75

T

REPORT
 8373
 or
 THE SUPERINTENDENT
 COAST SURVEY,

showng

THE PR0GRESS 0F THE SURVEY
muring

THE YEAR 1859.

WASHINGTON: THOMAS H. FORD, PRINTER.
1860.

National Oceanic and Atmospheric Administration
 Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 13, 2003

LETTER

from tile

SECRETARY 0F THE TREASURY,

COMNUNICATING
The Report of the Superintendent of the United States Coast Survey.

In tue House of Repnesentatives, Junc 13, 1860.
Resolved, That there be printed five thousind extra copies of the leport of the Superintendent of the Coast Survey for the year 1859 ; three thousand of which shall be for distribution by the Superintendent, and two thousand shall be for the use of the members of the House.

JOHN W. FORNEY, Clerk.

Treasury Defartment, Fobruary 6, 1860.
Sir: I have the honor to present, for the information of the House of Representatives, a report made to the Department by Professor A. D. Bache, Superintendent of the United States Coast Survey, stating the progress in that work during the year ending November 1, 1859, accompanied by an engraved map showing the general progress made in the survey of the Atlantic, Gulf, and Pacific coasts, and also the manuscript map prepared at the Coast Survey Office, in accordance with an act of Congress approved March 3, 1853.

With great respect, your obedient servant,
HOWELL COBB,
Secretary of the Treasury.
Hon. Wm. Pennington,
Speaker of the House of Representatives.

ABSTRACT OF CONTENTS OF REPORT.

Division and arrangement, p. 1. Estimates of progress and completion of field-work in geographical sections, pp. 2-4. General statement of progress, pp. 4-6. Progress of year, pp. 6-11. Maps and charts, p. 11. List of sketches accompanying report, p. 12. Photography, p. 13. Estimates for fiscal year 1860-'61, pp. 13-20. Derelopments and discoveries, pp. 20, 21. Remarks on surveys on the Western Coast, p. 21. On tide tables for navigators, pp. 21, 22. On table of depths, p. 22. On geographical positions, p. 22. On list of topographical and hydrographic sheets, p. 22. On information furnished, p. 22. On field and office statistics, p. 23. Distribution of reports and maps, p. 23. Extract from report of committee of American Association for the Advancement of Science, pp. 24-26. Telegraphic longitudes, p. 26. Epping base of verification, p. 26. Magnetic observations, p. 27. Further discussion of Gulf Stream observations, p. 28. Tides and currents, pp. 28,29. On publication of records and results, p. 29. On projection tables for maps, p 29. Notices of instruments and apparatus, p. 30. Officers of the army, p. 30. Officers of the nary, p. 31. Hydrographic division, pp. 31,32. Aids to navigation, p. 32. Obituaries, p. 32.
Field and Offec. Progress in:
Section I.-Summary. Field-work, p. 33. Offce-work, p. 34. Geodetic and astronomical observations at stations Howard, Western Ridge, and Chamcook, pp. 34-36. Magnetic observaions at Moward and Western Eidge, p. 36 . Reconnaissance near northeastern boundary, pp. 36,37. Triangulation connected with Epping base, p. 37. Tiangulation of Penobscot bay, Maine, p. 38. Triangulation over Muscongus bay and sound, Maine, pp. 38,39. Topography of Wiscasset bay, Maine, p. 39. Topography of Merrymeeting bay and Bath, Maine, p. 39. Topography of Casco bay, Maine, pp. 39, 40. Planc-lable survey of Saco bay and vicinity, Maine, p. 40. Topography of Barnstable harbor and vicinity, Massachusette, pp. 40,41. Ferification of topography, p. 41. Hydrography of the approaches to Sheepscot bay and Kennebeck river, Maine, p. 41. Mydrography of Casco bay Maine, p. 42. In-shore hydrography between Cape Elizabeth and Cape Porpoisc, coast of Maine, pp. 42,43. Of-shore hydrography, coast of Maine, New Hampshire, and Massachusetts, pp. 43, 44. Examination of Salem harbor, Massachusetts, p. 44. Resurvey in Boston harbor, pp. 44, 45. Rock in Myannis harbor, Massachusetts, p. 45. Magnetic observations, pp. 45,46. Tidal observations, p. 46.
Section II.-Summary, p. 46. Office-work, p. 46. Triangulation of the Hudson river, pp. 46, 47. Topography of South Jamaica, vicinity of Brooklyn and Williamsburg, High Bridge, Yonkers, and Morrisania, and of Mudson City, New Jersey, pp. 47, 48. Topography of Kudson river, New York, pp. 48, 49. Resurvey of part of Mempstead harhor, Long Island sound, p. 49. Examination of the Battery shoal, New York harbor, p. 49. IZydrography of Hudson river, New York, pp. 49, 50. Tides and currents in New York harbor and its approaches, p. 50. Magnetic observations, pp. 50, 51. Tidal observations, p. 51.
Section III.-Summary, p. 51. Offie-vork, pp. 51,52. Examination of stations on Chesapeake bay, p. 52. Triangulation of the Potomac river, Virginia, pp. 52,53. Triangulation of Hampton Roads, Virginia, p. 53. Triangulation and topography of Chincoteague and Sinepurent bays, Maryland and Virginia, pp. 53,54. Plane-table survey of the Patusent river, Maryland, p. 54. Topography of St. Mary's river, Maryland, pp. 54,55. Topography of Milford haven and Horn and Winter harkors and vicinity, Chesapeake bay, Virginia, p. 55. Shore-line survey of James river, Virginia, pp. 55, 56. Hydrography of the Patuxent river, Maryland, p. 56. Hydrography of the St. Mary's river, Maryland, p. 56 . Hydrography of James river, Virginis, pp. 56, 57. Hydrograpky of Big Annemessix aud Little Annemessix rivers, Maryland, p. 57. Tidal obecreations, p. 57.
Sxction IV.—Offeework, p. 57. Trianguletion of Pamplico sound, North Carolina, pp. 57, 58. Verification of triangles in the vicinity of Cape Fear, North Carolina, pp. 58,59. Topography between Cape Henry, Virginia, and Currituck gound, North Carolina, pp. 59,60. Hydrographic office-work, p. 60. In-shore hydrography between Bogue and New River inlet, coast of North Carolina, p. 60. Off-shore sotndings, from Cape Lookout, North Carolina, pp. 60, 61.
Secmon V.-Swmmary, p. 61. Office-verk, p. 61. Latitude observations at Smithville, North Carolina, pp. 61, 62. Azimuth, p. 62. Magnetic observations at Smithville, North Garolina, p. 62. Trinugudetion and torography vestward of 'Iubb's inlet, North Carolina, pp. 62,63. Astronomical and maynetic observations at St. Helena Island, South Carolina, pp. 63, 64. Primary triangulation, coast of South Carolina, p. 64. Triangulation of Beaufort, Chechessee, and Colleton rirers, South

Carolina, pp. 64, 65. Trimgulution of Doboy and Altamaha sounds, Georgia, pp. 65, 66. Shore-line antvey from St. Helena sound, South Carolina, to Savannah river entrance, pp. 66,67. Topography of St. Catherine's sound, Georgia, pp. 67,68. In-shore hydrography from Cape Fear westward to Tubb's Inlet, North Carolina, pp. 68, 69. Off-shore Jiydrography from Cape Fear to Charleston harbor, p. 69. Aydrography of Bull's bay, South Carolina, pp. 69, 70. Hydrography of Port Royal entrance, South Carolina, pp. 70, 71. Hydrography of the Chechessee and Colleton rivers, South Carolina, p. 71. Hydrography of Sapelo bar and its appronches, Georgia, pp. 71,72. Tidal observations, p. 72.

Section VI-Summary, p. 72. Ofice-work, p. 73. Air-line triangulation across the Florida peninsula, p. 73. Triangulation of St. Augustine harbor and Forth river, Florida, pp. 73, 74. Triangulation of Indian River inlet, Florida, pp. 74, 75, Triangulation of the Florida keys, p. 75. Triangulation of Charlotte harbor, Florida, pp. 75, 76. Topography of Key, Biscayne bay, Card's sound, and Florida keys, near Cape Sable, pp. 76, 77. Topography of Charlotte harbor, Florida, pp. 77, 78 ; Blind Pass, Captiva Pass, and Boca Grande, p. 78. Hydrography of the Florida reef, pp. 78, 79. Tidal observations, pp. 79, 80.
Gulf Stacam.-Dcpth and temperature in Strait of Florida, p. 80. Deep-sed soundings, p. 80.
Section VII.-Summary, p. 81. Field-worl, p. 81. Ofice-work, p. 81. Coast triangulation south of Homosassa river, Florida, pp. 81, 82. Triangulation east and west from St. Mark's, Florida, pp. 82, 83. Triangulation of Santa Bosa sound, Florida, p. 83. Topography north and south of Homosassa entrance, West Florida, pp. 83, 84. Topography of Ocklokonee bay and St. James's island, Ftorida, pr. 84, 85. Topegraphy of Santa Rosa sound, Florida, p. 85. Re-examination of the Cedar keys channels, Florida, pp. 85, 86. Mydragrayhy of St. George's sound, Florida, p. 86. Tidal observations, pp. S6, 87 .
Section VIII-Summary, p. 87. Offec-work, p. 87. Triangulation and topography of Isle au Breton sound, Louisiana, pp. 87, 88. Triangulation of the Mississippi delta, Louisiana, pp. 88, 89. Triangulation of West Côte Blanche bay, Louisiana, pp. 89, 90. Topography of Lake Pontchartrain, Louisiana, p. 90. Topography of the Mississippi delta, Louisiana, pp. 90, 91. Topography of West Cote Blanche bay, Louisiana, p. 91. Soundings in the Rigolets, Louisiana, pp. 91, 92. Mydrouraphic reconnaissance of Passe at Loutre, Mississippi delta, p. 92. Mydrography of Atchafalaya and Côte Blanche bays, Louisiana, pp. 92, 93.
Section IX.-Summary, p. 93. Officework, p. 93. Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Texas, pp. 93, 94. Topography of Espiritu Santo and San Antonio bays, Texas, pp. 94, 95. Hydrography of Matagorda bay, Texas, pp. 95, 96.
Section X.-Summary, p. 96. Offee-work, p. 96. Primary triangulation near San Pedro, California, pp. 96, 97. Triangulation of Santa Rosa island, California, p. 97. Trianguhation and topography of San Pedro harbor, California, p. 97. Primary and secondary triangulation north of San Francisco, California, pp. 97, 98. Satitude and azimuth, pp. 98, 99. Triangulation of Crcscent City harbor, California, p. 99. Topogrophy of Santa Cruz islands, California, p. 99. Topography of Crescent City harlor, California, p. 100. Hydragraphy of San Pedro harbor, California, p. 100. Soundings off the Golden Gate, entrance to San Francisco bay, California, pp. 100, 101. Resurvey of Humboldt bay, California, p. 101. Eydrography of Crescent City harbor, Califoraia, p. 101. Tidal observations, p. 101.
Section XI.-Summary, p. 102. Office-work, p. 102. Triangulatoon of the Gulf of Georgia, Washington Territory, pp. 102, 103. Reconnaissance of Coquille River entrance, Oregon, pp. 103, 104. Hydrogruphic reconnaissance of Gray's harbor, Washington Territory, p. 104. Hydrography of the Gulf of Georgia, Washington Territory, p. 104. Tidal observations, p. 104.

Offlce-work.-Officer in charge, p. 104. Computing division, occupation of persons attached, pp. 104, 105. Tidal divistion, statement of occrpation, p. 105. Drawing diuision, names of oficers and employes, p. 105. Engraving division, specification of work accomplished, with statement of force, pp. 105, 106. Electrotype and photograph division, general remarks, p. 106. Miscellanecus division, printing of maps and charts, p. 106. Distribution of reports, p. 106. Instrument shop, carpenter's shop, p. 106. Speciul services, pp. 106, 107. Hydrographic division, p. 107.
Appendix, pp. 108-370.

CONTENTS OF APPENDIX.

I.-FIELD, HYDROGRAPHIC, AND OFFICE DETAILS.

A.-GENERAL LISTS OF COAST SLRVEY PARTIES AND RESULTS.

Page.
No. 1. Distributron of parties on the coast during the surveying season of $1858-69$ 108-116
No. 2. army offigers on Coast Survey duty, March 1, 1859 116
No. 3. Army offigers on Coast Survey duty, September 1, 1859 116
No. 4. Navy officers on Coast Survey duty, March 1, 1859 117
No. 5. Navy officers on Cuast Survey duty, September 1, 1859 117
No. 6. Informatron furnished in reply to special calls 118, 119
No. 7. Sratlstics of field and ofice work 120-122
B.-DISCOVERIES AND DEVELOPMENTS
No. 8. Genkral lest, brought up to 1859 , inclusive 123-129
No. 9. Roch off Segun ishand, Maine,-Letter to the Secretary of the Treasury, giving its position as deter- mined by Lient. Comg. J. Wilkinson, U. S. N., Assistant. 130
No. 10. Hussey Rock, (Casco Bat,) Maine.--Letter to the Secretary of the Treasury, furnishing ranges as stated by Lieut. Comg. J. Wilkinson, C. S. N., Assistant 130
No. 11. Rock ofy Ogunoutt, Mame.-Letter to the Secretary of the Treasury, developing its position and char- acter as reported by Lieut. Comg. Alexander Murray, U. S. N., Assistant 131
No. 12. Rock in Hyannis Habbof, Mass.-Report on the determination of its position, by Lieut. Comg. J. Wilkinson, U. S. N., Assistant. 131
No. 13. Battery Shoal, (New York Harbor.)-Correspondence relative to its development and character 132-134
O. -NAVIGATION.
No. 14. Tide Tables for ports of the United States, and descriptions of cotidal and sailing lines along the Atlantic coast. By A. D. Bache, Superintendent U. S. Coast Survey.
$130-167$
No. 15. Table of Depths found in the channel-ways of harbors, rivers, and anchorages of the coast of the United States 168-171
No. 16. Variation on ties Compass. - General table for the use of navigators. 172-175
D.-OEFICE-WORK.
No. 17. Report of Captain W. R. Palmer, U. S. Topographical Engineers, Assistant Coast Survey, in charge ofthe office176-179
Computing Division.-Report of Assistant C. A. Schott, on details of employment. 179-181
Tidal Division.-Report of Assistant L. F. Pourtales, on office occupation. 181
Drawing Division.-Repert of Lieut. Thomas Wilson, U. S. A., on progress, with lists of maps completed or in hand 182-187
Engrating Division.-Report of Mr. Edward Wharton, with lists of plates engraved or in progress. 188-199
Electrotype Division.-Beport of Mr. George Mathiot, stating operations of the year. 199-202
Miscellaneous Division.-Report of Lieut. J. R. Smead, U. S. A., on the printing of maps, distribu- tion, etc. 203-212
No. 18. Topographicai Shemss-List showing titles, dates, etc., (continued from Coast Survey Report for 1857)- 212-214
No. 19. Hyorographio Shetis,-List showing titles, dates, etc., (continued from Coast Survey Report for 1857). 215,216

Page.

216-277
No. 20. Geographigal Posimons.-Table of latitudes, longitudes, azimuths, etc., (continued from Coast Survey Reports of 1851,-'53,-'55, and -'57)

II.--SPECLIL OPERATIONS AND SCIENTIFIC DISCUSSIONS.

A.-ASTRONOMICAL.No. 21. Moon Cuminations.-Report of Professor O. M. Mitchel, director, on the observations made for the Coast Survey at the Cincinnati Observatory for longitude purposes

> B. -MAGNETISM.

No. 25. Gulf Stream,-Distribution of temperature in the water of the Florida channel and straits. By A. D.
 306-310
No. 26. New Yonk Harbor. - Report by Assistant Heary Mitchell on the physical survey, with descriptions of apparatus for observing the currents.

311-317

III.-SPECIAL SURVEYS.

No, 29. Port Royal Sound, S. O.-Remarks on the commercial facilities afforded in its upper waters. By Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant.

No. 31. Charlotre Harbor, Fla,--Extracts from reports of Sub-Assistants F. W. Dorr and Charles Ferguson, showing its topographical features.

323, 324

IV.-MISCELLANEOUS SCIENTIFIC MATTER.

No. 33. Projection Tablis for maps of large extent. Arranged by Assistant J. E. Hilgard.
328-358
No. 34. Defep-sea Soumdino Apparatcs.-Description of a form devised by Absistant W. P. Trowbridge, and explanation of its method and use

359—364
No. 35. Tids-Myras.-Rosults of experiments made with the apparatus devised by Capt. E. B. Hunt. By Mr. J. M. Bacheldex

365, 366

V.-MISCELLANEOUS CORRESPONDENCE.

Na. 36.-Indian War, (Wasminagon Tarbimony.)-Letter of the Secretary of the Treasury advising of the disposal of the surveying steamer Active under the orders of Brevet Lieutemant General Finfield Scott, U. S. A

No. 37. C. S. Strauer Bibs.-Letter of Capt. John Pope, U. S. N., relative to service incidentally rendered at

Page.

367
No. 38.-U. S. Steamer Bbooklinn.-Letter of Capt. D. G. Farragut, U. S. N., on visiting Beanfort river, S C. 367, 368
No. 39.-Letrers addressed by the Superintendent of the Coast Survey to Lieutenants T. A. Craven and J. N.

VI.-LIGHT-HOUSE MATTERS.

No. 40.-Aids to Navigation recommended in reports made to the Superintendent by Assistants in the Coost

 369, 370
No. 42.-St. Helema Sound, S. C.-Letter to the Secretary of the Treasury relative to buoys recommended by
Lieut. Comg. J. N. Maffitt, L. S. N., Assistant.. 370
No. 43.-Port Rofal Sound, S. C.--Letter to the Secretary of the Treasury, transmitting the recommendation of Lieut. Comg. C. M. Fauntleroy, U. S. N., for buoys to mark the east channel 370 $2 b$

ALPHABETICAL INDEX.

A.

Abert, S. Thayer, 87.
Adams, Assistant L. Hull. Topograpby of Patuxent river, Md., 54; of St. Mary's river, Md., 54; of James river, Va., 55.

Agassiz, Alexander. Section X, 99, 100; Section XI, 103.
Aids to navigation, 32; Appendix No. 40,369 ; recommendations, $369,370$.
Air.line triangulation across head of Florida peninsula, 73.
Alden, Comdr. James, U. S. N. Hydrography of San Pedro harbor, Cal., 100; off-shore hydrography of Golden Gate, 100; hydrozraphy of Crescent City harbor, 101; of Humboldt bay, 101; reconnaissance of Coquille river, Oregon, 103; of Gray's harbor, W. T., 104; hydrography of Gulf of Georgia, W. T., 104.
Altamaha sound, Ga. Triangulation, 65.
Annemessex river, Md. Hydrography, 57.
American Association for the Advancement of Science. Report of committee, 24-26
Apparatus, 30; for dcep-sea soundings, Appendix No. 34, 353364; tide-metre, Appendix No. 35, 365, 366.
Appropriations, reductions in, 2.
Army officers, 30,31; Appendix No. 3, 116.
Aransus bay, Texas. Triangulation, 93; its character, 326.
Assisiance rendered schooner " Lucy Weltham," 86.
Astronomical observations. Howard and W. Ridge, Me., 34, 35 ; St. Helena island, S. C., 63.
Atchafalaya bay. Hydrography, 92.
Azimuth, determined at Howard and W. Ridge, Me., 35, 36; Smithville, N. C., 62; Table mountain and Sulphur peak, Cal.,98; at various stations, 216-277.

B.

Bache, Prof. A. D., Superintendent. Triangulation and astronomical observations at Howard and Western hidge, Me., 34; astronomical observations, Smithville, N. C. 61; ide tables, 136-167; Girard College obserpations, 278-295; distribution of temperature, Florida straits, 306-310.
Bache, Sub-Assistani C. M. Section X, 97; topography of Santa Cruz island, Cal, 99.
Eache, H. W. Services in Section I, 35; in Section VIII, 88.
Bache, Assistant R. M. Topography of Merrymeeting bay and Dath, Me., 39
Bagwell, Sub-Assistant G. H. Services in Section II, 47; triangulation south of Homosassa river, Fla, 81
Baker, C. B. Services in Section VI, 7G.
Balbach, A. Aseignment of duty, 107.

Bankhead, Lieut. Comg. I. P., U. S. N. Hydrography of coast below Cape Fear, N. C., 68, 69; of Bull's bay, B. C., 69.
Barnsiable harlior, Mass. Topography, 40.
Baser. St Augustine harbor, Fla., 73; Indian River inlet, Fla., 74; Crescent City harbor, Cal., 99.
Bassett, R. T. Tides of New York harbor, 51.
Bath, Me. Topography, 39.
Ballery shoal, New York harbor, 49, 132-134.
Beaufort river, S.C. Triangulation, 64.
Blind Pass, Charlote harbor, Fla. 78.
Blunt, Assistant Edmund. Triangulation of Hudson river, N. $\bar{Y}, 46$.
Boca Grande, Fla. Chariotte barhor, 78.
Bogue inlet, N. G. Coast hydrography, 60 .
Bolles, Assistant C. P. Triangulation and topography west of Tubb's inlet, N. C., 62.
Boston hurbor. Re-examination, 44.
Boutelle, Aesistant C. O. Reconnaissance near northeast boundary, 36, 37; connection of Epping base with triangulation, 37; coast triangulation of South Carolina, and astronomical and magnetic observations at St. Helena island, 63, 64; triangulation of Beaufort, Chechessee, and Colleton rivers, S. C., 64.
Borie, T. C. Services in Section IX, 95.
Boyd, C. \boldsymbol{H}. Services in Section I, 37 ; in Section V, 64.
Bradford, J. D. Services in Section I, 38; in Section V, 68. Bradford, J. S. Services in Section VI, 73.
Dright, F. T. Services in Section II, 50.
Bull's bay, S. C. Hydrography, 69.
Buoys. Fletcher's Neck, Me., 369, 370; St. Helena sound, S. C., 369, 370; Port Royal sound, s. C , 369, 370.

C.

Cape Fear river, N. C. Triangulation in vicinity, 58.
Captiva Pass, Chariotte harbor, Fla., 78.
Card's sound, Ma. Topography, 76.
Cascobay, Me. Topography, 39; hydrography of approaches, 42. Cedar Keys, Fla. Re-examination, 85.
Chamcock station, N. B. Triangulation, 35.
Charlotte harbor, Fla. Triangulation, 75; topography, 77; topographical features, 323.
Chassahowitzka river, Fla. Topography of entrance, 83.
Chechessee river, S. C. Triangulation, 64 ; hydrography, 71 .
Chineoteague bay, Md. and Va. Triangulation and topography, 53.

Colleton river, S. C. Triangulation, 64; hydrography, 71.
Compuling Divizion Remarks, 104, 105; summary of occu pation, 179-181.

Cooper, W. W., 107.
Coquille river, Oregon, 103.
Cote Blanche bay, La. Triangulation, 89; topography, 91; hydrography, 92.
Cram, Capt. T. J., U. S. Top. Engineers. Triangulation of Pamplico sound, N. C., 57.
Craven, Lieut. Comg. T. Aug., U. S. N. Battery shoal, New York harbor, 49, 132; hydrography of Florida reef, 78 ; Gulf Stream, 80; Appendix No. 39, 368.
Crescent City harbor, Cal. Triangulation, topography, and hydrography, 90-101.
Currents. New York harbor, 50; development in New York harbor, 311-315; cards found on Florida reef, 320, 321.
Currituck sound, N. C. Topography, 59.
D.

Dahlgren, Comdr. J. A., U. S. N., 57.
Dankworth, F. Notice of death, 32.
Davidson, Assistant George. Triangulation north of San Francisco, Cal., 97, 98.
Dean, Assistant G. W. Astronomical observations at Howard and Western Ridge, Me., 34-36; astronomical observations and azimuth at Smithville, N. C., 61.
Declination (variation) of the compass, 172-175.
Della of the Mississippi river. Triangulation, 88; topography, 90.

Dennis, Sub-Assistant W. IT. Topography of Wiscasset bay, Me, 39; of coast of 'Texas, 94.
Depths (table of) at harbor entrances, 168-171.
Developments and discoveries, 20, 21; Appendix No. 8, 123-129.
Dickerson's bay, Fla. Triangulation, 82.
Discoveries and developments, 123-129.
Disiribution of maps and annuatreports, 23.
Doboy sound, Ga. Triangulation, 65.
Dorr, Sub-Assistant F. W. Topography of New York harbor, 47; of Charlotte harbor, Fla., 77.
Drawing Division. Sheets worked on, 11,105, 182-187.
Duer, Lietu. Comg. J. K., U. S. N. Hydrography of St. George's sound, Fla., 8t; of Matagorda bay, Texas; 95 ; notice of death, 32 ,
Duval, C. W. Services in Section VII, 84.
Du Val, Sub-Assistant H. S. Topography of St. Catherine's sound, Ga., 67.

E.

Eastport, Me. Tidul station, 46.
Edwards, Sub-Assistant W. S. Services, in Section I, 39; in Section $\mathrm{V}, 64$.
Electrolype Division, 106, 199-202.
Elliot, Lieut. Geo. H., U. S. Engincers. Tides of Section X, 101; Section XI, 104.
Engraving Division. Plates worked on, 11, 105, 106, 188-199.
Epping base. Remarks, 26; connected with triangulation, 37.

Expiritu Santo bay, Texas. Triangulation, 93; topography, 94; its character, 324.
Estimates for fiscal year 1860 "61, 13-20; estimates of progresa in sections, 2-4.
Evans, R. E. Services in Section VIII, 90.

F.

Fairbanks, G. R., 74.
False Cape, (of the Chesapeake,) 59.
Farley, Assistant John. Triangulation of Potomac river, 52; Hampton Roads, 53.
Farragut, Capl. D. G., 367, 368.
Fauntleroy, Lieut. Comg. C. M., U. S. N. Hydrography of Hudson river, N. Y., 49; of Port Royal entrance, S. C., 70; of Chechessee and Colleton rivers, S. C., 71; of Sapelo bar, Ga., 71.
Fauntleroy, E. H. Services in Section X, 98.
Fendall, Sub-Assistant C. Topography of Saco bay, Me, 40; of coast of Maine, 43; Section VI, 76.
Ferguson, Sub-Assistant C. Triangulation and topography of Chincotegue and Sinepuxent bays, Md. and Va., 53 ; topography of Charlotte harbor, Fla., 78.
Field Parties. Distribution, 108-116.
Finney, Sub-Assistant N. S. Section 1I, 48; topography near Chassahowitaka river, Fla., 83.
Fletcher's neck, Me. Buoys recommended, 369, 370.
Florida keys. Triangulation, 75; topography, 77.
Florida reef. Hydrography, 78 .
Foot point, S. C. Triangulation and topography, 64, 66.

G.

Gardner, W. H. Services in Section VI, 73.
Geographical positions. Remarks, 22; list 216-277.
Gerdes, Assistant F. H. Triangulation and topography of Santa Rosa sound, Fla., 83, 85; triangulation of Mississippi delta, 88 ; topography of Mississippi delta, 90, 91 .
Gilbert, Assistand S. A. Triangulation of coast of Texas, 93.
Gulbert, Sub-Assistant W. S. Topography of Lake Pontchartrain, La, 90 ; Rigolets sounded, 91.
Gillis, James. Scrvices in Section I, 39.
Golden Gaie, Cal. Hydrography of approaches, 100.
Goodfellow, Sub-Assistant Edward. Howard and Western ridge, Me., 35; astronomical observations at Smithville, N. C., 61; magnetic observations at Bmithville, N. C., 62. Gray's hathor, W. T., 104.
Greenwell, Assistant W. E. Triangulation of coast above San San Pedro harbor, Cal, 962 97.
Gulf of Geargia, W. T. 'Triangulation, 102; hydrography, 104.

Gulf Stream. Lemarks, 28; under-running current, 60; abstract of observations, 80 ; distribution of temperatnre in Florida straits, 306-309.

H.

Halter, R. E. Services in Section I, 36; in Section VIII, 88. Hampton roads, Va. Triangulation, 53.
Harris, Sub-Assistan! Stephen. Triangulation and topography of Isle an Breton sound, La., 87.
Ilarrison, Assidtaht A. NI. Topography of Barnstable harbor, Mass, 40.
Hassler, F. R. Services in Section IV, 59.
Hein, Samuel, disbursing agent, 107.
ILempstead harbor. N. Y. Hydrography, 49.
Hering, M. O. Services in Section VII, 82.
Herron, W. R. Tides at Charleston, 72.
Hilgard, Assistant J. E., 29; 328-358.
Hillon Head iskand, S. C. Shore-line survey, 66,67.

Hinrichs, O. Services in Section V, 62.
Homosassa river, Fla. Triangulation in vicinity, 81.
Horn harbor, Va. Topography, 55.
Hosmer, Charles. Services in Section IX, 94.
Howard Station, Me. Occupied, 34.
Hudson river, N. Y. Triangulation, 46; topography, 47,48; hydragraphy, 49.
Huger, Lieu. Comg. 7. B., U. S. N. Hydrography of Hempstead harbor, N. Y, 49; Gulf Stream, 80; Cedar Keys, 85; Passe a Loutre, 92 ; Atchafalaya bay, La., and Côte Blanche bay, 92.
Huger, Sub-Assistant Benj., jr. Triangulation of St. Augustine barbor, 73.
Humbolal bay, Cal. Hydrography, 101.
Hussey rock. Casco bay, Me., 42, 130.
Muzzey rock. Saco bay, Me., 43; Appendix Nos. 40 and 41, 369.
Hyannis harbor. Rock determined in position, 45, 131.
Hydrographic Division of C. S. office, 31, 32 .
Hydrographic sheets. List and register numbers, 22,215, 216.
Hydrography. Sheepscot and Keunebec rivers, Me.,41; approaches to Casco bay, Me, 42; Cape Porpoise to Cape Elizabeth, Me., 42; off-shore, coast of New En§land, 43; Salem harbor, Mass., 44; Boston harbor, 44; Hempstead harbor, N. Y., 49; Battery shoal, N. Y. barbor, 49; Hudson river, N. Y., 49; Patuxent, St. Mary's, and James rivers, 56 ; Big and Little Annemessex rivers, 57 ; off shore from Cape Lookout, 60; Bogue inlet to New river inlet, N. C., 60; in-shore from Cape Fear to Tubb's inlet, N. C., and off-shore, 69; Bull's bay, S. C., 69; Port Royal entrance, S. C., 70; Chechessee and Colleton rivers, S. C., 71; Sapelo bar and approaches, Ga., 71; Florida reef, 78; Cedur keys, 85 ; St. George's sound, Fla., 86; Passe a Loutre, La, 92; Atchafalaya and Côte Blanche bayє, La., 92 ; Matagorda bay,Tex., 95; San Pedro barbor, Cal, 100; off-shore from Golden Gate, Cal., 100; Crescent City harbor, Cal., 101; Humboldt bay, Cal, 101; Gulf of Georgia, W. T., 104.

I.

Lardella, Sub-Assistant C. T. Topography Florida keys, \&c., 76.
Indian River inlet, Fla. Triaugulation, 74.
Indiun war. Use of steamer "Active" in Washington Territory, Appendix No. 36, 367.
Information furnished. Remarks, 22 ; list, 118, 119.
Inland pussage, Ga. Topography, 67.
Instruments, 30.
Iste au Breton sound, La. Triangulation and topography, 87.

J.

James river, Va. Shore-line survey, 55; hpdrography, 56.
Johnson, Sub-Assistant W. M. Iriangulation and topography of San Pedro harbor, Cal, 97 ; topography of Santa Cruz island, Cal., 99.
Jones, Capt. Thomas, 35.

K.

Key Biscayne bay, F'la. Topography, 76.
Kennebec river, Me. Hydrography of approaches, 41.
Kinchetoe, Juitus. Services in Section 1, 38 ; Section V, 65.

King, M. C. Tides, Section III, 57.
King, Rufus, Jr. Services in Section II, 47; Section VI, 74.

I.

Latitude. Number of points determined, 6; Howard and Western ridge, Maine, 35 ; Smithville, N. C. 61 ; Sulphur Peak, Cal., 98 ; list of points, 216-277.
Lawson, Sub-Assistant f. S. Triangulation and topography Crescent City harbor, Cal. 99, 100; triangulation Gulf of Georgia, W. T., 102.
Iee, Commander S. S. Charge of Hydrographic Division, 107.
light-house matters. List of recommendations, 369,370 .
Little river, N. C. and S. C. Triangulation of vicinity, 62.
Longfellow, Assistant A. Wr. Topography of Casco bay, Me., 39.

Long Island, N. Y. Topography, 47.
Longitude. Number of pointi detormined, 6 ; determined by telegraph, 6 ; general remarke, 26 ; list of points, $216-277$.

M.

Maffit, Lieut. Comg. J. N., 368, 369.
Magnetic observations. Remarks, 27; Howard and Western ridge, 30 ; determinations at several stations in New England, 45,50 ; at Smithville, N. C., 62 ; St. Helena island, S.C., 63.

Magnetism. Number of stations, 6 ; variation of the compass, 172-175; discuseion of Girard College obscrvations, $278-295$; elements observed, 296 ; secular change discuszed, 296-305.
Maps and charts. Distribution, 203-212.
Matagorda boy, Texas. Hydrography, 95.
Mayo, G. U. Services in Section VIII, 83, 85, 88, 91.
McGorkle, Sub-Assisant S. C. Triangulation of Ocklokonee and Dickerson's bays, Fla., 82.
McDonnell, Thomas, 34,61.
McMurtrie, W. B. Views for charts, 43.
Mechan, Sub-Asaistant John. Section 1I, 48; topography near head of Currituck sound, N. C., 59.
Merrymeeting bay, Mazine. Topography, 39.
Mile Tedge, coast of Maine, 41.
Milford Haven, Va. Topography, 65.
Nission bay, Texas. Triangulation, 93.
Mississippi delta. Triangulation, 88: topography, 90.
Nitchell, Assistant H. Tides and currents, New York herbor, 50, 311-317.
Mitchel, Prof. O. M. Moon culminations, 278.
Moon culminations, 278.
Morman, A. T. Services in Section X, 98.
Muldaur, A. W. Hydrography of Matagorda bay, 95.
Murray, Lieut. Comg. Alexander, D.S. N. Hydrography from Cape Elizabeth to Cape Porpoise, Maine, 42 ; rock determined near Ogunquit, Maine, 131; off-shore hydrography, coast of New England, 43 ; examination of Salem harbor, Mass., 44; of Boston harbor, 44 ; hydrography of coast of North Carolina, 60 ; off-shore hydrography, N. C., 60.
Muscongus bay, Maine. Triangulation, 38.
Muse, Commander W. T., U. S. N. Hydrography of Patuxent and St. Mary's rivers, Md., and James river, Va., 56 ; of Big and Little Annemessex rivers, Md., 57.
Myers, Lieul. W., U. S. A. Section VI. 75.

N.

Navy officers, 31 ; Appendix No. 5, 117.
New River inlet, N. C. Coast hydrography, 60.
$N e$, F. F. Services in Section VI, 77.
New Fork harbor. Battery shoal, 132-134; currents ob-served,311-317.
0.

Obituaries, 32.
Ocklokonce bay, Fila. Triangulation, 82; topography, 84.
Odenheimer, W. H. Services in Section V, 62.
Office, (Coast Survey,) 104-107; report of Assistant in charge, 176212.

Ogunq:al, Maine. Rock in vicinity, 131.
Old Point Comfort, Va. Tides, 57.
Oumanns, Sub-Assistant J. G. Triangulation of Mississippi delta, 88 ; topography of Mississippi delta, 91 ; triangugulation and topography Cöte Blanche bay, 89, 91.

P.

Palmer, Gapt. W. R., U. S. Top. Engineers, in charge of C. S. office, 104 ; annual report, 176-179.
Pamplico sound, N. C Triangulation begun, 57.
Pasee à Loutre, La. Hydrography, 92.
Patuxent river, Ma. 'Topography, 54 ; hydrography, 56.
Peginan, W. P., Esq., 84.
Peiree, C. S. Services at Howard and Western Ridge, Maine, 36.

Penobscot bay, Mrine. Triangulation, 38.
Photagraphic Dicision, 106.
Photography. Remarks on application, 13, 200.
Pope, Capt. Tohn, U. S. N., 43; Appendix No. 37, 367.
Port Royal sound, S C. Hydrography of entrance, 70; buoys recommended, 369-370; commercial facilities, 321.
Iotomac river. Triangulation, 52 .
Pourtales, Assistant L. F., 106; charge of tidal division, 181-182.
Printing, maps and charts, 203-212.
Progress. General statement, 4-6; of year, 6-11.
Projection Tables. Remarks, 29 ; applicable to maps of large extent, 328-358.
Projects. Character of series for maps, 11.

R.

Ready, T. E. Tides, Section I, 46.
Reconnaisance near Northeast boundary, 36-37; north of San Francisco, Cal., 98.
Recorels and ressuls, 29.
Richards, Col. E. H., 84.
Rigolets, Ira, 91.
Rockecell. C. Services in Section 11, 47; topography of Foot
Point and vicinity, s. C., 67.
Russell, Mojor W. F, 75
Russell, A. W., 106.
S.

Naco bay, Me. Topography, 40; hydrography, 42.
Sutem harbor, Mays Examination, 44.
Son Artonio bay, Texas. Triangulation, 43; topegraphy, 44; character of bay, $324,325$.

San Pedro harbor. Cal. Triangulation, 96 ; topography, 97 ; hydrography, 100.
Santia Cruz island, Cal. Topography, 99.
Santa Rosa island, Cal. Triangulation, 97.
Santa Rosa sound, Fla. Triangulation, 83; topography, 85.
Sapelo sound, Ga. Hydrography of bar, 71 ; character of sound, 322.
Schott, Assistant C. A. Magnetic observations, Section I, 45; Section II, 50; discussion of secular change, 296-305.
Sedions (C. S.) Geographical limits, 2-4.
Seguin island, Me. Rock in vicinity, 130.
Seib, Assistant John. Topography of western shore of Chesapeake bay, 55; St. Helena sound to Savannah river, 6G, 67.
Seward, Lisut. A. H., U. S. A. Triangulation of Florida keys, 75.
Sheepscot bay, Maine. Hydrography, 41.
Sims, Lieut. C, C, U. S. N., 86.
Sinepuxent bay, Md. Triangulation and topography, 53.
Sketches. List accompanying report, 12.
Smeith, Capt. M. L., U. S. Top. Engineers. Triangulation across Florida peninsula, 73.
Smithville, N. C. Latitude and azimuth determined, 61, 62. Sounding apparaius, 359-334.
Statistics, 23, 120-122.
St. Augustine harbor, Fla. Triangulation, 73.
St. Catharine's sound, Ga Topography, 67.
St. George's sound, Fla. Hydrography, 86.
St. Helena sound, S. C. Astronomical and magnetic observations, 63, 64 ; buoys recommended, 369, 370.
Stiles, R. M. Services in section I, 38 ; section VI, 75.
St. James's island, Fla. Topography, 84.
St. Mary's rivet, Md. Topography, 54 ; hydrography, 56.
Sullivan, Sub-Assistant J. A. Triangulation of Fenobscot bay, Me., 38 ; Indian River inlet, Fla., 74.
Sulphur Peak, Cal. Occupied for triangulation, 97.

T.

Table Ml., Cal. Occupied as a station, 98.
Table of depths. Remarks, 22 ; list of port entrances, \&c, 168-171.
Talcott, R. H. Services, section I, 36.
Terrill, Lieut. W. R., U. S. A. Triangulation of Hudson river, 46 ; Charlotte harbor, Fla., 75.
Thompson, A. W. Services in section I, 40 ; section VII, 83. Tidal division, 105, 181.
Tidal observations. Remarks, 28 ; list of permanent and temporary stations, 319 ; Charlestown, Mass., 46 ; New York harbor, 50, 51 ; Washington, D. C., and Old Point Comfort, Va., 57 ; Charleston, S. C., 72 ; cosst of Florida, 79,80 ; St. George's sound and Pensacola, 86, 87 ; San Mego and San Francisco, 101 ; Astoria, Oregon, 104.
Thede-metre. Results of trials with, $365,366$.
Tide tables for ports of the United States; remarks, 21, 22 ; tables, 130-167.
Tilghman, J. L. Services in section I, 45; section 1I, 50 ; section VII, 84.
THen, McLane. Services in section II, 47; section V, 62.
Topographical sheels. List and register numbers, 212-214.

Topography. Wiscasset bay, Me., 39 ; Merrymeeting bay and city of Bath, Me., 39 ; Casco bay, Me., 39 ; shores of Saco bay, Me, 40 ; Barnstable harbor, Mass, 40 ; verification work, 41 ; Long Island and Hudson river, 47 ; Chincoteague and Sinepuxent bays, Md. and Va., 53 ; Patuxent river, Md. 54 ; St. Mary's river, Md., 54 ; Horn harbor and vicinity, Va., 55 ; James river, Va, 55 ; coast south of Cape Henry, Va., 59 ; coast of North Carolina west of Tubb's inlet, 62 ; shore-line from St. Helena sound to Savannah river, 66 ; St. Catherine's sound, Ga., 67 ; Kcy Biscayne bay and Card's sound, 76 ; Charlotte harbor, Fla., 77; vicinity of Chatsahowitzka river, Fla. 83: Ocklokonee and Dickerson bays, Fla., 84 ; Santa Rosa sound, Fla., 85 ; Lake Pontchartrain, 90 ; Isle an Breton sound, La., 87 ; Mississippi delta, 90 ; Côte Blanche bay, La., 91 ; Erpiritu Santo and San Antonio bays, Tex., 94 ; Santa Cruz ieland, Cal., 99 ; Crescent city harbor, Cal., 99.
Iriangulation. Primary near NE. boundary, 34, 35 ; its connection with Epping bace, Me., 37 ; Penobscot bay, Me, 38 ; Muscongus bay, Me., 38 ; Hudson river, N. Y., 46 ; Chincoteague and Sinepoxent bays, Md. and Va., 53; Potomac river, 52 ; Hampton Roads, VR., 53 ; Chesapeake stations examined, 52 ; Pamplico sound, N. C., 57 ; across Cape Fear entrance, 58 ; from Tubb's inlet, N. C., westward, 62 ; Beaufort, Chechessee, and Colleton rivers, S. C., 64 ; Doboy and Altamaha sounds, Ga., 65; across head of Florida peninsula, 73 ; St. Augustine harbor, Fla., 73 ; Indian river inlet, Fla. 74 ; Florida keys, 75 ; Charlotte harbor, 75 ; coast of Florida south of Eomosassa river, 81 ; Ocklokonee and Dickerson bays, Fla, 82 ; Santa Rosa sound, Fla., 83 ; Isle au Breton sound, La., 87 ; Mississippi delta, 88 ; Côte Blanche bay, La., 89 ; Espiritu Santo, San Antonio, and Aransas bays, Tex., 93 ; San Pedro, Cal., 96 ; Santa Rom island, Cal., 97 ; primary work north of San Francisco, 97, 98 ; Crescent city harbor, Cal, 99 ; Gulf of Geargia, W, T., 102.

Trowbridge, Assistant W. P. Researches, 106; deep-sea sounding apparatus, 359-364.
Tucker, Cupt. James, 84.

W.

Wudsuorth, Assisiant A S. Topography of Casco bay, Me., 39; triangulation across Cape Fear river, 58.
Wainuright, Sub-Asistant S. A. Services in Section III, $52.5:$
Wash Flats. Coast of Virginia, 59.
Washington Navy Eard. Tidal observations, 57.
Wash Woods. Coast of Virginia, 59.
Webher, Sub-Assistant F.P. Triangulation of Muscongus bay, Me., 38; Doboy and Altamaha sounde, Ga., 65.
Western Ridge, Me. Occupicul for triangulation, 34.
West, Sub-Assistant P. C. F. Services in Section I, 40.
Whiling, Assistant H. L. Verification in Section I, 41; topography of Hudson river, N. Y., 48.
Willitson, Liout. Comg. John, U. S. N. Hydrography of approaches to Sheepscot river, Me., 41 ; rock determined near Scguin island, Me., 130; hydrography of approaches to Casco bay, Me., 42, 130; off-shore soundings, 44; rock determined in Hyannis harbor, Mass., 45, 131.
Wilson, T. B., esq., 35.
Wrison, Liewt Thomas, E. S. A. Services in Section V, 64; charge of Drawing Division, 65; report, 182-187.
Winter harbar, Va. Topography, 55.
Wiscassed bay, Me. Topography, 39.
Wise, Assistant G. D. Examination of stations on Chesapeake bay, 52; topography between St. Mark's and S. W. Cape, Fla, 84 .
Wrirdemann, Gustavus. Tidal observations in Section VI, 79; Section VII, 87; notice of death, 32.

Y.

Young, J. C. Services in Section VI, 72.

ERRATA.

In Coast Survey Report for 1858.
Page 114, line 19 from bottom, for "inspector" read "Engineer."
Page 114, line 16 from bottom, for "in the harbor" read "outside of the harbor." Page 122, after "tidal observations" dele "roith the self-registering tide gauge."
Page 279, line 2 from bottom, for "month" read " mouth."
In Coast Survey Report for 1859.
Page 36, 1st line, insert " d '; before "Urse Minoris."

REP0RT.

Coast Survey Station, Cooper, Washington County, Mane, September 23, 1859.

SIr : In compliance with the law of 1853 , and with the regulations of the Treasury Department, I have the honor to present my report on the progress of the Coast Survey of the United States during the surveying year, from November 1, 1858, to November 1, 1859.

As the scale of the work, depending upon the amount of the appropriation made for its progress, is the same this year as the last, the report, will go over nearly the same extent of ground as the former one. A general view of the progress from the real commencement in 1832, to the present time, is shown in a map prepared for the purpose, (Sketch No. 36,) and will presently be referred to particularly.

The survey has again been in progress in its land work, hydrography, or office work, in the twenty-two seaboard States, and Territories of the United States, in which it is not essentially completed.

I propose to retain the same divisions in the present report as in those immediately preceding it, namely, the introduction, the description of operations, and the Appendix.
I. The introduction discusses briefly the progress of the work under separate heads and gives the estimated progress for the next year, and the means necessary to secure it, thus bringing together the work done and the appropriation required for that amount of progress.
II. In the second part a detailed account is given under the head of sections, arranged geographically, of the field, hydrographic, and office work done during the year. The sections are numbered from one, beginning at the northeastern boundary, to nine, terminating with the southern line of Texas, and including the Atlantic and Gulf coast of the United States. Sections ten and eleven, including the western coast, begin at San Diego, and terminate at the forty-ninth parallel of latitude. Under each head the work is described in the general order of its execution, as 1. Triangulation; 2. Topography; 3. Hydrography, with statistics of the several operations, and other particulars relating to the work. Each chapter is prefaced by a brief reference to the progress made in the sections, and by a statement of the office work pertaining to it.
III. The Appendix contains information useful to navigators, commercial men, surveyors, and men of science, with such lists and papers relating to the work as could not conveniently be introduced into the body of the report. It is subdivided, for purposes of ready reference, into the following heads: 1. Field, hydrographic, and office details, embracing general lists of the parties and their occupation as distributed along the coast; the names of officers of the army and navy attached to the work; data furnished from the archives in reply to applications made within the year; the statistics of field and office work; a list of surveys made on the Western Coast; the developments made in the course of the regular hydrography; tide tables
for navigators, and a table of the depths at important port entrances on the Atlantic, Gulf, and Western Coast; detailed reports of work performed in the office divisions; lists of the topographical and hydrographical sheets registered within the last two years; and lists of the geographical positions furnished by data received from the field within the same period. 2. Special operations and scientific discussions relating to magnetism, tides, and currents. 3. Local surveys, comprising descriptions of special localities, their topographical features, and their resources.
4. Miscellaneous scientific matters relating to methods and instruments. 5. Correspondence incidental to the operations of the survey. 6. Light-house matters referred to the Board for consideration.

The first part of the introduction shows the progress and gives the estimates for the next year's pragress. The last contains remarks upon work done, and especially upon the parts which are not referred to in the body of the report.

GEOGRAPHICAL SECTIONS-ESTIMATES OE PROGRESS AND COMPLETION.

In my report for 1857 I estimated the time of completion of the work on the Atlantic and Gulf at from ten to twelve years, estimating upon the "present resources and regular rate of progress," and showed how this could be accomplished by the same resources from the direct estimates and the aid derived from the Navy, War, and Interior Departments. In my next report I stated that "the available means from different sources for this last fiscal year, (1858-'59,) were ninety thousand dollars less than for the former," (1857-'58.) "These appropriations were less by $\$ 30,000$ than those for the previous year, 1857-'58, besides which, no appropriation was asked by the Interior Department for the survey and marking of the Florida keys, and of the islands off the Western Coast, making a diminution of $\$ 90,000$ in the available means for the progress of the survey in 1858-'59." The portion of this reduction which fell upon the field and office work of the Atlantic and Gulf sections was $\$ 40,000$, being about eleven per cent., or more than one-tenth, requiring an increase of rather more than one year in ten, in the estimated time of completion. It is not to be expected that this decrease will show itself in a marked way in two years, except in those sections which have suffered most from it, but I cannot be responsible for it when it does appear.
I have carefully revised the estimates of progress and completion presented in my report of 1856-'57, and, adopting the same order of discussion as given in that report, now proceed to give the results, which will be found in accordance with the statements then made.

Section I. From Passamaquoddy bay to Point Judith, including the coast of the States of Maine, New Hampshire, Massachusetts, and Rhode Island. -The primary triangulation is carried to the northeastern boundary of the United States, requiring merely the occupation of certain stations passed by in order to advance the coast work, to complete the original scheme from Point Judith (Rhode lsland) to the limits of Maine.

Three secondary triangulation parties will finish the triangulation in six years, and the progress will show whether this is the best course, or to press on the topography, employing only occasionally a third triangulation party, so as to complete the triangulation in seven and a balf to eight years. The completion of the primary work of this section will give means from the estimates to furnish the additional topographical parties needed to keep fully up with the secondary triangulation. Two hydrographic parties with steam vessels and one with a sailing vessel will keep the hydrography close upon the triangulation and topography. The progress made this season shows that there will be no difficulty in this respect.

Allowing a margin of two years brings us to the estimate of my report for $1856 \mathbf{c}^{\prime} 57$, namely, "ten to twelve years" from that date, or eight to ten from this, even without the additional year already referred to.

A map has been marked off with the limits of average progress, as determined by the statistics of the survey, to be expected in the triangulation of this part of the coast, and will enable me to regulate the progress accordingly. In two jears the same may be done for the topography and bydrography.

Section II. From Point Judith to Cape Henlopen, inctuding the coast of Connecticut, New York, New Jersey, Pennsylvania, and part of Delaware. -The parties which, from time to time, can be spared to work upon the rivers of this section and upon revision, will easily bring to a close the small portion of outstanding work within the time estimated for the completion of the other sections.

Section III. From Cape Henlopen to Cape Henry, including the coast of part of Delaware, and the coast of Maryland and part of Virginia.-The remaining work in this section, which is small, compared with that already executed, between one and two tenths, is provided for in the estimates and steadily advancing. It will easily be completed within the time named for the other sections.

Section IV. From Cape Henry to Cape Fear, including part of the coast of Virginia and North Carolina. - The primary triangulation of Pamplico sound and its rivers, not commenced at the date of my report of $1856-{ }^{-1} 57$, has had one season's work upon it, and will regularly advance to its completion. The parties are provided which will bring all the work of this section to a close within the time estimated for section I, and that without burdening other parts of the survey. The plans for prospective operations are quite matured.

Section V. From Cape Fear to the St. Mary's river, including part of the coast of North Carolina and the coast of South Cavolina and Georgia.-The same number of parties should be kept in this section for another year as heretofore, after which one or more can be spared for other work, and yet complete the section in the time required for section I. Two secondary triangulation parties would complete that work in five years. The question of the character of the primary work, and of bases of verification, will be settled, probably, in another year, certainly in two. The hydrography of the section is well advanced, the ocean part of it especially.

Section VI. From St. Mary's river to St. Josepri's bay, including the eastern and western coasts of the peninsula of Florida, and the Florida reefs and keys.-The expedient of a line across the head of the peninsula, by which the triangulations of the Atlantic and Gulf coasts will be connected, changes essentially the character of the triangulation necessary around the peninsula, and alone renders possible the completion of this section within the time required for section I. In fact, it will require great exertion and steady execution of plans to succeed in this. Threo triangulation parties on the eastern side, and two on the western, will be required to make this sure. I rely upon parties available after two years, from other sections, to bring up any arrears which we may find in the section; but it may be most prudent to add a year to my estimate of 1857, and to make it eight to nine years from the present date, which is the same limit as of section I. The topography keeps well up with the triangulation, and so does the hydrography, the reef being nearly completed, so that the time of completion of this section may be safely estimated as not greater than for section I. The reduction of thirty thousand dollars, furnished
by the Interior Department for the Land Office surveys prior to 1858 fell heavily upon this section.

Section VII. From St. Joseph's bay to Mobile bay, including part of the coast of Florida and the coast of Alabama.-Of this section I stated in my report for 1857 as follows: "This was the last section commenced, and it is perhaps between one-sixth and one-fifth done. It will require additional force to put it through in ten to twelve years. This may probably be had as the Atlantic sections require fewer parties to bring them to a close; but I cannot foresee positively yet. Good progress has been made since we commenced this work, in 1852, and there are three centres of operation-near Pensacola, near Apalachicola and St. Mark's, and near Cedar Keys. If we had means to employ a steam vessel here throughout the season there - would be no doubt of the completion of this section with the others."

I shall make a strong effort to procure an additional hydrographic party for section IX, so that the steam vessel available for this section shall be constantly employed here. No effort shall be spared to bring the section up to the others in its progress. The reduction of the appropriation has prevented the supply of an additional party during the last two years.

Section VIII. From Mobile bay to Vermilion bay, including the coast of Mississippi and of part of Louisiana.-The work in this section makes steady progress, and the topography is kept close to the triangulation, being, in fact, connected with it generally. With the force now in the section it will not be difficult to finish the triangulation, as estimated in $1856 \mathbf{-}^{\prime} 57$, in eight years from this present date, and to complete the work at the same time with section I. As remarked in my report for 1856-' 57 , no one of the parties at work here can be spared for other sections, if this one is to be completed within the time estimated.

Section IX. From Vermilion bay to the southwestern boundary, including part of the coast of Louisiana, and the coast of Texas.-In my former report I supposed that additional force would be required to complete this section in time, and I am now sure of it. It may lag behind the other Gulf sections, unless means are furnished to push it onward. My notes show that I had intended to furnish another triangulation party to the section, had means sufficient been available, two years ago.

WESTERN COAST.

Sections X and XI. From San Diego to the forty-ninth parallel, including the coast of California and Oregon, and that of Washington Territory.-It would be premature to attempt to estimate for the completion of this work, only commenced in 1850. The progress has been quite satisfactory, considering that the appropriation only provides for two triangulations, two topographical parties, another for triangulation and topography, and one hydrographic party. The harbors of this important coast have been surveyed, except those of Washington Territory, only a part of which are yet completed; and, besides a general reconnaissance, and the important work connected with the northwestern boundary between the United States and Great Britain, the general hydrography has been steadily prosecuted.

general sitatement of progress.

The survey on the Atlantic and Gulf coast is nearly two-thirds done, and with the means appropriated for $1857-{ }^{\prime} 58$ can be finished, as then stated, in from ten to twelve years from that date. The revision of my estimates of time has, as already stated, confirmed this conclusion; and, at the present diminished rate of appropriation, we shall probably fall but one year behind
that period, if the present system is strictly persevered in to the close. In my report of last. year I frankly stated the difficultics of accomplishing this result, and the circumstances under which alone I decmed it practicable. I would merely call attention to these, that I may incur no responsibility not properly belonging to such an arduous task.

I propose now to state, in the most brief form, the general progress of the survey. It will be seen, by reference to the general progress sketch, (No. 36,) that the triangulation of the Atlantic coast is continuous from the northeastem boundary of the United States to Little river, near the boundary between North and South Carlina, an extent of more than twelve hundred miles measured from point to point, and a proportional part of the whole Atlantic coast of two-thirds, as estimated in the same way, or of three-fourths as estimated by shore-line. I do not mean to say that the work is complete between these limits, because the secondary triangulation in some portions, and the primary in others, is not complete; but the work is a connected one, and as such is available for preliminary purposes. With an interval of but sixty miles, it is again connected to St. Simon's entrance, on the coast of Georgia, two hundred and twenty miles, leaving an interval of about thirty miles to the St. Mary's. From the St. John's it is nearly complete (with an interval of but eight miles) to Matanzas river, (St. Augustine.) Two parties will probably be at work this winter; advancing towards each other, from St. Augustine south and from Indian River inlet north; and, as soon as the appropriation will admit, a third will be placed here, to proceed from Indian river southward.

In the aggregate, the secondary triangulation of about seven-cighths of the Atlantic coast is completed.

From Cape Florida to the Marquesas the triangulation is continuons one hundred and seventy miles, and one or two seasons more will finish the intricate work of the inner kers and coast of Florida bay. The triangulation of Charlotte harbor is nearly completed; that of the Gulf coast extends from Chassahowitzka river to Cedar Keys-fifty miles; over Ocilla entrance; then from St. Mark's, beyond Apalachicola, to Indian Pass; over St. Andrew's bay; then from the middle of Santa Rosa sound to Pensacola entrance, including also Pensacola bay and its principal dependencies; from Mobile entrance, and up Mobile bay (westward) to Point Fortuna, in Isle au Breton sound, one hundred and thirty miles, and through Lake Borgne and Lake Pontchartrain, to New Orleans; over Bay Rondo and the passes of the Mississippi, and over Isle Dernière and Caillou bay; over Atchafalaya and East Côte Blanche bays; from East bay, (Galveston,) southward and westward, over Matagorda and Aransas bays and their dependencies, one hundred and ninety miles, to Aransas Pass, which is about a hundred and forty miles from our southeastern boundary.

The topography and hydrography based upon these triangulations have kept close pace with them, in some of the sections requiring the communication of results by the triangulation parties to the topographical parties, and in others by both triangulation and topographical parties directly to the hydrographic parties as soon as completed in the field.

The harbors of the Western seacoast of the United States, and many of the more important ones in the vast navigable sounds of the Pacific coast, have been surveyed, and the general triangulation from San Francisco as one centre and Santa Barbara as another, over Columbia river, in Oregon, in Washington sound and its dependencies, the Straits of Haro and Rosario and the islands between, to the northwestern boundary and southward into Puget's Sonnd, have been steadily pushed forward, and the topography and hydrography have followed closely.

The astronomical work has been kept up along the whole coast, as far as the progress of the
other operations rendered advisable. The latitudes and longitudes of the headlands on both coasts have been determined, and, with the intermediate stations, these make a total of seven thousand one hundred and seventyreight points of which the geographical positions have been computed.

Preliminary determinations of longitude from Europe have been made by the best methods known to science. The telegraphic method of longitudes, perfected in connexion with the survey, has edabled us to connect the distant points-Calais, in Maine, and New Orleans, in Louisiana-with a certainty hitherto impossible. I am satisfied that a few signals by telegraph from America to Europe will enable us to determine the difference of longitude with a degree of accuracy which neither long-continued astronomical observations nor the transportation of chronometers have yet reached, or can ever reach. This is one of the works specially enjoined upon the Coast Survey by the plan of reorganization, and to which unvarying attention has been directed from the date of that plan until the present time.

The tide tables for navigators (Appendix No. 14) have been further revised for determining, by simple rules, the times and heights of high and low water in our different ports.

The magnetic elements, so important to the navigator and surveyor, have been further determined, and the tables now contain the result of observations made at over two hundred stations on all parts of the coast.

No less than three hundred and thirteen charts or sketches of harbors, inlets, shoals, sounds, bays, \&c., have been drawn, engraved, and published, founded upon the land and hydrographic work of the survey.

PROGRESS FROM NOVEMBER 1858 TO NOVEMBER 1859.

The first table in the Appendix (No. 1) shows the distribution of the parties along the coast in the different sections, the officers employed, and the general limits of the work executed. A map of each section shows the work in some detail, and with convenient signs to denote the several operations. I give in this connexion a condensed account of the progress made in the field and office work, subdivided according to the eleven geographical sections of the survey.

Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island.-(Sketches A and A bis, Nos. 1 and 2.)-The primary triangulation has been extended to the northeastern boundary of the United States, Howard mountain, near Machias, and Western Ridge, Cooper, Maine, having been occupied during the season. Observations for latitude and azimuth, and for the magnetic elements, have been made at the same stations, and the base on Epping Plain has been connected with the general triangulation. Chamcook has been occupied for the triangulation of Passamaquoddy bay and the St. Croix. The secondary triangulation has been continued in Penobscot bay, and connected with that extending southward and westward, over Muscongus bay, to Damariscotta river. The topography of Wiscasset bay has been completed, and progress made in that of Sheepscot river. The plane table survey of the Kennebec river and Merrymeeting bay has been nearly completed, and that of Casco bay has been extended eastward nearly to Harpswell. That of Cape Cod bay has been extended east and west, including the shores of Barnstable harbor, Mass., and verification of the topography done in the section is now in progiess. The hydrography has been extended from Cape Newaggen and Damiscove island to Cape Small Point, outside of Kennebec entrance, and soundings have been made in Casco bay to join with former work abreast of and between Portland light and Green island.

The in-shore hydrography has been extended from Cape Elizabeth to Kennebunkport, Me., and soundings have been made between the Isles of Shoals, N. H. Deep-sea lines have been run from Cape Ann, across Cashe's Ledge, to Seal island, N. S., and thence by traverses to Machias, Mount Desert rock, Matinicus, and Manhegan island, to Portland entrance; and from Cape Elizabeth (southward) to Nausett Centre light, Cape Cod. The off-shore hydrography has been continued off the coast of Massachusetts. Revision work has been done in Salem and Hyannis harbors, and work for the examination of changes in parts of Boston harbor. Special magnetic observations have been made at Portland, Me., Portsmouth, N. H., and at several stations on Cape Ann, Mass. The tidal observations at Boston have been continued, and a tidal station has been established at Eastport, Me. Experiments with a new pressure tidegauge have been made at Charlestown, Mass.

The drawing and engraving of additions to the chart of Boston harbor have been completed, as also the drawing of those of Portland harbor, Lynn harbor, and a new edition of that of Muskeget channel; and the engraving of the preliminary charts of Kennebec river and Rockport harbor. Progress has been made in the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and of preliminary coast chart No. 3, from Cape Small Point to Cape Cod; in the drawing of coast maps and charts No. 7, from Muscongus bay to Portland harbor; Nos. 9, 10, and 11, from Cape Neddick to Hyannis harbor, and No. 14, from Cuttyhunk island to Block island; also in the engraving of coast maps and charts Nos. 12 and 13, from Monomoy to New Bedford; the views for these charts, the finished maps of Kennebec river and Lynn harbor, and the new edition of the chart of Muskeget channel.

Section II. Coast of Connecticut, New York, New Jersey, Pennsylvania, and part of Delaware.(Sketch B, No. 7.)-The triangulation of the Hudson river has been extended from Hudson northward, to connect with the work from Albany southward, at New Baltimore, and additional points have been determined near Yonkers. The topography of the Hudson has been continued, with intervals, north from the former limit to near Sing Sing on the eastern shore, and to Rock mountain on the western shore, including the delineation of the Palisades; that of Harlem river has been completed, and that of Long island, back of Brooklyn and Williamsburg, and in the vicinity of South Jamaica, has been filled in. The outlines of the new piers at Sand Point and Great Neck have been traced. The hydrography of the Hudson river has been in progress from Newburgh north to Poughkeepsie. A resurvey has been made of the shore off the Battery, New York city, for changes. Magnetic stations have been occupied at Hartford, Conn.; Springfield, Chesterfield, and Deerfield, Mass.; and at Rutland, Vt.; and minute current observations have been made off the western end of Long Island. Tidal observations have been continued at Brooklyn.

Progress has been made in the drawing and engraving of coast map and chart No. 22, New York bay and harbor, and in the drawing of the map of Hudson river, from its entrance to Sing Sing. New plates of the middle and eastern parts of the chart of Long Island Sound have been engraved, and the old plate of the chart of Captain's islands, East and West, has been re-engraved.

Section III. Coast of Delaware, Maryland, and part of Virginia.-(Sketch C, No. 9.)-The triangulation of the Potomac river has been extended from the mouth of the St. Mary's upwards, to the vicinity of Britton's bay; that of the James river has been completed by work at Hampton Roads, and a base measured near Claremont for verifying the triangulation of the upper James river and of the Appomattox. The topography of the outer coast of Maryland
has been continued, and that of the shores of Chincoteague bay completed. The shore line of the Patuxent has been traced from Holland's Point to Hall's creek, and that of the St. Mary's, Maryland, from its entrance upward to Warehouse Point, nearly completing the preliminary survey of those rivers. The shores of the James river have been traced between Westover and Little Brandon, completing the preliminary surrey. The topography of the western shore of Chesapeake bay, between Rappahannock river and Mobjack bay, has been nearly completed. Soundings have been nearly completed in the Patuxent and St. Mary's rivers, and entirely in the James river, and the Big and Little Annemessex, dependencies of Tangier sound. Observations with selfregistering tide-gauges have been kept up at the Washington navy yard and at Old Point Comfort.

The chart of York river, from King's creek to West Point, has been drawn and engraved for publication. The topography and lettering of coast maps and charts No. 31, Chesapeake bay, from its head to Magothy river; and No. 33, from Hudson river, Maryland, to the Potomac; of the finished chart of Patapsco river, and the outlines of coast map and chart from Green Run inlet to Little Machipongo inlet, (from a photographic reduction,) have been engraved. Progress has been made in the drawing and engraving of coast maps and charts Nos. 35 and 36, from Pocomoke sound to the entrance of Chesapeake bay; in the drawing of general coast chart No. IV, from Cape May to Currituck sound; of coast maps and charts Nos. 28 and 29, (the latter mainly by photography,) from Cape Henlopen to Little Machipongo inlet; No. 33 Chesapeake bay, the sheet of James river, from Richmond to City Point; and coast map and chart No. 37, from Cape Henry to Currituck sound; and also in the engraving of coast maps and charts No. 32 Chesapeake bay, from Magothy river to the Hudson, Maryland, and No. 34, from the Potomac to Pocomoke sound.

Section IV. Part of the coast of Virginia and of North Carolina.-(Sketch D. No. 15.)-The primary triangulation over Pamplico sound has been commenced. The triangulation of verification near New Inlet, Cape Fear, has been continued. The topography of the const of Virginia, between Currituck sound and Cape Henry, has been completed. In-shore, hydrography on the coast of North Carolina has been extended from Bogue inlet, southward and westward, to New River inlet, and lines of soundings run between Cape Henry and Cape Hatteras, and observations in the Gulf Stream made in the vicinity of Cape Lookout.

Comparative charts of the Cape Fear entrances, showing the changes from 1851 to 1858, and diagrams, illustrating Gulf Stream explorations, have been drawn, and the former engraved upon stone, under the direction of the Superintendent of Public Printing. Progress has been been made in the drawing and engraving of preliminary coast chart No. 11, from Cape Hatteras to Cape Lookout; in the drawing of No. 12, from Cape Lookout to Cape Fear; in that of coast map and chart No. 48, from Bogue inlet to Barren inlet; and in the engraving of coast maps and charts Nos. 40 and 41, Albemarle sound.

Section V. Coast of part of North Carolina and coast of South Carolina and Georgia.-(Sketch E, No. 16.)-Astronomical and magnetic observations have been made at Cape Fear entrance, and the latitude, azimuth, and magnetic elements have been determined at Port Royal station. The triangulation has been extended south and west from Shallotte inlet to the boundary between North and South Carolina, nnd the shore line traced in connexion with it; signals have been erected and lines prepared for extending the primary work south and west of the Edisto base; the triangulation of Beaufort, Chechessee, and Colleton rivers, South Carolina, has been made, and that from Sapelo base extended southward across Doboy and Altamaha entrances to St. Simon's
sound. The topography has been continued southward and westward from Shallotte inlet; the preliminary survey between St. Helena sound and Savannalı river has included the shore lines of Port Royal sound and the entrances of Beaufort, Broad, Chechessee, and Colleton rivers, and Calibogue sound. The topography of St. Catharine's sound has been nearly completed. The hydrography has been continued in-shore from Cape Fear entrance to Tubb's inlet, N. C., and the off-shore between Cape Fear and Charleston harbor. Soundings have been completed in Bull's bay, S. C., and a resurvey of Port Royal entrance has been made. The hydrography of the Chechessee and Colleton rivers, S. C., has been completed, and also that of Sapelo entrance and approaches. Tidal observations have been kept up in Charleston harbor.

In the drawing and engraving divisions additions have been made to the chart of Charleston harbor. The chart of Sapelo sound has been drawn and engraved, and the engraving of preliminary coast chart No. 14, from Cape Romain to Savannah river, has been in hand. Progress has been made in the drawing of coast maps and charts No. 53, from Charleston harbor to St. Helena sound; and No. 58, from St. Mary's river to the St. John's, Florida; and in that of the chart of Ossabaw sound.

Section VI. Coast, reefs, and keys of Florida.-(Sketohes F, Nos. 20 and 21.)-The triangulation along the air line from Fernandina to Cedar keys has been continued to Waldo station. A preliminary base has been measured near St. Augustine, and the triangulation has been carried north towards Diego plains. A preliminary base has been measured at Indian river inlet, Florida, and signals erected for the triangulation north and south of Fort Oapron. The triangulation of the inner bays has been extended eastward from Lignum Vita to Pigeon key Florida reef; and that of Charlotte harbor has been extended from Captiva pass northward to Punta Gorda. The topography of the western shores of Key Biscayne and Cards' sounds has been completed, as also on the western side of Key Largo, and the survey made of numerous keys between Lignum Vite and Oyster keys. The topography of Charlotte harbor has been continued northward from the former limit to Boca Grando. The hydrography of the Florida reef has been continued from Eagle cove to Coffin's Patches; the Gulf Stream has been explored through the Florida channel, and soundings made for depth and temperature in sections across it, from Carysfort light-house, Sombrero key, and the Tortugas. Tidal observations have been continued at St. Mary's river entrance, Tortugas, Charlotte harbor, and Egmont key, (Tampa.)

Progress has been made in the drawing and engraving of coast map and chart No. 68, Florida reef, from Key Biscayne to Carysfort reef ; and in the drawing of Nos. 70, 71, and 72, Florida reefs and keys, from Long key to the Marquesas.

Section VII. Part of the western coast of Florida.-(Sketch G, No. 23.)-The triangulation has been carried from Crystal reef southward to the vicinity of Bayport; has been continued from St. George's sound to St. Mark's harbor, and from Pensacola bay into Santa Rosa sound. The topography has been continued nearly over the same limits. The hydrography has included a verification of the work at Cedar keys, and that at the eastern entrance of St. George's sound, including the new chanuel (Duer's) passing near Dog island. Tidal observations have been kept up at Cedar keys, and at Warrington, Pensacola harbor.

The drawing and engraving of the preliminary chart of the eastern part of St. George's sound have been completed, as also the engraving of the preliminary chart of Pensacola harbor. The drawing of the preliminary chart of Apalachicola bay has been finished at the
office, and since engraved on stone, under the direction of the Superintendent of Public Printing.

Section VIII. Coast of Alabama, Mississippi, and part of Louisiana.-(Sketch H, No. 26.)The triangulation of Isle au Breton sound has been continued southward to Point Fortuna; progress has been made in that of Pusse à Loutre; the SE. Pass of the Mississippi and of Bay Rondo, and that of Côte Blanche bay, has been extended westward nearly to the entrance of Vermilion bay. The topography of the shores of Lake Pontchartrain has been continued, and that of Isle au Breton sound has nearly kept pace with the triangulation; that of the SE. Pass of the Mississippi has been executed, and that of Cote Blanche bay has kept pace with the triangulation. The hydrography of Passe à Loutre has been executed, and that of Atchafalaya and Côte Blanche bay east completed. Some deep-sea lines of soundings have been run in the Gulf of Mexico.

The preliminary chart of Atchafalaya bay has been drawn and engraved, and the engraving of coast maps and charts Nos. 91 and 92 , Mississippi sound and Mobile bay, from Bon Secours bay to Grand island, has been in progress.

Section IX. Coast of part of Louisiana and coast of Texas.-(Sketch I, No. 28.)-The triangalation has been carried from Matagorda entrance southward and westward over Espiritu Santo, San Antonio, Aransas, and Capano bays, and their dependencies. The topography has been extended along the shores of Espiritu Santo and San Antonio bays, and part of Matagorda island. The hydrography of Matagorda bay has been completed between the city and Palacios point.

The reconnaissance sketch of the entrance to Brazos river has been drawn and engraved, and progress has been made in the drawing and engraving of coast maps and charts Nos. 106 and 107, from Galveston bay to Matagorda bay; also in the drawing of coast maps and charts No. 105, Galveston bay, and No. 108, Matagorda bay. A general reconnaissance sketch of part of the coast of Texas, from Matagorda bay to Aransas Pass, has been drawn at the office, and was engraved on stone, under the direction of the Superintendent of Public Printing.

Section X. Coast of California.-(Sketches J and J lis, Nos. 30 and 31.)-The primary triangulation in the vicinity of the San Pedro base has been revised, and the secondary triangulation of San Pedro harbor executed, as also that of the northern part of Santa Rosa island, Santa Barbara channel. The primary triangulation from San Francisco entrance has been extended northward to Sulphur Peak, and the secondary connected with it carried over Drake's bay and Point Reyes. The positions of the Farrallones have been determined by triangulation. Crescent City harbor has been triangulated. The topography has included the harbor of San Pedro, part of Santa Cruz island, and Crescent City harbor. The hydrography of San Pedro harbor has been completed, and soundings off the approaches to the Golden Gate nearly so. A resurvey has been made of Humboldt bay, and the hydrography of Crescent City harbor executed. The regular tidal observations have been kept up at San Diego and near San Francisco.

The engraving of the charts of San Diego bay, Mare Island strait, and Humboldt bay has been completed, and also the drawing and engraving of the chart of the entrance to San Francisco bay. Progress has been made in the engraving of the chart of San Pablo bay, and additions have been made to the reconnaissance chart of the Western Coast. The map of San Francisco city has been engraved on stone, under the direction of the Superintendent of Public Printing.

Section XI. Coast of Oregon and that of Washington Territory.-(Sketch K, No. 34.)-The
triangulation of the Gulf of Georgia has been continued, stations on Point Roberts being connected with others on Galiano island above the forty-ninth parallel. Hydrographic reconnaisances liave been made at the entrances to the Coquille river, Oregon, and at Gray's harbor, W. T., and general duty has been performed in connection with requirements of the commissioner on the northwestern boundary. The regular tidal observations at Astoria have been continued.

A new edition of the reconnaissance sketch of Canal de Haro and Strait of Rosario, and the chart of Port Townshend, have been drawn and engraved, and the engraving of the charts of Port Gamble and Semiahmoo bay has been completed.

MAPS AND CHARTS.

A series of projects of maps and charts, on suitable scales, has been prepared, for which the work now affords materials on the Atlantic and Gulf coasts. The projects for coast maps and charts on the scale of $\overline{\overline{8} \delta \frac{1}{0} \overline{0} \overline{0}}$, as described in my report of last year, are one hundred and thirteen in number, embracing forty-two connected series. Those for the set of general coast charts, on the scale of $\overline{\mathbf{T 0} \frac{1}{005}}$, are sixteen in number; and for a set of preliminary charts, on the scale of $\frac{1}{20000}$, the projects are thirty-three in number.

The preliminary charts, with preliminary editions of harbor and other maps and charts, enable us to keep up with the work of each year. The electrotype process is especially valuable in enabling us to carry on this work without loss of the previous portions of the engraving. The application of photography, which is very far advanced, is making great changes in the facilities for reducing maps and charts. In another place I will present, at more length, a statement of our progress in this application.

Sixty-seven sheets have been worked upon in the drawing division within the past year. Of this number, two are finished charts, twenty-three finished maps and charts, thirteen finished maps, six preliminary charts, two comparative charts, nineteen sketches, and two sheets of diagrams. Thirty sheets have been completed and thirty-seven are in progress. Of those completed, four are finished maps, three preliminary charts, two comparative charts, nineteen sketches, including those showing field progress, and two sheets of diagrams.

In the engraving division, five first-class maps and new editions of three have been completed during the year, and twenty-one have been in progress. Of these last, eleven were commenced in former years and ten in the present year. Eleven second-class maps or charts and sketches have been completed within the year, nine of which were begun in the present year, and six of the same class are in progress. These, with five plates of diagrams, give a total of twenty-four completed and thirty-two in progress, or of fifty-six plates engraved or engraving within the year. In addition to those engraved upon copper, five charts and sketches have been engraved upon stone, under the direction of the Superintendent of Public Printing. The complete list, giving the titles of the maps and charts, will be found in Appendix No. 17. The general list of all the maps, charts, and sketches engraved up to the present date also accompanies the same Appendix. It includes two hundred and ninety-nine titles, of which sixty are first-class maps. The list is exclusive of twenty progress sketches which have been engraved, and receive additions from year to year, as the field-work advances.

The following list contains the titles of maps and charts, finished and preliminary, and of sketches and diagrams, accompanying this report, arranged geographically. The letters in the margin refer to the different sections; A to Section I, B to Section II, and so on, The
numbers on the maps, charts, and sketches correspond with those in the list which contains five finished charts, fifteen preliminary charts, and twenty sketches and diagrams.
1.-A. Progress sketch, Section I, (primary triangulation.)
2.-A bis. Progress sketch, Section I, (secondary triangulation, topography, and hydrography.)
3.- Seacoast of Maine, from Kenuebec entrance to Portland.
4.- Portland harbor.
5.- Lynn harbor, Mass.
6.- Muskeget channel, (new edition.)
7.-B. Progress sketch, Section II.
8. - Hempstead harbor, Long Island Sound.
9.-C. Progress sketch, Section III.
10.- Chesapeake bay (sheet No. 4) from Potomac river to Pocomoke sound.
11.- Chesapeake bay (sheet No. 5) from Pocomoke sound to York river entrance.
12.- Chesapeake bay (sheet No. 6) from York river entrance to Cape Henry.
13.- Patuxent river, Md.
14.- St. Mary's river, Md.
15.-1D. Progress sketch, Section IV.
16.-D. Progress sketch, Section V.
17.- Bull's bay, S. C., (new edition.)
18.- Port Royal entrance and approaches, S. C.
19.- Sapelo sound and approaches, Ga.
20.-F. Progress sketch, Section VI.
21.-F bis. Progress sketch, Section VI, (Florida reefs and keys.)
22.- Florida reefs and keys from Newfound harbor key to Boca Grande key.
23.-G. Progress sketch, Section VII.
24.- Cedar keys, (new edition.)
25.- St. George's sound, Fla., (eastern part.)
26.-H. Progress sketch, Section VIII.
27.- The Rigolets, La.
28.- I. Progress sketch, Section IX.
29.- Coast of Texas and Matagorda bay.
30.-J. Progress sketch, Section X, (lower part.)
31.-J bis. Progress sketch, Section X, (upper part.)
32.- San Pedro harbor, Cal.
33.- Crescent City harbor, Cal.
34.-K. Progress sketch, Section XI.
35.- Diagrams illustrating the distribution of temperature in the Florida straits.
36. - Sketch showing general progress in the survey of the Atlantic, Gulf, and Pacific coasts.
37. - Diagrams illustrating the results of magnetic observations at Girard College, Philadelphia.
38.- Lines of equal magnetic variation for the year 1858.
39.- Trowbridge's apparatus for deep-sea soundings.
40.- Mitchell's apparatus for measuring currents and improved pile for sea structures.

Constant efforts have been made to obtain a set of progress sketches better suited to popular
use, and yet useful for the purposes of the office. I believe that this may be accomplished for the next report, a plan which meets my approval having been finally hit upon after much experimenting.

The application of photography to the regular reduction of our maps and charts has made good progress. It is estimated that the cost of reducing one of our sea-coast charts by photography is but about one-fourth of that by the pencil and pen. The questions yet unsolved in this application are merely questions of detail, and it is to be considered as one of the processes fully applicable to the reduction of our maps and charts for engraving, no important difficulty in relation to which remains to be mastered. The report of the assistant in charge of the office, and of George Mathiot, esq., in charge of the photographic operations, give many important particulars in this matter, (Appendix No. 17.) Prints have been produced of reduced maps in which the severest tests could detect no error beyoud the tolerated limits.

Mr. Mathiot is of opinion that we can profitably publish many of our preliminary maps by the photographic process without engraving at all, by issuing copies of the photographic prints themselves. Experiments will be made upon this at the earliest date practicable.

The operation of putting the print of the reduced map directly upon the copper, so as to avoid an intermediate tracing by the engraver, those of photo-lithography, and others, are in the course of experiment. Some successful trials have been made of photographing microscopic objects from the specimens of bottom of the sea collected in sounding.

ESTIMATES FOR THE FISCAL YEAR 1860-'61.
The estimates are in the usual form which attaches the work to be done, to the expenditure necessary to accomplish it, and so indicates the rate at which the survey is to be prosecuted, a larger expenditure being required to finish the work sooner, a smaller decreasing the work to be done, and therefore involving the time of completion. I have already, in last year's report, called attention to the fact that the entire appropriation for the fiscal year $185 \bar{i}-158$, exceeded by $\$ 90,000$ (including the means furnished by the Laud Office) that of the fiscal year 1858-'59, which was the same as that of 1859-'60, the item for the pay of engineers being introduced on the withdrawal of naval engineers from the work.

As it is absolutely essential in such a work to have latitude in regard to the details of progress of operations in order to conduct it efficiently, the sums assigned for the several sections are joined in the acts of appropriation into one, allowing to the Treasury Department, which controls by law the direction for the work, and under which the Superintendent acts, discretion in details, and merely confining the separate expenditures to the great divisions of the work, as the Atlantic and Gulf Coast; the Florida Coast, reefs, and keys; and the Western Coast. The whole of the expenditures for field and office work, including the pay of the civilians employed, is brought into these estimates. They include the expense of deducing the results, and drawing and engraving the maps, as well as of the surveys in the field.

These estimates suppose the same aid from the War and Navy Departments as heretofore. Should any part of this be withheld, the proportionate progress of the survey must of necessity be diminished.

The estimates were reduced in $1857-58$, during the great stress upon the treasury, and have not since been raised to their former level. This involves a less rapid completion of the work than the former rate, but in the uncertainty in regard to the means for the fiscal year, I have not ventured to recommend an increase. The several items now presented are the same
in amount as have twice met the approval of Congress. An additional item, as compared with the last two years, for fuel and quarters for officers of the army serving on the work, is to pay the emolument derived by law and no longer paid by the Quartermaster's Department from the general appropriation for fuel and quarters of the army. It is not a new item, but is intended to replace the balance of a former appropriation which permitted its omission in the estimates of last year and the year before, during the straightened condition of the treasury. This balance is now exhausted.

The assistant in charge of the work across the Florida line, Captain M. L. Smith, U. 'S. Topographical Engineers, advises me that the cost may be greater than was originally estimated by the officer who made the reconnaissance. I have, however, preferred to extend the time for completing the work rather than to ask an increase of the item for its execution. Even if Captain Smith's present estimate should be exceeded, the cost.of the work will not reach one-fourth that of a continuous main triangulation around the coast, such as would be needed to connect the main work on the Atlantic and Gulf of Mexico.
No item of the estimates has been increased. That for the Western Coast has proved sufficient to keep the usual number of parties there in consequence of the work executed under the law for the Northwestern Boundary Commission.

Estimates in detail.

For general expenses of all the sections, * namely: rent, fuel, materials for drawing, engraving and printing, and ruling forms; binding; transportation of instruments, maps, and charts; for miscellaneous office expenses, and for the purchase of new instruments, books, maps and charts
Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island. Field-wonk.-To continue the primary triangulation in this section and to make the necessary astronomical and magnetic observations connected with it; to extend the secondary triangulation up the Penobscot river and along the coast eastward from Penobscot bay; cast from Pemaquid over Muscongus bay, and over the peninsula between the Kennebec and Sheepscot rivers, and of the coast east of those rivers; to commence the topography of Penobscot bay, and to continue that between Kennebec river and Casco bay; to continue the topography of Cape Cod bay; to complete the hydrography near the Isles of Shoals, New Hampshire; to continue the in and off-shore hydrography of the coast of Maine, from the Kennebec entrance eastward, and of the ledges off the coast of Maine; to make such tidal observations as may be necessary: Office-work,-To make the computations connected with field-work; to commence the drawing and engraving of the chart of Penobscot bay, and that of Casco bay; to continue the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and preliminary coast chart No. 3, from Cape Small Point to Cape Cod; to complete the drawing and engraving of the chart of Sheepscot river, and the sketches of the section; to complete the drawing and engraving of coast map and chart No. 9, from Cape Neddick to Cape Ann; the engraving of that of Kennebec river, Lynn harbor, and coast maps and charts Nos. 12, 13, and 14, from Nantucket sound to Narragansett bay; to continue the draw-

[^0]ing of coast map and chart No. 7, from Muscongus bay to Portland harbor; the engraving of the chart of Portland harbor, and of coast map and chart No. 10, from Cape Ann to Plymouth; and to commence the drawing of coast map and chart No. 8, from Portland harbor to Kennebunk harbor, and draw and engrave tidal diagrams, will require
$\$ 43,000$
Section II. Coast of Connecticut, New York, New Jersey, Pennsylvania, and Delaware. Field-work.-To complete the triangulation of the Hudson river, and to commence that of the Connecticut; to continue the topography of the shores of the Hudson, and to complete that of the approaches to New York harbor; to continue the hydrography of the Hudsor, commence that of the Connecticut river, and execute miscellaneous work of revision in the section: Office-work, -To make the computations required; to commence the drawing of the charts of Hudson river, Nos. 2 and 4, from Sing Sing north and Troy south; to draw and engrave the tidal diagrams and sketches of the section; to continue the engraving of coast map and chart No. 21, New York bay and harbor, and the finished map of Hudson river from the entrance to Sing Sing; and to commence the drawing and engraving of a chart of Connecticut river, will require...........................
Section III. Coast of Delaware, Maryland, and Virginia. Field-work.-To continue the astronomical and magnetic observations required in the section; to examine and preserve the more important triangulation stations; to continue the triangulation of the Potomac river; to complete the topography of the Patuxent and James rivers; to continue that of the Potomac, and that of the outer coast of Maryland, including the bays connected with it; to complete that of the shores of Chesapeake bay; to continue the off-shore hydrography of the section, and work of verification in the Chesapeake and its tributaries; the hydrography of the Potomac river, and the tidal observations of the section: Office-work,-To furnish the necessary computations; to complete the drawing and engraving of coast map and chart No. 33, Chesapeake bay from Hudson river, Maryland, to the Potomac, with the sketches of the section; the drawing of coast maps and charts Nos. 28 and 29, from Cape Henlopen to Little Machipongo inlet; Nos. 34, 35, and 36, Chesapeake bay from Potomac river to the entrance of the bay; and the engraving of charts of the Patuxent and St. Mary's rivers; to continue the drawing and engraving of sheet No. 6, Rappahannock river, from its entrance to Deep creek; the drawing of general coast chart No. IV, from Cape May to Currituck; the Rappahannock river, series Nos. 3, 4, and 5, from Port Royal to Deep creek, and the chart of James river from Hog island to the Chesapeake; to continue the engraving of coast map and chart No. 29, from Green run inlet to Little Machipongo inlet; coast maps and charts No. 32, Chesapeake bay, from Magothy river to Hudson river, Maryland; and Nos. 34, 35, and 36, of the same series, from the Potomac to the entrance of the bay; to commence the engraving of general coast chart No. IV, and that of coast map and chart No. 28, from Cape Henlopen to Green run inlet, will require.

Section IV. Coast of Virginia and North Carolina. Field-work.-To continue the primary triangulation of Pamplico sound and the secondary connected with it; to complete the verification work near Cape Fear entrance; to continue the topography of the outer coast of North Carolina south of Hatteras, and to complete that of the Chowan and Roanoke entrances; to continue the in and off shore hydrography between Cape Lookout and Cape Fear; to continue the observations of tides and currents, and of the Gulf Stream: Office-work,-To compute the results of the triangulation and other operations; to commence the drawings of coast maps and charts Nos. 42 and 43, Pamplico sound; to complete the drawing and engraving of the sketches of the section, the drawing of coast map and chart No. 48 from Barren inlet to Lockwood's Folly inlet; to engrave coast map and chart No. 40, Albemarle sound (western sheet;) to continue the drawing and engraving of preliminary coast chart No. 11 from Cape Hatteras to Cape Lookout; the drawing of coast map and chart No. 37, from Cape Henry to Currituck sound; preliminary coast chart No. 12, from Cape Lookout to Cape Fear, and general coast chart No. V, from Currituck to Cape Fear; to commence the drawing of coast map and chart No. 47, from Bogue inlet to Barren inlet; the engraving of coast map and chart No. 48, and that of preliminary coast chart No. 12, Cape Lookout to Cape Fear, will require
Section V. Coast of part of North Carolina and that of South Carolina and Georgia. Field-wonk.-To extend the triangulation in North and South Carolina, from Tubb's inlet southward towards Winyah bay; to extend the primary triangulation south of St. Helena and Port Royal sounds, and the secondary up the rivers connected with them; to measure supplementary bases on the coast of South Carolina and Georgia; to extend the triangulation south of St. Simon's, and over St. Andrew's sound; to continue the topography of Port Royal sound, and that between Savannah river and Ossabaw, including Wassaw sound and the rivers emptying into it; to continue the hydrography of Wassaw, Ossabaw, and St. Catharine's sounds and entrances; to complete that of Doboy and Allamaka entrances; and to commence, if practicable, that of St. Andrev's entrance and sound; to continue the tidal and current observations and investigations of the Gulf Stream in this and the following section: OFFICE-WORE,-To make the requisite computations; to complete the drawing and commence the engraving of coast map and chart No. 53, from Stono inlet to Fripp's inlet; to complete the drawing and engraving of charts of St. Catharine's and Ossabaw sounds, and the sketches of the section; the drawing of the chart of St. Simon's sound, and coast map and chart No. 58, from St. Mary's to St. John's river; to commence the engraving of charts of Ossabaw and Sapelo sounds; to continue the drawing of coast maps and charts No. 52, from Cape Romain to Stono inlet, and No. 54, from Fripp's inlet to St. Catharinc's sound, and preliminary coast chart No. 14, from Cape Romain to Tybee light; to commence, the drawing of preliminary coast chart No. 15, from Tybee light to St. John's light; and that of general coast chart No. VII, from Winyah bay to the St. John's river, will require

Section VI.—Keys, reefs, and coast of Florida. (See estimates of appropriation for those special objects.)
Section VII.-Part of the western coast of the Florida Peninsula. Field-work.-To continue the triangulation south of Wechiwatchee river, and north from Suwanee river; to continue that from Apalachicola westward of Indian Pass, and north of Cape St. Blas; to continue that of Santa Rosa sound and the dependencies of Pensacola bay; to make such astronomical and magnetic observations as may be practicable in the section; to continue the topography in connection with the triangulation as far as may be practicable; to continue the hydrography of the section from St. George's sound east and west, and from Cedar keys south and north, and to make the requisite tidal observations: OFFICE-wORK, -To make the necessary reductions and computations; to complete the drawing and engraving of the chart of Santa Rosa sound, Escambia bay, and East bay; the sketches of the section, and the engraving of the chart of St. Gearge's sound; to commence the drawing of coast maps and charts Nos. 84 and 85, from Appalachee bay to St. Joseph's bay, and the engraving of coast map and chart No. 89, from Pensacola bay to Mobile bay; to continue the drawing of coast map and chart No. 81, from Homosassa river to Cedar keys, and that of No. 88, from Choctawhatchee bay to Pensacola bay, will require
$\$ 33,000$
Section VIII.-Coast of Alabama, Mississippi, and part of Louisiona. Freldwork. -To continue the astronomical and magnetic observations required in the section; to continue the triangulation of Isle au Breton sound, and the triangulation of the Mississippi delta westward; to continue the triangulation over Vermilion bay; to complete the topography of Lake Pontchartrain, and to keep the topography up with the triangulations just enumerated; to continue the hydrography of Chandeleur sound, the Mississippi passes, and commence that of Isle au Breton sound and Vermilion bay; to continue the tidal and current observations and the deep-sea soundings of the Gulf in this section: Office-work, -To make the requisite computations; to complete the drawing and continue the engraving of coast map and chart No. 92, Mississippi sound, from Round island to Grand island; to continue the drawing and engraving of preliminary coast chart No. 26, Mississippi sound, from Mobile bay to Lake Pontchartrain, and coast map and chart No. 100, from Marsh island to Grand island; to complete the drawing and engraving of a chart of the Mississippi delta, and the sketches of the section; the drawing of those of Lake Borgne, the Rigolets, and part of Lake Pontchartrain, and coast map and chart No. 93, from Grand island to Lake Pontchartrain; to commence the drawing of general coast chart No. XIV, from Pensacola bay to Barataria bay; to complete the drawing and engraving of the chart of Atchafalaya bay; to commence the drawing and engraving of that of Cote Blanche bay, and the drawing of that of Vermition bay, will require...............................
Section IX.—Part of the coast of Louisiana and the coast of Texas. Field-work. To continue the triangulation southward from Aransas Pass, and the topography from Matagorda entrance southward and over Aransas and Copano bays; to con-

Abstract

tinue the hydrography in and off shore from Matagorda entrance southward, and inside of Matagorda bay and its dependencies; to make the tidal observations which may be requisite: Ofrice-work,-To make the computations and reductions from field-work; to complete the drawing and engraving of coast maps and charts Nos. 106 and 107, from Galvestom bay to Matagorda bay, and the sketches of the section; to complete the drawing and commence the engraving of coast map and chart No. 108, Matagorda bay; to continue the drawing and engraving of preliminary coast chart No. 31, from Galveston bay to Matagorda bay; to commence the drawing of coast maps and charts Nos. 109 and 110, from Matagorda bay to Corpus Christi bay; and the engraving of coast map and chart No. 105, Galveston bay, will require

Total for the Atlantic coast and Gulf of Mexico 250,000

The estimates for the Florida reefs, keys, and coast, and for the Western Coast of the United States, are intended to provide for the following progress:
Section VI. Reefs, keys, and coast of Florida. Field-work.-To continue the triangulation of the eastern or Atlantic coast of the peninsula, south of Matanzas inlet, and north and south of Indian River inlet; to complete the triangulation of the keys and sounds between the outer keys and the coast of the peninsula; to connect, if practicable, the Marquesas and Tortugas; to extend the triangulation north and south from Charlotte harbor; to make a part of the astronomical and magnetic observations required in the section; to continue the topography south of the St. John's river, and north and south of St. Augustine harbor, and, if practicable, over Indian River inlet, and northward of it; to complete the topog. raphy of the keys and coast of Barnes' and Card's sounds and Florida bay; to complete the topography of Charlotte harbor; to complete the hydrography of the F lorida reef, and to execute off-shore work connected with it; to continue that of Florida bay and Barnes' sound and dependencies; to commence that of Charlotte harbor, and to keep up tidal observations at the Tortugas: Office-work, -To make the computations connected with the field-work; to continue the drawing and commence the engraving of coast maps and charts Nos. 69 and 70, Florida reef, from Garden key to Newfound Harbor key; to continue the drawing and engraving of coast maps and charts Nos. 71 and 72, Florida reefs, from Newfound Harbor key to Marquesas key, and the drawing of preliminary coast charts Nos. 19 and 20, Florida reefs, from Key Biscayne to the Tortugas; to complete the drawing and engraving of coast map and chart No. 68, Florida reef, from Key Biscayne to Carysfort reef; that of Charlotte harbor; the sketches of the section; the drawings of Indian River inlet and St. Augustine harbor; and to draw and engrave the tidal and Gulf Stream diagrams, will require
Section X. Coast of California. Field-work.-To continue the triangulation along the Pacific coast northward of Santa Barbara, and to make the triangulations of Santa Catalina and San Olemente islands; to continue the primary and secondary triangulation north of Drake's bay, and to make such astronomical and magnetic
$\$ 40,000$
observations as may be necessary in that work; to execute topography within the triangulation of the Santa Barbara channel, main and islands; that of the dependencies of San Pablo bay, and such plane-table work as may be practicable, in addition to and connecting with the shores of Drake's boy and northward from Point Reyes; to continue the hydrography of the const south and north of San Francisco entrance, and that of Santa Barbara channel, with such other as the progress of the survey may show to be first needed: to continue tidal observations in the section: Offrce-work,--To make the necessary computations and reductions; to complete the drawing and engraving of a chart of San Pedro zarbor, of Crescent City harbor, and of Tomales bay, and the sketches of the section; to continue the engraving of charts of San Francisco and San Pablo bays, and to commence the drawing of coast maps and charts north and south of San Francisco bay. Also, for the operations in
Section XI. Coast of Oregon and that of Washington Territory. Field-work.-To continue the triangulation of Washington and Puget's sounds and of Hood's canal, and the topography connected with it; to continue the hydrography of the Gulf of Georgia, and of Washington and Puget's sounds and their harbors, with such other hydrography as the progress of the survey may show to be expedient; to continue tidal observations in the section: Office-work, - To make the necessary computations; to complete the drawing and engraving of a chart of Coquille River entrance, and make the additions to the hydrographic sketch of Canal de Haro and Strait of Rosario, and the progress sketches of the section, will require.........
For running a line to connect the triangulation on the Atlantic coast with that on the Gulf of Mexico, across the Florida peninsula, per act of March 3, $1843 \ldots$...
For publishing the observations made in the progress of the survey of the coast of the United States, per act of March 3, 1843
$\$ 130,000$

For repairs of steamers and sailing schooners used in the surver, per act of March 2, 1853
For fuel and quarters and for mileage or transportation for officers and soldiers of the army serving in the Coast Survey, in cases no longer provided for by the Quartermastor's department, per act of August 31, 1852
For pay and rations of engineers for seven steamers used in the hydcography of the Coast Survey, no longer supplied by the Navy Department

The amounts thus estimated for the work of the fiscal year 1860-'61, and the appropriations for the present and two past fiscal years, are given below in parallel columns:

\begin{tabular}{|c|c|c|c|c|}
\hline Ohject. \& Fiscal year
$$
1860-61
$$ \& Fiscal year
1859-'60. \& Fiscal year i858-'59. \& Fiscal year
$$
1857-58 .
$$

\hline For survey of the Atlantic and Gulf coast of the Tnited States, including compensation of civilians engaged in the work, per act of March 3, 1843 \qquad \& Estimated.
\$250,000 \& Appropriated.

$\$ 250,000$ \& Appropriated.

$\$ 250,000$ \& Appropriated.
\vdots

$\mathbf{\$ 2 5 0 , 0 0 0}$

\hline For continuing the survey of the Western Coast of the United States, including compensation of civilians engaged in the work, per act of September 30, 1850 \& 130, 000 \& 130,000 \& 130,000 \& 130,000

\hline For continuing the survey of the Florida reefs and keys, including compensation of civilians engaged in the work, per act of March 3, 1849. \qquad \& 40,000 \& 40,000 \& 40,000 \& 40,000

\hline For ruaning a line to connect the triangulation on the Atlantic coast with that on the Gulf of Mexico, across the Florida peninsula, including compensation of civilians eugaged in the work, per act of March 3, 1843. \& 5,000 \& 5,000 \& 10,000 \& 15,000

\hline For publishing the observations made in the progress of the survey of the coast of the United States, including compensation of civilians engaged in the work, per act of March 3, 1843. \& 5,000 \& 5,000 \& \& 15, 000

\hline For repairs of steamers and sailing schooners used in the survey, per act of March 2, 1853 \& 10,000 \& 10,000 \& 10,000 \& 15.000

\hline For fuel and quarters, and for mileage or transportation for officers and enlisted soldiers of the army serving in the Coast Survey, in cases no longer provided for by the Quartermaster's department, per act of August 31, 1852.. \& *5,000 \& \& \& 10,000

\hline For pay and rations of engineers for seven steamers used in the hydrography of the Coast sarvey, no longer supplied by the Navy Department. \& +12,800 \& 12,800 \& 12,800 \&

\hline
\end{tabular}

* Formerly included in estimates of the War Departmens.
\dagger Formerly included in estimates of the Navy Department.

DEVELOPMENTS AND DISCOVERIES.

The general list, up to 1858 , inclusive, is given in Appendix No. 8, and contains one hundred and sixty-one references to matters geographically arranged. My attention having been called by Geo. W. Blunt, esq., to the alleged grounding of a vessel on the Battery shoal, where it had been supposed there was water enough to float her, a re-examination of the shoal was made by Lieut. Comg. Craven, and the alarming state of things was developed which is stated in his report and in my letter to the New York Chamber of Commerce, copies of which are given in the Appendix No. 13. The following is a list for the last year:

1. Only eighteen feet at mean low water found on the rock one mile to the southward of Seguin island, coast of Maine.
2. True position of the Hussey Rock, in Casco bay, determined, correcting the erroneous one assigned on previous charts.
3. Determination of the position of the "Hue and Cry," the "Old Proprietor," and other dangers off Cape Elizabeth, Maine.
4. Development of a rock off Ogunquit, bare at low tides and very little known.
5. A fishing bank sounded out off Wood island, coast of Maine.
6. Huzzey's Rock, south of Fletcher's Neck, Maine, determined in position.
7. Development of a four-fathom bank off Cape Porpoise, Maine.
8. Determination of the position of a small rock with less than four feet at mean low water, near the channel, and in the vicinity of Great Rock, Hyannis harbor, Massachusetts.
9. The existence of a seventeen-foot spot on the shoal off the battery, New York harbor, the extension of the shoal towards the channel, and the shoaling of the water generally between the shoal and shore.
10. The existence and character of sub-currents ascertained, as bearing on the physical condition of New York harbor.
11. Changes developed in the shore lines at the entrance of Little Annemessex river, Chesapeake bay.
12. Less water found off Cape Romain by preliminary examination than has been heretofore assigned.
13. Further explorations in developing the character of the Gulf Stream in the Florida channel.

Changes were reported in Boston inner harbor which made a resurvey desirable, and the occasion was taken of the presence of one of the hydrographic parties in the vicinity to execute the work more fully reported under the head of Section I.

SURVEYS OF THE WESTERN COAST.

The reconnaissance of this coast having been made, and its chief harbors and entrances having been surveyed, the annual list heretofore given will be replaced by a biennial one.

During the past year, at the request of the authorities of San Pedro and Crescent City, minute surveys of those harbors were made and charts prepared on a larger scale than the previous charts of the same localities. A survey of Gray's harbor was directed, but circumstances preventing the land party from co-operating in it, a simple hydrographic reconnaissance was made. The survey of Coquille river entrance was also ordered, and would have been accomplished but for an accident to the hydrographic vessel. Special arrangements have been made by Commander Alden for its execution.

On the 15th of September the Treasury Department issued an order placing the steamer Active at the disposal of Lieutenant General Scott, and at the last advices from the Western Coast that vessel was undergoing repairs at the Mare Island navy yard, to be in readiness for such service as might be required under his orders.

TIDE TABLAES.
The tide tables for navigators of the coast of the United States have been revised in the Tidal Division of the office, and additional results for the diurnal inequality in the ports of the Pacific coast have been interpolated from the observations and reductions at the regular tidal stations.

These tables (Appendix No. 14) contain the corrected establishment or mean lunitidal interval of one hundred and ten ports; the rise and fall of mean, spring, and neap tides, and the mean duration of flood, ebb, and stand. Simple rules for computing the time and height of high water, and for correcting the same for half monthly inequality, and for the daily
inequality where it is sufficient in amount to require notice, arc given. The different peculiarities of the tides on the Atlantic, Gulf, and Pacific coasts of the United States are stated as derived from numerous observations. Easy rules for the tidal currents on the sea-coast of the Atlantic are also embodied in the explanatory notes to the tables.

TABLE OF DEPTHS.
In Appendix No. 15 is presented a revision of the table of depths which accompanied my report for 1857 , with additions derived from results received at the office since that report was published, and from the latest data furnished by the Tidal Division. The table contains the depths that may be carried in at the entrances to principal ports and rivers, and that may be found at some of the more important anchorages on the several coasts of the United States. The compendious form in which this information is presented has been found very convenient for purposes of general reference.

LIST OF GEOGRAPHICAL POSITIONS.
The practical character of the triangulation is well shown in the resulting determinations of the latitnde, longitude, and air-line ditances from each other of numerous points on all parts of the coast which have yet been reached in the operations of the survey. These are furnisbed by computation from the notes and journals of observations kept at the stations by the several field parties which occupy them. As being of general interest and of direct practical use to surveyors, navigators, and others, the geographical positions, as increasing in number, have been given in the reports of alternate years, beginning with that for 1851. In Appendix No. 20 of this report, one thousand six hundred and sixty-two additional positions are furnished, including points in all the sections of the coast, excepting Section IV. The progress sketches show the locations of the points, the latitudes and longitudes of which, with the bearings and distances from each other, are given in the form of tables.

The whole number of points determined, and of which the geographical positions have been published, amounts to seven thousand one hundred and seventy-eight.

TOPOGRAPHICAL AND HYDROGRAPHIC SHEETS.

In my report for 1856 lists were given with the scales, dates, and register numbers of all the plane-table sheets and original charts then on file in the archives. The lists given in the Appendix Nos. 18 and 19 contain the titles, \&c., of the topographical and bydrographic sheets received and registered since that report was issued. To serve as an index for reference, the titles are arranged in geographical order, as in the former list.

INFORMATION FURNISEED.

Under an arrangement in the department which specially authorizes the commanication of such data as the archives and records of the survey may furnish, on the conditions that due credit may be given for the same, and that the actual expense of copying the records be borne by the applicant, the usual calls have been met as heretofore-(Appendix No. 6.) As regards the general purpose of the work, this practice is merely incidental, but it requires no enlargement to show that all parta of the Union partake of the advantage derived from the regulation. The information, furnished on the terms alluded to, without any extra cost to the government, may be readily traced in general and elementary publi-
cations, and so has, in a measure, already returned of its first fruits to the people at large. Wherever interest is found in questions concerning the general geography of the country, it is clear that an accurate coast-line must ever be regarded as an important feature.

sTATISTICS.

A revised table containing the statistics of field and office work is given in Appendix No. 7. It will readily be seen that the nature of the data given in some of the items renders the compilation of such a statement a matter of considerable difficulty and labor. Many of the plane-table and hydrographic sbeets being required for purposes of reference in joining the new to former work, the statistical data which they would furnish without hindrance to the operations constantly going on at the south during winter, and at the north in summer and autumn, can be reached only by degrees in the pracess of distributing under the head of each year the work which properly belongs to it. This has at length been as nearly accomplishied as the nature of the material and necessities of the work will allow. A systematic revision has been made of all the data, and provision for continuing the same from year to year upon a regular plan and with the same supervision, so that uniformity in the comparisons may be insured.

DISTRIBUTION OF REPORTS AND MAPS.

The lists kept at the office now contain the names of about four thousand individuals and public institutions to which the annual reports are sent regularly, as they are published. These lists have received additions, from year to year, of addresses referred by senators and members of the House of Representatives, and some have been registered on considerations connected with the known vocation and standing of the persons and institutions applying for them directly. About three hundred institutions of learning are embraced in the general list. The total stated is exclusive of a number of copies sent in exchange to foreign governments and societies, and of the miscellaneous distribution to individuals. In numerous cases calls made by the constituents of members of Congress after their complement of copies was exhausted have been supplied from the office, as are also the special applications constantly received from all parts of the Union, and from parties connected with the merchant service in the coasting trade. All the vessels of the navy and revenue marine, light-house inspectors, a large number of officers of both branches of the military service, custom-house officers, and others connected with the General Land Office in the States, and the Chambers of Commerce, Boards of Trade and Underwriters in the principal seaboard cities, have been regularly furnished in the same way. The total number of copies distributed within the year was six thousand one hundred and seventeen.

Of maps, charts, and sketches, over fourteen thousand impressions have been distributed since the date of my last report. More than half of these were sent to the principal departments of the government, to foreign institutions, and to certain libraries and other public depositories designated by members of the House of Representatives in their respective districts throughout the entire country.

It is expected that the Coast Survey Report for 1858, ordered by the last Congress to be printed, will, with its maps and charts, be published by the energetic Superintendent of Public Printing in the early part of the session, anticipating by many months the former rate of publication.

REPORT OF COMMITTEE OF TWENTY.

At their meeting in 1857 the American Association for the Advancement of Science appointed a committee of twenty, ${ }^{*}$ to examine anew into the character and progress of the Coust Survey. A report had been made by a committee in 1849 , and a new examination was desired. The conclusions of this committee, after a most elaborate investigation of the subject, are given in their report, \dagger as follows:
"With these voluntary and emphatic testimonies to the character of a work as magnificent in its scientific aspects as it is valuable in those which are purely utilitarian-testimonies, moreover, emanating from sources which rank, in point of authority, among the highest known to the scientific world-the committee might be justified in closing a report already protracted beyond their expectation. After the extended review, however, which they have taken of the purposes in which this great undertaking originated, of the history of its growth, and the expansion of the processes involved in its execution, and of the brilliant results which have already crowned its diversified labors, it will probably be expected of them that they should condense the final expression of their opinions into a form sufficiently concise to be comprehended at a single view. As the succinct recapitulation, therefore, of the conclusions at which they have arrived, the committee, with entire unanimity, concur in stating the following propositions :
"1. The American Coast Survey, in its inception, was a work imperatively demanded by a due regard to the industrial interests of the country, dependent, as they are, greatly upon the prosperity of commerce for their free development.
" 2 . The indecision which marked the early policy of the government in regard to this survey, and the consequent delay of its efficient operations, and postponement of its beneficial results, were of manifest disadvantage to the material welfare of our people, and cannot but be still subjects of serious regret.
"3. The economical value of such surveys is attested by the universal voice of all com-

[^1]\dagger Report on the history and progress of the American Coast Survey, up to the year 1858, by the committee of twenty appointed by the American Association for the Advancement of Science, at the Montreal meeting, August, 1857.
mercial men, aud by the concurrent practice of all commercial nations, no less than by the melancholy records of marine disaster annually occurring upon every unexplored coast.
"4. Their seientific value is witnessed, in the instance of the American Survey, by the spontaneous tributes of approval frequently and freely bestowed upon it-no less in regard to the ability, energy, and skill displayed in its management than to the magnitude, variety, and oftentimes curious interest of the results it has wrought out-by individuals and organized bodies of men whose high position as scientific authorities renders their opinions upon subjects of this nature entirely conclusive.
" 5 . This work has conferred many valuable benefits upon science, indirectly and incidentally, in the invention or perfection of instruments, in the improvoment of methods of observation or of computation, in the development which it has given to special subjects of interesting inquiry, and in the stimulus which it has furnished to the scientific talent of the country, especially in the field of astronomical observation and investigation.
"6. A careful study of the progress made from year to year, especially since the enlargement of the scale of operations under the present Superintendent, affords ample evidence that the work has been expeditiously prosecuted, and that the amount accomplished up to the present date is materially greater than has ever been accomplished in any other country in the same length of time and with the same means.
"7. Compared with similar surveys executed or in progress of execution by foreign governments, the American Survey has been conducted with remarkable economy.
"8. Compared with such foreign surveys, the quality of the work done in this will bear the test of any standard that has ever been anywhere set up, and is such as to reflect honor on the scientific character of our country in the eyes of the world.
"9. Every consideration of economy, of humanity, and of regard for the reputation of the country, demands that the work should be prosecuted with undiminished activity until every portion of our coast shall have been as thoroughly explored and mapped as those have been already in which its operations commenced.
"10. Conclusive reasons, involving other weighty public interests no less than this, but connected also with the project of verifying in the happiest manner the geodesy of our extended and circuitous coast, conspire to render the triangulation of the great Appalachian chain of mountains a most desirable undertaking, and encourage the hope that our government will very early direct that most important work to be executed.
"11. The publication in full of all the observations upon which the published results of the Coast Survey are founded, together with the methods employed in the reduction and discussion of the observations, would be a contribution to science, and especially to the science of geodesy, of inappreciable value, besides being necessary to secure the records against loss; and the committee earnestly hope that the government may not fail to provide the means for the adequate and rapid prosecution of this work.
"12. The existing organization of the survey, judged in the light of the experience acquired by our own and by foreign governments in the management of such works, is, in the deliberate opinion of the committee, preferable to any other that has ever been suggested.
"These propositions have not been hastily sketched, and are not lightly thrown out; but they are announced as the result of mature reflection and careful consideration. With their
announcement, the duty of the committee, under the resolution appointing them, is discharged. The committee cannot, however, forget that they have another duty, unprescribed by any resolution, to fulfil; which is to express, on behalf of the association which has charged them with their present responsibility and of the world of science, which they may claim for the moment to represent, their deep sense of the obligation which they feel to be due to the enlightened statesmen who, whether in the exccutive branch of the government or in the legislative halls of Congress, have sustained the work to the present hour by their liberal recommendations or their able advocacy, and have labored to conciliate to it the popular favor by their intelligent and manly expositions of its objects and its value.
"Among the distinguished men who hold in their hands the destinies of the country are still to be found statesmen no less enlightened and no less liberal. To such. therefore, with whatever branch of the government they may be connected, the committee, in conclusion, most cordially commend the important work which they have been reviewing, and, in the name of the associated science of the country, they solicit for it the continuance of the executive favor and legislative support which it has hitherto enjoyed."

TELEGRAPHIC LONGITUDES.
The work of reductions of telegraphic longitudes, under the direction of Doctor B. A. Gould, has made excellent progress, besides which, a working list for a catalogue for selecting proper stars for the latitude determinations of the survey has been carefully prepared. The recent longitude determinations of Calais, Bangor, Mobile, New Orleans, and Albany, New York, are far advanced in their reductions, and it is expected that all the reductions of work of former years will have been completed, and put in the shape for publication before the expiration of another year. A new determination, connecting Apalachicola with the main series, will be undertaken this winter. Careful investigations have been made of the determination of the probable error of reading off the Morse fillets, and of chronographs of different kinds, as well as to a suspected personal equation in reading off the several registers, and the results have been highly satisfactory, as showing the readings made to be affected with smaller mean errors than any other chronograph readings to which the party had access. The personal scale of the readers, too, was tested with satisfactory results, showing the distribution of readings of even the hundredths of seconds to be equable and satisfactory. The special report upon the circampolar catalogue was published in the dstronomical Journal for January, 1859.

BASE OF VERIFICATION.
The base of verification measured upon Epping plains in Maine, in 1857, has been connected with the primary triangulation, and the verification has been most complete. The approximate length of the measured base, as deduced from the office discussion up to 1859 , subject yet to some small change for the full result for the expansion of the comparison bar, and the connexion with the standard metre is $8,715.845$ metres. As derived through the primary triangulation from the mean of the Fire island and Providence bases from computations to 1859, the same base is $8,715.837$ metres in length, differing but eight millimetres, or three tenths of an inch from the former value.

The verification is much within the corrections to be derived from expansion and comparison with the standard metre.

MAGNETIC (IBSERVATIONS.

A memoir prepared by me for the Smithsonian contributions to knowledge and published therein containing a discussion of the magnetic and meteorological observations made between 1840 and 1845, at the Girard College of Philadelphia, under my direction, and the patronage of the American Philosophical Society and of the War Department of the United States, is given in Appendix No. 22. The observations themselves were made in connexion with the extended series under the patronage of the governments of Europe, and were published in extenso by the Senate of the United States. The results are of practical value in connexion with the discussion of changes daily and annual, and others in the magnetic variation, as well as of scientific interest in reference to the periodical character of the disturbances observed. The discussions given in my previous reports have proved useful, in a great variety of cases, to surveyors and others, so that the correspondence in regard to them has at different times been quite interesting, from the number and character of the questions raised and settled. The facts given in this paper will, I feel convinced, find in like manner useful applications in practice.

In a scientific point of view the connexion between a well determined period in the daily variation of the needle and in its disturbances, and the period of change in the solar spots, must be considered not merely curious but important, as proving one of the links connecting the phenomena of the earth's magnetism with the general phenomena of the solar system.

The subject of the secular change of the magnetic declination (variation of the needle) has again been taken up, and the former discussions given in my annual reports for 1855, 1856, and 1858, have been extended. The results are now tabulated and put in a practical form for ready use. Appendix No. 24 presents the report of Assistant Charles A. Schott, on the last results from the discussion of the secular change of the magnetic declination, accompanied by tables showing the declination (variation of the needle) for every tenth year from the date of the earliest reliable observation, for twenty-six stations on the Atlantic, Gulf, and Pacific coasts of the United States. The report, after pointing out the change made in the method of treating the observations adopted since the date of the discussion given in my last report, describes in general outlines the character of the secular change. The formulæ deduced for each station are then presented, accompanied by tables of the declination at every tenth year and the deduced epoch of minimum west (or maximum east) declination with its corresponding amount; and also the annual changes for the three epochs 1840,1850 , and 1860 . Resulto for several stations outside of the limits of the United States are also given. The paper concludes with a list of the observations used in the discussion, but which have not yet been published in either of my former reports.

In the summer Assistant Schott determined the magnetic elements at a number of stations in the New England States, further notices of which will be given under the heads of Section I and Section II, in the body of this report. The results deduced from his observations are stated in tabular form in Appendix No. 23.

A new map of the magnetic variation of the world for 1858 , compiled from various authentic sources, has been published under the auspices of the British admiralty, by F. J. Evans, master, R. N. This has been carefully examined by those officers of the Coast Survey whose studies have led them into this field, and meets with high approval. The results have been transferred (Sketch No. 38) to the polyconic projection used in the Coast Survey, and are
given in this report, with a table from the chart, (Appendix No. 16, showing the variations corresponding to different latitudes and longitudes, for the use of pavigators.

GULF STREAM.
The observations in the Florida channel have been completed during the past year, and have yielded the most interesting results, of which a report is given in Appendix No. 25. The form of the bottom of the strait is shown to be simply that of a deep trough, the deepest part of which lies on the Cuban side of the straits. The cold water from the north is found at the bottom of this trough, having a temperature of thirty-four degrees. The overlying warm water of the Gulf Stream is without bands, alternately colder and warmer, as it should be if the figure of the bottom determined the formation of these bands, as has been supposed. At Cape Florida the stream is narrowest and shoalest, and the cold water here comes near to the surface, making this a comparatively cold band in the longitudinal direction of the stream.

The depth of the strait only five miles from Havana is eight hundred fathoms, and close to the island of Bemini three hundred fathoms. This great depth is no doubt caused by the wearing action of the polar current. The form of this trough renders it probable that the main stream of the Gulf is that which makes the circuit of the Gulf of Mexico.

The "cold wall" along the coast of the United States is traceable along the Florida keys and to the Tortugas.

Some investigations, by experiment, of the effect of pressure on the Saxton metallic thermometers are given in the same article of the Appendix.

TIDES AND CURRENTS.
It will be recollected that the physical survey of New York barbor was first commenced at the request of the Commissioners on Harbor Encroachments, and that the expenditures for so much of the work as exceeded the requirements of the Coast Survey have been defrayed by the State of New York, the Coast Survey officers, under authority given to the Commissioners by the President of the United States, and under the directions of the Treasury Department, having carried on the survey. Its results have thus served the double purpose of the new Coast Survey map of the harbor of New York, which in a preliminary form was published in $m y$ report of 1857 , and which is in progress of engraving in its finished condition, as well as of the Commissioners' map of the harbor.

In regard to the physical survey, it is not too much to claim for the observations made, which have now been continued through several years, that they have developed in a general way the causes of the channels and of the shoals of New York harbor and bar, and of the changes above and below water. The curious and unexpected fact of rotary currents at and below the surface at the entrance to the Hudson, rotating in a vertical direction, so that while the water on the surface is running ebb to the south, below the surface it is running flood, or northward, is fully established by the observations, and is of itself of very great practical value.

About nine thousand observations of currents, of which three thousand were taken below the surface, and seven thousand four hundred and ninety observations of the tides, were made in the course of this work during the past season.

Observations at current stations beyond the light-ship show that the constant currents, independent of those from the drainage of the land waters, sweep the Bay of the Five States. One of these stations was nearly sixty miles east-southeast from Sandy Hook. The motion of these
currents sometimes extends to the whole body of the sea, and at others is more or less superficial. The currents near the south shore of Long Island were observed by casting into the sea large shells previously marked, and noting the places and times at which they were thrown up on the beaches. Nearly one-third of the shells were picked up, and their motion established the existence of an excess of easterly current, independent of the effect of winds and waves. The existence of this easterly drift has often been asserted, and yet the spits of the inlets make to the westward, seeming to disprove the fact of an excess of easterly current. To unravel this many observations were made, and the clue seems to have been found in them, but their full discussion is required before pronouncing upon this. This probable clue is in the movement of the waves.

Appendix No. 26 contains the report of Assistant Mitchell, by whom the observations were made.

RECORDS AND RESULTS.

The inquiries in regard to this publication are constant, notwithstanding the notice given in my last report of the inadequacy of the appropriation to publish the work. The utmost that can be done with the present means is to keep pace with the records in preparing the work, and this imperfectly. A volume of Gulf Stream results will, it is expected, be published within the next year ; but if this is accomplished, it is all that can be done, as stated in my last report, with the means in hand from former appropriations. I have no doubt of the importance of resuming this work as soon as the state of the treasury will permit, as it secures the records from possible loss, and enables us, while those are connected with the survey who have executed the work to be published, to have full scientific criticisms of the results. It has been the reproach of such surveys that there is great delay in publishing results, so that they appear only years after the work has ceased, and when the observations are in a degree obsolete. I should like to avoid the application of this remark to our work, if possible.

PROJECTION TABLES.

These tables, as given in Appendix No. 33, were arranged by Assistant J. E. Hilgard, and are the extension to lower latitudes of similar ones which appeared in my annual report for 1856. They are based upon a polyconic development of the earth's surface, which supposes each parallel of latitude to be represented on a plane by the development of a cone, having the parallel for its base, and its vertex in the point where a tangent to the parallel intersects the earth's axis. In this system the degrees on the parallel preserve their true length, and the general distortion of area is less than in any other geometrical mode of representing a given portion of the earth's surface. Bessel's constants, which have been adopted for projections required in the Coast Survey, were used in the formation of the tables.

Table I gives the length in metres of one degree of latitude and longitude for each degree of latitude from 0° to 54°, and the value of the corresponding radius of the developed parallel. It also gives the values of the angle subtended at the vertex of the cone by the developed parallel, for ten degrees of longitude, by means of which the tables may readily be extended.

Table II gives the rectangular co-ordinates for thirty degrees of longitude on each parallel, from latitude 1° to 54°, the numbers in the table corresponding to the actual dimensions of the earth in metres, and only requiring to be divided by the proper number for any desired scale. Notes explanatory of the tables precede them in the Appendix.

INSTRUMENTS AND APPARATUS.

An apparatus for deep-sea soundings, based upon his examinations of this subject, has been devised by Professor W. P. Trowbridge, assistant in the Coast Survey. A full description of the instrument will be found in the Appendix No. 34, and views of its several parts on Sketch No. 39. The principal feature of this sounding apparatus is new, but simple, and it is hoped that a great improvement on the present modes of sounding in great depths may result from its application. The friction upon the line in the descent of the lead is avoided, and the consequent freedom of descent secured by having the line compactly coiled along with the sinker,' the uncoiling taking place in the descent of the apparatus. It is proposed to test the practical working of the instrument during the coming season.

The experiments with the pressure tide-gauge of Captain Hunt, of the Corps of Engineers, have been continued, and show that the instrument must in many cases be a very useful one. By filling the tube which communicates between the pressure bag and the indicator with alcohol, we expect to be able to use the instrument at low temperatures and when the surface of the water is covered by ice. The experiments of Mr. J. M. Batchelder, in continuation of those noticed in my report of last year, are stated in Appendix No. 35.

In the report of Assistant Henry Mitchell (Appendix No. 26) will be found descriptions of improvements in apparatus for detecting and measuring sub-currents, and also of an improved form of pile for securing structures upon shoals or along the open coast, where the heavy sea prevents the use of ordinary means. These devices are illustrated in Sketch No. 40.

In the use of the improved current apparatus the velocities of the drifs in the lower water strata are compared with the superficial movements of the sea by measuring, during a specified interval of time, the separation which takes place between a floating body and a system of globes or shafts let down to great depths. When in use the apparatus is in no wise connected with the vessel, so that no discordance in the observations can result from the motions of the latter, and the experiments may be made accurately even in a heavy sea.

Assistant Mitchell's improved pile is a device borrowed from nature, he having observed that certain seed vessels, by virtue of their forms, bury themselves in the earth when agitated by wind or water. This pile, instead of being torn up by the waves, is impelled steadily downward. It may be hewn out ever so roughly, its success in practice depending upon very simple conditions described in the report which I have referred to.

In his past season's operations Mr. Mitchell has made successful use of apparatus comprehending the improvements he describes.

OFFICERS OF THE ARMY.

Between November 1, 1858, and the same date of the present year, five officers of the army have deen detached from the Coast Survey, and two detailed for service. Captain E. B. Hunt, of the Corps of Engineers, has not been regularly detached, but has, in fact, been so occupied with engineering duties as to render it impracticable that he should give any portion of his time to the Coast Survey.

Captain A. H. Seward, U. S. A., detached on his promotion, has rendered good service, and shown remarkable adaptation to our work in charge of a triangulation party in the very difficult region of the inner Florida keys, and the loss of his experience to the survey is much to be regretted.

Lieutenant J. C. Tidball, U. S. A., had been in charge of the drawing division of the Coast Survey for several years, and was a very efficient officer. Lieutenants J. P. Roy, and Rufus Saxton had been serviceable both in the field and office. The experience of all these officers is now lost to us in their several positions.

Appendix No. 3 contains a list of the army officers now attached to the Coast Survey.
OFfICERS OF THE NAVY.
During the past year we have lost by detachment the services of two of the most experienced chiefs of hydrographic parties. Lieutenants T. A. Craven and J. N. Maffitt, U. S. N., have thoroughly indentified their names with the Coast Survey, and wherever their labors have extended, from Maine to Texas, have left the mark of their special ability for the work. During the last period of their service they were but temporarily attached to the survey, it being understood that the Navy Department would soon need them in highly responsible positions connected with the general service, but they, nevertheless, both found time, the former on the Florida reef, in New York harbor, and in the Gulf Stream, and the latter in organizing a system of repairs and equipment, to cause that short period to be remembered as important to the survey.

By the kindness of the Hon. Secretary of the Navy, my letters of acknowledgment to these officers were transmitted to them in the most complimentary way.-(Appendix No. 39.)

Lieutenant W. G. Temple, U. S. N., was detached from the command of the steamer Corwin in October, 1858, and from the survey in April, 1859. He had been in charge of a party less than two years, but his preliminary experience in the work, and his intelligence and industry, rendered every day of his connexion with it useful to the survey.

Lieutenant T. B. Huger, U. S. N., was detached at the close of his summer's work, having earned the name of a zealous and intelligent chief of a hydrographic party.

Of the chiefs of parties who have replaced these officers, Lieutenant Wilkinson and Lieutenant Phelps have had considerable experience in the survey in former years, as junior officers of parties.

The names of all the officers now on duty in the Coast Survey are given in Appendix No. 5.
The deficiency in the number of naval officers, by which only one lieutenant is now allowed to each hydrographic party, has made a radical change in our service. The master's mates allowed to the parties will, in time, be trained to the work, but thus far the difficulties have been much increased by the want of experienced officers. The rules required to give a form of organization to this branch of the service have been adopted, and their working will be carefully observed.

All the engineers of the Coast Survey vessels are now civilians, and their entire emolument is derived from the Coast Survey appropriations. Under the regulations of the Treasury Department they are employed by the chiefs of hydrographic parties at fixed rates of pay, their employment lasting, as a rule, only while the vessels are in commission.

HYDROGRAPHIC DIVISION.

The advantages to be derived from this division have been fully realized by the activity of Lieut. J. N. Maffitt, U.S. N., who was in charge of it at the outset, with Mr. A. Balbach as the draughtsman. Commander S. S. Lee, U. S. N., who has replaced Lieut. Maffitt, will no doubt maintain all its efficiency.

The duties of hydrographic inspector, which are combined with those of the charge of this division, are of great importance, and Commander Lee has already shown the efficiency and economy which must come from the new organization devised by Lieut. Maffitt, and commenced under his immediate supervision.

By the kindness of the Hon. Secretary of the Navy, and of Commodore Smith, chief of the Bureau of Docks and Yards, the necessary store-room has been assigned to us in the New York navy yard, and the order and method introduced into the laying up, repairs, and fitting out of our small vessels, and into the charge of them while laid up, will prove not only a source of efficiency, but also of economy.

AIDS TO Navigation

As the hydrographic work advances, and developments are made of the known or hitherto unknown dangers to navigation, the practice has been, with the chiefs of parties, to report upon them, with such recommendations in regard to buoys or other marks as in their judgment are necessary. Their remarks on the aids required for safety in navigation are from time to time referred through the department for the consideration of the Light-house Board. Appendix No. 40 contains a list of the cases reported within the year, and Nos. 41,42 , and 43 my communications relative to the special localities and character of the marks required for the purposes of mariners.

obItUARIES.

The survey has lost during the past year, by death, the services of Lieut. John K. Duer, U.S. N., who was in charge of one of the hydrographic parties in the Gulf of Mexico. This officer discovered in 1857 the new channel east of Dog island, leading into St. George's sound, and to Apalachicola, so important to the future development of that part of the coast of Florida, and was engaged in completing the survey of the approaches when he died. He was a zealous and industrious officer, regarding always the public service rather than his own health or convenience, and died of a disease of the heart aggravated by the labors and responsibilities of his position.

Mr. Gustavus Würdemann, in charge of the tidal observations on the Florida reefs and in the Gulf of Mexico, died at his home in New Jersey on the 29th of September. His health had been failing for some years, and during the Jast year he had discharged his duties with great difficulty, owing to physical debility.

Mr. Würdemann entered the survey under my predecessor, and served until the period of his death with a fidelity and singleness of purpose that has never been exceeded. Exact truthfulness was the leading trait of his character, and his observations were reliable in the most minute as in the largest points. It is easily seen that it is no exaggeration to say that such a man in his place was invaluable, and an example worthy to be held up as the type of faithfulness. During the discharge of his laborious duties he found time and opportunity to make collections in natural history, which have been acknowledged by the Smithsonian Institution as among its most valuable contributions to the knowledge of the fauna of Florida.

Mr. F. Dankworth, one of the oldest and best engravers in the Coast Survey Office, whose employment dates from 1843, died on the 19th of April. He had been in infirm health for the last year, but continued to the last to work at his art, to which he was successfully devoted.

I proceed now to give, in the usual geographical order, detailed statements of the field-work done on the Atlantic, Gulf, and Pacific coasts of the United States, under the head of sections, the limits of which have been already defined. In each chapter the work is described generally in the natural order taken in its execution, as triangulation, topography, hydrography. Notices of the office-work done in Washington precede the several chapters, each of which corresponds to one of the sections.

SECTION I.

from passamaquoddy bay to point judith, inoluding the coast of the states of maine, new hampshire, massachusetts, and rhode isLand.-(Sketch A, Nos. 1 and 2.)

The progress in the field-work of this section is stated under the following heads:

1. Geodetic and astronomical observations.-The primary triangulation and the astronomical and magnetic observations connected with it have been carried to the boundary, and Chamcook station has been occupied for the survey of Passamaquoddy bay.
2. Triangulation connected with Epping base. -The primary triangulation has been connected with the base of verification on Epping plains, measured in 1857. The verification from the first approximate computations is higbly satisfactory, the length as measured and as computed from the triangulation differing but three-tenths of an inch in five miles and four-tenths. This brings the results much within the range of uncertaintics of expansion of measures and the like.
3. Trianqulation of Penobscot bay.-This work extends over the entrance, embracing the islands as well as the main.
4. Triangulation of Muscongus bay and sound. -This work has been extended from the Sheepscot river over the Damariscotta and over Muscongus bay and sound to a junction with the Penobscot work.
5. Topography of Wiscasset bay.-A stretch of about four miles above and below the town of Wiscasset has been completed, joining with the work of the previous year on the Sheepscot.
6. Topagraphy of Merrymeeting bay and of Bath, Maine. -This is a continuation of the survey of the shores of the Kennebec river.
7. Topography of Casco bay, Maine. -This is a continuation of the survey of the main and islands of Casco bay, and extends to Harpswell Neck.
8. Plane-table survey of the Isle of Shoals and adjacent coast.
9. Topography of Barnstable harbor and approaches, Mass.-This forms part of the topography of Cape Cod, which remained to be executed on the inner shore.
10. Hydrography of the approaches to Sheepscot bay and Kennebec river, Maine.-These were nearly completed. The least depth of water upon ": Mile Ledge" was found to be but eighteen feet at mean low tide.
11. Hydrography of Casco bay. -This is in continuation of the soundings of the lower part of Casco bay. The well known "Hussey Rock" was found to be erroneously laid down in position on the best charts. The shoal artificially caused off Union wharf, Portland harbor, has been nearly removed.
12. In-shore hydrography between Cape Elizabeth and Cape Porpoise, coast of Maine.-This is nearly connected with the hydrography of the approaches to Portland harbor. Cape Porpoise,

Stage Island, and Wood Island harbors were surveyed in connection with this work. The developments here were numerous.
13. Off-shore hydrography, coast of Maine, New Hampshire, and Massachusetts.-Important contributions to this have been made.
14. Examination of Salem harbor.--This was an extension of the examination of last year.
15. Rock determined in Hyannis harbor, Mass.
16. Magnetic observations at localities extending from Portland to Cape Ann.
17. Tidal observations.

This work has occupied three triangulation and magnetic, four topographical, and two hydrographic parties during the whole or parts of the season.

Office-work.-The drawing and engraving of additions to the chart of Boston harbor have been completed, as also the drawing of those of Portland harbor, Lynn harbor, and a new edition of that of Muskeget channel, and the engraving of the preliminary charts of Kennebec river and Rockport harbor. Progress has been made in the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and of preliminary coast chart No. 3, from Cape Small Point to Cape Cod; in the drawing of coast maps and charts, No. 7, from Muscongus bay to Portland harbor; Nos. 9, 10, and 11, from Cape Neddick to Hyannis harbor, and No. 14, from Cuttyhunk island to Block island; also in the engraving of coast maps and charte, Nos. 12 and 13, from Monomoy to New Bedford; the views for these charts, the finished maps of Kennebec river and Lynn harbor, and the new edition of the chart of Muskeget channel.

Geodetic and astronomical observations.-The party under my immediate direction was organized at Washington early in June for the purpose of completing the primary triangulation of the coast near the northeastern boundary of the United States. The preliminaries required in the erection of additional signals and posting the heliotropers were executed by Assistants C. O. Boutelle and G. W. Dean, and the preparations necessary in occupying the stations were, as usual, made by Mr. Thomas McDonnell, artificer in the Coast Survey.

Station Howard, situated on the western side of Machias bay, and in the township of Machiasport, Washington county, Maine, was first occupied. Owing to unfavorable weather, arising chiefly from the prevalence of sea fogs, but little progress was made until the middle of July, when the measurement of horizontal angles was commenced. From that period the work advanced well, and the various operations being satisfactorily completed by the 15 th of August, arrangements were made for the immediate transfer of the party and instruments to the station Western Ridge, in Cooper township, in connection by a primary line, as may be seen by reference to sketch No. 1, with station Howard.

The operations at Howard included the measurement of twenty-four horizontal angles with the thirty-inch theodolite; vertical angles with the eight-inch Gambey circle, C. S. No. 57, upon six points; the determination of the latitude with the zenith telescope; azimath observations with the thirty-inch theodolite; the determination of the magnetic elements; levellings for ascertaining the height of the station above the sea, and the usual meteoralogical observations. These several particulars, in connection with others, will presently be noticed more in detail.

The measurements of horizontal angles at station Western Ridge were commenced on the 30th
of August, and the work was pressed forward until the 27 th of September, at which date all the geodetic, astronomical, and magnetic observations were brought to a successful close.

For extending the triangulation so as to include the northeastern boundary in the vicinity of Passamaquoddy bay, Chamcook station, near St. Andrew's, New Brunswick, was occupied by Assistant Dean between the 13 th and 28 th of October, and satisfactory measurements made of the angles required to conclude the primary work.

The facilities extended to Mr. Dean by T. B. Wilson, esq., of Chamcook, and Capt. Thomas Jones, U. S. consul at St. Andrews, while prosecuting the operations in that vicinity, are acknowledged in his report. The following statistics exhibit in brief the work executed by my party in this section during the past season:

Triangulation.-At station Howard 1,066 observations were made with the thirty-inch theodolite, C. S. No. 1, upon ten signals and an elongation mark. The vertical angles for determining the heights of the principal stations were measured with the eight-inch Gambey vertical circle, C. S. No. 57, and for this purpose sixty-seven sets each, consisting of six measurements of the angle, were made upon the signals of six stations.

At Western Ridge station 1,103 observations were made with the large theodolite upon eleven signals and the elongation mark. Nine stations were observed on for the vertical angles, and 560 measurements were made.

At station Chamcook 464 observations were made with the large theodolite upon four signals for horizontal angles. Vertical angles were measured by 234 observations on the same signals with the circle No. 57.

The most distant signal observed on during the season was that on Mt. Desert island, as seen from Western Ridge. This line, between the two stations, is about fifty-eight miles in length. From Western Ridge the highest peak of Mt. Katahdn was observed on incidentally at a distance of about a hundred miles, and with observations of the same kind made at Mt. Desert in 1856, upon the same point, the geographical position of that remarkable feature of the interior of Maine will be approximately determined.

The primary triangulation completed during the season embraces an area of 1,150 square miles.

Latitude and time observations.-At station Howard two hundred and nineteen observations were made with the zenith telescope, C. S. No. 5 , upon forty sets of stars. The arc value of a revolution of the micrometer was carefully obtained from one hundred and twenty-two observations on Polaris near its eastern elongation, and the value of a division of the level was found in the usual way by thirty observations upon a collimator with the micrometer.

With the forty six inch transit, C. S. No. 4, the local time was determined by a hundred and three observations on fifteen standard stars, zenith and circumpolar.

At Western Ridge two hundred and twenty-three observations were made with the zenith telescope upon forty sets of stars. The arc value of the micrometer was ascertained from a hundred and twenty two observations upon the star 51 Hev . Cephei near its eastern elongation, and the customary means were taken for finding the value of the level scale. Local time was determined from seventy-three observations on twenty zenith and circumpolar stars.

The observations for latitude and time were made by Sub-Assistant Edward Goodfellow, aided by Mr. Henry W. Bache.

Azimuth. -The azimuth of the trigonometrical lines at station Howard was determined, as in other cases, with the thirty-inch theodolite, and for that purpose one hundred observations were
made upon Polaris near its eastern elongation, besides seventy-two on Ursæ Minoris, near the upper culmination, in connection with two hundred and eighty observations upon the elongation mark. At Western Ridge the azimuth was determined from seventy observations upon λ Urse Minoris, near its upper culmination, and one hundred and twenty-six observations on the elongation mark.

Magnetic observations.-The geological formation at station Howard indicated that the magnet would be affected by local attraction, and the experimental observations made at several points near it proved this to be the case. After selecting the most favorable position, one hundred and forty-seven observations were made for declination, the magnet used being freely suspended during three consecutive days. The inclination was measured with the nine-inch dip-circle, five complete sets of observations being made with two needles. The horizontal intensity and moment of inertia were deduced from two sets of experiments on different days.

At Western Ridge the magnetic declination was ascertained by one hundred and ninety observations on four days, and the inclination from three complete sets made on different days.

At station Chamcook the declination was determined by one hundred and thirty-five observations on three days, the inclination from four sets of experiments on different days, and the horizontal intensity and moment of inertia in the usual way.

Observations were also made at Eastport, Maine, and in its immediate vicinity, for determining the magnetic inclination and local intensity.

The declinometer D. 22, C. S. No. 1, and dip-circle, C. S. No. 4, were used in all the observations made at the several stations.

The azimuth and magnetic observations were made by Assistant Dean, aided by Messrs. R. E. Halter, R. H. Talcott, and C. S. Peirce.

While the astronomical and geodetic operations were in progress at Howard, Mr. Talcott made a series of levellings from the station to a bench-mark which had been established by careful tidal observations made by Mr. McDonnell, who also ran a line of levels between the same points.

Meteorological observations.-The usual journals were kept at the several stations by Mr. Talcott, and in the course of the working season two hundred and ninety readings of the barometer, thermometers, and evaporating point, were recorded.

All the original records were duplicated, and the computations from the latitude, azimuth, and magnetic observations nearly completed, before the party returned from the field. These, making a total of fifty volumes, have been deposited in the archives at Washington.

Assistant Dean and Sub-Assistant Goodfellow are about to resume the prosecution of longitude determinations on the Gulf of Mexico.

Reconnaissance.-The primary triangulation which has been carried through New England having approached the northeastern boundary of the United States, it became desirable that stations should be chosen for closing the series in that quarter so as to include the St. Croix river and Passamaquoddy bay. In the latter part of June Assistant C. O. Boutelle proceeded on this duty, first re-erecting on Mt. Desert island the primary signal which had been destroyed by a storm subsequent to the occupation of that point by my own party in the autumn of 1857, and placing the heliotropes necessary for the measurement of horizontal angles formed at the two remaining stations (Howard and Cooper) west of the boundary, intended to be occupied at a later period in the present surveying year. Ample facilities for the work were afforded in
the use of the U. S. revenue cutter Jackson, by her captain, Joseph Noyes, and by Robert Burns, esq., collector at Eastport, Me., under authority from the Treasury Department.

The official sanction of the colonial authorities of New Brunswick having been received, Mr. Boutelle selected and marked a station at the distance of about a quarter of a mile from the bluff on the north side of Dark harbor, Grand Manan island, and erected a signal at Chamcook, in the vicinity of St. Audrew's. Both of these points (Sketch No. 1) were observed on from the station occupied by my party in September.

The reconnaissance was so made as to settle also the availability of points for the sccondary triangulation in the vicinity of Passamaquoddy bay, and for its connection with the primary work. Two signals of the second order were erected-one at Prince Regent's Redoubt, (Moose island,) near Eastport, and the other on Trescott Rock. The positions of these, and the general plan proposed for the smaller triangulation, are shown on Sketch No. 2.

Assistant Boutelle was aided in this service by Mr. C. H. Boyd. In the early part of the surveying year his party was employed in Section V, and afterwards completed the triangulation work, in the vicinity of the Epping base, as will be presently noticed. In the course of the season he visited and examined the lines leading from the two primary stations-Gunstock Mt., in New Hampshire, and Wachusett Mt., in Massachusetts-which had been passed by in the progress of the general triangulation through New England, and which yet remain to be occupied.

Triangulation connected with Epping base.-This duty was commenced on the 17th of September by Assistant Boutelle, from whose report, made on the completion of the work, the following extract is taken:
"In occupying as stations the east and west ends of the base, the theodolite was protected from sun and wind by a temporary structure, and the observing tripods by a couple of screens of light canvas, each of the size of the surrounding scaffold. These were spread on the windward sides, and kept the platform on which the theodolite was placed in perfect steadiness. At the west end of the base the wind blew almost a gale from the northwest on the evening of the 15 th and morning of the 16 th of October; and although the scaffold was over forty feet high, eighteen feet wide at the base and nine at the top, the protection from the screens was such that the observations were not materially interfered with. It would have been impossible to observe without them, and I consider them a great addition to our means of observing in the southern sections where tripods are more frequently required."

The connection of the base with the primary triangulation was effected by occupying, besides the two ends, the three adjacent stations, namely: Burke, Pigeon Hill, and Tunk Mt., all of which, and also the relative situation of the base line, are shown on Sketch No. 1.

Each of the horizontal angles was determined by a hundred and twenty measurements with the ten-inch Gambey repeating theodolite, C. S. No.43. The vertical angles were measured by means of the eight-inch Gambey theodolite, C. S. No. 24.

Mr. Boutelle observed a series of consecutive tides near Pigeon Hill, and carried a line of levels to that station, determining its height above the mean level of the sea.

The following summary shows the general statistics of the triangulation: Stations occupied
Signals observed on. 36

Angles measured (horizontal)	61
Angles measured (vertical)	33
Number of observations	8,049

The work was completed on the 31st of October.
Assistant Boutelle was aided in the field by Mr. C. H. Boyd. All the records of the work were duplicated before the return of the party from this section. Mr. Boutelle had been previously engaged in Section V.

Triangulation of Penobscot bay, Me.-This work, which was begun last year, has been continued by the party of Sub-Assistant J. A. Sullivan. The stations established by Sub-Assistant Harris were in part occupied, and angular measurements made from them on others above and below the primary line Ragged ___ Isle au Haut, shown on Sketch No. 2. Progress was made in extending the work upwards between the 23d of July and 23d of September, when the schooner Peirce, which attended the party, was despatched for New York. Observations were continued by Mr. Sullivan until the 5th of October.

Sixty points of the third order were determined in position. These and the measurements of secondary angles were made with the W ürdemann theodolite, C. S. No. 86.

As every precaution was taken in erecting signals for continuing the triangulation up the bay, there is a fair prospect that the future progress in that direction will be more rapid.

The number of observations made in the course of the season was five thousand one hundred and twenty.

Messrs. R. M. Stiles and J. D. Bradford served with zeal and efficiency as aids in the party. The previous occupation of Sub-Assistant Sullivan will be referred to under Section VI.
Sub-Assistant Harris, who was last year engaged on Penobscot bay, has sent to the office duplicates of his notes of horizontal angles and descriptions of the signals erected at the outset of the work.

Triangulation over Muscongus bay and sound, Me.-On the 6th of July the party of Sub-Assistant F. P. Webber, commenced the erection of the remaining signals necessary for extending the secondary triangulation eastward of the Sheepscot river, over the Damariscotta river, and over Muscongus bay and sound. The signal at Edgecombe and some others in the vicinity, having been blown down in the spring, were re-erected, and twenty-one others, mostly of the third order, for topographical purposes, were put up. The reconnaissance and preliminaries being complete by the end of July, Mr. Webber, aided by Mr. Julius Kincheloe, commenced the measurement of horizontal and vertical angles, and occupied fifteen stations with the theodolite, at seven of which vertical angles were observed on the signals of the thirty-four stations embraced in his field of work. It will be seen by reference to Sketch No. 2 that the secondary triangulation conducted by Sub-Assistant Webber has been pushed to a connection with that of the lower part of Penobscot bay, on the line which joins Manhegan island with a station on the east side of St. George's river.

Fifty-nine points were determined in position within the scope of the triangulation. The remaining statistics are as follows:

Stations established or re-erected

34

Stations occupied . 15
Horizontal angles measured . 347
Vertical angles determined . 34

Objects observed on . 346
Number of observations . 3,090
The schooner Hassler, which was used in this service, returned to New York on the 6th of October. In the early part of the surveying year Mr. Webber was engaged in Section V, and is now completing arrangements for returning to the coast of Georgia.

Duplicates of the field-notes made in the triangulation over Damariscotta river and Muscongus bay have been deposited in the office with the descriptions of the signals as now standing.

Topography of Wiscasset bay, Me.-The sheet containing this work was taken into the field by Sub-Assistant W. H. Dennis on the 1 st of August. On the south it joins with the work done last year on the Sheepscot river by Assistant Hull Adams. As far as now completed, the topography represents the town of Wiscasset and its environs, and the details found at Edgecombe, on the opposite side of Wiscasset bay, including also the mouth of the Sheepscot, above Wiscasset, making altogether a stretch of about four miles above and below the town. Owing to the nature of the surface the features in detail were found very difficult of delineation.

Sub-Assistant Dennis was efficiently aided in plane table duty by Mr. J. L. Tilghman. Fieldwork was continued until late in October, with the following result in statistics:

Shore line surveyed . 8 miles.
Roads 20
Area of minute topography (square miles) $5 \frac{1}{2}$
The locality of the work may be seen on Sketch No. 2.
Topography of Merrymeeting bay and Bath, Me.--The supplementary topography required for the chart of the Kennebec river, in the vicinity of Bath, was taken up on the 24 th of June by Assistant R. M. Bache. Sub-Assistant W. S. Edwards was attached to his party, and worked with a separate plane-table on the details of the shores of Merrymeeting bay. Assistant Bache traced in the streets and wharves of the city of Bath, which is continuous for about five miles along the west bank of the Kennebec. The very uneven surface represented on the two sheets referred to made the field-work tedious and necessarily slow in execution. The locality is shown on Sketch No. 2. A small portion of the area of each sheet yet remains to be filled in detail.

The following are the statistics of the season:
Shore line surveyed. 27 miles.
Wharf line surveyed 7 "
Roads 32 "
Area (square miles). 15
The villages of Woolwich and Winnegand are represented on one of the topographical sheets.
Assistant Bache has inked and sent to the office the plane-table sheet of the Kennebec which was completed last year.

Topography of Casco bay, Me. -The work of the season on the shores of Casco bay, and on the islands east of Portland harbor, was in charge of Assistant A. W. Longfellow, and consisted of filling the interior details and contour of ground of the outstanding sheets, of which the shore line had been previously traced. Assistant A. S. Wadsworth was attached to the plane table party, and Mr. James Gilliss served as aid. The topography was resumed on the 11th of July and continned until the 4th of November. Assistant Longfellow completed the survey of the shores of the Presumpscot river, and of the main shore of Casco bay, from thence north-
ward to a point beyond Sturdivant's island, from which it was extended by Assistant Wadsworth in the same direction abreast of Prince's Point, and there joined to a portion of work also finished by Mr. Longfellow. The topography of the interior of Long's and Cousin's island was completed, as also that of Great Jebeig, Hope, Crotch, and Jewell's islands. The location of the three plane-table sheets worked on, and of which the details are now complete, may be seen in Sketch No. 2. On two other sheets, which embrace Yarmouth river and Harpswell Neck, progress has been made in the shore line survey.

The details of the season's survey are represented in the following statistics:

Shore-line of marshes and ravines	33 miles.
Roads	40 "
Total of contour lines	155
Area of topography (square miles)	14

The original sheet containing the topography of Portland harbor, the city and its environs, has been inked and placed with the archives at the office.

The party of Assistant Longfellow used the schooner Meredith for transportation and quarters while working in Casco bay.

Plane-table survey of Saco bay and vicinity, Me.--In order to facilitate the early completion of the charts of soundings to be made between Cape Elizabeth and Kennebunkport, Me., Sub-Assistant C. Fendall was attached to the hydrographic party of Lieut. Comg. Murray, and traced the entire shore-line from Prout's Neck and Stratten island southward, and westward to Kennebunk river. His work, the limits of which, as contained on four plane-table sheets marked on Sketch No. 2, embraces the shores of Saco bay, Wood island, Fletcher's Neck, and all the islands and coast intermediate between the last-named point and Kennebunk river. The Tsles of Shoals were also surveyed, and were mapped on a separate topographical sheet.

Topography of Barnstable harbor and vicinity, Mass.-The survey of the shores of Cape Cod bay was commenced on the 7th of July by Assistant A. M. Harrison. Two plane-table sheets were projected-one to include Barnstable harbor, and the other to extend the work westward. The topography was taken up at Scargo Hill, near North Dennis, and in its course westward embraced, besides the usual surface details, the village just named, and also Yarmouth, Yarmouthport, Barnstable, Pond Village, and West Barnstable, together with the Great Marshes in that immediate vicinity, Sandy Neck, and the entire shore of Barnstable harbor. Very few of the details of the vicinity yet remain to be traced on the sheet. Its limits are shown on Sketch No. 2. From the shore line of the harbor the survey was carried back to an average breadth of a mile and a half.

Sub-Assistant P. C. F. West and Mr. A. W. Thompson were attached to the plane-table party, and rendered efficient service.

The character of the country in the vicinity of Barnstable presents almost every variety of ground, and much of it is thickly settled. The Cape Cod railroad is represented in the stretch from West Barnstable to Dennis Pond, where it turns to cross the peninsula.

Assistant Harrison closed work on the 21st of October, but, before leaving the field, visited the triangulation points on which his work was based, reset the station marks, and prepared for the records of the office new sketches of them, accompanied by descriptive notes. The following synopsis of statistics is taken from his report:

The plane-table sheet embraces a coast reach of rather more than ten miles, measuring east and west of Barnstable harbor.

Verification of Topography.-After closing special field service, which will be referred to in the following chapter, Assistant H. L. Whiting examined the plane-table work done this season in the vicinity of Wiscasset, and that on the shores and islands of Casco bay and in the neighborhood of Barnstable harbor. The examination was made with reference to the amount and character of the topography, and was fully reported on by Mr. Whiting as being in all respects satisfactory and thorough in detail. The localities mentioned are amongst the most difficult of representation that have yet been passed over by cither of the plane-table parties.

Hydrography of the approaches to Sheepscot bay and Kennebec river, Maine.- Cnder circumstances unusually favorable for work afloat, the hydrograply of the approaches to the Sheepscot and Kennebec rivers was completed in August by the party of Lient. Comg. John Wilkinson, U. S. N., assistant Coast Survey, working with the steamer Corwin. The upper limit of the soundings is on a line passing from Cape Newaggen across and about threc miles to seaward of Damiscove island, from whence the work was prosecuted southward and westward to the meridian of Cape Small Point, where it joins the completed hydrography of 1856-157. The resulting chart will extend several miles to the southward of Seguin island, the soundings in that vicinity being made as supplementary to the hydrography of the Kennebec entrance, executed in the surveying season of $1855-56$. Sketch No. 2 shows the locality and the limits referred to.

The tidal observations required in plotting the soundings were made at a station in Booth bay.
A small sunken rock, known as "Mile Ledge," lying ubout a mile to the southward of Seguin island light, and which is marked on the old charts as having four fathoms, was found by Lieut. Comg. Wilkinson to have only eighteen feet water at mean low tide. The rock is in the track of vessels bound into Kennebec river, and bears from the light-house S. $9^{\circ} 30^{\prime}$ E., (true,) or south a little to the westward by compass. The range and other particulars for determining its position were made known to the department in September, in a communication, a copy of which is given in Appendix No. 9.

A summary returned on concluding the hydrography of this vicinity presents the following statistics:

$$
\begin{aligned}
& \text { Miles run in sounding...... } 206 \frac{1}{2} \\
& \text { Angles taken } \\
& 898 \\
& \text { Number of soundings. } 1,971 \\
& \text { Area sounded, (square miles) } 52
\end{aligned}
$$

The greatest depth of water found was forty-seven fathoms.
Lieut. Comg. Wilkinson has furnished sailing directions for the chart of the Kennebec river and its approaches.

Within the year the two sheets containing the hydrography of the Sheepscot river, executed by Lient. Comg. Moore, have been plotted and registered in the office.

Hydrography of Casco bay, Maine. -The soundings required to complete the hydrography of the lower part of Casco bay were made in the latter part of August and early part of September by the party of Lieut. Comg. Wilkinson, working with the steamer Corwin. A space embracing about twenty square miles abreast of Portland light, and included between Peak's island and Green island, is shown on the chart. Within its limits occurs the Hussey Rock, the position of which has been hitherto erroneously laid down on the best charts of Casco bay, and which, in the course of the operations conducted by Licut. Comg. Wilkinson, was found to be more than a quarter of a nautical mile northwest of the position heretofore assigned. Bearings and ranges from the true position to fixed points on the main and adjacent islands are given in Appendix No. 10. The Hussey Rock is small and has only twelve feet on it at mean low water. The locality in which the soundings were made may be seen by reference to Sketch No. 2, by which, also, it will be observed that the in-shore hydrography of the section has been pushed as a continuous work as far to the northward and eastward as Cape Newaggen, with the exception of a small interval at Cape Elizabeth, the advance of the season not admitting of a final junction between the lines run by Lieutenant Commanding Wilkinson and those of Lieut. Comg. Murray, the site of whose work will be referred to presently. Tidal observations were made with a staff-gauge at Peak's island while the party was sounding in that vicinity.

At a period since the date of the survey made by Lieutenant Commanding Maxwell Woodhull, U. S. N., the water at one point in the channel off Union wharf, Portland harbor, had shoaled. This was made the subject of examination by Lieut. Comg. Wilkinson, and it appeared that by the sinking of a schooner laden with granite the depth had been for some time decreased. The obstruction is now removed and the depth nearly restored to what it was when the preliminary chart of Portland harbor was first issued.

The following is a summary of the hydrographic statistics:

```
Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . ............................ 117\frac{1}{2}
```



```
Number of soundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,657
Area sounded, (square miles)................................................. 20
```

Having made very favorable progress in the hydrography of the section, the party in the Corwin left Portland on the $2 d$ of October and proceeded to New York.

Lieut. Comg. Wilkinson has turned in the note-books containing the entries of soundings and tidal observations made in Casco bay and in Portland harbor.

The hydrographic sheet showing the soundings made at the entrance of Casco bay by Lieut. Comg. Temple, U. S. N., in the previous surveying season, has also been received.

In-shore hydrography between Cape Elizabeth and Cape Porpoise, coast of Maine. -This work was resumed in July by Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey, at last year's limit, near Kennebunkport, and from thence was prosecuted northward and eastward to the vicinity of Cape Elizabeth, the lateness of the season and daty required in the lower part of the section only preventing a junction with hydrography of the approaches to Portland harbor.

Sketch No 36 shows in a general way the present condition of the in-shore soundings on this
part of the coast, and the progress sketch (No. 2) the limits of the several sheets executed this season. The soundings were carried about eight miles out from the coast line and into depths varying between fifty-five and seventy-five fathoms.

Within the limits of this work are several small harbors, with a good depth of water and fine holding ground. Surveys were made of Cape Porpoise, Stage island, and Wood island harbors, and the plotting of the sheet containing them is well advanced.

Sub-Assistant C. Fendall was attached to the party, and furnished plane-table data as needed in the hydrography.

A tide-gauge was set up at Wood island harbor and regular observations referred to a benchmark were duly recorded as the soundings advanced in that vicinity.

Among the important developments of the present working season on the coast of this section are the following, made by the party of Lieut. Comg. Murray, in the surveying steamer Bibb.
The four-fathom bank off Cape Porpoise, Maine, completely sounded out.
A fishing bank developed off Wood island.
Hussey Rock, off Saco bay, and to the southward of Fletcher's neck, determined in position.-(Sce Appendix No. 41.)
The position and development of a rock off Ogunquit, bare at low tide, and but very little known.-(See Appendix No. 11.)

Determination of the position of the "Hue and Cry," the "Old Proprietor," and other dangers to navigation off Cape Elizabeth.

The statistics of the in-shore hydrography are as follows:

$$
\begin{aligned}
& \text { Miles run in sounding. } 814 \\
& \text { Angles determined by theodolite. } 75 \\
& \text { Angles determined by sextant... } 2,122 \\
& \text { Number of casts of the lead . 13, } 659
\end{aligned}
$$

The sheets containing the plane-table work done by Sub-Assistant Fendall are now on file with the archives. All the original note-books of soundings and angles and the chart of last year's work have also been deposited in the office.

Being incidentally at Portsmouth harbor, N. H., with the steamer Bibb, Lieut. Comg. Murray rendered acceptable service to another branch of the government at the request of the commandant of the naval station, Captain John Pope, U. S. N., whose acknowledgment of the same will be found in Appendix No. 37.

Mr. W. B. McMurtrie accompanied the hydrographic party, and took views for the charts of the Kennebec entrance, Portland harbor, Stage island harbor, and of several points in the vicinity of Saco bay.

Off-shore hydrography, coast of Maine, New Hampshire, and Massachusetts.-In passing to the upper part of the section in the steamer Bibb, Lieutenant Commanding Murray started from a position eastward of Pollock's Rip light-boat and ran a line of soundings due north to the parallel of Cape Ann, and thence to the Isles of Shoals. From Cape Aun a line was afterwards carried across the southern part of Cashe's Ledge, and as far to the eastward as Seal island, N. S. The greatest depth found on this line was a hundred and sixty fathoms. In crossing Cashe's Ledge the soundings showed a depth of 16 fathoms. From Seal island, N. S., soundings were made on the course to Grand Manan island, and from thence traverse lines were carried
to the westward close in by Mt. Desert Rock and by Matinicus and Manhegan islaud to Cape Elizabeth.

While in the vicinity of Passamaquoddy bay Lieut. Comg. Murray made a reconnaissance in the waters around Campo Bello and Cross island, and extended soundings on a line from Grand Manan towards the main as far as Sail Rock.

The several courses run in making off-shore soundings are laid down on Sketches Nos. 1 and 2. Saxton's metallic thermometers were used, and gave for depths of a hundred fathoms an average of two and a half degrees in temperature less than that found at the surface. Specimens of the bottom were preserved and the positions from which they were taken duly noted.

A summary of the off-shore statistics is appended.

$$
\begin{aligned}
& \text { Miles run. } 1,175
\end{aligned}
$$

Other deop-sea work executed by the party in the steamer Bibb will be mentioned under Section IV.

Lieut. Comg. Wilkinson, in returning southward from this section with the steamer Corwin, carried soundings on a straight course southward from Cape Elizabeth to a position six miles to the eastward of Nausett Centre light (Cape Cod peninsula.) Thirty-two casts were made with the lead, at each of which a specimen of the bottom was brought up. This line is marked on Sketch No. 2.

Examination of Salem harbor, Mass.-The review incidentally made at the close of the last working year being directed to but few points in the harbor, a more extended examination was made by Lieut. Comg. Murray after closing work in the northern part of the section. In reporting the results, that officer says: "All the main features and dangers in the harbor were determined in the original survey, and, with few exceptions, they are properly delineated on the chart of 1855."

Resurvey in Boston harbor.-After completing general hydrographic duty in this section a re examination was incidentally made by Lieut. Comg. Murray of the upper part of the inner harbor at Boston. Commencing at Mystic river, his observations were continued outwards, and in their course to a point beyond Castle island the following changes were noticed:

A deposit abreast of the timber dock at the navy yard, the soundings showing two feet less of water there than the survey of 1847.

A making out of the flats between Commercial wharf and Bird Island shoals.
A shoal-spit projecting from East Boston, east of the Cunard wharf, and running out into the channel.

The partial wearing of Bird Island shoals.
The extension of the Boston flats towards Bird island.
Referring to a line run from the northeast extremity of Boston flats to the wharf east of Cunard wharf, Lieut. Comg. Murray says: "It is observable that the eighteen-feet curve has been pushed out so far that the channel is contracted at that point nearly one-third, though the depth is retained.

The section from Bird Island flats to Boston flats developed the fact that the channel is moving towards the Bird Island flats, and that those flats are diminishing in size.

Black buoy No. 11, (off Slate Ledge,) which marks the outer edge of the Boston flats, now making towards Bird island, is directly in the mid-channel of 1847 , which then had a depth of thirty-four feet. Now the most water found on that line at mean low tide is twenty five feet, and at the buoy sixteen feet. The channel in that vicinity has become much more serpentine, and great caution is required to prevent the heavier class of vessels from bringing up on the shoal-spits."

A comparison line run from South Boston to Governor's island showed no changes of a marked character as having occurred since the former survey.

Rock in Hyannis harbor, Mass. -The position of a small rock reported by Commander M. Smith. U. S. N., light-house inspector of the second district, as existing not far from the breakwater in Hyannis harbor, and the vicinity of which had been marked by a buoy, was determined by Lieut. Comg. Wilkinson on the passage of the steamer Corwin from New York northward at the outset of the working season in this section. The crest of the rock was found to be about eight feet square, and the depth on it three and a half feet at mean low water, increasing abruptly to twelve feet all around it. From the rock in question Great Rock spindle bears N.NW. $\frac{1}{2}$ W., (true,) or N. by W. $\frac{1}{2}$ W. by compass, and is distant two hundred jards. The ranges for finding its exact position are given in a communication from Licut. Comg. Wilkinson, which I have placed in the Appendix (No. 12.)

The journals of soundings and tidal observations made in the course of the examination have been sent to the office.

Magnetic observations.-These were made during the month of July by Assistant Charles A. Schott, aided by Mr. J. L. Tilghman. The series extends from Portland to Cape Ann, and includes in all fifteen stations, several of which will be referred to under the head of Section II. In this section the magnetic declination, dip, and intensity were determined at Bowdoin Hill, in Portland, Me.; at Kittery Point, opposite Portsmouth, N. H.; on Plum island, near Newburyport, and at Ipswich, Mass.; also at Beacon Hill station, near Gloucester; at the primary triangulation station, Thompson; at Annis Squam, and at Rockport, on Cape Ann. The five last-named stations were occupied for procuring data to apply to several of the harbor charts of the vicinity, and for adjusting computations of the secular change, as well as for studying local distribution on the peninsula of Cape Ann, the results, so far attained, marking that region as somewhat anomalous with respect to the magnetic elements. Observations were also made at Quebec and Montreal, as additional means for rectifying the charts of isogonic lines, published in 1856.

The instruments nsed were, for declination and intensity, the magnetometer, by Jones, (C. S. No. 6,) and its attached magnetic theodolite; for dip the Barrow dip circle, (C. S. No. 9;) time was noted on the chronometer (No. 1411) of Parkinson \& Frodsham.

The time and azimuth were determined by observing the sun's altitude and azimuth, six sets being made, and three separate observations recorded for each. For declinations the readings were generally continued through a period of three hours at each station. The intensity was ascertained from two trials, each of which gave five independent results from a handred and fifty vibrations. At three of the stations the deflections were observed to guard against possible accident to the magnet. The observations for dip consisted generally of six sets with the needles No. 1 and No. 2, the polarity being half of the time reversed.

Before setting out and after his return Mr. Schott made, at Washington, full sets of observations for vibration and deflection, in order to determine the magnetic moment of intensity for magnet F. Other instrumental constants were ascertained in the same way, at the station near the Coast Survey office. The index error of the dipping needles used was determined by comparing them with many others.

In the Appendix Nos. 23 and 24 the immediate results obtained by Assistant Schott are given, and their application to questions of great interest as connected with the laws of terres: trial magnetism. The original notes and his compntations have been deposited in the archives.

Tidal observations.-The series heretofore referred to as continued at Charlestown, Mass., has been maintained during the past year with great regularity, by means of the self-registering gauge, kept in operation by Mr. T. E. Ready at the U. S. dry dock. Preparations have been made to occupy a permanent tidal station at Eastport, Me.

SECTION II.

FROM POINT JCDITH TO CAPE HENLOPEN, INCLUDING THE COAST OF THE STATES OF CONNECTICUT, NEW YORK, AND NEW JERSEY, AND THE SHORES OF PENNSYLVANIA AND DELAWARE-(Skmgi B, No. 7.)

The operations in this section have been the following, in continuation of those of former years, and employing one triangulation party, and one double topographical, one magnetic, one tidal and current, and the occasional time of three hydrographic parties:

1. Triangulation of the Hudson river. This has been continued northward so far as to join the preliminary work of 1856 at New Baltimore.
2. Topography of the vicinity of New York, in New York and New Jersey, being in part a continuation of the surveys for the commissioners.
3. Hydrography of the Hudson river, which has been extended to above Poughkeepsie.
4. Resurvey of Hempstead harbor, Long Island sound.
5. Resurvey of the shoal off the Battery, New York harbor.
6. Tides and currents in New York barbor and its approaches.
7. Magnetic observations.
8. Tidal observations.

Office-work.-Progress has been made in the drawing and engraving of coast map and chart No. 22, New York bay and harbor, and in the drawing of the map of Hudson river, from its entrance to Sing Sing. New plates of the middle and eastern sheets of the chart of Long Island sound have been engraved, and the old plate of the chart of Captain's islands, East and West, has been re-engraved.

Triangulation of the Hudson river. -The work of triangulation on this river was resumed at a station a little below Hudson, by Assistant Edmund Blunt, on the 7th of July, and has been extended northward to a junction, at New Baltimore, with the preliminary work done in 1856 between that point and Albany. About fourteen miles of the course of the Hudson falls within the triangulation.

In the vicinity of Yonkers fifteen stations were occupied, and data furnished to the planetable parties working there under the charge of Assistant Whiting. The progress made in both localities is shown on Sketch No. 7.

Mr. Blunt was assisted in the field by Lieut. W. R. Terrill, U. S. A., and Sub-Assistant G.
H. Bagwell, both of whom had passed the early part of the season on the coast of Florida. Mr. Rufus King, jr., served as aid in the party.

The following is a synopsis from the abstract of the observations turned in by Assistant Blunt on the 15th of October:


```
Number of observations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9,336
Area of triangulation, (square miles) .... ................................. 151
```

Mr. Blunt has sent to the office the records of last year's work and descriptions of the signals then observed on.

Topography of South Jamaica; vicinity of Broohlyn and Williamsburg; High Bridge, Yonkers, and Morrisania; and of Hudson City, New Jersey.-The duty of filling in with details several sheets of the survey of Long Island and of the shores of Hudson river in the vicinity of New York city was resuined by Sub-Assistant F. W. Dorr on the 28 th of June. Messrs. Cleveland, Rockwell, and McLane Tilton were assigned as aids in the plane-table party. After surveying a. small space of the interior, to complete the sheet of the vicinity of Jamaica, Long Island, the party was divided, Mr. Dorr proceeding to Morrisania and finishing a sheet, of which he had executed the principal details in a former season, and Mr. Rockwell taking up the topography of Hudson city, New Jersey, and its environs.

Amongst the additions referred to as made by Sub-Assistant Dorr were surveys of the towns of Morrisania, Melrose, and part of Mott Haven. His party was then transferred to Williamsburg, and until the 1st of October engaged upon the section bounded by Green Point, Williamsburg, and until the 1st of October engaged upon the section bounded by Green Point, Williamsburg, and Brooklyn on the west, joining with the work of the city surveyors; to the east as far as Maspetch, Evergreen cemetery, and East New York; to the Long Island railroad on the south, joining with topography executed by Assistant S. A. Gilbert; and north to the limit of previous work by Assistant H. L. Whiting. The sheets of the locality referred to embrace one of the most thickly settled portions of Long Island, and include the district through which flows Newtown creek and its branches.

Two new wharves, erected since the former survey, at Sands' Point and Great Neck, Long Island Sound, and important as being the landings of steamers during the summer season, were determined in position and laid down by Mr. Dorr on the original sheets.

Under the direction of Sub-Assistant Dorr, Mr. Rockwell, after completing the survey of Hudson City, New Jersey, proceeded to High Bridge and filled in the topography required on the east bank of Harlem river, between that town and Kingsbridge. Part of the Croton aqueduct is represented on the sheet of that quarter. Two sheets of the survey above and below Yonkers were then taken up, and some progress in additional details made on the one extending upwards from the town. The other, which begins half a mile below the village and extends to Spuyten Duyvel creek, including also a stretch of two miles along the Palisades on the west side of the Hudson, was completed by Mr. Rockwell on the 15 th of October. Like all the other sheets worked on, the shore line, excepting a portion on one sheet, and some portions of the details, were executed previous to the outset of the present season, the features delineated being required for the finished map of New York harbor.

The following is a summary of the plane-table statistics:

Shore line of Hudson river	6 miles.
Creeks	2012
Marsh line	$9 \frac{8}{4}$
Aqueducts	$8 \frac{1}{2}$
Roads	164 ،

The early part of the surveying year was employed by Sub-Assistant Dorr in Section VI, and by Mr. Rockwell in Section V.

The care and attention given by Mr. Tilton in chaining for the plane-table survey are especially commended in the report of Sub-Assistant Dorr.

Since the opening of the year the topographical sheets executed by this party in the last working season have been inked and sent to the office.

Mr. Dorr is now preparing to return to Section VI.
Topography of Hudson river, New York.-Two plane-table parties, under the charge of Assistant H. L. Whiting, took the field on the 15th of July, for the purpose of extending the detailed survey required for the finished maps of New York harbor and Hudson river. One of these, conducted by Sub-Assistant N. S. Finney, under the immediate supervision of Mr. Whiting, advanced the work on both sides of the Hudson, from Spuyten Duyvel creek as far upwards as Hastings. The other party, directed by Sub-Assistant John Mechan, completed the topography on both sides of the river between Irvington and Sing Sing on the east, and from Piermont to Rock mountain on the west bank. A portion of the details between Irvington and Hastings yet remains to be filled in. Within the scope of the completed limits the survey includes the villages of Yonkers, Tarrytown, and Upper and Lower Nyack in addition to those before named; the Palisades and the shores of the Tappan Zee.

All the plane-table work executed within the season in the vicinity of New York was verified by Assistant Whiting, and is reported as being thorough in character and accurate in details. In reference to it he says: "Great credit is due to the gentlemen who have been on duty with me, not only during this, but in former seasons, for the zeal and interest manifested and the particular attention given.in aiming at and effecting a uniform system and style of work."

From Yonkers north and south to the limits of Mr. Whiting's work, the survey was carried back from the shore of the river to the old post road leading from New York to Albany, which, as being a well defined boundary, yet gives sufficient breadth to include all the characteristic river topography. "On the western shore of the Hudson the only feature presented is the range of the Palisades, which opposite to Yonkers attain the greatest height. The details on that side were carried back sufficiently far to show a fringe of topography uniform in breadth with that of the lower sheets of previous years."
"The character of the work generally is complex and difficult. The details of contour on the eastern shore particularly were very numerous, embracing a range of hills from a hundred and fifty to four hundred feet high, with a great variety of artificial features."

The parties working under the direction of Assistant Whiting closed field operations on the 24th of September. Sub-Assistants Mechan and Finney, who had both been employed in dif-
ferent sections at the south during the former part of the year, then proceeded to make arrangements for resuming duty there.

A synopsis given in the report of Assistant Whiting shows the following details of work done in the vicinity of Yonkers and Tarrytown:

The limits of the plane-table work here noticed may be seen on Sketch No. 7. An area of rather more than eleven square miles is embraced in the survey of the year.

Resurvey of part of Hempstead harbor; Long Island sound.-After returning from the south, Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, proceeded, in the latter part of August, to determine the position of several rocks within the limits of Hempstead harbor. This duty was performed with the schooner Agassiz, manned by a part of the crew of the steamer Walker. The survey was completed before the end of September, and includes the greater part of the space passed over in the previous examination. The following is an abstract of the statistics recorded in the hydrographic sheet which was turned in at the office shortly after the detachment of Lieut. Comg. Huger from the Coast Survey:


```
Number of soundings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 512
```

The general duty executed by this party will be stated under the head of Section VIII.
Examination of the Battery shoal, New Fork harbor. - Attention having been invited in reference to the question of a decrease of depth on the Battery shoal, an examination of the vicinity was made by Lieut. Comg. T. A. Craven, U. S. N., Assistant Coast Survey, after his return from duty at the south. The result shows that at a spot off the Emigrant Depot the present depth is only seventeen feet and a half, and that in the angle formed by the line of the battery and pier No. 1 there has been a very rapid filling up. With respect to the changes noticed there, it is added: "The three-fathom curve has been pushed outward eighty yards beyond the line of 1856; the seventeen-feet spot in the outer part of this section is extending towards pier No. 1, and there is an average decrease of three feet in depth throughout that section."

