.0	6.84	4	123.2	4	. 0	1.9
5	7.4	4.2	1.0	7.8	5.5	3.3	1.0	8.8	6.57	5	153.9	5	. 0	2.9
6	187, 4	214.2	240.9	267.7	535.4	803.1	1070.9	1338. 6	1606.30	6	184.7	6	. 0	4.2
7	7.4	4.1	0.9	7.7	5.3	3.0	0.7	13.6 8.4	1606.36 6.03	8	215.5 246.3	7	. 0	5.7
8	7.3	4. 1	0.9	7.6	5.3	2.9	0.5	.8.1	6.08 5.76	8 0	246.3 877.1	8 9	-0	7.5
9	7.3	4. 1	0.8	7.6	5. 2	2.7	0.3	7.9	5. 59		277.1	9	.0	3.5
10	7.3	4.0	0.8	7.5	5.1	2.6	0.1	7.7	5.22	10	307.9	10	. 0	11.7
11	187.2	214.0	240.7	267.5	535.0	802.5				20	615.8	15	. 0	26.3
12	7.2	4.0	0.7	7.4	4.9	802.5 2.3	1070.0	1337.5 7.2	1604.95 4.68	30	923.7	20	. 0	46.8
13	7.8	3.9	0.7	7.4	4.8	2.2	9.6	7.0	4.68 4.41	40	1231.5	25	. 1	73.1
14	7.1	3.9	0.6	7.4	4.7	2.1	9.4	6.0	4.41	50	1539.4	30	. 1	105.2
15	7.1	3.8	0.6	7.3	4.6	1.9	9.2	6.6	3.87	$1^{\prime} 00$	1847.3	35	. 2	143.2
16	187.1	213.8	240.5	267.3	534.5	801.8	1069.1			2	3694.7	40	. 3	187.1
17	7.1	3.8	0.5	7.2	4.4	1.7	8.9	15.3	1603.60 3.32	3	5542.0	45	. 4	236.8
18	7.0	3.7	0.5	7.2	-4.4	1.6	8.7 8	5.19	3. 38		7889.4	50	. 5	292. 3
19	7.0	37	0.4	7.1	4.3	1.4	8.5	5.6	3.185 9.78	6	9936.7	55	. 7	303.7
20	7.0	3.7	0.4	7.1	4.2	1.3	8.3	5.4	2.51		11884.1	1000	. 9	421.0
21	186.9	213.6	240.3	287.0	534.1	801.1	1068.			7	12931.5	110	1.6	573.0
92	6.9	3.6	0.3	7.0	4.0	1.0	1008	1335.2	1602. 24	8	14778.8	120	2.2	748. 4
23	6.9	3.6	0.3	7.0	3.9	0.8	8.8	5.0	1.97	9	16636.2	130	3.1	947.1
24	6.8	3.5	0.2	6.9	3.8	0.7	7.8	4.7	1.70	10	18473.5	140	4.2	1169.3
26	6.8	3.5	0.2	6.9	3.7		7.6	4.5	1.43	11	80320.8	150	5.6	1414.8
			0.2	6.0	0.7	0.6	7.4	4.3	1.15	12	22168.2	200	7.3	1683. 8
96	186. 8	213.5	240.1	266.8	533.6	800.4	1067.3	1334.1	1600. 88					
\%4.	6.7	3.4	0.1	6.8	3.5	0.3	7.1	3.8	0.61	-				
2	6.7	3.4	0,1	6.7	3.4	0.2	6.9	3.6	-0.34					
0	6.7	3.3	0.0	6.7	3.4	0.0	6.7	3.4	0.06					
30	6.6	3.3	0.0	6.6	3.3	799.9	6.5	3.2	1599.79					

TABLE VI.-Projection Tables-Continued.
Latitude $30^{\circ} 30^{\prime}$.

Min.	Length in metres of arcs of the parallel, (are par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
39	186.6	213.3	240.0	266.6	533.3	799.9	1066.5	1333, 2	1599.79	$1^{\prime \prime}$	30.8	1 '	-. 0	
31	6.6	3.3	239.9	6.6	3.2	9.8	6.3	2.9	9.52	2	61.6	2	. 0	.5
32	6. 6	3.2	9.9	6.5	3.1	9.6	6.2	2.7	9.25	3	92.4	3	. 0	1. 1
33	6.3	3.2	9.8	6.5	- 3.0	9.5	6.0	2.5	8.97	4	123.2	4	. 0	1.9
34	6.5	3.2	9.8	6.5	2.9	9.4	5.8	2.3	8.70	4				
35	6.5	3.1	9.8	6. 4	2.8	9.2	5.6	2.1	8.43	5	154.0	5	. 0	3.0
36	186.4	213.1	239.7	266.4	532.7	799.1	1065.4	1331.8	1598.15	6	184.7	$\stackrel{6}{7}$. 0	4.3 5.8
37	6.4	3.1	9.7	6.3	2.6	+8.19	105.4 5.3	131.8	$\begin{array}{r}158.88 \\ \hline 7.81\end{array}$	8	246.3	8	. 0	6.8 7.6
38	6.4	3.0	9.6	6.3	2.5	8.8	5.1	1.3	7.61	9	277.1	9	. 0	9.6
39	6.4	3.0	9.6	6.2	2.4	8.7	-4.9	1, 1	7.33					
40	6.3	2.9	9.6	6.2	2.4	8.5	4.7	0.9	7.06	10	307.9	10	. 0	11.8
41	186.3	212.9	239.5	266.1	532.3	738.4				20 30	615.8 923.7	15 20	. 0	26.6
42	6.3	2.9	9.5	6.1	2.2	78.4 8.3	1064.5 4.3	1330.6 0.4	1596.78 6.51	310	923.7	20	. 0	47.2
43	6.2	2.8	9.4	6.0	2.1	8.1	4.3 4.1	0.4 0.2	6.82 6.24	40	1231.7	25 30	- 1	73.8
44	6.2	2.8	9.4	6.9	2.0	8.0	4.0	0.0	5.96	5	190.6	30	$\cdot 1$	106.3
45	6.2	2.8	9.4	5. 9	1.9	7.8	3.8	29.7	5.69	$\mathbf{1}^{\prime} 00$	1847.5	35	. 2	144.7
46	186. 1	212.7	239.3	265.9	531.8	797.7				2 3 3	3695.0 5542.5	40	.3	129.0
47	6.1	2.7	9.3	5.9	1.7	797.7 7.6	1083.6 3.4	1329.5 9.3	1595.41 5.14	3 4	5942.5 7390.0	45 50	. 4	839.1 295.2
48.	6.1	2.6	9.2	5.8	1.6	7.4	3.2	9.0	4.86	5	9237.4	55	. 7	357.2
49	6.0	2.6	9.2	5.8	1.5	7.3	3.1	8.8	4. 59	6	11084.9		. 7	35\%
50	6.0	2.6	9.1	5.7	1.4	7.2	8.9	8.6	4.31		11004.9	1000	. 9	42\%. 1
51	186.0	212.5		265.7						7	12032.4 14779.9	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	1.6 2.2	57*, 7
52	5.9	2.5	${ }^{23.1}$	200.7 5.6	1.3 1.3	797.0 6.9	1069.7 2.5	1328.4	1594.04 3.76	8.	14779.9	120	2.2	755. 8
55	5.9	2.5	9.0		1.2	6.9			3.78		160.4.	30	3.2	995.5
54	5.9	2.4	9.0	- 5.5	1.1	6.6	2.1	7.7	3.48	11	181.4 .9	140	4.4	1181.9
55	5.8	2.4	8.9	5.5	1.0	6.5	2.1	7.7	3.21 2.93	11	20322.4 22169.9	$\begin{array}{ll}1 & 50 \\ 2 & 00\end{array}$	5.8 7.5	1422.9 1700.6
56	185.8	212.4	238.9	265.4	530.9	796.3	1061.8	1327. 2	1592.66					
57	5.8	2.3	8.8	5.4	0.8	6.2	1.6	7,0	2.38					
58	5.7	2.3	8.8	5.4	0.7	6.0	1.4	6.8	2.10					
59	5.7	2.3	$\varepsilon .8$	5.3	0.6	5.9	1.2	6.5	1.83					
60	5.7	2.2	8.7	5.3	0.5	5.8	1,0	6.3	1.55					

Latitude $31^{\circ} 00^{\prime}$.

Min.	Length in metres of ares of the parallel, (arc par.)									Meridional ares.		Co-ordinates of curvature.		
	$7^{\prime \prime}$	8'	$9{ }^{\prime \prime}$	- $10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	Y.
0	185. 7	212.2	238.7	265, 3	530.5	795.8	1061.0	1326.3	1591.55	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	, 1
1	5. 6	2.2	8.7	5.2	0.4	5.6	0.8	6.1	1. 27	2	61.6	2	. 0	.5
2	5.6	2.1	8.6	-5.2	0.3	5.5	0.7	5.8	1.00	3	92.4	3	. 0	1.1
3	5.6	2.1	8.6	5.1	0.2	5.4	0.5	5.6	0.72	4	123.2	4	. 0	1.9
4	5.6	2.1	8.6	5.1	0.1	5.2	0.3	5.4	0.44					
5	5.5	2.0	8.5	5.0	0.1	5.1	1060.1	5.1	1590. 16	5	154.0	5	. 0	3. 0
6	185.5	212.0	238. 5	265.0	530.0	794.9	1059.9	1324.9	1589.89	6 7	184.8 215.5	6	. 0	4.3 5.8
7	5.5	1.9	8.4	4.9	529.9	4.8	1080.7	4.7	0.61	8	246.3	8	.0	7.6
8	5.4	1.9	8.4	4.9	9.8	4.7	9.6	4.4	9.33	9	277.1	9	. 0	9.7
9	5.4	1.9	8.4	4.8	9.7	4.5	9.4	4.2	9.05					
10	5.4	1.8	8.3	4.8	9.6	4.4	9.2	4.0	8.78	10 20	307.9 615.9	10	.0 .0	11.9 26.8
11	185.3	211.8	238.3	264.7	529.5	794.2	1059.0	1323.7	1588. 50	30	923.8	20	.0	26.8 47.7
12	5.3	1.8	8.2	4.7	9.4	4.1	8.8	3.5	8.22	40	1231.7	25	. 1	74.5
13	5.3	1.7	8.2	4.7	9.3	4.0	8.6	3.3	7.94	50	1539.7	30	. 1	107.3
14	5. 2	1.7	8.1	4.6	9.2	3.8	8.4	3.0	7. 66			*		
15	5.2	1.7	8.1	4.6	9.1	3.7	8.2	2.8	7.38	1'00	1847.6	35	. 2	146.0
										2	3695.3	40	. 3	190.8
16	183. 2	211.6	238.1	264.5	529.0	793.5	1058.1	1322.6	1587. 10	3	5542.9	45	. 4	241.4
17	5.1	1.6	8.0	4.5	8.9	3.4	7.9	2.4	6.88	4	7390.5	50	.6	998.0
18	5.1	1.5	8.0	4.4	8.8	3.3	7.7	2.1	6. 54	5	923.1	55	. 7	360.6
19	5.1	1.5	7.9	4.4	8.8	3.1	7.5	1.9	6.27	6	11085.8			
20	5.0	1.5	7.9	4.3	8.7	3.0	7.3	1.7	5.99			$1{ }^{\circ} 00$	1.0	429.2
										7	12933.4	110	1.5	584.2
21	185.0	211.4	237.9	264.3	527.6	792.9	1057.1	1321.4	1585.71	8	14781.1	120	2.3	763.0
22	5.0	1.4	7.8	4.2	8.5	2.7	7.0	1.2	5.43	9	16628.7	130	3.3	965.7
23	4.9	1.4	7.8	4.2	8.4	2.6	6.8	1.0	5.15	10	18476.3	140	4.5	119.2
24	4.9	1.3	7.7	4.1	8.3	2.4	(. 6	0.7	4. 47	11	20324.0	150	5.9	1442.5
25	4.9	1.3	7.7	4.1	8.2	2.3	6.4	0.5	4. 28	12	22171.6	200	7.7	1716.7
26	184.8	211.2	237.6	264.0	528.1	792.1	1056.2		1584.30					
27	4.8	1.2	7.6	4.0	8.0	2.0	6.0	1.0	4.02					
28	4.8	1.2	7.6	4.0	7.9	1.9	5.8	1319.8	3.74					
29	4.7	1.1	7.5	3.9	7.8	1.7	5.6	9.6	3. 46					
30	4.7	1. 1	7.5	3.9	7.7	1.6	5.5	9.3	3. 18					-

TABLE YI.—Projection Tables-Continued.
Latitude $31^{\circ} 30^{\prime}$.

Min.	Length in metres of arcs of the parallel, (are par.)									Meridional ares.		Comrdinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of lougitude.	X. Are par.	Y.
30^{\prime}	184.7	211.1	237.5	263.9	527.7	791.6	1055.5	1319.3	1588, 18	$1^{\prime \prime}$	30.8	1^{\prime}	-. 0	. 1
31	4.7	1.1	7.4	3.8	7.6	1.5	5.3	9.1	2,90	2	61.6	2	. 0	. 5
32	4.6	1.0	7.4	3.8	7.5	1.3	5.1	8.9	2.62	3	92.4	3	. 0	1.1
33	4.6	1.0	7.4	3.7	7.4	1.2	4.9	8.6	2.34	4	123.2	4	- 0	1.9
34	4.6	0.9	7.3	3.7	7.4	1.0	4.7	8.4	2.06					
$\stackrel{34}{35}$	4.5	0.9	7.3	3.6	7.3	0.9	4.5	8.1	1.73	5	154.0 184.8	5 6	. 0	3.0 4.3
36	184.5	210.9	237.2	263.6	527.2	790.7	1054.3	1317.9	1581.50	7	215.6	4	. 0	5.9
37	4.5	0.8	7.2	3.5	7.1	0.6	4. 1	7.7	1.21	8	246. 4	8	. 1	7.7
38	4.4	0.8	7.1	3.5	7.0	0.5	4.0	7.4	0.93	9	237.2	9	.0	9.7
39	4.4	$0.8 *$	7.1	3.4	6.9	0.3	3.8	7.9	0.65					
40	4.4	0.7	7.1	3.4	6.8	0.2	3.6	7.0	0.37	10 20	308.0 815.9	10 15	. 0	12.0 27.1
41	184.3	210.7	237.0	263.3	526.7	791.0	1053.4	1316.7	1580.09	30	923.9	20	. 1	48.1
42	4.3	0.6	7.0	3.3	6.6	789.9	3.2	6. 5	79.80	40	1231.8	25	. 1	75. 2
43	4.3	0.6	6.9	3.2	6.5	9.8	3.0	6.3	9.5%	50	15:39.8	30	. 1	108.4
44	4.2	0.6	6.9	3.2	6. 4	9.6	2.8	6.11	9.24					
45	4.2	0.5	6.8	3.2	6.3	9.5	2.6	5.8	8.96	1 2	1847.8	40	. 2	148.4
46	184.2	210.5	236.8	263.1	526.2	789.3	1052.5	1315.6	1578. 67	3	5543.3	45	.4	243.6
47	4.1	0.5	6.8	3.1	6. 1	9.9	2.3	5.3	8.39	4	7391.1	50	. 6	300.8
48	4.1	0.4	6.7	$3.1)$	6.0	9.1	2.1	5.1	8.11	5	9238.9	55	. 8	354.0
49	4.1	0.4	6.7	3.0	5.9	8.9	1.9	4.9	7.28	6	11080.7			
50	4.0	0.3	6.6	2.9	5.8	8.8	1.7	4.6	7.54	7	12934. 4	1000 110	1.0	433.1 5×9.5
51	184.0	210.3	236.6	262.9	52\%.8	788.6	10.71.5	1314.4	1577.26	8	1470.2	120	2.3	771.0
52	4.0	0.3	6.5	2.8	5.7	8.5	1.3	4. 1	6.97	$!$	16633, 0	130	3.3	974.5
53	3.9	0.2	6.5	2.8	5.6	8.3	1.1	3.9	6.69	10	18177.8	140	4.6	1213.1
54	3.9	0.2	6.5	2.7	5.5	8.2	0.9	3.7	(6.41	11	2132\% 5	$\begin{array}{ll}1 & 50 \\ 9 & 00\end{array}$	6.1 7.9	1455.8
55	3.9	0.1	6.4	2.7	5.4	8.1	0.8	3.4	6.12	12	22173.3		7.9	1732.5
56	183.8	210.1	236.4	262.6	52\%. 3	787.9	1050. 6	1313.2	1575. 81					
57	3.8	0.1	6.3	2.6	5.2	7.8	0.4	3.0	5.50					
58	3.8	0.0	6.3	2.5	5.1	7.6	0.8	2.7	5. 27					
69	3.7	0.0	6.2	2.5	5.0	7.5	0.0	2.5 2.8	4.93 4.70					
60	3.7	0.0	6.2	2.4	4.9	7.3	1049.8	2.2	4.70					

TABLE VI.-Projection Tables-Continued.
Latitude $32^{\circ} 00^{\circ}$.

Min.	Length in metres of ares of the parallel, (are par.)									Meridional arc.		Corordiuates of curvature.		
	$7 \prime$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par	Y.
0	183.7	210.0	236.2	262.4	524.9	787.3	1049.8	1312.2	1574.70	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	. 1
1	3.7	209.9	6.2	2.4	4.8	7.2	9.6	2.0	4.41	2	61.6	2	. 0	. 5
9	3.6	9.9	6.1	2.3	4.7	7.1	9.4	1.8	4.13	3	92.4	3	. 0	1.1
3	3.6	9.8	6.1	2.3	4.6	6.9	9.2	1.5	3.84	4	123.2	4	. 0	1.9
4	3.6	9.8	6.0	2.3	4.5	6.8	9.0	1.3	3.56					
5	3.5	9.8	6.0	2.2	4.4	6.6	8.9	1.1	3.27	5	154.0	5	. 0	3.0
6	183.5	209.7	235.9	262.2	524.3	786.5	1048.7	1319.8	1572.98	6 7	184.8 215.6	6	. 0	4.3 4.9
7	3.5	9.7	5.9	2.1	4.2	6.3	1048.7	131.8	15.70 2.70	8	215.6 246.4	8	. 0	5.9 7.8
8	3.4	9.7	5.9	2.1	4.1	6.2	8.3	0.3	2.41	9	277.2	9	. 0	9.8
9	3.4	9.6	5.8	2.0	4.0	6.1	8.1	0.1	2.13		277.2)	. 0	9.8
10	3.4	9.6	5.8	2.0	3.9	5.9	7.9	1309.9	1.84	10	30 c .0	10	. 0	12.1
11										90	616.0	15	. 0	27.3
11	188.3 3.3	209.5	235.7	261.9	523.9	785.8	1047.7	1309.6	1571.55	30	924.0	20	.0	48.5
13	3.3	9.5	5.7 5.6	1.9 1.8	3.8 3.7	5.6 5.5	7.5 7.3	9.4 9.1	1.27 0.93	40	1231.9	23	.1	75.9
14	3.2	9.4	5.6	1.8	3.6	5.3	7.1	8.9	0.70	5	1359.9	8	. 1	109.2
15	3.2	9.4	5.6	1.7	3.5	5.2	6.9	8.7	0.41	$1^{\prime} 00$.	1347.9	35	. 2	148.7
										2	3695.8	40	. 3	194.2
16	183.2	209.3	235.5	261.7	523.4	785.1	1046.7	1309.4	1570.12	3	5543.8	45	.4	245.8
17	3.1	9.3	5.5	1.6	3.3	4.9	6.5	8.2	69.83	4	7391.7	50	. 6	303.4
18	3.1	9.3	5.4	1.6	3.2	4.8	6.4	8.0	9.55	5	9239.6	55	. 8	367.1
19	3.1	9.2	5. 4	1.5	3.1	4.6	6.2	7.7	9.26	6	11087.5			
20	3.0	9.2	5.4	1.5	3.0	4.5	6.0	7.5	8.97			$1{ }^{\circ} 00$	1.0	436.9
21	183.0	209.2	235.3	261.4	522.9		1045.8			7	12935. 4	110	1.6	594.7
22	18.0	20.2	235. 3	261.4	52.9	784. 3	1045.8	1307.2	1568.68	8	14783.4	120	2.4	776.7
23	3.0	9.1	5.3	1.4	2.8	4.2	5.6	7.0	8.40	9.	16631.3	130	3.4	933.0
24	2.9	9.10	5.2 5.2	1.4	2.7 2.6	4. 31	5.4 5.2	6.8	8.11	10	18179. 2	140	4.7	1213.7
25	2.9	9.0	5.1	1.3	2.5	3.8	5.0	6.3	7.83 7.54	12	211327.1 22175.0	$\begin{array}{ll}1 & 50 \\ 2 & 00\end{array}$	6.2 8.1	1468.5 1747.6
26	182.8	209.0	235.1	261.2	522.4	783.6	1044.8	1306.0	1567, 25					
27	2.8	8.9	5.0	1.2	2.3	3.5	4.6	5.8	6.96					
88	2.8	8.9	5.0	1.1	2.2	3.3	4.4	5.6	6.67					
29	2.7	8.8	5.0	11	2.1	3.2	4.3	5. 3	6.33					
30	2.7	8.8	4.9	1.0	2.0	3.0	4.1	5.1	6.09					

TABLE VI.-Projection Tables-Continued.

Latitude $32^{\circ} 30^{\prime}$.

	Length in metres of arcs of the parallel, (are par.)									Meridional arces.		Co-ordinates of curvature.		
	$7 \prime$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
30°	182.7	208.8	234.9	261.0	522.0	783.0	1044. 1	1305.1	1566. 09	$1^{\prime \prime}$	30.8	1^{\prime}	-. 0	. 1
31	9.7	8.8	4.9	1.0	1.9	2.9	3.9	4.8	5.80	2	61.6	2	. 0	. 5
32	2.6	8.7	4.8	0.9	1.8	2.8	3.7	4.6	5.51	3	92.4	3	. 0	1.1
33	2.6	8.7	4.8	0.9	1.7	2.6	3.5	4.4	5.23	4	123.2	4	. 0	2.0
34	2.6	8.7	4.7	0.8	1.6	2.5	3.3	4.1	4.94					
35	2.5	8.6	4.7	0.8	1.5	2.3	3.1	3.9	4.65	5	154.0	5	. 0	3.1
36	182.5	208.6	234.6	260.7	521.5	782.2	1042.9	1303.6		6	184.8	6	0 .0	4.4 6.0
37	2.5	8.5	4.6	0.7	1.4	2.11	1042.9 2.7	130.6 3.4	1064.36 4.07	8	215.6 246.4	8	. 0	6.0 7.8
38	2.4	8.5	4.6	0.6	1.3	1.9	2.5	3.1	3.78	9	277.2	9	. 0	9.9
39	2.4	8.5	4.5	0.6	1.2	1.7	2.3	2.9	3.49					
40	2.4	8.4	4.5	0.5	1.1	1.6	2.1	2.7	3.20	10	308.0	10	. 0	12.2
41	182.3	208.4	234.4	260.5	521.0	781.5	1041.9	1302.4		20 30	616.0 924.0	15	.0	27.5
42	2.3	+ 8.4	4.4	0.4	0.9	1.3	1041.9 1.8	1302.4 2.2	1562.91 2.62	30 40	924.0 1232.1	20 25	. 0	49.9
43	2.3	¢. 3	4.3	0.4	0.8	1.2	1.6	1.9	2.33	50	1540. 1	30	. 1	110.1
44	2.2	8.3	4.3	0.3	0.7	1.0	1.4	1.7	2.04		1540.1	30	. 1	110.1
45	2.2	8.2	4.3	0.3	0.6	0.9	1.2	1.5	1.75	$1 \cdot 00$	1848.1	35	. 2	149.9
										2	3696.1	40	. 3	195.8
46	182.2	208.2	234.2	260.2	520.5	780.7	1041.0	1301.2	1561.46	3	5544.2	45	. 4	247.8
47	2.1	8.2	4.2	0.2	0.4	0.6	0.8	1.0	1.17	4	7392.3	50	. 6	306.0
48	2.1	8.1	4.1	0.1	0.3	0.4	0.6	0.7	0.87	5	9240.3	55	. 8	370.2
49	2.1	8. 1	4.1	0.1	0.2	0.3	0.4	0.5	0.58	6	11088.4			
50	2.0	8.0	4.0	0.0	0.1	0.2	0.2	0.3	0.29			$1^{\circ} 00$	J. 0	440.6
										7	12936.5	110	1.6	599.7
51	182.0	208.0	234.0	260.0	520, 0	780.0	1040.0	13000	1560.00	8	14784.5	120	2.4	783.3
52	2.0	8.0	4.0	0.1	519.9	779.9	39.8	1299.8	59.71	9	16632.6	130	3.5	991.3
53	1.9	7.9	3.9	259.9	9.8	9.7	9.6	9.5	9.41	10	18480.7	140	4.8	1223, 9
54	1.9	7.9	3.9	9.9	9.7	9.6	9.4	9.3	9.12	11	20328.7	150	6. 4	1480.9
55	1.9	7.8	3.8	9.8	9.6	9.4	9.2	9.0	8.83	12	22176.8	200	8.3	1762.4
56	181.8	207.8	233.8	259.8	519.5	779.3	1039.0	1298.8	1558.54					
57	1.8	7.8	3.7	9.7	9.4	9.1	8.8	8.5	8.25					
58	1.8	7.7	3.7	9.7	9.3	9.0	8.6	8.3	7.95					
59	1.7	7.7	3.6	9.6	9.2	8.8	8.4	8.0	7.66					
60	1.7	7.6	3.6	9.6	9.1	8.7	8.3	7.8	7.37					

TABLE VI.—Projection Tables-Continued.
Latitude $33^{\circ} 00^{\circ}$.

Min.	Length in metres of area of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	7'	8'	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
0	181.7	207.6	233.6	259.6	519.1	778.7	1038.3	1297.8	155\%. 37	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	. 1
1	1.7	7.6	3.6	9.5	9.0	8.5	8.1	7.6	7.08	2	61.6	2	. 0	. 5
2	1.6	7.6	3.5	9.5	8.9	8.4	7.9	7.3	6.78	3	92.4	3	. 0	1. 1
3	1.6	7.5	3.5	9.4	8.8	8.2	7.7	7.1	6.49	4	123.2	4	0	2.0
4	1.6	7.5	3.4	9.4	8.7	8.1	7.5	6.8	6. 19 5.90			5		3. 1
5	1.5	7.5	3.4	9.3	8.6	8.0	.7.3	6.6	5.9)	6	154.0 184.8	5 6	. 0	3. 4
6	181.5	207.4	233.3	259.3	518.5	777.8	1037.1	1296.3	1555.61	7	215.6	7	. 0	6.0
7	1.5	7.4	3.3	9.2	8.4	7.7	6.9	6.1	5.31	8	246.4	8	. 0	7.9
8	1.4	, 7.3	3.3	9.2	8.3	7.5	6.7	5.8	5.02	9	277.2	9	. 0	10.0
9	1.4	7.3	3.2	0.1	8.2	7.4	6.5	5.6	4.72					
10	1.3	7.3	3.2	0.1	8.1	7.2	6.3	5. 4	4.43	10	308.0 616.1	10	.0 .0	12.3 27.8
11	181.3	207. 2	233.1	259.0	518.0	777.1	1036.1	1295.1	1554.14	30	924.1	20	.0	49.3
12	1.3	7.2	3.1	9.0	7.9	6.9	5.9	4.9	3.84	40	1232.1	25	. 1	77.1
13	1.2	7.1	3.0	8.9	7.8	6.8	5.7	4.6	3.55	50	1540.2	30	. 1	111.0
14	1.2	7.1	3.0	8.9	7.7	6.6	5.5	4. 4	3.25					
15	1.2	7.1	2.9	8.8	7.7	6.5	5.3	4.1	2.96	$1_{2}^{\prime} 00$	1848.2 3696.4	35 40	.2	151.1
16	181.1	207.0	232.9	258.8	517.6	776.3	1035.1	1293.9	1552. 66	3	5544.6	45	.4	249.8
17	1.1	7.0	2.8	8.7	7.5	6.2	4.9	3.6	2.37	4	7392.8	50	. 6	318.4
18	1.1	6.9	2.8	8.7	7.4	6.0	4.7	3.4	2.07	5	9241.0	55	. 8	373.2
19	1.0	6.9	2.8	8.6	7.3	5.9	4.5	3.1	1.78	6	11089.3			
20	1.0	. 6.9	2.7	8.6	7.2	5.7	4.3	2.9	1.48	7	12937.5	1000 110	1.1	444.1 604.5
. 21	181.0	206.8	232.7	258.5	517.1	775.6	1034.1	1292.7	1551.19	8	14785.7	120	2.5	789.5
22	0.9	6.8	2.6	8.5	7.0	5.4	3.9	2.4	0.89	9	16633.9	130	3.6	999.3
23	0.9	6.7	2.6	8.4	6.9	5.3	3.7	2.2	0.60	10	18482.1	140	4.9	1233.7
24	0.9	6.7	2.5	8.4	6.8	5.1	3.5	1.9	0.30	11	20330.3	150	6.5	1492.8
25	0.8	6.7	2.5	8.3	6.7	5.0	3.3	1.7	0.01	12	$\underline{22178.6}$	2.00	8.5	1776.4
26	0.6	206.6	232.5	258, 3	516.6	774.9	1033.1	1291.4	1549.71					
97	0.8	6.6	2.4	8.2	6.5	4.7	2.9	1.2	9.41					
28	0.7	6.5	2.4	8.2	6.4	4. 6	2.7	0.9	9.12					
29	0.7	6.5	2.3	8.1	6.3	4.4	2.5	0.7	8.82					
30	0.7	6.5	2.3	8.1	6.2	4.3	2.3	0.4	8.52					

TABLE VI.-Projection Tables-Continued.
Latitude $33^{\circ} 30^{\circ}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7^{\prime \prime}$	$8^{\prime \prime}$	$9 \prime$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
30	180.7	206.5	232.3	258.1	516.2	774.3	1032.3	1290.4	1548.52	$1^{\prime \prime}$	30.8	1	-. 0	. 1
31	0.6	6.4	2.2	8.0	6.1	4.1	2.1	0.2	8.22	2	61.6	2	. 0	. 5
32	0.6	6.4	2.2	8.0	6.0	4.0	2.0	89.9	7.93	3	92.4	3	. 0	1. 1
33	0.6	6.4	2.1	7.9	5.9	3.8	1.8	9.7	7.63	4	123.8	4	. 0	2.0
34	0.5	6.3	2.1	7.9	5.8	3.7	1.6	9.5	7.34					
35	0.5	6.3	2.1	7.8	5.7	3.5	1.4	9.2	7.04	5	154.0 184.8	5	. 0	3.1 4.5
36	180.5	206.2	232.0	257.8	515.6	773.4	1031.2	1289.0	1546.74	7	215.6	7	. 0	6.1
37	0.4	6.2	2.0	7.7	5.5	3.2	1.0	8.7	6. 44	8	246.4	8	. 0	8.0
38	0.4	6.2	1.9	7.7	5.4	3.1	0.8	8.5	6.15	9	277.3	9	. 0	10.1
39	0.3	6.1	1.9	7.6	5.3	2.9	0.6	8.2	5.85					
40	0.3	6.1	1.8	7.6	5.3	2.8	0.4	80	5.55	10 20	308.1 616.1	10	. 0	12.4 2.0
41	180.3	206.0	231.8	257.5	515.1	772.6	1030.2	1287.7	1545.25	30	924.2	20	. 0	49.7
42	0.2	6.0	1.7	7.5	5.0	2.5	34.0	-7.5	4.95	40	1232.2	${ }^{25}$.1	77.7
43	0.2	6.0	1.7	7.4	4.9	2.3	29.8	7.2	4.66	50	1540.3	30	. 1	111.9
44	0.2	5.9	1.7	7.4	4.8	2.2	9.6	7.0	4.36					
45	0.1	5.9	1.6	7.3	4.7	2.0	9.4	6.7	4.06	$1^{1} 00$	1848.4 3696.7	35 40	$\stackrel{2}{.3}$	152.3 198.9
46	180.1	205.8	231.6	257.3	514.6	771.9	1029.2	1286.5	1543.76	3	5545.1	45	.5	251.5
47	0.1	5.8	1.5	7.2	4.5	1.7	9.0	6.2	3.46	4	7393.5	50	. 6	310.7
48	0.0	5.8	1.5	7.2	4.4	1.6	8.8	6.0	3.16	5	9241.8	55	. 8	376.0
49	0.0	5.7	1.4	7.1	4.3 4.2	1.4	8.6 8.4	5.7 5.5	2.86 2.56	6	11090.2			
50	0.0	5.7	1.4	7.1	4.2	1.3	8.4	5.5	2.56	7	12938.5	1000 10	1.1	447.5 609.1
51	179.9	205.6	231, 3	257.0	514.1	771.1	1028.2	1285.2	1542.26	8	14786.9	〕'20	2.6	795.6
52	9.9	5.6	1.3	7.0	4.0	1.0	8.0	5.0	1.96	9	16635.3	130	3.6	10066.3
53	9.4	5.6	1.3	6.9	3.9	0.8	7.8	4.7	1. 66	10	18483.6	140	5. 0	1243. 1
54	9.8	5.5	1.2	6.9	3.8	0.7	7.6	4.5	1.36 1.06	11	203332.0	$\begin{array}{ll}1 & 50 \\ 2 & 00\end{array}$	6.6 8.6	1504, 1
55	9.8	5.5	1.2	6.8	3.7	0.5	7.4	4.2	1.06	12	22180.4	200	8.6	1790.)
56	179.8	205.4	231.1	256.8	513.6	770.4	1027.2	1284. 0	1540.76					
57	9.7	5.4	1.1	6.7	3.5	0.2	7.0	3.7	0.46					
58	9.7	5.4	1.0	6.7	3.4	0.1	6.8	3.5	0.16					
59	9.6	5.3	1.0	6.6	3. 3	769.9	6. 6	3.2	39.86 1599.56					
60	9.6	5.3	0.9	6.6	3.2	9.8	6.4	3.0	1539.56					

TABLE VI.-Projection Tables-Continued.
Latitude $34^{\circ} 00^{\circ}$.

