REPORT

f 3 73

OF

THE SUPERINTENDENT

OF THE

COAST SURVEY,

SHOWING

THE PROGRESS OF THE SURVEY

DURING

THE YEAR 1859.

WASHINGTON: THOMAS H. FORD, PRINTER. 1860.

National Oceanic and Atmospheric Administration

Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage (http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON Imaging Contractor 12200 Kiln Court Beltsville, MD 20704-1387 January 13, 2003

LETTER

FROM THE

SECRETARY OF THE TREASURY,

COMMUNICATING

The Report of the Superintendent of the United States Coast Survey.

IN THE HOUSE OF REPRESENTATIVES, June 13, 1860.

Resolved, That there be printed five thousand extra copies of the Report of the Superintendent of the Coast Survey for the year 1859; three thousand of which shall be for distribution by the Superintendent, and two thousand shall be for the use of the members of the House.

JOHN W. FORNEY, Clerk.

TREASURY DEPARTMENT, February 6, 1860.

SIR: I have the honor to present, for the information of the House of Representatives, a report made to the Department by Professor A. D. Bache, Superintendent of the United States Coast Survey, stating the progress in that work during the year ending November 1, 1859, accompanied by an engraved map showing the general progress made in the survey of the Atlantic, Gulf, and Pacific coasts, and also the manuscript map prepared at the Coast Survey Office, in accordance with an act of Congress approved March 3, 1853.

With great respect, your obedient servant,

HOWELL COBB,

Secretary of the Treasury.

Hon. WM. PENNINGTON,

Speaker of the House of Representatives.

ABSTRACT OF CONTENTS OF REPORT.

Division and arrangement, p. 1. Estimates of progress and completion of field-work in geographical sections, pp. 2-4. General statement of progress, pp. 4-6. Progress of year, pp. 6-11. Maps and charts, p. 11. List of sketches accompanying report, p. 12. Photography, p. 13. Estimates for fiscal year 1860-'61, pp. 13-20. Developments and discoveries, pp. 20, 21. Remarks on surveys on the Western Coast, p. 21. On tide tables for navigators, pp. 21, 22. On table of depths, p. 22. On geographical positions, p. 22. On list of topographical and hydrographic sheets, p. 22. On information furnished, p. 22. On field and office statistics, p. 23. Distribution of reports and maps, p. 23. Extract from report of committee of American Association for the Advancement of Science, pp. 24-26. Telegraphic longitudes, p. 26. Epping base of verification, p. 26. Magnetic observations, p. 27. Further discussion of Gulf Stream observations, p. 28. Tides and currents, pp. 28, 29. On publication of records and results, p. 29. On projection tables for maps, p. 29. Notices of instruments and apparatus, p. 30. Officers of the army, p. 30. Officers of the navy, p. 31. Hydrographic division, pp. 31, 32. Aids to navigation, p. 32. Obituaries, p. 32.

Field and Office. Progress in:

Section I.—Summary. Field-work, p. 33. Office-work, p. 34. Geodetic and astronomical observations at stations Howard, Western Ridge, and Chamcook, pp. 34-36. Magnetic observations at Howard and Western Ridge, p. 36. Reconnaissance near northeastern boundary, pp. 36, 37. Triangulation connected with Epping base, p. 37. Triangulation of Penobscot bay, Maine, p. 38. Triangulation over Muscongus bay and sound, Maine, pp. 38, 39. Topography of Wiscasset bay, Maine, p. 39. Topography of Merrymeeting bay and Bath, Maine, p. 39. Topography of Casco bay, Maine, pp. 39, 40. Plane-table survey of Saco bay and vicinity, Maine, p. 40. Topography of Barnstable harbor and vicinity, Massachusetts, pp. 40, 41. Verification of topography, p. 41. Hydrography of the approaches to Sheepscot bay and Kennebeck river, Maine, p. 41. Hydrography of Casco bay Maine, p. 42. In-shore hydrography between Cape Elizabeth and Cape Porpoise, coast of Maine, pp. 42, 43. Off-shore hydrography, coast of Maine, New Hampshire, and Massachusetts, pp. 43, 44. Examination of Salem harbor, Massachusetts, p. 44. Resurvey in Boston harbor, pp. 44, 45. Rock in Hyannis harbor, Massachusetts, p. 45. Magnetic observations, pp. 45. Tidal observations, p. 46.

SECTION II.—Summary, p. 46. Office-work, p. 46. Triangulation of the Hudson river, pp. 46,47. Topography of South Jamaica, vicinity of Brooklyn and Williamsburg, High Bridge, Yonkers, and Morrisania, and of Hudson City, New Jersey, pp. 47, 48. Topography of Hudson river, New York, pp. 48, 49. Resurvey of part of Hempstead harbor, Long Island sound, p. 49. Examination of the Battery shoal, New York harbor, p. 49. Hydrography of Hudson river, New York, pp. 49, 50. Tides and currents in New York harbor and its approaches, p. 50. Magnetic observations, pp. 50, 51. Tidal observations, p. 51.

Section III.—Summary, p. 51. Office-work, pp. 51, 52. Examination of stations on Chesapeake bay, p. 52. Triangulation of the Potomac river, Virginia, pp. 52, 53. Triangulation of Hampton Roads, Virginia, p. 53. Triangulation and topography of Chincoteague and Sinepuxent bays, Maryland and Virginia, pp. 53, 54. Plane-table survey of the Patuxent river, Maryland, p. 54. Topography of St. Mary's river, Maryland, pp. 54, 55. Topography of Milford haven and Horn and Winter harbors and vicinity, Chesapeake bay, Virginia, p. 55. Shore-line survey of James river, Virginia, pp. 55, 56. Hydrography of the Patuxent river, Maryland, p. 56. Hydrography of the St. Mary's river, Maryland, p. 56. Hydrography of James river, Virginia, pp. 56, 57. Hydrography of Big Annemessix and Little Annemessix rivers, Maryland, p. 57. Tidal observations, p. 57.

SECTION IV.—Office-work, p. 57. Triangulation of Pamplico sound, North Carolina, pp. 57, 58. Verification of triangles in the vicinity of Cape Fear, North Carolina, pp. 58, 59. Topography between Cape Henry, Virginia, and Currituck sound, North Carolina, pp. 59, 60. Hydrographic office-work, p. 60. In-shore hydrography between Bogue and New River inlet, coast of North Carolina, pp. 60. Off-shore soundings, from Cape Lookout, North Carolina, pp. 60, 61.

Section V.—Summary, p. 61. Office-work, p. 61. Latitude observations at Smithville, North Carolina, pp. 61, 62. Azimuth, p. 62. Magnetic observations at Smithville, North Carolina, p. 62. Triangulation and topography westward of Tubb's inlet, North Carolina, pp. 62, 63. Astronomical and magnetic observations at St. Helena Island, South Carolina, pp. 63, 64. Primary triangulation, coast of South Carolina, p. 64. Triangulation of Beaufort, Chechessee, and Colleton rivers, South

- Carolina, pp. 64, 65. Triangulation of Doboy and Altamaha sounds, Georgia, pp. 65, 66. Shore-line survey from St. Helena sound, South Carolina, to Savannah river entrance, pp. 66, 67. Topography of St. Catherine's sound, Georgia, pp. 67, 68. In-shore hydrography from Cape Fear westward to Tubb's Inlet, North Carolina, pp. 68, 69. Off-shore hydrography from Cape Fear to Charleston harbor, p. 69. Hydrography of Bull's bay, South Carolina, pp. 69, 70. Hydrography of Port Royal entrance, South Carolina, pp. 70, 71. Hydrography of the Chechessee and Colleton rivers, South Carolina, pp. 71. Hydrography of Sapelo bar and its approaches, Georgia, pp. 71, 72. Tidal observations, p. 72.
- Section VI.—Summary, p. 72. Office-work, p. 73. Air-line triangulation across the Florida peninsula, p. 73. Triangulation of St. Augustine harbor and North river, Florida, pp. 73, 74. Triangulation of Indian River inlet, Florida, pp. 74, 75, Triangulation of the Florida keys, p. 75. Triangulation of Charlotte harbor, Florida, pp. 75, 76. Topography of Key, Biscayne bay, Card's sound, and Florida keys, near Cape Sable, pp. 76, 77. Topography of Charlotte harbor, Florida, pp. 77, 78; Blind Pass, Captiva Pass, and Boca Grande, p. 78. Hydrography of the Florida reef, pp. 78, 79. Tidal observations, pp. 79, 80.
- GULF STREAM.—Depth and temperature in Strait of Florida, p. 80. Deep-sea soundings, p. 80.
- Section VII.—Summary, p. 81. Field-work, p. 81. Office-work, p. 81. Coast triangulation south of Homosassa river, Florida, pp. 81, 82. Triangulation east and west from St. Mark's, Florida, pp. 82, 83. Triangulation of Santa Rosa sound, Florida, p. 83. Topography north and south of Homosassa entrance, West Florida, pp. 83, 84. Topography of Ocklokonee bay and St. James's island, Florida, pp. 84, 85. Topography of Santa Rosa sound, Florida, p. 85. Re-examination of the Cedar keys channels, Florida, pp. 85, 86. Hydrography of St. George's sound, Florida, p. 86. Tidal observations, pp. 86, 87.
- Section VIII.—Summary, p. 87. Office-work, p. 87. Triangulation and topography of Isle au Breton sound, Louisiana, pp. 87, 88. Triangulation of the Mississippi delta, Louisiana, pp. 88, 89. Triangulation of West Côte Blanche bay, Louisiana, pp. 89, 90. Topography of Lake Pontchartrain, Louisiana, p. 90. Topography of the Mississippi delta, Louisiana, pp. 90, 91. Topography of West Côte Blanche bay, Louisiana, p. 91. Soundings in the Rigolets, Louisiana, pp. 91, 92. Hydrographic reconnaissance of Passe a Loutre, Mississippi delta, p. 92. Hydrography of Atchafalaya and Côte Blanche bays, Louisiana, pp. 92, 93.
- Section IX.—Summary, p. 93. Office work, p. 93. Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Texas, pp. 93, 94. Topography of Espiritu Santo and San Antonio bays, Texas, pp. 94, 95. Hydrography of Matagorda bay, Texas, pp. 95, 96.
- Section X.—Summary, p. 96. Office-work, p. 96. Primary triangulation near San Pedro, California, pp. 96, 97. Triangulation of Santa Rosa island, California, p. 97. Triangulation and topography of San Pedro harbor, California, p. 97. Primary and secondary triangulation north of San Francisco, California, pp. 97, 98. Latitude and azimuth, pp. 98, 99. Triangulation of Crescent City harbor, California, p. 99. Topography of Santa Cruz islands, California, p. 99. Topography of Crescent City harbor, California, p. 100. Hydrography of San Pedro harbor, California, p. 100. Soundings off the Golden Gate, entrance to San Francisco bay, California, pp. 100, 101. Resurvey of Humboldt bay, California, p. 101. Hydrography of Crescent City harbor, California, p. 101. Tidal observations, p. 101.
- SECTION XI.—Summary, p. 102. Office-work, p. 102. Triangulation of the Gulf of Georgia, Washington Territory, pp. 102, 103. Reconnaissance of Coquille River entrance, Oregon, pp. 103, 104. Hydrographic reconnaissance of Gray's harbor, Washington Territory, p. 104. Hydrography of the Gulf of Georgia, Washington Territory, p. 104. Tidal observations, p. 104.
- OFFICE-WORK.—Officer in charge, p. 104. Computing division, occupation of persons attached, pp. 104, 105. Tital division, statement of occupation, p. 105. Drawing division, names of officers and employés, p. 105. Engraving division, specification of work accomplished, with statement of force, pp. 105, 106. Electrotype and photograph division, general remarks, p. 106. Miscellaneous division, printing of maps and charts, p. 106. Distribution of reports, p. 106. Instrument shop, carpenter's shop, p. 106. Special services, pp. 106, 107. Hydrographic division, p. 107.

 APPENDIX, pp. 108—370.

CONTENTS OF APPENDIX.

I.—FIELD, HYDROGRAPHIC, AND OFFICE DETAILS.

A.—GENERAL LISTS OF COAST SURVEY PARTIES AND RESULTS.

			Page.
No.		Distribution of parties on the coast during the surveying season of 1858-'59	108116
No.		Army officers on Coast Survey duty, March 1, 1859	116
No.		Army officers on Coast Survey duty, September 1, 1859	116
No.		NAVY OFFICERS on Coast Survey duty, March 1, 1859	117
No.		NAVY OFFICERS on Coast Survey duty, September 1, 1859.	117
No.		Information furnished in reply to special calls	118, 119
No.	7.	Statistics of field and office work	120-122
		B.—DISCOVERIES AND DEVELOPMENTS.	
No.	8.	GENERAL LIST, brought up to 1859, inclusive	123—129
		ROCK OFF SEGUIN ISLAND, MAINE.—Letter to the Secretary of the Treasury, giving its position as deter-	
		mined by Lieut. Comg. J. Wilkinson, U. S. N., Assistant	130
No.	10.	Hussey Rock, (Casco Bay,) Maine.—Letter to the Secretary of the Treasury, furnishing ranges as stated	
		by Lieut, Comg. J. Wilkinson, U. S. N., Assistant.	130
No.	11.	Rock off Ogunquir, Maine.—Letter to the Secretary of the Treasury, developing its position and char-	
		acter as reported by Lieut. Comg. Alexander Murray, U. S. N., Assistant	131
No.	12.	ROCK IN HYANNIS HARBOR, MASS.—Report on the determination of its position, by Lieut. Comg. J.	
		Wilkinson, U. S. N., Assistant.	131
No.	13.	BATTERY SHOAL, (NEW YORK HARBOR.)—Correspondence relative to its development and character	
		C.—NAVIGATION.	
No.	14.	Tide Tables for ports of the United States, and descriptions of co-tidal and sailing lines along the Atlantic	
		coast. By A. D. Bache, Superintendent U. S. Coast Survey	136-167
No.	15.	Table of Depths found in the channel-ways of harbors, rivers, and anchorages of the coast of the United	
		States	168-171
No.	16.	VARIATION OF THE COMPASS.—General table for the use of navigators.	172175
		D.—OFFICE-WORK.	
Mo	17	REPORT of Captain W. R. Palmer, U. S. Topographical Engineers, Assistant Coast Survey, in charge of	
NO.	11.	the office	176—179
		Computing Division.—Report of Assistant C. A. Schott, on details of employment.	179 -181
		Tidal Division.—Report of Assistant L. F. Pourtales, on office occupation.	
		Drawing Division.—Report of Lieut. Thomas Wilson, U. S. A., on progress, with lists of maps	181
		completed or in hand	182—187
		Engraving Division.—Report of Mr. Edward Wharton, with lists of plates engraved or in progress.	188—199
		Electrotype Division.—Report of Mr. George Mathiot, stating operations of the year	199-202
		Miscellaneous Division.—Report of Lieut. J. R. Smead, U. S. A., on the printing of maps, distribu-	1.03402
		, , , , , , , , , , , , , , , , , , , ,	203-212
NT-	10	tion, etc	212—214
		HYDROGRAPHICAL SHEETS.—List showing titles, dates, etc., (continued from Coast Survey Report for 1857).	215, 216
MU.	19.	EXPROGRAPHIC SHEETS List showing times, dates, etc., (continued from Coast Survey Report for 1657).	210, 210

	The state of the s	Page.
No. 20. G	REGERAPHICAL Positions.—Table of latitudes, longitudes, azimuths, etc., (continued from Coast Survey Reports of 1851,-'53,-'55, and -'57)	216-277
	II.—SPECIAL OPERATIONS AND SCIENTIFIC DISCUSSIONS.	
*	A.—ASTRONOMICAL,	
No. 21. M	Ioon Culminations.—Report of Professor O. M. Mitchel, director, on the observations made for the Coast Survey at the Cincinnati Observatory for longitude purposes	278
	B.—MAGNETISM.	
No. 22. M	MAGNETIC DISTURBANCES in declination, and investigation of the eleven-year period in the amplitude of the solar diurnal variation. By A. D. Bache, Superintendent U. S. Coast Survey, from observations made at Girard College, Philadelphia, in 1840—1845———————————————————————————————————	278295
No. 23. I	DECLINATION, DIP, AND INTENSITY.—Results of observations made by Assistant C. A. Schott, in Maine,	
No. 24. S	New Hampshire, Vermont, Massachusetts, and Connecticut ECULAR CHANGE in declination.—Results deduced by Assistant Charles A. Schott, showing the variation of the needle on the coasts of the United States for every tenth year since 1680	296 296—305
	C.—TIDES AND CURRENTS.	200
No. 25 G	GULF STREAM.—Distribution of temperature in the water of the Florida channel and straits. By A. D.	
	Bache, Superintendent U. S. Coast Survey	306—310
	The York Harbor.—Report by Assistant Henry Mitchell on the physical survey, with descriptions of apparatus for observing the currents	311317
NO. 21. 1	Tight Stations.—Report of Assistant L. F. Pourtales, with list of the permanent and temporary stations.————————————————————————————————————	317-319
No. 28. C	CURRENT CARDS thrown from the surveying steamer Corwin and found on the eastern coast of Florida	320, 321
	III.—SPECIAL SURVEYS.	
No. 29. 1	COMP. C. M. Fauntleroy, U. S. N., Assistant	321
No. 30. 8	SAPELO SOUND, GA.—Letter to the Secretary of the Treasury reporting completion of the survey, with extracts relative to its character as a harbor, from the report by Lieut. Comg. C. M. Fauntleroy,	
No. 31. (U. S. N., Assistant	322
No. 32. (showing its topographical features. Coast of Texas, embracing the shores of Espiritu Santo, San Antonio, and Aransas bays. Report on	323, 324
	a reconnaissance by Assistant S. A. Gilbert	324328
	IV.—MISCELLANEOUS SCIENTIFIC MATTER.	
	PROJECTION TABLES for maps of large extent. Arranged by Assistant J. E. Hilgard	328—3 58
	explanation of its method and use Tide-Merrer.—Results of experiments made with the apparatus devised by Capt. E. B. Hunt. By Mr.	359-364
	J. M. Bachelder	. 365, 366
	V.—MISCELLANEOUS CORRESPONDENCE.	
No. 36.—	-Indian War, (Washington Territory.)—Letter of the Secretary of the Treasury advising of the disposal of the surveying steamer Active under the orders of Brevet Lieutenant General Winfield Scott,	90%

. 37. C. S. STEAMER BIBE.—Letter of Capt. John Pope, U. S. N., relative to service incidentally rendered at		Page.	
Portsmouth, N. H		367	
No. 38.—U. S. Steamer Brooklyn.—Letter of Capt. D. G. Farragut, U. S. N., on visiting Beaufort river, S. C.	367,	368	
No. 39.—LETTERS addressed by the Superintendent of the Coast Survey to Lieutenants T. A. Craven and J. N.			
Maffitt, U. S. N., on their detachment from the survey.		368	
	*		
VI.—LIGHT-HOUSE MATTERS.			
No. 40.—Aids to Navigation recommended in reports made to the Superintendent by Assistants in the Coast Survey		369	
No. 41.—FLETCHER'S NECK, ME.—Letter to the Secretary of the Treasury, communicating the recommendation			
of Lieut, Comg. Alex. Murray, U. S. N., Assistant, for buoys	369,	370	
No. 42 St. Helena Sound, S. C Letter to the Secretary of the Treasury relative to buoys recommended by			
Lieut. Comg. J. N. Maffitt, U. S. N., Assistant.		370	
No. 43 PORT ROYAL SOUND, S. C Letter to the Secretary of the Treasury, transmitting the recommendation			
of Lieut. Comg. C. M. Fauntleroy, U. S. N., for buoys to mark the east channel		370	
$2\ b$			

Blank	page	retained	for	pagination			
					-	`1	

ALPHABETICAL INDEX.

A.

Abert, S. Thayer, 87.

Adams, Assistant I. Hull. Topography of Patuxent river, Md., 54; of St. Mary's river, Md., 54; of James river, Va., 55.

Agassiz, Alexander. Section X, 99, 100; Section XI, 103.

Aids to navigation, 32; Appendix No. 40, 369; recommendations, 369, 370.

Air-line triangulation across head of Florida peninsula, 73.

Alden, Condr. James, U. S. N. Hydrography of San Pedro harbor, Cal., 100; off-shore hydrography of Golden Gate, 100; hydrography of Crescent City harbor, 101; of Humboldt bay, 101; reconnaissance of Coquille river, Oregon, 103; of Gray's harbor, W. T., 104; hydrography of Gulf of Georgia, W. T., 104.

Altamaha sound, Ga. Triangulation, 65.

Annemessex river, Md. Hydrography, 57.

American Association for the Advancement of Science. Report of committee, 24-26.

Apparatus, 30; for deep-sea soundings, Appendix No. 34, 359-364; tide-metre, Appendix No. 35, 365, 366.

Appropriations, reductions in, 2.

Army officers, 30, 31; Appendix No. 3, 116.

Aransas bay, Texas. Triangulation, 93; its character, 326.

Assistance rendered schooner "Lucy Weltham," 86.

Astronomical observations. Howard and W. Ridge, Me., 34, 35; St. Helena island, S. C., 63.

Atchafalaya bay. Hydrography, 92.

Azimuth, determined at Howard and W. Ridge, Me., 35, 36; Smithville, N. C., 62; Table mountain and Sulphur peak, Cal., 98; at various stations, 216-277.

В.

Bache, Prof. A. D., Superintendent. Triangulation and astronomical observations at Howard and Western Ridge, Me., 34; astronomical observations, Smithville, N. C., 61; tide tables, 136-167; Girard College observations, 278-295; distribution of temperature, Florida straits, 306-310.

Bache, Sub-Assistant C. M. Section X, 97; topography of Santa Cruz island, Cal., 99.

Bache, H. W. Services in Section I, 35; in Section VIII, 88. Bache, Assistant R. M. Topography of Merrymeeting bay and Bath. Me.. 39.

Bagwell, Sub-Assistant G. H. Services in Section II, 47; triangulation south of Homosassa river, Fla., 81.

Baker, C. B. Services in Section VI, 76.

Balbach, A. Assignment of duty, 107.

Bankhead, Lieut. Comp. J. P., U. S. N. Hydrography of coast below Cape Fear, N. C., 68, 69; of Bull's bay, S. C., 69.

Barnstable harbor, Mass. Topography, 40.

Baser. St Augustine harbor, Fla., 73; Indian River inlet, Fla., 74; Crescent City harbor, Cal., 99.

Bassett, R. T. Tides of New York harbor, 51.

Bath, Me. Topography, 39.

Battery shoal, New York harbor, 49, 132-134.

Beaufort river, S. C. Triangulation, 64.

Blind Pass, Charlotte harbor, Fla., 78.

Blunt, Assistant Edmund. Triangulation of Hudson river, N. Y. 46.

Boca Grande, Fla. Charlotte harbor, 78.

Begue inlet, N. C. Coast hydrography, 60.

Bolles, Assistant C. P. Triangulation and topography west of Tubb's inlet, N. C., 62.

Boston harbor. Re-examination, 44.

Boutelle, Assistant C. O. Reconnaissance near northeast boundary, 36, 37; connection of Epping base with triangulation, 37; coast triangulation of South Carolina, and astronomical and magnetic observations at St. Helena island, 63, 64; triangulation of Beaufort, Chechessee, and Colleton rivers, S. C., 64.

Bowie, T. C. Services in Section IX, 95.

Boyd, C. H. Services in Section I, 37; in Section V, 64.

Bradford, J. D. Services in Section I, 38; in Section V, 68.

Bradford, J. S. Services in Section VI, 73.

Bright, W. T. Services in Section II, 50.

Buil's bay, S. C. Hydrography, 69.

Buoys. Fletcher's Neck, Me., 369, 370; St. Helena sound,
 S. C., 369, 370; Port Royal sound, S. C., 369, 370.

\mathbf{C} .

Cape Fear river, N. C. Triangulation in vicinity, 58.

Captiva Pass, Charlotte harbor, Fla., 78.

Card's sound, Fla. Topography, 76.

Casco bay, Me. Topography, 39; hydrography of approaches, 42.

Cedar Keys, Fla. Re-examination, 85.

Chamcook station, N. B. Triangulation, 35.

Charlotte harbor, Fta. Triangulation, 75: topography, 77; topographical features, 323.

Chassahowitzka river, Fla. Topography of entrance, 83.

Chechesee river, S. C. Triangulation, 64; hydrography, 71. Chincoleague bay, Md. and Va. Triangulation and topography,

Colleton river, S. C. Triangulation, 64; hydrography, 71.

Computing Division Remarks, 104, 105; summary of occupation, 179-181.

Cooper, W. W., 107.

Coquille river, Oregon, 103.

Côte Blanche bay, La. Triangulation, 89; topography, 91; hydrography, 92.

Cram, Capt. T. J., U. S. Top. Engineers. Triangulation of Pamplico sound, N. C., 57.

Craven, Lieut. Comg. T. Aug., U. S. N. Battery shoal, New York harbor, 49, 132; hydrography of Florida reef, 78; Gulf Stream, 80; Appendix No. 39, 368.

Crescent City harbor, Cal. Triangulation, topography, and hydrography, 99-101.

Currents. New York harbor, 50; development in New York harbor, 311-315; cards found on Florida reef, 320, 321.

Currituck sound, N. C. Topography, 59.

D.

Dahlgren, Comdr. J. A., U. S. N., 57.

Dankworth, F. Notice of death, 32.

Davidson, Assistant George. Triangulation north of San Francisco, Cal., 97, 98.

Dean, Assistant G. W. Astronomical observations at Howard and Western Ridge, Me., 34-36; astronomical observations and azimuth at Smithville, N. C., 61.

Declination (variation) of the compass, 172-175.

Delta of the Mississippi river. Triangulation, 88; topography,

Dennis, Sub-Assistant W. H. Topography of Wiscasset bay, Me, 39; of coast of Texas, 94.

Depths (table of) at harbor entrances, 168-171.

Developments and discoveries, 20, 21; Appendix No. 8,

Dickerson's bay, Fla. Triangulation, 82.

Discoveries and developments, 123-129.

Distribution of maps and annual reports, 23.

Doboy sound, Ga. Triangulation, 65.

Dorr, Sub-Assistant F. W. Topography of New York harbor, 47; of Charlotte harbor, Fla., 77.

Drawing Division. Sheets worked on, 11, 105, 182-187.

Duer, Lieut. Comg. J. K., U. S. N. Hydrography of St. George's sound, Fla., 86; of Matagorda bay, Texas, 95; notice of death, 32.

Duval, C. W. Services in Section VII, 84.

Du Val, Sub-Assistant H. S. Topography of St. Catherine's sound, Ga., 67.

\mathbf{E} .

Eastport, Me. Tidal station, 46.

Edwards, Sub-Assistant W. S. Services, in Section I, 39; in Section V, 64.

Electrotype Division, 106, 199-202.

Elliot, Lieut. Geo. H., U. S. Engineers. Tides of Section X, 101; Section XI, 104.

Engraving Division. Plates worked on, 11, 105, 106, 188-199. Epping base. Remarks, 26; connected with triangulation, 37.

Espiritu Santo bay, Texas. Triangulation, 93; topography, 94; its character, 324.

Estimates for fiscal year 1860 - '61, 13-20; estimates of progress in sections, 2-4.

Evans, R. E. Services in Section VIII, 90.

F.

Fairbanks, G. R., 74.

False Cape, (of the Chesapeake.) 59.

Farley, Assistant John. Triangulation of Potomac river, 52; Hampton Roads, 53.

Farragut, Capt. D. G., 367, 368.

Fauntleroy, Lieut. Comg. C. M., U. S. N. Hydrography of Hudson river, N. Y., 49; of Port Royal entrance, S. C., 70; of Chechessee and Colleton rivers, S. C., 71; of Sapelo bar, Ga., 71.

Fauntleroy, E. H. Services in Section X, 98.

Fendall, Sub-Assistant C. Topography of Saco bay, Me, 40; of coast of Maine, 43; Section VI, 76.

Ferguson, Sub-Assistant C. Triangulation and topography of Chincotegue and Sinepuxent bays, Md. and Va., 53; topography of Charlotte harbor, Fla., 78.

Field Parties. Distribution, 108-116.

Finney, Sub-Assistant N. S. Section II, 48; topography near Chassahowitzka river, Fla., 83.

Fletcher's neck, Me. Buoys recommended, 369, 370.

Florida keys. Triangulation, 75; topography, 77.

Florida reef. Hydrography, 78.

Foot point, S. C. Triangulation and topography, 64, 66.

G.

Gardner, W. H. Services in Section VI, 73.

Geographical positions. Remarks, 22; list 216-277.

Gerdes, Assistant F. H. Triangulation and topography of Santa Rosa sound, Fla., 83, 85; triangulation of Mississippi delta, 88; topography of Mississippi delta, 90, 91.

Gilbert, Assistant S. A. Triangulation of coast of Texas, 93. Gilbert, Sub-Assistant W. S. Topography of Lake Pontchar-

train, La ,90; Rigolets sounded, 91. Gillis, James. Services in Section I, 39.

Golden Gale, Cal. Hydrography of approaches, 100.

Goodfellow, Sub-Assistant Edward. Howard and Western ridge, Me., 35; astronomical observations at Smithville, N. C., 61; magnetic observations at Smithville, N. C., 62. Gray's harbor, W. T., 104.

Greenwell, Assistant W. E. Triangulation of coast above San San Pedro harbor, Cal., 96, 97.

Gulf of Georgia, W. T. Triangulation, 102; hydrography, 104.

Gulf Stream. Remarks, 28; under-running current, 60; abstract of observations, 80; distribution of temperature in Florida straits, 306-309.

H.

Halter, R. E. Services in Section I, 36; in Section VIII, 88. Hampton roads, Va. Triangulation, 53.

Harris, Sub-Assistant Stephen. Triangulation and topography of Isle au Breton sound, La., 87.

Harrison, Assistant A. M. Topography of Barnstable harbor,

Mass. 40.

Hassler, F. R. Services in Section IV, 59.

Hein, Samuel, disbursing agent, 107.

Hempstead harbor, N. Y. Hydrography, 49.

Hering, M. O. Services in Section VII, 82.

Herron, W. R. Tides at Charleston, 72.

Hugard, Assistant J. E., 29; 328-358.

Hilton Head island, S. C. Shore-line survey, 66, 67.

Hinrichs, O. Services in Section V, 62.

Homosassa river, Fla. Triangulation in vicinity, 81.

Horn harbor, Va. Topography, 55.

Hosmer, Charles. Services in Section IX, 94.

Howard Station, Me. Occupied, 34.

Hudson river, N. Y. Triangulation, 46; topography, 47, 48; hydrography, 49.

Huger, Lieut. Comg. T. B., U. S. N. Hydrography of Hempstead harbor, N. Y, 49; Gulf Stream, 80; Cedar Keys, 85; Passe à Loutre, 92; Atchafalaya bay, La., and Côte Blanche bay. 92.

Huger, Sub-Assistant Benj., jr. Triangulation of St. Augustine harbor, 73.

Humboldt bay, Cal. Hydrography, 101.

Hussey rock. Casco bay, Me., 42, 130.

Iluzzey rock. Saco bay, Me., 43; Appendix Nos. 40 and 41, 369. Hyannis harber. Rock determined in position, 45, 131.

Hydrographic Division of C. S. office, 31, 32.

Hydrographic sheets. List and register numbers, 22, 215, 216. Hydrography. Sheepscot and Kennebec rivers, Me., 41; approaches to Casco bay, Me, 42; Cape Porpoise to Cape Elizabeth, Me., 42; off-shore, coast of New England, 43; Salem harbor, Mass., 44; Boston harbor, 44; Hempstead harbor, N. Y., 49; Battery shoal, N. Y. harbor, 49; Hudson river, N. Y., 49; Patuxent, St. Mary's, and James rivers, 56; Big and Little Annemessex rivers, 57; off-shore from Cape Lookout, 60; Bogue inlet to New river inlet, N. C., 60; in-shore from Cape Fear to Tubb's inlet, N. C., and off-shore, 69; Bull's bay, S. C., 69; Port Royal entrance, S. C., 70; Chechessee and Colleton rivers, S. C., 71; Sapelo bar and approaches, Ga., 71; Florida reef, 78; Cedar keys, 85; St. George's sound, Fla., 86; Passe à Loutre, La, 92; Atchafalaya and Côte Blanche bays, La., 92; Matagorda bay, Tex., 95; San Pedro harbor, Cal., 100; off-shore from Golden Gate, Cal., 100; Crescent City harbor, Cal., 101; Humboldt bay, Cal, 101; Gulf of Georgia, W. T., 104.

I.

Iardella, Sub-Assistant C. T. Topography Florida keys, &c., 76. Indian River inlet, Fla. Triangulation, 74.

Indian war. Use of steamer "Active" in Washington Territory, Appendix No. 36, 367.

Information furnished. Remarks, 22; list, 118, 119.

Inland passage, Ga. Topography, 67.

Instruments, 30.

Isle au Breton sound, La. Triangulation and topography, 87.

J.

James river, Va. Shore-line survey, 55; hydrography, 56. Johnson, Sub-Assistant W. M. Triangulation and topography of San Pedro harbor, Cal., 97; topography of Santa Cruz island, Cal., 99.

Jones, Capt. Thomas, 35.

K.

Key Biscayne bay, Fla. Topography, 76.

Kennebee river, Me. Hydrography of approaches, 41.

Kincheloe, Julius. Services in Section 1, 38; Section V, 65.

King, M. C. Tides, Section III, 57.

King, Rufus, Jr. Services in Section II, 47; Section VI, 74.

T.

Latitude. Number of points determined, 6; Howard and Western ridge, Maine, 35; Smithville, N. C. 61; Sulphur Peak, Cal., 98; list of points, 216—277.

Lawson, Sub-Assistant J. S. Triangulation and topography Crescent City harbor, Cal. 99, 100; triangulation Gulf of Georgia, W. T., 102.

Lee, Commander S. S. Charge of Hydrographic Division, 107. Light-house matters. List of recommendations, 369, 370.

Little river, N. C. and S. C. Triangulation of vicinity, 62.

Longfellow, Assistant A. W. Topography of Casco bay, Me., 39.

Long Island, N. Y. Topography, 47.

Longitude. Number of points determined, 6; determined by telegraph, 6; general remarks, 26; list of points, 216-277.

Μ.

Maffitt, Lieut. Comg. J. N., 368, 369.

Magnetic observations. Remarks, 27; Howard and Western ridge, 36; determinations at several stations in New England, 45, 50; at Smithville, N.C., 62; St. Helena island, S.C., 63.

Magnetism. Number of stations, 6; variation of the compass, 172-175; discussion of Girard College observations, 278-295; elements observed, 296; secular change discussed, 296-305.

Maps and charts. Distribution, 203-212.

Matagorda boy, Texas. Hydrography, 95.

Mayo, G. U. Services in Section VIII, 83, 85, 88, 91.

McCorkle, Sub-Assistant S. C. Triangulation of Ocklokonee and Dickerson's bays, Fla., 82.

McDonnell, Thomas, 34, 61.

McMurtrie, W. B. Views for charts, 43.

Mechan, Sub-Assistant John. Section II, 48; topography near head of Currituck sound, N. C., 59.

Merrymeeting bay, Maine. Topography, 39.

Mile ledge, coast of Maine, 41.

Milford Haven, Va. Topography, 55.

Mission bay, Texas. Triangulation, 93.

Mississippi delta. Triangulation, 88: topography, 90.

Mitchell, Assistant H. Tides and currents, New York harbor, 50, 311-317.

Mitchel, Prof. O. M. Moon culminations, 278.

Moon culminations, 278.

Mosman, A. T. Services in Section X, 98.

Muldaur, A. W. Hydrography of Matagorda bay, 95.

Murray, Lieut. Comg. Alexander, U. S. N. Hydrography from Cape Elizabeth to Cape Porpoise, Maine, 42; rock determined near Ogunquit, Maine, 131; off-shore hydrography, coast of New England, 43; examination of Salem harbor, Mass., 44; of Boston harbor, 44; hydrography of coast of North Carolina, 60; off-shore hydrography, N. C., 60.

Muscongus bay, Maine. Triangulation, 38.

Muse, Commander W. T., U.S. N. Hydrography of Patuxent and St. Mary's rivers, Md., and James river, Va., 56; of Big and Little Annemessex rivers, Md., 57.

Myers, Lieut. W., U. S. A. Section VI. 75.

N.

Navy officers, 31; Appendix No. 5, 117.

New River inlet, N. C. Coast hydrography, 60.

Nes, F. F. Services in Section VI, 77.

New York harbor. Battery shoal, 132-134; currents observed, 311-317.

0.

Obituaries, 32.

Ocklokonee bay, Fla. Triangulation, 82; topography, 84.

Odenheimer, W. H. Services in Section V, 62.

Office, (Coast Survey,) 104-107; report of Assistant in charge, 176-212.

Ogunquit, Maine. Rock in vicinity, 131.

Old Point Comfort, Va. Tides, 57.

Ollmanns, Sub-Assistant J. G. Triangulation of Mississippi delta, 88; topography of Mississippi delta, 91; triangugulation and topography Côte Blanche bay, 89, 91.

Ρ.

Palmer, Capt. W. R., U. S. Top. Engineers, in charge of C. S. office, 104; annual report, 176-179.

Pamplico sound, N. C Triangulation begun, 57.

Passe à Loutre, La. Hydrography, 92.

Patuzent river, Md. Topography, 54; hydrography, 56.

Peginan, W. P., Esq., 84.

Peirce, C. S. Services at Howard and Western Ridge, Maine, 36.

Penobscot bay, Maine. Triangulation, 38.

Photographic Division, 106.

Photography. Remarks on application, 13, 200.

Pope, Capt. John, U. S. N., 43; Appendix No. 37, 367.

Port Royal sound, S. C. Hydrography of entrance, 70; buoys recommended, 369-370; commercial facilities, 321.

I otomac river. Triangulation, 52.

Pourtales, Assistant L. F., 106; charge of tidal division, 181-182.

Printing, maps and charts, 203-212.

Progress. General statement, 4-6; of year, 6-11.

Projection Tables. Remarks, 29; applicable to maps of large extent, 328-358.

Projects. Character of series for maps, 11.

R.

Ready, T. E. Tides, Section I, 46.

Reconnaissance near Northeast boundary, 36-37; north of San Francisco, Cal., 98.

Records and results, 29.

Richards, Col. E. H., 84.

Rigolets, La., 91.

Rockwell. C. Services in Section 11, 47; topography of Foot Point and vicinity, S. C., 67.

Russell, Mojor W. F , 75

Russell, A. W., 106.

S.

Saco bay, Me. Topography, 40; hydrography, 42.

Salem harbor, Mass Examination, 44.

Son Antonio bay, Texas. Triangulation, 43; topography, 44; character of bay, 324, 325.

San Pedro harbor. Cal. Triangulation, 96; topography, 97; hydrography, 100.

Santa Cruz island, Cal. Topography, 99.

Santa Rosa island, Cal. Triangulation, 97.

Santa Rosa sound, Fla. Triangulation, 83; topography, 85.

Sapelo sound, Ga. Hydrography of bar, 71; character of sound, 322.

Schott, Assistant C. A. Magnetic observations, Section I, 45; Section II, 50; discussion of secular change, 296-305.

Sections (C. S.) Geographical limits, 2-4.

Seguin island, Me. Rock in vicinity, 130.

Seib, Assistant John. Topography of western shore of Chesapeake bay, 55; St. Helena sound to Savannah river, 66, 67.

Seward, Lieut, A. H., U. S. A. Triangulation of Florida keys, 75.

Sheepscot bay, Maine. Hydrography, 41.

Sims, Lieut. C. C., U. S. N., 86.

Sinepuxent bay, Md. Triangulation and topography, 53.

Sketches. List accompanying report, 12.

Smith, Capt. M. L., U. S. Top. Engineers. Triangulation across Florida peninsula, 73.

Smithville, N. C. Latitude and azimuth determined, 61, 62. Sounding apparatus, 359-364.

Statistics, 23, 120-122.

St. Augustine harbor, Fla. Triangulation, 73.

St. Catharine's sound, Ga Topography, 67.

St. George's sound, Fla. Hydrography, 86.

St. Helena sound, S. C. Astronomical and magnetic observations, 63, 64; buoys recommended, 369, 370.

Stiles, R. M. Services in section I, 38; section VI, 75.

St. James's island, Fla. Topography, 84.

St. Mary's river, Md. Topography, 54; hydrography, 56.

Sullivan, Sub-Assistant J. A. Triangulation of Penobscot bay, Me., 38; Indian River inlet, Fla., 74.

Sulphur Peak, Cal. Occupied for triangulation, 97.

Т.

Table Mt., Cal. Occupied as a station, 98.

Table of depths. Remarks, 22; list of port entrances, &c, 168-171.

Talcott, R. H. Services, section I, 36.

Terrill, Lieut. W. R., U. S. A. Triangulation of Hudson river, 46; Charlotte harbor, Fla., 75.

Thompson, A. W. Services in section I, 40; section VII, 83. Tidal division, 105, 181.

Tidal observations. Remarks, 28; list of permanent and temporary stations, 319; Charlestown, Mass., 46; New York harbor, 50, 51; Washington, D. C., and Old Point Comfort, Va., 57; Charleston, S. C., 72; coast of Florida, 79, 80; St. George's sound and Pensacola, 86, 87; San Diego and

San Francisco, 101; Astoria, Oregon, 104.

tables, 136-167.

Tide-metre. Results of trials with, 365, 366.

Tide tables for ports of the United States; remarks, 21, 22;

Tilghman, J. L. Services in section I, 45; section II, 50; section VII, 84.

Tilton, McLane. Services in section II, 47; section V, 62. Topographical sheets. List and register numbers, 212-214.

Topography. Wiscasset bay, Me., 39; Merrymeeting bay and city of Bath, Me., 39; Casco bay, Me., 39; shores of Saco bay, Me., 40; Barnstable harbor, Mass., 40; verification work, 41; Long Island and Hudson river, 47; Chincoteague and Sinepuxent bays, Md. and Va., 53; Patuxent river, Md., 54; St. Mary's river, Md., 54; Horn harbor and vicinity, Va., 55; James river, Va., 55; coast south of Cape Henry, Va., 59; coast of North Carolina west of Tubb's inlet, 62; shore-line from St. Helena sound to Savannah river, 66; St. Catharine's sound, Ga., 67; Key Biscayne bay and Card's sound, 76; Charlotte harbor, Fla., 77; vicinity of Chassahowitzka river, Fla. 83: Ocklokonee and Dickerson bays, Fla., 84; Santa Rosa sound, Fla., 85; Lake Pontchartrain, 90; Isle au Breton sound, La., 87; Mississippi delta, 90; Côte Blanche bay, La., 91; Espiritu Santo and San Antonio bays, Tex., 94; Santa Cruz island, Cal., 99; Crescent city harbor, Cal., 99.

Triangulation. Primary near NE. boundary, 34, 35; its connection with Epping base, Me., 37; Penobscot bay, Me., 38; Muscongus bay, Me., 38; Hudson river, N. Y., 46; Chincoteague and Sinepuxent bays, Md. and Va., 53; Potomac river, 52; Hampton Roads, Va., 53; Chesapeake stations examined, 52; Pamplico sound, N. C., 57; across Cape Fear entrance, 58; from Tubb's inlet, N. C., westward, 62; Beaufort, Chechessee, and Colleton rivers, S. C., 64; Doboy and Altamaha sounds, Ga., 65; across head of Florida peninsula, 73; St. Augustine harbor, Fla., 73; Indian river inlet, Fla. 74; Florida keys, 75; Charlotte harbor, 75; coast of Florida south of Homosassa river, 81; Ocklokonee and Dickerson bays, Fla, 82; Santa Rosa sound, Fla., 83; Isle au Breton sound, La., 87; Mississippi delta, 88; Côte Blanche bay, La., 89; Espiritu Santo, San Antonio, and Aransas bays, Tex., 93; San Pedro, Cal., 96; Santa Rosa island, Cal., 97; primary work north of San Francisco, 97, 98; Crescent city harbor, Cal., 99; Gulf of Georgia, W. T., 102.

Trowbridge, Assistant W. P. Researches, 106; deep-sea sounding apparatus, 359-364.
Tucker, Copt. James, 84.

W.

Wadsworth, Assistant A S. Topography of Casco bay, Me., 39; triangulation across Cape Fear river, 58.

Wainwright, Sub-Assistant S. A. Services in Section III, 52,5 3 Wash Flats. Coast of Virginia, 59.

Washington Navy Yard. Tidal observations, 57.

Wash Woods. Coast of Virginia, 59.

Webber, Sub-Assistant F. P. Triangulation of Muscongus bay, Me., 38; Doboy and Altamaha sounds, Ga., 65.

Western Ridge, Me. Occupied for triangulation, 34.

West, Sub-Assistant P. C. F. Services in Section I, 40.

Whiting, Assistant H. L. Verification in Section I, 41; topography of Hudson river, N. Y., 48.

Wilkinson, Lieut. Comg. John, U. S. N. Hydrography of approaches to Sheepscot river, Me., 41; rock determined near Seguin island, Me., 130; hydrography of approaches to Casco bay, Me., 42, 130; off-shore soundings, 44; rock determined in Hyannis harbor, Mass., 45, 131.

Wilson, T. B., esq., 35.

Wilson, Lieut Thomas, U. S. A. Services in Section V, 64; charge of Drawing Division, 65; report, 182-187.

Winter harbor, Va. Topography, 55.

Wiscasset bay, Me. Topography, 39.

Wise, Assistant G. D. Examination of stations on Chesapeake bay, 52; topography between St. Mark's and S. W. Cape, Fla, 84.

Wirdemann, Gustavus. Tidal observations in Section VI, 79; Section VII, 87; notice of death, 32.

Υ.

Young, J. C. Services in Section VI, 73.

ERRATA.

In Coast Survey Report for 1858.

Page 114, line 19 from bottom, for "inspector" read "Engineer."

Page 114, line 16 from bottom, for "in the harbor" read "outside of the harbor."

Page 122, after "tidal observations" dele "with the self-registering tide gauge."

Page 279, line 2 from bottom, for "month" read "mouth."

In Coast Survey Report for 1859.

Page 36, 1st line, insert "d" before "Ursæ Minoris."

REPORT.

COAST SURVEY STATION, COOPER, WASHINGTON COUNTY, MAINE, September 23, 1859.

SIR: In compliance with the law of 1853, and with the regulations of the Treasury Department, I have the honor to present my report on the progress of the Coast Survey of the United States during the surveying year, from November 1, 1858, to November 1, 1859.

As the scale of the work, depending upon the amount of the appropriation made for its progress, is the same this year as the last, the report will go over nearly the same extent of ground as the former one. A general view of the progress from the real commencement in 1832, to the present time, is shown in a map prepared for the purpose, (Sketch No. 36,) and will presently be referred to particularly.

The survey has again been in progress in its land work, hydrography, or office work, in the twenty-two seaboard States, and Territories of the United States, in which it is not essentially completed.

I propose to retain the same divisions in the present report as in those immediately preceding it, namely, the introduction, the description of operations, and the Appendix.

I. The introduction discusses briefly the progress of the work under separate heads and gives the estimated progress for the next year, and the means necessary to secure it, thus bringing together the work done and the appropriation required for that amount of progress.

II. In the second part a detailed account is given under the head of sections, arranged geographically, of the field, hydrographic, and office work done during the year. The sections are numbered from one, beginning at the northeastern boundary, to nine, terminating with the southern line of Texas, and including the Atlantic and Gulf coast of the United States. Sections ten and eleven, including the western coast, begin at San Diego, and terminate at the forty-ninth parallel of latitude. Under each head the work is described in the general order of its execution, as 1. Triangulation; 2. Topography; 3. Hydrography, with statistics of the several operations, and other particulars relating to the work. Each chapter is prefaced by a brief reference to the progress made in the sections, and by a statement of the office work pertaining to it.

III. The Appendix contains information useful to navigators, commercial men, surveyors, and men of science, with such lists and papers relating to the work as could not conveniently be introduced into the body of the report. It is subdivided, for purposes of ready reference, into the following heads: 1. Field, hydrographic, and office details, embracing general lists of the parties and their occupation as distributed along the coast; the names of officers of the army and navy attached to the work; data furnished from the archives in reply to applications made within the year; the statistics of field and office work; a list of surveys made on the Western Coast; the developments made in the course of the regular hydrography; tide tables

for navigators, and a table of the depths at important port entrances on the Atlantic, Gulf, and Western Coast; detailed reports of work performed in the office divisions; lists of the topographical and hydrographical sheets registered within the last two years; and lists of the geographical positions furnished by data received from the field within the same period. 2. Special operations and scientific discussions relating to magnetism, tides, and currents. 3. Local surveys, comprising descriptions of special localities, their topographical features, and their resources.

4. Miscellaneous scientific matters relating to methods and instruments. 5. Correspondence incidental to the operations of the survey. 6. Light-house matters referred to the Board for consideration.

The first part of the introduction shows the progress and gives the estimates for the next year's progress. The last contains remarks upon work done, and especially upon the parts which are not referred to in the body of the report.

GEOGRAPHICAL SECTIONS-ESTIMATES OF PROGRESS AND COMPLETION.

In my report for 1857 I estimated the time of completion of the work on the Atlantic and Gulf at from ten to twelve years, estimating upon the "present resources and regular rate of progress," and showed how this could be accomplished by the same resources from the direct estimates and the aid derived from the Navy, War, and Interior Departments. In my next report I stated that "the available means from different sources for this last fiscal year, (1858–'59,) were ninety thousand dollars less than for the former," (1857–'58,) "These appropriations were less by \$30,000 than those for the previous year, 1857–'58, besides which, no appropriation was asked by the Interior Department for the survey and marking of the Florida keys, and of the islands off the Western Coast, making a diminution of \$90,000 in the available means for the progress of the survey in 1858–'59.' The portion of this reduction which fell upon the field and office work of the Atlantic and Gulf sections was \$40,000, being about eleven per cent., or more than one-tenth, requiring an increase of rather more than one year in ten, in the estimated time of completion. It is not to be expected that this decrease will show itself in a marked way in two years, except in those sections which have suffered most from it, but I cannot be responsible for it when it does appear.

I have carefully revised the estimates of progress and completion presented in my report of 1856-'57, and, adopting the same order of discussion as given in that report, now proceed to give the results, which will be found in accordance with the statements then made.

Section I. From Passamaquoddy bay to Point Judith, including the coast of the States of Maine, New Hampshire, Massachusetts, and Rhode Island.—The primary triangulation is carried to the northeastern boundary of the United States, requiring merely the occupation of certain stations passed by in order to advance the coast work, to complete the original scheme from Point Judith (Rhode Island) to the limits of Maine.

Three secondary triangulation parties will finish the triangulation in six years, and the progress will show whether this is the best course, or to press on the topography, employing only occasionally a third triangulation party, so as to complete the triangulation in seven and a half to eight years. The completion of the primary work of this section will give means from the estimates to furnish the additional topographical parties needed to keep fully up with the secondary triangulation. Two hydrographic parties with steam vessels and one with a sailing vessel will keep the hydrography close upon the triangulation and topography. The progress made this season shows that there will be no difficulty in this respect.

Allowing a margin of two years brings us to the estimate of my report for 1856-'57, namely, "ten to twelve years" from that date, or eight to ten from this, even without the additional year already referred to.

A map has been marked off with the limits of average progress, as determined by the statistics of the survey, to be expected in the triangulation of this part of the coast, and will enable me to regulate the progress accordingly. In two years the same may be done for the topography and hydrography.

Section II. From Point Judith to Cape Henlopen, including the coast of Connecticut, New York, New Jersey, Pennsylvania, and part of Delaware.—The parties which, from time to time, can be spared to work upon the rivers of this section and upon revision, will easily bring to a close the small portion of outstanding work within the time estimated for the completion of the other sections.

SECTION III. From Cape Henlopen to Cape Henry, including the coast of part of Delaware, and the coast of Maryland and part of Virginia.—The remaining work in this section, which is small, compared with that already executed, between one and two tenths, is provided for in the estimates and steadily advancing. It will easily be completed within the time named for the other sections.

Section IV. From Cape Henry to Cape Fear, including part of the coast of Virginia and North Carolina.—The primary triangulation of Pamplico sound and its rivers, not commenced at the date of my report of 1856-'57, has had one season's work upon it, and will regularly advance to its completion. The parties are provided which will bring all the work of this section to a close within the time estimated for section I, and that without burdening other parts of the survey. The plans for prospective operations are quite matured.

Section V. From Cape Fear to the St. Mary's river, including part of the coast of North Carolina and the coast of South Carolina and Georgia.—The same number of parties should be kept in this section for another year as heretofore, after which one or more can be spared for other work, and yet complete the section in the time required for section I. Two secondary triangulation parties would complete that work in five years. The question of the character of the primary work, and of bases of verification, will be settled, probably, in another year, certainly in two. The hydrography of the section is well advanced, the ocean part of it especially.

Section VI. From St. Mary's river to St. Joseph's bay, including the eastern and western coasts of the peninsula of Florida, and the Florida reefs and keys.—The expedient of a line across the head of the peninsula, by which the triangulations of the Atlantic and Gulf coasts will be connected, changes essentially the character of the triangulation necessary around the peninsula, and alone renders possible the completion of this section within the time required for section I. In fact, it will require great exertion and steady execution of plans to succeed in this. Three triangulation parties on the eastern side, and two on the western, will be required to make this sure. I rely upon parties available after two years, from other sections, to bring up any arrears which we may find in the section; but it may be most prudent to add a year to my estimate of 1857, and to make it eight to nine years from the present date, which is the same limit as of section I. The topography keeps well up with the triangulation, and so does the hydrography, the reef being nearly completed, so that the time of completion of this section may be safely estimated as not greater than for section I. The reduction of thirty thousand dollars, furnished

by the Interior Department for the Land Office surveys prior to 1858 fell heavily upon this section.

Section VII. From St. Joseph's bay to Mobile bay, including part of the coast of Florida and the coast of Alabama.—Of this section I stated in my report for 1857 as follows: "This was the last section commenced, and it is perhaps between one-sixth and one-fifth done. It will require additional force to put it through in ten to twelve years. This may probably be had as the Atlantic sections require fewer parties to bring them to a close; but I cannot foresee positively yet. Good progress has been made since we commenced this work, in 1852, and there are three centres of operation—near Pensacola, near Apalachicola and St. Mark's, and near Cedar Keys. If we had means to employ a steam vessel here throughout the season there would be no doubt of the completion of this section with the others."

I shall make a strong effort to procure an additional hydrographic party for section IX, so that the steam vessel available for this section shall be constantly employed here. No effort shall be spared to bring the section up to the others in its progress. The reduction of the appropriation has prevented the supply of an additional party during the last two years.

Section VIII. From Mobile bay to Vermilion bay, including the coast of Mississippi and of part of Louisiana.—The work in this section makes steady progress, and the topography is kept close to the triangulation, being, in fact, connected with it generally. With the force now in the section it will not be difficult to finish the triangulation, as estimated in 1856-'57, in eight years from this present date, and to complete the work at the same time with section I. As remarked in my report for 1856-'57, no one of the parties at work here can be spared for other sections, if this one is to be completed within the time estimated.

Section IX. From Vermilion bay to the southwestern boundary, including part of the coast of Louisiana, and the coast of Texas.—In my former report I supposed that additional force would be required to complete this section in time, and I am now sure of it. It may lag behind the other Gulf sections, unless means are furnished to push it onward. My notes show that I had intended to furnish another triangulation party to the section, had means sufficient been available, two years ago.

WESTERN COAST.

Sections X and XI. From San Diego to the forty-ninth parallel, including the coast of California and Oregon, and that of Washington Territory.—It would be premature to attempt to estimate for the completion of this work, only commenced in 1850. The progress has been quite satisfactory, considering that the appropriation only provides for two triangulations, two topographical parties, another for triangulation and topography, and one hydrographic party. The harbors of this important coast have been surveyed, except those of Washington Territory, only a part of which are yet completed; and, besides a general reconnaissance, and the important work connected with the northwestern boundary between the United States and Great Britain, the general hydrography has been steadily prosecuted.

GENERAL STATEMENT OF PROGRESS.

The survey on the Atlantic and Gulf coast is nearly two-thirds done, and with the means appropriated for 1857-'58 can be finished, as then stated, in from ten to twelve years from that date. The revision of my estimates of time has, as already stated, confirmed this conclusion; and, at the present diminished rate of appropriation, we shall probably fall but one year behind

that period, if the present system is strictly persevered in to the close. In my report of last year I frankly stated the difficulties of accomplishing this result, and the circumstances under which alone I deemed it practicable. I would merely call attention to these, that I may incur no responsibility not properly belonging to such an arduous task.

I propose now to state, in the most brief form, the general progress of the survey. It will be seen, by reference to the general progress sketch, (No. 36.) that the triangulation of the Atlantic coast is continuous from the northeastern boundary of the United States to Little river, near the boundary between North and South Carlina, an extent of more than twelve hundred miles measured from point to point, and a proportional part of the whole Atlantic coast of two-thirds, as estimated in the same way, or of three-fourths as estimated by shore-line. I do not mean to say that the work is complete between these limits, because the secondary triangulation in some portions, and the primary in others, is not complete; but the work is a connected one, and as such is available for preliminary purposes. With an interval of but sixty miles, it is again connected to St. Simon's entrance, on the coast of Georgia, two hundred and twenty miles, leaving an interval of about thirty miles to the St. Mary's. From the St. John's it is nearly complete (with an interval of but eight miles) to Matanzas river, (St. Augustine.) Two parties will probably be at work this winter, advancing towards each other, from St. Augustine south and from Indian River inlet north; and, as soon as the appropriation will admit, a third will be placed here, to proceed from Indian river southward.

In the aggregate, the secondary triangulation of about seven-eighths of the Atlantic coast is completed.

From Cape Florida to the Marquesas the triangulation is continuous one hundred and seventy miles, and one or two seasons more will finish the intricate work of the inner keys and coast of Florida bay. The triangulation of Charlotte harbor is nearly completed; that of the Gulf coast extends from Chassahowitzka river to Cedar Keys—fifty miles; over Ocilla entrance; then from St. Mark's, beyond Apalachicola, to Indian Pass; over St. Andrew's bay; then from the middle of Santa Rosa sound to Pensacola entrance, including also Pensacola bay and its principal dependencies; from Mobile entrance, and up Mobile bay (westward) to Point Fortuna, in Isle au Breton sound, one hundred and thirty miles, and through Lake Borgne and Lake Pontchartrain, to New Orleans; over Bay Rondo and the passes of the Mississippi, and over Isle Dernière and Caillou bay; over Atchafalaya and East Côte Blanche bays; from East bay, (Galveston,) southward and westward, over Matagorda and Aransas bays and their dependencies, one hundred and ninety miles, to Aransas Pass, which is about a hundred and forty miles from our southeastern boundary.

The topography and hydrography based upon these triangulations have kept close pace with them, in some of the sections requiring the communication of results by the triangulation parties to the topographical parties, and in others by both triangulation and topographical parties directly to the hydrographic parties as soon as completed in the field.

The harbors of the Western seacoast of the United States, and many of the more important ones in the vast navigable sounds of the Pacific coast, have been surveyed, and the general triangulation from San Francisco as one centre and Santa Barbara as another, over Columbia river, in Oregon, in Washington sound and its dependencies, the Straits of Haro and Rosario and the islands between, to the northwestern boundary and southward into Puget's Sound, have been steadily pushed forward, and the topography and hydrography have followed closely.

The astronomical work has been kept up along the whole coast, as far as the progress of the

other operations rendered advisable. The latitudes and longitudes of the headlands on both coasts have been determined, and, with the intermediate stations, these make a total of seven thousand one hundred and seventy-eight points of which the geographical positions have been computed.

Preliminary determinations of longitude from Europe have been made by the best methods known to science. The telegraphic method of longitudes, perfected in connexion with the survey, has enabled us to connect the distant points—Calais, in Maine, and New Orleans, in Louisiana—with a certainty hitherto impossible. I am satisfied that a few signals by telegraph from America to Europe will enable us to determine the difference of longitude with a degree of accuracy which neither long-continued astronomical observations nor the transportation of chronometers have yet reached, or can ever reach. This is one of the works specially enjoined upon the Coast Survey by the plan of reorganization, and to which unvarying attention has been directed from the date of that plan until the present time.

The tide tables for navigators (Appendix No. 14) have been further revised for determining, by simple rules, the times and heights of high and low water in our different ports.

The magnetic elements, so important to the navigator and surveyor, have been further determined, and the tables now contain the results of observations made at over two hundred stations on all parts of the coast.

No less than three hundred and thirteen charts or sketches of harbors, inlets, shoals, sounds, bays, &c., have been drawn, engraved, and published, founded upon the land and hydrographic work of the survey.

PROGRESS FROM NOVEMBER 1858 TO NOVEMBER 1859.

The first table in the Appendix (No. 1) shows the distribution of the parties along the coast in the different sections, the officers employed, and the general limits of the work executed. A map of each section shows the work in some detail, and with convenient signs to denote the several operations. I give in this connexion a condensed account of the progress made in the field and office work, subdivided according to the eleven geographical sections of the survey.

Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island.—(Sketches A and A bis, Nos. 1 and 2.)—The primary triangulation has been extended to the northeastern boundary of the United States, Howard mountain, near Machias, and Western Ridge, Cooper, Maine, having been occupied during the season. Observations for latitude and azimuth, and for the magnetic elements, have been made at the same stations, and the base on Epping Plain has been connected with the general triangulation. Chamcook has been occupied for the triangulation of Passamaquoddy bay and the St. Croix. The secondary triangulation has been continued in Penobscot bay, and connected with that extending southward and westward, over Muscongus bay, to Damariscotta river. The topography of Wiscasset bay has been completed, and progress made in that of Sheepscot river. The plane table survey of the Kennebec river and Merrymeeting bay has been nearly completed, and that of Casco bay has been extended eastward nearly to Harpswell. That of Cape Cod bay has been extended east and west, including the shores of Barnstable harbor, Mass., and verification of the topography done in the section is now in progress. The hydrography has been extended from Cape Newaggen and Damiscove island to Cape Small Point, outside of Kennebec entrance, and soundings have been made in Casco bay to join with former work abreast of and between Portland light and Green island.

The in-shore hydrography has been extended from Cape Elizabeth to Kennebunkport, Me., and soundings have been made between the Isles of Shoals, N. H. Deep-sea lines have been run from Cape Ann, across Cashe's Ledge, to Seal island, N. S., and thence by traverses to Machias, Mount Desert rock, Matinicus, and Manhegan island, to Portland entrance; and from Cape Elizabeth (southward) to Nausett Centre light, Cape Cod. The off-shore hydrography has been continued off the coast of Massachusetts. Revision work has been done in Salem and Hyannis harbors, and work for the examination of changes in parts of Boston harbor. Special magnetic observations have been made at Portland, Me., Portsmouth, N. H., and at several stations on Cape Ann, Mass. The tidal observations at Boston have been continued, and a tidal station has been established at Eastport, Me. Experiments with a new pressure tidegauge have been made at Charlestown, Mass.

The drawing and engraving of additions to the chart of Boston harbor have been completed, as also the drawing of those of Portland harbor, Lynn harbor, and a new edition of that of Muskeget channel; and the engraving of the preliminary charts of Kennebec river and Rockport harbor. Progress has been made in the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and of preliminary coast chart No. 3, from Cape Small Point to Cape Cod; in the drawing of coast maps and charts No. 7, from Muscongus bay to Portland harbor; Nos. 9, 10, and 11, from Cape Neddick to Hyannis harbor, and No. 14, from Cuttyhunk island to Block island; also in the engraving of coast maps and charts Nos. 12 and 13, from Monomoy to New Bedford; the views for these charts, the finished maps of Kennebec river and Lynn harbor, and the new edition of the chart of Muskeget channel.

Section II. Coast of Connecticut, New York, New Jersey, Pennsylvania, and part of Delaware.—
(Sketch B, No. 7.)—The triangulation of the Hudson river has been extended from Hudson northward, to connect with the work from Albany southward, at New Baltimore, and additional points have been determined near Yonkers. The topography of the Hudson has been continued, with intervals, north from the former limit to near Sing Sing on the eastern shore, and to Rock mountain on the western shore, including the delineation of the Palisades; that of Harlem river has been completed, and that of Long island, back of Brooklyn and Williamsburg, and in the vicinity of South Jamaica, has been filled in. The outlines of the new piers at Sand Point and Great Neck have been traced. The hydrography of the Hudson river has been in progress from Newburgh north to Poughkeepsie. A resurvey has been made of the shore off the Battery, New York city, for changes. Magnetic stations have been occupied at Hartford, Conn.; Springfield, Chesterfield, and Deerfield, Mass.; and at Rutland, Vt.; and minute current observations have been made off the western end of Long Island. Tidal observations have been continued at Brooklyn.

Progress has been made in the drawing and engraving of coast map and chart No. 22, New York bay and harbor, and in the drawing of the map of Hudson river, from its entrance to Sing Sing. New plates of the middle and eastern parts of the chart of Long Island Sound have been engraved, and the old plate of the chart of Captain's islands, East and West, has been re-engraved.

SECTION III. Coast of Delaware, Maryland, and part of Virginia.—(Sketch C, No. 9.)—The triangulation of the Potomac river has been extended from the mouth of the St. Mary's upwards, to the vicinity of Britton's bay; that of the James river has been completed by work at Hampton Roads, and a base measured near Claremont for verifying the triangulation of the upper James river and of the Appomattox. The topography of the outer coast of Maryland

has been continued, and that of the shores of Chincoteague bay completed. The shore line of the Patuxent has been traced from Holland's Point to Hall's creek, and that of the St. Mary's, Maryland, from its entrance upward to Warehouse Point, nearly completing the preliminary survey of those rivers. The shores of the James river have been traced between Westover and Little Brandon, completing the preliminary survey. The topography of the western shore of Chesapeake bay, between Rappahannock river and Mobjack bay, has been nearly completed. Soundings have been nearly completed in the Patuxent and St. Mary's rivers, and entirely in the James river, and the Big and Little Annemessex, dependencies of Tangier sound. Observations with self-registering tide-gauges have been kept up at the Washington navy yard and at Old Point Comfort.

The chart of York river, from King's creek to West Point, has been drawn and engraved for publication. The topography and lettering of coast maps and charts No. 31, Chesapeake bay, from its head to Magothy river; and No. 33, from Hudson river, Maryland, to the Potomac; of the finished chart of Patapsco river, and the outlines of coast map and chart from Green Run inlet to Little Machipongo inlet, (from a photographic reduction,) have been engraved. Progress has been made in the drawing and engraving of coast maps and charts Nos. 35 and 36, from Pocomoke sound to the entrance of Chesapeake bay; in the drawing of general coast chart No. IV, from Cape May to Currituck sound; of coast maps and charts Nos. 28 and 29, (the latter mainly by photography,) from Cape Henlopen to Little Machipongo inlet; No. 33 Chesapeake bay, the sheet of James river, from Richmond to City Point; and coast map and chart No. 37, from Cape Henry to Currituck sound; and also in the engraving of coast maps and charts No. 32 Chesapeake bay, from Magothy river to the Hudson, Maryland, and No. 34, from the Potomac to Pocomoke sound.

Section IV. Part of the coast of Virginia and of North Carolina.—(Sketch D. No. 15.)—The primary triangulation over Pamplico sound has been commenced. The triangulation of verification near New Inlet, Cape Fear, has been continued. The topography of the coast of Virginia, between Currituck sound and Cape Henry, has been completed. In-shore, hydrography on the coast of North Carolina has been extended from Bogue inlet, southward and westward, to New River inlet, and lines of soundings run between Cape Henry and Cape Hatteras, and observations in the Gulf Stream made in the vicinity of Cape Lookout.

Comparative charts of the Cape Fear entrances, showing the changes from 1851 to 1858, and diagrams, illustrating Gulf Stream explorations, have been drawn, and the former engraved upon stone, under the direction of the Superintendent of Public Printing. Progress has been been made in the drawing and engraving of preliminary coast chart No. 11, from Cape Hatteras to Cape Lookout; in the drawing of No. 12, from Cape Lookout to Cape Fear; in that of coast map and chart No. 48, from Bogue inlet to Barren inlet; and in the engraving of coast maps and charts Nos. 40 and 41, Albemarle sound.

Section V. Coast of part of North Carolina and coast of South Carolina and Georgia.—(Sketch E, No. 16.)—Astronomical and magnetic observations have been made at Cape Fear entrance, and the latitude, azimuth, and magnetic elements have been determined at Port Royal station. The triangulation has been extended south and west from Shallotte inlet to the boundary between North and South Carolina, and the shore line traced in connexion with it; signals have been erected and lines prepared for extending the primary work south and west of the Edisto base; the triangulation of Beaufort, Chechessee, and Colleton rivers, South Carolina, has been made, and that from Sapelo base extended southward across Doboy and Altamaha entrances to St. Simon's

sound. The topography has been continued southward and westward from Shallotte inlet; the preliminary survey between St. Helena sound and Savannah river has included the shore lines of Port Royal sound and the entrances of Beaufort, Broad, Chechessee, and Colleton rivers, and Calibogue sound. The topography of St. Catharine's sound has been nearly completed. The hydrography has been continued in-shore from Cape Fear entrance to Tubb's inlet, N. C., and the off-shore between Cape Fear and Charleston harbor. Soundings have been completed in Bull's bay, S. C., and a resurvey of Port Royal entrance has been made. The hydrography of the Chechessee and Colleton rivers, S. C., has been completed, and also that of Sapelo entrance and approaches. Tidal observations have been kept up in Charleston harbor.

In the drawing and engraving divisions additions have been made to the chart of Charleston harbor. The chart of Sapelo sound has been drawn and engraved, and the engraving of preliminary coast chart No. 14, from Cape Romain to Savannah river, has been in hand. Progress has been made in the drawing of coast maps and charts No. 53, from Charleston harbor to St. Helena sound; and No. 58, from St. Mary's river to the St. John's, Florida; and in that of the chart of Ossabaw sound.

Section VI. Coast, reefs, and keys of Florida.—(Sketches F, Nos. 20 and 21.)—The triangulation along the air line from Fernandina to Cedar keys has been continued to Waldo station. A preliminary base has been measured near St. Augustine, and the triangulation has been carried north towards Diego plains. A preliminary base has been measured at Indian river inlet, Florida, and signals erected for the triangulation north and south of Fort Capron. The triangulation of the inner bays has been extended eastward from Lignum Vitæ to Pigeon key Florida reef; and that of Charlotte harbor has been extended from Captiva pass northward to Punta Gorda. The topography of the western shores of Key Biscayne and Cards' sounds has been completed, as also on the western side of Key Largo, and the survey made of numerous keys between Lignum Vitæ and Oyster keys. The topography of Charlotte harbor has been continued northward from the former limit to Boca Grande. The hydrography of the Florida reef has been continued from Eagle cove to Coffin's Patches; the Gulf Stream has been explored through the Florida channel, and soundings made for depth and temperature in sections across it, from Carysfort light-house, Sombrero key, and the Tortugas. Tidal observations have been continued at St. Mary's river entrance, Tortugas, Charlotte harbor, and Egmont key, (Tampa.)

Progress has been made in the drawing and engraving of coast map and chart No. 68, Florida reef, from Key Biscayne to Carysfort reef; and in the drawing of Nos. 70, 71, and 72, Florida reefs and keys, from Long key to the Marquesas.

Section VII. Part of the western coast of Florida.—(Sketch G, No. 23.)—The triangulation has been carried from Crystal reef southward to the vicinity of Bayport; has been continued from St. George's sound to St. Mark's harbor, and from Pensacola bay into Santa Rosa sound. The topography has been continued nearly over the same limits. The hydrography has included a verification of the work at Cedar keys, and that at the eastern entrance of St. George's sound, including the new channel (Duer's) passing near Dog island. Tidal observations have been kept up at Cedar keys, and at Warrington, Pensacola harbor.

The drawing and engraving of the preliminary chart of the eastern part of St. George's sound have been completed, as also the engraving of the preliminary chart of Pensacola harbor. The drawing of the preliminary chart of Apalachicola bay has been finished at the

office, and since engraved on stone, under the direction of the Superintendent of Public Printing.

Section VIII. Coast of Alabama, Mississippi, and part of Louisiana.—(Sketch H, No. 26.)—The triangulation of Isle au Breton sound has been continued southward to Point Fortuna; progress has been made in that of Passe à Loutre; the SE. Pass of the Mississippi and of Bay Rondo, and that of Côte Blanche bay, has been extended westward nearly to the entrance of Vermilion bay. The topography of the shores of Lake Pontchartrain has been continued, and that of Isle au Breton sound has nearly kept pace with the triangulation; that of the SE. Pass of the Mississippi has been executed, and that of Côte Blanche bay has kept pace with the triangulation. The hydrography of Passe à Loutre has been executed, and that of Atchafalaya and Côte Blanche bay east completed. Some deep-sea lines of soundings have been run in the Gulf of Mexico.

The preliminary chart of Atchafalaya bay has been drawn and engraved, and the engraving of coast maps and charts Nos. 91 and 92, Mississippi sound and Mobile bay, from Bon Secours bay to Grand island, has been in progress.

Section IX. Coast of part of Louisiana and coast of Texas.—(Sketch I, No. 28.)—The triangalation has been carried from Matagorda entrance southward and westward over Espiritu Santo, San Antonio, Aransas, and Capano bays, and their dependencies. The topography has been extended along the shores of Espiritu Santo and San Antonio bays, and part of Matagorda island. The hydrography of Matagorda bay has been completed between the city and Palacios point.

The reconnaissance sketch of the entrance to Brazos river has been drawn and engraved, and progress has been made in the drawing and engraving of coast maps and charts Nos. 106 and 107, from Galveston bay to Matagorda bay; also in the drawing of coast maps and charts No. 105, Galveston bay, and No. 108, Matagorda bay. A general reconnaissance sketch of part of the coast of Texas, from Matagorda bay to Aransas Pass, has been drawn at the office, and was engraved on stone, under the direction of the Superintendent of Public Printing.

Section X. Coast of California.—(Sketches J and J bis, Nos. 30 and 31.)—The primary triangulation in the vicinity of the San Pedro base has been revised, and the secondary triangulation of San Pedro harbor executed, as also that of the northern part of Santa Rosa island, Santa Barbara channel. The primary triangulation from San Francisco entrance has been extended northward to Sulphur Peak, and the secondary connected with it carried over Drake's bay and Point Reyes. The positions of the Farrallones have been determined by triangulation. Crescent City harbor has been triangulated. The topography has included the harbor of San Pedro, part of Santa Cruz island, and Crescent City harbor. The hydrography of San Pedro harbor has been completed, and soundings off the approaches to the Golden Gate nearly so. A resurvey has been made of Humboldt bay, and the hydrography of Crescent City harbor executed. The regular tidal observations have been kept up at San Diego and near San Francisco.

The engraving of the charts of San Diego bay, Mare Island strait, and Humboldt bay has been completed, and also the drawing and engraving of the chart of the entrance to San Francisco bay. Progress has been made in the engraving of the chart of San Pablo bay, and additions have been made to the reconnaissance chart of the Western Coast. The map of San Francisco city has been engraved on stone, under the direction of the Superintendent of Public Printing.

Section XI. Coast of Oregon and that of Washington Territory.—(Sketch K, No. 34.)—The

triangulation of the Gulf of Georgia has been continued, stations on Point Roberts being connected with others on Galiano island above the forty-ninth parallel. Hydrographic reconnaisances have been made at the entrances to the Coquille river, Oregon, and at Gray's harbor, W. T., and general duty has been performed in connection with requirements of the commissioner on the northwestern boundary. The regular tidal observations at Astoria have been continued.

A new edition of the reconnaissance sketch of Canal de Haro and Strait of Rosario, and the chart of Port Townshend, have been drawn and engraved, and the engraving of the charts of Port Gamble and Semiahmoo bay has been completed.

MAPS AND CHARTS.

A series of projects of maps and charts, on suitable scales, has been prepared, for which the work now affords materials on the Atlantic and Gulf coasts. The projects for coast maps and charts on the scale of $\frac{1}{80000}$, as described in my report of last year, are one hundred and thirteen in number, embracing forty-two connected series. Those for the set of general coast charts, on the scale of $\frac{1}{4000000}$, are sixteen in number; and for a set of preliminary charts, on the scale of $\frac{1}{2000000}$, the projects are thirty-three in number.

The preliminary charts, with preliminary editions of harbor and other maps and charts, enable us to keep up with the work of each year. The electrotype process is especially valuable in enabling us to carry on this work without loss of the previous portions of the engraving. The application of photography, which is very far advanced, is making great changes in the facilities for reducing maps and charts. In another place I will present, at more length, a statement of our progress in this application.

Sixty-seven sheets have been worked upon in the drawing division within the past year. Of this number, two are finished charts, twenty-three finished maps and charts, thirteen finished maps, six preliminary charts, two comparative charts, nineteen sketches, and two sheets of diagrams. Thirty sheets have been completed and thirty-seven are in progress. Of those completed, four are finished maps, three preliminary charts, two comparative charts, nineteen sketches, including those showing field progress, and two sheets of diagrams.

In the engraving division, five first-class maps and new editions of three have been completed during the year, and twenty-one have been in progress. Of these last, eleven were commenced in former years and ten in the present year. Eleven second-class maps or charts and sketches have been completed within the year, nine of which were begun in the present year, and six of the same class are in progress. These, with five plates of diagrams, give a total of twenty-four completed and thirty-two in progress, or of fifty-six plates engraved or engraving within the year. In addition to those engraved upon copper, five charts and sketches have been engraved upon stone, under the direction of the Superintendent of Public Printing. The complete list, giving the titles of the maps and charts, will be found in Appendix No. 17. The general list of all the maps, charts, and sketches engraved up to the present date also accompanies the same Appendix. It includes two hundred and ninety-nine titles, of which sixty are first-class maps. The list is exclusive of twenty progress sketches which have been engraved, and receive additions from year to year, as the field-work advances.

The following list contains the titles of maps and charts, finished and preliminary, and of sketches and diagrams, accompanying this report, arranged geographically. The letters in the margin refer to the different sections; A to Section I, B to Section II, and so on. The

numbers on the maps, charts, and sketches correspond with those in the list which contains five finished charts, fifteen preliminary charts, and twenty sketches and diagrams.

- 1.—A. Progress sketch, Section I, (primary triangulation.)
- 2.—A bis. Progress sketch, Section I, (secondary triangulation, topography, and hydrography.)
- 3.- Seacoast of Maine, from Kennebec entrance to Portland.
- 4.— Portland harbor.
- 5. Lynn harbor, Mass.
- 6.— Muskeget channel, (new edition.)
- 7.—B. Progress sketch, Section II.
- 8.— Hempstead harbor, Long Island Sound.
- 9.—C. Progress sketch, Section III.
- 10.— Chesapeake bay (sheet No. 4) from Potomac river to Pocomoke sound.
- 11.— Chesapeake bay (sheet No. 5) from Pocomoke sound to York river entrance.
- 12. Chesapeake bay (sheet No. 6) from York river entrance to Cape Henry.
- 13.— Patuxent river, Md.
- 14.- St. Mary's river, Md.
- 15.-D. Progress sketch, Section IV.
- 16.—E. Progress sketch, Section V.
- 17.— Bull's bay, S. C., (new edition.)
- 18.— Port Royal entrance and approaches, S. C.
- 19.— Sapelo sound and approaches, Ga.
- 20.-F. Progress sketch, Section VI.
- 21.—F bis. Progress sketch, Section VI, (Florida reefs and keys.)
- 22.— Florida reefs and keys from Newfound harbor key to Boca Grande key.
- 23.—G. Progress sketch, Section VII.
- 24.— Cedar keys, (new edition.)
- 25.— St. George's sound, Fla., (eastern part.)
- 26.-H. Progress sketch, Section VIII.
- 27.— The Rigolets, La.
- 28.—I. Progress sketch, Section IX.
- 29.— Coast of Texas and Matagorda bay.
- 30.-J. Progress sketch, Section X, (lower part.)
- 31.—J bis. Progress sketch, Section X, (upper part.)
- 32.- San Pedro harbor, Cal.
- 33.— Crescent City harbor, Cal.
- 34.-K. Progress sketch, Section XI.
- 35.— Diagrams illustrating the distribution of temperature in the Florida straits.
- 36.— Sketch showing general progress in the survey of the Atlantic, Gulf, and Pacific coasts.
- 37.— Diagrams illustrating the results of magnetic observations at Girard College, Philadelphia.
- 38.— Lines of equal magnetic variation for the year 1858.
- 39.— Trowbridge's apparatus for deep-sea soundings.
- 40.— Mitchell's apparatus for measuring currents and improved pile for sea structures.

 Constant efforts have been made to obtain a set of progress sketches better suited to popular

use, and yet useful for the purposes of the office. I believe that this may be accomplished for the next report, a plan which meets my approval having been finally hit upon after much experimenting.

The application of photography to the regular reduction of our maps and charts has made good progress. It is estimated that the cost of reducing one of our sea-coast charts by photography is but about one-fourth of that by the pencil and pen. The questions yet unsolved in this application are merely questions of detail, and it is to be considered as one of the processes fully applicable to the reduction of our maps and charts for engraving, no important difficulty in relation to which remains to be mastered. The report of the assistant in charge of the office, and of George Mathiot, esq., in charge of the photographic operations, give many important particulars in this matter, (Appendix No. 17.) Prints have been produced of reduced maps in which the severest tests could detect no error beyond the tolerated limits.

Mr. Mathiot is of opinion that we can profitably publish many of our preliminary maps by the photographic process without engraving at all, by issuing copies of the photographic prints themselves. Experiments will be made upon this at the earliest date practicable.

The operation of putting the print of the reduced map directly upon the copper, so as to avoid an intermediate tracing by the engraver, those of photo-lithography, and others, are in the course of experiment. Some successful trials have been made of photographing microscopic objects from the specimens of bottom of the sea collected in sounding.

ESTIMATES FOR THE FISCAL YEAR 1860-'61.

The estimates are in the usual form which attaches the work to be done, to the expenditure necessary to accomplish it, and so indicates the rate at which the survey is to be prosecuted, a larger expenditure being required to finish the work sooner, a smaller decreasing the work to be done, and therefore involving the time of completion. I have already, in last year's report, called attention to the fact that the entire appropriation for the fiscal year 1857-'58, exceeded by \$90,000 (including the means furnished by the Land Office) that of the fiscal year 1858-'59, which was the same as that of 1859-'60, the item for the pay of engineers being introduced on the withdrawal of naval engineers from the work.

As it is absolutely essential in such a work to have latitude in regard to the details of progress of operations in order to conduct it efficiently, the sums assigned for the several sections are joined in the acts of appropriation into one, allowing to the Treasury Department, which controls by law the direction for the work, and under which the Superintendent acts, discretion in details, and merely confining the separate expenditures to the great divisions of the work, as the Atlantic and Gulf Coast; the Florida Coast, reefs, and keys; and the Western Coast. The whole of the expenditures for field and office work, including the pay of the civilians employed, is brought into these estimates. They include the expense of deducing the results, and drawing and engraving the maps, as well as of the surveys in the field.

These estimates suppose the same aid from the War and Navy Departments as heretofore. Should any part of this be withheld, the proportionate progress of the survey must of necessity be diminished.

The estimates were reduced in 1857-'58, during the great stress upon the treasury, and have not since been raised to their former level. This involves a less rapid completion of the work than the former rate, but in the uncertainty in regard to the means for the fiscal year, I have not ventured to recommend an increase. The several items now presented are the same

in amount as have twice met the approval of Congress. An additional item, as compared with the last two years, for fuel and quarters for officers of the army serving on the work, is to pay the emolument derived by law and no longer paid by the Quartermaster's Department from the general appropriation for fuel and quarters of the army. It is not a new item, but is intended to replace the balance of a former appropriation which permitted its omission in the estimates of last year and the year before, during the straightened condition of the treasury. This balance is now exhausted.

The assistant in charge of the work across the Florida line, Captain M. L. Smith, U.'S. Topographical Engineers, advises me that the cost may be greater than was originally estimated by the officer who made the reconnaissance. I have, however, preferred to extend the time for completing the work rather than to ask an increase of the item for its execution. Even if Captain Smith's present estimate should be exceeded, the cost of the work will not reach one-fourth that of a continuous main triangulation around the coast, such as would be needed to connect the main work on the Atlantic and Gulf of Mexico.

No item of the estimates has been increased. That for the Western Coast has proved sufficient to keep the usual number of parties there in consequence of the work executed under the law for the Northwestern Boundary Commission.

Estimates in detail.

\$19,000

Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island. Field-WORK .- To continue the primary triangulation in this section and to make the necessary astronomical and magnetic observations connected with it; to extend the secondary triangulation up the Penobscot river and along the coast eastward from Penobscot bay; east from Pemaquid over Muscongus bay, and over the peninsula between the Kennebec and Sheepscot rivers, and of the coast east of those rivers; to commence the topography of *Penobscot bay*, and to continue that between Kennebec river and Casco bay; to continue the topography of Cape Cod bay; to complete the hydrography near the Isles of Shoals, New Hampshire; to continue the in and off-shore hydrography of the coast of Maine, from the Kennebec entrance eastward, and of the ledges off the coast of Maine; to make such tidal observations as may be necessary: Office-work, -To make the computations connected with field-work; to commence the drawing and engraving of the chart of *Penobscot* bay, and that of Casco bay; to continue the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and preliminary coast chart No. 3, from Cape Small Point to Cape Cod; to complete the drawing and engraving of the chart of Sheepscot river, and the sketches of the section; to complete the drawing and engraving of coast map and chart No. 9, from Cape Neddick to Cape Ann; the engraving of that of Kennebec river, Lynn harbor, and coast maps and charts Nos. 12, 13, and 14, from Nantucket sound to Narragansett bay; to continue the drawing of coast map and chart No. 7, from Muscongus bay to Portland harbor; the engraving of the chart of Portland harbor, and of coast map and chart No. 10, from Cape Ann to Plymouth; and to commence the drawing of coast map and chart No. 8, from Portland harbor to Kennebunk harbor, and draw and engrave tidal diagrams, will require......

\$43,000

14,000

Section III. Coast of Delaware, Maryland, and Virginia. Field-work.—To continue the astronomical and magnetic observations required in the section; to examine and preserve the more important triangulation stations; to continue the triangulation of the Potomac river; to complete the topography of the Patuxent and James rivers; to continue that of the Potomac, and that of the outer coast of Maryland, including the bays connected with it; to complete that of the shores of Chesapeake bay; to continue the off-shore hydrography of the section, and work of verification in the Chesapeake and its tributaries; the hydrography of the Potomac river, and the tidal observations of the section: Office-Work, -To furnish the necessary computations; to complete the drawing and engraving of coast map and chart No. 33, Chesapeake bay from Hudson river, Maryland, to the Potomac, with the sketches of the section; the drawing of coast maps and charts Nos. 28 and 29, from Cape Henlopen to Little Machipongo inlet; Nos. 34, 35, and 36, Chesapeake bay from Potomac river to the entrance of the bay; and the engraving of charts of the Patuxent and St. Mary's rivers; to continue the drawing and engraving of sheet No. 6, Rappahannock river, from its entrance to Deep creek; the drawing of general coast chart No. IV, from Cape May to Currituck; the Rappahannock river, series Nos. 3, 4, and 5, from Port Royal to Deep creek, and the chart of James river from Hog island to the Chesapeake; to continue the engraving of coast map and chart No. 29, from Green run inlet to Little Machipongo inlet; coast maps and charts No. 32, Chesapeake bay, from Magothy river to Hudson river, Maryland; and Nos. 34, 35, and 36, of the same series, from the Potomac to the entrance of the bay; to commence the engraving of general coast chart No. IV, and that of coast map and chart No. 28, from Cape Henlopen to Green run inlet, will require.....

25,000

Section IV. Coast of Virginia and North Carolina. Field-work.—To continue the primary triangulation of Pamplico sound and the secondary connected with it; to complete the verification work near Cape Fear entrance; to continue the topography of the outer coast of North Carolina south of Hatteras, and to complete that of the Chowan and Roanoke entrances; to continue the in and off shore hydrography between Cape Lookout and Cape Fear; to continue the observations of tides and currents, and of the Gulf Stream: Office-work, -To compute the results of the triangulation and other operations: to commence the drawings of coast maps and charts Nos. 42 and 43, Pamplico sound; to complete the drawing and engraving of the sketches of the section, the drawing of coast map and chart No. 48 from Barren inlet to Lockwood's Folly inlet; to engrave coast map and chart No. 40, Albemarle sound (western sheet;) to continue the drawing and engraving of preliminary coast chart No. 11 from Cape Hatteras to Cape Lookout; the drawing of coast map and chart No. 37, from Cape Henry to Currituck sound; preliminary coast chart No. 12, from Cape Lookout to Cape Fear, and general coast chart No. V, from Currituck to Cape Fear; to commence the drawing of coast map and chart No. 47, from Boque inlet to Barren inlet; the engraving of coast map and chart No. 48, and that of preliminary coast chart No. 12, Cape Lookout to Cape Fear, will require

\$23,000

Section V. Coast of part of North Carolina and that of South Carolina and Georgia. FIELD-WORK.—To extend the triangulation in North and South Carolina, from Tubb's inlet southward towards Winyah bay; to extend the primary triangulation south of St. Helena and Port Royal sounds, and the secondary up the rivers connected with them; to measure supplementary bases on the coast of South Carolina and Georgia; to extend the triangulation south of St. Simon's, and over St. Andrew's sound; to continue the topography of Port Royal sound, and that between Savannah river and Ossabaw, including Wassaw sound and the rivers emptying into it; to continue the hydrography of Wassaw, Ossabaw, and St. Catharine's sounds and entrances; to complete that of Doboy and Allamaha entrances; and to commence, if practicable, that of St. Andrew's entrance and sound; to continue the tidal and current observations and investigations of the Gulf Stream in this and the following section: Office-work, -To make the requisite computations; to complete the drawing and commence the engraving of coast map and chart No. 53, from Stono inlet to Fripp's inlet; to complete the drawing and engraving of charts of St. Catharine's and Ossabaw sounds, and the sketches of the section; the drawing of the chart of St. Simon's sound, and coast map and chart No. 58, from St. Mary's to St. John's river; to commence the engraving of charts of Ossabaw and Sapelo sounds; to continue the drawing of coast maps and charts No. 52, from Cape Romain to Stono inlet, and No. 54, from Fripp's inlet to St. Catharine's sound, and preliminary coast chart No. 14, from Cape Romain to Tybee light; to commence the drawing of preliminary coast chart No. 15, from Tybee light to St. John's light; and that of general coast chart No. VII, from Winyah bay to the St. John's river, will require

36,000

Section VI.—Keys, reefs, and coast of Florida. (See estimates of appropriation for those special objects.)

Section VII.—Part of the western coast of the Florida Peninsula. Field-work.—To continue the triangulation south of Wechiwatchee river, and north from Suwanee river; to continue that from Apalachicola westward of Indian Pass, and north of Cape St. Blas; to continue that of Santa Rosa sound and the dependencies of Pensacola bay; to make such astronomical and magnetic observations as may be practicable in the section; to continue the topography in connection with the triangulation as far as may be practicable; to continue the hydrography of the section from St. George's sound east and west, and from Cedar keys south and north, and to make the requisite tidal observations: Office-work,—To make the necessary reductions and computations; to complete the drawing and engraving of the chart of Santa Rosa sound, Escambia bay, and East bay; the sketches of the section, and the engraving of the chart of St. George's sound; to commence the drawing of coast maps and charts Nos. 84 and 85, from Appalachee bay to St. Joseph's bay, and the engraving of coast map and chart No. 89, from Pensacola bay to Mobile bay; to continue the drawing of coast map and chart No. 81, from Homosassa river to Cedar keys, and that of No. 88, from Choctawhatchee bay to Pensacola bay, will require

\$33,000

Section VIII.—Coast of Alabama, Mississippi, and part of Louisiana. Fieldwork.—To continue the astronomical and magnetic observations required in the section; to continue the triangulation of Isle au Breton sound, and the triangulation of the Mississippi delta westward; to continue the triangulation over Vermilion bay; to complete the topography of Lake Pontchartrain, and to keep the topography up with the triangulations just enumerated; to continue the hydrography of Chandeleur sound, the Mississippi passes, and commence that of Isle au Breton sound and Vermilion bay; to continue the tidal and current observations and the deep-sea soundings of the Gulf in this section: Office-work, -To make the requisite computations; to complete the drawing and continue the engraving of coast map and chart No. 92, Mississippi sound, from Round island to Grand island; to continue the drawing and engraving of preliminary coast chart No. 26, Mississippi sound, from Mobile bay to Lake Pontchartrain, and coast map and chart No. 100, from Marsh island to Grand island; to complete the drawing and engraving of a chart of the Mississippi delta, and the sketches of the section; the drawing of those of Lake Borgne, the Rigolets, and part of Lake Pontchartrain, and coast map and chart No. 93, from Grand island to Lake Pontchartrain; to commence the drawing of general coast chart No. XIV, from Pensacola bay to Barataria bay; to complete the drawing and engraving of the chart of Atchafalaya bay; to commence the drawing and engraving of that of Côte Blanche bay, and the drawing of that of Vermilion bay, will require

31,500

Section IX.—Part of the coast of Louisiana and the coast of Texas. Field-work.—
To continue the triangulation southward from Aransas Pass, and the topography from Matagorda entrance southward and over Aransas and Copano bays; to con-

\$25,500

Total for the Atlantic coast and Gulf of Mexico.....

250,000

The estimates for the Florida reefs, keys, and coast, and for the Western Coast of the United States, are intended to provide for the following progress:

Section VI. Reefs, keys, and coast of Florida. FIELD-WORK.—To continue the triangulation of the eastern or Atlantic coast of the peninsula, south of Matanzas inlet, and north and south of Indian River inlet; to complete the triangulation of the keys and sounds between the outer keys and the coast of the peninsula; to connect, if practicable, the Marquesas and Tortugas; to extend the triangulation north and south from Charlotte harbor; to make a part of the astronomical and magnetic observations required in the section; to continue the topography south of the St. John's river, and north and south of St. Augustine harbor, and, if practicable, over Indian River inlet, and northward of it; to complete the topography of the keys and coast of Barnes' and Card's sounds and Florida bay; to complete the topography of Charlotte harbor; to complete the hydrography of the Florida reef, and to execute off-shore work connected with it; to continue that of Florida bay and Barnes' sound and dependencies; to commence that of Charlotte harbor, and to keep up tidal observations at the Tortugas: Office-work,—To make the computations connected with the field-work; to continue the drawing and commence the engraving of coast maps and charts Nos. 69 and 70, Florida reef, from Garden key to Newfound Harbor key; to continue the drawing and engraving of coast maps and charts Nos. 71 and 72, Florida reefs, from Newfound Harbor key to Marquesas key, and the drawing of preliminary coast charts Nos. 19 and 20, Florida reefs, from Key Biscayne to the Tortugas; to complete the drawing and engraving of coast map and chart No. 68, Florida reef, from Key Biscayne to Carysfort reef; that of Charlotte harbor; the sketches of the section; the drawings of Indian River inlet and St. Augustine harbor; and to draw and engrave the tidal and Gulf Stream diagrams, will require

\$40,000

Section X. Coast of California. FIELD-WORK.—To continue the triangulation along the Pacific coast northward of Santa Barbara, and to make the triangulations of Santa Catalina and San Clemente islands; to continue the primary and secondary triangulation north of Drake's bay, and to make such astronomical and magnetic

observations as may be necessary in that work; to execute topography within the triangulation of the Santa Barbara channel, main and islands; that of the dependencies of San Pablo bay, and such plane-table work as may be practicable, in addition to and connecting with the shores of Drake's bay and northward from Point Reyes; to continue the hydrography of the coast south and north of San Francisco entrance, and that of Santa Barbara channel, with such other as the progress of the survey may show to be first needed; to continue tidal observations in the section: Office-work,—To make the necessary computations and reductions; to complete the drawing and engraving of a chart of San Pedro harbor, of Crescent City harbor, and of Tomales bay, and the sketches of the section; to continue the engraving of charts of San Francisco and San Pablo bays, and to commence the drawing of coast maps and charts north and south of San Francisco bay. Also, for the operations in

Section XI. Coast of Oregon and that of Washington Territory. Field-work.—To continue the triangulation of Washington and Puget's sounds and of Hood's canal, and the topography connected with it; to continue the hydrography of the Gulf of Georgia, and of Washington and Puget's sounds and their harbors, with such other hydrography as the progress of the survey may show to be expedient; to continue tidal observations in the section: Office-work, -To make the necessary computations; to complete the drawing and engraving of a chart of Coquille River entrance, and make the additions to the hydrographic sketch of Canal de Haro and Strait of Rosario, and the progress sketches of the section, will require \$130,000 For running a line to connect the triangulation on the Atlantic coast with that on the Gulf of Mexico, across the Florida peninsula, per act of March 3, 1843 5,000 For publishing the observations made in the progress of the survey of the coast of the United States, per act of March 3, 1843...... 5,000 For repairs of steamers and sailing schooners used in the survey, per act of March 10,000 For fuel and quarters and for mileage or transportation for officers and soldiers of the army serving in the Coast Survey, in cases no longer provided for by the 5,000 For pay and rations of engineers for seven steamers used in the hydrography of the Coast Survey, no longer supplied by the Navy Department 12,800 The amounts thus estimated for the work of the fiscal year 1860-'61, and the appropriations for the present and two past fiscal years, are given below in parallel columns:

Object.	Fiscal year 1860-'61.	Fiscal year 1859-'60.	Fiscal year 1858-'59.	Fiscal year 1957-'58.
	Estimated.	Appropriated.	Appropriated.	Appropriated.
For survey of the Atlantic and Gulf coast of the United States, including compensation of civilians engaged in the work, per act of March 3, 1843	\$250,000	\$250,000	\$250,000	\$250,000
For continuing the survey of the Western Coast of the United States, including compensation of civilians engaged in the work, per act of September 30, 1850	130, 000	130,000	130,000	130, 000
compensation of civilians engaged in the work, per act of March 3, 1849. For running a line to connect the triangulation on the Atlantic	40,000	40,000	40,000	40,000
coast with that on the Gulf of Mexico, across the Florida peninsula, including compensation of civilians engaged in the work, per act of March 3, 1843	5,000	5,000	10,000	15,000
of the coast of the United States, including compensation of civilians engaged in the work, per act of March 3, 1843	5,000	5,000		15,000
For repairs of steamers and sailing schooners used in the survey, per act of March 2, 1853	10,600	10,000	1 0, 0 0 0	15,000
For fuel and quarters, and for mileage or transportation for officers and enlisted soldiers of the army serving in the Coast Survey, in cases no longer provided for by the Quartermaster's department, per act of August 31, 1852	*5,000			10,000
For pay and rations of engineers for seven steamers used in the hydrography of the Coast Survey, no longer supplied by the	3,000			10,000
Navy Department	†12,800	12,800	12,800	

^{*} Formerly included in estimates of the War Department.

DEVELOPMENTS AND DISCOVERIES.

The general list, up to 1858, inclusive, is given in Appendix No. 8, and contains one hundred and sixty-one references to matters geographically arranged. My attention having been called by Geo. W. Blunt, esq., to the alleged grounding of a vessel on the Battery shoal, where it had been supposed there was water enough to float her, a re-examination of the shoal was made by Lieut. Comg. Craven, and the alarming state of things was developed which is stated in his report and in my letter to the New York Chamber of Commerce, copies of which are given in the Appendix No. 13. The following is a list for the last year:

- 1. Only eighteen feet at mean low water found on the rock one mile to the southward of Seguin island, coast of Maine.
- 2. True position of the Hussey Rock, in Casco bay, determined, correcting the erroneous one assigned on previous charts.
- 3. Determination of the position of the "Hue and Cry," the "Old Proprietor," and other dangers off Cape Elizabeth, Maine.

[†] Formerly included in estimates of the Navy Department.

- 4. Development of a rock off Ogunquit, bare at low tides and very little known.
- 5. A fishing bank sounded out off Wood island, coast of Maine.
- 6. Huzzey's Rock, south of Fletcher's Neck, Maine, determined in position.
- 7. Development of a four-fathom bank off Cape Porpoise, Maine.
- 8. Determination of the position of a small rock with less than four feet at mean low water, near the channel, and in the vicinity of Great Rock, Hyannis harbor, Massachusetts.
- 9. The existence of a seventeen-foot spot on the shoal off the battery, New York harbor, the extension of the shoal towards the channel, and the shoaling of the water generally between the shoal and shore.
- 10. The existence and character of sub-currents ascertained, as bearing on the physical condition of New York harbor.
- 11. Changes developed in the shore lines at the entrance of Little Annemessex river, Chesapeake bay.
- 12. Less water found off Cape Romain by preliminary examination than has been heretofore assigned.
- 13. Further explorations in developing the character of the Gulf Stream in the Florida channel.

Changes were reported in Boston inner harbor which made a resurvey desirable, and the occasion was taken of the presence of one of the hydrographic parties in the vicinity to execute the work more fully reported under the head of Section I.

SURVEYS OF THE WESTERN COAST.

The reconnaissance of this coast having been made, and its chief harbors and entrances having been surveyed, the annual list heretofore given will be replaced by a biennial one.

During the past year, at the request of the authorities of San Pedro and Crescent City, minute surveys of those harbors were made and charts prepared on a larger scale than the previous charts of the same localities. A survey of Gray's harbor was directed, but circumstances preventing the land party from co-operating in it, a simple hydrographic reconnaissance was made. The survey of Coquille river entrance was also ordered, and would have been accomplished but for an accident to the hydrographic vessel. Special arrangements have been made by Commander Alden for its execution.

On the 15th of September the Treasury Department issued an order placing the steamer Active at the disposal of Lieutenant General Scott, and at the last advices from the Western Coast that vessel was undergoing repairs at the Mare Island navy yard, to be in readiness for such service as might be required under his orders.

TIDE TABLES.

The tide tables for navigators of the coast of the United States have been revised in the Tidal Division of the office, and additional results for the diurnal inequality in the ports of the Pacific coast have been interpolated from the observations and reductions at the regular tidal stations.

These tables (Appendix No. 14) contain the corrected establishment or mean lunitidal interval of one hundred and ten ports; the rise and fall of mean, spring, and neap tides, and the mean duration of flood, ebb, and stand. Simple rules for computing the time and height of high water, and for correcting the same for half monthly inequality, and for the daily

inequality where it is sufficient in amount to require notice, are given. The different peculiarities of the tides on the Atlantic, Gulf, and Pacific coasts of the United States are stated as derived from numerous observations. Easy rules for the tidal currents on the sea-coast of the Atlantic are also embodied in the explanatory notes to the tables.

TABLE OF DEPTHS.

In Appendix No. 15 is presented a revision of the table of depths which accompanied my report for 1857, with additions derived from results received at the office since that report was published, and from the latest data furnished by the Tidal Division. The table contains the depths that may be carried in at the entrances to principal ports and rivers, and that may be found at some of the more important anchorages on the several coasts of the United States. The compendious form in which this information is presented has been found very convenient for purposes of general reference.

LIST OF GEOGRAPHICAL POSITIONS.

The practical character of the triangulation is well shown in the resulting determinations of the latitude, longitude, and air-line ditances from each other of numerous points on all parts of the coast which have yet been reached in the operations of the survey. These are furnished by computation from the notes and journals of observations kept at the stations by the several field parties which occupy them. As being of general interest and of direct practical use to surveyors, navigators, and others, the geographical positions, as increasing in number, have been given in the reports of alternate years, beginning with that for 1851. In Appendix No. 20 of this report, one thousand six hundred and sixty-two additional positions are furnished, including points in all the sections of the coast, excepting Section IV. The progress sketches show the locations of the points, the latitudes and longitudes of which, with the bearings and distances from each other, are given in the form of tables.

The whole number of points determined, and of which the geographical positions have been published, amounts to seven thousand one hundred and seventy-eight.

TOPOGRAPHICAL AND HYDROGRAPHIC SHEETS.

In my report for 1856 lists were given with the scales, dates, and register numbers of all the plane-table sheets and original charts then on file in the archives. The lists given in the Appendix Nos. 18 and 19 contain the titles, &c., of the topographical and hydrographic sheets received and registered since that report was issued. To serve as an index for reference, the titles are arranged in geographical order, as in the former list.

INFORMATION FURNISHED.

Under an arrangement in the department which specially authorizes the communication of such data as the archives and records of the survey may furnish, on the conditions that due credit may be given for the same, and that the actual expense of copying the records be borne by the applicant, the usual calls have been met as heretofore—(Appendix No. 6.) As regards the general purpose of the work, this practice is merely incidental, but it requires no enlargement to show that all parts of the Union partake of the advantage derived from the regulation. The information, furnished on the terms alluded to, without any extra cost to the government, may be readily traced in general and elementary publi-

cations, and so has, in a measure, already returned of its first fruits to the people at large. Wherever interest is found in questions concerning the general geography of the country, it is clear that an accurate coast-line must ever be regarded as an important feature.

STATISTICS.

A revised table containing the statistics of field and office work is given in Appendix No. 7. It will readily be seen that the nature of the data given in some of the items renders the compilation of such a statement a matter of considerable difficulty and labor. Many of the plane-table and hydrographic sheets being required for purposes of reference in joining the new to former work, the statistical data which they would furnish without hindrance to the operations constantly going on at the south during winter, and at the north in summer and autumn, can be reached only by degrees in the process of distributing under the head of each year the work which properly belongs to it. This has at length been as nearly accomplished as the nature of the material and necessities of the work will allow. A systematic revision has been made of all the data, and provision for continuing the same from year to year upon a regular plan and with the same supervision, so that uniformity in the comparisons may be insured.

DISTRIBUTION OF REPORTS AND MAPS.

The lists kept at the office now contain the names of about four thousand individuals and public institutions to which the annual reports are sent regularly, as they are published. These lists have received additions, from year to year, of addresses referred by senators and members of the House of Representatives, and some have been registered on considerations connected with the known vocation and standing of the persons and institutions applying for them directly. About three hundred institutions of learning are embraced in the general list. The total stated is exclusive of a number of copies sent in exchange to foreign governments and societies, and of the miscellaneous distribution to individuals. In numerous cases calls made by the constituents of members of Congress after their complement of copies was exhausted have been supplied from the office, as are also the special applications constantly received from all parts of the Union, and from parties connected with the merchant service in the coasting trade. All the vessels of the navy and revenue marine, light-house inspectors, a large number of officers of both branches of the military service, custom-house officers, and others connected with the General Land Office in the States, and the Chambers of Commerce, Boards of Trade and Underwriters in the principal seaboard cities, have been regularly furnished in the same way. The total number of copies distributed within the year was six thousand one hundred and seventeen.

Of maps, charts, and sketches, over fourteen thousand impressions have been distributed since the date of my last report. More than half of these were sent to the principal departments of the government, to foreign institutions, and to certain libraries and other public depositories designated by members of the House of Representatives in their respective districts throughout the entire country.

It is expected that the Coast Survey Report for 1858, ordered by the last Congress to be printed, will, with its maps and charts, be published by the energetic Superintendent of Public Printing in the early part of the session, anticipating by many months the former rate of publication.

REPORT OF COMMITTEE OF TWENTY.

At their meeting in 1857 the American Association for the Advancement of Science appointed a committee of twenty,* to examine anew into the character and progress of the Coast Survey. A report had been made by a committee in 1849, and a new examination was desired. The conclusions of this committee, after a most elaborate investigation of the subject, are given in their report,† as follows:

"With these voluntary and emphatic testimonies to the character of a work as magnificent in its scientific aspects as it is valuable in those which are purely utilitarian—testimonies, moreover, emanating from sources which rank, in point of authority, among the highest known to the scientific world—the committee might be justified in closing a report already protracted beyond their expectation. After the extended review, however, which they have taken of the purposes in which this great undertaking originated, of the history of its growth, and the expansion of the processes involved in its execution, and of the brilliant results which have already crowned its diversified labors, it will probably be expected of them that they should condense the final expression of their opinions into a form sufficiently concise to be comprehended at a single view. As the succinct recapitulation, therefore, of the conclusions at which they have arrived, the committee, with entire unanimity, concur in stating the following propositions:

- "1. The American Coast Survey, in its inception, was a work imperatively demanded by a due regard to the industrial interests of the country, dependent, as they are, greatly upon the prosperity of commerce for their free development.
- "2. The indecision which marked the early policy of the government in regard to this survey, and the consequent delay of its efficient operations, and postponement of its beneficial results, were of manifest disadvantage to the material welfare of our people, and cannot but be still subjects of serious regret.
 - "3. The economical value of such surveys is attested by the universal voice of all com-

```
1. Judge J. K. Kane, President Amer. Phil. Society, Penna.
```

^{2.} Gen. Joseph G. Totten, Chief Engineer U. S. A.

^{3.} Prof. Benjamin Peirce, Harvard College, Mass.

^{4.} Prof. John Torrey, U. S. Assay office, N. Y.

^{5.} Prof. Joseph Henry, Secretary Smithsonian Institute, D. C.

^{6.} Prof. J. F. Frazer, University of Pennsylvania, Penna.

^{7.} Prof. Wm. Chauvenet, U. S. Naval Academy, Md.

^{8.} President F. A. P. Barnard, University of Mississippi, Miss.

^{9.} Prof. John Leconte, College of South Carolina, S. C.

^{10.} Prof. Wm. M. Gillespie, Union College, N. Y.

^{11.} Prof. F. H Smith, University of Virginia, Va.

^{12.} Prof. W. H. C. Bartlett, U. S. Military Academy, N. Y.

^{13.} Prof. Wolcott Gibbs, Free Academy, N. Y.

^{14.} Prof Stephen Alexander, College of New Jersey, N. J.

^{15.} Prof. Lewis R. Gibbes, Charleston College, S. C.

^{16.} Prof. Joseph Winlock, Supt. Am. Naut. Alm., Ky.

^{17.} Prof. James Phillips, University of North Carolina, N. C.

¹⁸ Prof. Wm. Ferrel, Nashville, Tenn.

^{19.} Prof. Edward Hitchcock, Amherst College, Mass.

^{20.} Prof. James D. Dana, Yale College, Conn.

[†] Report on the history and progress of the American Coast Survey, up to the year 1858, by the committee of twenty appointed by the American Association for the Advancement of Science, at the Montreal meeting, August, 1857.

mercial men, and by the concurrent practice of all commercial nations, no less than by the melancholy records of marine disaster annually occurring upon every unexplored coast.

- "4. Their scientific value is witnessed, in the instance of the American Survey, by the spontaneous tributes of approval frequently and freely bestowed upon it—no less in regard to the ability, energy, and skill displayed in its management than to the magnitude, variety, and oftentimes curious interest of the results it has wrought out—by individuals and organized bodies of men whose high position as scientific authorities renders their opinions upon subjects of this nature entirely conclusive.
- "5. This work has conferred many valuable benefits upon science, indirectly and incidentally, in the invention or perfection of instruments, in the improvement of methods of observation or of computation, in the development which it has given to special subjects of interesting inquiry, and in the stimulus which it has furnished to the scientific talent of the country, especially in the field of astronomical observation and investigation.
- "6. A careful study of the progress made from year to year, especially since the enlargement of the scale of operations under the present Superintendent, affords ample evidence that the work has been expeditiously prosecuted, and that the amount accomplished up to the present date is materially greater than has ever been accomplished in any other country in the same length of time and with the same means.
- "7. Compared with similar surveys executed or in progress of execution by foreign governments, the American Survey has been conducted with remarkable economy.
- "8. Compared with such foreign surveys, the quality of the work done in this will bear the test of any standard that has ever been anywhere set up, and is such as to reflect honor on the scientific character of our country in the eyes of the world.
- "9. Every consideration of economy, of humanity, and of regard for the reputation of the country, demands that the work should be prosecuted with undiminished activity until every portion of our coast shall have been as thoroughly explored and mapped as those have been already in which its operations commenced.
- "10. Conclusive reasons, involving other weighty public interests no less than this, but connected also with the project of verifying in the happiest manner the geodesy of our extended and circuitous coast, conspire to render the triangulation of the great Appalachian chain of mountains a most desirable undertaking, and encourage the hope that our government will very early direct that most important work to be executed.
- "11. The publication in full of all the observations upon which the published results of the Coast Survey are founded, together with the methods employed in the reduction and discussion of the observations, would be a contribution to science, and especially to the science of geodesy, of inappreciable value, besides being necessary to secure the records against loss; and the committee earnestly hope that the government may not fail to provide the means for the adequate and rapid prosecution of this work.
- "12. The existing organization of the survey, judged in the light of the experience acquired by our own and by foreign governments in the management of such works, is, in the deliberate opinion of the committee, preferable to any other that has ever been suggested.
- "These propositions have not been hastily sketched, and are not lightly thrown out; but they are announced as the result of mature reflection and careful consideration. With their

announcement, the duty of the committee, under the resolution appointing them, is discharged. The committee cannot, however, forget that they have another duty, unprescribed by any resolution, to fulfil; which is to express, on behalf of the association which has charged them with their present responsibility and of the world of science, which they may claim for the moment to represent, their deep sense of the obligation which they feel to be due to the enlightened statesmen who, whether in the executive branch of the government or in the legislative halls of Congress, have sustained the work to the present hour by their liberal recommendations or their able advocacy, and have labored to conciliate to it the popular favor by their intelligent and manly expositions of its objects and its value.

"Among the distinguished men who hold in their hands the destinies of the country are still to be found statesmen no less enlightened and no less liberal. To such, therefore, with whatever branch of the government they may be connected, the committee, in conclusion, most cordially commend the important work which they have been reviewing, and, in the name of the associated science of the country, they solicit for it the continuance of the executive favor and legislative support which it has hitherto enjoyed."

TELEGRAPHIC LONGITUDES.

The work of reductions of telegraphic longitudes, under the direction of Doctor B. A. Gould, has made excellent progress, besides which, a working list for a catalogue for selecting proper stars for the latitude determinations of the survey has been carefully prepared. The recent longitude determinations of Calais, Bangor, Mobile, New Orleans, and Albany, New York, are far advanced in their reductions, and it is expected that all the reductions of work of former years will have been completed, and put in the shape for publication before the expiration of another year. A new determination, connecting Apalachicola with the main series, will be undertaken this winter. Careful investigations have been made of the determination of the probable error of reading off the Morse fillets, and of chronographs of different kinds, as well as to a suspected personal equation in reading off the several registers, and the results have been highly satisfactory, as showing the readings made to be affected with smaller mean errors than any other chronograph readings to which the party had access. The personal scale of the readers, too, was tested with satisfactory results, showing the distribution of readings of even the hundredths of seconds to be equable and satisfactory. The special report upon the circumpolar catalogue was published in the Astronomical Journal for January, 1859.

BASE OF VERIFICATION.

The base of verification measured upon Epping plains in Maine, in 1857, has been connected with the primary triangulation, and the verification has been most complete. The approximate length of the measured base, as deduced from the office discussion up to 1859, subject yet to some small change for the full result for the expansion of the comparison bar, and the connexion with the standard metre is 8,715.845 metres. As derived through the primary triangulation from the mean of the Fire island and Providence bases from computations to 1859, the same base is 8,715.837 metres in length, differing but eight millimetres, or three tenths of an inch from the former value.

The verification is much within the corrections to be derived from expansion and comparison with the standard metre.

MAGNETIC OBSERVATIONS.

A memoir prepared by me for the Smithsonian contributions to knowledge and published therein containing a discussion of the magnetic and meteorological observations made between 1840 and 1845, at the Girard College of Philadelphia, under my direction, and the patronage of the American Philosophical Society and of the War Department of the United States, is given in Appendix No. 22. The observations themselves were made in connexion with the extended series under the patronage of the governments of Europe, and were published in extenso by the Senate of the United States. The results are of practical value in connexion with the discussion of changes daily and annual, and others in the magnetic variation, as well as of scientific interest in reference to the periodical character of the disturbances observed. The discussions given in my previous reports have proved useful, in a great variety of cases, to surveyors and others, so that the correspondence in regard to them has at different times been quite interesting, from the number and character of the questions raised and settled. The facts given in this paper will, I feel convinced, find in like manner useful applications in practice.

In a scientific point of view the connexion between a well determined period in the daily variation of the needle and in its disturbances, and the period of change in the solar spots, must be considered not merely curious but important, as proving one of the links connecting the phenomena of the earth's magnetism with the general phenomena of the solar system.

The subject of the secular change of the magnetic declination (variation of the needle) has again been taken up, and the former discussions given in my annual reports for 1855, 1856, and 1858, have been extended. The results are now tabulated and put in a practical form for ready use. Appendix No. 24 presents the report of Assistant Charles A. Schott, on the last results from the discussion of the secular change of the magnetic declination, accompanied by tables showing the declination (variation of the needle) for every tenth year from the date of the earliest reliable observation, for twenty-six stations on the Atlantic, Gulf, and Pacific coasts of the United States. The report, after pointing out the change made in the method of treating the observations adopted since the date of the discussion given in my last report, describes in general outlines the character of the secular change. The formulæ deduced for each station are then presented, accompanied by tables of the declination at every tenth year and the deduced epoch of minimum west (or maximum east) declination with its corresponding amount; and also the annual changes for the three epochs 1840, 1850, and 1860. Results for several stations outside of the limits of the United States are also given. The paper concludes with a list of the observations used in the discussion, but which have not yet been published in either of my former reports.

In the summer Assistant Schott determined the magnetic elements at a number of stations in the New England States, further notices of which will be given under the heads of Section I and Section II, in the body of this report. The results deduced from his observations are stated in tabular form in Appendix No. 23.

A new map of the magnetic variation of the world for 1858, compiled from various authentic sources, has been published under the auspices of the British admiralty, by F. J. Evans, master, R. N. This has been carefully examined by those officers of the Coast Survey whose studies have led them into this field, and meets with high approval. The results have been transferred (Sketch No. 38) to the polyconic projection used in the Coast Survey, and are

11-75

given in this report, with a table from the chart, (Appendix No. 16,) showing the variations corresponding to different latitudes and longitudes, for the use of navigators.

GULF STREAM.

The observations in the Florida channel have been completed during the past year, and have yielded the most interesting results, of which a report is given in Appendix No. 25. The form of the bottom of the strait is shown to be simply that of a deep trough, the deepest part of which lies on the Cuban side of the straits. The cold water from the north is found at the bottom of this trough, having a temperature of thirty-four degrees. The overlying warm water of the Gulf Stream is without bands, alternately colder and warmer, as it should be if the figure of the bottom determined the formation of these bands, as has been supposed. At Cape Florida the stream is narrowest and shoalest, and the cold water here comes near to the surface, making this a comparatively cold band in the longitudinal direction of the stream.

The depth of the strait only five miles from Havana is eight hundred fathoms, and close to the island of Bemini three hundred fathoms. This great depth is no doubt caused by the wearing action of the polar current. The form of this trough renders it probable that the main stream of the Gulf is that which makes the circuit of the Gulf of Mexico.

The "cold wall" along the coast of the United States is traceable along the Florida keys and to the Tortugas.

Some investigations, by experiment, of the effect of pressure on the Saxton metallic thermometers are given in the same article of the Appendix.

TIDES AND CURRENTS.

It will be recollected that the physical survey of New York harbor was first commenced at the request of the Commissioners on Harbor Encroachments, and that the expenditures for so much of the work as exceeded the requirements of the Coast Survey have been defrayed by the State of New York, the Coast Survey officers, under authority given to the Commissioners by the President of the United States, and under the directions of the Treasury Department, having carried on the survey. Its results have thus served the double purpose of the new Coast Survey map of the harbor of New York, which in a preliminary form was published in my report of 1857, and which is in progress of engraving in its finished condition, as well as of the Commissioners' map of the harbor.

In regard to the physical survey, it is not too much to claim for the observations made, which have now been continued through several years, that they have developed in a general way the causes of the channels and of the shoals of New York harbor and bar, and of the changes above and below water. The curious and unexpected fact of rotary currents at and below the surface at the entrance to the Hudson, rotating in a vertical direction, so that while the water on the surface is running ebb to the south, below the surface it is running flood, or northward, is fully established by the observations, and is of itself of very great practical value.

About nine thousand observations of currents, of which three thousand were taken below the surface, and seven thousand four hundred and ninety observations of the tides, were made in the course of this work during the past season.

Observations at current stations beyond the light-ship show that the constant currents, independent of those from the drainage of the land waters, sweep the Bay of the Five States. One of these stations was nearly sixty miles east-southeast from Sandy Hook. The motion of these

currents sometimes extends to the whole body of the sea, and at others is more or less superficial. The currents near the south shore of Long Island were observed by casting into the sea large shells previously marked, and noting the places and times at which they were thrown up on the beaches. Nearly one-third of the shells were picked up, and their motion established the existence of an excess of easterly current, independent of the effect of winds and waves. The existence of this easterly drift has often been asserted, and yet the spits of the inlets make to the westward, seeming to disprove the fact of an excess of easterly current. To unravel this many observations were made, and the clue seems to have been found in them, but their full discussion is required before pronouncing upon this. This probable clue is in the movement of the waves.

Appendix No. 26 contains the report of Assistant Mitchell, by whom the observations were made.

RECORDS AND RESULTS.

The inquiries in regard to this publication are constant, notwithstanding the notice given in my last report of the inadequacy of the appropriation to publish the work. The utmost that can be done with the present means is to keep pace with the records in preparing the work, and this imperfectly. A volume of Gulf Stream results will, it is expected, be published within the next year; but if this is accomplished, it is all that can be done, as stated in my last report, with the means in hand from former appropriations. I have no doubt of the importance of resuming this work as soon as the state of the treasury will permit, as it secures the records from possible loss, and enables us, while those are connected with the survey who have executed the work to be published, to have full scientific criticisms of the results. It has been the reproach of such surveys that there is great delay in publishing results, so that they appear only years after the work has ceased, and when the observations are in a degree obsolete. I should like to avoid the application of this remark to our work, if possible.

PROJECTION TABLES.

These tables, as given in Appendix No. 33, were arranged by Assistant J. E. Hilgard, and are the extension to lower latitudes of similar ones which appeared in my annual report for 1856. They are based upon a polyconic development of the earth's surface, which supposes each parallel of latitude to be represented on a plane by the development of a cone, having the parallel for its base, and its vertex in the point where a tangent to the parallel intersects the earth's axis. In this system the degrees on the parallel preserve their true length, and the general distortion of area is less than in any other geometrical mode of representing a given portion of the earth's surface. Bessel's constants, which have been adopted for projections required in the Coast Survey, were used in the formation of the tables.

Table I gives the length in metres of one degree of latitude and longitude for each degree of latitude from 0° to 54°, and the value of the corresponding radius of the developed parallel. It also gives the values of the angle subtended at the vertex of the cone by the developed parallel, for ten degrees of longitude, by means of which the tables may readily be extended.

Table II gives the rectangular co-ordinates for thirty degrees of longitude on each parallel, from latitude 1° to 54°, the numbers in the table corresponding to the actual dimensions of the earth in metres, and only requiring to be divided by the proper number for any desired scale. Notes explanatory of the tables precede them in the Appendix.

INSTRUMENTS AND APPARATUS.

An apparatus for deep-sea soundings, based upon his examinations of this subject, has been devised by Professor W. P. Trowbridge, assistant in the Coast Survey. A full description of the instrument will be found in the Appendix No. 34, and views of its several parts on Sketch No. 39. The principal feature of this sounding apparatus is new, but simple, and it is hoped that a great improvement on the present modes of sounding in great depths may result from its application. The friction upon the line in the descent of the lead is avoided, and the consequent freedom of descent secured by having the line compactly coiled along with the sinker, the uncoiling taking place in the descent of the apparatus. It is proposed to test the practical working of the instrument during the coming season.

The experiments with the pressure tide-gauge of Captain Hunt, of the Corps of Engineers, have been continued, and show that the instrument must in many cases be a very useful one. By filling the tube which communicates between the pressure bag and the indicator with alcohol, we expect to be able to use the instrument at low temperatures and when the surface of the water is covered by ice. The experiments of Mr. J. M. Batchelder, in continuation of those noticed in my report of last year, are stated in Appendix No. 35.

In the report of Assistant Henry Mitchell (Appendix No. 26) will be found descriptions of improvements in apparatus for detecting and measuring sub-currents, and also of an improved form of pile for securing structures upon shoals or along the open coast, where the heavy sea prevents the use of ordinary means. These devices are illustrated in Sketch No. 40.

In the use of the improved current apparatus the velocities of the drifs in the lower water strata are compared with the superficial movements of the sea by measuring, during a specified interval of time, the separation which takes place between a floating body and a system of globes or shafts let down to great depths. When in use the apparatus is in no wise connected with the vessel, so that no discordance in the observations can result from the motions of the latter, and the experiments may be made accurately even in a heavy sea.

Assistant Mitchell's improved pile is a device borrowed from nature, he having observed that certain seed vessels, by virtue of their forms, bury themselves in the earth when agitated by wind or water. This pile, instead of being torn up by the waves, is impelled steadily downward. It may be hewn out ever so roughly, its success in practice depending upon very simple conditions described in the report which I have referred to.

In his past season's operations Mr. Mitchell has made successful use of apparatus comprehending the improvements he describes.

OFFICERS OF THE ARMY.

Between November 1, 1858, and the same date of the present year, five officers of the army have deen detached from the Coast Survey, and two detailed for service. Captain E. B. Hunt, of the Corps of Engineers, has not been regularly detached, but has, in fact, been so occupied with engineering duties as to render it impracticable that he should give any portion of his time to the Coast Survey.

Captain A. H. Seward, U. S. A., detached on his promotion, has rendered good service, and shown remarkable adaptation to our work in charge of a triangulation party in the very difficult region of the inner Florida keys, and the loss of his experience to the survey is much to be regretted.

Lieutenant J. C. Tidball, U. S. A., had been in charge of the drawing division of the Coast Survey for several years, and was a very efficient officer. Lieutenants J. P. Roy, and Rufus Saxton had been serviceable both in the field and office. The experience of all these officers is now lost to us in their several positions.

Appendix No. 3 contains a list of the army officers now attached to the Coast Survey.

OFFICERS OF THE NAVY.

During the past year we have lost by detachment the services of two of the most experienced chiefs of hydrographic parties. Lieutenants T. A. Craven and J. N. Maffitt, U. S. N., have thoroughly indentified their names with the Coast Survey, and wherever their labors have extended, from Maine to Texas, have left the mark of their special ability for the work. During the last period of their service they were but temporarily attached to the survey, it being understood that the Navy Department would soon need them in highly responsible positions connected with the general service, but they, nevertheless, both found time, the former on the Florida reef, in New York harbor, and in the Gulf Stream, and the latter in organizing a system of repairs and equipment, to cause that short period to be remembered as important to the survey.

By the kindness of the Hon. Secretary of the Navy, my letters of acknowledgment to these officers were transmitted to them in the most complimentary way.—(Appendix No. 39.)

Lieutenant W. G. Temple, U. S. N., was detached from the command of the steamer Corwin in October, 1858, and from the survey in April, 1859. He had been in charge of a party less than two years, but his preliminary experience in the work, and his intelligence and industry, rendered every day of his connexion with it useful to the survey.

Lieutenant T. B. Huger, U. S. N., was detached at the close of his summer's work, having earned the name of a zealous and intelligent chief of a hydrographic party.

Of the chiefs of parties who have replaced these officers, Lieutenant Wilkinson and Lieutenant Phelps have had considerable experience in the survey in former years, as junior officers of parties.

The names of all the officers now on duty in the Coast Survey are given in Appendix No. 5. The deficiency in the number of naval officers, by which only one lieutenant is now allowed to each hydrographic party, has made a radical change in our service. The master's mates allowed to the parties will, in time, be trained to the work, but thus far the difficulties have been much increased by the want of experienced officers. The rules required to give a form of organization to this branch of the service have been adopted, and their working will be carefully observed.

All the engineers of the Coast Survey vessels are now civilians, and their entire emolument is derived from the Coast Survey appropriations. Under the regulations of the Treasury Department they are employed by the chiefs of hydrographic parties at fixed rates of pay, their employment lasting, as a rule, only while the vessels are in commission.

HYDROGRAPHIC DIVISION.

The advantages to be derived from this division have been fully realized by the activity of Lieut. J. N. Maffitt, U. S. N., who was in charge of it at the outset, with Mr. A. Balbach as the draughtsman. Commander S. S. Lee, U. S. N., who has replaced Lieut. Maffitt, will no doubt maintain all its efficiency.

The duties of hydrographic inspector, which are combined with those of the charge of this division, are of great importance, and Commander Lee has already shown the efficiency and economy which must come from the new organization devised by Lieut. Maffitt, and commenced under his immediate supervision.

By the kindness of the Hon. Secretary of the Navy, and of Commodore Smith, chief of the Bureau of Docks and Yards, the necessary store-room has been assigned to us in the New York navy yard, and the order and method introduced into the laying up, repairs, and fitting out of our small vessels, and into the charge of them while laid up, will prove not only a source of efficiency, but also of economy.

AIDS TO NAVIGATION.

As the hydrographic work advances, and developments are made of the known or hitherto unknown dangers to navigation, the practice has been, with the chiefs of parties, to report upon them, with such recommendations in regard to buoys or other marks as in their judgment are necessary. Their remarks on the aids required for safety in navigation are from time to time referred through the department for the consideration of the Light-house Board. Appendix No. 40 contains a list of the cases reported within the year, and Nos. 41, 42, and 43 my communications relative to the special localities and character of the marks required for the purposes of mariners.

OBITUARIES.

The survey has lost during the past year, by death, the services of Lieut. John K. Duer, U. S. N., who was in charge of one of the hydrographic parties in the Gulf of Mexico. This officer discovered in 1857 the new channel east of Dog island, leading into St. George's sound, and to Apalachicola, so important to the future development of that part of the coast of Florida, and was engaged in completing the survey of the approaches when he died. He was a zealous and industrious officer, regarding always the public service rather than his own health or convenience, and died of a disease of the heart aggravated by the labors and responsibilities of his position.

Mr. Gustavus Würdemann, in charge of the tidal observations on the Florida reefs and in the Gulf of Mexico, died at his home in New Jersey on the 29th of September. His health had been failing for some years, and during the last year he had discharged his duties with great difficulty, owing to physical debility.

Mr. Würdemann entered the survey under my predecessor, and served until the period of his death with a fidelity and singleness of purpose that has never been exceeded. Exact truthfulness was the leading trait of his character, and his observations were reliable in the most minute as in the largest points. It is easily seen that it is no exaggeration to say that such a man in his place was invaluable, and an example worthy to be held up as the type of faithfulness. During the discharge of his laborious duties he found time and opportunity to make collections in natural history, which have been acknowledged by the Smithsonian Institution as among its most valuable contributions to the knowledge of the fauna of Florida.

Mr. F. Dankworth, one of the oldest and best engravers in the Coast Survey Office, whose employment dates from 1843, died on the 19th of April. He had been in infirm health for the last year, but continued to the last to work at his art, to which he was successfully devoted.

I proceed now to give, in the usual geographical order, detailed statements of the field-work done on the Atlantic, Gulf, and Pacific coasts of the United States, under the head of sections, the limits of which have been already defined. In each chapter the work is described generally in the natural order taken in its execution, as triangulation, topography, hydrography. Notices of the office-work done in Washington precede the several chapters, each of which corresponds to one of the sections.

SECTION I.

FROM PASSAMAQUODDY BAY TO POINT JUDITH, INCLUDING THE COAST OF THE STATES OF MAINE, NEW HAMPSHIRE, MASSACHUSETTS, AND RHODE ISLAND.—(Sketch A, Nos. 1 and 2.)

The progress in the field-work of this section is stated under the following heads:

- 1. Geodetic and astronomical observations.—The primary triangulation and the astronomical and magnetic observations connected with it have been carried to the boundary, and Chamcook station has been occupied for the survey of Passamaquoddy bay.
- 2. Triangulation connected with Epping base.—The primary triangulation has been connected with the base of verification on Epping plains, measured in 1857. The verification from the first approximate computations is highly satisfactory, the length as measured and as computed from the triangulation differing but three-tenths of an inch in five miles and four-tenths. This brings the results much within the range of uncertainties of expansion of measures and the like.
- 3. Triangulation of Penobscot bay.—This work extends over the entrance, embracing the islands as well as the main.
- 4. Triangulation of Muscongus bay and sound.—This work has been extended from the Sheepscot river over the Damariscotta and over Muscongus bay and sound to a junction with the Penobscot work.
- 5. Topography of Wiscasset bay.—A stretch of about four miles above and below the town of Wiscasset has been completed, joining with the work of the previous year on the Sheepscot.
- 6. Topography of Merrymeeting bay and of Bath, Maine.—This is a continuation of the survey of the shores of the Kennebec river.
- 7. Topography of Casco bay, Maine.—This is a continuation of the survey of the main and islands of Casco bay, and extends to Harpswell Neck.
 - 8. Plane-table survey of the Isle of Shoals and adjacent coast.
- 9. Topography of Barnstable harbor and approaches, Mass.—This forms part of the topography of Cape Cod, which remained to be executed on the inner shore.
- 10. Hydrography of the approaches to Sheepscot bay and Kennebec river, Maine.—These were nearly completed. The least depth of water upon "Mile Ledge" was found to be but eighteen feet at mean low tide.
- 11. Hydrography of Casco bay.—This is in continuation of the soundings of the lower part of Casco bay. The well known "Hussey Rock" was found to be erroneously laid down in position on the best charts. The shoal artificially caused off Union wharf, Portland harbor, has been nearly removed.
- 12. In-shore hydrography between Cape Elizabeth and Cape Porpoise, coast of Maine.—This is nearly connected with the hydrography of the approaches to Portland harbor. Cape Porpoise,

Stage Island, and Wood Island harbors were surveyed in connection with this work. The developments here were numerous.

- 13. Off-shore hydrography, coast of Maine, New Hampshire, and Massachusetts.—Important contributions to this have been made.
 - 14. Examination of Salem harbor. -- This was an extension of the examination of last year.
 - 15. Rock determined in Hyannis harbor, Mass.
 - 16. Magnetic observations at localities extending from Portland to Cape Ann.
 - 17. Tidal observations.

This work has occupied three triangulation and magnetic, four topographical, and two hydrographic parties during the whole or parts of the season.

Office-work.—The drawing and engraving of additions to the chart of Boston harbor have been completed, as also the drawing of those of Portland harbor, Lynn harbor, and a new edition of that of Muskeget channel, and the engraving of the preliminary charts of Kennebec river and Rockport harbor. Progress has been made in the drawing and engraving of general coast chart No. II, from Cape Ann to Gay Head, and of preliminary coast chart No. 3, from Cape Small Point to Cape Cod; in the drawing of coast maps and charts, No. 7, from Muscongus bay to Portland harbor; Nos. 9, 10, and 11, from Cape Neddick to Hyannis harbor, and No. 14, from Cuttyhunk island to Block island; also in the engraving of coast maps and charts, Nos. 12 and 13, from Monomoy to New Bedford; the views for these charts, the finished maps of Kennebec river and Lynn harbor, and the new edition of the chart of Muskeget channel.

Geodetic and astronomical observations.—The party under my immediate direction was organized at Washington early in June for the purpose of completing the primary triangulation of the coast near the northeastern boundary of the United States. The preliminaries required in the erection of additional signals and posting the heliotropers were executed by Assistants C. O. Boutelle and G. W. Dean, and the preparations necessary in occupying the stations were, as usual, made by Mr. Thomas McDonnell, artificer in the Coast Survey.

Station Howard, situated on the western side of Machias bay, and in the township of Machiasport, Washington county, Maine, was first occupied. Owing to unfavorable weather, arising chiefly from the prevalence of sea fogs, but little progress was made until the middle of July, when the measurement of horizontal angles was commenced. From that period the work advanced well, and the various operations being satisfactorily completed by the 15th of August, arrangements were made for the immediate transfer of the party and instruments to the station Western Ridge, in Cooper township, in connection by a primary line, as may be seen by reference to sketch No. 1, with station Howard.

The operations at Howard included the measurement of twenty-four horizontal angles with the thirty-inch theodolite; vertical angles with the eight-inch Gambey circle, C. S. No. 57, upon six points; the determination of the latitude with the zenith telescope; azimuth observations with the thirty-inch theodolite; the determination of the magnetic elements; levellings for ascertaining the height of the station above the sea, and the usual meteorological observations. These several particulars, in connection with others, will presently be noticed more in detail.

The measurements of horizontal angles at station Western Ridge were commenced on the 30th

of August, and the work was pressed forward until the 27th of September, at which date all the geodetic, astronomical, and magnetic observations were brought to a successful close.

For extending the triangulation so as to include the northeastern boundary in the vicinity of Passamaquoddy bay, Chamcook station, near St. Andrew's, New Brunswick, was occupied by Assistant Dean between the 13th and 28th of October, and satisfactory measurements made of the angles required to conclude the primary work.

The facilities extended to Mr. Dean by T. B. Wilson, esq., of Chamcook, and Capt. Thomas Jones, U. S. consul at St. Andrews, while prosecuting the operations in that vicinity, are acknowledged in his report. The following statistics exhibit in brief the work executed by my party in this section during the past season:

Triangulation.—At station Howard 1,066 observations were made with the thirty-inch theodolite. C. S. No. 1, upon ten signals and an elongation mark. The vertical angles for determining the heights of the principal stations were measured with the eight-inch Gambey vertical circle, C. S. No. 57, and for this purpose sixty-seven sets each, consisting of six measurements of the angle, were made upon the signals of six stations.

At Western Ridge station 1,103 observations were made with the large theodolite upon eleven signals and the elongation mark. Nine stations were observed on for the vertical angles, and 560 measurements were made.

At station Chamcook 464 observations were made with the large theodolite upon four signals for horizontal angles. Vertical angles were measured by 234 observations on the same signals with the circle No. 57.

The most distant signal observed on during the season was that on Mt. Desert island, as seen from Western Ridge. This line, between the two stations, is about fifty-eight miles in length. From Western Ridge the highest peak of Mt. Katahdn was observed on incidentally at a distance of about a hundred miles, and with observations of the same kind made at Mt. Desert in 1856, upon the same point, the geographical position of that remarkable feature of the interior of Maine will be approximately determined.

The primary triangulation completed during the season embraces an area of 1,150 square miles.

Latitude and time observations.—At station Howard two hundred and nineteen observations were made with the zenith telescope, C. S. No. 5, upon forty sets of stars. The arc value of a revolution of the micrometer was carefully obtained from one hundred and twenty-two observations on Polaris near its eastern elongation, and the value of a division of the level was found in the usual way by thirty observations upon a collimator with the micrometer.

With the forty six inch transit, C. S. No. 4, the local time was determined by a hundred and three observations on fifteen standard stars, zenith and circumpolar.

At Western Ridge two hundred and twenty-three observations were made with the zenith telescope upon forty sets of stars. The arc value of the micrometer was ascertained from a hundred and twenty two observations upon the star 51 Hev. Cephei near its eastern elongation, and the customary means were taken for finding the value of the level scale. Local time was determined from seventy-three observations on twenty zenith and circumpolar stars.

The observations for latitude and time were made by Sub-Assistant Edward Goodfellow, aided by Mr. Henry W. Bache.

Azimuth.—The azimuth of the trigonometrical lines at station Howard was determined, as in other cases, with the thirty-inch theodolite, and for that purpose one hundred observations were

made upon Polaris near its eastern elongation, besides seventy-two on Ursæ Minoris, near the upper culmination, in connection with two hundred and eighty observations upon the elongation mark. At Western Ridge the azimuth was determined from seventy observations upon λ Ursæ Minoris, near its upper culmination, and one hundred and twenty-six observations on the elongation mark.

Magnetic observations.—The geological formation at station Howard indicated that the magnet would be affected by local attraction, and the experimental observations made at several points near it proved this to be the case. After selecting the most favorable position, one hundred and forty-seven observations were made for declination, the magnet used being freely suspended during three consecutive days. The inclination was measured with the nine-inch dip-circle, five complete sets of observations being made with two needles. The horizontal intensity and moment of inertia were deduced from two sets of experiments on different days.

At Western Ridge the magnetic declination was ascertained by one hundred and ninety observations on four days, and the inclination from three complete sets made on different days.

At station Chamcook the declination was determined by one hundred and thirty-five observations on three days, the inclination from four sets of experiments on different days, and the horizontal intensity and moment of inertia in the usual way.

Observations were also made at Eastport, Maine, and in its immediate vicinity, for determining the magnetic inclination and local intensity.

The declinometer D. 22, C. S. No. 1, and dip-circle, C. S. No. 4, were used in all the observations made at the several stations.

The azimuth and magnetic observations were made by Assistant Dean, aided by Messrs. R. E. Halter, R. H. Talcott, and C. S. Peirce.

While the astronomical and geodetic operations were in progress at Howard, Mr. Talcott made a series of levellings from the station to a bench-mark which had been established by careful tidal observations made by Mr. McDonnell, who also ran a line of levels between the same points.

Meteorological observations.—The usual journals were kept at the several stations by Mr. Talcott, and in the course of the working season two hundred and ninety readings of the barometer, thermometers, and evaporating point, were recorded.

All the original records were duplicated, and the computations from the latitude, azimuth, and magnetic observations nearly completed, before the party returned from the field. These, making a total of fifty volumes, have been deposited in the archives at Washington.

Assistant Dean and Sub-Assistant Goodfellow are about to resume the prosecution of longitude determinations on the Gulf of Mexico.

Reconnaissance.—The primary triangulation which has been carried through New England having approached the northeastern boundary of the United States, it became desirable that stations should be chosen for closing the series in that quarter so as to include the St. Croix river and Passamaquoddy bay. In the latter part of June Assistant C. O. Boutelle proceeded on this duty, first re-erecting on Mt. Desert island the primary signal which had been destroyed by a storm subsequent to the occupation of that point by my own party in the autumn of 1857, and placing the heliotropes necessary for the measurement of horizontal angles formed at the two remaining stations (Howard and Cooper) west of the boundary, intended to be occupied at a later period in the present surveying year. Ample facilities for the work were afforded in

the use of the U. S. revenue cutter Jackson, by her captain, Joseph Noyes, and by Robert Burns, esq., collector at Eastport, Me., under authority from the Treasury Department.