The subject of the changes and their causes are discussed in the report of Lieut. Comg. Craven, which will be found in Appendix No. 13, with my communication to the President of the New York Chamber of Commerce, in transmitting the results of the recent examination.

The action of the Chamber is given in the report of their committee, in the same Appendix.
Hydrography of Hudson river, N. Y.-The sounding of the Hudson was resumed by Lieut. Comg. C. M. Fauntleroy, U.S. N., Assistant Coast Survey, with the schooner Varina, at Newburg, where the work had been discontinued by the party of Lieut. Comg. Moore in a previous season. From thence upwards about fourteen miles and a half, to a point some distance above Poughkeepsie, the entire bed of the river was sounded out between the 1st of Δ ugust and the close of September. Sketch No. 7 shows the particular stretch referred to. The hydrography of the Hudson is now complete from Poughkeepsie to the bar at Sandy Hook.

Tidal observations were made at three stations simultaneous with the soundings.
The hydrographic statistics are as follows:
Miles run in sounding . $281 \frac{1}{2}$
Angles for establishing signals, \&c . 2,989
Signals established . 15
Number of soundings . 17,339
Area sounded out (square miles)... . $8 \frac{1}{2}$
The party in the Varina had been previously engaged in Section ∇, as will be noticed under the proper lead in a subsequent part of this report.

The original sheets of the surveys made of Esopus and Rondout creeks at the close of last year are now at the office.

Tides and currents in New York harbor and its approaches.-This work, which has been going on under my immediate direction for several seasons past, was completed at the end of the summer by Assistant Henry Mitchell, so far as the principal field labors are concerned. It was commenced with the view of ascertaining the causes of certain important changes in the hydrography of the harbor as developed by the comparison of charts of different dates. All the natural forces, such as tides, currents, winds, and waves, which might be supposed to concur in producing the physical effects noticed, were included in the series of observations, and the large amount of information thus obtained will, no doubt, when fully discussed, determine the conditions under which the harbor exists. In my last report reference was made to the discovery of a class of sub-currents the motions of which were found to be quite at variance with those of the surface currents. The observations made during the present season connect these sub-currents with the path of the Hudson in its course through the waters of New York bay, and for their full development it was found necessary to extend the current stations about sixty miles outside of the bar, and also along the coast of Long Island. In the latter vicinity the effect of the land waters was traced quite beyond the reach of the tidal drifts. Observations were made in the same quarter with a view of developing the conditions under which the inlets on the south shore of Long Island are maintained and for ascertaining the causes of their change in position. Thirty-seven current stations were occupied, the records from which contain over eight thousand observations. More than three thousand of the entries are for points below the surface. Appendix No. 26 contains the report of Assistant Mitchell on the season's labors. His report contains remarks on improvements in the apparatus for observing currents at great depths below the surface, and refers also to an improved form of pile for securing tide-gauges on the sea-coast.

Assistant Mitchell was efficiently aided by Mr. W. T. Bright.
The schooner Gallatin was used in the work connected with the physical survey of New York harbor.

All the original note-books and journals kept by Assistant Mitchell while prosecuting the pbservations on currents have been received and filed in the archives.

Magnetic observations. - In the course of a series of observations at a number of stations in Section I, Assistant C. A. Schott, aided by Mr. J. L. Tilghman, occupied several stations in the interior of New England for ascertaining the secular change, and in order to determine the precise location of the isogonic lines, charts of which were published in 1856.

The declination, dip, and intensity were determined at Hartford, Conn.; at Springfield, Chesterfield, and Deerfield, Mass., and at Rutland, Vt. Details have been given under Section

I in regard to the instruments used at all the stations, and as to the method pursucd in observing for the several magnetic elements. The results obtained are set forth at length in the Appendix Nos. 23 and 24. Mr. Schott has deposited his notes and computations in the office.

Tidal observations.-The self-registering tide gauge at Governor's island, New York harbor, has been kept in operation by Mr. R. T. Bassett. Interruptions in the series during the winter were met by observations with an ordinary box-gauge at the Atlantic ferry dock, in Brooklyn.

SECTION III.

FBOM CAPE HENLOPEN TO CAPE HENRY, INCLUDING THE COAST OF PART OF THE STATE OF DELAWARE and the coast of manyliand and part of Virginia.-(Skmtch C, No. 9.)

One triangulation, one triangulation and topographical, one topographical and one hydrographic party have been employed in this section.

1. The triangulation of the Potomac river has been continued from the entrance to Britton's bay.
2. Triangulation of Hampton Roads. This has been connected with the main work of the Chesapeake, and a base of verification for the detached triangulation between Richmond and Old Point has been measured.
3. Triangulation and topography of Chincoteague and Sinepuxent bays. This tertiary triangulation was necessary from the scarcity of points furnished by the secondary.
4. A plane-table survey of the Patuxent river, giving merely the shore-line for purposes of the hydrography, and leaving the usual interior work for subsequent filling up, was carried from Holland's Point to Hall's creek.
5. The topography of St. Mary's river was continued to a point about eight miles above its entrance into the Potomac, and St. Inigo's was also included to the distance of about a mile and a half from its mouth.
6. Topography of Milford Haven and Horn and Winter harbors and the vicinity, Chesapeake bay.
7. Shore-line of James river from Coggin's Point to Little Brandon, completing the shoreline and hydrography of the James and Appomattox rivers from Richmond and Petersburg to the mouth of the river on Chesapeake bay.
8. Hydrography of the Patuxent river to Hall's creek.
9. The hydrography of the St. Mary's river was completed, and its approaches and Cornfield harbor sounded.
10. The outstanding hydrography of the James river was also finished this season.
11. The hydrography of Big and Little Annemessex rivers, connecting with the work of Tangier sound, was completed.
12. The tidal observations at Old Point and at the Washington nary yard were continued with the self-registering gauges.

Office-work.-The chart of York river, from King's creek to West Point, has been drawn and engraved. The topography and lettering of coast maps and charts No. 31, Chesapeake bay, from its head to Magothy river, and No. 33, from Hudson river, Ma., to the Potomac; of the finished chart of Patapsco river, and the outlines of coast map and chart from Green Run inlet
to Little Machipongo inlet, (from a photographic reduction,) have been engraved. Progress has been made in the drawing and engraving of coast maps and charts Nos. 35 and 36, from Pocomoke sound to the entrance of Chesapeake bay; in the drawing of general coast chart No. IV, from Cape May to Currituck sound; of coast maps and charts Nos. 28 and 29 (the latter mainly by photography) from Cape Henlopen to Little Machipongo inlet; No. 33, Chesapeake bay, the sheet of James river, from Richmond to City Point, and coast map and chart No. 37, from Cape Henry to Currituck sound; and also in the engraving of coast maps and charts No. 32, Chesapeake bay, from Magothy to the Hudson, Md., and No. 34, from the Potomac to Pocomoke sound.

Examination of stations on Chesapeake bay.-The duty of examining the stations of the triangulation, which includes both shores of the Chesapeake bay, was performed in October and
 but a few in the series connected with the work done in its lower part.
"The stations were found in much better preservation on the low lands of the eastern shore than on the higher lands of the western. Lieut. Seward, who examined them in 1854, had marked them so securely that in no case had the marks been removed except from natural causes."

Mr. Wise used the schooner Howell Cobb in this service. He has turned in sketches of the stations, and full descriptions and references to guide in finding the marks in future. The duty conducted under his direction in the former part of the surveying season will be stated under the head of Section VII.

Triangulation of the Potomac river, Va. -The stations necessary for extending the triangulation of the Potomac upwards, from the mouth of the St. Mary's to Britton's bay, were selected by Assistant John Farley in the latter part of October, 1858. His party used the schooner Guthrie in that service for transportation. Frequent storms retarded the general operations, and the observations with the theodolite were also much hindered by unfavorable weather.
This triangulation, as may be seen on Sketch No. 9, stretches up the Potomac to Tower Hill, a distance of about nine miles from the station occupied last year on George's island. On the lower side of the river three stations were occupied at the month of its branch known as the Yeocomico.
Mr. Farley was assisted in the field by Sub-Assistant S. A. Wainwright.
An abstract from the records gives the following summary of statistics:
Stations occupied 10
Angles measured . 24
Number of observations . 696
Assistant Farley was employed until the 20th of December in the measurement of angles, and used for that purpose the six-inch Gambey theodolite, C. S. No. 76. As the work advanced he furnished points additional to those determined in 1857 for the plane-table survey of the St. Mary's river. An area of about thirty-seven square miles is comprised within the limits of the season's work on the Potomac.

The occupation of the party at a subsequent period of the surveying year will be stated under the next head in this chapter.
During the intervals between the seasons for field duties the computations of the triangu-
lation were kept in hand by Mr. Farley and completed. These, with an abstract of the results and duplicates of the records of horizontal angles, are now in the office.

Triangulation of Hampton Roads, Va.-The triangulation, which has advanced steadily downwards from City Point towards the mouth of the James river, has been connected with the main work on Chesapeake bay by a series of triangles carried over Hampton Roads by Assistant Farley. The junction was made on the line, Old Point Comfort-Willoughby, at the entrance of the river, as shown on Sketch No. 9.

For the purpose of verifying the entire triangulation between Richmond, Va., and Old Point Comfort, a base was measured in May at a point on the north side, and about fifty miles above the mouth of the James river. One of the intermediate stations used in the triangulation corresponds with a terminus of the base, and both termini were connected with the station at Claremont, on the south side of the river.--(See Sketch.)

The computations resulting from the data for the verification of the work are now in progress.
The triangulation and operations connected with the measurement of the base near Claremont occupied the party until the 22 d of June. The schooner John Y. Mason, which had been employed in the work, then returned to Baltimore. Sub-Assistant Wainwright assisted Mr. Farley in the several localities in which his party was engaged in this section.

The following synopsis refers to the duty performed this season in completing the triangulation of the James river:

Stations occupied . 10

Number of observations . 700
The record of horizontal angles, notes kept during the measurement of the verification base, and descriptions of the signals used this season, have been furnished by Assistant Farley.

Triangulation and topography of Chincoteague and Sinepuxent bays, Md. and Va.-As a basis of the plane-table survey north of Chincoteague inlet, Sub-Assistant Charles Ferguson made, in the latter part of June, a careful reconnaissance and tertiary triangulation between Snead Signal (Sketch No. 9) and Robbins's Point, on the main coast of Maryland. The two stations Hardy and Snead, erected in the secondary triangulation of 1849 , being found undisturbed in position, were reoccupied, and six others chosen for connecting Assateague island with the coast. In the selection of the sites full attention was given to the requirements of the topography, and also to the means for rendering the stations permanent, for purposes of future reference.

This triangulation extends about twenty-one miles north and east from Chincoteague inlet. Exclusive of the stations occupied with the theadolite, five points were determined in position for plane-table reference. The statistics of the triangulation are as follows:

Stations occupied .. 8

Number of observations . 1, 100
Mr. Ferguson used in this work the six-inch Brunner theodolite, C. S. No. 66. His computations and original notes of the field-work have been received.

The topography was resumed at the limit reached last year on the 20 th of July. The portion executed between that date and the 16 th of September includes the mainland or western side
of Chincoteague bay, from Long Point north to "Deserted House," the details consisting principally of farm land and forest, intersected by numerous small creeks, and a broad belt of marsh along the line of the shore. The same sheet embraces the whole of Assateague island, with the Ragged Point island marshes; Pope's bay and its marsh islands; and Pine island, situated in New Inlet; together with the seabeach from Assateague bay to Ragged Point. The general features of the main and islands in this vicinity are shown on Sketch No. 9.

A synopsis taken from the completed shect gives the following statistics of work done this season:

Sub-Assistant Ferguson had been previously employed in Section VI. The schooner Dana was used in the triangulation and topography of Chincoteague bay.

In the course of the season the plane-table sheet of Chincoteague island and vicinity, surveyed last year, was inked and sent to the office.

Plane-table survey of the Patuxent river, Ma.-As a basis for completing the supplementary soundings required in the Patuxent, Assistant I. Hull Adams started on the 19th of April, at Holland's Point, and traced both shores of that river northward to Hall's creek, using points furnished by the triangulation of Lieut. J. P. Roy, U. S. A. The mouths and lower portions of Swanston creek and Hunting creek were included in the working sheet, on which were also marked the steamboat landings at Benedict, Trueman's Point, Holland's cliff, Magruder's Ferry, and Lower Marlboro'. About fourteen miles of the course of the Patuxent (Sketch No. 9) are represented on the map of this season. The length of shore-line traced and furnished to the hydrographic party is about thirty-seven miles.

This service was completed by the 16th of May, when the plane-table party in the schooner Dana was transferred for similar duty to the James river, Va. The stations used in the triangulation of the Patuxent were visited by Assistant Adams, and found in good preservation.

Topography of St. Mary's river, Md.-This work was begun by Assistant Adams on the 17th of November, 1858, and prosecuted until the end of that year. The limit reached corresponds to the upper line of the plane-table sheet marked on Sketch No. 9. Both shores of the river were traced upward, the eastern from Ket's Point, and the opposite side from the southern shore of George's island, respectively, to Milborne's wharf. This point is nearly eight miles above the entrance into the Potomac. About four miles above its mouth the St. Mary's river receives from the eastward St. Inigo's creek, the course of which was traced by Mr. Adams to the distance of a mile and a half. The shores of Carthagena creek, emptying in on the western side, were also defined for some distance. The shore-line traced on the working sheet makes an aggregate of thirty-eight miles within an area of about twenty-eight square miles.

This survey is based on the triangulation executed by Assistant John Farley in 1857.
Assistant Adams was aided in the plane-table work by Mr. J. G. Macawley. Progress in the field was much hindered by heavy rains, fogs, and gales of wind.

The sounding of the lower part of the St. Mary's was executed in the latter part of the
surveying season of 1857-'58, as stated in my last annual report. Sketch No. 14, accompanying this report, shows the result of the labors of the field and by hydrographic parties.

Mr. Adams discontinued work on the 5th of January, and proceeded to Baltimore in the schooner John Y. Mason, which had been in the service of his party on the St. Mary's. The vessel was soon after transferred to the party of Assistant Farley and employed in the triangulation of Hampton Roads, as already stated.

Assistant Adams is now preparing to return and fill in the details required for a finished map of the St. Mary's.

Topography of Mifford haven, and Horn and Winter harbors and vicinity, Chesapeake bay, Va.The survey of the western shore of the Chesapeake, between Rappahannock river and York river, was resumed by Λ ssistant John Seib on the 15th of August, with a party in the echooner John Y. Mason. Two sheets, connecting at the Wolf Trap, will contain the detailed topography of the Piankatank river, Hill's bay, Milford haven, Haven creek and its branches, Garden creek, Horn harbor, Winter harbor, Mobjack bay, with East, North, Ware, and Severn rivers, and the western shore of Chesapeake bay from Cherry Point southward to New Point Comfort. In most of these localities the plane-table work was completed by the end of October, leaving only the three last-named rivers and Hill's bay for survey in the next year. The limits of both sheets are marked on Sketch No. 9. When these are completed, there will remain outstanding only a few small detached portions of topography on the shores of the Chesapeake, which can be readily finished without applying the entire working season of the party which has been heretofore employed on it.

Reference will be made under Section V to the previous occupation of Mr. Seib.
The inking of the two sheets of the Chesapeake shore was kept in progress when the weather would not admit of working in the field.

A summary given in the report of Assistant Seib shows the following progress by his party in this section:

Shore-line surveyed . $74 \frac{1}{2}$ miles.
Roads . 23 "
Area, (square miles).... 20
The character of the topography is even in surface and interspersed with woods and numerous water-courses over a thickly-settled district.

On closing work the schooner Mason was transferred to the charge of Assistant John Farley, for use in the triangulation of the Potomac river.

The upper sheet of York river, which was inked within the season, is now on file in the archives.

Shore-line survey of James river, Va.-On closing the last plane-table operations on this river, the shores of a stretch extending about five miles between Coggin's Point and Little Brandon yet remained to be traced in order to complete the preliminary survey. This duty was executed in the latter part of May and early part of the following month, by Assistant Adams, after closing work on the Patuxent, to which reference has already been made.

The entire course of the James river, from its entrance upward to City Point, has now been traced, and the shores of its two branches above, to Richmond on the main stream and to Petersburg on the Appomattox. The stretch represented on the sheet of this season (Sketch

No. 9) commences about seven miles below City Point. It contains iwenty-four and a half miles of shore-line within an area of sixteen square miles.

The schooner Dana, which was used by Assistant Adams in this work, returned to Baltimore by the 14th of June, and was then assigned for similar service to the party of Sub-Assistant C. Ferguson.

Hydrography of the Patuxent river, Md.-Whe soundings required to complete the chart of this river were made towards the close of May, by the party of Commander W. T. Muse, U. S. N., Assistant Coast Survey, working with the boats of the steamer Hetzel. From the limit reached last season, as marked on Sketch No. 9, the work was extended upwards to Hall's creek, within the triangulation made by Lieut. J. P. Roy, U. S. A., shore-line being furnished at the same time by Assistant Adams. The statistics of the supplementary hydrography are as follows:

Number of casts of the lead.
Hydrography of the St. Mary's river, Md.—The lower part of the St. Mary's river, Md., was sounded out in the latter part of the working season of $1856-57$, by the party of Commander Muse, in advance of the triangulation, which was not taken up until the following spring. Before resuming the work, with a view of extending the soundings upward so as to complete a chart of the river, some discrepancies being noticed in the determination of the positions of signals used in the two operations, the bydrography was verified by new lines traversing the former work. Supplementary soundings were also made below the mouth of the river, and in the channel of the Potomac between it and Point Lookout, so as to include the small cove known as Cornfield harbor. The locality and its connection with the Chesapeake are shown on Sketch No. 9. A reduction from the hydrographic sheet, which has been turned in, accompanies this report as a preliminary chart, and is marked as Sketch No. 14.

The following are statistics of the soundings made this year in the St. Mary's and vicinity:
Miles run 318
Angles taken . 653
Number of soundings . 15, 868
The hydrography was executed with the steamer Hetzel in the latter part of August and early part of September.

In regard to the capacity of the St. Mary's as a harbor, the following remarks made by Commander Muse in his report on the work done in 1857 are again quoted: "The largest vessels can enter the St. Mary's river with ease, and be well protected. Its short distance from Chesapeake bay would enable vessels to leave in the severest winters, while others remain blocked in ice at most of our large cities. At convenient distances the river is indented by bays, which admit of vessels remaining at anchor to load and unload without interfering with the main channel."

Hydrography of James river, Va.-A portion of the James river, below City Point, which had not been reached in the progress of the hydrography upward, was sounded out in August by the party of Commander Muse. The space referred to is comprised between Coggin's Point and Little Brandon, (Sketch No. 9,) and embraces a reach of about seven miles.

This work completes the hydragraphy from Richmond to the entrance in Chesapeake bay.

The shore-line necessary for the soundings was furnished by Assistant Adams. A summary of the hydrographic statistics is appended:

Miles run in sounding . $83 \frac{1}{4}$
Angles measured... 301
Casts of the lead . 5,940
The sheet containing this work is now at the office.
Hydrography of Big Annemessex and Little Annemessex rivers, Md.-The supplementary soundings required for the engraved sheet of Chesapeake bay, which will contain Tangier sound and its brunches, were made by the party of Commander Muse in September. This work (Sketch No. 9) includes the Big Annemessex and Little Annemessex rivers, and connects with the general hydrography of the sound, executed by the party of Lieut. Comg. J. J. Almy, in 1856 .

All of the principal and very nearly all of the minor hydrographic details necessary for the finished chart of Chesapeake bay are now complete.

A synopsis given by Commander Muse at the end of the season shows the statistics of work in the Big and Little Annemessex, as follows:


```
Soundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,947
```

The steamer Hetzel was used for this and other duty performed in the same section by the party of Commander Muse.

Tidal observations.-The self-registering tide-gauge at Old Point Comfort has been continued in operation under the charge of Mr. M. C. King. A similar gauge has been used in keeping up the series of observations commenced last year at the Washington nary yard. The attention necessary in maintaining regular observations with it was given in partby officers attached to the ordnance department of the yard, under the direction of Commander Dahlgren.

SECTION IV.

from cape henry to cape fear, noluding part of the coast of the states of virginia and NORTh CAROLINA.-(Sxatca D, No. 15.)

The primary triangulation of Pamplico sound has been resumed in this section; work of veri. fication in the neighborhood of the Cape Fear has been done; the topography between Cape Henry and Currituck sound has been completed; in-shore hydrography of the coast near Bogue and New River inlets has been executed, and off-shore work between Cape Lookout and Cape Fear. Notices of these several operations are given in this chapter.

Office-worti.-Comparative charts of the Cape Fear entrances, showing the changes from 1851 to 1858 , and diagrams illustrating Gulf Stream explorations, have been drawn, and the former engraved upon stone under the direction of the Superintendent of Public Printing. Progress has been made in the drawing and engraving of preliminary coast chart No. 11, from Cape Hatteras to Cape Lookout; in the drawing of No. 12, from Cape Lookout to Cape Fear; in that of coast map and chart No. 48, from Bogue inlet to Barren inlet; and in the engraving of coast maps and charts Nos. 40 and 41, Albemarle sound.

Triangulation of Pamplico sound, N. C.-The preliminariee necessary for the primary triangulation of Pamplico sound were commenced early in January by Captain T. J. Cram, U. S.

Top. Engineers, Assistant Coast Survey, his party having sailed from Baltimore on the 27th of December, with the requisite equipage, in the schooner Bancroft.

Such general facts as had been gathered in the reconnaissance made by Major Prince, U. S. A., in 1851 , were applied by Captain Cram, who proceeded to develop from them a scheme for working, by the minute examination of points chosen with reference to their availability for the purposes of triangulation, as well as for proper connections with the main coast series to the northward and southward. To that end stations at the upper part of the sound, connecting with the base on Bodie's island, were selected, and signals prepared for them of the kind required in the measurement of primary angles.

These points, and others at proper intervals on both shores of the sound, are marked on Sketch No. 15, which shows the plan as finally adopted for the triangulation. Some of the tripods and signals necessary for observing with the theodolite were erected, and for those which were not set up materials were prepared and fitted by the party before closing for the season.

Five stations of the first order were erected in the course of the season, and seventeen points in all chosen by preliminary measurements. The party discontinned work on the 12 th of April, and is now reorganizing under the direction of Capt. Cram for resuming and prosecuting the triangulation during the coming winter and the spring following.

Verification of triangles in the vicinty of Cape Fear, N. C.-The revision of the system of small triangles laid out on the coast of North Carolina was resumed by Assistant A. S. Wadsworth on the 10 th of November, 1858, at a station ahout five miles north of Federal Point. Most of the signals which had been used between it and Smithville having been lost, as well as the marks at the north and south ends of the base on Smith's island, (Cape Fear,) others were established, and a new triangulation made across the mouth of Cape Fear river. The scheme of triangles as remeasured may be seen on Sketch No. 15.

For the purpose of verification a new base site was selected, corresponding as nearly as possible to the line measured on Smith's island, with the additional advantage that the ends are coincident with two stations used in making the triangulation from Federal Point southward in 1851. "The site passes over a level beach, and is as permanent in character as any available line can be in that vicinity. At any state of the tide the north end is easily accessible in boats."

In order to test the geodetic value of the small coast triangulation, steps will be taken as early as practicable for the measurement of the base of verification. The ends were connected with the triangulation of this season at the stations at Fort Johnston (Smithville) and Fort Caswell, as shown on the progress sketch, (No. 15.)

Assistant Wadsworth closed work on the 7th of April, and reported at the office in Washington, where he made the resulting computations and duplicated his record of angles. In the field-work he used the six-inch Brunner theodolite C. S. No. 59. The following summary is taken from his report on the triangulation:

Stations occupied . 12
Signals observed on . 12
Angles measured . 30
Number of observations . 1,191

The latter part of the season was more than usually unfavorable for field-work in the vicinity of Cape Fear.

In July Mr. Wadsworth proceeded to Section I, and engaged in the topography of Casco bay.

Topography between Cape Henry, Va., and Currituck sound, N. C.-The entire outer coast line of Virginia, and the region immediately adjacent to it, from Cape Henry and Lynn Haven bay southward to the boundary line, in connection with the district comprising the upper part of Currituck sound, have been passed over with the plane-table by Sub-Assistant John Mechan, and the details included within the limits referred to have been completed. On the outer coast of North Carolina the work of this season was extended to a junction, at Fresh Pond Hill, with surveys made in previous years by the late Assistant J. J. S. Hassler, mention of whose death was made in my last annual report. The point referred to lies about thirty-one miles below Cape Henry. The upper shores of Currituck sound, the eastern shore of Knott's island, and the western side of Back bay, had been traced by Mr. Hassler, who also exeeuted some detached portions of topography while prosecuting the triangulation in the direction of Cape Henry.

Sub-Assistant Mechan took the field on the 25 th of November, and was aided during the season by Mr. F. R. Hassler. Bad weather prevailed generally while the party was at work; but by employing the unfavorable intervals in chaining and in ordinary plane-table determinations, the details of four topographical sheets were filled in by the end of May, completing the survey between Albemarle sound and Cape Henry. In going southward from Chesapeake bay, the work of this season embraces the continuons shores of Lynn Haven river and inlet, Long creek, Broad bay, and Linkhorn bay, which separates the desert of Cape Henry from the interior. To the southward was traversed a closely-settled belt of coast, broken only by Rudy inlet, which is about seven miles from Cape Henry light-house. Lower down, North bay, and, in connection with it, the eastern shore and the islands of Back bay, were surveycd, as also Knott's island and Mackay's island, in the upper part of Currituck sound. On the sheet containing the survey of Back bay is represented a feature of the outer coast which has been often mistaken for Cape Henry when seen from vessels approaching the land. Its position, as well as the limits of the several sheets now under notice, are marked on Sketch No. 15. The following remarks are made in reference to this vicinity in the report of Mr. Mechan: "Back bay is divided from the ocean on the east by a sand beach, the southern extremity of which is dotted with high sand dunes, and oak, pine, and cedar hummocks, containing the huts of numerous wreckers and fishermen, and known as the 'Wash Woods.' Further north are the 'Wash Flats,' a low smooth strand, so near the gencral level of the sea as to be submerged during stroug easterly gales. When viewed from a vessel at sea, it seems a continuation of the ocean, and, with the high sand-hill range and trees of the 'Wash Woods,' presents so near a resemblance to the entrance of the Chesapeake at Cape Henry as to have been often taken for it, with disastrous effects; hence it is called 'False Cape,' or the 'Fulse Cape of the Chesapeake.' The sand dunes at Cape Henry are in some places eighty-five feet above the ocean level."

From the upper part of Currituck sound, the plane table work was extended northward to a point two miles above Pungo bridge, so as to include the shores of North river, an important
link in the line of inland navigation, which now connects Chesapeake bay with Albemarle sound.

The progress made by the topographical party is shown in the following abstract of statistics:

On his return from this section, Sub-Assistant Mechan was assigned to duty in the vicinity of New York city. In the course of the summer the sheets of the region between Cape Henry and Currituck were inked and sent to the office.

Hydrographic.-Office-work.-Two sheets containing the soundings executed during the surveying year 1857-'58, in Pamplico sound, have been received from Commander W. T. Muse, U. S. N., and registered in the archives.

In-shore hydrography between Bogue inlet and New River inlet, coast of North Carolina.-In continuation of the hydrography extending from Cape Lookont towards Cape Fear work was resumed on the 6th of April by Lieut. Comg. Alex'r Murray, U. S. N., assistant Coast Survey, at Bogue inlet, and carried down the coast of North Carolina at favorable intervals between that date and the 1 st of June. A stretch of abont thirteen miles coastwise, terminating as shown on Sketch No. 15 at New River inlet, was traversed by lines parallel to the shore and crossed by others going off to an average distance of ten miles from the land. This duty was executed in the surveying steamer Bibb. The following synopsis of statistics was returned by Lieut. Comg. Murray at the end of the season:

Miles run in sounding . 232
Angles determined.... 714
Number of soundings . 3,262
Off-shore soundings, from Cape Lookout, N. C.—While prosecuting the in-shore hydrography with the steamer Bibb, Lieut. Comg. Murray, ran, at favorable intervals, several lines to the northward of Cape Hatteras and others between Cape Lookout and Cape Fear, in order to furnish data for filling the project of the general coast chart No. V.

At the termination of a line carried broad off between Cape Hatteras and Cape Lookout a specimen of bottom was brought up in the axis of the Gulf Stream, the Massey sounding apparatus, used in that instance, indicating a depth of 2,059 fathoms. The material found was grayish mud or clay.

In reference to the current underrunning the Gulf Stream, Lieut. Comg. Murray remarks: "The wind was N.E. and light; the steamer lay with her head to the southward and eastward, and the line went from the stern, tending to the northward, but upon reeling it up we discovered that an undercurrent had carried it to the southward. This occurred twice under similar circumstances."

The statistics of the off-shore work are as follows:
Miles run in sounding . 1,235
Casts of the lead.... 3,318
In the course of the season three hydrographic sheets, one containing the work done in 1857-'58, and two the soundings made this year, have been plotted and turned in at the office with the records of soundings, angles, and tidal observations.

The party in the steamer Bibb , after its return from this section, refitted at New York and passed the remainder of the season in prosecuting the general hydrography of Section I.

SECTION V.

FROM CAPE FEAR TO ST. MABY'S RIVER, INCLUDING PART OF THE COAST OF NORTH CAROLINA, AND the coast of south carolina and georgia.-(Sketch E, No. 16.)

The usual number of parties has been employed in this section, namely: one in making astronomical and magnetic observations, one in primary and secondary triangulation and in astronomical and magnetic observations, one in secondary triangulation, one in secondary triangulation and topography, two in topography, and two in hydrography. The work accomplished is stated under the following heads:

1. Astronomical and magnetic observations near Cape Fear entrance.
2. Triangulation and topography westward of Tubbs' inlet, N. C.
3. Astronomical and magnetic observations at St. Helena island, S. C.
4. Primary triangulation, coast of South Carolina.
5. Triangulation of Beaufort, Chechessee, and Colleton rivers, S. C.
6. Triangulation of Doboy and Altamaha sounds, Gam.
7. Shore-line survey from St. Helena sound, S. C., to Savannah river entrance.
8. Topography of St. Catherine's sound, Ga.
9. In-shore hydrography from Cape Fear westward to Tubbs' inlet, N. C.
10. Off-shore hydrography from Cape Fear to Charleston harbor.
11. Hydrography of Bull's bay, S. C.
12. Hydrography of Port Royal entrance, S. C.
13. Hydrography of the Chechessee and Colleton rivers, S. C.
14. Hydrography of Sapelo bar and its approaches, Ga.
15. Tidal observations.

Office-work.-In the drawing and engraving divisions, additions have been made to the chart of Charleston harbor. The chart of Sapelo sound has been drawn and engraved and the engraving of preliminary coast chart No. 14, from Cape Romain to Savannab, has been in hand. Progress has been made in the drawing of coast maps and charts No. 53, from Charleston harbor to St. Helena sound, and No. 58, from St. Mary's river to the St. John's, Fla., and in that of the chart of Ossabaw sound.

Latitude observations at Smithville, N.C.-The adjustment of the triangulation on the coast of North Carolina requiring that the latitude of a point in the vicinity of Cape Fear should be closely determined, as well as the azimuth, an astronomical party was organized on the 1st of April, under my immediate direction, and placed in charge of Assistant G. W. Dean. A station was erected at Fort Johnson, Smithville, N. C., and the necessary preliminaries for astronomical work were arranged by Mr. Thomas McDonnell. Sub-Assistant Edward Goodfellow was detailed to assist in the observations. Those for the latitude and time were made by him with the zenith telescope C. S. No. 5, and forty-six-inch transit C. S. No. 4. With the first-mentioned instrument twenty-nine pairs of stars were observed by one hundred and seventy-four sets of observations. Fourteen standard stars were observed on with the transit, and ninety-six observations recorded. The value of the micrometer threads was ascertained by one hundred and twenty-two observations on the star 51 Cephei, near its western elongation. Forty-six observations were made with the micrometer upon a collimator adjusted to a stellar
focus, for determining the arc value of graduations on the level of the zenith telescope, and the corresponding divisions of the transit instrument were tested by comparisons with it.

As far as practicable, the stars observed for latitude were taken from the Greenwich Twelve Year Catalogue, the sets, as heretofure, being completed from that of the British Association. Mr. W. H. Odenheimer aided Sub-Assistant Goodfellow, and recorded the observations. Unusually good weather prevailing during the stay of the party, all the requisite determinations were completed by the 7th of May.

Azimuth.-The azimuth for the lines of the triangulation was determined by Assistant Dean. For that purpose nine sets of observations were made with the twenty-four-inch theodolite (C. S. No. 2) on Polaris at its lower culmination, and six sets on δ Ursae Minoris near its eastern elongation. In each series six pointings were made on the star with the telescope direct, and the same number with the instruments reversed. An elongation mark was set up and comnected in the usual way with the triangulation, twelve sets of pointings boing made on it with the telescope direct and reversed. The mark was referred to three geodetic signals by four hundred and thirty-six observations made at six different periods, each embracing the observations of an entire day. In making them the circle of the instrument was used in five different positions. The azimuth observations were recorded by Mr. McLane Tilton.

Magnetic observations at Smithville, N. C.-For the declination of the needle at the astronomical station (Fort Johnson) one hundred and forty-seven observations were made on three days by Assistant Dean and Sub-Assistant Goodfellow. Four sets were made on three days for the magnetic dip, and two sets on two days for the horizontal intensity and moment of inertia. The instruments used were declinometer D. 22 (C. S. No. 1) and the nine-inch dip circle C. S. No. 4.

The usual meteorological journal was kept by Mr. Tilton, while the observations were going on for latitude, azimuth, and the magnetic elements.

Immediately after the return of the party the records kept at the astronomical station were duplicated by Sub-Assistant Goodfellow and placed in the archives, with his computation for latitude, with that of Mr. Dean for azimuth, and lists of the stars used in observing for latitude.

In June the party was transferred to Section I, and remained until the close of the season under my personal direction, as stated in a previous chapter of this report.

Triangulation and topography westward of Tubbs inlet, N. C.-The coast triangulation below Cape Fear has been extended westward by Assistant C. P. Bolles, to the immediate vicinity of the boundary line between North and South Carolina. The details of the plane-table work, which has been prosecuted in connexion with it, have been completed to Tubbs' inlet, and the shore-line survey advanced westward to Little river, (Sketch No. 16,) or near the present limit of the triangulation. On the 10 th of December work was resumed at Shallotte inlet, Mr. O. Hinrichs, the aid in the party, conducting the topographical survey, while Mr. Bolles carried forward the triangulation. Most of the angular measurements were made with the six-inch Brunner theodolite C. S. No. 67.

The following synopsis shows the progress made by the party before closing for the season, on the 20th of June:

First order stations occupied . 8
Second order stations occupied . 30 . 30

```
Objects observed on ....................................................................................................}4
```


In the principal series eighteen angles were determined, the last being formed at a station a short distunce above Tubbs' inlet. From thence southward and westward to Little river, the smaller chain of triangles was completed to serve as a basis for the topography.

The impediments from standing wood and undergrowth on this part of the coast increase the natural difficulty of laying out and determining primary lines which pass over a level surface. Avenues, making in the aggregate an extent of more than fourteen miles, were traced and opened by the party so as to admit of observing with the theodolite.

Assistant Bolles furnished in the course of the working season the data requisite for fixing the positions of shore stations for the hydrographic party of Lieut. Comg. Bankhead.

The plane-table work comprises the following statistics:

Beach-line surveyed.	21.6 miles.
Shore-line of creeks.	102.1
Outline of marsh	47.5
Roads	30.3

In addition to the plane-table work, Mr. Hinrichs aided in the several operations of the triangulation. Shore-line was furnished as needed for the in-shore hydrography, which was in progress at the same time.

Six volumes containing the original records of horizontal angles measured in extending the field-work westward from Cape Fear have been placed in the archives, as also the topographical sheet executed last year under the direction of Assistant Bolles.

Astronomical and magnetic observations at St. Helena Island, S. C.-As part of the duty devolving on his party in this section, Assistant C. O. Boutelle set up the zenith telescope C. S. No. 5, and transit No. 3, at Port Royal station on St. Helena island, and made a series of observations for latitude between the 8 th of Jenuary and the lst of March. Both instruments were supported by wooden posts set three feet in the ground and strongly trussed by cross and diagonal braces above and below ground.

The azimuth also was determined at the same station with the twenty-four-inch theodolite C. S. No. 2, and Gambey theodolite C. S. No. 43, an artificial horizon being employed in making the observations with the last-named instrument.

For local time observations were made at intervals from January 8 to May 7 inclusive, with transit No. 3, in connexion with the sidereal chronometer No. 207, and the solar chronometers Nos. 211, and 2,458.

For latitude six hundred and seventy-eight observations were made on sixty-two pairs of stars. The places of forty-eight were taken from the Twelve Year, and the rest from the catalogue of the British Association. Seventy-two observations for value of the micrometor in the zenith telescope were made upon four elongations of Polaris. The value of levels A and B were determined in terms of the micrometer by a hundred and twenty observations on the cross hairs of a sector set up fifteen feet north of the zenith telescope and used as a collimator.
Between the 10 th of February and the 16 th of March ten elongations of Polaris were observed in the usual manner for azimuth. Two hundred and sixty-three observations were made on star and mark, and one hundred and eighty-six for connecting the elongation mark $w^{\text {t }}$ th stations in the secondary triangulation.

For local time three hundred and thirty-nine transits were observed on sixty-one nights between January 8 and May 7.

Mr. Boutelle also observed a series of azimuths upon Polaris in various parts of its orbit, making thirty-three sets of four repetitions each on three nights. These formed angles between Chaphir signal and the star, and were observed alternately direct and reflected in a mercurial horizon.
The position of the astronomical station on St. Helena island, and its connections with the coast triangulation are shown on Sketch No. 16.
The declination of the magnetic needle at Port Royal station was determined with the declinometer C. S. No. 5, by tro hundred and thirty-six observations made in parts of ten days between January 23 and February 5, on two collimator magnets. For the dip, the circle No. 9 was used, and ninety-six observations were recorded.

In the astronomical work, and in the general operations yet to be referred to, Mr. Boutelle was assisted by Lieut. Thomas Wilson, U. S. A., Assistant Coast Survey, and Sub-Assistant W. S. Edwards. Mr. C. H. Boyd was attached to the party as aid.

Duplicates of the records of observations made this season for latitude, azimuth, and time have been deposited in the office. Mr. Boutelle has also turned in his revised computation for the latitude of Allston station, determined in a previous season.

Primary triangulation, coast of South Carolina.-For the extension of the series of primary triangles southward and westward from the Edisto base and in the direction of Savanaah, Assistant Boutelle erected a tripod and scaffold at Port Royal station, and made the preliminary measurements necessary for including a point in the city of Beaufort, S. C., in the general scheme. The positions of these, as falling in with the chain of work already completed, may be seen in the progress sketch (No. 16) of the section. The lines to be observed on in carrying the main triangulation across St. Helena island were partly traced and cleared for the measurement of horizontal angles while other operations were going on. This service was performed by Sub-Assistant Edwards, under the direction of Mr. Boutelle. The party reached its working ground in the schooner Petrel from Charleston, at which port the vessel had been laid up during the winter.

Lieut. Wilson, U. S. A., and Mr. C. H. Boyd, assisted in the duties now under notice, and in those to be mentioned under the next head.

The records of the primary triangulation of previous years have been deposited in the archives.
Triangulation of Beaufort, Chechessee, and Colleton rivers, S. C.-From its entrance into Port Royal sound, Assistant Boutelle laid out and completed by the 19 th of April the triangulation of Beaufort river upwards to the city of Beaufort. The length of water course included in that work is about twenty-nine miles. His party was then transferred in the schooner Petrel to Foot Point, and in that vicinity a triangulation was carried from Broad river up the Chechessee and its branch known as the Colletou river. The triangles were madet o extend about two miles and a half above Foot Point and four miles below it, so as to provide for the topographical survey, and for hydrographic purposes, reference to which will be made hereafter.

The following are statistics of field-work executed by the triangulation party:
Signals erected. 20
Stations occupied 24

Number of observations . 1,772
A general view of the scheme of work will be seen by reference to Sketch No. 16.

The eight-inch Gambey theodolite, C. S. No. 24, and ten-inch Gambey, C. S. No. 43 , were used in the angular measurements.

In the several operations prosecuted between the Edisto base and Foot Point Mr. Boutelle was assisted by Lieutenant Wilson and Sub-Assistant Edwards. Mr. C. H. Boyd was attached to the party as aid.

The schooner Petrel was despatched for New York on the 16th of May, and was there repaired and refitted for the continuance of work in the coming season.

While the triangulation party was at work in February, the United States steamship Brooklyu passed into Port Royal sound and anchored near the Parry island buoy, between Broad and Beaufort rivers. Assistant Boutelle visited the vessel, and, as no professional pilots are known in that vicinity, tendered his services in conducting her up Beaufort river. The offer being accepted by Captain Farragut, of the Brooklyn, the steamer was moved to a position within four and a half miles of the city of Beaufort, and there anchored. A communication addressed to me by Captain Farragut, in reference to his visit in Port Royal sound, is given in Appendix No. 38.

After reporting at the office, Assistant Boutelle proceeded to Section I. His occupation during the summer and autumn has been stated under that head. Lieutenant Wilson, on returning from Section V, was assigned to duty in the charge of the Drawing Division, and Sub-Assistant Edwards took up plane-table work on the Kennebec river.

Triangulation of Doboy and Altamaha Sounds, Ga.-The secondary triangulation on the coast of Georgia has been continued sonthward from the Sapelo base, and between it and the work at St. Simon's entrance a preliminary connexion has been made by a series of tertiary triangles carried along the outer range of islands below the entrance to Altamaha sound.

Sub-Assistant F. P. Webber, whose operations last season closed at the upper part of Sapelo island, resumed work there on the 20th of December, with a party in the schoomer Hassler. The triangulation was taken up at the line which joins Julienton with a terminus of the Sapelo base, the location of which is marked on Sketch No. 16. To the southward and westward stations were erected at suitable intervals, so as to include in the secondary series Mud river and North river, with their branches behind Sapelo island ; Doboy sound, and Altamaha sound with the lower parts of its tributaries. A number of subsidiary stations were occupied within the same area sufficient for the purposes of a topographical survey. Mr. Webber measured also a series of tertiary triangles, in order to define the courses and direction of the waterpassage which separates Blackbeard island from Sapelo island, and south of the Altamaha entrance extended a similar triangulation by observing alternately at stations on St. Simon's island in connexion with others erected on the chain lying between it and the ocean. The ten-inch Gambey theodolite, C. S. No. 63, was used in measuring the angles.

At a station about thirty miles below the Sapelo base, as measured along the course of the triangulation, a junction was made with one of the tertiary lines observed on by Assistant a. W. Longfellow in the survey of St. Simon's sound. Sub-Assistant Webber there closed for the season on the 15 th of April. It is expected that a connexion by triangles of the second order can be made early in the ensuing year.
Mr. Julius Kincheloe was attached to the party as aid, and served efficiently in the ficld-work and in making computations.
While the hydrographic survey of Sapelo bar was in progress, the points requisite for it were 3
furnished to Lieut. Comg. Fauntleroy. Further notice in regard to that work will be made under another head.

The following summary of statistics and extract are from the report of Sub-Assistant Webber:

$$
\begin{aligned}
& \text { Tertiary stations occupied.. } 42
\end{aligned}
$$

$$
\begin{aligned}
& \text { Objects observed on... . . . } 570
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of observations... } 3 \text {. } 958
\end{aligned}
$$

"The sides of the triangles of the second order range from five to cight miles in length. It is probable that lines from four to six miles long can be found across the opening to the west of St. Simon's island, but in proceeding southward it will be necessary to erect two or three scaffold signals, perhaps twenty-five feet high, as the lines will extend over fresh water marsh, the reeds and shrubs of which reach to a height of twelve and in some places twenty feet, while the hard ground is nearly level with the surface of the marsh."

Records of the horizontal angles and descriptions of the signals erected this season have been received and filed in the office.

The schooner Massler with the party of Mr. Webber reached Portland, Me., on the $2 d$ of May, and during the summer was employed in work east of the Kennebec. On her outward passage to the south, the vessel was forced to take refuge in Provincetown harbor by severe gales, and while again on her way was damaged off Long Island in a storm, which also destroyed her stern boat. The necessary repairs were made at Savannah.

Sub-Assistant Webber is now making arrangements for returning to continue work on the coast of Georgia.

Shore-line survey from St. Helena sound, S. C., to Savannah river entrance.-This includes the outlines of the Hunting islands, Eddings' island, the islets and water passages between them and St. Helena island, the entire shore-line of Port Royal entrance, and part of that of Parry island, at the confluence of Beaufort and Broad rivers, Daw island and Colleton Neck, the outline of Hilton Head island, and the western shore of Calibogue sound, from Pinckney island to Savannah river. The work was executed by Assistant John Seib, whose party arrived in the section and anchored in Harbor xiver on the 10th of January. After joining with the plane-table survey made in 1856 on the upper part of the Hunting islands, Mr. Seib pushed steadily in the direction of Tybee entrance, tracing, as he advanced, the shore-line of Harbor river, Fripp's inlet, Story creck, Trenchard's inlet, Skull inlet, and Pritchard's inlet. and passing through Station creek, the preliminary work was carried into Port Royal sound. On the outer side of the islands which bound the lower part of the coast of South Carolina, the ocean-line was traced from Skull inlet to Bay Point, at Port Royal entrance. Thence, proceeding northward and westward, the shores of Port Royal sound were surveyed, from Bay Point to Land's end, as also the shores of Beaufort river to a point three miles above its mouth; the northern shore of Broad river, beyond Parry island, and its southern shore as far up as Lemon island. In that vicinity Mr. Cleveland Rockwell, the aid in the party working under my immediate direction, with a second plane-table traced the outline of Daw island; the shores of the Chechessee river, from Pinckney island upward to Lemon island; and the shores of Colleton river to a short distance southward of Foot Point. The tongue of land embraced between the
two rivers, and designated as Colleton Neck or Victoria Bluff, was surveyed somewhat in detail. A tracing from the topographical sheet of Mr. Rockwell was furnished early in May for the guidance of the hydrographic party in sounding out the adjacent channels, more particular reference to which will be made presently.

The continuous preliminary work ol' Assistant Seib ingoing southward from Port Royal sound embraced both shores of the passage known as Skull creek, between Pinckney island and Trench's or Hilton Head island; the shores of Calibogue river, in connexion with it and with May river: and the shore-line of Calibogue sound, to Mungen Point. The outer side of Hilton Head island also was traced and joined with the surveys already mentioned. As measured in a direct line, the chain of islands included in the work of the season stretches about thirty-five miles below St. Helena sound. The aggregate of shore-line ropresented on the five plane-table sheets brought from the field is about two hundred and fifty-eight miles. Four of them were worked on alternately by Assistant Seib and Mr. Rockwell, progress being made at the same time in inking plane-table sheets of the previous year. The limits of the sheets embracing the preliminary survey between St. Helena sound and Savannah river are marked on Sketch No. 16. Field-work was closed for the season on the 12th of May. The schooner Bailey, which had been in the service of the party, then sailed for Smithfield, North Carolina, and was transferred to Lieut. Comg. Bankhead, and employed in the hydrographic work of this section.

At the end of April I visited the party of Assistant Seib, in passing southward on a tour of inspection. The work then in progress, and since completed, is intricate in character and was not favored by more than an average of fair weather for field duty. The large return in results is mainly due to the constant energy of the chief of the party, and to the able support given by Mr. Rockwell.

Mr. Seib was employed during the summer in plane-table duty in Section III, and Mr. Rockwell in Section II. In the corresponding chapters of this report notice has been taken of the occupation referred to.

Topography of St. Catharine's sound, Ga. -The party assigned to this work, in charge of Sub-Assistant H. S. Du Val, commenced the survey on the 27th of December and continued in the field until the $23 d$ of May, using data furnished by the triangulation of Lieut. A. W. Evans, U. S. A. No interruption from unfavorable weather occurred to break the plan of operations, and, as a result, the survey of the shores of the sound was essentially completed, including the shores and branches of that part of the "Inland Passage" known as Bear river, which connects St. Catharine's with Ossabaw sound. The plane-table sheet also embraces the shores of the Medway opposite to the entrance of St. Catharine's sound, the mouth of North Newport river leading from it southward as part of the inland passage to Sapelo, and the outer shores of Ossabaw and St. Catharine's islands, in the vicinity of the entrance. These localities, as well as the general limits of the sheet referred to, are marked on Sketch No. 16.

A reconnaissance was made in the course of the season, and points were established for the survey of the interior of Ossabaw island, on which the work will connect with a surrey made to the northward by Assistant A. M. Harrison in 1857-58, but the advance of the scason did not admit of the execution of the topographical details. These will be filled in during the coming winter, the party being about to resume duty on the coast of Georgia. The northern part of St. Catharine's island will be represented on the same sheet, and the detailed work
extended southward to meet that completed on Sapelo sound, which is already conuected with it by a shore-line survey along the outer side of the island.

As returned to the office the topographical sheet of St. Catharine's sound exhibits the following summary of progress made by the party in charge of Sub-Assistant Du Val:

$$
\begin{aligned}
& \text { Shore-line . } 504 \text { miles. } \\
& \text { Area of details, (square miles) }
\end{aligned}
$$

Mr. J. D. Bradford aided in the field-work.
In June the party returned to Portland in the schooner Meredith. The vessel was then transferred to the party of Assistant A. W. Longfeliow for service in Casco bay.

Sub-Assistant D_{1} Val makes special mention in his report of the facilities tendered by residents on St. Catharine's island as tending to the furtherance of his work.

Within the present season Assistant Longfellow has inked and sent to the office the planetable sheet containing his survey of Sapelo sound, and one of the sheets of work executed by his party at Brunswick harbor, Ga.

In-shore hydrography from Cape Fear westward to Tubbs' inlet, N. C.-Whe hydrographic party detailed for duty in the northern part of this section sailed from Baltimore under the command of Lieut. Comg. J. P. Bankhead, U. S. N., Assistant Coast Survey, in the schooner Crawford, and reached Charleston on the 7th of February. A period of stormy weather setting in made it expedient to defer the outside soundings and employ the interval in another locality, which was accordingly done, as will be noticed presently. The coast soundings from Cape Fear westward to Tubbs' inlet were executed between the 5 th of May and the 12 th of August, favorable intervals being taken between those dates for also running off-shore lines, to bc alluded to hereafter. The in-shore work connects with the completed bydrography of Cape Fear entrance and the Frying Pan shoals, and represents a space of twenty-five miles in length (Sketch No. 16) by rather more than ten in average breadth.

Assistant C. P. Bolles, in charge of the triangulation, furnished data for establishing the shore stations required in executing the soundings.

The following is a synopsis of the statistics :
Miles run in sounding . 1,121
Angles measured with the sextant . 1,322
Angles measured with the theodolite . 2,281

Area sounded, (square miles). 228

Referring to the character of the bottom and to the capacity of the several small inlets which break the coast of North Carolina at intervals between Oak island and Tubbs' inlet, Lieut. Comg. Bankhead remarks: "The bottom is uniform in character and clear of rocks or shoals, and the shore can be safely approached, in clear weather, by any class of vessels to within one nautical mile."
"The inlets are impracticable for any but vessels of very light draught, and their bars change with every shift of wind. A few flat-bottomed schooners are the only vessels that
attempt the passage, and then only on the top of high water, when not more than six feet can be carried in under the best of circamstances."

The in-shore hydrography from Cape Fear westward was executed with the schooners Craw. ford and Bailey, the latter having been assigned for that duty on the close of topographical work conducted in this section by Assistant Seib. In the course of the autumn the soundings were plotted under the direction of Lieut. Comg. Bankhead, at Washington, and the resulting chart left at the office.

The original records and transcripts of the soundings and tidal observations made at the Cape - Fear entrances in 1857-' 58 by the party of Lieut. Comg. T. B. Muger have also been received and deposited in the archives.

Off-shore hydrography from Cape Fear to Charleston harbor. - The working season proving to be unusually stormy along the coast below Cape Fear, effective progress in off shore soundings could be made only by employing favorable intervals, the in-shore work already referred to, being from time to time suspended for that purpose.

In allusion to the precautions taken in prosecuting the off-shore hydrography from Cape Fear, southward and westward, to Charleston harbor, Lieut. Comg. Bankhead, says: "Nearly all the lines were run with a fair wind, smooth water, and in clear weather, and all the principal positions were determined by actual observation. The soundings were made with care, and of the specimens of bottom brought up such have been preserved as were at all curious or different from the general character already known."

The following reference is made in the season's report to the probable existence of a bank off Cape Romain, the full development of which will be made in prosecuting the in-shore hydrography southward from its prosent limit: "I am satisfied that the continuance of the survey off Cape Romain will develop less water in some places than has been generally supposed to exist as I have found six fathoms and water breaking in heary weather where we should have inferred a depth of nine or ten fathoms from the general chart."

The off-shore soundings made by the party of Lieut. Comg. Bankhead in the schooner Crawford were carried to an average depth of a hundred fathoms, or from sixty or seventy miles from the coast, and were executcd between the 7 th of March and the 5 th of August.

During the last two months of the season every effort was made to obtain current observations, but excepting at two stations in the vicinity of Cape Fear, without success.

The statistics of the off-shore hydrography are given in the following summary:

$$
\begin{aligned}
& \text { Miles run in sounding . }
\end{aligned}
$$

An unusually late period of the working season at the south having been reached, the schooners Crawford and Bailey sailed for New York, and there underwent necessary repairs. The plotting of the off-shore chart was then taken up, at the office, and completed.

Arrangements are now in progress for the return of the vessels and continuance of the in and off shore work in this section.

Hydrography of Bull's bay, South Carolina.-This duty was executed by the party of Lieut. Comg. Bankhead, with the shooner Crawford in March and April, the boisterous character of that part of the season not affording the usual opportunities for pushing soundings outside of the main coast. In connexion with the bay, the inland passage leading to the southward and westward, was sounded out as far as Capers's island. The limits of the sheet containing the
hydrography are marked on Sketch No. 16. Regular tidal observations were made during the period occupied in the work.

Lieut. Comg. Bankhead thus refers to Bull's bay as a harbor of refuge: 'I doubt whether it will ever be used except as a harbor of refuge for coasting vessels, for which purpose, however, it is well adapted, being easy of access, affording good holding ground, and having abundant water (in the channel) for that class of vessels. The small channels that traverse the bay are too narrow and irregular in their depth for anything but boats of the lightest draught."

The following allusion to the inland passage is made in the same report:
"The inland passage connecting with the bay I find to be too narrow and crooked for any vessels other than very small steamors and flat boats, there being but one foot of water at mean low tide, and a width of only fifty feet at the narrowest part."

The following are statistics of the hydrography:

Miles run in sounding	308
Sextant angles taken	736
Number of casts of the lead	20,345
Area sounded (square miles)	36

The chart of Bull's bay resulting from this work has been plotted and is now on file at the office.

While engaged on his working ground in this section Lieut. Comg. Bankhead furnished to a deputation from Charleston, sent to examine in regard to the availability of Bull's bay for a quarantine station, such hydrographic data as could be supposed to bear on the question.

Hydrography of Port Royal entrance, South Carolina.-Early in June, Lieut. Comg. C. M. Fauntleroy, U. S. N., assistant Coast Survey, having completed the hydrographic duty assigned in two other localities of this section, commenced an examination of the several channels leading into Port Royal entrance in order to determine the character of the bars. This duty was completed before the close of that month, and, after plotting the soundings, it was reported as the result of comparison that "little or no change has occurred since the date of the hydrographic reconnaissance made in these waters by Lieut. Comg. Maffitt," (1855.)

In connexion with the hydrography of the east channel the soundings were carried northward and eastward to Hilton Head, and so extended in that vicinity as to include Joiner's lank. The limits of the work are marked in the usual way on sketch No. 16.

A recommendation from Lieut. Comg. Fauntleroy in regard to buoys for the east channel passage into Port Royal was communicated to the department in July, (Appendix No. 43.)

The United States sloop-of-war Brooklyn, having touched on a sand-spit at the mouth of Beaufort river, South Carolina, on the occassion of her visit to that branch of Port Royal sound in the early part of the season, to which allusion has been made under a previous head of this chapter, the locality in question was carefully examined by the hydrographic party. No obstruction was found in the channel which leads up the river, the point of the spit referred to being "on the port hand of the channel way, dividing it from a deep water pocket on the port hand of that again." It is hence to be concluded that when the vessel touched she had not fairly entered the channel of Beaufort river. No professional pilots were cruising in Port Royal sound at the period of her visit.

The statistics of the survey made by the party in the schooner Varina are as follows:
Miles run in sounding . 158
Angles observed........... 703
Number of soundings . 8,118
The area sounded ont is about twenty-two square miles. A tidal station, as usual, was occupied for hydrographic purposes. After some needful repairs at Charleston, the Varina sailed for New York, and arrived at that port on the 8th of July. The party then took up the hydrography of Hudson river, as stated under Section II.

Hydrography of the Chechessee and Colleton rivers, S. C.- After completing a survey, which will be described under the next head, the party of Lieut. Comg. Fauntleroy was transferred in the schooner Varina to Broad river, S. C., and proceeded to sound out the more important parts of its tributaries, designated as the Chechessee and Colleton rivers. From the point of their junction behind Daw island, as shown on Sketch No. 16, the hydrography was carried about two miles northward and westward up the Chechessec, and about three miles southward and westward in the bed of the Colleton river. The vicinity of Foot Point was thoroughly sounded, as also the Chechessee river from the point of Colleton Neck downwards about four miles to Pinckney's island at the head of Port Royal sound or Broad river, where the work joins with the hydro. graphy executed by Lieut. Comg. Maffitt, U. S. N., in 1855. My report for that year was accompanied by a preliminary chart of Port Royal entrance, which is therein marked as Sketch No. 22. In reference to it Licut. Comg. Fauntleroy observes: "The previous survey shows that the bar of the Chechessee river affords twenty fect at mean low water, with a mean rise and fall of 6.6 feet. The depth increases in passing upward, and vessels that enter Port Royal sound will find in the Colleton river at the Neck, and at its confluence with the Chechessee, a capacious, completely protected and easily accessible anchorage in from four to seven fathoms water." In the Appendix (No. 29) further extracts are given from the report of Lieut. Comg. Fauntleroy bearing on the commercial facilities of the vicinity of Colleton Neck. This hydrographic survey followed the shore-line as traced by Mr. C. Rockwell, and was completed between the 13 th and 21st of May. The resulting sheet is now on file in the Coast Survey office. The rate of the currents was observed at two stations, and the rise and fall of the tide determined as usual, the record being made for a complete lunation. An abstract from the hydrographic journal is given below as showing the statistics of work:

$$
\begin{aligned}
& \text { Miles run in sounding . } 218
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of soundings. } 15509
\end{aligned}
$$

Hydrography of Sapelo bar and its approaches, Ga.-The survey of Sapelo river and sound, including its entrance and approaches, has been completed; the supplementary soundings and requisite tidal and current observations having been made this season in the vicinity of the bar by Lieut. Comg. Fauntleroy. Two vessels, the schooner Varina and steam tender Fire-Fly, were used for this service. Inside of the entrance the additional soundings were joined with the work executed in 1857-'58 by the party of Lieut. Comg, J. H. Moore, U. S. N., and from thence carried ten miles seaward to a depth of eight and a half fathoms. North and south the hydrography of the approaches was developed within a stretch of about ten miles. On the resulting chart, the limits of which are marked on Sketch No. 16, the character of the approaches is shown within an area of ninety-four square miles.

Observations were made at two current stations while the work was advancing, and the tides were recorded from the 27th of February until the completion of the survey, on the 27th of April. The soundings were frequently interrupted by bad weather. A synopsis of the statistics follows, as given in the report made on concluding the survey:

$$
\begin{aligned}
& \text { Number of theodolite stations.. . . } 6 \\
& \text { Angles of determination } 45 \\
& \text { Angles observed in sounding. } 1,018 \\
& \text { Miles run in sounding. } 616 \\
& \text { Number of casts of the lead . } 29,404
\end{aligned}
$$

The importance of Sapelo entrance as a harbor is well set forth in some remarks contained in the report of Lieut. Comg. Fauntleroy, extracts from which will be found in Appendix No. 30 .

Surveys made by this party subsequent to the completion of wow at Sapelo bar have been described in this chapter, and under the head of Section II its more recent occupation has been noticed.

Two sheets, containing the hydrography of Sapelo sound and river, were received from Lieut. Comg. Moore, previous to his detachment from the Coast Survey.

Tidal observations.-The permanent self-registering tide-gauge at the custom-house wharf, Charleston, S. C., under the charge of Mr. W. R. Herron, has been kept up with great regularity throughout the year.

SECTION VI.

from st. mary's river to st. Joseph's bay, including the eastern and part of the western coast of florida, with the florida reefs and keys.-(Sgetor F, Nos. 20 and 21.)

The progress made in the survey of the Florida reefs and keys has permitted additional parties on the main coast. There have been at work in this section-one party on the line across the head of the peninsula; one triangulation party near St. Augustine; one near Indian river; one on the inner keys, between Cards' Sound and the Gulf of Florida; one in Charlotte harbor; one topographical party on the coast of Key Biscayne and Cards' sound and the keys near Cape Sable; one at Charlotte barbor; one hydrographic party upon the reef and in the Florida channel and Gulf Stream. Observations of the tides have been completed at three stations, and the permanent tidal station at the Tortugas has been kept up for comparison.

The following chapter gives an account of the operations of these several parties, under distinct heads, as follows:

1. Air-line triangulation across the Florida peninsu!a.
2. Triangulation of St. Augustine harbor and North river, Florida.
3. Triangulation of Indian river inlet, Florida.
4. Triangulation of the Florida keys.
5. Triangulation of Charlotte harbor, Florida.
6. Topography.-Key Biscayne bay, Cards' sound, and Florida keys, near Cape Sable.
7. Topography of Charlotte harbor, Florida.
8. Hydrography of the Florida Reef.
9. Tidal observations.

Office-work.-Progress has been made in the drawing and engraving of coast map and chart No. 68, Florida reefs from Key Biscayne to Carysfont reef, and in the drawing of Nos. 70, 71, and 72, Florida reef and keys from Long key to Marquesas key.

Air-line triangulation across the Florida peninsula.-This mork was resumed in January, and continued until the 4 th of June. The party engaged in its prosecution was conducted by Capt. M. L. Smith, U. S. Topographical Engineers, Assistant Coast Sursey. Messrs. J. S. Bradford and W. H. Gardner were assigned as aids at the outset of the season, and Mr. J. C. Young before its close.

In allusion to the progress made and impediments found as the triangulation advanced southward and westward from Big creek and Padgett station, both of which are shown on Sketch No. 20, Capt. Smith remarks: "It was supposed at the commencement of the season that the ground to be passed over would prove more favorable than that met with during the previous year, but the contrary was the case. New River swamp, which, according to the maps of the interior, our lines should have missed, covers much of the ground traversed by one of the sides of each triangle. The section of country through which they pass is more or less densely timbered, and the lines forming their sides had to be opened foot by foot with the axe. When it is considered that thick pine woods offered the most favorable cutting required in carrying the work forward, the remainder and about an equal portion being through the swamps and matted bogs of the south, the extent of the labor may be judged of. The opening of the lines constitutes the main item of expense attending the triangulation."

Mr. J. S. Bradford was in active charge of the party under the direction of Capt. Smith, and is mentioned, in conjunction with Messrs. Gardner and Young, as having pressed the work with constant energy and interest. In opening the lines, which stretch in the aggregate a hundred miles, the patient endurance of the aids was such as to call forth the warm commendation of the chief of the party.

The work has now advanced from Fernandina about eighty miles in the direction towards Cedar keys, and two more seasons' work, with favorable weather, will probably complete the line; but with impediments like those encountered this year it would require three.

Operations were closed for the season at Waldo station, which is about twerty-eight miles southwest of the station at which the triangulation was resumed in January. Five signals were erected, and ninety angles measured in extending the triangulation to its present limit.

A topographical sheet, embracing the tract over which the season's work exterds, has been filed in the office.

Triangulation of St. Augustine harbor and North river, Fla.-The survey of the western coast of Florida was commenced on the 4th of January by Sub-Assistant Benjamin Huger, jr., in the vicinity of St. Augustine. After selecting a site suitable for a base line on the pine barren about a mile west of the city, a triangulation was laid out to extend over the harbor, and north and south of it along the coast. The preliminary base was measured early in June with the contact slide apparatus devised by Assistant Hilgard, and described in my report for 1857. Sketch No. 20 shows the location of the line, and also the system of triangles connected with it. The angles were determined with the ten-inch Gambey theodolite, C. S. No. 74.

Above St. Augustine the completed triangulation stretches twenty miles, and embraces throughout that distance the course of the North river. The scheme was laid out and signals erected along the shores of Matanzas river for carrying the work twelve miles southward from
the base, but the late period of the season reached in the performance of that service made it necessary to postpone the measurement of the angles until the coming winter.
Mr. Rufus King, jr., served as aid in the triangulation party.
The progress made in the field-work is exhibited by the summary of statistics given below:
Stations occupied 24
Signals observed on 38
Angles measured 158
Number of observations 2,696
Area of triangles, (square miles) 50

Field operations were continued in the neighborhood of St. Augustine until the 23d of June. Sub-Assistant Huger, after returning to the north, duplicated and turned in the records of his observations, and then commenced the computations connected with the work.

In the latter part of April, while on a tour of inspection at the south, I visited the site then occupied by the triangulation party, and was gratified with an examination of the arrangements for working in accordance with the plan laid out.

In reporting on the progress of the party, Mr. Huger expresses his obligation to G. R. Fairbanks, esq., vice president of the Florida Historical Society, for information in regard to localities falling within the limits of its operations. The arrangements of the party are now in progress for returning to extend the coast triangulation southward from St. Augustine.

Triangulation of Indian River inlet, Fla.-In the field arrangements made at the opening of the surveying year a new centre of work was selected for extending the triangulation of the eastern coast of the Florida peninsula, the execution of the details being entrusted to SubAssistant J. A. Sullivan. The intention of commencing in the immediate vicinity of Cape Cañaveral, and pushing the work towards St. Augustine, was found to present greater obstacles without a corresponding advantage over a beginuing made lower down the coast, and in consequence the party proceeded to Indian River inlet. Mr. Sullivan made a reconnaissance in the middle of January for a base site and for stations to connect with it, so as to lead either northward or southward, as might prove most expedient in prosecuting the triangulation. The site chosen rests on the narrow strip of land which separates Indian river from the Atlantic ocean, and is marked on Sketch No. 20.

A preliminary measurement, withont correcting for the temperature of the rods used, gave for the line an approximate length of 2,860 metres. Sub-Assistant Sullivan made a topographical survey of the immediate vicinity of the base, and on his return deposited in the office the sheet containing it. As the line passes close to the water margin of the Atlantic, the ends were referred back eight metres from the beach, and carefully secured by placing stone posts on a sand ridge above the ordinary action of the ocean swell. Each terminus was marked by two stone blocks about two feet in length, surrounded by wooden curbs, and having range marke cut on them to correspond with the terminating points of the line laid out on the beach.

The preliminaries being completed, five stations were established, with signals visible over the high mangrove keys which lie inside of Indian river and abreast of the inlet. These connect with both ends of the base line. The scaffolds erected are twenty-five feet in height. Two of the stations rest on the western side of Indian river, as will be seen by reference to the Sketch; the others on the strip of land south of the inlet.

The time allotted for observations with the theodolite proving unfavorable, materials were
prepared for the second order signals required along the shores of Indian river, in which duty the party was occupied until the 25 th of March.

Sub-Assistant Sullivan commends the zeal, perseverance, and hearty spirit of co-operation shown by his aid, Mr. R. M. Stiles, in all the labors of the season. Special reference is also made in the field report to the courtesies and assistance rendered to the party by Major W. F. Russell, of Fort Capron.

The schooner Benjamin Peirce, which was used in prosecuting the work at Indian river, was caught in a gale and damaged, on the return passage, off Cape Cañavaral. After the necessary repairs at Savannah, the vessel proceeded north, and was laid up at New York.

In June Mr. Sullivan was assigned to duty in Penobscot bay, the details of which have been given under the head of Section I. His party is now about to return to continue the triangulation near Fort Capron, Fla.

Triangulation of the Florida keys.-For continuing duty on that part of the Florida reef which approaches nearest to the Cape Sable base, the party of Lieut. A. H. Seward, U. S. A., Assistant Coast Survey, took the field on the $13 t h$ of December, using the schooner Torrey for transportation. After putting up the requisite signals, the triangulation inside of the reef was resumed at Lignum Vitæ key, and extended eastward sixteen miles to Pigeon key. The triangles laid out and measured, as well as the general progress made in the survey of the keys, will be seen by reference to Sketch No. 21. At several of the stations used by Lieut. Seward tripods, for the theodolite, were found necessary, the platforms of which were elevated to a height of twenty-eight and thirty feet from the surface of the keys on which they rested. The work was some what retarded by the difficulty of passing the vessel through the intricate channels of that part of the reef, favorable winds only enabling the party to move from one station to another. Lieut. W. Myers, U. S. A., assisted Lieut. Seward in the field.

The angular measurements were made with the ten-inch Gambey theodolite, C. S. No. 15. It will be seen by Sketch No. 21 that this triangulation connects with the work of last fear, stretching from Cape Sable, and that it reaches well towards a junction with the triangulation which extends along the main of the peninsula from Cape Florida into Barnes's sound.

The statistics for the season, terminating on the $2 d$ of April, are as follows:


```
Area included in triangles, (square miles)... . . . . . . . . . . . . . . . . . . . . . . 62
```

Descriptions of the signals, and a duplicate of the record of horizontal angles, have been received at the office.

On closing for the season the vessel was despatched for New York, and was there laid up during the summer. The keys yet remaining to be defined in position and outline are surrounded by water so shallow as to render the approach to them very difficult.

Triangulation of Charlotte harbor, Fla.-This work has been continued and nearly completed by a party in charge of Lieut. W. R. Terrill, U. S. A., Assistant Coast Survey, who made a reconnaissance for its extension above Captiva Pass in the latter part of December. Signals were erected on the chain of islands which lie outside and abreast of Charlotte harbor, and along both of its shores to a distance of thirty miles, terminating at Mangrove Point, the position of which is shown on one of the progress sketches of this section, (Sketch No. 20.)

The signal at Captiva Pass, erected and used in the winter of $1857-58$ by Lieut. J. C. Clark, U. S. A., had been washed away, and, in consequence, it became necessary to reoccupy the station connecting with it to the southward on Captiva island. At three stations in the range of this season's work Lieut. Terrill observed from scaffolds fifty feet in height, the lines passing over dense mangrove, through which cuttings for sight on the signals would have involved great expense of labor and time.

The measurement of angles was begun early in January with the ten-inch Gambey theodolite, C. S. No. 81, and was prosecuted at all favorable intervals until the 1st of April, the completed, observations then resting for the season at station Oso, lying outside, and station Torrey on the eastern shore of Charlotte harbor. Both of these stations are marked on Sketch No. 20. Points for the use of the topographical party, conducted jointly by Sub-Assistants Dorr and Ferguson, were provided as the triangulation advanced.

Sub-Assistant Clarence Fendall joined the party of Lieut. Terrall at the opening of the year, and assisted him in the field until the 13th of March. Mr. C. B. Baker served as aid during the season. The schooner Bowditch reached New York, on her return from this section, on the 14th of April.

In the report made by Lieut. Terrill the following abstract is given, showing the progress made by the party while working under his direction:

The triangulation completed this season covers an area of about a hundred and thirty square miles. The original records of angles, as observed in the prosecution of the work, and descriptions of the stations and signals, have been received at the office.

Lieut. Terrill resumed field duty in June with the party of Assistant Edmund Blunt, reference to which was made in describing the work done in Section II. Sub-Assistant Fendall was at the same time assigned to plane-table duty, as stated under Section I.

Topography-Key Biscayne bay, Cards' sound, and Florida keys, near Cape Sable.-With a view of pushing the plane-table work in the vicinity of the Florida reef as far as practicable with a single party, the schooner Agassiz was despatched from Baltimore on the 28th of October, 1858. Much rough weather delayed the vessel, and, in consequence, the working station in Key Biscayne bay was not reached until the 20th of November. After making a reconnaissance, and setting up signals on the western shore of the bay, Sub-Assistant C. T. Lardella started with the plane-table at Shoal Point, and traced in the main shore of the peninsula of Florida, southward and westward to Clay Point, a distance of over thirty miles in a direct line. The tongue of land which from thence projects towards the reef was followed up to the narrow creek dividing it from Key Largo, and the survey of the western side of that key was completed. The shore of the main within the limits just stated is broken by thirty three small creeks, all of which are represented on the plane-table sheets. Several small keys lying in the lower part of Key Biscayne bay, and in Cards' sound, were also surveyed. This work is embraced on four sheets, the localities included in each of which are marked on Sketch No. 21

The triangulation in Barnes's sound not admitting of further progress in the topography until
pushed southward, Mr. Iardella moved his party to the vicinity of Buchanan key and projected two sheets to include the numerous small keys intervening within the stretch of about sixteen miles between it and Sandy key in the direction towards Cape Sable. These fall within the triangulation executed last year by Lieut. A. H. Seward, U. S. A. Twenty-three keys were surveyed, the largest of which is about three-quarters of a mile in length. The positions of the principal ones are shown on the progress Sketch, No. 21.

Sub-Assistant Iardella discontinued work on the 6th of April, and on the 22d of that month reached New York, where the vessel was laid up.

Mr. F. F. Nes aided in the topographical work, and rendered satisfactory service in the several duties pertaining to the field operations.

In the two localities in which the party was employed great obstacles exist to retard steady progress and to render the work very difficult, and in some places bazardous. Notwithstanding these, the amount of work embraced on the six sheets shows a result which nothing but patience and great energy could have accomplished. The remark just made is also borne out by the statistics, which are as follows:

Shore-line surveyed	168 miles.
Marsh-line traced	16
Area represented in detail, (square miles)	40

The operations were carried on over an area of more than three hundred square miles. All the sheets containing the work have been inked and deposited in the archives.

As descriptive of the character of this part of the coast of the Florida peninsula, the following extracts are given from the report of Mr. Iardella :
"The main shore, from Shoal Point ten miles southward, consists of a strip of uneven breadth of prairie land called the 'Hunting Grounds.' At some points it is quite narrow, but at others it stretches to a distance of six miles from the western shore of Key Biscayne bay, and is backed by a ridge of high land about a quarter of a mile in width. The ridge as far as Fender Point is covered with large pine trees, but below it, and as low down as Barnes's sound, it bears a heavy growth of black mangrove and other trees. Throughout the entire distance of thirty miles the shore is overflowed by high tides, in some places to a breadth of three or four miles.
"The western shore of Key Largo from Jewfish Point to Largo North, a distance of thirteen miles, is also overflowed at high spring tides; and on many occasions, while engaged there, the surface was found so soft as to require a foundation of mangrove branches for the plane-table. Beyond its western shore this key is covered with buttonwood, mangrove, sea-grape, and other woods. In an extended reconnaissance over that part of Key Largo, very little fast land was fonnd, and no soil fit for the growth of vegetables.
"The small keys between Lignum Vitæ and Sandy key are surrounded by extensive mud flats, and are entirely covered with water at high tides. Great difficulties were experienced in obtaining stations for the plane-table, the surface being of the nature of quicksand, into which a man of ordinary weight would at once sink to the waist. Here a triangle of wood six feet on a side was necessary to support the plane-table."

Topography of Charlotte harbor, Fla.-The progress made in extending the survey of this harbor is shown on Sketch No. 20. Early preparations for resuming work were made at the opening of the surveying year, by Sub-Assistant F. W. Dorr; but the schooner Dana, which
sailed from Baltimore on the 25th of November, 1858, with the equipage and instruments of the party, was kept nearly a month on her passage to Key West by storms and head winds. Sub-Assistant Charles Ferguson was associated with Mr. Dorr; and after making arrangements for working jointly to the best advantage, the topography was taken up at the limit reached in the previous year. The work was thus prosecuted northward until the 27th of February, when Sub-Assistant Dorr, in accordance with my instructions, returned to the north, leaving the vessel and party in charge of Mr. Ferguson, who continued plane-table duty until the 16 th of March.

The work executed this season includes both shores of Charlotte harbor above its lower entrance from San Carlos bay, and nearly the same extent to the northward as fell within the limits of the triangulation, notice of which has been made in this chapter. The shores are formed by a range of narrow islands and keys on the west, and by Pine island on the eastern side. On the two sheets of this season, both of which have been inked and placed in the office, are represented the northern half of Sanibel island, Captiva island, La Costa island, the western side of Pine island, and the keys, patches, and reefs scattered over the surface of that part of Charlotte harbor which is included between San Carlos bay and Boca Grande. The distance between these last named localities, on a direct line through the waters of Charlotte harbor, is about twenty miles. Lieut. W. R. Terrill, U. S. A., who conducted the triangulation in advance of the plane-table party, furnished the points necessary for the adjustment of the topography. The following is a synopsis of statistics taken from the notes on the planetable sheets:

Shore-line of islands and keys surveyed . 270 miles.
Outline of shoals, etc., traced.... 48 "
In reference to two of the outlets from Charlotte harbor to the Gulf of Mexico, Sub-Assistant Dorr remarks:
"Blind Pass, between Sanibel island and Captiva island, is merely a boat channel, for although the passage is deep in some places, the bars both inside and outside preclude the possibility of carrying through any vessel of draught."
"Captiva Pass is about five hundred yards wide. Vessels drawing not more than five feet of water can pass through, but the channel is somewhat intricate."

The following is an extract from the report of Sub-Assistant Ferguson:
"Boca Grande, the pass between La Costa and Gasparilla islands, is the proper entrance to Charlotte barbor, containing, at low tide, fifteen feet of water, and inside of the bay three or four fathoms. Vessels passing through can carry eighteen feet some fifteen or twenty miles beyond the northern extremity of Pine island." In the Appendix (No. 31) other extracts will be found descriptive of the features peculiar to the shores of Charlotte harbor.

During the summer Sub-Assistant Dorr was engaged in plane-table duty in Section II, and Mr. Ferguson in similar service in Section III.

Hydrography of the Florida reef.-Licut. Comg. T. A. Craven, U. S. N., having been reassigned for duty on the Coast Survey soon after his return from the expedition to the Atrato river, resumed the command of the surveying steamer Corwin, which had become vacant by a call for the services of Lieut. W. G. Temple, U. S. N., who conducted the hydrographic operations of last year on the Florida reef, as stated in my annual report. The Corwin sailed
from New York on the 19 th of March, and on her arrival at the reef the general hydrography was taken up a little below Eagle cove, where it rested last season in its progress eastward along the outer line of keys. The soundings were continued in the same direction rather more than eight miles, and off the keys about six miles and a half, reaching to an average depth of forty-seven fathoms. At its upper outside limit, as shown on Sketch No. 21, the work now connects with soundings made in the vicinity of Coffin's Patches, by Lieut. Comg. Craven, in 1854. The following statistics are derived from the journals of the present season:

Number of positions for angles	1,206
Angles taken	3,198
Miles run in sounding	462
Number of casts of the lead	18,130

The resulting hydrographic sheet will exhibit an area of about sixty square miles.
Since the opening of the season two charts have been plotted from soundings made by Lieuts. Comg. Craven and Temple, and placed in the office with the original journals and records of the angles. These connect with each other, and contain the hydrography between American shoal and Eagle cove, where the upper limit of the most northern sheet joins with the work last executed.

The steamer Corwin returned to New York early in May, and after being repaired was transferred, under the command of Lieut. Comg. John Wilkinson, for duty, which has been referred to under the head of Section I.

Before leaving the Florida reef, Lieut. Comg. Craven ran two section lines across the Gulf Stream, between Cape Florida and the Tortugas, more extended notice of which will be taken presently.

In passing to the southward the steamer Corwin stood in below Cape Cañaveral, and carried a line of soundings along the coast of Florida as far as St. Lucie inlet. The distance from land being estimated, the depths found have been marked as reconnaissance soundings on the Progress Sketch, No. 36.

As the result of his experience in navigating along the eastern coast of the peninsula, Lieut. Comg. Craven says: "The entire coast south of Cañaveral is safe at two miles from shore until within five miles of Cape Florida. South of latitude $27^{\circ} \mathrm{N}$. the shore is bold. I have never had soundinge with twenty fathoms, lead 'up and down,' within two miles of the shore. On the passage down. the rate of the current below Jupiter inlet was about two miles an hour, which is more than usual, the wind then blowing from the southeast."

All the journals containing angles and soundings taken this season on the reef have been returned and deposited in the archives.

Tidal observations.-At Fort Clinch, near Fernandina, Amelia island, Fla., observations have been kept up by means of one of the Saxton self-registering tide-gauges, the instrument being under the charge of Mr. F. A. Rebarer until the middle of December, 1858, and since that time in charge of Mr. J. A. Walker.

The self-registering gauges established by Mr. Gustavus Würdemann at Tortugas, Charlotte harbor, and Tampa bay, have given very satisfactory results during the entire year, and are now about to be transferred to stations lying further westward along the Gulf coast of the
adjoining section, (VII.) The plan laid out is to set them up so as to form a chain of stations, at which the results may be comparable with each other and with others in this section through the standard station of reference at Tortugas. It has been found impracticable to trace out the anomalies of the tides of the Gulf of Mexico from the detached and comparatively short series of observations heretofore obtained in the progress of the surver; but by the method now adopted, the observations embracing a full year at each station, and being minutely comparable with each other, the different tide waves can be followed, as it were, step by step in their advance along the coast.

GULF STREAM.
In the southern part of the Gulf Stream obscrvations of much interest have been added in the course of the past year. These were made by Lieuts. Comg. T. A. Craven and T. B. Huger, U. S. N., assistants in the Coast Survey, after closing the general hydrographic work conducted by them in Sections VI and VIII, respectively.
Two lines for depth and temperature were rua across the stream by Lieut. Comg. Craven, in the steamer Corwin, one from Carysfort light-house (Florida reef) to Orange key, (Bahama bank,) and the other from Sombrero key (Florida reef) to Donble Headed Shot key, (Salt Key bank.) The data thus obtained, taken in connexion with the development of the Cape Florida section by that officer in 1855, and of the Tortugas section by Commander B. F. Sands, U. S. N., in 1858, have furniehed important information concerning the form of the bottom, the depth, and the temperature of the water in a part of the Gulf Stream to which general observation would assign as its main peculiarity only the velocity of the surface current.
The bottom of the Strait of Florida slopes, at first gradually and then more rapidly, from the Florida to the Cuban side, the deepest water being found near the shore of Cuba. In this deep portion of the trough the cold polar current lies, the temperature at six hundred fathoms, off Havana, being but thirty-eight degrees of Fahrenheit. The deepest part of the strait is off the opening from the Gulf of Mexico, and it shoals towards the line from Cape Florida to Bemini, from eight hundred fathoms to three hundred and fifty. As there is but one general slope to the bottom, so there is but one band of temperature in this strait, the division into cold and warm bands beginning only to the south of the shoal portion in the Atlantic, where the bottom takes its corrugated form.

A discussion of the recent observations is given at greater length in a paper accompanying this report as Appendix No. 25. The results are graphically shown on Sketch No. 35.
On his homeward passage from the Delta of the Mississippi, in the steamer Walker, Lieput. Comg. Huger took soundings on the course towards the Tortugas, and from thence ran across to Havana. The observations made between the last named places verify the results obtained on the same line by Commander B. F. Sands, in 1858.

In the explorations this year, two hundred and thirty-five observations were made for depth and temperature, and twelve specimens of the bottom procured.

SECTION VII.

FROM ST. JOSEPH'S BAY TO MOBILE BAY, INCLUDING THE COAST OF WEST FLORIDA AND THE COAST OF ALABAMA.-(Sgerci G, No. 23.)

This chapter contains notices of the following operations:

1. The extension of the coast triangulation on the western side of the Florida penisula, below Cedar Keys.
2. Connection of the triangulations of St. Mark's harbor and St. George's sound.
3. Triangulation of Santa Rosa sound.
4. Topography north and south of Homosassa river entrance, western coast of Florida peninsula.
5. Plane-table survey of the shorcs of Ocklokonee bay and St. James's island, between St. George's sound and St. Mark's harbor.
6. Topography of part of Santa Rosa sound, Fla.
7. Hydrographic re-examination of the Cedar Keys channels.
8. Hydrography of St. George's sound.
9. Tidal observations.

Two triangulation parties, one for triangulation and topography, two topographical, and two hydrographic parties have been at work in this section, the second, and one of the last named during only a portion of the season.

Office-work.-The drawing and engraving of the preliminary chart of the eastern part of St. George's sound have been completed, as also the engraving of the preliminary chart of Pensacola harbor. The drawing of the preliminary chart of Apalachicola bay has been finished at the office, and has since been engraved on stone under the direction of the Superintendent of Public Printing.

Coast triangulation south of Homosassa river, Fla.-Two parties, operating jointly as heretofore, left Baltimore on the 15 th of December, with the schooner Joseph Henry, to continue the triangulation and topography of the western coast of Florida, below Cedar Keys. Sub-Assistant G. H. Bagwell, in charge of the triangulation, resumed duty at a station noar the mouth of Homosassa river, and carried the work twenty-five miles southward, to the vicinity of Bayport, where he closed for the season at the end of March. Sketch No. 23 contains a scheme of the triangles, and shows also the progress which has been made in the other branches of the survey in this section. It will be seen, by referring to the sketch, that the reefy and broken character of the coast approach, as represented on the preliminary chart of Cedar Keys, (Sketch No. 33, C. S. Report for 1855,) holds as far as the parties have advanced to the southward from that centre of work. Mr. Bagwell thus remarks, in reference to that part passed over since the opening of the present surveying year, as connected with the stretch lying northward of it : "The main surface consists of vast flats and shoals which extend miles to seaward from the western shore of Florida, the water gradually deepeniug off among the dangerous rocks of St . Martin's reef."
"Most of the stations observed from were accupied with scaffolds, some of which were built as high as thirty feet, in order to see over the thick hammocks of palmetto and mangrove that obstructed the view. The coast over which the work extended presents many obstacles to triangulation. The chain of keys and shell reefs, on which the outer sides of the triangles rest
from Cedar Keys southward to Chassahowitzka Point, end at the latter place, and below it suitable outer points could be established only by building stations in shallow water. At these a foot or more in depth is left at low tide."

In the course of his work, Sub-Assistant Bagwell determined positions for the use of the topographical party of Sub-Assistant Finney, who co-operatod also, as far as practicable, in pushing the triangulation.

The field statistics are as follows :

Stations occupied	12
Signals observed on	29
Angles measured	78
Number of observations.	2,060

The observations were made with the-eight inch Würdemann theodite, C. S. No. 86.
During an interval unfavorable for the measurement of angles, Mr. Bagwell made a reconnaissance of the coast from Bayport southward, and through St. Joseph's bay to the southern limit of the section. About thirty miles below Bayport a fine site for a base was found on a straight level strip of sand beach at the north end of Chaldee's key. The length practicable for measurement he reports as being nearly three miles. Between Bayport and Anclote key, a distance of fifteen miles, the difficulties before alluded to in regard to outside stations remain to be encountered. As the result of his observations in reconnaissance beyond that, Mr. Bagwell says: "Southward from Anclote key the triangulation can readily be extended with sides of from two to five miles over St. Joseph's bay and Clear Water harbor."

Mr. M. O. Hering rendered acceptable aid in all the operations of the triangulation party. Before taking the field, the records of last year were duplicated and sent to the office with the observer's computation of results. In April the schooner Joseph Henry returned to New York and was laid up for the summer. Sub-Assistant Bagwell soon after joined the party of Assistant Edmund Blunt, and aided him in the triangulation under his charge in Section II.

Triangulation east and west from St. Mark's, Fla.-The triangulation from St. George's sound, which rested last year at the eastern end of St. James's island (S. W. cape,) was taken up at that point, by Sub-Assistant Spencer C. McCorkle, on the 16 th of December. After making a reconnaissance for pushing the work eastward towards St. Mark's and Ocilla river entrance, a system of short lines was determined on, extending over Ocklokonee bay. Such of the lines as required cutting were then cleared and the necessary signals erected. The angular measurements were commenced on the 25 th of January, and continued until near the end of Δ pril, when a junction was made between the triangulation thus carried from St. George's sound and that executed at St. Mark's river by Mr. McCorkle in 1856. Stations were also erected eastward of St. Mark's and preliminary measurements made in the series of triangles designed to connect that work with the triangulation of Ocilla river. As the operations of the party progressed on the shores of Ocklokonee and Dickerson's bays, points were determined and furnished for the use of the plane-table party of Assistant Wise. An abstract of the statistics is given below, as contained in the report of Sub-Assistant McCorkle:
Stations occupied 19
Angles measured 70
Number of observations 1,404
Area of triangulations, (square miles) 90

The instrument used was the six-inch Gambey theodolite, C. S. No. 55. Sketch No. 23 shows the arrangement of the triangles. The distance from the starting point of the season's work (S. W. cape) to St. Mark's light-house is about twenty-five miles.

In his general report Sub-Assistant McCorkle commends the zeal and intelligence shown by Mr. A. W. Thompson, who aided him both in the field and office work of his party.

On closing work, the schooner Franklin, which had been used for the transportation of the party and materials for the stations, was laid up at Apalachicola.

Mr. McCorkle has sent to the office the original and duplicate of the record of angles measured this season, together with his computation for the lengths of triangle sides.

Triangulation of Santa Rosa sound, Fla.-This work was taken up by Assistant F. H. Gerdes in March, after closing similar duty at the Mississippi delta, reference to which will be more particularly made in the next chapter. The triangulation of Santa Rosa sound joins with that of Pensacola bay on the line connecting Fair Point with a station near the western end of Santa Rosa island, as may be seen on the progress sketch of the section, (Sketch No. 23.) From thence a chain of triangles extending six miles eastward was laid out and measured with the Würdemanm theodolite, (C. S. No. 87,) the points requisite for the topographical survey being also determined as the triangulation advanced. A synopsis of the statistics is appended:

Signals erected . 10
Stations occupied... 10
Angles measured . 30

Assistant Gerdes was aided in the field by Mr. G. U. Mayo. Soon after the close of work the record of angles observed was duplicated and sent to the office, with an abstract in the usual form.

Topography north and south of Homosassa entrance, West Florida.-The party in charge of this duty was conducted by Sub-Assistant N. S. Finney, and, as heretofore, co-operated in the triangulation work in its progress southward from Cedar Keys, special notice of which has already been made in this chapter.

Mr. Finney resumed the plane-table survey at Mangrove Point, two miles southwest of Crystal reef signal, and traced in outline the entire barrier of islands, rocks, and shell reefs, which extend about seven miles to the southward. These form the most strongly-marked feature of that part of the coast of Florida. The sheet containing the detailed work was terminated at the mouth of the Homosassa river.

An additional vessel for the use of the topographical party not being available, it was found necessary to pass by for the present season a few miles of the coast below Homosassa entrance, in order to keep pace with the triangulation, the same vessel serving for the transportation of the two parties. Plane-table work was therefore taken up at the Chassahowitzka entrance, (Sketch No. 23,) and carried southward about seven miles further to Raccoon Point, the triangulation being still a few miles in advance of it. The characteristics before alluded to apply also to the coast south of the Chassahowitzka river. Both of the sheets containing the results of the survey are marked in positive and in relative proportions on the progress sketch of the section, but the reduced scale gives, of necessity, only a partial idea of the peculiar features contained on the originals. Exclusive of portions of the shore-line of the main land and numerous shell reefs, the sheets represent two hundred and thirty-six aoft, marshy islands
as existing within an area of thirty-five square miles. In some places the belt of islands extends five miles beyond the main shore. Above the mouth of the Chassahowitzka the islands are covered at high water, but the marsh of which they consist lies somewhat higher, is much less broken than in other localities, and the zone of patches which lie between the deep water of the Gulf and the firm land of the peninsula becomes narrower.
The plane-table survey was discontinued for the season at a station about five miles north of Bayport.
In the report of Sub-Assistant Finuey favorable mention is made of the services rendered by Mr. J. L. Tilghman, who accompanied him in the field as aid. The statistics of work are thus given in the same report:

Plane-table stations occupied... 413
Points determined .. 1,320
Shore-line surveyed at high water, (main, islands, and reefs)............ 176
Shore-line at low water.. 54
Area of topography; (square miles)...................................... 35
In the field report Mr. Finney expresses his obligations for courtesies extended by Captain James Tucker, of the mail steamship Madison, and for assistance rendered to his party by Colonel E. H. Richards and W. P. Peginan, esq., postmaster at Cedar Keys.

Sub-Assistant Fimney was employed during the summer in Section II, as stated in the corresponding division of this report.

Topography of Ocklokonee bay and St. James's island, Fla.-The party of Assistant G. D. Wise, having last season completed the plane-table survey of St. George's sound, started early in January at the terminating limit on St. James's island of the topography commenced and partly executed by Sub-Assistant C. T. Iardella in the season of 1857-'58. The survey of the northern part of the island was completed by Mr. Wise, and on the same sheet the work extended so as to include the shores of Ocklokonee bay. Some progress was also made on a second sheet projected to contain the details of the vicinity of Dickerson's bay and of the coast running from its entrance towards St. Mark's. The localities of the work are marked on Sketch No. 23. The return in statistics is as follows:

```
Shore-line surveyed................................................... }88\mathrm{ miles.
Roads surveyed ................................................................
Area of plane-table sheets, (square miles).......................... }4
```

This survey rests on the triangulation executed within the present season by Sub-Assistant S. C. McOorkle.

Mr. C. W. Duval served as aid in the plane-table party. The work was prosecuted with the use of the schooner Howell Cobb, and on the close of operations the vessel left for the north, and was laid up at Baltimore.

With reference to the Ocklokonee shoal, which lies off the eastern end of St. James's island, Assistant Wise remarks: "The shoal having only two or three feet of water, and being right in the track of a large trade, has occasioned the loss of many valuable cargoes. The bell-buoy which was placed on it soon broke adrift, and, after washing ashore on St. George's island, was
finally lost. It is the opinion of many shipping-masters of the vicinity that a light-ship would best answer the purposes of navig ation here as a beacon to mark the shoal."

Topography of Santa Rosa sound, Fla.-After completing the triangulation described under a previous head, Assistant F. H. Gerdes proceeded at once with the plane-table, and surveyed that part of Santa Rosa island which lies in the immediate vicinity of Little Sabine bayou, having an extent of about six miles of Gulf coast on the outside, and the same of inner shore. line. The topographical sheet includes also the opposite shore of Santa Rosa sound from Deer Point eastward to the present limit of the triangulation. An aggregate of twenty-two miles of shore was traced within an area of ten square miles. Sketch No. 23 shows the limits of the plane-table work. This survey furnishes all the topographical details necessary for the char of Pensacola harbor, an edition of which in a preliminary form has been issued from the office.

Mr. G. U. Mayo aided in the triangulation and plane-table survey of Santa Rosa sound. The work was continued until the middle of May, when Assistant Gerdes proceeded north and reported at the office. His party had been previously employed in Section VIII, as will be noticed further on.

Re-examination of the Cedar Keys channels, Fla.-On his way to Section VIII, Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, with the hydrographic party in the steamer Walker, stopped at Cedar Keys and sounded out the Main, the North key, and the northwest cbannels leading into that harbor. The work was performed in the early part of January, and under disadvantages arising from fogs, rain, and northerly winds. As a consequence of the prevailing wind during the period of the stay of the party, the rise and fall of the tide were reduced much below the average, the fall in particular being greater for soveral days than had been observed in the course of the preceding year.

Lieut. Comg. Huger states that the breadth of the bulkhead across the main channel varies from one hundred to three hundred yards, and, in his opinion, the surface of it could readily be removed so as to afford a depth of twelve feet at low water. An examination made by the party confirmed the facts heretofore reported in regard to the structure and character of the bar.

Lieut. Comg. Huger says: "It is composed of a crust of sand and shells easily penetrated, and after passing through it the bottom is soft, consisting, I think, of mud and sand. I had it sounded with an iron rod, and on trying the heavy lead and specimen cup. found no difficulty in sinking it sufficiently deep to obtain a good specimen."

The soundings made at Cedar Keys were plotted at Pensacola while the steamer was taking in supplies, and the chart on being completed was sent to the office, with the following abstract of statistics:


```
Number of soundings . ..................................................... 15,102
Area of hydrography, (square miles) ..................................................
```

Lieut. Comg. Huger reports that the northwest channel into Cedar Keys presents, in respect of capacity and direction, several advantages over the chamel now used for vessels bound to ports lying westward in the Gulf of Mexico.

Having been fitted out for hydrographic duty in Section VIII, the vessel cleared from Pensacola on the 15 th of January for Atchafalaya bay. The work done by the party subsequent to that date will be described in the next chapter.

Hydrography of St. George's sound, Fla.-The party of Lieut. Comg. J. K. Duer, U. S. N., Assistant Coast Survey, resumed work in the vicinity of Apalachicola with the steamer Vixen on the $3 d$ of December, and cxecuted portions of the hydrography inside and abreast of the West Pass. The new channel leading into the sound past the eastern end of Dog island was thoroughly examined, with results confirming those reported after the reconnaissance made last year, that it is by scveral feet the deepest pass into St. George's sound at all seasons. But the known irregularities of the tides affecting the depth of water in the eastern part of the sound render the determination of the mean rise and fall somewhat difficult without a wider range in the observations than is ordinarily necessary for hydrographic purposes. In order to elucidate the normal peculiarities of the tide wave in its progress along that part of the Gulf coast, series of observations have been directed to be made with self-registering gauges, and arrangements for commencing them are now in hand.

The hydrographic work allotted in this section for the early part of the season was frequently interrupted by bad weather. Soundings were continued until the 10 th of March, the vessel and party being then transferred for duty to Section IX, the operations in which will bo described in another chapter.
Lieut. Comg. Duer, who had preceded the return of the steamer Vixen to Apalachicola, died at that place on the 14th of June, after which the charge of the party devolved on Mr. A. W. Muldaur, as executive officer, until the assignment of Lieut. C. C. Sims, U. S. N., who took command on the 1st of July and proceeded with the vessel to New York.

As part of a summary report made at the end of the season by Mr. Muldaur, the following statistics are given of the work done in St. George's sound:

```
Miles run in sounding.......................................................... }56
Angles measured..................................................................... 1,499
Number of soundings......................................................... 25,060
```

In the death of Lieut. Comg. Duer the survey has lost the services of a zealous and industrious officer, whose career on the work seemed ever to be marked by devotion to its best interests. He was prompt to act, and thorough in the execution of details assigned to his charge. His discovery of the new channel into St. George's sound, and which now bears his name, will closely associate his memory with the hydrographic history of this section. I have elsewhere more specially alluded to the circumstances attending his untimely death.

My public acknowledgment is here due to Lieut. Sims for the important service rendered by him in accepting the charge of the steamer Vixen when the official command of that vessel was left vacant by the decease of Lieut. Comg. Duer.

In March, while the party was employed near Apalachicola, assistance was rendered to the schooner Lucy Weltham, of Wilmington, N. C., which had gone ashore on the east bank of the West Pass. Similar service was afforded from the Vixen to the mail steamer Galveston in June, when grounded on the east side of the entrance to Apalachicola harbor.

Tidal observations.-The self-registering gauge established at Cedar Keys for recording observations simultaneous with those made at Egmont key, Charlotte harbor, and Tortugas,
has been kept in working order, and has given satisfactory results. The gauges were attended to by Mr. Gustavus Würdemann, who devoted to them his usual care and attention.

I am indebted to S. Thayer Abert, esq., civil engineer at Warrenton navy yard, for the records of a self-registering gauge, the charge of which he kindly undertook when it was set up at that station. Through the interest taken by that gentleman in the subject, the records, as received at the office, have been found highly satisfactory.

As intimated under the head of Section VI, a series of stations are about to be established from St. Mark's westward, along the shores of St. George's sound, and extending as far as Cedar keys to the eastward. By these it is expected that the anomalies noticed in the tides of this part of the Gulf coast may be fully developed.

SECTION VIII.

FROM MOBILE BAY TO VERMILION BAY, INCLUDING THE COAST OF THE STATE OF MLSSISSIPPI AND PaRt of the coast of Louisiana.-(Sketch H, No. 26.)

Two triangulation and topographical partics, one a double party, o ne topographical party, and one hydrographic party, have been occupied in this section, and their progress is described in the following chapter under the heads of-

1. Triangulation and topography of Isle au Breton sound, La.
2. Triangulation of the Mississippi delta, La.
3. Triangulation of West Côte Blanche bay, La.
4. Topography of Lake Pontchartrain, La.
5. Topography of the Mississippi delta, La.
6. Topography of West Côte Blanche bay, La.
7. Soundings in the Rigolets, La.
8. Hydrographic reconnaissance of Pass à l'Outre, Mississippi delta.
9. Hydrography of Atchafalaya and Côte Blanche bays, La.

Office-work. -The preliminary chart of Atchafalaya bay has been drawn and engraved, and the engraving of coast maps and charts Nos. 91 and 92 , Mississippi sound and Mobile bay, from Bon Secours bay to Grand island, has been in progress.

Triangulation and topography of Isle au Breton sound, La.-Connecting with stations of the primary triangulation westward of Mississippi sound, others have been occupied suitable for carrying a branch southward from the general series of triangles, so as to include the survey of Chandeleur sound and that of Isle au Breton sound. This duty was intrusted to Sub-Assistant Stephen Harris, and has been successfully accomplished, as will be seen by the plan given on Sketch No. 26, the triangulation now extending as low down as Point Fortuna, or within twenty miles of the Mississippi river.

In order to join properly with the completed range of triangles resting on Lake Borgne, Mr. Harris was directed to reoccupy the station Nine Mile Bayou, which had been used in the primary work, but the granite block placed there as a mark in 1852 could not be found. The shell bank in which it was then fixed had in the interval been removed as material probably for roads. After making areconnaissance to the southward with the schooner Twilight, Mr. Harris resumed the triangulation at station Sand Fly early in December. In passing towards Isle an Breton sound, numerous tertiary points were marked and plotted on a plane-table sheet, on which was afterwards traced in a large portion of the irregular shore-line forming the weatern side of Chandeleur sound. This was done with the plane-table at intervals which
would not admit of observations on the longer lines of the triangulation. The work being in that manner completed some distance southward, the vessel was moved to Isle au Breton sound for more convenient access to the stations remaining to be occupied. In addition to the angular measurements in that vicinity and others at stations connecting with the triangulation of Chandeleur sound, a second plane-table shect, commenced in 1857, was completed in the course of the season which closed in the latter part of May.

The reconnaissance made by Sub-Assistant Harris extended over an area of about two humdred and thirty square miles. He thus reports the statistics of the triangulation:
Stations occupied 12
Signals erected and stations marked 28
Objects observed on 41
Angles measured 110
Number of observations 1,770
Area of triangulation, (square miles) 180

The Würdemann theodolites, ten inch, No. 79, and six inch, No. 84, were used at the stations. One hundred and fifteen miles of shore-line were traced and marked on the two plane-table sheets.

Great care was taken in regard to the triangulation points; and in reference to the means most proper for their preservation, Mr. Harris observes: "Having noticed the causes which led to the destruction of some of the stations, I adopted precautions in the following particulars: 1. The selection of stable ground not likely to be exposed to the action of water. 2. The use of a number of marks for each station, situated at such distances from each other and under such different circumstances, as to make it unlikely that all will be displaced by the same cause. 3. Distinguishing and determining each mark so that it may be recognized and its position known in case of the loss of all the other marks at the same station. 4. Making all the marks entirely separate from the observing tripods and scaffolds."

Full descriptions of the stations and signals used this season, and of the marks placed to identify them, have been made by Mr. Harris and placed in the office. He has also turned in his computations and records of the previous year.

The field operations of the party were aided by Mr. R. E. Halter, who executed the greater part of the plane-table work, and by Mr. H. W. Bache.

After his return to the office, Sub-Assistant Harris engaged in the computations depending on the work of the season.

Triangulation of the Mississippi delta, La.-In continuation of the work in this quarter, Assistant F. H. Gerdes resumed operations at the opening of the year, and prosecuted the survey of the delta until the middle of March. He was assisted by Sub-Assistant J. G. Oltmanns and Mr. G. U. Mayo. After replacing and determining the positions of the signals displaced by recent storms, Mr. Gerdes reoccupied six of the secondary stations, and connected with the general scheme of triangles a number of tertiary points suitable for the plane-table survey of Southeast Pass, Pass à l'Outre, the North Pass, the mud flats in that vicinity, and Robinson's reef, together with the shores of Bay Rondo, and the banks of the Mississippi at the head of the passes. The plan of the work, as far as executed, may be seen by reference to Sketch No. 26. Notice of the topographical survey will be taken in a subsequent part of this chapter.

The statistics of the triangulation are as follows :

In my report of last year allusion was made to the difficulty of finding localities on the delta in which the station-marks could be secured. Assistant Gerdes reports that the peculiar obstacles arising from the nature of the surface increase on advancing towards the outlets, the soil being too unstable to admit of any ordinary expedients for guarding against their removal or displacement. Though insufficient in number and in their distribution as points for future reference, the light-houses and a few buildings with cupolas, being determined in position and connected with the triangulation, in some measure lesson the natural disadvantages under which the survey is advancing in this part of the section.
On closing for the season at the delta, Assistant Gerdes transferred his party to Pensacola, and took up the survey in that vicinity, described under the head of Section VII.

In the course of the summer the records of the triangulation of the delta were duplicated and turned in, with abstracts of the measurements for secondary and tertiary work.

Triangulation of West Côte Blanche bay, La.--Towards the end of March Sub-Assistant Oltmanns having reached his working ground, in the schooncr Gerdes, from the delta of the Mississippi, where he had been occupied during the winter in the party of Assistant Gerdes, placed himself in communication with the hydrographic party, and furnished the data necessary for sounding out the western part of Atchafalaya bay. On taking up the triangulation it was found that ncarly all of the stations westward of Point au Chevreuil had been disturbed by natural causes. Some of the stations which had been marked with the usual care were entirely lost, and neither of the blocks placed to distinguish the ends of the hase on Point an Cherreuil could be found. Mr. Oltmanns resumed work at the line Marsh island, North __ Point Malone, (Sketch No. 26,) and extended the triangulation over the greater part of West Côte Blanche bay, including also Côte Blanche island. All the stations were well secured by screw piles, or by surrounding marks deemed sufficient for their preservation.

One of the hindrances to progress in the prosecution of the survey on this part of the coast arises from the shoaling of the water in going westward. The bay, however, narrows in that direction, and Sub-Assistant Oltmanns reports, as the result of his reconnaissance, that the triangulation may, with lessening difficulty, be carried into and across Vermilion bay.

The following is a synopsis of the field statistics:
Stations erected. 10
Stations occupied . 7
Points determined...... 12
Angles measured.......... 31
Number of observations . 289
The work in Côte Blanche bay was discontinued for the season on the 1st of May. In its progreas Mr. Oltmanns provided means for executing the plane-table survey, which will be referred to presently.

The observations and computations resulting from them have been furnished in detail for the records of the office.

Topography of Lake Pontchartrain, La.-Steady progrcss has been made in pushing the planetable survey westward from the connection between Lake Borgne and Lake Pontchartrain. Sub-Assistant W. S. Giibert proceeded from his former limits in that quarter on the 17 th of January, and laid out two sheets to contain the features of the northern shore of Lake Pontchartrain. Two others were at the same time projected for extending the work along its southern shore westward from Chef Menteur. On the most eastern of these the shore-line and adjacent features of the north side of the lake were filled in beyond Bayou Bonfonca, the lower part of that bayou and its branches being also followed and included with the topographical details. Further westward, (Sketch No. 26,) and on the same side, the shore-line was traced as far as Ragged Point. The line of woods ranging with the water lime was chosen as the limit for the minute survey.

From Chef Menteur, on the southern side of Lake Pontchartrain, the detailed work was continued southward and westward to Little river, and in the same direction the shore-line survey extended to the Jefferson railroad. The limits of the several sheets are marked on the progress sketch No. 26 , on which is also shown the line of junction with the work of last season.

In prosecuting the survey on the north shore of the lake, it was found, in many cases, necessary to build stations for the plane-table, the ground passed over being soft marsh. With regard to its general character, the remarks made in my previous annual reports, in reference to the district between Lakes Borgne and Pontchartrain, apply also to the tract under notice.

The following are aggregates of the outline and detailed work of this season:


```
Area of topography, (square miles).......................... . . . 49
```

Sub-Assistant Gilbert was aided during the early part of the year by Mr. R. E. Evans. The field-work was continued until the 13 th of June, and the latter part of the summer occupied by Mr. Gilbert in inking his sheets.

Topography of the Mississippi Della, La.-While engaged in the triangulation, Assistant F. H. Gerdes projected a plane-table sheet for the survey of Bay Rondo and the northern part of the delta, and determined the points necessary for filling in the details. About two-thirds of the area intended to be represented now appears on the sheet, progress on which was made as the triangulation advanced. Both shores of the Mississippi at the head of the passes, and from thence eastward the shores of the main outlet, with its two branches, the Southeast Pass to the Belize, and the entire course of Pass à l'Outre, were surveyed. The sheet, as marked on Sketch No. 26, contains also the mud flats in the vicinity of the North Pass, part of the details of the system of lagoons existing to the westward of it, and those of Robinson's reef, on the north side of Bay Rondo.

Mr. Gerdes thus remarks on the local characteristics of the eastern part of the delta:
"With the exception of the Gulf shore, which, north of the delta, is open and composed partly of beach and hard marsh, the plane-table could be nowhere used, the cane and reeds growing so high as to prevent any sight for sketching in the details. In making the topographical survey, flags of distinctive shape or color were placed at each tarn of the river and
its outlets, and their positions determined from two trigonometrical stations by the theodolite or sextant. At one reach several miles of the stream were surveyed by means of a signal hoisted on a boat and moved from point to point as occasion required, according to the method proposed.by Mr. Norris. So far as opportunity has offered for verification, the details thus obtained have been found correct."

The unfinished portions of the sheet will contain the survey of some interior lakes, small bays, and bayous adjacent to the main eastern outlet of the delta. Of the work done, the following is a summary of statistics:

f shore surveyed	16 miles
River shores surveyed	53
Shore line of bays and bayous	51
Area, (square miles)	50

Sub-Assistant J. G. Oltmanns and Mr. G. U. Mayo aided in the triangulation and topography. Assistant Gerdes found advantage in his labors at the delta through the interest manifested by the inhabitants generally in regard to the progress of the survey. He acknowledges also the facilities and assistance rendered to his party by the Pilot Association of the Belize.

Part of the plane-table duty conducted by Mr. Gerdes has been noticed with the work done in Section VII.

Topography of West Côte Blanche bay, La.-Following his own triangulation of this season, Sub-Assistant Oltmanns surveyed the shore which fell within its limits, as shown on Sketch No. 26, and included also the northeastern part of Marsh island. The plane-table sheet contains an aggregate of about forty-eight miles of shore-line.

An extract from the report of Mr. Oltmanns, descriptive of the topographical features of the vicinity of Cote Blanche bay, is here appended:
"The shores are all very marshy, excepting those of Côte Blanche island. Marsh island is so soft and swampy that the utmost care must be taken in setting up an instrument. Its shores are. subject to frequent and rapid changes. Of late years the island has been cut through in several places, and the interior lakes and bayous are changed or enlarged by almost every storm."
"The northern shore of the bay, from Côte Bianche about two miles eastward, and westward about eight miles, or as far as Dead Cypress Point, consists of hard clay and is very little broken."
"Cote Blanche island, like Belle Isle, is one of those remarkable formations of firm land standing out at intervals along this part of the coast of Louisiana from surrounding marshes. It is about a hundred and twenty feet high, and contains an area of, perhaps, two thousand acres of land, on which are raised sugar-cane, cotton, and tobacco."

Having passed the working season at two localities in this section, Mr. Oltmauns sailed for Pensacola, and, after reporting to Assistant Gerdes, proceeded eastward with the vessel and reached New York on the 12th of June.

Soundings in the Rigolets, La.-At an interval in his plane-table duty, in February, SubAssistant W. S. Gilbert thoroughly sounded out the entire course of the principal passage from Lake Borgne to Lake Pontchartrain, and kept records of the tides while his party was so engaged. Specimens of the botiom were taken on most of the traverse lines, so as to supply full information in regard to the character of the bed of the channel. The tidal
observations developed only a slight variation in the water level, amounting in rise to no more than seven inches in twenty-four hours, and often only four inches and a half. A strong current at that time passed constantly out of Lake Pontchartrain during both rise and fall of the tide.

Hydrographic reconnaissance of Pass a l'Outre, Mississippi delta.-The party of Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, arrived at the delta on the 15 th of May, having been previously employed with the steamer Walker in the western part of the section. A tide-gauge was at once set up at the revenue station and a careful reconnaissance made of the entire course of the Pass a l'Outre from its head, in the Mississippi, to the bar. The vessel then proceeded eastward, taking a line of deep-sea soundings across the Gulf in the direction to Havana.

The reduction from the chärt of soundings made in Pass à l'Outre, under the direction of Lieut. Comg. Huger, comprises also the plane-table work executed by Assistant Gerdes.

The hydrographic statistics are as follows:

$$
\begin{aligned}
& \text { Miles run in sounding . } 51^{\frac{1}{4}} \\
& \text { Angles determined.... } 343 \\
& \text { Number of soundings . 1, } 719
\end{aligned}
$$

Hydrography of Atchafalaya and Cote Blanche bays, La. -The hydrography of Atchafalaya bay has been completed by supplementary soundings carried westward from the limit reached last year by the party in the steamer Walker. In order to facilitate his operations, the draught of the vessel not admitting of her general use in sounding, Lieut. Comg. Huger established a camp about sixteen miles distant from his anchorage, at the entrance of Bayou Salé, Côte Blanche bay, or nearly midway between Point au Cherrenil and Point Malone, (see Sketch No. 26.) A second party was detailed to work from the ship. Under this arrangement, after joining on the line to which the work had been extended by Commander B. F. Sands, and setting the necossary signals and tide-gauges, the soundings were continued westward into Côte Blanche bay, with only the impediments due to the frequent recurrence of bad weather. The two divisions of the party were occupied in this duty between the 27 th of January and the 14th of May, the latter part of that interval being devoted to the hydrography of the approaches to Atchafalaya bay.

A summary of statistics derived from the records turned in by Lieut. Comg. Huger is given below:

Miles run in sounding . 743

The soundings in this part of the section now include the whole of the Atchafalaya and Côte Blanche bays east to the line soining East Point, on Marsh island, and Point Malone.

Before the close of his connection with the survey, at the end of last year, Commander Sands turned in the original sheet and journals of the soundings, angles, and tidal and current observations pertaining to the final service of his party in Atchafalaya bay. The chart containing the results of the present season, with the original note-books and hydrographic records, have been received from Lieut. Comg. Huger.

In returning from this section" the deep-sea line was used by the party in the steamer Walker for Gulf soundings between the Mississippi delta and Key West, and in verifying soundings made last year between the Tortugas and Havana.

SECTION IX.

FROM VERMILION BAY TO THE BOUNDARY AT THE RIO GRANDE, INCLUDING PART OF THE COAST OF LoUisiana and the coast of Texas.-(Sketch I, No. 28.)

The following operations have been in progress by the parties in this section :

1. Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Texas.
2. Topography of Espiritu Santo aud San Antonio bays, Texas.
3. Hydrography of Matagorda bay, Texas.

Office-work.-The reconnaissance sketch of the entrance to Brazos river has been drawn and engraved, and progress has been made in the drawing and engraving of coast maps and charts Nos. 106 and 107 , from Galveston bay to Matagorda bay ; also in the drawing of coast maps and charts No. 105, Galveston bay, and No. 108, Matagorda bay. A general reconnaissance sketch of part of the coast of Texas, from Matagorda bay to Aransas Pass, has been drawn at the office, and was engraved on stone, mnder the direction of the Superintendent of Public Printing.

Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Tex.-The experience of previous seasons on the coast of Texas having indicated the opening of the calendar year as the most favorable period for taking up field operations, Assistant S. A. Gilbert organized a party and reached the limit of his completed triangulation, to the southward of Matagorda bay, on the 5th of January. For the extension of the work towards Aransas Pass, a close reconnaissance had been made, as stated in my last annual report, which was accompanied by a reduction from the resulting sheet, marked as Sketch No. 28. Such of the signals then erected as required adjustment were properly secured, and others were set to replace those which had been destroyed by accidents of the weather in the course of the preceding year. The scheme fixed on for the triangulation took in the lower part of Espiritu Santo bay, the shores of San Antonio bay, including its upper waters, known as Mission bay and Hines bay ; in connection with it, to the southward and westward, Mezquit bay, and beyond that, in the same direction, the shores of Aransas and Copano bays with their dependencies. These several bodies of water are formed, as may be seen on the progress sketch No. 28, by the intervention of Matagorda island and St. Joseph's island between the main coast of Texas and the Gulf of Mexico. The most eastern of the stations occupied for the triangulation range along the outer or Gulf shore of the two islands just named, the lines from them crossing the several bays before enumerated, and terminating at stations on the main.

Assistant Gilbert continued in the field until the 9th of June, having then pushed the triangulation about forty-eight miles southward and westward from the starting point in Espiritu Santo bay. A summary given in his report shows the following statistics of work done within the season:

Stations occupied . 32
Points determined in position . 66
Angles measured.... 180
Number of observations. 3, 392

The triangulation covers an area of about six hundred and fifty square miles. Some of the requisite signals were erected, and a partial reconnaissance made for continuing the work over Corpus Christi bay; but the summer winds set in so strong before the party was disbanded as to render further progress in triangulation impracticable for the present year.

Mr. Gilbert was efficiently aided in the field by Mr. Charles Hosmer, who also rendered good service in making computations of the results, and in duplicating the records of the observations, all of which have been turned in at the office.

The following reference is made in the season's report to the general features of the site of work: "The character of the country we were engaged upon is more diversified than any other portion of the coast of Texas over which my operations have yet extended. Low sandy islands, varying from one to four miles in breadth, stretch along the Gulf coast, with sand hills upon them from ten to forty feet in height. These range along the outer shore, and occupy a space from a quarter to half a mile in width. A fine prairie, averaging three-quarters of a mile in breadth, slopes gradually to the marsh and bare sand flats that form the bay shores. The islands afford an excellent range for cattle, sheep, and horses, there being amongst the sand hills and in the sinks of the prairie an abundance of fresh water, except in the dry season of the year. During all seasons fresh water may be had by digging anywhere among the sand hills, or in the high prairie, in the strata immediately above the level of the surrounding salt water."
"The sheets of water lying between these islands (Matagorda and St. Joseph's) and the main are divided by chains of other islands, by oyster shell reefs, or by the configuration of the shores, into four large bays: Espiritu Santo, San Antonio, Copano, and Aransas bays; and six smaller: Mission, Hines, Mezquit, St. Charles, Refugio Mission, and Puerto bays." Of each of these a general description is contained in the report of Assistant Gilbert, extracts from which will be found in the Appendix, (No. 32.) I must here commend the character of this report, which is so well adapted to the circumstances of the country through which Mr. Gilbert's work was carried.

The original journals containing the notes of horizontal angles and an abstract of the geographical positions determined by the triangulation, have been received at the office.

Topography of Espiritu Santo and San Antonio bays, Tex.-The plane-table work in this section was prosecuted by a party in charge of Sub-Assistant W. H. Dennis. After completing the survey of the city of Indianola, as supplementary to one of the sheets executed last season by Sub-Assistant M. Seaton, Mr. Demnis moved his party to Matagorda island, and there joined with the topographical iimits of Assistant Gilbert, who, as already stated, has been more recently engaged in pushing the triangulation of the coast of Texas towards Corpus Christi. Of the three plane-table sheeta projected by Mr. Dennis, two were entirely filled and the other partly completed. These include a strotch of twenty miles coastwise, and represent the whole breadth of the middle parts of Matagorda island, the shores of the lower part of Espiritu Santo bay, Mission and Hind's bays, and the shores of the greater part of San Antonio bay, with the mouth of its principal tributary, the Guadalupe river. The limits of the several sheets are marked on Sketch No. 28. In general, the surface of the country passed over by the party favored operations with the plane-table, the marsh being tenable, and the fast land mostly level prairie. The only impediment found is thus alluded to in the season's report: "The survey of Mission bay, with the point extending from it into San Antonio bay, was attended with some difficulty, the shores being covered with canebreak some twenty feet high and nearly
impenetrable." Sub-Assistant Dennis took the field on the 15 th of December, and closed work on the 30th of May. A summary of the plane-table statistics is appended:

Mr. T. C. Bowie served as aid in the topographical party.
The report of Sub-Assistant Dennis contains the following remarks relative to the natural features presented on the shores of San Antonio bay: "There is very little timber land within the limits of the work of this season, excepting on the banks of the Guadalupe river, which has a narrow strip of oak, cedar, etc., on either side. The water at the mouth of that river is fresh, and when the stream is high the fresh water extends nearly to the first chain of islands. The mouth of the Gaudalupe has been dredged out, and a channel has been made through the first chain of islands, by which a steamer from Indianola regularly passes to a landing forty or fifty miles up the river."

Sub-Assistant Seaton has inked and placed in the archives the sheets containing his surveys of last year on the shores of Lavaca, Garcitas, and Chocolate bays. The supplementary sheet showing the vicinity of Indianola bas also been turned in.

In July Sub-Assistant Dennis was assigned to topographical duty in Section I.
Hydrography of Matagorda bay, Tex. - It has been mentioned in a previous chapter that the hydrographic work allotted to be done in this section was assigned for the latter part of the working season to the party of Lieut. Comg. J. K. Duer, U. S. N., Assistant Coast Survey, the former part being occupied in Section VII. The steamer Fixen, in accordance with this arrangement, arrived at Matagorda on the 19th of April, and at once took up work on the inside of the peninsula, in the immediate vicinity of the city, and between that date and the $3 d$ of June sounded out the portion of the bay which is comprised between lines crossing from the peninsula to the main at Matagorda and Palacios Point. The reach referred to is about sixteen miles in length, by nearly five in average breadth.

Sketch No. 28 shows its location, and the limits of the sheet containing the hydrography.
This work was done under the direction of Mr. A. W. Muldaur, in the absence of Lieut. Comg. Duer, who returned to Section VII immediately after the arrival of the party in Section IX, and died at Apalachicola on the 14th of June, as already stated. The particulars in regard to this untimely event, and the measures taken for the subsequent disposal of the party and vessel, have also been mentioned.

A summary furnished by Mr. Muldaur at the end of the season gives the following statistics of work executed in Matagorda bay:

Miles run in sounding . 451
Angles determined..... 919

REPORT OF THE SUPERINTENDENT OF
$\begin{array}{ll}\text { Number of soundings . } & 335 \\ \text { Tidal stations occupied }\end{array}$
The sheet embracing the hydrography here referred to has been received at the office in Washington.

SECTION X.

Western coast of the united states, from san difgo nothward to the forty-second parallel, including the coast of the state of california.-(Sketche J and bis, Nos. 30 and 31.)
The usual number of parties has been employed in this section, and their progress is described under the following heads:

1. Primary triangulation near San Pedro, Cal.
2. Triangulation of Santa Rosa island, Cal.
3. Triangulation and topography of San Pedro harbor, Cal.
4. Primary and secondary triangulation north of San Francisco, Cal.
5. Latitude and azimuth.
6. Triangulation of Crescent City harbor, Cal.
7. Topography of Santa Cruz island, Cal.
8. Topography of Crescent City harbor, Cal.
9. Hydrography of San Pedro harbor, Cal.
10. Soundings off the Golden Gate entrance to San Francisco bay, Cal.
11. Resurvey of Humboldt bay, Cal.
12. Hydrography of Crescent City harbor, Cal.
13. Tidal observations.

The primary work, which for some years has not made progress proportional to its former development, has this year been placed in the hands of Assistant George Davidson, whose wellknown zeal, and energy, and skill have all been shown in its prosecution, so that the advance has been entirely satisfactory, under difficulties which have required all his resources to surmount.

The resurvey of San Pedro and Crescent City harbors was called for in consequence of the improvements made or contemplated in those localities and in the back country which finds access to the sea at those ports.

Office-work. -The engraving of the charts of San Diego bay, the entrance to San Francisco bay, Mare Island straits, and Humboldt bay, has been finished. Progress has been made in the engraving of the chart of San Pablo bay, and additions have been made to the sheets of Alden's reconnaissance of the Western Coast. The map of San Francisco city has been engraved on stone, under the direction of the Superintendent of Public Printing.

Primary triangulation near San Pedro, Cal.-In adjusting the triangulation along the coast of the Santa Barbara channel, it was found necessary to reoccupy several of the stations connecting with the preliminary base measured near San Pedro. This duty was performed by Assistant W. E. Greenwell, between the 5th of November, 1858, and the 6th of March following.

The revised triangles are laid out on Sketch No. 30. On being tested in the usual way they were found to close within the limits allowed for general accuracy.

A synopsis of the statistics is appended:
Signals erected.. 8
Stations occupied.. 6
Number of observations . 2,268
The horizontal angles were measured with the eight-inch Gambey theodolite, C. S. No. 44. Mr. Greenwell used the schooner Humboldt for this and other service performed in the section.

Duplicates of the notes of horizontal angles observed in the primary work of last year have been furnished for the records of the office.

Triangulation of Santa Rosa island, Cal.-This work was commenced by Assistant Greenwell on the 8 th of June, by the measurement of a short base on the northern part of the island, the location of which may be seen by reference to Sketch No. 30. The triangulation, as far as completed at the end of August, embraces the northern half of the area of Santa Rosa, and the work was then in active progress. Strong northwest gales prevailed between the dates mentioned, tending very much to retard the advance of field operations.

A summary of the statistics is thus given in the report of Mr. Greenwell:

$$
\begin{aligned}
& \text { Signals erected ... } 13 \\
& \text { Stations occupied ... } 8 \\
& \text { Number of observations } 1,120 \\
& \text { Area of triangulation, (square miles) ... } 18
\end{aligned}
$$

The schooner Humboldt was in the service of the party at Santa Rosa island.
Assistant Greenwell has sent in duplicates of the observations recorded in the triangulation of San Miguel and San Nicolas islands, and notes of the measurement of the preliminary base on Santa Cruz island.

Triangulation and topography of San Pedro harbor, Cal. -This duty was executed by SubAssistant W. M. Johnson, and the data necessary for the hydrography furnished to Commander Alden.

The scheme of triangulation laid out to include the shore of the harbor at San Pedro is shown on Sketch No. 30. With the view of following at once with the plane-table survey the necessary points were determined while the preliminary work was going on. Mr. Johnson then projected a sheet and pushed on the topography to completion. The sheet containing his survey embraces an area of about thirteen square miles, over sixty miles of shore-line, and nineteen miles of roads.

Sub-Assistant C. M. Bache was attached to the party.
The triangulation embraced nine triangles within an area of fifteen square miles. Four hundred and eighty-six observations were made in the measurement of angles.

Primary and secondary triangulation north of San Francisco, Cal.-Whis work and the astronomical observations connected with it were taken in charge by Assistant George Davidson on the 14th of November, 1858, immediately after his return to the Western Coast. In the primary triangulation Table mountain, a precipitous height which rises from the shore of Ballenas bay, and Sulphur Peak, a high mountain well up the course of Russian river on its eastern side, were occupied as stations with the theodolite, and horizontal angles measured so as to complete, with the exception of Ross mountain station, the coast series of triangles from Monterey and over San Francisco bay to the last-mentioned point, the position of which may
be seen on Sketch No. 31. At Mount Diablo, one of the primary stations in the general scheme and in immediate connection with Table mountain, the labor and expense of transporting a solid signal to the summit, which is 3,800 feet above the nearest dwelling, were obviated by Mr. Davidson, who thus describes the expedient employed for that purpose: "The signal was constructed at San Francisco, and consisted of six pieces of two-inch Oregon pine fitted to six appropriate inside bearings, so that, when put together, the whole presented externally the appearance of the frustrum of a cone thirty-five feet high, with a diameter of fifteen inches at the base and ten at the top. The separate pieces and their bearings, being previously provided with screws, were carried up the mountain and fastened together in half an hour. Stout iron bands were driven on to bind all the pieces firmly together, and the hollow shaft was then set and secured in its proper position. Even with the advantage of the method employed, the handling of the parts of the signal in passing to the summit proved to be very hard labor. If the catiadas of the mountain side had afforded a solid piece of timber of similar outside dimensions, no available power could have taken it up." Vertical angles were measured from the station on Table mountain, and also from that on Sulphur Peak.

Ross mountain, which lies near the coast and a few miles north of the mouth of Russian river, will be occupied next in order by the party of Aesistant Davidson.

The secondary and tertiary triangulations, extended this season over Drake's bay and Point Reyes are also shown on Sketch No. 31, and from Table mountain, Point Reyes Hill, and Point Reyes Head, horizontal angles were measured to determine the positions, extent, and heights of the islets which form the middle and north groups of the Farallones.

The reconnaissance necessary in advance of occupying stations for the primary and secondary work was made by Mr. E. H. Fauntleroy, one of the aids in the party. At the date of Assistant Davidson's report Mr. Fauntleroy, in conjunction with Mr. A. T. Mosman, who was detailed as an aid to this party in June, were reconnoitering the tract lying northward and westward of Sulphur Peak. The privations to be borne in the performance of such duty over a country naturally wild and rugged, and totally devoid of facilities for travel, are very great. The labors of the triangulation party in pushing the work to its present limit, as set forth in the report of Mr. Davidson, have been attended with unusual hardships and difficulties.

The following is a synopsis of the season's progress in triangulation:

$$
\begin{aligned}
& \text { Number of signals erected } 18 \\
& \text { Primary stations occupied . } 2 \\
& \text { Secondary and tertiary stations occupied . } 5 \\
& \text { Horizontal angles measured . } 73 \\
& \text { Vertical angles . } 15 \\
& \text { Observations for horizontal angles . 4,624 } \\
& \text { " " vertical " .. 1,348 }
\end{aligned}
$$

Work in the field was carried on from the 10 th of January until the close of September.
Latitude and azimuth. -The latitude of Sulphur Peak primary station was determined by Assistant Davidson by three hundred and thirty-one observations on ninety-four stars; and the azimuth at that point and at Table mountain by five hundred and sixty-four observations. At the same stations three handred and one observations were recorded for local time, and ninetyeight at Sulphur Peak for determining the value of the micrometer threads.

Observations were made at Table mountain for ascertaining the reading of the level scale
divisions of the vertical circle No. 80. Those of the levels A and B of zenith telescope No. 3 , and of level A of transit No. 2 were determined at Sulphur Peak by using the vertical circle No. 28, and a hundred and sixty-two observations were made for that purpose.

In the ensuing season Ross mountain will be occupied as an astronomical station.
Meteorological journals were kept while the party was employed in the field.
Ten volumes, containing the original records of the triangulation and astronomical observations, and seven others, duplicates of the same, have been received from Mr. Davidson. His computations depending on the original notes of the work have been completed.

The journals kept by Assistant G. A. Fairfield while the work north of San Francisco was under his charge have been filed at the office.

Triangulation of Crescent City harbor, Cal.-This duty was executed under special directions in April, by the party of Sub-Aesistant J. S. Lawson, before taking up the general field-work to which it had been assigned in the adjoining northern section. A preliminary base was laid out in front of Crescent City and measured twice with a twenty-metre chain, previously adjusted for that particular purpose. The measurements gave a mean result of $1,018.6$ metres for the length of the line. Stations were then erected at intervals along the coast from a point a mile west of the light-house to another four miles to the eastward of Crescent City, and on all the prominent rocks in the harbor. Twelve signals were set up and sixty objects in all observed on in determining the angles. In addition to these, readings were taken on a hundred and fifty objects, the results of which, as determining them in position, were computed at once and plotted for use in the topographical survey. Sketch No. 31 gives a plan of the completed triangulation. The following is a synopsis of the statistics:

The six-inch Gambey theodolite, C. S. No. 21, was used in measuring the angles. Mr. Alexander Agassiz served as aid in the party, which was charged also with the plane-table survey of Crescent City harbor.

A duplicate of the record of horizontal angles observed by Sub-Assistant Lawson is now on file at the office.

Topography of Santa Cruz island, Cal.-The survey of this island was resumed by SubAssistant W. M. Johnson, after completing field-work at San Pedro, of which notice has already been taken in the former part of this chapter, and has been prosecnted along the north shore so as to include Prisoner's harbor and Chinese harbor, with only such interruptions as are incident to its exposed position. The report of Mr. Johnson states that there are but three places on the island available as centres for working, by reason of the great difficulty of procuring wood and water, and that great impediments are found in the violent northwest winds, which set in daily at $10 \mathrm{a} . \mathrm{m}$. during summer and continue until sunset. The progress made is shown in the following statistics:

Shore-line traced . $35 \frac{1}{8}$ miles.
Roads surveyed . $18 \frac{8}{\frac{8}{4}}$
Area of details, (square miles) . 16
Sub-Assistant C. M. Bache assisted in the survey.
The position of Santa Cruz island is shown on Sketch No. 30.

Topography of Crescent City harbor, Cal.-The triangulation requisite for the plane-table survey and hydrography was made, as already stated, by Sub-Assistant J. S. Lawson, in April. Having provided a sufficient number of points, Mr. Lawson traced, in the shore-line of the harbor and the adjacent coast from Hall's bluff west of the light-house, as seen on Sketch No. 31, to the eastern limit of the triangulation, or about four miles eastward of Crescent City.
"Especial care was taken to determine the position of every rock bare at low water. Between Battery Point and Preston's island many of the plane-table stations were reoccupied as near the time of low water as possible, for securing accuracy of details in that respect."

A tracing from the working sheet was promptly made and furnished to the hydrographic party of Commander Alden. The original was soon after inked and sent to the office with the following memorandum of statistics:

Shore.line surveyed.. 8.2 miles.
Roads ... 3.5
Area of details, (square miles) . 1.7
After completing the survey at Crescent City the party returned to San Francisco, and at the usual period of the year sailed with the brig Fauntleroy to carry out the general instructions for work in Section XI. Sub-Assistant Lawson was accompanied by Mr. Alexander Agassiz as aid.

Hydrography of San Pedro harbor, Cal.-As part of the regular work of the season, the anchorage at San Pedro and its vicinity were sounded out anew by the party of Commander James Alden, U. S. N., assistant Coast Survey, with the steamer Active. Sketch No. 30 shows the limits of the sheet, which was projected so as to include the hydrography of the approach eastward and southward by Point Fermin.

The resulting chart (Sketch No. 32) verifies the soundings made in the recounaissance of 1852, and in reference to it Commander Alden says: "The bar at the entrance to the creek remains about the same. At mean low water, throwing out the half tides, only two feet of water can be carried over it. The steamer Active could go in easily at high water."

Sub-Assistant Johnson traced the shore-line for the use of the hydrographic party.
The following is a summary from the journals of soundings and angles:
Miles run in sounding . 209
Angles measured . 1,208
Casts of the lead . 5,866
Soundings off the Golden Gate, entrance to San Francisco bay, Cal.-At favorable intervals during the winter of 1858-9 59 the hydrography outside of San Francisco bar was executed by the party of Commander Alden, with the surveying steamer Active. The work was extended about thirty miles abreast of the entrance, as measured from Point Reyes southward and eastward along the line of junction with the soundings carried from the inside of the bar in 1854. From the bar, broad off to seaward, the hydrography now extends about twenty-five miles westward, or five miles beyond the meridian of the Farallones. The limits of this work are marked on the Progress Sketch No. 31. In making the soundings sixty-three specimens of bottom were brought up from different localities of the space passed over by the vessel. The following is a summary taken from the hydrographic records:

Number of angles observed. 1,369
Casts of the lead . 722
Miles run in sounding . 694

The survey of the approaches to the Golden Gate was essentially completed by the end of February.

Resurvey of Humboldt bay, Cal.-On the upward passage of the steamer Active for duty in the adjoining northern section, Commander Alden incidentally made a resurvey of Humboldt bay above and below the entrance, as shown on Sketch No. 31. The soundings were taken between the 11th and 22d of July, and were applied in completing the chart which accompanied my last published annual report as Sketch No. 31.

The statistics of the resurvey are as follows:

$$
\begin{aligned}
& \text { Miles run in sounding . }
\end{aligned}
$$

Sub-Assistant J. S. Lawson made the plane-table survey in a previous season.
The original sheet containing the soundings last made is now at the office.
Hydrography of Crescent City harbor, Cal.-This work was based on the triangulation and topography executed in the early part of the year, as already detailed. The soundings were made in July by the party of Commander Alden in the surveying steamer Active.

In reporting on the completion of the hydrography, Commander Alden remarks: "During the progress of the survey of Crescent City harbor we found several new and dangerous rocks, but as they are not lying immediately in the channels followed by the steamers, and do not interfere with the anchorage in use, it does not seem necessary to notice them further in advance of the publication of the chart, as every one now trading there knows that vessels drawing over mine feet should be very cautious in venturing out of the beaten track. The rocks at that place are of a peculiar character, standing isolated like bayonets, with their points just below the surface, and ready to pierce any unlucky craft that may encounter them. After we finished the survey and I had selected a particular fair way for a sailing line, we discovered a very sharp rock almost directly in the passage, with its point only three feet from the surface, and deep water all around it. I mention this to show that although the greatest care was taken in the survey, the character of the points of rock is such that it cannot be surprising if a new one is found for several seasons to come. Still, by following the track which has been passed over so often by heavily laden steamers, no danger need be apprehended."

An engraved reduction from the sheets containing the survey of Crescent City harbor accompanies this report, as Sketch No. 33. The original chart is now at the office.

A summary of the hydrographic statistics is thus given in the report of Commander Alden:

Miles run in sounding . 101
Angles measured . 701
Number of casts of the lead . 3, 221

After completing this work the party in the Active proceeded to Section XI, under which head further notice will be made of its occupation.

Tidal observations.-Under an arrangement made several years ago satisfactory to the chief of the Engineer Bureau, and by which the services of Lient. G. H. Flliot of that corps became available for the general supervision of the observations, the self-registering tide-ganges at San Diego and San Francisco have been kept in operation during the present year. Records have been received monthly showing that the series is successfully continued.

SECTION XI.

WESTERN COAST, FROM THE FORTY-SECOND PARALLEL TO THE NORTHWESTERN POUNDARY OF THE UNITED STATES, INCLUDING THE COAST OF OREGON AND THAT OF WASHINGTON TERRITORY.(Skyter K, No. 35.)

The regular work of this section has necessarily given place to that connected with the boundary, and has been further impeded by the necessity for placing the hydrographic vessel, the steamer "Active," at the disposal of the War Department. (Appendix No. 36.)

The following work has been executed in this section, and is reported upon in this chapter:

1. Triangulation of the Gulf of Georgia, W. T.
2. Reconnaissance of Coquille river entrance, Oregon.
3. Hydrographic reconnaissance of Gray's harbor, W. T.
4. Tidal observations.

Office-work.-A new edition of the reconnaissance sketch of Washington sound, W. T., and the chart of Port Townshend have been drawn and engraved, and the engraving of the charts of Port Gamble and Semi-ah-moo bay has been completed.
Triangulation of the Gulf of Georgia, W. T.-The field-work in this section was confined mainly to the triangulation of the Gulf of Georgia, abreast of Point Roberts, and in the vicinity of the forty-ninth parallel of latitude, but owing to the prevalence of smoke in the atmosphere during the entire season the progress expected at its outset has not been made. Sub-Assistant James S. Lawson, who conducted the operations and improved every opportunity for advancing the triangulation, says, in allusion to the hindrance from this cause: "Thus far, during the present season, the weather has furnished another illustration of the experience of former years, that each alternate season is very dry, and consequently that the immense fires started by the Indians sweep over a vast extent of country, so that it is often impossible to see, at the same time, both shores of the channels. During the last three months of the working season of 1857 we were often anchored within a quarter of a mile of the shore and could not see it. Last year was just the reverse, owing to the quantity of rain that fell tending to extinguish, or at least retard, the progress of the fires." * * * * * * $\quad * \quad *$
"In carrying the work forward from the limits of last year, I laid out a scheme of triangulation which seemed the very best that the conformation of the country would allow, as it tended to carry the work to the forty-ninth parallel with the least number of triangles. The lengths of the sides, however, were too great for observing on through the smoky atmosphere, and I have been compelled to change the plan and adapt my operations to circumstances."

The stations occupied or observed on by Mr. Lawson, as will be seen by reference to Sketch No. 34, range along the northern shores of the chain of islands bounding the Gulf of Georgia, from Patos island westward to a station on the upper part of Galiano island. These connect by lines with several stations established on Point Roberts, the positions of which are marked on the Progress Sketch.

The following is a summary of the statistics of the season:
Signals erected 9
Signals of former seasons adjusted 13
Stations occupied 12
Objects observed on 46

Angles measured

36

The horizontal angles were measured with the ten-inch Gambey theodolite, C. S. No. 20.
Vertical angles also were measured by Mr. Lawson, and a hundred and thirty observations recorded for determining the height of the two summits of Mt . Baker, and that of the limit of snow. The snow range was computed by Mr. Alexander Agassiz, the aid in the party, to be at an elevation of 3,145 feet.

A further remark made by Sub-Assistant Lawson, in his report, refers to one of the most perplexing hindrances found in prosecuting the triangulation in the northern part of this section: "A necessary result of such a state of the atmosphere as that which I have mentioned is a remarkable range in refraction, but in no case have I ever seen it equal to what was experienced at the last station occupied. In one of the angles there was a range of $41^{\prime \prime} .3$ in the various sets of observations, and in each of two others the range was as much as $35^{\prime \prime} .7$. This large refraction occurs almost invariably at times when, during the whole or part of the day, the atmosphere has become remarkably clear and when the signals show very plainly and steadily. There is then no way of discovering the refraction except from the observations themselves. Usually it shows itself by the distorted appearance of the shores."

Copies of all the plane-table sheets traced by Mr. Lawson during last season were furnished to the commissioner on the northwestern boundary, Archibald Campbell, esq. The originals are now at the office.

The mark at the southern end of the base on Lummi island having been washed from its place by a gale in the winter of 1857 -' $^{\prime} 58$, Sub-Assistant Lawson occupied the stations connecting with it, and took suitable means for re-establishing the mark. He is now supplied with the improved apparatus described in my annual report for 1857 , and having already graded and leveled the site of the base, the line will be remeasured as early as practicable in the ensuing season.

A meteorological register was kept, while the party was at work, of barometer readings, temperature, kind and amount of clouds, direction and force of the wind, and a record of the quantity of rain.

The duplicates of field notes were made, and abstracts and computations of the triangulation kept up to date as the work advanced. Those connected with the operations of last year are now at the office.

Four volumes, containing the recorded meteorological observations made in this section in previous seasons, have been turned in by Assistant George Davidson.

The brig Fauntleroy was used by Sub-Assistant Lawson for transportation and quarters in the Gulf of Georgia. At the close of the working season the vessel returned to San Francisco.

Reconnaissance of Coquille River entrance, Oregon. - With a view of making a hydrographic examination of the bar and channel of the Coquille river, Commander James Alden, U. S. N., assistant in the Coast Survey, attempted the entrance with the steamer Active, on her downward passage from his field of duty in connection with the Northwestern Boundary Commission, and found it, as was expected, inaccessible for vessels of ordinary draught. An accident to the centre shaft of the steamer, while in that vicinity, made it indispensable for the safety of the vessel that her voyage to San Francisco should not be at that time delayed.

The purpose of Commander Alden is to approach the Coquille entrance by land from Port

Orford, before the close of the year, if practicable, and to make a reconnaissance and soundings so as to fully determine the character of the river as a harbor of entrance.

Hydrographic reconnaissance of Gray's harbor, W. T.-In laying out the programme for the seasou's operations in this section, it was expected that the only field party for which the means are available might probably complete the special duty enjoined, in connection with the survey for the commissioner on the northwestern boundary, in time to admit of taking up the triangulation and topography of Gray's harbor within the present surveying year. This expectation, in consequence of the unfavorable weather, which, as already stated at the outset of this chapter, interfered materially with field progress in the northern part of the section, has not been met, and the basis of the hydrography is yet wanting. The impediments referred to being within the knowledge of Commander Alden, a visit was made to the harbor in the steamer Active, and such an examination conducted as could be made in advance of the close determination of points along the shores by the land party. In allusion to his reconnaissance Commander Alden says : "The result shows that the harbor has a bar over which can be carried from two and a half to three and a half fathoms of water. It was tolerably smooth during the flood, but when the ebb tide made the sea broke entirely across the entrance. The soundings made inside correspond very closely with those on the chart of the U. S. Exploring Expedition; and it would seem, as there is no bar laid down, that the survey just referred to was not carried quite out to it, or that there has been an important change since it was executed in 1841."

Bydrography of the Gulf of Georgia, W. T.-The following statistics represent the supplementary work executed for the northwest boundary commissioner by the hydrographic party under Commander Alden, in the steamer Active:

Miles run in sounding . 105
Angles measured.... 366
Casts of the lead . 967
Tidal observations.-One of the self-registering gauges in the general charge of Lieut. G. H. Elliot, U. S. Engineers, as stated under the head of Section \mathbf{X}, has been kept in working order at Astoria, and the series from it continues to give satisfactory results.

OFFICE-WORK.

The Coast Survey Office in Washington city has, during the year, remained under the charge of Captain W. R. Palmer, U. S. Topographical Engineers, who has, as usual, administered it efficiently and acceptably. In the intervals of his absence, the duties devolving on him were discharged by Lieutenant A. P. Hill, U. S. A., whose connection with the office and efficiency as general assistant have been referred to in my previous annual reports.

The report of Captain Palmer, given in Appendix No 17, and accompanied by detailed statements from the chiefs, of the several office divisions, show the occupation of the persons engaged in them within the year, and the scope and relation of the office as connected with the fieldwork of the survey. No change has been made in the allotment of the material recsived from the field, the past working of the divisions, as organized several years ago, having continued to meet the requirements of the survey and the calls incident thereto. In the order in which the office divisions have been heretofore named, summary notices are bere appended of the employments in each.

Computing division.-Under the charge of Assistant Charles A Schott, this division has fully
sustained its efficiency. The distribution of work done is set forth in his report appended to that of the assistant in charge of the office (Appendix No. 17,) as are also those relating to the other office divisions.

In addition to his general duties, Mr. Schott has continued the discussion of the secular change in the magnetic declination, and has furnished another contribution (Appendix No. 17) to our knowledge on that interesting subject. The computations made in the division have been performed as follows:

Assistant T. W. Werner has been employed in redusing from the records of triangulations and latitude observations; Mr. Eugene Nulty on latitudes, azimuth, and time observations; Mr. James Main on azimuth, latitude and revisions, and on computations connected with the determination of the magnetic elements; Mr. G. Rumpf on triangulations and the computation of geographical positions, and also in reducing magnetic observations; Mi. J. Wiessner on triangulations, until his resignation on the 1st of April; M. W. D. Storke on reductions of triangulations, and in preparing the list of geographical positions which accompanies this report; Mr. J. T. Hoover in clerical and miscellaneous duties; and A. Freeman in making duplicates of field and office records.
Tidal Division.-The labors of this division, which have been, as heretofore, conducted by Assistant L. F. Pourtales, are stated in the Appendix before referred to, with the names of the persons employed.

Mr. Pourtales has continued incidentally the investigation of specimens of soundings, and has made developments of much interest in this branch of research.

The force in the division has been employed as fohows: Mr. R. S. Avery on discussions relative to a generalization of results from the Boston tidal observations; Mr. S. Walker in verifying tidal records and corresponding with the observers; Mi. J. Dowes in graphical decompositions, reductions, and comparisons; and M. Thomas and S. D. Pendletor have been employed in miscellaneous reductions.

Sub-Assistant C. Fendall and Messrs. J. Gilliss, R. E. Evans, O. Hiarichs, P. H. Donegan, and A. W. King served temporarily in this division during part of the year.

Drawing Division.-Until the end of June this division remained in charge of Lieut. J. C. Tidball, $U . S . A$, and his effective supervision is referred to in the report of Lieut. Thomas Wilson, U. S. A., under whose direction the duties have been carried on since that date. The distribution of work has been as follows: Assistants W. M. C. Fairfax and M. J. McClery on reductions of topography, the latter also in making additions to the Congress map; Mr. A. Boschke on projects; Mr. A. Lindenkohl on reductions, projections, and verification; M. A. Balbach, during part of the season, on hydrographic reductions, and now on general duty as draughtsman in the hydrographic division; Mr. E. Hergesheimer on verification and hydrographic reductions; Mr. W. P. Sc ulz on reductions of various kinds, progress sketches, projects, and projections; Mr. L. D. Williams on fine reductions and verification; Mr. A. Strausz on soundiugs for charts; Mr. W. T. Martin on topographical drawing; Mr. P. Witzel on projections and preliminary charts; Mr. S. B. Linton on lettering, and in making additions to the progress sketches; Mr. F. Fairfax on general topography and tracings; and Mr. B. Hooe and Artificer J. A. Campbell on tracings generally.

Engrafing Division.-The duties of this division were conducted by Lieut. Rufus Saxton, U. S. A., until the 1st of April. Since that date the division has been temporarily in charge of Mr. Edward Wharton.

The allotment of work to the engravers regularly employed has differed but little from that of
last year. Mr. G. McCoy has been engaged on topography and views for charts; Mr. F. Dankworth, until within a short period before his death, on topography; Mr. John Knight on first-class lettering; Messrs. A. Rolle, J. Enthoffer, and A. Sengteller, on topography; Mr. G. B. Metzeroth on topography, views, and sanding for charts; Messrs. A. Blondeau and W. Phallips on topography; Mr. H. S. Barnard on sanding for charts; Mr. J. C. Kondrup on first-class outlines, letters, and figures; Mr. A. C. Evans on topography and sanding; Mr. J. V. N. Throop on letters and figures for harbor and preliminary charts; Mr. A. Maedel on topography and sanding for harbor and river charts; Mr. A. Petersen on letters and figures, as also Messrs. E. A. Maedel, W. Langran, and W. Ogitvie; Mr. R. F. Bartle on topography and sanding; and Messrs. F. W. Benner, W. A. Thompson, and E. H. Sipe, on progress and other sketches, and miscellaneous work.
Electiotype and Photograph Division.-.The report of Mr. George Mathiot, subjoined to that of the assistant in charge, in Appendix No. 17, gives in detail a statement of the work done in the division within the year. In addition to his regular duties, Mr. Mathiot has made numeroue trials, resulting at length in the successful application of the photographic process as a substitute for hand reductions for the engraver. I have already stated at more length the progress made in this important branch of the service in the introduction of this report. In all the labors of the division Mr. Mathiot was assisted by Mr. David Hinkle, whose application to its various duties are specially mentioned in the report already referred to.
Miscellaneous Division.- Under this head are classed the printing and distribution of maps and charts, and the distribution of the office complement of the annual reports. The report of Lieut. J. R. Smead, U. S. A., who took charge on the detachment from the Coast Survey of Lieut. J. P. Roy, U. S. A., in last June, shows that the activity required in this division has been fully kept up. Over fifteen thousand copies of various charts have been distributed during the year, and an aggregate of six thousand eight hundred and seventeen copies of the annual reports and accompanying sketches.
Lieut. Smead has been assisted by Mr. V. E. King, who also performs clerical duty in the office of the assistant in charge.
The printing has been performed, as heretofore, by $M r$. J. $R u t h e r d a l e$, aided by $M r . J$. Barrett.
Mr. F. Holden continued, until near the close of the present surveying year, on daty in the map room, and was employed in backing and preparing paper to be used as projections for plane-table and hydrographic sheets. This duty, since the 1 st of September, has been performed by $M r$. W. Mertz.

The space required for the constant additions to the archives of the survey is referred to by the assistant in charge as being yet unprovided for. Part of the inconvenience felt arises from the risk of transferring for deposit the original maps and charts to any but a thoroughly fireproof building.

In the carpentry, the various calls and requirements incidental to the work of the survey have been met as usual. The labors of the shop, which have been conducted, as heretofore, by Mr. A. Yeatman, are stated in detail in the report of the assistant in charge of the office, as are also those of the instrument shop, in which the work is directed by Mr. J. Vierbuchen.

Captain Palmer specially commends the zeal and ability of his principal clerk, A. W. Rus. sell, esq.

Assistant L. F. Pourtales, in charge of the tidal division, and Professor W. P. Troubridge, whose duties connected with the preparation of a portion of the records for publication have been before alluded to, have rendered acceptable assistance in certain special discussions conducted under my immediate direction.

Commander $S . S$. Lee, U. S. N., took charge of the hydrographic division of the office on the Ist of September, and has discharged, also, the duties of hydrographic inspector, attending to the repairs and outfit of the vessels used by all the parties of the survey. The knowledge possessed by Commander Lee of construction and equipment has, under the general rules and arrangements adopted first at the suggestion of Lieutenant Maffitt, introduced an efficiency into this branch of the service which insures for the future decided economy. Mr. A. Balbach has assisted in the hydrographic division as clerk and draughtsman.

I have only to reiterate the expression of the opinion which I entertain of the great value of the services of Samuel Hein, esq., general disbursing agent of the Coast Survey, and of those of the principal clerk in the Superintendent's office, W. W. Cooper, esq.

Respectfully submitted by
A. D. BACHE,

Superintendent United States Coust Survey.
Hon. Howell Cobr,
Secretary of the Treasury.

APPENDIX.

APPENDIX No. 1.
Distribution of the parties of the Coast Survey "pon the coast of the United States during the surveying season of 1858-'59.

APPENDIX No. 1-Continued.

Limits of eections.	Parties.	Operations.	Persons conducting opera-	Lucalities of operations.
Sbetion I(Continued.)	No. $\begin{array}{rr}8 \\ & \\ & 9\end{array}$	Topography.......	C. Fendall, sub-assistant....	Plane-tahle eurvey of the const of Maine, from Prout's Neck, southward and westward, to Kenneluank siver, ibcluding the shores of Saco bay, and detailed survey of the Isles of Shoals.
		Topography .-.....	A. M. Harrison, absistant ; P. C. F. West, sub-assistant; A. W. Thompson, aid.	Topography of Barnstable harbor completed, and thesirvey of Cape Cod peninsula in that vicinity extended from West Barnstable eactward to North Lennis, including Yarmouth, Barnstable, and Pond Viliage.
	10	Hydrography -....	Lieut. Comg. John Wilkinson, U. S. N., assistant.	Inshore bydrography extended from Cape Newagen and Damiecove island, sonthward and westward, to Cape Small, outide of Kennebec entrance, and soundings conpleted abreast of and between Portand Lightand Green island, Casco bay. Rucks determined in position, and off-shore soundings carried from Cape Elizabeth southward to Nausett Centre Light, Cape Cod.
	11	Hydrography......	Lieut. Comg. Alexander Murray, U.S. N., assistant; C. Feudall, sub-assistant.	Soundings completed in-shore from Cape Eibzabith. southward and westward, to Cape Porpuise, Me. Deepsea line carried from Cape Ann, acrosn Cahe's ledge, to Seal island, and thence by traverses, westward, across the coast of Maine to Cape Elizabeth. Re examination made in Salem and Boston harbors, Massachusetts. (Eee also Section IV.)
	12	Tidal observations.	T. E. neady	Record kept with self-registering tidegauge at U. S. navy yard, Charlestown, Massachusetts.
	13	Magnetic observations.	Cbarles A. Schott, assistant; J. L. Tilghman, aid.	Determination of the magnetic declination, dip, and intensity at Porthand, Me., und Portsmouth, N. H ; at Newburyport and Ipswich, Mase; at Gloucester, Thempson (primary triangulation station,) Rockport, and Annis Squam, on Cape Ann. (See also Section II.)
Sketion II.				
From Point Judith to Cape Henlopen, including the coast of Connecticut, New York, and New Jersey, and the shores of Penneylvania and Delaware.	No. 1	Triangulation-.-.-	Edmund Blunt, assistant; Lieut. W. R. Terrill, U. S. A., ussistant ; G. H. Pagwell, sub-assistant; Rufus King, jr., aid.	Triangulation of Hudson river, from a station near Hudson northward to New Baltimore, and determination of numerous points in the vicinity of Yonkers, for plane-table parposes.
		Topography -- .-.	H. L. Whiting, assistant; John Mechan, sub-ussistant ; N. S. Finney, sub-rissistant.	Detailed topography completed on both sides of Hudson river, between Spuyten Duyvel creek and Hastings ; and also north and south of Tarrytown, N. Y. including Yonkers, Upper and Lower Nyack, the Palisades, and Piermont.
		Topography ---. --	F. W. Dorr, sub-assistant; C. Rockwell, aid ; McLane Tilton, aid.	Supplementary details of topography in the vicinity of Bouth Jamnica, L. I., Morrisania, Brooklyn, Williamsburg, High Bridge, and Hudson City, for the plane-table survey of New York harbor. (See aleo Section VI.)

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

Limits of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
Sketion VI(Continued.)	4	Triangulation	Lieut. A. H. Seward, U. S. A., assistant ; Lient. W. Myers, U. S. A., assistant.	Triangulation extended eastward along the inner line of the Florida keys, from Sigeum Vite to Pigeon key.
	5	Triangulation.....	Lieut. W. R. Terrill, U. 8. A. assistant; C. Fendell, sub-assistant; C. B.. Baker aid.	Extension of work in Charlotte harbor, Florida, from Captiva Pase northward to Punta Gorda. (See also Section II.)
	6	Topography . .-..-	C. T. Iardelia, sub-assistant; F. F. Nes, aid.	Western shores of Key Biscayne bay and Card's cound, Florida, traced from Shoal point southward to Clay point. Topography completed on the western side of Key Largo, and numerous patches on the Florida reef surveged, between Lignum Vita and Oyster key.
	7	Topography. .-..-	F. W. Dorr, sub-assistant ; Charles Ferguson, subassistant.	Plane table survey of Charlotte harbor, Florida, continued, embracing the western side of Pine island, the upper part of Sanibel island, and Captiva and La Costa islands, extending the work northward to Boca Grande. (See also Sections II and III.)
	8	Hydrography	Lieut. Comg. T. A. Crayen, U. ©. N., assistant.	Reconnaissance line from Cape Cañareral to St Lucie inlet -Soundings on the outside of Floida reef continued from Eagle cove eastward to Coffin's Patches. (Fee also Section II and Gulf Stream.)
	910	Tidal observations-	G. Würdemann ----..-----	Series continued with self-registering guages at Fort Clinch, Tortugas, Charlotte harbor, and Egmont key, (Tampa.)
		Inspection . .-..--	A. D. Bache, superintendent	
Section VII.				
From St. Joseph's bay to Mobile bay, including the const of western Florida and the coast of Alabama.	1	Triangulation . .--	G. H. Bagwell. sub-assistant; M. O. Hering, aid.	Triangulation on the western side of the Florida peninsula continued from Crystal reef southward, to include the entrance of Chassahowitzka river. (See also Section IL.)
	2	Triangulation-	Spencer C. McCorkle, subassistant ; A. W. Thompson, aid.	Connection made by triangulation between St. George's sound and St. Mark's harbor, Flas, and reconnaissance for extending work eastward to include Ocilla river.
	3	Triangulation-.	F. H. Gerdes, assistant ; G. U. Mayo, aid.	Triangulation carried eastward into Santa Rosa sound, beyond Little Sabine bayou, from finished Iimits in Pensscola bay, Fla. (See also Section VIII.)
	4	Topography....---	N. S. Finney, sub-assistant ; J. L. Tilghman, aid.	Plane-table survey of the keys and shoreline abreast of Crystal reef, Fia., extended southward to Homosassa river, and from Chassahowitzka river southward to Raccoon Point. (See also Section II.)
	6	Topography.....---	G. D. Wise, assistant; C. W. Duval, aid.	Topography of St. James's island, Fla., nearly completed, with the opposite shore of Ocklokonce bay, and part of the shores of Dickerson's bay in the direction of St. Mark's.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

Limite of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
Sxction XI(Continued.)	No. 2	Hydrography ...-	Commander James Alden, U. S. N., assistant.	Hydrographic reconnaissance of the entrance to Coquille river, Oregon, and of Gray's harbor, W. T. (Soe also Section X1.)
	3	Tidal observations .	Lieut. G. H. Elliot, U. S. Engineers.	Observations continued with self-registering gauge at Astoria, Oregon. (See also Section X)

APPENDIX No. 2.

List of Army officers on Coast Survey duty March 1, 1859.

Officers.	Rank.	Date of attachment.
Thomas J. Cram	Captain topographical engineers	March 26, 1858
W. R. Palmer	Captain topographical engineers	November 17, 1857
Martin L. Smith	Captain topographical engineers	December 9, 1856
Augustur H. Seward.	Captain 5th infantry	December 11, 1851
Ambrose P. Hill	First lieutenant 1startillery	November 23, 1855
J. C. Tidball	First lieutenant 2d artillery	September 6, 1854
Edward B. Hunt.	First lieutenant engineers	May 5, 1851
Rufus Saxton	First lieutenant 4th artillery	December 25, 1855
James P. Roy	First lieutenant 2 d infantry	October 7,1853
William R. Terrill	First lieutenant 4th artillery	March 19, 1858
Thomas Wilson.	First lieutenant 5th infantr	May 26, 1857
William Myers	First lieutenant 9th infantry	September 10, 1857

APPENDIX No. 3.

List of Army officers on Coast Survè duty September 1, 1859.

Officers	Rank.	Date of attachment.
Thomas J. Cram.	Captain topographical engineers.	March 26, 1858
W. R. Palmer	Captain topographical engineers	November 17, 1857
Martin L. Smith	Captaiu topographical engineers	December 9, 1856
Edward B. Hunt.	Captain engineers	May 6, 1851
Ambrose P. Hill	First lieutenant list artillery	November 23, 1855
R. G. Cole.	First lieutenani 8 th infantry	June 11, 1859
W. R. Terrill	First lieutenant 4th artillery	March 19, 1858
J. R. Smead.	First lieutenant 2d artiller	May 21, 1859
Thomas Wilson.	First lieutenant 5th infantry	May 26,1857

APPENDIX NO. 4.

List of Navy officers on Coast Survey duty March 1, 1859.

APPENDIX No. 5.

List of Navy officers on Coast Survey duty September 1, 1859.

Vessel.	Locality of serpice.	Officers.	Rank.	Date of attachment.	
	Office-work	S. S. Lee ---- --....	Commander	August	8,1859
Steamer Bibb	Section I	Alexander Murray-.-	Lieutenant commanding.-	April	23, 1858
Steamer Corwin	Section I	John Wilkinson	.do.	June	25,1858
Steamer Walker	Section II	Thomas B. Huger	d	October	12, 1857
Steamer Vixen	Section II	Thomas S. Phelps.	do	August	23,1859
Schooner Varina.	Section II	C. M. Fauntleroy	.do	November	13,1858
		F. B. Blake	Midshipman	August	16,1859
Steamer Hetzel.	Section III	W. T. Mus	Commande	February	27,1857
Schooner Crawford	Section V	J. P. Bankhead .	Lieutenant commanding--	October	16,1858
Steamer Active.	Sections X and XI	James Alden	Commander	May	18,1849
		Wash'n Gwathmey --	Lieutenant	May	20,1858
		J. G. Mitchel	do	June	14,1858
		James Suddards-	Passed assistant surgeon.-	July	1.1857

APPENDIX No. 6.

List of information furnished by the Coast Survey duriny the year 1858-'59, under authority of the Treasury Department.

Date.	To whom communicated.	Information communicated.
$\stackrel{\text { Nov. }}{ }{ }^{1858 .}$		
	Capt. H. W. Benham, Corps of Engineers......-	Tracing of Old Orchard shoal, Sandy Hook, and northern part of New York bay.
13	--.-.-. ${ }^{\text {do }}$	Tracing from reduction, scale 20 Jo万, north and east of Sandy Hook, New York bay.
24	Hon. A. G. Brow	Tracing of hydrography of Mississippi sound, north of Cat and Ship islands.
29	Major H. C. Wayne	Tracing of topograpby of Long Island, from Islip to Babylon, N.Y.
Dec.	E. S. Sewall, esq	
4		Tracing of topography of Tangier sound, Md.
8	Dr. J. M. Cuyler, U. S.	Tracing of Hampton roads, Va.
8	Hon. G. S. Hawkins	Tracing of East and West passes, St. George's somnd, Fla.
13	Hon. W. F. Russell	Tracing of topography of Esopus creek, N. Y.
14	G. W. Blunt, esq	Tracing of coast of Masisachusetts, from Nahant head to Ram island.
14	J. R. Butts, esq	Tracing of East and West passes, St George's sound, Fla.
14	G. W. Blunt, esq	Tracing of the "Triangles" and Boon island ledge, Salem har. bor, Mass.
17	E. T. Gray, esq	Tracing of reconnaissance of coast of Texas, from Matagorda bay to Aransas pass.
20	Hon. W. F. Russell	Tracing of hydrography of Rondout creek, N. Y.
20	Capt. J. D. Kurtz, Corps of Eng	Shore-line of Kenuebec river, Me.
20	--.--.-do	Shore-line of Sheepscot river, Me.
27	Hon. Guy M. Bryan	Tracing of Brazos river entrance, Texas.
1859	Alexander Brown,	Tracing showing wharves of Charleston city, S. C.
${ }_{\text {Jaa. }} \quad 5$	Prof. L. Agassiz	Tracing showing Sombrero and Delta shoals, Florida reefs.
21	G. W. Blunt, esq	Tracing of hydrography of coast of Maine, from Kennebunkpart to Lile of Shoals.
21	E. L. Meyer, esq	Description of Coast Survey stations used in the triangulation in vicinity of Newark bay, N. J.
21	G. W. Blunt, esq	Tracing of deep-sea souvdings, Gulf of Mexico, from Delta of the Mississippi to Havana.
29	Moses Bates, esq	Tracing of topography of Plymouth harbor and vicinity, Mass.
Feb. 18	James H. North, esq	Tracing of topography of Currituck sound, from Rattlesnake island to Currituck Court-House, N.C.
March	Mr. Winning	Geographical positions of certain Coast Survey stations in New York eity.
	J. C Brevoort, peq	Tracing of topography of Long island, from Brooklyn to Jamaica bay, N. Y.
	Light-house Board	Tracing of entrance to Matagorda bay, showing changes at Pass Cavallo, Texas
	J. W. Adams, esq -----.-.-..................	
April	Com. W. H. Hutchings, U. S. mail steamship Galveston. John Kendall, esq	Tracing of bydrographic reconnaissance, from St. Mark's to St. Joseph's bay, Fla. Tracing showing soundings recently made at the Rigolets, La.
	Prof. J. D. Dana.	Tracing of off-shore chart, from Point Judith, B. I., to Cape Henlopen, Del.
	Capt. H. W. Benham, corps of engineers.	Results of tidal observations at Sandy Hook, N. J., in 1858.
	.-do.	Distances from Sandy Hook light-house to East and West beacons, New York bay.
	G. M. Hopkins, jr., esq Hon. W. H. Seward.	Tracings of topography of coast of New Jersey, sonth of Monasquam river.
May	Editor of Indianola Cour	Distances between points in vicinity of Indianola, Texas.
	G. E. Walker, esd	Infurmation relative to terminal point for a railroad on Apalachicola bay, Fla.
June	Messrs. Allen \& Co	Tracing of topography of New York harbor.
	M. Parks, esq., President A. \& C. Canal Co.	Royal sound, is. C. Tracing of topography of Currituck sound, N. C.

APPENDIX No. 6-Continued.

Date.	To whom communicated.	Information communicated.
1859.		
July 18	Washington Irving, esq	Tracing of topography of Hudson river, near Irving village, N.Y.
29	Hon S. R. Mallory	Tracing of Pensacola city and vicinity, Fla.
30	Lient. Col. J. D. Graham, topographical eng'rs.	Tracing of Pensacola city and vicinity, Fla.
August 2	Messrs. Lowell \& Senter	Tracing of Eang's island, Portland harbor, Me.
11	Alezander Major, esq	Tracing of hydrography of Boston harbor from Egg rock to Grover's cliff, Mass.
12	S. J. Martinet, esq	Tracing of Chester river, Md.
13	Simeon Stevens, esq	Tracing of hydrography of Sheepscot river from Wiscasset to Hendrick Head light, Me.
31	Lieut. Con. R. E. DeRussey, corps of engineers.	Tracing of coast of Rhode Island from Beaver Tail light to East rock.

APPENDIX No. 7.
Statistics of field and office-work of the United States Coast Survey during the years-

	Previous to 1844.	1344.	1845.	1848.	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
Reconnaisannee-																	
Area, in square miles	9,642	1,140	3,739	1,830	2,950	3,940	10,159	3,280	3,510	1,706	1,708	795	1,487	4,072	2,855	709	53,522
Parties, number of, in each year.......	4	2	4	5	5	7	6	4	6	6	5	13	7		8	4	
Hame lives-																	
Primary, number of.	1	2	1	1		1			1		2		1	...	10
Secondary, number of,	2			2	1	4	3	3	4	5	2	8	8	1	4	47
Length of, in miles....	194	16	94	13	64	17	2	4	18,	3 \%	$24 t$	93	9	3	1501
Triangulation-																	
Ares, in sqmare miles ,	9,076	795	2,166	1,185	1,903	2,592	4,091	2,097	2,465	1,703	3,089	2,201	2,729	2,793	1,640	3,033	44,058
Extent of general const, in miles.......	570	179	162	123	159	113	285	216	243	220	94	246	188	320	${ }_{357}$	${ }^{2} 278$	44,188 3,755
Extent of ghore-fine, in miles, including bays, sounds, islands, and rivers	1,588	589	554	1,018	541	796	1,328	730	1,097	1,104	884	1,269	1,401				
Horizontal angle atations decupied.	750	120	80	197	120	93	204	157	184	223	224	1,204	1,410	$\begin{array}{r}1,35 \\ 544 \\ \hline\end{array}$	1,481 385	$1,3.5$ 384	17,930 4,284
Geographical positions determined,	1,183	147	148	372	194	227	319	294	307	446	346	388	584	1,240	777	603	7,575
Vertical angle stations occupied.. .	15	2	5	7	3	1	18	13	22	14	7	89	6	1	4	11	218
Elevations determined, number of	44	12	7	46	44	1	59	22	53	66	9	127	6	12	15	14	577
Partiee, number of, in each year	4	5	8	7	8	10	13	14	14	13	18	17	17	20	20	19	
Astronomical operatione-																	
Stalions oceupied for azimuth	9	8	2	2	3	3	4	4	B	6	9	5	4	2	1	2	70
Stations occupied for latitude	9	8	5	3	8	8	4	6	8	17	20	6	4	f	3	5	114
Stations occupied for longitude	1	1		2	3	3	7	3	7	18	51	4	1	1	2	2	76
Permanemt luggitude stations..........		1	1	2	1	1	2	3	5	5	5	4	3	1	1	1	
Spectal lougitude atations for occulta- tones, re. \qquad															23	30
Panties, number of, in each year.......	1	3	2	2	3	3	5	5		4	7	7	6	4	3	4
Magnetic stations occupied, number of.		14	21	28	19	4	11	9	10	8	13	9	8	23	4	5	186
Parties, number of, in each year		2	3	3	3	3	5	4	3	2	3	6	3	4	3	3
Topography-																	
Area surveyed, square miles..........	6,131	185	503	750	595	471	532	652	681	653	554	513	656	536	1,003	719	15, 144
Length of general coaet, in miles	414	110	168	119	117	185	95	133	260	226	251	174	176	165	309	172	3,084
Length of shore line, in miles, including rivers, creeks, and ponds. \qquad	7,667	424	879	1,120	1,460	1,703	1,709	1,557	1,760	1,737	2,100	1,796	2,138	2,398	3,913	3,362	35,723
Length of roads, in miles	11,734	395	997	1,402	1,354	640	504	511	500	732	502	618	733	750	1,404	924	23,700
Panien, number of, in each year	-	5	6	8	9	${ }^{9}$	11	11	13	13	17	12	17	17	23	23
Hydrography--																	
Purties, number of, in each year	2	5	5	6	0	8	11	11	12	9	9	10	11	12	12	10	,
Number of miles run while sounding...	29, 214	1,857	3,493	3,559	3.138	8,047	4,299	5,995	10,590	9,534	9,050	9,141	13,115	15,305	12,377	8,582	147, 996
Area sounded out, square miles........	9,601	683	677	574	979	2,185	1,335	2,012	3,200	2,883	2,061	1,937	3,433	3,743	2,705	1,674	39,572
Miles ran additional, of outside or deepsea soundings \qquad	1,800	1,020		...1	210	2,840		1,198	2,037	360	1,902	2,793	5,219	1,202	3,218	2,092	25,291

APPENDIX No. 7-Continued.