Min.	Length in metres of ares of the parallel, (arc par.)									Meridional arcs.		Co-ordinates of curvature.		
	7'	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	" 301	- $40{ }^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	\mathbf{Y}.
${ }^{\prime}$	179.6	205.3	230.9	256.6	513.2	769.8	1026.4	1283.0	1539.56	1 '	30.8	$1 '$	$-.0$	
1	9.6	5.2	0.9	6.5	3.1	9.6	-6.2	2.7	9.26	2	61.6	2	-. 0	.5
${ }^{2}$	9.5	5.2	0.8	6.5	3.0	9.5	6.0	2.5	8.96	3	92.4	3	.0	1.1
3	9.5	5.2	0.8	6.4	2.9	9.3	5.8	2.2	8.66	4	123.2	4	. 0	2.0
4	9.5	5.1	0.8	6.4	2.8	9.2	5.6	2.0	8.36					
5	9.4	5.1	0.7	6.3	2.7	9.0	5.4	1.7	8.06	5	154.0	5	. 0	3.1
6	179.4	205.0	230.7	256.3	512.6	768.9	1025. 2	1281.5		6 7	184.9 215.7	6	.0 .0	4. 5
7	9.4	5.0	0.6	6.2	2.5	8.7	5	121.5 +1.2	1537.76 7.45	7	215.7	7	. 0	6.1
8	9.3	5.0	0.6	6.2	2.4	8.6	5.0 4.8	1.2 1.0	7.45 7.15	8	246.5	8	. 0	8.0
9	9.3	4.9	0.5	6.1	2.3	8.4	4.6	1.0 -0.7	7.15	9	277.3	9	. 0	10.1
10	9.3	4.9	0.5	6.1	2.2	8.3	4.4	0.5	6.55	10	308. 1	10	. 0	12.5
11	179.2	214.8	230.4	256.0	512.1	768.1	1024. 2	1280.2	1536. 25	20	616.2	15	. 0	28.2
12	9.2	4.8	0.4	6.0	2.0	8.0	10.0	1280.2	1536. 25	30	924.3	20	. 0	50.1
13	9.2	4.8	0.4	5.9	1.9	8.0 7.8	4.0	79.7	5.95 5.64	40	1232.3	85	. 1	78.3
14	9.1	4.7	0.3	5.9	1.8	7.7	3.8	79.7 9.5	5. 54	50	1540.4	30	. 1	112.7
15	9.1	4.7	0.3	5.8	1.7	7.5	3.4	9.2	5.04	1'00	1848.5	35	2	153.4
16	179.1	204.6	230.2	255.8	511.6	767.4	1023.2	1279.0	1534.74	2 3	3697.0 5545.5	40	.3	900.4
17	9.0	4.6	0.2	5.7	1.5	7.2	103.2	12.0	1534. 74	3	5545.5	45	. 5	253.5
18	9.0	4.6	0.1	5.7	1.4	7.1	2.8	8.7	4.43 4.13	4	7394.0	50	. 6	313.0
19	8.9	4.5	0.1	5.6	1. 3	6.9	2.6	8.4	3.13	5	9242.6	55	. 8	378.8
20	8.9	4.5	0.0	5.6	1.2	6.8	2.3	7.9	$\stackrel{3}{3.53}$	6	11091. 1		1.1	450.8
21	178.9	204.4	230.0							7	12939.6	10	1.7	613.6
22	8.8	4.4	29.9	53.5	51.0	766.6	102. 1	1277.7	1533. 22	8	14788.1	120	2.6	801.4
23	8.8	4.3	9.9	5.0	1.0	6.5	1.9	7.4	2.92	9	16636.6	130	3.7	1014. ${ }^{2}$
84	8.8	4.3	9.8	5.4	0.8 *	6.3	1.7	7.2	2.61	10	18485.1	140	5.1	1252.2
25	8.7	4.3	9.8	5.3	0.7	6.0	1.5 1.3	6.9 6.7	2.31	11	- 20333.6	150	6.8	1515.
								6.7	2.00	12	22182. 1	200	8.8	1803.1
26	178.7	204.2	229.8	255.3	510.6	765.8	1021.1	1266.4	1531.70				*	
27	8.7	4.2	9.7	5.2	0.5	5.7	0.9	6.2	1.40					
28	8.6	4.1	9.7	5.2	0.4	5.5	0.7	5.9	1.09					
29	8.6	- 4.1	9.6	5.1	0.3	5.4	0.5	5.6	0.79					
30	8.6	4.1	9.6	5.1	0.2	5.9	0.3	5.4	0.48					

TABLE VI.—Projection Tables-Continued.
Latitcode $34^{\circ} 30^{\prime}$.

TABLE VI.-Projection Tables-Continued.

Min.	Length in metres of ares of the parallel, (arc par.)									Meridioual arces.		C0-ordinates of curvature.		
	$7 /$		$9^{\prime \prime}$		$20^{\prime \prime}$		$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of lougitude.	$\begin{gathered} \text { X. } \\ \text { Arc par. } \end{gathered}$	Y.
		$8^{\prime \prime}$		$10^{\prime \prime}$		$30^{\prime \prime}$								
0	177.5	202.8	228.2	283.5	507.1	760.6	1014.2	1267.7	1521.29	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	. 1
1	7.4	2.8	8.1	3.5	7.0	0.5	4.0	7.5	0.98	2	61.6	2	. 0	. 5
2	7.4	$\stackrel{2}{28}$	8.1	3.4	${ }_{6}^{6.9}$	0.3	3.8	7.2	0.67	3	92.4	3	. 0	1.1
3	7.4	2.7	8.1	3.4 3.3	6.8 -6.7	0.2 0.0	3.6 3.4	7.0	0.36 0.05	4	123.2	4	.0	2.0
4	7.3 7.3	2.7 2.6	8.0 8.0	3.3	6.7 6.6	10.0 59.9	3.4 3.2	6.7 6.4	0.05 19.74	5	154.1	5		3.2
										6	184.9	6	.0	4.6
6	177.3	202.6	227.9	253.2	506.5	759.7	1013.0	1266.2	1510.43	7	215.7	7	. 0	6.2
7	7.2	2.5	7.9	3.2	, 6.4	9.6	2.4	5.9	9.13	8	246.5	8	. 0	8.1
8	7.2	2.5	7.8	3.1	6.3	9.4	2.5	5.7	8.88	9	277.3	9	. 0	10.3
9	7.2	2.5	7.8	3.1	6.2	9.3	2.3	5.4	8.51					
10	7.1	2.4	7.7	3.0	6.1	-9.1	2.1	5.2	8. 20	10	308.1	10	. 0	12.7
										20	616.2	15	. 0	28.6
11	177.1	202.4	227.7	253.0	506.0	758.9	1011.9	1264, 9	1517.89	30	924.4	20	. 0	50.8
12	7.1	-2.3	7.6	2.9	5.9	8.8	1.7	4.6	7.58	40	1232.5	25	. 1	79.3
13	7.0	- 2.3	7.6	2.9	5.8	8.6	1.5	4.4	7.27	50	1540.6	30	. 1	114.2
14	7.0	2.3	7.5	2.8	5.6	8.5	1.3	4.1	6.96					
15	6.9	2.2	7.5	2.8	5.5	8.3	1.1	3.9	6.6.5	$1^{\prime} 00$	1848.8	35	. 2	155. 5
16	176.9	202.2	2275	252.7	505.4	758.2	10109				3697.6	40	. 3	203.0
17	6.9	2.1	7.4	2.7	5.3	88.0	0.7	12.6	6 6. 03	3	5346.4	45	$\cdot 5$	257.0
18	6.8	2.1	7.4	2.6	5.2	7.9	0.5	3.1	5.71	5	${ }_{9244.0}$	55	.7	383.9
19	6.8	2.1	7.3	2.6	5.1	7.7	0.3	2.8	5. 40	6	11092.9			
20	6.8	2.0	7.3	2.5	5.0	7.5	0.1	2.6	5.09			1000	1.1	456.9
										7	12941.7		1.8	$6: 1.9$
21	176.7	202.0	227.2	252.5	504.9	757.4	1009.9	1262.3	1514.78	8	14790.5	120	2.7	812.2
2.	6.7	19	7.2	2. 4	4.8	7.2	9.6	2.1	4.47	9	16639.3		3.9	1028.0
23	6.7	1.9	${ }^{1} 7.1$	-2. 4	4.7	7.1	9.4	1.8	4. 76	10	. 18488.2	140	5.3	1269.1
24	6.6	1.8	7.1	2.3	4.6	6.9	9.2	1.5	3.85	11	20337.0	150	7.0	1535.6
25	6.6	1.8	2.0	2.3	4.5	6.8	9.0	1.3	3.54	12	2:188. 8	200	9.1	1827.5
26	176.5	201.8	227.0	252.2	504.4	756.6	1008.8	1261.0	1513.22					
27	6.5	1.7	6.9	2.2	4.3	6.5	8.6	0.8	2.91					
88	6.5	1.7	6.9	2.1	4.2	6.3	8.4	0.5	2.60					
99	6.4	1.6	6.8	2.0	4.1	6.1	8.2	0.2	2.29					
30	6.4	1.6	6.8	2.0	4.0	6.0	8.0	0.0	1.98					

TABLE YI.-Projection Tables-Continued.
Latitude $35^{\circ} 30$.

Length in metres of arcs of the parallel, (are par.)										Meridioual arcs.		Co-ordinates of curvature.		
Min.	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	9'/	'10'/	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	\mathbf{Y}.
30	176. 4	201.6	226.8	252.0	504.0	756, 0	1008.0	1260.0	1511.98	$1^{\prime \prime}$	30.8	1^{\prime}	-. 0	. 1
31	6.4	1.6	6.7	1.9	39	5.8	7.8	59.7	1.66	2	61.6	2	. 0	1.1
32	6.3	1.5	6.7	1.9	3.8	5.7	7.6	9.5	1.35	3	92.4	3	. 0	9.0
33	6.3	1.5	6.7	1.8	3.7	5.5	7.4	9.2	1.04	4	123.3	4	. 0	2.0
34	6.3	1.4	6.6	1.8	3.6	5.4	7.2	8.9	0.73	5		5	0	3.2
36	6.2	1.4	6.6	1.7	3.5	5.2	6.9	8.7	0.41	5 6	184.1	6	.0	4.6
36	176. 2	201.3	220.5	251.7	503.4	755.0	1006.7	1258.4	1510. 10	7	215.7	7	. 0	6.3
37	6.1	1.3	6.5	1.6	3.3	4.9	6.5	8.2	1509.79	8	246.5	8	. 0	8.2 10.3
38	6.1	1.3	6.4	1.6	3.2	4.7	6.3	7.9	9.47	9	277.3	9	. 0	
39	6.1	1.2	6.4	1.5	3.0	4. 6	6.1	7.6	9.16					12.8
40	6.0	1.2	6.3	1.5	2.9	4.4	5.9	7.4	8.85	10 20	308.2 616.3	10	.0 .0	28.7
41	176.0	201.1	226.3	251.4	502.8	754.3	1005.7	1257.1	1508.53	30	924.5	20	. 0	51.1
42	6.0	1.1	6.2	1.4	2.7	4.1	5.5	6.9	8.22	40	1232.6	${ }^{2} 5$.1	79.8
43	5.9	1.1	6.2	1.3	2.6	4. 0	5.3	6.6	7.91	50	1540.8	3	.	
44	5.9	1.0	6.1	1.3	2.5	3.8	5.1	6. 3	7.59 7.28	1×00	1849.0	35	. 2	156.4
45	5.8	1.0	6.1	1.2	2.4	3.6	4.8	6.1	7.28	2	3697.9	40	. 3	204.3
46	175, 8	200.9	226.0	251.2	502.3	753.5	1004.6	1255. 8	1506.96	3	5546.9	45	.5	258.6
47	5.8	0.9	6.0	-1.1	2.2	3.3	4.4	5.5	6.65	4	7395.9	50	. 7	386.3
48	6.7	0.8	5.9	1.1	2.1	3. 2	4.2	5. 3	6.33	5	9244.8	55	. 9	300.3
49	5.7	0.8	5.9	1.0	2.0	- 3.0	4.0	5. 0	6. 12	6	11093.8	1000	1.2	459.7
50	5.7	0.8	5.9	1.0	1.9	2.9	3.8	4.8	5.71	7	12942.8	110	1.8	625.7
51	175.6	200.7	225.8	250.9	501.8	752.7	1003.6	1254.5	1505.39	8	14791.7	$\begin{array}{ll}1 & 20 \\ 1 & 30\end{array}$	2.8	817.3 1084.4
52	5.6	0.7	5.8	0.8	1.7	2.5	3.4	4.2	5.08	9	16640.7		5.4	1277.0
53	5.6	0.6	5.7	0.8	1.6	2.4	3.2	4.0	4.76	10	18489.7	150	7.2	1545.2
54	5.5	0.6	5.7	0.7	1.5	2.2	3.0	3. 7	4.44	11	21838.6 82187.6	100 2	9.3	1838.8
55	5.5	0.6	5.6	0.7	1.4	2.1	2.8	3.4	4.13	12	2287.6	20	9.3	
56	175. 4	200.5	225.6	250.6	501.3	751.9	1002.5	1253.2	1503.81					
57	5. 4	0.5	5.5	0.6	1.2	1.7	2.3	2.9	3.50					
58	5.4	0.4	5.5	0.5	1.1	. 1.6	2.1	2.6	3.18					
59	5.3	0.4	5.4	0.5	1.0	1.4	1.9	2.4	2.86					
60	5.3	0.3	5.4	0.4	0.8	1.3	1.7	2.1	2.55					

TABLE VI.-Projection Tables-Continued.
Latifude $36^{\circ} 00^{\circ}$.

Min.	Length in metres of ares of the parallel, (are par.)									Meridional ares.		Co-ordinates of curtature.		
	$7 /$	$8^{\prime \prime}$	$9 \prime \prime$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
0	175.3	200.3	225.4	250.4	500.8	751.3	1001.7	1252.1	1502.55	$]^{\prime \prime}$	30.8	$1 '$	-. 0	. 1
1	5.3	0.3	5.3	0.4	0.7	1.1	1.5	1.9	2.23	2	61.6	2	.0	.5
2	5.2	0.3	5.3	0.3	0.6	1.0	1.3	1.6	1.92	3	92.5	3	. 0	1.2
3	5.2	0.2	5.2	0.3	0.5	0.8	1.1	1.3	1.60	4	123.3	4	. 0	2.1
4	5.1	0.2	5.2	0.2	0.4	0.6	0.8	1.1	1. 28					
5	5.1	0.1	5.1	0.2	0.3	0.5	0.6	0.8	0.97	5	154.1	5	. 0	3.2
										${ }_{7}$	184.9	6	. 0	4.6
6	175.1	200.1	225.1	250.1	500.2	750.3	1000.4	1250. 5	1500.65	7	215.7	7	. 0	6.3
7	5.0	0.0	5.1	0.1	0.1	0.2	0.2	0.3	0.33	8	246.5	8	. 0	8.2
8	5.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.02	9	277.3	9	.0	10.4
9	5.0	0.0	5.0	249.9	499.9	49.8	999.8	49.8	1499.70					
10	4.9	199.9	4.9	9.9	9.8	9.7	9.6	9.5	9.38	10 20	308.2 616.4	10	. 0	12.8 28.9
11	174.9	199.9	224.9	249.8	499.7	749.5	999.4	1249.2	1499.06	30	924.6	20	.0	51.4
12	4.9	9.8	4.8	9.8	9.6	9.4	9.2	9.0	8.75	40	1232.7	25	. 1	80.3
13	4.8	9.8	4.8	9.7	9.5	9.2	9.0	8.7	8.43	50	1540.9	30	.1	115. 6
14	4.8	9.7	4.7	9.7	9.4	9.1	8.7	8.4	8. 11					
15	4.7	9.7	4.7	9.6	9.3	8.9	8.5	8.1	7.79	100	1849.1	35	. 2	157. 4
										2	3698.2	40	. 4	205.5
16	174.7	199.7	224.6	249.6	499.2	748.7	998.3	1247.9	1497.47	3	5547.4	45	. 5	266. 1
17	4.7	9.6	4.6	9.5	9.1	8.6	8.1	7.6	7.16	4	7396.5	50	. 7	321.1
18	4.6	9.6	4.5	9.5	8.9	8.4	7.9	7.4	6.84	5	9245. 6	55	.9	388.6
19	4.6	9.5	4.5	- 9.4	8.8	8.3	7.7	7.1	6.52	6	11094.7			
20	4.6	9.5	4.4	9.4	8.7	8.1	7.5	6.9	6.20			$1{ }^{\circ} 00$	1.2	462.4
21	174.5	199.5	224.4	249.3	498.6	747.9	997.3	1246.6	1495.88	7	12943.8 14792.9	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	1.9 2.8	629.4 822.1
22	17.5	19.5 9.4	224.4 4.3	29.3 9.3	8.5	7.8	7.0	6.3	145.88 5.56	9	16642.0	130	4.0	1040. 4
23	4.4	9.4	4.3	9.2	8.4	7.6	6.8	6.0	5.24	10	18491.2	140	5.5	1284.5
24	4.4	9.3	4.2	9.2	8.3	7.5	6.6	5.8	4.92	11	80340.3	150	7.3	1554.3
25	4.4	9.3	4.2	9.1	8.2	7.3	6.4	5.5	4.61	12	29189.4	200	9.5	1849.7
26	174.3	199.2	224.1	249.0	498.1	747.1	996.2	1245.2	1494. 29					
27	4.3	9.2	4.1	9.0	8.0	7.0	6.0	5.0	3.97			*		
28	- 4.3	9.2	4.0	8.9	7.9	6.8	5. 8	4.7	3.65					*
29	4.2	9.1	4.0	8.9	7.8	6.7	5.5	4.4	3.33					
30	4.2	9.1	4.0	8.8	7.7	6.5	5.3	4.2	3.01					

TABLE VI-Projection Tables-Continued.
Latitude $36^{\circ} 30^{\circ}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional ares.		Co-ordinates of curvature.		
	$7 / 1$	8%	$9 / 1$	$10^{\prime \prime}$. $20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X . Are par.	Y.
0	173.1	197.8	222.5	247.2	- 494.5	741.7	988.9	1230. 1	1483.35	1"	30.8	1 '	-. 0	1
1	3.0	7.7	2.5	7.2	4.3	1.5	8.7	5.9	3.03	2	61.6	2	. 0	. 5
2	3.0	7.7	2.4	7.1	4.2	1.3	8.5	5.6	2.70	3	92.5	3	.0	1.2
3	3.0	7.7	2.4	7.1	4.1	1.2	8.3	5.3	2.38	4	123. 3	4	. 0	2.1
4	2.9	7.6	2.3	7.0	4.0	1.0	8.0	5.0	2.05					
5	2.9	7.6	9.3	7.0	3.9	0.9	7.8	4.8	1.73	5	154, 1	5	. 0	3.2
										6	184.9	6	. 0	4.7
6	172.8	197.5	222.2	246.9	493.8	740.7	987.6	1234.5	1481.41	7	215.7	7	. 0	6.4
7	2.8	7.5	2.2	6.8	3.7	0.5	7.4	4.2	1.08	8	246.5	8	. 0	8.3
8	2.8	7.4	2.1	6.8	3.6	0.4	7.2	4.0	0.76	9	277.3	9	. 0	10.5
9	2.7	7.4	2.1	6.7	3.5	0.2	7.0	3.7	0.43					
10	2.7	7.3	2.0	6.7	3.4	0.1	6.7	3.4	0.11	10	308.2	10	. 0	13.0
										29	616.4	15	. 0	29.2
11	172.6	197.3	222.0	246.6	493.3	739.9	986.5	1235.2	1479.78	30	924,7	20	. 0	51.9
12	2.6	7.3 '	1.9	6.6	3.2	9.7	6.3	2.9	9.46	40	1232.9	25	. 1	81.1
13	2.6	7.2	1.9	6.5	3.0	9.6	6.1	2.6	9.13	50	1541.2	30	. 2	116.8
14	2.5	7.2	1.8	6.5	2.9	9.4	5.9	2.3	8.81					
15	2.5	7.1	1.8	6.4	2.8	9.2	5.7	2.1	8.48	$1^{\prime} 00$	1849.4	35	. 2	159.1
										2	3603.8	40	.4	207.7
16	172.5	197.1	221.7	216.4	492.7	739.1	985.4	1231.8	1478.15	3	5548.2	45	.5	262.9
17	2.4	7.0	1.7	6.3	- 2.6	8.9	5.2	1.5	7.83	4	7397.6	50	. 7	324.6
18	2.4	7.0	1.6	6.2	2.5	8.7	5.0	1.2	7.50	5	9247. 1	55	. 9	392.8
19	2.3	6.9	1.6	6.2	2.4	$8.6{ }^{\text {e }}$	4.8	1.0	7.18	6	11096.6			
\$0	2.3	6.9	1.5	6.1	2.3	8.4	4.6	0.7	6.85			1000	1.2	467.4
										7	12946.0	110	1.9	636.2
81	172.3	19049	221.5.	246.1	492.2	738.3	984.4	1230.4	1476.52	8	14795.4	120	2.9	831.0
22	2.2	6.8	1.4	6.0	2.1	- 8.1	4.1	0.2	6.20	9	16644.8	130	4. 1	1051.8
23	2.2	6.8	1.4	6.0	2.0	- 7.9	3.9	29.9	5.87	10	18494.3	140	5.7	1298.4
24	2.1	6.7	1.3	5.9	$1.8{ }^{\text {² }}$	7.8	3.7	9.6	5.54	11	20343.7	150	7.6	1571.0
25	2.1.	6.7	1.3	5.9	1.7	7.6	3.5	9.4	5.22	12	2 P 193.2	200	9.8	1869.7
96	172.1	196.7	221.2	245.8	491.6	737.4	983.3	1229.1	1474.89					
27	2.0	¢ 6.6	${ }^{1} 1.2$	5.8	1.5	7.3	3.0	8.8	4.56					
88	2.0	6.6	1.1	5.7	1.4	7.1	2.8	8.5	4.94					-
29	2.0	6.5	1.1	5.7	1.3	7.0	2.6	8.3	3.91					-
30	171.9	6.5	1.0	5.6	1.2	6.8	2.4	8.0	- 3.58					

TABLE VL-Projection Tables-Continued.
Latritods 37030 .

Min.	Length in metres of ares of the parallel, (are par.)									Meridional arce.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
30^{\prime}	171.9	196.5	221.0	245.6	491.2	736.8	982.4	1228.0	1473.58	$1^{\prime \prime}$	30.8	1^{\prime}	-. 0	. 1
31	1.9	6.4	1.0	5.5	1.1	6.6	2.2	7.7	3.25	2	61.7	2	. 0	. 5
32	1.8	6.4	0.9	5.5	1.0	6.5	2.0	7.4	2.93	3	92.5	3	. 0	1.2
33	1.8	6.3	0.9	5.4	0.9	6.3	1.7	7.2	2, 60	4	123.3	4	. 0	2.1
34	1.8	6.3	0.8	5.4	0.8	6.1	1.5	6.9	2.27					
35	1.7	6.3	0.8	5.3	0.6	6.0	1.3	6.6	1.94	5 6	154.1 185.0	5	. 0	3.3 4.7
36	171.7	196.2	220.7	245.3	490.5	735.8	081.1	1226. 3	1471.61	7	215.8	7	. 0	6.4
37	1.6	6.2	0.7	5.2	0.4	5.6	0.9	6.1	1.29	8	246.6	8	. 0	8.4
38	1.6	6.1	0.6	5.2	0.3	5.5	0.6	5.8	0.96	9	277.4	9	. 0	10.6
39	1.6	6.1	0.6	5.1	0.2	5.3	0.4	5.5	- 0.63					
40	1.5	6.0	0.5	5.0	0.1	5.1	0.2	5.3	0.30	10 20	308.3 616.5	10	. 0	13.0 29.4
41	171.5	196.0	220.5	245.0	490.0	735.0	980.0	1285. 0	1469.97	30	924.8	20	. 0	52.2
42	1.5	6.0	0.4	4.9	89.9	4.8	79.8	4.7	9.64	40	1233.1	25	.1	81.5
43	1.4	5.9	0.4	4.9	9.8	4. 6	9.5	- 4.4	9.31	50	1541.3	30	. 2	117.4
44	1.4	5.9	0.3	4.8	9.7	4.5	9.3	4.2	8.98					
45	1.8	5.8	0.3	4.8	9.5	4.3	9.1	3.9	8.65		1849.6 3699.2	35 40	. 2	159.8 208.8
46	171.3	195.8	220.2	244.7	489.4	734.2	978.9	1223.6	1468.32	3	5548.8	45	.5	264. 2
47	1.3	5.7	0.2	4.7	9.3	4. 0	8.7	3.3	8.00	4	7398.4	50	. 7	326.2
48	1.2	5.7	0.1	4.6	9.2	3.8	8.4	3.1	7.67	5	9247.9	55	1.0	394.7
49	1.2	5.6	0.1	4.6	9.1	3. 7	8.2	2.8	7.31 7.01	6	11097.5			
50	1.2	5.6	0.1	4.5	9.0	3.5	8.0	2.5	7.01	7	12947.1	110	1.2 2.0	639.3 8.3
51	171.1	195.6	220.0	244.4	488.9	733.3	977.8	1222. 2	1466.68	8	14796.7	120	3.0	835.0
52	1.1	5.5	0.0	4.4	8.8	3.2	7.6	2.0	6.34	9	16040.3	130	4.2	1057.2
53	1.0	$5.5 *$	219.9	4.3	8.7	-3.0	7.3	1.7	6.91	10	18495.9	140	5.8	1304.7
54	1.0	5.4	9.9	4.3	8.6	2.8	7.1	1.4	5.68	11	20345.5	150	7.7	1578.7
55	1.0	5.4	9.8	4.2	8.5	2.7	6.9	1.1	5. 35	12	22195.0	200	10.0	1878.8
56	170.9	195.3	219.8	244.2	488.3	732.5	976.7	1220.9	1405.02					
57	0.9	5.3	9.7	4.1	8.2	2.3	6.5	0.6	4.69					
58	0.8	5.2	9.7	4.1	8.1	2.2	6.2	0.3	4.36					
59	0.8	5.2	9.6 9.6	4.0 4.0	8.0 7.9	2.0 1.8	6.0. 6.8	0.0 1219.7	4.03 3.70					
60	0.8	5.2	9.6	4.0	7.9	1.8	6. 8	1219.7	3.70					

TABLE VL—Projection Tables-Continued.
Latitude $38^{\circ} 00^{\circ}$.

TABLE VL-Projection Tables-Continued.
Latitidee $38^{\circ} 30^{\prime}$

$\stackrel{*}{\stackrel{*}{\oplus}}$

TABLE VL—Projection Tables-Continued.
Latitume $39000^{\prime \prime}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional ares.		Co-ordinates of curvaturo.		
	$7^{\prime \prime}$	$8{ }^{\prime \prime}$	$9{ }^{\prime \prime}$	$10^{\prime \prime}$	204	30"	* 40"	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par	Y.
$\boldsymbol{\theta}$	168.4	192.5	216.5	240.6	481.2	721.8	962.4	1203.0	1443.60	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	. 1
1	8. 4	2.4	6.5	0.5	. 1.1	1.6	2.2	2.7	3.26	2	61.7	2	. 0	. 5
2	8.3	2.4	6.4	0.5	- 1.0	1.5	2.0	2.4	2.92	3	92.5	3	. 0	1.2
3	8.3	2.3	6.4	0.4	0.9	1.3	1.7	2.1	2.58	4	123.3	4.	. 0	2.1
4	8.3	2.3	6.3	0.4	0.7	1.1	- 1.5	1.9	2.24					
5	8.2	2.3	6.3	0.3	0.6	1.0	* 1.3	1.6	1.91	5 6	154.2 185.0	5	. 0	3.3 4.8
6	* 168.2	192.2	216. 2	240.3	480.5	720.8	961.1	1201.3	1441.57	6	185.9 215.8	6 7	. 0	4.8
7	8.1	2.2	6.2	0.2	0.4	0.6	0.8	1.0	1.23	8	246.7	8	\%	8.5
8	8.1	2.1	6 ± 1	0.1	0.3	0.4	0.6	0.7	0.89	9	277.5	9	. 0	10.7
9	8.1	2.1	6.1	0.1	0.2	0.3	0.4	0.5	0.55					
10	8.0	2.0	6.0	0.0	0.1	0.1	0.1	0.2	0.21	10	308.3	10	. 0	13.2
										20	616.7	15	. 0	29.7
11	168.0	192.0	216.0	240.0	480.0	719.9	959.9	1199.9	1439.87	30	925.0	20	. 0	52.9
12	7.9	1.9	5.9	239.9	479.8	9.8	9.7	9.6	9.53	40	1233. 4	25	. 1	82.6
13	7.9	1.9	5.9	9.9	9.7	9.6	9.5	9.3	9.19	50	1541.7	30	. 2	118.9
14	7.9	1.8	5.8	9.8	9.6	9.4	9.2	9.0	8.85					
15	7.8	1.8	5.8	9.8	9.5	9.3	9.0	8.8	8.51	$1^{\prime} 00$	1850.1	35	. 3	161.9
16	167.8	191.8		239.7	479.4		958.8			2 3 3	3700.1 5550.2	40	.4	21.4
17	7.7	1.7	21.5 .7	239.6	9.9	719.1 8.9	908.8 8.5	1198.5 8.2	14.8 .17 7.82	4	7400.2	45	. 6	267.6 330.3
18	7.7	1.7	5.6	9.6	9.2	8.7	8.3	7.9	7.48	5	9250.3	. 55	1.0	399.7
19	7.7	1.6	5.6	9.5	9.0	8.6	8.1	7.6	7.14	6	11100.4			
20	7.6	1.6	5.5	9.5	8.9	8.4	7.9	7.3	6.80			1000	1.3	475.7
										7	12950.4	110	2.1	647.5
21	167.6	191.5	215.5	239.4	478.8	718.2	957.6	1197.0	1436.46	8	14800.5	120	3.1	845.6
28	7.5	1.5	5.4	9.3	8.7	8.1	7.4	6.8	6.12	9	16650.5	130	4.4	1070.3
23	7.5	1.4	5.4	9.3	8.6	7.9	7.2	6.5	. 5.78	10	18500.6	140	6.1	1521.3
24	7.5	1.4	5.3	9.2	8.5	7.7	7.0	6.2	$5.44{ }^{\text {i }}$	11	20350.7	150	8.1	1598.9
25	7.4	1.3	5.3	9.2	8.4	7.5	6.7	5.9	5.10	12	22000.7	200	10.4	1902.7
26	167.4	191.3	215.2	239.1	478.2	717.4	956.5	1195.6	143475				-	
27	7.3	1.3	5.2	9.1	8.1	7.2	6.3	5.3	4.41		.		,	
28	7.3	1.2	5.1	9.0	8.0	7.0	6.1	6.1	4.07					
29	7.3	1.2	5.1	9.0 .	7.9	6.9	5.8	4.8	3.73					
30	7.2	1.1	5.0	8.9	7.8	6.7	5.6	. 4.5	3.38					,

TABLE VI.-Projection Tables-Continued.
Latitude $39^{\circ} 30^{\prime}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional ares.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	8'	$9{ }^{\prime \prime}$	- $10^{\prime \prime}$	$20^{\prime \prime}$	30"	$40^{\prime \prime}$	$50^{\prime \prime}$	60%			Minutes of longitude.	X. Are par.	Y.
30^{\prime}	167.2	191.1	215.0	238.9	477.8	716.7	955.6	1194.5	1433. 38	$1^{\prime \prime}$	30.8	$1 '$	-. 0	. 1
31	7.2	1.1	5.0	8.9	7.7	6.5	5.4	4.2	3.04	2	61.7	2	. 0	. 5
32	7.1	1.0	4.9	8.8	7.6	6.3	5.1	-3.9	2.70	3	92.5	3	. 0	1.2
33	7.1	1.0	4.9	8.7	7.5	6.2	4.9	3.6	2.36	4	123.3	4	. 0	2.1
34	7.1	0.9	4.8	8.7	7.3	6.0	4.7	3.3	2.00					
35	7.0	0.9	4.8	8.6	7.2	5.8	4.4	3.1	1.67	5	154.2 185.0	5	. 0	3.3 4.8
36	167.0	190.8	214.7	238.6	477.1	715.7	954.2.	1192.8	1431.33	7	215.9	7	.0	6.5
37	6.9	0.8	4.6	8.5	7.0	5.5	4.0	2.5	0.99	8	246.7	8	. 0	8.5
38	6.9	0.8	4.6	8.4	6.9	5.3	3.8	2.2	0.64	9	277.5	9	. 0	10.7
39	6.9	0.7	4.5	8.4	6.8	5. 1	3.5	1.9	0. 30					
40	6.8	0.7	4.5	8.3	6.6	5. 0	3.3	1.6	29.96	10 20	308.4 616.7	10 15	. 0	13.3 89.8
41	166.8	190.6	214.4	238.3	476.5	714.8	953.1	1191.3	1429. 61	30	925.1	20	. 0	53.0
48	6.7	0.6	4:4	8.2	6.4	4. 6	2.9	1.1	9.27	40.	1233.5	25	. 1	82.9
43	6.7	0.5	4.3	8.2	6.3	4.5	2.6	0.8	8.92	50	1541.8	30	. 2	119.3
44	6.7	0.5	4.3	8.1	6.2	4.3	2.4	0.5	8.58					
45	6.6	0.4	4.2	8.0	6.1	4.1	2.2	0.2	8. 24	$\begin{array}{ll}\mathbf{1}^{\prime} & 00 \\ 2\end{array}$	1850.2 3700.4	35 40	.3 .4	162.4 212.2
46	166.6	190.4	214.2	238.0	476.0	713.9	951.9	1180.9	1427.89	3	5550.7	45	.6	268.5
47	6.5	0.3	4.1	7.9	5.8	3.8	1.7	9.6	7.55	4	7400.9	50	. 8	331.5
48	6.5	0.3	4.1	7.9	- 5.7	3.6	1.5	9.3	7.20	5	9251.1	55	1.0	401.1
49	6.5	0.2	4.0	7.8	* 5.6	3.4	1.2	9.0	6. 86	6	11101.3			
60	6.4	0.2	4.0	7.8	5.5	3.3	1.0	8.8	6.51			$1{ }^{\circ} 00$	1.3	477.4
51	166.4	190, 2	213.9	237.7	475. 4	713.1	950.8	1188.5	1426. 17	7	12951.5 14801.7	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	2. 3 3.1	649.8 848.7
52	16.3	0.1	3.9	7.6	5.3	2.9	0.6	8.2	5.82	9	16652.0	130	4.5	1074.2
53	6.3	0.1	3.8	7.6	5.2	2.7	0.3	7.9	5.48	10	18502.2	140	6.1	1326. 1
54	6.3	0.0	3.8	7.5	5.0	2.6	0.1	7.6	5. 13	11	20352.4	150	8.2	1604.6
55	6.2	0.0	3.7	7.5	4.9	2.4	949.9	.7.3	4.79	12	22202.6	200	10.6	1909.6
56	166.9	189.9	213.7	237.4	474.8	712.2	949.6	1187.0	1424, 44					
57	6.1	9.9	3.6	7.4	4.7	2.0	9.4	6.7	4. 10					
58	6.1	9.8	3.6	7.3	4.6	1.9	9.2	6.5	3.75					
59.	6.1	9.8	3.5	7.2	4.5	1.7	8.9	6.2	3.41	-				
60	6.0	9.7	3. 5	7.2	4. 4	1.5	8.7	5.9	3.06					

TABLE VI.-Projection Tables-Continued.
Latitude $40^{\circ} 00^{\prime}$.