The official sanction of the colonial authorities of New Brunswick having been received, Mr. Boutelle selected and marked a station at the distance of about a quarter of a mile from the bluff on the north side of Dark harbor, Grand Manan island, and erected a signal at Chamcook, in the vicinity of St. Andrew's. Both of these points (Sketch No. 1) were observed on from the station occupied by my party in September.

The reconnaissance was so made as to settle also the availability of points for the secondary triangulation in the vicinity of Passamaquoddy bay, and for its connection with the primary work. Two signals of the second order were erected—one at Prince Regent's Redoubt, (Moose island,) near Eastport, and the other on Trescott Rock. The positions of these, and the general plan proposed for the smaller triangulation, are shown on Sketch No. 2.

Assistant Boutelle was aided in this service by Mr. C. H. Boyd. In the early part of the surveying year his party was employed in Section V, and afterwards completed the triangulation work, in the vicinity of the Epping base, as will be presently noticed. In the course of the season he visited and examined the lines leading from the two primary stations—Gunstock Mt., in New Hampshire, and Wachusett Mt., in Massachusetts—which had been passed by in the progress of the general triangulation through New England, and which yet remain to be occupied.

Triangulation connected with Epping base.—This duty was commenced on the 17th of September by Assistant Boutelle, from whose report, made on the completion of the work, the following extract is taken:

"In occupying as stations the east and west ends of the base, the theodolite was protected from sun and wind by a temporary structure, and the observing tripods by a couple of screens of light canvas, each of the size of the surrounding scaffold. These were spread on the windward sides, and kept the platform on which the theodolite was placed in perfect steadiness. At the west end of the base the wind blew almost a gale from the northwest on the evening of the 15th and morning of the 16th of October; and although the scaffold was over forty feet high, eighteen feet wide at the base and nine at the top, the protection from the screens was such that the observations were not materially interfered with. It would have been impossible to observe without them, and I consider them a great addition to our means of observing in the southern sections where tripods are more frequently required."

The connection of the base with the primary triangulation was effected by occupying, besides the two ends, the three adjacent stations, namely: Burke, Pigeon Hill, and Tunk Mt., all of which, and also the relative situation of the base line, are shown on Sketch No. 1.

Each of the horizontal angles was determined by a hundred and twenty measurements with the ten-inch Gambey repeating theodolite, C. S. No.43. The vertical angles were measured by means of the eight-inch Gambey theodolite, C. S. No. 24.

Mr. Boutelle observed a series of consecutive tides near Pigeon Hill, and carried a line of levels to that station, determining its height above the mean level of the sea.

The following summary shows the general statistics of the triangulation:

Stations occupied · · · · · · · · · · · · · · · · · · ·	5
Signals observed on	36

Angles measured (horizontal) · · · · · · · · · · · · · · · · · · ·	61
Angles measured (vertical)	33
Number of observations	8,049

The work was completed on the 31st of October.

Assistant Boutelle was aided in the field by Mr. C. H. Boyd. All the records of the work were duplicated before the return of the party from this section. Mr. Boutelle had been previously engaged in Section V.

Sixty points of the third order were determined in position. These and the measurements of secondary angles were made with the Würdemann theodolite, C. S. No. 86.

As every precaution was taken in erecting signals for continuing the triangulation up the bay, there is a fair prospect that the future progress in that direction will be more rapid.

The number of observations made in the course of the season was five thousand one hundred and twenty.

Messrs. R. M. Stiles and J. D. Bradford served with zeal and efficiency as aids in the party. The previous occupation of Sub-Assistant Sullivan will be referred to under Section VI.

Sub-Assistant Harris, who was last year engaged on Penobscot bay, has sent to the office duplicates of his notes of horizontal angles and descriptions of the signals erected at the outset of the work.

Triangulation over Muscongus bay and sound, Me.—On the 6th of July the party of Sub-Assistant F. P. Webber, commenced the erection of the remaining signals necessary for extending the secondary triangulation eastward of the Sheepscot river, over the Damariscotta river, and over Muscongus bay and sound. The signal at Edgecombe and some others in the vicinity, having been blown down in the spring, were re-erected, and twenty-one others, mostly of the third order, for topographical purposes, were put up. The reconnaissance and preliminaries being complete by the end of July, Mr. Webber, aided by Mr. Julius Kincheloe, commenced the measurement of horizontal and vertical angles, and occupied fifteen stations with the theodolite, at seven of which vertical angles were observed on the signals of the thirty-four stations embraced in his field of work. It will be seen by reference to Sketch No. 2 that the secondary triangulation conducted by Sub-Assistant Webber has been pushed to a connection with that of the lower part of Penobscot bay, on the line which joins Manhegan island with a station on the east side of St. George's river.

Fifty-nine points were determined in position within the scope of the triangulation. The remaining statistics are as follows:

Stations established or re-erected	34
Stations occupied · · · · · · · · · · · · · · · · · · ·	15
Horizontal angles measured · · · · · · · · · · · · · · · · · · ·	347
Vertical angles determined · · · · · · · · · · · · · · · · · · ·	34

Objects observed on · · · · · · · · · · · · · · · · · ·	346
Number of observations	3,090

The schooner Hassler, which was used in this service, returned to New York on the 6th of October. In the early part of the surveying year Mr. Webber was engaged in Section V, and is now completing arrangements for returning to the coast of Georgia.

Duplicates of the field-notes made in the triangulation over Damariscotta river and Muscongus bay have been deposited in the office with the descriptions of the signals as now standing.

Topography of Wiscasset bay, Me.—The sheet containing this work was taken into the field by Sub-Assistant W. H. Dennis on the 1st of August. On the south it joins with the work done last year on the Sheepscot river by Assistant Hull Adams. As far as now completed, the topography represents the town of Wiscasset and its environs, and the details found at Edge-combe, on the opposite side of Wiscasset bay, including also the mouth of the Sheepscot, above Wiscasset, making altogether a stretch of about four miles above and below the town. Owing to the nature of the surface the features in detail were found very difficult of delineation.

Sub-Assistant Dennis was efficiently aided in plane table duty by Mr. J. L. Tilghman. Fieldwork was continued until late in October, with the following result in statistics:

Shore line surveyed · · · · · · · · · · · · · · · · · · ·	8 miles.
Roads · · · · · · · · · · · · · · · · · · ·	20 ''
Area of minute topography (square miles)	$5\frac{1}{2}$

The locality of the work may be seen on Sketch No. 2.

Topography of Merrymeeting bay and Bath, Me.—The supplementary topography required for the chart of the Kennebec river, in the vicinity of Bath, was taken up on the 24th of June by Assistant R. M. Bache. Sub-Assistant W. S. Edwards was attached to his party, and worked with a separate plane-table on the details of the shores of Merrymeeting bay. Assistant Bache traced in the streets and wharves of the city of Bath, which is continuous for about five miles along the west bank of the Kennebec. The very uneven surface represented on the two sheets referred to made the field-work tedious and necessarily slow in execution. The locality is shown on Sketch No. 2. A small portion of the area of each sheet yet remains to be filled in detail.

The following are the statistics of the season:

Shore line surveyed · · · · · · · · · · · · · · · · · · ·	27	miles.
Wharf line surveyed · · · · · · · · · · · · · · · · · · ·	7	4.6
Roads ·····	32	4.6
Area (square miles)	15	

The villages of Woolwich and Winnegand are represented on one of the topographical sheets.

Assistant Bache has inked and sent to the office the plane-table sheet of the Kennebec which was completed last year.

Topography of Casco bay, Me.—The work of the season on the shores of Casco bay, and on the islands east of Portland harbor, was in charge of Assistant A. W. Longfellow, and consisted of filling the interior details and contour of ground of the outstanding sheets, of which the shore line had been previously traced. Assistant A. S. Wadsworth was attached to the plane table party, and Mr. James Gilliss served as aid. The topography was resumed on the 11th of July and continued until the 4th of November. Assistant Longfellow completed the survey of the shores of the Presumpscot river, and of the main shore of Casco bay, from thence north-

ward to a point beyond Sturdivant's island, from which it was extended by Assistant Wadsworth in the same direction abreast of Prince's Point, and there joined to a portion of work also finished by Mr. Longfellow. The topography of the interior of Long's and Cousin's island was completed, as also that of Great Jebeig, Hope, Crotch, and Jewell's islands. The location of the three plane-table sheets worked on, and of which the details are now complete, may be seen in Sketch No. 2. On two other sheets, which embrace Yarmouth river and Harpswell Neck, progress has been made in the shore line survey.

The details of the season's survey are represented in the following statistics:

Shore-line of marshes and ravines · · · · · · · · · · · · · · · · · · ·	33	miles.
Roads	40	"
Total of contour lines	155	"
Area of topography (square miles)	14	

The original sheet containing the topography of Portland harbor, the city and its environs, has been inked and placed with the archives at the office.

The party of Assistant Longfellow used the schooner Meredith for transportation and quarters while working in Casco bay.

Plane-table survey of Saco bay and vicinity, Me.—In order to facilitate the early completion of the charts of soundings to be made between Cape Elizabeth and Kennebunkport, Me., Sub-Assistant C. Fendall was attached to the hydrographic party of Lieut. Comg. Murray, and traced the entire shore-line from Prout's Neck and Stratten island southward, and westward to Kennebunk river. His work, the limits of which, as contained on four plane-table sheets marked on Sketch No. 2, embraces the shores of Saco bay, Wood island, Fletcher's Neck, and all the islands and coast intermediate between the last-named point and Kennebunk river. The Isles of Shoals were also surveyed, and were mapped on a separate topographical sheet.

Topography of Barnstable harbor and vicinity, Mass.—The survey of the shores of Cape Cod bay was commenced on the 7th of July by Assistant A. M. Harrison. Two plane-table sheets were projected—one to include Barnstable harbor, and the other to extend the work westward. The topography was taken up at Scargo Hill, near North Dennis, and in its course westward embraced, besides the usual surface details, the village just named, and also Yarmouth, Yarmouthport, Barnstable, Pond Village, and West Barnstable, together with the Great Marshes in that immediate vicinity, Sandy Neck, and the entire shore of Barnstable harbor. Very few of the details of the vicinity yet remain to be traced on the sheet. Its limits are shown on Sketch No. 2. From the shore line of the harbor the survey was carried back to an average breadth of a mile and a half.

Sub-Assistant P. C. F. West and Mr. A. W. Thompson were attached to the plane-table party, and rendered efficient service.

The character of the country in the vicinity of Barnstable presents almost every variety of ground, and much of it is thickly settled. The Cape Cod railroad is represented in the stretch from West Barnstable to Dennis Pond, where it turns to cross the peninsula.

Assistant Harrison closed work on the 21st of October, but, before leaving the field, visited the triangulation points on which his work was based, reset the station marks, and prepared for the records of the office new sketches of them, accompanied by descriptive notes. The following synopsis of statistics is taken from his report:

Shore-line surveyed	20	miles.
Marsh-line	461	
Creeks, ponds, &c.	881	"
Roads · · · · · · · · · · · · · · · · · · ·	. 44 1	**
Area of details, (square miles)	. 15	

The plane-table sheet embraces a coast reach of rather more than ten miles, measuring east and west of Barnstable harbor.

Verification of Topography.—After closing special field service, which will be referred to in the following chapter, Assistant H. L. Whiting examined the plane-table work done this season in the vicinity of Wiscasset, and that on the shores and islands of Casco bay and in the neighborhood of Barnstable harbor. The examination was made with reference to the amount and character of the topography, and was fully reported on by Mr. Whiting as being in all respects satisfactory and thorough in detail. The localities mentioned are amongst the most difficult of representation that have yet been passed over by either of the plane-table parties.

Hydrography of the approaches to Sheepscot bay and Kennebec river, Maine.—Under circumstances unusually favorable for work afloat, the hydrography of the approaches to the Sheepscot and Kennebec rivers was completed in August by the party of Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey, working with the steamer Corwin. The upper limit of the soundings is on a line passing from Cape Newaggen across and about three miles to seaward of Damiscove island, from whence the work was prosecuted southward and westward to the meridian of Cape Small Point, where it joins the completed hydrography of 1856-'57. The resulting chart will extend several miles to the southward of Seguin island, the soundings in that vicinity being made as supplementary to the hydrography of the Kennebec entrance, executed in the surveying season of 1855-'56. Sketch No. 2 shows the locality and the limits referred to.

The tidal observations required in plotting the soundings were made at a station in Booth bay. A small sunken rock, known as "Mile Ledge," lying about a mile to the southward of Seguin island light, and which is marked on the old charts as having four fathoms, was found by Lieut. Comg. Wilkinson to have only eighteen feet water at mean low tide. The rock is in the track of vessels bound into Kennebec river, and bears from the light-house S. 9° 30′ E., (true,) or south a little to the westward by compass. The range and other particulars for determining its position were made known to the department in September, in a communication, a copy of which is given in Appendix No. 9.

A summary returned on concluding the hydrography of this vicinity presents the following statistics:

Miles run in sounding	$206\tfrac{1}{2}$
Angles taken	898
Number of soundings	1,971
Area sounded, (square miles)	52

The greatest depth of water found was forty-seven fathoms.

Lieut. Comg. Wilkinson has furnished sailing directions for the chart of the Kennebec river and its approaches.

Within the year the two sheets containing the hydrography of the Sheepscot river, executed by Lieut. Comg. Moore, have been plotted and registered in the office.

Hydrography of Casco bay, Maine.—The soundings required to complete the hydrography of the lower part of Casco bay were made in the latter part of August and early part of September by the party of Lieut. Comg. Wilkinson, working with the steamer Corwin. A space embracing about twenty square miles abreast of Portland light, and included between Peak's island and Green island, is shown on the chart. Within its limits occurs the Hussey Rock, the position of which has been hitherto erroneously laid down on the best charts of Casco bay, and which, in the course of the operations conducted by Lieut. Comg. Wilkinson, was found to be more than a quarter of a nautical mile northwest of the position heretofore assigned. Bearings and ranges from the true position to fixed points on the main and adjacent islands are given in Appendix No. 10. The Hussey Rock is small and has only twelve feet on it at mean low water. The locality in which the soundings were made may be seen by reference to Sketch No. 2, by which, also, it will be observed that the in-shore hydrography of the section has been pushed as a continuous work as far to the northward and eastward as Cape Newaggen, with the exception of a small interval at Cape Elizabeth, the advance of the season not admitting of a final junction between the lines run by Lieutenant Commanding Wilkinson and those of Lieut. Comg. Murray, the site of whose work will be referred to presently. Tidal observations were made with a staff-gauge at Peak's island while the party was sounding in that vicinity.

At a period since the date of the survey made by Lieutenant Commanding Maxwell Woodhull, U. S. N., the water at one point in the channel off Union wharf, Portland harbor, had shoaled. This was made the subject of examination by Lieut. Comg. Wilkinson, and it appeared that by the sinking of a schooner laden with granite the depth had been for some time decreased. The obstruction is now removed and the depth nearly restored to what it was when the preliminary chart of Portland harbor was first issued.

The following is a summary of the hydrographic statistics:

Miles run in sounding · · · · · · · · · · · · · · · · · · ·	$117\frac{1}{2}$
Angles observed · · · · · · · · · · · · · · · · · · ·	573
Number of soundings	1,657
Area sounded (square miles)	20

Having made very favorable progress in the hydrography of the section, the party in the Corwin left Portland on the 2d of October and proceeded to New York.

Lieut. Comg. Wilkinson has turned in the note-books containing the entries of soundings and tidal observations made in Casco bay and in Portland harbor.

The hydrographic sheet showing the soundings made at the entrance of Casco bay by Lieut. Comg. Temple, U. S. N., in the previous surveying season, has also been received.

In-shore hydrography between Cape Elizabeth and Cape Porpoise, coast of Maine.—This work was resumed in July by Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey, at last year's limit, near Kennebunkport, and from thence was prosecuted northward and eastward to the vicinity of Cape Elizabeth, the lateness of the season and duty required in the lower part of the section only preventing a junction with hydrography of the approaches to Portland harbor.

Sketch No 36 shows in a general way the present condition of the in-shore soundings on this

part of the coast, and the progress sketch (No. 2) the limits of the several sheets executed this season. The soundings were carried about eight miles out from the coast line and into depths varying between fifty-five and seventy-five fathoms.

Within the limits of this work are several small harbors, with a good depth of water and fine holding ground. Surveys were made of Cape Porpoise, Stage island, and Wood island harbors, and the plotting of the sheet containing them is well advanced.

Sub-Assistant C. Fendall was attached to the party, and furnished plane-table data as needed in the hydrography.

A tide-gauge was set up at Wood island harbor and regular observations referred to a benchmark were duly recorded as the soundings advanced in that vicinity.

Among the important developments of the present working season on the coast of this section are the following, made by the party of Lieut. Comg. Murray, in the surveying steamer Bibb.

The four-fathom bank off Cape Porpoise, Maine, completely sounded out.

A fishing bank developed off Wood island.

Hussey Rock, off Saco bay, and to the southward of Fletcher's neck, determined in position.—(See Appendix No. 41.)

The position and development of a rock off Ogunquit, bare at low tide, and but very little known.—(See Appendix No. 11.)

Determination of the position of the "Hue and Cry," the "Old Proprietor," and other dangers to navigation off Cape Elizabeth.

The statistics of the in-shore hydrography are as follows:

Miles run in sounding	814
Angles determined by theodolite · · · · · · · · · · · · · · · · · · ·	75
Angles determined by sextant	2,122
Number of casts of the lead · · · · · · · · · · · · · · · · · · ·	13.659

The sheets containing the plane-table work done by Sub-Assistant Fendall are now on file with the archives. All the original note-books of soundings and angles and the chart of last year's work have also been deposited in the office.

Being incidentally at Portsmouth harbor, N. H., with the steamer Bibb, Lieut. Comg. Murray rendered acceptable service to another branch of the government at the request of the commandant of the naval station, Captain John Pope, U. S. N., whose acknowledgment of the same will be found in Appendix No. 37.

Mr. W. B. McMurtrie accompanied the hydrographic party, and took views for the charts of the Kennebec entrance, Portland harbor, Stage island harbor, and of several points in the vicinity of Saco bay.

Off-shore hydrography, coast of Maine, New Hampshire, and Massachusetts.—In passing to the upper part of the section in the steamer Bibb, Lieutenant Commanding Murray started from a position eastward of Pollock's Rip light-boat and ran a line of soundings due north to the parallel of Cape Ann, and thence to the Isles of Shoals. From Cape Ann a line was afterwards carried across the southern part of Cashe's Ledge, and as far to the eastward as Seal island, N. S. The greatest depth found on this line was a hundred and sixty fathoms. In crossing Cashe's Ledge the soundings showed a depth of 16 fathoms. From Seal island, N. S., soundings were made on the course to Grand Manan island, and from thence traverse lines were carried

to the westward close in by Mt. Desert Rock and by Matinicus and Manhegan island to Cape Elizabeth.

While in the vicinity of Passamaquoddy bay Lieut. Comg. Murray made a reconnaissance in the waters around Campo Bello and Cross island, and extended soundings on a line from Grand Manan towards the main as far as Sail Rock.

The several courses run in making off-shore soundings are laid down on Sketches Nos. 1 and 2. Saxton's metallic thermometers were used, and gave for depths of a hundred fathoms an average of two and a half degrees in temperature less than that found at the surface. Specimens of the bottom were preserved and the positions from which they were taken duly noted.

A summary of the off-shore statistics is appended.

Miles run	1,175
Soundings	546

Other deep-sea work executed by the party in the steamer Bibb will be mentioned under Section IV.

Lieut. Comg. Wilkinson, in returning southward from this section with the steamer Corwin, carried soundings on a straight course southward from Cape Elizabeth to a position six miles to the eastward of Nausett Centre light (Cape Cod peninsula.) Thirty-two casts were made with the lead, at each of which a specimen of the bottom was brought up. This line is marked on Sketch No. 2.

Examination of Salem harbor, Mass.—The review incidentally made at the close of the last working year being directed to but few points in the harbor, a more extended examination was made by Lieut. Comg. Murray after closing work in the northern part of the section. In reporting the results, that officer says: "All the main features and dangers in the harbor were determined in the original survey, and, with few exceptions, they are properly delineated on the chart of 1855."

Resurvey in Boston harbor.—After completing general hydrographic duty in this section a re examination was incidentally made by Lieut. Comg. Murray of the upper part of the inner harbor at Boston. Commencing at Mystic river, his observations were continued outwards, and in their course to a point beyond Castle island the following changes were noticed:

A deposit abreast of the timber dock at the navy yard, the soundings showing two feet less of water there than the survey of 1847.

A making out of the flats between Commercial wharf and Bird Island shoals.

A shoal-spit projecting from East Boston, east of the Cunard wharf, and running out into the channel.

The partial wearing of Bird Island shoals.

The extension of the Boston flats towards Bird island.

Referring to a line run from the northeast extremity of Boston flats to the wharf east of Cunard wharf, Lieut. Comg. Murray says: "It is observable that the eighteen-feet curve has been pushed out so far that the channel is contracted at that point nearly one-third, though the depth is retained.

The section from Bird Island flats to Boston flats developed the fact that the channel is moving towards the Bird Island flats, and that those flats are diminishing in size.

Black buoy No. 11, (off Slate Ledge,) which marks the outer edge of the Boston flats, now making towards Bird island, is directly in the mid-channel of 1847, which then had a depth of thirty-four feet. Now the most water found on that line at mean low tide is twenty five feet, and at the buoy sixteen feet. The channel in that vicinity has become much more serpentine, and great caution is required to prevent the heavier class of vessels from bringing up on the shoal-spits."

A comparison line run from South Boston to Governor's island showed no changes of a marked character as having occurred since the former survey.

Rock in Hyannis harbor, Mass.—The position of a small rock reported by Commander M. Smith, U. S. N., light-house inspector of the second district, as existing not far from the breakwater in Hyannis harbor, and the vicinity of which had been marked by a buoy, was determined by Lieut. Comg. Wilkinson on the passage of the steamer Corwin from New York northward at the outset of the working season in this section. The crest of the rock was found to be about eight feet square, and the depth on it three and a half feet at mean low water, increasing abruptly to twelve feet all around it. From the rock in question Great Rock spindle bears N.NW. $\frac{1}{2}$ W., (true,) or N. by W. $\frac{1}{2}$ W. by compass, and is distant two hundred yards. The ranges for finding its exact position are given in a communication from Lieut. Comg. Wilkinson, which I have placed in the Appendix (No. 12.)

The journals of soundings and tidal observations made in the course of the examination have been sent to the office.

Magnetic observations.—These were made during the month of July by Assistant Charles A. Schott, aided by Mr. J. L. Tilghman. The series extends from Portland to Cape Ann, and includes in all fifteen stations, several of which will be referred to under the head of Section II. In this section the magnetic declination, dip, and intensity were determined at Bowdoin Hill, in Portland, Me.; at Kittery Point, opposite Portsmouth, N. H.; on Plum island, near Newburyport, and at Ipswich, Mass.; also at Beacon Hill station, near Gloucester; at the primary triangulation station, Thompson; at Annis Squam, and at Rockport, on Cape Ann. The five last-named stations were occupied for procuring data to apply to several of the harbor charts of the vicinity, and for adjusting computations of the secular change, as well as for studying local distribution on the peninsula of Cape Ann, the results, so far attained, marking that region as somewhat anomalous with respect to the magnetic elements. Observations were also made at Quebec and Montreal, as additional means for rectifying the charts of isogonic lines, published in 1856.

The instruments used were, for declination and intensity, the magnetometer, by Jones, (C. S. No. 6,) and its attached magnetic theodolite; for dip the Barrow dip circle, (C. S. No. 9;) time was noted on the chronometer (No. 1411) of Parkinson & Frodsham.

The time and azimuth were determined by observing the sun's altitude and azimuth, six sets being made, and three separate observations recorded for each. For declinations the readings were generally continued through a period of three hours at each station. The intensity was ascertained from two trials, each of which gave five independent results from a hundred and fifty vibrations. At three of the stations the deflections were observed to guard against possible accident to the magnet. The observations for dip consisted generally of six sets with the needles No. 1 and No. 2, the polarity being half of the time reversed.

Before setting out and after his return Mr. Schott made, at Washington, full sets of observations for vibration and deflection, in order to determine the magnetic moment of intensity for magnet H. Other instrumental constants were ascertained in the same way, at the station near the Coast Survey office. The index error of the dipping needles used was determined by comparing them with many others.

In the Appendix Nos. 23 and 24 the immediate results obtained by Assistant Schott are given, and their application to questions of great interest as connected with the laws of terrestrial magnetism. The original notes and his computations have been deposited in the archives.

Tidal observations.—The series heretofore referred to as continued at Charlestown, Mass., has been maintained during the past year with great regularity, by means of the self-registering gauge, kept in operation by Mr. T. E. Ready at the U. S. dry dock. Preparations have been made to occupy a permanent tidal station at Eastport, Me.

SECTION II.

FROM POINT JUDITH TO CAPE HENLOPEN, INCLUDING THE COAST OF THE STATES OF CONNECTICUT, NEW YORK, AND NEW JERSEY, AND THE SHORES OF PENNSYLVANIA AND DELAWARE.—(SKETCH B, No. 7.)

The operations in this section have been the following, in continuation of those of former years, and employing one triangulation party, and one double topographical, one magnetic, one tidal and current, and the occasional time of three hydrographic parties:

- 1. Triangulation of the Hudson river. This has been continued northward so far as to join the preliminary work of 1856 at New Baltimore.
- 2. Topography of the vicinity of New York, in New York and New Jersey, being in part a continuation of the surveys for the commissioners.
 - 3. Hydrography of the Hudson river, which has been extended to above Poughkeepsie.
 - 4. Resurvey of Hempstead harbor, Long Island sound.
 - 5. Resurvey of the shoal off the Battery, New York harbor.
 - 6. Tides and currents in New York harbor and its approaches.
 - 7. Magnetic observations.
 - 8. Tidal observations.

Office-work.—Progress has been made in the drawing and engraving of coast map and chart No. 22, New York bay and harbor, and in the drawing of the map of Hudson river, from its entrance to Sing Sing. New plates of the middle and eastern sheets of the chart of Long Island sound have been engraved, and the old plate of the chart of Captain's islands, East and West, has been re-engraved.

Triangulation of the Hudson river.—The work of triangulation on this river was resumed at a station a little below Hudson, by Assistant Edmund Blunt, on the 7th of July, and has been extended northward to a junction, at New Baltimore, with the preliminary work done in 1856 between that point and Albany. About fourteen miles of the course of the Hudson falls within the triangulation.

In the vicinity of Yonkers fifteen stations were occupied, and data furnished to the planetable parties working there under the charge of Assistant Whiting. The progress made in both localities is shown on Sketch No. 7.

Mr. Blunt was assisted in the field by Lieut. W. R. Terrill, U. S. A., and Sub-Assistant G.

H. Bagwell, both of whom had passed the early part of the season on the coast of Florida. Mr. Rufus King, jr., served as aid in the party.

The following is a synopsis from the abstract of the observations turned in by Assistant Blunt on the 15th of October:

Stations occupied · · · · · · · · · · · · · · · · · · ·	63
Number of observations	9,336
Area of triangulation, (square miles)	151

Mr. Blunt has sent to the office the records of last year's work and descriptions of the signals then observed on.

Topography of South Jamaica; vicinity of Brooklyn and Williamsburg; High Bridge, Yonkers, and Morrisania; and of Hudson City, New Jersey.—The duty of filling in with details several sheets of the survey of Long Island and of the shores of Hudson river in the vicinity of New York city was resumed by Sub-Assistant F. W. Dorr on the 28th of June. Messrs. Cleveland, Rockwell, and McLane Tilton were assigned as aids in the plane-table party. After surveying a small space of the interior, to complete the sheet of the vicinity of Jamaica, Long Island, the party was divided, Mr. Dorr proceeding to Morrisania and finishing a sheet, of which he had executed the principal details in a former season, and Mr. Rockwell taking up the topography of Hudson city, New Jersey, and its environs.

Amongst the additions referred to as made by Sub-Assistant Dorr were surveys of the towns of Morrisania, Melrose, and part of Mott Haven. His party was then transferred to Williamsburg, and until the 1st of October engaged upon the section bounded by Green Point, Williamsburg, and until the 1st of October engaged upon the section bounded by Green Point, Williamsburg, and Brooklyn on the west, joining with the work of the city surveyors; to the east as far as Maspetch, Evergreen cemetery, and East New York; to the Long Island railroad on the south, joining with topography executed by Assistant S. A. Gilbert; and north to the limit of previous work by Assistant H. L. Whiting. The sheets of the locality referred to embrace one of the most thickly settled portions of Long Island, and include the district through which flows Newtown creek and its branches.

Two new wharves, erected since the former survey, at Sands' Point and Great Neck, Long Island Sound, and important as being the landings of steamers during the summer season, were determined in position and laid down by Mr. Dorr on the original sheets.

Under the direction of Sub-Assistant Dorr, Mr. Rockwell, after completing the survey of Hudson City, New Jersey, proceeded to High Bridge and filled in the topography required on the east bank of Harlem river, between that town and Kingsbridge. Part of the Croton aqueduct is represented on the sheet of that quarter. Two sheets of the survey above and below Yonkers were then taken up, and some progress in additional details made on the one extending upwards from the town. The other, which begins half a mile below the village and extends to Spuyten Duyvel creek, including also a stretch of two miles along the Palisades on the west side of the Hudson, was completed by Mr. Rockwell on the 15th of October. Like all the other sheets worked on, the shore line, excepting a portion on one sheet, and some portions of the details, were executed previous to the outset of the present season, the features delineated being required for the finished map of New York harbor.

The following is a summary of the plane-table statistics:

Shore line of Hudson river	6 m	iles.
Creeks	$20\frac{1}{2}$	11
Marsh line · · · · · · · · · · · · · · · · · · ·	$9\frac{8}{4}$	3.5
Aqueducts	$8\frac{1}{2}$	
Roads	164	" "
Area of details, (square miles)	25	

The early part of the surveying year was employed by Sub-Assistant Dorr in Section VI, and by Mr. Rockwell in Section V.

The care and attention given by Mr. Tilton in chaining for the plane-table survey are especially commended in the report of Sub-Assistant Dorr.

Since the opening of the year the topographical sheets executed by this party in the last working season have been inked and sent to the office.

Mr. Dorr is now preparing to return to Section VI.

Topography of Hudson river, New York.—Two plane-table parties, under the charge of Assistant H. L. Whiting, took the field on the 15th of July, for the purpose of extending the detailed survey required for the finished maps of New York harbor and Hudson river. One of these, conducted by Sub-Assistant N. S. Finney, under the immediate supervision of Mr. Whiting, advanced the work on both sides of the Hudson, from Spuyten Duyvel creek as far upwards as Hastings. The other party, directed by Sub-Assistant John Mechan, completed the topography on both sides of the river between Irvington and Sing Sing on the east, and from Piermont to Rock mountain on the west bank. A portion of the details between Irvington and Hastings yet remains to be filled in. Within the scope of the completed limits the survey includes the villages of Yonkers, Tarrytown, and Upper and Lower Nyack in addition to those before named; the Palisades and the shores of the Tappan Zee.

All the plane-table work executed within the season in the vicinity of New York was verified by Assistant Whiting, and is reported as being thorough in character and accurate in details. In reference to it he says: "Great credit is due to the gentlemen who have been on duty with me, not only during this, but in former seasons, for the zeal and interest manifested and the particular attention given in aiming at and effecting a uniform system and style of work."

From Yonkers north and south to the limits of Mr. Whiting's work, the survey was carried back from the shore of the river to the old post road leading from New York to Albany, which, as being a well defined boundary, yet gives sufficient breadth to include all the characteristic river topography. "On the western shore of the Hudson the only feature presented is the range of the Palisades, which opposite to Yonkers attain the greatest height. The details on that side were carried back sufficiently far to show a fringe of topography uniform in breadth with that of the lower sheets of previous years."

"The character of the work generally is complex and difficult. The details of contour on the eastern shore particularly were very numerous, embracing a range of hills from a hundred and fifty to four hundred feet high, with a great variety of artificial features."

The parties working under the direction of Assistant Whiting closed field operations on the 24th of September. Sub-Assistants Mechan and Finney, who had both been employed in dif-

ferent sections at the south during the former part of the year, then proceeded to make arrangements for resuming duty there.

A synopsis given in the report of Assistant Whiting shows the following details of work done in the vicinity of Yonkers and Tarrytown:

Shore-line surveyed · · · · · · · · · · · · · · · · · · ·	$22\frac{1}{4}$ 1	niles.
Creeks · · · · · · · · · · · · · · · · · · ·	1 2	4 4
Marsh-line	$4\frac{1}{4}$	
Roads	99	

The limits of the plane-table work here noticed may be seen on Sketch No. 7. An area of rather more than eleven square miles is embraced in the survey of the year.

Resurvey of part of Hempstead harbor, Long Island sound.—After returning from the south, Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, proceeded, in the latter part of August, to determine the position of several rocks within the limits of Hempstead harbor. This duty was performed with the schooner Agassiz, manned by a part of the crew of the steamer Walker. The survey was completed before the end of September, and includes the greater part of the space passed over in the previous examination. The following is an abstract of the statistics recorded in the hydrographic sheet which was turned in at the office shortly after the detachment of Lieut. Comg. Huger from the Coast Survey:

Miles run in sounding	$66\frac{1}{2}$
Angles determined	406
Number of soundings	5,612

The general duty executed by this party will be stated under the head of Section VIII.

Examination of the Battery shoal, New York harbor.—Attention having been invited in reference to the question of a decrease of depth on the Battery shoal, an examination of the vicinity was made by Lieut. Comg. T. A. Craven, U. S. N., Assistant Coast Survey, after his return from duty at the south. The result shows that at a spot off the Emigrant Depot the present depth is only seventeen feet and a half, and that in the angle formed by the line of the battery and pier No. 1 there has been a very rapid filling up. With respect to the changes noticed there, it is added: "The three-fathom curve has been pushed outward eighty yards beyond the line of 1856; the seventeen-feet spot in the outer part of this section is extending towards pier No. 1, and there is an average decrease of three feet in depth throughout that section."

The subject of the changes and their causes are discussed in the report of Lieut. Comg. Craven, which will be found in Appendix No. 13, with my communication to the President of the New York Chamber of Commerce, in transmitting the results of the recent examination.

The action of the Chamber is given in the report of their committee, in the same Appendix. Hydrography of Hudson river, N. Y.—The sounding of the Hudson was resumed by Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, with the schooner Varina, at Newburg, where the work had been discontinued by the party of Lieut. Comg. Moore in a previous season. From thence upwards about fourteen miles and a half, to a point some distance above Poughkeepsie, the entire bed of the river was sounded out between the 1st of August and the close of September. Sketch No. 7 shows the particular stretch referred to. The hydrography of the Hudson is now complete from Poughkeepsie to the bar at Sandy Hook.

Tidal observations were made at three stations simultaneous with the soundings. The hydrographic statistics are as follows:

Miles run in sounding	$281\frac{1}{2}$
Angles for establishing signals, &c	2,989
Signals established	15
Number of soundings	17,339
Area sounded out (square miles)	$8\frac{1}{2}$

The party in the Varina had been previously engaged in Section V, as will be noticed under the proper head in a subsequent part of this report.

The original sheets of the surveys made of Esopus and Rondout creeks at the close of last year are now at the office.

Tides and currents in New York harbor and its approaches.—This work, which has been going on under my immediate direction for several seasons past, was completed at the end of the summer by Assistant Henry Mitchell, so far as the principal field labors are concerned. It was commenced with the view of ascertaining the causes of certain important changes in the hydrography of the harbor as developed by the comparison of charts of different dates. All the natural forces, such as tides, currents, winds, and waves, which might be supposed to concur in producing the physical effects noticed, were included in the series of observations, and the large amount of information thus obtained will, no doubt, when fully discussed, determine the conditions under which the harbor exists. In my last report reference was made to the discovery of a class of sub-currents the motions of which were found to be quite at variance with those of the surface currents. The observations made during the present season connect these sub-currents with the path of the Hudson in its course through the waters of New York bay, and for their full development it was found necessary to extend the current stations about sixty miles outside of the bar, and also along the coast of Long Island. In the latter vicinity the effect of the land waters was traced quite beyond the reach of the tidal drifts. Observations were made in the same quarter with a view of developing the conditions under which the inlets on the south shore of Long Island are maintained and for ascertaining the causes of their change in position. Thirty-seven current stations were occupied, the records from which contain over eight thousand observations. More than three thousand of the entries are for points below the surface. Appendix No. 26 contains the report of Assistant Mitchell on the season's labors. His report contains remarks on improvements in the apparatus for observing currents at great depths below the surface, and refers also to an improved form of pile for securing tide-gauges on the sea-coast.

Assistant Mitchell was efficiently aided by Mr. W. T. Bright.

The schooner Gallatin was used in the work connected with the physical survey of New York harbor.

All the original note-books and journals kept by Assistant Mitchell while prosecuting the observations on currents have been received and filed in the archives.

Magnetic observations.—In the course of a series of observations at a number of stations in Section I, Assistant C. A. Schott, aided by Mr. J. L. Tilghman, occupied several stations in the interior of New England for ascertaining the secular change, and in order to determine the precise location of the isogonic lines, charts of which were published in 1856.

The declination, dip, and intensity were determined at Hartford, Conn.; at Springfield, Chesterfield, and Deerfield, Mass., and at Rutland, Vt. Details have been given under Section

I in regard to the instruments used at all the stations, and as to the method pursued in observing for the several magnetic elements. The results obtained are set forth at length in the Appendix Nos. 23 and 24. Mr. Schott has deposited his notes and computations in the office.

Tidal observations.—The self-registering tide gauge at Governor's island, New York harbor, has been kept in operation by Mr. R. T. Bassett. Interruptions in the series during the winter were met by observations with an ordinary box-gauge at the Atlantic ferry dock, in Brooklyn.

SECTION III.

FROM CAPE HENLOPEN TO CAPE HENRY, INCLUDING THE COAST OF PART OF THE STATE OF DELAWARE AND THE COAST OF MARYLAND AND PART OF VIRGINIA.—(Serece C, No. 9.)

One triangulation, one triangulation and topographical, one topographical and one hydrographic party have been employed in this section.

- 1. The triangulation of the Potomac river has been continued from the entrance to Britton's bay.
- 2. Triangulation of Hampton Roads. This has been connected with the main work of the Chesapeake, and a base of verification for the detached triangulation between Richmond and Old Point has been measured.
- 3. Triangulation and topography of Chincoteague and Sinepuxent bays. This tertiary triangulation was necessary from the scarcity of points furnished by the secondary.
- 4. A plane-table survey of the Patuxent river, giving merely the shore-line for purposes of the hydrography, and leaving the usual interior work for subsequent filling up, was carried from Holland's Point to Hall's creek.
- 5. The topography of St. Mary's river was continued to a point about eight miles above its entrance into the Potomac, and St. Inigo's was also included to the distance of about a mile and a half from its mouth.
- 6. Topography of Milford Haven and Horn and Winter harbors and the vicinity, Chesapeake bay.
- 7. Shore-line of James river from Coggin's Point to Little Brandon, completing the shore-line and hydrography of the James and Appomattox rivers from Richmond and Petersburg to the mouth of the river on Chesapeake bay.
 - 8. Hydrography of the Patuxent river to Hall's creek.
- 9. The hydrography of the St. Mary's river was completed, and its approaches and Cornfield harbor sounded.
 - 10. The outstanding hydrography of the James river was also finished this season.
- 11. The hydrography of Big and Little Annemessex rivers, connecting with the work of Tangier sound, was completed.
- 12. The tidal observations at Old Point and at the Washington navy yard were continued with the self-registering gauges.

Office-work.—The chart of York river, from King's creek to West Point, has been drawn and engraved. The topography and lettering of coast maps and charts No. 31, Chesapeake bay, from its head to Magothy river, and No. 33, from Hudson river, Md., to the Potomac; of the finished chart of Patapseo river, and the outlines of coast map and chart from Green Run inlet

to Little Machipongo inlet, (from a photographic reduction,) have been engraved. Progress has been made in the drawing and engraving of coast maps and charts Nos. 35 and 36, from Pocomoke sound to the entrance of Chesapeake bay; in the drawing of general coast chart No. IV, from Cape May to Currituck sound; of coast maps and charts Nos. 28 and 29 (the latter mainly by photography) from Cape Henlopen to Little Machipongo inlet; No. 33, Chesapeake bay, the sheet of James river, from Richmond to City Point, and coast map and chart No. 37, from Cape Henry to Currituck sound; and also in the engraving of coast maps and charts No. 32, Chesapeake bay, from Magothy to the Hudson, Md., and No. 34, from the Potomac to Pocomoke sound.

Examination of stations on Chesapeake bay.—The duty of examining the stations of the triangulation, which includes both shores of the Chesapeake bay, was performed in October and November by Assistant G. D. Wise, who commenced at the head of the bay, and visited all but a few in the series connected with the work done in its lower part.

"The stations were found in much better preservation on the low lands of the eastern shore than on the higher lands of the western. Lieut. Seward, who examined them in 1854, had marked them so securely that in no case had the marks been removed except from natural causes."

Mr. Wise used the schooner Howell Cobb in this service. He has turned in sketches of the stations, and full descriptions and references to guide in finding the marks in future. The duty conducted under his direction in the former part of the surveying season will be stated under the head of Section VII.

Triangulation of the Potomac river, Va.—The stations necessary for extending the triangulation of the Potomac upwards, from the mouth of the St. Mary's to Britton's bay, were selected by Assistant John Farley in the latter part of October, 1858. His party used the schooner Guthrie in that service for transportation. Frequent storms retarded the general operations, and the observations with the theodolite were also much hindered by unfavorable weather.

This triangulation, as may be seen on Sketch No. 9, stretches up the Potomac to Tower Hill, a distance of about nine miles from the station occupied last year on George's island. On the lower side of the river three stations were occupied at the mouth of its branch known as the Yeocomico.

Mr. Farley was assisted in the field by Sub-Assistant S. A. Wainwright.

An abstract from the records gives the following summary of statistics:

Stations occupied · · · · · · · · · · · · · · · · · · ·	10
Angles measured · · · · · · · · · · · · · · · · · · ·	24
Number of observations	696

Assistant Farley was employed until the 20th of December in the measurement of angles, and used for that purpose the six-inch Gambey theodolite, C. S. No. 76. As the work advanced he furnished points additional to those determined in 1857 for the plane-table survey of the St. Mary's river. An area of about thirty-seven square miles is comprised within the limits of the season's work on the Potomac.

The occupation of the party at a subsequent period of the surveying year will be stated under the next head in this chapter.

During the intervals between the seasons for field duties the computations of the triangu-

lation were kept in hand by Mr. Farley and completed. These, with an abstract of the results and duplicates of the records of horizontal angles, are now in the office.

Triangulation of Hampton Roads, Va.—The triangulation, which has advanced steadily downwards from City Point towards the mouth of the James river, has been connected with the main work on Chesapeake bay by a series of triangles carried over Hampton Roads by Assistant Farley. The junction was made on the line, Old Point Comfort—Willoughby, at the entrance of the river, as shown on Sketch No. 9.

For the purpose of verifying the entire triangulation between Richmond, Va., and Old Point Comfort, a base was measured in May at a point on the north side, and about fifty miles above the mouth of the James river. One of the intermediate stations used in the triangulation corresponds with a terminus of the base, and both termini were connected with the station at Claremont, on the south side of the river.—(See Sketch.)

The computations resulting from the data for the verification of the work are now in progress. The triangulation and operations connected with the measurement of the base near Claremont occupied the party until the 22d of June. The schooner John Y. Mason, which had been employed in the work, then returned to Baltimore. Sub-Assistant Wainwright assisted Mr. Farley in the several localities in which his party was engaged in this section.

The following synopsis refers to the duty performed this season in completing the triangulation of the James river:

Stations occupied · · · · · · · · · · · · · · · · · · ·	10
Angles determined · · · · · · · · · · · · · · · · · · ·	16
Number of observations	700

The record of horizontal angles, notes kept during the measurement of the verification base, and descriptions of the signals used this season, have been furnished by Assistant Farley.

Triangulation and topography of Chincoteague and Sinepuxent bays, Md. and Va.—As a basis of the plane-table survey north of Chincoteague inlet, Sub-Assistant Charles Ferguson made, in the latter part of June, a careful reconnaissance and tertiary triangulation between Snead Signal (Sketch No. 9) and Robbins's Point, on the main coast of Maryland. The two stations Hardy and Snead, erected in the secondary triangulation of 1849, being found undisturbed in position, were reoccupied, and six others chosen for connecting Assateague island with the coast. In the selection of the sites full attention was given to the requirements of the topography, and also to the means for rendering the stations permanent, for purposes of future reference.

This triangulation extends about twenty-one miles north and east from Chincoteague inlet. Exclusive of the stations occupied with the theodolite, five points were determined in position for plane-table reference. The statistics of the triangulation are as follows:

Stations occupied	8
Angles measured	24
Number of observations	1,100

Mr. Ferguson used in this work the six-inch Brunner theodolite, C. S. No. 66. His computations and original notes of the field-work have been received.

The topography was resumed at the limit reached last year on the 20th of July. The portion executed between that date and the 16th of September includes the mainland or western side

of Chincoteague bay, from Long Point north to "Deserted House," the details consisting principally of farm land and forest, intersected by numerous small creeks, and a broad belt of marsh along the line of the shore. The same sheet embraces the whole of Assateague island, with the Ragged Point island marshes; Pope's bay and its marsh islands; and Pine island, situated in New Inlet; together with the seabeach from Assateague bay to Ragged Point. The general features of the main and islands in this vicinity are shown on Sketch No. 9.

A synopsis taken from the completed sheet gives the following statistics of work done this season:

Shore-line surveyed · · · · · · · · · · · · · · · · · · ·	45	miles.
Roads	16	"
Creeks		
Area, (square miles) · · · · · · · · · · · · · · · · · · ·	19	

Sub-Assistant Ferguson had been previously employed in Section VI. The schooner Dana was used in the triangulation and topography of Chincoteague bay.

In the course of the season the plane-table sheet of Chincoteague island and vicinity, surveyed last year, was inked and sent to the office.

Plane-table survey of the Patuxent river, Md.—As a basis for completing the supplementary soundings required in the Patuxent, Assistant I. Hull Adams started on the 19th of April, at Holland's Point, and traced both shores of that river northward to Hall's creek, using points furnished by the triangulation of Lieut. J. P. Roy, U. S. A. The mouths and lower portions of Swanston creek and Hunting creek were included in the working sheet, on which were also marked the steamboat landings at Benedict, Trueman's Point, Holland's cliff, Magruder's Ferry, and Lower Marlboro'. About fourteen miles of the course of the Patuxent (Sketch No. 9) are represented on the map of this season. The length of shore-line traced and furnished to the hydrographic party is about thirty-seven miles.

This service was completed by the 16th of May, when the plane-table party in the schooner Dana was transferred for similar duty to the James river, Va. The stations used in the triangulation of the Patuxent were visited by Assistant Adams, and found in good preservation.

Topography of St. Mary's river, Md.—This work was begun by Assistant Adams on the 17th of November, 1858, and prosecuted until the end of that year. The limit reached corresponds to the upper line of the plane-table sheet marked on Sketch No. 9. Both shores of the river were traced upward, the eastern from Ket's Point, and the opposite side from the southern shore of George's island, respectively, to Milborne's wharf. This point is nearly eight miles above the entrance into the Potomac. About four miles above its mouth the St. Mary's river receives from the eastward St. Inigo's creek, the course of which was traced by Mr. Adams to the distance of a mile and a half. The shores of Carthagena creek, emptying in on the western side, were also defined for some distance. The shore-line traced on the working sheet makes an aggregate of thirty-eight miles within an area of about twenty-eight square miles.

This survey is based on the triangulation executed by Assistant John Farley in 1857.

Assistant Adams was aided in the plane-table work by Mr. J. G. Macawley. Progress in the field was much hindered by heavy rains, fogs, and gales of wind.

The sounding of the lower part of the St. Mary's was executed in the latter part of the

surveying season of 1857-'58, as stated in my last annual report. Sketch No. 14, accompanying this report, shows the result of the labors of the field and by hydrographic parties.

Mr. Adams discontinued work on the 5th of January, and proceeded to Baltimore in the schooner John Y. Mason, which had been in the service of his party on the St. Mary's. The vessel was soon after transferred to the party of Assistant Farley and employed in the triangulation of Hampton Roads, as already stated.

Assistant Adams is now preparing to return and fill in the details required for a finished map of the St. Mary's.

Topography of Milford haven, and Horn and Winter harbors and vicinity, Chesapeake bay, Va.—The survey of the western shore of the Chesapeake, between Rappahannock river and York river, was resumed by Assistant John Seib on the 15th of August, with a party in the schooner John Y. Mason. Two sheets, connecting at the Wolf Trap, will contain the detailed topography of the Piankatank river, Hill's bay, Milford haven, Haven creek and its branches, Garden creek, Horn harbor, Winter harbor, Mobjack bay, with East, North, Ware, and Severn rivers, and the western shore of Chesapeake bay from Cherry Point southward to New Point Comfort. In most of these localities the plane-table work was completed by the end of October, leaving only the three last-named rivers and Hill's bay for survey in the next year. The limits of both sheets are marked on Sketch No. 9. When these are completed, there will remain outstanding only a few small detached portions of topography on the shores of the Chesapeake, which can be readily finished without applying the entire working season of the party which has been heretofore employed on it.

Reference will be made under Section V to the previous occupation of Mr. Seib.

The inking of the two sheets of the Chesapeake shore was kept in progress when the weather would not admit of working in the field.

A summary given in the report of Assistant Seib shows the following progress by his party in this section:

Shore-line surveyed	• • • • •	$74\frac{1}{2}$ miles.
Roads · · · · · · · · · · · · · · · · · · ·		23 "
Area, (square miles)		20

The character of the topography is even in surface and interspersed with woods and numerous water-courses over a thickly-settled district.

On closing work the schooner Mason was transferred to the charge of Assistant John Farley, for use in the triangulation of the Potomac river.

The upper sheet of York river, which was inked within the season, is now on file in the archives.

Shore-line survey of James river, Va.—On closing the last plane-table operations on this river, the shores of a stretch extending about five miles between Coggin's Point and Little Brandon yet remained to be traced in order to complete the preliminary survey. This duty was executed in the latter part of May and early part of the following month, by Assistant Adams, after closing work on the Patuxent, to which reference has already been made.

The entire course of the James river, from its entrance upward to City Point, has now been traced, and the shores of its two branches above, to Richmond on the main stream and to Petersburg on the Appomattox. The stretch represented on the sheet of this season (Sketch

No. 9) commences about seven miles below City Point. It contains twenty-four and a half miles of shore-line within an area of sixteen square miles.

The schooner Dana, which was used by Assistant Adams in this work, returned to Baltimore by the 14th of June, and was then assigned for similar service to the party of Sub-Assistant C. Ferguson.

Hydrography of the Patuxent river, Md.—The soundings required to complete the chart of this river were made towards the close of May, by the party of Commander W. T. Muse, U. S. N., Assistant Coast Survey, working with the boats of the steamer Hetzel. From the limit reached last season, as marked on Sketch No. 9, the work was extended upwards to Hall's creek, within the triangulation made by Lieut. J. P. Roy, U. S. A., shore-line being furnished at the same time by Assistant Adams. The statistics of the supplementary hydrography are as follows:

Miles run in sounding	$88\frac{1}{2}$
Angles determined	274
Number of casts of the lead	7.554

Hydrography of the St. Mary's river, Md.—The lower part of the St. Mary's river, Md., was sounded out in the latter part of the working season of 1856-'57, by the party of Commander Muse, in advance of the triangulation, which was not taken up until the following spring. Before resuming the work, with a view of extending the soundings upward so as to complete a chart of the river, some discrepancies being noticed in the determination of the positions of signals used in the two operations, the hydrography was verified by new lines traversing the former work. Supplementary soundings were also made below the mouth of the river, and in the channel of the Potomac between it and Point Lookout, so as to include the small cove known as Cornfield harbor. The locality and its connection with the Chesapeake are shown on Sketch No. 9. A reduction from the hydrographic sheet, which has been turned in, accompanies this report as a preliminary chart, and is marked as Sketch No. 14.

The following are statistics of the soundings made this year in the St. Mary's and vicinity:

Miles run ·····	318
Angles taken · · · · · · · · · · · · · · · · · · ·	653
Number of soundings	15.868

The hydrography was executed with the steamer Hetzel in the latter part of August and early part of September.

In regard to the capacity of the St. Mary's as a harbor, the following remarks made by Commander Muse in his report on the work done in 1857 are again quoted: "The largest vessels can enter the St. Mary's river with ease, and be well protected. Its short distance from Chesapeake bay would enable vessels to leave in the severest winters, while others remain blocked in ice at most of our large cities. At convenient distances the river is indented by bays, which admit of vessels remaining at anchor to load and unload without interfering with the main channel."

Hydrography of James river, Va.—A portion of the James river, below City Point, which had not been reached in the progress of the hydrography upward, was sounded out in August by the party of Commander Muse. The space referred to is comprised between Coggin's Point and Little Brandon, (Sketch No. 9,) and embraces a reach of about seven miles.

This work completes the hydrography from Richmond to the entrance in Chesapeake bay.

The shore-line necessary for the soundings was furnished by Assistant Adams.

A summary of the hydrographic statistics is appended:

Miles run in sounding	$83\frac{1}{4}$
Angles measured	301
Casts of the lead · · · · · · · · · · · · · · · · · · ·	5,940

The sheet containing this work is now at the office.

Hydrography of Big Annewssex and Little Annewssex rivers, Md.—The supplementary soundings required for the engraved sheet of Chesapeake bay, which will contain Tangier sound and its branches, were made by the party of Commander Muse in September. This work (Sketch No. 9) includes the Big Annemessex and Little Annemessex rivers, and connects with the general hydrography of the sound, executed by the party of Lieut. Comg. J. J. Almy, in 1856.

All of the principal and very nearly all of the minor hydrographic details necessary for the finished chart of Chesapeake bay are now complete.

A synopsis given by Commander Muse at the end of the season shows the statistics of work in the Big and Little Annemessex, as follows:

Miles run · · · · · · · · · · · · · · · · · · ·	$91\frac{1}{2}$
Angles taken · · · · · · · · · · · · · · · · · · ·	272
Soundings	6,947

The steamer Hetzel was used for this and other duty performed in the same section by the party of Commander Muse.

Tidal observations.—The self-registering tide-gauge at Old Point Comfort has been continued in operation under the charge of Mr. M. C. King. A similar gauge has been used in keeping up the series of observations commenced last year at the Washington navy yard. The attention necessary in maintaining regular observations with it was given in part by officers attached to the ordnance department of the yard, under the direction of Commander Dahlgren.

SECTION IV.

FROM CAPE HENRY TO CAPE FEAR, INCLUDING PART OF THE COAST OF THE STATES OF VIRGINIA AND NORTH CAROLINA.—(Sketch D, No. 15.)

The primary triangulation of Pamplico sound has been resumed in this section; work of verification in the neighborhood of the Cape Fear has been done; the topography between Cape Henry and Currituck sound has been completed; in-shore hydrography of the coast near Bogue and New River inlets has been executed, and off-shore work between Cape Lookout and Cape Fear. Notices of these several operations are given in this chapter.

Office-work.—Comparative charts of the Cape Fear entrances, showing the changes from 1851 to 1858, and diagrams illustrating Gulf Stream explorations, have been drawn, and the former engraved upon stone under the direction of the Superintendent of Public Printing. Progress has been made in the drawing and engraving of preliminary coast chart No. 11, from Cape Hatteras to Cape Lookout; in the drawing of No. 12, from Cape Lookout to Cape Fear; in that of coast map and chart No. 48, from Bogue inlet to Barren inlet; and in the engraving of coast maps and charts Nos. 40 and 41, Albemarle sound.

Triangulation of Pamplico sound, N. C.—The preliminaries necessary for the primary triangulation of Pamplico sound were commenced early in January by Captain T. J. Cram, U. S.

Top. Engineers, Assistant Coast Survey, his party having sailed from Baltimore on the 27th of December, with the requisite equipage, in the schooner Bancroft.

Such general facts as had been gathered in the reconnaissance made by Major Prince, U. S. A., in 1851, were applied by Captain Cram, who proceeded to develop from them a scheme for working, by the minute examination of points chosen with reference to their availability for the purposes of triangulation, as well as for proper connections with the main coast series to the northward and southward. To that end stations at the upper part of the sound, connecting with the base on Bodie's island, were selected, and signals prepared for them of the kind required in the measurement of primary angles.

These points, and others at proper intervals on both shores of the sound, are marked on Sketch No. 15, which shows the plan as finally adopted for the triangulation. Some of the tripods and signals necessary for observing with the theodolite were erected, and for those which were not set up materials were prepared and fitted by the party before closing for the season.

Five stations of the first order were erected in the course of the season, and seventeen points in all chosen by preliminary measurements. The party discontinued work on the 12th of April, and is now reorganizing under the direction of Capt. Cram for resuming and prosecuting the triangulation during the coming winter and the spring following.

Verification of triangles in the vicinity of Cape Fear, N. C.—The revision of the system of small triangles laid out on the coast of North Carolina was resumed by Assistant A. S. Wadsworth on the 10th of November, 1858, at a station about five miles north of Federal Point. Most of the signals which had been used between it and Smithville having been lost, as well as the marks at the north and south ends of the base on Smith's island, (Cape Fear,) others were established, and a new triangulation made across the mouth of Cape Fear river. The scheme of triangles as remeasured may be seen on Sketch No. 15.

For the purpose of verification a new base site was selected, corresponding as nearly as possible to the line measured on Smith's island, with the additional advantage that the ends are coincident with two stations used in making the triangulation from Federal Point southward in 1851. "The site passes over a level beach, and is as permanent in character as any available line can be in that vicinity. At any state of the tide the north end is easily accessible in boats."

In order to test the geodetic value of the small coast triangulation, steps will be taken as early as practicable for the measurement of the base of verification. The ends were connected with the triangulation of this season at the stations at Fort Johnston (Smithville) and Fort Caswell, as shown on the progress sketch, (No. 15.)

Assistant Wadsworth closed work on the 7th of April, and reported at the office in Washington, where he made the resulting computations and duplicated his record of angles. In the field-work he used the six-inch Brunner theodolite C. S. No. 59. The following summary is taken from his report on the triangulation:

Stations occupied · · · · · · · · · · · · · · · · · · ·	12
Signals observed on · · · · · · · · · · · · · · · · · ·	12
Angles measured · · · · · · · · · · · · · · · · · · ·	30
Number of observations	1,191

The latter part of the season was more than usually unfavorable for field-work in the vicinity of Cape Fear.

In July Mr. Wadsworth proceeded to Section I, and engaged in the topography of Casco bay.

Topography between Cape Henry, Va., and Currituck sound, N. C.—The entire outer coast line of Virginia, and the region immediately adjacent to it, from Cape Henry and Lynn Haven bay southward to the boundary line, in connection with the district comprising the upper part of Currituck sound, have been passed over with the plane-table by Sub-Assistant John Mechan, and the details included within the limits referred to have been completed. On the outer coast of North Carolina the work of this season was extended to a junction, at Fresh Pond Hill, with surveys made in previous years by the late Assistant J. J. S. Hassler, mention of whose death was made in my last annual report. The point referred to lies about thirty-one miles below Cape Henry. The upper shores of Currituck sound, the eastern shore of Knott's island, and the western side of Back bay, had been traced by Mr. Hassler, who also executed some detached portions of topography while prosecuting the triangulation in the direction of Cape Henry.

Sub-Assistant Mechan took the field on the 25th of November, and was aided during the season by Mr. F. R. Hassler. Bad weather prevailed generally while the party was at work; but by employing the unfavorable intervals in chaining and in ordinary plane-table determinations, the details of four topographical sheets were filled in by the end of May, completing the survey between Albemarle sound and Cape Henry. In going southward from Chesapeake bay, the work of this season embraces the continuous shores of Lynn Haven river and inlet, Long creek, Broad bay, and Linkhorn bay, which separates the desert of Cape Henry from the interior. To the southward was traversed a closely-settled belt of coast, broken only by Rudy inlet, which is about seven miles from Cape Henry light-house. Lower down, North bay, and, in connection with it, the eastern shore and the islands of Back bay, were surveyed, as also Knott's island and Mackay's island, in the upper part of Currituck sound. On the sheet containing the survey of Back bay is represented a feature of the outer coast which has been often mistaken for Cape Henry when seen from vessels approaching the land. Its position, as well as the limits of the several sheets now under notice, are marked on Sketch No. 15. The following remarks are made in reference to this vicinity in the report of Mr. Mechan: "Back bay is divided from the ocean on the east by a sand beach, the southern extremity of which is dotted with high sand dunes, and oak, pine, and cedar hummocks, containing the huts of numerous wreckers and fishermen, and known as the 'Wash Woods.' Further north are the 'Wash Flats,' a low smooth strand, so near the general level of the sea as to be submerged during strong easterly gales. When viewed from a vessel at sea, it seems a continuation of the ocean, and, with the high sand-hill range and trees of the 'Wash Woods,' presents so near a resemblance to the entrance of the Chesapeake at Cape Henry as to have been often taken for it, with disastrous effects; hence it is called 'False Cape,' or the 'False Cape of the Chesapeake.' The sand dunes at Cape Henry are in some places eighty-five feet above the ocean level."

From the upper part of Currituck sound, the plane-table work was extended northward to a point two miles above Pungo bridge, so as to include the shores of North river, an important

link in the line of inland navigation, which now connects Chesapeake bay with Albemarle sound.

The progress made by the topographical party is shown in the following abstract of statistics:

Coast-line (ocean) surveyed · · · · · · · · · · · · · · · · · · ·	31 m	iiles.
Shore-line of bays, islands, &c	$169\frac{1}{2}$	44
Roads surveyed	116	4.4
Area of sheets, (square miles)	157	

On his return from this section, Sub-Assistant Mechan was assigned to duty in the vicinity of New York city. In the course of the summer the sheets of the region between Cape Henry and Currituck were inked and sent to the office.

Hydrographic.—Office-work.—Two sheets containing the soundings executed during the surveying year 1857-'58, in Pamplico sound, have been received from Commander W. T. Muse, U. S. N., and registered in the archives.

In-shore hydrography between Bogue inlet and New River inlet, coast of North Carolina.—In continuation of the hydrography extending from Cape Lookout towards Cape Fear work was resumed on the 6th of April by Lieut. Comg. Alex'r Murray, U. S. N., assistant Coast Survey, at Bogue inlet, and carried down the coast of North Carolina at favorable intervals between that date and the 1st of June. A stretch of about thirteen miles coastwise, terminating as shown on Sketch No. 15 at New River inlet, was traversed by lines parallel to the shore and crossed by others going off to an average distance of ten miles from the land. This duty was executed in the surveying steamer Bibb. The following synopsis of statistics was returned by Lieut. Comg. Murray at the end of the season:

Miles run in sounding · · · · · · · · · · · · · · · · · · ·	
Angles determined	714
Number of soundings	3.262

Off-shore soundings, from Cape Lookout, N. C.—While prosecuting the in-shore hydrography with the steamer Bibb, Lieut. Comg. Murray, ran, at favorable intervals, several lines to the northward of Cape Hatteras and others between Cape Lookout and Cape Fear, in order to furnish data for filling the project of the general coast chart No. V.

At the termination of a line carried broad off between Cape Hatters and Cape Lookout a specimen of bottom was brought up in the axis of the Gulf Stream, the Massey sounding apparatus, used in that instance, indicating a depth of 2,059 fathoms. The material found was grayish mud or clay.

In reference to the current underrunning the Gulf Stream, Lieut. Comg. Murray remarks: "The wind was N.E. and light; the steamer lay with her head to the southward and eastward, and the line went from the stern, tending to the northward, but upon reeling it up we discovered that an undercurrent had carried it to the southward. This occurred twice under similar circumstances."

The statistics of the off-shore work are as follows:

Miles run in sounding	1,235
Casts of the lead · · · · · · · · · · · · · · · · · · ·	

In the course of the season three hydrographic sheets, one containing the work done in 1857-'58, and two the soundings made this year, have been plotted and turned in at the office with the records of soundings, angles, and tidal observations.

The party in the steamer Bibb, after its return from this section, refitted at New York and passed the remainder of the season in prosecuting the general hydrography of Section I.

SECTION V.

FROM CAPE FEAR TO ST. MARY'S RIVER, INCLUDING PART OF THE COAST OF NORTH CAROLINA, AND THE COAST OF SOUTH CAROLINA AND GEORGIA.—(Sketch E, No. 16.)

The usual number of parties has been employed in this section, namely: one in making astronomical and magnetic observations, one in primary and secondary triangulation and in astronomical and magnetic observations, one in secondary triangulation, one in secondary triangulation and topography, two in topography, and two in hydrography. The work accomplished is stated under the following heads:

- 1. Astronomical and magnetic observations near Cape Fear entrance.
- 2. Triangulation and topography westward of Tubbs' inlet, N. C.
- 3. Astronomical and magnetic observations at St. Helena island, S. C.
- 4. Primary triangulation, coast of South Carolina.
- 5. Triangulation of Beaufort, Chechessee, and Colleton rivers, S. C.
- 6. Triangulation of Doboy and Altamaha sounds, Ga-
- 7. Shore-line survey from St. Helena sound, S. C., to Savannah river entrance.
- 8. Topography of St. Catherine's sound, Ga.
- 9. In-shore hydrography from Cape Fear westward to Tubbs' inlet, N. C.
- 10. Off-shore hydrography from Cape Fear to Charleston harbor.
- 11. Hydrography of Bull's bay, S. C.
- 12. Hydrography of Port Royal entrance, S. C.
- 13. Hydrography of the Chechessee and Colleton rivers, S. C.
- 14. Hydrography of Sapelo bar and its approaches, Ga.
- 15. Tidal observations.

Office-work.—In the drawing and engraving divisions, additions have been made to the chart of Charleston harbor. The chart of Sapelo sound has been drawn and engraved and the engraving of preliminary coast chart No. 14, from Cape Romain to Savannah, has been in hand. Progress has been made in the drawing of coast maps and charts No. 53, from Charleston harbor to St. Helena sound, and No. 58, from St. Mary's river to the St. John's, Fla., and in that of the chart of Ossabaw sound.

Latitude observations at Smithville, N. C.—The adjustment of the triangulation on the coast of North Carolina requiring that the latitude of a point in the vicinity of Cape Fear should be closely determined, as well as the azimuth, an astronomical party was organized on the 1st of April, under my immediate direction, and placed in charge of Assistant G. W. Dean. A station was erected at Fort Johnson, Smithville, N. C., and the necessary preliminaries for astronomical work were arranged by Mr. Thomas McDonnell. Sub-Assistant Edward Goodfellow was detailed to assist in the observations. Those for the latitude and time were made by him with the zenith telescope C. S. No. 5, and forty-six-inch transit C. S. No. 4. With the first-mentioned instrument twenty-nine pairs of stars were observed by one hundred and seventy-four sets of observations. Fourteen standard stars were observed on with the transit, and ninety-six observations recorded. The value of the micrometer threads was ascertained by one hundred and twenty-two observations on the star 51 Cephei, near its western elongation. Forty-six observations were made with the micrometer upon a collimator adjusted to a stellar

focus, for determining the arc value of graduations on the level of the zenith telescope, and the corresponding divisions of the transit instrument were tested by comparisons with it.

As far as practicable, the stars observed for latitude were taken from the Greenwich Twelve Year Catalogue, the sets, as heretofore, being completed from that of the British Association. Mr. W. H. Odenheimer aided Sub-Assistant Goodfellow, and recorded the observations. Unusually good weather prevailing during the stay of the party, all the requisite determinations were completed by the 7th of May.

Azimuth.—The azimuth for the lines of the triangulation was determined by Assistant Dean. For that purpose nine sets of observations were made with the twenty-four-inch theodolite (C. S. No. 2) on Polaris at its lower culmination, and six sets on & Ursae Minoris near its eastern elongation. In each series six pointings were made on the star with the telescope direct, and the same number with the instruments reversed. An elongation mark was set up and connected in the usual way with the triangulation, twelve sets of pointings being made on it with the telescope direct and reversed. The mark was referred to three geodetic signals by four hundred and thirty-six observations made at six different periods, each embracing the observations of an entire day. In making them the circle of the instrument was used in five different positions. The azimuth observations were recorded by Mr. McLane Tilton.

Magnetic observations at Smithville, N. C.—For the declination of the needle at the astronomical station (Fort Johnson) one hundred and forty-seven observations were made on three days by Assistant Dean and Sub-Assistant Goodfellow. Four sets were made on three days for the magnetic dip, and two sets on two days for the horizontal intensity and moment of inertia. The instruments used were declinometer D. 22 (C. S. No. 1) and the nine-inch dip circle C. S. No. 4.

The usual meteorological journal was kept by Mr. Tilton, while the observations were going on for latitude, azimuth, and the magnetic elements.

Immediately after the return of the party the records kept at the astronomical station were duplicated by Sub-Assistant Goodfellow and placed in the archives, with his computation for latitude, with that of Mr. Dean for azimuth, and lists of the stars used in observing for latitude.

In June the party was transferred to Section I, and remained until the close of the season under my personal direction, as stated in a previous chapter of this report.

Triangulation and topography westward of Tubbs' inlet, N. C.—The coast triangulation below Cape Fear has been extended westward by Assistant C. P. Bolles, to the immediate vicinity of the boundary line between North and South Carolina. The details of the plane-table work, which has been prosecuted in connexion with it, have been completed to Tubbs' inlet, and the shore-line survey advanced westward to Little river, (Sketch No. 16,) or near the present limit of the triangulation. On the 10th of December work was resumed at Shallotte inlet, Mr. O. Hinrichs, the aid in the party, conducting the topographical survey, while Mr. Bolles carried forward the triangulation. Most of the angular measurements were made with the six-inch Brunner theodolite C. S. No. 67.

The following synopsis shows the progress made by the party before closing for the season, on the 20th of June:

First order stations occupied · · · · · · · · · · · · · · · · · · ·	. 8
Second order stations occupied	30

Objects observed on ·····	46
Number of observations	1.218

In the principal series eighteen angles were determined, the last being formed at a station a short distance above Tubbs' inlet. From thence southward and westward to Little river, the smaller chain of triangles was completed to serve as a basis for the topography.

The impediments from standing wood and undergrowth on this part of the coast increase the natural difficulty of laying out and determining primary lines which pass over a level surface. Avenues, making in the aggregate an extent of more than fourteen miles, were traced and opened by the party so as to admit of observing with the theodolite.

Assistant Bolles furnished in the course of the working season the data requisite for fixing the positions of shore stations for the hydrographic party of Lieut. Comg. Bankhead.

The plane-table work comprises the following statistics:

Beach-line surveyed · · · · · · · · · · · · · · · · · · ·	21.6	miles.
Shore-line of creeks	102.1	" "
Outline of marsh · · · · · · · · · · · · · · · · · · ·	47.5	""
Roads····	30.3	4 i

In addition to the plane-table work, Mr. Hinrichs aided in the several operations of the triangulation. Shore-line was furnished as needed for the in-shore hydrography, which was in progress at the same time.

Six volumes containing the original records of horizontal angles measured in extending the field-work westward from Cape Fear have been placed in the archives, as also the topographical sheet executed last year under the direction of Assistant Bolles.

Astronomical and magnetic observations at St. Helena Island, S. C.—As part of the duty devolving on his party in this section, Assistant C. O. Boutelle set up the zenith telescope C. S. No. 5, and transit No. 3, at Port Royal station on St. Helena island, and made a series of observations for latitude between the 8th of January and the 1st of March. Both instruments were supported by wooden posts set three feet in the ground and strongly trussed by cross and diagonal braces above and below ground.

The azimuth also was determined at the same station with the twenty-four-inch theodolite C. S. No. 2, and Gambey theodolite C. S. No. 43, an artificial horizon being employed in making the observations with the last-named instrument.

For local time observations were made at intervals from January 8 to May 7 inclusive, with transit No. 3, in connexion with the sidereal chronometer No. 207, and the solar chronometers Nos. 211, and 2,458.

For latitude six hundred and seventy-eight observations were made on sixty-two pairs of stars. The places of forty-eight were taken from the Twelve Year, and the rest from the catalogue of the British Association. Seventy-two observations for value of the micrometer in the zenith telescope were made upon four elongations of Polaris. The value of levels A and B were determined in terms of the micrometer by a hundred and twenty observations on the cross hairs of a sector set up fifteen feet north of the zenith telescope and used as a collimator.

Between the 10th of February and the 16th of March ten elongations of Polaris were observed in the usual manner for azimuth. Two hundred and sixty-three observations were made on star and mark, and one hundred and eighty-six for connecting the elongation mark with stations in the secondary triangulation.

For local time three hundred and thirty-nine transits were observed on sixty-one nights between January 8 and May 7.

Mr. Boutelle also observed a series of azimuths upon Polaris in various parts of its orbit, making thirty-three sets of four repetitions each on three nights. These formed angles between Chaphir signal and the star, and were observed alternately direct and reflected in a mercurial horizon.

The position of the astronomical station on St. Helena island, and its connections with the coast triangulation are shown on Sketch No. 16.

The declination of the magnetic needle at Port Royal station was determined with the declinometer C. S. No. 5, by two hundred and thirty-six observations made in parts of ten days between January 23 and February 5, on two collimator magnets. For the dip, the circle No. 9 was used, and ninety-six observations were recorded.

In the astronomical work, and in the general operations yet to be referred to, Mr. Boutelle was assisted by Lieut. Thomas Wilson, U. S. A., Assistant Coast Survey, and Sub-Assistant W. S. Edwards. Mr. C. H. Boyd was attached to the party as aid.

Duplicates of the records of observations made this season for latitude, azimuth, and time have been deposited in the office. Mr. Boutelle has also turned in his revised computation for the latitude of Allston station, determined in a previous season.

Primary triangulation, coast of South Carolina.—For the extension of the series of primary triangles southward and westward from the Edisto base and in the direction of Savannah, Assistant Boutelle erected a tripod and scaffold at Port Royal station, and made the preliminary measurements necessary for including a point in the city of Beaufort, S. C., in the general scheme. The positions of these, as falling in with the chain of work already completed, may be seen in the progress sketch (No. 16) of the section. The lines to be observed on in carrying the main triangulation across St. Helena island were partly traced and cleared for the measurement of horizontal angles while other operations were going on. This service was performed by Sub-Assistant Edwards, under the direction of Mr. Boutelle. The party reached its working ground in the schooner Petrel from Charleston, at which port the vessel had been laid up during the winter.

Lieut. Wilson, U. S. A., and Mr. C. H. Boyd, assisted in the duties now under notice, and in those to be mentioned under the next head.

The records of the primary triangulation of previous years have been deposited in the archives. Triangulation of Beaufort, Chechessee, and Colleton rivers, S. C.—From its entrance into Port Royal sound, Assistant Boutelle laid out and completed by the 19th of April the triangulation of Beaufort river upwards to the city of Beaufort. The length of water course included in that work is about twenty-nine miles. His party was then transferred in the schooner Petrel to Foot Point, and in that vicinity a triangulation was carried from Broad river up the Chechessee and its branch known as the Colleton river. The triangles were made to extend about two miles and a half above Foot Point and four miles below it, so as to provide for the topographical survey, and for hydrographic purposes, reference to which will be made hereafter.

The following are statistics of field-work executed by the triangulation party:

Signals erected · · · · · · · · · · · · · · · · · · ·	20
Stations occupied ·····	24
Angles measured · · · · · · · · · · · · · · · · · · ·	348
Number of observations	1,772

A general view of the scheme of work will be seen by reference to Sketch No. 16.

The eight-inch Gambey theodolite, C. S. No. 24, and ten-inch Gambey, C. S. No. 43, were used in the angular measurements.

In the several operations prosecuted between the Edisto base and Foot Point Mr. Boutelle was assisted by Lieutenant Wilson and Sub-Assistant Edwards. Mr. C. H. Boyd was attached to the party as aid.

The schooner Petrel was despatched for New York on the 16th of May, and was there repaired and refitted for the continuance of work in the coming season.

While the triangulation party was at work in February, the United States steamship Brooklyn passed into Port Royal sound and anchored near the Parry island buoy, between Broad and Beaufort rivers. Assistant Boutelle visited the vessel, and, as no professional pilots are known in that vicinity, tendered his services in conducting her up Beaufort river. The offer being accepted by Captain Farragut, of the Brooklyn, the steamer was moved to a position within four and a half miles of the city of Beaufort, and there anchored. A communication addressed to me by Captain Farragut, in reference to his visit in Port Royal sound, is given in Appendix No. 38.

After reporting at the office, Assistant Boutelle proceeded to Section I. His occupation during the summer and autumn has been stated under that head. Lieutenant Wilson, on returning from Section V, was assigned to duty in the charge of the Drawing Division, and Sub-Assistant Edwards took up plane-table work on the Kennebec river.

Triangulation of Doboy and Altamaha Sounds, Ga.—The secondary triangulation on the coast of Georgia has been continued southward from the Sapelo base, and between it and the work at St. Simon's entrance a preliminary connexion has been made by a series of tertiary triangles carried along the outer range of islands below the entrance to Altamaha sound.

Sub-Assistant F. P. Webber, whose operations last season closed at the upper part of Sapelo island, resumed work there on the 20th of December, with a party in the schooner Hassler. The triangulation was taken up at the line which joins Julienton with a terminus of the Sapelo base, the location of which is marked on Sketch No. 16. To the southward and westward stations were erected at suitable intervals, so as to include in the secondary series Mud river and North river, with their branches behind Sapelo island; Doboy sound, and Altamaha sound with the lower parts of its tributaries. A number of subsidiary stations were occupied within the same area sufficient for the purposes of a topographical survey. Mr. Webber measured also a series of tertiary triangles, in order to define the courses and direction of the water-passage which separates Blackbeard island from Sapelo island, and south of the Altamaha entrance extended a similar triangulation by observing alternately at stations on St. Simon's island in connexion with others erected on the chain lying between it and the ocean. The ten-inch Gambey theodolite, C. S. No. 63, was used in measuring the angles.

At a station about thirty miles below the Sapelo base, as measured along the course of the triangulation, a junction was made with one of the tertiary lines observed on by Assistant A. W. Longfellow in the survey of St. Simon's sound. Sub-Assistant Webber there closed for the season on the 15th of April. It is expected that a connexion by triangles of the second order can be made early in the ensuing year.

Mr. Julius Kincheloe was attached to the party as aid, and served efficiently in the field-work and in making computations.

While the hydrographic survey of Sapelo bar was in progress, the points requisite for it were

furnished to Lieut. Comg. Fauntleroy. Further notice in regard to that work will be made under another head.

The following summary of statistics and extract are from the report of Sub-Assistant Webber:

Secondary stations occupied · · · · · · · · · · · · · · · · · · ·	7
Tertiary stations occupied · · · · · · · · · · · · · · · · · · ·	42
Angles measured	$\bf 562$
Objects observed on · · · · · · · · · · · · · · · · · ·	570
Points determined in position	105
Number of observations	3,958

"The sides of the triangles of the second order range from five to eight miles in length. It is probable that lines from four to six miles long can be found across the opening to the west of St. Simon's island, but in proceeding southward it will be necessary to erect two or three scaffold signals, perhaps twenty-five feet high, as the lines will extend over fresh water marsh, the reeds and shrubs of which reach to a height of twelve and in some places twenty feet, while the hard ground is nearly level with the surface of the marsh."

Records of the horizontal angles and descriptions of the signals erected this season have been received and filed in the office.

The schooner Hassler with the party of Mr. Webber reached Portland, Me., on the 2d of May, and during the summer was employed in work east of the Kennebec. On her outward passage to the south, the vessel was forced to take refuge in Provincetown harbor by severe gales, and while again on her way was damaged off Long Island in a storm, which also destroyed her stern boat. The necessary repairs were made at Savannah.

Sub-Assistant Webber is now making arrangements for returning to continue work on the coast of Georgia.

Shore-line survey from St. Helena sound, S. C., to Savannah river entrance.—This includes the outlines of the Hunting islands, Eddings' island, the islets and water passages between them and St. Helena island, the entire shore-line of Port Royal entrance, and part of that of Parry island, at the confluence of Beaufort and Broad rivers, Daw island and Colleton Neck, the outline of Hilton Head island, and the western shore of Calibogue sound, from Pinckney island to Savannah river. The work was executed by Assistant John Seib, whose party arrived in the section and anchored in Harbor river on the 10th of January. After joining with the plane-table survey made in 1856 on the upper part of the Hunting islands, Mr. Seib pushed steadily in the direction of Tybee entrance, tracing, as he advanced, the shore-line of Harbor river, Fripp's inlet, Story creek, Trenchard's inlet, Skull inlet, and Pritchard's inlet. and passing through Station creek, the preliminary work was carried into Port Royal sound. the outer side of the islands which bound the lower part of the coast of South Carolina, the ocean-line was traced from Skull inlet to Bay Point, at Port Royal entrance. Thence, proceeding northward and westward, the shores of Port Royal sound were surveyed, from Bay Point to Land's end, as also the shores of Beaufort river to a point three miles above its mouth; the northern shore of Broad river, beyond Parry island, and its southern shore as far up as Lemon island. In that vicinity Mr. Cleveland Rockwell, the aid in the party working under my immediate direction, with a second plane-table traced the outline of Daw island; the shores of the Chechessee river, from Pinckney island upward to Lemon island; and the shores of Colleton river to a short distance southward of Foot Point. The tongue of land embraced between the

two rivers, and designated as Colleton Neck or Victoria Bluff, was surveyed somewhat in detail. A tracing from the topographical sheet of Mr. Rockwell was furnished early in May for the guidance of the hydrographic party in sounding out the adjacent channels, more particular reference to which will be made presently.

The continuous preliminary work of Assistant Seib in going southward from Port Royal sound embraced both shores of the passage known as Skull creek, between Pinckney island and Trench's or Hilton Head island; the shores of Calibogue river, in connexion with it and with May river; and the shore-line of Calibogue sound, to Mungen Point. The outer side of Hilton Head island also was traced and joined with the surveys already mentioned. As measured in a direct line, the chain of islands included in the work of the season stretches about thirty-five miles below St. Helena sound. The aggregate of shore-line represented on the five plane-table sheets brought from the field is about two hundred and fifty-eight miles. Four of them were worked on alternately by Assistant Seib and Mr. Rockwell, progress being made at the same time in inking plane-table sheets of the previous year. The limits of the sheets embracing the preliminary survey between St. Helena sound and Savannah river are marked on Sketch No. 16. Field-work was closed for the season on the 12th of May. The schooner Bailey, which had been in the service of the party, then sailed for Smithfield, North Carolina, and was transferred to Lieut. Comg. Bankhead, and employed in the hydrographic work of this section.

At the end of April I visited the party of Assistant Seib, in passing southward on a tour of inspection. The work then in progress, and since completed, is intricate in character and was not favored by more than an average of fair weather for field duty. The large return in results is mainly due to the constant energy of the chief of the party, and to the able support given by Mr. Rockwell.

Mr. Seib was employed during the summer in plane-table duty in Section III, and Mr. Rock-well in Section II. In the corresponding chapters of this report notice has been taken of the occupation referred to.

Topography of St. Catharine's sound, Ga.—The party assigned to this work, in charge of Sub-Assistant H. S. Du Val, commenced the survey on the 27th of December and continued in the field until the 23d of May, using data furnished by the triangulation of Lieut. A. W. Evans, U. S. A. No interruption from unfavorable weather occurred to break the plan of operations, and, as a result, the survey of the shores of the sound was essentially completed, including the shores and branches of that part of the "Inland Passage" known as Bear river, which connects St. Catharine's with Ossabaw sound. The plane-table sheet also embraces the shores of the Medway opposite to the entrance of St. Catharine's sound, the mouth of North Newport river leading from it southward as part of the inland passage to Sapelo, and the outer shores of Ossabaw and St. Catharine's islands, in the vicinity of the entrance. These localities, as well as the general limits of the sheet referred to, are marked on Sketch No. 16.

A reconnaissance was made in the course of the season, and points were established for the survey of the interior of Ossabaw island, on which the work will connect with a survey made to the northward by Assistant A. M. Harrison in 1857-'58, but the advance of the season did not admit of the execution of the topographical details. These will be filled in during the coming winter, the party being about to resume duty on the coast of Georgia. The northern part of St. Catharine's island will be represented on the same sheet, and the detailed work

extended southward to meet that completed on Sapelo sound, which is already connected with it by a shore-line survey along the outer side of the island.

As returned to the office the topographical sheet of St. Catharine's sound exhibits the following summary of progress made by the party in charge of Sub-Assistant Du Val:

Shore-line	204 miles.
Area of details. (square miles)	50

Mr. J. D. Bradford aided in the field-work.

In June the party returned to Portland in the schooner Meredith. The vessel was then transferred to the party of Assistant A. W. Longfellow for service in Casco bay.

Sub-Assistant Du Val makes special mention in his report of the facilities tendered by residents on St. Catharine's island as tending to the furtherance of his work.

Within the present season Assistant Longfellow has inked and sent to the office the planetable sheet containing his survey of Sapelo sound, and one of the sheets of work executed by his party at Brunswick harbor, Ga.

In-shore hydrography from Cape Fear westward to Tubbs' inlet, N. C.—The hydrographic party detailed for duty in the northern part of this section sailed from Baltimore under the command of Lieut. Comg. J. P. Bankhead, U. S. N., Assistant Coast Survey, in the schooner Crawford, and reached Charleston on the 7th of February. A period of stormy weather setting in made it expedient to defer the outside soundings and employ the interval in another locality, which was accordingly done, as will be noticed presently. The coast soundings from Cape Fear westward to Tubbs' inlet were executed between the 5th of May and the 12th of August, favorable intervals being taken between those dates for also running off-shore lines, to be alluded to hereafter. The in-shore work connects with the completed hydrography of Cape Fear entrance and the Frying Pan shoals, and represents a space of twenty-five miles in length (Sketch No. 16) by rather more than ten in average breadth.

Assistant C. P. Bolles, in charge of the triangulation, furnished data for establishing the shore stations required in executing the soundings.

The following is a synopsis of the statistics:

Miles run in sounding · · · · · · · · · · · · · · · · · · ·	1,121
Angles measured with the sextant	1,322
Angles measured with the theodolite	2,281
Number of soundings ····	6,333
Area sounded, (square miles)	228
Tidal stations occupied	2

Referring to the character of the bottom and to the capacity of the several small inlets which break the coast of North Carolina at intervals between Oak island and Tubbs' inlet, Lieut. Comg. Bankhead remarks: "The bottom is uniform in character and clear of rocks or shoals, and the shore can be safely approached, in clear weather, by any class of vessels to within one nautical mile."

"The inlets are impracticable for any but vessels of very light draught, and their bars change with every shift of wind. A few flat-bottomed schooners are the only vessels that

attempt the passage, and then only on the top of high water, when not more than six feet can be carried in under the best of circumstances."

The in-shore hydrography from Cape Fear westward was executed with the schooners Crawford and Bailey, the latter having been assigned for that duty on the close of topographical work conducted in this section by Assistant Seib. In the course of the autumn the soundings were plotted under the direction of Lieut. Comg. Bankhead, at Washington, and the resulting chart left at the office.

The original records and transcripts of the soundings and tidal observations made at the Cape Fear entrances in 1857-'58 by the party of Lieut. Comg. T. B. Huger have also been received and deposited in the archives.

Off-shore hydrography from Cape Fear to Charleston harbor.—The working season proving to be unusually stormy along the coast below Cape Fear, effective progress in off shore soundings could be made only by employing favorable intervals, the in-shore work already referred to, being from time to time suspended for that purpose.

In allusion to the precautions taken in prosecuting the off-shore hydrography from Cape Fear, southward and westward, to Charleston harbor, Lieut. Comg. Bankhead, says: "Nearly all the lines were run with a fair wind, smooth water, and in clear weather, and all the principal positions were determined by actual observation. The soundings were made with care, and of the specimens of bottom brought up such have been preserved as were at all curious or different from the general character already known."

The following reference is made in the season's report to the probable existence of a bank off Cape Romain, the full development of which will be made in prosecuting the in-shore hydrography southward from its present limit: "I am satisfied that the continuance of the survey off Cape Romain will develop less water in some places than has been generally supposed to exist as I have found six fathoms and water breaking in heavy weather where we should have inferred a depth of nine or ten fathoms from the general chart."

The off-shore soundings made by the party of Lieut. Comg. Bankhead in the schooner Crawford were carried to an average depth of a hundred fathoms, or from sixty or seventy miles from the coast, and were executed between the 7th of March and the 5th of August.

During the last two months of the season every effort was made to obtain current observations, but excepting at two stations in the vicinity of Cape Fear, without success.

The statistics of the off-shore hydrography are given in the following summary:

Miles run in sounding	1,462
Number of soundings	1,193

An unusually late period of the working season at the south having been reached, the schooners Crawford and Bailey sailed for New York, and there underwent necessary repairs. The plotting of the off-shore chart was then taken up, at the office, and completed.

Arrangements are now in progress for the return of the vessels and continuance of the in and off shore work in this section.

Hydrography of Bull's bay, South Carolina.—This duty was executed by the party of Lieut. Comg. Bankhead, with the shooner Crawford in March and April, the boisterous character of that part of the season not affording the usual opportunities for pushing soundings outside of the main coast. In connexion with the bay, the inland passage leading to the southward and westward, was sounded out as far as Capers's island. The limits of the sheet containing the

hydrography are marked on Sketch No. 16. Regular tidal observations were made during the period occupied in the work.

Lieut. Comg. Bankhead thus refers to Bull's bay as a harbor of refuge: "I doubt whether it will ever be used except as a harbor of refuge for coasting vessels, for which purpose, however, it is well adapted, being easy of access, affording good holding ground, and having abundant water (in the channel) for that class of vessels. The small channels that traverse the bay are too narrow and irregular in their depth for anything but boats of the lightest draught."

The following allusion to the inland passage is made in the same report:

"The inland passage connecting with the bay I find to be too narrow and crooked for any vessels other than very small steamers and flat boats, there being but one foot of water at mean low tide, and a width of only fifty feet at the narrowest part."

The following are statistics of the hydrography:

Miles run in sounding	308
Sextant angles taken	736
Number of casts of the lead · · · · · · · · · · · · · · · · · · ·	20,345
Area sounded (square miles)	36

The chart of Bull's bay resulting from this work has been plotted and is now on file at the office.

While engaged on his working ground in this section Lieut. Comg. Bankhead furnished to a deputation from Charleston, sent to examine in regard to the availability of Bull's bay for a quarantine station, such hydrographic data as could be supposed to bear on the question.

Hydrography of Port Royal entrance, South Carolina.—Early in June, Lieut. Comg. C. M. Fauntleroy, U. S. N., assistant Coast Survey, having completed the hydrographic duty assigned in two other localities of this section, commenced an examination of the several channels leading into Port Royal entrance in order to determine the character of the bars. This duty was completed before the close of that month, and, after plotting the soundings, it was reported as the result of comparison that "little or no change has occurred since the date of the hydrographic reconnaissance made in these waters by Lieut. Comg. Maffitt," (1855.)

In connexion with the hydrography of the east channel the soundings were carried northward and eastward to Hilton Head, and so extended in that vicinity as to include Joiner's bank. The limits of the work are marked in the usual way on sketch No. 16.

A recommendation from Lieut. Comg. Fauntleroy in regard to buoys for the east channel passage into Port Royal was communicated to the department in July, (Appendix No. 43.)

The United States sloop-of-war Brooklyn, having touched on a sand-spit at the mouth of Beaufort river, South Carolina, on the occassion of her visit to that branch of Port Royal sound in the early part of the season, to which allusion has been made under a previous head of this chapter, the locality in question was carefully examined by the hydrographic party. No obstruction was found in the channel which leads up the river, the point of the spit referred to being "on the port hand of the channel way, dividing it from a deep water pocket on the port hand of that again." It is hence to be concluded that when the vessel touched she had not fairly entered the channel of Beaufort river. No professional pilots were cruising in Port Royal sound at the period of her visit.

The statistics of the survey made by the party in the schooner Varina are as follows:

Miles run in sounding	1 58
Angles observed · · · · · · · · · · · · · · · · · · ·	703
Number of soundings	8.118

The area sounded out is about twenty-two square miles. A tidal station, as usual, was occupied for hydrographic purposes. After some needful repairs at Charleston, the Varina sailed for New York, and arrived at that port on the 8th of July. The party then took up the hydrography of Hudson river, as stated under Section II.

Hydrography of the Chechesee and Colleton rivers, S. C.—After completing a survey, which will be described under the next head, the party of Lieut. Comg. Fauntleroy was transferred in the schooner Varina to Broad river, S. C., and proceeded to sound out the more important parts of its tributaries, designated as the Chechessee and Colleton rivers. From the point of their junction behind Daw island, as shown on Sketch No. 16, the hydrography was carried about two miles northward and westward up the Chechessee, and about three miles southward and westward in the bed of the Colleton river. The vicinity of Foot Point was thoroughly sounded, as also the Chechessee river from the point of Colleton Neck downwards about four miles to Pinckney's island at the head of Port Royal sound or Broad river, where the work joins with the hydrography executed by Lieut. Comg. Maffitt, U. S. N., in 1855. My report for that year was accompanied by a preliminary chart of Port Royal entrance, which is therein marked as Sketch No. 22. In reference to it Lieut. Comg. Fauntlerov observes: "The previous survey shows that the bar of the Chechessee river affords twenty feet at mean low water, with a mean rise and fall of 6.6 feet. The depth increases in passing upward, and vessels that enter Port Royal sound will find in the Colleton river at the Neck, and at its confluence with the Chechessee, a capacious, completely protected and easily accessible anchorage in from four to seven fathoms water." In the Appendix (No. 29) further extracts are given from the report of Lieut. Comg. Fauntleroy bearing on the commercial facilities of the vicinity of Colleton Neck. This hydrographic survey followed the shore-line as traced by Mr. C. Rockwell, and was completed between the 13th and 21st of May. The resulting sheet is now on file in the Coast Survey office. The rate of the currents was observed at two stations, and the rise and fall of the tide determined as usual, the record being made for a complete lunation. An abstract from the hydrographic journal is given below as showing the statistics of work:

Miles run in sounding	218
Angles observed.	1136
Number of soundings	15509

Hydrography of Sapelo bar and its approaches, Ga.—The survey of Sapelo river and sound, including its entrance and approaches, has been completed; the supplementary soundings and requisite tidal and current observations having been made this season in the vicinity of the bar by Lieut. Comg. Fauntleroy. Two vessels, the schooner Varina and steam tender Fire-Fly, were used for this service. Inside of the entrance the additional soundings were joined with the work executed in 1857-'58 by the party of Lieut. Comg, J. H. Moore, U. S. N., and from thence carried ten miles seaward to a depth of eight and a half fathoms. North and south the hydrography of the approaches was developed within a stretch of about ten miles. On the resulting chart, the limits of which are marked on Sketch No. 16, the character of the approaches is shown within an area of ninety-four square miles.

Observations were made at two current stations while the work was advancing, and the tides were recorded from the 27th of February until the completion of the survey, on the 27th of April. The soundings were frequently interrupted by bad weather. A synopsis of the statistics follows, as given in the report made on concluding the survey:

Number of theodolite stations	6
Angles of determination	45
Angles observed in sounding	1,018
Miles run in sounding	616
Number of casts of the lead · · · · · · · · · · · · · · · · · · ·	29,404

The importance of Sapelo entrance as a harbor is well set forth in some remarks contained in the report of Lieut. Comg. Fauntleroy, extracts from which will be found in Appendix No. 30.

Surveys made by this party subsequent to the completion of work at Sapelo bar have been described in this chapter, and under the head of Section II its more recent occupation has been noticed.

Two sheets, containing the hydrography of Sapelo sound and river, were received from Lieut. Comg. Moore, previous to his detachment from the Coast Survey.

Tidal observations.—The permanent self-registering tide-gauge at the custom-house wharf, Charleston, S. C., under the charge of Mr. W. R. Herron, has been kept up with great regularity throughout the year.

SECTION VI.

FROM ST. MARY'S RIVER TO ST. JOSEPH'S BAY, INCLUDING THE EASTERN AND PART OF THE WESTERN COAST OF FLORIDA, WITH THE FLORIDA REEFS AND KEYS.—(Sketch F, Nos. 20 and 21.)

The progress made in the survey of the Florida reefs and keys has permitted additional parties on the main coast. There have been at work in this section—one party on the line across the head of the peninsula; one triangulation party near St. Augustine; one near Indian river; one on the inner keys, between Cards' Sound and the Gulf of Florida; one in Charlotte harbor; one topographical party on the coast of Key Biscayne and Cards' sound and the keys near Cape Sable; one at Charlotte harbor; one hydrographic party upon the reef and in the Florida channel and Gulf Stream. Observations of the tides have been completed at three stations, and the permanent tidal station at the Tortugas has been kept up for comparison.

The following chapter gives an account of the operations of these several parties, under distinct heads, as follows:

- 1. Air-line triangulation across the Florida peninsula.
- 2. Triangulation of St. Augustine harbor and North river, Florida.
- 3. Triangulation of Indian river inlet, Florida.
- 4. Triangulation of the Florida keys.
- 5. Triangulation of Charlotte harbor, Florida.
- 6. Topography.—Key Biscayne bay, Cards' sound, and Florida keys, near Cape Sable.
- 7. Topography of Charlotte harbor, Florida.
- 8. Hydrography of the Florida Reef.
- 9. Tidal observations.

Office-work.—Progress has been made in the drawing and engraving of coast map and chart No. 68, Florida reefs from Key Biscayne to Carysfoot reef, and in the drawing of Nos. 70, 71, and 72, Florida reef and keys from Long key to Marquesas key.

Air-line triangulation across the Florida peninsula.—This work was resumed in January, and continued until the 4th of June. The party engaged in its prosecution was conducted by Capt. M. L. Smith, U. S. Topographical Engineers, Assistant Coast Survey. Messrs. J. S. Bradford and W. H. Gardner were assigned as aids at the outset of the season, and Mr. J. C. Young before its close.

In allusion to the progress made and impediments found as the triangulation advanced southward and westward from Big creek and Padgett station, both of which are shown on Sketch No. 20, Capt. Smith remarks: "It was supposed at the commencement of the season that the ground to be passed over would prove more favorable than that met with during the previous year, but the contrary was the case. New River swamp, which, according to the maps of the interior, our lines should have missed, covers much of the ground traversed by one of the sides of each triangle. The section of country through which they pass is more or less densely timbered, and the lines forming their sides had to be opened foot by foot with the axe. When it is considered that thick pine woods offered the most favorable cutting required in carrying the work forward, the remainder and about an equal portion being through the swamps and matted bogs of the south, the extent of the labor may be judged of. The opening of the lines constitutes the main item of expense attending the triangulation."

Mr. J. S. Bradford was in active charge of the party under the direction of Capt. Smith, and is mentioned, in conjunction with Messrs. Gardner and Young, as having pressed the work with constant energy and interest. In opening the lines, which stretch in the aggregate a hundred miles, the patient endurance of the aids was such as to call forth the warm commendation of the chief of the party.

The work has now advanced from Fernandina about eighty miles in the direction towards Cedar keys, and two more seasons' work, with favorable weather, will probably complete the line; but with impediments like those encountered this year it would require three.

Operations were closed for the season at Waldo station, which is about twenty-eight miles southwest of the station at which the triangulation was resumed in January. Five signals were erected, and ninety angles measured in extending the triangulation to its present limit.

A topographical sheet, embracing the tract over which the season's work extends, has been filed in the office.

Triangulation of St. Augustine harbor and North river, Fla.—The survey of the western coast of Florida was commenced on the 4th of January by Sub-Assistant Benjamin Huger, jr., in the vicinity of St. Augustine. After selecting a site suitable for a base line on the pine barren about a mile west of the city, a triangulation was laid out to extend over the harbor, and north and south of it along the coast. The preliminary base was measured early in June with the contact slide apparatus devised by Assistant Hilgard, and described in my report for 1857. Sketch No. 20 shows the location of the line, and also the system of triangles connected with it. The angles were determined with the ten-inch Gambey theodolite, C. S. No. 74.

Above St. Augustine the completed triangulation stretches twenty miles, and embraces throughout that distance the course of the North river. The scheme was laid out and signals erected along the shores of Matanzas river for carrying the work twelve miles southward from

the base, but the late period of the season reached in the performance of that service made it necessary to postpone the measurement of the angles until the coming winter.

Mr. Rufus King, jr., served as aid in the triangulation party.

The progress made in the field-work is exhibited by the summary of statistics given below:

Stations occupied · · · · · · · · · · · · · · · · · · ·	24
Signals observed on	38
Angles measured · · · · · · · · · · · · · · · · · · ·	158
Number of observations	2,696
Area of triangles, (square miles)	50

Field operations were continued in the neighborhood of St. Augustine until the 23d of June. Sub-Assistant Huger, after returning to the north, duplicated and turned in the records of his observations, and then commenced the computations connected with the work.

In the latter part of April, while on a tour of inspection at the south, I visited the site then occupied by the triangulation party, and was gratified with an examination of the arrangements for working in accordance with the plan laid out.

In reporting on the progress of the party, Mr. Huger expresses his obligation to G. R. Fairbanks, esq., vice president of the Florida Historical Society, for information in regard to localities falling within the limits of its operations. The arrangements of the party are now in progress for returning to extend the coast triangulation southward from St. Augustine.

Triangulation of Indian River inlet, Fla.—In the field arrangements made at the opening of the surveying year a new centre of work was selected for extending the triangulation of the eastern coast of the Florida peninsula, the execution of the details being entrusted to Sub-Assistant J. A. Sullivan. The intention of commencing in the immediate vicinity of Cape Cañaveral, and pushing the work towards St. Augustine, was found to present greater obstacles without a corresponding advantage over a beginning made lower down the coast, and in consequence the party proceeded to Indian River inlet. Mr. Sullivan made a reconnaissance in the middle of January for a base site and for stations to connect with it, so as to lead either northward or southward, as might prove most expedient in prosecuting the triangulation. The site chosen rests on the narrow strip of land which separates Indian river from the Atlantic ocean, and is marked on Sketch No. 20.

A preliminary measurement, without correcting for the temperature of the rods used, gave for the line an approximate length of 2,860 metres. Sub-Assistant Sullivan made a topographical survey of the immediate vicinity of the base, and on his return deposited in the office the sheet containing it. As the line passes close to the water margin of the Atlantic, the ends were referred back eight metres from the beach, and carefully secured by placing stone posts on a sand ridge above the ordinary action of the ocean swell. Each terminus was marked by two stone blocks about two feet in length, surrounded by wooden curbs, and having range marks cut on them to correspond with the terminating points of the line laid out on the beach.

The preliminaries being completed, five stations were established, with signals visible over the high mangrove keys which lie inside of Indian river and abreast of the inlet. These connect with both ends of the base line. The scaffolds erected are twenty-five feet in height. Two of the stations rest on the western side of Indian river, as will be seen by reference to the Sketch; the others on the strip of land south of the inlet.

The time allotted for observations with the theodolite proving unfavorable, materials were

prepared for the second order signals required along the shores of Indian river, in which duty the party was occupied until the 25th of March.

Sub-Assistant Sullivan commends the zeal, perseverance, and hearty spirit of co-operation shown by his aid, Mr. R. M. Stiles, in all the labors of the season. Special reference is also made in the field report to the courtesies and assistance rendered to the party by Major W. F. Russell, of Fort Capron.

The schooner Benjamin Peirce, which was used in prosecuting the work at Indian river, was caught in a gale and damaged, on the return passage, off Cape Cañavaral. After the necessary repairs at Savannah, the vessel proceeded north, and was laid up at New York.

In June Mr. Sullivan was assigned to duty in Penobscot bay, the details of which have been given under the head of Section I. His party is now about to return to continue the triangulation near Fort Capron, Fla.

Triangulation of the Florida keys.—For continuing duty on that part of the Florida reef which approaches nearest to the Cape Sable base, the party of Lieut. A. H. Seward, U. S. A., Assistant Coast Survey, took the field on the 13th of December, using the schooner Torrey for transportation. After putting up the requisite signals, the triangulation inside of the reef was resumed at Lignum Vitæ key, and extended eastward sixteen miles to Pigeon key. The triangles laid out and measured, as well as the general progress made in the survey of the keys, will be seen by reference to Sketch No. 21. At several of the stations used by Lieut. Seward tripods, for the theodolite, were found necessary, the platforms of which were elevated to a height of twenty-eight and thirty feet from the surface of the keys on which they rested. The work was somewhat retarded by the difficulty of passing the vessel through the intricate channels of that part of the reef, favorable winds only enabling the party to move from one station to another. Lieut. W. Myers, U. S. A., assisted Lieut. Seward in the field.

The angular measurements were made with the ten-inch Gambey theodolite, C. S. No. 15. It will be seen by Sketch No. 21 that this triangulation connects with the work of last year, stretching from Cape Sable, and that it reaches well towards a junction with the triangulation which extends along the main of the peninsula from Cape Florida into Barnes's sound.

The statistics for the season, terminating on the 2d of April, are as follows:

Stations erected · · · · · · · · · · · · · · · · · · ·	11
Stations occupied · · · · · · · · · · · · · · · · · · ·	11
Number of observations	,
Area included in triangles, (square miles)	62

Descriptions of the signals, and a duplicate of the record of horizontal angles, have been received at the office.

On closing for the season the vessel was despatched for New York, and was there laid up during the summer. The keys yet remaining to be defined in position and outline are surrounded by water so shallow as to render the approach to them very difficult.

Triangulation of Charlotte harbor, Fla.—This work has been continued and nearly completed by a party in charge of Lieut. W. R. Terrill, U. S. A., Assistant Coast Survey, who made a reconnaissance for its extension above Captiva Pass in the latter part of December. Signals were erected on the chain of islands which lie outside and abreast of Charlotte harbor, and along both of its shores to a distance of thirty miles, terminating at Mangrove Point, the position of which is shown on one of the progress sketches of this section, (Sketch No. 20.)

The signal at Captiva Pass, erected and used in the winter of 1857-'58 by Lieut. J. C. Clark, U. S. A., had been washed away, and, in consequence, it became necessary to reoccupy the station connecting with it to the southward on Captiva island. At three stations in the range of this season's work Lieut. Terrill observed from scaffolds fifty feet in height, the lines passing over dense mangrove, through which cuttings for sight on the signals would have involved great expense of labor and time.

The measurement of angles was begun early in January with the ten-inch Gambey theodolite, C. S. No. 81, and was prosecuted at all favorable intervals until the 1st of April, the completed observations then resting for the season at station Oso, lying outside, and station Torrey on the eastern shore of Charlotte harbor. Both of these stations are marked on Sketch No. 20. Points for the use of the topographical party, conducted jointly by Sub-Assistants Dorr and Ferguson, were provided as the triangulation advanced.

Sub-Assistant Clarence Fendall joined the party of Lieut. Terrall at the opening of the year, and assisted him in the field until the 13th of March. Mr. C. B. Baker served as aid during the season. The schooner Bowditch reached New York, on her return from this section, on the 14th of April.

In the report made by Lieut. Terrill the following abstract is given, showing the progress made by the party while working under his direction:

Number of signals erected · · · · · · · · · · · · · · · · · · ·	24
Stations occupied	11
Signals observed on · · · · · · · · · · · · · · · · · ·	24
Angles measured	75
Number of observations	4,376

The triangulation completed this season covers an area of about a hundred and thirty square miles. The original records of angles, as observed in the prosecution of the work, and descriptions of the stations and signals, have been received at the office.

Lieut. Terrill resumed field duty in June with the party of Assistant Edmund Blunt, reference to which was made in describing the work done in Section II. Sub-Assistant Fendall was at the same time assigned to plane-table duty, as stated under Section I.

Topography—Key Biscayne bay, Cards' sound, and Florida keys, near Cape Sable.—With a view of pushing the plane-table work in the vicinity of the Florida reef as far as practicable with a single party, the schooner Agassiz was despatched from Baltimore on the 28th of October, 1858. Much rough weather delayed the vessel, and, in consequence, the working station in Key Biscayne bay was not reached until the 20th of November. After making a reconnaissance, and setting up signals on the western shore of the bay, Sub-Assistant C. T. Iardella started with the plane-table at Shoal Point, and traced in the main shore of the peninsula of Florida, southward and westward to Clay Point, a distance of over thirty miles in a direct line. The tongue of land which from thence projects towards the reef was followed up to the narrow creek dividing it from Key Largo, and the survey of the western side of that key was completed. The shore of the main within the limits just stated is broken by thirty-three small creeks, all of which are represented on the plane-table sheets. Several small keys lying in the lower part of Key Biscayne bay, and in Cards' sound, were also surveyed. This work is embraced on four sheets, the localities included in each of which are marked on Sketch No. 21

The triangulation in Barnes's sound not admitting of further progress in the topography until

pushed southward, Mr. Iardella moved his party to the vicinity of Buchanan key and projected two sheets to include the numerous small keys intervening within the stretch of about sixteen miles between it and Sandy key in the direction towards Cape Sable. These fall within the triangulation executed last year by Lieut. A. H. Seward, U. S. A. Twenty-three keys were surveyed, the largest of which is about three-quarters of a mile in length. The positions of the principal ones are shown on the progress Sketch, No. 21.

Sub-Assistant Iardella discontinued work on the 6th of April, and on the 22d of that month reached New York, where the vessel was laid up.

Mr. F. F. Nes aided in the topographical work, and rendered satisfactory service in the several duties pertaining to the field operations.

In the two localities in which the party was employed great obstacles exist to retard steady progress and to render the work very difficult, and in some places hazardous. Notwithstanding these, the amount of work embraced on the six sheets shows a result which nothing but patience and great energy could have accomplished. The remark just made is also borne out by the statistics, which are as follows:

Shore-line surveyed · · · · · · · · · · · · · · · · · · ·	168 m	iles.
Marsh-line traced · · · · · · · · · · · · · · · · · · ·	16	"
Area represented in detail, (square miles)	40	14

The operations were carried on over an area of more than three hundred square miles. All the sheets containing the work have been inked and deposited in the archives.

As descriptive of the character of this part of the coast of the Florida peninsula, the following extracts are given from the report of Mr. Iardella:

"The main shore, from Shoal Point ten miles southward, consists of a strip of uneven breadth of prairie land called the 'Hunting Grounds.' At some points it is quite narrow, but at others it stretches to a distance of six miles from the western shore of Key Biscayne bay, and is backed by a ridge of high land about a quarter of a mile in width. The ridge as far as Fender Point is covered with large pine trees, but below it, and as low down as Barnes's sound, it bears a heavy growth of black mangrove and other trees. Throughout the entire distance of thirty miles the shore is overflowed by high tides, in some places to a breadth of three or four miles.

"The western shore of Key Largo from Jewfish Point to Largo North, a distance of thirteen miles, is also overflowed at high spring tides; and on many occasions, while engaged there, the surface was found so soft as to require a foundation of mangrove branches for the plane-table. Beyond its western shore this key is covered with buttonwood, mangrove, sea-grape, and other woods. In an extended reconnaissance over that part of Key Largo, very little fast land was found, and no soil fit for the growth of vegetables.

"The small keys between Lignum Vitæ and Sandy key are surrounded by extensive mud flats, and are entirely covered with water at high tides. Great difficulties were experienced in obtaining stations for the plane-table, the surface being of the nature of quicksand, into which a man of ordinary weight would at once sink to the waist. Here a triangle of wood six feet on a side was necessary to support the plane-table."

Topography of Charlotte harbor, Fla.—The progress made in extending the survey of this harbor is shown on Sketch No. 20. Early preparations for resuming work were made at the opening of the surveying year, by Sub-Assistant F. W. Dorr; but the schooner Dana, which

sailed from Baltimore on the 25th of November, 1858, with the equipage and instruments of the party, was kept nearly a month on her passage to Key West by storms and head winds. Sub-Assistant Charles Ferguson was associated with Mr. Dorr; and after making arrangements for working jointly to the best advantage, the topography was taken up at the limit reached in the previous year. The work was thus prosecuted northward until the 27th of February, when Sub-Assistant Dorr, in accordance with my instructions, returned to the north, leaving the vessel and party in charge of Mr. Ferguson, who continued plane-table duty until the 16th of March.

The work executed this season includes both shores of Charlotte harbor above its lower entrance from San Carlos bay, and nearly the same extent to the northward as fell within the limits of the triangulation, notice of which has been made in this chapter. The shores are formed by a range of narrow islands and keys on the west, and by Pine island on the eastern side. On the two sheets of this season, both of which have been inked and placed in the office, are represented the northern half of Sanibel island, Captiva island, La Costa island, the western side of Pine island, and the keys, patches, and reefs scattered over the surface of that part of Charlotte harbor which is included between San Carlos bay and Boca Grande. The distance between these last named localities, on a direct line through the waters of Charlotte harbor, is about twenty miles. Lieut. W. R. Terrill, U. S. A., who conducted the triangulation in advance of the plane-table party, furnished the points necessary for the adjustment of the topography. The following is a synopsis of statistics taken from the notes on the plane-table sheets:

In reference to two of the outlets from Charlotte harbor to the Gulf of Mexico, Sub-Assistant Dorr remarks:

- "Blind Pass, between Sanibel island and Captiva island, is merely a boat channel, for although the passage is deep in some places, the bars both inside and outside preclude the possibility of carrying through any vessel of draught."
- "Captiva Pass is about five hundred yards wide. Vessels drawing not more than five feet of water can pass through, but the channel is somewhat intricate."

The following is an extract from the report of Sub-Assistant Ferguson:

"Boca Grande, the pass between La Costa and Gasparilla islands, is the proper entrance to Charlotte harbor, containing, at low tide, fifteen feet of water, and inside of the bay three or four fathoms. Vessels passing through can carry eighteen feet some fifteen or twenty miles beyond the northern extremity of Pine island." In the Appendix (No. 31) other extracts will be found descriptive of the features peculiar to the shores of Charlotte harbor.

During the summer Sub-Assistant Dorr was engaged in plane-table duty in Section II, and Mr. Ferguson in similar service in Section III.

Hydrography of the Florida reef.—Lieut. Comg. T. A. Craven, U. S. N., having been reassigned for duty on the Coast Survey soon after his return from the expedition to the Atrato river, resumed the command of the surveying steamer Corwin, which had become vacant by a call for the services of Lieut. W. G. Temple, U. S. N., who conducted the hydrographic operations of last year on the Florida reef, as stated in my annual report. The Corwin sailed

from New York on the 19th of March, and on her arrival at the reef the general hydrography was taken up a little below Eagle cove, where it rested last season in its progress eastward along the outer line of keys. The soundings were continued in the same direction rather more than eight miles, and off the keys about six miles and a half, reaching to an average depth of forty-seven fathoms. At its upper outside limit, as shown on Sketch No. 21, the work now connects with soundings made in the vicinity of Coffin's Patches, by Lieut. Comg. Craven, in 1854. The following statistics are derived from the journals of the present season:

Number of positions for angles	1,206
Angles taken · · · · · · · · · · · · · · · · · · ·	3,198
Miles run in sounding	$\bf 462$
Number of casts of the lead · · · · · · · · · · · · · · · · · · ·	18,130

The resulting hydrographic sheet will exhibit an area of about sixty square miles.

Since the opening of the season two charts have been plotted from soundings made by Lieuts. Comg. Craven and Temple, and placed in the office with the original journals and records of the angles. These connect with each other, and contain the hydrography between American shoal and Eagle cove, where the upper limit of the most northern sheet joins with the work last executed.

The steamer Corwin returned to New York early in May, and after being repaired was transferred, under the command of Lieut. Comg. John Wilkinson, for duty, which has been referred to under the head of Section I.

Before leaving the Florida reef, Lieut. Comg. Craven ran two section lines across the Gulf Stream, between Cape Florida and the Tortugas, more extended notice of which will be taken presently.

In passing to the southward the steamer Corwin stood in below Cape Canaveral, and carried a line of soundings along the coast of Florida as far as St. Lucie inlet. The distance from land being estimated, the depths found have been marked as reconnaissance soundings on the Progress Sketch, No. 36.

As the result of his experience in navigating along the eastern coast of the peninsula, Lieut. Comg. Craven says: "The entire coast south of Cañaveral is safe at two miles from shore until within five miles of Cape Florida. South of latitude 27° N. the shore is bold. I have never had soundings with twenty fathoms, lead 'up and down,' within two miles of the shore. On the passage down, the rate of the current below Jupiter inlet was about two miles an hour, which is more than usual, the wind then blowing from the southeast."

All the journals containing angles and soundings taken this season on the reef have been returned and deposited in the archives.

Tidal observations.—At Fort Clinch, near Fernandina, Amelia island, Fla., observations have been kept up by means of one of the Saxton self-registering tide-gauges, the instrument being under the charge of Mr. F. A. Rebarer until the middle of December, 1858, and since that time in charge of Mr. J. A. Walker.

The self-registering gauges established by Mr. Gustavus Würdemann at Tortugas, Charlotte harbor, and Tampa bay, have given very satisfactory results during the entire year, and are now about to be transferred to stations lying further westward along the Gulf coast of the

adjoining section, (VII.) The plan laid out is to set them up so as to form a chain of stations, at which the results may be comparable with each other and with others in this section through the standard station of reference at Tortugas. It has been found impracticable to trace out the anomalies of the tides of the Gulf of Mexico from the detached and comparatively short series of observations heretofore obtained in the progress of the survey; but by the method now adopted, the observations embracing a full year at each station, and being minutely comparable with each other, the different tide waves can be followed, as it were, step by step in their advance along the coast.

GULF STREAM.

In the southern part of the Gulf Stream observations of much interest have been added in the course of the past year. These were made by Lieuts. Comg. T. A. Craven and T. B. Huger, U. S. N., assistants in the Coast Survey, after closing the general hydrographic work conducted by them in Sections VI and VIII, respectively.

Two lines for depth and temperature were run across the stream by Lieut. Comg. Craven, in the steamer Corwin, one from Carysfort light-house (Florida reef) to Orange key, (Bahama bank,) and the other from Sombrero key (Florida reef) to Double Headed Shot key, (Salt Key bank.) The data thus obtained, taken in connexion with the development of the Cape Florida section by that officer in 1855, and of the Tortugas section by Commander B. F. Sands, U. S. N., in 1858, have furnished important information concerning the form of the bottom, the depth, and the temperature of the water in a part of the Gulf Stream to which general observation would assign as its main peculiarity only the velocity of the surface current.

The bottom of the Strait of Florida slopes, at first gradually and then more rapidly, from the Florida to the Cuban side, the deepest water being found near the shore of Cuba. In this deep portion of the trough the cold polar current lies, the temperature at six hundred fathoms, off Havana, being but thirty-eight degrees of Fahrenheit. The deepest part of the strait is off the opening from the Gulf of Mexico, and it shoals towards the line from Cape Florida to Bemini, from eight hundred fathoms to three hundred and fifty. As there is but one general slope to the bottom, so there is but one band of temperature in this strait, the division into cold and warm bands beginning only to the south of the shoal portion in the Atlantic, where the bottom takes its corrugated form.

A discussion of the recent observations is given at greater length in a paper accompanying this report as Appendix No. 25. The results are graphically shown on Sketch No. 35.

On his homeward passage from the Delta of the Mississippi, in the steamer Walker, Lieut. Comg. Huger took soundings on the course towards the Tortugas, and from thence ran across to Havana. The observations made between the last named places verify the results obtained on the same line by Commander B. F. Sands, in 1858.

In the explorations this year, two hundred and thirty-five observations were made for depth and temperature, and twelve specimens of the bottom procured.

SECTION VII.

FROM ST. JOSEPH'S BAY TO MOBILE BAY, INCLUDING THE COAST OF WEST FLORIDA AND THE COAST OF ALABAMA.—(Sketch G, No. 23.)

This chapter contains notices of the following operations:

- 1. The extension of the coast triangulation on the western side of the Florida penisula, below Cedar Keys.
 - 2. Connection of the triangulations of St. Mark's harbor and St. George's sound.
 - 3. Triangulation of Santa Rosa sound.
- 4. Topography north and south of Homosassa river entrance, western coast of Florida peninsula.
- 5. Plane-table survey of the shores of Ocklokonee bay and St. James's island, between St. George's sound and St. Mark's harbor.
 - 6. Topography of part of Santa Rosa sound, Fla.
 - 7. Hydrographic re-examination of the Cedar Keys channels.
 - 8. Hydrography of St. George's sound.
 - 9. Tidal observations.

Two triangulation parties, one for triangulation and topography, two topographical, and two hydrographic parties have been at work in this section, the second, and one of the last named during only a portion of the season.

Office-work.—The drawing and engraving of the preliminary chart of the eastern part of St. George's sound have been completed, as also the engraving of the preliminary chart of Pensacola harbor. The drawing of the preliminary chart of Apalachicola bay has been finished at the office, and has since been engraved on stone under the direction of the Superintendent of Public Printing.

Coast triangulation south of Homosassa river, Fla.—Two parties, operating jointly as heretofore, left Baltimore on the 15th of December, with the schooner Joseph Henry, to continue the triangulation and topography of the western coast of Florida, below Cedar Keys. Sub-Assistant G. H. Bagwell, in charge of the triangulation, resumed duty at a station near the mouth of Homosassa river, and carried the work twenty-five miles southward, to the vicinity of Bayport, where he closed for the season at the end of March. Sketch No. 23 contains a scheme of the triangles, and shows also the progress which has been made in the other branches of the survey in this section. It will be seen, by referring to the sketch, that the reefy and broken character of the coast approach, as represented on the preliminary chart of Cedar Keys, (Sketch No. 33, C. S. Report for 1855,) holds as far as the parties have advanced to the southward from that centre of work. Mr. Bagwell thus remarks, in reference to that part passed over since the opening of the present surveying year, as connected with the stretch lying northward of it: "The main surface consists of vast flats and shoals which extend miles to seaward from the western shore of Florida, the water gradually deepening off among the dangerous rocks of St. Martin's reef."

"Most of the stations observed from were occupied with scaffolds, some of which were built as high as thirty feet, in order to see over the thick hammocks of palmetto and mangrove that obstructed the view. The coast over which the work extended presents many obstacles to triangulation. The chain of keys and shell reefs, on which the outer sides of the triangles rest

from Cedar Keys southward to Chassahowitzka Point, end at the latter place, and below it suitable outer points could be established only by building stations in shallow water. At these a foot or more in depth is left at low tide."

In the course of his work, Sub-Assistant Bagwell determined positions for the use of the topographical party of Sub-Assistant Finney, who co-operated also, as far as practicable, in pushing the triangulation.

The field statistics are as follows:

Stations occupied · · · · · · · · · · · · · · · · · · ·	12
Signals observed on	29
Angles measured	78
Number of observations	2,060

The observations were made with the-eight inch Würdemann theodite, C. S. No. 86.

During an interval unfavorable for the measurement of angles, Mr. Bagwell made a reconnaissance of the coast from Bayport southward, and through St. Joseph's bay to the southern limit of the section. About thirty miles below Bayport a fine site for a base was found on a straight level strip of sand beach at the north end of Chaldee's key. The length practicable for measurement he reports as being nearly three miles. Between Bayport and Anclote key, a distance of fifteen miles, the difficulties before alluded to in regard to outside stations remain to be encountered. As the result of his observations in reconnaissance beyond that, Mr. Bagwell says: "Southward from Anclote key the triangulation can readily be extended with sides of from two to five miles over St. Joseph's bay and Clear Water harbor."

Mr. M. O. Hering rendered acceptable aid in all the operations of the triangulation party. Before taking the field, the records of last year were duplicated and sent to the office with the observer's computation of results. In April the schooner Joseph Henry returned to New York and was laid up for the summer. Sub-Assistant Bagwell soon after joined the party of Assistant Edmund Blunt, and aided him in the triangulation under his charge in Section II.

Triangulation east and west from St. Mark's, Fla.—The triangulation from St. George's sound, which rested last year at the eastern end of St. James's island (S. W. cape,) was taken up at that point, by Sub-Assistant Spencer C. McCorkle, on the 16th of December. After making a reconnaissance for pushing the work eastward towards St. Mark's and Ocilla river entrance, a system of short lines was determined on, extending over Ocklokonee bay. Such of the lines as required cutting were then cleared and the necessary signals erected. The angular measurements were commenced on the 25th of January, and continued until near the end of April, when a junction was made between the triangulation thus carried from St. George's sound and that executed at St. Mark's river by Mr. McCorkle in 1856. Stations were also erected eastward of St. Mark's and preliminary measurements made in the series of triangles designed to connect that work with the triangulation of Ocilla river. As the operations of the party progressed on the shores of Ocklokonee and Dickerson's bays, points were determined and furnished for the use of the plane-table party of Assistant Wise. An abstract of the statistics is given below, as contained in the report of Sub-Assistant McCorkle:

Stations occupied · · · · · · · · · · · · · · · · · · ·	19
Angles measured	70
Number of observations	1,404
Area of triangulations, (square miles)	90

The instrument used was the six-inch Gambey theodolite, C. S. No. 55. Sketch No. 23 shows the arrangement of the triangles. The distance from the starting point of the season's work (S. W. cape) to St. Mark's light-house is about twenty-five miles.

In his general report Sub-Assistant McCorkle commends the zeal and intelligence shown by Mr. A. W. Thompson, who aided him both in the field and office work of his party.

On closing work, the schooner Franklin, which had been used for the transportation of the party and materials for the stations, was laid up at Apalachicola.

Mr. McCorkle has sent to the office the original and duplicate of the record of angles measured this season, together with his computation for the lengths of triangle sides.

Triangulation of Santa Rosa sound, Fla.—This work was taken up by Assistant F. H. Gerdes in March, after closing similar duty at the Mississippi delta, reference to which will be more particularly made in the next chapter. The triangulation of Santa Rosa sound joins with that of Pensacola bay on the line connecting Fair Point with a station near the western end of Santa Rosa island, as may be seen on the progress sketch of the section, (Sketch No. 23.) From thence a chain of triangles extending six miles eastward was laid out and measured with the Würdemann theodolite, (C. S. No. 87,) the points requisite for the topographical survey being also determined as the triangulation advanced. A synopsis of the statistics is appended:

Signals erected · · · · · · · · · · · · · · · · · · ·	10
Stations occupied · · · · · · · · · · · · · · · · · · ·	10
Angles measured ····	30
Number of observations	288

Assistant Gerdes was aided in the field by Mr. G. U. Mayo. Soon after the close of work the record of angles observed was duplicated and sent to the office, with an abstract in the usual form.

Topography north and south of Homosassa entrance, West Florida.—The party in charge of this duty was conducted by Sub-Assistant N. S. Finney, and, as heretofore, co-operated in the triangulation work in its progress southward from Cedar Keys, special notice of which has already been made in this chapter.

Mr. Finney resumed the plane-table survey at Mangrove Point, two miles southwest of Crystal reef signal, and traced in outline the entire barrier of islands, rocks, and shell reefs, which extend about seven miles to the southward. These form the most strongly-marked feature of that part of the coast of Florida. The sheet containing the detailed work was terminated at the mouth of the Homosassa river.

An additional vessel for the use of the topographical party not being available, it was found necessary to pass by for the present season a few miles of the coast below Homosassa entrance, in order to keep pace with the triangulation, the same vessel serving for the transportation of the two parties. Plane-table work was therefore taken up at the Chassahowitzka entrance, (Sketch No. 23,) and carried southward about seven miles further to Raccoon Point, the triangulation being still a few miles in advance of it. The characteristics before alluded to apply also to the coast south of the Chassahowitzka river. Both of the sheets containing the results of the survey are marked in positive and in relative proportions on the progress sketch of the section, but the reduced scale gives, of necessity, only a partial idea of the peculiar features contained on the originals. Exclusive of portions of the shore-line of the main land and numerous shell reefs, the sheets represent two hundred and thirty-six soft, marshy islands

as existing within an area of thirty-five square miles. In some places the belt of islands extends five miles beyond the main shore. Above the mouth of the Chassahowitzka the islands are covered at high water, but the marsh of which they consist lies somewhat higher is much less broken than in other localities, and the zone of patches which lie between the deep water of the Gulf and the firm land of the peninsula becomes narrower.

The plane-table survey was discontinued for the season at a station about five miles north of Bayport.

In the report of Sub-Assistant Finney favorable mention is made of the services rendered by Mr. J. L. Tilghman, who accompanied him in the field as aid. The statistics of work are thus given in the same report:

Plane-table stations occupied · · · · · · · · · · · · · · · · · · ·	413
Points determined · · · · · · · · · · · · · · · · · · ·	1,320
Shore-line surveyed at high water, (main, islands, and reefs)	176
Shore-line at low water · · · · · · · · · · · · · · · · · · ·	54
Area of topography, (square miles)	35

In the field report Mr. Finney expresses his obligations for courtesies extended by Captain James Tucker, of the mail steamship Madison, and for assistance rendered to his party by Colonel E. H. Richards and W. P. Peginan, esq., postmaster at Cedar Keys.

Sub-Assistant Finney was employed during the summer in Section II, as stated in the corresponding division of this report.

Topography of Ocklokonee bay and St. James's island, Fla.—The party of Assistant G. D. Wise, having last season completed the plane-table survey of St. George's sound, started early in January at the terminating limit on St. James's island of the topography commenced and partly executed by Sub-Assistant C. T. Iardella in the season of 1857-'58. The survey of the northern part of the island was completed by Mr. Wise, and on the same sheet the work extended so as to include the shores of Ocklokonee bay. Some progress was also made on a second sheet projected to contain the details of the vicinity of Dickerson's bay and of the coast running from its entrance towards St. Mark's. The localities of the work are marked on Sketch No. 23. The return in statistics is as follows:

Shore-line surveyed · · · · · · · · · · · · · · · · · · ·	
Roads surveyed · · · · · · · · · · · · · · · · · · ·	 10 "
Area of plane-table sheets, (square miles)	 46

This survey rests on the triangulation executed within the present season by Sub-Assistant S. C. McCorkle.

Mr. C. W. Duval served as aid in the plane-table party. The work was prosecuted with the use of the schooner Howell Cobb, and on the close of operations the vessel left for the north, and was laid up at Baltimore.

With reference to the Ocklokonee shoal, which lies off the eastern end of St. James's island, Assistant Wise remarks: "The shoal having only two or three feet of water, and being right in the track of a large trade, has occasioned the loss of many valuable cargoes. The bell-buoy which was placed on it soon broke adrift, and, after washing ashore on St. George's island, was

finally lost. It is the opinion of many shipping-masters of the vicinity that a light-ship would best answer the purposes of navigation here as a beacon to mark the shoal."

Topography of Santa Rosa sound, Fla.—After completing the triangulation described under a previous head, Assistant F. H. Gerdes proceeded at once with the plane-table, and surveyed that part of Santa Rosa island which lies in the immediate vicinity of Little Sabine bayou, having an extent of about six miles of Gulf coast on the outside, and the same of inner shoreline. The topographical sheet includes also the opposite shore of Santa Rosa sound from Deer Point eastward to the present limit of the triangulation. An aggregate of twenty-two miles of shore was traced within an area of ten square miles. Sketch No. 23 shows the limits of the plane-table work. This survey furnishes all the topographical details necessary for the chart of Pensacola harbor, an edition of which in a preliminary form has been issued from the office.

Mr. G. U. Mayo aided in the triangulation and plane-table survey of Santa Rosa sound. The work was continued until the middle of May, when Assistant Gerdes proceeded north and reported at the office. His party had been previously employed in Section VIII, as will be noticed further on.

Re-examination of the Cedar Keys channels, Fla.—On his way to Section VIII, Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, with the hydrographic party in the steamer Walker, stopped at Cedar Keys and sounded out the Main, the North key, and the northwest channels leading into that harbor. The work was performed in the early part of January, and under disadvantages arising from fogs, rain, and northerly winds. As a consequence of the prevailing wind during the period of the stay of the party, the rise and fall of the tide were reduced much below the average, the fall in particular being greater for several days than had been observed in the course of the preceding year.

Lieut. Comg. Huger states that the breadth of the bulkhead across the main channel varies from one hundred to three hundred yards, and, in his opinion, the surface of it could readily be removed so as to afford a depth of twelve feet at low water. An examination made by the party confirmed the facts heretofore reported in regard to the structure and character of the bar.

Lieut. Comg. Huger says: "It is composed of a crust of sand and shells easily penetrated, and after passing through it the bottom is soft, consisting, I think, of mud and sand. I had it sounded with an iron rod, and on trying the heavy lead and specimen cup, found no difficulty in sinking it sufficiently deep to obtain a good specimen."

The soundings made at Cedar Keys were plotted at Pensacola while the steamer was taking in supplies, and the chart on being completed was sent to the office, with the following abstract of statistics:

Miles run in sounding	166
Angles measured	1,242
Number of soundings	15,102
Area of hydrography, (square miles)	5

Lieut. Comg. Huger reports that the northwest channel into Cedar Keys presents, in respect of capacity and direction, several advantages over the channel now used for vessels bound to ports lying westward in the Gulf of Mexico.

Having been fitted out for hydrographic duty in Section VIII, the vessel cleared from Pensacola on the 15th of January for Atchafalaya bay. The work done by the party subsequent to that date will be described in the next chapter.

Hydrography of St. George's sound, Fla.—The party of Lieut. Comg. J. K. Duer, U. S. N., Assistant Coast Survey, resumed work in the vicinity of Apalachicola with the steamer Vixen on the 3d of December, and executed portions of the hydrography inside and abreast of the West Pass. The new channel leading into the sound past the eastern end of Dog island was thoroughly examined, with results confirming those reported after the reconnaissance made last year, that it is by several feet the deepest pass into St. George's sound at all seasons. But the known irregularities of the tides affecting the depth of water in the eastern part of the sound render the determination of the mean rise and fall somewhat difficult without a wider range in the observations than is ordinarily necessary for hydrographic purposes. In order to elucidate the normal peculiarities of the tide wave in its progress along that part of the Gulf coast, series of observations have been directed to be made with self-registering gauges, and arrangements for commencing them are now in hand.

The hydrographic work allotted in this section for the early part of the season was frequently interrupted by bad weather. Soundings were continued until the 10th of March, the vessel and party being then transferred for duty to Section IX, the operations in which will be described in another chapter.

Lieut. Comg. Duer, who had preceded the return of the steamer Vixen to Apalachicola, died at that place on the 14th of June, after which the charge of the party devolved on Mr. A. W. Muldaur, as executive officer, until the assignment of Lieut. C. C. Sims, U. S. N., who took command on the 1st of July and proceeded with the vessel to New York.

As part of a summary report made at the end of the season by Mr. Muldaur, the following statistics are given of the work done in St. George's sound:

Miles run in sounding	$\bf 564$
Angles measured	1,499
Number of soundings	25,060

In the death of Lieut. Comg. Duer the survey has lost the services of a zealous and industrious officer, whose career on the work seemed ever to be marked by devotion to its best interests. He was prompt to act, and thorough in the execution of details assigned to his charge. His discovery of the new channel into St. George's sound, and which now bears his name, will closely associate his memory with the hydrographic history of this section. I have elsewhere more specially alluded to the circumstances attending his untimely death.

My public acknowledgment is here due to Lieut. Sims for the important service rendered by him in accepting the charge of the steamer Vixen when the official command of that vessel was left vacant by the decease of Lieut. Comg. Duer.

In March, while the party was employed near Apalachicola, assistance was rendered to the schooner Lucy Weltham, of Wilmington, N. C., which had gone ashore on the east bank of the West Pass. Similar service was afforded from the Vixen to the mail steamer Galveston in June, when grounded on the east side of the entrance to Apalachicola harbor.

Tidal observations.—The self-registering gauge established at Cedar Keys for recording observations simultaneous with those made at Egmont key, Charlotte harbor, and Tortugas,

has been kept in working order, and has given satisfactory results. The gauges were attended to by Mr. Gustavus Würdemann, who devoted to them his usual care and attention.

I am indebted to S. Thayer Abert, esq., civil engineer at Warrenton navy yard, for the records of a self-registering gauge, the charge of which he kindly undertook when it was set up at that station. Through the interest taken by that gentleman in the subject, the records, as received at the office, have been found highly satisfactory.

As intimated under the head of Section VI, a series of stations are about to be established from St. Mark's westward, along the shores of St. George's sound, and extending as far as Cedar keys to the eastward. By these it is expected that the anomalies noticed in the tides of this part of the Gulf coast may be fully developed.

SECTION VIII.

FROM MOBILE BAY TO VERMILION BAY, INCLUDING THE COAST OF THE STATE OF MISSISSIPPI AND PART OF THE COAST OF LOUISIANA.—(Sketch H, No. 26)

Two triangulation and topographical parties, one a double party, one topographical party, and one hydrographic party, have been occupied in this section, and their progress is described in the following chapter under the heads of—

- 1. Triangulation and topography of Isle au Breton sound, La.
- 2. Triangulation of the Mississippi delta, La.
- 3. Triangulation of West Côte Blanche bay, La.
- 4. Topography of Lake Pontchartrain, La.
- 5. Topography of the Mississippi delta, La.
- 6. Topography of West Côte Blanche bay, La.
- 7. Soundings in the Rigolets, La.
- 8. Hydrographic reconnaissance of Pass à l'Outre, Mississippi delta.
- 9. Hydrography of Atchafalaya and Côte Blanche bays, La.

Office-work.—The preliminary chart of Atchafalaya bay has been drawn and engraved, and the engraving of coast maps and charts Nos. 91 and 92, Mississippi sound and Mobile bay, from Bon Secours bay to Grand island, has been in progress.

Triangulation and topography of Isle au Breton sound, La.—Connecting with stations of the primary triangulation westward of Mississippi sound, others have been occupied suitable for carrying a branch southward from the general series of triangles, so as to include the survey of Chandeleur sound and that of Isle au Breton sound. This duty was intrusted to Sub-Assistant Stephen Harris, and has been successfully accomplished, as will be seen by the plan given on Sketch No. 26, the triangulation now extending as low down as Point Fortuna, or within twenty miles of the Mississippi river.

In order to join properly with the completed range of triangles resting on Lake Borgne, Mr. Harris was directed to reoccupy the station Nine Mile Bayou, which had been used in the primary work, but the granite block placed there as a mark in 1852 could not be found. The shell bank in which it was then fixed had in the interval been removed as material probably for roads. After making a reconnaissance to the southward with the schooner Twilight, Mr. Harris resumed the triangulation at station Sand Fly early in December. In passing towards Isle au Breton sound, numerous tertiary points were marked and plotted on a plane-table sheet, on which was afterwards traced in a large portion of the irregular shore-line forming the western side of Chandeleur sound. This was done with the plane-table at intervals which

would not admit of observations on the longer lines of the triangulation. The work being in that manner completed some distance southward, the vessel was moved to Isle au Breton sound for more convenient access to the stations remaining to be occupied. In addition to the angular measurements in that vicinity and others at stations connecting with the triangulation of Chandeleur sound, a second plane-table sheet, commenced in 1857, was completed in the course of the season which closed in the latter part of May.

The reconnaissance made by Sub-Assistant Harris extended over an area of about two hundred and thirty square miles. He thus reports the statistics of the triangulation:

Stations occupied · · · · · · · · · · · · · · · · · · ·	
Signals erected and stations marked	28
Objects observed on	41
Angles measured	110
Number of observations	1,770
Area of triangulation, (square miles)	180

The Würdemann theodolites, ten inch, No. 79, and six inch, No. 84, were used at the stations. One hundred and fifteen miles of shore-line were traced and marked on the two plane-table sheets.

Great care was taken in regard to the triangulation points; and in reference to the means most proper for their preservation, Mr. Harris observes: "Having noticed the causes which led to the destruction of some of the stations, I adopted precautions in the following particulars: 1. The selection of stable ground not likely to be exposed to the action of water. 2. The use of a number of marks for each station, situated at such distances from each other and under such different circumstances, as to make it unlikely that all will be displaced by the same cause.

3. Distinguishing and determining each mark so that it may be recognized and its position known in case of the loss of all the other marks at the same station.

4. Making all the marks entirely separate from the observing tripods and scaffolds."

Full descriptions of the stations and signals used this season, and of the marks placed to identify them, have been made by Mr. Harris and placed in the office. He has also turned in his computations and records of the previous year.

The field operations of the party were aided by Mr. R. E. Halter, who executed the greater part of the plane-table work, and by Mr. H. W. Bache.

After his return to the office, Sub-Assistant Harris engaged in the computations depending on the work of the season.

Triangulation of the Mississippi delta, La.—In continuation of the work in this quarter, Assistant F. H. Gerdes resumed operations at the opening of the year, and prosecuted the survey of the delta until the middle of March. He was assisted by Sub-Assistant J. G. Oltmanns and Mr. G. U. Mayo. After replacing and determining the positions of the signals displaced by recent storms, Mr. Gerdes reoccupied six of the secondary stations, and connected with the general scheme of triangles a number of tertiary points suitable for the plane-table survey of Southeast Pass, Pass à l'Outre, the North Pass, the mud flats in that vicinity, and Robinson's reef, together with the shores of Bay Rondo, and the banks of the Mississippi at the head of the passes. The plan of the work, as far as executed, may be seen by reference to Sketch No. 26. Notice of the topographical survey will be taken in a subsequent part of this chapter.