	Previous to 1844.	1844.	1845.	1846.	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
W Eydograpby-																	
Soundiage, number of................	808,147	120,887	125,173	220,402	228,402	255,003	285,824	264,718	371,660	288,375	305,377	162, 454	526,875	439,614	506,034	513,607	5,402,492
ture \qquad			118	581	207	425	. \cdot.	1,053	257	310	...	478	172	3,801
Tidal statione, permanent...........		2	2	2	3	3	3	3	4	4	7	7	7	8	8	8
Tidal mationa occupied temporarily ...	127	14	33	39	33	29	35	41	51	76	78	89	80	77	74	35	911
Tiaul partien, number of, in encen jear..	8	5	5	5	5	8	11	11	12	9	11	12	13	14	14	11
Ourrent mationa occupied		17	42	41	58	54	28	44	41	24	89	10	84	84	156	47	830
Corrent partier, number of, in each year.		3	5	3	3	4	6	4	7	7	5	3	${ }^{5}$	$\begin{array}{r}6 \\ \hline\end{array}$	${ }^{6}$	2	7.659
Epecimenm of botom, number of.......	1,029	2,776	89	129	371	769	287	381	278	215	141	135	235	146	422	236	7,659
Recorde-																	
Triagulation, originale, number of vols.	87	12	17	23	17	32	38	40	33	33	64	43	79	96	76	96	799
Astronomical observations, originals, number of volumes. \qquad	17	10	11	10	16	92	72	30	41	48	29	88	35	12	35	${ }^{83}$	539
Magnetieal olvervations,originals, number of volumes. \qquad	4	8	1	6	7	4	3	6	5	7	${ }^{6}$	4	33	13	4	10	114
Duplicaten of the above, numbry of vols	27	26	32	32	44	49	19	23	45	73	76	84	139	101	140	168	1,078
Computationa, number of volumes....	28	25	17	21	26	23	57	24	40	72	101	91	109	99	83	101	967
Hydrographie soundingy and angles, ariginals, volumes.	188	ゅ	26	152	54	154	134	170	213	206	183	66	332	197	319	322	2,738
Hydrographic soundinge and nagles, duplicatea, volumes. \qquad	28	2	s	4	11	11	12	12	16	27	15	7		27	21	20	244
Thdal and eurrent observations, origlnald, wolumes. \qquad	127	24	47	51	44	40	67	88	114	139	123	70	196	110	213	194	1,556
Tidal and current observations, duplicates, volumes. \qquad		23	47	51	44	41	63	79	385	132	114	79	87	100	${ }^{67}$	74	1,320
Wheetn from self regitetering tide-gaugen, number of \qquad		~...								${ }^{2}$	72	106	80	103	119	141	647
Tidal reductions, number or volumes. .		46	84	102	88	80	16	58	22	26	17	99	79	73	63	64	927
Total number of volumes of records....	566	191	297	452	351	456	481	539	914	763	728	634	1,115	828	1,021	1,022	10,348
Mapa and charto-																	
Topographical mapm, originals.	168	14	16	25	29	20	22	30	41	47	54	45	55	51	74	44	735
Hydrographit chars, originals	142	9	8	18	18	21	16	20	47	56	56	52	65	62	51	31	672
Reductona from original meeth, number of. \qquad	15	9	15	16	17	13	18	22	26	48	35	27	36	39	40	35	411
Total number of manascript maps and charts. \qquad	325	32	38	59	64	54	56	72	114	151	145	124	156	152	165	110	1,818
Number of aketches made in field and office \qquad	311	24	33	$\mathfrak{3}$	29	48	83	85	126	137	103	101	132	125	132	127	1,627
Engraving and printing-																	
Engraved plates of tisished eharts, number of					8		3	5	6	5	4	2	7	3	7	6	72

APPENDIX No. 7-Continued.

	Previous to 1844.	1844.	1845.	1846.	1847.	1848.	1844.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
Engraving end printing-																	
Engraved platen of preliminary charta, aketehes, and diagrame for Coast Survey reports, number of				4	5	7	b	10	38	20	39	42	46	51	51	25	344
Electrotype phates made in each year...					1	7	6	25	16	23	47	77	50	69	79	95	495
Finished charrs pubtished in each year.		4	3	4	3	10	3	4	6	6	3	2	8	3	5	6	70
Prelioninary charts and hydrographic sketches pubilshed.				2	4	2	4	10	36	19	34	34	34	38	41	22	20
Printed sheets of mape and charts distributed \qquad		169	416	1,708	1,104	2,923	1,848	326	5,649	5,799	8,042	5,195	5,392	8, 858	19,147	4,209	70,785
Printed sheets of ditto deposited with sale agents \qquad			880	1,688	4,981	5,016	1,508	3,115	5,168	6,866	4,375	3,232	2,577	2,898	648	1,717	44,665
Library- Number of volumes.						655	95	590	33	171	273	155		389	106		
Instrments-													4	38		116	3,133
Instraments- Cost of.....							88,326	\$4,652	\$4,603	\$3,835	* ${ }^{5}, 296$	\$5,402	\$3,958	\$5,369	\$3,185	\%1,224

general note.
Partien-An average number to given for the years previous to 1844. A party operating in more than one section during the yenr is counted bat once.
Triangulation.-The extent of general cosst is measured in general outine, including Delaware and Chesapeake, as well as all open bays; but omitting the miner indentations of the sea-coast. The exten of ahore-line is atso measured in general outline, and includes such rivers only as have been triangulated.

Topography.-The lengih of the general coast is measured similarly to that under triangulation; but the shore-line under topography represents the whole water-line surveyed, including all the minor inden utioni, as represented on the plane-table sheets.

Recoris.- The total number of volumes of recordg given in the table is greater than the number now on hand, owing to the binding up of separate volumes.
Engraved Plates. - Progress aketchen (averaging fourteen yearly) are not counted.
Library.-The number of volumes purchased and donated up to 1849 was 655 .
THL 40 LHOAस

His to be remarked that the numbers appearing in the column of this table for the year immediately preceding that of its compilation are, in some cases, subject to be changed, more or less, in the succeeding Report, owing to data not being, at the time of complation, fully turned into the office from the distant parties in the field.

APPENDIX No. 8.

General"list of Coast Survey discoveries and developments to 1858, inclusive.

1. Temple's ledge, near Cape Small Point, Me., 1857.
2. Determination of the position of a sunken rock on which the steamer Daniel Webster struck, in Casco bay, on the eveaing of the 13th of October, 1856.
3. Determination of the dimensions of Alden's rock, near Cape Elizabeth, Me., 1854.
4. Fishing ledge off Keunebunk, Me., thoroughly sounded, 1858.
5. A rock one mile to the southward and westward of Boon island, with seventeen feet water. The sea breaks on it in heary weather, 1858.
6. Development of Boon Island ledge, coast of Maine, 1858.
7. A rock off Cape Neddick, Me., determined in position, 1858.
8. A detached rock two-thirds of a mile northward and eastward of York ledge, Me., 1858.
9. Determination of the position of a rock more than a mile off the mouth of York river, Me.; bare at low tides and dangerous to coasters, 1858.
10. Development of Duck Island ledge, 1858.
11. A very dangerous rock, with only six and a half feet water, off the entrance to Portsmouth harbor, N. H., about four nautical miles eastward from the Whale's Back light, 1858.
12. A rock, with twelve feet at mean low water, about four miles and a third eastward of the Whale's Back, 1858.
13. Determination of rocks off Marblehead and Nahant, 1855.
14. A rock (not on any chart) in the inner harbor of Gloucester, Mass.; discovered in 1853.
15. A bank, ninety miles eastward of Boston, with about thirty-six fathoms of water, probably a knoll connected with Cashe's ledge, but with deep water between it and the ledge, 1853.
16. Boston harbor; Broad Sound channel thoroughly surveyed and marks recommended. 1848.
17. Several rocks in the fair channel way in Boston harbor entrance, 1854.
18. An extension of the sand-spit to the southward of Sunken ledge, Boston harbor, since the survey of $1847,1858$.
19. A bank (Stellwagen's bank) with ten and a half to fourteen and a half fathoms of water on it, at the entrance to Massachusetts bay, and serving as an important mark for approaching Boston and other harbors, 1854.
20. Extension of Stellwagen's bank to the southward and eastward some sixteen or seventeen square miles, enclosed by the twenty-fathom curve, 1855.
21. Changes in the vicinity of East harbor, (Cape Cod, 1857.
22. A dangerous sunken ledge (Davis' ledge) to the eastward and in the neighborhood of Minot's ledge, 1854.
23. Development of a reef extending between Minot's and Scituate light, 1856.
24. A sunken rock, with only six feet on it at low water, off Webster's Flag-Staff, Massachusetts bay, 1856.
25. A dangerous rock near Saquish Head, entrance to Plymouth harbor, 1856.
26. Three rocks determined in position, partly bare at low water, off Manomet Point, Massachusetts bay, 1856.
27. Determination of a very dangerous rock off Indian hill, and four miles southward of Manomet Point, Massachusetts bay, with as little as six feet water on it, 1856.
28. Probable connection of George's bank and the deep-sea banks north and east of Nantucket, 1855.
29. The decrease of depth, with general permanence of form, of George's bank, off the coast of Massachusetts, 1857.
30. A shoal spot near Little George's bank, 18507.
31. Non-existence determined of "Clark's bank" and "Crab ledge," laid down on certain : charts as distinct from an immense shoal ground off Cape Cod peninsula, 1856.
32. Nantucket shoals; Davis' New South shoals, six miles south of the old Nantucket South shoals, in the track of all vessels going between New York and Europe, or running along the coast from the eastern to the southern States, or to South America; discovered in 1846.
33. Two new shoals north and east of Nantucket; discovered in 1847.
34. Six new shoals near Nantucket; the outermost fourteen and a half miles from laud, and with only ten feet water; discovered in 1848.
35. McBlair's shoals, off Nantucket; discovered in 1849.
36. The tidal currents of Nantucket shoals and the approaches, 1854.
37. Davis' bank, Nantucket shoals; discovered in 1848 and survey finished in 1851.
38. Fishing Rip, a large shoal extending north and south, about ten miles to the eastward of Davis' bank, and thirty miles from Nantucket, with four and a half fathoms: surveyed in 1852.
39. A ridge connecting Davis' New South shoal and Davis' bank; found in 1853.
40. A small bank or knoll with but five fathoms on it, about five miles east of Great Rip, with twelve fathoms between it and Davis' bank and Fishing Rip, the water gradually deepening outside of it to the northward and eastward beyond the limits of the series of shoals, 1853.
41. Discovery of Edward's shoal, one mile and seven-eighths sonthward of Nantucket lightboat, 1855 .
42. Examination of the interference tides of Nantucket and Martha's Vineyard sounds, 1855.
43. The study of the tidal currents of the Vineyard and Nantucket sounds, 1857.
44. Contraction of the inlet at the north end of Monomoy island, and opening of a new entrance to Chatham harbor, 1853.
45. Muskeget channel; surveyed by Lieut. C. H. Davis in 1848 and Lieut. C. H. McBlair in 1850 .
46. Discovery of two shoal spots, with twelve and thirteen feet water, eastward from Great and Little Round shoals, Nantucket sound, 1856.
47. Determination of two shoal spots near the northern extremity of Davis' bank, with fourteen and eighteen feet water, 1856.
48. Further development of Edward's shoal, three-fourths of a mile from the Southern Cross Rip, Nantucket sound, 1856.
49. Shoal sand ridges discovered northward of Great Point light, Nantucket sound, 1856.
50. Important changes in geographical feature at the southeastern end of Martha's Vineyard, Muskeget channel, 1856.
51. Numerons rocks in Martha's Vineyard sound, Long Island sound, and the various bays and harbors connected with them.
52. Luddington rocks, determined in position, about ten yards apart, a mile and a half (nautical) southwest, by compass, from New Haven light, 1858.
53. The tidal currents of Long Island sound, 1854.
54. The tidal currents of Hell Gate, 1857.
55. Least water on the Hell Gate rocks, determined by dragging, 1857.
56. Tidal currents in East river, N. Y., and surface and sub-currents investigated in New York harbor, the lower bay, and on the bar, 1858.
57. The currents of the great bay between Massachusetts, Rhode Island, Connecticut, New York, and New Jersey, 1855.
58. Gedney's channel into New York bay, having two feet more water than the old channels. Had the true depth of this channel been known in 1778, (then probably existing, as seen by comparing old and new charts,) the French fleet under Count D'Estaing would have passed into the bay and taken the assembled British vessels, 1845.
59. The changes in New York harbor, near New York city, between 1845 and 1858.
60. Increase of depth in Buttermilk channel, ascertained and made known in 1848 by survey of Lieut. D. D. Porter, U. S. N.
61. Shoal in the main ship-chaunel of New York harbor, 1855.
62. The tides of Hudson river, 1856.
63. Sandy Hook; its remarkable increase traced from the surveys of the topographical engineers and others, and by several successive special surveys made between 1844 and 1857.
64. Delaware bay; Blake's channel at the entrance, discovered in 1844; open when the eastern channel is closed by ice. This discovery has served to develop strikingly the resources of that portion of Delaware.
65. Blunt's channel, in Delaware bay.
66. Changes in the Delaware, near the Pea Patch, 1847.
67. The true extent and position of the dangerous shoals near Chincoteague inlet, Va., 1852.
68. Metomkin inlet, Va., shoaling from eleven to eight feet in the channel during 1852.
69. Two channels into Wachapreague inlet, Va.; one from the northward and the other from the eastward; both with seven feet water at low tide, 1852.
70. A shoal half a mile in extent, not put down on any chart, five and a half miles east from the north end of Paramore's island, Va. It has but four fathoms water on it, and nine fathoms around it, 1852.
71. Great Machipongo inlet, Va. Found to have a fine wide channel, with eleven feet water on the bar at low ebb, and fourteen at high tide. Good anchorage inside, in from two to eight fathoms. The best harbor between the Chesapeake and Delaware entrances, 1852.
72. Two shoals near the entrance to the Chesapeake; one four and three-quarter nautical miles SE. by E. from Smith's island light-house, with seventeen feet water upon it; the other E. by S. nearly seven and three-quarter miles from the same light, with nineteen and a half feet upon it, 1853.
73. Only three feet water upon the "Inaer Middle," the shoal part of the Middle Ground, west of the "north channel," at the Chesapeake entrance, 1852.
74. A twenty five fathom hole two and a half miles W.SW. from Tazewell triangulation point, eastern shore of the Chesapeake; all other charts give not more than sixteen fathoms in this vicinity.
75. A shoal at the mouth of the Great and Little Choptank, in Chesapeake bay, 1848.
76. The soundiug and measurement of the bars in Rappahannock river, 1855.
77. The general permanence of the Bodkin channel and shoals in its vicinity, at the entrance of the Patapsco river, between 1844 and 1854.
78. A shoal (New Point shoal) in Chesapeake bay, with sixteen feet water on it, southeast from New Point Comfort light-house, off Mobjack bay, 1854.
79. Re-examination of York spit, Chesapeake bay, and least water determined, (nine feet, 1855.
80. York river, Va., as a harbor, 1857.
81. A reconnaissance of the Wimble shoals, near Nag's head, coast of N. C., 1854.
82. Submarine range of hills beyond the Gulf Stream tracked from Cape Florida to Cape Lookout, 1855.
83. Deep water found on Diamond shoal, and a dangerous nine-feet shoal off Cape Hatteras, 1850.
84. A new channel, with fourteen feet water, into Hatteras inlet, formed during the year 1852, which is better and straighter than the old channel.
85. Changes at Hatteras and Ocracoke inlets, 1857.
86. The general permanence in depth on the bar of Beaufort, N. C., with the change of position of the channel, 1854.
87. Changes on the bar of Beaufort, N. C., 1857.
88. The well ascertained influence of prevailing winds in the movement of the bars at Cape Fear and New Inlet entrances, and the gradual shoaling of the main bar; the latter fact being of great importance to the extensive commerce seeking that harbor, 1853.
89. Changes in the main Western and New Inlet channels in Cape Fear, 1855.
90. Frying Pan shoals, off Cape Fear, N. C.; a channel of two and a half fathoms upwards of a mile wide, distant eleven nautical miles from Bald Headlight-house, across the Frying Pan shoals. A channel extending from three to four miles from the point of Cape Fear to eight or eight and a half miles from it, with sufficient water at low tide to allow vessels drawing from nine to ten feet to cross safely. A channel at the distance of fourteen nautical miles from Bald Head light-house, one mile wide, with three and a half to seven fathoms water on it. The Frying Pan shoals extend twenty nautical miles from Bald Head light-house, and sixteen, seventeen, and eighteen feet water is found seventeen and eighteen nautical miles out from the light, 1851.
91. Shoaling of Cape Fear river bar thoroughly examined for purposes of improvement, 1852.
92. Changes of shore-line and hydrography determined at the Cape Fear entrances, N. C., 1858.
93. Changes of the Cape Fear bars and channels, 1857.
94. Changes at the entrance of Winyah bay and Georgetown harbor, and the washing away of Light-house point at the same entrance, 1853.
95. Maffitt's new channel, Charleston harbor, with the same depth of water as the ship channel, 1850.
96. The changes in Maffitt's channel, Charleston harbor, S. C., from 1852 to 1857.
97. Increase of depth developed in Maffitt's channel, Charleston harbor, S. C., 1858.
98. Changes in the main ship channel, Charleston harbor, 1855.
99. Changes in the channels at the entrance of Charleston harbor, 1852.
100. The remarkable discovery of continuous deep-sea soundings off Charleston, and of soundings in the depth of between four and five hundred fathoms beyond the Gulf Stream, 1853.
101. Development of the changes affecting the entrance to North Edisto river, S. C., 1856.
102. Discovery of a new channel between Martin's Industry (shoal) and the southeast breakers, Port Royal entrance, S. C., 1856.
103. Discovery of cold water at the bottom of the ocean below the Gulf Stream, along the coasts of N. and S. Carolina, Georgia, and Florida, 1853.
104. The discovery of the cold wall, alternate warm and cold bands, and various other features of the Gulf Stream, especially such as concern its surface and deep-sea temperatures, and its distribution relative to the shore and bottom of the ocean.
105. Various facts relative to the distribution of minute shells on the ocean bottom, of probable use to navigators for recognizing their positions.
106. Examination of Doboy, St. Simon's, and Cumberland entrances, 1855.
107. A shoal inside of the entrance to Amelia river, Fla., 1857.
108. Hetzel shoal, off Cape Cañaveral, Fla., 1850.
109. Temperature of 34° beneath the Gulf Stroam, thirty-five miles east of Cape Florida, at a depth of three hundred and seventy fathoms, 1855.
110. A harbor of refuge (Turtle harbor) to the northward and westward of Carysfort lighthouse, Florida reef, with a depth of water of twenty-six feet at the entrance, 1854.
111. A new passage, with three fathoms water, across the Florida reef to Legare harbor, under Triumph reef, (latitude $25^{\circ} 30^{\prime} \mathrm{N}$., longitude $80^{\circ} 03^{\prime} \mathrm{W}$. ,) which, if properly buoyed, will be valuable as a harbor of refuge, 1852.
112. A safe rule for crossing the Florida reef near Indian key, 1854.
113. A new channel into Key West harbor, 1850.
114. Cotidal lines for the Atlantic caast of the United States, 1854.
115. Rules for navigators in regard to the tidal currents of the coast, 1857.
116. Isaac shoal, near Rebecea shoal, Elorida reef; not laid down on any chart, 1852.
117. Channel No. 4, a northwest entrance into Cedar Keys bay, 1852.
118. Directions for entering the harbor from Crystal river offing, western coast of Florida peninsula, 1856.
119. A new channel discovered, leading into St. George's sound, (Apalachicola, Fla.,) at the east end of Dog island, and anchorage connected with it, 1858.
120. Shoals near the East and West passes of St. George's sound, (Apalachicola, Fla.,) and a new channel found between St. George's and St. Vincent's islands, 1858.
121. Mobile bay entrance bar; in 1832 only seventeen feet at low water could be carried over it; in 1841 it had nineteen, and in 1847 it had twenty feet and three-quarters, as shown by successive surveys, 1847.
122. The diminution, almost closing, of the passage between Dauphine and Pelican islands, at the entrance of Mobile bay, 1853.
123. Horn Island channel, Mississippi sound, 1852.
124. The removal of the east spit of Petit Bois island, in the hurricane of 1852 , opening a new communication between the Gulf and Mississippi sound, and the rendering of Horn Island Pass more easy of access by the removal of knolls, 1853.
125. The accurate determination of Ship shoal, off the coast of La., in connection with the site for a light-house, 1853.
126. An increase of depth of water on the bar of Pass Fourchon, La., 1854.
127. Deep-sea soundings in the Gulf of Mexico, 1855-'56.
128. Tidal phenomena of the Gulf, 1855.
129. The changes at Aransas Pass., Tex., as bearing on the question of a light-house site, 1853.
130. Co-tidal lines of the Gulf of Mexico, 1856.
131. On the effect of wind in disturbing the tides of the Gulf of Mexico, 1856.
132. Development of a bar at the entrance of San Diego bay, Cal., 1856.
133. A shoal inside of Ballast Point, San Diego bay, with only twelve and a half feet water; not laid down on any chart, 1852.
134. The determination of the position and soundings on Cortez bank, off the coast of Cal., 1853.
135. Complete hydrographic survey and determination of a point of rock on Cortez shoal, 1856.
136. Tides of San Diego, San Francisco, and Astoria, 1854.
137. The non-existence of San Juan island, usually laid among the Santa Barbara group, 1852.
138. Co-tidal lines of the Pacific coast, 1855.
139. Determination of Uncle Sam rock, 1855.
140. Investigation of the currents of Santa Barbara channel, 1856.
141. Red sand marking the inner entrance to the Golden Gate, 1855.
142. Channel sounded out between Yerba Buena and the Contra Costa, San Francisco bay, 1855.
143. A reef developed off the Contra Costa flats, San Francisco bay, Cal., 1858.
144. Whiting's rock, determined in position, near the "Brothers," at the entrance of San Pablo bay, Cal., 1858.
145. Further development of the extent of Commission rock, San Pablo bay, 1856.
146. Changes in the channel entrance of Hurnboldt bay or harbor, Cal., 1852 and 1853.
147. South channel, Columbia river, surveyed and made available to commerce, 1851. Changes of channels, their sonthward tendency, and a new three-fathom channel from Cape Disappointment, due west to open water, Columbia entrance, 1852 ; further changes, 1853.
148. The depth of water on the bars at the entrance of Rogue river and Umpquah river, Oregon, 1853.
149. A shoal at the northern entrance to the Strait of Rosario, W. T., giving good holding ground in thirty-three feet, 1854.
150. Boulder reef, northwent of Sinclair islend, Rosario strait, partly bare at unusually low tides and surrounded by kelp, 1854.
151. A bank of three and a half fathoms, about a mile off the southwest point of Sucia island, at the northern entrance of Washington sound, W. T., 1858.
152. Belle rock, in the middle of Rosario strait, visible only at extreme low tides, 1854.
153. Entrance rock, at the entrance of Rosario strait, 1854.
154. Unit rock, in the Canal de Haro, W. T., visible only at extreme low tides, 1854.
155. A three-fathom shoal in the Strait of Juan de Fuca, off the southeast part of Bellevue or San Juan island, 1854.
156. Allen's bank, Admiralty inlet, W. T., 1857.
157. A five-fathom shoal, in the Strait of Juan de Fuca, between Canal de Haro and Rosario strait, 1854.
158. A bank in eleven fathoms, off the southern entrance to Canal de Haro, 1854.
159. The non-existence of two islands at the northern entrance of Canal de Haro, laid down on charts, 1853.
160. Various surveys and charts of small harbors on the Pacific coast of the U. S., and a continuous reconnaissance of the entire western coast and islands adjacent, a great part of which was imperfectly known.
161. Winds of the western coast of the U. S., 1857.

Additional list for 1859.

1. Only eightew feet at mean low water found on the rock one mile to the southward of Seguin island, coast of Maine.
2. True position of the Hussey rock in Casco bay determined, correcting the erroneous one assigned on previous charts.
3. Determination of the position of the "Hue \& Cry," the "Old Proprietor," and other dangers off Cape Elizabeth, Me.
4. Development of a rock off Ogunquit, bare at low tides, and very little known.
5. A fishing bank sounded out off Wood island, coast of Maine.
6. Huzzey's rock, south of Fletcher's neck, Me., determined in position.
7. Development of a four-fathom bauk off Cape Porpoise, Me.
8. Determination of the position of a small rock with less than four feet at mean low water, near the channel, and in the vicinity of Great rock, Hyannis harbor, Mass.
9. The existence of a seventeen foot spot on the shoal off the battery, New York harbor; the extension of the shoal towards the channel, and the shoaling of the water generally between the shoal and shore.
10. The existence and character of sub-currents, ascertained as bearing on the physical con. ditions of New York harbor.
11. Changes developed in the shore-lines at the entrance of Little Annemessex river, Chesapeake bay.
12. Less water found off Cape Romain by preliminary examination, than has been heretofore assigned.
13. Further explorations in developing the character of the Gulf Stream in the Florida channel.

APPENDIX No. 9.

Letter to the Secretary of the Treasury, communicating the position of a sunken rock off Seguin island, coast of Maine, determined by Lieut. Comg. J. Wilkinson, U. S. N., assistant Coast Survey.

Coast Survey Station, Near Lane's Brook, Me., September 12, 1859.
SIR : I have the honor to communicate as additional to the information contained in my letter of August 30, which reported the development by Lieut. Comg. J. Wilkinson, U. S. N., assistant Coast Survey, of a less depth than has heretofore been assigned for a sunken rock off Seguin island, coast of Maine ; the following bearing, etc., for the determination of its position, since furnished by that officer.
"Bearing.-From Seguin island light-house, S. $9^{\circ} 30^{\prime}$ E., true ; S. a little west by compass.
"Distance.-From south point of Seguin island, three-quarters of a nautical mile.
"Range.-Pond island light-house, just open on the southwest side of Seguin island."
The rock, as before stated, is surrounded by deep water, but has only eighteen feet on it at mean low tide, and lies in the track of vessels bound into the Kennebec river.

I would respectfully request authority to publish this letter in the ustal form, as a notice to mariners.

Very respectfully, yours,
Hon. Howell Cobb, Secretary of the Treasury.

A. D. BACHE, Superintendent.

APPENDIX No. 10.

Letter to the Secretary of the Treasury, communicating bearings and ranges from the true position of the Hussey rock in Casco bay, as determined by Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey.

Philadelphia, Ociober 14, 1859.
Sir: I have the honor to report that in the progress of the soundings made this season in Casco bay, Me., by the party of Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey, the true position of the Hussey rock has been determined and found to be more than a quarter of a nautical mile northwest of the position assigned hitherto on charts of the vicinity. The rock is small and has only twelve feet on it at mean low water. The following bearings and ranges from it are taken from the report of Lieut. Comg. Wilkinson :
"Bearings.-Middle of Green island, SE. $\frac{1}{4} \mathrm{E}$. , by compass (S. $59^{\circ} \mathrm{E}$. true.)
"Cape Elizabeth east light-house, SW. $\frac{3}{4} \mathrm{~S}$. , southerly by compass (S. $23^{\circ} 30^{\prime} \mathrm{W}$. true.)
"Portland light-house, SW. by W. $\frac{8}{4}$ W., by compass (S. 52° W. true.)
"Ranges.-South end of Ram island and Portland light-house, in range.
"Poorduck church, three-quarters of a point open from White Head Bluff.
"School-house on Long Island, in range with the east end of Marsh island."
"A buoy that formerly marked the position of the Hussey rock parted from its moorings several years ago, and has not yet been replaced. Luckse's sound is a fine harbor of refuge for ships that are unable to work into Portland, and is resorted to by such, especially during the
winter when the wind is from the northward and westward. The Hussey lies directly in their track and should be marked by a buoy."

I would respectfully request that a copy of this communication may be fnrnished to the LightHouse Board, and also authority for publishing it in the usual form as a notice to mariners.

Very respectfully, yours,

A. D. BACHE, Supt. U. S. Coast Survey.

Hon. Howell Cobr, Secretary of the Treasury.

APPENDIX No. 11.

Letter to the Secretary of the Treasury reporting the development of a rock off Ogunquit, coast of Maine, by Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey.

Coast Sunvey Office, November 9, 1859.
Sir: I have the honor to communicate that in the progress of hydrographic operations on the coast of Maine, in August last, Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey, developed the position of a rock, bare at low tide, off Ogunquit. It is about a mile and a half (nautical) from that village, and was unknown to the residents of the adjoining coast. The rock rises boldly from the bottom, from four to seven fathoms of water being found in its immediate vicinity, and in the opinion of Lieut. Comg. Murray should be marked by a spindle.

I would respectfully request that a copy of this letter may be furnished to the Light-house Board, and that authority may be given for publishing it in the usual form as a notice to mariners.

Very respectfully, yours,
A. D. BACHE,

Superintendent.

Hon. Howell Cobb,
Secretary of the Treasury.

APPENDIX No. 12.

Report of Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey, on determining the position of a small rock at the entrance to Hyannis harbor, Massachusetts.

United States Coaft Survey Steamer Corwin, Portland, Maine, July 29, 1859.

SIr: In obedience to your directions I have examined the locality in the main entrance to Hyannis harbor, where a rock was reported by Commander M. Smith, U. S. N., Light-house Inspector of the Second District, and succeeded in finding and determining its position. After running many lines and sweeping carefully over the ground within a hondred yards of the spar buoy, which has been placed to mark its supposed position or vicinity, without finding it, I obtained information which satisfied me that it was not situated in the channel, but near the

Great Rock. It is about eight feet square, and upon its crest there is a depth of three and a half feet at mean low water, increasing suddenly to twelve feet all around it.

The following are bearings and ranges from spar buoy "red No. 2:"
Centreville church spire, NW. by X. (westerly) true, NW. (westerly) by compass.
Hyannis west spire, north (easterly) true, N. by E. by compass.
Point Gammon light-house E.SE. true, SE. by E. $\frac{1}{4}$ E. by compass.
From the new rock the bearings are:
Centreville church spire, NW. by W. (westerly) true, NW. $\frac{1}{4}$ W. by compass.
Hyannis west spire, N. $\frac{1}{4}$ W. true, N. $\frac{3}{4}$ E. by compass.
Point Gammon light-house, SE. by E. $\frac{3}{4}$ E. true, SE. $\frac{3}{4}$ E. (easterly) by compass.
Great Rock spindle bears N.NW. $\frac{1}{2}$ W. true, or N. by W. $\frac{1}{2}$ W. by compass, and is distant two hundred yards.

Range.-The new rock and Great Rock spindle in range with two houses situated on the top of a low sand hill, distant five hundred yards from the foot of the western wharf, and two hundred yards from the beach.

The spar buoy "red No. 2" bears W. $\frac{1}{4}$ N. true, or W. by N. (northerly) by compass, and is distant three hundred and twenty-five yards.

Very respectfully, your obedient servant,
J. WILKINSON,
U. S. N., Assistant Coast Survey.

Prof. A. D. Bache,
Superintendent U. S. Coast Survey.

APPENDIX No. 13.

Letter of the Superinterdent, addressed to the President of the New York Chamber of Commerce, with the report of Lieut. Comg. T. A. Craven, V.S. N., stating the result of an examination of the Battery shoal.

Coast Survey Station,
Near Lane's Brook, Maine, September 27, 1859.
Dear Sir: The report that one or more vessels had struck upon the shoal off the Battery, where it was generally supposed there was deep water, induced one of the pilot commissioners, George W. Blunt, esq., to call my attention to the desirableness of a resurvey of the shoal. It was assigned to Lieut. Comg. T. A. Craven, then assistant in the Coast Survey, who having been charged with the hydrography of New York harbor, for the commissioners on harbor encroachments, was familiar with every part of the shoal. His report, recently presented to me, gives in detail the changes which have occurred, and shows prospectively those which may be expected. It is important, and I therefore beg leave through you to call the attention of the Chamber of Commerce to it. The filling up between pier No. 1 and the Castle may readily be avoided by dredging, and no doubt the entire completion of the Battery work would retard the now rapid increase of the shoal. The shoal must, however, in a general way, be related to the new shore, line as the old was to the former shore, and thus the shoal while
changed in form must be pushed out to a distance, not equal, but corresponding to the addition to the shore-line of the Battery.

> Youre, respectfully,

A. D. BACHE, Superinterdent U. S. Coast Survey.

Pelatiah Perit, Esq.,

President Chamber of Commerce, New York.

Report of Lieut. Comg. T. A. Craven, U.S.N., to Prof. A. D. Bache, Superintendent Coast Survey, on the results of the resurvey of the shoal off the New York Battery.

New York, September 20, 1859.
Sir: In compliance with your directions in July last, I made an examination of the shoal off the Battery, New York, for the purpose of ascertaining what changes have taken place in that locality, and I herewith submit to you a map of the survey, scale $\frac{1}{6 \pi}$, on which I have also had the soundings placed from the surveys of 1855 and 1856 for comparison.
The soundings of 1855 and 1856 are in red figures, and the curves are also distinctly drawn.
In order to make this discussion as explicit as possible, I divide the shoal into sections, and call your attention to each position separately: you will be much interested in observing the rapidity with which the shoal is accumulating, and with what regularity the deposits are being made:

Section I, from pier No. 1, North river, to Castle Garden.
In the angle formed by the line of the Battery and the pier there has been a very rapid filling up, the 3 -fathom curve has been pushed outward eighty yards beyond the line of 1856 ; the 17 feet spot in the outer part of this section is extending towards pier No. 1, and there is an average decrease of three feet in depth throughout this section.

Section II extends to the 3 -fathom curve of 1856.
In this portion of the shoal the change has been not less considerable than in the angle of pier No. 1. The 3 -fathom curve was, in 1856, about seventy-five yards south of the Castle, it will be seen that it has extended towards the Castle wharf, and embraces a considerable area where formerly we had five fathoms; outside of this curve, we find in this section a general decrease of five feet in the depth.

Section III embraces the general shoal to the southeastern portion of the curve of 3 fathoms.
Excepting in the part already indicated, there has been no material change in the general contour of the shoal, but in following the curve to its southernmost point it will be seen that it has extended about one hundred feet to the southward.

Section $I V$ extends from last section to the East river piers.
In calling your attention to this section, I will merely refer to the knoll lying about W.SW. from pier No. 1, East river. This knoll has eighteen feet water upon it, is very small, and has deep water outside and close to it; there is no change in depth on the knoll, but it is extending itself towards the north, and it will be seen that in that direction there is a decrease of two feet in the depth near the shoal.

East of this knoll there is no apparent change. Drawing a waved line from the last mentioned
knoll to the Castle Garden, you mark out the eddy waters of this part of the river; the currents of the two rivers meeting here at ebb and dividing at flood; this portion of the stream being too sluggish to carry off matters held in suspension, they are rapidly and constantly deposited.

Although from natural causes there must always have been a shoal off this point of the island, its accumulation has been evidently aided to a startling degree by the extension of the Battery. The currents which formerly flowed between the Castle Garden and the shore, made the greater portion of their deposit so near the shores as to cause no great injury to the operations of commerce, and the process of deposit was so gradual that it would have required an interval of many years ere the shoal would have seriously encroached on the waters of the bay, but the battery extension has already accomplished that which would have required a half century of the operations of nature, having pushed the shoal out as the shore line was changed.

In illustration of this assertion, we have but to look at the extraordinary heaping up of the earth in the angle formed by the Battery wall aud pier No. 1 ; a heaping up, made by the ebb current of the North river, which as it comes around the pier is now turned back and formed into eddies by the Battery walls. This current formerly ran through the spare now covered by the filling in, and poured the suspended matter into the East river, off White Hall, from whence it was carried away and distributed in the deep waters of the bay, but now a large portion of the sediment brought down by the ebb is doubtless filling in the space here with great rapidity; its effects are still more strongly visible in the section off the Castle, where we see changes of six and eight feet in the space of three years; this is due to the united efforts of the ebbs from the two rivers, and the time cannot be far distant when, unless dredging is resorted to, the entire space from the Castle to the head of pier No. 1 will be quite filled in.

In addition to the material damage done by thus forcing out into the stream a shoal which was heretofore of little consequence, it may safely be presumed that in filling in for the Battery extension very liberal supplies have been contributed to the shoal from the dirt carts, as without the security of a regular sea wall, immense quantities of the loose earth must from time to time be washed away and added to the shoal, and it is probable that when the slowly progressing enlargement is completed and the walls finished the changes will be less rapid.

The injury is now without other remedy than that of hastening to its completion a work which has proved so seriously disastrous to this already crowded part of the harbor, and by legislation preventing any extensions beyond the lines of the city as defined by the harbor commissioners.

I am, very respectfully, your obedient servant,

Prof. A. D. Bache,

Superintendent U. S. Coast Survey.

RHPORIT ON HARBOR ENCROACHMENTS.
Mr. G. W. Blunt presented the report of the committee on the subject of harbor encroachments, as follows:

The committee appointed to report upon the evils arising from the extension of the Battery, having been requested to extend their inquiries in order to ascertain if any and what other
abuses existed in the harbor, beg leave to report a few of the most important, and to propose a mode of abating or remedying them.

First in order among the abuses is that of an encroachment. The committee would mention West Washington Market, where five acres have been taken or filled in from the waters of the North river; likewise pier No. 51, North river, extended thirty-three feet beyond the exterior line established by law. These are the acts of the city authorities.

The Lowber extension at the foot of Fourteenth street, East river, and the piles just driven at the outer end of pier No. 29, East river, which pier was already some twenty-five feet beyond the established limits, are instances of encroachments by private parties.

Next in order is the sewerage. It has been ascertained that the slips in the harbor have been filled up nearly eighteen inches each year, by material discharged from the sewers, of which only four out of one hundred and ten discharge at the outer end of the piers, the remainder discharge into the still waters of the slips or basins, where there is no current to carry off the deposits.

Dumping grounds.

These are the places where the dirt swept from the strects of the city is deposited by order of the city inspector. They are eight in number, viz: At the foot of Vesey, Watts, Gansevoort, and Twenty-sixth streets, North river; Roosevelt, Stanion, Fifth, and Twenty-third streets, East river.

The dirt is continually being dropped into the waters of the harbor and filling up the slips, from the practice of heaping it up on the piers and bulkheads. During last month the pier at the foot of twenty-third street, East river, gave way from the accumulation of dirt upon it, and 3,000 cart loads were thus thrown into the river.

Remedies.

All parties encroaching upon the waters of the harbur, beyond the established limits, should be punished by sufficient penalties, and the harbor commissioners should have power to remove the encroachments at once, the offending parties to pay all expenses incurred in such remoral. All new sewers should be carried to the outer ends of the piers, (which we believe to be the intention of the Croton Aqueduct department, which has charge of the construction of sewers,) and, where practicable, the termination of those now built should be changed so as to empty in like manner with the new ones. The cisterns at the corners of the streets communicating with the sewers should invariably be cleaned ont weekly, which would be the great preventive of filling up the slips from the sewers.

No dumping should be permitted upon or near the piers or bulkheads, under a penalty; and the city inspectors should be required to have scows or other vessels provided and ready to receive the dirt from the carts, there being no good reason why dirt should have a preference over all other articles in the use of our piers and bulkheads.

The shore-line belonging to the State of New York, in the harbor of New York, under the control of the harbor commissioners, is over seventy miles in extent; no part of it can be extended into the rivers beyond the established limits, without doing injustice to the harbor and injustice to those who respect the law.

An instance is before us in the case of pier No. 51, North river, extended beyond the line as above stated; the comptroller of the city having allowed the lessee of pier 52 one thousand dollars reduction on his rent, on account of the damage done to him by the illegal extension.

The committee would recommend to the chamber that application be made to the legislature to legalize the remedies suggested in this report, and to the corporation of this city, that measures be taken to finish the extension of the Battery at once.

In closing their report, the committee would bear testimony to the great and continuedinterest shown by Professor A. D. Bache, Superintendent of the United States Coast Survey, for the preservation of our harbor, in having obtained and furnished to it all the information necessary to the forming of an intelligent opinion upon the subject under consideration.

GEORGE W. BLUNT.
ROBERT L. TAYLOR.
CHARLES H. MARSHALL.
ROBERT B. MINTURN.
ROYAL PHELPS.
JOHN D. JONES.
GEORGE OPDYKE.
RUSSELL STURGIS.

New York, November 1, 1854.

APPENDIX No. 14.

Tide tables for the use of navigators, prepared from the Coast Survey observations by A. D. Bache, Superintendent. (Furnished, by authority of the Tveasury Department, to E. \& G. W. Blunt, New York, and revised October, 1859.)

The following tables will enable navigators to ascertain the time and height of high and low water in some of the principal ports of the United States. The results are approximate, the observations being still in progress; but they may safely be used for practical purposes. The number of places of observation, and the time during which many of them have been made, are steadily on the increase as the Coast Survey advances.

The tides on the coast of the United States, on the Atlantic, Gulf of Mexico, and Pacific, are of three different classes. Those of the Atlantic are of the most ordinary type, ebbing and flowing twice in twenty-four hours. and having but moderate differences in height between the two successive high waters or low waters, one occurring before noon, the other after noon.

Those of the Pacific coast also ebb and flow twice during twenty-four hours; but the morning and afternoon tides differ very considerably in height, so much so that at certain periods a rock which has three feet and a half water upon it at low tide may be awash on the next succeeding low water. The intervals, too, between successive high and successive low waters may be very unequal.

The tides of ports in the Gulf of Mexico, west of Cape St. George, ebb and flow, as a rule, but once in twenty-four hours, or are single day tides. At particular parts of the month there are two small tides in the twenty-four hours. The rise and fall in all these ports is small. East of Cape St. George the rise and fall increases; there are two tides, as a rule, during the twenty-four hours, and the daily inequality referred to in the Pacific tides is large.

These peculiarities require a different way of treating the cases, and in some of them separate tables.

I propose to enable the navigator to find, from the Nautical Almanac and the following tables, the time and height of high and low water at any date within the ordinary range of difference produced by winds and other variable circumstances. I will endeavor to divest the matter of unfamiliar technical expressions as far as practicable, though, for shortness' sake, some such terms may be employed after defining them. The discussion of the Gulf tides has not been carried so far as to enable me to present the results in as definite a form as the others.

As is well known, the interval between the time of the moon's crossing the meridian (moon's transit) and the time of high water at a given place is nearly constant; that is, this interval varies between moderate limits, which can be assigned. The interval at full and change of the moon is known as the establishment of the port, and is ordinarily marked on the charts. As it is not generally the average of the interval during a month's tide, it is a less convenient and less accurate quantity for the use of the navigator than the average interval which is used on the Coast Survey charts, and is sometimes called the " mean" or "corrected establishment."* The following table gives the principal tidal quantities for the different ports named in the first column, where they are arranged under specific heads. The third column of the table gives the mean interval, in hours and minutes, between the moon's transit and the time of high water next after the transit; the fourth, the difference between the greatest and the least interval occurring in different parts of the month, (lunar.) A simple inspection of this column will show how important it is to determine these changes in many of the ports where they amount to more than half an hour, or to more than fifteen minutes from the average interval. The fifth, sixth, and seventh columns refer to the height of the tide. The fifth gives, in feet, the average rise and fall, or average difference between high and low water. The sixth gives the greatest difference, commonly known as the rise and fall of spring tides; and the seventh the least difference, known as the rise and full of the neap tides.

The average duration of the flood or rising tide is given in the eighth column; of the ebb or falling tide in the ninth; and of the period during which the tide neither rises nor falls, or the "stand," in the tenth. The duration of the flood is measured from the middle of the stand at low water to the middle of the stand at high water; so that the whole duration from one high water to the next, or from one low water to the next, should be given by the sum of the numbers in the eighth and ninth columns. At most of these places given in the list a mark of reference has been established for the height of the tide. I have omitted the description of these marks (except in the following localities) as of no particalar interest in this connection.

BENCH-MARKS.

Boston.-The top of the wall or quay at the entrance of the dry dock in the Charlestown nary yard is fourteen feet $\frac{7}{105}$ (or 14.76 feet) above mean low water.

New York.-The lower edge of a straight line cut in a stone wall, at the head of a wooden wharf on Governor's island, is thirteen feet $\frac{97}{10}$ (or 13.97 feet) above mean low water. The letters U. S. C. S. are cut in the same stone.

* This term was Introduced by the Rev. Mr. Whewell, who has done so much for the inveatigation of the laws of the tides.

Old Point Comfort, Va.-A line cut in the wall of the light-house, one foot from the ground, on the SW. side, is eleven feet (11 feet) above mean low water.

Charleston, S. C.—The outer and lower edge of embrasure of gun No. 3, at Castle Pinckney, is ten feet $\frac{1_{1}^{3} 0^{3}}{}$ (10.13 feet) above mean low water.

TABLE I.
Tide table for the coast of the United States.

* Erom Major J. 1. Graham 'a obeervation.

TABLE I-Continued.

TABLE I-Continued.

PORT.	STate	intv. betwern time of moon's tranait and tinc of high WATER.		ries and fall,			meak doration or-		
									宮
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
colst of merti amd bedth carolina, agorgin, and plozida-Continued.		h. m.	A. m.	Feet.	Feet.	Feet.	A. m .	$\begin{array}{r} \text { h. m. } \\ 525 \end{array}$	h. m
Key West,	Florida	92	17	1.3	1.6	1.0	659		012
Tortugasdo.............	956	132	1.2	1.5	0.6	643	540
Tampa Bay, (Egtnont Kes)do..............	$\begin{aligned} & 1121 \\ & 1315 \end{aligned}$	133	1.4	1.8	1.0	636	611	43
Cedar Keye, (Depot Key)do.............		$\begin{aligned} & 155 \\ & 20 \end{aligned}$	2.6	3.2	1.6	612	613
St. Mark's	do	$\begin{aligned} & 1315 \\ & 1338 \end{aligned}$		2.2	2.9	1.4	612	6 II	. ${ }^{\text {a }}$
mbetern const.									
San Diego.	Califurnia..........	938	135	3.7	5.0	2.3	622	60	30
San Pedrodo..............	939	148	3.7	4.7	2.2	618	65	30
Cuyter's Hartor.	. .do..............	925	12	3.7	5.1	2.8	613	65	
San Luis Obispo do	108	159	3.6	4.8	2.4	625	558
Montereydo..............	1022	40	3.4	4.3	2.5	631	62	35
Bouth Faralione............ do..............	1037	116	3.6	4.4	2.8	618	69	.
Gan Franciseo, (north beach)do..............	126	14	3.6	4.3	2.8	638	551	34
Mare Island, (Ban Francisco bay)do..............	1340	115	4.8	5.2	4.1	613	67
Benicia .	..do..............	1410	10	4.5	5.1	3.7	626	559
Ravenswood.do.	1238	57	6.3	7.3	4.9	615	611
Bodegado..............	1117	154	3.6	4.7	2.7	619	559
Humboldt Baydo..	122	111	4.4	5.5	3.5	619	60	-
Port Orford	Oregon Territory...	1126	16	5.1	6.8	3.7	619	67	39
Astoriado..............	1242	113	6.1	7.4	4.6	63	628	33
Nee-ah Harbor..	Wabkingten Terr . .	1233	128	5.6	7.4	4.8	620	- 6
Port Townshend*	...do..............	349	13	4.6	5.5	4.0	634	552
steilacoom*............................	.. do...............	446	16	9.2	11.1	7.2	63	625	28
Semi-ah-moo Bay*......................	.do...............	450	12	5.7	6.6	4.8	611	619	26

* See remark: on page 144 and following

Notr.-The mean interval in columi 3 has been incressed by 12 h . 26 m . (half a mean Junar day) for norae of the porta in Delaware river and Chesapenke bay, so an to show the succession of times from the mouth. Therefore, 12 h .26 m , ought to be subtracted from the essablishments which are greater than that quantity before using them.

The foregoing Table I gives the means of determining, roughly, the time and height of high water at the several ports named. The hour of transit of the moon preceding the time of high water is to be taken from the Almanac, and, the mean establishment being added, the time of high water results. Thus:

Example I.-It is required to find the time of high water at New York on November 5 , 1854. The American Almanac gives $0 h$. Om. as the time of transit of the moon on that day. The mean interval for New York, from Table I, column 3, is $8 h$. $13 m$., which, as the transit was at $0 h$., is, roughly, the time of high water. The moon being full, the height is that of spring tides of column 6, viz: 5.4 feet. If the soundings on the chart are reduced to low water spring tides, 5.4 feet are to be added to them to give the depth at high water. If the soundings are reduced to mean low water, the rise and fall of mean tides being 1.1 foot less than for springs, the rise or increase of depth will be balf of this, or 0.6 of a foot less than 5.4 feet, which is 4.8 feet, or nearly four feet ten inches.

Example II.-Required the time of high water at Boston on January 23, 1851. From the

American Almanac we find the time of the moon's southing or transit, on that day, 5 h .18 m . a. m., and from Table I the mean interval at Boston dry dock is 11 h .27 m .

```
We have then 5h. 18m. time of transit;
To which add 11 27 mean interval from Table I.
    16 45 time of high water, or 4h. 45m. p.m.
```

If the Greenwich Nautical Almanac is used, add $2 m$. to the time of transit of Greenwich for every hour of west longitnde, and its proportional part for less than an hour. It will suffice to take the half hour which may be over any number of hours, as the correction for less than this would be less than one minute, and need not be taken into account. Thus, Boston is 4 h .44 m . west of Greenwich. The correction to be applied to the time of transit of the moon is, for the four hours, eight minutes, and for the 44 minutes, one minute. The time of transit on the date assumed in the preceding example is $17 h .9 \mathrm{~m}$. of the 22 d , or 5 h .9 m . a. m. of the 23 d , to which add nine minutes; the correction just found gives 5 h . 18 m ., as before ascertained from the American Almanac.

In using the United States Nautical Almanac, in the astronomical part of which the transits of the moon are given fer the meridian of Wasington, the corrections required may, in this first approximation for the Atlantic coast, be neglected. To find the time of the next following low water add from Table I the duration of ebb tide.

This gives $4 h .45 \mathrm{~m}$. p. m., time of high water.

6	13	duration of ebb tide from Table I.
10	58	p. m.

By subtracting the duration of flood tide we obtain the time of the preceding low water, 10%. 32 m . a. m., recollecting that $4 h .45 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. is the same as $16 h .45 \mathrm{~m}$. reckoned from midnight.

The height of this tide, corresponding to the transit of $5 h$., will bring it nearly to a neap tide, and the rise and fall obtained from column 7, Table I, is 8.5 feet. The next following high water may be had by adding to the time of low water the duration of flood from Table I. Thus:

10h. 58 m. p. m., time of low water January 23.

Sum | 6 | 13 | duration of flood from Table \mathbf{I}. |
| ---: | :--- | :--- |
| 17 | 11 | or $5 h .11 m$. on January 24. |

On having found the time of high water, the time of the next following high water may be found by adding the duration of flood and ebb together, and their sum to the time of high water found, thus :

6h. 13 m . duration of ebb tide, from Table I.

Sum $\begin{array}{rll} & 6 & 13\end{array} \quad$| duration of flood. |
| :--- |
| 12 | 26 duration of whole tide.

Sum | 4 | 45 | p. m., January 23 , time of high water. |
| ---: | :--- | :--- |
| 17 | 11 | or $5 h .11 m$. a. m., 24th January, time of the next succeeding high water. |

Subtracting the same quantity will give the time of the preceding high water, thus:
$4 h .45 \mathrm{~m}$. p. m., or $\mathbf{1 6 h} .45 \mathrm{~m}$. from midnight, is the time of high water.
$12 \quad 26$ duration of flood and ebb tide.
$4 \quad 19$ a. m. of the 23 d for the preceding high water.

The duration of the flood and the ebb being reckoned from the middle of one stand or slack water to the middle of the next, the time of beginning of stand of ebb or flood will be found by subtracting half the duration of stand or slack water given by column 10 , Table I, from the time of high or low water, and the time of the end of the stand of ebb or flood by adding the same. A nearer approximation to the times and heights of high water may be obtained by the use of Tables II and III.

TABLE II.
Interval between the time of moon's transit and the time of high uater for different hours of transit, and for several different ports.

Time afmoon's transit.	Boston, Mass.	New York, N. \mathbf{Y}.	Philadelphia, Pa.	Old Pt. Comfort, Va.	Baltimore, Md.	Emithville, N. C.	Cbarleston, S. C.	Fi. Pulaski, Sa vannah, Ga.	Key West, Fia.	San Francisco, Cal.
h. m.	3. m.	h. m.	2. 72	h. m.	h. m.	h. m.	4. m.	h. m.	h. m.	h. m.
00	1138	820	131	833	$\begin{array}{lll}6 & 47\end{array}$	726	738	730	926	125
030	1133	818	188	827	642	721	733	725	$9 \quad 19$	1159
10	1128	815	125	821	637	716	727	719	912	1153
130	1124	810	121	815	631	713	721	715	96	1147
20	1120	86	118	89	626	79	716	711	90	1141
230	1116	80	114	84	681	76	712	78	855	1136
30	$11 \quad 13$	755	111	80	$6 \begin{array}{ll}6 & 17\end{array}$	74	7-8	76	851	1133
330	1110	752	18	756	6.13	73	75	75	850	1133
40	117	752	16	732	6 11	72	72	74	849	1138
	116	752	13	749	610	73	72	73	853	1146
	116	753	10	748	610	74	73	74	857	1155
530	11.9	756	059	750	613	76	77	76	97	$12 \quad 3$
60	1113	759	059	753	619	79	712	78	917	1211
630	1119	85	11	80	$6-25$	$7 \quad 13$	$7 \quad 19$	712	988	1216
70	1125	811	17	87	632	$\begin{array}{ll}7 & 17\end{array}$	724	716	939	12 29
730	1132	$8 \quad 17$	115	815	639	723	730	720	945	[1 28
80	1138	823	123	824	644	728	738	728	952	1234
830	1143	897	129	833	649	733	745	734	$9 \quad 54$	1237
90	1147	832	134	840	652	737	748	739	956	1230
930	1148	834	139	645	654	T 39	750	742	953	1234
100	1149	635	142	- 48	653	740	750	743	951	1230
$10 \quad 30$	1148	834	143	848	652	740	747	741	945	1224
110	11.4	831	141	846	6 50	736	744	737	939	$12 \quad 17$
1130	1143	825	137	840	648	730	741	734	932	12 g

TABLE III.
Showing the rise and fall of tides, and corrections to be applied to determine the depth at high water of soundings on charts referred to mean low water, and to low water spring tides.

Time of moon's tranait.	Boston, Mass.			New York, N. Y.			Philadelphia, Pa.			Old Point Comfort, Va.			Baltimore, Md.			Time of moon's transit.
	A.	B.	C.	A.	B	C.	A.	B.	0.	A.	B.	0.	A.	B.	C.	
Howr.	Freet.	Feet.	Fsat.	Fret.	Feed.	Feet.	Feet.	Feet.	Feet.	Hower.						
0	11.2	10.6	11.3	4.9	4.5	4.9	B. 3	6.2	6.3	2.9	2.6	2.8	1.5	1.4	1.6	0
1	11.3	10.6	11.3	4.9	4.5	4.9	6.4	6.4	6.5	3.0	2.7	3.0	1.5	1.4	1.6	1
2	11.2	10.5	11.2	4.7	4.4	4.8	6.6	6.5	6.6	2.9	2.7	2.8	1.5	1.3	1.5	2
3	10.6	10.3	11.0	4.3	4.2	46	6.6	8.5	6.6	2.6	2.6	2.8	1.4	1.3	1.5	3
4	10.0	10.0	10.7	3.8	4.0	4.4	6.4	6.4	6.5	2.3	2.4	2.7	1.3	1.2	1.4	4
5	8.2	9.7	10.4	3.5	38	4.2	6.1	6.2	6.3	2.1	2.3	2.6	1.1	1.1	1.3	5
6	9.8	9.4	10.1	3.3	3.7	4.1	5.7	5.9	5.0	2.0	2.2	2.5	0.9	1.1	1.3	6
7	8.6	9.3	10.0	3.3	3.7	4.1	5.4	5.6	5.7	2.0	2.3	2.5	0.8	1.1	1.3	7
8	8.9	9.5	10.2	3.6	3.8	4.2	5.2	5.3	5.4	2.2	2.4	. 1.6	1.0	1.2	1.4	8
9	9,4	9.7	10.4	4.0	4.0	4.4	5.4	5.4	5.5	2.5	2.5	2.8	1.1	1.3	1.5	9
10	10.1	10.0	10.7	4.5	4.3	4.7	5.7	5,7	5.8	0.8	2.7	2.8	1.3	1.4	1.6	10
11	10.7	10.3	11.0	4.8	4.5	4.9	6.0	6.0	6.1	\$.0	2.8	3.0	1.4	1.4	1.6	11

TABLE MI-Continued.

Time of moon's transit.	Emithville, N. C.			Charleston, S. C.			Fort Pulaski, Savannah entrauce.			Key Wext, Fla.			Sen Francisco, Cal.			Time of muon's traneit.
	A.	B.	c.													
Howr.	Feet.	Feet.	Feet.	Feet.	Fect.	Feet.	Hour.									
0	5.2	4.8	5.1	6.0	5.5	6.0	7.8	7.4	7.8	1.6	1.4	1.6	4.5	4.0	4.4	
1	5.1	4.8	5.1	5.9	5.5	5.9	7.9	7.4	7.9	1.6	1.4	1.6	3,9	3.7	4.1	1
2	5.0	4.7	5.0	5.7	5.4	5.8	7.6	7.3	7.7	1.5	1.4	1.5	3.7	3.6	4.1	2
3	4.6	4.5	4.8	5.3	5.2	5.6	7.1	7.0	7.5	1.4	1.3	1.5	3.5	3.5	4.0	3
4	4.3	4.4	4.7	4.7	4.9	5.4	6.5	6.7	7.2	1.8	1.2	1.4	3.1	3.3	3.8	4
5	4.0	4.3	4.6	4.4	4.8	5.2	6.1	6.5	70	1.0	1.1	1.3	2.8	3.1	3.6	5
6	3.8	4.2	4.5	4.2	4.6	5.1	5.8	6.4	6.8	1.0	1.1	1.3	2.7	3.1	3.6	6
7	3.8	4.1	4.4	4.3	4.7	5.1	6.0	6.5	6.9	1.0	1.1	1.3	3.0	3.3	3.7	7
8	4.0	42	4.5	45	4.8	5.3	6.4	6.7	7.1	11	1.2	1.3	3.4	3.5	3.9	8
9	4.3	4.3	4.6	5.0	5.0	5.5	6.9	6.9	7.4	1.3	1.3	1.4	3.8	3.6	4.1	9
10	4.7	4.6	49	5.5	5.3	5.8	7.4	7.0	7.6	1.4	1.3	1.5	4.0	3.8	4.2	10
11	5.0	4.7	5.0	5.9	5.5	5.9	7.8	7.2	7.8	1.6	1.4	1.6	4.2	3.8	4.3	11

In these, the variations in the interval between the moon's transit and high water are shown for some of the principal ports contained in Table I. These variations of intervals depend upon the age of the moon, and as they go through their values in half a lunar month, are known as the half-monthly inequality of interval. The table extends from the $0 h$. of transit, midnight of the calendar day, or full of the moon, to $11 \frac{1}{2}$ hours. The numbers for change of the moon correspond to those of $0 h$., and for 13 hours (or $1 h . p . m$. of the calendar day) to 1 hour, and so on up to 23 hours. The ports for which the numbers are given are designated by the heading of the columns.

The mean interval, it will be seen, does not occur at full and change, but nearly two days afterwards, on the Atlantic coast. At Key West it occurs more nearly at full and change, and at San Francisco still more nearly.

The same remark applies to the heights; spring tides occur about two days after the full and change of the moon, and neaps two days after the first and last quarters. The use of this table of nearer approximation is quite as simplo as that of Table I.

Rule to find the time of high water-Look in the Almanac for the time of moon's transit (or southing) for the date required. In the table corresponding to that time, will be found the number to be added to the time of transit.

Example III.-Required the time of high water at New York, October 1, 1856. Using the United States Nautical Almanac, we find the time of moon's transit $1 h .24 m$., astronomical reckoning, or $1 h .24 \mathrm{~m}$. p. m., calendar time. From Table II, we have, under the heading of New York, for 1 h .30 m ., (the nearest number to the 1 h .24 m . in the table,) 8 h .10 m .
Thus, to $\quad 1 h .24 m$., time of moon's transit,
Add $\quad 8 \quad 10$ interval found from Table III.
The sum, $\overline{9} 34 \quad$ p. m., is the time of high water on the 1 st of October, 1856.
If the sum of these numbers had exceeded twelve, the tide would have belonged to October 2 , and we must have gone back to the transit of the day before, and computed with it, to obtain the tide of October 1.

Rule to find the height of high water.-Enter Table III, column 1, with the time of moon's transit. In the column headed with the name of the place, and marked A, will be found the rise and fall corresponding to the time of transit; in column B, the number to be added to
soundings on the chart, where the soundings are given for mean low water; in column \mathbf{C}, the number to be added to charts of which the soundings are given for low water, spring tides.

In the foregoing example, (III,) the time of transit being between 1 and 2 hours, we find from Table III, the rise and fall of tides on 1st October, 1856, between 4.9 and 4.7 ; the number to be added to soundings given for mean low water 4.5 feet, (column B,) and for low water spring tides, (column C,) 4.9. feet.

Having found the time of high water, that of low water may be obtained nearly by adding the duration of ebb from column 9, Table I. The time of the next preceding low water may be found by subtracting the duration of flood from column 8, Table I. The time of the next following high water may be found by adding the duration of both flood and ebb; and of the next preceding high water, by subtracting the same duration of the whole tide.

Example IV.-To find the next high water following that of Example III.
The duration of flood, column 8, Table I, for New York, is 6 h . 0 m. ; and of ebb, from column 9 , is $6 h .25 \mathrm{~m}$.; the sum is $12 h .25 \mathrm{~m}$.

TIDES OF THE PACIFIC COAST.
On the Pacific coast there is, as a general rule, one large and one small tide during each day, the height of the two successive high waters occurring one a . m . the other p . m . of the same twenty-four hours, and the intervals from the next preceding transit of the moon are very different. The inequalities depend upon the moon's declination; they disappear near the time of the moon's declination being nothing, and are greatest about the time of its being greatest. The inequalities for low water are not the same as for high, though they disappear and have the greatest value at nearly the same times.

In Puget Sound the inequalities for the interval of high water and for the height of low water follow this rule, but those for the interval of low water and height of high water disappear about one day before the moon's declination is greatest, and are greatest about four or five days before the greatest declination.

When the moon's declination is north, the highest of the two tides of the twenty-four hours occurs at San Francisco about eleven and a half hours after the moon's southing, (transit;) and when the declination is south, the lowest of the two high tides occurs about that interval.

The lowest of the two low waters of the day is the one which follows next the highest high water. The nature of these tides will probably appear more plainly from the annexed diagrams. In them the height of the tide is set off at the side on a scale of feet, and the hours of the day are at the top. At 12 noon, for example, the tide-gauge marked 6.7 feet. Joining all the heights observed in the twenty-four hours, we have a curve like that marked in the figure.

The two high waters are a and c, and the two low waters b and d. If a is the high water, which occurs about twelve hours after the transit of the moon, when the declination is south, the ebb $a b$ is quite small, and the high water, a, is much lower than the next high water, c. If the moon's declination is north, it is the large high water, α, of the second diagram, which occurs next after the transit, and about twelve hours from it. Tables IV and V, give the number to be added to the time of moon's transit to find the time of high water almost as readily as in the former case. They are of double entry, the time of transit being, as before, placed in the first column. The number of days from the day at which the moon had the greatest declination is arranged at the top of the table. Entering the first column with the time of transit, and following the line horizontally until we come under the column containing the days from the greatest declination, we find the number to be added to the time of transit to give the time of high water. If the moon's
 declination is south, Table IV is to be used; if north, Table V.

Tubles IV to IX, inclusive, have been recomputed, using more complete data for the inequalities above referred to, and to those for San Francisco similar tables have been added for San Diego, Astoria, and Port Townshend. For the other places on the Western Coast given in Table I the following rules will give sufficiently close approximations.

To obtain the times of high or low water for San Pedro, Cuyler's harbor, and San Luis Obispo, compute first the time for San Diego, by Table IV, V, or VIII; then add to the time thus obtained 30 minutes, to obtain the time for San Luis Obispo, and subtract 15 minutes for Cuyler's harbor. At San Pedro the time of high or low water is sensibly the same as at San Diego.

For Monterey, South Farallon, Mare island, Benicia, Ravenswood, and Bodega, compute first the time for San Francisco, then subtract from the time thus obtained 1 h .44 m . for Monterey, 1. h. 29 m . for the South Farallon, and 49 m . for Bodega, and add 34 m . for Mare island, 1 h . 4 m . for Benicia, and 30 m . for Ravenswood. For Thunderbolt bay, Port Orford, and Neeah harbor, compute first the time for Astoria, then subtract from it 40 m . for Humboldt bay, 1 h . 16 m . for Port Orford, and 9 m . for Neeah harbor.

For Steilacoom and Semi-ah-moo bay, compute first the time for Port Townshend, and add to it 57 m . for Steilacoom, and 1 h . for Semi-ah-moo. The approximation will be only a rough one for Steilacoom.

For the heights, Tables VI, VII, and IX for San Diego, can be used without change for San Pedro, Cuyler's harbor, and San Luis Obispo. These tables for San Francisco are also applicable to Monterey, South Farallon, and Bodega. For Mare island, add 1.2 foot, for Benicia, 0.9 foot, and for Ravenswood, 2.7 feet to the quantities for San Francisco.

For Humboldt bay, Port Orford, and Neeah harbor, the tables for Astoria may be used, subtracting 1.7 foot for Humboldt bay, and 1.0 foot for Port Orford. For Neeah harbor, the tables will give approximate results without change.

For Semi-ah-moo bay, add one foot to the quantities in the tables for Port Townshend. For Steilacoom, a rough approximation may be obtained by adding 4.6 feet to them.

TABLE IV.-SAN DIEGO.

8	bouth declination.-diys from moon's greatest declination.															
E	Before-											After-				
F	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	
$\begin{array}{ll} \text { h. } \\ 0 & m \end{array}$	4. m. g	$\begin{aligned} & \text { h. } \mathrm{m} \\ & 94 \end{aligned}$	$\begin{aligned} & \text { f. m. } \\ & 9.52 \end{aligned}$	$\begin{gathered} \text { h. m. } \\ 10 \end{gathered}$	$\begin{array}{cc} \text { h. } & \boldsymbol{m} \\ 10 & 19 \end{array}$	$\begin{array}{rl} \text { A. } m \text {. } \\ 10 & 20 \end{array}$	$\begin{array}{r} h . \\ 10 . \\ 10 \quad 25 \end{array}$	$\begin{array}{cc} \text { h. m. } \\ 10 \quad 29 \end{array}$	$\begin{array}{r} \text { h. } m . \\ 10 \quad 2 y \end{array}$	$\begin{array}{rr} h . & m \\ 10 & 25 \end{array}$	$\begin{array}{cc} \text { h. } m \text {. } \\ 10 \quad 19 \end{array}$	$\begin{array}{r} \text { h. } \mathrm{m} . \\ 10 \\ 10 \end{array}$	$\begin{array}{cc} h . & \text { m. } \\ 10 & 0 \end{array}$	$\begin{array}{ll} \text { h. } & \text { m. } \\ 9 & 47 \end{array}$	h, m. 9 10	h. m.
030	915	930	942	985	10	1010	1015	$10 \quad 19$	1019	$10 \quad 15$	10	10	950	927	920	030
10	98	923	335	946	955	103	108	10 I2	1012	108	102	953	943	930	913	0
130	9	916	988	936	948	356	10	10 5	10.5	101	955	946	936	923	9	
20	834	93	92	032	941	249	954	958	958	954	948	939	929	916	859	20
230	849	94	916	927	${ }^{9} 36$	944	${ }^{9} 49$	953	953	949	9 43	934	924	9 11	854	230
30	848	93	$9 \mathrm{L5}$	926	${ }^{9} 35$	943	948	952	952	948	942	933	322	910	$8 \quad 53$	30
330	$\checkmark 48$	93	9 15	926	935	943	948	952	${ }_{9} 52$	948	942	933	923	910	853	
40	852	97	919	930	939	947	952	956	956	952	946	937	$\begin{array}{ll}9 & 27\end{array}$	914	857	4
430	856	911	923	934	943	951	956	10 0	10	956	950	941	931	918	9	
5	915	$\begin{array}{ll}9 & 30\end{array}$	942	953	10	1010	1015	$\begin{array}{ll}10 & 19\end{array}$	10 19	1015	109	10	950	937		50
	93	952	10	$10 \quad 15$!		1032	1037	1041	1041	1037	1031	1022	1012	953	942	
60	955	$10 \quad 10$	1022	1033	1040	10 50	$10 \quad 55$	$10 \quad 59$	1059	$10 \quad 55$	1049	$10 \quad 40$	1030	$10 \quad 17$	$10 \quad 0$	
630	1012	$10 \quad 27$	$10 \quad 39$	1030	1059	117	1112	1116	: 1116	1112	116	$\begin{array}{ll}10 & 57\end{array}$	1047	$10 \quad 34$	$10 \quad 17$	30
70	1018	1033	1045	$10 \quad 55$	115	1113	1118	11.22	$11 \underset{4}{2}$	1118	1112	11	$10 \quad 53$	$10 \quad 40$	1023	70
30	1080	$10 \quad 35$	1047	$10 \quad 58$	117	1115	1120	1124	1124	1120	1114	115	1055	1042	1025	
80	1022	1037	$10 \quad 49$	110	118	1117	1122	1126	1120	1122	1116	11	$10 \quad 57$	1044	1027	80
830	$10 \quad 24$	1039	$10 \quad 51$	112	1111	$11 \begin{array}{ll}19\end{array}$	1124	118	1128	1124	1138	11	$10 \quad 59$	1046	1029	838
9	1018	10 33	10	$10 \quad 56$	115	11 13	1118	1120	$11 \quad 22$	1118	1112	113	$10 \quad 53$	10.40	$10 \quad 23$	90
30	1010	1025	$10 \quad 37$	1048	105	115	1110	1114	1114	1110	114	$10 \quad 55$	1045	$10 \quad 32$		930
10		1015	$10 \quad 27$	10 3x	1047	$10 \quad 55$	110	114	11		$10 \quad 54$		$10 \quad 35$	$10 \quad 22$	$10 \quad 5$	10
1030	953	108	1020	1031	$10 \quad 40$	1048	1085	$10 \quad 57$	10 1	$10 \quad 53$	1047	$10 \quad 38$	$10 \quad 28$	$10 \quad 15$	958	1030
11	945	100	1012	$10 \quad 23$	$10 \quad 32$	1040	$10 \quad 45$	11049	1049	$10 \quad 45$	1039	$10 \quad 30$	$10 \quad 20$	10		11
1130	936	951		$10 \quad 14$	$10 \quad 23$	$10 \quad 31$	$10 \quad 36$	$10 \quad 40$	1040	$10 \quad 36$	$10 \quad 30$	$10 \quad 21$	1011	958	941	1130

TABLE Y.-SAN DIEGO.

$\begin{gathered} \text { 'lime of monn's } \\ \text { trankit. } \end{gathered}$	norta declination.-dayg from moon's greatest dechination.															$\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
A. m.	h. m.	h. m .	h. m.	h. m	h. m.	4. m.	h. m .	h. m.	h. m.	h. m.	h. $\mathrm{ma}^{\text {a }}$					
0 0	930	$\begin{array}{ll}9 & 16\end{array}$		853	844	836	831	$8 \quad 27$	$\begin{array}{lll}8 & 27\end{array}$	$\bigcirc 31$	837	846	856	99	926	
030	9 2!	96	$8 \quad 54$	$8 \quad 43$	$8 \quad 34$	826	821	817	817	821	827	836	$8 \quad 46$	859	$\begin{array}{ll}9 & 16\end{array}$	030
10	914	$8 \quad 59$	887	8 36	$8 \quad 27$	$8 \quad 19$	814	810	810	$8 \quad 14$	$8 \quad 20$	$8 \quad 29$	$8 \quad 39$	852	98	10
130	9 \%	$8 \quad 59$	840	$8 \quad 29$	820	812	87	83	83	87	8 13	822	$8 \quad 32$	$8 \quad 45$	92	130
10	90	$8 \quad 45$	B 33	8 22	$\begin{array}{ll}8 & 13\end{array}$	85	80	756	756	80	86	815	$8 \quad 25$	838	855	20
230	855	$8 \quad 40$	$8 \quad 98$	B 17	88	80	$7 \quad 55$	751	751	755	$8 \quad 1$	$8 \quad 10$	$8 \quad 20$	$8 \quad 33$	$8 \quad 50$	230
30	$8 \quad 54$	B 39	$\begin{array}{ll}8 & 27\end{array}$	B 16	87	$7 \quad 59$	754	750	$7 \quad 50$	$\begin{array}{ll}7 & 54\end{array}$	80	B 9	$8 \quad 19$	832	849	30
330	$8 \quad 54$	$\begin{array}{ll}8 & 39\end{array}$	827	B 16	87	759	$7 \quad 54$	750	750	$7 \quad 54$	80	B 9	$8 \quad 19$	832	$8 \quad 49$	330
40	$8 \quad 58$	$8 \quad 43$	831	890	811	83	758	754	$7 \quad 54$	$7 \quad 58$	84	$\begin{array}{ll}8 & 13\end{array}$	$8 \quad 23$	$8 \quad 36$	853	40
430	92	847	835	824	815	8	$8 \quad 2$	758	$7 \quad 58$	82	88	$8 \quad 17$	$\begin{array}{ll}8 & 27\end{array}$	$8 \quad 40$	857	430
50	921	96	854	B 43	834	$8 \quad 26$	821	$8 \quad 17$	$8 \quad 17$	8121	$8 \quad 27$	836	846	830	916	50
530	343	985	316	$5 \quad 5$	856	8 48	843	$8 \quad 39$	$8 \quad 39$	$8 \quad 43$	849	$8 \quad 58$	98	981	938	530
60	101	96	934	$9 \quad 23$	914	95	91	837	$8 \quad 57$	91	97	$9 \quad 16$		934	$9 \quad 56$	60
630	$10 \quad 18$	103	951	940	931	923	$\begin{array}{ll}9 & 18\end{array}$	$\begin{array}{ll}9 & 14\end{array}$	914	$9 \quad 18$	929	933	943	$y \quad 56$	1013	(30
70	1024	10 y	$\begin{array}{ll}3 & 57\end{array}$	946	937	929	924	920	920	924	930	939	949	102	1019	70
730	1026	$10 \quad 11$	959	948	938	931	926	922	$9 \quad 22$	926	932	941	951	104	$10 \quad 21$	730
80	10.28	$10 \begin{array}{ll}10 & 13\end{array}$	101	950	941	933	928	924	$\begin{array}{ll}9 & 24\end{array}$	928	$9 \quad 34$	943	9 *3	10 6	$10 \quad 23$	80
830	1030	$10 \quad 15$	103	952	948	935	930	926	926	930	936	945	955	108	$10 \quad 25$	830
90	1024	109	9 ST	946	937	929	924	920	920	924	930	939	949	$10 \quad 2$	$10 \quad 19$	90
930	1016	101	949	938	999	921	916	y 12	$9 \quad 12$	916	322	931	941	$9 \quad 54$	$10 \quad 11$	930
300	106	951	939	928	919	-11	96	92	92	9 B	g 12	921	931	944	101	100
1030	$9 \quad 59$	944	935	921		9	* 59	855	8 5.5.	$8 \quad 59$	95	914	- 24	937	954	1030
110	951	$9 \quad 36$	924	$9 \quad 13$	9	856	851	$8 \quad 47$	847	851	$8 \quad 57$		916	929	946	110
1130	942	$9 \quad 27$	9 915	94	855	847	842	B 38	B 36	842	848	$8 \quad 57$	67	920	$9 \quad 37$	1130

TABLE IV.-SAN FRANCISCO.

	sodtir declination. - days from moon'r greatest declination.															
	B.fore-								Afrer-							
	7	6	5	4	3	2	1	0	1	5	3	4	5	6	7	
h. m.	h. m.	h. m.	h. in.	h. m.	h. m.	h. m.	7. m.	h. m.	h. m.	h m.	n. m.	h. m.	4 \%ris	h. m.	h. $\mathrm{m}^{\text {. }}$	h. m.
000	1143	1159	1215	1233	1250	1303	1317	1320	1319	1314	1306	1234	12 45	1232	1238	$0 \mathrm{0} \mathrm{\%}$
030	1137	1153	1209	1227	1244	1257	1311	1314	1313	1308	1301	1251	1239	1296	1212	030
100	1131	1147	1203	1221	1233	1251	1305	1308	1307	1302	1235	1245	123 3is	1220	1206	100
130	1125	1141	1157	1215	1232	1245	1259	1302	1301	1256	1249	1289	1227	1214	1200	130
200	1119	1135	1151	1209	1226	1239	1253	1256	1255	1250	1248	1233	1221	1208	1154	200
230	1114	1130	1146	1204	1221	1234	1248	1251	1250	1245	123	1228	1216	1203	1149	230
300	1111	1127	1143	1501	1218	3231	1245	1248	1247	1242	1235	1225	1213	1200	1146	300
330	1111	1127	1143	1201	1218	1231	1245	1248	1247	1242	1235	1225	1213	1260	1146	381
400	1116	1132	1148	1206	1223	1236	1250	1253	1252	1247	1240	1230	1218	1205	1151	400
430	1124	1140	1156	1214	12 31	1244	1258	1301	1300	1255	1248	1238	1226	1213	1159	4311
500	1133	1149	1205	1223	1240	1253	1307	1310	1369	1304	1257	1247	1235	129	1208	500
530	1141	1157	1213	1231	1248	1301	1315	1318	1317	1312	1305	125	1243	1230	1216	530
600	1149	1205	1221	1239	1256	1309	1323	1326	1325	1320	1313	1303	1251	1258	1224	800
630	1134	1210	1226	1244	1301	1314	1398	1331	1336	1825	1318	1368	1256	124.3	1224	630
700	1201	1217	1233	1251	1308	1321	1335	1338	1337	1332	1325	1315	1303	1250	1236	700
730	12 r	1293	1239	1257	1314	1327	1341	1344	1343	1338	1331	1391	1309	1256	124	\% 30
800	1212	1228	1244	1302	1319	1332	1346	1349	13.48	1343	1336	1320	1314	1301	$124:$	800
830	1215	1231	1247	1305	1322	1335	1349	1352	1351	1946	1339	13 \%	1317	1344	1250	830
900	1214	1230	1246	1304	1321	13.34	1348	1351	1350	1345	1338	1398	1316	1303	1249	900
930	1212	1298	12.44	1302	1319	1332	1346	1349	1348	1343	1336	1326	3314	1301	1247	930
1000	1208	1294	1240	1258	1315	1398	1342	1345	1344	1339	1332	1322	1310	1257	1243	1000
1030	1202	1218	1234	1252	1309	1322	1336	1339	1338	1343	1326	1316	1304	1251	1237	1030
1100	1155	1211	1227	1245	1302	1315	1329	1332	1331	1326	1319	1368	1257	1244	1230	1100
1130	1147	1203	1219	1237	1254	1307	1321	1324	1323	1318	13 11	1301	1249	1236	1222	1130

TABLE V-SAN FRANCISOO.

	NORTH DECLIEATION-DAYS FROM MOON'SGREATEET declination.															
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
h. 3.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m .	h. m.	h.m.	A. m.	h. m.	h.m.					
000	1227	1211	1155	1137	1120	1107	1053	1050	1051	1056	1103	1113	1125	1138	1152	040
030	1221	1205	1149	1131	1114	1101	1047	16.44	1045	1050	1057	110%	1119	1132	1146	030
100	1215	1159	1143	1125	1106	1055	1041	1088	1039	1044	1051	1101	1113	1126	1140	100
130	1209	1153	1137	1119	1102	1049	1035	1032	10×3	1038	1045	1055	1107	1120	1134	130
200	1203	1147	1131	1113	1056	1043	1029	1020	1027	1032	1034	1049	1101	1114	1128	200
230	1158	1142	1126	11008	1051	1038	1024	1021	1022	1027	1034	1044	1056	1109	1123	230
300	1155	1139	1123	1105	1048	1035	1021	1018	1019	1024	1031	1041	1053	1106	1120	300
330	1155	1139	1123	1105	1048	1035	1021	1018	1019	1024	1031	10.41	1053	1106	1120	330
400	1200	1144	1128	1110	1053	1040	1026	1023	1024	1029	1036	1046	1058	1111	1125	400
430	1208	1152	1136	11.18	1101	1048	1034	1031	1032	1037	1044	1054	1106	1119	1133	430
500	1217	1201	1145	1127	1110	1057	1043	1040	1041	1046	1053	1103	1115	1128	1142	500
530	1225	1269	1153	1135	1118	1105	1051	1048	1049	1054	1101	1111	1123	1136	1150	530
600	1233	1217	1201	11 43	1126	1113	1059	1056	1057	1102	1109	1119	1131	1144	1158	600
630	1238	1222	12 06	1148	1131	1118	1104	1101	1102	1107	1114	1124	1136	1149	1203	630
700	1245	1229	1213	1155	1138	1125	1111	1108	1) 09	1114	1121	11.31	1143	1156	1210	700
730	1251	1235	1219	1201	1144	1131	1117	1114	1115	1120	1127	1137	1149	1202	1216	730
800	1256	1240	1224	1206	1149	1136	1122	1119	1129	1125	1132	1142	1154	1207	1221	800
830	1250	1243	1227	1209	1152	1139	1125	11.22	1123	1128	1135	1145	1157	1210	1224	830
900	1258	1242	1226	1208	1151	1138	1124	1121	1122	1127	1134	1144	1156	1209	1223	900
930	1256	1240	1224	1206	1149	1136	1122	1119	1120	1125	1132	1142	1154	1207	1221	980
1000	1252	1236	129	1202	1145	1132	1118	1115	1116	1121	1128	1138	1150	1203	1217	1000
1030	1246	1230	1214	1156	1139	1156	1112	1109	1110	11.15	1192	$1132{ }^{+}$	1144	1157	1251	1030
1100	1239	1223	1207	1149	1132	1119	1105	1102	1103	1108	1115	1125	1137	1150	1204	1100
1130	1231	1215	1159	1141	1124	1111	1057	1054	1055	1100	1107	1117	1: 29	1142	1156	1130

TABLE IV.-ASTORIA.

$\begin{aligned} & \text { Time of mononA } \\ & \text { transit. } \end{aligned}$	south meclination- day from moon's greateet diclination,															
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
h. m.	h. m.	h. m .	h. m.	h. m.	h. m.	h. ${ }^{\text {m }}$.	h. m.	h. m .	h. \boldsymbol{m}.	h. m .	h. m .	h. m.	h. m	h. m.	h. m.	h. m.
00	124	1255 !	135	1318	1328	1338	1341	1345	1346	1) 44	1340	1334	1324	1314	13 m	00
- 30	1236	1249	1259	1312	13.22	1332	13.35	1339	1340	1338	1334	1328	1318	138	1256	030
10	1229	1242	1252	135	1915	1323	1328	1932	1333	1331	1327	1321	1311	131	1249	10
130	12 2	1236	1246	1259	139	1319	1322	J3 26	13.27	1325	1321	1315	13 5	1255	1243	130
20	1215	12 g 8	1234	1251	131	1311	1314	1318	1319	1317	1313	137	1257	1247	1235	20
230	129	1222	1232	1245	1255	135	138	1312	1313	1311	137	131	1251	1241	1299	230
30	123	1216	1226	1239	1249	1259	132	136	137	135	131	1255	1245	1235	1223	30
330	1158	1211	1221	1234	1244	1254	1257	131	132	130	1256	1250	1240	123	1218	330
40	1157	1210	1220	1233	1243	1253	1256	130	131	1259	1255	1249	1239	1229	1217	40
430	120	1213	1223	1236	1246	1256	1259	1:1 3	134	132	1258	1232	1242	1232	1220	430
50	12 Q	1221	1231	1244	12.54	134	137	1311	1312	1310	136	130	1250	1240	1228	50
530	1215	1228	1233	1251	13 :	1311	1314	1318	1319	1317	13 13	137	1257	1247	1235	530
60	1225	1238	1248	131	1311	13.21	13.4	1328	1329	1327	1323	1317	137	1257	1245	60
630	1236	1249	1259	1312	1322	1332	1335	1339	1340	1338	1334	1328	1318	138	1256	630
70	1245	1258	138	1321	1331	1944	1344	1348	1349	1347	1343	1337	1327	1317	135	70
730	1255	13 E	1318	1331	1341	1351	1354	1358	1359	135	1353	1347	1337	1327	1315	730
60	133	1316	1326	13 49	1349	13.59	142	146	147	145	141	1355	1345	1335	1323	80
830	138	1321	1331	1344	1354	144	147	1411	1412	1410	146	140	1350	1340	1328	830
80	1310	1323	1333	1346	1356	146	149	1413	1414	1412	14 B	142	1352	1342	1350	90
930	139	1322	1332	1345	1335	145	148	1412	1413	1411	147	14 i	1351	1341	1229	930
100	135	1318	1328	1341	1351	141	144	148	149	147	143	1357	1347	1337	1325	100
1030	1259	1312	1322	1335	1345	1355	1358	142	14 3	141	1357	1351	1341	1331	1319	1030
110	1253	13 F	1516	1329	1339	1349	1352	1256	1357	1355	1351	1345	1335	1325	1313	110
1130	1246	1259	139	1382	13 \%	1342	1345	1349	1350	1348	1344	1338	1328	1318	i3 6	1130

TABLE V.-ASTORIA.

Time of moon'stransit.	nokth declinationtmday from moon's graatert declination.															
	Betore-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
h. m.	4. 7 .	$\cdots \mathrm{m}$.	h. m.	h. m.	h. m.	A. m.	h. 1 m	h.m.	h. m .	h. m.	h. m.	h. m .	h. m.	h. m.	h. m .	h. m.
00	1310	1257	1247	1234	1224	1214	1211	127	126	128	1212	1218	1288	1238	1250	00
039	134	1251.	1241	1298	1218	128	125	121	120	12 L	126	1212	$12 \mathrm{4z}$	1232	1244	030
10	1257	1244	3234	1291	1211	121	1158	1154	1159	1155	1159	$12 \quad 5$	1215	1225	1237	10
130	1251	1238	1228	1215	125	1155	1152	1148	1147	1149	1153	1159	129	1219	1231	130
20	1243	1230	1224	127	1157	11.47	1144	1140	1139	1141	1145	1151	121	1211	1223	20
230	1237	1224	1214	121	1153	1141	1138	1134	1133	1135	1139	1145	1155	125	1217	230
30	1531	1218	128	1155	1145	1135	1132	1128	1127	1189	1133	1139	1149	1159	1211	30
330	1226	1213	123	1150	1140	1130	1127	1123	1122	1124	11 28	1134	1144	1154	126	330
40	1225	1212	122	1149	1189	1129	1126	1122	1121	1123	1127	1133	1143	1153	125	40
430	1228	1215	125	1152	1142	1132	1129	1185	1124	11%	1130	1136	1146	1156	128	430
50	1236	1223	1213	120	1150	1140	1137	1133	1132	1131	1138	1144	1154	124	1216	50
530	1243	1230	1220	127	1157	1147	1144	1140	1139	1141	1145	1151	121	1211	1223	530
60	1253	12	1230	1217	127	1157	1154	1150	1149	1131	1155	121	1211	1221	1233	60
630	134	1251	1241	1228	1218	128	125	121	120	12 2	126	1212	1222	1232	1244	630
70	1313	13 U	1230	1837	1287	1217	1214	1210	129	1211	1215	1221	1231	1241	1233	70
730	13 23	1310	130	1247	1237	1227	1224	1220	1219	1221	1225	1231	1241	1251	$13 \quad 3$	730
80	1331	1318	138	1255	1245	1235	1232	1228	1227	1289	1233	1239	1249	1259	1311	80
830	1336	1323	1313	130	1250	1240	1237	1238	1238	1234	1238	1244	1254	134	1316	830
90	1336	1395	1315	132	1252	1242	1239	1235	1234	1236	1240	1246	1256	136	1318	90
g 30	1357	1324	1314	13	1251	1241	1238	1234	1233	1235	1239	1245	1255	135	1317	930
100	1333	1320	1310	1257	1247	1237	1234	1230	1229	1231	1235	1241	1251	131	1313	100
1030	1387	1314	134	1251	1241	1231	1228	1224	1293	1225	129	1235	1245	1255	137	1030
110	1321	138	1258	1245	1235	1225	1222	1218	1217	1219	1223	1229	1239	1249	131	110
1130	1314	13	1251	1238	128	1218	1215	1211	1210	1218	1216	122	1232	1242	12.34	1130

TABLE IV.-PORT TOWNSHEND.

TABLE V.-PORT TOWNSHEND.

Time of moon'stransit.	NORTE DECLINATION. - Day from moon'b greatest declination.															
	Before-								After-							
	7	6.	5	4	3	2	1	0	1	2	3	4	5	6	7	
n. me.	h. m.	h. m.	h. m.	h. $n \mathrm{n}$.	h. m.	h. m.	h. m	h. m.	h. m.	h. m .	h. m.	h. m.	$h . m$.	h. n.	h. m.	h. m.
00	345	49	439	528	558	617	64	546	528	59	448	433	419	357	345	00
030	338	42	${ }^{4} 32$	521	551	610	557	539	521	5 9	441	426	48	350	338	030
10	332	356	426	515	545	64	551	533	515	456	435	420	42	345	332	10
130	326	350	420	59	539	538	545	527	59	450	429	414	356	338	3 26	130
20	321	345	41.5	54	534	553	540	522	54	445	424	49	351	333	321	20
230	318	342	412	51	531	550	537	519	51	442	421	46	348	330	318	290
30	316	340	410	459	529	548	535	517	459	440	419	44	346	3 28	316	30
330	317	341	411	50	530	549	536	518	50	441	420	45	347	323	317	330
40	321	34.5	415	54	534	553	540	522	54	445	424	49	351	333	321	40
430	326	350	420	59	539	558	545	527	5 5	450	429	414	356	336	326	430
50	332	356	426	515	545	64	551	533	515	456	435	420	42	344	332	50
530	341	45	435	524	554	613	60	542	524	55	444	429	411	353	341	530
60	352	416	446	535	65	624	611	553	535	516	453	440	420	44	352	60
630	41	425	455	544	614	633	620	62	544	525	34	449	431	413	41	633
70	48	432	52	551	621	6.40	627	69	551	532	511	456	438	420	48	70
730	415	439	59	558	628	647	634	616	556	539	518	53	445	422	415	730
80	418	442	512	61	631	650	637	619	611	542	521	56	448	430	418	80
830	419	443	513	62	632	651	63 d	520	62	543	522	57	449	431	419	830
9 J	418	442	512	6 I	631	650	637	619	61	542	521	56	448	430	414	90
930	415	439	59	558	698	647	634	616	558	539	518	53	445	427	415	930
180	410	434	54	553	633	642	629	611	553	534	513	458	440	422	410	100
1030	46	430	50	549	619	638	625	67	549	530	59	454	435	418	46	1030
110	40	424	454	543	613	632	619	61	543	524	53	448	430	412	40	110
11%	354	418	448	537	67	6.25	613	555	537	518	457	442	424	46	354	1130

If we disregard the daily inequality, the column headed San Francisco in Table 11 would give us, as in the examples on the Atlantic coast, the means of determining the time of high water.

Example V.-Required the time of high water at North Beach, San Francisco, Cal., on the 7th February, 1853.

1st. The time of the moon's transit at Greenwich, from the Nautical Almanac, is 11 h .41 m .; the longitude of San Francisco 87.10 m .; requiring a correction of 16 m . to the time of transit for San Francisco, which is thus found to be 11 h .57 m .

2d. The moon's declination is south, and at the time of transit about two days after the greatest. Entering Table IV we find $12 h$. (or $0 h$.) of transit, the nearest number to $11 h$. 57 m . which the table gives; and following the line horizontally until we come to two days after the greatest declination we find $13 h .14 m$.

To $11 \% .57 \mathrm{~m}$. , time of transit of the moon, February 7, San Francisco,
Add $13 \quad 14$ from column $0 h$. transit and two days after greatest declination.
The sum $\overline{2511}$ or 1 h .11 m . February 8 , is the time of high water corresponding to the transit which we took of February 7. If we desire the tide of February 7, we must go back to the moon's transit of the 6th. The example was purposely assumed to show this case: 11 h . 1 m. , time of transit February 6, 1853,
$13 \quad 31$ number for $11 h$. transit and one day from greatest declination.
Sum $\overline{24 \quad 32}$ time of high water 07.32 m . a. m. February 7.
The height of high water. - The height of high water is obtained in a similar manner by the use of Table VI and Table VII, entering these in the same way with the time of transit and days from the greatest declination. Table VI is for south declination, and Table VII for north.

TABLE VI.-SAN DIEGO.

$\begin{gathered} \text { Time of moon's } \\ \text { transit. } \end{gathered}$																
	Refore-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
Hour.	Feel.	Feet.	Feet.	Feat.	Feet.	Feer.	Hour,									
\checkmark	4.7	4.5	4.3	4.2	4.1	4.1	4.1	4.1	4.2	4.3	4.5	4.8	5.1	5.5	5.8	0
1	4.6	4.4	4.2	4.1	4.0	4.0	4.0	4.0	4.1	4.2	4.4	4.7	5.0	5.4	5.7	1
2	4.4	4.2	4.0	3.9	3.8	3.8	3.8	3.8	3.9	4.0	4.2	4.3	4.8	5.2	5.5	2
3	41	3.9	3.7	3.6	3.5	3.5	3.5	3.5	3.6	3.7	3.9	4.2	4.5	4.9	5.2	3
4	3.8	3.6	3.4	3.3	3.2	3.2	3.2	3.2	3.3	3.4	36	3.9	4.2	4.6	4.9	4
5	3.6	3.4	3.2	3.1	3.0	3.0	30	3.0	3.1	3.2	3.4	9.7	4.0	4.4	4.7	5
6	3.6	3.4	3.2	3.1	3.0	3.0	30	3.0	3.1	3.2	3.4	3.7	4.0	4.4	4.7	6
7	3.7	3.5	8.3	3.2	3.1	3.1	3.1	3.1	3.9	3.3	3.5	3.8	4.1	4.5	4.8	7
8	3.8	3.6	3.4	3.3	3.2	3.2	3.2	3.2	3.3	3.4	3.6	3.9	4.2	4.6	4.9	8
9	4.4	4.2	4.0	3.9	3.8	3.8	3.8	3.8	3.9	4.0	4.2	4.5	4.8	5.2	5.5	9
10	4.7	4.5	4.3	4.2	4.1	4.1	4.1	4.1	4.2	4.3	4.5	4.8	5.1	5.5	5.8	10
11	4.8	4.6	4.4	4.3	4.2	4.2	4.2	4.2	4.3	4.4	4.6	4.9	5.2	5.6	5.9	11

TABLE Yil.--SAN DIEGO.

	MORTH DECIINATION.-DAYS FROM MOON's GREATEAT DECLINATION.															$\begin{gathered} \text { Time of mom } \mathrm{m} \text { ys } \\ \text { transit. } \end{gathered}$
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
Hour.	Feet.	Feet.	Feel.	Feet,	Feet.	Fect.	Feet.	Feet.	Fect.	Feet,	Fect.	Feet.	Feet.	Feet.	Feet.	Hous.
0	5.7	59	6.1	6.2	6.3	6.3	6.3	6.3	6.2	6.1	5.9	5.6	5.3	4.9	4.6	0
1.	5.6	5.8	6.0	6.1	6.2	6.2	6.2	6.2	61	6.0	5.8	5.5	5.9	4.8	4.5	1
2	5.4	5.6	5.8	5.9	6.0	6.0	6.0	6.0	5.9	5.8	5.6	53	50	4.6	4.3	2
3	5.1	5.3	5.5	5.6	5.7	5.7	5.7	5.7	5.6	5.5	5.3	5.0	4.7	4.3	4.0	3
4	48	5.0	5.2	5.3	5.4	5.4	5.4	5.4	5.3	5.4	5.0	4.7	4.4	4.0	3.7	4
5	4.6	4.8	5.0	5.1	5.2	5.2	5.2	5.2	5.1	5.0	4.8	4.5	4.2	3.8	3.5	5
6	4.6	4.8	5.0	5.1	3.2	5.2	52	5.2	5.1	50	4.8	4.5	4.2	3.8	35	6
7	4.7	4.9	5.1	5.2	5.3	5.3	5.3	5.3	5.2	5.1	4.9	4.6	4.3	3.9	3.6	7
8	4.8	5.0	5.2	5.3	5.4	5.4	5.4	5.4	5.3	5.2	5.0	4.7	4.4	4.0	3.7	ε
9	5.4	5.6	5.8	5.9	6.0	6.0	6.0	6.0	5.9	5.8	5.6	5.3	5.0	4.6	4.3	9
16	5.7	5.9	8.1	6.2	6.3	6.3	6.3	6.3	6.2	6.1	5.9	5.6	5.3	4.9	4.6	10
11	5.8	6.0	6.2	6.3	6.4	6.4	6.4	6.4	6.3	6.2	6.0	5.7	5.4	5.0	4.7	11

TABLE YI--SAN FRANCISCO.

	b declination -Days from moon's greatest declikat															$\begin{gathered} \text { Time of moon's } \\ \text { thansit. } \end{gathered}$
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
Hrur.	Feet.	Feel.	Fect.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Frel.	Feel.	Feet.	Feet.	Feet.	Feet.	Hout.
0	4.8	4.7	4.5	4.3	4.3	4.2	4.3	4.3	4.4	4.5	4.7	4.8	5.0	5.3	5.5	0
1	4.7	4.6	4.4	4.2	4.2	4.1	4.2	4.2	4.3	4.4	4.6	4.7	4,9	5.2	5.4	1
2	4.6	4.5	4.3	4.1	4.1	1.0	4.1	4.1	4.2	4.3	4.5	4.6	4.8	5.1	5.3	2
3	4.5	4.4	4.2	4.0	4.0	3.9	4.0	4.0	4.1	4.2	4.4	4.5	4.7	5.0	5.2	3
4	4.3	4.2	4.0	3.8	3.8	3.7	3.8	3.8	3.9	4.0	4.2	4.3	4.5	4.8	5.0	4
5	4.1	4.0	3.8	3.6	3.6	3.5	3.6	3.6	3.7	3.8	4.0	4.1	4.3	4.6	4.8	5
6	4.1	4.0	3.8	3.6	3.6	. 3.5	3.6	3.6	3.7	3.8	4.0	4.1	4.3	4.6	4.8	6
7	4.2	4.1	3.9	3.7	3.7	3.6	3.7	3.7	3.8	3.9	4.1	4.2	4.4	4.7	4.9	7
8	4.4	4.3	4.1	3.9	3.9	3.8	3.9	3.9	4.0	4.1	4.3	4.4	4.6	4.9	3.1	8
9	4.5	4.4	4.2	4.0	4.0	3.9	4.0	4.0	4.1	4.2	44	4.5	4.7	5.0	5.2	9
10	4.7	4.6	4.4	4.2	4.2	4.3	4.2	4.2	4.3	4.4	4.6	4.7	4.9	5.2	5.4	10
11	4.8	4.7	4.5	4.3	4.3	4.2	43	4.3	4.4	4.5	4.7	4.8	5.0	5.3	5.5	11

TABLE VII.-SAN FRANCISCO.

	NORTH PECLINATION.-DAVS FROM Moon's greatrst dectination.															Time of moon'stransit.
			Before-						After -							
	7	6	5	4	3		1	0	1	2	3	4	5	6	7	
Hout.	Feet.	Feet.	Feel.	Feet.	Feet.	Feet.	Feet.	Feet.	Ficet.	Feet.	Fert.	Feet.	Feet.	Fect.	Feet.	Hour.
0	5.4	53	5.7	59	5.9	6.0	5.9	5.9	5.6	5.7	5.5	5.4	5.2	4.9	4.7	0
1	5.3	5.4	5.6	5.8	5.8	5.9	5.8	5.8	5.7	5.6	5.4	5.3	5.1	4.8	4.6	1
2	5.2	5.3	3.5	5.7	5.7	5.8	5.7	5.7	5.6	5.5	5.3	5.2	5.0	4.7	4.5	2
3	5.1	5.2	5.4	5.6	5.6	5.7	5.6	5.6	5.5	5.4	5.2	5.1	4.9	46	4.4	3
4	4.9	5.0	5.2	5.4	5.4	5.5	5.4	5.4	5.3	5.2	5.0	4.9	4.7	4.4	4.2	4
5	4.7	4.8	5.0	5.2	5.2	5.3	5.2	5.2	5.1	5.0	4.8	4.7	4.5	4.2	4.0	5
6	47	4.8	5.0	5.2	5.2	5.3	5.2	5.2	5.1	5.0	4.8	4.7	4.5	4.2	4.0	6
7	4.8	4.9	5.1	5.3	5.3	5.4	5.3	5.3	5.2	5.1	4.9	4.8	4.6	4.3	4.1	7
8	5.0	5.1	5.3	5.5	5.5	5.6	5.5	5.5	5.4	5.3	5.1	5.0	4.8	4.5	4.3	8
9	5.1	5.2	5.4	5.6	5.6	5.7	0.6	5.6	5.5	5.4	5.2	5.1	4.9	46	4.4	9
10	5.3	5.4	5.6	5.8	5.8	5.9	5.8	5.8	5.7	5.6	5.4	5.3	5.1	4.8	4.6	10
11	5.4	5.5	5.7	5.9	5.9	6.0	5.9	5.9	5.8	5.7	5.5	5.4	5.2	4.9	4.7	11

TABLE VI.-ASTORIA.

Time of moon'stransit.	goith declination. -day from moon's greatest dechination.															
	Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Fect.	Feet.	Feet.	Feet.	Feet.	Feef.	Feet.	Feet.	Feet.	Fet.	Hour.
0	8.0	8.3	8.4	8.5	8.6	8.6	8.6	8.6	8.5	8.4	8.3	8.1	7.7	7.4	7.0	0
1	8.0	8.2	8.4	8.5	8.6	8.6	8.6	8.5	8.5	8.4	8.2	8.1	7.7	7.4	7.0	1
2	7.8	8.1	82	8.4	8.4	8.4	8.4	8.6	8.3	8.2	8.1	7.9	7.5	7.2	6.8	9
3	7.5	7.8	7.9	8.1	8.1	8.1	8.1	8.1	8.0	7.9	7.8	7.6	7.2	6.9	6.5	3
4	7.1	7.6	7.5	7.7	7.7	7.7	7.7	7.7	7.6	7.5	7.4	7.2	6.8	6.5	6.1	4
5	6.7	7.0	7.9	7.3	7.3	7.3	7.3	7.3	7.2	7.1	7.0	6.8	6.5	6.1	5.7	5
6	6.5	68	7.0	7.1	7.1	7.1	7.1	7.1	7.0	6.9	6.8	6.6	6.3	5.9	5.5	6
7	6.7	7.0	7.1	7.2	7.3	7.3	\%. 3	7.3	7.2	7.1	7.0	6.8	6.4	6.1	5.7	7
8	7.0	7.3	7.5	7.6	76	7.6	7.6	7.6	7.5	7.4	7.3	7.1	6.8	6.4	60	8
9	7.5	7.8	8.0	8.1	8.1	8.1	8.1	8.1	8.0	7.9	7.8	7.6	7.3	6.9	6.5	9
10	7.9	8.2	8.4	8.5	8.5	8.5	8.5	8.5	8.4	8.3	8.2	8.0	7.7	7.3	6.9	10
11	8.1	8.4	E. 6	8.7	8.7	8.7	8.	8.7	8.6	8.5	8.4	8.2	7.9	7.5	7.1	11

TABLE VII.-ASTORIA.

	NORTH declination.-days prom monn's greatest declination.															$\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$
	Before-								After-							
	7	6	5	4	3	9	1	0	1	2	3	4	5	6	7	
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Fect.	Feet.	Fiet.	Feet.	Howr.						
0	7.4	7.1	6.9	6.8	6.8	6.8	6. 8	6.8	6.9	7.0	7.1	7.3	7.6	8.0	8.4	0
1	7.4	7.1	6.9	6.8	6.8	6.8	6.8	6.8	6.9	7.0	7.1	7.3	7.6	8.0	8.4	1
2	72	60	0.8	6.6	6.6	0.6	6.6	6.6	6.7	6.8	6.9	7.1	7.5	7.8	8.2	2
3	6.9	6.6	65	6.3	6.3	6.3	6.3	6.3	6.4	6.5	6.6	6.8	7.2	7.5	7.9	3
4	6.5	6.2	6.1	5.9	5.9	5.9	5.9	5.9	6.0	6.1	6.2	6.4	6.7	7.1	7.5	4
5	6.1	5.9	5.7	5.6	5.5	5.5	5.6	5.6	5.7	57	5.9	6.0	6.4	6.7	7.1	5
6	5.9	5.7	5.5	5.4	5.3	5.3	5.3	5.4	5.5	5.5	5.7	5.9	6.2	6.5	6.9	6
7	6.1	5.8	5.6	5.5	5.5	5.5	5.5	5.5	56	5.7	5.8	6.0	6.3	6.7	7.1	7
6	6.4	6.2	60	59	5.8	5.8	5.8	5.8	5.9	6.0	6.2	6.3	6.7	7.0	7.4	8
9	6.9	6.7	6.5	6.4	6.3	6.3	6.3	6.4	6.4	6.5	6.7	6.8	7.2	7.5	7.9	9
10	7.3	7.1	6.9	6.8	6.7	6.7	6.7	6.8	6.9	6.9	7.0	7.2	7.6	7,9	8.3	10
11	7.5	7.2	7.1	7.0	0.9	6.9	6.9	6.9	7.0	7.1	7.2	7.4	7.8	8.1	6.5	11

TABLE VI.-PORT TOWNSHEND.

$\begin{aligned} & \text { Time of moon's } \\ & \text { tratsit. } \end{aligned}$	NORTH DEGLINLTION.-DAYB FROM Modis Greatest meclication.															$\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$
	Betore-							0	After-							
	7	6	5	4	3	2	1		l	2	3	4	5	6	7	
Hour.	Feet.	Fret. !	Feet.	Feet.	Feet.	Fect.	Feet.	Feret.	Fret.	F'eef.	Feet.	Fret.	Feet.	Feed.	Feet.	Howr.
0	6.6	0.3	5.3	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.6	7.7	7.9	0
1	6.7	6.4	00	6.2	6.5	7.0	7.3	7.5	7.6	7.6	7.6	7.6	7.7	7.8	8.0	1
2	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.8	7.7	7.9	2
3	6.3	6.0	5.6	5.8	6.1	6.6	6.9	7.1	7.2	7.2	7.2	7.4	7.3	7.4	7.6	3
4	6.0	5.7	5.3	5.5	5.8	6.3	6.6	6.8	6.9	6.9	6.9	6.9	70	7.1	7.3	4
5	5.9	5.6	5.2	5.4	5.7	6.2	6.5	6.7	6.8	6.8	6.8	6.8	6.9	7.0	7.2	5
6	6.1	5.8	5.4	5.6	5.9	6.4	6.7	6.9	7.0	7.0	7.0	7.0	7.1	72	7.4	6
7	6.4	6.1	5.7	5.9	6.2	6.7	7.0	7.2	7.3	7.3	7.3	7.3	7.4	7.5	7.7	7
8	6.5	0.2	5.8	6.0	6.3	6.8	7.1	7.3	7.4	7.1	7.4	7.4	7.5	7.6	7.8	8
9	6.5	6.2	5.8	0.0	6.3	6.8	7.1	7.3	7.4	7.4	7.4	7.4	7.5	7.6	7.8	9
10	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.4	7.4	7.5	7.6	7.8	
11	6.6	6.3	5.9	6.1	6.4			7.4	7.5	7.5	7.5	7.5	7.6	7.7	7.9	10
			5.9	6.1	0.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.6	7.7	7.9	11

TABLE VII.-PORT TOWNSHEND.

	gouth declination.-days from moon's greatest dechination.															
	Before-							0	After							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Fect.	Feet.	Feet.	Feet.	Feet.	Fcet.	Feet.	Feet.	Feet.	Feet.	Hour.
0	7.6	7.9	8.3	8.1	7.8	$\checkmark 7.3$	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	0
1	7.7	ع.0	8.4	8.1	7.9	7.4	7.1	6.9	68	6.8	6.8	6.8	6.7	6.6	6.4	1
2	7.6	7.9	8.3	8.1	7.8	7.3	7.0	68	6.7	6.7	6.7	6.7	6.6	6.5	6.3	2
3	7.3	7.6	8.0	7.8	7.5	7.0	6.7	6.5	6.4	6.4	6.4	6.4	6.3	6.2	6.0	3
4	70	7.3	7.7	75	7.2	6.7	6.4	6.2	6.1	6.1	6.1	6.1	6.0	5.9	5.7	4
5	6.9	7.2	7.6	7.4	7.1	6.6	6.3	6.1	6.0	6.0	6.0	6.0	5.9	5.8	5.6	5
6	7.1	7.4	7.8	7.6	7.3	6.8	6.5	6.3	6.2	6.2	6.2	6.2	6.1	6.0	5.8	6
7	7.4	7.7	8.1	7.9	7.6	7.1	6.8	6.6	6.5	6.5	6.5	6.5	6.4	6.3	6.1	7
8	7.5	7.8	8.2	8.0	7.7	7.2	6.9	6.7	6.6	6.6	6.6	6.6	6.5	6.4	6.2	8
9	7.5	7.8	8.2	8.0	7.7	7.2	6.9	6.7	6.6	6.6	6.6	6.6	6.5	6.4	6.2	9
10	7.6	7.9	8.3	8.1	7.8	7.3	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	10
11	7.6	7.9	8,3	8.1	7.8	7.3	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	11

Note.-To use these tables with a chart on which the soundings are referred to mean low water, substract 1.2 foot from the ntmbers in the tables from Ean Diego to Astoria, 1.7 font for Nef-ah harbor, 2.3 for Port Townshend, and 2,7 for Semiahmoo and Steiacoom.

Example VI.-In Example V, to obtain the height of tide on February 7, the declination being south, we enter Table VI, for San Francisco, with 0%. of transit, and two days after greatest declination, and find that the tide will be 4.5 feet above the mean of the lowest low water, or that 4.5 feet are to be added to the soundings of a chart reduced to the mean of the lowest low waters of each day. If the soundings of the chart were given for mean low water, then 1.2 feet ought to be subtracted from the Tables VI and VII; thus, in this example, it would be 3.3 feet.
The approximate time of the successive low and high waters of the day will be found by adding the numbers in Table VIII to the time of the first high water already determined. The table gives the numbers for the different days from the greatest declination.

Tables containing numbers to be added to the time of high water found from Tables IV and ∇, to obtain the successive low and high waters.
table vill.-San diego.

TABLE VIII．－SAN FRANCISCO．

	gouth dxclimation．			horth deglination．			$\begin{aligned} & \text { Days from moon's } \\ & \text { greateat declination. } \end{aligned}$
	Low water． （Small．）	High water． （Large．）	Low water， （Large．）	Low water． （Large．）	High water． （Small．）	Low water． （Small．）	
\％	h． 7 ．	h．m ．		万．$\quad n$ ．	h．m．	h．n ．	
	558	$13 \quad 14$	1858	544	1146	1744	7 ）
	536	1242	$18 \quad 48$	606	1218	1754	6
	514	1210	1838	628	1250	1804	5 ¢
	455	1134	1821	6 47	$13 \quad 26$	$18 \quad 21$	4 综
	437	1110	1805	$7 \quad 05$	1400	$18 \quad 37$	3 m
	424	$10 \quad 34$	1752	718	1426	1850	2.
	412	1006	1736	730	1454	1906	13
	$4 \quad 12$	$10 \quad 00$	1730	730	1500	1912	0
	417	1002	$17 \quad 27$	725	1458	1915	11
	4197	1012	$17 \quad 27$	715	1448	1915	2
	441	$10 \quad 26$	$\begin{array}{ll}17 & 27\end{array}$	701	1434	1915	3 －
	456	$10 \quad 46$	17 32	646	1414	1910	$4\}$ 究
	514	1110	$17 \quad 38$	688	－ 1350	1904	$5<$
	5 5 36	1136	1742	606	1324	19 09	6
	$5 \quad 57$	1204	$17 \quad 49$	545	1256	1853	7 ）

TABLE VIII．－ASTORIA．

	gouth meclimation．			gorth meclination．			
	Low water． （Small．）	High water． （Large．）	Low water． （Lavge．）	Low water． （Large．）	High water． （Smzll．）	Low water． （Small．）	
窓 $\left\{\begin{array}{l} \\ 5 \\ \\ \\ 3\end{array}\right.$	h．m．	4．m．	h．\quad m．	h．m．	h． 9.	h．m ．	
	638	1259	1917	618	1203	$18 \quad 11$	71
	614	1233	$19 \quad 15$	642	$12 \quad 29$	1843	6
	555	$12 \quad 13$	1914	701	1249	1844	5 －
	534	1147	1909	722	1315	$18 \quad 19$	$4\}$ 哑
	520	1127	1903	736	1335	1855	3 －
	509	1107	$18 \quad 54$	747	1355	1904	
	505	1101	1852	$7 \quad 51$	1401	19 08	1 J
\％	503	$10 \quad 59$	1846	753	1409	1912	0
	505	1051	1842	751	1411	1916	17
	511	1055	1840	745	$14 \quad 07$	1918	2
	518	1103	1841	738	1359	19 17	33
	5 32	1115	$18 \quad 39$	784	1347	1919	4 岸
	550	1135	1841	706	1327	19 17	$5{ }^{4}$
	$\begin{array}{ll}6 & 11 \\ 6\end{array}$	1155	$18 \quad 40$	645	1307	1918	6
		1219	18 40	B 21	124	$19 \quad 18$	7 ）

TABLE VIII.-PORT TOWNSHEND.

	sotthi mechination.			NORTE DECLINATION.			
	Low water.	High water.	Low water.	Low water.	High water.	Low water.	
	h. m.	h. 7 .	h. m.	h. m.	h. m.	h. m .	
	605	12.26	1805	539	128	$18 \quad 31$	77
	638	1314	1820	506	1138	$18 \quad 16$	6
	718	$14 \quad 14$	1840	426	$10 \quad 38$	$17 \quad 56$	5 \#
	$8 \quad 13$	$15 \quad 52$	1923	331	900	$17 \quad 13$	4 ¢ ${ }^{2}$
	$8 \quad 36$	$16 \quad 52$	2000	308	800	$16: 36$	3 年
	843	$17 \quad 30$	$20 \quad 31$	301	722	1605	2
	$8 \quad 12$	$17 \quad 04$	$20 \quad 36$	332	743	1600	1
突 $\left\{\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7\end{array}\right.$	740	1028	$20 \quad 32$	404	824	1604	0
	718	1552	2018	426	$9 \quad 00$	1618	1
	659	$15 \quad 14$	1959	445	938	$16 \quad 37$	2
	638	1432	1936	506	$10 \quad 20$	$16 \quad 58$	3 :
	624	1402	1922	520	$10 \quad 50$	$17 \quad 14$	4 $\} \stackrel{\text { c }}{5}$
	610	1326	1900	534	1126	1730	5 *
	$5 \quad 59$	1250	1835	545	1202	1801	6
	542	12.66	1828	602	1280	1808	7 J

The days from the greatest declination are written in the first and last columns of the table. The second, third, and fourth columns refer to south declination, and the fifth, sixth, and seventh to north. The second column gives the number which is to be added, according to the declination, to the time of high water, obtained by means of Tables IV and V, to give the next low water, which is the small low water b of Diagram I. The third contains the numbers to be added to the same to give the second or large high water c of Diagram I. The fourth, the numbers to be added to the same to give the second or large low water d of Diagram I. The succeeding columns give the numbers to be used in the same way for north declination, to obtain the low water b (large) of Diagram II; the high water c (small) and the low water d (small) of the same diagram. The rise and fall of the same successive tides may be obtained by inspection from Table IX, in which the first column at the side contains the time of transit, and the successive columns the numbers corresponding to that time and to the number of days from greatest declination. The arrangement of this table is like that already given.

The numbers for the small ebb tide $a b$ of Diagram I, or $c d$ of Diagram II, are first given; then those for small low and large high waters $b c$ of Diagram I, and $d e$ of Diagram II; next, the large ebb tide $c d$ of Diagram I, or $a b$ of Diagram II; and, lastly, from the large low water to the small high water $d e$ of Diagram I, or $b c$ of Diagram II.

TABLE IX.-SAN DTEGO.

TABLE IX.--SAN DIEGO--Continued.

\pm	largeemb tide, or from large hteatiater to larew low water.														phom large low water to mmalh hioh water.															
\%	Days from moon's greatest dectieation.														Days from moon's greatest declination.															
$\stackrel{\square}{6}$	Before-							After-							Berore-								After-							
$=$	7				3.2														3	2	1			2	3	4	5	6	7	
	Fl.	F4.			Fi \boldsymbol{F}.			Fi.	Ft.	Ft.			Ft.	F7.		Ft.	Et.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fi.	Ft.	Ft.	Ft.		Ft.	
0	5.2	5.8	6.2	6.6	6.97 .1	7.21		7.1	6.9	6.5	6.0		4.6	4.0	4.1	4.3	45	4.7	4.8	4.9	5.0	5.0	5.1	5.1	5.2	5.2	5.3	5.3	5.2	
1	5.0	5.6	6.0	6.4	6.76 .9	7.0	7.0	6.9	6.7	6.3	5.8	52	4.4	3.8	3.9	4.1	4.3	4.5	4.6	4.7	4.8	4.8	4.9	4.9	5.0	5.0	5.1	5.1	5.0	
2	4.7	5.3		6.1	6.4 6.6	6.7	6.7	6.6	6,4	6.0	5.5		4.1	3.5	3.63	3.8	4.0	4.2	4.3	4.4	4.5	4.5	4.6	4.6	4.7	4.74	4. 6	4.8	4.7	
3	4.2	4.8	5.2	5.6	5.96 .1	6.2	6.2	6.1	5.8	5.5	5.0	4.4	3.6	3.0	3.13	3.3	3.5	3.7	3.8	3.5	4.0	4.0	4.1	4.1	42	4.24	4. 3	4.3	4.2	3
4	3.4	4.0	4.4	4.8	5.15 .3	5.45	5.4	5.3	5.1	4.8	4.2	3.6	2.8	2.2	2.312	2.52	2.7	2.0	3.0	3.1	3.2	3.2	3	3.3	3.4	3.43	3.5	3.5	. 4	
5	2.9	3.5	3.9	4.3	4.64 .8	4.5	4.0	4.8	$4 . t$	4.2	3.7		2.3	1.7	1.8	2.0	2.3	2.4	2.5	2.6	2.7	2.7	2.8	2.8	2.9	9.9	3.0	3.0	2.9	5
6	3.0	3.6	4.01	4.4	4.74 .9	5.0	5.0	4.9	4.7	1.3	3.8	3.2	2.4	1.8	1.082	2.1	2.3	2.5	2.6	2.7	2.8	2.8	2.9	9.9	3.0	3.0	3.1	3.1	3.0	6
7	3.5	4.1	4.5	4.9	5.25 .4	5.55	5.5	5.1	5.2	4.8	4.3	3.7	2.9	2.3	2.42	2.61	2.8	3.0	3.1	3.2	3.3	3.3	3.4	3.4	3.5	3.53	3.6	3.6	3.5	
8	4.1	4.7	5.1	5.5	5.8 6.0	6.16	6.1	6.0	5.8	5.4	4.9	4.3	3.5	2.9	3.03	3.2	3.4	3.6	3.7	3.8	3.9	3.9	4.01	4.4	4.1	4.14	4.2	4.2	4.1	8
9	4.9	5.5	5.9	6.3	6.6 .6 .8	6.9	6.9	6.8	6.6	6.2	5.7	5.1		3.7	3.8	4.0	4.2	4.4	4.5	4.6	4.7	4:7		4.8	4.9	4.95		5.0	4.9	
10	5.4	6.1	6.4	6.8	7.17 .3	7.4	7.4	7.3	7.1	6.7	6.2	5.6	4.8	4.2	4.34	4.54	4.7	4.9	5.0	5.1	5.2	5.2	53	5.3	5.4	5.45	5.5	5.5	5.4	I0
11	5.5	6.1	6.5	6.9	. 27.4	7.51		7.4	7.2	6.8	6.3	5.7	4.9		4.44			5.0	5.1	5.2	5.3	5.3		5.4	5.5	5.5		5.6	5.5	I
		rom	$\begin{gathered} c \\ a \\ 10 \end{gathered}$													$\begin{gathered} \text { om } d \\ \text { om } b \end{gathered}$	to									$\begin{aligned} & \text {. Yiagr } \\ & \text {. Diagt } \end{aligned}$				

TABLE IX.-SAN FRANCISCO.

TABLE IX.-SAN FRANCISCO-Continued.

TABLE IX.-ASTORIA.

TABLE IX.-ASTORIA-Continued.

TABLE IX.--PORT TOWNSHEND.

TABLE IX.-PORT TOWNSHEND-Continued.

	lagae mbitide, or from lagag high whter to latge low water.															from gmali low weter to labge high thater.															Hours of mnon's transit.
	Days from moon's greatest declination.															Days from moon's greatest declination.															
	Before-							0	After-							Before-							0	After-							
	7	6	5	4	3	2	1		1	2	3	4	5	6	7	7	8	5		3	2			1	2	3	4	5	6	7	
	Ft.	Ft^{4}	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.			Ft.	Ft.	Ft.	Ft.	\%	Ft.	Ft.	Fl.	Ft,	F.	Ft.	F4.	Ft.								
0	6.5	5.4	4.1	3.0	2.4	2.1	2.2	2.2	2.3	2.3	2.5	3.0	3.7	4.4	5.5	7.5	7.1	6.4	5.0	3.8	2.6	2.0	1.5	1.4	1.6	1.8	2.3		3.1	3.9	0
1	6.5	5.4	4.1	3.0	2.4	2.1	22	2.2	2.3	2.3	2.5	3.0	3.7	4.4	5.5	7.5	7.1	6.4	5.0	3.8	2.6	2.0	1.5	1.4	1.6	1.8	2.3	2.8	3.1	3.4	1
2	6.4	5.3)	4.0	2.9	2.3	2, 2.	2.1	2.1	2.2	2.2	2.4	2.9	3.6	4.3	5.4	7.4	7.0	6. ch 5	4.9		2.5	1.8	1.4	1.2	1.5	1.7	2.2	2.7	3.0	3.8	2
3	6.1	5.0	3.7	2.6	2.0	1.7	1.8	1.8	1.9	1.9	2.1	2.6	3.31	4.0	5.1	7.1	6.7	6.0	4.6	3.4	2.2	1.6	1.1	1.0	1.2	1.4	1.9	2.4	2.7	3.5	3
4	5.5	4.4	3.1	2.0	1.4	1.7	1.2	1.2	1.3	1.3	1.5	2.0	2.7	3.4	4.5	6.5	6.1	5.4	4.0	2.8	1.6	1.0	0.5	0.4	0.6	0.8	1.3	1.8	2.1	2.8	4
5	5.1	4.0	2.7	1.6	1.0	0.7	0.8	0.8	0.9	0.9	1.1	1.6	2.3	3.0	4.1	6.1	5.7	5.0	3.6	2.4	1.2	0.6	0.1	0.0	0.2	0.4	0.9	1.4	1.7	2.5	5
6	5.1	4.0	2.7	1.5	1.0	0.7	0.8	0.8	0.9	0.9	1.1	1.6	2.3	3.0	4.1	6.1	5.7	5.0	3.6	2.4	1.2	0.6	0.1	0.0	0.2	0.4	0.8	1.4	1.	2.5	6
7	5.3	4.2	2.9	1.8	1.2	0.9	1.0	1.0	1.1	1.1	1.3	1.8	2.5	3.2	4.3	6.3	5.9	5.2	3.8	2.6	1.4	0.8	0.3	0.2	0.4	0.6	1.1	1.6	1.9		7
8	5.5	4.4	3.1	2.0	1.4	1.3	1.2	1.2	1.3	1.3	1.5	2.0	2.7	3.4	4.5	6.5	6.1	5.4	4.0	2.8	1.6	1.0	0.5	0.4	0.6	0.8	1.3	1.8	2.	2.9	8
9	57	4.6	3.3	2.2	1.6	1.3	1.4	1.4	1.5	1.5	1.7	2.2	2.91	3.6	4.7	6.7	6.3	5.6	4.2	3.0	1.8	1.2	0.7	0.6	0.8	1.0	1.5	2.0	2.3	3.1	9
10	6.1	5.0	3.7	2.6	2.0	1.7	1.8	1.8	1.9	1.9	2.1	2.6	3.3	4.0	5.1	7.1	6.7	6.0	4.6	3.4	2.2	1.5	1.1	1.0	1.2	1.4	1.9	2.4	2.7	3.5	10
11	6.4	5.3	4.0	2.9	2.3	2.	2. 1	2.1	2.2	2.2	2.4	2.8	3.6	4.3	5.4	7.4	7.0	6.3	4.9	3.7	25	9	1.4	1.3	5	1.7	2.2	2.7	3.0	8	11

Example VII.-Thus, in Example VI, the high water of February 7 was found to be 3.3 feet above mean low water. The declination being south, Diagram I applies, and this high water is the small one. To obtain the fall of the next low water or small low water, we enter Table IX, for San Francisco, with $0 h$. of moon's transit, and two days after the greatest declination in the first part of the table, and find 1.9 foot, which will be the difference in height of this high and low water. Entering with the same transit and day in the second part, we find 3.0 feet, which is the rise of the large high above the small low water; the difference between 1.9 and 3.0 or 1.1 foot is the difference of height of the two successive high waters.

It is easy to see how, in this way, the soundings of a chart can be reduced to what they would be approximately at all the successive high and low waters. A similar set of tables is in preparation for Key West and some of the other ports on the Gulf of Mexico, where the tides are of the same character.

TIDES OF THE GULF OE MEXICO.

On the coast of Florida, from Cape Florida, around the Peninsula, to St. Mark's, the tides are of the ordinary kind, but with a daily inequality which, small at Cape Florida, goes on increasing as we proceed westward to the Tortugas. From the Tortugas to St. Mark's the daily incquality is large and sensibly the same, giving the tides a great resemblance to those of the Pacific coast, though the rise and fall is much smaller. Between St. Mark's and St. George's island, Apalachicola entrance, the tides change to the single day class, ebbing and ; flowing but once in the twenty-four (lunar) hours.

At St. George's island there are two tides a day, for three or four days, about the time of the moon's declination being zero. At other times there is but one tide a day, with a long stand at high water of from 6 to 9 hours. From Cape St. Blas to and including the mouth of the Mississippi the single day tides are very regular, and the small and irregular double tides appear only for two or three days, (and frequently even not at all,) about the time of zero declination of the moon. The stand at high and low water is comparatively short, seldom exceeding an hour.

To the west of the mouth of the Mississippi the double tides reappear. At Isle Dernière they are distinct, though a little irregular, for three or four days, near the time of the moon's zero declination. At all other times the single day type prevails, the double tides modifying it, however, in the shape of a long stand of from 6 to 10 hours at high water. This stand is shortest at the time of the moon's greatest declination, sometimes being reduced to but one hour. At Calcasieu the tides are distinctly double, but with a large daily inequality. The rise and fall being small, they would often present to the ordinary observer the same appearance as at Isle Dernière. At Galveston the double tides are plainly perceptible, though small, for five or six days at the time of moon's zero declination. At other times they present the single day type, with the peculiarity that, after standing at high water for a short time, the water falls a small distance and stands again at that height for several hours, then continues to fall to low water. Sometimes it falls very slowly for nine or ten hours following high water, and then acquires a more rapid rate to low water. At Aransas Pass and Brazos Santiago the single day tides prevail. Small, irregular double tides are only perceived for two or three days at the moon's zero declination. At all other times there is but one high water in the day, with a long stand of from 6 to 9 hours, during which there are often small, irregular fluctuations or a very slow fall. In the following table the mean rise and fall of tides at the above stations are given.

The highest high and the lowest low waters occur when the greatest declination of the moon happens at full or change; the least tide when the moon's declination is nothing at the first or last quarter. The rise and fall being so small, the times and heights are both much influenced by the winds, and are thus rendered quite irregular.

TABLE X.
Rise and fall at several stations on the Gulf of Mexico.

Stations.	mean rise and fall of tides.		
	Mean.	At moon's greatest declination.	At moon's least declination.
	Ft.	F.	Ft .
St. George's island, Florida....-----.-.-.	1. 1	1.8	0.6
Pensacola, Florida.......	1. 0	1.5	0.4
Fort Morgan, Mobile bay, Alabuma	1.0	1.5	0.4
Cat island, Mississippi....	1. 3	1.9	0.6
Southwest Pass, Lovisiana.	1. 1	1. 4	0.5
Isle Dernière, Lonisiana....-	1. 4	2.2	0.7
Entrance to Lake Calcasieu, Lonisiana ...--	1. 9	2.4	1.7
	1. 1	1.6	0.8
	1. 1	1.8	0.6
	0.9	1.2	0.5

TO DETERMINE THE RISE AND FALL OF THE TIDES FOR ANY GIVEN TIME FROM HIGH OR LOW WATER
It is sometimes desirable to know how far the tide will rise in a given time from low water, or fall in a given time from high water, or to approximate to the time which has elapsed from low or high water, by knowing the rise or fall of the tide in the interval. If the proportion of the rise and fall in a given time were the same in the different ports, this would easily be shown in a single table giving the proportional rise and fall, which, by referring to Table I, showing the rise and fall of the tide at the port, would give the rise and fall in feet and decimals. The proportion, however, is not the same in different ports, nor in the same ports for tides of different heights. The following Table XI shows the relation between the heights above low water for each half hour for New York and Old Point Comfort and for spring and neap tides at each place. Units express the total rise of high water above low water, and the figures opposite to each half hour denote the proportional fall of the tide from high water onward to low water. For example, at New York, three hours after high water, a spring tide has fallen six-tenths (sixty hundredths) of the whole fall. Suppose the whole rise and fall of that day to be 5.4 feet, (Table I,) then, three hours after high water, the tide will have fallen 3.24 feet, or three feet three inches, nearly. Conversely, if we have observed that a spring tide has fallen three feet three inches, we may know that high water has passed about three hours.

TABLE XI.
Giving the height of the tide above low water for every half hour before or after high water, the total range being taken as equal to 1.

Time before or after high water.	NEW YORK.		OLD POINT COMYORT.	
	Spring tide.	Neap tide.	Spring tide.	Neap tide.
h. m.	h. m.	h. m.	h. $\mathrm{m}^{\text {m }}$	h. $\mathrm{m}^{\text {. }}$
00	1.00	1. 00	1.00	1.00
030	0.98	0.98	0.98	0.98
10	0.94	0.93	0.95	0.94
130	0.89	0.86	0.88	0.87
20	0.80	0.72	0.80	0.78
230	0.72	0.59	0. 70	0.68
30	0.60	0.45	0.59	0. 57
$3 \quad 30$	0.49	0.81	0.49	0.44
40	0.39	0.19	0.37	0.34
430	0. 28	0. 10	0.26	0. 22
50	0.18	0.02	0.17	0.13
530	0.09	0.00	0.08	0.05
60	0.05		0.03	0.01
630	0.00		0.00	0. 00

TIDES IN CUASTING.
By observing the time of high water and low. water along the coast we find the places at which they are the same. The map of co-tidal lines (Sketch No. 65, C. S. Rep., 1857,) shows that it is high water nearly at the same hour all along the coast from Sandy Hook to Cape Cañaveral; of course, not in the bays and harbors and up the rivers, but on the outer coast.
It is high water exactly at the same hour all along the line marked XII, seen on the chart, near Sandy Hook, and north and south of Hatteras, and, with small interruptions, at Cape Lookout and Cape Fear, all the way to near Cape Cañaveral. This same line extends eastward to near Block island, and south of Nantucket, and then passes away from our coast. At full and change of the moon, along this line, (approximately,) it is high water at XII o'clock, Greenwich time, the local time of high water depending upon the longitude of the place; or, to speak more correctly, in the average of a lunar month it is high water so many hours after the time of the moon's passing the meridian of Greenwich. By these lines, called co-tidal lines, we can determine what tidal currents the navigators must expect to meet in coasting; and for this purpose we divide the ports of the coast into two sets, those south and those north of New York.
The sailing lines of coasters bound to southern ports this side of the straits of Florida are marked upon the map, and also of those bound through the sounds to eastern ports, and, outside, to Halifax and European ports.

VESSELS TO AND FROM PORTS SOUTH OF NEW YORK.

South of Sandy Hook, New Jersey, the line of XII hours is nowhere more than 18 miles from the coast; that of XI_{4}^{3} nowhere more than 35 miles ; that of $\mathrm{XI}_{2} \frac{1}{2}$ nowhere more than 48 ; and XI nowhere more than 110. The distance of these lines of XII to XI hours, (corresponding within four minutes to VII and VI of New York time,) from different parts of the coast, is shown from Table A, where the first column gives the nane of the place, and the second, third, fourth, fifth, respectively, the distances of the co-tidal lines of XII, XI $\frac{3}{4}, \mathrm{XI}_{\frac{1}{2}}$, and XI hours.

The distances are measured from the ports on perpendiculars to the co-tidal lines. They may be taken as if measured on the parallel of latitude at all the points for the line of XII hours, and at all between Sandy Hook and Cape Hatteras for the lines of XII ${ }_{4}^{3}$ and XII ${ }_{2}$ hours.
A.

Names of locations.	Distance from coast, measured on perpendicular to co-tidal lines.			
	At XII hours.	At $\mathrm{XI}^{3} \mathbf{4}$ hours.	At Xİ $\frac{1}{2}$ hours.	At XI hours.
Sandy Hook .	Naut. miles. 12	Naut. miles. 32	Naut. miles. 53	Nout. miles. 100
Barnegat.	2	29	39	78
Cape May -	15	30	46	92
Cape Henlopen.	18	33	47	92
Assateague	7	22	36	82
Cape Henry.	12	28	43	100
Cape Hatteras.		8	20	63
Ocracoke inlet.		11	26	71
Cape Lookout.		7	18	56
Eeaufort entrance, North Carolina	6	15	24	63
Cape Fear .		6	16	55
Cape Roman-		10	21	67
Charleston light.-	3	15	27	70
Port Royal entrance.....-.	5	17	29	78
Tybee entrance..-	6	17	31	82
St. Mary's entrance.	12	25	40	110
St. John's entrance	17	35	48	-----------
Gape Cañaveral..	16			
Cape Florida.				

The co-tidal lines are in such directions that at 10,20 , and 30 miles from the coast, between Sandy Hook and the St. John's, there is but a variation of seven minutes, and even to Cape Cañaveral only of eight minutes.

Keeping ten miles from the shore, the coaster would pass from XII hours at Sandy Hook to XI hours 45 minutes at Hatteras, and increase again irregularly to XII hours 7 minutes at the St. John's, as shown more explicitly in table B. These three tracks of 10,20 , and 30 miles are inside of the cold wall of the Gulf Stream, and generally in the cold current, except at Cape Cañaveral.

B.

Names of stations.	Co tidal hour at 10, 20, and 30 nautical miles from the coast, perpendicular to the coast.		
	Ten miles off.	Twenty miles off.	Thirty milex off.
	$h \mathrm{~m}$.	h. m.	h. m.
Sandy Hook	120	152	
Barnegat	1152	1144	1135
Cape May.	125	1153	1145
Cape Henlopen.	127	1157	1148
Asbateague	120	1148	1137
Cape Henry	125	1148	1142
Cape Hatteras.	1145	1130	1122
Ocracoke inlet.	1147	1136	1125
Cape Lookout...	1145	1130	1120
Beaufort entrance, North Carolina.	1155	1138	1125
Cape Fear.	1138	1125	1118
Cape Roman....	1145	1133	1124
Charleston light..	1152	1138	1125
Port Royal entrance...	1157	1145	1132
Tybee entrance-.--	1155	1143	1130
St. Mary's entrance.	128	1157	1147
St. John's entrance	127	1157	1150
Cape Cañaveral.	128		
Cape Florida.	1310		

It follows, then, as a general thing, from these two tables that the coaster, in passing from Sandy Hook to the St. John's would have the tides the same, within some fifteen minutes, as if he remained at Sandy Hook. So that leaving, for example, a high water, he would, according to the elapsed time, have the ebb and flood alternating every six hours and a quarter, nearly, as if he had remained near Sandy Hook. As the flood tide sets in generally to the northward and on shore, and the ebb to the southward and off shore, he would know by the time that elapsed from his departure and the period of the tide at which he started what tidal currents he might expect to meet as be passed along the coast. This, of course, is not peculiar to Sandy Hook as a point of departure, but would be true for any of the ontrances given in the table, taking care not to mistake the time of tides within for that at the entrance.

By referring to George W. Blunt, esq., I have obtained the tracks of sailing and steam vessels passing from New York to ports to the south of it, as shown by the lines on the chart accompanying this paper.-(See Sketch No. 65, C. S. Rep., 1857.) Tracing these on the map of co-tidal lines, I have determined how the navigator would find the tides as he passes from port to port. The results are shown in the annexed table, (C,) in which the port between which and Sandy Hook the mariner passes is at the head of the table, and, at the side, the place off which the co-tidal hours will be found, as stated in the table.
C.

Off-	Co tidal hours on sailing lines meagured on parallel of latitudes of places named in the first							
	Delaware bay.	Chesapeake bay.	Ocracoke inlet.	Cape Fear.	Charleston.	Savannah.	St. John's.	Cape Florida.
	$h . \quad m$.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
Sandy Hook	125	125	125	125	125	125	125	
Barnegat	$11 \quad 57$	$11 \quad 57$	$11 \quad 57$	1157	$11 \quad 57$	1157	$\begin{array}{ll}11 & 57\end{array}$	$11 \quad 57$
Cape May	$12 \quad 10$	1152	1145	1185	1145	1145	1145	$11 \quad 45$
Cape Henlopen		1151	1143	1143	1143	1143	1143	1143
Assateague		1155	11.33	1133	1133	1133	1133	1133
Cape Henry		1213	1124	$11 \quad 24$	1124	1124	$11 \quad 24$	1124
Cape Hatteras.			1148	1148	1148	1148	1148	1148
Ocracoke inlet.				1142	1142	1142	1142	1142
Cape Lookout				1139	1139	1139	1132	1124
Beaufort entrance				1139	1139	1139	1132	1124
Cape Fear					1186	11.36	1124	110
Cape Roman					1146	1146	$11 \quad 19$	---------
Charleston Light						1152	$\begin{array}{ll}11 & 18\end{array}$	
Port Royal entrance.						123	1118	
Tybee entrance..-							1116	
St. Mary's entrance							1155	
St. John's entrance.							1210	
Cape Cañaveral.								
Cape Florida.								

Thus, from Sandy Hook to Delaware bay, starting with XII hours 5 minutes, off Barnegat there would be, at the same instant, XI hours 57 minutes, and off Cape May XII hours 10 minutes, so that the navigator would have the same succession of tides, whether he remained at Sandy Hook or passed onward to Delaware bay; or whether he came from Delaware bay to Sandy Hook. So from Sandy Hook to Charleston he will find, at the same instant, XII hours 5 minutes at Sandy Hook, XI hours 57 minutes off Barnegat, XI hours 45 minutes off Cape May, and so onward upon the parallels of latitude for the several points. For all practical purposes, then, of coasting, the succession of the tides, and, of course, of the tidal currents of flood and ebb, will be the same as if the navigator remained stationary. Leaving at low water, he will meet the flood for 6 hours 15 minutes, and then the ebb for another 6 hours 15 minutes, and so on. It is the simplest of all rules that has thus come out of this investigation. That remarkable change of the temperature between the waters of the inshore cold current, and the warm waters of the Gulf Stream, occuring in so short a distance that Lieutenant Bache called it the "cold wall," takes place at distances of the coast of from 170 to 29 miles, (see Table D,) between Sandy Hook and Cape Cañaveral, measured from the several points named in the table, at right angles to the direction of the course, or measured along the parallels of latitude of the points, at distance from 195 to 28 miles between Assateague and Cape Cañaveral.-(Table D.) The points where the parallels north of Assateague meet this division line have not been accurately determined.

The annexed table shows these distances, measured at right angles and on the parallels.

The coasting line of thirty miles keeps inside of the cold wall all the way to Cañaveral, and all the routes traced on the chart from Sandy Hook to southern ports are on the inside of it. The Gulf Stream lines drawn on the chart show how the route to Bermuda and to the Bahamas cuts the alternate bands of warm and cold water of the Gulf Stream.

Vessels to and from ports east of New York.
The plate shows the sailing lines of vessels bound from New York to eastern ports and to Halifax, outside. The annexed table (\mathbf{E}) gives the Greenwich time of high water off the several points named in the first column on the routes to and from the places named in the heading of the table. The distances are measured at right angles to the co-tidal curves.
E.

Off-	Co-tidal hours on sailing lines between New York and-						
	Newport.	New Bedford.	Nantucket.	Boston.	Portsmouth.	Portland.	Halifax.
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. mr.
Throg's Point.	$16 \quad 16$	1616	1616	1616	1616	1616	
Fisher's Island.	$13 \quad 48$	1348	$13 \quad 48$	1848	$13 \quad 48$	1348	-*-***-*-
Block island.	$12 \quad 16$	1216	1216	1216	1216	1216	11 30
Monomoy				1610	1610	1610	
Cape Cod.				1435	1435	1435	1215
Cape Ann..					1500	1440	
Portland.						1530	

In passing from New York to an eastern port, the first great change in the tides and tidal carrents is between the East river and Long Island Sound ; the difference between Governor's island and Negro Point, on Ward's island, at the eastern entrance to Hell Gate, is two hours and forty-five minutes. Between this point and Throg's Point the change is small. The mariner is now in the full tide of the sound, and between Throg's Point and Fisher's island there is a difference of time of but two hours and twenty minutes, the greatest part of which is at the head of the sound and at its entrance-that is, near Throg's Point and Fisher's island. From off New London to off Sand's Point the difference is but one hour and forty minutes; so that if the mariner, instead of remaining at Throg's Point, passes onward to Fisher's island, be would lose but half a tide in the whole passage. In other words, he would have the same succession of rise and fall, according to the time elapsed, whether stationary or passing onward within two hours and a half, or less than half a tide.

The tidal current lines show that even a less allowance is to be made for the change of current than for the change of tide, the difference in the change of current between Throg's Point and Fisher's island, along the middle of the sound, being of no practical importance. Passing out of Long Island Sound, the tidal hours grow earlier, until off Block island that of Sandy Hook is again reached. The co-tidal line of Sandy Hook and Block island being the same, it is the struggle of the same tide through New York bay and the narrow East river and obstructed Hell Gate, and through Fisher's island and Long Island Sound and to Throg's Point. The tidal currents meet near Throg's Point.

The lower part of Narragansett bay has the co tidal hour XII hours nearly. Buzzard's bay has nearly the same co-tidal hour, the tide wave reaching the shore at nearly the same time all around the bay. It would be impossible to give in a small compass a minute account of the tides of Martha's Vineyard and Nantucket sound. In general it may be said that as far as Holmes' Hole and Wood's Hole they resemble those of Block island sound, and afterwards those of Monomoy at the eastern entrance; but this generalization is unsatisfactory without more details than there is space here to give. In these sounds takes place the remarkable change of between three and four hours, the greatest change of our coast, dislocating, as it were, the times of high water at places south and west and east and north of Nantucket. The whole of this change takes place between the eastern entrance of Nantucket sound and the western of Martha's Vineyard, giving rise to quite a complex condition of both tides and currents, which it has occupied much time to unravel. The dominant co-tidal line of our coast, from Block island to Cape Cañaveral, is that of XII hours of Greenwich time ; that of our eastern coast, from Nantucket to Passamaquoddy, is, in general, XV hours. Passing out of Nantucket sound, coasters carry nearly the same co-tidal hour to Cape Cod, and thence vary their time about half an hour in passing to Boston, to Portsmouth, to Portland, or to Passamaquoddy. It has long been known that the tidal almanac for Boston might practically be used for eastern ports. Vessels from New York to Halifax, and New York to Europe, which keep outside, and should keep well off the Nantucket shoals, and off George's, as shown by the track on the chart, vary their co-tidal hour but little, keeping between the lines of XII and XI $\frac{1}{2}$ until quite well on their course, and beyond Cape Sable. The same rule will apply to their case as has been given for vessels between New York and a southern port.

APYENDIX No. 15.

Table showing the least water in the channels of certain harbors, rivers, and anchorages on the coasts of the Cnited States; reprinted from the list of 1857 and revised with additions and tidal data.

APPENDIX No. 15-Continued.

Flaces.	mits between which depths are given.	leabi waterin channel way.				Authorities.
		Mean.		Spring tides.		
Delaware bay.......	* Main shin channel, passing Delaware breakwater	Fect. 61	Feet. 64.5	Fect. 60.4	Fett. 64.9 46.9	
		43	45.5	42.4	46.9	
		275	33.4			C. S., from 1840 to 1844, inclusive.
		13.5 13.5	194	1338	20.2 21.2 20	
	Main ship chanhel app oa'thing Listurs's looin	20	23.9		26.7	
Delaware river..............	Main stip chanicl up to Reeriv isiand	20	26	19.6	26.3	
	Main ehip chinnet, oppusite Reedy lshand lighthouse Oppurite bltware City	${ }_{3}^{24.5}$	${ }_{36}^{30.5}$	24.1 296	$\begin{array}{r}0.8 \\ \hline 3.3\end{array}$	
	Up to ¢ intuiana Cre k light...	20.5	27	203	27.2	
	Up to mircux Hook.	20.5	27	200.3	47.2	C. S., from 1840 to
		15.5	24.7	${ }_{18.4}$	25	ive
	Betw+hn Grenwich Point ard Gloucester Point	31.5	37.5	31.4	[31.2	
	Frimi Gren wich roint ut to Plindtyplia	21.5	27.5	21.4	288	
Chesapeake bay		30 54 3	32.5 61.5	- 23.8	388	
	From Hampton koade to sewallis Prin	25	27.5	248	278	
	South of sewall's Point, (one mile and a balf)	$\stackrel{2!}{23}$	23:5	24.8 2.8 2.8	23.8	
	Up wi Norfotk...	23	25.5	22.8	25.8	
	Prim Hampton Roads to James river, pntering to the northwart of Nowport News middle gromud.	22	24.5	21.7	24.8	1852, 1853, and 1854.
		27	29.5		298	
Tork rivet, Va Elizabeth river, Va.......... Hatteram indet, N. ©..........	Fronl atirnas the tail ui York spit up to Yorktowil	33	35.5	327	335.8	
	Retween Nortotk and navy yard.	255	28	253	28.3	
	Anchurage in Otiver's channei	13	15	18.9	15.1	
	Over butk head into ${ }^{\text {a maplico oound }}$	7	9	69	9.1	
Ocracake inlet.	Over bar	${ }^{10}$	12.4	8.8	12.6	
Albemarle sound	Auchorage in Wallico's cbannd.	19	21.4	18.8	21.6	-1857.
	From light-boat off Carom's Point to a line joining Powell's Puist and shell bank, near the mouth of Currituck sound	${ }^{7} 5$				
	Thuse up the sound to Martin's Pionti..............	5.5				51.
North river, N. C. Beaufort, N.C.		${ }_{6}^{5} 7$				
	Mnin ship channel.	15.5	18.3	13.3	18\%'	1854.
	Through the slue.	7	9.8	6.8	10.1	1857.
Cape Fear.	New thite bar.	8	125	75		
Georgetown, S. C.	Wertern bar Enrance to Winyah bay, Eist and	${ }_{7}^{8}$	12.5 10.8	76.7	113.3	1837.
	Althlorage in uine ol Norus sslaud	27	$3 \mathrm{3t}, 8$	26.7	313	(1851, 1852, and 1853.
Bull's bay.	Up win Georgetown	${ }^{9}$	${ }^{17.6}$	${ }^{8} 5$	131	
Charleston, S. C.		${ }_{21}^{13}$	178 25.8	12.6 20.6	183 263	f1857.
	Main ضnr	11	16.3	$10 . \mathrm{K}$	17.1	
	North channel	${ }^{10}$	15.3	9.8	16.1	
	Maffits channe! East channel	11	16.3 168	10.8 10.5	17 17.4	
St. Helena aound.	Southenst channei	13	18	112.5	17.4	1856.
	south Eduth chmul	14	199	13.3	21.7	
	Soutberat channel	10	15.9	9.3	${ }^{36.7}$	1856 and 1857.
			${ }^{29.9}$	16.3 7.3	23.7 14.7	
Port Royal..................		8 16	${ }_{23}^{13.9}$	7.3 15.5	14.7 23.5	
	Southea-t claaniol	20	27	19.5	275	1855 and 1856.
Tybee entrance.	Bn th eh mat Mel Ty isee isiand	19	${ }^{25}$	17.5	26.5	
Tybee entrance.	Tybue rnads	31	$3{ }^{3}$	381.4	3¢.5	1851 and 1852.
Savanah	Cuandel up to city, (Wrecks and Garden Bank)	11	17.5	10.6	18.2	Captain Gumer, $\mathrm{J} . \mathrm{s}$. Engineeti.-1856.
Dotry bar, (inlet).	Entrance over bar.	1.5	22.1	14.7	22.5	
El. Simon's................	Ancturrage in sound....... Over bur at entravee	24 17	$\begin{array}{r}306 \\ 238 \\ \hline 8\end{array}$	23.2	31.5 24.5	(16.55.
	Emrance to sound .	38	448	37.3	45.5	1855 and 1856.
	Turte river up to Bly he istand	121	${ }^{27.8}$	213	2N5	
Mary's	Matin ship chanuel over bar 1 hambel up to		203 94 9	145	20.7 25.2	1855, 1856, and 1857.
3t. John's river, Fla.	Or.r bar at entrance. ...	7	11.5	64	11.9	
Morida reef.	Chrnath passing up towards Jmeksonville	23	25.1	22.5	25.5	1855.
		20	21.5	19.9	21.7	
	Ehtonce to the northward of Fowey kocks; Soldier key benritg SW. \& W	19	30.5	18.9	20.7	1852.
	Entrnnee tw Legare anchorage	20	21.5	18.9	21.3	
		26	27.5	25.9	27.7	
	Chamel inside the reefs (Hawk channel) from entrance off Cape Finriata lighth une in Rodriguez key.					1854.
	Ancherke one imite font Indinukkey ki.....................	21	22.8	$\begin{aligned} & 10.9 \\ & 20.7 \end{aligned}$	12.7	
	N.NW............)	18	193	177	195	
	Key Sambo channel, between Middle and Western Sambo.. Inside the seef and steering W. by N . for buoy...........	34 14	35.3 15.3	33.7 13.7	35.5 15.5	

APPENDIX No. 15-Continued.

- The highegt tides occur at the moon's greatest deelination, and are applied in the cotuma beaded " spriag tides. ${ }^{\text {s }}$

APPENDIX No. 15-Continued.

Places.	Limits between which depths are given.	least water in chanel way.						Date.
		Mean, lowest of dily.		$\begin{aligned} & \text { Sp ing idez, low- } \\ & \text { en day day. } \\ & \text { mean. } \end{aligned}$		Spring tides, low est of day. Morn': greatest dechation.		
						室		
San Diego bay Bau Diego	Entrance	$\begin{aligned} & \text { Fert. } \\ & 27.4 \end{aligned}$	$\begin{aligned} & \text { Fert } \\ & 3\{.5 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 26.8 \end{aligned}$	Feat. 32.1	Feet.	$\begin{gathered} \text { Fect. } \\ 31.8 \end{gathered}$	1851.
	Midway b tween routh end of Zuniga stiona and Point Loma lighthouse, braring N. 61 th W. by compass, distan uearly a m atute mile.	20	24.1	19.4	21.7	18.9	24.4	1850.
	Middle Giround light house, beating N. 67t W. by compass, distant three-furths of a 1 :1 cue mile	18	22.1	17.4	22.7	16.8	22.4	1856.
	Mitway hud nearly in range between Ballast Point and point apperite	${ }^{2}$	26.1	91.4	${ }_{6}^{26} 7$	20.9	26.4	1886.
	Abryast of La Plaze, igil yard from shore.... At end of wharf, (Newtown)	${ }_{29}^{18}$	2.2 .1 27.1	17.4 22.4	${ }^{92} \mathbf{2 7}$	169 41.9	22.4	${ }_{1}^{1 * 56} 1$
San Olemente island, (SE. end.) San Clemente inland, (NW. end) Misibusan Juan Capistrano Santa Catalion island, (SW. side.) San E'edro	About modway betwey AE and SW . points at anchorage in deepert buph, 450 yards lirom shime	40	44.1	32.4	27.7 44.7	21.9 38.9		1850.
	Abuut 2 ve yards frum shore at anchorage	36	40.1	33.4	40.7	$3 \mathrm{H.9}$	404	1652.
	At anchoraze Anchorage ill Catalina bar	$\begin{aligned} & 42 \\ & 21 \end{aligned}$	461 20.0	41.4 80.5	46.7 25.5	40.9 19	46.4 25.1	$\begin{aligned} & 1853 . \\ & 1652 . \end{aligned}$
	In range between Point Pedro and half a mile from Dead man's ssland	18	220	17.5	22.5	169		
Point Duma Stil Huthaventura sania Cruz istaud Sulat Barbars San Minurli land Coses harter Nall Luis Obispo San Stm on Monterey harbor	Ancthrage	54	三N.0	53.5	54.5	52.9	58.1	$1 \sim 53$.
	Al anchorage half a mile from shore	36	40.1	35.5	40.9	33.0	410.4	
		75 18	79.1	295	7.4 2.9	740 170	79.4 20.4 20.4	1812. 1052.
	Auchtrate, Cuyler's harbur..........	37	411	36.5	${ }_{41}{ }_{4}$	36.0	41.4	${ }_{1852}$
	Anchorage .	31	34.1	295	34.9	29.0	344	1552.
	Aschornge in harb	33	:6.9	3.3	37.4	31.7	37.1	18iz.
	Harbor thithorag Anchorase	84	27.9	233	$2^{2 \times} 4$	28.7	2×1	1838.
	Anchorase	${ }^{42}$	45 3 3	41.5 29.5	${ }_{34}^{46.2}$	469 089	4.5 38 8	${ }_{1}^{188.8 .8 .}$
Sante Cruz harhor Suh Francisco buy..........	Amehorige	27	30.9	21.5	31.2	25.9	30.8	1×3.
	Frum 4 latnom hank araund to smuthure whor	98	38.2	27.6	31.6	26.9	32.4	183.
		66 54	\% 71.2	656 536	70.6 58.6	649 59	70.4 584 48	1834.
	Ancharage of Market Elreet whart, san franciseo 'Iff Cuntinghan's wharf.	${ }^{54}$	56.2	536 356	58.6 4.6	529	584 404 4	
	Of (lark'a Pumb, 450 yarde from shore	42	48.2	41.6	46.6	409	464	1851.
San Francisco harbor	On the kar	33	${ }^{37.2}$	32.6	376	31.9 18.9		1805.
Mare Island straits..........		20 25	24.2 30.5	196 24.8	${ }^{24.6}$	18.9 84.0	244 303	1855.
	in mid chanmi, betweru mavy yard and Vallfjo........ ..	25	34.5	248	317	94.0	3:1.3	1856.
Ballenas bay Sir Francis Drake's bay... Bodega bay.....................	Luxide of brakers on Duxbury rept, B asa a mite froin shore.	${ }^{24}$	28.2		28.6	21.9	2×4	183.
	Hall a mile inside the prom, and 400 yards from whore. Half a wifle inside of reef, at atchorage off point, yut yards	17	21.2	16.6	81.6	15.9	21.4	185.
	froms shre	36	490	35.4	40.7	34.8	40.4	.
Coat. Albion river Mpfidocino City. Bhetter cave Humboldt bay	At Haven's anc	48	53.5		52.9	46.8	527	1×53.
	Anctorakt at patrane	48	59.5	47	52.9	46.8	527	1653.
	Anchriate inside of paini......	30	34.5	29.5 29.5	34.9 3.9	20.8 208 20.8	${ }_{28.7}^{34.7}$	
	O" bar, half a mile frona stiore	21	25.8	20.4	26.4	19.7	26.1	1853.
	Миis chanot...	20	248	19.4	23.4	18.7	85.1	1sit.
Creacent City harbor Port Oriurd, or Ewing harbor.	A bechorage hatra mite of Cresentit City.	21	26.2	20.4	26.9	19.7	26.5	1853.
	Anchorage thre:--fourthe of a mile from Tichenor's Rock, and hutf a dille fram B the Rock	46	51.7	40.4	52.4	44.7	52.0	1883.
Umpquah river \qquad Coluntia river \square	On bar, oppo tie midechatmel	1:1	19.1	124	19.6	11.7	19.3	1553.
	Narth chaunel to Batee's b ty	${ }^{24}$	411.5	23.4	30.9	${ }_{17}^{22}$	${ }^{391.6}$	185\%.
	*Ebumice mas sutht chanuel	19	${ }_{22}^{24.5}$	18.4 15.4 1.4	24.9 2%	17.7 14.7	25.6	18.2.
Shoalwater bay.............	On bar of south channel	18	24.5	17.1	2.9	16.4	24, 2	1835.
	North claninal.	42.5	9	216	84.5	50.9		
		25	31.5	24.1	32	23.4	31.5	1×53.
Grenville harbor	Anchornge three-quarters of a mile inside of Point Grenvilie, and rame distanee from shore	22	28	211	29	20.4	2 R .5	1854.
Net-ah hatbor.............	Abchorave a wite inside of Waduab island, and 450 yards from shore	36	42.4	34.8	43.0	34.1		
False Dungeness New Dungeners. Eusith's isfant, (north side) Beihugham bay.	Harbor anclurig	54	60.4	53.1	${ }^{64.9}$	5.8	64.	1ef3.
	Anchurave near k	4	51.4 31.4	4.1 24.4	51.7 31.7	$4: 12 \cdot 2$ 23.3	5.8 3.8 3.8	1855.
	Anchurage near Kelp, 450 y	${ }_{6} 6$	${ }_{67}^{31.4}$	24.4 59.4	31.7 67.4	23.3 50.1	${ }_{68}^{32.2}$	Mrs.
	Anchorage 400 yards sovthwest of Fiizhugh's	18	25	174	25.4	161		165.
Fort Townshend	An-hirage 400 yards east of custum butse.	${ }_{36}^{48}$	54.4 4.5 .2	47.4 37.2	34.7 45.8	46.3 34.2	55.2 46.4	1054.
Port Grintte	Anchorage	18	27.2	17.2	4.8 .8 8.8	34.2	46.4 2.4	${ }_{\text {l }} 18.35$.
${ }^{\text {Bramer }}$	…..dп	20	99.2	183	29.8	18.2	3i. 4	1854.
Bl tkely harbor	Anchorage 450 ynriz inside of entrance......................	46	${ }^{53.2}$	45.9 17.0 1.0	${ }_{5}^{55.8}$	44.2	56.4 31	18i8.
		18	${ }_{23}^{30.0}$	17.0	$\begin{array}{r}319 \\ 3 \\ \hline 3.9\end{array}$	16.1 9.1	31.7 24.7	1855.

* Twenty one feet may be enrried in at mean low water by keeping a litle northward and westward, nearer the breakers of the midule sands, aud, at the turn, nautiag uof for Uape Disappointment.
T Thle for navigaiors, showing the variation of the compass for the year 1858, compiled from the general chart of F. J. Evans, R. N.-(See Sketch No. 38.)

APPENDIX No. 16-Continued.

昆 B E	WEst longitude.																			
	180*	170°	160*	150°	140^{*}	130°	120°	100°	100^{*}	90°	80°	70°	60°	50°	40°	30°	20°	10°	$0 \cdot$	
	varlation of the compasg.																			
-	\therefore	\bigcirc	-	i	\bigcirc	\bigcirc	\bigcirc	\therefore	-	-	-	-	-	-	-	-	-	-	\cdot	-
0	${ }^{8} \mathrm{t}$ E.	9 Er	8 E .	7 E.	${ }_{51} 5$.	47 E	5 E.	678.	8 E.	915	8 E.			08 W .	61 W.	121 W	17\%w.	21 w	$2{ }^{21 / W}$	0
28	9	9	8	7	54	4	5	69	8	9	9			01	64	124	17	214	22	28.
4	9	9	8	7	5	5	$5 \frac{1}{4}$	67	8	10	97	0	64	$12 \pm$	17.	217	23\%	4
6	91	9	8	7	8	5	5	,	81	10.4	10	sou	TH	12	18	22	23	6
8	98	9	8	7	84	5	5	7	9	10\%	108	...	AMEH	İA.	117	18	22.4	24	8
10	9	9	8	7	$8!$	5	5	$7!$	91	11	10				54 W	114	18	294	244	10
12	97	9	8	7	6	6	64	7	97	$1{ }^{1}$	114			,	$11 \frac{1}{4}$	178	224	24.	12
14	97	9	${ }^{4}$	7	${ }^{6}$	6	61	7	10	14	11	10 E	4	11	17%	224	25	14
16	10	${ }^{9}$	8	7	0	01	67		104	12	124	$1{ }^{1 / 1 / 4}$	4	10	17	224	255	16
18	10	91	81	7	7	61	7	81	104	12t	124	104	.	.	,	10.4	163	224	23	18
20	104	9	84	7	7	7	3	87	11	124	1318	11	${ }_{2}^{2} \mathbf{2} \mathbf{E}$	38	10	164	294	254	20
92	104	91	81	8	7	74	7	9	114	13	131	12	24	3_{2}	91	15	21	25	22
24	104	91	8	84	7	7	7	98	11	131	14.	124	3	$2{ }^{2}$	d	15	21	25	24
26	11	97	θ	84	7	7	8	91	12	14	14	131	$3 \frac{1}{4}$	$2 \frac{1}{4}$	8	15	214	25	26
98	14	104	91	B4	8	8	81	10	124	14!	154	14	...	4	1	8	14.4	293	20, ${ }^{4}$	20
30	12	104	星	8	84	8	8	104	127	15	16	144	$10 \frac{108}{4} \mathrm{E}$	$4 \frac{1}{1}$	$1 \frac{1}{4}$	74	137	20	25	30
32	124	11	9	9	81	81	9	104	13	15	1nt	15	107	5	016.		134	197	21	32
34	13	114	10	9	8	87	9	11	191	${ }^{16 \%}$	174	15.	14	57	0	64	12\%	18	$24 \pm$	34
36	13	14	104	9	9	-	97	11	14	163	171	16	124	6	nit	57	12	18	27	36
38	14	124	107	9	$9{ }_{4}$	97	10	12	1441	174	184	$16 \frac{1}{1}$	12	T	14	5	114	174	234	38
40	14	124	17	10	9	97	10	124	154	184	194	171	13.4	8	4	4	10	167	29	40
42	154	14	119	101	10	10	11	13	10	19	197	17	14	9	2	34	114	164	22	12
44	154	14	124	11	194	104	111		161	20	2 \% ${ }^{\frac{1}{4}}$	184	14	9	31	3	9	154	214	44
46	18	14	124	114	11	11	12	14!	171	20%	214	$19 *$	152	104	$4 \frac{1}{4}$	24	8	141	204	46
48	164*	154	134	12	11	11	127	15	18	21	22	20	16	$11 \frac{1}{4}$	5	1	7	137	19\%	48
50	171	134	14	124	12	$12 \frac{1}{4}$	134	16	198	23	227	20	16,	11:	6	1 W.	7	13	19	50
52	12	184	14	134	124	124	14	17	201	23.	23	21	174	124	7	0	6	1214	18	52
54	18	164	154	14	134	13	15	1818	22	24	24 ${ }^{\frac{1}{2}}$	22\%	18*	134	8	1 E	5	114	17	54
38	184	174	18	15	145	14.	18	19	23	25	23,1	234	19.	14	8 8	2	4	104	164	56
58	20	18	17	16	154	154	174	215	24	294	$26 \frac{1}{4}$	24	21	154	98	$3{ }^{\text {a }}$	34	91	154	58
608.	24 E	1978.	18\% E	17 E	17 E	1i4. E.	191 E .	24 E	201 E .	${ }^{271} \mathrm{E}$	274 E	251 E	214 E	161 E.	109	4 L.	3 w .	9 w.	15 W.	60 s .

APPENDIX No. 16 -Continued.

	east longitude.																			
	0°	10°	20°	30^{*}	40°	50°	60°	70°	80°	${ }^{90}$	100°	110°	120°	130°	140°	150^{*}	160°	$170{ }^{\circ}$	$180{ }^{\circ}$	
	variation of the compass.																			
-	-	-	-	-	-	-	-	.	-	-	-	-	9	-	-	-	-			
0	22\% W.	214w.			8 W .	$4{ }^{4} \mathrm{~F}$	2q\%	117 W.	0	0 O E.	14 E .	14 E	1 E .	$1{ }_{16} \mathrm{E}$.	3 E .	54 E	8 E.	97 E .	91 E	0
2 S.	24	224			81	5	3	1	01 TW .	01	4	14	1	1f	$3{ }^{4}$	5	8_{4}	9	98	2 A .
4	24	23	89	5	31	17	0	01	1	1	4	1	31	5	84	94	93	4
6	234	234			10	6	37	2	07	015.	09	4	01	14	38	6	${ }^{8} \frac{1}{4}$	98	9.	6
8	24	24	11	68	4	4	14	Ot ${ }^{\text {W }}$ W	0.4 E .	015	U3 E.	14	37	64	8_{6}	91	97	8
10	24	24			12	$7{ }^{7}$	41	24	14	04	0	0	0	1	4	6	8	91	9	10
19	24	$25 \frac{1}{4}$			12	$8!$	5	3	2	1	0, ${ }^{\text {W }}$	014 FW	01 W	1	4	61	8	97	9	12
14	${ }^{2}$	257		14	93	53	37	21	17	1	1	4	1	$4 \frac{1}{4}$	7	8	97	97	14
16	254	244	154	104	69	44	3	2	2	1	07	1	41	$7 \frac{1}{4}$	9	10	10	16
- 18	231	264	16	114	i	5	37	3	27	2	1		41 E .	71	93	${ }^{107}$	10	18
20	257	97	177	13	89	64	4	4	31	21	14	$7{ }^{7}$	\%	101	109	20
22	954	271	19	144	10	71	61	5	4	3	1/W	8	10	10	嗗	22
24	254	274			204	154	119	8	73	7	5	31	AUST	ralia.	81	111	113	109	24
2	25:	28			21.	17	$12{ }^{2}$	101	94	8	3	4	81 E	10,	118	11	26
8	2.4	28		20.5	24	184	15	114	101	10	8	5	11	124	117	28
30	25	28	292w.	274	214	20	$16 \frac{1}{4}$	134	12!	14	10	69	3 W .	1.15	114	124	12	30
32	244	28	${ }^{29} 1$	284	25	$2: 4$	18	15	1:9	131	11	8	3	$0 \frac{1}{2}$	57 E .	41 E .	12	13	121	3
9	248	- 97	${ }^{39}$	29.	264	234	197	179	154	15	127	9	4	$0_{4}^{12} \mathbf{E}$	6	99	1294	134	13	34
36	234	27.	30	294	28	25	201	19	174	163	141	10	51	0	6	104	127	14	131	36
38	234	$\mathbf{2 4}^{4}$	30\%	$30 \pm$	29	267	234	207	19	17	151	11	51		6	101	13.	141	14	38
40	224	274	30.4	$31{ }_{4}^{1}$	30	274	234	221	21	19:	16	12	$6 \frac{1}{4}$	04	$6 \frac{1}{4}$	107	131	147	141	40
珄	22	27	301	31	3 k	${ }^{9}$	267	24	23	21	174	13	7	09	6.	14	14	$15 \frac{1}{4}$	15	42
44	214	26	30	32	32	30\%	284	264	251	231	19.4	149	7	$1{ }_{4}$	$6{ }_{4}^{4}$	11	14	15	15	44
46	201	26	30	321	33	314	30	24\%	27474	25	214	154	88	1	6,	12	14	16.4	16	46
48	19\%	231	294	324	339	33	314	30	241	284	234	173	98	2	$6 \frac{1}{4}$	124	154	16	164	48
50	19	243	294	33	34	344	337	324	32	301	263	19	108	21	64	127	109	171	17\%	50
52	18	24	24	33	354	33	35	35	35	334	${ }^{29}$	214	12	3	6	334	168	1	17\%	52
34	17	23.	${ }_{29} 9$	33	351	38.	30%	374	37	361	318	237	14 W	36	64	137	171	19	181	54
56	16\%	224	281	33	364	37	3×1	391	40	34%	344	26	.	46	6	141	18	20	194	${ }^{56}$
58	1.4	214	274	33	$3 \mathrm{~B}+$	$3{ }^{3}$	40	424	434	427	38	28w.	...	5	6	14	19.	21		58
608	15 W.	21 W .	274 W	33 W .	3:17\%	39 W .	42! W.	43 W.	47 w.	48 W	62w.	6 E .	147 E	21 E.	22 E .	$21 \frac{1}{4} \mathrm{E}$	60.9.

$$
\text { g\&I } \quad \text { ranans lavoo sabvas gadina ahl }
$$

APPENDIX No. 17.

Report of Capt. W. R. Palmer, U. S. Topographical Engineers, Assistant Coast Survey in charge of the office, and sub-reports of the chiefs of office divisions.

Coast Survey Office, October 1, 1859.
Dear Sir: In conformity with the instructions of the Superintendent, I have the honor to submit herewith the usual annual reports of the chiefs of the different divisions of the Coast Survey office. These reports narrate with critical exactness the amount of work executed in this office since my first report. dated one year ago.

It will doubtless be apparent to the Superintendent, from a close examination of these reports, that the quantity of work done has been so great that it could only have been accomplished by steady industry and attention to duty on the part of those engaged in it.

The character of the work and the execution of the finished maps, in my judgment, merit high praise; yet the loss of some three or more able assistants during the past year is severely felt by this office; industry, zeal, and intelligence on the part of those who have succeeded to their duties will soon, I hope, enable them to thoroughly fill the places of their predecessors.

Three officers of the army, viz: First Lieut. J. C. Tidball, 2d artillery, First Lieut. R. Saxton, 4th artillery, and First Lieut. J. P. Roy, 2d infantry, have been detached from duty within the past year, and two officers only, viz: First Lieut. J. R. Smead, 2d artillery, and First Lieut. Thomas Wilson, 5th infantry, have been assigned to duty here.

I shall now refer to the different divisions of this office in their order of precedence, commencing with the-

Computing Division.-This division, the varied labors of which includes all the computations and comparisons necessary in the primary, secondary, and tertiary triangulations, the astronomical, chronometric, and magnetic observations, measurements of bases, and, in addition, many incidental calculations, remains under the charge of its experienced chief, Assistant \mathbf{C}. A. Schott.

One of the computers (Mr. J. Wiessner) resigned on the 1st of April last, to join one of the western exploring expeditions. The report herewith submitted will furnish the Superintendent with the details of occupation of his six assistants and himself during the past year.

Tidal Division.-The tidal division is under the charge of Assistant L. F. Pourtales, who is assisted by five regular computers, and such "aids" as may be available from time to time in the intervals of their field service; their names and occupation are given in the annexed report of the chief of the division. In addition to the regular duties of this division, in reducing and furnishing to the office the requisite tidal data for our charts, it has other special occupations under the immediate direction of the Superintendent, as will be seen by reference to Appendix No. 27.

Drawing Division. -This division, First Lieutenant J. C. Tidball, 2d artillery, in charge until 30 th of June last, has not only promptly executed the various demands that have been constantly made upon it, in the projecting, upon the sheets required by the parties in the field, of the astronomical and trigonometrical points, in the furnishing of many tracings for the different departments and bureaux of the government, for office use, for public corporations, and for
many private citizens, (these latter tracings being given only with the sanction of the honorable Secretary of the Treasury,) but has also with a reduced force gained a further advance upon the engraving. In the language of First Lieutenant T. Wilson, 5th infantry, who, three months since, succeeded to the charge of this division, "Confidence is felt in its ability to meet in a prompt and satisfactory manner every demand that can be made upon it."
The Superintendent will doubtless concur with me in the expression of regret which all who have been associated with him feel at the loss to this office of the services of First Lientenant J. C. Tidball, 2d artillery. He received orders to join his regiment on the 12th of Angust last, thus dissolving his connection with this work.
Lieut. Wilson's report, hereto annexed, and the lists accompanying it, will acquaint the Superintendent with the progress of the division, and the special occupation of each of the draughtsmen during the past year.
Engraving Division.-The division of the Coast Survey office to which I deem it my duty most particularly to invite the attention of the Superintendent at the present time is that of the engraving, which, notwithstanding the increase in force in various grades of engravers a few years since, is hardly at the present time able to keep up with the Drawing Division. A thorough study of the details of this subject will, no doubt, enable us to apply the remedy. As you have this subject under special consideration, I do not deem it necessary at present to enlarge upon it.
The charge of this division for the first half of the year continued with First Lieut. Rufus Saxton, U. S. A., when his detail by the War Department for duty at the United States Military Academy, at West Point, deprived this office of his valuable services.

During the past six months Mr. Edward Wharton succeeder to the duties of Lieut. Saxton. His zoal and industry merit my commendation.

Electrotype Division.-Under the direction of Mr. George Mathiot, chief electrotypist, assisted by Mr. D. Hinkle, this division has made during the present year eighty-seven copies of engraved plates, eighty-three being for the use of this office and four for other departments of the government, thus preserving unimpaired our original or standard plates, and using, in lieu of them, the electrotypes for printing.
I had the honor to state, in my previous report, that increased success had followed the experiments in photography, especially with a view to its use in the preparation of the reductions from the original plane-table sheets, and I have now the satisfaction of stating that, to a great extent, these reductions have proved successful. I would instance that of coast chart No. 29, from Green Run inlet to Little Machipongo inlet, Virginia, a proof of which was submitted to the Superintendent on the 28th of July last, after having been engraved from the photographic reduction. I have examined with care the criticisms of both the Drawing and Engraving Divisions upon it; it has been pronounced accurate. The cost of this reduction did not exceed one-fourth the cost of making the same reduction by hand.

Two other reductions, viz: San Pablo, California, ${ }_{\bar{\delta} \frac{1}{8} \frac{1}{0} \overline{0} \text {, }}$, and New York bay and harbor, also इォテ̈ण, having been subjected to the closest criticism of experts in both the Drawing and Engraving Division, and proving accurate, are being now engraved as received from the photographer.

The report of the chief electrotypist, hereto appended, promises additional results by the use of photography in other branches of the survey.

Archives and Library.-Whe arrangement for the archives continues unchanged. The very limited space remaining for the records of the survey at the date of the last annual report is being rapidly filled, and great inconvenience is felt from the want of sufficient room for the proper disposal of those turned in from day to day, from the various field and hydrographic parties. There have been added to the library; during the calendar year 1859, one hundred and sixteen volumes, of which fifty were presentod to the survey from home departments and institutions, and from those of foreign governments.

Miscellaneous division.-As stated in my last annual report the miscellaneous division, consisting of the printing and distribution of maps, charts, and Coast Survey Reports, had only then been organized less than a year and had improved upon its previous separate working. The experience of the year exhibits a large advancement upon the results then stated, without an increase in the number of its employés. The number of impressions from Coast Survey maps, charts, and sketches printed, amounting to over fifteen thousand, including proofs for distribution, quarterly records, \&c., against near twelve thousand of the previous year. With this increase, still, the number of impressions taken is scarcely up to the demand made upon the office by our sale agents and for the distribution to libraries and other institutions authorized by the Treasury Department, which amounted in the last year to far more than double the number distributed in the previons year, including seven thousand eight hundred impressions of thirteen charts, sent to the principal departments of the government to foreign institutions, \&c., and to certain libraries and other public depositories designated by members of the House of Representatives in their respective districts throughout the entire country.

The distribution of the Superintendent's Annual Report for 1857, from the time of its reception from the congressional binders, was made in less time than in any previous year. The annual report for the past year, it is confidently hoped, will be ready for distribution by the commencement of the coming session of Congress. It will, doubtless, be a source of much regret to those who have heretofore received the results of the operations of the Coast Survey in this form, that the number of extra copies ordered by Congress was reduced to five thousand from the twenty thousand, heretofore distributed by members of Congress direct to their constituents, and from this office to foreign governments and institutions, the libraries of our vessels-of-war, of colleges, and scientific institutions, and to individuals interested in science, commerce, and navigation throughout the Union.