Min.	Length in metres of ares of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	$7 \prime$	$B^{\prime \prime}$	97	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$. 40 "	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	Y.
0	166.0	189.7	213.5	237.2	474.4	711.5	948.7	1185.9	1423.06	$1{ }^{\prime \prime}$	30.8	1^{\prime}	-. 0	
1	6.0	9.7	3.4	7.1	4.2	1.4	8.5	5.6	2.71	2	61.7	2	-. 0	$\cdot 5$
2	5.9	9.6	3.4	7.1	-4.1	1.2	8.3	5.3	2.37	3	92.5	3	. 0	1. 2
3	5.9	9.6	3.3	7.0	4.0	1.0	8.0	5.0	2.02	4	123.4	4	.0	1.2
4	5.9	9.6	3.3	6.9	3.9	0.8	7.8	4.7	1. 68				.	2.1.
5	5.8	9.5	3.2	6.9	3, 8	0.7	7.6	4.4	1.33	5	154.2	5	. 0	3.3
6	165.8	189.5	213.1	236.8	473.7					6	185.0	6	.0	4.8
7	16.8	18.5 9.4	213.1 3.1	26.8 6.8	473.7 3.5	70.5 0.3	947.3 7.1	1184.1 3.9	1420.98 0.64	7	215.9	7	. 0	6.5
8	5.7	9.4	3.0	6.7	3.4	-0.1	6.9	3.6	0.29	8	246.7	8	.0	8.5
9	5.7	9.3	3.6	6.7	3.3	0.0	6. 6	3. 3	19.94	9	277.6	9	. 0	10.8
10	5.6	9.3	2.9	6.6	3.2	709.8	6.4	3.0	19.60	10	308.4	10	. 0	13.3
										20	616.8	15	.0	29.9
12	105.6 5.5	189.2 9.2	$\begin{array}{r}212.9 \\ 2.8 \\ \hline\end{array}$	236.5 6.5	473.1 3.0	709.6 9.4	946.2 5.9	1182.7 2,4	1419.25 8.90	30	- 925.2	$\stackrel{20}{ }{ }^{*}$. 0	53.2
13	5.5	9.1	2.8	6.4	2.8	9.3	5.7	2.1	8.55 8.55	50	1233.6 1542.0	25	.	83.2
14	5.5	9.1	2.7	6.4	2.7	9.1	5.5	1.8	8.80	50	1542.0	30	. 2	119.7
15	5.4	9.0	2.7	6.3	2.6	8.9	5.2	1.5	7.86	1'00	1850.4	35	. 3	163. 0
16	165.4	189.0	212.6	${ }^{1} 236.2$	472.5	708.8	945.0			2	3700.8	40	.4	212.9
17	5.3	9.0	21.6	6.2	4.3	\%8	945, 8	1181, 3	1417.51	3	5551.1	45	. 6	269.4
18	5.3	8.9	2.6	6.2	2.4	8.6	4.8	1.0	7. 16	4	7401.5	50	. 8	332.6
19	5.3	8.9	2.5	0.1	9	8.4	4.5	0.7	6. 81	5	9251.9	55	1.0	402.5
20	-5.2	8.8	2.4	6.0	2.	8.2	4. 3	0.4	6.46	6	11102.3			
					2.0	8.1	4.1	0.1	6.12			1000	1.3	479.0
21	165.2	188.8	212.4	236.0	471.9	707.9		1179.8		8	12952.6	110	2, 1	651.9
22	5. 1	8.7	2.3	5.9	1.8	7.7	94.8 3.6	1179.8 9.5	1415,77 5.42	8	14803.0	120	3,2	651.5
23	5.1	8.7	2.3	5.8	1.7								4.5	1077.7
24	5.1	8.6	8.9	5.8	1. 6	7	3.	8.8	5.1	11	18503	140	6.2	1330.5
25	5.0	8.6	2.2	5.7	1.5	7.2	$\gamma \quad 2.9$	8.6	4.37	12	22204.5	150 200	8.3 10.7	1609.8
26	165.0	188.5	213.1	235.7	471.3	707.0	942.7	1178. 4	1414.02					
57	4.9	8.5	2.1	5.6	1.2	6.8	2.4	8.1	3.67					
88	4.9	8.4	2.0	5.6	1.1	6.7	2.2	7.8	3.32					
69	4.8	8.4	1.9	5.5	1.0	6.5	2.0	7.5	2.98		.			
30	4.8	8.3	1,9	5.4	0.8	6.3	1.8	7.2	2. 63					

TABLE V1.-Projection Tables-Continued.
$L_{\text {atitude }} 40^{\circ} 30^{\circ}$.

Min.	Length in metres of arcs of the parallel, (are par.)									Meridional arcs,		Co-ordinatea of currature.		
	$7^{\prime \prime}$	$8^{\prime \prime}$	9	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$. $50{ }^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	\mathbf{X}. Arc par.	Y.
30^{\prime}	164.8	188. 3	211.9	235.4	470.8	706.3	941.8	1177:2	1412.63	$1{ }^{\prime \prime}$	30.8	1^{\prime}	-. 0	. 1
31	4.8	8.3	1.8	5.4	0.7	6.1	1.5	6.9	12. 28	2	61.7	2	. 0	. 5
32	4.7	8.3	1.8	5.3	0.6	6.0	1.3	6. 6	11.93	3	92.5	3	. 0	1.2
33	4.7	8.2	1.7	5.3	0.5	5.8	1.1	6.3	11.58	4	123. 4	4	. 0	2.1
34	4.6	-8.2	1.7	5.2	0.4	5.6	0.8	6.0	11.23					
35	4.6	8.1	1.6	5.1	0.3	5.4	0.6	5.7	10.88	5 6	154.2	5	. 0	3.3 4.8
36	164.6	188.1	211.6	235.1	470.2	705.3	940.4	1175.4	1410.53	7	215.9	7	. 0	6.5
37	4.5	8.0	1.5	- 5.0	0.1	5.1	0.1	5.1	10. 18	8	246.7	8	. 0	8.5
38	4.5	8.0	1.5	5.0	469.9	4.9	39.9	4.9	09.83	9	277.6	9	. 0	10.8
39	4.4	7.9	1.4	4.9	9.8	4.7	9.7	4.6	09.48					
40	4.4	7.9	1.4	4.8	9.7	4.6	9.4	4.3	09.12	10		10	. 0	13.3
41	164.4	187.8	211.3	234.8	469.6	704.4	939.2	1174.0	1408. 77	20	616.8 925.3	15 20	. 0	30.0 53.4
42	4.3	7.8	1.3	4.7	9.5	4.2	8.9	3. 7	8.42	40	1233.7	25	. 1	83.4
43	4.3	7.7	1.2	4.7	9.4	4.0	8.7	3.4	8.07	50	1542.1	30	. 2	120.1
44	4.2	7.7	1.2	4.6	9.2	3.9	8.5	3. 1	7.72					
45	4.2	7.6	1.1	4.6	9.1	3.7	8.2	2.8	7.37	${ }^{1}$ - 00	1850.5	35	. 3	163.5
										2	3701.1	40	. 4	213.5
46	164.2	187.6	211.1	234.5	469.0	703.5	938.0	1172.5	1407.02	3	5551.6	45	. 6	270.2
47	4.1	7.6	1.0	4.4	8.9	3.3	7.8	2.2	6.67	4	7402.1	50	. 8	333.6
48	4.1	7.5	0.9	4.4	8.8	3.2	7.5	1.9	6.31	5	9252.7	55	1.0	403.6
49	4.0	7.5	0.9	4.3	8.7	3.0	7.3	1.6	5.96	6	11103.2			
50	4.0	7.4	0.8	4.3	8.5	2.8	7.1	1.3	5.61					
										7	12953.8	1009	1.3	480.4
51	163.9 .39	187.4	210.8	234.2	468.4 8.3	702.6	936.8	1171.0	1405. 26	8	14804.3	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	2.1	653.8
52	+3.9	7.3	0.7	4.2	8.3	2.5	6.6	0.8	4. 91	9	16654.8	120	3.2	854.0
53	3.9	7.3	0.7	4. 1	8.2	2.3	6.4	0.5	4. 55	10	18505. 4	130	4.6	1080.8
54	3.8	- 7.2	0.6	4.0	8.1	2.1	6.1	0.2	4. 20	11	20355.9	140	6. 3	1334.3
55	3.8	- 7.2	0.6	4.0	8.0	1.9	5.9	69.9	3.85	12	22206. 4	$\begin{array}{ll}1 & 50 \\ 2 & 00\end{array}$	8.3 10.8	$\begin{aligned} & 1614.6 \\ & 1921.5 \end{aligned}$
56	163.7	187.1	210.5	233.9	467.8	701.7	935.7	1169.6	1403. 50					
57	3.7		0.5	3.8	7.7	1.6	5.4	9.3	3.14					
58	3.7	7.0	0.4	3. 8	7.6	1.4	5.2	9. 0	2.79					
59	3. 6	7.0	0.4	3.7	7.5	1.2	5.0	8.7	2.44					
69	3.6	6.9	0.3	3.7	7.4	1.0	4.7	8.4	2.08					

Min.	Longth in metres of ares of the parallel, (are par.)									Meridional arce.		Co-ordinates of eurvature.		
	$7^{\prime \prime}$	$8{ }^{\prime \prime}$	$9{ }^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
0	163.6	186.9	210.3	233.7	467.4	701.0	934.7	1168.4	1402.08	$1^{\prime \prime}$	30.8	$1{ }^{\prime}$	-. 0	.1
1	3.5	6.9	0.3	3.6	7.2	09	4.5	8.1	1.73	2	61.7	2	.0	.5
2	3.5	6.9	0.2	3.6	7.1	0.7	4.3	7.8	1.38	3	92.5	3	.0	1.2
3	3.5	6.8	0.2	3.5	7.0	0.5	4.0	7.5	1.02	4	123.4	4	. 0	2.1
4	3.4	6.8	0.1	3.4	6.9	0.3	3.8	7.2	0.67	4			.	2.1
5	3.4	6.7	0.0	3.4	6.8	0.2	3.5	6.9	0.32	5	154. 2	5	. 0	3.3
6	163.3	186.7	210.0	233.3	466.7	700.0				6	185. 1	6	. 0	4.8
7	163.3	18.6	209.9	23.3 3.3	466.7	699.8	${ }^{33.3}$	1166.6	1399.96 9.61	7	215.9	7	. 0	6.6
8	3.2	6.6	9.9	3.2	6.4	9.6	2.8	6.0	9.85	9	277	8	0	8.6
9	3.2	6.5	9.8	3.1	6.3	9.4	2.6	5.8	8.90	9	27.6	9	0	10.8
10	3.2	6.5	9.8	3.1	6.2	9.3	2.4	5.5	8.55	10	308.4	10	. 0	13.4
										20	616. 9	15	.0	30.1
11	163.1	186.4	209.7	233.0	466.1	699.1	932.2	1165.2	1398. 19	30	925, 3	20	.1	53.5
12	3.1	6.4	9.7	3.0	5.9	8.9	1.9	4.9	7.84	40	1233.8	25	. 1	83.6
13	3.0	6.3	9.6	2.9	5.8	8.7	1.7	4.6	7.48	50	1542. 2	30	. 2	120.4
14	3.0	6.3	9.6	2.8	5.7	8.6	1.4	4.3	7.13					
15	3.0	6.2	9.5	2.8	5.6	8.4	1.2	4.0	6.77	1×00	1850.7	35	. 3	163.9
										2	3701.4	40	.4	214.1
16	162.9	186. 2	209.5	232.7	465.5	698.2	931.0	1163.7	1396. 42	3	5552.1	45	. 6	270.9
17	2.9	6.1	9.4	2.7	5. 4	8.0	0.7	3.4	6.06	4	7402.8	50	. 8	334.5
18	2.8	6.1	9.4	2.6	5.2	7.9	0.5	3.1	5.71	5	9253.5	55	1.1	404.7
19	2.8	6.0	9.3	8.6	5.1	7.7	0.2	2.8	5. 35	6	11104.2			
20	2.7	6.0	9.2	2.5	5.0	7.5	0.0	2.5	5. 00			1000	1.4	481.6
										7	12954.9	110	2.2	655.5
21	162.7	186.0	209.2	232.4	464.9	697.3	929.8	1162.2	1394. 64	8	14805.6	120	3.3	856.2
22	2.7	5.9	9.1	2.4	4.8	7.1	9.5	1.9	4.29	9	16656.3	130	4.7	1083.7
23	2.6	5.9	9.1	2.3	4.6	7.0	9.3	1.6	3. 93	10	18507.0	140	6.4	1337.9
24	2.6	5.8	9.0	2.3	4.5	6.8	9.1	1.3	3. 57	11	20357.7	150	8.5	1618.8
24	2.5	5.8	9.0	2.2	4.4	6.6	8.8	1.0	3. 22	12	22208.4	200	11.1	1926.5
26	182.5	185.7	208.9	232.1	464.3	696.4	928.6	1160.7	1392. 66					
27	2.5	* 5.7	8.9	2.1	4.2	6.2	8.3	0.4	+ 2.50			*		
28	2.4	5.6	8.8	2.0	4.0	6.1	8.1	0.1	-2.15					
29	2.4	5.6	8.8	2.0	3.9	5.9	7.9	1159.8	1.79					
30	2.3	5.5	8.7	1.9	3.8	5.7	7.6	9.5	1.43					

TABLE VL.-Projection Tables-Continued.
Latitude $41^{\circ} 30^{\circ}$.

Min.	Length in metres of arce of the parallel, (are par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8{ }^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	Are par.	Y.
30^{\prime}	162.3	185. 5	208.7	231.9	463. 8	695.7	927.6	1159.5	1391.43	$1^{\prime \prime}$	30.8	1	-. 0	. 1
31	2.3	5.5	8.7	1.8	3.7	5.5	7.4	9.2	1.08	2	61.7	2	. 0	. 5
32	2.3	5.4	8.6	1.8	3.6	5.4	7.2	8.9	0.72	3	92.5	3	. 0	1.2
33	2.2	5.4	8.6	1.7	3.5	5.2	6.9	8.6	0.36	4	123.4	4	. 0	2.1
34	2.2	5.3	8.5	1.7	3.3	5.0	6.7	8.3	0.01					
35	2.1	5.3	8.4	1.6	3.2	4.8	6.4	8.0	89.65	5	154.2	5	. 0	3.4
										6	185.1	6	. 0	4.8
36	162.1	185.2	208.4	231.5	463.1	694.6	926.2	1157.7	1389.29	7	215.9	7	. 0	6.6
37	2.0	5.2	8.3	1.5	3.0	4.5	6.0	7.4	8.93	8	246.8	8	.0	8.6
38	2.0	5.1	8.3	1.4	2.9	4.3	5.7	7.1	8.58	9	277.6	9	. 0	10.9
39	2.0	5.1	8.2	1.4	2.7	4.1	5.5	6.8	8.22					
4)	1.9	5.0	8.2	1.3	2.6	3.9	5.2	6.5	7.86	10	308.5 617.0	10	. 0	13.4
41	161.9	185.0	208.1	231.2	462.5	693.7	925.0	1156. 2	1387.50	20 30	617.0 925.4	15 20	.0	30.2 53.6
42	1.8	5.0	8.1	1.2	2.4	3.6	4.8	6.0	7.15	40	1232.9	25	. 1	83.8
43	1.8	4.9	8.0	1.1	2.3	3.4	4.5	5. 7	6. 79	50	1542.4	30	. 2	120.7
44	1.8	4.9	8.0	1.1	2.1	3.2	4.3	5.4	6.43					
45	1.7	4.8	7.9	1.0	2.0	3.0	4.0	5.1	6.07	1'00	1850.9	35	. 3	164.3
										2	3701.7	40	. 4	214.5
46	161.7	184.8	207.9	231.0	461.9	692.9	923.8	1154.8	1385.71	3	5552.6	45	. 6	871.5
47	1.6	4.7	7.8	230.9	1.8	2.7	3.6	4.5	5.35	4	7403.4	50	. 8	335.2
48	1.6	4.7	7.7	0.8	1.7	2.5	3.3	4.2	4.99	5	9254.3	55	1.1	405.7
49	1.5	4.6	7.7	0.8	1.5	2.3	3.1	3.9	4.64	6	11105.1			
60	1.5	4.6	7.6	0.7	1.4	2.1	2.9	3.6	4.28			$1^{\circ} 00$	1.4	482.8
										7	12956.0	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	2.2	657, 1
51	161.4	184.5	207.6			692.0	922.6	1153.3	1383.92 3.56	8	14806.9	$\begin{array}{ll}1 & 20 \\ 1 & 30\end{array}$	3.3	858.2
52	1.4	4.5	7.5	0.6	1.2	1.8	2.4	3.0	3.56	9	16657.7	130	4.7	1086. 2
63	1.4	4,4	7.5	0.5	1.1	1.6	2.1	2.7	3.20	10	18508.6	140	6.5	1341.0
54	1.3	4.4	7.4	0.5	0.9	1.4	1.9	2.4	2.84	11	20359.4	150	8.6	1622.6
55	1.3	4.3	7.4	0.4	0.8	1.2	1.7	2.1	2. 48	12	22210.3	200	11.2	1931.1
56	161.2	184. 3	207.3	230.3	460.7	691.1	921.4	1151.8	1382.12					
67	1.2	4.2	7.3	0.3	0.6	0.9	1.1 -	1.5	1.76					
58	1.2	4.2	7.2	0.2	0.5	0.7	0.9	1.2	1.40					
59	1.1	4.1	7.2	0.2	0.3	0.5	0.7	0.9	1.04					
60	1.1	4.1	7.1	0.1	0.2	0.3	0.4	0.6	0,68					

TABLE VI-Projection Tables-Continued.
Latitude 42000 .

Min				Length in metres of arcs of the parallel, (arc par.)						Meridional arcs.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9{ }^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	30^{*}	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	$\begin{gathered} \mathbf{X} . \\ \text { Aro par. } \end{gathered}$	Y.
${ }^{0}$	161.1	184. 1	207.1	230.1	460.2	690.3	920.4	1150.6	1380.68	1"	30.9	1^{\prime}		
1	1.0	4.0	7.0	0.1	0.1	0.2	0.2	0.3	10.32	$\stackrel{1}{2}$	61.7	2	-.0	. 5
2	1.0	4.0	7.0	0.0	0.0	0.0	0.0	0.0	79.96	3	92.6	2	.0	1.2
3	1.0	3.9	6.9	29.9	59.9	689.8	919.7	49.7	9. 60	4	123.4	4	. 0	2.1
4	0.9	3.9	6.9	9.9	9.7	9.6	9.5	9.4	9.24					
5	0.9	3.9	6.8	9.8	9, 6	9.4	9.2	9.1	8.88	5	154.3	5	. 0	3.4
6	160.8	183.8	206.8	229.7	459.5	689.3	919.0	1148.8	1378. 52	7	185.1	${ }_{7}^{6}$.0	4.8
7	0.8	3.8	6.7	9.7	9.4	9.1	8.8	8.5	8.15	8	246.8	8	.0	6.6 8.6
8	0.7	3.7	6.7	9.6	9.3	8.9	8.5	8.2	7.79	9	277.7		.0	10.9
9	0.7	3.7	6.6	9.6	9.1	8.7	8.3	7.9	7.43					
10	0.7	3.6	6.6	9.5	9.0	8.5	8.0	7.6	7.07	10	308.5	10	. 0	13.4
11	160.6	183.6	206.5	229.5	458.9	688.4	917.8	1147.3		20 30	617.0 925.5	15 20	. 0	30.4 53.7
12	0.6	3.5	6.5	9.4	8.8	8.2	7.6	14.0 7.0	6.35	40	1234.0	$\stackrel{2}{20}$.1	53.7
13	0.5	3.5	6.4	9.3	8.7	8.0	7.3	6.7	5.99	50	1542.5	30	.2	120.9
14	0.5	3.4	6.3	9.3	8.5	7.8	7.1	6.3	5. 62			0	.	120.9
15	0.4	3.4	6.3	9.2	8.4	7.6	6.8	6.0	5.26	$\mathbf{1}^{1} 00$	1851.0	35	.3	164.6
16	160.4	183.3	206.2	229, 1	458.3	687.4	916.6	1145.7	-1374.90	2 3	3712.0 5553.1	40	. 4	215.0 272.1
17	0.4	3.3	6.2	9.1	8.2	7.3	6.4	15.	4.54	3		45	. 8	$\stackrel{272.1}{335.9}$
18	0.3	3.2	6.1	9.0	8.1	7.1	6.1	5.1	4.17	5	9255.1	55	1.1	406.4
19	0.3	3.2	6.1	9.0	7.9	6.9	5.9	4.8	3. 81	6	11106.1			
20	0.2	3.1	6.0	8.9	7.8	6.7	5.6	4.5	3.45			1000	1.4	483.7
21	100.2	183.1	206.0	228.9	457.7	686.5	915.4	1144.2	1373.09	7	12957.1 14808.2	$1 \begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	2.2	658.4
22	0.2	3.0	5.9	8.8	7.6	6.4	5.1	3.9	2.72		166592	$1{ }^{1}$	3.3	800.0
23	0.1	3.0	5.9	8.7	7.5	6.2	4.9	3.6	2.36	10	18510.2	140	4.8	1688.3 1343
24	0.1	29	5. $8^{\prime \prime}$	8.7	7.3	6.0	4.7	3.3	2.00	11	20361.2		8.7	1625.8
25	0.0	2.9	5.7	8.6	7.2	5.8	4.4	3.0	1.64	12	22212.2	200	11.3	1934.9
28	160.0	189.8	205.7	228.5	457.1	685.6	914.2	1142.7	1371.27					
${ }_{28} 27$	159.9	2.8	5. 6	8.5	7.0	5.5	3.9	2.4	0.91					
${ }_{29}$	9.9	2.7	5.6	8.4	6.8	5.3	3.7	2.1	0.55					
30	9.9 9.8	2.7	5.5 5.5	8.4 8.3	6.7 6.6	5.1 4.9	3.5 3.2	1.8 1.5	0.18 1369.82					

TABLE VL-Projection Tables-Oontinued.
IAtitude $42^{\circ} 30^{\circ}$.

Mn.	Length in metres of arcs of the parallel, (are par.)									Meridional arce.		Co-ordiantes of eurvature.		
	$7 \prime$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	39%	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of	X.	\mathbf{Y}.
30	159.8	182.6	205. 5	229.3	456.6	684.9	913.2	1141.5	1369. 82	$1 "$	30.9	1'	$\rightarrow 0$. 1
31	9.8	2.6	5.4	8.2	6.5	4.7	3.0	1.2	9.45	2	61.7	2	. 0	. 5
3	9.7	2.5	5.4	8.2	6.4	4.5	2.7	0.9	9.09	3	92.6	3	. 0	1.2
33	9.7	2.5	5.3	8.1	6.2	4.4	2.5	0.6	8.73	4	123.4	4	.0	2.2
84	9.6	2.4	6.3	8.1	6.1	4.2	2.2	0.3	8.36					
35	9.6	2.4	5. 2	8.0	6.0	4.0	2.0	0.0	8.00	5	154.3	6	. 0	3.4 4.8
36	159.6	182.4	205. 2	227.9	455.9	683.8	911.8	1139.7	1367.63	7	216.0	7	.0	6.6
37	9.5	2.3	5.1	7.9	5.8	3.6	1.5	9.4	7.27	8	246.8	8	. 0	8.6
38	9.5	2. 3	5.0	7.8	5.6	3.5	1.3	9.1	6. 90	9	277.7	9	. 0	10.9
39	9.4	2. 2	5. 0	7.8	5.5	3.3	1.0	8.8	6.54					
40	9.4	2.2	4.9	7.7	5.4	3.1	0.8	8.5	6.17	10	308.5	10	. 0	13.5
			204.9	2076					1365.81	20	617.1	15	. 0	30.4
42	159.3	108.1	204.9 4.8	227.6 7.6	450.3	682.9 2.7	910.5	1188.2 7.9	130.8. 54	40	925.6	20	-1	84.8
43	9.3	2.0	4.8	7.5	5.0	2.5	0.0	7.6	5.08	50	1542.7	30	. 2	121. 1
44	9.2	2.0	4.7	7.5	4.9	2.4	909.8	7.3	4.71					
45	9.2	1.9	4.7	7.4	4.8	2.2	9.6	7.0	4.35	$1^{\prime} 00$	1851.2	35	. 3	164.9
										2	3702.4	40	. 4	215.4
46	159.1	181.9	204.6	227.3	454.7	689.0	909.3	1136.6	1363.98	3	5553.5	45	. 6	272.5
47	9.1	1.8	4.5	7,3	4.5	1.8	9.1	6.3	3.62	4	7404.7	50	. 8	336.5
48	9.0	1.8	4.5	7.2	4.4	1.6	8.8	6.0	3.25	5	9255.9	55	1.1	407.1
49	9.0	1.7	4.4	7.1	4.3	1.4	8.6	5.7	2.88	6	11107. 1			
50	9.0	1.7	4.4	7.1	4.2	1.3	8.3	5.4	2.52			$1^{\circ} 000$	1.4	484. 6
										7	12958.3	$1{ }^{1} 10$	2.3	659.5
51	158.9	181.6	204.3	627. 0	454.0	681.1	908.1	1135.1	1362. 15	8	14809.4	120	3.4	861.4
52	8.9	1.6	4.3	7.0	3.9	0.9	7.9	4.8	1.79	9	16660.6	130	4.8	1090.2
53	8.8	1.5	4.2	6.9	3.8	0.7	7.6	4.5	1.42	10	18511.8	140	6.6	1346.0
54	8.8	1.5	4.2	6.8	3.7	0.5	7.4	4.2	1.05	11	20363.0	150	8.8	1628.6
55	8.7	1.4	4.1	6.8	3.6	0.3	7.1	3.9	0.60	12	22214.2	200	11.4	1938.2
56	158.7	181.4	204.0	226.7	453.4	680.2	906.9	1133.6	1360. 32					
57	8.7	1.3	4.0	6.7	3.3	0.0	6.6	3.3	59.95					
58	8.6	1.3	3.9	6.6	3.2	79.8	6.4	3.0	9.59					
59	8.6	1.2	3.9	6.5	3.1	9.6	6.1	2.7	9.22					
60	8.5	1.2	3.8	6.5	3.0	9.4	5.9	2.4	8.85					

Latitude 43000°.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional arce.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9{ }^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	\mathbf{Y}.
0	158.5	181.2	203.8	226.5	453.0	679.4	905.9	1132.4	1358.85	$1^{\prime \prime}$	30.9	1'	-. 0	. 1
1	8.5	1.1	3.8	6.4	2.8	9.2	5.7	2.1	8.48	2	61.7	2	. 0	. 5
8	8.4	1.1	3.7	6.3	2.7	9.1	5.4	1.8	8.12	3	92.6	3	. 0	1.2
8	8.4	1.0	3.7	6.3	2.6	8.9	5.2	1.5	7.75	4	123.4	4	.0	2.2
4	8.4	1.0	3.6	6.2	2.5	8.7	4.9	1.2	7.38					
5	8.3	0.9	3.6	6.2	2.3	8.5	4.7	0.8	7.02	5	154.3	- 5	. 0	3.4
										6	185.1	6	. 0	4.9
6	158.3	180.9	203.5	226.1	452.2	678.3	904.4	1130.5	1356.65	7	216.0	7	. 0	6.6
7	8.2	0.8	3.4	6.0	2.1	8.1	4.2	0.2	6.28	8	246.8	8	. 0	8.6
8	8.2	0.8	3.4	-6.0	2.0	8.0	3.9	29.9	5.91	9	277.7	9	. 0	10.9 .
8	8.1	0.7	3.3	5.9	1.8	7.8	3.7	9.6	5. 54					
10	8.1	0.7	3.3	.5. 9	1.7	7.6	3.4	9.3	5.17	14 20	308.6 617.1	10	. 0	13.5 30.4
11	158.1	180.6	203. 2	225.8	451.6	677.4	903.2	1129.0	1354.81	30	925.7	20	. 1	53.9
12	80	0.6	3.2	5.7	1.5	7.2	3.0	8.7	4.44	40	1234.2	25	. 1	84.2
13	8.0	0.5	3.1	5.7	1.4	7.0	2.7	8.4	4.07	50	1542.8	30	. 2	121.3
14	7.9	0.5	3.1	5.6	1.2	- 6.8	2.5	8.1	3. 70					
15	7.9	0.4	3.0	5. 6	1.1	6.7	2.2	7.8	3.33	$1^{\prime} 00$	1851.3	35	. 3	165.1
16	157.8	180.4	302.9	225. 5	451.0	676.5	902.0	. 1127.5	1352.96	2	3702.7 5554.0	40	. 4	215.6 273.0
17	7.8	- 0.3	2.9	6.4	0.9	6.3	1.7	7.2	2.59	4	7405.4	50	. 8	337.0
18	7.8	0.3	2.8	5.4	0.7	6.1	1.5	6.9	2.22	5	9256.7	55	1.1	407.8
19	7.7	0.2	2.8	5.3	0.6	5.9	1.2	6.5	1.85	6	11108.1			
90	7.7	0.2	2.7	5.2	0.5	5.7	1.0	6.2	1.48			1000	1.4	485.2
										7	12959.4	110	2.3	660.5
21	157.6	180.1	202.7	225.2	450.4	675.6	900.7	1125.9	1351.11	8	14810.7	120	3. 4	862.6
22	7.6	0.1	2.6	5. 1	0.2	5.4	0.5	5.6	0.74	9	16662.1	130	4.9	1091.8
23	7.5	0.0	2.6	5.1	0.1	5.2	0.2	5.3	0.37	10	18513.4	140	6.7	1347.9
24	7.5	0.0	8.5	5.0	0.0	5.0	0.0	5.0	0.00	11	20364.8	150.	8.9	1630.9
25	7.5	0.0	2.4	4.9	449.9	4.8	899.8	4.7	49.63	12	22216.1	200	11.6	1940.9
26	157.4	179.9	202.4	224.9	449.8	674.6	899.5	1124.4	1349:20					
27	7.4	9.9	2.3	4.8	9.6	4.4	9.3	4. 1	8.89					
88	7.3	9.8	多3	4.8	9.5	4.3	9.0	3.8	8.52					
99	7.3	9.8	2.2	4.7	9.4	4.1	8.8	3.5	8.15					
30	7.2	9.7	2.2	4.6	9.3	3.9	8.5	3.1	7.78					

TABLE VI.-Projection Tables-Continued.