The statistics of the triangulation are as follows:

Signals erected · · · · · · · · · · · · · · · · · · ·	29
Stations occupied · · · · · · · · · · · · · · · · · · ·	12
Angles measured	. 74
Number of observations	1,264

In my report of last year allusion was made to the difficulty of finding localities on the delta in which the station-marks could be secured. Assistant Gerdes reports that the peculiar obstacles arising from the nature of the surface increase on advancing towards the outlets, the soil being too unstable to admit of any ordinary expedients for guarding against their removal or displacement. Though insufficient in number and in their distribution as points for future reference, the light-houses and a few buildings with cupolas, being determined in position and connected with the triangulation, in some measure lessen the natural disadvantages under which the survey is advancing in this part of the section.

On closing for the season at the delta, Assistant Gerdes transferred his party to Pensacola, and took up the survey in that vicinity, described under the head of Section VII.

In the course of the summer the records of the triangulation of the delta were duplicated and turned in, with abstracts of the measurements for secondary and tertiary work.

Triangulation of West Côte Blanche bay, La.—Towards the end of March Sub-Assistant Oltmanns having reached his working ground, in the schooner Gerdes, from the delta of the Mississippi, where he had been occupied during the winter in the party of Assistant Gerdes, placed himself in communication with the hydrographic party, and furnished the data necessary for sounding out the western part of Atchafalaya bay. On taking up the triangulation it was found that nearly all of the stations westward of Point au Chevreuil had been disturbed by natural causes. Some of the stations which had been marked with the usual care were entirely lost, and neither of the blocks placed to distinguish the ends of the base on Point au Chevreuil could be found. Mr. Oltmanns resumed work at the line Marsh island, North—— Point Malone, (Sketch No. 26,) and extended the triangulation over the greater part of West Côte Blanche bay, including also Côte Blanche island. All the stations were well secured by screw piles, or by surrounding marks deemed sufficient for their preservation.

One of the hindrances to progress in the prosecution of the survey on this part of the coast arises from the shoaling of the water in going westward. The bay, however, narrows in that direction, and Sub-Assistant Óltmanns reports, as the result of his reconnaissance, that the triangulation may, with lessening difficulty, be carried into and across Vermilion bay.

The following is a synopsis of the field statistics:

Stations erected · · · · · · · · · · · · · · · · · · ·	10
Stations occupied · · · · · · · · · · · · · · · · · · ·	7
Points determined	12
Angles measured · · · · · · · · · · · · · · · · · · ·	31
Number of observations	289

The work in Côte Blanche bay was discontinued for the season on the 1st of May. In its progress Mr. Oltmanns provided means for executing the plane-table survey, which will be referred to presently.

The observations and computations resulting from them have been furnished in detail for the records of the office.

Topography of Lake Pontchartrain, La.—Steady progress has been made in pushing the plane-table survey westward from the connection between Lake Borgne and Lake Pontchartrain. Sub-Assistant W. S. Gilbert proceeded from his former limits in that quarter on the 17th of January, and laid out two sheets to contain the features of the northern shore of Lake Pontchartrain. Two others were at the same time projected for extending the work along its southern shore westward from Chef Menteur. On the most eastern of these the shore-line and adjacent features of the north side of the lake were filled in beyond Bayou Bonfouca, the lower part of that bayou and its branches being also followed and included with the topographical details. Further westward, (Sketch No. 26,) and on the same side, the shore-line was traced as far as Ragged Point. The line of woods ranging with the water line was chosen as the limit for the minute survey.

From Chef Menteur, on the southern side of Lake Pontchartrain, the detailed work was continued southward and westward to Little river, and in the same direction the shore-line survey extended to the Jefferson railroad. The limits of the several sheets are marked on the progress sketch No. 26, on which is also shown the line of junction with the work of last season.

In prosecuting the survey on the north shore of the lake, it was found, in many cases, necessary to build stations for the plane-table, the ground passed over being soft marsh. With regard to its general character, the remarks made in my previous annual reports, in reference to the district between Lakes Borgne and Pontchartrain, apply also to the tract under notice.

The following are aggregates of the outline and detailed work of this season:

Shore-line surveyed · · · · · · · · · · · · · · · · · · ·	164 miles
Area of topography, (square miles)	49

Sub-Assistant Gilbert was aided during the early part of the year by Mr. R. E. Evans. The field-work was continued until the 13th of June, and the latter part of the summer occupied by Mr. Gilbert in inking his sheets.

Topography of the Mississippi Delta, La.—While engaged in the triangulation, Assistant F. H. Gerdes projected a plane-table sheet for the survey of Bay Rondo and the northern part of the delta, and determined the points necessary for filling in the details. About two-thirds of the area intended to be represented now appears on the sheet, progress on which was made as the triangulation advanced. Both shores of the Mississippi at the head of the passes, and from thence eastward the shores of the main outlet, with its two branches, the Southeast Pass to the Belize, and the entire course of Pass à l'Outre, were surveyed. The sheet, as marked on Sketch No. 26, contains also the mud flats in the vicinity of the North Pass, part of the details of the system of lagoons existing to the westward of it, and those of Robinson's reef, on the north side of Bay Rondo.

Mr. Gerdes thus remarks on the local characteristics of the eastern part of the delta:

"With the exception of the Gulf shore, which, north of the delta, is open and composed partly of beach and hard marsh, the plane table could be nowhere used, the cane and reeds growing so high as to prevent any sight for sketching in the details. In making the topographical survey, flags of distinctive shape or color were placed at each turn of the river and

its outlets, and their positions determined from two trigonometrical stations by the theodolite or sextant. At one reach several miles of the stream were surveyed by means of a signal hoisted on a boat and moved from point to point as occasion required, according to the method proposed by Mr. Norris. So far as opportunity has offered for verification, the details thus obtained have been found correct."

The unfinished portions of the sheet will contain the survey of some interior lakes, small bays, and bayous adjacent to the main eastern outlet of the delta. Of the work done, the following is a summary of statistics:

Gulf shore surveyed · · · · · · · · · · · · · · · · · · ·	16	miles
River shores surveyed · · · · · · · · · · · · · · · · · · ·	5 3	4.6
Shore line of bays and bayous	51	
Area (square miles)	50	

Sub-Assistant J. G. Oltmanns and Mr. G. U. Mayo aided in the triangulation and topography. Assistant Gerdes found advantage in his labors at the delta through the interest manifested by the inhabitants generally in regard to the progress of the survey. He acknowledges also the facilities and assistance rendered to his party by the Pilot Association of the Belize.

Part of the plane-table duty conducted by Mr. Gerdes has been noticed with the work done in Section VII.

Topography of West Côte Blanche bay, La.—Following his own triangulation of this season, Sub-Assistant Oltmanns surveyed the shore which fell within its limits, as shown on Sketch No. 26, and included also the northeastern part of Marsh island. The plane-table sheet contains an aggregate of about forty-eight miles of shore-line.

An extract from the report of Mr. Oltmanns, descriptive of the topographical features of the vicinity of Côte Blanche bay, is here appended:

- "The shores are all very marshy, excepting those of Côte Blanche island. Marsh island is so soft and swampy that the utmost care must be taken in setting up an instrument. Its shores are subject to frequent and rapid changes. Of late years the island has been cut through in several places, and the interior lakes and bayous are changed or enlarged by almost every storm."
- "The northern shore of the bay, from Côte Blanche about two miles eastward, and westward about eight miles, or as far as Dead Cypress Point, consists of hard clay and is very little broken."
- "Côte Blanche island, like Belle Isle, is one of those remarkable formations of firm land standing out at intervals along this part of the coast of Louisiana from surrounding marshes. It is about a hundred and twenty feet high, and contains an area of, perhaps, two thousand acres of land, on which are raised sugar-cane, cotton, and tobacco."

Having passed the working season at two localities in this section, Mr. Oltmans sailed for Pensacola, and, after reporting to Assistant Gerdes, proceeded eastward with the vessel and reached New York on the 12th of June.

Soundings in the Rigolets, La.—At an interval in his plane-table duty, in February, Sub-Assistant W. S. Gilbert thoroughly sounded out the entire course of the principal passage from Lake Borgne to Lake Pontchartrain, and kept records of the tides while his party was so engaged. Specimens of the bottom were taken on most of the traverse lines, so as to supply full information in regard to the character of the bed of the channel. The tidal

observations developed only a slight variation in the water level, amounting in rise to no more than seven inches in twenty-four hours, and often only four inches and a half. A strong current at that time passed constantly out of Lake Pontchartrain during both rise and fall of the tide.

Hydrographic reconnaissance of Pass à l'Outre, Mississippi delta.—The party of Lieut. Comg. T. B. Huger, U. S. N., Assistant Coast Survey, arrived at the delta on the 15th of May, having been previously employed with the steamer Walker in the western part of the section. A tide-gauge was at once set up at the revenue station and a careful reconnaissance made of the entire course of the Pass à l'Outre from its head, in the Mississippi, to the bar. The vessel then proceeded eastward, taking a line of deep-sea soundings across the Gulf in the direction to Havana.

The reduction from the chart of soundings made in Pass à l'Outre, under the direction of Lieut. Comg. Huger, comprises also the plane-table work executed by Assistant Gerdes.

The hydrographic statistics are as follows:

Miles run in sounding	51 1
Angles determined	343
Number of soundings	1,719

Hydrography of Atchafalaya and Côte Blanche bays, La.—The hydrography of Atchafalaya bay has been completed by supplementary soundings carried westward from the limit reached last year by the party in the steamer Walker. In order to facilitate his operations, the draught of the vessel not admitting of her general use in sounding, Lieut. Comg. Huger established a camp about sixteen miles distant from his anchorage, at the entrance of Bayou Salé, Côte Blanche bay, or nearly midway between Point au Chevreuil and Point Malone, (see Sketch No. 26.) A second party was detailed to work from the ship. Under this arrangement, after joining on the line to which the work had been extended by Commander B. F. Sands, and setting the necessary signals and tide-gauges, the soundings were continued westward into Côte Blanche bay, with only the impediments due to the frequent recurrence of bad weather. The two divisions of the party were occupied in this duty between the 27th of January and the 14th of May, the latter part of that interval being devoted to the hydrography of the approaches to Atchafalaya bay.

A summary of statistics derived from the records turned in by Lieut. Comg. Huger is given below:

Miles run in sounding	743
Angles measured	2,539
Casts of the lead	69.447

The soundings in this part of the section now include the whole of the Atchafalaya and Côte Blanche bays east to the line joining East Point, on Marsh island, and Point Malone.

Before the close of his connection with the survey, at the end of last year, Commander Sands turned in the original sheet and journals of the soundings, angles, and tidal and current observations pertaining to the final service of his party in Atchafalaya bay. The chart containing the results of the present season, with the original note-books and hydrographic records, have been received from Lieut. Comg. Huger.

In returning from this section the deep-sea line was used by the party in the steamer Walker for Gulf soundings between the Mississippi delta and Key West, and in verifying soundings made last year between the Tortugas and Havana.

SECTION IX.

FROM VERMILION BAY TO THE BOUNDARY AT THE RIO GRANDE, INCLUDING PART OF THE COAST OF LOUISIANA AND THE COAST OF TEXAS.—(Sketch I, No. 28.)

The following operations have been in progress by the parties in this section:

- 1. Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Texas.
- 2. Topography of Espiritu Santo and San Antonio bays, Texas.
- 3. Hydrography of Matagorda bay, Texas.

Office-work.—The reconnaissance sketch of the entrance to Brazos river has been drawn and engraved, and progress has been made in the drawing and engraving of coast maps and charts Nos. 106 and 107, from Galveston bay to Matagorda bay; also in the drawing of coast maps and charts No. 105, Galveston bay, and No. 108, Matagorda bay. A general reconnaissance sketch of part of the coast of Texas, from Matagorda bay to Aransas Pass, has been drawn at the office, and was engraved on stone, under the direction of the Superintendent of Public Printing.

Triangulation of Espiritu Santo, San Antonio, and Aransas bays, Tex.—The experience of previous seasons on the coast of Texas having indicated the opening of the calendar year as the most favorable period for taking up field operations, Assistant S. A. Gilbert organized a party and reached the limit of his completed triangulation, to the southward of Matagorda bay, on the 5th of January. For the extension of the work towards Aransas Pass, a close reconnaissance had been made, as stated in my last annual report, which was accompanied by a reduction from the resulting sheet, marked as Sketch No. 28. Such of the signals then erected as required adjustment were properly secured, and others were set to replace those which had been destroyed by accidents of the weather in the course of the preceding year. The scheme fixed on for the triangulation took in the lower part of Espiritu Santo bay, the shores of San Antonio bay, including its upper waters, known as Mission bay and Hines bay; in connection with it, to the southward and westward, Mezquit bay, and beyond that, in the same direction, the shores of Aransas and Copano bays with their dependencies. These several bodies of water are formed, as may be seen on the progress sketch No. 28, by the intervention of Matagorda island and St. Joseph's island between the main coast of Texas and the Gulf of Mexico. The most eastern of the stations occupied for the triangulation range along the outer or Gulf shore of the two islands just named, the lines from them crossing the several bays before enumerated, and terminating at stations on the main.

Assistant Gilbert continued in the field until the 9th of June, having then pushed the triangulation about forty-eight miles southward and westward from the starting point in Espiritu Santo bay. A summary given in his report shows the following statistics of work done within the season:

Stations occupied	32
Points determined in position	66
Angles measured	180
Number of observations	3,392

The triangulation covers an area of about six hundred and fifty square miles. Some of the requisite signals were erected, and a partial reconnaissance made for continuing the work over Corpus Christi bay; but the summer winds set in so strong before the party was disbanded as to render further progress in triangulation impracticable for the present year.

Mr. Gilbert was efficiently aided in the field by Mr. Charles Hosmer, who also rendered good service in making computations of the results, and in duplicating the records of the observations, all of which have been turned in at the office.

The following reference is made in the season's report to the general features of the site of work: "The character of the country we were engaged upon is more diversified than any other portion of the coast of Texas over which my operations have yet extended. Low sandy islands, varying from one to four miles in breadth, stretch along the Gulf coast, with sand hills upon them from ten to forty feet in height. These range along the outer shore, and occupy a space from a quarter to half a mile in width. A fine prairie, averaging three-quarters of a mile in breadth, slopes gradually to the marsh and bare sand flats that form the bay shores. The islands afford an excellent range for cattle, sheep, and horses, there being amongst the sand hills and in the sinks of the prairie an abundance of fresh water, except in the dry season of the year. During all seasons fresh water may be had by digging anywhere among the sand hills, or in the high prairie, in the strata immediately above the level of the surrounding salt water."

"The sheets of water lying between these islands (Matagorda and St. Joseph's) and the main are divided by chains of other islands, by oyster shell reefs, or by the configuration of the shores, into four large bays: Espiritu Santo, San Antonio, Copano, and Aransas bays; and six smaller: Mission, Hines, Mezquit, St. Charles, Refugio Mission, and Puerto bays." Of each of these a general description is contained in the report of Assistant Gilbert, extracts from which will be found in the Appendix, (No. 32.) I must here commend the character of this report, which is so well adapted to the circumstances of the country through which Mr. Gilbert's work was carried.

The original journals containing the notes of horizontal angles and an abstract of the geographical positions determined by the triangulation, have been received at the office.

Topography of Espiritu Santo and San Antonio bays, Tex.—The plane-table work in this section was prosecuted by a party in charge of Sub-Assistant W. H. Dennis. After completing the survey of the city of Indianola, as supplementary to one of the sheets executed last season by Sub-Assistant M. Seaton, Mr. Dennis moved his party to Matagorda island, and there joined with the topographical limits of Assistant Gilbert, who, as already stated, has been more recently engaged in pushing the triangulation of the coast of Texas towards Corpus Christi. Of the three plane-table sheets projected by Mr. Dennis, two were entirely filled and the other partly completed. These include a stretch of twenty miles coastwise, and represent the whole breadth of the middle parts of Matagorda island, the shores of the lower part of Espiritu Santo bay, Mission and Hind's bays, and the shores of the greater part of San Antonio bay, with the mouth of its principal tributary, the Guadalupe river. The limits of the several sheets are marked on Sketch No. 28. In general, the surface of the country passed over by the party favored operations with the plane-table, the marsh being tenable, and the fast land mostly level prairie. The only impediment found is thus alluded to in the season's report: "The survey of Mission bay, with the point extending from it into San Antonio bay, was attended with some difficulty, the shores being covered with canebreak some twenty feet high and nearly

impenetrable." Sub-Assistant Dennis took the field on the 15th of December, and closed work on the 30th of May. A summary of the plane-table statistics is appended:

	Miles of shore- line.	Miles of bayous, ponds, &c.	Miles of marsh line.	Miles of roads.	Area, square miles.
Indianola and vicinity	4.0	1. 5	7. 0	4.7	3. 0
Sheet No. 1	84.3	69.0	62. 0	3.5	43. 0
Sheet No. 2	42.5	19.0	13.0	8.0	38. 0
Sheet No. 3	12. 5	21.7	17.5	1.8	12. 0
i	143.3	111. 2	99. 5	18.0	96. 0

Mr. T. C. Bowie served as aid in the topographical party.

The report of Sub-Assistant Dennis contains the following remarks relative to the natural features presented on the shores of San Antonio bay: "There is very little timber land within the limits of the work of this season, excepting on the banks of the Guadalupe river, which has a narrow strip of oak, cedar, etc., on either side. The water at the mouth of that river is fresh, and when the stream is high the fresh water extends nearly to the first chain of islands. The mouth of the Gaudalupe has been dredged out, and a channel has been made through the first chain of islands, by which a steamer from Indianola regularly passes to a landing forty or fifty miles up the river."

Sub-Assistant Seaton has inked and placed in the archives the sheets containing his surveys of last year on the shores of Lavaca, Garcitas, and Chocolate bays. The supplementary sheet showing the vicinity of Indianola has also been turned in.

In July Sub-Assistant Dennis was assigned to topographical duty in Section I.

Hydrography of Matagorda bay, Tex.—It has been mentioned in a previous chapter that the hydrographic work allotted to be done in this section was assigned for the latter part of the working season to the party of Lieut. Comg. J. K. Duer, U. S. N., Assistant Coast Survey, the former part being occupied in Section VII. The steamer Vixen, in accordance with this arrangement, arrived at Matagorda on the 19th of April, and at once took up work on the inside of the peninsula, in the immediate vicinity of the city, and between that date and the 3d of June sounded out the portion of the bay which is comprised between lines crossing from the peninsula to the main at Matagorda and Palacios Point. The reach referred to is about sixteen miles in length, by nearly five in average breadth.

Sketch No. 28 shows its location, and the limits of the sheet containing the hydrography.

This work was done under the direction of Mr. A. W. Muldaur, in the absence of Lieut. Comg. Duer, who returned to Section VII immediately after the arrival of the party in Section IX, and died at Apalachicola on the 14th of June, as already stated. The particulars in regard to this untimely event, and the measures taken for the subsequent disposal of the party and vessel, have also been mentioned.

A summary furnished by Mr. Muldaur at the end of the season gives the following statistics of work executed in Matagorda bay:

Miles run in sounding	45 1
Angles determined	919

Number of soundings	33,135
Tidal stations occupied	3

The sheet embracing the hydrography here referred to has been received at the office in Washington.

SECTION X.

WESTERN COAST OF THE UNITED STATES, FROM SAN DIEGO NOTHWARD TO THE FORTY-SECOND PARALLEL, INCLUDING THE COAST OF THE STATE OF CALIFORNIA.—(Sketches J and J bis, Nos. 30 and 31.)

The usual number of parties has been employed in this section, and their progress is described under the following heads:

- 1. Primary triangulation near San Pedro, Cal.
- 2. Triangulation of Santa Rosa island, Cal.
- 3. Triangulation and topography of San Pedro harbor, Cal.
- 4. Primary and secondary triangulation north of San Francisco, Cal.
- 5. Latitude and azimuth.
- 6. Triangulation of Crescent City harbor, Cal.
- 7. Topography of Santa Cruz island, Cal.
- 8. Topography of Crescent City harbor, Cal.
- 9. Hydrography of San Pedro harbor, Cal.
- 10. Soundings off the Golden Gate entrance to San Francisco bay, Cal.
- 11. Resurvey of Humboldt bay, Cal.
- 12. Hydrography of Crescent City harbor, Cal.
- 13. Tidal observations.

The primary work, which for some years has not made progress proportional to its former development, has this year been placed in the hands of Assistant George Davidson, whose well-known zeal, and energy, and skill have all been shown in its prosecution, so that the advance has been entirely satisfactory, under difficulties which have required all his resources to surmount.

The resurvey of San Pedro and Crescent City harbors was called for in consequence of the improvements made or contemplated in those localities and in the back country which finds access to the sea at those ports.

Office-work.—The engraving of the charts of San Diego bay, the entrance to San Francisco bay, Marc Island straits, and Humboldt bay, has been finished. Progress has been made in the engraving of the chart of San Pablo bay, and additions have been made to the sheets of Alden's reconnaissance of the Western Coast. The map of San Francisco city has been engraved on stone, under the direction of the Superintendent of Public Printing.

Primary triangulation near San Pedro, Cal.—In adjusting the triangulation along the coast of the Santa Barbara channel, it was found necessary to reoccupy several of the stations connecting with the preliminary base measured near San Pedro. This duty was performed by Assistant W. E. Greenwell, between the 5th of November, 1858, and the 6th of March following.

The revised triangles are laid out on Sketch No. 30. On being tested in the usual way they were found to close within the limits allowed for general accuracy.

A synopsis of the statistics is appended:

Signals erected · · · · · · · · · · · · · · · · · · ·	8
Stations occupied · · · · · · · · · · · · · · · · · · ·	6
Number of observations	2.268

The horizontal angles were measured with the eight-inch Gambey theodolite, C. S. No. 44. Mr. Greenwell used the schooner Humboldt for this and other service performed in the section.

Duplicates of the notes of horizontal angles observed in the primary work of last year have been furnished for the records of the office.

Triangulation of Santa Rosa island, Cal.—This work was commenced by Assistant Green-well on the 8th of June, by the measurement of a short base on the northern part of the island, the location of which may be seen by reference to Sketch No. 30. The triangulation, as far as completed at the end of August, embraces the northern half of the area of Santa Rosa, and the work was then in active progress. Strong northwest gales prevailed between the dates mentioned, tending very much to retard the advance of field operations.

A summary of the statistics is thus given in the report of Mr. Greenwell:

Signals erected · · · · · · · · · · · · · · · · · · ·	13
Stations occupied · · · · · · · · · · · · · · · · · · ·	8
Number of observations	1,120
Area of triangulation, (square miles)	18

The schooner Humboldt was in the service of the party at Santa Rosa island.

Assistant Greenwell has sent in duplicates of the observations recorded in the triangulation of San Miguel and San Nicolas islands, and notes of the measurement of the preliminary base on Santa Cruz island.

Triangulation and topography of San Pedro harbor, Cal.—This duty was executed by Sub-Assistant W. M. Johnson, and the data necessary for the hydrography furnished to Commander Alden.

The scheme of triangulation laid out to include the shore of the harbor at San Pedro is shown on Sketch No. 30. With the view of following at once with the plane-table survey the necessary points were determined while the preliminary work was going on. Mr. Johnson then projected a sheet and pushed on the topography to completion. The sheet containing his survey embraces an area of about thirteen square miles, over sixty miles of shore-line, and nineteen miles of roads.

Sub-Assistant C. M. Bache was attached to the party.

The triangulation embraced nine triangles within an area of fifteen square miles. Four hundred and eighty-six observations were made in the measurement of angles.

Primary and secondary triangulation north of San Francisco, Cal.—This work and the astronomical observations connected with it were taken in charge by Assistant George Davidson on the 14th of November, 1858, immediately after his return to the Western Coast. In the primary triangulation Table mountain, a precipitous height which rises from the shore of Ballenas bay, and Sulphur Peak, a high mountain well up the course of Russian river on its eastern side, were occupied as stations with the theodolite, and horizontal angles measured so as to complete, with the exception of Ross mountain station, the coast series of triangles from Monterey and over San Francisco bay to the last-mentioned point, the position of which may

be seen on Sketch No. 31. At Mount Diablo, one of the primary stations in the general scheme and in immediate connection with Table mountain, the labor and expense of transporting a solid signal to the summit, which is 3,800 feet above the nearest dwelling, were obviated by Mr. Davidson, who thus describes the expedient employed for that purpose: "The signal was constructed at San Francisco, and consisted of six pieces of two-inch Oregon pine fitted to six appropriate inside bearings, so that, when put together, the whole presented externally the appearance of the frustrum of a cone thirty-five feet high, with a diameter of fifteen inches at the base and ten at the top. The separate pieces and their bearings, being previously provided with screws, were carried up the mountain and fastened together in half an hour. Stout iron bands were driven on to bind all the pieces firmly together, and the hollow shaft was then set and secured in its proper position. Even with the advantage of the method employed, the handling of the parts of the signal in passing to the summit proved to be very hard labor. If the cañadas of the mountain side had afforded a solid piece of timber of similar outside dimensions, no available power could have taken it up." Vertical angles were measured from the station on Table mountain, and also from that on Sulphur Peak.

Ross mountain, which lies near the coast and a few miles north of the mouth of Russian river, will be occupied next in order by the party of Assistant Davidson.

The secondary and tertiary triangulations, extended this season over Drake's bay and Point Reyes are also shown on Sketch No. 31, and from Table mountain, Point Reyes Hill, and Point Reyes Head, horizontal angles were measured to determine the positions, extent, and heights of the islets which form the middle and north groups of the Farallones.

The reconnaissance necessary in advance of occupying stations for the primary and secondary work was made by Mr. E. H. Fauntleroy, one of the aids in the party. At the date of Assistant Davidson's report Mr. Fauntleroy, in conjunction with Mr. A. T. Mosman, who was detailed as an aid to this party in June, were reconnoitering the tract lying northward and westward of Sulphur Peak. The privations to be borne in the performance of such duty over a country naturally wild and rugged, and totally devoid of facilities for travel, are very great. The labors of the triangulation party in pushing the work to its present limit, as set forth in the report of Mr. Davidson, have been attended with unusual hardships and difficulties.

The following is a synopsis of the season's progress in triangulation:

Number of signals erected	18
Primary stations occupied	2
Secondary and tertiary stations occupied	5
Horizontal angles measured	73
Vertical angles · · · · · · · · · · · · · · · · · · ·	15
Observations for horizontal angles 4	,624
" vertical "	.348

Work in the field was carried on from the 10th of January until the close of September.

Latitude and azimuth.—The latitude of Sulphur Peak primary station was determined by Assistant Davidson by three hundred and thirty-one observations on ninety-four stars; and the azimuth at that point and at Table mountain by five hundred and sixty-four observations. At the same stations three hundred and one observations were recorded for local time, and ninety-eight at Sulphur Peak for determining the value of the micrometer threads.

Observations were made at Table mountain for ascertaining the reading of the level scale

divisions of the vertical circle No. 80. Those of the levels A and B of zenith telescope No. 3, and of level A of transit No. 2 were determined at Sulphur Peak by using the vertical circle No. 28, and a hundred and sixty-two observations were made for that purpose.

In the ensuing season Ross mountain will be occupied as an astronomical station.

Meteorological journals were kept while the party was employed in the field.

Ten volumes, containing the original records of the triangulation and astronomical observations, and seven others, duplicates of the same, have been received from Mr. Davidson. His computations depending on the original notes of the work have been completed.

The journals kept by Assistant G. A. Fairfield while the work north of San Francisco was under his charge have been filed at the office.

Triangulation of Crescent City harbor, Cal.—This duty was executed under special directions in April, by the party of Sub-Assistant J. S. Lawson, before taking up the general field-work to which it had been assigned in the adjoining northern section. A preliminary base was laid out in front of Crescent City and measured twice with a twenty-metre chain, previously adjusted for that particular purpose. The measurements gave a mean result of 1,018.6 metres for the length of the line. Stations were then erected at intervals along the coast from a point a mile west of the light-house to another four miles to the eastward of Crescent City, and on all the prominent rocks in the harbor. Twelve signals were set up and sixty objects in all observed on in determining the angles. In addition to these, readings were taken on a hundred and fifty objects, the results of which, as determining them in position, were computed at once and plotted for use in the topographical survey. Sketch No. 31 gives a plan of the completed triangulation. The following is a synopsis of the statistics:

Stations occupied · · · · · · · · · · · · · · · · · · ·	8
Angles measured · · · · · · · · · · · · · · · · · · ·	75
Number of observations	1,176

The six-inch Gambey theodolite, C. S. No. 21, was used in measuring the angles. Mr. Alexander Agassiz served as aid in the party, which was charged also with the plane-table survey of Crescent City harbor.

A duplicate of the record of horizontal angles observed by Sub-Assistant Lawson is now on file at the office.

Topography of Santa Cruz island, Cal.—The survey of this island was resumed by Sub-Assistant W. M. Johnson, after completing field-work at San Pedro, of which notice has already been taken in the former part of this chapter, and has been prosecuted along the north shore so as to include Prisoner's harbor and Chinese harbor, with only such interruptions as are incident to its exposed position. The report of Mr. Johnson states that there are but three places on the island available as centres for working, by reason of the great difficulty of procuring wood and water, and that great impediments are found in the violent northwest winds, which set in daily at 10 a. m. during summer and continue until sunset. The progress made is shown in the following statistics:

Shore-line traced	$35\frac{1}{2}$ miles.
Roads surveyed	183 "
Area of details, (square miles)	16

Sub-Assistant C. M. Bache assisted in the survey.

The position of Santa Cruz island is shown on Sketch No. 30.

Topography of Crescent City harbor, Cal.—The triangulation requisite for the plane-table survey and hydrography was made, as already stated, by Sub-Assistant J. S. Lawson, in April. Having provided a sufficient number of points, Mr. Lawson traced, in the shore-line of the harbor and the adjacent coast from Hall's bluff west of the light-house, as seen on Sketch No. 31, to the eastern limit of the triangulation, or about four miles eastward of Crescent City.

"Especial care was taken to determine the position of every rock bare at low water. Between Battery Point and Preston's island many of the plane-table stations were reoccupied as near the time of low water as possible, for securing accuracy of details in that respect."

A tracing from the working sheet was promptly made and furnished to the hydrographic party of Commander Alden. The original was soon after inked and sent to the office with the following memorandum of statistics:

Shore-line surveyed	8.2 miles.
Roads	3.5 "
Area of details, (square miles)	1.7

After completing the survey at Crescent City the party returned to San Francisco, and at the usual period of the year sailed with the brig Fauntleroy to carry out the general instructions for work in Section XI. Sub-Assistant Lawson was accompanied by Mr. Alexander Agassiz as aid.

Hydrography of San Pedro harbor, Cal.—As part of the regular work of the season, the anchorage at San Pedro and its vicinity were sounded out anew by the party of Commander James Alden, U. S. N., assistant Coast Survey, with the steamer Active. Sketch No. 30 shows the limits of the sheet, which was projected so as to include the hydrography of the approach eastward and southward by Point Fermin.

The resulting chart (Sketch No. 32) verifies the soundings made in the reconnaissance of 1852, and in reference to it Commander Alden says: "The bar at the entrance to the creek remains about the same. At mean low water, throwing out the half tides, only two feet of water can be carried over it. The steamer Active could go in easily at high water."

Sub-Assistant Johnson traced the shore-line for the use of the hydrographic party.

The following is a summary from the journals of soundings and angles:

Miles run in sounding · · · · · · · · · · · · · · · · · · ·	209
Angles measured · · · · · · · · · · · · · · · · · · ·	1,208
Casts of the lead	5.866

Soundings off the Golden Gate, entrance to San Francisco bay, Cal.—At favorable intervals during the winter of 1858-'59 the hydrography outside of San Francisco bar was executed by the party of Commander Alden, with the surveying steamer Active. The work was extended about thirty miles abreast of the entrance, as measured from Point Reyes southward and eastward along the line of junction with the soundings carried from the inside of the bar in 1854. From the bar, broad off to seaward, the hydrography now extends about twenty-five miles westward, or five miles beyond the meridian of the Farallones. The limits of this work are marked on the Progress Sketch No. 31. In making the soundings sixty-three specimens of bottom were brought up from different localities of the space passed over by the vessel. The following is a summary taken from the hydrographic records:

Number of angles observed	1,369
Casts of the lead · · · · · · · · · · · · · · · · · · ·	722
Miles run in sounding	694

The survey of the approaches to the Golden Gate was essentially completed by the end of February.

Resurvey of Humboldt bay, Cal.—On the upward passage of the steamer Active for duty in the adjoining northern section, Commander Alden incidentally made a resurvey of Humboldt bay above and below the entrance, as shown on Sketch No. 31. The soundings were taken between the 11th and 22d of July, and were applied in completing the chart which accompanied my last published annual report as Sketch No. 31.

The statistics of the resurvey are as follows:

Miles run in sounding · · · · · · · · · · · · · · · · · · ·	119
Angles observed · · · · · · · · · · · · · · · · · · ·	1,094
Number of soundings	5.221

Sub-Assistant J. S. Lawson made the plane-table survey in a previous season.

The original sheet containing the soundings last made is now at the office.

Hydrography of Crescent City harbor, Cal.—This work was based on the triangulation and topography executed in the early part of the year, as already detailed. The soundings were made in July by the party of Commander Alden in the surveying steamer Active.

In reporting on the completion of the hydrography, Commander Alden remarks: "During the progress of the survey of Crescent City harbor we found several new and dangerous rocks, but as they are not lying immediately in the channels followed by the steamers, and do not interfere with the anchorage in use, it does not seem necessary to notice them further in advance of the publication of the chart, as every one now trading there knows that vessels drawing over nine feet should be very cautious in venturing out of the beaten track. The rocks at that place are of a peculiar character, standing isolated like bayonets, with their points just below the surface, and ready to pierce any unlucky craft that may encounter them. After we finished the survey and I had selected a particular fair way for a sailing line, we discovered a very sharp rock almost directly in the passage, with its point only three feet from the surface, and deep water all around it. I mention this to show that although the greatest care was taken in the survey, the character of the points of rock is such that it cannot be surprising if a new one is found for several seasons to come. Still, by following the track which has been passed over so often by heavily laden steamers, no danger need be apprehended."

An engraved reduction from the sheets containing the survey of Crescent City harbor accompanies this report, as Sketch No. 33. The original chart is now at the office.

A summary of the hydrographic statistics is thus given in the report of Commander Alden:

Miles run in sounding	101
Angles measured	701
Number of casts of the lead	3,221

After completing this work the party in the Active proceeded to Section XI, under which head further notice will be made of its occupation.

Tidal observations.—Under an arrangement made several years ago satisfactory to the chief of the Engineer Bureau, and by which the services of Lieut. G. H. Elliot of that corps became available for the general supervision of the observations, the self-registering tide-gauges at San Diego and San Francisco have been kept in operation during the present year. Records have been received monthly showing that the series is successfully continued.

SECTION XI.

WESTERN COAST, FROM THE FORTY-SECOND PARALLEL TO THE NORTHWESIERN BOUNDARY OF THE UNITED STATES, INCLUDING THE COAST OF OREGON AND THAT OF WASHINGTON TERRITORY.—
(SKENCH K, No. 35.)

The regular work of this section has necessarily given place to that connected with the boundary, and has been further impeded by the necessity for placing the hydrographic vessel, the steamer "Active," at the disposal of the War Department. (Appendix No. 36.)

The following work has been executed in this section, and is reported upon in this chapter:

- 1. Triangulation of the Gulf of Georgia, W. T.
- 2. Reconnaissance of Coquille river entrance, Oregon.
- 3. Hydrographic reconnaissance of Gray's harbor, W. T.
- 4. Tidal observations.

Office-work.—A new edition of the reconnaissance sketch of Washington sound, W. T., and the chart of Port Townshend have been drawn and engraved, and the engraving of the charts of Port Gamble and Semi-ah-moo bay has been completed.

Triangulation of the Gulf of Georgia, W. T.—The field-work in this section was confined mainly to the triangulation of the Gulf of Georgia, abreast of Point Roberts, and in the vicinity of the forty-ninth parallel of latitude, but owing to the prevalence of smoke in the atmosphere during the entire season the progress expected at its outset has not been made. Sub-Assistant James S. Lawson, who conducted the operations and improved every opportunity for advancing the triangulation, says, in allusion to the hindrance from this cause: "Thus far, during the present season, the weather has furnished another illustration of the experience of former years, that each alternate season is very dry, and consequently that the immense fires started by the Indians sweep over a vast extent of country, so that it is often impossible to see, at the same time, both shores of the channels. During the last three months of the working season of 1857 we were often anchored within a quarter of a mile of the shore and could not see it. Last year was just the reverse, owing to the quantity of rain that fell tending to extinguish, or at least retard, the progress of the fires."

"In carrying the work forward from the limits of last year, I laid out a scheme of triangulation which seemed the very best that the conformation of the country would allow, as it tended to carry the work to the forty-ninth parallel with the least number of triangles. The lengths of the sides, however, were too great for observing on through the smoky atmosphere, and I have been compelled to change the plan and adapt my operations to circumstances."

The stations occupied or observed on by Mr. Lawson, as will be seen by reference to Sketch No. 34, range along the northern shores of the chain of islands bounding the Gulf of Georgia, from Patos island westward to a station on the upper part of Galiano island. These connect by lines with several stations established on Point Roberts, the positions of which are marked on the Progress Sketch.

The following is a summary of the statistics of the season:

Signals erected · · · · · · · · · · · · · · · · · · ·	9
Signals of former seasons adjusted · · · · · · · · · · · · · · · · · · ·	13
Stations occupied · · · · · · · · · · · · · · · · · · ·	12
Objects observed on · · · · · · · · · · · · · · · · · ·	46

Angles measured	36
Number of observations	1,948

The horizontal angles were measured with the ten-inch Gambey theodolite, C. S. No. 20.

Vertical angles also were measured by Mr. Lawson, and a hundred and thirty observations recorded for determining the height of the two summits of Mt. Baker, and that of the limit of snow. The snow range was computed by Mr. Alexander Agassiz, the aid in the party, to be at an elevation of 3,145 feet.

A further remark made by Sub-Assistant Lawson, in his report, refers to one of the most perplexing hindrances found in prosecuting the triangulation in the northern part of this section: "A necessary result of such a state of the atmosphere as that which I have mentioned is a remarkable range in refraction, but in no case have I ever seen it equal to what was experienced at the last station occupied. In one of the angles there was a range of 41".3 in the various sets of observations, and in each of two others the range was as much as 35".7. This large refraction occurs almost invariably at times when, during the whole or part of the day, the atmosphere has become remarkably clear and when the signals show very plainly and steadily. There is then no way of discovering the refraction except from the observations themselves. Usually it shows itself by the distorted appearance of the shores."

Copies of all the plane-table sheets traced by Mr. Lawson during last season were furnished to the commissioner on the northwestern boundary, Archibald Campbell, esq. The originals are now at the office.

The mark at the southern end of the base on Lummi island having been washed from its place by a gale in the winter of 1857-'58, Sub-Assistant Lawson occupied the stations connecting with it, and took suitable means for re-establishing the mark. He is now supplied with the improved apparatus described in my annual report for 1857, and having already graded and leveled the site of the base, the line will be remeasured as early as practicable in the ensuing season.

A meteorological register was kept, while the party was at work, of barometer readings, temperature, kind and amount of clouds, direction and force of the wind, and a record of the quantity of rain.

The duplicates of field notes were made, and abstracts and computations of the triangulation kept up to date as the work advanced. Those connected with the operations of last year are now at the office.

Four volumes, containing the recorded meteorological observations made in this section in previous seasons, have been turned in by Assistant George Davidson.

The brig Fauntleroy was used by Sub-Assistant Lawson for transportation and quarters in the Gulf of Georgia. At the close of the working season the vessel returned to San Francisco.

Reconnaissance of Coquille River entrance, Oregon.—With a view of making a hydrographic examination of the bar and channel of the Coquille river, Commander James Alden, U. S. N., assistant in the Coast Survey, attempted the entrance with the steamer Active, on her downward passage from his field of duty in connection with the Northwestern Boundary Commission, and found it, as was expected, inaccessible for vessels of ordinary draught. An accident to the centre shaft of the steamer, while in that vicinity, made it indispensable for the safety of the vessel that her voyage to San Francisco should not be at that time delayed.

The purpose of Commander Alden is to approach the Coquille entrance by land from Port

Orford, before the close of the year, if practicable, and to make a reconnaissance and soundings so as to fully determine the character of the river as a harbor of entrance.

Hydrographic reconnaissance of Gray's harbor, W. T.—In laying out the programme for the season's operations in this section, it was expected that the only field party for which the means are available might probably complete the special duty enjoined, in connection with the survey for the commissioner on the northwestern boundary, in time to admit of taking up the triangulation and topography of Gray's harbor within the present surveying year. This expectation, in consequence of the unfavorable weather, which, as already stated at the outset of this chapter, interfered materially with field progress in the northern part of the section, has not been met, and the basis of the hydrography is yet wanting. The impediments referred to being within the knowledge of Commander Alden, a visit was made to the harbor in the steamer Active, and such an examination conducted as could be made in advance of the close determination of points along the shores by the land party. In allusion to his reconnaissance Commander Alden says: "The result shows that the harbor has a bar over which can be carried from two and a half to three and a half fathoms of water. It was tolerably smooth during the flood, but when the ebb tide made the sea broke entirely across the entrance. soundings made inside correspond very closely with those on the chart of the U.S. Exploring Expedition; and it would seem, as there is no bar laid down, that the survey just referred to was not carried quite out to it, or that there has been an important change since it was executed in 1841."

Hydrography of the Gulf of Georgia, W. T.—The following statistics represent the supplementary work executed for the northwest boundary commissioner by the hydrographic party under Commander Alden, in the steamer Active:

Miles run in sounding	105
Angles measured · · · · · · · · · · · · · · · · · · ·	366
Casts of the lead	967

Tidal observations.—One of the self-registering gauges in the general charge of Lieut. G. H. Elliot, U. S. Engineers, as stated under the head of Section X, has been kept in working order at Astoria, and the series from it continues to give satisfactory results.

OFFICE-WORK.

The Coast Survey Office in Washington city has, during the year, remained under the charge of Captain W. R. Palmer, U. S. Topographical Engineers, who has, as usual, administered it efficiently and acceptably. In the intervals of his absence, the duties devolving on him were discharged by Lieutenant A. P. Hill, U. S. A., whose connection with the office and efficiency as general assistant have been referred to in my previous annual reports.

The report of Captain Palmer, given in Appendix No 17, and accompanied by detailed statements from the chiefs, of the several office divisions, show the occupation of the persons engaged in them within the year, and the scope and relation of the office as connected with the fieldwork of the survey. No change has been made in the allotment of the material received from the field, the past working of the divisions, as organized several years ago, having continued to meet the requirements of the survey and the calls incident thereto. In the order in which the office divisions have been heretofore named, summary notices are here appended of the employments in each.

Computing division.—Under the charge of Assistant Charles A Schott, this division has fully

sustained its efficiency. The distribution of work done is set forth in his report appended to that of the assistant in charge of the office (Appendix No. 17,) as are also those relating to the other office divisions.

In addition to his general duties, Mr. Schott has continued the discussion of the secular change in the magnetic declination, and has furnished another contribution (Appendix No. 17) to our knowledge on that interesting subject. The computations made in the division have been performed as follows:

Assistant T. W. Werner has been employed in reducing from the records of triangulations and latitude observations; Mr. Eugene Nulty on latitudes, azimuth, and time observations; Mr. James Main on azimuth, latitude and revisions, and on computations connected with the determination of the magnetic elements; Mr. G. Rumpf on triangulations and the computation of geographical positions, and also in reducing magnetic observations; Mr. J. Wiessner on triangulations, until his resignation on the 1st of April; Mr. W. D. Storke on reductions of triangulations, and in preparing the list of geographical positions which accompanies this report; Mr. J. T. Hoover in clerical and miscellaneous duties; and R. Freeman in making duplicates of field and office records.

Tidal Division.—The labors of this division, which have been, as heretofore, conducted by Assistant L. F. Pourtales, are stated in the Appendix before referred to, with the names of the persons employed.

Mr. Pourtales has continued incidentally the investigation of specimens of soundings, and has made developments of much interest in this branch of research.

The force in the division has been employed as follows: Mr. R. S. Avery on discussions relative to a generalization of results from the Boston tidal observations; Mr. S. Walker in verifying tidal records and corresponding with the observers; Mr. J. Downes in graphical decompositions, reductions, and comparisons; and M. Thomas and S. D. Pendleton have been employed in miscellaneous reductions.

Sub-Assistant C. Fendall and Messrs. J. Gilliss, R. E. Evans, O. Hinrichs, P. H. Donegan, and A. W. King served temporarily in this division during part of the year.

Drawing Division.—Until the end of June this division remained in charge of Lieut. J. C. Tidball, U. S. A., and his effective supervision is referred to in the report of Lieut. Thomas Wilson, U. S. A., under whose direction the duties have been carried on since that date. The distribution of work has been as follows: Assistants W. M. C. Fairfax and M. J. McClery on reductions of topography, the latter also in making additions to the Congress map; Mr. A. Boschke on projects; Mr. A. Lindenkohl on reductions, projections, and verification; Mr. A. Balbach, during part of the season, on hydrographic reductions, and now on general duty as draughtsman in the hydrographic division; Mr. E. Hergesheimer on verification and hydrographic reductions; Mr. W. P. Sc. alz on reductions of various kinds, progress sketches, projects, and projections; Mr. L. D. Williams on fine reductions and verification; Mr. A. Strausz on soundings for charts; Mr. W. T. Martin on topographical drawing; Mr. P. Witzel on projections and preliminary charts; Mr. S. B. Linton on lettering, and in making additions to the progress sketches; Mr. F. Fairfax on general topography and tracings; and Mr. B. Hooe and Artificer J. A. Campbell on tracings generally.

ENGRAVING DIVISION.—The duties of this division were conducted by Lieut. Rufus Saxton, U. S. A., until the 1st of April. Since that date the division has been temporarily in charge of Mr. Edward Wharton.

The allotment of work to the engravers regularly employed has differed but little from that of

last year. Mr. G. McCoy has been engaged on topography and views for charts; Mr. F. Dankworth, until within a short period before his death, on topography; Mr. John Knight on first-class lettering; Messrs. A. Rolle, J. Enthoffer, and A. Sengteller, on topography; Mr. G. B. Metzeroth on topography, views, and sanding for charts; Messrs. A. Blondeau and W. Phillips on topography; Mr. H. S. Barnard on sanding for charts; Mr. J. C. Kondrup on first-class outlines, letters, and figures; Mr. H. C. Evans on topography and sanding; Mr. J. V. N. Throop on letters and figures for harbor and preliminary charts; Mr. A. Maedel on topography and sanding for harbor and river charts; Mr. A. Petersen on letters and figures, as also Messrs. E. A. Maedel, W. Langran, and W. Ogilvie; Mr. R. F. Bartle on topography and sanding; and Messrs. F. W. Benner, W. A. Thompson, and E. H. Sipe, on progress and other sketches, and miscellaneous work.

ELECTROTYPE AND PHOTOGRAPH DIVISION.—The report of Mr. George Mathiot, subjoined to that of the assistant in charge, in Appendix No. 17, gives in detail a statement of the work done in the division within the year. In addition to his regular duties, Mr. Mathiot has made numerous trials, resulting at length in the successful application of the photographic process as a substitute for hand reductions for the engraver. I have already stated at more length the progress made in this important branch of the service in the introduction of this report. In all the labors of the division Mr. Mathiot was assisted by Mr. David Hinkle, whose application to its various duties are specially mentioned in the report already referred to.

MISCELLANEOUS DIVISION.—Under this head are classed the printing and distribution of maps and charts, and the distribution of the office complement of the annual reports. The report of Lieut. J. R. Smead, U. S. A., who took charge on the detachment from the Coast Survey of Lieut. J. P. Roy, U. S. A., in last June, shows that the activity required in this division has been fully kept up. Over fifteen thousand copies of various charts have been distributed during the year, and an aggregate of six thousand eight hundred and seventeen copies of the annual reports and accompanying sketches.

Lieut. Smead has been assisted by Mr. V. E. King, who also performs clerical duty in the office of the assistant in charge.

The printing has been performed, as heretofore, by Mr. J. Rutherdale, aided by Mr. J. Barrett.

Mr. F. Holden continued, until near the close of the present surveying year, on duty in the map room, and was employed in backing and preparing paper to be used as projections for plane-table and hydrographic sheets. This duty, since the 1st of September, has been performed by Mr. W. Mertz.

The space required for the constant additions to the archives of the survey is referred to by the assistant in charge as being yet unprovided for. Part of the inconvenience felt arises from the risk of transferring for deposit the original maps and charts to any but a thoroughly fire-proof building.

In the carpentry, the various calls and requirements incidental to the work of the survey have been met as usual. The labors of the shop, which have been conducted, as heretofore, by Mr. A. Yeatman, are stated in detail in the report of the assistant in charge of the office, as are also those of the instrument shop, in which the work is directed by Mr. J. Vierbuchen.

Captain Palmer specially commends the zeal and ability of his principal clerk, A. W. Russell, esq.

Assistant L. F. Pourtales, in charge of the tidal division, and Professor W. P. Trowbridge, whose duties connected with the preparation of a portion of the records for publication have been before alluded to, have rendered acceptable assistance in certain special discussions conducted under my immediate direction.

Commander S. S. Lee, U. S. N., took charge of the hydrographic division of the office on the 1st of September, and has discharged, also, the duties of hydrographic inspector, attending to the repairs and outfit of the vessels used by all the parties of the survey. The knowledge possessed by Commander Lee of construction and equipment has, under the general rules and arrangements adopted first at the suggestion of Lieutenant Maffitt, introduced an efficiency into this branch of the service which insures for the future decided economy. Mr. A. Balbach has assisted in the hydrographic division as clerk and draughtsman.

I have only to reiterate the expression of the opinion which I entertain of the great value of the services of Samuel Hein, esq., general disbursing agent of the Coast Survey, and of those of the principal clerk in the Superintendent's office, W. W. Cooper, esq.

Respectfully submitted by

A. D. BACHE,

Superintendent United States Coast Survey.

Hon. Howell Cobb,

Secretary of the Treasury.

APPENDIX.

APPENDIX No. 1.

Distribution of the parties of the Coast Survey upon the coast of the United States during the surveying season of 1858-'59.

Limits of sections.	Parties.	Operations.	Persons conducting opera-	Localities of operations.
Section I.				
From Passamaquod- dy bay to Point Judith, including the coast of Maine, New Hampshire, Massachusetts, and Rhode Island.	No. 1	Primary triangula- tion, astronomi- cal and magnetic observations.	A. D. Bache, Superintendent; G. W. Dean, assistant; Edward Goodfellow, sub- assistant; R. E. Halter, aid; H. W. Bach, aid.	Howard and Cooper stations, Washington county, Me, occupied, and Chamcook, N. B., for extending the primary triangulation across the northeastern boundary. Geodetic observations completed at the three stations, with determinations of latitude, azimuth, and the magnetic elements at Howard and Cooper.
	2		C. O. Boutelle, assistant; C. H. Boyd, aid.	Reconnaissance and selection of stations for the secondary triangulation of Passamaquoddy bay, erection of signals for primary triangulation, and connection of the Epping base with adjacent stations. (See also Section V.)
	3	Secondary triangulation.	J. A. Sullivan, sub-assistant; R. M. Stiles, aid; J. D. Bradford, aid.	Stations occupied in the secondary triangulation of Penobscot hay, below the primary line "Ragged Mount—Isle au Haut," and signa s erected for continuing work northward towards the head of the bay. (See also Section VI.)
	4	Secondary triangu- lation	F. P. Webber, sub-assistant; J. Kincheloe, aid.	Triangulation continued from Damaris- cotta river, and over Muscongus bay and sound, connecting eastward with stations in the lower part of Penob- scot bay. (See also Section V.)
	5	Topography	W. H. Dennis, sub assistant; J. L. Tilghman, aid.	Detailed survey of Wiscasset, Me., and its environs, and topography of the oppo- site shore of Wiscasset bay, including part of the Edgecombe quarries. (See also Section 1X)
	6	Topography	R. M. Bache, assistant; W. S. Edwards, sub-assistant.	Plane-table survey of Bath, Maine, and detailed topography continued on the shores of Kennebec river and Merry- meeting bay.
	7	Topography	A. W. Longfellow, assistant; A. S. Wadsworth, assistant; ant; James Gilliss, aid.	Details of the shores of Casco bay, from and including the Presumpscot river, northward to Prince's Point, and sur- vey of the interior on Cousin's, Long, Great Jebeig, Hope, Crotch, and Jew- ell's islands, east of Portland harbor.

	1	1	ì	I I
Limits of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
Section I— (Continued.)	No. 8	Topography	C. Fendall, sub-assistant	Plane-table survey of the coast of Maine, from Prout's Neck, southward and westward, to Kennebunk river, including the shores of Saco bay, and detailed survey of the Isles of Shoals.
	9	Topography	A. M. Harrison, assistant; P. C. F. West. sub-assistant; A. W. Thompson, aid.	Topography of Barnstable harbor com- pleted, and the survey of Cape Cod peninsula in that vicinity extended from West Barnstable eastward to North Dennis, including Yarmouth, Barnstable, and Pond Village.
	10	Hydrography	Lieut. Comg. John Wilkinson, U. S. N., assistant.	In shore hydrography extended from Cape Newaggen and Damiscove island, southward and westward, to Cape Small, outside of Kennebec entrance, and soundings completed abreast of and between Portland Light and Green island, Casco bay. Rocks determined in position, and off-shore soundings carried from Cape Elizabeth southward to Nausett Centre Light, Cape Cod.
	11	Hydrography	Lieut. Comg. Alexander Murray, U. S. N., assistant; C. Feudall, sub-assistant.	Soundings completed in-shore from Cape Elizabeth, southward and westward, to Cape Porpoise, Me. Deep sea line carried from Cape Ann, across Cashe's ledge, to Seal island, and thence by traverses, westward, across the coast of Maine to Cape Elizabeth. Be examination made in Salem and Boston harbors, Massachusetts. (See also Section IV.)
	12	Tidal observations.	T. E. Ready	Record kept with self-registering tide- gauge at U. S. navy yard, Charlestown, Massachusetts.
Section II.	13	Magnetic observa- tions.	Charles A. Schott, assistant; J. L. Tilghman, aid.	Determination of the magnetic declination, dip, and intensity at Portland, Me., and Portsmouth, N. H; at Newburyport and Ipswich, Mass; at Gloucester, Thompson (primary triangulation station.) Rockport, and Annis Squam, on Cape Ann. (See also Section II.)
From Point Judith to Cape Henlo- pen, including the coast of Connecti- cut, New York, and New Jersey, and the shores of Pennsylvania and Delaware.	No. 1	Triangulation	Edmund Blunt, assistant; Lieut. W. R. Terrill, U. S. A., assistant; G. H. Bag- well, sub-assistant; Rufus King, jr., aid.	Triangulation of Hudson river, from a station near Hudson northward to New Baltimore, and determination of numerous points in the vicinity of Yonkers, for plane-table purposes.
	2	Topography	H. L. Whiting, assistant; John Mechan, sub-assist- ant; N. S. Finney, sub-as- sistant.	Detailed topography completed on both sides of Hudson river, between Spuyten Duyvel creek and Hastings; and also north and south of Tarrytown, N. Y. including Yonkers, Upper and Lower Nyack, the Palisades, and Piermont.
	3	Topography	F. W. Dorr, sub-assistant; C. Rockwell, aid; McLane Tilton, aid.	Supplementary details of topography in the vicinity of South Jamaica, L. I., Morrisania, Brooklyn, Williamsburg, High Bridge, and Hudson City, for the plane-table survey of New York har- bor. (See also Section VI.)

ï

Limits of sections.	Parties	Operations.	Persons conducting opera- tions,	Localities of operations.
Section II— (Continued)	No. 4	Hydrography.	Lieut. Comg. T. A. Craven, U. S. N., assistant.	Re-examination and development of changes in the vicinity of the Battery Shoal, New York harbor. (See also Section VI.)
	5	Tides and currents.	H. Mitchell, assistant; W. T. Bright, aid.	Development of the sub-currents traversing the waters of New York harbor.
	6	Tidal observations	R. T. Bassett	Series kept with self-registering tide-gauge at Governor's island, (New York har- bor,) and with the box-gauge at Brook- lyn, L. I.
Section III.	7	Magnetic observa- tions.	Charles A. Schott, assistant; J. L. Tilghman, aid.	Determination of the magnetic declina- tion, dip, and intensity, at Hartford, Conn.; Springfield, Chesterfield, and Deerfield, Mass.; and Rutland, Vt. (See also Section I.)
From Cape Henlopen to Cape Henry, in- cluding the coast of part of Delaware, and the coast of Maryland and part of Virginia.	No. 1	Triangulation	John Farley, assistant	Reconnaisance made and signals erected for extending work on the Potomac river from Piney Point upwards, to include Britton's bay; triangulation of Hampton Roads completed and connected with the main series on Chesapeake bay, and base measured near Claremont, Va., for verifying the triangulation of James river.
	2	Triangulation and topography.	Charles Ferguson, sub-assistant.	Survey of the main shore and islands in Chincoteague bay, Md. and Va., com- pleted, and points determined for ex- tending the topography northward into Sinepuxent bay. (See also Section VI.)
	3	Topography	I. Hull Adams, assistant	Shore-line of the Patuxent river, Md, traced from Holland's Point upwards to Hall's creek, nearly completing the preliminary survey. Shores of the St. Mary's river, Md., traced from its entrance northward to Warehouse Point, including the adjacent parts of St. Inigo's and Carthagena creeks.
	4	Topography	John Seib, assistant	Topography of Milford Haven, and Horn and Winter harbors, on the western shore of Chesapeake bay, completed. (See also Section V.)
	5	Topography	I. Hull Adams, assistant	Shore-line traced between Westover and Little Brandon, completing the prelimi- nary survey of James river, Va.
	6	Hydrography	Commander W. T. Muse, U. S. N., assistant.	Hydrography of the Patuxent river, Md., extended from Holland's Point upwards to Hall's creek, and that of the St. Mary's river, Md., from its entrance to Comb's wharf; soundings made between Coggin's Point and Little Brandon, completing the hydrography of James river, Va., and supplementary work done in Big and Little Annemessex rivers to complete the hydrography of Tangier sound.
	7	Tidal observations.	M. C. King	Self-registering gauge kept in operation at Old Point Comfort, Va. Series continued with the self-registering tide-gauge at the U S. navy yard, Washington, D. C.

Limits of sections.	Parties.	Operations.	Persons conducting opera- tions.	Localities of operations.
SECTION IV.				
From Cape Henry to Cape Fear, includ- ing part of the coast of Virginia and N. Carolina.	N o. 1	Primary triangula- tion.	Captain T. J. Cram. U. S. Topographical Engineers, assistant.	Reconnaissance and erection of signal primary stations for the triangula of Pamplico sound, N.C., and its nection with the base on Bodies isla
Cai Oliga,	2	Triangulation	A. S. Wadsworth, assistant	Remeasurement of triangulation in vicinity of Federal Point, (Cape lentrance,) and connection with a of verification on Smith's island, a station at Smithville, and with Caswell, N. C. (See also Section I
	3	Topography	John Mechan, sub-assistant; F. R. Hassler, aid.	Topographical survey completed in Lynn Haven bay and Cape II southward into Currituck sound, N including Broad bay, North bay, I bay, Knott's island, and intermed details. (See also Section II)
	4	Hydrography	Lieut. Comg. Alexander Murray, U. S. N., assist- ant.	In-shore hydrography extended in Bogue inlet southward and westwood to New River inlet, coast of N Carolina; and lines of soundings between Cape Henry and cape Hers. (See also Section I and Stream.)
Section V.				
From Cape Fear to St. Mary's river, including the coast of South Carolina and Georgia.	No. 1	Astronomical and magnetic obser- vations.	A. D. Bache, Superintendent; G. W. Dean, assistant; Edward Goodfellow, sub-assistant; McLane Tilton, aid; W. H. Odenheimer, aid.	Determination of latitude and azin at Smithville, N. C., with obsetions for local time, and the magnelements. (See also Section I.)
	2	Triangulation and topography.	C. P. Bolles. assistant; O. Hinrichs, aid.	Triangulation extended from Shalinlet westward to Little river, N and shore line survey contined Tubb's inlet westward to the sout boundary of North Carolina.
	3	Astronomical and magnetic observations, and sec- ondary triangu- lation.	C. O. Boutelie, assistant; Lieutenat Thomas Wilson, U. S. A., assistant; W. S. Edwards, sub-assistant; C. H. Boyd, aid.	O servations for latitude, azimuth, local time at Port Royal station, 8 magnetic elements determined at same station. Tripods erected, lines traced for primary triangles s and west of the Edisto base. See ary triangulation of Beaufort, chersee, and Colleton rivers, 8 (See also Section I.)
		Secondary and ter- tiary triangula- tion.	F. P Webber, sub-assistant; J. Kincheloe, aid.	Secondary triangulation from the Sepreliminary base southward, a Doboy and Altamaha sounds, Geo Tertiary triangulation of Sapelo is and of the "Inland Passage" bet Altamaha and St Simon's entre (See also Section I)
	5	Topography	John Seib, assistant; C. Rockwell, aid.	Shore-line survey from St. Helena se to Savannah river, Ga, including Hunting islands, Eding's i-land, shores of Port Royal sound, with entrances of Beaufort, Broad, chessee, and Colleton rivers, Point, Hilton Head island, May rand the shores of Calibogue so (See also Section III.)

Limits of sections.	Parties.	Operations.	Persons conducting opera-	Localities of operations.
Section V— (Continued)	No 6	Topography	H S. Du Val. sub-assistant; J. D. Bradford, aid.	Topography of St Catharine's sound, Ga., and of Berr river, connecting it with Ossabaw, and including the entrances of the Medway and North Newport rivers, and the outer shores of Ossabaw and St Catharine's islands, adjacent to the entrance of the sound.
	7	Hydrography	Lieut. Comg. J. P. Bank- head, U. S. N., assis- tant.	In-shore soundings completed from Cape Fear entrance southward and westward to Tubb's inlet, N. C; and off shore hydrography extended between Cape Fear and Charleston harbor, with observations on the ocean current southward of Cape Fear. Hydrography of Bull's bay, S. C., completed, and the inland pas-age from it sounded southward to Caper's island.
	8	Hydrography	Lieut. Comg. C. M. Faunt- leroy, U. S. N., assistant.	Resurvey of the channels leading into Port Royal sound, S. C., including Joiner's bank, off Hilton Head island, and the hydrography of the Chechessee and Colleton rivers, abreast of Foot Point. Soundings completed in the approaches and on the bar of Sapelo sound, Ga. (See also Section II.)
	9	Tidal observations.	W. R. Herron	Series continued at the custom-house wharf, Char eston, S. C., with the self-registering tide-gauge.
	10	Inspection	A. D Bache, superintendent.	
Gulf Stream		Hydrography	Lieut. Comg. T. A. Craven. U. S. N., assistant; Lieut. Comg. Alexander Murray, U. S. N., assistant; Lieut. Comg. T. B. Huger, U. S. N., assistant.	Soundings made for depth and temperature across the stream from Carysfort light-house and Sombrero key, and the line verified between Tortugas and Havana Deep-sea soundings made in the axis of the stream between Cape Lookout and Cape Hatteras (See also Sections I, V, VII, and VIII)
SECTION VI.	1			
From St, Mary's river to St. Joseph's bay, including the eastern and part of the western coast of Florida peninsula, with the Florida reefs and keys.	1	Triangulation	Captain M. L. Smith, U.S. Topographical Engineers, assistant; J. S. Bradford, aid; W. H. Gardner, aid; J. C. Young, aid, (part of season.)	Air-line triangu'ation between Fernan- dina and Cedar Keys extended from Padgett's Station southward and west- ward to Waldo, and plane-table survey of the tract of country included.
	2	Triangulation	Benjamin Huger, jr., sub- assistant; Rufus King, jr., aid.	Preliminary hase measured near St. Augustine, Florida, and triangulation extended twenty miles northward along the coast, embracing also North river; signals erected for continuing the work southward.
The state of the s		Triangulation	J. A. Sullivan, sub-assistant; R. M. Stiles, aid.	Measurement of a preliminary base at Indian River inlet, Florida, and erec- tion of signals for triangulation north and south of Fort Capron. (See also Section 1.)

	,	HI LEIN	DIA No. 1—Continued	•
Limits of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
SECTION VI— (Continued.)	4	Triangulation	Lieut. A. H. Seward, U.S. A., assistant; Lieut. W. Myers, U. S. A., assis- tant.	Triangulation extended eastward along the inner line of the Florida keys, from Lignum Vitæ to Pigeon key.
	5	Triangulation	Lieut. W. R. Terrill, U. S. A., assistant; C. Fendall, sub-assistant; C. B., Baker aid.	Extension of work in Charlotte harbor, Florida, from Captiva Pass northward to Punta Gorda. (See also Section II.)
	6	Topography	C. T. Iardella, sub-assistant; F. F. Nes, aid.	Western shores of Key Biscayne bay and Card's sound, Florida, traced from Shoal point southward to Clay point. Topography completed on the western side of Key Largo, and numerous patches on the Florida reef surveyed, between Lignum Vitæ and Oyster key.
	7	Topography	F. W. Dorr, sub-assistant; Charles Ferguson, sub- assistant.	Plane-table survey of Charlotte harbor, Florida, continued, embracing the western side of Pine island, the upper part of Sanibel island, and Captiva and La Costa islands, extending the work northward to Boca Grande. (See also Sections II and III.)
	8	Hydrography	Lieut. Comg. T. A. Craven, U. S. N., assistant.	Reconnaissance line from Cape Cañaveral to St. Lucie inlet —Soundings on the outside of Florida reef continued from Eagle cove eastward to Coffin's Patches. (See also Section II and Gulf Stream.)
	. 9	Tidal observations.	G. Würdemann	Series continued with self-registering guages at Fort Clinch, Tortugas, Char- lotte harbor, and Egmont key, (Tampa.)
Section VII.	10	Inspection	A. D. Bache, superintendent	
From St. Joseph's bay to Mobile bay, including the coast of western Florida and the coast of Alabama.	1	Triangulation	G. H. Bagwell, sub-assistant; M. O. Hering, aid.	Triangulation on the western side of the Florida peninsula continued from Crystal reef southward, to include the entrance of Chassahowitzka river. (See also Section II.)
	2	Triangulation	Spencer C. McCorkle, sub- assistant; A. W. Thomp- son, aid.	Connection made by triangulation be- tween St. George's sound and St. Mark's harbor, Fla., and reconnais- sance for extending work eastward to include Ocilla river.
	3	Triangulation	F. H. Gerdes, assistant; G. U. Mayo, aid.	Triangulation carried eastward into Santa Rosa sound, beyond Little Sabine bayou, from finished limits in Pensa- cola bay, Fla. (See also Section VIII.)
	4	Тородтарһу	N. S. Finney, sub-assistant; J. L. Tilghman, aid.	Plane-table survey of the keys and shore- line abreast of Crystal reef, Fla., ex- tended southward to Homosassa river, and from Chassahowitzka river south- ward to Raccoon Point. (See also Sec- tion II.)
	5	Topography	G. D. Wise, assistant; C. W. Duval, aid.	Topography of St. James's island, Fla., nearly completed, with the opposite shore of Ocklokonee bay, and part of the shores of Dickerson's bay in the direction of St. Mark's.

Limits of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
Section VII— (Continued.)	6	Topography	F. H. Gerdes, assistant; G. U. Mayo, aid.	Plane-table survey within the season's triangulation, including Santa Rosa island east and west of Little Sabine bayou, and part of the Live Oak plantation on the opposite shore of Santa Rosa sound. (See also Section VIII.)
!	7	Hydrography	Lieut. Comg. T. B. Huger, U. S. N., assistant.	Re-examination of the channels leading into the harbor at Cedar Keys, Fla. (See also Section VIII.)
	8	Hydrography	Lieut. Comg. J. K. Duer, U. S. N., assistant.	Hydrography of the eastern entrance to St. George's sound, Fla., including the new channel passing Dog island. Ad- ditional soundings made inside and abreast of the West Pass. (See also Section IX.)
S WY	9	Tidal observations		Series continued with self-registering tide- gauge at Cedar Keys, and observations recorded by a self-registering gauge at the U.S. navy yard, Warrington, Fla.
SECTION VIII.				
rom Mobile bay to Vermilion bay, in- cluding the coast of Alabama and Mississippi, and part of the coast	No. 1	Triangulation and topography.	Stephen Harris, sub-assist- ant; R. E. Halter, aid; H. W. Bache, aid.	Triangulation from Sand Fly station southward and westward along the shores of Isle au Breton sound to Point Fortuna, La., and shore-line of keys traced within the same limits.
of Louisiana.	2	Triangulation and topography.	F. H. Gerdes, assistant; G. U. Mayo, aid.	Tertiary triangulation of Pass à Loutre and Southeast Pass of the Mississippi river, and of the shores of Bay Rondo. Plane-table survey of the north side of the Mississippi delta, from the head of the passes to the Belize. (See also Section VII)
	3	Topography	W. S. Gilbert, sub-assistant; R. E. Evans, aid, (part of season.)	Detailed survey between Lake Borgne and Lake Pontchartrain continued southward and westward from Chef Menteur to Little river, and extended on the north side of Lake Pontchartrain to Bayou Bonfouca. Shore-line survey carried on the same side to Ragged Point, and on the southern side to the Jefferson railroad.
	4	Triangulation and topography.	F. H. Gerdes, assistant; J. G. Oltmanns, sub-assistant.	Triangulation and topography of the shores of Côte Bianche bay, La., ex- tended westward from Malony's Point to Côte Bianche island, and including the northeastern part of Marsh island. (See also Section VII.)
	5	Hydrography	Lieut. Comg. T. B. Huger, U. S. N., assistant.	Reconnaissance of Pass a Loutre, Mississippi delta, from the bar upwards, with tidal observations. Hydrography completed in Atchafalaya bay, and soundings extended westward to East Point (Marsh island) and Point Malone, including Côte Blanche bay east. (See also Gulf Stream and Section VII.)
	6	Hydrography	W. S. Gilbert, sub-assistant	Sounding out the Rigolet passage, from Lake Borgne to Lake Pontchartrain, La.

		1		
Limits of sections.	Parties.	Operations.	Persons conducting opera- tions.	Localities of operations.
SECTION IX				
From Vermilion bay to the southwest- ern boundary at the Rio Grande, in- cluding part of the coast of Louisiana and the coast of Texas.	No. 1	Triangulation	S. A. Gilbert, assistant; Charles Hosmer, aid.	Extension of triangulation from Matagorda entrance southward and westward over Espiritu Santo, San Antonio and Aransas, and Copano bays, with their dependencies.
Texas,	2	Topography	W. H. Dennis, sub-assistant; T. C. Bowie, aid.	Plane-table survey completed, including the shores of Espiritu Santo and San Antonio bays, with the middle part of Matagorda island, Texas. (See also Section I.)
Section X.	8	Hydrography	Lieut. Comg. J. K. Duer, U. S. N., assistant.	Soundings in Matagorda bay completed between the peninsula and the main, and extending from Matagorda City southward and westward to Palacios Point (See also Section VII)
Western coast of the United States, from San Diego to the 42d parallel, including the coast of California.	No. 1	Triangulation	W. E. Greenwell, assistant	Revision of primary work connecting with the San Pedro base, Cal; and triangulation of the northern part of Santa Rosa island, Santa Barbara channel.
or Cantornia.	2	Triangulation and topography.	W. M. Johnson, sub-assistant; C. M. Bache, sub-assistant.	Triangulation and topography of San Pedro harbor, Cal.; and plane-table survey continued on Santa Cruz island, Santa Barbara channel.
	3	Triangulation and astronomical ob- servations.	George Davidson, assistant; E. H. Fauntleroy, aid; A. T. Mosman, aid, (part of season)	Primary triangulation from San Francisco entrance extended northward to Sulphur Peak, with latitude and azimuth determinations. Secondary and tertiary work executed over Drake's bay and Point Reyes, and connected with primary stations. Positions of the Farallones determined by the triangulation.
	4	Triangulation and torography.	James S. Lawson, sub-assist- ant; Alexander Agassiz, aid.	Triangulation and topography of Crescent City harbor, Cal. (See also Section XI.)
	5	Hydrography	Commander James Alden, U. S. N., assistant.	Hydrography completed of the anchorage and vicinity of San Pedro, Cal. Soundings made in the approaches to the Golden Gate Resurvey of Humboldt harbor, and hydrography of Crescent City harbor, Cal., completed. (See also Section XI.)
	6	Tidal observations.	Lieut. G. H. Elliot, U. S. Engineers	Series continued with self-registering tide gauges at San Diego and San Francisco. (See also Section XI.)
SECTION XI.				
Western coast of the United States, from the 42d par- allel to the north- ern boundary, in- cluding the coast of Oregon and Washington Terri- tories.	No. 1	Triangulation and topography.	James S. Lawson, sub-assistant; Alexander Agassiz, aid.	Stations occupied on Point Roberts, and triangulation extended westward to include the forty-ninth parallel, and the lower part of Galiano island. (See also Section X.)

Limits of sections.	Parties.	Operations.	Persons conducting operations.	Localities of operations.
Section XI— (Continued.)	No. 2	Hydrography	Commander James Alden, U. S. N., assistant.	Hydrographic reconnaissance of the entrance to Coquille river, Oregon, and of Gray's harbor, W. T. (See also Section XI.)
	3	Tidal observations	Lieut. G. H. Elliot, U. S. Engineers.	Observations continued with self-registering gauge at Astoria, Oregon. (See also Section X)

APPENDIX No. 2.

List of Army officers on Coast Survey duty March 1, 1859.

Officers.	Rank.	Date of attachment			
Thomas J. Cram	Captain topographical engineers	March November	26, 1858		
Martin L. Smith	Captain topographical engineers	December	9, 1856		
Augustus H. Seward	Captain 5th infantry First lieutenant 1startillery	November	23, 1855		
J. C. Tidball Edward B. Hunt	First lieutenant 2d artillery	-	6, 1854 5, 1851		
Rufus Saxton	First lieutenant 4th artilleryFirst lieutenant 2d infantry	December October	25, 1855 7, 1853		
William R. Terrill Thomas Wilson	First lieutenant 4th artillery	March May	19, 1858 26, 1857		
William Myers	First lieutenant 9th infantry	September	,		

APPENDIX No. 3.

List of Army officers on Coast Survey duty September 1, 1859.

Officers.	Rank.	Date of attachment			
	Captain topographical engineers Captain topographical engineers Captain engineers First lieutenant 1st artillery First lieutenant 8th infantry First lieutenant 4th artillery First lieutenant 2d artillery	November December May November June March May	9, 1856 5, 1851		

APPENDIX NO. 4.

List of Navy officers on Coast Survey duty March 1, 1859.

Vessel.	Locality of service.	Officers.	Rank.	Date of attachment.				
	Office-work	W. T. Muse	Commander	February	27, 1857			
	Do	J. N. Maffitt	Lieutenant	November	1, 1858			
	Do	W. G. Temple	do	June	5, 1855			
Steamer Bibb	Section IV	Alexander Murray	Lieutenant commanding	April	23, 1858			
Schooner Crawford	Section V	J. P. Bankhead	do	October	16, 1858			
Schooner Varina and ten- der Fire Fly.	Section ¥	C. M. Fauntleroy	do	November	13, 1858			
Steamer Corwin	Section VI	T. A. Craven	do	October	25, 1858			
Steamer Vixen	Sections VII and IX	John K. Duer	do	August	1, 1855			
Steamer Walker	Section VIII	Thomas B. Huger	do	October	12, 1857			
Steamer Active	Sections X and XI	James Alden	Commander	May	18, 1849			
		Wash'ton Gwathmey	Lieutenant	May	20, 1858			
		P. C. Johnson	do	July	20, 1854			
		J. G. Mitchell	do	June	14, 1858			
		James Suddards	Passed assistant surgeon	July	1, 1857			
		N. C. Davis	First assistant engineer	February	22 , 185 3			

APPENDIX No. 5.

List of Navy officers on Coast Survey duty September 1, 1859.

Vessel.	Locality of service.	Officers.	Rank.	Date of attachment.		
	Office-work	S. S. Lee	Commander	August	8, 1859	
Steamer Bibb	Section I	Alexander Murray	Lieutenant commanding	A pril	23, 1858	
Steamer Corwin	Section I	John Wilkinson	do	June	25, 1858	
Steamer Walker	Section II	Thomas B. Huger	do	October	12, 1857	
Steamer Vixen	Section II	Thomas S. Phelps	do	August	23, 1859	
Schooner Varina	Section II	C. M. Fauntleroy	do	November	13, 1858	
		F. B. Blake	Midshipman	August	16, 1859	
Steamer Hetzel	Section III	W. T. Muse	Commander	February	27,1857	
Schooner Crawford	Section V	J. P. Bankhead	Lieutenant commanding	October	16,1858	
Steamer Active	Sections X and XI	James Alden	Commander	May	18, 1849	
		Wash'n Gwathmey	Lieutenant	May	20, 1858	
		J. G. Mitchell	do	June	14, 1858	
		James Suddards	Passed assistant surgeon	July	1,1857	

APPENDIX No. 6.

List of information furnished by the Coast Survey during the year 1858-'59, under authority of the Treasury Department.

Dat	e.	To whom communicated.	Information communicated.							
185										
Nov.	13	Capt. H. W. Benham, Corps of Engineers	of New York bay.							
	13	dodo	Tracing from reduction, scale 20000, north and east of Sandy Hook, New York bay.							
	24	Hon. A. G. Brown	Tracing of hydrography of Mississippi sound, north of Cat and Ship islands.							
_	29	Major H. C. Wayne	Tracing of topography of Long Island, from Islip to Babylon, N.Y.							
Dec.	4	E. S. Sewall, esqdo	Tracing of topography of Pocomoke sound, Md. Tracing of topography of Tangler sound, Md.							
	7	Dr. J. M. Cuyler, U. S. A.	Tracing of Hampton roads, Va.							
	8	Hon. G. S. Hawkins	Tracing of East and West passes, St. George's sound, Fla.							
	13	Hou. W. F. Russell	Tracing of topography of Esopus creek, N. Y.							
	14	G. W. Blunt, esq.	Tracing of coast of Massachusetts, from Nahant head to Ram island.							
	14	J. R. Butts, esq.	Tracing of East and West passes, St George's sound, Fla.							
	14 17	G. W. Blunt, esq.	Tracing of the "Triangles" and Boon island ledge, Salem har- bor, Mass.							
	20	E. T. Gray, esq	'Tracing of reconnaissance of coast of Texas, from Matagorda bay to Aransas pass. Tracing of hydrography of Rondout creek, N. Y.							
	20	Capt. J. D. Kurtz, Corps of Engineers	Shore-line of Kennebec river, Me.							
	20	do	Shore-line of Sheepscot river, Me.							
	27	Hon. Guy M. Bryan	Tracing of Brazos river entrance, Texas.							
	29	Alexander Brown, esq	Tracing showing wharves of Charleston city, S. C.							
185	9.	, .								
Jan.	5	Prof. L. Agassiz	Tracing showing Sombrero and Delta shoals, Florida reefs.							
	21	G. W. Blunt, esq	Tracing of hydrography of coast of Maine, from Kennebunk- port to Isle of Shoals.							
	21	E. L. Meyer, esq.	Description of Coast Survey stations used in the triangulation in vicinity of Newark bay, N. J.							
	21	G. W. Blunt, esq.	Tracing of deep-sea soundings, Gulf of Mexico, from Delta of the Mississippi to Havana.							
Feb.	18	Moses Bates, esq	Tracing of topography of Plymouth harbor and vicinity, Mass. Tracing of topography of Currituck sound, from Rattlesnake							
100.	10	banics in North, csq	island to Currituck Court-House, N. C.							
March	12	Mr. Winning	Geographical positions of certain Coast Survey stations in New York city.							
	14	J. C. Brevoort, esq	Tracing of topography of Long island, from Brooklyn to Jamaica bay, N. Y.							
	15	Light-house Board	Tracing of entrance to Matagorda bay, showing changes at Pass Cavallo, Texas							
	15	J. W. Adams, esq	Results of current observations taken in East river, N. Y.							
April	4	Com. W. H. Hutchings, U. S. mail steamship	Tracing of hydrographic reconnaissance, from St. Mark's to St.							
	4	Galveston.	Joseph's bay, Fla.							
	6	John Kendall, esq Prof. J. D. Dana	Tracing showing soundings recently made at the Rigolets, La. Tracing of off-shore chart, from Point Judith, R. I., to Cape							
	7 7	Capt. H. W. Benham, corps of engineersdo	Henlopen, Del. Results of tidal observations at Sandy Hook, N. J., in 1858. Distances from Sandy Hook light-house to East and West bea-							
	7	G. M. Hopkins, jr., esq	cons, New York bay. Tracings of topography of coast of New Jersey, south of Man-							
			asquam river.							
W	25	Hon, W. H. Seward	Chart of Hudson river, between Troy and Haverstraw, N. Y.							
Мау	20	Editor of Indianola Courier	Distances between points in vicinity of Indianola, Texas.							
	28	G. K. Walker, esq.								
	31	A. Lindenkohl, esq	lachicola bay, Fla.							
June	10	Messrs. Allen & Co	Tracing of topography of New York harbor. Tracing of Foot Point, Daw island, and vicinity, near Port							
	•		Royal sound, S. C.							
			Tracing of topography of Currituck sound, N. C.							

THE UNITED STATES COAST SURVEY.

Date.	To whom communicated.	Information communicated.								
1859. July 18 29 30 August 2 11 12 13	Washington Irving, esq Hon S. R. Mallory Lieut. Col. J. D. Graham, topographical eng'rs. Messrs. Lowell & Senter Alexander Major, esq S. J. Martinet, esq Simeon Stevens, esq Lieut. Con. R. E. DeRussey, corps of engineers.	Tracing of topography of Hudson river, near Irving village, N.Y. Tracing of Pensacola city and vicinity, Fla. Tracing of Pensacola city and vicinity, Fla. Tracing of Bang's island, Portland harbor, Me. Tracing of hydrography of Boston harbor from Egg rock to Grover's cliff, Mass. Tracing of Chester river, Md. Tracing of hydrography of Sheepscot river from Wiscasset to Hendrick Head light, Me. Tracing of coast of Rhode Island from Beaver Tail light to East rock.								

APPENDIX No. 7.

Statistics of field and office-work of the United States Coast Survey during the years—

	Previous to 1844.	1844.	1845.	1846.	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
Reconnaissance—																	
Area, in square miles	9,642	1,140	3,739	1,830	2,950	3,940	10, 159	3,280	3,510	1,706	1,708	795	1,487	4,072	2,855	709	53,522
Parties, number of, in each year	4	2	4	5	5	7	6	4	6	6	5	13	7	5	8	4	
Base lines—				ł											-	_	
Primary, number of	1	2			1	1		1			1		2		1		10
Secondary, number of	2				5	ı	4	3	3	4	5	2	8	8	1	4	47
Length of, in miles	191	16			9 1	13	61	171	2	41	181	39	241		9	31	
Triangulation					1			-			•]			-		2004
Area, in square miles	9,076	795	2,166	1,185	1,903	2,592	4,091	2,097	2,465	1,703	3,089	2,701	2, 729	2,793	1,640	3,033	44,058
Extent of general coast, in miles	570	179	162	123	159	115	285	216	243	220	94	246	188	320	357	278	3,755
Extent of shore-line, in miles, including							,				.,,]		0.40	0,51	~10	5,100
bays, sounds, islands, and rivers	1,588	589	554	1,018	541	796	1,328	7 30	1,097	1,104	884	1,269	1,401	1,895	1,481	1,715	17,990
Horizontal angle stations occupied	750	120	80	197	120	98	204	157	184	223	224	204	410	544	385	384	4,284
Geographical positions determined	1,183	147	148	372	194	227	319	294	307	446	346	388	584	1,240	777	603	('
Vertical angle stations occupied	15	2	5	7	3	1	18	13	22	14	7	89	6	1,510	4	11	7,575 218
Elevatious determined, number of	44	12	7	46	44	ı	59	22	53	66	9	127	6	12	15	14	537
Parties, number of, in each year	4	5	8	7	8	10	13	14	14	13	18	17	17	20	20	19	
Astronomical operations—		_	-		*							1	1 1	_~"] ~"	19	
Stations occupied for azimutli	9	8	2	2	3	3	4	4	6	6	9	5	4	2	1	2	70
Stations occupied for latitude	9	8	5	3	8	2	4	6	8	17	20	6	4	6	3	5	114
Stations occupied for longitude	1	1		9	3	3	7	3	7	18	21	4	1	1	2	2	76
		1	1	9	ı	1	2	3	5	5	5	4	3	1	1 1	1	1
Special longitude stations for occulta-			-	1 -	*	•	~		ľ] "	"	7	,	1	1 1	1	
tions, &c													ĺ	1		30	ĺ
Parties, number of, in each year	1	3	2	2	3	3	5	5	б	4	7	7			23 3		********
Magnetic stations occupied, number of,		14	21	28	19	. 4	n	9	10	8	13	9	6 8	4		4	
Parties, number of, in each year		2	3	3	3	3	5	4	3	2	3	6	3	23	4	5	186
opography		. ~	Ĭ	"	•	v		-1	ľ	2	·	۳		4	3	3	**********
Area surveyed, square miles	6, 131	195	503	750	595	471	532	652	681	653		-10					l
Length of general coast, in miles.	414	110	168	119	117	185	95	133	260	236	554	513	656	536	1,003	719	15,144
Length of shore line, in miles, including	71.1	*10	100	110	***	100	0.0	100	200	200	251	174	176	165	309	172	3,084
rivers, creeks, and ponds	7,667	424	879	1,120	1,460	1,703	1 700	1 500	. 700	1 707	2 100]		
Length of roads, in miles	11,734	395	997	,		,	1,709	1,557	1,760	1,737	2,100	1,796	2,138	2,398	3,913	3,362	35,723
Parties, number of, in each year	6		6	1,402	1,354	640	504	511	500	732	502	618	733	750	1,404	924	23,700
, ,	٥١	5	•	"	9	9	11	11	13	13	17	12	17	17	23	23	
lydrography	2	,	5	6	اما	^	,.						ļ		1	{	
Parties, number of, in each year		5			6	8	11	11	12	9	9	1	11	12	12	10	
Number of miles run while sounding	29, 214	1,857	3,493	3,559	3,138	8,047	4,299	5,995	10,590	9,534	9,050	9,141	13,115	1 ′	12,377	8,582	147,296
Area sounded out, square miles	9,601	663	677	574	979	2,185	1,335	2,012	3,200	2,823	2,661	1,937	3,433	3,743	2,705	1,674	39,572
Miles run additional, of outside or deep-	ļ			i			1		l	1	1	1	1	1	1	1	1

121

	Previous to 1844.	1844.	1845.	1846.	1847.	1848.	1849.	1850.	1851.	1859.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
Hydrography—																	
Soundings, number of	808,147	120,827	125, 173	220,402	928,402	255,003	265,824	264,718	371,660	288,375	305,377	162, 454	526, 875	439,614	506, 034	513,607	5, 402, 492
Soundings in Guif Stream for tempera-		1		•			1						l				
ture			118	581	207	425					1,053	257	310		478	179	3,601
Tidal stations, permanent	1	2	2	2	3	3	3	3	4	4	7	7	7	8	8	8	
Tidal stations occupied temporarily	127	14	33	39	33	29	35	41	51	76	78	89	80	77	74	35	911
Tidal parties, number of, in each year	9	5	5	5	5	8	11	11	12	9	11	12	13	14	14	11	
Current stations occupied		27	42	41	59	54	28	44	41	24	89	10	84	84	156	47	830
Current parties, number of, in each year.		3	5	3	3	4	6	4	7	7	5	3	5	6	6	2	
Specimens of bottom, number of	1,029	2,776	89	129	371	769	267	381	278	215	141	135	255	146	422	236	7,659
Records-		'	1	j	Ì		})		Ì						¢.	
Triangulation, originals, number of vols	97	12	17	923	17	32	38	40	33	33	64	46	79	96	76	96	799
Astronomical observations, originals,]											1		
number of volumes	17	10	11	10	16	22	72	30	41	48	29	88	35	12	35	63	539
Magnetical observations, Originals, num-				_				1				1					
ber of volumes	4	2	1	6	7	4	3	5	5	7	6	4	33	13	4	10	114
Duplicates of the above, number of vols	97	26	32	32	44	49	19	23	45	73	76	84	139	101	140	168	1,078
Computations, number of volumes	78	25	17	21	26	23	57	24	40	72	101	91	109	99	83	101	967
Hydrographic soundings and angles,								[(i	ļ	1				
originals, volumes	188	99	26	152	54	154	134	170	213	206	183	66	332	197	319	322	2,738
Hydrographic soundings and angles,			1					1	1			i	1	1			
duplicates, volumes	28	2	5	4	11	11	12	12	16	27	15	.7	₽ 6,	27	21	20	244
Tidal and current observations, origi-		· ~]	•			1		İ		1		*		1	İ	}
nais, volumes	127	23	47	51	44	40	67	88	114	139	123	70	196	110	213	104	1,556
Tidal and current observations, dupli-		_	1) "] -]					l				ŀ	1
cates, volumes		23	47	51	44	41	63	79	385	132	114	79	87	100	67	74	1,386
Sheets from self-registering tide-gauges,		-		-	"	-			İ						1		1
Bumper of and and Canada										26	72	106	80	103	119	141	647
Tidal reductions, number of volumes.		46	94	102	88	80	16	58	22	26	17	99	79	73	63	64	927
Total number of volumes of records	566	191	297	452	351	456	481	529	914	763	728	634	1,115	828	1,021	1,022	10,348
Total lightnes of volkities of seconds	1	101		10.0		100	10.								1	1	, ·
Maps and charts-	1			1		1											735
Topographical maps, originals	į.	14	16	25	29	20	22	30	41	47	54	45	55	51 62	74	44 31	672
Hydrographic charts, originals	142	9	8	18	18	21	16	20	47	56	56	52	65	102	51	31	0/2
Reductions from original sheets, num-			1	}			1								10		
ber of	15	9	15	16	17	13	18	22	26	48	35	27	36	39	40	35	411
Total number of manuscript maps and		1			}		1]									
charts	325	32	39	59	64	54	56	72	114	151	145	124	156	152	165	110	1,818
Number of sketches made in field and		1)			1										10-	
office	311	24	33	32	29	48	82	85	126	137	103	191	132	125	132	127	1,627
Engraving and printing-							1										
Engraved plates of finished charts,						1	[}					1		1		-
number of	5	2	3	5	1 2	6	3	5	6	5	4	2	7	3	7	6	79

	Previous to 1844.	1844.	1845.	1846.	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Total.
Engraving and printing-				-													
Engraved plates of preliminary charts,					Ì						,						
sketches, and diagrams for Coast Sur-																	
vey reports, number of				4	5	7	6	10	38	20	- 39	42	46	51	51	25	344
Electrotype plates made in each year		·····		, ,	1	7	6	2 5	16	23	47	77	50	69	79	95	495
Pinished charts published in each year.			3	4	3	10	3	4	6	6	3	2	8	3	5	6	70
Preliminary charts and hydrographic												1					
sketches published				2	4	2	4	10	36	19	34	34	34	38	41	22	280
Printed sheets of maps and charts dis-					ļ												ł
tributed		169	416	1,708	1,104	2,923	1,848	326	5,649	5,799	8,042	5,195	5,392	8,858	19,147	4,209	70,785
Printed sheets of ditto deposited with													,	j			
sale agents			880	1,686	4,981	5,016	1,506	3,115	5,168	6,866	4,375	3,232	2,577	2,898	648	1,717	44,665
Library—		Ì										1	1				1
Number of volumes		•••••				655	95	590	333	171	273	155	250	389	106	116	3,133
Instruments—												1	•	l			
Cost of				· · · · · • • • • • •	••••	••••	88,326	\$4,652	\$4,603	\$3,835	\$5,296	\$5,402	\$3,958	\$5,369	\$ 3,185	\$1,224	

GENERAL NOTE.

Parties. - An average number is given for the years previous to 1844. A party operating in more than one section during the year is counted but once.

Triangulation.—The extent of general coast is measured in general outline, including Delaware and Chesapeake, as well as all open bays; but omitting the minor indentations of the sea-coast. The extent of shore-line is also measured in general outline, and includes such rivers only as have been triangulated.

Topography.—The length of the general coast is measured similarly to that under triangulation; but the shore-line under topography represents the whole water-line surveyed, including all the minor indentations, as represented on the plane-table sheets.

Records.-The total number of volumes of records given in the table is greater than the number now on hand, owing to the binding up of separate volumes.

Engraved Plates .- Progress sketches (averaging fourteen yearly) are not counted.

Library.—The number of volumes purchased and donated up to 1849 was 655,

It is to be remarked that the numbers appearing in the column of this table for the year immediately preceding that of its compilation are, in some cases, subject to be changed, more or less, in the succeeding Report, owing to data not being, at the time of compilation, fully turned into the office from the distant parties in the field.

APPENDIX No. 8.

General list of Coast Survey discoveries and developments to 1858, inclusive.

- 1. Temple's ledge, near Cape Small Point, Me., 1857.
- 2. Determination of the position of a sunken rock on which the steamer Daniel Webster struck, in Casco bay, on the evening of the 13th of October, 1856.
 - 3. Determination of the dimensions of Alden's rock, near Cape Elizabeth, Me., 1854.
 - 4. Fishing ledge off Kennebunk, Me., thoroughly sounded, 1858.
- 5. A rock one mile to the southward and westward of Boon island, with seventeen feet water. The sea breaks on it in heavy weather, 1858.
 - 6. Development of Boon Island ledge, coast of Maine, 1858.
 - 7. A rock off Cape Neddick, Me., determined in position, 1858.
 - 8. A detached rock two-thirds of a mile northward and eastward of York ledge, Me., 1858.
- 9. Determination of the position of a rock more than a mile off the mouth of York river, Me.; bare at low tides and dangerous to coasters, 1858.
 - 10. Development of Duck Island ledge, 1858.
- 11. A very dangerous rock, with only six and a half feet water, off the entrance to Portsmouth harbor, N. H., about four nautical miles eastward from the Whale's Back light, 1858.
- 12. A rock, with twelve feet at mean low water, about four miles and a third eastward of the Whale's Back, 1858.
 - 13. Determination of rocks off Marblehead and Nahant, 1855.
 - 14. A rock (not on any chart) in the inner harbor of Gloucester, Mass.; discovered in 1853.
- 15. A bank, ninety miles eastward of Boston, with about thirty-six fathoms of water, probably a knoll connected with Cashe's ledge, but with deep water between it and the ledge, 1853.
- 16. Boston harbor; Broad Sound channel thoroughly surveyed and marks recommended. 1848.
 - 17. Several rocks in the fair channel way in Boston harbor entrance, 1854.
- 18. An extension of the sand-spit to the southward of Sunken ledge, Boston harbor, since the survey of 1847, 1858.
- 19. A bank (Stellwagen's bank) with ten and a half to fourteen and a half fathoms of water on it, at the entrance to Massachusetts bay, and serving as an important mark for approaching Boston and other harbors, 1854.
- 20. Extension of Stellwagen's bank to the southward and eastward some sixteen or seventeen square miles, enclosed by the twenty-fathom curve, 1855.
 - 21. Changes in the vicinity of East harbor, (Cape Cod,) 1857.
- 22. A dangerous sunken ledge (Davis' ledge) to the eastward and in the neighborhood of Minot's ledge, 1854.
 - 23. Development of a reef extending between Minot's and Scituate light, 1856.
- 24. A sunken rock, with only six feet on it at low water, off Webster's Flag-Staff, Massachusetts bay, 1856.
 - 25. A dangerous rock near Saquish Head, entrance to Plymouth harbor, 1856.
- 26. Three rocks determined in position, partly bare at low water, off Manomet Point, Massachusetts bay, 1856.

- 27. Determination of a very dangerous rock off Indian hill, and four miles southward of Manomet Point, Massachusetts bay, with as little as six feet water on it, 1856.
- 28. Probable connection of George's bank and the deep-sea banks north and east of Nantucket, 1855.
- 29. The decrease of depth, with general permanence of form, of George's bank, off the coast of Massachusetts, 1857.
 - 30. A shoal spot near Little George's bank, 1857.
- 31. Non-existence determined of "Clark's bank" and "Crab ledge," laid down on certain charts as distinct from an immense shoal ground off Cape Cod peninsula, 1856.
- 32. Nantucket shoals; Davis' New South shoals, six miles south of the old Nantucket South shoals, in the track of all vessels going between New York and Europe, or running along the coast from the eastern to the southern States, or to South America; discovered in 1846.
 - 33. Two new shoals north and east of Nantucket; discovered in 1847.
- 34. Six new shoals near Nantucket; the outermost fourteen and a half miles from land, and with only ten feet water; discovered in 1848.
 - 35. McBlair's shoals, off Nantucket; discovered in 1849.
 - 36. The tidal currents of Nantucket shoals and the approaches, 1854.
 - 37. Davis' bank, Nantucket shoals; discovered in 1848 and survey finished in 1851.
- 38. Fishing Rip, a large shoal extending north and south, about ten miles to the eastward of Davis' bank, and thirty miles from Nantucket, with four and a half fathoms: surveyed in 1852.
 - 39. A ridge connecting Davis' New South shoal and Davis' bank; found in 1853.
- 40. A small bank or knoll with but five fathoms on it, about five miles east of Great Rip, with twelve fathoms between it and Davis' bank and Fishing Rip, the water gradually deepening outside of it to the northward and eastward beyond the limits of the series of shoals, 1853.
- 41. Discovery of Edward's shoal, one mile and seven-eighths southward of Nantucket light-boat, 1855.
 - 42. Examination of the interference tides of Nantucket and Martha's Vineyard sounds, 1855.
 - 43. The study of the tidal currents of the Vineyard and Nantucket sounds, 1857.
- 44. Contraction of the inlet at the north end of Monomoy island, and opening of a new entrance to Chatham harbor, 1853.
- 45. Muskeget channel; surveyed by Lieut. C. H. Davis in 1848 and Lieut. C. H. McBlair in 1850.
- 46. Discovery of two shoal spots, with twelve and thirteen feet water, eastward from Great and Little Round shoals, Nantucket sound, 1856.
- 47. Determination of two shoal spots near the northern extremity of Davis' bank, with fourteen and eighteen feet water, 1856.
- 48. Further development of Edward's shoal, three-fourths of a mile from the Southern Cross Rip, Nantucket sound, 1856.
 - 49. Shoal sand ridges discovered northward of Great Point light, Nantucket sound, 1856.
- 50. Important changes in geographical feature at the southeastern end of Martha's Vineyard, Muskeget channel, 1856.
- 51. Numerous rocks in Martha's Vineyard sound, Long Island sound, and the various bays and harbors connected with them.

- 52. Luddington rocks, determined in position, about ten yards apart, a mile and a half (nautical) southwest, by compass, from New Haven light, 1858.
 - 53. The tidal currents of Long Island sound, 1854.
 - 54. The tidal currents of Hell Gate, 1857.
 - 55. Least water on the Hell Gate rocks, determined by dragging, 1857.
- 56. Tidal currents in East river, N. Y., and surface and sub-currents investigated in New York harbor, the lower bay, and on the bar, 1858.
- 57. The currents of the great bay between Massachusetts, Rhode Island, Connecticut, New York, and New Jersey, 1855.
- 58. Gedney's channel into New York bay, having two feet more water than the old channels. Had the true depth of this channel been known in 1778, (then probably existing, as seen by comparing old and new charts,) the French fleet under Count D'Estaing would have passed into the bay and taken the assembled British vessels, 1845.
 - 59. The changes in New York harbor, near New York city, between 1845 and 1858.
- 60. Increase of depth in Buttermilk channel, ascertained and made known in 1848 by survey of Lieut. D. D. Porter, U. S. N.
 - 61. Shoal in the main ship-channel of New York harbor, 1855.
 - 62. The tides of Hudson river, 1856.
- 63. Sandy Hook; its remarkable increase traced from the surveys of the topographical engineers and others, and by several successive special surveys made between 1844 and 1857.
- 64. Delaware bay; Blake's channel at the entrance, discovered in 1844; open when the eastern channel is closed by ice. This discovery has served to develop strikingly the resources of that portion of Delaware.
 - 65. Blunt's channel, in Delaware bay.
 - 66. Changes in the Delaware, near the Pea Patch, 1847.
 - 67. The true extent and position of the dangerous shoals near Chincoteague inlet, Va., 1852.
 - 68. Metomkin inlet, Va., shoaling from eleven to eight feet in the channel during 1852.
- 69. Two channels into Wachapreague inlet, Va.; one from the northward and the other from the eastward; both with seven feet water at low tide, 1852.
- 70. A shoal half a mile in extent, not put down on any chart, five and a half miles east from the north end of Paramore's island, Va. It has but four fathoms water on it, and nine fathoms around it, 1852.
- 71. Great Machipongo inlet, Va. Found to have a fine wide channel, with eleven feet water on the bar at low ebb, and fourteen at high tide. Good anchorage inside, in from two to eight fathoms. The best harbor between the Chesapeake and Delaware entrances, 1852.
- 72. Two shoals near the entrance to the Chesapeake; one four and three-quarter nautical miles SE. by E. from Smith's island light-house, with seventeen feet water upon it; the other E. by S. nearly seven and three-quarter miles from the same light, with nineteen and a half feet upon it, 1853.
- 73. Only three feet water upon the "Inner Middle," the shoal part of the Middle Ground, west of the "north channel," at the Chesapeake entrance, 1852.
- 74. A twenty-five fathom hole two and a half miles W.SW. from Tazewell triangulation point, eastern shore of the Chesapeake; all other charts give not more than sixteen fathoms in this vicinity.

- 75. A shoal at the mouth of the Great and Little Choptank, in Chesapeake bay, 1848.
- 76. The sounding and measurement of the bars in Rappahannock river, 1855.
- 77. The general permanence of the Bodkin channel and shoals in its vicinity, at the entrance of the Patapsco river, between 1844 and 1854.
- 78. A shoal (New Point shoal) in Chesapeake bay, with sixteen feet water on it, southeast from New Point Comfort light-house, off Mobjack bay, 1854.
- 79. Re-examination of York spit, Chesapeake bay, and least water determined, (nine feet,) 1855.
 - 80. York river, Va., as a harbor, 1857.
 - 81. A reconnaissance of the Wimble shoals, near Nag's head, coast of N. C., 1854.
- 82. Submarine range of hills beyond the Gulf Stream tracked from Cape Florida to Cape Lookout, 1855.
- 83. Deep water found on Diamond shoal, and a dangerous nine-feet shoal off Cape Hatteras, 1850.
- 84. A new channel, with fourteen feet water, into Hatteras inlet, formed during the year 1852, which is better and straighter than the old channel.
 - 85. Changes at Hatteras and Ocracoke inlets, 1857.
- 86. The general permanence in depth on the bar of Beaufort, N. C., with the change of position of the channel, 1854.
 - 87. Changes on the bar of Beaufort, N. C., 1857.
- 88. The well ascertained influence of prevailing winds in the movement of the bars at Cape Fear and New Inlet entrances, and the gradual shoaling of the main bar; the latter fact being of great importance to the extensive commerce seeking that harbor, 1853.
 - 89. Changes in the main Western and New Inlet channels in Cape Fear, 1855.
- 90. Frying Pan shoals, off Cape Fear, N. C.; a channel of two and a half fathoms upwards of a mile wide, distant eleven nautical miles from Bald Head light-house, across the Frying Pan shoals. A channel extending from three to four miles from the point of Cape Fear to eight or eight and a half miles from it, with sufficient water at low tide to allow vessels drawing from nine to ten feet to cross safely. A channel at the distance of fourteen nautical miles from Bald Head light-house, one mile wide, with three and a half to seven fathoms water on it. The Frying Pan shoals extend twenty nautical miles from Bald Head light-house, and sixteen, seventeen, and eighteen feet water is found seventeen and eighteen nautical miles out from the light, 1851.
- 91. Shoaling of Cape Fear river bar thoroughly examined for purposes of improvement, 1852.
- 92. Changes of shore-line and hydrography determined at the Cape Fear entrances, N. C., 1858.
 - 93. Changes of the Cape Fear bars and channels, 1857.
- 94. Changes at the entrance of Winyah bay and Georgetown harbor, and the washing away of Light-house point at the same entrance, 1853.
- 95. Maffitt's new channel, Charleston harbor, with the same depth of water as the ship channel, 1850.
 - 96. The changes in Maffitt's channel, Charleston harbor, S. C., from 1852 to 1857.
 - 97. Increase of depth developed in Maffitt's channel, Charleston harbor, S. C., 1858.
 - 98. Changes in the main ship channel, Charleston harbor, 1855.

- 99. Changes in the channels at the entrance of Charleston harbor, 1852.
- 100. The remarkable discovery of continuous deep-sea soundings off Charleston, and of soundings in the depth of between four and five hundred fathoms beyond the Gulf Stream, 1853.
 - 101. Development of the changes affecting the entrance to North Edisto river, S. C., 1856.
- 102. Discovery of a new channel between Martin's Industry (shoal) and the southeast breakers, Port Royal entrance, S. C., 1856.
- 103. Discovery of cold water at the bottom of the ocean below the Gulf Stream, along the coasts of N. and S. Carolina, Georgia, and Florida, 1853.
- 104. The discovery of the cold wall, alternate warm and cold bands, and various other features of the Gulf Stream, especially such as concern its surface and deep-sea temperatures, and its distribution relative to the shore and bottom of the ocean.
- 105. Various facts relative to the distribution of minute shells on the ocean bottom, of probable use to navigators for recognizing their positions.
 - 106. Examination of Doboy, St. Simon's, and Cumberland entrances, 1855.
 - 107. A shoal inside of the entrance to Amelia river, Fla., 1857.
 - 108. Hetzel shoal, off Cape Cañaveral, Fla., 1850.
- 109. Temperature of 34° beneath the Gulf Stream, thirty-five miles east of Cape Florida, at a depth of three hundred and seventy fathoms, 1855.
- 110. A harbor of refuge (Turtle harbor) to the northward and westward of Carysfort lighthouse, Florida reef, with a depth of water of twenty-six feet at the entrance, 1854.
- 111. A new passage, with three fathoms water, across the Florida reef to Legare harbor, under Triumph reef, (latitude 25° 30′ N., longitude 80° 03′ W.,) which, if properly buoyed, will be valuable as a harbor of refuge, 1852.
 - 112. A safe rule for crossing the Florida reef near Indian key, 1854.
 - 113. A new channel into Key West harbor, 1850.
 - 114. Cotidal lines for the Atlantic coast of the United States, 1854.
 - 115. Rules for navigators in regard to the tidal currents of the coast, 1857.
 - 116. Isaac shoal, near Rebecca shoal, Florida reef; not laid down on any chart, 1852.
 - 117. Channel No. 4, a northwest entrance into Cedar Keys bay, 1852.
- 118. Directions for entering the harbor from Crystal river offing, western coast of Florida peninsula, 1856.
- 119. A new channel discovered, leading into St. George's sound, (Apalachicola, Fla.,) at the east end of Dog island, and anchorage connected with it, 1858.
- 120. Shoals near the East and West passes of St. George's sound, (Apalachicola, Fla.,) and a new channel found between St. George's and St. Vincent's islands, 1858.
- 121. Mobile bay entrance bar; in 1832 only seventeen feet at low water could be carried over it; in 1841 it had nineteen, and in 1847 it had twenty feet and three-quarters, as shown by successive surveys, 1847.
- 122. The diminution, almost closing, of the passage between Dauphine and Pelican islands, at the entrance of Mobile bay, 1853.
 - 123. Horn Island channel, Mississippi sound, 1852.
- 124. The removal of the east spit of Petit Bois island, in the hurricane of 1852, opening a new communication between the Gulf and Mississippi sound, and the rendering of Horn Island Pass more easy of access by the removal of knolls, 1853.

- 125. The accurate determination of Ship shoal, off the coast of La., in connection with the site for a light-house, 1853.
 - 126. An increase of depth of water on the bar of Pass Fourchon, La., 1854.
 - 127. Deep-sea soundings in the Gulf of Mexico, 1855-'56.
 - 128. Tidal phenomena of the Gulf, 1855.
- 129. The changes at Aransas Pass., Tex., as bearing on the question of a light-house site, 1853.
 - 130. Co-tidal lines of the Gulf of Mexico, 1856.
 - 131. On the effect of wind in disturbing the tides of the Gulf of Mexico, 1856.
 - 132. Development of a bar at the entrance of San Diego bay, Cal., 1856.
- 133. A shoal inside of Ballast Point, San Diego bay, with only twelve and a half feet water; not laid down on any chart, 1852.
- 134. The determination of the position and soundings on Cortez bank, off the coast of Cal., 1853.
- 135. Complete hydrographic survey and determination of a point of rock on Cortez shoal, 1856.
 - 136. Tides of San Diego, San Francisco, and Astoria, 1854.
- 137. The non-existence of San Juan island, usually laid among the Santa Barbara group, 1852.
 - 138. Co-tidal lines of the Pacific coast, 1855.
 - 139. Determination of Uncle Sam rock, 1855.
 - 140. Investigation of the currents of Santa Barbara channel, 1856.
 - 141. Red sand marking the inner entrance to the Golden Gate, 1855.
- 142. Channel sounded out between Yerba Buena and the Contra Costa, San Francisco bay, 1855.
 - 143. A reef developed off the Contra Costa flats, San Francisco bay, Cal., 1858.
- 144. Whiting's rock, determined in position, near the "Brothers," at the entrance of San Pablo bay, Cal., 1858.
 - 145. Further development of the extent of Commission rock, San Pablo bay, 1856.
 - 146. Changes in the channel entrance of Humboldt bay or harbor, Cal., 1852 and 1853.
- 147. South channel, Columbia river, surveyed and made available to commerce, 1851. Changes of channels, their southward tendency, and a new three-fathom channel from Cape Disappointment, due west to open water, Columbia entrance, 1852; further changes, 1853.
- 148. The depth of water on the bars at the entrance of Rogue river and Umpquah river, Oregon, 1853.
- 149. A shoal at the northern entrance to the Strait of Rosario, W. T., giving good holding ground in thirty-three feet, 1854.
- 150. Boulder reef, northwest of Sinclair island, Rosario strait, partly bare at unusually low tides and surrounded by kelp, 1854.
- 151. A bank of three and a half fathoms, about a mile off the southwest point of Sucia island, at the northern entrance of Washington sound, W. T., 1858.
 - 152. Belle rock, in the middle of Rosario strait, visible only at extreme low tides, 1854.
 - 153. Entrance rock, at the entrance of Rosario strait, 1854.
 - 154. Unit rock, in the Canal de Haro, W. T., visible only at extreme low tides, 1854.

- 155. A three-fathom shoal in the Strait of Juan de Fuca, off the southeast part of Bellevue or San Juan island, 1854.
 - 156. Allen's bank, Admiralty inlet, W. T., 1857.
- 157. A five-fathom shoal, in the Strait of Juan de Fuca, between Canal de Haro and Rosario strait, 1854.
 - 158. A bank in eleven fathoms, off the southern entrance to Canal de Haro, 1854.
- 159. The non-existence of two islands at the northern entrance of Canal de Haro, laid down on charts, 1853.
- 160. Various surveys and charts of small harbors on the Pacific coast of the U. S., and a continuous reconnaissance of the entire western coast and islands adjacent, a great part of which was imperfectly known.
 - 161. Winds of the western coast of the U.S., 1857.

Additional list for 1859.

- 1. Only eighteen feet at mean low water found on the rock one mile to the southward of Seguin island, coast of Maine.
- 2. True position of the Hussey rock in Casco bay determined, correcting the erroneous one assigned on previous charts.
- 3. Determination of the position of the "Hue & Cry," the "Old Proprietor," and other dangers off Cape Elizabeth, Me.
 - 4. Development of a rock off Ogunquit, bare at low tides, and very little known.
 - 5. A fishing bank sounded out off Wood island, coast of Maine.
 - 6. Huzzey's rock, south of Fletcher's neck, Me., determined in position.
 - 7. Development of a four-fathom bank off Cape Porpoise, Me.
- 8. Determination of the position of a small rock with less than four feet at mean low water, near the channel, and in the vicinity of Great rock, Hyannis harbor, Mass.
- 9. The existence of a seventeen foot spot on the shoal off the battery, New York harbor; the extension of the shoal towards the channel, and the shoaling of the water generally between the shoal and shore.
- 10. The existence and character of sub-currents, ascertained as bearing on the physical conditions of New York harbor.
- 11. Changes developed in the shore-lines at the entrance of Little Annemessex river, Chesapeake bay.
- 12. Less water found off Cape Romain by preliminary examination, than has been heretofore assigned.
 - 13. Further explorations in developing the character of the Gulf Stream in the Florida channel.

APPENDIX No. 9.

Letter to the Secretary of the Treasury, communicating the position of a sunken rock off Seguin island, coast of Maine, determined by Lieut. Comg. J. Wilkinson, U. S. N., assistant Coast Survey.

COAST SURVEY STATION,
Near Lane's Brook, Me., September 12, 1859.

Siz: I have the honor to communicate as additional to the information contained in my letter of August 30, which reported the development by Lieut. Comg. J. Wilkinson, U. S. N., assistant Coast Survey, of a less depth than has heretofore been assigned for a sunken rock off Seguin island, coast of Maine; the following bearing, etc., for the determination of its position, since furnished by that officer.

- "Bearing.—From Seguin island light-house, S. 9° 30' E., true; S. a little west by compass.
- "Distance.—From south point of Seguin island, three-quarters of a nautical mile.
- "Range.-Pond island light-house, just open on the southwest side of Seguin island."

The rock, as before stated, is surrounded by deep water, but has only eighteen feet on it at mean low tide, and lies in the track of vessels bound into the Kennebec river.

I would respectfully request authority to publish this letter in the usual form, as a notice to mariners.

Very respectfully, yours,

A. D. BACHE, Superintendent.

Hon. Howell Cobb, Secretary of the Treasury.

APPENDIX No. 10.

Letter to the Secretary of the Treasury, communicating bearings and ranges from the true position of the Hussey rock in Casco bay, as determined by Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey.

PHILADELPHIA, October 14, 1859.

Sir: I have the honor to report that in the progress of the soundings made this season in Casco bay, Me., by the party of Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey, the true position of the Hussey rock has been determined and found to be more than a quarter of a nautical mile northwest of the position assigned hitherto on charts of the vicinity. The rock is small and has only twelve feet on it at mean low water. The following bearings and ranges from it are taken from the report of Lieut. Comg. Wilkinson:

- "Bearings.—Middle of Green island, SE. 1/4 E., by compass (S. 59° E. true.)
- "Cape Elizabeth east light-house, SW. 3 S., southerly by compass (S. 23° 30' W. true.)
- "Portland light-house, SW. by W. 3 W., by compass (S. 52° W. true.)
- "Ranges .- South end of Ram island and Portland light-house, in range.
- "Poorduck church, three-quarters of a point open from White Head Bluff.
- "School-house on Long Island, in range with the east end of Marsh island."
- "A buoy that formerly marked the position of the Hussey rock parted from its moorings several years ago, and has not yet been replaced. Luckse's sound is a fine harbor of refuge for ships that are unable to work into Portland, and is resorted to by such, especially during the

winter when the wind is from the northward and westward. The Hussey lies directly in their track and should be marked by a buoy."

I would respectfully request that a copy of this communication may be firmished to the Light-House Board, and also authority for publishing it in the usual form as a notice to mariners.

Very respectfully, yours,

A. D. BACHE, Supt. U. S. Coast Survey.

Hon. Howell Cobb, Secretary of the Treasury.

APPENDIX No. 11.

Letter to the Secretary of the Treasury reporting the development of a rock off Ogunquit, coast of Maine, by Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey.

COAST SURVEY OFFICE, November 9, 1859.

Sir: I have the honor to communicate that in the progress of hydrographic operations on the coast of Maine, in August last, Lieut. Comg. Alexander Murray, U. S. N., assistant Coast Survey, developed the position of a rock, bare at low tide, off Ogunquit. It is about a mile and a half (nautical) from that village, and was unknown to the residents of the adjoining coast. The rock rises boldly from the bottom, from four to seven fathoms of water being found in its immediate vicinity, and in the opinion of Lieut. Comg. Murray should be marked by a spindle.

I would respectfully request that a copy of this letter may be furnished to the Light-house Board, and that authority may be given for publishing it in the usual form as a notice to mariners.

Very respectfully, yours,

A. D. BACHE,

Superintendent.

Hon. Howell Cobb, Secretary of the Treasury.

APPENDIX No. 12.

Report of Lieut. Comg. John Wilkinson, U. S. N., assistant Coast Survey, on determining the position of a small rock at the entrance to Hyunnis harbor, Massachusetts.

United States Coast Survey Steamer Corwin, Portland, Maine, July 29, 1859.

Six: In obedience to your directions I have examined the locality in the main entrance to Hyannis harbor, where a rock was reported by Commander M. Smith, U. S. N., Light-house Inspector of the Second District, and succeeded in finding and determining its position. After running many lines and sweeping carefully over the ground within a hundred yards of the spar buoy, which has been placed to mark its supposed position or vicinity, without finding it, I obtained information which satisfied me that it was not situated in the channel, but near the

Great Rock. It is about eight feet square, and upon its crest there is a depth of three and a half feet at mean low water, increasing suddenly to twelve feet all around it.

The following are bearings and ranges from spar buoy "red No. 2:"

Centreville church spire, NW. by W. (westerly) true, NW. (westerly) by compass.

Hyannis west spire, north (easterly) true, N. by E. by compass.

Point Gammon light-house E.SE. true, SE. by E. 1/4 E. by compass.

From the new rock the bearings are:

Centreville church spire, NW. by W. (westerly) true, NW. 4 W. by compass.

Hyannis west spire, N. 1/4 W. true, N. 3/4 E. by compass.

Point Gammon light-house, SE. by E. 3/4 E. true, SE. 3/4 E. (easterly) by compass.

Great Rock spindle bears N.NW. $\frac{1}{2}$ W. true, or N. by W. $\frac{1}{2}$ W. by compass, and is distant two hundred yards.

Range.—The new rock and Great Rock spindle in range with two houses situated on the top of a low sand hill, distant five hundred yards from the foot of the western wharf, and two hundred yards from the beach.

The spar buoy "red No. 2" bears W. $\frac{1}{4}$ N. true, or W. by N. (northerly) by compass, and is distant three hundred and twenty-five yards.

Very respectfully, your obedient servant,

J. WILKINSON,

U. S. N., Assistant Coast Survey.

Prof. A. D. BACHE,

Superintendent U. S. Coast Survey.

APPENDIX No. 13.

Letter of the Superintendent, addressed to the President of the New York Chamber of Commerce, with the report of Lieut. Comg. T. A. Craven, U. S. N., stating the result of an examination of the Battery shoal.

COAST SURVEY STATION,

Near Lane's Brook, Maine, September 27, 1859.

Dear Sir: The report that one or more vessels had struck upon the shoal off the Battery, where it was generally supposed there was deep water, induced one of the pilot commissioners, George W. Blunt, esq., to call my attention to the desirableness of a resurvey of the shoal. It was assigned to Lieut. Comg. T. A. Craven, then assistant in the Coast Survey, who having been charged with the hydrography of New York harbor, for the commissioners on harbor encroachments, was familiar with every part of the shoal. His report, recently presented to me, gives in detail the changes which have occurred, and shows prospectively those which may be expected. It is important, and I therefore beg leave through you to call the attention of the Chamber of Commerce to it. The filling up between pier No. 1 and the Castle may readily be avoided by dredging, and no doubt the entire completion of the Battery work would retard the now rapid increase of the shoal. The shoal must, however, in a general way, be related to the new shore, line as the old was to the former shore, and thus the shoal while

changed in form must be pushed out to a distance, not equal, but corresponding to the addition to the shore-line of the Battery.

Yours, respectfully,

A. D. BACHE, Superintendent U. S. Coast Survey.

Pelatiah Perit, Esq., President Chamber of Commerce, New York.

Report of Lieut. Comg. T. A. Craven, U. S. N., to Prof. A. D. Bache, Superintendent Coast Survey, on the results of the resurvey of the shoal off the New York Battery.

NEW YORK, September 20, 1859.

Six: In compliance with your directions in July last, I made an examination of the shoal off the Battery, New York, for the purpose of ascertaining what changes have taken place in that locality, and I herewith submit to you a map of the survey, scale $\frac{1}{000}$, on which I have also had the soundings placed from the surveys of 1855 and 1856 for comparison.

The soundings of 1855 and 1856 are in red figures, and the curves are also distinctly drawn. In order to make this discussion as explicit as possible, I divide the shoal into sections, and call your attention to each position separately; you will be much interested in observing the rapidity with which the shoal is accumulating, and with what regularity the deposits are being made:

Section I, from pier No. 1, North river, to Castle Garden.

In the angle formed by the line of the Battery and the pier there has been a very rapid filling up, the 3-fathom curve has been pushed outward eighty yards beyond the line of 1856; the 17 feet spot in the outer part of this section is extending towards pier No. 1, and there is an average decrease of three feet in depth throughout this section.

Section II extends to the 3-fathom curve of 1856.

In this portion of the shoal the change has been not less considerable than in the angle of pier No. 1. The 3-fathom curve was, in 1856, about seventy-five yards south of the Castle, it will be seen that it has extended towards the Castle wharf, and embraces a considerable area where formerly we had five fathoms; outside of this curve, we find in this section a general decrease of five feet in the depth.

Section III embraces the general shoal to the southeastern portion of the curve of 3 fathoms. Excepting in the part already indicated, there has been no material change in the general contour of the shoal, but in following the curve to its southernmost point it will be seen that it has extended about one hundred feet to the southward.

Section IV extends from last section to the East river piers.

In calling your attention to this section, I will merely refer to the knoll lying about W.SW. from pier No. 1, East river. This knoll has eighteen feet water upon it, is very small, and has deep water outside and close to it; there is no change in depth on the knoll, but it is extending itself towards the north, and it will be seen that in that direction there is a decrease of two feet in the depth near the shoal.

East of this knoll there is no apparent change. Drawing a waved line from the last mentioned

knoll to the Castle Garden, you mark out the eddy waters of this part of the river; the currents of the two rivers meeting here at ebb and dividing at flood; this portion of the stream being too sluggish to carry off matters held in suspension, they are rapidly and constantly deposited.

Although from natural causes there must always have been a shoal off this point of the island, its accumulation has been evidently aided to a startling degree by the extension of the Battery. The currents which formerly flowed between the Castle Garden and the shore, made the greater portion of their deposit so near the shores as to cause no great injury to the operations of commerce, and the process of deposit was so gradual that it would have required an interval of many years ere the shoal would have seriously encroached on the waters of the bay, but the battery extension has already accomplished that which would have required a half century of the operations of nature, having pushed the shoal out as the shore line was changed.

In illustration of this assertion, we have but to look at the extraordinary heaping up of the earth in the angle formed by the Battery wall and pier No. 1; a heaping up, made by the ebb current of the North river, which as it comes around the pier is now turned back and formed into eddies by the Battery walls. This current formerly ran through the space now covered by the filling in, and poured the suspended matter into the East river, off White Hall, from whence it was carried away and distributed in the deep waters of the bay, but now a large portion of the sediment brought down by the ebb is doubtless filling in the space here with great rapidity; its effects are still more strongly visible in the section off the Castle, where we see changes of six and eight feet in the space of three years; this is due to the united efforts of the ebbs from the two rivers, and the time cannot be far distant when, unless dredging is resorted to, the entire space from the Castle to the head of pier No. 1 will be quite filled in.

In addition to the material damage done by thus forcing out into the stream a shoal which was heretofore of little consequence, it may safely be presumed that in filling in for the Battery extension very liberal supplies have been contributed to the shoal from the dirt carts, as without the security of a regular sea wall, immense quantities of the loose earth must from time to time be washed away and added to the shoal, and it is probable that when the slowly progressing enlargement is completed and the walls finished the changes will be less rapid.

The injury is now without other remedy than that of hastening to its completion a work which has proved so seriously disastrous to this already crowded part of the harbor, and by legislation preventing any extensions beyond the lines of the city as defined by the harbor commissioners.

I am, very respectfully, your obedient servant,

T. AUGS. CRAVEN,

Lieutenant Commanding.

Prof. A. D. Bache, Superintendent U. S. Coast Survey.

REPORT ON HARBOR ENCROACHMENTS.

Mr. G. W. Blunt presented the report of the committee on the subject of harbor encroachments, as follows:

The committee appointed to report upon the evils arising from the extension of the Battery, having been requested to extend their inquiries in order to ascertain if any and what other

abuses existed in the harbor, beg leave to report a few of the most important, and to propose a mode of abating or remedying them.

First in order among the abuses is that of an encroachment. The committee would mention West Washington Market, where five acres have been taken or filled in from the waters of the North river; likewise pier No. 51, North river, extended thirty-three feet beyond the exterior line established by law. These are the acts of the city authorities.

The Lowber extension at the foot of Fourteenth street, East river, and the piles just driven at the outer end of pier No. 29, East river, which pier was already some twenty-five feet beyond the established limits, are instances of encroachments by private parties.

Next in order is the sewerage. It has been ascertained that the slips in the harbor have been filled up nearly eighteen inches each year, by material discharged from the sewers, of which only four out of one hundred and ten discharge at the outer end of the piers, the remainder discharge into the still waters of the slips or basins, where there is no current to carry off the deposits.

Dumping grounds.

These are the places where the dirt swept from the streets of the city is deposited by order of the city inspector. They are eight in number, viz: At the foot of Vesey, Watts, Gansevoort, and Twenty-sixth streets, North river; Roosevelt, Stanton, Fifth, and Twenty-third streets, East river.

The dirt is continually being dropped into the waters of the harbor and filling up the slips, from the practice of heaping it up on the piers and bulkheads. During last month the pier at the foot of twenty-third street, East river, gave way from the accumulation of dirt upon it, and 3,000 cart loads were thus thrown into the river.

Remedies.

All parties encroaching upon the waters of the harbor, beyond the established limits, should be punished by sufficient penalties, and the harbor commissioners should have power to remove the encroachments at once, the offending parties to pay all expenses incurred in such removal. All new sewers should be carried to the outer ends of the piers, (which we believe to be the intention of the Croton Aqueduct department, which has charge of the construction of sewers,) and, where practicable, the termination of those now built should be changed so as to empty in like manner with the new ones. The cisterns at the corners of the streets communicating with the sewers should invariably be cleaned out weekly, which would be the great preventive of filling up the slips from the sewers.

No dumping should be permitted upon or near the piers or bulkheads, under a penalty; and the city inspectors should be required to have scows or other vessels provided and ready to receive the dirt from the carts, there being no good reason why dirt should have a preference over all other articles in the use of our piers and bulkheads.

The shore-line belonging to the State of New York, in the harbor of New York, under the control of the harbor commissioners, is over seventy miles in extent; no part of it can be extended into the rivers beyond the established limits, without doing injustice to the harbor and injustice to those who respect the law.

An instance is before us in the case of pier No. 51, North river, extended beyond the line as above stated; the comptroller of the city having allowed the lessee of pier 52 one thousand dollars reduction on his rent, on account of the damage done to him by the illegal extension.

The committee would recommend to the chamber that application be made to the legislature to legalize the remedies suggested in this report, and to the corporation of this city, that measures be taken to finish the extension of the Battery at once.

In closing their report, the committee would bear testimony to the great and continued interest shown by Professor A. D. Bache, Superintendent of the United States Coast Survey, for the preservation of our harbor, in having obtained and furnished to it all the information necessary to the forming of an intelligent opinion upon the subject under consideration.

GEORGE W. BLUNT.
ROBERT L. TAYLOR.
CHARLES H. MARSHALL.
ROBERT B. MINTURN.
ROYAL PHELPS.
JOHN D. JONES.
GEORGE OPDYKE.
RUSSELL STURGIS.

NEW YORK, November 1, 1859.

APPENDIX No. 14.

Tide tables for the use of navigators, prepared from the Coast Survey observations by A. D. Bache, Superintendent. (Furnished, by authority of the Treasury Department, to E. & G. W. Blunt, New York, and revised October, 1859.)

The following tables will enable navigators to ascertain the time and height of high and low water in some of the principal ports of the United States. The results are approximate, the observations being still in progress; but they may safely be used for practical purposes. The number of places of observation, and the time during which many of them have been made, are steadily on the increase as the Coast Survey advances.

The tides on the coast of the United States, on the Atlantic, Gulf of Mexico, and Pacific, are of three different classes. Those of the Atlantic are of the most ordinary type, ebbing and flowing twice in twenty-four hours, and having but moderate differences in height between the two successive high waters or low waters, one occurring before noon, the other after noon.

Those of the Pacific coast also ebb and flow twice during twenty-four hours; but the morning and afternoon tides differ very considerably in height, so much so that at certain periods a rock which has three feet and a half water upon it at low tide may be awash on the next succeeding low water. The intervals, too, between successive high and successive low waters may be very unequal.

The tides of ports in the Gulf of Mexico, west of Cape St. George, ebb and flow, as a rule, but once in twenty-four hours, or are single day tides. At particular parts of the month there are two small tides in the twenty-four hours. The rise and fall in all these ports is small. East of Cape St. George the rise and fall increases; there are two tides, as a rule, during the twenty-four hours, and the daily inequality referred to in the Pacific tides is large.

These peculiarities require a different way of treating the cases, and in some of them separate tables.

I propose to enable the navigator to find, from the Nautical Almanac and the following tables, the time and height of high and low water at any date within the ordinary range of difference produced by winds and other variable circumstances. I will endeavor to divest the matter of unfamiliar technical expressions as far as practicable, though, for shortness' sake, some such terms may be employed after defining them. The discussion of the Gulf tides has not been carried so far as to enable me to present the results in as definite a form as the others.

As is well known, the interval between the time of the moon's crossing the meridian (moon's transit) and the time of high water at a given place is nearly constant; that is, this interval varies between moderate limits, which can be assigned. The interval at full and change of the moon is known as the establishment of the port, and is ordinarily marked on the charts. it is not generally the average of the interval during a month's tide, it is a less convenient and less accurate quantity for the use of the navigator than the average interval which is used on the Coast Survey charts, and is sometimes called the "mean" or "corrected establishment."* The following table gives the principal tidal quantities for the different ports named in the first column, where they are arranged under specific heads. The third column of the table gives the mean interval, in hours and minutes, between the moon's transit and the time of high water next after the transit; the fourth, the difference between the greatest and the least interval occurring in different parts of the month, (lunar.) A simple inspection of this column will show how important it is to determine these changes in many of the ports where they amount to more than half an hour, or to more than fifteen minutes from the average interval. The fifth, sixth, and seventh columns refer to the height of the tide. The fifth gives, in feet, the average rise and fall, or average difference between high and low water. The sixth gives the greatest difference, commonly known as the rise and fall of spring tides; and the seventh the least difference, known as the rise and fall of the neap tides.

The average duration of the flood or rising tide is given in the eighth column; of the ebb or falling tide in the ninth; and of the period during which the tide neither rises nor falls, or the "stand," in the tenth. The duration of the flood is measured from the middle of the stand at low water to the middle of the stand at high water; so that the whole duration from one high water to the next, or from one low water to the next, should be given by the sum of the numbers in the eighth and ninth columns. At most of these places given in the list a mark of reference has been established for the height of the tide. I have omitted the description of these marks (except in the following localities) as of no particular interest in this connection.

BENCH-MARKS.

Boston.—The top of the wall or quay at the entrance of the dry dock in the Charlestown navy yard is fourteen feet $\frac{7}{10}$ (or 14.76 feet) above mean low water.

New York.—The lower edge of a straight line cut in a stone wall, at the head of a wooden wharf on Governor's island, is thirteen feet $\frac{97}{100}$ (or 13.97 feet) above mean low water. The letters U. S. C. S. are cut in the same stone.

^{*} This term was introduced by the Rev. Dr. Whewell, who has done so much for the investigation of the laws of the tides.

Old Point Comfort, Va.—A line cut in the wall of the light-house, one foot from the ground, on the SW. side, is eleven feet (11 feet) above mean low water.

Charleston, S. C.—The outer and lower edge of embrasure of gun No. 3, at Castle Pinckney, is ten feet $\frac{1}{100}$ (10.13 feet) above mean low water.

TABLE I.

Tide table for the coast of the United States.

		1	VEEN TIME S TRANSIT E OF HIGH	RIE	BE AND PA	 .	Mean	DURATION	or-
PORT.	STATE.	Mean interval.	Diff. between greatest and leastint'val.	Mean.	Spring tides.	Neap tides.	Flood tide.	Ebb tide.	Stand.
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
COAST FROM PORTLAND TO NEW YORK. Hanniwell's Point, Kennebec river Portland	Mainedo	h. m. 11 15 11 25	h. m. 1 14 0 44	Feet. 8.1 8.9	Feet. 9.3 9.9	Feet. 7.0 7.6	л. m. б 16 6 14	h. m. 6 11 6 12	h. m. 0 22 20
Pertsmouth	New Hampshire	11 23 11 22	53 50	8.6 7.8	9.9	7.2 6.6	6 22 5 16	6 7 7 9	91 24
Rockport	do	10 57 11 13	42 50	8.6 9.2	10.2 10.6	7.1 7.6	6 17 6 19	6 9 6 6	30
Boston Light	do	11 12 11 27 11 19	35 43 51	9.3 10.0 10.2	10.9 11.3 11.4	8.1 8.5 9.0	6 20 6 13 6 13	6 6 6 13 6 17	15 9 29
Welifieet	do	11 5 11 22	1 13 40	11.2	13.2 10.8	9.2 7.7	6 6 6 16	6 17 6 10	15 21
Monomoy	do	11 58 12 24 12 22	37 37 30	3.8 3.1 3.2	5.3 3.6 3.9	2.6 2.6 1.8	6 25 6 23 6 44	5 59 5 44 5 41	36 9
Régartown Holmes's Hole	do	12 16 11 43	34 31	2.0 1.7	2.5 1.8	1.6 1.3	6 51 6 41	5 29 5 21	24 12
Tarpaulin Cove	do	8 4 7 59 8 34	49 53 45	2.3 4.0 1.6	2.8 4.7 2.0	1.8 3.1 1.2	6 9 6 51 5 17	6 17 5 31 7 10	34 38 59
Menemsha Bight	do	7 45 7 31	1 0	2.7	3.9 4.3	1.8	6 14 6 31	6 14 5 54	4 39
Quick's Hole, south side	do	7 36 7 40	1 10 49	3.1 3.5	3.8 4.9	2.3 2.9	6 29 6 31	5 55 5 54	40 39 29
Kettle Cove	do	7 48 7 59 7 57	1 0 45 41	4.3 4.4 3.8	5.0 5.3 4,6	3,7 3,5 2,8	6 17 6 51 6 50	6 4 5 58 5 33	42
Newport	Rhode Island	7 45 7 32	94 45	3.9	4.6	3.1 2.6	6 21 6 12	5 3 6 10	23 1 0
Block Island Montauk Point, L. I	New York	7 36 8 20	1 11	2.8	3.5 2.4	9.0	6 23 6 17 6 10	6 9 6 7 6 15	5 31 21
	do	7 29 8 13	47	4.8 4.3	5.6 5.4	3.4	6 0	6 25	28
HUDSON RIVER.	1				ļ		ļ		
Dobb's Ferry	do	9 19 9 57	44 58	3.6 3.5	4.4	2.7 2.7	6 5 6 6	6 18 6 20	17 43
Verplanck's Point	do	10 8 11 9	34 37	3.1 2.7	3,8 3,9	2.5 2.6	5 25 5 28	7 12 7 10	16 90
Poughkeepsie	do	12 34 1 24 3 23	54 51 48	3.2 4.0 3.8	3.9 4.6 4.4	2.4 3.2 3.0	5 41 5 40 5 18	6 44 6 54 7 8	22 25 31
Casileton	do	4 29 5 29	55 40	2.7 2.3	3.0 9.5	9.3 1,9	5 1	7 23 7 59	20

^{*} From Major J. D. Graham's observations.

TABLE I—Continued.

			S TRANSIT	RIS	E AND FAI	L.	MEAN I	DURATION	o r —
PORT.	STATE.	Mean interval.	Diff. between greatest and least int'val.	Мезп.	Spring tides.	Veap tides.	Flood tide.	Ebb tide.	Stand.
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
LONG ISLAND SOUND.		h. m.	h. m.	Feet.	Peet.	Feet.	h. m.	h. 111.	h. m.
Watch Hill	Rhode Island	9 0	0 23	2.7	3.1	2.4	6 25	5 56	0 14
Stonington	Connecticut	9 7	30	2.7	3.2	2.2	6 15	6 10	2 5
Little Gull Island	New York		1 07	2.5	2,9	2.3	6 I	6 21	37
New London	Connecticut	9 28	52	2.6	3.1	2.1	5 56	6 26	12
	do	11 16	1 8	5.9 6.5	6.2 8 0	5.2	6 24 6 1	6 5 6 7	33
Bridgeport		11 11 11 7	51	7.3	9.2	5.4	58	6 24	25
Sand's Point, L. I		11 13	31	7,7	8.9	6.4	5 55	6 30	14
New Rochelle	1	11 22	32	7,6	8.6	6.6	5 51	6 35	12
	do.,	11 20	39	7.3	9,2	6.1	5 50	6 33	43
COAST OF NEW JERSEY.									
	New Jerseydo	7 32 8 19	51 47	4.4 4.8	5.4 6.0	3.6 4.3	6 8 6 11	6 18 6 15	19 90
DELAWARE BAY AND RIVER.									
Delaware Breakwater	Delaware	8 0	50	3.5	4.5	3.0	6 15	6 6	26
ligbee's, Cape May	New Jersey	8 33	43	4.9	6,2	3.9	6 26	6 0	19
ea	do	94	51	6.0	7.0	5.1	5 52	6 27	36
Mahon's River	Delaware	9 59	48 24	5.9	6.9 6.9	5.0 6.6	6 11 5 6	6 11 6 43	26
NewcastlePhiladelphia	Pennsylvania	11 53 13 44	44	6.5 6.0	6.8	5.1	4 52	7 6	47 15
CHESAPEAKE BAY AND RIVERS.									
Old Point Comfort	Virginia	8 17	60	2.5	3,0	2.0	6 1	6 25	14
Point Lookout	Maryland	12 58	45	1.4	1.9	0.7	5 59	6 19	3 5
Annapolis	do	17 4	40	0.9	1.0	8.0	6 11	6 15	32
Bodkin Light		18 8	48	1.0	1.3	8.0	5 23	7 8	15
Baltimore		18 59	44	1.3	1.5	0.9	5 54	6 33	44
	Dist. of Columbia	20 10	1 0	3.0 2.8	3.4 3.0	2.6 2.5	5 37 5 14	6 49 6 58	30
James River, (City Point)	Virginia	14 37 16 54	1 6	2.0	3.4	2.3	4 53	7 31	392 35
Cappahannoek	1	12 58	46	1.6	1.9	1.3	5 21	7 6	
COAST OF NORTH AND SOUTH CAROLINA, GEORGIA, AND FLORIDA.									
Hatteras inlet	North Carolina	7 4	57	2.0	2.2	1.8	6 7	6 7	50
· · · · · · · · · · · · · · · · · · ·	do	7 26	50	2.8	3.3	2,2	6 11	6 10	42
Bald Head	do	7 26	34	4.3	5.0	3.4	6 18	6 17	31
Smithville		7 19	38	4.5	5.5	3.8	6 1	6 26	26
Wilmington		9 6	1 0	2.7	3.1	2.2	4 45 6 4	7 40	30
Bull's Island Bay		7 56 7 16	42 57	3.8 4.8	4.7 5.7	9.7 3.7	64 620	6 19 6 6	35 30
Dharleston, (Custom-house wharf)		7 26	48	5.1	6.0	4.1	6 19	67	33
St. Helena sound		7 8	1 0	5.9	7.4	4.4	6 13	6 12	23
Fort Pulaski, (Savannáh entrance)		7 20	40	7.0	8.0	5.9	5 49	6 35	26
Savannah, (Dry Dock wharf)	do	8 13	51	6.5	7.6	5.5	5 4	7 29	14
Doboy Light-house	do	7 33	55	6.6	7.8	5.4	6 2	6 20	
St. Simon's		7 43	46	6.8	8.2	5.4	6 10	6 16	20
Fort Clinch		7 53	1 6	5.9	6.7	5.3	6 9	6 17	
	do	7 28	48	4.5	5.5	3.7 3.6	5 58 6 5	6 28 6 11	16 32
N. Augustine		8 21 8 34	43 51	4.2 1.5	4.9 1.8	3.b 1.2	60	6 26	45
Dape Florida Indian Key	do.		49	1.8	2.4	1.2	6 36	5 48	19
Sand Key		0.10	(Ser)	2.0		1			1 20

TABLE I-Continued.