This division is under the charge of First Lieat. J. R. Smead, U. S. A., who, in June last, relieved his predecessor, First Lieut. J. P. Roy, U. S. A., the valuable services of the latter having been called for by the War Department.

I would respectfully call the attention of the Superintendent to the details of work as reported by Lieut. Smead, which is hereto submitted.

Carpentry.-The carpenters' work necessary for the use and transportation of instruments for the surveying parties has beeu at all times during the year promptly executed. There have been made twelve new stands and thirty-three fine cases for instruments; twenty-six drawing and plane-table boards; seven large cases for books, maps, and copper-plates; five large vats, and eighteen frames for electrotype and photograph purposes; patterns for castings, and one hundred and forty-three packing boxes; the wood-work for two self-registering tide-ganges, and new instruments for magnetic observations; a machine for winding sounding-lines, and a vibrating stand for comparing base rods. All the instruments sent to and returned from the field partịes have been packed and unpacked, and repairs made where needed; fifty tin tubes
for filing original maps and charts have been painted and numbered, and the requisite repairs and additions made to the Coast Survey buildings.

The work of the carpenter's shop is executed by Mr. A. Yeatman, master carpenter, assisted by one carpenter and one apprentice.

Instrument Shop.-The instruments made during the year are twenty eight geodetic, three astronomical, sixteen magnetic and telegraphic, twenty-two telegraphic, ten hydrographic, twelve drawing, sixty-two engraving, and nineteen miscellaneous. Repairs have been made upon sixty-seven geodetic, five astronomical, six magnetic and telegraphic, ninety-six topographic, sixty hydrographic, thirty-five drawing and engraving, and three miscellaneous instruments. The force employed consists of Mr. J. Vierbuchen, master instrument maker, whose services and management are satisfactory, and five instrument makers.

I would express my acknowledgments to Commander S. S. Lee, U. S. N., who has recently been assigned to the charge of the Hydrographic Division of this office; to Prof. W. P. Trowbridge, assistant in the Coast Survey; Samuel Hein, esq., general disbursing agent, and Joseph Saxton, esq., assistant to the superintendent of weights and measures, for their prompt and cheerful co-operation with, and aid rendered to, the office on all subjects pertaining to their respective duties.

First Lieut. A. P. Hill, 1st artillery, U. S. A., still acts as general assistant; his merits are so well known to the Superintendent that it is superfluous for me to enlarge upon them.

In concluding this report I would add that the chief clerk in my office, A. W. Russell, esq., performs his duties with characteristic industry and ability. I shall, from a sense of duty, in a separate communication, strongly recommend an increase to the compensation of one or more of the gentlemen comprising the clerical force of this office, in order that they may be placed more nearly upon an equality, as to pay, with those of no higher grade or merit in the other departments and bureaux of the government.

I have the honor to be, very respectfully, your obedient eervant,
W. R. PALMER,

Capt. Topl. Engineers, Assist. C. S., in charge of office.
Prof. A. D. Bache,
Superintendent U. S. Coast Survey.

Report of Assistant Charles A. Schott, in charge of the Computing Division.

Coast Survey Office, October 1, 1859.
In conformity with the regulations of the office, the usual annual report on the occupation of the several computers for the year ending October 1,1859 , is herewith respectfully submitted.

During a part of the year the number of computers was less than in the previous year. Mr. J. Wiessner resigned his position in this division on the 1st of April, to join one of the western wagon-road expeditions. The somewhat contracted state of the records received in the first half of the year permitted to continue the reductions of the current work without filling the place vacated by Mr. Wiessner, although it necessitated an increase of, and close attention to, duty on the part of the computers in general.

During the month of July, in accordance with instructions received from the Superintendent,

I was engaged on a magnetic survey, extending to Sections I nad II; these observations were partly reduced by myself, and fully discussed in regard to the secular change of the magnetic declination, on which subject a report at some length was submitted in answer to a call from the Superintendent. The least square reduction of the primary triangulation between Kent Island and Washington was considerably advanced by me and reported on. The ordinary routine business of the office has all been attended to; it comprises principally the furnishing of geographical positions to topographical and hydrographic parties, and the examinations and reports of all computations, discussions, and revisious, either geodetic, astronomical, or ; magnetic.

The general distribation of the reductions has remained the same as in last year. The following statement contains in detail the amount of work done by each computer during the year ending October 1.

Assistant Theodore W. Werner computed the triangulation between St. Helena and Calibogue sounds, Section V; reduced Assistant Gerdes' triangulation on the Mississippi delta; made out a least square abstract of horizontal angles at station Humpback, Section I; reduced and computed rectangular co-ordinates of the Charlotte harbor triangulation, Section VI. He also computed the triangulation of the Gulf of Georgia, Washington Territory; made a second calculation of the astronomical latitude of yard, Section II; reduced the triangulations of Chandeleur sound, Section VIII, and near the mouth of the Potomac, Section III; also the triangulation connecting St. George's and St. Mark's, Section VII, computing new L. M. Z. for the whole work; the reduction of the triangulation between Sapelo and St. Simon's, Section V, 1858-'59, completes the work.

Mr. Eugene Nulty computed the astronomical latitude of Pensacola and Warrington, Section VII; of Lower Mississippi, Section VIII, and the azimuth of Plantation Hill and Warrington, Section VII, and of Humpback, Section I; also, the latitude of Humpback, Rutherford Observatory, N. Y., and of New Orleans. He also made a second reduction of the Seaton latitude, and reduced time and azimuth, and the latitude at station Smithville, N. C.

Mr. James Main made the revision of the two independent computations of the following astronomical work: The azimuths at Santa Cruz, Section \mathbf{X}; at Allston and New Cut, Section V, and of Plantation hill, Section VII; the latitudes at Allston, Breach inlet, East Base, and Savannah, in Section V; of Pensacola and Warrington, in Section VIL; of Thomas' hill, Bangor, and Humpback, in Section 1; of New York city and Washington city. He also revised the magnetic reductions at Humpback and Mississippi city, computed the magnetic constants for magnet C. 6, and made a reduction of my magnetic observations in July last.

Dr. Gottlieb Rumpf attended to the revision and insertion of the geographical positions in the registers; made the second least square reduction of the horizontal angles at stations Hill, Causten, and Seminary, Section III; made a second reduction of the James river triangulation of 1857, revised the reduction of the Mississippi delta triangulation, redaced the triangulation of Tomales bay and Petaluma creek, Section X, and of Sub-Assistant Harris' triangulation in the vicinity of New Orleans. He also made a least square abstract of the horizontal angles of the primary triangulations in Section V, and assisted in the reduction of vertical angles for elevations in Section I. He also reduced Assistant Blunt's work on the Hudson river, completing the triangulation up to Hudson City; assisted me in the discussion of the secular change of the magnetic declination, and in the proparation of the list of geographical positions printed in this year's report.

Mr. John Weissner computed the triangulation of Sheepscot river, Section I, and assisted in
the discussion of some magnetic reductions; he also supplied the L. M. Z. to the observers' computation of the Tomales bay triangulation, assisted in the least square reduction of the primary triangulation near Washington, and in the computation of L. M. Z. to the triangulation near New Orleans. He completed the reduction of vertical angles for heights in the vicinity of the Sheepscot river, 1855-'57, and reduced vertical angles at stations Saunders, Sebattis, and Ragged, of the primary series. Mr. Wiessner's resignation took effect on the first of April last.

Mr. William D. Storke assisted in the reduction of horizontal angles at Humpback, Section I; reduced the triangulation on Pensacola bay, 1858, and of Sub-Assistant Bagwell's triangulation south of the Cedar Keys; computed the triangulation of Assistant Bolles', south and west of Cape Fear river entrance, 1855 to 1858 ; made himself acquainted with the reduction of transit observations, and assisted in the preparation of geographical positions for the present report. He also reduced the horizontal angles at Smithville, N. C., in connection with the astronomical azimuth; assisted Mr. Rumpf in the L. M. Z. computations on Hudson river triangulation, and also assisted in the preparation of the statistical table for this year.

Mr. John T. Hoover attended to the clerical duties of the division, and principally assisted in the preparation of the geographical positions for the 1859 report, duplicating and revising the same. He also made a number of diagrams.
R. Freeman supplied the extra copying required for field or office.

Report of Assistant L. F. Pourtales, in charge of Tidal Division.
Coast Survey Office, November 1, 1859.
The following report on the occupation of the computers in this division during the past year is respectfully submitted:

Mr. R. S. Avery has finished the discussion of the nine years' series of tidal observations at Boston, and has made comparisons of twelve years' observations with the predictions made by means of the coefficients obtained. He has also prepared ephemerides for future years.

Mr. S. Walker has examined and registered the observations received from the tidal stations, and has had charge of the correspondence with the observers. He has also read off the sheets of the self-registering tide-gauges, and supervised the gauge established at the navy yard in this city, besides making miscellaneous computations.

Mr. John Downes has made graphical decompositions of the tidal curves of the Florida stations, and reductions and comparisons of the results obtained.

Sub-Assistant C. Fendall was attached temporarily to this division from April 11 to June 16, and made decompositions of the tidal curves from the Florida reef, and worked out the diurnal inequality for some of the same.

Mr. J. Gilliss was engaged from November 26 to January 17 in making ordinary reductions, working out daily inequalities, drawing diagrams, and miscellaneous work.

Mr. R. E. Evans joined the division May 25, and has since been engaged on ordinary reductions, diagrams, and decompositions of tidal curves.

Messrs. J. Donegan, O. Henrich, and T. C. Bowie were engaged for short periods, in the intervals of their field duties, in miscellaneous work, chiefly ordinary reductions of tides.

Mr. A. W. King made, during part of the year, ordinary first and second reductions by contract.

The meteorological observations of the Pacific coast have continued to be discussed by M. Thomas, who has alsn done miscellaneous work and copying.

Most of the reductions of the observations of the permanent stations were made by S. D. Pendleton.

Report of Lieut. Thomas Wilson, U. S. A., assistant in charge of the Drowing Division.
Coast Survey Office, November 1, 1859.
Pursuant to instructions, the following report is respectfully submitted of the operations of the drawing division of the United States Coast Survey office during the past official year, under the supervision of my able predecessor, Licut. J. C. Tidball, U. S. A., until the 30th of June last, and since then in the charge of the undersigned.

During this time I have had the benefit of the assistance of Mr. G. A. Porterfield, whose experience in the office of several years has been successfully given to further the best interests of the division.

It is a material and gratifying fact that the division has been equal to the demands upon it by the extensive operations of the field and afloat, and the work is marked with great accuracy and superior professional ability and elegance.

Below are presented the details of the duties and labors of the several draughtsmen employed. This outline of the past year's labors of this division furnishes some idea of its ability for promptly realizing in form and presenting in tangible shape the topographical and hydrographical results of the active service in the field and afloat.

As an incident to the draughting duties proper, yet of no ordinary importance, is the exact and methodical arrangement of the returns of the field service and other archives on which our maps and charts are founded. This arrangement is kept up wich punctilious attention, and in such a manner that now and hereafter the maps and charts produced can be brought to the immediate test as to accuracy of the original data upon which they are founded, or renewed in the future, should every vestige of our present labors disappear by time or circumstance. It is proper also to report that not only have we kept pace with the field service, furnished projections to field parties, made projections on copper, and attended to these and other miscellaneous duties, legitimate but incidental, yet also are we still in advance of the engraving division, as, indeed, our system requires; so that not a moment is lost, nor the least delay possible, in its receiving from our hands a constant and abundant supply of material. For the purpose of presenting this fact more practically to the Superintendent, the paper marked A has been prepared, that he may see at a glance how the work on the projects in the drawing division stands with regard to its engraving.

It is a gratifying fact, too, that in co-operating with the purposes of a just and prudential economy of the Superintendent, we have been able to realize his wishes in a reduction of three during the past year; and with our present reduced force, looking to its efficacy, zeal, and
energy, we feel confident in an ability promptly and satisfactorily to meet every demand that may be made upon this division of the United States Coast Survey Office.

Assistant W. M. C. Fairfax has been employed upon the reduction of topography of coast maps and charts No. 7, from Muscongus bay to Portland harbor, Me., scale $\frac{{ }_{\bar{\sigma}}-\frac{1}{0} \overline{0} 0}{}$; No. 10, from Ipswich harbor to Green's harbor, Mass., $\overline{80} \frac{1}{0} \overline{0}:$ No. 11, from Plymouth harbor to Hyannis harbor, Mass., $\overline{\delta \frac{1}{0}} 00$; Nos. 35 and 36, Chesapeake bay, from Pocomoke sound to entrance, Md. and Va., $\overline{80 \frac{1}{800}}$; and No. 53. from Stono inlet to Fripp's inlet, S. C., $\overline{80} \frac{1}{600}$.

Assistant M. J. McClery has drawn additions to the Congress map, $\overline{15} \overline{\frac{1}{0} \overline{0} \sigma 0}$, and been occupied upon the topography of coast map and chart No. 21, New York harbor and vicinity, $\frac{1}{80} \frac{1}{000}$.

Mr. A. Boschke has been employed upon projects for maps and charts according to the general plan adopted for the entire coast.

Mr. A. Lindenkohl has reduced the reconnaissance of the coast of Texas, from Matagorda Bay entrance to Aransas pass, $\overline{2} \bar{\sigma} \bar{\sigma}^{\top} \bar{\sigma} \overline{0}$; has made additions to Alden's reconnaissance of the western coast, $\overline{120} 0 \overline{0} 00$, and has been employed upon Cape Fear River entrances, N. C. comparative charts, 1851-'58, $\overline{1} \bar{\sigma}{ }^{2} \overline{0} \sigma$; coast map and chart, No. 58 , from the St. Mary's to the St.
 jections on copper and verifications; and has assisted in the application of photography to topographic reductions.

Mr. A. Balbach was employed upon the hydrography of coast maps and charts, No. 68,
 to Marquesas keys, $\overline{\bar{\sigma} \overline{0} \frac{1}{\sigma} \bar{\sigma}}$, until the 29 th of 'November, when he was transferred to the hydrographic division.

Mr. E. Hergesheimer entered the office on the 13th of December, and has been engaged upon the hydrography of coast maps and charts, No. 14, from Cuttyhunk island to Block island, Mass. and R. I., $\bar{\sigma}^{\frac{1}{0} \bar{\sigma} \sigma}$; Nos. 70, 71, 72, Florida reefs, from Long Key to Marquesas keys,

 microscopic enlargement of specimens of bottom taken in deep sea soundings, Gulf Stream, and verifications and examinations.

Mr. W. P. Schultz has reduced St. George's sound, (eastern part,) Fla., $\overline{\overline{4}_{0} \frac{1}{806}}$; additions to Charleston harbor, (for new edition,) S. C., $\frac{300}{1} \overline{0} \overline{0}$; has drawn diagrams illustrating changes of temperature in Gulf Stream, with depths, and has been employed upon the reduction of

Mr. L. D. Williams has made additions to preliminary seacoast charts, Nos. 11 and 12, from Cape Hatteras to Cape Fear, N. C., $\overline{20} \frac{1}{0} \overline{0} \sigma$; additions to Canal de Haro and Strait of Rosario, W.T., $\overline{200^{\frac{1}{0} 00}}$; and has been engaged upon Hudson river, from entrance to Sing Sing, N.
 additions to Congress map, $\overline{15} \frac{1}{0} \delta 万 \delta$; projections on copper; projections for field parties and verifications.

Mr. A. Strausz has been engaged upon the reduction of hydrography of coast maps and charts, Nos. 105, 106, 107, and 108, from Galveston bay to Lavacca bay, Texas, $\frac{1}{80 \frac{1}{0} \overline{0}-}$; No. 9, from Cape Neddick, Me., to Cape Ann, Mass., $\frac{10}{\frac{1}{0} 00}$; No. 11, from Plymouth harbor to Hyannis harbor, Mass., $\overline{80} \frac{1}{80}$; No. 33, Chesapeake bay, from the Hudson to the Potomac

Mr．W．T．Martin has been engaged upon the topography of coast maps and charts，No． 28，from Cape Henlopen，Del．，to Green Run inlet，Md．，$\overline{\mathrm{E} \delta \frac{1}{0} \overline{0}}$ ；No．71，Florida reefs，from Newfound Harbor key to Boca Grande key，$\overline{\text { हणन }} \frac{1}{07}$ ；Nos． 107 and 108，from Oyster bay to Lavacca bay，Texas，$\overline{8} \frac{1}{1} \overline{0} \overline{0}$ ，and verifications．
 York river，from West Point to King＇s creek，Va．，б的市可；and has been employed upon Ken－
 and charts，No．48，from Barren inlet to Lockwood＇s Folly inlet，N．G．，हण方市万；No．88，from Choctawhatchee bay to Pensacola bay，Fla．，$\overline{\text { б立焐；}}$ ；Cape Fear river entrances，（comparative charts，1851－158，）N．C．，$\frac{1}{1000 \mathrm{D}}$ ；projections for field parties and projections on copper．

Mr．S．B．Linton has been employed upon Apalachicola bay，Fla．，$\frac{10}{4005}$ ；Charleston harbor，
 tions to progress sketches，and measurement of original topographic and hydrographic sheets．

Mr．F．Fairfax was occupied upon the topography of the upper sheet of James＇river， Va．，$\overline{\text { x }}$

Mr．B．Hooe，jr．，has been continued upon tracings，
Artificer J．A．Campbell，U．S．A．，has continued upon tracings and statistics and in care of miscellaneous maps．

A．

						Preliminary geacoast charte．－scale $\mathrm{gOCO}^{2} 00^{\circ}$					
Nos．	Project ap－ proved．	Drawing．				Nos．	Project ap－ proved．	Drawing．		Engraving．	
		Commenced．	Ormpleted．	Commenced．	Completed．			Commenced．	Completed．	Commenced．	Oompleted．
1	1	．．．．．．．．．．．				1					
11	H	II	．．．．．．．．．．	II		2					
III	HI	．．．．．．．．．．．	III	．．．．	III	3	3	3		3	
19	IV	1 V	－			4	4	．．．．．．．．．．．．	4	，	4
v	V	v	\cdot			5		．．．．．．．．．．			
VI	vi		．．．．．		．．．	6	．．．．．．．．．．．	．．．．．．．．．．．	．	．．．．．．．．．．．	
VII	viI	．．．．．．．．．．		－	．．．	7	．．．．．．．．．．	．．．．．．			
vin	I		．．．．．．．．．		．．．	8	．	，	－	．．．．．	．．．．．．．．．．．
IX	．．．．	．．．．．．．．．．．				9	\cdot	．．．．．．．．．．．		．	．．．．．．．．．．．
x		．．．．．．．．．．．				10					．．．．．．．．．．．
XI	．．．．	．．．．．．．．．．．				11	．．．	11	．．．．．．	11	．．．．．．．．．．．
XII	．．．．．．．．．．．	．－．．．．．．．．．．				12	．．．	12	．．．．．．．．．．		
XIII	．．．					13	．．．．				
xiv	．				$\cdots \cdot \mid$	14	．．．．	14	．．．．．．	14	．．．．．．．．．．．
xiv bis．	．．．．．				\cdots	15			．．．．．．	．．．．．．．．．．	．．．．．．．．．．．．
XV	\square				\cdots	18			．．．．．．．．	．．．．．．．．．	．．．．．．．．．．．．．
						17	$\mid \ldots$		．．．．．．．．．．．．		
						18					．．．．．．．．．．．
						19	19	19	．．．．	19	．．．
						20	20	20	．．．．．．．．．	．．．	．．．．．．．．．．．
						21	．	．	．．．．．．．．	．．．．．．．．．．．	．．．．．．．．．．
						92		，	．．．．．．．．．	\cdots	．．．．．．．．．．．
						23					$+\cdots+* * * * *+4$
						24 25	24 25	．．．．．．．．．．．．	．．		．．．．．．．．．．．．．
						25	25 28	＊＊＊＊＊＊＊＊＊＊． 28			
						27	27				
						28	28				．．．．．．．．．．
						${ }_{29}$	¢				．．．．．．．．．．．
						30	30	．$\cdot \cdots$		．．．．．．．．	．．．．．
						31	31	31		31	．．．．．．．．．．
						32					

A-Continued.

COASt maps and charte - Scale bitiot						COASt maps and charts - SCale zototo					
Nor.	Froject approved.	Drswing.		Engravirg.		Nos.	Project approved.	Drawing.		Engraving.	
		Commenced	Completed.	Commenced	Oompleted.			Commenced.	Completed.	commenced	Completer.
1						57					
2						58		58			
3						59				
4					60					.
5						61					...
6				82					
7		7	63					
8						64					
9		9				65					
10		10				66					
11	11			67				
12	12		12	12		68	68	68		68
13	13	13	13		69	69	69			
14	14	14	14		70	70	70		
15	15		15		15	71	71	71			
16	16		16		16	72	72	72			
17	17		17		17	73	73				
18	18		18		18	74
19	19		19		19	75
20	20	20		20	76
21	21	21	21		77
22	22					78
23	23					79		
24	24			80
25	25		25		25	81	
26	26	26		26	82		
27	27	97		27	83					
28	28	28	...			84	84
${ }^{29}$	29			29 (Phot.	red'n.)	85	85			
30	30				86
30 bis.	30 bts					87					
31	31		31	31		88					
32	32		32	32	89				
53	33	33		33	90	90		90	90
34	34	34		34	91	91		91	91	...
35	35	35	.	35	92	42	92	92	-
35	35	36		36		93	93	93			
37		94	-*
38					95				
39	,				96
40	40	40		40	97			
41	41	41		41	98				
42						99					
43	.					100	-.				
44						101	,				-
45						102					
46		103				
47	.-.				104					.
48		48			105	105		
49	. \cdot...					106	106	106		106
50			. $\cdot \cdot$			107	107	107		107
51					108	108	108			
58	52					109	
53	53	53				110					
54	54				...	111
55						112
58			1			113					

List of maps and sketches completed or in progress during the year ending November 1, 1859, arranged in order of sections.

Name.	Scale.	Description.	Remarks.
Gection 1-Coast of Maine. New Hampshire, Massachusetts, and Rhode Island.			
Progress sketch A	1-600,000		Completed.
Progress sketch A bis	1-400,000		Do.
Sheepscot niver, Maine	1-40,000	Finished map	In progrese.
Kennebec river, from entrance to Bath, Maine	1-30,000	do	Do.
Portland harbor, Maine .-...-.-.-.........	1-20,000	do	Do.
Preliminary sea-coast chart, No. 3, from Cape Small Puint, Me., to Cape Cod, Mass.	1-200,000	Preliminary chart	Do.
Coast map and chart, No. 9, from Cape Neddick, Me. to Cape Ann, Mass \qquad	1-80,000	Finished map and chart	Do.
General conat chart, No. 2, from Cape Ann, Mass., to Gay Head, R I	1-400,000	Finished chart	Do.
Coast map and chart, No. 10, from Ipswich harbor to Green's harbor, Mass	1-80,000	Finished map and chart	Do.
Lynn harbor, Mass.	1-20,000	Finished map	Completed.
Boston harbor. (new edition,) Mass.	1-40, 600	d	Do.
Coast map and chart, No. 11, from Plymouth harbor to Hyannis harbor, Mass-	1-80,000	Finisbed map and cbart	In progress.
Muskeget channel, (new edition,) Masg --.-.----.--	1-60,000	Preliminary chart	Coupleted.
Coast map and chart, No. 14, from Cuttyhunk island, Maxs., to Block island, R I.	1-80,000	Finished map and chart .	In progress.
Smotion LI.-Coazt of Connecticut, New York, New Jersey and Delaware, north of Cape Henloper.			-
Progress sketch B.	1-400,000		Completed.
Const map and chart, No. 21, New York bay and harbor \qquad	1-80,000	Finished map and chart.	In progress.
Hudson river, from entrance to Sing Sing, N. Y.----	1-60,000	Finished map	Do.
Section III. - Coast of Deloware, south of Cape Henlopen, Maryland and Virginia, rorth of Cape Henry.			
Progress sketch C	1-400, 000		Completed.
General coast chart, No. 4, from Cape May, N. J., to Currituck, N. C	1-400, 000	Finished char	In progress.
Const map and chart, No. 28, from Cape Henlopen, Del., to Green Run inlet, Md	1-80,000	Finished map and chart	Do.
Coast map and chart, No. 29, from Green Run imlet, Md., to Little Macbipongo inlet, Va_	1-80,000	-do	In progress by pho-
Coast map and chart, No. 33, Chesapeake bay, from Hudson river to Potomac river, Md.	1-80,000	do	tography. In progress.
Coast map and chart, No. 35, Chesapeake bay, from Yocomoke sound to York river, Va	1-80,000	do	Do.
Coast máp and chart, No 36, Chesapeake bay, from York river to entrauce, Va. \qquad	1-80,000		Do.
York river, from West Point to King's creek, Va...	1-60, 000	Finished ma	Completed.
James river, from Richmond to City Point, Va.....-	1-40,000	do	In progress.
Section IV - Coast of Virginia, south of Cape Henry, and North Carolina, north of Cape Fear.			
	1-600,000		Completed.
Prelininary sea-coast chait, No. 11, from Cape Hatteras to Cape Lookout, N. C.	1-200, 000	Preliminary chart	In progress.
Preliminary sea-coast chart, No. 12, from Cape Lookout to Cape Fear, N. O.	1-200, 000	do...-.--	Do.
Const map and chart, No. 48, Cape Fear and viciuity, N. C.	1.80,000	Finished map and ch	Do,
Cape Fear river, New inlet, N. C	1-10, 000	Comparative chart, 1851-358.	Completed.
Cape Fear river, southern entrance, N C...........	1-10, 000	- do.	Do.
Diagrams illustrating changes of temperature in the Gulf stream, with depths			Do.

List of maps and sketches, tc.-Continued.

Report of Mr. Edward Wharton, acting in charge of Engraving Division.
Coast Survey Office, October 31, 1859.
I have the honor to present the annual report of the operations of this division during the year ending October 31, 1859.

The division remained under the charge of Lieut. Rufus Saxton, U. S. A., from the date of the last annual report until April 1, when he was relieved from duty. Since that time the division has been under my charge. The engraving force at present consists of twenty-one engravers, of various grades.

The division has met with a serious loss in the death of one of its oldest and most skilled engravers, Mr. F. Dankworth, who had been attached to the office since 1843, and whose death occurred last March. Mr. Dankworth ranked among the first topographical engravere in this country, and it gives me pleasure to testify to the faithfulness with which he discharged his duties, and the ability and skill he evinced in the execution of his work. His place will be difficult to supply.

The engraving of the finished maps of Patapsco river, Md.; entrance to Pensacola bay, Fla.; San Diego bay, Cal.; Mare Island straits, Cal.; and San Francisco bay, Cal., have been completed; and the two plates of the middle and eastern part of Long Island sound, commenced some years ago, have been also completed, to take the place of the two already published. Various changes and additions have also been made to the charts of Boston harbor and Charleston harbor.
The second class maps and sketches of Atchafalaya bay, La.; entrance to Brazos river, Texas; Humboldt bay, Cal.; Port Gamble, Port Townshend, and Semi-ah-moo bay, Washington Territory, have also been engraved, and a new edition of Canal de Haro and Strait of Rosario. The maps of Kennebec river, Maine, from entrance to Bath, and of Rockport barbor, Mass., have been published in a preliminary form.
The first class finished maps and charts, Nos. 12 and $13,{ }_{50}^{10}$, Eastern series, from Mono-

 pletion; and the outlines of coast chart No. 29, from Green River inlet to Little Machipongo inlet, Del. and Md., have been engraved from a photographic reduction.
Mr. McCoy has completed the topography apon coast chart No. 13, Eastern series, No. 2,
 Newport.
Mr. Dankworth was engaged, up to the time of his death, upon the topography of coast chart No. 32, हо甹合, Chesapeake bay, from Magothy river to Hudson river.
 bay, from Hudson river to Potomac river.

Mr. Knight has been employed upon the soundings and miscellaneous lettering of coast charts
 series, No. 2; Nos. 34 and 35, Chesapeake bay, from Potomac river to York river, Va., fotor;

Boston harbor, Mass; Patapsco river, Md.; Monterey bay, Cal.; and other miscellaneous lettering.

Mr. Rolle has nearly completed the topography of coast chart No. 31, Chesapeake bay, No.

Mr. Sengteller has completed the topography of the lower part of coast chart No. 12, Eastern series, $\overline{\delta 0} \frac{1}{0} \overline{0}$, and has also nearly completed that of the upper part.

Mr. Blondeau has completed the topography of entrance to San Francisco bay, $\frac{1}{60 \frac{1}{600}}$, and has made considerable progress upon that of San Pablo bay, $\overline{\bar{\sigma} \frac{1}{0} \overline{0} 0^{-}}$

Mr. Phillips has finished the topography and one-half the sand of coast chart No. 92, Mississippi sound: from Round island to Grand island, $\overline{\overline{\sigma 0}^{\frac{1}{0} 0} \overline{0}}$, and has executed some miscellaneous work.

Mr. Metzeroth has completed the sand and views upon entrance to San Francisco bay, $\frac{1}{0 \pi 5} \mathbf{0}$; the sand of San Diego bay, $\overline{40 \frac{1}{000}}$; and of the upper half of coast chart No 13, Eastern series, No. 2, rotbo, from Muskeget to New Bedford, and some miscellaneous work.

Mr. Barnard hae engraved the sand upon coast chart No. 41, Albemarle sound, eastern part, ${ }_{\sigma 0} \frac{1}{0} \frac{1}{0}$; a portion of the sand upon general coast chart No. 2, from Cape Ann to Gay Head, Patapsco river, Md., and coast chart No. 92, Mississippi sound, $\frac{1}{80 \frac{1}{00} \text {, }}$, and miscellaneous work.

Mr. Kondrup engraved a portion of the outlines upon coast charts Nos. 32 and 34, Chesapeake bay, Nos. 2 and 4, sotoo; all the outlines, soundings, and general lettering upon the preliminary chart of Kennebec river, Maine; and is now engaged upon the topography of the same.

Mr. Evans has engraved portions of new work, and has made various corrections upon coast charts Nos. 15 and 16, Long Island sound, eastern and middle plates, $80 \frac{1}{60}$; re-engraved the topography of Captain's island, E. and W., and new work upon the plate of Charleston harbor, 50 ${ }^{1}$

Mr. Throop has engraved the soundings and bottoms of general coast chart No. 2, from Cape Ann to Gay Head; coast chart No. 41, Albermarle sound, east ; and Sapelo sound, Georgia: the notes and lettering of Port Gamble, Humboldt bay, Pensacola bay, and executed other miscellaneous lettering; and is now engaged upon the notes of coast charts No. 91, Mississippi sound, from Bonsecours bay to Round island.

Mr. Maedel has engraved the topography and saud of Port Gamble, Washington Territory ; the sand of Rockport harbor, Mass., Muskeget channel, Mass., preliminary sea coust chart No. 14, from Cape Roman, S. C., to Tybee river, Georgia ; a portion of the sand of entrance to Cape Fear river, and miscellaneous work.

Mr. E. A. Maedel has engraved the title, notes, and soundings of coast chart No. 106, from Galveston bay to Oyster bay, Texas, and Rockport harbor, Mass.; the title and soundings of coast chart No. 107, from Oyster bay to Matagorda bay, and some miscellaneous work; and is now engaged upon the soundings of coast chart No. 71, Florida reefs, from Newfound Harbor key to Boca Grande key.

Mr. Petersen has engraved the title and notes of Canal de Haro and Strait of Rosario and of Semi-ah-moo bay, Washington Territory; a portion of the soundings of sea-coast chart No. 3, from Cape Small Pt., Maine, to Cape Cod, Mass; the notes of Patapsco river, Md., coast chart, No. 107, from Oyster bay to Matagorda bay, and of general coast chart No. 2, from Cape Ann to Gay Head ; all the soundings of San Publo bay, Cal., and the soundinge of Pensacola harbor,

Fla., and miscellaneous work ; and is now engaged upon the hydrography of New York bay and harbor, $\frac{1}{80000}$.

Mr. Langran has engraved the title, soundings, and notes of York river, Va., from King's creek to West Pt., Atchafalaya bay, La., Port Townshend, Washington Territory ; a portion of the notes and soundings on sea-coast charts No. 11, from Cape Hatteras to Cape Lookout, and No. 14, from Cape Roman to Tybee river, and various miscellaneous lettering.
Mr. Ogilvie has engraved all the soundings, notes, and title on coast chart No. 68, Florida reefs, from Key Biscayne to Carysfort reef; a portion of the notes on sea-coast chart No. 4, from Cape Cod, Mass., to Saughkonnet Pt., K.I.; the soundings of Hunboldt bay, Cal.; the general lettering on coast chart No. 41, Albermarle sound east, and other miscellareons lettering.
Mr. Klakring has engraved all the topography, soundings, title and notes of Mare Island straits, Cal.; the topograplyy of Humboldt bay, Cal.; and has executed some miscellaneous work ; his employment by the office ceased on the 1st of July.
Mr. Bartle has engraved all the topography of Port Townshend, Washington Territory, and of entrance to Brazos river, Texas ; and miscellaneous work upon various plates, and is now engaged upon the topography of Rockport harbor, Mass.
Messrs. Benner, Thompson and Sipe bave been employed upon the engraving of progress and other sketches, and such miscellaneous work as was required by the office.

In addition to the amount of work performed by the engravers, five of the sketches for the Report of 1858 , have been lithographed or engraved upon stone under the direction of the Superintendent of Public Printing.

A more detailed account of the work performed, progress made, \&c., can be found in the accompanying list of maps, charts, preliminary charts, and sketches, engraved or engraving, during the year ending November 1, 1859, arranged in order of sections; and in the complete list of Coast Survey maps, charts, preliminary charts, and sketches engraved, and arranged geographically.

List of maps, preliminary charts, and sketches, engraved or engraving, during the year ending October 31, 1859, arranged in order of sections.

Name.	Scale.	Description.	Remarks.
Section I.			
Progress sketch A.	1-400, 000		Engraved.
Do....... A bis	1-600, 000		Do.
Kennebec river, Maine, from entrance to Bath	1-30,000	Preliminary chart.	Do.
Rachport harior, Mass	1-20,000	---.-do.	Do.
General coast chart, No. 2, from Cape Ann to Gay Head	1-400,000	Geveral coast chart	Engraving.
Prelim inary sea-coast chart, No. 3, from Cape Bmall Point, Maine, to Cape Cod, Mass	1-200, 000	Preliminary chart.	Do.
Preliminary sea-coast chart, No. 4, from Cape Cod, Mass, to Saughkonnet point, R.I.	1-200,000	-.-.-do.-.-.-.-.-.-.-.	Engraved.
Cosst map and chart, No. 12, Eastern series, No. 3, from Monomoy to Muskeget, Mass	1-80,000	Finished map and chaxt..	Engraving.
Coast map and chart, No. 13, Eastern series, No. 2, from Mnskeget to Busuard's bay	1-80,000	do	Do.
Coast map and chart. No. 14, Esastern series, No. 1, from Buzzurd's bay to Narragangett bay	1-80.000	-do	Do.
Kennebec river, Maine, from entrance to Bet	1-30,000	do	Do.
Rockport harbor, Mase	1-20,000	do	Do.
Lynn harbur, Mank.	1-30, 000	--- - - do	Do.
Muskeget chapnel, Mass, (new edition)	1-60,000	-......do..........-........	Da.

List of maps, preliminary charts, de.-Continued.

List of maps, preliminary charts, \&c.-Continued.

Name.	Scale.	Description.	Remarks.
Section IX.			
Progress sketch I	1-600, 000		Engraved.
Entrance to Brazos river, Texas.	1-10,000	Preliminary chart	
Coast map and chart, No. 106, from Galveston bay to Oyster bay, Texas \qquad	1-80,000	Finished map und chart.	Engraving.
Coast map and chart, No. 107, from Oyster bay to Matagorda bay, Texas	1-80,000	--..-do...............	Do.
- Reconnaissance of coast of Texas, from Matagorda bay to Aransas Puss.	1-200,000	Reconnaissance	Engraved.
Sectron X.			
Progress sketch J, lower sheet.	1-600,000		Engraved.
Progress sketch J, middle sheet.	1-600,000		Do.
San Ditgo bay. Cal -	1-40,009	Finished chart	Do.
Mare Island straits, Cal	1-30,000	-...--do.	Do.
Entrance to san Fraucisco bry,	1-50,000	--do	Do.
San Pablo bay, Cal	1-50,000	-.do	Engraving.
Humboldt bay, Cal	1-30,000	P eliminary chart	Eagraved.
Osan trancisco city, Cal.	1-10,000	Map --...	Do.
Section XI.			
Progress sketch K	1-600, 000		Engraved.
Canal de Haro and Strait of Rosario, Washington Territory, (new edition)	1-200,000	R connaissance	Do.
Port Gumble, Washington Territory -	1-20,000	Finished map	Do.
Port Townshend, Washington Territory	1-46,000	--.--do.-...	Do.
Semi-ah-moo bay, Washington Territory -..........................	1-30,000	Reconnaissa	Do.
Miscrilaneous			
Diagrams illustrating the descent of sounding weight and line in drep-sers soundings		Diagram	Engraved.
Pr.ject limits far finished maps, 1-80,000, on Atlantic and Gulf cousti.	5,000,000	-do	Do.
Sketeh sbowing progress of coast survey to November, 1859....	5, 000, 000	Sketch	Engraving.
	5,000, 000		Do.
Diagrams of magnetical and meteorological observations at Girard College, Philadelphia, in 1840, $1841,1842,1843,1844$, and 1845.		Diagram .	Engraved.
Diagrams of observations for temperature, wind, and atroospheric pressure, made by Dr. E. K. Kane at Van Reasselaer harbor, in 1853 and 1855.		-...-do...	Do.
Three sketclues illustrating Superintendent's paper on currents of Sandy Hook \qquad		-.do......-............	Do.

OEngraved on stone, under the direction of the Superintendent of Public Printing.

List of Coast Survey maps, preliminary charts, and sketches engraved, geographically arranged.

1. List of Maps and Charts engrayed.

No. 1. Richmond's island, Maine .
2. Newburyport harbor, Massachusetts .
3. Ipswich and Annis Squam harbors, Massachusetts .
4. Gloucester harbor do .
5. Salem harbor do .

8. Provincetown harbor do

	Monomoy shoals	
	. Bass River harbor do	
	Wellfleet harbor do	万ण900
	. Nantucket harbor do	T-1000
	. Hyannis harbor do	$\overline{3} \overline{0} 6$
	. Harbor of Edgartown do	
	. Harbor of Wood's Hole. do	
	. Harbors of Holmes's Hole and Tarpanlin Cove, Massachusetts	
	Harbor of New Bedford, Massachusetts	40080
	General chart of the coast from Gay Head to Cape Henlopen	$\overline{4} 0{ }^{\text {¢ }}$
	Fisher's Island sound, Connecticut	$40 \frac{1000}{}$
	Harbor of New London . . . do	
	Mouth of Connecticut river - do	$\overline{\mathrm{x}}$ ¢ $\frac{1}{0} \mathrm{O}$
	. Harbor of New Haven, Connecticut-new edition, 1852	उד $\frac{1}{01000}$
	Harbors of Black Rock and Bridgeport, Connecticut-new edition, 1852	$\overline{2} \overline{5} \frac{1}{0} 0{ }^{\text {a }}$
	Harbors of Sheffield and Cawkin's Island . . . do. do 1852	20900
	. Huntington bay, New York	35
	. Oyster bay or Syosset harbor, New York	30 ${ }^{\frac{1}{0} 000}$
	. Harbors of Captain's Islands, east and west, Connecticut	$\frac{1}{200} 0$
	Hart and City islands, and Sachem's Head harbor, New York	
	. Hell Gate, New York	$\frac{1}{5007}$
	Long Island sound, east	800 ${ }^{\text {dog }}$
31	Do.... do... . middle	
32	Do....d.do.... west	80 ${ }^{\frac{1}{0} \overline{0} \overline{0}}$
	New York bay and harbor, and the environs, New York, sheet No. 1	$\overline{30} \frac{1}{08 \%}$
3	Do..... do...... do...... . . . do. do. do. No. 2	
35	. Do......... do... do.... do. do. . No. 3 .	301000
36	Do..........do...... do.... do. do. . No. 4 .	उड000
37	Do..... do.... do. do. do. . No. 5	उ- $\frac{1}{80} 0$
38	Do do.... do.... do.... . . . do. . No. 6.	50 ${ }^{\frac{1}{0} 00^{\circ}}$
39	Do.......... do... do. $\mathrm{do}^{\text {. }}$. do	$\overline{8} 0^{\frac{1}{0}} 0$
	Western part of south coast of Long Island, New York	
	Middle part of do. do.... . . . d do	\% $\frac{1}{0000}$
	. Eastern part of. do. do.... . . . do	$\frac{1}{80000}$
	. Little Egg harbor, New Jersey .	$\frac{1}{30000}$
	. Delaware bay and river, sheet No. 1, Delaware	8080
	Do....... do..... sheet No. 2, New Jersey and Pennsylvania ..	80, $\frac{1}{0000}$
	Delaware bay and river, sheet No. 3	\%. $\frac{1}{060}$
	. Patapsco river, Maryland	¢000\%
	. Harbor of Annapolis and Severn river, Maryland	$\frac{1}{60000}$
	. Mouth of Chester river, Maryland	$\frac{1}{40000}$
	. Entrance to York river, Virginia	\%0000
	. Pasquotank river, North Carolina	$\frac{1}{8005}$
	. Beaufort harbor do .	$\frac{1}{20000}$
	. Charleston harbor, South Carolina-new edition, 1858	50, $\frac{1}{080}$

54. Key West harbor and approaches, Florida ซо $\frac{1}{000}$
55. Entrance to Mobile bay, Alabama $\frac{1}{40000}$
56. Mobile bay, Alabama $\frac{1}{80000}$
57. Cat and Ship Island harbors, Mississippi $\frac{1}{40800}$
58. Entrance to Galveston bay, Texas-new edition, 1856 $\frac{1}{90000}$
59. San Diego bay, California 9
60. Entrance to San Francisco bay, California
61. List of Preliminary Charts and Sketches engraved.
62. Alden's Rock, Maine - $\frac{1}{1} \frac{1}{000}$
63. Eggemoggin reach, Maine $\frac{\frac{1}{2000}}{2000}$
64. Kennebec river...... do $5 \frac{1}{6000}$
65. Portland harbor do $\frac{1}{20000}$
66. Portland harbor, (Commissioners' line,) Maine $\frac{1}{10009}$
67. York River harbor, Maine $\frac{1}{20000}$
68. Portsmouth harbor, New Hampshire $\frac{7}{20} 0$
69. Rockport harbor, Massachusetts $\frac{1}{20000}$
70. Stellwagen's Bank-2d edition-Massachusetts $400{ }^{\frac{1}{0}} 0$
71. Boston bay do
नहैण
72. Current chart, Boston bay do $\frac{1}{100000}$
73. Minot's ledge do
$\frac{1}{10000}$
74. Sea-coast of the United States, No. 4, south part of Massachusetts $\frac{1}{200000}$
75. Nantucket shoals, Massachusetts-new edition $\frac{1}{100000}$
76. Tidal currents, Nantucket shoals, Massachusetts
77. Muskeget channel do
78. Sow and Pigs' reef do $\frac{1}{210} \& \frac{{ }^{\frac{1}{1}}}{200^{1} \text { 万б }}$
79. Tidal currents, Long Island, New York - $0^{1} 000$
80. Pot Rock and Way's reef do
81. Hudson river, lower sheet....... do हुणनण
82. Buttermilk channel
83. Beacon ranges, New York harbor
84. Romer shoals and Flynn's knoll, New York 70 ${ }^{\frac{1}{2} 08}$
85. Changes in Sandy Hook, New Jersey25. Sea-coast of Delaware, Maryland, and part of Virginia
50000
86. Delaware and Chesapeake bays
87. Chesapeake bay, (upper series,) Sheet No. 1 - $6 \frac{1}{60}$
88. Do...........................do............. 2 E0 $\frac{1}{000}$
89. Do.. 3 Т๐ठण
90. Chincoteague inlet, Virginia 70
91. Sea-coast of Virginia and entrance to Chesapeake bay, Virginia 500^{2}
92. James river, (upper sheet,) do $50 \frac{8}{6} 06$
93. Rappahannock river, No. 1 do चनठेण
94. Do........do. . No. 2 do

95. do गणनेण
96. Do.......do... No. 4.......................................
37．Rappahannock river，No． 5 Virginia $6 \frac{1}{6} 00$
38．Do．．．．．．．do．．No． 6 do ．．．．．．．．． бणनठ
39．York river，from King＇s creek to West Point do бठ $\frac{1}{0}$ 万。
40．Wachapreague，Machipongo，and Metompkin inlets do $40 \frac{1}{60 \%}$
41．Ship and Sand Shoal inlets do $20 \frac{1}{200}$
42．Entrance to Chesapeake bay do T00
43．Cape Charles and vicinity हठ $\frac{1}{600}$
44．Cherrystone inlet 20 $0 \frac{1}{0} 6 \overline{0}$
45．Pungoteague creek $40 \frac{1}{006}$
46．Fishing or Donoho＇s battery，Maryland $\overline{80} \frac{1}{0} \overline{0}$
47．Albemarle sound，North Carolina वण
48．Diagrams showing the effect of the wind in elevating and depressingthe water in Albemarle sound．
49．Hatteras shoals，North Carolina $\overline{2} 0 \frac{1}{9} \overline{0} 0$
50．Cape Hatteras．．．．．．．do दोगठ
51．Hatteras inlet ．．．．．．．．do ．．．．fourth edition $\overline{2} \frac{1}{9} \overline{0}$
52．Ocracoke inlet do
90\％0
53．Sea－coast，North Carolina，from Hatteras to Ocracoke $\overline{20} 0^{1} \overline{0} \overline{0}$
54．Wimble shoals，North Carolina $\overline{80 \frac{1}{0} 00}$
55．Beaufort harbor do56．New river and bar ．．．．do$15^{\frac{1}{0}}$ бの
57．Frying－pan shoals ．．．．do 1 $\frac{1}{00}$ 万0
58．Cape Fear river and New inlet，North Carolina
59．Entrance to Cape Fear river，（new edition，）North Carolina उत्वरण
60．Cape Fear river，from Federal Point to Wilmington，North Carolina． उ० $\frac{1}{0}$ ．
61．Gulf Stream explorations， 185362．Diagrams，Gulf Stream explorations， 1853
63．Gulf Stream explorations， 1854
64．Diagrams，Gulf Stream explorations， 185465．Gulf Stream explorations， 1855छढण $\frac{1}{0}$ 万णन
66．Co－tidal lines，Atlantic Coast67．Diagrams of secular variation of magnetic dip，Atlantic coast
68．Cape Roman shoals，South Carolina
69．Sea－coast of the United States，No．14，South Carolina इठणुणन
70．Winyah bay and Cape Roman shoals テठ ${ }^{1} \overline{0} \overline{0} 0$
71．Winyah bay and Georgetown harbor Tठ $\frac{1}{0}$ 万
72．Bull＇s bay 絞的
73．Comparative chart，Maffitt＇s channel，South Carolina，（new edition）
74．Maffitt＇s channel，（sections，）South Carolina
75．North Edisto river，（new edition，）．．do $50 \frac{1}{0} 0$
76．Romerly marshes T0 $\frac{1}{0}$ 万б
77．Savannah river entrance，Georgia
78．Savannah city，front and back rivers，Georgia $\overline{\mathrm{z}} \frac{1}{0} \mathrm{~T} \overline{0}$
79．Savannah river，Georgia 40\％$\frac{1}{0} 0$
80．Doboy bar and inlet，Georgia
81．St．Simon＇s sound and Brunswick harbor，Georgia $70 \frac{7}{00}$
82．St．Andrew＇s shoals $00 \frac{1}{0} 00$
83．St．Mary＇s bar and Fernandina harbor，Florida－comparative chart $\overline{2} \frac{1}{0} \frac{1}{0} \overline{0}$
84．St．Mary＇s river and Fernandina harbor，Florida T0 $\frac{1}{0} 00$
85．St．John＇s river，from entrance to Brown＇s creek，Florida 25\％00
86．Mosquito inlet． do
$40 \frac{1}{0} 00$
87．Cape Canaveral do． $\overline{6} \frac{1}{9} \frac{1}{0}$
88．Florida reefs do इनण0ण0
89．Turtle harbor，Florida reefs do $\overline{\mathbf{x}^{1} 0^{\frac{1}{0}} \overline{0}} \overline{0}$
90．Beacons on Florida reefs do
91．Coffin＇s Patches
92．Key Biscayne，Cape Sable and bases
93．Legaré anchorage，（additions）
94．Key West harbor，Florida－second edition
95－101．Key West tidal diagrams，Florida
102．Rebecca shoals रुणनठ
103．Reconnaissance vicinity of Cedar Keys，Florida इण 0000
104．Channel No．4，Cedar Keys． छ $\overline{1} \frac{1}{0} 0 \mathrm{O}$
105．Cedar Keys and approaches $50 \frac{1}{000}$
106．Ocilla river इन $\frac{1}{0} 0 \overline{0}$
107．St．Mark＇s bar and channel
108．Middle，or main and western entrances，St．George＇s sound，Florida बठठ
109．St．Andrew＇s bay do
40\％
110．Entrance to Pensacola bay
111．Sea－coast of part of Alabama and Mississippi इ20 $\frac{1}{80} 00$
112．Mobile bay，（second edition，）Alabama $\frac{1}{2000} \sigma$
113．Horn Island Pass and Grand bay，Missisnippi 8 万कणन
114．Do do．．．．．．．．do ．．．new edition T0需年
115．Pascagoula river，Mississippi
116．Biloxi bay
117－126．Cat Island tidal diagrams ．do
127．Pass Christian
128．Delta of the Mississippi，Louisiana
129．Gulf of Mexico，with profiles of deep－sea soundings－new edition
130．Barataria bay entrance，Louisiana 80700
131．Pass Fourchon do
$\overline{103} \overline{\text { 万人 }}$
132．Timballier bay entrance ．．．do $\frac{1}{20000}$
133．Isle Dernière or Ship Island shoals，Louisiana $\overline{80} \frac{1}{0}{ }^{6} \sigma$
134．Atchafalaya bay do $80 \frac{\frac{1}{0} 00}{0}$
135．Entrances to Vermilion bay and Calcasieu river，Louisiana． $\frac{1}{4 \pi} \frac{1}{8000}$
136．Sabine Pass，Texas
137．Sea－coast of Texas from Galveston， ，outh138．Sea－coast of the United States，No．31，part of Texasजणठनण
139．San Luis Pass，Texas इण ${ }^{\frac{1}{0}} \boldsymbol{0} 0$
140．Aransas Pass－2d edition－Texas छठ
141．Entrance to Brazos river，Texas Го⿱⿱亠䒑日\zh20亍のण
142．Entrance to Rio Grande ．．．do．
143．Diagrams of heights and lunitidal intervals of diurnal and semi－diurnaltides in the Gulf of Mexico
144－145．Co－tidal lines，Gulf of Mexico－2 plates
146．Type curves do
147．Wind curves，Cat island
148．Alden＇s reconnaissance Western Coast，lower sheet，San Francisco to
San Diego－new edition－California 1 $\frac{1}{20} \frac{1}{0} \overline{0} 000$
149．Cortez bank $8 \frac{1}{120} 0000$
150．San Diego entrance－new edition－California
151．Geological map of San Diego 160 $\frac{1}{8} \frac{1}{228}$
152．Catalina harbor do
15
153．San Pedro anchorage and vicinity of Santa Barbara，California ．．．．．．．．${ }_{\frac{1}{20 \text { の }} 1}^{1}$ 15000
$\frac{1}{60050}$
154．Anacapa island，（sketch） do
155．Anacapa island and east end of Santa Cruz island，California गठ咅市市
156．Prisoner＇s harbor，Cuyler＇s barbor，and northwest anchorage，San Cle－ mente island，California
157．Santa Barbara，California
158．Eastera entrance to Santa Barbara channel，California
159．San Simeon，Santa Cruz，San Luis Obispo，and Coxo harbors，California • $\frac{1}{20000}{ }_{\frac{1}{40 \frac{1}{000}}}^{\frac{1}{0}}$
160．Point Conception
161．Point Pinos $\overline{\text { न }}$
162．Monterey harbor
163．Monterey bay न0 ${ }^{1}$ 万0
164．Geological map of Monterey тड $\frac{1}{\text { वेбб }}$
165．Santa Cruz and Año Nuevo harbors
166．Sau Pedro harbor
167．Entrance to San Francisco bay
168．San Francisco city，（new edition） То
169．Geological map of San Francisco
170．South Farallon island do
171．Tidal diagrams，Rincon Point do．．．．
172．Pulgas base
173．San Antonio creek इन ${ }^{2}$
174．Mare Island straits उण्वणन
175．Alden＇s reconnaissance Western Coast，middle sheet，San Francisco toUmpquah river，California and OregonColumbia river，sheet No．1－3d edition ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．176．McArthur＇s reconnaissance Western Coast，from Monterey to mouth of177．McArthur＇s reconnaissance Western Ooast，from Monterey to mouth ofColumbia river，sheet No．2－3d edition
178．Mcarthur＇s reconnaissance Western Coast，from Monterey to month ofColumbia river，sheet No．3－3d edition
179．Alden＇s reconnaissance Western Coast，northern sheet
180．Point Reyes and Drake＇s bay，California व0 900
181．Geological map of Point Reyes ．．．．do
182．Humboldt bay，（new edition） कण $\frac{1}{0}$ 万0
183．Trinidad bay वन $\frac{1}{0} \overline{0} \overline{0}$
184．Shelter cove，Mendocino city，Crescent City harbors，and Port Orford， or Ewing harbor，California and Oregon $20 \frac{1}{200}$
185．Umpquah river，Oregon $\frac{1}{20000}$
186．Mouth of Columbia river－2d edition－Oregon $4 \frac{1}{9000}$
187．Do．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．do $\overline{300000}$
188．Entrance to Columbia river，Oregon वठ\％\％
189．Tidal diagrams Rincon Point，San Diego and Astoria，California andOregon
190．Co－tidal lines of the Pacific coast Tष्ठठण
191．Cape Disappointment，Washington Territory चण्ठठ
192．Shoalwater bay－new edition－W ashington Territory ธ๐ซฮす
193．Alden＇s reconnaissance Western Coast，from Grey＇s harbor to Admi－ ralty inlet，Washington Territory कणुणन
194．Grenville harbor，Washington Territory
195．Cape Flattery and Nèe－ah harbor，Washington Territory
196．False Dungeness，Washington Territory गुर्ठठ
197．New Dungeness ₹ण $\boldsymbol{\tau}$198．Canal de Haro and Strait of Rosario and approaches，Washington Ter－ritory
1 0 \＆ 6
199．Port Townshend－new edition－Washington Territory दо
200．Duwamish bay and Seattle harbor कृषण
201．Smith＇s or Blunt＇s island वक्षण
202．Port Ludlow ェणู่
203．Port Gamble $\pm \frac{1}{8}$
204．Olympia harbor
205．Steilacoom harbor इण $\frac{1}{8}$ 万ण
206．Bellingham bay
207．Blakely harbor 10 $\frac{1}{\text { वै }}$
208．Semi－ah－moo bay
209．Base apparatus210．Self－registering tide－gauge211．Craven＇s carrent indicator212．Craven＇s specimen box for deep－sea soundings213．Mitchell＇s sea－coast tide－gauge
214．Figures to illustrate Appendix No．33， 1854
215．Diagrams of secular variation in magnetic declination， 1855
216．Lines of equal magnetic declination217．Boutelle＇s scaffold for stations，and Farley＇s signal218．Boutelle＇s apparatus for measuring preliminary basees219．Diagrams illustrating earthquake waves at San Diego and San Francisco
97. Diagrams of secular variation in magnetic declination, 1856
98. Sands's gas-pipe tripod
99. Sands's specimen box for deep-sea soundings and revolving heliotrope.
100. Map of magnetic declination
101. Map of magnetic dip and intensity
102. Apparatus for measuring minor bases
103. Polyconic development of sphere. .
104. Diagrams illustrating telegraphic methods for difference of longitude.
105. Diagrams showing injury to boilers of steamer Hetzel

106. Diagrams of winds of the Western Coast.
107. Diagrams illustrating loss of magnetism
108. Apparatus for measuring preliminary base lines
109. Trenchard's tide-gauge
110. Mitchell's tide-gauge.
111. Diagrams illustrating the descent of sonnding weight and line in deepsea soundings
112. Project limits for finished maps, $\frac{1}{\boldsymbol{1}} \overline{\boldsymbol{\sigma}} \mathbf{D}$, on Atlantic and Gulf coasts....
113. Three sketches illustrating the Superintendent's paper on currents of Sandy Hook
114. Diagrams of magnetical and meteorological observations at Girard College, Philadelphia, in 1840 , 41 , ' 42 , ' 43 , ' 44 , and ' $45 \ldots . .$.
115. Diagrams of observations for temperature, wind, and atmospheric pressure, made by Dr. E. K. Kane, U. S. N., at Van Rensselaer harbor in 1853 and 1855
240-259. Progress sketches

Report of Mr. George Mathiot, in charge of the Electrotype Division.
U. S. Coast Suryey Office, September 17, 1859.

I respectfully present the following report of the operations of this division since October 1 , 1858.

By the electrotype process we have made eighty-seven plates, of this number fifty were in basso, and thirty-three in alto. I append tables of the plates. We have also made four plates for other departments of the government.

During the year the experiments for employing photography in the production of the charts of the survey have been zealously prosecuted, and I am now enabled to decisively say that the photographic method of reduction, is now in successful operation in the office, and I doubt not that before long it will prove far preferable to all other methods for delineation and accuracy, and has incomparably the advantage in economy and rapidity of execution.

I have sought to make use of the photograph in the construction of our charts. I emphasize construction in order that I may direct attention to the true object of my labors. That facility, which the photograph offers for copying, and its almost universal employment for this purpose,
causes the idea to be very generally entertained that we are endeavoring to multiply copies of our charts by photography. Snch, however, would be to employ photography for the multiplication or publication of the charts, instead of their construction. But, the latter being the true purpose, and the construction of the chart being an operation founded on the methods and purposes of every department of the survey, it will be seen that the proposition to employ photography in making the charts involves no trifling considerations, and prospectively may affect every branch of the survey.

That facility which the camera offers for producing reduced copies of drawings is the element which I have sought to introduce; of the many ways in which this might be done, the following is the method which has been chosen, after the experience of the multitude of experiments I have made for the purpose during the last five years.

It must be borne in mind that a small scale chart is not merely a diminished picture of a chart constructed on a large scale; that the same things are not found in both charts; that the same things are represented differently on the different scales, and that numerous large scale charts combine in the composition of the small scales; and, lastly, that the configurations in the large charts not only change their size, but alter also their shape in entering the reduced charts, and this according to the part the object accupies in the reduced scale.

The elements of the charts are hydrographic and topographic sheets, constructed on shipboard by the hydrographer, and on the plane-table in the field by the engiveer; these sheets become distorted by the hygrometric action of the paper, and hence are not true maps, and require the hand of man for their rectification; but as the error is only that of a variety of scales on the same sheet, the rectification does not affect the value of the sheet for its data, and can always be made in its reduction to the amaller scales. This is effected in the photographic method which has been adopted, in the following manner:

On a piece of transparent vellum the latitade and longitude lines of the sheet are laid down anew on the same scale as the sheet, but in a form corresponding to that which the area will form in the reduction; on this projection the squares of the minutes of latitude and longitude will not perceptibly differ from the squares on the sheets; the plan is, then, simply to lay the transparent vellum on the sheet, so as to make the minute lines for a square on the vellum coincide with those on the sheet; then with a pen trace the geographical delineations on the sheet upon the vellum, and omitting all such parts as are not desired to appear on the reduced chart; in this way the sheet is copied square by square, and all errors of shrinkage rectified, a selection of the desired parts made, and prominent objects made to retain their conspicuousness in the reduction, by increasing their size. In this operation both the judgment of the topographer and the skill of the draughtsman are required, and here is also a great occasion opened for gaining knowledge by experience. What objects to trace and what to omit, and how to trace them, are matters not easily determined; experience, judgment, deliberation, and consultation of the most able topographers and engineers of the survey will be required to decide this.

The work being transferred from the sheet to the vellum, the next operation is to produce the reduced photographic copy; for this purpose it is put up against a white board, and the camera placed at such distance as will insure the required reduction; a "collodion negative" is then made of it, and from this "negative" a paper photograph is produced, which is a reduced copy of the tracing. The photograph is then placed in the hands of the engraver, who transfers it to the copper plate; sheet after sheet being thus reduced and transferred to
the copper by their latitude and longitude lines, the finished chart at length appears in the print from the engraved plate.

Although the method here described is now in successful practice, there still remains an enormous mass of matter, relative to the conventionalities of the charts and their different scales, yet to be decided, and it is easy to foresee that even years will not suffice to wholly determine these points.

By the method I have described, I have, during the past year, constructed four charts of the survey, as follows: San Pablo bay, which I announced in my last annual report as having been
 original sheets of the survey; the selections, however, in the first tracings, not being deemed acceptable after examining the appearance of the reduction, the sheets were again traced, and a second reduction made; this last reduction I have learned from the office is entirely satisfactore, and will be engraved. No. 29 of the eastern series of ${ }_{80} \frac{1}{806}$ charts has been constructed and
 been photographically reduced as far as the original sheets have been verified by the resurver; the work, as far as done, is, however, already in the hands of the engraver.
I have given but a mere synopsis of the photographic method of constructing the reduced charts. A detailed description would be too voluminous to be given here, and, moreover, the various operations now employed may be superseded by others as experience is gained. I would be pleased, however, to prepare a full account of the photographic method of reducing for publication; and this should at some time be done, as many of the processes are original, and have been acquired by the expenditure of time and money.

I have also, as time would permit during the year, conducted other photographic experiments for the purpose of employing photography in other departments of the survey. Partial success has attended some of the experiments, particularly those I have made in conjunction with Mr. L. F. Pourtales, in charge of the tidal division, for photographing the minute shells found in the specimens of bottoms. In this labor I believe we have trodden an unexplored field, for, so far as I am informed, success has not elswhere attended the efforts to produce enlarged photographs of opaque microscopic objects; but there is still room for improvement in our efforts here. Though we have successfully introduced the work of photographing the soundings, other and no small part of my labors have been wholly fruitless thus far, yet parsevering industry will ultimately succeed.

During the past year I have been assisted by Mr. D. Hinkle. He has applied himself both in the electrotype and photographic operations. I desire to commend him to the office for his assiduity in the work.

List of plates electrotyped in allo.

Name of chart.	No. made	Name of chart.	No. made.
Annisquam and Ipswich harbors.	1	Biloxi bay_	1
York river.	1	Entrance to Pensacola bay.	1
Provincetown harbor	1	Semi ah-moo bay.	1
Patapsco river..	2	Pacific coast.	1
Sow and Pig's reef.	1	Atlantic and Pasific coasts.	1
Wachapreague, Machipongo, and Metomkin inlets.	1	San Diego lay.	1
Atlantic coast.	1	Muskeget channel	1
Entrance to San Francisco bay	1	Hatteras inlet.	1
St. Simon's sound and Brunswick harbor	1	Romer and Flynn's shoals	1
Frying Pan shoals and entrance to Cape Fear river.	1	Wimble shoals	1
Gulf Stream sketch	1	Eggemoggin Reach	1
Rockport harbor.	1	Kennebec river	1
Entrance to Brazos river	1	Port Gamble	1
Port Townshend.	1	Atchafalaya bay.	1
Wood's Hole	1	Charleston harbor	1
York river, upper part	1		1

List of plates electrotyped in basso.

Name of chart.	No. made.	Name of chart.	No. made.
	1		1
San Diego bay	2	Cape Fear river, lower part.	1
Western coast, sheet No. 1	1	St. Simon's sound and Brunswick harbor.	1
Western coast, sheet No. 3	1		1
Harbor of Pass Christian	1	Gulf Stream sketch	1
Middle part of the southern coast of Long Island.	2	Western part of southern coast of Long Island.-	2
Canal de Haro and Rosario Strait	1	Atlantic and Pacific coasts	1
Boston harbor	2	Biloxi bay	1
Provincetown harbor	3	Semi-ah-moo bay	1
Frying Pan shoals and entrance to Cape Fear river.	2	Hatteras inlet.	1
York river.	1	Romer and Flynn's shoals	1
Annisquam and Ipewich harbors.	4	Wimble shoals	1
Eustern part of Long Island sound	1	Eggemoggin Reach	1
Fatapsco river.	2	Frying Pan shoals	1
Atlantic coast.	2	Kennebec river	1
Wachapreague, Machipongo, and Metomkin inlets.	1	Atchafalaya lay	1
Eastern part of the southern coast of Long Island.	1	Rockport harbor	1
Middle part of Long Island sound	1	York river, upper part	1
Fntrance to San Francisco bay-	1	Wood's Hole.	1

Report of Lieut. J. R. Smead, U. S. A., in charge of miscellaneous divisiom.
Coast Survey Office, Washington, November 1, 1859.
The miscellaneons division, consisting of the printing office, the map room, and uffice for distribution of the maps and charts, and of the Coast Survey Report, was placed under my charge in the latter part of June of this year.

Lieut. James P. Roy, U. S. A., was in charge from the date of the last annual report up to the time of my being ordered to the survey.

The records of the division are kept by Mr. V. E. King, who also has charge of the map room, and distribution of maps, charts, sketches, and Coast Survey Reports, assisted by Mr. F. Holden up to September 1, subsequently by Mr. W. Mertz, the former having resigned his position on that date. Since then I have learned with regret of the sudden death of Mr. Holden from paralysis. In addition to these duties, Mr. King assists in the clerical duties in the office of the assistant in charge. In the miscellaneous division his services are invaluable, from his intimate acquaintance with the details of duty, his constant attendance, and the celerity with which he accomplishes his work.

Mr. W. Mertz, successor to Mr. Holden, in addition to his duties in the map room, backs and stretches paper, and backs and repairs plane-table and other sheets, for use in the drawing division of the office. He has only been employed since September 1, but so far gives entire satisfaction.

In the printing office, Mr. Rutherdale, as printer, with his assistant, Mr. J. Barrett, have been industrious, and very constant in their attendance.

I have caused to be prepared, and herewith respectfully transmit, a statement of Coast Survey maps, charts, and sketches distributed during the year: of these 600 copies of each of thirteen different maps or charts, viz:

Annisquam and Ipswich harbors, Massachusetts.
Boston harbor, Massachusetts.
Plymonth harbor, Massachusetts.
Provincetown harbor, Massachusetts.
Long Island sound-eastern sheet.
Long Island sound-middle sheet.
Long Island sound-western sheet.
Eastern part of southern coast of Long Island.
Middle part of southern coast of Long Island.
Western part of southern coast of Long Island.
York River entrance, Virginia.
Beaufort harbor, North Carolina.
Cape Fear River entrances, North Carolina, have been presented. "in conformity with an act of Congress and by direction of the Treasury Department," to different institutions, societies, individuals, \&c., both in this country and abroad.

I also transmit a statement of the distribution of Coast Survey Reports, and of the maps, charts, sketches, and miscellaneous matter printed since the date of the last annual report.

List of Coast Survey maps, charts, and shetches distributed during the year, for sale, use of office, and gratuitously.

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
Richmond Island harbor.		5	18	23
York River harbor.	5	2	43	50
Newburyport harbor		3	34	37
Ipswich and Annisquam harbors.	11	6	647	564
Gloucester harbor	10	4	29	43
Salem harbor.	20	4	27	51
Wellfleet harbor		3	15	18
Boston harbcr, 4070	32	9	568	609
	179		39	218
Plymouth harbor	10	7	578	595
Sea const of United States from Plymouth, M Rhode Island				
Provincetown harber	12	6	562	580
Harbor of Wood's Hole.				
Nantucket harbor.	5	3	9	17
Edgartown harbor				
Hyannis harbor		3	16	19
Harbors of Holmes's Hole and Tarpaulin Co	-	3	11	14
Harbor of New Bedford. .	15	7	18	40
General coast chart from Gay Head to Cape H		6	31	37
Long Island sound, eastern sheet.	60	2	591	653
Long Island sound, middle sheet.	60	2	588	650
Long Island sound, western sheet.	60	4	589	653
Fisher's Island sound	20	2	12	34
Harbor of New London	10	4	22	36
Mouth of Connecticut river	10	3	9	22
Harbor of New Haven.	5	8	14	27
Harbors of Blackrock and Bridgeport	10	2	9	21
Huntington bay	10	3	10	23
Harbors of Sheffield and Cawkin's island		2	9	11
Harbors of Captain's island, east and west.				
Oyster bay or Syosset harbor.	10	3	10	23
Hart and City islands and Sa hem's Head har	10	2	9	21
Hell Gate	20	2	24	46
New York bay and harbor and the environs,		3	5	8
New York bay and harbor and the environs,	105	8	107	220
Eastern part of eouth coast of Long Island	3	5	570	578
Middle part of south coast of Long Island			526	526
Western part of south coast of Long Isiand.	15	5	567	587
Delaware bay and river, npper sheet	90	7	28	125
Delaware bay and river, middle sheet	90	7	28	125
Delaware bay and river, lower sheet.	90	7	28	125
Patapeco river.			42	42
Mouth of Clester river		2	9	11
Harbor of Annapolis and Severn river	5	8	32	45

List of Coast Survey maps, dec., distributed—Continued.

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
York River entrance	11	1	549	561
Pasquotank river		4	12	16
Besufort harbor	15	1	574	590
Cape Fear River entrances			526	526
Cape Fear river from Federal Poiut to Wilmington.		--		
Charleston harbor.	10	17	77	104
Cat and Ship Island harbors.		3	15	18
Mobile bay -	10	10	75	95
Mobile Bay antrance.	10	3	13	26
Galveston entrance	2	3	10	15
Key West barbor and approaches	150	3	54	207
Pensacola harbor.			13	13
San Diego bay -	50	1	1	52
Sketches of-Kennebec River entrance				
Minot's ledge			8	8
Muskeget channel	2	1	6	9
Nantucket shoals.				
Comparative map of Hudson river				
Little Egg harbor	10	3	12	25
Delaware and Chesapeake biys	25		43	68
Sea-coast of Delaware, Maryland, and part of Virginia. --	10	1	22	33
Chincoteague inlet.	1	1	7	9
Sea coast of Virginia and entrance to Chesapeake bay....			46	46
Norfolk harbor-				
Hampton Roads				
Albemarle sound		3	38	41
Comparative chart, Beaufort harbor-				
Ocracoke inlet		1	5	6
Hatteras and Ocracoke inlets.				
Comparative chart, Cape Fear entrances.				
Frying Pan shoals		1	5	6
New river and lar.			4	4
Sea-coast of South Carolina				
North Edisto.			1	1
St. Helens sound		1		1
Winyah bay and Georgetown barbor			35	35
Entrance to Savannah river		2	19	21
Savannah city, Front and Back rivers	2	1	7	10
St Simon's oound and Erunswick harbor.			20	20
	2		4	6
St. Mary's river and Fernandina harbor-...-........-. - .			10	10
St. Mary's bar and Fernandina harbor.				
St. Mark's bar		1	8	9
St. John's river, from entrance to Browa's creck....-....	10	1	40	51
Comparative chart, St. John's river............... .-. --. -				
	2	1	4	7
Waccasassi bay				

List of Coast Survey maps, \&c., distributed-Continued.

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
	7	2	38	47
Apalachicola river				
	5	3	38	46
Ser-coast of Alabama and Mississippi			46	49
St. Lcuis bay and Shieldsboro' harbor				
Biluxi bay..-......				
Mississippi City harbor				
Grand Island Pass.				
Delta of Mississippi.		2	11	13
Ship Island shoal.			6	6
Entrance to Matagorda bay				-
San Luis Pafs.			5	5
Reconuaissance of the western coast of the Urited States from San Francisco to San Diego \qquad	50	11	31	92
Reconnaissance of the western coast of the United States from San Franciseo to Umpquah river \qquad	50	11	30	91
Reconnaissance of the western coast of the United States from Umpquah river to the boundary - \qquad	52	10	28	90
Cortez bank				
Prisoner's, Cuyler's, and San Clemente harbors	50		11	61
San Clemente island, southeast end				
Sunta Barbara	50	-.-.-.	10	60
Anacapa island.	52	------...	12	64
San Simeon, Santa Crua, San Luis Obispo, and Coxo....-	50		11	61
Santa Cruz and Año Nuevo.	52	-.---.-.	13	65
San Pedro harbor.	50		7	57
Monterey harbor	55	- ---....-	5	60
Map of San Francisco city	557	----.....	728	1,285
San Pablo bay-............-...............................				
Humboldt bay	55	-.-.---.	6	61
Trinidad bay	55	---------	8	63
Port Orford, Shelter Cove, Mendocino City and Crescent City harbors.	52		15	67
Entrance to Umpquah river	50	--------	13	63
Entrance to Columbia river	56		6	62
Shoulwater bay	50		10	60
Reconnaissance from Gray's barbor to Admiralty inlet ..-	51	1	14	66
Cape Flattery and Nee-ah harbor	50		11	61
False Dungeness harbor	60	------..	11	61
Port Townebend	52	2	15	69
Canal de Haro	50	1.	27	78
Port Ludlow.	52	3	16	71
Port Gamble.	62.	2	15	69
Blakely harbor.	52		15	67
Bellingham bay.-.............-.................................	52		$\therefore 15$	67

List of Coast Survey maps, de., distributed-Continued.

List of Coast Survey maps, dc., distributed-Continued

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
Sketch of-Duwamish bay and Seattle harbor	51		11	62
Diagrams to illustrate the secular variation in the magnetic d				
Lines of equal magnetic declination				
Lines of equal magnetic dip and horizontal intensity				
Map of the world on a policonic development of the sphere				
Total	3,584	306	10,180	14,070

Distrilution made during the year of the reports of the United States Coast Survey for the years 1851, 1852, $1853,1854,1855,1856$, and 1857.

Statement of Coast Survey maps, charts, and sketches, printed during the year.

Abstract

Section I. No. of impressions. Sketch A 30 Sketch A bis 30 Boston harbor $\frac{1}{40000}$ 183 Boston harbor $\frac{1}{15 \overline{5} \overline{0} 00}$ 237 Provincetown harbor 730 Sea-coast chart from Portland to Race Point 30 Sea-coast chart from Plymonth to Saughkonnet 30 Portsmouth harbor 10 Harbors of Ipswich and Annisquam 705 Plymouth harbor 600 Rockport harbor 30 York River harbor 30

Section II.
Hudson river \triangle^{n} 60
Long Island sound-eastern sheet 600
Long Island sound-middle sheet 719
Long Island sound-western sheet 821
Eastern part of southern coast of Long Island 619
Middle part of southern coast of Long Island 609
Western part of southern coast of Long Island 601
Sandy Hook diagrams 20
Section 11 I.
Sketch C 30
Chesapeake bay, sheet No. 1 30
Chesapeake bay, sheet No. 2 30
Chesapeake bay, sheet No. 3. 30
Rappahannock river, sheet No. 5 35
Rappahannock river, sheet No. 6 35
York River entrance 719
Chesapeake bay notes 70
Chesapeake bay titles 30
Patapsco river 90
Delaware bay and river, upper sheet 40
Delaware bay and river, middle sheet 47
Delaware bay and river, lower sheet 40
Delaware and Chesapeake bays 50
York river, from King's creek to West Point 40
Mouth of Chester river 15
Section IV
No. of impressions.
Sketch D 30
Beaufort harbor 677
Cape Fear River entrances 650
Pasquotank river 32
Sea-coast chart from Cape Hatteras to Cape Lookout 30
Section V.
Winyah bay and Georgetown harbor 100
St. Simon's sound and Brunswick harbor 40
Sea-coast of South Carolina 30
Section VI.
Sketch F 30
Sketch F bis 30
Entrance to Pensacola bay 150
Legaré anchorage 30
St. Mary's river and Fernandina harbor 40
Florida reefs 45
Section VII.
Sketch G 30
Sectron VIII.
Sketch H 3^{0}
Harbor of Pass Christian 200
Sea-coast of Alabama and Mississippi 30
Atchafalaya bay 30
Mobile bay 5
Section IX.
Sketch I 30
San Luis Pass 50
Sea-coast of Texas 30
Entrance to Brazos river 30
Section X.
Sketch J, middle sheeet 30
Sketch J, lower sheet 30
Entrance to San Francisco bay 12
San Diego bay 171
Monterey bay 35
Prisoner's, Cuyler's, and San Clemente harbors 50
Santa Cruz and Año Nuevo 50
San Pedro harbor 50
Point Pinos 50
No of impressions.
Point Conception 50
Point Reyes and Drake's bay 75
San Pedro anchorage 75
West Coast reconnaissance, lower sheet 160
Section XI.
Sketch K 30
West Coast reconnaissance, northern sheet 175
Umpquah river 50
Cape Hancock 50
Duwamish bay and Seattle harbor 75
Reconnaissance from Gray's harbor to Admiralty inlet. 100
Semi-all-moo bay 10
Port Townshend 30
Port Gamble 30
Miscellaneous.
Circular protractors 125
Forms for engraving division 311
Chart of the Pleiades 400
Tidal diagrams 170
Isogonic lines 50
Progress of United States Coast Survey on Atlantic and Gulf coasts 428
Self-registering tide-gange. 40
State map of Virginia 28
Diagrams, descent of sounding weight and lines 20
Current diagrams 100
Proofs from finished and unfinished plates. 1,730

APPENDIX No. 18-TUPOGRAPHICAL SHEETS-Continued.

Localities.	State.	Scale.	Date.	Topograpbers.	Register number.
Passaic river and Newark neck	New Jersey -	1-10,000	1858	F. W. Dorr-	734
Western part of Newark lay and Staten island sound, from the mouth of Passaic river to Perth Amboy		1-10,000	1858	do	729
Chincoteague	Virgin	1-20,060	1858	C. Ferguson...-.-.------	723
Chincoteague inlet and bay	do	1-20,000	1858	N.S. Finney	704
York river, from Wormley to Clay	. .do	1-20, 000	1857	J. Stib.	685
York river, from Clay Bank to Mount Folly --	-	1-20, 000	1857-58	. 1	686
York river, from Mount Folly to West Point		1-20, 000	1858	do	722
Richmond city	do	1-5,000	1857-'58	H. Adams	684
Cape Henry		1-20,000	1859	J. J. S. Hassler, J. Mechan.	753
Buck bay	d	1-20,000	1859	-----do.	743
North rive	d	1-20,000	1859	J. Mechan	754
Head of Currituck sound.	Va. and N. C.	1-20,000	1858	J. J. S. Hassler, J. Mechan.	736
Topsail suand, from Water's bay to old Topsail inlet \qquad	N. Carolina-	1-20,000	1857-'58	John Mechun	711
Cape Fear river, lower part, including New inlet \qquad	.d	1-10,000	1858	C. P. Bolles	709
Cape Fear river, lower part and a	do	1-10,000	1858	.--...do.	708
West of Cape Fear river	. d	1-10,000	1858	do	725
Dewees and Capers islands	S. Carol	1-20,000	1856~'57	Lieut. Com'g J. N. Maffit-	681
Morris island and vicinity	.d	1-10,000	1858	John Seib	715
Charleston city and vicinity	-d	1-10, 000	1857-58	W. S Edwards	710
Folly island and viciuity	-do	1-20,000	1858	John Seib	711
Ossabaw sound and vicinity	Georg	1-10, 000	1858	A. M. Harrison	706
Ogeechee sound and vicinity	-... do	1-10,000	1858	. do	707
Sapelo sound and vicinity	do	1-20,000	1857-'58	A. W. Longfello	721
Saint Simon's sound	-do	1-10,000	1856-'57	-..-do	750
South of St. John's river, from entrance to General E. Hoptins's plantation \qquad	Florida	1-10,000	1858	John Mechan	712
South of St. John's river, from General Hopkins's to Diego plains \qquad	do	1-10, 000	1858	.do	713
Key Biscayne, from Shoal Point to Black Point \qquad	do	1-20, 000	1859	C. T. Iardella	744
Key Biscayne, from Turtle Point to Fender Point \qquad	d	1-20,000	1859	-----do..--...------.-.	745
Card's sound, from W. Arvenicker to Jew Point.	do.	1-20,600	1859	. do	746
Barnes's sound	. .do	1-20,000	1859	.-.-.do.	747
Long island, Mud and Captain keys	. -do	1-20,000	1857	F. W. Dorr.	690
Upper Matecumbe and Windly's island		1-20,000	1858	C. T. Iardella.	696
Lower Matecumbe and Long key.	. .do.	1-20,000	1858	.-...-do.	694
Duck, Channel, and Conch keys, and part of Long key	do.--	1-20, 000	1857	F. W. Dorr..........-.---	688
Crawl, Grassy, and Tcm's Harbor keys, and part of Flat Deer key \qquad	do	1-20,000	1857	--.-do-----.-.........--	689
	. .do	1-20,000	1859	C. T. Lardella...........--	748
Oyster and adjacent keys.	-do	1-20,000	1859	. do	749

APPENDIX No. 18-TOPOGRAPHICAL SHEETS-Continued.

Trocalities.	State.	Scale.	Date.	Topographers.	Register number.
San Carlos bay and approaches_	Florida	1-20,000	1858	F. W. Dorr	693
Charlotte Harbor appronches...-. --.-.-.-...	do	1-20, 000	1859	F. W. Dorr, C. Fergu	
Charlotte Harbor approac	do	1-20,000	1859	do	738
Homosassa river	d	I-10,000	1857	N. S. Finney	691
Crystal reefs and river	do	1-20,000	1858	- do	705
From the Waceasassa to the Withlacoochee river. \qquad	do--------	1-20,000	1858	-do	699
Alligator harbor and St George's sound.	. .do	I-20,000	1858	C. T. Iardella	695
St. George's sound from Royal Bluff including log island. \qquad	do.-------	1~20,000	1858	G. D. Wise	697
St Vincent's sound and island	. -do.-...--.-	1-20,000	1858	do	698
Western part of Santa Kosa scund, Pensacola bay \qquad	do	1-10,000	1859	F. H. Gerdes....--.......	701
Part of Pensacola, Escambia, and East bays.-	do	1-20,000	1858	- -do	717
Pensacola bay, west side	do..-. ---.	1-20,000	1858	.do.	700
Part of Matagorda bay, from Trespalacios river to Carankaway bay \qquad	Texas	1-20,000	1856	M. Seaton	737
Lavaca bay, from Benado creek to Cox's bay-	do	1-20,000	1858	-----do.	742
Lavaca bay, from Garcitas bay to Chocolate bry		120,000	1858	-do..------.-----..	740
Indianola and environs	do	1-20,000	1859	W. H. Dennis, M. Sea-	
From Matagorda Bay entrance to Aransas Pass, (reconnaissance) \qquad	do	1-50,000	1858	8. A. Gilbert	752 720
From Point Duma to Cañada de Isique.....	California	1-10,000	1857	W. M. Johnson.	703
From Caniada de Isique to Punta Mugu	..do	1-10,000	1857	-..do	702
From Santa Clara river to San Buensventura.	.-do.	1-10,000	1855	- -do	683
Crescent City harbor	-do	1-10,000	1859	J. S. Lawson	741
From Punta del Bolsa to Tunitas creck	do	1-10,000	1854	W. M. Johnson.	682
San Francisco city and vicinity	do	1-10,000	1857-'58	A. F. Rodgers.	687
Gulf of Georgia, southern part, from Matia islands to East Point. \qquad	Werh'n Ter'y.	1-20,000	1858	J. S. Lawson	730
Gulf of Georgia, southern part, from East Point to Deep bay \qquad	-	1-20,000	1858	do	731
Gulf of Georgia, southern part, from Deep bay to Rocky island.	-.do.-.-.---	1-20,000	1858		732

APPENDIX No. 19.

List of registered hydrographic sheets received subsequend to No. 632.

APPENDIX No. 19—HYDROGRAPHIC SHEETS-Continued.

Localities.	State.	Scale.	Date.	Hydrographers.	Register number.
Sapelo sound	Gecrgia	1-10,000	1858	Lieut. Comg. J. H. Moore.-	659
Sapelo sound and adjacent waters	do	1-10,000	1858	do.	660
Florida reefs, from Bahia Honda to Key Vaccas.	Klorida .-.-.--	1-20,000	1858	Lieut. Comg. W. G.Temple.	663
Florida reefs, from American shoal to Sombrero bey \qquad	do.--. ---.	1-20,000	1857	Lieut. Comg. T. A. Craven.	669
Florida reefs, from East Sambo to Loggerhead key \qquad	do.--.-.--	1-20,000	1856	..do......-.-......-.-.	650
Cedar keys, resurvey of Main and North keys and southwest cbannels \qquad	-do.-.-.-.--	1-10,000	1858-'59	Lieut. Comg. T. B. Huger-.	668
St. George's sound, East Pass	do.......--	1-20,000	1858	Lieut. Comg. J. K. Duer-..	655
St. George's sound, West Pas	.do---.-.--	1-20,000	1858	..-...do..	654
Rigolets	Louisiana	1-10,000	1859	W. S. Gilbert	671
Off shore, from Timbalier bay to Graveston bas	La. and Texas.	1-635,000	1858	Lleut. Comg. J. K. Duer..-	657
Atchafalaya bay .-.-.-.-..-...-.-.-.-.------	Louisiana	1-20,000	1858	Com. B. F. Sands	658
Atchafalaya Bay approa	-.do	1-20,000	1859	Lieut. Comg. T. B. Huger--	680
Atchafalaya bay	d	1-20,000	1859	. do.	681
Cote Blanche bay, eastern part	do	1. 20,000	1859	.-do.	682
Matagorda bay entrance, Pasa del Cavallo..-	Texab	1-20,000	1858	A. Balbach	635
Brazos River bar	-do	1-10,000	1858	Lieut. Comg. J. K. Duer - .-	656
San Francisco bay, from Ravenswood to Coyote creek.	California	110,000	1857-58	Lient. Comg. R. M. Cuyler.	636
San Francisco bay, Steinbergen and Redwood City creeks.	.do......-.--	1-10,000	1858	...do.	637
San Francisco bay, Coyote Hill and Union City creeks \qquad	\cdot	1-10,000	1858	.do	638

APPENDIX No. 20.
List of geographical prsitions determined by the United States Coast Survey, and continued from reports of 1851, 1853, 1855, and 1857.

The present list is a continuation of that published in the annual reports for 1851,1853 , 1855 , and 1857, and contains the geographical positions of points determinod astronomically and trigonometrically, since the date of the former reports, with the repetition of a few points previously published for convenience of reference. The following explanations will give all the information required for the use of the tables.

For the purposes of the survey, the coast is divided into eleven sections, in all of which the work is carried on simultaneously. The survey being in different stages of progress in the several sections, and new results being added from year to year to those here given, the same divisions have been adopted in the publication.

The several sections are defined as follows:
Section I. From Passamaquoddy bay to Point Judith.
Section II. From Point Judith to Cape Henlopen.

Section ILI. From Cape Henlopen to Cape Henry.
Section IV. From Cape Henry to Cape Fear.
Section V. From Cape Fear to St. Mary's river.
Section VI. From St. Mary's river to St. Joseph's bay.
Secrion VII. From St. Joseph's bay to Mobile bay.
Section VIII. From Mobile bay to Vermilion bay.
Section LX. From Vermilion bay to the Rio Grande.
Section X. Coast of California, San Diego bay, to 42d parallel.
Section XI. Coast of Oregon and Washington Territory, 42d to 49 th parallel,
The tables give the latitudes and longitudes of the trigonometrical points in each section, and their relative azimuths or bearings and distances. The manner in which these data have been obtained may be briefly explained here.

In each section a base line of from five to ten miles is measured with all possible accuracy. A series of triangles, deriving the length of their sides from this base, is then established along the coast by the measurement of the angles between the intervisible stations. In this primary series the triangles are made as large as the nature of the country will permit, because the liability to error increases with the number of triangles.

On the bases furnished by the sides of the primary triangles a secondary triangulation is next established, extending along the coast, and over the smaller bays and sounds, and determining a large number of points at distances a few miles apart for the use of the topographical and hydrographical surveys.

The distances between the points thus determined, as given in the tables, are liable to an average error of about one foot in six miles, until a final adjustment between the base lines shall have been made.

In some parts of the survey the base lines for the primary triangulations have not yet been measured, or the connection between the secondary and primary triangulation has not yet been made, in which cases the distances depend on preliminary base lines, measured with great care, and they are liable to an average error of one foot in three miles. This applies to the positions from the Savannah river to Sapelo sound in Section V, to a part of those in Section VI, and to the positions in Sections VII and IX, to a part of those in Section X, and to Section XI.

As on the completion of the primary or main triangulation in each section the several series form one connected chain, the different bases afford verifications of each other, and of the triangulation connecting them. The first four sections are thus connected, the last section and part of the fifth, however, only in a preliminary way.

Observations for latitude and azimuth are made at a number of stations of the primary triangulation in each section. The differences of latitude, longitude, and azimuth between these and other stations are then computed, under the supposition that the earth is a spheroid of revolution of the following dimensions, which are those determined by Bessel, from the reliable measurements made at the time, viz:

> Equatorial radius $=6377397.16$ metres.
> Polar radius $=6356078.96$ metres
> Eccentricity $=0.08169683$

It has been found that the differences of latitude and longitude, as computed in this manner from the diemnce and azimuth between two stations, and which are called geodetic, differ from
those obtained by astronomical observations at the several stations by quantities which are greater than the errors of the observations. Such disagreements are due to local irregularities in the figure and density of the earth, and the error resulting from them in the determinations of latitude and of the meridian plane is designated as station error. It amounts, according to the results obtained at present, to between one and four seconds of are in the eastern section of the survey, and to about one second and a half in the sections south of the Delaware.

In order to eliminate the influence of station errors on the general result observations are made at a number of stations; the results are referred to a central station by means of the : geodetic differences, and the mean of all is used for the computation of the positions given in the tables. The geographical positions must therefore be considered as liable to future changes from the accumulation of new observations, and from the final discussion of all the results obtained.

The differencts of longitude are obtained, as has been stated, by computation from the dis. tances, latitudes, and azimuths of the triangulation. In adding up the differences from station to station an accumulation of the incidental errors is probable. They are checked, however, by differences of longitude determined by means of the electro-magnetic telegraph in every section where the introduction of the latter makes it practicable.

Seaton station, in Washington city, has been selected as the centre for the telegraphic differences of longitude. The sections at present connected by telegraph are Sections I, II, III, IV, V, and VIII. The first three being also connected by primary triangulation, the check on the geodetic differences of longitude is here obtained, and the agreement is very close. The longitudes from Greenwich in the first five sections depend directly, and in other sections indirectly, upon that of Cambridge observatory, as determined by chronometric differences between Liverpool and Cambridge, and by occultations, eclipses, and moon culminations, observed at various observatories in the United States, and referred to Cambridge by means of telegraphic differences. The following statement shows the result up to the present time.

Longitude of Cambridge, Mass., from Greenwich.

	By moon culminations observed a tory; and National observatory	By moon culminations observed at tory; and National observatory						$\begin{array}{ccc} \text { h. } & \text { m. } & \text { s. } \\ 4 & 44 & 28.4 \end{array}$		
	By eclipses and occultations at Gai observatory							29.6		
		The longitude as adopted in						$., \text { or } 71^{\circ} 07^{\prime}$		

In Sections VII, VIII, and IX the longitudes are counted from some central station in each, for which we have at present the following data, subject to future corrections:

The longitudes in Sections X and XI are reckoned from Greenwich. They depend on moon culminations obscrved at San Diego, Point Conception, Point Pinos, Presidio, Telegraph Hill, Port Orford, Cape Disappointment, and Cape Flattery, compared with corresponding observations at Greenwich and American observatories, and on chronometric differences between the same and other stations.

Explanation of the tables.

The first solumn on the left contains the name of the several stations or triangulation points. Their general locality is indicated by the heading at the top of the page, by means of which they may be readily found on the sketches accompanying the tables. Sub-headings in the first column indicate the locality more minutely where it is practicable.

The stations are generally either prominent objects of permanence, such as spires, light-houses, beacons, \&c., or they are points on prominent hills, capes, and points of land where signals have been erected for the purposes of the survey, and which are marked on the ground. In a small number of cases in the first three sections, but much more frequently in the southern sections, where settlements on the coast are sparse and few permanent objects are to be found, the stations have no other distinguishing mark than the signal erected on the spot, and, after: its decay, the mark left in the ground, to designate the station point. The latter generally consists of posts or stones set around the point, while the centre of the station is designated by an earthen cone or glass bottle buried under the surface of the ground, and marked on the top by a stone or post. Where the station is on a rock, a copper bolt or a hole filled with lead or sulphur will be found to designate the exact spot.

The sketches showing the configuration of the land, as well as the relative positions of the stations, no great difficulty will be experienced in finding the latter, when desired for local surveys or reference. In any case where minute descriptions of particular points are required they can be had by application addressed to the Coast Survey Office.

The second and third columns contain the latitudes and longitudes of the stations named.
The fourth column contains the azimuth of the line joining the station named in the first column with that named in the fifth; that is to say, the angle which that line makes with the meridian of the former station, reckoned from south around by west throngh the whole circle.

The sixth column gives the back azimuth of the same line, or the angle which it makes with the meridian of the latter station, reckoned as before; the difference between the azimuths in
the fourth and those in the sixth columns being 180° less the inclination of the meridians at the two stations.

The seventh, eighth, and ninth columns give the distances, in metres, yards, and miles, between the stations named in the first and fifth columns. The relation of the metre to the yard, used in obtaining these results, is:

1 metre $=1.0935696$ yard, or 39.368505 United States standard inches.
For each station the azimuths and distances to two other stations are given. In every case ; the lines so given have actually been observed.

In each section the stations of the primary triangulation are distingaished by being printed in small capitals.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSIIIONS.

Section I.- Vicinity of Sheepscut River. Sketch No. 2.

Name of station.	Latitude.	Longitude.	Azimuth.	Tostation-	Back azimuth.	Distanee.	Distance.	Distance.
Southport Ledge................	$\begin{gathered} \circ \\ 4348 \\ 46.65 \end{gathered}$	$\begin{array}{ccc} \circ & 1 \\ 69 & 38 & 57.06 \end{array}$	$\begin{array}{r} \circ \\ 3334011 \\ 296038 \end{array}$	Damiscove.............	1534222 1160651	Metres. 7608.3 $7250 . \varepsilon$	Yards. 8390.2 7429.2	$\begin{gathered} \text { Miles. } \\ 4.73 \\ 4.50 \end{gathered}$
Mount Pisgah.	435106.89	693651.05	350111 33250 57	Southport Ledge........ White Isiand.	2145944 152 52 31	$\begin{gathered} 4806.9 \\ 8009.2 \end{gathered}$	$\begin{aligned} & 5366.0 \\ & 8857.0 \end{aligned}$	$\begin{aligned} & 3.05 \\ & 5.03 \end{aligned}$
Grifit's Head.	434655.68	694257.59	$\begin{array}{lll} 197 & 66 & 36 \\ 289 & 23 & 30 \end{array}$	Bartoc.. Damizcove............	170831 1092801	$\begin{array}{r} 12653.2 \\ 9280.3 \end{array}$	$\begin{aligned} & 13837.2 \\ & 10148.7 \end{aligned}$	${ }_{5}^{7.86}$
Cushman..	435842.54	694025.04	$\begin{aligned} & 994 \\ & 27 \\ & 358 \\ & 37 \\ & \hline 7 \end{aligned}$	Edgecombe. Barwe.	1150041 1780755	6583.8 9728.3	$\begin{array}{r} 7210.8 \\ 10638.6 \end{array}$	4.10 6.04
Haggett, (1).	435944.31	693618.68	$\begin{array}{r} 354 \\ 705016 \\ 70 \end{array}$	Edgenmbe \qquad Cushman	$\begin{aligned} & 1740650 \\ & 2504925 \end{aligned}$	4717.0 5812.5	5158.4 6356.4 1	${ }_{3}^{2.63}$
Neguasseth......	435739.59	694457.25	3203441 8521257	Bartoe.. Cushmat	1403800 721606	10066.9 6370.9	$\begin{array}{r} 11008.8 \\ 6967.0 \end{array}$	6.25 3.96
Equare Barn, centre	435042.17	693746.84	8320458 622632	Edge Cush	$\begin{aligned} & 1520614 \\ & 2422442 \end{aligned}$	5234.6 3976.8	5724.4 4348.9	$\begin{aligned} & 3.25 \\ & 2.47 \end{aligned}$
Cottage, white chimney	435912.56	694105.87	$\begin{gathered} 2989053 \\ 261 \\ 200 \\ 15 \\ 11 \end{gathered}$	Fdgecombe Haggett, (1)..............	1182427 811830	$\begin{gathered} 7811.4 \\ 6461.2 \end{gathered}$	$\begin{aligned} & 8542.3 \\ & 7065.8 \end{aligned}$	4.85 4.01
Wigcasget, brown spire.	440017.72	683941.42	9184910 181817	Edgecombe Cushman	1385146 1981747	7602.1 3094.9	$\begin{aligned} & 8313.4 \\ & 33 \times 4.5 \end{aligned}$	4.72 1.92
Yellow House, chimney	440205.89	603933.05	$\begin{array}{r} 3315316 \\ 101712 \end{array}$	Edgecombe Cushman.	1515547	$\begin{array}{r} 10269.0 \\ 6376.5 \end{array}$	${ }^{1129.9} 6973$	${ }_{3.38}^{6.38}$
Dunham'a Hill.,	440046.48	693725.18	$\begin{gathered} 469252929 \\ 3229 \\ \hline 9 \end{gathered}$	Cushman Haggett,	2261847 1421815	$\begin{gathered} 5539.6 \\ 2424.6 \end{gathered}$	6057.9	3.44 1.51
Stone Pile.	435917.73	693743.73	$\begin{array}{r} 731148 \\ 2463546 \end{array}$	Cushman. Haggett, (1)...............	$\begin{array}{r} 2530956 \\ 663645 \end{array}$	$\begin{gathered} 3755.1 \\ 2066.2 \end{gathered}$	$\begin{aligned} & 4106.5 \\ & 2259.5 \end{aligned}$	$\begin{aligned} & 2.33 \\ & 1.28 \end{aligned}$
Haggeu, (2).	435824.03	693604.77	355 88 08 8 053819	Edgecombe Cushman.	$\begin{aligned} & 175 \quad 28 \\ & 275 \quad 39 \\ & 275 \end{aligned}$	$\frac{2221.1}{5 \times 29.5}$	2428.9	${ }_{3}^{1.68}$
Breakheart Hill,	435734.69	693813.98	29251468 2124598	Edgecombe Haggett, (1)	$\begin{array}{r} 1025241 \\ 324719 \end{array}$	$\begin{gathered} 3135 .-2 \\ 4749.7 \end{gathered}$	$\begin{aligned} & 3428.0 \\ & 5194.1 \end{aligned}$	1.95 2.95
Mathew's Hill.	435657.38	693746.80	2599292 200528	$\begin{aligned} & \text { Edgeconbe.............. } \\ & \text { Haggett, (1). } \end{aligned}$	$\begin{aligned} & 892338 \\ & 205329 \\ & 20 \end{aligned}$	$\begin{aligned} & 2492.4 \\ & 5513.6 \end{aligned}$	$\begin{aligned} & 2725.6 \\ & 6029.5 \end{aligned}$	1.55 3.42
Allen's Flag.	435658.10	693924.94	2643548 1572542	Edgecombe	$\begin{array}{rrr} 84 & 38 & 12 \\ 337 & 95 & 00 \end{array}$	4658.6	5194.5 3816.2	$\stackrel{2.89}{2.17}$
One story House, chimney in centre.	435828.68	693601.51	$\begin{aligned} & 3573039 \\ & 1704316 \end{aligned}$	Edgecombe Hatgett, (1)	$\begin{aligned} & 1773042 \\ & 3504304 \end{aligned}$	$\begin{aligned} & 23604.5 \\ & 2364.5 \end{aligned}$	2581.4 2586.1	$\begin{aligned} & 1.47 \\ & 1.47 \end{aligned}$
Parson'a Hill,	435611.73	694030.37	3573524 2522016	Bartoe. \qquad Edgecombe \square	$\begin{array}{r} 1773591 \\ 729319 \end{array}$	$\begin{aligned} & 5072.7 \\ & 6164.5 \end{aligned}$	5547.3 6741.3	3.15 3.83
Greenlear's Hill.	4355 24.38	694102.72	$\begin{array}{rrr} 17 & 30 & 58 \\ 34211 & 13 \end{array}$	Parker's Island Bartoe.	$\begin{array}{lll} 19 \pi & 29 & 06 \\ 162 & 11 & 49 \end{array}$	$\begin{array}{r} 11742.5 \\ 3788.3 \end{array}$	$\begin{array}{r} 12841.2 \\ 4142.8 \end{array}$	7.30 2.35
Red and White Flag, near school house.	435425.02	694201.01	$\begin{array}{r} 139408 \\ 30548 \$ 2 \end{array}$	Parker's Island Bartoe.	$\begin{aligned} & 1939959 \\ & 1254948 \end{aligned}$	$\begin{aligned} & 9629.1 \\ & 3033.0 \end{aligned}$	$\begin{array}{r} 10530.1 \\ \\ 3316.8 \end{array}$	5.98 1.88
Lewris Hial.	435481.69	693329.08	533726 1621225	Partoe.	$\begin{array}{lll} 233 & 36 & 16 \\ 342 & 11 & 05 \end{array}$	$\begin{aligned} & 28459.5 \\ & \hline 845.5 \end{aligned}$	3083.3 9246.7	1.75
Davis Signal.	435233.41	694242.39	$\begin{array}{r} 130629 \\ 2394029 \end{array}$	Parker's Istand......... Bartoc.	$\begin{array}{r} 1930548 \\ 59 \\ 59 \end{array}$	5764.1	$\begin{array}{r} 6303.4 \\ 4280.4 \end{array}$	$\begin{aligned} & 3.58 \\ & 8.43 \end{aligned}$
Tall Hemioct, Weatpart lalund..	435388.61	694216.48	135334 2704035	Parker's Island........ Bartot.	$\begin{array}{r} 1935336 \\ 90 \\ 42 \end{array}$	7856.0	$\begin{array}{r} 8591.1 \\ \hline \end{array}$	4.88
Hack and Fed Flag, sonthwent part of Wettport istand.	435131.84	694244.23	$\begin{array}{r} 172732 \\ 2234839 \end{array}$	Parker's fsland Eartoe.	$\begin{array}{r} 197 \quad 2653 \\ 43 \\ 50 \end{array}$	$\begin{aligned} & 4266.7 \\ & 4947.9 \end{aligned}$	$\begin{aligned} & 4811.2 \\ & 5410.9 \end{aligned}$	$\stackrel{2.69}{3.07}$
Campbelly Leage.,	435136.97	694403.93	3525913 2664469	Parker's Eland Bartoe.........	$\begin{array}{r} 1725929 \\ 504651 \end{array}$	$\begin{aligned} & 4212.8 \\ & 6223.2 \end{aligned}$	$\begin{aligned} & 4607.0 \\ & 6805.3 \end{aligned}$	2.62 3.87
McMahans Latand.	435035.70	694216.44	2022528 3042633	Mount Piagah. \qquad Southport Ledge	$\begin{array}{r} 822913 \\ 1242851 \end{array}$	$\begin{aligned} & 7330.8 \\ & 5401.9 \end{aligned}$	8016.7	4.55 3.36
Thirty-Acre Leland.	435192.11	6940 9.57	1851150 2753319	Battoe \qquad Mount Pisgah	$\begin{array}{r} 51901 \\ 953548 \end{array}$	$\begin{aligned} & 3885.8 \\ & 4835.8 \end{aligned}$	$\begin{array}{r} 4249.4 \\ 5288.3 \end{array}$	0.41 3.00
Martin Howe, Bouthport........	135032.56	694000.80	1779809 303469	Bartoe \qquad Grifith'r Fead.	3573802 2103207	5403.8	$\begin{aligned} & 5909.4 \\ & 8499.3 \end{aligned}$	3.38
Towneend Gut, red frag.	435048.46	693846.52	1733948 2621012	Bartan \qquad Mount Pisgah.	$\begin{array}{rrr} 353 & 39 & 31 \\ 82 & 12 & 14 \end{array}$	$\begin{aligned} & 4907.6 \\ & \\ & 3955.7 \end{aligned}$	$\begin{aligned} & 5336.8 \\ & \\ & \hline \end{aligned}$	$\stackrel{3.05}{9.46}$
Hemaricken meaditut	434920.45	694103.59	$\begin{aligned} & 232042 \\ & 903121 \end{aligned}$	Seguin Light............. Parker's Istand.	2001751	$\begin{array}{r} 13951.8 \\ 3515.2 \end{array}$	$\begin{gathered} 15957.3 \\ 3544.1 \end{gathered}$	$\begin{aligned} & 8.67 \\ & 9.18 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section I.-Vicinity of Sheepscut River. Sketch No. 2.

Section II.- Vicinity of New York. Sketch B, No. 7.

Name of gtation.	Latinde.	Longitude.	Azimath.	To station-	Back aximuth.	Distance.	Distance.	Distance.
Near East River.	\%	"	11		- 11			
Et. Ann's Cburch...............	404159.06	735905.23	22818 28 28	Mount Prospect........ Brooklyn Pilgrim Ch'ch.	$\begin{aligned} & 148 \quad 18 \quad 55 \\ & 20813737 \end{aligned}$	Metres. 3746.1 794.3	4096.6 4868.6	8.33 0.49
Naval Hospital Turret............	404153.83	735735.49	23923 9513	Mount Prospect......... St. Ann": Church	$\begin{array}{lll} 188 & 39 & 19 \\ 275 & 12 & 18 \end{array}$	$\begin{aligned} & 2998.3 \\ & 2115.3 \end{aligned}$	32788 2313.2	1.86 1.31
Pier 28.	404292.36	735937.12	$\begin{array}{lll} 345 & 95 & 41 \\ 313 & 49 & 41 \end{array}$	Pilgrina Church St Ann's Church......	$\begin{array}{lll} 165 & 55 & 51 \\ 133 & 50 & 62 \end{array}$	1469.9 1037.6	1599.8 1134	$\begin{aligned} & 0.91 \\ & 0.64 \end{aligned}$
Ei. Jolnn's Chureh	404313.37	740004.51	190520 3289884	Governor's Island, (3). . Mount Prospect	1920501 1483001	3213.1	3513.7	2.00 3.89
City Mills	404207.73	735923.38	$\begin{aligned} & 1442806 \\ & 127 \\ & 5247 \end{aligned}$	Pief 28 St. Paul' Church \qquad	$\begin{array}{lll} 324 & 27 & 57 \\ 307 & 52 & 33 \end{array}$	$\begin{array}{r} 554.8 \\ 1541.3 \end{array}$	$\begin{array}{r} 606.7 \\ 1685.5 \end{array}$	$\begin{aligned} & 0.34 \\ & 0.86 \end{aligned}$
Pier 37,	404227.83	735919.82	$\begin{array}{r}68 \\ 389 \\ 415 \\ \hline 26\end{array}$	Eier 28 \qquad St. Ans's Cbureh \qquad	248 159 154 41	458.8	495.2 1034.5	$\begin{aligned} & 0.98 \\ & 0.59 \end{aligned}$
Pier 38..................	404227.98	735917.86	$\begin{array}{r} 491256 \\ 3415318 \end{array}$	Pier 9 St. Annrs Church.	$\begin{aligned} & 2491243 \\ & 16153 \cdot 26 \end{aligned}$	$\begin{aligned} & 488.6 \\ & 98.5 \end{aligned}$	$\begin{array}{r} 534.3 \\ 1609.3 \end{array}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$
Pler 49...............................	404228.75	735912.50	$\begin{array}{r} 3492613 \\ 72500 \end{array}$	st. Ann's Charch....... Pighim Chureh	$\begin{array}{ll} 169 & 26 \\ 18 \\ 187 & 24 \\ 54 \end{array}$	931.9 1628.2	1019.1	$\begin{aligned} & 0.58 \\ & 1.01 \end{aligned}$
fier \$1,...........................	404289.06	735910.78	$\begin{aligned} & 3580356 \\ & 713041 \end{aligned}$	St. Ann's Charch..... Piex 88	$\begin{aligned} & 1720400 \\ & 251 \\ & 30 \\ & \hline 24 \end{aligned}$	$\begin{aligned} & 9349 \\ & 653.2 \end{aligned}$	$\begin{array}{r} 1021.7 \\ 714.3 \end{array}$	$\begin{aligned} & 0.56 \\ & 0.41 \end{aligned}$
Pier 54....	404238.30	735832.73	$\begin{aligned} & 89095 \\ & 30358 \end{aligned}$	Pler 45 \qquad Bt. Ann Whe Church.......	$\begin{aligned} & 9680940 \\ & 8163438 \end{aligned}$	$\begin{array}{r} 655.7 \\ 2980.0 \end{array}$	$\begin{array}{r} 717.0 \mid \\ 12009.81 \end{array}$	$\begin{aligned} & 0.41 \\ & 0.78 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section II.-Vicinity of New York. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Listance.	Distance.	Distance.
Ferrall.	$\stackrel{\circ}{40} 4300.45$	735744.24	$\begin{gathered} \circ \\ 1443 \\ 143 \\ 45 \\ \hline 57 \\ \hline 15 \end{gathered}$	Holy Redeemer Church. St. Ann's Churchi	2943058 2250622	$\begin{gathered} \text { Metres. } \\ 1583.0 \\ 2682.8 \end{gathered}$	$\begin{aligned} & \text { Yards. } \\ & 1731.1 \\ & 2933.8 \end{aligned}$	$\begin{gathered} \text { Miles. } \\ \text { 0.98. } \\ 1.67 \end{gathered}$
Roberts \& Willams	404249.42	735746.13	$\begin{array}{r} 1253530 \\ 444353 \end{array}$	INoly Redeemer Church. Brooklyn Gas Company.	3053451 2244327	$\begin{aligned} & 1715.8 \\ & 1346.2 \end{aligned}$	$\begin{aligned} & 1876.3 \\ & 1472.2 \end{aligned}$	1.07
South Ninth Street Pier	404230.76	735753.08	60 00 51 640554	St. Ann's Church. \square Brookiyn Gas Company.	$\begin{aligned} & 240 \\ & 244 \\ & 200 \\ & \hline 05 \end{aligned} 04: 3$	$\begin{array}{r} 1955.4 \\ 871.6 \end{array}$	$\begin{array}{r} 2138.4 \\ 953.4 \end{array}$	1.21
East and Water Rtreets,	404239.94	735816.41	297916	South Ninth Strept Pier. Brooklyu Gas Company.	1172131 199.35	616.6 705.0	$\begin{aligned} & 674.3 \\ & 771.0 \end{aligned}$	0.38
Pier 53.	404231.90	73584012	301219 3222630	St. Ann's Church...... Brooklyn Gas Compray.	$\begin{aligned} & 201283 \\ & 1429639 \end{aligned}$	$\begin{array}{r} 1171.7 \\ 542.8 \end{array}$	$\begin{array}{r} 1281.3 \\ 593.6 \end{array}$	0.73 0.34
Pier 55, Jackson street.	404232.55	735830.78	$\begin{array}{r} 844349 \\ 3465926 \end{array}$	Pier 53 Brooklyn Gas Company.	2644343 16654 1665929	$\begin{aligned} & 220.0 \\ & 447.7 \end{aligned}$	$\begin{aligned} & 240.6 \\ & 4 \in 9.6 \end{aligned}$	0.14
Pier 50.	40423132	735846.27	240559 2640608	Sl. Amis Church Pier 54.	2040547 840617	$\begin{array}{r} 1090.1 \\ 319.4 \end{array}$	${ }_{\text {1192.1 }}^{319.4}$	0.68 0.80
F Streer Pier.	404357.34	735725.67	$\begin{array}{r} 1860942 \\ 69 \\ 69 \\ \hline 18 \end{array}$	Blackwell's Island, (2). Sevent'nth St. Bulkh'd.	64948 2391835	$\begin{array}{r} 2018.9 \\ 907.9 \end{array}$	$\begin{array}{r} 2207.8 \\ 942.8 \end{array}$	1.25 0.56
South Finst Street Pier, or Elys' Pier.	404255.03	735745.12	$\begin{array}{r} 191403 \\ 1201149 \end{array}$	Peck Slip Ferry Holy Redeemer Church.	1991357 3601110	$\begin{array}{r} 649.1 \\ 1641.7 \end{array}$	$\begin{array}{r} 709.8 \\ 1795.3 \end{array}$	0.40 1.02
South Fourth Street \mathbf{P}	404245.65	735746.93	$\begin{array}{r} 1290034 \\ 275420 \end{array}$	Holy Redemer Chureh. Peck Slip Ferry.........	3085956 2075415	${ }^{1771.3} \mathbf{3 6 6 . 6}$	19377.0 400.9	1.10 0.23
South Eleventh Street Pier	404226.13	785752.82	$\begin{array}{rl} 127 & 38 \\ 73 & 40 \\ 14 & 01 \end{array}$	East and Water Ets.,post. Brooklyn Gas Company.	3073325 25313 29	$\begin{aligned} & 698.8 \\ & 825.6 \end{aligned}$	$\begin{aligned} & 764.2 \\ & 902.9 \end{aligned}$	0.43 0.51
Aan Street, Williansburg.	404212.58	735731.09	$\begin{aligned} & 1445110 \\ & 1748848 \end{aligned}$	East and WaterSts., post. South Eleventh St. Pier.	3245053 3542847	$\begin{array}{r} 1033.4 \\ 419.8 \end{array}$	1129.0 459.1	0.64 0.26
Nevy Yard Wall, nortbwest corner.	404214.29	735823.72	$\begin{array}{lll} 194 & 02 & 03 \\ 243 & 16 & 56 \end{array}$	Pier 55. Grand street. South Eleventh Bt. Pier.	$\begin{aligned} & 140209 \\ & 631716 \end{aligned}$	884.8 812.1	967.6 888.1	0.55
Pier 59.	404250.37	735809.73	$\begin{aligned} & 2730544 \\ & 242: 206 \end{aligned}$	Roberts \& Wiliams.... Ferrall \qquad	930559 62323	$\begin{array}{r} 554.4 \\ 674.0 \end{array}$	$\begin{aligned} & 606.3 \\ & 757.1 \end{aligned}$	0.34 0.42
Pier 61.	404256.89	735810.22	$\begin{aligned} & 2521416 \\ & 2594752 \end{aligned}$	Roberts \& Williams .. Ferrall	$\begin{array}{r} 1121432 \\ 794809 \end{array}$	$\begin{aligned} & 610.6 \\ & 619.5 \end{aligned}$	667.7 677.5	0.38 0.38
Pier 56.	404245.48	735812.27	3152220 2585036	South Ninth Street Pier. Roberts \& Williams....	1352232 785053	$\begin{aligned} & 639.9 \\ & 625.0 \end{aligned}$	$\begin{aligned} & 609.8 \\ & 683.5 \end{aligned}$	0.40 0.39
Pier 57.	404246.65	73.8811 .66	$\begin{array}{r} 213625 \\ 2615512 \end{array}$	Pier 56 \qquad Roberts \& Williams...	$\begin{array}{r} 2013625 \\ 8155: 29 \end{array}$	$\begin{array}{r} 3 \% .6 \\ 605.0 \end{array}$	42.2 661.6	0.02 0.38
Camphene Works, or Soulh sixth street.	404241.95	735748.44	505314 902931	Brooklyn Gas Company. Pier 55, Grand strett...	$\begin{aligned} & 2305249 \\ & 27029 \quad 14 \end{aligned}$	$\begin{array}{r} 11511 \\ 613.5 \end{array}$	$\begin{array}{r} 1258.8 \\ 670.9 \end{array}$	0.71 0.39
South Second Street Pier	404252.24	735745.46	1851821 1225228	South First Street Pier Holy Redeemer Church.	$\begin{array}{r} 51891 \\ 3025199 \end{array}$	$\begin{array}{r} 86.2 \\ 1679.9 \end{array}$	$\begin{array}{r} 94.3 \\ 1837.1 \end{array}$	0.05 1.04
K Street Pier.	404346.03	735726.01	$\begin{array}{r} 708 \quad 33 \\ 81 \stackrel{33}{33} \end{array}$	North Eighth Sireet Pier Seven'rith st. Bulkh'd.	1870830 2613212	$\begin{array}{r} 871.9 \\ 781.7 \end{array}$	$\begin{aligned} & 953.5 \\ & 854.8 \end{aligned}$	0.54
Pier 71.	404328.39	735801.92	$\begin{array}{rl} 293 \\ 334 & 39 \\ \hline 9 \end{array}$	Nerth Eighth Street Pier Ferrall \qquad	1133649 1541801	$\begin{aligned} & 801.7 \\ & 9066 \end{aligned}$	$\begin{array}{r} 876.7 \\ 1046.1 \end{array}$	0.59 0.59
Franklin	404332.60	735723.20	$\begin{array}{r} 969292 \\ 1094044 \end{array}$		2069208 2294021	$\begin{array}{r} 1106.9 \\ 888.8 \end{array}$	$\begin{array}{r}12 i 0.5 \\ 972.0 \\ \hline 189.1\end{array}$	0.69 0.55
Pitaton Coal Company	404322.87	735726.85	$\begin{aligned} & 195151_{42} 28 \\ & 128 \end{aligned}$	Franklin Sevent'nth St. Bulkh'd.	151524 3484722	317.4 966.5	$\begin{array}{r} 347.1 \\ \mathbf{1 0 5 6 . 9} \end{array}$	0.80 0.60
Eighteenth fireet and A venue B.	404352.38	735816.14	$\begin{aligned} & 3073706 \\ & 2623840 \end{aligned}$	Sevent'pth St. Bulkh'd. F Street Pier	$\begin{array}{ccc} 127 & 37 & 17 \\ \& 2 & 39 & 13 \end{array}$	$\begin{array}{r} 508.9 \\ 1193.8 \end{array}$	$\begin{array}{r} 556.5 \\ 1305.5 \end{array}$	${ }_{0}^{0.31}$
Thirty-eight Street Pier.	404442.27	735755.10	$\begin{array}{r} 24448 \\ 314 \\ 42 \end{array}$	Sevent'nth St. Bulkh'd. F Street Pier \qquad	1224745 1533201	$\begin{array}{r} 1851.7 \\ 1548.6 \end{array}$	9025.0 1693.5	1.15 0.96
Forth Thirteenth Street Pier....	404396.10	735718.40	$\begin{array}{r} 6156595951501405 \\ 150 \end{array}$	Pittston Coal Company, Franklin	2415646 3301402	$\begin{aligned} & 224.7 \\ & 231.0 \end{aligned}$	$\begin{aligned} & 945.7 \\ & 252.6 \end{aligned}$	0.14 0.14
Ponny Bridye	404321.44	735712.26	$\begin{array}{r} 95 \quad 2002 \\ 1430338 \end{array}$	Pitiston Coal Company. Franklin \qquad	2761952 5230331	$\begin{aligned} & 344.6 \\ & 433.7 \end{aligned}$	376.8 471.0	0.21 0.27
Empire Works Corner..........	404406.22	735800.49		Sevent'nth At. Bulfh'd. F Street Pier. \qquad	1771134 108335	738.5 861.7	807.6 942.3	0.46 0.53
Fifoenth Btreet and Avenue B..	404345.67	735821.13	$\begin{aligned} & 2091210 \\ & 2811791 \end{aligned}$	Eight'nth St. $_{\text {d }}$ Avenue B Sevent'nth St. Bulkb'd.	$\begin{array}{r} 293292 \\ 1011735 \end{array}$	$\begin{aligned} & 237.7 \\ & 530.6 \end{aligned}$	$\begin{aligned} & 259.9 \\ & 580.3 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.33 \end{aligned}$
Bellevse Hoapital	404418.20	735815.22	$\begin{aligned} & 3105903 \\ & 2908588 \end{aligned}$	Sevent'nth St. Buikh'd, F Breet Pier	$\begin{aligned} & 1605914 \\ & 1185930 \end{aligned}$	$\begin{gathered} 1171,2 \\ 1 ; \mathbb{1} 8.8 \end{gathered}$	$\begin{aligned} & 1240.8 \\ & 1453.1 \end{aligned}$	0.73
Clark's Tavern, nofthwemt cermer.	404406.17	735816.08	$\begin{aligned} & 2095090 \\ & 588 \\ & 58 \\ & \hline 10 \end{aligned}$	Twenty-eighth Bt. Pier F Street Pier.	$\begin{gathered} 29 \\ 1020 \\ 58 \\ 50 \\ \hline 83 \end{gathered}$	403.4 1213.7	$\begin{array}{r} 446.6 \\ 1327.3 \end{array}$	0.25

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section 1I.- Ficinity of New York. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back mzimuth.	Distance.	Distance.	Distance.
Hanter's Point station.	$\begin{array}{ccc} \circ & 11 \\ 40 & 44 & 48.36 \end{array}$	$\begin{array}{ccc} \circ & \prime \prime \\ \hline 73 & 56 & 52.02 \end{array}$	$\begin{array}{ccc} \circ \\ 85 & 46 & \prime \prime \\ \hline 0 \end{array}$	Dutch Ref. Ch., marble	$\begin{array}{cc} 0 & 111 \\ 965 & 10 \end{array}$	Metres. 2878.	Yards. 3148.1	$\frac{\mathbf{M i l e s e}^{*}}{1.79}$
			2063822	F steeple.	23 3844	1760.3	1925.0	. 0
Terrace, Fifty-first Street Corner.	404510.61	735731.77	$\begin{array}{r} 231949 \\ 3051211 \end{array}$	Eight'nth St. \& Avenue B Blackwell's Island, (2).	2031919 1251221	$\begin{array}{r} 2629.1 \\ 440.2 \end{array}$	2875.1	$\begin{aligned} & 1.63 \\ & 0 \end{aligned}$
Terrace, Fifty-first Street Mark. .	404511.17	735731.57	3071109 3563107	Hurter's Point Statuon. F Street Pier	$\begin{aligned} & 1271198 \\ & 1753111 \end{aligned}$	$\begin{aligned} & 1164.6 \\ & 20815 \end{aligned}$	$\begin{array}{r} 1273.6 \\ 9495.0 \end{array}$	0.72
Hunter's Point R.	404442.40	735713.49	295530	Sevent'nth St. Bulkh'd F Street Pier	2095560 1913733	$\begin{aligned} & 2138.5 \\ & 1419.2 \end{aligned}$	$\begin{array}{r} 2838.9 \\ 1552.0 \end{array}$	1.33 0.88
East and WVater Streets Conner.	404240.08	735817.04	2970436 182043	South Ninth Btreet Pier. Brooklyn Gas Company	1170452 1982037	631.6 704.1	690.7 770.0	0.39 0.44
Montague	404142.03	735934.41	764502	Governor's Imland, (2) Pier $23 ~$	2534494 357 04	1417.5	1550	0.88
Pier 1.	404159.13	740028.39	$\begin{array}{r} 2923441 \\ 73019 \end{array}$		$\begin{aligned} & 1123516 \\ & 187016 \end{aligned}$	$\begin{array}{r} 1372.6 \\ 8595 \end{array}$	3501.0 939.9	35
Pier $6 .$.	404159.68	740015.78	854203 250933	Pier 1 Governor's Island, (2)..	2584211 2050944	296.5 960.4	$\begin{array}{r} 324.2 \\ 1050.3 \end{array}$	0.18 0.60
Pier 9.	404203.04	740009.04	$\begin{array}{r} 301335 \\ 30616 \quad 01 \end{array}$	Governor's Island, (2).. Pigrim Church	$\begin{aligned} & 910 \quad 1719 \\ & 12616 \quad 32 \end{aligned}$	1126.9	$\begin{aligned} & 1231.4 \\ & 1515.7 \end{aligned}$	0.70 0.86
Degraw Street	404110.06	740004.05	1340313 2022717	Governor's Island, (2).. Ford's Pier.	$\begin{array}{r} 3140254 \\ 2227 \quad 28 \end{array}$	951.2 1035.9	1040.2 1132.8	0.59
Baltic Street Pier	404120.19	735958.03	$\begin{aligned} & 1125517 \\ & 1491901 \end{aligned}$	Governor's Island, (e).. Pier 1.	$\begin{aligned} & 2925454 \\ & 3991841 \end{aligned}$	$\begin{array}{r} 895.7 \\ 1396.4 \end{array}$	$\begin{array}{r} 979.5 \\ 1527.1 \end{array}$	0.56 0.67
Sedgwick Street Pi	404113.87	740006.71	2281649 1312200	Baitic Street Pier \qquad Governor's Island, (2)..	$\begin{array}{r} 461655 \\ 3111143 \end{array}$	${ }_{8829.6}^{980}$	308.4 908.9	0.17 0.51
De Fortekt's Pier.	404206.16	735929.02	$\begin{array}{r} 285350 \\ 1145901 \end{array}$	Ford's Pier \qquad Trinity Cuareh, $\mathbf{N} . \mathbf{Y} .$.	2085338	$\begin{array}{r} 883.1 \\ 1429.4 \end{array}$	$\begin{array}{r} 995.7 \\ 1563.1 \end{array}$	0.55
Bridge Street Ferry Pier.	404217.82	735842.96	2671803 2121035	Brooklyn Gas Company. Pier 55, Jackson street.	$\begin{aligned} & 871814 \\ & 321043 \end{aligned}$	387.2 536.9	$\begin{aligned} & 483.4 \\ & 567.1 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.33 \end{aligned}$
Congress Street	404122.96	335956.34	1065634 2005958	Governor's Lsland, (2).. Ford's Pier	$\begin{array}{rll} 235 & 50 & 10 \\ 21 & 00 & 04 \end{array}$	903.9 599.2	988.5 655.3	0.56
Thompron's P	404158.63	735931.26	600400 1235434	Governor's Island, (2). Trinity Church, N. Y.	2400320 3035359	$\begin{aligned} & 1677.3 \\ & 1498.4 \end{aligned}$	$\begin{aligned} & 1834.2 \\ & 1638.6 \end{aligned}$	1.04 0.93
Baxter's Pier.	404151.22	735938.10	$\begin{array}{r} 1343027 \\ 644802 \end{array}$	Trinity Chureb, N. Y... Governor's Island, (2).,	$\begin{aligned} & 3142957 \\ & 2444726 \end{aligned}$	$\begin{array}{r} 1518.2 \\ 1429.1 \end{array}$	$\begin{aligned} & 3660.3 \\ & 1562.8 \end{aligned}$	0.94
Prentice's Pier	404143.85	735943.60	1433320 2093616	Trinity Chureh, N. Y... Baxter'a Pier	323 29 32 38 17	$\begin{array}{r} 3605.7 \\ 261.3 \end{array}$	$\begin{array}{r} 1755.9 \\ 285.7 \end{array}$	1.00 0.16
Pier 11.	404205.01	740005.87	$\begin{array}{rr} 31 & 48 \\ 310 & 10 \\ 32 \end{array}$	Governor's Istand, (2).. Pilgrim Church	$\begin{aligned} & 2114814 \\ & 1301051 \end{aligned}$	$\begin{array}{r} 1216.3 \\ 1355.2 \end{array}$	$\begin{aligned} & 1339.1 \\ & 1492.9 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.85 \end{aligned}$
Pier 12.	404205.82	740004.58	$\begin{array}{rrr} 32 & 22 & 39 \\ 316 & 10 & 10 \end{array}$	Governor's Island, (2).. Montague \qquad	$\begin{array}{lll} 218 \\ 1850 & 22 & 14 \\ 140 \end{array}$	$\begin{aligned} & 1253.5 \\ & 1019.8 \end{aligned}$	$\begin{aligned} & 1379.8 \\ & 1115.2 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.69 \end{aligned}$
Pier 16.	404209.93	735958.00	$\begin{array}{r} 3271307 \\ 345132 \end{array}$	Montagne \qquad Governor's Isinnd, (2)	1471322 2145109	$\begin{array}{r} 1023.3 \\ 1444.6 \end{array}$	$\begin{aligned} & 1119.0 \\ & 1579.8 \end{aligned}$	0.64 0.90
Pier 17.	404210.94	735956.61	$\begin{array}{r} 329 \\ 351241 \\ 35 \end{array}$	Montague \qquad Governor'e Island, (2)	1494105 2151224	$\begin{aligned} & 1032,6 \\ & 1488.8 \end{aligned}$	$\begin{aligned} & 1129.2 \\ & 1625.1 \end{aligned}$	0.64 0.92
Pier 18.	404211.99	735955.28	3520351 2795803	Montrgue City Mills.	$\begin{array}{r} 158 \\ 1504 \\ 99 \\ 58 \\ 24 \end{array}$	$\begin{array}{r} 1045.7 \\ 760.3 \end{array}$	$\begin{array}{r} 1143.5 \\ 831.4 \end{array}$	${ }_{0}^{0.65}$
Pier 19.	404213.25	735953.49	2833317 3350247	Oity Milis. \qquad Montague \qquad	1033337 1550259	$\begin{gathered} 727.2 \\ 1061.8 \end{gathered}$	$\begin{array}{r} 795.2 \\ 1161.1 \end{array}$	0.45 0.68
Wesmith's Piet	404215.10	735810.33	1093540 2074213	Piet 28 \qquad Pler 45 \qquad	28335 274219	$\begin{aligned} & 607.4 \\ & 801,2 \end{aligned}$	$\begin{aligned} & 7 \times 9.8 \\ & 548.1 \end{aligned}$	${ }^{0.41}$
Pier $20 .$.	404214.31	735951.87	288510 361749	City Millim. Governor's Island, (${ }^{(2) \text {), }}$	1085 528 2581742	$\begin{array}{r} 699.0 \\ 1638.9 \end{array}$	$\begin{array}{r} 784.4 \\ 1791.5 \end{array}$	0.43 1.02
Pier 83.	404217.92	735943.21	$\begin{array}{r} 373604 \\ 3455609 \end{array}$	Gavernor's Intind; (2),. Montague \qquad	2173533 1655617	$\begin{aligned} & 1807.0 \\ & 1140.9 \end{aligned}$	$\begin{aligned} & 1976.1 \\ & 1247.6 \end{aligned}$	1.12 0.71
Haxton	404213.95	735918.23	2810631 326234	Pier 45 \qquad Bt. Ann" Church \qquad	1410043	$\begin{aligned} & 600.1 \\ & 551,3 \end{aligned}$	$\begin{aligned} & 695 \\ & 602.9 \end{aligned}$	$\stackrel{0.39}{ } \mathbf{0 . 3 4}$
	42	735907.56	5691537 274136	Pier 45	$\begin{gathered} 98 \\ 207 \\ 41 \\ \hline 18 \end{gathered}$	$\begin{aligned} & 167.9 \\ & 543.8 \end{aligned}$	$\begin{gathered} 183.8 \\ 588.2 \end{gathered}$	$\begin{aligned} & 010 \\ & 0.33 \end{aligned}$
Pier	404230.08	735982.78	288 14. 27 793909		1031402	114.1		$\begin{aligned} & 0.04 \\ & 0.07 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.-Vicinity of New York. Sketch B, No. 7.

Nause of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distunce.	Distance.
Pier 4.	$\begin{array}{cc} \circ & \prime \\ 40 & 11 \\ \hline 18.59 \end{array}$	740020.65	199307	Governor's Island, (2).	19922.59	Stetres. E85.8	Yards.	Miles.
Pier			2543044	Pier $5 . .$.	7483846	58.2	63.6	004
Pier 7.	40420094	740012.71	3025727	Montague	1225752	1071.6	1171.9	0.67
			614445	Pier 6	2414443	82.0	89.7	0.05
Pier 8.	404206.98	740010.71	\#9 1717	Governor's Island, 2).	2091702	1077.9	1178.4	0.67
			3054833	Mon:ague	12.4857	1051.1	1149.4	0.65
Catharine Street Ferry	404213.31	735906.81	$\begin{array}{lll}123 & 42 \\ 1964 & 46\end{array}$	Nesmith's Pier	$\begin{array}{rrrr}333 & 42 & 22 \\ 16 & 46 & 13\end{array}$	99.4	108.7	0.06
Atlantic Stores, northwest corner	404108.00	740010.58	2081641	Ford's Pier	281656	1159.0	1267.4	0.72
			1650901	Hier 1	3450849	1631.3	1783.9	1.01
Pier 10, 1856	404204.15	740007.48	305503	dovernor's islatd, (2).	2105146	1173.9	1983.7	0.73
			3111742	Montague	1311804	1033.6	1130.3	3.64
Pier 14.	404207.76	740001.69	490901	Pier 14	2290858	129.7	141.8	0.08
			220 0502	Montague	1410520	1019.6	1115.0	0.63
Clinton Hotel Flag	404127.54	735942.51	1651542	Ford's Pir.r	3451539	432.1	172.5	0.27
			1329735	Pier	3120705	1452.3	1588.2	0.90
Long Island Depot	404199.15	73.5948 .60	1850716	Ford's Pier	50737	369.9	4045	0.83
			1344223	Pier 1.	3144157	1314.4	1437.4	0. 82
Coentips and South, southwest	404204.81	740018.35	53 20 20	Pier 1.	2332013	2937	391.2	018
corner.			1842220	Governor's Island, (2).	1984212	1084.7	1166.2	0.67
Oid Slip and south, southeast	404209.69	740009.37	3164947	Pier 12	1364251	1640	179.3	0.10
corner.			2731310	City Mills.	$93 \quad 1340$	1081.5	1182.7	0.67
Eecond Presbyterian Chureh,	404241.16	735721.62	811121	Pier 45.	2611017	23168	25657	1.46
Williamsburg.			701025	City Mills.	2500906	3038.9	3×23.2	1.69
Near North River.								
Castle Point.	404437.25	740105.33	200926	Jersey City Spire.......	2000858	3507.7	3835.9	2.18
			2673413	Dutch Ref. Ch., marble streple.	873538	3438.9	3×61.5	1.91
Cunard's Pier	404250.82	740135.29	192044	Castle Point	130500	3357.1	3671.2	2.09
			3241149	Govertor's Island, (2)..	1491229	2848.1	3.14 .6	1.77
Pier 53.	404357.68	740026.19	454535	Jersey City Spire.	2254436	29700	39479	3.85
			1284028	West Hohoken	3033922	2841.6	3107.5	1.77
New York and Erie Railroad	404302.14	740034.66	1463749	West Hohoken	3263649	3937.7	4306.1	2.45
Pier.	104302	\% 00 3.6	864739	Jersey City Spire......	2664701	1381.9	1511.2	0.86
Pier 21.	404246.19	740040.68	400226	Bedine's Ieland gignal. .	2200122	3602.3	3939.4	2.24
	4046		3233251	Trinity Church, N. Y...	1483302	739.8	869.0	0.46
Pier 20.	404244.54	740040.93	3258601	Trinity Church, N, Y.	1455519	700.1	765.6	0.43
			1703837	Castle Pomt	3303821	3523	3852.8	2.19
Picri 45.	404337.44	740028.23	473512	Cunard's Pier	2273428	2131.5	2330.9	132
	40 3\%.44		154412	Castle Point	3344348	2040.1	2231.0	1.27
Pier 23.	40.4248 .23	740038.99	932826	Cunard's Pier	2732749	1323.6	1447.4	0.82
	,		1693458	Castle Point	349341	34192	3730.1	2.12
Pier 28.	404255.05	740036.90		Cunard's Pier.	264333	13.63	1505.1	085
Hier 2.	40425.03		1885162	Pier 45...	85108	1323.2	1417.0	0.82
Pier 33...........................	404304.78	740034.24	165.3905	Castle Print	3452345	2444.0	3219.5	1.83
Hier 3...........................	4043 0.78	340034.24	$7{ }^{2} 1643$	Cunard's Pier..........	2531603	1495,8	1635.8	0.93
Pier 8.	404299.55	740044.34	1725225	Castle Paint	3525211	3959.3	4340.7	2.47
Per	40428.55		1184525	Cunard's Pier	2984452	1363.7	1491.3	0.85
Fier 6.	404227.68	340044.83	1210813	Cunard's Pier...........	3010749	1390.7	1509.9	0.86
Prer 6.	40423.60	340044.80	1731018	Castle Point	3530959	4025.0	4401.6	2.50
Pier 4.	404935.32	7400 46,46	1235053	Cunard's Pier.	5063021	1425.6	1559,0	0.88
Ficr 4.	404820.38	7400 46.45	1735255	Castle Point	3535243	4154.5	45432	2.58
Pier 13............................	404235.49	740041.90	1714032	Castie Point............	3514017	3797.9	4153.3	2.36
	40435	340031.60	1104624	Cunard's Pler.	$\underline{290} 4549$	1340.0	1465.4	0.83
Pier 35....	404308.95	74.0033 .09	690211	Cunard'a Piet...........	2180130	1563.1	1709.4	0.97
-	404308.85	74.00 3.09	1642838	Cantle Point	3442817	2826.8	3091.3	1.76
Fier 39....	404380.62	740030.60	16658 40	Castle Point	3405817	25 nO .3	9734.3	1.55
	40.43 .20 .62		584840	Cunard'a Pier...........	2384758	1771.3	1940.3	1.10
Pier 49...oven***....................	40.4347 .85	740027.09	1492735	Castle Point	3292710	1765.9	1931.1	1.10
P6\%	40.434 .05		421509	Cunard's Fier	282 1485	$23 * 0.2$	2002.9	1.48
	40.4340 .49	140028.12	1535924	Castle Point	3332900	$\underline{1956.5}$	2139.6	1.21
-16.........................			454922	Cunam's Pier...........	2254838	2198.0	2403.7	1.36

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.- Vicinity of New York. Sketch B, No. 7.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section II.-Vicinity of New York. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Dislance.
Hudson River Railroad, (1).	$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 40 & 51 & 18.64 \end{array}$	$\begin{array}{ccc} \bullet & 1 & 11 \\ 73 & 56 & 07 \\ \hline \end{array}$	$\begin{array}{ccc} 0 & 1 & 1 \\ 136 & 09 & 50 \\ 2108 & 23 & 36 \end{array}$	Petis	3	Metres.	Yards.	Miles. 0.90 0.50
				Berry's Sha	282347	804.3	874	
Hadson River Railrond, (2). ...	405037.32	735625.82	$\begin{array}{r} 164256 \\ 1121047 \end{array}$	$\begin{aligned} & \text { Bluft } \ldots \text {................... } \\ & \text { Fort Leee, } \end{aligned}$	$\begin{array}{lll} 190 & 42 & 50 \\ 242 & 10 & 11 \end{array}$	$\begin{array}{r} 738.8 \\ 1400.6 \end{array}$	$\begin{array}{r} 812.9 \\ 1531.7 \end{array}$	$\begin{aligned} & 0.4 \mathrm{f} \\ & 0.87 \end{aligned}$
Hudson River Railroad, (3). ...	404934.52	735651,91	$\begin{aligned} & 14915 \quad 53 \\ & 16057 \quad 25 \end{aligned}$	Fort Lee. Boush Pier. Tillietudiun Pier, 1856	$\begin{array}{lll}324 & 15 & 23 \\ 240 & 56 & 42\end{array}$ 2805642	2070.5 1559.7	$\begin{aligned} & 2364.2 \\ & 1745.6 \end{aligned}$	1.290.97
Hudson River Railread, (4)......	404915.79	73570992	$\begin{aligned} & 204 \\ & 128 \\ & 13 \\ & 13 \\ & \hline 23 \end{aligned}$	Bruff 18.5	$\begin{array}{r} 2495 \quad 23 \\ 308 \quad 12 \quad 52 \end{array}$	$\begin{aligned} & 1984.1 \\ & 1412.3 \end{aligned}$	$\begin{aligned} & 2169.7 \\ & 1544.5 \end{aligned}$	1.230.88
Carrigan,........	404833.01	735742.83	$\begin{aligned} & 14: 3239 \\ & 171 \\ & 1249 \end{aligned}$	$\begin{aligned} & \text { Vreeland, (9) } \\ & \text { Tillietudlugier, } 1850 . \end{aligned}$	$\begin{array}{lll} 321 & 12 & 05 \\ 351 & 12 & 40 \end{array}$	$\begin{aligned} & 1424.1 \\ & 2218.7 \end{aligned}$	$\begin{aligned} & 1557.3 \\ & 2426.3 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 1.38 \end{aligned}$
High Bridge Farm................	405026.90	735513.63		Recfiving Reservoif.... Cypress Hill.	$\begin{aligned} & 2075956 \\ & 165 \cup 6 \quad 25 \end{aligned}$	$\begin{array}{r} 77950 \\ 16925.7 \end{array}$	8524.418509.4	4.8410.52
Thorp.............	405032.91	735538.96	$\begin{array}{r} 990 \\ 20655 \\ 23 \\ 23 \end{array}$	Plark Rectiving Reservoir...	$\begin{array}{lll}110 & 15 & 30 \\ 203 & 27 & 6\end{array}$	19673.9 77042	$\begin{gathered} 2 i 514.8 \\ 8425.1 \end{gathered}$	$\begin{array}{r} 12.20 \\ 4.79 \end{array}$
Wolfpit, 1855.......	404704.92	734855.16	2404598704	Cipress Hill Recejving Reservoir...	$\begin{aligned} & 204 \\ & 266583 \\ & 268 \end{aligned}$	$\begin{aligned} & 110 \% 95 \\ & 12552.8 \end{aligned}$	$\begin{aligned} & 12127.1 \\ & 13727.4 \end{aligned}$	6.897.80
Clawson's Point	404816.63	735034.73	$\begin{array}{r} 3132720 \\ 635014 \end{array}$	Woltpit, 1855 \qquad Latung's observatory..	$\begin{aligned} & 11332825 \\ & 2434457 \end{aligned}$	3215.9 12668.9	$\begin{array}{r} 3516.8 \\ 13 \times 54.3 \end{array}$	2.007.87
Old Ferry Point, (2).............	404815.31	734937.02	$\begin{array}{r} 3454848 \\ 914344 \end{array}$	Wolfpit, 1855 Slawson's Point.	$\begin{array}{lll} 155 & 41 & 15 \\ 271 & 43 & 66 \end{array}$	$\begin{aligned} & 2382.7 \\ & 1353.3 \end{aligned}$	$\begin{aligned} & 2605.6 \\ & 1479.9 \end{aligned}$	1.480.84
Rapalyee, (2)	404612.13	735201.80	$\begin{aligned} & 2493439 \\ & 24759 \quad 00 \end{aligned}$	Wolfpit 1855. Clawaon's Point......	$\begin{aligned} & 693641 \\ & 275957 \end{aligned}$	$\begin{aligned} & 46+91 \\ & 43489 \end{aligned}$	5106047558	$\begin{aligned} & 5.90 \\ & 2.70 \end{aligned}$
Berrian's Istand.....	404706.05	.735337 .39	$\begin{aligned} & 2701644 \\ & 3063408 \end{aligned}$	Wolfpit, 1855 Rapaiyee, (z)	$\begin{array}{r} 90194 \times \\ 1261510 \end{array}$	$\begin{gathered} 6616.6 \\ 2794.8 \end{gathered}$	$\begin{aligned} & 72: 35 \\ & 3031.9 \end{aligned}$	4.111.73
College Puint, (2)...............	404735.78	735053.19	$\begin{aligned} & 31570.3 \\ & 763709 \end{aligned}$	$\begin{aligned} & \text { Rapalyee, (2)........... } \\ & \text { Bemian's Island. } \end{aligned}$	$\begin{aligned} & 2115518 \\ & 2563582 \end{aligned}$	3040.2 3956.8	$\begin{aligned} & 3324.7 \\ & 4327.0 \end{aligned}$	
Sacred Heart Croas,	404855.86	735645.37	$\begin{aligned} & 28^{\prime \prime} 3923 \\ & 3071157 \end{aligned}$	Clark. R. pilyee, (2)	$\begin{array}{lll} 100 & 48 & 41 \\ 127 & 15 & 02 \end{array}$	$\begin{array}{r} 20: 3830 \\ 8346.7 \end{array}$	$\begin{gathered} 22290.4 \\ 9127.7 \end{gathered}$	12.665.19
Hunt's Point.	404802.93	735207.56	$\begin{array}{r} 3574410 \\ 5012 \quad 35 \end{array}$	Rapalyee, (2). Berrian's Island	$\begin{aligned} & 174414 \\ & 2301136 \end{aligned}$	3720227406	$\begin{aligned} & 3743.2 \\ & 2997.0 \end{aligned}$	2.13
								1.70
Randsil's Islnnd, 1855............	404734.77	735454.66	2960251 257 28	Berrian's Island Hunt's Pomit.	$\begin{array}{r} 11603 \\ 7730 \\ 73 \end{array}$	$\begin{aligned} & 2016.2 \\ & 4011.8 \end{aligned}$	$\begin{array}{r} 2204.9 \\ 4367.2 \end{array}$	1.25
								2.49
Woolsey Hill.............	404657.16	735425.51	6211581493140	Latting's Observatory. Randall's Island, 1855.	$\begin{array}{r} 2420912 \\ 3293121 \end{array}$	$\begin{aligned} & 6735.9 \\ & 1346.4 \end{aligned}$	$\begin{aligned} & 7366.8 \\ & 1472.4 \end{aligned}$	4.18
								0.84
Ward's Island, (1)..............	404658.59	735510.32	$\begin{array}{r} 19813 \quad 19 \\ 272 \\ 24 \\ 10 \end{array}$	Randall's [s]and, 1855. Woolsey Hill..........	181339924848	$\begin{array}{r} 1175.2 \\ 1051.4 \end{array}$	$\begin{aligned} & 1285.2 \\ & 1149.8 \end{aligned}$	0.73
								0.65
Sacred Heari Signal.	404908.71	735648.66	2881919575	Wolfpit, (1855) Ifatting's Observatory . .	$\begin{array}{ll} 109 & 03 \\ 199 & 268 \\ 25 \end{array}$	$\begin{array}{r} 11723.5 \\ 7660.5 \end{array}$	12820.5 8377.3	7.23
								4.76
Whitestane Point, (2)............	405759.94	734853.16	751019	College Point,	2550901	2910.4	$3 \mathrm{Ez2}$.	
	4047	73 48	1144644	Ofd Ferry ['oini, (2)	2944615	1132.2	1238. 1	0.70
Wilkin's Point	404742.77	734737.14	106390	Whitestone Point, (2).	2883216	1859.0	2032.9	1.15
		31	1094813	Ohd Ferry Point, (2)...	289385	298.19	\$263 1	1.85
Fort Schuyler Flag-st	404815.93	734708.98	89 48 48 498	Old Ferry Paint	269 288 288	3469.7	3794.3	2.16
				Weltpit, (1805)	2288899	3315.5	3625.7	2.06
Stony Point	404752.63	735415.96	3881549	Berrian's Island.	1481714	1688.5	1846.5	1.05
			591142	Kamball's Island, (185\%).	2391116	1075.3	1175.9	0.67
Lawrence Point..................	404719.71	735417.85	2935629 1181800	Berrian's Efland .is ${ }^{\text {den }}$	1135649 098 17	1087.8	1134.9	0.64
				Candall's 1atind, (1855)		979.8	1071.	1
Port Morris, chimney...	404806.68	$73 \mathbf{3 4 0 1 . 4 7}$	3431213	Berrian's Island........	1631299	1953.5	2136.3	
			272840	Hunt's Point.	922954	2672.3	2982.3	1.66
Eummerhouse...................	404636.40	735501,28	2323831	Woolmey Hill.	523854	1055.0	1153.7	0.65
			1524906	Ward 'si leland, (1)	3424900	716.5	783.5	0.44
Weat Oherser Apire	405016.76	735019.67	2994540	Clark	1195048	12657.4	13841.7	7.87
			90007	Cypress Hill	1885856	16242.5	17762.3	10.09
Ursuline Oonvent.	$4048 \mathbf{3 6 . 6 7}$	735414.51	50 50 56 87	Receiving Reservoir....	2305406	6502.5	7110.9	
			292585	Clart.	1030632	16925.5	18510.3	10.52
India Rubber Faetory	404688.93	735056.77	463417	Rapalyee, (2)..........	2263335	2100.1	2296.6	1.30
			1920950	Clawson's Point	121004	2451.7	\%681.1	1. 52
Archer,	405193.34	735433.41	2961032	Clark.	1161824	18872.3	206388	
			443814	Thers	224.3731	2485.5	22390.0	1.38
Port Goorge	0.5123 .89	73.5512 .04	3463439	Cyprees Rinl	1663639	18600.9	20:363.9	11.57
			2850306	Olark.	1151123	18605.5	21536.4	12.84

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section II.—Dicinity of New York. Shetch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station,	Back azimuth	Distance.	Distance	Distance.
Lidde.	405245.38	735434.29		Font George	$\begin{gathered} 0 \quad \prime \prime \prime \prime \prime \\ 1992424 \\ 179 \\ 33 \\ 47 \end{gathered}$	Metres 2664.9 2540.6	$\mathrm{Y} a \mathrm{ads}$. 2914.2 2767.4	
Quarry Signal	40524098	735440.60	$\begin{array}{r} 140427 \\ 3593850 \end{array}$	Fort George Archer.	1940410 1723859	$\begin{aligned} & 2451.2 \\ & 2414.6 \end{aligned}$	$\begin{gathered} 2681.6 \\ 2640.5 \end{gathered}$	1.52
Meunt Morris ...	404812.85	735618.58	$\begin{aligned} & 9771042 \\ & 3341702 \end{aligned}$	Cfark... Cypress Hill	971943 1541946	39556.0 13562.0	$\begin{array}{r} 21385.9 \\ 14831.0 \end{array}$	12.15 8.43
Lunatic Asylum	404005.99	735618.35	$\begin{aligned} & 1862338 \\ & 1183113 \end{aligned}$	Thorp Receiving Resprvolr....	$\begin{array}{r} 624105 \\ 2983013 \end{array}$	$\begin{array}{r} 8284.5 \\ 2441.6 \end{array}$	9059.7 2670.1	5.15
Threg's Neck, (1856).........	404830.92	734757.63	2920445 781951	Fort Schuylet Flag-staff. OHd Ferry Point, (2)....	$\begin{aligned} & 1120517 \\ & 2581848 \end{aligned}$	$\begin{aligned} & 1230.5 \\ & 2372.6 \end{aligned}$	13456 2801.2	$\begin{aligned} & 0.76 \\ & 1.48 \end{aligned}$
Fort Schuyier Station	404814.98	734718.20	$\begin{array}{r} 901142 \\ 1183893 \end{array}$	Old Ferry Polnt, (2) Throg's Neck, (1850)...	$\begin{aligned} & 9701018 \\ & 2788 \\ & 37 \\ & 58 \end{aligned}$	33.90 .1 1028.0	$\begin{aligned} & 35923 \\ & 1122.3 \\ & \hline 12 \end{aligned}$	2.01
Fort Schuyler, suuthwest corner	404814.89	734711.51	$\begin{array}{rrr} 109 & 48 & 57 \\ 89 & 46 & 01 \end{array}$	Tharn Mount Morris	2 2644004	$\begin{aligned} & \text { 123R6. } \\ & 12774.8 \end{aligned}$	$\begin{aligned} & 13776388 \\ & 13970.1 \end{aligned}$	7.82
Watt's Istend.	40491158	735549.87		Thorp. Mount Morrls	$\begin{array}{r} 54239 \\ 2004042 \end{array}$	$\underset{1833.9}{2591.1}$	2757.9	1.57
Quarry Hill, (1)..	404838.21	735530.80	$\begin{array}{r} 550415 \\ 3510646 \end{array}$	Moint Morris House of Refuge.......	$\begin{aligned} & 2350344 \\ & 1710654 \end{aligned}$	$\begin{aligned} & 1396.0 \\ & 1949.0 \end{aligned}$	$\begin{aligned} & 14938 \\ & 2431.6 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.21 \end{aligned}$
Quarry Hill, (2)	404840.92	735535.36	$\begin{array}{r} 492904 \\ 178360.5 \end{array}$	Mount Morris \qquad Thotp.	2292836 $358: 36 \quad 01$	$\begin{aligned} & 13332.5 \\ & 3455.1 \end{aligned}$	1457.2 3778.4	1.83 2.15
Prospect flill ...	404702.68	73 53 4639	$\begin{aligned} & 196 \\ & 25640 \\ & 243 \end{aligned} 4702$	Mourt Morris........... House of Refuge	$\begin{array}{r} 1645 \quad 58 \\ 634500 \end{array}$	2860.2 2310.8	2471.7 2527.1	1.40 1.43
Ward'a Island, (2).	404717.60	735533.54	$\begin{array}{r} 1481318 \\ 745520 \end{array}$	Mourt Morris........... Prospeet Hill	$\begin{aligned} & 3281249 \\ & 2545432 \end{aligned}$	2004.6 1768.7	$\begin{gathered} 2192.2 \\ 1934.2 \end{gathered}$	1.64 1.10
One flundred and Sixth Street station.	404716.16	735550.40	$\begin{array}{r} 11 \\ 1653 \\ 164 \end{array}$	Lanatic Asylum......... Mount Mortis	191312 $345: 3424$	$\begin{aligned} & 2209.3 \\ & 1805.0 \end{aligned}$	24160 1973.9	1.37
Astoris, Dutch Reiormed church.	404619.82	735530.38	$\begin{array}{r} 201 \quad 2736 \\ 151922 \end{array}$	Warisa Tsland, (1)..... Mount Prospect	$\begin{array}{r} 212750 \\ 195 \quad 1756 \end{array}$	$\begin{array}{r} 1284.9 \\ 11643.1 \end{array}$	$\begin{array}{r} 1425.1 \\ 127322 \end{array}$	\%.20
Astoria, Episenpal charch.......	404639.04	735524.81	$\begin{array}{r} 155833 \\ 1023957 \end{array}$	Men': Prospect........ Hectiving Reservoir...	1955704	$\begin{array}{r} 18555.0 \\ 3485.7 \end{array}$	$\begin{array}{r} 19745.6 \\ 3811.9 \end{array}$	7.94 2.17
Astoria, Presbyterian church	404625.20	735539.58	$\begin{array}{r} 2134093 \\ 56 \\ 55 \\ \hline 06 \end{array}$	Ward" Istand, (1).... Lunatic Asylum	$\begin{array}{r} 334049 \\ 2365441 \end{array}$	$\begin{aligned} & 1237.4 \\ & 1084.9 \end{aligned}$	1353.2 1586.4 108.	0.77
Horns Hook.	404531.89	735613.18	1773957 131732	Monnt Morria \qquad Hundred and Sixth st. .	3573953 1431723	$\begin{aligned} & 3116.5 \\ & 1403.8 \end{aligned}$	3408.1 1535.1	1.94 0.87
Near Harlem River.								
Kichatd .	405132.09	735543.31	$\begin{aligned} & 2130298 \\ & 2792105 \\ & 208 \end{aligned}$	Fort Independence.... Archer. \qquad	$\begin{aligned} & 330313 \\ & 992151 \end{aligned}$	$\begin{gathered} 2992.2 \\ 1659.8 \end{gathered}$	3196.1 1814.9	1.82
Wlat Rock.	405038.75	735749.72	$\begin{array}{r} 171044 \\ 2931118 \end{array}$	Daly Bluft	1971032 1131205	$\begin{aligned} & 143657.4 \\ & 1096 \end{aligned}$	$\begin{array}{r} 1569.5 \\ 2065.9 \end{array}$	${ }_{1}^{0.89} 1.18$
Blake...	405210.09	735411.31	$\begin{array}{r} 445719 \\ 15346 \quad 31 \end{array}$	Fort George............ Lidde.	2245829 3334516	$\begin{aligned} & 2013.1 \\ & 1213.8 \end{aligned}$	2201.5 1327.4	1.25
J. H. Dyeknan.	405201.94	755425.81	$\begin{aligned} & 1714494 \\ & 233 \\ & 38 \end{aligned}$	Liddle Blake \qquad	3514359 533843	$\begin{array}{r} 1954.4 \\ 424.3 \end{array}$	$\begin{array}{r} 1481.1 \\ 464.0 \end{array}$	0.84 0.66
Tiffen.	405227.89	735401.40	$\begin{array}{r} 125 \quad 05 \quad 96 \\ 2255 \quad 39 \end{array}$	Liddle. Blake.	3050505 2025533	$\begin{aligned} & 999.2 \\ & 556.0 \end{aligned}$	1007.1	0.58
Cammanu.	405148.77	735421.87	$168 \quad 5419$ 2003628		3465353 203535	$\begin{aligned} & 410.9 \\ & 702.7 \end{aligned}$	$\begin{array}{r} 4539 \\ 768.4 \end{array}$	0.26
Bridge	405245.21	735417.50	$\begin{array}{r} 3244730 \\ 0050 \% \end{array}$	Tilfen. Liddile	1444741 2704948	$\begin{aligned} & 6538 \\ & 391.6 \end{aligned}$	$\begin{aligned} & 715.0 \\ & 428.2 \end{aligned}$	0.41
Buahy Poiat,.	405143.13	73 \$4 40.76	248 210 56 59	Cammartn J. H Dyekman	$\begin{array}{ll} 68 & 31 \\ 30 & 03 \\ \hline 8 & \mathbf{3 9} \end{array}$	475.5 676.6	$\begin{aligned} & 5 \% 0.0 \\ & 790.9 \end{aligned}$	0.29 0.42
J. Dyehman	405228.05	735435.89	$\begin{aligned} & 184 \quad 2599 \\ & 2191613 \end{aligned}$	Liddle	$\begin{array}{r} 42530 \\ 391635 \end{array}$	330.9 684.1	$\begin{aligned} & 588.1 \\ & 748.1 \end{aligned}$	${ }_{0}^{0.93}$
Pioneet Point	405132.22	735452.41	$\begin{array}{r} 3013751 \\ 6014812 \end{array}$	Areher Fort George \qquad	$\begin{aligned} & 1913807 \\ & 2404759 \end{aligned}$	$\begin{array}{r} 521.7 \\ 527.0 \end{array}$	$\begin{aligned} & 571.6 \\ & 576.3 \end{aligned}$	0.32
Enoll..........................	405149.62	735455.44	$\begin{aligned} & 2670822 \\ & 327 \end{aligned}$	For George Arcler.	$\begin{array}{lll} 906 & 06 & 11 \\ 147 & 30 & 5! \end{array}$	$\begin{aligned} & 803.8^{\circ} \\ & 901.4 \end{aligned}$	$\begin{array}{r} 906.5 \\ 1050.9 \end{array}$	0.55
Morrien Pfer. .	405111.80	735459.09	2393139 193597	Archer \qquad	$\begin{aligned} & 598180 \\ & 1398 \\ & 51 \end{aligned}$	$\begin{aligned} & 697.9 \\ & 647.3 \end{aligned}$	$\begin{gathered} 769.9 \\ 7479 \end{gathered}$	0.43 0.40
Ban	4050.42 .24	735596.83	$\begin{aligned} & 2071124 \\ & 91449 \\ & \hline 24 \end{aligned}$	PHoneer Polnt Morris Pier	$\begin{aligned} & 271148 \\ & 344943 \end{aligned}$	$\begin{aligned} & 1733.4 \\ & 113.1 \end{aligned}$	$\begin{aligned} & 1895.6 \\ & \text { 1217: } \end{aligned}$	1.68

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.-Vicinity of New York. Sketch R, No. 1.

Name or station.	Latitude.	Longitude.	Asimutb.	To station-	Back azimuth	Distance.	Distance.	Distance.
Fordham Dutch Reformed Ch...	$\begin{array}{ccc} -5 \\ 40 & 52 & 03.25 \end{array}$	$\begin{array}{ccc} \circ & 1 & 1 \\ 73 & 53 & 42.50 \end{array}$	$\begin{array}{ccc} \circ & 1 \\ 137 & 11 \\ 121 & 24 & 42 \end{array}$	Iiddle	3170108 3012331	Metres. 1776.4 1467.1	Yavds. 1942.6 1604.4	Miles. 1.10 0.91
Foundry signal.	405224.40	735501.75	$\begin{aligned} & 2599744 \\ & 2144446 \end{aligned}$	J. Dyckman . Quarry Bignal	$\begin{array}{ccc} 79 & 2801 \\ 314456 \end{array}$	613.2 623.1	670.6 681.4	$\begin{aligned} & 0.38 \\ & 0.39 \end{aligned}$
Butler's Pie	405134.23	735440.81	$\begin{aligned} & 2244133 \\ & 1801514 \end{aligned}$	Cammann . \qquad Bushy Point \qquad	444145 01514	630.7 274.3	$\begin{aligned} & 689.7 \\ & 300.0 \end{aligned}$	0.39 0.17
Seaman's Signal.	405214.31	i3 5447.27	1810637 132424	Quarry Signal Froundry Signal	$\begin{array}{r} 10937 \\ 31229 \quad 27 \end{array}$	$\begin{aligned} & 822.8 \\ & 460.0 \end{aligned}$	$\begin{gathered} 899.8 \\ 503.0 \end{gathered}$	0.51 0.29
Pinch.	405243.63	735501.82	$\begin{aligned} & 3391259 \\ & 3593724 \end{aligned}$	seaman's Signal........ Foundry signal.	1591309 1793724	866.9 593.3	$\begin{array}{r} 105 \% .4 \\ 648.8 \end{array}$	0.60 0.37
Foundry Building...............	405227.52	735458.24	$\begin{array}{r} 1701000 \\ 402757 \end{array}$	Finch. Fuundry घignal..........	3.00958 2202755	504.3	559.5	0.31 0.08
Seaman's H (ouse.	405212.58	735441.09	$\begin{aligned} & 1713738 \\ & 3531406 \end{aligned}$	Quarry Signal Arelimp	$\begin{array}{lll} 351 & 37 \\ 173 & 14 & 11 \end{array}$	$\begin{array}{r} 885.8 \\ 1529.6 \end{array}$	$\begin{array}{r} 968.7 \\ 167.2 .7 \end{array}$	0.55
Carmansville Spire	404948.70	735616.83	$\begin{array}{r} 04537 \\ 3305128 \end{array}$		$\begin{aligned} & 1804536 \\ & 1505146 \end{aligned}$	$\begin{aligned} & 2856.7 \\ & 1311.7 \end{aligned}$	$\begin{aligned} & 3233.2 \\ & 1433.7 \end{aligned}$	1.84 0.81
Smith.....	404952.78	735530.87	$\begin{aligned} & 195414 \\ & 444944 \end{aligned}$	Mount Morts. Sacred Heart Cross	$\begin{aligned} & 1995343 \\ & 2244855 \end{aligned}$	$\begin{aligned} & 3277.9 \\ & 2474.2 \end{aligned}$	$\begin{aligned} & 3584.6 \\ & 2705.7 \end{aligned}$	2. 1.54
Fiorence. .	404932.55	735552.78	$\begin{array}{r} 19492898 \\ 34537 \end{array}$	$\begin{aligned} & \text { Mount Morris }, \ldots \\ & \text { Quarry Hill, } \mathbf{q}, \ldots \ldots . . \end{aligned}$	$\begin{aligned} & 1939491 \\ & 165 \\ & 37 \end{aligned}$	$\begin{aligned} & 2531.4 \\ & 1613.7 \end{aligned}$	$\begin{aligned} & 2768.3 .3 \\ & 1797.5 \end{aligned}$	1.57
Campbell. .	404948.09	735539.90	$\begin{array}{r} 191811 \\ 1805264 \end{array}$	Watt's fsland.......... Thorp.	1920805 05205	$\begin{aligned} & 10 \mathrm{ABE} .8 \\ & 1444.0 \end{aligned}$	$\begin{aligned} & 1190.7 \\ & 1579.1 \end{aligned}$	0.68 0.90
Hydrographic Point.	404916.22	335529.29	731914 7819	$\begin{aligned} & \text { Quarry Bill, (2)........ } \\ & \text { Watt's Istand........... } \end{aligned}$	$\begin{aligned} & 1879710 \\ & 2531935 \end{aligned}$	1097.9 $4 \leqslant 8.5$	1200.6 545.1	0.68 0.31
Morris	404817.46	335522.32	$\begin{array}{r} 1624412 \\ 895104 \end{array}$	$\begin{aligned} & \text { Qnarry Hil, (1)......... } \\ & \text { Mount Morris... } \end{aligned}$	$\begin{aligned} & 3424406 \\ & 2635027 \end{aligned}$	$\begin{array}{r} 679.2 \\ 13265 \end{array}$	$\begin{array}{r} 732.9 \\ 1450.6 \end{array}$	0.42
Randal's Island, 1850 ,	404747.80	73 55 18.20	444311 1183818	106th Sirect Station... Mount Morris	224 4.44 524 37 49	$\begin{aligned} & 1372.7 \\ & 1612.4 \end{aligned}$	$\begin{gathered} 1501.1 \\ 1763.3 \end{gathered}$	0.85
Khein.....	405136.73	735709.85	$\begin{array}{lll} 276 & 25 & 04 \\ 2 ; 3 & 49 & 64 \end{array}$		962646 595046	$\begin{array}{r} 366.6 \\ 4214.6 \end{array}$	$\begin{array}{r} 4031.6 \\ 4669.0 \end{array}$	${ }_{2.62}^{2.29}$
One hundred and fifty-second Street Pier.	404953.20	725642.64	$\begin{aligned} & 1542924 \\ & 16290606 \end{aligned}$	Fort leee, North Pier... Fort Lee Point	3342859 3423545	$\begin{aligned} & 2094.5 \\ & 2004.0 \end{aligned}$	2290.5 2738.3	1.30
Hotel, hydrographic flag.	405225.21	735113.09	$\begin{aligned} & 2531048 \\ & 3545422 \end{aligned}$	Tiffen. Blake \qquad	$\begin{array}{r} 721056 \\ 3745423 \end{array}$	$\begin{aligned} & 286.0 \\ & 468.0 \end{aligned}$	312.8	-0.18
New York and cisinity.								
Cryatal Patace.	404511.03	735842.75	$\begin{aligned} & 3052903 \\ & 20325 \quad 39 \end{aligned}$	Cypreas Fill. Hectiving Reservoir.	$\begin{array}{rl} 125 & 33 \\ 23 & 21 \\ 26 & 14 \end{array}$	11382.4 3118.3	12447.5 3410.0	7.07 1.94
Evergreen Cemetery	404101.06	735342.85	$\begin{array}{rrr} 76 & 00 & 21 \\ 134 & 07 & 27 \end{array}$	Mount Prospect. \qquad Highwiod, (2).	2555745 3140253	$\begin{array}{r} 5773.5 \\ 13896.9 \end{array}$	$\begin{array}{r} 6313.7 \\ 149785 \end{array}$	8.59 8.51
Paca and Sumpter Avenues.....	404049.28	735429.00	$\begin{array}{r} 1271516 \\ 773223 \end{array}$	Holy Redeemer Church. Mount Prospect........	3071324 257 31 13 2573113	$\begin{array}{r} 7723 \\ 4795.4 \end{array}$	8409.6 5244.1	$\begin{array}{r} 4.83 \\ 2.08 \end{array}$
Lawrence, (1).,	404514.03	734559.42	$\begin{array}{r} 32 గ 231 \\ 288.5638 \end{array}$	Daryea.... Valentine, (3)	$\begin{array}{ll} 212 & 02 \\ 11 \\ 108 & 58 \\ 19 \end{array}$	$\begin{gathered} 1333.4 \\ 3812.3 \end{gathered}$	$\begin{aligned} & 1458.2 \\ & 4169.0 \end{aligned}$	$\begin{array}{r} 0.63 \\ \mathbf{2 . 3 7} \end{array}$
Backhaus.	404400.01	734517.64	$\begin{aligned} & 1333157 \\ & 1102606 \end{aligned}$	$\begin{aligned} & \text { Vawrence, (2)......... } \\ & \text { Duryea................ } \end{aligned}$	$\begin{aligned} & 3133050 \\ & 290 \quad 2440 \end{aligned}$	$\begin{aligned} & 33900.6 \\ & 3302.8 \end{aligned}$	$\begin{array}{r} 37094 \\ 3611.8 \end{array}$	2.05 2.05
Flushing Roman Catholic Ohurch	404531.50	734915.72	$\begin{array}{r} 3401944 \\ 29 \\ 20953 \end{array}$	8mith Cypress \mathbf{B} ill	1602034 2090804	5388.6 8204.7	$5 \mathrm{Sg} 28$ 9070.8	3.35 5.15
Mushing Congregational Ohurch.	404540.25	734811.81	342 41 42 52	Smith \qquad Lutheran Cemetery	$\begin{aligned} & 1620900 \\ & 28250 \quad 09 \end{aligned}$	$\begin{array}{r} 5614.5 \\ 7550.0 \end{array}$	$\begin{array}{r} 61398 \\ 8256.5 \end{array}$	3.49 4.69
Flashing Episeopal Church Bpire.	404535.04	734832.45	$\begin{aligned} & 3365647 \\ & 2561910 \end{aligned}$	Emith Clark	$\begin{array}{r} 1565748 \\ 762336 \end{array}$	$\begin{array}{r} 5634.0 \\ 10170.0 \end{array}$	$\begin{array}{r} 6161.2 \\ 1421.6 \end{array}$	3.50 6.38
Barren 1 iland, (2)	403504.50	73 5815.28	$\begin{aligned} & 1804859 \\ & 2630634 \end{aligned}$	$\begin{aligned} & \text { Cypress Hill } \\ & \text { Pavition Kockaway. } \end{aligned}$	$\begin{array}{r} 04904 \\ 831120 \end{array}$	$\begin{aligned} & 120955 \\ & 10414.0 \end{aligned}$	132873 11388.4	$\begin{aligned} & 7.59 \\ & 6.47 \end{aligned}$
Btoothofr.	403929.82	735008.78	$\begin{array}{rll} 513 & 17 & 11 \\ 19 & 58 & 29 \end{array}$	Pavilion Rockaway ... tharren Island, (2)	$\begin{aligned} & 1372935 \\ & 1005707 \end{aligned}$	$\begin{array}{r} 10117.9 \\ 8706.3 \end{array}$	$\begin{array}{r} 11064.6 \\ 9520.9 \end{array}$	$\begin{aligned} & 6.29 \\ & 5.41 \end{aligned}$
Gansmie, (\%)..........	403744.85	735250.33	$\begin{aligned} & 2310421 \\ & 3481092 \end{aligned}$	Stonthit \qquad Barren laland, (2).	$\begin{array}{r} 510612 \\ 1681051 \end{array}$	$\begin{array}{r} 5149.5 \\ 5055.9 \end{array}$	$\begin{aligned} & 5631.7 \\ & 5529.0 \end{aligned}$	3.20 3.14
Hockuwhy Bench, (2)	403508.24	734809.83	$\begin{aligned} & 256 \\ & 07 \\ & 160 \\ & 164 \\ & 57 \end{aligned}$	Pavilion Rockrway..... 8toothof \qquad	$\begin{array}{r} 7610683 \\ 340533 \end{array}$	$\begin{array}{r} 4708.3 \\ 8537.9 \end{array}$	$\begin{array}{r} 5148.9 \\ 9336.8 \end{array}$	2.93 5.30
Thurston's Creek	403846.04	73.469 .54	$\begin{array}{r} 342 \\ 42 \\ 23 \\ 21 \end{array} 23$	Pavilion Rockaway..... Rockaway Beach, (2)..	$\begin{aligned} & 1624311 \\ & 2024949 \end{aligned}$	$\begin{array}{r} 5855.1 \\ 7269.3 \end{array}$	$\begin{aligned} & 6403.0 \\ & 7971.4 \end{aligned}$	$\begin{aligned} & 3.64 \\ & 453 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section M.-Vicinity of New York and New York Harlor. Sketch B, No. 7.