Latitede $43^{\circ} 30^{\circ}$

Min.	Length in metres of arcs of the parallel, (are par.)									Meridional arces.		Co-ordinates of curvature.		
	7'	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
30^{\prime}	157. 2	179.7	202.2	2246	449.3	673.9	898.5	1123.1	1347.78	$1{ }^{\prime \prime}$	30.9	$1{ }^{\prime}$	-. 0	. 1
31	7.2	9.7	2.1	4.6	9.1	3.7	8.3	- 2.8	7.41	2	61.7	2	. 0	. 5
32	7.2	9.6	2.1	4.5	9.0	3.5	8.0	2.5	7. 04	3	92.6	3	. 0	1.2
38	7.1	9.6	2.0	4.4	8.9	3. 3	7.8	2.2	6.67	4	123.4	4	. 0	2.2
34	7.1	9.5	1.9	4.4	8.8	3.1	7.5	1.9	6. 30					
35	7.0	9.5	1.9	4.3	8.6	3.0	7.3	1.6	5.93	5	154.3 185.2	5	. 0	3.4 4.9
36	157.0	179.4	201.8	224.3	448.5	-672.8	897.0	1121.3	1345. 56	7	216.0	7	. 0	6.6
37	6.9	9.4	1.8	4.2	8.4	2.6	6.8	1.0	$5.18{ }^{\circ}$	8	246.9	8	. 0	8.6
38	6.9	9.3	1.7	4.1	8.3	2.4	6.5	0.7	4.81	9	277.7	9	. 0	10.9
39	6.9	9.3	1.7	4.1	8.1	2.2	6. 3	0.4	4.44					
40	6.8	9.2	1.6	4.0	8.0	2.0	6.0	0.1	4.07	10 20		10	. 0	13.5. ${ }^{3}$
41	156.8	179.2	201.6	224. 0	447.9	671.8	895.8	1119.7	1343.70	30	925.8	20	. 1	54.0
42	6.7	9.1	1.5	3.9	7.8	1.7	5.5	9.4	3.32	40	1234.3	95	.1	84.3
43	6.7	9.1	1.4	3.9	7.7	1.5	5.3	9.1	4.05	50	1542.9	30	. 2	121.4
44	6.6	9.0	1.4	3.8	7.5	1.3	5.1	8.8	2. 58					
45	6.6	9.0	1.3	3.7	7.4	1.1	4.8	8.5	2.21	10 2	1851.5 3703.0	35 40	. 3	165.3 215.9
46	156.5	178.9	201.3	223.6	447.3	670.9	894.6	1118.2	1341. 84	3	5554.5	45	. 6	273.3
47	6.5	8.9	1.2	3.6	7.2	0.7	4.3	7.9	1.46	4	7406, 0	50	. 8	337.3
48	6.5	8.8	1.2	3.5	7.0	0.5	4.1	7.6	1. 09	5	9257.5	55	1.1	408.2
49	6.4	8.8	1.1	3.5	6.9	0.4	3.8	7.3	0.72	6	11100.0			
50	6.4	8.7	1.1	3.4	6.8	0.2	3.6	7.0	0.34	7	12960.5	$\begin{array}{ll}10 & 00 \\ 1 & 10\end{array}$	1.5 2.3	485.8
51	156.3	178.7	201.0	223.3	446.6	670.0	893.3	1116.6	1339.97	8	14812.0	120	3.5	863.6
52	6.3	8.6	0.9	3.3	6.5	69.8	3.1	6.3	9. 60	9	16663.5	130	4.9	1093.0
53	6.2	8.6	- 0.9	3.2	6.4	9.6	2.8	6.0	9.22	10	18515.0	140	6.8	1349.4
54	6.9 .	8.5	0.8	3.1	6.3	9.4	2.6	5.7	8.85	11	20366.5	150	9.0	1632.8
55	6.2'	8.5	0.8	3.1	6.2	9.2	2.3	5.4	8.48	12	22218.0	200	11.7	1943.1
56	156.1	178.4	200.7	223.0	446.0	669.0	892.1	1115.1	1338.10					
57	6.1	8.4	0.7	2.9	5.9	8.9	1.8	4.8	7.73					
58	6.0	8.3	0.6	2.9	5.8	8.7	1.6	4.5	7. 36					
59	6. 0	8.3	0.5	2.8	5.7	8.5	1.3	4.1	6.98					
60	5.9	8.2	0.5	2.8	5.5	8.3	1.1	3.8	6.61					

TABLE VI_-Projection Tables-Continued.
Latitude $44^{\circ} 00^{\circ}$.

Min.	Length in metres of arcs of the parallel, (arc par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7^{\boldsymbol{*}}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minuter of lougitade.	$\begin{gathered} \mathbf{X} . \\ \text { Aropar. } \end{gathered}$	Y.
0	155.9	178.2	200.5	222.8	445. 5	668.3	891.1	1113.8	1336.61	$1^{\prime \prime}$	30.9			
1	5.9	8.2	0.4	2.7	5.4	8.1	0.8	3.5	6.23	2	61.7	$\stackrel{1}{2}$	-. 0	.15
8	5.8	8.1	0.4	2.6	5.3	7.9	0.6	3.2	5.86	3	92.6	3	.0	1.2
3	5.8	8.1	0.3	2.6	5.2	7.7	0.3	2.9	5.48	4	123.4	4	.0	1.2
4	5.8	8.6	0.3	2.5	5.0	7.6	0.1	2.6	5.11					
5	5.7	8.0	0.2	2.5	4.9	7.4	889.8	2.3	4.74	5	154. 3	5	. 0	3.4
0	155.7	177.9	200.2	222.4	444.8	667.2	889.6	1112.0	1334.36	6 7	185.2 216.0	6	. 0	4. 9 6.6
7	5.6	7.9	0.1	2.3	44.8	66.2 7.0	889.6 9.3	112.0	1334.36 3.99	8	216.0 246.9	7	.0	6.6
8	5.6	7.8	0.0	2.3	4.5	6.8	9.1	1.3	3.61	8 9	246.9 277.8	8 8	. 0	8.6 10.9
9	5.5	7.8	0.0	2.2	$4.4{ }^{\circ}$	6.6	8.8	1.0	3.24					
10	- 5.5	7.7	199.9	2.1	4.3	6.4	8.6	0.7	2.86	10	308.6	10	. 0	13.5.
11	155.5	177.7	199.9	222.1	444.2		888.3		133249	20	617.2	15	. 0	30.4
12	5.4	7.6	9.8	2.0	44.8	6.1	88.3	110.4	1332.49	30	925.8	$20 \cdot$.1	54.0
13	6.4	7.6	9.8	2.0	3.9	6.1 5.9	8.1 7.8	1109.8	2.11 1.73	40	1234.4	25	. 1	84.4
14	6.3	7.5	9.7	1.9	3.8	5.7	7.8	1109.8 9.5	1.73 1.36	50	1543. 1	30	. 2	121.5
15	5.3	7.5	9.6	1.8	3.7	5.5	7.3	9.2	0.98	${ }^{\prime} 1^{\prime} 00$	1851.7	35	.3	165.4
16	155. 2	177.4	199.6		443.5					2	3703.3	40	.4	216. 1
17	5. 5	7.4	199.6 9.5	221.8	443. 3	665.3	887.1 6.8	1108.8 8.5	1330.61	3	5555.0	45	. 6	273.5
18	5.1	7.4	9.5	1.7	3. 4	5.1	6.8	8.5	0.23	4	7406. 7	50	. 9	337.6
10	5.1	7.3	9.4	1.6	3.3	4.9	6.6	8.2	29.85	5	9258.3	55	1.1	408.5
20	5.1	7.8	9.4	1.5	3.0	4.5	6.1	7.9 7.6	9.48 9.10	6	11110.0	1000	1.5	486.1
										7	12961.7	110	2.3	661.7
21	165.0	177.2	199.3	221.5	442.9	664.4	885.8	1107.3	1398.73	8	14813. 3	120	3.5	864.3
22	5.0	7.1	9.3	1.4	2.8	4.2	5.6	7.0	8.35	9	16665. 0	120	4.9	1093.9
23	49	7.1	9.2	1.3	2.7	4.0	5.3	6.6	7.97	10	18516.7	140	6.8	1350.4
94	4.9	7. 0	9.1	1.3	2.5	3.8	5.1	6.3	7.60	11	20368. 3		9.1	1634.0
5	4.8	7.0	6. 1	1.2	2.4	3.6	4. 8	6.0	7.22	12	22220. 0	200	11.8	1944.6
数	154.8	176.9	199.0	221.1	442.3	663.4	884.6	1105.7	1326. 84					
27	4.8	6.9	9.0	1.1	2.2	3. 2	4.3	5.4	6,46		*			
68	4.7	6.8	8.9	1,0	2.0	3.0	4.1	5.1 :	6.19					
5	4.7	6.8	8.9	1.0	1.9	2.9	3.9	4.8	5.71					
So	4.6	6.7	8.8	280.9	1.8	2.7	3.6	4.4	5. 33					

TABLE VI.-Projection Tables-Continued.
Latitude $44^{\circ} 30^{\circ}$.

TABLE VI.-Projection Tables-Continued.

	Length in metres of ares of the parallel, (are par.)									Merilional ares.		Co-ordinates of ewrsature.		
Min.	$7 /$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50{ }^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arepar.	Y.
$\boldsymbol{\theta}$	153.3	175. 2	197.1	219.0	488.0	657.0	876.0	100\%. 0	1313.96	1 "	80.9	$1{ }^{\prime}$	-. 0	. 1
1	3.2	5.1	7.0	8.9	7.9	6.8	5.7	4.6	3, 57	2	61.7	2	. 0	. 5
8	3.2	5.1	7.0	8.9	7.7	6.6	5.5	4.3	3. 19	3	92.6	3	. 0	1. 2
3	3.2	5.11	6.9	8.8	7.6	6.4	5.2	4.0	2.81	4	123.5	4	. 0	2.2
4	3. 1	5.1	6.9	8.7	7.5	6. 2	5.0	3.7	2. 43					
6	3.1	4.9	6.8	8.7	7.3	6.0	4.7	3.4	2.15	5	154,3	5	. 0	3.4
										6	185.2	6	. 0	4.9
6	153.0	174.9	196.3	218.6	437.2	655.8	874.4	1093.1	1311.67	7	216.1	7	. 0	6.6
7	3.0	4.8	6.7	8.5	7.1	5.6	4.2	2.7	1.29	8	246.9	8	. 0	8.6
8	2.9	4.8	6.6	8.5	7.0	5.4	3.9	2.4	0.90	9	277.8	9	. 0	10.9
9	2.9	4.7	6.6	8.4	6.8	5.3	3.7	2.1	10.52					
10	2.9	4.7	6. 5	8.4	6.7	5.1	3.4	1.8	0.14	10	308.7	10	. 0	13.5
										20	617.3	15	. 0	30.4
11	152.8	174.6	196.5	218.3	436.6	604.9	873.2	1001.5	1309. 76	31	926.0	90	. 1	54.0
12	2.8	4.6	6.4	8. 2	6.5	4.7	2.9	1.1	9.38	40	1234.7	25	. 1	84.5
13	2.7	4.5	6.3	8.2	6.3	4.5	2.7	0.8	8.99	50	1543.3	30	. 2	121.6
14	2.7	4.5	6.3	8.1	6.2	4.3	2.4	0.5	8.61					
15	2.6	4.4	6.2	8.0	6.1	4.1	2.2	0.2	8.83	1^{\prime} on	18.32 .0	35	. 3	165.5
										2	3704.0	40	. 4	216.2
16	152.6	174. 4	190.2	218.0	436.0	653.9	871.9	1089.9	1307.85	3	5556.0	45	. 6	273.7
17	2.5	4.3	6.1	7.9	5.8	3.7	1.6	9.5	7.46	4	7408.0	50	. 9	337.8
18	2.5	4.3	6.1	7.8	5.7	3.5	1.4	9.2	7.08	5	9260.0	55	1.2	408.8
19	2.4	4.2	6.0	7.8	5.6	3.3	1.1	8.9	6. 70	6	1111.9			
20	2.4	4.2	5.9	7.7	5.4	3.2	0.9	8.6	6.31			$1{ }^{\circ} 00$	1.5	486.4
										7	12963.9	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	¢. 4	662.2 864.8
21	152.4	174.1	190.9	217.6	435.3	603.0	870.6	1088.3	1305. 93	8	14815.9	120	3.6	864.8
22	2.3	4.1	5.8	7.6	5.2	2.8	0.4	8.0	5.54	9	16667.9	130	5.1	1094.6
23	2.3	4.0	5.8	7.5	5.1	2.6	0.1	7.6	5.16	10	18519.9	140	6.9	1351.3
24	2.2	4.0	5.7	7.5	4.9	2.4	869.9	7.3	4.78	11	20371.9	150	9.3	1685.1
25	2.8	3.9	5.7	7.4	4.8	2.2	9.6	7.0	4. 40	12	28223.9	200	11.9	1945.9
96	159.1	173.9	195.6	217.3	434.7	052.0	869.3	1086.7	1304.01					
27	2.1	3.8	5.5	7.3	4.5	1.8	9.1	6.4	3.63					
28	2.0	3.8	5.5	7.2	4.4	1.6	8.8	6.0	3.25					
29	2.0	3.7	5.4	7.1	4.3	1,4	8.6	5.7	2.86					
30	2.0	3.7	5.4	7.1	4.2	1.2	8.3	5.4	2.48					

TABLE VL-Projection Tables-Continued.
Latitude $45^{\circ} 30^{\circ}$.

tin.	Length in metres of ares of the parallel, (are par.)									Meridional arce.		Co-ordinates of curvature.		
	$7{ }^{7 \prime}$	$8^{\prime \prime}$	97	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	$\begin{gathered} \mathbf{X .} \\ \text { Are par. } \end{gathered}$	Y.
30	152.0	173.7	195.4	217.1	434.2	651.2	868.3	1085.4	1312.48	$1 /$	30.9	1	-. 0	. 1
31	1.9	3.6	5.3	7.0	4.0	1.0	8.1	5.1	2.09	2	61.7	2	. 0	. 5
32	1.9	3.6	5.3	7.0	3.9	0.9	7:8	4.8	1.71	3	92.6	3	. 0	1.2
33	1.8	3.5	5.2	6.9	3.8	0.7	7.5	4.4	1. 32	4	112.5	4	. 0	2.2
34	1.8	3.5	5.1	6.8	3.6	0.5	7.3	4.1	0.94					
34	1.7	3.4	5.1	6.8	3.5	0.3	7.0	3.8	0.55	5	154.3	5	. 0	3.4
										6	185, 2	6	.0	4.9
36	151.7	173.4	195.0	216.7	433.4	650.1	866.8	1083.5	1300.17	7	216.1	7	. 0	6.6
37	1.6	3.3	5.0	6.6	3.3	49.9	6.5	3.1	1299.78	8	247.0	8	. 0	8.6
38	1.6	3.3	4.9	6.6	3.1	9.7	6.3	2.8	9.39	3	277.8	9	. 0	10.9
39	1.6	3.2	4.9	6.5	3.0	9.5	6.0	2.5	9.01					
40	1.5	3.2	4.8	6.4	2.9	9.3	5.8	2.2	8.63	10	308.7	10	. 0	13.5
										90	617.4	15	. 0	30.4
41	151.5	173.1 3.0	194.7 4.7	216.4 6.3	432.7 2.6	649.1 8.9	865.5	1081.9	1298. 24	30	924.1	29	. 1	54.0
42	1.4	3.0	4.7	6.3	2.6	8.9	5.2	1.6	7.86	40	1834.8	25	. 1	84.4
43	1.4	3.0	4.6	6.2	2.5	8.7	5.0	1.2	7.47	50	1543.5	30	. 2	121.6
44	1.3	2.9	4.6	6.2	2.4	8.6	4.7	0.9	7. 69					
45	1.3	2.9	4.5	6.1	2.2	8.3	4.5	0.6	6.70	1_{2}^{10}	1852.2 3714.3	34 40	. 3	165.5 216.8
46	151.2	172.8	194.4	216.1	432.1	648.9	864.2	1080.2	1296.31	3	$55 \% 0.5$	45	.6	273.6
47	1.2	2.8	4.4	6.0	2.0	8.11	4.0	1079.9	5.93	4	7418.6	50	. 0	337.8
48	1.1	2.7	4.3	5.9	1.8	7.8	3.7	9.6	5.54	5	9260.8	25	1.9	408.7
49	1.1	2.7	4.3	5.9	1.7	7.6	3.4	9.3	5. 16	6	11113.0			
50	1.1	2.6	4.2	5.8	1.6	7.4	3.2	9.0	4.75			1000	1.5	486.4
										7	12965. 1	110	2.4	662.1
51	151.0	172.6	194.2	215.7	431.5	647.2	892.9	1078. 7	1294.38	8	14817.3	120	3.6	864, 7
58	1.0	2.5	4.1	5.7	1.3	7.0	2.7	8.3	4.00	9	16669.4	130	5.1	1094.5
53	0.9	2.5	4.0	5.6	1. 2	6.8	2.4	8.0	3.61	10	1842.5	140	7.1	1851.1
54	0.9	2.4	4.0	5.5	1.1	6.6	2.1	7.7	3. 22	11	20373. 1	150	3.3	1635.11
55	0.8	2.4	3.9	5.5	0.9	6.4	1.9	7.3	2.83	12	920以5,	200	12.1	1945.7
56	150.8	172.3	193.9	215. 4	430.8	646.2	86.6	1077.0	1292.45					
57	0.7	2.3	3.8	5.3	0.7	6.0	1.4	6.7	2.16					
58	0.7	2.2	3.8	5.3	0.6	5.8	1.1	6.4	1.67					
59	0.6	2.2	3.7	5.2	0.4	5.6	0.9	6.1	1.99					
60	0.6	2.1	3.6	5.1	0.3	5.5	0.6	5.8	0.90					

TABLE VL-Projection Tubles-Contnued.
Latitude $46^{\circ} 00^{\prime}$.

Min	Length in metres of ares of the parallel, (are par.)									Meridional ares.		Corordinates of curvature.		
	$7 /$	$8^{\prime \prime}$	$9 \prime$	10^{\prime}	$20^{\prime \prime}$	$30^{\prime \prime}$	40"	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitule.	X. Are par.	Y.
0	150.6	172.1	193.6	215.1	430.3	645.5	860.6	1075.8	1290.90	$1 /$	30.9	$1{ }^{\prime}$	-. 0	. 1
1	0.5	2.1	3.6	5.1	0.2	5.3	0.3	5.4	0.51	2	61.7	9	. 0	. 5
2	0.5	2.0	3.5	5.0	0.0	5.1	0.1	5.1	0.12	3	92.6	3	. 0	1.2
3	0.5	2.0	3.5	5.0	29.9	4.9	859.8	4.8	89.73	4	123.5	4	.0	2.2
4	0.4	1.9	3.4	4.9	9.8	4.7	9.6	4.5	9.35					
5	0.4	1.9	3.3	4.8	9.7	4.5	9.3	4.1	8.96	5	154.4	5	. 0	3.4
										6	185. 2	6	. 0	4.9
6	150.3	171.8	193.3	214.8	429.5	644.3	850.0	1073.8	1289.57	7	216.1	7	.0	6.6
7	0.3	1.8	3.2	4.7	9.4	4.1	8.8	3.5	8.18	8	247.0	8	. 0	8.6
8	0.2	1.7	3.2	4.6	9.3	3.9	8.5	3.2	7.79	9	277.8	9	. 0	10.9
9	0.2	1.7	3.1	4.6	9.1	3.7	8.3	2.8	7.41					
10	0.2	1.6	3.1	4.5	9.0	3.5	8.0	2.5	7.02	10	308.7	10	. 0	13.5
										20	617.4	15	. 0	31.4
11.	150.1	171.6	193.0	214.4	428.9	643.3	857.8	1072.2	12×6.63	- 30	926.2	20	. 1	54.0
$1{ }^{1}$	0.1	1.5	2.9	4. 4	8.7	3.1	7.5	1.9	6.24	41)	1234.9	25	. 1	84.4
$1{ }^{3}$	0.0	1.4	2.9	4.3	8.6	2.9	7.2	1.5	5.85	50	1543.6	$31)$. 2	121.6
14	0.0	1.4	2.8	4.2	8.5	2.7	7.0	1.2	5.46					
15	149.0	1.3	2.8	4.2	8.4	2.5	6.7	0.9	5. 17	1100	1859.3	35	. 3	165.4
										2	3704.6	40	. 5	216.1
$1{ }^{18}$	148.9	171.3	192.7	214.1	428.2	642.3	856.5	1070.6	1284.a8	3	5556.9	45	.6	273.5
17	9.8	1.2	2.6	4.0	8.1	2.1	6.2	0.2	4.29	4	7409.3	50	. 9	337.6
18	9.8	1.2	2.6	4.0	8.0	1.9	5.9	69.9	3.90	5	9261.6	55	1.2	408.5
16	9.7	1.1	2.5	3.9	7.8	1.8	5.7	9.6	3.51	6	11113.9			
90	9.7	1.1	2.5	3.9	7.7	1.6	5.4	9.3	3.12			1000	1.5	486.2
										7	12938.2	110	2.4	661.8
	149.7 9.6	171.0	112.4	213.8	477.6	61.4	855.2	1068.9	1232.73	8	14818.5	$\begin{array}{ll}1 & 29 \\ 1 & 30\end{array}$	3. 6	864.4 1094.0
23	9.6	1.0	2.4	3.7	7.4	1.2	4.9	8.6	2. 34	9	16670.8	130	5.2	1094.0
23	9.6	0.9	2.3	3.7	7.3	1.0	4.6	8.3	1.95	10	18523. 1	140	7.1	1350.6
91	9.5	0.9	2.2	3.6	7.2	0.8	4.4	8.0	1.56	11	20375.5	150	9.4	1634.2
25	9.5	0.8	2.2	3.5	7.1	0.6	4.1	7.7	1.17	12	22227.8	200	12.2	1944.9
8	149.4	170.8	192.1	213.5	426.9	640.4	853.9	1067.3	1280.78					
\%	9.4	0.7	2.1	3.4	6.8	0.2	3.6	7.0	- 0.39					
䘽	9.3	0.7	2.0	9.3	6.7	0.0	3.3	6.7	0. 00					
3	9.3	0.6	1.9	3.3	6.5	39.8	3.1	6.3	79.61					
30	9.2	0.6	1.9	3.2	6.4	9.6	2.8	6.0	1279.22					

TABLE VI.--Projection Tables-Continued.
Latitions $46^{\circ} 30^{\circ}$.

TABLE VL--Projection Tubles-Continued.
Latitide $47^{\circ} 00^{\circ}$.

TABLE VI.-Projection Tables-Continued.

Latitude $47^{\circ} 30^{\circ}$.

Min.	Length in metres of sres of the parallel, (aro par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	9^{7}	10	283	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Are par.	Y.
30°	146.5	167.4	188.3	209.3	418.5	627.8	837.0	1046.3	1255.57	$1{ }^{\prime \prime}$	30.9	$1{ }^{\prime}$	-. 0	. 1
31	6.4	7.4	8.3	9.2	8.4	7.6	6.8	6.0	5.18	2	61.8	2	.0	. 5
32	6.4	7.3	8.2	9.1	8.3	7.4	6.5	5.6	4.78	3	92.6	3	.0	1.2
33	6.3	7.3	8.9	9.1	8.1	7.2	6.3	5.3	4.38	4	123. 5	4	. 0	2.2
34	6.3	7.2	8.1	9.0	8.0	7.0	6.0	5.0	3.98					
35	6.3	7.1	8.0	8.9	7.9	6.8	5.7	4.7	3.59	5 6	154.4 185,3	5	. 0	3.4 4.8
36	146.2	167.1	188.0	208.9	417.7	626.6	835. 5	1044.3	1253.19	7	216.2	7	. 0	6.6
37	6.2	7.0	7.9	8.8	7.6	6.4	6.2	4.0	2.79	8	247.0	8	. 0	8.6
38	6.1	7.0	7.9	8.7	7.5	f. 2	4.9	3.7	2.39	9	277.9	9	. 0	10.9
39	6.1	6.9	7.8	8.7	7.3	6.0	4.7	3.4	1.99					
40	6.0	6.9	7.7	8.6	7.2	5.8	4.4	3.0	1.59	10	308.8	10	. 0	13.5
41	116.0	166.8	187.7	208.5	417.1	625.6	834.1	1042.7	1251. 20	20 30	617.6 926.4	15 20	. 0	30.3 $-\quad 53.9$
4	5.9	6.8	7.6	8.5	6.9	5.4	3.9	2.3	0.80	40	1235.2	25	.1	- 84.2
43	5.9	6.7	7.6	8.4	6.8	5.2	3.6	2.0	0.40	50	1544.0	30	. 2	121.2
44	5.8	6.7	7.5	8.3	6.7	5.0	3.3	1.7	0. 100					
45	5.8	6.6	7.4	8.3	6.5	4.8	3.1	1. 3	49.60	${ }_{2}^{1}{ }_{2} 00$	1852.8 3705,6	35	. 3	164.9 $\mathbf{2 1 5 , 4}$
46	145.7	166.6	187.4	208.2	416.4	624.6	832.8	1041.0	1249. 20	3	55.8	4.	.7	272.6
47	6.7	6.5	7.3	8.1	t. 3	4.4	2.5	0.7	8.80	4	7411.2	54	. 9	336.6
48	5.6	6.5	7.3	8.1	6.1	4.2	2.3	0.3	8.40	5	9264.0	[5)	1.2	407.3
49	5.6	6.4	7.2	8.0	6.0	4.0	2.0	0.0	8.00	6	11116.8			
50	5.6	6.3	7.1	7.9	5.9	3.8	1.7	39.7	7.60			$\begin{array}{ll}10 & 00 \\ 1 & 10\end{array}$	1.6 9.8	484.7 669.7
51	145.5	166.3	187.1	207.9	415.7	62.3. 6	831.5	1039.4	1247. 21	7 8	12969.6 14922.4	$\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$	1.8 3.7	659.7 861.7
52	-5.5	6.2	7.0	7.8	5.6	3.4	1.2	9.0	0.81	9	16675.2	130	5.3	1090.5
53	5.4	6.2	7.0	7.7	5.5	3. 2	0.9	8.7	6.41	10	18528.0	140	7.2	1345. 4
54	5.4	6.1	6.9	7.7	5.3	3.0	0.7	8.3	6.01	11	211380.8	150	9.6	1629, 2
55	5.3	6.1	6.8	7.6	5.2	2.8	0.4	8.0	5.61	12	22233.6	200	12.5	1938,7
56	145.3	166.0	186.8	207.5	415.1	622.6	830.1	1037.7	1245. 21					
67	5.2	6.0	6.7	7.5	4.9	2.4	29.9	7.4	4. 81					
58	5.2	5.9	6.7	7.4	4.8	2.2	9.6	7.6	4.41					
59	5.1	5.9	6.6	7.3	4.7	2.0 2.0	9.3	6.7	4.01					
60	5.1	5.8	6.5	7.3	4.5	1.8	9.1	6.3	3.60	.				

M	Length in metres of arcs of the parallel, (arc par.)									Meridinal arch.		Co-ordinates of curvature.		
	7	$8^{\prime \prime}$	$9^{\prime \prime}$	10^{*}	$20^{\prime \prime}$	$30^{\prime \prime}$	40^{\prime}	501	$60^{\prime \prime}$			Minutes of longitude.	$\begin{gathered} \mathrm{X} . \\ \text { Are. par. } \end{gathered}$	Y.
${ }^{\prime}$	145. 1	165.8	186.5	207.3	414.5	621.8	829.1	1036.3	1243.60	1 "	30.9	1	-. 0	. 1
1	5.0	5.8	6.5	7.2	4.4	1.6	8.8	6.0	3.20	2	61.8	2	. 0	. 5
2	5.0	5.7	6.4	7.1	4.3	1.4	8.5	5.7	2.80	3	92.6	3	. 0	1.2
3	4.9	6.7	6.4	7.1	4.1	1.2	8.3	5.3	2.40	4	123, 5	4	. 0	2.2
4	4.9	5.6	6.3	7.9	4.0	1.0	8.0	5,0	2.96					
5	4.9	5.5	6.2	6.9	3.9	0.8	7.7	4.7	1.60	5	154.4	5	. 0	3.4
										${ }_{7}^{6}$	185.3	${ }_{7}^{6}$. 0	4. 8
7	144.8 4.8	165.5 5.4	186.2 6.1	206.9 6.8	413.7 3.6	620.6 0.4	827.5 7.2	1034.3 4.0	1211.20 0.80	8	${ }_{947.1}^{216.2}$	7 8	. 0	${ }_{8.6}^{6.6}$
8	4.7	5.4	6.1	6.7	3.5	0.2	6.9	3.7	0.40	9	277.9	9	. 0	10.9
9	4.7	5.3	6.0	6.7	3.3	0.0	6.7	3.3	0.00					
10	4.6	5.3	5.9	6.6	3.2	19.8	6.4	3.0	33.59	10	39 e 8	10	. 0	13.4
11	144.6	165.2	185.9	336.5	413.1	619.6	826.1	1039.7	1239.19	30	617.7 986.5	15 20	.9	30.2 53.8
12	4.5	5.2	5.8	6.5	2.9	9.4	5.9	2.3	8.79	49	1235.3	2	.1	84.0
18	4.5	5.1	5.8	6.4	2.8	9.2	5.6	2.0	8.39	30	1544.1	30	. 2	121.0
14	4.4	5.1	5.7	6.3	2.7	9.0	5.3	1.7	7.99					
15	4.4	5.0	5.6	6.3	2.5	8.8	5.1	1.3	7.59	$1^{\prime} 00$	1853.0	35	. 3	164.7
16	144.3	165.0	185.6	206.2	412.4	618.6	824.8	1031, 0	1237.18	$\stackrel{2}{3}$	$\begin{array}{r}3705.9 \\ 5054 \\ \hline\end{array}$	40 45	. 7	215.1 272.2
17	4.3	4.9	5.5	6.1	2.3	8.4	4.6	0.6	6.78	4	7411.9	50	. 9	336.0
19	4.2	4.9	5.5	6.1	2.1	8.2	4.3	0.3	6. 38	5	9264. 9	55	1.2	4116.6
19	4.2	4.8	5.4	6.0	2.0	8.0	4.0	0.0	5.97	6	11117.8			
20	4.2	4.7	5.3	5.9	1.9	7.8	3.7	29.6	5.57			1000	1.6	483.9
21	144.1	164.7	185.3	205.9	411.7	617.6	823.4	1029.3	1235. 17	8	12976.7 14823.7	1110 1 1	2.5 0.7	658.6 8611.3
22	4.1	4.6	5.2	5.8	1.6	7.4	3.2	9.0	4.77	9	16676.7	130	5.3	1088. 7
23	4.0	4.6	5.2	5.7	1.5	7.2	2.9	8.6	4.36	10	18529.6	141	7.3	1344.2
4	4.0	4.5	5.1	5.7	1.3	7.0	2.6	8.3	3.96	11	20332.6	150	9.7	1626.4
25	3.9	4.5	5.0	5.6	1.2	6,8	2.4	8.0	3. 56	12	22335.6	20	12.6	1935.5
${ }^{96}$	143.9	164.4	185.0	205.5	411.0	- 616.6	822.1	1027.6	1233.15					
87	3.8	4.4	4.9	5.5	0.9	6.4	1.8	7.3	2.75					
${ }_{99}^{98}$	3.8	4.3 4.3	4.9 4.8	5.4 5.3	0.8	6.2	1.6	7.0 6.6	2.35 1.94					
${ }_{30} 9$	3.7 3.7	4.3 4.2	4.8 4.7	5.3 5.3	0.6 0.5	6.0 5.8	1.3 1.0	6.6 6.3	1.94 1.54					

TABLE VI.-Projection Tables-Continued,
Latitudx" ${ }^{48}$ 3\%.