		OF MOON	WERN TIME 'S TRANSIT E OP HIGH	RI	BE AND FA	LL,	Mean	DURATION	or—
PORT.	STATE.	Mean interval.	Diff. between greatest and leastint'val.	Mean.	Spring tides.	Neap tides.	Flood tide.	Ebb tide.	Stand.
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
COAST OF NORTH AND SOUTH CAROLINA, GEORGIA, AND FLORIDA—Continued. Key West	Florida	A. m., 9 22	A. m. 1 7	Feet.	Feet.	Feet.	h. m. 6 59	h. m. 5 25	h. m
Tortugas .	do	9 56	1 32	1.2	1.5	0.6	6 43	5 40	
Tampa Bay, (Egmont Key)		11 21	1 33	1.4	1.8	1.0	6 36	6 11	43
Cedar Keys, (Depot Key)		13 15	1 55	2.6	3.2	1.6	6 12	6 13	
St. Mark's		13 38	2 0	2.2	2.9	1.4	6 12	11 3	
WESTERN COAST-									
San Diego	California	9 38	1 35	3.7	5.0	2.3	6 22	6 0	30
San Pedro	do	9 39	1 48	3.7	4.7	2.2	6 18	6 5	30
Cuyler's Harbor	da	9 25	1 2	3.7	5.1	2.8	6 13	6 5	
San Luis Obispo	do	10 8	1 59	3.6	4.8	2.4	6 25	5 58]
Monterey	do	10 22	49	3.4	4.3	2.5	6 31	6 2	35
South Faraliene	do	10 37	1 15	3.6	4.4	2.8	6 18	6 9	
San Francisco, (north beach)	do	15 6	14	3.6	4.3	2.8	6 39	5 51	34
Mare Island, (San Francisco bay)	do	13 40	1 15	4.8	5.2	4.1	6 13	6 7	
Benicia	do	14 10	1 0	4.5	5.1	3.7	6 26	5 59	
Ravenswood	do	12 36	57	6.3	7.3	4.9	6 15	6 11	
Bodega	do	11 17	1 54	3.6	4.7	2.7	6 19	5 59	
Humboldt Bay	do	12 2	1 11	4.4	5.5	3.5	6 19	6 0	
Port Orford	Oregon Territory	11 26	16	5.1	6.8	3.7	6 19	6 7	39
Astoria	do	12 42	1 13	6.1	7.4	4.6	6 3	6 28	33
Nee-ah Harbor	Washington Terr	12 33	1 28	5.6	7.4	4.8	6 20	6 6	
Port Townshend*	do	3 49	1 3	4.6	5.5	4.0	6 34	5 52]
Steilacoom*	do	4 46	1 6	9.2	31.1	7.2	6 3	6 25	28

^{*} See remarks on page 144 and following.

Note.—The mean interval in column 3 has been increased by 124, 26m. (half a mean lunar day) for some of the ports in Delaware river and Chesapeake bay, so as to show the succession of times from the mouth. Therefore, 124, 26m. ought to be subtracted from the establishments which are greater than that quantity before using them.

The foregoing Table I gives the means of determining, roughly, the time and height of high water at the several ports named. The hour of transit of the moon preceding the time of high water is to be taken from the Almanac, and, the mean establishment being added, the time of high water results. Thus:

Example I.—It is required to find the time of high water at New York on November 5, 1854. The American Almanac gives 0h. 0m. as the time of transit of the moon on that day. The mean interval for New York, from Table I, column 3, is 8h. 13m., which, as the transit was at 0h., is, roughly, the time of high water. The moon being full, the height is that of spring tides of column 6, viz: 5.4 feet. If the soundings on the chart are reduced to low water spring tides, 5.4 feet are to be added to them to give the depth at high water. If the soundings are reduced to mean low water, the rise and fall of mean tides being 1.1 foot less than for springs, the rise or increase of depth will be half of this, or 0.6 of a foot less than 5.4 feet, which is 4.8 feet, or nearly four feet ten inches.

Example II.—Required the time of high water at Boston on January 23, 1851. From the

American Almanac we find the time of the moon's southing or transit, on that day, 5h. 18m. a. m., and from Table I the mean interval at Boston dry dock is 11h. 27m.

We have then 5h. 18m. time of transit;

To which add 11 27 mean interval from Table I.

16 45 time of high water, or 4h. 45m. p. m.

If the Greenwich Nautical Almanac is used, add 2m to the time of transit of Greenwich for every hour of west longitude, and its proportional part for less than an hour. It will suffice to take the half hour which may be over any number of hours, as the correction for less than this would be less than one minute, and need not be taken into account. Thus, Boston is 4h. 44m. west of Greenwich. The correction to be applied to the time of transit of the moon is, for the four hours, eight minutes, and for the 44 minutes, one minute. The time of transit on the date assumed in the preceding example is 17h. 9m. of the 22d, or 5h. 9m. a. m. of the 23d, to which add nine minutes; the correction just found gives 5h. 18m., as before ascertained from the American Almanac.

In using the United States Nautical Almanac, in the astronomical part of which the transits of the moon are given for the meridian of Wasington, the corrections required may, in this first approximation for the Atlantic coast, be neglected. To find the time of the next following low water add from Table I the duration of ebb tide.

This gives 4h. 45m. p. m., time of high water.

6 13 duration of ebb tide from Table I.

10 58 p. m.

By subtracting the duration of flood tide we obtain the time of the preceding low water, 10h. 32m. a. m., recollecting that 4h. 45m. p. m. is the same as 16h. 45m. reckoned from midnight.

The height of this tide, corresponding to the transit of 5h., will bring it nearly to a neap tide, and the rise and fall obtained from column 7, Table I, is 8.5 feet. The next following high water may be had by adding to the time of low water the duration of flood from Table I. Thus:

10h. 58m. p. m., time of low water January 23.

6 13 duration of flood from Table I.

Sum 17 11 or 5h. 11m. on January 24.

On having found the time of high water, the time of the next following high water may be found by adding the duration of flood and ebb together, and their sum to the time of high water found, thus:

6h. 13m. duration of ebb tide, from Table I.

6 13 duration of flood.

Sum 12 26 duration of whole tide.

4 45 p. m., January 23, time of high water.

Sum 17 11 or 5h. 11m. a. m., 24th January, time of the next succeeding high water.

Subtracting the same quantity will give the time of the preceding high water, thus:

4h. 45m. p. m., or 16h. 45m. from midnight, is the time of high water.

12 26 duration of flood and ebb tide.

4 19 a. m. of the 23d for the preceding high water.

The duration of the flood and the ebb being reckoned from the middle of one stand or slack water to the middle of the next, the time of beginning of stand of ebb or flood will be found by subtracting half the duration of stand or slack water given by column 10, Table I, from the time of high or low water, and the time of the end of the stand of ebb or flood by adding the same. A nearer approximation to the times and heights of high water may be obtained by the use of Tables II and III.

TABLE II.

Interval between the time of moon's transit and the time of high water for different hours of transit, and for several different ports.

lime of moon! transit.	Boston, Mass.	New York, N. Y.	Philadelphia, Pa.	Old Pt. Com- fort, Va.	Baltimore, Md.	Smithville, N. C.	Charleston, S. C.	Ft. Pulaski, Sa- vannah, Ga.	Key West, Fla.	San Francisco, Cal.
à. 11s.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	4. m.	ħ. m.	h. m.	h. m.
0 0	11 38	8 20	1 31	8 33	6 47	7 26	7 38	7 30	9 26	12 5
0 36	11 33	8 18	1 28	8 27	6 42	7 21	7 33	7 25	9 19	11 59
1 0	11 28	8 15	1 25	8 21	6 37	7 16	7 27	7 19	9 12	11 53
1 30	11 24	8 10	1 21	8 15	6 31	7 13	7 21	7 15	96	11 47
8 0	11 20	8 6	1 18	8 9	6 26	7 9	7 16	7 11	9 0	11 41
2 30	11 16	8 0	1 14	8 4	6 21	7 6	7 12	7 8	8 55	11 36
3 0	11 13	7 55	1 11	8 0	6 17	7 4	7-8	7 6	8 5L	11 23
3 30	11 10	7 52	18	7 56	6 13	7 3	7 5	7 5	8 50	11 33
4 0	11 7	7 52	16	7 52	6 11	7 2	7 2	7 4	8 49	11 38
4 30	11 6	7 52	1 3	7 49	6 10	7 3	7 2	7 3	8 53	11 46
5 0	11 6	7 53	10	7 48	6 10	7 4	7 3	7 4	8 57	11 55
5 30	11 9	7 56	0 59	7 50	6 13	7 6	7 7	7 6	9 7	12 3
6 0	11 13	7 59	0 59	7 53	6 19	7 9	7 12	7 8	9 17	12 11
6 30	11 19	8 5	11	80	6 -25	7 13	7 19	7 12	9 28	12 16
7 0	11 25	8 11	1 7	8 7	6 32	7 17	7 24	7 16	9 39	12 23
7 30	11 32	8 17	1 15	8 15	6 39	7 23	7 392	7 29	9 45	12 29
8 0	11 38	8 23	1 23	8 24	6 44	7 28	7 38	7 28	9 52	12 34
8 30	11 43	8 27	1 29	8 33	6 49	7 33	7 45	7 34	9 54	12 37
9 0	11 47	8 392	1 34	8 40	6 52	7 37	7 48	7 39	9 56	12 36
9 30	11 48	8 34	1 39	8 45	6 54	7 39	7 50	7 42	9 53	12 34
10 0	11 49	8 35	1 42	6 4 8	6 53	7 40	7 50	7 43	9 51	12 30
10 30	11 48	8 34	1 43	8 48	6 52	7 40	7 47	7 41	9 45	12 24
11 0	11 47	8 31	1 41	8 46	6 50	7 36	7 44	7 37	9 39	12 17
11 30	11 43	8 25	1 37	8 40	6 48	7 30	7 41	7 34	9 32	12 9

TABLE III.

Showing the rise and fall of tides, and corrections to be applied to determine the depth at high water of soundings on charts referred to mean low water, and to low water spring tides.

Time of	Bo	ston, Ma	88.	New	York, N	I. Y.	Phil	adelphia,	, Pa.	Old Po	int Comf	ort, Va.	Bai	ltimore,	Md.	Time of
moon's transit.	A.	В.	C,	A.	В.	C.	Α.	В.	C.	Α.	B.	C.	A.	B.	C.	transit.
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Fact.	Feet.	Fect.	Feet.	Feet.	Feet.	Feet.	Hour.
0	11.2	10.6	11.3	4.9	4.5	4.9	6.3	6.2	6.3	2.9	2.6	2.9	1.5	1.4	1.6	O
1	11.3	10.6	11,3	4.9	4.5	4.9	6.4	6.4	6.5	3.0	2.7	3.0	1.5	1.4	1.6	1
2	11.9	10.5	11.2	4.7	4.4	4.8	6.6	6.5	6.6	2.9	2.7	2.9	1.5	1.3	1.5	2
3	10.6	10.3	11.0	4.3	4.2	46	6.6	6.5	6.6	2.6	2.6	2.8	1.4	1,3	1.5	3
4	10.0	10.0	10.7	3.8	4,0	4.4	6.4	6.4	6.5	2.3	2.4	2.7	1.3	1.2	1.4	4
5	9.2	9.7	19.4	3.5	38	4.2	6.1	6.2	6.3	2.1	2.3	2.6	1.1	1.1	1.3	5
6	8.8	9.4	10.1	3.3	3.7	4.1	5.7	5.9	6.0	2.0	2.2	2.5	0.9	1.1	1.3	6
7	8.6	9.3	10.0	3.3	3.7	4.1	5.4	5.6	5.7	2.0	2.3	2.5	0.9	1.1	1.3	7
В	8.9	9.5	10.2	3.6	3.8	4.2	5.2	5,3	5.4	2.9	2.4	9.6	1.0	1.9	1.4	8
9	9.4	9.7	10.4	4.0	4.0	4.4	5.4	5.4	5.5	2.5	2.5	2.8	1.1	1.3	1.5	9
10	10.1	10.0	10.7	4.5	4.3	4.7	5.7	5.7	5.8	2.8	2.7	2.9	1.3	1.4	1.6	10
31	10.7	10.3	11.0	4.8	4.5	4.9	6.0	6.0	6.1	3.0	2.8	3.0	1.4	1.4	1.6	11

Smithville, N. C. Charleston, S. C. Fort Pulaski, Savannah Key West, Fla. San Francisco, Cal. Time of Time of moon's transit. transit c. c. В. В. c. C. C. A. A. A. В. A. B. A. в. Feet. Feet. Feet Feet. Feet Feet. Hour. Hour. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet Feet. 6.0 5.5 1.4 1.6 4.4 7.4 5.9 7.9 7.9 5,1 4.8 5.1 5.5 5.9 1.6 1.4 1.6 3.9 3.7 4.1 2 5.8 7.6 7.3 7.7 1.5 3.7 3.6 4.1 5.0 4.7 5.0 5.7 5.4 1.4 1.5 7.0 3 7.1 7.5 1.4 3.5 3.5 4.0 4.6 4.5 4.8 5.3 5.2 5.6 1.3 1.5 4 4.3 4.4 4.7 4.7 4.9 5.4 6.56.7 7.2 1.2 1.2 1.4 3.1 3.3 3.8 5 7 0 1.3 5 4.0 4.3 4.6 4.4 4.8 5.2 6.1 6.5 1.0 1.1 2.8 3.1 3.6 6 3.8 4.2 4.5 4.2 4.6 5.1 5.8 6.4 6.8 1,0 1.1 1.3 2.7 3.1 3.6 7 3.8 4.1 4.4 4.3 4.7 5.1 6.0 6.5 6.9 1.0 1.1 1.3 3.0 3.3 3.7 4 5 4.0 4 2 4.5 4.8 5.3 6.4 6.7 7.1 1 1 1.2 1.3 3.4 3.5 3.9 8 4.1 9 4.3 4.3 4.6 5.0 5.0 5.5 6.9 6.9 7.4 1.3 1.3 1.4 3.8 3.6 10 4.7 5.0 7.8 4.3 11

TABLE III—Continued.

In these, the variations in the interval between the moon's transit and high water are shown for some of the principal ports contained in Table I. These variations of intervals depend upon the age of the moon, and as they go through their values in half a lunar month, are known as the half-monthly inequality of interval. The table extends from the 0h of transit, midnight of the calendar day, or full of the moon, to $11\frac{1}{2}$ hours. The numbers for change of the moon correspond to those of 0h, and for 13 hours (or 1h p. m. of the calendar day) to 1 hour, and so on up to 23 hours. The ports for which the numbers are given are designated by the heading of the columns.

The mean interval, it will be seen, does not occur at full and change, but nearly two days afterwards, on the Atlantic coast. At Key West it occurs more nearly at full and change, and at San Francisco still more nearly.

The same remark applies to the heights; spring tides occur about two days after the full and change of the moon, and neaps two days after the first and last quarters. The use of this table of nearer approximation is quite as simple as that of Table I.

Rule to find the time of high water—Look in the Almanac for the time of moon's transit (or southing) for the date required. In the table corresponding to that time, will be found the number to be added to the time of transit.

Example III.—Required the time of high water at New York, October 1, 1856. Using the United States Nautical Almanac, we find the time of moon's transit 1h. 24m., astronomical reckoning, or 1h. 24m. p. m., calendar time. From Table II, we have, under the heading of New York, for 1h. 30m., (the nearest number to the 1h. 24m. in the table,) 8h. 10m.

Thus, to 1h. 24m., time of moon's transit,

Add 8 10 interval found from Table III.

The sum, 9 34 p. m., is the time of high water on the 1st of October, 1856.

If the sum of these numbers had exceeded twelve, the tide would have belonged to October 2, and we must have gone back to the transit of the day before, and computed with it, to obtain the tide of October 1.

Rule to find the height of high water.—Enter Table III, column 1, with the time of moon's transit. In the column headed with the name of the place, and marked A, will be found the rise and fall corresponding to the time of transit; in column B, the number to be added to

soundings on the chart, where the soundings are given for mean low water; in column C, the number to be added to charts of which the soundings are given for low water, spring tides.

In the foregoing example, (III,) the time of transit being between 1 and 2 hours, we find from Table III, the rise and fall of tides on 1st October, 1856, between 4.9 and 4.7; the number to be added to soundings given for mean low water 4.5 feet, (column B,) and for low water spring tides, (column C,) 4.9. feet.

Having found the time of high water, that of low water may be obtained nearly by adding the duration of ebb from column 9, Table I. The time of the next preceding low water may be found by subtracting the duration of flood from column 8, Table I. The time of the next following high water may be found by adding the duration of both flood and ebb; and of the next preceding high water, by subtracting the same duration of the whole tide.

Example IV .- To find the next high water following that of Example III.

The duration of flood, column 8, Table I, for New York, is 6h. 0m.; and of ebb, from column 9, is 6h. 25m.; the sum is 12h. 25m.

To 9h. 34m. p. m., October 1, time of high water found,

Add 12 25 duration of flood and ebb.

Sum 21 59, or 9h. 59m. a. m. of October 2, the time of the next high water.

TIDES OF THE PACIFIC COAST.

On the Pacific coast there is, as a general rule, one large and one small tide during each day, the height of the two successive high waters occurring one a. m. the other p. m. of the same twenty-four hours, and the intervals from the next preceding transit of the moon are very different. The inequalities depend upon the moon's declination; they disappear near the time of the moon's declination being nothing, and are greatest about the time of its being greatest. The inequalities for low water are not the same as for high, though they disappear and have the greatest value at nearly the same times.

In Puget Sound the inequalities for the interval of high water and for the height of low water follow this rule, but those for the interval of low water and height of high water disappear about one day before the moon's declination is greatest, and are greatest about four or five days before the greatest declination.

When the moon's declination is north, the highest of the two tides of the twenty-four hours occurs at San Francisco about eleven and a half hours after the moon's southing, (transit;) and when the declination is south, the lowest of the two high tides occurs about that interval.

The lowest of the two low waters of the day is the one which follows next the highest high water. The nature of these tides will probably appear more plainly from the annexed diagrams. In them the height of the tide is set off at the side on a scale of feet, and the hours of the day are at the top. At 12 noon, for example, the tide-gauge marked 6.7 feet. Joining all the heights observed in the twenty-four hours, we have a curve like that marked in the figure.

The two high waters are a and c, and the two low waters band d. If a is the high water, which occurs about twelve hours after the transit of the moon, when the declination is south, the ebb a b is quite small, and the high water, a, is much lower than the next high water, c. If the moon's declination is north, it is the large high water, α , of the second diagram, which occurs next after the transit, and about twelve hours from it. Tables IV and V, give the number to be added to the time of moon's transit to find the time of high water almost as readily as in the former case. They are of double entry, the time of transit being, as before, placed in the first column. The number of days from the day at which the moon had the greatest declination is arranged at the top of the table. Entering the first column with the time of transit, and following the line horizontally until we come under the column containing the days from the greatest declination, we find the number to be added to the time of transit to give the time of high water. If the moon's declination is south, Table IV is to be used; if north, Table V.

Tables IV to IX, inclusive, have been recomputed, using more complete data for the inequalities above referred to, and to those for San Francisco similar tables have been added for San Diego, Astoria, and Port Townshend. For the other places on the Western Coast given in Table I the following rules will give sufficiently close approximations.

To obtain the times of high or low water for San Pedro, Cuyler's harbor, and San Luis Obispo, compute first the time for San Diego, by Table IV, V, or VIII; then add to the time thus obtained 30 minutes, to obtain the time for San Luis Obispo, and subtract 13 minutes for Cuyler's harbor. At San Pedro the time of high or low water is sensibly the same as at San Diego.

For Monterey, South Farallon, Mare island, Benicia, Ravenswood, and Bodega, compute first the time for San Francisco, then subtract from the time thus obtained 1 h. 44 m. for Monterey, 1. h. 29 m. for the South Farallon, and 49 m. for Bodega, and add 34 m. for Mare island, 1 h. 4 m. for Benicia, and 30 m. for Ravenswood. For Thunderbolt bay, Port Orford, and Neeah harbor, compute first the time for Astoria, then subtract from it 40 m. for Humboldt bay, 1 h. 16 m. for Port Orford, and 9 m. for Neeah harbor.

For Steilacoom and Semi-ah-moo bay, compute first the time for Port Townshend, and add to it 57 m. for Steilacoom, and 1 h. for Semi-ah-moo. The approximation will be only a rough one for Steilacoom.

For the heights, Tables VI, VII, and IX for San Diego, can be used without change for San Pedro, Cuyler's harbor, and San Luis Obispo. These tables for San Francisco are also applicable to Monterey, South Farallon, and Bodega. For Mare island, add 1.2 foot, for Benicia, 0.9 foot, and for Ravenswood, 2.7 feet to the quantities for San Francisco.

For Humboldt bay, Port Orford, and Neeah harbor, the tables for Astoria may be used, subtracting 1.7 foot for Humboldt bay, and 1.0 foot for Port Orford. For Neeah harbor, the tables will give approximate results without change.

For Semi-ah-moo bay, add one foot to the quantities in the tables for Port Townshend. For Steilacoom, a rough approximation may be obtained by adding 4.6 feet to them.

TABLE IV.—SAN DIEGO.

moon										80	тти	DEC	LIN	TIO	N1	DAYS	FROI	ı Mo	ON?E	GRE	ATE	ST D	E C L I	NAT	ON.								moon's	_
		Ì							Bei	ore-	-						1								Αſι	er—							, P	transit.
Time of			7			В		5		4		3		2		1		0		ì		5		3		4		5		5		7	Time	
h.	773.	1	. 191	i	h.	17A.	h	. 1n.	h	. 171.	h	. 21.	1 4	. m.	h	, m.	h	. m.	h.	m.	h.	m.	h	m.	h.	m.	h.	m.	h.	m.	h.	m,	h.	m.
0	0	g	2	5	9	40	9	52	10	3	10	12	10	20	10	25	10	29	10	29	10	25	10	19	10	10	10	0	9	47	9	30	0	0
0	30	9	1.	5	9	30	9	42	9	53	10	2	10	10	10	15	10	19	10	19	10	15	10	9	10	0	9	50	9	27	9	20	0	30
1	0	9	:	в	9	23	9	35	9	46	9	5 5	10	3	10	8	10	12	10	12	10	8	10	2	9	53	9	43	9	30	9	13	1	0
1	30	9)	ı ¦	9	16	9	28	9	39	9	48	9	5 6	10	1	10	5	10	5	10	1	9	55	9	46	9	36	9	23	9	6	1	30
3	Û	8	5	4	9	9	9	21	9	35	9	41	9	4 9	9	54	9	58	9	58	9	54	9	48	9	39	9	29	9	16	8	59	2	0
2	,30	! 8	4	9	9	4	9	16	9	27	9	36	9	44	9	49	9	53	9	53	9	49	9	43	9	34	9	24	9	11	8	54	2	30
3	0	8	4	В	9	3	9	15	9	26	9	35	9	43	9	48	9	52	9	52	9	48	9	42	9	33	9	22	9	10	8	53	3	0
3	30	8	4	8	9	3	9	15	9	26	9	35	9	43	9	48	9	52	9	52	9	48	9	42	9	33	9	23	9	10	8	53	3	30
4	0	8	5:	2	9	7	9	19	9	30	9	39	9	47	9	52	9	56	9	56	9	52	9	46	9	37	9	27	9	14	8	57	4	0
4	30	8	56	>	9	11	9	23	9	34	9	43	9	51	9	56	10	0	10	0	9	56	9	50	9	41	9	31	9	18	9	1	4	30
5	0	9	-	- 1	9	30	9	42	9	53	10	2	10	10	10	15	10	19	10	19	10	15	10	9	10	0	9	50	9	37	9	20	5	0
5	30	9	3	- 1	9	59	10	4	10	15	10	94	10	35	10	37	10	41	10	41	10	37	10	31	10	22	10	12	9	59	9	42	5	30
6	0	9	55		10	10	10	22	10	33	10	42	10	50	10	55	10	59	10	59	10	55	10	49	10	40	10	30	10	17	10	0	6	0
6	30	10	19	3	10	27	10	39	10	50	10	59	11	7	11	12	11	16	11	16	11	12	11	6	10	57	10	47	10	34	10	17	6	30
7	0	10	lt	1	10	33	10	45	10	56	11	5	Ш	13	11	18	11	22	. 11	22	11	18	11	12	11	3	10	53	10	40	10	23	7	0
7	30	10	20	1	10	35	10	47	10	58	11	7	11	15	11	20	11	24	- 11	24	11	50	11	14	11	5	10	55	10	42	10	25	7	30
8	0	10	22	-		37	10	49	11	0	11	9	11	17	11	22	11	26	11	26	11	22	11	16	11	7	10	57	10	44	16	27	8	0
8	30	10	24		10	39	10	51	11	2	11	11	11	19	11	24	11	28	11	28	11	24	11	18	11	9	10	59	10	46	10	29	8	30
9	0	10	18	- 1	10	33	10	45	10	56	11	5	11	13	11	18	11	22	11	22	11	18	11	12	11	3	10	53	10	40	10	23	9	0
9	30	10	10	- 1	10	Ω5	10	37	10	48	10	57	11	5	111	10	11	14	11	14	11	10	11	4	10	55	10	45	10	32	10	15	9	30
10	0	10	0	- 1 '	10	15	10	27	10	38	10	47	10	55	11	0	11	4	11	4	11	0	10	54	10	45	10	35	10	22	10	5	10	0
10	30	9	53	- 1	10	8	10	20	10	31	10	40	10	48	10	53	10	57	. 10	57	10	53	10	47	10	38	10	28	10	15	9	58	10	30
11	0	9	45	- 1	10	0	10	12	10	53	10	32	10	40	10	45	10	49	10	49	10	45	10	39	10	30	10	20	10	7	9	50	11	0
11	30	8	36	1	9	51	10	3	10	14	10	23	10	31	10	36	1.0	40	10	40	10	36	10	30	10	21	10	11	9	58	9	41	ιι	30

TABLE V.—SAN DIEGO.

	rit.					•			NO	RTH	DEC	LINA	T'EO	N	DAYS	FRO	M MO	on's	GRE	ATE	8T E	ECL	NAT	юĸ.								moon's	
7	5 2							Befo	re—															Afi	ter—							٠ <u>.</u>	transit.
ŧ	1 T		7		6		5		4		3		2		1		0		1		2		3		4		5		6		7	Time	
A	. m.	h.	m.	h	. 172.	h	. m.	h.	m.	h.	m.	h.	. m.	h	. m.		. m.	h	m.	h	. m.	1	723.	h.	m.	h	m.	h.	m.	4	m.	à.	172.
0	0	9	30	9	16	9	4	8	53	8	44	8	36	8		8		8	27	8	31	8	37	8	46	8	56	9	9	9	26	0	0
0	30	9	21	9	6	8	54	8	43	8	34	8	26	8	21	8	17	8	17	8	21	8	27	8	36	8	46	8	59	y	16	0	30
1	0	9	14	8	59	8	47	8	36	8	27	8	19	8	14	8	10	8	10	8	14	8	20	8	29	8	39	8	52	9	9	1	0
1	30	9	7	8	52	8	40	8	29	8	20	8	12	8	7	8	3	8	3	8	7	8	13	8	22	8	32	8	45	9	2	1	30
2	ø	9	0	8	45	8	33	8	22	8	13	8	5	8	0	7	56	7	56	8	0	8	6	8	15	8	25	8	38	8	55	2	0
2	30	8	55	8	40	8	28	8	17	8	8	8	0	7	55	7	51	7	51	7	55	8	1	8	10	8	20	8	3 3	8	50	2	30
3	0	8	54	В	39	8	27	В	16	8	7	7	59	7	54	7	50	7	50	7	54	8	0	В	9	8	19	8	32	8	49	3	0
3	30	8	54	8	39	8	27	8	16	8	7	7	59	7	54	7	50	7	50	7	54	8	0	8	9	8	19	8	32	8	49	3	30
4	0	8	58	; 8	43	8	31	8	20	8	11	8	3	7	58	7	54	7	54	7	58	8	4	8	13	8	23	8	36	8	53	4	0
4	30	9	3	8	47	8	35	8	24	8	15	8	7	8	2	7	5 8	7	58	8	2	8	8	8	17	8	27	8	40	8	57	4	30
5	0	9	21	9	6	8	54	R	43	8	34	8	26	8	21	8	17	8	17	8	21	8	27	8	36	8	46	8	59	9	16	5	0
5	30	9		9		9	16	9	5	8	56	8	4 8	8	43	8	39	8	39	8	43	8	49	8	58	9	8	9	21	9	38	5	30
6	0	10		9		9	34	9	23	9	14	9	6	9	1	8	57	8	57	9	3	9	7	9	16	9	26	9	39	9	56	6	0
6	30	10		10		9		9	40	9	31	9	23	9	18	9	14	9	14	9	18	9	24	9	33	9	43	B	56	10	13	6	30
7	0	10		10		9	57	9	46	9	37	9	29	9	24	9	20	9	50	9	24	9	30	9	39	9	49	10	2	10	19	7	0
7	30	10		10	-	9		9	48	9	39	9	31	9	26	9	22	9	22	9	26	9	32	9	41	9	51	10	4	10	21	7	30
8	0	10	28	10		10	1	9	50	9	41	9	33	9	28	9	24	9	24	9	26	9	34	9	43	9	53	10	6	10	23	8	0
8	30	10	30	10		10	3	9	52	9	48	9	3 5	9	30	9	26	9	26	9	30	9	36	9	45	ð	55	10	8	10	25	8	30
9	0	10	24	10	9	9	57	9	46	9	37	9	29	9	24	9	20	9	20	9	24	9	30	9	39	9	49	10	2	10	19	9	0
9	30	10	16	10	1	9	49	9	38	9	29	9	51	9	16	y	12	9	12	9	16	3	22	9	31	9	41	9	54	10	11	9	30
10	0 30	10	6 60	9	51	9	39 32	9	28 21	9	19 12	9	11	9	6	9	2	9	2	9	в	9	12	9	21	9	31	9	44	10	1	10	0
10	90	9	59 51	9	44 36	9	24	9	13	9	4	8	4 56	8	59	8	55	8	55	8	59	9	5	9	14	9	24	9	37	9	54	10	30
11	30	u	42	9	27	9	15	9	4	8	55	8	47	8	51 42	8	47	8	47	8	51	8	57	9	6	9	16	9	29	9	46	11	0
	<i>3</i> 0		42	9	21	,	10		7		٠.,	0	4,	9	92	8	38	8	36	8	42	8	48	8	57	9	7	9	20	9	37	11	30

TABLE IV.—SAN FRANCISCO.

P, WOO				sou	TH DECL	INATION.	—DAYS F	ROM MOC	n's gre	TEST DE	CLINATIO	N.				8, u o.
Time of moon's transit.				B-fore—								After—				Time of moon's transit.
Tim	7	6	5	4	3	2	1	0	1	ð	3	4	5	6	7	Tin
h. m.	h. m.	h. m.	ħ. 1n.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h m.	h. m.	h. m.	h m	h. m.	h. m.	h. m.
0 00	11 43	11 59	12 15	12 33	12 50	13 03	13 17	13 20	13 19	13 14	13 67	12 57	12 45	12 32	12 18	0.00
0 30	11 37	11 53	12 09	12 27	12 44	12 57	13 11	13 14	13 13	13 08	13 01	12 51	12 39	12 26	12 12	0.30
1 00	11 31	11 47	12 03	12 21	12 38	12 51	13 05	13 08	13 07	13 02	12 55	12 45	12 33	12 20	12 06	1 00
1 30	11 25	11 41	11 57	12 15	12 32	12 45	12 59	13 02	13 01	12 56	12 49	12 39	12 27	12 14	12 00	1 30
2 00	11 19	11 35	11.51	12 09	12 26	12 39	12 53	12 56	12 55	12 50	12 43	12 33	12 21	12 08	11 54	2 00
2 30	11 14	11 30	11 46	12 04	12 21	12 34	12 48	12 51	12 50	12 45	12 3d	12 28	12 16	12 03	11 49	2 30
3 00	11 11	11 27	11 43	12 01	12 18	12 31	12 45	12 48	12 47	12 42	12 35	12 25	12 13	12 00	11 46	3 00
3 30	11 11	11 27	11 43	12 01	12 18	12 31	12 45	12 48	12 47	12 42	12 35	12 25	12 13	12 00	11 46	3 30
4 00	11 16	11 32	11 48	12 06	12 23	12 36	12 50	12 53	12 52	12 47	12 40	12 30	12 18	12 05	11 51	4 00
4 30	11 24	11 40	11 56	12 14	12 31	12 44	12.58	13 01	13 00	12 55	12 48	12 38	12 26	12 13	11 59	4 30
5 00	11 33	11 49	12 05	12 23	12 40	12 53	13 07	13 10	13 09	13 04	12 57	12 47	12 35	12 22	12 08	5 00
5 30	11 41	11 57	12 13	12 31	12 48	13 01	13 15	13 18	13 17	13 12	13 05	12 55	12 43	12 30	12 16	5 30
6 00	11 49	12 05	12 21	12 39	12 56	13 09	13 23 [‡]	13 26	13 25	13 20	13 13	13 03	12 51	12 38	12 24	6 00
6 30	11 54	12 10	12 26	12 44	13 01	13 14	13 28	13 31	13 30	13 25	13 18	13 08	12 56	12 43	12 29	6 30
7 00	12 01	12 17	12 33	12 51	13 08	13 21	13 35	13 38	13 37	13 32	13 25	13 15	13 03	12 50	12 36	7 00
7 30	12 07	12 23	12 39	12 57	13 14	13 27	13 41	13 44	13 43	13 38	13 31	13 21	13 09	12 56	12 42	7 30
8 00	12 12	12 28	12 44	13 02	13 19	13 32	13 46	13 49	13 48	13 43	13 36	13 26	13 14	13 01	12 47	8 00
8 30	12 15	12 31	12 47	13 05	13 22	13 35	13 49	13 52	13 51	13 46	13 39	13 29	13 17	13 64	12 50	8 30
9 00	12 14	12 30	12 46	13 04	13 21	13 34	13 48	13 51	13 50	13 45	13 38	13 28	13 16	13 03	12 49	9 00
9 30	12 12	12 28	12 44	13 02	13 19	13 32	13 46	13 49	13 48	13 43	13 36	13 26	13 14	13 01	12 47	9 30
10 00	12 08	12 24	12 40	12 58	13 15	13 28	13 42	13 45	13 44	13 39	13 32	13 22	13 10	12 57	12 43	10 00
10 30	12 02	12 18	12 34	12 52	13 09	13 22	13 36	13 39	13 38	13 33	13 26	13 16	13 04	12 51	12 37	10 30
11 00	11 55	12 11	12 27	12 45	13 02	13 15	13 29	13 32	13 31	13 26	13 19	13 69	12 57	12 44	12 30	11 00
11 30	11 47	12 03	12 19	12 37	12 54	13 07	13 21	13 24	13 23	13 18	13 11	13 01	12 49	12 36	12 22	11 30

TABLE V.—SAN FRANCISCO.

s, uoc	l			Non	TH DECI	NOITANL	.—DAYS	FROM MO	N'S GRE	ATEST DE	CLINATIO	on.				6,000
Time of moon's transit.				Before—								After—				Thue of moon's transit.
Tim	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Tim
h. m.	h. m.	ħ. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
0 00	12 27	12 11	11 55	11 37	11 20	11 07	10 53	10 50	10 51	10 56	11 03	11 13	11 25	11 38	11 52	0 00
0.30	12 21	12 05	11 49	11 31	11 14	11 01	10 47	10 44	10 45	10 50	10 57	11 07	11 19	11 32	11 46	0 30
1 00	12 15	11 59	11 43	11 25	11 06	10 55	10 41	10 38	10 39	10 44	10 51	11 01	11 13	11 26	11 40	1 00
1 30	12 09	11 53	11 37	11 19	11 02	10 49	10 35	10 32	10 33	10 38	10 45	10 55	11 07	11 20	11 34	1 30
2 00	12 03	11 47	11 31	11 13	10 56	10 43	10 29	10 26	10 27	10 32	10 39	10 49	11 01	11 14	11 28	2 00
2 30	11 58	11 42	11 26	11 08	10 51	10 38	10 24	10 21	10 22	10 27	10 34	10 44	10 56	11 09	11 23	2 30
3 00	11 55	11 39	11 23	11 05	10 48	10 35	10 21	10 18	10 19	10 24	10 31	10 41	10 53	11 06	11 20	3 00
3 30	11 55	11 39	11 23	11 05	10 48	10 35	10 21	10 18	10 19	10 24	10 31	10 41	10 53	11 06	11 20	3 30
4 00	12 00	11 44	11 28	11 10	10 53	10 40	10 26	10 23	10 24	10 29	10 36	10 46	10 58	11 11	11 25	4 00
4 30	12 08	11 52	11 36	11 18	11 01	10 48	10 34	10 31	10 32	10 37	10 44	10 54	11 06	11 19	11 33	4 30
5 00	12 17	12 01	11 45	11 27	11 10	10 57	10 43	10 40	10 41	10 46	10 53	11 03	11 15	11 28	11 42	5 00
5 30	12 25	12 09	11 53	11 35	11 18	11 05	10 51	10 48	10 49	10 54	11 01	11 11	11 23	11 36	11 50	5 30
6 00	12 33	12 17	12 01	11 43	11 26	11 13	10 59	10.56	10 57	11 02	11 09	11 19	11 31	11 44	11 58	6 00
6 30	12 38	12 22	12 06	11 48	11 31	11 18	11 04	11 01	11 02	11 07	11 14	11 24	11 36	11 49	12 03	6 30
7 00	12 45	12 29	12 13	11 55	11 38	11 25	11 11	11 08	11 09	11 14	11 21	11 31	11 43	11 56	12 10	7 00
7 30	12 51	12 35	12 19	12 01	11 44	11 31	11 17	11 14	11 15	11 20	11 27	11 37	11 49	12 02	12 16	7 30
8 00	12 56	12 40	12 24	12 06	11 49	11 36	11 22	11 19	11 20	11 25	11 32	11 42	11 54	12 07	12 21	6 00
8 30	12 59	12 43	12 27	12 09	11 52	11 39	11 25	11 22	11 23	11 28	11 35	11 45	11 57	12 10	12 24	8 30
8 00	12 58	12 42	12 26	12 08	11 51	11 38	11 24	11 21	11 22	11 27	11 34	11 44	11 56	12 09	12 23	9 00
9 30	12 56	12 40	12 24	12 06	11 49	11 36	11 22	11 19	11 20	11 25	11 32	11 42	11 54	12 07	12 21	930
10 00	12 52	12 36	12 20	12 02	11 45	11 32	11 18	11 15	11 16	11 21	11 28	11 38	11 50	12 03	12 17	10 00
10 30	12 46	12 30	12 14	11 56	11 39	11 26	11 12	11 09	11 10	11 15	11 22	11 32	11 44	11 57	12 11	10 30
11 0 0	12 39	12 23	12 07	11 49	11 32	11 19	11 05	11 02	11 03	11 08	11 15	11 25	11 37	11 50	12 04	11 00
11 30	12 31	12 15	11 59	11 41	11 24	11 11	10 57	10 54	10 55	11 00	11 07	11 17	1: 29	11 42	11 56	11 30

TABLE IV.—ASTORIA.

Time of moon?s transit.				so	U TH D EC	LINATION	DAYS	FROM MO	on's gre.	ATEST DE	CLINATIO	on,				moon's
of m transit.				Before-								After-				rang of
Tim	7	6	5	4	3	2	1	0	ı	2	3	4	5	6	7	Time
h. m.	h. m.	h. m.	h. m.	h. m.	h m	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m	h. m.	h. m	h. m.
0 0	12 42	12 55	13 5	13 18	13 28	13 38	13 41	13 45	13 46	13 44	13 40	13 34	13 24	13 14	13 2	0 0
0 30	12 36	12 49	12 59	13 12	13 22	13 32	13 35	13 39	13 40	13 38	13 34	13 28	13 18	13 8	12 56	0 30
1 0	12 29	12 42	12 52	13 5	19 15	13 25	13 28	13 32	13 33	13 31	13 27	13 21	13 11	13 1	12 49	1 0
1 30	12 23	12 36	12 46	12 59	13 9	13 19	13 22	13 26	13 27	13 25	13 21	13 15	13 5	12 55	12 43	1 30
2 0	12 15	12 28	12 38	12 51	13 l	13 11	13 14	13 18	13 19	13 17	13 13	13 7	12 57	12 47	12 35	2 0
2 30	12 9	12 22	12 32	19 45	12 55	13 5	13 8	13 12	13 13	13 11	13 7	13 1	12 51	12 41	12 29	2 30
3 0	12 3	12 16	12 26	12 39	12 49	12 59	13 2	13 6	13 7	13 5	13 1	12 55	12 45	12 35	12 23	3 0
3 30	11 58	12 11	12 21	12 34	12 44	12 54	12 57	13 1	13 2	13 0	12 56	12 50	12 40	12 30	12 18	3 30
4 0	11 57	12 10	12 20	12 33	12 43	12 53	12 56	13 0	13 1	12 59	12 55	12 49	12 39.	12 29	12 17	4 0
4 30	12 0	12 13	12 23	12 36	12 46	12 56	12 59	13 3	13 4	13 2	12 58	12 52	12 42	12 32	12 20	4 30
5 0	12 8	12 21	12 31	12 44	12 54	13 4	13 7	13 11	19 12	13 10	13 6	13 0	12 50	12 40	12 28	5 0
5 30	12 15	12 28	12 33	12 51	13 1	13 11	13 14	13 18	13 19	13 17	13 13	13 7	12 57	12 47	12 35	5 30
6 0	12 25	12 38	12 48	13 1	13 11	13 21	13 24	13 28	13 29	13 27	13 23	13 17	13 7	12 57	12 45	60
6 30	12 36	12 49	12 59	13 12	13 22	13 32	13 35	13 39	13 40	13 38	13 34	13 28	13 18	13 8	12 56	6 30
7 0	12 45	12 58	13 8	13 21	13 31	13 41	13 44	13 48	13 49	13 47	13 43	13 37	13 27	13 17	13 5	7 0
7 30	12 55	13 8	13 18	13 31	13 41	13 51	13 54	13 58	13 59	13 57	13 53	13 47	13 37	13 27	13 15	7 30
8 0	13 3	13 16	13 26	13 39	13 49	13 59	14 2	14 6	14 7	14 5	14 1	13 55	13 45	13 35	13 23	8 0
8 30	13 8	13 21	13 31	13 44	13 54	14 4	14 7	14 il	14 12	14 10	14 6	14 0	13 50	13 40	13 28	8 30
8 0	13 10	13 23	13 33	13 46	13 56	14 6	14 9	14 13	14 14	14 12	14 8	14 2	13 52	13 42	13 30	9 0
9 30	13 9	13 22	13 32	13 45	13 55	14 5	14 8	14 12	14 13	14 11	14 7	14 i	13 51	13 41	13 29	9 30
10 0	13 5	13 18	13 28	13 41	13 51	14 1	14 4	14 8	14 9	14 7	14 3	13 57	13 47	13 37	13 25	10 0
10 30	12 59	13 12	13 22	13 35	13 45	13 55	13 58	14 2	14 3	14 1	13 57	13 51	13 41	13 31	13 19	10 30
11 0	12 53	13 6	13 16	13 29	13 39	13 49	13 52	13 56	13 57	13 55	13 51	13 45	13 35	13 25	13 13	11 0
11 30	12 46	12 59	13 9	13 22	13 32	13 42	13 45	13 49	13 50	13 48	13 44	13 38	13 28	13 18	13 6	11 30

TABLE V.—ASTORIA.

moon's				NOB	TH DECI	INATION	-DAYS	FROM MO	on's sre	ATEST DE	eclinati	on.				moon's sit,
ا عن ا				Before-								After—				
Time	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time of tran
h. m.	h. m.	h m.	h. m.	h. m.	h. m.	h. m.	h. m	h. m.	h. 1n.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
0 0	13 10	12 57	12 47	12 34	12 24	12 14	12 11	12 7	12 6	12 8	12 12	12 18	12 28	12 38	19 50	0 0
0 30	13 4	12 51	12 41	12 28	12 18	12 8	12 5	12 1	12 0	12 2	12 6	12 12	12 22	12 32	12 44	0 30
1 0	12 57	12 44	12 34	12 21	12 11	12 1	11 58	11 54	11 53	11 55	11 59	12 5	12 15	12 25	12 37	1 6
1 30	19 51	12 38	12 28	12 15	12 5	11 55	11 52	11 48	11 47	11 49	11 53	11 59	12 9	12 19	12 31	1 30
2 0	12 43	12 30	12 20	12 7	11 57	11 47	11 44	11 40	11 39	11 41	11 45	11 51	12 1	12 11	12 23	. 2 0
2 30	12 37	12 24	12 14	12 1	11 57	11 41	11 38	11 34	11 33	11 35	11 39	11 45	11 55	12 5	12 17	2 30
3 0	12 31	12 18	12 8	11 55	11 45	11 35	11 32	11 28	11 27	11 29	11 33	11 39	11 49	11 59	12 11	3 0
3 30	12 26	12 13	12 3	11 50	11 40	11 30	11 27	11 23	11 22	11 24	11 28	11 34	II 44	11 54	12 6	3 30
4 0	12 25	15 15	12 2	11 49	11 39	11 29	11 26	11 22	11 21	11 23	11 27	11 33	11 43	11 53	12 5	4 0
4 30	12 28	12 15	12 5	11 52	11 42	11 32	11 29	11 25	11 24	11 26	11 30	11 36	11 46	11 56	12 8	4 30
5 0	12 3 6	12 23	12 13	12 0	11 50	11 40	11 37	11 33	11 32	11 34	11 38	11 44	11 54	12 4	12 16	5 0
5 30	12 43	12 30	12 20	12 7	11 57	11 47	11 44	11 40	11 39	11 41	11 45	11 51	12 1	12 11	12 23	5 30
6 0	12 53	12 40	12 30	12 17	12 7	11 57	11 54	11 50	11 49	11 51	11 55	12 1	12 11	12 21	12 33	6 0
6 30	13 4	12 51	12 41	12 28	12 18	12 8	12 5	12 1	12 0	12 2	12 6	12 12	12 22	12 39	12 44	6 30
70	13 13	13 0	19 50	12 37	12 27	12 17	12 14	12 10	12 9	12 11	12 15	12 21	12 31	12 41	12 53	7 0
7 30	13 23	13 10	13 0	12 47	12 37	12 27	12 24	12 20	12 19	12 21	12 25	12 31	12 41	12 51	13 3	7 30
8 0	13 31	13 18	13 8	12 55	12 45	12 35	12 32	12 28	12 27	12 29	12 33	12 39	12 49	12 59	13 11	8 0
8 30	13 36	13 23	13 13	13 0	12 50	12 40	12 37	12 38	12 32	12 34	12 38	12 44	12 54	13 4	13 16	8 30
9 0	13 38	13 25	13 15	13 2	12 52	12 42	12 39	12 35	12 34	12 36	12 40	12 46	12 56	13 6	13 18	9 0
9 30	13 37	13 24	13 14	13 I	12 51	12 41	12 38	12 34	12 33	12 35	12 39	12 45	12 55	13 5	13 17	9 30
10 0	13 33	13 20	13 10	12 57	19 47	12 37	12 34	12 30	12 29	12 31	12 35	12 41	12 51	13 1	13 13	10 0
10 30	13 27	13 14	13 4	12 51	19 41	12 31	12 28	12 24	12 23	12 25	12 29	19 35	12 45	12 55	13 7	10 30
11 0	13 21	13 8	12 58	12 45	12 35	12 25	15 55	12 18	12 17	12 19	12 23	12 29	12 39	12 49	13 1	11 0
11 30	13 14	13 1	12 51	12 38	12 28	12 18	12 15	12 11	12 10	12 12	12 16	12 22	12 32	12 42	12 54	11 30

TABLE IV.—PORT TOWNSHEND.

100n's				SJUT	H DECLII	ATION.	DAYS FR	OM MOOI	Y'S GREA	TEST DE	CLINATIO	N.				moon's it.
e of moon's transit.			1	Before—								After—				e of me transit.
Time of	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time of trans
h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
0 0	3 45	3 21	2 51	2 2	1 35	1 13	1 26	1 44	2 2	2 21	2 42	2 57	3 15	3 33	3 45	0.0
0 30	3 38	3 14	2 44	1 55	1 25	16	1 19	1 37	1 55	2 14	2 35	2 50	38	3 26	3 38	0.30
1 0	3 32	3 8	2 33	1 49	1 19	1 0	1 13	1 31	1 49	28	2 29	2 44	3 2	3 20	3 32	ŁG
1 30	3 26	3 2	2 32	1 43	1 13	0 54	1 7	1 25	1 43	2 2	2 93	2 38	2 56	3 14	3 26	1 30
2 0	3 21	2 57	2 27	1 38	18	0 49	1 2	1 20	1 35	1 57	2 18	2 33	2 51	3 9	3 21	2 (
2 30	3 18	2 54	2 24	1 35	1 5	0 46	0 59	1 17	1 35	1 54	2 15	2 20	2 48	3 6	3 18	2 30
3 0	3 16	2 52	5 55	1 33	1 3	0 44	0 57	1 15	1 33	1 52	2 13	2 28	2 46	3 4	3 16	3 0
3 30	3 17	2 53	2 23	1 34	1 4	0 45	0 58	1 16	1 34	1 53	2 14	2 29	2 47	3 5	3 17	3 30
4 0	3 21	2 57	2 27	88 1	18	0 49	1 2	1 20	1 38	1 57	2 18	2 33	2 5i	3 9	3 21	4 0
4 30	3 26	3 2	2 32	1 43	1 13	0 54	1 7	1 25	1 43	5 5	2 23	2 38	2 56	3 14	3 26	4 30
5 0	3 52	3 8	2 38	1 49	1 19	1 0	1 13	131	1 49	2 8	2 29	2 44	3 2	3 20	3 32	5 (
5 30	3 41	3 17	2 47	1 58	1 28	19	1 22	1 40	1 58	2 17	2 38	2 53	3 11	3 29	3 41	5 30
6 0	3 52	3 28	2 58	5 8	1 39	1 20	1 33	1 51	2 9	2 28	2 49	3 4	3 22	3 40	3 52	6.0
6 30	4 1	3 37	3 7	2 18	1 48	1 29	1 42	2 0	81 2	2 37	2 58	3 13	3 31	3 49	4 1	6 30
7 0	4 8	3 44	3 14	2 25	1 55	1 36	1 49	2 7	2 25	2 44	3 5	3 20	3 38	3 56	4 8	7 0
7 30	4 15	3 51	3 21	2 32	2 2	1 43	1 56	2 14	2 32	2 51	3 15	3 27	3 45	4 3	4 15	7 30
8 0	4 18	3 54	3 24	2 35	2 5	1 46	1 59	2 17	2 35	2 54	3 15	3 30	3 48	4 6	4 18	8 (
8 30	4 19	3 55	3 25	2 36	2 6	1 47	20	2 18	2 36	2 55	3 16	3 31	3 49	4 7	4 19	8 30
9 Q	4 16	3 54	3 24	2 35	2 5	1 46	1 59	2 17	2 35	2 54	3 15	3 30	3 48	4 6	4 18	9 (
9 30	4 15	3 51	3 21	5 35	2 2	1 43	1 56	2 14	2 32	2 51	3 12	3 27	3 4 5	4 3	4 15	9 30
10 0	4 10	3 46	3 16	2 27	1 57	1 38	1 51	2 9	2 27	2 45	3 7	3 22	3 40	3 58	4 10	10
10 30	4 6	3 42	3 12	2 23	1 53	1 31	1 47	2 5	2 23	2 42	3 3	3 18	3 36	3 54	46	10 30
11 0	4 0	3 36	3 6	2 17	1 47	1 28	141	1 59	2 17	2 36	2 57	3 12	3 30	3 48	4 0	11 (
11 30	3 54	3 30	3 0	2 11	1 41	1 22	1 35	1 53	2 11	2 30	2 51	3 6	3 24	3 42	3 54	11 34

TABLE V.—PORT TOWNSHEND.

moon's it.				NORT	H DECL	NATION	DAYS F	ROM MOO	n's grea	TEST DE	CLINATIO	N.				moon's it.
of				Before—								After-				of
Time	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
h. m.	h. m.	À. m.	h. m.	h. +n.	h. m.	h. m.	h. m	h. m.	h. m.	ħ. n.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
0 0	3 45	4 9	4 39	5 28	5 58	6 17	6 4	5 46	5 28	5 9	4 48	4 33	4 15	3 57	3 45	0 0
0 30	3 38	4 2	4 32	5 21	5 51	6 10	5 57	5 39	5 21	5 2	4 41	4 26	4 8	3 50	3 38	0 30
1 6	3 32	3 56	4 26	5 15	5 45	6 4	5 51	5 33	5 15	4 56	4 35	4 20	4 2	3 44	3 32	1 0
1 30	3 26	3 50	4 20	5 9	5 39	5 58	5 45	5 27	5 9	4 50	4 29	4 14	3 56	3 38	3 26	1 30
2 0	3 21	3 45	4 15	5 4	5 34	5 53	5 40	5 22	5 4	4 45	4 24	49	3 51	3 33	3 21	2 0
2 30	3 18	3 42	4 12	5 1	5 31	5 50	5 37	5 19	5 1	4 42	4 21	46	3 48	3 30	3 18	2 30
3 0	3 16	3 40	4 10	4 59	5 29	5 48	5 35	5 17	4 59	4 40	4 19	4 4	3 46	3 28	3 16	3 0
3 30	3 17	3 41	4 11	5 0	5 30	5 49	5 36	5 18	5 0	4 41	4 20	4 5	3 47	3 29	3 17	3 30
4 0	3 21	3 45	4 15	5 4	5 34	5 53	5 40	5 22	5 4	4 45	4 24	49	3 51	3 33	3 21	4 0
4 30	3 26	3 50	4 20	5 9	5 39	5 58	5 45	5 27	5 9	4 50	4 29	4 14	3 56	3 38	3 26	4 30
5 0	3 32	3 56	4 26	5 15	5 45	6 4	5 51	5 33	5 15	4 56	4 35	4 20	4 2	3 44	3 312	5 0
5 30	3 41	4 5	4 35	5 24	5 54	6 13	6 0	5 42	5 24	5 5	4 44	4 29	4 11	3 5 3	3 41	5 30
6 0	3 52	4 16	4 46	5 35	6 5	6 24	6 11	5 53	5 35	5 16	4 55	4 40	4 22	4 4	3 52	6 0
6 30	4 1	4 25	4 55	5 44	6 14	6 33	6 20	6 2	5 44	5 25	5 4	4 49	4 31	4 13	4 1	63)
7 6	4 8	4 32	5 2	5-51	6 21	6 40	6 27	8 9	5 51	5 32	5 11	4 56	4 38	4 20	4 8	70
7 30	4 15	4 39	5 9	5 5 8	6 28	6 47	6 34	6 16	5 58	5 39	5 18	5 3	4 45	4 27	4 15	7 30
8 0	4 18	4 42	5 12	6 I	6 31	6 50	6 37	6 19	6 1	5 42	5 21	5 6	4 48	4 30	4 18	8 0
8 30	4 19	4 43	5 13	6 2	6 32	6 51	6 35	5 20	6 2	5 43	5 22	5 7	4 49	4 31	4 19	8 30
9 0	4 18	4 42	5 19	1 6	6 31	6 50	6 37	6 19	6 1	5 42	5 21	56	4 48	4 30	4 18	9 0
9 30	4 15	4 39	5 9	5 58	6 28	6 47	6 34	6 16	5 58	5 39	5 18	5 3	4 45	4 27	4 15	9 30
10 0	4 10	4 34	5 4	5 53	6 23	6 42	6 29	6 11	5 53	5 34	5 13	4 58	4 40	4 22	4 10	10 0
10 30	4 6	4 30	5 0	5 49	6 19	6 38	6 25	6 7	5 49	5 30	5 9	4 54	4 35	4 18	46	10 30
11 0	4 0	4 24	4 54	5 43	6 13	6 32	6 19	6 1	5 43	5 24	5 3	4 48	4 30	4 12	4 0	11 0
11 😘	3 54	4 18	4 48	5 37	6 7	6 26	6 13	5 55	5 37	5 18	4 57	4 42	4 21	4 6	3 54	11 30

If we disregard the daily inequality, the column headed San Francisco in Table II would give us, as in the examples on the Atlantic coast, the means of determining the time of high water.

Example V.—Required the time of high water at North Beach, San Francisco, Cal., on the 7th February, 1853.

1st. The time of the moon's transit at Greenwich, from the Nautical Almanac, is 11h. 41m.; the longitude of San Francisco 8h. 10m.; requiring a correction of 16m. to the time of transit for San Francisco, which is thus found to be 11h. 57m.

2d. The moon's declination is south, and at the time of transit about two days after the greatest. Entering Table IV we find 12h. (or 0h.) of transit, the nearest number to 11h. 57m. which the table gives; and following the line horizontally until we come to two days after the greatest declination we find 13h. 14m.

To 11h. 57m., time of transit of the moon, February 7, San Francisco,

Add 13 14 from column 0h. transit and two days after greatest declination.

The sum 25 11 or 1h. 11m., February 8, is the time of high water corresponding to the transit which we took of February 7. If we desire the tide of February 7, we must go back to the moon's transit of the 6th. The example was purposely assumed to show this case:

11h. 1m., time of transit February 6, 1853,

13 31 number for 11h. transit and one day from greatest declination.

Sum 24 32 time of high water 0h. 32m. a. m. February 7.

The height of high water.—The height of high water is obtained in a similar manner by the use of Table VI and Table VII, entering these in the same way with the time of transit and days from the greatest declination. Table VI is for south declination, and Table VII for north.

of moon's transit. of moon's transit. SOUTH DECLINATION. -- DAYS FROM MOON'S GREATEST DECLINATION. Before After-Time 7 7 6 5 4 3 2 1 0 1 2 3 4 5 6 Hour Feet Feet Feet . Feet. Feet. Feet Feet Feet Feet. Feet. Feet. Feet. Feet. Feet. Feet Hour 4.7 5.8 4.5 4.3 4.2 4.1 4.1 4.1 4.1 4.2 4.3 4.5 4.8 5.5 0 4.8 4.4 4.2 4.1 4.0 4.0 4.0 4.0 4.1 4.2 4.4 4.7 5.0 5.4 5.7 1 2 4.4 4.2 4.0 3.9 3.8 3.8 3.8 3.8 3.9 4.0 4.2 4.5 5.2 5.5 4.8 3 4.1 3.9 3.7 3.6 3.5 3,5 3.5 3.5 3.6 3.7 3.9 4.2 4.5 4.9 5.2 3.8 3.6 3.4 3,3 3.2 3.2 3.2 3.3 3.4 3,9 4.2 4.6 4.9 5 3.6 3.4 3.2 3.1 3.0 3.0 3 0 3.0 3.1 3.2 3.4 3.7 4.0 4.4 4.7 3.4 3.6 3.2 3.1 3.0 3.0 3.0 3.0 3.1 3.2 3.4 3.7 4.0 4.7 4.4 3.7 3.5 8.3 3.2 3.1 3,1 3.1 3.1 3.2 3.3 3.5 3.8 4.8 4. L 4.5 3.4 3.8 3.6 3.3 3.2 3.2 3.2 3.3 3.4 3.6 3.9 4.2 4.6 4.9 8 4.4 4.2 4.0 3.9 3.8 3.8 3.8 3.8 3.9 4.0 4.2 4.5 4.8 5.2 5.5 9 4.3 10 4.7 4.5 4.2 4.1 4.1 4.1 4.3 10 4.1 4.2 4.5 4.8 5.1 5.5 5.8 4.8 4.6 4.4 4.3 11 4.2 4.2 4.2 4.9 11

TABLE VI.—SAN DIEGO.

TABLE VII.—SAN DIEGO.

transit.				Before-	-							After-				of moon's
<u>.</u>	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
our.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feel.	Feet.	Feet .	Fect.	Feet.	Feet.	Feet.	Feet.	Hour
0	5.7	59	6.1	6.2	6.3	6.3	6.3	6.3	6.2	6.1	5.9	5.6	5.3	4.9	4.6	0
1	5.6	5.8	6.0	6.1	6.2	6.2	6.2	6.2	6.1	6.0	5.8	5.5	5.2	4.8	4.5	1
2	5.4	5.6	5.8	5,9	6.0	6.0	6.0	6.0	5.9	5.8	5.6	5 3	5 0	4.6	4.3	2
3	5.1	5.3	5.5	5.6	5.7	5.7	5.7	5.7	5.6	5.5	5.3	5.0	4.7	4.3	4.0	3
4	4.8	5.0	5.2	5.3	5.4	5.4	5.4	5.4	5.3	5.2	5,0	4.7	4.4	4.0	3.7	4
5	4.6	4.8	5.0	5.1	5.2	5.2	5.2	5.2	5.1	5.0	4.8	4.5	4.2	3.8	3.5	5
6	4.6	4.8	5.0	5.1	5.2	5.2	5 2	5.2	5. I	5 0	4.8	4.5	4.2	3.8	3 5	В
7	4.7	4.9	5.1	5.2	5.3	5.3	5.3	5.3	5.2	5. L	4.9	4.6	4,3	3.9	3.6	7
8	4.8	5.0	5.2	5.3	5.4	5.4	5,4	5.4	5.3	5.2	5.0	4.7	4.4	4.0	3.7	. 8
9	5.4	5.6	5.8	5.9	6,0	6.0	6.0	6.0	5.9	5.8	5.6	5.3	5.0	4.6	4.3	9
10	5.7	5.9	6.1	6.2	6.3	6.3	6.3	6.3	6.2	6,1	5.9	5.6	5.3	4.9	4.6	10
1	5.6	6.0	6.2	6.3	6.4	6.4	6.4	6.4	6.3	6.2	6.0	5.7	5.4	5.0	4.7	11

TABLE VI.- SAN FRANCISCO.

100 1																moon 's
of moon's transit.				Before—								After—				of m transit.
Time	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feel.	Feet.	Feet.	Feet.	Feet.	Feet.	Hour.
0	4.8	4.7	4.5	4.3	4.3	4.2	4.3	4.3	4.4	4.5	4.7	4.8	5.0	5.3	5.5	0
1	4.7	4.6	4.4	4.2	4.2	4.1	4.2	4.2	4.3	4.4	4.6	4.7	4.9	5.2	5,4	1
2	4.6	4.5	4.3	4.1	4.1	4.0	4.1	4.1	4.2	4.3	4.5	4.6	4.8	5,1	5.3	2
3	4.5	4.4	4.2	4.0	4,0	3.9	4.0	4.0	4.1	4.2	4.4	4.5	4.7	5.0	5.2	3
4	4.3	4.2	4.0	3.8	3.8	3.7	3.8	3.8	3.9	4.0	4.2	4.3	4.5	4.8	5.0	4
5	4.1	4.0	3.8	3.6	3.6	3.5	3.6	3.6	3.7	3.8	4.0	4.1	4.3	4.6	4.8	5
6	4.1	4.0	3.8	3.6	3,6	.3.5	3.6	3.6	3.7	3.8	4.0	4.1	4.3	4.6	4.8	6
7	4.2	4.1	3,9	3.7	3,7	3.6	3.7	3.7	3.8	3.9	4,1	4.2	4.4	4.7	4.9	7
8	4.4	4.3	4.1	3.9	3,9	3.8	3.9	3.9	4.0	4.1	4.3	4.4	4.6	4.9	5.1	8
9	4.5	4.4	4.2	4.0	4.0	3.9	4.0	4.0	4.1	4.2	4 4	4.5	4.7	5.0	5.2	9
10	4.7	4.6	4.4	4.2	4.2	4.3	4.2	4.2	4.3	4.4	4.6	4.7	4.9	5.2	5.4	10
11	4.8	4.7	4.5	4.3	4.3	4.2	4 3	4,3	4.4	4.5	4.7	4.8	5.0	5.3	5,5	11

TABLE VII.—SAN FRANCISCO.

moon's it.				NOI	RTH BECI	INATION	.—DAYS	ROM MOO	ON'S GRE	ATEST DE	CLINATIO	ON.				moon's
rans				Before-								After				Jo R
Time	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
Tour.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Fcet.	Feet.	Feet.	Fect.	Feet.	Feet.	Feet.	Hour.
0	5.4	5.5	5.7	5 9	5.9	6.0	5.9	5,9	5.8	5.7	5.5	5.4	5.2	4.9	4.7	0
1	5.3	5.4	5.6	5.8	5.8	5.9	5.8	5.8	5.7	5.6	5.4	5.3	5.1	4.8	4.6	1
2	5.2	5.3	5,5	5.7	5.7	5.8	5.7	5.7	5.6	5.5	5.3	5.2	5.0	4.7	4.5	2
3	5.1	5,2	5.4	5.6	5.6	5.7	5.6	5.6	5.5	5.4	5.2	5.1	4.9	46	4.4	3
4	4.9	5.0	5.2	5.4	5.4	5.5	5.4	5.4	5.3	5.2	5.0	4.9	4.7	4.4	4.2	4
5	4.7	4.8	5.0	5.2	5.2	5.3	5.2	5.2	5.1	5.0	4.8	4.7	4.5	4.2	4.0	5
6	47	4.8	5.0	5.2	5.2	5.3	5.2	5.2	5.1	5.0	4.8	4.7	4.5	4.2	4.0	6
7	4.8	4.9	5.1	5.3	5.3	5.4	5.3	5.3	5.2	5.1	4.9	4.8	4.6	4.3	4.1	7
8	5.0	5.1	5.3	5.5	5.5	5.6	5.5	5.5	5.4	5.3	5.1	5.0	4.8	4.5	4.3	8
9	5.1	5.2	5.4	5.6	5.6	5.7	5.6	5.6	5.5	5.4	5.2	5.1	4.9	46	4.4	9
10	5.3	5.4	5.6	5.8	5.8	5.9	5.8	5.8	5.7	5.6	5.4	5.3	5.1	4,8	4.6	10
11	5.4	5.5	5.7	5.9	5.9	6.0	5.9	5.9	5.8	5.7	5.5	5.4	5.2	4.9	4.7	11

TABLE VI.—ASTORIA.

transit.				Before-				ļ				After—				of me
1	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
lour.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Hou
0	8.0	8.3	8.4	8.5	8.6	8.6	8.6	8.6	8.5	8.4	8.3	8.1	7.7	7.4	7.0	0
1	8.0	8.2	8.4	8.5	8.6	8.6	8.6	8.5	8.5	8.4	8,2	8.1	7.7	7.4	7.0	1
2	7.8	8,1	8.2	8.4	8.4	8.4	8.4	8.6	8.3	8.2	8.1	7.9	7.5	7.2	6.8	2
3	7.5	7.8	7.9	8.1	8.1	8.1	8.1	8.1	8.0	7.9	7.8	7.6	7.2	6.9	6.5	3
4	7.1	7,6	7.5	7.7	7.7	7.7	7.7	7.7	7.6	7.5	7.4	7.2	6.8	6.5	6.1	4
5	6.7	7,0	7.2	7,3	7.3	7.3	7.3	7.3	7.2	7.1	7.0	6.8	6.5	6.1	5.7	5
6	6.5	68	7.0	7. i	7.1	7.1	7.1	7.1	7.0	6.9	6.8	6.6	6.3	5.9	5.5	6
7	6.7	7,0	7.1	7.2	7.3	7.3	7.3	7.3	7.2	7.1	7.0	6.8	6.4	6.1	5.7	7
8	7,0	7.3	7.5	7.6	7.6	7.6	7.6	7.6	7.5	7.4	7,3	7.1	6.8	6.4	6 0	8.
9	7.5	7.8	8.0	8.1	8.1	8.1	8.1	8.1	8.0	7.9	7.8	7.6	7.3	6.9	6.5	9
10	7.9	8,2	8.4	8.5	8.5	8.5	8.5	8,5	8.4	8.3	8,2	8.0	7.7	7.3	6.9	10
11	8.1	8,4	8.6	8.7	8.7	8.7	8.7	8.7	8.6	8.5	8.4	8.2	7.9	7.5	7.1	11

TABLE VII.—ASTORIA.

of moon's transit.				Before-								After-				of me
1	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
our.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Fret.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Hour.
Ü	7.4	7.1	6.9	6.8	6.8	6.8	6.8	6.8	6.9	7.0	7.1	7.3	7.6	8.0	8.4	0
1	7.4	7.1	6.9	6.8	6.8	6.8	6.8	6.8	6.9	7.0	7.1	7.3	7.6	8.0	8.4	1
2	7 2	69	6.8	6.6	6.6	6.6	6.6	8.6	6.7	6.8	6.9	7.1	7.5	7.8	8.2	2
3	6.9	6.6	6.5	6.3	6.3	6.3	6.3	6.3	6.4	6.5	6.6	6.8	7.2	7.5	7.9	3
4	6.5	6.2	6.1	5.9	5.9	5.9	5.9	5,9	6.0	6.1	6.2	6.4	6.7	7.1	7.5	4
5	6.1	5.9	5.7	5.6	5.5	5.5	5.6	5.6	5.7	5 7	5.9	6.0	6.4	6.7	7.1	5
6	5.9	5.7	5.5	5.4	5,3	5.3	5.3	5.4	5.5	5.5	5.7	5.9	6.2	6.5	6.9	6
7	6.1	5.8	5.6	5.5	5.5	5.5	5.5	5.5	56	5.7	5.8	6.0	6.3	6.7	7.1	7
8	6.4	6.2	6.0	59	5.8	5.8	5.8	5,8	5.9	6.0	6.2	6.3	6.7	7.0	7.4	8
9	6.9	6.7	6.5	6.4	6.3	6.3	6.3	6.4	6.4	6.5	6.7	6.8	7.2	7,5	7.9	9
10	7.3	7.1	6.9	6.8	6.7	6.7	6.7	6.8	6.9	6.9	7.0	7.2	7.6	7,9	8.3	10
11	7.5	7.2	7.1	7.0	6.9	6.9	6.9	6.9	7.0	7.1	7.2	7.4	7.8	8,1	8.5	11

TABLE VI.—PORT TOWNSHEND.

it.				NOR	TH DECL	INATION	.—DAYS	PROM MO	ON'S GRE	ATEST I	ECLINAT	ON.				HOOn's
				Before—								After-				of HI
	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
our.	Feet.	Feet.	Feet,	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	How
0	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7,5	7.5	7.5	7.5	7.6	7.7	7.9	0
1	6.7	6.4	60	6.2	6.5	7.0	7.3	7.5	7.6	7.6	7.6	7.6	7.7	7.8	8.0	1
2	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.8	7.7	7.9	2
3	6.3	6.0	5.6	5.8	6.1	6.6	6.9	7.1	7.2	7.2	7.2	7.4	7.3	7.4	7.6	3
4	6.0	5.7	5.3	5.5	5.8	6.3	6.6	6.8	6.9	6.9	6.9	6.9	7.0	7.1	7.3	4
5	5.9	5.6	5.2	5.4	5.7	6.2	6.5	6.7	6.8	6.8	6.8	6.8	6.9	7.0	7.9	5
6	6.1	5.8	5.4	5.6	5.9	6.4	6.7	6.9	7.0	7.0	7.0	7.0	7.1	72	7.4	6
7	6.4	6.1	5.7	5.9	6.2	6.7	7.0	7.2	7.3	7.3	7.3	7.3	7.4	7.5	7.7	7
8	6.5	6.2	5.8	6.0	6.3	6.8	7.1	7.3	7.4	7.4	7.4	7.4	7.5	7.6	7,8	8
9	6.5	6.2	5.8	6.0	6.3	6.8	7.1	7.3	7.4	7.4	7.4	7.4	7.5	7.6	7.8	9
0	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.6	7.7	7.9	10
n	6.6	6.3	5.9	6.1	6.4	6.9	7.2	7.4	7.5	7.5	7.5	7.5	7.6	7.7	7.9	11

TABLE VII.—PORT TOWNSHEND.

e,uoc				sot	TH DEC	LINATION	DAYS	FROM MO	on's gr	EATEST 1	DECLINAT	TION.				moon's
of moon's transit.				Before-								After-				of
Time Time	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Time
Hour.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Hour
0	7.6	7.9	8.3	8.1	7.8	`7.3	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	0
1	7.7	8.0	8.4	8.9	7.9	7.4	7.1	6.9	68	6.8	6.8	6.8	6.7	6.6	6.4	1
2	7.6	7.9	8.3	8.1	7.8	7.3	7.0	68	6.7	6.7	6.7	6.7	6.6	6.5	6.3	2
3	7.3	7.6	8,0	7.8	7.5	7.6	6.7	6.5	6.4	6.4	6.4	6.4	6.3	6.2	6.0	3
4	70	7.3	7.7	7.5	7.2	6.7	6.4	6.2	6,1	6.1	6.1	6.1	6.0	5.9	5.7	4
5	6.9	7.2	7.6	7.4	7.1	6.6	6.3	6.1	6.0	6.0	6.0	6.0	5.9	5.8	5.6	5
6	7.1	7.4	7.8	7.6	7.3	6.8	6.5	6.3	6.2	6.2	6.2	6.2	6.1	6.0	5.8	6
7	7.4	7.7	8.1	7.9	7.6	7.1	6.8	6.6	6.5	6.5	6.5	6.5	6.4	6.3	6.1	7
8	7.5	7.8	8.9	8.0	7.7	7.2	6.9	6.7	6.6	6.6	6.6	6.6	6.5	6.4	6.2	8
9	7.5	7.8	8.2	8.0	7.7	7.2	6.9	6.7	6.6	6.6	6.6	6.6	6.5	6.4	6.2	9
10	7.6	7.9	8.3	8.1	7.8	7.3	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	10
11	7.6	7.9	8,3	8.1	7.8	7.3	7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.5	6.3	11

Nore.—To use these tables with a chart on which the soundings are referred to mean low water, substract 1.2 foot from the numbers in the tables from San Diego to Astoria, 1.7 foot for Neé-ah harbor, 2.3 for Port Townshend, and 2.7 for Semiahmoo and Steilacoom.

Example VI.—In Example V, to obtain the height of tide on February 7, the declination being south, we enter Table VI, for San Francisco, with 0h. of transit, and two days after greatest declination, and find that the tide will be 4.5 feet above the mean of the lowest low water, or that 4.5 feet are to be added to the soundings of a chart reduced to the mean of the lowest low waters of each day. If the soundings of the chart were given for mean low water, then 1.2 feet ought to be subtracted from the Tables VI and VII; thus, in this example, it would be 3.3 feet.

The approximate time of the successive low and high waters of the day will be found by adding the numbers in Table VIII to the time of the first high water already determined. The table gives the numbers for the different days from the greatest declination.

Tables containing numbers to be added to the time of high water found from Tables IV and ∇ , to obtain the successive low and high waters.

TABLE VIII.—SAN DIEGO.

moon,	lination.		OUTH DECLINATE	ėn.	NO	RTH DECLINATI	on.	moon's Instion
Days from	greatest declination.	Low water (Small.)	. High water. (Large.)	Low water. (Large.)	Low water. (Large.)	High water. (Small.)	Low water. (Small.)	Days from moon', greatest declination.
		h. m.	A. m.	h. m.	h. m.	h. m.	h. m.	
•	7	5 44	12 28	18 44	6 16	12 16	18 00	7)
	6	5 18	11 58	18 40	6 42	12 46	18 04	6
ø.	5	5 00	11 34	18 34	7 00	13 10	18 10	5 3
Before.	4	4 47	11 12	18 25	7 13	13 32	18 19	5 Before
Ř	3	4 34	10 54	18 20	7 96	13 50	18 24	3 4
	2	4 94	10 38	18 14	7 36	14 06	18 30	2
İ	[]	4 17	10 28	18 11	7 43	14 16	18 33	1 j
	0	4 12	10 90	18 08	7 48	14 94	18 36	0
-	1	4 14	10 20	18 06	7 46	14 24	18 38	1)
	2	4 94	10 28	18 04	7 36	14 16	18 40	2
	3	4 38	10 40	18 02	.7 22	14 -04	18 42	3 .
Affer,	4	5 91	10 58	17 57	6 59	13 46	18 47	Affer.
₹.	5	5 25	11 18	17 53	6 35	13 26	18 51	5 3
	8	5 49	11 44	17 55	6 11	13 00	18 49	6
	l 7 -	6 18	12 18	18 00	5 42	12 26	18 44	7

TABLE VIII.—SAN FRANCISCO.

moon's	lination.	so	UTH DEGLINAT	ion.	No	RTH DECLINAT	ion.	moon's lination.
Days from	2	Low water. (Small.)	High water. (Large.)	Low water. (Large.)	Low water. (Large.)	High water. (Small.)	Low water. (Small.)	Days from moon's greatest declination.
		h. m.	h. m.	h. m.	ħ. m.	h. m.	h. m.	
	ŗ 7	5 58	13 14	18 58	5 44	11 46	17 44	7 }
	6	5 36	12 42	18 48	6 06	12 18	17 54	6
o.	5	5 14	12 10	18 38	6 28	12 50	18 04	5 6
Before,	4 ■	4 55	11 34	18 21	6 47	13 26	18 21	5 4 Before.
æ	3	4 37	11 00	18 05	7 05	14 00	18 37	3 🛱
	2	4 24	10 34	17 52	7 18	14 26	18 50	2
	(1	4 12	10 06	17 36	7 30	14 54	19 06	1
	0	4 12	10 00	17 30	7 30	15 00	19 12	6
	(I	4 17	10 02	17 27	7 25	14 58	19 15	1]
	2	4 27	10 12	17 27	7 15	14 48	19 15	2
	3	4 41	10 26	17 27	7 01	14 34	19 15	3 .
Aner.	4	4 56	10 46	17 32	6 46	14 14	19 10	4 V
₹	5	5 14	11 10	17 38	6 28	a 13 50	19 04	5 3
	6	5 36	11 36	17 42	6 06	13 24	19 00	6
	7	5 57	12 04	17 49	5 45	12 56	18 53	7

TABLE VIII.—ASTORIA.

B' noom	Hnation.		OUTH DECLINAT	ION.	ОК	RTH DECLINAT	ion.	moon's linstion.
Days from	greatest declination.	Low water (Small.)	. High water. (Large.)	Low water. (Large.)	Low water. (Large.)	High water. (Small.)	Low water. (Small.)	Days from moon greatest declination
		h. m.	h. m.	h. m.	h. m,	h. m.	h. m.	
	[7	6 38	12 59	19 17	6 18	12 03	18 41	7]
	6	6 14	12 33	19 15	6 42	12 29	18 43	6
5	5	5 55	12 13	19 14	7 01	12 49	18 44	5 3
Before,	4	5 34	11 47	19 09	7 22	13 15	18 49	Before.
ă	3	5 20	11 27	19 03	7 36	13 35	18 55	3 🛱
	2	5 09	11 67	18 54	7 47	13 55	19 04	2
	l 1	5 05	11 01	18 52	7 51	14 01	19 06	1]
	0	5 03	10 53	18 46	7 53	14 09	19 12	0
	[1	5 05	10 51	18 42	7 51	14 11	19 16	1)
	2	5 11	10 55	18 40	7 45	14 07	19 18	2
ے	3	5 18	.11 03	18 41	7 38	13 59	19 17	3 .
After.	4	5 392	11 15	18 39	7 24	13 47	19 19	After.
~	5	5 50	11 35	18 41	7 06	13 27	19 17	5 ₹
	6	6 11	11 55	18 40	. 6 45	13 07	19 18	6
	\ 7	6 35	12 19	18 40	6 21	12 43	19 18	7]
		1	t	i	ì	1		

TABLE VIII.—PORT TOWNSHEND.

moon's	lination.		sot	TH DE	C LINATI	ion.			No	RTH DE	CLINAT	ion.		moon's	Bnation.
Days from	greatest declination.	Low wa	ter.	High	water.	Low	water.	Low	water.	High	water.	Low	water.	Days from	greatest declination.
		h. m		h.	772.	h.	m.	h.	m.	h.	m.	h.	m.		
	7	6 00	5	12	26	18	05	5	39	12	26	18	31	7	1
	6	6 38	3	13	14	18	20	5	06	11	38	18	16	8	1
ø	5	7 18	8	14	14	18	40	4	26	10	3 8	17	56	5	3
Before,	4	8 13	3	15	52	19	23	3	31	9	00	17	13	4	Before,
m	3	8 34	6	16	52	20	00	3	08	8	00	16	36	3	A
	2	8 43	3	17	30	20	31	3	01	7	22	16	05	2	\
	1	8 15	2	17	04	20	36	3	32	7	48	16	00	1]
	0	7 40)	16	28	20	32	4	04	8	24	16	04	0	
	1	7 18	з	15	52	20	18	4	26	9	00	16	18	1	1
	2	6 59	9	15	14	19	59	4	45	9	38	16	37	2	1
2	3	6 38	3	14	32	19	36	5	06	10	20	16	58	3	
Affer.	4	6 24	4	14	02	19	22	5	20	10	50	17	14	4	After,
₹	5	6 10)	13	26	19	00	5	34	11	26	17	36	5	1
	6	5 59	9	12	50	18	35	5	45	12	02	18	01	6	
	7	5 45	2	12	26	18	28	6	02	12	26	18	08	7	j

The days from the greatest declination are written in the first and last columns of the table. The second, third, and fourth columns refer to south declination, and the fifth, sixth, and seventh to north. The second column gives the number which is to be added, according to the declination, to the time of high water, obtained by means of Tables IV and V, to give the next low water, which is the small low water b of Diagram I. The third contains the numbers to be added to the same to give the second or large high water c of Diagram I. The fourth, the numbers to be added to the same to give the second or large low water d of Diagram I. The succeeding columns give the numbers to be used in the same way for north declination, to obtain the low water b (large) of Diagram II; the high water b (small) and the low water b (small) of the same diagram. The rise and fall of the same successive tides may be obtained by inspection from Table IX, in which the first column at the side contains the time of transit, and the successive columns the numbers corresponding to that time and to the number of days from greatest declination. The arrangement of this table is like that already given.

The numbers for the small ebb tide a b of Diagram I, or c d of Diagram II, are first given; then those for small low and large high waters b c of Diagram I, and d e of Diagram II; next, the large ebb tide c d of Diagram I, or a b of Diagram II; and, lastly, from the large low water to the small high water d e of Diagram I, or b c of Diagram II.

TABLE IX.—SAN DIEGO.

TIANTE THE				Da	ys fro	mm	oon,	s gre	atest	deci	inati	on.							Da	ys fro	m m	oon'	gre	atest	deci	inatio	m.			
trodits of Indon's			Ве	fore-							P	fter	_					Ве	fore-							A	fter-	_		
S Thoru	7	6	5	4	3	2	1	O	I	2	3	4	5	б	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7
-1	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft
•	4.0	3.4	3.0	2.6	2.3	2.1	2.0	2,6	2.1	2.3	2.7	3.2	3.8	4.6	5.2	5.1	4.9	4.7	4.5	4.4	4.3	4.2	4.2	4.1	4.1	4.0	4.0	3.9	3,9	4.0
	3.8	3,2	2.8	2.4	2.1	1.9	1.8	1.8	1.9	2.1	2.5	3,0	3.6	4.4	5,0	4.9	4.7	4.5	4.5	4.2	4.1	4.0	4.0	3.9	3.9	3.8	3.8	3.7	3,7	3.8
	3.5	2.9	2.5	2.1	1.8	1.6	1.5	1.5	1.6	1.8	2.2	2.7	3.3	4.1	4.7	4.6	4.4	4.2	4.0	3.9	3.8	3.7	3.7	3.6	3.6	3.5	3.5	3.4	3.4	3.5
:	3.0	2.4	2,0	1.6	1,3	1.1	1.0	1.0	1.1	1.3	1.7	2.2	2.8	3.6	4,2	4.1	3,9	3.7	3,5	3.4	3.3	3.2	3.2	3.1	3.1	3.0	3.0	2.9	2.9	3.0
ĺ	$^{2.2}$	1.6	1.2	0.8	0.5	0 3	0.2	0,5	0.3	0.5	0.9	1.4	2.0	2.8	3.4	3.3	3.1	2.9	2.7	2.6	2.5	2.4	2.4	2,3	2.3	2.2	9.9	2.1	2.1	2,2
1	1.7	1.1	0.7	0.3	0.0	2	3	~,ċ	2	0.0	0 4	0.9	1,5	2.3	2.9	2.8	2,6	2.4	2.2	21	2.0	1.9	1.9	1.8	1.8	1 7	1.7	1.6	1.6	1.7
1	1.8	1.2	0.8	0.4	0.1	1	2	₽	~.1	0.1	0.5	1.0	1.6	2.4	3.0	2.9	2,7	2.5	2.3	2,2	2.1	2.0	2.0	1.9	1.9	1.8	1.8	1.7	1.7	1.8
l	2,3	1.7	1.3	0.9	0.6	0.4	0.3	0.3	0.4	0.6	1.0	1.5	2.1	2.9	3.5	3.4	3,2	3.0	2.8	2.7	2.6	2.5	2.5	2.4	2.4	2.3	2,3	2.2	2.2	2,3
l			1.9			1				- (- 1																2.8		
l	3.7	3.1	2.7	2.3	2.0	1.8	1.7	1.7	1.8	2.0	2.4	2.9	3.5	4.3	4.9	4.8	4.6	4.4	4.2	4.1	4.0	3.9	3.9	3.8	3.8	3.7	3.7	3.6	3.6	3,7
	4.2	3.6	3.2	2.8	2.5	2.3	2.2	2.2	2.3	2.5	2.9	3.4	4.0	4.8	5.4	5.3	5.1	4.9	4.7	4.6	4.5	4.4	4.4	4.3	4.3	4.2	4.2	4.1	4.1	4.2
	4.3	3.7	3.3	2.9	2.6	2.4	2.3	2,3	2.4	2.6	3.0	3,5	4.1	4.9	5.5	5.4	5.2	5.0	4.8	4.7	4.6	4.5	4.5	4.4	4.4	4.3	4.3	4.2	4.2	4.3
-			2 to b										_															egran agran		

TABLE IX.—SAN DIEGO-Continued.

			Day	s fro	on na	oon'	s gre	atest	dect	inati	on.							Da	ys fro	m n	100n3	s gre	atest	deci	inatio	m.			
		Ве	fore-	_						A	Liter-	_					Be	fare	_	-	-				J.	lfter-	_		
7	6	5	4	3	2	1	0	I	2	3	4	5	6	7	7	•	5	4	э	2	1	o	1	2	3	4	5	6	7
Ft.	Fi.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fŧ.	Ft
	2		1 1		i :	i '					4	4	1		4.1						4 1			,	1 1				
- 1		i i			: 1	1	- (1		/ 1	(3.8		i	: i				4.8				, ,				
														3.5							4.5								
		, ,	. :		, ,									3.0							4.0	. 1				1	•	- 1	
	1	ı												2.2							3.2								
														1.7 1.8							2.7 2.8								
														2.3							1 1)				- 1	,		
														2.9					. 1								- 7	i	
															3.8														
															4.3														
																									5.5				

TABLE IX.—SAN FRANCISCO.

						·	s gree	atest	aeci	inati	on.							IJау	s fro	m m	oon a	grea	tesi	aecı	natie)ii.			
		В	fore-	_						Af	ter						Be	fore-	_						Af	ter—			
7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7
Ft.	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fl.	Ft.	Ft.	Ft.	Ft	Fi.	Ft.	FY.	Ft.	Ft.	Ft.	Ft	Ft.	F1.	Fi.	Ft.	Ft	Ft.
4.7	4.0	3.4	2.9	2.4	2.0	1.8	1.7	1.7	1.9	2.2	2.6	1.8	3.7	4.4	5.2	4.9	4.6	4.5	4.0	3.7	3.4	3.2	3.1	3.0	3.1	3.1	3.3	3.4	3.5
1.5	3.8	3.2	2.7	2.2	1.8	1.6	1.5	1.5	1.7	2.0	2.4	2.9	3.5	4.2	5.0	4.7	4.4	4.3	3.8	3.5	3.2	3.0	2.9	2.8	2.9	2.9	3.1	3.2	3.3
1.3	3.6	3.0	2.5	2.0	1.6	1.4	1.3	1.3	1.5	1.8	2.2	2.7	3.3	4.0	4.8	4.5	4.2	4.1	3.6	3,3	3.0	2.8	2.7	2.6	2.7	2.7	2.9	3.6	3.1
1.0	3.3	2.7	2.2	1.7	1.3	1.1	1.0	1.0	1.2	1.5	1.9	2.4	3.0	3.7	4.5	4.2	3.9	3.8	3.3	3.0	2.7	2.5	2.4	2.3	2.4	24	2.6	2.7	2.8
3.6	2.9	2.3	1.8	1.3	0.9	0.7	0.6	0.6	0.8	1.1	1,5	2.6	26	3.3	4.1	3.8	3.5	3.4	2.9	2.6	2.3	2.3	2.0	1.9	2.6	2.0	2.2	23	2.4
3.2	2.5	1.9	1.4	0.9	0,5	0.3	0.2	0.2	0.4	0.7	1.1	1.6	2.2	2.9	3.7						1.9								
3,2	2.5	1.9	1.4	0.9	0.5	0.3	0.2	0.2	0.4	0.7	1.1	1.6	2.2	2.9	3.7						1.9								
3.4									1																				
			1			- 1	,														i						:		
	1		ì	,		1	- 1)		1				. 1															
					1		- 1		- 1	1		- 1		,			1				,			. 1	- 1	i			
.7	4.0	3,4	29	2.4	2.0	1.8	1.7	1.7	1.9	2.2	2.6	3.1	3.7	4.4	5.2	4.9	4.6	4.5	4.0	3.7	3.4	3.2	3.1	3.0	3.1	3.1	3.3	3.4	đ.5
3,8 1 1 1,5 1,7	3.1 3.4 3.8 4.0	2.5 2.8 3.2 3.4	2.0 2.3 2.7 2.9	1.5 1.8 2.2 2.4		1.1 1.4 1.8 2.0	1.1 0.9 1.4 1.2 1.8 1.6 2.0 1.8	1.1 0.9 0.8 1.4 1.2 1.1 1.8 1.6 1.5 2.0 1.8 1.7	1.1 0.9 0.8 0.8 1.4 1.2 1.1 1.1 1.8 1.6 1.5 1.5 2.0 1.8 1.7 1.7	1.1 0.9 0.8 0.8 1.0 1.4 1.2 1.1 1.1 1.3 1.8 1.6 1.5 1.5 1.7 2.0 1.8 1.7 1.7 1.9	1.1 0.9 0.8 0.8 1.0 1.3 1.4 1.2 1.1 1.1 1.3 1.6 1.8 1.6 1.5 1.5 1.7 2.0 2.0 1.8 1.7 1.7 1.9 2.2	1.1 0.9 0.8 0.8 1.0 1.3 1.7 1.4 1.2 1.1 1.1 1.3 1.6 2.0 1.8 1.5 1.5 1.7 2.0 2.4 2.0 1.8 1.7 1.7 1.9 2.2 2.6	1.1 0.9 0.8 0.8 1.0 1.3 1.7 2.2 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1	1.1 0.9 0.8 0.8 1.0 1.3 1.7 2.2 2.8 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.8 3.5 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2	0.7 0.5 0.4 0.4 0.6 0.9 1.3 1.8 2.4 3.1 3.9 1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.8 3.5 4.3 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 2.6 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.8 3.5 4.3 4.0 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9	1.1 0.9 0.8 0.8 1.0 1.3 1.7 2.2 2.8 3.5 4.3 4.0 3.7 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.8 3.5 4.3 4.0 3.7 3.6 3.1 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0	1.1 0.9 0.8 1.0 1.3 1.7 2.2 2.8 3.5 4.3 4.0 3.7 3.6 3.1 2.8 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.8 2.5 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4	1.1 0.9 0.6 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.6 2.5 2.3 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.6 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 3.0 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2	1.1 0.9 0.6 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.8 2.5 2.3 2.2 1.4 1.2 1.1 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 2.5 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.8 3.5 3.9 3.0 2.9 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.6 2.5 2.3 2.2 2.1 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 2.5 2.4 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 3.0 2.9 2.5 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1 3.0	1.1 0.9 0.8 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.8 2.5 2.3 2.2 2.1 2.2 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 2.5 2.4 2.5 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.6 3.5 3.2 3.0 2.9 2.5 2.9 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1 3.0 3.1	1.1 0.9 0.6 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.6 2.5 2.1 2.2 2.1 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.6 4.2 4.0 3.9 3.4 3.1 2.8 2.6 2.5 2.4 2.5 2.5 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 3.0 2.9 2.5 2.9 2.9 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1 3.0 3.1 3.1	1.1 0.9 0.8 0.8 1.0 1.3 1.7 2.2 2.8 3.5 4.3 4.0 3.7 3.6 3.1 2.6 2.5 2.3 2.2 2.1 2.2 2.2 2.4 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 2.5 2.4 2.5 2.5 2.7 1.8 1.6 1.5 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 3.0 2.9 2.5 2.9 2.9 3.1 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1 3.0 3.1 3.1 3.3	1.1 0.9 0.6 0.6 1.0 1.3 1.7 2.2 2.6 3.5 4.3 4.0 3.7 3.6 3.1 2.6 2.5 2.2 2.2 2.2 2.2 2.2 2.4 2.5 1.4 1.2 1.1 1.3 1.6 2.0 2.5 3.1 3.8 4.6 4.3 4.0 3.9 3.4 3.1 2.8 2.6 2.5 2.4 2.5 2.5 2.7 2.8 1.8 1.6 1.5 1.7 2.0 2.4 2.9 3.5 4.2 5.0 4.7 4.4 4.3 3.8 3.5 3.2 3.0 2.9 2.5 2.3 2.9 3.1 3.2 2.0 1.8 1.7 1.7 1.9 2.2 2.6 3.1 3.7 4.4 5.2 4.9 4.6 4.5 4.0 3.7 3.4 3.2 3.1 3.0 3.1 3.1 3.3 3.4

TABLE IX.—SAN FRANCISCO—Continued.

				Day	s fro	m m	oon'	grea	test	decli	inatio)i) .							Day	s fro	m m	00n's	grea	test	dec:i	natio	on.			
			В	fore	_							After	_					В	efore	_						A	.ster .	-		
-	7	6	5	4	3	2	1	0	ı	2	3	4	5	6	7	7	6	5.	4	3	2	1	0	1	2	3	4	5	6	7
-	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fŧ.	Ft.	Ft.	Ft.	Ft.	Ft.	F¥.	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Fi.	Ft.	Ft.
-	3.9															3.4	1	i			1 1	1 1	5.4					1		
ļ	3.7															3.2	1 1				l f	. ,	5.2	4	- 1	- 1	- 1	- 1	· 1	• • •
	3.5	4,2	4.8													3.0							5.0							
	3,2		4.5													2,7							4.7							
İ	8,2															2.3							4.3							
	₽.4	3.1	3.7				- 1	- 1	- 1							1.9	i I		1	- 1	- 1	- 1	3.9		i	ı	. 1			
ì	2.4	3, 1	3.7													1.9							3.9							
	2.6		3.9													2.1							4.1							
	3.0															2.5														
	3.3	4.0	4.6	5.1	5,6	6.0	6.2	6.3	6.3	6.1	5.8	5.4	4.9	4.3	3.6	2.8	: 1		1	3	1	1	4.8		- 1		1 !			
	3.7	4.4	5.0	5.5	6.0	6.4	6.6	6.7	6.7	6.5	6.2	5.8	5.3	4.7	4.0	3.2							5.2							
	3.9	4.6	5.2	5.7	6.2	6.6	6.8	6.9	6.9	6.7	6.4	6.0	5,5	4.9	4.2	3.4	3.7	4.0	4.1	4.6	4.9	5.2	5.4	5.5	5.6	5,5	5.5	5.3	5.2	5.2

REPORT OF THE SUPERINTENDENT OF

TABLE IX.—ASTORIA.

				Dag	ys fro	om m	oon'	s gre	atest	deci	inati	on.							Day	ys tirc	om m	oon':	gree	test	decli	natio	n.		_		
; }			В	efore	_						A	fter	_					Be	fore-	~						A	fter-	-			1
	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	1
-	Ft.	Ft.	Fi.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fi.	Ft.	Fi.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ţ
-			6.0																			6.3									
1			6.3																			6.4									
l			5.8	1		1 1	Į.															6.1									
1			5.2			1				- 1	-				1							5.5									
l	- 1		4.5						- 1	- 1		- 1										4.8									
l			3.8				- 1		- 1				. ,	, ,	,							4.1									
Ì	1		3.4		,	1	,				- 3	- 1		- 1								3.7	1			- 1		- 1			1
l			3.6				- 1				- 1	- 1	- 1					- 1	1	1		3.9		- 1				1			
ļ	1		4 1				1						- 1	1								4.4									
	- 1		4.9 5.6	- 1			- 1			- 1												5.9 5.9									
١			6.9				- 1										t t	- 1	,		- 1	6.2	ſ		1	- 1	- 1	ſ			ł
F	****	0.0	0.9	3.3	4.5	3.3	3.3	3. 4	7.5	7.0	5.0	0.4	0.1	0.0	•••		'''		' - 1	0.7	0.3	0.2	0.1	0.0	0.1	0.1	0.2	0.2	0.2	0,3	1

TABLE IX.—ASTORIA—Continued.

L				Day	s fro	מנובבס	00n'	s grea	atest	decli	natio	on.							Day	s fro	m m	oon'	grea	test	decli	natio	m.			
			Ве	fore-	_						Λ	fter-	_					Ве	fore-	_						A	fter-			
7		6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7
1	Tt.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Ft.	Fi	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fi.	Ft.	Ft.
7	.0	7.7	8,4	9.0	9.4	9.8	9.9	9.9	9.8	9.7	9.3	8.9	8.2			6.4	6.6	6.9	7.2	7.6		8. I								
7	.1	7 8	8.5	9.1	9.5	9.9	10.0	10.0	9.9	9.8	9.4	9.0	83	7.6	6.7	6.5	6.7	7.0	7.3	7.7	8.1	8,2	8.3	8.4	8.3	8.3	8.2	8.2	8.2	8.1
6	8,	7.5	8.2	8.8	9.2	9.6	9.7	9.7	9.6	9 5	9.1	8.7	8.0	7,3	6.4	6,2	6.4	6.7	7.0	7.4	7.8	7.9	8.0	8.1	8.0	8.0	7.9	7.9	7.9	7.8
6	.2	6.9	7.6	8.2	8.€	9.0	9.1	9.1	9.0	8.9	8,5	8.1	7.4	6.7	5.8	5.6	5.8	6.1	6.4	6.8	7,2	7.3	7.4	7.5	7.4	7.4	7.3	7.3	7.3	7.2
5.	.5	6.2	6.9	7.5	7.9	8.3	8.4	8.4	8.3	8.2	7.8	7.4	6.7	6.0	5.1	4.9	5.1	5.4	5.7	6.1	6.5	6.6	6.7	6.8	6.7	6.7	6.6	6.6	6.6	6.5
				6.8																		5.9								
				6.4																		5.5								
				6.6																		5.7								
				7.1																		6.2								
				7.9															1			7.0	- 1	3			1			
				8.6											- 1							7.7		1					1	
ť	.9	7.5	8.3	8.9	9.3	9.7	9.8	9.8	9.7	9.6	9.2	8.8	8.1	7.4	7.5	6.3	6.5	6.8	7 1	7.5	7.9	8.0	8.1	8.2	8.1	8.1	8.0	8.0	8.0	7.9

TABLE IX.—PORT TOWNSHEND.

				Day	s froi	m mo	on's	grea	test (lecli	natio	m.							Day	s fro	m m	oon'	s grea	atest	deci	inatio	on.				oon's transit.
			Be	fore-	-						A	fter-	_					Be	fore-	_						A	Rer-	_			of m
7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	Hours
F	¥.	F1.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft	Ft.	Ft.	Ft.	Ft.	Ft.	
4	4.5	5.6	6.9	8.0	8.6	8.9	8.8	8.8	8.7	8.7	8.5	8.0	7.3	6.6	5.5	1			1 1	7.2	i									1	
4	4.5	5.6	6.9	1										1	5.5		3.9	4.6	6.0	7.2	8.4	9.0	9.5	9.6	9.4	9.2	8.7	8.9	7.9	7.1	
1	- 1	ì	6.8	- 1				: 1			- 1				5.4			1) :	7.1			i)								
		- 1		1		8.5	1 1		- 1											6.8											
1	3.5	4.6	5.9	7.6	7.6	7.9	7.8	7.8	7.7	7.7	7.5	7.0	6.3	5.6	4.5			i		6.2			1 1								
1	3.1	4.2	5.5	6.6	7.2	7.5	7.4	7.4	7.3	7.3	7.1	6.6	5.9	5.2	4.1					5.8			1 7								
,	- 1)			1 1								4.1					5.8	ľ	- 1			i	: 1		1		- 1	
1		- 1	- 1	1	- 1		' 1		- 1		i				4.3	,			. 1	6.0	1	1	1 1			1 1	,		1		
	- 1	- 1		- 1		. ,			- 1						4.5					6.2											
	- 1	- 1	- 1	1	5	1	1	. 1	1	1	- 1]			4.7					6.4		- 4				i				- 1	
	- 1	- 1	- 1	- 1	- 1		- 1	- 1	- (ſ			5.1	- 1				6.8	,	i	- 1								
4	1.4	5.5	6.8	7.9	8.5	8.8	8.7	8.7	8.6	8.6	8.4	7.9	7.2	6.5	5.4	3.4	3.8	4.5	5.9	7.1	8.3	8.9	9.4	9.5	9.3	9.1	8.6	8.1	7.8	7.0	

TABLE IX.—PORT TOWNSHEND—Continued.

			Day	s fro	m m	on's	grea	test	decli	natio	n.							Day	s from	m mo	on's	grea	test o	lecli	natio	n.				2,40
		Be	fore-	_						A	fter-	_					Be	fore-	-						A	fter-	_			90
7	6	5	4	3	2	1	0	ı	2	3	4	5	6	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	House
Ft.	Ft.	Ft.	Ft.	Ft.	Fŧ.	Fŧ.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Ft.	Fi.	Ft.	Fi.	Ft.	Ft.	Ft.	Ft.	Ī
6.5	5.4	4.1	3.0	2.4	2,1	2.2	2.2	2.3	2.3	2.5	3.0	3.7	4.4	5.5	7.5	7.1	6.4	5,0	3.8	2.6	2.0	1.5	1.4	1.6	1.8	2.3	2.8	3.1	3.9	ĺ
6.5	5.4	4.1	3.0	2.4	2.1	2.2	2.2	2.3	2.3	2.5	3.0	3.7	4.4	5.5	7.5	7,1	6.4	5.0	3.8	2.6	2.0	1.5	1.4	1.6	1.8	2.3	2.8	3.1	3.9	i
6.4	5.3	4.0	2.9	2.3	2.0	2.1	2.1	2.2	2.2	2.4	2.9	3.6	4.3	5,4	7.4	7.0	6.3	4.9	3.7	2.5	1.9	1.4	1.3	1.5	1.7	2.2	2.7	3.0	3.8	į
6.1	5.0	3.7	2.6	2,0	1.7	1,8	1.8	1.9	1.9	2,1	2.6	3.3	4.0	5,1	7.1	6.7	6.0	4.6	3.4	2.2	1.6	1.1	1.0	1.2	1.4	1.9	2.4	2.7	3.5	ı
5.5	4.4	3.1	2.0	1,4	1.1	1.2	1.2	1.3	1.3	1.5	2.0	2,7	3.4	4.5	6.5	6.1	5.4	4.0	2.8	1.6	1.0	0.5	0,4	0.6	0.8	1.3	1.8	2.1	2.9	!
5.1	4.0	2.7	1.6	1.0	0.7	0.8	9.8	0.9	0.9	1.1	1.6	2.3	3.0	4.1	6.1	5.7	5.0	3.6	2.4	1,2	0.6	0.1	0.0	0.2	0.4	0.9	1.4	1.7	2.5	į
5.1	4.0	2.7	1.6	1.0	0.7	0.8	0.8	0.9	0.9	1.1	1.6	2.3	3.0	4.1	6.1	5.7	5.0	3.6	2.4	1.2	0.6	0.1	0.6	0,2	0.4	0.9	1.4	1.7	2.5	
5.3	4.2	2.9	1.8	1.2	0.9	1.0	0.1	1.1	1.1	1.3	1.8	2.5	3.2	4.3	6.3	5.9	5.2	3.8	2.6	1.4	0.8	0.3	0.9	0.4	0.6	1.1	1.6	1.9	2.7	i
5.5	4.4	3.1	2.0	1.4	1.1	1.2	1.2	1.3	1.3	1.5	2.0	2.7	3,4	4.5	6.5	6.1	5.4	4.0	2.8	1.6	1.0	0.5	0.4	0.6	0.8	1.3	1.8	2.1	2.9	
5 7	4.6	3.3	2.2	1.6	1.3	1.4	1.4	1.5	1.5	1.7	2.2	2.9	3.6	4.7	6.7	6.3	5.6	4.2	3.0	1.8	1.2	0.7	0.6	0.8	1.0	1.5	2.0	2.3	3.1	į
6.1	5.0	3.7	2,6	2,0	1.7	1.8	1.8	1.9	1.9	2.1	2.6	3,3	4.0	5.1	7.1	6.7	6.0	4.6	3,4	2.2	1.6	1.1	1.0	1.9	1.4	1.9	2.4	2.7	3.5	
6.4	5.3	4.0	2.9	2.3	2.0	2.1	2.1	2.2	2.2	2.4	2,9	3.6	4.3	5.4	7.4	7.0	6.3	4.9	3.7	2.5	1.9	1.4	1.3	1.5	1.7	2.2	2.7	3.0	3.8	į

Example VII.—Thus, in Example VI, the high water of February 7 was found to be 3.3 feet above mean low water. The declination being south, Diagram I applies, and this high water is the small one. To obtain the fall of the next low water or small low water, we enter Table IX, for San Francisco, with 0h. of moon's transit, and two days after the greatest declination in the first part of the table, and find 1.9 foot, which will be the difference in height of this high and low water. Entering with the same transit and day in the second part, we find 3.0 feet, which is the rise of the large high above the small low water; the difference between 1.9 and 3.0 or 1.1 foot is the difference of height of the two successive high waters.

It is easy to see how, in this way, the soundings of a chart can be reduced to what they would be approximately at all the successive high and low waters. A similar set of tables is in preparation for Key West and some of the other ports on the Gulf of Mexico, where the tides are of the same character.

TIDES OF THE GULF OF MEXICO.

On the coast of Florida, from Cape Florida, around the Peninsula, to St. Mark's, the tides are of the ordinary kind, but with a daily inequality which, small at Cape Florida, goes on increasing as we proceed westward to the Tortugas. From the Tortugas to St. Mark's the daily inequality is large and sensibly the same, giving the tides a great resemblance to those of the Pacific coast, though the rise and fall is much smaller. Between St. Mark's and St. George's island, Apalachicola entrance, the tides change to the single day class, ebbing and flowing but once in the twenty-four (lunar) hours.

At St. George's island there are two tides a day, for three or four days, about the time of the moon's declination being zero. At other times there is but one tide a day, with a long stand at high water of from 6 to 9 hours. From Cape St. Blas to and including the mouth of the Mississippi the single day tides are very regular, and the small and irregular double tides appear only for two or three days, (and frequently even not at all,) about the time of zero declination of the moon. The stand at high and low water is comparatively short, seldom exceeding an hour.

To the west of the mouth of the Mississippi the double tides reappear. At Isle Dernière they are distinct, though a little irregular, for three or four days, near the time of the moon's zero declination. At all other times the single day type prevails, the double tides modifying it, however, in the shape of a long stand of from 6 to 10 hours at high water. This stand is shortest at the time of the moon's greatest declination, sometimes being reduced to but one hour. At Calcasieu the tides are distinctly double, but with a large daily inequality. The rise and fall being small, they would often present to the ordinary observer the same appearance as at Isle Dernière. At Galveston the double tides are plainly perceptible, though small, for five or six days at the time of moon's zero declination. At other times they present the single day type, with the peculiarity that, after standing at high water for a short time, the water falls a small distance and stands again at that height for several hours, then continues to fall to low water. Sometimes it falls very slowly for nine or ten hours following high water, and then acquires a more rapid rate to low water. At Aransas Pass and Brazos Santiago the single day tides prevail. Small, irregular double tides are only perceived for two or three days at the moon's zero declination. At all other times there is but one high water in the day, with a long stand of from 6 to 9 hours, during which there are often small, irregular fluctuations or a very slow fall. In the following table the mean rise and fall of tides at the above stations are given.

The highest high and the lowest low waters occur when the greatest declination of the moon happens at full or change; the least tide when the moon's declination is nothing at the first or last quarter. The rise and fall being so small, the times and heights are both much influenced by the winds, and are thus rendered quite irregular.

TABLE X.

Rise and fall at several stations on the Gulf of Mexico.

	MEAN	RISE AND FALL O	F TIDES.
STATIONS.	Mean.	At moon's greatest declination.	At moon's least declination.
	Pt.	Ft.	Ft
St. George's island, Florida.	1. 1	1.8	0.6
Pensacola, Florida	1. 0	1.5	0.4
Fort Morgan, Mobile bay, Alabama	1.0	1.5	0.4
Cat island, Mississippi	1.3	1. 9	0.6
Southwest Pass, Louisiana	1. 1	1.4	0.5
Isle Dernière, Louisiana	1.4	2.2	0.7
Entrance to Lake Calcasieu, Louisiana	1. 9	2.4	1.7
Galveston, Texas	1. 1	1.6	0.8
Aransas Pass, Texas.	1. 1	1.8	0.6
Brazos Santiago, Texas	0. 9	1.2	0.5

TO DETERMINE THE RISE AND FALL OF THE TIDES FOR ANY GIVEN TIME FROM HIGH OR LOW WATER-

It is sometimes desirable to know how far the tide will rise in a given time from low water, or fall in a given time from high water, or to approximate to the time which has elapsed from low or high water, by knowing the rise or fall of the tide in the interval. If the proportion of the rise and fall in a given time were the same in the different ports, this would easily be shown in a single table giving the proportional rise and fall, which, by referring to Table I, showing the rise and fall of the tide at the port, would give the rise and fall in feet and decimals. The proportion, however, is not the same in different ports, nor in the same ports for tides of different heights. The following Table XI shows the relation between the heights above low water for each half hour for New York and Old Point Comfort and for spring and neap tides at each place. Units express the total rise of high water above low water, and the figures opposite to each half hour denote the proportional fall of the tide from high water onward to low water. For example, at New York, three hours after high water, a spring tide has fallen six-tenths (sixty hundredths) of the whole fall. Suppose the whole rise and fall of that day to be 5.4 feet, (Table I,) then, three hours after high water, the tide will have fallen 3.24 feet, or three feet three inches, nearly. Conversely, if we have observed that a spring tide has fallen three feet three inches, we may know that high water has passed about three hours.

TABLE XI.

Giving the height of the tide above low water for every half hour before or after high water, the total range being taken as equal to 1.

Time before or	NEW	YORK.	OLD POINT	COMFORT.
after high water.	Spring tide.	Neap tide.	Spring tide.	Neap tide.
h. m.	h. m.	h. m.	h. m.	h. m.
0 0	1.00	1. 00	1.00	1. 00
0 30	0.98	0.98	0. 98	0. 98
1 0	0.94	0.93	0. 95	0.94
1 30	0.89	0.86	0.88	0.87
2 0	0.80	0.72	0. 80	0.78
2 30	0.72	0.59	0. 70	0. 68
3 0	0. 60	0.45	0. 59	0. 57
3 30	0.49	0.31	0.49	0. 44
4 0	0. 39	0.19	0.37	0. 34
4 30	0.2 8	0. 10	0.26	0. 22
5 0	0. 18	0.02	0.17	0. 13
5 30	0.09	0.00	0.08	0.05
6 0	0. 05		0.03	0.01
6 30	0.00		9.00	0. 00

TIDES IN COASTING.

By observing the time of high water and low water along the coast we find the places at which they are the same. The map of co-tidal lines (Sketch No. 65, C. S. Rep., 1857,) shows that it is high water nearly at the same hour all along the coast from Sandy Hook to Cape Cañaveral; of course, not in the bays and harbors and up the rivers, but on the outer coast.

It is high water exactly at the same hour all along the line marked XII, seen on the chart, near Sandy Hook, and north and south of Hatteras, and, with small interruptions, at Cape Lookout and Cape Fear, all the way to near Cape Cañaveral. This same line extends eastward to near Block island, and south of Nantucket, and then passes away from our coast. At full and change of the moon, along this line, (approximately,) it is high water at XII o'clock, Greenwich time, the local time of high water depending upon the longitude of the place; or, to speak more correctly, in the average of a lunar month it is high water so many hours after the time of the moon's passing the meridian of Greenwich. By these lines, called co-tidal lines, we can determine what tidal currents the navigators must expect to meet in coasting; and for this purpose we divide the ports of the coast into two sets, those south and those north of New York.

The sailing lines of coasters bound to southern ports this side of the straits of Florida are marked upon the map, and also of those bound through the sounds to eastern ports, and, outside, to Halifax and European ports.

VESSELS TO AND FROM PORTS SOUTH OF NEW YORK.

South of Sandy Hook, New Jersey, the line of XII hours is nowhere more than 18 miles from the coast; that of $XI_{\frac{3}{4}}$ nowhere more than 35 miles; that of $XI_{\frac{1}{2}}$ nowhere more than 48; and XI nowhere more than 110. The distance of these lines of XII to XI hours, (corresponding within four minutes to VII and VI of New York time,) from different parts of the coast, is shown from Table A, where the first column gives the name of the place, and the second, third, fourth, fifth, respectively, the distances of the co-tidal lines of XII, $XI_{\frac{3}{4}}$, $XI_{\frac{1}{2}}$, and XI hours.

The distances are measured from the ports on perpendiculars to the co-tidal lines. They may be taken as if measured on the parallel of latitude at all the points for the line of XII hours, and at all between Sandy Hook and Cape Hatteras for the lines of $XI_{\frac{3}{4}}$ and $XI_{\frac{1}{2}}$ hours.

13	

Names of locations.	Distance from	coast, measured on	perpendicular to o	o-tidal lines.
rames of focations.	At XII hours.	At XI3 hours.	At XI ₂ hours.	At XI hours.
	Naut. miles.	Naut. miles.	Naut. miles.	Naut. miles.
Sandy Hook	12	32	53	100
Barnegat	2	29	39	78
Cape May	15	30	46	92
Cape Henlopen	18	33	47	92
Assateague	7	22	36	82
Cape Henry	12	28	43	100
Cape Hatteras		8	20	63
Ocracoke inlet		11	26	71
Cape Lookout		7	18	56
Beaufort entrance, North Carolina	6	15	24	63
Cape Fear		6	16	55
Cape Roman		10	21	67
Charleston light	3	15	27	70
Port Royal entrance	5	17	29	78
Tybee entrance	6	17	31	82
St. Mary's entrance	12	25	40	110
St. John's entrance	17	35	48	
Cape Cañaveral	16			
Cape Florida.				
•				1

The co-tidal lines are in such directions that at 10, 20, and 30 miles from the coast, between Sandy Hook and the St. John's, there is but a variation of seven minutes, and even to Cape Cañaveral only of eight minutes.

Keeping ten miles from the shore, the coaster would pass from XII hours at Sandy Hook to XI hours 45 minutes at Hatteras, and increase again irregularly to XII hours 7 minutes at the St. John's, as shown more explicitly in table B. These three tracks of 10, 20, and 30 miles are inside of the cold wall of the Gulf Stream, and generally in the cold current, except at Cape Cañaveral.

Names of stations.	Co tidal l		10, 20, and perpendicu			from th
	Ten mil	es off.	Twenty m	iles off.	Thirty m	iles off.
	h	m.	À.	m.	h.	m.
Sandy Hook	12	0	11	52	11	45
Barnegat	11	52	11	44	11	35
Cape May	12	5	11	53	11	45
Cape Henlopen	12	7	11	57	11	48
Assateague	12	0	11	48 .	11	37
Cape Henry	12	5	11	48	11	42
Cape Hatteras	11	45	11	30	11	22
Ocracoke inlet	1 1	47	11	36	11	25
Cape Lookout	11	45	11	30	11	20
Beaufort entrance, North Carolina	11	55	11	38	11	25
Cape Fear	11	38	11	25	11	18
Cape Roman	11	45	11	33	11	24
Charleston light	11	52	11	38	11	25
Port Royal entrance	11	57	11	45	11	32
Tybee entrance	11	55	11	43	11	30
St. Mary's entrance	12	8	11	57	11	47
St. John's entrance	12	7	11	57	11	50
Cape Cañaveral.	12	8				
Cape Florida	13	10				

It follows, then, as a general thing, from these two tables that the coaster, in passing from Sandy Hook to the St. John's would have the tides the same, within some fifteen minutes, as if he remained at Sandy Hook. So that leaving, for example, a high water, he would, according to the elapsed time, have the ebb and flood alternating every six hours and a quarter, nearly, as if he had remained near Sandy Hook. As the flood tide sets in generally to the northward and on shore, and the ebb to the southward and off shore, he would know by the time that elapsed from his departure and the period of the tide at which he started what tidal currents he might expect to meet as he passed along the coast. This, of course, is not peculiar to Sandy Hook as a point of departure, but would be true for any of the entrances given in the table, taking care not to mistake the time of tides within for that at the entrance.

By referring to George W. Blunt, esq., I have obtained the tracks of sailing and steam vessels passing from New York to ports to the south of it, as shown by the lines on the chart accompanying this paper.—(See Sketch No. 65, C. S. Rep., 1857.) Tracing these on the map of co-tidal lines, I have determined how the navigator would find the tides as he passes from port to port. The results are shown in the annexed table, (C,) in which the port between which and Sandy Hook the mariner passes is at the head of the table, and, at the side, the place off which the co-tidal hours will be found, as stated in the table.

OF	Co ti	idal h	ours o	n saili	ng lit			•	arallel New			of pl	aces u	amed	in the	first
Off.—	Dela ba	ware .y.	į.	ipeake iy.		coke let.	Саре	Fear.	Charl	eston.	Sava	nnah.	St. Jo	bn's.	Cape Florid	
	h.	m.	h.	m.	h.	m.	ħ.	m.	h.	m.	h.	m.	h.	m.	h.	m.
andy Hook	12	5	12	5	12	5	12	5	12	5	12	5	12	5	12	5
Barnegat	11	57	11	57	11	57	11	57	11	57	11	57	11	57	11	57
Саре Мау	12	10	11	52	11	45	11	45	11	45	11	4 5	11	45	11	45
Cape Henlopen	-		11	51	11	43	11	43	11	43	11	43	11	43	11	43
Assateague			11	55	11	33	11	33	11	33	11	33	11	33	11	33
Cape Henry			12	13	11	24	11	24	11	24	11	24	11	24	11	24
Cape Hatteras					11	48	11	4 8	11	48	11	48	11	48	11	48
Ocracoke inlet							11	42	11	42	11	42	11	42	11	42
Sape Lookout							11	39	11	39	11	39	11	32	11	24
Beaufort entrance							11	39	11	39	11	39	11	32	11	24
Cape Fear									11	36	11	36	11	24	11	•
Cape Roman									11	46	11	46	11	19	İ	
Charleston Light											11	52	11	18		
Port Royal entrance											12	3	11	18		
Tybee entrance													11	16		
st. Mary's entrance													11	55		
St. John's entrance						<i>-</i>							12	10		
Cape Caffaveral			ļ. 	. 				. 	.							
Cape Florida												. -				

Thus, from Sandy Hook to Delaware bay, starting with XII hours 5 minutes, off Barnegat there would be, at the same instant, XI hours 57 minutes, and off Cape May XII hours 10 minutes, so that the navigator would have the same succession of tides, whether he remained at Sandy Hook or passed onward to Delaware bay, or whether he came from Delaware bay to Sandy Hook. So from Sandy Hook to Charleston he will find, at the same instant, XII hours 5 minutes at Sandy Hook, XI hours 57 minutes off Barnegat, XI hours 45 minutes off Cape May. and so onward upon the parallels of latitude for the several points. For all practical purposes, then, of coasting, the succession of the tides, and, of course, of the tidal currents of flood and ebb, will be the same as if the navigator remained stationary. Leaving at low water, he will meet the flood for 6 hours 15 minutes, and then the ebb for another 6 hours 15 minutes, and so on. It is the simplest of all rules that has thus come out of this investigation. That remarkable change of the temperature between the waters of the inshore cold current, and the warm waters of the Gulf Stream, occuring in so short a distance that Lieutenant Bache called it the "cold wall." takes place at distances off the coast of from 170 to 29 miles, (see Table D.) between Sandy Hook and Cape Cañaveral, measured from the several points named in the table, at right angles to the direction of the course, or measured along the parallels of latitude of the points, at distance from 195 to 28 miles between Assateague and Cape Cañaveral.—(Table D.) The points where the parallels north of Assateague meet this division line have not been accurately determined.

The annexed table shows these distances, measured at right angles and on the parallels.

D.

Distance from coast to "cold wall" of Gulf Stream, off	Measured at right angles to coast.	Measured on parallel of latitude.
	Naut. miles.	Naut. miles.
Sandy Hook	170	
Barnegat	135	
Cape May	137	
Cape Henlopen	137	
Assateague	95	195
Cape Henry	92	1.07
Cape Hatteras	30	31
Ocracoke inlet	53	52
Cape Lookout	53	65
Beaufort entrance	62	
Cape Fear	54	97
Cape Roman	57	103
Charleston light	61	95
Port Royal entrance	79	97
Tybee entrance	79	95
St. Mary's	90	87
St. John's	85	82
Cape Cañaveral	29	28
Cape Florida		

The coasting line of thirty miles keeps inside of the cold wall all the way to Cañaveral, and all the routes traced on the chart from Sandy Hook to southern ports are on the inside of it. The Gulf Stream lines drawn on the chart show how the route to Bermuda and to the Bahamas cuts the alternate bands of warm and cold water of the Gulf Stream.

Vessels to and from ports east of New York.

The plate shows the sailing lines of vessels bound from New York to eastern ports and to Halifax, outside. The annexed table (E) gives the Greenwich time of high water off the several points named in the first column on the routes to and from the places named in the heading of the table. The distances are measured at right angles to the co-tidal curves.

E.

Off—			C	-tidal	hours on	sailii	g lines	betwee	n New Y	ork a	nd—			
On	Newp	ort.	New B	edford.	Nantu	cket.	Bosto	on.	Portsmo	outh.	Port	land.	Halit	ax.
	ħ.	m.	h.	m.	h.	m.	h.	m.	A.	m.	ħ.	m.	k.	m.
Sandy Hook													12	5
Throg's Point	16	16	16	16	16	16	16	16	16	16	16	16		
Fisher's Island	13	48	18	48	13	48	13	48	13	48	13	48		
Block island	12	16	12	16	12	16	12	16	12	16	12	16	11	. 30
Monomoy							16	10	16	10	16	10		
Cape Cod							14	35	14	35	14	35	12	15
Cape Ann			.]						15	00	14	40		
Portland			.								15	30		

In passing from New York to an eastern port, the first great change in the tides and tidal currents is between the East river and Long Island Sound; the difference between Governor's island and Negro Point, on Ward's island, at the eastern entrance to Hell Gate, is two hours and forty-five minutes. Between this point and Throg's Point the change is small. The mariner is now in the full tide of the sound, and between Throg's Point and Fisher's island there is a difference of time of but two hours and twenty minutes, the greatest part of which is at the head of the sound and at its entrance—that is, near Throg's Point and Fisher's island. From off New London to off Sand's Point the difference is but one hour and forty minutes; so that if the mariner, instead of remaining at Throg's Point, passes onward to Fisher's island, he would lose but half a tide in the whole passage. In other words, he would have the same succession of rise and fall, according to the time elapsed, whether stationary or passing onward within two hours and a half, or less than half a tide.

The tidal current lines show that even a less allowance is to be made for the change of current than for the change of tide, the difference in the change of current between Throg's Point and Fisher's island, along the middle of the sound, being of no practical importance. Passing out of Long Island Sound, the tidal hours grow earlier, until off Block island that of Sandy Hook is again reached. The co-tidal line of Sandy Hook and Block island being the same, it is the struggle of the same tide through New York bay and the narrow East river and obstructed Hell Gate, and through Fisher's island and Long Island Sound and to Throg's Point. The tidal currents meet near Throg's Point.

The lower part of Narragansett bay has the co tidal hour XII hours nearly. Buzzard's bay has nearly the same co-tidal hour, the tide wave reaching the shore at nearly the same time all around the bay. It would be impossible to give in a small compass a minute account of the tides of Martha's Vineyard and Nantucket sound. In general it may be said that as far as Holmes' Hole and Wood's Hole they resemble those of Block island sound, and afterwards those of Monomov at the eastern entrance; but this generalization is unsatisfactory without more details than there is space here to give. In these sounds takes place the remarkable change of between three and four hours, the greatest change of our coast, dislocating, as it were, the times of high water at places south and west and east and north of Nantucket. The whole of this change takes place between the eastern entrance of Nantucket sound and the western of Martha's Vineyard, giving rise to quite a complex condition of both tides and currents, which it has occupied much time to unravel. The dominant co-tidal line of our coast, from Block island to Cape Cañaveral, is that of XII hours of Greenwich time; that of our eastern coast, from Nantucket to Passamaquoddy, is, in general, XV hours. Passing out of Nantucket sound. coasters carry nearly the same co-tidal hour to Cape Cod, and thence vary their time about half an hour in passing to Boston, to Portsmouth, to Portland, or to Passamaquoddy. It has long been known that the tidal almanac for Boston might practically be used for eastern ports. Vessels from New York to Halifax, and New York to Europe, which keep outside, and should keep well off the Nantucket shoals, and off George's, as shown by the track on the chart, vary their co-tidal hour but little, keeping between the lines of XII and XII until quite well on their course, and beyond Cape Sable. The same rule will apply to their case as has been given for vessels between New York and a southern port.

APPENDIX No. 15.

Table showing the least water in the channels of certain harbors, rivers, and anchorages on the coasts of the United States; reprinted from the list of 1857 and revised with additions and tidal data.

		LEAST	WATER 1	N CHANN	EL WAY.	
		М	ean.	8prin	g tides.	-
Places.	Limits between which depths are given.	Low water.	High water.	Low water.	High water.	Authorities.
Portland, Maine	*From Poitland light to breakwater From breakwater to end of Munjoy Point From breakwater to anchorage.	Fret. 45 36 30 16	Feet. 53.9 44.9 38.9 24.9	Fect 44.5 35.5 29.5 15.5	Feet. 54.4 45.4 39.4 25.4	C. S., 1850, 1853, and
Portsmouth, N. H	From Fort Constitution to the Narrows	19.5 42 51 45 63	35.9 28.4 50.6 59.6 53.6	26.5 19 41.4 50.4 44.4	36.4 28.9 51.3 60.3 54.3	C. S., 1851.
Newburyport	Off the wharves. Over bar. Over bar. Over bar.	7 7.5 6.5	71.6 14.8 16.1 15.5	62.4 6.6 6.6 5.6	72.3 15.7 16.8 16.4	C. S., 1857.
Annisquam Gloucester Salem, Mass	Channel into southeast harbor Inner harbor channel to abreast Ten Pound Island light Up into inner harbor Northern ship channel, between Baker's and Misery islands	30 31 24 52	38.9 39.9 39.9 61.2	29.1 30.1 23.1 51.3	39.8 40.8 33.8 61.9	C. S., 1854.
Notelly Mass.	Southern ship channel, passing Half-way Rock, Gooseberry and Eagle islands to the northward, and Cat island and Coney island to the southward	28	37.2	27.3	37.9	C. S., 1850 and 1851.
Bouton, Mass	Inside of Salem Neck. Main ship channel, between Lovel's and Gallop's islands Broad sound, south channel President's roads, anchorage. Main ship channel, between Governor's island and Castle	19 28.5 19.5 31.5	28.2 38.5 29.5 41.5	18.3 27.8 18.8 30.8	28.9 39.1 30.1 42.1	C.S., 1846, 1847, 1848, and 1853.
Plymouth	island	18 21 48 14 21	28 31 2 58.2 24.2 34.2	17.3 20 3 47.3 13.3 23.3	28.6 31.7 58.7 24.7 34.7	C. S., 1857.
Narragansett bay to Pru- dence island.	Anchorage in the Cow Yard Entering with Boston Neck on port hand, Beavertail and Dutch island lights on starboard hand, passing between	24	34.2	23.3	34.7)
	Canonicut Point and Hope island. Entering with Beavertail light on the port and Castle Hill on starboard hand, up to Goat island	25 60 33	28.9 63.9	24.6 59.6	29.2 64.2	Com. Wadsworth, 1832.
	Anchorage southward and westward of Goat island	21 31	36.9 24.9 34.9	32.6 20.6 30.6	37,2 25,2 35,2	C. S., 1848.
	To Mount Hope bay, with Cormorant Rock, Sachuest Point on port, and Saughkonnet Point on starboard hand.	42 20	45.9 23.9	41.6 19.6	46.2	
New York	Gedney's channel Swash channel Old South channel Main shin channel, passing Sandy Hock to SW, soit buoy	23 17 21 31	27.8 21.8 25.8 35.8	22.6 16.6 20.6 30.6	26.1 29.1 26.1 36.1	C. S., 1855 and 1856.
Arthur's Kill	Main ship chanuel, after passing SW, spit buoy on NE. course, one mile up the bay for New York. Anchorage at Perth Amboy. From anchorage to Woodbridge wharf From Woodbridge wharf to Rossville.	23 22 22 13.5	27.8 26.9 26.9 18.6	22.6 21.5 21.5 13.0	28.1 27.5 27.5 19.2	C. S , 1855.
Kill van Kull	From Rossville in Chelsea. From Chelsea, in the western channel, to Elizabethport. From Elizabethport to Shooter's island. From Bhooter's island to Bergen Point light-house. From Bergen Point light-house to New Brighton.	14 13 6,5 10 27	19.1 18.1 10.9 14.3 31.3	13.5 12.5 6.0 9.5 96.5	19.7 16.7 11.5 14.9 31.9	
Hudson river	N From Bergen Point light-house to the mouth of Hackensack river. From Castle Garden to Manhattanville.	7 392	11.6 36.0	6.5 31.6	12.2 36.8	C. S., 1855. Do.
	From Manhattanville to Yonkers.* *From Yonkers to Piermont Ferry tf From Piermont Ferry to Bing Sing	27 39 24.5 26 27	30.8 42.6 28.0 29.1 30.1	96.7 38.7 94.3 25.8 96.8	31.3 43.0 28.3 29.8 30.8	Do. C. S., 1853. Do. Do. C. S., 1854.

^{*} The depth in channel way varies between 6 and 84 fathoms.

[†] Two bars, each a quarter of a mile, have a less depth than 18 feet.

A small shoal, with 12 feet, lies in the middle of the kill, opposite the wharf at Blazing Star; and another, with 10 feet, a quarter of a mile to the northward; but deeper water is found on east side of both.

[§] A shoal, of 4 feet, obstructs the eastern channel, half way between Chelsea and its junction with the main channel.

^{||} Channel very narrow in the vicinity of Black beacon.

I From Bergen Point light, half way to Newark Bay light-house, 17 feet may be carried.

^{**} In a straight line.

[#] A shoal of 21.5 feet occurs about a mile below Sing Sing.

APPENDIX No. 15—Continued.

		LEAST	WATER I	N CHANN	EL WAY.	1
		М	lean.	Sprin	g tides.	
Places.	Limits between which depths are given.	Low water.	High water.	Low water.	High water.	Authorities.
Delaware bay	* Main ship channel, passing Delaware breakwater Off Brandywine light house Main ship channel, passing Faise Liston's tree to abreast of	Feet. 61 43	Feet. 64.5 46.5	Feet. 60.4 42.4	Feet, 64.9 46.9	G S from 1840 to
Delaware river	Bombay Hook light Blake's channel, Jong Flogger shoal Blake's channel, passing Manon river light Main ship channel app oaching Liston's Point Main ship channel up to Recedy island Main ship channel up to Recedy island light-house Opposite De-laware City Up to Christiana Greek light Up to Mreus Hook	27 5 13.5 13.5 20 20 24.5 30 20.5	33.4 19.4 19.4 25.9 26 30.5 36 27	27.3 13.3 13.3 19.8 19.6 24.1 29.6 20.3	34.2 20.2 21.2 26.7 26.3 10.8 36.3 27.2 27.2	C. S., from 1840 to
Chesapeake bay	Opposite Cherter Bar off Hog island Between Green wich Point and Gloucester Point From Green wich Point up to Philadelphia From capes at entrance to Hampton koads Anchorage to Hampton Roads From Hampton Roads to Sewall's Point South of Sewall's Point, (one mile and a half) Up to Norfolk	21,5 18,5 31,5 21,5 30 59	30.7 24.7 37.5 27.5 32,5 61.5 27.5 23.5 23.5	24 4 18.4 31.4 21.4 29.8 58 8 24 8 20.8 22.8	31,2 25,2 34,2 26,2 32,8 61,6 27,8 23,8 25,8	1844, inclusive.
Yark river, Va Elizabeth river, Va Hatteras inlet, N. C	From Hampton Roads to James river, entering to the north- ward of Newport News middle ground. From Hampton Roads to James river, entering to the south- ward of Newport News middle ground. From abreast the tall or York spit up to Yorktown. Between Norfolk and navy yard. Entrance. Anchorage in Oliver's channel.	22 27 33 25 5 19 13	24.5 29.5 35.5 28 21 15	21.7 26.7 32.7 25.3 18.9 12.9	24.8 29.8 35.8 28.3 21.1 15.1	1852, 1853, and 1854.
Ocracoke inlet	Over bulkhead into Pamplico cound	7 10	9 12.4	6 9 8.8	9.1) } 1857,
Albemarle sound	Anchorage in Wallico's channel From light-boat off Caroon's Point to a line joining Powell's	19	21.4	18.8	21.6	1657.
North river, N. C	Point and shell bank, near the mouth of Currituck sound. Thence up the sound to Martin's Point. From Maxtin's Point to Tront's Hole, south of Rattlesnake island At entrance, and seven miles up from Albemarle sound Main ship channel Through the Slue. New Intel bar. Western bar	5.5 6.7 15.5 7 8	18 3 9.8 12 5	15.3 6.8 7.5 7.5	18 6 10 1 13 13	1851. 1850. 1854. 1857.
Georgetown, S. C	Anchorage in side of North Island	7 27 9	10.8 30.8 12.6	6.7 26 7 8 7	11.3 31.3 13.1	1851, 1852, and 1853.
Bull's bay	Up to Georgetown Over har At anchorage	13 21	17.8 25.8	12.6 20.6	18 3 26 3	1857.
Charleston, S. C	Main bor. North channel	11 10	16.3 15.3	10.8	17.1 16.1	1857.
North Edisto	Maffit's channel	11	16.3 16.8	10.8 10.5	17 t 17.4	1858. { 1856.
St. Helena sound	Southeast channel South Edisto channel Southeast channel South channel	13 14 10 17	18 8 19 9 15.9 22.9	12.5 13.3 9.3 16.3	19.4 20.7 16.7 21.7	1856 and 1857.
Port Royal	East channel East channel Southeast channel. So th channel	8 16 20 18	13.9 23 27 25	7.3 15.5 19.5 17.5	14.7 23.5 27.5 25.5) 1855 and 1856.
Tybee entrance	Bar near Tybee island	31 31	26 38	18 4 30, 4	26.5 3≺.5	1851 and 1852.
Savannah.	Channel up to city, (Wrecks and Garden Bank)	11	17.5	10.6	18.2	Captain Gilmer, U. S. Engineers.—1856.
Doboy bar, (inlet)	Entrance over bar	15.5 24	22.1 30 6	14.7 23.2	22.5 31	1855.
St. Simon's	Over bur at entrance	17 38	23 8 44 8	16.3 37.3	24.5 45.5) } 1855 and 1856.
St. Mary's	Turtle river up to Blythe island	21 14.5	27.8 20 3	20 3	2H 5 20.7	} } 1855, 1856, and 1857.
St. John's river, Fla	Over bar at entrance.	19 7 - 23	24 9 11.5 25.1	18 5 6 4 22.5	25.2 11.9	{ 1855.
Florida reef	Channel passing up towards Incksonville	20	21.5	19,9	95.5 91.7	, 1
	Cape Froma fight mouse bearing w Bw. 4 the Entrance to the northward of Fowey Rocks; Soldier key bearing 8W. 4 W.	19	20.5	18.9	20.7	1852.
	Entrance to Legaré anchorage	20 26	21.5 27.5	19.9 25.9	21.7) 3
	Channel inside the reefs (Hawk channel) from entrance off Cape Florida light-h use to Rodriguez key	51) J	12.5 22.8	10.9 20.7	12.7 23.1	1854.
	Bahia Honda channel, west point of Bahia Honda bearing N. N. W. Key Sambo channel, between Middle and Western Sambo Inside the reef and steering W. by N. for buoy	18 34 14	19 3 35 3 15.3	17 7 33,7 13.7	19 5 35.5 15.5	

APPENDIX No. 15-Continued.

		LEAST	WATER IN	CHANNE	EL WAY.	
		Me	ea n.	Spring	ı tides.	
Piaces.	Limits between which depths are given.	Low water.	High water.	Low water.	High water.	Authorities.
Cey West	Deem should to unchorage	Feet. 27 30 30	Feet. 28.3 31.3 31.3	Feet. 26.9 29.9 29.9	Feet. 28.5 31.5 31.5	
	East ch innet, entering On course N NW. † W. (light on O'Hara's observatory) and passing between shoals From 14-teet shoals to anchorage. At anchorage Rock Key channel Sand Key channel West channel Northwest channel up to abreast Northwest light.	28 30 27 20 27 30 15	29,3 31,3 28,3 21,3 28,3 31,3 16,3 13,3	97.9 29.9 26.9 19.9 26 9 29 9 14 9 11.9	29.5 31.5 28.5 21.5 24.5 31.5 16.5 13.5	1850 and 1851.
Cortugas	Southwest channel	45 54 19	46.2 55.2 20.4	44 8 53 8 18.8	46.4 55.4 20.6	
Vaccasassa bay	Over bar Channel between Egmont and Passage key	17 8	18.4	16.8 7.7	18 6 10.9	1855. 1857.
Cedar keys,	Main channel Northwest channel over bar, Over bar	9 11 9	11.6 13.6 11.2	8.7 10.7 8.7	11 9 13.9 11.5	1858. 1854.
t. Mark's	Over that Channel at Middle buoy, In mid-chann 'l, off light-house Up to Fort St. Mark's Bast entrance over bar	12 15	14.2 17.2	11.7 14.7	14.5 17.5	1856.
t. George's sound	Main ship channel,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 15.5 14 13	9,2	6.7	9.5	1852.
palachicola	≅wash chaunel. At anchorage *Over bar	19 13 39				1858.
t. Andrew's bay	In mid-channel, off beacon on St. Vincent's island Up to anchorage	10 13	14	12.8	14.3	} }:
ensacola	Swash channel, over bar West Pass, over bar. Over bar	7 7 92.5	8 8 23.5	6.8 6.8 92.3	8.3 8.3 93.8	1855.
	Off wharf at Pensacola	27 21 21	28 22 22	26.8 20.8 20.7	28.3 22.3 22.2	1856.
lobile bay and river	*Over outer bat Main whip channel to Fort Morgan To the upper fleet *Grant's Pass	36 12 6.5	37 13 7.5	35 7 11.7	37.2 13 2 7.8	1847 to 1852, incl sive. 1847.
lississippi sound	Horn Island Pass, over har Anchorage inside Born island	7.5 15 19	8.7 16.2 20.2	6.3 7.9 14.7 18.7	16 5 20.5	1851. 1853.
hip Island harbor	Up to Pascagoula mail wharf *Channel Northwest channel Anchorage, Man-of-war barbor	8 19 19,5	9.2 20.3 20.8	7.7 1⊭.7 19.9	9.5 20.6 21.1	{ 1852 and 1853, } 1848.
at island barbor	"Ship channel	18 16 14	19 3 17.3 15.3	17.7 15.7 13.7	19 6 17.6 15.6	} 1848.
lississippi delta	Shell Bank chafinel Pass & POutre, North channel South channel Over bar, north entrance	15.2 9 5 12	16.5 10.6 13.1	14 9 9.3 11.8	16.8 10 7 13.2	
i i	*Cover bar, north entrance	9.5 9	10.6 10.1	9:3 8:8	10 7	1851 and 1852.
outhwest Pass	*Channel *Channel *Channel *Channel	10 8 13 7.5	11,1 9 1 14 1 8.7	9.8 7.8 12.8 7.2	11.2 9.2 14.2 8.9	1 1000
Pernière or Last island	Grand passage to Independence island	15 27	16 2 28,4	14.7 26.7	18.4 28.8	1859. 1853.
atchafalaya bay	Dernière island. **From entrance to Cut-off Channel buoy On the Narrows	14 8 6.5	15.4 9.6 8 1	13.7 7.6 6.1	15.8 10 0 8.5	1853.
Vermillion bay	On Bulkhead Mouth of Atchafalaya river in mid channel *Over bar	6.5 48 5.5	8.1 49.6 7.4	6.1 47.6 5.3	8.5 50.0 7.6	1855.
	Mount of Atchanga niver in mid channel. In mid-channel off light-house. Entrance over bar Acros the bar	49 5.5	43 6 7.4	41.6 5.3 7.2	44 7 6 9.3	1855. 1853.
Salveston bay	*Entrance over bar	7.5 12 8	13 1 1.0	11.7	13.3 9.3	1853. 1853.
Britzins tiver	*Over bar *E :trance over bar *Arameas Pass	8 9	9.1 10 1	7.8 8.8	93	1858. 1857.

^{*} The highest tides occur at the moon's greatest declination, and are applied in the column headed "spring tides."

APPENDIX No. 15-Continued.