Name of station.	Latitude.	Lougitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Lotzs	$\begin{aligned} \circ \\ 404140.16 \end{aligned}$	335145.96	3183724 780418		1384151 2580404	Mefres 14098.8 586.8		$\begin{gathered} \text { Mide: } \\ 9 \\ 0.3 \\ 0.33 \end{gathered}$
Furman	404050.84	735316.43	2342316 3084106	Lotts. Pavilion Rockaway	$\begin{array}{lll}542415 \\ 124 & 46\end{array}$	$\begin{array}{r} 2612.0 \\ 18087.2 \end{array}$	$\underset{18456.4}{1846.4}$	8.1 .62
Hopkins..	404021.65	735845.37	$\begin{array}{lll} 209 & 51 & 17 \\ 140 & 49 & 15 \end{array}$	Luts.	$\begin{array}{rrr} 99 & 51 & 56 \\ 320 & 48 & 55 \end{array}$	$\begin{aligned} & 2791.8 \\ & 1461.6 \end{aligned}$	$\begin{gathered} 30.33 .0 \\ 1271.3 \end{gathered}$	${ }_{0}^{1.73}$
nemsen, flag..................	403502.52	734909.18	2177 3901	Pavilion Rockaway. Lotts.	774146 343	$\begin{array}{r} 6105.3 \\ 128045.6 \end{array}$	6676.6 14063,8	3.79 7.98
Vaiderveer .	404152.21	735057.05	$\begin{aligned} & 32709 \\ & 348 \\ & 37 \\ & 29 \end{aligned}$	Pavilion Rocknway.... Remsen, fig........	$\begin{aligned} & 1430625 \\ & 168 \div 831 \end{aligned}$	$\begin{aligned} & 14137.5 \\ & 128.57 .4 \end{aligned}$	$\begin{aligned} & 15460.364 .5 \\ & \hline \end{aligned}$	8.78 7.99
Bro	404230.32	734801.37	$\begin{array}{r} 3404540 \\ 63621 \end{array}$	Pavilion Rockawav. Remsen, flag.	$\begin{array}{lll} 180 & 47 & 41 \\ 166 & 35 & 37 \end{array}$	13246.5 13903.5	14486. 0 152044.4	8.88
Iamatca, Presbyteriam church....	404215.96	734728.44		Lolts. Ravilion Rockiway.	$\begin{array}{lll}259 & 37 & 57 \\ 163 & 25 & 54\end{array}$	$\begin{array}{r} 6145.1 \\ 12588.2 \end{array}$	$\begin{array}{r} 6720 \\ 13766.1 \end{array}$	3.82 7.88
Jamaich Duteh Reformed church, (desiroyed by fire.)	404206.14	734747.60	$\begin{array}{r} 815222 \\ 3410100 \end{array}$	Lotts Pavilion Rockaway.	2614947 161 0녕	$\begin{array}{r} 56559 \\ 12437.6 \end{array}$	$\begin{array}{r} 6181.5 \\ 13660 t .4 \end{array}$	3.51 7.73
Jamaica, Epizcopal churen	404209.83	734744.98	$\begin{array}{r} 805091 \\ 3412710 \end{array}$	Letts. \qquad Pavilion Rockaway..	266) 4744 161 ㅁy 0	$\begin{array}{r} 5790.7 \\ 12525.0 \end{array}$	$\begin{array}{r} 6266.967 .9 \\ 136597 \end{array}$	$\begin{aligned} & 3.56 \\ & 7.78 \end{aligned}$
Flatand, yutch Reformed church	403724.17	735551.73	2811058 3101350	Pavilinn Rockaway..... sarren Istand, (2).	10: 1805 1301611	$\begin{array}{r} 157862 \\ 6567.1 \end{array}$	$\begin{array}{r} 17197.7 \\ 7240.9 \end{array}$	9.77 4.14
Rufteplot, tree...	403543.47	735116.06	1733728 2694224	$\begin{aligned} & \text { Cypress Hill } \\ & \text { Pavilion Rockaway..... } \end{aligned}$	3533654 69 保31	$\begin{gathered} 10960.2 \\ 6947.0 \end{gathered}$	11985.7 9784.2	6.81 6.58
Carharl's House, fing-staff	403505.97	734835.27	$\begin{aligned} & 1564954 \\ & 1572938 \end{aligned}$	Mount Cypress Hill.	3063759 3572718	15998.1 13045.4	$\begin{aligned} & 17494.9 \\ & 14266.1 \end{aligned}$	9.94 8.11
Near Rockaway	403800.61	733929.03	612353	Pavilion Rnck	2412020	8742.6	9560.7	5.43
Genteman's Hilf, 1855.	4034.39 .31	733903.41	$\begin{aligned} & 1008310 \\ & 1740308 \end{aligned}$	Pavilion Rockaway Near Rockaway.......	3540251	$\begin{aligned} & 8424.6 \\ & 5 F 08.0 \end{aligned}$	9218.4	5.24 3.61
Hick's Neck, 1855	403641.83	734285.13	$\begin{aligned} & 2893463 \\ & 3051137 \end{aligned}$	Netar Rockavay.. Gentleman's Hin, isis.	$\begin{array}{r} 5935 \quad 58 \\ 1251348 \end{array}$	$\begin{gathered} 4799.2 \\ 5804.6 \end{gathered}$	$\begin{gathered} 52483 \\ 6347.7 \end{gathered}$	2.98 361
Hick's Beach, 1855.	403534.57	734238.08	$\begin{array}{lll} 29: 4 & 40 & 17 \\ 184 & 30 & 08 \end{array}$	Near Rockaway Hick'm Neck, 1855	$\begin{array}{r} 434916 \\ 43013 \end{array}$	6929.1 2080.9	$\begin{aligned} & 6811.9 \\ & 2815.6 \end{aligned}$	$\begin{aligned} & 3.67 \\ & 1.20 \end{aligned}$
New York Harbor.								
Fort Tompkins	403613.26	740304.20	$\begin{aligned} & 2864243 \\ & 247 \\ & 22 \end{aligned}$	Coney Inland, east, 1853. Cypress Hill	$\begin{array}{r} 1 c 64718 \\ 570937 \end{array}$	10384.9	$\begin{aligned} & 11351.6 \\ & 20060.0 \end{aligned}$	6. 11.45 1.41
Bluff, (1).	402429.91	235954.01	$\begin{aligned} & 1061848 \\ & 16891 \quad 18 \end{aligned}$	Coney Ieland, east, 1855. Fort Tompkins..........	$\begin{array}{r} 162119 \\ 3481915 \end{array}$	$\begin{aligned} & 19485.7 \\ & 23150.3 \end{aligned}$	$\begin{aligned} & 21310.1 \\ & 24222.9 \end{aligned}$	$\begin{aligned} & 12.11 \\ & 13.76 \end{aligned}$
Coney Island, west, 1855	403431.11	740006.06	2689432 1255739	Conev Island, east, 1855. Font Tollpking.........	$\begin{array}{rrr} 88 & 27 & 11 \\ 306 & 56 & 03 \end{array}$	57591	$\begin{gathered} 6: 98.0 \\ 5731.6 \end{gathered}$	$\begin{aligned} & 3.58 \\ & 3.26 \end{aligned}$
Sandy Hook Sigral	402817.05	740003.21	$\begin{array}{lll} 205 & 56 & 25 \\ 179 & 40 & 01 \end{array}$	Coney Ishand, east, 1855. Coney Islana, wert, 1855.		$\begin{aligned} & 1300 \div .4 \\ & 11537.1 \end{aligned}$	$\begin{aligned} & 142224.5 \\ & 12616.6 \end{aligned}$	8.188 7.17
Foiat Comfort, (2).	402718.54	740745.11	$\begin{aligned} & 2504155 \\ & 2951117 \end{aligned}$	Mandy Hook Signal..... BưT, (1)...	1151620	$\begin{aligned} & 11024.4 \\ & 12224.0 \end{aligned}$	$\begin{aligned} & 122055.9 \\ & 33422.5 \end{aligned}$	6.85 7.68
Jones.	402401.98	73591409	$\begin{aligned} & 22955 \quad 30 \\ & 1653049 \end{aligned}$	Pavilion Rockaway.... Fort Tompkine.....	346	$\begin{aligned} & 29639.4 \\ & 23187.0 \end{aligned}$	$\begin{aligned} & 32412.7 \\ & 253 \times 7.5 \end{aligned}$	$\begin{aligned} & 18.41 \\ & 14.41 \end{aligned}$
Norton	403338.40	740529.75	3345508 282 2104	Bluff, (1) Coney Igiand, east, 1855.	$\begin{array}{r} 1545846 \\ 822713 \end{array}$	18673.2 13489.2	$\begin{aligned} & 20420.4 \\ & 14751,4 \end{aligned}$	$\begin{gathered} 11,60 \\ 8.38 \end{gathered}$
Prince's Bay	403024.58	741227.86	3913347 2462329	Blinf; (1)................ Coney lelam, wemt, 1855	$\begin{array}{r} 1214156 \\ 663131 \end{array}$	20878.2 19033.4	$\begin{aligned} & 208092.9 \\ & 80819.8 \end{aligned}$	$\begin{aligned} & 12.96 \\ & 11.83 \end{aligned}$
Wilson	402618,87	740508.92	$\begin{array}{lll} 294 & 19 & 51 \\ 243 & 07 & 43 \end{array}$	Bluff, (1) Sandy Hook Signal.	$\begin{array}{r} 1142315 \\ 631101 \end{array}$	8148.0 8072.3	8980.4	$\begin{aligned} & \text { 5. } 06 \\ & 5.01 \end{aligned}$
Conaskanelk Point, (2)..	402730.60	741024.74	2042120 2124225	Bandy Fook Signal. ... Fort 'lompkins.	$\begin{aligned} & 840803 \\ & 324711 \end{aligned}$	$\begin{aligned} & 14710.0 \\ & 19166.1 \end{aligned}$	$\begin{aligned} & 16006.4 \\ & 20950.5 \end{aligned}$	9.14 11.91
seely	40321366	740854.32	2280341 3181723	Fort Tompkins. \qquad Bluff, (1) 	$\begin{array}{r} 480729 \\ 1382314 \end{array}$	$\begin{array}{r} 11004,6 \\ 19144,9 \end{array}$	$\begin{array}{r} 18099.9 \\ 2099663 \end{array}$	$\begin{array}{r} 6.87 \\ 11.89 \end{array}$
Fay	403111.48	741034.79	2894934 358018	Eandy Hook Siznal..... Conthekiunck Puint, (2).	1095644 1780035	15813.7 6816.2	$\begin{array}{r} 17893.4 \\ 7444.0 \end{array}$	9.83 4.83
Chapel Eill Light-bouse Pole...	402351.68	740312.67	908353 1485345	dandy Hook Stanal..... Wilmon.	$\begin{array}{r} 23358 \\ 238510 \end{array}$	9323.5 5302.7	$\begin{array}{r} 101959 \\ 5708.4 \end{array}$	$\begin{aligned} & 5.79 \\ & \hline 99 \end{aligned}$
Chapel Hinl mack Light	402351.00	740312.76		- Thapel Hill Light bouse Pote.		20.7	22.6	0.01

UNITED STATES COAST SURYEY.-GEOGRAPHIOAL POSITIONS.

Section II.-Vicinity of New Fork Harbor, Slaten Island, and New Jersey. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth	Distance	Distance.	Vistance.
Carhart.	$\begin{array}{cc} \circ \\ 40 & 25 \\ 01.13 \end{array}$	$\begin{aligned} & \circ \\ & \\ & 74 \\ & 02111.66 \end{aligned}$	$\begin{gathered} \circ \\ 11952 \\ 10 \end{gathered}$			Metres 4817.0		$\begin{array}{r} \text { Miles. } \\ 2.99 \end{array}$
Seward	402852.90	741613.05		Conaskonck Point, (2). Prince'e Bay.	1075322 615654	8588.2 6608 8	$\begin{aligned} & 9391.8 \\ & 6571.1 \end{aligned}$	5.34 3.38
Gage	$4030 \quad 07.36$	741253.34	$\begin{array}{r} 3 \% 4 \text { 05 } 11 \\ 635928 \end{array}$	Conaskonek Point, (2). seward \qquad	$\begin{array}{lll} 144 & 166 & 47 \\ 243 & 57 & 19 \end{array}$	5068.5 52334	6.522 .0 5723.1	3.71 3.25
Ward's Point.	40 \% 45.28	741495.97	$\begin{array}{rl} 304 & 00 \\ 51 \\ 51 & 46 \\ 50 \end{array}$	CoHaskunck Point, (2). seward.	1241250 2314544	$\begin{gathered} 7423.6 \\ 80 \end{gathered}$	$\begin{aligned} & 81182 \\ & 28.54 .7 \end{aligned}$	481 1.68
Olmstead..	403136.94	740914.42	$\begin{array}{r} 3145301 \\ 1218005 \end{array}$	Bluff, (1) Conaskonck Point, (2).	134596 1921719	$\begin{array}{r} 18647.3 \\ 7775.8 \end{array}$	$\begin{array}{r} 20.992 .1 \\ 6503.4 \end{array}$	$\begin{gathered} 11.59 \\ 4.83 \end{gathered}$
Sandy Hook Light-house.,	402739.49	735948.56	2023442 1634903	Coney Ialand, east, 18:5. Fart Tompkias..	$\begin{array}{r} 223710 \\ 34346 \quad 56 \end{array}$	$\begin{aligned} & 13929.2 \\ & 16541.5 \end{aligned}$	$\begin{aligned} & 15224.9 \\ & 18045.5 \end{aligned}$	$\begin{gathered} 8.65 \\ 10.25 \end{gathered}$
Hilton.	402517.19	740309.44	$\begin{aligned} & 18020 \quad 57 \\ & 147 \quad 4330 \end{aligned}$	Fort Tompkins Stely	$\begin{array}{r} 021 \\ 327 \\ 39 \end{array}$	202354	$\begin{array}{r} 22128.8 \\ 166: 20.1 \end{array}$	12.57 9.44
Garrison.	403200.18	740743.09	$\begin{array}{r} 3212705 \\ 713420 \end{array}$	Bluff (1) Olmstead	$\begin{aligned} & 14139 \\ & 251 \\ & 23 \\ & 38 \end{aligned}$	17745.9 2255.7	$\begin{array}{r} 19406.4 \\ 2477.7 \end{array}$	11.03 1.41
Winslow.........	403716.94	240504.10	242 01 38 1640651	Mount Prospect........ Bergen Dutch Ref. Ch..	$\begin{array}{r} 620696 \\ 90743 \end{array}$	$\begin{aligned} & 11771.6 \\ & 11793.1 \end{aligned}$	$\begin{aligned} & 128731 \\ & 128: 36.6 \end{aligned}$	7.31 7
Wyckof's fruse.	403433.98	335803.64	$\begin{array}{r} 1132721 \\ 741606 \end{array}$	Fort Tormptins. Seely.	2932405 2546902	$\begin{array}{r} 7602.0 \\ 15966.4 \end{array}$	$\begin{array}{r} 8429 \\ 173 \end{array}$	4.78 9.88
Oceanic House, flay.	403445.34	735811.94	$\begin{array}{r} 1113347 \\ 71332 \end{array}$	Fort Tompkins Bluff, ($\begin{aligned} & 291 \\ & 187 \\ & 187 \\ & 127 \end{aligned}$	$\begin{array}{r} 7387.3 \\ 19133.1 \end{array}$	$\begin{array}{r} 80 \div 8,5 \\ 219923.4 \end{array}$	4.59 11.89
Spit, double flag.	403337.12	73532417	1335022 109294	Mount Prosp-ct, Fort Touskins..	$\begin{array}{r} 3774735 \\ 2299394 \end{array}$	$\begin{aligned} & 18791.4 \\ & 1464.5 \end{aligned}$	$\begin{aligned} & 14983.4 \\ & 15817.9 \end{aligned}$	$\begin{aligned} & 8.51 \\ & 8.99 \end{aligned}$
Inlet, flag.	403412.55	735132.25	1563003 1025709	Ouprese Hill Fort Tompkins.	356 99 418 48 49	$\begin{aligned} & 13728.1 \\ & 16690.5 \end{aligned}$	$\begin{aligned} & 150^{7} 6.1 \\ & 18252.2 \end{aligned}$	8.53 10.37
Bath House	403558.97	740000.34	$\begin{array}{r} 2 \quad 5926 \\ 9544 \\ 95 \\ 48 \end{array}$	Conry Island, west, 1855 Furt Tompkins.	$\begin{aligned} & 1825023 \\ & 275 \\ & 47 \\ & \equiv 8 \end{aligned}$	$\begin{gathered} 27434.5 \\ 4: 445 \end{gathered}$	$\begin{gathered} 2996.9 \\ 4751.0 \end{gathered}$	$\begin{aligned} & 1.68 \\ & 2.70 \end{aligned}$
Penitentiary	403957.68	235649.45	1143130 2053047	Mount Prospect Bet!s		${ }_{8744.3}^{134.1}$	1466.6 9362.5	$\begin{aligned} & 0.83 \\ & 5.43 \end{aligned}$
Litelafeda	403958.58	235807.02	2284033 1300442	Mount Prospeet....... Berget, Duth Bef Cb'ch	$\begin{array}{r} 484050 \\ 1304442 \end{array}$	$\begin{array}{r} 8191.1 \\ 10318.8 \end{array}$	$\begin{array}{r} 876.1 \\ 11317.1 \end{array}$	0.50 6.43
Red Hook, chimney	404043.65	740042.33	281837 1800129	Mount Prospect......... Highwiod, (2)..........	$\begin{array}{r} 1012835 \\ 00129 \end{array}$	$\begin{array}{r} 4335.1 \\ 10060.3 \end{array}$	$\begin{array}{r} 4740.7 \\ 110482 \end{array}$	2.69 6.25
Wyckoff, 1853	403433.73	735602.77	$\begin{array}{ccc} 113 & 25 & 18 \\ 11 & 63 & 21 \end{array}$	Fort Tounkins .. Sandy Hook Light	2932302 191 प2 12	$\begin{array}{r} 726.4 \\ 13018.5 \end{array}$	$\begin{array}{r} 849.4 \\ 14236.6 \end{array}$	4.80 8.09
Coney Island, east, 1853..	403438.33	73560155	106463 $88 \quad 243$	Fort Tompkins Wyckofi, 1853.	2864201 268230.5	$\begin{array}{r} 103998 \\ 2850.2 \end{array}$	$\begin{array}{r} 11351.0 \\ 3119.1 \end{array}$	6.45 1.77
Coney Island, west, 1853	403430.99	740006.03	1285841 2681921	Fnyt Tnmpkins.. Wyekoft, 1853	3065645 882041	$\begin{aligned} & 5246 \\ & 2849.7 \end{aligned}$	$\begin{aligned} & 5737.3 \\ & 3171.0 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 1.80 \end{aligned}$
Romer Iron Beacon	403013.30	735935.86	$15 \% 1135$ 1951433	Fort Tompkins Wyckoff, 1853	3300856 1351433	12137.1 8326.1	$\begin{array}{r} 13272.8 \\ 9: 05.2 \end{array}$	7.54 5.17
Romer Stone Beacon.	403044.10	74 ¢0 30.13	1843754 22: 2349	Coney Isfand, west, $18: 5$ Coney leland, east, 1853	$\begin{array}{r} 43806 \\ 41 \stackrel{06}{26} 4 \end{array}$	$\begin{array}{r} 7020.8 \\ 10700.7 \end{array}$	$\begin{array}{r} 7677.7 \\ 11789.4 \end{array}$	4.36 6.70
Staten Mitand and New Jersey.								
Curtis	403443.89	340412.81	2735144 2102049	Coney I-land, west, 1855 Forl Tompkitis.....	935494 $30 \quad 2054$	5816.3 3194.1	$\begin{array}{r} 6360.5 \\ 3483.0 \end{array}$	3.61 1.48
Seguine's Point, chimney	403036.30	741120.49	$\begin{array}{r} 644336 \\ 3454448 \end{array}$	Seward Conaskrinck Point, (2).	24440% 16545	7463.0 5944. 3	8161.3	4.64
Conover's Beacon.	402514.21	740301.39	1794841 1233423	Fort Tompkins Wilsou	3594839 3033300	$\begin{array}{r} 20327.7 \\ 3607.7 \end{array}$	$\begin{array}{r} 22229.7 \\ 3944.6 \end{array}$	$\begin{gathered} 12.63 \\ 2.24 \end{gathered}$
Wilson's Beacon, back of Point Comfort.	402635.80	740751.32	2004513 1715355	Fort Tompkins Seely.	204819 3515314	$\begin{array}{r} 19044.3 \\ 10524.9 \end{array}$	$\begin{array}{r} 20831.7 \\ 11509.7 \end{array}$	11.84
Lighthouse Flag, near Pr. Comfort	402650.75	740656.81	$\begin{array}{r} 197 \quad 2926 \\ 7445 \quad 31 \end{array}$	Fort Tompkina Sandy Hook Signal....	173157 2544102	$\begin{array}{r} 18192.4 \\ 10100.6 \end{array}$	19894.7 11015.7	11.30 6.28
Morgan, (8)	402808.05	741536.15	2785509 $221627 \quad 29$	Conaskonck Point, (2). . Prince's Bay............	$\begin{aligned} & 985831 \\ & 46 \\ & 48 \\ & 31 \end{aligned}$	$\begin{aligned} & 7426.5 \\ & 6114.7 \end{aligned}$	8121.4 6686.8	4.61 3.80
Morgan, (a)....................	402805.18	741533.80	27818 94 200 (12 4	Oomaskonck Point, (2) Ward’s Point	$\begin{aligned} & 9891 \quad 45 \\ & 90 \\ & 92 \\ & 5.1 \end{aligned}$	7358.2 3286.2	80467 3543.7	$\begin{aligned} & 4.57 \\ & 2.04 \end{aligned}$
Cheatnaquack Point, (\%)	402736.88	7414 42,36	17846989818	Ward's Point Seward............	3584690 3173932	$\begin{aligned} & 3961.1 \\ & 3171.8 \end{aligned}$	$\begin{aligned} & 4331.7 \\ & 3468.6 \end{aligned}$	2.46 1.97

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section It.- Vicinity of Staten Ioland and New Jersey. Sketch B, No. 7.

Name of station	Latioude.	Longitule.	Aximuth.	To station-	Baek azimuth.	Dixtance.	Distance.	Distance.
Brown.		741326.68	$\begin{array}{rrrr} 0 & 11 \\ 129 & 99 & 24 \\ 154 & 64 & 17 \end{array}$	Seward. . ${ }_{\text {Ward }}$ Point...........	$\begin{aligned} & 3094736 \\ & 3790326 \end{aligned}$	Metres. 5101.5 5246.6	Yards. 50778 57156	Milirs $\mathbf{3 . 1 7}$ $\mathbf{3 . 2 5}$
Matayan	402648.87	241218.90	$\begin{array}{lll} 244 & 25 & 15 \\ 147 & 31 & 22 \end{array}$	Conackonck $P_{\text {oint }}$, (2). Ward's Point....	$\begin{array}{r} 6496 \quad 29 \\ 3272957 \end{array}$	$\begin{array}{r} 2981.9 \\ 6450.0 \end{array}$	$\begin{aligned} & 3361.9 \\ & 7033.5 \end{aligned}$	${ }_{1}^{1.881}$
New Durp Beacon, or Elu Tree Back Light.	403448.08	340653.84		Jones. Ooney Islarid, west, isiss	1513189 93 69 11	$\begin{aligned} & 22678,9 \\ & 9603.5 \end{aligned}$	24800.9 10012.1	14.09 5.97
Eim Tree Light-house.........	403345.35	740526.17	$\begin{array}{lll} 559 & 20 & 40 \\ 133 & 11 & 14 \end{array}$	Coney Istand, west, 1855 New Durp Beacon....	$\begin{gathered} 742408 \\ 3131017 \end{gathered}$	$\begin{aligned} & 7660.1 \\ & 2827.3 \end{aligned}$	$\begin{aligned} & 8376.8 \\ & 3091.8 \end{aligned}$	4.76 1.76
Elm Tree Light-house,	408344.54	740525.04	$\begin{array}{lll}323 & \text { Of } \\ 305 \\ 37.5 & 28 & 12\end{array}$	Sanay Honk Signal BLuff, (1)	$\begin{aligned} & 1430934 \\ & 1553159 \end{aligned}$	$\begin{array}{r} 12625.2 \\ 18790.9 \end{array}$	$\begin{aligned} & 13806.5 \\ & 20557.9 \end{aligned}$	$\begin{array}{r} 7.84 \\ 11.68 \end{array}$
Bayside Beacon................	402050.58	740357.46	$\begin{array}{lll}164 & 34 & 21 \\ 197 & 31 & 59\end{array}$	Suely................... Fort Tompking.	$\begin{array}{r} 34433 \\ 1734 \\ 1305 \end{array}$	$\begin{aligned} & 10337 . \\ & 188 \times 2.4 \end{aligned}$	$\begin{aligned} & 11309.6 \\ & 19915.6 \end{aligned}$	$\begin{array}{r} 6.42 \\ 11.31 \end{array}$
Elits Iflatd, Hag-staft	404153.79	740204.29	$\begin{aligned} & 2960454 \\ & 2974141 \end{aligned}$	Mount Pro-peet........ Laliing's Obetrvatory. .	$\begin{array}{r} 1160745 \\ 344354 \end{array}$	$\begin{gathered} 6873.7 \\ 7854.4 \end{gathered}$	$\begin{array}{r} 7516.9 \\ 8589.3 \end{array}$	4.27 4.28
Seaman'a Retreat.	403720.99	740411.49	2293017 1570509	Monnt Prospect.	$\begin{array}{rrr} 59 & 34 & 71 \\ 337 & 04 & 54 \end{array}$	10531.4 1410.4	$\begin{array}{r}11696.2 \\ 1542.4 \\ \hline 98\end{array}$	6.69 0.88
Elizabeth Port, Presbyterian Cburch, white epire.	403849.75	741108.24	$\begin{array}{rl}284 & 58 \\ 28 & 05 \\ 23 & 24\end{array}$	Mazet	1050203 2082918	8858.7 5004.2	$\begin{aligned} & 9687.6 \\ & 547.4 .4 \end{aligned}$	5.50 3.11
Bergen Point Chureh	403849.58	74 0719.84	$\begin{aligned} & 258 \\ & 30544 \\ & 42 \\ & \hline 16 \end{aligned}$	Mrant Prospect....... Oazet 	785833 1254617	13830.2 3914.2	$\begin{array}{r} 15124.3 \\ 4200.4 \end{array}$	8.59 2.43
Newark, Preskyterian Church	404401.18	74100296	2751643 3292942	Bergon, Duteh Ref. Ch. h Latiog's Gbatrvatory.	95.20 50 149325	$\begin{array}{r} 8901.9 \\ 13446.0 \end{array}$	$\begin{array}{r} 9734.8 \\ 15097.8 \end{array}$	5.53 8.88
Newark, Methodist Chur	404403.58	740952.60	$\begin{array}{lll}275 \\ 261 & 58\end{array} 09$	Bergen, Dutch Ref Chech Lating's Odservatory.	$\begin{aligned} & 9558 \quad 19 \\ & 82 \quad 05 \quad 35 \end{aligned}$	$\begin{array}{r} \varepsilon 683.5 \\ 15945.1 \end{array}$	$\begin{array}{r} 9486.0 \\ 17437.1 \end{array}$	5.59 9.91
Oentreville Chureh	404003.23	740633.26	$\begin{array}{lll} 268 & 10 & 59 \\ 935 & 18 & 19 \end{array}$	Mount Prospect Lazet	$\begin{array}{r} 881647 \\ 1551917 \end{array}$	12496.4 5017.6	$\begin{array}{r} 13655 \\ 5457.1 \\ \hline \end{array}$	7.76 3.12
Brighton Spive.	403847.28	740446.89	$\begin{array}{r} 2544146 \\ 101853 \end{array}$	Mount Prospect..........	744623 1901842	$\begin{array}{r} 10399.2 \\ 8253.0 \end{array}$	$\begin{array}{r} 11323.5 \\ 2463.8 \end{array}$	8.43 1.40
Newark Bay Light, or Pissaic Light.	484143.69	740719.23	$\begin{array}{lll}235 & 5048 \\ 153 & 43 & 41\end{array}$	Bergelt, Dutch Ref. Ch'ch Letitz	$\begin{array}{r} 5553 \\ 333 \\ 43 \end{array}$	$\begin{aligned} & 6088.9 \\ & 2156.6 \end{aligned}$	6658.6 2588.4	3.78 1.34
Newark Bay Beacon	404205.60	740707.97	$\begin{aligned} & 2401749 \\ & 1335404 \end{aligned}$	Bergen, Dutch Ref. Ch'ch Lentz	$\begin{array}{r} 6009 \\ 31553 \\ 305 \end{array}$	$\begin{aligned} & 55156.1 \\ & 1751.7 \end{aligned}$	$\begin{aligned} & 6021.3 \\ & 19156 \end{aligned}$	1.342 7.09
Robin's Reef Light.	403023.85	740336 \% 78	2590654 $19845 \quad 55$	Mount Prospect....... Highword, (2).........	$\begin{array}{r} 791046 \\ 180749 \end{array}$	$\begin{array}{r} 8498.7 \\ 13181.2 \end{array}$	$\begin{array}{r} 9293.9 \\ 14414.6 \end{array}$	5.28 8.19
Kill's Iight, Bergen Point	40.3832 .23	740835.84	$\begin{array}{lll}288 & 28 \\ 185 & 08 & 16\end{array}$	Cazet	$\begin{array}{r} 10925.19 \\ 608.39 \end{array}$	5976.0 7884,3	$\begin{array}{r} 5769.7 \\ 8622.0 \end{array}$	3.98 4.90
Long Neck	403507.84	741143.74	$\begin{array}{lll}191 & 08 \\ 147 & 39 & 52\end{array}$	Elizabeth Port Hotet...	$\begin{array}{r} 110549 \\ 327 \\ 49 \end{array}$	$\begin{aligned} & 6962.2 \\ & 2845.9 \end{aligned}$	$\begin{aligned} & 7635.5 \\ & 3166.9 \end{aligned}$	4.34 1.80
Benedict.............	4033 45.63	. 411152.36	1502228 1604810	Brajeted.	$\begin{aligned} & 3302153 \\ & 3404749 \end{aligned}$	$\begin{array}{r} 23558.8 \\ \hline 5 \end{array}$	$\begin{array}{r} 2798.2 \\ 2574.8 \end{array}$	1.39
Rossvile Signal	403323.78	74121954	1674918 17796	Braisted Blazing Star	$\begin{aligned} & 34749 \\ & 357 \\ & 240 \end{aligned}$	$\begin{array}{r} 2964.8 \\ 2960.3 \end{array}$	$\begin{aligned} & 3242.2 \\ & 3171.7 \end{aligned}$	1.84
Decker.	403506.25	740823.12	$\begin{array}{r} 513200 \\ 212945 \end{array}$	Froet	2313096 9014907	$\begin{aligned} & 4343.5 \\ & 326.1 \end{aligned}$	$\begin{array}{r} 4749.9 \\ 4074.7 \end{array}$	2.70 2.37
Wyckofls Landing, pier.	403423.34	741225.62	2154070 1802507	Long Neck.............	354037 02507	$\begin{aligned} & 1689.6 \\ & 1062 . \end{aligned}$	$\begin{aligned} & 1847.7 \\ & 1161.5 \end{aligned}$	${ }_{0}^{1.05}$
Wyekoffs Landing, fing.	403434.73	7412 27.51	1964543 1841242	Etizabethport Hotel... Bhaziug star.	$\begin{array}{r} 164649 \\ 41263 \end{array}$	$\begin{array}{r} 8222.8 \\ 712.9 \end{array}$	$\begin{array}{r} 8998.2 \\ 779.6 \end{array}$	5.11 0.44
Turner.................	403358.08	741335.78	3003222 012 236	Rossville 8tgnal Braisted.	$\begin{gathered} 120 \\ + \pm 24 \\ 27 \\ 27 \end{gathered}$	2034.0 2178.5	$\begin{aligned} & 2279.0 \\ & 2782.3 \end{aligned}$	1.29
Diesosway.	403915.61	7413 25:00	2384558 1690156		$\begin{array}{r} 804641 \\ 3494149 \end{array}$	$\begin{aligned} & 1560.9 \\ & 1334.4 \end{aligned}$	$\begin{aligned} & 178 B .9 \\ & 1459.3 \end{aligned}$	0.97 0.83
Marsh	403337.62	741450.24	$\begin{aligned} & 250 \\ & 2288 \\ & 21.060 \end{aligned}$		$\begin{array}{r} 7011 \\ 16848 \\ 148 \end{array}$	$\begin{aligned} & 1862.5 \\ & 2118.1 \end{aligned}$	$\begin{gathered} 9035.8 \\ 2116.3 \end{gathered}$	1.16
Woodbridge Linnding.	4033.43 .23	741459.71	187 33 240 24 51	Margh	$\begin{array}{r} 73348 \\ 2453137 \end{array}$	$\begin{aligned} & 189.2 \\ & 2442.8 \end{aligned}$	$\begin{aligned} & 1880.5 \\ & 2671.4 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.52 \end{aligned}$
Smoking Point.	403318.51	741314.06	$\begin{array}{r} 1571010 \\ 7050910 \end{array}$	Turner \qquad 	33715 58 250514	$\begin{gathered} 1223.4 \\ 872.5 \end{gathered}$	1417.2 298.0	
Signal on the Marsh.............	403338.83	741337.36	3184846 3375311	8moning Print Disusway	$\begin{aligned} & 1384901 \\ & 1575319 \end{aligned}$	$\frac{837.8}{773.1}$	$\begin{aligned} & 910.7 \\ & 845.4 \end{aligned}$	0.58
Tuf's Point...................	403388.70	741254.54	$\begin{array}{r} 280 \\ 853907 \\ 8537 \end{array}$	Resoville Signal........ Emokiag Pokth	1003330	$\begin{aligned} & 838.0 \\ & 556.7 \end{aligned}$	$\begin{aligned} & 916.4 \\ & 608.8 \end{aligned}$	0.52 0.34

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section II-Vicmity of Staten Island and New Jersey. Sfeteh 7. No. 1.

Name of station.	Latitude.	Longitude.	Azimuth.	To station -	Back azimuth	Distance.	Distance.	Distance.
Rossville Wharf...............	$\begin{array}{ccc} 0 & \prime \\ 4033 & 21.13 \end{array}$		$\begin{array}{rrr}0 & \\ 260 & 29 \\ 84 & 17 \\ 84 & 06\end{array}$	Rossvilte Signal.. Smoking Point.	$\begin{array}{rrr} 8 & 1 & 1 \\ 80 & 34 & 00 \\ 264 & 15 & 44 \end{array}$	Metres. 484.7 869.3	Farde. 530.0 885.0	$\begin{gathered} \text { Miles. } \\ 0.30 \\ 0.50 \end{gathered}$
High Scaffold.....................	403441.42	740739.87	246101021 93 55	Brost	$\begin{array}{ccc}66 & 12 & 23 \\ 273 & 51 \\ 46\end{array}$	4829.1	72881.0	3.60 4.49
Tappan's Point	403233.13	741415.09	1572459 1992650	Marsh ${ }_{\text {Turner }}$	$\begin{array}{rrrr}337 & 24 & 36 \\ 19 & 27 & 16\end{array}$	2154.2 2788	2355.8 3033.7	1.34
Herbert..........................	4033002.81	741508.09	188 233 8989	Woodbridge Landing . Tappan's Point.	85914 530851	12659.2	1388.3	0.78 6.97
Ellis.	403230.38	741425.78	116 49 49 31 1819	Woodbriage Landing Herbert.	$\begin{aligned} & 296 \\ & 229 \\ & 229 \\ & 30 \\ & 51 \end{aligned}$	891.6 1809.7	975.0 14.32 .2	0.55 0.81
Wyekoff	403417.45	741353.16	90630 281917	Tappan's Point W oudbridge Landing,	$\begin{array}{llll}189 & 06 & 16 \\ 208 & 18 & 34\end{array}$	3258.6 3301.0	3563.5	$\underline{2.02}$
Jessup's Cupola	403250.44	741101.77	1195714 192 3808	Turner F'rost.	$\begin{array}{rrrr}290 & 55 & 34 \\ 12 & 38 & 17\end{array}$	4182.9 1521.5	4574.3 1663.9	2.60 0.85
Callet's Cupols	403440.71	740741.22	9412 125 66 25 6	Braisted........... Frost....................	$\begin{aligned} & 2740907 \\ & 246 \quad 23 \quad 35 \end{aligned}$	7192.2 4786.2	$\begin{aligned} & 7865.2 \\ & 5234.0 \end{aligned}$	4.47 2.97
Androvetts.	403217.48	741414.93	700783 1270093	Herbert.................... Woodbridge Landing...	250 307 00648	1330.7 1429.9	1455.2 1443.4	0.83 0.82
Terrill.	403124.13	741505.48	2155219 1770319	Androvetts Herbert..................	$\begin{array}{r}35 \\ 35 \\ 3510 \\ \hline 10\end{array}$	2030.7 1194.5	2220.7	1.26 0.74
Dubois.	403127.60	741417.06	843757 1320634	Termil....................	264 3120608 06	1445.2 1619.3	$\begin{array}{r} 1259.4 \\ 1770.8 \end{array}$	0.71 1.01
Gage	403103.02	741415.79		Vnbuis	357 299446 05	758.7 1338.9	829.7 1464.2	0.47 0.83
Yellow Hill	403418.02	740923.33	$\begin{array}{r}583057 \\ 358 \\ \hline 16\end{array}$	Frost. Cortelyou	$\begin{aligned} & 9383002 \\ & 1783017 \end{aligned}$	$\begin{aligned} & 2326.2 \\ & 1980.4 \end{aligned}$	$\begin{aligned} & 2543.9 \\ & 2165.7 \end{aligned}$	1.45 1.23
Woodbridge, white spire........	403339.82	741605.95	2624043 2701519	Fort Hill, (1)............. Frost.	$\begin{array}{lll}89 & 45 & 21 \\ 90 & 18 & 46\end{array}$	10131.5 7491.0	11079.5 8191.9	6.29 4.65
Wgnant.	403235.28	741358.89	1371306	Marsh. Woodbridge Landing.	3171233 2552628	1779.4 1479.0	1945.9 1617.4	1.17 0.92
Storer.	403323.03	741414.88	$\begin{array}{r} 404107 \\ 858 \mathrm{I} 4 \end{array}$	Woodbridge Landing.. Ellis.	$\begin{aligned} & 2204038 \\ & 188 \quad 58 \quad 07 \end{aligned}$	1618.8 1643.8	1770.3	1.01
Fire-brick Works..	403051.06	741516.06	$\begin{aligned} & 2305641 \\ & 255 \quad 25 \quad 30 \end{aligned}$	Dubois ...	$\begin{array}{lll}50 & 57 & 19 \\ 75 & 2609\end{array}$	1788.8 1466.1	1956.2 1603.3	1.11 0.91
Crizier Signal	$40 \quad 3151.69$	741346.19	$\begin{aligned} & 1293451 \\ & 10006 \quad 37 \end{aligned}$	Woodbridge Landing. Herbert.	$\begin{aligned} & 3123403 \\ & 280 \\ & 28544 \end{aligned}$	$\begin{array}{r} 2350.6 \\ 1958.8 \end{array}$	$\begin{aligned} & 2570.5 \\ & 2142.1 \end{aligned}$	1.46 1.22
Richmond, Episcopal church....	403419.79	740832.09	681819 293415	Frost Gortelyou.	2481651 2093343	3432.6 9338.7	$\begin{array}{r} 3753.8 \\ 2557.5 \end{array}$	2.13 1.45
Richmond Court-house.	403412.77	$7408 \mathbf{2 5 . 7 3}$	723011 353912	Fiost. Cortelyou.	$\begin{aligned} & 257 \\ & 215 \\ & 288 \\ & \hline 88 \end{aligned}$	3501.3 2037.3	3888.9 2466.6	2.18 1.39
Arent's House....................	403037.50	741488.14	$\begin{aligned} & 1453303 \\ & 2032121 \end{aligned}$	Terrill Crizier Signal	9283239 23	1685.4 $\mathbf{2 4 9 2 . 0}$	$\begin{aligned} & 184: 3.1 \\ & 8725.2 \end{aligned}$	1.05 1.55
Springville, Methodist church....	403555.78	740928.96	233806 1013641	Frost Miller.,...................	$\begin{aligned} & 2033715 \\ & 2813430 \end{aligned}$	$\begin{aligned} & 4617.6 \\ & 4817.2 \end{aligned}$	$\begin{aligned} & 2049.7 \\ & 5267.9 \end{aligned}$	2.87 2.99
Perth Amboy, Preaby terian church	403018.09	741537.80	$\begin{array}{r} 173145 \\ 86725 \quad 29 \end{array}$	Seward. Prince s Bry.............	1973192 87973	$\begin{array}{r} 2755.8 \\ 4475.8 \end{array}$	$\begin{array}{r} 3013.7 \\ 4894.6 \end{array}$	1.71 2.78
Ferth Amboy, 等isisopal church..	403010.64	741536.15	2293010 218 1863	Gage. Dubois	$\begin{array}{lll} 49 & 31 & 02 \\ 38 & 07 & 24 \end{array}$	$\begin{array}{r} 2488.0 \\ 3017.9 \end{array}$	$\begin{array}{r} 2720.8 \\ 3300.3 \end{array}$	1.54
Bouth Amboy Depot.	402989.32	741615.58	$\begin{array}{lll}254 & 2950 \\ 35641 & 40\end{array}$	Ward’a Point............ Seward	$\begin{array}{rrr} 7430 & 48 \\ 17641 & 42 \end{array}$	$\begin{gathered} 2189.5 \\ 1032.3 \end{gathered}$	$\begin{aligned} & 2394.4 \\ & 1128.9 \end{aligned}$	1.36 0.64
Keyport Spire.....................	402612.41	741147.24	$\begin{aligned} & 2185209 \\ & 1725920 \end{aligned}$	Conaskonck Point, (2). . Prince's Bay.	$\begin{array}{r} 3853 \quad 03 \\ 35258 \quad 54 \end{array}$	$\begin{array}{r} 3097.7 \\ 7836.2 \end{array}$	$\begin{aligned} & 3387.5 \\ & 8569.4 \end{aligned}$	1.92 4.87
Rutherford Observatory, transit, 1858.	404348.79	735854.43						
From Newburg to Poughkeeprie.								
Butier Hill Clough.	412549.20	735843.26	$\begin{array}{ll} 324 & 07 \\ \hline 286 \\ 28 & 41 \end{array}$	Onnatitution Toland. Plam Besh	$\begin{array}{lll} 143 & 08 & 39 \\ 106 & 31 & 47 \end{array}$	3373.9 4403.8	3889.6 4815.9	2.10 2.74
Breakneek Point	412080.12	735884.76	$\begin{array}{r} 338 \\ 04 \\ 18 \\ 46 \\ 56 \end{array}$	Conetitution Island Butter Hill Olough	$\begin{array}{lll} 158 & 04 & 54 \\ 1 & 46 & 45 \end{array}$	$\begin{array}{r} 4270.5 \\ 1333.3 \end{array}$	$\begin{array}{r} 4670.1 \\ 1458.1 \end{array}$	\$.65
Polypus Island	412716.46	735903.36	$\begin{aligned} & 1589705 \\ & 1884693 \end{aligned}$	Robiason Epp Hill	$\begin{array}{r} 3889619 \\ 84647 \end{array}$	$\begin{aligned} & 4597.8 \\ & 5407.5 \end{aligned}$	$\begin{aligned} & 4809.3 \\ & 5913.5 \end{aligned}$	$\begin{aligned} & 2.73 \\ & 3.38 \end{aligned}$

UNITED STATES COAST SDRVEY-GEOGRAPHTOAL POSITIONS.
Section 11.-Hudson river, from Neuburg to Poughkeepsie. Sketch B, No. 7.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.-Hudson river, from Neuburg to Poughkeepsie. Sletch B, No 7.

Name of station,	Latitude.	Longitude.	Azimuth.	To station-	ck azimuth.	bistance.	Distance.	Distance.
Dog Iead Covo Point	$\begin{array}{c:c} \circ 1 \\ 41 & 49 \\ \hline 1.67 \end{array}$	735626.60		Davis	1161915 1843247	Metres. 5012.2	Fards. 2259.4	$\begin{gathered} \text { Miles } \\ 1.28 \\ 3.11 \end{gathered}$
Poughkeepsie Second Point....	414306.50	335601.30	$\begin{array}{r} 1610013 \\ 89 \quad 3518 \end{array}$	D_{02} Head Cuve Point. Hoyt...	$340: 596$ 2693453	$\begin{array}{r} 1799.9 \\ 871.6 \end{array}$	$\begin{array}{r} 1968.3 \\ 953.2 \end{array}$	1.12
Roosevelt	414420.30	735555.79	$\begin{array}{r} 510553 \\ 31205 \end{array}$	$\mathcal{D}_{\mathrm{og}}$ Head Cove Point. Foughkeeprie Second	$\begin{array}{ll} 331 & 05 \\ 183 & 33 \\ 12 & 01 \end{array}$	$\begin{array}{r} 916.5 \\ 92820.8 \end{array}$	$\begin{array}{r} 1002.3 \\ 2494.2 \end{array}$	0.57
Orumb Elbow Point	414505.70	735622.00	336 36017 30651	Ronseveli Dog Head Cove Point.	1563635 1830645	1525.3 1978. 4	$\begin{gathered} 1668.0 \\ 2163.5 \end{gathered}$	0.95 1.23
Railroad, (68).	41451347	735554.71	$\begin{array}{r} 05292 \\ 18 \\ \hline 25 \end{array}$	Rongevelt Mog Head Cove Point.	1805223 1982023	1639.9 2335.1	$\begin{aligned} & 1793.3 \\ & 2553.6 \end{aligned}$	1.102 1.45
Spring Brook	413925.25	735610.09	$\begin{gathered} 1232982 \\ 301818 \end{gathered}$	Summer-honse Hill Marsion Hill	$\begin{aligned} & 3032153 \\ & 2101796 \end{aligned}$	$\frac{1285.9}{1257.0}$	$\begin{array}{r} 1339.8 \\ 3910.9 \end{array}$	$\begin{aligned} & 0.76 \\ & 2.28 \end{aligned}$
Oha Lime-kiln.	413713.00	735637.11	$\begin{aligned} & 1300541 \\ & 1690446 \end{aligned}$	Mansion Hill Milton	3100507 349 C4 29	1543.3 3156.7	$\begin{aligned} & 1685.5 \\ & 3495.8 \end{aligned}$	0.96 1.98
Bishop	41384205	735620.78	158 111 42 42 4 4	Summer bouse Hill ... Milton	3385059 2914226	2151.4 1058.6	$\underline{8332.7}$	1.33
Barnegat.	413731.31	735635.01	$\begin{array}{r} 45525 \\ 1883454 \end{array}$	Old Lime-kim Bishop	$\begin{array}{r} 1845524 \\ 8350.3 \end{array}$	$\begin{array}{r} 567.2 \\ 9 \end{array}$	620.3 2413.5	0.35 1.37
Poughkeepsit, Catholic Church.	414230.64	733555.00	$\begin{aligned} & 2103804 \\ & 17941 \quad 32 \end{aligned}$	Davis.. Konseve	$\begin{array}{r} 303830 \\ 359413 \end{array}$	$\begin{aligned} & 2199.3 \\ & 388.5 \end{aligned}$	$\frac{2405.1}{37040.1}$	1.37 2.10
Poughkeepsie, Old Dutch Reformed church.	414213.51	735529.92	2834618 181642	Vervalin Mansion	1034934 1981523	7019.5 8717.1	7676.3 9532.8	4.36 5.42
Rock Point	414010.85	735616.70	1951910 243940	Mine Poi Miton.	151219 2043909	1137.8	1244.3 2824.9	0.71 1.60
Peck	413519.33	735719.44	$\begin{aligned} & 1772750 \\ & 2641512 \end{aligned}$	Mansion Hill..... Underhill	$\begin{array}{r} 3572744 \\ 841900 \end{array}$	$\begin{array}{r} 4503.6 \\ 7970.2 \end{array}$	8925.0	2.80 4.95
Blue Point Hill	414044.46	735641.02	$\begin{array}{r} 95204 \\ 110806 \end{array}$	Summer-hnuse Hill Mansion Hill.	$\begin{array}{lll} 189 & 51 & 55 \\ 191 & 07 & 35 \end{array}$	$\begin{array}{r} 1796.0 \\ 5036.9 \end{array}$	1964.0 6164.3	1.11 3.54
New Hamburg	413520.80	735642.29	$\begin{array}{r} 865848 \\ 1663730 \end{array}$	Peck Mankion Hill	$\begin{array}{lll} 266 & 58 & 23 \\ 346 & 37 & 00 \end{array}$	$\begin{array}{r} 861.4 \\ 4578.0 \end{array}$	$\begin{array}{r} 942.0 \\ 5006.4 \end{array}$	0.53 2.81
Howland	41361659	735620.37	$\begin{array}{r} 162624 \\ 92211 \end{array}$	New Hamburg.... Hampton	$\begin{aligned} & 196 \quad 26 \quad 09 \\ & 272 \\ & 270 \\ & \hline 10 \end{aligned}$	1794.3 1438.8	1062.2	1.11 0.89
Hunt	413759.35	733628.07	$\begin{array}{r} 103107 \\ 18718 \quad 15 \end{array}$		$\begin{array}{r} 1903102 \\ 71820 \end{array}$	$\begin{array}{r} 899.8 .0 \\ 1328 \end{array}$	$\begin{array}{r} 962 . \frac{1}{1452.3} \end{array}$	$\begin{aligned} & 0.55 \\ & 0.82 \end{aligned}$
Acherly..	413710.28	735704.41	$\begin{aligned} & 2628615 \\ & 22621 \quad 33 \end{aligned}$	Old Lime-kin. Barnegat		$\begin{gathered} 637.6 \\ 940,4 \end{gathered}$	$\begin{array}{r} 697.3 \\ 1028.4 \end{array}$	0.40 0.58
Morse	414010.87	735616.68	1951209 495459	Mine Point Summer-house Hill ...	151218 22954	$\begin{aligned} & 1137.8 \\ & 1137.8 \end{aligned}$	$\begin{aligned} & 1244.3 \\ & 1244.3 \end{aligned}$	0.71
Egan's Wharf	414025.51	735644.51	2353210 3050328	Mine Point	$\begin{array}{r} 553237 \\ 1250346 \end{array}$	$\begin{array}{r} 1142.4 \\ 786.3 \end{array}$	$\begin{array}{r} 1249.33 \\ 859.9 \end{array}$	0.71
Poughkeepsie, New Dutch Retormed Church.	414213.41	735529.70	$\begin{gathered} 232651 \\ 192739 \end{gathered}$	Summer-house Hill.... Milton.	203255 1992637	4918.8 6499.1	$\begin{gathered} 5379.9 \\ 7107.2 \end{gathered}$	3.06 4.04
Fowler.	413815.44	735658.35	2263806 3454059	Bishop... Old Lime kiln	$\begin{array}{r} 463231 \\ 1654113 \end{array}$	$\begin{gathered} 195.5 \\ 1987.8 \end{gathered}$	${ }_{9173}^{1307.8}$	0.74
Dog Head Point, (2)	414401.65	735626.66	2310437 2961737	Roosevelt Davis	$\begin{array}{r} 510458 \\ 1161830 \end{array}$	916.8 2066.0	1002.6 22598	0.57 1.28
Crosby	414330.00	735557.41	1451855 1812310	Dog Head Point, (2)... Roosevelt	3251636 12311	1187.6 1552.9	$\begin{array}{r} 1998.7 \\ 1698.2 \end{array}$	0.74 0.96
Haley's Quarry.	414420.40	735627.94	3082628 2701041	1) avis. Rooserelt	$\begin{array}{r} 12812792 \\ 90 \\ 11 \end{array}$	$\begin{array}{r} 2402.6 \\ 742.7 \end{array}$	$\begin{array}{r} 2627.4 \\ 812.2 \end{array}$	1.49 0.46
Reynolds	414236.50	735602.84	1694455 2171545	Haley's Quarry Davis......	3494439 37169	3257.3 2150.3	$\begin{aligned} & 3562.1 \\ & 2351.5 \end{aligned}$	$\frac{2.02}{1.33}$
New Paltz North.	41430739	735634.42	2013817 3223152	Roosevelt \qquad Keymalds \square	$\begin{array}{r} 213843 \\ 1423218 \end{array}$	$\begin{array}{r} 29204 \\ 1200.1 \end{array}$	$\begin{array}{r} 2646.9 \\ 1312.4 \end{array}$	1.50 0.74
Elting Pier.	414240.45	735638.70	2276614 2782139	Poughkeepsie Second Pbint. Reynolds	470639 982203	1180.1 637.8	1290.5 916.2	0.73 0.58
Iron Works .	414205.99	735606.90	$\begin{aligned} & 1452019 \\ & 1854107 \end{aligned}$	Elting Pier. Meynotda \qquad	$\begin{array}{r} 2251958 \\ 54110 \end{array}$	$\begin{array}{r} 1299.6 \\ 946.6 \end{array}$	$\begin{aligned} & 1413.5 \\ & 1034.5 \\ & \hline \end{aligned}$	0.80 0.59
Louisburg	414215.28	735641.77	$\begin{aligned} & 1851317 \\ & 28913410 \end{aligned}$	Elting Pier. Iron Works.	$\begin{array}{r} 51319 \\ 2093433 \end{array}$	$\begin{aligned} & 779.8 \\ & 855.6 \end{aligned}$	$\begin{aligned} & 852.8 \\ & 935.7 \end{aligned}$	0.48 0.53
T	414113.35	735632.59	1793938 20005 26	Loaisburg Iron Whorks	$\begin{array}{r} 339393 \\ 200543 \\ \hline 05 \end{array}$	$\begin{aligned} & 1922.3 \\ & 1729.1 \end{aligned}$	$\begin{aligned} & 2102.2 \\ & 1890.9 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.07 \end{aligned}$

UNITED STATES COASI SURVEY.-GEOGRAPHICAL POSITIONS.

Section II.-Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

Name of station.	Latitude.	Longitade.	Azimmb.	Tostation-	Back azimuth.	Distance.	Distance	Distance.
Fox's Point....	414126.40	$\begin{array}{ccc} \circ \\ 73 & 56 & 11 \\ \hline 1.94 \end{array}$	$\begin{array}{ccc} 0 & \prime \prime \\ 69 & 24 & 03 \\ 174 & 33 & 12 \end{array}$	Yellow Point.......... Iron Works	$\begin{array}{ccc} 0 & 11 \\ 240 & 23 & 43 \\ 354 & 38 & 09 \end{array}$	$\begin{gathered} \text { Metros. } \\ 815.1 \\ 1296.6 \end{gathered}$	$\begin{aligned} & Y a r d s \\ & 891.4 \\ & 1341.4 \end{aligned}$	$\begin{aligned} & \text { Miles. } \\ & 0.51 \\ & 0.76 \end{aligned}$
Quarry Wharf.	414133.87	735642.89	$\begin{aligned} & 18109 \\ & 283 \\ & 40 \\ & 27 \end{aligned}$	Lovisburg Fox's Poini............	$\begin{array}{r} 10928 \\ 1034032 \end{array}$	1277.7 974.5	1397.2	0.79 0.60
Btue Point	414050.40	735630.07	$\begin{aligned} & 21020 \\ & 28123 \\ & 20 \end{aligned}$	Fnx's Point............ Mine Point	$\begin{array}{r} 302115 \\ 1012338 \end{array}$	$\begin{array}{r} 1287.3 \\ 619.6 \end{array}$	$\begin{array}{r} 1407.7 \\ 677.6 \end{array}$	$\begin{aligned} & 0.80 \\ & 0.38 \end{aligned}$
From Poughkerpsie to Rhinebeck.								
Dennis, (1)	41 4725.44	235042.81	$\begin{array}{r}465009 \\ 359 \\ \hline 9\end{array}$		2264515 1790952	$\begin{aligned} & 13693.9 \\ & 11296.0 \end{aligned}$	14975.2	8.51 7.10
Stewart.	414611.39	735750.33	$\begin{array}{r} 3114914 \\ 53404 \end{array}$	Vervalin Golden Ridge..........	$\begin{array}{lll}131 & 54 & 04 \\ 185 & 33 & 25\end{array}$	$\begin{aligned} & 13505.2 \\ & 13911.7 \end{aligned}$	$\begin{array}{r} 14768.9 \\ 15213.4 \end{array}$	8.38
Lloyd....	414915.01	735254.53	$\begin{array}{r} 50 \\ 347 \\ 34 \\ 36 \\ 21 \end{array}$	Stewart Vervalin.	2301747 1673757	8872.2	$\begin{array}{r} 9762.4 \\ 16432.4 \end{array}$	5.5.54
Dennis. (2)	41 4725.40	735042.44	$\begin{array}{r} 770138 \\ 1375820 \end{array}$	Stewart Lloyd	2765083 3175652	$\begin{gathered} 101040.4 \\ 4552.8 \end{gathered}$	11029.2 4978.8	6.30 2.83
Praspect Hill	415225.74	735730.33	31244868 21789	Lloyd. Stewart	$\begin{aligned} & 1324730 \\ & 1821715 \end{aligned}$	$\begin{array}{r} 8665.5 \\ 11557.6 \end{array}$	$\begin{array}{r} 9476.3 \\ 12639.0 \end{array}$	${ }^{5} 7.38$
Traver.	415502.86	735221.81	$\begin{array}{r} 554458 \\ 40130 \end{array}$	Prospect Hill Lloyd	2354132 18401108	$\begin{array}{r} 8605.18 \\ 10757.4 \end{array}$	$\begin{array}{r} 4411.0 \\ 117640 \end{array}$	5.35
Terry	415620.10	735759.97	2865839 3543603	Traver Prospect Hill	$\begin{aligned} & 1070225 \\ & 1743623 \end{aligned}$	8146.6 7262.3	8908.9 7941.8	5.06 4.51
Burbans .	420027.13	735654.40	111236 3275214	Terry Traver	$\begin{array}{lll} 191 & 11 & 52 \\ 147 & 55 & 16 \end{array}$	$\begin{array}{r} 768.8 \\ 11809.6 \end{array}$	$\begin{array}{r} 8495.7 \\ 12914.6 \end{array}$	4.83 7.34
Staats	420217.72	735258.49	$\begin{array}{r} 321141 \\ 3562344 \end{array}$	Terry Traver	2120820 1752408	$\begin{aligned} & 13033.2 \\ & 13442.2 \end{aligned}$	$\begin{aligned} & 14252.7 \\ & 14700.0 \end{aligned}$	8.10 8.35
Welch	415721.96	79520564	$\begin{array}{r} 765217 \\ 45739 \end{array}$	Terry Traver	$\begin{aligned} & 2564820 \\ & 1845728 \end{aligned}$	$\begin{aligned} & 8380.3 \\ & 4307.3 \end{aligned}$	9164.4 4710.3	5.21 2.68
Boitz	415552.51	73491197	$\begin{gathered} 704257 \\ 940310 \end{gathered}$	Traver \qquad Turry	$\begin{aligned} & 2504050 \\ & 2735717 \end{aligned}$	$\begin{array}{r} 4634.1 \\ 12142.0 \end{array}$	$\begin{array}{r} 5067.7 \\ 13332.8 \end{array}$	$\begin{aligned} & 2.88 \\ & 7.57 \end{aligned}$
Teator........	420009.55	734645.55	$65 \quad 33 \quad 15$ 391932	Terry.. Traver	$\begin{aligned} & 2352544 \\ & 2191547 \end{aligned}$	$\begin{aligned} & 17063.9 \\ & 12225.9 \end{aligned}$	$\begin{aligned} & 18660.6 \\ & 13369.9 \end{aligned}$	$\begin{array}{r} 10.60 \\ 7.60 \end{array}$
Barnes	414812.07	735041.05	$\begin{array}{r} 11637 \\ 692707 \end{array}$	Denais, (2) Stewart \qquad	1811636 249 24 21	$\begin{array}{r} 1439.8 \\ 10587.3 \end{array}$	$\begin{array}{r} 1574.5 \\ 11578.0 \end{array}$	$\begin{aligned} & 690 \\ & 6.58 \end{aligned}$
Adams	414808.07	735718.40	2780926 113444	Dennis, Stewart \qquad	981350 1913423	9234.7 3674.2	$\begin{array}{r} 10098.8 \\ 4018.0 \end{array}$	5.74 2.28
Crumb Elbow Ridge	414540.64	735703.35	$\begin{aligned} & 1753755 \\ & 1310940 \end{aligned}$		3553745 3110908	$\begin{aligned} & 4561.2 \\ & 1441.1 \end{aligned}$	$\begin{aligned} & 4988.0 \\ & 1575.9 \end{aligned}$	9.83 0.90
Van Wagner Hill	41412.13	735359.34	$\begin{aligned} & 3182752 \\ & 1243693 \end{aligned}$	Vervalin Stewart	1333008 3043344	$\begin{aligned} & 7123.0 \\ & 6480.7 \end{aligned}$	7789.5 7067.1	$\begin{aligned} & 4.42 \\ & 4.03 \end{aligned}$
Hyde Parlk North	414717.96	735630.49	$\begin{array}{r} 141111 \\ 1442508 \end{array}$	Crunb Elbow Ridge.... Adams..	$\begin{array}{r} 1941049 \\ 324 \\ 24 \\ 36 \end{array}$	3096.7 1960.5	3386.4 2078.3	1.92
Bard's Rock	414813.88	735623.49	$\begin{array}{rr} 81 & 5717 \\ 5 & 11 \\ \hline 14 \end{array}$	Adams	$\begin{aligned} & 2615640 \\ & 1852104 \end{aligned}$	$\begin{aligned} & 1980.0 \\ & 1732.3 \end{aligned}$	1399.8 $18 \$ 4.4$	0.79 1.08
Abtor	414826.50	735655.02	$\begin{aligned} & 298084848 \\ & 34500 \\ & 20 \end{aligned}$	Band's Rock Eyde Park, north	1180908 1850036	$\begin{array}{r} 825.3 \\ 2188.6 \end{array}$	$\begin{array}{r} 902.5 \\ 2253.4 \end{array}$	${ }_{1}^{0.51}$
Green Point	414607.98	735632.32	$\begin{array}{r} 1635859 \\ 4021 \quad 29 \end{array}$	Adams. \qquad Crumb Elbow Ridge...	3435828 2202052	$\begin{aligned} & 3854.3 \\ & 1106.7 \end{aligned}$	$\begin{aligned} & 4214.9 \\ & 1210.2 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 0.69 \end{aligned}$
Taylor.	414751.25	735700.24	$\begin{array}{r} 05959 \\ 234319 \end{array}$	Crumb Elbow Ridge.... Liard's Kock.	1805957 543043	$\begin{gathered} 4122.6 \\ 1041.9 \end{gathered}$	$\begin{gathered} 4508.4 \\ 1139.4 \end{gathered}$	2.56 0.65
Russell Pie	414705.69	735706.43	1852657 2459734	Taylor Hyde Park, north	$\begin{array}{r} 59701 \\ 659758 \end{array}$	$\begin{gathered} 1505.4 \\ 9 \times 2.1 \end{gathered}$	$\begin{gathered} 1646.3 .3 \\ 907.4 \end{gathered}$	$\begin{aligned} & 0.93 \\ & 0.57 \end{aligned}$
Hyde Patk Bouth.	414631.06	735634,00	$\begin{aligned} & 18915 \quad 55 \\ & 14415 \quad 39 \end{aligned}$	Hyde Park, zorth....... Russell Pier	$\begin{array}{r} 31557 \\ 3241518 \end{array}$	$\begin{aligned} & 1421.6 \\ & 1.252 .0 \end{aligned}$	$\begin{aligned} & 1554.6 \\ & 1402.0 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.80 \end{aligned}$
Railroad, (68) ...	414513.49	735554.70	$\begin{aligned} & 1175105 \\ & 1523958 \end{aligned}$	Orumb Eibow Ridge.... Green Point	2975019 3323933	1793.4 1898.5	$\begin{aligned} & 1961.2 \\ & 2069.6 \end{aligned}$	1.11
Crumb Elbow East . .	414546.42	735615.19	$\begin{array}{r} 3350046 \\ 7084.5 \end{array}$	Rallmad, (68) Cruab Eibow Point....	1550100 1870840	$\begin{aligned} & 1121.0 \\ & \mathbf{3} .266 .0 \end{aligned}$	$\begin{aligned} & 1225.9 \\ & 1364.4 \end{aligned}$	${ }_{0}^{0.76}$
Wear Park.	414788.57	735706.62	291 215 27 27	Hyade Park, north Bard'a Rock	$\begin{gathered} 111 \\ 3528 \\ 38 \\ \hline 15 \end{gathered}$	$\begin{array}{r} 895.9 \\ 1715.9 \end{array}$	$\begin{array}{r} 979.7 \\ 1876.5 \end{array}$	0.56 1.07
White	414631.15	735702.18	2035334 2674830	Hyde Park, north Hyde Hark, wouth.....		$\begin{gathered} 1619.3 \\ 652.1 \end{gathered}$	$\begin{array}{r} 1770.8 \\ 713.1 \end{array}$	$\begin{aligned} & 1.01 \\ & 0.4 \mathrm{I} \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.-Hudson river, from Poughleepsie to Rhinebeck. Shetch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Boorman's Point	464616.98	$\begin{gathered} \circ \\ 73 \\ 56 \\ 54.44 \end{gathered}$	1811527 1241552		11527 3041534	$\begin{array}{r} \text { Metres. } \\ 462.0 \\ 776.2 \end{array}$		$\begin{gathered} \text { Miles. } \\ 0.29 \\ 0.48 \end{gathered}$
Brown's Wharf	414617.07	735700.91	2701697 2934047	noorman's Point........ Green Point	$\begin{array}{r} 9016 \quad 45 \\ 1134106 \end{array}$	611.9 776.8	669.1 783.9	0.38 0.45
Boat Landing	414535.78	735632.98	23124 153 06 40	Crumb bow East..... frown's Wharf.........	512432	$\begin{array}{r} 526.3 \\ 1428.1 \end{array}$	575.6 1561.7	0.33 0.89
Bolle's Ifland	414848.28	735624.82	$\begin{array}{r} 460248 \\ 24128 \end{array}$	Aetor. Hyde Park, north	$\begin{gathered} 226 \\ 182 \\ 18298 \\ 41 \end{gathered}$	$\begin{array}{r} 968.9 \\ 2789.3 \end{array}$	$\begin{aligned} & 1058.9 \\ & 3050.3 \end{aligned}$	0.60 1.73
Southard	414855.94	735654.56	2885907 33104 :3	Bolle is Island Bard's Rock	$\begin{array}{ll} 1108 & 5 y \\ 151 & 27 \\ 154 \end{array}$	$\begin{array}{r} 725.9 \\ 1482.5 \end{array}$	$\begin{gathered} 793.8 \\ 1621.2 \end{gathered}$	$\begin{aligned} & 0.45 \\ & 0.92 \end{aligned}$
Blunt's Island	414906.33	335619.87	$\begin{aligned} & 113519 \\ & 681123 \end{aligned}$	Bohe's tsland \qquad Southard	$\begin{array}{lll} 191 & 35 & 18 \\ 248 & 11 & 00 \end{array}$	568.2 862.2	$\begin{aligned} & 621.4 \\ & 922.9 \end{aligned}$	0.35 0.54
Pelham Signal.	4149 21.87	735701.72	$\begin{array}{lll} 296 & 24 & 45 \\ 320 & 35 & 11 \end{array}$	Blunt's IEland Bolle's Island...... ...	$\begin{aligned} & 11695 \quad 13 \\ & 140 \quad 35 \quad 35 \end{aligned}$	$\begin{aligned} & 1078.3 \\ & 1341.1 \end{aligned}$	$\begin{aligned} & 1179.2 \\ & 1466.6 \end{aligned}$	0.67 0.83
Wilkes	414952.51	735613.85	$\begin{array}{rrr} 49 & 26 & 54 \\ 5 & 34 & 21 \end{array}$	Pelham Signal Blunt's Isiand.........	$\begin{array}{lll} 229 & 26 & 22 \\ 185 & 34 & 17 \end{array}$	$\begin{aligned} & 1453.8 \\ & 1431.7 \end{aligned}$	$\begin{aligned} & 1589.8 \\ & 1505.7 \end{aligned}$	0.90 0.89
Indian Rock .	414955.85	735702.30	$\begin{array}{lll} 359 & 15 & 45 \\ 275 & 24 & 50 \end{array}$	Pelham Signal. Wilkes.	1791545 952522	$\begin{aligned} & 1051.4 \\ & 1123.0 \end{aligned}$	1149.8 1228.1	$\begin{aligned} & 0.65 \\ & 0.70 \end{aligned}$
Pelham Dock	415033.79	735658.22	43652 3211211	Indian Rock. Wilkes \qquad	1843549 141240	1171.3 1633.9	1280.9 1786.8	0.73 1.04
Ciffwood	415129.23	735643.21	2222446 3080626	Traver Lloyd.	$\begin{array}{r} 422740 \\ 1280358 \end{array}$	8929.8 6706.2	9765.3 7333.7	5.55 4.17
Pell .	415032.31	335725.42	1760850 2090013	Prorpect Hill Cliffiwood. .	$\begin{gathered} 3580047 \\ 2400 \\ 40 \end{gathered}$	$\begin{aligned} & 3500.8 \\ & 2004.6 \\ & 204 \end{aligned}$	$\begin{aligned} & 3282.4 \\ & 2195.4 \end{aligned}$	2.17 1.25
Pollock	414940.17	735716.95	$\begin{array}{lll} 193 & 01 & 21 \\ 255 & 20 & 30 \end{array}$	Cliffrood.. Wilkes....	$\begin{array}{ll} 1301 \\ 75 & 91 \\ \hline 212 \end{array}$	$\begin{array}{r} 3453.4 \\ 1504.9 \end{array}$	3776.5 1645.7	$\begin{aligned} & 2.15 \\ & 0.93 \end{aligned}$
Mulford Pier .	415040.63	735620.71	$\begin{array}{r} 761715 \\ 160 \quad 5516 \end{array}$	Pelham nock \qquad Cliffuood. \qquad	2561650 3405501	$\begin{array}{r} 891.0 \\ 1586.9 \end{array}$	$\begin{array}{r} 974.4 \\ 1735.4 \end{array}$	0.55
Rock	415009.24	73561944	1301804 334340	$\begin{aligned} & \text { Pelham Dock...... ... } \\ & \text { Pelham Signal.......... } \end{aligned}$	3101533 2134312	11782.2	$\begin{array}{r} 1281.9 \\ 1921.2 \end{array}$	0.73 1.09
Cave Point.	415127.94	735638.19	$\begin{array}{r} 3443243 \\ 1597 \quad 39 \end{array}$	Mulford Pier. Petham Dock. $+由+*+*$	$\begin{array}{r} 1643255 \\ 195929 \end{array}$	$\begin{gathered} 1541 \\ 1733.3 \end{gathered}$	$\begin{gathered} 1655.8 \\ 1895.5 \end{gathered}$	0.94 1.08
Meadow Point	415156.53	73 56.35.66	$\begin{array}{lll} 295 & 29 & 10 \\ 314 & 18 & 30 \end{array}$	Traver \qquad Lloyd \qquad	$\begin{array}{r} 453200 \\ 1348058 \end{array}$	$\begin{aligned} & 8202.4 \\ & 7139.8 \end{aligned}$	8969.9 7788.0	5.16 4.43
Lewis' Pier	415117.63	735605.52	$\begin{aligned} & 1122502 \\ & 1125120 \end{aligned}$	Clifinood. Cave Point	2922437 2925104	$\begin{aligned} & 940.0 \\ & 818.0 \end{aligned}$	1027.9 894.5	0.58
Elting Signal,	415347.59	735803.64	$\begin{aligned} & 1810146 \\ & 253 \\ & 32 \end{aligned}$	Terry Traver	$\begin{array}{r} 10148 \\ 733629 \end{array}$	4705.8 $8: 219.5$	$\begin{aligned} & 5146.1 \\ & 8980.9 \end{aligned}$	2.92 5.10
Van Akin.	415250.97	735712.83	$\begin{aligned} & 3325739 \\ & 2384354 \end{aligned}$	Meadow Point......... Traver \square	$\begin{array}{r} 1525806 \\ 584709 \end{array}$	$\begin{aligned} & 1885.5 \\ & 7845.0 \end{aligned}$	$\begin{aligned} & 2061.9 \\ & 8599.9 \end{aligned}$	1.17 4.87
Railroad, (80)	415292.23	735524.23	$\begin{array}{r} 1093030 \\ 393035 \end{array}$	Vant Akin Pell.	$\begin{array}{ll} 269 & 29 \\ 217 \\ 21 \end{array}$	$\begin{gathered} 2656.1 \\ 4.394 .0 \end{gathered}$	$\begin{gathered} 2904.6 \\ 4805,1 \end{gathered}$	1.65 2.73
Hemlock Point..	415953.63	735702.66	2930648 3403215	Railroad, (80) Meadow Point. \qquad	$\begin{gathered} 1130754 \\ 160 \\ 162 \end{gathered}$	$\begin{aligned} & 2487.6 \\ & 1868.5 \end{aligned}$	2698.5 2043.3	1.53 1.16
Jones' Island	415256.73	735554.27	$\begin{array}{lll} 86 & 32 & 38 \\ 84 & 23 & 57 \end{array}$	Hemolock Point \qquad Vhn akin.... \square	266 3152 2642305	$\begin{aligned} & 1579.4 \\ & 1819.9 \end{aligned}$	1727.2 1990.2	0.98 1.13
Ellershe	415330.81	735626.56	$\begin{array}{r} 405706 \\ 3254842 \end{array}$	Van Akin. Railioad, (80)	$\begin{array}{r} 2205633 \\ 1454924 \end{array}$	$\begin{aligned} & 1627.4 \\ & 257.5 \end{aligned}$	$\begin{aligned} & 1779.7 \\ & 2796.8 \end{aligned}$	${ }_{1}^{1.01}$
Port Ewen Signal ..	415421.67	735800.20	183 1952 3530259	Terry \qquad Elting Signal. \qquad	$\begin{array}{r} 31958 \\ 1730343 \end{array}$	$\begin{aligned} & 3659.7 \\ & 1059.2 \end{aligned}$	$\begin{aligned} & 4002.1 \\ & 1158.3 \end{aligned}$	2.27 0.66
Railroad, (85)	415414.40	735701.81	$\begin{aligned} & 981336 \\ & 59 \quad 5236 \end{aligned}$	Port Ewen Signal...... Elting Signal.	2781251 2455155	$\begin{aligned} & 1560.3 \\ & 1647.7 \end{aligned}$	$\begin{aligned} & 1718.1 \\ & 1800.9 \end{aligned}$	0.97 1.02
Kipp	415556.74	73.5814 .09	$\begin{array}{r} 1062814 \\ 420803 \end{array}$	Terry. Rort Ewen Signal		2543.2 3954.2	$\begin{array}{r} 2781.2 \\ 4324.2 \end{array}$	1.58 2.46
Rhinebeck	415510.47	735652.28	1440149 494006	Terry Port Ewen Signal	$\begin{array}{ll} 324 & 01 \\ 204 \\ 20 & 39 \\ \hline \end{array}$	$\begin{array}{r} 2252545 \\ 2025 \end{array}$	$\begin{gathered} 2902.9 \\ 2543.1 \end{gathered}$	1.65
Kingaton Point.	415538.84	735788.24	3163348 $346 \quad 5022$	Rhinebeck,\ldots. Railroad, $(85), \ldots . . .$.	$\begin{aligned} & 1363412 \\ & 1665040 \end{aligned}$	$\begin{aligned} & 1205.1 \\ & 9255.3 \end{aligned}$	$\begin{array}{r} 1317.9 \\ 2925.6 \end{array}$	0.75 1.66
Big Rock Point....	415331.85	735730.58	2711437 2064832	Elerslie. hailtroad, (85)	$93 \quad 1520$ 264851	$\begin{aligned} & 1476.1 \\ & 1470.3 \end{aligned}$	$\begin{aligned} & 1814.2 \\ & 1607.9 \end{aligned}$	0.92 0.91
Rauroad, (86).	415441.59	735859.88	$\begin{array}{r} 685758 \\ 1594145 \end{array}$	Port Ewen Signal....... Kingston Point	$\begin{aligned} & 2485712 \\ & 3 \times 99_{41} \end{aligned}$	1711.6	$\begin{aligned} & 1871.8 \\ & 2050.2 \end{aligned}$	1.06 1.17

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section II.-Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimulh.	To station-	Back azimuth.	Distance.	Distance.	Distauce.
Qurnee	0 1 41 56 45 15	$\begin{array}{cc} * & \prime \prime \\ 77 & 39.19 \end{array}$	$\begin{array}{rrr} \circ & 1 \\ 307 & 21 & 51 \\ 852 & 25 \end{array}$	Kipp... Port Ewen Signal	$\begin{array}{r} \circ \\ 18722^{\prime \prime} 48 \\ 1885205 \end{array}$	metres. 2466.5 4483.5	Yards. 2697.3 4903.0	$\begin{array}{r} \text { MiLes. } \\ 1.53 \\ 2.74 \end{array}$
Slate Wharf ,	415532.34	735639.94	1283833 1001303	Terry	$\begin{array}{lll}308 & 37 & 40 \\ 280 & 12 & 27\end{array}$	2360.0 31395	$\xrightarrow{2580.8}$	9. 0.76
Rondout Light-house	415511.93	735741.63	3141909 2721597	$\begin{aligned} & \text { Railroad, (86) } \\ & \text { Rninebeck } \end{aligned}$	1341298 92 16	1342.0 1137.9	$\begin{aligned} & 14676 \\ & 1244.4 \end{aligned}$	0.83 0.71
Evertson........	415444.57	735806.33	273 24454 54	Railroad, (86).....	$\begin{array}{lll} 93 & 26 & 15 \\ 64 & 54 & 59 \end{array}$	1533.9 1884.0	1677.4 2060.3	0.95 1.17
Sleight's Hill	415451.30	735820.69	1895249		$\begin{array}{r}953 \\ 55193 \\ \hline 15\end{array}$	2780.8 3547.3	3041.0 3879.2	1.73 2.20
Hanaburgh	415237.57	735413.53	53 6853 18	Cliffor	$\begin{array}{lll} 23 R & 34 & 08 \\ 248 & 51 & 57 \end{array}$	40445 3513.2	4422.9 38419	2.51 2.18
Abiel Smith	415457.64	735925.61	2473151 3185010	Kipp	673359 1385104	4774.3 2870.3	5291.0 3138.9	2.97 1.78
Iunnes Point....................	415702.53	735626.13	28 593930	Kingston Point Elting Signal.	$\begin{array}{lll} 208 & 5 \times 51 \\ 200 & 28 & 25 \end{array}$	$\begin{aligned} & 2951.8 \\ & 6819.7 \end{aligned}$	38298.0	1.83 3.99
Flatuash	415716.83	735725.64	$\begin{array}{lll}326 & 17 & 12 \\ 287 & 50 & 07\end{array}$	```Kipp```	$\begin{array}{lll}14618 & 18 \\ 107 & 50 \\ 47\end{array}$	2969.7 1439.8	3847.6 1574.5	1.85 0.89
Chamberlain	415810.90	735606.23	47 12 15	$\begin{aligned} & \text { Fiatbush } \\ & \text { Tumnel Point } \end{aligned}$	$\begin{array}{lll} 227 & 37 & 11 \\ 192 & 15 & 24 \end{array}$	2475.2 2158.5	$\begin{aligned} & 2706.8 \\ & 2360.5 \end{aligned}$	1.54 1.34
Livingaton.......................	415828.17	735657.16	3445158 163546	Tnnnel Point \qquad Flathesh \qquad	$\begin{aligned} & 1645219 \\ & 1953527 \end{aligned}$	2737.0 2236.6	29933.1	1.70 1.43
Ten Broeck.............	415813.38	335703,06	163557 3384418	$\begin{aligned} & \text { Flatbush } \\ & \text { Tunnel Point } \end{aligned}$	$\begin{array}{ll} 196 & 3542 \\ 158 & 4442 \end{array}$	1820.3 2343.3	1940.16 2564.7	1.13 3.46
Vandemark	415755.06	735709.26	$\begin{array}{r} 1941023 \\ 174424 \end{array}$	Ten Brmeck Flatbush	$\begin{array}{r} 141027 \\ 1974413 \end{array}$	582.7 1238.4	637.2 1354.3	0.36 0.77
Mills' Wharf.	415810.24	735609.33	$\begin{array}{rrr}116 \\ 94 & 28 \\ 848 \\ 48\end{array}$	Livingston Ten Broeck	296 274 298980	1232.3 1240.8	1347.6 1.356 .9	0.76 0.77
Kaickerbocker Pier	415756.72	735704.61	212857 251519	Flatbush Mills' Wharf \qquad	$\begin{array}{r} 2019843 \\ 7!5156 \end{array}$	$\begin{array}{r} 1322.7 \\ 1339.4 \end{array}$	$\begin{aligned} & 1446.5 \\ & 1464.7 \end{aligned}$	0.82 0.83
Garrison	415653.57	735619.70	$\begin{array}{r} 655514 \\ 3554641 \end{array}$		$\begin{aligned} & 245 \\ & 175464 \\ & 17545 \end{aligned}$	2258.29 .6	2766.2 1922.2	1.57 1.09
Port Ewen Bell Hotse.	415422.20	735754.36	$\begin{array}{llll}281 & 1493 \\ 340 & 30\end{array}$	Raitroad, (85)........... Big Rock Point	$\begin{aligned} & 1011438 \\ & 1703467 \end{aligned}$	1234.9 1646.9	$\begin{aligned} & 1350.4 \\ & 1 E 01.0 \end{aligned}$	0.77 1.02
Hondout, Roman Catholic chureh	415517.69	735856.85	$\begin{array}{r} 465836 \\ 992 \\ \hline 26 \\ \hline \end{array}$	Abiel Smith Railroad, (66)	$\begin{aligned} & 2265817 \\ & 11227 \\ & 31 \end{aligned}$	906.4 296.1	$\begin{array}{r} 991.2 \\ 3189.0 \end{array}$	7.56 781
Cement	415515.00	735834.79	$\begin{array}{r} 652526 \\ 2732258 \end{array}$	$\begin{aligned} & \text { Abjel Emith. } \\ & \text { Rbineheck. } \end{aligned}$	2459452 939406	$\begin{aligned} & 1287.3 \\ & 2365.8 \end{aligned}$	$\begin{array}{r} 1407.7 \\ 2587.2 \end{array}$	0.80 1.47
Dinsmore	415138.19	735541.92	$\begin{aligned} & 1143208 \\ & 1964251 \end{aligned}$		$\begin{array}{r} 2943132 \\ 164303 \end{array}$	$\begin{aligned} & 136821 \\ & 1418.4 \end{aligned}$	$\begin{array}{r} 1489.5 \\ 1551.1 \end{array}$	0.84 0.88
Esopus Light housc. .	415205.30	735612.39	1420850 631506	Hemlock Point. Meadow Point.	$\begin{array}{r} 3720816 \\ 8431451 \end{array}$	$\begin{array}{r} 1838.5 \\ 600.9 \end{array}$	2065.2 657.1	1.17
Sukely's Observatory	415721.04	735518.77	$\begin{array}{r} 630990 \\ 1235518 \end{array}$	Terry.............................	$\begin{aligned} & 2430732 \\ & 3035403 \end{aligned}$	$\begin{aligned} & 4160.8 \\ & 2893.9 \end{aligned}$	$\begin{aligned} & 4550.1 \\ & 3164.7 \end{aligned}$	2.58 1.40
Whiskey Point.	41571035	735721.35	$\begin{aligned} & 3429446 \\ & 3253638 \end{aligned}$	Slate Wharf............. Kipp	$\begin{array}{llll}162 & 25 & 14 \\ 145 & 37\end{array}$	3172.3 2751.4	3469.1 3008.8	1.97
Esopus, Dutch Reformed church.	415111.30	735753.37	179 133 19512 1805	Terry	$\begin{array}{r}359 \\ 13 \\ \hline 1301\end{array}$	$\begin{aligned} & 9527.9 \\ & 2458.9 \end{aligned}$	$\begin{array}{r} 10419.4 \\ 2077.4 \end{array}$	592 1.40
Lurtis' Tower .	414803.29	735606.48	$\begin{array}{lll} 151 & 97 & 19 \\ 243 & 96 & 14 \end{array}$	Pollock	$\begin{array}{r} 319532 \\ 639824 \end{array}$	$\begin{array}{r} 3402.9 \\ 4952.1 \end{array}$	$\begin{aligned} & 3721.3 \\ & 5415.5 \end{aligned}$	2.11 3.08
Jones' House Tower.	415310.51	735551.58	$\begin{aligned} & 246025 \\ & 584552 \end{aligned}$	Meadow Point,\ldots. . Prospect Bill	$\begin{aligned} & 2435956 \\ & 2384446 \end{aligned}$	$\begin{array}{r} 2498.5 \\ 2668.0 \end{array}$	$\begin{aligned} & 9732.3 \\ & 2912.2 \end{aligned}$	${ }_{1}^{1.55}$
West Park Episcopal Church . . .	41481475	735713.46	$\begin{aligned} & 3302827 \\ & 3771107 \end{aligned}$	Hyde Park, north Crumb Elbow Eidge...	$\begin{aligned} & 1509856 \\ & 1771114 \end{aligned}$	$\begin{array}{r} 2019.9 \\ 4759.9 \end{array}$	$\frac{2201.9}{520.35 ; 3}$	1.25 2.96
Weist............................	414941.46	738812.54	1905217 3963251	Prospect Hill Adams	$\begin{array}{r} 105245 \\ 158338 \end{array}$	$\begin{aligned} & 5180.4 \\ & 3140.4 \end{aligned}$	$\begin{aligned} & 5643.3 \\ & 3434.2 \end{aligned}$	3.21
Bruern.............	415000.07	73 55 3974	$\begin{aligned} & 1824554 \\ & 35153 \quad 07 \end{aligned}$	Prospect Eill Adams	$\begin{array}{r} 94600 \\ 17159.21 \end{array}$	$\begin{array}{r} 4498.9 \\ 3490.0 \end{array}$	$\begin{array}{r} 4919.9 \\ 3816.8 \end{array}$	2.80 2.17
Hed Hook Apire	415817.86	735223.45	$\begin{array}{r} 33 \\ 6514 \\ 959 \\ 38 \\ \hline 25 \end{array}$	Prospuet Hilh Traver	$\begin{aligned} & 2170149 \\ & 1793826 \end{aligned}$	$\begin{array}{r} 12981.1 \\ 6015.9 \end{array}$	$\begin{array}{r} 14172.9 \\ 6578.8 \end{array}$	8.05 3.74
Wittenberg, Presbyterian chureh,	4153 al 16	735144.39	$\begin{aligned} & 1584209 \\ & 1180907 \end{aligned}$		$\begin{array}{lll} 388 & 41 & 44 \\ 297 & 55 & 56 \end{array}$	$\begin{aligned} & 2874.0 \\ & 9798.0 \end{aligned}$	$\begin{array}{r} 2496.1 \\ 30714.8 \end{array}$	1.47 6.09

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section II.-Hudson river, from Poughkeepsie to Rhinebeck. Sketch R, No. 7.

Name of station	Latitude.	Longitude	Azimuth.	To station-	Back azimuth	Distance.	Dietance.	Distance.
G. A. Smith.	$\begin{array}{cc} \circ & \prime \prime \\ 41 \\ 44 & 18.07 \end{array}$	$\begin{gathered} \circ \\ 7400 \\ 0.11 \\ 30.71 \end{gathered}$	285×28 23639	Elting	1053106 564055	Matres. 3517.6 3195.7	Fards. 3346.7 3495.8	$\begin{gathered} \text { Mililes } \\ 2.19 \\ 1.99 \end{gathered}$
Ellaworh	415330.34	740002.69	1561910 2120539	G. A. Smith Cement	3261851 320535	1607.6 3811.4	1758.0	1.00 $\mathbf{2 . 3 7}$
Wilbur East	415445.47	735929.57	243 284 284 10	K $\mathbf{s p p}$ Cement	$\begin{aligned} & 635957 \\ & 541049 \end{aligned}$	5011.8 1550.5	5480.7 17021	3.11 0.97
Copeland.......................	415438.76	735921.90	1393033 2940838	Wilbur East. Cement	$\begin{array}{r} 519 \quad 30 \quad 23 \\ 440909 \end{array}$	972.2 1558.2	${ }_{1704.0}^{297.7}$	0.17 0.97
Wilbur West	415434.73	735951.88	2371218 2594806	Wilbur East Copeland.	571233 794826	$\begin{gathered} 611.7 \\ 702.0 \end{gathered}$	668.9 767.7	0.38 0.44
Von Beck.	415427.62	735906.08	$\begin{aligned} & 2061443 \\ & 1353030 \end{aligned}$	Cement Wilbur East.	$\begin{array}{r} 261504 \\ 3153014 \end{array}$	$\begin{array}{r} 1629.9 \\ 7 \pi 2.2 \end{array}$	$\begin{array}{r}1782.4 \\ 844 \\ \hline\end{array}$	1.01 0.48
Flannery.............	415444.24	735981.67	$\begin{array}{lll} 1 & 48 & 19 \\ 67 & 10 & 20 \end{array}$	Copeland . Wilbur Wes	1814819 2471000	$\frac{168.9}{75.5 .5}$	$\begin{aligned} & 184.7 \\ & 826.2 \end{aligned}$	0.10 0.47
Brookiyn wharf	415417.89	735955.90	$\begin{array}{r} 60553 \\ 90 \\ 90 \\ \hline 2344 \end{array}$	Elsworth G. A. Smith	$\begin{aligned} & 1860.548 \\ & 2702321 \end{aligned}$	$\begin{array}{r} 1475.1 \\ 802.4 \end{array}$	1613.1 877.5	0.92 0.51
Lawrence Wharf,	415357.02	740044.27	$\begin{aligned} & 2395935 \\ & 3103909 \end{aligned}$	Brooklyn Wharf Ellsworth	$6000 \quad 07$ 154 3937	$\begin{aligned} & 1287.4 \\ & 1263.2 \end{aligned}$	$\begin{aligned} & 1407.9 \\ & 1381.4 \end{aligned}$	0.80 0.78
Crow's Poins	415403.85	740010.47	1331418 2174752	G. A. Smith Brooklyn Wharf \qquad	$\begin{array}{r} 3131404 \\ 374802 \end{array}$	$\begin{aligned} & 640.2 \\ & 548.1 \end{aligned}$	$\begin{aligned} & 700.1 \\ & 599.4 \end{aligned}$	0.40 0.34
Booth.	415420.52	740005.58	2895857 357324	Brookiyn Wharf........ Ellsworth.	$\begin{aligned} & 1095903 \\ & 17434 \\ & \hline 36 \end{aligned}$	$\begin{array}{r} 237.4 \\ 1549.5 \end{array}$	$\begin{array}{r} 259.6 \\ 1694.5 \end{array}$	0.15 0.96
Donovan's Kiln	415412.70	740017.44	2520821 3452502	Brooklyn Wharf \qquad Eliswurth.	$\begin{array}{rr} 72 & 08 \\ 165 & 35 \\ 165 & 12 \end{array}$	$\begin{array}{r} 521.7 \\ 1350.2 \end{array}$	$\begin{array}{r} 570.5 \\ 1476.5 \end{array}$	0.32 0.84
Hamilton Island...............	415338.62	740021.44	$\begin{array}{ll} 333 \\ 239 \\ 2: 4 & 43 \\ 4: 3 \end{array}$	Ellsworth \qquad Brooklyn Wharf. \qquad	$\begin{array}{r} 15339 \\ 44 \\ 43 \\ \hline 18 \end{array}$	973.4	1064.5 914.9	0.60 0.58
New Salem	415347.51	740042.14	$\begin{array}{lll}228 & 40 & 16 \\ 300 & 1239\end{array}$	Brooklyn Wharf....... Eltsworth	$\begin{array}{r} 484047 \\ 1201305 \end{array}$	$\begin{aligned} & 1419.4 \\ & 1652.3 \end{aligned}$	$\begin{aligned} & 1552.2 \\ & 1150.8 \end{aligned}$	0.88 0.65
Tremper......................	415438.93	735901.41	2085053 1071632	Cement Willur East \qquad	$\begin{gathered} 285111 \\ 287 \\ 20 \end{gathered}$	$\begin{array}{r} 1279.5 \\ 679.6 \end{array}$	1389.4 743.2	0.79 0.42
Rolfe's Quarryy	415420.10	335925.13	$\begin{array}{r} 214 \underset{37}{23} 51 \\ 41 \end{array}$	Cement G. A. Smilh	$\begin{array}{r} 342425 \\ 2673657 \end{array}$	$\begin{aligned} & 205 z .6 \\ & 15 \times 26 \end{aligned}$	2244.7 1654.1	1.27 0.94
Sleight's Ferry	415503.08	735830.74	892631 1654355	Abiel Amith \qquad Cement	2692554 3454352	1275.4 379.3	1394.7 414.8	0.79 0.23
Bouth Rnadout	415439.75	735913.74	3844509 2193116	Von Beek Cement		414.0 1409.8	452.7 1541.7	0.26 0.88
Sleightsburg, (1)................	415454.90	735339.36	$\begin{array}{r} 943294 \\ 1893756 \end{array}$	Abiel Bmith \qquad Cement \square	$\begin{array}{r} 2743153 \\ 93759 \end{array}$	1068.9 628.9	$\begin{array}{r} 1168.9 \\ 687.7 \end{array}$	0.66
Sleightsburg, (2)...	415450.36	735844.99	$\begin{aligned} & 1032957 \\ & 1971005 \end{aligned}$	Abiel Smith Cement	$\begin{array}{r} 28439 \\ 171012 \end{array}$	$\begin{gathered} 962.5 \\ 795.6 \end{gathered}$	$\begin{array}{r} 1059.6 \\ 870.0 \end{array}$	0.60
Kingston Point, (2) , ...	415588.80	73 5:35.09	3305252 2994917	Railread, (86) Rhinebeck.	$\begin{aligned} & 1505246 \\ & 1194946 \end{aligned}$	$\begin{aligned} & 1667.1 \\ & 1136.9 \end{aligned}$	1823.1 1243.3	1.04
North..........................	415221.88	735801.29	2823829 2503119	Rhinebeck Kingrton Point, (2) ...	$\begin{array}{r} 1029915 \\ 703130 \end{array}$	$\begin{array}{r} 1628.6 \\ 640.4 \end{array}$	1781.0 700.3	1.01 0.40
Rnndout Light-house 3ignal	415512.20	735741.70	$\begin{aligned} & 1233015 \\ & 2 \pi 24026 \end{aligned}$	North Khinebeck	$\begin{array}{r} 203 \\ 90 \\ 90 \\ 40 \\ 50 \end{array}$	$\begin{array}{r} 541.4 \\ 1139.9 \end{array}$	$\begin{array}{r} 592.1 \\ 1946.6 \end{array}$	0.34
Comell Pier	415509.32	735826.23	2650394 2360000	Rondout L. HI. Signal. . North	$\begin{aligned} & 850354 \\ & 560017 \end{aligned}$	$\begin{array}{r} 1029.8 \\ 693.0 \end{array}$	1196.1 757.8	0.64
Port Ewen Dutch Reformed Church.	415491.92	735822.09	$\begin{aligned} & 1150320 \\ & 1695154 \end{aligned}$	Wilbur, east Cement		1716.4	$\begin{aligned} & 1877.0 \\ & 1819.4 \end{aligned}$	1.07
Port Ewen Pier	415435.75	735747.98	2504600 2300915	Raitroad, (86) \qquad Khinebeck	$\begin{array}{lll} 80 & 46 & 32 \\ 50 & 09 & 32 \end{array}$	$1123 . \frac{1}{1}$	$\begin{aligned} & 1228.2 \\ & 1826.1 \end{aligned}$	0.70 1.04
Number 1.....	415512.42	735804.36	$\begin{aligned} & 9704452 \\ & 193644 \end{aligned}$	Rondout L. H. Signal. North \qquad	$\begin{aligned} & 904507 \\ & 133646 \end{aligned}$	$\begin{aligned} & 522.2 \\ & 300.4 \end{aligned}$	$\begin{aligned} & 571.1 \\ & 378.5 \end{aligned}$	0.38
Number 2.....................	415506.43	735892.02	2590959 295039	Rondout L. H. Signat.. North \qquad	$\begin{array}{r} 791096 \\ 450337 \end{array}$	$\begin{aligned} & 945.8 \\ & 674.6 \end{aligned}$	1034.3 737.7	0.59 0.42
From Rhinebeak to Hudson.								
Upper Red Hook	420129.38	735020.84	$\begin{aligned} & 792229 \\ & 132303 \end{aligned}$	Burhan's	$\begin{aligned} & 259 \\ & 193 \\ & 18000 \\ & 06 \end{aligned}$	9213.0 12034.9	$\begin{aligned} & 10975.1 \\ & 13161.0 \end{aligned}$	5.72 7.48
Mount Pawding	420332.00	735920.58	$\begin{array}{rl} 399 & 28 \\ 287 & 01 \\ 48 & 26 \end{array}$	Burhan's	14929 1075497	$\begin{array}{r} 6690.6 \\ 13040.4 \end{array}$	$\begin{array}{r} 7240.1 \\ 14260.6 \end{array}$	$\begin{aligned} & 4.11 \\ & 8.10 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPEICAL POSITIONS.
Section II.-Hudson river, from Rhinebeck to Hudson. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Big Hill...		$\begin{gathered} \circ \\ 735211.67 \end{gathered}$	$\begin{aligned} & 63 \\ & 33 \\ & 7048 \\ & 78 \end{aligned}$	Burlan's	2132543 2504338	Mefres. 10708.9 9808.5	Vards 11710.9 10726.3	Miles. $\begin{array}{r} 6.65 \\ 6.69 \end{array}$
Round Top	420512.28	735204.11	341 78 54 54 564	Upper Red Elook Mount Paulding \qquad	1613005 2324912	$\begin{array}{r} 7479.7 \\ 10498.5 \end{array}$	$\begin{array}{r} 8179.6 \\ 11480.8 \end{array}$	
Korte	420745.74	735532.52	334913 3185615	Mount Paulding Big Hill	2134640 1385212	$\begin{aligned} & 9420.1 \\ & 6104.4 \end{aligned}$	$\begin{array}{r} 10301.5 \\ 6675.6 \end{array}$	5.85
Lasher	420513.53	735315.99	$\begin{array}{lll} 330 & 31 & 52 \\ 263 & 35 \end{array}$	Upper Red Hook Big Hill	$\begin{array}{ll}15033 & 49 \\ 83 & 35\end{array}$ 833530	$\begin{array}{r} 8189.8 \\ 886.3 \end{array}$	$\begin{gathered} 8956.1 \\ 969.2 \end{gathered}$	5.98 0.55
Calstill	421121.78	740155.16	3461316 3410501	Mount Faulding Burhan's	1681500 1616822	$\begin{aligned} & 14921.4 \\ & 21346.2 \end{aligned}$	$\begin{array}{r} 16317.6 \\ 26343.5 \end{array}$	$\begin{array}{r} 9.27 \\ 13.26 \end{array}$
Hhae Hill.,	421103.62	73483591	$\begin{aligned} & 914935 \\ & 27926 \end{aligned}$	Catshial Big Hill..................$~$	2714038 20723 18	$\begin{array}{r} 12346.3 \\ 12055.6 \end{array}$	$\begin{aligned} & 90063.0 \\ & 13183.6 \end{aligned}$	11.40 7.49
Hover	420827.34	73.51 49.70	2913740 762117	Blue Hili \qquad Kortze \square	413945 2561843	$\begin{aligned} & 6451.5 \\ & 5430.8 \end{aligned}$	$\begin{gathered} 7055.2 \\ 5939.0 \end{gathered}$	4.01 3.37
Turkey Point,	420102.13	735602.41	$\begin{aligned} & 3513768 \\ & 2410708 \end{aligned}$	Sukeley's Observatory. Staats. \qquad	171 61 61 0811	$\begin{array}{r} 6 \varepsilon 94.1 \\ 4830.4 \end{array}$	$\begin{gathered} 7539.2 \\ 52282.4 \end{gathered}$	4.28 8.00
Qlasco Signal	420237.97	735619.46	$\begin{aligned} & 3582 \\ & 277 \\ & 27 \end{aligned}$	Turkey Point, north staats.....	$\begin{array}{r} 1722639 \\ 974305 \end{array}$	2082.5 4663.7	$\begin{aligned} & 3261.6 \\ & 5100.1 \end{aligned}$	1.85 2.90
Cruger's Wharf	430251.30	735602.44	$\begin{array}{r} 3595921 \\ 283 \\ \hline 4451 \end{array}$	Turkey Point, north .. Staats.	1795921 103465	$\begin{gathered} 3368.0 \\ 4355.0 \end{gathered}$	$\begin{array}{r} 3683.1 \\ 4762.5 \end{array}$	8.09
Whitaker	420187.38	733612.10	$\begin{aligned} & 1753316 \\ & 1845424 \end{aligned}$	Glaseo Signat.......... Ciuger's Wharf	$\begin{array}{r} 3553311 \\ 45430 \end{array}$	2184.2 2598.5	$2.288 .6$ 2941.6	1.35
Tbistle	420326.21	735602.13	$\begin{aligned} & 09457 \\ & 0 \\ & 0 \end{aligned}$	Turkey Point, north ... Cruger's Wharf,	1800457 1802940	$\begin{aligned} & 4441.9 \\ & 1076.8 \end{aligned}$	$\begin{aligned} & 4860.8 \\ & 1170.5 \end{aligned}$	2.76 0.67
Skeel.	420147.67	735616.92	$\begin{aligned} & 1893751 \\ & 2582958 \end{aligned}$	Cruger's Wharf staats.	$\begin{array}{r} 93801 \\ 78: 3211 \end{array}$	$\begin{array}{r} 1991,3 \\ 4656.9 \end{array}$	2177.6	1.24 8.89
Cruger's ${ }^{\text {Istand }}$	420210.09	735520.98	$\begin{aligned} & 1223601 \\ & 1430801 \end{aligned}$	Glasco Signal Cruger's Wharf.	30235 323 07 33 3230733	$\begin{array}{r} 1596.5 \\ 1569.1 \end{array}$	$\begin{aligned} & 1745.9 \\ & 1737.8 \end{aligned}$	${ }_{0}^{0.99}$
Donaldson	415943.52	735541.58	123053 3685	Mills" Wbarf Livingstoa	1923035 2164805	2947.7 2943.4	$\begin{aligned} & 3223.5 \\ & 3175.1 \end{aligned}$	1.830
Rosina.	415947.68	735696.12	$\begin{array}{rl} 16 \quad 14 \\ 277 & 30 \\ 20 \end{array}$	Livingeton Donaldson	$\begin{array}{r} 1961409 \\ 970809 \end{array}$	2554.9 1032.9	$\begin{aligned} & 2799.0 \\ & 1199.5 \end{aligned}$	1.59 0.64
Croghan	415925.16	735638.86	$\begin{aligned} & 5455959 \\ & 1993458 \end{aligned}$	Donaldson............. Rosina	$\begin{aligned} & 660006 \\ & 193565 \end{aligned}$	13092.5 737.4	1522.8 876.4	0.86
Delano	415852.01	73550.66	1335425 182726	Croghan	$\begin{aligned} & 3135354 \\ & 198 \\ & 27 \end{aligned}$	1475.9 1357.5	$\begin{aligned} & 3614.0 \\ & 1484.5 \end{aligned}$	0.92 084
Turkey Point, south............	420051.20	735603.34	$\begin{array}{r} 3463059 \\ 145838 \end{array}$	Donaldson Rosina \qquad	1683114 1945423	$\begin{aligned} & 2147.1 \\ & 2028.6 \end{aligned}$	$\begin{aligned} & 2348.0 \\ & 2218.4 \end{aligned}$	1.33 1.26
Coldsmith	415804.58	735616.19	$\begin{array}{lll} 231 & 03 & 33 \\ 199 & 09 & 97 \end{array}$	Donaldzon Romina \qquad	$\begin{aligned} & 510415 \\ & 190941 \end{aligned}$	$\begin{aligned} & 19116 \\ & 1407.6 \end{aligned}$	$\begin{aligned} & 9090.5 \\ & 1539.3 \end{aligned}$	1.198 0.88
Hayner	415859.65	735533.86	$\begin{array}{r} 1405628 \\ 630858 \end{array}$	Rosina Livinggton	$\begin{array}{lll}320 & 55 & 51 \\ 243 & 08 & 02\end{array}$	1908.5 2149.4	2087.1 2350.5	1.18 1.38
Deamo's House .,	415845.91	$73 \mathbf{3 5 1 9 . 9 6}$	$\begin{array}{rr} 106 & 11 \\ 76 & 25 \\ 15 & 59 \end{array}$	$\begin{aligned} & \text { Goldsmith............. } \\ & \text { Litingston } \end{aligned}$	2861027 2561454	2066.6.	$\begin{aligned} & 22250.0 \\ & 2559.0 \end{aligned}$	1.28
Railroad Drawbridge	420113.97	735517.07	$\begin{aligned} & 563745 \\ & 704424 \end{aligned}$	Tulkey Point, anuth . . . Terkey Point, north ...	$\begin{aligned} & 2363314 \\ & 250 \\ & 23 \\ & \hline 1 \end{aligned}$	1275.6 1105.0	1395.0	0.79
Barker.	420234.65	735440.75	923551 5646 路	Glasco Bignal........ Skeel \qquad	$\begin{aligned} & 2723445 \\ & 2364592 \end{aligned}$	2272.2 2544,4	$\begin{aligned} & 2484.8 \\ & 2891.8 \end{aligned}$	1.41 1.64
Trap Clifr.	420023.82	7355823.39	$\begin{aligned} & 1540808 \\ & 1345150 \end{aligned}$	Skeel \qquad Turtey Point, south	3340728 3115123	2875.3 1265.0	$\begin{aligned} & 3144.3 \\ & 1383.4 \end{aligned}$	1.79
Icehouse Wharf	415956.59	735623.43	$\begin{aligned} & 2390814 \\ & 2994357 \end{aligned}$	Trap Cliff Donaldson...	590655 1124485	$\begin{aligned} & 16304.6 \\ & 1044.1 \end{aligned}$	$\begin{aligned} & 1789.7 \\ & 1141.8 \end{aligned}$	1.08
Cramer	420018.22	$7356 \mathbf{0 0 . 2 0}$	$\begin{array}{r} 2595910 \\ 63904 \end{array}$	Trap Cliff. lochouse Wharf	$\begin{array}{r} 7959 \\ 18859 \\ \hline \end{array}$	$\begin{array}{r} 1330.8 \\ 610.0 \end{array}$	1477.2 667.1	${ }_{0}^{0.84}$
Livingrioa Lland...............	480053.88	735506.32	$\begin{aligned} & 1010945 \\ & 1522118 \end{aligned}$	Turkey Point, north.... Glabeo Stigael	2810908 3529030	$\begin{aligned} & 1315.3 \\ & 3425.2 \end{aligned}$	1438.4	0.62 2.85
Tilloteon's Wharf.	180188.50	735452.17	$\begin{aligned} & 165711 \\ & 63 \\ & 17 \\ & 01 \end{aligned}$	Livingaton's Iakand..... Tarkey Point, north...	1965701 2431614	$\begin{aligned} & 1116.5 \\ & 1609 \end{aligned}$	1291.0	0.69 1.18
Magdalen Letand.	480247.78	735518.02	$\begin{array}{r} 381044 \\ 159 \\ 99 \\ 58 \end{array}$	Sket...............................	2161045 31929	$\begin{aligned} & 28295.1 \\ & 1581.5 \end{aligned}$	$\begin{aligned} & 2509.8 \\ & 1707.8 \end{aligned}$	1.49
Qlasco Wharf.	480220.14	735611.81	$\begin{aligned} & 2845050 \\ & 25598929 \end{aligned}$	Crugerrn Mrland.........		$\begin{aligned} & 1509.5 \\ & 1501.5 \end{aligned}$	$\begin{aligned} & 190.7 \\ & \mathbf{3} 64.8 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.93 \end{aligned}$

UNITED STATES COAST SERVEY.-GEOGRAPHICAL POSITIONS.

Section II.-Fudson river, from Rhinebeck to Hudson. Shetch B, No. 7.

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.
Section $H .-H u d s o n$ river, from Rhinebeck to Hudson. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimu h	Distance.	Distance.	Distance.
	- ' ${ }^{\text {\% }}$	- J "	- ' ${ }^{\prime}$			Metres.		Milcs
Ludlow	42663987	735432.21	81112 62529	Barnwel Egg Island.	292541	1501.8	1642.3	0.49 0.93
Brink's Wharl.,................	420640.87	735515.33	26 4039 2714842	Egg Island. Lndiow	2064099 914911	201.2 977.3	$\begin{array}{r} 876.2 \\ 1058.7 \end{array}$	$\begin{aligned} & 0.50 \\ & 0.61 \end{aligned}$
Railroad, (101)...................	420706.10	735417.09	$\begin{array}{r}59 \\ 1254845 \\ \hline 187\end{array}$	Brink's Wharf \qquad Kortze	$\begin{array}{llll}2394 & 48 & 06 \\ 305 & 12 & 36\end{array}$	1548.1	1693.0 2318	$\begin{aligned} & 0.96 \\ & 1.92 \end{aligned}$
West Camp....................	420725.20	735451.50	316 341 346 36	Railroad, (101) ladlow.	$\begin{array}{llll}126 & 41 & 47 \\ 162 & =6 & 46\end{array}$	985.7 14629	1077.9 1599.8	$\begin{aligned} & \mathbf{0 . 6 1} \\ & \mathbf{0 . 9 1} \end{aligned}$
East Crap	420743.34	735348.17	$\begin{array}{r} 300298 \\ 685753 \end{array}$	$\begin{aligned} & \text { Railroad, (bit)......... } \\ & \text { West Cantp.............. } \end{aligned}$	$\begin{aligned} & 2100209 \\ & 2485711 \end{aligned}$	1326.7 1558.5	1450.8 1704.3	$\begin{aligned} & 0.82 \\ & 0.97 \end{aligned}$
Red House. . .	420755.20	735433.89	3454211 28913150	Railroad. (101) East Camp	1654222 1091425	1563.2 1112.2	17199.5 1216.3	$\begin{aligned} & 0.97 \\ & 0.69 \end{aligned}$
Goutd's Wharf.................	42083433	735409.19	251096 3425645	Red House.............. Enst Canp.	$\begin{aligned} & 2451009 \\ & 1625658 \end{aligned}$	1333.7 1646.1	1458.5 1860.1	$\begin{aligned} & 083 \\ & 1.02 \end{aligned}$
Hog'a Back.......................	420851.44	735316.56	$\begin{array}{r} 190339 \\ 662438 \end{array}$	East Camp. Gould's Wharf.	$\begin{array}{llll}199 & 03 & 11 \\ 946 & 24 & 03\end{array}$	$\underline{923.2}$	2431,2 142.1	1.38 0.82
Seward's Istand	420957.85	735328.12	$\begin{array}{r}3593658 \\ 20 \\ \hline 105059\end{array}$	Hoges Rack............. Gould's Wharf.	$\begin{aligned} & 1723706 \\ & 2404538 \end{aligned}$	2065.9 2743.7	2259.2 3000.4	$\begin{aligned} & 1.28 \\ & 1.70 \end{aligned}$
Enyder.	420911.90	73530469	1591341 515711	Eeward'p Tsland........ Goutd's Wharf. \square	3391325 201568	1516.1	1658.0 2056.4	0.94 1.17
Puddecart.	421906.71	735101.01	2625 295 294 4	Snyder Hog's Back.............	$\begin{array}{rr} 82 & 56 \\ 115 \\ 114 & 46 \\ 47 \end{array}$	1302.8	1424.7 1229.2	$\begin{aligned} & 0.81 \\ & 0.70 \end{aligned}$
Mancus Hook.	420954.51	735358.23	$\begin{array}{lll} 310 & 49 & 18 \\ 316 & 56 & 10 \end{array}$	Hover \qquad Snyder \qquad	$\begin{aligned} & 1305049 \\ & 1365640 \end{aligned}$	4112.7 1799.4	4497.5 1967.8	$\begin{aligned} & 2.55 \\ & 1.12 \end{aligned}$
Wynkoop Hill.	421104.91	735232.18	$270 \quad 2349$ $42 \quad 1700$	Bine Fill Maucus Hook.	902698 2421602	5421.3 2935.6	592886 3210.3	$\begin{aligned} & 3.97 \\ & 1.82 \end{aligned}$
Day.......................*.	421252.64	735113.44	3125549 288203	Blue Hill Wynkoop tilli..........	$\begin{aligned} & 1325735 \\ & 2083110 \end{aligned}$	$\begin{array}{r} 4936.6 \\ 3.82 .8 \end{array}$	$\begin{array}{r} 5398.5 \\ 4136.8 \end{array}$	$\begin{aligned} & 3.07 \\ & 2.35 \end{aligned}$
Eagle's Crag..	421211.80	735211.63	$\begin{aligned} & 2263 R 36 \\ & 293 \\ & \text { Oc } \end{aligned}$	Day Blue Hill	$\begin{array}{r} 463915 \\ 1130254 \end{array}$	$\begin{gathered} 18352 \\ 5377.2 \end{gathered}$	$\begin{array}{r} 2006.9 \\ 58 e 0.3 \end{array}$	$\mathbf{1 . 3 4}$
Burget	421357.24	735049.16	$\begin{array}{r} 849: 46 \\ 3301650 \end{array}$	Big Rill. Blue Hill.	$\begin{aligned} & 1884823 \\ & 15018 \quad 20 \end{aligned}$	16249.9 6167.0	17770.4 6744	$\begin{array}{r} 1010 \\ \mathbf{3 . 8 3} \end{array}$
Railroad, (104).	420949.23	735232.42	1014321 944406	Seward's Istand....... Maucus Honk	$\begin{aligned} & 2814243 \\ & 2744308 \end{aligned}$	1798.2 1978.3	$\begin{array}{r} 1430.6 \\ 2163.4 \end{array}$	$\begin{aligned} & 0.81 \\ & 1.23 \end{aligned}$
Perie's Potnt...	421000.40	535218.25	$\begin{aligned} & 852908 \\ & 871125 \end{aligned}$	Maucus Hook.......... Seward's [skand.	$\begin{array}{lll} 265 & 28 & 01 \\ 267 & 10 & 38 \end{array}$	2301.7 1605.9	2517.1 1756.2	1.43 1.40
Rocliff لansen Kili..............	421050.80	7351 12,27	$\begin{array}{r} 441506 \\ 1032224 \end{array}$	Perie's Point. \qquad Wyukoop Hill,	$\begin{array}{l\|ll} 224 & 14 & 22 \\ 283 & 21 & 31 \end{array}$	$\begin{aligned} & 91 \% 06 \\ & 1884.8 \end{aligned}$	$\begin{aligned} & 2373.7 \\ & 9060.5 \end{aligned}$	$\frac{1.35}{1.17}$
John Suith. .	421008.96	735136.98	$\begin{aligned} & 168 \quad 1997 \\ & 14343 \quad 30 \end{aligned}$	Eagle's Crag. Wyrkoop Hill.	$\begin{aligned} & 3480904 \\ & 323 \\ & 42 \\ & \hline 23 \end{aligned}$	38725 2141.0	$\begin{aligned} & 4234.9 \\ & 2341.3 \end{aligned}$	$\begin{aligned} & 2.41 \\ & 1.23 \end{aligned}$
Hamshom Creet.	421149.72	735107.16	$\begin{array}{r} 122452 \\ 1144434 \end{array}$	$\begin{aligned} & \text { John Bmith............... } \\ & \text { Eagle's Orag.............. } \end{aligned}$	$\begin{aligned} & 1922432 \\ & 29443 \\ & \hline 51 \end{aligned}$	$\begin{aligned} & 3183.1 \\ & 1628.1 \end{aligned}$	$\begin{aligned} & 34809 \\ & 1780.4 \end{aligned}$	1.98 1.01
Camp Creek.....	421020.61	735146.69	$\begin{array}{r} 491754 \\ 1705222 \end{array}$	Perie's Point............ 	$\begin{array}{llll}249 & 17 & 33 \\ 350 & 32 & 05\end{array}$	455.9 0477.7	1045.3 3803.1	$\begin{aligned} & 0.59 \\ & 2.16 \end{aligned}$
Eiche Hook	421047.02	735223.29	$\begin{array}{r} 3140627 \\ 442659 \end{array}$	Camp Oreek. Sewird's Isjand \qquad	$\begin{array}{lll} 134 & 66 & 32 \\ 224 & 26 & 15 \end{array}$	$\begin{aligned} & 11704 \\ & 2185.2 \end{aligned}$	$\begin{aligned} & 1279.9 \\ & \mathbf{2 3 2 4 . 1} \end{aligned}$	0.73 1.32
Wynkoap...................	421057.57	735205.56	$\begin{aligned} & 3391157 \\ & 2794199 \end{aligned}$	Camp Oreek........... Rombiff Jangen Kill	$\begin{array}{r}159 \\ 99 \\ \hline 9809\end{array}$	$\begin{aligned} & 1919.8 \\ & 1240.4 \end{aligned}$	1833.9 13565	0.76
Fox Creek	421121.61	735047.44	$\begin{aligned} & 1580031 \\ & 15220639 \end{aligned}$	Day................. Ramshorn Creek.	$\begin{array}{lll} 348 & 00 & 13 \\ 3.22 & 26 & 26 \end{array}$	2871.0 978.1	3139.6 1069.6	1.78 0.61
Long Dock,	421239.02	735105.80	$\begin{aligned} & 1885857 \\ & 3495955 \end{aligned}$	Burget Fox Or eek	$\begin{array}{r} 8: 5908 \\ 1700007 \end{array}$	$\underline{9443.1}$	$\begin{aligned} & 2671.7 \\ & 2651.9 \end{aligned}$	1.515
Hecker	421246.10	735023.97	$16515: 37$ 10004		$\begin{array}{lll} 345 & 15 & 20 \\ 280 & 04 & 14 \end{array}$	$\begin{aligned} & 2269.3 \\ & 1150.3 \end{aligned}$	$\begin{aligned} & 9481.6 \\ & 1260.1 \end{aligned}$	1.41
Rodgers' Island, south...........	421313.94	735032.66	$\begin{aligned} & 544610 \\ & 356210 \end{aligned}$	Day Long Dock	$\begin{array}{ll} 234 & 45 \\ 215 & 43 \\ 215 \end{array}$	1139.4	$\begin{aligned} & 1248.0 \\ & 1438.7 \end{aligned}$	0.71
Deep Point.......................	421325.51	735055.45	$\begin{array}{r} 92352 \\ 3049417 \end{array}$	Lang Dock Rodgers' Ikland, fon h.	$\begin{aligned} & 1898945 \\ & 12434 \quad 32 \end{aligned}$	$\begin{array}{r} 1459.7 \\ 628.9 \end{array}$	$\begin{array}{r} 1589.7 \\ 687.7 \end{array}$	$\begin{aligned} & 090 \\ & 0.39 \end{aligned}$
Goodex	421359.19	735036.85	$\begin{gathered} 356 \\ 1508 \\ 28 \\ \hline 28 \end{gathered}$	Rodgers' [aland, south. . Deep Point	$\begin{array}{lll} 176 & 15 & 11 \\ 242 & 18 & 13 \end{array}$	$\begin{aligned} & 1399.1 \\ & 1123.4 \end{aligned}$	1530.0	0.87
Rodgers' Island, north	421341.52	735021.43	$\begin{array}{r} 1470306 \\ 570810 \end{array}$	Goodes Geep Poimi	3270856 2373448	$\begin{aligned} & 649.9 \\ & 12096 \end{aligned}$	$\begin{array}{r} 710.7 \\ 1050.5 \end{array}$	$\begin{aligned} & 0.40 \\ & 0.57 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section II.-Hudson river, from Rhinebeck to Hudson. Sketch B, Nu. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance	Distance.	Distauce.
Lower Red Hook Spire.........	$\begin{array}{cc} \circ & \prime \\ 41 & 59 \\ \hline 28.60 \end{array}$	$\begin{gathered} \therefore \quad 1 \quad 11 \\ 75224.6 \end{gathered}$	$\begin{array}{ccc} \circ & 1 \\ 171 \\ 222 & 09 \\ 218 & 54 & 53 \end{array}$	Staats Cpper Red Hook	3512146 $3656 \quad 15$	$\begin{gathered} \text { Metres. } \\ 5: 77.3 \end{gathered}$$4512.0$	Furds 5771.14934.2	Miles. 3.28 2.60
Flatbush Spire	420119.84	735700.10	$\begin{array}{lll} 355 & 23 & 11 \\ 141 & 37 & 07 \end{array}$	Rurhans Mount Paulding	1752315 3213533	$\begin{aligned} & 1631.7 \\ & 52: 1.8 \end{aligned}$	1784.4 5668.5	1.013.23
Green	420300.26	735232.41	3145552955935	Epper Red Hook. Mounz Paulding.	$\begin{aligned} & 1345720 \\ & 2755050 \end{aligned}$	$\begin{array}{r} 4375.0 \\ 9435.4 \end{array}$	$\begin{array}{r} 4675.0 \\ 10818.3 \end{array}$	2.665.86
Isham . ..	42054269	735556.39	$\begin{aligned} & 2272517 \\ & 26555 \quad 35 \end{aligned}$	Ludlow . ${ }_{\text {Lailroad, }(98) ~}^{\text {, }}$	$\begin{array}{r} 479613 \\ 1065619 \end{array}$	$\begin{array}{r} 2307.4 \\ 1569.9 \end{array}$	$\begin{aligned} & 2851.4 \\ & 1716.8 \end{aligned}$	1.620.97
Malden Spire............	420546.39	735546.01	28154571844843	Rig Hill Kortze	1015703$4455 ?$	4423. 4 $30: 5.2$	4837.3 $404 i .0$	2.752.30
Germantown Epire.............	420748.66	735158.86	$\begin{array}{r} 104624 \\ 1971618 \end{array}$	Big Hill Hover.	$\begin{array}{r} 19045 \\ 178 \\ 17 \\ 16 \end{array}$	$\begin{aligned} & 4770.5 \\ & 1249.7 \end{aligned}$	$\begin{aligned} & 5216.9 \\ & 1366.6 \end{aligned}$	2.960.77
Potts	420539.58	335012.69	$78 \times 422$12116		$\begin{array}{lll} 958 & 02 & 45 \\ 181 & 9 & 11 \end{array}$	3405.17487.0	$\begin{aligned} & 3793.7 \\ & 6679.7 \end{aligned}$	2.124.93
Mount Merino....................	421403.05	734843.98	$\begin{array}{lll} 74 & 44 & 33 \\ 68 & 59 & 14 \end{array}$	Catskill Deep Point	$\begin{array}{lll} 254 & 35 & 41 \\ 248 & 57 & 46 \end{array}$	18815.43229.8	$\begin{array}{r} 20576.0 \\ 3532.0 \end{array}$	11.692001
Fly	421124.76	735124.68	2752759481213	Fox Creek Wyinoop	$\begin{array}{r} 962824 \\ 2281148 \end{array}$	$\begin{array}{r} 460.2 \\ 1255.6 \end{array}$	$\begin{array}{r} 9 \div 0.7 \\ 13 \div 6.4 \end{array}$	0.530.88
Catzkill Jail......................	421300.95	735125.96	$\begin{array}{r} 340302 \\ 309 \quad 35 \quad 51 \end{array}$	Eagle's Crag. bay..	$\begin{array}{lll} 214 & 02 & 32 \\ 129 & 36 & 00 \end{array}$	$\begin{array}{r} 1899.9 \\ 402.3 \end{array}$	$\begin{array}{r} 2001.1 \\ 499.9 \end{array}$	1.140.25
Green Point......	421096.68	735256.75	3123126385927	Petrie's Point. Seward's Island	132315821859	$\begin{aligned} & 1109.1 \\ & 1144.4 \end{aligned}$	$\begin{aligned} & 1211.3 \\ & 1251.5 \end{aligned}$	${ }_{0}^{0.74}$
East Camp flotel, staff.........	420730.09	735357.96	$\begin{array}{r} 304209 \\ 1331125 \end{array}$	Railroad, (101) Red House	$\begin{array}{lll} 21041 & 56 \\ 313 & 11 & 01 \end{array}$	$\begin{array}{r} 860.9 \\ 1331.9 \end{array}$	$\begin{array}{r} 941.4 \\ 12378 \end{array}$	0.530.70
Schneider Hill	420903.66	735221.11	$\begin{aligned} & 3214731 \\ & 1620850 \end{aligned}$	Hover......................Egle's Crag	141475720856	1425.85808.1	$\begin{aligned} & 13.59 .2 \\ & 6351.6 \end{aligned}$	0.883.61
Germantown................ ...	420809.86	735328.24	$\begin{aligned} & 291257 \\ & 73183 \end{aligned}$	East Camp Ked House \qquad	$\begin{aligned} & 2491244 \\ & 2531746 \end{aligned}$	$\begin{array}{r} 937.7 \\ 1573.8 \end{array}$	$\begin{aligned} & 1025.4 \\ & 1724.1 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.98 \end{aligned}$
Trumphour.	420939.17	735429.66	$\begin{array}{lll} 236 & 44 & 19 \\ 225 & 32 & 04 \end{array}$	Mancus Hook. Wynkoop Hill	$\begin{array}{lll} 5644 & 40 \\ 45 \quad 33 & 23 \end{array}$	$\begin{array}{r} 862.7 \\ 3.77 .0 \end{array}$	$\begin{array}{r} 943.4 \\ 4130.4 \end{array}$	0.542.35
Miller	421139.71	735010.87	$\begin{array}{lll} 145 & 27 & 14 \\ 109 & 40 & 54 \end{array}$	Long Dack Engle's Crag .	$\begin{array}{l:l} 325 & 26 \\ 209 & 35 \\ 273 \end{array}$	$\begin{aligned} & 2321.6 \\ & 2941.6 \end{aligned}$	$\begin{array}{r} 2429.5 \\ 3 z 16.8 \end{array}$	1.38
Oak Hill Wharf......	421203.46	73504060	15355555	Pay	333 338 835 10	$\begin{array}{r} 1694.0 \\ 742.2 \end{array}$	$\begin{array}{r} 1852.5 \\ 811.6 \end{array}$	$\begin{aligned} & 1.05 \\ & 0.46 \end{aligned}$

Section III.-Mouth of Potomac river. Sketch C, No. 9.

UNITED sTATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section III.—Mouth of Potomac river_Si. Mary's river—Curratoman river. Sketch C, No. 9.

Name of stallon.	Latitude.	Lorgitude.	Azimuth.	To station-	Back azimuth.	Distance.	Vistance.	Distance.
Piney Point Lighthouse Vane.	380803.43	763129.22	3041826 35508	Genrge, No. 1........... Sandy Point.	1242038 1835457	$\begin{aligned} & \text { Metres } \\ & 6312.5 \\ & 6.77 .9 \end{aligned}$	Farde. 6903.2 7412.1	Miles. 3.87 4.21
Ragged Polnt.	580854.03	763626.82	2820720	Pinpy Point Light-kouse rane.	1021030	7412.0	8105.5	4.60
Faunleroy's House	380122.42	763024.61	2641829 2561259	Point Lookout Light. . Confield \qquad	$\begin{aligned} & 842529 \\ & 761846 \end{aligned}$	16739.2 14126.8	$\begin{aligned} & 18305.5 \\ & 15444.6 \end{aligned}$	10.40 8.78
White Windmill	380121.74	763012.72	2640803 1610349	Point Lookout Light ... Lunch's Point	$8414 \quad 56$ 3410328	$\begin{array}{r} 16452.8 \\ 9603.9 \end{array}$	$\begin{gathered} 17992.3 \\ 2847.5 \end{gathered}$	$\begin{gathered} 10.22 \\ 1.62 \end{gathered}$
Harn Point.	380140.63	763229.99	$\begin{array}{lll} 2333 & 04 & 07 \\ 272 & 07 & 15 \end{array}$	Lyncil's Point Thicket Point.	530510 920823	$\begin{aligned} & 3130.2 \\ & 2748.9 \end{aligned}$	$\begin{array}{r} 3423.1 \\ 2961.6 \end{array}$	1.94
Windmill, Centre ...	380333.01	762126.34	$\begin{array}{rl} 318 & 16 \\ 95 & 59 \\ 16 \end{array}$	Oomfield \qquad Sandy Poinl	1381646 2755253	$\begin{array}{r} 902.1 \\ 15240.8 \end{array}$	$\begin{array}{r} 986.5 \\ 16666.9 \end{array}$	0.56 9.47
Calvert bay	380525.48	762310.45	34733 28 343312	$\begin{aligned} & \text { HuH's Neck. } \\ & \text { Hog Island } \end{aligned}$	16734 :5 2143038	16047.3 10727.5	$\begin{aligned} & 17548.8 \\ & 11731.3 \end{aligned}$	9.97 6.67
Fist-house, middie of doror	35034900	763127.95	$\begin{array}{ll} 230 & 24 \\ 334 & 51 \\ 30 \end{array}$	Gearge, No. 1 Lyuch's Point	$\begin{array}{r} 509702 \\ 1343145 \end{array}$	$\begin{aligned} & 6725.8 \\ & 2300.7 \end{aligned}$	$\begin{aligned} & 7335.1 \\ & 2516.0 \end{aligned}$	4. 18
Sl. Mraty's river.								
Haywood	380704.06	76835.05	$\begin{array}{lll} 338 & 28 & 18 \\ 102 & 00 & 41 \end{array}$	Kit's Point \qquad Piney Point Light-house	152 28 40 5815702	$\begin{aligned} & 1910.0 \\ & 8817.3 \end{aligned}$	2098.7 9642.3	1.18 5.48
Fort Poinc.	380804.34	768640.10	$\begin{array}{r} 3414940 \\ 38 \\ 0.0 \\ 34 \end{array}$	Haywood Gearge, No. I................	1614956 2175323	$\begin{array}{r} 1955.9 \\ 4552.8 \end{array}$	2138.9 4878.8	1.21 2.83
George, No. 2.	380612.13	762736.09	$\begin{gathered} 271 \\ 214023 \\ 023 \end{gathered}$	Kite Point Fort Point	$\begin{aligned} & 912409 \\ & 3403 \\ & 34 \end{aligned}$	$\begin{aligned} & 38: 172.4 \\ & 415.4 \end{aligned}$	$\begin{aligned} & 4191.0 \\ & 4566.1 \end{aligned}$	2.38 2.59
Cecil	380746.39	762720.90	$\begin{array}{r} 3105359 \\ 71557 \end{array}$	Kit's Point Gemge, No. 2..........	$\begin{array}{lll} 130 & 65 & 96 \\ 187 & 15 & 47 \end{array}$	4578.7 2424.3	$\begin{array}{r} 5007.1 \\ 3 \times 1.4 \end{array}$	2.84 1.82
Sk. Inigo.	380858.73	762612.94	$\begin{array}{r} 3492639 \\ 363420 \end{array}$	Fort Point \qquad Cecil 	3692647 2163344	$\begin{aligned} & 1705.8 \\ & 2777.2 \end{aligned}$	$\begin{array}{r} 1865.4 \\ 3637.1 \end{array}$	$\begin{aligned} & 1.1 .66 \\ & 1.73 \end{aligned}$
Wiudmill Poiat.	380928.95	7688642.32	3380111 32. 3351	Fort Print \qquad Sc. Inigo \square	$\begin{array}{lll} 158 & 01 & 37 \\ 140 & 34 & 69 \end{array}$	2746.5 1120.2	$\begin{array}{r} 3003.5 \\ 1241.6 \end{array}$	1.71 0.69
Ooad.	380831.98	76273466	$\begin{array}{lll} 218 & 29 & 23 \\ 249 & 47 & 10 \end{array}$	Windmill Point \qquad Bt. 1nigo \square	$\begin{aligned} & 38 \\ & 2855 \\ & 69 \\ & 48 \\ & \hline 00 \end{aligned}$	$\begin{aligned} & 2047.2 \\ & 2120.1 \end{aligned}$	$\begin{gathered} 2238,78.5 \\ 2018.5 \end{gathered}$	1.27
Hardy	380930.32	76259501	191202 848206	St. Inigo \qquad Windmill Point	1991153 264214	$\begin{array}{r} 1031.2 \\ 1059.5 \end{array}$	$\begin{aligned} & 1127.7 \\ & 1158.6 \end{aligned}$	0.64 0.66
Chancellor	3810 02. 54	762691.94		Hardy Windmill Point.	$\begin{aligned} & 1503937 \\ & 20419 \\ & 21 \end{aligned}$	$\begin{aligned} & 1139.4 \\ & 1204.2 \end{aligned}$	$\begin{array}{r} 1246.0 \\ 1316.9 \end{array}$	0.71 0.75
Edwards	381094.94	762646.49	3190727 3564450	Chancrhor Wiadaill Point.........	$\begin{aligned} & 1380742 \\ & 1764453 \end{aligned}$	$\begin{array}{r} 913.1 \\ 1790.6 \end{array}$	$\begin{array}{r} 998.5 \\ 1958.1 \end{array}$	$\begin{aligned} & 0.57 \\ & 1.11 \end{aligned}$
Comfild Tree.	380312.70	762102.90	$\begin{aligned} & 1200156 \\ & 1323138 \end{aligned}$	Genrge, No. 2. Cecil	$\begin{aligned} & 2995756 \\ & 3129745 \end{aligned}$	$\begin{aligned} & 11064.2 \\ & 12490.6 \end{aligned}$	$\begin{aligned} & 12099.5 \\ & 13859.3 \end{aligned}$	$\begin{aligned} & 6.87 \\ & 7.76 \end{aligned}$
8t. Inigo Windmill	380858.65	26 211.8	$\begin{aligned} & 1393846 \\ & 350 \quad 1734 \end{aligned}$	Windmill Point......... Fort Hoint.	$\begin{aligned} & 3193827 \\ & 1701741 \end{aligned}$	1145.0 1698.5	$\begin{aligned} & 1859.1 \\ & 1857.4 \end{aligned}$	0.71 1.05
Eant St. Mary's Point	381113.60	762558.63	$\begin{aligned} & 143181 \\ & 374824 \end{aligned}$	Chancellor Fdwardit	1943047 2174853	$\begin{aligned} & 2280.0 \\ & 1899.3 \end{aligned}$	$\begin{aligned} & 2474.7 \\ & 277 \end{aligned}$	1.40 1.18
Weat St. Mary's Hill	\$810 51.73	762843.77	$\begin{aligned} & 5389643 \\ & 3404144 \end{aligned}$	East Gt. Mary's Point. . Chancellor	$\begin{gathered} 582711 \\ 1604157 \end{gathered}$	1288.7 1606.8	$\begin{aligned} & 1409.3 \\ & 1757.1 \end{aligned}$	${ }^{0.80}$
Curratoman river.								
Oabell	373852.59	$78 \mathbf{2 8} 54.72$						
Whiting	373640.18	769950.28	223013	Oabell	463201	5832.0	6487.1	3.68
Ohowning Point.	373850.82	762828.65	$\begin{array}{rr} 73017 \\ 2690941 \end{array}$	Whitng Catell	1875004 891115	4002.3 3773.3	$\begin{aligned} & 4442.4 \\ & 41.26 .4 \end{aligned}$	8.52
Indiantown	378041.89	769740.92	$\begin{gathered} 3239204 \\ 59 \\ 090 \end{gathered} 04$	Onbefl. Ohownine Point	$\begin{aligned} & 1432929 \\ & 2390818 \end{aligned}$	$\begin{aligned} & 18977.8 \\ & 3075.6 \end{aligned}$	$\begin{aligned} & 8075.9 \\ & 3863.4 \end{aligned}$	1.188
Ball's Point	374026.29	763836.12	$\begin{array}{ccc} 417 & 50 \\ 315 & 18 & 18 \end{array}$	Ohowning Polnt \qquad indiantown \qquad	$\begin{aligned} & 2089 \\ & 1351818 \\ & 18 \\ & \hline 8 \end{aligned}$	$\begin{gathered} 3218.3 \\ 1029.2 \end{gathered}$	3519.9 9102.1	$\begin{aligned} & 9.00 \\ & 1.18 \end{aligned}$
Taylor'm Oreek	374052.44	762718.70		Patle Polnt Indientown	$\begin{aligned} & 946 \\ & 194 \\ & \hline 184 \\ & \hline 154 \end{aligned}$	$\begin{aligned} & 2061.0 \\ & \hline 203.0 \end{aligned}$	28s3. $\$ 48.5$	1.108
Oax Hin.	374143.04	762831.61	$\begin{array}{r} 24013 \\ 31107825 \end{array}$		$\begin{array}{ll} 186 \\ 131 & 40 \\ \text { co } \\ \hline 10 \end{array}$	$\begin{aligned} & 2088.88 \\ & 931.3 \end{aligned}$	$\$ 800.9$	1.47
liack Stump. .	374135.64	769745.84	$\begin{aligned} & 101 \\ & 339 \\ & 30758 \\ & \hline 80 \end{aligned}$	Oak Hiti Taytor's Creek $, \ldots, .$.		$\begin{aligned} & 1144.5 \\ & 1468.4 \end{aligned}$	$\frac{1051.4}{1687.7}$	0.71

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section MI.-Curratoman river. Sketch C, No. 9.

Name of etation.	Satitude.	Longitude	Azimuth.	To station-	Back aximuth	Distance.	Distance.	Distance.
West Point	$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 37 & 48 & 09.42 \end{array}$	762896.05	$\begin{array}{rrr} 1 & 1 & 11 \\ 316 & 35 & 42 \\ 03046 \end{array}$	Black Rtump	$\begin{array}{ll} 135 & 36 \\ 189 & 07 \\ 189 \end{array}$	$\begin{array}{r} \text { Metres. } \\ 1+39.6 \\ 842.6 \end{array}$	Yards. 1567.7 891. 8	$\begin{gathered} \text { Miles. } \\ \mathbf{0 . 8 9} \\ \mathbf{0 . 5 1} \end{gathered}$
Shelton's Point	374212.18	762859.50	27729 3708 3080	West Point............ Oak Hill	972424 1502026	653.4 1039.8	$\begin{array}{r} 714.5 \\ 1130.5 \end{array}$	$\begin{aligned} & 0.41 \\ & 0.64 \end{aligned}$
Merry Point	374850.11	762909.45	3194217 $\mathbf{3 4 0} 2600$	West Point \qquad Shelton's Point \qquad	1394244 1602610	$\begin{aligned} & 1654.2 \\ & 1240.7 \end{aligned}$	$\begin{aligned} & 1798.0 \\ & 1356.8 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.77 \end{aligned}$
Ferry Point	374239.60	762921.49		West Point Merry Paint	$\begin{array}{r} 1248287 \\ 42 \quad 18 \quad 03 \end{array}$	1646.0 $43 \sim .6$	$\begin{array}{r} 1800.0 \\ 478.5 \end{array}$	1.02 0.27

Section V.-Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth	To station-	Back aximuth	Distance.	Distance.	Distance.
Wh Tiver to Ossabaw soun	*		- 1/		- 1"	Metres.	Y:trds.	Miles.
Mungen.	320452.50	805815.63						
Tybee Light.	320121.38	$80 \leq 039.19$	1573315	Mungen	3773221	7035.6	7693.9	4.37
Wilmiugton	320035.57	805655.30	2224918 2615753	Mungen Tybee lighe.	$\begin{aligned} & 425146 \\ & 820115 \end{aligned}$	$\begin{array}{r} 10792.0 \\ 10127.6 \end{array}$	$\begin{aligned} & 11801.8 \\ & 11075.2 \end{aligned}$	$\begin{aligned} & 6.71 \\ & 6.29 \end{aligned}$
Petit Chou	315642.61	805503.01	$\begin{aligned} & 1573953 \\ & 2193019 \end{aligned}$	Wilmington. . Tybee Lighi...	337 39 38 42 42	$\begin{array}{r} 7757.1 \\ 11130.8 \end{array}$	$\begin{array}{r} 8482.9 \\ 12172.3 \end{array}$	$\begin{aligned} & 4.82 \\ & 6.92 \end{aligned}$
Red House, cupola	315712.61	810051.03	2252405 2964204	Wilmington ... Petut Chou	$\begin{array}{r} 452610 \\ 964508 \end{array}$	$\begin{aligned} & 8686.0 \\ & y=2.0 \end{aligned}$	9498.7 10063.0	5.48
South Warsaw	315210.04	805941.32	1690 : 49 2210207	Red House Petit Cbou	$\begin{array}{r} 3490312 \\ 410434 \end{array}$	$\begin{array}{r} 9747.8 \\ 11132.3 \end{array}$	$\begin{aligned} & 10.550 .5 \\ & 12174.0 \end{aligned}$	5.99 6.92
Cabmage 1eland	315623.64	805807.62	$\begin{array}{lll}28311 & 11 \\ 11106 \\ 50\end{array}$	Petit Cbou . Red Houre.	831244 2910524	$\begin{aligned} & 4882.4 .4 \\ & 4599.6 \end{aligned}$	$\begin{gathered} 5339.3 \\ 5 \times 30.0 \end{gathered}$	3.03 2.86
Great Warsaw	315446.44	805608.00	$\begin{aligned} & 1334052 \\ & 2053407 \end{aligned}$	Cabbage Inand Petit Clion	$\begin{array}{r} 3133949 \\ 253044 \end{array}$	4343.7 3964.1	$\begin{aligned} & 4750.1 \\ & 4335.0 \end{aligned}$	2.70 2.46
Ekiddawny.	315343.51	810231.06	$\begin{aligned} & 2014307 \\ & 30249 \quad 25 \end{aligned}$	Hed House south Warsaw.	$\begin{array}{r} 214409 \\ 1225055 \end{array}$	7098.0 53108.7	7762.2 5805.4	4.41 3.30
John's Hammeck	315424.02	810012.67	3484227 710423	Shuth Warsaw Sknddaway ...	$\begin{aligned} & 1684244 \\ & 2510310 \end{aligned}$	$\text { Sencit. } 5$	$\begin{aligned} & 4601.2 \\ & 42 \times 3.7 \end{aligned}$	2.61 2.39
Skiddaway Island Base, south end.	315523.15	81 0058.75	$\begin{array}{r} 3014292 \\ 180947 \end{array}$	John's Hammock Skiddaway.	$\begin{aligned} & 1244315 \\ & 1980627 \end{aligned}$	3198.1 3229.6	$\begin{aligned} & 3497.3 \\ & 3531.8 \end{aligned}$	1.99 2.01
Skiddaway Iuland Base, north end.	315608.85	810127.64	3283658 202507	John's Hammoct Bkiddaway	3483732	$\begin{aligned} & 3782.9 \\ & 4776.3 \end{aligned}$	4135.9 52.23 .2	2.35 2.97
Bomerty Marsh	315603.10	805914.68	$\begin{array}{r} 26 \\ 31 \\ 250 \\ 2503 \\ \hline 030 \end{array}$	John's Elummoct Cabtage Islaud .	$\begin{array}{r} 2063122 \\ 70 \\ 0415 \end{array}$	$\begin{aligned} & 3410.7 \\ & 1879.1 \end{aligned}$	3729.8 5048.4	2.12 1.16
Blue Plage	315518.70	805817.91	$\begin{array}{lll} 187 & 40 \\ 132 & 47 \\ 39 \end{array}$	Cubbage taland. Romeriy Marsh	$\begin{array}{r} 74052 \\ 3124109 \end{array}$	2021.3 2023.3	$\begin{aligned} & 2213.7 \\ & 2212.6 \end{aligned}$	1.28
Eameriy Marsh, (a)	315432.28	510104.06	$\begin{aligned} & 1404745 \\ & 188 \\ & 14 \end{aligned}$	South Base. Narth 3ase	$\begin{array}{lll}320 & 47 & 19 \\ 3 \times 8 & 14 & 09\end{array}$	2023.1 3038.9	$\begin{aligned} & 2219.4 \\ & 3 \times 23.2 \end{aligned}$	1.26 1.69
Romerly Marsh, ($\mathrm{c}_{\text {, }} \mathbf{2}$) .	315433.77	810045.28	1303842 1591149	8 uth Rase North Base	$\begin{array}{lll} 310 & 38 & 06 \\ 379 & 11 & 87 \end{array}$	$\begin{array}{r} 2335.6 \\ 3132.9 \end{array}$	$\begin{array}{r} 2554.1 \\ 3486.0 \end{array}$	1.45
Rowerty Marsh, (4,3)	315420.29	810055.91	$\begin{aligned} & 14288 \\ & 16600 \\ & 160 \end{aligned}$	South Baee North Base	$\begin{aligned} & 322 \\ & 345 \\ & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 9444.9 \\ & 3445.8 \end{aligned}$	28737 3768.3	1.52 2.14
Romeriy Marsh, (b)	315459.28	810123.82	1351806 1772126	South Base North Base	3151751 3572124	$\begin{aligned} & 1080.1 \\ & \mathbf{2 1 7 7 . 5} \end{aligned}$	1181.2 2331.2	0.67 1.35
Romeriy Marsh, (c)	315450.75	81010.46	$\begin{array}{lll} 179 & 58 & 57 \\ 168 & 01 & 38 \end{array}$	Snuth Base ... North Base....	3085835 348025	$\begin{aligned} & 1304.1 \\ & 2175.5 \end{aligned}$	$\begin{array}{r} 1448.0 \\ 2574.1 \end{array}$	0.62 1.35
Romeriy Marth, (d)	31551051	810114.78	1111830 1691815	Roulh Base.... North Base.	9911810 341848	$\begin{aligned} & 1079.1 \\ & 1878.7 \end{aligned}$	$\begin{aligned} & 1179.4 \\ & 1959.8 \end{aligned}$	0.67 1.13
Romerify Marih, (e)	315590.83	810118.11	$\begin{array}{r} 903603 \\ 1675098 \end{array}$	South Base..... North Base	9703545 34756	$\begin{array}{r} 904.2 \\ 1449.5 \end{array}$	$\begin{aligned} & 1059.2 \\ & 1585.1 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.80 \end{aligned}$
Romerly Manh, (f)............	315834.38	810117.26	$\begin{array}{r} 744740 \\ 1664219 \end{array}$	South Rase . . North Base	$\begin{aligned} & 2544791 \\ & 3464213 \end{aligned}$	$\begin{array}{r} 965.9 \\ 1185.8 \end{array}$	$\begin{aligned} & 1058.3 \\ & 1296.8 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.74 \end{aligned}$
Romerty Marah, (f8).	315540.80	810058.19	$\begin{array}{r} 69 \quad 0856 \\ 137559.94 \end{array}$	Douth Raed North Base.	2480827 3175904	$\begin{aligned} & 1535.4 \\ & 1158.6 \end{aligned}$	1679.1 1287.0	$\begin{aligned} & 0.95 \\ & 0.78 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.

Section V.-Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
Romerly Marsh, (g)	$\stackrel{\circ}{\prime} c^{\prime \prime}$	$\begin{array}{ccc} \circ \prime \prime \\ \text { si } & 00 & 42.14 \end{array}$	$\begin{array}{ccc} \circ & 1 \\ 70 & 36 & 54 \\ 122 & 16 & 19 \end{array}$	Eouth Base..............	2503617 3421555	Metres. 1966.1 1413.6	Yards. 21501 1545.9	$\begin{gathered} \text { Miles } \\ 1.2 .2 \\ 0.88 \end{gathered}$
Romerly Marsh, (h).	315543.63	810018.57	$\begin{array}{r} 754214 \\ 1131059 \end{array}$		2554124 2431023	$\begin{aligned} & 2559.8 \\ & 1973.5 \end{aligned}$	$\begin{array}{r} 2791.7 \\ 2158.2 \end{array}$	1.59 1.22
Romerly Marsh, (n)	315552.62	805901.21	$\begin{array}{r} 78 \\ 132 \\ 132 \\ 24 \\ 54 \end{array}$	South B ase Komerly Marsh.........	$\begin{aligned} & 2583551 \\ & 3122147 \end{aligned}$	$\begin{array}{r} 4595.7 \\ 478.8 \end{array}$	$\begin{array}{r} 5025.7 \\ 522.7 \end{array}$	$\begin{aligned} & 2.85 \\ & 0.30 \end{aligned}$
Romeriy Marsh, (t)	315549.74	810007.74	$\begin{array}{r} 732823 \\ 1054021 \end{array}$	South Base............ North Base.	2532728 265 ;3 39	2877.2 2179.7	$\begin{aligned} & 3146.4 \\ & 2383.6 \end{aligned}$	1.79 1.35
Romerly Marsh, (k) .	315551.55	805947.82	$\begin{array}{r} 7505 \quad 20 \\ 1013003 \end{array}$	Gouth Bace \qquad North Base \qquad	2550414 2812910	3395.8 2675.5	$\begin{gathered} 3795.5 \\ 2785 \end{gathered}$	2.11 1.66
Romerly Marsh,	315459.49	810021.37	$\begin{aligned} & 1065350 \\ & 1404942 \end{aligned}$	South Rave North Base	2865362 3204907	${ }_{2750.5}^{2508.8}$	2743.2 3013.7	1.56
Waring's Creek Stak	315802.12	810.08 .64	$\begin{array}{r} 435944 \\ 1123344 \end{array}$	Buth Base North Base.	$\begin{aligned} & 223 \\ & 292 \\ & 293 \\ & \hline 34 \end{aligned}$	$\begin{array}{r} 1668.0 \\ 540.6 \end{array}$	$\begin{array}{r} 1 \neq 24 \\ 5 y 1.2 \end{array}$	1.04 0.34
Little Warsaw Island, red flag on north end.	315410,73	810042.74	$\begin{aligned} & 1402955 \\ & 2423638 \end{aligned}$	$\begin{aligned} & \text { South Base } \\ & \text { John's Hammock...... } \end{aligned}$	3202918 623642	2890.7 869.7	3161.2 972	1.80 0.55
Red Flag on Tree	315588.88	805926.52	$\begin{aligned} & 1062606 \\ & 2: 04505 \end{aligned}$	Romenly Marsh Tiathbage liland	$\begin{aligned} & 169612 \\ & 504547 \end{aligned}$	1099.1	$\begin{array}{r} 1201.9 \\ 2926.6 \end{array}$	0.68 1.66
Raccoon Key	315144.05	810245.28	$\begin{aligned} & 1854756 \\ & 2603509 \end{aligned}$	skiddaway Bouth W'arsaw \qquad	$\begin{array}{r} 548 \quad 04 \\ 80 \quad 36 \\ 46 \end{array}$	3696.0 4400.9	$\begin{aligned} & 4044.0 \\ & 5359.5 \end{aligned}$	2.30 3.04
North Ossabaw, (1)	314853.58	810202.61	$\begin{aligned} & 1675625 \\ & 2113206 \end{aligned}$	$\begin{aligned} & \text { Raccoon Key... } \\ & \text { south Warsaw } \end{aligned}$	3475606 313321	$\begin{aligned} & 5368.6 \\ & 7100.6 \end{aligned}$	$\begin{aligned} & 5870.9 \\ & 765.9 \end{aligned}$	3.34 4.41
Morell.	315028.51	810515.40	$\begin{aligned} & 239 \\ & 299 \\ & 57 \\ & \hline 36 \end{aligned}$	$\begin{aligned} & \text { Raccoon Key........... } \\ & \text { North O Osabaw, (i)... } \end{aligned}$	$\begin{array}{r} 592923 \\ 1195918 \end{array}$	$\begin{array}{r} 4.580 .8 \\ 5851.8 \end{array}$	$50 n 9.4$ 6394.4	${ }^{2} .8 .85$
Green Island.	31531385	810431.09	$\begin{array}{r} 3145013 \\ 125313 \end{array}$	Racconn Key Morell \qquad	$\begin{aligned} & 1345109 \\ & 1925250 \end{aligned}$	3921.7 5223.4	$\begin{aligned} & 49886 \\ & 5712.1 \end{aligned}$	2.44 3.25
Little Buzzard	315143.31	810729.46	$\begin{aligned} & 3030939 \\ & 26948 \quad 17 \end{aligned}$	Morell \qquad Raccoor Key	$\begin{array}{r} 1231050 \\ 695047 \end{array}$	$\begin{aligned} & 4210.3 \\ & 7469.4 \end{aligned}$	$\begin{aligned} & 4604.9 \\ & 8168.3 \end{aligned}$	2.62 4.64
Palmetto	3154 45,66	810726.60		Green 1 land Little Buzzard	1213148 1804660	$\begin{array}{r} 54094 \\ 56166 \end{array}$	5915.6 6142.1	3.36 3.49
Pryor	315509.62	810449.07	$\begin{array}{r} 333408 \\ 795415 \end{array}$	Litle Buzzard.......... Painetto \qquad	2133243 2595252	7624.5 4243.5	$\begin{aligned} & 8396.9 \end{aligned}$	4.74 2.61
Ogeechee	315322.42	811012.09	$\begin{aligned} & 23997929 \\ & 30531 \\ & \hline 15 \end{aligned}$	Palmetto . Little Buz	$\begin{array}{r} 592909 \\ 1253241 \end{array}$	$\begin{aligned} & 5047.6 \\ & 5251.9 \end{aligned}$	5519.9 5743.3	3.14 3.26
Chimney of Mill, Hardw	315425,66	811339.87	$\begin{aligned} & 266 \quad 2237 \\ & 289 \\ & 27 \end{aligned}$	Palmett \qquad Ogeechee \qquad	862534 1093858	$\begin{aligned} & 9825.4 \\ & 5796.3 \end{aligned}$	10744.8 $63: 8.7$	6.10 3.60
Peaked Red Roof, Hardwick	315432.52	811341.40	$\begin{array}{lll} 267 & 37 & 09 \\ 241 & 25 & 15 \end{array}$	$\begin{aligned} & \text { Palmetn } \\ & \text { Ogeechee } \end{aligned}$	874027 1119706	$\begin{aligned} & 9854.5 \\ & 5908.0 \end{aligned}$	$\begin{aligned} & \operatorname{log7R.6} 6 \\ & 6460.8 \end{aligned}$	611 3.67
Ouffee.	315248.41	810912.21	$\begin{aligned} & 3063508 \\ & 1233911 \end{aligned}$	Little Buzzard. Ogeechee	126 3 02 3033839	$\begin{array}{r} 3363.4 \\ 1890.3 \end{array}$	3678.1 20672	2.98
Call	315138.23	810907.08	$\begin{array}{ll} 151 & 58 \\ 265 & 30 \\ 20 \end{array}$	Ogaeehpe. Litte Buzzard	3315743 863102	$\begin{array}{r} 3835.3 \\ 2.70 .6 \end{array}$	3975.5 2811.1	2.26 1.60
White Flag at Harrey's Cut.	315444.27	810957.90	3250005 02454	Little Buzzard. Ozechee Ogeechee	1450123 1882446	$\begin{aligned} & 6802.4 \\ & 2548.2 \end{aligned}$	$\begin{aligned} & 7438.9 \\ & 2786.6 \end{aligned}$	
Rogers's Chimney.....	315213.02	811026.10	$\begin{array}{lll} 240 & 41 & 18 \\ 297 & 17 & 03 \end{array}$	Cuffee Call.	$\begin{array}{rrr} 60 & 41 \\ 117 & 17 & 45 \end{array}$	2226.6 2337.0	$\begin{array}{r} 9434.9 \\ 2555.7 \end{array}$	1.188
Dr. Cheves's Mill, chimney	315519.99	811225.16	9773918 315 59 47	Palmetto Ogeechee	974154 1360057	7933.5 51033.4	8854.0 5501.4	4.98
Great Buzzard Hammock, white flag.	315227.81	810833.45	$\begin{array}{ccc} 309 & 10 & 5.3 \\ 305 & 11 & 51 \end{array}$	Little Buzzard..... Morell \qquad	$\begin{array}{lll} 129 & 11 & 27 \\ 125 & 13 & 36 \end{array}$	$\begin{aligned} & 2169.2 \\ & 6371.9 \end{aligned}$	$\begin{aligned} & 2372.2 \\ & 6968.1 \end{aligned}$	1.35
Tree, letter S..................	315129.72	810952.78	$\begin{aligned} & 1720941 \\ & 2015956 \end{aligned}$	Ogeechee	$\begin{array}{rrr} 352 & 09 & 31 \\ 22 & 90 & 17 \end{array}$	3781.3 2846.3	$\begin{array}{r} 4069.5 \\ 3112.5 \end{array}$	$\stackrel{2.31}{1.77}$
White Flag, Florida Pasaage	315048.97	810888.72	$\begin{aligned} & 2292 \\ & 192 \\ & 25 \\ & 25 \end{aligned}$	Little Buzzard Pabmetto	$\begin{aligned} & 429618 \\ & 12 \\ & 12607 \end{aligned}$	$\begin{aligned} & 2968.9 \\ & 74638 \end{aligned}$	$\begin{array}{r} 9451.2 \\ 8162.2 \end{array}$	1.41 4.64
White Flag, Litule Buzzard Hammock.	315137.03	8107 23,18	$\begin{aligned} & 3020749 \\ & 1796658 \end{aligned}$	$\begin{aligned} & \text { Morell } . ~ \\ & \text { Paluneto } \end{aligned}$	1920856 3590656	3966.7 5810.5	$\begin{aligned} & 4337.8 \\ & 6354.2 \end{aligned}$	3.68
White Flag, Marsh isiand.	315118.48	810545.84	$\begin{array}{ll} 331 & 33 \\ 106 & 37 \\ 106 & 56 \end{array}$	Morell	$\begin{array}{lll}151 & 33 & 53 \\ 286 & 52 & 01\end{array}$	$\begin{array}{r} 1680.1 \\ 2846.4 \end{array}$	$\begin{aligned} & 1837.3 \\ & 312.7 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.77 \end{aligned}$
White Plag, on ereek in marsh ..	315238.70	810822.85	$\begin{aligned} & 3360824 \\ & 24943 \\ & \hline 23 \end{aligned}$	Morell Gruen Island \qquad	$\begin{array}{rl} 156 & 09 \\ 69 & 00 \\ 69 & 32 \end{array}$	$\begin{aligned} & 43 \times 4.0 \\ & 3130.0 \end{aligned}$	$\begin{array}{r} 4794.2 \\ 3422.9 \end{array}$	2.78
Mlack Flag, Hell Gate	315155.09	810436.34	$\begin{array}{r} 910347 \\ 1831507 \end{array}$		$\begin{array}{r} 4919398 \\ \quad 31510 \end{array}$	2857.3 2429.4	3124.7 8656.7	1.77 1.51

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section V.-Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
		$\cdots{ }^{\circ}{ }^{\prime \prime}$	- ${ }^{1}$		$\bigcirc{ }^{\circ}$ - 1	Metres	Furde.	Maies.
White Ylag, below Green islard.	315232.15	810408.13	94 94 74	Morell.... Latle Buzzard........	204 204 254 104	4148.2 5003.5	45910 6124.8	$\begin{aligned} & 2.6 i \\ & 3.48 \end{aligned}$
Black and White Flag, Raccoon Kеу.	315040.24	810332.60	24.53111	South Warsaw	653313	6878.7	7303.6	4.15
Pine, Horse Hammock	314932.08	810347.16	2330045	South Warsaw	530255	8189.5	8845.4	5.03
			29451856	North Oseabaw, (1)....	1131951	9444.5	3274.7	1.86
White Flag, beach of Ossabaw.	314913.33	810251.16	2923024	South Wareaw	423204	7384.1	8075.0	4.59
			2954816	North Ossabaw, (1)	1152842	1414.1	1546.4	0.86
Palm, tuft in tree, Ossabaw	314821.38	810242.25	$\begin{array}{lll} 16248 & 11 \\ 246 & 25 & 47 \end{array}$	Bl'k Flag, Raecoon Key. North Ossabaw, (l)....	3424744 462608	$44-6.8$ $1+36.7$	$\begin{aligned} & 4895.7 \\ & 1573.3 \end{aligned}$	2.78 0.89
White Flag, Little Ogeechee, opposite Rofe Dew.	315500.60	810824.08	$\begin{array}{r} 3164235 \\ 431132 \end{array}$	Litt\|* Buzzard.......... Ogeechee	$\begin{array}{ccc} 166 & \text { qi } & 07 \\ 6208 & 10 & 35 \end{array}$	6243.3 4147.1	$\begin{aligned} & 68.27 .5 \\ & 453.1 \end{aligned}$	3.88 2.58
White Flag, left bank of Little Ogeechee.	31 E4 09.41	810744.84	$\begin{array}{r} 693046 \\ 203 \\ 13 \end{array}$	Ogeechee Palmetto.	2492848 231551	4130.7 1215.1	$\begin{aligned} & 4517.2 \\ & 13.8 .8 \end{aligned}$	$\begin{aligned} & 2.57 \\ & 0.75 \end{aligned}$
White Flag, with tuf, Marsh isiand, ou Little Ogetchee river.	315332.04	810722.15	$\begin{array}{r} 1770244 \\ 3 \quad 1634 \end{array}$	Palmetio Little Buz	3570241 1831650	$\begin{array}{r} 22 \div 0.4 \\ 3 \% \div 4.0 \end{array}$	$\begin{array}{r} 2482.8 \\ 4667.9 \end{array}$	1.41 2.08
Possum Island	315518.23	816611.96	$\begin{array}{rrr} 276 & 56 & 34 \\ 62 & 54 & 98 \end{array}$	Pryor Paimetto	9657 249 24	$\begin{aligned} & 2: 93.5 \\ & 2202.4 \end{aligned}$	$\begin{aligned} & 2398.7 \\ & 2408.5 \end{aligned}$	1.36
White Flag, Crooked ereek	315402.51	810652.38	$\begin{array}{r} 145 \quad 5601 \\ 1248 \quad 29 \end{array}$	Palmetto. ... Little Buzzar	$\begin{aligned} & 395 \quad 5543 \\ & 1924809 \end{aligned}$	1604.7 4396.6	1754.8 48148.1	1.00 2.73
White Flag, with tuft, right batik and mouth of Lattie Ogerchee river.	315317.32	810536.35	1331251	Patmetco Green Islan	$\begin{array}{rrrrr}313 & 11 & 53 \\ 93 & 34 & 30\end{array}$	3974.3 1718.4	4346.2 1679.2	2.47 1.47
Whice Flag, above Green island	315413,83	810534.82	$\begin{array}{rrr} 214 & 58 & 13 \\ 33 & 01 & 20 \end{array}$	Pryor. \qquad Little Buzzard \qquad	$\begin{array}{rrr} 34 & 58 & 37 \\ 213 & 00 & 19 \end{array}$	$\frac{2097.1}{5.328}$	2297.3 6046.0	1.30 3.43
Tall Pine, Petit Guave	31543486	810651.07	$\begin{array}{ll}10 & 48 \\ 109 & 53 \\ 48\end{array}$	Litte Buzzard	$\begin{array}{llll}190 & 48 \\ 289 & 36 \\ 45\end{array}$	5378.7 991.1	5989.0 10838	3.34
Pahmeno, Petit Gua	315456.95	810616.28	79.8054	Palmetto	259	1879.5	2055.4	1.17
			2601959	Pryar	802045	2323.9	2541.3	1.44
Beaulieu, chimney	31 5556.22	81063698	$\begin{array}{lll} 10 & 02 & 35 \\ 50 & 02 & 41 \end{array}$	Litte Buzzard \qquad Osetchee \qquad	$\begin{aligned} & 1000207 \\ & 230004 \end{aligned}$	7910.4 73.3 .8	$\begin{aligned} & 86505 \\ & 8063.8 \end{aligned}$	4.91 4.96
Rose Dew, tuft on trec..	315553.70	810722.87	$\begin{aligned} & 11717 \\ & 240 \\ & 25 \end{aligned}$	Little Buzzar Palmetto.	$\begin{array}{lll}181 & 17 & 14 \\ 182 & 40 & 23\end{array}$	773.3 2097.9	$\begin{aligned} & 8445.0 \\ & 2.244 .2 \end{aligned}$	4.79 1.30
Morell's Chimney, at Montgomery.	315624.73	81070337	43208 11 1638	Little Buzzar Palmetto	$\begin{array}{cccc}184 & 31 & 54 \\ 191 & 16 & 10\end{array}$	8692.2 313.5	95055 3404	5.40 1.53
Buraside's Island, Brown's ehimuey.	315537.03	810537.86	61 6218 22 10	Patmerto.	$\begin{array}{lll} 241 & 06 & 21 \\ 202 & 09 & 29 \end{array}$	$\begin{array}{r} 3265.2 \\ 7772.5 \end{array}$	$\begin{aligned} & 3570.7 \\ & 8499.8 \end{aligned}$	2.03 4.83
Dead Pine, near Orsabaw.	315047.10	81080137	$\begin{array}{lll} 230 & 4237 \\ 144 & 17 & 15 \end{array}$	Green Island Ogeechee	$\begin{array}{r} 514498 \\ 3241824 \end{array}$	$\begin{array}{r} 7139.2 \\ 5889.7 \end{array}$	$\begin{aligned} & 7807.2 \\ & 6440.8 \end{aligned}$	4.44 3.66
Bird Nest Tree.	315040.06	B1 0656.65	$\begin{aligned} & 1740333 \\ & 2185502 \end{aligned}$	Palmetto. Green Islan	3540317 385619	$\begin{array}{r} 7605.0 \\ 6088.4 \end{array}$	$\begin{aligned} & 8316.6 \\ & 6 r 36.1 \end{aligned}$	1.72
Crooked Top Pine, Green island.	315415.35	810433.72	443658 7438 m	Little Buzzard Ogeechee.	$\begin{array}{lll} 224 & 35 & 25 \\ 259 & 35 & 01 \end{array}$	$\begin{aligned} & 6576.7 \\ & 9038.8 \end{aligned}$	$\begin{aligned} & 7192.1 \\ & 9 \times 84.6 \end{aligned}$	4.09 5.62
Adam's Chimney, Skiddaway...	315334.93	810315.30	$\begin{aligned} & 715704 \\ & 624809 \end{aligned}$	Green frland............ Lictle Buzzard	$\begin{aligned} & 2515624 \\ & 242445 \end{aligned}$	2194.7 7512.1	$\begin{array}{r} 2290.7 \\ 8215.0 \end{array}$	4.30
White Flag, mouth of Adam's creek.	315227.25	81031529	$\begin{array}{r} 3389546 \\ 785930 \end{array}$	Raccoon Key. Litle Buzzard............	$\begin{array}{lll} 158 & 25 & 57 \\ 258 & 57 & 10 \end{array}$	1430.5 7073	$\begin{array}{r} 1564.4 \\ 773.3 \end{array}$	0.89 4.39
Cedar, Raccoon Key.	315133.63	810389.00	$\begin{aligned} & 1590754 \\ & 3351508 \end{aligned}$	Green Island............ North Ussabaw, (1)...	$\begin{aligned} & 3320721 \\ & 15515 \\ & 53 \end{aligned}$	3491.5 5427.1	3818.2 5924.9	2.17 3.37
White Elag, Elora's hammock,..	315241.35	810212.30	$\begin{array}{r} 966944 \\ 16.3339 \end{array}$	Racconn Key Skidhdeway	$\begin{array}{lll} 206 & 09 & 27 \\ 345 & 33 & 29 \end{array}$	$\begin{array}{r} 19661 \\ 1976.8 \end{array}$	2150.1 2161.8	1.22
Falmetto, Raccoon Key.	315122.78	81024541	$\begin{aligned} & 3161359 \\ & 1801434 \end{aligned}$	North Osshbaw, (1)... Raccoon Key	$\begin{array}{rrr} 166 & 14 & 22 \\ 0 & 14 & 34 \end{array}$	4730.5 655.0	5173.1	2.94
Buoy, Egg Isiand shoal.........	314948.55	810302.97	$\begin{array}{lll} 230 & 23 & 90 \\ 109 & 28 & 14 \end{array}$	South Warsaw \qquad Morell. \qquad	$\begin{array}{r} 503506 \\ 2092704 \end{array}$	$\begin{aligned} & 6862.0 \\ & 8692.4 \end{aligned}$	75041 4037	4.26 4.29
Fourth Buoy,	31493588	810222.54	$\begin{array}{lll} 221 & 4636 \\ 171 & 26 & 02 \end{array}$	South Warsew, Raceoon Key	$\begin{array}{r} 414801 \\ 3512550 \end{array}$	$\begin{aligned} & 6369.5 \\ & -490.9 \end{aligned}$	$\begin{aligned} & 6965.5 \\ & 4: 64.3 \end{aligned}$	$\begin{aligned} & 3.96 \\ & 2.48 \end{aligned}$
Third Buoy......................	314908.67	810058.59	$\begin{array}{lll} 149 & 37 & 52 \\ 199 & 58 & 04 \end{array}$	Raccoon Key south Warahw	$\begin{array}{r} 3293656 \\ 195845 \end{array}$	$\begin{aligned} & 5543.8 \\ & 5444.5 \end{aligned}$	$\begin{aligned} & 6064.7 \\ & 65040.7 \end{aligned}$	344 3.69
Second Buoy....................	314814.81	805956.33	$\begin{aligned} & 1094711 \\ & 1830059 \end{aligned}$	North Ossabaw, (1).... South Warsaw	$\begin{array}{r} 2894605 \\ 30707 \end{array}$	$\begin{array}{r} 3529.9 \\ 7255.5 \end{array}$	$\begin{array}{r} 380.4 \\ 7931.4 \end{array}$	$\begin{aligned} & 2.19 \\ & 4.51 \end{aligned}$

UVITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.-Savannah river to Sapelo sound. Sketch E, No. 16.