Min.	Length in metres of arca of the parallel, (are par.)									Meridional axcs.		Co-ordinates of curvature.		
	7%	$8^{\prime \prime}$	$9^{\prime \prime}$	10/'	201	$30^{\prime \prime}$	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	$\begin{gathered} \text { X. } \\ \text { Arc par. } \end{gathered}$	Y.
30	143.7	164.2	184.7	205.3	410.5	615.8	821.0	1026.3	1231.54	$1 / 1$	30.9	$1{ }^{*}$	-. 0	. 1
31	3.6	4.2	4.7	5.2	0.4	5.6	0.8	5.9	1. 14	2	61.8	2	. 0	.5
(32	3.6	4.1	4.6	5.1	0.2	5.4	0.5	5.6	0.73	3	92.7	3	. 0	1.2
F33	3.5	4.0	4.5	5.1	0.1	5.9	0.2	5.2	0.33	4	123.5	4	. 0	2.1
- 34	8.5	4.0	4.5	5.0	0.0	5.0	0.0	4.9	29.93					
35	3.4	3.9	4.4	4.9	409.8	4.8	819.7	4.6	9.52	5	154.4	5	. 0	3.4
36	143.4	163.9	184. 4	204.9	409.7	614.6	819.4		1229.12	6	185.3 216.2	6 7	. 0	4.8 6.6
37	143.4 3.4	163.9 3.8	184.4 4.3	204.9 4.8	409.7 9.6	614.6 4.4	89.4 9.1	1024.3 3.9	124.12 8.71	8	247.1	8	.0	6.6 8.6
38	3.3	3.8	4.2	4.7	9.4	4.2	8.9	3.6	8.31	9	278.0	9	. 0	10.9
39	3.3	3.7	4.2	4.6	9.3	4.0	8.6	3.3	7.90					
40	3.2	3.7	4.1	4.6	9.2	3.7	8.3	2.9	7.50	10	308.9	10	. 0	13.4
										20	617.7	15	. 0	30.2
41	143.2	163.6	184.1	204.5	409.0	613.5	818.1	1022.6	1227.09	30	926.6	20	. 1	53.7
42	3.1	3.6	4.0	4.4	8.9	3.3	7.8	2.2	6.69	40	1235. 4.	25	. 1	83.8
43	3.1	3.5	3.9	4.4	8.8	3.1	7.5	1.9	6.28	50	1544.3	30	. 2	120.7
44	3.0	3.5	3.9	4.3	8.6	2.9	7.3	1.6	5.88				.	
45	3.0	3.4	3.8	4.2	8.5	2.7	7.0	1.2	5.47	$1{ }^{1} 00$	1853.1	35	.3	164.3
46	142.9	163.3	183.8	204.2	408, 4	612.5	816.7	1020.9	1225. 07	2 3	3706.2 5559.4	40	. 5	214.6 271.7
47	14.9 2.9	163.3 3.3	183.8	4.1	40.4 8.2	2.3	816.4 6.4	10.6	128.66	4	7412.5	50	. 9	335.4
48	2.8	3.2	3.6	4.0	8.1	2.1	6.2	0.2	4. 26	5	9265.6	55	1.2	405.8
49	2.8	3.2	3.6	4. 0	8.0	1.9	5.9	19.9	3.85	6	11118.7			
50	2.7	3.1	3.5	3.9	7.8	1.7	5.6	9.5	3.45			1000	1.6	483.0
										7	12971.9	110	2.5	657.4
51	142.7	163.1	183.5	203.8	407.7	611.5	815.4	1019.2	1223.04	8	14825.0	120	3.8	858.6
52	2.6	3.0	3.4	3.8	7.5	1.3	5.1	8.9	2.63	9	16678.1	130	5.3	1086.6
53	2.6	3.0	3.3	3.7	7.4	1.1	4.8	8.5	2.23	10	18531.2	140	7.3	1341.5
54	2.5	2.9	3.3	3. 6	7.3	0.9	4.5	8.2	1.82	11	20384. 4	150	9.8	1623.2
55	2.5	2.9	3.2	3.6	7.1	0.7	4.3	7.8	1.42	12	22237.5	200	12.6	1931.8
56	142.5	162.8	183.2	203.5	407.0	610.5	814.0	1017.5	1221.01					
57	2.4	2.7	3.1	3. 4	6.9	0.3	3.7	7.2	60, 60					
58	2.4	2.7	3.0	3.4	6.7	0.1	3.5	6.8	20.19					
59	2.3	2.6	3.0	3.3	6.6	609.9	3.2	6.5	19.79					
60	2.3	2.6	2.9	3.2	6.5	9.7	2.9	6.1	19.38					

Min.	Ledgth in metres of ares of the parallel, (are par.)									Meridional ares.		Co-ordinates of curvature.		
	$\because{ }^{7 \prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	20%	3077	$40^{\prime \prime}$	$50^{\prime \prime}$	$60^{\prime \prime}$			Minutes of longitude.	X. Arc par.	Y.
0	142.3	162.6	182.9	203.2	406.5	609.7	812.9	1016. 1	1219. 38	$1^{\prime \prime}$	30.9	1 '	-. 0	. 1
1	2.2	2.5	2.8	3.2	6.3	9.5	2.6	5.8	8.97	2	61.8	2	. 0	. 5
2	2.2	2.5	2.8	3.1	6.2	9. 3	2.4	5.5	8.57	3	92.7	3	.0	1.2
3	2.1	2.4	2.7	3.0	6. 1	9.1	2.1	5.1	8.16	4	123.6	4	. 0	2.1
4	2.1	2.4	2.7	3. 0	5.9	8.9	1.8	4.8	7.75					
5	2.0	2.3	2.6	2.9	5.8	8.7	1.6	4.5	7.35	5	154.4 185.3	5	. 0	3.3 4.8
6	142.0	162.3	182.5	202.8	405.6	608.5	811.3	1014.1	1216.94	6 7	185.3 216.2	6	. 0	4.8 6.6
7	1.9	2.2	2.5	2.8	5.5	8.3	1.0	3.8	6.53	8	247.1	8	. 0	8.6
8	1.9	2.1	2.4	2.7	5.4	8.1	0.7	3.4	6. 12	9	278.0	9	.0	10.8
9	1.8	2.1	2.4	26	5.2	7.9	0.5	3.1	5.72					
10	1.8	2.0	2.3	2.6	5.1	7.7	0.2	2.8	5. 31	10 20	308.9 617.8	10	. 0	13.4 30.1
11	141.7	162.0	182.2	202.5	405.0	607.5	809.9	1012.4	1214.90	30	926.6	20	. 1	53.5
12	1.7	1.9	2.2	2.4	4.8	7.2	9.7	2.1	4. 49	40	1235.5	25	. 1	83.7
18	1.6	1.9	8.1	2.3	4.7	7.0	9.4	1.7	4. 08	50	1544.4	30	.8.	120.5
14	1.6	1.8	2.1	2.3	4.6	6.8	9.1	1.4	3. 68					
- 15	1.5	1.8	2.0	2.2	4.4	6.6	8.8	1.1	3. 27	$1^{1} 100$	1853.3 3706.6	35 40	. 3	164.0 214.2
16	141.5	161.7	181.9	202.1	404.3	606.4	808.6	1010.7	1212. 86	3	5559.9	45	.7	271.0
17	1.5	1.7	1.9	2.1	4.1	6.2	8.3	. 0.4	2.45	4	7413.1	50	.9	334.6
18	1.4	1.6	1.8	2.0	4.0	619	- 8.0	0.0	2, 04	5	9266.4	55	1.8	404.9
19	1.4	1.6	1.7	J. 9	3.9	5.8	7.8	1009.7	1.63	6	11119.7			
80	1.3	1.5	1.7	1.9	3.7	$5 ; 6$	7.5	9.4	1. 28	7	12973.0	$\begin{array}{ll}10 & 00 \\ 1 & 10\end{array}$	1.6 2.5	481.9 655.9
21	141.3	161.4	181.6	201.8	403.6	605.4	807.2	1009.0	1210.81	8	14826.3	120	3.8	856.6
22	1.2	1.4	1.6	1.7	3.5	5.2	6.9	8.7	0.40	9	16679.6	130	5.3	1084.1
23	1.2	1.3	1.5	1.7	3.3	5.0	6.7	8.3	0.00	10	18532.9	140	7.3	1332. 5
94	1.1	1.3	1.4	1.6	3.2	4.8	6.4	8.0	12093.59	11	20386.1	150	9.8	3619.6
25	1.1	1.2	1.4	1.5	3.1	4.6	6.1	7.7	9.18	12	22339.4	200	12.7	1927. 4
28	141.0	161.2	181.3	201.5	402.9	604:4	805.8	1007.3	1208.77	\because				
97	1.0	1.1	1.3	1.4	2.8	4.2	5.6	7.0	8.36		-			
98	0.9	, 1.1	1.2	1.3	2.7	4.0	5.3	6.6	7. 95	-				
98	0.9	+1.0	1. 1	1.3	2.5	-3.8	5.9.	6.3.	7.54 -7.13					
30	0.8	1.0	1.1	1.2	2.4	3.6	4.8	5.9	-7.13					

TABLE VI.-Projection Tables-Continued.
Látituds $49^{\circ} 30$.

Min.	Length in metres of ares of the parallel, (arc par.)									Meridional arcs.		Co-ordinates of curvature.		
	$7 /$	$8{ }^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$	$40^{\prime \prime}$	50"	69 ${ }^{\prime}$			Minutes of longitude.	$\underset{\text { Are par. }}{\mathbf{X} .}$	\mathbf{Y}.
30	140.8	161.0	181.1	201.2	402.4	603.6	804.8	1005.9	1207. 13	$1 \prime$	30.9	1^{\prime}	-. 0	. 1
31	0.8	0.9	1.0	1.1	2.2	3.4	4.5	5.6	6.72	2	61.8	2	. 0	. 5
32	0.7	0.8	0.9	1.1	2.1	3.2	4.2	5.3	6.31	3	92.7	3	. 0	1.2
33	0.7	0.8	0.9	1.0	2.0	2.9	3.9	4.9	5.90	4	123.6	4	. 0	2.1
34	0.6	0.7	0.8	0.9	1.8	2.7	3.7	4.6	5. 49					
35	0.6	0.7	0.8	0.8	1.7	2.5	3.4	4.2	5.08	5	154.5	5	, 0	3.3
36	140.5	160.6	180.7	200.8	401.6	602.3	803.1	1003.9	1204, 67	6 7	185.3 216.2	6 7	.0.	4.8 6.5
37	0.5	0.6	0.6	0.7	1.4	2.1	2.9	3.6	4. 26	8	247.1	8	!0	${ }_{8.5}^{6.5}$
38	0.4	0.5	0.6	0.6	1.3	1.9	2.6	3.2	. 3.85	9	278.0	9	. 0	10.8
39	0.4	0.5	0.5	0.6	1.1	1.7	2.3	2.9	- 3.44					
40	0.4	0.4	0.5	0.5	1.0	1.5	2.0	2.5	3.02	10	308.9	10	. 0	13.4
			180.4	200.4	400.9					20	617.8	15	.0	30.0
41	140.3 0.3							1002.2		30	926.7	20	.1	53.4
43	0.3 0.2	0.3 0.2	0.3	0.4	0.7	1.1 0.9	1.5 1.2	1.8	2. 219	40 50	1235.6	25	. 1	83.4
44	-0.2	0.2	0.2	0.2	0.5	0.7	0.9	1.1	1.38		1544.5	30	\cdot	120.2
45	0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.8	0.97	$1^{\prime} 00$	1853.4	35	. 3	163.6
										2	3706.9	40	. 5	213.6
46	140.1	160.1	180.1	200.1	400.2	600.3	800.4	1000.4	1200. 56	3	5560.3	45	.7	270.3
47	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0. 14	4	7413.8	50	. 9	333.7
48	0.0	0.0	0.0	0.0	399.9	599.9	799.8	999.8	-1109. 73	5	9267.2	55	1.2	403. 8
49	139.9	159.9	179.9	199.9	9.8	9.7	9.5	9.4	9.32	6	11120.7			
50	9.9	9.9	9,8	9.8	9.6	9.5	9.3	9.1	8.91				1.6	480.6
51	139.8	159.8	179.8	199.8	399.5	599.2	799.0	998.8	1108. 50	7 8	12974.1 14827.6	$\begin{array}{ll}1 & 10 \\ 1 & 20 \\ 1\end{array}$	1.5 3.8	${ }_{654.2} 8$
52	9.8	9, 7	9.7	9.7	9.4	9.0	8.8	8.4	8. 08	9	16681.0	1	5.4	1081.3
53	9.7	9.7	9.7	9.6	9.2	8.8	8.4	8.1	7.67	10	18534.5	140	7.4	1335.0
64	9.7	0.6	9.6	9.5	9.1	8.6	8.2	7.7	7.26	11	20387.9	150	9.8	1615. 4
55	9.6	9.6	9.5	9.5	8.9	8.4	7.9	7.4	6.85	12	22241.4	200	12.8	1922.4
56	139.6	159.5	179.5	199.4	398.8	598.2	797.6	997.0	1196. 44					
57	9.5	0.5	9.4	9.3	8.7	8.0	7.3	6.7	6.02					
58	9.5	9.4	9.3	9.3	8.5	7.8	7.1	6.3	5.61					
59	9.4	9.4	9.3	9.2	8.4 8.3	7.6	6.8	6.0 5.6	5.20 4.78					
60	9.4	9.3	9.2	9.1	8.3	7.4	6.5	5.6	4.78					

APPENDIX No. 40.
Letter from Lieut. Comg. T. A. M. Craven, U. S. Navy, assistant in the Coast Survey, communi cating his correspondence with Capt. Thomas E. Shaw, of the steamer William Gaston, in relation to the assistance rendered that vessel when disabled near the St. John's river, Florida, by the Coast Survey steamer Corwin.

Coast Survet Steamer "Corwin," Juchsonville, March 18, 1853.

Dear Sir: On the 16 th we discovered a steamer at anchor outside the bar, with signals of distress hoigted. I immediately got up steam; but it was too late in the tide to cross the bar, on which the sea was breaking heavily, Word was brought me that her ground tackle was not good, and I sent out hawser by the pilot-boat, with the promise of assistance the next morning, at high water. I scoordingly got under way at $11 \mathrm{a} . \mathrm{m}$. , went out, and sueceeded in bringing in the steamer William Gaston, from Savannah. Her machinery had broken down, (fortunately, just outside of the breakers;) she was in a very critical position, and the weather threatening. By request of her captain I left the "Gaston" at Mayport Mills, and, receivingen board of this vessel the passengers and mails, proceeded up the river to Jacksonville, where I am now replenishing my fuel. The weather has been very bad. with but little intermission, since my arrival.

Very respectfully, your obedient servant,
T. AUGS. CEAVEN,

Lieut. Comg, U.S. Naxy, Assistant in Coast Survey.
Prof. A. D. Bache,
Supt. U. S. Coast Survey, Washington, D. C.
$J_{\text {Acksonville, Fla., March 17, } 1853 .}$
Sir: Circumstances which compel my early return to Savannah deprives me of the opportunity of tendering to ysu in person my sincere thanks for your hind and efficient aid In rescuing the steamer William Gaston, her passengers, offieers, and crew, from her late perilous condition at sea when disabled, near the St. John's bar. Permit me, in the name of all on board my vessel, to express to yourself our high appreciation of the kind feeling which prompted you to reacue us from imminent danger. May I ask the favor of you to communicate to your afficers and orew the expressign of our sincere gratitude for the timely service so promptly rendered us.

THOMAS E. SHAW,
Captain Steaner Wulliam Gaston.

> Lieut. Comg. T. Adgs. Craven,
> U.S. Navy, Assistant in U. S. Coast Survey.
U. S. Surveyna Steamer "Corwin," Maitch 19, 1853.

Srx: In acknowledging your flattering communication of the 17 th instant, I am constrained to say that too high an estimate is placed on the service I have rendered; but I can assure you it is a source of infinite gratification that aid to your endangered party was thus at hand, and am thankful that the duties of this vessel, in the emergency, were discharged in a successful manner.

Respectfully,
T. AUGS. CRAVEN,

Lieut. Comg. U. S. Navy, Assistant in Coast Survey.
Captain Tromas E. Shaw,
Steamer William Gaston.

APPENDIX No. 41.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting the letter of Licut. Comg. James Alden, U. S. Navy, assistant in the Coast Survey, in regard to the wreck of the ship Aberdeen, lying in the entrance of the harbor of San Francisco, California.

> U. S. Coasr Sunver Orriox,
> Washington, D. C., August 13, 1853.

Str: I have the honor to forward, for the information of the department, though I am net aware that any present action. can be taken in the case, the enclosed copies of letters from Lieutenant Commandiny James Alden, assiatant in the Conat Survey, and Passed Midshipman R. M. Cuyler, reporting the obstruction to narigation caused by the wreck of the ship Aberdeen, lying st the eatranee of the harbor of san Franeisco.

Very respectfully, yours, se.,
Hon. Jayms Gotmbis, Secredary of the Treasury.
A. D. BACHE, Saperintendent.

Dear Sir: Mr. Worster, who has been wrecking for some time past near Fort Point, at the entrance of this harbor, represented to me that the wreck of the ship Aberdeen, which lies sunk at that spot, was an obstruction to navigation; I therefore sent Mr. Cayler to make the necessary examination. After speuding two or three days there, he returned. His report upon the matter is herewith enclosed. The result, although not entirely satisfactory, shows, I think, very conclusively, that the wreck is there, and in the narrowest part of the entrance. My opinion is, therefore, that it ought to be removed with as little delay as possible.

With great respect, I am your obedient servant,
JAMES ALDEN,
Lieut. Commanding U. S. N., Assistant in Coast Survey.
Prof. A. D. Bache,
Superintendent Coast Survey, Washington, D. C.
U. S. Steamer "Active," San Francisco, Jume $22,1853$.

Sir : In compliance with your order of this date, I have made a hurried examination of the wreck of the ship Aberdeen, lying off Fort Point, with a view to ascertain whether she is an obstruction to navigation.
I nounded on the outer portion of the wreck in three fathoms water, but was unable to determine its exact distance from the shore in consequence of a very thick fog. I should judge its distance from the outer rocks of Fort Point to be from one hundred and eighty to two hutured yards.

The tide at this point is slack for so short a time, the sea so often rough, and the weather thick, that there are but few days in the course of a year when a thorough and satisfactory examination of the Aberdeen can be made.

Respectfully yours,
RICHARD M. CUYLER.

Lieut. Commanding James Aldex,

Assistant in United States Coast Survey.

APPENDIX No. 42.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting one from Lieutenant Commanding James Alden, U. S. N., assistant in the Coast Survey, recognising the services of Acting Lieutenant R. M. Cuyler, in transferring the passengers from the steamer Tennessee, wrecked near the entrance to San Francisco harbor.

Const Servey Office, March 18, 1853.

Sir: I have the honor to enclose to the department a copy of a letter from Lieutenant Commanding James Alden, U. S. Navy, assistant in the Coast Surver, who is in charge of the hydrographic party on the Western coast, recognising the services of Acting Lieutenant R. M. Cuyler, in transferring the passengers from the steamer Tennessee, wrecked near the mouth of the harbor of San Francisco, through the surf, to the steamer sent to their aid. As due to Mr. Cuyler, and recommended by Lieutenant Commanding Alden, I would respectfully request that this recogaition of the "coolness and good management" shown by Mr. Cuyler may be communicated to the honorable Secretary of the Nafy, to be placed on the files of the Navy Department.

Very respectfully, yours, sec,
Hon. James Guthrie, Secrelary of the Treasury.

U. S. Surveying Steamer "Active,"
 San Francisco, California, March 13, 1853.

Sir: I have respectfully to report that so goon as the news of the disaster which occurred, near the mouth of this harbor, to the Pacific Mail Steamship Company's steamer Tennessee, reached me, I despatched two boata, well mamed, under the charge of Acting Lieutenant R. M. Cuyler, to their assistance, and I am happy to say they were fortunate in being able to render them good and efficient service. Mr. Cuyler, with his boats, succeeded in traneporting more than two-thirds of come six or seven hundred passengers, with their baggage, from the beach, through a heavy sarf, to the steamer sent to receive them, in the short space of three hours, without the slightest injury to any one-a result entirely attributable to his coolnesg and good management. I would also state that Mr. Cuyler remained with the boate by the wreck nearly two days, and succeeded in saving much valuable property.

With the request that you will bring such prsiseworthy sonduct before the proper department,
I am, with great respect, your obedient servant,

Prof. A. D. Bions,

Tribute of respect to the memory of Sears C. Wulker, Esq., assistant in the Coast Survey.

Cohst Survey Office,

Washington, Fedruary, 9, 1853.
Dear Sir: We discharge a melancholy act of friendship to pour lamented brother in communicating the proceedings of a meeting of the officers and members of the Coast Survey, held at the Coast Survey office on the 2d inst., to pay a tribute of respect and feeling to his memory. The meeting was largely attended, and was characterized by an unusual solemnity of feeling. The resolutions but feebly express the sense entertained by his associates of his exalted services as a brother officer, and as a leader in American seience. His death is a national loss. Private grief is absorbed in the contemplation of the larger loss which has resulted to science, and to the public at large. We knew your brother well; we sympathize most fully with your own bereavement. This letter of condolence, showing you how largely it is shared by all his associates, we hope may tend to alleviate your own sorrow. We address you as the representative of Prof. Walker's family. Please communicate to the other members, particularly to that kind sister who was se vigilant in her cares and attentions, our condolence and sympathy, and remember that his relatives and friends will have a place in our hearts.
With sentiments of respect, we remain truly your friends,
I. I. STEVENS,

Brepet Major U. S. Corps of Eng., assistant in the Coast Survey.
J. J. ALMY,

Lieutenant U. S. Navy, asssstant in the Coast Survey.
L. F. POURTALES,

Hon. T. Waleer, Cincinnati, Ohio.

A meeting of the officers and members of the Coast Survey in Washington was held at the Coast Survey office on the 2d instant, and on motion of Lieutenant Commanding J. J. Almy, Uaited States Navy, assiatant in Coast Survey, Professor A. D. Bache, Superintendent of the Survey, was called to the chair.

Upon taking the chair, Professor Bache addressed the meeting as followa:
We have met to pay our tribute of respect and feeling to one of our most distinguished aud valued associates, Sears C. Walker, Esq., whose failing bealth, for more than a year past, has kept us in anxiety and foar for the result which has now. come. Mr. Walker was attacked by bilions fever some weeks since, and though his mind was clear, his physical strength was not adequate to resist the effects of the disease. He died at the residence of his brother, Judge Walker, near Cincinnati, on Sumay evening last, having the cousolations of the devoted care of the members of his family residing there, and of his sistory, who had been sent for to Washington.

The eevices which Mr. Walker has. rendered to the Coast Survey are known in a general way to most of those whom I address. He had made the largest collections of Anerican observations of moon cuiminations and occultations ever made in the country, and prepared to discuss them thoroughly for longitudes, and to bring them to bear, as far as applicable, by the geodetic renults of the Coast Survey, upon the longitude of a central point. The magnitude of this labor would have sppalled an ordinary mind. He knew that by perseverance it could be accomplished. During this discussion he reached the conclusion that the longitudes from moon culminations could not be reconciled with those from occultations, and that the theory must be re-examined for an explanation. His published reports show the successive steps of his investigation, which was not completed at the time of his derease. In the midst of it, the new, attractive, and determining differences of longitude by the telegraph was committed to him. and he threw all his zeal and knowledge into the solution of this problem, and brought it to the successfal condition in which it now is. He early saw the impossibility of reaching a near result by merely repeating the transmission and reception of signals, beats of a clock or chronometer, and that the beats sent and received must be of time-keepers regulated to different times-as, for example, mean solar and siderial-and seized all the consequences flowing from this principle. The telegraphing of transits of stars was original with him. He soon became satisfied of the necessity for graphic registry of the time-results, and invited the co-operation of Mr. Saxton, of Mr. Bond, of Prof. Mitchel, and of Dr. Locke, in the solution. With him originated the application of this method of the registry of time-observations for general astronomical purposes, now developed by so many ingenions modes, and known as the "American mothod." His researches on galvanic wave-time, growing out of these experimente for difference of longitude, are by far the most valuable contributions yet made to this march of science. In this sabject alone Mr. Walker accomplished a most remarkable five years' work. But this was only a part of what his mind found there to do; and aside from this, and laborn of daily and nightly routine in computing and observing, he accomplished a work of investigation of the orbit, and compatation of an ephemaris of Neptune, which of itself would have given him an ondying reputation. I cannot in this place deseribe how the training of a lifis was obtained which led to these brilliant results of our work, and for American science, nor can I trust myself now in analysis of the mind and heart of this friend of many yeara. I have faintly pencilled his doings while closely connected with our work, shadowing merely his clains to our admiration, respect and gratitude.
On montion of Samuel Hein, Esq., Brevet Captain J. G. Foster, eorps of engineers, assistant in the Cosst Survey, was appointed secretary.
L. F. Pourtales, Esq., assistant, then presented the following resolutions:

In view of the great services rendered by Professor Sears C. Walker during his connexion with the Cosst Survey, and eapecially in the complicated but essential investigations connected with the loogitudes, in the methud of using the telegraph for differences of longitude and in time-observations generally, of the lustre reflected upon the work by his other great recearches in astronomy and eleetrieft, and of his many excellent qualities as an associate-
Resolded, That we have learned with the deepent regret and sorrow the decease of our much respected colleague, Profossor Sears C. Walker, and moura for his loss to us as a friend and aspeciate, to our work as one of its most distinguished, zealous, and efficient officers, and to American science as one of its most ardent, persevering, and successful cultivators.

Resolved, That we will wear the usual badge of mourniag for our deceased colleague.
Resolved, That we offer to the family of Professor Walker our heartfelt gympathy in their grief, alleviated only by the conscivuness of the watchful care with which they attended hin in failing healh mad in his last illness.

Resoloed, That the proceedinga of this meaing be commanieated to the family of Professor Walker, and be pabliahed.

In seconding the resolutions, Major I. I. Stevens, corps of engineers, aseistant, paid the following trivinte to the memory of the deceased:
Mr. Chaiman : After the touching and complete exposition which we have just beard, it would be a work of supererogation on my part to add one single word in illustration of Protessor Walker's character and services: but I should do great injustice to my own feelings did I not draw from his example a lesson to guide us in life. Professor walker was not only emphatically a man of genius, bringing strong powers of mind, great natural ardor, and indefatigable perseverance to pursuits for which nature had given bim a particular bent, but he was emphatically a far-seeing and national man who was prompted to exertion that he might advance the bonor and renown of his country, and assist to give her a foremost rank in science. He has done much in placing our country in this foremost rank, as is her due, her purpose, and her duty. With our newness of circumstances, with the great problems of human destiny and progress we are called upon to solve, with the motives to exertion growing out of our admirable form of government, he felt that mere equality with former efforts was a miserable failure, deserving bat rebuke and reprobation. Our duty was to take the lead, to press forward in discovery, to illumine the future and redeem the past.
We are brought together from various departments of the pablic service, and are associated in a great public work. Like him we should seek, each in his sphere, to advance the hnor and renown of our common country. We each should make it our purpose to do something for his profeseion, which, while it will insure the greatest possible present efficiency, will be a preparation for those great exigencies which happen to men and nations, and which lead, if rightly understood and availed of, not only to national glory, but to world-wide usefnlness and bonor. It is a great mistake to suppose that the mere noutine of daily labor can lead to great results. This can be done only by a far-reaching view of things, which sweetens labor and gives life and light to laborious pursuits, which fills the soal with hope and gives to intelleet its greatest vigor. Such was pre-eminently the ease. with our departed friend. -His intercourse, teo, with the youthful aspirants for scientific distinction, was most admirable. I have at times been thrown into intimate personal relstions with him, and frequently have I been delighted with the paternal interest which he took in all youths of promise associated with him, and his untiring perseverance and hope in doing what he could to develop their powers. It was to him an intense personal gratification, and would be the subject of frequent conversation. Ought not this example to impel us, each with the means he has at his disposal, to develop youthful promise, and thus to do our part towards rearing the structure of American greatness? It was Professor Walker's profound conviction, that wherever American hearts and hands were joined in the accompliebment of an object, a peculiar grandeur wonld aitach to it, surpassing all previous accomplishment. Letsuch be our conviction. It is by single men, dike us, taking this large view of duty, pursuing it with'hope and fixed resolve, that new forms of greatness will become known to the world. As it was with our departed friend, so let it be with us an abiding sentiment, giving direction to our daily life, not to minister to the gratification of personal or national pride, but to enable us to exert a world-wide usefalness.

Lieutenant E. B. Hunt, corps of engineers, assistant, made the following remarks:
I should not ga the present occasion think of adding anything to what has been already said, were it not for a pleasant remembrance of an incident which seems not unworthy of narration even here, as it will serve to exhibit aome fine traita in Mr. Walker's chatracter. The occasion on which I first chaneed to meet our deceased associate was at, the meeting of the American Association, beld in Cambridge. He there first announced the discovery of Kirkwood's, analogy. His connexion with this discovery is one evincing on his part great delicacy and kindness. Mr. Kirk wood was then, maknown and unrecognised-a teacher in the backwoods of Pennsylvania. He wrote to Mr. Waiker, to whom he was quite a stranger; announcing his diecovery, and stating it in an jimperfect and undeveloped way. Mr. Walker immediately perceived its value, and applied the powers of his own mind to the elaboration and depelopment of the idea. When occasion offered, he presented, it in all its clearness and development, to the American Aseociation. It was, indeed, worthy of all notice how he there aseribed the entire inerit of the dincovery to Mr. Kirkwood, claiming to himself nothing for the labor he had bestowed and the extension be had given to the imperfect conception. Yet it: was clear to all present, that without his aid the discovery would have continued to slumber in obscurity. Whether the analogy proves ultimately to be an entirely correct one or not is immaterial, so far as concerns the generosity of Mr. Walker's course. He came forward and endorsed, with all the powerful aid of his established reputation; an idea which else would have lingered unrecognised for many. long years. He had much to lose and little to gain in reputation by suoh a course; but he lacked not the kindness and courage which dare to take riske for the benefit of others, and for the promotion of knowledge. By extending a helping hand to a conception which at the outeet seemed fancifut and hopeless, he did a servjce reflecting peculiar honor on himeelf as a man. How many great and important ideas have been lost to science for years, or even forever, because such friends were lacking, who, haviug the knowledge needful, fur discriminating, possess also that. kindliness and courage which are indispensable to overcoming the prejudices and mental inertia of the porld! There are but few such men, and we can but ill afford to lose any of them. Whila we may hope, indeed, that good novel idoas will hot faid to find recognition among those left in our midst who have ensoblished reputations, it is not the less a reason why we ghould regard our present loss as positive and peculiar. He whose name is most iatimately associated with the "American method" of astronomical records, with that of telegrnphic longitudes, with the ephemeris of Neptone, and the ingenious discovery of Lalad's observation on that plavet, carfot fail to be regarded as one for whom the dawning science of this country had most especial resmon to wish for long life, and to claim; what he henceforth will have, a memory honored through the progressing ages.
On motion of Lieutenant Commanding Maxwell Woodhal, U. S. Navy, assistant, the Chair appointed Major I. I. Stevens, corpa of engineers, Lientenant Commanding J.J. Almy, U.S. Navy, and L. F. Pourtales, Esq., ansiptant in the Coast Survey, a committee to communicat. the proceedings of this meeting to the family of Professor Walker, and to publish them.

The resolutions were then unanimously adopted, and the meeting adjourned.
A. D. BACHE, Chairman.

John G. Fostri, Brevet Captain Corps of Engineers U. S. A., Secretary. : •

APPENDIX No. 44.

Tribute of.respect to the memory of Lieutenant Joseph Suiff Totten, U. S. Arny, assistant in the Coast Surrey.

A meeting of the officer of the United States Coant Sarvey was held in Washington on the $18 t h$ of May, in concequence of the death of Lieut. Joseph S. Totten, of the 2d regiment of artillery, while engaged an an assibtant of the survey.

Professor A. Dr. Bache, the Superintendent, was called to the chair, and Lieut. A. A. Gibson, U. S. Army, appointed Secretary.
The Superintendent, upon taking the chair, addressed the meeting as follows:
Joseph Swift Totten, to whose memory we have met to pay the tribute of our-unfeigned regard and respect, was first appointed on the Coast Survey in 1845, and served in the Eastern section, and with Mr. Gerdes, the pionesr of the survey on the Gulf of Mesico. The delicate health which had induced his resignation as a cadet, now seemed to improve under the outdoor services of the surver, and, from his devotion to the work, a long and useful course appeared to be before him. On the breaking out of the war with Mexico, he was appointed a lientenant in the second regiment of artillery, and served faithfuly with his company in the field. Returning at the close of the war to garrison at Charleston, his health again became impaired, and he hoped to recruit it by joining once more the Coast Surver, which had proved so congenial and beneficial a service to him.
He was detailed for that service in December, 1850, with Mr. Blunt, on the Chesapeake and Hadson; and in Florida, in ${ }^{\text {a }}$ the survey of the reefs and keys, sought with characteristic modesty that experience which would enable bim successfully to conduct a party. Last December he was detailed to make the triangulation of the harbor of Georgetown, South Carolina, and though much weakened by an attack of illuess in Charleston, insisted on proceeding to execute his instructions, and on his entire physical ability to conduct the operations without more than the ordinary assistance.
Though suffering, from time to time, excessive pain from the consequense of a disease of the heart, he still continued to work, after those around him would have persuaded him to seek medical advice and aid.
He was determined to accomplish the task allotted to him, and only after going through the fatigue of a reconnaissance, and erecting signals, and haying, indeed, occupied some of the, stations for observations, did his disease obtain so far the mastery $\mathbf{a s}$ to induce him to desist from work. In less than four weeks from that time he was no more. Not all the care of the members of his.family, who in their devotion attended him from Charleston, could prolong his life until he had reached his home.
A strong will, strongly exercised, enabled Lient. Totten to triumph over physical suffering, and to set the example of a conscientious discharge of duty under circumstances when most men shrink from even ordinary effort. He had a natural aptitude for the active operations of the survey, and a method and order in the execution of his work; which insured success. Mis mild but steady authority was felt in his party, and his amiability endeared him to those in his employ, as well as to his associates. I cannot better describe his character than in the words of an officer of the Coast Survey who knew him well, and was warmly attached to hiw, (Mr. Boutelle,) who, mourning over his early death, says, "He was worthy, conscientious, and upright-a trae Christian gentleman."