			LEAST	WATER I	CHANN	EL WAY.		
Places.	Limits between which depths are given.		owest of	Sp ing ti en of Me	des, low- day, an.	est of Moon's		Date.
		Low water.	High water.	Low water.	High water.	Low water.	High water.	
San Diego bay	Entrance	Feet. 27.4	Fert. 31.5	Feet 26.8	Feet. 32.1	Feet. 26.3	Fect. 31.8	1851.
	a statute mile. Middle Ground light house, bearing N. 674 W. by compass, distant three-fourths of a statue mile. Midway and nearly in range between Ballast Point and point	18	24.1 22.1	19.4	21.7 22.7	16.9	24.4 22.4	1856. 1856.
San Clamente icland /SE	Abreast of La Plaza, 160 yards from shore	23 18 23	26.1 22.1 27.1	21.4 17.4 22.4	26 7 99.7 27.7	20.9 16 9 21.9	26.4 22.4 27.4	1856. 1856. 1856.
San Clemente island, (SE. end.) San Clemente island, (NW. end)	About midway between NE and SW, points at anchorage in deepest hight, 450 yards from shore	40 36	44.1 40.1	39.4 35.4	44.7 40.7	38.9 34.9	44.4 40 4	1856. 1852.
Missión San Juan Capistrano. Santa Catalina island, (SW. side.)	At anchorage Anchorage in Catalina harbor	4 ² 21	46 1 25,0	41.4 20.5	46.7 25.5	40.9 19 9	46.4 25.1	1853. 1852.
San Fedro Point Duma San Huenaventura San Huenaventura Santa Gruz istand Santa Harbara San Miguel i land Cozo hachor San Luis Obispo San Sum on Monterey harbor Santa Cruz harbor	In range between Point Pedro and half a mile from Dead Man's island. Anchorage. At anchorage half a mile from shore. Anchorage, Prisoner's harbor Anchorage; inside of Krip, 450 yards from shore. Anchorage, Cuyler's harbor Anchorage. Anchorage in harbor. Harbor anchorage Anchorage. Near shore.	18 54 36 75 18 37 30 33 24 42 30	92 0 58.0 40.1 79.1 22.1 41 1 34.1 36.9 27.9 45 9 33.9 30.9	17,5 53,5 35,5 74,5 17,5 36,5 29,5 23,3 41,5 29,5	22.5 58.5 40.9 79.9 22.9 41.9 34.9 37.4 22.4 46.2 34.2	16 9 52.9 35.0 74 0 17 0 36.0 29.0 31.7 22.7 40 9 28.9	22 1 58.1 40.4 79.4 22.4 41.4 34.4 37.1 28.1 45.8 33.8	1852. 1853. 1855. 1852. 1852. 1852. 1852. 1852. 1852.
San Francisco buy San Francisco harbor Mare Island straits Sir Francis Drake's bay	Auchorage Trom 4 lathom hank around to southern shore Anchorage off Kincon Point, 450 yards from shore. Anchorage off Kincon Point, 450 yards from shore. Anchorage off Market Street wharf, San Francisco Off Cunningham's wharf. Off Clark's Point, 450 yards from shore. On the bar At best wharves. In mid channel, between Commission Rock and western shore in mid channel, between navy yard and Vallejo. Inside of br-akers on Duxbury reef, about a mile from shore. Hall a mile inside the point, and 400 yards from shore.	27 28 66 54 36 42 33 20 25 25 24	30.3 70.2 56.2 46.2 46.2 30.5 30.5 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	26.5 27.6 53.6 41.6 32.6 19.6 24.8 24.8 23.6	31.2 39.6 58.6 40.6 46.6 37.6 24.6 30.7 30.7 28.6	25.9 26.9 64.9 52.9 34.9 40.9 18.9 18.9 24.0 24.0 21.9	30.8 32.4 70.4 58.4 40.4 46.4 77.4 24.4 30.3 39.3 28.4 21.4	1852. 1851. 1851. 1851. 1851. 1855. 1855. 1856. 1856. 1853.
Bodega bay	Half a mile inside of reef, at anchorage off point, 900 yards from shore At Haven's anchorage Anchorage at entrance Anchorage inside of point Anchorage 500 yards inside of point On bar, half a mile from shore Main change.	36 48 48 30 22 21 20	40 0 52.5 52.5 34.5 26.5 25.8 24.8	35.4 47.5 47.5 29.5 21.6 20.4 19.4	40.7 52.9 52.9 34.9 26.9 26.4 25.4	34.8 46.8 46.8 28.8 20.8 19.7 18.7	40.4 52.7 52.7 34.7 26.7 26.1 25.1	1853, 1853, 1853, 1853, 1853, 1861,
Crescent City harbor Port Orlord, or Ewing harbor. Umpquah river Columbia river	Auchorage half a mile off Crescent City. Anchorage three-fourths of a mile from Tichenor's Rock, and half a mile from B tyle Rock. On bar, oppo ite mid-channel. North channel to Baker's by. **Entrance into south channel.	21 46 1:1 24 19	26.2 51.7 19.1 30.5 25.5	20,4 45,4 12,4 23,4 18,4	26.9 52.4 19.6 30.9 25.9	19.7 44.7 11.7 22.7 17.7	26.5 52.0 19.3 30.6	1853. 1853. 1853. 1852.
Shoalwater bay	On bar of south channel On bar of south channel North channel	16 18 22.5	22 5 24.5 29	15.4 17.1 21.6	27.9 27.9 25 29.5	14.7 16.4 50.9	25.6 22.6 24.5 29	1853. 1851.
Frenville harbor	South channel. Anchorage three-quarters of a mile inside of Point Grenville, and same distance from shore.	25 22	31.5 28.5	24.1 21 1	39 29	23.4 20.4	31.5 28,5	1853 1854
Ne6-ah harbor	Anchorage a mile inside of Waddah island, and 450 yards from shore	36 54 45 25	42.4 60.4 51.4 31.4	34.8 53.1 41.1 24.4	43.0 60.9 51.7 31.7	34.1 52.2 43.2 23.3	42.5 60.8 51.8 32.2	1851 1853 1855 1854
Belkingham bay Port Townshend Port Luidiow Port Gumbie S-attle Bi tkely harbor *teilacouni harbor Olympia harbor	Anchorage 400 yards southwest of Fizhugh's wharf. Anchorage 400 yards east of custom house. Anchorage dodo Anchorage 450 yards inside of entrance. Anchorage off Steilacoom creek, 400 yards Mid channel, town i‡ mile distant, mission bearing E. NE.	60 18 48 36 18 20 46	67 25 54.4 45.2 27.2 29.2 55.2 30.0 23	59.4 17.4 47.4 37.2 17.9 18.9 45.9 17.0	67.4 25.4 54.7 45.8 27.8 29.8 55.8 30.9	55.1 16.1 46.3 34.2 16.9 18.9 44.2 16.1 9.1	55.2 46.4 2×.4 30.4 56.4 31.7 24.7	1855 1854 1854 1856 1855 1854 1856

^{*} Twenty one feet may be carried in at mean low water by keeping a little northward and westward, nearer the breakers of the middle sands, and, at the turn, hauling up for Cape Disappointment.

APPENDIX No 16.

Table for navigators, showing the variation of the compass for the year 1858, compiled from the general chart of F. J. Evans, R. N.—(See Sketch No. 38.)

TO THE PARTY OF TH	180*	VARIATION OF THE COMPASS.																		
	· 1					130°	120°	110°	100°	90°	80*	70°	60°	50°	40°	30°	20°	10°	0.	UDE.
	· 1								VARIATI	ON OF THE	COMPASS.	Tambilings, general method in many year or a					***************************************			ATIT
				٠		•					0		.				~			<u> </u>
N.	15 B.	201 E.	25 E.	30 E.	334 E.	35 E.			19 E.	7 W.	39 W.	53 W.	561 W.	542 W.	504 W.	45 <u>‡</u> W.	39 W.	31 W.	0	60 N
3	147	191	531	28	30\$	312				0∦ W.	31	451 W.	514	51	48	431	371		24½ W.	ı
١	141	184	924	26	281	29		.,,,,,,,,		2‡ E.	221		464	47	451	411	354	293	233	58
1	134	174	21‡	241	26≩	27‡	251 E.		*******		17	324 W.		431	43	391	-	264	23	56
'	134	17‡	20±	23	25	254	24		 		12	27	3 6‡	403	404	38	34 <u>‡</u> 32 ₄	274 274	22) 21)	54 52
	134	16#	19‡	213	231	231	221				8 W.	291	311	37	901	201				
1	131	16‡	184	20∤	22	221	21	NOR				181	271	331	381	364	311	26}	511	50
	134	16	18	191	201	201	194	AMER	l.			154	241	30	36	341	30	25‡	503	48
	13	154	17‡	181	194	191	181	1		i		13	211	1	331	324	28≱	241	20	46
1	13	151	164	171	181	181	171	1	1		*****	11		274	304	304	271	281	194	44
1	- 1	1	1		7	•	-7.		•••••		•••••	11	181	24#	27≇	281	261	23	19‡	42
1	13	142	16	164	171	171	162				A1 173		10.							į
- [194	144	151	16	161	16	154	Ì		1	0} E.	1	161	2?}	25≩	27	254	551	183	40
- [12#	141	141	15	151	15 <u>}</u>	142			1	1	73	141	201	24‡	254	241	22	174	38
-	121	14	14	141	144	141	132	ł	·****	0	11	6	19}	181	224	241	24	211	17 <u>‡</u> W.	.36
-	194	134	131	131	134	131	, .	13½ E.	}	8 E	2.	41	11	16)	21	23 1	234	21		34
1				101	104	13‡	154	124	••••	7‡	24	3‡	9‡	14	191	751	221	201	,	32
- [194	13	191	121	12 <u>‡</u>	121	12	111	101 E	773	31	21			1					
- 1	124	121	111	114	114	111	111	11	10	72	4		74	13	17#	214	214	20		1
- [12	112	11	104	104	11.2	104	101	i	7.3		1 W.	6)	11#	16	201	21	192		28
-	114	114	101	10	11	10	10	93	91	71	44	0	514	164	14#	19‡	201		 .	26
-	111	101	94	91	91	91	91	91	9	74	44	1 E.	4	9	134	18#	20		 .	24
1			- 1	••	97	••	34	37	83	71	51	2	3	8	151	17‡	194	AFR	ICA.	22
,	111	10	91	82	81	87	81	81	81	71	51	24	14	7	111	361	194			00
1	10#	92	9	81	72	71	74	87	81	71	51	3	02 W.	6	104	161	-	1		20
1	104	91	83	8	7	7	71	71	81	71	6	34	01 E	5	, ,	15#	19			18
	10	91	81	71	62	61	7	71	8	71	61	31	1	1	. 10	15	19		*********	16
	84	84	8‡	74	6#	64	61	7#	7#	74	61	41	14	4 <u>1</u> 3 <u>1</u>	8‡ 9‡	14 1 14	18 <u>1</u> 18 <u>1</u>	1		14 12
	94	87	81	71	61	6	6	71	7.						1		•			
	94	94	8	7		i	1	71	73	8	6‡	41	21	21	8	1'4	18	19∦ W.		10
1	94	9	8	7	6‡ 6	5 <u>1</u>	53	5	73	81	7	5 E.	24	21	7#	137	172	19‡	193 W.	8
١	91		. 8	7		51	51	7	72	84	71	*****	2‡ E	14	74	13	173	194	201	6
N.	91 E.	9 E.	8 m .	7 B.	6 51 E.	5 5 E.	5½ 5½ R.	7 71€.	7≱ 8 K.	8≩ 9 €.	8 81 B.			14	7	124	174	20	201	4

									WES	T LONG!	TUDE.									
	180•	170°	160*	150°	140*	130°	120°	110°	100°	90°	80°	70°	60°	50*	40°	30°	20°	10°	0•	T. ATTITETAGE
					···				VARIAT	ON OF THE	COMPASS.									1.1.4
	9‡ E.	9 E.	8 E.	7 E.	5∦ E.	4 1 E	。 5 E.	6₽ E.	• 8 E.	91 E	81 E.	•		0≩ ₩.	61 W.	121 W	17∦W.	21 W	331 M	
8	94	9	8	7	5≇	4#	5	67	8‡	91	9	}		0‡	6‡	121	174	214	221	
1	94	9	. 8	7	51	5	51-	69	81	10	9‡		1	0	6‡	121	172	214	231	
1	91	9	8	7	8	5	5 <u>ł</u>	7	64	10‡	10		sou	тн		12	18	22	234	1
Ì	81	9	8	7	6 1	51	5#	7	9	10#	101		AMER	ICA.		113	18	221	21	
	8‡	9	8	71	Вŧ	5₽	6	71	9 ‡	11	10‡				51 W	111	18	22∤	241	
I	9‡	9	8‡	72	64	6	6‡	7 <u>k</u>	93	111	111] .	5	111	17∦	22‡	24#	ļ
	10	9	61	71	ñ <u>ł</u>	6‡	64	72	10	111	112	10 E.			47	11	171	221	25	1
1	10	9‡ 9‡	8‡ 6‡	71	6≱ 7	6 <u>1</u>	6≱ 7	8	101	12	12‡	101	****		41	107	17	551	25‡	
	."	2.1	જ	7≹	'	0.2	•	81	10₽	124	124	10≇			4	101	163	551	251	
l	101	81	8‡	7≱	71	7	71	8	11	121	131	111		2½ E	31	10	16 <u>‡</u>	5 5‡	252	1
1	10	91	. 8 1	8	71	7‡	71	9	114	13	13‡	12		21	31	91	15#	214	251	
1	104	91	4 9	81	71	71	7.	91	11‡	131	14}	15‡		3	27	9	151	211	25≱	
1	11	8\$	9	84	7#	7	8	93	12	14	14\$	13‡		34	9‡	61	15	211	251	
	L1#	101	9}	B≩	8	8	87	10	12‡	141	151	14		4	12	8	141	203	254	
١	19	101	94	82	81	8	82	104	127	15	16	144	104 E.	41	11	71	131	20	25	
l	124	11	9‡	9	81	81	9	101	13	151	161	15	102	5}	OW.	7	134	194	2 1	1
	13	114	10	9	84	8#	91	11	131	161	171	151	111	52	0	64	129	18‡	241	
١	131	111	10‡	94	9	9	93	111	14	16≩	172	16	121	61	O E	53	12	184	2 4	
Ì	14	12‡	10#	9‡	9 1	a i	10	12	141	174	18‡	161	122	71	11	5	111	174	234	
	144	12#	1'}	10	92	91	104	12‡	151	18‡	19‡	17‡	131	8	12	41	102	16≇	221	
I	154	134	114	104	10	10	11	13	16	19	193	17#	14	84	5‡	34	104	16‡	22	
1	154	14	124	11	101	10‡	111	131	16‡	20	2;;₹	18‡	144	91	34	3	91	151	311	
1	16	141	194	114	11	11	12	14‡	174	20}	211	191	151	104	41	21	8	144	201	
	164	151	131	12	114	114	12‡	15	161	211	22	20	16	111	5	14	72	131	19≩	
1	171	154	14	124	12	12‡	131	16	19‡	2?1	224	201	164	117	6	1 W.	7	13	19	
1	17#	161	144	131	12‡	154	14	17	201	231	23}	211	174	124	7	0	6	121	18	
1	181	16#	154	14	134	13‡	15	18‡	24	24}	241	221	18‡	13‡	8	1 E	51	j ž	17	
}	18‡	171	18	15	14}	141	16	19≩	234	25	251	531	19‡	14	83	2	41	101	16‡	
. 1	20	181	17	16	151	15#	171	211	24‡	561	261	241	21	151	94	34	31	97	151	
3.	214 E.	19½ E.	18 <u>‡</u> E	17# E	17 E	17₄ E.	19 <u>‡</u> €.	274 E.	26∤ E.	27 F E	27∦ E.	254 €	21 € E	16} E.	102 E.	4 IC.	3 W.	9 W.	15 W.	·

APPENDIX No. 16-Continued.

									EAST	LONGIT	UDE.									
•	0*	10°	30°	30°	4U°	50°	60°	70°	80°	90°	100*	110°	130°	130°	1100	150°	160°	170°	1800	E
-		<u>'</u>			·				VARIATIO:	N OF THE (COMPASS.	<u> </u>			<u></u>]			! <u>!</u>		LATITUDE.
- -	ь	1 .												.			•			
1	24 W.	17# W.	11 W	5 W.										····	3 W.	Ű	5∮ E.	161 E	151 E	60
	231	171	11	5‡ W											3‡	04 W	42	10	143	58
1	23	17	11			 									31	01	4₺	9#	14‡	56
İ	331	161	11 W.					- -			·				31	03	41	91	133	54
	813	16‡W.						. 	****						3‡	0.9	41	91	131	59
			B 77.0	OPE.				ļ				1		1	a.					
ı	211	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ſ	(2 W.	11 F	4.5	i	A.	IA.					31	04	4	83	13‡	50
l	501	181 997	.,,,,,,,,,	53 W.]	1	******	l	l				£1552	31	03	41	84	133	48
1	20	15 <u>1</u> ₩.	1	1 -	21		4	•••••		1			•••••	5¼₩.	3‡	01,₩.	44	9	134	48
l	191	15‡	10 ‡₩ .	1	21	04 E.	1 .		****		•••••	1		42	31	0	5	94	13	44
	191	15	104	6‡	24	6	2; E		••••	• • • • • • • • • • • • • • • • • • • •			31 W.	41	3	0	51	10	13	45
l	184	119	104	61	21	0+W				. 			3	4	24	0 <u>1</u> E.	5∦	10	13	40
	171	144	11.3	61	3 W.	04							21	34	21	04	5 1	10	194	38
١	17 <u>1</u> W	14)	104	64		1 W	[21	34	21	03	5 1	101	124	36
1		144	11	64		1	1				Į.	1	2	31	24	12	6	101	124	31
1		143 W.	ii	7		1₊W.	1						12	21	12	12	6 <u>‡</u>	101	124	32
	ĺ					•							1		•	•	•			-
١.,		,	11 ₩.	7 <u>‡</u> ₩.		14	0} W		ļ. 				11	21	14	9	61	10‡	121	30
١.				•••••		14	01		 				1	2	1‡	21	61	101	191	58
Į.,						12	0.3	••••		2} E.			0.2	12	01	57	6‡	101	12	26
١.,						9	1	0 <u>1</u> €.		21		11 E	64	14	01 W .	3	64	104	114	24
١		AFR	ICA.		47W.	5 [†] M	1	0		2.∔		11	01	1‡	0	31	6‡	104	114	23
				}	5		1 ,,	0	1 <u>1</u> E.	21		14	0±W.		01 E	ા	7	101	111	20
1	••••	*******	l.		5	23W	11/1	0	1 1	2		13	0	03	01	34	7	101	104	18
ì.	********				51	3	11	0	i	2	21 E	12	0} E	01	1	4	71	107	101	16
1	•••••	,	i .]	54	3	11	0}₩.	1	ءُ ا	21 2	12	0 ±	01 W.	14	4	17 71	91	10	14
1			ł		51 W.	1	14	0 <u>1</u>	01	11	21	14	01	0	1 4 14	41 41	7±	8‡	94	12
1	•••••	.,			3211.	33	7.8	**	"	14	27	17	\	"	1#	71	18	24	24	1,3
١.,	. 			}] 	34	1.2	01	02	11	2	1.	01	01 E	2	44	71	91	9‡	10
1	191W	18 W				31	12	01	04	11	2	11	07	01	21	42	72	91	91	1
1	204	19				4	2	0.	04	11	12	11	01	1	21	5	73	94	91	
1	203	194	\			41	21	04	01 E	11	14	11	i	i	21	5	72	91	91	1 4
1	21£W.		 	j .	1	41.000	_	1 W.		ı E.		1	I E.	12 16.	3 E.		8 E.	9} E.	94 E	

									EAST	LONGITU	DE.						•			
	0°	10°	20°	30*	40°	50*	60°	70*	80°	90•	100°	110°	120°	130°	140°	150*	160°	17 0°	180°	-
									VARIATION	OF THE CO	MPASS.									
-	•	•		•	•		23 W.	0		0. 5	4		1 E.	14 E.	3 E.	54 E	8 E.	9 <u>1</u> E.	9 <u>1</u> E	
	22‡W.	211W.			8 W.	41W. 5	3	1½₩. 1≟	01W.	0∦ B.	1 <u>1</u> E.	11 E	1 1.	1 E.	3 <u>1</u>	51	8 <u>1</u>	9 <u>‡</u> n.	9 <u>}</u>	"[
8.	221	221	•••••		87 8¶	54	31	12	04 4.	01 01	1	1	01)#]#	31	54	81	94	91	
	2:1	23 231			10	6	31	2	04	0) E.	03	0.3	01	14	31	6	61	91	91	1
	23 1 24	23			11	6≱	4	21	17	01 W.	0‡ E.	0‡ E	U≱ E.	11	37	61	£.	9 1	91	
	241	241			12	71	44	24	14	01	0	0	0	11	4	61	81	8 1	81	
	241	25 <u>‡</u>		1	13	81	5	34	2	1	0≱₩.	0 ‡ ₩,	07.M	11	4	61	63	93	6	1
1	25	253			14	8}	52	33	21	12) }	1	θį	1}	41	7	8 3	93	9≱	1
	251	26‡			15 <u>‡</u>	101	64	41	3	51	2	11	03	11	41	71	9	10	10	1
	251	264			161	114	71	51	31	3	23	2	1	1‡ E	41 €.	71	81	101	10	
	253	27			17#	13	82	6∄	41	4}	31	21	11			72	93	101	101	
1	25	271			19	141	10	71	6‡	51	41	3	1 ⁷ M			8	10	102	101	Ì
1	25≱	274			301	15#	113	₽₽	71	7	54	31	AUST	RALIA.	******	₽ <u>}</u>	101	113	104	1
	254	28			214	17	127	10½	9‡	81	71	41		· · · • • • • • • • · • · • · • · • · •	•••••	€ [‡] E	102	112	11	1
	3:¥	28		26‡W.	22	184	15	111	103	10	8	5≩	******				11	124	113	
ļ	25	28	291W.	271	811	20	161	134	15‡	14	10	64	3 <u>‡</u> ₩.	6f E	I		114	164	12	1
ı	24#	28	291	381	254	2:∦	18	154	134	13‡	11‡	8	34	01	52 €.	91 E.	15	13	121	1
	24}	273	291	29‡	26≱	537	192	171	15≩	15	123	9	41	01 E	6	93	121	134	13	İ
	231	271	30	294	28	25	201	19	174	161	141	10	51	0	6	10‡	123	14	131	
	231	274	30‡	30‡	29	26‡	531	201	19	174	154	11	51	0 ‡ ₩	6	10‡	13‡	141	14	
	851	271	301	311	30	27#	254	221	21	191	164	12	6‡	0#	6‡	10≇	131	14#	141	
-	22	27	301	311	31	29	261	241	23	21	17#	13	7	02	6‡	11)	14	151	151	1
	214	261	30	32}	32	30‡	28}	564	25‡	231	19‡	14‡	74	11	61	111	141	15‡	151	
1	201	26	30	324	33	314	30	381	271	25#	211	154	8‡	13	6‡	19	142	164	16	
	192	251	294	32‡	334	33	311	30	291	281	531	17‡	9‡	ฎ	61	15‡	151	163	161	1
1	19	213	294	33	341	341	33.	351	32	301	264	19	101	21	e‡	124	15‡	171 181	17 <u>‡</u> 17‡	-
	18	24	591	33	35‡	354	35	35	35	334	29	214 234	12	3	6 <u>‡</u>	13 1 131	16 <u>1</u> 171	19	181	
	17	231	29	33	352	381	362	371	37∦ 40	364	31‡ 34‡	26	14 W	31 41	6 6‡	141	18	20	19 <u>‡</u>	
	16}	221	281	33	36‡	37‡	38‡ 40	391		391	34	281W.	*****	78 51	6	141	191	21	20	1
	154	211	27#	33	36 <u>‡</u>	38‡ 39 W.	40 42; W.	42‡ 45 W.	431 47 W.	42₹ 46 ₩.	42 W.	- 1	********	61 W.	6 E.	141 E	21 E.	22 E.	2!} E.	J
8	15 W.	21 W.	271W.	33 W .	354W	. ויוישני	423 11 .	40 11	नार १४.	40 17.	74 11	,,,,,,,,,	*********	0.444.	l "".	****	~			

APPENDIX No. 17.

Report of Capt. W. R. Palmer, U. S. Topographical Engineers, Assistant Coast Survey in charge of the office, and sub-reports of the chiefs of office divisions.

COAST SURVEY OFFICE, October 1, 1859.

DEAR SIR: In conformity with the instructions of the Superintendent, I have the honor to submit herewith the usual annual reports of the chiefs of the different divisions of the Coast Survey office. These reports narrate with critical exactness the amount of work executed in this office since my first report, dated one year ago.

It will doubtless be apparent to the Superintendent, from a close examination of these reports, that the quantity of work done has been so great that it could only have been accomplished by steady industry and attention to duty on the part of those engaged in it.

The character of the work and the execution of the finished maps, in my judgment, merit high praise; yet the loss of some three or more able assistants during the past year is severely felt by this office; industry, zeal, and intelligence on the part of those who have succeeded to their duties will soon, I hope, enable them to thoroughly fill the places of their predecessors.

Three officers of the army, viz: First Lieut. J. C. Tidball, 2d artillery, First Lieut. R. Saxton, 4th artillery, and First Lieut. J. P. Roy, 2d infantry, have been detached from duty within the past year, and two officers only, viz: First Lieut. J. R. Smead, 2d artillery, and First Lieut. Thomas Wilson, 5th infantry, have been assigned to duty here.

I shall now refer to the different divisions of this office in their order of precedence, commencing with the—

Computing Division.—This division, the varied labors of which includes all the computations and comparisons necessary in the primary, secondary, and tertiary triangulations, the astronomical, chronometric, and magnetic observations, measurements of bases, and, in addition, many incidental calculations, remains under the charge of its experienced chief, Assistant C. A. Schott.

One of the computers (Mr. J. Wiessner) resigned on the 1st of April last, to join one of the western exploring expeditions. The report herewith submitted will furnish the Superintendent with the details of occupation of his six assistants and himself during the past year.

Tidal Division.—The tidal division is under the charge of Assistant L. F. Pourtales, who is assisted by five regular computers, and such "aids" as may be available from time to time in the intervals of their field service; their names and occupation are given in the annexed report of the chief of the division. In addition to the regular duties of this division, in reducing and furnishing to the office the requisite tidal data for our charts, it has other special occupations under the immediate direction of the Superintendent, as will be seen by reference to Appendix No. 27.

Drawing Division.—This division, First Lieutenant J. C. Tidball, 2d artillery, in charge until 30th of June last, has not only promptly executed the various demands that have been constantly made upon it, in the projecting, upon the sheets required by the parties in the field, of the astronomical and trigonometrical points, in the furnishing of many tracings for the different departments and bureaux of the government, for office use, for public corporations, and for

many private citizens, (these latter tracings being given only with the sanction of the honorable Secretary of the Treasury,) but has also with a reduced force gained a further advance upon the engraving. In the language of First Lieutenant T. Wilson, 5th infantry, who, three months since, succeeded to the charge of this division, "Confidence is felt in its ability to meet in a prompt and satisfactory manner every demand that can be made upon it."

The Superintendent will doubtless concur with me in the expression of regret which all who have been associated with him feel at the loss to this office of the services of First Lieutenant J. C. Tidball, 2d artillery. He received orders to join his regiment on the 12th of August last, thus dissolving his connection with this work.

Lieut. Wilson's report, hereto annexed, and the lists accompanying it, will acquaint the Superintendent with the progress of the division, and the special occupation of each of the draughtsmen during the past year.

Engraving Division.—The division of the Coast Survey office to which I deem it my duty most particularly to invite the attention of the Superintendent at the present time is that of the engraving, which, notwithstanding the increase in force in various grades of engravers a few years since, is hardly at the present time able to keep up with the Drawing Division. A thorough study of the details of this subject will, no doubt, enable us to apply the remedy. As you have this subject under special consideration, I do not deem it necessary at present to enlarge upon it.

The charge of this division for the first half of the year continued with First Lieut. Rufus Saxton, U. S. A., when his detail by the War Department for duty at the United States Military Academy, at West Point, deprived this office of his valuable services.

During the past six months Mr. Edward Wharton succeeded to the duties of Lieut. Saxton. His zeal and industry merit my commendation.

Electrotype Division.—Under the direction of Mr. George Mathiot, chief electrotypist, assisted by Mr. D. Hinkle, this division has made during the present year eighty-seven copies of engraved plates, eighty-three being for the use of this office and four for other departments of the government, thus preserving unimpaired our original or standard plates, and using, in lieu of them, the electrotypes for printing.

I had the honor to state, in my previous report, that increased success had followed the experiments in photography, especially with a view to its use in the preparation of the reductions from the original plane-table sheets, and I have now the satisfaction of stating that, to a great extent, these reductions have proved successful. I would instance that of coast chart No. 29, from Green Run inlet to Little Machipongo inlet, Virginia, a proof of which was submitted to the Superintendent on the 28th of July last, after having been engraved from the photographic reduction. I have examined with care the criticisms of both the Drawing and Engraving Divisions upon it; it has been pronounced accurate. The cost of this reduction did not exceed one-fourth the cost of making the same reduction by hand.

The report of the chief electrotypist, hereto appended, promises additional results by the use of photography in other branches of the survey.

Archives and Library.—The arrangement for the archives continues unchanged. The very limited space remaining for the records of the survey at the date of the last annual report is being rapidly filled, and great inconvenience is felt from the want of sufficient room for the proper disposal of those turned in from day to day, from the various field and hydrographic parties. There have been added to the library, during the calendar year 1859, one hundred and sixteen volumes, of which fifty were presented to the survey from home departments and institutions, and from those of foreign governments.

Miscellaneous division.—As stated in my last annual report the miscellaneous division, consisting of the printing and distribution of maps, charts, and Coast Survey Reports, had only then been organized less than a year and had improved upon its previous separate working. The experience of the year exhibits a large advancement upon the results then stated, without an increase in the number of its employés. The number of impressions from Coast Survey maps, charts, and sketches printed, amounting to over fifteen thousand, including proofs for distribution, quarterly records, &c., against near twelve thousand of the previous year. With this increase, still, the number of impressions taken is scarcely up to the demand made upon the office by our sale agents and for the distribution to libraries and other institutions authorized by the Treasury Department, which amounted in the last year to far more than double the number distributed in the previous year, including seven thousand eight hundred impressions of thirteen charts, sent to the principal departments of the government to foreign institutions, &c., and to certain libraries and other public depositories designated by members of the House of Representatives in their respective districts throughout the entire country.

The distribution of the Superintendent's Annual Report for 1857, from the time of its reception from the congressional binders, was made in less time than in any previous year. The annual report for the past year, it is confidently hoped, will be ready for distribution by the commencement of the coming session of Congress. It will, doubtless, be a source of much regret to those who have heretofore received the results of the operations of the Coast Survey in this form, that the number of extra copies ordered by Congress was reduced to five thousand from the twenty thousand, heretofore distributed by members of Congress direct to their constituents, and from this office to foreign governments and institutions, the libraries of our vessels-of-war, of colleges, and scientific institutions, and to individuals interested in science, commerce, and navigation throughout the Union.

This division is under the charge of First Lieut. J. R. Smead, U. S. A., who, in June last, relieved his predecessor, First Lieut. J. P. Roy, U. S. A., the valuable services of the latter having been called for by the War Department.

I would respectfully call the attention of the Superintendent to the details of work as reported by Lieut. Smead, which is hereto submitted.

Carpentry.—The carpenters' work necessary for the use and transportation of instruments for the surveying parties has been at all times during the year promptly executed. There have been made twelve new stands and thirty-three fine cases for instruments; twenty-six drawing and plane-table boards; seven large cases for books, maps, and copper-plates; five large vats, and eighteen frames for electrotype and photograph purposes; patterns for castings, and one hundred and forty-three packing boxes; the wood-work for two self-registering tide-gauges, and new instruments for magnetic observations; a machine for winding sounding-lines, and a vibrating stand for comparing base rods. All the instruments sent to and returned from the field parties have been packed and unpacked, and repairs made where needed; fifty tin tubes

for filing original maps and charts have been painted and numbered, and the requisite repairs and additions made to the Coast Survey buildings.

The work of the carpenter's shop is executed by Mr. A. Yeatman, master carpenter, assisted by one carpenter and one apprentice.

Instrument Shop.—The instruments made during the year are twenty-eight geodetic, three astronomical, sixteen magnetic and telegraphic, twenty-two telegraphic, ten hydrographic, twelve drawing, sixty-two engraving, and nineteen miscellaneous. Repairs have been made upon sixty-seven geodetic, five astronomical, six magnetic and telegraphic, ninety-six topographic, sixty hydrographic, thirty-five drawing and engraving, and three miscellaneous instruments. The force employed consists of Mr. J. Vierbuchen, master instrument maker, whose services and management are satisfactory, and five instrument makers.

I would express my acknowledgments to Commander S. S. Lee, U. S. N., who has recently been assigned to the charge of the Hydrographic Division of this office; to Prof. W. P. Trowbridge, assistant in the Coast Survey; Samuel Hein, esq., general disbursing agent, and Joseph Saxton, esq., assistant to the superintendent of weights and measures, for their prompt and cheerful co-operation with, and aid rendered to, the office on all subjects pertaining to their respective duties.

First Lieut. A. P. Hill, 1st artillery, U. S. A., still acts as general assistant; his merits are so well known to the Superintendent that it is superfluous for me to enlarge upon them.

In concluding this report I would add that the chief clerk in my office, A. W. Russell, esq., performs his duties with characteristic industry and ability. I shall, from a sense of duty, in a separate communication, strongly recommend an increase to the compensation of one or more of the gentlemen comprising the clerical force of this office, in order that they may be placed more nearly upon an equality, as to pay, with those of no higher grade or merit in the other departments and bureaux of the government.

I have the honor to be, very respectfully, your obedient servant,

W. R. PALMER,

Capt. Topl. Engineers, Assist. C. S., in charge of office.

Prof. A. D. BACHE,

Superintendent U. S. Coast Survey.

Report of Assistant Charles A. Schott, in charge of the Computing Division.

COAST SURVEY OFFICE, October 1, 1859.

In conformity with the regulations of the office, the usual annual report on the occupation of the several computers for the year ending October 1, 1859, is herewith respectfully submitted.

During a part of the year the number of computers was less than in the previous year. Mr. J. Wiessner resigned his position in this division on the 1st of April, to join one of the western wagon-road expeditions. The somewhat contracted state of the records received in the first half of the year permitted to continue the reductions of the current work without filling the place vacated by Mr. Wiessner, although it necessitated an increase of, and close attention to, duty on the part of the computers in general.

During the month of July, in accordance with instructions received from the Superintendent,

I was engaged on a magnetic survey, extending to Sections I and II; these observations were partly reduced by myself, and fully discussed in regard to the secular change of the magnetic declination, on which subject a report at some length was submitted in answer to a call from the Superintendent. The least square reduction of the primary triangulation between Kent Island and Washington was considerably advanced by me and reported on. The ordinary routine business of the office has all been attended to; it comprises principally the furnishing of geographical positions to topographical and hydrographic parties, and the examinations and reports of all computations, discussions, and revisions, either geodetic, astronomical, or magnetic.

The general distribution of the reductions has remained the same as in last year. The following statement contains in detail the amount of work done by each computer during the year ending October 1.

Assistant Theodore W. Werner computed the triangulation between St. Helena and Calibogue sounds, Section V; reduced Assistant Gerdes' triangulation on the Mississippi delta; made out a least square abstract of horizontal angles at station Humpback, Section I; reduced and computed rectangular co-ordinates of the Charlotte harbor triangulation, Section VI. He also computed the triangulation of the Gulf of Georgia, Washington Territory; made a second calculation of the astronomical latitude of yard, Section II; reduced the triangulations of Chandeleur sound, Section VIII, and near the mouth of the Potomac, Section III; also the triangulation connecting St. George's and St. Mark's, Section VII, computing new L. M. Z. for the whole work; the reduction of the triangulation between Sapelo and St. Simon's, Section V, 1858—'59, completes the work.

Mr. Eugene Nulty computed the astronomical latitude of Pensacola and Warrington, Section VII; of Lower Mississippi, Section VIII, and the azimuth of Plantation Hill and Warrington, Section VII. and of Humpback, Section I; also, the latitude of Humpback, Rutherford Observatory, N. Y., and of New Orleans. He also made a second reduction of the Seaton latitude, and reduced time and azimuth, and the latitude at station Smithville, N. C.

Mr. James Main made the revision of the two independent computations of the following astronomical work: The azimuths at Santa Cruz, Section X; at Allston and New Cut, Section V, and of Plantation hill, Section VII; the latitudes at Allston, Breach inlet, East Base, and Savannah, in Section V; of Pensacola and Warrington, in Section VII; of Thomas' hill, Bangor, and Humpback, in Section 1; of New York city and Washington city. He also revised the magnetic reductions at Humpback and Mississippi city, computed the magnetic constants for magnet C. 6, and made a reduction of my magnetic observations in July last.

Dr. Gottlieb Rumpf attended to the revision and insertion of the geographical positions in the registers; made the second least square reduction of the horizontal angles at stations Hill, Causten, and Seminary, Section III; made a second reduction of the James river triangulation of 1857, revised the reduction of the Mississippi delta triangulation, reduced the triangulation of Tomales bay and Petaluma creek, Section X, and of Sub-Assistant Harris' triangulation in the vicinity of New Orleans. He also made a least square abstract of the horizontal angles of the primary triangulations in Section V, and assisted in the reduction of vertical angles for elevations in Section I. He also reduced Assistant Blunt's work on the Hudson river, completing the triangulation up to Hudson City; assisted me in the discussion of the secular change of the magnetic declination, and in the preparation of the list of geographical positions printed in this year's report.

Mr. John Weissner computed the triangulation of Sheepscot river, Section I, and assisted in

the discussion of some magnetic reductions; he also supplied the L. M. Z. to the observers' computation of the Tomales bay triangulation, assisted in the least square reduction of the primary triangulation near Washington, and in the computation of L. M. Z. to the triangulation near New Orleans. He completed the reduction of vertical angles for heights in the vicinity of the Sheepscot river, 1855-'57, and reduced vertical angles at stations Saunders, Sebattis, and Ragged, of the primary series. Mr. Wiessner's resignation took effect on the first of April last.

Mr. William D. Storke assisted in the reduction of horizontal angles at Humpback, Section I; reduced the triangulation on Pensacola bay, 1858, and of Sub-Assistant Bagwell's triangulation south of the Cedar Keys; computed the triangulation of Assistant Bolles', south and west of Cape Fear river entrance, 1855 to 1858; made himself acquainted with the reduction of transit observations, and assisted in the preparation of geographical positions for the present report. He also reduced the horizontal angles at Smithville, N. C., in connection with the astronomical azimuth; assisted Mr. Rumpf in the L. M. Z. computations on Hudson river triangulation, and also assisted in the preparation of the statistical table for this year.

Mr. John T. Hoover attended to the clerical duties of the division, and principally assisted in the preparation of the geographical positions for the 1859 report, duplicating and revising the same. He also made a number of diagrams.

R. Freeman supplied the extra copying required for field or office.

Report of Assistant L. F. Pourtales, in charge of Tidal Division.

COAST SURVEY OFFICE, November 1, 1859.

The following report on the occupation of the computers in this division during the past year is respectfully submitted:

- Mr. R. S. Avery has finished the discussion of the nine years' series of tidal observations at Boston, and has made comparisons of twelve years' observations with the predictions made by means of the coefficients obtained. He has also prepared ephemerides for future years.
- Mr. S. Walker has examined and registered the observations received from the tidal stations, and has had charge of the correspondence with the observers. He has also read off the sheets of the self-registering tide-gauges, and supervised the gauge established at the navy yard in this city, besides making miscellaneous computations.
- Mr. John Downes has made graphical decompositions of the tidal curves of the Florida stations, and reductions and comparisons of the results obtained.
- Sub-Assistant C. Fendall was attached temporarily to this division from April 11 to June 16, and made decompositions of the tidal curves from the Florida reef, and worked out the diurnal inequality for some of the same.
- Mr. J. Gilliss was engaged from November 26 to January 17 in making ordinary reductions, working out daily inequalities, drawing diagrams, and miscellaneous work.
- Mr. R. E. Evans joined the division May 25, and has since been engaged on ordinary reductions, diagrams, and decompositions of tidal curves.
- Messrs. J. Donegan, O. Henrich, and T. C. Bowie were engaged for short periods, in the intervals of their field duties, in miscellaneous work, chiefly ordinary reductions of tides.

Mr. A. W. King made, during part of the year, ordinary first and second reductions by contract.

The meteorological observations of the Pacific coast have continued to be discussed by *M. Thomas*, who has also done miscellaneous work and copying.

Most of the reductions of the observations of the permanent stations were made by S. D. Pendleton.

Report of Lieut. Thomas Wilson, U. S. A., assistant in charge of the Drawing Division.

COAST SURVEY OFFICE, November 1, 1859.

Pursuant to instructions, the following report is respectfully submitted of the operations of the drawing division of the United States Coast Survey office during the past official year, under the supervision of my able predecessor, Licut. J. C. Tidball, U. S. A., until the 30th of June last, and since then in the charge of the undersigned.

During this time I have had the benefit of the assistance of Mr. G. A. Porterfield, whose experience in the office of several years has been successfully given to further the best interests of the division.

It is a material and gratifying fact that the division has been equal to the demands upon it by the extensive operations of the field and affoat, and the work is marked with great accuracy and superior professional ability and elegance.

* * * * * * * * * *

Below are presented the details of the duties and labors of the several draughtsmen employed. This outline of the past year's labors of this division furnishes some idea of its ability for promptly realizing in form and presenting in tangible shape the topographical and hydrographical results of the active service in the field and afloat.

As an incident to the draughting duties proper, yet of no ordinary importance, is the exact and methodical arrangement of the returns of the field service and other archives on which our maps and charts are founded. This arrangement is kept up with punctilious attention, and in such a manner that now and hereafter the maps and charts produced can be brought to the immediate test as to accuracy of the original data upon which they are founded, or renewed in the future, should every vestige of our present labors disappear by time or circumstance. It is proper also to report that not only have we kept pace with the field service, furnished projections to field parties, made projections on copper, and attended to these and other miscellaneous duties, legitimate but incidental, yet also are we still in advance of the engraving division, as, indeed, our system requires; so that not a moment is lost, nor the least delay possible, in its receiving from our hands a constant and abundant supply of material. For the purpose of presenting this fact more practically to the Superintendent, the paper marked A has been prepared, that he may see at a glance how the work on the projects in the drawing division stands with regard to its engraving.

It is a gratifying fact, too, that in co-operating with the purposes of a just and prudential economy of the Superintendent, we have been able to realize his wishes in a reduction of three during the past year; and with our present reduced force, looking to its efficacy, zeal, and

energy, we feel confident in an ability promptly and satisfactorily to meet every demand that may be made upon this division of the United States Coast Survey Office.

Assistant W. M. C. Fairfax has been employed upon the reduction of topography of coast maps and charts No. 7, from Muscongus bay to Portland harbor, Me., scale $\frac{1}{800000}$; No. 10, from Ipswich harbor to Green's harbor, Mass., $\frac{1}{800000}$: No. 11, from Plymouth harbor to Hyannis harbor, Mass., $\frac{1}{800000}$; Nos. 35 and 36, Chesapeake bay, from Pocomoke sound to entrance, Md. and Va., $\frac{1}{8000000}$; and No. 53, from Stono inlet to Fripp's inlet, S. C., $\frac{1}{8000000}$.

- Mr. A. Boschke has been employed upon projects for maps and charts according to the general plan adopted for the entire coast.
- Mr. A. Lindenkohl has reduced the reconnaissance of the coast of Texas, from Matagorda Bay entrance to Aransas pass, $\frac{1}{200000}$; has made additions to Alden's reconnaissance of the western coast, $\frac{1}{12000000}$, and has been employed upon Cape Fear River entrances, N. C. comparative charts, 1851-58, $\frac{1}{100000}$; coast map and chart, No. 58, from the St. Mary's to the St. John's river, Fla., $\frac{1}{800000}$; San Francisco bay, Cal., $\frac{1}{800000}$; projections for field parties; projections on copper and verifications; and has assisted in the application of photography to topographic reductions.
- Mr. A. Balbach was employed upon the hydrography of coast maps and charts, No. 68, Florida reefs, from Key Biscayne to Carysfort reef, $\frac{1}{800000}$, and No. 72, (ditto,) from Key West to Marquesas keys, $\frac{1}{8000000}$, until the 29th of November, when he was transferred to the hydrographic division.
- Mr. W. P. Schultz has reduced St. George's sound, (eastern part,) Fla., $\frac{1}{40000}$; additions to Charleston harbor, (for new edition,) S. C., $\frac{1}{300000}$; has drawn diagrams illustrating changes of temperature in Gulf Stream, with depths, and has been employed upon the reduction of Patuxtent river, Md., $\frac{1}{600000}$, progress sketches, projects, and projections.
- Mr. L. D. Williams has made additions to preliminary seacoast charts, Nos. 11 and 12, from Cape Hatteras to Cape Fear, N. C., $\frac{1}{2000000}$; additions to Canal de Haro and Strait of Rosario, W. T., $\frac{1}{2000000}$; and has been engaged upon Hudson river, from entrance to Sing Sing, N. Y., $\frac{1}{600000}$; general coast chart No. II, from Cape Ann to Gay Head, Mass. and R. I., $\frac{1}{40000000}$; additions to Congress map, $\frac{1}{100000000}$; projections on copper; projections for field parties and verifications.
- Mr. A. Strausz has been engaged upon the reduction of hydrography of coast maps and charts, Nos. 105, 106, 107, and 108, from Galveston bay to Lavacca bay, Texas, $\frac{1}{800000}$; No. 9, from Cape Neddick, Me., to Cape Ann, Mass., $\frac{1}{800000}$; No. 11, from Plymouth harbor to Hyannis harbor, Mass., $\frac{1}{300000}$; No. 33, Chesapeake bay, from the Hudson to the Potomac

river, Md., $\frac{1}{80000}$; No. 53, from Stono inlet to Fripp's inlet, S. C., $\frac{1}{80000}$; preliminary seacoast chart No. 3, from Cape Small Point., Me., to Cape Cod, Mass., $\frac{1}{200000000}$; Cedar Keys, Fla., (additions for new edition,) $\frac{1}{8000000}$, and verifications of hydrographic reductions.

Mr. W. T. Martin has been engaged upon the topography of coast maps and charts, No. 28, from Cape Henlopen, Del., to Green Run inlet, Md., $\frac{1}{80000}$; No. 71, Florida reefs, from Newfound Harbor key to Boca Grande key, $\frac{1}{800000}$; Nos. 107 and 108, from Oyster bay to Lavacca bay, Texas, $\frac{1}{800000}$, and verifications.

Mr. P. Witzel has drawn Sapelo sound, Ga., $\frac{1}{500000}$; Atchafalaya bay, La., $\frac{1}{500000}$; completed York river, from West Point to King's creek, Va., $\frac{1}{600000}$; and has been employed upon Kennebec river, from entrance to Bath, Me., $\frac{1}{600000}$; Portland harbor, Me., $\frac{1}{2000000}$; coast maps and charts, No. 48, from Barren inlet to Lockwood's Folly inlet, N. C., $\frac{1}{8000000}$; No. 88, from Choctawhatchee bay to Pensacola bay, Fla., $\frac{1}{800000}$; Cape Fear river entrances, (comparative charts, 1851-'58,) N. C., $\frac{1}{1000000}$; projections for field parties and projections on copper.

Mr. S. B. Linton has been employed upon Apalachicola bay, Fla., $\frac{1}{40000}$; Charleston harbor, (additions for new edition,) S. C., $\frac{1}{30000}$; Lynn harbor, Mass., $\frac{1}{200000}$; lettering reductions; additions to progress sketches, and measurement of original topographic and hydrographic sheets.

Mr. F. Fairfax was occupied upon the topography of the upper sheet of James' river, Va., $\frac{1}{40000}$; the sketches of Port Townshend, W. T., $\frac{1}{40000}$, and Brazos River entrance, Texas, $\frac{1}{100000}$; progress sketches and tracings, until the 31st of March, when he left the office. Mr. B. Hooe, jr., has been continued upon tracings.

Artificer J. A. Campbell, U. S. A., has continued upon tracings and statistics and in care of miscellaneous maps.

					1	A.					
	GENERAL	COAST CE	iarts.—sc	ALE 40000	٥٠	PR	ELIMINAR	Z SEACOAS	T CHARTS.	-SCALE 2	29000
Nos.	Project ap-	Dra	wing.	Engr	aving.	Nos.	Project ap-	Dra	wing.	Engr	aving.
	proved.	Commenced.	Completed.	Commenced.	. Completed.		proved.	Commenced	Completed.	Commenced	Completed.
1	1					1					
11	11	11		i ii		2					
\mathbf{m}	III		111		TH	3	3	3		3	
IV	IV	1 V				4	4		4		4
v	v	v				5					
vi	VI					6			l		
VII	VII		. 		İ	7					
VIII						8	}				
IX	J					9					
X	*** *******					10	1				
	**********	•••••				11		11	.,	11	************
XI	***********		**** *** * * * * * * * * * * * * * * * *	•••••	**********	12		ı		1	******
XII	*********		*****		******			12			
XIII				••••		13		•••			
· XIV		•••••	•••••			14		14		14	
XIV bis.						15			· · · · · · · · · · · · · · · · · · ·		
$\mathbf{x}\mathbf{v}$			• • • • • • • • • • • •			16					
	(17					
	-					18					
	[1				19	19	19		19	
	j	[20	26	20			
	j	j .				21					
	1				[22					
	1	1))		23					
	ļ	})			04	**********			*******
	}	l		}		24	24	• • • • • • • • • • • • • • • • • • • •	*********	***********	
		1	ì	1	ļ	25	25	******	· • • • • • • • • • • • • • • • • • • •		
				}		26	26	26	••••••	****	
		1				27	27	· · · · · • · · · · · · ·		• • • • • • • • • •	·····
						28	28	**********		****	
						29	29				
1	·			1		30	30				
	!			(31	31	31		31	*****
				[312					
	Į l			1	1						

A-Continued.

	1	l .	HARTS.—SC	T				Ţ		CALE BOOO	
Nos.	Project ap- proved.	Dis	wing.	Engr	aving.	Nos.	Project ap-	proved.		Engraving.	
	provou	Commenced	Completed.	Commenced	Completed.			Commenced.	Completed.	Commenced.	Complete
1						57					
2						58		58			
3	1					59		~			
4	1					60	***********				
5				•••••		61	***********		************		
6	1	***********		***********	•••••	1			**********	************	
7		7				62					
		,				63					
8						64		•••••			
9		9			• • • • • • • • • • • • • • • • • • • •	65			•••••		•••••
0		10				66					•••••
11		11	•••••	·····		67					•••••
.2	12		12	12		68	68	68	••••	68	· · · · · · · · · · · · · · · · · · ·
3	13		13	13	ļ ļ	69	69	69			•••••
4	14	14		14		70	70	70			
15	15		15		15	71	71	71			
6	16		16		16	72	72	72			
7	17		17		17	73	73				
8	18	/ • • • • • • • • • • • • • • • • • • •	18		18	74					
9	19		19		19	75					
20	20		20		20	76					
21	21	21	~	21	1 20	77					•••••••••••••••••••••••••••••••••••••••
12	22		**********			78					****
3	23	***********				1			**********		• • • • • • • •
		******			•••••	79		••••••	• 1 • 1 • • • • •		•••••
4	24					80		*****	*******	******	*****
5	25	•••••	25	***********	25	81				*************	••••••
6	26		26	·····	26	82					
7	27	• • • • • • • • • • • • • • • • • • • •	27	***** *****	27	83					
8	28	28	••••	• • • • • • • • • • • • • • • • • • • •		84	84				•••••
9	29	· · · · · · · · · · · · · · · · · · ·		29 (Phot.	red'n.)	85	85	•••••	•••••		
Ю	30					86		}	•••••		
O bis.	30 his.			· · · · · · · · · · · · · · · · · · ·		87		•••••			********
i	31		31	31		88					
12	32	· · · · • • • • • • • · · · · · · · · ·	32	312		89			. 		
Cł	33	33	. .	33		90	90		90		90
14	34	34		34		91	91		91	91	
5	35	35		35		92	92	992		92	· • • · • • • • •
6	36	36		36		93	93	93			
7	}			-		94					
8						95					
9				***********	*******	i					•••••
0		40			••••	96		••••			
	40	40		40		97	•••••	••••			•••••••
1	41	41		41		'98		• • • • • • • • • • • • • • • • • • • •			
						99		••••	••••••		****
3						100		•••••	••••••		••••••
4			*			101		******	· · · · · · · · · · · · · · · · · · ·		••••••
5]·····					102		•••••	•••••		
Б			•••••			103		•••••	••••		
7						104		••••			
8		48				105		105			
9						106	106	106		106	
0]					107	107	107		107	
1						108	108	108		1 .	
2	592					109	ì				
	53	53				110	1				
3 .		645		*****		111					
	1		1								
4	54	••••••	**** ****	·••• · • • • • • • • • • • • • • • • •		1				111 111 1111	******
3 4 5	1	********	**********			112					

List of maps and sketches completed or in progress during the year ending November 1, 1859, arranged in order of sections.

Name.	Scale.	Description.	Remarks.
SECTION I — Coast of Maine. New Humpshire, Massa-chusetts, and Rhode Island.			
Progress sketch A	1-600,000		Completed.
Progress sketch A bis	1-400,000		Do,
Sheepscot river, Maine	1-40,000 1-30,000	Finished map	In progress.
Portland harbor, Maine	1-20,000	do	Do.
Preliminary sea-coast chart, No. 3, from Cape Small Point, Me., to Cape Cod, Mass	1-200,000	Preliminary chart	Do.
Coast map and chart, No. 9, from Cape Neddick, Me.,			T
to Cape Ann, Mass General coast chart, No. 2, from Cape Ann, Mass., to	1-80,000	Finished map and chart	Do.
Gay Head, R I	1-400,000	Finished chart	Do.
Green's harbor, Mass	1-80,000	Finished map and chart	Do.
Lynn harbor, Mass	1-20,000	Finished map	Completed.
Boston harbor, (new edition,) Mass.	1-40, 000	do	Do.
Coast map and chart, No. 11, from Plymouth harbor to Hyannis harbor, Mass	1-80,000	Finished map and chart	In progress.
Muskeget channel, (new edition,) Mass	1-60,000	Preliminary chart	Completed.
Coast map and chart, No. 14, from Cuttyhunk island, Mars., to Block island, R I	1-80,000	Finished map and chart	In progress.
SECTION II.—Coast of Connecticut, New York, New Jersey and Delaware, north of Cape Healopen.			-
Progress sketch B	1-400,000		Completed.
harbor	1-80,000	Finished map and chart	In progress.
Hudson river, from entrance to Sing Sing, N. Y	1-60,000	Finished map	Do.
SECTION III.—Coast of Delaware, south of Cape Henlopen, Maryland and Virginia, north of Cape Henry.			·
Progress sketch C	1-400,000		Completed.
Currituck, N. C. Coast map and chart, No. 28, from Cape Henlopen,	1-400,000	Finished chart	In progress.
Del., to Green Run inlet, Md	1-80,000	Finished map and chart	Do.
Md., to Little Machipongo inlet, Va	1-80,000	do	In progress by pho- tography.
Hudson river to Potomac river, Md. Coast map and chart, No. 35, Chesapeake bay, from	1-80,000	do	In progress.
Pocomoke sound to York river, Va. Coast map and chart, No 36, Chesapeake bay, from	1-80,000	do	Do.
York river to entrauce, Va	1-80,000	do	Do.
York river, from West Point to King's creek, Va	1-60,000	Finished map	
James river, from Richmond to City Point, Va	1-40,000	do	In progress.
SECTION IV — Coast of Virginia, south of Cape Henry, and North Carolina, north of Cape Fear.			
Progress sketch D Preliminary sea-coast chart, No. 11, from Cape Hatte-	1-600, 000		Completed.
ras to Cape Lookout, N. C	1-200,000	Preliminary chart	In progress.
to Cape Fear, N. C. Coast map and chart, No. 48, Cape Fear and vicinity,	1-200,000	do	Do
N. C.	1-80,000	Finished map and chart	Do.
Cape Fear river, New inlet, N. C.	1-10,000	Comparative chart, 1851-'58.	Completed.
Cape Fear river, southern entrance, N C	1-10,000	do	Do.
Diagrams illustrating changes of temperature in the Gulf Stream, with depths		Diagrams	Do.
At more state process. The man and an an an an an an an an an an an an an		1.10210H10	20.

List of maps and sketches, &c. - Continued.

Name.	Scale.	Description.	Remarks.
SECTION V.—Coast of North Carolina, south of Cape Fear, South Carolina, and Georgia. Progress sketch E. Coast map and chart, No. 53, from Stono inlet to Fripp's inlet, S. C.——————————————————————————————————	1-600,000 1-80,000 1-30,000	Finished map and chart Finished map	Completed. In progress. Completed.
Ossabaw sound, Ga	1-39, 000 1-30, 000	do	In progress. Do.
Progress sketch F, (showing a general reconnaissance) Progress sketch F, No. 2, (reefs and keys)	1-1,200,000 1-400,000		Completed. Do.
to St. John's river	1-80,000 1-80,000	Finished map and chart	In progress. Do.
Coast maps and charts, Nos. 70, 71, and 72, Florida reefs, from Long key to Marquesas keys	1-89,000	Finished maps and charts	Do.
and Alabama, east of Mobile bay. Progress sketch G. Cedar keys, (new edition.) Fla. St. George's sound. (eastern part.) Fla. Apalachicola bay, Fla. Coast map and chart, No. 88, from Choctawhatchee bay to Pensacola bay, Fla.	1-600,000 1-50,000 1-40,000 1-40,000	Preliminary chart Finished map Finished map and chart	Completed. Do. In progress, Do. Do.
SECTION VIII.—Coast of Alabama, west of Mobile bay, Mis- nssippi and Louisiana, east of Vermilion bay. Progress sketch H Atchafalaya bay, La SECTION IX —Coast of Louisiana, west of Vermilion bay, and of Texas.	1-600,000 1-50,000	Preliminary chart	Completed. Do.
Progress sketch I Coast maps and charts, Nos. 105, 106, 107, and 108, from Galveston bay to Lavacca bay, Texas Brazos river entrance, Texas. Coast of Texas, from Matagorda bay entrance to Aransas Pass, Texas	1-600,000 1-80,000 1-10,000 1-20,000	Finished maps and charts Sketchdo	Completed. In progress. Completed. Do.
SECTION X Coast of California.			e .
Progress sketch J, (from San Diego to Point Sal) Progress sketch J, No. 2, (from Point Sal to Tomales bay) Alden's reconnaissance of western coast, (additions).	1-600,000 1-600,000 1-1,200,000	Sketch	Completed. Do. Do.
Western coast of United States, (additions)	1-7,000,000	Finished map and chart	Do. In progress.
SECTION KI.—Coast of Oregon and Washington Territories. Progress sketch K Canal de Haro and Strait of Rosario, (additions)	1-600,000	Sketch	Completed.
Port Townshend, W. T. Sketch showing progress of the survey on the Atlantic, Gulf of Mexico. and Pacific coasts.	1-20,000	okeuchdo	Do. Do. Prepared by the Supe
Diagrams illustrating discussion of magnetical and meteorological observations			intendent. Drawn in computing division.

Report of Mr. Edward Wharton, acting in charge of Engraving Division.

COAST SURVEY OFFICE, October 31, 1859.

I have the honor to present the annual report of the operations of this division during the year ending October 31, 1859.

The division remained under the charge of Lieut. Rufus Saxton, U. S. A., from the date of the last annual report until April 1, when he was relieved from duty. Since that time the division has been under my charge. The engraving force at present consists of twenty-one engravers, of various grades.

The division has met with a serious loss in the death of one of its oldest and most skilled engravers, Mr. F. Dankworth, who had been attached to the office since 1843, and whose death occurred last March. Mr. Dankworth ranked among the first topographical engravers in this country, and it gives me pleasure to testify to the faithfulness with which he discharged his duties, and the ability and skill he evinced in the execution of his work. His place will be difficult to supply.

The engraving of the finished maps of Patapsco river, Md.; entrance to Pensacola bay, Fla.; San Diego bay, Cal.; Mare Island straits, Cal.; and San Francisco bay, Cal., have been completed; and the two plates of the middle and eastern part of Long Island sound, commenced some years ago, have been also completed, to take the place of the two already published. Various changes and additions have also been made to the charts of Boston harbor and Charleston harbor.

The second class maps and sketches of Atchafalaya bay, La.; entrance to Brazos river, Texas; Humboldt bay, Cal.; Port Gamble, Port Townshend, and Semi-ah-moo bay, Washington Territory, have also been engraved, and a new edition of Canal de Haro and Strait of Rosario. The maps of Kennebec river, Maine, from entrance to Bath, and of Rockport harbor, Mass., have been published in a preliminary form.

The first class finished maps and charts, Nos. 12 and 13, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Eastern series, from Monomoy to Muskeget, and from Muskeget to New Bedford; and Chesapeake bay series, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Nos. 1, 2, 3, 4, 5, 6; coast charts Nos. 40 and 41, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Albemarle sound; No. 68, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Florida reefs, from Key Biscayne to Carysfort reef; Nos. 91 and 92, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Mississippi sound, from Bonsecours bay to Grand island; Nos. 106 and 107, $80^{\frac{1}{6}}00^{\frac{1}{6}}$. Texas, from Galveston bay to Matagorda bay, and San Pablo bay, Cal., $80^{\frac{1}{6}}00^{\frac{1}{6}}$, have made considerable progress towards completion; and the outlines of coast chart No. 29, from Green River inlet to Little Machipongo inlet, Del. and Md., have been engraved from a photographic reduction.

Mr. McCoy has completed the topography upon coast chart No. 13, Eastern series, No. 2, \$\overline{\text{80}}\overline{\text{000}}\overline{\text{000}}\overline{\text{and twelve views for coast charts Nos. 12, 13, and 14, extending from Monomoy to Newport.

Mr. Dankworth was engaged, up to the time of his death, upon the topography of coast chart No. 32, 35000, Chesapeake bay, from Magothy river to Hudson river.

Mr. Enthoffer has executed all the topography upon coast chart No. 33, 50000. Chesapeake bay, from Hudson river to Potomac river.

Mr. Knight has been employed upon the soundings and miscellaneous lettering of coast charts Nos. 15 and 16, 300000. Long Island sound; the soundings of coast chart No. 13, 300000. Eastern series, No. 2; Nos. 34 and 35, Chesapeake bay, from Potomac river to York river, Va., 300000;

Boston harbor, Mass; Patapsco river, Md.; Monterey bay, Cal.; and other miscellaneous lettering.

- Mr. Rollé has nearly completed the topography of coast chart No. 31, Chesapeake bay, No. 1, $\frac{1}{800000}$, and has executed some miscellaneous work.
- Mr. Sengteller has completed the topography of the lower part of coast chart No. 12, Eastern series, $\frac{1}{80000}$, and has also nearly completed that of the upper part.
- Mr. Blondeau has completed the topography of entrance to San Francisco bay, $\frac{1}{55000}$, and has made considerable progress upon that of San Pablo bay, $\frac{1}{300000}$.
- Mr. Phillips has finished the topography and one-half the sand of coast chart No. 92, Mississippi sound, from Round island to Grand island, $\frac{1}{80000}$, and has executed some miscellaneous work.
- Mr. Metzeroth has completed the sand and views upon entrance to San Francisco bay, $\frac{1}{50000}$; the sand of San Diego bay, $\frac{1}{400000}$; and of the upper half of coast chart No 13, Eastern series, No. 2, $\frac{1}{800000}$, from Muskeget to New Bedford, and some miscellaneous work.
- Mr. Barnard has engraved the sand upon coast chart No. 41, Albemarle sound, eastern part, $\frac{1}{80000}$; a portion of the sand upon general coast chart No. 2, from Cape Ann to Gay Head, Patapsco river, Md., and coast chart No. 92, Mississippi sound, $\frac{1}{800000}$, and miscellaneous work.
- Mr. Kondrup engraved a portion of the outlines upon coast charts Nos. 32 and 34, Chesapeake bay, Nos. 2 and 4, 30000; all the outlines, soundings, and general lettering upon the preliminary chart of Kennebec river, Maine; and is now engaged upon the topography of the same.
- Mr. Evans has engraved portions of new work, and has made various corrections upon coast charts Nos. 15 and 16, Long Island sound, eastern and middle plates, solono; re-engraved the topography of Captain's island, E. and W., and new work upon the plate of Charleston harbor, 100000.
- Mr. Throop has engraved the soundings and bottoms of general coast chart No. 2, from Cape Ann to Gay Head; coast chart No. 41, Albermarle sound, east; and Sapelo sound, Georgia: the notes and lettering of Port Gamble, Humboldt bay, Pensacola bay, and executed other miscellaneous lettering; and is now engaged upon the notes of coast charts No. 91, Mississippi sound, from Bonsecours bay to Round island.
- Mr. Maedel has engraved the topography and sand of Port Gamble, Washington Territory; the sand of Rockport harbor, Mass., Muskeget channel, Mass., preliminary sea coast chart No. 14, from Cape Roman, S. C., to Tybee river, Georgia; a portion of the sand of entrance to Cape Fear river, and miscellaneous work.
- Mr. E. A. Macdel has engraved the title, notes, and soundings of coast chart No. 106, from Galveston bay to Oyster bay, Texas, and Rockport harbor, Mass.; the title and soundings of coast chart No. 107, from Oyster bay to Matagorda bay, and some miscellaneous work; and is now engaged upon the soundings of coast chart No. 71, Florida reefs, from Newfound Harbor key to Boca Grande key.
- Mr. Petersen has engraved the title and notes of Canal de Haro and Strait of Rosario and of Semi-ah-moo bay, Washington Territory; a portion of the soundings of sea-coast chart No. 3, from Cape Small Pt., Maine, to Cape Cod, Mass; the notes of Patapsco river, Md., coast chart, No. 107, from Oyster bay to Matagorda bay, and of general coast chart No. 2, from Cape Ann to Gay Head; all the soundings of San Pablo bay, Cal., and the soundings of Pensacola harbor,

Fla., and miscellaneous work; and is now engaged upon the hydrography of New York bay and harbor, $\frac{1}{8.0000}$.

Mr. Langran has engraved the title, soundings, and notes of York river, Va., from King's creek to West Pt., Atchafalaya bay, La., Port Townshend, Washington Territory; a portion of the notes and soundings on sea-coast charts No. 11, from Cape Hatteras to Cape Lookout, and No. 14, from Cape Roman to Tybee river, and various miscellaneous lettering.

Mr. Ogilvie has engraved all the soundings, notes, and title on coast chart No. 68, Florida reefs, from Key Biscayne to Carysfort reef; a portion of the notes on sea-coast chart No. 4, from Cape Cod, Mass., to Saughkonnet Pt., R. I.; the soundings of Humboldt bay, Cal.; the general lettering on coast chart No. 41, Albermarle sound east, and other miscellaneous lettering.

Mr. Klakring has engraved all the topography, soundings, title and notes of Mare Island straits, Cal.; the topography of Humboldt bay, Cal.; and has executed some miscellaneous work; his employment by the office ceased on the 1st of July.

Mr. Bartle has engraved all the topography of Port Townshend, Washington Territory, and of entrance to Brazos river, Texas; and miscellaneous work upon various plates, and is now engaged upon the topography of Rockport harbor, Mass.

Messrs. Benner, Thompson and Sipe have been employed upon the engraving of progress and other sketches, and such miscellaneous work as was required by the office.

In addition to the amount of work performed by the engravers, five of the sketches for the Report of 1858, have been lithographed or engraved upon stone under the direction of the Superintendent of Public Printing.

A more detailed account of the work performed, progress made, &c., can be found in the accompanying list of maps, charts, preliminary charts, and sketches, engraved or engraving, during the year ending November 1, 1859, arranged in order of sections; and in the complete list of Coast Survey maps, charts, preliminary charts, and sketches engraved, and arranged geographically.

List of maps, preliminary charts, and sketches, engraved or engraving, during the year ending October 31, 1859, arranged in order of sections.

Name.	Scale.	Description.	Remarks
SECTION I.			
Progress sketch A	1-400,000		Engraved.
Do A bis	1-600,000		Do.
Kennebec river, Maine, from entrance to Bath	1-30,000	Preliminary chart	Do.
Rockport harbor, Mass	1-20,000	do	Do.
General coast chart, No. 2, from Cape Ann to Gay Head Preliminary sea-coast chart, No. 3, from Cape Small Point, Maine,	1-400,000	General coast chart	Engraving.
to Cape Cod, Mass	1-200,000	Preliminary chart	Do.
reliminary sea-coast chart, No. 4, from Cape Cod, Mass, to Saugh-			
konnet point, R. I	1-200,000	do	Engraved.
losst map and chart, No. 12, Eastern series, No. 3, from Monomov	• ,		
to Muskeget, Mass	1-80,000	Finished map and chart	Engraving.
loast map and chart, No. 13, Eastern series, No. 2, from Muskeyet	,	•	
to Buszard's bay	1-80,000	do	Do.
Coast map and chart, No. 14, Eastern series, No. 1, from Buzzard's		1	
bay to Narragansett bay	1-80.000	do	Do.
Kennebec river, Maine, from entrance to Bath	1-30,000	do	Do.
lockport harbor, Mass	1-20,000	do	Do.
ynn harbor, Mass.	1-30,000	do	Do.
Muskeget channel, Mass, (new edition)	1-60,000	do	Do.

List of maps, preliminary charts, &c.—Continued.

Name.	Scale.	Description.	Remarks.
Section II.			***************************************
rogress Hudson river triangulation	1-400,000 1-80,000	Finished map and chart	Engraved. Do.
DodoNo. 16domiddle	1-80,000 $1-20,000$	Finished chart	Do. Do.
oast map and chart, No 21, New York bay and harbor	1-80,000	Finished map and chart	Engraving,
Section III.			
rogress sketch Coast map and chart, No. 31, Chesapeake bay, from head of bay	1-400,000		Engraved.
to Magothy river, Maryland	1-80,000	Finished map and chart	Engraving.
river to Hudson tiver, Maryland	1-80,000	do	Do.
river to Potomac river, Maryland	1-80,000	do	Do.
river to Pocomoke sound, Virginia	1-80,000	do	Do.
sound to York river, Virginia oast map and chart, No. 36, Chesapeake bay, from York river	1-80,000	do	Do.
Virginia to entrance of bay	1-80,000	do	Do.
atapsco river, Maryland	1-60,000 1-60,000	Finished chart Preliminary chart	Engraved. Engraving.
oast map and chart, No. 29, from Green Run inlet to Little Machipongo inlet, Delaware and Maryland	1-80,000	Finished map and chart	Do.
Section IV.	1 00,000	I missed may and charter.	20.
rogress sketch D	1 400,000		Engraved.
of sound to Pasquotank river, North Carolina	1-80,000	Finished map and chart	
onst map and chart, No. 41, Albemarle sound east, from Pasquotank and Alligator rivers, to entrunce, North Carolina	1-80,000	dodo	Do.
reliminary sea-coast chart, No. 11, from Cape Hatteras to Cape Lookout, North Carolina	1-200,000	Preliminary chart	Do.
Cupe Fear river entrances, st owing changes from 1851 to 1858, (two plates)	1-10,000	Comparative chart	Engraved.
SECTION V.	,	•	
rogress sketch E	1-600,000		Engraved.
reliminary sea-coast chart, No. 14, from Cape Roman to Tybee, Georgia	1-200,000	Preliminary chart	Do.
harleston harbor, (additions)	1-30,000	do	Do.
apelo sound, Georgia	1-30,000	do	Engraving.
SECTION VI.			
rogress sketch F	1-1,200,000		Engraved.
rogress sketch F, lower sheet, Florida keys	1-400,000		Do.
to Carysfort reef	1-80,000	Finished map and chart	Engraving.
SECTION VII.			
rogress sketch G	1-600,000		Engraved.
ntrance to Pensacola bay, Floridaastern part St. George's sound, Florida	1-30,000 1-40,000	Preliminary chartdo	Do.
Apalachicola bay, Florida	1-40,000	do	Engraving, Engraved.
SECTION VIII.			
Progress sketch H	1-600,000		Engraved.
cast map and chart, No. 91, from Bonsecours bay to Round	1-50,000	Preliminary chart	Do.
island, Miss cost map and chart, No. 92, from Round island to Grand island,	1-80,000	Finished map and chart	Engraving.
Mise	1-80,000	do	Do.

List of maps, preliminary charts, &c.—Continued.

			, <u></u>
Name.	Scale.	Description.	Remarks.
Section IX.			
Progress sketch I	1-600,000		Engraved.
Entrance to Brazos river, Texas.	1-10,000	Preliminary chart	Do.
Coast map and chart, No. 106, from Galveston bay to Oyster	2 (0,000		20.
bay, Texas Coast map and chart, No. 107, from Oyster bay to Matagorda	1-80,000	Finished map and chart	Engraving.
bay, Texas	1-80,000	do	Do.
Reconnaissance of coast of Texas, from Matagorda bay to Aran- sas Pass	1-200,000	Reconnaissance	Engraved.
805 1 885	1-200,000	Reconnaissance	Engraveu.
Section X.			
Progress sketch J, lower sheet	1-600,000		Engraved.
Progress sketch J, middle sheet	1-600,000 1-40.000	Finished chart	Do. Do.
Mare Island straits, Cal.	1-30,000	rinished chart	Do.
Entrance to San Francisco bay, Cal	1-50,000	do	Do.
San Pablo bay, Cal	1-50,000	do	Engraving.
Humboldt bay, Cal	1-30,000	P eliminary chart	Engraved.
San Francisco city, Cal	1-10,000	Мар	Do.
SECTION XI.			
Progress sketch K	1-600,000		Engraved.
Canal de Haro and Strait of Rosario, Washington Territory, (new		_	_
edition) Port Gamble, Washington Territory	1-200,000	Reconnaissance	Do.
Port Townshend, Washington Territory	1-20,000 1-40,000	Finished mapdo	Do. Do.
Semi-ah-moo bay, Washington Territory	1-30,000	Reconnaissance	Do.
Miscellaneous	,		
Diagrams illustrating the descent of sounding weight and line in deep-sea soundings		Diagram	Engraved.
Project limits for finished maps, 1-80, 000, on Atlantic and Gulf		Diagram	Englaved.
coasta.	1-5,000,000	do	Do.
	1-5,000,000	Sketch	Engraving.
	1-5,000,000	do	Do.
Diagrams of magnetical and meteorological observations at Girard College, Philadelphia, in 1840, 1841, 1842, 1843, 1844, and 1845.		Diagram	Transact
Diagrams of observations for temperature, wind, and atmospheric		Diagram	Engraved.
pressure, made by Dr. E. K. Kane at Van Rensselaer harbor.	1	!	
		do	Do.
	1		
hree sketches illustrating Superintendent's paper on currents of Sandy Hook	}	do	Do.

^oEngraved on stone, under the direction of the Superintendent of Public Printing.

List of Coast Survey maps, preliminary charts, and sketches engraved, geographically arranged.

1. LIST OF MAPS AND CHARTS ENGRAVED.

No.	1.	Richmond's island, Maine	100
		37 1	1000
		T '1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000
	4.		100
			100
		Boston harbor—new edition, 1859do	
		Mark a second se	000
		Provincetown harbor do	

		$Monomoy\ shoals\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot Massachusetts \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	40000
		Bass River harbor \cdots do \cdots	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Wellfleet harbor $\cdots do \cdots do \cdots$	60000
		Nantucket harbor·····do·····do·····	20000
		Hyannis harbor · · · · · do · · · · · · · · · · · · ·	30000
		Harbor of Edgartown dodo	20000
		Harbor of Wood's Hole · · · · · · do · · · · · · · · · · · ·	$\overline{2}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$
		Harbors of Holmes's Hole and Tarpaulin Cove, Massachusetts	$\frac{1}{2} \stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{0}$
	17.	Harbor of New Bedford, Massachusetts	40000
		General chart of the coast from Gay Head to Cape Henlopen	400000
		Fisher's Island sound, Connecticut · · · · · · · · · · · · · · · · · · ·	40000
	20.	Harbor of New London \cdots do \cdots	$\frac{1}{2} \overline{\sigma} \overline{\theta} \overline{\sigma} \overline{\sigma}$
	21.	Mouth of Connecticut river-do \cdots	20000
	22.	Harbor of New Haven, Connecticut—new edition, 1852	30000
	23.	Harbors of Black Rock and Bridgeport, Connecticut—new edition, 1852	2 0000
	24.	$\textbf{Harbors of Sheffield and Cawkin's Island} \cdot \cdots \cdot \text{do} \cdot \cdots \cdot \cdot \text{do} \cdot \cdots \cdot 1852$	20000
	25.	Huntington bay, New York	30000
	26.	Oyster bay or Syosset harbor, New York	3 0 1 0 0
	27.	Harbors of Captain's Islands, east and west, Connecticut	2000ô
	28.	Hart and City islands, and Sachem's Head harbor, New York	$\frac{1}{10000}$, $\frac{1}{20000}$
		Hell Gate, New York · · · · · · · · · · · · · · · · · · ·	8000
	30.	Long Island sound, east · · · · · · · · · · · · · · · · · · ·	80000
	31.	$\mathbf{Do} \cdot \cdot \cdot \cdot \mathbf{do} \cdot \cdot \cdot \cdot \mathbf{middle} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	<u> </u>
	32.	${\tt Do} \cdot \cdots \cdot {\tt do} \cdot \cdots \cdot {\tt west} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot $	80000
	33.	New York bay and harbor, and the environs, New York, sheet No. 1 \cdot	<u> </u>
	34.	${f Do} \cdot \cdots \cdot {f do} \cdot $	3 0 0 0 p
,	35.	$\textbf{Do} \cdot \cdots \cdot \textbf{do} \cdot \cdots \cdot \textbf{do} \cdot \cdots \cdot \textbf{do} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No. 3} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No. 4} \cdot \cdots \cdot \textbf{do} \cdot \textbf{do} \cdot \textbf{No. 4} \cdot \cdots \cdot \textbf{do} \cdot $	30000
	36.	$\textbf{Do} \cdot \cdots \cdot \textbf{do} \cdot \textbf{do} \cdot \cdots \cdot \textbf{do} \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{4} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{No} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{do} \cdot \textbf{A} \cdot \cdots \cdot \textbf{A} \cdot$	3 0 0 0 0
	37.	$\mathbf{Do} \cdot \cdots \cdot \mathbf{do} \cdot \mathbf{No}$. 5	30000
	3 8.	$\mathbf{Do} \cdot \cdots \cdot \mathbf{do} \cdot \cdots \cdot \mathbf{do} \cdot \cdots \cdot \mathbf{do} \cdot \cdots \cdot \mathbf{do} \cdot \mathbf{No}. $ 6	30000
	39.	$\textbf{Do} \cdot \dots \cdot \textbf{do} \cdot \textbf{do} \cdot \dots \cdot \textbf{do} \cdot \dots \cdot \textbf{do} \cdot \dots \cdot \textbf{do} \cdot \dots \cdot \dots \cdot \textbf{do}$	801000
	40.	· · · · · · · · · · · · · · · · · · ·	80000
		$\textbf{Middle part of} \cdots \cdots do \cdots do \cdots do \cdots do \cdots$	80000
		$\textbf{Eastern part of} \cdot \cdots \cdot do \cdot \cdots \cdot do \cdot \cdots \cdot do \cdot \cdots \cdot do \cdot \cdots \cdot \cdots \cdot do \cdot do$	80000
		Little Egg harbor, New Jersey	B 0 0 0 0
	44.	Delaware bay and river, sheet No. 1, Delaware	80000
	4 5.	Dodosheet No. 2, New Jersey and Pennsylvania	80000
		Delaware bay and river, sheet No. 3 · · · · · · · · · · · · · · · · · ·	80000
		Patapsco river, Maryland	6 0 0 0 0
		Harbor of Annapolis and Severn river, Maryland	60000
		Mouth of Chester river, Maryland	$\frac{1}{40000}$
		Entrance to York river, Virginia	1 60000
		Pasquotank river, North Carolina	8000G
		Beaufort harbordo	20000
	5 3.	Charleston harbor, South Carolina—new edition, 1858 · · · · · · · · · · · ·	30000
		25	

5.4	Key West harbor and approaches, Florida	1
55	Entrance to Mobile bay, Alabama	1 40000
	Mobile bay, Alabama	40000 1 80000
	Cat and Ship Island harbors, Mississippi	$\begin{array}{c} 80000 \\ \hline 1 \\ \hline 40000 \end{array}$
	Entrance to Galveston bay, Texas—new edition, 1856	$\begin{array}{c} 40000 \\ \hline 1 \\ \hline 40000 \end{array}$
59	San Diego bay, California	40000 1 40000
60	Entrance to San Francisco bay, California	40000 50000
00.	2. List of Preliminary Charts and Sketches engraved.	50000
	Alden's Rock, Maine	1000
	Eggemoggin reach, Maine	20000
	Kennebec river · · · · · do · · · · · · · · · · · · ·	30000
	Portland harbordo	$\frac{1}{20000}$
	Portland harbor, (Commissioners' line,) Maine	$\frac{1}{10000}$
	York River harbor, Maine	$\frac{1}{20000}$
7.	Portsmouth harbor, New Hampshire	$\frac{1}{20000}$
8.	Rockport harbor, Massachusetts · · · · · · · · · · · · · · · · · ·	$\frac{1}{20000}$
	Stellwagen's Bank—2d edition—Massachusetts · · · · · · · · · · · · · · · · · ·	$\frac{1}{400000}$
	Boston bay $\cdots d_0 \cdots d_0 \cdots$	175000
	Current chart, Boston bay · · · · · do · · · · · · · · · · · · ·	$\frac{1}{100000}$
12.	$Minot's \ ledge \ \cdots \cdots do \ \cdots$	$\frac{1}{10000}$
	Sea-coast of the United States, No. 4, south part of Massachusetts · · ·	$\frac{1}{200000}$
14.	Nantucket shoals, Massachusetts—new edition · · · · · · · · · · · · · · · · · · ·	1 0 0 0 0 0 o
15.	Tidal currents, Nantucket shoals, Massachusetts	30000e
16.	$Muskeget\ channel\cdots\cdots do\cdots\cdots$	60000
17.	Sow and Pigs' reef·····do·····	$\frac{1}{240}$ & $\frac{1}{20000}$
18.	Tidal currents, Long Island, New York	80000 0
19.	Pot Rock and Way's reefdo	
20.	Hudson river, lower sheet · · · · · do · · · · · · · · · · · · ·	80000
21.	Buttermilk channel · · · · · · do · · · · · · · · · · · ·	<u> </u>
22.	Beacon ranges, New York harbor · · · · · · · · · · · · · · · · · · ·	40000
	Romer shoals and Flynn's knoll, New York	40000
24.	Changes in Sandy Hook, New Jersey	0000 & 40000
	Sea-coast of Delaware, Maryland, and part of Virginia	\$00000
26.	Delaware and Chesapeake bays	400000
27.	Chesapeake bay, (upper series,) Sheet No. 1	B 0 0 0 0
28.	Do do do . No. 2	80000
29.	Do do do . No. 3	80000
30.	Chincoteague inlet, Virginia	40000
31.	Sea-coast of Virginia and entrance to Chesapeake bay, Virginia	20000
32.	James river, (upper sheet,)dodo	<u> 40000</u>
33.	Rappahannock river, No. 1dodo	20000
34.	Dodo No. 2dodo	20000
35.	Do do No. 3	20000
36.	Do do No. 4	20000

	60000
	60000
	60000
	40000
	20000
	100000
Cape Charles and vicinitydo	8 0 0 0 0
Cherrystone inletdodo	20 <u>100</u>
	40000
Fishing or Donoho's battery, Maryland	80000
	200000
the water in Albemarle sound.	
Hatteras shoals, North Carolina	20000
	20000
	20100
	40000
	20000
	80000
	20000
	15000
	12000
	120000 4000
	30000
	30000
e e e e e e e e e e e e e e e e e e e	500000
	5000000
	1
	8000000
	1
	5000000
	00 00 1600000
U 1 .	•
	100000
	200000
	180000
	10000
· · · · · · · · · · · · · · · · · · ·	70000
	5000
	_
	50000
· · · · · · · · · · · · · · · · · · ·	10000
	80006
	20100
	40000
Doboy bar and inlet, Georgia	40000
	Rappahannock river, No. 5

81. St. Simon's sound and Brunswick harbor, Georgia	_
82. St. Andrew's shoalsdo	
83. St. Mary's bar and Fernandina harbor, Florida—comparative chart	
84. St. Mary's river and Fernandina harbor, Florida	*****
85. St. John's river, from entrance to Brown's creek, Florida	
86. Mosquito inletdodo	
87. Cape Canaveraldodo	*
88. Florida reefs	20000
89. Turtle harbor, Florida reefs	10000
90. Beacons on Florida reefs	
91. Coffin's Patches	20000
92. Key Biscayne, Cape Sable and bases do	
93. Legaré anchorage, (additions) do	2 v 0 0 0
94. Key West harbor, Florida—second edition · · · · · · · · · · · · · · · · · · ·	100000
95-101. Key West tidal diagrams, Florida	
102. Rebecca shoals · · · · · · · do · · · · · · · · · · ·	800 800
103. Reconnaissance vicinity of Cedar Keys, Florida	
104. Channel No. 4, Cedar Keysdodo	80000
105. Cedar Keys and approaches · · · · · · · do · · · · · · · · · · ·	80000
106. Ocilla river · · · · · · do · · · · · · · · · · · ·	20000
107. St. Mark's bar and channel · · · · · · · · do · · · · · · · · · ·	40000
108. Middle, or main and western entrances, St. George's sound, Florida	8 6 0 0 0
109. St. Andrew's bay ····· do ····	40 000
110. Entrance to Pensacola baydo	30000
111. Sea-coast of part of Alabama and Mississippi	200000
112. Mobile bay, (second edition,) Alabama · · · · · · · · · · · · · · · · · ·	2000 0 o
113. Horn Island Pass and Grand bay, Mississippi	300000
114. $Do \cdots do \cdots do \cdots new edition \cdots$	40000
115. Pascagoula river, Mississippi · · · · · · · · · · · · · · · · · ·	20000
116. Biloxi bay · · · · · · · · · · · · do · · · · · ·	40000
117-126. Cat Island tidal diagramsdodo	
127. Pass Christiando	40000
128. Delta of the Mississippi, Louisiana	60000
129. Gulf of Mexico, with profiles of deep-sea soundings—new edition	2400000
130. Barataria bay entrance, Louisiana	\$ 0 0 0 0
131. Pass Fourchon	1000
132. Timballier bay entrancedo	20000
133. Isle Dernière or Ship Island shoals, Louisiana	80000
134. Atchafalaya baydo	7 0 0 0 0
135. Entrances to Vermilion bay and Calcasieu river, Louisiana	
136. Sabine Pass, Texas	1 1000p
137. Sea-coast of Texas from Galveston, south	20000
138. Sea-coast of the United States, No. 31, part of Texas	20000
139. San Luis Pass, Texas	20000
140. Aransas Pass—2d edition—Texas	30000

	Entrance to Brazos river, Texas	70000
	Entrance to Rio Grande · · · do · · · · · · · · · · · · · · ·	20000
143.	Diagrams of heights and lunitidal intervals of diurnal and semi-diurnal	
	tides in the Gulf of Mexico	
	Co-tidal lines, Gulf of Mexico—2 plates · · · · · · · · · · · · · · · · · · ·	
	Type curves ·····do·····	
	Wind curves, Cat island	
148.	Alden's reconnaissance Western Coast, lower sheet, San Francisco to	
	San Diego—new edition—California · · · · · · · · · · · · · · · · · · ·	$\frac{1}{1200000}$
	Cortez bank · · · · · · · · · · · · · · · · · · ·	
	San Diego entrance—new edition—California	1 0 0 0 & 1 2 5 0 0 0
	Geological map of San Diego·····do·····	$\frac{1}{1608228}$
152.	Catalina harbor · · · · · · · · do · · · · · · · · · ·	$\frac{1}{1\ 5\ 0\ 0\ 0}$
	San Pedro anchorage and vicinity of Santa Barbara, California · · · · · · 2	1 0 0 0 0 & 4 0 0 0 0
	Anacapa island, (sketch) $\cdots \cdots do \cdots do \cdots$	
155.	Anacapa island and east end of Santa Cruz island, California	30000
156.	Prisoner's harbor, Cuyler's harbor, and northwest anchorage, San Cle-	
	mente island, California · · · · · · · · · · · · · · · · · · ·	$\frac{1}{2} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0}$
157.	Santa Barbara, California · · · · · · · · · · · · · · · · · · ·	$\frac{1}{20000}$
158.	Eastern entrance to Santa Barbara channel, California	80000
	San Simeon, Santa Cruz, San Luis Obispo, and Coxo harbors, California.	10000 & 40000
	Point Conception · · · · · do · · · · do · · ·	40000
	Point Pinos · · · · · · do · · ·	20000
162.	Monterey harbor · · · · · do · · · · do · · ·	1 40000
163.	Monterey bay · · · · · do · · · · do · · ·	60000
164.	Geological map of Monterey do	7 5 0 0 0 0
	Santa Cruz and Ano Nuevo harborsdo ·· 120	
	San Pedro harbordo	1 20000
167.	Entrance to San Francisco bay · · · · · · · · · · · · · · · · · · ·	40000
	San Francisco city, (new edition) · · · · · · · · · · · · · · · · · · ·	10000
	Geological map of San Franciscodo	1 5 6 0 8 0
170.	South Farallon islanddo	186060
	Tidal diagrams, Rincon Pointdo	
172.	Pulgas base · · · · · · · · · · · · · · · · · · ·	1 N N - 1
	San Antonio creek ·····do····	20000
	Mare Island straits · · · · · · · · · · · · · · · · · · ·	20000 1 30000
	Alden's reconnaissance Western Coast, middle sheet, San Francisco to	80090
	Umpquah river, California and Oregon	1 2 0 0 0 0 0
176.	McArthur's reconnaissance Western Coast, from Monterey to mouth of	120000
	Columbia river, sheet No. 1—3d edition	
177	McArthur's reconnaissance Western Coast, from Monterey to mouth of	
2111	Columbia river, sheet No. 2—3d edition	
170	McArthur's reconnaissance Western Coast, from Monterey to mouth of	
140.		
	Columbia river, sheet No. 3—3d edition · · · · · · · · · · · · · · · · · · ·	

180. Point Reyes and Drake's bay, California 70 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	179.	Alden's reconnaissance Western Coast, northern sheet	1200000
181. Geological map of Point Reyes			
182. Humboldt bay, (new edition)	181.	Geological map of Point Reves do	
183. Trinidad bay			
184. Shelter cove, Mendocine city, Crescent City harbors, and Port Orford, or Ewing harbor, California and Oregon 20000 185. Umpquah river, Oregon 20000 186. Mouth of Columbia river—2d edition—Oregon 20000 187. Do 200000 188. Entrance to Columbia river, Oregon 200000 189. Tidal diagrams Rincon Point, San Diego and Astoria, California and Oregon 200000 190. Co-tidal lines of the Pacific coast 2000000 191. Cape Disappointment, Washington Territory 2000000000000000000000000000000000000			
185. Umpquah river, Oregon 186. Mouth of Columbia river—2d edition—Oregon 187. Do			
185. Umpquah river, Oregon 20000 186. Mouth of Columbia river—2d edition—Oregon 20000 200000 187. Do		or Ewing harbor, California and Oregon	1 20000
186. Mouth of Columbia river—2d edition—Oregon 187. Do	185.	Umpquah river, Oregon · · · · · · · · · · · · · · · · · · ·	
187. Do do do 200000 188. Entrance to Columbia river, Oregon 775000 189. Tidal diagrams Rincon Point, San Diego and Astoria, California and Oregon 190. Co-tidal lines of the Pacific coast 715000 191. Cape Disappointment, Washington Territory 715000 192. Shoalwater bay—new edition—Washington Territory 7193. Alden's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 7194. Grenville harbor, Washington Territory 7195. Cape Flattery and Nèe-ah harbor, Washington Territory 7195. Cape Flattery and Nèe-ah harbor, Washington Territory 7196. False Dungeness, Washington Territory 7197. New Dungeness 7198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 7199. Port Townshend—new edition—Washington Territory 7199. Port Townshend—new edition—Washington Territory 7199. Port Townshend—new edition—Washington Territory 7199. Smith's or Blunt's island 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 7199. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 71999. Port Gamble 719999. Port Gamble 719999. Port Gamble 71999999999999999999999999999999999999	186.	Mouth of Columbia river—2d edition—Oregon	
189. Tidal diagrams Rincon Point, San Diego and Astoria, California and Oregon 190. Co-tidal lines of the Pacific coast 191. Cape Disappointment, Washington Territory 192. Shoalwater bay—new edition—Washington Territory 193. Alden's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 194. Grenville harbor, Washington Territory 195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness, Washington Territory 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 1900. Duwamish bay and Seattle harbor 1901. Smith's or Blunt's island 1902. Port Ludlow 1903. Port Gamble 1904. Olympia harbor 1905. Steilacoom harbor 1906. Bellingham bay 1907. Blakely harbor 1908. Semi-ah-moo bay 1909. Base apparatus 1909. Base apparatus 1909. Base apparatus 1909. Bitchell's sea-coast tide-gauge 1909. Craven's specimen box for deep-sea soundings 1909. Mitchell's sea-coast tide-gauge 1909. Diagrams of secular variation in magnetic declination, 1855 1909. Boutelle's scaffold for stations, and Farley's signal 1909. Boutelle's apparatus for measuring preliminary bases	187.	$\mathbf{p}_{\mathbf{o}}$ $\mathbf{d}_{\mathbf{o}}$ $\mathbf{d}_{\mathbf{o}}$	200000
Oregon 190. Co-tidal lines of the Pacific coast 180 191. Cape Disappointment, Washington Territory 180 192. Shoalwater bay—new edition—Washington Territory 180 193. Aldon's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 180 194. Grenville harbor, Washington Territory 180 195. Cape Flattery and Nèe-ah harbor, Washington Territory 180 196. False Dungeness, Washington Territory 180 197. New Dungeness do 180	188.	Entrance to Columbia river, Oregon · · · · · · · · · · · · · · · · · · ·	40000
190. Co-tidal lines of the Pacific coast	189.		
191. Cape Disappointment, Washington Territory 192. Shoalwater bay—new edition—Washington Territory 193. Alden's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 194. Grenville harbor, Washington Territory 195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 190. Duwamish bay and Seattle harbor 201. Smith's or Blunt's island 202. Port Indlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's carrent indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 1700000000000000000000000000000000000			
192. Shoalwater bay—new edition—Washington Territory 193. Alden's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 194. Grenville harbor, Washington Territory 195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness. do 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 200. Duwamish bay and Seattle harbor do 201. Smith's or Blunt's island do 202. Port Ludlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854. 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 110	190.		7 86 080
193. Alden's reconnaissance Western Coast, from Grey's harbor to Admiralty inlet, Washington Territory 200. Grenville harbor, Washington Territory 200. False Dungeness, Washington Territory 200. Canal de Haro and Strait of Rosario and approaches, Washington Territory 200. Duwamish bay and Seattle harbor 201. Smith's or Blunt's island 202. Port Ludlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay do 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 209. Base apparatus 210. Craven's specimen box for deep-sea soundings 211. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			
ralty inlet, Washington Territory 194. Grenville harbor, Washington Territory 195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness do 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 199. Port Townshend—new edition—Washington Territory 190. Duwamish bay and Seattle harbor 201. Smith's or Blunt's island 202. Port Ludlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 200. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 117 Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			80000
194. Grenville harbor, Washington Territory 195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 200. Duwamish bay and Seattle harbor 201. Smith's or Blunt's island 202. Port Ludlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's apparatus for measuring preliminary bases	193.	the contract of the contract o	•
195. Cape Flattery and Nèe-ah harbor, Washington Territory 196. False Dungeness, Washington Territory 197. New Dungeness 198. Canal de Haro and Strait of Rosario and approaches, Washington Territory 199. Port Townshend—new edition—Washington Territory 200. Duwamish bay and Seattle harbor 201. Smith's or Blunt's island 202. Port Ludlow 203. Port Gamble 204. Olympia harbor 205. Steilacoom harbor 206. Bellingham bay 207. Blakely harbor 208. Semi-ah-moo bay 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 110. Traver's signal 217. Boutelle's scaffold for stations, and Farley's signal	* 0.4		
196. False Dungeness, Washington Territory 197. New Dungeness do			
197. New Dungeness do		· · · · · · · · · · · · · · · · ·	_
198. Canal de Haro and Strait of Rosario and approaches, Washington Territory ritory 199. Port Townshend—new edition—Washington Territory 200. Duwamish bay and Seattle harbor do for season and seattle harbor do for season d			
ritory		-	30000
199. Port Townshend—new edition—Washington Territory 200. Duwamish bay and Seattle harbor do 201. Smith's or Blunt's island do 202. Port Ludlow do 203. Port Gamble do 204. Olympia harbor do 205. Steilacoom harbor do 206. Bellingham bay do 207. Blakely harbor do 208. Semi-ah-moo bay do 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases	100.		&1
200. Duwamish bay and Seattle harbor do ##################################	199.		
201. Smith's or Blunt's island do #88888 202. Port Ludlow do #888888 203. Port Gamble do #888888 204. Olympia harbor do #888888 205. Steilacoom harbor do #888888 206. Bellingham bay do #888888 207. Blakely harbor do #888888 208. Semi-ah-moo bay do #8888888 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			
202. Port Ludlow do # # # # # # # # # # # # # # # # # #			
203. Port Gamble do \$\frac{1}{20\sqrt{0\sqt{0\sqrt{0\sqnt{0\sqrt{0\sqrt{0\sqrt{0\sqrt{0\sqrt{0\sqrt{0\sqrt{0\sqrt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqnt{0\sqt{0\sqnt{0\	202.	Port Ludlowdo	_
205. Steilacoom harbor do store do stor	203.	Port Gamble · · · · · do · · · · · · · · · · · · ·	
206. Bellingham bay do 100000000000000000000000000000000000			************
207. Blakely harbor do 110000 208. Semi-ah-moo bay do 31 209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			30000
208. Semi-ah-moo bay do store			****
209. Base apparatus 210. Self-registering tide-gauge 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			_
210. Self-registering tide-gauge. 211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings. 213. Mitchell's sea-coast tide-gauge. 214. Figures to illustrate Appendix No. 33, 1854. 215. Diagrams of secular variation in magnetic declination, 1855. 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal. 218. Boutelle's apparatus for measuring preliminary bases			ड त्ये व व
211. Craven's current indicator 212. Craven's specimen box for deep-sea soundings 213. Mitchell's sea-coast tide-gauge 214. Figures to illustrate Appendix No. 33, 1854 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			
212. Craven's specimen box for deep-sea soundings. 213. Mitchell's sea-coast tide-gauge. 214. Figures to illustrate Appendix No. 33, 1854. 215. Diagrams of secular variation in magnetic declination, 1855. 216. Lines of equal magnetic declination. 217. Boutelle's scaffold for stations, and Farley's signal. 218. Boutelle's apparatus for measuring preliminary bases.			
213. Mitchell's sea-coast tide-gauge. 214. Figures to illustrate Appendix No. 33, 1854. 215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination 217. Boutelle's scaffold for stations, and Farley's signal 218. Boutelle's apparatus for measuring preliminary bases			
214. Figures to illustrate Appendix No. 33, 1854			
215. Diagrams of secular variation in magnetic declination, 1855 216. Lines of equal magnetic declination		0 10	
216. Lines of equal magnetic declination			
217. Boutelle's scaffold for stations, and Farley's signal	216.	Lines of equal magnetic declination	1
218. Boutelle's apparatus for measuring preliminary bases	217.	Boutelle's scaffold for stations, and Farley's signal	12000000
219. Diagrams illustrating earthquake waves at San Diego and San Francisco	218.	Boutelle's apparatus for measuring preliminary bases	
2 Table and Date Transcripto	219.	Diagrams illustrating earthquake waves at San Diego and San Francisco	

220.	Diagrams of secular variation in magnetic declination, 1856
221.	Sands's gas-pipe tripod
222.	Sands's specimen box for deep-sea soundings and revolving heliotrope $\cdot \cdot$
	Map of magnetic declination
224.	Map of magnetic dip and intensity
225.	Apparatus for measuring minor bases
226.	Polyconic development of sphere · · · · · · · · · · · · · · · · · ·
227.	Diagrams illustrating telegraphic methods for difference of longitude $\cdot\cdot$
228.	Diagrams showing injury to boilers of steamer Hetzel
229.	Project limits for charts, $\frac{1}{1000000}$ and $\frac{1}{400000}$
230.	Diagrams of winds of the Western Coast
231.	Diagrams illustrating loss of magnetism $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$
23 2.	Apparatus for measuring preliminary base lines
233.	Trenchard's tide-gauge · · · · · · · · · · · · · · · · · · ·
234.	$\textbf{M} itchell's \ tide-gauge \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$
235.	Diagrams illustrating the descent of sounding weight and line in deep-
	sea soundings · · · · · · · · · · · · · · · · · · ·
236.	Project limits for finished maps, $\frac{1}{80000}$, on Atlantic and Gulf coasts
237.	Three sketches illustrating the Superintendent's paper on currents of
	Sandy Hook ····
238.	Diagrams of magnetical and meteorological observations at Girard Col-
	lege, Philadelphia, in 1840, '41, '42, '43, '44, and '45
239.	Diagrams of observations for temperature, wind, and atmospheric pres-
	sure, made by Dr. E. K. Kane, U. S. N., at Van Rensselaer harbor
	in 1853 and 1855
259.	Progress sketches
	221. 222. 223. 224. 225. 226. 227. 228. 230. 231. 232. 233. 234. 235. 236. 237.

Report of Mr. George Mathiot, in charge of the Electrotype Division.

U. S. COAST SURVEY OFFICE, September 17, 1859.

I respectfully present the following report of the operations of this division since October 1, 1858.

By the electrotype process we have made eighty-seven plates, of this number fifty were in basso, and thirty-three in alto. I append tables of the plates. We have also made four plates for other departments of the government.

During the year the experiments for employing photography in the production of the charts of the survey have been zealously prosecuted, and I am now enabled to decisively say that the photographic method of reduction, is now in successful operation in the office, and I doubt not that before long it will prove far preferable to all other methods for delineation and accuracy, and has incomparably the advantage in economy and rapidity of execution.

I have sought to make use of the photograph in the construction of our charts. I emphasize construction in order that I may direct attention to the true object of my labors. That facility, which the photograph offers for copying, and its almost universal employment for this purpose,

causes the idea to be very generally entertained that we are endeavoring to multiply copies of our charts by photography. Such, however, would be to employ photography for the multiplication or publication of the charts, instead of their construction. But, the latter being the true purpose, and the construction of the chart being an operation founded on the methods and purposes of every department of the survey, it will be seen that the proposition to employ photography in making the charts involves no trifling considerations, and prospectively may affect every branch of the survey.

That facility which the camera offers for producing reduced copies of drawings is the element which I have sought to introduce; of the many ways in which this might be done, the following is the method which has been chosen, after the experience of the multitude of experiments I have made for the purpose during the last five years.

It must be borne in mind that a small scale chart is not merely a diminished picture of a chart constructed on a large scale; that the same things are not found in both charts; that the same things are represented differently on the different scales, and that numerous large scale charts combine in the composition of the small scales; and, lastly, that the configurations in the large charts not only change their size, but alter also their shape in entering the reduced charts, and this according to the part the object occupies in the reduced scale.

The elements of the charts are hydrographic and topographic sheets, constructed on ship-board by the hydrographer, and on the plane-table in the field by the engineer; these sheets become distorted by the hygrometric action of the paper, and hence are not true maps, and require the hand of man for their rectification; but as the error is only that of a variety of scales on the same sheet, the rectification does not affect the value of the sheet for its data, and can always be made in its reduction to the smaller scales. This is effected in the photographic method which has been adopted, in the following manner:

On a piece of transparent vellum the latitude and longitude lines of the sheet are laid down anew on the same scale as the sheet, but in a form corresponding to that which the area will form in the reduction; on this projection the squares of the minutes of latitude and longitude will not perceptibly differ from the squares on the sheets; the plan is, then, simply to lay the transparent vellum on the sheet, so as to make the minute lines for a square on the vellum coincide with those on the sheet; then with a pen trace the geographical delineations on the sheet upon the vellum, and omitting all such parts as are not desired to appear on the reduced chart; in this way the sheet is copied square by square, and all errors of shrinkage rectified, a selection of the desired parts made, and prominent objects made to retain their conspicuousness in the reduction, by increasing their size. In this operation both the judgment of the topographer and the skill of the draughtsman are required, and here is also a great occasion opened for gaining knowledge by experience. What objects to trace and what to omit, and how to trace them, are matters not easily determined; experience, judgment, deliberation, and consultation of the most able topographers and engineers of the survey will be required to decide this.

The work being transferred from the sheet to the vellum, the next operation is to produce the reduced photographic copy; for this purpose it is put up against a white board, and the camera placed at such distance as will insure the required reduction; a "collodion negative" is then made of it, and from this "negative" a paper photograph is produced, which is a reduced copy of the tracing. The photograph is then placed in the hands of the engraver, who transfers it to the copper plate; sheet after sheet being thus reduced and transferred to

the copper by their latitude and longitude lines, the finished chart at length appears in the print from the engraved plate.

Although the method here described is now in successful practice, there still remains an enormous mass of matter, relative to the conventionalities of the charts and their different scales, yet to be decided, and it is easy to foresee that even years will not suffice to wholly determine these points.

By the method I have described, I have, during the past year, constructed four charts of the survey, as follows: San Pablo bay, which I announced in my last annual report as having been successfully reduced from $\frac{1}{50000}$ to $\frac{1}{50000}$, has been twice constructed on $\frac{1}{50000}$ scale from the original sheets of the survey; the selections, however, in the first tracings, not being deemed acceptable after examining the appearance of the reduction, the sheets were again traced, and a second reduction made; this last reduction I have learned from the office is entirely satisfactory, and will be engraved. No. 29 of the eastern series of $\frac{1}{50000}$ charts has been constructed and engraved as far as the survey has been completed. New York bay and harbor, $\frac{1}{50000}$, has also been photographically reduced as far as the original sheets have been verified by the resurvey; the work, as far as done, is, however, already in the hands of the engraver.

I have given but a mere synopsis of the photographic method of constructing the reduced charts. A detailed description would be too voluminous to be given here, and, moreover, the various operations now employed may be superseded by others as experience is gained. I would be pleased, however, to prepare a full account of the photographic method of reducing for publication; and this should at some time be done, as many of the processes are original, and have been acquired by the expenditure of time and money.

I have also, as time would permit during the year, conducted other photographic experiments for the purpose of employing photography in other departments of the survey. Partial success has attended some of the experiments, particularly those I have made in conjunction with Mr. L. F. Pourtales, in charge of the tidal division, for photographing the minute shells found in the specimens of bottoms. In this labor I believe we have trodden an unexplored field, for, so far as I am informed, success has not elswhere attended the efforts to produce enlarged photographs of opaque microscopic objects; but there is still room for improvement in our efforts here. Though we have successfully introduced the work of photographing the soundings, other and no small part of my labors have been wholly fruitless thus far, yet persevering industry will ultimately succeed.

During the past year I have been assisted by Mr. D. Hinkle. He has applied himself both in the electrotype and photographic operations. I desire to commend him to the office for his assiduity in the work.

${\it List~of~plates~electrotyped~in~alto.}$

Name of chart.	No. made	Name of chart.	No. m	ıade.
Annisquam and Ipswich harbors	1	Biloxi bay	1	 L
York river	1	Entrance to Pensacola bay	1	L
Provincetown harbor	1	Semi-ah-moo bay	1	1
Patapsco river	2	Pacific coast	1	ı
Sow and Pig's reef	1	Atlantic and Pacific coasts	1	!
Wachapreague, Machipongo, and Metomkin inlets.	1	San Diego bay	1	1
Atlantic coast	1	Muskeget channel	1	-
Entrance to San Francisco bay	1	Hatteras inlet	1	
St. Simon's sound and Brunswick harbor	1	Romer and Flynn's shoals	1	
Frying Pan shoals and entrance to Cape Fear river.	1	Wimble shoals	1	Į
Gulf Stream sketch	1	Eggemoggin Reach	1	
Rockport harbor	1	Kennebec river	1	
Entrance to Brazos river	1	Port Gamble	1	
Port Townshend	1	Atchafalaya bay	1	
Wood's Hole	1	Charleston harbor	1	
York river, upper part	1	Boston harbor, scale 175000	1	

List of plates electrotyped in basso.

Name of chart.	No. made.	Name of chart.	No. made.
Chesapeake bay, sheet No. 1	1	Sow and Pig's reef	1
San Diego bay	2	Cape Fear river, lower part	1
Western coast, sheet No. 1	1	St. Simon's sound and Brunswick harbor	1
Western coast, sheet No. 3	1	Entrance to Pensacola bay	1
Harbor of Pass Christian	1	Gulf Stream sketch	1
Middle part of the southern coast of Long Island.	2	Western part of southern coast of Long Island.	2
Canal de Haro and Rosario Strait	1	Atlantic and Pacific coasts	1
Boston harbor	2	Biloxi bay	1
Provincetown harbor	3	Semi-ah-moo bay	1
Frying Pan shoals and entrance to Cape Fear river.	2	Hatteras inlet	1
York river	1	Romer and Flynn's shoals	1
Annisquam and Ipswich harbors	4	Wimble shoals	1
Eastern part of Long Island sound	. 1	Eggemoggin Reach	1
Patapsco river	2	Frying Pan shoals	1
Atlantic coast	2	Kennebec river	1
Wachapreague, Machipongo, and Metomkin inlets.	1	Atchafalaya bay	1
Eastern part of the southern coast of Long Island.	1	Rockport harbor	1
Middle part of Long Island sound	1	York river, upper part	1
Entrance to San Francisco bay	1	Wood's Hole	1

Report of Lieut. J. R. Smead, U. S. A., in charge of miscellaneous division.

COAST SURVEY OFFICE,
Washington, November 1, 1859.

The miscellaneous division, consisting of the printing office, the map room, and office for distribution of the maps and charts, and of the Coast Survey Report, was placed under my charge in the latter part of June of this year.

Lieut. James P. Roy, U. S. A., was in charge from the date of the last annual report up to the time of my being ordered to the survey.

The records of the division are kept by Mr. V. E. King, who also has charge of the map room, and distribution of maps, charts, sketches, and Coast Survey Reports, assisted by Mr. F. Holden up to September 1, subsequently by Mr. W. Mertz, the former having resigned his position on that date. Since then I have learned with regret of the sudden death of Mr. Holden from paralysis. In addition to these duties, Mr. King assists in the clerical duties in the office of the assistant in charge. In the miscellaneous division his services are invaluable, from his intimate acquaintance with the details of duty, his constant attendance, and the celerity with which he accomplishes his work.

Mr. W. Mertz, successor to Mr. Holden, in addition to his duties in the map room, backs and stretches paper, and backs and repairs plane table and other sheets, for use in the drawing division of the office. He has only been employed since September 1, but so far gives entire satisfaction.

In the printing office, Mr. Rutherdale, as printer, with his assistant, Mr. J. Barrett, have been industrious, and very constant in their attendance.

I have caused to be prepared, and herewith respectfully transmit, a statement of Coast Survey maps, charts, and sketches distributed during the year: of these 600 copies of each of thirteen different maps or charts, viz:

Annisquam and Ipswich harbors, Massachusetts.

Boston harbor, Massachusetts.

Plymouth harbor, Massachusetts.

Provincetown harbor, Massachusetts.

Long Island sound-eastern sheet.

Long Island sound-middle sheet.

Long Island sound-western sheet.

Eastern part of southern coast of Long Island.

Middle part of southern coast of Long Island.

Western part of southern coast of Long Island.

5

York River entrance, Virginia.

Beaufort harbor, North Carolina.

Cape Fear River entrances, North Carolina, have been presented, "in conformity with an act of Congress and by direction of the Treasury Department," to different institutions, societies, individuals, &c., both in this country and abroad.

I also transmit a statement of the distribution of Coast Survey Reports, and of the maps, charts, sketches, and miscellaneous matter printed since the date of the last annual report.

List of Coast Survey maps, charts, and sketches distributed during the year, for sale, use of office, and gratuitously.

Richmond Island harbor	5 11 10 20 32 179 10	5 2 3 6 4 4 3 9	18 43 34 547 29 27	23 50 37 564 43 51
Newburyport harbor Ipswich and Annisquam harbors. Gloucester harbor Salem harbor. Wellfleet harbor. Boston harbor, 195000 Boston harbor, 195000 Plymouth harbor Sea-coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor. Harbor of Wood's Hole. Nantucket harbor. Edgartown harbor Hyannis harbor Hyannis harbor Holmes's Hole and Tarpaulin Cove. Harbor of New Bedford. General coast chart from Gay Head to Cape Henlopen. Long Island sound, castern sheet. Long Island sound, western sheet. Iong Island sound, western sheet. Fisher's Island sound Harbor of New London. Mouth of Connecticut river. Harbor of New Haven. Harbors of Blackrock and Bridgeport. Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west. Oyster bay or Syoset harbor. Hart and City islands and Sa hem's Head harbor. Hell Gate. New York bay and harbor and the environs, 30000	11 10 20 32 179 10	3 6 4 4 3	34 547 29 27	37 564 43 51
Ipswich and Annisquam harbors. Gloucester harbor Salem harbor. Wellfleet harbor. Boston harbor, 40000. Boston harbor, 173000. Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island. Provincetown harbor. Harbor of Wood's Hole. Nantucket harbor. Edgartown harbor. Harbors of Holmes's Hole and Tarpaulin Cove. Harbor of New Bedford. General coast chart from Gay Head to Cape Henlopen. Long Island sound, eastern sheet. Long Island sound, middle sheet. Long Island sound, western sheet. Fisher's Island sound Harbor of New London. Mouth of Connecticut river. Harbor of New Haven. Harbors of Blackrock and Bridgeport. Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west. Oyster bay or Syoset harbor Hart and City islands and Sa hem's Head harbor. Hell Gate. New York bay and harbor and the environs, 30000	10 20 32 179 10	6 4 4 3	547 29 27 15	564 43 51
Gloucester harbor Salem harbor	10 20 32 179 10	4 4 3	29 27 15	43 51
Salem harbor. Wellfleet harbor. Boston harbor, 175050 Boston harbor, 175050 Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island. Provincetown harbor Harbor of Wood's Hole. Nantucket harbor. Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford. General coast chart from Gay Head to Cape Henlopen. Long Island sound, eastern sheet. Long Island sound, middle sheet. Long Island sound, western sheet. Fisher's Island sound Harbor of New London. Mouth of Connecticut river. Harbor of New Haven. Harbors of Blackrock and Bridgeport. Huntington bay Harbors of Captain's island, east and west. Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor. Hell Gate New York bay and harbor and the environs, 30000	32 179 10	4 3	27 15	51
Wellfleet harbor Boston harbor, 400000 Boston harbor, 1750000 Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50000	32 179 10	3	. 15	
Boston harbor, 175000. Boston harbor, 175000. Plymouth harbor. Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor. Harbor of Wood's Hole. Nantucket harbor. Edgartown harbor. Hyannis harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove. Harbor of New Bedford. General coast chart from Gay Head to Cape Henlopen. Long Island sound, eastern sheet. Long Island sound, middle sheet. Long Island sound, western sheet. Fisher's Island sound Harbor of New London. Mouth of Connecticut river. Harbor of New Haven. Harbors of Blackrock and Bridgeport. Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west. Oyster bay or Syosset harbor. Hart and City islands and Sa hem's Head harbor. Hell Gate. New York bay and harbor and the environs, 50000.	179	-	1	
Boston harbor, 173000 Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, western sheet Long Island sound, western sheet Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 300000	179	9	1	18
Boston harbor, 173000 Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, western sheet Long Island sound, western sheet Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 300000	10		568	609
Plymouth harbor Sea coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harbor Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50 50 50			39	218
Sea-coast of United States from Plymouth, Mass., to Saughkonnet river, Rhode Island Provincetown harber Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50 505	19	7	578	595
Rhode Island Provincetown harber Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	19	_		
Provincetown harbor Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet. Long Island sound, middle sheet. Long Island sound, western sheet. Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbors of Blackrock and Bridgeport. Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west. Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	19			
Harbor of Wood's Hole Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50 50 50	16 1	6	562	580
Nantucket harbor Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet. Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50 50 50		U	002	
Edgartown harbor Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet. Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	5	3	9	17
Hyannis harbor Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syossct harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50 50 50	- 1	•		
Harbors of Holmes's Hole and Tarpaulin Cove Harbor of New Bedford General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	- 1	3	16	19
Harbor of New Bedford	1		11	
General coast chart from Gay Head to Cape Henlopen Long Island sound, eastern sheet Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500		3 -		14
Long Island sound, eastern sheet. Long Island sound, middle sheet. Long Island sound, western sheet. Fisher's Island sound Harbor of New London. Mouth of Connecticut river. Harbor of New Haven. Harbors of Blackrock and Bridgeport. Huntington bay. Harbors of Sheffield and Cawkin's island. Harbors of Captain's island, east and west. Oyster bay or Syosset harbor. Hart and City islands and Sa hem's Head harbor. Hell Gate. New York bay and harbor and the environs, 50500	15	7	18	40
Long Island sound, middle sheet Long Island sound, western sheet Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	1	6	31	37
Long Island sound, western sheet. Fisher's Island sound Harbor of New London Mouth of Connecticut river. Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa-hem's Head harbor Hell Gate New York bay and harbor and the environs, 30\$555	60	2	591	653
Fisher's Island sound Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 30\$555	60	2	588	650
Harbor of New London Mouth of Connecticut river Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sachem's Head harbor Hell Gate New York bay and harbor and the environs, 30000	60	4	589	653
Mouth of Connecticut river	20	2	12	34
Harbor of New Haven Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	10	4	22	36
Harbors of Blackrock and Bridgeport Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sachem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	10	3	9	22
Huntington bay Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sarhem's Head harbor Hell Gate New York bay and harbor and the environs, 50500	5	8	14	27
Harbors of Sheffield and Cawkin's island Harbors of Captain's island, east and west Oyster bay or Syosset harbor Hart and City islands and Sahem's Head harbor Hell Gate New York bay and harbor and the environs, 30000	10	2	9	21
Harbors of Captain's island, east and west	10	3	10	23
Oyster bay or Syosset harbor Hart and City islands and Sa hem's Head harbor Hell Gate New York bay and harbor and the environs, 30000		2	9	11
Hart and City islands and Sachem's Head harbor		*****		
Hell Gate	10	3	10	23
New York bay and harbor and the environs, 30000	10	2	9	21
	20	2	24	46
		3	5	8
, 50005	105	8	107	220
Eastern part of south coast of Long Island	3	5	570	578
Middle part of south coast of Long Island			526	526
Western part of south coast of Long Island.	15	5	567	587
Delaware bay and river, upper sheet		7	28	125
Delaware bay and river, middle sheet	1	7	28	125
Delaware bay and river, lower sheet.	90	7	28	125
Patapaco river	90 90	•	42	42
Mouth of Chester river	90	2	9	11
Harbor of Annapolis and Severn river	90 90 90	4	7	45

List of Coast Survey maps, &c., distributed—Continued.

Y	Turned over	For use of	Gratuitously	
Names of maps.	for sale.	office.	distributed.	Total.
York River entrance	11	1	549	561
Pasquotank river		4	12	16
Beaufort harbor	15	1	574	590
Cape Fear River entrances			526	5 26
Cape Fear river from Federal Point to Wilmington				
Charleston harbor	10	17	77	104
Cat and Ship Island harbors		3	15	18
Mobile bay	10	10	75	95
Mobile Bay entrance	10	3	13	26
Galveston entrance	2	3	10	15
Key West harbor and approaches	150	3	54	207
Pensacola harbor			13	13
San Diego bay	50	1	1	52
Sketches of -Kennebec River entrance				
Minot's ledge			8	8
Muskeget channel	ì	1	6	9
Nantucket shoals				
Comparative map of Hudson river				
Little Egg harbor	10	3	12	25
Delaware and Chesapeake bys	25		43	68
Sea-coast of Delaware, Maryland, and part of Virginia	10	1	22	33
Chincoteague inlet	l .	1	7	9
Sea coast of Virginia and entrance to Chesapeake bay			46	46
Norfolk harbor				
Hampton Roads				
Albemarle sound		3	38	41
Comparative chart, Beaufort harbor				
Ocracoke inlet		1	5	6
Hatteras and Ocracoke inlets				
Comparative chart, Cape Fear entrances	1	ı		
Frying Pan shoals	į.	ı	5	6
New river and lar		ŀ	4	4
Sea-coast of South Carolina	1			
North Edisto	1		1	1
St. Helens sound		1		1
Winyah bay and Georgetown harbor			35	35
Entrance to Savannah river	l .	2	19	21
Savannah city, Front and Back rivers	2	1	7	10
St. Simon's sound and Brunswick harbor			20	20
Romerly marshes	2		4	6
St. Mary's river and Fernandina harbor			10	10
St. Mary's bar and Fernandina harbor				
St. Mark's bar		1	8	9
St. John's river, from entrance to Brown's creek	10	1	40	51
Comparative chart, St. John's river				
Lagaré anchorage	2	1	4	7
Waccasassa bay				

List of Coast Survey maps, &c., distributed—Continued.

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
ketches of-Cedar keys	7	2	38	4
Apalachicola river				
St. Andrew's hay	5	3	38	4
Sea-coast of Alabama and Mississippi		3	46	4
St. Leuis bay and Shieldsboro' harbor				
Biloxi bay				
Mississippi City harbor				
Grand Island Pass				
Delta of Mississippi		2	11	1
Ship Island shoal			6	
Galveston bay				
Entrance to Matagorda bay				
San Luis Pass	}		5	
Reconnaissance of the western coast of the United States				
from San Francisco to San Diego	50	11	31	9
Reconnaissance of the western coast of the United States				
from San Francisco to Umpquah river	50	11	30	g
Reconnaissance of the western coast of the United States				·
from Umpquah river to the boundary	52	10	28	9
•	1	1	20	· ·
Cortez bank	1		11	
Prisoner's, Cuyler's, and San Clemente harbors	1		11	•
San Clemente island, southeast end	i		7.0	
Santa Barbara	Į.		10	•
Anacapa island	1		12	•
San Simeon, Santa Cruz, San Luis Obispo, and Coxo	i		11	(
Santa Cruz and Año Nuevo	i		13	•
San Pedro harbor	1		7	Į.
Monterey harbor	1		5	•
Map of San Francisco city	557		728	1,28
San Pablo bay				
Humboldt bay	55		6	(
Trinidad bay	55		8	•
Port Orford, Shelter Cove, Mendocino City and Crescent				
City harbors	52		15	. (
Entrance to Umpquah river	50		13	(
Entrance to Columbia river	56		6	(
Shoalwater bay	50		10	(
Reconnaissance from Gray's harbor to Admiralty inlet	51	1	14	(
Cape Flattery and Nee-ah harbor	50		11	•
False Dungeness harbor	50		11	(
Port Townshend	52	2	15	(
Canal de Haro	50	1_	27	7
Port Ludlow	52	3	16	,
Port Gamble	52	2	15	
Blakely harbor		•	}	6
Bellingham bay	52 52		15 15	Ì

List of Coast Survey maps, &c., distributed—Continued.

	Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
ketches of-	Steilacoom harbor	52		14	
	Olympia harbor				
	Semi-ah-moo bay		- 	5	
	Eggemoggin Reach			3	
	Current chart, Boston harbor	1		4	
	Stellwagen's bank	1		14	
	Sow and Pig's reef			3	
	Romer Shoal and Flynn's Knoll			2	
	Changes in Sandy Hook	1		3	
	Wachapreague, Machipongo, and Metomkin inlets	1		3	
	Ship and Sand Shoal inlets	1	1	2	
	Cherrystone inlet	1	1	3	
	Pungoteague creek		1	3	ĺ
	Fishing or Donoho's battery			12	
	Sea-coast of North Carolina				
	Hatteras shoals	1			
	Hatteras inlet			4	
	Wimble shoals		••-	*	
				3	
	Winyah bay and Cape Roman shoals	-	1	4	
	Bull's bay	}	1	ì	
	Doboy bar and inlet	1	2	1	
	St. Andrew's shoals	1		13	
	Mosquito inlet	1	2	13	
	Cape Canaveral	•	2	4	
	Rebecca shoal	1	1	13	
	Turtle harbor	1	1	14	
	Coffin's Patches		1	3	
	Ocilla river	1	2	3	
	Entrance to St. George's sound	1	3	13	
	Horn Island Pass		1	4	
	Pascagoula river	1	1	14	
	Pass Christian	1	1	14	
	Entrance to Barrataria bay	1	1	2	
	Pass Fourchon	1		4.	
	Timballier Bay entrance	1		5	
	Vermilion bay and Calcasieu river	[1	3	
	Aransas Pass	1	2	14	
	Sabine Pass	1	2	14	
	Entrance to Rio Grande river	10	1	4	
	San Pedro anchorage	51		10	1
	Mare Island straits	20		9	
		51		10	
	Point Conception	ł		10	
	Point Pinos	50		9	
	Point Reyes and Drake's bay	ì		ļ '	
	Cape Hancock Grenville harbor	ł		10 1	

REPORT OF THE SUPERINTENDENT OF

List of Coast Survey maps, &c., distributed-Continued

Names of maps.	Turned over for sale.	For use of office.	Gratuitously distributed.	Total.
Sketch of—Duwamish bay and Seattle harbor	ì		11	62
Lines of equal magnetic declination				ļ
Map of the world on a policonic development of the sphere				ł
Total	3,584	306	10, 180	14,070

Distribution made during the year of the reports of the United States Coast Survey for the years 1851, 1852, 1853, 1854, 1855, 1856, and 1857.

		Report of 1851.			Report of 1851.							port 1852			eport 1853			e port 1854.			port 1855		R	eport 1856		Rep	ort of l	1857.
Names of States, &c.	Individuals.	Institutions.	Total.	Individuals.	Institutions.	Total.	Individuals.	Institutions.	Total.	Individuals.	Institutions.	Total.	Individuals.	Institutions.	Total.	I ndividuals.	Institutions.	Total.	Individuals.	Institutions.	Total.							
Maine							2		2	1		1	1		1	4		4	103	25	12							
New Hampshire			••					••••		•••	• • • •		••••		••••	2		2	68	14	8							
Vermont		•••	••••							••••	•••			••••	••••				56	4	6							
Massachusetts	1		1	1	•••	1	1		1	2		2	2	••••	2	15		12	405	69	47							
Rhode Island	1	••••	1	***	• • • •			••••	••••	1	•••	1	••••	•••	•••	2	 	2 2	52 121	15 21	6 14							
Connecticut	6	••••	••••		• • • • •	6			8	16		16	1 25		1 25	2 54		54	651	99 21	75							
lew York	•	••••	6	6	••••	1	8		3	3		3			3	6		6	120	24	14							
Pennsylvania	2		2	4	2	6	5	2	7	5	i	7	8	2	10	31	2	33	414	97	51							
Delaware				ļ				l				ļ		~			ļ		14	6	2							
Maryland				1		1	1		1	4		4	6		6	14		14	184	13	19							
District of Columbia	5		5	5		5	9		9	12		12	15		15	46	ļ	46	22 8		22							
Virginia			•••	1		1	2		2	2		2	4		4	12	 -	12	165	24	18							
North Carolina	ļ. .				ļ											3		3	78	9	8							
South Carolina	1		1	1		1	1		1	1	 .	1	1		1	1		1	156	16	17							
leorgia	1	••••	1	2		2	2		2	1		1	1		1	3		3	76	10	8							
Alabama	 .		••••						••••	•••-			• • • •		• • • •			••••	63	15	7							
Mississippi	 -	••••	••••	••] -	1		1							1		1	42	5	4							
ouisiana	ļ		••••				••••								••••	2	٠	2	63	31	7							
Ohio	1		1	1		1	1		1	3	••••	3	2		2	9	ļ	9	221	62	28							
Centucky	<u> </u>	••••	••••			••••			••••			••••			••••	••••	••••		91	28	11							
l'ennessee	ļ	••••	٠٠٠	••••	••••		••••		••••	••••				•••				••••	75	28	10							
ndiana	ļ	••••	••••				• •												112 91	23 35	13 12							
llinois		••••	****	••••	••••	ļ				•			••••	••••		1	••••	1	75	21	12							
dissourikansas	ļ. .	••••	•••	• • • •					••••	•••			1		1	3		3	12	!	1							
Michigan	1	••••	1	1	•••	1				1	,	1	1		1	6		6	53	15	6							
Fiorida	l		•			l				1		l	1		1	5		5	35	3	5							
Texas													_		1	1		1	41	1	4							
owa																2		2	18	13	3							
Wisconsin										1		1				2		2	50	13	6							
California	 .] .]. <i>-</i> .		,.	 	1		1	1		1	3	Ì	3	64	13	7							
Minnesota	ļ						ļ. .					ļ							8	4	1							
Oregon							ļ. .			• • • •		J		· • •			••••		10	1	1							
Perritory of New Mexico		•••								••••				••••					1		1							
Perritory of Washington		••••		•••	••••		••••		••••	• • • •					••••		••••		7	•••••								
Ferritory of Kansas		•••		••••	- .	••••	••••		••••	•••			••••	•••	• • • •	1	•••	1		· • • • •	****							
l'erritory of Nebraska	•••••	••••	••••	••••	- -					••••			••••	••••	••••	••••	••••		1	••••	١							
Coast Survey Office and assistants	1	••••	1	7	١.	7	13		13	6	• • • •	6	9	•••	9	42	••••	42	226		22							
Officers of the army	1	••••		••••		• • • •	· • • • •						••••		••••	5	••••	5	150		15							
Officers of the navy		••••	••••	••••	••••	••••	••••	••••	••••	••••		••••	••••	••••	••••	••••	•••		49	•••••	4							
Executive departments		••••	****	•••	•••	··· ·		••••		•••	• • • •		••••	•••	•••			••••	94 88	•••••	9							
Surveyors general of public lands		••••	••••			•••			••••	•••			••••	•••	••••				12	•••••	1							
aspectors of steamboats						••••						[]	•••						9		'							
Sovernors of States			l																33									
Collectors of customs, surveyors of ports, &c							1												154		15							
Revenue bureau				1										•••	ļ			I	30		3							
Newspapers																			198		1							
National Observatory							Į. .	ļ				ļ							50		1 8							
ight-house Board							ļ												30		3							
mitheonian observers					,								 .		·				286		98							
Members of Congress																7												
Greign	1		1	2		2	5	 .	5	6		6	5		5	12		12	61		6							
	<u> </u> —				_		-	 	<u></u>	 			<u> </u>		-		.	.										

Statement of Coast Survey maps, charts, and sketches, printed during the year.

SECTION I.

	No. of impressions.
Sketch A · · · · · · · · · · · · · · · · · ·	30
Sketch A bis	30
Boston harbor $\frac{1}{40000}$	183
Boston harbor $\frac{1}{175000}$	237
Provincetown harbor	730
Sea-coast chart from Portland to Race Point	30
Sea-coast chart from Plymouth to Saughkonnet	30
Portsmouth harbor	10
Harbors of Ipswich and Annisquam	705
Plymouth harbor	600
Rockport harbor	30
York River harbor	30
Section II.	
Hudson river \triangle^n	66
Long Island sound—eastern sheet · · · · · · · · · · · · · · · · · ·	
Long Island sound—middle sheet	719
Long Island sound—western sheet·····	
Eastern part of southern coast of Long Island	
Middle part of southern coast of Long Island	
Western part of southern coast of Long Island	
Sandy Hook diagrams	
Section 1II.	
Sketch C ·····	30
Chesapeake bay, sheet No. 1 · · · · · · · · · · · · · · · · · ·	
Chesapeake bay, sheet No. 2	
Chesapeake bay, sheet No. 3	
Rappahannock river, sheet No. 5	
Rappahannock river, sheet No. 6	
York River entrance	
Chesapeake bay notes · · · · · · · · · · · · · · · · · · ·	
Chesapeake bay titles	
Patapsco river	
Delaware bay and river, upper sheet	
Delaware bay and river, middle sheet	47
Delaware bay and river, lower sheet	
Delaware and Chesapeake bays	
York river, from King's creek to West Point	
Mouth of Chester river	

Section IV.

	No. of impressions.
Sketch D····	
Beaufort harbor	677
Cape Fear River entrances	650
Pasquotank river	32
Sea-coast chart from Cape Hatteras to Cape Lookout·····	30
SECTION V.	
Winyah bay and Georgetown harbor	100
St. Simon's sound and Brunswick harbor	
Sea-coast of South Carolina	
Section VI.	
Sketch F···	30
Sketch F bis	- -
Entrance to Pensacola bay	
Legaré anchorage	
St. Mary's river and Fernandina harbor	
Florida reefs	
riorius 16618	40
SECTION VII.	
Sketch G	30
SECTION VIII.	
Sketch H	30
Harbor of Pass Christian	
Sea-coast of Alabama and Mississippi	
Atchafalaya bay	
Mobile bay	
SECTION IX.	
15 1	9.5
Sketch I	
San Luis Pass	
Sea-coast of Texas	
Entrance to Brazos river	30
Section X.	
Sketch J, middle sheeet	
Sketch J, lower sheet	
Entrance to San Francisco bay	. 12
San Diego bay	171
Monterey bay	35
Prisoner's, Cuyler's, and San Clemente harbors	
Santa Cruz and Año Nuevo	
San Pedro harbor	50
Point Pinos	50

	No of impressions.
Point Conception	50
Point Reyes and Drake's bay	75
San Pedro anchorage	75
West Coast reconnaissance, lower sheet · · · · · · · · · · · · · · · · · ·	160
Section XI.	
Sketch K · · · · · · · · · · · · · · · · · ·	30
West Coast reconnaissance, northern sheet	175
Umpquah river	50
Cape Hancock	50
Duwamish bay and Seattle harbor	75
Reconnaissance from Gray's harbor to Admiralty inlet	100
Semi-ah-moo bay	10
Port Townshend	30
Port Gamble · · · · · · · · · · · · · · · · · · ·	30
MISCELLANEOUS.	
Circular protractors	125
Forms for engraving division	311
Chart of the Pleiades	400
Tidal diagrams	170
Isogonic lines · · · · · · · · · · · · · · · · · · ·	50
Progress of United States Coast Survey on Atlantic and Gulf coasts	428
Self-registering tide-gauge	40
State map of Virginia	28
Diagrams, descent of sounding weight and lines	20
Current diagrams	100
Proofs from finished and unfinished plates	1,730
	15,194

APPENDIX No. 18. List of registered topographical sheets received subsequent to No. 680.

Localities.	State.	Scale.	Date.	Topographers,	Register number.
Kennebec river	Maine	1-10,000	1858	R. M. Bache	728
Portland harbor and environs	do	1-10,000	1854-'58	A. W. Longfellow	73 5
North river	Massachusetts.	1-10,000	1858	A. M. Harrison	719
Rondout creek	New York	1-5,000	1858	C. Fendall	727
Esopus creek	do	1-5,000	1858	do	726
Northwestern part of Staten island and Bergen				'	
Point	do	1-10,000	1857	H. L. Whiting	751
Bergen Neck, from Centreville to New Jersey				-	
railroad	New Jersey	1-10,000	1858	F. W. Dorr	733

APPENDIX No. 18—TOPOGRAPHICAL SHEETS—Continued.

Localities.	State.	Scale,	Date.	Topographers.	Register number.
Passaic river and Newark neck Western part of Newark bay and Staten island	New Jersey	1-10,000	1858	F. W. Dorr	734
sound, from the mouth of Passaic river to Perth Amboy	.	1-10,000	1858	do	729
Chincoteague bay			1858	C. Ferguson	723
Chincoteague inlet and bay			1858	N. S. Finney	704
·			1857	J. Seib	685
York river, from Wormley to Clay Bank York river, from Clay Bank to Mount Folly	1		1857-'58	do	686
York river, from Mount Folly to West Point		1-20,000	1858	do	722
Richmond city		1-5,000	1857–'58	H. Adams	684
Cape Henry		1-20,000	1859	J. J. S. Hassler, J. Mechan.	1
Back bay		1-20,000	1859	do	743
North river			1859	J. Mechan	754
Head of Currituck sound		i	1858	J. J. S. Hassler, J. Mechan.	736
Topsail sound, from Water's bay to old Top-	7 a. and 11. C.	1-20,000	2000	b. b. c. massier, b. mechan.	130
sail inlet	N. Carolina.	1-20,000	1857-'58	John Mechan	711
Cape Fear river, lower part, including New	II. Garonna	1 20,000		John McChair 111111111111111111111111111111111111	, , , ,
inlet	- do	1-10,000	1858	C. P. Bolles	709
Cape Fear river, lower part and approaches	1	1	1858	do	708
West of Cape Fear river		1-10,000	1858	do	1
Dewees and Capers islands			1856~'57	Lieut. Com'g J. N. Maffitt.	1
Morris island and vicinity	ì	1-10,000	1858	John Seib	1
Charleston city and vicinity	í	1-10,000	1857-'58	W. S Edwards	710
Folly island and vicinity	į.	1-20,000	1858	John Seib	71+
Ossabaw sound and vicinity	1	1	1858	A. M. Harrison	1
Ogeechee sound and vicinity.		1-10,000	1858	do	1
Sapelo sound and vicinity		1-20,000	1857-'58	A. W. Longfellow	1
Saint Simon's sound		1-10,000	1856-'57	do	750
South of St. John's river, from entrance to					
General E. Hopkins's plantation	Florida	1-10,000	1858	John Mechan	712
South of St. John's river, from General Hop-		ŕ			
kins's to Diego plains	do	1-10,000	1858	do	713
Key Biscayne, from Shoal Point to Black		ĺ			
- •	do	1-20,000	1859	C. T. Iardella	744
Key Biscayne, from Turtle Point to Fender		,			
Point	do	1-20,000	1859	do	745
Card's sound, from W. Arsenicker to Jew Point.		1-20,000	1859	do	1
Barnes's sound	i	1-20,000	1859	do	1
Long island, Mud and Captain keys		1-20,000	1857	F. W. Dorr	i
Upper Matecumbe and Windly's island		1-20,000	1858	C. T. Iardella	1
Lower Matecumbe and Long key		1-20,000	1858	do	1
Duck, Channel, and Conch keys, and part of					
Long key	do	1-20,000	1857	F. W. Dorr	688
Crawl, Grassy, and Tom's Harbor keys, and		.,	1		
part of Flat Deer key	do	1-20,000	1857	do	689
Buchanan and adjacent keys		1-20,000	1859	C. T. Iardella	
Oyster and adjacent keys	1	1-20,000	1	do	
g	,				

REPORT OF THE SUPERINTENDENT OF

APPENDIX No. 18—TOPOGRAPHICAL SHEETS—Continued.

Localities.	State	Scale.	Date.	Topographers.	Register
***************************************					number.
San Carlos bay and approaches	Florida	1-20,000	1858	F. W. Dorr	693
Charlotte Harbor approaches	do	1-20,000	1859	F. W. Dorr, C. Fergu	
				son	739
Charlotte Harbor approaches	do	1-20,000	1859	do	738
Homosassa river	do	1-10,000	1857	N. S. Finney	691
Crystal reefs and river		1-20,000	1858	do	705
From the Waccasassa to the Withlacoochee					
river	do	1-20,000	1858	do	699
Alligator harbor and St George's sound	do	1-20,000	1858	C. T. Iardella	695
St. George's sound from Royal Bluff, in-		,]
cluding Dog island	do	1-20,000	1858	G. D. Wise	697
St Vincent's sound and island		1-20,000	1858	do	698
Western part of Santa Rosa sound, Pensacola	•	,			
bay	do	1-10,000	1859	F. H. Gerdes	701
Part of Pensacola, Escambia, and East bays		1-20,000	1858	do	717
Pensacola bay, west side		,	1858	do	700
Part of Matagorda bay, from Trespalacios		,			Į į
river to Carankaway bay	Texas	1-20,000	1856	M. Seaton	737
Lavaca bay, from Benado creek to Cox's bay.	i e		1858	do	742
Lavaca bay, from Garcitas bay to Chocolate		,			
bay	do	1 20,000	1858	do	740
Indianola and environs			1859	W. H. Dennis, M. Sea-	
		[ton	752
From Matagorda Bay entrance to Aransas					
Pass, (reconnaissance)	do	1-50,000	1858	8. A. Gilbert	720
From Point Duma to Cañada de Isique	California	1-10,000	1857	W. M. Johnson	703
From Cafada de Isique to Punta Mugu	do	1-10,000	1857	do	702
From Santa Clara river to San Buenaventura.	do	1-10,000	1855	do	683
Crescent City harbor	do	1-10,000	1859	J. S. Lawson	741
From Punta del Bolsa to Tunitas creek	do	1-10,000	1854	W. M. Johnson	682
San Francisco city and vicinity	do	1-10,000	1857-'58	A. F. Rodgers	687
Gulf of Georgia, southern part, from Matia	i		ĺ		1
islands to East Point	Wash'n Ter'y.	1-20,000	1858	J. S. Lawson	730
Gulf of Georgia, southern part, from East					<u> </u>
Point to Deep bay	do	1-20,000	1858	do	731
Gulf of Georgia, southern part, from Deep		-			
bay to Rocky island.		1-20,000	7050	do	732

APPENDIX No. 19.

List of registered hydrographic sheets received subsequent to No. 632.