Name of etation.	Latitude.	Longitude.	Azimuth.	To station -	Back azimuth.	Distance	Distance.	Distance.
White Flag, Pine island.........	315152.23	$\begin{array}{ccc} a & \prime & \prime \prime \\ 81 & 00 & 58.45 \end{array}$	$\begin{array}{r} 111 \\ 845310 \\ 2545058 \end{array}$	Raccoon Key Mouth Warsapy		Metres. $\begin{aligned} & 2819.3 \\ & 2499.9 \end{aligned}$	$\begin{aligned} & \text { Yards. } \\ & 3.83 .1 \\ & 2296.4 \end{aligned}$	$\begin{gathered} \text { Miles. } \\ 1.75 \\ 1.30 \end{gathered}$
Northernmost Dead Pine........	315221.58	810105.40	$\begin{array}{lll} 66 & 14 & 35 \\ 63 & 06 & 08 \end{array}$		2461342 2420356	$\begin{array}{r} 2868.6 \\ 7436.7 \end{array}$	$\begin{aligned} & 31.37 .0 \\ & 8142.5 \end{aligned}$	$\begin{aligned} & 1.78 \\ & 4.82 \end{aligned}$
Shanty, Pine island...............	315216.31	810005.40	2865746 261638	South Warsaw......... Noith Ussabaw	$\begin{array}{lll} 105 & 57 & 59 \\ 206 & 15 & 36 \end{array}$	$\begin{array}{r} 661.4 \\ 6962.6 \end{array}$	$\begin{array}{r} 723.3 \\ 7614.1 \end{array}$	$\begin{aligned} & 0.41 \\ & 4.33 \end{aligned}$
Black.............................	315200.71	805918.60	364852 84 47	North Ussabaw, (1)... Raccoon Key	$\begin{array}{llll}216 & 47 & 26 \\ 264 & 35 & 23\end{array}$	7197.5 5456.4	$\begin{aligned} & 7871.0 \\ & 5967.0 \end{aligned}$	4.47 3.39
Wreek	314955.00	80.584332	1595201 1175108	South Warsaw Raccoon Key..........	$\begin{array}{lll} 339 & 51 & 30 \\ 297 & 49 & 00 \end{array}$	$\begin{aligned} & 4429.7 \\ & 7192.6 \end{aligned}$	$\begin{aligned} & 4844.2 \\ & 7865.8 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 4.47 \end{aligned}$
Hopes	315254.09	805810.14	$\begin{array}{r} 85920 \\ 173596 \end{array}$	Wreck Black \qquad	188 2979 29	$\begin{aligned} & 5584.1 \\ & 2437.0 \end{aligned}$	$\begin{aligned} & 6106.6 \\ & 265.0 \end{aligned}$	3.47 1.51
Beach	315333.45	80570665	20 50 50 2946	Wreck Brack	$\begin{array}{lll} 900 & 38 & 55 \\ 230 & 23 & 35 \end{array}$	$\begin{aligned} & 7203.1 \\ & 4500.1 \end{aligned}$	$\begin{array}{r} 7877.1 \\ 4921.2 \end{array}$	$\begin{aligned} & 448 \\ & 9.80 \end{aligned}$
Odingsell', chimney.	315342.98	810036.93	$\begin{array}{r} 3325705 \\ 423908 \end{array}$	South Warsaw Eaccoon Key.	1525734 222 38	$\begin{array}{r} 3218.7 \\ 4979.4 \end{array}$	$\begin{array}{r} 3514.4 \\ \$ 445.2 \end{array}$	$\begin{aligned} & 2.00 \\ & 3.09 \end{aligned}$
White Flag, southwest of Skiddaway.	315304.41	810119.87	3025294 1224557	South Waseaw........ Bkiudaway.	$\begin{array}{lll} 12 z & 53 & 16 \\ 302 & 45 & 19 \end{array}$	$\begin{aligned} & 3084.0 \\ & 2224.8 \end{aligned}$	$\begin{aligned} & 3372.6 \\ & 2433.0 \end{aligned}$	1.38 1.38
Fole, with tuft, Odingsellss creek.	315312.30	810003.80	$\begin{aligned} & 173 \\ & 178 \\ & 342 \\ & 52 \\ & 31 \\ & 35 \end{aligned}$	John's Hammock....... South Warsaw	353 1625296 17	2229.1	$\begin{aligned} & 2428.9 \\ & 2193.8 \end{aligned}$	1.38
Cedar Tuft	315752.94	805542.08	$\begin{array}{r} 64543 \\ 3344914 \end{array}$	Great Warsaw pelit Ghnu.....	186 154 159	5783.9 2396.7	$\begin{aligned} & 6325.1 \\ & 2620.9 \end{aligned}$	3.59 1.49
Pine, Doyle's hammock	315416.11	805852.78	1964640 4391202	Cabbrge Island Petit Chou,	164704 53	4108.8 7535.3	4493.3 8.240 .4	2.35 4.68
Pole	315638.59	803521.09	$\begin{array}{ll} 166 & 28 \\ 235 & 12 \\ 23 & 53 \end{array}$	```Oedar Tuft. Hetit Chou```	$\begin{array}{r} 3462801 \\ 7524003 \end{array}$	$\begin{array}{r} 2355.2 \\ 4907 \end{array}$	$\begin{array}{r} 2575.6 \\ 536.6 \end{array}$	1.46 0.30
Et. John's Oar	315710.17	805659.91	$\begin{array}{r} 3425236 \\ 51 \quad 1599 \end{array}$	Great Warsaw Cabbage Lsland	$\begin{aligned} & 1625303 \\ & 231 \quad 1453 \end{aligned}$	$\begin{array}{r} 4631.5 \\ 2279.7 \end{array}$	$\begin{array}{r} 5064.9 \\ \mathbf{2 4 9 3 . 0} \end{array}$	2.88 1.42
Pole, northeast paint of Great Warsaw.	315429.05	805546.88	$\begin{aligned} & 1334350 \\ & 1953845 \end{aligned}$	Cabbage Island Petit Cliou.	313 154236 49	5114.9 4271.7	5593.5	3.18 2.65
Eastern Point.	315815.21	805114.64	$\begin{array}{r} 643450 \\ 3904503 \end{array}$	Petit Chon \qquad Tybee Light	$\begin{array}{r} 2443249 \\ 1045 \quad 25 \end{array}$	$\begin{aligned} & 6639.9 \\ & 5836.1 \end{aligned}$	$\begin{array}{r} 7261.2 \\ 6382.2 \end{array}$	4.13 3.62
Pole, with tut, sonth side Warsaw island.	315446.63	805711.64	$\begin{array}{lll} 270 & 11 & 08 \\ 223 & 24 & 07 \end{array}$	Great Warsaw.. Petit Chou	9611 43 48 15	$\begin{aligned} & 1672.7 \\ & 4917.3 \end{aligned}$	$\begin{aligned} & 1899.2 \\ & 5377.4 \end{aligned}$	1.04
Longfellow's Fligg Tree.........	315514.81	80581568	$\begin{aligned} & 1854144 \\ & 284383 \end{aligned}$	Cabbage Island Grear Warsaw.	$\begin{array}{r} 54148 \\ 1043 y 44 \end{array}$	$\begin{array}{r} 2133.4 \\ 3466.6 \end{array}$	$\begin{aligned} & 2333.0 \\ & 3791.0 \end{aligned}$	1.32 2.15
Walker	31 5706.45	805904.43	$\begin{array}{r} 75060 \\ 3111906 \end{array}$	Romerly Margh......... Cabrage Istand	$\begin{array}{ll} 187 & 50 \\ 131 \\ 19 & 19 \end{array}$	1969.3 1907.5	$\begin{aligned} & 2153.6 \\ & 2173.5 \end{aligned}$	1.82
White Flag in tree, Great Warsaw island.	315251.14	805834.65	$\begin{gathered} 15800026 \\ 2055904 \end{gathered}$	John'm Hammock...... Dedar Tuft	$\begin{array}{rrl} 317 & 59 & 34 \\ 26 & 40 & 35 \end{array}$	$\begin{array}{r} 3849.2 \\ 10341.3 \end{array}$	$\begin{array}{r} 4209.4 \\ 11308.9 \end{array}$	2.39 8.42
White Flag, Whiting Point	315830.28	80.5934 .17	$\begin{array}{lll} 297 & 21 & 00 \\ 329 & 43 & 33 \end{array}$	Pole. Cabbage IBland	$\begin{aligned} & 177814 \\ & 1494419 \end{aligned}$	7492.6 4508.9	$\begin{aligned} & 8198.8 \\ & 4930.3 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 2.80 \end{aligned}$
Palmetto, near Cabbage island ..	315730.26	805752.31	$\begin{array}{r} 110656 \\ 2589628 \end{array}$	Cabbage Fsland Dedar'Tunt	$\begin{array}{r} 1410648 \\ 78 \quad 27 \quad 37 \end{array}$	$\begin{aligned} & 2084.9 \\ & 3489.7 \end{aligned}$	$\begin{aligned} & 9280.0 \\ & 3816.2 \end{aligned}$	1.29 2.17
Stump..........................	315714.09	805742.42	$\begin{array}{ll} 286 & 23 \\ 249 & 15 \\ 246 \end{array}$	Pole. Cedar Tuft	1062497 691700	3871.5 3880.8	$\begin{array}{r} 4233.8 \\ 3697.1 \end{array}$	2.41 2.10
Hydrographic Mark	315633.98	805859.90	3061458 22	Great Warmaw........... Romenly Marsh	$\begin{aligned} & 1961699 \\ & 20211 \\ & \hline 22 \end{aligned}$	$\begin{aligned} & 5599.4 \\ & 1027.0 \end{aligned}$	$\begin{aligned} & 612 x .3 \\ & 1123.1 \end{aligned}$	3.48 0.64
Pine of Gabbage Imiand.........	315627.48	805740.18		Ocdar Tuft Pole.	$\begin{aligned} & 494112 \\ & 8438 \end{aligned}$	$\begin{array}{r} 4067.3 \\ 3668.8 \end{array}$	$\begin{aligned} & 4447.9 \\ & 4012.1 \end{aligned}$	$\begin{aligned} & 2.53 \\ & 2.28 \end{aligned}$
Timberstick	313845.09	805752.28	$\begin{array}{r} 800919 \\ 2931014 \end{array}$	Red Homse Cedar Tuft \qquad	$\begin{aligned} & 2400744 \\ & 11511824 \end{aligned}$	$\begin{aligned} & 5413.1 \\ & 3775.2 \end{aligned}$	$\begin{gathered} 5918.6 \\ 4128.4 \end{gathered}$	3.38
Dead Tree in hanmack, west of Little Tybee.	315906.71	805500.61	$\begin{array}{r} 192718 \\ 64323 \end{array}$	Great Warsaw. Pole.	$\begin{aligned} & 1928642 \\ & 1964312 \end{aligned}$	$\begin{aligned} & 8209.0 \\ & 4383.5 \end{aligned}$	$\begin{array}{r} 6977.1 \\ 5023.3 \end{array}$	5.10 $\mathbf{8 . 8 5}$
Chimney of houre on Litile Tybue.	315809.76	805437.10	$\begin{aligned} & 222154 \\ & 141338 \end{aligned}$	Pole. Petit Ohou	$\begin{aligned} & 502 \\ & 104 \\ & 1384 \end{aligned}$	$\begin{aligned} & 3083.6 \\ & \mathbf{8 7 6 9 . 8} \end{aligned}$	3319.8	$\begin{aligned} & 1.69 \\ & 1.72 \end{aligned}$
Barrel	315707.28	805402.35	$\begin{array}{lll} 64 & 30 & 04 \\ 37 & 16 & 20 \end{array}$	Petit Chou, Great Warnaw	$\begin{array}{lll} 244 & 99 & 32 \\ 217 & 15 & 14 \end{array}$	$\begin{aligned} & 1764.9 \\ & 5450.0 \end{aligned}$	$\begin{aligned} & 1030.0 \\ & 5860.0 \end{aligned}$	1.10
Palmetto in hammock, east of Litue Tybee.	318816.67	805923.78	$\begin{aligned} & 415831 \\ & 7837 \end{aligned}$	protit Chon \qquad Cedar Tuft	$\begin{array}{lll}291 & 57 & 88 \\ 250 & 56 \\ 28\end{array}$	$\begin{aligned} & 3894.4 \\ & 3703.9 \end{aligned}$	$\begin{aligned} & 4281.0 \\ & 4000.5 \end{aligned}$	2.48
White Flag between creeky	313758.31	805242.85	1725056 2083 54	Fort Pulaski Tybee Light	$\begin{array}{r} 3425039 \\ 284509 \end{array}$	$\begin{array}{r} 6912.9 \\ 7181.6 \end{array}$	$\begin{aligned} & 7559.7 \\ & 7768.0 \end{aligned}$	$\begin{aligned} & 4.29 \\ & 4.49 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section V.-Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance,	Distance.
Dead Pine, north end of Little Tybee.	$\begin{gathered} \circ \\ 31 \\ 39 \\ \hline 1 \end{gathered}$		$\begin{aligned} & 1822939 \\ & 1161726 \end{aligned}$	Fort Pulaski............. Wilmington................	$\begin{array}{rcc} 0 & 1 & 11 \\ 2 & 29 & 43 \\ 296 & 15 & 34 \end{array}$	Metres. 4761.3 6195.1	Yards. 5206.8 6774.8	$\begin{array}{r} \text { Miles. } \\ 2.96 \\ 3.85 \end{array}$
White Flag in cedar, Big Tybee creek.	315937.56	805204.09	$\begin{array}{llll}153 & 40 & 52 \\ 103 & 10 & 34\end{array}$	Fort Puiaski \qquad Witmington.	$\begin{array}{ll}333 & 4014 \\ 2830800\end{array}$	4242.0 7850.5	$\begin{aligned} & 4838.9 \\ & 85 \$ 5.1 \end{aligned}$	2.64 4.88
Cow Forn, Gibson's ©ut off....	315935.10	805427.45	205 115 1158 38	Fort Pulaski, Wilmington	258250 295	4310.2 4305.8	$\begin{aligned} & 4713.5 \\ & 4708.7 \end{aligned}$	2.63 2.67
White Flag, Tybee river, right bank.	320039.88	805598.14	260 86 66 $1 \begin{array}{r}13 \\ \hline\end{array}$	Tybee Light Wilmington	$\begin{array}{r} 803849 \\ 52664109 \end{array}$	$\begin{aligned} & 7846.2 \\ & 2291.9 \end{aligned}$	$\begin{aligned} & 8580.4 \\ & 2506.3 \end{aligned}$	4.87
Barn, gable end, Shad's plantation.	320057.39	$80 \quad 5654.84$	2654515 339 28	Tybee Light Pelit Chou.	$\begin{array}{r} 854837 \\ 1592947 \end{array}$	$\begin{array}{r} 10042.7 \\ 8378.2 \end{array}$	10989.4 9162.1	6.24 5.21
Flag-staff, Fort Pulaski..........	220138.70	805315.33	$\begin{array}{r}2770824 \\ 71 \\ \hline 1\end{array}$	Tybee Light Wilminglon	$\begin{array}{r} 97 \\ 25199 \\ 2514 \end{array}$	4288.4 6091.7	$\begin{aligned} & 4689.7 \\ & 6661.7 \end{aligned}$	2.66 3.78
Warsaw Har Puoy	315245.68	805929.15	1495614 18954	Petit Chon Eastern Point.	$\begin{array}{r} 3295449 \\ 95457 \end{array}$	$\begin{array}{r} 8432.4 \\ 10302.9 \end{array}$	$\begin{array}{r} 9221.4 \\ 11256.9 \end{array}$	5.24 6.40
Second Buoy, Warsaw.	315435.76	805357.11	$\begin{array}{rrr} 95 & 28 & 32 \\ 156 & 06 & 32 \end{array}$	Great Warsaw Petit Chou.	$\begin{aligned} & 275 \quad 2723 \\ & 33605 \quad 57 \end{aligned}$	$\begin{aligned} & 3454.2 \\ & 4273.0 \end{aligned}$	$\begin{aligned} & 3777.4 \\ & 4672.8 \end{aligned}$	$\stackrel{2.15}{2.65}$
Onfehavo Sourd to Sapelo Soturd.								
Oane Patch	315038.68	810615.35	1661033 20949	Palmetto Green Isiand	$\begin{array}{r} 3460955 \\ 295094 \end{array}$	7833.5 5508.6	$\begin{aligned} & 8566.5 \\ & 6024.0 \end{aligned}$	4.87 3.42
Bigma	315122.75	810947.62	$\begin{aligned} & 2103921 \\ & 247 \\ & 37 \\ & \hline 11 \end{aligned}$	Palmetto Green Isiand	$\begin{array}{r} 304035 \\ 67 \quad 3958 \end{array}$	$\begin{aligned} & 7265.4 \\ & 8994.9 \end{aligned}$	$\begin{aligned} & 7945.2 \\ & 9836.5 \end{aligned}$	4.51 5.59
Buck Head	314706.42	810811.79	$\begin{aligned} & 1621813 \\ & 20505 \quad 24 \end{aligned}$	Sigma	$\begin{array}{r} 3421723 \\ 250625 \end{array}$	$\begin{aligned} & 8286.8 \\ & 7218.5 \end{aligned}$	$\begin{aligned} & 9062.2 \\ & 7893.9 \end{aligned}$	5.15 4.49
Stevenson's Point	314618.02	811216.26	2023606 256554	Sizma	223724 7658	10166.7 6602.1	11118.0 7219.9	6.32 4.10
Neweli	314447.51	810855.11	$\begin{array}{lll} 194 & 54 & 58 \\ 117 & 47 & 11 \end{array}$	Buck Head Stevenson's Point	$\begin{array}{r} 1455 \\ 297 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 4427.4 \\ & 5982.1 \end{aligned}$	$\begin{aligned} & 4841.7 \\ & 6541.3 \end{aligned}$	2.75 3.72
Yellow Bluft.....................	314239.75	B1 1406.95	$\begin{array}{ll} 203 & 98 \\ 244 & 21 \\ 21 \end{array}$	Stevenson's Point Newell.	$\begin{aligned} & 282619 \\ & 642440 \end{aligned}$	$\begin{aligned} & 7326.3 \\ & 9102.7 \end{aligned}$	8011.8 9954.4	4.55 5.65
Walburg .	31.4144 .30	810902.85	1890402	Newell \qquad Yellow Blufir. \qquad	20406 2820058	5646.3 8186.7	$\begin{aligned} & 6174.6 \\ & 8952.7 \end{aligned}$	3.51 5.08
John Thomas	313829.32	811507.19	$\begin{aligned} & 2375615 \\ & 1913710 \end{aligned}$	Walburg. Yeliow B'uff.............	575996 11 97 42	$\begin{array}{r} 11320.2 \\ 7873.9 \end{array}$	12379.4 8610.7	7.03 4.89
Frghish Cut.	313821.79	81. 1052.81	1471451 204 54	Yellow Bluff............ Walburg.	$\begin{array}{r} 3271309 \\ 245500 \end{array}$	$\begin{aligned} & 9447.6 \\ & 6876.5 \end{aligned}$	$\begin{array}{r} 10331.6 \\ 7519.9 \end{array}$	5.87 4.27
Burbour's Isiand.	313428.95	811423.45	$\begin{aligned} & 1710902 \\ & 2174355 \end{aligned}$	John Thomas English Cut	$\begin{array}{r} 3510839 \\ 3745 \quad 45 \end{array}$	$\begin{array}{r} 7491.9 \\ 9068.6 \end{array}$	$\begin{aligned} & 8192.9 \\ & 9917.1 \end{aligned}$	4.65 5.68
8t. Catherine.	313352.79	811047.65	$\begin{aligned} & 1790333 \\ & 1411441 \end{aligned}$	English Cat John Thomas.	$\begin{array}{lll} 339 & 03 & 30 \\ 321 & 12 & 25 \end{array}$	$\begin{array}{r} 8228.2 \\ 10923.4 \end{array}$	$\begin{array}{r} 9060.4 \\ 11945.5 \end{array}$	5.15 6.79
Mens Island	313738.01	811246.03	$\begin{array}{r} 234812 \\ 3354602 \end{array}$	Barbour's Island \qquad St. Catherine. 	$\begin{aligned} & 2034721 \\ & 1554704 \end{aligned}$	$\begin{array}{r} 6363.4 \\ 7605.4 \end{array}$	$\begin{aligned} & 6958.8 \\ & 8317.0 \end{aligned}$	3.95 4.72
Raccoon Key, Pine..............	315122.48	810408.62	$\begin{array}{r} 2530713 \\ 463404 \end{array}$	Rhecoon Key Morell.	$\begin{array}{r} 730757 \\ 20633 \quad 29 \end{array}$	$\begin{aligned} & 2289.4 \\ & 2417.4 \end{aligned}$	$\begin{array}{r} 2505.6 \\ 2643.6 \end{array}$	1.42
North Oakabaw, (2)..............	314853.70	810204.91	$\begin{array}{lll} 120 & 15 & 26 \\ 168 & 33 & 54 \end{array}$	Morell \qquad Raccoon Key.	$\begin{aligned} & 300 \quad 1346 \\ & 34833 \quad 39 \end{aligned}$	5797.5 $5 \div 52.9$	$\begin{aligned} & 6340.0 \\ & 5853.8 \end{aligned}$	3.60 3.33
Amall Cresk	314943.85	810424.84	21819 250 250	Raccoon Key, black and white fing. Ossabaw Beach, white flag.	382003 1105306	2914.3 2036.5	2421.5	1.37 1.64
Bradley	314826.11	810417.29	$\begin{array}{lll} 175 & 15 & 38 \\ 237 & 17 & 14 \end{array}$	Small Creek \qquad Ossabaw Beach, white flag.	$\begin{array}{r} 3551534 \\ 571759 \end{array}$	$\begin{aligned} & 2402.4 \\ & 2092.0 \end{aligned}$	$\begin{array}{r} 2627.2 \\ 2943.9 \end{array}$	1.49 1.67
Point	314910.87	810446.68	$\begin{aligned} & 2092910 \\ & 3304316 \end{aligned}$	Small Creck. Hradley	$\begin{array}{r} 292922 \\ 1504331 \end{array}$	$\begin{aligned} & 1166.7 \\ & 1580.5 \end{aligned}$	$\begin{array}{r} 1275.9 \\ 1728.4 \end{array}$	0.72
Crooked	314808.05	810542.77	$\begin{array}{ll} 317 & 19 \\ 356 & 14 \end{array}$	$\begin{aligned} & \text { Point. } \\ & \text { Bradley. } \end{aligned}$	$\begin{aligned} & 371944 \\ & 76 \quad 4649 \end{aligned}$	$\begin{array}{r} 24339 \\ 2316.0 \end{array}$	$\begin{aligned} & 2660.5 \\ & 2532.7 \end{aligned}$	1.51
Cedar............................	314733.95	810510.72	$\begin{aligned} & 9211035 \\ & 1915733 \end{aligned}$	Bradley. Point.	$\begin{array}{ll} 41 & 11 \\ 11 & 57 \\ \hline 1 \end{array}$	$\begin{array}{r} 2134.4 \\ 3051.3 \end{array}$	$\begin{array}{r} 2334.1 \\ 3336.8 \end{array}$	1.38
Serah........	314794.91	810546.48	$\begin{aligned} & 253131 \\ & 25 \\ & 231 \\ & \hline 12 \\ & \hline \end{aligned}$	Cedar..... Bradley.................	$\begin{array}{lll} 73 & 31 & 34 \\ 51 & 13 & 42 \end{array}$	$\begin{array}{r} 981.0 \\ 3049.5 \end{array}$	$\begin{aligned} & 1072.8 \\ & 3291.1 \end{aligned}$	$\begin{aligned} & \oplus .61 \\ & 1.87 \end{aligned}$
White Flag on Bogsing Inlmad...	314945.56	810704.10	$\begin{aligned} & 2120423 \\ & 1433045 \end{aligned}$	Green Istand Ogeeched.	$\begin{array}{r} 320544 \\ 323 \\ 299 \end{array}$	$\begin{aligned} & 7572.0 \\ & 8307.3 \end{aligned}$	8280.5 9084.6	$\begin{aligned} & 4.7 \\ & 5.16 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.-Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of staion.	Latitude.	Longitude.	Azimath.	To station-	Back azimuth.	Distance.	Distance.	Distance.
White Flag on Racceon Island.	314949.05	$\begin{array}{ccc} \circ & \prime \prime \\ \text { B1 } & 07 & 52.31 \end{array}$	$\begin{array}{ccc} \bullet & 11 \\ 189 & 41 & 12 \\ 133 & 36 & 64 \end{array}$	Little Buzzard.......... sigraa.	$\begin{array}{r} 94124 \\ 3139503 \end{array}$	$\begin{gathered} \text { stetres. } \\ \begin{array}{c} 9570.0 \\ 4185.5 \end{array} \end{gathered}$	$\begin{gathered} Y_{a r d s} \\ 3904.0 \\ 4577.1 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 2.22 \\ 2.60 \end{gathered}$
Sharghae Pine.................	314930.09	810802.46	$\begin{array}{r} 1419730 \\ 482836 \end{array}$	Sigma. Stevenson's Point	3212635	$\begin{aligned} & 4436.2 \\ & 8919.1 \end{aligned}$	$\begin{aligned} & 4851.3 \\ & 9753.7 \end{aligned}$	$\begin{aligned} & 2.76 \\ & 5.54 \end{aligned}$
White Flag, Skipper's Narrows.	315025.61	811005.54	249119 3495940	Stevenson's Point Newell 	$\begin{array}{r} 2040010 \\ 1700017 \end{array}$	$\begin{array}{r} 8448.5 \\ 10667.0 \end{array}$	$\begin{array}{r} 9239.0 \\ 11665.1 \end{array}$	5.63
Pecksniff.....................	314901.87	811030,40	3142117	Buck Inead Stevengon's Point......	$\begin{aligned} & 13429 \\ & 208 \quad 58 \\ & 29 \end{aligned}$	$\begin{aligned} & 5084.9 \\ & 5768.6 \end{aligned}$	$\begin{aligned} & 5560.7 \\ & 6308.4 \end{aligned}$	3.16 3.58
Black and White Flag.........	314908.47	B1 0983.05	405800 333296	Stevenson's Point...... Buck Head	22065629 1533044	${ }_{49590.7}^{6950.7}$	$\begin{gathered} 7601.1 \\ 4593.1 \end{gathered}$	$\begin{aligned} & 4.32 \\ & 2.61 \end{aligned}$
Singlestick	314733.21	811010.05	2845039 3385202	Buck Head Newell.	1045141 1585241	$\begin{aligned} & 3218.6 \\ & 5470.7 \end{aligned}$	$\begin{aligned} & 3519.8 \\ & 5982.6 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 3.40 \end{aligned}$
Cross Stick	314755.84	811105.37	3292445 314537	Newell \qquad Stevenson's Point. 	$\begin{aligned} & 149 \quad 25 \quad 54 \\ & 2114500 \end{aligned}$	6736.9 3543.2	$\begin{aligned} & 7367.3 \\ & 3874.7 \end{aligned}$	4.18 2.20
White Flag, Kilkenny Creek....	314639.25	B1 1048.41	3190510	Newell. Buck Head	$\begin{array}{r} 1390610 \\ 783140 \end{array}$	$\begin{array}{r} 4552.9 \\ 4204.5 \end{array}$	$\begin{array}{r} 4978.9 \\ 4597.9 \end{array}$	$\begin{aligned} & 2,83 \\ & 2.61 \end{aligned}$
Big Tom.	314647.08	810921.20	$\begin{array}{r} 790102 \\ 1751923 \end{array}$	Stevenson's Point Sigma.	$\begin{aligned} & 238 \\ & 355 \\ & 395 \\ & 19 \end{aligned}$	4691.8 8518.6	5130.8 9315.7	$\begin{aligned} & \mathbf{2 . 9 1} \\ & 5.29 \end{aligned}$
Dead Pine.	314524.82	8108×5.63	$\begin{array}{rrr} 105 & 07 \\ 34 & 01 & 32 \\ 37 \end{array}$	Seevengon's Point...... Newell	$\begin{array}{lll}285 & 05 & 31 \\ 914 & 01 & 29\end{array}$	$\begin{array}{r} 6285.6 \\ 1386.2 \end{array}$	$\begin{array}{r} 6873,7 \\ 1515.9 \end{array}$	$\begin{aligned} & 3.91 \\ & 0.81 \end{aligned}$
Milligan's Point.	314359.77	811000.46	299 340 184 19	Newell Walburg	$\begin{array}{r} 492818 \\ 1600149 \end{array}$	2963.1 4139.7	2474.8 4855.1	1.40 2.76
Timmins	314034.19	811153.46	3383554 53 50 56	English Cut. John Thomas, Joh	$\begin{array}{r} 1583626 \\ 2325914 \end{array}$	$\begin{gathered} 4379.4 \\ 6390.0 \end{gathered}$	4789.2 6987.9	${ }_{3.97}^{2.72}$
Medway	314313.41	811207.74	2401353 3092401	Newell Walburg	$\begin{array}{r} 6015 \quad 34 \\ 119 \\ 105 \end{array}$	$\begin{aligned} & 5840.1 \\ & 5588.0 \end{aligned}$	$\begin{aligned} & 6386.6 \\ & 6110.9 \end{aligned}$	$\begin{array}{r} 3.63 \\ 3.47 \end{array}$
Shell Bank.	314538.80	811092.04	3435345 315135	Walburg. Medway	$16354 \quad 27$ $21150 \quad 39$	7516.6 5271.4	$\begin{gathered} 8219.9 \\ 5764.6 \end{gathered}$	4.67 3.27
Hart	314519.37	811255.19	3420908 2613243	Medway. Bhell Bank	1620933 81 84	$\begin{aligned} & 4075,4 \\ & 4074,1 \end{aligned}$	${ }_{4455.7}^{4456.7}$	${ }_{2}^{2.53}$
Harris.	314410.27	811400.39	$\begin{aligned} & 9280846 \\ & 2459395 \end{aligned}$	Fart. ghell Bank........ *...	$\begin{array}{r} 420925 \\ 65 \quad 2524 \end{array}$	$\begin{aligned} & 2870.5 \\ & 6551.1 \end{aligned}$	$\begin{aligned} & 3139.1 \\ & 7164.1 \end{aligned}$	1.78 4.07
Pine.	314551.38	811508.03	3931446 285 4424	$\begin{aligned} & \text { Harr } \\ & \text { Hart } \end{aligned}$	$\begin{array}{llll}153 & 15 & 17 \\ 105 & 45 & 34\end{array}$	$\begin{array}{r} 3487.1 \\ 3631.9 \end{array}$	$\begin{aligned} & 3813.4 \\ & 3471.7 \end{aligned}$	2.17 2.26
Loan	314405.94	811546.15	$\begin{aligned} & 2670113 \\ & 24317154 \end{aligned}$	Haris \qquad Hart.	$\begin{aligned} & 870204 \\ & 631994 \end{aligned}$	2576.5 5035.7	2817.6	1.60 3.13
South Ossabaw.	314337.47	810805.58	$\begin{array}{r} 938915 \\ 1360846 \end{array}$	Medway. Shell Bank	$\begin{array}{llll} 263 & 21 & 08 \\ 316 & 07 & 34 \end{array}$	$\begin{aligned} & 6417.6 \\ & 5182.7 \end{aligned}$	$\begin{aligned} & 7018.1 \\ & 5667.6 \end{aligned}$	3.99 3.22
North Point of st. Cath	314159.42	810758.93	1505215 1640332	Shell Bank Neweld.	3305100 3440302	77355	$\begin{aligned} & 8459.3 \\ & 5887.4 \end{aligned}$	${ }_{3}^{4.80}$
North Chimney of C. Rodger's House.	314725.28	811200.84	3144919 2759915	Newell Buck Head	$\begin{array}{r} 1345057 \\ 953116 \end{array}$	$\begin{array}{r} 6891.3 \\ 6053.3 \end{array}$	$\begin{gathered} 7536.1 \\ 6619.7 \end{gathered}$	$\begin{array}{r} 4.28 \\ 3.76 \end{array}$
Dead Creek .	314223.08	811243.03	$\begin{array}{r}338 \\ 274812 \\ \hline 56\end{array}$	English Cut............ John Thomas.	$\begin{aligned} & 1584010 \\ & 2074740 \end{aligned}$	$\begin{aligned} & 7978.2 \\ & 8139.2 \end{aligned}$	$\begin{aligned} & 8724.7 \\ & 8000.8 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 5.06 \end{aligned}$
Jones' Hammock.	314428.49	811212.89	$\begin{aligned} & 1185939 \\ & 1443647 \end{aligned}$	Pine. Hart.	$\begin{aligned} & 298 \\ & 58 \\ & 324 \\ & 3 \times 3 \\ & \hline 25 \end{aligned}$	$\begin{aligned} & 5288.7 \\ & 1922.3 \end{aligned}$	5761.7	3.27
Black Flag on Cedar Point.	314224.22	811059.35	2163153 2915004	Newell \qquad Walburg	$\begin{array}{r} 363258 \\ 1115105 \end{array}$	5492.9 3304.7	$\begin{aligned} & 8006.9 \\ & 3013.9 \end{aligned}$	3.41 8.05
Range Mark	314207.60	810839.76	$\begin{array}{lll}175 & 18 \\ 110 & 19 & 39\end{array}$	Newell \qquad Medway	3551830 200 17 50	$\begin{array}{r} 4941.6 \\ 5838.5 \end{array}$	5404.0	$\begin{aligned} & 3.07 \\ & 3.63 \end{aligned}$
North Buay, St. Catherine.	314307.12	810898.88	$\begin{array}{r} 915801 \\ 1679743 \end{array}$	Medway Newell.	2715406 3472729	$\begin{array}{r} 5762.0 \\ 3168.0 \end{array}$	6301.1 3464.4	$\begin{aligned} & 3.58 \\ & 1.97 \end{aligned}$
South Buoy, st. Catherine......	314232.75	810843.67	1030909 1755057	Medvay Newell.	$\begin{aligned} & 283 \\ & 385 \\ & 30 \\ & \hline 0 \end{aligned}$	5517.0 4160.0	$\begin{aligned} & 6033.2 \\ & 4549,2 \end{aligned}$	3.43 2.58
Baker's House, North Chimney..	314359.40	811401.90	$\begin{aligned} & 2153000 \\ & 1531022 \end{aligned}$	Hart....................... Harris,	$\begin{array}{r} 35 \\ 30135 \\ 3331019 \end{array}$	$\begin{aligned} & 3025.6 \\ & 3751.9 \end{aligned}$	$\begin{aligned} & 33087 \\ & 4103.0 \end{aligned}$	${ }_{2}^{1.88}$
White Plag on Mareh Island.....	314429.16	811331.59	$\begin{array}{r} 783529 \\ 1345632 \end{array}$	Loan Pine \qquad	258318 3145541	3613.2 3585.2	3851.3	2.84 2.23
Sunbury Charch................	314559.38	811640.90	$\begin{aligned} & 3373503 \\ & 309 \quad 55: 39 \\ & \hline 19 \end{aligned}$	Loan Harris. \qquad	$\begin{aligned} & 1573532 \\ & 129 \\ & 50 \\ & 59 \end{aligned}$	$\begin{aligned} & 3779.5 \\ & 5234.6 \end{aligned}$	$\begin{array}{r} 4133.1 \\ 5724.4 \end{array}$	2.35 3.25
Tadl White Chimney	314601.47	811834.04	$340 \quad 2939$ 2824016	Loan. Hart.	1603004 1024811	374.9	$\begin{aligned} & 4198.1 \\ & 6455.0 \end{aligned}$	$\frac{2.34}{3.67}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.-Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of station,	Latitude.	Longitude.	Azimuth.	To station -	Back azimuth	Distance.	Dietance.	Distance.
Chimney on Elst end of House. .	3145 59.07	$\begin{array}{lll} \therefore 1 \\ \text { si } & 16 \\ 36.22 \end{array}$	$*$ 339 15 150	Loan.		Melres.	Yards.	Milef. 2.31 1.35
Ecriven's House Chimney.	314604.13	811633.51	2795350 3×2848	Pi, Ha	995435 1323404	2283.4 5184.4	2497.1 5669.5	1.42
White Plag near Yellow Bluff..	314153.64	811446.92	2714716 450 46	Walburg.................. John Thomas	$\begin{array}{rr} 91 & 50 \quad 17 \\ 181 & 50 \\ \hline 25 \end{array}$	9063.8 6215.4	9911.9	$\begin{aligned} & 5.63 \\ & 3.92 \end{aligned}$
White Flag on left bank of Vandyke Creek.	314113.09	811243.55	2303524 3316313	Walburg... Whylist Cut	$\begin{array}{r} 803728 \\ 1510411 \end{array}$	$\begin{aligned} & 5990.3 \\ & 6028.4 \end{aligned}$	$\begin{aligned} & 6441.5 \\ & 6592.5 \end{aligned}$	$\begin{aligned} & 3.66 \\ & 3.74 \end{aligned}$
Vandyke.	314117.83	811134.10	2582510 3483907	Wathurg. Engisl! Cut	782633 1683999	4065.4	4445.8 6047.1	$\begin{aligned} & 2.53 \\ & 3.44 \end{aligned}$
Tall Pine on Moss Island	313745.00	811247.08	2184133 1101750	Walbutg John Thomas	$\begin{array}{r} 384331 \\ 2901637 \end{array}$	$\begin{aligned} & 9444.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 10338.4 \\ 4304.0 \end{array}$	${ }_{2}^{5.44}$
Mre. Cummings's House, red chimney.	314107.71	811525.45	2638595 574	Walburg... John Thoma	$\begin{array}{r} 833846 \\ 1742269 \end{array}$	$\begin{array}{r} 10138.0 \\ 4901.7 \end{array}$	$\begin{array}{r} 11096.6 \\ 5360.3 \end{array}$	$\begin{array}{r} 6.30 \\ 3.04 \end{array}$
Pole near mouth of North Newport Rives.	314127.53	811010.26	$\begin{array}{r} 2534629 \\ 110514 \end{array}$	Watburg English Cus	$\begin{array}{r} 734704 \\ 1910402 \end{array}$	$\begin{aligned} & 1848.5 \\ & 58: 29.1 \end{aligned}$	$\begin{aligned} & 2021.5 \\ & 6314.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 3.62 \end{aligned}$
White Flag on right bank of Vandyke Creek.	314104.17	811402.30	$\begin{array}{ll} 261 & 0406 \\ 177 & 06 \\ 12 \end{array}$	Walburg. V cllow Bhuff	$\begin{array}{rr} 81 & 06 \\ 357 & 43 \\ 37 & 10 \end{array}$	$\begin{aligned} & 7982.0 \\ & 2945.9 \end{aligned}$	8728.9	$\begin{aligned} & 496 \\ & 1.83 \end{aligned}$
Pole on right bank of North Newport River.	313045.61	811301.60	$\begin{array}{r} 3071515 \\ 543748 \end{array}$	Englisk Cut. John Thomas	$\begin{aligned} & 1271623 \\ & 2343642 \end{aligned}$	4963.1 40.57	4669.0 4437.6	1.8 .65 2.58
Pole near English Out.	313936.18	811143.45	$\begin{array}{r} 2255 \\ 69 \\ \hline 0128 \\ \hline 28 \end{array}$	Walburg John Tho	$\begin{array}{r} 465952 \\ 2485938 \end{array}$	$\begin{aligned} & 5784.6 \\ & 5748.6 \end{aligned}$	6325.9 6286.5	3.54
Stroud.	313900.27	811218.02	2254854 2974910	Walburg. English Cut	$\begin{array}{r} 453036 \\ 1174935 \end{array}$	$\begin{array}{r} 7206.8 \\ 2538.9 \end{array}$	$\begin{array}{r} 7881.1 \\ 2776.5 \end{array}$	4.4E8 1.58
Pole on left benk of North Newport River.	313953.09	811496.15	$\begin{array}{r} 29647 \\ 28 \\ 21 \\ 25 \end{array}$	English John T	$\begin{array}{ll} 1164910 \\ 262 & 41 \\ \hline 10 \end{array}$	$\begin{aligned} & 6296.8 \\ & 28 \end{aligned}$	$\begin{aligned} & 6886.0 \\ & 3 \cup 86.9 \end{aligned}$	$\begin{aligned} & 3.91 \\ & 1.75 \end{aligned}$
Pole in Marsh, Walburg's Creets.	314008.40	811052.86	$\begin{array}{lll} 142 & 22 & 46 \\ 224 & 26 \\ 17 \end{array}$	Yellow Bluff.......... Wallurg.	$\begin{array}{r} 3122104 \\ 442715 \end{array}$	$\begin{aligned} & 6917.4 \\ & 4137.2 \end{aligned}$	$\begin{array}{r} 7564.7 \\ 4524.3 \end{array}$	4.30 2.57
Holt .	$314010 . \% 2$	811602.48	$\begin{aligned} & 2921428 \\ & 227 \\ & 255 \\ & \hline 57 \end{aligned}$	English Out............. Medway.	$\begin{array}{r}1121711 \\ 47 \\ \hline 83\end{array}$	$\begin{aligned} & 8814.1 \\ & 8369.1 \end{aligned}$	9638.8 9152.2	5.48 5.20
White Plag near Walburg.	313947.66	810938.04	$\begin{array}{r} 742833 \\ 1264949 \end{array}$	John Thomas........... Yellow Bluff.	$\begin{aligned} & 2549540 \\ & 3064728 \end{aligned}$	$\begin{aligned} & 9000.6 \\ & 8845.2 \end{aligned}$	$\begin{aligned} & 9842.8 \\ & 9672.8 \end{aligned}$	$\begin{aligned} & 5.59 \\ & 5.50 \end{aligned}$
Black Beard.	313200.36	811101.44	$\begin{aligned} & 1704043 \\ & 1855950 \end{aligned}$	Barbo St. Ca	$\begin{array}{r} 3103858 \\ 55957 \end{array}$	$\begin{aligned} & 7022.7 \\ & 3481.9 \end{aligned}$	7679.8 3607.7	$\begin{aligned} & 4.36 \\ & 2.16 \end{aligned}$
North Base, Aapelo inland.	313144.87	811359.78	$\begin{aligned} & 2320715 \\ & 1725738 \end{aligned}$	St. Catherine Barbour'z Island.	520856 352578	$\begin{aligned} & 6418.4 \\ & 5091.4 \end{aligned}$	$\begin{aligned} & 7019.0 \\ & 5557.8 \end{aligned}$	3.99 3.16
Cedar Hammock.	313819.62	811445.08	$\begin{aligned} & 3574346 \\ & 96042 \quad 53 \end{aligned}$	North Base St. Cablherine	1574410 E0 4457	3153.1	$\begin{array}{r} 3448.1 \\ 6937.3 \end{array}$	1.96 3.94
Dog Island.	313157.66	811549.04	$\begin{aligned} & 2134504 \\ & 2774618 \end{aligned}$	Cedar Ham North Bas	$\begin{aligned} & 334537 \\ & 974415 \end{aligned}$	$\begin{aligned} & 3336.1 \\ & 2909.0 \end{aligned}$	$\begin{aligned} & 3321.8 \\ & 3181.2 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.81 \end{aligned}$
South Bame, Sapeto island.	313656.01	811428.80	$\begin{aligned} & 1321451 \\ & 2074510 \end{aligned}$	Dog Islatad. \qquad North Base \qquad	$\begin{array}{r} 3121410 \\ 2745126 \end{array}$	$\begin{aligned} & 2824.0 \\ & 1700.7 \end{aligned}$	3088.2	1.75 1.06
Julientou	313327.75	811755.03	$\begin{aligned} & 3104713 \\ & 3095109 \end{aligned}$	South Base... Dog Isiand.	$\begin{aligned} & 13049 \quad 00 \\ & 12992215 \end{aligned}$	7151.5	$\begin{array}{r} 7820.7 \\ 4733.4 \end{array}$	4.44 8.69
Creighton Islard.	313203.03	811849.90	$\begin{aligned} & 2715823 \\ & 2090109 \end{aligned}$	Dog Islaud Julienton.	$\begin{aligned} & 915957 \\ & 290129 \end{aligned}$	4773.3 2983.4	5219.9 3262.6	2.97 1.85
Sutherland.	313255.44	811912.69	2440513 2881900	Julienton Dog Island.	$\begin{array}{r} 640554 \\ 1082047 \end{array}$	$\frac{2277.1 .0}{5658.0}$	$\begin{aligned} & 2490.2 \\ & 6187.4 \end{aligned}$	1.41
Iuner Beacon.	313301.02	811026.66	$\begin{array}{r} 1132759 \\ 260904 \end{array}$	Garbour's Island \qquad Black Beard.	2932555 2060846	6806.0 2081.3	$\begin{aligned} & 7442.8 \\ & 9276.0 \end{aligned}$	4.23 1.29
Onter Beacon	313258.23	811000.35	$\begin{array}{r} 420639 \\ 709014 \end{array}$	Black Beard North Base	2220607 2501809	$\begin{gathered} 2402.2 \\ 6707.3 \end{gathered}$	$\begin{gathered} 2627.0 \\ 7334.9 \end{gathered}$	1.49 4.17
Northeast Point.	313041.20	810922.62	1330441 1583452	Black Beard. Ianer Beacon.....	3130349 338 执 19	$\begin{array}{r} 3568.5 \\ 4524.8 \end{array}$	$\begin{aligned} & 3902.4 \\ & 5057.5 \end{aligned}$	$\stackrel{2.90}{2.87}$
White Flag in tree on east wide of Et. Catherine's Istand.	313432.96	810915.80	559205 752638	North Base ... Cedar Rsmmoc	$\begin{array}{r} 2251936 \\ 255 \quad 23 \quad 45 \end{array}$	$\begin{aligned} & 9104.1 \\ & 6971.9 \end{aligned}$	9456.0 9811.4	5.85 5.58
White Flag in oak on Sx. Ontherine's Lelaud.	313338.20	810940.87	$\begin{array}{r} 351159 \\ 1041938 \end{array}$	Black Beard. St. Catherine......	$\begin{array}{lll} 215 & 11 & 10 \\ 284 & 19 & 03 \end{array}$	$\begin{aligned} & 3687.3 \\ & 1817.5 \end{aligned}$	$\begin{aligned} & 4032.3 \\ & 197.6 \end{aligned}$	2.29 1.13
White Flag on northeast point or Black Beard Ishand.	313143.65	811031.10	$\begin{array}{lll} 19243 & 01 \\ 173 & 44 & 22 \end{array}$	Black Heard. st. Catherine	$\begin{array}{ll} 309 & 42 \\ 35 & 45 \\ 353 & 44 \end{array}$	$\begin{array}{r} 951.4 \\ 4001.6 \end{array}$	$\begin{aligned} & 1040.4 \\ & 4376.0 \end{aligned}$	$\begin{array}{r}0.59 \\ \hline 2.49\end{array}$
White Flag with tun on aast side of Black Beard Litiand.	313135.62	811046.30	1793104 191685	Et. Gatherine Inner Beacon	$\begin{array}{r} 3593103 \\ 114845 \end{array}$	$\begin{aligned} & 4255.4 \\ & 2680.4 \end{aligned}$	4620.8 2031.2	2. ${ }_{1} 686$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimut	tance.	e.	Dista
Inner Buoy, (on	$\begin{array}{ccc} \therefore & 1 & \prime \prime \\ 31 & 32 & 43.22 \end{array}$	$\begin{array}{ccc} \circ & \prime \prime \prime \\ 81 & 07 \\ 14.13 \end{array}$		Inner Be		Metres. 5107.1 6139.	Yards. 5585.0 6713.4	Mider. 3.17 3.81 3.81
Outer Buny, (On bar)	313232.26	810540.33	${ }_{83}^{96}$	1 n	979	7589.0 8511.9	8299.1 9308.4	4.71 5.29
White Flag	313505.05	811035.56	$\begin{array}{r} 80847 \\ 634506 \end{array}$	St. Oatherine Cedar Hamm	188 243 42 425	2247.7 7336.9	$9458,0$ 8023.4	1.39
Kollock's Place, west gable end of house.	313612.11	811036.24	1274421 510056	Moss Island............ Cedar Hammack.....	$\begin{aligned} & 3074313 \\ & 2305846 \end{aligned}$	5324.8 8442.2	$\begin{aligned} & 4729.2 \\ & 9232.1 \end{aligned}$	$\begin{aligned} & 2.69 \\ & 5.25 \end{aligned}$
Tuft in hammock on left bank of Boulh Newport iver.	31360.86	811125.70	$\begin{aligned} & 3493745 \\ & 3555434 \end{aligned}$	St. Catherine Black Beard \qquad	$\begin{array}{lll} 169 & 38 & 05 \\ 175 & 54 & 47 \end{array}$	$\begin{aligned} & 5574.7 \\ & 8969.6 \end{aligned}$	6096.3 9408.9	3.46
White Flag on marsh at mouth of Waboo creek.	313532.46	811148.17	$\begin{array}{r} 4845 \\ 33231 \end{array}$	Cedar Hammock....... St. Ostherine	228 152 31 $\frac{07}{33}$	$\begin{gathered} 6204.3 \\ 3459.3 \end{gathered}$	67848 3783.0	3.85 2.15
White Flag on shell beach of St. Catherine's islari.	313428.03	811106.39	$\begin{array}{r} 42 \quad 19 \\ 335 \\ 380 \\ 24 \end{array}$	Nort St. 0	$\begin{array}{lll} 228 & 17 & 31 \\ 155 & 30 & 34 \end{array}$	6794.0 1192.3	7429.7 1303.0	4.22 0.74
White Flag at mouth of Johnson's creek.	313531.96	811053.01	$\begin{array}{r} 3572057 \\ \quad 157 \\ \hline 14 \end{array}$	At. Catherine Black Beard	$\begin{array}{lll} 177 & 21 & 00 \\ 18157 & 10 \end{array}$	3056.7	$\begin{aligned} & 3942.7 \\ & 7130.7 \end{aligned}$	1.90 4.05
White Flag on Wahoo	313614.67	81125066	3394810 365540	Black Beard............. Barbour's Island.	$\begin{aligned} & 15949 \quad 07 \\ & 2165451 \end{aligned}$	$\begin{aligned} & 8344.8 \\ & 4072.3 \end{aligned}$	$\begin{aligned} & 9195.6 \\ & 4453.3 \end{aligned}$	5.18 $\mathbf{2 . 5 3}$
White Flag, with tuft, near oldner's island.	313435.19	811144.03	$\begin{array}{r} 640135 \\ 3111689 \end{array}$	Cedar Ha St. Gathe	2440000 1311659	5311.0 1978.8	5807.9 2163.9	3.30 1.23
White Flag in tree in pine hammock.	313525.07	811326.03	$\begin{aligned} & 282058 \\ & 411335 \end{aligned}$	Cedar Hammock Barbour's Island.	2082017 2211305	$\begin{array}{r} 4391.0 \\ 2296.0 \end{array}$	$\begin{aligned} & 4801.9 \\ & 2510.9 \end{aligned}$	2.73 1.43
White Flag in pine in hammock os Barbour'a lsland river.	313441.93	81 1.318 .64	$\begin{aligned} & 76 \\ & 41 \\ & 41 \\ & 58 \\ & \hline 0 \end{aligned}$	Barbour's 1 Cedar Bam	$\begin{aligned} & 2564931 \\ & 221 \\ & \hline 97 \end{aligned}$	$\begin{aligned} & 1754.7 \\ & 34408.9 \end{aligned}$	3978.9 3727.9	1.09 2.12
White Flag on north shore of sound.	313338.11	811236.62	$\begin{array}{r} 80 \underset{98}{90} \\ 3901015 \end{array}$	Ceday Hammouk Black Beard.	2602715 1401105	$\begin{aligned} & 3435.7 \\ & 3920.2 \end{aligned}$	3757.2 4887.0	${ }_{2.44}^{2.13}$
White Flag on northwest point of Black Beard island.	313208.68	811154.47	2802326 $208 \quad 47 \quad 12$	Black Beard............ 3t. Catherine.	1002354 2897	1429.0 3659.0	1585.1 4001.4	0.88 2.97
White Flag in cedar, west side of Black Beard island.	313139.51	811230.02	1501107 2329008	Barbour's Island. Inngr Beacon.	$\begin{array}{rl} 3301 & 10 \\ 58 & 08 \\ 513 \end{array}$	$\begin{aligned} & 6014.6 \\ & 4109.4 \end{aligned}$	6577.4 4493.9	3.74 2.55
White Flag in oak on Black Beard island.	313108.67	81120478	$\begin{aligned} & 1333927 \\ & 2164720 \end{aligned}$	Cedar Hammock, Inater Beacon.	$\begin{array}{rll} 313 & 38 & 03 \\ 36 & 48 & 11 \end{array}$	$\begin{array}{r} 5843.1 \\ 4221.0 \end{array}$	$\begin{gathered} 6389.8 \\ 4725.8 \end{gathered}$	3.63 2.68
Whine Flag on northeast point of Bapeto istand.	313133.88	811326.75	$\begin{aligned} & 1643026 \\ & 1473704 \end{aligned}$	Barbour's Island. Cedar Hammock.	3442956 $327: 83$	${ }_{3857.7}^{5595.7}$	$\begin{aligned} & 6119.3 \\ & 2217.8 \end{aligned}$	3.48
Red and White Flag at mouth of Barbour's Island river.	313318.01	811345.41	52490 9148	Dog Island \qquad Oedar Hammock	2324756 972 48 07	4093.4 1574.1	4476.4 1721.4	$\underline{2.54}$
White Flag, with tuft, on Litte Mad river.	313416.84	811518.92	3330809 2554108	Oedar Hammock....... Barbour ${ }^{2}$ Is Isand 	$\begin{array}{r} 1530897 \\ 754137 \end{array}$	$\begin{aligned} & 1975 . \frac{1}{1} \\ & 1509.3 \end{aligned}$	2159.8	1.23 0.94
White and Elack Flag at mouth of Julienton river.	313312.74	811557.04	$\begin{array}{r} 98.9659 \\ 2633647 \end{array}$	Julienzon. \qquad Cedar hammock	2782557 85725	$\begin{aligned} & 3145.5 \\ & 1909.2 \end{aligned}$	3434.8	1.95 1.18
White Flag on left bank of Johenton river.	313345.61	811636.22	$\begin{array}{r} 750952 \\ 2851539 \end{array}$	Julienton................. Cedar Hammect	$\begin{aligned} & 2550911 \\ & 1051637 \end{aligned}$	$\begin{aligned} & 2149.6 \\ & \hline 0.57 .4 \end{aligned}$	2350.7 3321.6	1.33
White Flag, with paimetto trift, in tuarsh opposite Julienton.	313257.25	811720.06	335 307 29 47	Julienton................ Dog Ietand	3153136 1872435	$\begin{aligned} & 1315.9 \\ & 3021.2 \end{aligned}$	$\begin{aligned} & 1439.0 \\ & \mathbf{3} 309.9 \end{aligned}$	0.82
Black Flag on teft bank of Sape lo river.	313245.81	811642.31	3163259 2512233	Dog Istand Cednr Hammock........	$\begin{array}{r} 136 \\ 7133 \\ 71 \\ 23 \end{array}$	2042.9 3262.4	$\begin{aligned} & 2234.0 \\ & 3567.7 \end{aligned}$	${ }_{2.03}^{1.27}$
White Fiag on Curry Point, Oreighton island.	312951.28	811937.10	8370505 2560956	Dog Island. Douth Base	570704 761237	$\begin{aligned} & 7165.5 \\ & 8949.8 \end{aligned}$	7836.0 9131.1	4.45 5.18
White and Black Fiag on right bank of Sapelo river.	313113.61	8117 29,38	2425108 1704221	Dog Island Julienton.	$\begin{array}{r} 625900 \\ 350 \\ \hline 9208 \end{array}$	${ }_{4185.7}^{2974.0}$	3252.3	1.85 2.80
White Fing on Four-mile Point.	313208.94	811728.12	2773490 851124	Dog Island Creighton Imand........	973512 2651041	${ }_{218465}^{2636}$	2882.8 2867.0	1.64
Lower Beacon in Mud ri	313118.13	811514.47	$\begin{array}{lll} 300 & 01 \\ 143 & 09 & 25 \end{array}$	Sonth Batac	1200208 3230907	$\begin{aligned} & 1361.3 \\ & 1541.2 \end{aligned}$	$\begin{aligned} & 1488.7 \\ & 1663.5 \end{aligned}$	0.84
White Flag on left bank of Mud niver.	31310201	811543.41	5752555 175 02	South Bane Dog Inland \qquad	05939 355.0204	$\begin{aligned} & 1951.1 \\ & 1720.2 \end{aligned}$	1133.7 188.2	1.07
Beacon at mouth of Teaketle.	312918.65	811728.13	2372924 2980508	South Base.............. Dog Igland	$\begin{aligned} & 573057 \\ & 280600 \end{aligned}$	5579.3 $55.51 .3$	6101.4	3.47 3.45
Upper Beacon on Mad river	312931.97	811711.70	$\begin{array}{lll}245 & 13 & 00 \\ 209 & 22 & 51\end{array}$	South Base Dog Leland	651424 29233	$\begin{aligned} & 4704.9 \\ & 4443.3 \end{aligned}$	\$1455.11	9.92
White Flag ou creek, Dos Inland bampock.	313047.98	811653.78	$\begin{array}{ll}218 & 30 \\ 268 & 16 \\ 30\end{array}$	Hog Island South Bace \qquad	$\begin{array}{ll} 39 & 11 \\ 80 & 00 \\ \hline 17 \end{array}$	3749.3	$\frac{2998.9}{1163.1}$	1.70 8.37

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.--Ossabaw sound to Sapelo sound. Sketch E, No 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
White Flag on right bank of Mud niver.	312939.93	$81 \quad 16 \quad 19.79$	$\begin{aligned} & 1904920 \\ & 2310446 \end{aligned}$	Dog Island South Base...............	$\begin{aligned} & 104936 \\ & 510543 \end{aligned}$	Metres. 4318.4 3729.9	Yaris. 4722.5 4078.9	Miles. 2.6 E 2.32
White Flag on Marsh island, in Mud river.	312913.00	81 1805.45	$\begin{aligned} & 2405117 \\ & 2159056 \end{aligned}$	South Base Dog Island	$\begin{array}{lll}60 & 53 & 10 \\ 35 & 22 & 07\end{array}$	6514.3	$\begin{aligned} & 7123.8 \\ & 6.800 .9 \end{aligned}$	$\begin{aligned} & 4.05 \\ & 3.86 \end{aligned}$
Chimey of mill at west end of Duboy.	31 92 54.08	811930.56	$\begin{aligned} & 9012506 \\ & 1880656 \end{aligned}$	Dog Island Julienton	219702 80746	15999.4 1788.9	$\begin{array}{r} 17496.5 \\ 19560.6 \end{array}$	${ }_{1}^{9.94}$
Chimney of Overseer's House, Creighton island.	313201.89	811847.93	$\begin{aligned} & 271 \\ & 23 \\ & 207 \\ & 49 \\ & 59 \end{aligned}$	Dog Island \qquad Julienton. \qquad	$\begin{aligned} & 913533 \\ & 2749 \\ & 44 \end{aligned}$	$\begin{array}{r} 4720.0 \\ 2990.0 \end{array}$	$\begin{array}{r} 5161.6 \\ 3269.8 \end{array}$	2.93 1.86
White Flag on left bank of Orelghton island, Front river.	31 30 31.36	811831.07	$\begin{aligned} & 2380642 \\ & 1895540 \end{aligned}$	Dog Island Julienton.	$\begin{array}{r} 580807 \\ 95559 \end{array}$	$\begin{aligned} & 5033.7 \\ & 5515.1 \end{aligned}$	$\begin{array}{r} 5504.7 \\ 6031.2 \end{array}$	3.13
White Flag, with tuft, in pine centre of Creighton island.	313116.17	811910.45	2562728 2460836	Dog Island Julienton.	$\begin{aligned} & 762913 \\ & 260916 \end{aligned}$	5464.6 4514.6	$\begin{gathered} 5975.9 \\ 497.0 \end{gathered}$	3.39 2.80
White Flag on left bank of Sapelo river.	313229.56	81181166	$\begin{aligned} & 1934536 \\ & 1162107 \end{aligned}$	Julienton. Sutherland	134545 2962035	1845.1 1796.5	2017.7 1964.7	1.15 1.11
White Flag in tree at Gutherland Blaff,	313306.79	811908.15	$\begin{array}{lll} 292 & 03 & 20 \\ 346 & 13 & 14 \end{array}$	Dog Inland Creighton Island.	1120504 1661324	5666.8 2022.0	$\begin{aligned} & 6197.0 \\ & 2211_{1} \end{aligned}$	3.52
White Flag in tree on northwest point of Creighton isiand.	313154.68	811939.85	$\begin{aligned} & 2585559 \\ & 2988 \\ & 5724 \end{aligned}$	Creighton Island........ Julienton.................	$\begin{aligned} & 78 \quad 5625 \\ & 435819 \end{aligned}$	1342.6 3982.4	$\begin{array}{r} 1468.2 \\ 4355.0 \end{array}$	0.83 2.47
Black and Whte Flag on right bank of Sapelo river.	313221.88	812027.69	$\begin{aligned} & 2422421 \\ & 2431454 \end{aligned}$	sutherland Julienton.	$\begin{aligned} & 622500 \\ & 631614 \end{aligned}$	$\begin{aligned} & 2232.5 \\ & 4503.6 \end{aligned}$	$\begin{gathered} 2441.4 \\ 4930.5 \end{gathered}$	1.39 2.80
Gable-end of building at Chocolate.	313001.47	811504.43	$\begin{aligned} & 1844643 \\ & 1444154 \end{aligned}$	Cedar Hammock Julienton.	$\begin{array}{r} 44653 \\ 3244025 \end{array}$	$\begin{gathered} 6123.9 \\ 7784.4 \end{gathered}$	6690.9 8512.8	3.80 4.84

Section V.-Charleston Harbor to Winyah Bay.* Sketch E, No. 16.

Name of atation.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Breach Iniet .	$3246 \quad 19.27$	$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 79 & 48 & 43.14 \end{array}$			- '........'	Metres.	Farda.	Mriles.
Circular Ohurch	324642.54	795539.05	2734530	Breach Injet	934915	10846.3	11861.2	6.47
Fort glumpter, (2)..........	324508.17	795214.51	$\begin{array}{llll}118 & 39 & 15 \\ 248 & 16 & 33\end{array}$	Oircular Chureh. Breach Inlet.	2983724 681828	$\begin{aligned} & 6064.8 \\ & 5920.5 \end{aligned}$	$\begin{aligned} & 6632.3 \\ & 6474.5 \end{aligned}$	3.77 3.68
Venning	324810.67	794922.37	$\begin{array}{r}343 \\ 38 \\ 38 \\ \hline 3\end{array}$	Breach Inlet. Fort Sumpter, (2).......	1632634 2183211	$\begin{aligned} & 3579.9 \\ & 7187.6 \end{aligned}$	$\begin{aligned} & 3914.9 \\ & 7860.1 \end{aligned}$	2.28 4.47
Hamline.................	324937.53	794710.69	$\begin{array}{lll}21 & 30 & 15 \\ 52 & 00 & 45\end{array}$	Breach Inlet............. Venning.	2019925 281593	65693.6 4346.1	$\begin{aligned} & 7177.8 \\ & 4752.8 \end{aligned}$	4.08 2.70
Goat Island............... .	324809.81	794612.61	901921 1504752	Venning Hamlin.	$\begin{aligned} & 2701739 \\ & 33047 \\ & 21 \end{aligned}$	$\begin{aligned} & 4936.2 \\ & 3005.7 \end{aligned}$	$\begin{aligned} & 5398.1 \\ & 3385.4 \end{aligned}$	3.07
Frillera.	325105.84	794544.62	73858 395709	Goat Island \qquad Hamlin	$\begin{array}{lll} 187 & 38 & 43 \\ 219 & 25 & 22 \end{array}$	5471.1 3592.7	5989.0 3858.3	3.40 2.19
Roberts, (2)......................	324943.58	794314.28	$\begin{array}{r}122 \\ 88 \\ 88 \\ \hline 1652\end{array}$	Pulter \qquad Hamlin. \qquad	$\begin{aligned} & 3025620 \\ & 681443 \end{aligned}$	$\begin{aligned} & 4658,5 \\ & 6151.0 \end{aligned}$	5094.5 6726.5	2.89 3.88
Toomer..................	325291.74	794359.78	$\begin{aligned} & 448830 \\ & 492313 \end{aligned}$	Hamlin................... Nuller	$\begin{aligned} & 2249647 \\ & 2292216 \end{aligned}$	$\begin{array}{r} 7086.8 \\ 3590.7 \end{array}$	$\begin{aligned} & 7749.9 \\ & 3926.7 \end{aligned}$	4.40 2.23
Capery	325133.28	794811.50	812034 2547 201	Fuller Roberts, \qquad (2)	26118 205 468	5604.8 3752.7	$\begin{aligned} & 6129.2 \\ & 4103.8 \end{aligned}$	3.48 2.33
Pole on Moultrie House.........	324598.55	795051.88	$\begin{aligned} & 2050000 \\ & 1065848 \end{aligned}$	Verning :................	$\begin{array}{r} 250049 \\ 2865613 \end{array}$	$\begin{aligned} & 5510.1 \\ & 7813.2 \end{aligned}$	$\begin{aligned} & 6025.7 \\ & 8544.3 \end{aligned}$	$\begin{array}{r} 3.49 \\ 4.85 \end{array}$
Sullivan's Ialand, back beacon..	324538.95	795111.94	$\begin{aligned} & 2113259 \\ & 10631 \quad 22 \end{aligned}$	Venning Oircular Church......................	$\begin{array}{r} 313358 \\ 2852858 \end{array}$	5448.9 7213.1	$\begin{aligned} & 5958.0 \\ & 7883,0 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 4.48 \end{aligned}$
Cator's Lnanding, (pole)	324902.76	794746.60	$\begin{array}{r} 571310 \\ 2210509 \end{array}$	Venning...... Hamin.....................	$\begin{array}{r} 2871218 \\ 410528 \end{array}$	$\begin{aligned} & 2963.2 \\ & 1420.9 \end{aligned}$	$\begin{aligned} & 3240.5 \\ & 1553.8 \end{aligned}$	1.84
Catholic Church apire, Brond utreet.	324633.15	795550.75	$\begin{aligned} & 2721004 \\ & 2945531 \end{aligned}$	Breach Iniet. Fort Sumpter, (2)	$\begin{array}{r} 921355 \\ 1145798 \end{array}$	$\begin{array}{r} 11135.3 \\ 6206.4 \end{array}$	$\begin{array}{r} 12177.2 \\ 6787.1 \end{array}$	$\begin{aligned} & 6.92 \\ & 3.86 \end{aligned}$
Dewees.	335059.57	794206.20	1411142 17622		$\begin{aligned} & 3911040 \\ & 3564249 \end{aligned}$	4710.9 2182.5	$\begin{aligned} & 5151.7 \\ & 2386.7 \end{aligned}$	$\begin{aligned} & 2.93 \\ & 1.35 \end{aligned}$

[^2]UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section V.-Charleston Harbor to Winyah Bay. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station -	Back azimuth.	Distance.	Distance.	Distance.
Niel.	325046.77	$\stackrel{\circ}{79} 4123.91$	$\begin{array}{lll} 10 \\ 125 & 50 & 14 \\ 139 & 11 & 20 \end{array}$	Toomer Capers. \qquad	3054849 3191044	metres. 4997.6 1893.0	Fards. 5465.2 2070.1	$\begin{gathered} \text { Mrieses } \\ 3.10 \\ 1.18 \end{gathered}$
Legare..........................	325101.16	794056.10	$\begin{array}{r} 562303 \\ 1172852 \end{array}$	Roberts, (2) \qquad Toomer	$\begin{aligned} & 2369148 \\ & 2972718 \end{aligned}$	$\begin{array}{r} 4314.9 \\ 5381.4 \end{array}$	4718.6	2.68 3.34
Bar.	324915.29	794140.93	1629430 18855	Dewees. \qquad Niel	$\begin{array}{r} 3439416 \\ 85544 \end{array}$	$\begin{aligned} & 2174.0 \\ & 2852.4 \end{aligned}$	$\begin{aligned} & 9377.4 \\ & 319.3 \end{aligned}$	1.35 1.77
Point...........................	324839.93	794249.01	$\begin{aligned} & 16128 \\ & 238 \\ & 248 \\ & 24 \\ & \hline 03 \end{aligned}$	Roberts, (2) Bar. \qquad	$\begin{array}{r} 3412811 \\ 582440 \end{array}$	2067.8	2261.3 2973.4	1.28 1.29
Humphries.....................	325454.65	794043.72	20 47 1 115 41	Capers.... Toomer.	2001108 2271354	6609.0 6938.5	7287.4	4.111
Jamie.	325300.96	793902.90	1431235 610952	Humphries. Capers.	(323 1140	$\begin{gathered} 4373.6 \\ 5596.9 \end{gathered}$	$\begin{aligned} & 4783.8 \end{aligned}$ 6120.6	2.72 3.48
Wagner, (2).	325701.95	793836.98	$\begin{array}{r} 51114 \\ 400143 \end{array}$	Jamie. Humphries	1851100 2200034	$\begin{aligned} & 7453.7 \\ & 5119.9 \end{aligned}$	$\begin{aligned} & 8151.1 \\ & 5599.0 \end{aligned}$	4.63 3.18
Middle.	325517.69	793603.92	$\begin{array}{r} 475057 \\ 1285626 \end{array}$	Jumie. Wagner, (2)	2274920 3085503	$\begin{aligned} & 6274.6 \\ & 5110.6 \end{aligned}$	6861.7 5588.8	3.90 3.57
Owendaw...	330024.62	793435.73	$\begin{aligned} & 133718 \\ & 450640 \end{aligned}$	Middle. Wagner, \qquad	$\begin{aligned} & 1933630 \\ & 2250438 \end{aligned}$	$\begin{gathered} 9797.6 \\ 8843.2 \end{gathered}$	$\begin{array}{r} 10637.8 \\ 9670.7 \end{array}$	6.44 5.49
Bird Istand.	325712.82	793328.48	484258 1633230	Midile. \qquad Owendaw \qquad	$\begin{array}{lll}22884134 \\ 343 & 31 & 53\end{array}$	$\begin{aligned} & 5373.6 \\ & 6160.6 \end{aligned}$	$\begin{array}{r} 8876.4 \\ 6737 \end{array}$	3.34 3.83
Live Oak......................	330316.25	793056.30	$\begin{aligned} & 192644 \\ & 470816 \end{aligned}$	Bird Island Owendaw.	$\begin{array}{lll} 199 & 25 & 21 \\ 227 & 06 & 16 \end{array}$	$\begin{array}{r} 11871.3 \\ 7769.7 \end{array}$	$\begin{array}{r} 12982.196 .7 \end{array}$	7.37 4.83
Northeast Bull.,	325941.82	792922.02	$\begin{array}{r} 991316 \\ 159410 \end{array}$	Owendaw Live Oak.	2791025 3394008	8248.7 7043.9	9020.5 7703.0	5.128
Jeremy.	330434.98	792601.81	$\begin{array}{r} 245525 \\ 728422 \end{array}$	Northeast Hull Live Oak \square 	2095336 2542142	$\begin{array}{r} 10418.2 \\ 8014.2 \end{array}$	$\begin{array}{r} 11593.0 \\ 8764.1 \end{array}$	6.47 4.98
Cape Roman, od	330104.97	792213.30	$\begin{aligned} & 1069802 \\ & 1373101 \end{aligned}$	Live Oak............... Jeremy.	2863317 3172857	$\begin{array}{r}14159.3 \\ 8774.5 \\ \hline\end{array}$	$\begin{array}{r} 15484.2 \\ 9595.5 \end{array}$	8.80 5.45
Nellis.	330223.94	792614.44	441655 1843825	Northeast Bull.......... Jeremy	$\begin{array}{r} 2841513 \\ 43832 \end{array}$	6974.0 4850.0	$\begin{array}{r} 7626.5 \\ 4429.0 \end{array}$	4.33 2.58
Blake.	330758.01	792047.03	$\begin{array}{r} 95849 \\ 52435 \end{array}$	Cape Roman, old light. Jeremy.	1895802 2323043	12918.3 10281.5	14127.1 11243.5	8.03 6.39
Murphy.	330557.78	791925.44	$\begin{array}{r} 760535 \\ 1501639 \end{array}$		2500159 3301554	10589.5 4264.7	$\begin{array}{r} 11580.5 \\ 4663.7 \end{array}$	6.58 2.65
Cedar Island, 1857	330755.72	791451.60	$\begin{aligned} & 421124 \\ & 625510 \end{aligned}$	Oape Roman, old light. Murphy...................	$\begin{aligned} & 2290723 \\ & 2445241 \end{aligned}$	$\begin{gathered} 17067.6 \\ 7974.2 \end{gathered}$	$\begin{aligned} & 18 e 64.6 \\ & 8720.3 \end{aligned}$	10.60 4.95
Ruledge	331027.88	791838.87	$\begin{array}{rrr} 3543 & 05 \\ 34831 & 16 \end{array}$	Blake. \qquad Cedtar Isiand, 1857	2154155 1283290	5689.6 7528.5	$\begin{aligned} & 822929.0 \\ & 8223.9 \end{aligned}$	$\begin{aligned} & 3.53 \\ & 4.68 \end{aligned}$
Cape, (2).	330156.29	792032.73	1194922 1931151	Jeremy Marphy \square	2494623 131228	9836.9 7640.8	$\begin{array}{r} 10757.3 \\ 8355.8 \end{array}$	6.11 4.75
Lowndes.......................	331147.51	791336.04	$\begin{array}{r} 152012 \\ 724042 \end{array}$	Cedar Island, 1857..... Hutiedge.	1951931 2523756	$\begin{aligned} & 7403.8 \\ & 8217.3 \end{aligned}$	8096.6 8086.2	4.69 5.10
McCenvey	331014.24	791219.61	$\begin{aligned} & 424303 \\ & 92 \quad 29 \\ & \hline 99 \end{aligned}$	Cedar Ibland, L851..... gutiedge.	2224041 272969	5806.5 9914.0	6349.8 3×66.7	3.61 1.81
South Base, (2),	331233.44	791157.67	$\begin{array}{r} 73249 \\ 605731 \end{array}$	McOonvey Lowndes \qquad	1873237 2405337	$\begin{array}{r} 4325.4 \\ 2914.0 \end{array}$	4730.1 3186.7	$\underset{1.81}{2.69}$
Gibbs.	325350.13	783630.09	$\begin{array}{r} 1064821 \\ 690721 \end{array}$	Humphries Iamie	2854603 2440558	6884.1 4250.6	$\begin{array}{r} 7588.2 \\ 4848.3 \end{array}$	4.28 8.64
Videll's Landing.	325213.31	794055.55	1832317 94309	Humphrics. Jamic	$\begin{array}{r} 33223 \\ 032310 \end{array}$	$\begin{aligned} & 4999.4 \\ & 3275.1 \end{aligned}$	5445.3 3581.5	${ }_{8.03}^{3.09}$
Single Palmetto	325252.18	794155.16	$\begin{array}{r} 2663153 \\ 95447 \end{array}$		68 1895437 50	$\begin{aligned} & 4485.4 \\ & 2467.0 \end{aligned}$	$\begin{aligned} & 4905.1 \\ & 2697.8 \end{aligned}$	2.79 1.53
Edward'a, southwest base.	325250.01	793842.05	1403219 1803825	Humphries................ Fagner, (2).........	$\begin{array}{r} 320 \\ 051 \\ 0 \\ 58 \\ 28 \end{array}$	$\begin{aligned} & 4973.6 \\ & 7781.7 \end{aligned}$	$\begin{array}{r} 5439.0 \\ 9487.9 \end{array}$	$\begin{aligned} & \text { 3.08 } \\ & 4.82 \end{aligned}$
Johnnie..	325138.98	793937.89	1994849 2302208		$\begin{array}{r} 194908 \\ 502350 \end{array}$	$\begin{array}{r} 2883.9 \\ 6836.1 \end{array}$	$\begin{array}{r} 2935.0 \\ 6928.9 \end{array}$	1.67 3.94
Brace............................	325418.00	793418.93	$\begin{array}{lll} 39 & 96 & 51 \\ 72 & 11 & 34 \end{array}$	Johnnie................	$\begin{aligned} & 2392358 \\ & 2590900 \end{aligned}$	$\begin{aligned} & 9629.29 .8 \\ & 7759.0 \end{aligned}$	$\begin{array}{r} 10530.2 \\ 8477.4 \end{array}$	5.96 4.82
Vanderhorst	325720.07	793635.89	2723649 801215	Bird 1gland Wagner, (I ,,$\ldots . .$.	$\begin{array}{rrr} 92 & 38 & 31 \\ 260 & 11 & 49 \end{array}$	$\begin{gathered} 4872.0 \\ 32020.3 \end{gathered}$	$\begin{aligned} & 5357.9 \\ & 35018 \end{aligned}$	$\begin{aligned} & 3.03 \\ & 1.99 \end{aligned}$
Chimney on went end of rmall house.	3 3886.40	793718.84	8954258 3436921	Bird Inland............ Midde.	1154457 16310 m	6839.9	$\begin{gathered} 781.2 \\ 7345.6 \end{gathered}$	4.13

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.-Charleston Harbor to Winyah Bay. Skelch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimath.	Diatance.	Distance.	Bistance.
Dr. Jewey's House, chimney....	325622.27	$\begin{array}{cc} \circ \\ 79 & 39 \\ 17.21 \end{array}$	2913543 3563404	Middle \qquad Janie \qquad	$\begin{array}{ccc} \circ & \prime \\ 111 & 37 & 28 \\ 17634 & 12 \end{array}$	Metres. 54010.7 0212.1	Yards. 5066.0 6793.4	$\begin{array}{r} \mu_{i} / \mathrm{Ps} . \\ 3.35 \\ 3.86 \end{array}$
Joyce............................	325002.47	794159.72	1794541 3412515	Capers	$\begin{array}{r}35345 \\ 16125 \\ \hline 15\end{array}$	2819.1 1532.3	30763 1675.7	1.75 0.95
Small House, chimney	325834.69	73 43 54.32	3051455 193948	Capers	1251541 19934	3273.3 421.4	3579.6 460.8	$\begin{aligned} & 2.03 \\ & 0.26 \end{aligned}$
Toomer's House, centre........	325247.10	794507.45	2962517 293569	Capers..................	$\begin{array}{ll}116 & 26 \\ 113 & 56 \\ 46\end{array}$	5108.0 1924.5	5586.0 2104.6	3.17 1.19
Hugh	325128.70	394298.75	$\begin{array}{r}2523201 \\ 307 \\ \hline 269\end{array}$	Capers ${ }^{\text {Neil }}$.	723210 127 27	470.3 2123.7	514.3 2322.4	0.69
Dead Tree on east end of Hammock.	324924.29	794549.40	2613654 67454	Roberts, (9) Venning	813818 2474328	$\begin{aligned} & 4077.6 \\ & 5985.4 \end{aligned}$	4459.1 6545.5	2.53 3.72
Brick Hammock	325005.39	794442.90	23512822 2861497	Capers	$\begin{array}{rr}55 & 2944 \\ 10615 & 25\end{array}$	4777.6 2400.4	5224.6 2625.0	2.97 1.49
Dewees Tripod.	325020.51	791205.11	1620136	Dewees.	3420136	66.8	73.0	0.04
Windmill on Oyster House......	324791.43	794925.91	253 4654 465	Gotisland.............. Fort Sumpter, (2).....	$\begin{array}{r}73 \\ 73 \\ 23 \\ \hline 23\end{array}$	5244.9 6808.4	5735.6 6570.6	3.96 3.73
Theodore Wagner's House, centre	324840.42	794919.40	280 347 48 48 211	Goat Is and............. Breach Inlet.	1005952 1674541	4949.6 4449.1	5412.7 4865.4	3.07 2.76
Hamlinss Old House, centre	324945.92	794714.11	331 37 310 57 11	Goat Island.............. Bamlin....	$\begin{array}{llll}151 & 37 & 37 \\ 160 & 57 & 13\end{array}$	3365.0 $\mathbf{7 7 3 . 4}$	3679.9 299.0	2.09 0.17
Figure Head, Caper's island....	325114.74	794140.38	$\begin{array}{r} 3333319 \\ 22 \quad 4018 \end{array}$	Neil \qquad Deweea	1533328 2024046	969.0 1741.4	1052.0 1904.3	0.60 1.08
Legare's House, went chimney.	32 5128.82	794201.75	3224627 31438	Neil...................... Dewees	1424648 1831436	1626.5 2043.9	1778.7 2235.1	1.01
Death, hydrographic signal,	324937.71	794202.84	$\begin{array}{rrr} 205 & 27 & 07 \\ 34 & 01 & 15 \end{array}$	Neil. Point. \qquad \qquad	$\begin{array}{r}25 \\ 214 \\ 274 \\ \hline 1850\end{array}$	2355.8 246.9	2576.2 2347.8	1.46
Hafe............................	394851.64	794258.30	250 32051037 3204	Mar Point.	700619 1461048	2140.1 434.1	2340.3 474.7	1.33 0.27
Brown........	331337.39	791325.96	$\begin{array}{r} 3104453 \\ 42439 \end{array}$	South Base, (2)........ Lowndes.	$\begin{aligned} & 1304541 \\ & 12494 \end{aligned}$	3017.7 3395.0	3390.1	1.87 2.11
Hydrographic Bignal..............	331007.51	791218.25	1702150	McConvey	3502149	210.2	229.9	0.13
Hydrographic Signal..............	331180.67	791156.03	814630 177 39	Lowndea. - $\quad=$ \qquad Bouth Base, (9)	$\begin{array}{lll}2614535 \\ 357 & 39 & 40\end{array}$	2617.0 1041.0	2861.9 1138.4	1.63 0.65
Ford's Chimney	331046.80	791327.65	$\begin{array}{rr} 215 & 2011 \\ 85 & 5424 \end{array}$	South Base, (2)......... Rutledge	35 21000 26514	4028.3 80828	4405.2 88.59 .1	2.50 5.02
Lowndes's Mill	331154,51	791404.96	2960927 $9 \quad 1956$	Lowndes \qquad \qquad Cedar Island, 1857 \qquad	1060343 1891931	779.6 7454.5	858.5 8152.0	0.48 4.63
Barn........................	331116.76	791566.73	$\begin{array}{r} 2480059 \\ 744257 \end{array}$	$\begin{aligned} & \text { Lowndes } \\ & \text { Rutledge } \end{aligned}$	680158 2544101	$\begin{array}{r} 2532.9 \\ 5696.8 \end{array}$	$\begin{array}{r} 27699 \\ 6929.8 \end{array}$	1.57 3.54
Luces's Mill.	330757.26	791628.81	$\begin{aligned} & 2121431 \\ & 1440220 \end{aligned}$	Lowntes Rutledge	321605 32440109	$\begin{array}{r} 8387.2 \\ 5736.8 \end{array}$	$\begin{aligned} & 9172.0 \\ & 6213.6 \end{aligned}$	5.21 3.56
Ford..............	330855.25	791351.56	4019 111009	Cedar Island, $1857 . .$. Rutledge	2201827 290 58	$\begin{array}{r} 2405,1 \\ 7973.2 \end{array}$	$\begin{aligned} & 2639.1 \\ & 8719.2 \end{aligned}$	1.49 4.95
Pole	381026.40	791634.34	$\begin{array}{r} 3033825 \\ 905242 \end{array}$	Ford Rutledge	$\begin{aligned} & 1233954 \\ & 2705134 \end{aligned}$	5066.5 3226.5	5540.6 3528.4	3.15 2.00
Bulow's Milt, chimney ${ }_{\text {a }}$	331144.08	791715.58	2685455 423710	Lowndea Rutledge	$\begin{array}{r} 885655 \\ 22236524 \end{array}$	$\begin{aligned} & 5685.9 \\ & 3185.9 \end{aligned}$	6217.8 3484.0	3.53 1.98
Fanny Meade, chimney of Rice Min.	330911.78	791836.82	$\begin{array}{r} 2915114 \\ 560245 \end{array}$	Cedar Tsland, 1857..... Blake	$\begin{array}{ll} 111 & 53 \\ 236 & 17 \\ 91 \end{array}$	$\begin{aligned} & 6289.1 \\ & 4068.4 \end{aligned}$	6877.6 4449.1	3.91 2.55
Lower Mill	330843.72	79.2020 .91	$\begin{aligned} & 9793257 \\ & 291 \\ & 50 \\ & 38 \end{aligned}$	Oedar Island, 1857 Rutledge	$\begin{aligned} & 993602 \\ & 415133 \end{aligned}$	$\begin{aligned} & 8891.8 \\ & 4311.7 \end{aligned}$	$\begin{array}{r} 9723.8 \\ 4715.1 \end{array}$	5.58 2.68
Upper Man, ...**.................	330851.80	795042.63	$\begin{array}{r} 35644 \\ 3383138 \end{array}$	Blake Murphy	$\begin{aligned} & 1835642 \\ & 15932420 \end{aligned}$	$\begin{aligned} & 1681.2 \\ & 5721.8 \end{aligned}$	$\begin{array}{r} 18166 \\ 6257.2 \end{array}$	1.03 3.55
Sentoe.	330639.63	791705.49	$\begin{array}{r} 709714 \\ 2355723 \end{array}$		$\begin{array}{r} 250 \\ 25 \\ 558 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 3050.4 \\ & 4187.9 \end{aligned}$	$\begin{aligned} & 4210.7 \\ & 4579.8 \end{aligned}$	$\begin{aligned} & 2.39 \\ & 2.60 \end{aligned}$
Hora	330440.84	792121.18	$\begin{array}{r} 1881755 \\ 119836 \end{array}$	Blake \qquad Cape Roman, old light	$\begin{array}{r} 81736 \\ 1919408 \end{array}$	$\begin{aligned} & 6137.9 \\ & 6785.5 \end{aligned}$	$\begin{aligned} & 6719.2 \\ & 7420.4 \end{aligned}$	3.81 4.21
Cape Roman, new ight *..	380106.56	792011.88	$\begin{aligned} & 1370714 \\ & 1895031 \end{aligned}$	Jeremy	$\begin{array}{r} 3170508 \\ 95117 \end{array}$	8769.6 192635	$\begin{array}{r} 9582.5 \\ 14067.1 \end{array}$	$\begin{array}{r} 5.44 \\ 7.99 \end{array}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section V.-Charleston Harbor to Winyah Bay. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Ormond Hall, west chimney of trouse.	33 0 Of 04.26	$*$ 79 18 23 18.05	$\begin{aligned} & 2470350 \\ & 288 \quad 4482 \end{aligned}$	Blake Murphy	$\begin{array}{ccc} \circ & \prime \prime \\ 67 & 05 & 13 \\ 108 & 46 & 29 \end{array}$	Metres. 4250.2 6368.4	Fards. 4647.9 6964.3	$\begin{gathered} \text { Miles. } \\ 2.64 \\ 3.96 \end{gathered}$
Ormond Elall, west apex of barn.	330705.04	792318.83	247 2885757 2889	Blake Murphy	$\begin{array}{ccc} 67 & 29 & 20 \\ 108 & 55 & 11 \end{array}$	$\begin{aligned} & 4259.5 \\ & 6395.3 \end{aligned}$	$\begin{aligned} & 4658.1 \\ & 699 * .7 \end{aligned}$	2.65 3.97
Chimney near Rice Mill, with red roof, (Indian Hill.)	330943.42	792044.88	$\begin{array}{r}05835 \\ 343 \\ \hline 938\end{array}$	Blake Murphy	$\begin{array}{lll} 180 & 58 & 34 \\ 165 & 30 & 21 \end{array}$	3247.8 7249.2	3551.7 7927.5	2.09 4.50
Raccoon Ifland	330021.59	792547.70	$\begin{array}{r} 773540 \\ 1771858 \end{array}$	N. E. Bull Jeremy	$\begin{array}{lll}257 & 3344 \\ 357 & 18 & 50\end{array}$	5696.1 7814.3	6229 8545	3.54 4.85
Leaning Pole,	330038.67	792728.04	$\begin{array}{r}59 \\ 1315307 \\ \hline 565\end{array}$	N. W. Bull..............$~$ Live Oak	$\begin{array}{lll} 23998 & 05 \\ 311 & 55 & 01 \end{array}$	$\begin{aligned} & 3437.9 \\ & 7263.7 \end{aligned}$	$\begin{aligned} & 3759.6 \\ & 7943.3 \end{aligned}$	2.14
Pole, with white flag	330228.39	798583.66	1014741 1881616	Live Oak feremy. \qquad	2814512 81698	7924.9 3940.6	$\begin{array}{r} 7900.9 \\ 4309.3 \end{array}$	4.49 2.45
Old Mill	380136.08	798217.58	$\begin{array}{r}353 \\ 7218 \\ \hline 27\end{array}$	Cape Roman, old light. N. E. Bull 	$\begin{aligned} & 1732244 \\ & 2521446 \end{aligned}$	964.3 11564.0	$\begin{array}{r} 1054.5 \\ 12646.0 \end{array}$	0.60 7.18
Moreland's Mill, chimney.	330953,40	791954.06	3540948 123100	Murphy . Cape Koman, old light,	$\begin{aligned} & 1741004 \\ & 1922944 \end{aligned}$	$\begin{array}{r} 7295.8 \\ 16673.2 \end{array}$	$\begin{array}{r} 7978.5 \\ 18233.3 \end{array}$	4.53 16.36
Sonth West Cape.	330044.01	792038.46	$\begin{aligned} & 1049518 \\ & 1904708 \end{aligned}$	Cape Roman, old light. . Mutphy	2842423 1047	$\begin{aligned} & 2594.7 \\ & 9839.4 \end{aligned}$	$\begin{array}{r} 2837.5 \\ 10760.1 \end{array}$	6.61
North West Cape.	330318.15	792119.77	$\begin{array}{r} 184237 \\ 2140450 \end{array}$	Cape Roman, old light. Murpby	$\begin{array}{rr} 198 & 49 \\ 31 & 05 \\ 52 \end{array}$	$\begin{aligned} & 4330.8 \\ & 5742.0 \end{aligned}$	$\begin{aligned} & 4736.0 \\ & 6279.3 \end{aligned}$	2.69 3.57
White over Blue Flag in marsh..	330305.94	792544.58	3041197 921621	Cape Roman, old light. . Live Oak	$\begin{aligned} & 1241322 \\ & 2721331 \end{aligned}$	$\begin{aligned} & 6628.3 \\ & 8092.6 \end{aligned}$	$\begin{aligned} & 7248.5 \\ & 8849.8 \end{aligned}$	4.12 5.03
Eddle...........................	330106.88	792920.14	1475724 10412	Live Oak N. E. Buil	$\begin{aligned} & 3275632 \\ & 1810511 \end{aligned}$	4701.8 2620.7	5141.7 22665.9	2.92 1.63
Manigault.	396025.49	793443.70	2772451	Owendar	972455	208.4	227.9	0.13
Long Hammock..................	330221.30	79303191	$\begin{array}{r} 1592958 \\ 3394353 \end{array}$	Live Oak N. E. Bull	$\begin{aligned} & 3 \times 992945 \\ & 1594431 \end{aligned}$	$\begin{array}{r} 1807.1 \\ 5276.8 \end{array}$	$\begin{array}{r} 1976.2 \\ 5726.8 \end{array}$	$\underline{1.12}$
Marsh	330058,82	793048.99	$\begin{aligned} & 1772554 \\ & 3169459 \end{aligned}$	Live Oak......... N. E. Bull	$\begin{aligned} & 3579590 \\ & 136 \% 48 \end{aligned}$	$\begin{array}{r} 4237.5 \\ 3274.5 \end{array}$	$\begin{array}{r} 4634.0 \\ 3580.9 \end{array}$	2.63 8.03
Bull's Island Light...............	325518.34	793343.65	$\begin{aligned} & 1715048 \\ & 2105450 \end{aligned}$	Owendaw N. E. Bull	$\begin{array}{r} 35150 \quad 20 \\ 39 \\ 57 \\ 12 \end{array}$	$\begin{array}{r} 9531.0 \\ 10584.5 \end{array}$	10492.8 11574.2	5.92 6.58
Charlie..........................	330124.00	793251.60	$\begin{array}{r} 555445 \\ 2205118 \end{array}$	Owendaw Live Oak...................	$\begin{array}{r} 2355348 \\ 405291 \end{array}$	$\begin{aligned} & 3263.3 \\ & 45 \% 2.1 \end{aligned}$	$\begin{array}{r} 3568.6 \\ 4999.9 \end{array}$	2.03 2.84
Petrel Bank	325912.06	793238.15	193524 1281320	Bird Lsland Owendaw	$\begin{aligned} & 1993457 \\ & 31661916 \end{aligned}$	$\begin{aligned} & 3898.6 \\ & 3792.9 \end{aligned}$	$\begin{array}{r} 4264.4 \\ 4136.9 \end{array}$	2.42 2.35
West Chimney of house on main.	330201.59	793412.74	$\begin{array}{r} 3523818 \\ 111743 \end{array}$	Bird Island.............. Owendaw	$\begin{aligned} & 1723848 \\ & 1911731 \end{aligned}$	$\begin{aligned} & 8968.7 \\ & 3046.0 \end{aligned}$	$\begin{array}{r} 9807.9 \\ 3331.0 \end{array}$	5.57 1.89
Summer-house, east apex.......	325519.81	793339.00	$\begin{array}{llll}170 & 55 & 58 \\ 184 & 03 & 51\end{array}$	Owendaw Bird Island \qquad	$\begin{array}{r} 3505587 \\ 40356 \end{array}$	$\begin{aligned} & 9507.8 \\ & 3490.0 \end{aligned}$	$\begin{array}{r} 10397.4 \\ 3816.6 \end{array}$	5.91 $\mathbf{2} .17$
Mink Point.......................	325750.88	793759.89	$\begin{aligned} & 2281212 \\ & 27925 \quad 27 \end{aligned}$	Owendaw	$\begin{array}{r} 481403 \\ 998755 \end{array}$	$\begin{aligned} & 7107.4 \\ & 7144.8 \end{aligned}$	$\begin{array}{r} 772.4 \\ 7813.3 \end{array}$	4.42 4.44
Shell Signal.....................	325541.09	793939.61	$\begin{aligned} & 2220432 \\ & 2130832 \end{aligned}$	Owendaw Wagner, (2)	$\begin{array}{r} 420718 \\ 330906 \end{array}$	$\begin{array}{r} 11770.4 \\ 2974.6 \end{array}$	12871.8 3252.9	7.31 1.85
Wagner, (1).....................	325702.39	793837.40	$\begin{array}{r} 3085731 \\ 50539 \end{array}$	Middle Jamie. \qquad \qquad	$\begin{array}{ll} 128 & 58 \\ 185 & 54 \\ \hline 15 \end{array}$	$\begin{aligned} & 5127.6 \\ & 7466.2 \end{aligned}$	$\begin{aligned} & 5807.4 \\ & 8164.8 \end{aligned}$	4.19
Alerander.......................	${ }^{2} 85803.93$	793604.44	$\begin{array}{r} 643003 \\ 2075857 \end{array}$	Wagner, (1)............ Owendaw	$\begin{array}{r} 2442840 \\ 275945 \end{array}$	$\begin{array}{r} 4401.4 \\ 4907.5 \end{array}$	4813.8 5366.7	2.74 3.05
North Wind....... $=.$.	325341.26	793440.52	$\begin{array}{r} 1440097 \\ 1944425 \end{array}$	Humphries Wagner, (1)	3935953 144959	$\begin{aligned} & 2794.4 \\ & 8409.0 \end{aligned}$	$\begin{aligned} & 3055.8 \\ & 7008.7 \end{aligned}$	1.74 3.98
Fort Point........................	335530.54	793547.44	$\begin{array}{r} 471446 \\ 22 \% \\ 52 \\ 14 \end{array}$	Middle Bird Island	$\begin{array}{r} 2271437 \\ 48539 \end{array}$	$\begin{array}{r} 5082.8 \\ 4791.2 \end{array}$	$\begin{array}{r} 637.3 \\ 5039.5 \end{array}$	0.36 9.88
Pont with Cross in water.......	325558.71	293520.54	$\begin{array}{r} 2315256 \\ 414343 \end{array}$	Bird Tslata Middle	$\begin{array}{r} 515857 \\ 221 \\ 43 \\ \hline \end{array}$	$\begin{array}{r} 3699.5 \\ 1692.3 \end{array}$	$\begin{aligned} & 4045.7 \\ & 1850.6 \end{aligned}$	2.39 1.05
Caswrell.........	325021.02	793643.75	$\begin{array}{lll} 252 & 31 & 19 \\ 332 & 03 & 10 \end{array}$	Bird Island Middte	$\begin{array}{r} 723305 \\ 152 \quad 03 \quad 32 \end{array}$	5316.6 2508. 3	5814.1 $\$ 414.9$	3.30 1.37
Peach Trec.......................	325459.43	793722.02	$\begin{array}{r} 2553318 \\ 340313 \end{array}$	Middle Jamie	$\begin{array}{rrr} 7534 & 04 \\ 214 & 02 & 22 \end{array}$	$\begin{array}{r} 2256.3 \\ 4404.3 \end{array}$	$\begin{aligned} & 2457.4 \\ & 4810.4 \end{aligned}$	1.40
Chimney without house.........-	325555.31	783933.48	$\begin{aligned} & 215 \\ & 2 \times 2 \end{aligned} 047$	Wagner, (2) Middle...................	$\begin{array}{rr} 35 & 44 \\ 102 & 18 \\ \hline 1 \end{array}$	$\begin{aligned} & 2598.2 \\ & 3566.0 \end{aligned}$	$\begin{aligned} & 2759.3 \\ & 806.8 \end{aligned}$	1.57 3.46
Family Hydregraphic Elignal.....	323547.32	793443.25	$\begin{aligned} & 108 \\ & 51 \\ & 110 \\ & 110 \\ & 50 \end{aligned} 18$		$\begin{array}{lll} 288 & 99 & 13 \\ 290 & 48 & 60 \end{array}$	$\begin{aligned} & 3397.9 \\ & 6506.5 \end{aligned}$	$\begin{aligned} & 3606.5 \\ & 7115.3 \end{aligned}$	$\begin{aligned} & 205 \\ & 4.04 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section VT.—St. Mary's riser. St. Mary's towards Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude,	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distane	Distance.
Tiger Island Base, mouth end....	$30^{\circ} 41_{1}^{\prime} 42.21$	$81^{\circ} 2 B_{2}^{\prime \prime} 22.70$	- ' "		- '... ${ }^{\text {c. }}$	Metres.	Yards	Milica.
Tiger Itand Bace, north end.	30) 1230.20	812848.08	$335 \% 25$	South Base	1552638	1624.7	1776.7	1.01
Cumberiand.	304323.19	812741.47	$\begin{aligned} & 192620 \\ & 479212 \end{aligned}$	Suuch Base North Hase	$\begin{array}{lll} 199 & 25 & 59 \\ 227 & 21 & 38 \end{array}$	3297.2	3605.7	2.05 1.50
Point Peter.	3043 3*. 24	813037.11	$\begin{array}{r} 3145754 \\ 2753902 \end{array}$	Goum Base. Cumberland	3345903 $9540 \text { de }$	5054.8 4695.2	$\begin{aligned} & 5327.8 \\ & 5134.5 \end{aligned}$	3.14 2.92
Fernandina, geodetic station	304035.24	812742.78	1802312 1403307	Cumberland \qquad Poin: Peter	$\begin{array}{r} 02313 \\ 3203138 \end{array}$	5171.7	$\begin{gathered} 5655.6 \\ 7951.4 \end{gathered}$	$\begin{aligned} & 3.21 \\ & 4.53 \end{aligned}$
Fernandina, astronomical station.	304017.57	812742.78	1795957	Fernandina, geodetic station.	3595957	544.1	595.0	0.34
Martin's Island.	304115.45	813058.77	$\begin{aligned} & 2331836 \\ & 1872804 \end{aligned}$	Cumberland Point Peter	$\begin{array}{r}531017 \\ 788 \\ \hline 15\end{array}$	$\begin{aligned} & 6559.7 \\ & 4434.3 \end{aligned}$	$\begin{aligned} & 7173.5 \\ & 4849.2 \end{aligned}$	4.08 8.76
MeLure.	304055.94	812653.69	$\begin{array}{r} 95 \\ 164 \\ 164 \\ \hline 20 \end{array}$	Martin's Island Cumberland...	9751440 3442002	$\begin{array}{r} 6549.9 \\ 4708.9 \end{array}$	$\begin{gathered} 7162.8 \\ 5149.5 \end{gathered}$	4.07 2.98
Rose's Blaft.	304243.58	813500.93	2924918 2562947	Martin's Isiand Point Peter...	$\begin{array}{r} 1125132 \\ 163202 \end{array}$	6991.5	7645.7 7892.7	4.34
Band Hill, (1).	204218.14	812701.50	$\begin{array}{rl} 15202 & 20 \\ 97 & 28 \end{array}$	「umberland North Base	$\begin{aligned} & 3321200 \\ & 2772720 \end{aligned}$	$\begin{aligned} & 2367.8 \\ & 2060.1 \end{aligned}$	$\begin{array}{r} 2480,0 \\ 3127,7 \end{array}$	1.41 1.78
Sand Eili, (2)	304211.34	812783.61	1715309 1053320	Cumheriand North Baby.	3515303 $285 \quad 3210$	$\begin{aligned} & 2948 \\ & 2167.2 \end{aligned}$	$\begin{aligned} & 2443.9 \\ & 2370.0 \end{aligned}$	1.28
Dufour.	304314.70	813255.59	$\begin{array}{r} 394439 \\ 73 \\ 58 \\ 29 \end{array}$	Martin's Isla Rose's Bluif	$\begin{array}{llll} 139 & 45 & 39 \\ 253 & 57 & 25 \end{array}$	$\begin{aligned} & 4810.8 \\ & 3469.3 \end{aligned}$	$\begin{array}{r} 5760.9 \\ 3793.9 \end{array}$	2.99 2.16
Tiger Island, pine.	304213.14	812837.67	1521203 2714506	North ${ }^{\text {B }}$ Saud Hitl	3321157 91 4540	$\begin{array}{r} 594.0 \\ 1811.7 \end{array}$	$\begin{array}{r} 649.6 \\ 1981.2 \end{array}$	$\begin{aligned} & 0.37 \\ & 1.12 \end{aligned}$
G. E. Point, Cumberland, white flag in tree.	304306.30	812757.59	3351528 50 2355	Sand Hill, (2) North Bas \qquad	1561542 2302329	$\begin{aligned} & 1848.9 \\ & 1743.5 \end{aligned}$	$2 \theta 21.9$ 1906.6	1.15 1.08
Cumberland, blact flag in tree..	304327.56	818820.25	$\begin{array}{r} 294457 \\ 330451 \end{array}$	North Bage \qquad Sand Hill, (2) \square	2024443 1500857	$1914,9$ 2706.2	2094.1 2959.4	1.19 1.68
No. 5 , (T. R.)	304144.49	813807.71	$\begin{aligned} & 1423920 \\ & 2304751 \end{aligned}$	North Bate sand Hill, (2)..	3223859 504811	$\begin{aligned} & 1770.8 \\ & 1308.1 \end{aligned}$	$\begin{aligned} & 1938.5 \\ & 1430.5 \end{aligned}$	1.10 0.81
Tiger Ittand, white fing in uree.	304114.83	812747.67	$\begin{aligned} & 1320754 \\ & 1959610 \end{aligned}$	$\begin{aligned} & \text { South Ba-e............... } \\ & \text { Band Hint, (2) } \end{aligned}$	$\begin{array}{r} 3120736 \\ 15 \quad 26 \quad 20 \end{array}$	$\begin{aligned} & 1257.2 \\ & 1805.0 \end{aligned}$	$\begin{array}{r} 1374.8 \\ 1973.9 \end{array}$	0.78 1.12
Pilot Lookout .	304124.28	812707.04	$\begin{aligned} & 1052021 \\ & 15729 \mathrm{c3} \end{aligned}$	South Base Sand Hill, (3) \qquad	2854. 19 3372851	$\begin{aligned} & 2087.9 \\ & 1 E 68.5 \end{aligned}$	$\begin{aligned} & 2283.3 \\ & 17153 \end{aligned}$	1.30
No. 2, (T. R.).	304102.52	8127 49,28	$\begin{aligned} & 1435741 \\ & 2774792 \end{aligned}$	south Baze Miclure.	3235724 974748	$\begin{aligned} & 1511.6 \\ & 1493.3 \end{aligned}$	$\begin{aligned} & 1653.0 \\ & 1633.0 \end{aligned}$	0.94 0.93
Yellow Bluf, white flag	304036.13	812740.07	1505138 2434208	South Base McLure....	3305116 634232	$\begin{aligned} & 2329.6 \\ & 1376.9 \end{aligned}$	$\underset{1505.7}{25476}$	1.45
Yellow Bluff, norlh gable end of hotel.	304024.63	812739.00	2312117 1062453	Mclure. \qquad Martin's Island.	$\begin{array}{r} 512140 \\ 2869311 \end{array}$	$\begin{aligned} & 1544.0 \\ & 5542.1 \end{aligned}$	16885 6060.7	0.96 3.44
Amelia Light house	304022.94	S1 2627.04	1023723 1602208	Martin's Island......... Cumberland	$\begin{aligned} & 282 \\ & 350 \\ & 340 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 7410.3 \\ & 5 \times 93,1 \end{aligned}$	8103.7	4.60 3.66
No. 8, (A.).	304120.90	81264.17	$\begin{aligned} & 522455 \\ & 16.4144 \end{aligned}$	Metare. Ametia Light-house.	2422430 1964130	$\begin{aligned} & 1663.3 \\ & 2120.3 \end{aligned}$	1818.9 2318.7	$\begin{aligned} & 1.03 \\ & 1.32 \end{aligned}$
No. 9, (A.).	304034.67	812555.10	$\begin{aligned} & 1124741 \\ & 1714701 \end{aligned}$	MeLare. No. 8, (A.)	2924711 3514656	$\begin{aligned} & 1691.4 \\ & 1687.1 \end{aligned}$	$\begin{aligned} & 1849.7 \\ & 1845.0 \end{aligned}$	1.05
No. 1, Marsh island.	304438.78	812902.01	$\begin{array}{r} 3235632 \\ 453437 \end{array}$	Cumberland Point Peter.	1435713 2253348	3640.1 3542.1	$\begin{aligned} & 3990.7 \\ & 3873.5 \end{aligned}$	2.26 2.20
Blact Flag, Marsh ialand.	304433.91	812926.36	$\begin{array}{r} 3075744 \\ 473939 \end{array}$	Cumberland Point Peter.	1275838 2273903	$\begin{aligned} & +1538.9 \\ & 2545.8 \end{aligned}$	3870.0 2784.0	2.20 1.58
Black Flag in tree, ocean side, Auelin.	3040 xa .71	8125 57.20	$\begin{array}{rl} 118 & 15 \\ 174 \\ 17 & 27 \end{array}$	MeTare. No. 8 , \qquad	$\begin{aligned} & 2981458 \\ & 3541158 \end{aligned}$	$\begin{aligned} & 1706.9 \\ & 1832.0 \end{aligned}$	$\begin{array}{r} 1866.6 \\ 2003.4 \end{array}$	1.06 1.14
Dangeneas.....	3044 K4.03	818889.57	$\begin{array}{r} 3459139 \\ 5915 \end{array}$	Vumberland Point Peter	1650153 2391413	$\begin{array}{r} 2894.5 \\ 4566.0 \end{array}$	$\begin{aligned} & 3165.3 \\ & 4933.2 \end{aligned}$	1.20 2.84
White and Black Plag, aceiti eide, Cumberland mund.	304531.76	812918.69	$\begin{array}{r} 304933 \\ 3514244 \end{array}$	Point Peter. \qquad North Base \square	2104856 1714300	4070.4 5649.5	$\begin{aligned} & 4151.3 \\ & 6178.1 \end{aligned}$	9.53 3.51
White Fiag, nauth of \&x. Mary's river.	304318.36	812988.29	$\begin{array}{r} 93 \\ 120 \\ 1929 \\ \hline 98 \end{array}$	Martingy Island, Point Peter.	9030153 3603938	$\begin{aligned} & 41126 \\ & 1200.4 \end{aligned}$	$\begin{aligned} & 4497.4 \\ & 1312.7 \end{aligned}$	2.55 0.74
Black Flag on Jolly tiver...	3042 31,38	813003.86	$\begin{array}{r} \$ 20018 \\ 19645 \quad 00 \end{array}$	Martin's Yeland Point Peter.	2115950 3364443	2757.3 2840.6	3015.3 2450.2	1.71

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section VI.-St. Mary's river. St. Mary's towards Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude.	Langitude.	Azimutb.	To station-	Back azimuth.	Distance.	Distance.	Distance.
White Flag in tree in hammock.	$\begin{gathered} \circ \quad 1 \quad 1 \\ 304146.27 \end{gathered}$	$\begin{aligned} & * \\ & 81 \\ & 81 \\ & 29 \\ & 40.02 \end{aligned}$	2253643 2732826	North Base \qquad South Base \qquad	$\begin{array}{lll} \bullet & \prime & 1 \\ 45 & 37 & 10 \\ 93 & 29 & 05 \end{array}$	Mreires. 19339 2061.3	Tords. 2114.8 2.54 .2	Meles. $\begin{aligned} & 1.20 \\ & 1.28 \end{aligned}$
Woodland's Ishan, dead tree.	304132.74	812851.98	$\begin{aligned} & 1832143 \\ & 249 \\ & 2833 \end{aligned}$	North Base............. South trae..............	32145 692848	1772.5 832.0	1938.4 969.9	$\begin{aligned} & 1.10^{\circ} \\ & 0.52 \end{aligned}$
Forks of Bell's River, white and black flag.	304118.45	812916.94	88 153 15847	Martin's Island......... Puint Peter...........	268 333 3 34545	9711.7 4804.1	$\begin{array}{r} 2965.4 \\ 5253.6 \end{array}$	1.68 2.98
Mouth or Bell's River, red flag..	304019.41	819815.60	$\begin{array}{lll} 111 & 40 & 51 \\ 175 & 45 & 32 \end{array}$	Matin's Island....... Fouth Base \qquad	$\begin{aligned} & 2913928 \\ & 35545 \quad 28 \end{aligned}$	$\begin{array}{r} 4678.9 \\ 2556.5 \end{array}$	5110.1 2795.7	$\begin{aligned} & 9.90 \\ & 1.59 \end{aligned}$
Anmelia River, red, white, and black flag.	303953.30	812900.35	1284590 19637	Martin's Island........ Eouth Base	3064429 163758	4041.6 35002	4419.8 3827.7	2.51 2.17
Bell's River, black, white, and red flag.	304028.33	213020.40	$\begin{aligned} & 14452 \\ & 234 \\ & 200 \\ & 05 \end{aligned}$	$\begin{aligned} & \text { Martin's } \text { I }_{3} \text { and } \\ & \text { South Base. } \end{aligned}$	3245903 540105	$\begin{array}{r} 1774.2 \\ 3871.2 \end{array}$	$\begin{aligned} & 1940.2 \\ & 4233.4 \end{aligned}$	1.10 2.41
Biack and White Flag in Palmetto.	304106.03	813029.60	$\begin{array}{r} 1100615 \\ 2513904 \end{array}$	Maruin's lsland South Hase.............	2900600 714008	$\begin{array}{r} 843.9 \\ 3541.3 \end{array}$	982.9 3872.7	$\begin{aligned} & 059 \\ & \mathbf{2 . 2 0} \end{aligned}$
Iriand in Johy River, red and white flag.	304207.95	813058.72	$\begin{array}{rrr} 0 & 03 & 28 \\ 123 & 28 & 17 \end{array}$	Martin's Islaud Dufour	$\begin{aligned} & 1800398 \\ & 182097 \end{aligned}$	$\begin{aligned} & 1616.6 \\ & 3727.2 \end{aligned}$	$\begin{array}{r} 1767.9 \\ 4075.9 \end{array}$	$\begin{array}{r} 1.00 \\ 2.3 .2 \end{array}$
White Flag opposite North River.	304320.19	813144.46	$\begin{array}{r} 3429595 \\ 84 \quad 5415 \end{array}$	Martin's Island	$\begin{aligned} & 1629648 \\ & 264 \quad 58 \quad 39 \end{aligned}$	4028.5 1900.2	4405.4 2078.0	2.50 1.18
North River, lit mill chimaey...	304405.76	813215.45	2874645 3388 9	Point Petpr. Martin's Island \square	1074736 $158<946$	$\begin{aligned} & 2775.4 \\ & 5636.5 \end{aligned}$	$\begin{array}{r} 3035.1 \\ 6163.9 \end{array}$	$\begin{aligned} & 1.72 \\ & 3.50 \end{aligned}$
North River, 2d mill ehimney	304419.64	813119.67	$\begin{aligned} & 2950234 \\ & 3691249 \end{aligned}$	Point Peter............ Martin's Island	$\begin{aligned} & 1150326 \\ & 159 \\ & 43 \\ & 30 \end{aligned}$	$\begin{array}{r} 3011.5 \\ 60664 \end{array}$	$\begin{array}{r} 3293.3 \\ 6634.0 \end{array}$	$\begin{array}{r} 1.87 \\ 3.77 \end{array}$
Third Mill,	304430.74	813205.09	304 343 3838	Point Peter. Martin's Island. \qquad \qquad	$\begin{array}{ll} 12438 \\ 163 & 39 \\ 12 \end{array}$	$\begin{aligned} & 2844.2 \\ & 6866.7 \end{aligned}$	3110.3 6853.1	1.77 3.89
St. Mary'a Presbyterian Church Spire.	304330.40	813245.81	680022 254814	Rose's Bluff..... Dufuvi	$\begin{aligned} & 2475914 \\ & 2054810 \end{aligned}$	3848.1 537.0	$\begin{array}{r} 42089 \\ 587.2 \end{array}$	$\begin{aligned} & 239 \\ & 0.33 \end{aligned}$
Bum's Iron Chim	304313.01	813244.86	25770704 3220251		770809 1420345	$34 E 6.1$ 4590.5	3812.3 5424.0	2.17
Market-house Bell Tower Etaff.	304312.42	813249.06	$\begin{array}{r} 2571348 \\ \$ 20 \\ 49 \\ 19 \end{array}$	Point Peter. Martin's Lsland	771455 1405015	3599.1 4645.8	$\begin{array}{r} 3935.9 \\ 50630.9 \end{array}$	$\begin{aligned} & 2.24 \\ & 2.69 \end{aligned}$
Mill Chitnney in St. Mary	304312.72	813959.97	$\begin{aligned} & 2581511 \\ & 3182323 \end{aligned}$	Point Peter............. Martin's Esiand.......	$\begin{array}{r} 781624 \\ 1382425 \end{array}$	3862.6 4828.8	$\begin{array}{r} 4224.0 \\ 52850.6 \end{array}$	2.40 3.00
Jolly River, black and white flag.	304155.70	813213.64	$\begin{array}{lll} 301 & 52 & 36 \\ 155 & 21 & 30 \end{array}$	Martin's lsfand Dufour	1215314 3352109	$\begin{aligned} & 2346.3 \\ & 2676.5 \end{aligned}$	$\begin{aligned} & 2565.8 \\ & 9926.9 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.66 \end{aligned}$
Martin's Island, dead tree.......	304129.27	813121.96	$\begin{aligned} & 3043510 \\ & 14230 \quad 15 \end{aligned}$	Martin's Island Dufour \qquad	1243592 3222927	$\begin{array}{r} 749.3 \\ 4091.9 \end{array}$	$\begin{array}{r} 819.4 \\ 4474.8 \end{array}$	$\begin{aligned} & 0.47 \\ & 8.54 \end{aligned}$
North gable end of Boat-house ..	304055.12	813131.01	$\begin{aligned} & 2935301 \\ & 152 \quad 2202 \end{aligned}$	Martin's Island Dufour \qquad	535317 33219	$\begin{aligned} & 1062.0 \\ & 4851.6 \end{aligned}$	$\begin{array}{r} 1161.4 \\ 5305.6 \end{array}$	0.66 3.01
Clark's Chimney.................	303948.28	81311971	$\begin{aligned} & 1914340 \\ & 2331845 \end{aligned}$	Martin's Island gonth Base.	$\begin{array}{r}371 \\ 593 \\ \hline 0\end{array}$	2741.6 5873.8	$\begin{aligned} & 9998.1 \\ & 6428.4 \end{aligned}$	1.70 3.65
Cooper's Chimney...............	304113.25	813253.39	$\begin{aligned} & 2684300 \\ & 1790615 \end{aligned}$	Martin's Island \qquad Dutour \qquad \qquad	$\begin{array}{r} 384358 \\ 3596614 \end{array}$	$\begin{array}{r} 3051.0 \\ 3740.2 \end{array}$	$\begin{array}{r} 3338.5 \\ 4049.2 \end{array}$	1.89 $\mathbf{9} .32$
Bell'a River, white and red flag.	304221.75	813324.72	$\begin{aligned} & 2974218 \\ & 2052504 \end{aligned}$	$\begin{aligned} & \text { Martin's Island } \\ & \text { Dufour } \end{aligned}$	$\begin{array}{rrrr}1177^{\circ} 44 & 32 \\ 25 & 25 & 19\end{array}$	4387.4 1805.1	4797.9 1974.0	2.73 1.12
At. Mary's Point, black and red flag.	394238.97	813207.81	$\begin{aligned} & 324 \quad 2727 \\ & 1354249 \end{aligned}$	Martin's Island Dufour	$\begin{aligned} & 1442902 \\ & 310 \\ & 39 \end{aligned}$	360.3 1681.3	3456.0 1836.6	1.96 1.04
Et. Mary's River, black, white and red flag.	304241.11	813345.78	$\begin{array}{lll} 3100 & 40 \\ 232 & 13 & 33 \end{array}$	$\begin{aligned} & \text { Martin's Island......... } \\ & \text { Dufour } \end{aligned}$	1204219 5213	5167.3 1648.6	$\begin{aligned} & 5650.8 \\ & 1846.6 \end{aligned}$	$\begin{aligned} & 3.21 \\ & 1.05 \end{aligned}$
Roge's Bluff, black and white flag.	304208.18	813441.95	$\begin{array}{lll} 985 & 16 & 34 \\ 234 & 05 & 49 \end{array}$	Martin's Isiand Dufour	$\begin{array}{r} 1051898 \\ 540643 \end{array}$	$\begin{aligned} & 6158.8 \\ & 3493.2 \end{aligned}$	$\begin{aligned} & 6739.9 \\ & 3 \times 20.1 \end{aligned}$	3.83 2.17
Et. Mary's River, white and red flag.	304328.22	B1 3445.68	$\begin{array}{lll} 304 & 05 & 20 \\ 278 & 05 & 08 \end{array}$		$\begin{gathered} 12407 \\ 98 \\ 9804 \\ 04 \end{gathered}$	$\begin{array}{r} 7291.4 \\ 2958.2 \end{array}$	$\begin{array}{r} 7973.6 \\ 32 \times 5.0 \end{array}$	4.53
At. Mary's River, whte flag......	304331.39	813485.70	$\begin{aligned} & 3071352 \\ & 2820541 \end{aligned}$	Martin's Isinnd Dufour	$\begin{aligned} & 1271538 \\ & 1020827 \end{aligned}$	$\begin{aligned} & 6916.0 \\ & 2451.7 \end{aligned}$	$\begin{array}{r} 7563.1 \\ 8 * 81.1 \end{array}$	4.30 1.52
Dead Trec, on Burwell's creek..	30443617	873434.69	$\begin{array}{cc} 11 \\ 313 & 84 \\ 34 & 64 \end{array}$	Rose's Blaff............. Duforar	$\begin{aligned} & 19] \\ & 138 \\ & 13591 \end{aligned}$	$\begin{aligned} & 3536.6 \\ & 3638.9 \end{aligned}$	$\begin{array}{r} 3867.5 \\ 3979.4 \end{array}$	$\begin{aligned} & 2.20 \\ & 2.26 \end{aligned}$
Black and Red Flag, northeast point of Amelia island.	304207.21	B1 2619.26	$\begin{aligned} & 1064036 \\ & 1365609 \end{aligned}$	Sand Hill, (1)-.......... Comberland	$\begin{array}{lll} 886 & 40 & 14 \\ 318 & 55 & 27 \end{array}$	$\begin{array}{r} 1173.0 \\ 32027 \end{array}$	$\begin{aligned} & 1262.8 \\ & 3302.4 \end{aligned}$	0.73 1.94
Red Fiar, east side of Cumberland island.	304425.98	812734.14	$\begin{array}{r} 54604 \\ 731208 \end{array}$	Cumberland...............	$\begin{aligned} & 1854597 \\ & 25310 \frac{27}{35} \end{aligned}$	$\begin{aligned} & 1943.5 \\ & 5084.1 \end{aligned}$	$\begin{aligned} & 2185.3 \\ & 6.554 .8 \end{aligned}$	1.21 3.16
Hed Fiag, on Cumberland sound	304411.91	812853.33	$\begin{aligned} & 3080790 \\ & 3290208 \end{aligned}$	Cumberland. Band Hill, (\$)	$\left.\begin{array}{lll} 128 & 07 & 57 \\ 149 & 62 & 51 \end{array} \right\rvert\,$	$\begin{array}{r} 2430.0 \\ 4329.6 \end{array}$	$\begin{aligned} & 2657.4 \\ & 4734.7 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 2.6 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section V1.—St. Mary's river. St. Mary's, toward Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude.	Longitude.	Azimuth.	To station -	Back azimuth	Distance.	Distance.	Distance.
Bird Nest Tree.	$\begin{array}{ccc} \circ & \prime \prime & \prime \prime \prime \\ 30 & 44 & 04.02 \end{array}$	$\begin{array}{cc} \circ \\ 81 & 30 \\ \hline \end{array} 3^{\prime \prime} .01$	65648	Martin's İland		$\begin{aligned} & \text { Metres. } \\ & 5.0 \end{aligned}$		$\begin{gathered} \text { MiLes. } \\ 3.25 \end{gathered}$
Red Flag, in hammock, on Tiger island.	304302.09	812989.02	$\begin{array}{r} 940393 \\ 1213429 \end{array}$	Dufour		5508.9 2125.7	6024.4 2324.6	3.42 1.32
Prevart's Honse, went chimney..	304205.00	813418.02	$\begin{aligned} & 2460230 \\ & 1350853 \end{aligned}$	Martin's Ialand Lose's Bluf	1060412	5517.2 1617.5	6033.4 1001.6	3.43 1.02
White Flag, in tree, above Rose's Bluff.	304303.09	813452.54	$\begin{array}{r} 202124 \\ 203 \\ 2062 \end{array}$	Rose's Bluff Dutour \qquad		$\begin{array}{r} 640.8 \\ 3!31.9 \end{array}$	$\begin{array}{r} 700.7 \\ 3424.9 \end{array}$	$\begin{aligned} & 0.40 \\ & 1.95 \end{aligned}$
St. Mary's, toward Cedar Keys.								
Cooper.........................	304134.97	813415.92	2795636 236 2 26	Fernandina Geod. Stat'n. Point Peter..............	$\begin{aligned} & 995956 \\ & 565448 \end{aligned}$	10693.0 6949	11617.0 7600.0	6.60 4.32
O'Niel	30360969	813151.03	$\begin{aligned} & 2185558 \\ & 1585654 \end{aligned}$	Fermandina Geod. Stat'r. Cooper	$\begin{array}{r}365804 \\ 338548 \\ \hline 58\end{array}$	$\begin{array}{r} 10514.3 \\ 10733.4 \end{array}$	$\begin{aligned} & 11498.1 \\ & 11 \end{aligned}$	6.53 6.67
Braddock.......................	303703.48	813898.54	$\begin{aligned} & 2184744 \\ & 2: 85152 \end{aligned}$	Croper O'Niel.	334953 9855	$\begin{aligned} & 1078.9 \\ & 10715.5 \end{aligned}$	$\begin{aligned} & 11732.8 \\ & 1718.2 \end{aligned}$	${ }_{6}^{6.67}$
Dunn's Creek...................	303138.97	813603.58	1585242	Braddock. O Niel....	$\begin{aligned} 33 \times 51 \\ 3855 \\ 50 \\ 50 \end{aligned}$	10712.6 10713.0	$\begin{aligned} & 11715.0 \\ & 1,715.4 \end{aligned}$	$\begin{gathered} 6.66 \\ 6.66 \end{gathered}$
Bear Brancti.	303229.23	814217.31	2154811	Bradidnck. Dum's Creek	$\begin{array}{r} 355007 \\ 985123 \end{array}$	$\begin{aligned} & 10514.6 \\ & 101809.8 \end{aligned}$	11339.1	6.47 6.26
Cudar Creek.	308721.27	814001.36	$\begin{aligned} & 2185614 \\ & 1585405 \end{aligned}$	Gunn's Creek Bear Branch.	385815 3485256	$\begin{aligned} & 10985.1 \\ & \end{aligned}$	$\begin{aligned} & 11029.8 \\ & 11007.3 \end{aligned}$	6.26 6.25
King's Road..	302850.51	814726.93	2304604 2823352	Bear Branch Cedar Creek	$\begin{array}{rr} 50 & 49 \\ 102 & 31 \\ 108 \end{array}$	$\begin{aligned} & 10653.2 \\ & 12127.1 \end{aligned}$	$\begin{array}{r} 11650.0 \\ 13316.5 \end{array}$	${ }_{7}^{6.52}$
Pickett.	302233.37	814441.81	2185441	Cedar Creek............ King's Road	$\begin{array}{r} 385703 \\ 3394216 \end{array}$	$\begin{aligned} & 11910.3 \\ & 12748.7 \end{aligned}$	$\begin{aligned} & 13029.7 \\ & 18297.8 \end{aligned}$	7.40 7.90
Brandy Branch.	302413.78	815357.70	2304244	King's Road Pickett......................	$\begin{array}{r} 5046 \quad 12 \\ 1025636 \end{array}$	$\begin{aligned} & 13464.5 \\ & 15223.0 \end{aligned}$	$\begin{aligned} & 14724.4 \\ & 16647.4 \end{aligned}$	$\begin{aligned} & 8.37 \\ & 9.46 \end{aligned}$
McGirt's Creek.	301714.48	815003.42	$\begin{aligned} & 2220355 \\ & 354 \\ & 69 \\ & 42 \end{aligned}$	Pickett. Brandy Branch	420637 3346444	$\begin{aligned} & 12815.7 \\ & 19346 \end{aligned}$	14014.9 15688.9	7.96 8.91
Big Creek.......................	301839.14	820156.88	$\begin{array}{lll} 231 & 07 & 18 \\ 27 & 44 & 12 \end{array}$	Brandy Branch McGirt's Creek	$\begin{aligned} & 511120 \\ & 975012 \end{aligned}$	$\begin{aligned} & 16428.2 \\ & 15239.4 \end{aligned}$	$\begin{aligned} & 17965.4 \\ & 21039.6 \end{aligned}$	10.21 11.95
Padgett	301105.31	815627.23	$\begin{aligned} & 9220247 \\ & 1474710 \end{aligned}$	McGirt's Creek... Big Creek.	$\begin{array}{r} 4206 \quad 00 \\ 3274424 \end{array}$	$\begin{aligned} & 15313.2 \\ & 16520.0 \end{aligned}$	$\begin{aligned} & 16746.1 \\ & 18065.8 \end{aligned}$	9.51 10.26

Section VI.-Cape Sable to Matacumba Key. Sketch No. 21.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Bistance.	Distance.
Cape Sable Base, east end..	$\begin{array}{ccc} \circ & \dot{c}_{\prime \prime}^{\prime \prime} \\ 25 & 27.92 \end{array}$	$\begin{array}{ccc} \circ & \prime \prime \\ 81 & 00 & 36.48 \end{array}$			- ' 1	Metres.	Yards.	Miles.
Cape sable Base, west end.	250716.04	810412.10	2495235	East Base	695407	6431.5	7038.3	4.00
Oyster Key.	250609.45	805714.09	1265612 995657	East Base West Base. \qquad \qquad	3065446 2795359	$\begin{array}{r} 71887.4 \\ 11891.4 \end{array}$	$\begin{array}{r} 7754.9 \\ 13400.0 \end{array}$	4.41
Sandy Key.	250202.41	810049.56	1814608 1493258	East Base	$\begin{array}{r} 14614 \\ 3293132 \end{array}$	11866.6 11194.9	$\begin{aligned} & 12977.0 \\ & 12242.4 \end{aligned}$	7.37 6.96
Man-of.war Burh	250152.68	80.5448 .73	$\begin{array}{r} 152 \\ 91 \\ 91 \\ 43 \\ 455 \end{array}$	Orster Key.............. Sandy Key	$\begin{aligned} & 3324259 \\ & 2714029 \end{aligned}$	8888.5 1018.8	$\begin{array}{r} 9720.2 \\ 110 t 5.6 \end{array}$	6.52
Bchooner Bank.	24.5809 .86	305834.89	$\begin{aligned} & 152111 \\ & 285 \\ & 285 \\ & 20 \end{aligned}$	Eandy Key \qquad Man of war Bush	$\begin{array}{rl} 332 & 1017 \\ 42 & 17 \\ \hline 6 \end{array}$	$\begin{aligned} & 8090.1 \\ & 9338.6 \end{aligned}$	$\begin{array}{r} 8847.1 \\ 10212.4 \end{array}$	5.03 5.80
Rabbit Key.,	245846.84	804936.81	1074702 1231848	Sandy Key Man-of-war bush	$\begin{array}{ll} 287 & 4217 \\ 303 & 14 \\ \hline 10 \end{array}$	$\begin{array}{r} 1 \\ 10903.7 \\ 1048.5 \end{array}$	$\begin{aligned} & 21656.7 \\ & 11437.1 \end{aligned}$	12.30 6.50
Kotweneck Bhoal, east.	245317.48	805144.38	1280012 194 2651	Schooner Bank........ Rubhit Key.	$\begin{array}{r} 3075719 \\ 192745 \end{array}$	${ }_{10724.5}^{14518.1}$	$\begin{aligned} & 1598.9 .9 \\ & 11731.3 \end{aligned}$	$\begin{array}{r} 9.08 \\ 6.67 \end{array}$
Buchaman..	245501.53	804050.06	1455708 68481	Rabhit Key Horweneck Shoal, east.	3255558 2484627	8345.4 8848.5	$\begin{gathered} 9126 . \\ 9676.75 \end{gathered}$	$\begin{aligned} & 3.18 \\ & 5.50 \end{aligned}$
Twin Keyw	245737.22	804440.99	1001950 3348 91	Rabbit Key \qquad Buchanal	2801745	${ }_{64504}^{84}$	9214.7	$\begin{aligned} & 5.24 \\ & 4.04 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section VI.-Cape Sable to Matacumba key-Florida reef,from Matacumba to Rodriguez. Sketch No. 21.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Bret Azimuth	Distance.	Distance.	Distance.
Ligruma Vite...................	$\begin{array}{lll} \circ & \prime \\ 24 & 53 & 58.06 \end{array}$	$\begin{array}{ccc} \circ & \prime \\ 80 & 42 & 17.87 \end{array}$	$\begin{array}{ccc} 0 & 1 \\ 151 & 22 & 23 \\ 104 & 21 & 24 \end{array}$	Twin Keys Buchanan	$\begin{array}{ccc} \bullet & 1 & \prime \prime \\ 331 & 21 & 21 \\ 284 & 19 & 29 \end{array}$	$\begin{array}{r} \text { Metres. } \\ 7383.4 \\ 7884.5 \end{array}$	Furds. 9167.8 8622.3	$\begin{aligned} & \text { Miues. } \\ & \mathbf{5 . 2 1} \\ & \mathbf{4 . 9 0} \end{aligned}$
Matacumba	245056.02	ع0 4409.76	2091507 1491245	Lignum Vite \qquad Bucbutan	$\begin{array}{rrr}29 & 15 & 54 \\ 329 & 11 & 38\end{array}$	6419.5	$\begin{aligned} & 7020.2 \\ & 9615.9 \end{aligned}$	3.99 5.46
Centre Key	245547.63	804946.97	$\begin{aligned} & 1 \times 25801 \\ & 106 \\ & 59 \end{aligned}$	Rabbit Key............. schooner Bank	$\begin{array}{r} 25805 \\ 2662558 \end{array}$	$\begin{array}{r} 5502.6 \\ 15441.6 \end{array}$	$\begin{array}{r} 6017.5 \\ 16886.5 \end{array}$	3.42 9.59
Iardella	245559.74	804840.33	$\begin{array}{ll} 162 & 49 \\ 300 \\ 300 & 03 \end{array}$	Rabbit Key Buchanen .	3424839 1200331	$\begin{array}{r} 5362.1 \\ 3571.4 \end{array}$	5863.8 3005.6	3.33 2.22
Barnes ..	245622.30	804726.22	$\begin{aligned} & 2375240 \\ & 3375940 \end{aligned}$	Twin Keys Buchanan	$\begin{array}{r} 575350 \\ 1575955 \end{array}$	5464.4 2697.0	5975.7 2949.3	3.39 1.67
Palm Tree.	250936.67	810754.90	$\begin{aligned} & 3193192 \\ & 2794459 \\ & 279 \end{aligned}$	Sandy Key East Base \qquad	$\begin{gathered} 1393493 \\ 94 \\ 4805 \end{gathered}$	18366.8 12458.6	20085.4 13624.4 1829	11.41
Cape Sable.	250653.05	810459.20	$\begin{aligned} & 2755103 \\ & 3215700 \end{aligned}$	Oyster Key Sandy Key	955421 1415846	$\begin{aligned} & 13098.2 \\ & 11553.3 \end{aligned}$	$\begin{aligned} & 14323.8 \\ & 12415.6 \end{aligned}$	8.14 7.03
Spoonbill	250792.49	810001.21	$\begin{array}{r} 750 \quad 09 \\ 295 \\ 37 \end{array}$	sandy Key Oyster Key	$\begin{aligned} & 1874948 \\ & 1153910 \end{aligned}$	$\begin{aligned} & 9940.6 \\ & 5192.8 \end{aligned}$	10870.7 5678.2	6.18 3.23
Dorr	250609.42	814237.36	$\begin{aligned} & 338 \quad 18 \quad 53 \\ & 26958 \quad 25 \end{aligned}$	Sandy Key. Oyster Key.....	$\begin{array}{r} 1581939 \\ 90 \end{array} \mathbf{6 0} 43$	8178.3 80562	8043.5 0903.6	5.08 5.63
Curle	250728.31	805938.42	$\begin{array}{r} 111448 \\ 3605740 \end{array}$	Sandy Key. Oyster Kay	1911418 1205841	$\begin{array}{r} 10293.3 \\ 4715.4 \end{array}$	11179.9 5156.8	6.35 2.93
Clive	250437.76	805552.16	$\begin{gathered} 3404317 \\ 601111 \end{gathered}$	Madiof.war Bush...... Sandy Key	$160 \$ 244$ 2400945	5381.2 8607.6	$\begin{array}{r} 5884.7 \\ 16506.6 \end{array}$	5.34
Flamingo .	250149.19	805708.02	$\begin{array}{r} 934541 \\ 1784700 \end{array}$		2934407 3584657	6223.2 8009.3	6805.5 6758.7	3.87 4.97
Brue Bank	245948.78	805701.14	$\begin{aligned} & 2241358 \\ & 1224259 \end{aligned}$	Man-of war Bush....... Sandy Key	441454 3421122	$\begin{aligned} & 5321.0 \\ & 7609.8 \end{aligned}$	5818.9 8321.8	3.31 4.73
Oxfoot	245924.33	810021.10	$\begin{aligned} & 2435304 \\ & 170 \\ & 41 \\ & \hline 15 \end{aligned}$	Man-of war Bush Eandy Key	635525 3504103	10376. 4 4928.8	$\begin{array}{r} 11347.3 \\ 5390.0 \end{array}$	6.45 3.60
Jewfish	245031.18	804739.74	$\begin{aligned} & 2623550 \\ & 2344800 \end{aligned}$	Matacumba. Lignum Vite	$\begin{aligned} & 823718 \\ & 545095 \end{aligned}$	$\begin{array}{r} 5943.6 \\ 11049.0 \end{array}$	$\begin{array}{r} 6489.7 \\ 1 \mathrm{yoces} .8 \end{array}$	3.69 6.89
Bowlegs Key	245443.07	804437.80	$\begin{array}{cc} 289 & 24 \\ 359 \\ 33 & 28 \\ 32 \end{array}$	Ligntum Vita \qquad Matacumba \qquad	$\begin{aligned} & 1092597 \\ & 1733144 \end{aligned}$	$\begin{aligned} & 4166.6 \\ & 7031.0 \end{aligned}$	$\begin{array}{r} 45565 \\ 7688.9 \end{array}$	2.59 4.37
Paola	245114.15	804430.36	$\begin{aligned} & 1504314 \\ & 2162236 \end{aligned}$	Buchanan \qquad Iignum Vite.	3304215 362332	$8021 \text {. }$ 6264.7	$\begin{aligned} & 8772.4 \\ & 6650.9 \end{aligned}$	4.98 3.89
Oaceola Key	245151.15	804347.05	$\begin{aligned} & 13 \mathrm{t} \\ & 2500 \\ & 212 \\ & 37 \\ & 46 \end{aligned}$	Buchanan \qquad Lignum Víte \square	3184343 323823	$\begin{aligned} & 792.7 \\ & 4637 \end{aligned}$	$\begin{aligned} & 8521.9 \\ & 5071.1 \end{aligned}$	4.84 8.88
Florida reef, from Matacumbato Rodiguez.								
Alligator reef.	245101.95	803711.00	$\begin{array}{r} 890809 \\ 1221116 \end{array}$	Matacumba \qquad Lignum Vita. \qquad	269 as 12 3020907	11756.8 10177.6	$\begin{aligned} & 12856.9 \\ & 11129.9 \end{aligned}$	7.30 6.32
Tea Table key.	245328.68	803933.33	584912 3182929	Matacumba Alligator Reef	2384716 1383022	$\begin{aligned} & 9089.7 \\ & 60229.1 \end{aligned}$	9018.3 6589.2	5.63
Prantation Point.	245719.80	803400.70	524208 243955	Tea Table Key Alligator Reef :	2323948 2043837	$\begin{array}{r} 11730.4 \\ 12792.3 \end{array}$	$\begin{aligned} & 12828.0 \\ & 13989.3 \end{aligned}$	7.29 7.95
Crocus Reer.	245432.81	803143.03	$\begin{array}{r} 1430342 \\ 8131 \end{array}$	Plantation Point \qquad Tea Tałde Key \square	3230243 51 2808	$\begin{array}{r} 649.8 \\ 13348.9 \end{array}$	$\begin{array}{r} 7030.8 \\ 14599.4 \end{array}$	$\begin{array}{r} 3.99 \\ \mathbf{8 . 2 9} \end{array}$
Tavernier Key.	245943.81	80302079	$\begin{aligned} & 133206 \\ & 541826 \end{aligned}$	Orocus Reff \qquad Plantation Point.	1 183 3131 2341654	94.8 7592.6	$\begin{array}{r} 10763.8 \\ 8333.0 \end{array}$	$\begin{aligned} & 6.12 \\ & 4.72 \end{aligned}$
Conch Beef . .	245703.03	6027 49.99	9251.46 1392818	Plantation Potnt Tavernier Key...	2784910 3198716	10410.9 6509.7	$\begin{array}{r} 11385.0 \\ 7118.8 \end{array}$	6.47 4.04
Dove Key	250247.27	80 2832.26	$\begin{array}{rl} 28 & 18 \\ 353 \\ 35 & 42 \end{array}$	Tavernier Key Conch Reef. \qquad	2081800 1733550	$\begin{array}{r} 6412.1 \\ 10659.2 \end{array}$	$\begin{array}{r} 7012.1 \\ 11658.6 \end{array}$	$\begin{aligned} & 3.98 \\ & 6.62 \end{aligned}$
Pickle's Reenf	245921.41	809455.65	$\begin{gathered} 151249 \\ 942043 \end{gathered}$	Dave Key Travernier $\mathbf{X e y}$	3161111 2741891	$\begin{aligned} & 8778.8 \\ & 9143.5 \end{aligned}$	$\begin{aligned} & 9585.0 \\ & 9259.1 \end{aligned}$	$\begin{aligned} & 5.45 \\ & 5.68 \end{aligned}$
Point Chates ,.................	350430.43	802638.83	$\begin{array}{r} 351108 \\ 343 \\ \hline 02 \\ \hline 17 \end{array}$	Taverniter they Pickte's Reef	915 6934 163 03	$\begin{array}{r} 10788.3 \\ 6841.1 \end{array}$	$\begin{array}{r} 11798.9 \\ 10871.3 \end{array}$	$\begin{aligned} & 6.70 \\ & 6.18 \end{aligned}$
Dry Hocks	250934.10	8089129.64	$\begin{array}{r} 115309 \\ 690359 \end{array}$	Point Charles. Tavernier Key	2953516 249 00	$\begin{array}{r} 8277.8 \\ 14052.8 \end{array}$	$\begin{array}{r} 19052.1 \\ 16023.2 \end{array}$	$\begin{aligned} & 5.14 \\ & 9.10 \end{aligned}$
French Reef	250203.56	80 2: 05.67	$\begin{array}{r} 953944 \\ 1153142 \end{array}$	Dove Key	$\begin{aligned} & 275.4935 \\ & 295 \\ & 29.91 \end{aligned}$	$\begin{aligned} & 12589.9 \\ & 10351.4 \end{aligned}$	$\begin{aligned} & 13781.4 \\ & 11388.0 \end{aligned}$	$\begin{array}{r} 7.88 \\ 6.43 \end{array}$
Indian Key	245234.41	804039.19	$\begin{aligned} & 224 \\ & 2274 \\ & 2598 \end{aligned}$	Plantation Point Tet Trable Key. \qquad \square	5159501	$\begin{array}{r} 14814.4 \\ 24815 \end{array}$	$\begin{aligned} & 15544.4 \\ & 2753.4 \end{aligned}$	$\begin{aligned} & 8.83 \\ & 1.55 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITTONS.

Section VI.-Florida reef, from Matacumba to Rodrigues. Sketch No. 21.

Name of station.	Latitude.	Longtude.	Azimuth.	To station-	Back azimuth	Distance.	Oistance	Distance.
Rodriguez, east	$\begin{array}{ccc} \circ \\ 25 & 11 \\ 02 & 50.74 \end{array}$	$\begin{array}{ccc} \circ & \prime \prime \\ 80 & 23 & 41,73 \end{array}$	1812625	Point Charles..		Metres. 2068.7 8412	Yards 3355.8 9199	Miles. 1.91
Rodriguez, west.	250254.29	809746.40	$212: 548$ $36 \geq 15$	Punt Charles Tavernier Key	$\begin{array}{r} 3236 \\ 217 \\ 24 \\ 24 \\ \hline \end{array}$	8511.6	3840.2 7964.2	2.18 4.52
Wreck Point.	$22^{5} 0119.91$	802944.03	20) 28 5 2941512	Poin' Charles. Pickle’s Reuf	$\begin{array}{rrr} 41 & 30 & 15 \\ 114 & 17 & 14 \end{array}$	7826.9	$\begin{aligned} & 8559.2 .8 \\ & 9701.4 \end{aligned}$	4.86
Libra	250005.40	803105.43	2875657 4357 47	Tavernier Key. Phantation Point	1175716 2235643	$\begin{array}{r} 1417.3 \\ 7078.5 \end{array}$	$\begin{gathered} 1549.9 \\ 7740.9 \end{gathered}$	4.88
Virgo .	245928.59	803307.58	$\begin{array}{lll} 961 & 03 & 31 \\ 355 & 39 & 19 \end{array}$	Tavernier Key. Crocus Reef...	$\begin{array}{rrr} 81 & 04 & 16 \\ 175 & 34 & 29 \end{array}$	$\begin{array}{r} 3029.6 \\ 9125.1 \end{array}$	$\begin{array}{r} 3313.1 \\ 9978.9 \end{array}$	${ }^{1.68}$
Tamras	245856.79	803235.66	2490314 3494009	Tavernier Key Crocus Reef...	$\begin{array}{r} 690411 \\ 1694031 \end{array}$	$\begin{aligned} & 4049.1 \\ & 8246.2 \end{aligned}$	${ }^{442928.0}$	2.51 5.13
Leo...	245813.14	803310.47	239 340 305 0 1	Tavernier Key Crocus Reef.	$\begin{array}{r} 593713 \\ 1600540 \end{array}$	$\begin{aligned} & 5514.7 \\ & 7 \geq 10.7 \end{aligned}$	6130.7 7895.	343 4.48
Walker Bank	94564478	C0 3453.15	$\begin{array}{r} 2334710 \\ 52954 \end{array}$	Plantation Point. Tea Table Key ...	$\begin{array}{r} 534732 \\ 242952 \end{array}$	1883.7	$\begin{array}{r} 1994.3 \\ 10834.2 \end{array}$	$\begin{aligned} & 1.13 \\ & 6.16 \end{aligned}$
Ofd Wreck on keef.	245214.67	803655.65	11715 05 45 75	Tea Table Key Indian Key..	$\begin{aligned} & 297 \\ & 275 \\ & 270 \\ & 30 \end{aligned}$	4976.8 6303.6	$\begin{aligned} & 5442.5 \\ & 6 \times 92.8 \end{aligned}$	3.09 3.92
Graham.	245654.27	603526.62	$\begin{array}{r} 3044404 \\ 473444 \end{array}$	Crome Reef.. Tea Table Key	1244538 227 3	7636.8 9.74 .8 98.8	$\begin{array}{r} 8351.4 \\ 10252.0 \end{array}$	4.74 58
Bailey	245831.63	803610.92	$\begin{array}{rll} 295 & 55 & 07 \\ 45 & 15 & 10 \end{array}$	Crocus Reef... Trea Table Eey.	$\begin{aligned} & 115 \\ & 225 \\ & 513 \\ & 13 \end{aligned}$	$\begin{gathered} 83,9.3 \\ 7494.1 \end{gathered}$	$\begin{aligned} & 9141.5 \\ & 8742.1 \end{aligned}$	5.19 4.97
Dana	245541.23	803712.66	2424935 3594649 3594649	Crocus Reef. Alligator Repf.	$\begin{aligned} & 1025154 \\ & 179 \\ & 4649 \end{aligned}$	$\begin{array}{r} 9470.0 \\ 8892 . \end{array}$	$\begin{array}{r} 10356.1 \\ 9386.9 \end{array}$	5.88 5.34
Corwin	245503.62	803750.84	2465949 351 25	Plantation Point . Allgator Reef ...	$\begin{array}{r} 570126026 \\ 171_{86} 00 \end{array}$	$\begin{array}{r} 7895 \\ 7520.0 \end{array}$	$\begin{aligned} & 8415.7 \\ & 8223.6 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.67 \end{aligned}$
Agassiz....	245432.03	803825.69	3 ± 20051 441353	Allightor Reef Tea Table Key.	$\begin{array}{lll}162 & 01 & 22 \\ 224 & 13 & 25\end{array}$	$\frac{6795.9}{2719.1}$	7431.8 2973.5	4.68
Bowditch Point	245348.38	803830.10	$\begin{array}{r} 409493 \\ 82114 \end{array}$	Indian Key...... Tea Table Key .	2202354 1882113	$\begin{array}{r} 2999.1 \\ 611.9 \end{array}$	$\begin{gathered} 3269.9 \\ 669.9 \end{gathered}$	${ }_{0}^{1.86}$
Petrel Poiut..	245351.21	803939,44	$\begin{array}{r} 346 \\ 341 \\ 35 \\ 30 \\ \hline \end{array}$	Tea Trable Key Indian Kpy	1660316 2151952	$\begin{array}{r} 714.4 \\ 2 \in 96.9 \end{array}$	$\begin{array}{r} 781.2 \\ 7168.0 \end{array}$	0.44 1.80
Spring Point	245248.65	804131.14	2493329 $2 e 64947$	Tea Table Key . Indian Key.....	$\begin{gathered} 693719 \\ 1065009 \end{gathered}$	$\begin{aligned} & 3327.0 \\ & 1523.8 \end{aligned}$	3857.0 1656.4	2.19 0.95
Spell Key.....	245503.39	8040 16,39	$\begin{array}{r} 337 \\ 755 \\ 2659 \\ \hline 09 \end{array}$	Tea Table Key .. Indian Key.......	$\begin{array}{lll} 157 & 27 & 51 \\ 187 & 54 & 54 \end{array}$	3155.4 4628.1	$\begin{aligned} & 3450.7 \\ & 5061.1 \end{aligned}$	1.96 2.98
Stave Point	245140.62	804254.82	2393151 277 0435	Tea Table Key Alligator Reef .	$\begin{array}{r} 583316 \\ 970300 \end{array}$	$\begin{aligned} & 6530 \geq \\ & 9724.8 \end{aligned}$	$\begin{array}{r} 7174.0 \\ 10634.7 \end{array}$	4.48 6.04

Section VII.—Cedar Keys to Homosassa river. Sketch G, No. 23.

Name of atation.	Latitude.	Longtude.	Aximuth.	To station-	Back aximuth	Distance.	Distance.	Distance.
Oyster Reef, mouth, 1856........	$\begin{array}{ccc} \circ & \prime \prime \\ 29 & 07 & 24.12 \end{array}$	895937.43	$\begin{array}{r} 9909 \\ 1503508 \\ \hline 15 \end{array}$	Depot Key Oyater Reef B, (2)	$\begin{gathered} \circ \\ 271 \\ 288 \\ 330 \\ 34 \\ 37 \end{gathered}$	$\begin{gathered} \text { Metress } \\ 5073.3 \end{gathered}$ 4239.3	Yardt. 5548.0 463\%.0	Miles. 9.15 $\mathbf{8 . 6 3}$
Oybrer Reer C.	29 as 33.17	825950.55	$\begin{array}{r} 673254 \\ 3503138 \end{array}$	Bepm Key Oyster Reef, south, 1856 .	$\begin{aligned} & 2473129 \\ & 1703144 \end{aligned}$	$\begin{aligned} & 5102.8 \\ & 2155.6 \end{aligned}$	3579.6 2357.3	3.17
Main Land, 1858	291009.43	825821.85	$\begin{aligned} & 915938 \\ & 385831 \end{aligned}$	Oyster Reef, weuth, 1856. Oyster Reefe.	$\begin{aligned} & 2013141 \\ & 2185748 \end{aligned}$	$5+84.0$ 3311.3	6997.1 4167.9	3.41 2.37
Main Land, east	29095600	825597.76	$\begin{aligned} & 551743 \\ & 950206 \end{aligned}$	Oyster Reef, nouth, 1836. Main Land, 1856.	9351542 975 0041	$\begin{array}{r} 8296.9 \\ 4721.9 \end{array}$	8977.0 5163.7	$\begin{aligned} & 5.10 \\ & 2.93 \end{aligned}$
Waccseanas Reef ...	290839.04	82.55 .00 .36	1395737	Main Land, 1856. Main Lund, enct	3195559 3530222	$\begin{array}{r} 8461.7 \\ 6108.5 \end{array}$	9253.4	5.86
Grassy Point. ..	290916.89	(20 50 52,06	$\begin{array}{lll} 99 & 12 & 03 \\ 54 & 06 & 38 \end{array}$	Main Tand, enat...... Waccasassa Reef	2798949 2340437	7546.1 8246.2	2052.5	4.69
Water Signal 1.	200940.90	325903.31	$\begin{array}{r} 231 \\ 31 \\ 58 \\ 58 \end{array}$	Mrin Land, 1856 Oyster Keef C...........	515401 2119840	$\begin{aligned} & 1493.5 \\ & 2444.6 \end{aligned}$	${ }_{2673.75}^{1555}$	$\begin{aligned} & 0.88 \\ & 1.52 \end{aligned}$
Water Signal $2 .$.	290930.03	825802.64	$\begin{array}{r} 545000 \\ 501592 \end{array}$	Oyster Reef C. Main Land, 1856.	$\begin{array}{lll} 234 & 49 & 08 \\ 330 & 15 & 12 \end{array}$	$\begin{aligned} & 3567.5 \\ & 1045.9 \end{aligned}$	$\begin{array}{r} 3801.3 \\ 1143.8 \end{array}$	0.22

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section VII.-Cedar Keys to Homosassa river. Sketch G, No. 23.

Name of station.	Latitude.	Longitude.	Azimurb.	To station-	Back azimath.	Distance.	Distance.	Distance.
Water Signal 3.		825710	117429	Main Land,	$\begin{array}{cc} \circ \\ 297 & 11 \\ \hline 1 & 54 \end{array}$	Metres,	Fards. 2381.0	Miles. 1.35
Water Signal 4.	290917.99	825612.29	$\begin{array}{r} 1149056 \\ 765050 \end{array}$	Main Land, 1856 Oyster Reef 0. \qquad	2941953 25649	3842.3 6657.5	4801.8	2.39
Water Signal 5.	290912.34	825509.68	108 4246 1600148	Main Land, 1856 Main Land, east.	$29841 \quad 12$ 3400139	$\begin{gathered} 5482.0 \\ 1430.1 \end{gathered}$	$\begin{aligned} & 5995.0 \\ & 1563.9 \end{aligned}$	3.41 0.89
Water Bignal ${ }^{\text {b }}$.	290901.88	825422.49	$\begin{array}{r} 130626 \\ 235.20 \underset{27}{26} \end{array}$	Waccarassa Ree Grassy Puint....	1930608 859209	$\begin{aligned} & 4515.0 \\ & 5705.5 \end{aligned}$	$\begin{gathered} 4937.5 \\ 6229.4 \end{gathered}$	$\begin{aligned} & 2.80 \\ & 3.54 \end{aligned}$
Water Signal 7................	290843.90	825336.81	1263113 2570824	Main Land, east Grassy Point	$\begin{array}{r} 3063019 \\ 770944 \end{array}$	3730.3	$\begin{aligned} & 4073.3 \\ & \hline 0103 \end{aligned}$	$\begin{aligned} & 2.32 \\ & 2.84 \end{aligned}$
Water Signal 8.	290839.64	825941.47	2.484746 11737	Grassy Point Main Land, east........	$\begin{array}{r} 684839 \\ 2973631 \end{array}$	(3171.3	$\begin{aligned} & 3468.0 \\ & 5545.7 \end{aligned}$	1.97 3.15
Water Signal 11	290855.55	825013.56	$\begin{array}{r} 1221713 \\ 61 \quad 3323 \end{array}$	Grassy Point. Waccasaeta pest.....	3021654 2413103	1230.3	$\begin{aligned} & 1345.4 \\ & 964: 3.1 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 5.78 \end{aligned}$
End Mangruve Point.	290649.76	825027.93	$\begin{array}{r} 1714846 \\ 872705 \end{array}$	Gras Wac	3514834 2672153	4576.3	$\begin{aligned} & 5004.5 \\ & 8049 \end{aligned}$	2.84 4.58
West Eydrographic Tripod......	290111.76	83550.24	$\begin{aligned} & 1873716 \\ & 1514030 \end{aligned}$	Waccasnama Reef. Oyeter Reef, wouth, 1055	$\begin{array}{r} 73740 \\ 3414740 \end{array}$	$\begin{array}{r} 10165.3 \\ 13005.6 \end{array}$	11116.5	$\begin{aligned} & 6.32 \\ & 8.08 \end{aligned}$
Shellbank 1.	290538.02	825424.12	$\begin{array}{ll}1674417 \\ 152 & 03 \\ 21\end{array}$	Main Land, exst...... waccasassa Reef......	3474346 3320303	$\begin{aligned} & 896.0 \\ & 2091.4 \\ & \end{aligned}$	$\begin{aligned} & 8853.5 \\ & 2287.1 \end{aligned}$	5.03
Shelthank 2	290618.33	825402.70	$\begin{array}{ll} 1610411 \\ 283 & 03 \\ \hline \end{array}$	Main Land, east Grassy Point	$\begin{array}{r} 3410330 \\ 436944 \end{array}$	$\begin{aligned} & 7084.3 \\ & 75.34 .6 \end{aligned}$	7747.2 8239.6	4.40 4.68
Shellbank 4.	29.06.57.38	8253 mu .63	$\begin{array}{r} 2944452 \\ 7702: 37 \end{array}$	Grasay Point.... Wuccasassa Reef	444609 2570143 2570143	6048.5 2517.3	6614.5 2752.8	$\begin{aligned} & 3.76 \\ & 1.56 \end{aligned}$
Northeant Oyster Bar.	290717.73	825427.55	$\begin{array}{lll} 161 & 32 & 10 \\ 237 & 45 & 49 \end{array}$	Main Land, east Grasay Point.	$\begin{array}{r} 3413141 \\ 574834 \end{array}$	$\begin{aligned} & 513.8 \\ & 6883.0 \end{aligned}$	5617.4 7527.0	3.19 4.23
Cormorant Rack	29 c6 14.71	825127.92	$\begin{aligned} & 1894802 \\ & 1369618 \end{aligned}$	Grassy Point. Main Land, east	$\begin{array}{r} 94819 \\ 3162421 \end{array}$	$\begin{aligned} & 9691.5 \\ & 9403.8 \end{aligned}$	6224.4 10883.7	$\begin{aligned} & 3.54 \\ & 5.84 \end{aligned}$
Basin Rock	290244.74	824856.74	1474154 1261706	Cormorant Rock....... Waecasassa Reef......	$\begin{array}{lll} 327 & 40 & 41 \\ 306 & 14 & 09 \end{array}$	7648.1 12195.2	$\begin{array}{r} 8363.7 \\ 13356.3 \end{array}$	4.75 7.58
Middle Marsh	290446.77	824845.20	$\begin{array}{r} 1213701 \\ 44510 \end{array}$	Cormorant Rock...... Basin Rock.	$\begin{array}{r} 3013542 \\ 1844505 \end{array}$	$\begin{aligned} & 5165.9 \\ & 3708.4 \end{aligned}$	$\begin{aligned} & 5649.3 \\ & 4122.1 \end{aligned}$	3.21 2.34
Turtie Creek	290703.16	824822.30	$\begin{array}{r} 732735 \\ 82329 \end{array}$	Cormothnt Rock midtle Marsh.	$\begin{array}{r} 2532605 \\ 1889318 \end{array}$	$\begin{aligned} & 9234.9 \\ & 4244.9 \end{aligned}$	$\begin{aligned} & 5724.7 \\ & 4641.3 \end{aligned}$	3.25 2.64
Crane Istand.	290138.35	824636.55	$\begin{aligned} & 1250234 \\ & 1513204 \end{aligned}$	Basin Rock Middle Marsh	$\begin{array}{llll} 305 & 46 \\ 331 \\ 31 \end{array}$	$\begin{aligned} & 4639.4 \\ & 7299.0 \end{aligned}$	$\begin{aligned} & 565.9 \\ & 79892.0 \end{aligned}$	$\begin{aligned} & 9.88 \\ & 4.53 \end{aligned}$
Palmetto.	290394.44	824659.75	$\begin{array}{r} 685342 \\ 3504856 \end{array}$	Rasin Rock. Crane Ieland.	2485245 1704907	$\begin{aligned} & 3392.5 \\ & 3932.6 \end{aligned}$	$\begin{array}{r} 3709.9 \\ 42099 \end{array}$	2.11 2.44
Sand Shoal.	1885930.84	824808.48	1673948 2165531	Basin Rock. Crane Istand \qquad	34739 x 365615	$\begin{aligned} & 6110.5 \\ & 4140.5 \end{aligned}$	$\begin{array}{r} 6662.3 \\ 4527.9 \end{array}$	3.80 2.57
Marsh Istand.	285907.88	824559.30	1012446 1655433	$\begin{aligned} & \text { sand Shoal } \\ & \text { Crane Isiand........... } \end{aligned}$	2812343 345415	$\begin{aligned} & 3560.8 \\ & 4139.6 \end{aligned}$	$\begin{aligned} & 3900.5 \\ & \hline 4566.9 \end{aligned}$	2. 2.58
Sand Shoal, (2) .	285930.86	824808.16	1673453 2165000	Basin Fock Crane Imband \qquad	$\begin{array}{r} 34 \times 34 \\ 36504 \\ 40 \end{array}$	$\begin{aligned} & 6111.7 \\ & 4134.7 \end{aligned}$	$\begin{aligned} & 6683.6 \\ & 4521.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.80 \\ & \mathbf{2 . 5 7} \end{aligned}$
Half-Moon Bar	285700.24	894615.36	$\begin{aligned} & 1463338 \\ & 18618 \quad 31 \end{aligned}$	Gand Shoal Marsh Island	$\begin{array}{r} 3263943 \\ 61839 \end{array}$	$\begin{array}{r} 5556.1 \\ 3954.7 \end{array}$	$\begin{array}{r} 6076.0 \\ 4324.7 \end{array}$	$\begin{aligned} & \mathbf{3 . 4 5} \\ & \mathbf{2 . 4 6} \end{aligned}$
Latue [sland	285707.65	824359.24	1384347 1231022	Marsh Esland. Sand Shoal \qquad	3184249 3030821	$\begin{array}{r} 4928.8 \\ 88959.4 \end{array}$	$\begin{aligned} & 53878 \\ & 8813.5 \end{aligned}$	$\begin{aligned} & \mathbf{3 . 0 6} \\ & 5.01 \end{aligned}$
Cryatal Reef	24543.98	824545.97	$\begin{gathered} 2114511 \\ 1695033 \end{gathered}$	Little Ialund. Half-Moon Bar.	$\begin{array}{rrr} 31 & 46 & 03 \\ 349 & 50 & 19 \end{array}$	$\begin{array}{r} 5491.4 \\ 4511.7 \end{array}$	$\begin{aligned} & 6005.2 \\ & 4933.9 \end{aligned}$	3.41 2.80
Shell Point.	285514.49	824254.52	$\begin{aligned} & 12055 \quad 02 \\ & 75 \\ & \hline 41 \end{aligned}$	Half- Homi Blar.......... Crystal Reef.	3005325 2554004	$\begin{gathered} 6398.5 \\ 4792.7 \end{gathered}$	6931.6 5241.1	$\begin{aligned} & 3.94 \\ & 2.98 \end{aligned}$
Bear Island	285254.40	824200.76	1233541 1645734	Orystal Reef \qquad Shell Puint \qquad	3033358 3442768	$\begin{aligned} & 7 \times 23.5 \\ & 5434.8 \end{aligned}$	8008.8 5943.3	4.55
Bird Eey............... ..	284853.12	824806.06	$\begin{aligned} & 1895762 \\ & 225842 \end{aligned}$	Crystal Reef............ Bear Istand.	3595712 433640	$\begin{array}{r} 10568.9 \\ 9301.0 \end{array}$	$\begin{aligned} & 11557.8 \\ & 10171.3 \end{aligned}$	$\begin{aligned} & 6.57 \\ & 5.78 \end{aligned}$
Weccasassa Point	290931.14	\$2 4938.24	775458 263201	Graxsy Prinz. Cormorant Rock........	2575421 2063107	2095.4 6758.7	$\frac{2991.5}{7391 . i}$	1.30
Inner Reef,	290750.43	825050.66	$\begin{array}{r} 185210 \\ 1791167 \end{array}$	Cormorant Rock........ Grassy Point.	1985159	3114.6 2661.8	345.5 2910.8	1.89
Nortl Mangr	290709.66	825030.10	$\begin{array}{rl} 1719259 \\ 42 & 4480 \end{array}$	Grasey Point. Cormertant Rock	351 222 44 42	3011.4 0303	$\begin{aligned} & 4892.1 \\ & 2518.9 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 1.43 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section FII-Cedar Keys to Homosassa river. Sketch G, No. 23.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section VIII.-Chandeleur Sound. Sketch H, No. 26.

Name of etation.	Latitude.	Longitude.	Azimuth.	To station-	Back azimulh	Distance	Distance.	Distance.
South Point	$\begin{array}{llll} \circ & \prime \prime \prime \\ 30 & 11 & 21.25 \end{array}$	w. 10436.19	630723 1285523	Bayou Pierre, 1852.... Cat Istand Liglat		Metres 14354. 7613.7	$\begin{array}{r} Y a \tau d s \\ 156975 \\ 8 \$ 26.1 \end{array}$	Miler. 8.92 4.73
Door Point.	300313.54	10724.84	1354737 1464311	Bayou Pierre, 1852. . . . South Point \qquad	$\begin{array}{rrr} 315 & 45 & 02 \\ 16 & 14 & 36 \end{array}$	11889.7 $15680 .$	$\begin{aligned} & 13002.2 \\ & 17147.6 \end{aligned}$	7.79
Sandfly	300008.18	11351.74	1881527 2410809	Bnyou Pierre, 1852. Door Point	$\begin{array}{r} 81506 \\ 611123 \end{array}$	$\begin{array}{r} 14376.3 \\ 11832.8 \end{array}$	$\begin{array}{r} 15721.5 \\ \mathbf{1 2 9 4 0 . 0} \end{array}$	8.93 7.45
Barrel Key.....................	295416.59	10633.76	$\begin{array}{lll} 139 & 12 & 03 \\ 175 & 16 & 06 \end{array}$	Sandfy Doar Point	$\begin{array}{ll} 31238 & 24 \\ 355 & 15 \\ 40 \end{array}$	15971.2	$\begin{aligned} & 1746.5 .6 \\ & 18141.1 \end{aligned}$	$\begin{array}{r} 9.93 \\ 10.31 \end{array}$
Nowbere...	295449.62	11317.92	1744307 2751946	Gand 1 y Вагеl Key	$\begin{array}{r} 3544250 \\ 952308 \end{array}$	$\begin{array}{r} 9850.2 \\ 10888.3 \end{array}$	$\begin{aligned} & 10771,9 \\ & 19907.1 \end{aligned}$	6.18 6.76
Point Comfort	294931.55	11244.22	$\begin{array}{r} 1744336 \\ 2728 \\ 32 \\ 027 \end{array}$	Nowhere \qquad	$\begin{array}{r} 354 \quad 4319 \\ 483512 \end{array}$	$\begin{array}{r} 9834.7 \\ 13260.9 \end{array}$	$\begin{aligned} & 10754.9 \\ & 14501.7 \end{aligned}$	6.11 8.24
Od Harbor Key.	29465863	10106.17	$\begin{array}{lll} 10408 & 46 \\ 146 & 54 & 47 \end{array}$	Point Comfort Barrel Key	2844259 3265204	$\begin{aligned} & 193.259 \\ & 160197.6 \end{aligned}$	$\begin{aligned} & 21134.2 \\ & 17603.9 \end{aligned}$	12.01
Neptune Point, 1857	295112.40	05734.69	$\begin{array}{r} 360108 \\ 1112639 \end{array}$	Old Harbor K ey Barfel Key	2153922 2412211	$\begin{array}{r} 9658.3 \\ 1553 t .0 \end{array}$	$\begin{aligned} & 10562.0 \\ & 169897 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 9.65 \end{aligned}$
Freemason Key .	294803.25	0 57. 43.69	$\begin{array}{r} 6954 \quad 55 \\ 182920 \end{array}$	Old Harbor Key Neptune Point, 1857....	$\begin{array}{r} 2495315 \\ 922924 \end{array}$	5740.3 5828.6	6332.1 6374.0	$\begin{aligned} & 3.60 \\ & 3.62 \end{aligned}$
Red Flag, .	294641.69	05933.12	$\begin{array}{r} 1014743 \\ 2: 92830 \end{array}$	Old Harbor Key Freemason Key.	2814657	$\begin{aligned} & 2653 \cdot 3 \\ & 365.5 \end{aligned}$	$\begin{aligned} & 2792.2 \\ & 4 \times 27.2 \end{aligned}$	1.59 8.40
Crabtree	295708.73	12017.19	$\begin{aligned} & 24150 \\ & 290 \\ & 49 \\ & 25 \end{aligned}$	Santfy. Nowbere	$\begin{array}{r} 615320 \\ 1105252 \end{array}$	$\begin{aligned} & 11716.7 \\ & 12031.9 \end{aligned}$	$\begin{aligned} & 12813.0 \\ & 13157.7 \end{aligned}$	7.28
Elephant Point.	295854.83	11126.87	$\begin{array}{r} 213137 \\ 2100826 \end{array}$	Nowhëre \qquad Door Point. \qquad	$\begin{gathered} 2013042 \\ 39 \\ 30 \end{gathered}$	$\begin{array}{r} 8117.6 \\ 10269.9 \end{array}$	$\begin{array}{r} 8877.2 \\ 11230.8 \end{array}$	5.04 6.88
Live Oak Bayou	29560657	11313.41	$\begin{array}{r} 95496 \\ 1724828 \end{array}$	Nowhere \qquad Saudfly.	1825444 3520758	$\begin{array}{r} 2372.5 \\ 7509.5 \end{array}$	2594.5	1.47 4.67
Martin's Island.	295653.01	10816.57	$\begin{array}{lll} 128 & 21 & 03 \\ 188 & 44 & 32 \end{array}$	Etephant Point Dior Polnt. .	$\begin{array}{r} 306 \quad 1928 \\ C 4458 \end{array}$	$\begin{array}{r} 6393.7 \\ 11598.1 \end{array}$	$\begin{array}{r} 6926.3 \\ 125002.0 \end{array}$	$\begin{array}{r} 3.93 \\ 7.33 \end{array}$
Gallop's Green	300020.73	11015.87	$\begin{array}{r} 2204317 \\ 461033 \end{array}$	Door Point Bandfly	$\begin{array}{r} 404443 \\ 2660945 \end{array}$	$\begin{aligned} & 7021.7 \\ & 5797.7 \end{aligned}$	7678.7 66340.2	$\begin{aligned} & \mathbf{4 . 3 5} \\ & \mathbf{3 . 6 0} \end{aligned}$
Surrise	300647.09	10798.06	$\begin{aligned} & 2088415 \\ & 3591447 \end{aligned}$	Bnuth Point Door Point	$\begin{array}{r} 28: 3541 \\ 1791449 \end{array}$	$\begin{aligned} & 9613.1 \\ & 6575.6 \end{aligned}$	$\begin{array}{r} 10519.6 \\ 7190.9 \end{array}$	$\begin{aligned} & 5.97 \\ & 4.08 \end{aligned}$
Table Point .	300494.83	11002.08	2281541 2473110	Suntise Door Point \qquad	431658 1173299	$\begin{aligned} & 6015.6 \\ & 4748.9 \end{aligned}$	$\begin{array}{r} 65785 \\ 5193.2 \end{array}$	3.74 2.95
Graud Pass.....................	300539.78	11150.06	3022110 1632853	Door Point. Bayou Pierre, 1852 ...	$\begin{array}{lll} 122 & 23 \\ 343 & 23 \\ 31 \end{array}$	$\begin{aligned} & 8109.7 \\ & 4190.2 \end{aligned}$	$\begin{aligned} & 9198.6 \\ & 45 * 2.3 \end{aligned}$	$\begin{aligned} & \mathbf{5 . 2 3} \\ & \mathbf{2 . 6 0} \end{aligned}$
North Base....................	301241.44	10327.66	$\begin{array}{r} 36 \\ 85 \\ 10637 \\ 165 \end{array}$	South Point Cat Istand Light..........	$\begin{aligned} & 2163441 \\ & 26634 \\ & 59 \end{aligned}$	3075.0 8093.7	$\begin{aligned} & 83851.7 \\ & 8850 \end{aligned}$	$\begin{aligned} & 1.91 \\ & 5.03 \end{aligned}$

Section VIII.—Lake Borgne. Sketeh H, No. 26.

Name of mation.	Latitude.	Longitude.	Azimuth.	To stration -	Back azimuth.	Distance.	Distance.	Distance.
Fisher	$30 \begin{array}{ccc} \prime \prime & \prime \prime \\ \hline 16^{\prime} & 19 \end{array}$			Grand Island, 1855. Pornt Clear. \qquad	$\begin{array}{rrrr}\circ \\ 179 & 12 & 19 \\ 20 & 10 & 38\end{array}$	Metren. 3958.4 9145.6	$\begin{array}{r} \text { Yarda. } \\ 4370.3 \\ 10001.4 \end{array}$	$\begin{array}{r} \text { Miles. } \\ 8.48 \\ 5.68 \end{array}$
Heron	301027,53	12619.98	$\begin{aligned} & 3042490 \\ & 2134501 \end{aligned}$	Grand Island, 1855. Point Clear	$\begin{array}{r}124 \\ 33 \\ 47 \\ \hline 17\end{array}$	4419.3 12189.3	4888.8 13234.2	2.75 7.54
Gull	300729.32	12637.25	$\begin{aligned} & 1844851 \\ & 2435712 \end{aligned}$	Heron. Grand Ieland iB5:....		5506.5 5081.4	6021.7 $\mathbf{5 5 5 8 . 9}$	$\begin{aligned} & 3.42 \\ & 3.16 \end{aligned}$
Shell Point, serew pile..........	30042746	13944.64	$\begin{array}{ll} 200 & 01 \\ 269 & 18 \\ \hline 08 \end{array}$	Rigolet Light Malbureus Point.	$\begin{array}{lll} 20 & 09 & 90 \\ 89 & 35 & 34 \end{array}$	$\begin{array}{r} 9630.9 \\ 18472.1 \end{array}$	10532.1 20200.5	$\begin{array}{r} 5.99 \\ 11.48 \end{array}$
Cadar Bayon	300609.83	14419.51	$\begin{array}{ll} 238 & 18 \\ 312 & 13 \\ 35 & 29 \end{array}$	kigolet Lifght ghet Point, gerew phe.	$\begin{array}{r}782133 \\ 132 \\ \hline 17\end{array}$	$\begin{aligned} & 10877.8 \\ & 10052.1 \end{aligned}$	11895	6.76 6.94
Bayou Beason....	301843.65	14500.37	$\begin{aligned} & 297 \\ & 359 \\ & 35 \\ & 36 \end{aligned}$	Eidofet Light Cedar Bayou	$\begin{array}{llll}117 & 38 \\ 172 & 36\end{array}$	$\begin{array}{r} 13292.1 \\ 8500.2 \end{array}$	145835.8 9295.6	8.26 5.28
L'Herbe...........................	300924.93	14949.42	$\begin{aligned} & 2843839 \\ & 291 \\ & 277 \end{aligned}$	Oedar Bayon............	$\begin{array}{rrrr}104 & 41 \\ 51595\end{array}$	0125.5	$\begin{array}{r} 9979.4 \\ 107 \mathrm{Ez} .8 \end{array}$	$\begin{aligned} & 5.67 \\ & 6.13 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section VIII.-Lake Borgne. Sketch H, No. 26.

Name of station.	Latitude.	Longitude.	Back azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
Brick Chimney...	301240.17	$\begin{array}{llll} & 0 & 11 \\ \text { W.i } & 46 & 17.11 \end{array}$	2665950 3391701	Bayou Besson.... Cedar Bayou.	$\begin{array}{r} 87 \\ 87 \\ 159 \\ 18029 \end{array}$	Metres. 0896.7	Yards. 2247.4 9729.2	$\begin{gathered} \text { Miles. } \\ 1.98 \\ 5.53 \end{gathered}$
Tall Pine.	301328.04	14327.07	$\begin{aligned} & 964921 \\ & 628350 \end{aligned}$	Bunfouca...... Bayou Besson	$27845 \quad 58$ $24223 \quad 69$	$\begin{array}{r} 10914.0 \\ 2815.4 \end{array}$	$\begin{array}{r} 11935.2 \\ 3072.8 \end{array}$	$\begin{aligned} & 6.78 \\ & 1.75 \end{aligned}$
Hospital Flag-staff..............	300959.22	14333.68	2770141 200108	Rigolet Light ... Cedar Bayou ...	$\begin{array}{rr} 97 & 04 \\ 200 & 38 \\ 200 \end{array}$	$\begin{aligned} & 9497.2 \\ & 3582.9 \end{aligned}$	$\begin{aligned} & 10385.8 \\ & 3918.2 \end{aligned}$	5.40
St. Joseph's Island Light........	301109.28	12408.57	$\begin{array}{r} 819201 \\ 2020590 \end{array}$	Rigolet Light ... St. Joseph Istand	$\begin{array}{r} 2611512 \\ 220502 \end{array}$	$\begin{array}{r} 21997.9 \\ 230.5 \end{array}$	$\begin{array}{r} 24056.2 \\ 252.7 \end{array}$	13.67 0.14
West Migotet Light.	301034.33	14312.05	$\begin{array}{r} 2841352 \\ 22 \\ \hline 0.537 \end{array}$	Rigolet Light. . Cedar Bayou. .	1041638 2020503	$\begin{aligned} & 9127.2 \\ & 4799.7 \end{aligned}$	$\begin{gathered} 9581.2 \\ 5981.8 \end{gathered}$	5.67 2.98
L'Orage..	300822.55	15203.26	$\begin{array}{r} 2714241 \\ 332712 \end{array}$	Cedar Bayeu. . Little Woods..	$\begin{array}{r} 914634 \\ 2132683 \end{array}$	$\begin{array}{r} 12466.0 \\ 4692.3 \end{array}$	13577.8	$\begin{array}{r} 7.71 \\ 2.92 \end{array}$
Wreck.	50 IL 40.11	15430.48	3591741 2985654	Little Words L'Herbe.	1721806 1185915	$\begin{array}{r}10101.5 \\ 8593.8 \\ \hline\end{array}$	${ }^{11046.7} 8$	6.28 5.34
Weem's Catton Gin.	301146.02	14233.50	$\begin{array}{r} 1141942 \\ 230523 \end{array}$	Bayou Besson... Cedar Bayouz ...	$\begin{aligned} & 29418 \quad 28 \\ & 2030430 \end{aligned}$	$\begin{aligned} & 4310.1 \\ & 7233.9 \end{aligned}$	4713.4	2.68 4.49
Fishing Hut, chimney.	301251.32	14631.62	$\begin{aligned} & 2753055 \\ & 3374812 \end{aligned}$	Bayou Berson... Cedar Bayou	$\begin{array}{r} 959141 \\ 1574918 \end{array}$	9451.6	$\begin{array}{r} 2681.0 \\ 10234.2 \end{array}$	$\begin{aligned} & 1.52 \\ & 5.81 \end{aligned}$
Chef Monteur	300600.77	14729.41	1491237 4315732	L'Eerbe. Cedar Bayou	3991197 515908	7318.1	8002.9	4.55
Additional stations in section VIIT.								
Deer Ialand, middle	302130.28	04739.05	2041039 1161639	Marsh Point Bilozi Light	$\begin{array}{r} 241103 \\ 2961406 \end{array}$	3056.1 8487.3	$\begin{aligned} & 3342.1 \\ & 6928.2 \end{aligned}$	190 5.58
Astronomical station, public square, Mobile citr.	304136.97	W. 00110.12						

Section VIII.-Vicinity of New Orleans. Sketch H, No. 26.

Name of station.	Latitude.	Longitude.	Aximath.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Labarre'a Saw-mill.	$\begin{array}{cc} \bullet \\ \text { 2 } 54 \\ 56.00 \end{array}$	$\text { W. } 203 \text { of " } 07.44$	2184137 1044355	Marine Hospital., Greenville.	$\begin{array}{r} \quad 111 \\ 384216 \\ 2841217 \end{array}$	$\begin{gathered} \text { Metres. } \\ 3313.5 \\ 5465.9 \end{gathered}$	Yards. 5977.3	$\begin{aligned} & \text { Miles. } \\ & \begin{array}{l} \text { P.06 } \\ \mathbf{3 . 4 0} \end{array} \end{aligned}$
Rooster, flity-ataff.	295710.42	20316.92	3564434 30358	Labarre's Baw-mill Marine Houpital.	$\begin{array}{ll} 1764498 \\ 12357 & 66 \end{array}$	41455 2780.7	$\begin{aligned} & 4533.4 \\ & 3040.9 \end{aligned}$	2.58 1.73
Oharity Hospital................	295725.17	20317.43	356699 3103721	Laharre's Saw-mill Marine Hospisal	$\begin{aligned} & 176 \\ & 130 \\ & 130 \\ & 38 \end{aligned} 54$	4600.5 3081.8	5031.0	2.86 1.91
Antronomical Obeervatory, Hew Orleans.	2957 25.94	20302.39	$\begin{aligned} & 863635 \\ & 374947 \end{aligned}$	Cbarity Ifompital Roogter, flag-waff.....	2866 267 27 47	$\begin{aligned} & 403.9 \\ & 604.9 \end{aligned}$	661.5	0.25
United Stater Mint.,	295746.40	20804.65	$\begin{array}{r} 719839 \\ 3514842 \end{array}$	Charity Howpital Marine Hospital	$\begin{aligned} & 251 \\ & 17148 \\ & \hline 12 \end{aligned}$	2057.8 2688.7	$\begin{aligned} & 2250.3 \\ & 9940.3 \end{aligned}$	1.88
Church on Jacknon street, east tower.	990535303	20305.11	$\begin{array}{r} 90285 \\ 9473256 \end{array}$	Labarre' Saw-mill Marine Hospita.	$\begin{array}{r} 1820294 \\ 67 \\ \hline 23 \end{array}$	$\begin{array}{r} 1757.2 \\ \hline 173.7 \end{array}$	${ }_{2021.6}^{1921}$	1.09
Odd Fellow', Ball	88587.54	20840.8	$\begin{array}{r} 62429 \\ 3071647 \end{array}$	Labarre's Exw-milli.... Marine Hospital.	$\begin{array}{lll}188 & 44 \\ 127 & 17 & 15\end{array}$	3782.7	$\begin{aligned} & 4136.6 \\ & 9067.0 \end{aligned}$	${ }_{1} 8.35$
8t. Patrick's Ohuroh, woutheast turret.	90 5658.93	20848.63	$\begin{array}{r} 75834 \\ 3025541 \end{array}$	Labarre's Baw-mill Marine Hospital	$\begin{array}{lll}187 & 58 \\ 128 & 56 & 10\end{array}$	$\$ 836.1$	3976.3 9041.6	$\begin{aligned} & 2.96 \\ & 1.16 \end{aligned}$
Lafuyette Bquare Church Spire..	293568.85	20851.91	$\begin{array}{r} 675016 \\ 3044430 \end{array}$	Greenville Marine Hospital	2474839	6178.1 1991.0	$\begin{gathered} 6756.9 \\ \\ \hline 177.3 \end{gathered}$	$\begin{aligned} & 3.84 \\ & 1.24 \end{aligned}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.
Section IX.-Lavaca bay, Carankaway bay, and Espiritu Santobay. Shetch H, No. 28.