- Resolutions were presented by Captain J_{3}^{\prime} G. Foster, corps of engineers, which, after appropriate remarik by Dr. B. A. Gould, of Cambridge, and Captain H. W. Benham and Lieut. E. B. Hunt, corps of engineers, in testimony of the high character of the deceased in public and private life, were unanimously adopted, as follows:
Resolved, That we have learned with prinerate regretere the decease of our associate and friend, Lieut. Josepph Swift Totten,
R. S. Army, whiose conscientious discharge of duty was an example to us, while his urbanity of manner and kindness of U. S. Army, whise conscientions discharge of duty was an example to us, while his urbanity of manner and kindness of heart made pim most agreeable to us in all social relations.

Resolped, That we look back upon the closing part of the life of our young associate, devoted zealously to work to the last, while suffering under painful and wasting disease, as giving him the highest title to our respect and esteem, and to a place in the history of the national work in which he was engaged.
Resolved, That we offer to the family of Lieut. Totten our most sincere condolence in the loss of the dutiful mon and affectionate brother thus taken, in eariy manhood, from the family circle.

Resolved, That we will wear the usual badge of mourging for our deceased associate, in testimony of our respect for his memory.
Resolved, That the secretary of this meeting communicate to the family of the deceased the above resolutions.
A. D. BACHE, Chairman.
A. A. Glbson, First Lientenant $2 d$ Aytillery, Secratary.

APPENDIX No. 45.

Tribute of respect to the memory of B. F. West, Esq., sub-assistant in the Coast Survey. Coast Survey Station, Mt. Blue, hear Phillips, Maine,

September 12, 1853.
Dear Sir: Although nothing can lighten the force of the blow which pou have euffered in the loss of your excellent son, exeept the consolation from Him who, in his Almighty wisdom, permitted its infiction, it must afford some gratification to know how unaiimously he was esteemed and loved by those, his associates of the few years just past, occupying such different positions in respect to him, and of such different ages, ajid yet uniting in one cordial expression of deep regret for his loss. Such an expression we tender to you and to the bereaved nother of our young friend; prayiag that you may be sustained in this your day of bitter affliction.

With great fespect, yours truly,
Johin West, Esq., Alexandria, Va.

Whereas it has pleased Divine Providence to remove from us, by death, our young friend and assaciate, Mr. Benjamin F. West, and in view of his amiable disposition, high attaiments, and strict adherence in the performance of every duty; therefore,

Resolved, That we have learned with deep regret and sorrow of the decease of our much esteemed young friend and associate, Mr. Benjamin F. West.

Resolved, That while we mourn his loss as an agreeable companion, we feel that the Coast Survey has lost an efficient. and promising young offleer.

Resolved, That we extend to the family and friends of the deceased our heartfelt sympathy in their deep affiction. Resolved, That a eopy of these resolutions be forwarded to the family of Assistant West, and that they be printed. A. D. BACHE

GEORGE W. DEAN.
P. BEVERLY HOOE THOMAS MCDONNELL LEWIS S. HAYDEN.

APPENDIX No. 46.

Letter of the Secretary of the Treasury to the Superintendent of the Coast Survey, directing surveys and examinations to be made with reference to the location of authorized lights, and other aids to navigation, in conformity with the request of the Light-house Board, and with the acts of Congress approved March 3, 1851, and August 31, 1852.

Theasery Department, April 7, 1853.
Sir: I have to request that you will canse examinations and surveys to be made, as enumerated in the eaclosed copy of a communication from the Light-house Board, with the view to the location of authorized lights, and other aids to navigation, in conformity to the act of 3 d March, 1851 , and the 17 th section of the act of 3 Ist August, 1852.

Very respectfully, your obedient servant,
JAMES GUTHRIE,
Secretary of tive Treasury.
Prof. A. D. Bachz,
Superintendent U. S. Coast Suroey, Washington.

Treasery Derartment, Office Lidet Hovse Board,

April 6, 1853.
Sir: I am directed to requert that the Superintendent of the Coast Survey may be instructed to make examinations and surveys of the following points, with the view to the location of guthorized lights, and other aids to navigation, in conformity to the set approved 3d March, 1851, dad the 17th section of the act approved 31st August, 1852, viz:

To examine "Deep Hole Rock:" in Vineyard sound, Massachusetts, with a view to place a beaoon upon it.
To make a topegraphical survey of Cattyhunk Point, and a hydrographical survey of the nocks called "Sow and Pigs," in connection with it, for the purpose of determining the best position for a light-house. -
To make examinatign of Connecticut river below Middletown, and seleotion of sites for orre or more beacon-lights, and for buoys and spindles in that locality.
To make an exapination, and report upon the sites for the Coast Survey sigats along the Florida reefs, with a view to their being made permanent.

To make an examination and urvey of Point Bonita; California, north side of San. Francisco bay, with a view to the erection of a second class light-house.
Examination and selection of bite for light-house in San Pedro bay, California.
To make a survey of Romer shoal, New York harbor, with a view to placing ehannel rangelights authorized by law. Very respectfully, your obedient servant,

THORNTON A. JENKINS, Secretary.
Hon. James Guthrix, Secretary of the Treasury.

APPENDIX No. 4^{77}

Tuble showing the results of re-examinations for sites of light-houses, bcacons, bucys*; \&c., referred to the Superintendent of the Coast Survey by the Secretary of the Trasury, in accordance with the laws of March 3, 1851, and August 31, 1552, and the recommendation of the Light-house Board.

Sect'n	State.	No.	Special	Ob	By whom	Report of Superintendent.
I	Maine	1	Nubble, Cape Neddick,	Examination and sur-	Lieutenant Comg. Woodhull.	Report to be made.
	Marsachuse tts. .	2	inot's ledge, Cohasset Rocks, Boston harbor,	Examination and survey for light-house.	Lioutenant Comg. Stellwagen.	Recommended November 21, 1853.
	$\begin{array}{ll} & *\end{array}$		Deep-hole Rock, Vineyard sound, Mass.	Beacon	Lientenant Comg. Woodhull.	Spindle recommended Oct. 31, 1853.
		4	Sow and Pigs Rocks, off Cuttrhunk, Mass.	Examination and survey for light-house. Channel range-lights.	Lieutenant Comg. Woodhull.	Recommended September 3, 1853.
II	New York.....	5	Romer shoal, Now York harbor.		Lieutenant Comg. Woodhull.	Report to be made.
VI	Florida	6	Signals on Florida reef...		Lieut. Jas. Totten.	Recommended November 3, 1853.
VIII	Mississippi ㄷ.. Louisiana \qquad	7	Entrance to East Pasca goult river.	Examination and survey for light-house-	Lieutenant Conag. Sands.	Recommended November $15,1853$.
		8	Ship shoal and Racoon Point.	Examination and survey for light-house.	Lieutenant Comg. Sands.	Recommended November 16, 1853.
IX	Texas	-9	Entrance to Sabine river. Aransas Pass \qquad	Examination and survey for light-house. Examinationand survey for light-house.	Lieut.Jno, Wilkinson. Lieutenant Comg. Stellwagen.	Becommended July 12, 1853. Light-vessel recommended September 5, 1853.
		10				
X	California....-.	11	Point Bonita \qquad San Pedro \qquad	Examination end survey for light-house. Examination and survey for light house. Examination and survey for light-house.	Assistant R. D. Cutts. Lieutenant Comg. J. Alden: Lieutenant Comg. J. Alden.	RecommendedSeptember 1, 1853. Under instructions for examination. Under instructions for examination.
		13	San Pedro................			
	Do.......-	14	Santa Cruz-.			

APPENDIX No. 48 .

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting the report of Lieut. Comg. I. S. Stellwagen, U. S. Navy, assistant in the Coast Survey, on the survey of Minot's Ledge, Cohassett Rocks, Boston Harbor, with a view to the selection of a site for a light-house there.

> Coast Survey Statiok, íear Phillips, Maine,

November 21, 1853.
Sir: I have the honor to transmit, for the use of the Light-bouse Board, the report of Lieut. Comg. H. S. Stellwagen, - U. 8. Navy, assistant in the Coast Survey, on the survey of the Cohassett Rocks, Boston harbor, with a view to the selection of a site for a light house, to replace the one swept from Minot's Ledge, and for which appropriation was made in the act (fi-Congress approved August 31, 1859.

The hydrographic sumpey was made by Lieut. Comg. Stellwagen, who was aided in the selection of the site for the lighthouse by Captain H. W. Benham, U. S. corps of engineers, assistant in charge of the Coast Survey office.
I encloge herewith a tracing of the map, upon a fcale of stor, on which the propered site is indicated by a circle in red ink, the dimensions and relative poeition of the rocks, and the depth of water, immediately upon and around them.
I concur in the selection of this position for the proposed light-houae, and would respectfully request that a copy of this letter, its enclosure, and the sketch, may be forwarded to the Light-house Board, at whose request the eurvey and examination have been made.

Very respectfully, yours, \&c.,
Hon. James Guthrie, Secretary of the Treasury.
A. D. BACEE, Buptrintendent.

Sir : To make a eurvey of ench rock that appeared well calculated by size and position to answer the purpose reanired, on a scale of one five-hundredth, I ovclosed each separately, with bugy forming a quadrilateral fagure around it at :
proper distance, so as to determine accurately the boundary and area embraced, also the position of each buoy, by that means being enabled to run the lines of souvdings truly, placing them parallel and straight, and crossing them ia like manner at right-angles, cutting the space into numerous small squares, and showing with the greatest precision the depth of water and the nature of the bottom in all parts of the space enclosed, each sounding being marked in its exact place.

I also obtained, at very low water, the figure and dimencions, with all the elevations and depressions, as presented when bare of each rock, and representing it by a ground-plan and elevated views, the latter in several directions, on a seale of $T_{1} \frac{1}{2 \pi}$.

They are called, respectively, the Inner and Outer Minot, Hogshead Rock, East Willie, and, Shag Rock. The three latter present good foundations for the erection of a stone light house, but are objectionable as lying too far inside the outermost point of danger to serve with certainty in very foggy or snowy weather, particularly for vessels coming from the direction of Scituate light. In this respect the Minots are far preferabIe, and Captain Benkam. engineer corps U. S. Army, assuring mo that a sufficiently large and firm basis could be obtained on the Iuner Minot. I was convinced that it possessed the greatest advantages, and gave it the most minute examination, enclosing it three times by buogs as before explained, and also measuring its surface and sounding from it in lines varsing from a central pointin thirty-two different directions, and the Outer Minot in same way with mineteen radiating lines, each line determined by actnal measurement as to length, and by angles taken from central point where measuring line was fastened, getting the exnct direction of line by the arc subtended between it and a line of sight to an established object on shore; thus each sounding is on a correctiy determined line, and at actual measured distances from ceentral point.

The adyantages presented by the proposed location on the Inner Minot, are: that it is greatly sheltered by the Outer Minot, and much protected from the force of the sea; that a stone structure, according to Capt. Beaham's opinion, (whose long experience and great abilities as an engineer make him a most capable judge, can be erected, large enough at base; with a perfectly secure foundation on the rock, by preparing the lower courses of large blocks of granite, dressed so as to key or dove-tail together, and to mintually sapport each other, being still further secured by bolts or clamps to the solid mass of the rock and one another; and by filling all the interstices with concrete, the tower will be almost indestructible.

The examination shows that the work can be prosecuted in rery rough weather, as moorings can be placed for vessels, in sufficiently deep water, close to the S. W. side of the Inuer Minot, where it and the outer ledge form an excellent breakWater, and the stone and materials can be swong by a derrick directly into place froma vessel's deck. A light-house can thus be built, in a reasonable time, that will last for centuries, and be a warning against all dangers of that group, and standing within three hundred yards of the furthest dangerous spot.

Very respectfully, your obedient servant.
H.S. STELLWAGEN,

Lieut. Comg. U. S. Navy, Assistant in Coast Survey.

Prof. A. D. Bache;

Superintendent.U. S. Coast Survey, near Phillips, Maine.

APPENDIX No. 49.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, communicating the report of Lieut. Comg. M. Woodhull, U. S. N., assistant in the:Coast Survey, upon an examination of. Deen Hole Rock, in Vineyard Sound, Massackusetts, with reference to placing a beacon there.

$$
\text { C. S. Syatron, near Pimilps, Maine, October 31, } 1853 .
$$

Sis : I have the honer to transmit, herewith, the report of Lieut. Comg. M. Woodhull in relation to placing a beacon on Deep Hole Rock, in Vineyard sound, Massachusetts, the result of his examination, made under my instructions, and by direction of the department.
I would respectfully request that a copy of this letter, and accompanying report and sketch, may be transmitted to the Light-house Board, by whose request the examination was made. Very respectfully, yours, \&c.,
A. D. BACHE, Supcrintendeat.

Finn. James Guthrie, Secretary of the Treasury.

Sir: I have the honor to inform you that I completed, yesterday, the survey of "Deep Hole Rock," at the entrance of Deep Hole harbor," near Cotait. This rock is about fifteen feet long and about twelve feet wide; and has on it, in the shoalest spot, three and a half feet of water at low tide. Though soundings around it are remarkably regular, being almost a dead fat, with thirteen and a half feet on it at low water, I should think a good-sized spindle would answer all the parpdses of a beacon, and could be more easily erected, and be much lees expensive. There is now a large red buoy near it, whith I mof the opinion, if it could be properly placed and maintained in its position, would ansker. However, as a apindle is more permanent, and as it could be so constructed as to show prominently, it would be the best distinguishing mark, uuder the circumstances, that could be devised. I send you the chart of the rock, which will, perhape, give you a better idea of the subject than any written exposition would do. If it is determined to put a beacon on it, the apex of the rock will have to be cut off, shaped as shown in the sketch, which will increase the expense.
"Deep Hole harbor" is principally used as an anchorage in a northeast blow for coaseers bound along the north shore of Nantucket sound. Further than this it in of eanll importance, the rock being entirely out of the way of the eatrance
to Cotuit, but is much complained of by those who use "Deep Hole harbor." I have not heard that it has ever been the cause of accident, which argues that its position is well known to those frequenting the locality. I presume the guide required is necessary in foggy weather and darts nights.

Yours, respectfully,
M. WOODHULL,

Lieut. Comg. U S. N., Assistant in Coast Survey.

Professor A. D. Bache,
Superintendent U. S. Coast Survey, Washington, D. C.

APPENDIX No. 50.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting extracts from the report of Lieut. Comg. M. Woodhull, U. S. N., assistant in the Coast Survey, upon the survey of the "Sow and Pigs" rocks, off Cuttyhunk, Massachusetts, with reference to the location of a light-house.

Mount Blue, near Phiflips, Maine, September 3, 1853.
Sir : I have the honor to transmit, for the use of the Light-house Board, a report on the survey of the rocks off Cuttyhunk. Massachusetts, known as the "Sow"and Pigs," where it is proposed to establish a light-house. The hydrugraphio surpeys were made by Lifeut. Comg. Maxwell Woodhull, U. S. Nary, assistant in the Coast Survey, and the topographical survey by H. L. Whiting, Esq., assistant in the Coast Survey. Captain H. W. Benham, corps of engineers, assistant in charge of Coast Survey office, also aided in the final examinations of the proposed site for the light-house. The first of the two maps herewith transmitted shows the general relation of the rocks to the island of Cuttyhunk, and the depth and character of the bottom in the vicinity. It is on a scale of $5 \frac{1}{5} \sigma$, and indicates, by a circle in red, the position where Lieut. Comg. Woodhull proposes to place the light-house. The second map shows on a large scale ($1 \frac{1}{20}$) the relative positions of the rocks afound the kite, and their dimensions, and the depth of water on the proposed site, and in the immediate vieinity.
In his report to me Lieut. Comg. Woodhull says: "This shoal is formed of single rocks of various sizes and irregular forms, none of whith, not even the largest, have any considerable surface. They rest on a hard bed of mixed pebbles and rocks, with the interstices bere and there flled with sand and clay. They extend in a regular line from the blaff of Cuttyhunk, first W. by S. 1,468 metres, then SSW. 750 metres, then turn SW. by W. 503 metres to the place where the light-boat is moored. There is but one place on the shoal, in my judgment, suitable for the erection of a lighthouse. I have marked this spot on my sheet with a doublo red line, which seoms particularly adapted to the purpose. This site is on a ridge amidst a claster of rocks, forming almost a full circle of some fifty feet in diameter, within which there is about one to two feet water at low tide. The arrangement of the rock is such as to furm an admirable breakwater, within which a foundation could be built. This locality can be easily approached, having comparatively deep water on the north side, sufficiently so during a smooth sea for scows or other vessels drawing four or five feet water:- If a temporary working pier were built, resting on the rocks, and extending inorth fifty or one hundred feet, vessels of more considerable burden could approach safely. The Whale's Back or Middle Ledge vocke are too near in-shore for the purpose, even if their dimensions were adequate. Sow Rock stands alone, in about two fathoms water at low tide. This is the most considerable in size of the whole nutuber that show themselves. The rock has a base of about tweuty feet by fifteen, shaped as shown in sketch. The apex of the rock only is seen at ordinary $10 w$ water. At very lows spring tides, I am informed that one-third of the rock is exposed. While at work I approached it from several directions, but was unable to get upon it, as the sea was breaking too violently to do so.
4 A light-house, placed as described, would be of incalculable value on this dangerons part of the coast, and would enfficiently mark the shoal. The soundings ontaide of the reef are characteristic, and would be a sufficient guide to the navigator if the light-house were furnished with a proper fog-bell, or fog-whistle. As a rule, the reef should not be approached in foggy weather nearer on the north side thar where the soundings are fourtcen fathoms, and on the west and south sides seven fathoms; from which depth the reef rises abruptly."

In a subsequent report, Lieut. Comg. Woodhull says: " The rocks. which form almost a circle about the proposed site, are most of them of large dimensions, resting on a bed of rocks and stones from the size of those generally used for paving, to boulders of two to three feet in diameter. I was fortanate in having a very smooth time, and I examined with great care and satisfaction the whole lecality, and I have no hesitation in saying that this is the very best place that could be selected for the object proposed. The water to the northward of this site is deep enough, as you will perceive by the chare, at the distance of forty to fifty foet from the main rock (on the chart marked No. 1) to permit vessels drawing four or five feet water to approach without difficulty. At a hundred feet, vessels of a greater draught could anchor and deliver their loading with ease and safety. No. 1 rock would be a capitat position for erecting a boon. The rock is by measurement fourteen feet in length, seven feet wide, and nine high. The surrounding rocks would give sufficient support for the guys, ©c. Altogetier, the facility for work is remarkable, considering the locality. I have been partienlar in my inquiries as regards the hest season for smooth worhing weather. I find that, on an average, it is always monther with the wind any where from NW. round by N. to E.; that the winds which cause the greatest amount of swell are from the southward and westward, which a wind of a few hours' duration from the northward soon overcomes. The calculation is, that from May to the end of August, about a quarter to a third of the time operations could be carried on with perfeet ease, and about onefifth of the time for the remainder of the year. I would also state that thare is an abundance of rock of the requisite hardness and quality for building the foundation, \&e., to be found on Cuttyhunk ishand, which could be purchased at a very moderate cost. I am informed, further, that the ledge is frequently entirely bare of water, if the wind is or has been prevailing from the northward for some dayk, with a smooth sea preceding a gpring tide. I have never been so fortunate as to find it as described; but, owing to a slight swell, I have alwaye found from one to two and a half foet water on it."

I would respectfully request that a copy of this report be transmitted, with the maps, to the Light-house Board.
Very rospectfully, yours, de.,
Mon. James Guthrie, Secretery of the Trataswity.

APPENDIX No. 51.

Report of Edmund Blunt, Esq., assistant in the Coast Survey, to the Superintendent, upon the selection and marking of positions for range beacons in New York harbor.

Brooklys, June 9, 1853.

Sir : I returned yesterday to the city, having finished the duty assigned me in your instructions of Mareh 24, by marking out, on the ground, the pointa for the range beacons proposed by Assistant Glick, as far as is practicable.
The position for the proposed sites on Point Comfort not being furnished me, and Mr. Glock having opeued no line show-- ing the direction of the range, I was left to select such points as would serve to bring vessels, when on the range, on a line with the point A, and in mid-chamel between Sandy Ifook extreme point and Flynn's Knoll; and these points, I am happy to sar, when referred to Mr. Gluck's survef, differ very little from his proposed line.
The place where this line touches the shore is about cight and a half statute miles from the point A, and the distance of the place where it might be adrisable to build the near light from this point is about sixteen hundred and fify yards; the land is about fifteen feet above high water, and by extending the line about eight hundred yards, an eleration of the saine height might be obtaingd, but this I think objectionable. The land is low on the extended line, and an object fifty feet in height would be barely projected against the sky when seen from a ship's deck at A, and it will be necessary to have the control of a gore of land in front of the near light extending to the shore, so as to have an opening of about 50 . If, therefore, the near light would be brought nearer to the shore, and at the same time the front light be built on the shoal near the six-foot knoll, (B,) I think the advantage to be derived would justify the additional expense, and I am at liberty to say that Major Delafield and Lieutenant Case agree with me as to the necessity of building the front beacon out from the shore.
These beacons being of the most importance to vessels bound through the main channel between Sand Hook and Flynn's Knoll, shoud be sufficiently elevated to be seen in clear weather from the point.A. I would therefore suggest that, in addition to the change proposed in the sites, an increased height of twenty feet be given to each structure, over what, under other circumstances, would be considered necessary, since objects of little elevation are not seen when the ray passes over water at a higher temperature than that of the air.

The next range staked out was that for the ship channel between SW. spit and what is called the Knoll. The land near the shore is suffieiently high to allow a proper beacon to be erected, and an opeaing towards the bay can be obtaimed so as to prevent obstructions. The site for the near beacon is nearly a mile and a half from the shore, about one hundred and fifty feet above the level of the'sea; and a building here would, when scev, be projected on the trees. The slope is sufficiently sudden, and the elevation such that nothing can be placed to obstruct the view from the bay.
The points marked B and C, ranges fur the elm tree beacon, have been marked on the ground, and observations made to determine the position of the point C, as also the place where the beacon now stands, with reference to permanent objects ou the bay; so as to provide forsany change in the direction or location of said ranges, should the examination of the swash channel by Lieutenant Woodhulf show it to be necessary.

The sotindings taken on all the lines were very satiafactory to Major Delafield and Lieutenant Case, and so I have made observations for determining the position of the ranges. These gentlemen are desirous that I should furnish such data as would enable them to projeet the same.

Very respectifly, your obedient servant,
EDMUND BLUNT.

Prof. A. D. Biche,

Supsintendent U. S. Coast Survey, Fushington.

APPENDIX No. 52.

Letter of the Superiniendent of the Coast Surrey to the Secretary of the Treasury, transmiting the repart of Licutenant James Totten, U. S. Army, assistunt in the Coast Survey, upon the result of his examinations of the Coast Surrey signals along the Florida reef, with a view to make ihem permanent.

Coast Surver Statioy, near Phillifg, Malae, November 3, 1853.
Sir: I have the honor to transmit, herewith, a report from Lieutenant James Totten, U. S. Army, assistant in the Coast Survey, upon his examinations of the signals erected by the Coast Survey along the Florila recf, with a view to ascertain the feasibility and means of making them permanent. This examination was made under my instructions, and by direction of the Treasnry Department.
I would respectfully ask that a copy of this letter and report, and sketch accompanying, may be transmitted to the Light-house Board, at whose request the examination was made.

Very respectfully, yours, \&c.,

Hon Jimes Guthrie. Secretary of the Treasurg.

New Lonnon, Conmecticut, October 22, 1853.
Sre: In obedience to your instructions, I have now the honor to submit the foilowing report, relative to the means of making permauent the signals erected by the Cowst Surray, for its parposes, along the Florida recf.

These signals having already, in the limited period since they were put up, proved of decided and acknowledged utility to narigation along the hazardous coast between Cape Florida and Key West, I have on one or two former occasiuns strongly recommended making them more durable, and always, I believe, with your approbation.
The most important of the signals erected by me, in obedience to your instructions, along the Florida reef, stand from four to six miles from the outside shore-line of the Florida Keys, and generally within a few hundred yards of the Gulf Stream. Where the signals stand, the depth of water at low tide does not exceed four fuet in any instance, and the Gulf Stream just outside of them is of unknown depth. At certain times, owing to the state of the atmosphere, the low lands of the Keys cannot be descried, however çareful the watch, by a navigator approaching the reef, until he becomes entangled amid the dangers of these coral rocks,' and then, often, it is too late for the best seamanship. A careful consideration of these facts must convince any one of the very great usefulness of a system of conspicuous beacons or signals at distances of five or six miles apart, and located upon the most seaward or projecting points of the Plorida reef. This.being premised, to explain the object of the report, I now proceed, at once, to explain my plan for making conspicuous and lasting signals of those already fixed along the reef by the Coast Survey.
The signals as they now stand, along the Flovida reef, consist each of a cast iron scrow-pile fixed into the coral rocks, and haring a mangrove signal-pole in it from thirty to forty feet in length. The screw-pile is nine feet in length and mine inches in diameter, and has a cylindrical oavity within it seven feet deep and seven inches in diameter. The different screw-piles along the reef are sunk into the coral rocks, \& c., wherever placed, to a depth of between three and six feet, and are beieved, in almost every instance, to be immovable. The mangrove signal-poles are, however, perishable, and these are the parts which must be renewed. The signals I now propose for replacing those of mangrove, and rendering them as lasting as the screw-piles themselves, are to be of cast and wrought iron, and arranged as follows:
The sketch accompanying this represents a vertical section through the axis or central vertical line of the signal in position. The lower section, $a b$, represents the serew-pile, and all above that represents the signal in three sections, $b c, c a$, and $d o$. The whole length from l, the top of the screw pile, to o, the top of the signal, is intended to be thirty-sis feet. The first sectiontbrtends ten feet above the top of the serew-pile, and four feet below it, into the cylindrical carity of the serewpile. This lower section of the sigual is to be cast with a shoulder upon it at a point four feet from its lower end, or ten feet from its upper; the object of this shoulder is to hold the lower section in position, by resting upon the top of the screw-pile. The second or middle section is ten feet in length from c, where it enters the lower or first section to d, its top, and passes into the hollow cavity of the first four feet. On the top of the first section, and foot of the second, are cast the respective halres of a collar, intended, by the assistance of nuts and screws, to bold the two sections firmly together. The exterior diameter of the vertical shaft of the signal, where it enters the screw-pile at b, is seven inches, and at the top of the second section, at d, it is five inches; these two sections are cast hollow, the iron being only one inch in thickness throughout the shaft, as repressated in these two sections. The third or upper section of the sigual is of wrought iron, and is sixteen feet in length above the top, d, of the second section, and passes down into the hollow carity of the second section four feet; these two sections, the middle and upper, are arranged with a wrought iron collar to hold theta firmly tugether when in position. On the top of the signal shaft is arranged, as represented in the figure, a cylinder of stout hoopiron, six feet in leagth and two feet and a half in diameter. The different pieges of hoop iron, of which this cylinder is formed, run vertically and horizontally, and wherever they cross each other are strengly riveted together. The borizontal etraps are arranged as the hoops of a barrel, and the vertical ones are bent to a horizontal direction at the ends of the cylinder, pass into the centre, and are there made fast by riveting to a collar, through which the vertical shaft of the signal passes, and to which it is firmly attached. "The figure d ef g, which, for convenience, I will call a rane, is six feet square, made of thick sheet iron, strongly braced and riveted. This vane, as represented, in the oketch, is supported in its position by two powerful hinges, one at the top and the other at the bottom of the vane. The lower hinge of the vane rests upon the upper surface of the collar, uniting the middle and upper sections of the signal shaft, which is so formed and polished as to give a smooth surface for the vane to revolve upon. The whole arrangement of the vane is so calculated as to allow it to revolve into the direction the wind may blow, under very light pressure, and thus its surface of thirty-six square feot will never be presented to the whole foree of a strong wind. This vane was hung as described, and its dimensions adopted, in order that the least possible resistance might be presented to the force of the wind, and the greatesto possible surface to the eye of the mariner. There is but one position in which the vane will not be seen, and that is when it chances that the mariner finds himself in the plane of the vane; but, as this will seldom occur, and can never last long, such a consideration can be no great objection.

If the wane should be hid by the position of the sailor, he will still have the signal-shaft, and hoop-iron cylinder upoa the top of the shaft, to attract his attention. It is very easily seen that the whole signal, as I have described it, must prove a very conspiowous and remarkable object, standing, as each of these will, so far from land, and so near the course of all vesscls bound into or out of the Gulf of Mexico by this passage. As to the cost of these signals as I have partiadly described them, I will now give you the result of a carefn estimate made by an individual in Now Loudon who is anxious to do the work, and whom I take pleasure in recommending. I refer to Mr. Albertson, an fron founder, well known in New Londun, and one who has the reputation of doing his work as faithfully and as reasonably as any other in this city. He gave me, as the result of "the closest estimate he is able to make," for the cost of one signal, as deacribed, the sum of "two hundred and eighty five dollars." I cannot say what the cost of transportation to Key West will be, nor juat what the expense of fixing the signals in their places, but think it would be safe to call the whole one hundred dohlars, and 1 do not believe it will vary much from that sum on either hand. Call, then, the total expense of each sigoal four humdred dollars, and fifteen of them can be put up for six thousand dollars. If this be done, I will insure that the signals so inproped will be the cause of gaving fifty times their cost to the commercial world every year they gtand.

I will now mention the points where I would recommend that the improved signals be placed, if their adoption shohid be determined upou; and, convined myself of the decided advantages of such a system of signala to navigation along the Florida reef, I would advise the adoption in the strongeat terms. I mention the points in the order in which they otand, going southward along the reef from Cape Florida.

1st. Fowey Rocks, bearing S. $35^{\circ} 41^{\prime} 44^{\prime \prime}$ (true) E., and distant 6.33 miles from Cape Florida, and in latitude $25^{\circ} 35^{\prime}$ $23^{\prime \prime} \mathrm{N}$, and longitude $80^{\circ} 1^{\prime} 26^{\prime \prime} \mathrm{W}$.
2d. Triumph Reef, bearing S. $21^{\circ} 4^{\prime} 17^{\prime \prime}$ (true) E., and distant 8.33 miles from Soldier Key, audha latitade $25^{\circ} 28^{\prime} 36^{\prime \prime}$ N., and longitude sic $2^{\prime} 25^{\prime \prime}$ W.

3d. Long Reef, bearing S. $133^{\circ} 53^{\prime} 51^{\prime \prime}$ (true) E., and distaut 10.19 miles from Soldier Key, and in latitude $25^{\circ} 90^{\prime} 45^{\prime \prime}$ N., and longitude $80^{\circ} 2^{\prime} 57^{\prime \prime} \mathrm{W}$.

4th. Ajax Reef, bearing S. $26^{\circ} 6^{\prime} 8^{\prime \prime}$ (true) ${ }^{\circ}$ E., and distant 6.21 miles from Eliott's Key No. 1, and in latitude 25° $24^{\prime} 9^{\prime \prime} \mathrm{N}$. and longitude $80^{\circ} 3^{\prime} 3 \overline{5}^{\prime \prime} \mathrm{W}$.
${ }^{\circ} 5$ th, Pacific Reef, bearing S. $15^{\circ} 48^{\prime} 11^{\prime \prime}$ (true) E, and distant 8.16 miles from Elliott's Key No. 1, and in latitude 25° $22^{\prime} 13^{\prime \prime}$ N., and longitude $8104^{\prime} 6^{\prime \prime} \mathrm{W}$.

Gth. Turtlo Reef, beating S. $22^{\circ} 20^{\prime} 48^{\prime \prime}$ (true) E., and distant 5.04 miles from Old Rhodes, and in latitude $95^{\circ} 16^{\prime} 52^{\prime \prime}$
$\mathrm{N}_{- \text {- }}$ and longitude $80^{\circ} 8^{\prime} 10^{\prime \prime} \mathrm{W}$.
7th. The Elbow, bearing S. $2^{\circ} 4^{\prime} 5^{\prime \prime}$ (true) E., and distant 4.35 miles from Basiu Bank, and in latitude $25^{\circ} 8^{\prime} 32^{\prime \prime}$ N., and logitude $80^{\circ} 11^{\prime} 16^{\prime \prime} \mathrm{W}$.
8th. Grecian Shogls, bearing S. $45^{\circ} 53^{\prime} 19^{\prime}$ (trus) E., and distant 4.47 miles from Sound Point.
9th. French Reef, bearing S. 37° E., by compass, and distant 3.73 miles from lower Sound Pint.
10th. Pickle's Reaf, bearing about S. $18{ }^{\circ}$ E., by compars, and distant 6.17 miles from Point Charles.
11th. Couch Reef, bearing about S. $4^{\circ} 30^{\prime}$ W., by compass, from Rodriguez Bank, and about $8.43^{\circ} 30$ E. from Key Tavernier.

12th. Crow's Reef, bearing about S . $39^{\circ} 15^{\prime}$ E., by compass, and distant between four and five miles from Snake Creek Point.