Localities.	State.	Scale.	Date.	Hydrographers.	Register number.
Sheepscot river, from Hendrick's Head light					
to Wiscasset	Maine	1-10,000	1858	Lieut. Comg J. H. Moore	675
Sheepscot river, from Hendrick's Head light				3	676
to Wiscasset	1		1858	Time Come C. D. Time	676
Kennebec river, from Coxe's Head to Bath	do	1-10,000	1857	Lieut, Comg. S. D. Trench	
				ard	639
Casco bay	i		1857–'58	Lieut, Comg. W G Temple_	664 667
From Kennebunk port to Isles of Shoals	i	1-40,000	1858	Lieut, Comg. A. Murray	İ
Salem harbor	1	1-5,000	1858	Lieut Comg W.G. Temple.	651 662
Lynn harbor		1-10,000	1858	Lieut. Comg. A. Murray	652
Boston harbor	Ł	,	1858	Lieut. Comg W.G. Temple.	618
		1-5,000	1858	do	647
Shoal off New Haven light-house	Connecticut	1 5,000	1858	do	041
	N V N I and				
Henlopen	1		1050	A Donahla	
Harley June and Country Durmal and	Delaware	,	1859	A. Boschke	670
Harlem river and Spuyten Duyvel creek	New Tork	1-10,000	1856	Lieut. Comg. T. A. Craven	646
East river, from south end of Blackwell's		1.5.000	1050	J.	
island to Harlem river	1	1-5,000	1856	do	645
Off the Battery, New York harbor	1	1	1859	Figure Company & Manney	678
Rondout creek	i	1-5,000	1858	Lieut. Comg. A. Murray	665
Esopus creek	1	1-5,000	1858	odo	666
Nanticoke river and Fishing bay	1 -	1-20,000	1858	Com. W. T. Muse	673
Patuxent river	do	1-20,000	1857	do	641
St. Mary's river, from Point Lookout to Ford's					
Landing	do	1-20,000	1857	do	640
James river, from Little Brandon to Wyanoke				754 61 7 37 35 80	
Wharf, (reconnaissance)	1	-	1857	Lieut, Comg. J. N. Maffitt	634
Off shore, from Cape Henry to Cape Hatteras.	4		1859	Lieut. Comg. A. Murray	674
Pamplico sound	1	-	1858	Com. W. T. Muse	672
Pamplico sound	1	1-20,000	1857	do	661
From Flagstaff to New River inlet.	1	1-40,000	1858 - '59	Lieut. Comg. A. Murray	644
New inlet, northern entrance to Cape Fear	1		1050	Time of the second	1
river	1		1858	Lieut. Comg. T. B. Huger	645
Cape Fear bar	do	1-10,000	1858	do	642
Deep-sea soundings between Winyah bay					
and Amelia island	1	1 000 000	1055		1
Dulli- 1	Florida	1 '	1858	do	653
Bull's bay		1-20,000	1859	Lieut. Comg. J. P. Bankhead	683
From Charleston to Savannah	i	1-40,000	1853 57	Lieut. Comg. J. N. Maffitt	649
Chechessee and Colleton rivers	do	1-10,000	1859	Lieut Comg C.N. Fauntle-	
P. i.p.	_			roy	679
Port Royal entrance			1859	do	677
Beaufort river, (reconnaissance.)	do	1-10,000	1855	Lieut. Comg. J. N. Maffitt.	633

APPENDIX	No. 19-	-HYDRO	GRAPHIC	SHEETS—	Continued.
----------	---------	--------	---------	---------	------------

Localities.	State.	Scale.	Date.	Hydrographers.	Register number.
Sapelo sound	Georgia	1-10,000	1858	Lieut. Comg. J. H. Moore	659
Sapelo sound and adjacent waters	do	1-10,000	1858	do	660
Florida reefs, from Bahia Honda to Key Vaccas	Florida	1-20,000	1858	Lieut. Comg. W.G. Temple.	663
Florida reefs from American shoal to Sombrero key	do	1-20,000	1857	Lieut. Comg. T. A. Craven.	669
Florida reefs, from East Sambo to Logger-head key	do	1-20, 000	1856	do	650
Cedar keys, resurvey of Main and North keys and southwest channels	do	1-10,000	1858-'59	Lieut. Comg. T. B. Huger	668
St. George's sound, East Pass	do	1-20,000	1858	Lieut. Comg. J. K. Duer	655
St. George's sound, West Pass	do	1-20,000	1858	do	654
Rigolets	Louisiana	1-10,000	1859	W. S. Gilbert	671
Off shore, from Timbalier bay to Galveston bar	La. and Texas.	1-635,000	1858	Lieut. Comg. J. K. Duer	657
Atchafalaya bay	Louisiana	1-20,000	1858	Com. B. F. Sands.	658
Atchafalaya Bay approaches	do	1-20,000	1859	Lieut. Comg. T. B. Huger	680
Atchafalaya bay	do	1-20,000	1859	do	681
Côte Blanche bay, eastern part	do	1-20,000	1859	do	682
Matagorda bay entrance, Pasa del Cavallo	Texas	1-20,000	1858	A. Balbach	635
Brazos River bar	do	1-10,000	1858	Lieut. Comg. J. K. Duer	656
San Francisco bay, from Ravenswood to Coyote					
creek	California	1 10,000	1857-'58	Lieut. Comg. R. M. Cuyler.	636
San Francisco bay, Steinbergen and Redwood					}
City creeks	do	1-10,000	1858	do	637
San Francisco bay, Coyote Hill and Union					
City creeks	do	1-10,000	1858	do	638

APPENDIX No. 20.

List of geographical positions determined by the United States Coast Survey, and continued from reports of 1851, 1853, 1855, and 1857.

The present list is a continuation of that published in the annual reports for 1851, 1853, 1855, and 1857, and contains the geographical positions of points determined astronomically and trigonometrically, since the date of the former reports, with the repetition of a few points previously published for convenience of reference. The following explanations will give all the information required for the use of the tables.

For the purposes of the survey, the coast is divided into eleven sections, in all of which the work is carried on simultaneously. The survey being in different stages of progress in the several sections, and new results being added from year to year to those here given, the same divisions have been adopted in the publication.

The several sections are defined as follows:

SECTION I. From Passamaquoddy bay to Point Judith.

SECTION II. From Point Judith to Cape Henlopen.

Section III. From Cape Henlopen to Cape Henry.

SECTION IV. From Cape Henry to Cape Fear.

SECTION V. From Cape Fear to St. Mary's river.

SECTION VI. From St. Mary's river to St. Joseph's bay.

SECTION VII. From St. Joseph's bay to Mobile bay.

SECTION VIII. From Mobile bay to Vermilion bay.

SECTION IX. From Vermilion bay to the Rio Grande.

SECTION X. Coast of California, San Diego bay, to 42d parallel.

SECTION XI. Coast of Oregon and Washington Territory, 42d to 49th parallel.

The tables give the latitudes and longitudes of the trigonometrical points in each section, and their relative azimuths or bearings and distances. The manner in which these data have been obtained may be briefly explained here.

In each section a base line of from five to ten miles is measured with all possible accuracy. A series of triangles, deriving the length of their sides from this base, is then established along the coast by the measurement of the angles between the intervisible stations. In this primary series the triangles are made as large as the nature of the country will permit, because the liability to error increases with the number of triangles.

On the bases furnished by the sides of the primary triangles a secondary triangulation is next established, extending along the coast, and over the smaller bays and sounds, and determining a large number of points at distances a few miles apart for the use of the topographical and hydrographical surveys.

The distances between the points thus determined, as given in the tables, are liable to an average error of about one foot in six miles, until a final adjustment between the base lines shall have been made.

In some parts of the survey the base lines for the primary triangulations have not yet been measured, or the connection between the secondary and primary triangulation has not yet been made, in which cases the distances depend on preliminary base lines, measured with great care, and they are liable to an average error of one foot in three miles. This applies to the positions from the Savannah river to Sapelo sound in Section V, to a part of those in Section VI, and to the positions in Sections VII and IX, to a part of those in Section XI.

As on the completion of the primary or main triangulation in each section the several series form one connected chain, the different bases afford verifications of each other, and of the triangulation connecting them. The first four sections are thus connected, the last section and part of the fifth, however, only in a preliminary way.

Observations for latitude and azimuth are made at a number of stations of the primary triangulation in each section. The differences of latitude, longitude, and azimuth between these and other stations are then computed, under the supposition that the earth is a spheroid of revolution of the following dimensions, which are those determined by Bessel, from the reliable measurements made at the time, viz:

Equatorial radius = 6377397.16 metres.

Polar radius = 6356078.96 metres.

Eccentricity = 0.08169683.

It has been found that the differences of latitude and longitude, as computed in this manner from the distance and azimuth between two stations, and which are called geodetic, differ from

those obtained by astronomical observations at the several stations by quantities which are greater than the errors of the observations. Such disagreements are due to local irregularities in the figure and density of the earth, and the error resulting from them in the determinations of latitude and of the meridian plane is designated as station error. It amounts, according to the results obtained at present, to between one and four seconds of arc in the eastern section of the survey, and to about one second and a half in the sections south of the Delaware.

In order to eliminate the influence of station errors on the general result observations are made at a number of stations; the results are referred to a central station by means of the geodetic differences, and the mean of all is used for the computation of the positions given in the tables. The geographical positions must therefore be considered as liable to future changes from the accumulation of new observations, and from the final discussion of all the results obtained.

The differences of longitude are obtained, as has been stated, by computation from the distances, latitudes, and azimuths of the triangulation. In adding up the differences from station to station an accumulation of the incidental errors is probable. They are checked, however, by differences of longitude determined by means of the electro-magnetic telegraph in every section where the introduction of the latter makes it practicable.

Seaton station, in Washington city, has been selected as the centre for the telegraphic differences of longitude. The sections at present connected by telegraph are Sections I, II, III, IV, V, and VIII. The first three being also connected by primary triangulation, the check on the geodetic differences of longitude is here obtained, and the agreement is very close. The longitudes from Greenwich in the first five sections depend directly, and in other sections indirectly, upon that of Cambridge observatory, as determined by chronometric differences between Liverpool and Cambridge, and by occultations, eclipses, and moon culminations, observed at various observatories in the United States, and referred to Cambridge by means of telegraphic differences. The following statement shows the result up to the present time.

Longitude of Cambridge, Mass., from Greenwich.

By moon culminations observed at Cambridge; Hudson, Ohio; Wilkes' observa-		<i>57</i> 6.	5.
tory; and National observatory	4	44	28.4
By eclipses and occultations at Cambridge, Brooklyn, Philadelphia, and Wilkes'			
observatory	4	44	29.6
By chronemetric differences from 1,065 exchanges in 1849, 1851, and 1855	4	44	31.9
The longitude as adopted in former reports, (since 1851,) viz: 4h. 44m. 29 22.50", is still retained.	.58.,	or 7	1° 07′
T. Charles That I also have a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a	٥	•	11
In Section V the longitudes depend on the telegraphic determinations of			
Charleston and Savannah, viz: Charleston, Gibbes' observatory	79	56	0.00
Savannah Exchange	81	05	16.85
In Section VI the longitude of Fernandina has been assumed as it resulted			
	81	27	42.78
For Cape Florida the following value was retained, viz:	80	09	24.0
Sand Key, (as before) · · · · · · · · · · · · · · · · · · ·	81	52	43.0

In Sections VII, VIII, and IX the longitudes are counted from some central station in each, for which we have at present the following data, subject to future corrections:

	-	•	
Section VII. Depot key, Cedar keys	83	02	45
Sections VIII and IX. Depend on Fort Morgan, Mobile Point, west of Green-			
wich	88	00	25

The longitudes in Sections X and XI are reckoned from Greenwich. They depend on moon culminations observed at San Diego, Point Conception, Point Pinos, Presidio, Telegraph Hill, Port Orford, Cape Disappointment, and Cape Flattery, compared with corresponding observations at Greenwich and American observatories, and on chronometric differences between the same and other stations.

	0	,	"
In Section X the longitude of Presidio observatory, San Francisco, he	as been		
adopted	12	2 26	15.0
The Section XI longitudes depend upon Point Hudson astronomical st	ation · 12	2 44	33.0
And upon Lummi Island astronomical station	12:	2 40	36.9

Explanation of the tables.

The first column on the left contains the name of the several stations or triangulation points. Their general locality is indicated by the heading at the top of the page, by means of which they may be readily found on the sketches accompanying the tables. Sub-headings in the first column indicate the locality more minutely where it is practicable.

The stations are generally either prominent objects of permanence, such as spires, light-houses, beacons, &c., or they are points on prominent hills, capes, and points of land where signals have been erected for the purposes of the survey, and which are marked on the ground. In a small number of cases in the first three sections, but much more frequently in the southern sections, where settlements on the coast are sparse and few permanent objects are to be found, the stations have no other distinguishing mark than the signal erected on the spot, and, after its decay, the mark left in the ground, to designate the station point. The latter generally consists of posts or stones set around the point, while the centre of the station is designated by an earthen cone or glass bottle buried under the surface of the ground, and marked on the top by a stone or post. Where the station is on a rock, a copper bolt or a hole filled with lead or sulphur will be found to designate the exact spot.

The sketches showing the configuration of the land, as well as the relative positions of the stations, no great difficulty will be experienced in finding the latter, when desired for local surveys or reference. In any case where minute descriptions of particular points are required they can be had by application addressed to the Coast Survey Office.

The second and third columns contain the latitudes and longitudes of the stations named.

The fourth column contains the azimuth of the line joining the station named in the first column with that named in the fifth; that is to say, the angle which that line makes with the meridian of the former station, reckoned from south around by west through the whole circle.

The sixth column gives the back azimuth of the same line, or the angle which it makes with the meridian of the latter station, reckoned as before; the difference between the azimuths in the fourth and those in the sixth columns being 180° less the inclination of the meridians at the two stations.

The seventh, eighth, and ninth columns give the distances, in metres, yards, and miles, between the stations named in the first and fifth columns. The relation of the metre to the yard, used in obtaining these results, is:

1 metre = 1.0935696 yard, or 39.368505 United States standard inches.

For each station the azimuths and distances to two other stations are given. In every case the lines so given have actually been observed.

In each section the stations of the primary triangulation are distinguished by being printed in small capitals.

Section I.—Vicinity of Sheepscut River. Sketch No. 2.

		i				1		
Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimutb.	Distance.	Distance.	Distance.
Southport Ledge	43 48 56.65	69 38 57.06	° ' '' 333 40 38 296 03 29	Damiscove	153 42 22 116 96 51	Metres. 7608.3 7250.8	Yards. 8329.2 7929.2	Miles. 4.73 4.50
Mount Pisgah	43 51 06.89	69 36 51.05	35 01 11 332 50 37	Southport Ledge White Island	214 59 44 152 52 31	4906.9 8099.2	5366 .0 8857.0	3.05 5.03
Griffith's Head	43 46 55.68	69 42 57.59	197 06 36 289 23 30	Bartoc	17 08 31 109 28 01	12653,2 9280,3	13837.2 10148.7	7,86 5 77
Cushman	43 58 42.54	69 40 25,04	294 57 35 358 07 45	Edgecombe	115 00 41 178 07 55	6593.8 9728.3	7210.8 10638.6	4.10 6.04
Haggett, (1)	43 59 44.31	69 36 18,62	354 06 35 70 52 16	Edgecombe	174 06 50 250 49 25	4717.0 5812.5	5158.4 6356.4	2.93 3.61
Neguassett	43 57 39.59	69 44 57.25	320 34 41 252 12 57	BartoeCushman	140 38 00 72 16 06	10066.9 6370.9	11008.8 6967.0	6.25 3.96
Equare Barn, centre	43 59 42.17	69 37 46.84	332 04 58 62 26 32	Edgecombe	152 06 14 242 24 42	5234.6 3976.8	5724.4 4348.9	3.95 2.47
Cottage, white chimney	43 59 12.56	69 41 05.27	298 20 53 261 15 11	Edgecombe	118 24 27	7811.4 6461.2	8542.3 7065.8	4.85 4.01
Wiscasset, brown spire	44 00 17.72	69 39 41.42	318 49 10 18 18 17	Edgecombe	138 51 46 198 17 47	7602.1 3094.9	8313.4 3384.5	4.72
Yellow House, chimney	44 02 05.82	69 39 33,95	331 53 16 10 17 12	Edgecombe	151 55 47 190 16 37	10269,0 6376,5	11229.9 6973.1	6.38 3.99
Dunham's Hill	44 00 46.48	69 37 25,16	46 20 52 322 17 29	Cushman	226 18 47	5539.6 2424.6	6057.9 2651.5	3.44 1.51
Stone Pile	43 59 17.73	69 37 43.73	73 11 48 246 35 46	Cushman	253 09 56	3755.1 2066.2	4106.5 2259,5	2.33 1.26
Haggett, (2)	43 58 94.03	69 36 04.77	355 28 04 95 38 19	Edgecombe	İ	9991.1 5828.5	2428.9 6373.9	1.38 3,69
Breakheart Hill	43 57 34.89	69 38 13.98	282 51 06 212 45 59	Edgecombe Haggett, (1)	102 52 41	3135.9 4749.7	3428.6 5194.1	1.95 2.95
Mathew's Hill	43 56 57.36	69 37 46.80	259 22 22 200 52 28	Edgecombe	89 23 38	2492.4 5513.6	2725.6 6029.5	1.55
Allen's Flag	43 56 58.10	69 39 24.94	264 35 48 157 25 42	Edgecombe	84 38 12 337 25 00	4658.6 3489.7	5094.5 3816.2	2.89 2.17
One Story House, chimney in centre.	43 58 28.68	69 36 01,51	357 30 39 170 43 16	Edgecombe	177 30 42	2360.5 2364.8	2581.4 2586.1	1.47
Parson's Hill	43 56 11.73	69 40 20,37	357 35 24 252 20 16	Bartoe	177 35 31	5072.7 6164.5	5547.3 6741.3	3,13 3,83
Greenleaf's Hill	43 55 24 38	69 41 02.72	17 30 58 342 11 13	Parker's Island Bartoe	197 29 08	11742.5 3788.3	12841.9 4142.8	7.30 2.33
Red and White Flag, near school house.	43 54 25,02	69 42 01.01	13 24 08 305 48 32	Parker's Island Bartoe	193 22 59	9629.1 3033.0	10530.1 3316.8	5.98 1.80
Lewis Hill	43 54 91.69	69 38 29,08	53 37 26 162 12 25	RartoeCushman	1	2819.5 8455.5	3083.3 9246.7	1.75
Davis Signal	43 59 93.41	69 42 42.39	13 06 29 239 40 29	Parker's Island Bartoe	193 05 48	5764.1 3919.6	6303.4 4286.4	3.5
Tall Hemlock, Westport island	43 53 28.61	69 49 16.48	13 53 34 270 40 35	Parker's Island Bartoe	193 52 36	7856.0 2805.4	8591.1 3067.9	4.8
Black and Red Flag, southwest part of Westport island.	43 51 31.84	69 42 44,28	17 27 32 223 48 39	Parker's Island	197 26 53	4216.7 4947.9	4611.2 5410.9	2.6
Campbell's Ledge	43 51 36.97	69 44 03,93	352 59 13 236 44 69	Parker's Island Bartoe	172 59 29	4212.8 6223.2	4607.0	2.6
McMahan's Island	43 50 35.70	69 42 16.44	263 25 28 304 26 33	Mount Pisgah	82 29 13	7330.8 5401.9	8016.7	4.5
Thirty-Acre Island	43 51 92.11	69 40 96.57	185 11 50 275 33 19	Bartoe	5 12 01	3885.8 4835.8	4249.4	2,4
Martin House, Southport	43 50 22.56	69 40 00.90	177 38 09 30 34 09	Bartoe	1	5403.8 7772.1	5909.4	3.3
Townsend Gut, red flag	43 50 49.46	69 39 46.52	173 39 48 262 10 12	Bartoe	353 39 31	4907.6 3955.7	5366.8	3.0
Hendrick's Hend-light	43 49 20.45	69 41 03.59	23 20 49 90 31 21	Seguin Light Parker's Island	1	13951.8 3515.2	15957.3	8.6

Section I .- Vicinity of Sheepscut River. Sketch No. 2.

	1	1	1	!	1	1	1	
Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Boothbay Centre, white spire	43 52 29,15	69 37 42.90	0 / // 118 37 34 335 29 02	Bartoc	° / // 298 35 51 155 29 38	Metres. 3759.6 2789.5	Yards. 4111,4 3050,5	Miles. 2.34 1.73
Boothbay Harbor, white spire	43 51 23.28	69 37 09.64	27 56 51 320 37 10	Southport Ledge Mount Pisgah	907 55 37 140 37 23	5121.0 654.4	5601.1 715.6	3.18 0.41
Hodgden's House, chimney in centre.	43 51 53.91	69 37 58.99	134 29 07 350 25 09	Bartoe Damiscove	314 27 36 170 26 13	4123.1 12464.3	4508.9 13630.6	2.56 7.74
Tall Pine, Edgecombe	43 57 35.93	69 37 00,20	297 20 22 193 10 48	Edgecombe	117 21 06 13 11 17	1589.7 4068.9	1738,4 4449.6	0.99 2.53
Hunting Island, Cape Newagen	43 47 02.48	69 39 14.37	43 00 10 311 13 52	Seguin Light	922 56 03 131 15 48	11691.4 5000,4	12785.4 5468.3	7.26 3.11
Lower Mark Island	43 47 34.14	69 40 12,93	34 57 48 310 06 54	Seguin Light Damiscove	214 54 22 130 09 31	11627.2 6630.3	12715.1 7250.7	7.22 4.12
Burnt Island Light	43 49 29.27	69 38 05,22	308 03 41 49 00 50	White Island Southport Ledge	128 06 27 229 00 14	6801.1 1534.7	7437.5 1678.3	4.92 0.95
Squirrel Island	43 48 20,05	69 37 27,12	346 39 35 70 36 56	Damiscove	166 33 17 250 33 07	5851.4 7832.7	6398.9 8565.6	3,63 4.87
Spruce Point	43 49 45.66	69 36 58.40	320 46 50 59 48 27	White Island	140 48 49 239 47 05	6106.1 3067.8	6677.4 3354.8	3,79 1.90
Red Chimney of House	43 48 57,03	69 35 55,68	1 62 50 53 89 51 09	Mount Pisgah	342 50 15 269 49 03	4194.1 4053.5	4586.5 4432.8	2.60 2.52
West Gable end of Barn	43 49 12.73	69 35 35,51	154 24 49 83 43 53	Mount Pisgah Southport Ledge	334 23 57 263 41 34	3906.9 4530.9	4971.7 4954.9	2.43 2.81
House on Hill, chimney	43 49 28.45	69 35 21,99	146 47 20 78 28 49	Mount Pisgah Southport Ledge	326 46 18 258 26 20	3631.3 4904.9	3971.1 5363.8	2.26 3.05
Methodist Meeting-house, chim-	43 50 25.28	69 35 02.59	117 56 24 62 27 13	Mount Pisgah Southport Ledge	297 55 09 242 24 31	2741.7 5909.4	2998.2 6462.3	1.70 3.67
Linican's Neck, red flag	43 50 55.48	69 34 38,74	96 48 32 57 35 27	Mount Pisgah	976 47 00 937 39 28	2975.6 6837.2	3954.0 7477.0	1.85 4.25
Fisherman's Island, chimney of house.	43 48 41.66	69 38 13,60	202 21 35 296 10 06	Mount Pisgah White Island	92 92 32 116 12 57	4846.4 6175.2	5299.9 6753.0	3.91 3.84
Outer Heron Island	43 46 32.90	69 34 44.44	214 47 26 128 10 52	White Island	34 47 53 308 07 57	1518.7 7181.6	1660.8 7853.6	0. 94 4.46

Section II.—Vicinity of New York. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station	Back azimuth.	Distance.	Distance.	Distance.
Near East River.	· , ,	° 1 11	° ' ''		• , ,,	Nr.	Yards.	Miles
St. Ann's Church	40 41 59.06	73 59 05.23	328 18 00 28 37 47	Mount Prospect Brooklyn Pilgrim Ch'ch.	148 18 55 208 37 36	Metres. 3746.1 794.3	4096.6 868.6	2.33 9.49
Naval Hospital Turret	40 41 52,83	73 57 35,49	2 39 23 95 13 32	Mount Prospect St. Ann's Church	162 39 19 275 12 33	2998.3 2115.3	3278 8 2313,2	1.86
Pier 28	40 49 22.36	73 59 37,12	345 25 41 313 49 41	Pilgrim Church	165 25 51 133 50 02	1462.9 1037.6	1599.8 1134.7	9,91 9,64
St. John's Church	40 43 13.37	74 00 04.51	12 05 20 328 28 27	Governor's Island, (2) Mount Prospect	192 05 61 148 30 61	3213.1 6427.1	3513.7 7028.5	2.00 3.99
City Mills	40 42 07.73	73 59 23.38	144 28 06 127 52 47	Pier 28 St. Paul's Church	324 27 57 307 59 13	554.8 1541.3	606.7 1685.5	0.34
Pier 37	40 42 27.83	73 59 19,22	68 07 53 339 41 26	Pier 28 St. Ann's Church	248 07 41 159 41 35	452.8 946.0	495.2 1034.5	0.98 0.59
Pier 38	40 42 27.98	73 59 17.66	49 12 56 341 53 18	Pier 28 St. Ann's Church.	249 12 43 161 53 96	488.6 938.5	534.3 1926.3	0.30 0.58
Pler 40	40 42 28.75	73 59 12,50	349 26 13 7 25 00	St. Ann's Church Pilgrim Church	169 26 18 187 24 54	931.9 1626.2	1019.1 1778.4	0.58
Pier 41	40 42 29.06	79 59 10.79	352 63 56 71 30 41	St. Ann's Church Pier 28	172 04 00 251 30 24	934 3 653.9	1021.7	0.58 0.41
Pier 54	40 42 39.39	73 58 39,73	89 09 58 36 34 59	Pier 45 St. Ann's Church	962 09 40 216 34 38	655.7 1280.0	717.0	0.41 0.79

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Ferrall	40 43 00.45	73 57 44.24	114 34 38 45 07 15	Holy Redeemer Church. St. Ann's Church	994 33 58 225 06 22	Metres. 1583.0 2682.8	Vards. 1731.1 2933.8	Miles. 0.98 1.67
Roberts & Williams	40 42 49 42	73 57 46.13	125 35 30 44 43 53	Holy Redeemer Church. Brooklyn Gas Company.	305 34 51 224 43 27	1715.8 1346.2	1876.3 1472.2	1.07 0.84
South Ninth Street Pier	40 42 39.76	73 57 53,08	60 00 51 64 05 54	St. Ann's Church Brooklyn Gas Company.	240 00 04 244 05 32	1955.4 871. 6	2138.4 953.2	1.21 0.54
East and Water Streets, post	40 42 39.94	73 58 16.41	297 21 16 19 35 22	South Ninth Street Pier. Brooklyn Gas Company.		616.6 705.0	674 3 771.0	0.38 0.44
Pier 53	40 42 31.90	73 58 40 12	30 12 19 322 26 30	St. Ann's Church Brooklyn Gas Company.	210 12 03 142 26 39	1171.7 542.8	1281.3 593.6	0.73 0.34
Pier 55, Jackson street	40 49 39,55	73 58 30.78	84 43 49 346 59 26	Pier 53 Brooklyn Gas Company	264 43 43 166 59 29	220.0 447.7	240.6 459.6	0.14 0.28
Pier 50	40 42 31 32	73 58 46.27	24 05 59 264 06 08	St. Ann's Church Pier 54	204 05 47 84 06 17	1090.1 319.4	1192.1 349.3	0.68 0.20
F Street Pier	40 43 57,33	73 57 25.67	186 09 42 59 18 47	Blackwell's Island, (2). Sevent'nih St. Bulkh'd.	6 09 48 239 18 25	2018.9 907.9	9207.8 992.8	1.25 0.56
South First Street Pier, or Elys'	40 42 55.03	73 57 45.12	19 14 03 120 11 49	Peck Slip Ferry Holy Redeemer Church.	199 13 57 300 11 10	649.1 1641.7	709.8 1795.3	0.40 1.02
South Fourth Street Pier	40 42 45.65	73 57 46.93	129 00 34 27 54 20	Holy Redeemer Church. Peck Slip Ferry	308 59 56 207 54 15	1771.3 366.6	1937.0 400.9	1.10 0.23
South Eleventh Street Pier	40 42 26.13	70 57 52.82	127 33 40 73 14 01	East and Water Sts., post. Brooklyn Gas Company.	307 33 25 253 13 59	698.8 825.6	764.2 902.9	0.43 0.51
Ann Street, Williamsburg	40 42 12.58	73 57 51.09	144 51 10 174 28 48	East and Water Sts., post. South Eleventh St. Pier.	324 50 53 354 28 47	1032.4 419.8	1129.0 459.1	0.64 0 26
Navy Yard Wall, northwest corner.	40 42 14.29	73 58 23,72	194 02 03 243 16 56	Pier 55, Grand street South Eleventh St. Pier.	14 02 09 63 17 16	884.8 812.1	967.6 888.1	0,55 0,50
Pier 59	40 42 50.37	73 58 09.73	273 05 44 242 32 06	Roberts & Williams Ferrall	93 05 59 62 32 23	554.4 674.0	606.3 737.1	0 34 0,42
Pier 61	40 42 56,89	73 58 10.22	292 14 16 259 47 52	Roberts & Williams Ferrali	112 14 32 79 48 09	610.6 619.5	667.7 677.5	0.38 0.38
Pier 56	40 42 45.48	73 58 12.27	315 22 20 258 50 36	South Ninth Street Pier. Roberts & Williams	135 92 39 78 50 53	639.9 625.0	699.8 683.5	0.40 0.39
Pier 57	40 42 46.65	73 58 11,66	21 36 25 261 55 12	Pier 56	201 36 25 81 55 29	38.6 605.0	42.2 661.6	0.02
Camphene Works, or South Sixth street.	40 42 41.95	73 57 48.44	50 53 14 90 29 31	Brooklyn Gas Company. Pier 55, Grand street	230 52 49 270 29 14	1151 1 613.5	1258.8 670.9	0.71 0.39
South Second Street Pier	40 42 52,24	73 57 45.46	185 18 21 122 52 28	South First Street Pier . Holy Redeemer Church.	5 18 91 302 51 49	86.2 1679.9	94.3 1837,1	0.05 1.04
K Street Pier	40 43 46.03	73 57 26,01	7 08 33 81 32 33	North Eighth Street Pier Sevent'mh St. Bulkh'd.	187 08 30 261 32 12	871.9 781.7	953.5 854.8	0.54 0.48
Pier 71	40 43 28.39	73 56 01.92	293 36 29 334 17 49	North Eighth Street Pier. Ferrall	113 36 49 154 18 01	801.7 956 6	876.7 1046.1	0.50 0.59
Franklin	40 43 32.60	73 57 23.29	26 22 22 109 40 44	Ferrall Sevent'nth St. Bulkh'd.	206 22 08 2e9 40 21	1106.9 888.8	12i0.5 972.0	0.69 0.55
Pittston Coal Company	40 43 22.67	73 57 26.85	195 15 22 126 47 43	Franklin Sevent'nth St. Bulkh'd,	15 15 24 308 47 22	317.4 966.5	347.1 1056.9	0.20 0.60
Eighteenth Street and Avenue B.	40 43 52.38	73 58 16.14	307 37 06 262 38 40	Sevent'nth St. Bulkh'd. F Street Pier	127 37 17 82 39 13	598.9 1193.8	556.5 1305.5	0.31 0.74
Thirty-eighth Street Pier	40 44 42.27	73 57 55.10	2 47 49 333 31 42	Sevent'nth St. Bulkh'd. F Street Pier	162 47 45 153 32 01	1851.7 1548.6	2025.0 1693.5	1.15
North Thirteenth Street Pier	40 43 96.10	73 57 18.40	61 56 52 150 14 6 5	Pittston Coal Company, Franklin	941 56 46 330 14 09	224.7 231.0	245.7 252.6	0.14
Penny Bridge	40 43 21.44	73 57 19.26	95 20 92 143 03 38	Pittston Coal Company. Franklin	276 19 52 523 03 31	344.6 430.7	376.8 471.0	0.14 0.21 0.97
Empire Works Corner	40 44 06.92	73 58 00.49	357 11 33 288 33 32	Sevent'nth St. Bulkh'd. F Street Pier	177 11 34 108 33 55	738.5 861.7	807.6 942.3	0.27 0.46
Fifteenth Street and Avenue B	40 43 45.67	73 58 21.13	209 32 19 281 17 21	Eight'nth St. & Avenue B Sevent'nth St. Bulkh'd.	29 32 22 101 17 35	237.7 530.6	259.9	0.53 0.15
Bellevue Hospital	40 44 18,20	73 58 15.92	340 59 03 298 58 58	Sevent'nth St. Bulkh'd. F Street Pier	160 59 14	1171.9	580,3 1280,8	0.33 0.73
Clark's Tavern, northwest cor-	40 44 06.17	73 58 16.08	209 50 20 282 58 10	Twenty-eighth St. Pier	118 59 30 29 50 26 192 58 43	1324.8 408.4 1213.7	1453.1 446.6 1327.3	0.82 0.25 0.75

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Hunter's Point Station	40 44 48.36	73 56 52.02	85 46 30 206 38 22	Dutch Ref. Ch., marble steeple. F Street Pier	965 45 10 26 38 44	Metres. 2878.7 1760.3	Yards. 3148,1 1925,0	Miles- 1.79 1.09
Terrace, Fifty-first Street Corner.	40 45 10.61	73 57 31,77	23 19 49 305 12 11	Eight'nth St. & Avenue B Blackwell's Island, (2).	203 19 19 125 12 21	2629.1 440.2	2875.1	1.63
Terrace, Fifty-first Street Mark	40 45 11.17	73 57 31.57	307 11 69 356 31 07	Hunter's Point Station. F Street Pier	127 11 28 176 31 11	1164.6 2281.5	481.4 1273.6 2495.0	0.27 0.72 1.42
Hunter's Point R. W	40 44 42.40	73 57 13.49	29 55 30 11 37 41	Sevent'nth St. Bulkh'd. F Street Pier	209 55 60 191 37 33	2138.5 1419.2	2338.9 1552.0	1,33
East and Water Streets Corner	40 42 40.08	73 58 17.04	297 04 36 18 20 43	South Ninth Street Pier- Brooklyn Gas Company	117 04 52 198 20 37	631.6 -704.1	690.7 770.0	0.39 0.44
Montague	40 41 42.03	73 59 34,41	76 45 02 177 04 35	Governor's Island, (2) Pier 28	256 44 24 357 04 33	1417.5 1245.4	1550.1 1361.9	0.88
Pier 1	40 41 59.13	74 00 28,39	292 34 41 7 30 19	Montague	112 35 16 187 30 16	1372.6 859.5	1501.0 939.9	0.77
Pier 5	40 41 59.09	74 00 18,27	22 21 49 297 37 13	Governor's Island, (2) PilgrimChurch, Brooklyn	202 21 39	920.2 1505.8	1006.3 1646.7	0.53 0.57
Pier 6	40 41 59.68	74 00 15,78	85 42 03 25 09 33	Pier 1	266 42 11 205 09 44	296.5	324.2	0.93 0.18
Pier 9	40 42 03.04	74 00 09.04	30 13 35 306 16 01	Governor's Island, (2) Governor's Island, (2) Pilgrim Church	203 09 44 210 13 19 126 16 32	960.4 1126.0 1386.1	1050,3 1231,4 1515.7	0.60 0.70
Degraw Street	40 41 10.06	74 00 04.05	134 03 13 202 27 17	Governor's Island, (2) Ford's Pier	314 02 54 22 27 28	951.2	1949.2 1132.8	0.86
Baltic Street Pier,	40 41 20.19	73 59 58.03	112 55 17 149 19 01	Governor's Island, (2)	292 54 54 329 18 41	1035.9 895.7 1396.4	979.5 1527.1	0.64 0.56 0.87
Sedgwick Street Pier	40 41 13.87	74 00 06.71	226 16 49 131 12 00	Baltic Street Pier	46 16 55 311 11 43	282.0	308.4	0.17
De Forrest's Pier	40 42 06.16	73 59 29.02	28 53 50 114 59 01	Governor's Island, (2) Ford's Pier Trinity Church, N. Y	208 53 38 294 58 25	895.6 883.1 1429.4	90%.9 965.7 1563.1	0,51 0,55
Bridge Street Ferry Pier	40 42 17.82	73 58 42.96	267 18 03 212 10 35	Brooklyn Gas Company.	87 18 14 32 10 43	387.2	423.4 567.1	0.89 9.24 0.33
Congress Street Pier	40 41 22,96	73 59 56.34	106 56 34 200 59 58	Pier 55, Jackson street . Governor's Island, (2)	996 56 10 21 00 04	536.9 903.9 599.2	988.5	9,56
Thompson's Pier	40 41 58.63	73 59 31.26	60 04 00	Governor's Island, (2)	240 03 20	1677.3	655,3 1834.2	0,37 1 84
Baxter's Pier	40 41 51.22	73 59 38.10	123 54 34 134 30 27	Trinity Church, N. Y Trinity Church, N. Y	303 53 59 314 29 57	1498.4	1638.6 1660.3	0,93 0,94
Prentice's Pier	40 41 43.85	73 59 43.60	64 48 02 143 33 26	Governor's Island, (2) Trinity Church, N. Y	244 47 26 323 32 54	1429,1	1562.8	1.00
Pier 11	40 42 05.01	74 00 05.87	909 36 16 31 48 32	Baxter's Pier	29 36 17 211 48 14	261,3 1216,3	285.7 1339.1	0,16 0,75
Pier 12	40 42 05.82	74 00 04.58	310 10 22 32 22 33	Pilgrim Church	130 10 51 212 22 14	1365,9 1953,5	1492.9 1370.8	0.85
Pier 16	40 42 09.93	73 59 58.00	316 to 10 327 13 07	Montague	136 00 30 147 13 23	1019.8	1115.2	0.63
Pier 17	40 42 10.94	73 59 56.61	34 51 32 329 40 51	Governor's Island, (2) Montague	214 51 09 149 41 05	1444.6 1932.6	1579.8	0.90 0.64
Pier 18	40 42 11.99	73 59 55.28	35 12 48 332 03 51	Governor's Island, (2) Montague	215 12 24 152 04 05	1488.8	1628.1 1143.5	0.65
Pier 19	40 42 13.25	73 59 53,49	279 58 03 263 33 17	City Mills	99 58 24 163 33 37	760,3 727.2	631.4 795.2	0.47
Nesmith's Pier	40 42 15.10	73 59 10,33	335 02 47 109 35 40	Montague Pier 28 Pier 45	155 02 59 269 35 23	1061,8	1161.1 729.8	9,66 9,41
Pier 20	40 42 14.31	73 59 51,87	207 42 13 286 52 10	City Mills	27 49 19 106 59 28	\$01.2 699.0	548.1 784.4	0.43
Pier 93	40 42 17.92	73 59 43.21	36 17 49 37 36 04	Governor's Island, (2)	916 17 99 917 35 33	1638.9 1807.0	1791.5 1976.1	1.02
Haxton	40 42 13.95	7J 59 18,23	345 56 09 221 06 31	Montague	165 56 17 41 06 43	1140.9 636.1	1247.6 695.6	0.71
Pier 49	40 42 29.42	73 59 07,56	326 23 41 969 15 37	Pier 45 St. Ann's Church Pier 45	146 23 51 89 15 49	551.3 167.9	609.9 183.6	0.34 0 10
Pier 44	40 42 30.08	73 59 92.78	27 41 36 288 14 27	Haxton	207 41 31 108 14 29	538.8 58.8	589.2 64.0	0.33

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Pier 4	49 41 58.59	• / // 74 00 20.65	19 93 07 254 38 44	Governor's Island, (2)	99 22 59 74 38 46	Metres. 885.8 58.2	Yards. 968.7 63.6	Miles. 0.55 0.04
Pier 7	40 42 00 94	74 00 12.71	302 57 27 61 44 45	Montague	122 57 52 241 44 43	1071,6 82,0	1171.9 89.7	0.67 0.05
Pier 8	40 42 01.98	74 00 10.71	99 17 17 305 48 33	Governor's Island, 2) Montague		1077.9 1051.1	1178,4 1149,4	0.87 0.65
Catharine Street Ferry	40 42 13.31	73 59 06.81	123 42 24 196 46 09	Nesmith's Pier Pier 45	303 42 22 16 46 13	99.4 521.0	108.7 570.2	0,06 0,32
Atlantic Stores, northwest corner	40 41 08.00	74 00 10.58	208 16 41 165 09 01	Ford's Pier		1159.0 1631.3	1967.4 1783.9	0.72 1.01
Pier 10, 1856	40 42 04.15	74 00 07.48	30 55 03 311 17 42	Governor's Island, (2) Montague	210 54 46	1173.9 1033.6	1983.7 1130.3	0.73 8.64
Pier 14	40 42 07.76	74 00 01.69	49 09 01 321 05 02	Pier 11	229 08 58 141 05 20	129.7 1019.6	141.8 1115.0	0.08 0.63
Clinton Hotel Flag	40 41 27.54	73 59 42.51	165 15 42 132 07 35	Ford's Pier	345 15 39 312 07 05	432,1 1452,3	179.5 1588.2	0.27 0.90
Long Island Depot	40 41 29.15	73 59 48.60	185 07 16 134 42 23	Ford's Pier	5 07 17 314 41 57	369.9 1314.4	404 5 1437.4	0,93 0,82
Coenties and South, southwest corner.	40 42 04.81	74 00 18,35	53 20 20 18 42 22	Pier 1	233 20 13 198 42 12	293 7 1084.7	321.2 1186.2	9 18 0.67
Old Slip and South, southeast corner.	40 42 09.69	74 00 09,37	316 42 47 273 13 10	Pier 12	136 42 50 93 13 40	164.0 1081,5	179.3 1182.7	0,10 0,67
Second Presbyterian Church, Williamsburg.	40 42 41.16	73 57 21.62	81 11 21 70 10 25	Pier 45 City Mills.	261 10 17 250 09 06	2346.2 3038.9	2565 7 3323.2	1.46 1.89
Near North River.								
Castle Point	40 44 37.25	74 01 05.33	20 09 26 267 34 13	Jersey City Spire Dutch Ref. Ch., marble	200 08 52 87 35 38	3507.7 3073.9	3835,9 3361.5	2.18 1.91
Cunard's Pier	40 42 50.82	74 01 35,29	192 04 41 329 11 49	steeple. Castle Point	12 05 00 149 12 29	3357.1 2848.1	3671.2 3.14.6	2.09 1.77
Pier 52	40 43 57.68	74 00 26.19	45 45 35 123 40 28	Jersey City Spire West Hoboken	925 44 36 303 39 22	2970 0 2841.6	3247 9 3107.5	1.85
New York and Eric Railroad	40 43 02,14	74 00 34.66	146 37 49 86 47 39	West Hoboken Jersey City Spire	326 36 49 266 47 01	3937.7 1381.9	4306.1 1511.2	2.45 0,86
Pier 21	40 42 46.19	74 00 40.68	40 02 26	Bedine's Island Signal	220 01 22 148 33 02	3602.3 739.8	3939.4 809.0	2.24 0.46
Pier 20	40 42 44.54	74 00 40.93	328 32 51 325 56 91	Trinity Church, N. Y Trinity Church, N. Y Castle Point	145 56 19 350 38 21	700.1 3523.1	765.6 3852.8	0.43 0.43 2.19
Pier 45.	40 43 37.44	74 00 28.23	170 38 37 47 35 12	Cunard's Pier	227 34 28	2131.5	2330,9	1 32
Pier 23	40.42.48.23	74 00 38,99	154 44 12 93 28 26	Cunard's Pier	273 27 49	2040.1 1323.6	2231.0	0.82
Pier 28	40 42 55.05	74 00 36.90	169 34 58 84 34 17	Cunard's Pier	349 34 41 264 33 39	3419 2 1376 3	3729.1 1505.1	2.12 0.85
Pier 33	40 43 04.78	74 00 34,24	188 51 02 165 39 05	Castle Point	8 51 08 345 38 45	1323.9 2944.0	1417.0 3219.5	1.83
Pier 8.	40 49 99.55	74 00 44.34	73 16 43 172 52 25	Cunard's Pier Castle Point	253 16 03 352 52 11	1495.8 3959.3	1635.8 4340.7	0 93 2.47
Pier 6	40 42 27.68	74 00 44.93	118 45 25 121 08 13	Cunard's Pier	298 44 52 301 07 40	1363,7 1380.7	1491.3	9.85 9.86
Pier 4	40 49 23.32	74 00 46,46	173 10 12 126 30 53	Cunard's Pier	353 09 59 306 30 21	4025.0 1425.6	4401.6 1559.0	0.88
Pier 13	40 42 35.49	74 00 41.90	173 52 55 171 40 39	Castle Point	353 52 43 351 40 17	4154.5 3797.9	4543 2 4153.3	2.58 2.36
Pier 35	40 43 08.95	74 00 33.09	110 46 24 69 02 11	Cunard's Pier	290 45 49 249 01 30	1340.0 1563.1	1465.4 1709.4	0.83
Pier 39	40 43 90.69	74 00 30.60	164 28 38 160 58 40	Castle Point	344 28 17 340 58 17	2626,8 2500.3	3091,3 2734,3	1.76
			58 48 40 149 27 35	Cunard's Pier		177 1.3 176 5.9	1940,3 1931.1	1.10
Pier 49	40 43 47.95	74 00 27.09	42 15 69	Cunard's Pier		23e0.2 1956.5	2502.9 2139.6	1.48
Pier 46	40 43 40.49	74 00 28.12	153 29 24 45 49 22	Cunard's Pier		2198.0		1.36

REPORT OF THE SUPERINTENDENT OF

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth	To station-	Back azimuth	Distance.	Distance.	Distance.
Pier 47	40 43 42,76	74 00 27.85	152 22 39 44 39 69	Castle Point	332 22 15 .224 38 25	Metres. 1896.8 2251.8	Yer s 2074 3 2462.5	Miles. 1,18 1,40
Pier 55	40 44 03.20	74 00 24.44	137 35 50 177 24 08	Castle Point Thirteenth Street Pier.	317 35 23 337 24 07	1492.7 892.5	1555 8 976.0	0 88 0,55
Pier 43	40 43 3 ,59	74 00 28,54	49 54 21 156 16 03	Cunard's Pier	229 53 38 336 15 38	2047.7 2145.1	2239 3 2345.8	1.27 1.33
Long Dock, Hoboken	40 44 08,92	74 01 20,24	201 48 12 285 16 17	Castle Point	21 48 22 105 16 52	941.4 1315.0	1029 5 1438,0	0,58 0,82
Pier 30	40 42 59.30	74 00 35.67	79 24 57 167 01 31	Cunard's Pier	259 24 18 347 01 12	1493.3 3100.3	1556.5 3390.4	0,88 1,93
Pier 50	40 43 50,89	74 00 26,65	41 00 23 147 35 48	Cunard's Pier	220.59 38 327 35 23	2454.9 1693.7	2684.6 1852.2	1 59 1 65
Pier 37	40 43 13,56	74 00 39.30	64 37 29 163 17 07	Cunard's Pier Castle Point	244 36 48 343 16 45	1636,0 2695 3	1789.1 2947.5	1,09 1,67
Pier 34,	40 43 06.28	74 00 33,11	71 54 37 164 55 21	Cunard's Pier	251 53 56 344 55 00	1534.9 2906.0	1678.5 3177.9	0.95 1.81
Pier I, lamp	40 42 17.01	74 90 48.80	174 52 32 133 43 06	Castle Point	354 52 21 313 42 36	4343.1 1509.2	4749,5 1650,4	2.70 0.94
Castle Garden	40 42 09,32	74 00 43.59	126 26 52 54 13 39	Jersey City Spire Bedice's Island Signal	306 26 04	2137.3 2772.2	2337.3 3031.6	1,33
Pier 2	40 42 19.59	74 00 48,04	130 59 05 174 32 30	Cunard's Pier	310 58 34 354 32 19	1468.8 4265.2	1606.2 4664.3	0.91 2.65
Pier 3	40 42 21.41	74 00 47 14	174 11 67 128 46 13	Castle Point	354 10 55 308 45 42	4211.4 1448.9	4605.5 1584.5	2.62 0.90
Pier 14	40 42 36,35	74 00 41,32	171 24 24 109 25 24	Cunard's Pier	351 24 98	3771.6	4124.5 1468.7	2.34 0.83
Fifty-ninth Street Pier, or Ward's	40 46 18,57	73 59 14 33	155 05 37 82 43 10	Guttenberg Pier	289 24 49 335 05 17 262 42 13	1343.0 1664.3 2075.7	1820.0 2269.9	1.02
Piftieth Street	40 45 58,78	73 59 31.73	101 53 14	Highwood, (2)	281 52 28	1687,1	1845.0	1,05
Forty-third Street Pier	40 45 43.67	73 59 45.83	172 08 12 29 55 50	Guttenberg Pier Jersey City Spire	352 08 04 209 54 30	2140.3 6162.7	2340.6 6739.3	3.83
Fortieth Street	40 45 32,80	73 59 40.85	121 36 47 178 26 58	Highwood, (2)	301 36 10 358 26 56	1550.8 2922.4	1695.9 3195.8	1.89
Thirty-ninth Street Pier	40 45 34.80	73 59 53,55	198 38 96 133 37 55	Highwood, (2)	308 37 96 313 37 23	1839.7 1574.5	2011.8	0.98
wentieth Street Pier	40 44 49.81	74 00 19.60	29 43 56 167 56 10	Highwood, (2)	347 55 55	5835.3 2530.2	6381.3 2767.0	1.57
l'hirtieth Street Pier	40 45 13,92	74 00 06,06	70 08 02 153 56 20	Castle Point	250 07 32 333 55 56	1140.6 1926.1	1247.3 2106.3	1.20
West & Spring, northeast corner	40 43 31 90	74 00 19.87	50 52 49 152 07 01	Castle Point	230 52 10 332 06 3t	1792.4 2360.7	1960.1 2494.7	1.11
Paige's Hotel. Seventy-first Street Signal	40 46 43.68	73 58 57,80	54 94 30 174 13 39	Cunard's Pier Russ & Reid's Pier	234 23 41 354 13 25	2176.4 2526.4	2380.0 2762.8	1.35
Station 5	40 47 00.33	73 58 48.10	205 29 16 23 48 43	Station 6	25 29 33 203 48 37	1447.0 561.0	1562.4 613.5	0.90
Guttenberg Hill	40 47 34 91	73 59 35, 9 3	166 29 21 12 57 41	Russ & Reid's Pier Guttenberg Pier	346 29 08 192 57 36	2057.2 866.6	2249.5 947.9	1.28 0.54
Fillietudlum Pier, 1856	ĺ	73 57 57,98	330 28 35 337 11 04	Seventy-first St Signal. Switch No 3	150 29 00 157 11 22	1815.3 1664 0	1985.2 1819.7	1.13
Fort Washington Point, (2)	40-30-59,49	73 56 29,46	907 03 45 62 02 44	Vreeland, (2) Fort Lee, South Pier.	27 04 00 242 09 t0	1215.9 1793.3	1329.7 1960.0	0.75 1.11
ydecker, (2,) 1856	40 59 97,54	73 56 34.19	89 43 58 20 58 00	Fort Lee, North Pier	962 43 94 200 57 34	1220 9 3073.9	1335.1 3361.5	0.76
ydecker, (3,) 1856	40 52 14.55	73 56 32.17	21 06 34	Fort Lee, North Pier Tillietudium Pier, 1856.	201 05 40	5402.9	5908.4 - 3987.3	3.36 1.87
Sluff.	40 50 14.38	73 56 34.89	92 26 46 178 36 17	Fort Lee, North Pier Ft. Washington Point,(2)	202 26 26 358 36 15	3006.0 2624.0	2869.5	0.97
Berry's Shanty	40 51 41.59		110 49 25 64 12 24	Fort Lee, South Pier Tillietudium Pier, 1856.	990 41 44 944 11 31	1557.9 2143.3	1702.9 2343.8	1 33
		73 55 50,93	103 37 06 143 54 14	Pettigr.ve Lydecker, (3,) 1856	283 36 27 323 53 47	1423.5 1639.4	1356.7 1792.8	1.62
Daly	40. 49 54 20	78 58 07.82	998 52 35 951 06 03	Ft. Washington Point,(2) Binff	48 53 39 74 07 04	9057.7 9963.8	9250.9 9475.6	1.98 1.41

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Audson River Railroad, (1)	40 51 18.64	73 56 07 27	136 09 50 208 23 36	Pettigrove	316 09 22 28 23 47	Metres. 1445.5 804.3	Vards. 15×0.8 879.6	Miles. 0.90 0.50
Hudson River Railroad, (2)	40 50 37.32	73 56 25.82	16 42 56 112 10 47	Bluff Fort Lee, North Pier	196 42 50 292 10 11	738.8 1460.6	807.9 1531.7	0.46 0.87
Hudson River Railroad, (3)	40 49 34.52	73 56 51,91	149 15 53 100 57 25	Fort Lee, South Pier Tillietudium Pier, 1856.	329 15 23 280 56 42	2070.5 1559.7	2264.2 1705.6	1.29 0.97
Judson River Railroad, (4)	40 49 15.79	73 57 09 92	204 25 00 128 13 23	Bluff Pier, 1856.	24 25 93 308 12 52	1984.1 1412.3	9169.7 1541.5	1,23 0,88
Carrigan,	40 48 33.01	73 57 42, 83	141 12 30 171 12 49	Vreeland, (2)	321 12 05 351 12 40	1424.1 22 18.7	1557.3 2426.3	0.88 1.38
Righ Bridge Farm	40 50 26.90	73 55 13,63	28 01 38 345 04 24	Receiving Reservoir Cypress Hill	207 59 56 165 06 25	7795 6 16925.7	8524.4 18509.4	4.64 10.52
Chorp.	40 50 32.91	73 55 38.96	290 06 55 23 28 32	Clark		19673.9 7704-2	2:514.8 8425.1	12.22 4.79
Wolfpit, 1855	40 47 04.92	73 48 55.16	24 04 59 87 04 20	Cypress Hill	204 02 53 266 58 31	11089 5 12552.8	12127.1 13727.4	6.89 7.80
Jawson's Point	40 48 16.63	73 50 34.73	313 27 20 63 50 14	Woltpit, 1855 Latting's Observatory	133 28 25 243 44 57	3215.9 12668.9	3516.8 13854.3	2.00 7.87
Id Ferry Point, (2)	40 48 15.31	73 49 37.02	335 49 48 91 43 44	Wolfpit, 1855	155 41 15 271 43 06	2382,7 1353,3	2605.6 1479.9	1,48
Rapalyee, (2)	40 46 12.13	73 52 01.80	249 34 39 207 59 00	Wolfpit 1855 Clawson's Point	69 36 41 27 59 57	4659 1 4348 9	5106.0 4755.8	9.90 2.70
Berrian's Island	40 47 06.05	73 53 37.39	270 16 44 306 34 08	Wolfpit, 1855 Rapaiyee, (2)	90 19 48 126 35 19	6616.6 2790.8	72:35 7 3051.9	4.11 1.73
College Point, (2)	40 47 35.78	73 50 53.19	31 57 03 76 37 09	Rapatyee, (2) Berrian's Island.	211 56 18 956 35 22	3040.2 3956.8	3394.7 4327.0	1.89
Sacred Heart Cross,	40 48 55.86	73 56 45.37	280 39 23 307 11 57	Clark	100 48 41 127 15 02	20383 0 8346.7	22290 ½ 9127,7	12.66
lunt's Point	40 48 02.93	73 52 07.56	357 44 10 50 12 35	Rapalyee, (2)	177 44 14 230 11 36	3420.2 2740.6	3740.2 2997.0	5.19 2.13
Randall's Island, 1855	40 47 34.77	73 54 54.66	296 02 51 257 28 47	Berrian's Island Hunt's Point	116 03 41 77 30 36	2016.2 4011.8	2204.9 4387.2	1.70
Voolsey Hill	40 46 57.16	73 54 25.51	62 11 58 149 31 40	Latting's Observatory Randall's Island, 1855	242 09 12 329 31 21	6735.9 1346.4	7366.2	2,49 4,18
Ward's Island, (1)	40 46 58.59	73 55 10,32	198 13 29 272 24 10	Randali's Island, 1855 Woolsey Hill	18 13 39 92 24 39	1175.2 1051.4	1472.4 1285.2 1149.8	0.84
acred Hear: Signal	40 49 08.71	73 56 48.66	288 57 59 19 57 38	Wolfpit, (1855) Latting's Observatory	109 03 08 199 26 25	11723.5	12820.5	0,65 7,28
Vhitestene Point, (2)	40 47 59.94	73 48 53.16	75 10 19 114 46 44	College Point, (2)	255 09 01	7660.5 2910.4	8377.3 3182.7	1,81
Vilkin's Point	40 47 42.77	73 47 37,14	106 33 06	Old Ferry Point, (2) Whitestone Point, (2)	294 46 15 266 32 16	1132.2	1238.1 2032.9	0.70 1.15
ort Schuyler Flag-staff	40 48 15.93	73 47 08,98	109 40 13 89 42 08 48 39 38	Old Ferry Point, (2)	289 38 55 269 40 31	2983.9 3469.7	3794.3	1.85 2.16
tony Point	40 47 52.63	73 54 15,96	328 16 49	Wolfpit, (1855) Berrian's Island	228 38 29 148 17 14	3315.5 1688.5	3625.7 1846.5	2.06 1.05
awrence Point	40 47 19.71	73 54 17.85	59 11 42 293 56 23	Randall's Island, (1855). Berrian's Island. Randall's Island, (1855)	239 11 16 113 56 49	1075.3	1175.9	0.64
ort Morris, chimney	40 48 06.59	73 54 01.47	343 12 13	Berrian's Island	298 17 36 163 12 29	979.8 1953.5	1071.5 2136.3	0.61 1.21
ummerhouse	40 46 36,40	73 55 01.29	272 28 40 232 38 31	Woolsey Hill	92 29 54 52 38 54	2672.3 1055.0	29.22.3 1153.7	0.65
Vest Chester Spire	40 50 16.76	73 50 19.67	162 49 06 299 45 40	Clark	342 49 00 319 50 46	716.5 19657.4	783.5 13841.7	7.87
Irsuline Couvent	40 48 56.67	73 54 14.51	9 00 07 50 56 27	Receiving Reservoir	188 58 56 230 54 06	16242.5 6502.5	17762.3 7110.9	10,09
ndia Rubber Factory ,	40 46 58.93	73 50 56,77	282 58 53 46 34 17	Clark	103 06 32 926 33 35	16926.5 2100.1	18510.3 2296.6	10.52
rcher	40 51 93.34	73 54 33,41	192 09 50 296 10 32	Clawson's Point	12 10 04	2451.7 16872.3	2681,1 20638 2	11.73
ort George	0 51 93,89	73 55 19.04	44 38 14 346 34 39	Thorp	224.37 31	2185.5	2390.0	1,36

Name of station.	Latitude.	Longitude.	Azimuth.	To station.	Back azimuth	Distance.	Distance.	Distance.
Liddle	40 52 45.38	73 54 34.23	19 24 49 359 33 46	Fort George	199 24 24 179 33 47	Metres 2664.9 2530.6	Yards. 2914.2 2767.4	Miles. 1.65 1.57
Quarry Signal	40 52 40 98	73 54 46.60	14 04 27 352 38 50	Fort George	194 04 10 172 38 59	2451.2 241 4 .6	2680.6 2640.5	1 52 1.50
Mount Morris	40 48 12.85	73 56 18.59	277 10 42 334 17 02	Clark	97 19 43 154 19 46	19556.0 13562.0	21385.9 14831.0	12.15 8.43
Lunatic Asylum	40 45 05,99	73 56 18.35	186 23 39 118 31 13	Thorp	6 24 05 298 30 13	8284.5 2441.6	9059.7 2670.1	5.15 1.52
Throg's Neck, (1856)	40 48 30 92	73 47 57.63	292 04 45 78 19 51	Fort Schuyler Flag-staff. Old Ferry Point, (2)	112 05 17 258 18 48	1230.5 2078.6	1345 6 2601,2	0.76 1.48
Fort Schuyler Station	40 48 14.98	73 47 19.20	90 11 42 118 38 23	Old Ferry Point, (2) Throg's Neck, (1856)	970 10 12 998 37 58	3230.1 1026.0	35%2.3 1122.1	2.01 0.64
Fort Schuyler, southwest corner.	40 46 14.89	73 47 11.51	109 48 57 89 46 01	Thorp	2F9 43 26 269 40 04	12586.1 12774.8	13763.8 13970.1	7.82 7.94
Watt's Island	40 49 11 58	73 55 49.67	185 42 32 20 31 01	Thorp. Mount Morris	5 42 39 200 30 42	2521.1 1933.9	2757.9 2114.8	1.57 1.20
Quarry Hill, (1)	40 48 38.21	73 55 30.80	55 04 15 351 06 46	Mount Morris House of Refuge	235 03 44 171 06 54	1365.0 1949.2	1493 8 2131.6	0.85 1,21
Quarry Hill, (2)	40 48 40.92	73 55 35.36	49 29 04 178 36 05	Mount Morris	929 28 36 358 36 01	1332.5 3455.1	1457.2 3778.4	0.83 2.15
Prospect Hill	40 47 02.68	73 55 46 39	196 45 40 243 47 02	Mount Morris	16 45 58 63 45 00	2260.2 2310.9	2471.7 2527.1	1.40 1.43
Ward's Island, (2)	40 47 17.60	73 55 33.54	148 13 18 74 55 20	Mount Morris Prospect Hill	328 12 49 254 54 32	2004.6 1768.7	2192.2 1934.2	1.24 1.10
One Hundred and Sixth Street	40 47 16.16	73 55 59,40	11 36 24 165 34 37	Lunatic Asylum	191 36 19 345 34 24	2209.3 1805.0	9416 0 1973, 9	1.37
Station. Astoria, Dutch Reformed church.	40 46 19.82	73 65 30.38	201 27 36 15 19 22	Ward's Island, (1) Mount Prospect	21 27 50 195 17 56	1284.9 11643.1	1405.1 12732.5	0.80 7.23
Astoria, Episcopal church	40 46 19.04	73 55 24.81	15 58 33 102 39 57	Mount Prospect Receiving Reservoir	195 57 04 282 38 22	11655.0 3485.7	19745.6 3811.9	7.24 2.17
Astoria, Presbyterian church	40 46 25.20	73 55 39.59	213 40 23 56 55 06	Ward's Island, (1) Lunatic Asylum	33 40 42 236 54 41	1237.4 1084.9	1353.9 1186.4	0.77 0.67
Horn's Hook	40 46 31.89	73 56 13,18	177 39 57 13 17 32	Mount Morris	357 39 53 193 17 23	3116.5 1403.8	3408.1 1535.1	1.94 0.87
Near Harlem River.			10 11 02	, and the district of the second		2		
Richard	40 51 32,09	73 55 43.31	213 02 28 279 21 05	Fort Independence Archer	33 03 13 99 21 51	2922.2 1659.6	3196.1 1814.9	1.82 1.03
Flat Rock	40 50 38.75	73 57 49 72	17 10 44 293 11 16	DalyBluff	197 10 39 113 12 05	1435.9 1907.4	1569.5 2085.9	0.89 1.18
Blake	40 52 10.09	73 54 11.31	44 57 19	Fort George	294 56 29 333 46 16	2013.1 1213.8	2201.5 1327.4	1.25 0.75
J. H. Dyckman	40 52 01.94	78 54 95.91	153 46 31 171 44 04 933 36 33	Liddle	351 43 59 53 38 43	1254.4 424.3	1481.1 464.0	0.84 0.96
Tiffen	40 52 27,89	73 54 01.40	125 05 26	Liddle	305 05 05	939.2 596.0	1027.1 651.8	0.58 0.37
Сающани	40 51 48.77	73 54 21.87	22 55 39 166 54 19	J H Dyckman	902 55 33 346 53 53	416.9	455 9	0.28 0.44
Bridge	40 52 45.91	73 54 17.50	200 36 28 324 47 30	TiffenLiddle	20 36 35	702.7 653 8	768.4	0.41
Bushy Point	40 51 43.13	73 54 40.76	90 50 90 242 30 51	Cammann	68 31 03	391.6 475.5	428.2 590.0 739.9	0.24 0.29 0.42
J. Dyckman	40 52 28.05	73 54 35.99	210 56 29 184 25 29	J. H Dyckman	30 56 39 4 25 30	676.6 536.9	587.1	0.33 0.42
Pioneer Point	40 51 32.22	73 54 52.41	219 16 13 301 37 51	Bridge	39 16 25 191 38 0	684.1 599.7	748.1 571.6	0.32
Knoll	40 51 49.62	73 54 55.44	60 48 12 26 06 22	Fort George	940 47 59 906 96 11	597.0 883.8	576.3 966.5	0.33 0.55 0.60
Morris's Pier	40 51 11.86	73 54 59.09	397 30 37 939 31 39	Archer	147 30 51 59 81 56	961.0 697.9	763.9	0.43
Bansel	40 50 42.24	73 55 96.23	193 59 27 207 11 24 214 49 25	Pioneer Point Pioneer Point Morris Pier	13 59 31 97 11 46	647.3 1733.4 1113.1	707.9 1895.6 1:117.8	0.40 1.08 0.69

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

200000111 7000000 9 2100 2570										
Name or station.	Latitude.	Longitude.	Asimuth.	To station—	Back azimuth	Distance.	Distance.	Distance.		
Fordham Dutch Reformed Ch	• , ,, 40 52 03,25	0 / // 73 53 42.50	° ' '' 137 01 42 121 24 06	Liddle J. Dyckman	317 01 08 301 23 31	Metres. 1776.4 1467.1	Xards. 1942.6 1604.4	Miles. 1.10 0.91		
Foundry Signal	40 52 24,40	73 55 01.75	259 27 44 214 44 46	J. Dyckman	79 28 01 31 44 56	613.2 623.1	670.6 681.4	0.38 0.39		
Butler's Pier	40 51 34,23	73 54 40.81	924 41 33 180 15 14	Cammann	44 41 45 0 15 14	630.7 274.3	689.7 300.0	0.39 0.17		
Seaman's Signal	40 52 14.31	73 54 47,27	181 06 37 132 29 36	Quarry Signal	1 06 37 319 29 97	822.8 460.0	899.8 503.0	0.51 0.29		
Finch	40 52 43.63	73 55 01.92	339 12 59 359 37 24	Seaman's Signal Foundry Signal	159 13 09 179 37 24	966.9 593.3	1057.4 648.8	9.60 0.37		
Foundry Building	40 52 27.52	73 54 58.24	170 10 00 40 27 57	Finch	310 09 58 220 27 55	504.3 126.7	551.5 138 5	0.31 0.08		
Seaman's House	40 52 12.58	73 54 41.09	171 37 30 353 14 06	Quarry Signal	351 37 96 173 14 11	885.8 1529.6	968.7 1672.7	0.55 0.95		
Carmansville Spire	40 49 48,70	73 56 16.93	0 45 37 330 51 28	Mount Morris	180 45 36 150 51 46	2956.7 1311.0	3233 2 1433 7	1.84 0.81		
Smith	40 49 52.78	73 55 30.97	19 54 14 44 49 44	Mount Morris Sacred Heart Cross	199 53 43 224 48 55	3277.9 2474.2	3584.6 2705.7	2.04 1.54		
Florence	40 49 32.55	73 55 52.78	13 49 28 345 37 66	Mount Morris	193 49 11 165 37 17	2531.4 1643.7	2768.3 1797.5	1.57 1.02		
Campbell	40 49 46.09	73 55 39.90	12 (8 11 180 52 (4	Watt's Island Thorp.	192 08 05 0 52 05	1088.8 1444.0	1190.7 1579.1	0.68 0.90		
Hydrographic Point	40 49 16.22	73 55 29.29	7 27 14 73 19 48	Quarry Hill, (2) Watt's Island	167 27 10 253 19 35	1097.9 498.5	1200.6 545.1	0.68 0.31		
Morris	40 48 17.46	73 55 22.32	162 44 12 83 51 04	Quarry Hill, (1)	342 44 06 263 50 27	670.2 1326.5	732.9 1450.6	0.42 0.83		
Randall's Island, 1856	40 47 47.80	73 55 18,20	44 43 11 118 38 18	106th Street Station Mount Morris	224 42 44 298 37 39	1372.7 1612.4	1501.1 1763.3	0.85 1.00		
Rhein	40 51 36.73	73 57 09.85	276 25 04 239 49 04	Archer	96 26 46 59 50 46	36 × 6.6 4214.6	4031.6 4609.0	2.29 2.62		
One hundred and fifty-second Street Pier.	40 49 53,20	73 56 42,64	154 29 24 162 3¢ 06	Fort Lee, North Pier Fort Lee Point	334 28 59 342 35 45	2094.5 2504.0	2290.5 2738.3	1.30		
Hotel, hydrographic flag	40 52 25,21	73 51 13,09	253 10 48 354 54 29	Tiffen	73 10 56 174 54 23	286.0 468.0	312.8 511.8	1.55 0.18 0.29		
			331 31 23	Diare	114 04 20	400,0	311.6	0.28		
New York and vicinity.	40 45 11.03	73 58 42.75	305 29 93	Cypress Hill	125 33 21	11382.4	12447.5	7:07		
Crystal Palace	40 43 11.03	73 36 42,73	203 25 39	Receiving Reservoir	23 26 14	3118.3	3410.0	1.94		
Bvergreen Cemetery	40 41 01.06	73 53 42.85	75 90 21 134 97 27	Mount Prospect Highwood, (2)	255 57 45 314 02 53	5773.5 13696.9	6313.7 14978 5	3.59 8.51		
Paca and Sumpter Avenues	40 40 49.28	73 54 22.00	127 15 16 77 32 23	Holy Redeemer Church. Mount Prospect	307 13 24 257 31 13	779 3 4795.4	8499.6 5244.1	4.83 2.98		
Lawrence, (1)	40 45 14.03	73 46 59,42	32 02 31 288 56 38	DuryeaVaientine, (3)	212 02 11 106 58 19	1333.4 3812.3	1458.2 4169.0	0.83 2.37		
Backhaus	40 44 00.01	73 45 17.64	133 31 57 110 26 06	*awrence, (2) Duryea	313 30 50 290 24 40	3300.6 3302.8	3509 4 3611.8	2.05 2.05		
Flushing Roman Catholic Church	40 45 31 .50	73 49 15.72	340 19 44 29 09 53	Smith Cypress Hill	160 29 34 209 08 00	5388,6 8294,7	5892 8 9070,8	3.35 5.15		
Flushing Congregational Church.	40 45 40,25	73 49 11.81	349 08 19 41 59 99	Smith Lutheran Cemetery	169 09 00 221 50 09	5614.5 7550.0	6139 8 8256.5	3,49 4,69		
Flushing Episcopal Church Spire.	40 45 35.04	73 49 32.45	336 56 47 256 19 t0	Smith	156 57 48 76 23 36	5634.0 10170.0	6161.2 11121.6	3.50 6.32		
Barren I sland, (2)	40 35 04.50	73 52 15.26	180 48 59 263 06 34	Cypress Hill	0 49 04 83 11 20	12095 5 10414.0	13227 3 11388.4	7.59 6.47		
Stoothoff	40 39 29.82	73 50 08.78	313 17 11 19 58 29	Pavilion Rockaway Barren Island, (2)	133 20 35 199 57 07	10117.9 8706.3	11064.6 9520.9	6.29 5,41		
Canursie, (2)	40 37 44.95	73 59 59,33	271 04 21 348 10 22	Stoothoff	51 06 19 168 10 51	5149 5 5055.9	5631.3 5529.0	3.20 3.14		
Rocknway Beach, (2)	40 35 08.24	73 48 09.93	256 07 57 160 54 47	Pavilion Rockaway	76 10 63 340 53 30	4708.3 8537.9	5148.9 9336.8	2.93 5.30		
Thurston's Creek	40 38 46.94	73 46 09.54	342 42 23 22 51 07	Pavilion Rockaway Rockaway Beach, (2)	162 43 11 202 49 49	5855.1 7289.3	6403.0 7971.4	3.64 4.53		

REPORT OF THE SUPERINTENDENT OF

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Vicinity of New York and New York Harbor. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Lotts	40 41 40.16	4 / // 73 51 45.96	318 37 24 78 04 18	Pavilion Rockaway, Cypress Hill	0 / // 138 41 51 258 04 04	Metres 14598.8 526.8	Yards. 15964.8 576.1	Miles. 9 7 0.33
Furman	40 40 50.84	73 53 16,43	234 23 16 308 41 06	Lotts Pavilion Rockaway	54 24 15 128 46 33	2612.0 15087.2	2856.4 1649≅.9	1.62 9.37
Hopkins	40 40 21.65	73 52 45,17	209 51 17 140 49 15	Lotts	29 51 56 320 48 55	2791,8 1161.6	3053.0 1270.3	1.73 0.72
Remsen, flag	40 35 02.52	73 49 09,18	257 39 01 163 17 46	Pavilion Rockaway	77 41 46 343 16 04	6165.3 12805.6	6678.6 14003.8	3.79 7.98
Vanderveer	40 41 51.21	73 50 57.05	323 09 29 348 37 21	Pavilion Rockaway Remsen, flig	143 06 25 168 48 31	14137.5 12857.4	15460.3 14060.5	8.78 7.99
Bronson	40 42 30,32	73 48 01,17	340 45 40 6 36 21	Pavilion Rockaway Remsen, flag	160 47 41 156 35 37	13246.5 13903.5	14486,0 15204.4	8.23 8.64
Jamaica, Presbyterian church	40 42 15.96	73 47 2 8.44	79 40 45 343 24 14	Lotts	259 37 57 163 25 54	6145.1 12588.2	6720 1 13766.1	3.82 7.82
Jamaica Dutch Reformed church, (destroyed by fire.)	40 42 06.14	73 47 47.60	81 52 22 341 01 00	Lotts	261 49 47 161 02 52	5652 6 12437.6	6181.5 13601.4	3.51 7.73
Jamaica, Episcopal church	40 42 09.83	73 47 44.98	80 50 21 341 27 10	Lotts	260 47 44 161 29 00	5730.7 12525.0	6266.9 13697.0	3.56 7.78
Flatland, Dutch Reformed church	40 37 24.17	73 55 51.73	281 10 58 310 13 50	Pavilion Rockaway Barren Island, (2)	101 18 05 130 16 11	15726 2 6667.1	17197.7 7990.9	9.77 4.14
Ruffleplot, tree	40 35 43.47	73 51 16.06	173 37 28 269 42 24	Cypress Hill Pavilion Rockaway	353 36 54 89 46 31	10960 2 6947.0	11985.7 9784.2	6.81 5.56
Carhart's House, flag-staff	40 35 05.97	73 48 35.27	196 49 54 157 29 36	Mount Prospect Cypress Hill	306 35 59 357 27 18	15998,0 13045.4	17494.9 14266.1	9 94 8.11
Near Rockaway	40 38 00.61	73 39 29,03	61 23 53	Pavilion Rockaway	241 20 20	8742.6	9560.7	5.43
Gentieman's Hiii, 1855	40 34 53.31	73 39 03.41	100 53 10 174 03 08	Pavilion Rockaway Near Hockaway	280 49 21 354 02 51	8429.6 5508.0	9218.4 6351.5	5.24 3.61
Hick's Neck, 1855	40 36 41.83	73 42 25,13	239 34 63 305 11 37	Near Rockaway Gentleman's Hill, 1855	59 35 58 125 13 48	4799.2 5804.6	5248 3 6347.7	2.98 3 61
Hick's Beach, 1855	40 35 34.57	73 42 32,08	223 40 17 184 30 08	Near Rockaway Hick's Neck, 1855	43 42 16 4 30 13	6229.1 2080.9	6811.9 2275.6	3.67 1.29
New York Hurbor.		*** *** ***	000 43 40	G. 71 3 1985	100 17 10	10004.0	11000	
Fort Tompkins	40 36 13.26	74 03 04.20	286 42 43 237 02 03	Coney Island, east, 1855. Cypress Hill		10384.9 18361.9	11356.6 20060.0	8.45 11.41
Bluff, (1)	40 24 29.91	73 59 54.01	196 18 48 158 21 18	Coney Island, east, 1855. Fort Tompains	16 21 19 348 19 15	19486.7 22150.3	21310.1 24222.9	12.11 13.76
Coney Island, west, 1855	40 34 31.11	74 00 06.06	268 24 32 126 57 59	Coney Island, east, 1855. Fort Tompkins	88 27 11 306 56 03	5759 1 5241.2	6:98.0 5731.6	3,58 3, 26
Sandy Hook Signal	40 28 17.05	74 00 03.21	205 56 25 179 40 01	Coney Island, east, 1855. Coney Island, west, 1855.	25 59 02 369 39 59	13007.4 11537.1	14224.5 12616.6	8.68 7.17
Polat Comfort, (2)	40 27 19.54	74 07 45.11	260 41 55 295 11 17	Sandy Hook Signal Bluff, (1)	80 46 55 115 16 22	11024.4 12274.0	12055.9 13422.5	6.85 7.68
Jones	40 24 01.98	73 59 14 99	922 55 30 166 30 49	Pavilion Rockaway Fort Tompkins	43 04 47 346 28 20	29639.4 23197.6	32412.7 25367.5	18.41 14.41
Norton	40 33 38.40	74 05 29.75	334 55 08 962 21 04	Bluff, (1)	154 58 46 82 27 13	18673.9 13489.9	20420.4 14751.4	11,60 8,36
Prince's Bay	40 30 24,58	74 12 27.86	301 33 47 246 23 29	Biuff, (1) Coney Island, west, 1855	. 121 41 56 66 31 31	20858.2 19038.4	22809.9 20819.5	12,96 11,63
Wilson	40 26 18,87	74 05 08.92	294 19 51 243 07 43	Bluff, (1) Sandy Hook Signal	114 23 15 63 H 61	8148.0 8072.3	8910.4 8827.6	5,06 5,01
Conaskonck Point, (2)	40 27 30,60	74 10 24,74	264 21 20 212 42 25	Sandy Hook Signal Fort Tompkins	84 28 03 32 47 11	14710.0 19166.1	16096.4 20959.5	9,14 11.9I
Seely	40 32 13 66	74 08 54,32	228 03 41	Fort Tompkins	48 07 29	11064.6	12099.9	6,87 11,89
Fay	40 31 11.48	74 10 34,79	318 17 23 289 49 54	Sandy Hook Signal	138 23 14 109 56 44	19144,9 15813,7	90936 3 17293.4	9,83
Chapel Hill Light-house Pole	40 23 51.68	74 03 12.67	208 35 53	Conaskonek Point, (2). Sandy Hook Signal	178 00 35 28 37 56	68(6.9 9323.5	7454.0 10195 9	4,23 5,79
Chapel Hill Back Light	40 23 51.00	74 03 19.76	148 53 25	Wilson	938 52 10	5309.7 20.7	5798.9 92.6	3 29 0,01

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Vicinity of New York Harbor, Staten Island, and New Jersey. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station	Back azimuth	Distance.	Distance.	Distance.
Carbart	° ' '' 40 25 01.13	74 02 11.66	, , ,, 119 52 10 206 35 41	Wilson Sandy Hook Signal	999 50 15 26 37 04	Metres 4817.0 6758.3	Yards. 5267.7 7390.7	Miles. 2.99 4 20
Seward	40 28 52,90	74 16 13.05	287 09 36 241 54 28	Conaskonek Point, (2). Prince's Bay.	107 13 22 61 56 54	8588.2 6008 9	9391.8 6571.1	5.34 3.78
Gage	40 30 07.36	74 12 53.34	394 05 11 63 59 28	Conaskonek Point, (2). Seward		5968.5 5233 4	6527.0 5723.1	3.71 3.25
Ward's Point	40 29 45.28	74 14 45.97	304 00 01 51 46 40	Conaskonck Point, (2). Seward	124 02 50 231 45 44	7423.6 2610.4	8118 2 2854.7	4 61 1.62
Olmstead	40 31 36.94	74 09 14.42	314 53 01 12 18 05	Biuff, (1)	134 59 05	18647.3 7775.8	20392,1 8503,4	11.59 4.83
Sandy Hook Light-house,	40 27 39.49	73 59 48.56	202 34 42 163 49 03	Conev Island, east, 1835. Fort Tompkins	92 37 10 343 46 56	13922.2 16501.5	15224.9 18045.5	8.65 10.25
Hilton	40 25 17.19	74 03 09.44	180 20 57 147 43 30	Fort Tompkins		20235 4 15198.0	22128.8 16620.1	12.57 9.44
Garrison	40 32 00.16	74 07 43.09	321 27 05 71 34 20	Bluff, (1)Olwistead	141 32 09 251 33 20	17745.9 2265.7	19406.4 2477.7	11.03 1.41
Winslow	40 37 16.94	74 05 04.10	242 01 38 189 06 51	Mount Prospect Bergen Dutch Ref. Ch	62 06 26 9 07 43	11771.6 11793.1	12873 1 12896.6	7.31 7.33
Wyckoff's House	40 34 33 98	73 58 03.64	113 27 21 74 16 05	Fort Tompkins	993 24 05 354 69 02	7702.0 15906.4	8422.7 17394.8	4.78 9.88
Oceanic House, flag	40 34 45.34	73 58 11.94	111 33 47 7 13 32	Fort Tompkins	291 30 37 187 12 26	7387.3 19133.1	8078.5 20923.4	4.59 11.89
Spit, double flag	40 33 37.12	73 53 24 17	153 50 22 109 29 41	Mount Prospect	333 47 35 289 23 24	18701,4 14464.5	14983.4 15817.9	8,51 8,99
Inlet, flag	40 34 12.55	73 51 32.25	176 30 03 102 57 09	Cypress Hill	356 29 40 282 49 39	13722.1 16690.5	150°6.1 18252.2	8.53
Bath House	40 35 58.97	74 00 00.34	2 50 96 95 49 57	Fort Tompkins	182 50 22	2713.0	2936.9 4751.0	10.37
Penitentiary	40 39 57.68	73 56 49,45	114 31 30 205 30 47	Mount Prospect	275 47 58 294 30 56 25 32 32	1341.1	1466.6 9562.5	2.70 0.83
Litchfield	40 39 58,58	73 58 07.02	228 40 33	Mount Prospect	48 40 50	8744.3	876. 1	5,43 0.50
Red Hook, chimney	40 40 43.65	74 00 42,33	130 04 42 281 26 37	Bergen, Dutch Ref Ch'ch Mount Prospect	101 28 35	10348.8	4740.7	6,43 2,69
Wyckoff, 1853	40 34 33.73	73 56 02.77	180 01 29 113 26 18	Highwood, (2)	0 01 29 293 23 02	10066.3	8449.4	6.25 4.80
Coney Island, east, 1853	40 34 38.33	73 56 01 55	11 03 21	Saudy Hook Light Fort Tompkins	191 02 12 286 42 01	13018.5	14236.6 11351.0	6.45
Coney Island, west, 1853	40 34 30,99	74 00 06,03	88 24 24 126 58 41	Wyckoff, 1853 Fort Tompkins	268 23 05 306 56 45	2853.2 5246 4	3119.1 5737.3	1.77 3.26
Romer Iron Beacon	. 40 30 13,30	73 59 35.86	268 19 21 157 11 35	Wyckoff, 1853	88 20 41 336 08 56	2899.7 12137.1	3171.0 13272.8	1.80 7.54
Romer Stone Beacon	40 30 44,10	74 00 30,13	195 14 33 184 37 54	Wyckoff, 1853 Ooncy Island, west, 1853	195 14 33 4 38 06	8326.1 7020.8	9'.05.2 7677.7 11789.4	5.17 4.36
States Library v v v		1.00	221 23 49	Coney Island, east, 1853	41 26 44	10760.7	11/69,4	6.70
Staten Island and New Jersey. Curtis	40 34 43.89	74 04 12.81	273 51 44	Coney I-land, west, 1855	93 54 24	5816.3	6360.5	3.61
Seguine's Point, chimney	40 30 36,30	74 11 26.49	210 20 09 64 43 36	Seward	30 20 54 244 40 30	3194.1 7463.0	3493.0 8161.3	1.96
Conover's Beacon	40 25 14.21	74 03 01.39	345 44 48 179 48 41	Fort Tompkins	165 45 28 359 48 39	5969.3 20327.7	6462.2 22229.7	3.67 12.63
Wilson's Beacon, back of Point	40 26 35.80	74 07 51.32	123 34 23 200 45 13	Wilson	303 33 00 20 48 19	3607.1 19649.3	3944.6 20831.7	2.24 11.84
Comfort. Light-house Flag, near Pt. Comfort	40 26 50.75	74 06 56.81	171 53 55 197 29 26	Fort Tompkins	351 53 14 17 31 57	10524.9 18192.4	11509.7 19894.7	6.54 11.30
Morgan, (2)	40 28 08,05	74 15 36,15	74 45 31 278 55 09	Conaskonck Point, (2).	98 58 31	10100.6 7426.5	11045.7 8121.4	6.28 4.61
Morgan, (3)	40 28 05,18	74 15 33.80	226 27 29 278 18 24	Prince's Bay Conaskonck Point. (2)	46 29 3i 98 21 45	6114.7 7358.9	6686.8 8046.7	3,80 4.57
Chestnaqueck Point, (2)			200 02 20	Ward's Point	20 02 51 358 46 90	3286.2	3593.7 4331.7	2.04 2.46
	40 27 36 88	74 14 49.36	178 46 99 137 40 31	Ward's Point	358 46 90 317 39 32	3171.8	3468.6	1.97

Section II.—Vicinity of Staten Island and New Jersey. Sketch B, No. 7.

	1	<u> </u>	1	i i		, <u> </u>	i	
Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Brown	40 27 07.00	74 13 26.68	° / '/ 129 49 24 159 04 17	Seward	309 47 36 339 03 26	Metres. 5101.5 5226.6	Yards. 5578.8 5715 6	Miles. 3.17 3.25
Matayan	40 26 48.87	74 12 18.90	244 25 15 147 31 22	Conaskonek Point, (2) Ward's Point	64 26 29 327 29 57	2981.9 6450.0	3260,9 7053.5	1.85° 4.01
New Durp Beacon, or Elm Tree Back Light.	40 31 48.08	74 06 53,84	331 26 40 273 04 46	Jones Coney Island, west, 1855	151 31 89 93 t9 11	22678.9 9603.5	24800.9 10502.1	14.09 5.97
Elm Tree Light-house	40 33 45,35	74 05 26.17	259 20 40 133 11 14	Coney Island, west, 1855 New Durp Beacon	79 24 08 313 10 17	7660.1 2827.3	8376.8 3091.8	4.76 1.76
Elm Tree Light-house, range	40 33 44,54	74 05 25.04	323 06 05 335 28 17	Sandy Hook Signal Bluff, (1)	143 09 34 155 31 59	12625.2 18798.9	13806.5 20557.9	7.84 11.68
Bayside Beacon	40 26 50.58	74 03 57,46	164 34 21 197 31 59	Seely	344 33 05 17 34 30	10337.3 18202.4	11204.6 19905.6	6.42 11.31
Ellis Island, flag-staff	40 41 53,79	74 02 04.29	296 04 54 217 41 41	Mount Pro-pect	116 07 45 37 43 54	6873.7 7854.4	7516.9 8589.3	4.27 4.68
Seaman's Retreat	40 37 20.99	74 04 11.49	229 30 17 157 05 09	Mount Prospect	59 34 31 337 04 54	10631.4 1410.4	11696.Ω 154⊋.4	6.60 0.88
Elizabeth Port, Presbyterian	40 38 49.75	74 11 08.24	284 58 06 28 30 24	Cazet	105 02 03 208 29 18	8858,7 5004,2	9687.6 5472.4	5.50 3.11
Church, white spire. Bergen Point Church	40 38 49,58	74 07 19,24	258 52 16 305 44 49	Mount Prospect	78 58 33 125 46 17	13830.2 3914.2	15124.3 4260.4	8.59 2.43
Newark, Presbyterian Church	40 44 01.18	74 10 09 96	275 16 43 329 29 42	Bergon, Dutch Ref. Ch'. h Latting's Observatory.	(8901.9 13806.0	9734.8 15097.8	5.53 8.58
Newark, Methodist Church	40 44 03.58	74 09 52.60	275 54 99 261 58 15	Bergen, Dutch Ref Chich Latting's Observatory	i i	8683.5 15945.1	9496.0 17437.1	5,59 9,91
Oentreville Church	40 40 03,23	74 06 33.26	268 10 59	Mount Prospect	88 16 47 155 19 17	12496.4 5017.6	13665 7 5487.1	7.76 3.12
Brighton Spire	40 38 47.28	74 04 46.89	335 18 19 254 41 46	Mount Prospect	74 46 23 190 18 42	10359, 2 2253, 0	11398.5 2463.8	6.43 1.40
Newark Bay Light, or Passaic	40 41 43.69	74 07 19,23	10 18 53 235 50 48	Bergen, Dutch Ref. Chich		6088.9 2156.6	6658.6 2358.4	3.78 1.34
Light. Newark Bay Beacon	40 42 05.60	74 07 07,97	153 43 47 240 07 49	Bergen, Dutch Ref. Chich	60 09 55	5506.1	6021.3 1915 6	3.42 1.09
Robin's Reef Light	40 30 23 85	74 03 36 78	135 54 64 259 66 54	Mount Prospect	315 53 30 79 10 46	1751.7 8498.7	9293.9	5.28 8 19
Kill's Light, Bergen Point	40 38 32,23	74 08 35,84	198 05 55 289 29 59	Highwood, (2)	18 07 49 109 25 10	13161.2 5276.0	14414.6 5769.7	3.98
Long Neck	40 35 07.84	74 11 43.74	185 08 16 191 05 12	Lentz Elizabeth Port Hotel	6 08 39 11 05 49	7884.3 6982.2	8622.0 7635.5	4.34
Benedict	40 33 45.63	74 11 52.36	147 39 52 150 22 28	Miller	327 39 09 330 21 53	2895.9 2558.8	3166.9 2798.2	1.59
	40 33 23,78	74 12 19 54	160 48 10 167 49 18	Braisted	340 47 49 347 49 01	2354.5 2964.8	9574.8 3242.2	1.46
Rossville Signal			177 20 06 51 32 00	Blazing Star	357 90 02 231 30 96	2900.3 4343.5	3171.7 4749.9	1,80 2,70
Decker.,	40 35 06.25	74 08 23.12	21 29 45 215 40 TO	Cortelyou	201 29 07 35 40 37	3726.1 1689.6	4074.7 1817.7	2.3i 1.05
Wyckoff's Landing, pier	40 34 23.34	74 12 25.62	180 25 07	Bluzing Star	0 25 07	1062.1	1161.5 8993.2	9.66 5.11
Wyckoff's Landing, flag	40 34 34.73	74 12 27,51	196 45 43 184 12 02	Elizabethport Hotel Bluzing Star	4 12 03	712.9	779.6 9279.0	0,44
Turner	40 33 58,08	74 13 35.78	300 33 22 212 26 36	Rossville Signal Braisted	120 34 12 32 27 08	2084.0 2178.5	2362.3	1.35 0.97
Dissosway	40 33 15.61	74 13 25:00	260 45 58 169 01 56	Rossville Signal Turner	90 46 41 349 01 49	1560.9 1334.4	1788.9 1459.3	0.83
Marsh	40 33 37.62	74 14 50.24	250 11 06 288 41 69	Turner	70 11 54 168 43 04	1862.5 2118.1	2036.8 2316.3	1,16
Woodbridge Landing	40 32 43 .23	74 14 59.71	187 33 40 245 51 37	Marsh Dissosway	7 33 46 245 51 37	1692.2 2442.8	1859.5 2671.4	1,05
Smoking Point	40 33 18.51	74 13 14.06	157 16 10 70 50 91	Turner Diesosway	337 15 56 250 50 14	1323.4 272.5	1447.9 298.0	0.82 0.17
Signal on the Marsh	40 33 38,83	74 13 37.36	318 48 46 337 53 11	Smoking Point Dimosway	138 49 01 157 53 19	832.8 773.1	919,7 845,4	0,52 0,48
Tuft's Point	40 33 98.70	74 19 54.54	980 33 07 55 37 07	Rossville Signal	100 33 36 235 36 54	838.0 566.7	916.4 668.8	0.52 0.34

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Vicinity of Staten Island and New Jersey. Sketch B, No. 1.

Accepted to the content of the con	40 33 21.13 40 33 21.13 40 34 41.82 40 32 33.13 40 32 02.81 40 32 30.38 40 34 17.45	74 12 39.85 74 07 39.87 74 14 15.09 74 15 08.09 74 14 25.78	260 29 47 84 16 06 246 10 21 93 55 05 157 24 59 199 26 50 188 59 09	Rossville Signal. Smoking Point. Frost Braisted Marsh Turner	66 12 23 273 51 46	Mctres. 484.7 809.3 4829.1 7221.5	Fards. 530.0 885.0 5281.0 7897.2	Miles, 0,30 0,50
Tappan's Point	40 32 33.13 40 32 02.81 40 32 30.38 40 34 17.45	74 14 15.09 74 15 08.09	246 10 21 93 55 05 157 24 59 199 26 50 188 59 09	Frost	66 12 23 273 51 46	4829,1	5281.0	3.0
	40 32 02.81 40 32 30.38 40 34 17.45	74 15 08.09	157 24 59 199 26 50 188 59 09	Marsh				4.4
### Pyckoff	40 32 30.38 40 34 17.45		188 59 09		337 24 36 19 27 16	2154.2 2778.7	2355.8 3033.7	1.3
Wyckoff 4 essup's Cupola 4 callet's Cupola 4 dadrovetts 4 'errill 4 pubois 4 cellow Hill 4 Voodbridge, white spire 4 Vynant 4	40 34 17.45	74 14 25.78	233 08 17	Woodbridge Landing Tappan's Point	8 59 14	1262.2 1559.1	1380.3 1705.0	0.78 0.90
Callet's Cupola			116 23 18 49 31 19	Woodbridge Landing		891.6 1309.7	975.0 1432.2	0.5
Callet's Cupola	40 DD 53 44	74 13 53.16	9 06 30 28 19 17	Tappan's Point	189 06 16	3258.6 3301.0	3563.5 3609.9	2.0 2.0
Androvetts	40 32 50.44	74 11 01.77	119 57 14 192 38 08	Turner	299 55 34 12 38 17	4182.9 1521.5	4574.3 1663.9	2.66 0.90
Perrill	40 34 40.71	74 07 41.22	94 12 25	Braisted	274 09 07 246 23 35	7192.2 4786.2	7865.2 5234.0	4.4 2.9
Oubois	40 32 17.48	74 14 14.93	66 25 36 70 07 23	Herbert	250 06 48	1330.7 1319.9	1455.2 1443.4	0.88 0.88
Vynant	40 31 24.13	74 15 05.48	127 00 35 215 52 19	Androvetts	35 52 52 357 03 10	2030.7 1194.5	2220.7 1306.3	1.26
Cellow Hill	40 31 27.60	74 14 17.06	177 03 19 84 37 57 132 06 34	Terrill	264 37 26 312 06 01	1145.2 1619.3	1252.4 1770.8	0.7 1.0
Voodbridge, white spire	40 31 03.02	74 14 15.79	177 44 47	Dubois	357 44 46 299 05 07	758.7 1338.9	829.7 1464.2	0.4 0.8
Vynant 4	40 34 18.02	74 09 23.33	119 05 39 58 30 57	FrostCortelyou	938 30 02 178 30 17	2326.2 1980.4	2543.9 2165.7	1.4
	40 33 39.82	74 16 05.95	358 30 16 262 40 43	Fort Hill, (1)	82 45 21 90 18 46	10131.5 7491.0	11079.5 8191.9	6.2 4.6
	40 32 55.28	74 13 58.89	270 15 19 137 13 06	Marsh	317 12 33 255 26 28	1779.4 1479.0	1945.9 1617.4	1.1
torer 4	40 33 23.03	74 14 14.88	75 27 08 40 41 07	Woodbridge Landing	920 40 38 188 58 07	1618.8 1643.8	1770.3 1797.6	1.0
Fire-brick Works 4	40 30 51.06	74 15 16.06	8 58 14 230 56 41	Dubois	50 57 19 75 26 09	1788.8 1466.1	1956,2 1603,3	1.1
Crizier Signal 4	40 31 51.69	74 13 46.19	255 25 30 132 34 51	Woodbridge Landing	312 34 03 280 05 44	2350,6 1958.8	2570.5 2142.1	1.4
tichmond, Episcopal church 4	40 34 19.79	74 08 32.09	100 06 37 68 18 19	Frost		3432.6 2338.7	3753.8 2557.5	2.1 1.4
Lichmond Court-house 4	40 34 12.77	74 08 25.73	29 34 15 72 30 11 35 39 12	FrostCortelyou	252 28 39 215 38 36	3501.3 2237.3	3828.9 2416.6	2.18 1.30
Arent's House4	40 30 37.50	74 14 28,14	148 33 03	Terrill	\$28 32 39 23 21 48	1685.4 2492.0	1843.1 2725.2	1.0. 1.5
pringville, Methodist church 4	40 35 55.78	74 09 28.96	203 21 21 23 38 06	Crizier Signal	203 37 15 281 34 30	4617.6 4817.2	5049.7 5267.9	2.8 2.9
erth Amboy, Presbyterian church 4	40 30 18.09	74 15 37.80	101 36 41 17 31 45	Miller	197 31 99 87 27 33	2755.8 4475.8	3013,7 4894,6	1.7 2.7
erth Amboy, Episcopal church	40 30 10.64	74 15 36.15	967 25 29 929 30 10	Gage	49 31 02 38 07 24	2488.0 3017,9	2720.8 3300.3	1.54
outh Amboy Depot4	40 29 26.32	74 16 15.58	218 06 33 254 29 50	Dubois	74 30 48	2189.5 1032.3	2394.4 1128.9	1.3
	40 26 12.41	74 11 47.24	356 41 40 218 52 09	Conaskonck Point, (2)	176 41 42 38 53 03	3097,7	3387.5 8569.4	1.9
Rutherford Observatory, transit, 4	40 43 48.79	73 58 54.43	172 59 20	Prince's Bay	352 58 54	7836.9		
From Newburg to Poughkeepsie.								
* * -	41 25 49.20	73 58 43,96	323 07 41 286 29 46	Constitution Island Plum Bush	143 08 39 106 31 47	3373.9 4403.8	3689.6 4815.9	9.19 9.7
Breakneck Point 4	41 26 30.12	73 58 24.76	338 04 09	Constitution Island	158 04 54	4270.5 1333.3	4670.1 1458.1	9.65 0.85
'olypus Island	l		18 46 57	Butter Hill Clough	198 46 45	1		ŧ.

Section II.—Hudson river, from Newburg to Poughkeepsie. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
					0 1	Matan	Yards.	Miles
Van Amburg	41 27 34.81	73 58 36.12	147 28 55 182 18 53	Robinson	327 27 51 2 18 59	Metres. 4180.0 4782.1	4571.1 5229.6	2.60 2.97
Sloop Hill	41 27 14,43	74 01 08.17	214 31 01 259 53 05	Spy Hill	34 32 48 79 54 4 6	6563.3 3583.9	7177.4 3919.2	4.08 2.23
Round Top	41 26 09,18	74 00 28.69	223 39 06 155 31 22	Polypus Island Stoop Hill	43 40 09 335 30 56	2868.9 2211.4	3137.3 2418.3	1.78 1.37
New Windsor	41 28 41.17	74 00 30.37	359 31 28 322 17 59	Round Top Polypus Island	179 31 29 142 18 57	4688.5 3301.9	5127.2 3610.8	2 91 2.05
Plum Point,	41 28 49.29	73 58 33.03	28 32 01 13 48 22	Round Top Polypus Island	208 30 44 193 48 02	5621.1 2948.4	6147.1 3224.3	3.49 1.83
Lee	41 28 48.04	74 01 03.47	269 21 10 303 26 35	Plum Point	89 22 50 123 28 12	3489.9 4097.3	3816.4 4480.7	2.17 2.54
Hubbard	41 26 24,22	73 59 09.15	184 45 53 199 23 20	Polypus Island Van Amburg	4 45 57 19 23 42	1617.5 2308.6	1768.8 2524.6	1.00 1.43
Hedges	41 25 43,98	74 02 20.78	197 51 48 253 20 11	Lee Round Top	17 32 39 73 21 25	5954.6 2716.1	6511.8 2970.2	3.70 1.69
Dean	41 27 27.38	74 04 01.83	295 58 03 238 57 58	Round Top	116 00 24 58 59 56	5503.5 4828.8	6018.5 5260.6	3.42 3.00
Delancey	41 26 36.61	74 03 03.36	283 13 59 214 26 49	Round TopLee	103 15 41 34 28 08	3688.7 4917.2	4033.8 5377.3	2.29 3.05
Balmville	41 31 43.97	74 00 04.71	292 36 31 351 49 23	Bald Hill	112 40 03 171 50 18	8051.2 13564.3	8804.5 14833.5	5.00 8.43
Railroad, (59)	41 33 00.72	73 57 59.67	145 47 38 85 24 43	Truesdall	325 47 11 265 23 36	1671.6 2361.5	1828.0 2582.5	1.04 1.47
Fowler's House	41 34 24.55	73 54 09.49	105 50 47 5 42 36	Bingham	285 47 26 185 42 13	7280.5 8092.8	7961.7 8850.0	4.59 5.00
Low Point.,,	41 33 20.05	73 57 43.24	73 59 68 212 11 32	Weed Old Troy	253 57 50 32 12 20	2845.1 3151.7	3111.3 3446.6	1.77 1.96
Brinkerhoff	41 33 44.15	73 57 13.56	207 16 14 65 56 22	Old Troy	27 16 42 245 54 44	2164.3 3748.1	2366.8 4098.8	1.34 2.33
Limestone Point	41 34 24.17	73 57 29.11	343 43 28 242 59 13	Brinkerhoff	163 43 38 62 59 52	1286.0 1517.3	1406.3 1659.3	0,80 0,94
Hampton	41 36 18.77	73 57 22.44	332 45 40 265 98 32	Angell	152 46 33 85 09 41	4058.7 2425.0	4438.5 2651.9	2.59 1,51
Purdy, (2)	41 35 28.25	73 57 16.93	232 22 49 175 19 00	Sheafe	52 23 55 355 18 56	2869.4 1563.7	3159.8 1710.0	1.79 0.97
Deyo	41 42 21.53	73 57 54.28	280 40 34 10 33 06	Vervalin	190 45 96 190 32 30	10334.7 6871.4	11301.7 7514.4	6.49 4.97
₩ooiley	41 45 38.29	73 58 00.46	4 58 10 358 39 09	Golden Ridge Deyo	184 57 38 178 39 13	12873.7 6071.1	14978.3 6639.2	8.00 3.77
Milton	41 38 54.75	73 57 03.29	243 33 52 14 57 18	Vervalin	63 38 10 194 57 92	10025,2 2221,5	10963.2 2429.4	6.23 1.38
Jobes	41 41 55.84	73 57 11.55	20 39 07 358 02 15	Golden Ridge	200 38 02 178 02 21	6371.9 5589.9	6968.1 6112.9	3.96 3.47
Dubois	41 41 20.02	73 56 43 82	30 44 32 149 52 50	Golden Ridge	210 43 09 329 52 32	5651.9 1277.5	6180.0 1397.0	3,51 0,79
Davis	41 43 31.98	73 55 96.50	28 55 57	Dubois	208 54 52 240 42 58	4650.8 4445.7	5086.0 4861.7	2.89 2.76
Leroy	41 45 28.93	73 56 58.59	60 44 50 12 33 12	Deyo Vervalin		5922.4 11742.5	6476.6 12841.2	3.68 7.30
Boorman	41 45 18.06	73 55 34.80	310 57 25 348 41 57	Davis	168 42 16 279 48 53	3337.1 1964.5	3649.3 2148.3	9.07 1.95
Hoyt	41 43 06.29	73 56 39.01	99 49 49 249 39 10	Davis	69 40 12 181 56 33	2295.9 3279.9	2510.7 3586.8	1.43 2.04
Haley	41 44 31,19	73 56 47.10	1 56 36 308 08 44	Davis	181 50 53 128 09 51 49 07 31	2956.3 2209.4	3939.9 9416.1	1.84
Coe	41 44 02,57	73 57 27,79	229 06 43 286 09 15	Davis	106 10 49	3399.3	3717.4	2.11 2.44
Summer House Hill	41 39 47.10	73 56 54.33	354 31 12 174 16 15	JobesVervalin	174 31 23 354 16 04	3930.6 3991.2	4364.6	2.48 5.73
Mine Point	41 40 46.45	73 56 03.80	252 00 34 143 48 16 32 33 34	Jobes	72 04 46 323 47 31 212 33 00	9990.5 9652.8 2172.0	2901.0 2375.2	1.64 1.35

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Hudson river, from Newburg to Poughkeepsie. Sketch B, No 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Dog Head Cove Point	41 41 01.67	73 56 26.66	296 18 22 4 32 58	Davis	116 19 15 184 32 47	Metres. 2066.1 5002.2	Yards. 2259.4 5470.3	Miles. 1.28 3.11
Poughkeepsie Second Point	41 43 06.50	73 56 01.30	161 00 13 89 35 18	Dog Head Cove Point	340 59 56 269 34 53	1799.9 871.6	1968.3 953.2	1.12 0.54
Roosevelt	41 44 20,32	73 55 55.79	51 05 53 3 12 05	Dog Head Cove Point Poughkeepsie Second	931 05 33 183 12 01	916.5 2280.8	1002.3 2494.2	0.57 1.49
Crumb Elbow Point	41 45 05.70	73 56 22.00	336 36 17 3 06 51	Point. Roosevelt	156 36 35 183 06 48	1525.3 1978.4	1668.0 2163.5	0.95 1,23
Railrond, (68)	41 45 13 47	73 55 54.71	0 59 24 18 25 48	Roosevelt Dog Head Cove Point	180 52 23 198 25 27	1639.9 2335.1	1793.3 2653.6	1.02 1.45
Spring Brook	41 39 25,25	73 56 10.09	123 22 22 30 18 18	Summer-house Hill Mansion Hill	303 21 53 210 17 26	1925.2 3575.0	1339.8 3910.2	0.76 2.23
Old Lime-kiln	41 37 13,00	73 56 37.11	139 05 41 169 04 46	Mansion Hill	319 05 07 349 (4 29	1541.3 3196.7	1685.5 3495.8	0.96 1.99
Bishop	41 38 42 05	73 56 20. 78	158 51 21 111 42 54	Summer-house Hill Milton	338 50 59 291 42 26	2151.4 1058.6	2352.7 1157.7	1.33 0.66
Barnegat	41 37 31,31	73 56 35.01	4 55 25 188 34 54	Old Lime-kiln Bishop	184 55 24 8 35 03	567.2 2207.0	620.3 2413.5	0.35 1.37
Poughkeepsie, Catholic Church	41 42 30.64	73 55 55,00	210 38 04 179 41 32	Davis	30 38 36 359 41 31	2199.3 3383.5	2405.1 3700.1	1.37 2.10
Poughkeepsie, Old Dutch Reformed Church,	41 42 13.51	73 55 29,92	283 46 18 18 16 42	Vervalin Mansion Hill	103 49 34 198 15 23	7019.5 8717.1	7676.3 9532.8	4.36 5.42
Rock Point	41 40 10.85	73 56 16,70	195 12 10 24 39 40	Mine Point	15 12 19 204 39 09	1137.8 2583.2	1244.3 2824.9	0.71 1.60
Peck	41 35 19.33	73 57 19.44	177 27 50 264 15 12	Mansion Hill	357 27 44 84 19 00	4503.6 7970.2	4925,0 8716.0	2.80 4.95
Blue Point Hill	41 40 44.46	73 56 41,02	9 52 04 11 08 06	Summer-house Hill Mansion Hill		1796.0 5636.9	1964.0 6164.3	1.11 3.50
New Hamburg	41 35 20,80	73 56 42,29	86 58 48 166 37 30	Peck	266 58 23 346 37 00	861.4 4578.0	942.0 5006.4	0.53 2.84
Howland	41 36 16 59	73 56 20,37	16 26 24 92 41 18	New Hamburg	196 26 09 272 40 37	1794.3 1438.8	1962.2 1573.4	1.11
Hunt	41 37 59.35	73 56 28,07	10 31 07 187 18 15	Barnegat	190 31 02 7 18 20	879.8 1328.0	962.1 1452.3	0.55 0.82
Ackerly	41 37 10.28	73 57 04,41	262 26 15 226 21 33	Old Lime-kiln	82 26 33 46 21 53	637.6 940,4	697.3 1028.4	0.40 0.58
Morse	41 40 10.87	73 56 16.68	195 12 09 49 54 59	Mine Point Summer-house Hill	15 12 18 229 54 34	1137.8 1137.8	1244.3 1244.3	0.71 0.71
Egan's Wharf	41 40 25.51	73 56 44.51	235 32 10 305 03 28	Mine Point	55 32 37 125 03 46	1142.4 786.3	1249.3 859.9	0.71 0.49
Poughkeepsie, New Dutch Re-	41 42 13.41	73 55 29.70	23 26 51 19 27 39	Summer-house Hill Milton	203 25 55 199 26 37	4918.8 6499.1	5379.0 7107.2	3.06 4.04
Fowler	41 38 15.44	73 56 58,35	226 38 06 345 40 59	Bishop	46 38 31 165 41 13	1195,5 1987.8	1307.8 2173.8	0.74 1.23
Dog Head Point, (2)	41 44 01.65	73 56 26,66	231 04 37 296 17 37	Roosevelt	51 04 58 116 18 30	916.8 2066.0	1002.6 2259.3	0.57 1.28
Crosby	41 43 30,00	73 55 57.41	145 18 55 181 23 10	Dog Head Point, (2) Roosevelt	325 16 36 1 23 11	1187.6 1552.9	1298.7 1698.2	0.74 0.96
Haley's Quarry	41 44 20.40	73 56 27.94	308 26 28 270 10 41	Davis	128 27 22 90 11 02	2402.6 742.7	2627.4 812.2	1.49 0.46
Reynolds	41 42 36.50	73 56 02,84	169 44 55 217 15 45	Haley's Quarry Davis	349 44 39 37 16 22	3257.3 2150.3	3562.1 2351.5	2.02 1.33
New Paltz North	41 43 07 39	73 56 34.42	201 38 17 322 31 57	Roosevelt	21 38 43 142 32 18	2420 4 1200,1	2646.9 1312.4	1.50
Elting Pier	41 42 40.45	73 56 38.70	227 06 14	Poughkeepsie Second Point.	47 06 39	1180.1	1290.5	0.73
Iron Works	41 42 05,99	73 56 06, 9 0	278 21 39 145 20 19	Reynolds	98 22 03 325 19 58	637.8 1292.6	916.2 1413.5	0.52 0.80
Louisburg	41 42 15.98	73 56 41.77	185 4 1 07	Reynolds	5 41 10	946.0 779.8	1034.5 852.8	0.59
	41 41 13.35	73 56 32.59	289 34 10 173 39 38	Iron Works	109 34 33 353 39 32	855.6 1922.3	935.7 2102.2	0.53
Yellow Point	41 41 13.35	13 30 32.39	200 05 26	Iron Works		1729.1		1.07

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

	11. 11448		3	- Interpolation to the transfer of the transfe	. Account	, 110.		
Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance	Distance.
Foπ's Point,	. 41 41 26.40	73 56 01.94	60 24 03 174 33 12	Yellow Point	240 23 43 354 38 09	Metres. 815.1 1226.6	Yards. 891.4 1341.4	Miles. 0.51 0.76
Quarry Wharf	. 41 41 33,87	73 56 42.69	181 09 27 283 40 05	Louisburg	1 09 28 103 40 32	1277.7 974.5	1397.2 1065.7	0.79 0.60
Blue Point	41 40 50,40	73 56 30.07	210 20 56 281 23 21	Fox's Point	30 21 15 101 23 38	1287.3 619.6	1407.7 677.6	0.80 0.38
From Poughkerpsie to Rhinebeck.								
Dennis, (1)	41 47 25.44	73 50 42.21	46 50 03 359 09 47	Deyo	226 45 15 179 69 52	13693.9 11298.0	14975.2 12355.1	8.51 7.02
Stewart	41 46 11.39	73 57 50,33	311 49 14 5 34 04	Vervalin	131 54 04 185 33 25	13505.2 13911.7	14768.9 15213.4	8.39 8.64
Lloyd	41 49 15.01	73 52 54.53	50 21 04 347 36 24	Stewart	230 17 47 167 37 57	8872.2 15026.3	9702.4 16432.3	5.51 9.34
Dennis. (2)	41 47 25.40	73 50 42.44	77 01 38 137 58 20	StewartLloyd	256 56 53 317 56 52	10140.4 4552.8	11089.2 4978.8	6.30 2.83
Prospect Hill	41 59 25,74	73 57 30.33	312 44 26 2 17 28	Lloyd	132 47 30 182 17 15	8665.5 11557.6	9476.3 19639.0	5.38 7.18
Traver	41 55 02.86	73 52 21.81	55 44 58 4 01 30	Prospect Hill	235 41 32 184 01 08	8605.8 10757.4	9411.0 11764 0	5.35 6.68
Terry	41 56 20.10	73 57 59.97	286 58 39 354 36 03	Traver Prospect Hill	107 02 25 174 36 23	8146.6 7262.3	8908.9 7941.8	5.06 4.51
Burhans	42 00 27,13	73 56 54.40	11 19 36 327 52 14	Terry Traver	191 11 52 147 55 16	7768.8 11809.6	8495.7 12914.6	4,83 7,34
Staats	42 02 17.72	73 52 58.49	32 11 41 356 23 44	Terry Traver	212 08 20 176 24 08	13033.2 13442.2	14252.7 14700.0	8.10 8.35
Welch	41 57 21.96	73 52 05 64	76 52 17 4 57 39	TerryTraver	256 48 20 184 57 28	8380.3 4307.3	9164.4 4710.3	5.21 2.68
Boitz	41 55 52.51	73 49 11 97	70 42 57 94 03 10	Traver	250 40 50 273 57 17	4634.1 12192.0	5067.7 13332.8	2.88 7.57
Teator	42 00 09.55	73 46 45.55	65 33 15 39 19 32	Terry	245 25 44 219 15 47	17063.9 12225.9	18660.6 13369.9	10.60 7.60
Barnes	41 48 12,07	73 50 41.05	1 16 37 69 27 07	Dennis, (2) Stewart	181 16 36 249 22 21	1439.8 10587.3	1574.5 11578.0	0 90 6.58
Adams	41 48 08.07	73 57 18.40	278 09 26 11 34 44	Dennis, (2)	98 13 50 191 34 23	9234.7 3674.2	10098.8	5.74 2.28
Crumb Elbow Ridge	41 45 40,64	73 57 03.35	175 37 55 131 09 40	Adams	355 37 45 311 09 08	4561.9 1441.1	4988.0 1575.9	2.83 0.90
Van Wagner Hill	41 44 12.13	73 53 59,34	318 27 52 124 36 23	Vervalin	138 30 08 304 33 49	7123.0 6480.7	7789.5 7087.1	4.42 4.03
Hyde Park North	41 47 17.96	73 56 30.49	14 11 11	Crumb Elbow Ridge	194 10 49	3096.7 1990.5	3386.4 2078.3	1.92 1.18
Bard's Rock	41 48 13.88	73 56 23,49	144 25 08 El 57 17	Adams	324 24 36 261 56 40 185 21 09	1280.0 1732.3	1399.8 1894.4	0.79 1.08
Aetor	41 48 26.50	73 56 55.02	5 21 14 298 08 47 345 00 20	Bard's Rock	118 09 08 165 00 36	825.3 2188.6	902.5 2393.4	0.51 1,36
Green Point	41 46 07.98	73 56 32.32	163 58 59	Adams	343 58 28	3854.3	4214.9	2.40 0.69
Taylor	41 47 51.26	73 57 00.24	0 59 59	Crumb Elbow Ridge	220 20 52 180 59 57	1106.7	1210.2 4508.4	2.56 0.65
Russell Pier	41 47 05.69	73 57 96.43	234 30 19 185 26 57	Fard's Rock	54 30 43 5 27 01	1041.9	1139.4 1646.3 997.4	0.93 0.57
Hyde Park South	41 46 31.96	73 56 34 60	245 27 34 183 15 55	Hyde Park, north	65 97 58 3 15 57	912.1	1554.6	0.88 0.80
Railroad, (68)	41 45 13.49	73 55 54.70	144 15 39	Russell Pier	324 15 18 297 50 19	1793.4	1402.0	1.11
Crumb Elbow East	41 45 46.42	73 56 15.19	152 39 58 335 00 46	Green Point	332 39 33 155 01 00	1191.0	2069.6 1225.9	0.76 0.78
West Park	41 47 98,57	73 57 06.62	7 08 45	Hyde Park, north	187 08 40	1266,0 895.9	979.7	9.56 1.07
White House	41 46 31.15	73 57 09.99	215 27 39 208 53 34	Bard's Rock	35 28 08 26 53 56	1715.9 1619.3 652.1	1676.5 1770.8 713.1	1.01 0.41
•	•	•	267 48 30	Hyde Park, south	67 46 49	002.1	110.1	

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

		,		-				
Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Boorman's Point	° / // 46 46 16.98	° ' '' 73 56 31.44	181 15 27 124 15 52	Hyde Park, south White House	1 15 27 304 15 34	Metres. 462.0 776.2	Yards. 505,2 848,8	Miles. 0,29 0,48
Brown's Wharf	41 46 17.07	73 57 00.91	270 16 27 293 00 47	Boorman's Point Green Point	90 16 45 113 01 06	611.9 716.8	669.1 783.9	0.38 0.45
Boat Landing	41 45 35.78	73 56 32,98	231 24 20 153 06 52	Crumb Elbow East Brown's Wharf	51 24 32 333 06 33	526.3 1428.1	575.6 1561.7	0.33 0.89
Bolle's Island	41 48 48.28	73 56 24.82	46 02 48 2 41 28	Astor Hyde Park, north	226 02 28	968.2 2789,3	1058.9 3050.3	0,60 1.73
Southard	41 48 55.94	73 56 54.56	288 59 07 331 04 13	Bolle's Island	1	725.9 1482.5	793.8 1621.2	0.45 0.92
Blunt's Island	41 49 06.33	73 56 19.87	11 35 19 68 11 23	Bolle's Island Southard		568,2 862.2	621.4 942.9	0.35 0.54
Pelham Signal	41 49 21,87	73 57 01,72	296 24 45 320 35 11	Blunt's Island	116 25 13	1078,3 1341.1	1179.2 1466.6	0.67 0.83
Wilkes	41 49 52.51	73 56 13,85	49 26 54 5 34 21	Pelham Signal	229 26 22 185 34 17	1453.8 1431.7	1589.8 1565.7	0.90 0.89
Indian Rock	41 49 55.95	73 57 02.30	359 15 45 275 24 50	Pelham Signal	179 15 45 95 25 22	1051.4 1123.0	1149.8 1228.1	0.65 0.70
Pelham Dock	41 50 33.79	73 56 58.22	4 36 52 321 12 11	Indian Rock	184 36 49 141 12 40	1171.3 1633.9	1280.9 1786.8	0.73 1.01
Cliffwood	41 51 29.23	73 56 43.21	222 24 46 308 06 26	Traver	42 27 40	8929,8 6706.2	9765.3 7333.7	5.55 4.17
Pell	41 50 32,31	73 57 25.42	178 98 59 209 00 13	Prospect Hill	358 08 47 29 00 41	3500 8 2007.6	3828.4 2195.4	2 17 1.2
Poliock	41 49 40,17	73 57 16.95	193 01 21 255 20 30	Cliffwood	13 01 43	3453.4 1504.9	3776.5	2.15 0,93
Mulford Pier	41 50 40,63	73 56 20.71	76 17 15 160 55 16	Pelham Dock	256 16 50 340 55 01	891.0 1586.9	974,4 1735,4	0.55
Rock	41 50 09.24	73 56 19 44	130 16 04 33 43 40	Pelham Dock	310 15 38	1172.2 1756.8	1281.9 1921.2	0.78 1.09
Cave Point	41 51 27.94	73 56 38.19	344 32 43 15 27 39	Mulford Pier Pelnam Dock	164 32 55 195 27 26	1514 I 1733.3	1655.8 1895.5	0.94 1.08
Meadow Point	41 51 56.53	73 56,35,66	925 29 10 314 18 30	TraverLloyd	45 32 00	8202.4 7130.8	8969.9 7798.0	5.10 4.43
Lewis' Pier	41 51 17.63	73 56 05.52	112 25 02 112 51 26	Cliffwood		940.0 818.0	1027.9 894.5	0.58 0.5
Elting Signal,	41 53 47.59	73 58 03.64	181 01 46 253 32 40	Terry	1 01 48 73 36 29	4705.8 8219.5	5146.1 8980.9	2.99 5.10
Van Akin	41 52 50.97	73 57 12.83	332 57 39 238 43 54	Meadow Point	152 58 04 58 47 09	1885.5 7845.0	2061.9 8579.1	1.17
Railroad, (89)	41 52 92,23	73 55 24.23	109 30 30 39 30 33	Van Akin	289 29 17 219 29 14	2656.1 4394.0	2904.6 4805.1	1.65 2.73
Hemlock Point	41 52 53.63	73 57 02.66	293 06 48 340 32 15	Railroad, (80) Meadow Point		9467.6 1868.5	2698.5 2043.3	1.53
Jones' Island	41 52 56.73	73 55 54.97	86 32 38 84 23 57	Hemlock Point	266 31 52	1579.4 1819.9	1727.2 1990.2	0.98 1.13
Ellerslie	41 53 30,81	73 56 26.56	40 57 06 325 46 42	Van Akin. Railroad, (80)		1627.4 2557.5	1779.7 2796.8	1.0
Port Ewen Signal	41 54 21.67	73 58 09,20	183 19 52	Terry		3659.7 1059.2	4009.1 1158.3	2.2
Railroad, (85)	41 54 14.40	73 57 01.81	98 13 36 59 52 36	Port Ewen Signal Elting Signal	278 12 51 239 51 55	1569.3 1647.7	1716.1 1801.9	0.9
Kipp	41 55 56.74	73 56 14,09	106 28 14 42 08 03	Terry Port Ewen Signal	266 27 03	2543.2 3954.2	2781.2 4324.2	1.58
Rhinebeck	41 55 10.47	73 56 52.28	144 01 49 49 49 06	TerryPort Ewen Signal	i	2654.5 2325 5	2902.9 2543.1	1.65
Kingston Point	41 55 38,84	73 57 28.24	316 33 48	Rhinebeck	:	1205.1 2675.3	1317.9 2925.6	9.75
Big Rock Point.	41 53 31.86	73 57 30.58	271 14 37	Ellerslie		1476.1 1470.3	1614.2 1607.9	0.92
Hailroad, (86)	41 54 41.59	73,56,59,68	206 48 32 68 57 58	Port Ewen Signal	248 57 12	1711.6	1671,8	1.00
			159 41 45	Kingston Point	339 41 26	1883.0	2059.2	1.1

Section II.—Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

	1		<u> </u>	Ī				1
Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Gurnee	41 56 45 27	73 57 39.19	307 21 51 8 52 25	Kipp Port Ewen Signal	127 22 48 188 52 05	Metres. 2466.5 4483.5	Yards. 2697.3 4903.0	Miles. 1,53 2,79
State Wharf	41 55 32.34	73 56 39.94	128 38 33 100 13 03	Terry Kingston Point	308 37 40 280 12 27	2360.0 1130.5	2580.8 1236.3	1, 46 0, 70
Rondout Light-house	41 55 11,93	73 57 41.63	314 12 09 272 15 37	Railroad, (86)	134 12 28 92 16 10	1342.0 1137.9	1467 6 1244.4	0.83 0.71
Evertson	41 54 44.57	73 58 06.33	273 25 31 244 54 09	Railroad, (86)	93 26 15 64 54 59	1533,9 1884,0	1677.4 2060.3	0.95 1,17
Sleight's Hill	41 54 51,30	73 58 20.69	189 52 49 235 17 51	Terry	9 53 03 55 19 15	2780,8 3547,3	3041.0 3879.2	1.73 2.20
Hanaburgh,	41 52 37.57	73 54 13,53	58 35 48 68 53 32	Cliffwood	238 34 08 248 51 57	4044.5 3513.2	4422.9 3841 9	2.51 2.18
Abiel Smith	41 54 57.64	73 59 25.61	247 31 51 318 50 10	Kipp	67 33 59 138 51 04	4774.3 2870.3	5221.0 3138.9	2.97 1.78
Tunnel Point	41 57 02.53	73 56 26.13	28 59 32 20 29 30	Kingston Point Elting Signal	208 58 51 200 28 25	2951,8 6419,7	3228.0 7020.4	1.83 3.99
Flatbush	41 57 16.83	73 57 25.64	326 17 12 287 50 07	Kipp Tunnel Point	146 18 00 107 50 47	2969.7 1439.8	3247.6 1574.5	1.85 0.89
Chamberlain	41 58 10.90	73 56 66.23	47 38 84 12 15 37	Flatbush	227 37 11 192 15 24	2475.2 2158.5	2706.8 2360.5	1.54
Livingston	41 58 28.17	73 56 57.16	344 51 58 16 35 46	Tunnel Point	164 52 19 196 35 27	2737.0 2296.6	2993.1 2511.5	1.70 1.43
Ten Broeck	41 58 13.38	73 57 03,06	16 35 57 338 44 18	Flatbush	196 35 42 158 44 42	1820,3 2345,3	1990.6 2564.7	1.13
Vandemark	41 57 55.06	73 57 09.26	194 10 23 17 44 24	Ten Broeck	14 10 27 197 44 13	582.7 1238.4	637.2 1354.3	0.36 0.77
Mills' Wharf	41 58 10.24	73 56 09.33	116 40 28 94 28 42	Livingston Ten Broeck	296 39 56 274 28 96	1232.3 1240.8	1347.6 1356.9	0.76 0.77
Knickerbocker Pier	41 57 56,72	73 57 04.61	21 28 57 251 51 19	Flatbush Mills ² Wharf	201 28 43 71 51 56	1322.7 1339.4	1446.5 1464.7	0.82 0.83
Garrison	41 56 53.57	73 56 19.70	65 55 14 355 46 41	Terry	245 54 07 175 46 45	2529.5 1757.7	2766.2 1922.2	1.57 1.09
Port Ewen Bell House	41 54 22.20	73 57 54.36	281 14 23 340 33 51	Radroad, (85)	101 14 58 160 34 07	1234.9 1646.9	1350.4 1801.0	0.77 1.02
Rondout, Roman Catholic church	41 55 17.69	73 58 56.85	46 58 36 992 26 13	Abiel Smith	226 58 17 112 27 31	906.4 2916.1	991.2 3189.0	9.56 7.81
Cement	41 55 15,00	73 58 34.79	65 25 26 273 22 58	Abjel Smith	245 24 52 93 24 06	1287.3 2365.8	1407.7 2587.2	0.80 1.47
Dinsmore	41 51 38,19	73 55 41.92	114 32 08 196 42 51	Meadow Point	294 31 32 16 43 03	1362 1 1418.4	1489.5 1551.1	0.84 0.88
Esopus Light house	41 52 05.30	73 56 12.39	142 08 50 63 15 06	Hemlock Point Meadow Point	322 08 16 243 14 51	1888.5 600.9	2065.2 657.1	1.17 0.37
Sukely's Observatory	41 57 21,04	73 55 18,77	63 09 20 123 55 18	Terry Ten Broeck	943 07 39 303 54 08	4160.8 2893.9	4550.1 3164.7	2.58 1.80
Whiskey Point	41 57 10 35	73 57 21.55	342 24 46 325 38 36	State Wharf	162 25 14 145 37 21	3172.3 2751.4	3469,1 3008.8	1.97
Esopus, Dutch Reformed church.	41 51 11.30	73 57 53.37	179 05 12 193 01 30	Terry	359 05 08 13 01 45	9527,9 2356,9	10419.4 2577.4	5 92 1.40
Curtis' Tower	41 48 03,29	73 56 06.48	151 27 19 243 26 14	Poliock		3402.9 4952.1	3721.3 5415.5	2.11 3.08
Jones' House Tower	41 53 10,51	73 55 51.58	24 00 25 58 45 52	Meadow Point	203 59 56 238 44 46	2498.5 2663.0	2732.3 2912.2	1.55 1.65
West Park Episcopal Church	41 48 14 75	73 57 13.46	330 28 27 357 11 07	Hyde Park, north Crumb Elbow Ridge	150 28 56 177 11 14	2012.9 4759.9	2912.2 2201.2 5205.3	1,25 2,96
Weist	41 49 41.46	73 58 12.54	190 52 17 336 32 51	Prospect Hill	10 52 45	5160.4	5643.3 3434.9	3.21 1.95
Bruen	41 50 00,07	73 57 39 74	182 45 54 351 53 97	Prospect Hill	158 33 27 2 46 00	3140,4 4498,9	4919.9	2.80 2.17
Red Hook Spire	41 58 17,86	73 52 23.45	33 05 14 359 38 25	Prospect Hill	171 53 21 213 01 49	3490.0 12961.1	3816.6	8.05 3.74
Wittenberg, Presbyterian church.	41 53 51 16	73 51 44,39	158 42 09	Traver	179 38 26 338 41 44	6015.9 2374.0	9596.1	1.47
'		'	118 00 97	Terry	297 55 56	9798.0	10714.8	9,50

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section II.—Hudson river, from Poughkeepsie to Rhinebeck. Sketch B, No. 7.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Dietance.	Distance.
G, A. Smith	41 54 18,07	74 00 30.71	985 29 28 236 39 38	Elting	105 31 06 56 40 55	Metres. 3517.6 3196.7	Yards. 3846.7 3495.8	Miles. 2.19 1.99
Ellsworth	41 53 30.34	74 00 02.69	156 19 10 212 05 39	G. A. Smith	336 18 51 32 06 38	1697.6 3811.4	1758.0 4168.0	1.00 2.37
Wilbur East	41 54 45.47	73 59 29.57	243 57 46 234 10 12	K:pp	63 59 57 54 10 49	5011.8 1556.5	5480.7 1702 l	3.11 0.97
Copeland	41 54 38.76	73 59 21.90	139 30 33 224 08 38	Wilbur East	519 30 28 44 09 09	272,2 1558,2	297.7 1704.0	0.17 0.97
Wilbur West	41 54 34,73	73 59 51.88	237 12 18 259 48 06	Wilbur East	57 12 33 79 48 26	611.7 702.0	668.9 767.7	0.38 0.44
Von Beck	41 54 27.62	73 59 06.08	206 14 43 135 30 30	Cement	26 15 04 315 30 14	1629.9 772.2	1782.4 844.5	1.01 0.48
Flannery	41 54 44.24	73 59 21.67	1 48 19 67 10 20	Copeland	181 48 19 247 10 00	168.9 755.5	184,7 826.2	0.10 0.47
Brooklyn Wharf	41 54 17.89	73 59 55.90	6 05 53 90 23 44	Elisworth	186 05 48 270 23 21	1475.1 802.4	1613.1 877.5	0.92 0.50
Lawrence Wharf	4) 53 57.02	74 00 44.27	239 59 35 310 39 09	Brooklyn Wharf Ellsworth	60 00 07 130 39 37	1287.4 1263.2	1407.9 1381.4	0.80 0.78
Crow's Point	41 54 03.85	74 00 10.47	133 14 18 217 47 52	G. A. Smith	313 14 04 57 48 02	640.2 548.1	700.1 599,4	0.40 0.34
Booth	41 54 20.52	74 00 05.58	289 58 57 357 32 44	Breoklyn Wharf	109 59 03 177 32 46	237.4 1549.5	259.6 1694.5	0,15 0,96
Donovan's Kiln	41 54 12.70	74 00 17.44	252 08 21 345 25 0 2	Brooklyn Wharf Eilsworth	72 08 35 165 25 12	521.7 1350.2	570.5 1476.5	0.32 0.84
Hamilton Island	41 53 58.62	74 00 21.44	333 39 08 224 43 01	Ellsworth	153 39 21 44 43 18	973.4 836.6	1064.5 914.9	0.60 0.52
New Salem	41 53 47,51	74 00 42.14	228 40 16 300 12 39	Brooklyn Wharf	48 40 47 120 13 05	1419.4 1052.3	1552.2 1150.8	0.88 0.65
Tremper	41 54 38.93	73 59 01.41	208 50 53 107 16 32	Cement	28 51 11 287 16 13	1270.5 679.6	1389.4 743.2	0.79 0.42
Rolfe's Quarryy	41 54 20.10	73 59 25.13	214 23 51 87 37 41	Cement	34 24 25 267 36 57	2052.6 1512.6	2244.7 1654.1	1.27 0.94
Sleight's Ferry	41 55 03.08	73 58 30.74	82 26 31 165 43 55	Abiel Smith	262 25 54 345 43 52	1275.4 379.3	1394.7 414.8	0.79 0.23
South Rondout	41 54 39.75	73 59 13.74	324 46 09 219 31 16	Von Beck	154 46 14 39 31 42	414.0 1409.8	452.7 1541.7	0.26 0.88
Sleightsburg, (1)	41 54 54,90	73 58 39.36	94 32 24 189 3 7 5 6	Abiel Smith	274 31 53 9 37 59	1068.9 628.9	11 6 8.9 687.7	0.66 0.39
Sleightsburg, (2)	41 54 50.36	73 58 44.99	103 29 57 197 10 05	Abiel Smith	283 29 30 17 10 12	962.5 795.6	1052.6 870.0	0.60 0.49
Kingston Point, (2)	41 55 28,80	73 57 35.09	330 52 22 299 49 17	Railread, (86)	150 52 46 119 49 46	1667.1 1136.9	1823.1 1243.3	1.04 0.71
North	41 55 21.88	73 58 01.29	282 28 29 250 31 19	Rhinebeck Kingston Point, (2)	1 02 29 1 5 70 31 36	1698.6 640,4	1781.0 700.3	1.01 0.40
Rondout Light-house Signal	41 55 19,20	73 57 41,70	123 30 15 272 40 26	North	303 30 02 92 40 59	541.4 1139.9	592.1 1246.6	0.34 0.71
Cornell Pier	41 55 09,32	73 58 26,23	265 03 24 236 00 00	Rondout L. H. Signal	85 03 54 56 00 17	1029.8 693.0	1126.1 757.8	0.64 0.43
Port Ewen Dutch Reformed Church.	41 54 21.92	.73 58 22.09	115 03 20 169 51 54	Wilbur, east	295 02 35 349 51 46	1716.4 1663.7	1877.0 1819.4	1.07 1.03
Port Ewen Pier	41 54 35.75	73 57 47.98	260 46 00 230 09 15	Railroad, (86)	80 46 32 50 09 52	1123.1 1671.7	1228.2 1828.1	0.70 1.04
Number 1	41 55 12.42	73 58 04, 3 6	270 44 52 193 36 44	Rondout L. H. Signal.	90 45 67 13 36 46	522.2 300.4	571.1 328.5	0.32 0.18
Number 2	41 55 06.43	73 58 29,02	259 09 59 225 03 23	Rondout L. H. Signal	79 10 96 45 03 37	945.8 674.6	1034.3 737.7	0,59 0,42
From Rhinebeek to Hudson.								
Upper Red Hook	42 01 22,38	.73 50 20,84	79 22 29 13 23 30	Burhan's	259 18 06 193 22 09	9213.0 12034.9	10075.1 13161.0	5.72 7,48
Mount Paulding	42 03 32,00	73 59 20.58	329 28 01 287 48 26	Burhan's Upper Red Hook	1	6690.6 13040.4	7940.1 14960.6	4.11 8.10

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Big Hill	0 / // 42 05 16.74	° ' '' 73 52 37.67	33 28 35 70 48 08	Burhan's Mount Paulding	213 25 43 250 43 38	Metres. 10708.9 9808.5	Yards. 11710.9 10726.3	Miles, 6.65 6.09
Round Top	42 05 12.28	73 52 94.11	341 28 56 72 54 04	Upper Red Hook Mount Paulding	161 30 05 252 49 12	7479.7 10498.5	8179.6 11480.8	4.65, 6.52
Kortze	42 07 45.74	73 55 32.52	33 49 13 318 50 15	Mount Paulding Big Hill	213 46 40 138 52 12	9420.1 6104.4	10301.5 6675.6	5.85 3.79
Lasher	42 05 13.53	73 53 15.99	330 31 52 263 35 04	Upper Red Hook Big Hill	150 33 49 83 35 30	8189.8 886.3	8956.1 969.2	5 09 0,55
Catskill	42 11 21.78	74 01 55.16	346 13 16 341 05 01	Mount Paulding Burhan's	166 15 00 161 68 22	14921.4 21346.2	16317.6 23343.5	9,27 13,26
Blue Hill	42 11 03.62	73 48 35 91	91 49 35 27 26 23	Catskill	271 40 38 207 23 41	15346.3 12055.6	90063.0 13183.6	11,40 7,49
Hover	42 08 27,34	73 51 42,70	221 37 40 76 21 17	Blue Hill	41 39 45 256 18 43	6451.5 5430.8	7055.9 5939.0	4,01 3,37
Turkey Point, north	42 01 02.13	73 56 02.41	351 37 68 241 07 08	Sukeley's Observatory.	171 37 37 61 09 11	6894.1 4830.4	7539.2 5282.4	4 28 3.00
Glasco Signal	42 02 37,97	73 56 19.46	352 26 277 46	Turkey Point, north	172 26 39 97 43 05	2982.5 4663.7	3261.6 5100.1	1,85 2,90
Cruger's Wharf ,	49 02 51,30	73 56 02,44	359 59 21 283 44 51	Turkey Point, north	179 59 21 103 46 54	3368.0 4355.0	3683.1 4762.5	2.09 2.71
Whitaker	42 01 27.38	73 56 12.10	175 33 16 184 54 24	Glasco Signal Cruger's Wharf	355 33 11 4 54 30	2184.2 2598.5	2388.6 2841.6	1.35 1 61
Thistle	42 03 26.21	73 56 02.13	0 04 57 0 22 40	Turkey Point, north Cruger's Wharf,	180 04 57 180 22 40	4444.9 1076.8	4860.8 1170.5	2.76 0.67
Skeei	49 01 47.67	73 56 16.92	189 37 51 258 29 58	Cruger's Wharf	9 38 01 78 32 11	1991,3 4656.9	2177.6 509a.6	1.24 2.89
Cruger's Island	42 02 10.09	73 55 20.98	122 36 91 143 98 91	Glasco Signal	302 35 22 323 07 33	1596.5 1589.1	1745.9 1737.8	0.99 0.99
Donaldson	41 59 43.52	73 55 41.58	12 30 53 36 48 57	Mills' Wharf	192 30 35 216 48 06	2947.7 2903.4	3223.5 3175.1	1 83 1.80
Rosina	41 59 47.68	73 56 26.12	16 14 30 277 07 39	Livingston	196 14 09 97 08 09	2554.9 1032.9	2794.0 1129.5	1.59 0,64
Croghan	41 59 25.16	73 56 36.86	245 59 29 199 34 59	Donaldson	66 00 06 19 35 66	1392.5 737.4	1522.8 836.4	0,86 0,46
Delano	41 58 52,01	73 55 50.66	133 54 25 18 27 26	Croghan	313 53 54 198 27 13	1475.9 1357.5	1614.0 1484.5	0.92 084
Turkey Point, south	42 00 51,20	73 56 03.34	346 30 59 14 58 38	Donaldson	166 31 14 194 58 23	2147.1 2028.6	2348.0 2218.4	1,33 1,96
Goldsmith	41 59 04.58	73 56 46.19	231 03 33 199 09 27	Donaldson	51 04 16 19 09 41	1911 6 1407.6	2090.5 1539.3	1,19 0,87
Hayner	41 58 59 65	73 55 33.86	140 56 26 63 06 58	RosinaLivingston	320 55 51 243 08 9 2	1908.5 2149.4	2087.1 2350.5	1 18 1.33
Delano's House	41 58 45.91	73 55 19.96	106 11 25 76 15 59	Goldsmith	286 10 27 256 14 54	2066.6 2303.5	2260.0 2519.0	1.28 1.43
Railroad Drawbridge	42 01 13.97	73 55 17.07	56 33 45 70 44 24	Turkey Point, south Turkey Point, north	236 33 14 250 43 54	1975.6 1105.0	1395.0 1908.4	0.79 0.69
Barker	42 02 34.65	73 54 40.75	92 35 51 56 46 26	Glasco Bignal Skeel	272 34 45 236 45 22	2272.2 2644.4	2484.8 2891.8	1.41 1.64
Trap Cliff	42 00 23.82	73 55 92.39	154 08 08	Skeel	334 07 28 311 51 23	2875.3 1265.0	3144.3 1363.4	1.79 0.78
Icehouse Wharf	41 59 56,59	73 56 23,43	239 06 14 239 43 57	Trap Cliff	59 06 55 112 44 95	1636.6 1044.1	1789.7 1141.8	1.09 0.65
Cramer	42 00 15.22	73 56 20.20	259 59 10 6 59 04	Trap Cliff	79 59 49 186 59 09	1350.8 610.0	1477.9 667.1	0,84 0,38
Livingston Island	42 00 53.88	73 55 96.32	101 09 46 152 21 19	Turkey Point, north	281 09 08 332 20 30	1315.3 3625.9	1438.4 3964.4	0.52 2.95
Tillotson's Wharf	49 01 98,50	73 54 52,17	16 57 11 63 17 01	Livingston's Island Turkey Point, north	196 57 01	1116.5 1809.1	1921.0 1978.4	0.69 1.12
Mugdalen Island	49 09 47.72	73 55 18.02	36 10 44 139 29 52	Skeel	216 10 05 319 29 19	2295.1 1561.5	2509.8 1707.6	1.42
Glasco Wharf	49 02 20.14	73 56 11,81	984 50 50 935 98 99	Cruger's Island Magdalen Island	104 51 94	1209.5 1561.3	1399.7	0.75

UNITED STATES COAST SURVEY .- GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude	Azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
arrytown	° ' '' 41 59 54,83	* / // 73 55 39,07	93 03 35 9 24 57	Icehouse Wharf	273 03 05 189 24 55	Metres. 1022.2 353.8	Yards. 1117.8 3:6.9	Miles. 0.6: 0.2:
ycamore Point	42 03 05,93	73 55 10,81	61 21 19 117 55 35	Glasco Signal Thistle	241 20 24 297 55 01	1799.0 1335.5	1967.3 1460.5	1,19
de Peyster	42 03 48.40	73 55 10.19	0 37 00 5 29 25	Sycamore Point Magdalen Island	180 37 00 1e5 29 20	13 0.2 1880,5	1432.8 2056.5	9.81 1.11
orlilard	42 03 59 26	73 56 14.13	340 03 04 282 50 11	Cruger's Island	160 03 40	3182.6 1507.4	3917.8 1648.4	2.2 0.9
tailroad, (97)	42 03 58.48	73 55 08.82	5 31 49 90 55 36	Magdaten Island	185 31 43 270 54 52	2193,1 1501,3	2398 3 1641.8	1,36 0,93
fynderse	42 04 30,50	73 56 14.96	311 05 30 337 33 36	De Peyster	131 06 13 157 34 14	1975.5 3430.1	2160.3 3751.1	1.2 2.1
medberg	49 63 39.47	73 56 11.93	241 02 30 177 46 21	Railroad, (97)	61 03 12 357 46 19	1657.8 1791.4	1812.9 1959.0	1.0 1.1
ock Island	42 04 57.34	73 55 46.48	19 31 59 334 30 55	Lorillard	199 31 39 154 31 21	1901.2 2011.6	9079.1 2199.8	1.1 1.2
lermont	42 05 01.78	73 54 56.19	83 15 24 61 56 39	Rock Island	263 14 50 241 55 46	1163.8 2051.4	1272.7 2 243.3	0.55 1.2
ailroad, (98)	42 05 27,87	73 54 51,03	8 22 43 8 26 02	Clermont	188 22 40 188 25 50	813.9 2787.8	890.1 3048.6	0.5 1.7
Ialden	42 05 37,30	73 55 35,90	285 45 00 348 27 29	Railroad, (98)	105 45 30 168 27 47	1071.4 3111.3	1171.6 3402.4	0.6 1.9
ight-house Wharf	42 04 17 27	73 55 28.03	335 16 44 62 19 54	De Peyster	155 16 56 242 19 23	980.6 1196.4	1072.4 1308.3	0.6 0.7
tony Point	42 04 08.77	73 56 04 57	283 54 34 252 39 17	Railroad, (97) Lighthouse Wharf	103 55 11 72 39 41	1320.2 880.0	1443.7 962.3	0.1
rame	49 04 12,16	73 56 23.60	262 57 26 283 27 07	Lighthouse Wharf Stony Point	82 58 03 103 27 20	1287.0 449.6	1407.4 491.7	0.4
annah	42 04 24.90	73 56 38,03	319 50 10 325 12 26	FrameLorillard	139 50 20 145 12 42	514.3 963.1	562,4 1053 2	0.: 0.
haler	42 04 24.29	73 56 21.57	7 06 49 92 50 01	Frame	187 06 48 272 49 50	377.3 378.9	412.6 414.3	0.9 0.9
Inte	42 03 5 8.10	73 55 40.38	42 31 12 269 04 38	Smedberg	222 30 51 89 04 59	1073.0 725.6	1173.4 793.5	0. 6
reak water	42 04 12.61	73 55 42,03	60 50 27 245 53 55	LorillardLighthouse Wharf	240 50 06 63 51 04	844 9 352.4	923.9 365.4	C.,
oones, Island	42 04 22,98	73 55 50.73	288 38 46 327 59 45	Lighthouse Wharf	108 39 01 147 59 51	550 6 377.3	602.1 412.6	0.5 0.5
owder-house	42 04 14.50	73 55 55.95	42 42 01 83 40 07	Lorillard Frame	222 41 48 263 39 48	639,8 655,7	699 7 717.0	0 0
ield	42 04 14.26	73 56 19.77	53 41 27 344 19 40	FrameLorillard	233 41 24 164 19 44	109.3 480.5	119.5 525.5	0.0
rodhead	49 03 39.29	73 56 15,23	248 47 42 259 20 39	Railroad, (97)	68 48 26 79 21 23	1637.5 1521.5	1790.7 1663.9	1 0,
augerties Light-house	49 04 17,56	73 55 97.93	323 15 20 208 08 12	Railroad, (97)	143 15 33 28 08 33	734.3 1547.0	803.0 1691.7	0.
piscopal Church	42 04 02.61	73 56 35 51	273 39 13 351 57 14	Railroad, (97)	93 40 11 171 57 25	1996.6 2637.1	2183.6 2883.6	1.
oman Catholic Church	42 04 35.36	73 56 27 .42	309 11 41 344 39 19	Railmad, (97)	199 19 34 164 39 91	2135,1 1154,8	2334.9 1262.8	1.
utch Reformed Church	49 04 39.57	73 56 48.01	327 56 21 299 03 58	Lorillard	147 56 44 119 05 04	1467.3 9608.4	1604.6 9852.5	0.
ethodist Church	49 04 34.63	73 56 37.92	983 35 19 62 41 05	Mynderse	103 35 27 242 39 16	543,4 4209,1	594.2 4602.9	0.
uger's Summer-house	49 01 39.15	73 55 33 88	29 53 22 149 59 14	Turkey Point, north Clasco Signai	209 53 63 329 56 43	1317.2 2095.7	1449.4 9291.8	0.
ivoli Flagstaff	42 03 33,11	73 55 09,11	8 19 18 43 34 04	Magdalen Island Glasco Signal	188 19 12	1415.0 2347.2	1547.4 2566 8	0. 1.
arnwell	49.06 14.38	73 54 37.73	49 26 45 12 01 19	Malden		1759 2 1467.0	1923.8 1604-3	1.
gg Island	49 06 17.66	73 55 30,99	974 43 55	Barnwell	94 44 3l	1227,7	1342.6 1957.1	0.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Backazimu b.	Distance.	Distance.	Distance.
Ludlow	42 06 39 87	° , '' 73 54 39.81	8 11 19 62 52 20	Barnwell Egg [sland	388 11 09 212 51 41	Metres. 794.4 1501.8	Yords. 868 7 1642.3	Miles 0.49 0.93
Brink's Wharf	42 06 40.87	73 55 15.33	26 40 39 271 48 42	Egg Island	206 40 29 91 49 11	801.2 977.3	876.2 1068.7	0.50 0.61
Railroad, (101)	42 07 06.10	73 54 17.09	59 48 45 125 13 47	Brink's Wharf	239 48 06 305 12 56	1548, 1 2120, 4	1693.0 2318.8	0,96 1,32
West Camp	42 07 25.20	73 54 51.50	306 41 24 342 56 34	Railroad, (101)	196 41 47 162 56 46	985,7 1462,9	1077.9 1599.8	0.61 0.91
East Camp	42 07 43.33	73 53 48.17	30 02 28 68 57 53	Railroad, (101)	210 02 09 248 57 11	1326.7 1558.5	1450.8 1704.3	0 82 0,97
Red House	42 07 55,20	73 54 33.89	345 42 11 289 13 55	Railroad, (101) East Camp	165 42 22 109 14 25	1563.2 1112.2	1709.5 1216.3	0.97 0.69
Gould's Wharf	49 08 34 33	73 54 09.19	25 10 26 342 56 45	Red House East Camp	205 10 09 162 56 59	1333.7 1646.1	1458.5 1800.1	0 83 1.02
Hog's Back	42 08 51.44	73 53 16,56	19 03 32 66 24 38	East Camp	199 03 11 246 24 03	9993,9 1318,7	2431.2 1442.1	1,38 0,82
Seward's Island	42 09 57,85	73 53 28,12	352 36 58 20 05 59	Hog's Back	172 37 06 200 05 38	2065,9 2743,7	2259,9 3000,4	1.28 1.70
Snyder	42 09 11.90	73 53 04 69	159 13 41 51 57 11	Seward's Island Gould's Wharf	339 13 25 231 56 28	1516.1 1880.4	1658,0 2056.4	0.94 1.17
Puddecart	42 (9 06,71	73 54 01.01	262 55 37 294 46 14	Snyder	82 56 15 114 46 44	1302.8 1124.0	1424.7 1229.2	0.81 0.70
Maucus Hook	42 09 54,51	73 53 58.23	310 49 18 316 56 10	Hover	130 50 49 136 56 46	4112.7 1799.4	4497.5 1967.8	2,55 1,12
Wynkoop Hill	42 11 04.91	73 52 32,18	270 23 49 42 17 00	Bine Hill	90 26 28 222 16 02	5421,3 2935,6	5928 6 3210.3	3.37 1,82
Day	42 12 52.64	73 51 13.44	312 55 49 28 32 03	Blue Hill	132 57 3 5 206 31 10	4936.6 3.82.8	5398.5 4136.8	3.07 2.35
Eagle's Crag	42 12 11.80	73 52 11.63	226 38 36 293 00 29	Day	46 39 15 113 02 54	1835 2 5377,2	2006.9 5880.3	1,14 3,34
Burget	42 13 57.24	73 50 49,16	8 49 36 330 16 50	Big Hill	188 48 23 150 18 20	16249.9 6167.9	17770.4 6744 0	10 10 3,83
Railroad, (104)	42 09 49.23	73 52 32.32	101 43 21 94 44 06	Seward's Island Maucus Hook	281 42 43 274 43 08	1308,2 1978,3	1430,6 2163,4	0,81 1.23
Perie's Point	42 10 00,40	53 52 18.25	65 29 08 87 11 25	Maucus Hook Seward's Island	265 28 01 267 10 38	2301.7 1605.9	2517.1 1756.2	1.43 1.00
Rocliff Jansen Kill	42 10 50.80	73 51 12,27	44 15 06 103 22 24	Perie's Point	224 14 22 283 21 31	2170 6 1884.2	2373.7 2060.5	1.35 1.17
John Smith	42 10 08,96	73 51 36.98	168 09 27 143 43 30	Eagle's Crag	348 09 04 323 42 53	3872 5 2141.0	4234.9 2341.3	2,41 1,33
Ramshorn Creek	42 11 49.72	73 51 07.16	12 24 52 114 44 34	John Smith Eagle's Crag	192 24 32 294 43 51	3183.1 1628.1	3480 9 1780,4	1.98 1.01
Camp Creek	42 10 20.61	73 51 46.69	49 17 54 170 32 22	Perie's Point	299 17 33 350 32 05	955.9 3477.7	1045.3 3803.1	0,59 2,16
Eiche Hook	42 10 47.02	73 52 23.29	314 06 27 44 26 59	Camp Creek	134 06 52 224 26 15	1170 4 2195.2	1279.9 2324.1	0.73 1.39
Wynkoap	42 10 57.57	73 52 05.56	339 11 57 279 41 29	Camp Greek	159 12 09 99 42 05	1919.8 1940.4	1333.9 1356 5	0.76 0.77
Fox Creek	42 11 21.61	73 50 47.44	168 00 31 152 26 39	Day Ramshorn Creek	348 00 13 332 26 26	2871,0 978,1	3139.6 1069.6	1.78 0.61
Long Dock	42 12 39,02	73 51 05.80	188 58 57 349 59 55	Burget	8 59 08 170 00 07	2443.1 2425.0	2671.7 2651.9	1.5 <u>2</u> 1.5i
Decker	42 12 46, [0	73 50 23.97	165 15 37 100 04 47	Burget	345 15 20 260 04 14	2269.3 1152.3	2481.6 1260.1	1.41 0.79
Rodgers, Island, south	42 13 13.94	73 50 32.86	54 46 10 35 02 10	Day Long Dock	234 45 43 215 03 48	1139.4 1315.6	1246.0 1438.7	0.71 0.62
Deep Point	42 13 25,51	73 50 55.45	9 23 52 304 34 17	Long Dock	189 23 45 124 34 32	1453.7 628.9	1589.7 687.7	0 90 0,39
Goodes	42 13 59,19	73 50 36,85	356 35 08 22 18 25	Rodgers' Island, south Deep Point	176 15 11 202 18 13	1399,1 1123,4	1530.0 1228.5	0.87 0.76
Rodgers' Island, north	42 13 41. 5 2	73 50 21.43	147 03 08 57 39 10	Goodes	337 09 56 237 36 48	649.9 993,1	710.7	0.40

UNITED STATES COAST SURVEY .- GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azirouth.	To station—	Back azimuth	Distance	Distance.	Distance.
Lower Red Hook Spire	° / // 41 59 28.60	° / // 73 52 24.06	9 / // 171 22 09 218 54 53	Staats	351 21 46 38 56 15	Metres. 5277.3 4512.0	Yards. 5771.1 4934.2	Miles. 3.26 2.86
Flatbush Spire	42 01 19.84	73 57 00.10	355 23 11 141 37 07	Burhans		1631.7 52#1.8	1784,4 5688.5	1.01 3.23
Green	42 03 00.26	73 52 32.41	314 55 52 95 59 35	Upper Red Hook Mount Paulding	134 57 20 275 55 02	4275.0 9435.4	4675.0 10318.3	2.66 5.86
Isham	42 05 42 69	73 55 56.39	227 25 17 286 55 35	Ludlow	47 26 13 106 56 19	2307.4 1569.9	2851.4 1716.8	1 69 0.97
Malden Spire	42 05 46,39	73 55 46.01	281 54 57 184 48 43	Rig Hill		4423.4 3695.2	4837.3 4041.0	2.75 2.30
Germantown Spire	42 07 48.66	73 51 58.86	10 46 24 197 16 18	Big Hill		4770.5 1249.7	5216.9 1366.6	2.96 0.77
Potts	42 05 3 9.58	73 50 12.69	78 ^4 22 1 21 16	Big Hill	258 02 45 181 21 11	3405.1 7937.0	3723.7 8679.7	2.19 4.93
Mount Merino	42 14 03.05	73 48 43.98	74 44 33 68 59 14	Catskill	254 35 41 248 57 46	18815.4 3229.8	20576.0 3532.0	11.69 2.01
Fly	42 11 24.76	73 51 24.68	276 27 59 48 12 15	Fox Creek	96 28 24 228 11 48	860.2 1258.6	940.7 1376.4	0.53 0.78
Catskill Jail	42 13 00.95	73 51 26.96	34 03 02 309 35 51	Eagle's Crag	214 02 32 129 36 00	1829.9 402.3	2001.1 439.9	1,14 0,25
Green Point	42 10 26.68	73 59 56.75	312 31 26 38 59 27	Perie's Point Seward's Island	132 31 59 218 59 06	1199.1 1144.4	1311.3 1251.5	0.74 0.71
East Camp Hotel, staff	42 07 30.09	73 53 57.96	30 42 09 133 11 25	Railroad, (101)	210 41 56 313 11 01	860.9 1131.9	941.4 1237.8	0.53 0.70
Schneider Hill	42 09 03.66	73 52 21.11	321 47 31 182 08 50	Hover	141 47 57 2 08 56	1425.8 5808.1	1559.2 6351.6	0.88 3.61
Germantown	42 08 09.86	73 53 28.24	29 12 57 73 18 30	East Camp		937.7 1573.8	1025.4 1721.1	0.56 0.98
Frumpbour	42 09 39,17	73 54 29.66	236 44 19 225 32 04	Maucus Hook		862.7 3777.0	943.4 4130.4	0.54 2.35
Miller	42 11 39.71	73 50 10.87	145 27 14 109 40 54	Long Dock Eagle's Crag	325 26 37 259 39 33	2221.6 2941.6	2429.5 3216.8	1.38 1.83
Oak Hill Wharf	42 12 03.46	73 50 40 60	153 35 52 55 10 54	Day	333 35 30	1694.0 742.2	1852.5	1.05 0,46

Section III.—Mouth of Potomac river. Sketch C, No. 9.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance	Distance.	Distance.
Point Lookout	38 02 44.75	76 19 04 90	• 1 11		• / //	Metres.	Vards.	Miles.
Hull's Neck	37 56 57.16	76 20 48,81	193 18 03	Point Lookout	13 19 07	11011.8	12042.2	6.84
Cornfletd	38 03 11.21	76 21 01.78	285 57 46 358 25 39	Point Lookout Hull's Neck	105 58 58 178 25 47	2963,8 11535,9	3241.1 12615.3	1.84 7.17
Point Lookout Light	38 02 15.75	76 19 01.50	174 42 39 14 5€ 11	Point Lookout Hull's Neck	354 42 37 194 55 05	897.7 16164.9	981.7 11116.0	0,56 6,32
Hog Island	38 00 36,82	76 27 19.89	256 08 41 242 58 04	Point Lookout Light	76 13 48 63 01 57	12516.5 10347.9	13687.7 11316.1	7.78 6,43
George, No. 1	38 96 97.97	76 27 55.18	298 46 58 298 22 31	Point Lookout Light Cornfield	118 52 27 118 26 46	14847 0 11453.7	16236.2 12525.4	9.22 7.12
Kit's Point	38 06 09,12	76 24 58,82	89 32 30 18 40 21	George, No. 1		4296,5 10747.9	4698.5 11753.6	2.67 6.68
Thicket Point	38 01 37 36	76 30 39.00	205 33 43 290 22 09	George, No. 1	25 35 24 110 24 12	9249.1 5180.5	10114.5 5665.2	5.75 3.92
Lynch's Point	38 92 41.63	76 30 47.36	913 93 43 306 47 99	George, No. 1	33 25 29 126 49 37	76°0.6 6419.0	8333.7 6910.3	4.73 3.93
Sandy Point	38 04 94.09	76 31 48.23	316 41 12 334 50 12	Hog Island Lynch's Point	136 43 57 154 50 50	9541,1 3490,0		5.93 2.17

Section III.—Mouth of Potomac river—St. Mary's river—Curratoman river. Sketch C, No. 9.