Name of mation.	Laitude.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Band Point.	$\begin{array}{cc} \circ \\ 28 & \prime \prime \prime \prime \prime \\ \hline 4 . \mathrm{B} 5 \end{array}$	W. 82609.40	$\begin{array}{r} 111 \\ 24236 \\ 84384 \end{array}$	Well Point...............	$\begin{array}{rr} \circ & 111 \\ 62 \\ 188 & 40 \\ 42 & 11 \end{array}$	Metres. 13993.7 9431.6		$\begin{aligned} & \text { Miles. } \\ & \begin{array}{c} \text { Q.69 } \\ 5.86 \end{array} \end{aligned}$
Indianola	283227.06	8 3009.38	2332748 $3: 12356$	Gand Point. La salle.	$\begin{array}{r} 539942 \\ 1312525 \end{array}$	$\begin{aligned} & 8115.3 \\ & 6792.5 \end{aligned}$	$\begin{array}{r} 8874.7 \\ 7428.1 \end{array}$	$\begin{aligned} & 5.04 \\ & 4.22 \end{aligned}$
Oallinipper.	283502.54	8 3313.63	2689 313 31 1074	Enand Point. Indianola	$\begin{array}{r} 89403040 \\ 1333310 \end{array}$	$\begin{array}{r} 11527.0 \\ 6907.7 \end{array}$	$\begin{array}{r} 12605.6 \\ 7554.0 \end{array}$	7.16 4.29
Sheldon's House	283845.51	83249.49	592788 3392807	Galinipper Indianola	$\begin{aligned} & 185 \\ & 159 \\ & 159 \\ & 27 \\ & 264 \end{aligned}$	$\begin{array}{r} 6894.9 \\ 12409.8 \end{array}$	$\begin{array}{r} 7540,0 \\ 13571,0 \end{array}$	4,781
Lavaca	283736.28	83628.64	2501603 3114511	Sheldon's House....... Gallinipper	$\begin{array}{r} 701748 \\ 1314644 \end{array}$	6322.2 7102.1	$\begin{array}{r} 6913.8 \\ 7766.6 \end{array}$	$\begin{aligned} & 3.93 \\ & 4.41 \end{aligned}$
Noble's House,	283841.68	83604.08	$\begin{array}{rrr} 325 & 31 & 37 \\ 18 & 19 & 03 \end{array}$	Gallmipper \qquad Lavaca	1453258 1981851	8181.6 2122.7	$\begin{aligned} & 8947.2 \\ & 2321.3 \\ & \hline \end{aligned}$	${ }_{1} 5.08$
Garcitas	284251.09	83718.22	33515 31600 314 18	Gallinipper Sheldon's House.....	$\begin{array}{lll} 155 & 17 & 31 \\ 136 & 02 & 20 \end{array}$	$\begin{aligned} & 15879.0 \\ & 10505.5 \end{aligned}$	$\begin{aligned} & 17364,8 \\ & 11488.5 \end{aligned}$	${ }_{6}^{\mathbf{9} .89}$
House .	24 3606.94	83558.19	$\begin{aligned} & 1631515 \\ & 9935407 \end{aligned}$	Lavaca \qquad Gallimipper	$\begin{array}{lll} 343 & 15 & 00 \\ 113 & 55 & 26 \end{array}$	$\begin{gathered} 2870.0 \\ 4890.5 \end{gathered}$	$\begin{array}{r} 3138.5 \\ 5348.1 \end{array}$	1.788
Brant's Barn .	283515.27	B2759.10	$\begin{array}{rlll}276 & 33 & 11 \\ 35 & 55 & 35\end{array}$	Gnnd Point Indianola.	$\begin{array}{r} 963400 \\ 2155429 \end{array}$	$\begin{aligned} & 2808.9 \\ & 6359.6 \end{aligned}$	6971.7	1.75 3.95
Trelkeld House.	283718.88	82547.70	$\begin{array}{r} 2583947 \\ 81508 \end{array}$	Well Point.............. Band Point.	784316 1881458	$\begin{array}{r} 12671.2 \\ 4107,6 \end{array}$	$\begin{array}{r} 13200.7 \\ 4491.3 \end{array}$	7.50 8.55
Carankaway	283950.75	82344.18	$\begin{array}{r} 285 \\ 24 \\ 94 \\ \hline 08 \\ \hline 89 \end{array}$	Well Point Sand Point	$\begin{array}{ll} 105 & 3755 \\ 604 & 07 \\ 50 \end{array}$	8905.2 9644,3	$\begin{array}{r} 9629.1 \\ 10546.7 \end{array}$	5.47 5.99
Dunbar House.	288893.70	81818.50	1151752 2210321	La salle Osgood	$\begin{array}{r} 2951342 \\ 410358 \end{array}$	$\begin{array}{r} 15745.3 \\ 3231.8 \end{array}$	$\begin{array}{r} 17218.6 \\ 3534.2 \end{array}$	$\begin{aligned} & 9.78 \\ & 2.01 \end{aligned}$
Pasa Cavallo Light.	282049.21	82305.37	1591716 24755	La Balle. Otgood.	$\begin{array}{r} 339 \\ 3758 \\ 58 \end{array}$	$\begin{array}{r} 18193.6 \\ 16148.2 \end{array}$	$\begin{aligned} & 19896.0 \\ & 17659.2 \end{aligned}$	$\begin{aligned} & 11.30 \\ & 10.03 \end{aligned}$
Espiritu Ranto.	281298.87	83016.17	$\begin{array}{lll}202 & 03 & 53 \\ 908 & 45 & 52\end{array}$ 2884552	La Salle. Pass Oavallo Light.....	$\begin{array}{r} 20 \quad 05 \quad 18 \\ 10849 \quad 17 \end{array}$	$\begin{aligned} & 14055 . \\ & 123900 \end{aligned}$	$\begin{aligned} & 15379.3 \\ & 13549.3 \end{aligned}$	8.73 7.70
Rahal.	281641.23	83141.50	1911800	Espirita Aanto Pass Cavallo Light....	$\begin{aligned} & 111840 \\ & 61 \quad 3209 \end{aligned}$	$\begin{aligned} & 11854.6 \\ & 15998.1 \end{aligned}$	$\begin{aligned} & 12963.8 \\ & 17495.0 \end{aligned}$	7.36 $\mathbf{9 . 9 4}$
Steamboat Pass.	281848.85	83614.21	2314124 29750	Espiritu Santo.......... Rehal	$\begin{array}{r} 514414 \\ 117 \\ 53 \end{array}$	$\begin{array}{r} 12421.4 \\ 8404.5 \end{array}$	$\begin{array}{r} 13583.7 \\ 9190.9 \end{array}$	7.72
Mott.	282251.54	$834 \mathbf{3 3 . 5 0}$	2680342 3384945	Espiritu Santo. Rahal	680540 1585102	$\begin{array}{r} 6736.6 \\ 122020.8 \end{array}$	7386.9 13886.5	4.18 7.59
Cant Ieland	282141.25	83307.12	2753239 2424847	Pass Cavallo Light..... Espiritu ganto	$\begin{aligned} & 953725 \\ & 625008 \\ & 68 \end{aligned}$	$\begin{array}{r} 16463.5 \\ 5231.6 \end{array}$	$\begin{array}{r} 18004.0 \\ 5721.1 \end{array}$	10.23 3.25
Rahal's House.	281816.63	82803.80	1671324 244 17 09	Espiritu Elanto Pasm Garallo Light.	$\begin{array}{r} 3471850 \\ 641959 \end{array}$	$\begin{array}{r} 8908.6 \\ 10083.5 \end{array}$	$\begin{array}{r} 9749.2 \\ 11847.2 \end{array}$	5.54 6.73
Whinson'm Eloase,	282004.70	82543.94	$\begin{array}{lll}125 & 53 & 48 \\ 6\end{array}$	Repiritu Banto. Panm Cavallo Litght....	$\begin{array}{ccc} 305 & 51 & 39 \\ 78 & 34 & 31 \end{array}$	$\begin{gathered} 9149.2 \\ 4530.6 \end{gathered}$	$\begin{array}{r} 10094.9 \\ 4954.5 \end{array}$	5.68 2.81
Saluria Light.	282408.95	823 25.56	$\begin{array}{r} 3545017 \\ 792498 \end{array}$	Paes Cavallo Light. Espiritu Banto.	1745097 2592113	$\begin{gathered} 611.8 \\ 11871.6 \end{gathered}$	$\begin{array}{r} 6883.7 \\ 12435.6 \end{array}$	$\begin{array}{r} 3.60 \\ 7.06 \end{array}$
Suluria	289355.50	88309.66	2350644 1504511	Orgond.................... La 8 salle	$\begin{array}{r} 550940 \\ 3004392 \end{array}$	$\begin{gathered} 12243.2 \\ 12931.6 \end{gathered}$	$\begin{aligned} & 18388.8 \\ & 14141.6 \end{aligned}$	7.81 8.04
Deerose Houna	282420.17	82128.09	1391303 228234	La Ballo.... Ungrod.	$\begin{array}{r} 3191094 \\ 499541 \end{array}$	$\begin{array}{r} 13900.7 \\ 9589.3 \end{array}$	$\begin{aligned} & 15901.4 \\ & 10486.6 \end{aligned}$	8.64 5.86
Alligator, Mott.	28.8808 .24	8 2508,30	$\begin{aligned} & 973 \quad 29 \\ & 13705 \\ & 44 \end{aligned}$	Opgod	$\begin{array}{r} 93 \\ 98 \\ 31704 \\ \hline 17 \end{array}$	$\begin{gathered} 131215.8 \\ 4781.3 \end{gathered}$	$\begin{array}{r} 14358.3 \\ 5228.7 \end{array}$	8.16 8.97
Alligator Bignal.	282713.02	82323.03	1694247	sand Point. La galle.	3424198 3110707	$\begin{gathered} 15012.1 \\ 7907.4 \end{gathered}$	$\begin{array}{r} 18635.5 \\ 8647.3 \end{array}$	${ }^{9.45}$
Woir Point.	284220.58	8 23 40.96	$\begin{array}{r} 10511 \\ 90944925 \end{array}$	Oarankamay Well Point	$\begin{aligned} & 1810509 \\ & 124 \\ & 46 \\ & 53 \end{aligned}$	$\begin{array}{r} 4812.9 \\ 10915.9 \end{array}$	$\begin{array}{r} 5044.5 \\ 11987.3 \end{array}$	${ }_{6}^{2.87}$

UNITED STATES COAST SURVEY-GEOGRAPHICAL POSITIONS.
Section X.-Napa creek. Sketch I, No. 31.

Name of etation.	Latitude.	Longitude.	Aximuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Vallejo Hill	$\begin{gathered} \circ \\ 380658.44 \end{gathered}$	$\stackrel{\circ}{122} 14{ }^{\prime \prime} 53.3 i$	$\begin{array}{r} 0 \\ 44701 \\ 3328858 \end{array}$	Mare Island, northwest. Vallejo, (1)..............	$\begin{array}{rrr} \circ & 1 & \prime \prime \\ 184 & 46 & 54 \\ 152 & 29 & 40 \end{array}$	Metres, 3085.8 3577.4	Yards. 3352.7 3912.1	$\begin{gathered} \text { Miles } \\ 1.40 \\ 2.22 \end{gathered}$
glaughter-house Point	380914.96	1981605.91	3371231 3481356	Vallejo Hill. Mare Island, northwest.	$\begin{array}{ll} 157 & 13 \\ 168 & 14 \\ 164 \end{array}$	$\begin{array}{r} 4564.9 \\ 7419.8 \end{array}$	$\begin{aligned} & 4992.0 \\ & 8114.1 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 4.61 \end{aligned}$
Napa Branch.	381109.00	1221833.07	04231 3142720	Long Poud.	$\begin{array}{llll}180 & 42 & 29 \\ 134 & 28 & 51\end{array}$	6509.9 5019.0	7109.2 5488.6	4.04 3.12
Navy Yard glough...............	380924.31	1221812.22	$\begin{array}{llll}275 & 20 & 57 \\ 171 & 03 & 57\end{array}$	Slaughter house Point . Napa Branch	$\begin{array}{r}95 \\ 351 \\ \hline 184\end{array}$	$\begin{array}{r} 39885 \\ 3266.9 \end{array}$	3377.5 3572.6	1.98 2.03
Green Hill	381204.26	1921620.45	356 6810714	Slaughter-house Point Napa Branch	$\begin{array}{lll} 176 & 07 & 23 \\ 24 \times 2 & 09 & 09 \end{array}$	$\begin{array}{r} 5231.8 \\ 3649.1 \end{array}$	$\begin{array}{r} 5721.3 \\ 3990.5 \end{array}$	$\begin{aligned} & 3.25 \\ & 2.27 \end{aligned}$
Good Luck Point.	381059,48	1221711.57	982457 2115444	Napa Braneh Green Hill.	278 31 31 5416	$\begin{aligned} & 2004.8 \\ & 2353.0 \end{aligned}$	$\begin{aligned} & 2192.4 \\ & 2573.2 \end{aligned}$	1.24 1.46
Fly's Hill	381309.61	1221903.78	$\begin{aligned} & 348 \quad 3934 \\ & 996 \\ & 92 \end{aligned}$	Napa Branch Green Eill....	$\begin{array}{lll} 168 & 39 & 53 \\ 116 & 54 & 38 \end{array}$	3792.5 4453.3	$\begin{aligned} & 4147.4 \\ & 4870.0 \end{aligned}$	2.35
Suscoi Hill.....................	381433.85	1281532.70	631026 140821	F'y's Bill. Green Hill.	$\begin{array}{lll} 243 & 08 & 16 \\ 194 & 07 & 51 \end{array}$	$\begin{aligned} & 5751.5 \\ & 4755.8 \end{aligned}$	$\begin{aligned} & 6289.7 \\ & 5200.8 \end{aligned}$	$\begin{aligned} & 3.57 \\ & 2.95 \end{aligned}$
Home Hill	381423.60	1221647.50	$\begin{array}{r}351 \\ 55 \\ \hline 17\end{array}$	Green Hill............... F1y's Hill.	$\begin{array}{lll}171 & 17 & 38 \\ 235 & 26 & 05\end{array}$	$\begin{aligned} & 4345.9 \\ & 402.0 \end{aligned}$	$\begin{aligned} & 4752.5 \\ & 4358.3 \end{aligned}$	2.70 2.50
Green Island.	381245.05	1281728.55	274232 3074734	Napa Branch Green Hill.	$\begin{aligned} & 2074152 \\ & 1274816 \end{aligned}$	$\begin{aligned} & 3376.1 \\ & 2096.7 \end{aligned}$	$\begin{aligned} & 3692.0 \\ & 22292.9 \end{aligned}$	$\begin{aligned} & 2.10 \\ & 1.30 \end{aligned}$
Fly's Hoake, chimney	381346.26	1221801.46	$\begin{array}{llll} 321 & 59 & 21 \\ 947 & 54 \end{array}$	Green Hill Suscel Sill	$\begin{array}{r} 1420023 \\ 675555 \end{array}$	33900.4	$\begin{array}{r} 4363.8 \\ 4269.0 \end{array}$	$\begin{array}{r} 2.48 \\ 2.43 \end{array}$
Etony Hilt...	381557.71	1221709.33	$\begin{array}{rrr} 28 & 13 & 49 \\ 349 & 37 & 55 \end{array}$		$\begin{aligned} & 2081238 \\ & 16958 \quad 69 \end{aligned}$	$\begin{array}{r} 5881.6 \\ 2949.6 \end{array}$	$\begin{array}{r} 6431.9 \\ 3225.6 \end{array}$	3.65
Ferry House Ohimney	381435.08	1221603.33	$\begin{array}{r} 590181 \\ 1574810 \end{array}$		$\begin{aligned} & 2385929 \\ & 3274729 \end{aligned}$	5117.3 3010.8	$\begin{aligned} & 5596.1 \\ & 3242.5 \end{aligned}$	3.18
Napa Hill	381803.85	1291454.77	400495 80628	Stony Hill............... Suscol Hill	$\begin{aligned} & 22000002 \\ & 1880604 \end{aligned}$		$\begin{aligned} & 5555.6 \\ & 7152.2 \end{aligned}$	3.16 4.06
Napa Creek.......................	381536.57	1521609.86	$\begin{array}{r} 22 \quad 0819 \\ 11416 \quad 35 \end{array}$	Home Hill................ Stony Hill...............	$\begin{aligned} & 2 n 20756 \\ & 2941558 \end{aligned}$	$\begin{aligned} & 2428.6 \\ & 1586.0 \end{aligned}$	$\begin{array}{r} 2655.8 \\ 1734.4 \end{array}$	1.51
Count-hou*e Spire	381750.08	1221607.16	$\begin{array}{r} 2562521 \\ 845 \quad 39 \end{array}$	Napa Hill Home Hill	$\begin{array}{r} 76 \\ 188 \\ 18 \\ 45 \\ \hline 14 \end{array}$	$\begin{aligned} & 1809.2 \\ & 6441.3 \end{aligned}$	$\begin{aligned} & 1978.5 \\ & 7044.0 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 4.00 \end{aligned}$
Green's House, ehimney	381724.72	1291742.74	$\begin{aligned} & 3430940 \\ & 30901 \quad 29 \end{aligned}$	Stony Hill. Suscol Hill	$\begin{array}{lll} 16310 & 01 \\ 149 & 02 & 50 \end{array}$	$\begin{aligned} & 2809.8 \\ & 5143.8 \end{aligned}$	$\begin{aligned} & 3064.8 \\ & 6718.7 \end{aligned}$	$\begin{aligned} & 1.74 \\ & 3.82 \end{aligned}$

Section X.-Petaluma creek: Sketch I, No. 32.

Name of etation.	Latitude.	Longitude.	Azimath.	To station-	Back azimuth.	Distance.	Distance.	Bistance.
Point Penole	$\begin{array}{cc} \quad \prime \\ 38 & 00 \\ 40.68 \end{array}$	$\begin{gathered} \circ \\ 122 \\ 20 \\ 39.60 \end{gathered}$	- '..........		- ,	Metres.	Yards.	ariles.
Petalumn Creek.	380610.55	1228883.48	3130940	Point Penole	3331414	14856.2	16246.3	9.23
Tolay Creek.....................	380757.17	1222350.68	3424614 634402	Point Penole \qquad Petalumaz Creck...	$\begin{array}{llll}162 & 47 & 59 \\ 243 & 41 & 13\end{array}$	14087.9 7421.7	15406.1 8116.1	8.75 4.61
Switt	380898.34	1289752.34	$\begin{array}{r} 101050 \\ 2793241 \end{array}$	Petaluma Creek. Tolay Creek.	1901631 99 35	$\begin{aligned} & 4347.2 \\ & 5967.3 \end{aligned}$	$\begin{array}{r} 4754.0 \\ 6.525 .6 \end{array}$	2.70 3.71
Novata	380819.44	1223123.22	$\begin{aligned} & 2563451 \\ & 5121645 \end{aligned}$	Swin......................... Petaluma Oreek:	$\begin{array}{r} 8637 \\ 13218 \end{array}$	$\begin{gathered} 5143.7 \\ 5904.8 \end{gathered}$	$\begin{aligned} & 5625.0 \\ & 6457.3 \end{aligned}$	3.20 3.67
Bears	381016.90	1283027.25	$\begin{array}{r} 203728 \\ 3111851 \end{array}$	Novata Evift	$\begin{array}{llll}900 & 38 & 53 \\ 131 & 20 & 27\end{array}$	$\begin{aligned} & 3869.1 \\ & 50.1 .6 \end{aligned}$	$\begin{array}{r} 4231.1 \\ 5491.5 \end{array}$	2.40 3.12
San Antonio	320959.90	1223307.90	$\begin{aligned} & 9591695 \\ & 3189957 \end{aligned}$	Sears Novata	$\begin{array}{r} 791804 \\ 138 \quad 3102 \end{array}$	3979.7 3846 . 8	439.1	2.47 2.39
Lakeville..........	381211.75	1293158.10	$\begin{array}{rrr} 21 & 38 & 58 \\ 328 & 00 & 55 \end{array}$	San Antonia Sears \qquad	$\begin{array}{lll} 901 & 38 & 15 \\ 148 & 01 & 51 \end{array}$	$\begin{aligned} & 4605.5 \\ & 4174.5 \end{aligned}$	$\begin{aligned} & 5036.4 \\ & 4565.1 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 2.59 \end{aligned}$
Haydon.............................	381824.15	1293437.84	$\begin{aligned} & 9756915 \\ & 3344219 \end{aligned}$	Lakevilte \qquad Gan Antonia. \qquad	$\begin{array}{r} 9510 \\ 1544 \\ \hline 48 \end{array}$	$\begin{aligned} & 3001.8 \\ & 5123.1 \end{aligned}$	$\begin{array}{r} 4966.9 \\ 5602.5 \end{array}$	$\begin{aligned} & 2.42 \\ & 3.18 \end{aligned}$
Bodwell..........................	331358.32	1223325.98	$\begin{array}{r} 382706 \\ 3952442 \end{array}$	Eaydon Lsikevills	$\begin{array}{lll} 912 & 26 & 24 \\ 145 & 25 & 36 \end{array}$	$\begin{aligned} & 8257.7 \\ & 3766.0 \end{aligned}$	$\begin{array}{r} 3569.5 \\ 4118.4 \end{array}$	$\begin{aligned} & 2.02 \\ & 2.34 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section X.-Pctaluma creek. Sketch No. 32.

Name of station.	Latitude.	Longritude.	Azimuth.	To atation-	Pack azimuth.	Distance.	Distance.	Distance.
Italian	361333.95	$12233_{50.58}^{\prime \prime}$	$26050 \quad 07$ 32057.50	Bodwell Haydon		Metres 3561.9 2807.7	Yards. 3895.2 3072.6	Miles. $\left.\begin{array}{c}\text { 2. } \\ 1.75 \\ 1.75\end{array}\right)$
Flat	3814532.85	1223833.58	150616 3462633	Italian. Haydon	1950559 1662701	2519.6 4747.4	$\begin{aligned} & 2755.4 \\ & 5191.6 \end{aligned}$	1.56 2.95
Petaluma, Eaptint Church spire..	381410.14	1223733.80	2472425 2935730	Flat. Italian	$\begin{array}{r} 672546 \\ 1135834 \end{array}$	$\begin{array}{r} 3429.0 \\ 2746.9 \end{array}$	$\begin{array}{r} 9749.8 \\ 7003.8 \end{array}$	2.13

Section X.-Tomales Bay. Sketch J, No. 31.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance:	Distance.
Table Mountain.	375524.48	1223446.68	- 1 "		- . 1	metree.	Tards.	Miles.
Rocky Mound.	375254.26	1221331.82	983404	Table	2782100	31483.9	34429.8	19.56
Sonoma Mountain	381921.69	1293329.36	$\begin{array}{r} 29625 \\ 3290551 \end{array}$	Table Mountain. Rocky Mound.	1822537 1491810	44348.4 50875.4	48448.1 62306.6	$\begin{aligned} & \underline{97.55} \\ & 35.40 \end{aligned}$
Tomales Bay. .	381052.52	1225548.38	$\begin{array}{lll}312 & 49 & 17 \\ 244 & 08 & 27\end{array}$	Table Mountain....... Sonoma Mountain....	$\begin{array}{r} 1330214 \\ 642816 \end{array}$	42006.9	$\begin{array}{r} 45937.5 \\ 39522.0 \end{array}$	26.10 22.45
Rose Monatain	383017.68	1230610.99	$\begin{array}{cc} 292 & 51 \\ 357 \\ \hline 15 & 29 \end{array}$	Sonoma Mountain	$\begin{array}{lll} 113 & 11 & 48 \\ 157 & 13 & 50 \end{array}$	$\begin{array}{r} 51709.5 \\ \mathbf{3 8 9 7 4 . 2} \end{array}$	$\begin{aligned} & 56541.4 \\ & 428211 \end{aligned}$	33.13 24.22
Sulphur Peak	384551.41	1284941.87	$\begin{array}{r} 3341516 \\ 75053 \end{array}$	Sonoma Mountain...... Tomales Bay.	$\begin{aligned} & 154 \quad 25 \quad 29 \\ & 1874705 \end{aligned}$	54377.4 65318.7	$\begin{aligned} & 59465.5 \\ & 71430.5 \end{aligned}$	$\begin{aligned} & 33.79 \\ & 40.58 \end{aligned}$
Funta Reyes.	38.0445 .36	1225102.40	$\begin{aligned} & 223 \quad 2316 \\ & 148: 2594 \end{aligned}$	Sonome Mountain Tomales Bay	433407 3282227	37232.1	$\begin{aligned} & 4715.9 \\ & 14533.6 \end{aligned}$	88.13
Bodega	381820.78	1225905.42	$\begin{aligned} & 2865918 \\ & 3405148 \end{aligned}$	Sonomn Mountain. Tomales Bay...........	$\begin{array}{r} 871505 \\ 1605350 \end{array}$	37358.8 14626.	$\begin{aligned} & 40854.4 \\ & 15495.4 \end{aligned}$	${ }^{93.21} 9$
Smith.	381448.60	1225510.52	$\begin{array}{r} 1385431 \\ 71255 \end{array}$	$\begin{aligned} & \text { Bodegn............................. } \\ & \text { Tomales Bay....... } \end{aligned}$	3185205 187123	$\begin{gathered} 8582.5 \\ 7336.3 \end{gathered}$	$\begin{array}{r} 9484.9 \\ 6022.8 \end{array}$	5.39 456
Tomates Point...	381242.81	1205716.11	2181241	$\begin{aligned} & \text { Rmith...................... } \\ & \text { Tomales Bay } \end{aligned}$	381359 1775318	$\begin{array}{r} 4936.8 \\ 4014.5 \end{array}$	$\begin{gathered} 5398.7 \\ 4390.1 \end{gathered}$	3.07 2.49
Bodega Head,	381826.34	1230247.11	$\begin{array}{r} 3010759 \\ 3224454 \end{array}$	Bmith. Tomales Point.	$\begin{aligned} & 1211242 \\ & 1424819 \end{aligned}$	$\begin{array}{r} 12969.1 \\ 13301.0 \end{array}$	$\begin{aligned} & 14182.6 \\ & 145456 \end{aligned}$	$\begin{aligned} & 8.06 \\ & 8.96 \end{aligned}$
Preston	381212.05	1225422.16	$\begin{array}{r} 403329 \\ 1023843 \end{array}$	Tomales Bay........... Tomales Point.	$\begin{aligned} & 220 \quad 3236 \\ & 2823 \\ & 285 \end{aligned}$	$\begin{aligned} & 32236.9 \\ & 4336.5 \end{aligned}$	3528.8 4742.3	2.00 2.69
Mershon	381052.36	1225307.64	$\begin{array}{r} 900508 \\ 1433445 \end{array}$	Tomalea Bay........... Preston	2700399 3233359	$\begin{aligned} & 3911.6 \\ & 3053.4 \end{aligned}$	$\begin{aligned} & 4977.6 \\ & 339.1 \end{aligned}$	9.43 1.90
Fost	388810.46	1295324.90	$\begin{aligned} & 1844830 \\ & 1450325 \end{aligned}$	Mershon. Tomales Bay	$\begin{array}{r} 44841 \\ 3250156 \end{array}$	$\begin{array}{r} 5009.2 \\ 6096.1 \end{array}$	$\begin{array}{r} 5477.9 \\ 6666.5 \end{array}$	3.12 3.79
Heynolds	380856.11	1225214.48	$\begin{array}{r} 503741 \\ 1600910 \end{array}$	Foster \qquad Merehon.	230367 3400837	$\begin{array}{r} 2918.2 \\ 3810.7 \end{array}$	$\begin{aligned} & 2495.8 \\ & 4167.3 \end{aligned}$	1.38 2.37
Hans...	380755.54	1225103.67	$\begin{array}{r} 973751 \\ 1371733 \end{array}$	Foster \qquad Reyuolds	9773624 3171648	$\begin{aligned} & 3469.5 \\ & 2541.4 \end{aligned}$	$\begin{aligned} & 3794.1 \\ & \end{aligned}$	$\begin{aligned} & 2.16 \\ & 1.58 \end{aligned}$
Mike.	380727.65	1225155.75	$\begin{array}{ll} 17030 & 49 \\ 935 & 51 \end{array}$	$\begin{aligned} & \text { Regnolds } \\ & \text { Hzвм, } \end{aligned}$	$\begin{array}{r} 3503030 \\ 555155 \end{array}$	$\begin{aligned} & 9785.0 \\ & 1532.3 \end{aligned}$	$\begin{aligned} & 3023.7 \\ & 1675.7 \end{aligned}$	1.72 0.85
Frink	380657.97	1225002.81	$\begin{aligned} & 1400813 \\ & 1032420 \end{aligned}$	Hant Mine	3206735 2882310	2312.3 2898.0		1.43 1.80
Agnew	380638.04	1225055.31	2441947 1750737	Friak Hanb.	$\begin{array}{r} 642019 \\ 355 \quad 07 \quad 12 \end{array}$	$\begin{aligned} & 1418.7 \\ & 24397.9 \end{aligned}$	$\begin{array}{r} 1551.4 \\ 2028.3 \end{array}$	0.88
Young.	380601.44	1225015.73	$\begin{aligned} & 1392039 \\ & 1001404 \end{aligned}$	Agnew	$\begin{array}{r} 3199909 \\ 101412 \end{array}$	$\begin{aligned} & 1484.2 \\ & 1771.1 \end{aligned}$	$\begin{aligned} & 1623.1 \\ & 1933.8 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.10 \end{aligned}$
sigvart........................	380605.02	1294905.33	$\begin{array}{r} 1399308 \\ 861923 \end{array}$	Friak. Youbg \qquad	319233 2681840	$\begin{aligned} & 2150.7 \\ & 1718.7 \end{aligned}$	$\begin{aligned} & 2351.9 \\ & 1679.5 \end{aligned}$	1.34
Whllow Point	380594.14	1224930.77	$\begin{aligned} & 13683 \\ & 20611 \\ & \hline 89 \end{aligned}$	Young shayst \qquad 	$\begin{array}{ccc} 316 & 93 & 31 \\ 26 & 11 & 18 \end{array}$	$\begin{aligned} & 1588.3 \\ & 1404.7 \end{aligned}$	$\begin{gathered} 1738.9 \\ 1538.2 \end{gathered}$	$\begin{aligned} & 0.99 \\ & 0.87 \end{aligned}$
Hammond	380442.07	1224736.58	$\begin{aligned} & 11459 \\ & 139 \\ & 47 \\ & 24 \end{aligned}$	Wiltow Point........... sigyart	2945842 3194629	$\begin{aligned} & 3069.9 \\ & 3349.1 \end{aligned}$	$\begin{array}{r} 3957.1 \\ 3662.5 \end{array}$	1.91 2.08 1.88
Oreek...........................	380482.64	1224839.14	14384 248 50	Willow Point \qquad tammond \square	$\begin{aligned} & 323 \\ & 68 \\ & 608 \\ & 50 \end{aligned}$	$\begin{aligned} & 2359.4 \\ & 1503.0 \end{aligned}$	$\begin{aligned} & 2540.2 \\ & 1643.5 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 0.93 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section X.-Tomales Bay. Sketch J, No. 31.

Name of station.	Lasitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Dintance.	Distance.
Grasier.	$\dot{\circ} \dot{0} 0343$	1224741.94	1342354	Greek.		Metres.	Yards. 1949.9	Miles. 1.08
			1840614	Hammond	40617	1825.7	1996.5	
Tom's Point	381307.55	1225609.81	$\begin{array}{r} 35251 ~ \\ 6441 \\ 49 \end{array}$	Tomales Bay. Tomales Point	$\begin{aligned} & 1725149 \\ & 2444048 \end{aligned}$	$\begin{aligned} & 41956 \\ & 1784.1 \end{aligned}$	4588.2 1551.0	2.61
Hog island	381148.98	1225506.67	2384130 3010355	Preston , ... Mersbon	$\begin{array}{r} 564157 \\ 1210509 \end{array}$	$\begin{array}{r} 1995.6 \\ 3381.4 \end{array}$	1416.8 3697.8	0.80 2.14
Preston's Hoase, stove-pipe	381243.32	1225457.75	$\begin{aligned} & 1850 \quad 08 \\ & 894424 \end{aligned}$	Tomales Bay. Tomales Point.	1994937 2694258	$\begin{aligned} & 3631.4 \\ & 3305.7 \end{aligned}$	$\begin{array}{r} 3971.2 \\ 3650.6 \end{array}$	$\begin{aligned} & 2.26 \\ & 2.09 \end{aligned}$
Lone House, south gable.	381225.18	1225428.87	$\begin{aligned} & 340652 \\ & 973730 \end{aligned}$	Tomales Bay. Tomales Point.	2140603 2773547	$\begin{aligned} & 3449.9 \\ & 4104.4 \end{aligned}$	372.7 4488.4	$\begin{aligned} & 2.14 \\ & 2.55 \end{aligned}$
Blake's House, moutheast gable ..	381136.27	1225404.21	$\begin{array}{r} 615923 \\ 1134411 \end{array}$	Tomales Bay. Tomales Point	2415819 2934212	2871.3 5094.2	$\begin{aligned} & 3140.0 \\ & 5576.3 \end{aligned}$	1.78
Punta Reyes Beach.	380797.63	1225616.63	1861244 2522743	Tomales Bay. Foster	$\begin{array}{r} 61301 \\ 72929 \end{array}$	$\begin{array}{r} 6354.1 \\ 43 \times 5.6 \end{array}$	$\begin{aligned} & 6948.6 \\ & 4796.0 \end{aligned}$	3.95 2.72
Magnetic Station.	381110.99	122539.94	2784738 194943	$\begin{aligned} & \text { Mershon....... } \\ & \text { Tomales Bay..... } \end{aligned}$	$\begin{array}{r} 984912 \\ 1994938 \end{array}$	$\begin{array}{r} 3750.4 \\ 605.2 \end{array}$	$\begin{array}{r} 4101.3 \\ 661.8 \end{array}$	2.33 0.38
sugar-loar Hill.................	381427.10	1925632.84	$\begin{array}{r} 3504246 \\ 1807 \quad 45 \end{array}$	Tomales Bay.... Tomales Point. .	$\begin{array}{lll} 170 & 43 \\ 198 & 13 \\ 19 \end{array}$	6703.4 3383.0	7330.6 3699.5	${ }_{4.16}^{16}$
Teton.	381510.69	1225635.03	$\begin{array}{rrr} 12 & 21 & 45 \\ 288 & 18 & 15 \end{array}$	Tomales Point. Smith. \qquad	$\begin{aligned} & 1922120 \\ & 1082007 \end{aligned}$	4668.0 2164.7	$\begin{array}{r} 5164.8 \\ 2467.2 \end{array}$	$\begin{aligned} & 2.90 \\ & 1.34 \end{aligned}$
Richard's	380400.09	1225700.53	$\begin{aligned} & 1875143 \\ & 2143310 \end{aligned}$	Tomales Bay. Foster.....	$\begin{array}{r} 75297 \\ 341523 \end{array}$	$\begin{array}{r} 12835.9 \\ 9336.7 \end{array}$	$\begin{aligned} & 14037.0 \\ & 10210.3 \end{aligned}$	7.98 5.60

Section XI.-Gulf of Georgia. Sketch K, No. 34

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back nzimuth	Distance.	Distance.	Distance.
Matia, north.	$\stackrel{\circ}{48} 441_{1 \prime \prime}^{\prime \prime} .24$	W. 00757.12	2404111 2671521	South Base............. Luanmi, north.	$\begin{array}{ll} 6 \\ 60 & \prime \prime \\ 86 \\ 80 & 14 \\ \hline 08 \end{array}$	$\begin{gathered} \text { Metres. } \\ 9426.0 \\ 7814.5 \end{gathered}$	$Y_{\text {ritud. }}$ 10348.0 8345.7	$\begin{gathered} \text { Miles. } \\ \mathbf{5} .86 \\ 4.85 \end{gathered}$
Point Whitehom, (1)	485307.29	00551.09	$\begin{array}{lll} 161 & 07 & 47 \\ 332 & 51 & 58 \end{array}$	Ieummi, north Suuth Base	1616747 152556	16132.3	17640.7	10.02 7.69
Trident	484708.79	01511.13	$\begin{array}{lll}284 & 01 & 28 \\ 269 & 44 & 25\end{array}$	Lummi, north Soun Base.	$\begin{aligned} & 1041142 \\ & 895455 \end{aligned}$	$\begin{aligned} & 17120.7 \\ & 17077 \\ & \hline \end{aligned}$	18790.5 18775	$\begin{aligned} & 10.68 \\ & 10.61 \end{aligned}$
Eant Roberta.	483824.09	02015.69	2985916 3432409	Point Whitehom, (I). Trident.	$\begin{aligned} & 1191008 \\ & 1632759 \end{aligned}$	$\begin{aligned} & 20133.8 \\ & 21761.4 \end{aligned}$	$\begin{array}{r} 22017.7 \\ 23797.6 \end{array}$	$\begin{aligned} & 12.51 \\ & 13.52 \end{aligned}$
Dieappointment	485120.10	03353.73	2304548 2890327	East Roberts \qquad Irident.	$\begin{array}{r} 505543 \\ 1091711 \end{array}$	90740.8 23636.2	22681.5 25847.8	$\begin{aligned} & 12.50 \\ & 14.69 \end{aligned}$
Weat Roberts.	485815.12	02339.63	2933012 430031	Point Whitehorn, (1)... Disappointment.	1134338 2829 53	23734.5 17513.0	25955.3 19151.7	16.75 10.88
Birch Peint..	485627.85	00758.90	$\begin{array}{r} 10312358 \\ 9959 \end{array}$	East Roberts. \qquad West Roberts \qquad	$\begin{aligned} & 283 \\ & 279 \\ & 293 \\ & 43 \\ & 42 \end{aligned}$	$\begin{aligned} & 15411.7 \\ & 19420.0 \end{aligned}$	$\begin{aligned} & 16853.8 \\ & 21237.1 \end{aligned}$	$\begin{array}{r} 9.58 \\ 12.07 \end{array}$
Point Whitehorn, (2)......	485337.89	00616.04	$\begin{array}{r} 421714 \\ 1179634 \end{array}$	Trident. Kast Roberts	$\begin{aligned} & 229 \\ & 290 \\ & 207 \\ & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & 16231 . \\ & 19488.3 \end{aligned}$	$\begin{array}{r} 17750.1 \\ 2125 \div .1 \end{array}$	$\begin{aligned} & 10.08 \\ & 12.08 \end{aligned}$
Mount Constitution.	484037.23	00831.36	297 2161620	Lummi, north South Base	$\begin{array}{r} 470028 \\ 369148 \end{array}$	11615.8 15073.5	$\begin{aligned} & 12702.8 \\ & 16483.9 \end{aligned}$	8.824
Barton	485532.58	00612.25	$\begin{array}{r} 3413 \\ 103 \\ 105 \end{array}$	Trident. Point Whiteharn, (2)..	$\begin{aligned} & 2140648 \\ & 1810353 \\ & 53 \end{aligned}$	$\begin{aligned} & 19554.2 \\ & 4160.7 \end{aligned}$	$\begin{array}{r} 21339.9 \\ 4550.0 \end{array}$	$\begin{aligned} & 18.15 \\ & 9.58 \end{aligned}$
Trail.	485417.46	00444.29	$\begin{array}{r} 564930 \\ 1483902 \end{array}$	Point Whitehom, (i)... Baton.	$\begin{aligned} & 2364891 \\ & 3 \times 88 \\ & 37 \end{aligned}$	$\begin{aligned} & 2232.6 \\ & 3449.6 \end{aligned}$	$\begin{aligned} & 2441.5 \\ & 3762.5 \end{aligned}$	1.39 2.14
Satelita..	400126.72	01004.49	$\begin{array}{rll} 344 & 31 & 38 \\ 65 & 38 & 25 \end{array}$	Bireh Point. Esat Eaberts	$\begin{array}{ll} 164 & 33 \\ 245 \\ 20 \end{array}$	$\begin{array}{r} 9577.9 \\ 13892.8 \end{array}$	$\begin{array}{r} 10474.1 \\ 149.8 .4 \end{array}$	5.95
Set Bird..	485718.80	00743.19	$\begin{array}{r} 973509 \\ 1542781 \end{array}$	East Roberts... Satallite	$\begin{aligned} & 977 \\ & 309 \\ & \hline 25 \end{aligned}$	$\begin{array}{r} 15436 \\ 8178.7 \end{array}$	$\begin{array}{r} 16880,8 \\ 8944.0 \end{array}$	9.59 5.08
Serni-ah-moo	490047.32	00535.08	$\begin{array}{r} 220037 \\ 1023011 \end{array}$	Sea Bird Satellite \qquad	$\begin{aligned} & 20159000 \\ & 2982 \\ & 26 \end{aligned}$	$\begin{aligned} & 0953.2 \\ & 5605.4 \\ & 560 . \end{aligned}$	$\begin{gathered} 7603.5 \\ 6129.9 \end{gathered}$	$\begin{aligned} & 4.32 \\ & 3.48 \end{aligned}$
Drayton, (1)....................	4858 45.58	W. 00600.40	$\begin{aligned} & 1351189 \\ & 1875590 \end{aligned}$	Satelitive \qquad gemalin-moo.	$\begin{array}{r} 3150825 \\ 75540 \end{array}$	$\begin{aligned} & 7021.3 \\ & 3 \% 1.6 \end{aligned}$	7678.3 4160.6	$\begin{aligned} & 4.36 \\ & 2.36 \end{aligned}$

UNITED STATES GOAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section XI.-Gulf of Georgia. SKetch K, No. 34.

Name of atation.	Latitude.	Longitude.	Azimutb.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Prainie........................	$4856 \quad 19.06$	$\text { w. } 0 \text { os } 08 . \prime \prime$	3523255 152801	Trail.	1723313 1052710	Metres. 3787.8 5164.7	Yarads. 4142.2 5648.0	$\begin{gathered} \text { Mrieas. } \\ \mathbf{2 . 3 5} \\ \mathbf{3 . 2 1} \end{gathered}$
Eagt Point, (2)	484703.36	02119.28	$\begin{aligned} & 1833107 \\ & 240 \\ & \hline 06 \\ & \hline 68 \end{aligned}$	East Roberts \qquad Sucia, west \square	$\begin{array}{r} 33155 \\ 1101158 \end{array}$	$\begin{array}{r} 21065.9 \\ 9530.5 \end{array}$	23037.0 10422.3	$\begin{array}{r} 1369 \\ \mathbf{5 . 9 9} \end{array}$
Matia, northwest	484457.16	00918.24	$\begin{aligned} & 2704155 \\ & 2471925 \end{aligned}$	Lummi, north South Base \qquad	$\begin{aligned} & 904743 \\ & 672599 \end{aligned}$	$\begin{array}{r} 0463.2 \\ 10702.1 \end{array}$	$\begin{aligned} & 10346.7 \\ & 11703.5 \end{aligned}$	5.88 6.65
Launch..	484501.81	01128.45	$\begin{aligned} & 2529 \\ & 271 \\ & 271 \\ & 11 \\ & 55 \end{aligned}$	South Base.............. Lummi, north...	$\begin{aligned} & 728844 \\ & 91 \quad 1921 \end{aligned}$	$\begin{aligned} & 13151.4 \\ & 12124.8 \end{aligned}$	$\begin{array}{r} 14382.0 \\ 13259.3 \end{array}$	8.17 7.53
Sucia, northeast.	484544.84	01115.78	$\begin{aligned} & 2574658 \\ & 295490 \end{aligned}$	South Base. Matia, north \qquad \qquad	$\begin{array}{r} 775430 \\ 1155134 \end{array}$	$\begin{array}{r} 12558.0 \\ 4507,9 \end{array}$	$\begin{array}{r} 13733.1 \\ 4929.7 \end{array}$	$\begin{array}{r} 7.80 \\ 2.80 \end{array}$
Gsp......	485021.63	00128.88	$\begin{array}{r} 04209 \\ 703210 \end{array}$	Lummi, north..........	1804204 2502151	$\begin{aligned} & 10145.8 \\ & 17799.6 \end{aligned}$	$\begin{aligned} & 11095.1 \\ & 19465.1 \end{aligned}$	$\begin{array}{r} 6.30 \\ 11.06 \end{array}$
Northwest Bell's Chain, Point Robens.	485830.72	0208.51	$\begin{aligned} & 2999 \\ & 312010 \\ & 310 \end{aligned}$	Point Whitehorn, (1)... South Base. \qquad	$\begin{aligned} & 1105247 \\ & 1329416 \end{aligned}$	20106.4 31229.2	$\begin{aligned} & 81987.8 \\ & 34151.3 \end{aligned}$	22.49 19.40
Marked Tree, (1).	484906.77	00112.81	$\begin{array}{lll} 45 & 13 & 10 \\ 78 & 03 & 44 \end{array}$	Matin, north \qquad Trident \qquad	$\begin{aligned} & 9250806 \\ & 257 \quad 53 \quad 13 \end{aligned}$	$\begin{aligned} & 11635.1 \\ & 17488.4 \end{aligned}$	$\begin{aligned} & 12723.8 \\ & 19124.8 \end{aligned}$	$\begin{array}{r} 7.23 \\ 10.87 \end{array}$
Marked Tree, (3)	485224.03	00432.87	161616 531607	Matia, north.............. Trident..................	1961342 2330807	$\begin{aligned} & 14889.6 \\ & 16254.4 \end{aligned}$	$\begin{array}{r} 16282.8 \\ 17775.3 \end{array}$	9.25 10.10
Marked Tree, (8)	484549.83	01122.51	2583577 5264634	South Brev. \qquad Matia, north \square	$\begin{array}{r} 784314 \\ 1164008 \end{array}$	$\begin{array}{r} 12661.0 \\ 4699 . \end{array}$	$\begin{array}{r} 13845.7 \\ 5139.0 \end{array}$	7.87 8.92
Marked Tree, (10)	484607.97	01332.30	132575 2155621	Trident \qquad Point Whitehorn, (1)..	3125639 30208	$\begin{array}{r} 2756.7 \\ 16006.4 \end{array}$	3014.6 17504.1	1.71 9.94
Marked Tree, (9).	484555.34	01147.66	2783938 25945	Lammi. north \qquad South Base. \qquad	$\begin{aligned} & 984719 \\ & 79 \quad 53 \quad 25 \end{aligned}$	$\begin{gathered} 12858.8 \\ 13133.8 \end{gathered}$	$\begin{aligned} & 13843.3 \\ & 14362.7 \end{aligned}$	7.67 8.16
Marked Tree, (13).	485830.16	01959.46	2995518 344223	Point Whitehorn, (1)... Trident.................	$\begin{aligned} & 1200558 \\ & 1642610 \end{aligned}$	$\begin{aligned} & 19938.6 \\ & 21849.9 \end{aligned}$	21804.3 23894.4	${ }_{1}^{12.59}$
Marked	484750.66	02312.79	$\begin{aligned} & 11725368 \\ & 1902541 \end{aligned}$	Disappointment East Roberts	2971755 IU 2754	$\begin{array}{r} 14075.0 \\ 19894.9 \end{array}$	$\begin{array}{r} 15392.0 \\ 21756.5 \end{array}$	8.74 12.36
Marked Tree, (16).	484753.79	02347.02	$\begin{aligned} & 1182538 \\ & 1922644 \end{aligned}$	Disappointment. \qquad East Roberts. 	$\begin{array}{r} 2981822 \\ 12 \quad 2924 \end{array}$	$\begin{aligned} & 13412.4 \\ & 19938.5 \end{aligned}$	$\begin{aligned} & 14867.4 \\ & 21804.2 \end{aligned}$	$\begin{array}{r} 8.33 \\ 12.39 \end{array}$
Marked Tree, (17).	484759.83	02422.08	$\begin{aligned} & 1191258 \\ & 1943349 \end{aligned}$	Disappointment East Roberts.	2990609 14365	$\begin{array}{r} 19695.6 \\ 19924.2 \end{array}$	13883.6 21788.5	12.88
Marked Tree, (21)	490011.33	02408.35	3504531 344255	West Rnberts............. Disappointment........	1704553 2143555	$\begin{array}{r} 3636.6 \\ 10648.0 \end{array}$	3876.0 21814.5	12.89
Cherry Point.	485137.27	00328.68	$\begin{aligned} & 3417831 \\ & 34927 \\ & 23 \end{aligned}$	Goath Bate. Lummi, north	$\begin{aligned} & 1613812 \\ & 1692848 \end{aligned}$	$\begin{array}{r} 8088.4 \\ 12694.9 \end{array}$	9497.0 13882.7	5.48 7.89
Northwest Bell's Chain, Point Whitehorn.	485331.73	009 24.08	$\begin{array}{r} 71911 \\ -425057 \end{array}$	$\begin{aligned} & \text { Matia, north............ } \\ & \text { Trident } \end{aligned}$	1871753 2224413	$\begin{array}{r} 16519.2 \\ 10117.9 \end{array}$	$\begin{aligned} & 18004.9 \\ & 17626.0 \end{aligned}$	10.26
Bell's Chais.	484922.24	02934.20	2e3 0501 1273449	Trident. Disappointment.........	1031550 3073655	$\begin{array}{r} 18084.7 \\ 5061.7 \end{array}$	$\begin{array}{r} 19776.9 \\ 6519.2 \end{array}$	11.24 3.70
Bell's chain, hydrograpbie sigual.	484922.98	02935.74	127405 2141502	Disappointment....... . East thoberts	$\begin{array}{r} 3073739 \\ 342204 \end{array}$	$\begin{array}{r} 5592.4 .4 \\ 20234.1 \end{array}$	$\begin{array}{r} 6476.6 \\ \mathbf{2 9 1 9 7 .} \end{array}$	$\begin{array}{r} 3.68 \\ 12.57 \end{array}$
Grasshopper	484938.52	03042.30	21911 日8 4851951		$\begin{array}{r} 3119 \\ 105 \\ 31 \end{array}$	20165.5 19706.2	$\begin{aligned} & 290152.4 \\ & 91550.1 \end{aligned}$	$\begin{aligned} & 12.53 \\ & 12.24 \end{aligned}$
Eagt Paint,	484651.12	02130.08	297528 2361351	Fucia, weat........ Patos Iskend.........	$\begin{array}{r} 1073801 \\ 861718 \end{array}$	$\begin{aligned} & 9617.5 \\ & 5639.9 \end{aligned}$	$\begin{array}{r} 10517.4 \\ 6167.8 \end{array}$	5.98 3.50
Blae Bell.	485004.48	02010.10	2875641 2820304	Birch Point.............. Sea Bird............	1080552 1021298	$\begin{aligned} & 15638.5 \\ & 15535.3 \end{aligned}$	$\begin{aligned} & 17101.8 \\ & 16989.0 \end{aligned}$	9.72
Mayked Tree, (E)	$48 \mathbf{3 3} 59.15$	00508.32	$\begin{array}{ll}159 & 37 \\ 179 & 58 \\ 20\end{array}$	Barton Prairie..........	3395857 35958	3737.4 4321.4	$\begin{aligned} & 40067.1 \\ & 4725.8 \end{aligned}$	${ }_{2}^{2.888}$
Warked Tree, (${ }^{\text {() ... }}$	483339.83	00538.43	$\begin{array}{ll}151 & 0933 \\ 187 & 94\end{array}$	Birch Point Prairie.................	3816797 70512	5725.3 485.8	$\begin{aligned} & 0479.7 \\ & 5419.5 \end{aligned}$	3.68 3.08
Wamed Tree, (C)..	485426.38	00411.25	$\begin{aligned} & 13718 \quad 59 \\ & 161 \quad 3827 \end{aligned}$		317159 3413244	3630.4	$\begin{aligned} & 3870.1 \\ & 4014.1 \end{aligned}$	2.88 2.88
Marked Tree, (D)..............	485444.34	00335.99	$\begin{aligned} & 1233801 \\ & 1471799 \end{aligned}$	Barton......................	30830 cz 277 16 15	$\begin{aligned} & 3816.0 \\ & 3478.1 \end{aligned}$	$\begin{aligned} & 4773.1 \\ & 3883.5 \end{aligned}$	$\frac{9.37}{8.16}$
Lncampment....................	483533.06	00322.17	$\begin{aligned} & 44524.5 \\ & 35 \\ & \hline 20 \end{aligned}$	Point Whitehorm, (\$)... Trath.	$\begin{array}{lll}904 & 5085 \\ 215 & 35 & 83\end{array}$	5018.4	$\begin{aligned} & 5488.0 \\ & 3140.6 \end{aligned}$	3.19 1.79
Etarf...........................	485844.44	02043.82	$\begin{aligned} & 2961438 \\ & 285 \\ & \hline 44 \\ & \hline 298 \end{aligned}$	Birch Point	1115415 1055418	10990.4	$\begin{array}{r} 10960.9 \\ 16041.4 \end{array}$	$\begin{aligned} & 10.37 \\ & 10.25 \end{aligned}$
Hoad Reef.................	48 45 38.20	W.0 2513.30		Patas Island............	744853 1154035	$\begin{aligned} & 10557.8 \\ & 7700.5 \end{aligned}$	$\begin{array}{r} 11545.7 \\ \text { B008. } \end{array}$	${ }_{4.89}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section XI.-Gulf of Georgia. Sketch K, No. 34.

Name of station.	Latitude.	Longitade.	Azimutb.	To atation-	Back aximuth.	Distance.	Distance-	Distance.
Tumiow, east....	$\therefore 884734,77$	W.0 2144.29	$\begin{array}{cc} 1 & 1 \\ 185 & 11 \\ 079 & 58 \\ \hline 071 \end{array}$	East Roberta	$\begin{array}{cc} \circ & 11 \\ 5 & 09 \\ 99 & 26 \\ \hline 9 \end{array}$	Metres. 20136.7 5998.1	Yards. 22020.9 6559.3	$\begin{gathered} \text { Miles. } \\ 12.51 \\ \hline 2 . \end{gathered}$
Tumbow, northeast. .	484748.47	0220.60		Patos Ifland........... Bucia, west.	$\begin{array}{lll}1015613 \\ 11441 & 23\end{array}$	6804.4	$\begin{array}{r} 7441.1 \\ 122 \times 18.8 \end{array}$	$\begin{aligned} & 4.23 \\ & 6.97 \end{aligned}$
Whitewasbed Rocks, Active harbor.	484539.42	01350.48	171908 625109	Aucia, west Bare Istand \square	$\begin{array}{lll}197 & 18 \\ 245 & 47 \\ 46\end{array}$	$\begin{array}{r} 7240 \\ 7793.9 \end{array}$	$\begin{array}{r} 791.7 \\ 8523.7 \end{array}$	0.45 4.84
Whitewashed Tree, east poin	484708.03	02121.22	$\begin{aligned} & 2902917 \\ & 331 \\ & 17517 \end{aligned}$	Bucia, weat Eust Point, (2) \qquad	$\begin{array}{ccc} 110 & 34 & 48 \\ 154 & 17 & 52 \end{array}$	$\begin{array}{r} 9596.3 \\ 91.4 \end{array}$	10494.2 100.0	${ }_{0.96}^{5.96}$
High Hluff, east point. .	484656.61	02122.56	2884718 338 49 9	gucia, wregt Bare Island	$\begin{array}{ll} 1085250 \\ 1585114 \end{array}$	9524.3 6373.2	10415.5 6969.5	5.92 3.96
East Point, Plumper signal	484706.55	02120,74	$\begin{array}{lll} 271 & 07 & 03 \\ 340 & 04 & 57 \end{array}$	Patos Island Rare Island	$\begin{array}{r} 91 \quad 10 \quad 23 \\ 16006 \\ 10 \end{array}$	5438.2 6647.1	$\begin{aligned} & 5947,1 \\ & 7269.1 \end{aligned}$	3.38 4.13
Semi-ah-mmo Flag-staff.	480049.10	00540.66	$\begin{array}{r} 1021532 \\ 75 \quad 57 \end{array}$	Gatellite \qquad East Roberis............	2321213	54843 18340.8	$\begin{array}{r} 5997.5 \\ \mathbf{2 0 0 5 6 . 9} \end{array}$	$\begin{array}{r} 3.41 \\ 1141 \end{array}$
Bhaw's Bluff	485915.00	00344.40	$\begin{array}{r} 715110 \\ 14148 \xrightarrow[22]{10} \end{array}$	Drayton, (1) Bemi-ah-moo	$\begin{aligned} & 251 \\ & 321 \\ & 46 \\ & 46 \\ & 58 \end{aligned}$	2924.5 3637.1	$\begin{array}{r} 3193.8 \\ 3977.4 \end{array}$	1.81 2.26
Brant	485732.43	00311.04	$\begin{aligned} & 12311920 \\ & 167 \\ & 50 \end{aligned}$	Orayton, (I) Shaw's Bluff...........	$\begin{aligned} & 3030918 \\ & 3475452 \end{aligned}$	$\begin{aligned} & 4126.5 \\ & 3239.9 \end{aligned}$	4512.6 3543.0	2.36 2.01
Osmp	490047.60	00536.25	$\begin{gathered} 1022955 \\ 760931 \end{gathered}$	Satelite East Roberta	$\begin{aligned} & 9822633 \\ & 255 \\ & 268 \\ & 27 \end{aligned}$	$\begin{array}{r} 5581.2 \\ 18417.0 \end{array}$	$\begin{array}{r} 6183.4 \\ 20140.3 \end{array}$	3.47 11.44
Bemi-ah-moo Observatory	490047.85	- 0535.91	215026 1022426	Sea Bird...............$~$ satelite.	2014850 2822104	6959.2 3586.1	7610.4 6108.8	4.32 3.47
Parallel.	490004.38	00406.09	$\begin{aligned} & 1091730 \\ & 1262407 \end{aligned}$	©ntelite. \qquad Eermi-alt-moo \qquad	2891300 3062300	7713.2	$\begin{gathered} 24536.5 \end{gathered}$	4.79 1.40
Draytan, (2)	485923.67	00457.75	1634033 2801038	Semi-ah tmos Shaw's Bluff	3434005 J60 1133	2699.6 1514.9	$\begin{array}{r} 2951.5 \\ 1656.6 \end{array}$	1.88 0.94
Cross, hydrographic aignal .	485841.25	$0<610.54$	1970544	Satellite. Semi-ah-moo	3170247 102821	6980.5 3966.3	$\begin{aligned} & 7633.7 \\ & 4337.4 \end{aligned}$	4.34 2.45
Tumbow, weat	484748.83	0 2440.94	$\begin{aligned} & 1952207 \\ & 1894112 \end{aligned}$	Fast Roberts West Robert	$\begin{array}{r} 15 \\ 3 \\ 3 \\ 41 \\ \hline \end{array}$	202351.7 19385.	22256.0	12.65 12.04
Whitewashed Weatern Rocks of Bell's chain.	485013.36	03108.23	$\begin{aligned} & 1262053 \\ & 2211007 \end{aligned}$	Dimappointment. East Roberts.	$\begin{array}{cc} 306 & 19 \\ 41 & 09 \\ 418 \end{array}$	2479.6 20156.5	3205.2 22042.5	2.16 12.52
Piligree..	485822.79	03545.47	$\begin{aligned} & 239 \\ & 933 \\ & 932 \\ & \hline 28 \end{aligned}$	East Roberts. Weat Roberts	$\begin{aligned} & 593415 \\ & 534201 \end{aligned}$	$\begin{aligned} & 91970.3 \\ & 18349.8 \end{aligned}$	24026.0 20066.8	11.65
Pender	485337.06	03800.79	2473831 3070105	East Roberts............. Diappointiment.	$\begin{array}{r} 675154 \\ 1270432 \end{array}$	$\begin{array}{r} 23417.9 \\ 7021.3 \end{array}$	$\begin{array}{r} 25609.1 \\ 7678.3 \end{array}$	14.55 4.36
Whitewashed Weatern Rocke, Plumper agaal.	485358.37	0 3848.86	$\begin{aligned} & 2495157 \\ & 26639 \end{aligned}$	Eakt Robe Weat Ro	$\begin{aligned} & 70 \quad 05 \quad 52 \\ & 66 \quad 4506 \end{aligned}$	23978.7 20018.5	$\begin{aligned} & 96228.4 \\ & 21891.6 \end{aligned}$	14.90 12.44
Frazer's River .	480188.71	02683.35	$\begin{array}{r} 3305914 \\ 243647 \end{array}$	Weet Roberts Disappointument.	$\begin{array}{lll} 150 & 55 & 18 \\ 504 & 31 & 29 \end{array}$	$\begin{array}{r} 6842.8 \\ 20669.9 \end{array}$	$\begin{array}{r} 7483.1 \\ 22604.0 \end{array}$	$\begin{array}{r} 4.25 \\ 12.84 \end{array}$
East Point Reef	484716.35	02106.90	$\begin{array}{r} 3431018 \\ 3212103 \end{array}$	Bare Island Enat Point, (2)	1631131 2121154	$\begin{array}{r} 6845.4 \\ 473.9 \end{array}$	$\begin{array}{r} 7485.9 \\ 518.2 \end{array}$	4.25 0.30
Marked Tree 2, Drayton Keed.	485796.11	00327.14	$\begin{aligned} & 1880736 \\ & 1740243 \end{aligned}$	Drayton, (I) Bhaw's Blufi	3080533 3540230	$\begin{aligned} & 3974.1 \\ & 3381.5 \end{aligned}$	$\begin{array}{r} 4346.0 \\ 3697.9 \end{array}$	2.47 2.10
Marked Tree 3, Drayton Head	485736.47	00404.94	1320835 18748	Drayto gbaw'	$\begin{array}{r} 3120708 \\ 74910 \end{array}$	$\begin{aligned} & 3179.4 \\ & 3071.7 \end{aligned}$	3476.9	${ }_{1}^{1.98}$
Marked Tree 4, Drayton Head..	485757.87	00415.82	$\begin{array}{lll} 134 & 28 \\ 192 & 01 & 16 \end{array}$	Drayton, (1) Shaw'a Bluff..............	$\begin{array}{r} 3142108 \\ 120140 \end{array}$	$\begin{array}{r} 28388.6 \\ 3067.3 \end{array}$	3368.2 3354,3	1.86
Marked Tree 5, Drayton Head..	485754.34	00504.58	144059 2131134	Drayton, (1) Bhaw' Bluff	3240443 331235	$\begin{aligned} & 1952.1 \\ & 2977.3 \end{aligned}$	$\begin{aligned} & 9134.8 \\ & 3255.9 \end{aligned}$	1.81
Marked Tree 6, Druyton Head..	485808.58	00539.59		Drayton, (1)...........	$\begin{array}{r} 8391398 \\ 484725 \end{array}$	$\begin{aligned} & 1991.19 \end{aligned}$	$\begin{aligned} & 1335.4 \\ & 9305.3 \end{aligned}$	0.76
Shell Bank.	485747.65	00430.39	202303	Drayton, (1) shat's gluf	$\begin{array}{r} 3170924 \\ 93114 \end{array}$	2437.6 2420.4	$\begin{array}{r} 9665.7 \\ \mathbf{3 1 9 3 . 7} \end{array}$	1.82
Northweat Patea	484718.66	W. 01656.71	2780306 2813000	Trident Polat Whtuhora, (1)..	980416 513821	$\begin{array}{r} 2178.3 \\ 17324.5 \end{array}$	$\begin{array}{r} 9379.9 \\ 18945.5 \end{array}$	1.35 10.76

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section XI.-Admiralty Inlet. Sketch K, No. 34.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Astronomical Siation, 1852, Point Hudson.	480703.02		- ' $"$		- 1 "	Metres.	Yards.	Miles.
Point Hudson, astronomaicalazimuth station, 1856.	480706.71	1. 00007.18	592900	Astronomical Station, 1852 .	2329915	187.2	204.7	0.12
Admiralty Head.	480921.56	0 0424.97	520111	Point Huds	2315759	6763.2	7396.0	4.20
Kilisut.	480557.30	E. 00204.83	1312618 20441	Point Hudson Admiralty Head	$\begin{array}{r} 3112451 \\ 244258 \end{array}$	3239.8 6943.5	$\begin{array}{r} 3542.9 \\ 7593.2 \end{array}$	$\underset{4 ; 31}{2.01}$
Southwest Base	480535.42	W. 00301.31	2635233 2340634	Kilisut Point Hudson	$\begin{aligned} & 835690 \\ & 540855 \end{aligned}$	6365.2 4811.3	6960.8 5361.5	$\begin{aligned} & 3.95 \\ & \mathbf{2 . 9 9} \end{aligned}$
Walan	480434.23	E. 00022.90	$\begin{array}{lll} 114 & 07 & 01 \\ 276 & 03 & 06 \end{array}$	Eonthwest Base \qquad Point Hudson \square	894 0429 3560254	$\begin{gathered} 4699.0 \\ 4720.3 \end{gathered}$	$\begin{aligned} & 5069.1 \\ & 5182.0 \end{aligned}$	\%.88
Northeart Base..	480637.57	W. 00118.19	$\begin{aligned} & 286 \\ & 331 \\ & 39 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Kilisut } \\ & \text { Walan } ~ \end{aligned}$	1063200 15142	$\begin{aligned} & 4375.8 \\ & 4345.6 \end{aligned}$	$\begin{array}{r} 4785.2 \\ 4752.2 \end{array}$	2.72 2.70
Point Wilson...................	480842.74	W. 00016.30	$\begin{array}{lll} 258 & 19 & 19 \\ 330 & 16 & 18 \end{array}$	Admiralty Head Kilieut	$\begin{array}{r} 7829 \\ 1501803 \end{array}$	5036.9 5882.9	$\begin{aligned} & 8492.4 \\ & 6433.4 \end{aligned}$	$\begin{aligned} & 3.69 \\ & 3.65 \end{aligned}$
Marrowstone Point.	480813.13	E $0<641.27$	$\begin{aligned} & 1103050 \\ & 1331539 \end{aligned}$	Roint Hudeon Point Wileon \qquad	2902810 3131242	$\begin{aligned} & 4766.9 \\ & 6745.0 \end{aligned}$	$\begin{aligned} & 5169.2 \\ & 7376.1 \end{aligned}$	2.94 4.18
Lagoon.....	480449.57	00817.14	$\begin{array}{lll} 114 & 21 & 23 \\ 150 & 16 & 20 \end{array}$	Marruwstone Point Admiralty Head	2941753 3301327	6264.0 9675.0	$\begin{array}{r} 6850.1 \\ 10580.3 \end{array}$	3.89 6.01
Nodule Point.	480155.90	00455.42	1690422 2175310	Marrowatone Point Lagoon.	$\begin{array}{r} 3490787 \\ 375540 \end{array}$	$\begin{aligned} & 8091.1 \\ & 6798.0 \end{aligned}$	8848.2 7434.1	5.03 4.92
Busl Point.	480155.57	00837.92	$\begin{aligned} & 1752529 \\ & 1422150 \end{aligned}$	Lagoon Marrowstone Poins	$\begin{aligned} & 3551514 \\ & 322 \\ & 1810 \end{aligned}$	$\begin{array}{r} 5391.0 \\ 10048.8 \end{array}$	$\begin{array}{r} 5895.4 \\ 10989.1 \end{array}$	$\begin{aligned} & 3.35 \\ & 6.24 \end{aligned}$
Basalt Point	475736.75	00427.66	1840634 2125732	Nodule Point \qquad Bush Puíns. \square	$\begin{array}{r} 40655 \\ 330036 \end{array}$	80237 9328.7	$\begin{array}{r} 8774.5 \\ 10420.3 \end{array}$	4.98 5.92
Double Bluff.	475826.29	01157.14	1263404 1472658	Nodule Poiat Bush Point .	3062851 3272430	$\begin{array}{r} 10878.4 \\ 7669.4 \end{array}$	$\begin{array}{r} 11894.1 \\ 8387.0 \end{array}$	6.76 4.76
Foulweather Bluff	475630.02	00846.53	$\begin{aligned} & 1543350 \\ & 1725902 \end{aligned}$	Nodule Point Bush Point	$\begin{aligned} & 3343058 \\ & 3585855 \end{aligned}$	11146.2 10055.3	$\begin{aligned} & 12189.1 \\ & 10996.2 \end{aligned}$	$\begin{aligned} & 6.92 . \\ & 6.25 \end{aligned}$
Daplicate.	475807.07	01216.64	$\begin{array}{r} 553027 \\ 1274425 \end{array}$	Foulweather Bluff Nodule Point	2352751 3073857	$\begin{array}{r} 6058.2 \\ 11557.2 \end{array}$	$\begin{array}{r} 6625.1 \\ 126388.6 \end{array}$	$\begin{aligned} & 3.76 \\ & 718 \end{aligned}$
Potat No Point.	475448.04	01328.35	1641929 1862345	Double Bluff. \qquad Duplicate \square	3441821 3462252	$\begin{array}{r} 7000.7 \\ 6324.0 \end{array}$	$\begin{aligned} & 7635.7 \\ & 6995.7 \end{aligned}$	4.35
Scatchet Head.	475457.15	01914.46	$\begin{array}{r} 874740 \\ 1240716 \end{array}$	Point No Point Duplicate	267438 3040206	$\begin{array}{r} 7190.9 \\ 10467.3 \end{array}$	$\begin{array}{r} 7863.7 \\ 1146.7 \end{array}$	4.47 6.50
Apple Cove	474857.90	01605.84	$\begin{aligned} & 1631039 \\ & 19426 \quad 18 \end{aligned}$	Point No Point \qquad Bcatchet Fiead. \square	343 es 42 192839	$\begin{aligned} & 11297.5 \\ & 11766.3 \end{aligned}$	$\begin{aligned} & 12354.6 \\ & 12867.3 \end{aligned}$	7.02
Point Wells.	474357.00	02114.19	$\begin{aligned} & 1901341 \\ & 1702901 \end{aligned}$	Apple Cove Scatchet Head	3000453 350273	$\begin{array}{r} 7423.2 \\ 15035.3 \end{array}$	$\begin{array}{r} 8177.8 \\ 1644.2 \end{array}$	4.61 9.34
President	474551.33	01646.20	1714235 2495942	Apple Cove \qquad Point Wella \qquad	3514209 700300	5822.6 5036.2	$\begin{aligned} & 6397.4 \\ & 691.6 \end{aligned}$	3.62 3.69
Meadow	474142.48	02042.63	1472149 1835207	Preaddent Point Wells	$\begin{array}{r} 3271854 \\ 35831 \end{array}$	$\begin{aligned} & 9128.2 \\ & 9735.2 \end{aligned}$	$\begin{array}{r} 9962.3 \\ 10646.1 \end{array}$	5.67 8.05
Elder	474140.53	01448.82	2192137 2692446	Point Welle Mendow	3998929 89	$\begin{aligned} & 12947.5 \\ & 7376.7 \end{aligned}$	$\begin{array}{r} 13830.9 \\ 8006.9 \end{array}$	7.86 4.88
Yemoalt .,......	473804.19	01539.95	1705605 2200545	Elder Meadow	$350 \quad 5597$ 436929	6765.5 $9236 \text {. } 4$	$\begin{array}{r} 7398.5 \\ 10100.8 \end{array}$	4.90 5.74
magnolia.......................	473834.80	02005,88	$\begin{array}{r} 802136 \\ 1305754 \end{array}$	Yemonit.	9601890 3105400	$\begin{aligned} & 5630.0 \\ & 8754.1 \end{aligned}$	$\begin{aligned} & 8157.0 \\ & 9573.2 \end{aligned}$	3.50 5.44
Rentoration Point.	473505.78	01617.78	1715034 216246	Yemozit..................	$\begin{aligned} & 35150 \\ & \mathbf{3 6} \\ & \mathbf{y y} \end{aligned}$	5565.5 8901. 7	se8\%. 3 8772.2	3.46 4.98
Battery Point	173437.04	01951.24	$\text { 189 } 92 \text { 势 }$ 101163	$\begin{aligned} & \text { Magnolia } \\ & \text { Reatoration Point . . . } \end{aligned}$	$\begin{aligned} & 22310 \\ & 9818 \end{aligned}$	$\begin{array}{r} 748.6 \\ 4547.5 \end{array}$	$\begin{aligned} & 8036.2 \\ & 4923.0 \end{aligned}$	4.56 8.83
Hydrographic signal............	480530.84	00101.90	1590504 9874748	Point Firdana........... Kilisut \qquad	3390423 574833	$\begin{aligned} & 3169.8 \\ & 1533.5 \end{aligned}$	$\begin{aligned} & 366.1 \\ & 1677.0 \end{aligned}$	1.87
Long Apte	480530.83	00102.03	$\begin{array}{r} 248131 \\ 1252459 \end{array}$	Walm N. E. Base	$\begin{array}{r} 90451 \\ 305 \\ 98 \end{array}$	$\begin{aligned} & 1 \text { yex } \\ & \hline 156.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 0 6 . 9} \\ & 3891.4 \end{aligned}$	1.90
Ebey'M Houre, nouthweat end...	480711.33	E. 00010.00	$\begin{array}{r} 29 \\ 139 \\ 169 \end{array}$	Pohnt Polms Witson..................	$\begin{aligned} & 902113 \\ & 349 \\ & 03 \\ & 13 \\ & 18 \end{aligned}$	$\begin{array}{r} 159.9 \\ 8875.4 \end{array}$	$\begin{array}{r} 168.3 \\ 3146.3 \end{array}$	0.194
Point Parridge	481259.31	W.0 00 33.74	3579490 350 93		177 ${ }_{175}$ 8	19931.8	11944.3	$\begin{aligned} & 4.98 \\ & 6.79 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.
Section XI_-Admiralty Inlet. Sketch K, No. 34.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Point Ross	$\begin{array}{cc} \circ \\ 48 & \prime \prime \\ 48 & 38.18 \end{array}$	$\text { © } 0.0021 .01 .55$	$\begin{array}{cc} 0 & 1 \\ 192 & 39 \\ 26096 & 27 \end{array}$	Point Partridge Admiralty Head	$\begin{array}{lcc} 0 & \prime \prime \\ 1241 & 44 \\ 80 & 31 & 15 \end{array}$	$\begin{gathered} \text { Metres. } \\ 8966.0 \\ \text { B099.8 } \end{gathered}$	Yards. 9039.4 8857.7	Mites. 5.14 5.03
Dungene日s......	481059.60	02144.32	$\begin{aligned} & 2800038 \\ & 261 \\ & 50 \end{aligned}$	Point Ross Point Partridge	$\begin{array}{r} 1001519 \\ 92 \quad 06 \quad 3 \end{array}$	$\begin{aligned} & 24884.6 \\ & 26492.5 \end{aligned}$	$\begin{aligned} & 27147.4 \\ & 28971.4 \end{aligned}$	$\begin{aligned} & 15.42 \\ & 16.46 \end{aligned}$
Dungeness (new) Light-house . .	481058.96	02134.06	$\begin{aligned} & 2800310 \\ & 2614494 \end{aligned}$	Point Rose \qquad Point Partridge \qquad	$\begin{array}{r}100 \\ 820044 \\ \hline 804\end{array}$	$\begin{aligned} & 94612.5 \\ & 26285.6 \end{aligned}$	26915.5 28745. I	$\begin{aligned} & 15.89 \\ & 16.33 \end{aligned}$
Kala Point.	480331.82	W. 00056.53	$\begin{aligned} & 145 \quad 56 \\ & 280 \\ & 27 \\ & 33 \end{aligned}$	B. W. Base \qquad Walan	3255430 402832	4648.7 2533.4	5039.9 2770.5	$\begin{aligned} & 2.86 \\ & 1.57 \end{aligned}$
Crane....	480300.35	E. 00032.41	$\begin{aligned} & 1175009 \\ & 1760658 \end{aligned}$	Kain Point Walan	$\begin{aligned} & 297 \\ & 35608 \\ & 39 \end{aligned}$	$\begin{array}{r} 2082.4 \\ 2906.1 \end{array}$	$\begin{aligned} & 2277.3 \\ & 3178.0 \end{aligned}$	1.89
Tongue.	480210.09	W. 00009.70	$\begin{array}{lll} 158 & 59 & 19 \\ 209 & 19 & 35 \end{array}$	Kala Point Crane..	$\begin{gathered} 3385844 \\ 299006 \end{gathered}$	$\begin{aligned} & 2704.1 \\ & 1780.4 \end{aligned}$	$\begin{aligned} & 2957.1 \\ & 1947.0 \end{aligned}$	1.68
Romk	480223.41	E. 00053.24	$\begin{array}{r} 729911 \\ 1591725 \end{array}$	Tongue. Crane...	$\begin{aligned} & 2522824 \\ & 3391710 \end{aligned}$	1367.0	1494.9	$\begin{aligned} & 0.85 \\ & 0.76 \end{aligned}$
Head	480204.68	00049.44	974545 1689488	Tongue. Crane	$\begin{array}{lll} 277 & 45 & 01 \\ 348 & 24 & 15 \end{array}$	$\begin{aligned} & 1236.3 \\ & 1754.8 \end{aligned}$	1352.0 1919.0	0.77 1.09
Island.	48015483	00011.00	$\begin{array}{lll} 137 & 92 & 26 \\ 192 & 21 & 28 \end{array}$	Tongue. Crane \qquad	3174211 12214	637.2 2071.5	698.8 2265.3	0.39 1.29
Bexch, (1)......................	480950.02	00541.90	3405408 20555	Lhgoon. Marrowstone Point.	$\begin{array}{lll} 160 & 50 & 04 \\ 200 & 24 & 25 \end{array}$	9818.4	10737.1 7816.0	6.19 4.44
Beach, (2).	48095543	00703.01	$\begin{array}{rrr} 350 & 46 & 34 \\ 31 & 17 & 50 \end{array}$	Lagoon.	$\begin{aligned} & 1704729 \\ & 2111520 \end{aligned}$	$\begin{aligned} & 9569.4 \\ & 8032.5 \end{aligned}$	10.4648 8784.1	5.94 4.99
Roberteon..	480931.84	00812.32		Lagoon	$\begin{aligned} & 1792034 \\ & 222 \\ & 27 \end{aligned}$	$\begin{aligned} & 8699.5 \\ & 8296.8 \end{aligned}$	9513.5 9073.1	5.41 5.16
Shipyard.	480832.75	00849.32	$\begin{array}{r} 55 \\ 56 \\ 530 \\ \hline 18 \end{array}$	Marrewstone Potnt..... Lagoon......	$\begin{aligned} & 9355229 \\ & 1853034 \end{aligned}$	$\begin{aligned} & 7692.0 \\ & 6924.4 \end{aligned}$	$\begin{aligned} & 8411.7 \\ & 7572.3 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.30 \end{aligned}$
Doyte.............................	480710.38	00904.61	1250805 12438	Admiralty Head......... Lagoon	$\begin{aligned} & 3045937 \\ & 1924303 \end{aligned}$	$\begin{aligned} & 7058.8 \\ & 4458.0 \end{aligned}$	7719.3 4875.1	4.39 2.77
Craven, (1)......................	480420.09	00354.01	$\begin{array}{lll} 184 & 03 & 06 \\ 175 & 18 & 49 \end{array}$	Admiralty Head Marrowstone Point....	$\begin{array}{r} 403929 \\ 3551839 \end{array}$	$\begin{aligned} & 9055.0 \\ & \mathbf{3 2 4 4 . 0} \end{aligned}$	$\begin{aligned} & 9902.3 \\ & 3525.7 \end{aligned}$	5.63 9.00
Craven, (2)........................	4803124.74	00403.58	$\begin{array}{lll} 102 & 17 & 53 \\ 174 & 55 & 45 \end{array}$	Admiralty Head......... Marrowstone Point.....	$\begin{array}{r} 81849 \\ 35455 \quad 28 \end{array}$	11028.3 5820.9	12060.2 5709.4	6.85 3.24
Slide.................................	4800 ± 0.74	01013.92	$\begin{aligned} & 1692441 \\ & 3324329 \end{aligned}$	Nodule Point Double Bluff.	$\begin{aligned} & 2892044 \\ & 1524446 \end{aligned}$	$\begin{array}{r} 6995.0 \\ 4671.1 \end{array}$	$\begin{aligned} & 7649.5 \\ & 5108.2 \end{aligned}$	4.35 2.90
Colvos Rock	475711.64	00448.09	$\begin{aligned} & 208 \\ & 955 \\ & 95 \\ & \hline 55 \end{aligned}$	Bush Point Doable Bluff.	$\begin{aligned} & 283296 \\ & 753114 \end{aligned}$	$\begin{aligned} & 9979.0 \\ & 9192.7 \end{aligned}$	$\begin{aligned} & 10912.7 \\ & 10059.9 \end{aligned}$	$\begin{aligned} & 6.20 \\ & 5.71 \end{aligned}$
Bayward	475957.39	01223.77	661807 1118250	Besalt Point. Nodtrle Point	$\begin{aligned} & 2461213 \\ & 291 \quad 2717 \end{aligned}$	107854 9985.0	11794.6 10919.3	6.70 6.20
Neck..............................	475518.03	00959.26	$\begin{array}{lll} 172 & 11 & 13 \\ 159 & 55 & 02 \end{array}$	Bush Point \qquad Nodule Point \qquad	$\begin{array}{lll} 352 & 10 & 13 \\ 332 & 49 & 16 \end{array}$	12392.4 13808.3	$\begin{aligned} & 13552.0 \\ & 15100.3 \end{aligned}$	7.70 8.58
Briar	475824.32	00403.36	$\begin{array}{lll} 921 & 04 & 04 \\ 969 & 35 \quad 48 \end{array}$	Buen Point Uouble Blaff. \qquad \qquad	$\begin{aligned} & 410728 \\ & 894140 \end{aligned}$	$\begin{aligned} & 8657.0 \\ & 9825.0 \end{aligned}$	$\begin{array}{r} 9467.0 \\ 10744.3 \end{array}$	5.38 6.10
Limestone............	475851.84	00238.51	$\begin{aligned} & 9830335 \\ & 97349 \quad 12 \end{aligned}$	Bush Point. Double Bluff. \qquad	$\begin{aligned} & 530806 \\ & 9315 \end{aligned}$	$\begin{array}{r} 9444.3 \\ 11714.1 \end{array}$	$\begin{aligned} & 10328.0 \\ & 12810.2 \end{aligned}$	5.87 7.88
Liplip..............................	480106.92	00449.48	$\begin{array}{r} 2991116 \\ 33925 \end{array}$	Dowhle Bluff.............. Basult Poimt............	$\begin{aligned} & 1197634 \\ & 183 \\ & 59 \end{aligned}$	10158.1 6506.1	$\begin{array}{r} 11108.6 \\ 7114.9 \end{array}$	6.31 4.04
Camal............................	475559.68	00749.05	$\begin{array}{ll} 185 & 4040 \\ 185 & 1545 \end{array}$	Basalt Point. Bush Point	$\begin{array}{r} 3053810 \\ 51621 \end{array}$	$\begin{array}{r} 5142.7 \\ 11037.3 \end{array}$	$\begin{array}{r} 5693.9 \\ 12070.1 \end{array}$	3.19 6.86
Tata Point, 1865..................	475554.71	00538.11	$\begin{aligned} & 1564139 \\ & 23931 \$ 4 \end{aligned}$	Rasalt Point \qquad Double Bluff.	$\begin{array}{r} 3554044 \\ 593609 \end{array}$	$\begin{aligned} & 3431.5 \\ & 9240.5 \end{aligned}$	$\begin{array}{r} 3759.6 \\ 10104.8 \end{array}$	2.13 5.74
Tall Point, 18086...................	475554.60	00593.00	$\begin{aligned} & 1564455 \\ & 4819 \end{aligned}$	Bagatt Point Canal	$\begin{array}{r} 3564497 \\ 865000 \end{array}$	$\begin{aligned} & 3433.8 \\ & 9827.8 \end{aligned}$	$\begin{array}{r} 3755.1 \\ 3092.4 \end{array}$	9.13 1.76
Olele . .	475808.80	00858.87	$\begin{aligned} & 219 \\ & 250 \\ & 206 \\ & 50 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 393839 \\ & 80514 \end{aligned}$	$\begin{aligned} & 9090.7 \\ & 8945.5 \end{aligned}$	$\begin{array}{r} 9941.3 \\ 10876.1 \end{array}$	$\begin{aligned} & 5.65 \\ & 6.18 \end{aligned}$
Onk Bay...........................	480030.82	0085	$\begin{aligned} & 2911035 \\ & 350 \\ & 92 \end{aligned}$	Double Bluff. Basalt Point.	$\begin{aligned} & 1117640 \\ & 1708898 \end{aligned}$	$\begin{array}{r} 10997.3 \\ \mathbf{5 5 8 9 . 9} \end{array}$	$\begin{array}{r} 12026.3 \\ 6112.9 \end{array}$	6.83
Howate between Lagoou and Bush Post.	4808 49,60	00857.00	$\begin{array}{r} 69408 \\ 1940792 \end{array}$	Bush Point	$\begin{aligned} & 1869354 \\ & 50103 \quad 97 \end{aligned}$	$\begin{aligned} & 3551.3 \\ & 7892.7 \end{aligned}$	$\begin{aligned} & 3883.6 \\ & 8631.2 \end{aligned}$	$\begin{aligned} & 9.91 \\ & 4.90 \end{aligned}$
Hood's Head.....................	475819.38	60882,87	$\begin{array}{ll} 143 & 49 \\ 171 & 57 \\ 08 \end{array}$	Tais Point, 1858 Oanal	$\begin{aligned} & 38851 \\ & 35155 \\ & 35 \end{aligned}$	$\begin{aligned} & 5952.4 \\ & 5001.5 \end{aligned}$	$\begin{aligned} & 6509.4 \\ & 5469.5 \end{aligned}$	$\begin{aligned} & \text { s. } 70 \\ & 3.11 \end{aligned}$
Fond .w..................n.......	475588.54	N. 00800.84	$\begin{aligned} & 3505017 \\ & 10018 \quad 59 \end{aligned}$	Elood's Fiead Tala Polst, 1856	$\begin{aligned} & 1735939 \\ & 2801769 \end{aligned}$	$\begin{aligned} & 4902.0 \\ & 3118.7 \end{aligned}$	$\begin{array}{r} 4660.8 \\ 3410.5 \end{array}$	$\begin{aligned} & \mathbf{9 . 8 5} \\ & 1.94 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPIICAL POSITIONS.

Section XI.-Admiralty Inlet. Shetch K, No. 34.

Name of ptation.	Latitude.	Longitude.	Azinuth.	To station-	Buck aziunuth.	Distance.	Distance.	Distance.
Clay Bank	$\begin{array}{lcc} \therefore & \prime & 1 \\ 47 & 54 & 19.06 \end{array}$	$\text { E. } 00944$	$\begin{array}{r} 0 \\ 4235 \\ 119 \\ \hline 29 \\ 53 \end{array}$	Hood's Head Tala Point, 1856	$\begin{array}{ccc} \circ & 1 \\ 222 & 34 & 40 \\ 299 & 2646 \end{array}$	Mctres. 2.005 .3 5996.9	Yords. 2739.7 6353.0	$\begin{array}{r} \text { Milest } \\ 1.56 \\ 3.72 \end{array}$
Adom's Apple..................	475520.88	00854.19	94952 1040154	Hood's Head Tala Point, 1856	$\begin{aligned} & 1891929 \\ & 2835851 \end{aligned}$	$\begin{aligned} & 3809.7 \\ & 4303.6 \end{aligned}$	$\begin{array}{r} 4166.2 \\ 4766.3 \end{array}$	2.37
Peninsula, (l)	476436.75	110546.24	$\begin{array}{rrrr}276 & 1641 \\ 3466 & 18 & 07\end{array}$	Clay Baisk. Hoon's Head	961938 1260003	4977.3 4037.0	5443.0 4414.7	3.051 2.51
Branacte.........................	475311.82	01014.02	$\begin{array}{rrr} 95 & 45 & 08 \\ 163 & 33 & 30 \end{array}$	Hood's Head Clay Bank.	$\begin{aligned} & 2754346 \\ & 343 \\ & 33 \end{aligned}$	$\begin{aligned} & 2330.3 \\ & 2165.2 \end{aligned}$	$\begin{aligned} & 2537.4 \\ & 2367.8 \end{aligned}$	1.44
Gumble, (2)....	475132.31	01036.89	$\begin{array}{llll}139 & 53 & 59 \\ 171 & 12 & 36\end{array}$	Hood's Head Barnacle	319 52 351 120 10	4317.4 3109.7	$\begin{aligned} & 4721.9 \\ & 3400.7 \end{aligned}$	2,68 1,89
Gamble, (i).....................	475127.03	01000.45	$\begin{aligned} & 1494907 \\ & 2575151 \end{aligned}$	Hood's Head Gamble, (2)	$\begin{array}{r}329 \\ 77 \\ 78 \\ 50 \\ \hline 185\end{array}$	4017.5	4393.4 847.2	$\begin{aligned} & 9.50 \\ & 0.48 \end{aligned}$
Salsbury Point	475128.79	00834.22	1760257 2130454	Hood's Head Barnacle	$\begin{array}{rrr}356 & 0249 \\ 33 & 06 & 68\end{array}$	3422.0 3797.8	3742.2 4153.1	2.13 2.36
Terminntion Peint	475208.74	00655.87	$\begin{aligned} & 2443921 \\ & \Sigma 8344 \underset{27}{ } \end{aligned}$	Barnacle Gamble, (2)...............	644148 1034711	$\begin{array}{r} 4564.3 \\ 4728.9 \end{array}$	$\begin{array}{r} 4960.4 \\ 5171.4 \end{array}$	8.89 2.94
Nouthwest Point, Hood's Hend..	475246.28	00749.21	$\begin{aligned} & 9142497 \\ & 3031400 \end{aligned}$	$\begin{aligned} & \text { Hood's Head } \\ & \text { Gambie, (2) } \end{aligned}$	$\begin{array}{r} 342452 \\ 1231604 \end{array}$	$\begin{array}{r} 1934.4 \\ 4166.4 \end{array}$	$\begin{aligned} & 13.49 .9 \\ & 4556.2 \end{aligned}$	0.77 2.59
Crab-apple	475511.65	01210.32	177 1812347	trouble bluti. Duplicate	$\begin{array}{r}357 \\ 123 \\ 123 \\ \hline 18\end{array}$	6017.2 5418.9	$\begin{aligned} & 6580.2 \\ & 5925.9 \end{aligned}$	3.74 3.37
Indian Point	475551.90	0182096	$\begin{array}{r} 720235 \\ 1185652 \end{array}$	Point no Point. Duplicate	$\begin{aligned} & 2515858 \\ & 298 \\ & 58 \\ & 21 \end{aligned}$	$\begin{aligned} & 6386.5 \\ & 6634,7 \end{aligned}$	$\begin{aligned} & 6984.1 \\ & 9442.6 \end{aligned}$	3.97 5.36
Guly	475827.18	01344.47	24948 594105	Point no Point. Foulweather BIuff.	$\begin{aligned} & 1824936 \\ & 239 \\ & 27 \\ & 94 \end{aligned}$	6775.4 7161.2	$\begin{array}{r} 7409.4 \\ 7801.3 \end{array}$	4.21
Eagle, (3)	475711.48	01829.04	$\begin{array}{r} 5439 \quad 43 \\ 102 \quad 34 \quad 09 \end{array}$	Point no Point Duplicate	$\begin{aligned} & 2343600 \\ & 2432931 \end{aligned}$	7652.4 7812.9	$\begin{aligned} & 8368.4 \\ & 8653.3 \end{aligned}$	4.75 4.92
Deer Lagoon.	475932.50	01544.17	3349798 1747	Indian Point. \qquad Point mo Point....	1542954	7549.2 925.6	$\begin{array}{r} 8255.6 \\ 10088.8 \end{array}$	4.69 5.73
Clay.	475849.75	01719.91	$\begin{array}{r} 3461554 \\ 335407 \end{array}$	Indian Point. Point no Point,	$\begin{aligned} & 1661649 \\ & 21351 \quad 15 \end{aligned}$	$\begin{aligned} & 5336.2 \\ & 8619.2 \end{aligned}$	$\begin{aligned} & 5835.5 \\ & 9425.7 \end{aligned}$	3.38 5.3
Scatchrt, east...................	475429.67	0 ± 13247	33 984 164 164	Apple Cove Roint no Point.	$\begin{aligned} & 2132932 \\ & 2731050 \end{aligned}$	$\begin{aligned} & 12280.4 \\ & 10067.5 \end{aligned}$	$\begin{aligned} & 13440.4 \\ & 11609.5 \end{aligned}$	7.64 6.25
Pilut Point	47 52 52,60	01413.40	$\begin{array}{lll} 238 & 14 & 47 \\ 342 & 04 & 21 \end{array}$	Scatchet Fead Apple Cove.	$\begin{array}{r} 581830 \\ 1620544 \end{array}$	$\begin{aligned} & 7350.3 \\ & 7597.9 \end{aligned}$	$\begin{aligned} & 8038.1 \\ & 8408.8 \end{aligned}$	4.57 4.72
Run	475140.92	02457.54	$\begin{array}{r} 658415 \\ 1309447 \end{array}$	Apple Cove. . Schichet Head.	$\begin{aligned} & 2459741 \\ & 31080 \end{aligned}$	$\begin{array}{r} 12118.0 \\ 43546 \end{array}$	$\begin{aligned} & 12253.0 \\ & 10529.9 \end{aligned}$	7.53 5.81
Granite	475028.38	02351.37	$\begin{array}{r} 735656 \\ 1451848 \end{array}$	Apple Cove. Scutchet Head. \qquad	$\begin{array}{lll} 253 & 51 & 11 \\ 325 & 15 & 23 \end{array}$	10073.9 10098, 3	11016.5 11043.2	6.96 6.27
Water	474922.79	0237.11	$\begin{array}{r} 84 \\ 1575085 \\ 506 \end{array}$	Apple Cove Scatchet Head. \qquad	$\begin{array}{lll} 984 & 33 & 55 \\ 357 & 47 & 36 \end{array}$	$\begin{array}{r} 8174.2 \\ 11151.4 \end{array}$	$\begin{array}{r} 8939.1 \\ 12194.8 \end{array}$	5.08 6.93
Log.............................	474831.55	02132.17	$\begin{gathered} 965214 \\ 165 \\ 300 \end{gathered}$	Apple Cove. Scatchet Head	$\begin{aligned} & 2764812 \\ & 34688 \end{aligned}$	$\begin{array}{r} 6836.8 \\ 12947,2 \end{array}$	7476.5 13333.2	4.25
Rose............................	475121.69	01433.29	$\begin{aligned} & 921 \text { 14 } 48 \\ & 335344 \end{aligned}$	Scatcher Head Apple Cove	$\begin{array}{r} 411817 \\ 1583451 \end{array}$	$\begin{aligned} & 8453.4 \\ & 483.5 \end{aligned}$	$\begin{aligned} & 9681.8 \\ & 52922.3 \end{aligned}$	5,50 $\mathbf{3 , 0 1}$
Sycamore........................	475018.79	01438.35	$\begin{aligned} & 2134113 \\ & 3235516 \end{aligned}$	Scmehet Rlead Apple Eove	$\begin{array}{r} 33 \\ 143 \\ 146 \\ 56 \end{array}$	1033 M .7 3090.3	$\begin{array}{r} 11301.7 \\ 3579.5 \end{array}$	6.49
Spring	475255.62	02503.22	$\begin{aligned} & 244834 \\ & 544 \\ & 44 \end{aligned}$	Wuter. \qquad Apple Cove. \qquad	$\begin{aligned} & 2044708 \\ & 2043756 \end{aligned}$	$\begin{array}{r} 7240.5 \\ 13687.0 \end{array}$	$\begin{array}{r} 7918.0 \\ 24617.7 \end{array}$	4.50 8.31
Comession	475430.83	02827.78	$\begin{aligned} & 3121828 \\ & 359 \\ & 49 \\ & 47 \end{aligned}$	Apring Water	$\begin{aligned} & 1729083 \\ & 1784954 \end{aligned}$	$\begin{array}{r} 4366.8 \\ 4515.0 \end{array}$	$\begin{array}{r} 4775.4 \\ 10405.3 \end{array}$	$\mathbf{8} .71$ 5.91
Buzzard	475618.73	0.2330 .78	$\begin{array}{r} 3925839 \\ 91 \pm 695 \end{array}$	Apriug Pumatrsion.	$\begin{aligned} & 16959 \quad 48 \\ & 241548 \end{aligned}$	$\begin{array}{r} 65595 \\ 35797 \end{array}$	$\begin{array}{r} 7173.3 \\ 3914.6 \end{array}$	4.68 2.28
Bound............................	475459.40	02548.23	$\begin{array}{r} 803048 \\ 1324435 \end{array}$	Pomeman Buzend.	$\begin{array}{lll} 280 & 98 & 17 \\ 312 & 42 & 53 \end{array}$	$\begin{array}{r} 4220.0 \\ 384 \times 3.6 \end{array}$	$\begin{array}{r} 4814.8 \\ 4 E 47.0 \end{array}$	9.69
Point Elliott	475651.59	02335.10	$\begin{aligned} & 145546 \\ & 750931 \end{aligned}$	Bound . .. Buzzard	$\begin{aligned} & 1948511 \\ & 2550714 \end{aligned}$	$\begin{array}{r} 3777.3 \\ 3056.8 \end{array}$	$\begin{aligned} & 4130.7 \\ & 4307.0 \end{aligned}$	2.35 8.45
Hawk	475733.50	02404.50	$\begin{array}{ll} 293 & 29 \\ 329 & 17 \\ 37 \end{array}$	Bound.	$\begin{aligned} & 1193109 \\ & 1569003 \end{aligned}$	$\begin{aligned} & 3381.8 \\ & 5302.5 \end{aligned}$	$\begin{array}{r} 2098.2 \\ 5097.1 \end{array}$	2.18 3.35
Norch gable of morth bouse, at entrance.	475450.74	02989.08	$\begin{aligned} & 273 \\ & 268 \\ & 50 \\ & 58 \\ & 28 \end{aligned}$	Point Rlliot gomed.	$\begin{array}{lll} 53 \\ 88 & 51 & 41 \end{array}$	$\begin{aligned} & 6324.6 \\ & 1135.3 \end{aligned}$	$\begin{gathered} 6916.4 \\ 4522.2 \end{gathered}$	3.98 2.57
First stake south of Bezzard.....)	475526.31	E. 02228.49	$\begin{aligned} & 2183531 \\ & 943 \\ & 4504 \end{aligned}$	Buzpard gound.	$\begin{array}{r} 383717 \\ 10647 \\ 47 \end{array}$	$\begin{aligned} & 2071.8 \\ & 4200.2 \end{aligned}$	$\begin{array}{r} \$ 205.6 \\ 468.7 \end{array}$	$\frac{1.99}{2.55}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section XI.—Admiralty Inlet. Sketch K, No. 34.

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section X1.-Admiralty Inlet. Sketch K, No. 34.

Name of atation.	Latitude.	Longitude.	Azimuth.	Ta sthtion-	Rackazimuth.	Distance.	Distance.	Distance.
Hydrographic Signal on Spit.....	$\begin{array}{cc} \circ & 11 \\ 47 & 37 \\ \hline \end{array}$	E. 02151.90	$\begin{array}{ccc} 0 & 1 \\ 306 & 51 & 46 \\ 52 & 25 & 01 \end{array}$	Leaning Tree.... Reatoration Point.	$\begin{array}{ccc} \circ & \prime \\ 126 & 43 & 10 \\ 232 & 20 & 54 \end{array}$	$\begin{aligned} & \text { Metres. } \\ & 2989.4 \\ & 8068.5 \end{aligned}$	Finds, 32691 9632.7	Milet. 1.86 5.47
Elm.	473503.51	02057.50	1300630 1703799	Yeanalt. Magnolia	$\begin{array}{llll}310 & 02 & 35 \\ 350 & 36 & 51\end{array}$	$\begin{array}{r} 8666.2 \\ 6613.2 \end{array}$	$\begin{aligned} & 9477.1 \\ & 7292.0 \end{aligned}$	5.38 4.11
Cliff.	473522.76	01534.78	1811423 223 38	Yemoalt. Magnolia	1 43497 4140	$\begin{aligned} & 4986.0 \\ & 8198.2 \end{aligned}$	$\begin{aligned} & 5452.3 \\ & 8965,3 \end{aligned}$	$\begin{aligned} & 3.10 \\ & 5.69 \end{aligned}$
Cobble.	473641.17	01511.97	$\begin{aligned} & 2401217 \\ & 3345827 \end{aligned}$	Magrolia	60 15 54 154 59	$\begin{array}{r} 7068.2 \\ 3250.6 \end{array}$	$\begin{aligned} & 7729.6 \\ & 3554.8 \end{aligned}$	4.39 2.02
Wing.	473718.40	01533.84	$\begin{aligned} & 2472438 \\ & 34721 \end{aligned}$	Magnolia Restoration Point Pe.......	$\begin{array}{r}672759 \\ 167 \\ \hline 28\end{array}$	$\begin{aligned} & 6149.1 \\ & 4 \times 97.0 \end{aligned}$	$\begin{aligned} & 6724.5 \\ & 4589.7 \end{aligned}$	3.82 281
Point Wilhiams, marked tree...	473152.29	02100.86	$\begin{array}{lll} 135 & 18 & 33 \\ 164 & 02 & 42 \end{array}$	Rentoration Point...... Gattery Point.........	3151504 3440151	$\begin{aligned} & 8409.2 \\ & 5991.7 \end{aligned}$	$\begin{aligned} & 9196.0 \\ & 5786.8 \end{aligned}$	5.29 3.29
Hrace Poin	473165.46	02107.87	1405001 1662097	Restoration Point.... Battery Point...........	390 46 346 69 11	$\begin{aligned} & 9576.0 \\ & 6724.3 \end{aligned}$	10472.0 7353.6	5.95 4.18
Dolfhin Point.	473014.32	01756.92	$\begin{array}{lll} 167 & 02 & 27 \\ 196 & 24 & 21 \end{array}$	Restoration Roint...... Battery Point...........	$\begin{array}{r}347 \\ 16 \\ 16 \\ \hline 25\end{array}$	$\begin{aligned} & 9236.1 \\ & 8457.8 \end{aligned}$	$\begin{array}{r} 10109.3 \\ 9249.2 \end{array}$	5.74 5.26
Tatugh, (1)	473333.01	01616.26	$\begin{aligned} & 1803891 \\ & 9461339 \end{aligned}$	Restoration Point...... Rattery Point..........	63898 661609	$\begin{aligned} & 2865.0 \\ & 4908.9 \end{aligned}$	$\begin{aligned} & 3133.1 \\ & 5368.2 \end{aligned}$	1.78 3.05
Stake on spit near A	423808.57	W. 02268.69	$\begin{array}{r} 52912 \\ 522543 \end{array}$	Dnwamish.............. Restoration Point......	$\begin{array}{lll} 185 & 19 & 57 \\ 232 & 21 & 24 \end{array}$	$\begin{aligned} & 4464.9 \\ & 9151.5 \end{aligned}$	$\begin{array}{r} 4882.7 \\ 10007.8 \end{array}$	2.77 5.69
Eastern sharp peak of Olympus..	474626.54	W.0 2233.27	$\begin{aligned} & 2525532 \\ & 26844 \end{aligned}$	Geatchet Head. L'oint Wells.	$\begin{array}{lll} 73 & 26 & 33 \\ 69 & 17 & 09 \end{array}$	$\begin{aligned} & 54504.8 \\ & 54741.8 \end{aligned}$	59604, 8 59863.4	$\begin{aligned} & 33.87 \\ & 34.01 \end{aligned}$
Tatugh, (2)	473238.17	E. 01615.83	$\begin{aligned} & 1802931 \\ & 2929359 \end{aligned}$	Restoration Point..... Battery Point............	$\begin{array}{r} 02932 \\ 492638 \end{array}$	$\begin{aligned} & 4743.9 \\ & 5928.2 \end{aligned}$	$\begin{array}{r} 5187.8 \\ 6482.9 \end{array}$	2.05 3.68
Vashon Point.	473039.43	01629.01	$\begin{aligned} & 1789200 \\ & 1752831 \end{aligned}$	$\begin{aligned} & \text { Reatoration Point....... } \\ & \text { Tatugh, (2) } \end{aligned}$	3582152 3558881	$\begin{aligned} & 8298.8 \\ & 34 \times 2.1 \end{aligned}$	$\begin{array}{r} 8998.8 \\ 3818.9 \end{array}$	$\begin{aligned} & 5.11 \\ & 2.17 \end{aligned}$
Point Heats.	472401.62	01002.06	$\begin{array}{lll} 161 & 35 & 59 \\ 204 & 45 & 51 \end{array}$	Dolphin Point........... Brace Point.	$\begin{array}{r} 3413511 \\ 244723 \end{array}$	$\begin{array}{r} 4318.8 \\ 6252.4 \end{array}$	$\begin{aligned} & 4722.9 \\ & 6837.1 \end{aligned}$	2.68 3.88
Point Pully	472707.28	09211.52	$\begin{aligned} & 1371928 \\ & 1125640 \end{aligned}$	Dolphin Point......... Point Beals	$\begin{aligned} & 317 \\ & 16 \\ & 292 \\ & 54 \\ & 21 \end{aligned}$	$\begin{aligned} & 7858.3 \\ & 4307.8 \end{aligned}$	$\begin{aligned} & 8594.7 \\ & 4710.9 \end{aligned}$	4.98 2.68
South Eainbridgn.........	473435.56	01450.70	$\begin{aligned} & 2693305 \\ & 3345794 \end{aligned}$	Battery Point Tritugh, (9)	$\begin{array}{rrrr}89 & 36 & 47 \\ 154 & 58 & 27\end{array}$	$\begin{aligned} & 6280.3 \\ & 4295.4 \end{aligned}$	$\begin{array}{r} 8867.9 \\ 4598.9 \end{array}$	3.90 2.61
Northwest Elake.	473243.90	01443.09	$\begin{array}{ll} 204 & 18 \\ 182 & 38 \\ 19 \end{array}$	Restoration Point....... Bouth Bainbridge.	$\begin{array}{r} 241912 \\ 23825 \end{array}$	$\begin{aligned} & 4807.8 \\ & 3451.7 \end{aligned}$	$\begin{array}{r} 5257.7 \\ 3774.7 \end{array}$	2.99 2.14
Orchard..................... ...	473359.03	01307.97	$\begin{array}{llll} 242 & 31 & 17 \\ 319 & 23 & \end{array}$	Rextoration Point....... N. W. Hake.	$\begin{array}{rrrr}6233 & 37 \\ 139 & 24 & 51\end{array}$	$\begin{array}{r} 4470.1 \\ 3085.7 \end{array}$	$\begin{aligned} & 48388.4 \\ & 3341.6 \end{aligned}$	$\begin{aligned} & 9.78 \\ & 1.90 \end{aligned}$
Southwent Bainliridgc..........	473436.93	01338.52	$\begin{gathered} 3385109 \\ 983710 \end{gathered}$		$\begin{aligned} & 1585157 \\ & 208 \\ & 36 \\ & \hline \end{aligned}$	3742.2 1332.9	$\begin{aligned} & 4092.4 \\ & 1457.6 \end{aligned}$	8.38
Otter.......	473127.74	01348.99	$\begin{array}{llll} 169 & 36 & 11 \\ 205 & 40 & 57 \end{array}$	$\begin{aligned} & \text { Orelard. } \\ & \text { N. W. Biake } \end{aligned}$	$\begin{array}{rrr} 349 & 35 & 31 \\ 25 & 41 & 37 \end{array}$	$\begin{aligned} & 4750.1 \\ & 2609.7 \end{aligned}$	$\begin{aligned} & 5194.6 \\ & 2853.9 \end{aligned}$	2.93 1.62
Sonthwext Blakt...............	473202.88	01510.53	$\begin{array}{r} 5732326 \\ 1553806 \end{array}$	Uuter N. W. Blake	$\begin{array}{ll} 237 & 31 \\ 385 & 97 \\ 46 \end{array}$	$\begin{aligned} & 2021.2 \\ & 1390.6 \end{aligned}$	$\begin{aligned} & 2910.3 \\ & 1580.7 \end{aligned}$	1.86 0.86
Fly	473109.75	01451.76	$\begin{aligned} & 1125605 \\ & 2944269 \end{aligned}$	Otter. Vashon Point	$\begin{aligned} & 2925519 \\ & 1144391 \end{aligned}$	$\begin{aligned} & 1425.5 \\ & 2239.5 \end{aligned}$	$\begin{aligned} & 1558.9 \\ & 9449.0 \end{aligned}$	0.88 1.35
Point Southworth...............	473041.54	01520.80	$\begin{aligned} & 2723615 \\ & 26408 \quad 46 \end{aligned}$	Varton Point Brace Point.	$\begin{aligned} & 923705 \\ & 841301 \end{aligned}$	$\begin{array}{r} 1427.3 \\ 7284.4 \end{array}$	$\begin{aligned} & 1500.8 \\ & 7986.8 \end{aligned}$	0.89 4.58
Port.............................	473230.36	01237.63	$\begin{array}{ll} 322 & 19 \\ 103 & 45 \\ 12 \end{array}$	Otzer. Orchard \qquad	$\begin{array}{r} 142 \quad 2038 \\ 130234 \end{array}$	$\begin{array}{r} 2442.6 \\ 2810.8 \end{array}$	$\begin{array}{r} 2871,2 \\ 3073.8 \end{array}$	1.59
Paint Peter.....................	472836.66	01511.73	$\begin{array}{ll} 182 & 50 \\ 203 & 13 \\ 43 \end{array}$	Point Southworth...... Vastion Point.	$\begin{array}{r} 25090 \\ 230640 \end{array}$	$\begin{array}{r} 3861.1 \\ 4121.9 \end{array}$	$\begin{aligned} & 4209.4 \\ & 4507.6 \end{aligned}$	2.40 8.56
Point Prut.	472838.51	01840.58	$\begin{aligned} & 2021959 \\ & 271 \\ & 48 \\ & 44 \end{aligned}$	Vanhon Pointa.......... Point Peter.	$\begin{aligned} & 439903 \\ & 41 \\ & \hline 1351 \end{aligned}$	$\begin{aligned} & 5134.9 \\ & 1909.0 \end{aligned}$	$\begin{array}{r} 5615.4 \\ 2987.6 \end{array}$	3.19 1.18
James' Print	472745.54	01432.41	$\begin{aligned} & 1465250 \\ & 20073297 \end{aligned}$	Point Paul.................. Point Peter	$\begin{array}{ll} 325 & 26 \\ 97 & 11 \\ 32 \end{array}$	$\begin{aligned} & 1983.9 \\ & 1780.4 \end{aligned}$	$\begin{aligned} & 2148.9 \\ & 1047.0 \end{aligned}$	1.111
Point Command................	472724.30	01312.30	$\begin{aligned} & 19340909 \\ & 2029 \\ & 120 \end{aligned}$	Puint Pani. Point Peter \qquad	$\begin{array}{r} 142930 \\ 4834 \end{array}$	$\frac{2867.4}{9553 .}$	$\begin{aligned} & 958.5 \\ & 8077.3 \end{aligned}$	1.47 2.08
Flort....	479719.55	01421.16	$\begin{array}{r} 854836 \\ 1584724 \end{array}$	Point Oommarid.......... Point Panl.,.,...........	$\begin{aligned} & 975 \\ & 340 \\ & 47 \\ & 48 \end{aligned} \frac{45}{54}$	$\begin{aligned} & 1440.7 \\ & 9502,1 \end{aligned}$	$\begin{aligned} & 158.3 \\ & 9505 \end{aligned}$	0.90
Paint Praspect.	472551.20	013 67,31	$\begin{aligned} & 1820455 \\ & 92093250 \end{aligned}$		$\begin{array}{r} 20459 \\ 29 \times 34 \end{array}$	$\begin{array}{r} 987.9 \\ 3136.6 \end{array}$	$\begin{aligned} & 3145.1 \\ & 3 \times 50.1 \end{aligned}$	1.78
Andrew............	472629.56	E.A 1413.61	$\begin{array}{r} 1424641 \\ 493252 \end{array}$	Point Ommmand Point Prospect.	$\begin{aligned} & 3224556 \\ & 929: 203 \end{aligned}$	$\begin{aligned} & 2^{\prime} 22.9 \\ & 1885.8 \end{aligned}$	$\begin{gathered} 2321.5 \\ 1905.6 \end{gathered}$	$\begin{aligned} & 1.39 \\ & 1.13 \end{aligned}$

UNITED STATES COAST SURVEY.-GEOGRAPHICAL POSITIONS.

Section XI.—Admiralty Inlet. Sketch K, No. 34.

Name of station.	Latitude.	Longitude.	Aximuth.	To station-	Back aximuth.	Bistance.	Distance.	Distance.
Thistle	$\begin{gathered} * \\ 47 \\ 24 \\ \hline 109.90 \end{gathered}$	$\text { E. } 01411.23$	$\begin{array}{ccc} 0 & 1 & 1 \\ 133 & 35 & 42 \\ 181 & 69 & 53 \end{array}$	Point Prospect. Andrew	$\begin{array}{rrr} 0 & 1 & 11 \\ 313 & 34 & 55 \\ 109 & 55 \end{array}$	Metres. 1849.3 2460.3	Yards. 2022. 3 2690.5	IJites. 1.15 1.53
Baker	472624.64	01302.41	$\begin{array}{llll}2641042 \\ 354 & 19 & 13\end{array}$	Andrew \qquad Point Proepect \qquad	$\begin{array}{rrrr}84 & 11 & 34 \\ 174 & 19 & 7\end{array}$	1499.5 1038.0	1639.8 1135.1	0.93 0.64
Marked Tree, (17)................	472657.39	01414.11	122 167519 1675	Print Command Point Paul.	302 347 49	$\begin{aligned} & 1839.4 \\ & 3202.4 \end{aligned}$	$\begin{array}{r} 1683.4 \\ 3502.0 \end{array}$	0.96 1.98
Bright Etump....................	478802.71	01453.46	$\begin{aligned} & 394348 \\ & 604609 \end{aligned}$	James Point Point Command	$\begin{aligned} & 2194333 \\ & 2404454 \end{aligned}$	689.5 2427.8	$\begin{array}{r} 754.0 \\ 2655.0 \end{array}$	0.43 1.51
Marked Tree, (16)-	472550.17	01433.24	$\begin{array}{rrr}91 & 01 & 08 \\ 149 & 4509\end{array}$	Point Prospect. Point Command	$\begin{aligned} & 2710005 \\ & 3294409 \end{aligned}$	1800.9 $3 / 45.3$	1969.4	1.12 2.09
Marked Tree, (14)................	472815.74	01306.83	456 296 297 88	Point Peler James ${ }^{9}$ Point	$\begin{array}{r} 76 \\ 117 \\ 189 \\ \hline 9 \end{array}$	$\begin{aligned} & 2693.6 \\ & 2(120.3 \end{aligned}$	${ }_{29}^{2945.6}$	1.67 1.25
Rock	478743.72	01309.75	$\begin{array}{lll} 268 & \text { OR } 17 \\ 29630 & 32 \end{array}$		$\begin{array}{r} 880918 \\ 1163125 \end{array}$	$\begin{aligned} & 1739.0 \\ & 1671.4 \end{aligned}$	$\begin{aligned} & 1894.1 \\ & 1827.8 \end{aligned}$	1.08 1.04
Rosz	472921.20	01356.74	$\begin{aligned} & 2524852 \\ & 31113 \quad 04 \end{aligned}$	Vashon Point............ Point Peter.	$\begin{array}{r}525044 \\ 131 \\ \hline 13\end{array}$	3998. 7 2047.0	$\begin{aligned} & 4372.8 \\ & 2282.3 \end{aligned}$	2.48 1.30
Marked Tree, (15)....	472955.65	01438.31	$\begin{aligned} & 239 \\ & \mathbf{3} 43 \\ & 59 \\ & 59 \end{aligned}$	Vaphon Point Point Peter.................	$\begin{array}{r} 594420 \\ 1640012 \end{array}$	$\begin{aligned} & 2682.0 \\ & 2537.6 \end{aligned}$	$\begin{aligned} & 29330 \\ & 2.75 .0 \end{aligned}$	1.67 1.58
Fern	479923.11	01616.23	$\begin{array}{r} 431625 \\ 15426929 \end{array}$	Point Peter............. Point Sulthworth.....	$223 \quad 1537$ 3342548	$\begin{array}{r} 1969.9 \\ 26844.8 \end{array}$	$\begin{array}{r} 2154.2 \\ 2936.0 \end{array}$	1.22
Southeast Biake.	473154.79	01557.46	$\begin{array}{r} 3446942 \\ 184159 \end{array}$	Vashun Point... Point Bouthwort	$\begin{array}{lll} 164 & 10 & 05 \\ 198 & 41 & 32 \end{array}$	2418.8 2788.0	$\begin{aligned} & 2615.1 \\ & 2611.4 \end{aligned}$	1.50 1.48
House in Bight, door	473130.77	01215.82	1964348 28444	8. W. Bainbridge.......	16 4449 53 45 8	6002.7 3818.8	6561.4 4176.1	3.73 2.37
Jay	473335.89	028053.23	$\begin{array}{rrr} 71 & 28 & 59 \\ 145 & 36 & 16 \end{array}$	Tatugh, (\$) Battery Point	$\begin{array}{lll} 251 & 25 & 27 \\ 325 & 35 & 30 \end{array}$	$\begin{aligned} & 6197.9 \\ & 2311.3 \end{aligned}$	$\begin{aligned} & 6701.3 \\ & 2527.6 \end{aligned}$	3.81 1.43
Marked Tree, (1)................	473246.29	02107.32	$\begin{aligned} & 855613 \\ & 4020 \mathrm{L2} \end{aligned}$	Tatugh, (2) Dolphin Point.	$\begin{array}{lll} 265 & 52 & 38 \\ 220 & 17 & 41 \end{array}$	$\begin{aligned} & 6110.7 \\ & 6154.6 \end{aligned}$	$\begin{aligned} & 6682.5 \\ & 6730.5 \end{aligned}$	3.80 3.82
Point Williams...................	473151.92	02100.06	$\begin{array}{r} 1641516 \\ 1352633 \end{array}$	Battery Point. Restoration roint.....	$\begin{array}{lll} 344 & 14 & 25 \\ 315 & 23 & 05 \end{array}$	$\begin{aligned} & 5297.9 \\ & 8445.7 \end{aligned}$	$\begin{array}{r} 5793.6 \\ 9225.0 \end{array}$	3.29 5.24
Marked Tree, (18)................	473031.95	01790.01	$\begin{aligned} & 1711541 \\ & 9029 \\ & 99 \end{aligned}$	Restoration Point Battery Peint	$\begin{array}{r} 3511455 \\ 224117 \end{array}$	$\begin{aligned} & 8555.6 \\ & 8209.4 \end{aligned}$	$\begin{aligned} & 9356.2 \\ & 8969.9 \end{aligned}$	5.31 5.09
Bright Stump......................	473414.09	02027.91	$\begin{array}{r} 591034 \\ 1070034 \end{array}$	$\text { Tratugh, (} 2 \text {) }$ Restoration Point	$\begin{aligned} & 249 \\ & 286 \\ & 286 \\ & 57 \\ & 34 \end{aligned}$	6137.8 5464.9	6719.1 5976.2	3.81 3.39
Granite Houlder.................	473806.11	02113.97	$\begin{array}{r} 9793 \\ 15939 \\ 159 \end{array}$	Tatugh, (2) Battery Point	2771921 3393863	$\begin{aligned} & 6285.9 \\ & 4971.2 \end{aligned}$	6874. T 5436.3	3.91 3.09
Marked Tree, (2).................	473090.75	02145.78	$\begin{array}{lll} 38 & 35 & 39 \\ B 7 & 39 & 05 \end{array}$	Point Bealm.............. Dolphin Point.	$\begin{array}{lll} 218 & 33 & 38 \\ 267 & 3 & 16 \end{array}$	$\begin{array}{r} 5495.4 \\ 4792.9 \end{array}$	$\begin{gathered} 6003.6 \\ 5241.4 \end{gathered}$	3.41 $\mathbf{2 . 9 8}$
Marked Tree, (3)	478845.94	01809.47	$\begin{array}{lll} 174 & 30 & 05 \\ 300 & 59 & 67 \end{array}$	Dolphin Point Point Pull Point Pully...........	$\begin{array}{lll} 354 & 29 & 56 \\ 121 & 02 & 05 \end{array}$	2742.0 5913.4	$\begin{aligned} & 2998.6 \\ & 64667 \end{aligned}$	1.70 3.67
Snake	479754.97	02254.35	$\begin{array}{r} 1244053 \\ 829636 \end{array}$	Dolphin Point........... Point Beals \square	$\begin{array}{lll} 304 & 37 & 14 \\ 272 & 23 & 45 \end{array}$	$\begin{array}{r} 7568.4 \\ 4868.3 \end{array}$	$\begin{aligned} & 8976.6 \\ & 3323.8 \end{aligned}$	4.70 3.02
Sasl	479998.89	01725.35	$\begin{array}{lll} 295 & 40 & 41 \\ 304 & 55 & 09 \end{array}$	$\begin{aligned} & \text { Brace Point.............. } \\ & \text { Point Pully } \end{aligned}$	$\begin{array}{r} 554325 \\ 1245840 \end{array}$	$\begin{array}{r} 5690.8 \\ 7309.9 \end{array}$	6146.8 7983.9	3.49 4.54
Lrupin...	479927.65	09307.47	$\begin{aligned} & 150750 \\ & 624054 \end{aligned}$	Point Pulty Point Beals Point Beals	$\begin{aligned} & 195 \quad 07 \quad 09 \\ & 549 \\ & 57 \\ & \hline 18 \end{aligned}$	$\begin{aligned} & 4490.1 \\ & 5783.7 \end{aligned}$	$\begin{array}{r} 4910.2 \\ 6324.9 \end{array}$	2.79 3.59
Rain	472702.35	01838.33	$\begin{aligned} & 202 \\ & 192 \\ & 185 \\ & 11 \end{aligned}$	Brace Point \qquad Point Beals \qquad	$\begin{aligned} & 223405 \\ & 151147 \end{aligned}$	$\begin{aligned} & 8188.6 \\ & 1896.4 \end{aligned}$	$\begin{array}{r} 8889.2 \\ 9073.8 \end{array}$	5.05 1.18
Point Eyer........................	4725.28 .46	019 15.63	$\begin{array}{lll} 176 & 38 & 13 \\ 2289 & 46 & 59 \end{array}$	$\begin{aligned} & \text { Point Beals } \\ & \text { Point Pully } \end{aligned}$	$\begin{aligned} & 3563808 \\ & 494908 \end{aligned}$	$\begin{aligned} & 4799.8 \\ & 4823.7 \end{aligned}$	$\begin{aligned} & 5249.0 \\ & 5275.0 \end{aligned}$	2.98 3.09
Rampberry enn.............	479401.06	02118.40	$\begin{aligned} & 1585849 \\ & 19057 \\ & 01 \end{aligned}$	$\begin{aligned} & \text { Point Beals } \\ & \text { Point Pully } \end{aligned}$	$\begin{array}{r} 3385709 \\ 1057 \quad 40 \end{array}$	$\begin{aligned} & 7858.7 \\ & 5857.2 \end{aligned}$	$\begin{aligned} & 8703.4 \\ & 6405.3 \end{aligned}$	4.94 3.64
Marked Tree, (4).................	479407.15	01949.29	1721404 9831043	$\begin{aligned} & \text { point Beals } \\ & \text { Point Pulty } \end{aligned}$	$\begin{array}{r} 3521399 \\ 281898 \end{array}$	$\begin{array}{r} 7307.5 \\ 6311.3 \end{array}$	$\begin{aligned} & 7991.3 \\ & 6001.8 \end{aligned}$	4.54
Charred Tree	479857.00	E. 01733.13	$\begin{aligned} & 3120403 \\ & 332 \\ & 33 \\ & 54 \end{aligned}$	Point Pully Point Beals	$\begin{aligned} & 1380728 \\ & 1503500 \end{aligned}$	$\begin{array}{r} 7854.5 \\ 4041.7 \end{array}$	$\begin{aligned} & 65450.4 \\ & 4419.9 \end{aligned}$	4.88 2.51

APPENDIX No. 21.

Report of Prof. O. M. Mitchel, director, on the moon culminations observed for the U. B. Coast Survey at Cincinnati observatory.

Cincinnati, Ohio, September 24, 1859.
Dear Sir: I have to report the observation of forty-nine moon culminations made during the past twelve months.

The mode of observation and record remains the same as in the past years, the only change being the introduction of a new system of wires into the transit instrument on the 5th of July last. The number of wires is the same as before used, (fifteen,) but they are grouped differently, being now in five groups of three wires each. The equatorial distance between groups is about eight seconds of time, and the interval between the wires of each group is four seconds equatorial. The reduction from mean to middle wire has been obtained from a discussion of fifty-nine observations of stars within twenty degrees of the equator.

The observations were made and reduced by my assistant, Henry Twitchell, esq., who has charge of the transit.

Yours, respectfully,
O. M. MITCHEL.

Dr. A. D. Bache,
Supt. U. S. Coast Survey, Washington, D. C.

APPENDIX No. 22.

Jiscussion of the magnetic and meteorological observations made at the Givard College observatory, Philadelphia, in 1840, 1841, 1842, 1843, 1844, and 1845. Part I. Investigation of the elevenyear period in the amplitude of the solar-diurnal variation, and of the disturbances of the magnetio declination. By A. D. Bache, LL.D.

INTRODUCTION.
In co-operation with the scheme adopted at the British colonial observatories, a series of magnetic and meteorological observations were made at the Girard College magnetic observatory, in Philadelphia, with instruments purchased under the direction of the trustees of the college, the observations being made under the patronage of the American Philosophical Society, and finally completed for the use of the Topographical Bureau of the War Department. ${ }^{1}$

These observations were made under my immediato direction, and were afterwards left under my general superinterdence. The series commenced in May, 1840, and, with short interruptions, terminated in June, 1845, thus furnishing a five years' series of magnetic observations, taken bi-hourly up to October, 1843, and after that date hourly. The readings of each magnetic

[^3]element were united into mean values, arranged according to hours of the day and days of the month and annual values, and presented graphically, under my direction, by Joseph .S Ruth, esq., who had taken part in the observations, and who was at that time employed in the Coast Survey. As, owing to other laborious duties, the record could not then be submitted to a complete reduction and discussion, I have resumed the subject, with the aid of Charles A. Schott, esq., assistant in the Coast Survey, by whom, under my immediate direction, the discussions contained in this paper have been made and prepared for publication. It is proper to state that this work has been performed out of office hours by Mr. Schott, as my assistant in this special matter, and at my own expense.

Although the magnetic observations furnished by their judicious geographical location, a basis for the generalization of their results, it is, nevertheless, desirable to combine other results with them as confirmations or as corrections. In the investigation of the disturbance law at Point Barrow, as compared with the same at Toronto, a very remarkable mutual relation was developed, and further examination may bring to light other dependencies of a mutual character.

According to the latest determination, the position of the Girard College observatory is in latitude $39^{\circ} 58^{\prime} 23^{\prime \prime}$, (north:) and in longitude $75^{\circ} 10^{\prime} 05^{\prime \prime}=5 h .00 \mathrm{~m} .40 s .3$ west of Greenwich. ${ }^{1}$ From Philadelphia, Toronto bears $38^{\circ} 45^{\prime}$ west of north, (true,) and is distant $40^{\circ} 50^{\prime}$ in arc, or about 334 statute miles.

It is proposed, in the present paper, to investigate the law of the eleven-year period, or, as it is more frequently called, the decennial period, there being yet an uncertainty as to its precise length. It is supposed to have some direct or indirect connection with the solar spot period, which, according to late investigations by Prof. R. Wolf, ${ }^{2}$ is said to exhibit corresponding disturbances.

The discussion is a contribution towards the determination of the epoch of the occurrence of a minimum (as to number and magnitude) in certain phases of the magnetic variations and disturbances, corresponding to a minimum in the solar spot period. The method of reduction is substantially the same as that adopted by General Sabine, and explained in his discussion of the Toronto and Hobarton ${ }^{3}$ observations.

Investigation of the eleven year period in the change of the amplitude of the solar-diurnal variation of the magnetic deelination, comprising the regular as well as the disturbed diurnal variation.
While the magnitude of the deflection is the only criterion for the recognition of a disturbance, the adoption of any limit of deviation from the normal value for the same hour, month, and year, must necessarily remain in some measure arbitrary, or, in other words, there must always remain, after the separation of the disturbances, a certain small amount of their effect in the remaining regular diurnal progression. General Sabine has shown that the results are

[^4]not sensibly affected by a small variation in the line of separation of the disturbed from the undisturbed readings. ${ }^{1}$

To effect the separation, I made use of Peirce's criterion ${ }^{2}$ for the rejection of doubtful observations, applying it, however, to observations following a law different from the regular one. ${ }^{3}$ From an examination of 465 hourly observations, distributed over different hours of the day and different months of the year, the following was the limit of separation:
$9^{\text {d }} 3$ from six months in $1840 ; 8.1$ from six monthe in $1843 ; 6.0$ from six months in 1845.
The mean of 7.8 divisions, equal to $3^{\prime} .6$ of arc, has been adopted provisionally. Accordingly, all numbers in the printed record of observations, differing 7.8 scale divisions (or 10.3 divisions for June, and up to July 18, 1840,) for the mean monthly value of each hour of observation, were marked in pencil. It was found that the ratio of the disturbed observations to the total number was 1:9.6, or for the years $1843,1844,1845,1: 13.3$ nearly, (the years 1843 and 1845 being incomplete, and omissions only approximately allowed for.) For comparison with the Toronto observations we have the ratio 1:9.4 for the series 1841 to 1848 inclusive, ${ }^{4}$ and $1: 13.6$ for the series $1843,1844,1845,{ }^{5}$ both for the limit $3^{\prime} .6$, which was afterwards raised to $5^{\prime} .0^{6}$. It was thought desirable in comparing these results, and especially as the Girard College observations do not extend either way to years of maximum of disturbance, which would otherwise require the enlargement of the limit to preserve the limit as pointed out by the criterion; hence a deviation from the normal of 8.0 scale divisions as a convenient number, $3^{\prime} .64$ of arc, has been adopted for the present discussion as constituting a disturbed observation. Previous to July 18,1840 , the declinometer had a different scale, one division being $20^{\prime \prime} .7$, making the corresponding limit for the first month and a half 10.6 divisions.

All observations, therefore, differing 8.0 scale divisions from the mean monthly value of their respective bour were marked by a pencil line; a new hourly mean was taken, omitting values so marked, and each observation was again examined with reference to its deviation from this new mean. The process was repeated, when necessary, so that in all cases values differing $8^{d} .0$ or more from the final mean were excluded. The last mean thus obtained for each observing hour and each month has been called "the normal." The following tables of normals present the mean monthly declinometer readings for each observing hour, free from all disturbances, deviating either way $3^{\prime} .64$ or more from the normal position of the magnet for the respective hour, month, and year. The observations having been made at the even Göttingen hours, the local times are $19 \frac{1}{2}$ minutes after the even hour. ${ }^{7}$ The time given in the tables is mean local time, counting from midnight, or $0 h$. up to $24 h$.

Increase in the scale readings corresponds to a decrease of westerly declination. The value of one division of the scale is $0^{\prime} .453$.

[^5]TABLE 1.
Normals of the declinometer readings for each observing hour and morth in the year 1840.
[Observations taken $19 \frac{1}{8}$ minates after the hour indicated.]

*The readings from Jume 1 to July 18, (15 houre) on the collcge building seale, wete converted into observatory seale readings by kubtracting $144^{\circ} .7$ at division 628.8 of the ofd scale, and converting the value of a division 0.345 of the old into the corresponding reading fur the value of a division 0.4 .53 of the new scale. The mean readiugs, thus correcten, of the firat 18 days of July, were then priperly combined with the mean of the remaining days of the montu.
\dagger In the month of September, hour 8, the comparisons were made with the half-monthly means, owing to the rapid change of the readings.
1 On the 23 d of November the index of the declinometer bar shified 19.5 seale divisions. A correction of $+19^{\circ} .5$ bas therefore been added to observations afer this date, and likewise to all the readings of the following month.
§ The correctinns here given for referting the mean of the last seven months of the year to the mean for the whole year are derived from the normals of the following year 1841, by comparing the mean of the same seven months with the annual mean of that year. Comparing the same months in the two years, the character of the changes appears to be about the same.
|| A further correction for change in the zero of the seale required to refer the readings of 1840 to the readings of subsequent years. Owing to a rearrangement of the instruments on January 7, 1841, the scale readings changed 112.8 divisions; and since 19.5 seale divisions had been added to the December readings, the resulting correction is the difference of the two, or $+93^{\circ} .30$.

TABLE 11.
Normals of the declinometer readings for 1841.
[Value of 1 div. $=0.453 . \quad$ Time, 191 minutes later than indicated.]

In general during the year 1841 , the readings are more changeable than during the following years.

The re-arrangement of the instruments, and consequent shifting of the index of the scale, alluded to in the preceding notes, interrupted the observations between January 1 and January 12.

The normal for October, $14 h$, was obtained by comparing with the half monthly means and taking the mean of the two results as in a similar case for the month of September of the previous year.

TABLE III.
Normals of the dectinometer readings for 1842.
[Value of $1 \mathrm{div} .=\mathbf{0}^{\prime} .453$. Time, 19 minutes later than indicated.]

моктня.	philadelphia mean timb.											
	h.	h.	4.	6 .	8 8.	10k.	Noon.	14.	16 h.	12%.	20 k.	223.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	\bigcirc	\bigcirc	
January.	564.3	563.8	365.3	565.9	570.9	566.4	556.7	556.0	502.9	563.2	566.1	567.8
February	564.5	564.3	563.8	565.2	567.8	565.5	558.2	559.9	558.0	561.9	565.3	565.5
March	564.8	564.1	565.4	566.1	571.8	565.9	5556	553.9	555.4	560.3	584.5	5649
April	563.3	565.4	5661	568.5	569.7	563.6	554.0	55\%. 5	555.1	560.6	501.3	6630
may	563.3	564.3	566.0	571.2	569.5	56.0	552.6	552.3	557.7	560.8	561.8	562.3
June.	564.6	563.7	567.2	573.7	573.0	565.2	555.1	552.5	558.3	561.8	563.7	564.1
July	566.0	566.0	568.4	576.6	576.4	565.8	556.3	553.8	538.5	562.4	564.2	567.1
August.....	564.8	566.0	568.5	573.7	575.0	560.0	552.3	553.7	561.5	562.2	564.1	564.5
September	567.4	567.8	570.0	576.8	574.9	561.2	556.0	555.4	558.0	565.7	566.7	566.6
October	563.1	563.1	564.4	566.0	568.8	564.0	556.0	555.0	558.2	564.3	565.0	565.3
November	564.2	563.8	565.6	566.9	569.2	563.3	556.6	557.3	561.2	564.0	565.5	56.50
Decenber	561.7	560.7	562.1	562.7	565.5	564.2	556.6	556.2	560.1	562.0	563.5	563.8
Mean.	564.33	564.42	566.07	569.44	571.04	563.76	555.50	554.34	559.16	562.42	564.31	564.99

TABLE IV.
Normals of the declinometer readings for 1843.
[Value of 1 div. $=0.453$. Time, 19 minutes later than indicated.]

montes.	philadglpila mean timb											
	Oh.	$2 h$.	4 h.	6 h.	8 h.	10 h .	Noon.	14h.	16h.	18h.	20 h.	22h.
nuary.	-	. ${ }^{\circ}$	- ...	-	-	-	-		-	-	-	-
February							..	555.9				
march							557.2				
April	569.7	570.0	571.0	574.7	576.2	566.2	557.8	555.7	562.6	584.8	568.5	568.7
May ..	567.0	567.3	569.6	574.6	575.6	565.7	556.0	555.2	562.2	586.4	566.9	567.3
June.	566.0	555.6	568.4	574.1	573.9	564.8	556.4	558.0	561.1	564.3	564.0	565.6
July	566.9	565.9	568.2	574.2	874.6	564.5	555.1	554.1	559.5	563.6	563.8	56.5 .6
Auguar*.	564.2	564.5	567.2	573.5	572.7	560.5	555.1	554.6	561.2	563.6	568.3	564.2
September	560.4	560.4	360.3	565.7	566.6	554.6	547.5	550.5	5568	558.0	360.0	558.7
October.	559.6	559.6	558.9	568.1	566.0	560.8	553.6	558.7	556.2	558.2	560.1	559.7
November.	558.3	558.6	557.4	559.1	561.3	558.2	550.4	551.1	553.8	556.3	557.5	557.3
December	559.0	557.4	557.8	560.0	581.8	5599	559.9	550.9	554.6	558.2	559.6	559.9
Meam.	563.23	563.08	584.42	568.67	569.72	361.47	353.42	554.19	358.67	501.50	562.52	569.00
Correctiont.	+0.06	-0.11	-0.41	-1.24	-0.30	+0.68	+0.44		-0.02	-0.83	+0.33	+0,35
Corrected mean	563.29	562.22	564.01	567.43	569.49	609.10	553.86	54.19	558.65	561.28	368. 86	563.33

[^6]The hourly readings commence on October 1, and are continued to the close of the series.
To make the readings of the odd hours of the months of October, November, and December comparable with those of the even hours during the whole year, the means of the even hours for the months of October, November, and December (1843) were compared with the corrected annual means respectively, which gave the corrections for the even hours; and the corrections for intermediate odd hours were obtained from those of the nearest even hours. The deductions from the series of observations at odd hours have but one-third of the weight of those obtained from the even series.

TABLE IV, (b.)
Additional normals for the odd hours of the months of Octoter, November, and December, 1843.

TABLE V.
Normals of the declinometer readings for 1844.
[Value of $1 \mathrm{div} .=0.453$. Time 19 minutes later than indicated.]

monthe.	philadelphia mean time.											
	0 \%	14.	2h.	3 h.	4 h.	5.	6 h.	74.	8h.	9 9.	10h.	11 h.
January	558.6	558.2	558.4	559.2	558.9	558.8	559.7	561.2	562.9	563.3	559.1	555.9
February	559.1	5585	559.1	559.2	559.9	561.1	560.8	562.1	562.2	560.7	557.3	554.5
March	558.0	559.0	559.2	557.9	559.8	560.2	561.3	563.6	564.8	5641	560.3	554.9
April	556.6	557.0	557.2	556.9	557.5	558.4	561.7	558.5	564.4	561.8	557.1	552.0
May.	548.4	548.7	547.8	547.0	549.3	552.5	555.8	556.8	555.1	55.3	546.7	542.2
Jane	548.7	549.0	549.3	549.1	551.6	553.8	557.6	559.1	558.2	554.3	547.9	541.8
July...	549.0	550.5	548.4	549.4	551.0	554.3	556.9	559.8	558.6	554.8	548.0	540.8
August	548.6	547.8	547.3	547.4	550.9	552.4	557.5	560.3	558.2	551.8	543.3	536.4
September.	543.3	543.1	544.1	546.0	546.5	547.1	550.0	552.9	559.4	545.8	538.3	532.5
Oetober.	545.1	545.3	544.2	546.1	545.8	544.4	548,6	550.9	551.5	548.7	545.3	540.8
November	540.8	548.8	548.3	548.6	547,4	548.5	551.5	549.2	548.4	547.9	546.2	542.8
Decenaber	536.1	535.8	535.4	535.9	536.8	537.3	537.2	538.8	537.8	339.3	536.1	532.9
Meam	549.86	549,98	549,89	550.23	351,28.	552, 12	554.88	555.93	556.22	554.73	548.80	543.96

TABLE V-Continued.

monthe.	philadiliphia mean time.											
	Noon.	13h.	14h.	15 h.	16h.	17h.	18h.	19h.	20 h.	21 h.	224.	Sish.
		\bigcirc	-	-	\bigcirc	-	*	\bigcirc	\bigcirc	-	\bigcirc	
Jnnuary	552.9	552.4	553.2	554.1	556.3	556.9	557.8	559.2	559.5	560.9	560.8	559.6
Februnry	551.1	5511	5530	554.7	55.64	556.6	557.6	558.4	5599	559.4	550.1	559.0
March .	550.6	549.4	549.6	581.7	533.0	555.2	5555.6	558.0	558.4	558.2	558.6	559.7
April	547.4	545.7	546.2	547.6	549.6	53.4	533.4	553.8	556.2	535.1	53.5 .7	559.3
May	538.3	535.8	5365	528.9	54.2	545.1	545.2	546.5	546.3	547.3	517.3	547.8
June	537.4	535.0	537.3	540.0	542.4	545.2	545.6	548.2	545.5	546.8	548.0	548.5
Suly	5383	533.5	536.3	53 Ex .8	$5: 1.9$	544.5	545.8	546.2	546.6	547.4	548.8	549.3
Auguat	531.8	532.0	534.3	538.7	542.1	544.3	545.0	596.5	546.7	$546 . \mathrm{if}$	547.8	547.7
September	$5: 9.3$	530.0	534.1	538.3	539.4	541.9	542.4	541.9	543.0	544.6	543.7	543.3
October.	541.1	539.5	541.4	544.0	545.7	515.4	545.6	545.0	544.9	544.6	544.5	544.6
November	54.8	511.7	544.5	546.1	545.6	547.9	548.8	5482	588.3	549.6	548.0	5480
December	530.6	509.3	529.4	532.1	533.2	531.8	635.9	587.0	536.8	537.4	537.8	537.1
Menn................................	540.97	559.78	541.32	543.75	545.64	547.6	548.41	548.91	549.4:	549.83	550.10	550.3%

To the observations between Jaulury 1 and January $10 n$ ootrcetion of $+18^{\circ} .7$ was applied, as explained in the proceding note.
In the month of ljecember the dectination changeal sorapidy as to require the use of half nonthly means; the mean of the two results is ingerted in the above table.

TABLE VI.
Normals of the declinometer readings for 1845.
[Value of $1 \mathrm{div},=\mathbf{0} .453$. Time 193 minutes later than indicated.]

morties.	phillidelpala mbat time.											
	Oh.	1 h.	$\underline{2}$.	3 h.	4 h.	5 5.	6 h.	7 h.	¢ 2.	92.	10 h.	11 h.
January.	530.9	531.3	531.1	331.5	533.4	531.6	532.9	533.2	535.8	533.8	530.2	526.7
February.	531.6	531.1	531.0	532.4	532.3	533.1	531.7	535.9	535.7	535.4	533.0	528.6
March	532.9	533.7	533.7	533.6	535.0	533.9	536.0	538.8	539.4	538.6	534.5	529.4
April.	529.1	528.8	599.0	529.2	529.8	531.7	534.0	535.6	537.5	5354	528.5	522.5
May.	589.9	531.3	529.7	531.7	533.2	536.3	539.3	541.9	540.7	5360	528.0	522.6
June.	531.5	531.7	531.6	532.0	5348	5379	541.9	543.5	542.5	538.6	532.2	524.9
Mean...............	570.98	531.15	531.02	531.73	533.02	534.08	53647	53848	538.60	536.30	531.07	525.78
Correction*.	-2.42	-2.50	-2.58	-241	-2 26	-2.03	-1.81	-2.01	-2.21	-2.76	-3.30	-2.94
Corrected mean	528.56	528.65	528.44	589,32	530.76	532.05	534.66	530.4:	536.39	533.54	527.77	522.84

TABLE VI-Continued.

молтнs.	philadelphin mean timg.											
	Noon.	13h.	14 h.	15 h.	164.	178.	14.	19\%.	20%.	214.	22\%.	3 m .
Janilary.	524.2	525.2	326.2	528.0	530.1	531.8	523.7	532.8	533.3	533.0	532.4	532.0
Febuary.	524.4	523.0	525.3	527.5	529.7	530.4	532.4	531.3	533.6	531.4	532.3	531.9
March	524.8	522.5	522.8	524.8	527.8	529.7	531.6	533.0	533.0	533.8	533.5	534.0
April.	517.8	513.9	514.0	517.2	521.5	525.8	527.8	527.9	528.1	528.5	528.0	529.4
May	517.1	516.8	518.9	522.1	528.7	529.3	529.6	530.4	589.7	530.3	530.5	531.3
June.	521.3	519.6	520.0	382.1	525.4	5289	530.3	530.7	530.1	530.7	530.3	531.4
Mean	521.60	320.17	521.20	523.62	520.67	529.32	530.75	531.02	531.3	331.78	531.17	631.50
Correction*.	-2.59	-2 28	-1.98	-1.80	-1.62	-1.64	-1.65	-1.99	-2.28	-2.36	-2.44	-2.44
Correctea mean.	519.0	517.89	519,22	521.82	525.25	527.88	529.06	529.08	529.0	529.42	528.7	529,06

[^7]For the purpose of comparing the annual means of the normals, or the mean march of the regular solar-diurnal variation for each year, tho preceding results have been expressed analytically by means of Bessel's formula, and by the application of the method of least squares.

In these formulæ the angle Θ is reckoned from midnight, (Philadelphia,) at the rate of 15° for each following hour. It was found unnecessary to carry the expressions beyond the third term, the fourth being generally smaller than the probable error of an hourly normal. We obtain accordingly -

r 18	
1841	
1842	$\mathrm{D}=563^{\circ} .33+4^{\circ} .944 \sin .\left(\theta+33^{\circ} 49^{\prime}\right)+4^{\circ} .211 \sin .\left(2 \theta+217^{\circ} 12^{\prime}\right)+1^{\circ} .463 \sin .\left(3 \theta+64^{\circ} 42^{\prime}.\right)$
1843	
1844	$\mathrm{D}=548^{\circ} .89+40486 \sin \left(\theta+34^{\circ} 35^{\prime}\right)+30.872 \sin .\left(2 \theta+222^{\circ} 23\right)+10.802 \sin .\left(3 \theta+68^{\circ} 53^{\circ}\right)$
1845	$\mathrm{V}=528^{\circ} .12+4^{\circ} .548 \sin .\left(0+35^{\circ} 33^{\prime}\right)+40.872 \sin .\left(20+225^{\circ} 35^{\prime}\right)+10.987 \sin \left(40+61^{\circ} 20^{\circ}\right.$.

Owing probably to the several accidental changes in the suspension of the bar, and consequent uncertainty in the precise amount of seale correction, the mean readings of each year, when compared with one another, exhibit differences not actually due to inequalities occasioned by declination changes. This question, however, does not directly bear upon the present investigation, which mainly depends on differences of readings; and it is proper to remark that the observed increase, giving the weight one-half to the mean of 1840 and of 1845 , is under the supposition of a uniform annual change between these years equal to $4^{\prime} .50$. From Mr . Schott's investigation* of the secular change of the declination at Philadelphia, supported by observations between the years 1701 and 1855 , the annual increase between the ycars 1840 and 1845 is $4^{\prime} .98$, a result which accords tolerably well with actual observations. According to his formula, the declination on the first of January, 1843, the mean epoch of the present series was $3^{\circ} 32^{\prime}$ west, with a probable error of $\pm 10^{\prime}$, which corresponds to the scale reading 560.31, deduced by taking into account the weights of the amual means.

We now proceed to the investigation of the inequality in the diurnal variation, changing the preceding formula, for greater convenience, into the following:

```
Fur 1840. ...... \(\Delta=+2.815 \sin .\left(15^{\circ} n+36^{\circ} 35^{\prime}\right)+2^{\prime} .078 \sin .\left(300 n+217033^{\prime}\right)+0^{\prime} .743 \sin .\left(450 n+68^{\circ} 50^{\circ}.\right)\)
    1841.......- \(\Delta=+2^{\prime} .214 \sin .\left(15^{\circ} n+30^{\circ} 05^{\prime}\right)+1^{\prime} .984 \sin \left(30^{\circ} n+212038^{\prime}\right)+0^{\prime} .716 \sin .\left(45^{\circ} n+50014^{\prime}.\right)\)
    1842. ...... \(\Delta=+22^{\prime} 240 \sin .\left(15^{\circ} n+33^{\circ} 49^{\prime}\right)+1^{\prime} .908 \sin .\left(30^{\circ} n+217012\right)+0^{\prime} .663 \sin \left(450 n+64042^{\prime}.\right)\)
    \(1843 . \ldots . . . \quad \Delta=+2^{\prime} .015\) sin. \(\left(15^{\circ} n+36^{\circ} 00^{\prime}\right)+1 \cdot 775\) sin. \(\left(30^{\circ} n+2188^{\circ} 05^{\prime}\right)+0^{\prime} .820 \sin .\left(45^{\circ} n+68^{2} 18^{\prime}.\right)\)
    1844. .....- \(\Delta=+2^{\prime} .032 \sin \left(15^{\circ} n+34^{\circ} 35^{\prime}\right)+1^{\prime} .754 \sin .\left(30^{\circ} n+222^{\circ} 23^{\prime}\right)+0^{\prime} .816 \sin .\left(45^{\circ} n+68^{\circ} 53^{\prime}.\right)\)
    \(1845 . \ldots-\ldots \Delta=+2^{\prime} .060 \sin .\left(15^{\circ} n+35^{\circ} 33^{\prime}\right)+2.206 \sin .\left(30^{\circ} n+225035^{\prime}\right)+0^{\prime} .900 \sin \left(45^{\circ} n+61^{\circ} 20^{\prime}.\right)\)
```

In which $\Delta=$ the regular solar diurnal variation, and n the number of hours after midnight.
To show the agreement between these expressions and the corresponding observed quantities, and to exhibit to the eye the character of the diurnal variation, the results have been thrown into curves. The observed bi-hourly means are represented in diagram 2, Sketch 37, by dots, and in no instance do they differ from the computed values by as much as $0^{\circ} .8$ or $0^{\prime} .3$. As a specimen of the representation, I add the results for the year 1845:

- Report on the progress of the U. S. Coast Survey for 1855, Appendix No 48 and Appendix No. 24 of the report for 1859 .

Hour.	Observed value.	Computed value.	$\mathrm{C}-0$.	Hour.	Observed value.	Computed value.	$\mathrm{C}-0$.
h. m.	\bigcirc	\bigcirc	0	h. m.	\bigcirc	\bigcirc	\bigcirc
0 191 ${ }^{2}$	528.56	528.99	+0.43	12 193	519.01	519.23	+0.22
$2 \quad 192$	528.44	528.48	+0.04	14 19 ${ }^{\text {d }}$	519.22	518.96	-0.26
4 1912	530.76	530.26	-0.50	$16 \quad 193$	525.25	525. 18	-0.07
(6) 191	534.66	535.11	+0.45	18 192	529.08	529.15	$+0.07$
$8 \quad 19$ k	536.39	535.97	-0.42	$20 \quad 19 \frac{1}{2}$	529.07	529.07	0.00
10 191	527.77	528.18	$+0.41$	22 191	528.70	528.86	+0.16

The average probable error of any single representation by the formula is $\pm 0^{\circ} .22$, or $\pm 0^{\prime} .10$.

By means of the preceding formulæ the following values were computed: 1. The time when the north end of the magnet reached its extreme eastern position, or, in other words, the epoch of the eastern elongation. 2. The corresponding maximum scale reading, or, more properly, the corresponding minimum of western declination. 3. The time of the occurrence of the western elongation; and, 4. The corresponding maximum reading of western declination. In the last two columns the differeuce of the scale readings, or the amplitude of eastern and western elongation, is made out in scale divisions, and also in minutes of arc. The inequality of this amplitude next requires our attention.

For-					Amplitude.	
	h. m.	-	h. m.	\bigcirc		,
1840	726 a.m	595.67	$134 \mathrm{p} . \mathrm{m}$.	575.71	19.96	9. 08
1811.	749	577.96	149	560.21	17.75	8. 06
1842.	736	571.24	137	553.96	17.28	7.83
1843	740	569.54	124	553.06	16.48	7.46
1844.	732	556.50	118	539.99	16.51	7. 51
1845.	734	536.65	116	517.81	18.84	8.53
Mean....	$\begin{aligned} & 736 \text { п. m. } \\ & \pm 3 \end{aligned}$		$\begin{aligned} & 130 \mathrm{p} . \mathrm{m} . \\ & \pm 4 \end{aligned}$			

The inequality constituting the ten or eleven year period is plainly exhibited in the last two columns of the above table, the progression in the numbers being quite regular. The year 1843 is clearly indicated as the year of the minimum range of the diurnal fluctuation, but whether the period is one nearer to ten or to eleven years cannot be decided from the Girard College observations, since they do not embrace a year of maximum amplitude. The epoch of the minimum, however, can be determined with more precision. For this purpose only, the values in the last column are represented by the formula,

$$
A=9^{\prime} .08-1^{\prime} .14(t-1840.5)+0^{\prime} .201(t-1840.5)^{2}
$$

deduced by the method of least squares, and the quantities come out as follows:

Year.	Observed amplitude.	Computed by formula.	Difference	Year.	Observed amplitude.	Computed by formula.	Difference.
1840.5	$9^{3} .08$	$9^{\prime} .08$	0.00	1843.5	7',46	$7 \cdot 47$	$-0^{2} .01$
1841.5	8'.06	$8{ }^{\prime} .14$	- 0.08	1844.5.	7. 51	7'.74	-0'. 23
1842.5.--	7 '83.	7'. 60	+0.23	1845.5	8'.53	8.41	+ ${ }^{\prime} .12$

Probable error of any single amplitude, $\pm 0^{\prime} .11$.
That portion of the ten or eleven year period which results from the preceding discussion of the differential observations of the magnetic declination, free fiom the effect of the disturbances, as far as the latter can be eliminated, is shown graphically in diagram 1, Sketch No. 37 .

The month of May, in the year 1843, is indicated by the formula as the epoch of the minimum amplitude.

We now proceed to the discussion of the disturbances as far as they bear on the decennial inequality, taking in also some collateral results.

The total number of observations for changes of declination recorded and discussed amounts to 24,566 ; of these, 2,357 were separated as disturbances differing eight scale divisions or more from their respective normals, leaving 22,209 observations, from which the preceding results were deduced. There is one disturbed observation in every 10.4 observations.

The discussion of the disturbances divides itself into two parts, that of the number and that of the amount of the larger deflections.

Owing to partial incompleteness in the number of observing months in some years, it became necessary to fill out the number for the annual inequality from the results of the complete years. Their number for each month in the complete years is given in the following table, the numbers for 1844 having first been divided by two, in order to make the hourly observations comparable with the bi-hourly in the years 1841 and 1842:

Month.	1841.	1842.	1844.	Mean.	Ratio.
January	33	44	5	27	0.75
February	25	26	5	19	0.53
March	26	24	24	25	0.70
April	25	31	99	32	0.89
May	33	14	17	21	0.68
June	31	30	7	23	0.64
July.	30	40	15	28	0.78
August.	49	64	44	62	1.45
September	57	60	31	49	1.36
October -	94	86	53	78	2. 17
November	81	22	42	48	1.33
December	55	5	26	29	0.82
Sum	539	446	308	431	12.00
Mean				36	1.00

The last column contains the ratio of the mean monthly value to the mean annual value. By means of these ratios, and using the observed monthly values in each defective year, the numbers in the following table were filled up, all the deduced values being indicated by brackets. $d s$ in the proceding table, the values refer or were made to refer to bi-hourly observations.

Table showing the number of disturbances in each month of the years 1840 to 1845.

Month.	1840.	1841.	- 1842.	1843	1844.	1845.	Mean.	Ratio.
January .-.-..--------...-	(30)	33	41	(17)	5	19	25	0.77
Fehruary-----. -	(21)	25	26	(12)	5	13	17	0.52
March	(28)	26	24	(16)	24	14	22	0.68
April -....-.-.-...-..........	(36)	25	31	21	39	$2 ;$	29	0. 91
May-.-.-.-.---...	(24)	33	14	15	17	11	19	0. 58
June.-.-.-.-.-----........	8	31	30	12	7	12	17	0. 53
July	44	30	40	20	15	(17)	28	0. 86
August.	40	49	64	80	44	(32)	51	1. 59
September----------------	56	57	60	27	31	(30)	44	1. 36
October	94	94	86	16	53	(48)	68	2.12
November-..........	19	81	22	8	42	(28)	35	1.08
December	83	55	5	4	26	(18)	32	1.00
Sum	344	539	446	230	308	91	387	12.00
Corrected sum and mean..-	483			275	----	264	32	1.00

The ratios in the last column show the annual inequality in the distribution of the disturbances. The principal maximum occurs in October,* the secondary in April; the two minima, nearly of equal amount, occur in the months of February and June. The progression of the numbers is regular.

If we separate the numbers in accordance with westerly and easterly deflections we obtain the following table, deduced as in the former case. It may be remarked that on account of the separate ratios used for the interpolation of the western and eastern deflections, their sum in any one month does not give the corresponding number in the above table exactly, only the yearly sums having been preserved; and the same is true in regard to the table, showing the amount of the disturbances. Interpolated values, as before, are euclosed between brackets.

[^8]| Month. | 1840. | | 1841. | | 1842. | | 1843. | | 1844. | | 1845. | | Sums. | | Ratios. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | w. | E. | w. | E. | W. | E. | w. | E. | w. | 玉. | W. | E. | w. | E. | w. | E. |
| January | (36) | (2) | 25 | 8 | 35 | 9 | (22) | (7) | 2 | 3 | 10 | 9 | 130 | 38 | 1.27 | 0.42 |
| Pebruary | (17) | (3) | 9 | 16 | 17 | 9 | (13) | (9) | 3 | 2 | 11 | 2 | 70 | 41 | 0.70 | 0.46 |
| March........ ... | (23) | (5) | 11 | 15 | 17 | 7 | (15) | (6) | 10 | 14 | 9 | 5 | 85 | 52 | 0.83 | 0.57 |
| April | (27) | (5) | 10 | 15 | 14 | 17 | 7 | 14 | 25 | 14 | 15 | 7 | 98 | 72 | 0.95 | 0.80 |
| May | (17) | (4) | 18 | 15 | 8 | 6 | 7 | 8 | 4 | 13 | 3 | 8 | 57 | 54 | 055 | 0.60 |
| June | 3 | 5 | 15 | 16 | 17 | 13 | 2 | 10 | 3 | 4 | 5 | 7 | 45 | 55 | 0.44 | 0.61 |
| July.............. | 17 | 27 | 5 | 25 | 14 | 26 | 11 | 9 | 6 | 9 | (7) | (11) | 60 | 107 | 0.58 | 1.18 |
| August.......... | 20 | 20 | 18 | 31 | 55 | 9 | 67 | 13 | 25 | 19 | (20) | (11) | 205 | 103 | 2.00 | 1.1 |
| September | 36 | 20 | 14 | 43 | 11 | 49 | 6 | 21 | 18 | 13 | (11) | (21) | 96 | 167 | 0.92 | 1.86 |
| October | 68 | 26 | 31 | 60 | 17 | 69 | 6 | 10 | 23 | 30 | (15) | (30) | 163 | 285 | 158 | 2.5 |
| Nowember | 11 | 8 | 41 | 40 | 11 | 11 | 5 | 3 | 16 | 26 | (15) | (14) | 99 | 102 | 0.96 | 1.12 |
| December | 77 | 6 | 21 | 31 | 1 | 4 | 2 | 2 | 12 | 14 | (B) | (10) | 124 | 67 | 1.21 | 0.74 |
| $\begin{array}{r} \text { Snta } \\ \text { Oorrected me日a. . } \end{array}$ | 232 | 112 | 224 | 315 | 217 | 229 | 113 | 90 | 147 | 161 | 53 | 38 | 1232 | 1083 | 12.00 | 12.00 |
| | 352 | 131 | | | | | 163 | 112 | | | 129 | 135 | | | | |
| Total | 483 | | 539 | | 44 | | 235 | | 308 | | 264 | | 2315 | | | |

The ratios show a general correspondence in the number of westerly and easterly deflections; the westerly deflections seem to occur most frequently in August, while the easterly predominate in October; the secondary maximum of either series is in April. The minima remain nearly as before, one minimum of eastern deflection occurring in January.

With respect to the whole number of westerly and easterly deflections, we deduce the proportional sums from the following table:

On account of the incompleteness of the record in the years 1840,1843 , and 1845, the number of eastern and western disturbances relative to the total number cannot be ascertained with accuracy. They are about equal in the record. At Toronto the eastern predominate over the western in the proportion of 1.17 to 1 (for the years 1841 to 1848,) and nearly to the same extent for each year, taken separately.

The numbers in the column headed "sum" do not indicate the law of the eleven year period as plainly and systematically as they did the investigation of the diurnal amplitude; yet giving balf weight, on account of the want of record, to the sums for 1840 and 1845 , the minimum number falls in the year 1843. More consistent results would, no doubt, have been obtained if the year 1845 had been complete.

If we distribute the disturbances (1,942 in number for the cven hours) according to their respective hours of occurrence, the following table results from observations between 1840 and 1845:

Add 193 m .	W.	E.	Sum.	ratios.		Add 19, m.	W.	E.	Sum.	Ratios.	
				W.	E.					W.	E
Hours.						Hours.					
0	67	95	162	0.82	1. 20	Noon.	93	57	150	1. 13	0.71
2	97	92	189*	1.18	1.16	14	79	54%	133**	0.95	0.67\%
4	89	79	168	1.08	0.96	16	88	60	148	1.07	0.78
6	110°	63	173	1. 35°	0.80	18	72	71	143	0.87	0.90
8	105	56	161	1. 29	0.70	20	34^{2}	133°	167	0.40°	1. 66%
10	107	71	178	1. 32	0.88	22	45	125	170	0.54	1.58

Maxima and minima values are distinguished by an asterisk.
The numbers in each vertical column show a regular progression; and the number of disturbances, irrespective of their direction. have a minimum at 2 p.m. and a maximum at 2 a.m.* The principal contrast is between the hours of the day and the hours of the night; in the former case the numbers being below, but in the latter above the mean value. This is in close correspondence with the Toronto results. The most striking result of the above table is, that the westerly disturbances have their minimum precisely at the hour ($8 \mathrm{p} . \mathrm{m}$.) when the easterly have their maximum value; and the exact coincidence of this result with that deduced by General Sabine for Toronto is not less remarkable. For the westerly disturbances, the hours $6 \mathrm{a} . \mathrm{m} .$, (maximum,) and 8 p.m., (minimum,) and for the easterly disturbances the hours 2 p.m., (minimum,) and 8 p.m., (maximum,) are specially contrasted. These results also agree with those found at Toronto; and the accordance with that station even goes so far as to exhibit the secondary minimum of eastern disturbances at $8 \mathrm{a} . \mathrm{m}$. In connection with this subject it may be here stated that the same distinguished magnetist found a singular mutual relation to subsist between the phenomena at Toronto and Point Barrow, on the shores of the Arctic sea-the laws of the easterly deflection at one station being found to correspond for the same local hours with those of the westerly deflections at the other station, and vice versa. This contrast holds good for Philadelphia as well as for Toronto.

We now pass to the consideration of the amount of deflections caused by the disturbances, classifying the same according to years, months, and hours:

Aygregate values of the disturbances and mean values in the different years.

Year.	Aggregate values.	Same corrected to 12 months	Number.	Average value of a disturbance.	same in minutes of arc.	Same at Toronto for comparisen.
	d.	d.		d.	i	,
1840	5140.0 (7 months.)	7155.5	483	14.8	6.70	
1841	7844.4	7844. 4	539	14.6	6.61	6.34
1842	6019. 1	6019.1	446	13.5	6.11	6.90
1843	2465.7 (9 months.)	2932.2	275	10.7	4.85	5.62
1844	4227.3	4227.3	308	13.7	6.21	6.49
1845	1138.6 (6 months.)	3521.4	264	13.3	6.02	5.84

© At Toronto the respective hours are $2 \mathrm{p} . \mathrm{m}$. and $22 \mathrm{p} . \mathrm{m}$.

The table includes only the series of bi-hourly observations, the reduction of the numbers from incomplete years to the correct sum for the whole year being effected by means of ratios, as in the discussion of the number of disturbances. For comparison the average value of a disturbance at Toronto is added. It must be remarked that the amuunt of deviation from the normal, constituting a disturbance, was nearly but not quite the same at Toronto as at Philadelphia, so that the ratios of the corresponding numbers in the last two columns should be compared.

The eleven year period is well marked in the aggregate value of the disturbances as well as in their average value in the different years; and the year 1843 is decidedly indicated as the minimum. To find a more precise value for the epoch of the minimum, the formula

$$
\grave{s}=7^{\prime} .09-0^{\prime} .930(\mathrm{t}-1840.5)+0^{\prime} .149(\mathrm{t}-1840.5)^{2}
$$

has been constructed, which represents the observed values as follows:

Year.	Observed amount.	Computed amount.	Difference.	Year.	Olserved amount.	Computed amount.	Difference.
1840. 5	6'. 70	$7{ }^{\prime} .09$	+0. 39	1843.5	4.85	5.64	+0.79
1841.5	6.61	$6^{\prime} .31$	-0. 30	18445	6. 21	5.75	-0. 46
1842.5	6.11	5'. 83	$-0^{\prime} .28$	1845.	$6^{6} .02$	6.16	+0. 14

The first and last value have only half weight. According to the formula, the minimum took place in August, 1843. (See diagram 3, sketch No. 37.)

As the resulting epoch from the differential observations with the declinometer, we find the month of June, 1843, by giving double weight to the result deduced from the inequality of the diurnal amplitude.

Separating into western and eastern disturbances, we find-

From which it appears that the easterly values preponderate over the westerly in the ratio of 1.14 to 1 . The ratio from the Toronto observations between 1844 and 1448 is 1.28 to 1 .

- The following table shows the aggregate amount of disturbances in each month of the different years, or the annual inequality of the aggregate disturbances.

Month.	1840.	1841.	1842.	18435.	1814.	1845.	Mean.	Ratio.
	d.	d.	d.	d.	d.	d.	d.	
January	(418.4)	423.6	505.9	(171.0)	45.3	269.2	318.9	0.72
February	(323.0)	402.3	310.1	(131.9)	99.7	160.1	237.8	0.54
March.......	(400.5)	327.9	264.4	(163.6)	430.0	167.4	542.3	0.66
April	(544.6)	294.7	481.1	281.7	601.5	289.7	415.6	0.94
May...........	(329.0)	442.8	184.4	206.8	205.5	111.0	246.6	0.56
Jure	83.1*	355.5	353.1	133.9	50.4	141.2	186.2	0.42
July	668.8*	416.8	518.8	271.5	168.3	(220.4)	382.1	0.87
August	618.6	623.1	873.5	953.9	552.6	(434.2)	709.3	1.61
Beptember	853.5	1242.7	779.9	301.5	448.6	(484.1)	685.0	1.56
October	1319.1	1376.9	1253.2	195.0	668.1	(639.3)	908.5	2.08
November	314.6	1454.2	3:9,3	87.1	591.1	(387.4)	452.3	1.06
December..........................	1282.3	684.6	47.4	34.3	366.2	(217.4)	438.7	1.00
Sum.	7155.5	7844.4	6019.1	2932.2	4227.3	3521.4	5283.3	12.00

* The diferencen of the disturbed readings from their respective normals, during the month of june and part of July, 1840 , were first converted from the old sc ule into equivalent new scale values.

The last column of ratios of the aggregate value of the disturbances of each month to the mean of all corresponds very closely to the analogous ratios deduced in a preceding table for the number of disturbances, giving the law in reference to the number and amount of disturbances in a year as the same, or nearly so. The maximum amount of disturbances occurs in October, (at Toronto in September,) the minimum amount in June, (the same at Toronto; the secondary maximum occurs in April, (as at Toronto), and the secondary minimum in February, but at Toronto in January, from comparison with the years 1843, 1844, 1845.

The next tables give the aggregate monthly values in the six years, separated into west and east deflections:

West deflections.

Month.	1840.	1841.	1849.	1843.	1844.	1845.	Mean.	Ratio.
	d.	d.	d.	d.	d.	d.	d.	
January	(495.5)	308.4	444.8	(170.4)	23.8	161.6	967.4	1.21
February	(238.0)	147.2	217.1	(82.0)	28.0	69.9	130.4	0.59
March.......	(2888.7)	127.2	168.5	(99. 5)	172.8	117.5	162.4	0.73
April...............................	(432.2)	97.9	216.9	98.9	370.1	171.0	229.5	1.04
May................................	(212.8)	229.5	84.4	109.7	43.5	8.3	114.7	0.52
June	30.9	170.4	194.2	91.7	12.6	65.9	82.6	0.37
3uly......	186.7	51.1	140.5	153.3	28.9	(42.9)	100.6	0.45
August	275.9	228.4	721.3	809.7	304.5	(297.5)	431.2	1.95
Weptember............................	495.3	257.8	116.7	65.2	249.3	(123.5)	217.8	0.99
October	1019.9	423.5	172.5	74.4	340.3	(185.5)	369.2	1.67
November ..	178.4	546.9	159.6	39.1	267.1	(186.9)	988.0	1.09
December.	1210.5	308.2	9.4	17.7	178.8	(98.7)	303.8	$1.3{ }^{\text {a }}$
Sum	5064.8	2935.5	2645.9	1741.6	2019.7	1489.2	9647.8	18.00

East deflections.

Months.	1840.	1841.	1842.	1843.	1844.	1345.	Mean.	Ratio.
	d.	d.	${ }^{\text {d }}$.	d.	d.	d.	d.	
January	(27.9)	115.2	141.1	(22.7)	21.5	107.6	72.7	0.33
February	(55.7)	255.1	93.4	(38.5)	71.7	90.2	100.7	0.46
Mareh	(81.8)	200.7	95.9	(53.4)	257.2	49.9	123.2	0.56
April	(116.7)	196.8	964.2	182.8	231.4	118.7	185.1	0.84
May	(66.2)	213.3	100.0	97.1	162.0	102.7	123.6	0.56
Jane	52.2	185.1	158.9	112.2	37.8	75.3	103.6	0.47
mely............	482.1	365.7	406.3	118.2	139.4	(177.5)	281.5	1.29
August.	342.7	594.7	152.2	144.2	24.1	(194.8)	279.4	1.28
September	358.2	984.9	6632	236.3	199.3	(358.3)	466.7	2.12
October	299.2	953.7	1080.7	120.6	327.8	(453.0)	5.99.2	2.46
November.	136.2	467.3	179.7	48.0	324.0	(187.6)	223,8	1.02
Deceraber.	71.8	376.4	38.0	16.6	187.4	(116.6)	131.4	0.61
sum	2090.7	4908.9	3373.2	1190.6	2207.6	2032.2	2633.9	12.00

Note.-Maxima in September (mean of August and October) and April; minima in June and January, as at Toronto.
The following table gives the aggregate values of the disturbances distributed into the different hours of the day, as deduced from bi-hourly observations made from 1840 to 1845:

Philadelphia hour, $(+194 \mathrm{~m}$.	aggregate values of webtern deflections, EABTERN DEFLECTIONS, AND SUM.			man agorggate valuig for one tear.			Eatios.		
	W.	E.	Sum.	W.	E.	Sum.	W.	E.	Hoth combined.
h.	d.	d. ${ }_{\text {d. }}$	d.	d.	d.	${ }^{\text {d }}$ d.			
						389.4	0.83	1.24	1.04
2	1259.7	1278.2	2537.9	209.9	213.0	472.9	1.16	1.10	1.13
4	1255.5	1075.5	2331.0	209.2	175 3	388.5	1.16	0.92	104
6	1581.7	773.6	2355.3	967.6	123.9	392,5	1.46	0.67	1.06
B	1512.4	769.9	2882.3	259.1	128.3	380,4	1.39	0.67	1.02
10	1315.2	901.9	2217.1	219.2	150.3	369.5	1.28	0.77	0.99
Noon..........	1114,8	733.2	1848.0	165.8	122.2	308.0	1.03	0.63	0.83
14	1056.4	735.0	1791.4	176.1	122.5	203.6	038	0.63	0.80
16	1063.1	825.8	1893.9	178.0	137.6	315.6	0.99	0.72	0.85
18	902.1	965.2	1667.3	150.3	160.9	311.2	0.81	0.89	0.84
20	408.9	2175.4	2584.3	68.2	362.6	430.8	0.38	1.88	1.15
93	610.4	2180.3	2790.7	101.7	363.4	465.1	0.56	1.88	1.25
Sum.	12989.6	13852.5	26835.1	2163.7	2308.8	4472.5	12.00	12.30	12.00
Mean..........				180.3	192.4	378.7	\cdots		

If we compare these ratios with the corresponding numbers in the preceding tables showing the bi-hourly distribution in regard to the number of disturbances, we find, irrespective of the directions of the deflections, the $2 \mathrm{p} . \mathrm{m}$. minimum preserved; the maximum occurs at $10 \mathrm{p} . \mathrm{m}$. At Toronto, from a five years' hourly series, commencing with 1844, these hours are respectively $1 \mathrm{p} . \mathrm{m}$. and $9 \mathrm{p} . \mathrm{m}$. At Philadelphia, as at Toronto, the ratios are nearly invariable from $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$., being then below unity; and again from $8 \mathrm{p} . \mathrm{m}$. to $8 \mathrm{a} . \mathrm{m}$., when they are above unity.

The easterly maximum and the westerly minimum at 8 p . m., appear again as a decided feature, and in general the respective ratios cxhibiting the diurnal distribution of the disturbances, both in an easterly and westerly direction, show almost a perfect correspondence in regard to both number and amount.

The next table exhibits the excess of westerly disturbance over easterly (the sign - indicating a defect, or excess of easterly orer westerly) in the aggregate values of the five-year series, and in the last colum the mean effect of the same at each even hour is given as obtained by dividing the aggregate differential value of the preceding column by the actual number of days of observation during the whole period. The last cotumn exhibits, therefore, the mean diurnal disturbance variation. The number of days is very nearly 1,500 .

The law governing the disturbances during a solar day is clearly shown, and systematic in character. If we plot the disturbance curve on the same scale, or actually superpose it on the curves of the regular diurnal variation, (diagram 2, sketch No. 37,) the difference would hardly show to the eyc. The diagram (No. 4) showing the disturbance variation has, therefore, been plotted on a larger scale.
The curve has but one maximum and one minimum; its most prominent feature is the easterly deffection at 80^{\prime} clock ($+19 \frac{1}{2} \mathrm{~m}$.) p. m., (at Toronto it is at 9 p . m.) At that hour the maximum deflection amounts to $32^{\prime \prime}$ of arc, and to $45^{\prime \prime}$ at Toronto. The greatest westerly deflection occurs at 6 . ($+19 \frac{1}{2} m$.) a. m., and amounts to but $14^{\prime \prime}$; the Toronto hour is $8 \mathrm{a} . \mathrm{m}$. with $6^{\prime \prime}$, and from a five years' series of observation with $31^{\prime \prime}$ of deflection.
The range of the disturbance varjation equals $46^{\prime \prime}$. The disturbance amplitude, as well as the regular variation amplitude, is greater at Toronto than at Philadelphia, the occurrence of the maximum and minimum disturbance deflection seeming to be about one hour earlier at the latter station. From three in the morning till five in the afternoon, the mean effect of the disturbances is to deflect the north end of the magnet to the west, and during the remaining hours (principally at night) to the east. The westerly and easterly disturbance deflections during a day balance within $0^{\prime \prime} .02$.
The annual inequality in the amplitude of the diurnal disturbance variation might be satisfactorily shown by the proper combination of the results for consecutive years, comparing each two-year series successively; but owing to the small amount of the amplitude itself, and the incomplete or partly interrupted series of observations in the years 1840, 1843, and 1845, it was thought best to restrict the present discussion to the mean disturbance variation.
It is my intention to continue the discussion of the observations made at the Girard College observatory.