13th. Alligator Reef, bearing about S. ses 30^{\prime} E., by compass, mand distant near five miles from Indian Key.
14th. The American Shoals. These shoals are between fifteen and twenty miles from Key West, as you go north and eastward from that place along the reef.
All the points named are well known to pilots and other persons acquainted with the Florida reef, and have, each of them, at some time proved fatal to one or more good ships and their cargoes; and they will continue the source of such misfortunes unless some such thing as recommended be done to warn sailors of their proximity to danger in these waters. It will be perceived that after the 7th point in the order above named, the latitudes, longitudes, \&c., of the localities of the signals are not given. This arises from the fact that in some of the cases the surveg has not yet reached them, and in others-such as Grecian shoals, French reef, and Pickle's reaf-the calculations are not yet completed. It is probable, however, that the survey may envelope the whole of the points named by the end of the next scason's wons. As I have before mentioned, each of the fourteen points named has a screw-pile signal fixed upon it, which, in comexion with the description given of the localities, will serve to show where they are.

The 15 th sigual, the locality of which as yet I have not mentioned, may be fixed in the screw-pile already located upon a dangerous point known as the "Washerwoman," bearing, by compass, SSW. from Key Vacas, or may be placed in tho most advantageous of several which the Survey may find it necessary to put up between Alligator reff and the American shoals during the progress of the triangulation along that part of the Coast.

I am, very respectfully,
JAMES TOTTEN
First Lieutenant U. S. A., and Assistant in Coast Surcey.

APPENDIX No. 53.

Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, transmitting the report of Lieut. Comg. B. F. Sands, U. S. Navy, assistant. in the Coast Survey, upon the examination and survey of the eastern entrance to Puscagoula river, Mississippi, with a view to the selection of a sito for a light-house to be placed there.

Coast Survey Station, near Phillips, Malne,
November 15, 1883.
Sir: I have the honor to enclose herewith the report of Lieut. Comg. B. F. Sands, U. S. Navy, assistant in the Coast Suryey, upon the examination and survey of the eastern entrance to Pascagoula river, Mississippi, nade vith a view to the selection of a site for a light-house, for which appropriation was made by the act of Congress approved August $31,1852$.
I concur in the recommendation contained in the report of Lieut. Comg. Sands, that the light be placed upon the marsh at Spanish Point. A sketch indicating the precise position proposed for this light-house will be transmitted as soon as the reduction of the origioal sheet can be made.

I would respectfully request that a copy of this letter and enclosure may be transmitted to the Light-house Board, at whose request the survey has been made, under the instructions of the department.

Very respectfully, yours, \&o.
Hon. James Guthrie, Secretary of the Treasury.
A. B. BACHE, Superintendent.

Office U. S. Coast Survery, Washington City,
October 10, 1853.
Sir: Since my communication of the 4th October, 1852, upon the subject of a light-house at East Pascagoula for the entrance to Pascagoula river, I hare made a therough survey of the locality, agreeably with your instructions.
Although with but five feet water over the bar at its mouth, (which I think can be easily increased by dredging,) the river has now a large and increasing trade in lumber; and with greater facilitios for navigation, it would also be sought as on outlet for the cotton so extensively raised in the neighborhood of its banks.

A suall class light-house or beacon would greatly facilitate the entrance over the bar; and if placed upon the marsh at Spanish Point, (the western point of the river,) it would be a better leading-mark for the chamel than if upon the fast lamd of the eastern side.

Respectfully, your obedient gervant,
B. F. SANDS,

Lieut. U. S. N., Assistant in U. S. Coast Surney.
Prof. A. D. Baozz, superintendent U. S. Coast Survey.

APPENDIX No. 54.

Letter of the Superintendent of the Coast Survey to the Sccretary of the Treasury, transmitting the report of Lieut. Comg. B. F. Sands, U. S. Nuny, assistant in the Coast Survey, upon the cxamination and survcy of Ship shoal, Louisiana, with a view to the selection of the site for a light-house to be phaced there.

Coast Survey Station, near Phillifs, Maine, November 16, 1853.
Sin: I have the honor to transmit the report of Lieut. Comg. B. F. Sunds, U. S. Navy, assistant in the Coast Sarvef, upon the examination and survey of Ship shoal, Louisiana, with a view to placing a light there, as provided for by act of Congress approved August 31, 1852.

The spot marked A, on accompanying sheet, was selected by Lieut. Comg. Sands for reasons given in his report, and in which I concur, as also in his recommendation that ${ }^{\prime \prime}$ iron pile light-house, for a seacoast light, be erected upon the spot selected.
I would respectfully request that a copy of this letter and enclosure may be transmitted to the Light-house Board, at whose request the examination and survey were made, under the instructions of the deparment.

Very respectfully, yours, \&e.,
A. D. BACHE, Superintendent.

Hon. James Gethrie, Secretary of the Treasury.

Washing ton City, October 2, 1853.
Sir: In pursuance of your instructions of February 3, 1853, to make the survey of Sbip shosil the first in the order of my work for the seazon, I proceeded, immediately after my arrival in Section VIII, to the prosecution of that work, upon which I was occnpied nearly six weeks, sounding closely upon the shoal, running nine hundred and twenty-three miles of soundings, making thirty-five thousand casts of the lead, and measuring eleven hundred and twenty-two sets of angles.

The shoal within the three-fathom curve extends along the coast twenty miles in an easterly and westerly direction, and has a breadth of from one to three aud a half miles. The western end is the widest, and also the shoalast part, with five feet water ou it, and bears S. 41 W. from Racoon Point, the west end of Isle Demiere (Lasi island) distant thirteen miles. The eastern end is distant eight and a half miles south of the house of Mr. T. Maskell, which is three and threefourths miles east of Racoon Point, and the first Louse to be seen on Isle Dermiere.

From its position in the route of vessels sailing between New Orleans and Texas, it is very dangerous, particularly in the approach from the westward, where it shoals rapidly from trree fathoms. This is also the case all along the northern side of the shoal.

The eastern and southern approach is lass dangerous, as the decrease in depth is gradual. A channel of five and six fathoms-bottom blue mud-extends along the northern side, which would serve as a guide to vessels beating between the shoal and Isle Dernière, if they are careful of their lead-line, and approach the shoal in not less than four fathoms.

A light-vessel, showing two lights, is very judiciously placed, and securely moored, at the west end of the shoal, in six fathoms water, and about a mile and a quarter north of the shoalest spot, upon which the steamer Galveston was wreoked. But the lights can scarcely be seen beyond five or six miles, and are very inefficient for so dangerous a shoul.
A light-house upon Racoon Point would only serve as a guide to vessels passing on the north side of the shoal, and could not be seen sufficiently far by those of a large clase from the southward. It would be of as little use in the westarn approach, on account of the distance of Racoon Point shoal, which extends from that point twelve miles in a W. by \mathbf{S}. direction, and would be thirteen miles distant from the most dangerous part of Ship shoal.

A good light upon the shoal would serve for all the approaches. As a good location for this, there is a spot of four hundred and fifty square metres in area, within the six-foot curve, hard sand bottom, near the wreek of the steamer Galveston, where the force of the sea from SE., S., and SW., would be broken by the gradual shoaling for the distance of three and a half and five miles within the three-fathom curve. On the N. and NW. the Racoon Point shoal prevents a heavy sea, the sea from the westward being the worst, but not so great as I suppose would be raisod by the heary gales of the Gulf Stream, near Sand key and Carysfort reef, Florida, upon which we have screw-pile light-houses; and, as permanent lights are preferable to floating ones, when they can be placed at. or near the danger, I would respectfully recommend a firstclass screw-pile light-house to be erected upon this spot, (marked A upon the sketch,) where, in my opinion, it wonld be as secure as those upon the keys of Florida, and where it would be seen the whole extent of the shoal.

Respectfully submitted by your obedient servant,
B. F. SANDS,

Lieutenant E. S. N., Assistant in U. S. Coast Survey.
Professor A. D. Bache, Superintendent U. S. Coast Survey.

APPENDIX No. 55.
Letter of the Superintendent of the Coast Survey to the Secretary of the Treasury, communicating the report of Lieutenant J. Witkinson, U. S. N., assistant in the Coast Survey, upon the selection of a site for a light-louse at Sabine Pass, Texas; also a letter upon the subject from Lieut. Montgomery Hunt, U. S. N., light-house inspector.

Near Leed's Station, Mawe, July 12, 1853.
Sir: On the 22 d of March last, at the request of the Lighthouse Board, the Superintendent of the Coast Survey was directed by the department to cause a aurvey to be made and a site selected for a firat-class light-house, to be erected at the entrance of Sabine river, Teas, for which appropriation was made in the act of Congress of Mareh $3,1853$.

On the 24 th of that month I issued instructions to the hydrographic party in section IX to make said eurvey and selection, and have now the honor to transmit the report of Lient. John Wilkineon, C.S. Nary, on Coant Surver service, the officer in charge of the party, and who performed the duty. It will be pereeived that lieut. Wilhimson recommelids the crection of the light-house at the point indicated on enclosed sketch, as well calculated to supply the wants of the general coast navigation and commerce, and not merely to subserve the local interests.

I have also the honor to transmit extracts from a letter from Lieut. M. Ilunt, U. S. Nary, and light-honse inspector for that district, upon this subject. Lieut. Hunt recommends that a portion of the sum of $\$ 30,000$ appropriated for this light-house should be applied to the improvement of the lights in Galvestou bay.
The board can decide upon the utility of the erection of this light-honse, its class and site, having the report of the surrey of the locality, and the views of Lieurs. Wilkinson and Hont on the subject, before them.

Very respectfully, yours, \&c., \&c.,
A. D. BACIIE, Superintendent.

Hon. James Gotarie, Secretary of the Troasury.

Surveying Schooner "Morris."
Galveston, Tuxas, June 22, 1853.
Sur: I have the honor to report the execution of a roconnaiseance and selection of a site for a light-houso at Sabine Pass, of which a sketch is herewith enclosed.

The proposed site, as indicated on the sketeh, answers, in my opinion, all the conditions required by the law : First, because there is a substracum of stift clay, as ascertained by boring, twelve feet below the surface, affording a firm basis for the buiding. Second, because the local interests of trade winl be materially benefied by its erection, as the bar may then be crossed, day or night, by a simple compass-bearing. Third, because the general wants of comnerce will be subserved, as a certain means of establishing their position will then be afforded to vessels bound either to the eastward or westward, and because the bar, from its nature, may then be crossed safely at times when others on this coast mould be impassable. The light should be distinctly visible from the plane of the horizon sixteen miles, as it would then be sightel by ressels while in their regular track.

Two important facts connected with the matter, I mention: First, the mud on and inside the bar is so soft. (the lead not indicating the exact depth) that a vessel of heavy draught can cross or anchor on it with absolute safety and, second, repeated trials, by boring with an iron rod, established the fact that no spot can be found on either side of the pass, nearer to the coust, suitable for the construction of a light-house.

I am, sir, very respectfully, your obedient servant,
Prof. A. D. Bache, Superintendent Coast Survey, Washington, D. C.
J, WILKINSON, Licutenant.

Galveston, April 16, 1853.
Dear Sir: I notice, by the report of the Light-house Board, that thirty thonsand dollars has been appropriated by Congress for the crection of a light-house at the Sabine Pass, and that the requisite iuformation touching the propriety of the expenditure has not been obtained. May I reature to give you my reason why so large mamoun of money should not be thrown away upon such an unimportant place, and that a part of the appropriation slould be devoted to the improvement of the light-house at Galveston?
There will be shipped from this port, during the current year, over seventy thousand bales of cotton, and for each succeeding year the increase will be rapid and certain.
There are some two hundred miles of coast included in Galveston bay; and the Trinity riter, mith its tributaries, pours its productions into this inlaud sea, and conveys the return cargues to tho most fertile portion of Texas. Most of the sugar, molasses, \&c., from the rich bottoms of the Brazos, are brought to this place either by the inland routes or by the coasting vessels, and shipped from the wharves to all parts of the world.

Galveston is the medium through which most of the productions of Texas get to a market, and in a few years it will monopolize the entire foreign trade, fur it will soon be connected with the main land by railroads, and its harbor invite the trade of large-sized ships.
To give you an idea of its commerce, I will remark, that there are three lines of sailing-vessels between Galceston and New York-one from Boston, one contemplated from Philadelphia, and another from Bahimore. A canal will be completed in January, which will unite the waters of the Brazos river with those of Galvestom bay, and other means will be taken to encourage commerce and concentrate it here.

In Texas fitteen bales of cotton have been produced from the acre, while in Ceorgia and other southern States oue balo to the acre returns a remmerative profit. With this great advantage alone, Texas must soon become the great cotton State, and that trade which attaches to this iaterest must ultimately make Galveston a seaport of vast importance. In short, if Texas ever became populated, Galveston must be proportionally wealthy and important. Upon this bar we have thirteen feet water; at the Sabine there is but six feet, with two feet of soft mad, making eight feet at the utmost limit. A steamer of fourteen hundred tons passes this bar almost daily, and, in connection with others of the same size, carries forward the tide of emigration into Texas. These fucts are not new to you, I very well know, but I mention them by the way of reminding you of their importance, and to show the necessity for a first-class light at this place. If ten thousand dulars, out of the appropriation for the Sabine, be devoted to raising and improring this light-house, the ends of commerce will bo better served than in erecting a magnificent structure at an out-of-the-way place.

You would scarcely believe it when I tell you that there is but one saw-mill and a few mean houses at the Sabine.
Five thousand doliars would build as good a light as is required there for the next twenty years: indeed, it will be an absolute waste of money to expend over eight thousand dollars for that purpose. Galveston is getting to be the senport for the Sabine. (there are several small ressels trading between the two places,) and nothing can prevent it frem swallowiug up all the foreign trade west of Vermillion bay. This light is not high enough, nor has it sufficient power; it cannot be seen orer twelve or fourteen miles from the bar. In conclusion, permit me to apologize for this long letter, trusting it may convoy some information, and advance the interests of commerce.

With great regard and respect, your obedient servant,
MONTGOMERY HUNI, U.S. Naty.
Prof. A. D. Bacre, Superintendent Coast Survey.

APPENDIX No. 56.

Letter from the Superintendent of the Coast Survey to the Sccretary of the Treasury, communicating the report of Lieut. Comg. H.S. Stellwagen, U.S. N., assistant in the Coast Survey, on the re-cxamination of Aransas Pass, with refcrence to the necessity and sita for a light-house there.

Colst Survey Statron, near Peillifs, Franklin County, Me.,

Srptember 5, 1853.
Sir: In conformity with the instructions of the department, a resurvey was made of Aransas Pass, to determine the expediency of placing a light-boat or a light-house there. I have now the honor to submit a chart, showing the entrance as it existed in 185], from the recommaissance of Lieut. Comg. T. A. M. Craven, U. S. Navy, assistant in the Coast Survey, and as found recently by Lieut. Comg. H. S. Stellwagen, U. S. Navy, assistant in the Coast Survey.

I append extracts from the report of Lieut. Comg. Stellwagen, and refer to the report of Lieut. Comg. Craven which accompanied the annual report of the Superintendent of the Coast Survey for 18 . 1 . (See Doc. 3, App. No. 39, p. 507.)

The light-house recommended by Lieut. Comg. Stellwagen will probably bo of service in entering the harbor after the bar is passed, especially if movable beacons be provided in conncetion with it. It may also benefit the extensive navigation of the cosst, if raised sufficiently high, but is not in the best position for that purpose. It can afford no facilities in passing the very shifting bar at the entrance. The comparative chart shows that, while the depth on Aransas bar remains mearly the same, the channel has changed its position by nearly the whole breadth of the pass in two years. It is plainly impracticable to erect a fixed structure which would guide vessels over the bar. The light-boat proposed by Lieut. Comg. Craren appears to me to be necessary for that purpose.

The Lirhthouse Board will judge whether the comurerce using Aransas Pass is sufficient to require both these aids to navigation-the light-bost to guide navigators over the bar, and the lighthouse to enable them to pass up the bay. I Would also submit to their better judgment the selection of the aid to navigation which they may deem most important, from the information now communicated to them, or already in their posaession.

I would respectfully request that this report be transmitted to the Light-house Board.
Very respectfully, yours, \&e.,
A. D. BACHE, Superintendent.

Hod. James Gothrie, Secretaty of the Treasury, Washington.

Dear Sir: * $\quad * \quad * \quad$| Coast Surtey Sohooner "Morris," |
| :---: |
| Galveston, MIay 4, 1853. |

I find the channel has changed materially since Lieut. Comg. Craven's visit; instead of running out NE. along San Josef, it goes out SE. across what was then the south breakers, and the shifting of the whole pass to the southward and westward still progresses steadily - the end of Mustang island washing away, and San Josef forming in a corresponding ratio.

From conversations with persons best informed on the subject, I gather that this change has been going on for at least fifteen years, though Mr. William H. Jones, a gentleman of observation, is of opinion that formerly the pass was some four or five miles further down, where there is now a sort of bayou, a creek, or deep indentation of the bay, extending into Mustang island, and that it worked to NE., and is returning to its former situation, which may bee its furthest limits of progress in that direction. Time only can determine this point. But, in the meanwhile, there can be no doubt that the pass, bar, channel and all, are constantly removing with a general progression to the southward and westward; and thus far my observations and opinion agree with those of Lieut. Comg. Craven.

I am of opinion that it would be practicable to erect a light-house on the small island back of the pass, so as to serve as a guide, and, with movable beacons, to make a range for the bar for some years. I tried the nature of the ground with an iron rod some ten feet long. The top soil is an alluvial deposite of mud; beneath that the same, mixed with sand. The rod penetrated rather easily for about nine fect, when it reached something pretty firm, but I suppose it was only compact sand ; but at or above the depth of the channel, no doubt, would be found, as is the bottom in thirty fect water, a very tenacious, compact sort of clay; and I think common or screw-piles would easily make a very secure base fur erecting a light house. The island, though little above water-level, never changes or washes, theg say, and is only about one or one and a half miles back from the bar.

The end of Mustang island is composed of loose sandy billecks, and washes away some ten or fifteen yards in a year, and San Josef forms about the same, the point being low and bare, and frequently overflowed for one-half or three-fourths of a mile, and on either one a house would have to be placed, some distance from the point.

As regards a light-boat, she would hare to be removed so often on account of sudden changes of channel, that I think that an iron house, even expecting to remove it in a few years, would be preferable. A light-house is very necessary here, and would be of great and essential aid to commerce, not only on account of the growing trade of Corpus Christi, \&c., but it would be invalusble as a land-mark on a coast where there is so much sameness as to make itumost impossible to distinguish one place from another. Even old traders have been known to be beating for several days, though absolutely to windward of their port, not recognising where they were.

Very reapectfully, your obedient servant,
Prof. A. D. Bache,

APPENDIX No. 57.

Letter of the Superintendent of the Coast Surcey to the Secretary of the Trcasury, transmititing the report of R. D. Cutts, Esq., assistant in the Coast Survey, uppon the examinalion and survey of Point Bonita, California, with reference to the location of a light-house.

Coast Surver Station, near Puilhipg, Maike,

Scptember 1, 1853.
$S_{1 R}:$ On the 7 th of April last, at the request of the Light-house Board, the Superintendent of the Coast Surrey was directed by the department to cause an examination and survey to be made of Point Bonita, Califormia, north side of San Francisco bay, with a view to the erection of a second-clasi lighthouse, for which appropriation was made in the act of Congress of March 3, 1853.
On the 15th of that month I issued instructions to the offeers in charge of the topographical and hydrographic parties in Section X, to make anid examination and survey, and have now the honor to transmit a copy of the report of Assistant R. D. Cutts, the officer in charge of the party by which the topographical surver was mate, with accompanying shetel of the localits.
I concur in the opinion expressed by Mr. Cutts, of the great necessity of such a light at Point Bonitio to vessels desirous of making an entrance into the Bay of San Francisco, and of the adtantages of the position selected over other points at the entrance into that bay.

I also concur in the recommendation of Mr. Cutts, that the lighthouse to be erected should be supplied with a fog-bell or whistle of the largest size, which would be a valuable auxiliary in the fuggy scason in warning vessels of their near approach to this bold and rocky coast.

Very respectfully, yours, \&c.,
Hon. James Guthrie, Secretary of the Treasury.
A. D. HACME, Superintendent.

Pulgas Camp, San Francisco Couxty,
July 6, 1853.
Dear Sir: In accordance with the instructions contained in your letter of the 15th April, I have caused a particular examination to be made of Point Bonita, with a view to the erection thereon of a second-class light.
I sead you herewith a sketch of the point, showing the site eelected for the proposed light-house, its elevation, and its different approaches.

Of the necessity for a leading light wherewith to find the entrance into the bay of San Francisco, I believe there can be no doubt. Fort Poiat is too far within the keads, and consequently embraces too small an arc of the sea-horizon, to be considered or trusted as such a light. Nor has the coast in the vieinity of the entrance any such well known or remarkable landmark as could be readily and promptly distinguished during a clear night. The southwest Farallon, although a valuable auxiliary in the general navigation of the coast, is more useful as ehowing ite own position and the surrounding dangers, than as a guide to the heads. With an entrance so broad, deep, and entirely free from hidden danger, there appears to be no reason why ships should not enter at night whenever an opportunity occurs; and yet, up to the present time, few, if any, have done so. This is partly owing to the fogs and light winds which prevail during the sumuter season after sunset, but more particularly to the want of a light at Point Bonita, and the leading-in lights of Fort Point and Aleatraz island. These two last are now erected. The first is even more necessary and important. lt will guide and direct the vessel coming from any direction; and during a clear night in sumner, and throughout the winter season, would save the delay of many days, sometimes weeks, which vessels have heretofore incurred by waitiag an opportunity to enter by day.
In connexion with the light-house at Point Bonita, I would call your attention to the necessity of having placed thereon a fog-bell or whistle of the largest size. The risk of running on and along so bold a coast during the foggy season is fully illustrated by the late loss of the clipper ship "Carrier Pigeon," and of the two steamships "Tennessee" and "S. S. Lewis," as well as of the revenue brig "Lawrence." The last three wers wrecked while searching for the entrance, and while within sound of a fog-bell on Point Bonita. The public press, however, have lately taken up this subject, and so many urgent and forcible articles have appeared, and have, doubtless, met your eye, that it is hardly necessary for me to say more than that Point Bonita is admirably adapted for the site of a light-honse and a fog-bell; that its position, with respect to the harbor and general trend of the coast, is prominent, and indisputably the best; and that the immense and valuable amount of shipping seeking the harbor of San Francisco demands, and should receive, every aid and safeguardawong which none are so important as such light-house and fog-bell.
Extreme height of hill above high-water mark, 282 fect; height of site of light-house, (summit of hill to be eleared away, 265 feet; height of lantern above high-water mark, 285 feet; distance visible in natutical miles, observer clevated 10 feet above sea-level, 23 miles; extent of sea-horizon, 119 .

> Reforences on thetch.

U-Circle in black, triangulation point U. S. Coant Survey.
*-Circle in red, and marked L. H., proposed site for light-heuse.
A-Bay Landing.
B-Southeast Landing.
C-Pond Landing.
D-True meridian.
I append herewith the report of Assistant A. F. Rodgers, containing the result of his examination at Point Bonita. I am yours, truly,
Prof. A. D. Bache,

U. S. Surveying Schooner"Baltimore,"
 San Francisco, June 14, 1853.

Drar $\mathrm{Sir}_{\mathrm{r}}$: In accordance with your instructions, I proceeded to Point Bonita and made a careful examination of the locality with refercuce to a site for the moposed light-house. I made a critical review of the general sarvey made in the regnar prosecution of the work of the Const Survey, and have to report that it is sufficiently minute to answer every purpose, the attaiment of which would be sought in a resurvey for the particular object in view.

The best sight for the light-house is immediately east of the Coast Survey triangulation point, known as "Point Bonita" The greater comparative eligibility of this position is, I think, so apparent when upon the ground, as to leave little latitude for the exercine of judument. Its adrantage over the point near it is in its greater elevation, while with an equally large are of clear horizon, and with equal acceptability, it is the nearest point to the entrance, thus rendering it a better mark for ressels passing the light when the night is too dark to make the land. Its superior elevation gives it another advantage than that simply of greater visibility in clear weather, from the fact that the foge, so common and troublesome to vessele entering this harbor, do not extend more than fifty or one humdred feet above the water; hence it might be possible to make Point Bonita light above the fog from a ship's masthead, when, if it were in a loes elovated position, it would be useless.

Upon reference to the topographical map of Point Bonita you will obsorve that the formation of the bluff upon the west or oceas side is nearly perpendicular, while to the eastward there is a gradual slope for a distance of one hundred yards. The particular spot selected for the light-house is twenty-six feet from the edge of the biuff; in a line due east of the triamglation point. The proper bearing for the greatest length of the light-house is in a north and south line, which will place it parallel with the bluff, and at right-angles to the slope of the ground, the latter saving material in building, and labor in digging the foundation. I placed a barrel in the ground, and, filling it with earth, left it sumfiently exposed to be readily found. This I proposed to make the sonthwest corner of the light-honse. If, in riew of the wearing away of the bluff, the distance from it shall be considered too small, it can be moved further to the eastward, without altering the relative expense of building and its foundation. except in the necessarily increased height of the former.

In digging, to ascertain the character of the rock beneath the surface of the ground, in two different places at depths of four and five feet, I could find no indication of its proximity. I examined the face of the bluff upon the outside, and, from that examination, think it safe to say that the surface soil is two feet in depth, resting upon a sub-stratum of reddish clay, which appears to be from ten to twenty feet in thickness. I encluse specimens of rock found on the face of the bluff, twenty feet below the surface. It is of the same character as that which forms the base of Point Bonita, but from exposure to the weather has become hard and very brittle. When found beneath the surface it is firm and tenacious, but so soft as to be easily worked. The direction of the rocky strata, forming the base of Point Bonita, is nearly northwest; the dip is to the eastward, and parallel with the slope of the surface.

I made examinations for a landing and rond to the point selected for the light-house. I decided that three landing were practicable, and the road from each so good as to require in the worst instance not more than an outlay of four hundred dollare to make it perfectly good. Of these three, (see Sketch,) the Pond landing (C) would be best, if it were no object to wait for smooth weather; the road thence, though the longest, is much the best, and it could be made a good wagon road for fifty dollars, cutting being necessary at one point only, and that for a distance of fifty yards, in a clay soil. The next landing (B) is in the SW. corner of Rodier beach, under the lea of a large rock. Here I found, upon two days, scarcely more surf than is asually found on the leeward shores of the bay in boid water. The road thence would follow for fify yards the course of a ravine cut by the rains of last winter; this would have to be filled up from the sides of the valley through which it runs. During the rainy season. this road would be liable to wash out at any moment, unless built substantially, with a culvert to lead of the water. The third landing (A) is on the bay side of Point Bonita. Here the landing is better than at either of the other places mentioned, and more certain, at all times, from its better protection. A southeast torin only would render it dangerous. A loaded scow could lie alongside of the rocks, if sufficient fenders were used; but it would be necessary to use cranes to hoist the load-a height, of twenty-five feet in the best spot found. The road thence to the site is of easy grades, and would require no improvement.

In regard to supplies of wood and water, I would state that the keeper of the light will always be able to supply himself with good fire-wood from Rodier beach, without other expense than that of cutting and hauling. After a soulheast gale, this beach is strewn with drift-wood, ships' spars, boata, dec. Of the facilities for getting water, I cannot speak with certainty : water can be procured by digging anywhere in the wooded valley through which the road from the Pond landing runs. The same valley could be cultivated as a garden, and could be irrigated with but little expense.

The land belongs to Captain William A. Richardson. His claim is befure the land commission.
I am, very respectfully,
AUGUSTUS F. RODGERS.
Rion'd D. Cutrs, Esq.,
Assistant U. S. Coast Survey.

APPENDIX No. 5 .
Errata in the list of Geagraphical Positions in the Anmual Rerort of the Coast Surrey for 1S51, discovered since published.

Page.	Line.	For-	Read-
103	35	6356070.11	0356175.96.
169	3	07"20.	17/'2:3.
169	3	11".36	11×33
189	3	Sursuit Creek, $41045^{\prime} 32^{\prime \prime} .20,70000^{\prime} 07^{\prime \prime} .07$	Sursuic Creck, 410450 30\% 25, $7000815 \% .94$.
189	3	$55^{\circ} 49^{\prime} 44^{\prime}$, Scargo Mill $2355^{\circ} 45^{\prime} 11^{\prime \prime}$	$64^{\circ} 49^{\prime} 44^{\prime}$, Scorgo Hill $234^{\circ} 48^{\prime} 11^{\prime \prime}$.
1×9	3	3943.7, 4312.7, $2.4 \overline{0}$	$37441,4094.4,2.30$.
159	4	5799.3, 6341.9, 3.60	пб-\%.6, 6111.5, 3.47.
189	12	$11394.9,11805.0,6.71$	10-2132, т1825.1), 6.72.
190	5	3815.6, 4172.6, 2.37	$3549.6,42038,2.39$.
190	6	$87^{\circ} 45^{\prime} 11^{\prime \prime}$, West Chatham $266^{\circ} 42^{\prime} 02^{\prime \prime}$	$87^{\circ} 50^{\prime \prime} 4^{\prime \prime}$, West Chatham $260^{\circ}-5^{\prime} 45^{\prime \prime}$.
190	6	6\%46.4, 7159.0, 4.07	$6567.6,7182.3,4.0 \mathrm{c}$
191	23	6759.0, 7424.3, 4.22	t797.6, 7433.7, 4.22.
194	11	$70009^{\prime} 45^{\prime \prime}$, Monk's Hill $2500^{\circ} 06^{\prime} 58^{\prime \prime}$	$31800{ }^{\prime} 24^{\prime \prime}$, Manomet $138010^{\prime \prime} 55^{\prime \prime}$.
194	16	224009747%	$264009^{\prime} 47^{\prime \prime}$.
217	21	$70^{\circ} 37^{\prime} 44^{\prime \prime} .63$.	700 $37 \times 104^{\prime \prime} .03$.
218	6	$53^{\prime \prime} .07$	$53^{\prime \prime} 04$.
220	19	$43^{\circ} 38^{\prime} 08^{\prime \prime} 03,70317^{\prime} 02^{\prime \prime} .33$.	$43^{\circ} 39^{\prime} 55^{\prime \prime} .69,76016^{\prime} 49^{\prime \prime} .00$.
220	19	$215^{\circ} 48^{\prime} 26^{\prime \prime}$, Bramhall's Hill $388^{\circ} 49^{\prime} 00^{\prime \prime}$	$207006^{\prime} 39^{\prime \prime}$, Bramhalles ILill $25^{\circ} 008^{\prime} 03$
220	19	1758.5, 1923.1, 1.09	1762.2, 1928.2, 1.10.
258	19	Sawpits	Port Chester.
258	20	Captain's Island...	Little Captain's Island.
271	9	W. Hubbel....	Triah Hubhel.
976	17	Kakeout Hill	Kieckout Mill.
286	11	Aquackanonk	Acquackanomh.
286	14	A.quackanonk	Acquackanonk.
286	17	Aquackanonk	Acquackanonk.
286	19	Aquackanonk.	Acquackanouk.
324	9	$76^{\circ} 13^{\prime} 58^{\prime \prime} 50$.	$76^{\circ} 13^{5} 58^{\prime \prime} 30$.
360	21	$38024^{\prime} 06^{\prime \prime} .56$.	$3202)^{\prime \prime} 166^{\prime \prime} 56$.
372	19	04'1.86......	04".90.
374	15	$76^{\circ} 14^{\prime} 24^{\prime \prime} .22$.	$76^{\circ} 14^{\prime} 24^{\prime \prime} 33$.
375	14	45'1.55 ...	44".55.
378	19	$75^{\circ} 10^{\prime} 08^{\prime \prime} 51$	$75010^{\prime} 10^{\prime \prime} 51$.
400	12	$47^{\circ} 64^{\prime} 14^{\prime \prime}$	$227054^{\prime} 14^{\prime \prime}$.
400	13	$294022^{\prime} 49 \%$.	$294{ }^{\circ} 32^{\prime} 49^{\prime}$.
400	17	$124^{\circ} 49^{\prime} 48^{\prime \prime}$, Jack Stioul $304{ }^{\circ} 46^{\prime} 54^{\prime \prime}$	$94^{\circ} 22^{\prime} 01^{\prime \prime}$, Jack Slioal $274^{\circ} 21^{\prime} 13$.
400	18	$168^{\circ} 39^{\prime} 02^{\prime \prime}$; New Inlet, North Point, $348^{\circ} 38^{\prime} 47^{\prime \prime}$ -	$167^{\circ} 38^{\circ} 20^{\prime \prime}$; New Intet, North Point, $347^{\circ} 38^{\prime} 11^{\prime \prime}$.
400	21	$94^{\circ} 22^{\prime} 01^{\prime \prime}$, Jack Shoal $27^{\circ}{ }^{\circ} 11^{\prime} 13^{\prime \prime} \ldots . .$.	$12404948^{\prime \prime}$, Jack Shoal*304 $48^{\prime} 54^{\prime \prime}$.
400	22	$167^{\circ} 38^{\prime} 20^{\prime \prime}$; New Inlet, North Point, $3470038{ }^{\prime} 11^{\prime \prime}$.	16* $39^{\prime} 02^{\prime \prime}$; New Inlet, North Point, $348038^{\prime} 47^{\prime \prime}$.
402	12	Little Hill, $52^{\circ} 52^{\prime} 09^{\prime \prime}$....	Litale Fill, $52042^{\prime} 09^{\prime \prime}$.
404	17	11869.0, 14979.6, 7.38.	$6506.3,7115.1,4.04$.
404	18	$6506.3,7115.1,4.04$.	11869.0, 1:2979.6, 7.38.
409	17	$81^{\circ} 05^{\prime} 14^{\prime \prime} 32 . .$.	$81^{\circ}, 05^{\prime} 10^{\prime \prime} 85$.
416	3	14678.7, $16052.2,9.12$.	14613.6, 15981.0, 9.08.
416	4	$181^{\circ} 47^{\prime} 42^{\prime}$, Black Point $1^{\circ} 48^{\prime} 34^{\prime \prime}$..	$181^{\circ} 48^{\prime} 35^{\prime \prime}$, Black Point $1048^{\prime} 40^{\prime \prime}$.
425	9	2376.1, 2598.3, 1.48.	2576.1, 2317.1, 1.60.
480	33	4h. 44 m . 29.05 s .	4h. 44 m .89 .50 s .