Piney Point Light-house Vane 38 Ragged Point 56 Fauntieroy's House 38 White Windmill 38 Horn Point 38 Windmill, Centre 38 Caivert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Fort Point 38 George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 38 Chanceltor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	8 08 03.43 8 08 03.43 8 08 54.03 8 01 22.42 3 01 21.74 8 01 40.63 8 03 33.01 05 25.48 03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 08 58.73	76 36 26.82	304 18 26 3 55 06 262 07 26 520 46 53 264 18 28 256 12 59 264 08 03 161 03 49 233 04 07 272 07 15 318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 53 59 7 15 53 59 7 15 53 59 36 34 26	George, No. 1. Sandy Point. Piney Point Light-house Vane. Sandy Point Point Lookout Light Connfield Point Lookout Light Lynch's Point. Cornfield. Sandy Point. Cornfield. Sandy Point. Hull's Neck Hog Island George, No. 1. Lynch's Point Kit's Point Piney Point Light-house Vane. Haywood George, No. 1. Kit's Point Kit's Point Kit's Point George, No. 2. Fort Point. Cecil	0 7 7 124 20 385 183 54 57 102 10 30 140 49 45 84 25 99 76 18 46 341 03 28 53 05 10 92 06 23 138 16 7 34 55 214 30 38 50 27 02 154 31 45 159 28 40 281 57 192 31 24 09 34 03 38 170 65 15 47 169 26 47 16 33 44	Metres. 6319. 5 6777. 9 7412. 0 10738. 0 16739. 2 14126. 8 2603. 9 3130. 2 2708. 9 902. 1 15940. 8 16947. 3 10727. 5 6725. 8 2300. 7 1910. 0 8817. 3 1955. 9 4552. 8 3832. 4 4175. 4 4578. 7 2929. 3 1705. 8 2777. 2	Far4e. 6903.2 7412.1 8105.5 11742.8 18305.5 13448.6 17992.3 2947.5 3423.1 2961.6 986.5 11731.3 7355.1 2516.0 2088.7 9642.3 2138.9 4191.0 4566.1 5007.1 3303.4 1865.4	Miles. 3.92 4.21 4.60 6.67 10.40 8.78 10.22 1.62 1.94 1.63 0.56 9.47 4.18 1.43 1.18 5.48 1.21 2.83 2.39 2.59 9.84 1.89 1.66 1.73
Fauntleroy's House 38 White Windmill 36 Horn Point 38 Windmill, Centre 38 Calvert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 Fort Point 38 George, No. 2 38 St. Inigo 38 Windmill Point 38 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	8 01 22,42 8 01 21,74 8 01 40,63 8 03 33,01 05 25,48 03 49 00 07 04,06 08 04,34 06 12,13 07 46,39 68 58,73	76 30 24.61 76 30 12.72 76 32 29.99 76 91 96.34 76 23 10.45 76 31 27.95 76 25 35.05 76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	282 07 26 320 46 53 284 18 28 256 12 59 264 06 03 161 03 49 233 04 07 272 07 15 318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 271 22 39 310 53 58 7 15 57 349 96 39 36 34 96	Piney Point Light-house Vane. Sandy Point Point Lookout Light. Connfield Point Lookout Light Lynch's Point Thicket Point. Cornfield Sandy Point Hull's Neck Hog Island George, No. 1. Lynch's Point Kit's Point Kit's Point Kit's Point Kit's Point Kit's Point Fort Point Kit's Point Fort Point Ceorge, No. 2 Fort Point. Cecil	109 10 30 140 49 45 84 95 99 76 18 46 84 14 56 341 03 28 53 05 10 92 08 23 138 16 46 975 59 53 167 34 55 914 30 38 50 97 02 154 31 45 159 98 40 281 57 02 161 49 56 217 59 23 91 94 09 34 03 38 130 65 96 167 15 47 169 96 47	7412.0 10738.0 16739.2 14126.8 2603.9 3130.2 2708.9 902.1 15240.8 16047.3 10727.5 6725.8 2300.7	8105.5 11749.8 18305.5 15448.6 17992.3 2847.5 3423.1 2961.6 986.5 16666.9 17548.8 11731.3 7355.1 2508.7 9642.3 2138.9 4978.8 4191.0 4566.1	4.60 6.67 10.40 8.78 10.22 1.62 1.94 1.69 0.56 9.47 9.97 6.67 4.18 1.43 1.18 5.48 1.21 2.83 2.39 2.39 2.59
Fauntleroy's House 38 White Windmill 36 Horn Point 38 Windmill, Centre 38 Calvert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 Fort Point 38 George, No. 2 38 St. Inigo 38 Windmill Point 38 Chanceltor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	3 01 21.74 3 01 40.63 3 03 33.01 5 05 25.48 03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 68 58.73	76 30 12.72 76 32 29.99 76 31 26.34 76 23 10.45 76 31 27.95 76 25 35.05 76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	964 18 28 256 12 59 264 08 03 161 03 49 233 04 07 272 07 15 318 16 31 95 59 16 34 73 32 28 18 102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 36 34 96 38 01 11	Vane. Sandy Point Point Lookout Light. Cornfield Point Lookout Light Lynch's Point Lynch's Point Thicket Point. Cornfield Sandy Point Hull's Neck Hog Island George, No. 1. Lynch's Point Kit's Point Kit's Point Kit's Point Kit's Point Fort Point Kit's Point Kore, No. 2 Fort Point Cecil	84 95 99 76 18 46 84 14 56 341 03 28 53 05 23 138 16 46 275 52 53 167 34 55 214 30 38 50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 124 09 34 03 38 120 65 54 7 169 26 47 169	16739.2 14126.8 16452.8 2603.9 3130.2 2708.9 902.1 15940.8 16047.3 10727.5 6725.8 2300.7	18305.5 15448.6 17992.3 2847.5 3423.1 2861.6 986.5 16666.9 17548.8 11731.3 7355.1 2516.0 2088.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3303.4	6.67 10.40 8.78 10.22 1.62 1.94 1.69 0.56 9.47 9.97 6.67 4.18 1.43 1.18 5.48 1.21 2.83 2.38 2.59 2.84 1.82 1.66
White Windmill 36 Horn Point 38 Windmill, Centre 38 Calvert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 Fort Point 38 George, No. 2 38 St. Inigo 38 Windmill Point 38 Chanceltor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	3 01 21.74 3 01 40.63 3 03 33.01 5 05 25.48 03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 68 58.73	76 30 12.72 76 32 29.99 76 31 26.34 76 23 10.45 76 31 27.95 76 25 35.05 76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	256 12 59 264 08 03 161 03 49 233 04 07 272 07 15 318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 96 338 01 11	Counfield Point Lookout Light Lynch's Point Lynch's Point Thicket Point Cornfield Sandy Point Hull's Neck Hog Island George, No. 1. Lynch's Point Kit's Point Fort Point Kit's Point Kit's Point Fort Point Kit's Point Cecil	76 18 46 84 14 56 341 03 28 53 05 10 92 06 23 138 16 46 275 52 53 167 34 55 214 30 45 50 27 02 154 31 45 152 28 40 281 57 U2 161 49 56 217 59 23 91 24 09 34 03 38 130 65 36 167 15 47 169 26 47	14126.8 16452.8 2603.9 3130.2 2708.9 902.1 15240.8 16047.3 10727.5 6725.8 2300.7	15448.6 17992.3 2847.5 3423.1 2961.6 996.5 16666.9 17548.8 11731.3 7355.1 2516.0 2008.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 1865.4	8.78 10.22 1.62 1.94 1.69 0.56 9.47 9.97 6.67 4.18 1.18 5.48 1.21 2.83 2.38 2.59 2.84 1.82 1.66
Horn Point 38 Windmill, Centre 38 Calvert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 Fort Point 38 George, No. 2 38 St. Inigo 38 Windmill Point 38 Coad 38 Hardy 38 Chanceltor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	8 01 40.63 8 03 33.01 05 25.48 03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 08 58.73	76 32 29,99 76 91 96,34 76 23 10,45 76 31 27,95 76 25 35,05 76 26 00,10 76 27 36,09 76 27 20,90 76 26 12,94	161 03 49 233 04 07 272 07 15 318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 971 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 96 338 01 11	Lynch's Point Lynch's Point. Thicket Point. Cornfield Sandy Point Hull's Neck Hog Island George, No. 1 Lynch's Point Kit's Point Piney Point Light-house Vane Haywood George, No. 1 Kit's Point Fort Point Kit's Point Fort Point Cecil	341 03 28 53 05 10 92 08 23 138 18 46 275 52 53 167 34 55 214 30 38 50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 54 167 15 47 169 26 47	2603.9 3130.2 2708.9 902.1 15240.8 16047.3 10727.5 6725.8 2300.7 1910.0 8817.3 1955.9 4502.8 38:2.4 4175.4 4578.7 2929.3 1705.8	2047.5 3423.1 2961.6 986.5 16666.9 17548.8 11731.3 7355.1 2516.0 20088.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3303.4 1865.4	1.62 1.94 1.69 0.56 9.47 9.97 6.67 4.18 1.43 1.18 2.43 2.39 2.59 2.84 1.82 1.82
Windmill, Centre 38 Calvert Bay 38 Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 George, No. 2 38 Gecil 38 St. Inigo 38 Windmill Point 38 Coad 38 Hardy 39 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	03 33,01 05 25,48 03 49 00 07 04,06 08 04,34 06 12,13 07 46,39 08 58,73	76 91 26,34 76 23 10,45 76 31 27,95 76 25 35,05 76 26 00,10 76 27 36,09 76 27 20,90 76 26 12,94	272 07 15 318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 971 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 96 338 01 11	Lynch's Point. Thicket Point. Cornfield Sandy Point Hull's Neck Hog Island George, No. 1 Lynch's Point Kit's Point Proev Point Light-house Vane. Haywood George, No. 1 Kit's Point Kit's Point Kort Point Kort Point Kort Point Ceorge, No. 2 Fort Point Cecil	92 08 23 138 16 46 975 52 53 167 34 55 214 30 38 50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 26 167 15 47 169 26 47	2708.9 909.1 15940.8 16047.3 10727.5 6725.8 2300.7 1910.0 8817.3 1955.9 4532.8 3832.4 4175.4 4578.7 2929.3	2961.6 986.5 16666.9 17548.8 11731.3 7355.1 2516.0 2088.7 9642.3 2138.9 4978.8 4191.0 4566.1 3303.4	1.68 0.56 9.47 9.97 6.67 4.18 1.43 1.18 5.48 1.21 2.83 2.39 2.59 9.84 1.82 1.82 1.06
Caivert Bay. 38 Fish-house, middle of door 38 St. Mary's river. Haywood 38 Fort Point 38 George, No. 2 38 St. Inigo 38 Windmill Point 38 Coad 38 Hardy 38 Chanceltor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	05 25,48 03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 08 58,73	76 23 10.45 76 31 27.95 76 25 35.05 76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	318 16 31 95 59 16 347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 39 36 38	Cornfield Sandy Point Rufl's Neck Hog Island George, No. 1 Lynch's Point Kit's Point Piney Point Light-house Vane. Haywood George, No. 1 Kit's Point Fort Point Kit's Point Kort Point Kit's Point Ceorge, No. 2 Fort Point. Cecil	138 16 46 275 52 53 167 34 55 214 30 38 50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 26 167 15 47 169 26 47	902, 1 15240, 8 16047, 3 10727, 5 6725, 8 2300, 7 1910, 0 8817, 3 1955, 9 4552, 8 38:92, 4 4175, 4 4578, 7 2929, 3 1705, 8	986.5 16666.9 17548.8 11731.3 7355.1 2516.0 2068.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3303.4 1865.4	0.56 9.47 9.97 6.67 4.18 1.43 1.18 5.48 1.21 2.83 2.38 2.59 2.84 1.82 1.82
Fish-house, middle of door 38 St. Mary's river 38 Haywood 38 Fort Point 38 George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 38 Coad 38 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	03 49 00 07 04.06 08 04.34 06 12.13 07 46.39 08 58.73	76 31 27.95 76 25 35.05 76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	347 33 28 34 33 12 230 24 51 334 31 20 332 28 18 102 00 41 341 49 40 38 00 34 971 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 96	Hull's Neck Hog Island George, No. 1 Lynch's Point Kit's Point Piney Point Light-house Vane Haywood George, No. 1 Kit's Point Fort Point Kit's Point George, No. 2 Fort Point Cecil	167 34 55 214 30 38 50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 96 167 15 47 169 26 47	16047.3 10727.5 6725.8 2300.7 1910.0 8817.3 1955.9 4552.8 38:22.4 4175.8.7 2929.3	17548.8 11731.3 7355.1 2516.0 2088.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3203.4	9.97 6.67 4.18 1.43 1.18 5.48 1.21 2.83 2.36 2.59 2.84 1.82 1.06
St. Mary's river. Haywood 38 Fort Point 38 George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 36 Coad 38 Hardy 39 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	07 04.06 08 04.34 06 12.13 07 46.39 08 58.73	76 25 35,05 76 26 00,10 76 27 36,09 76 27 20,90 76 26 12.94	332 28 18 102 00 41 38 00 34 27 12 32 39 310 53 59 7 15 57 349 96 39 36 34 26 338 01 11	George, No. 1. Lynch's Point Kit's Point Piney Point Light-house Vane. Haywood George, No. 1. Kit's Point Fort Point Kit's Point George, No. 2 Fort Point. Cecil	50 27 02 154 31 45 152 28 40 281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 26 167 15 47 169 26 47	6725.8 2300.7 1910.0 8817.3 1955.9 4552.8 38:2.4 4175.4 4578.7 2929.3 1705.8	7355.1 2516.0 2008.7 9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3203.4	4.18 1.43 1.18 5.48 1.21 2.83 2.38 2.59 2.84 1.82 1.06
Haywood 38 Fort Point 38 George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 38 Goad 38 Hardy 38 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	08 04,34 06 12,13 07 46,39 08 58,73	76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 26 338 01 11	Piney Point Light-house Vane. Haywood George, No. 1 Kit's Point George, No. 2 Fort Point. Cecil	281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 26 167 15 47 169 25 47	8817,3 1955,9 4552,8 38:2,4 4175,4 4578,7 2929,3 1705,8	9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3203.4 1865.4	5.48 1.21 2.83 2.38 2.59 2.84 1.82
Haywood 38 Fort Point 38 George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 38 Goad 38 Hardy 38 Chancellor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	08 04,34 06 12,13 07 46,39 08 58,73	76 26 00.10 76 27 36.09 76 27 20.90 76 26 12.94	102 00 41 341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 26 338 01 11	Piney Point Light-house Vane. Haywood George, No. 1 Kit's Point George, No. 2 Fort Point. Cecil	281 57 02 161 49 56 217 59 23 91 24 09 34 03 38 130 65 26 167 15 47 169 25 47	8817,3 1955,9 4552,8 38:2,4 4175,4 4578,7 2929,3 1705,8	9642.3 2138.9 4978.8 4191.0 4566.1 5007.1 3203.4 1865.4	5.48 1.21 2.83 2.38 2.59 2.84 1.82
George, No. 2 38 Cecil 38 St. Inigo 38 Windmill Point 38 Coad 38 Hardy 38 Chanceltor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	06 12.13 07 46.39 08 58.73	76 27 36.09 76 27 20.90 76 26 12.94	341 49 40 38 00 34 271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 26 338 01 11	Vane. Raywood George, No. I. Kit's Point Fort Point Kit's Point George, No. 2 Fort Point. Cecil	161 49 56 217 59 23 91 24 09 34 03 38 130 55 26 167 15 47 169 26 47	1955.9 4552.8 38:2.4 4175.4 4578.7 2929.3 1705.8	2138.9 4978.8 4191.0 4566.1 5007.1 3203.4 1865.4	1.21 2.83 2.38 2.59 2.84 1.82
Cecil 38 St. Inigo 38 Windmill Point 38 Coad 38 Hardy 38 Chancellor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	07 46.39 08 58,73	76 27 20,90 76 26 12.94	271 22 32 214 02 39 310 53 59 7 15 57 349 96 39 36 34 26 338 01 11	Kit's Point Fort Point Kit's Point George, No. 2 Fort Point Cecil	91 24 09 34 03 38 130 65 26 187 15 47 169 26 47	3832.4 4175.4 4578.7 2929.3 1705.8	4191.0 4566.1 5007.1 3203.4 1865.4	2.38 2,59 2.84 1.82
St. Inigo 38 Windmill Point 36 Coad 38 Hardy 38 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	08 58,73	76 26 12.94	310 53 59 7 15 57 349 96 39 36 34 96 338 01 11	Kit's Point	130 55 26 187 15 47 169 26 47	4578.7 2929.3 1705.8	5007.1 3203.4 1865.4	2.84 1.82 1.06
Windmill Point 38 Coad 38 Hardy 38 Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38			349 26 39 36 34 26 338 01 11	Fort Point	169 26 47	1705.8	1865.4	1.06
Coad 38 Hardy 38 Chancellor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	09 26.95	76 26 42,32	338 01 11	1	216 33 44	2777,2	3037.1	1.73
Hardy 38 Chanceltor 38 Edwards 38 Cornfield Tree 38 St. Inigo Windmill 38	1	!		Fort Point	158 01 37	2746.5	3003.5	1.71
Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	08 31.98	76 27 34 66	320 33 51 218 29 23	St. Inigo	140 34 09 38 29 55	1126.2 2047.2	1231.6 2238.7	0.69 1.27
Chancellor 38 Edwards 38 Comfield Tree 38 St. Inigo Windmill 38	09 30,32	76 25 59,01	249 47 10 19 12 02	St. Inigo	69 48 00 199 11 53	2120,1 1031,2	9318.5 1197.7	1,32 9,64
Edwards	10 09,54	76 26 21.94	84 92 06 330 39 23	Windmill Point	964 21 39 150 39 37	1059.5	1158.6 1246.0	0.66 0.71
Comfield Tree	10 02,54	70 20 21,94	24 19 .4	Windmill Point	204 19 21	1204.2	1316.9	0.75
St. Inigo Windmill	10 24.94	76 26 46.49	319 07 27 356 44 50	Chancellor	139 07 42 176 44 53	913.1 1790.6	998.5 1958.1	0.57 1.11
	03 12.70	76 21 02.90	120 01 58 132 31 38	George, No. 2	299 57 56 312 27 45	11064.2 12490.6	12099.5 13659.3	6.87 7.76
East St. Mary's Point	08 58.65	76 96 11.86	139 38 46 350 17 34	Windmill Point Fort Point	319 38 27 170 17 41	1145.0 1698.5	1959.1 1857.4	0.71 1. 0 5
i	11 13.60	76 25 58.63	14 31 Ot 37 49 23	Chancellor	194 30 47 217 48 53	2263.0 1899.3	2474.7 2077.0	1.40 1.18
West St. Mary's Hill 38	10 51.73	76 26 43.77	238 26 43 340 41 44	East St. Mary's Point Chancellor	58 97 11 160 41 57	1288.7 1606.8	1409.3 1757.1	0.80 1.00
Curratoman river.								
Oabell 37 :	38 52,59	76 96 54.72						
Whiting 37	36 40.18	76 29 50.28	226 30 13	Cabell	46 32 01	5939.0	6487.1	3.68
Chowning Point 37	38 50,82	76 29 28.65	7 30 17 269 09 41	Whiting	187 30 04 89 11 15	4062.3 3773.3	4442.4 4196.4	2.52 2.34
Indiantown 37	39 41.99	76 27 40.92	323 22 04 59 09 25	OabellChowning Point	143 99 39 239 08 19	1897.6 3075.6	9075.9 3363.4	1.18 1.91
Ball's Point	40 26,29	76 98 36.12	223 37 50 315 16 18	Chowning Point	903 37 18 135 16 59	3219.3 1929.9	3519.9 9109.1	9.00 1.19
Faylor's Creek	40 50.44	76 27 18.70	66 59 01	Bail's Point	946 58 14	2061.0	2253.8	1.98 1.39
Oak Hill	41 43,04	76 28 31.61	14 04 31 2 40 13	Indiantown	194 64 17	9239.0 2868.6	9448.5 9590.9	1.47
Black Stump		76 97 45,84	311 07 95 101 30 48	Taylor's Creek	131 06 10 161 30 90	9371.5 1144.3	9593.4 1951.4	1.47 9.71

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section III.—Curratoman river. Sketch C, No. 9.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth	Distance.	Distance.	Distance.
West Point	37 4½ 09.42	。 / // 76 28 26,05	316 35 42 9 30 46	Black Stump	136 36 07 189 30 43	Metres. 1433.6 842.6	Yards. 1567,7 901.8	Miles. 0,89 0,51
Shelton's Point	37 42 12,18	76 28 52.50	277 29 08 330 20 10	West Point	97 29 24 150 20 26	653,4 1033,8	714.5 1130.5	0.41 0.64
Merry Point	37 42 50.11	76 29 09.46	319 42 17 340 26 00	West Point	139 42 44 160 26 10	1644.2 1240.7	1798.0 1356.8	1.02
Ferry Point	37 42 39.60	76 29 21,49	304 24 53 222 17 56	West Point	124 25 27 42 18 63	1646.0 437.6	1800.0 478.5	1.02 0.27

Section V.—Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude,	Azimuth.	To station—	Back azimuth	Distance.	Distance.	Distance.
Savannah river to Ossabaw sound.	• 1 11	• , ,,	• 1 11		• 1 11	Metres.	Yurds.	Miles
Mungen	32 04 52.50	80 52 15.63					•••••	
Tybee Light	32 01 21.38	80 50 33.19	157 33 15	Mungen	337 32 21	7035.6	7693.9	4.37
Wilmington	32 00 35,57	80 56 55.36	222 49 18 261 57 53	Mungen	42 51 46 82 01 15	10792.0 10127.6	11801.8 11075.2	6.71 6.29
Petit Chou	31 56 42.61	80 55 03.01	157 39 53 219 30 19	Wilmington	337 38 53 39 32 42	7757.1 11130.8	8482.9 12172.3	4.89 6.99
Red House, cupola	31 57 17.61	81 00 51,03	225 24 05 276 42 04	Wilmington	45 26 10 96 45 08	8686.0 9202.0	9498.7 100 6 3.0	5,40 5,79
South Warsaw	31 52 10.04	60 59 41.32	169 03 49 921 02 07	Red House	349 03 12 41 04 34	9747.8 11132.3	10550.5 12174.0	5,99 6,92
Cabbage Island	31 56 23.84	80 58 07.62	263 11 06 111 06 50	Petit Chou	83 12 44 291 05 24	4882.4 4599.6	5339.3 5030.0	3,03 2,86
Great Warsaw	31 54 46,44	80 56 08.00	133 40 52 205 30 07	Cabbage Island Petit Chou	313 39 49 25 30 41	4343,7 3964,1	4750.1 4335.0	2.76 2.46
Skiddaway	31 53 43.51	81 02 31.06	201 43 07 302 49 25	R∈d House South Warsaw	21 44 09 122 50 55	7098.0 5308.7	7762.2 5805.4	4,41 3,30
John's Hammeck	31 54 24.02	81 00 12.67	348 42 27 71 04 23	South Warsaw Skiddaway	168 49 44 251 03 10	4207.5 5844.0	4601.2 4203.7	2.61 2.39
Skiddaway Island Base, south end.	31 55 23.15	81 00 52.75	304 42 22 18 09 47	John's Hammock Skiddaway	194 43 15 198 09 27	3198.1 3229.6	3497.3 3531.8	1,99 2,01
Skiddaway Island Base, north end.	31 56 08.85	81 01 27.64	328 36 52 20 25 07	John's Hammock Skiddaway	148 37 32 200 24 34	3782.0 4776.3	4135.9 5223.2	2.35 2.97
Romerty Marsh	31 56 03,10	80 59 14.68	26 31 53 250 03 40	Joho's Hammock Cabbage Island	206 31 22 70 04 15	3410.7 1873.1	3729.8 2048.4	2,19 1,16
Blue Flag	31 55 18,70	80 58 17.91	187 40 47 139 31 39	Cabbage [sland Romerly Marsh	7 40 5 2 312 31 09	2021.3 2023.3	2213.7 2212.6	1.26 1.26
Romerly Marsh, (a)	31 54 39,96	81 01 04.06	140 47 45 168 14 21	South Base	320 47 19 348 14 09	2023,1 3038,9	2212.4 3323.2	1.26 1.69
Romerly Marsh, (a, 2)	31 54 33.77	81 00 45.28	130 38 42 159 11 49	S wih Base	310 38 95 339 11 27	2335.6 3132.9	2554 .1 3426 .0	1.44
Romerly Marsh, (a, 3)	31 54 90 29	81 90 55.91	142 22 00 166 00 11	South Base	322 21 30 345 59 54	9444.9 3445.9	2673 7 3768.3	1.55 2.14
Romerly Marsh, (b)	31 54 58.23	81 01 23.82	135 18 06 177 21 26	South Base	315 17 51 357 21 24	1080.1 2177.5	1181.9 9381.9	0.67 1.35
Romerly Marsh, (c)	31 54 59.75	81 01 10.46	199 58 57 168 01 38	South Base	309 58 35 348 01 99	1394.1 2175.5	1448.0 9379.1	0.85 1.35
Romerly Marsh, (d)	31 55 10 51	81 01 14.79	111 18 30 1 169 18 15	South Base	991 18 10 349 18 68	1079.1 1698.7	1179,4 1999,8	0.67 1.13
Romerty Mursin, (e)	31 55 22,83	81 01 16.11	90 36 03 167 56 28	South Base	270 35 44 347 56 22	962.2 1449.5	1052,2 1585,1	0.60 0.90
Romerly Mazah, (f)	31 55 31,38	81 01 17.96	74 47 40 166 49 19	South Rase	254 47 21 346 42 13	965.9 1185.8	1056.3 1296.8	0.66 0.74
Romerly Marsh, (f2)	31 55 40.90	81 00 58.19	69 08 56 137 59 9J	South Base	949 68 97 317 59 04	1535,4 1158.6	1679.1 1267.0	0,95 0,79

UNITED STATES COAST SURVEY .-- GEOGRAPHICAL POSITIONS.

Section V.—Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth	Distance.	Distance.	Distance.
Romerly Marsh, (g)	31 55 44.35	81 00 42.14	° ' '' 70 36 54 122 16 19	South Base	250 36 17 302 15 55	Metres. 1966.1 1413.6	Yards. 2150 1 1545.9	Miles. 1.22 0.88
Romerly Marsh, (1)	31 55 43.63	81 00 18.57	75 42 14 113 10 59	South Base	255 41 24 293 10 23	2552.8 1973.5	2791.7 2158.2	1.59 1.22
Romerly Marsh, (n)	31 55 52.62	80 59 01,21	78 37 22 132 21 54	South Base	258 35 51 312 21 47	4595.7 478.9	5025.7 523.7	2.85 0.30
Romerly Marsh, (1)	31 55 49.74	81 00 07.74	73 28 23 105 40 21	South Base	253 27 28 265 39 39	2877.2 2179.7	3146.4 2383.6	1.79 1.35
Romerly Marsh, (k)	31 55 51.55	80 59 47.82	75 05 20 101 30 03	South Base	255 04 14 281 29 10	3395.8 2675.5	3713.5 2925.8	2.11 1.66
Romerly Marsh, (m)	31 54 59.49	81 00 21.37	106 53 50 140 49 42	South Rase	286 53 02 320 49 07	2508.5 2755.6	2743.2 3013.7	1.56 1.71
Waring's Creek Stake	31 56 02.12	81 01 08.64	43 59 44 112 33 44	South Base	223 59 21 292 33 34	1668.0 540.6	1824 1 591.2	1.04 0.34
Little Warsaw Island, red flag	31 54 10,73	81 00 42.74	140 29 55 242 36 26	South Base	320 29 18 62 36 42	2890.7 889.7	3161.2 972.9	1.80 0.55
Red Flag on Tree	31 55 28,88	80 59 26.52	196 26 06 230 45 95	Romerly Marsh	16 96 12 50 45 47	1099.1 2676.2	1201.9 2926.6	0.68 1.66
Raccoon Key	31 51 44.05	81 02 45.28	185 47 56 260 35 09	Skiddaway	5 48 04 80 36 46	3698.0 4900.9	4044.0 5359.5	2.30 3.04
North Ossabaw, (I)	31 48 53,58	81 02 02.61	167 56 25 211 32 06	Raccoon Key	347 56 03 31 33 21	5368.6 7100.6	5870.9 7765.0	3.34 4.41
Morell	31 50 28.51	81 05 15.40	239 28 04 299 57 36	Raccoon Key	59 29 23 119 59 18	4580.8 5851.8	5009.4 6399.3	2.85 3.63
Freen Island	31 59 13 85	81 04 31.09	314 50 13 12 53 13	Raccoon Key	134 51 09 192 52 50	3921.7 5223.4	4288 6 5712.1	2.44 3.25
Little Buzzard	31 51 43.31	81 07 29,46	303 09 39 269 48 17	Morell	123 10 50 89 50 47	4210.3 7469.4	4604.3 8168.3	2.62 4.64
Palmetto	31 54 45.66	81 07 26.60	301 30 15 0 46 02	Green I land	121 31 48 180 46 00	5409 4 5616 6	5915.6 6142.1	3.36 3.49
Pryor	31 55 09.62	81 04 49.07	33 34 08 79 54 15	Little Buzzard	213 39 43 259 59 59	7624.5 4203.5	8337.9 4596.8	4.74 2.61
geechee	31 53 22.42	81 10 12,09	239 27 42 305 31 15	Palmetto	59 29 09 125 32 41	5047.6	5519.9	3.14 3.26
Chimney of Mill, Hardwick	31 54 25.66	81 13 39.87	266 22 37 289 37 0d	Palmett)	86 25 54 109 38 58	5251.9 9825.4	5743.3 10744.8	6.10 3.60
Peaked Red Roof, Hardwick	31 54 32.52	81 13 41.40	267 37 09 291 25 15	Palmetto	87 40 27	5796.3 9854.5	10776.6	6 12 3.67
Juffee,	31 52 48.41	81 09 12.21	306 35 08	Little Buzzard	126 36 02	5908.0 3363.4	6460.8 3678.1	2.09
Sali	31 51 38.23	81 09 07.08	193 39 11 151 58 17	Ogeechee	303 38 39 331 57 43	1890,3 3635,3	2067 2 3975.5	2.26
White Flag at Harvey's Cut	31 54 44.27	81 09 57.90	266 30 10 325 00 05	Little Buzzard	86 31 02 145 01 23	2370.6 6802.4	2811.1 7438.9	1.60 4.93
Rogers's Chimney	31 52 13.02	81 10 26,10	8 24 54 240 41 18	Ogeechee	188 24 46 60 41 57	2548.2 2226.6	2786.6 2434.9	1.38
Dr. Cheves's Mill, chimney	31 55 19.99	81 12 25.16	297 17 03 277 39 18	Palmetto	117 17 45 97 41 54	9337.0 7933.5	2555.7 8654.0	1.45
Freat Buzzard Hammock, white	31 52 27.81	81 08 33.45	315 59 47 309 10 53	Ogeechee	136 00 57 129 11 27	5033.4 2169.2	5504.4 2372.2	3.13 1.35
flag. Free, letter S	31 51 22.72	81 09 52.78	305 11 51 172 09 41	Morell	125 13 36 352 09 31	6371.9 3721.3	6968.1 4069.5	3.96 2.31
White Flag, Florida Passage	31 50 48.97	B1 08 27.72	201 59 56 222 25 47	Cuffee Little Buzzard	22 00 17 42 26 18	2846.3 2268.9	3112.6	1,77
White Flag, Little Buzzard Ham-	31 51 37.03	81 07 23,18	192 25 35 302 07 49	Morell	19 26 07 192 08 56	7463 8 3966.7	8162.2 4337.8	4.64 2.46
mock. White Flag, Marsh island	31 51 16,48	81 05 45.84	179 06 58 331 33 37	Palmetto	359 06 56 151 33 53	5810.5 1680.1	6354.2 1837.3	3,61
White Flag, on creek in marsh	31 52 38,70	81 06 22.85	106 52 56 336 08 24	Little Buzzard	286 52 01	2846.4 4384.0	3112.7 4794.9	2.79
Black Flag, Hell Gate	31 51 55.09	81 04 36,34	249 45 33	Green Island	156 09 00 69 46 32	3130.0	3122.9	1.94
-tech ring, men case	91 91 93.08	or 04 an, 34	21 03 47 183 15 07	Morell	201 03 26 3 15 10	2857,3 2429,4	3124.7 2656.7	1.77

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
White Flag, below Green island.	31 52 32,15	° / " 81 04 08.13	• / // 24 54 57 74 08 49	MorellLattle Buzzaid	204 54 21 254 07 03	Metris 4198.2 5603.5	Yards. 4591 0 6127.8	Miles. 2.61 3.48
Black and White Flag, Raccoon Key.	31 50 40.24	81 03 32.60	245 31 11 324 13 48	South Warsaw North Ossabaw, (1)	65 33 13 144 14 35	6878.7 4048.3	7303.6 4427.1	4.18 2.51
Egg Island, stake	31 50 25.56	81 04 20.61	93 37 95 226 01 17	Morell	273 36 36 46 02 07	1443.4 3481.8	1578.5 3807.6	0.90 2.16
Pine, Horse Hammock	31 49 32,08	81 03 47.18	233 00 45 293 18 56	South Warsaw North Ossabaw, (1)	53 02 55 113 19 51	8089.5 2994.5	8845.4 3274.7	5.0; 1.86
White Flag, beach of Ossabaw	31 49 13.33	81 02 51,16	222 30 24 295 28 16	South Warsaw North Ossabaw, (1)	42 32 04 115 28 42	7384.1 1414.1	8075.0 1546.4	4.59 0.8
Palm, tuft in tree, Ossabaw	31 48 21.38	81 02 42.25	162 48 11 226 25 47	Bi'k Flag, Raccoon Key. North Ossabaw, (1)		44°6.8 1436.7	4895,7 1573,3	2.7 0.8
White Flag, Little Ogeechee, op- posite Rose Dew.	31 55 00.60	81 08 94.07	346 42 35 43 11 32	Little Buzzard Ogeechee	166 43 04 923 10 35	6243.3 4147.1	6827.5 4535.1	3.8 2.5
White Flag, left bank of Little Ogeechee.	31 54 09.41	81 07 44,84	69 30 06 203 13 41	Ogeechee	249 28 48 23 13 51	4130.7 1215.1	4517.2 13.8.8	2.5 0.7
White Flag, with tuft, Marsh island, on Little Ogeechee river.	31 53 32.04	81 07 22.15	177 02 44 3 16 54	Palmetto Little Buzzard	357 02 41 183 16 50	2270.4 3354.0	2482.8 3667.9	1.4 2.0
Possum Island	31 55 18.23	81 66 11.96	276 56 34 62 54 28	Pryor	96 57 la 249 53 49	2:93.5 2202.4	2398.7 2408.5	1.3
White Flag, Crooked creek	31 54 02.51	81 06 52.38	145 56 01 12 48 29	Palmetto	325 55 43 192 48 09	1604.7 4396.6	1754.8 4808.0	1.0 2.7
White Flag, with tuft, right bank and mouth of Lattle Ogeochee	31 53 17.32	81 05 36.35	133 12 51 273 33 55	Palmetto	1	3974.3 1718.4	4346.2 1679.2	2.4
river. White Flag, above Green island	31 54 13,83	81 05 34.82	214 58 13 33 01 20	Pryor	34 58 37 213 00 19	2097.1 5528 7	2293.3 6046.0	1.3
Fall Pine, Petit Guave	31 54 34 86	81 06 51,07	10 48 53 109 37 04	Little Buzzard	190 48 33 289 36 45	5378.7 991.1	5982.0 1083.8	3.3
Palmetto, Petit Guave	31 54 56.95	8) 06 16.28	79 20 54 260 19 59	Palmetto	259 20 17 80 20 45	1879.5 2323.9	2055.4 2541.3	1.1
Beaulieu, chimney	31 55 56.22	81 06 36 98	10 02 35 50 02 41	Little Buzzard Ogeechee	190 02 07 230 00 47	7910.4 7373.8	8650.5 8063.8	4.9
Rose Dew, tuft on trec	31 55 53,70	81 07 22.87	1 17 17 2 40 25	Little Buzzard		7713.3 2097.9	8475.0 2294.2	4.7
Morell's Chimney, at Mont-	31 56 24.73	81 07 03 3 7	4 39 08 11 16 92	Little Buzzard	184 31 54 191 16 10	8692.2 3113,5	9505.5 3404.8	5.4
Burnside's Island, Brown's chimney.	31 55 37.03	81 05 37.86	61 01 18 22 10 28	Patmetro	241 00 21 202 09 29	3265.2 7772.5	3570.7 8499.8	2.0
Dead Pine, near Ossabaw	31 50 47.10	81 08 01 37	230 42 37 144 17 15	Green Island	50 44 28 324 18 24	7139.2 5889.7	7807.9 6440.8	4.4
Bird Nest Tree,	31 50 40.06	81 06 56.65	174 03 33 218 55 02	Palmetto	354 03 17 38 56 19	7605.0 6088.4	8316.6	3.6
Crooked Top Pine, Green island.	31 54 15,35	81 04 33.72	44 36 58 79 38 00	Little Buzzard	224 35 25 259 35 01	6576.7	6858.1 7192.1	4.0
Adam's Chimney, Skiddaway	31 53 34 93	81 03 15.30	71 57 04	Green Island	251 56 24 242 44 55	9038.8 2094.7 7512.1	9684.6 2290.7	5.6 1.3
White Flag, mouth of Adam's creek.	31 52 27.25	81 03) 5 29	62 47 09 338 25 46	Raccoon Key	158 25 57	1430.5	8215.0 1564.4	4.6 0.8
Cedar, Raccoon Key	31 51 33,63	81 03 29.00	78 59 30 152 07 54	Green Island	258 57 10 332 07 21	7073 4 3491.5	7735.3 3818.2	4.3 2.1
White Flag, Flora's hammock	31 52 41.35	81 02 12.30	26 09 44 165 33 39	North Ossabaw, (1) Raccoon Key	155 15 53 206 09 27	5427.1 1966.1	5924.9 2150.1	1 5
Palmetto, Raccoon Key	31 51 22.78	81 02 45 41	346 13 59	North Ossabaw, (1)	345 33 29 166 14 22	1976.8 4730.5	2161.8 5173.1	2.9
Buoy, Egg Island shoal	31 49 48.55	81 03 02.97	180 14 34 230 33 20	Raccoon Key	0 14 34 50 35 06	655.0 6862.0	716.3 7504 1	4.2
Fourth Buoy,	31 49 35 88	8 1 02 22,54	109 28 14 221 46 36	Morell. South Warsaw	269 27 04 41 48 01	\$692.4 6369.5	4037.9 6965.5	9.2 3.9
Third Buoy	31 49 08.67	81 00 58.59	171 26 02 149 37 52	Raccoon Key Raccoon Key South Warsaw	351 25 50 329 36 56	3990,9 5545.8	4364.3 6064.7	2.4 3.4
Second Buoy	31 48 14.81	80 59 56.33	199 58 04 109 47 11	South Warsaw	19 58 45 289 46 05	5944.5 3529.2	6500,7 3859,4	3.6 2.1

Section V.—Savannah river to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance	Distance.	Distance.
White Flag, Pine island	31 51 52.23	61 00 58,45	84 53 10 254 50 58	Raccoon Key	984 52 14 74 51 39	Metres. 2819.3 2099.9	Yards. 3:83.1 2296.4	Miles. 1.75 1.30
Northernmost Dead Pine	31 52 21.58	81 01 05.40	66 14 35 62 06 08	Raccoon Key	246 13 42 242 03 56	2868.6 7436.7	3137.0 8132.5	1.78 4.62
Shanty, Pine island	31 52 16.31	81 00 05.40	286 57 46 26 16 38	South Warsew	106 57 59 206 15 36	661.4 6962.6	723.3 7614.1	0.41 4.33
31ack	31 52 00.71	80 59 18,60	36 48 52 84 37 12	North Ossabaw, (1) Raccoon Key	216 47 26 264 35 23	7197.5 5456.4	7871.0 5967.0	4.47 3.39
Wreck	31 49 55.00	80 58 43 32	159 52 01 117 51 08	South Warsaw	339 51 30 297 49 00	4429.7 7192.8	4844.2 7865.8	2.75 4.47
Hopes	31 52 54.09	80 58 10.14	8 59 26 47 35 26	Wreck	188 59 03 227 34 50	5584.1 2437.0	6106.6 2665.0	3.47 1.51
Beach	31 53 33.85	80 57 96,65	20 39 46 50 24 45	Wreck	200 38 55 230 23 35	7903.1 4500.1	7877.1 4921.2	4 48 2.80
Odingsell's, chimney	31 53 42.98	81 00 36.93	332 57 05 42 39 08	South Warsaw	152 57 34 222 38 00	3213.7 4979.3	3514.4 5445.2	2.00 3.09
White Flag, southwest of Skid- daway.	31 53 04,41	81 01 19.87	302 52 24 122 45 57	South Wersaw Skiddaway	129 53 16 302 45 19	3084.0 2224.8	3372.6 2433.0	1.92 1.38
ole, with tuft, Odingsell's creek.	31 53 19.30	81 00 03,80	173 58 31 342 52 35	John's Hammock South Warsaw	353 58 26 162 52 47	2221.1 2006.1	2428.9 2193.8	1.38 1.25
edar Tuft	31 57 52.94	80 55 42,08	6 45 43 334 59 14	Great Warsaw	186 45 99 154 39 35	5783.9 2396.7	6325.1 2620.9	3.59 1.49
rine, Doyle's hammock	31 54 16.11	80 58 52.78	196 46 40 233 12 02	Cabbage Island Petit Chou	16 47 04 53 14 04	4108.8 7535.3	4493.3 8240.4	2.55 4.68
ole	31 56 38.59	80 55 21.09	166 28 12 235 23 53	Cedar Tuft	346 28 01 75 24 03	2355.2 490 7	2575.6 536.6	1.46 0.30
t. John's Oar	31 57 10,17	80 56 59,91	342 52 36 51 15 29	Great Warsaw	162 53 03 231 14 53	4631.5 9279.7	5064.9 2493.0	2.88 1.42
ole, northeast point of Great Warsaw.	31 54 29.05	80 55 46.88	133 43 50 195 38 45	Cabbage Island	313 42 36 15 39 08	5114.9 4271.7	5593.5 4671.4	3.18 2.65
astern Point	31 58 15.21	80 51 14.64	84 34 50 190 45 03	Petit Chou Tybee Light	244 32 49 10 45 25	6639.9 5836.1	7261.2 6382.2	4.13 3.62
ole, with tuft, south side War-	31 54 46.63	80 <i>5</i> 7 11.68	270 11 08 223 24 07	Great Warsaw Petit Chou	90 11 49 43 25 15	1672.7 4917.3	1829.9 5377.4	1.04 3,05
saw island. ongfellow's Flag Tree	31 55 14.91	80 58 15 68	185 41 44 284 38 37	Cabbage Island Great Warsaw	5 41 48 104 39 44	2133.4 3466.6	2333.0 3791.0	1.32 2.15
Talker	31 57 96:45	80 59 04.46	7 50 60 311 19 06	Romerly Marsh Cabbage Island	187 50 01 131 19 36	1969.3 1967.5	2153.6 2173.5	1.22 1.23
Visite Flag in tree, Great War-	31 52 51,14	80 58 34,65	138 00 26 205 59 04	John's Hammock Cedar Tuft	317 59 34 26 60 35	3849.2 10341.3	4209.4 11308.9	2.39 6.42
saw island. White Flag, Whiting Point	31 58 30.28	80 59 34,17	297 21 00 329 43 33	PoleCabbage Island	117 93 14 149 44 19	7482.6 4508.9	8128 8 49 3 0.8	4.65 2.80
almetto, near Cabbage island	31 57 30.96	80 57 52,31	11 96 56 258 26 28	Cabbage Island Cedar Tuft	191 06 48 78 27 37	2084.9 3489.7	2280.0 3816.2	1.29 2.17
t u mp	31 57 14.09	80 57 42.42	286 23 32 249 15 56	Pole	106 24 47 69 17 00	3871.5 3380.8	4233.8 3697.1	2.41 2.10
Iydrographic Mark	31 56 33,98	80 56 59,90	306 14 58 22 11 30	Grent Warsaw Romerly Marsh	196 16 29 202 11 22	5599.4 1027.0	6123.3 1123.1	3.48 9.64
ine of Cabbage Island	31 56 27.48	80 57 40,18	299 40 99 264 38 03	Cedar Tuft	49 41 12 84 39 17	4067.3 3668.8	4447.9 4012.1	2 53 2,28
imberstick	31 58 45.09	80 57 52,22	60 09 19 295 10 14	Red House Cedar Tuft	940 07 44 115 11 23	5413.1 3775.2	5919.6 4128.4	3.35 2.34
ead Tree in hammock, west of Little Tybee.	31 59 06.71	80 55 99,61	12 27 16 6 43 23	Great Warsaw	192 26 42 186 43 12	8209.0 4593.5	8977.1 5023.3	5.10 2.85
himney of house on Little	31 58 69,76	80 54 37.19	22 21 54	Pole	202 21 31	3035.6 2769.6	3319.6 3028.7	1.89
Tybee.	31 57 07.28	80 54 02,35	14 13 38 64 30 64	Petit Chou	194 13 84 244 29 32	1764.9	1936.9 5960.0	1 10 3,39
almetto in hammock, east of	31 58 16.67	80 53 23.78	37 16 20 41 58 31	Petit Chou	917 15 14 991 57 38	3696.4 3703.9	4261.0	2.43 2.30
Little Tybee. Thite Fing between creeks	31 57 58.31	80 52 42,93	78 37 39 179 50 56	Cedar Tuft	258 36 26 352 50 39	3703.9	4050.5 7559.7	4,99 4,49

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.	
Dead Pine, north end of Little	31 59 06.55	80 53 23.69	189 29 39 116 17 26	Fort Pulaski	9 / // 2 29 43 296 15 34	Metres. 4761.3 6195.1	Yards. 5206.8 6774.8	Miles. 2,96 3,85	
White Flag in cedar, Big Tybee creek.	31 59 37,56	80 52 04.09	153 40 52 103 10 34	Fort Pulaski	333 40 14 283 08 00	4242.0 7850.5	4638,9 8585,1	2.64 4.88	
Cow Horn, Gibson's Cut-off	31 59 35 .10	80 54 27.45	205 52 12 115 38 24	Fort Pulaski	25 52 50 295 37 06	4310.2 4305.8	4713.5 4708.7	2.68 2.67	
White Flag, Tybee river, right bank.	32 00 39,88	80 55 28.14	960 36 13 86 41 55	Tybec Light	80 38 49 266 41 09	7846.2 2291.9	8580.4 2506.3	4.87 1.42	
Barn, gable end, Shad's planta-	32 00 57,39	80 56 54.84	265 45 15 339 28 48	Tybee Light	85 48 37 159 29 47	10042.7 8378.2	10982.4 9162.1	6.24 5.21	
Flag-staff, Fort Pulaski	32 01 38.70	80 53 15.33	277 08 24 71 24 11	Tybee Light	97 09 50 251 22 14	4288.4 6091.7	4689.7 6661.7	2.66 3.78	
Warsaw Bar Ruoy	31 52 45.68	80 59 29.15	149 56 14 189 54 21	Petit Chou Eastern Point	329 54 49 9 54 57	8432.4 10302.9	9221.4 11266.9	5.24 6.40	
Second Buoy, Warsaw	31 54 35,76	80 53 57.11	95 28 32 156 06 32	Great Warsaw	275 27 23 336 05 57	3454.2 4273.0	3777.4 4672.8	2.15 2.65	
Ossabaw Sound to Sapelo Sound.									
Cane Patch	31 50 38,68	81 06 15.35	166 10 33 209 49 29	Palmetto	346 09 55 29 50 24	7833.5 5508.6	8566.5 6024.0	4,87 3,42	
Sigma ,	31 51 22.75	81 09 47.62	210 39 21 247 37 11	Palmetto	30 40 35 67 39 58	7265.4 8994.9	7945.2 9836.5	4.51 5.59	
Buck Head	31 47 06.42	81 08 11.79	162 18 13 205 05 24	Sigma Cane Batch	349 17 23 25 06 25	8286.8 7218.5	9062.2 7893.9	5.15 4.49	
Stevenson's Point	31 46 18.02	81 19 16.96	202 36 06 256 55 54	Sigma	99 37 94 76 58 03	10166.7 6602.1	11118.0 7219.9	6.39 4,10	
Newell	31 44 47.51	81 08 55,11	194 54 58 117 47 11	Buck Head Stevenson's Point	14 55 91 297 45 25	4427.4 5982.1	4841.7 6541.8	2.75 3.72	
Yellow Bluff	31 42 39,75	81 14 06.95	203 25 21 244 21 56	Stevenson's Point Newell	23 26 19 64 24 40	7326.3 9102.7	8011.8 9954.4	4.55 5.65	
Walburg	31 41 44,30	81 09 02,85	189 04 09 109 03 38	Newell	2 04 06 282 00 58	5646.3 8186.7	6174.6 8952.7	3,51 5.08	
John Thomas	31 38 29,32	81 15 07.19	237 56 15 191 37 10	Walburg Yeliow B'uff	57 59 26 11 37 42	11320.2 7873.9	12379.4 8610.7	7.03 4.89	
English Cut	31 38 21.79	81 10 52.81	147 14 51 204 54 02	Yellow Bluff	327 13 09 24 55 00	9447.6 6876.5	10331.6 7519.9	5.87 4.27	
Barbour's Island	31 34 28.95	81 14 23.45	171 09 02 217 43 55	John Thomas English Cut	351 08 39 37 45 45	7491.9 9068.6	8192.9 9917.1	4,65 5,63	
St. Catherine	31 33 52,79	81 10 47.65	179 03 33 141 14 41	English Cut	359 03 30 321 12 25	8285.2 10923.4	9060.4 11945.5	5.15 6.79	
Moss Island	31 37 38,01	81 12 46.03	23 48 12 335 46 02	Barbour's Island St. Catherine	203 47 21 155 47 04	6363.4 7605.4	6958.8 8317.0	3.95 4.72	
Raccoon Key, Pine	31 51 92,48	81 04 08.62	253 07 13 46 34 04	Raccoon Key	73 07 57 226 33 29	2289.4 2417.4	2593.6 2643.6	1.42	
North Ossabaw, (2)	31 48 53.70	81 02 04.91	120 15 26 168 33 54	Morell Raccoon Key	300 13 46 346 33 33	5797.5 5352.9	6340.0 5853.8	3.60 3.33	
Small Creek	31 49 43,85	81 64 94.84	218 19 35	Raccoon Key, black and	38 20 03	2214.3	2421.5	1.37	
			290 52 17	white flag. Ossabaw Beach, white flag.	110 53 06	2636 .5	2883.2	1.64	
Bradley	31 48 26.11	81 04 17.29	175 15 38 937 17 14	Small Creek Ossabaw Beach, white flag.	355 15 34 57 17 59	2402.4 2692.0	2627,2 2943,9	1.49 1.67	
Point	31 49 10.87	81 04 46.68	209 29 10 330 43 16	Small Creek	29 29 22 150 43 31	1166.7 1580.5	1275.9 1728.4	9.72 0.98	
Crooked	31 48 08.05	81 05 42.77	317 19 14 356 06 04	PointBradley	37 19 44 76 06 49	9432 9 9316.0	2660,5 2532,7	1,51	
Cedar	31 47 33,95	81 05 10.79	921 10 35 191 57 33	Bradley	41 11 03 11 57 46	2134.4 3051.3	2334.1 3336.8	1.32	
Serub	31 47 94.91	81 05 46.48	953 31 35 931 12 55	Cedar Bradley	73 31 34 51 13 42	981.0 3009.5	1072.8 3291.1	0.61 1.87	
White Flag on Bogging Island	31 49 45,56	81 07 04.10	212 04 23 143 30 45	Green Island	32 05 44	7572.0 8307.3	8980,5 9084,6	4.7 5.16	

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
White Flag on Raccoon Island	31 49 49.05	81 07 52.31	89 41 12 133 36 04	Little Buzzard	9 41 24 313 35 03	Metres. 3570.0 4185.5	Yards. 3904.0 4577.1	Miles. 2.22 2.60
Shanghae Pine	31 49 30,09	81 08 02.46	141 27 30 48 28 36	Sigma Stevenson's Point	321 26 35 228 26 22	4436.2 8919.1	4851.3 9753.7	2.76 5.54
White Flag, Skipper's Narrows	31 50 98.61	81 10 05.54	24 01 19 349 59 40	Stevenson's Point Newell	204 00 10 170 00 17	8448.5 10667.0	9239.0 11665.1	5.25 6.63
Pecksniff	31 49 01.87	BI 10 30.00	314 21 17 28 59 25	Buck Head	134 20 30 208 58 29	5084.9 5768.6	5560.7 6308.4	3.16 3.58
Black and White Flag	31 49 08.47	81 09 23,05	40 58 00 333 29 26	Stevenson's Point Buck Head	220 56 29 153 30 04	6950.7 4200.1	7601.1 4593.1	4.32 2.61
Singlestick	31 47 33.21	81 10 10.05	284 50 39 338 52 02	Buck Head	104 51 41 158 52 41	3218.6 5470.7	3519.8 5982.6	2.00 3,40
Cross Stick	31 47 55.84	81 11 05.37	329 24 45 31 45 37	Newell Stevenson's Point	149 25 54 211 45 00	6736.9 3543.2	7367.3 3874.7	4.18 2.20
White Flag, Kilkenny Creek	31 46 39.25	81 10 48,41	319 05 10 258 30 17	Newell	139 06 10 78 31 40	4552.9 4204.5	4978.9 4597.9	2,83 2,61
Big Tom	31 46 47.08	81 09 21.20	79 01 02 175 19 23	Stevenson's Point Sigma	258 59 30 355 19 09	4691.8 8518.6	5130.8 9315.7	2,91 5,29
Dead Pine	31 45 24,82	81 08 25.63	105 07 39 34 01 37	Stevenson's Point Newell	285 05 31 214 01 22	6285.6 1386.2	6873,7 1515.9	3,91 0,81
Milligan's Point	31 43 59,77	81 10 00.46	229 27 44 340 01 19	Newell	49 25 18 160 01 49	2963.1 4439.7	2474.8 4855.1	1.40 2.76
Timmins	31 40 34.19	81 11 53.46	338 35 54 53 00 56	English Cut	158 36 26 232 59 14	4379.4 6390.0	4789.2 6987.9	2.72 3.97
Mcdway	31 43 13.41	81 12 07,74	240 13 53 299 24 61	Newell	60 15 34 119 25 38	5840,1 5588,0	6386.6 6110.9	3,63 3,47
Shell Bank	31 45 38,80	81 10 22.04	343 53 45 31 51 35	Walburg	163 54 27 211 50 39	7516.6 5271.4	8219.9 5764.6	4.67 3.27
Hart	31 45 19.37	81 12 55.19	342 09 08 261 32 43	MedwayShell Bank	162 09 33 81 34 04	4075,4 4074,1	4456.7 4455.3	2.53 2.53
Harris.	31 44 10.27	81 14 08.39	222 08 46 245 23 25	HartShell Bank	42 09 25 65 25 24	2870.5 6551.1	3139,1 7164,1	1.78
Pine	31 45 51.38	81 15 08.03	333 14 46 285 44 24	Harris	153 15 17 105 45 34	3487 1 3631.9	3813.4 3971.7	2.17 2.26
Loan	31 44 05.94	81 15 46.15	267 01 13 243 17 54	Harris	87 02 04 63 19 24	2576.5 5035.7	2817.6 5506.9	1.60
South Ossabaw	31 43 37.47	81 08 05.58	83 23 15 136 08 46	MedwayShell Bank	263 21 08 316 07 34	6417.6 5182.7	7018.1 5667.6	3.99 3.22
North Point of St. Catherine	31 41 59.42	81 07 58.93	150 52 15 164 03 32	Sheli Bank Newell	330 51 90 344 03 02	7735 5 5383.7	8459.3 5887.4	4.80 3.34
North Chimney of C. Rodger's House.	31 47 25.28	81 12 00.84	314 49 19 275 29 15	Newell	134 50 57 95 31 16	6891.3 6053.3	7536.1 6619.7	4.28 3.76
Dead Creek	31 42 23.09	81 12 43.03	338 39 12 27 48 56	English Cut	158 40 10 207 47 40	7978.2 8139.2	8724.7 8900.8	4.96 5.06
Jones' Hammock	31 44 28.49	81 12 12.89	118 59 39 144 36 47	Pine	298 58 07 324 36 25	5268.7 1922.3	5761.7 2102.2	3.27 1.19
Black Flag on Cedar Point	31 42 24.22	81 10 59.35	216 31 53 291 50 04	Newell	36 32 58	5492.9 3304.7	6006.9 3613.9	3.41 2.05
Range Mark	31 42 07.60	81 06 39.76	175 18 38 110 19 39	Newell Medway	355 18 30 290 17 50	4941.6 5838.5	5404.0	3.07 3.63
North Buoy, St. Catherine	31 43 07.12	81 08 38.9 8	91 58 01 167 27 43	Medway	271 54 06 347 27 29	5762.0 3168.0	6301.1 3464.4	3.58 1.97
South Buoy, St. Catherine	31 42 32.75	81 08 43.67	103 09 09 175 50 57	Medway	283 07 22 355 50 51	5517.0 4160.0	6033,2 4549,2	3 43 2,58
Baker's House, North Chimney	31 43 59.40	81 14 01.96	215 30 00 153 10 22	Hart	35 30 35	3025.6 3751.9	3308.7 4163.0	1,88 2,39
White Flag on Marsh Island	31 44 29.16	81 13 31.59	76 35 29 134 56 32	LoanPine	258 34 18	3613.9 3585.2	3951.3 3920.7	2.24 2.23
Sunbury Church	31 45 59.39	81 16 40.90	337 35 03 309 55 39	Loan	314 55 41 157 35 32 199 56 59	3779.5	4133.1 5794.4	2.35
Tall White Chimney	31 46 01.47	81 16 34.04	340 29 39 262 40 16	Loan	129 56 59 160 30 04 102 42 11	5934.6 3774.9 5902.7	4128.1	2.34

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station —	Back azimuth.	Distance.	Distance.	Distance.
Chimney on East end of House	31 45 59.07	s , ,, S1 16 36.96	339 15 50 275 48 51	Loan Pine	159 16 16 95 49 37	Metres. 3725.9 2333.2	Tards. 4074.5 2551.5	Miles. 2,31 1.45
Scriven's House Chimney	31 46 04.13	81 16 33,51	279 53 50 312 32 48	Pine	99 54 35 132 34 04	2283.4 5184.4	2497.1 5669.5	1.42 3.22
White Flag near Yellow Bluff	31 41 53.64	81 14 46.92	271 47 16 4 50 46	WalburgJohn Thomas	91 50 17 184 50 25	9063.8 6315.4	9911.9 6906.3	5.63 3.92
White Flag on left bank of Van- dyke Creek.	31 41 13.09	81 12 43,55	260 35 24 331 03 13	Walburg English Cut	89 37 20 151 04 11	5890.3 6028.4	6441.5 6592.5	3.66 3.74
Vandyke	31 41 17.83	81 11 34,10	258 25 10 348 39 07	Walburg English Cut	78 26 33 168 39 29	4065.4 5529.7	4445.8 6047.1	2.53 3.44
Tall Pine on Moss Island	31 37 45.00	81 12 47.06	218 41 33 110 17 50	Walburg John Thomas	38 43 31 290 16 37	9444 7 3935.7	10328.4 4304.0	5.87 2.44
Mrs. Cummings's House, red chimney.	31 41 07.71	81 15 25,45	263 8 5 25 354 21 59	Walburg John Thomas	83 38 46 174 22 09	10138.0 4901.7	11086.6 5360.3	6.30 3.04
Pole near mouth of North New- port River.	31 41 27.53	81 10 10.26	253 46 29 11 05 14	Walburg English Cut	73 47 04 191 04 52	1848.5 5829.1	2021.5 6374.5	1.15 3.62
White Fing on right bank of Vandyke Creek.	31 41 04.17	81 14 02.30	261 94 96 177 37 12	WalburgYeliow Bluff	81 06 43 357 37 10	7982.0 2945.9	8728.9 3221.5	4 96 1.83
Pole on right bank of North Newport River.	31 39 45.61	81 13 01,60	307 15 15 54 37 48	English Cut	127 16 23 234 36 42	4263.1 4057.9	4662.0 4437.6	¥.65 2.52
Pole near English Cut	31 39 36,18	8) 11 43,45	226 58 28 69 01 25	Walburg	46 59 52 248 59 38	5784.6 5748.6	6325.9 6286.5	3.59 3.57
Stroud	31 39 00.27	81 12 18,02	225 28 54 297 49 10	Walburg English Out	45 30 36 117 49 55	7206.8 2538.9	7881.1 2776.5	4.46 1.58
Pole on left bank of North New- port River.	31 39 53.99	81 14 26.15	296 47 18 22 31 25	English Cut	116 49 10 202 31 03	6296.8 2822.8	6886.0 3086.9	3.91 1.75
Pole in Marsh, Walburg's Creek.	31 40 08,40	81 10 52.86	139 22 46 224 26 17	Yellow Bluff	312 21 04 44 27 15	6917.4 4137.2	7564.7 4524.3	4.30 2.57
Holt	31 40 10.72	81 16 02.48	292 14 28 227 35 57	English Cut	112 17 11 47 38 01	8814.1 8369.1	9638.8 9152.9	5.48 5.20
White Flag near Walburg	31 39 47.66	81 09 38.04	74 28 33 126 49 49	John Thomas Yellow Bluff	254 25 40 306 47 28	9000.6 8845.2	9842.8 9672.8	5.59 5.50
Black Beard	31 32 00.36	81 11 01,44	130 40 43 185 59 50	Barbour's Island St. Catherine	310 38 58 5 59 57	7022.7 3481.9	7679.8 3807.7	4.36 2.16
North Base, Sapelo island	31 31 44,87	81 13 59.78	232 07 15 172 57 38	St. Catherine Barbour's Island	52 08 56 352 17 26	6418.4 5091.4	7019.0 5567.8	3.99 3.16
Cedar Hammock	31 33 19.62	81 14 45.08	337 43 46 260 42 53	North Base St. Catherine	157 44 10 80 44 57	3153.1 6343.7	3448.1 6937.3	1.96 3.94
Dog Island	31 31 57.66	81 15 49.04	213 45 04 277 46 18	Cedar Hammock North Base		3036.1 2909.0	3320.2 3181.2	1.89
South Base, Sapelo island	31 30 56.01	81 14 29.80	132 14 51 207 45 10	Dog Island North Base	312 14 10 27 45 26	2824.0 1700.7	3088.2 1855.8	1.75
Julienton	31 33 27.75	81 17 55.03	310 47 13 309 51 09	South Base	130 49 00	7151.5 4328.4	7820,7 4733.4	4.44 2.69
Creighton Island	31 32 03.03	81 18 49,90	971 58 23 209 01 00	Dog IslaudJulienton	91 59 57	4773.3 2983.4	5219.9 3262.6	2.97 1.83
Sutherland	31 39 55.44	81 19 12.69	244 05 13 288 19 00	Julienton	ľ	2277.1 5658.0	2490.2 6187.4	1.4 3.5
Inner Beacon	31 33 01.02	81 10 26.66	113 27 59 26 09 04	Barbour's Island Black Beard	\	6806.0 9081.3	7442.8	1
Outer Beacon	31 32 58.23	81 10 00.35	42 06 39 70 90 14	Black Beard North Base	222 06 07	2402.2 6707.3	2627.0	1.4
Northeast Point	31 30 41.22	81 09 22.62	133 94 41 158 34 52	Black Beard	313 03 49	3568.5 4624.8	3902.4	2.2
White Flag in tree on east side of St. Catherine's Island.	31 34 32.96	81 09 15.80	55 22 05 75 26 38	North Base	1	9104.1 8971.9	9956.0	5.6
White Fing in cak on St. Catherine's Island.	31 33 38.20	81 09 40.87	35 11 59 104 19 38	Black Beard	. 215 11 10	3687.3 1817.5	4032,3	2.9
White Flag on northeast point of Black Beard Island.	31 31 43.65	81 10 31.10	122 43 01 173 44 22	Black Beard St. Catherine	309 42 45	951.4	1040.4	0.5
White Flag with tuft on east side of Black Beard Island.	31 31 35.62	81 10 46.30	L	St. Catherine	359 31 03	4225,	4620.8	2.6

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Inner Buoy, (on bar)	* / // 31 32 43,23	% / // 81 07 14.13	96 10 25 77 35 49	Inner Beacon	276 08 44 257 33 50	Metres. 5107.1 6139.0	Yards. 5585.0 6713.4	Miles. 3.17 3.81
Outer Buoy, (on bar)	31 32 32.26	81 05 40.88	96 43 20 63 23 38	Inner Beacon	276 40 50 263 20 50	7589.0 8511.9	8299.1 9308.4	4.71 5.29
White Flag in pine in hammock on St. Catherine's island.	31 35 05.05	81 10 35.56	8 08 47 63 45 06	St. Catherine	188 08 41 243 42 55	2247.7 7336.9	2458.0 8023.4	1.39 4.56
Kollock's Place, west gable end of house.	31 36 12.11	81 10 36.24	127 44 91 51 00 56	Moss Island Cedar Hammock	307 43 13 230 58 46	5324.6 8442.2	4729.2 9232.1	2.69 5,25
Tuft in hammock on left bank of South Newport river.	31 36 50.86	81 11 25.70	349 37 45 355 54 34	St. Catherine	169 38 05 175 54 47	5574.7 8969.6	6096.3 9808.9	3.46 5.57
White Flag on marsh at mouth of Waboo creek.	31 35 32.46	81 11 48.17	48 45 40 332 31 01	Cedar Hammock St. Catherine	228 44 07 152 31 33	6204.3 3459.3	6784 8 378 3 .0	3.85 2.15
White Flag on shell beach of St. Catherine's island.	31 34 28.03	81 11 06.39	42 19 02 335 30 24	North Base	222 17 31 155 30 34	6794.0 1192.3	7429.7 1303.9	4.22 0.74
White Flag at mouth of John- son's creek.	31 35 31.96	81 10 53.0 1	357 20 57 1 57 14	St. Catherine	177 21 00 181 57 10	3056.7 6520.6	3342.7 71 30 .7	1.90 4.05
White Flag on Wahoo island	31 36 14.67	81 12 50 66	339 48 10 36 55 40	Black Beard	159 49 07 216 54 51	8344.8 4072.3	9125.6 4453.3	5.18 2.53
White Flag, with tuft, near Old- ner's island.	31 34 35.19	81 11 44.03	64 01 35 311 16 29	Cedar Hammock St. Catherine	244 00 00 131 16 59	5311.0 1978.8	5807.9 2163.9	3.30 1.23
White Flag in tree in pine ham-	31 35 25.07	81 13 26.03	28 20 58 41 13 35	Cedar Hammock Barbour's Island	208 20 17 221 13 05	4391.0 2296.0	4801.9 2510.9	2,73 1,43
White Flag in pine in hammock on Barbour's Island river.	31 34 41,93	81 13 18.64	76 50 65 41 58 03	Barbour's Island Cedar Hammock	256 49 31 221 57 18	1754.7 3408.9	3918.9 3727.9	1,09 2,19
White Flag on north shore of sound.	31 33 38.11	81 12 36,62	80 28 22 320 10 15	Cedar Hammouk Black Beard	260 27 15 140 11 05	3435.7 3920.2	3757.2 4287.0	2.13 2.44
White Flag on northwest point of Black Beard island.	31 32 08.68	81 11 54.47	280 23 26 208 47 12	Black Beard St. Catherine	100 23 54 28 47 47	1422.0 3659.0	1555.1 4001.4	0.88 2.27
White Flag in cedar, west side of Black Beard island.	31 31 39.51	81 12 30.02	150 11 07 232 20 08	Barbour's Island Inner Beacon	330 10 08 50 21 13	6014.6 4109.4	6577.4 4493.9	3.74 2.55
White Flag in oak on Black Beard island.	31 31 08.67	81 12 04 78	133 39 27 216 47 20	Cedar Hammock, Inner Beacon	313 38 03 36 48 11	5843.1 4321.0	6389.8 4725.3	3.63 2.68
White Flag on northeast point of Sapelo island.	31 31 33.86	81 13 26,75	164 30 26 147 37 04	Barbour's Island Cedar Hammock	344 29 56 327 36 23	5595.7 3857.0	6119.3 4217.9	3.48 2.40
Red and White Flag at mouth of Barbour's Island river.	31 33 18.01	81 13 45,41	52 49 01 91 48 38	Dog Island	239 47 56 971 48 07	4093.4 1574.1	4476.4 1721.4	2.54 0.98
White Flag, with tust, on Little Mud river.	31 34 16.84	81 15 18,92	333 08 09 255 41 08	Oedar Hammock Barbour's Island	153 08 27 75 41 37	1975.1 1509.3	2159.9 1650.5	1.23 0.94
White and Black Flag at mouth of Julienton river.	31 33 12.74	81 15 57,04	98 26 59 263 36 47	Julienton	278 25 57 83 37 25	3145.5 1909.9	3439.8 2067.8	1,95 1,18
White Flag on left bank of Julien- ton river.	31 33 45.61	81 16 36.22	75 09 52 285 15 39	Julienton	255 09 11 105 16 37	2149.6 3037.4	2350.7 3321.6	1.33 1.89
White Flag, with palmetto tuft, in marsh opposite Julienton.	31 39 57.95	81 17 20.06	135 31 54 307 23 47	Julienton	315 31 36 127 24 35	1315.9 3021.2	1439.0 3303.9	0.82 1.88
Black Flag on left bank of Sape	31 32 45.81	81 16 42.31	316 32 59 251 22 33	Dog Island Cedar Hammock	136 33 27 71 23 34	2042.9 3262.4	2234.0 3567.7	1.27 2.03
White Fiag on Curry Point, Oreighton island.	31 29 51.28	81 19 37.10	237 05 05 256 09 56	Dog Island South Base	57 07 04 76 19 37	7165.5 8349.8	7836.0 9131.1	4,45 5.19
White and Black Flag on right bank of Sapelo river.	31 31 13.61	81 17 29,38	242 51 08 170 42 21	Dog Island Julienton	62 52 00 350 42 08	2974.0 4185.7	3952.3 4577.4	1.85 2.60
White Fing on Four-mile Point	31 39 08.94	81 17 28.12	277 34 90 85 11 24	Dog island Creighton Island	97 35 12 265 10 41	2636.9 2164.5	2882.9 2367.0	1.64 1.34
Lower Beacon in Mud river	31 31 18.13	81 15 14,47	300 01 43 143 09 25	South Base	120 02 06 323 09 07	1361.3 1521.2	1488.7 1663.5	0.84 0.94
White Flag on left bank of Mud	31 31 02 01	81 15 49,41	275 25 55 175 02 27	South Base	95 26 33 255 02 24	1951.1 1790.2	2133.7 1881.2	1.21 1.07
Beacon at mouth of Teakettle	31 29 18.65	81 17 28.13	237 29 24 208 05 08	South Base	57 30 57 28 05 00	5579.3 5551.3	6101.4 6070.7	3.47 3.45
Opper Beacon on Mud river	31 29 51.97	81 17 11,70	245 13 00 209 22 51	South Base	65 14 25 29 23 34	4704.9 4443.3	5145.1 4859.1	9.92 9.76
White Flag on creek, Dog Island	31 30 47,99	81 16 53,78	218 30 26 266 18 30	Dog Island	i	9742.3 3806.9		1.70 9.37

Section V.—Ossabaw sound to Sapelo sound. Sketch E, No 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
White Flag on right bank of Mudriver.	31 29 39.93	81 16 19.79	190 49 20 231 04 46	Dog Island South Base	0 / " 10 49 36 51 05 43	Metres. 4318.4 3729.9	Yards. 4722.5 4078.9	Miles. 2.68 2,32
White Flag on Marsh island, in Mud river.	31 29 13.00	81 18 05.45	240 51 17 215 20 56	South Base Dog Island	60 53 10 35 22 07	6514.3 6219.0	7123.8 6800.9	4.05 3.86
Chimney of Mill at west end of Duboy.	31 22 54.08	81 19 30.56	901 25 06 188 06 56	Dog Island	21 27 02 8 07 46	15999.4 17886.9	17496.5 19560.6	9.94 11.11
Chimney of Overseer's House, Creighton island.	31 32 01.89	81 18 47.93	271 33 59 207 49 16	Dog Island Julienton	91 35 33 27 49 44	4720.0 2990.0	5161.6 32 6 9.8	2.93 1.86
White Flag on left bank of Creighton island, Front river.	31 30 31,36	81 18 31.07	238 06 42 189 55 40	Dog Island	58 08 07 9 55 59	5033.7 5515.1	5504.7 6031.2	3.13 3.43
White Flag, with tuft, in pine centre of Creighton island.	31 31 16.17	81 19 10.45	256 27 28 206 08 36	Dog Island Julienton	76 29 13 26 09 16	5464.6 4514.6	5975.9 4937.0	3,39 2,80
White Flag on left bank of Sapelo river.	31 32 29.56	81 18 11 66	193 45 36 116 21 07	Julienton Sutherland	13 45 45 296 20 35	1845.1 1796.6	2017.7 1964.7	1.15 1.11
White Flag in tree at Sutherland Bluff.	31 33 06.79	81 19 08,15	292 03 20 346 13 14	Dog Island	112 05 04 166 13 24	5666.8 2022.0	6197.0 2212	3.52 1.26
White Flag in tree on northwest point of Creighton island.	31 31 54,68	81 19 39.85	258 55 59 228 57 24	Creighton Island Julienton	78 56 25 43 58 19	1342.6 3982,4	1468.2 4355.0	0.83 2.47
Black and White Flag on right bank of Sapelo river.	31 39 21.88	81 20 27,69	242 24 21 243 14 54	Sutherland	62 25 00 63 16 14	2232.5 4508.6	2441.4 4930.5	1.39 2.80
Gable-end of building at Choco- late.	31 30 01,47	81 15 04.43	184 46 43 144 41 54	Cedar Hammock Julienton	4 46 53 324 40 25	6123.9 7784.4	6696.9 8512.8	3.80 4.84

Section V.—Charleston Harbor to Winyah Bay.* Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Breach Inlet	392 46 19.27	° ' '' 79 48 43.14	0 !!		0 / //	Metres.	Yards.	Miles.
Circular Church	32 46 42.54	79 55 39.05	273 4 5 3 0	Breach Inlet	93 49 15	10846.3	11861,2	6.47
Fort Sumpter, (2)	32 45 08.17	79 52 14.51	118 39 15 248 16 33	Circular Church Breach Inlet		6064.8 5920.5	6632.3 6474.5	3.77 3.68
Venning	32 48 10.67	79 49 22,37	343 26 13 38 33 44	Breach Inlet		3579.9 7167.6	3914.9 7860.1	2,22 4,47
Hamlin	39 49 37.53	79 47 10.69	21 30 15 52 00 45	Breach Inlet	201 29 25 231 59 33	6563.6 4346.1	7177.8 4752.8	4.08 2.70
Goat Island	32 48 09,81	79 46 12.61	90 19 21 150 47 52	Venning	270 17 39 330 47 21	4936.2 3095.7	5398.1 3385.4	3,07 1,92
Fuller	32 51 65.84	79 45 44.62	7 38 58 39 27 09	Goat Island	187 38 43 219 25 22	5471.1 3522.7	5983.0 3852,3	3.40 2,19
Roberts, (2)	39 49 43.58	79 43 14.28	192 57 49 88 16 52	Fuller Hamlin	302 56 20 268 14 43	4658,5 6151,0	5094.5 6726.5	2.89 3.82
Toomer	39 59 91.74	79 43 59,78	44 28 30 49 23 13	Hamlin	924 96 47 929 92 16	7086.8 3590.7	7749.9 3926.7	4,40 2,23
Capers	32 51 33.28	79 42 11,50	81 20 34 25 47 21	Fuller	261 18 39 205 46 47	5604.8 3752.7	6129,2 4103.8	3,4 8 2, 3 3
Pole on Moultrie House	32 45 28.55	79 50 51.88	205 00 00 106 58 48	Venning Circular Church	25 00 49 286 56 13	5510.1 7813.2	6025.7 8544.3	3,49 4,85
Sullivan's Island, back beacon	39 45 39.95	79 51 11.94	211 32 59 106 31 22	Venning Oircular Church	31 33 58 285 28 58	5448,2 721 3, 1	5958.0 7888.0	3,38 4,48
Cator's Landing, (pole)	32 49 02,76	79 47 46.60	57 13 10 221 05 09	Venning Hamlin	237 12 18 41 05 28	2963.2 1420.9	3940.5 1553.8	1.84 0.88
Catholic Church spire, Broad street.	32 46 33.15	79 55 50.75	272 10 04 294 55 31	Breach Inlet Fort Sumpter, (2)	92 13 55 114 57 28	11135.3 6206.4	12177.2 6787.1	5.92 3.86
Dewees	39 50 99,57	79 42 06,20	141 11 42 176 22 52	Toomer	391 10 40 356 99 49	4710.9 2182.5	5151.7 2386.7	2.93 1.35

^{*} The positions on Winyah Bay, printed in the report of 1855, require the corrections: — 0".50 in latitude, and 4 4' 08".28 in longitude.

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Charleston Harbor to Winyah Bay. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Niel	32 50 46.77	79 41 23,91	125 50 14 139 11 20	ToomerCapers	305 48 49 319 10 44	Metres. 4997.6 1893.0	Yards, 5465.2 2070.1	Miles. 3.10 1.18
Legare	32 51 01,16	79 40 56.10	56 23 03 117 28 52	Roberts, (2)	236 21 48 297 27 12	4314.9 5381.4	4718.6 5884.9	2.68 3.34
Bar	32 49 15.29	79 41 40,93	162 24 30 188 55 35	Dewees	343 24 16 8 55 44	2174.0 2852.4	9377.4 3119.3	1. 35 1. 7 7
Point	32 48 39.93	79 42 49.01	161 28 25 238 24 03	Roberts, (2)	341 28 11 58 24 40	2067.8 2078.9	2261.3 2273.4	1.28 1.29
Humphries	32 54 54.65	79 40 43.72	20 11 55 47 15 41	Capers Toomer	200 11 08 227 13 54	6609.0 6938.5	7227.4 7587.7	4.11 4.31
Jamie	32 53 00.96	79 39 02,90	143 12 3 5 61 09 52	Humphries	323 11 40 241 08 10	4373.6 5596.9	4782.8 6120.6	2.72 3.48
Wagner, (2)	32 57 01.95	79 38 36.98	5 11 14 40 01 43	Jamie Humphries	185 11 00 220 00 34	7453.7 5119.9	8151.1 5599.0	4.63 3.16
Middle	32 55 17.69	79 36 03.92	47 50 57 128 56 26	Jamie	227 49 20 308 55 03	6274.6 5110.6	6861.7 5588.8	3.90 3.17
Owendaw	33 00 24.62	79 34 35.73	13 37 18 45 06 40	Middle Wagner, (2)	193 36 30 225 04 28	9727.6 8843.2	10637.8 9670.7	6.04 5.49
Bird Island	32 57 12.82	79 33 28,48	48 42 58 163 32 30	Middle Owendaw	928 41 34 343 31 53	5373.6 6160.6	5876.4 6737.0	3.34 3.83
Live Oak	33 03 16.25	79 30 56,30	19 26 44 47 08 16	Bird Island	199 25 21 227 06 16	11871.3 7769.7	12982.1 8496.7	7.37 4.83
Northeast Bull	32 59 41.82	79 29 22.02	99 13 16 159 41 00	OwendawLive Oak	979 10 25 339 40 09	8248.7 7043.9	9020.5 7703.0	5.12 4.38
Jeremy	33 04 34.98	79 26 01.81	29 55 25 72 24 22	Northeast Bull	209 53 36 259 21 42	10418.2 8014.2	11393.0 8764.1	6.47 4.98
Cape Roman, old light	33 01 04.97	79 22 13.30	106 38 02 137 31 01	Live Oak	286 33 17 317 28 57	14159.3 8774.5	15484.2 9595.5	8.80 5.45
Nellie	33 02 23.94	79 26 14.44	44 16 55 184 38 25	Northeast Bull	994 15 13 4 38 39	6974.0 4050.0	7626.5 4429.0	4.33 9.52
Blake	33 07 58.01	79 20 47.03	9 58 49 52 33 35	Cape Roman, old light.	189 58 02 232 30 43	12918.3 10281.5	14127.1 11243.5	8.03 6.39
Murphy	33 05 57.78	79 19 25,44	76 05 35 150 16 39	Jeremy Biake	256 01 59 330 15 54	10589.6 4264.7	11580.5 4663.7	6.58 2.65
Cedar Island, 1857	33 07 55.79	79 14 51,60	49 11 94 62 55 10	Cape Roman, old light	222 07 23 244 52 41	17067.6 7974.2	18664.6 8720.3	10.60 4.95
Rutledge	33 10 27.98	79 18 38.87	35 43 05 308 31 16	Biake Cedar Island, 1857	215 41 55 128 33 20	5689.6 7528.5	6222.0 8232.9	3.53 4.68
Cape, (2)	33 01 56.29	79 20 32.73	119 49 22 193 11 51	Jeremy	299 46 23 13 12 28	9836.9 7640.9	10757.3 8355.8	6.11 4.75
Lowndes	33 11 47.51	79 13 36.04	15 20 12 72 40 42	Cedar Island, 1857 Rutledge	195 19 31 252 37 56	7403.8 8217.3	8096.6 8986.2	4. 69 5.10
McCenvey	33 10 14.24	79 12 19.61	42 43 03 92 29 49	Cedar Island, 1857 Rutledge	999 40 41 279 96 92	5806.5° 2914.0	6349.8 3186.7	3.61 1.81
South Base, (2)	33 12 33.44	79 11 57.67	7 32 49 60 57 31	McConveyLowndes	187 32 37 240 56 37	4325.4 2914.0	4730.1 3186.7	2. 69 1.81
Gibbs	39 53 50.13	79 36 30.09	106 48 21 69 07 21	Humphries	286 46 03 249 05 58	6884.1 4250.6	7528.9 4848.3	4.28 2.64
Vidali's Landing	32 52 13.31	79 40 55.55	183 39 17 243 29 09	Humphries	3 39 23 63 23 10	4979.4 3275.1	5445.3 3581.5	3.09 2.03
Single Palmetto	32 52 52.18	79 41 55,16	266 31 53 9 54 47	Jamie	86 33 27 189 54 38	4485.4 2467.0	4905.1 2697.8	2.79 1.53
Edward's, southwest base	39 59 50.01	79 38 42,05	140 32 19 180 58 25	Humphries Wagner, (2)	320 31 13 0 58 28	4973.6 7761.7	5439.0 8487.9	3.09 4.82
Johnnie	32 51 38.98	79 39 37,89	199 48 49 230 22 08	JamieGibbs	19 49 08 50 23 50	2683.9 6336.1	9935.0 6928.9	1.67 3.94
Bruce	32 54 18.00	79 34 18,93	59 26 51 72 11 34	JohnnieJamie	239 23 58 252 09 00	9629.9 7752.0	10530.2 8477.4	5.98 4.82
Vanderhorst	32 57 20.07	79 36 35.89	272 36 49 80 12 55	Bird Island	92 38 31 260 11 49	4679.0 3202.3	5327.9 3501 9	3.03 1.99
Chimney on west end of small	35, 58 46.40	79 37 18,84	295 49 59 343 69 21	Bird Island	115 44 57 163 10 02	6839.9 6717.1	7961.9 7345.6	4.13 4.17

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Charleston Harbor to Winyah Bay. Sketch E, No. 16.

Dr. Jewey's firmes, chimney												
Dr. Jewey's House, chimney	Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimath.	Distance.	Distance.	Distance.			
Seal House, chimnery	Dr. Jewey's House, chimney			291 35 43		111 37 28	5400.7	5906.0	Miles. 3.35 3.86			
Toomer's House, centre. 39 52 47.10 79 45 07.45 299 23.17 13 65 40	Joyce	32 50 02.47	79 41 59.72		Capers				1.75 0.95			
Hugh	Small House, chimney	32 52 34.62	79 43 54,32		Capers				2.03 0.26			
Hugh	Toomer's House, centre	32 52 47.10	79 45 07.45		Capers				3.17 1.19			
Dead Thee on east end of Ham 192 40 24, 20 79 45 49, 40 181 26 52 8 18 18 187 6 457 6 452 8 180 180 180 180 180 180 180 180 180 1	Hugh	32 51 28.70	79 42 28.75		Capers				0.29			
Brick Hammock		39 49 24.29	79 4 5 49.40		Roberts, (2)		4077.6	4459.1	2.53			
Dewees Tripod	Brick Hammock	32 50 05.39	79 44 42.90	235 28 22			4777.6	5224.6	2.97			
Hamilin's Old House, centre	Dewees Tripod	32 50 20.51	79 42 05.41			i			0.04			
Theodore Wagner's House, centre 32 48 40 42 79 49 19.40 38 58 11 Goat Island 100 N9 52 4494.6 5419.7 4805.4 2.76 Hamilin's Old Bouse, centre 32 49 45.92 79 47 14.11 321 37 63 310 57 11 Hamilin's Old Bouse, centre 32 49 45.92 79 47 14.11 321 37 63 310 57 11 Hamilin's Old Bouse, centre 32 49 45.92 79 47 14.11 321 37 63 310 57 11 Hamilin's Old Bouse, centre 32 49 45.92 79 47 14.11 321 37 63 310 57 11 Hamilin's Old Bouse, centre 32 49 45.92 79 44 0.38 323 31 19 Deveces 32 40 18 10 153 32 89 592.0 1052.0 0 0.17 Figure Head, Caper's island 32 51 14.74 79 41 40.38 323 33 19 Netl 152 40 18 10 152 40 14 1741.4 1904.3 1.00 Legare's House, west chimney 32 51 98.82 79 42 01.73 32 46 18 18 18 14 36 2043.9 1255.1 1778.7 1 1.00 Death, hydrographic signal 32 49 37.71 79 42 02.84 305 27 07 Netl 25 20 12 10 0 30 2146.1 1741.4 1904.3 1.00 Rafe 32 48 51.64 79 42 28.30 25 00 37 Rar 70 06 19 2140.1 2340.3 1347.8 1.22 Brown 33 13 37.39 79 13 25.95 310 44 53 10 10 48 434 474.7 0 .37 Brown 33 13 37.39 79 13 25.95 310 44 53 10 10 10 48 434 474.7 0 .37 Brown 33 10 07.51 79 12 18.95 170 21 50 McConvey 350 21 49 210.2 229.9 0.13 Hydrographic Signal 33 11 50.67 79 15 50.03 181 46 30 1 Lowndes 10 14 14 14 14 14 14 14 14 14 14 14 14 14	Windmill on Oyster House	32 47 21.43	79 49 25.91		Goat Island				3.26 3.73			
Hamilin's Old House, centre 32 49 45.92 79 47 14.11 330 37 63 Gost Island 151 37 37 3055.0 369.0 0.66 Figure Head, Caper's island 32 51 14.74 79 41 40.38 323 331 9 Netl 153 33 28 369.0 1052.0 0.66 Legare's House, west chimney 32 51 28.82 79 42 01.75 32 40 18 Devees 120 40 44 1741.4 1904.3 11.90	Theodore Wagner's House, centre	32 48 40.42	79 49 19.40	280 58 11	Goat Island	100 59 52	4949.6	5412.7	3,07			
Figure Head, Caper's island. 29 51 14.74 79 41 40.38 233 33 19 Desta	Hamlin's Old House, centre	32 49 45.92	79 47 14.11	331 37 03	Goat Island	151 37 37	3365.0	3679,9	2.09			
Legare's House, west chimney. 32 51 38.82 79 42 01.75 314 37 Neil. 142 46 48 1636.5 1778.7 1.00 Death, hydrographic signal. 32 49 37.71 79 42 03.84 365 37 70 Neil. 121 00 50 245.8 2943.9 11.27 Death, hydrographic signal. 32 48 51.64 79 42 58.30 250 50 57 Reil. 214 00 50 244.0 19 244.0 1 2340.3 1.33 Rafe. 32 48 51.64 79 42 58.30 250 57 Reil. 214 00 50 244.0 1 2340.3 1.33 Brown 31 37.39 79 13 25.96 310 44 53 24 24 39 25 24 24 24 31 25 24 24 25 24 24 24 25 24 24 24 24 24 25 25 24 24 24 24 24 24 24 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Figure Hoad, Caper's island	39 51 14.74	79 41 40.38		Neil	153 33 28	962,0	1052.0	0.60			
Death, hydrographic signal. 32 49 37.71 79 42 02.84 305 27 07 Point 214 00 50 2355.8 2276.2 1.46 Rafe. 32 48 51.64 79 42 58.39 250.0 537 Point 214 00 50 2140.3 2347.8 1.33 Rafe. 33 13 37.39 79 13 25.96 310 44 35 Point 164 10 48 434.1 47.7 10.37 Rhown 33 13 37.39 79 13 25.96 310 44 35 South Base, (2) 13 45 41 3017.7 300.1 1.87 Hydrographic Signal 33 10 07.51 79 12 18.25 170 21 50 McConvey 350 21 49 210.2 229.9 0.13 Hydrographic Signal 33 10 46.80 79 13 27.65 215 20 11 South Base, (2) 35 27 39 40 1011.0 1138.4 0.66 Ford's Chimney 33 10 46.80 79 13 27.65 215 20 11 South Base, (2) 35 27 39 40 1011.0 1138.4 0.66 Ford's Chimney 33 11 5.61 79 14 04.96 286 03 27 18 18 18 18 18 18 18 18 18 18 18 18 18	Legare's House, west chimney	32 51 28.82	79 42 01.75	322 46 27		142 46 48	1626.5	1778.7	1.01			
Rafe	Death, hydrographic signal	32 49 37.71	79 42 02.84	205 27 07	Neil	25 27 28	2355.8	2576.2	1.46			
Brown	Rafe	39 48 51.64	79 42 58.30	250 05 37	Bar	70 06 19	2140.1	2340.3	1.33			
Hydrographic Signal. 33 10 07.51 79 12 18.95 170 21 50 McConvey. 350 21 49 210.2 229.9 0.13 Hydrographic Signal. 33 11 59.67 79 11 56.03 81 46 30 177 39 41 South Base, (2). 357 39 40 1041.0 1138.4 0.66 Ford's Chimney. 33 10 46.80 79 13 27.65 215 20 11 South Base, (2). 35 21 00 46.83 883.1 8082 8 8839.1	Brown	33 13 37,39	79 13 25.96	310 44 53	South Base, (2)	130 45 41	3017.7	3300.1	1.87			
Ford's Chimney 33 10 46.80 79 13 27.65 215 20 11 85 34 24 255 51 34 8082 8 88.93.1 55.09 Lowndea's Mull 33 11 54.51 79 14 04.96 286 03 27 91 9 19 56 Cedar Leland, 1857 189 19 31 7454.5 8152.0 0.48 Barn 33 11 16.76 79 15 06.73 248 00 59 74 42 57 Lucas's Mill 254 41 01 599 8 623.8 623.8 623.8 Lucas's Mill 33 07 57.26 79 16 28.81 212 14 31 Levendes 324 01 09 5736.8 623.6	Bydrographic Signal	33 10 07.51	79 12 18.25	İ		1	1	}	0.13			
Ford's Chimney 33 10 46.80 79 13 27.65 215 20 11 85 34 24 255 51 34 8082 8 88.93.1 55.09 Lowndea's Mull 33 11 54.51 79 14 04.96 286 03 27 91 9 19 56 Cedar Leland, 1857 189 19 31 7454.5 8152.0 0.48 Barn 33 11 16.76 79 15 06.73 248 00 59 74 42 57 Lucas's Mill 254 41 01 599 8 623.8 623.8 623.8 Lucas's Mill 33 07 57.26 79 16 28.81 212 14 31 Levendes 324 01 09 5736.8 623.6	Hydrographic Signal	33 11 59.67	79 11 56,03		Lowndes	261 45 35 357 39 40			1.63			
Lowndes's Mill 33 11 54.51 79 14 04.96 286 03 27 9 19 56 Cedar Island, 1857 189 19 31 7454.5 8152.0 4.63 Barn 33 11 16.76 79 15 06.73 248 00 59 Cedar Island, 1857 254 41 01 8596.8 259.9 2769 9 1.57 Lucas's Mill 33 07 57.26 79 16 28.81 212 4 31 140 02 20 Rutledge 240 10 9 574.6 6273.6 6273.6 6273.6 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 11 00 90 12 00 90 90 90 90 90 90 90 90 90 90 90 90	Ford's Chimney	33 10 46.80	79 13 27.65	215 20 11	South Base, (2)	35 21 00	4028.3	4405.2	2.50			
Barn 33 11 16.76 79 15 06.73 248 00 59 74 42 57 Rutledge 254 41 01 5696.8 6229.8 3.54 Lucas's Mill 33 07 57.26 79 16 28.81 212 14 31 14 02 20 Rutledge 32 16 05 5736.8 6273.6 5291.6 5736.8 6273.6 5291.8 144 02 20 Rutledge 32 01 09 5736.8 6273.6 6273.6 5291.8 111 00 59 Rutledge 220 18 27 2405.1 2630.1 1.49 02 00 111 00 59 Rutledge 220 18 27 2405.1 2630.1 1.49 02 00 111 00 59 Rutledge 220 18 27 2405.1 3290.58 322 7773.2 8719.2 4.32 1.40 0.59 11 00 59 11 00 59 Rutledge 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 11 00 59 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 3226.5 3528.4 2.06 Rutledge 220 18 27 270 51 34 4068.4 4449.1 2.55 470 51 270 5	Lowndes's Mili	33 11 54.51	79 14 04.96	286 03 27		į	779.6	852.5	0.48			
Lucas's Mill. 33 07 57.26 79 16 28.81 212 14 31 144 02 20 Rutledge 324 01 09 57.36.8 6273.6 3.56 Ford. 33 08 55.25 79 13 51.56 40 19 00 11 00 059 Rutledge 220 18 27 2405.1 2630.1 14.98 Pole 33 10 26.40 79 16 34.34 30 33 82 Ford 123 39 54 8719.2 65719.2 30 38 4.32 Bulow's Mill, chimney 31 144.08 79 17 15.58 268 54 55 42 37 10 Rutledge 222 36 24 3185.9 3484.0 1.38 Fanny Meade, chimney of Rice 33 09 11.78 79 18 36.82 291 51 14 Cedar Island, 1857 111 53 17 6329.1 6877.6 Mill. 236 01 34 4008.4 449.1 2.55 Lower Mill 33 08 43.72 79 20 29.91 270 32 57 Rutledge 220 36 24 318.5 9 3484.0 1.38 Lower Mill 33 08 51.80 79 20 49.63 3 56 44 8lake 226 01 33 4 4008.4 449.1 2.68 Santee 33 06 39.63 79 17 05.49 70 27 14 825 57 21 Murphy 250 55 83 4157.9 4579.8 29.68 Horn 33 04 40.84 79 21 21.18 188 17 55 Blake 81 73 6 6137.9 6719.2 38.8 11 39 36 Cape Roman, old light 191 29 08 6785.5 7430.4 4.21	Barn	33 11 16,76	79 15 06.73	248 00 59	Lowndes	68 01 58	2532.9	2769 9	1.57			
Ford	Lucas's Mill	33 07 57,26	79 16 28.81	212 14 31	Lowndes	32 16 05	8387.2	9172.0	5.21			
Pole 33 10 26,40 79 16 34.34 303 38 25 90 52 42 Ford 123 39 54 5066.5 3528.4 3226.5 3528.4 3.15 82.6 3.15 82.6 3.15 82.6 3.15 82.6 3.26 5.5 3.28 6.5 3.28 7.6 88 56 55 8.5 3.28 7.6 3.28 7.7 3.28 7.7 8.28 7.7 8.28 7.7 1.11 53 17 8.2 6877.6 3.91 8.2 3.91 8.	Ford	33 08 55.25	79 13 51.56	40 19 00	Cedar Island, 1857	220 18 27	2405,1	2630,1	1,49			
Bulow's Mill, chimney	Pole	33 10 26,40	79 16 34.34	303 38 25	Ford	123 39 54	5066.5	5540.6	3.15			
Fanny Meade, chimney of Rice 33 09 11.78 79 18 36.82 291 51 14 56 02 45 8lake	Bulow's Mill, chimney	33 11 44.08	79 17 15.58	268 54 55	Lowndes	88 56 55	5685.9	5217.9	3.53			
Lower Mill 33 08 43.72 79 20 29.91 279 32 57 221 50 32 Rutledge 41 51 33 4311.7 4715.1 2.68 Upper Mill 33 08 51.80 79 20 49.63 3 56 44 81ake 183 56 42 1661.2 1816 6 1.03 Santee 34 08 39.63 79 17 05.49 70 27 14 Murphy 250 25 58 36 4187.9 4579.8 2.60 Horn 33 04 40.84 79 21 21.18 188 17 55 11 29 36 Uape Roman, old light 191 29 08 6785.5 7430.4 4.21	Fanny Meade, chimney of Rice	33 09 11,78	79 18 36.82		Cedar Island, 1857	111 53 17	6289.1	6877.6	3.91			
Upper Mill		33 08 43,72	79 20 29.91	279 32 57	Cedar Island, 1857	99 36 02	8891.8	9723.8	5.59			
Santee. 33 06 39.63 79 17 05.49 70 27 14 235 57 23 Murphy 256 25 58 36 55 36 4187.9 3850.4 4210.7 4579.8 2.60 2.60 Horn 33 04 40.84 79 21 21.18 188 17 55 11 29 36 Blake 8 17 36 6137.9 6712.2 3.61 3.61 Lope Roman, old light 191 29 08 6785.5 7430.4 4.21	Upper Mill	33 08 51,80	79 90 49 63	3 56 44	Blake	183 56 49	1661.2	1816 6	2.68 1.03			
Horn	Santee	33 06 39,63	79 17 05.49	70 27 14	Murphy	250 25 58	3850.4	4210,7	3,55 2,39			
11 29 30 Cape aoman, ota ignt . 191 29 08 6/85,5 /420.4 4.21	Horn	33 04 40.84	79 21 21.18	188 17 55	Blake	8 17 36	6137.9	6712.2	3.61			
189 50 31 Blake 9 51 17 12863 5 14067,1 7 99	Cape Roman, new light	33 01 06.58	79 22 11.88		Jeremy	317 05 68	8769.6	9582.5	4,21 5,44 7,99			

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section V.—Charleston Harbor to Winyah Bay. Sketch E, No. 16.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Ormond Hall, west chimney of house.	33 07 04.26	79 23 18.05	247 03 50 288 44 22	Blake	67 05 13 108 46 29	Metres. 4250,2 6368,4	Yards. 4647.9 6964.3	Miles. 2.64 3.96
Ormond Hall, west apex of barn.	33 07 05,04	79 23 18.83	247 27 57 288 53 0 4	Blake	67 29 20 108 55 11	4259,5 6395,3	4658.1 6993.7	2,65 3,97
Chimney near Rice Mill, with red roof, (Indian Hill.)	33 09 43,42	79 20 44.88	0 58 35 343 29 38	Blake	180 58 34 163 30 21	3247.8 7249,2	3551.7 7927.5	9, 99 4, 50
Raccoon Island	33 00 21.59	79 25 47.70	77 35 40 177 18 58	N. E. Bull	257 33 44 357 18 50	5696.1 7814.3	6229,1 8545'.5	3.54 4.85
Leaning Pole	33 00 38,67	79 27 28.04	59 23 07 131 56 55	N. E. Buil	239 22 05 311 55 01	3437.9 7263.7	3759.6 7943.3	2.14 4.51
Pole, with white flag	33 02 28,39	79 26 23.66	101 47 41 188 16 16	Live Oak	281 45 12 8 16 28	7924.9 3940.6	7900.9 4309.3	4,49 2,45
Old Mill	33 01 36.08	7 9 22 17,58	353 22 42 72 18 37	Cape Roman, old light N. E. Bull	173 22 44 252 14 46	964.3 11564.0	1054.5 12646.0	0.60 7.18
Moreland's Mill, chimney	33 09 53,40	79 19 54,06	354 09 48 12 31 00	Murphy	174 10 04 192 29 44	7295,8 16673.2	7978.5 18 233.3	4.53 1 0.3 6
South West Cape	33 00 44.01	79 20 38.46	104 25 16 190 47 08	Cape Roman, old light	284 24 23 10 47 47	2594.7 9839.4	2837.5 19760.1	1.61 6.11
North West Cape	33 03 18,15	79 21 19.77	18 42 37 211 04 50	Cape Roman, old light	198 42 08 31 05 52	4330.8 5742.0	4736.0 6279.3	2.69 3.57
White over Blue Flag in marsh	33 03 05,94	79 25 44,58	304 11 27 92 16 21	Cape Roman, old light Live Oak	124 13 22 272 13 31	6628 3 8092.6	7248.5 8849.8	4.12 5.03
Eddle	33 01 06.88	79 29 20.14	147 57 24 1 04 12	Live Oak	397 56 39 181 04 11	4701.8 2620.7	5141.7 2865.9	2,92 1,63
Manigault	33 00 25.49	79 34 43.70	277 24 51	Owendaw	97 24 55	208.4	227.9	0,13
Long Hammock	33 02 21,30	79 30 31 91	159 29 58 339 43 53	Live Oak	339 29 45 159 44 31	1807.1 5236.8	1976.2 572 6.8	1.12 3.25
Marsh	33 00 58,82	79 30 48.99	177 25 54 316 24 59	Live Oak	357 25 50 136 25 46	4237.5 3274.5	4634.0 3580.9	2.63 2.03
Bull's Island Light	32 55 18.34	79 33 43.65	171 50 48 219 54 50	Owendaw N. E. Bull	351 50 20 39 57 12	9531.0 10584.5	10422.8 11574.2	5.92 6.58
Oharlie	33 01 24,00	79 32 51.60	55 54 45 220 51 18	Owendaw Live Oak	235 53 48 40 52 21	3263.3 4572.1	3568.6 4999.9	2.03 2.84
Petrel Bank	32 59 12,06	79 32 38.15	19 35 24 - 196 13 20	Bird Island	199 34 57 306 12 16	3898.6 3782.9	4263.4 4136.9	2,42 2,35
West Chimney of house on main.	33 02 01.59	79 34 12.74	352 38 18 11 17 43	Bird Island Owendaw	172 38 42 191 17 31	8968.7 3046.0	9807.9 3331.0	5.57 1.89
Summer-house, east apex	39 55 19.81	79 33 38.00	170 55 58 184 03 51	Owendaw	350 55 27 4 03 56	9507.8 3490.0	10397.4 3816.6	5.91 2,17
Mink Point	39 57 50.88	79 37 59,89	928 19 19 979 95 97	Owendaw	48 14 03 99 27 55	7107.4 7144.8	7772.4 7813.3	4.42 4.44
Shell Signal	32 55 41.09	79 39 39,61	222 04 32 213 08 32	Owendaw	49 07 18 33 09 06	11770.4 2974.6	12871.8 3252.9	7.3i 1.85
Wagner, (I)	32 57 02,39	79 38 37,40	308 57 31 5 05 39	Middle Jamie	128 58 54 185 05 25	5127.6 7466.2	5697.4 8164.8	3,19 4,64
Alexander	32 58 03.93	79 36 04.44	64 30 03 207 58 57	Wagner, (1)	244 28 40 27 59 45	4401.4 4907.5	4813.9 5366.7	2.74 3.05
North Wind	32 53 41.26	79 39 40.52	144 00 27 194 49 25	Humphries	393 59 53 14 49 59	2794.4 6409.0	3955.8 7008.7	1,74 3,98
Fort Point	39 55 30.54	79 35 47,44	47 14 46 928 52 14	Middle	227 14 37 48 53 29	582.8 4791.2	637.3 5239.5	0.36 2.98
Post with Cross in water	39 55 58.71	79 35 20,54	231 52 56 41 43 43	Bird Island	51 53 57 921 43 19	3699.5 1692.3	4045.7 1850.6	2.30 1,05
Caswell	32 56 21.02	79 36 43.75	259 31 19 332 03 10	Bird Island	79 33 05 159 03 39	5316.6 2908.3	5814.1 9414.9	3.30 1.37
Peach Tree	32 54 59.43	79 37 28.02	255 33 18 34 03 13	Middle	75 34 04 214 02 22	9256.3 4404.3	2467.4 4816.4	1.40 9.74
Chimney without house	39 55 55.31	78 39 33,48	215 33 47 232 00 02	Wagner, (2)	35 34 18 102 01 56	2523.2 5566.0	2759.3 6086.8	1.57 3.46
Family Hydrographic Signal	39 55 47.39	79 34 43.25	108 21 18 110 50 07	Caswell	288 20 13 290 48 00	3297.9 6506.5	3606 5 7115,3	9 05 4,04

UNITED STATES COAST SURVEY .- GEOGRAPHICAL POSITIONS.

Section VI.—St. Mary's river. St. Mary's towards Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distanc .	Distance
Tiger Island Sase, south end	30 41 42.21	81 28 22.70	• • //		• 1 11	Metres.	Yards	Miles
Figer Island Base, north end	30 42 30.20	81 28 48.08	335 96 95	South Base	155 26 38	1624.7	1776.7	1.01
Cumberland	30 43 23.19	81 27 41.47	19 26 2 0 47 22 12	South Base	199 25 59 227 21 38	3297.2 2408.8	3605.7 2634.2	2.05 1.50
Point Peter	30 43 38.24	81 30 37.11	314 57 54 275 39 02	South Base	134 59 03 95 40 32	5054.8 4695.2	5527.8 5134.5	3.14 2.9
Fernandina, geodetic station	30 40 35.94	81 27 42.78	180 23 12 140 33 07	Cumberland Point Peter	0 23 13 320 31 38	5171.7 7298.5	5655.6 7981.4	3.91 4.53
fernandina, astronomical station.	30 40 17.57	81 27 42.78	179 59 57	Fernandina, geodetic station.	359 59 57	544 . l	595.0	0.31
Martin's Island	30 41 15.45	81 30 58,77	233 08 36 187 28 04	Cumberland Point Peter	53 10 17 7 28 15	6559.7 4434.3	7173.5 4849.2	4.08 2.76
McLure	30 40 55,94	81 26 53.69	95 16 45 164 20 27	Martin's Island Cumberland	275 14 40 344 20 02	6549 9 4708.9	7162.8 5149.5	4.07 2.9J
lose's Bluff	30 49 43.58	81 35 90.93	292 49 18 256 29 47	Martin's Island Point Peter	112 51 22 76 32 02	6991.5 7217.4	7645.7 7692.7	4.34 4.46
Sand Hill,(1)	20 42 18.14	81 27 01.50	152 02 20 97 28 14	Cumberland North Base	332 02 00 277 27 20	2267.8 2860.1	2480.0 3127.7	1.41 1.78
Sand Hill, (2)	30 42 11,34	81 27 29.61	171 53 09 105 33 20	Cumherland North Base	351 53 93 285 32 40	22 4.8 2167.2	2443 9 2370.0	1,39 1,35
Dufour	30 43 14.70	81 32 55.59	319 44 3 9 73 58 29	Martin's Island Rose's Bluff	139 45 39 253 57 25	4810.8 3469.3	5260.9 3793.9	2.99 2.16
Figer Island, pine	30 49 13.14	81 28 37.67	152 12 03 271 45 06	North Base	332 11 57 91 45 40	594.0 1811.7	649.6 1981.2	0.37 1.12
S. E. Point, Cumberland, white flag in tree.	30 43 06.30	81 27 57.59	336 15 28 50 23 55	Sand Hill, (2) North Base	156 15 42 230 23 29	1848.9 1743 5	2021.9 1906.6	1.15 1.08
Cumberland, black flag in tree	30 43 27.56	81 28 20,25	22 44 57 330 08 31	North Base	202 44 43 150 08 57	1914.9 2706.2	2094.1 2959.4	1.19 1.68
No. 5, (T. R.)	30 41 44.49	81 98 07.71	142 39 20 230 47 51	North Base	322 38 59 50 48 11	1770.8 1308.1	1936.5 1430.5	1.10
Figer Island, white flag in tree.	30 41 14.83	81 27 47.67	132 07 54 195 26 10	South Base	312 07 36 15 26 20	1257.2 1805.0	1374.8 1973.9	0.78 1.12
Pilot Lookout	30 41 24.28	81 27 07.04	105 20 21 157 29 C3	South Base	285 19 42 337 28 51	2087.9 1568.5	2283.3 1715-3	1.30 0.97
Vo. 2, (T. R.)	30 41 02,52	81 27 49.28	143 57 41 277 47 20	South Base	323 57 24 97 47 48	1511.6 1493.3	1653.0 1633.0	0.94 0.93
Tellow Bluff, white flag	30 40 36,13	81 27 40.07	150 51 38 243 42 08	South Base	330 51 16 63 42 32	2329.6 1376.9	2547.6 1505.7	1,45 0.85
Tellow Bluff, north gable end of hotel.	30 40 24,63	81 27 39.00	231 21 17 106 24 53	McLure Martin's Island	51 21 40 286 23 11	1544.0 5542.1	1688 5 6060 7	0 96 3.44
imelia Light house	30 40 22.94	81 26 27.04	102 37 23 160 22 08	Martin's Island Cumberland	282 35 04 340 21 30	7410.3 5893.1	8103.7 6444.5	4 60 3.66
io. 8, (A.).	30 41 28,90	81 26 04.17	52 24 55 16 41 44	McLure	232 24 30 196 41 32	1663.3 2120.3	1818.9 2318.7	1.03
Vo. 9, (A.)	30 40 34.67	81 25 55.10	112 47 41 171 47 01	McLure No. 8, (A.)	292 47 11 351 46 56	1691.4 1687.1	1849.7 1845.0	1.05
to. 1, Marsh island	30 44 58.78	81 29 02.01	323 56 32 45 34 37	Cumberland Point Peter	143 57 13 925 33 48	3640.1 3542.1	3980.7 3873.5	2.26 2.20
Black Flag, Marsh island	30 44 33.91	81 29 26.36	307 57 44 47 39 39	Cumberland	127 58 38 227 39 03	3538.9 2545.8	3870.0 2784.0	2.90 1.56
Black Flag in tree, ocean side,	30 40 29.71	81 95 57.20	118 15 27 174 11 42	McLure No. 8, (A.)	298 14 58 354 11 38	1706.9 1832.0	1866.6 2003.4	1.00
ungeness	30 44 54,03	81 28 09.57	345 01 39 59 15 28	Cumberland Point Peter	165 01 53 239 14 13	2894.5 4566.0	3165.3 4993.2	1.80 2.84
White and Black Flag, occan side, Cumberland sound.	39 45 31.76	81 29 18.69	30 49 35 351 42 44	Point Peter North Base	210 48 56 171 43 00	4076.4 5649.5	4451,3 6178.1	2.53 3.51
White Fing, mouth of St. Mary's river.	30 43 16.36	81 29 58.29	93 02 24 120 39 58	Martin's Island, Point Peter		4112 6 1200.4	4497.4 1312.7	9.55 0.74
Black Fing on Jolly river	30 49 31.38	81 30 03,86	32 00 18 156 45 00	Martin's Island Point Peter	211 59 50	2757.3 2240.6	3015.3	1.7

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section VI.—St. Mary's river. St. Mary's towards Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
White Flag in tree in hammock.	30 41 46.27	81 29 40.02	925 36 43 273 28 26	North Base	45 37 10 93 29 05	Meires. 1933-9 2061.3	Yards. 2114.8 2254.2	Miles. 1,20 1,28
Woodland's Island, dead tree	30 41 32.74	81 28 51.98	183 21 43 249 28 33	North Base	3 21 45 69 28 48	1772.5 832.0	1938.4 969.9	1,10° 0,52
Forks of Bell's River, white and black flag.	30 41 18,45	81 29 16.94	88 03 37 153 38 47	Martin's Island Point Peter	268 02 45 333 38 06	2711.7 4804.1	2965.4 5253.6	1.68 2.98
Mouth of Bell's River, red flag	30 40 19.41	81 28 15.60	111 40 51 175 45 32	Martin's Island South Base	291 39 28 355 45 28	4672.9 2556.5	5110,1 2795.7	2,90 1.59
Amelia River, red, white, and black flag.	30 39 53.30	81 29 00 35	128 45 20 196 37 39	Martin's Island South Base	308 44 20 16 37 58	4041.6 3500.2	4419.6 3827.7	2.51 2.17
Bell's River, black, white, and red flag.	30 40 28.33	el 30 20.40	144 52 23 234 00 05	Martin's Island South Base	324 52 03 54 01 05	1774.2 3871.2	1940,2 4233,4	1,10 2,41
Black and White Flag in Pal- metto.	30 41 06,03	81 30 29,60	110 06 15 251 39 04	Martin's Island South Base	290 06 00 71 40 08	843.9 3541.3	922.9 3872.7	0 52 2,20
Island in Jolly River, red and white flag.	30 42 07.95	81 30 58.72	0 03 28 123 28 17	Martin's Island Dufour	180 03 28 303 27 17	1616.6 3727.2	1767.9 4075.9	1.00 2.32
White Flag opposite North River.	30 43 20,19	81 31 44.46	342 26 25 84 54 15	Martin's Island Dufour	162 26 48 264 53 39	4028,5 1900,2	4405.4 2078.0	2.50 1.18
North River, 1st mill chimney	30 44 05.76	81 32 16.45	287 46 45 338 19 06	Point Peter	107 47 36 158 29 46	9775, 4 5636, 5	3035,1 6163,9	1,79 3,50
North River, 2d mill chimney	30 44 19.64	81 32 19.67	295 02 34 339 12 49	Point Peter	115 03 26 159 13 30	3011.5 6066 4	3293,3 6634,0	1,87 3,77
Third Mill, Hall & Temple's	30 44 30,74	81 32 05.09	304 37 45 343 38 38	Point Peter	124 38 30 163 39 12	2844.2 6266.7	3110.3 6853.1	1.77 3.89
St. Mary's Presbyterian Church Spire.	30 43 30.40	81 32 46.81	68 00 22 25 4 8 14	Rose's Bluff Dufour	247 59 14 205 48 10	3848, 1 537, 0	4208 2 587.2	2 39 0,33
Bum's Iron Chimney	30 43 13.01	81 32 44.86	257 07 04 322 02 51	Point Peter	77 08 09 149 03 45	3486,1 4590,5	3812.3 5020.0	2.17 2.85
Market-house Bell Tower Staff	30 43 12.42	81 32 49.06	257 13 48 320 49 19	Point Peter	77 14 55 140 50 15	3599.1 4645.8	3935.9 5080 5	2.24 2.89
Mill Chimney in St. Mary's	30 43 12.72	81 32 59,27	258 15 11 318 23 23	Point Peter	78 16 24 138 24 25	3862,6 4828,8	4224.0 5280.6	2,40 3,00
Jolly River, black and white flag.	30 41 55.70	81 32 13.64	301 52 36 155 21 30	Martin's Island Dufour	121 53 14 335 21 09	2346,3 2676,5	2565,8 2926.9	1,46 1,66
Martin's Island, dead tree	30 41 29.27	81 31 21.96	304 35 10 142 30 15	Martin's Island Dufour	124 35 22 322 29 27	749.3 4091.9	819.4 4474.8	0.47 2.54
North gable end of Boat-house	30 40 55.12	81 31 31.01	233 53 01 152 22 02	Martin's Island Dufour	53 53 17 332 21 19	1062.0 4851.6	1161.4 5305.6	0,66 3,01
Clark's Chimney	30 39 48.98	81 31 19 71	191 43 40 233 18 45	Martin's Island South Base	371 43 51 53 20 15	2741.6 5873.8	2998.1 6423.4	1.70 3.65
Cooper's Chimney	30 41 13.25	81 32 53.39	268 43 00 179 06 15	Martin's Island Dufour	88 43 58 359 06 14	3051.0 3740.2	3336.5 4090.2	1.89 2.32
Bell's River, white and red flag	30 42 21.75	81 33 24.72	297 42 18 205 25 04	Martin's Island Dufour	117°44 32 25 25 19	4387.4 1805.1	4797.9 1974.0	2.73 1,12
St. Mary's Point, black and red flag.	30 42 38.97	81 32 07.81	324 27 27 130 52 49	Martin's Island Dufour	144 28 02 310 52 25	3160,3 1681,3	3456.0 1838.6	1.96 1.04
St. Mary's River, black, white and red flag.	30 42 41.11	81 33 45.78	300 40 54 232 13 33	Martin's Island Dufour	120 42 19 52 13 59	5167.3 1688.6	5650.8 1846.6	3.21 1.05
Rose's Bluff, black and white flag.	30 42 08.18	81 34 41.95	985 16 34 234 95 49	Martin's Island Dufour	105 18 28 54 06 43	6156.8 3493,2	6732.9 3620.1	3.83 2.17
Ft. Mary's River, white and red flag.	30 43 28.22	81 34 45,68	304 05 20 278 05 06	Martin's Island Dufour	124 07 16 98 06 04	7291 .4 2958.2	7973.6 3235.0	4.53 1.84
St. Mary's River, whte flag	30 43 31.39	81 34 25.70	307 13 52 292 05 41	Martin's Island Dufour	127 15 38 102 06 27	6916.0 2451.7	7563.1 2661.1	4,30 1.52
Dead Tree, on Burwell's creek	30 44 36 17	81 34 34,69	11 23 C4 313 34 39	Rose's Bluff Dufour	191 22 51 133 35 30	3536,6 3638,9	3867,5 3979.4	2.20 2.26
Black and Red Flag, northeast point of Amelia island.	30 42 07.21	81 26 19.26	106 40 36 136 56 09	Sand Hill, (1) Cumberland	286 40 14 316 55 27	1173.0 3202.7	1982.8 3509.4	0.73 1.99
Red Fing, cast side of Cumber- land island.	30 44 25.98	81 27 34.14	5 46 04 73 12 08	Cumberland	185 45 27 253 10 35	1943.5 5064.1	2125.3 5559.8	1.91 3,16
Red Flag, on Cumberland sound	30 44 11.91	81 28 53,33	308 07 20 329 02 08	Cumberland	128 07 57	2430,0 4329,6	2657,4	1,51 2.6

Section VI.—St. Mary's river. St. Mary's, toward Cedar Keys. Sketch E, No. 20.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Bird Nest Tree	30 44 04.02	81 30 35.0t	6 56 48 321 07 06	Martin's Island South Base	186 56 36 141 08 14	Metres. 5229.0 56:8.5	Yards. 5718.3 6133.3	Miles 3,25 3,48
Red Flag, in hammock, on Tiger island.	30 43 02.09	81 29 29,02	94 03 23 121 34 29	Dufour Point Peter	274 01 38 301 33 54	5508.9 2125.7	6024,4 2324.6	3.45 1.35
Prevart's House, west chimney	30 42 05.00	81 34 18,02	286 02 30 136 68 53	Martin's Island Rose's Bluff	106 04 12 316 08 31	5517.2 1617.5	6033.4 1801.6	3.43 1.03
White Flag, in tree, above Rose's Bluff.	30 43 03.09	81 34 52.54	20 21 24 263 26 22	Rose's Bluff		640.8 3131.9	700.7 3424.9	0.40 1.95
St. Mary's, toward Cedar Keys.						1		
Cooper	30 41 34.97	81 34 15.92	279 56 36 236 52 56	Fernandina Geod. Stat'n. Point Peter		10623.0 6949.7	11617.0 7600.0	6.66 4.35
O'Niel	30 36 09.69	81 31 51.03	218 55 58 158 56 54	Fernandina Geod. Stat'n.		10514.3 10733.4	11498.1 11737.7	6.5
Braddock	30 37 03.48	81 38 28.54	218 47 44 278 51 52	CooperO'Niel	38 49 53 98 55 14	10728.9 10715.5	11732.8 11718.2	6.€ 6.68
Dunn's Creek	30 31 38.97	81 36 03.58	158 52 42 218 53 42	Braddock	338 51 29 38 55 50	10712.6 10713.0	11715.0 1.715.4	6.60 6.60
Bear Branch	30 32 29.23	81 42 17.31	215 48 11 278 48 13	Braddock		10414.6 10080.8	11389.1 11024.1	6.4 6.2
Cedar Creek	30 97 21.27	81 40 01.36	218 56 14 158 54 05	Dunn's Creek Bear Branch	38 58 15 338 52 56	10085.1 10065.5	11028.8 11007.3	6.9 6.2
King's Road	30 28 50.51	81 47 96.93	230 46 04 282 33 52	Bear Branch		10653,2 12177,1	11650,0 13316.5	
Pickett	30 22 23,37	81 44 41.81	218 54 41 159 43 40	Cedar Creek King's Road		11910.3 12708.7	13024.7 13897.8	
Brandy Branch	30 24 13,78	81 53 57.70	930 42 44 989 51 55	King's Road	50 46 02 102 56 36	13464.5 15223.0	14724.4 16647,4	
McGirt's Creek	30 17 14.48	81 50 03.42	922 03 55 154 69 42	Pickett	42 06 37 334 07 44	12815.7 14346.5	14014.9 15688.9	7.9 8.9
Big Creek	30 18 39,14	82 01 56.88	231 07 18 277 44 12	Brandy Branch	51 11 20	16428.2 19239.4	17965.4 21039.6	10.2 11.9
Padgett	30 11 05.31	81 56 27.23	922 02 47 147 47 10	McGirt's Creek	42 06 00	15313.2 16520.0	16746.1 16065.8	9.5 10.2

Section VI.—Cape Sable to Matacumba Key. Sketch No. 21.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Cape Sable Base, east end	• / // 25 08 27,92	81 00 36.48	a , ,,		a / //	Metres.	Yards.	Miles.
Cape Sable Base, west end	25 07 16.04	81 04 12,10	219 52 35	East Base	69 54 07	6431.5	7033,3	4,00
Oyster Key	25 06 09.45	80 57 14.09	126 56 12 99 56 57	East Base	306 54 46 979 53 59	7091.4 11887.7	7754.9 13000.0	4.41 7.39
Sandy Key	25 02 02.41	81 00 49,56	J81 46 08 149 32 58	East Base	1 46 14 329 31 32	11866.6 11194.9	12977.0 12242.4	7.37 6.96
Man-of-war Bush	95 01 59.68	80 54 48,73	152 43 55 91 43 02	Oyster KeySandy Key		8888.5 19118.8	9720.2 11065.6	5.52 6.29
Schooner Bank	24 58 09.86	80 58 34.89	152 11 14 225 45 20	Sandy Key	332 10 17 42 46 56	8090.1 9338.6	8847.1 10212.4	5.03 5.80
Rabbit Key.	94 58 46,94	80 49 36.81	107 47 09 193 16 48	Sandy Key	987 49 17 303 14 36	19803.7 10458.5	21656.7 11437.1	12.30 6.50
Horseneck Shoal, cast	94 53 17.48	80 51 44,18	128 00 12 199 26 51	Schooner Bank		14618.1 10727.5	15985.9 11731.3	9.08 6.67
Buchanan	94 55 91.53	80 46 50.08	145 57 08 68 48 31	Rabbit Key	325 55 58 248 46 27	8345.4 8848.5	9126 3 9676.5	5.18 5.50
Twin Keys	24 57 57.92	80 44 40.99	100 19 50 33 48 91	Rabbit Key	280 17 45 913 47 27	8426.3 6504.7		5.94 4.04

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section VI.—Cape Sable to Matacumba key—Florida reef, from Matacumba to Rodriguez. Sketch No. 21.