After the above was written, No. 1,185* of the Astronomische Nachrichten came to hand, containing Prof. R. Wolf's intoresting restlits on the close connection of the variation in frequency of the solar spots, and the corresponding inequality in the amplitude of the diurnal variation of the declination. He deduces for Munich the formula $\beta=6.273+0^{\prime} .051 \alpha$-in which α is a relative number, expressive of the frequency of the solar spots directly derived from observation, and β the amplitude of the diurnal variation. He finds a very close correspondence between the computed and observed values of β, and gives in a table Dr. Lamont's and his own results between the years 1835 and 1850. He also reaffirms his former value for the average length of the solar spot period, viz, 11.11 years ± 0.04 years, the limits of variation being 8 and 16 years. This period is deduced from observations of maxima and minima since 1626.

For Philadelphia we have $\beta=7^{\prime} .080+0^{\prime} .039 a$, representing the observed amplitudes as follows:

Year.					Year.	$\begin{aligned} & \text { a (from solar spot) } \\ & \text { observations. } \end{aligned}$			
1840.	51.8	9. 10	9.08	-0.02	1843	8.4	$7 \cdot 41$	7. 46	$+0.05$
1841	29.5	$8{ }^{\prime} .23$	8'.06	$-0^{\prime} .17$	1844	12.2	7. 55	7. 51	-0.04
1842...	19.2	$7{ }^{1} .83$	7. 83	0.00	1845	32.4	8'. 34	8.53	+ $0^{\prime} .19$

The correspondence between the observed diurnal amplitude and the same derived from observations of the solar spots is further exhibited by diagram 5, Sketch No. 37, the heavy line representing the magnetic, the other the solar, amplitude curve. The dotted curve is from the Toronto magnetic observations, merely multiplied by $\frac{8}{4}$ to reduce (approximately) to the Philadelphia scale. The next maximum amplitude, according to the solar spot observations, would be in 1848, amounting to $11^{\prime} .00$; and the whole range of the inequality in the amplitude of the diurnal motion would, therefore, be $11^{\prime} .00-7^{\prime} .46=3^{\prime} .54$. The last quantity, it must be observed, is slightly variable with each period; thus, according to the solar spot observations, the year 1837 was a maximum, amplitude $11^{\prime} .41$; and the year 1856 a minimum, amplitude $7^{\prime} .24$, the difference being $4^{\prime} .17$.

It is much to be desired that this interesting branch of physical inquiry should be further studied, as it forms one of the links connecting terrestrial with cosmical phenomena.

- For former communication by Prof. Wolf, see Nos $839,1,043,1,091,1,132,1,160$, and 1,181 , ibid.

APPENDIX No. 23.
Results reported from the observations made by Assistant Charles A. Sehott, for magnetic declination, dip, and horizontal intensity, in Sections I and II, and Canada, 1859.

No.	Locality.	Date.	Latitude.	Longitude.	$\begin{aligned} & \text { Deelination } \\ & \text { West. } \end{aligned}$. Dip Norih.	Horizontal intensity.	Total intensity.
		1859.						
1	Beacon Hill, Gloucester, Mass.	July 8......	4236.4	$70 \quad 38.4$	1203	7445.6	3.645	13.88
2	Thompson, Cape Ann	9.....	4836.7	$70 \quad 43.5$	1109	7430.4	3.674	13.75
3	Rockport, Cape Ann	11.	4239.6	7036.3	1137	7505.9	3.529	13,72
$4 *$	Anaisquara, Cape Ann.	11.	4239.4	$70 \quad 40.3$	7456.1	3.589	13.81
5	Ipswich, Mass.	12.	4240.8	70	1114	$74 \quad 37.3$	3.598	13.57
6	Plum Istand, Newburyport.	13.	4248.0	7048.5	1058	7452.9	3,528	13.53
7	Kittery Point, Portsmouth.	14.	4304.8	7042.7	1115	7504.2	3.496	13.57
81	Bowdoin IIill, Portiand.	15......	4338.8	7016.2	1220	3456
9	Quebec, Canada.	18819	$45 \quad 48.4$	7114.5	1617	7717.5	2.981	13.60
10\%	Montreal, Canada	20......	$45 \quad 30.5$	73 34.9	$76 \quad 51.4$	3.111	13.68
11	Rutland, Pc...		$43 \quad 36$	72.55	949	7519.8	3.484	13.68
12	Deerfield, Mass..	23.	4233	7236	925	7435.3	3.617	13.61
13	Chesterfield, Mass	25.	42.24	7251	854	7421.2	3.667	13.60
14	Springdeld, Mass....................................	26......	4206	7232	839	7414.9	3.691	13.60
158	Hartford, Conn	$27 . . .$.	4146	7240		7407.4	3.716	13.58
16.	Coast Surveg Office, Washington, b. C...............	89 \& 30.	$38 \quad 53.1$	$77 \quad 00.9$	7124.4	$\left.\begin{array}{l} 4.306 \\ 4.308 \end{array}\right\}$	13.51

* Owing to a considerable disturbance at the time of occupation the result for declination has been rejected.

The dip at Portland, $74^{\circ} 56 / .7$, seems to be too small, probably owing to a disturbance at the time. The total intensity was left blank accordingly,
\ddagger The decination seems to have been affected by a considerable disturbance at the time, and the result, $12^{\circ} \mathrm{gl}^{\prime}$, had better nat be uaed.
§ The declination seems to be affected by a disturbance, the ralue, $7^{\circ} 17^{\prime}$, being too small.
|f Oecupied for fntensily June 22 and 23, 1859, and July 30,1859 ; for dip, June 23 and July 29 . Mean date for dip and intensity, July 11.

APPENDIX No. 24.

Report of Assistant Charles A. Schott on the latest results of the discussion of the secular change of the magnetic declination, accompanied by tables showing the declination (variation of the needle) for every tenth year from the date of the earliest reliable observation, for twenty-six stations on the Allantic, Gulf, and Pacific coasts of the United States.

Computing Division, Coast Survey Office,
 November 4, 1859.

Dear Sir: In accordance with the Superintendent's letter of January 21, 1859, I have prepared a set of tables for practical use, giving the secular change of the magnetic declination, and showing for every tenth year, from the date of the earliest reliable observations to the present time, the magnetic declination (commonly called the variation of the magnetic needle) for stations on or near the northeastern coast of the United States, and also for some stations on our southern and western coasts-as derived from my several discussions of the secular change, in which have been included the latest data in possession of the Coast Survey. For the eastern and southern coasts the following papers may be referred to: Coast Survey Report for 1855, Appendix No. 48, pp. 306-337: Coast Survey Report for 1858, Appendix No. 25, pp. 192-195; and Appendix No. 26, pp. 195-197. For the western coast, Coast Survey Report for 1856, Appendix No. 31, pp. 228-235, may be consulted.

In general, the secular change of the declination appears to be of a periodic character, but
in no instance has a whole cycle been completed on either coast. Its length, therefore, remains necessarily in a great measure uncertain, and the tentative analytical process so far followed has for its main object the proper representation of all reliable observations made at any one station, so as to furnish the means of interpolation, and also to enable us to calculate the magnetic declination for any required place and date within the limits of the discussion. In the investigation of 1855 a linear function was used in the discussion, which does not involve the duration of the period, and on this account the results were, in regard to time, of rather limited extent. -(See remark on p. 337 of Report for 1855.)

For the Western Coast stations, I still prefer to retain this form of the discussion. Subsequently, by means of the knowledge gained in that discussion, an attempt was made to substitute a circular function, directly involving a period or periods, the length of which, as well as all other numerical co-efficients in the formula for the secular change, has been determined by applying the method of least squares. The use of a circular function-commenced in 1858 with two stations-is now extended to eighteen, within the limits stated above, and it has also been applied to some stations in Canada, the southern coast of the United States, and Central America, in order to furnish material for the generalization of the law, so far as ascertained, in reference to epochs and rate of change. A secondary period within the first was traced at several stations, its length, however, being much more variable and uncertain was found fluctuating between one-half and one-fifth of the primary period, while its amplitude was on the average fifteen times smaller than that of the primary wave for stations forming group 1, or within the geographical limits of Portland, Burlington, and Williamsburg. This smaller amplitude was found nearly constant, and equal to $0^{\circ} .4$.

To make the present paper more complete, it contains also the record of all observations used in the discussion not heretofore published in the Coast Survey reports.

As long as the cause producing the secular change remains altogether unknown, it is not safe to trust too far to the continuation of the law thus empirically derived; and in the following tables no value, deduced by the formula, has been inserted antecedent to the first observation by more than ten years. The tabular values may, therefore, be regarded in the light of a strict interpolation between actual observations; and since the analytical treatment will equalize and remove, in a measure, accidental errors of observation, they may be considered as certainly more trustworthy than any single observation, particularly in cases where the number of observations available for the discussion exceeds half a dozen, properly distributed in relation to time. The probable error of any single representatiou will be found in the second table. For all ordinary use by the surveyor (or navigator) the tabular values are sufficiently precise; when greater accuracy is required, the annual inequality of the declination and the diurnal variation for the time required must be taken into account. The former correction will probably not exceed, in any case, one minute, and the latter may amount in summer, in maximo, to minus or plus six minutes, and in winter to minus or plus three minutes-numbers which were derived from Prof. Bache's discussion of the Philadelphia observations. The table will also answer for intermediate places, for which they furnish the necessary data of interpolation.

It is proper to state that the present formulæ should be considered as liable to future changes and improvements depending on the accumulation of additional observations; and it is hardly necessary to state that their number also may hereafter be considerably increased by the accession of new material. The ntility of a publication of tables showing the declination for
every tenth year was suggested by Mr. T. B. Brooks. In the nomerical calculations, I was assisted by Mr. G. Rumpf, of the computing division.
Formule expressing the secular change of the magnetic dectination (commonly called variation of the magnetic needle) used for calculatiny the tabular values.
Group I.-Stations between Portland, Me., and Williamsburg, Va.-A positive sign of D indicated west declination, a negative sign east declination: n equals the number of years (and fraction of a year) from 1830, positive for years after and negative for years before this epoch. Longitudes are reckoned from Greenwich.

No,	Locality.	Latitude.	Longitude,	
		-	- ,	-
1	Burlington, $\mathrm{Vt}_{\text {. }}$	44 27	7310	$D=+11.55-4.10 \cos (1.30 n+36)+0.21 \cos (7.2 n+200$.
2	Portand, Me....	4339	$70 \quad 16$	$D=+10.70-2.63 \cos (1.33 n+87$.
3	Portsmouth, N. H....	4305	$70 \quad 43$	$\mathrm{D}=+10.20-2.45 \mathrm{cos}(1.37 n+72$.
4	Ruthand, Vt.	4336	7255	$B=+9.89-3.66 \mathrm{cos}(1.5 \mathrm{~s}+45$.
5	Cambridge, Mass	42. 23	7107	$\mathrm{D}=+9.65-2.78 \cos (1.30 n+71)+0.92 \cos (2.7 n+220$.
6	New bury yort, Mass.....	4248	$70 \quad 49$	$\mathrm{D}=+9.55-2.56 \cos (1.4 n+78$.
7	Boston	42.20	7102	$D=+9.16-2.55 \mathrm{cos}(1.39 n+76)+0.22 \mathrm{cos}(3.6 n+222$.
8	Providencc, R. I.	4.150	71.24	$\mathrm{D}=+9.11-2.99 \cos (1.45 n+58)+0.19 \cos (7.2 n+246$.
9	Hartford, Conn	41.46	7240	$D=+8.60-3.59 \cos (1.25 n+45$.
10	New Haven, Conn.	41.17	7255	$\mathrm{B}=+3.13-3.49 \cos (1.33 n+39$.
11	Albaby, N. Y......	4239	7343	$D=+7.65-2.74 \cos (1.42 n+62$.
12	Orford, N. Y......	$42 \quad 27$	7542	$D=+6.55-3.69 \cos (1.3 n+40$.
13	New York	4043	7400	$D=+6.47-2.32 \cos (1.6 n+55$.
14	Phitadelphia	3858	$75 \quad 10$	$D=+5.37-3.44 \cos (1.6 n+39$.
15	Hathorough, Penn.....	$40 \quad 07$	7508	$\mathrm{B}=+5.23-3.28 \cos (1.54 n+47)+0.22 \cos (4.1 n+347$.
16	Baltimore .	3516	7635	$\mathrm{n}=+2.70-2.25 \cos (1.5 \mathrm{~s}+49$.
17	Washingtor, \%. ©.....	$38 \quad 53$	7700	$D=+2.42-2.0 \cos (1.5 n+49$.
18	Willaamshurg, va.........................	3715	$76 \quad 40$	$D=+2.22-2.6 \cos (1.5 n+22$.

The following table contains the number (n) of observations (single or combined) upon which each formula is based; the probable error (ε_{0}) of an observation, expressed in minutes, as a measure of the degree of accuracy with which the observations are represented; the epoch of the last minimum of west declination, (or of maximum east declination,) together with the least west declination, (greatest east,) and lastly the annual variation for the years 1840,1850 , and 1860, expressed in minutes. The positive sign expresses west declination increasing, (east diminishing.)

Locality.	n.	s**	Epoch of minimum west dechnation.	Least west declination.	ANMOAL CHANGE.		
					Variation for 1840.	$\begin{aligned} & \text { Variation for } \\ & 1850 . \end{aligned}$	$\begin{aligned} & \text { Variation for } \\ & 1860 . \end{aligned}$
	9		1813	7.4	1 +4.1	+ 3.4	+4.5
Portiand, Me	5	14	1765	+8.1	$+3.8$	+3.4	$+3.0$
Portsmouth, N. H.	4	10	1777	+7.7	$+3.5$	$+3.5$	$+3.2$
Rutiand, Vt........	4	18	1800	$+6.2$	$+4.9$	$+5.5$	$+5.7$
Cambridge, Mass................	22	12	1782	+6.9	$+4.3$	$+4.3$..**..
Newburyport, Mass.	4	12	1774	$+7.0$	± 3.7	± 3.6	$+8.3$
Borton	8	10	1789	$+8.7$	$+4.5$	$+4.3$	$+3.7$
Providence, R. I..............	30	5	1779	+6.7	$+5.3$	+8.8	$+3.0$
Elartiord, Conn....................................	6	14	1794	$+5.0$	$+4.0$	$+4.4$	$+4.6$
New Haven, Oonn...... .	14	10	1801	$+4.6$	$+3.8$	± 4.4	+4.7
Albany, N. Y. ..	10	3	1787	$+4.9$	+3.9	$+4.0$	$+3.9$
Onford, N. Y. ...	10	11.	1796	$+3.0$	$+4.0$	± 4.6	$\underline{+4.9}$
New York	13	13	1795	$+4.1$	$+3.7$	$+3.9$	+3.8
Philadelphia.,	11	16	1805	$+10$	$+4.7$	+ 5.3	± 5.4
Hatborough, Penn.........	18	5	179	$+1.6$	$+4.2$	± 4.3	+4.4
Batimore	3	13	1798	$+0.5$	+3.2	+ 3.4	$+3.4$
Washington, B. C......	6	8	1798	$+0.4$	$+9.8$	+ 8.1	$+3.1$
Wiliamburt, Va...e. .e.e.e.e......................	3	15	1185	+0.4	$+8.4$	+3.2	+3.7

Table of magnetic declinations for eighteen stations, forming group 1, on or near the northeastern coast of the United States, between the years 1680 and 1860. West declination is indicated by a plus sign, east declination by a minus sign, and is expressed in degrees and fractions of a degree.

Year.																皆	5 0 0 E E. E. 高 3	
	-		-	-	-	-	-	-	-	-	-	-		-	\bigcirc	-	-	-
1690													8.7		+8.3			+4.8
1700					+9.9		+9.7						B. 5	+8.8	7.9			+4.8
1710					9.4		9.0	+10.4					8.0	8.4	7.5
1720					8.8		8.3	9.5					7.6	7.9	7.0			
1730					8.4		7.8	8.9					7.0	7.1	5.3	\cdots		
1740					7.9		7.4	8.3					6.4	6.3	5.6			
1750					7.5		7.2	7.7					5.8	5.3	4.7		\ldots
1760		+8.1			7.2		7.0	69		+6.1			5,2	4.4	3.8			
1770		8.1	$+7.8$		7.0	$+7.0$	6.8	6.3		5.5			47	3.5	2.9			+1.2
1780		8.3	7.7		5.9	7.0	6.8	6.1	+5.2	5.0			4.4	2.8	2.2			0.7
1790	$+7.8$	8.5	. 9	+6.3	6.9	7.2	6.8	6.3	5.0	4.8		$+3.0$	4.2	2.2	1.8			+0.9
1800	7.5	8.9	8.1	6.2	7.1	7.5	7.0	6.4	5.0	4.6		3.0	4.2	1.0	1.8		+0.4	-0.2
1810	7.3	9.4	8.5	6.3	7.5	7.9	7.3	6.5	5.2	4.7	$+5.4$	3.1	43	1.9	2.1	+0.6	0.5	0.4
1820	7.6	10.0	8.9	0.7	8.0	8.4	7.8	6.8	5.6	5.0	5.8	3.4	4.7	2.2	2.6	0.8	0.8	0.4
1830	8.30	106	94	7.3	B. 58	9.0	8.41	7.46	6.1	5.42	6.3	3.82	5.16	2.70	3.20	1.2	1.1	-0.2
1840	9.07	11.2	10.0	8.1	9.28	9.6	9.13	8.38	6.7	5.98	7.0	4.43	5.73	3.41	3.89	1.7	1.5	+0.1
1850	9.60.	11.8	10.6	8.9	10.0	10.3	9.88	9.14	7.4	6.71	7.7	5.15	6.37	4.25	4.61	2.4	2.0	0.6
1880	+10.30	$+12.3$	+11.2	+9.9	+....	+10.8	+10.56	+9.68	+8.1	+ 7.46	+8.3	+5.95	+ 7.01	+ 5.19	+ 5.32	+2.9	+2.6	+1.2

Note.-At Cambridge, Mass., the observations after 1855 require further examination. At Williameburg the values between 1700 and 1770 were not considered sufficiently reliable for insertion. The expression for Baltimore depends for length of period and time of minimum on the Washington formula.

The total number of observations upon which the tabular values and the formula are based is 180; the average number for any one station is 10 ; and the average probable error of any single representation is $\pm 11^{\prime}$.

If we arrange the stations geographically, we find that at the eastern stations the minimum (west) declination occurred earlier than at the more western and southern stations; thus, from six stations, between Portland and Providence, it occurred about the year 1777 in the Connecticut and Hudson valleys, and along the sea-coast as far south as Washington; the year of the minimum does not differ much from 1797; Williamsburg, in Virginia, gives 1815. The transition, as we pass from the New Eugland States, is somewhat abrupt, but too well marked to be accidental. Extending the investigation further north, I find for Quebec, Canada, the year of the minimum 1769; going further west, we find that at Toronto it must have occurred before the year 1842; and at York Fort, Hudson Bay, I find the year 1842, (as already ascertained by Gen'l Sabine, after the receipt of Capt. Blakiston's observations of 1857.) This latter station is nearly halfway across the continent; and if we proceed to the Western Coast, we find that the eastern declination there has not yet reached its maximum, (equivalent to a western minimum,) but it is highly probable that it will reach it before the close of the present century. The present reverse, or western motion of the isogonic lines in our eastern States, which commenced about the year 1777, will gradually be communicated to the more westerly stations, and will, it is highly probable, be participated in on our Western Coast before or at the close of the present century, the direction of the motion in this latter locality being at present still to the eastward and southward, though with a diminishing rate. - (See p. 235 of Coast Survey Report of 1856.)

The following equations, constructed for the two northernmost stations, may be added here: York Fort, Hudson Bay, $D=+5^{\circ} .1-14^{\circ} .2 \cos \left(1^{\circ} .6 \mathrm{n}+340^{\circ}\right.$.)
Quebec, Canada, $D=+12.84-3.7 \cos (1.6 n+97$.
The second group comprises the stations on the southern portion of the Atlantic Coast and Gulf Coast, only three in number, to which have been added some stations located further south.

Group II.-SSouthern stations.

No.	Locality.	Latitude.	Longitude.	Magnetic declination.
		\bigcirc -	\bigcirc	$\bigcirc 000$
1	Charleston, S. C.	3245	7951	$\mathrm{D}=-2.12-2.02 \cos (1.55 n .+56$.
2	Savannah, Ga.	3205	81. 05	$\mathrm{D}=-2.95-1.24$ cos. (1.5 n. +20)
3	Mobile, Ala.	3041	8802	$\mathrm{D}=-6.5-0.77 \cos (1.6$ n. +16.$)$

Locality.	n.	\&.			Annual change.		
					1840.	1850.	1860.
				\bigcirc	1	,	,
Charleston, S. 0.	5	± 9	1794	-4.1	+3.1	+3.2	$+3.2$
Savannah, Ga..	4	12	1817	-4.2	$+1.1$	$+1.5$	$+1.8$
Mobile, Ala.	6	12	1820	-7.3	$+0.7$	$+0.9$	$+1.1$

Proceeding in a southerly direction, the next station discussed outside of the boundaries of the United States is Havana, Cuba, latitude $23^{\circ} 09^{\prime}$, longitude $82^{\circ} 22^{\prime}$, for which place I found $\mathrm{D}=-4^{\circ} .82-1^{\circ} .45 \cos \left(1.3 \mathrm{n}+26^{\circ}\right)$ with 1810 as the year of maximum east declination.

The values collected for Jamaica were not discussed, but the 9 values I was able to obtain will be found in the appended record. For Panama, New Granada, lat. $+8^{\circ} 57{ }^{\prime}$, long. $79^{\circ} 29^{\prime}$, the southernmost station discussed, I find $D=-6{ }^{\circ} .9-1^{\circ} .04 \cos \left(1.2 n+74^{\circ}{ }^{\circ}\right.$) an equation satisfying the observations, but not considered as preferable to the following expression: $\mathrm{D}=-5^{\circ} .57-2^{\circ} .21 \cos \left(1^{\circ} .2 \mathrm{n}+34^{\circ}\right.$, which supposes the maximum to occur in 1802.

Going westward and northward, I found for Vera Cruz, Mexico, lat. $19^{\circ} 12^{\prime}$, long. $96^{\circ} 09^{\prime}$, $D=-4^{\circ} .2-5^{\circ} .04 \cos \left(1^{\circ} .1 \mathrm{n}+7^{\circ}\right.$, with the maximum east declination in 1824.

The following table has been calculated from the preceding equations:

Year.	Charleston, B. C.	Savannah, Ga.	Mobile, Ala.
1770.	$\begin{gathered} 0 \\ -3.7 \end{gathered}$	\bigcirc	0
1780.	-4.0		
1790.	-4.1		
1800	-4.1	-4.1	-7.1
1810.	-4.0	-4:2	-7.2
1820.	-3. 6	-4.2	-7.3
1830.	-3.2	-4.1	-7.2
1840.	-2.8	-4.0	-7.1
1850.	-2.2	-3.7	-7.0
1860.	-1.7	-3.5	-6.8

Thefollowing formulx for stations on the Western Coast between San Diego and Cape Disappointment, forming group 3, have been copied from page 234 of the Report for 1856:

The total number of observations used for the construction of the above formulæ is 21 , the greatest number for any one station being 6, the least 3 ; the average probable error of any single representation is $\pm 12^{\prime}$. The annual change (increasing east declination) may be taken the same for all stations, viz:

In 1840	-1.6
In 1850	-1.2
In 1860	-0.8

Years.	San Diego.	Monterey.	San Francisco.	Cape Mendocino.	Cape Disappointment.
1790	$\begin{gathered} \stackrel{\circ}{11.1} \end{gathered}$	$\begin{gathered} \circ \\ -11.4 \end{gathered}$	$\begin{gathered} \circ \\ -13.6 \end{gathered}$	$\begin{gathered} \circ \\ -15.1 \end{gathered}$	$\begin{gathered} \circ \\ -18.9 \end{gathered}$
1800	11.4	12.3	14. 1	15.4	19.1
1810	11.7	13.0	14.5	15.7	19.3
1820	12.0	13.6	14.8	16.0	19.5
1830	12.2	14.2	15.1	16.3	19.7
1840	12.3	14.6	15. 4	16.6	19.8
1850	12.5	15.0	15.6	16.9	20.0
1860.	-12.6	-15.3	-15.8	-17.2	-20.2

The next station discussed, south of California, is San Blas, Mexico, lat. $21^{\circ} 32^{\prime}$ north, long. $105^{\circ} 16^{\prime}$ west of Greenwich, which gave the following expression.-(See p. 234, Coast Survey Report of 1856.)

$$
D=-8^{\circ} .63-0.042 n-0.00031 n^{2}
$$

which equation, when compared with those above, shows a reversal in the sign of the co-efficient of n^{2}, or an opposite curvature. The annual easterly increase at San Blas in 1850, according to the above formulæ was 3.3 per annum. This station, however, is already within the area of the peculiar form of the isogonic lines, which position may possibly render an immediate comparison impracticable. The station Sitka, in Russian America, is the next place, north of Washington Territory, discussed. I find for it the approximate formula:

$$
\mathrm{D}=-28^{\circ} .12-0.0607 \mathrm{n}-0.00025 \mathrm{n}^{2} .
$$

It depends for its latest declination (1858) on the tabular value assigned by Mr. Evans on his late map of the lines of equal magnetic variation reduced to 1858.

Record of all observed declinations made use of in the above paper, not heretofore published in the United States Coast Survey Reports.

The following record containing only additional observations, we have to consult the preceding reports of $1854,{ }^{*}{ }^{\prime} 55$, ' 56 , and ' 58 , if we desire to collect all results which may have been used at any one station. The stations are arranged geographically, commencing with the northern and eastern stations, and concluding with the stations on the Western Coast. $\mathrm{D}=$. observed declination.

York Fort, Hudson bay.-(From the proceedings of the Royal Society of London, for January, 1858, by Maj. Gen. Sabine.)

1725....	$=19^{\circ}$	$00^{\prime} \mathrm{W}$. ; Captain Middleton.	
1787....	5	00	W.; Hansteen's map.
1819. Sep.	6	00	E.; Sir J. Franklin.
1843. July	9	25	E.; Capt. Lefroy.
1857. Aug.	7	37	E.; Capt. Blakiston.

Quebec, Canada.
1649.... D $=16^{\circ} 00^{\prime}$ W.; P. Bressau, Hansteen's Erdmag's. Barlow Gycl. Met.
1686.... $\quad 15 \quad 30$ W.; De Hayes
1810.... 1100 W.; Becquerel, Traité du magnetisme.
1814.... $\quad 1150 \mathrm{~W}$. Kent; Becquerel, Traité du magnetisme.
1831.... 1338 W.; Bayfield; " " ،
1842.... 1412 W.; Capt. Lefroy.
1859. July 1617 W.; Chas. A. Schott, Assistant United States Coast Survey.

Burlington, Vt.-(See former observations in 1855 report, pp. 326, 337.)
1837.... D $=8^{\circ} 45^{\prime} \mathrm{W}$.; Prof. Benedict.
1840.... 942 W. ; J. Johnson; Thompson's History of Vermont.
1845. June $\quad 922$ W.; D. J. Locke; Smithsonian Cont. to Knowledge, Fol. III, 1852.

Portland, Me.
1763.... D $=7^{\circ} 45^{\prime}$ W.; J. Winthrop, Sill's Journal XXXIV, 1838, Prof. Loomis's collection.
1775..... 830 W.; J. F. De Barre's Atlantic Neptune, London, 1781.
1845. June 1128 W.; Dr. J. Locke, Smithsonian Cont. to Knowl., Vol. III, 1852.
1859. July 1220 W.; Chas. A. Schott, Assistant U.S. Coast Survey. (See also Coast Survey Report of 1856, p. 215.)
Portsmouth, N. H.
1771.....D $=7^{\circ} 46^{\prime}$ W.; Holland; Sill's Journal XXXIV, 1838; Prof. Loomis's collection.
1771.... 748 W.; Holland.
1775.... $\quad 7 \quad 45 \mathrm{~W}$. ; J. F. De Barre's Atlantic Neptune.
1859. July 1115 W.; Chas. A. Schott, Assistant U. S. Coast Survey. (See also Coast Survey Report of 1856, p. 215.)
Rutland, Vt.
1789. Apr. $D=7^{\circ} 03^{\prime}$ W.; Dr. Williams; Sill's Journal, XVI, 1829.
1810. May 604 W.; "

- The table of the declinations in that report is reprinted and enlarged in the report of 1855.

1811. Sept. $D=6^{\circ} 01^{\prime}$ W.; Dr. Williams; Sill's Journal, XVI, 1859.
1812. July $\quad 949$ W.; Chas. A. Schott, Assistant U. S. Coast Survey.

Cambridge, Mass.-(See pp. 317, 318 of Coast Survey Report of 1855; also Coast Survey
Report of 1856, p. 222.
1845. June D $=9^{\circ} 32^{\prime}$ W.; Dr. J. Locke; Smithsonian Cont. to Knowl., Vol. III, 1852.
1855. May $1054.6 \mathrm{~W} . ;$ W. C. Bond, (in a letter to Superintendent of Coast Survey.)
1856. May $1050.3 \mathrm{~W} . ; \quad$ " \quad.
1856. July 1006 W.; Karl Friesach, Imp. Academy of Sciences, Vienna, Vol. XXIX, 1858.
Note.-More recent observations still require examination.
Newburyport, Mass.
1775....D $=6^{\circ} 45^{\prime}$ W.; J. F. W. De Barre's Atlantic Neptune.
1781.... 718 W.; Dr. Williams; Sill's Journal, XXXIV, 1838, Professor Loomis's collection.
1859. July 1058 W.; Chas. A. Schott, Assistant United States Coast Survey.
(See also Coast Survey Report, 1856, p. 215.)
Boston, Mass.
(See Coast Survey Report, 1855, pp. 316, 317, 337.)
Providence, R. I.
(See Coast Survey Report, 1855, pp. 307, 308, 309, 337.)
Hartford, Conn.

$1786 \cdots \mathrm{D}=5^{\circ} 25^{\prime} \mathrm{W} . ;$ Dr. Williams;		
1810....	446 W.; Asher Miller;	Professor Loomis' collection in Sill's Jour-
1824.	545 W.; N. Goodwin;	
1828.	603 W.; N. Goodwin;	
1829.	603 W. ; N. Goodwin;	
1859. July	$804 \mathrm{~W} . ;$ an interpolated	ue from observations at Springfield and Ne
	Haven in 18	and 1855.

New Haven, Conn.
(See Coast Survey Report, 1855, pp. 319, 320, 337.)
Albany, New York.
1847. Nov. $D=7^{\circ} 35^{\prime} \mathrm{W} . ;$ Regent's Report, (geological survey.)
1856. Sept. 835 W.; Karl Friesach, Imperial Academy of Sciences, Vienna, Vol. XXIX, 1858.
(See also Coast Survey Report, 1855, pp. 328, 337; and Coast Survey Report, 1858, p. 191.)
Oxford, New York. -The following observations, marked E. B. W. C., are from a letter of Mr.
E. B. W. Call to the Superintendent of Coast Survey, December 22, 1858 :
$1792-95 \cdot \mathrm{D}=3^{\circ} 00^{\prime}$ W.; E. B. W. C.
1817.... 300 W.; E. B. W. C.
1828. July 430 W.; E. B. W. C.
1834. Oct. 352 W.; Regent's report: Sill's Journal, XXXIV, 1838.
1836. Oct. 409 W.; Regent's report; Sill's Journal, XXXIV, 1838.
1838. July 430 W .; Regent's report; observed at Guilford.
1849. Nov. $\quad 511$ W.; E. B. W. C.

1857. Apr. $=$	$5^{\circ} 44^{\prime}$ W.; E. B. W. C.	
1858. Feb.	5	47 W.; E. B. W. C.
1858. Dec.	5	50 W.; E. B. W. C.

New York.
(See Coast Survey Report of 1855, pp. 320, 321, 333, and 337; also Coast Survey Report, 1856, p. 217.)
Philadelphia.
(See Coast Survey Report of 1855, pp. 313, 314 and 337.)
Hatboro', Pa.
(See Coast Survey Report of 1858, pp. 192, 193, 194, and 195.)
Baltimore, Md.
$1808 \cdots \cdot \mathrm{D}=0^{\circ} 10^{\prime}$ to 15^{\prime} W.; D. Byrnes, Vol. XVIII, 1830,Sill's Journal.
(See also Coast Survey Report, 1856, pp. 219, 227 ; also Coast Survey Report, 1858, p. 191,
Washington, D. C.)
Washington, D. C.
(See Coast Survey Report, 1858, pp. 195, 196, 197.)
Williamsburg, Va.
$1694 \cdots \cdot \mathrm{D}=5^{\circ} 00^{\prime} \mathrm{W}$. ; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
$1780 \ldots .{ }^{2} 50 \mathrm{~W}$. ; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
1809.... $0 \quad 33$ E.; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
1856. Aug. 104 W. ; deduced from observations at Petersburg, Old Point Comfort, and Norfolk.
Charleston, S. C.
1857. Apr., $D=1^{\circ} 56^{\prime}$ E.; derived from observations at Savannah in 1852 and 1857.
(See Coast Survey Report, 1855, pp. 322, 323.)
Savannah, Ga.
1817.... $\mathrm{D}=4^{\circ} 00^{\prime} \mathrm{E}$; Becquerel, Traité du magnetisme.
1838.... 505 E.; Sill's Journal, XXXIX, 1840.
$1839 \ldots .331$ E. ; Sill's Journal, XXXIX, 1840.
(See also Coast Survey Report, 1856, p. 220, and Coast Survey Report, 1858, p. 192.)
Mobile, Ala.
(See Coast Survey Report, 1855, p. 323; also Coast Survey Report, 1858, p. 192.)
Havana, Cuba.
(See Coast Survey Report, 1855, p. 324.)
1357. January, D $=5^{\circ} 15^{\prime}$ E.; Karl Friesach, Imperial Academy of Sciences, Vienna, Vol. XXIX, 1858.
Jamaica, West Indies.
$1732 \ldots$ D $=6^{\circ}$ to $6^{\circ} 5^{\prime}$ E.; J. Harris, at Black river in March and April, Phil. Trans., 1733.

1789-1793 $6^{\circ} 50^{\prime}$ E.; J. Leard, map of Port Royal.
1791-1792 $\quad 6 \quad 45$ E.; J. Leard, map of Port Royal.
$1819 \ldots . . .450$ E. ; De Mackau, Becquerel's traité du magnetisme, Paris, 1846.
1821.... 450 E.; De Mayne, Becquerel's traité du magnetisme, Paris, 1846.
1822.... 454 E. ; Owen, Becquerel's Traité du Magnetisme, Paris, 1846.
1832.... 513 E.; Foster, Becquerel's Traité du Magnetisme, Paris, 1846.

1833?... 440 E. ; from a map.
1840?... 400 E.; General Sabine's isogonic map of the Atlantic Ocean.
1857. Mar. 340 E.; Karl Friesach, Imperial Academy of Sciences, Vienna, vol. XXIX, 1858.
Panama, New Granada.
1775. Nov., $D=7049^{\prime}$ E.; Encycl. Brit.
1791. Dec. $\quad 7 \quad 49$ E.; Encycl. Brit.
$1802 \ldots . . \quad 800$ E. ; Encycl. Brit.
1822...... 700 E. ; Hall, Becquerel's Traité du Magnetisme.
1837...... 7 . 02 E.; Sir E. Belcher.
1849...... 655 E.; Major Emory, (Mexican boundary survey.)
(See also Coast Survey Report, 1856, p. 223.)
Vera Cruz, Mexico.
1726-27. $\mathrm{D}=2^{\circ} 15^{\prime}$ E.; J. Harris, Phil. Trans. R. S., anno 1728.
1769.... 640 E.; Ency. Brit., 7th edition, 1842.
1769. Mar. 628 E.; Ency. Brit.
1776.... 7 30 E.; Don Ulloa, Ency. Brit.
1815.... 1037 E.; Malony, Ency. Brit.
1819. Apr. $\quad 9 \quad 16$ E.; Wise, Ency. Brit.
(See also Coast Survey Report, 1856, p. 214.)
San Diegn, Monterey, San Francisco, and Cape Mendocino, Cal., and for Cape Disappointment, Washington Territory.
(See Coast Survey Report, 1856, pp. 228 to 235.)
Sitka, Russian America.

$1804 \ldots . \mathrm{D}=26^{\circ}$ 45' E. ; Lissiansky,		
1824.	27 30 E.; Kotzebue,	Becquerel's Traité du Magnetisme.
1829.	2819 E. ; Erman,	
1858	3000 E.; from Evans'	map of isogonic lines for 1858.
	Yours, very respectfully	

CHAS. A. SCHOTT,
Assistant Coast Survey, in charge C. D.
Capt. W. R. Palmer, T. E.
Assistant Coast Survey, in charge of office.

APPENDIX No. 25.

Gulf Stream explorations.-Third memoir: Distribution of temperature in the water of the Florida channel and straits: By A. D. Bache, Supt. U. S. Coast Survey. (Communicated, by authority of the Treasury Department, to the American Association for the Advancement of Science.)

The results of the explorations of the Gulf Stream in the survey of the coast have been communicated to the Association from time to time, as phenomena of peculiar interest have been developed.
The original plan of these explorations having been carefully studied, and having proved successful, has steadily been adhered to. The more recent observations have been directed to that part of the stream, between Havana and Cape Florida, known as the channel and strait of Florida. I have now to present four sections, showing the depth and temperature in this most important region of the Gulf Stream. These results are from the observations of Commander B. F. Sands and Lieut. Comg. T. A. Craven, U. S. N., assistants in the Coast Survey, whose names have already been mentioned before the Association in connection with explorations of the Gulf Stream, and furnish a sufficient guarantee that the results have all the reliability which care, experience, and zealous labor could give them.

Section No. 1, (Sketch No. 35,) from Cape Florida to Bemini, was run by Lieut. Comg. Craven in May, 1855; Section No. 4 by Commander Sands in May, 1858; and Sections Nos. 2 and 3 by Lieut. Comg. Craven in April and May of the present year, 1859.

Sections 2, 3, and 4 are perpendicular to the direction of the stream at distances of about fifty, one hundred, and two hundred miles from Cape Florida. The lines of sections are shown upon the chart marked A. The Florida strait is funnel-shaped, being about ninety miles wide at Havana and about forty-five miles wide at Cape Florida, the narrowest part.

Form of bottom.

The area of the water way and the form of the bottom are represented on diagrams 7, 8, 9, and 10, (Sketch No. 35.) The Arabic numerals at the top represent distances from the Florida coast (the keys) in miles, and the numbers below them the positions at which observations were made. The numbers at the left hand represent the depth in fathoms.

Commencing at the Cape Florida section, it will be seen that there is a rapid descent of the bottom to the Havana section, from three bundred and fifty fathoms to eight hundred fathoms, or twenty-seven huadred feet in a distance of two hundred miles. The most shallow, as well as the narrowest part of the stream, is, therefore, at Cape Florida. The deepest water follows the coast of Cuba and the Grand banks, the depth being eight hundred fathoms at a distance of only five miles from Havana, nearly four bundred fathoms within five miles of Salt Key bank, and three hundred fathoms close to the island of Bemini. The descent from the Florida side is for the most part gradual, but from the opposite side abrupt. This ϵ ffect seems to have been produced by the action of the sub-current in wearing a deeper channel upon the concave side of the stream. At Havana there is an abrupt descent of nearly a mile within five miles of the shore, while ou the side of the Tortugas and Key. West the water is comparatively shallow and the descent gradual. This fact goes to confirm the conclusion that the stronger current
of the Gulf Stream makes the circuit of the Gulf of Mexico; since, if it impinged directly upon the islands of Key West and the Tortugas, we should find its effects in the wearing of a deeper channel on that side.

Templeratures.

Change of temperature with depth.

In a former communication the law of change of temperature with depth was discussed, and types of the curves representing the law were given for different parts of the stream. These curves were all merely modifications of a more general form. Thus, the cold water between the Gulf Stream and the coast gave one form, the axis of the stream another, and the water beyond the axis a third form, while in the Strait of Florida a fourth was developed. It would be natural to expect, in the course of many years' explorations by different individuals, with different instruments, not even of the same class, that general phenomena of this character should present some contradictions and some inexplicable results.

Experience, however, has confirmed the first conclusions and the constancy of the phenomena. It is not difficult, having the curve representing the temperatures at any position from the surface to the depth of several hundred fathoms, to determine, from the temperatures alone, in what part of the stream they were taken.

Temperature in a direction perpendicular to the stream.
Diagrams 2, 3, 4, and 5 (Sketch No. 35) show the changes of temperature for the same depth in each of the sections, and diagrams 7, 8, 9, and 10 the depth for the same temperature.

Bands of warm and cool waler.

In the section from Cape Florida to Bemini the division of the stream into bands is plainly exhibited, though more faintly than in the northern sections, and the form of the bottom in this section shows also elevations and depressions corresponding to the divisions. In the sections south of Cape Florida all traces of the bands seem to disappear, as well as the ridges of the bottom. The bands, therefore, seem to have their origin near Cape Florida; and the conclusion stated some years ago as the probable one is strengthened, that they are caused by the ridges aud valleys of the bottom parallel to the general course of the stream, and along which the stream and gounter-stream have their course.

The Cold Wall.

The Cold Wall, as an exception to the remark made above in reference to the bands, is traced as far as the Tortugas, and is plainly shown in all the sections with more or less distinctness. In the Sombrero key section (No. 3) it is strongly marked at depths ranging from seventy to a handred fathoms, while in all the sections the warm water at the surface overflows the Cold Wall and reaches quite to the shore.
Diagram No. 6 represents the comparative curves of the Cold Wall in different sections of the Golf Stream, including those in the Straits of Florida. The figures at the top show the distances of the cold wall from the shore in the different sections, and the numbers on the left the degrees of temperature. The curves are drawn for different depths in the several sections, as shown in the notes at the bottom of the diagram. The dotted curves, g, h, i, k, represent the Cold Wall in the four sections under consideration.

Longitudinal sections.

It has been found very difficult to deduce any satisfactory law for the decrease of surface temperature along the axis of the stream, owing to the variability of the temperature of the waters of the regions from whence the Gulf Stream is supplied. Two modes of investigating the subject have been pursued; one, by following the stream from the Gulf of Mexico, and making hourly observations of the temperature of the water, and the nther by comparing the mean temperatures of the various sections with each other and with the temperature of the Gulf of Mexico. In the first method the vessel must be allowed to drift with the current of the stream, a difficult condition except in the best weather, even for a day, and to float along thus for hundreds of miles would rarely be practicable. Any motion communicated by sails or by steam must carry the vessel beyond the water in which she commenced her voyage, and the lateral overflow carries the water constantly from the axis towards the edges of the stream. In the comparison of mean temperatures of the different sections the fact has been established that the temperature of the water of the stream at any point may be higher than at a point nearer the source, and hence vessols in running along the stream may, and generally do, pass through water not of a constantly diminishing temperature, but from cool to warm, and the reverse. This is to be explained mainly, though not entirely, by the variability of temperature at the source.

By taking the mean temperature of any one section and going back to the date of the departure of the waters from the Gulf of Mexico as determined by the velocity of the stream, and comparing the temperatures observed with the temperatures of the Gulf waters, it was supposed that a solution of the question might be obtained. The temperatures were taken from the most authentic meteorological records of the Gulf for a series of years, and those periods sought which corresponded to the dates desired. The uncertainty of the temperatures of the waters of the Gulf of Mexico, as obtained from air temperatures taken here and there along its shores, rendered the results unsatisfactory. Enough seems to have been determined, however, to show that the surface temperature of the Gulf Stream along its course is variable; that a vessel sailing along the axis at a more rapid rate than the motion of the stream will pass through water of higher and lower temperature, depending generally upon two conditions, viz: the distance from the Gulf of Mexico, and the temperature of the Gulf at the time the water entered the straits of Florida; and further, that the latter cause is the predominating one in the parts of the Gulf Stream adjacent to the Atlantic coast, where the current is rapid.

The influence of the form of the bottom in forcing the cold counter current of the bottom upward has been adverted to, and the fact appears to be well established in the cross sections, where the ridges and valleys parallel to the direction of the stream separate it into bands of warmer and cooler water, and this conclusion, as has just been stated, is strengthened by the fact that the bands and ridges simultaneously disappear south of Cape Florida. This phenomenon is moreover strikingly exhibited in the longitudinal section of the bottom in connection with the lower temperatures,

The shallowness of the stream in the Strait of Florida, connected with the fact that the bottom falls off rapidly to the north and south, afforded an excellent opportunity for testing this question. If the cold water of the under polar current follows the bottom it should appear in the shallow part of the strait, and here the warm water of the surface and the cold water of the bottom would approach each other. Diagram No. 1 shows the curves of 40°,
45°, and 50° (bottom temperatures) along the deepest part of the stream, commencing at Sandy Hook and rumning as far as the Tortugas. All these curves rise with the bottom and pass over the ridge which divides the bed of the Atlantic from that of the Gulf of Mexico, and again fall with the slope of the bottom towards the Gulf. In the narrowest part of the strait, where the depth is three hundred and fifty fathoms, the temperature, from the surface to the bottom, ranges between 80° and 40°.

On the effects of pressure on Saxton's Deep-sea thermometer.

In the explorations of the Gulf Stream the temperatures below one hundred fathoms have mostly been detexmined by Saxton's metallic thermometer, and although the results have been consistent amongst themselves, and have agreed well with the indications of other thermometers, yet it was thought advisable to determine the effect of pressure by direct experiment.

Saxton's thermometer consists essentially of a compound ribbon of silver and platinum, fused and pressed together by rollers. This ribbon is wound in a spiral form, one end of the spiral being firmly fastened to an interior solid axis, and the other left free. Upon the free end is placed an index arm, which moves over a circular graduated scale, carrying with it a friction hand or indicator, which is left at the extreme point of the arc reached by the true index. The instrument is enclosed in a case, to which the water is freely admitted. A variation of temperature is immediately noticed, as the effect is to give a rotary motion to the index.

The experiments to determine the effect of pressure were made at my request by Mr. J. M. Batchelder, with means devised by Mr. Thomas Davison at the Novelty Iron Works. The following description of the apparatus employed is given by the last named gentleman.
"The gauge (Sketch No. 35) consists of a brass cylinder H about eight inches long, into which a steel plunger is fitted, the upper part of the plunger at A being .70 of an inch in diameter, and the lower at B about .786 , so that the difference in area of the ends is equal to one-tenth of a square inch. The cylinder is bored out a little larger than the plunger, except for about a fourth of an inch near each end, at C and D, where both are accurately fitted. To the branch E a pipe connects, communicating with the bydraulic cylinder, and leading the water into the centre of the gauge, which it reaches after passing through the chamber F, filled with sponge to prevent any impurities in the water from reaching the plunger. The upper end of the plunger connects by a wire W to a spring, as shown in the sketch at G, so constructed as to indicate pressure from 0 to 450 pounds, the spring being so strong that 450 pounds produce a movement of the plunger equal to three-eighths of an inch. It is evident that, as the difference in area of the ends of the plunger is one-tenth of an inch, one hundred pounds pressure from the water on this surface, as indicated by the balance, would equal a pressure of water of 1,000 pounds per inch, or a pressure ten times as great as that indicated by the balance throughout its scale. The only difficulty in the use of the gauge is that of fitting the plunger to the cylinder, so that, while it is perfectly free to move, it is also watertight. This difficulty, however, has been overcome, and much advantage was also derived from Mr. Batchelder's suggestion for supplying the wear of the plunger and cylinder by depositing brass on the plunger through the galvanic process."

Connected with this gauge by a pipe is a strong wrought-iron cylinder sixteen inches longby four inches in diameter, in which the thermometer was placed, the opening being firmly closed by a screw plug. This second cylinder with immersed in a tub of water for the purpose
of regulating the temperature. The thermometer once placed in the cylinder is not again removed, the index being read by means of a mirror until the observations are completed.

By the use of this apparatus the effect of pressure up to 4,000 pounds per square inch was observed upon two thermometers, and the results are given below. The observations were made to indicate the effects of $500,1,000,1,500,2,000,2,500$ pounds pressure, \&c. Seven series of experiments were made with thermometer No. 5, and five series with No. 10. The mean results show that a pressure of 1,000 pounds per square inch has no effect upon the thermometer ; at 1,500 pounds the effect is less than one degree ; and from 1,500 to 4,000 pounds ' per square inch the effect is to diminish the readings, the maximum effect being seven degrees.

The diagram (Sketch No. 35) exhibits the law of diminution by increase of pressure, and the depth corresponding to different pressures. The correction to be applied varies with the depth. For thermometer No. 5 it is only four-tenths of a degree Fahrenheit at the depth of 600 fathoms. For thermometer No. 10 it is one degree at the same depth. At 1,500 fathoms the corrections are respectively five and a half and seven degrees.

Nearly all the temperatures observed in the Gulf Stream have been taken at depths less than 600 fathoms.
Table showing differences of readings of Saxton's thermometer, under pressure and free from pressure.
THERMOMETER NO. 6.

THERMOMETER NO. 10.

Number of series.	Primever ix pounde.					
	1,600.	2,000.	2,500.	3,000.	3,500.	4,000.
1.	$\begin{gathered} 0 \\ 0.00 \end{gathered}$	$\begin{gathered} \circ \\ 2.00 \end{gathered}$	$\text { 3. } 25$	0 4.5	$\begin{aligned} & 0 \\ & 6.25 \end{aligned}$	$\text { 8. } \mathbf{2 6}$
2.	2.00	1.00	3.5	4.5	6.00	7.25
3.	0.75	2.00	3.0	3.25	5.6	6.5
4.	1.75	2.00	S. 5	4.75	5.5	7.26
5.	0.75	1.75	1. 75	8. 75	5.0	6.76
Means.-..--...	1.00	1.75	9. 00	4. 25	5.6	7.25

APPENDIX No. 26.

Report of Assistant Henry Mitchell on the physical surveys of New York harbor and the coast of Long Island, with descriptions of apparatus for observing currents, de.

Boston, September 30, 1859.
SIR: I have the honor to inform you that the field-work comprehended in your plan for the physical survey of New York harbor has been completed by the operations of the past season.

At the commencement of this work it was quite impossible to foresee the form it would ultimately assume, the questions to which it would give rise, or the investigations to which it would lead. Neither the precise character of the observations to be made, nor the extent to which they should be carried, could be estimated in an undertaking in many respects quite novel and without precedent.

Certain changes in the forms of shoals and channels had been revealed by the comparison of the early surveys with those of more recent date, and the questions arose-To what causes are these changes due? and-To what end do they progress? What are the natural forces which build in one direction shoals and beaches, while opening elsewhere new channels, or wearing away the shores? These were the problems for the solution of which the physical survey was instituted.

The general plan of this work, to which you first directed my attention, has been adhered to throughout; since your subsequent instructions have referred to the limits of each season's work, rather than to the character of it. By this plan we have been required to observe, and make note of, every natural operation, whether of tides, currents, winds or waves; in fine, to compile for a certain period a complete physical history of these elements from a systematic course of inquiry.

The field over which our observations have spread includes not only the harbor proper, but its approaches in all directions, extending up the Hudson river to Fort Washington, into Long Island sound as far as Execution light, through the kills, over the bar, and sixty miles out to sea. Throughout this field the periods, velocities, and paths of the various currents are determined, as are also the experiences of the tide waves (both from the sound and the ocean) in the different channels and avenues which they traverse. The disturbing effects of winds and freshets, the appearance of rips and eddies, together with general meteorological phenomena, have all been noted carefully.

The whole number of tidal and current stations which we have occupied exceeds one hundred and fifty, and at these the observations number many thousands. Many of the tidal stations were accupied one or more entire lunations, and at some of the current stations the observations were continued in unbroken series of balf-hourly records for seven, nine, and fourteen days. The aggregate amount of time spent on the field-work has not exceeded twelve months.

Rough computations of our observations were made in the intervals between the working seasons, and these acquainted us with the progress we were making, aud pointed out the direction which succeeding inquiries should take. From the results of our labors we gained at each step confidence and encouragement. What appeared at first a tangled skein of accidental or inconstant causes, we ultimately recognized as orderly and harmonious relations; and, our
methods of observing improving stoadily, the work advanced to its close at a pace constantly accelerated.

The observations of the past season were confined to no special locality, but were made at various points where previous operations were incomplete or required connecting links.

Our field-work commenced the first of J une, and the quiet weather which prevailed during this month was improved for the occupation of the more exposed stations-those near shallow portions of the bar and along the outside coast. We had designed to occupy a station which, should, if possible, lie quite beyond the reach of the New York harbor drift, and enable us to determine whether any oceanic current sweeps into the great bay formed by the coasts of Long Island and New Jersey. For this purpose we anchored, in thirty fathoms water, nearly sixty miles east-southeast of Sandy Hook, where, during a period of fifteen hours, we measured the currents at the surface, and at depths of twenty-three and one hundred and fifty feet, besides a few determinations of the mean motion for the entire depth. At this station, nearly forty miles from the nearest land, we found regular tidal currents, nearly as strong as those observed at the light-ship the previous season. No oceanic current could be detected, but the augmentation of the ebb current, caused by the drainage of the land waters, was very, appreciable. The velocities of the currents are not so regular at this station, from the fact that the depth of the moving water stratum is variable, at one time extending to the bed of the sea, at another reaching but a short distance below the surface. The directions of the flood and ebb drifts were found to be respectively west-southwest and east by south; which, making due allowance for the disturbing effects of the land waters, would indicate that the tide-wave has here a westerly motion. The land waters of which we have spoken are doubtless the combined drainage from New York harbor and the various inlets; for, extending our observations along the south shore of Long Island, we found that they outlive the tidal currents, and establish themselves as a constant coastwise stream along the eastern portion of Fire Island beach.

The stations outside of the bar were eleven in number, at which above seventeen hundred observations were recorded, and of these more than five hundred were made at points below the surface.

The greater part of our season's work lay in the lower bay or in the vicinity of the bar, where there remained some localities unexamined and others at which previous examinations had given discordant results.

From the computations which followed the field-work of 1858, it appeared that where observations were sufficiently numerous the causes of a certain class of shoals were immediately deducible from the data obtained. It was ascertained, on making a composition of the currents at each station, with the assumption that they are to be regarded as forces acting simultaneously, that the resultants take directions towards the shoals as focal points; making it evident that the sand which forms these shoals is gradually swept together from the neighboring channels. Simple as the dynamics of this natural process may be, its form can only be developed from the most accurate determinations of the elements. The resultant, for instance, may be a very small quantity from a station at which the adverse currents are very violent. In a case like this, the slightest error of observation, or even the selection of an unsuitable period, may give us a false result and lead us entirely astray. If the observations are not sufficiently frequent, they may fail to give the exact durations of certain phases of the currents; or if the positions
of the stations are not closely determined, errors enter into the directions of the forces. Δ gain: if the observations are not continued long enough to eliminate the diurnal inequalities, an undue weight will be given to some of the elements which enter into the problem. At the commencement of the past season, forewarned of these difficulties, I placed in the hands of my observers printed rules for their guidance, and required of each person a strict conformity to them. Twenty-one stations were occupied in the portion of the work to which I have just referred, and at these the aggregate number of observations reaches nearly five thousand, of which above eighteen hundred are from points below the surface. At these stations the observations were usually kept up in unbroken series of twenty-five hours each.

A more suitable period for observations of so exact a character could scarcely have been chosen; our operations were rarely suspended by bad weather, and few delays of any kind occurred.

In making observations upon bars and shoals, the disturbing effects of strong winds cannot be disregarded; for it not unfrequently happens that they change the direction of the current, or wholly reverse its course. In districts of shallow water the waves created by the winds have a motion of translation whose effect upon the \log is very great; and although the observer is alle to distinguish this sudden and uncertain motion from that of the more steady current, he cannot introduce a correction for it. Where the sea is deep, the impulses it receives from the winds result in simple undulations, giving to the \log no horizontal motion whatever, so that, even when the swell is very heavy, accurate current observations are possible. As far as our experience has gone, we have never observed in the waves any power of transportation where the depth of water exceeds three fathoms.

Above the Narrows there were eight stations occupied-three in the main channel of the harbor, two in the Hudson, and three in the East river. At these there were recorded over seventeen hundred observations, of which above eight hundred were made upon the subcurrents.

The stations in the harbor, as well as those in the Hudson river, were designed to furnish us with additional data relative to a class of remarkable counter-currents discovered the previous season. The former observations had established the fact that along the main channel the currents of the lowest water stratum maintain velocities and directions quite at variance with those near the surface. It, however, remained to be proved whether the phenomena observed were continuous from station to station or mere local conditions; and if their continuity could be sbown, the exact limits of their domain were to be ascertained. The information now in our hands affords, I am convinced, a full and faithful exhibit of these points.
The three stations in the East river lie in positions which the previous work had shown to be important, as embracing the terminus of the Hell Gate interference current. At one of these stations, which lies in the deep basin westward of the point of Blackwell's island, some curious conditions of the sub-currents manifested themselves. Here the axis of the ebb (westerly) drift was observed to lie about twenty feet below the surface throughout the entire duration of this current; in other words, the current is stronger at this depth than at any other point above or below. There are resemblances between this phenomenon and those already referred to as appearing in the main channel of the harbor, but 1 am doubtful whether we can class them together. In the discussion of our results, we propose to group the currents of the upper harbor according to tidal hours obtained from the self-registering gauge at Governor's
island, and those of the lower harbor and its approaches, according to tidal observations made simultaneously by some of our own party at Sandy Hook.

The closing work upon the physical survey of New York harbor, which we have briefly described, did not occupy us during the entire season, and there proved to be ample time for the other operations directed by your instructions, viz: inquiries into the physical conditions of the bays and inlets along the south shore of Long Island.

Glancing at a chart of our coast, one may see on the south shore of the island of Nantucket a series of small ponds separated from the sea by narrow reaches of sand. On Martha's Vineyard the same features may be observed along the outer shore, except that here the larger basins or lagoons have occasional outlets through the strips of sand beach. Further to the westward, upon the coast of Long Island, appear similar basins, so extensive as almost to form inland seas with outlets of considerable depth, through which vessels may pass. Here are fully established the forms which may be distinguished as the leading characteristics of the Atlantic coast to the southward, and of the entire Gulf shore. From the past history of the sandy portion of our sea-coast, it appears that the outlets to which we have referred are never permanent, but continually shift their positions, either by gradual encroachments and recessions of the sand reaches, or by suddeuly closing up at one point and breaking away at another. The design of our study was to ascertain, if possible, the causes which maintain these extended sandy reaches, and the agencies which create the channels through them. In this undertaking, the line of stations, to which reference was made in the former part of this report, extending along the coast, at intervals of from five to twelve miles from Coney island to a point twentyfive miles east of Fire Island light, gave us all the requisite data for a complete knowledge of the shore currents; and we added to these series of current observations at Fire island, Crow Gut, and Rockaway inlets, besides others from stations in the Great South bay. By half-hourly records at ganges temporarily erected, the form of the tido wave as it enters Fire Island inlet was compared with that observed at Sandy Hook on the one hand, and that at the eastern extremity of the Great South bay upon the other. At some of the outside stations we threw over sinking articles, hoping to find them again upon some portion of the beach, and thus be able to determine the direction of the movements on the bottom of the sea. The first class of articles we tried were balls made of cement, with corks enclosed, giving them what we supposed to be the requisite specific gravity. On a former occasion these cement balls were used quite successfully along the shores of Sandy Hook, but we now found them to fail entirely on this coast, where the currents are more feeble. We subsequently had recourse to the large skim. mer shell (mactra solidissima) which we collected from the shores, and marked with drills. Some of these, cast over in three fathoms water off Oak Beach, travelled eastward, and crossing Fire Island inlet, were swept on shore four miles to the eastward of their place of depositIn the performance of this journey they were occupied over two weeks, during a prevalence of easterly winds. Of three hundred shells cast into the sea, one hundred were recovereda much larger proportion than we could possibly have expected to find among the shifting sands and the miscellaneous stranded articles upon these beaches. The easterly preponderance in the movements of the currents along the bed of the sea, which the journey of these shells revealed, corresponds with the results from previous observations of the surface drifts

As our inquiries proceeded, it became evident that the currents, powerful though they may be to scour channels and form the ocean bed, cannot alone effect the peculiar changes which are observed to take place in the beaches, but that the waves take a part, not insignificant, in
these operations. In the shallow waters along these alluvial shores the waves, driving in from the ocean, acquire violent horizontal movements, and dash along the beach with a force in comparison with which the strongest currents are quite impotent. In order that we might the better understand and determine the precise action of the waves and the relation of their office to that of the current, we made a very careful examination of the conditions in miniature forms of bays and inlets, where the limited field of observations afforded us a comprehensive view of the natural activities at work. The results of this examination have already been laid before you with such conclusions from them as were immediately obvious.

In the course of this and former reports I have referred repeatedly to the observations of currents at different depths, and it has occurred to me that some description of the apparatus in use should here be given, in order that the reliability of the results should be established.

Descriptions of Apparatus.

For observations upon the surface currents we use a "tube-log," which is simply a tin cylinder four inches in diameter and six feet long. This tube is partially filled with water, so as to sink nearly its whole length and maintain an upright position; and a graduated line being attached, the observations are made as with an ordinary ship's log. We have found that a log of less draught than this is liable to be affected by the wind.

When we desire to obtain the mean motion of a stratum of greater depth, we use twentyfour feet tubes, and in some cases those as long as forty-eight feet.

If the velocity of the current in the lowest water stratum is desired, we take the following course: Two copper globes of equal dimensions are connected by wire rope of the smallest possible size compatible with the strength required. One of these globes, being filled with water, is allowed to sink the whole length of the connecting line, while the other, being empty, or only partially loaded, swims at the surface of the sea. To the upper globe the log line is secured. The velocity with which the globes, thus connected, will move, is a mean of the rates at which the upper and lower water strata are flowing; and if simultaneous observations are made with this apparatus and the surface log, before described, we are furnished with the means of obtaining by calculation the velocity of the lowest stratum. This method may be employed where the water is not so deep as to give to the connecting wire rope an extent of surface which, exposed to the current, may require consideration in the problem.

The instruments I have described thus far are similar to those which have been used in determining the discharge of canals in Europe. In the application of these to inquiries on a larger scale, I have found it necessary to make certain modifications of them to insure accuracy.

It not unfrequently occurs that the velocity of the surface drift is many times greater than that of the lower stratum, or holds altogether a reverse direction, so that the motion of the globes is quite at variance with that of the surface log. In a case like this, the graduated line secured to the globes is borne away by the surface current, and the observer is deceived. The full extent of this difficulty will be appreciated when it is considered that the line of which I bave spoken is necessarily of considerable size, the strength of six men being sometimes required to draw in the globes. I propose to obviate this difficulty by the following arrangement: Within the upper globe, made of wood in this case, a reel is placed, upon which a small log-line, passing in at an aperture at the pole, is wound by a crank from without. The extremity of this log-line is necured to a third globe, which swims freely upon the surface of the sea. When making an observation, the \log-line is wound up until tie floating globes are
brought together; then, at a signal, the reel is loosened; and now, if the surface and su b currents differ in velocity, the free globe separates from the others, and the observer notices the number of divisions of the log-line drawn out in thirty seconds. In this experiment the apparatus is in nowise connected with the vessel, but the observer follows in a boat until the trial is completed. Figure 1 (Sketch No. 40) shows the relative position of these globes during: the course of the observations. In this figure A and B are the connected globes, while \mathbb{C} is the free float. The weight of the globe \mathbf{B} causes the swimming globe A to sink nearly to its pole, and the free float C is loaded so as to sink about the same distance. The graduated line,' which measures the separation of the floating globes, may be seen, one end fastened to a ring upon the free float C, the other passing in at the pole of the globe A. Figure 2 is an enlarged representation of the globe \mathbf{A}, opened so as to show the reel within. The water, which enters the globe freely, acts as a check, preventing this reel from acquiring an undue momentum with any sudden jerk of the line caused by the waves. In this figure may be seen the position of the crank by which the reel is wound; this crank is, of course, removed after the floating globes are drawn together. Upon the outside of the globe containing the reel every ten degrees are marked that the observer may note in his record the amount submerged. In the reduction of these observations the extent of the wetted surfaces of the two connected globes must be considered, since, in the case of a difference of velocity between the upper and lower strata, the effective areas of the surfaces exposed to the two streams enter into the problem. In all positions the effective surface which a globe wholly immersed presents to tho current is a great circle. The velocity attained by the connected globes is a simple mean of the velocities of the superficial and lower strata when the effective surfaces are equal; and when these surfaces are unequal, the mean by weight. If $x=$ velocity at surface, $y=$ volocity at lowest point; then with equal surfaces we obtain velocity of globes $=\frac{1}{2}(x+y)$. If the effective surfaces opposed to the drifts (portions of great circles) are unequal, and their areas be represented by a and b, we have the velocity of globes $=\frac{1}{a+b}(a x+b y)$. This expression represents the immediate result obtained by the original manner of using the globes if the vessel be at anchor; but, in our modification, the result of our experiment is the difference between the motion of the free and that of the connected globes, or $x-\frac{1}{a+b}(a x+b y)$. The extent of the wetted surface of the free globe will not affect the result, but it is convenient to have this globe of the same size as the others so as not to be greatly affected by winds.

If the paths of the surface and sub-currents do not lie in the same vertical plane, the connected globes take an intermediate course, with velocity $=\frac{1}{a+b} \sqrt{\left\{\left(a x \sin . \beta_{1}+b y \sin . \beta_{2}\right)^{2}, ~\right.}$ $\left.+\left(a x \cos . \beta_{1}+b y \cos . \beta_{2}\right)^{2}\right\}$, and $\tan \theta$ (angle of direction) $=\frac{a x \sin . \beta_{1}+b y \sin . \beta_{2}}{a x \cos \beta_{1}+b y \cos . \beta_{2}}$ when β_{1} and β_{2} represent the respective angles of direction of the upper and lower drifts.

When observations are to be made at sea, where there is a great depth of water, a further modification of the apparatus is necessary. In place of the two connected globes in the foregoing description, a hempen line is used, (perhaps two inches in diameter, terminating in a wooden pole above and a leaden cylinder below, the former serving to float the shaft, while the latter sinks and straightens the line, and the reel is transferred to the free globe. (See Fig. 3, Sketch No. 40.) The apparatus, thus modified, will serve to exhibit the difference between the
surface drift and the mean velocity of a stratum of water whose depth equals the length of the ehaft immersed. If we know the surface velocity wo may readily obtain the velocity of the lowest point reached, if we suppose the change of velocity from point to point to be uniform, by subtracting the surface rate from twice the mean velocity. This supposition is not always correct, and must be tested by the following experiment: The log-line having been unfastened, the pole is passed through a copper globe, and the line drawn up until the globe can be secured at a point which will occupy a middle position of the wetted surface on again letting the shaft sink as far as it may--(See Fig. 4, Sketch No. 40.) Upon a new trial, if the velocity observed is still the same, we may conclude that our supposition is correct; if not, we may, by shifting the position of the globe again and again, making at each remove an observation and record, or by using simultaneously several such shafts, calculate approximately the conditions of the sub-currents and tbe curve at which our deep shaft hangs. The globes which we have used measure two feet in diameter.

Before closing this rapid sketch of our devices for obtaining the data required by your instructions, I would refer briefly to a new form given to a pile used in securing a tide-gauge at Fire island, and which, I think, possesses some peculiar advantages for use upon sandy coasts where there is a heavy sea. This pile is of oak, or other heavy and strong wood, and is so cut that the lower portion of it, for a spacc of six or cight feet, presents the appearance of a number of inverted frustrums of cones, placed one above another-the series terminating in a sharp and heavy shoeing. As a whole, it is required to have a greater weight than the sand and water it is intended to displace. On working this pile into the sand, by swaying it to and fro, in the usual manner, each cone, as it sinks, acts upon the sand above and below, as at once a lever and a wedge, giving to the whole a continual downward thrust. In the same way the waves, instead of tearing it up, cause it to work deeper and deeper, and thus the $l_{\text {ateral oscillation of the sea is converted into vertical motion, and brought to our aid. Of }}^{\text {a }}$ course this downward tendency of the pile can be easily checked if too great for our purposes. As my description of this pile is not altogether clear, I annex a diagram, (Sketch No. 40,) which will require no explanation.

Very respectfully, yours,

HENRY MITCHELL,

 Assistant Coast Survey.
Professor A. D. Bache, Superintendent Coast Survey.

APPENDIX No. 27.

Report to the Superintendent by Assistant L. F. Pourtales, in charge of the field and office work relating to tidal observations.

Const Survey Office, October 1, 1859.
Str : I have the honor to submit the following report on the field and office work performed by the tidal party under my charge during the past year:

Figld-wonk. -The permanent stations at which the tides are observed for a long period of years are the same as mentioned in former reports, viz: Boston, New York, Old Point Comfort, Va.; Charleston, S. C., and Fort Clinch, Fla., on the Atlantic coast; and San Diego, San

Francisco, and Astoria, on the Pacific coast. The following table will show the date at which the series of observations began at each of those stations, and the number of years over which it consequently extends up to this date.

The stations have, during the past year, given generally good results. The station at Fort Clinch has, however, suffered an interruption by the sickness and subsequent sudden leaving of the observer, and the inexperience of the person he had left in charge. The stations on the Western Coast, under the supervision of Lient. G. H. Elliot, U. S. Engineers, have continued to give very satisfactory results.
The temporary stations were not numerous. The tide-gauge at the Washington navy yard is still kept up. Owing to the frequent changes of the officers in the ordnance department of the yard, it was found more advantageous to have the gauge attended to by Mr. Walker, of this division of the office.
The stations mentioned in last year's report as having been established by Mr. Würdemann at Charlotte harbor, Egmont key, and Cedar keys, have, together with the one at Tortugas, afforded very satisfactory results. The series being extended over more than a year, the gauges will shortly be transferred to new stations at and to the westward of St. Mark's. Mr. Würdemann has suffered greatly from sickness superinduced by exposure, and was obliged to leave that section at the approach of warm weather, without detriment, however, to the observations, thanks to the careful training he had given to the observers. On his way north, Mr. Würdemann visited the tide-gauges at Fort Clinch, Charleston, and Old Point Comfort.

The self-registering tide-gauge established at Warrenton navy yard, Pensacola, Fla., by the kindness of S. T. Abert, esq., civil engineer of the yard, gives very good results, and will supply a useful link in the chain of stations which it is intended to establish successively along our shores on the Gulf of Mexico.

Good self-registering observations were obtained at Benicia, Cal., under the direction of the hydrographic party of Commander J. Alden, U. S. N., Assistant Coast Survey.

A list of the observations received during the year is herewith presented. It contains, as usual, only those which were made under the direction of this division of the office, and not those made by hydrographic parties for the reduction of their soundings.

List of tidal observations received during the year ending Septemlker 30， 1859.

$\begin{aligned} & \text { 递 } \\ & \text { 苞 } \\ & \text { 品 } \end{aligned}$	Name of station．	Name of observer．	Kind of gange．	Stations，permanent or temporary．	time of ocei pation．		Total duy．	Remarts．
					From－	To－		
II	Boston Dry Dock，Mass．	T．E．Ready．．．．．．	Staff．．．．	Permanent ．．．．．．．．	Oct．1，1858	Sept．30， 1859	365	Obe＇ns made at Brooklyn f during the cold weather． Only day observations dur－ ing the summer．
	Governor＇s Island，N．Y．	R．T．Rassett．．．．．	E．K．．．．．	．．．．．．do．．．．．．．．．．．．．	Oct．1，1858	Dec．30， 1858	91	
	Do．	．．．do	．do．．．．．．	．．．．do．．．．．．．．．．．．．	April 7，1859	Sept．30， 1859	177	
	Brooklyn，N．Y	．．do	Box ．．．．．	．．．．do．．．．．．．．．．．．	Oct．1，1858	Sept．30， 1859	365	
	Dobh＇s Ferry，N．Y．．．．	W．H．Roberts．．．．．	Staff．．．．．	Temporary．．．．．．．．．	July 23， 1858	July 31， 1858	9	
	Terplank＇s Point，N．Y．	J．G．Rotche．	．．do．．．．．．	．．．．．do．．．．．．．．．．．．．	July 22， 1838	Aug．3，185t	13	
	Do．	do	．do．	．．．．do．．．．．．．．．．．．	Sept．10，1858	Sept．14， 1858	5	
	Cosd Spring，N．Y．	．．．．do ．．．．．．．．．	．do	．．．．．do．．．．．．．．．．．．．	Sept．11， 1858	Sept．14， 1858	4	
	Poughkeepsie，N．Y．．．．	．．．．do	．．do．．．．．．	．．．．．do．．．．．．．．．．．．．	July 22， 1858	Aug．1，1858	11	
	Tivoli，N．Y．．．．．．．．．．．．	G．R．Martin	do	．．do．．．．．．．．．．．．	July 22，1858	Aug．1，1858	11	
	Stuyvesant，N．Y．．．．．．．	D．B．Jenks．	．do	．．d．．．．．．．．．．．．．	Juty 22， 1858	July 31， 1858	10	
	Castleton，N．Y．．．．．．．．	．．do	．do．	．do．．．．．．．．．．．．	July 22，185B	Aug．2， 1858	12	
	Greenbush，N．Y．	．do	do	do	July 28，1858	July 31，1458	10	
III	Old Point Comfort，Va，	M．C．King ．．．．．．．．	S．R．．．．．	Permanent．．．．．．．．．	Oct．1，1858	Sept．30， 1859	365	
	Wash．Navy Yard．D．C．	Off．Ordnance Dept．	．．do．．．．．．	Temporary．．．．．．．．．	Oct．1，1858	Jan．8， 1859	100	
	Do．．．．．．．	S．Walker．	．．do．．．．．	．．．．．．do	Feb．10，1859	Sept．30， 1859	2 L 2	
V	Charleston， S C．	W．R．Herron．	．do．．．．．．	Permanent	Oet．1，1858	3ept．30， 1859	365	
vi	Fort Clineh，Fla．．．．．．	F．A．Rebarer ．．．．．．	．do ．	．．．．．．do．．．．．．．．．．．	Oct．1，1858	Dec． 14,1858	21	Stopped from Oct． 16 to Dec．9，obs＇ver being sick．
	Do．．．．．．．．．．．．．．．	J．A．Walker	．．do．．．．．．	．．do．．．．．．．．．．．．	Dec．14， 1858	Sept．30， 1859	261	
	Tortugas，Fla．．．．．．．．．．	H．Benners．．．．．．．．	．．do．．．．．．	Temporary ．．．．．．．．	Aug．1，1858	Sept．1， 1859	396	
	Charlotte Harbor，Fla．．	G．W．Maslin	．．do	，do．．．．．．．．．．．．．	Aug．3，1858	Aug．2， 1859	265	
	Egmont Key，Fla．．．．．．．	O．Keyger．．．．．．．．	．．do．．．．．．	．do．．．．．．．．．．．．．	Aug．22，1858	Aug．31， 1859	375	
VII	Cedar Keys，Fla．	A．Steele．	．do	do．．．．．．．．．．．．．	Aug．11，1858	Sept．1， 1859	386	
	Do．．．．．．．．．．．．．．．	G．Crockett．	Staff．	．do．．．．．．．．．．．．．	Dec．27， 1858	Jan．6，1859	11	
	Warrington Navy Yard， Fla．	B．T．Abert．．．．．．．．．	S．R．．．．．	．．．．．．do．．．．．．．．．．．．．	Nov．20， 1858	Aug．18， 1859	265	
\mathbf{X}	San Diego，Cal．．．．．．．．．	A．Cassidy ．．．．．．．．．	．．do．．．．．	Permanent ．．．．．．．．	Aug．1，1858	July 31， 1859	365	
	Fort Polnt，Cul．．．．．．．．	H．E．Unrlandt	．，do．．．．．．	do	Aug．1，1858	July 31， 1859	365	
	Benicia，Cal．．．．．．．．．．．	Louis Netson	．．do．．．．．．	Temporary ．．．．．．．	June 25， 1858	Oct．21，1858	88	
XI	Astoria，Oregon．．．．．．．．	Louis Wilson．．．．．	．．do．．．．．．	Permaneint．	Aug．1，1858	July 31，185y	365	

Office－work．－The following persons have been permanently employed during the year： R．S．Avery，S．Walker，J．Downes，M．Thomas，and S．D．Pendleton；and the following tempo－ rarily for longer or shorter periods during the intervals of their duties in the field or in other departments of the office：Lieut．J．P．Roy，U．S．A．；Sub－Assistant C．Fendall；James Gilliss， R．E．Evans，O．Hinrichs，J．Donegan，A．W．King，and T．C．Bowie．
Mr．Avery has continued the discussion of the Boston tidal observations．Having computed a set of co－efficients from a period of observations extending over nine years，he has compared the times of high water computed by means of them with the observed times for the whole period of twelve years over which the series extend．The differences between the computed and observed times came out generally quite small．
The readings of the sheets of the self－registering tide－gauges were made by Mr．Walker， who has also had charge of the correspondence with the observers，of the examination of the observations returned by them，and of the tide－gauge at the Washington navy yard．This combination of duties has been very useful，as by reading the sheets no defects in them could escape him，and the remedy could be pointed out more intelligibly from the experience gained in managing a tide－gauge himself．
The ordinary reductions of tidal observations were made chiefly by S．D．Pendleton，and part of the year by contract，by A．W．King；also，occasionally，by Lieut．J．P．Roy，and J．

Gilliss, R. E. Evans, O. Hinrichs, and T. C. Bowie. They thus keep but little behind the receipt of the observations. The whole sets of reductions of the permanent stations on the Western Coast were revised by Mr. Walker.

The graphical decompositions of the tides observed simultaneously at the four stations Cape Florida, Indian key, Key West, and Tortugas, have continued to be made and the results to be reduced and compared by Mr. Downes, with the assistance for part of the time of Messrs. Fendall and Evans. This discussion is now nearly completed, and some progress has also been. made in the decomposition of the observations at the next stations-Tortugas, Charlotte harbor, Egmont key, and Cedar keys. The daily inequality was deduced from a part of the ordinary reductions of the above stations by Mr. Gilliss.

The meteorological observations made at the tidal stations of the Western Coast have continued to be tabulated by M. Thomas, who has also read off some of the self-registering sheets from Florida, and plotted the result preparatory to decomposition, besides copying and miscellaneous work.

Very respectfully, your obedienc servant,

L. F. POURTALES,

Assistant U. S. Coast Survey, in charge of Tidal Division.
Prof. A. D. Bache, LL.D.,
Superintendent U. S. Coast Survey.

APPENDIX No. 28.
 Circulars found in current bottles thrown from the surveying steamer Corwin in 1857 and 1859, in the vicinity of the Florida resf.

U. S. COAST SURVEY.

TO SHOW THE SET OF CURRENT.
This bottle was thrown overboard in the Gulf Stream.
Lat. $24^{\circ} 21^{\prime} 00^{\prime \prime}$ N. Date: Midnight, March 28, 1857.
Long. $81^{\circ} 56^{\prime} 00^{\prime \prime} \mathrm{W}$. Wind west.
From surveying steamer Corwin.
Lieut. Comd'g T. AUG. CRAVEN, U. S. N.
The finder will confer a favor by forwarding this paper to A. D. Bache, Superintendent U. S. Coast Survey, Washington, D. O.

Record below the date and place where found.
Found on the beach about twenty miles south of Cape Cañaveral light-house on the lst of May, 1859.

MILLS O. BURNHAM,
Light-keeper, Cape Cañaveral, Fla.

Particulars of six other cards of the same form from surveying steamer Corwin.

When thrown over,	Latitude N.	Longitude W.	Direction of wind.	By whom returned.	Endorsements made by the finder.
May 2, 1859........	$\begin{array}{ccc} \circ & 11 \\ 25 & 0 & \prime \prime \\ \hline \end{array}$	$\begin{array}{rrr} 0 & f & \prime \prime \\ 794415 \end{array}$	North; light.......	Mille O. Burnham....	Found June 2, 1859, about five miles south of Cape Cafraveral light-house.
Da.............	250027	794415	North; moderate..	...da	Found June 18, 1859, about four miles south of Cape Cafiaveral light-house.
April 30, 1859......	233130.4	804513.05	From W.NW.; light.	Pedro Antonio Eibora.	Found May 7, 1859, at Cruz del Padre, twenty-one miles N.NE. of Cardenas, north coast of Cuba.
Do.............	242207	805308	From south ; Jight.	W. B. Harris........	Found June 2, 1859, twenty and a half miles south of Cape Canaveral light-house.
May 2, 1859.........	250111	791513		..do	Found June 2, 1859, twenty miles south of Cape Canaveral light-house.
Do.............	250111	794513	Northwest.........	..do	Found June 19, 1859, nine wiles south of Cape Canaveral light-house.

APPENDIX No. 29.
Extracts from a report by Lieut. Comg. C. M. Fauntleroy, U.S. N., Assistant in the Coast Survey, relative to commercial advantages afforded by the upper waters of Port Royal sound, S. C.

United States Surveying Schooner Varina, Colleton river, S. C., May 21, 1859.
SIr: * * * The hydrographic work was commenced at Pinckney's island, connecting with the survey of Lieut. Comg. Maffitt, in 1855. That survey shows that the bar of the Chechessee river affords twenty feet at mean low water, with a mean rise and fall of 6.6 feet. The depth increases in passing upward, and vessels that enter Port Royal sound will find in the Colleton river at the Neck, and at its confluence with the Chechessee, a capacious, completely protected, and easily accessible anchorage, in from four to seven fathoms water.

Colleton Neck, Foot Point, or Victoria Bluff, as it has been more recently called, is only eleven miles from the Charleston and Savannah railroad, and, by reason of the fact before stated, offers a very eligible site for purposes of trade and commerce. In the event of blockade of the southern coast by a naval power this point could be easily made a sure protection to the inland commerce passing between Charleston and Savannah.

The bluff is considerably higher than the adjacent island, and is said to be healthy. The approach from Broad river is used by steamers continually, and might be improved so as to enable vessels of fifteen feet draught to pass. At present I think it safe to say that but ten or twelve feet at mean low water can be carried through. So soon as I can obtain the requisite tidal observations the soundings will be reduced and a chart sent to the office.

Very respectfully, your obedient servant,
CHAS. M. FAUNTLEROY,
Lieut. Comg. U. S. N., Assistant Coast Survey.

Professor A. D. Bache, Superintendent Coast Survey.

APPENDIX No. 30.

Letter to the Secretary of the Treasury, reporting the completion of the survey of Sapelo sound, Ga., and communicating extracts from a report by Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, relative to its commercial facilities as a harbor.

Coast Survey Office, May 24, 1859.
SIR: I have the honor to report the completion of the field-work and hydrography requisite for a chart of Sapelo sound and river, including the bar and approaches, from a limit ten miles seaward of the entrance. The soundings in the vicinity of the bar were made by the party of Lieut. Comg. C. M. Fauntleroy, U. S. N., assistant Coast Survey, who closed the operations there at the eud of April.

I append some remarks made in the report of that officer, bearing on the commercial advantages of Sapelo sound as a harbor, and suggestions in reference to buoys and beacons for aiding vessels to enter it:
"This harbor derives its importance commercially from its ease of access and from the good depth of water in its main approach. Sixteen feet at mean low water may be carried throughout to safe anchorage inside of the entrance. As a cut-off connecting with it affords a convenient and safe inland passage for traders bound south coastwise during the winter season, this entrance is preferred to the more difficult entrance at Doboy. While the soundings were in progress in March and April, more than fifty schooners and steamers (chiefly the former class) passed into Sapelo sound and through Mud river.
"At present the channel over the bar is marked by two buoys. The inner one ('No 3') should be at once removed and replaced at the extreme northeast point of the shoal designated as 'Consort shoal.'
"There is both a swash and a beach channel here, and vessels drawing from five to eight feet of water may enter the harbor against northwesters-a facility uncommon on our Atlantic seaboard.
" Upon a rough comparison (before plotting the soundings) with the survey made by Lieutenant Glynn, U. S. N., in 1841, there appears to have been little or no change since, either as to depth or in the direction of the main channel-way.
"Masters of vessels, if not well acquainted, avail themselves of daylight for entering at Sapelo. It would be of important service to the coasting trade if two small beacon lights were established, instead of the two beacons now on the point of St. Catharine's island, as such an arrangement would prevent confusion with the Doboy light. The schooner 'Blooming Youth,' lost off Sapelo entrance in March, could have made the harbor in safety with such gaides as those now proposed."

Regarding the aids for navigation recommended by Lieut. Comg. Fauntleroy as of general interest to masters of vessels engaged in the coasting trade, I would respectfully request that a copy of this communication may be transmitted to the Light-house Board.

Very respectfully, yours,
Hon. Howell Cobb,
A. D. BACEE, Superintendent.

Secretary of the Treasury.

APPENDIX No. 31.

Extracts from reports made by Sub-Assistants F. W. Dorr and Charles Ferguson, descriling the topographical and other features of Charlotte harbor, Florida.

Boston, March 29, 1859.
Sir: * * * The work of the scason was resumed on the western half of Sanibel island at a point where its breadth is about two miles and a quarter. From thence the island runs in a W.NW. direction five miles and a half, and gradully narrows as it approaches Blind Pass. The inside shore is very irregular and broken by large lagoons, which connect with each other by narrow tortuous channels. On the outside a fine sloping beach, composed of sand and shells, is washed by the waters of the Gulf of Mexico. The interior of the island is open prairie, bearing only scattered clumps of palmettoes. Mangrove, buttonwood, \&c., are found fringing the shores of the lagoons, and this growth occasionally attains a breadth of a quarter of a mile.

The entrance to Blind Pass, as the channel which separates Sanibel from Captiva island is called, is almost entirely blocked up from the inside by extensive shoals, which are dry, or nearly so, at ordinary low water. On the sonthern side of these shoals are eight small keys, called the Lawrence keys. They are scarcely anything more than clumps of mangrove. Blind Pass is merely a boat channel; for although the passage is deep in some places, the bars both on the inside and outside preclude the possibility of carrying through a vessel of any draught of water.

Captiva island overlaps Sanibel island at Blind Pass for a distance of a mile and a half, and from that opening stretches in a N.NW. direction upwards of ten miles to Captiva Pass. This island, or key proper, scarcely averages a quarter of a mile in width. I say the key proper, as two other keys of some size, completely separated from it, have hitherto been supposed to join it; all three being comprised under the name of Captiva island.

Captiva, like Sanibel island, has a regularly curving beach of sand and shells on the outside, while the inside shore is skirted with mangrove, and is very ragged. Extensive flats, too, make off eastward from most of the prominent points of land on the inside.

Captiva Pass, the opening between Captiva and La Costa islands, is about five hundred yards wide. Vessels drawing not more than five feet of water can pass through; yet the channel is somewhat intricate. * * * * * * Yours, very respectfully,

Prof. A. D. Bache,
Superintendent U. S. Const Survey.

F. W. DORR, Sub-Assistant.

Washingtion, D. C., April 8, 1859.
Dear Sir: * * * * Boca Grande, the pass between La Costa and Gasparilla islands, is the proper entrance to Charlotte harbor. It contains at low tide fifteen feet of water, and inside the bay has three or four fathoms. Vessels can carry eighteen feet. some fifteen or twenty miles beyond the northern extremity of Pine island.

La Costa island is similar in character to Captiva island, as described in the report of SubAssistant Dorr.

Pine island forms the eastern side of Charlotte harbor, or what may be more correctly termed the Charlotte harbor approach. It is about ten miles in length and three in width. A pine barren runs through the centre nearly its entire length, and its western shore is lined with a belt of keys and islands. Lagoons break the western side and run in towards the interior of Pine island.
This island is remarkable as having been a favorite burial place of the aborigines. There' are several huge mounds on the keys along the shore. The largest are at "Brown's" station, a small fishing ranch on Pine island, (nearly opposite the middle of La Costa,) where some are found sixty and eighty feet high and four hundred yards in circumference. Here also may be seen the remains of a canal which has passed at a former period quite across the island. Its site is now so overgrown with mangrove, pine, and palmetto that the trace is barely discernible.

Very respectfully, yours,
CHARLES FERGUSON,
Sub-Assistant.
Prof. A. D. Bache, Superintendent U. S. Coust Survey.

APPENDIX No. 32.
Extracts from the report of Assistant S. A. Gitbert, descriptive of the coast of Texas intervening between Matagorda bay and Corpus Christi.

Espiritu Santo bay is about fifteen miles long, northeast and southwest, by about five miles in width. It communicates with the Gulf of Mexico through two small bayous at the northeast end, and connects also with Matagorda bay at Pass Cavallo. Through one of the bayous (McHenry's) the State authorities of Texas have caused a channel to be opened affording a depth of four and a half feet at average high water, and the digging of a channel of ten feet from the baynu into Pass Cavallo, to form a harbor or dock for steamers and other sea-going vessels, has been undertaken by private enterprize. The town of Saluria is situated at the east end of this bayou. Throughout the bay there is an average depth of seven feet, the bottom being generally soft mud and shells, except in one locality, known as the "Middle Ground," which is sand, and a portion of which is usually bare at low water. The shores are low and marshy on all sides. Along the northwest shore is a range of marsh islands, approaching towards the cluster designated as the "First chain," which divides Espiritu Santo from San Antonio bay. Through these also the State has opened a channel to the depth of four and a half feet, but flats are forming rapidly at both ends, and constant attention will be required to keep it open.

San Antonio bay is of an irregular and somewhat triangular shape, the greatest length being, from north to south, about twenty miles, and the width ranging from four to eighteen miles.

It has no direct communication with the Gulf of Mexico, and is, therefore, but little affected by the Gulf tides. Frequently the water is made fresh by the discharge from the Guadalupe river, which enters at its northeast end, and it is almost always muddy. The average depth of the south half of the bay is about six and a half feet, with soft mud bottom, except in the vicinity of the oyster shell reefs, of which there are many. One of them, "Pantler Point reef," extending through the middle of the bay, north and south, about fifteen miles, is awash in some places and in others has five feet of water over it. In approaching the mouths of the river, the water of the bay shallows, and the bottom becomes very soft, and is covered with eel-grass and other sea-weods. The State, in the spring of 1858 , opened a channel of four and a half feet from the southern mouth of the Guadalupe to a like depth in the bay, which was found at the distance of a mile, but it is now much obstructed by drift logs. Without the use of artificial means, the average depth of water into either mouth of the river would not be more than eighteen inches.

The shores of San Antonio bay are varied in character. Along its south and east sides are the low marshy shores of the islands, (Matagorda island and others,) which are the resort of immense numbers of water fowl. Thousands of swans, geese, brant, and ducks of several varieties, cover the waters and prairie of this region during January, February, and March; and in all seasons the pelican, cranes of perhaps every variety, the snipe, and other shore birds, are found in countless numbers. Oysters are plenty, and also redfish and trout, when the water is not too fresh.

Near the north end, on the east side of the bay, the prairie of Matagorda island comes to the shore in a bluff twenty feet high, along which (for several miles) are scattered clusters of oak and hackberry trees. This locality, known as "Long Motts," contains fifteen or twenty houses.

The northwest shore is the delta of the Guadalupe, a low alluvial formation, scarcely raised above the level of the adjacent waters, and covered with a dense growth of cane-grass, jungle, and forest trees. On the west shore the elevated prairie also comes to the bay in a bluff or bank of twenty feet, and is likewise dotted over with the houses of settlers, and with oak and hackberry trees. The soil is fertile, the range for stock excellent, and the locality is said to be very healthy. At one place on this side a singular range of sand hills, known as the "Sand Mounds," approaches the shore. The highest peak is about seventy-five feet above the bay. The mounds are covered with bushes, and the valleys betwoen them filled with trees, so that, at a distance of five or six miles, the whole presents the appearance of a forest of live-oak or similar timber, forming a marked feature in that otherwise level prairie region. Deer, wolves, and wild turkeys are plenty, and rattlesnakes and other reptiles numerous. In the direction towards Lamar, a distance of about thirty miles, there is now bat one dwelling, and hence the wild game has not been much disturbed.

Mission bay is a small, shallow sheet of water cut off from the head of San Antonio bay, on the east side, by the delta of the Guadalupe river, and having not over eighteen inches of water into or through it. A small bayou, entering on its east side, drains Green lake, which is a small sheet of fresh water lying some miles further up the delta.

Hines bay, on the west side of the delta, is of the same character, but is larger, being about three and a half miles in diameter and shaped like a horse-shoe. It is also deeper than Mission bay, affording about three feet of water to its head. On the north side is the swamp of the
delta, but on the south a prairie bluff twenty feet high bounds the shore, and here, within space of three miles, some twenty or thirty houses form what is called "Crescent Village."

San Antonio bay is divided from Mezquit bay by a chain of islands known as the "Second chain," and by an oyster shell reef, designated as "Ayre's reef," through which a four-feet channel has been opened by the State. The small islands composing the Second chain are mostly covered with lignum vitæ and mezquit bushes, from six to eight feet high, and in these the smaller varieties of crane have their building place. The bushes are covered with nests. and thronged with cranes all spring and summer, there being no similar resort for a handred ${ }^{\text {' }}$ miles either way along the coast.

Mezquit bay is about five miles long, northwest and southeast, and about three miles wide, with an average depth of four feet throughout, and soft muddy bottom. It has direct communication with the Gulf of Mexico through Cedar bayou, into the north end of which there is but one foot of water, through the bayou about ten feet, and at the Gulf outlet, or south end, about four and a half feet. Its length is three miles, and average width about a hundred and sixty yards. The oysters of this bay are noted as being the best on the coast. Fish are abundant, and to be had at all seasons of the year.

The shores of Mezquit bay are marshy, except on the northwest side, near which lie two islands, with oyster shell ridges, ranging from five to fifteen feet in height, and covered with chaparral. It is separated from Aransas bay by the cluster of islands called the "Third chain" and by two oyster shell reefs. Through these the State has opened a channel of four feet.

Aransas bay is about twenty miles long from N.NE. to S.SW., and of an average width of about six miles. About five miles from the north end lies an oyster shell reef, called "Long reef," which extends across the bay, from St. Joseph's island to Lamar. This is bare in several places, forming islands much subject to change in outline and extent by the action of the waves during the prevalence of the summer winds. There are several channels through the reef, two of which are nearly a quarter of a mile wide, with six feet water; and that is about the average depth of the bay north of the reef. South of Long reef the bay is open and free from obstructions, with an average depth of ten to twelve feet, and soft, muddy bottom, excepting near the shell reefs and shores. The beach is composed of hard sand, aud the bottom, out to a depth of five feet, is of the same character, except in a locality about eight miles from Lamar, where it is rocky, a remarkable bed of natural concrete being developed there. At the bluff the formation is six feet in thickness above the surface of the water, and appears to extend about ten feet below it. I have no knowledge of any similar formation along the coast, except in the high prairie back of Copano bay, near the mouth of the Aransas river, the bed there being entirely above the level of the bay; and in Laguna Madre, about thirty miles southward of Corpus Christi bay, in which instance the formation is said to be wholly below the water level. The rock in question has been used in building walls and chimneys at St. Mary's. While in place it is soft and easily cut, but after exposure to the atmosphere it becomes as hard as ordinary limestone. The color is a dirty white, and the fracture irregular. From the point at which the rock occurs a sand-flat ranges northward along the northwest shore of the bay, covered to a depth of five or six feet with "turtle grass." Large numbers of green turtle are caught here, and shipped to New Orleans during the spring and summer. There are occasional beds of oysters throughout the bay, and an abundance of fish of all the varieties that inhabit the Gulf.

Aransas bay connects with the Gulf of Mexico through Aransas Pass, which is said to be subject to changes in depth at the bar and in the channel. During last winter and spring there was an average of more than eight and a half feet over the bar at low water, as we were informed by the pilot. At the close of the working season in June arrangements were in progress for running a line of steamers from the bay to New Orleans or Mobile. The communication with Corpus Christi bay is through a narrow and crooked channel between islands and mud flats for about five miles, called Corpus Christi bayou. Its natural depth is about four feet, but a channel to admit vessels drawing six feet has been opened by a private company.

The entrance to Copano bay, between Live Oak Point and Lamar, is over a mile in width. Lap reef, much of which is bare, lies at the west side of the entrance, but there is a clannel nine feet deep leading through it into Copano bay. This entrance forms what is known as "Lamar harbor," a space of about six miles in area, over much of which there is a depth of twelve feet water, with soft bottom. The harbor is sheltered either by reefs that are nearly or quite bare, or by land, on all sides.

The shores of Aransas bay are low on the south and east. On the north a chain of small islands divides it from St. Charles bay; and on the northwest side stretches Live Oak peninsula, with its high sand bluffs and hills, some of which are fifty or sixty feet high, and covered with a scattered growth of live-oak and other trees, and an undergrowth of many kinds of bushes and vines. The Mustang grape, a native of the soil, and from which is made a very fine flavored wine, grows here in abundance. Fresh water is plenty, but the range for cattle on the peninsula is not good. There are at present but four families living on it, within an area of fifty square miles.

The town of Lamar lies between the outlets of St. Charles and Copano bays. St. Charles bay is about nine miles long north and south, by about a mile in average width. A narrow, crooked channel affords about two and a half feet of water into it, but after the main part of the bay is reached the depth increases to four, and in some places as much as eight feet. Cavasso creek, coming in about six miles up, on the west side, and Salt creek, at the head of the bay, are merely drains for the rain water which falls on the adjacent prairie. In the dry season their beds are filled with salt water from the bay. The shores of the bay are mostly marshy, but at many points the marsh is interrupted by prairie bluff of eight feet or more in height. Along the east side stands a body of wood known as "The Black Jacks." The soil there is sandy, and the general surface marked by numerous hills, as at the Sand Mounds, at Lamar, and on Live Oak peninsula, and by fresh water springs and ponds. In all other localities within my knowledge along the coast of Texas there is no fresh water below the surface except immediately along the Gulf shore, on sandy islands. In many other places I have dug, but always found the water salt, as in the Gulf.

Copano bay is about fifteen miles long from northeast to southwest, and about seven miles wide. It is divided nearly across the middle by an oyster shell reef called "Copano reef," around the south end of which passes a channel of nine feet at an average stage of water, and that depth may be carried to the head of the bay during the ordinary summer tides. There are other obstructions to navigation throughout the bay to be developed in the progress of the hydrographic work. Copano creek empties into the northeast end of the bay; Mission river through Refugio Mission bay, on the northwest side; and Aransas river at the western angle of the bay. All these are inconsiderable streams, there being no more than one foot of water leading into them from the bay. The shores are mostly high, and along the north and west
shores, except near Mission or Refugio bay, the prairie fronts the water-line as a bluff, rising from fifteen to thirty feet high. That portion between the Aransas and Mission rivers is wooded; the rest is prairie, with occasional spots of timber in view. The southeast shore of Copano bay is formed by Live Oak peninsula, and is marshy along the water-line, but a short distance back rise the high sand ridges and prairie that characterize these localities. The two towns, Copano and St. Mary's, the former one of the earliest settlements made in this part of Texas, lie on the northwest side of the bay, and are still but small villages.

The land seems to be valued only for grazing, although sea-island cotton and corn have been successfully cultivated in small tracts.

Puerto bay is a small arm extending from the southwest corner of Copano bay, about five miles in a southwest direction. The entrance to it is shallow, and the depth inside is only four or five feet. The shores are generally low and marshy. A small creek, which is merely a surface drain, discharges at the head of the bay.

Refugio bay is about three miles across in either direction, and is very shallow.
The climate of this part of the coast of Texas is generally considered very healthy, and the quarter is frequently resorted to by persons who have become sickly from residence on the alluvial bottoms along the rivers. The temperature during January and February of the past winter averaged about 56° Fahrenheit, the lowest being 28° for a few hours only towards the close of a "norther," which lasted three days. During March and April it was about 70°; and for May and June, which are said to be the hottest months of the year, the average was 84°. The highest temperature recorded was 91° on the 27 th of May.

There is almost a constant breeze from the Gulf day and night after the middle of April.

* Respectfully, your obedient servant,

Prof. A. D. Bache,
 Superintendent U. S. Coast Survey.

APPENDIX No. 33.

Tables for projecting maps of large extent, arranged by J. E. Hilgard, Assistant U. S. C. S.
These tables are based upon a polyconic development of the earth's surface, which supposes each parallel of latitude to be represented on a plane by the development of a cone having the parallel for its base and its vertex in the point where a tangent to the parallel intersects the earth's axis. The degrees on the parallel preserve their true length, and the general distortion of area is less than in any other geometrical mode of representing a given portion of the earth's surface.

Denoting by a the equatorial radius of the spheroid, e the eccentricity, then the normal to any point on the parallel of latitude L, produced to the minor axis, is

$$
N=\frac{a}{\left(1-e^{2} \sin { }^{2} \mathbf{L}\right)^{\frac{1}{2}} .}
$$

The radius of curvature in the meridian is

$$
\mathbf{R}_{\mathbf{m}}=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{3}{2}}}
$$

The radius of the parallel, $\mathrm{R}_{\mathrm{p}}=\mathrm{N} \cos \mathrm{L}$.
The radius of the developed parallel, or the side of the tangent cone, $r=\mathbf{N} \cot \mathbf{L}$.
Designating by n any arc of the parallel, or difference of longitude to be developed, and by θ the corresponding angle subtended by the developed parallel at the vertex of the cone, then the length of the given arc will be $n \mathrm{R}_{\mathrm{p}}=n \mathrm{~N} \cos \mathrm{~L}$, and also

$$
\theta r=\theta \mathrm{N} \cot \mathrm{~L} \quad \text { whence } \theta=n \sin \mathrm{~L}
$$

To determine the rectangular co-ordinates x and y for projecting from the middle meridian the points of intersection of the meridians and parallels, we have simply, the developed parallels being arcs of circles,

$$
x=r \sin \theta, y=r \text { versin } \theta
$$

Table I gives the length, in metres, of one degree of latitude and longitude for each degree of latitude from 0° to 54°; also the radii of the developed parallels which may be used to describe the parallels by means of beam compasses when the scale permits. It also gives the values of θ for 10° of longitude, by means of which the tables may readily be extended.

Table II gives the co-ordinates for thirty degrees of longitude on each parallel from latitude 1° to 54°. The numbers correspond to the actual dimensions of the earth in metres, and are to be divided by the proper number for any desired scale.

In order to project a map by the aid of these tables draw a straight line as middle meridian of the map, on which space off the required degrees of latitude by the values given in Table \mathbf{I}. Through the points so marked construct lines perpendicular to the meridian and parallel with each other, which will be tangents to the parallels of latitude at their intersections with the middle meridian.

On these tangents lay off from the middle meridian, for each required longitude, the corresponding x from the tables, and off-set y perpendicnlar to it, towards the pole. Through the points so found draw continuous curves for the parallels and meridians.

The tables are based on the following constants, being Bessel's latest, and those used in the Coast Survey:

Equatorial radius of the earth...... $a=6377397$ metres, log. $=6.80464346$
Polar radii of the earth $b=6356079 \quad$ " $"=6.80318928$
Square of the eccentricity $\frac{a^{2}-b^{3}}{a^{2}} \cdots \quad e^{2}=0.00667437 \quad$ " \quad " $=7.8244104$

TABLE I.
Length in metres of one degree of latitude and longitude, walues of the corresponding radii of the developed parallel, and angles at each pole for ten degrees of longitude.

Lat.	10 of latitade.	10 of longitude.	Radius of parallel.	θ for 100 of long.
\bigcirc	Metres.	Metres.	Hetres.	\bigcirc
0	110563.7	111306.6	Infinite.	00000.0
1	110564.0	111289.7	365301200	01028.3
2	110565.0	111239.2	182625500	02056.4
3	110566.7	111155.0	121689100	03124.1
4	110569.0	111 037.3	91202500	04151.2
5	110572.0	110885.8	72895830	05217.6
6	110575.8	110700.9	60679100	10243.0
7	110580.1	110482.4	51942300	11307.3
8	110585.1	110230.5	45380470	12330.2
9	110590.8	109945.2	40268590	13351.6
10	110597.0	109626.6	36171660	14411.3
11	110604.0	109274.9	32812850	15429.1
12	110611.6	108890.0	30007630	20444.8
13	110619.7	108472.1	27628210	21458.2
14	110628.5	108021.4	25583340	22509.2
15	110637.9	107538.0	23806090	23517.5
16	110647.8	107022.0	22246270	24522.9
17	110658.4	106473.4	20865480	25525.4
18	110669.4	105892.6	19633870	30524.6
19	110681.1	105279.7	18527860	31520.5
20	110693.3	104634.8	17528600	32512.7
21	110706.0	103958.2	16620820	33501.3
22	110719.2	103250.0	15792110	34445.8
23	110732.9	102510.5	15031865	35426.3
24	110747.1	101739.8	14331780	40402.5
25	110761.7	100938.2	13684530	41334.3
26	110776.7	100105.9	13083990	42301.4
27	110 792.2	99 243.2	12524960	43223.7
28	110808.1	98350.2	12002960	44141.0
29	110824.4	97 427.4	11524770	45053.1
30	110841.0	96474.8	11055200	50000.0
31	110858.0	95492.9	10623179	50901.4
32	110875.2	94481.9	10215570	51757.1
33	110892.8	93442.1	9830067	52647.0
34	110910.7	92373.8	9464760	53531.0
35	110928.8	91277.3	9117882	54408.8
36	110947.2	90152.9	8787972	55240.3
37	110965.8	89001.0	8473340	60105.3
38	110984.6	87821.9	8173042	60923.8
39	111003.5	86616.0	7885875	61795.6
40	111022.6	85383.6	7610788	62540.4
41	111041.8	84 125. 1	7346916	63338.1
42	111061.1	82840.8	7093423	64128.7

TABLE I.
Length in metres of one degree of latitude and longitude, de.-Continued.

Lat.	10 of latitude.	10 of longitade.	Radius of parallel.	θ for 10° of long
\bigcirc	Medres.	Meires.	Metres.	\bigcirc - "
43	111080.5	81531.1	6849560	64911.9
44	111100.0	80196.5	6614648	65647.7
45	111119.4	78837.3	6388064	70415.8
46	111138.9	77453.9	6169244	71136.2
47	111158.4	76046.8	6957663	71848.7
48	111177.8	74616.3	5752845	72553.2
49	111197.2	73162.9	5554355	73249.6
60	111216.4	71687.0	5361781	73937.6
51	111235.6	70189.1	5174752	74617.3
52	111254.6	68669.6	4992925	75248.4
53	111273.4	67129.0	4815973	75910.9
54	111292.1	65667.7	4643603	80524.6

TABLE II.
Co-ordinates of ourvature.

	Latitude 10.		Latitude 2°.	
	x.	y.	x.	y.
10	111290	17	111239	34
2	222580	68	222478	135
3	333869	153	333717	305
4	445149	271	444956	542
5	556448	424	556196	847
6	667738	610	667434	1220
7	779028	829	778672	1660
8	890317	1085	889910	2168
9	1001606	1373	1001148	2744
10	1112895	1695	1112386	3388
11	1224185	2051	1223622	4099
12	1355474	2441	1334859	4878
13	1446762	2864	1446094	5725
14	1558052	3322	1557330	6640
15	1669340	3814	1668565	7623
16	1780628	4339	1779799	8673
17	1891917	4898	1891033	9791
18	2003205	5492	2002266	10971
19	2114493	6119	2113498	12230
20	2225781	6780	2224729	13551
21	2337068	7475	2335960	14940
22	2448356	8204	2447189	16397
23	2559643	8966	2558419	17921
24	2670930	9763	2669646	19514
25	2782216	10593	2780873	21174
25	2893503	11458	2892099	22901
27	3004789	12356	3003323	24697
28	3116075	13388	3114547	26560
29	3227360	14254	3225770	28492
30	3338645	15254	3856991	30490

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 30.		Latitude $\mathbf{4}^{\circ}$.	
	x.	y.	x.	y.
10	111155	51	111037	68
2	222310	203	222074	270
3	333465	457	333111	608
4	444619	812	444149	1081
5	655774	1269	555183	1690
6	666927	1823	666218	2433
7	778080	2488	777251	3312
8	889232	3249	888284	4326
9	1000384	4112	999315	5475
10	1111535	5077	1110345	6759
11	1222685	6143	1221373	8179
12	1333834	7310	1332400	9733
13	1444982	8579	1443424	11423
14	1556128	9950	1554446	13248
15	1667273	11422	1665467	15208
16	1778417	12996	1776483	17303
17	1889560	14671	1887498	19534
18	2000701	16448	1998510	21899
19	2111840	18326	2109520	24400
20	2222977	20306	2220526	27038
21	2334113	22388	2331528	29807
22	2445246	24570	2442527	32713
23	2556378	26854	2553523	35754
24	2667508	29240	2664515	38931
25	2778635	31728	2775502	42242
26	2889760	34316	2886486	45689
27	3000883	37007	2997466	49271
28	3112002	39799	3108441	52988
29	3223120	42692	3219411	56839
30	3334234	45687	3330377	60827

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 5°.		Latitude 6*.	
	x.	y.	x.	y.
$1{ }^{\circ}$	110886	84	110701	101
2	221771	337	221401	404
3	332656	759	332101	909
4	443541	1349	442800	1616
5	554424	2108	553497	2524
6	665306	3036	664192	3635
7	776186	4132	774885	4948
8	887065	6397	885576	6463
9	997941	6831	996263	8179
10	1108815	8433	1106947	10098
11	1219687	10205	1217628	12218
12	1330556	12144	1328304	14541
13	1441422	14253	1438976	17065
14	1552284	16529	1549644	19791
15	1663144	18975	1660306	22719
16	1773998	21589	1770963	25849
17	1884849	24372	1881614	29181
18	1995696	27323	1992258	32714
19	2106537	30444	2102896	36450
20	2217375	33732	2213529	40386
21	2328806	37190	2324152	44527
22	2439034	40815	2434768	48868
23	2549856	44610	2545377	53411
24	2660670	48573	2655974	68155
25	2771479	62704	2766566	63101
26	2882284	57005	2877148	68250
87	2993080	61473	2987719	73599
28	3103868	66111	3098282	79151
29	3214646	70916	3208888	84904
30	3325421	75891	3319368	90859

TABLE II．
Coordinates of curvature－Continued．

$\begin{aligned} & \text { 密 } \\ & \text { 要品 } \\ & \text { 品 } \end{aligned}$	Latitude 70.		Latitude 80.	
	x.	y.	x.	y.
10	110482	118	110230	134
2	220964	470	220460	536
3	331446	1057	330689	1205
4	441924	1880	440914	2142
5	552402	2937	551139	3347
6	662876	4230	661359	4817
7	773348	5757	771576	6560
8	883817	7520	881789	8568
9	994281	9517	991996	10844
10	1104741	11751	1102196	13388
11	1215196	14216	1212391	16198
12	1325544	16919	1322578	19277
13	1436087	19856	1432757	22623
14	1546525	23028	1542929	26237
15	1656954	26435	1653090	30119
16	1767377	30077	1763243	34268
17	1877793	33954	1873387	38685
18	1988199	38065	1983515	43369
19	2098596	42412	2093635	48321
20	2208983	46992	2203742	53540
21	2319360	51809	2313835	59027
22	2429728	56859	2423920	64781
23	2540085	62145	2533983	70802
24	2650428	67665	2644033	77091
25	2760760	73420	2754069	83647
26	2871080	79409	2864087	90470
27	2981388	85633	2974089	97561
28	3091680	92092	3084076	104918
29	3201959	98786	3194041	112544
30	3312233	105713	3303988	120435

TABLE II．
Co－ordinates of curvature－Continued．

$\begin{aligned} & \text { 要 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	Latitude 9° ．		Latitude $10{ }^{\circ}$ ．	
	x.	y.	x.	y.
10	109945	160	109626	166
2	219889	400	219252	684
3	329832	1351	328875	1495
4	439771	2401	438495	2658
5	549709	3752	548112	4153
6	659642	5403	657723	5980
7	769569	7354	767329	8140
8	879492	9605	876927	10631
9	986517	12157	986517	13455
10	1096098	15009	1096098	16612
11	1209215	18160	1205669	20099
12	1319106	21611	1315229	23919
13	1428987	25363	1424777	28071
14	1538857	29414	1534311	32555
15	1648716	33766	1643833	37372
16	1758564	38417	1753340	42519
17	1868397	43369	1862826	47999
18	1978215	48620	1972299	53811
19	2088022	54171	2081754	69954
20	2197811	60022	2191188	66429
21	2307582	66172	2300603	73236
22	2417340	72622	2409997	80374
23	2527077	79372	2519369	87844
24	2636797	86422	2628718	95646
25	2746496	93771	2738043	103778
26	2856174	101419	2847344	112242
27	2965832	109367	2956614	121037
28	3075467	117614	3065860	130163
29	3185080	126161	3175080	139621
30	3294668	135007	3284269	149409

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 11°.		Latitude 12°.	
	x.	y.	x.	y.
10	109275	182	108890	198
2	218548	728	217778	790
3	327819	1638	326663	1778
4	437086	2911	435545	3161
5	546349	4549	544420	4939
6	655605	8550	653288	7112
7	764855	8914	762148	9680
8	874095	11644	870997	12643
9	983326	14737	979836	16001
10	1092546	18195	1088661	19755
11	1201754	22014	1197471	23902
12	1310948	26198	1306266	28445
13	1420129	30745	1415045	33383
14	1529293	35657	1523804	38715
15	1638441	40932	1632543	44442
16	1747571	46569	1741261	50562
17	1856678	52571	1849955	57079
18	1965769	58936	1958626	63989
19	2074836	65664	2067270	71293
20	2183880	72754	2175886	78991
21	2292900	80210	2284476	87085
22	2401894	88027	2393035	95571
23	2510864	96208	2501563	104453
24	2619804	104752	2610057	113727
25	2728715	113657	2718517	123395
26	2837593	122925	2826940	133456
27	2946444	132556	2935326	143911
28	3055262	142550	3043675	154759
29	3164047	152906	3151984	166000
30	3272794	163624	3260251	177635

TABLE $1 I$.
Go-ordinates of curvature-Continued.

	Latitude 13°.		Latitude $14{ }^{\circ}$.	
	x.	y	x.	$\%$.
$1{ }^{\circ}$	108472	213	108021	228
2	216942	852	216040	913
3	325409	1916	324055	2052
4	433871	3407	432065	3649
5	542326	5323	540067	5701
6	650773	7665	648059	8209
7	759209	10433	756040	11174
8	867634	13627	864007	14594
9	976047	17246	971959	18470
10	1084443	21291	1077893	22802
11	1192822	25761	1187808	27589
12	1301185	30657	1295703	32832
13	1409526	35979	1403574	38531
14	1517846	41725	1511419	44685
15	1626141	47897	1619238	51294
16	1734413	54494	1727028	58359
17	1842658	61516	1834787	65878
18	1950873	68963	1942514	73853
19	2059060	76835	2050206	82282
20	2167214	85131	2157862	91166
21	2275334	93852	2265478	100504
22	2383421	102998	2373055	110297
23	2491470	112568	2480589	120554
24	2599481	122562	2588079	131245
25	2707451	132980	2695523	142400
26	2815380	143821	2802919	154008
27	2923265	155086	2910264	166069
28	3031106	166775	3017558	178584
29	3138899	178888	3124798	191551
30	3246644	191423	3231982	204972

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 15°		Latitude 16°.	
	x.	y.	2.	y
10	107538	243	107022	256
2	215073	972	214041	1030
3	322604	2186	321055	2317
4	430128	3886	428061	4119
5	537644	6072	535058	6435
6	645148	8743	642042	9267
7	752641	11901	749012	12613
8	860116	15543	855963	16473
9	967575	19671	962896	20849
10	1075013	24285	1069806	25738
11	1182430	29383	1176691	31142
12	1289823	34967	1283549	37059
13	1397190	41036	1390377	43491
14	1504527	47590	1497173	50437
15	1611835	54629	1603935	57896
16	1719109	62152	1710659	65869
17	1826348	70160	1817344	74355
18	1933550	78652	1923987	83355
19	2040712	87629	2030584	92867
20	2147834	97089	2137136	102892
21	2254911	107033	2243639	113430
22	2361942	117461	2350089	124480
23	2468925	128372	2456484	136041
24	2575858	139766	2562823	148115
25	2682738	151643	2669102	160698
26	2789563	164003	2775319	173795
27	2896332	176846	2881473	187403
28	3003041	190170	2987559	201520
29	3109688	203976	3093577	216147
30	3216273	218265	3199523	231285

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 170.		Latitude 18°.	
	x.	y.	x	y.
10	106473	272	105892	28.6
2	212944	1087	211781	1142
3	319408	2445	317664	2570
4	425864	4316	423538	4569
5	532309	6791	529399	7139
6	638741	9779	635245	10279
7	745155	13810	741072	13991
8	851551	17384	846879	18273
9	957924	22001	952660	23126
10	1064272	27160	1058413	28549
11	1170592	32862	1164136	34542
12	1276882	39107	1269825	41106
13	1383139	45893	1375477	48233
14	1489360	53222	1481089	55943
15	1595541	61093	1586657	64216
16	1701682	69506	1692181	73057
17	1807778	78460	1797654	82469
18	1913827	87955	1903075	92448
19	2019826	97992	2008441	102997
20	2125773	108569	2113748	114113
21	2231664	119687	2218993	125797
22	2337498	131345	2324175	138048
23	2443270	143543	2429288	150867
24	2548979	156280	2534332	164252
25	2654621	169556	2639301	178204
26	2760194	183372	2744194	192722
27	2865695	197726	2849006	207804
28	2971122	212619	2953736	223453
29	3076471	228048	3058380	239666
30	3181741	244016	3162935	256443

TABLE II.
Co-ordinates of curvalure--Continued.

	Latitude 190.		Latitude $20{ }^{\circ}$.	
	x.	y.	x.	y.
10	105279	299	104634	312
2	210554	1196	209264	1249
3	315824	2692	313888	2811
4	421083	4786	418500	4997
5	$52 \mathrm{C328}$	7478	523096	7867
6	631556	10767	627674	11242
7	736764	14655	732230	15301
8	841948	19140	836760	19984
9	947105	24224	941260	25290
10	1052231	29904	1045727	31221
11	1157323	36182	1150156	37775
12	1262378	43056	1254544	44952
13	1367393	50528	1358887	52755
14	1472362	58595	1463182	61176
15	1577285	67259	1567426	70221
16	1682156	76520	1671612	79889
17	1786973	86376	1775740	90178
18	1891733	96828	1879804	101089
19	1996431	107875	1983801	112620
20	2101066	119516	2087728	124772
21	2205630	131752	2191581	137545
22	2310126	144582	2295355	150937
23	2414545	158005	2399047	164949
24	2518888	172022	2502658	179579
25	2623149	186631	2606172	194827
26	2727326	201833	2709596	210693
27	2831414	217625	2812925	227176
28	2935410	234009	2916152	244275
29	3039312	250985	3019276	261991
30	3143116	268550	3122293	280322

TAPLE II.
Coordinates of curvature-Continued.

	Latitude 210.		Latitude 22°.	
	x.	y	x.	y
10	103958	325	103249	337
2	207911	1300	206494	1350
3	311856	2926	309730	3038
4	415790	5201	412953	5400
5	510706	8127	516158	8437
6	623603	11703	619341	12149
7	727475	15928	722498	16536
8	831319	20803.	825623	21597
9	935130	26327	928714	27332
10	1038905	32501	1031765	33740
11	1142639	39323	1134771	40823
12	1246327	46794	1237729	48579
13	1349968	54915	1340634	57008
14	1453556	63682	1443482	66110
15	1557087	73097	1546268	75883
16	1660556	83160	1648989	86329
17	1763962	93869	1751638	97446
18	1867297	105226	1854214	109233
19	1970560	117228	1956708	121695
20	2073746	129876	2059120	134820
21	2176855	143169	2161446	148617
22	2279871	157107	2263676	163083
23	2382802	171689	2365815	178216
24	2485639	186914	2467844	194019
25	2588378	202782	2569772	210487
26	2691017	219294	2671591	227621
27	2793550	236445	2773294	245421
28	2895973	254239	2874881	263885
29	2998285	272672	2976343	283013
30	3100478	291745	3077677	302805

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 23.		Latitude 240.	
	x.	y.	x.	y.
10	102510	348	101737	361
2	205014	1398	203472	1444
3	307510	3146	305196	3250
4	409991	5592	406905	5777
5	512453	8737	508592	9027
6	614893	12581	610254	12999
7	717301	17124	711885	17691
8	819677	22365	813481	23106
9	922016	28304	915036	29241
10	1024310	34938	1016543	36097
11	1126558	42274	1118003	43673
12	1228753	50305	1219404	51970
13	1330892	59033	1320740	60980
14	1432968	68457	1422013	70721
15	1534977	78577	1523217	81175
16	1636915	89393	1624339	92347
17	1738777	100903	1725381	104237
18	1840559	113108	1826337	116844
19	1942254	126006	1927200	130166
20	2043860	139598	2027967	144205
21	2145370	153882	2128631	158959
22	2246779	168859	2229188	174431
23	2548086	184526	2329632	190608
24	2449282	200885	2429959	207503
25	2550365	217932	2530164	225108
26	2651329	235669	2630241	243425
27	2752169	254094	2730186	262452
28	2852883	273205	2829993	282187
29	2953462	293004	2929657	302631
30	3053906	313488	3029174	323781

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 25°.		Laritude 26°.	
	x.	y.	x.	y.
$1{ }^{\circ}$	100938	372	100105	383
2	201869	1489	200204	1532
3	302790	3350	300291	3446
4	403694	5956	400361	6127
5	504577	9305	500407	9573
6	605432	13399	600424	13784
7	706253	18237	700406	18760
8	807037	23818	809347	24501
9	907777	30142	900241	31007
10	1008467	37209	1000083	38277
11	1109102	45019	1099866	46310
12	1209677	53571	1199583	55107
13	1310187	62864	1299232	64666
14	1410624	72899	1398804	74988
15	1510986	83673	1498296	86070
16	1611266	95189	1597697	97914
17	1711456	107443	1697006	110518
18	1811555	120436	1796215	123882
19	1911554	134168	1895320	138004
20	2011450	148636	1994313	152884
21	2111235	163840	2093191	168521
22	2210908	179781	2191946	184914
23	2310458	196456	2290571	202061
24	2409884	213865	2389063	219963
25	2509178	232007	2487415	238619
26	2608336	250880	2585622	258026
27	2707352	270485	2683677	278184
28	2806220	290819	2781575	299092
29	2904936	311882	2879310	320749
30	3003493	333672	2976877	343150

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 27°.		Latitude 28°.	
	x.	y.	x.	y.
10	99242	393	98349	403
2	198478	1573	196692	1612
3	297702	3533	295021	3626
4	396907	6290	393330	644.6
5	496086	9828	491614	10072
6	595235	14152	589864	14503
7	694346	19260	688074	19738
8	793414	25155	786238	25778
9	892431	31835	884350	32623
10	991392	39298	982402	40271
11	1090293	47545	1080388	48722
12	1189124	56576	1178302	57976
13	1287881	66389	1276136	68031
14	1386556	76985	1373886	78888
15	1485145	88362	1471542	90546
16	1583640	100520	1569100	103003
17	1682036	113458	1666552	116259
18	1780326	127175	1763893	130313
19	1878505	141672	1861115	145165
20	1976505	156944	1958212	160812
21	2074502	172994	2055178	177255
22	2172308	189819	2152005	194492
23	2269978	207419	2248689	212521
24	2367505	225791	2345221	231342
25	2464884	244937	2441596	250953
26	2562108	264853	2537807	271354
27	2659172	285539	2633848	292541
28	2756067	306993	2729711	314516
29	2852791	329214	2825392	337275
30	2949335	352201	2920883	360817

44

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 290.		Latitude 300.	
	x.	y.	x	y.
$1{ }^{\circ}$	97426	412	96474	421
2	194845	1649	192940	1684
3	292250	3709	289391	3788
4	389635	6594	385821	6735
5	486991	10303	482221	10522
6	584313	14836	578585	15151
7	681593	20192	674904	20620
8	778824	26370	771172	26930
9	876999	33372	867381	34080
10	973111	41194	963524	42068
11	1070153	49839	1059594	50896
12	1167120	59305	1155583	60562
13	1264003	69590	1251484	71064
14	1360795	80695	1347290	82404
15	1457490	¢2619	1442994	94579
16	1554080	105360	1538587	107588
17	1650559	118918	1634063	121432
18	1746920	133292	1729415	136108
19	1843156	148481	1824635	151615
20	1939260	164484	1919715	167953
21	2035225	181300	2014650	185120
22	2131044	198925	2109432	203115
23	2226710	217362	2204053	221936
24	2322218	236608	2298506	241583
25	2417558	256661	2392784	262052
26	2512727	277520	2486879	283345
27	2607715	299183	2580786	305456
28	2702516	321649	2674496	328387
29	2797124	344918	2768001	352154
30	2891531	368985	2861297	376681

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude $31{ }^{\circ}$.		Latitude 32°.	
	x.	\%.	x.	y.
10	95491	429	94480	437
2	190975	1717	188953	1748
3	286444	3862	283410	3932
4	381889	6866	377842	6990
5	477304	10728	472241	10921
6	572680	15447	566601	15725
7	668010	21024	660911	21402
8	763285	27457	755166	27950
9	858499	31747	849355	35370
10	953644	42891	943472	43661
11	1048712	51891	1037509	52822
12	1143694	61744	1131456	62853
13	1238584	72452	1225308	73751
14	1333375	84012	1319954	85517
15	1428057	96423	1412687	98150
16	1522625	109685	1506199	111648
17	1617069	123797	1599583	126011
18	1711382	138757	1692829	141237
19	1805557	154564	1785932	157324
20	1899587	171217	1878880	174272
21	1993463	188715	1971669	192078
22	2087177	207056	2064289	210742
23	2180723	226238	2156733	230263
24	2274093	246261	2248991	250637
25	2367279	267122	2341058	271863
26	2460273	288819	2432923	293940
27	2553070	311352	2524579	316866
28	2645660	334719	2616920	340638
29	2738036	358916	2707241	365256
30	2830192	383943	2798228	390715

REPORT OF THE SUPERINTENDENT OF
TABLE II.
Co-ordinates of curvaiure-Continued.

	Latitude 33°.		Latitude 34°.	
	x.	y.	x.	y.
10	93441	444	92373	451
2	186873	1776	184736	1803
3	280288	3997	277082	4057
4	373678	7105	369401	7211
5	467034	11101	461685	11267
6	560349	15984	558926	16223
7	653612	21754	646113	22079
8	746817	28410	738240	28835
9	839954	35952	830295	36488
10	933014	44378	922272	45041
11	1025991	53689	1014160	54491
12	1118875	63884	1105953	64837
13	1211658	74960	1197640	76079
14	1304331	86919	1289213	88214
15	1396887	99757	1380663	101243
16	1489317	113475	1471982	115163
17	1581611	128071	1563160	129975
18	1673763	143544	1654189	145675
19	1765763	159893	1745061	162263
20	1857605	177113	1835766	179738
21	1949278	195206	1926297	198096
22	2040775	214171	2016644	217337
23	2132087	234004	2106800	237459
24	2223208	254704	2196754	258460
25	2314126	276270	2286499	280338
26	2404836	298699	2376026	303091
27	2495329	321989	2465328	326717
28	2585597	346138	2554394	351812
29	2675630	371144	2643217	376576
30	2765423	397009	2731788	402806

TABLE II.
Co-ordinates of curvalure-Continued.

	Latitude 35 ${ }^{\circ}$.		Latitude 360.	
	x.	y.	x.	y
10	91276	457	90151	462
2	182542	1827	180293	1850
3	273791	4112	270416	4161
4	365011	7309	360510	7398
5	456196	11419	450567	11558
6	547334	16443	540576	16642
7	638418	22378	620528	22649
8	729438	29225	720414	29579
9	820384	36982	810224	37430
10	911249	45650	889949	46202
11	1002022	55226	989579	55895
12	1092695	65711	1079104	66506
13	1183258	77104	1168517	78035
14	1273703	89402	1257806	90480
15	1361019	102605	1346963	103842
16	1454200	116711	1435979	118117
17	1544234	131720	1524842	133304
18	1634114	147628	1613546	149402
19	1723830	164437	1702080	166409
20	1818373	182142	1790434	184324
21	1902735	200741	1878600	203144
22	1991905	220237	1966569	222868
23	2080877	240623	2054330	243492
24	2169640	261899	2141876	265017
25	2258185	284062	2229196	287438
26	2346503	307110	2316281	310754
27	2434588	331042	2403123	334961
28	2522428	355854	2489711	360059
29	2610014	331544	2576038	386043
30	2697341	408110	2662093	412912

TABLE II.
Coordinates of curvature-Continued.

	Latitude 37\%.		Latitude 38°.	
	z.	y.	x.	y.
10	88999	467	87820	472
2	177989	1869	175630	1887
3	266959	4206	263420	4246
4	355899	7477	351180	7548
5	444800	11681	438899	11793
6	533653	16821	526567	16980
7	622446	22893	614174	23109
8	711171	29897	701710	30179
9	799817	37833	789166	38189
10	888374	46699	876530	47138
11	976834	56495	963793	57026
12	1065184	67219	1050945	67850
13	1153421	78870	1137976	79611
14	1241529	91449	1224875	92306
15	1329499	104952	1311633	105934
16	1417322	119377	1398239	120493
17	1504990	134725	1484684	135982
18	1592491	150993	1570957	152400
19	1679817	168179	1657049	169742
20	1766957	186281	1742950	188010
21	1853902	205297	1828650	207199
22	1940643	225225	1914138	227308
23	2027170	246064	1999405	248334
24	2113472	267810	2084442	270275
25	2199543	290461	2169237	293129
26	2285370	314015	2253782	316893
27	2370945	338470	2338068	341564
28	2456258	363822	2422083	367138
29	2541301	390068	2505819	393615
30	2626063	417207	2589264	420989

TABLE II．
Co－ardinates of curvature－Continued．

$\begin{aligned} & \text { 害 } \\ & \text { 总 } \\ & \text { 号 } \end{aligned}$	Latitude 390.		Latitude $40{ }^{\circ}$ ．	
	x.	y.	x ．	y.
10	86614	476	85382	479
2	173218	1903	170753	1916
3	259801	4281	256103	4310
4	346352	7610	341420	7662
5	432862	11889	426695	11971
6	519320	17118	511915	17236
7	605715	23297	597071	23456
8	692037	30424	682153	30632
9	778275	38499	767147	38762
10	864419	47520	852045	47845
11	950460	57487	986837	57879
12	1036385	68399	1021510	68865
13	1122186	80254	1106055	80799
14	1207851	93050	1190461	93681
15	1293371	106787	1274717	107509
16	1378739	121462	1358813	122282
17	1463931	137073	1442738	137997
18	1548951	153620	1526481	154653
19	1633784	171099	1610031	172247
20	1718421	189509	1693379	190777
21	1802850	208848	1776514	210241
22	1887062	229112	1859426	230637
23	1970045	250301	1942103	251961
24	2054791	272410	2024587	274212
25	2138290	295439	2106714	297386
26	2221530	319382	2188627	321481
27	2304504	344239	2270264	346492
28	2387197	370005	2351617	372418
29	2469603	396678	2432673	399256
30	2551712	424258	2513422	427000

TABLE II.
Co-ordinates of curvature-Continued.

$\begin{aligned} & \text { 篦 } \\ & \text { 品 } \end{aligned}$	Latitude 410.		Latitude $42{ }^{\circ}$.	
	x.	y.	x.	y.
10	84123	481	82839	484
2	168235	1926	165666	1935
3	252326	4334	248471	4353
4	336382	7705	331243	7738
5	420395	12038	413969	12090
6	504353	17332	496638	17407
7	588245	23587	579240	23690
8	672060	30803	681762	30936
9	755786	38978	744195	39146
10	839414	48111	826526	48317
11	922931	58200	908744	58451
12	1006327	69246	990839	69541
13	1089591	81246	1072798	81593
14	1172713	94198	1154610	94600
15	1255680	108101	1236266	108561
16	1338484	122953	1317753	123475
17	1421111	138753	1399060	138339
18	1503552	155497	1480176	156152
19	1585796	173184	1561090	173911
20	1667833	191812	1641791	192614
21	1749651	211378	1722270	212258
22	1831238	231880	1802512	232840
23	1912587	253314	1882509	254358
24	1993684	275679	1962249	276809
25	2074520	298970	2041721	300189
26	2155084	323186	2120915	324496
27	2235366	348322	2199820	349727
28	2315354	374376	2278425	376877
29	2395038	401344	2356718	402943
30	2474408	429223	2434691	430921

TABLE II.

Co-ordinates of curvature-Continued.					

TABLE II.
Co-ordinates of Curvature-Continued.

	Latitude 45°.		Latitude 46°.	
	x.	y.	x.	y.
10	78835	486	77452	486
2	157659	1946	154892	1945
3	236458	4578	232307	4375
4	315221	7782	309685	7778
5	393936	12158	3870015	12152
6	472591	17505	464284	17495
7	551175	23823	541480	23809
8	629674	31109	618590	31091
9	708078	39364	095603	39341
10	786373	48586	772506	48557
11	864549	58774	849287	58738
12	942594	69925	925935	69882
13	1020495	82039	1002437	81987
14	1098239	95113	1078780	95052
15	1175817	109145	1154953	109074
16	1253215	124134	1230945	124053
17	1330423	140077	1306742	139982
18	1407428	156972	1382334	156863
19	1484219	174816	1457707	174691
20	1560784	193605	1532851	193465
21	1637111	213339	1607754	213180
22	1713189	234013	1682402	233834
23	1789006	255624	1756786	255423
24	1864550	278169	1830893	277945
25	1939811	301645	1904711	301395
26	2014775	326048	1978228	325770
27	2089434	351373	2051435	351067
28	2163773	377619	2124317	377280
29	2237784	404780	2196866	404406
30	2311449	432852	2269067	432441

THE UNITED STATES COAST SURVEY.
TABLE II.
Co-ordinates of Curvature-Continued.

	Latitude $47{ }^{\circ}$.		Latitude 48°.	
	\boldsymbol{x}.	y.	z.	9.
10	76045	485	74614	484
2	152077	1941	149216	1935
3	228085	4368	223792	4354
4	304055	7764	298331	7741
5	379976	12130	372820	12093
6	455835	17464	447246	17411
7	531619	23765	521597	23695
8	607317	31035	595860	30942
9	682916	39270	670022	39151
10	758404	48469	744073	48322
11	833768	58631	817997	58452
12	908997	69754	891784	69541
13	984077	81836	965421	81584
14	1058997	94876	1038896	94584
15	1133745	108871	1112197	108534
16	1208307	123819	1185.309	123434
17	1282673	139717	1258223	139281
18	1356830	156563	1330925	156072
19	1430766	174354	1403403	173805
20	1504467	193088	1475645	192476
21	1577926	212761	1547639	212083
22	1651126	233370	1619372	232622
23	1724058	254912	1690833	254090
24	1796708	277982	1762009	276432
25	1869066	300779	1832889	299796
26	1941119	325097	1903461	324027
27	2012856	350332	1973712	349172
28	2084265	376481	2043631	375225
29	2155335	403540	2113207	402183
30	2226052	431504	2182427	430042

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude 490.		Latitude $50{ }^{\circ}$.	
	\boldsymbol{x}.	3.	x.	y.
10	73161	482	71685	479
2	146309	1927	143357	1917
3	219432	4336	215003	4312
4	292516	7708	286611	7666
5	365550	12042	358168	11976
6	438521	17338	429661	17243
7	511415	23594	501077	23465
8	584220	30810	572403	30641
9	656925	38985	${ }_{643627}$	38771
10	729515	48116	714736	47851
11	801979	58203	785718	57882
12	874303	69243	856558	68861
13	946476	81235	927246	80786
14	1018485	94177	997768	93655
15	1090317	108065	1068111	107465
16	1161959	122899	1138264	122215
17	1233401	138676	1208213	137902
18	1304628	155392	1277946	154522
19	1375629	173044	1347451	172073
20	1446391	191631	1416715	190552
21	1516902	211147	1485725	209955
22	1587150	231591	1554471	230279
23	1657123	252958	1622938	251520
24	1726808	275246	1691115	273675
25	1796193	298449	1758990	296739
26	1865267	322564	1826550	320709
27	1934017	347587	1893784	345580
28	2002432	373513	1960680	371347
29	2070500	400338	2027224	398006
30	2138207	428058	2093407	425553

TABLE II.
Co-ordinates of curvature-Continued.

	Latitude $51{ }^{\circ}$.		Latitude 52°.	
	x.	y.	x.	3.
10	70186	476	68667	472
2	140360	1904	137322	1888
3	210510	4284	205950	4249
4	280618	7614	274541	7553
5	350676	11896	343078	11801
6	4.20671	17126	411549	16990
7	490586	23307	479946	23120
8	560411	30434	548249	30192
9	630133	38510	616451	38202
10	699742	47530	684534	47146
11	769219	57490	752487	57030
12	838555	68398	820300	67845
13	907736	80240	887956	79592
14	976753	93020	955446	92273
15	1045588	106733	1022753	105873
16	1114230	121382	1089866	120401
17	1182670	136963	1156777	135850
18	1250890	153465	1223466	152219
19	1318880	170893	1289926	169504
20	1386627	189240	1356139	187699
21	1454119	208503	1422095	206304
22	1521346	228686	1487785	226818
23	1588290	249775	1553192	247726
24	1654943	271771	1618307	269540
25	1721292	294670	1683114	292242
26	1787322	318465	1747603	315836
27	1853027	343153	1811762	340312
28	1918390	368730	1875577	365669
29	1983398	395193	1939040	391900
30	2048043	422532	2002133	418984

TABLE II.
Co-ordinates of curvature-Continued.

$\begin{aligned} & \text { 离 } \\ & \text { E } \\ & \text { En } \\ & \text { E. } \end{aligned}$	Latitude 53°.		Latitude 540.	
	x.	y.	x.	y.
10	67127	468	65567	463
2	134241	1871	131117	1851
3	201329	4210	196645	4165
4	268378	7483	262131	7404
5	335375	11692	327566	11567
6	402304	16832	392937	16654
7	469157	22906	458226	22664
8	535920	29911	523427	29595
9	602576	37845	588521	37445
10	669119	46707	653500	46212
11	735530	56498	718347	65899
12	801798	67215	783052	66497
13	867910	78850	847602	78010
14	933854	91407	911980	90431
15	999614	104880	976178	103765
16	1065180	119274	1040184	118002
17	1130540	134578	1103977	133140
18	1195684	$150791^{\text {. }}$	1167554	149178
19	1260594	167908	1230894	166110
20	1325260	185930	1293993	183936
21	1389665	204853	1356834	202650
22	1453800	224670	1419401	222250
23	1517653	245381	1481688	242732
24	1581213	266977	1543671	264092
25	1644465	289457	1605360	286323
26	1707398	312820	1666725	309430
27	1769999	337055	1727754	333393
28	1832256	362163	1788440	358218
29	1894155	388131	1848761	383897
30	1955688	414965	1908730	410425

APPENDIX No. 34.
Description of an apparatus devised by Assistant W. P. Trowbridge, and of the method of applying it in determining ocean depths and obtaining specimens of bottom.-(Sketch No. 40.)

U. S. Coast Survey Office, April 6, 1859.

Dear Sir: In my report to you of May 31, 1858, I had the honor of presenting the results of an investigation of the laws of descent of heavy bodics in the ocean, under the conditions required in deep-sea sounding.

The object of that investigation was to ascertain and develop fully the causes of failure and error in deep soundings, and to devise a more certain and reliable mode of measuring the depth of the ocean in the off-shore hydrography of the Coast Survey, and especially in the swift current of the Gulf Stream.

I have now to present for your further consideration a sounding apparatus based upon the developments given in my former report, and the result of further study and experiments on the subject.

The distinguishing feature of the method herein described, though exceedingly simple in its application, has never before been proposed, inasmuch as its necessity could hardly have been felt without a careful analysis of the circumstances of descent of the sounding lead and line. In the method of sounding heretofore employed, the influence of the friction of the water upon the line, or "endwise resistance," as it is called by Prof. Airy, was known to exist, bat the amount of this endwise resistance in pounds, and its ultimate effects at great depths, had not been determined. It was supposed that by making use of a weight of thirty or forty pounds and a small fishing line, this resistance would be reduced to an inappreciable amount, or at least that its effect in retarding the descent of the lead would not be sufficient to destroy confidence in the results.

It appears, however, from the investigations referred to, that a weight, such as is ordinarily used in sounding, will be practically held in suspension at no very great depth, even when the line used is the smallest that will sustain the weight with safety in the air; and, in confirmation of this conclusion, the fact is well established that, notwithstanding repeated experiments made by the most skilful officers and with the utmost care, the bottom of the ocean has never been reached in its deepest parts; and even where the bottom has been attained, and specimens brought to the surface, the uncertainties of the results have given good grounds for controversy with regard to the depth.

These failures and uncertainties do not arise from the magnitude of the distance to be measured, nor from the impenetrability of the fluid through which the lead has to pass. Distances infinitely great and infinitely small in the universe, above and around us, have been measured with precision, and the unexplored depths of the ocean are occupied by a medium freely and equally penetrable at all depths. Yet, in this field-a field daily traversed by the commerce of the world-a distance of a few miles only has baffed all attempts to measure it.

The difficulty lies in the simple cause stated above, viz: the "endwise resistance," or friction apon the sounding line, which prevents the lead from going to the bottom where the depth is great.

The apparatus which I have devised is designed to avoid this friction upon the line, while at the same time the line is not dispensed with, but is made use of as in the ordinary mode.

Before describing this apparatus, I will briefly refer to some of the results given in my previous report on this subject.

The rate of descent of an iron globe or sphere, as the simplest geometrical form, was first determined when falling frecly in the ocean, and it was found that a sphere will attain a certain maximum velocity within twenty-five feet of the surface, which velocity will be kept up without sensible increase or diminution to the bottom.

For a 32 -pound iron shot this uniform velocity is about sixteen feet per second.
The conditions of descent when a small line is attached to the sphere and drawn down with it were then discussed, the line being uncoiled from a reel on the deck of the vessel, and drawn down by the weight of the sphere. The friction of this line in the water causes a remarkable change in the rate of descent. Nearly the same maximum velocity at starting is obtained, but, the velocity becomes rapidly reduced until the sphere becomes suspended nearly motionless in the water.

Taking the simple case af a 32 -pound shot attached to a small fishing line, the shot attains its maximum velocity of sixteen feet per second within twenty-five feet of the surface; but before a hundred fathoms of the line is drawn into the water this velocity is reduced to eight feet per second-a diminution of half the velocity from the friction of one hundred fathoms of line.

At five hundred fathoms the velocity is again reduced half, or to four feet per second; and at three thousand, to about one foot per second; whereas at this depth, if there is no line attached, the shot will fall with its original velocity of sixteen feet per second undiminished. Below this depth we may determine in the same way the circumstances in the two cases; the shot falling freely still retains its uniform velocity of sixteen feet per second at four, five, and six thousand fathoms depth; while with the line attached, at five thousand fathoms the velocity is reduced to a few inches per second, and at six thousand fathoms the descent is not perceptible under ordinary circumstances.

The time of descent becomes an important element also in practice. In the two cases given the shot falling freely will descend to the depth of three thousand fathoms in twenty minutes, and to the depth of six thousand fathoms in forty minutes; while, with the line attached, it will require two hours to descend three thousand fathoms, and eight hours to descend six thousand fathoms.

These effects were shown to be due to the friction alone; the amount of which in pounds was determined for different cases in which different forms of weight and different sizes of lines were used; and the entire inapplicability of the ordinary mode of sounding for great depths, and even for ordinary depths, where the object is to obtain a correct knowledge of the depths, was demonstrated.

Methods have been proposed in which a line is dispensed with by detaching a float at the bottom when the plummet strikes, and watching for the return of the float to the surface; but this is impracticable, as there is no material applicable, within our knowledge, that will float to the surface from the bottom of the sea, on account of the great pressure which condenses the bulk, so as to render bodies specifically lighter than water at the surface heavier than water at even moderate depths. A line must therefore be used to bring back to theosurface, any machine by which the depth may be registered in the descent, and the motion of this line in an extended form in the water must be avoided.

The apparatus which I have devised is designed to secure this object by attaching to the sinker a tube or case in which the sounding line is compactly coiled, and from which it will be
discharged freely, thus causing the plummet to carry down the coil, while one end of the line is held fast at the surface; the line being uncoiled from the descending sinker, in the manner that a spider falling from a height gives out a thread in his descent by which he retains communication with the point above to which the thread is attached. The motion of the line in an extended form through the water being thus avoided, all the conditions of free descent are secured, and the plummet will descend to the greatest depths with a rapid and uniform velocity.

The depth is ascertained in the manner heretofore known as Massey's method, by a helix or curved blade, which is cansed to revolve by the motion of the apparatus through the water. Instead of Massey's Indicator, however, which from its faulty construction does not give accurate results, I have adapted Saxton's Current Metre, a much more delicate instrument, to this purpose.

A specimen tabe is also used, differing somewhat from those now in use in construction, but not in its essential points.

The lower end of the line is attached to the register and to the specimen box, which weigh together only two or three pounds; and as the line is hauled in from the bottom it brings up the register and specimen box, leaving the plummet and attached case at the bottom.

The details of construction are shown in the accompanying drawings and description of the apparatus.

Besides overcoming the principal difficulty in sounding, there are other important advantages secured by this arrangement which simplify rather than complicate the problem. These are as follows:

First. There is no strain upon the line in the descent, except from its own weight, no matter to what depth or with what velocity the plummet may descend. It is possible, therefore, to employ a very small line; a single thread of silk may, in fact, be extended to the bottom of the ocean. This permits of the use of a line which may be coiled compactly within a small space, the strength of the line being made just sufficient to insure its being hauled in with safety, bringing up at the same time the specimen box and the register. The strain brought upon it in hauling in will depend upon the velocity of the upward motion, which may be regulated accordingly.

Seconally. A rapid and uniform descent being secured, the indications of a revolving register will be reliable when attached to this plummet, while in the present mode of sounding the slow motion of descent at great depths renders such a mode of registering the depth uncertain and unreliable.

Thirdly. There being no strain upon the line in the descent, and the motion being uniform, it is practicable to determine the depth by the time of descent, making use of a small insulated wire as a sounding line, and determining the instant that the weight strikes the bottom by an electrical signal transmitted through the line. An apparatus was devised as long since as the year 1845 , for ascertaining the moment when the weight strikes the bottom by electricity, but in the mode of sounding heretofore employed no particular advantage would result from this, while the danger of breaking the electric continuity is very great, owing to the strain brought upon the line in the descent; and the plummet as now used descends with such a varying velocity that even with the time of descent given no calculation will give the depth. The method has, therefore, never been put in practice. Whereas, in the method proposed, there is no strain upon the line in its descent, and the plummet will fall through each successive
hundred fathoms in the same time; the time of descent will thus furnish a simple means of calculating the depth. In this process it will not be necessary to recover the line, and the time required to sound the ocean at any point need only be that required for the plammet to sink to the bottom, moving with any velocity which may be desired.

I have made many experiments on the best method of coiling the line so as to secure its uncoiling with certainty, and without the possibility of a strain upon the line or the occurrence of a kink. I have also given much attention to the quality and size of the line to be used. Upon these points the practical working of the apparatus in a certain degree depends, but being merely mechanical questions they are easily settled. They are fully discussed in the description which accompanies the drawings.

The importance of the problem which is thus sought to be solved, in connection with the survey of the coast, has never been questioned; a knowledge of the configuration of the bottom of the sea adjacent to the coast is necessary to the solution of many questions of importance to navigation and to science, and especially that of the ruling feature of the Atlantic Coast, the Gulf Stream; but besides these considerations the question has become one of great public interest in connection with the laying of submarine telegraphs, the risks of such enterprises being diminished in proportion to the accuracy with which the depth of the sea is known at every point of any proposed line, and the ultimate practicability of such operations across the Atlantic being yet to be demonstrated by new and more accurate soundings.

Description.

The accompanying plate (Sketch No. 39) represents the instrument as at first constructed. Some slight modifications have since been made in the mode of attaching the register, but without affecting the general design.

Fig. I represents the plummet as it appears in its descent.
T, the tube or case containing the coiled line.
W, the leaden or iron weight inserted in the bottom of the tube.
C, the conical cap.
\mathbf{R}, the register in its place upon the cap.
L, the line.
Fig. 1 a represents a longitudinal section of the tube, weight, and cap, showing the mode of coiling the line in balls, and the small specimen box s passing through the hollow weight.

Fig. 2 represents the register on a larger scale.
$\hbar h$, the helices or blades.
$r r$, the register wheels.
$g g$, the locks for gearing and ungearing the wheels.
Fig. $2 a$ represents the plan or horizontal view of the register, it being constracted se as to offer the least resistance in passing through the water.

Fig. 3 shows the detailed constraction of the register wheels and the helices.
From Fig. 1, it will be seen that the form of the apparatus admits of rapid motion through the water. The weight is conical and elongated and the register presents the edges only of brass plates to the water, and the line being uncoiled and discharged from the tube there is no
retarding force to the descent from the line itself. Any desired velocity of descent may be given to the plummet by increasing or decreasing the weight W.

Fig $1 a$ shows the method of coiling the line.
There are varions modes of doing this which are in common practice in twine and cotton factories; that which is here exhibited is the method of coiling in balls, all the balls exhibited in the tube being formed of one unbroken line, the line drawing out from the centre of each, until it is all drawn from the tube. The machinery for winding these balls is very simple.

The essential points in the coiling are to coil the line in as compact a space as possible, so as to insure certainty of discharge without danger of kinking. Two other modes of coiling are now under consideration, either of which may be better than the method by balls. One is to wind upon a spindle, and the other to lay the line in a sort of compound coil, directly in the tube. All these methods are now practiced in the factories on a large scale for winding twine and cotton.

The line used should be about five hundredths of an inch in diameter, and as strong as it can be made of that size. A braided line of Holland flax or silk of five hundredths of an inch in diameter may be made to bear a strain of forty or fifty pounds, which is abundantly strong for the purpose, as the weight and case are left at the bottom, the register and specimen tube only being brought up.

Tube.
The tube may be made of tin in sections of eighteen inches in length, with stove-pipe joints and bayonet fastenings. The object of this is to adapt the length of the tube readily to the amount of line which it is to contain. A tube four inches in diameter will contain nearly a mile of line to each foot of the tube.

Sinker and specimen tube.
The sinker is made of cast iron or load of any desired weight, depending upon the desired velocity of descent. A weight of twenty-five pounds has been adopted.

The sinker is conical and is inserted into the lower end of the tube containing the line and fastened to this tube by screws or by a bayonet joint and fastening. The weight has a conical hole or cavity through its entire length, through which the small specimen tube passes in the manner shown in the drawing.

The specimen tube is a tube of thin brass passing through the weight and attached to the lower end of the line within the large tube. This specimen tube is fitted with a valve opening upwards in the bottom, which closes when the tube is drawn up, thus retaining the mud which is forced into the tube when the weight strikes bottom. The specimen tube fite loosely in the bottom of the weight so that it may be easily drawn out as the line is hauled in.

Cap.

The cap is used for two purposes: to contract the upper end of the tube containing the line so that the line cannot rise in bulk out of the tube, and for supporting the register. It is formed in the shape of the frustum of a cone, cut áway on one side as well as open at the top, so as to allow the line to be discharged freely. A flat strap is fastened to the top of the frustum nearly in the line of the axis of the tube, and upon this strap the register is set, as shown in the drawing; the register is kept in its place by loose collars.

Register.

The apparatus for measuring the depth consists of a helix or curved blade attached to a vertical axis, and wheels gearing into an endless screw upon this axis. The revolutions of the helix, cansed by the motion through the wator, are communicated to the wheels, which are graduated so as to indicate the number of revolutions of the helix.

Two registers are attached to one plummet by attaching them together in the manner shown in figure 2, by means of brass plates. The blades are made to turn in opposite directions, and will operate as chocks upon each other, and also counteract the effect of any rotary motion in the plummet.

The construction of the blades and wheels and the mode of gearing them with the endless screw are shown in figure 3. The wheels are differential wheels; that is, they are concentric, one of them having one hundred teeth and the other one hundred and one teeth. The cross bar (b) has a slight motion, carrying with it the wheels; this motion is governed by a spring s. To gear the wheels the cross bar is pressed towards the endless screw until the teeth gear with that screw and the bar is there locked, as shown in figure 2 at $g g$. The revolution of the blades will now cause both wheels to turn, and after one hundred revolutions the wheels will be found separated by one tooth or one division. The differences thus measure hundreds ofrevolutions. In the register from which the drawings were made, the blades revolve once in two feet; one hundred revolutions will therefore correspond to two hundred feet, or one division of the scale of the register to thirty-three fathoms.

When the register is hauled up, the arms at $g g$, figure 2 , drop, and the springs cause the wheels to ungear and fly back, where they are held motionless by a projecting point at n, figure 3. The arms are made to drop by means of a small wire, which is attached to the cap, as shown at $(u$,$) figure 1. This wire is fastened to, or hooks over the ends of the arms, and when$ the register is drawn off, the arms fall.

Mode of attaching the lixe to the register and specimen tube.

Before the line is put into the tube it is attached to the specimen tube at a point four or five feet from the end of the line, the spare end is passed through the tube, and when the balls are all put in the tube the extreme end of the line coming out at top is attached to the register, after taking a few turns around the top of the strap, the register being in its place.

The line is thas attached to the specimen tube and register only, and not to the large tube. or weight.

When the plummet strikes the bottom a part of the line will remain in the tube coiled; by hauling in the line this part will, however, be uncoiled, and on coming to the bottom of the coil the specimen tube will be drawn up through the large tube, and after the specimen tube comes out the register will be drawn off the strap, and thus the large tube and weight will be disengaged from the line, specimen tube, and register, and by continuing to haul in, the register and specimen tube will be brought to the surface. The plummet on striking will, under most circumstances, remain sticking in the mud in an upright position.

Very respectfully, your obedient servant,

A. D. Bache, LL.D.,
 Superintendent U. S. Coast Survey.

APPENDIX No. 35.
Extracts from letters of J. M. Batchelder, esq., stating the results of trials made with Hunt's tidemetre at Charlestown navy yard, Mass.

Boston, August 30, 1859.
Sir: * * * Below are given the results of eighty observations made with the pressure tide-metre when the bag, tube, and guage were filled with air. The mean differences and error are also shown, but it is probable that the actual error is less than the result given in the column so designated, as the greatest difference occurred when the surface of the water was agitated, and the least when it was most calm.

To determine the effect produced by the escape of air, the bag was fully distended, and immersed to the depth of thirteen feet, and the position of the index noted. The instrument was then taken up and one-half of the air allowed to escape from the bag, but on being again immersed to the same depth the index remained as before.

No observations were made with reference to temperature, as the change of volume of the air from this cause would be very slight as compared with the distended and half-filled bag.

Result of trials made with the pressure fide-meter at Charlestown navy yard in August, 1859.

	1	2	3	4	5	6	7	8	Maximum.	Minimum.	Mean.
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Eeet.
0	2.92	2.97	2.87	2.90	2.90	3.06	92	2.90	3.06	2.87	2.83
1	3.87	4.02	3.96	3.96	3.87	4408	3.90	3.98	4.02	3.87	3.96
2	4.83	5.00	4.94	4.99	4.95	5.00	5.00	4.95	5.00	4.83	4.96
3	5.83	5.90	5.87	5.87	5.93	5.93	5.90	5.88	5.83	5.86	5.89
4	6.87	6.97	6.88	6.97	6.97	7.09	6.97	6.99	7.00	6.86	6.95
5	7.85	7.85	7.86	7.85	7.80	7.98	7.87	7.80	7.92	7.80	7.85
6	8.87	8.82	8.91	8.89	8.78	8.86	8.93	8.86	8.93	8.78	8.86
7	9.83	9.80	9.87	9.75	9.83	9.86	9.75	9.75	9.87	9.75	9.80
8	10.87	10,69	10.90	10.63	10.83	10.90	10.83	10.83	10.90	10.83	10.88
9	11.90	11.94	11.91	11.91	11.91	11.99	11.90	11.86	11.99	11.86	11.91
10	12.80	12.92	12.87	12.87	12.87	12.87	12.84	12.84	12.92	12.80	12.86

Bag filled with air.
From the first mark (0) on the tube to the bottom of the air-vessel three feet.
Mean of eighty observations given above.

Feot.	Difference. Feot.	Error. Feed.
2.93		
3.96	1.03	$.03+$
4.96	1.00	.00
5.89	.93	$.07-$
6.95	1.06	$.06+$
7.85	.90	$.10-$
8.86	1.01	$.01+$
9.80	.94	$.06-$
10.86	1.06	$.06+$
11.91	1.05	$.05+$
12.86	.96	$.05-$

September 17, 1859.

* * * Notes are here appended of further trials of the pressure tide-meter, made at your request, the instrument being filled with pure water.

It will be noticed that in the column headed "'mean'" we have on the third line 4.02 feet, and when the water is.. 7.00 ،
11.02 " highar,
as in the tenth line.
The intermediate observations would be equally accurate if the dial-plate of each instrument was gradnated by marking the position of the index at each successive tenth of a foot immersed, beginning with a depth of not less than three or four feet. The bag, when in use, should always be at this depth below low-water mark.

The differences noted at the same depth of immersion (column nine) are mainly due to oscillation of the water, and in a very slight degree to friction of the index gear.

Trials made at Charlestown navy yard in September, 1859.

Diff. of depth of immersion in feet.	Observations 1.	Observations 2.	Observations 3.	Observations 4 .	Observations 5.	Maximum.	Minimum.	Difference.	Menn.
Feet.	Feet.	Feet.	Feet.	Fret.	Feet.	Feet.	F eet.	Feet.	Freat.
0	9.50	2.50	2.50	2.45	2.50	2.50	2.45	. 05	2.49
1	3.00	3.10	3,08	3,00	3.09	3.10	3.00	. 10	3.04*
2	4.05	4.05	4.05	3.98	3.97	4.05	3.97	. 08	4.02
3	480	4.80	4.80	4.72	4.65	4.80	4.65	. 15	4.75
4	5.65	5.70	5.60	5.58	5.55	5.70	5.55	. 15	5.02
5	640	6.38	6.37	6.38	6.35	6.40	6.35	. 05	6.38
6	7.60	7.62	7.56	7.60	7.50	7.62	7.50	. 14	7.58
7	8.75	8.78	8.60	8.68	8.70	8.78	8.80	. 18	8.70
8	10.02	10.02	9.90	9.83	9.90	10.02	9.83	. 19	9.93
9	11.05	11.05	11.00	11.00	11.00	11.05	11.00	. 05	11.02
10 \{	12.05	11.85	11.95	12.05	12.00	12.05	11.95	. 10	12.00
\{	12.00	12.10	12.08	12.00	12.00	12.10	12.00	12.04

* The figures on the last line are obtained by adding nine feet to trose on the aecond.

To determine fully the practical value of this apparatus I think it should be set up with one of the common gauges, and the indications of each observed and compared daily for one or two months. * * * .

Very respectfully, your obedient servant,
J. M. BATCHELDER.

Prof. A. D. Bache, Superintendent United States Coast Surveg.

APPENDIX No. 36.

Letter of the Sechetary of the Treasury relative to placing the Coast Survey steamer Active under the autharity of Brevet Lieut. General Scott.

Treasury Department, September 16, 1859.
SIR: I have to inform you that, by direction of the President, the Coast Survey steamer "Active" has been placed under the authority of Brevet Lieutenant General Winfield Scott, United States army, and Commander James Alden, U. S. N., has been instructed by this department, under date of the 15 th instant, to obey all orders emanating from him.

Very respectfully, your obedient servant,

Prof. A. D. Bache,
Superintendent Coast Survey.

APPENDIX No. 37.

Letter of Captain John Pope, U. S. N., commandant at Porlsmouth navy yard, addressed to Lieut. Comg. Alex'r Murray, U. S. N., Assistant Goast Survey, on the occasion of service rendered by the C.S. steamer Bibb.

U. S. Naft Yard, Portsmouth, N. H., October 1, 1859.

Sir: Your promptness in answering a request to tow the United States ship Cumberland from the lower harbor to this navy yard on the 3d ultimo calls forth my acknowledgment and thanks, and I trust that your action will be approved by the Superintendent of the Coast Survey. Had you not rendered the assistance you did in towing up the Cumberland that vessel would have been detained by head winds five or six days in the lower harbor.

Very respectfully, your obedient servant,

JOHN POPE,
Commandant.

Lient. Comg. A. Murray, Coast Surveying Steamer Bibb.

APPENDIX No. 38.

Letter addressed to the Superintendent by Captain D. G. Farragut, U. S. N., on visiting Beaufort river, South Carolina, with the United States steamship Brooklyn.

United States Sloop-of-War Brooklyn, Beaufort Roads, South Carolina, February 17, 1859.
Sir: Permit me thus to acknowledge the great service I have received from the Coast Survey, through the kindness of Mr. C. O. Boutelle, chief of the party encamped at Land's End, mouth
of Beaufort river, South Carolina, who volunteered his services, and handsomely piloted this ship up to within four and a half miles of the town of Beaufort and down again; and continued to extend every assistance and courtesy in his power during our stay in these waters.

Very respectfully, your obedient servant,

> D. G. FARRAGUT,
> Captain United States Navy.

Professor A. D. Bache,
Superintendent Coast Survey, Washington city.

APPENDIX No. 39.

Letters addressed to Lieutenants T. A. Craven and J. N. Mafftt, U. S. N., on their detachment from the Coast Survey.

Coast Survey Offce, June 18, 1859.
Dear Sir: I feel too deeply indebted for the sympathy and hearty co-operation manifested by you while attached to the Coast Survey to permit the occasion which returns you to general duty in the naval service to pass without expressing my sense of the value of your labors. Apart from the devotion shown as one of the naval assistants, it is natural to suppose that your early experience in the work gave enhanced interest to your later efforta, and I cannot but regard the long period of your co-operation in the survey as one of the happy incidents of my superintendence.

The large share which you have contributed to the hydrographic results of the Coast Survey would alone permanently associate your name with that national work. Those with whom you have acted will have also in memory the ready spirit for co-operation, the uniform courtesy, and the qualities of head and heart that never fail in contributing to success.

Receive, my dear sir, the assurance that my kind wishes will ever accompany you to whatever field of duty you may be called in the range of your profession.

Yours, respectfully and truly,

A. D. BACHE, Superintendent J. S Coast Survey.

Lieut. Comg. T. A. M. Craven,

United States Navy.

Const Survey Offce, June 17, 1859.
Dear Sir: I cannot permit the occasion to pass which severs your connection with the Coast Survey without expressing my deep sense of the value of your services while associated in that work. Where so many are employed, relative merits and special efficiency can be perceived and appreciated only by one charged with the general superintendence; and in that light it is now a pleasure to say that your labors in the prosecution of the bydrography must ever rank in my estimation as of the highest order. Your career during the extended period of your service, and since your recent assignment to Coast Survey duty, was marked by that
rare aptitude and intelligence in regard to the work which assist in planning, and by perseverance which left nothing to be desired in reference to the time of its execution. A comparison shows that in hydrographic results your efforts have been seldom if ever excelled by those of any other officer. The high estimation in which I have regarded them would be weakened by specification in addressing one so fully qualified for the widest range of duty in the naval profession. As nothing has occurred throughout the long period of your connection with the Coast Survey to stay the increasing regard won by your even courtesy and manly bearing, my regret in taking leave of you is the greater. I shall ever recur to your name as one of the most efficient of naval assistants of the Coast Survey with feelings of pride and pleasure.

> Yours, respectfully,
A. D. BACHE,

Superintendent U. S. Coast Survey.

Lieut. Comg. J. N. Maffitt, United States Navy.

APPENDIX No. 40.

Aids to navigation recommended in reports made to the Superintendent by Assistants of the Coast Survey.

Sec.	Object.	By whom recommended.	Date of report, \&c.
I.	Buoy on Huzzey's Rock, south of Fletcher's Neck, Wood island, Me.	Lieut. Comg. Alex. Murray, U. S. N...	Referred to the Light-house Board Oct. 15, 1859. (Appendix No. 41.)
1.	Buoy to mark the extremity of a sand spit near Fletcher's Neck, Wood island, Me.	.do	Beferred to the Light-house Board Oct 15, 1859. (Appendix No. 41.)
I.	Buoy to mark the position of Cashe's Ledge, off the co sst of Mass.	.do.	Referred to the Light-house Board Sept. $15,1859$
V.	Buoys to mark the Bird Key and Cow Pen channels, St. Helena sound, B. 6.	Lieut. Comg. J. N. Maffitt, U. S. N....	Referred to the Light-house Board May 26,1859. (Appendix No. 42)
V.	Buoys in the East channel, Port Rogal sound, B. C.	Lieut. Comg. C.M. Fauntleroy, U. S. N.	Referred to the Light-house Board July 8, 1859. (Appendix No. 43.)

APPENDIX No. 41.
Letter to the Secretary of the Treasury, communicating recommendations from Lieut. Comg. Alexander Murray, U. S. N., Assistant Coast Survey, for bwoys in the vicinity of Fletcher's Neck, coast of Maine.

Philadelphia, October 15, 1859.
Sir: I have the honor to communicate the following extract from a letter addressed to me, under date of October 9, by Lieut. Comg. Alexamder Murray, U. S. N., Assistant Coasi Survey, and would respectfully request that a copy be furnished to the Light-house Board:
"In the place indicated on the enclosed sketch (coast of Maine) there is a rock whose position has been determined by this party. It is called Huzzey's Rock; and being very sharp, with three and four fathoms of water about it, and contiguous to 'Wood Island harbor,' is dangerous. I recommend that a buoy be placed near it.
"Between 'Nigger island' and 'Fletcher's Neck signal,' near the spot indicated by red ink sand stoal-marks, is the end of a spit. This is in the harbor, and should be marked with a red buoy, as, entering through the west channel, it would be on the starboard hand."

Very respectfully, yours,
A. D. BACHE,

Superintendent U. S. Coast Survey.
Hon. Howell Cobb, Secretary of the Treasury.

APPENDIX No. 42.

Letter to the Secretary of the Treasury, communicating a recommendation from Lieut. Comg. J. N. Maffit, U. S. N., Assistant in the Coast Survey, for placing buoys in St. Helena sound, S. C.

Coast Survey Office, May 26, 1859.
Sir: I have the honor to present for the consideration of the Light-house Board the following extract from a communication addressed to me by Lieut. Comg. J. N. Maffitt, U. S. N., Assistant Coast Survey, under date of May 25:
"For the convenience of steamers in passing through the South Edisto river into St. Helena sound, S. C., two second class buoys should be placed in what is called the Bird Key and Cow Pen channel. These would enable steamers to pass with a great saving in distance, and in comparatively smooth water while the wind is blowing fresh.
"The commanders of the steamers 'Edisto' and 'Everglade' have felt the necessity for these aids in navigation, and would willingly furnish the use of their boats for establishing the buoys in their places."

The positions of the desired buoys are marked 3 and 4 on the enclosed tracing,
Very respectfully, yours,
Hon. Howell Cobb,
Secretary of the Treasury.

APPENDIX No. 43.
Letter to the Secretary of the Treasury, communicating the recommendation of Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, for buoys to mark the East channel into Port Royal sound, S. C.

Cambridge, Massachusetts, July 8, 1859.
SIR: In reporting the completion of soundings by the hydrographic party in the several channels of Port Royal entrance, S. C., Lieut. Comg. C. M. Fanntleroy, U. S. N., Assistant Coast Survey, suggesta that the East channel passage should be buoyed out as soonas practicable.

The recommendation being based upon the results of his examinations, as shown by the hydrographic sheet, I would respectfully request that a copy of this communication may be transmitted to the Light-house Board.

Very respectfully, yours,
Hon. Howell Cobr, Secretary of the Treasury.

A. D. BACHE, Buperintendent.

INDEX TO SKETCHES AND DIAGRAMS.

1.-A. Progress sketch, Section I, (primary triangulation.)
2.-A bis. Progress sketch, Section I, (secondary triangulation, topography, and hydrography.)
3.- Seacoast of Maine, from Kennebec entrance to Portland.
4.- Portland harbor.
5. - Lynn harbor, Mass.
6. - Muskeget channel, (new edition.)
7.-B. Progress sketch, Section II.
8. - Hempstead harbor, Long Island Sound.
9.-C. Progress sketch, Section III.
10.- Chesapeake bay (sheet No. 4) from Potomac river to Pocomoke sound.
11.- Chesapeake bay (sheet No. 5) from Pocomoke sound to York river entrance.
12.- Chesapeake bay (sheet No. 6) from York river entrance to Cape Henry.
13.- Patuxent river, Md.
14. - St. Mary's river, Md.
15.-D. Progress sketch, Section IV.
16. -E. Progress sketch, Section V.
17.- Bull's bay, S. C., (new edition.)
18. - Port Royal entrance and approaches, S. C.
19. - Sapelo sound and approaches, Ga.
20.-F. Progress sketch, Section VI.
21.-F bis. Progress sketch, Section VI, (Florida reefs and keys.)
22. - Florida reefs and keys from Newfound harbor key to Boca Grande key.
23.-G. Progress sketch, Section VII.

24*. - Cedar keys, (new edition.)
25. - St. George's sound, Fla., (eastern part.)
26.-H. Progress sketch, Section VIII.
27.- The Rigolets, La.
28. -I. Progress sketch, Section IX.
29. - Coast of Texas and Matagorda bay.
30.-J. Progress sketch, Section X, (lower part.) r
31.-J bis. Progress sketch, Section X, (upper part.)
32.- San Pedro harbor, Cal.
33. - Orescent City harbor, Cal.
34.-K. Progress sketch, Section XI.
35. - Diagrams illustrating the distribution of temperature in the Florida straits.
36. - Sketch showing general progress in the survey of the Atlantic, Gulf, and Pacific coasts.
37. - Diagrams illustrating the results of magnetic observations at Girard College, Philadelphia.
38.- Lines of equal magnetic variation for the year 1858.
39. - Trowbridge's apparatus for deep-sea soundings.
40.- Mitohell's apparatus for measuring currents and improved pile for sea structures.

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910

[^0]: OViz: of all included in this item, inclusive of Sections I to IX, and exclusive of Section VI.

[^1]: © 1. Judge J. K. Kane, President Amer. Phil. Society, Penna.
 2. Gen. Joseph G. Totten, Chief Engineer U. S. A.
 3. Prof Benjamin Peirce, Harvard College, Mass.
 4. Prof. John Torrey, U. S. Assay office, N. Y.
 5. Prof. Joseph Henry, Secretary Smithsonian Institnte, D. C.
 6. Prof. J. F. Frazer, University of Pennaylvania, Penna.
 7. Prof. Wm. Chanvenet, U. S. Naval Academy, Md.
 8. President F. A. P. Barnard, University of Mississippi, Miso.
 9. Prof. John Leconte, College of South Carolina, S. C.
 10. Prof. Wm. M. Gillespie, Union College, N. Y.
 11. Prof. F. H Smith, University of Virginia, Va.
 12. Prof. W. H. C. Bartlett, U. S. Military Academy, N. Y.
 13. Prof. Woloott Gibbs, Free Academy, N. Y.
 14. Prof Stephen Alexander, College of New Jersey, N. J.
 15. Prof. Lewis R. Gibbes, Charleston College, S. C.
 16. Prof. Joseph Winlock, Supt. Am. Naut. Alm., Ky.
 17. Prof. James Phillips, University of North Carolina, N. C.

 18 Prof. Wm. Ferrel, Nashville, Tenn.
 19. Prof. Edward Hitchcock, Amherst College, Mass.
 20. Prof. James D. Dana, Yale College, Conn.

[^2]: *The portions on Winyah Bay, printed in the report of 1855 , require the correctionit: $-0 / 50$ in Letitade, and +4 (08 " 28 in longitude.

[^3]: 1 See "Observations at the magnetic and meteorological observatory at the Cirard College, Philadelphla, mado under the direction of A. D. Bache, LL.D., and with funds supplied by the members of the American Philosophical bociety and by tho Topographical Bureau of the United States, 1840 to 1845. Printed by order of the Benate of the United States, and under the direction of the Topographical Bureau, second session of the twenty-ninth Oongress, Washington, D. C., 1847."

 Three voluraes record and one volume plates.

[^4]: 1 This longitude depends on that of Cambridge obeervatory, for which 4 h .44 m .30 s .25 has been adopted.
 ${ }^{2}$ Astrunamische Nachrichten, No. 1091, (May, 1857.)
 Bee three papers, by General Subine, on periodical lawa discoverable in the mean effects of the larger magnetic distarbances. Philosophical Transactions of the Hoyal Bociety, 1851, 1852, and 1856.

[^5]: 1 In the firit discumsion of the Toronto obeorvations for the years 1843, 1844, 1848, the limit of 3.6 was edopted, corresponding to one disturbanee in every 18.6 observations; in the second diecusion 5.0 was subatituted as preferable. Phil. Trans. 1856, art. XV.

 2 Gould's Astronomical Joarnal, Vol. IV, No. 83, 1855.
 ${ }^{3}$ A efmilar application was made in the discossion of Dr. E. K. Kane's magnetic obervationg at Van Benaselear harbor, North Greenland, by Mr. Schott. Emithoonian Contributions to Knowledge, vol. X, 1858.

 4 Observations made at the Magnetical axd Metworological Observatory at Toronto, in Canada, under the superintendence of Colonel Edward Babine, vol. II, 1843, 1844, 1845, with abstracts of obeervations to 1852, inciusive. London, 1853.

 6 Phil. Trans, R. 8., 1851, art. V.
 ${ }^{6}$ Observations made at the Magnetical and Meteorological Obsorvatory at Toronto, in Caneda, under the superinterdence of Major Gonerni Edward Sabine, Vul. III, 1846, 1847, 1848, with shatracte of obwarvationa to 1856, Incindive. Eomdion, 1867.
 ${ }^{7}$ The observations were made at the even Gottiagen time, 6 h .00 m , correepondiag to 0 . 19 y . m , of Phindelphta thmo.

[^6]: * The sumponsion threads of the declinometer wave way on the 9th of Augut, wad matio on the loth of January, 1844; but, atter revedjutiog the instrument, the magnet retarned almost exactly so its former reading-a mean of the two changes gave as a correction, +18.7 divioions, which was accordingly adied to all the reading of the year after August 9,21 hours.
 \dagger The forrection to refer the mean of the last nine monthn to the mean of all the months is derived frow the reading of the preceding year, as being move uniform in character than those for the year following.

[^7]: * As indicated by the annual change in the readinga, it was considered prefernble to obtain the annual mean by deducing the correction to the mean of the firmsix months from the readinge of the preceding ycar nad those of the year 1842 .

[^8]: o At Toronto this maximum occurred in September; the first minimum is Jikewise one month earlier at this station than at Philadelphis.