ERRATA.

Page	Line	For	Read
42	13th from bottom	Appendix 114.	Appendix 14.
*96	$2 d$ from bottom	Narren	Narrien.
*97	2 d under Class II.	there	then.
*97	1st under Class III	positions	portiong.
*98	8th from botiom	one.	an.
*102	17th from bottom	levelled	bevelled.
*134	5th from top.....	Minutes of long. ${ }^{\prime \prime}$ ".	Minutes of long. ${ }^{\prime}$ '.

ALPHABETICAL INDEX.

A.

Aberdeen. Wreck of, "164.
Abstract of contents of Report, ii.
Alden, Lieut. James. Hydrography Columbia river, Inmboldt bay, Crescent City harbor, Ewing harbor, and Umquah, 78, 79; tides, 79 ; rescues, 79 ; report on Western coast harbors, "55: Cortez bank, ${ }^{*} 55$, * 06 ; wreck of Aberdeen, *164, *165; steamer Tennessee, *165.
Alden's Rock, Portland harbor, 35 .
Almy, Lieut. J. J. Off-siore tides, $6,45, * 48, * 49$; off-shore hydrography, Section III, and Chesapeake entrance, 44; shoals, 45, "49, "50; Chesapeake bay, 45.
Alphabetical Index, "183.
Apalachicola barbor and town, 63.
Arangas Pass. Resurvey, 74, 75; report on, *178.
Archives and library, 85 ; report on, " 66 .
Army officers on Coast Survey, 10; list of, *7.
Astronomical observations: Sebatis, 27, 28; Section III,
40,41 ; Section V, 56 ; Section VII, 61 ; Section VIII,
67; Section IX, 71; Western coast, 77 ; Isle Dernière, *53.
Attakapas plantations, channels, Gerdes on, *54.
Aycrigg, B. Jersey flats, 39.
Azimuths. Section I, 27; Section III, 41; Section VII, 61 ; Section VLIL, 67 ; Section IX, 71, 72 ; Western coast, 77.

B.

Bache, Professor A. D. Inspections and commissions, 9; observations at Sebattis and Blue Hill, 27, 28; discussion of Gulf Scream, 46 to 52 ; letter on bank east of Gulf Stream, *50: remarks on Professor Walker's death, *166; on Lieut. J. S. Totten's death, ${ }^{*} 162$; discussion of tides at Key West, *71 to *76; discussion of tides at San Francisco, *76 to *82.
Barataria bay. Gerdes' report on, "51, ${ }^{(52}$.
Barometer, for measuring heights, $28,29$.
Base of verification, Section 1, 27; Section 1II, 41 ; James river, 42; Rappahannock, 42 ; Pulgas, 77.
Bench-marhs for tides, list of, "70.
Benkam, Capt. H. W. Appointed assistant in charge, 14, 80 ; examines Minot's ledge for light-house, 33, *171; "Sow and Pigs" rocks for light-house, $34,{ }^{* 172}$.
Blunt, Assistant E. Hudson river triangulation, 37 ; lighthouse and N. Y. range-beacon determinations, 37; *173; primary triangulation, Section LII, 40, 41.
Boca Chica. Land survey, 64.
Boiler deposite, analysis of, *89, *90.
Bolles, Assistant C. P. Cape Fear triangulation, 52; Smith's Island and Cape Fear topography, 53.
Bond, Prof. W. C. \& G. P. Longitudes by moon culminations and chronometers, 86; report on ditto, *84; spring governor, ${ }^{* 85}$, "86; chronometer expedition, *88, " 89 .
Boone island, 32.
Bottoms, Gulf Stream, examination of, *82, *83.
Boutelle, Assistant C. O. Reconnaissance, Section I, 27; Edisto and Winyah bay triangulations, 57.
Bryam, Surgeon D. L. Notice of death of, 15, 74.

C.

Cambridge. Longitude of, Bond on, *88, *89.
Cape Ann. Topography of, 30, 31.
Cape Fcar rirer. Changes of entrance, 11,54; triangulation, 52 ; topography and hydrography, 53 ; resurvey and currents, 54.
Capc Lookout. Topography, 53.
Carpentry shop, 85.
Casco hay, 31.
Charleston. Longitude of, 40,56; Gould's report on, "86. Chesapoake bay and entrance, 45 ; shoals in entrance, 88 , *89. Chroaometer expedition. 9: Bond's report, * 88 , *89.
Clerical force in Coast Surrey office, 85
Coast Survey, organization, references, 13; office, 80; parties, *1 to *6; vessels, *7 to *11.
Cold currents, 6.
Columbia river, 79. Alden's report, *55.
Compensation of Coast Survey employes, 17.
Computing division, 8 ; work done by, 81 ; report of computations made, *56.
Congress map, 13.
Contents of Appendix, iii.
Core sound, triangulation, 52.
Cotlez Bank, 79 ; "55, *56.
Cram, Capt. T. J. Secondary triangulation, Section I, 29; heights and co-efficient of refraction, 29.
Craven, Lieut. T. A. M. Gulf Stream Section, 5, 46; hydrography of St.Johns and Fort George inlet, 64 ; Florida reef, 65: on aid to the Williani Gaston, "164.
Cutts, Assistant R.D. 'Triaugulation Western coast, 77 ; Pulgas base, 77 ; report on Point Bonits, 179 .
Cuyler, Pd. Mid. R. M. On wreck of Aberdeen, *165; of steamer Tennessee, ${ }^{1} 165$.

D.

Davidson, Assistant G. Astronomical observations Westera coast, 77; Santa Barbara, 77; topography, 78.
Ducis' shaol, 4, 33.
Dauphine island. Topography, 63; hydrography, 69.
Detp Hole hatbor, rock in, 37 ; report, ${ }^{*} 171,{ }^{*} 172$.
Dectlopments and discoveries of Coast Survey for 1853, list uf, 10.
Disbursements, 87.
Discuveries, list of, 10 ; shoals, $33,34,45,79$.
Distances between stations, list of, ${ }^{*} 4$ to ${ }^{*} 42$.
Distribution of Coast Survey parties, list, "i to "6.
Drawing division, 81, 82; report of operations, "57 to *60.

E.

Edisto, triangulation, 57.
Electrotype operations, 82,83; in Ordnance office and Depot de la guerre, 83; report of operations, *61.
Eliott's key, 63.
Engineers, list of naval, on Coast Survey, ${ }^{*} 9,{ }^{*} 10$.
Engraving division, 8\%; repurt of operations, "60, "61.
Errata, "182.

Errata in geographical positions of 1821, *181.
Eans, Lt. A. IF. Barometer observations, Section I, 23 ; tidal computations, 87.
Exaing harbor, 78.

F.

Fairfield, Sub-Assistant G. A. Barometer nbservations, Section I, 28 ; tide gauge at Siasconsett, 36; report of, *46.
Farley, Assistant J. Secondary triangulation, Section III, 41 ; base measurement, 41, 42; James river, 42.
Florida Krys. Topography, 63; Lieut. Cotten's report on, *50, *51.
Florida Keff, estimate for, 25; signals, Totten's report on, *173, *174.
Foster, Capt. J. G., charge of drawing division, 81, *57; office, $8 \mathbf{0}$.
Franking privilege, 85, 86.
G.

Galneston bay. Hydrography, 74 ; tides, 75.
Gaston, Wm., disabled steamer, *164.
Gay ILcad, height of, de. 30.
Geodetic elements used, * 14 .
Gcographical positions, table of, $\varepsilon,{ }^{*} 14$ to ${ }^{*} 42$; notes on, *14, ${ }^{*} 15$; errata in table of $1851,{ }^{*} 181$.
Georsetown harbor. Triangulation, 57; topography, 58; bydrography, 59.
Gerdes, Assistant F. H. Sandy Hook and Hudson river, toporraphy, 3s; reconnaissance, Section YII, 61; triangulation and topography, St. George's som, 61, 62; report of Barataria bay, *51, *52; Timballier bay, *53;
Isle Derniere and Ship shoal, *53, *54; Attakapas plantations, channels, *54.
Gibson, Captain A. A. Views of Salem, Newburyport, and Fortsmouth, 36 ; change of drawing division, 81 ; report of, *57 to ${ }^{*} 60$.
Gibert, Assistant S. A. Topography of Plymouth and Monomoy, 32; triangulation of Lake Borgne, 67.
Gtoucester harbor, rock discovered in, *45.
Gould, Dr. B. A., jr. Telegraphic longitude of Raleigh, 40 ; report of ditto, *86, *87; personal equation, 56, *87; velocity of galvanic wave, 56, **7.
Greencell, Assistant Wm. E. Topography from Isle au Pied to Lake Borgue, 68; Ship, Bauphime, and Pettit Bois islands, 68.
Gulf Stream. Sections and submarine ranges, 5 ; tempera. ture, 6 ; full discussion, 46 to 52 ; sections run, 46 ; Canaveral and Charleston, 46; Capes Fear and Hatteras, 47 : rips, 47 ; temperatures, 47 to, 49 ; effect of seasons, 49; of form of bottom, 50 ; Gulf Stream bands, 50,51 ; general course, 51 ; examination of Gulf Stream bottoms, Pourtales, * $82, * 83$.

H.

Harrison, Assistant A. M. Topngraphy, Western coast, 77.
Hassler, Assistazt J.J.S. Trianguhation, Section IV, 52 ; topocraphy, Back bay, 53.
Heights, by level and barometer, 28,29 ; Fertical angles and boiling water, 99 ; Mt. Washington, 29.
Hein, Samuel. Disbursing agent, 8̄i, 87.
Hetzel. Analysis of boiler deposite, *e9, *90.
Hewston, J., jr. Report on boiler deposite, *89, *90.
Hilgard, Assistant J. E. Ohscrvations, Section I, 28; Mahon's Kiver light-house, and Dona, 38; base measurement and azimuth, Section III, 41; charge of computing division, 81 ; report of computations, " 56 , *57.
Horizontal angles, Section I, 27, 29; Section II, 37 ; Section III, 40, 41, 42; Section IV, 52, 53; Section V, 57, 58; Section VII, 61, 62; Section VIII, 67 ; Section IX, 73.
Horn Island Pass. Resurvey, 69.
Hudson river. Surrey, 37, 38.
Huger, Lieutenant T. B. Shoal discovered, *46.

Humbold harbor, 78, *55.

Humphreys, Captuin A. A. Brevet recommended, 14.
Hunt, Lieutenant E. B. Charge of engraving division, 82; report of engraring operations, *60, *6t; hithographic duty, Crystal Palace, 87; notes on lithography, *90 to *93; interranger, *93, *94; tide-gauge, description of, *94 to *96; notes on map projections, *966 to * 102.
Hunt, Lieulenant M. On Sabine Pass, *177.
Hydrography. Section I, 33; Section II, 38; Section III, 44, 45; Section IV, 54,54 ; Section V, 59 ; Section VI, 60 , 63, 64; Sectin VILI, 69, 70; Section IX, 74, 75; Western coast, 78, 79 ; Nantucket, 4; Gulf Stream, 5, 46 to 52.

I.

Information furnished by Coast Survey Office, 11 ; list, ${ }^{*} 12$ *14.
Infusorie in Gulf Stream bottoms, *82,*83.
Instrument shop, 84, 85.
Interranger, *93, *94.
Isle Dernierc. Survey, 66; hydrography, 69; Gerdes' re port, ${ }^{*} 33,{ }^{*} 54$.

J.

James river. Survey of, 41, 42; topography, 43, 44; hydrography, 45.
Jerscy jlats. Hydrography, 38.
K.

Keys, Florida, 62, 63.
Key Largo, 62.

L.

Lake Borgne. Triangulation, 67; topography, 68.
Latitude, observations. Section 1, 25; Section VII, 61; Section VIII, 677 Section IX, 71, 72; Western coast, 77 ; list of laticudes, * 14 to *42.
Library, 85; report of, ${ }^{*} 66$.
Light-house examinations, 13 ; Section I, 30 ; Section II, 37, 32,39 ; Section VI, 65; Section VILI, 69, 70; Section 1X, 75; Western coast, 80 ; direction for, *169; list of, *170. Lists-discorerips and developments, 10,11 ; sketches in report, 11, 12, *1(M): Coast Survey parties, *1 to *6; army officers, *7; nary officers, *7, *9; naval engineers. *9, *10; Cuast Survey vessels, *7,*9; Coast Survey maps and sketches engraved, *10, "11; Coast Survey maps and \&ketches engraving, *12; information furnished, ${ }^{*} 12$ to * 14 ; geographical positions, ${ }^{*} 14$ to ${ }^{*} 42$; positions surveyed on Western coast, *43; map projection tables, *96 to *163; tide-tables for United States, "67 to *70; benchmarks for tides, *70.
Lithography and lithographic transfers, notes on, *90 to 493.

Local attraction. Sebattis, 28; error by, *14, *15.
Longfetlov, Assistant A. W. Topography, Section I, 31, 32.

Longitudes by chronometers and moon culminations, 9,86 , *84: observations, 40, 56, 61, 66, 71, 72, 77: telegraphic honitudes, Raleigh, Charleston, New Orkans, 40, 56, *8is, *r; ; hist of longitudes, *14 to *42; standard longitudes, *15; Pierce on moon culminations, * 84 ; Bond on moon culninations, * 84 ; Gould's telegraphic report, *86, *87; Bond's chronometer expoditions, *88, *89.

M.

Maffit, Lieut. J. N. Gulf Stream Sectione, 5, 46; Cape Fear bars, resurvey, 54; Winyah bay and Georgetown harbor, 59.
Magnatic observations. Section III, 41; Section VII, 61; Section V III, 67 ; Section IX, 72 .

Mahon's revcr, light-house, 38
Map for Congress, 13 ; printing-office, 83 ; list of, printed, *62, *63; sold and distributed, 84, *64, *65; engraved and engraving, *10, ${ }^{*} 12$; projection tables, ${ }^{*} 96$ to ${ }^{*} 163$. (See Projection.)
Martha's Vineyard. Cliffs, 30; Deep Hole Rock, 37, *171, *172.
Mutacorda Lay. Triangulation, 73; topography, 74.
Mathiot, ($\mathbf{y}, \mathrm{C} 82,83$; report of electrotyping, *61
Meteorological register. Section I, 28, 29; Section IX, 72.
Minot's Ledge. Light-house survey, 33 ; report on, "170.
Mississippi sound. Topography, 68; hydrography, 69.
Monomoy, iulet, 10 ; Puint, topography, 32 ; shoals, 34.
Moon culminations, Pierce on, *34; Bond on, * 84 .
Mount Blue and Mount Sebattis, 28.
Mount Washington, height of, 29.

N.

Nantucket shoals, 4, 33, 34.
Nussau roads, resurvey, 69.
Navy officers on Coast Survey, 10; list of, *7, *8, "9.
New inlet, changes in, 11,54.
New Yorli harbor. Range-beacons, 37, *173.
Nones, $\boldsymbol{W} . \boldsymbol{H}$. Notice of death, 15 .
Notices published, 12.
O.

Office Coasi Survey. Work in, 80 to 87 ; expenditures, or gavization, 80.
Officers on Coast Survey. Army, 10, *7; navy, 10, 7 to *9; naval engineers, 10, $9, * 10$.
Off-shore soundings, 4, 5, 44; tides, 45, *48, *49.
Old Rhodes key, 64.
Ord, Capt. E. O. C. Savannah river triangulation, 58 ; Western coast, 77
Organization of Coast Survey, 9 ; office, 80.

P.

Palmer, Capt. Win. R. Rappahannock triangulation and base, 42; reconuaisaance of ditto, *47, *43.
Paper, thin, for maps, 83 ; cloth-backed, 84.
Purties, distribution of Coast Survey, " 1 to *6.
Pascagoula river, survey, 69, 70; report on, ${ }^{175}$
Pay of Coast Survey employés, 17.
Pendleton, Prof. A. G. Longitude computations, 86
Personal equation, Section I, 28; Gould on, 56, *87.
Pctit Bois island, 68.
Pierce, Prof. B., on moon culminations, 86, "84.
Plymouth. Topography, 32; hydrography, 35.
Point Bonita, 80; reports on, *179, *180.
Portland harhor. Topography, 31 ; hydrography, 35.
Pourtales, Assistant L. F. Telegraphic longitudes, 40, 56 ; tidal party, 86; longitude party, 87 ; repert on tidal computations, "Gf; examination of Gulf Stream bettoms, 47, *32, *83.
Prince, Maj. II. Reconnaissance, Section I, 27 ; from Cape Fear river to N. Santee river, 54; Winyah bay triangulation, 57.
Printing, order of Congress, 1; maps, 83, *62, "63.
Progress of Const Survey, 3, 4.
Projection tahles for maps, with notes, *96 to *163; projec. tions classified and defined, "96 to *98; Mercator's, "98; Bonne's, "98; polyconic, Coast Survey, "99; formule, 100; list and explanation of the tablea, *101; graphic constructions, "102; tables, "103 to "163.
Publication of Cuast Survey records, 16, 17; estimate for, 26 .
Palgas bate, 77.

R.

Range beacons, New York harbor, 37, 173.
Ranfe instrument, $93,{ }^{*} 44$.

Rappahannork river. Triangulation, 42; hydrography, 45; Palmer's reconnaissance, 42 , $\boldsymbol{*}_{17}$, *4\%.
Reconnaissance, Section 1, 27; Rappahannock, 42, *47,*48; Section V, Prince's, from Cape Fear river to N. Santea river, 55; Section VII, 61; Section YIII, Gerdes', 65 to 60, *51, ${ }^{*} \mathbf{0 2},{ }^{*} 53,{ }^{*} 44$; Section IX, 73 ; Western coast, 76 , 78,79 .
Records, publication of Coast Survey, urged, 16, 17, 26.
Refraction, co-effirient of, 29.
Reports, (see Scientific.)
Report of Coust Survey, printing order, 1 ; distribution, 84 ; list, *65.
Rio Grande. Survey, 74, 75; tides, 75.
Rips, 4, 33 ; ripples, 47.
Rodgers, A. F. Report on Point Bonita, " 180.

S.

Sabine Pass. Survey, 74, 75; reports on, *176, *177.
Sands' key, 63.
Sands, Lieut. B. F. Hydrography Section VII, Ship shoal, Horn Island Pase, Nassau roads, Mississippi sound, and
Tauphine island, 69 ; report on Pascagoula river, ${ }^{* 175}$;
Ship shoal, *176.
Sands Hook, 38.
San Luis Pass, 74, 75.
Savannal river. Triangulation, 58.
Saxton, Mr. Jos., 85; tidr-gange described, *94 to *9G.
Scientific-Reports, tables, \&-c.-
Analysis of a deposite in the Hetzel's boilers, *89.
Lithography and lithographic transfere, *90 to *93.
Interranger, a new optical iastrument. *93, "94.
Longitade. Prof. Pierce on longitudes by moon culmiuations, "84; Bond on ditto, *Et; Dr. B. A. Gould's report on longitudes by telegraphic siguals, *86, *37; G. P. Bend on chronometer expeditions for longitude of Cambridge, *88, *89.
Tables-geographical positions, or latitudes, longitudes, azimuths and distancer, *14 to *42; Projection tahles for maps, with motes, and various nuxiliary tables, *96 to *163; tide-table for the Lnited States, and tide bench-marks, ${ }^{6} 67$ to ${ }^{*} 70$.
Tides. Prof. A. D. Bache's discussion of the tides at Key West, *71 to 76 ; dirto at San Francisco, *76 to *81; tide-table for United States, and bench-marks, *67 to *70.
Tide-gauges. Description of Saxton's self-registering gange, *94 to "96; Fairfield's exposed tide-gauge, ${ }^{7} 46,{ }^{*} 47$; off-shore gauge. *48.
Gulf stream. Prof. Bache's discussion of its exploration, 46 to 52; L. F. Pourtales' examination of Gulf Sireain battoms, *82, *ס 3
Screv-piles. Florida reef, *173, *174
Scbattis, Mount, observations on, $2 \times$.
Sections of Coast Survey. Organization of, 16; limits of, "14; summary of work in each, 17 to 21 ; estimgte for each, 92 to 25 ; Section I, synopsis of work for the year, 26 ; Section IL, 37 ; Section III, 39 ; Section IV, 52 ; Section V, 54; Sections VI and VII, 60, 61 ; Section VIII, 65, 66 ; Section IX, 70; Western coast, 76.
Seward, Licut. A. H. Hudson river triangulation, 37; Section III, 41.
Shav, T. E., to Lieut. Craven, ${ }^{*} 164$.
Ship shoals. Survey of, 69; Gerdes' report, observations and tides, ${ }^{3} 33$, *54; Sands' report, *176.
Shoals. Sounded out, 33, 34, ${ }^{46}$; Chesapeake entrance, 45, *49, *50; Cortez Bank, 79, *55, *56.
Shock, G. E., notice of death, 15.
Shore-line, changes in, 30, 31, 33, 68.
Sketches. List of, engraved and engraving, $10,{ }^{*} 12$; in thia report, $11,12, * 190$; printed, ${ }^{*} 62,{ }^{*} 63$; sold and dietributed, "64, "65.
Smith's island. Topugraphy, 53.
Soldier key, 63.
"Sow and Pigs" reef, 30, 34; report on, "172.
Spring governor, Bond on, *65, **6.

St. Gearges, survey, 63.
St. Johns. Triangulation, 62; topography, 64; hydrography, 64.
Station errors. Sebattis, 2R; qeneral, *14, *15.
Stellowagen, Lieut. S. S. Nantucket shoals, 4, 33; Capo Ann, Minot's ledge, Martha's Viueyard, 33 ; Section IX, San Luis Pass, 74; Aransas Pass, 74, 75; letter on surfboats, *43; Gloucester Rock, *45; shoal in ocean, *46; Minot's ledge, *170, 171 ; Aransas Pass, ${ }^{*} 178$.
Stevens, Major 1. I. Kesigue as assistant in charge, 14, 80 ; on Prof. Walker's death, *167.
Stevens, Lieut. T. H. Cortez Mank, 79 ; report of, *5b.
Surf.boats. Location of, Section I, 33; Prot. Bache and Lieut. Woodhull on, w43, 44 ; Prof. Bache and Lieut. Stellwagen on ditto, *44, *45.
Synopsis of Report, 3 .

T.

Table of geographical positions, latitudes, longitudes, azimoths, distances, 14 to 42 ; projection tables for maps, $* 96$ to ${ }^{*} 163$; tide-table for United States, $* 6$ to $* 70$; bench-marks, *70.
Tclegraphic longitudes, 40, 56, *86, *87.
Tides, three types of, 7,8 ; discussion of, 8; data, 7; offshore ohservations, $6,45,{ }^{*} 45, * 49$. (Ohservations in Section I, 36 : Section II, 38 ; Section III, 44, 45 ; Section IV, 54; Sectim V. 59 : Section VI. 60, 61: Section VIII, 66, 70; Section XX, 75; Western coast, 76, 79, 80.) (Tyidal party, 86,87 ; report of computations, ${ }^{*} 66$) (Tide gnuge, exposed, Nantuck ft , Fairfield's, 36, *46, *47; offshore, 78 ; Saxton's self registering, description of, 34 to *96.) Tide-table and bench-marks for the United States, *67, *70. (Prof. Bache's discussion of tides at Key West, 71 to *76; at Sau Francisco, *76 to *31.)
Timballier bay, 67 ; Gerdes on, "53.
Tupagraphy. Section I, 30 to 33 ; Section II, 38 ; Section III, 43, 44; Section IV, 53; Section V, 58; Sections VI and VII, 62 to 64; Section YIII, 68; Section IX, 74; Western coart, 77, 78.
Totten, Lieut. James. Tringulation Key Largo and Key West, 62 ; Florída keys, ${ }^{*} 00, * 51$; reef signals, ${ }^{173},{ }^{*} 174$.
Totten, Lieut. J. S. Triangulation Winyah bay and Georgetown harbor, 57, 58; death, 58 ; notice of, 15 ; tribute to, *167.
Totten's key, 64
Trasings firnishod, *10 to *12.
Transfar, lithographic, notes on, *90 to *93.

Trinngulation. Section I, 27; Section II, 37, 38; Section III, 40, 41; Section IV, 52, 53; Section V, 57; Sections VI and VII, 61, 62; Section VIII, 67; Section 1X, 73; Western cosst, 77; facilities for on Weatern cosist, 7; process of, ${ }^{1} 14$.
Trozh ridge, Lieut. W. P. Triangulation James river, 41 ; Western const tides, 79, 80.
U.

Umquah river, 79, *55.

V.

Van Buren, Lieut. D. T. Huilsan river triangulation, 38; Rappahanoock river, 42 ; base, 42.
Ierticai angles. Section I, 27 .
Velocity of galvanic wave, $36, * 87$.

W.

Wainoright, Lieut. R. Hudson river hydrogrsphy, 30 ;
James river, 45; Rappahannock river, 45.
Wulker. Prof. S. C. Longitudes, 9; his death, 15; tribute to, ${ }^{*} 166,{ }^{*} 167$.
Wequohsky cliffs, encroached on, 30.
Ifest, Sul-Assistant B. F. Death of, 15, 73; tribute to, "168.
Western coast. Hydrographic reconnainsance, 6; estimate, 25 ; summary of work on, 76; list of surveys of headlands, \&c., "43; harbors on, *55.
Whiting, Assistant H. L. Topography, Section I. 30.
Jilkinson, Licut. J. Fito Grande, 74; Sabine Pasa, 75; roport of, $\mathbf{1 7 7}$.
Williams, Assistant J. S. Triangulation Section EX, 73; topography, 74 .
Winyrh bay. Triangulation, 57; hydrography, 57.
Wisc, Assistant G. D. Topography Section III, 43
Woochull, Lieut. M. "Sow and Pigg." Monomoy, 34 ; Deep
Hole Rock, 34, *171; Portland and Plymouth harbors, and Alden's Fock, 35 ; Jersey Flats, 38, 39 ; Romer shosis, 39; surf-boats, 35, *43; "Sow and Piga" reef, "172.

Y.

York harbor, Me. Topography, 32.
Yulee, Prof. E. Computation of moon culminations, 87.

LIST 0F SKETCHES.

1. A. Sketch of prigress, Section I.
2. A, No 2. Alden's Rock.
3. A, No. 3. Minot's ledge.
4. A, No. 4. Davis' South shoal.
5. A, No. 5. Sow and Pigs reef.

6 B. Sketch of progress, Section II.
7. B, No. 2. Romer and Flynn's shoals.
8. B, No. 3. Saudy Hook changes.
9. C. Sketch of progress, Section III.
10. C, No. 2. Seacnasc of Virgibia, No. 2.
11. C, No. 3. Wachepreague, Machipongo, and Metomkin inlets.
12. C, No. 4. Preliminary sketch of Cape Charles and vicinity.
13. C, No. 5. Cherrystone inlet.
34. C, No. 6. Preliminary sketch of Pungoteague creek.
15. Gulf Stream, No. 1. Gulf Stream explorations.
16. Gulf Stream, No. 2. Diagrams of Gulf Stream off Charleston, \&e.
17. D. Sketch of progresi, Section IV.
18. D, No. 2. Progreas of survey of Cape Fear and vicinity.
19. D, No. 3. Cape Fear river and New inlet.
20. E. Sketch of progress, Section V.
21. E, No. 2. Cape Roman shoals.
22. E, No. 3. Preliminary chart of North Edisto river.
23. E, No. 4. Sketch of progress, Savannah river.
24. F. Sketch of progress, Section VI.
25. F, No. 2. Preliminary chart of the entrances to St. John's river.
26. F, No. 3. Sketch of progress, Cedar Keys, Bahia Honda, \&c.
27. F, No. 4. Tidal diagrams, Key West.
28. F, No. 5. Tidal diagrams, Key West.
20. G. Sketch of progress, Section VII.
30. G, No. 2. Middle or Main and West entrances to St. George's sound.
31. H, Sketch of progress, Section VIIL.
32. H, No. 2. Horn Island Pass.
33. H, No. 3. Entrance to Pascagoula river.
34. H, No. 4. Preliminary reconvaissance of the entrance to Barataria bay.
35. H, No. 5. Preliminary reconnaissance of the entrance to Timballier bay.
36. H, No. 6. Preliminary chart of Ship Island shoal.
37. I. Sketch of progress, Section IX.
38. I, No. 2. Reconmaizsance of Sabine Pass.
39. I, No. 3. Galveston entrance.
40. I, No. 4. Preliminary chart of San Luis Pass.
41. I, No. 5, Reconnaissance of Aransas Pass.
42. J. Skatch of progress, Sections X and XI.
43. J, No. 2 . Reconnaissance of the Western coast from San Francisco to San Diego.
44. J; No. 3. Cortez Bank.
45. J, No. 4. San Diego entrance and approaches.
46. J, No. 5. Preliminary sketch of Sauta Barbara.
47. J, No. 6. Progress of survey of San Francisce bay and vicinity:
48. J, No. 7. Tidal diagrams, Riacon Point.
49. K. Sketch of progress, Columbia river.
50. K, No. 2. Preliminary aurvey of Shoalwater bay.
51. K, No. 3. Reconnaissance of the Western coast from Gray's harbor to Admiralty inlet.
52. K, No. 4. Cape Flattery and Neé-ah harbor.
53. K, No. 5. Reconnaissance of Fulse Dungeness harbor.
54. Self-registering tide-gauge.

National Oceanic and Atmospheric Administration

Annual Report of the Superintendent of the Coast Survey

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910

[^0]: *Ex. Doc. No. 3, Sed Congrean lat memgion, Sonate, PP. 162 to 442

[^1]: - Ex. Doo. Mo. 13, House of Repr., 30th Congreated reanion, Pp. 4,5; Ax. Doo. No. 12, Howe of Repu., 31.tt Copgram
 2

[^2]: *Ex. Doc. No. 3, Senate, 32d Congrees 1ht eenion, Pp. 126, 127.
 t Ex. Doc. No. 58, Senate, 32 d Congress 2d memion, p. 80.

[^3]: *Ex. Doc. No. 38, House of Reps., [13;] Serate, 29th Congrene 1st measion, p. 2.

 + Eenste, [3,] 29th Congrean 2d somilon, Pp. 3, 4.
 \ddagger Fx. Doc. No. 6, Senate, 30th Congretit Iut motition, pp. 9, 4.
 4 Ex, Doc. No. 5, Sonate, 31 at Congrene lot monsion, P. 3.
 Ex. Doc. No. 6, Senate, 30th Congrees lat nemion, p. 4.
 EEx. Doc. No. 13, Houm of Repr. ; No. 级, Seante, Suth Congrean 2 d sestion, p. 2.
 Ex. Doe. Ko. 13, Houte of Repa, No. 25, Bemate, Soch Corgrome ed memion, Pp. 4, 5.
 - Re. Deic. No. 5 , Benate, 31 et Congreme 1t memion, p. 3.

[^4]: * Ex. Doc. No. 7, Senate; No. 12, Honse of Reps., 31st Congress 2d session, p. 6.
 + Ex. Doc. Nu. 3, Benate, 32d Congress 1st session, p. 6.
 \ddagger Ex. Doc. No. 7, Senate; No. 12, Fange of Reps., Sist Congreas 21 sesmion, p. 5.
 $\$$ Ex. Doc. No. 13, House of Reps.; No. 26, Senate, 30 hh Congreee 2 d session, p. 3.
 ${ }^{1}$ Ex. Doe. No. 7, Senate; No. 12, House of Reps., Blet Congress 2d sestion, p. 5.
 ${ }^{2}$ Ex. Doc. No. 5, Senate, 31at Congrean 1st seamion, p. 4; almo, Ex. Doc. No. 26, Senste, 30th Congress 2d session, p. 4.
 ${ }^{3}$ Ex. Doc. No. 26, Benate; No. 13, House of Reps, 30th Congress 2d beamion, pp, 3, 4.
 - Ex. Doc. No. 7, Senate; No. 12, Honse of Reps., 31st Congrom 2d semsion, pp 2, 52.
 ${ }^{4}$ Ex. Doc. No. 3, Senate, $32 d$ Cougreme Itt mession, Pp, 4, 5, 83.

[^5]: *The triangulation of San Francisco bay depends on a preliminary base near Poin San Joae, 941.3 metree or 0.58 mile in length.

[^6]: A. Sehoth, of the Caupathag Divintion.