Societies 72. Super Su								
Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back Azimuth	Distance.	Distance.	Distance.
Lignum Vite	24 53 58.06	80 42 17.87	0 / // 151 22 23 104 21 24	Twin Keys Buchanan	331 21 21 284 19 29	Metres. 8383.4 7884.5	Yords. 9167.8 8622.3	Miles. 5.21 4.90
Matacumba	24 50 56.02	80 44 09.76	209 15 07 149 12 45	Lignum Vite Buchasan	29 15 54 329 11 38	6419.5 8793.1	7020.2 9615.9	3.99 5.46
Centre Key	24 55 47.63	80 49 46.97	182 58 01 106 29 41	Rabbit Key Schooner Bank	2 58 05 286 25 58	5502.6 15441.6	6017.5 16886.5	3.42 9.59
Iardella	24 55 59.74	80 48 40.33	162 49 03 300 05 45	Rabbit Key Buchanan	342 48 39 120 05 31	5362.1 3571.4	5863,8 3905.6	3.33 2.22
Barnes	24 56 22.80	80 47 26,22	237 52 40 337 59 40	Twin Keys	57 53 50 157 59 55	5464.4 2697.0	5975.7 2949.3	3.39 1.67
Palm Tree	25 09 36.67	81 07 54,90	319 31 22 279 44 59	Sandy Key East Base	139 34 23 99 48 05	18366.8 12458.6	20085.4 13624.4	11.41 7.74
Cape Sable	25 06 53.05	81 04 59 20	275 51 03 321 57 90	Oyster Key	95 54 21 141 58 46	13098.2 11353.3	14323.8 12415.6	8.14 7.05
Spoonbill	25 07 22,49	81 00 01.21	7 50 09 295 37 59	Sandy Key Oyster Key	187 49 48 115 39 10	9940.6 5192.8	10870.7 5678.7	6.18 3.23
Dorr	25 06 09.42	81 02 37.36	338 18 53 269 58 25	Sandy Key Oyster Key	158 19 39 90 00 43	8178.3 9056 2	8943.5 9903.6	5.08 5.63
Curlew	25 07 28.31	80 59 38.42	11 14 48 300 57 40	Sandy Key Oyster Key	191 14 18 120 58 41	10223,3 4715,4	11179,9 5156,6	6.35 2.93
Clive	25 04 37.76	80 55 52.16	340 43 17 60 11 11	Man-of-war Bush Sandy Key	160 42 44 240 09 05	5381.2 9607.6	5884.7 10506.6	3.34 5.97
Flamingo	25 01 49.19	80 57 08.02	93 45 41 178 47 00	Sandy Key Oyster Key	273 44 07 358 46 57	6923,2 8009,3	6805.5 8758.7	3.87 4.97
Blue Bank	24 59 48.78	80 57 01,14	224 13 58 122 42 59	Man-of-war Bush Sandy Key	44 14 54 302 41 92	5321.0 7609.8	5818.9 8321.8	3.31 4.73
Oxfoot	24 59 24.33	81 00 21.10	243 53 04 170 41 15	Man-of-war Bush Sandy Key	63 55 25 350 41 03	10376.4 4928.8	11347.3 5390.0	6.45 3.06
Jewfish	24 50 31.18	80 47 39,74	262 35 50 234 48 09	MatacumbaLignum Vitæ	89 37 18 54 50 95	5943.6 11049.0	6499.7 1:4082.8	3.69 6.86
Bowlegs Key	24 54 43.07	80 44 37.90	289 24 28 353 31 32	Lignum Vitæ	109 25 27 173 31 44	4166.6 7031.0	4556 5 7688.9	2.59 4.37
Paola	24 51 14.15	80 44 30,36	150 43 14 216 22 36	BuchananLignum Vitæ	330 42 15 36 23 32	8021.8 6264.7	8772.4 6850.9	4.98 3,89
Osceola Key	24 51 51.15	80 43 47.05	13d 45 00 212 37 46	Buchanan	318 43 43 32 38 23	7792 7 4637 2	8521.9 5071.1	4.84 2,88
Florida reef, from Matacumba to Rodriguez.								
Alligator reef	24 51 01.95	80 37 11.00	89 08 09 122 11 16	Matacumba Lignum Vitæ	269 95 12 302 09 07	11756.8 10177.6	12856.9 11129.9	7,30 6,32
Tea Table key	24 53 28.68	80 39 33.33	58 49 12 318 29 22	Matacumba	238 47 16 138 30 22	9069.7 6029.1	9918.3 6593.2	5.63 3.75
Plantation Point	24 57 19.80	80 34 00,70	52 42 08 24 39 55	Ten Table Key	232 39 48 204 38 37	11730.4 12792.3	12828.0 13989.3	7,29 7,95
Crocus Reef	24 54 32.81	80 31 43.02	143 03 41 81 31 96	Plantation Point Tea Table Key	393 09 43 261 28 08	6499.9 13349.9	7030.8 14591.4	3.99 8.29
Tavernier Key	24 59 43.81	80 30 20 79	13 32 66 54 18 26	Crocus Reef	193 31 31 234 16 52	9849.8 7592.6	10763.8 8303.0	6.19 4.79
Conch Reef	24 57 03.03	80 27 49.99	92 51 46 139 28 18	Plantation Point	279 49 10 319 27 16	10410.9 6509.7	11385.0 7118.8	6.47 4.04
Dove Key	25 02 47.27	60 28 32.26	28 18 49 353 35 39	Tavernier Key Conch Reef	908 18 00 173 35 50	6412.1 19659.2	7012.1 11656.6	3.98 6.62
Pickle's Resf	24 59 21.41	80 94 55.65	138 19 49 94 20 39	Dove Key	316 11 11	8776.8	9598.0 9999.1	5.45 5.68
Point Charles	25 04 30.43	80 26 38.93	35 11 08 343 02 17	Tavernier Key	274 18 91 915 09 34	9143.5	11798.9	6.70 6.18
Dry Rocks	25 09 34.19	80 22 12,64	115 37 09	Point Charles	163 03 01 295 35 16	9941.1 8977.6	9052.1	5.14 9.10
French Reef	25 02 05.56	80 21 05.67	69 03 53 95 52 44 115 31 49	Dove Key	949 00 32 975 49 35	14652.8	16023.9	7.89 6.43
Indian Key	24 52 34.41	80 40 39.19	231 49 13 227 53 96	Point Charles	295 29 21 51 52 01 47 53 54	10351.4 14914.4 9490.4	11399.0 15544.4 2723.4	8,83 1,55
					- 11 JU JU	#100.X '	2.20.	

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section VI.—Florida reef, from Matacumba to Rodriguez. Sketch No. 21.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance	Distance.
Rodriguez, east	25 02 50.74	80 23 41.73	181 26 25 46 52 26	Point Charles Tavernier Key	0 / // 1 26 26 226 50 54	Metres. 3068.7 8412.0	Vards 3355.8 9199.1	Miles. 1.91 5.23
Rodriguez, west	25 02 54,29	80 27 46.49	919 75 48 36 25 15	Point Charles Tavernier Key	32 35 17 216 24 10	2511.6 7282.8	3840.2 7964.2	2.18 4.52
Wreck Point	25 01 19,91	80 29 44.03	921 28 57 294 15 12	Point Charles Pickle's Reef	41 30 15 114 17 14	7826.9 8871.3	8559.3 9701.4	4.86 5.51
Libra	25 00 05,40	80 31 05,43	297 56 57 43 57 57	Tavernier Key Plantation Point	117 57 16 223 56 43	1417.3 7078.5	1549.9 7740.8	0.88 4.40
Virgo	24 59 28.52	80 32 07,52	961 03 31 355 39 19	Tavernier Key Crocus Reef	81 04 16 175 39 29	3029.6 9125.1	3313.1 9978.9	1.88 5.67
Taurus	24 58 56.79	80 32 35.66	249 03 14 349 40 09	Tavernier Key Crocus Reef	69 04 11 169 40 31	4049.1 8256.2	4428.0 9028.7	2.51 5.13
Leo,	24 58 13.14	80 33 10,47	239 36 01 340 05 11	Tavernier Key Crocus Reef	59 37 13 160 05 40	5514.7 7210.7	6030.7 7885.4	3 43 4.48
Walker Bank	24 56 44.78	e0 34 53.15	233 47 10 52 25 54	Plantation Point Tea Table Key	53 47 32 2.52 27 52	1893.7 9907.2	1994.3 10834.2	1.13 6.16
Old Wreck on Reef	24 52 14.67	80 36 55,65	117 15 05 95 32 14	Tea Table Key Indian Key	297 13 59 275 30 40	4976.8 6303.0	5442.5 6892.8	3.09 3.92
Graham	24 56 54.27	80 35 26,62	304 44 04 47 34 44	Crocus Reef	124 45 38 227 33 00	7636.8 9374.8	8351.4 10252.0	4.74 5 82
Bailey	24 56 31.63	80 36 10,92	295 55 07 45 15 10	Crocus Reef	115 57 00 225 13 45	8339.3 7994.1	9141.5 8742.1	5.19 4.97
Dana	24 55 41.23	80 37 19.06	2°2 49 35 359 46 49	Crocus Reef	102 51 54 179 46 49	9470.0 8592.9	19356.1 9396.9	5.86 5.34
Corwin	24 55 02.62	80 37 50.84	236 59 49 351 25 43	Plantation Point	57 01 26 171 26 00	7895 6 7520.0	8415.7 8223.6	4.78
Agassiz	24 54 32.03	80 38 25,69	342 00 51 44 13 53	Alligator Reef	162 01 22 224 13 25	6795.9 2719.1	7431.8 2973.5	4.25 1.69
Bowditch Point	24 53 48.38	80 39 30.10	40 24 23 8 21 14	Indian Key Tea Table Key	220 23 54 188 21 13	2990.1 611.9	3269.9 669.1	1.86
Petrel Point	94 53 51.91	80 39 39,44	346 03 13 35 29 17	Tea Table Key	166 03 16 215 19 52	714.4 2696.9	781.9 3168.0	0.44 1.80
Spring Point	24 52 48.65	80 41 31.14	249 36 29 266 49 47	Tea Table Key	69 37 19 106 50 09	3527.0 1523.8	3857.0 1656.4	2.19 0.99
Spell Key	24 55 03.39	80 40 16,39	337 26 52 7 55 09	Tea Table Key	157 27 51 187 54 54	3155.4 4628.1	3450.7 5061.1	1.96
Stave Point	24 51 40.62	80 42 54,82	239 31 51 277 00 35	Tea Table Key	59 33 16 97 03 90	6560 9 9724,8	7174.0 10634.7	4.08

Section VII.—Cedar Keys to Homosassa river. Sketch G, No. 23.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth	Distance.	Distance.	Distance.
Oyster Reef, south, 1856	29 07 94.19	82 59 37,43	92 00 28 150 35 07	Depot Key Oyster Reef B, (2)	271 58 57 230 34 30	Metres. 5073.3 4239.3	Yards. 5548.0 4636.0	Miles 3.15 2,63
Oyster Reef C	29 98 33,17	89, 59, 50, 55	67 32 54 350 31 38	Depot Key Oyster Reef, south, 1856.	247 31 29 170 31 44	5102.2 2155.6	5579.6 2357.3	3.17 1.34
Main Land, 1856	29 10 09.43	82 58 21. 85	91 59 16 38 58 31	Oyster Reef, south, 1856 Oyster Reef C		5484.0 3611.3	5997.1 4167.9	3.41 2.37
Main Land, east	29 09 56 00	82 55 27,76	55 17 43 95 02 06	Oyster Reef, south, 1856 Main Land, 1856	935 15 49 975 60 41	8206.9 4721.9	8977.0 5163.7	5.10 2.93
Waccasasa Reef	29 06 39.04	89, 55, 00, 36	139 57 37 173 02 35	Main Land, 1856 Main Land, east		8461.7 6108.5	9253.4 6680.1	5,96 3,79
Grassy Point	29 09 16.89	89 59 52,06	99 12 03 54 06 38	Main Land, east Waccasassa Reef	279 69 49 234 64 37	7546.4 8266.2	8252,5 9061.5	4.69 5.15
Water Signal 1	29 09 40.90	82 59 03,31	231 53 41 31 29 03	Main Land, 1856 Oyster Keef C	51 54 01 211 28 40	1423.5 2444.6	1556.7 2673.3	0,86 1.56
Water Signal 2.	29 99 39.93	82 58 02,64	54 50 00	Oyster Reef C		3567.5 1045.9	3901.3 1143.8	2.2

Section VII.—Cedar Keys to Homosassa river. Sketch G, No. 23.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Water Signal 3	9 09 36.55	82 57 10.52	117 42 29 257 49 26	Main Land, 1856 Main Land, east	297 41 54 77 50 16	Metres, 2177 3 2840,5	Yards. 2381.0 3106 3	Miles. 1.35 1.76
Water Signal 4	29 09 17.99	82 56 12.29	114 20 56 76 50 50	Main Land, 1856 Oyster Reef C	294 19 53 256 49 04	3842, 3 6057, 5	4901.8 6624.3	2.39 3.76
Water Signal 5	29 09 12.34	82 55 09,68	108 42 46 160 01 48	Main Land, 1856 Main Land, east	2*8 41 12 340 01 39	5482.0 1430.1	5995.0 1563.9	3.41 0.89
Water Signal 6	29 09 01.88	82 54 22.49	13 06 26 255 20 27	Waccasassa Reef Grassy Point	193 06 08 85 22 09	4515.0 5705.5	4937.5 6229.4	2.80 3.54
Water Signal 7	29 08 43,90	62 53 36.81	126 31 13 257 08 24	Main Land, east	306 30 19 77 09 44	3730,3 4566,5	4079.3 4993.8	2.32 2.84
Water Signal 8	29 08 39.64	82 59 41.47	248 47 46 117 37 36	Grassy Point	68 48 39 297 36 15	3171.3 5071.2	3468.0 5545.7	1.97 3.15
Water Signal 11	29 08 55.55	82 50 13.56	122 17 13 61 33 23	Grassy Point	302 16 54 241 31 03	1230.3 8818.0	1345.4 9643.1	0.76 5.48
End Mangrove Point	29 06 49.76	82 50 27.93	171 48 46 87 27 05	Grassy Point	351 48 34 267 24 53	4576.3 7379.4	5004.5 8062.2	2.84 4.58
West Hydrographic Tripod	29 01 11.76	82 55 50.24	187 37 16 151 49 30	Waccasassa Reef Oyster Reef, south, 1856.	7 37 40	10165.3 13005.6	11116.5 14222.5	6.32 8.08
Shelibank 1	29 05 39.02	82 54 24.12	167 44 17 152 03 21	Main Land, east	347 43 46 332 03 03	8^96.0 2091.4	8853.5 2287.1	5.03 1.30
Shellbank 2	29 06 18.33	82 54 02.70	161 04 11 223 08 11	Main Land, east Grassy Point	341 03 30 43 09 44	7084.3 7534.6	7747.2 8239.6	4,40 4,68
Shellbank 4	29.06.57.38	82 53 29,63	224 44 52 77 02 27	Grassy Point	44 46 09 957 01 43	6048.5 2517.3	6614.5 2752.8	3.76 1.56
Northeast Oyster Bar,	29 07 17.73	82 54 27.55	161 32 10 237 46 49	Main Land, east	341 31 41 57 48 34	5136.8	5617.4	3.19
Cormorant Rock	29 (6 14.71	82 51 27.92	189 48 02 136 26 18	Grassy Point	9 48 19 316 24 21	6883.0 5691.5	7527.0 6224.0	4.25 3.54 5.84
Basin Rock	29 02 44.74	82 48 56.74	147 41 54 126 17 06	Main Land, east Cormorant Rock Waccasassa Reef	327 40 41	9403.8 7648.1	10283.7 8363.7	4.75 7.58
liddle Marsh	29 04 46.77	82 48 45.20	121 37 01	Cormorant Rock	306 14 09 301 35 49	12195.2 5165.9	13336.3	3.2
urtle Creek	29 07 03.16	82 48 92.30	4 45 10 73 27 35	Basin Rock	184 45 05 253 26 05	3769.4 5234.9	4122.1 5724.7	2.3 3.2
Franc Island	29 01 18.35	82 46 36.55	8 23 29 125 02 54	Middle Marsh	188 23 18 305 01 46	4244.2 4632.4	4641.3 5065.9	2.6 2.8
Palmetto	29 03 24.44	82 46 59.75	151 32 04 68 53 42	Middle Marsh	331 31 01 248 52 45	7299.0 3392.5	7982.0 3709.9	4.5 2.1
and Shoal	28 59 30.84	82 48 08.48	350 48 56 167 39 48	Crane Island	170 49 07 347 39 95	3932.0 6110.5	4299.9 6682.3	2.4 3.8
Marsh Island	28 59 07.93	82 45 59.30	216 55 3J 101 24 46	Crane Island	36 56 15 281 23 43	4140,5 3566.8	4527.9 3900.5	2.57 2.29
Sand Shoal, (2)	28 59 30.86	82 48 08.16	165 54 33 167 34 53	Crane Island	345 54 15 34` 34 99	4139,6 6111.7	4526.9 6683.6	9.57 3.80
Haif-Moon Bar	28 57 00.24	82 46 15.36	216 50 00 146 33 38	Crane Island	36 50 44 396 39 43	4134.6 5556.1	4521.5	2.57 3.45
Little Island	28 57 0 7.65	82 43 59.24	186 18 31 138 43 47	Marsh Island	6 18 39 318 42 49	3954.7 4926.8	4324.7 5387 8	2.46 3.06
Crystal Reef	28 54 35.98	82 45 45.97	123 10 22 211 45 11	Sand Shoal	303 08 21	8059.4 5491.4	8813.5 6965.2	5.01 3.41
Shell Point	1	82 42 54.52	169 50 33	Half-Moon Bar	31 46 93 349 50 19	4511,7	4933.9	2.80 3.9
Bear Island	28 52 24.40		120 55 02 75 41 27	Half-Moon Bar	300 53 25 255 49 04	6338.5 4792.7	6931.6 5941.1	2.9
Bird Key		82 42 00.76	193 35 41 164 27 34	Crystal Reef	303 33 59 344 97 68	7323.5 5434.8	8008.8 5943.3	4.55 3.35
	28 48 53,12	82 46 06,06	189:57:02 225:36:42	Crystal Reef	369 57 12 45 38 40	10568.9 9301.0	11557.8 10171.3	6.5 5.7
Waccasassa Point		82 49 36.24	77 54 58 26 32 01	Grassy Point Cormorant Rock	257 54 21 206 31 07	2095.4 6758.7	2291.5 7391.1	1.3 4.9
nner Reef		82 50 59,66	18 52 10 179 11 97	Cormorant Rock	198 51 52 359 11 06	3114.0 2661.8	3465.4 2910.8	1,90 1,60
North Mangroves	29 07 69.66	82 50 30,10	171 22 58 42 44 30	Grassy Point	351 92 39 222 44 69	3961,4 2303,4	4332.1 2518.9	2.4 1.4

Section VII.—Cedar Keys to Homosassa river. Sketch G, No. 23.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance	Distance.	Distance.
Marsh Flag 1	9 08 53.60	。 / // 82 49 29,71	107 51 59 171 19 48	Grassy Point Waccasassa Point	267 51 19 351 19 45	Metres, 2338.0 1169.0	Fards. 2556.8 1278.4	Miles. 1.45 0.73
Marsh Flag 2	29 08 09.92	82 49 25.84	131 36 33 173 35 25	Grassy Point	311 29 51 353 35 20	3111.4 2516.3	3402.5 2751.8	1.93 1.56
Marsh Flag 3	29 07 02.27	82 49 02,13	69 37 51 144 21 59	Cormorant Rock	249 36 40 324 21 66	4204.5 5099.3	4597.9 5576.4	2.61 3.17
Marsh Flag 4	29 06 26 05	82 49 42.61	160 12 17 242 03 57	Grassy Point Turtle Creek	340 11 43 62 04 36	5569.7 2439.0	6112.7 2667.2	3.47 1.51
Shelibank 4, (2)	29 06 57,39	82 53 29.74	291 44 27 77 01 33	Cormorant Rock	111 45 26 257 00 49	3545,9 2514.2	3877.7 2749.5	2,20 1,56
North Trip^d	29 05 01,39	82 56 17.91	253 54 48 228 11 47	Cormorant Rock Grassy Point	73 57 09 48 14 25	8153.9 11805.4	8916.9 12910.0	5.07 7.33
Island Flag	29 03 26.38	82 49 14.66	270 55 56 339 17 16	Palmetto	1	3649.8 1370.5	3991.3 1498.7	2.27 0.85
High Palmetto	29 03 41.28	82 47 08.25	59 19 59 11 56 13	Basin Rock Sand Shoat	9239 19 06 191 55 44	3412.0 7880.1	373\.3 8617.4	2.12
East Tripod	29 00 37,89	82 51 33 67	227 22 56 261 10 28	Basin Rock		5768.5 8135.8	6398.3 8897.1	4,90 3,58
Withlacoochee, bar stake	28 59 48.56	82 48 21,96	287 35 46 325 53 52	Marsh Island	107 36 56	4135.0 6256.8	4521.9 6842.2	5.05 2.57
Lone Paimetto	28 59 01.16	82 46 19.55	249 10 29 358 15 13	Marsh Island	69 10 39 178 15 15	586.3 3724.1	641.2 4072.6	3,89 0,36
Glassel's Flag	28 59 41.66	82 46 33.39	178 21 06 62 37 15	Crane Island	1	2977.8	3256, 4	2,31 1.85
Glassel's Camp	28 59 41.66	82 46 33,92	145 34 17 82 35 12	Basin Rock	325 33 08	2586.5 6533.9	2626 5 7473.3	1.61 4.25
High Reef	28 55 33.00	82 45 15.74	25 00 39 278 27 59	Crystal Reef	202 34 26 205 00 24	2581.0 1937.0	2822,5 2118.2	1.60
Shell Island Tripod	28 55 36.56	83 42 38.55	113 42 14 69 50 25	Half-Moon Bar	98 29 07 293 40 29	3866.8 6411.4	42-28 6 7011.3	2 40
Marsh Point A, flag	28 56 03.26	82 43 06.38	58 08 41	Crystal Reef	249 48 51 238 07 24	5408.1 5089.3	5914.1 5565.5	3.36 3.16
Marsh Point B, flag	28 54 45.89	82 42 38.21	347 55 34 86 34 50	Shell Point	167 55 40 266 33 19	1535.3 5095.0	1679.0 5571.7	0.95 3.17
Marsh Point C, flag	28 54 03.57	89 42 21.39	153 21 01 100 13 19	Shell Point	280 11 40	985.1 5630 8	1077.3 6157.7	0.61 3.50
Mangrove Point	28 52 22.00	82 44 42.04	157 39 26 157 13 29	Shell Point	337 39 10 337 12 58	2360.6 4473.6	2581.5 4892.2	1.47 2.78
Oyster Bar 1	28 53 39,01	82 45 53 70	208 44 11 186 48 07	Shell Point	28 45 03	6056.3 1766.4	6623.0 1931.7	3.76
Oyster Bar 2	28 52 44,92	82 46 0 1.02	236 47 10 186 47 51	Shell Point	58 48 37 6 47 58	5674.1 3443.1	6205.0 3765.3	3.53 2.14
Green Point	28 50 59.41	82 44 50,74	997 38 31 167 21 05	Shell Point	47 40 01 317 20 38	6835.5 6832.8	7475,1 7472,1	4.25
Middle Mangrove	28 50 49.13	82 45 05 37	240 23 30 171 03 03	Bear Island	60 24 52	5297.4 7069.5	5793.1 7731.0	3,29
Mullet Key	28 52 55.51	82 42 26,99	239 36 30 119 51 31	Bear Island	59 37 59	5799.2	6341.8	4.39 3.60
	اق.س عدد دم	04, 124, 20, 39	323 25 03	Crystal Reef	299 49 55 143 25 16	6214.8 1192.5	6796.3 1304.1	3.86 0.7

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section VIII.—Chandeleur Sound. Sketch H, No. 26.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance	Distance.	Distance.
South Point	% / // 30 11 21.25	W.1 04 36.19	63 97 23 128 55 23	Bayou Pierre, 1852 Cat Island Light	243 03 22 308 53 31	Metres. 14354.4 7613.7	Yards 15697 5 8326.1	Miles 8,95 4,75
Door Point	30 03 13,54	1 07 24,84	135 47 37 196 43 11	Bayou Pierre, 1852 South Point	315 45 02 16 14 36	11889,7 15680,4	13002.2 17147.6	7.39 9.74
Sandfly	30 00 08.18	1 13 51.74	188 15 27 241 08 09	Bayou Pierre, 1852 Door Point	8 16 06 61 11 23	14376,3 11832,8	15721.5 12940.0	8.93 7.35
Barrel Key	29 54 16.59	1 06 33,76	132 12 63 175 16 06	Sandfly	312 38 24 355 15 40	i 5 971 .2 1 6 588 .9	17465.6 18141.1	9,9: 10:31
Nowhere	29 54 49.62	1 13 17.92	174 43 07 275 19 46	SandflyBarrel Key	354 42 50 95 23 08	9850.2 10888.3	10771.9 11907.1	6.19 6.76
Point Comfort	29 49 31.55	1 12 44.22	174 43 36 928 32 07	Nowhere	354 43 19 48 35 12	9834.7 13260.9	10754.9 14501.7	6,11 8.24
Old Harbor Key	29 46 58 63	1 01 06.17	104 08 46 146 54 47	Point Comfort	284 02 59 326 52 04	19325 9 16097.6	21134.2 17 60 3.9	12.01 10.00
Neptune Point, 1857	29 51 12.40	0 57 34.69	36 01 08 111 26 39	Old Harbor Key Barrel Key	215 59 22 291 22 11	9658.3 15536.0	10562.0 16989 7	6.00 9.65
Freemason Key	29 48 03 25	0 57 43,69	69 54 56 182 22 20	Old Harbor Key Neptune Point, 1857	249 53 15 2 29 24	5790.3 5828.6	6339.1 6374.0	3.60 3.62
Red Flag	29 46 41.69	0 59 33.12	101 47 43 229 28 30	Old Harbor Key Freemason Key	281 46 57 49 29 24	2553·3 3865.5	2792.2 4227.2	1.5 9 9.40
Crabtree	29 57 08.73	1 20 17.19	241 50 07 290 49 23	Sandfly	61 53 20 110 52 52	11716.7 12031.9	12813.0 13157.7	7.28 7.48
Elephant Point	29 58 54.89	1 11 26.87	21 31 37 219 08 26	Nowhere	201 30 42 39 10 27	8117.6 10269.9	8877.9 11930.8	5.04 6.38
Live Oak Bayou	29 56 06 57	1 13 13,41	2 54 46 172 08 22	Nowhere	182 54 44 352 07 58	2372.5 7509.5	2594.5 8212.2	1.47 4.67
Martin's Island.	29 56 53.01	1 08 16.57	126 21 03 185 44 32	Elephant Point	306 19 28 6 44 58	6333.7 11798.1	6926.3 12902.0	3.93 7.33
Failop's Green	30 00 20.73	1 10 15.87	226 43 17 66 10 33	Door Point	40 44 43 266 09 45	7021.7 5797.7	7678.7 6340.2	4.36 3.60
Bunrise	30 06 47.09	1 07 28,06	208 34 15 359 14 47	South Point	98 35 41 179 14 49	9613.1 6575.6	10519.6 7190.9	5.97 4.08
Table Point	30 04 24.83	1 10 02.08	223 15 41 297 31 10	Sunrise	43 16 59 117 32 29	6015.6 4748.9	6578 5 5193.2	3.74 2.95
trand Pass	30 05 39.78	1 11 50.06	303 21 10 163 28 53	Bayou Pierre, 1852	122 23 23 343 28 31	8109.7 4190.2	9196.6 4582.3	5.23 2.60
Forth Base	30 12 41.44	1 03 27.66	36 85 16 106 37 25	South Point	216 34 41 266 34 59	3075.0 8093.7	3362.7 8851.0	1.91 5.03

Section VIII.—Lake Borgne. Sketch H, No. 26.

		1		1	<u> </u>	ı		
Name of station.	Latitude.	Longitude.	Azimuth.	To station —	Back azimuth.	Distance.	Distance.	Distance.
Fisher	30 11 16 19	W.1 24 05,78	359 12 18 200 09 39	Grand Island, 1855 Point Clear	0 / // 179 12 19 20 10 38	Metres. 3996.4 9145.6	Yards. 4370,3 19001,4	Miles. 2.48 5.68
Heron	30 10 27,53	1 26 19.98	304 24 20 213 45 01	Grand Island, 1855 Point Clear	124 25 29 3J 47 08	4419.3 12129.3	4832.8 13264.2	2.75 7.54
Guil	30 07 29.32	1 26 37,25	184 48 51 233 57 12	Heron Grand Island. 1855	4 49 00 53 58 29	5506.5 5081.4	6091.7 5556.9	3,42 . 3,16
Shell Point, screw pile	30 04 27 46	1 39 44,64	200 01 18 269 30 68	Rigolet Light	20 09 20 89 35 54	9630.9 1847⊋,1	10532.1 20200.5	5.99 11.48
Cedar Bayou	30 08 09,88	1 44 19,51	258 18 13 312 55 29	Rigolet Light	78 21 33 132 57 47	19877.8 100 52 . i	11895.6 10992.7	6.76 6.24
Bayou Besson	30 19 43.66	1 45 90.37	297 55 03 352 36 33	Risolet Light	117 56 43 172 36 54	13292.1 6500.2	14535.8 9295.6	8.26 5.28
L'Herbe	30 09 24.93	1 49 49,42	284 38 39 231 37 17	Cedar Bayon Bayou Besson	104 41 95 51 39 49	9125.5 9860 2	9979.4 19782.8	5.67 6.13

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section VIII.—Lake Borgne. Sketch H, No. 26.

Name of station.	Latitude.	Longitude.	Back azimuth.	To station—	Back szimuth. Distance	Distance. Distance.
Brick Chimney	30 12 40.17	w.1 46 17.11	966 59 50 339 17 01	Bayou Besson Cedar Bayou	* / // Metres. 87 00 29 2055.1 159 18 00 8896.7	Yards, Miles. 2247.4 1.28 9729.2 5.53
Tall Pine	30 13 26.04	1 43 27.07	98 49 21 62 23 56	BonfoucaBayou Besson	278 45 58 10914.0 242 23 09 2815.4	11935.2 6.78 3072.8 1.75
Hospital Flag-staff	30 09 59,22	1 43 33.68	277 01 41 20 01 08	Rigolet Light Cedar Bayou	97 04 38 9497.2 200 00 45 3582.9	10385,8 5.90 3918,2 2.23
St. Joseph's Island Light	30 11 09,28	1 94 08.57	81 22 01 202 05 00	Rigolet Light	261 15 12 21997.9 22 05 02 230.5	24056.2 13.67 252.1 0.14
West Rigolet Light	30 10 34.33	1 43 12.05	284 13 52 22 05 37	Rigolet Light Cedar Bayou	104 16 38 9127.2 202 05 03 4799.7	9981.2 5.67 5248.8 2.98
L'Orange	30 08 22,15	1 52 03.26	271 42 41 33 27 12	Cedar Bayeu Little Woods	91 46 34 12416.0 213 26 23 4692.3	13577.8 7.71 5131.4 2.92
Wreck	30 11 40,il	1 54 30.48	359 17 41 298 56 54	Little WoodsL'Herbe	172 18 06 10101.5 118 59 15 8593.6	11046.7 6.28 9397.7 5.34
Weem's Cotton Gin	30 11 46,02	1 42 33.50	114 19 42 23 05 23	Bayou Besson Cedar Bayou	294 18 28 4310.1 203 04 30 7233.9	4713.4 2.68 7910.8 4.49
Fishing Hut, chimney	30 12 51.32	1 46 31.62	275 30 55 337 48 12	Bayou Besson	95 3I 41 2451.6 157 49 18 9358.5	2681.0 1.52 10234.2 5.81
Chef Monteur	30 06 00.77	1 47 29.41	149 12 37 231 57 32	L'Herba Cedar Bayou	329 11 27 7318.1 51 59 08 6453.1	8002,9 4.55 7056,9 4.01
Additional stations in section VIII.						
Deer Island, middle	30 21 36.28	0 47 39.05	204 10 39 116 16 39	Marsh Point	94 11 03 3056.1 296 14 06 8987.3	3342.1 1 90 9828.2 5.58
Astronomical station, public square, Mobile city.	30 41 36.97	W.0 01 10.12		******		

Section VIII.—Vicinity of New Orleans. Sketch H, No. 26.

Name of station.	Latitude.	Longitude.	≜zi math.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Labarre's Saw-mill	29 54 56.00	W.2 03 07.44	218 41 37 104 43 55	Marine Hospital Greenville	38 42 16 284 42 17	Metres. 3313.5 5465.9	Yards. 3623.5 5977,3	Miles. 9.06 3.40
Rooster, flag-staff	29 57 10.49	2 03 16.92	356 44 34 303 56 23	Labarre's Saw-mill Marine Hospital	176 44 38 123 57 06	4145 5 2780.7	4533.4 3040.9	2.58 1.73
Charity Hospital	99 5 7 95.17	2 03 17.43	356 39 49 310 37 21	Labarre's Saw-mill Marine Hospital	176 39 54 130 38 05	4500.5 3081.8	5031 .0 3376 .2	2.86 1.91
Astronomical Observatory, New Orleans.	29 57 95.94	2 03 02.39	86 36 35 37 49 47	Charity Hospital Rooster, flag-staff		403.9 604.9	441.7 661.5	0.25 0.38
United States Mint	29 57 46.40	2 02 04.65	71 98 39 351 42 42	Charity Hospital Marine Hospital		9057.8 9688.7	2250.3 2940.3	1.28 1.67
Church on Jackson Street, east tower.	99 55 53,03	2 03 05.11	9 92 25 947 33 56	Labarre's Saw-mill Marine Hospital	182 02 94 67 33 33	1757.2 2173.7	1921.6 9377.1	1.09 1.35
Odd Feliow's Hail	99 56 57.54	9. 00. 46.89	8 24 29 307 16 47	Labarre's Saw-mill Marine Hospital		3782.7 1908.4	4136.6 9087.0	9.35 1.18
St. Patrick's Church, southeast turret.	99 56 59,95	2 02 48.63	7 58 34 302 55 41	Labarre's Saw-mill Marine Hospital		3636.1 1866.9	3976.3 9041.6	2.96 1.16
Lafayette Square Church Spire	29 56 56.85	9 09 51.91	67 50 16 304 44 30	Greenville	947 48 30 124 45 00	6178.1 1991.0	6758.9 9177.3	3.84 1.94

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section IX.—Lavaca bay, Carankaway bay, and Espiritu Santo bay. Sketch H, No. 28.

Name of station.	Latitude.	Longitude.	Azimuth.	To station	Back azimuth.	Distance.	Distance.	Distance.
Sand Point	28 35 04.85	w.8 26 09.40	242 36 32 8 43 24	Well PointLa Salic	62 40 11 188 42 59	Metres. 13993.7 9431.6	Vards. 15303.1 10314.1	Miles. 2.69 5.86
Indianola	26 32 27.96	8 30 09.38	933 27 48 311 93 56	Sand PointLa Salle	53 29 42 131 25 25	8115.3 6792.5	8874.7 7428.1	5.04 4.92
Gallinipper	28 35 02.54	8 33 13.63	269 37 07 313 31 42	Sand PointIndianola	89 40 30 133 33 10	11527.0 6907.7	12605.6 7554.0	7.16 4.29
Sheldon's House	28 38 45.51	8 32 49.49	5 27 38 339 28 07	Gallinipper	185 27 26 159 29 24	6894.9 12409.8	7540.0 13571.0	4,25 7,71
Lavaca	28 37 36,52	8 36 28,64	950 16 03 311 45 11	Sheldon's House Gallinipper	70 17 48 131 46 44	6329.2 7102.1	6913,8 7766,6	3,93 4,41
Noble's House	28 38 41,68	8 36 04,08	325 31 37 18 19 93	Gallinipper	145 32 58 198 18 51	8181.6 2122.7	8947.2 2321.3	5.08 1.32
Garcitas	28 42 51.09	8 37 18,22	335 15 34 316 00 11	Gallinipper	155 17 31 136 02 90	15879.0 10505.5	17364.8 11488.5	9.86 6.53
House	28 36 06.94	8 35 58.19	163 15 15 293 54 07	Lavaca	343 15 00 113 55 26	2870.0 4890.5	3138,5 5348,1	1.78 3,04
Brant's Barn	28 35 15,27	6 27 52,10	276 33 11 35 55 35	Sand Point	96 34 00 215 54 29	2808.9 6359.6	3071.7 6954.7	1.75 3.95
Prelkeld House	28 37 16.88	8 25 47.70	258 39 47 8 15 08	Well Point	78 43 16 188 14 58	12071 2 4107,6	13200.7 4491.3	7.50 2.55
Carankaway	28 39 50.75	8 23 44.18	285 35 25 24 08 59	Well Point	105 37 55 204 07 50	8905,9 9644,3	9629,1 10546,7	5.47 5.99
Dunbar House	28 26 23,70	8 18 18.50	115 17 59 221 03 21	La Salle	295 13 42 41 03 58	15745.3 3231.8	17218.6 3534.2	9.78 2.01
Pass Cavallo Light	28 20 49.21	8 23 05.37	159 17 16 217 55 46	La Salle	339 15 93 37 58 39	18193.6 16148.2	19896.0 17659.2	11. 30 - 10.03
Espiritu Santo	28 22 58.87	8 30 16.17	902 03 53 288 45 52	La Salle Pass Cavallo Light	22 05 28 108 49 17	14055,9 12390,0	15370.3 13549.3	8.73 7,70
Rahal	28 16 41,23	8 31 41.50	191 18 00 241 28 04	Espiritu Santo	11 18 40 61 32 09	11854.6 15998.1	12963.8 17495.0	7.36 9.94
Steamboat Pass	28 18 48.85	8 36 14.21	231 41 24 297 50 56	Espiritu Santo	51 44 14 117 53 05	12421,4 8404,5	13583.7 9190.9	7.79 5.99
Mott	28 22 51.54	8 34 23.50	268 03 42 338 49 45	Espiritu Santo	68 05 40 158 51 02	6736.6 19299.8	7366.9 13366.5	4,18 7,59
Cant Island	28 21 41.25	8 33 07.19	275 32 39 242 48 47	Pass Cavallo Light Espiritu Santo	95 37 25 62 50 08	16463.5 5231.6	18004.0 5721.1	10.23 3.25
Rahal's House	28 18 16.63	8 29 03.80	167 13 24 244 17 09	Espiritu Santo Pass Cavallo Light	347 12 50 64 19 59	8908.6 10833.5	9742 2 11847.2	5.54 6.73
Wilkinson's House,	28 20 04,70	8 9 5 43 .94	125 53 48 252 23 16	Espiritu Santo Pass Cavallo Light	305 51 39 72 24 31	9148,2 4530,6	10004,9 4954,5	5.68 2.81
Saluria Light	28 24 06.95	8 23 25.56	354 50 17 79 24 28	Paes Cavallo Light Espíritu Santo	174 50 27 259 21 13	5111.8 11371.6	6683,7 12435,6	3.60 7.06
Saluria	98 93 55.50	8 93 09.66	235 06 44 150 45 11	OsgoodLa Salle	55 09 40 330 43 20	12243.2 12931.6	13388.8 14141.6	7.61 8.04
Decrose House	28 24 20.17	8 21 28,09	139 13 03 229 23 34	La Salle	319 10 24 49 25 41	13900.7 9589.3	15901,4 19496,6	8,64 5,96
Alligator, Mott	28 28 08.24	8 25 02,30	273 22 43 137 05 44	Osgood	93 25 33 317 04 47	13199.8 4781.3	14358,3 5928,7	8.16 9.97
Alligator Signal	28 27 13.02	8 23 23,03	162 49 47	Sand Point	342 41 28	15919.1	18635.5 8647.3	9,45 4,91
Wolf Point	28 42 20.58	8 23 40.96	131 68 51 1 05 11 309 44 25	Carankaway	311 07 07 181 05 09 129 46 53	7907.4 4512.9 10915.9	5044.5 11937,3	9,87 6,78

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section X.—Napa creek. Sketch I, No. 31.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Vallejo Hill	38 06 58.44	192 14 53.31	4 47 00 332 28 58	Mare Island, northwest.	0 / " 164 46 54 152 29 40	Metres. 3065.8 3577.4	Yards. 3352.7 3912.1	Miles 1.90 2.25
Slaughter-house Point	38 09 14.96	192 16 05.91	337 12 31 348 13 56	Vallejo Hill	157 13 16 168 14 34	4564.9 7419.8	4992.0 8114.1	2.84 4.61
Napa Branch	38 11 09.00	122 18 33.07	0 42 31 314 27 20	Long Pond	160 42 29 134 28 51	6500.9 5019.0	7109.2 5488.6	4 .04 3.19
Navy Yard Slough	38 09 24.31	122 18 12.22	275 20 57 171 03 57	Slaughter house Point., Napa Branch		3088 5 3266.9	3377.5 3572.6	1.95 2.03
Green Hill	38 12 04.26	122 16 20.45	356 07 14 62 10 31	Slaughter-house Point . Napa Branch	176 07 23 242 09 09	5231.8 3649.1	5721.3 3990.5	3.25 2.27
Good Luck Point	38 10 59 48	192 17 11.57	98 24 57 211 54 44	Napa Branch	278 24 07 31 55 16	2004.8 2353.0	2192.4 2573.2	1.24
Fly's Hill	38 13 09.61	122 19 03,72	348 39 34 296 52 57	Napa Branch	168 39 53 116 54 38	3792.5 4453.3	4147.4 4870.0	2.36 2.77
Suscol Hill	38 14 33.85	192 15 32,70	63 10 26 14 08 21	Fly's Hill	243 08 16 194 07 51	5751.5 4755.8	6289.7 5200.8	3.5 2.9
Home Hill	38 14 23.60	122 16 47.50	351 17 21 55 27 29	Green Hill	171 17 38 235 26 05	4345.9 4022.0	4752.5 4398.3	2.70 2.50
Green Island	38 12 45,95	122 17 28,55	27 42 32 307 47 34	Napa Branch Green Hill	207 41 52 127 48 16	3376.1 2096.7	3692.0 2292.9	2.10 1.30
Fly's House, chimney	38 13 46.26	122 18 01.46	321 59 21 247 54 24	Green Hill	142 00 23 67 55 56	3990,4 3903.7	4363.8 4269.0	2.46 2.46
Stony Hili	36 15 57.71	122 17 09.33	28 13 49 349 37 55	Fly's Hill	208 12 38 169 38 09	5881.6 2949.6	6431.9 3225.6	3.69 1.89
Ferry House Chimney	36 14 35.08	122 16 03.33	59 01 21 157 48 10	Fly's Hill	238 59 29 327 47 29	5117.3 3010.8	5596.1 3292.5	3.1
Napa Hill	38 18 03.85	122 14 54.77	40 04 25 8 06 28	Stony Hill	220 03 02 188 06 04	5080,2 6540,2	5555.6 7152.2	3.10 4.0
Napa Creek	38 15 36.57	122 16 09.86	22 08 19 114 16 35	Home Hitt	202 07 56 294 15 58	2428.6 1586.0	2655.8 1734,4	1.5
Court-house Spire	38 17 50,08	192 16 07.16	256 25 21 8 45 39	Napa Hill	76 26 06 188 45 14	1809.2 6441.3	1978.5 7044.0	1.15
Green's House, chimney	38 17 24.72	199 17 49.74	343 09 40 329 01 29	Stony Hill	163 10 01 149 02 50	2802.6 5143.8	3064.8 6718.7	1.74

Section X.—Petaluma creek. Sketch I, No. 32.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Point Penole	38 00 40,68	122 20 59.60	• , "		a ; ;;	Metres.	Yards.	Miles
Petaluma Creek	38 06 10.55	122 28 23.88	313 09 40	Point Penole	133 14 14	14856.2	16246.3	9.23
Tolay Creek	38 07 57.17	122 23 50.68	342 46 14 63 44 02	Point Penole Petaluma Creek	162 47 59 243 41 13	14087.9 7421.7	15406.1 8116.1	8.75 4.61
Swift	38 98 99,34	129 97 52.34	10 10 50 279 32 41	Petaluma Creek Tolay Creek	190 10 31 99 35 10	4347.9 5967.3	4754.0 6525.6	9.70 3.7
Novata	38 08 19.44	129 31 23.22	266 34 51 312 16 45	Swift Petaluma Oreek	86 37 01 132 18 36	5143.7 5904.8	5625.0 6457.3	3.99 3.67
Sears	38 19 16.90	122 30 27.25	20 37 28 311 18 51	Novata		3869.1 50.1.6	4931.1 5491.5	2.40 3.19
San Antonio	38 09 59,90	199 33 07.90	259 16 25 318 29 57	Sears		3979.7 3846.8	4352.1 4206.7	2.47 2.39
Lakeville	38 19 11,75	199 31 58,10	91 38 58 328 00 55	San Antonia	201 38 15 148 01 51	4605.5 4174.5	5036.4 4565.1	2.86 2.59
Haydon	38 12 23.15	199 34 37.84	975 69 15 334 49 19	Lakeville		3901.8 5123.1	4266.9 5602.5	2,49 3,18
Bodweil	38 13 52.32	122 33 25.98	39 97 08 395 94 49	MaydonLakeville	212 26 24	8257.7 3766.0	3562.5 4118.4	2.05 2.34

Section X.—Pctaluma creek. Sketch No. 32.

Name of station.	Latitude.	Longitude.	∆ zimuth.	To station—	Back szimuth.	Distance.	Distance.	Distance.
Italian	38 13 33.95	122 35 50.58	960 50 07 320 57 50	Bodwell Haydon	0 51 36 140 58 35	Metres 3561.9 2809.7	Yards. 3895.2 3072.6	Miles. 2.21 1.75
Fiat	38 14 52,85	192 35 23.58	15 06 16 346 26 33	Italian Haydon	195 05 59 166 27 01	2519.6 4747.4	2755.4 5191.6	1.56 2.95
Petaluma, Baptist Church spire	38 14 10.14	122 37 33,80	247 24 25 293 57 30	Flat	67 25 46 113 58 34	3429.0 2746.9	3749.8 3003.9	2.13 1.71

Section X.—Tomales Bay. Sketch J, No. 31.

***************************************	1	1		1	T .			
Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Table Mountain	37 55 24.48	122 34 46.68	e , ,,		• / //	Metres.	Yards.	Miles
Rocky Mound	37 52 54,26	122 13 31.82	98 34 04	Table Mountain	278 21 00	31483.9	34429.8	19,56
Sonoma Mountain	38 19 21,69	122 33 29.36	2 26 25 329 05 51	Table Mountain Rocky Mound		44348.4 56975.4	48498.1 62306.6	27.55 35.40
Tomales Bay	38 10 52,52	122 55 48.38	312 49 17 244 08 27	Table Mountain Senoma Mountain	133 02 14 64 22 16	42006.9 36140.4	45937.5 39522.0	26.10 22.4
Ross Mountain	38 30 17.68	123 06 10.99	292 51 29 337 07 24	Sonoma Mountain Tomales Bay	113 11 48 157 13 50	51763.5 38974.2	56541.4 42621.0	32.13 24.95
Sulphur Peak	38 45 51,41	122 49 41.87	334 15 16 7 50 53	Sonoma Mountain Tomales Bay		54377.4 65318.7	59465.5 71430.5	33.79 40.58
Punta Reyes	38 04 45,36	122 51 02.40	223 23 16 148 25 24	Sonoma Mountain Tomales Bay	43 34 07 328 22 27	37232.1 15290.2	40715.9 14533.6	23.13 8.26
Bodega	38 18 20.78	122 59 05.42	286 59 12 340 51 48	Sonoma Mountain Tomales Bay	87 15 05 160 53 50	37358.8 14626.8	40854.4 15995.4	23.21 9 09
Smith	38 14 48.60	122 55 10.52	138 54 31 7 12 55	Bodega Tomales Bay	318 52 05 187 12 32	8682.5 7336.3	9494.9 6022.8	5.39 4.56
Tomales Point	38 12 42.81	199 57 16.11	218 12 41 327 52 24	Smith Tomales Bay	38 13 59 147 53 18	4936.8 4014.5	5398.7 4390.1	3.07 2.49
Bodega Head	38 18 26.34	123 02 47.11	301 07 59 322 44 54	Smith Tomales Point	121 12 42 142 48 19	12969.1 13301.0	14182.6 14545 6	8.06 8.96
Preston	38 12 12.05	123 54 22.16	40 33 29 102 38 43	Tomales Bay	220 32 36 282 36 55	3226.9 4336.5	3598.8 4749.3	2.00 2.69
Mershon	38 10 52,36	122 53 07.64	90 05 08 143 34 45	Tomales Bay Preston	970 03 29 323 33 59	3911.6 3053.4	4977.6 3339.1	9.43 1.90
Foster , ,	38 08 10.46	122 53 24.90	184 48 30 145 03 25	Mershon Tomales Bay	4 48 41 325 01 56	5009.2 6096.1	5477.9 6666.5	3.19 3.79
Reynolds	38 08 56,11	122 52 14.48	50 37 41 160 09 10	Foster Mershon	230 36 57 340 08 37	2218.2 3810.7	2425.8 4167.3	1.38 2.37
Hans	38 07 55.54	122 51 03.67	97 37 51 137 17 33	Foster Reynolds	977 36 94 317 16 49	3469.5 2541.4	3794.1 9779.2	2.16 1.58
Mike	38 07 27,65	192 51 55.75	170 30 42 935 51 33	Reynolds	350 30 30 55 51 55	2765.0 1532.3	3023.7 1675.7	1.72 0.95
Frink	38 66 57.97	122 50 02.81	140 08 13 108 24 20	Hans Mike	390 07 35 288 23 10	2312.3 2898.9	2528.7 3170.1	1.43 1.60
Agnew , ,	38 06 38,04	122 50 55.31	244 19 47 175 07 37	Friek	64 20 19 355 07 32	1418.7 9397.9	1551.4 2622.3	0.88 1.49
Young,	38 06 01.44	122 50 15.73	139 29 33 190 14 04	Agnew	319 99 09 10 14 19	1484.9 1771,1	1623.1 1936.8	0.92 1,10
Sigvart	38 06 05.02	122 49 05.33	139 23 08 86 19 23	Frink Young	319 99 33 966 18 40	2150.7 1718.7	2351.9 1679.5	1.34 1.07
Willow Point	38 05 24.14	122 49 30.77	135 93 59 906 11 02	Young	316 93 31 26 11 18	1588.3 1404.7	1736.9 1536.1	0.99 0.87
lammond	38 04 49 07	192 47 36.58	114 59 52 139 47 24	Willow Point	294 58 42 319 46 29	3069.9 3349.1	3357.1 3662.5	1.91 2.08
Jreek	38 04 22,64	192 48 33,14	143 98 44 946 30 15	Willow Point	323 28 08 66 30 50	2359.4 1503.0	2580.2 1643.6	1.46

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section X.—Tomales Bay. Sketch J, No. 31.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Back azimuth.	Distance.	Distance.	Distance.
Grasier	38 03 43.00	122 47 41.94	134 23 54 184 06 14	Creek	314 23 22 4 06 17	Metτes. 1746.5 1825.7	Yards. 1909.9 1996.5	Miles. 1.08 1.13
Tom's Point	38 13 07.55	122 56 09.81	352 51 36 64 41 29	Tomales Bay	172 51 49 244 40 48	4195 6 1784.1	4588.2 1951.0	2.61 1.11
Hog Island	38 11 48.98	122 55 06.67	936 41 30 301 03 55	Preston	56 41 57 121 05 09	1995.6 3381.4	1416.8 3697.8	0,80 2,14
Preston's House, stove-pipe	38 12 43.3 2	123 54 57.75	19 50 08 89 44 24	Tomales Bay	199 49 37 269 42 58	3631.4 3365.7	3971.2 3650.6	2,26 2,09
Lone House, south gable	38 12 25.18	122 54 28.87	34 06 52 97 37 30	Tomales Bay	214 06 03 277 35 47	3149.9 4104.4	3772.7 4488.4	2.14 2.55
Blake's House, southeast gable	38 11 36.27	192 54 04.91	61 59 23 113 44 11	Tomales Bay	241 58 19 293 42 12	2871.3 5099.2	3140.0 5576.3	1.78 3.17
Punta Reyes Beach	38 07 27.63	122 56 16.63	186 12 44 252 27 48	Tomales Bay	6 13 01 72 29 34	6354.1 4365.6	6948.6 4796.0	3.95 2.72
Magnetic Station	38 11 10.99	122 55 39.94	278 47 38 19 49 43	Mershon Tomales Bay	98 49 12 199 49 38	3750.4 605.2	4101.3 661.8	2,33 0.38
Sugar-loaf Hill	38 14 27.10	122 56 32.84	350 42 46 18 07 46	Tomales Bay Tomales Point	170 43 13 198 07 19	6703.4 3383.0	7330.6 3699.5	4 16 2,10
Teton	38 15 10.69	122 56 35.63	12 21 45 288 19 15	Tomales Point	192 21 20 108 20 07	4668.0 2164.7	5104.8 2367.2	2.90 1.34
Richard's	38 04 00.09	122 57 00.53	187 51 43 214 13 10	Tomales Bay Foster	7 52 27 34 15 23	12835.9 9336.7	14037.0 10210.3	7.98 5.80

Section XI.—Gulf of Georgia. Sketch K, No. 34

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Matia, north	* ' '' 48 44 41.94	W.0 07 57.12	940 41 11 267 15 21	South BaseLummi, north	60 46 14 87 20 08	Metres. 9426.0 7814.5	Yards. 10308.0 8545.7	Miles 5.86 4.85
Point Whitehorn, (1)	48 53 07.29	0 05 51.09	161 07 47 332 51 58	Lummi, north	161 07 47 152 55 26	16131.3 12381.6	17640.7 13540.2	10.09 7.69
Trident	48 47 08.79	0 15 11.13	284 01 28 269 44 25	Lummi, north	104 11 42 89 54 55	17182.7 17077 4	18790,5 18675,3	10.68 10.61
East Roberts	48 58 24,09	0 20 15.69	298 59 16 343 24 09	Point Whitehorn, (1)	119 10 08 163 27 59	20133.8 21761.4	22017.7 23797.6	12.5 13.5
Disappointment	48 51 20,10	0 33 25.73	230 45 48 289 03 27	East Roberts	50 55 43 109 17 11	20740.8 23636.2	22681.5 25847.8	12.89 14 69
West Roberts	48 58 15,12	0 23 39.63	293 30 12 43 00 31	Point Whitehorn, (1) Disappointment	113 43 38 222 53 09	23734.5 17513.0	25955.3 19151.7	14 7: 10.8
Birch Point	48 56 27.85	0 07 58.90	103 32 58 99 55 22	East Roberts	283 23 42 279 43 32	15411.7 19420.0	16853.8 21237.1	9.5 12.0
Point Whiteborn, (2)	48 53 37.89	0 06 16.04	42 17 14 117 26 34	Trident	292 10 31 297 16 01	16231.3 19438.3	17750.1 21257.1	10.0 12.0
Mount Constitution	48 40 37,93	0 08 31.36	227 04 15 216 16 20	Lummi, north	47 09 28 36 21 48	11615.9 15073.5	12702.8 16483.9	7.2 9 3
Barton	48 55 52.56	0 06 12.25	34 13 34 1 03 56	Trident	214 06 48 181 03 53	39554.9 4160.7	21383,9 4550,0	19.15 2.56
Trail	48 54 17.46	0 04 44.29	56 49 30 148 39 02	Point Whitehorn, (2)	236 48 91 398 37 56	2232.6 3440.6	2441.5 3762.5	1.3
Satellite	49 01 26.79	0 10 04.49	344 31 38 65 38 25	Birch Point East Roberts	164 33 13 945 30 43	9577.9 13642.8	10474.1 14919.4	5.95 8.46
Sea Bird	48 57 18,80	0 07 43.19	97 35 09 159 27 21	East Roberts	977 95 49	15436 4 8178.7	16880,8 8944.0	9,50 5,00
Semi-ah-moo	49 40 47,52	0 05 35.08	22 00 37 102 30 11	Sea Bird	201 59 00	6953.9 5605.4	7603.6 6129.9	4.32 3.48
Drayton, (1)	48 58 45.59	W.0 06 00.89	135 11 99 187 55 90	Satellite	315 08 25 7 55 40	7021.3 3904.6	7578.3 4180.6	4.36 2.36

Section XI.—Gulf of Georgia. Sketch K, No. 34.

Name of station.	Latitude.	Longitude.	Azimutb.	To station-	Back azimuth.	Distance.	Distance.	Distance.
'r&irie	8 56 19,06	w.0 05 08.41	352 32 55 15 28 01	Trail	172 33 13 195 27 10	Metres. 3787.8 5164.7	Fards. 4142.2 5648.0	Miles 2.35 3.21
ast Point, (2)	48 47 03.36	0 21 19,28	183 31 07 290 06 28	East Roberts	3 31 55 110 11 58	21065.9 9530.5	23037.0 10422.3	13.09 5.9
latia, northwest	48 44 57.16	0 09 18,24	270 41 55 247 19 25	Lummi, north	90 47 43 67 25 29	9463.2 10702.1	10346.7 11703.5	5.86 6.65
aunch	48 45 01.81	0 11 28,45	959 21 02 271 11 55	South Base Lummi, north	72 28 44 91 19 21	13151,4 12124.8	14382.0 13259.3	8,17 7,53
ucia, northeast	48 4 5 4 4 .84	0 11 15.78	257 46 58 295 49 05	South Base	77 54 30 115 51 34	12558.0 4507.9	13733.1 4929.7	7.80 2,80
у р	48 50 21.63	0 01 28,88	0 42 09 70 32 10	Lummi, north	180 42 04 250 21 51	10145.8 177 9 9.6	11095.1 19465.1	6.30 11.00
orthwest Bell's Chain, Point Roberts.	48 58 30,72	0 20 08.51	299 42 01 312 10 01	Point Whitehorn, (1)	119 52 47 132 24 16	20106.4 31229.2	21987.8 34151.3	19.49 19.40
larked Tree, (1)	48 49 06.77	0 01 12.81	45 13 10 78 03 44	Mana, north	925 98 96 957 53 13	11635.1 17488.4	12723.8 19124.8	7.23 10.87
arked Tree, (3)	48 52 24.03	0 04 32.87	16 16 16 53 16 07	Matia, north	196 13 42 233 08 07	14889.6 16254.4	1 6282 .8 17775.3	9.25 10.10
arked Tree, (8)	48 45 49.83	0 11 22.51	958 35 37 996 46 34	South Base Matia, north	78 43 14 116 49 08	12661.0 4699.3	13845.7 5139.0	7.67 2.92
arked Tree, (10)	48 46 07.97	0 13 32,30	132 57 53 215 56 21	Trident	312 56 39 36 02 08	2756.7 16006.4	3014.6 17504.1	1.71 9.94
arked Tree, (9)	48 45 55.34	0 11 47.66	278 39 38 259 45 29	Lummi, north	98 47 19 79 53 25	12658.8 13133.8	13843.3 14362.7	7.67 8.16
arked Tree, (13)	48 58 30.16	0 19 59.46	299 55 18 344 22 33	Point Whitehorn, (1)	120 05 58 164 26 10	19938.6 21849.9	21804.3 23894.4	12.39 13.58
arked Tree, (15)	48 47 50.66	0 23 12,79	117 25 36 190 25 41	Disappointment East Roberts	297 17 55 10 27 54	14075.0 19894.9	15392.0 21756.5	8.74 12.36
arked Tree, (16)	48 47 53,79	0 23 47.02	118 25 38 192 26 44	Disappointment East Roberts	298 18 22 12 29 24	13412.4 19938.5	14667.4 21804.2	8.33 12.39
arked Tree, (17)	48 47 59.83	0 24 22.08	119 12 58 194 33 49	Disappointment East Roberts	299 06 09 14 36 55	19695.6 19924.2	13883.6 21788.5	7.89 12.38
arked Tree, (21)	49 00 11.33	0 24 08.35	350 45 31 34 42 55	West Roberts Disappointment	170 45 53 914 35 55	3636.6 19948.0	3976.9 21814.5	9.96 19.39
erry Point	48 51 37.27	0 03 28.68	341 36 31 349 27 23	South BaseLummi, north	161 38 12 169 28 49	8664.4 12694.9	9497.0 13882.7	5.40 7.89
orthwest Bell's Chain, Point Whitehorn.	48 53 31.72	0 03 14.08	7 19 11 42 50 57	Matia, north	187 17 53 922 44 13	16519.2 16117.9	18064.9 17626.0	16.26 10.01
ell's Chain	48 49 99.94	0 29 34.20	283 05 01 197 39 49	TridentDisappointment	103 15 50 307 36 55	18084.7 5961.4	19776.9 6519.2	11.94
ell's chain, hydrographic signal.	48 49 22.98	0 29 35.74	127 40 25 214 15 02	Disappointment East Roberts	307 37 39 34 22 04	5922.4 20234.1	6476.6 92197.4	3.68 12.57
asshopper	48 49 58.53	0 30 42.30	219 11 08 285 19 51	East Roberts	31 19 00 105 31 32	20165.5 19706.2	22052.4 91550.1	12.53 12.24
set Point, (3)	48 46 51.12	0 21 30,08	287 32 23 266 13 51	Trident Sucia, west Patos Island	107 38 01 86 17 18	9617.5 5639.9	10517.4 6167.6	5.98 3,50
iue Bell	48 59 04,48	0 20 10.10	287 56 41	Birch Point	108 05 52	15638.5	17101.8 16989.0	9.79 9.65
arked Tree, (B)	48 53 59.15	0 05 08.32	282 03 04 159 37 45	Sea Bird	102 12 28 339 36 57	15535.3 3737.4	4087.1	2.32 2.68
arked Tree, (A)	48 53 39.63	0 05 38.43	151 09 33	Birch Point	359 58 26 331 67 47	4391.4 5925.3	4725.8 6479.7	3,68
arked Tree, (C)	48 54 26.39	0 04 11.35	187 94 49 137 16 59	Barton	7 05 12 317 15 98	4955.8 3630.4	5419.5 3970.1	3.08 2.96 2.98
arked Tree, (D)	48 54 44.34	0 03 35,99	161 33 27 123 32 01	Prairie	341 39 44 303 30 C3	3670.6 3816.0	4014.1	2.37
campment	48 55 33.06	0 03 22.17	147 17 29 44 52 45	Point Whitehorn, (2)	397 16 19 994 50 85	3478.1 5018.4	3803.5 5488.0	9.16 3.19
uff	48 59 44.44	0 20 43.82	35 36 25 29t 14 38	Birch Point	215 35 23 111 24 15	2871.9 18898.4	3140.6 18960.9	1.79
aHoad Reef	48 45 29 50	W.0 25 13.30	285 44 29 254 42 43	Sea Bird	105 54 18 74 48 58	16497.7 19557.8	18041.4	10.25 6.56

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Section XI.—Gulf of Georgia. Sketch K, No. 34.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Tumbow, east	. / // 48 47 34.77	W.0 21 44.29	185 97 58 279 22 41	East Roberts Patos Island	5 09 05 99 26 19	Metres. 20136.7 5998.1	Yards. 22020.9 6559.3	Miles. 19.51 3.73
Tumbow, northeast	48 47 48.47	0 22 20,60	281 52 08 294 35 07	Patos Island Sucia, west	101 56 13 114 41 23	6804.4 11219.0	7441.1 19268.8	4.23 6 97
Whitewashed Rocks, Active harbor.	48 45 39.42	0 13 50.48	17 19 03 62 51 09	Sucia, west Bare Island	197 18 55 242 47 46	724 0 7793.9	791.7 8523.2	0.45 4.84
Whitewashed Tree, east point	48 47 06.03	0 21 21.22	290 29 17 334 17 51	Sucia, west East Point, (2)	110 34 48 154 17 52	9596.3 91.4	104 9 4.9 100.0	5.96 0.06
High Bluff, east point	48 46 56.61	0 21 22,56	288 47 18 338 49 49	gucia, west	108 52 50 158 51 14	9594.3 6373.9	10415.5 6969.5	5.92 3.96
East Point, Plumper signal	48 47 06.55	0 21 20,74	271 07 03 340 04 57	Patos Island	91 10 23 160 06 20	5438.2 6647.1	5947,1 7269,1	3.38 4.13
Semi-ah-moo Flag-staff	49 00 49.10	0 05 40.66	102 15 39 75 57 27	Satellite	282 12 13 255 46 27	5484 3 18340 8	5997.5 20056.9	3.41 11.40
Shaw's Bluff	48 59 15.00	0 03 44,40	71 51 10 141 48 22	Drayton, (1) Semi-ah-moo	251 49 27 321 46 58	2920.5 3637.1	3193.8 3977.4	1.81 2.26
Brant	48 57 32, 43	0 03 11.04	123 11 26 167 55 17	Brayton, (1)	303 09 18 347 54 52	4126.5 3239.9	4512.6 3543.0	2.56 2.01
Camp	49 00 47.69	0 05 36,25	102 29 55 76 09 31	Satellite	282 26 33 255 58 27	5581.2 18417.0	6103.4 20140.3	3.47 11.44
Semi-ah-moo Observatory	49 00 47.95	e 05 35,91	21 50 26 102 24 26	Sea Bird	201 48 50 282 21 04	6959.2 5586.1	7610.4 6108.8	4,32 3,47
Parallel	49 00 04.38	0 04 06.09	109 17 30 126 24 07	Satellite	989 13 00 306 23 00	7713.2 2246.3	8434.9 2456.5	4.79 1.40
Drayton, (2)	48 59 23.67	0 04 57.75	163 40 33 280 10 38	Semi-ah-moo	343 40 05 100 11 33	2699.0 1514.9	2951.5 1656.6	1.68
Cross, hydrographic signal	48 58 41.95	0 C6 10.54	137 05 44 190 27 54	Satellite	i	6980.5 3966.3	7633.7 4337.4	4.34 2.46
Tumbow, west	48 47 48.83	0 24 40.94	195 22 07 183 41 12	East Roberts	15 25 27 3 41 58	20351.7 19385.2	22256.0 21199,1	12,65 12,04
Whitewashed Western Rocks of Bell's chain.	48 50 13.36	0 31 08.23	126 20 53 221 10 07	Disappointment East Roberts	306 19 09	3479.6 20156.5	3805.9 92049.5	2.16 12.52
Piligree	48 59 22.79	0 35 45,47	939 92 34 933 32 54	East Roberts	1	91970.3 18349.8	24026.0 20066.8	13.65 11.40
Pender	48 53 37.06	0 38 00.79	947 38 31 307 01 05	East Roberts	67 51 54	23417.9 7021.3	25609.1 7678.3	14.55 4.36
Whitewashed Western Rocks, Plumper signal.	48 53 58.33	0 38 49,86	249 51 57 246 33 45	East Roberts	70 05 52	23978.7 20018.5	96222.4 21891.6	14.90 12.44
Frazer's River	49 01 28.71	0 26 23.35	330 53 14 94 36 47	West Roberts	150 55 18	6842.8 20669.9	7483,1 92604,0	4,25 12.84
East Point Reef	48 47 16.35	0 21 66,90	343 10 18 32 19 03	Bare Island East Point, (2)	163 11 31	6845.4 473.9	7485.9 518.2	4.25 0.30
Marked Tree 2, Drayton Head	48 57 96. 11	0 03 27.14	128 07 36 174 02 43	Drayton, (1)	308 95 53	3974.1 3381.5	4346,0 3697,9	2.47 2.10
Marked Tree 3, Drayton Head	48 57 36.47	0 04 04.94	132 08 35 187 48 54	Drayton, (1)	312 07 08	3179.4 3071.7	3476.9 3359.1	1,96
Marked Tree 4, Drayton Head	46 57 37.87	0 04 15.82	134 22 27 192 01 16	Drayton, (1)	1	2988.6 3067.3	3968.9	1.8
Marked Tree 5, Drayton Head	48 57 54.34	0 05 04.58	144 05 26 213 11 34	Drayton, (1)		1952.1 2977.3	2134.8	1.9
Marked Tree 6, Druyton Head	48 58 08.56	0 05 39.59	159 13 44 998 45 58	Drayton, (1)	339 13 26	1991,1	1335,4	0,70
Shell Bank	48 57 47.65	0 04 39.39	197 10 26 202 30 33	Drayton, (1)	317 09 24	3113.9 9437.6	9665.7	1.5
Northwest Patos	48 47 18.66	W.0 16 56.71	278 93 96 231 30 90	Trident	98 04 16	2920.4 2176.3 17324.5	9379.9	1.30

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
stronomical Station, 1852, Point	48 07 03.02	• / //	• 1 11	•••••	• 1 11	Metres.	Yards.	Miles.
Hudson. oint Hudson, astronomical azi- muth station, 1856.	48 07 06 ,71	E. 0 00 07.18	59 29 00	Astronomical Station,	232 29 15	187.2	204.7	0.12
dmiralty Head	48 09 21,56	0 04 24.97	52 01 11	Point Hudson	231 57 59	6763.2	7396.0	4,20
itisut	48 05 57,30	E. 0 02 04.63	131 25 18 204 41 13	Point Hudson	311 24 51 24 42 58	3239.8 6943.5	3542.9 7593.2	2.01 4.31
outhwest Base	48 05 35.42	W.0 03 01.31	263 52 33 234 06 34	Kilisut	83 56 20 54 08 55	6365.2 4811.3	6960.8 5261.5	3.95 2.99
falan	48 04 34,23	E. C 00 22.90	114 07 01 176 03 06	Southwest Base Point Hudson	294 04 29 356 02 54	4629.0 4720.3	5069.1 5162.0	2.88 2.93
ortheast Base	48 06 37.57	W.0 01 18.19	286 29 29 331 13 06	Kilisut	106 32 00 151 14 22	4375.8 4345.6	4785.2 4752.2	2.72 2.70
oint Wilson	48 08 49.74	W.0 00 16.39	258 19 19 330 16 18	Admiralty Head Kilisut	78 99 49 150 18 03	5936.9 5882.9	6492.4 6433.4	3.69 3.65
arrowstone Point	48 05 13,13	E 0 03 41.27	110 30 50 133 15 39	Point Hudson Point Wilson	290 28 10 313 12 42	4726.9 6745.0	5169.2 7376.1	2.94 4.19
agoon	48 04 49.57	0 08 17.14	114 21 23 150 16 20	Marriwstone Point Admiralty Head	294 17 53 330 13 27	6264.0 9675.0	6850.1 10580.3	3.89 6.01
odule Point	48 01 55,90	0 04 55.42	169 04 22 217 53 10	Marrowstone Point	349 03 27 37 55 40	8091.1 6798.0	8848.9 7434.1	5.03 4.99
ash Point	48 01 55.57	0 08 37.92	175 25 29 142 21 50	Lagoon	355 25 14 322 18 10	5391.0 10048.8	5895.4 10989.1	3.35 6.24
asait Point	47 57 36,75	0 04 27.66	184 06 34 212 57 32	Nodule Point Bush Point	4 06 55 33 00 38	8023 7 9528.7	8774.5 10420.3	4.98 5.92
ouble Bluff	47 58 26,29	0 11 57.14	126 34 04 147 26 58	Nodule Point	306 28 51 327 24 30	10876.4 7669.4	11894.1 8387.0	6.76 4.76
oulweather Bluff	47 56 30,02	0 08 46.53	154 33 50 178 59 02	Nodule Point	334 30 58 358 58 55	11146.2 10055.3	12189.1 10996.2	6.99 6.25
iplicate	47 58 07.07	0 12 16.64	55 30 27 127 44 25	Foulweather Bluff Nodule Point	235 27 51 307 38 57	6058.2 11557.2	6625. 1 12638. 6	3.76 7 18
ant No Point	47 54 48.04	0 13 28.35	164 19 29 166 23 45	Double Bluff Duplicate	344 18 21 346 22 52	7000.7 6324.0	7655.7 6915.7	4.35 3.93
atchet Head	47 54 5 7.15	0 19 14.46	87 47 40 124 07 16	Point No Point Duplicate	267 43 23 304 02 06	7190.9 10467.3	7863.7 11446.7	4.47 6.50
opie Cove	47 48 57.90	0 16 05.84	163 10 39 199 26 19	Point No Point Scatchet Head	343 08 49 19 28 39	11297.5 11766.3	12354.6 12867.3	7.02 7.31
int Wells	47 46 57.00	0 21 14.19	190 13 41 170 29 01	Apple Cove Scatchet Head	300 09 53 350 27 33	7423.2 15035.3	8117.8 16442.2	4.61 9.34
esident	47 45 51,33	0 16 46.20	171 42 39 949 59 42	Apple Cove Point Wells	351 49 09 70 03 00	5822.6 5936.2	6367.4 6491.6	3.69 3.69
eadow	47 41 4%.48	0 20 42,63	147 21 49 183 59 07	President	3627 18 54 3 59: 31	9198.9 9735.9	9982.3 10646.1	5 67 6.05
der	47 41 40.53	0 14 48.82	219 21 37 269 29 46	Point Wells	39 26 22 69 34 06	19647.5 7376.7	13830.9 8066.9	7,86 4,58
emoalt	47 38 04,19	0 15 39,95	170 56 05 293 05 45	Eider	350 55 97 43 09 99	6765.5 9236.4	7398.5 10100.6	4.90 5.74
agnolia	47 38 34.80	0 20 05,88	80 21 36	Yemoalt	960 18 90	5630.9	6157.0 9573.2	3.50 5,44
estoration Point	47 35 05,78	0 16 17,78	130 57 54 171 50 34 916 94 09	Yemoalt	310 54 00 351 50 06 36 26 50	5565.5 8091.7	6086.3 8772.3	3.46 4.98
attery Point	47 34 37.04	0 19 51,24	182 22 59	Magnolia Restoration Point		7348.6	8036.2 4923.0	4.56 9,83
ydrographic Signal	48 05 30,84	0 01 01.90	101 16 36 159 05 04	Point Hudson	339 04 93	4547.5 3169.8	3466.4	1.97
ong Spit	48 05 30.83	0 01 02.03	937 47 48 94 51 31	Walan	57 48 33 984 51 09	1533.5	1677.0 2106.9	1.90 2.91
pey's House, southwest end	48 07 11.33	E. 9 00 10,00	195 94 99 99 13 41	N. E. Base	305 93 45 202 13 39	3558.4 153.9	3891.4 168.3	0.09 1,79
oint Partridge	48 19 59,31	W.0 00 33,74	169 04 01 357 94 20	Point Wilson	349 03 41 177 94 43	7931.9	3144.5 8674.1	4.93

THE UNITED STATES COAST SURVEY.

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

	I	1		,	1			
Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
Point Ross	48 08 38,18	W.0.02 01.55	192 39 59 260 26 27	Point Partridge Admiralty Head	0 / // 12 41 04 80 31 15	Metres. 8966.0 8099.8	Yards. 9039.4 8857.7	Miles. 5. 14 5. 03
Dungeness	48 10 59,60	0 21 44.32	980 00 38 961 50 47	Point Ross Point Partridge	100 15 19 52 06 34	94894.6 26492.5	27147.4 28971.4	15.42 16.46
Dungeness (new) Light-house	48 10 58,96	0 21 34.06	280 03 10 261 44 24	Point Boss	100 17 44 82 00 04	94612.5 26285.6	26915.5 28745.1	15.29 16.33
Kala Point	48 03 31.82	W.0 90 56.53	145 56 03 220 27 33	S. W. Base	3925 54 30 40 28 32	4608.7 2533.4	5039.9 2770.5	2.86 1.57
Crane	48 03 00.35	E. 0 00 32.41	117 50 09 176 06 58	Kala Point	297 49 03 356 06 51	2082, 4 2906, 1	2277.3 3178.0	1.29 1.81
Tongue	48 02 10,09	W.0 00 09.70	158 59 19 209 19 35	Kala Point	338 58 44 29 20 06	9704.1 1780.4	9957.1 1947.0	1.68
Rock	48 02 23.41	E. 0 00 53.24	72 29 11 159 17 25	Tongue	252 28 24 339 17 10	1367.0 1219.4	1494.9 1333.5	0.85 0.76
Head	48 02 04.68	0 00 49.44	97 45 45 168 24 28	Tongue	277 45 01 348 24 15	1236.3 1754.8	1352.0 1919.0	0.77 1.09
Island	48 01 54 83	0 00 11.00	137 42 26 192 21 28	Tongue	317 42 11 12 21 44	637.2 2071.5	696.8 2265.3	0.39 1,29
Beach, (1)	48 09 50,02	0 05 41.90	340 54 08 20 25 55	Engoon	160 56 04 200 24 25	9818.4 7147.2	10737,1 7816,0	6.10 4.44
Beach, (2)	48 09 55 43	0 07 03.01	350 46 34 31 17 50	Lagoon,	170 47 29 211 15 20	9569,4 6032.5	10464 8 8784.1	5.94 4.99
Robertson	48 69 31.94	0 08 12.32	359 20 30 42 30 52	Lagoon	179 20 34 222 27 30	8699.5 8296.8	9513.5 9073.1	5.41 5.16
Shipyard.	48 08 32.75	0 08 49.32	55 56 18 5 30 58	Marrowstone Point Lagoon	935 52 29 185 30 34	7692.0 6924.4	8411.7 7572.3	4.78 4.30
Doyle	48 07 10.38	0 09 04.61	125 03 05 12 43 38	Admiralty Head	304 59 37 192 43 03	7058.8 4458.0	7719.3 4875.1	4.39 2.77
Craven, (1)	48 04 29,09	0 03 54.01	184 03 06 175 18 49	Admiralty Head Marrowstone Point	4 03 29 355 18 39	9055.0 3224.0	9902.3 3525.7	5.63 2,00
Craven, (2)	48 03 24.74	0 04 03.58	189 17 53 174 55 45	Admiralty Head	2 18 09 354 55 28	11028.3 5220.9	12060.2 5709.4	6.85 3,24
Slide	48 00 40.74	0 10 13,92	109 24 41 332 43 29	Nodule Point	289 20 44 152 44 46	6995.0 4671.1	7649.5 5108.2	4.35 2.90
Colvos Rock	47 57 11.64	0 04 48.09	208 29 35 255 25 55	Bush Point	28 32 26 75 31 14	9979.0 9192.7	10912.7 10052.9	6.20 5.71
Sayward	47 59 57.39	0 12 23.77	66 18 07 111 39 50	Basalt Point Nodule Point	246 12 13 291 27 17	10785 4 9985.0	11794.6 10919.3	6.70 6.20
Neck	47 55 18.03	0 09 59.26	179 11 13 159 53 02	Bush Point	352 10 13 332 49 16	12392.4 13808.3	13552.0 15100.3	7.70 8.58
Briar	47 58 24.32	0 04 03.36	921 04 04 969 35 48	Bush Point	41 07 28 89 41 40	9657.0 9825.0	9467.0 10744.3	5.38 6.10
Limestone	47 58 51.94	0 09 33.51	933 03 35 \$73 49 19	Bush Point	53 98 96 93 56 11	9444.3 11714.1	10328.0 12810.2	5.87 7.28
Liplip	48 01 06,92	0 04 49.48	999 11 16 3 59 25	Double BluffBasalt Point	119 16 34 183 59 09	10158.1 6506.1	11108.6 7114.9	6,31 4,04
Canal	47 55 59.68	0 07 49.05	125 40 40 185 15 45	Basalt PointBush Point	305 38 10 5 16 21	5142.7 11037.3	5623.9 12070.1	3,19
Taia Point, 1855	47 55 54.71	0 05 33.11	156 41 33 239 31 94	Basalt Point Double Bluff	336 40 44 59 36 09	3431.5 9940.9	3759.6 10104.8	6.86 2.13
Tala Point, 1856	47 55 54.60	9 05 23.00	156 44 55 966 48 19	Basalt Point	336 44 07 86 50 00	3433.8 2827.8	3755.1 3092.4	5.74 9.13
Olete	47 58 98.80	0 93 58.97	219 05 04	Bush Point	39 38 32	9090,7	9941.3	1.76 5.65
Oak Bay	48 90 35.22	0 03 49.69	966 50 18 291 10 33	Double Bluff	86 56 14 111 16 40	9945.5 10997.3	10876.1	6.18 6.83
House between Lagoon and Bush Point.	48 83 49,86	0 08 57.00	6 94 08	Bush Point	170 93 93 186 93 54	5589,9 3551.3	6112.9 3883.6	3.47 2.91
Hood's Head	47 53 19,33	0 08 99.87	194 07 92 143 49 57	Marrowstone Point Tain Point, 1856	304 03 27 323 38 51	7892.7 5952.4	8631.9 6509.4	4.90 3.70
Pond	47 55 36.54	E. 0 08 00 .84	171 56 60 353 50 17	Hood's Head	351 55 35 173 59 33	5001.5 4962.0	5469.5 4660.8	3.11 9.65
95		1	100 18 59	Tala Point, 1856	280 17 09	3118.7	3410.5	1.94

REPORT OF THE SUPERINTENDENT OF

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth.	To station-	Suck azimuth.	Distance.	Distance.	Distance.
Clay Bank	* / // 47 54 19.06	E. 0 09 44,50	9 / // 42 35 41 119 29 53	Hood's Head Tala Point, 1856	222 34 40 299 26 46	Mctres. 2505.3 5996.9	Yards. 2739.7 6558.0	Miles. 1.56 3.72
Adam's Apple	47 55 90,88	0 08 54,19	9 49 59 104 01 90	Hood's Head Tala Point, 1856	189 49 29 283 58 51	3809.7 4303.6	4166.9 4766.3	2.37 2.67
Peninsula, (2)	47 54 36.75	0 05 46.24	276 16 41 306 18 07	Clay Bank	96 19 38 126 20 03	4977.3 4037.0	5443.0 4414.7	3.09 2.51
Barnacle	47 53 11.82	0 10 14.02	95 45 08 163 33 30	Hood's Head Clay Bank	275 43 46 343 33 08	2320.3 2165.2	2537.4 2367.8	1.44 1.34
Gamble, (2)	47 51 32,31	0 10 36.89	139 53 59 171 12 36	Hood's Head	319 52 20 351 12 19	4317.9 3109.7	4721.9 3400.7	2,68 1,93
Gamble, (2)	47 51 27.03	0 10 00,45	149 42 07 257 51 51	Hood's Head	329 40 55 77 52 18	4017.5 774.7	4393.4 847.2	2.50 0.48
Salsbury Point	47 51 28,79	0 08 34,22	176 02 57 213 04 54	Hood's Head	356 02 49 33 06 08	3422.0 3797.8	3742.2 4153.1	2.13 2.36
Termination Point	47 52 08.74	0 06 55,87	244 39 21 283 44 27	Barnacle	64 41 48 103 47 11	4554.3 4728.9	4980.4 5171.4	2.83 2.94
Southwest Point, Hood's Head	47 52 46.28	0 67 49.21	214 24 27 303 14 00	Hood's Head	34 24 52 123 16 64	1934.4 4166.4	1349.9 4556.2	0.77 2.59
Crab-apple	47 55 11.65	0 12 10.32	177 23 47 181 23 02	Bouble Bluff Duplicate	357 23 37 1 23 07	6017.2 5418.9	6580,2 5925.9	3,74 3,37
Indian Point	47 55 51.90	0 18 20 96	72 02 35 118 56 52	Point no Point Duplicate	251 58 58 298 52 21	6386.5 8634.7	6984.1 9442.6	3.97 5.36
Gully	47 58 27.18	0 13 44.47	2 49 48 59 41 05	Point no Point	182 49 36 239 37 24	6775.4 7161.2	7409.4 7831.3	4.21 4.45
Eagle, (?)	47 57 11,48	0 18 29.04	54 39 43 102 34 09	Point no Point	234 36 00 26) 29 31	7652.4 7912.9	8368,4 8653,3	4,75 4,92
Deer Lagoon	47 59 32,50	0 15 44.17	334 27 58 17 47 49	Indian Point	154 29 54 197 46 08	7549,2 9225,6	8255.fi 10088.8	4.69 5.73
Clay	47 58 39,75	0 17 19.91	346 15 54 33 54 07	Indian Point	166 16 39 213 51 15	5336.2 8619.2	5835.5 9425.7	3,39 5,35
Scatchet, east	47 54 29,67	0 21 32 47	33 33 34 93 16 49	Apple Cove	213 29 32 273 10 50	12290.4 10067.5	13440.4 11009.5	7.64 6,25
Pilot Point	47 52 52,00	0 14 13.40	238 14 47 342 04 21	Scatchet Head	58 18 30 162 05 44	7350.3 7597.9	8036.1 8306.8	4.57 4.73
Run	47 51 40,92	0 24 57.54	65 34 15 130 24 47	Apple Cove,	245 27 41 310 20 32	12119.0 9354 6	13253.0 10229.9	7.53 5.81
Granite	47 50 98,36	0 23 51.97	73 56 56 145 18 48	Apple Cove	953 51 11 325 15 23	10073.9 10098.3	11016.5 11043.2	6.26 6.27
Water	47 49 22.79	0 22 37.11	84 38 45 157 50 06	Apple Cove	964 33 55 337 47 36	8174.2 11151.4	8939.1 12194.8	5.08 6.93
Log	47 48 31.55	0 21 32.17	96 52 14 166 30 92	Apple Cove	276 48 12 346 28 20	6836.8 12247.2	7476.5 13393.2	4.25 7.61
Rose	47 51 21.69	0 14 33.29	991 14 48 336 33 42	Scatchet Head	41 18 17 156 34 51	853,4 4839,5	9681.8 5292.3	5.50 3.01
Sycamore	47 50 18,79	0 14 38.35	213 4T 13 323 55 16	Scatchet Head	33 44 38 143 56 91	10334.7 3090.3	11301.7 3379.5	6.42 1.92
Spring	47 52 55,62	0 25 03.22	24 48 54 56 44 34	Water	204 47 06 236 37 56	7240.5 13367.0	7918.0 14617.7	4,50 8,31
Possession	47 54 30.83	0 22 27.76	312 16 28 358 49 47	Spring		4366.8 9515.0	4775.4 10405.3	2.71 5.91
Buzzard	47 56 18,73	0 23 30,78	342 58 39 21 26 25	Spring.	169 59 48 201 25 38	6559 5 3579 7	7179.3 3914.6	4.08 2.22
Sound	47 54 53,40	0 25 48.23	80 30 46 132 44 35	Possession	960 98 17 312 42 53	4220.0 3863.6	4614.9 4247.0	9.62 2.41
Point Elliott	47 56 51 59	0 26 35.10	14 55 46 75 69 31	Sound	194 55 11 255 07 14	3777.3 3956.8	4130.7 4327.0	2.35 2.46
Hawk	47 57 33,50	0 24 04.50	292 29 17 336 27 48	Point Elliot	112 31 09 156 29 03	3381.8 5399.5	3698.2 5897.1	2.10 3.35
North gable of north house, at	47 54 50,74	0 22 29.08	233 48 38 268 50 23	Point Elliott	53 51 41 88 53 51	6324.6 4135.3	6916.4 4502.2	3.93 2.57
First stake south of Buzzard	47 55 26.31	E. 0 22 28.49	218 36 31 283 45 04	Buzzard	i	2071.8 42 63 .2	9265.6	1.29

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

				1				i
Name of station.	Latitude.	Longitude.	Azimuth.	To station—	Back azimuth.	Distance.	Distance.	Distance.
North gable of north house, near	° ' '' 47 54 50.75	° ' '' E. 0 22 29-11	905 13 11	Buzzard	25 13 57 138 01 19	Metres. 3003.6 4783.6	Yards. 3284.6 5231.2	Miles. 1.87 2.97
Possession. Biazed Tree	47 46 25.06	0 21 25.80	317 59 25 79 53 05	President Apple Cove		5913.7	6467.0 6925.2	3 67
South Apple	47 46 56.16	0 16 03.01	125 22 01 180 53 43	Apple Cove	0 53 45	8161.5 3760.0	4111.8	5.07 2.34
North Apple	47 48 07.18	0 15 38.62	269 44 18 287 12 21	Point Wells	89 48 08 107 16 30	6476.8 7311.7	7082.8 7995.8	4.02
Robin	47 44 58.05	0 22 06.42	341 27 32 16 07 57	President	161 28 22 196 96 55	4424.6 6286.9	4838.6 6875.2	2 75 3.91
Grave	47 43 49.84	0 22 17.96	103 53 31 129 04 48	President	263 49 34 309 00 22	6868.4 8898.0	7511.1 9730.6	4.27 5.53
Crow	47 40 42.81	0 14 33.25	170 08 08 215 49 17	Point Wells	350 07 18 35 54 14	7747.3 14258.6	8472.2 15592.8	4.81 8.86
			256 30 31 225 11 31	Meadow	76 35 04 45 16 29	7919.1 11822.0	8660.1 12928.2	4.92 7.34
Point Monroe	47 42 27.41	0 14 31.22	280 07 21	Meadow	100 11 56	7865 9	8601.9	4.89
Skiff	47 39 48.27	0 15 05.59	174 14 31 347 25 15	Yemoalt	354 14 19 167 25 40	3484.5 3293.2	3810.5 3691 3	2.17 2.05
Foster	47 44 43,11	0 15 32.46	310 45 46 16 56 33	Meadow	120 49 36 196 55 48	8337.7 4380.5	9336.6 4790.4	5.39 2.72
Drift	47 42 00.88	0 14 46.64	921 23 54 274 20 35	Point Weils	41 28 41 94 24 58	19198.1 7443.4	13339.5 8139.9	7.58 4 62
Creek	47 40 28.84	0 20 41.21	115 25 49 140 41 47	Point Monroe	295 21 15 320 37 59	8539.2 10150.8	9338.2 11100.6	5.30 6.31
Point Jefferson	47 44 57,38	0 16 38.37	237 13 15 319 45 17	Point Wells	57 16 39 139 48 18	6828.3 7863.2	7467.2 8620.8	4.24 4.90
Middle	47 45 28.36	0 16 48.92	243 36 20 325 03 22	Point Wells Meadow	63 39 3 6 145 96 15	6163.9 8507.1	6740.6 9303.1	3.83 5.29
Tide	47 43 11.44	0 12 23.26	234 17 46 297 00 09	Poster	54 20 06 117 01 44	4852.9 29 93.4	5307.0 3273.5	3.01 1.86
Reservation	47 43 33,39	0 11 40.96	245 55 13 299 50 57	Poster	65 58 04 119 53 03	5281.6 4091.7	5775.8 4474.5	3.28 2.54
Cherry	47 44 09,09	0 12 05.13	256 16 59 315 51 13	Foster Point Monroe	76 19 25 135 53 01	4445,2 4371.9	4861.1 4781.0	2.76 2.72
Clements	47 44 55.15	0 12 35.59	332 09 08 4 35 11	Point Monroe	159 10 34 184 35 02	5159.5 3213.0	5642.3 3513.6	3.21 2.00
West Point	47 39 47,22	0 18 56.43	124 08 51 52 12 22	Elder	304 05 48 232 09 57	6237.7 5189.5	6821.3 5675.1	3.88 3.22
Duwamish	47 35 44.61	0 21 48.82	80 11 45 119 16 09	Restoration Point	-960 07 49 999 11 35	7018.5 8d26.0	7675.2 9651.8	4.36 5.48
Alder	47 37 56.96	0 21 25.38	91 48 30	Yemoalt	271 41 15	7213.7 4116.0	7888.7 4501.1	4.48
Bwallow	47 37 46.44	0 22 51.16	383 10 14 58 54 45	Restoration Point	173 10 31 238 49 54	9596.9	10494.9	2,56 5.96
Leauing Tree	47 37 01,77	0 23 46.44	93 3L 46 45 53 10	Yemoalt	273 26 27 225 51 43	9017.5 3422.0	9661.3 3742.2	5.60 2.13
Cabin		0 22 03.91	190 04 30 169 10 11	Alder	300 02 46 349 09 43	3402.3 4279.5	3720.7 4679.9	2.11
		0 24 57.62	22C 34 51 80 10 32	Leaning Tree	40 36 07 260 08 24	3290 8 3682.6	3998.7 4027.9	2.04
Seattle			141 31 06 112 44 09	Leaning Tree	321 30 13 292 41 24	2388.4 5072.2	2611.9 5546.8	1,48 3,15
Trail	47 34 37.42	0 25 47.86	150 22 21	Cabin	330 20 51	5128.5 4160.0	5608.4 4549.2	3.19
Gult	47 34 16.82	0 24 39.54	128 36 19 167 43 14	Cabin	347 49 35	5413.0	5700.8	3,24
Buttonwood	47 34 20,92	0 23 35.95	142 05 08 182 31 27	Cabin. Leaning Tree	322 04 00 2 31 35	3128,8 4971,9	3421.6 5437.1	1.94 3.09
Hydrographic Signal	47 35 19.30	0 22 29.71	2°5 21 11 148 33 33	Leaning Tree Cabin	25 22 08 328 31 14	3741.1 1033.2	4091.1 1129.9	2.32 0.64
Cabin south end of Buttonwood	47 34 12.76	0 23 43.44	180 41 16 204 49 21	Leaning Tree	0 41 18 24 50 16	5219.4 3690.7	5707.8 4036.0	3,24 2,29
Hydrographic Signal on Tree	47 37 56.38	E. 0 21 35.24	356 00 40 361 36 20	Duwamish	176 00 50 121 37 57	4078.8 3216.6	4460.4 3517.6	9,53 2,00

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Hydrographic Signal on Spit	47 37 59.87			1				1
3lm.,		E. 0 21 51.90	306 51 46 52 25 01	Leaning Tree	126 53 10 232 20 54	Metres, 2989.4 8868.5	Yards, 3269 1 9632.7	Miles. 1.86 5.47
1	47 35 03.51	0 20 57.50	130 06 30 170 37 29	Yemonit	310 02 35 350 36 51	8666,2 6613,2	9477.1 7939.0	5,38 4,11
Dliff.,	47 35 92.76	0 15 34,78	181 14 23 223 38 20	Yemoalt	1 14 27 43 41 40	4986.0 8198.2	5452,5 8965,3	3,10 5,09
Jobble	47 36 41.17	0 15 11.97	240 12 17 334 58 27	Magnolia	60 15 54 154 59 16	7068.2 3250.6	7729.6 3554.8	4.39 2.02
Wing	47 37 18.40	0 15 33.84	247 24 38 347 21 52	Magnolia	67 27 59 167 22 24	6149.1 4197.0	6724.5 4589.7	3.82 2.61
Point Williams, marked tree	47 31 52.29	0 21 00.86	135 18 33 164 02 42	Restoration Point Battery Point	315 15 04 344 01 51	8409.2 5991.7	9196.6 5786.8	5.22 3.29
Brace Point	47 31 05.46	0 21 07.57	140 50 01 166 20 07	Restoration Point	320 46 27 346 19 11	9576.0 6724.3	10472.0 7353.6	5.95 4.18
Oolphin Point	47 30 14,32	0 17 56.92	167 02 27 196 24 21	Restoration Point Bauery Point	347 01 14 16 25 45	9236,1 8457,8	10100.3 9249.2	5.74 5.26
Catugh, (1)	47 33 33,01	0 16 16.26	180 38 91 946 13 30	Restoration Point	0 38 99 66 16 09	2865.0 4908.9	3133,1 5368,2	1.78 3.05
ltake on spit near Alder	47 38 08,57	FS- 0 22 08,69	5 20 12 52 25 43	Duwamish	185 19 57 232 21 24	4464.9 9151.5	4882.7 10007.8	2.77 5.69
Castern sharp peak of Olympus	47 46 26.54	W.0 22 35.27	252 55 32 268 44 42	Scatchet Head	73 26 33 89 17 09	54504.8 54741.3	59604,8 59863,4	33.87 34.01
'atugh, (ই)	47 32 32.17	E. 0 16 15,83	180 29 31 229 23 59	Restoration Point Battery Point	0 29 32 49 26 38	4743.9 5928.2	5187.8 6482.9	2.95 3.68
Jashon Point	47 30 39,43	0 16 29,01	178 22 00 175 28 3 1	Restoration Point Tatugh, (2)	358 21 52 355 28 31	8228.8 3492.1	8,8668 8,8186	5.11 2.17
oint Beals	47 26 01.62	0 19 02.06	161 35 59 204 45 51	Dolphin Point	341 35 11 24 47 23	4318.8 6252.4	4792,9 6837.4	2.68 3.88
oint Pully	47 27 07,28	0 22 11.52	137 19 28 112 56 40	Bolphin Point Point Beals	317 16 2! 292 54 21	7859.3 4307.8	8594.7 4710.9	4,88 2.68
outh Bainbridge	47 34 35.56	0 14 50.70	269 33 05 334 57 24	Battery Point Tatugh, (2)	89 36 47 154 58 27	6280.3 4205.4	6867.9 4598.9	3.90 2.61
lorthwest Blake	47 32 43.90	0 14 43.09	204 18 02 182 38 19	Restoration Point South Bainbridge	24 19 12 2 38 25	4807.8 3451.7	5257.7 3774.7	2.99 2.14
rchard	47 33 59.03	0 13 07,97	242 31 17 319 23 41	Restoration Point N. W. Blake	62 33 37 139 24 51	4470.1 3055.7	4888.4 3341.6	9.78 1.90
outhwest Bainbridge	47 34 36.93	0 13 38.52	338 51 09 28 37 10	N. W. Blake Orchard.	158 51 57 908 36 47	3742.9 1332.9	4092,4 1457.6	2.32 0.83
otter,	47 31 27.74	0 13 48.99	169 36 01 205 40 57	Orchard	349 35 31 25 41 37	4750,1 2609.7	5194.6 2853.9	2.95 1.62
outhwest Blake	47 32 02.88	0 15 10.53	57 32 26 155 38 06	Otter	237 31 26 335 37 46	2021.2 1390.6	2210.3 1520.7	1.26 0.86
'ly	47 31 09.75	0 14 51,76	112 56 05 294 42 09	OtterVashon Point	299 55 19 114 43 21	1425.5 2239.5	1558.9 2449.0	0,88 1,39
cint Southworth	47 30 41.54	0 15 20.86	272 36 15 264 08 46	Vashon Point	992 377 05 84 13 01	1497.3 7984.4	1560,8 7966,9	0,89 4,52
Post	47 32 30.36	0 12 37.63	322 19 45	Otter	142 20 38 13 92 34	2442.6 2810.8	2671,9 3073,8	1.59 1.75
Point Peter	47 28 36.66	0 15 11.73	193 02 12	Orchard	2 50 90	3861.1	4299.4 4507.6	2.40 2.56
Point Paul.	47 28 38.51	0 13 40.58	203 05 43	Vashon Point	23 06 40 43 92 03	4121.9 5134.9	5615.4	3.19 1.18
ames' Peint	47 27 45.54	0 14 32.41	271 42 44 146 26 50	Point Peter	91 43 51 326 26 11	1909.0	9087,6 2145.9	1,98 1,11
oint Command	47 27 24.30	0 13 12.30	207 32 67 194 29 09	Point Paul	27 32 36 14 29 30	1780.4 2367.0	1947.0 9588.5	1.47
Piora	47 27 19.55	0 14 21.16	228 12 26 95 48 36	Point Peter	48 13 54 275 47 45	3353.5 1449.7	3667.3 1585.3	0.90
oint Praspect	47 25 51.20	0 13 67,31	160 47 24 182 04 55	Point Panl	340 46 54 2 04 59	2582,1 2876,9	9898.7 3146.1	1.79
indrew,	47 26 29.56	E. 0 14 13.61	209 32 50 142 46 41	Point Command	29 33 44 322 45 56	3136.6 2122.9	3430.1 2321.5 1996.6	1,95 1,32 1,13

THE UNITED STATES COAST SURVEY.

UNITED STATES COAST SURVEY.—GEOGRAPHICAL POSITIONS.

Name of station.	Latitude.	Longitude.	Azimuth,	To station—	Back azimuth.	Distance.	Distance.	Distance.
Thistle	• / // 47 25 09.90	° ' '' E. 0 14 11.93	133 35 42 181 69 53	Point Prospect	313 34 55 1 09 55	Metres. 1849.3 2460.3	Yards. 2022.3 2690.5	Miles. 1,1: 1,5:
Baker	47 26 24.64	0 13 02.41	264 10 42 354 19 13	Andrew Point Prospect	84 11 34 174 19 17	1499.5 1038.0	1639.8 1135.1	0.9 0.6
Marked Tree, (17)	47 26 57.33	0 14 14.11	122 45 19 167 20 15	Point Command	302 44 34 347 19 50	1539.4 3202.4	1683.4 3502.0	6.96 1.9
Bright Stump	47 98 02,71	0 14 53.45	39 43 48 50 46 09	James' Point Point Command	219 43 33 240 44 54	689,5 2427,8	754.0 2655.0	0.4 1.5
Marked Tree, (16)	47 95 50,17	0 14 33,94	91 01 08 149 45 0 9	Point Prospect	271 00 05 329 44 09	1800. 9 3345. 3	1969.4 3680.2	1.19 2.00
Marked Tree, (14)	47 28 15.74	0 13 06,83	256 06 34 297 28 54	Point Peter James' Point	76 08 06 117 29 57	2693,6 2020,3	2945,6 2209,3	1.6
Rock	47 97 43,72	0 13 09,75	268 08 17 296 30 32	James' Point	88 09 18 116 31 25	1732.0 1671.4	1894.1 1827.8	1.0
Rosa	47 29 21.20	0 13 56.74	232 48 52 311 13 04	Vashon Point	52 50 44 131 13 59	2998.7 2067.0	4372.8 2282.3	2.44 1.3
Marked Tree, (15)	47 29 55.65	0 14 38.31	239 42 58 343 59 47	Vashon Point	59 44 20 164 00 19	2682.0 2537.6	2933 0 2775.0	1.6
Fern	47 29 23.11	0 16 16.23	43 16 25 154 26 29	Point Peter	223 15 37 334 25 48	1969.9 2684.8	2154.2 2936.0	1.5
Southeast Blake	47 31 54.79	0 15 57.46	344 09 42	Vashon Point	164 10 05	2418,8	2645,1	1.6
House in Bight, door	47 31 30.77	0 12 15.82	18 41 59 196 43 48	Point Southworth S. W. Bainbridge	198 41 32 16 44 49	2388.0 6902.7	2611.4 6564.4	3.7
Jay	47 33 35,99	0 90 53.73	233 44 10 71 28 52	N. W. Blake	53 45 59 251 25 27	3818.8 6127.9	4176.1 6701.3	2.3 3.8
Marked Tree, (1)	47 32 46,29	0 21 07.32	145 3 6 16 85 56 13	Battery Point Tatugh, (2) Dolphin Point	325 35 30 265 52 38	2311,3 6110,7	2527.6 6682.5	3.8
Point Williams	47 31 51,92	0 21 00,06	40 20 42 164 15 16	Battery Point	220 17 41 344 14 25	6154.6 5297.9	6730.5 5793.6	3.8
Marked Tree, (18)	47 30 31.95	0 17 90.01	135 26 33 171 15 41	Restoration Point	315 23 05 351 14 55	8435.7 8555.6	9225.0 9356.2	5.2 5.3
Bright Stump	47 34 14.09	0 90 27.91	909 39 95 59 10 34	Battery Point	22 41 17 239 07 28	8202.4 6137.8	8969,9 6719,1	5.0 3.8
Granite Boulder	47 32 06,11	0 21 13.97	107 00 34 97 93 01	Restoration Point	286 57 34 277 19 21	5464.9 6285.9	5976.2 6874 1	3.3
			159 39 04	Tatugh, (2)	339 38 03	4971.2	5436.3	3.9 3.0
Marked Tree, (2)	47 30 20,75	0 21 45.78	38 35 39 87 39 05	Point Beals	218 33 38 267 36 16	5495,4 4792,9	5009.6 5241.4	3.4 2.9
Marked Tree, (3)	47 98 45,94	0 18 09.47	174 30 05 300 59 07	Point Pully	354 29 56 121 02 05	2742.6 5913.4	2998.6 6466 7	1.7 3.6
Snake	47 97 54.97	0 22 54.35	124 40 53 92 26 36	Point Beals	304 37 14 272 23 45	7568,4 4868,3	8976.6 3323.8	4.76 3.05
Scal	47 29 22.89	0 17 25,35	935 40 41 304 55 09	Brace Point	55 43 25 124 58 40	5620.9 7309.9	6146.8 7993.9	3.4 4.5
Lupin	47 29 27,65	0 93 07.47	15 07 50 62 40 54	Point Pully	195 07 09 242 37 58	4490.1 5783.7	4910,2 6324,9	2.7 3.5
Rain	47 97 09.36	0 18 38.33	909 32 15 195 11 30	Brace Point	22 34 95 15 11 47	8198,6 1896,4	8889,2 2073,8	5.0 1.1
Point Hyer	47 25 26,46	0 19 15.65	176 36 13 229 46 59	Point Beals	356 36 93 49 49 98	4799.9 4823.7	5949.0 5275.0	2.9 3.0
Raspberry	47 94 01.06	0 21 18.40	158 58 49 190 57 01	Point Beals	338 57 09 10 57 40	79 58.7 5857.2	8703.4 6405.3	4.9
Marked Tree, (4)	47 94 07.15	0 19 49.22	179 14 04 906 10 43	Point Beals	352 13 29 26 12 28	7307.5 6 311.3	7991.3 6901.8	4.5
Charred Tree	47 99 57.00	E. 0 17 33.13	312 04 03 332 33 54	Point Pully Point Beals	139 07 98 152 35 00	7854.5	6589.4	4.8 2.5

APPENDIX No. 21.

Report of Prof. O. M. Mitchel, director, on the moon culminations observed for the U. S. Coast Survey at Cincinnati observatory.

CINCINNATI, Ohio, September 24, 1859.

DEAR SIR: I have to report the observation of forty-nine moon culminations made during the past twelve months.

The mode of observation and record remains the same as in the past years, the only change being the introduction of a new system of wires into the transit instrument on the 5th of July last. The number of wires is the same as before used, (fifteen,) but they are grouped differently, being now in five groups of three wires each. The equatorial distance between groups is about eight seconds of time, and the interval between the wires of each group is four seconds equatorial. The reduction from mean to middle wire has been obtained from a discussion of fifty-nine observations of stars within twenty degrees of the equator.

The observations were made and reduced by my assistant, Henry Twitchell, esq., who has charge of the transit.

Yours, respectfully,

O. M. MITCHEL.

Dr. A. D. BACHE,

Supt. U. S. Coast Survey, Washington, D. C.

APPENDIX No. 22.

Discussion of the magnetic and meteorological observations made at the Girard College observatory, Philadelphia, in 1840, 1841, 1842, 1843, 1844, and 1845. Part I. Investigation of the eleven-year period in the amplitude of the solar-diurnal variation, and of the disturbances of the magnetic declination. By A. D. Bache, LL.D.

INTRODUCTION.

In co-operation with the scheme adopted at the British colonial observatories, a series of magnetic and meteorological observations were made at the Girard College magnetic observatory, in Philadelphia, with instruments purchased under the direction of the trustees of the college, the observations being made under the patronage of the American Philosophical Society, and finally completed for the use of the Topographical Bureau of the War Department.¹

These observations were made under my immediate direction, and were afterwards left under my general superintendence. The series commenced in May, 1840, and, with short interruptions, terminated in June, 1845, thus furnishing a five years' series of magnetic observations, taken bi-hourly up to October, 1843, and after that date hourly. The readings of each magnetic

1 See "Observations at the magnetic and meteorological observatory at the Girard College, Philadelphia, made under the direction of A. D. Bache, LL.D., and with funds supplied by the members of the American Philosophical Society and by the Topographical Bureau of the United States, 1840 to 1845. Printed by order of the Senate of the United States, and under the direction of the Topographical Bureau, second session of the twenty-ninth Congress, Washington, D. C., 1847."

Three volumes record and one volume plates.

element were united into mean values, arranged according to hours of the day and days of the month and annual values, and presented graphically, under my direction, by Joseph .S Ruth, esq., who had taken part in the observations, and who was at that time employed in the Coast Survey. As, owing to other laborious duties, the record could not then be submitted to a complete reduction and discussion, I have resumed the subject, with the aid of Charles A. Schott, esq., assistant in the Coast Survey, by whom, under my immediate direction, the discussions contained in this paper have been made and prepared for publication. It is proper to state that this work has been performed out of office hours by Mr. Schott, as my assistant in this special matter, and at my own expense.

Although the magnetic observations furnished by their judicious geographical location, a basis for the generalization of their results, it is, nevertheless, desirable to combine other results with them as confirmations or as corrections. In the investigation of the disturbance law at Point Barrow, as compared with the same at Toronto, a very remarkable mutual relation was developed, and further examination may bring to light other dependencies of a mutual character.

According to the latest determination, the position of the Girard College observatory is in latitude 39° 58′ 23″, (north.) and in longitude 75° 10′ 05″=5h. 00m. 40s. 3 west of Greenwich.¹ From Philadelphia, Toronto bears 38° 45′ west of north, (true,) and is distant 40° 50′ in arc, or about 334 statute miles.

It is proposed, in the present paper, to investigate the law of the eleven-year period, or, as it is more frequently called, the decennial period, there being yet an uncertainty as to its precise length. It is supposed to have some direct or indirect connection with the solar spot period, which, according to late investigations by Prof. R. Wolf,² is said to exhibit corresponding disturbances.

The discussion is a contribution towards the determination of the epoch of the occurrence of a minimum (as to number and magnitude) in certain phases of the magnetic variations and disturbances, corresponding to a minimum in the solar spot period. The method of reduction is substantially the same as that adopted by General Sabine, and explained in his discussion of the Toronto and Hobarton³ observations.

Investigation of the eleven year period in the change of the amplitude of the solar-diurnal variation of the magnetic declination, comprising the regular as well as the disturbed diurnal variation.

While the magnitude of the deflection is the only criterion for the recognition of a disturbance, the adoption of any limit of deviation from the normal value for the same hour, month, and year, must necessarily remain in some measure arbitrary, or, in other words, there must always remain, after the separation of the disturbances, a certain small amount of their effect in the remaining regular diurnal progression. General Sabine has shown that the results are

¹ This longitude depends on that of Cambridge observatory, for which 4h. 44m. 30s.25 has been adopted.

² Astronomische Nachrichten, No. 1091, (May, 1857.)

³ See three papers, by General Sabine, on periodical laws discoverable in the mean effects of the larger magnetic disturbances. Philosophical Transactions of the Royal Society, 1851, 1852, and 1856.

not sensibly affected by a small variation in the line of separation of the disturbed from the undisturbed readings.¹

To effect the separation, I made use of Peirce's criterion² for the rejection of doubtful observations, applying it, however, to observations following a law different from the regular one.³ From an examination of 465 hourly observations, distributed over different hours of the day and different months of the year, the following was the limit of separation:

94.3 from six months in 1840; 8.1 from six months in 1843; 6.0 from six months in 1845.

The mean of 7.8 divisions, equal to 3'.6 of arc, has been adopted provisionally. Accordingly, all numbers in the printed record of observations, differing 7.8 scale divisions (or 10.3 divisions for June, and up to July 18, 1840,) for the mean monthly value of each hour of observation, were marked in pencil. It was found that the ratio of the disturbed observations to the total number was 1: 9.6, or for the years 1843, 1844, 1845, 1: 13.3 nearly, (the years 1843 and 1845 being incomplete, and omissions only approximately allowed for.) For comparison with the Toronto observations we have the ratio 1: 9.4 for the series 1841 to 1848 inclusive, and 1: 13.6 for the series 1843, 1844, 1845, both for the limit 3'.6, which was afterwards raised to 5'.06. It was thought desirable in comparing these results, and especially as the Girard College observations do not extend either way to years of maximum of disturbance, which would otherwise require the enlargement of the limit to preserve the limit as pointed out by the criterion; hence a deviation from the normal of 8.0 scale divisions as a convenient number, 3'.64 of arc, has been adopted for the present discussion as constituting a disturbed observation. Previous to July 18, 1840, the declinometer had a different scale, one division being 20".7, making the corresponding limit for the first month and a half 10.6 divisions.

All observations, therefore, differing 8.0 scale divisions from the mean monthly value of their respective hour were marked by a pencil line; a new hourly mean was taken, omitting values so marked, and each observation was again examined with reference to its deviation from this new mean. The process was repeated, when necessary, so that in all cases values differing 84.0 or more from the final mean were excluded. The last mean thus obtained for each observing hour and each month has been called "the normal." The following tables of normals present the mean monthly declinometer readings for each observing hour, free from all disturbances, deviating either way 3'.64 or more from the normal position of the magnet for the respective hour, month, and year. The observations having been made at the even Göttingen hours, the local times are 19½ minutes after the even hour. The time given in the tables is mean local time, counting from midnight, or 0h. up to 24h.

Increase in the scale readings corresponds to a decrease of westerly declination. The value of one division of the scale is 0'.453.

¹ In the first discussion of the Toronto observations for the years 1843, 1844, 1845, the limit of 3'.6 was adopted, corresponding to one disturbance in every 13.6 observations; in the second discussion 5'.0 was substituted as preferable. Phil. Trans. 1856, art. XV.

² Gould's Astronomical Journal, Vol. IV, No. 83, 1855.

³ A similar application was made in the discussion of Dr. E. K. Kane's magnetic observations at Van Rensselser harbor, North Greenland, by Mr. Schott. Smithsonian Contributions to Knowledge, vol. X, 1858.

⁴ Observations made at the Magnetical and Meteorological Observatory at Toronto, in Canada, under the superintendence of Colonel Edward Sabine, vol. II, 1843, 1844, 1845, with abstracts of observations to 1852, inclusive. London, 1853.

⁵ Phil. Trans, R. S., 1851, art. V.

Observations made at the Magnetical and Meteorological Observatory at Toronto, in Canada, under the superintendence of Major General Edward Sabine, vol. III, 1846, 1847, 1848, with abstracts of observations to 1855, inclusive. London, 1857.

⁷ The observations were made at the even Gottingen time, 64. 90m., corresponding to 64. 194m., of Philadelphia time.

TABLE I.

Normals of the declinometer readings for each observing hour and month in the year 1840.

[Observations taken 19] minutes after the hour indicated.]

					PHIL.	ADELPHI	A MEAN	TIME.				
MONTHS.	04.	24.	4h.	6A.	8h.	10ሴ.	Noon.	14h.	16%	18h.	20%	22h.
	۰	•	•	•		•		•	۰		•	•
June*	494.4	495.0	497.5	504.0	502.7	493.8	485.5	483.4	487.9	492.8	492.5	493.6
July	497.3	497.2	498.9	504.7	5 05.5	495.4	484.5	484.0	488.7	493,3	495.5	496.
August	495.3	495.7	498.8	506.4	509.1	489.4	480.5	481.9	488.2	493, 2	494.9	496.
Septemberf	492.5	495.2	496.9	503,2	502.5	490 .8	477.3	479.5	4:84	489 9	493.3	492.6
October	492.5	490.4	491.I	489.1	489.2	484.1	478.4	477.3	4819	485.3	485.9	493
Vovembert	481.1	480.6	482.9	483.7	486.4	481.7	474.2	472.5	477.5	480.8	483.6	482.7
December	477.9	475.2	479.8	479.5	480.5	480 6	470.7	471.6	472.7	478.5	479.0	481.9
Mean	490.14	489.90	492.27	495.80	496,56	487.86	478.73	478.60	483.61	487.83	489.24	490.80
Correction §	- 5.21	5.10	5.33	4.68	5.17	5.85	5.05	4.65	4.46	4.36	4.75	5.2
Mean for 1840	495.35	495.00	497.60	500,48	501.73	493.71	483.78	483.25	488.07	492.19	493,99	496.05
Correction for index	93,30	••••			· ···	····						
Corrected mean for 1840	588.65	588,30	590.90	593.78	595,03	587,01	577.08	576.55	581.37	585 49	587.29	589.3

^{*} The readings from June 1 to July 18, (15 hours,) on the college building scale, were converted into observatory scale readings by subtracting 144°.7 at division 628.8 of the old scale, and converting the value of a division 0.345 of the old into the corresponding reading for the value of a division 0.453 of the new scale. The mean readings, thus corrected, of the first 18 days of July, were then properly combined with the mean of the remaining days of the month.

TABLE II.

Normals of the declinometer readings for 1841.

[Value of 1 div. = 0'.453. Time, 194 minutes later than indicated.]

					PHILA	DELPHIA	MEAN T	TMR.				
MONTHS.	0à.	2k.	4h.	6 A .	8h.	10h.	Noon.	144.	16ħ.	18 4 .	205.	22h.
	•	•				•	•	•	•			
January	579.3	577.0	578.6	576.9	580.7	581.9	570.0	568.8	570.3	574.2	578.0	590.1
February	575.0	573.2	575.6	577.8	582.1	579.5	569.5	566.0	569.5	572.4	574.4	575.8
March	577.1	577.6	580.9	582,9	586.8	578.9	569.4	567,7	571.8	576.4	577.4	577.7
April	580.0	581.9	582,9	585.6	587.6	579.4	568.8	566.1	571.7	576.9	578.0	579.1
May	579.1	579.8	581.9	587.4	589.1	578.6	569.4	567.9	573.6	577.4	578.5	580,1
June	571.7	572.2	574.7	583.3	582.6	571.1	561.6	560.3	565.0	570.1	570.9	570.8
July	569.9	568.5	571.6	578.4	581.2	571.8	558.9	557.3	562.3	567.2	568.8	568.6
August	568.4	570.3	571.6	580.1	583.9	568,9	558.3	555,9	564.0	566.8	568.6	568.9
September	565.1	564.5	565.5	569.4	571.1	564.1	553.6	554.5	559,5	562.9	563.8	564.0
October.	566.8	566.3	565.5	567.6	569.4	568,9	564.0	569.3	564.7	573.5	568.6	569,3
November	557.9	558.5	558.5	557.6	561.7	557.1	551.8	549.9	553.4	554.9	558.0	558.6
December	560,1	559.3	560.5	559.6	560.1	558.1	552.9	551.7	555,8	559.6	563.3	561.6
Mean	570.81	570.76	572,32	575.55	578.03	571.47	569.35	560 .78	565.13	569.36	570.70	571.95

f In the month of September, hour 8, the comparisons were made with the half-monthly means, owing to the rapid change of the readings.

On the 23d of November the index of the declinometer bar shifted 19.5 scale divisions. A correction of + 19°.5 has therefore been added to observations after this date, and likewise to all the readings of the following month.

[§] The corrections here given for referring the mean of the last seven months of the year to the mean for the whole year are derived from the normals of the following year 1841, by comparing the mean of the same seven months with the annual mean of that year. Comparing the same months in the two years, the character of the changes appears to be about the same.

§ A further correction for change in the zero of the scale required to refer the readings of 1840 to the readings of subsequent years. Owing to a

A further correction for change in the zero of the scale required to refer the readings of 1840 to the readings of subsequent years. Owing to a rearrangement of the instruments on January 7, 1841, the scale readings changed 112.8 divisions; and since 19.5 scale divisions had been added to the December readings, the resulting correction is the difference of the two, or +93°.30.

In general during the year 1841, the readings are more changeable than during the following years.

The re-arrangement of the instruments, and consequent shifting of the index of the scale, alluded to in the preceding notes, interrupted the observations between January 1 and January 12,

The normal for October, 14h, was obtained by comparing with the half monthly means and taking the mean of the two results as in a similar case for the month of September of the previous year.

TABLE III.

Normals of the declinometer readings for 1842.

[Value of 1 div. = 0.453. Time, 194 minutes later than indicated.]

					PHILA	DELPHIA	MEAN TI	ME.				
MONTHS.	Oh.	2A.	44.	64.	8 A .	10 k .	Neon.	14h.	16A.	18h.	204.	2 2h.
	•	•	•				•	•	•	•		
January.	564.3	563.8	565.3	565.9	570.9	566.4	556.7	556.0	562.9	563,2	566.1	567.8
February	564.5	564.3	563.8	565.2	567.8	565.5	558.2	559.9	558.0	561.9	565.3	565,5
March	564.8	564.1	565.4	566.1	571.8	565.9	555 6	553.9	556.4	560.3	564.5	564 \$
April	563.3	565.4	566 l	568.5	569.7	563,6	554.0	559.5	555,1	560,6	561.3	£63 €
May	563,3	564.3	566.0	571.2	569.5	560.0	552.6	552.3	557.7	560.8	561.8	562.
June	564.6	563.7	567.2	573.7	573.0	565.2	555.1	552.5	558.3	561.8	563.7	564.
July	566.0	566.0	568.4	576.6	576.4	565.8	556.3	553.8	558.5	562.4	564.2	567.
August	564.8	566.0	568.5	573,7	575.0	560,0	552.3	553.7	561.5	562.2	564.1	564.6
Beptember	567.4	567.8	570.0	576.8	574.9	561.2	556.0	555.4	592.0	565.7	566.7	566.€
October	563.1	563,1	564.4	566,0	568.8	564.0	556.0	555.0	558.2	564.3	565.0	565.3
November	564.2	563,8	565.6	566.9	569.2	563.3	556.6	557.3	561.2	564.0	565.5	565.6
December	561.7	560,7	562.1	562,7	565.5	564.2	556.6	556.2	560.1	562,0	563.5	563.8
Mean	564.33	564,42	566.07	569,44	571.04	563.76	555.50	554.54	559.16	562, 42	564.31	564.99

TABLE IV.

Normals of the declinometer readings for 1843.

[Value of 1 div. = 0'.453. Time, 194 minutes later than indicated.]

MONTH#.					PHILA	DELPHIA	MEAN T	ME				
RUX 1 Da	0 <i>ħ</i> .	24.	4h.	6h.	8 h .	10ሕ.	Noon.	144.	16h.	184.	20A.	22h.
	0	•	•	•	•	•		•	•	•	•	•
January			1					555.4		••••		
February				••••			••••	555.9				
March			••••				1	557.2				
April	569.7	570.0	571.0	574.7	576.2	566.2	557.8	555.7	562.6	564.8	568.5	568.
May	567.0	567.3	569.6	574.6	575.6	565,7	556.0	556.2	562.2	566.4	566.9	567
June	566.0	565.6	568.4	574.1	573.9	564.8	556.4	556.0	561.1	564.3	564.0	565.
July	566.9	565.9	568.2	574.2	574.6	564.5	555.1	554.1	559.5	563.6	563.6	565
August*	564,2	564.5	567.2	573.5	572.7	560.5	555.1	554.6	561.2	563.6	562.3	564
September	560.4	560.4	560.3	565.7	566.6	554.6	547.5	550.5	556 8	558.0	560.0	558
October	559.6	559.6	559.9	569.1	566.0	560.8	553.6	552.7	556.2	558.2	560.1	559
November	556.3	556.6	557.4	559.1	561.3	556.2	550.4	551.1	553.8	556.3	557.5	557.
December	559.0	557.4	557.8	560.0	561.9	559 9	559.9	550.9	554.6	558.9	559.6	559
Mean	563,23	563,03	584.42	568.67	569.79	561.47	553.42	554.19	558.67	561.50	562.52	563.6
Correction †	+0.06	-0.11	_ 0.41	-1.24	-0.30	+ 0.63	+0.44	•••••	-0.62	-0.23	+0.33	+0,
Corrected mean	563.29	582.92	564.01	567.43	569.49	562.10	553.86	554.19	558.65	561,97	562.85	563.

^{*} The suspension threads of the declinometer gave way on the 9th of August, and again on the 16th of January, 1844; but, after re-adjusting the instrument, the magnet returned almost exactly to its former reading—a mean of the two changes gave as a correction, + 18.7 divisions, which was accordingly added to all the readings of the year after August 9. 21 hours.

[†] The correction to refer the mean of the last nine months to the mean of all the months is derived from the readings of the preceding year, as being more uniform in character than those for the year following.

The hourly readings commence on October 1, and are continued to the close of the series.

To make the readings of the odd hours of the months of October, November, and December comparable with those of the even hours during the whole year, the means of the even hours for the months of October, November, and December (1843) were compared with the corrected annual means respectively, which gave the corrections for the even hours; and the corrections for intermediate odd hours were obtained from those of the nearest even hours. The deductions from the series of observations at odd hours have but one-third of the weight of those obtained from the even series.

TABLE IV, (b.)

Additional normals for the odd hours of the months of October, November, and December, 1843.

[Value of 1 div. = 0'.453. Time, 19t minutes later than indicated.]

MONTHS.					PHILA	DELPHIA	MEAN T	ME.				
aun I II a.	1h.	3h.	5h.	7 h .	9 h .	11h.	13A.	15A.	17h.	19A.	214.	23h.
October	560.2	559,1	560.6	565.1	565.0	556.5	552,6	554.2	557.0	559.7	561.1	560.7
November	556.7	556.6	557.4	561.8	560.1	552.6	550.0	552.6	554.9	557.5	557.7	557.4
December	558.1	558.2	558.8	560.8	561.9	556.7	551.4	553.1	557.5	556.9	560.0	559,5
Мевп	556.33	557.97	558.93	562,57	562.3 3	555.27	551.33	553,30	556,47	558.70	559.60	559.20
Correction	+5.01	+ 5.37	+6 36	+6.84	+4.92	+2.37	+ 2.09	+3.20	+3.74	+ 3.74	+4.08	+4.70
Corrected mean	563.34	563.34	565,29	569.41	567.25	557.64	553.42	556.50	560.21	562.44	563.6 8	563.90

TABLE V.

Normals of the declinometer readings for 1844.

[Value of 1 div. = 0'.453. Time 194 minutes later than indicated.]

					PHILA	DELPHIA	MEAN T	ME.				
Months.	0 & .	1 λ .	2A.	Jā.	4h.	5h.	6A.	74.	8à.	94.	10 4 .	11h.
		•				•	•	•		٥	•	•
January	558,6	558.2	558.4	559.2	558.9	558.8	559.7	561.2	562.9	563.3	559.1	555,9
February	559.1	558 5	559.1	559.2	559.9	561.1	560.8	562.1	562.2	560.7	557.3	554.5
March	558,0	559.0	559.2	557.9	559.8	560.2	561.3	563,6	564.8	564 1	560.3	554.9
April	556.6	557,0	557.2	556.9	557.5	558.4	561.7	558.5	564.4	561.8	557,1	552.0
May	548.4	548.7	547.8	547.0	549.3	552.5	555.8	556.8	555.1	552,3	546.7	542,2
June	548.7	549.0	549.3	549.1	551.6	553.9	557.6	559.1	558.2	554.3	547.9	541.8
July	549.0	550.5	548.4	549.4	551.0	554.3	556.9	559.8	558.6	554.8	548.0	540.8
August	548.6	547.8	547.3	547.4	550.9	552.4	557.5	560.3	558.2	551.8	543.3	536.4
September	543.3	543.1	544.1	546.0	546.5	547,1	550.0	552.9	552.4	545.8	538.3	539,5
October.	545.1	545.3	544.2	546.1	545.8	544.4	548.6	550.9	551.5	548.7	545.3	540.8
November	546.8	546.8	548.3	548.6	547.4	548.5	551,5	549.2	548,4	547.9	546,2	542.8
December	536.1	535.8	535.4	535.9	536.8	537.3	537.2	536.8	537.9	539.3	1,662	532,9
Mcan	549.86	549.98	549.89	550.23	551,28	552,41	554.88	555.93	556,92	553.73	548.80	543,96

TABLE V-Continued.

					PHILA	DELPHIA	MEAN T	IME.				
MONTHS.	Noon.	13ћ.	14h.	15A.	16A.	17h.	18A.	19 1.	20h.	21h.	224.	23h.
	•		•		0		•	•	0	0		•
January	552.9	552.4	553.2	554.1	556.3	556.9	557.8	559.2	559.5	560.9	560,8	559.6
February	551.1	551 1	553 0	554.7	556 4	556.6	557.6	558.4	559 9	559,4	550,1	559.0
March	550.6	549.4	549.6	551.7	553.0	555.2	556.6	558.0	558.4	5 58.2	558.6	559.7
April	547.4	545.7	546.2	547.6	549.6	553.4	553.4	553.8	556.2	555,1	555.7	559.3
May	538.3	535.8	536 5	538.9	542.1	545.1	545.2	546.5	546.3	547.3	517.3	547.8
June	537.4	535.0	537.3	540.0	542.4	545.2	543.6	548.2	545.5	546.8	548.0	548.5
July	538.3	535.5	536,3	538.8	511.9	544.5	545.8	546.2	546.6	547.4	548.8	549.3
August	531.8	532.0	534.3	538.7	542.1	544.3	546.0	546.5	546.7	546.6	547.8	547.7
September	5:9.3	530.0	534.1	538.3	539.4	541.9	542.4	541.9	543.0	544.6	543.7	543.3
October	541.1	539.5	541.4	544.0	545,7	515.4	545.6	545.0	544.9	544.6	544.5	544.6
November	542.8	541.7	541.5	546.1	545.6	547.9	548.8	548 2	548.3	549.6	548.0	548 0
December	530.6	529.3	529.4	532.1	533.2	531.8	535,9	537.0	536.8	537.4	537.8	537.1
Menn	540.97	539.78	541.32	543.75	545.64	547.6	548.41	548.91	549.43	549.83	550,10	550.33

To the observations between January 1 and January 10 n correction of + 19°, 7 was applied, as explained in the preceding note.

In the month of December the declination changed so rapid y as to require the use of half monthly means; the mean of the two results is inserted in the above table.

TABLE VI.

Normals of the declinometer readings for 1845.
[Value of 1 div. = 0'.483. Time 194 minutes later than indicated.]

	PRILADRIPHIA MEAN TIME.												
MONTUS.	0ኤ.	۱ħ,	2ħ.	3h.	4h.	5 h.	64.	74.	84.	9k.	104.	11h.	
		•	•	•	-	•	•		•	•	•		
January	530.9	531.3	531.1	531.5	533.0	531.6	532,9	535.2	535,8	533.8	530.2	526.7	
February	531.6	531.1	531.0	532.4	532.3	533.1	534.7	535.9	535,7	535.4	533.0	528.6	
March	532.9	532.7	533.7	533.6	535.0	533.9	536.0	538.8	539.4	538.6	534.5	529.4	
April	529.1	528.8	529.0	529.2	529.8	531.7	534.0	535.6	537.5	535 4	528.5	522.5	
May	529.9	531.3	529.7	531.7	533.2	536.3	539.3	541.9	540.7	536 0	528.0	522.6	
June	531.5	531.7	531.6	532.0	534 8	537 9	541.9	543.5	542.5	538.6	532.2	524.9	
Mean	530.98	531.15	531.02	531.73	533,02	534.08	536 47	538 48	538.60	536.30	531,07	525.78	
Correction*	- 2.42	-2.50	-2.58	- 2 41	-2 26	-2.03	-1.81	— 2.01	- 2.21	-2.76	-3,30	_ 2.94	
Corrected mean	528.56	528.65	528,44	529.32	530.76	532.05	534.66	536.47	536.39	533,54	527,77	522.84	

TABLE VI—Continued.

MONTES.					PHILA	DELPHIA	MEAN T	INE.				
	Noon.	134.	142.	15A.	164.	17Å.	18h.	194.	204.	214.	52λ.	23A.
January	524.2	525.2	526.2	5 28.0	530.1	531.8	532.7	532.8	533.3	533.0	532.4	532.0
February	524.4 524.8	523.0 522.5	525.3 522.8	527.5 524.8	529.7 527.8	530.4 529.7	532.4 531.6	531.3 533.0	533.6 533.0	531.4 533.8	532.3 533.5	531.9 534.0
April	517.8 517.1	513.9 516.8	514.0 518.9	517.2 522.1	521.5 526.7	525.8 529.3	527.8 529.6	597,9 530,4	528.1 529.7	528.5 530.3	528.0 530.5	529.4 530.3
June	521.3	519.6	520,0	592.1	525,4	528 9	530.3	530.7	530.1	530.7	530.3	531.4
Mean	521.66	520.17	521.20	523.62	526. 87	529.32	530.75	531.02	531.30	531.7 8	531.17	631.50
Correction*	- 2.59	2 28	1.98	1.80	-1.62	-1.64	 1.6 5	1.99	-2.23	- 2.36	-2.47	_ 2.44
Corrected mean	519.0	517.89	519,22	521.82	525.25	527.68	529.0t	529.03	529,07	529.42	528.7	529.06

^{*} As indicated by the annual change in the readings, it was considered preferable to obtain the annual mean by deducing the correction to the mean of the first six months from the readings of the preceding year and those of the year 1642.

For the purpose of comparing the annual means of the normals, or the mean march of the regular solar-diurnal variation for each year, the preceding results have been expressed analytically by means of Bessel's formula, and by the application of the method of least squares.

In these formulæ the angle ⊕ is reckoned from midnight, (Philadelphia,) at the rate of 15° for each following hour. It was found unnecessary to carry the expressions beyond the third term, the fourth being generally smaller than the probable error of an hourly normal. We obtain accordingly—

```
For 1840..... D = 586^{\circ} 73 + 6^{\circ}.214 sin. (6 + 36^{\circ} 35') + 4^{\circ}.588 sin. (2 + 217^{\circ} 33') + 1^{\circ}.640 sin. (3 + 68^{\circ} 50'.)

1841..... D = 569^{\circ}.87 + 4^{\circ}.888 sin. (6 + 30^{\circ} 05') + 4^{\circ}.380 sin. (2 + 212^{\circ} 38') + 1^{\circ}.581 sin. (3 + 50^{\circ} 14'.)

1842..... D = 563^{\circ}.33 + 4^{\circ}.944 sin. (6 + 33^{\circ} 49') + 4^{\circ}.211 sin. (2 + 217^{\circ} 12') + 1^{\circ}.463 sin. (3 + 64^{\circ} 42'.)

1843..... D = 562^{\circ}.01 + 4^{\circ}.449 sin. (6 + 36^{\circ} 00') + 3^{\circ}.918 sin. (2 + 218^{\circ} 05') + 1^{\circ}.811 sin. (3 + 68^{\circ} 18'.)

1844..... D = 548^{\circ}.89 + 4^{\circ} 486 sin (6 + 34^{\circ} 35') + 3^{\circ}.872 sin. (2 + 222^{\circ} 23') + 1^{\circ}.802 sin. (3 + 68^{\circ} 53'.)

1845..... D = 528^{\circ}.12 + 4^{\circ}.548 sin. (6 + 35^{\circ} 33') + 4^{\circ}.872 sin. (2 + 225^{\circ} 35') + 1^{\circ}.897 sin. (4 + 61^{\circ} 20'.)
```

Owing probably to the several accidental changes in the suspension of the bar, and consequent uncertainty in the precise amount of scale correction, the mean readings of each year, when compared with one another, exhibit differences not actually due to inequalities occasioned by declination changes. This question, however, does not directly bear upon the present investigation, which mainly depends on differences of readings; and it is proper to remark that the observed increase, giving the weight one-half to the mean of 1840 and of 1845, is under the supposition of a uniform annual change between these years equal to 4'.50. From Mr. Schott's investigation* of the secular change of the declination at Philadelphia, supported by observations between the years 1701 and 1855, the annual increase between the years 1840 and 1845 is 4'.98, a result which accords tolerably well with actual observations. According to his formula, the declination on the first of January, 1843, the mean epoch of the present series was 3° 32' west, with a probable error of \pm 10', which corresponds to the scale reading 560.31, deduced by taking into account the weights of the annual means.

We now proceed to the investigation of the inequality in the diurnal variation, changing the preceding formula, for greater convenience, into the following:

In which Δ = the regular solar diurnal variation, and n the number of hours after midnight.

To show the agreement between these expressions and the corresponding observed quantities, and to exhibit to the eye the character of the diurnal variation, the results have been thrown into curves. The observed bi-hourly means are represented in diagram 2, Sketch 37, by dots, and in no instance do they differ from the computed values by as much as 0°.8 or 0'.3. As a specimen of the representation, I add the results for the year 1845:

⁶ Report on the progress of the U. S. Coast Survey for 1855, Appendix No. 48 and Appendix No. 24 of the report for 1859.

Hour.	Observed value.	Computed value.	с—о.	Hour.	Observed value.	Computed value.	c-0.
h. m. 0 194	o 528, 56	o 528. 99	0 + 0.43	h. m. 12 19‡	o 519.01	o 519, 23	+ 0.22
2 193	528.44	528. 48	+ 0.04	14 191	519. 22	518.96	0. 26
4 191	530.76	530. 26	- 0.50	16 194	525. 2 5	525. 18	— 0. 07
$6 ext{ } 19\frac{1}{2}$	534. 66	535. 11	+ 0.45	18 19រ្ន	529.08	529. 15	+ 0.07
8 191	536. 39	535, 97	— 0. 42	20 191	529.07	529. 07	0.00
10 194	527.77	528. 18	+ 0.41	22 19 1	528. 70	528. 86	+ 0.16

The average probable error of any single representation by the formula is $\pm 0^{\circ}.22$, or $\pm 0^{\circ}.10$.

By means of the preceding formulæ the following values were computed: 1. The time when the north end of the magnet reached its extreme eastern position, or, in other words, the epoch of the eastern elongation. 2. The corresponding maximum scale reading, or, more properly, the corresponding minimum of western declination. 3. The time of the occurrence of the western elongation; and, 4. The corresponding maximum reading of western declination. In the last two columns the difference of the scale readings, or the amplitude of eastern and western elongation, is made out in scale divisions, and also in minutes of arc. The inequality of this amplitude next requires our attention.

For—	Epoch cf eastern deflection.	Corresponding scale reading.	Epoch of western deflection	Corresponding scale reading.	Amplitude.			
1840	h. m. 7 26 a. m	o 5 95. 67	h. m. 1 34 p. m.	o 575. 71	o 19, 96	, 9. 08		
1841	7 49	577.96	1 49	560. 21	17. 75	8. 06		
1842	7 36	571.24	1 37	553, 96	17. 28	7.83		
1843	7 40	569. 54	1 24	553. 06	16.48	7.46		
1844	7 32	556.50	1 18	539. 99	16.51	7. 51		
1845	7 34	536. 65	1 16	517.81	18.84	8. 53		
Mean	7 36 a. m.		1 30 p. m.					
	± 3		± 4					

The inequality constituting the ten or eleven year period is plainly exhibited in the last two columns of the above table, the progression in the numbers being quite regular. The year 1843 is clearly indicated as the year of the minimum range of the diurnal fluctuation, but whether the period is one nearer to ten or to eleven years cannot be decided from the Girard College observations, since they do not embrace a year of maximum amplitude. The epoch of the minimum, however, can be determined with more precision. For this purpose only, the values in the last column are represented by the formula,

$$A = 9'.08 - 1'.14 (t - 1840.5) + 0'.201 (t - 1840.5)^{2},$$

deduced by the method of least squares, and the quantities come out as follows:

Year.	Observed amplitude.	Computed by formula.	Difference	Year.	Observed amplitude.	Computed by formula.	Difference.
1840. 5	91.08	9'. 08	0′. 00	1843. 5	7'. 46	7'. 47	0'. 01
1841.5	8'. 06	8'. 14	0'. 08	1844.5	7′. 51	7'. 74	0'. 23
1842.5	7′83.	7'. 60	+ 0′. 23	1845.5	8'. 53	8'. 41	+ 0′. 12

Probable error of any single amplitude, + 0'.11.

That portion of the ten or eleven year period which results from the preceding discussion of the differential observations of the magnetic declination, free from the effect of the disturbances, as far as the latter can be eliminated, is shown graphically in diagram 1, Sketch No. 37.

The month of May, in the year 1843, is indicated by the formula as the epoch of the minimum amplitude.

We now proceed to the discussion of the disturbances as far as they bear on the decennial inequality, taking in also some collateral results.

The total number of observations for changes of declination recorded and discussed amounts to 24,566; of these, 2,357 were separated as disturbances differing eight scale divisions or more from their respective normals, leaving 22,209 observations, from which the preceding results were deduced. There is one disturbed observation in every 10.4 observations.

The discussion of the disturbances divides itself into two parts, that of the number and that of the amount of the larger deflections.

Owing to partial incompleteness in the number of observing months in some years, it became necessary to fill out the number for the annual inequality from the results of the complete years. Their number for each month in the complete years is given in the following table, the numbers for 1844 having first been divided by two, in order to make the hourly observations comparable with the bi-hourly in the years 1841 and 1842:

Month.	1841.	1842.	18 44 .	Mean.	Ratio.
January	33	44	5	27	0.75
February	25	26	5	19	0.53
March	26	24	24	25	0.70
April	25	31	39	32	0.89
May	33	14	17	21	0. 58
June	31	30	7	23	0.61
July	30	40	15	28	0.78
August	49	64	44	52	1.45
September	57	60	31	49	1.36
October	94	86	53	78	2, 17
November	81	22	42	48	1. 33
December	55	5	26	29	0, 82
Sum	539	446	308	431	12.00
Mean				36	1.00

Corrected sum and mean...

483

The last column contains the ratio of the mean monthly value to the mean annual value. By means of these ratios, and using the observed monthly values in each defective year, the numbers in the following table were filled up, all the deduced values being indicated by brackets. As in the preceding table, the values refer or were made to refer to bi-hourly observations.

Month.	1840.	1841.	1842.	1843.	1844.	1845.	Mean.	Ratio.
January	(30)	33	41	(17)	5	19	25	0.77
February	(21)	25	26	(12)	5	13	17	0.52
March	(28)	26	24	(16)	24	14	22	0. 68
April	(36)	25	31	21	39	2 4	29	0. 91
May	(24)	33	14	15	17	11	19	0. 58
June	8	18	30	12	7	12	17	0.53
July	44	30	40	20	15	(17)	28	0.86
August	40	49	64	80	14	(32)	51	1.59
September	56	57	60	27	31	(30)	44	1.36
October	94	94	86	16	53	(48)	68	2. 12
November	19	81	22	8	42	(28)	35	1.08
December	83	55	5	4	26	(18)	3 2	1.00
Sum	344	539	446	239	308	91	387	12.00

Table showing the number of disturbances in each month of the years 1840 to 1845.

The ratios in the last column show the annual inequality in the distribution of the disturbances. The principal maximum occurs in October,* the secondary in April; the two minima, nearly of equal amount, occur in the months of February and June. The progression of the numbers is regular.

275

264

32

1.00

If we separate the numbers in accordance with westerly and easterly deflections we obtain the following table, deduced as in the former case. It may be remarked that on account of the separate ratios used for the interpolation of the western and eastern deflections, their sum in any one month does not give the corresponding number in the above table exactly, only the yearly sums having been preserved; and the same is true in regard to the table, showing the amount of the disturbances. Interpolated values, as before, are enclosed between brackets.

⁶ At Toronto this maximum occurred in September; the first minimum is likewise one month earlier at this station than at Philadelphia.

Month.	18	10.	18	341.	18	42.	18	43.	18	344.	18	45.	Su	ms,	Rat	tios.
	₩.	E.	w.	E.	w.	E.	w.	E.	w.	E.	₩.	E.	w.	E.	w.	E.
January	(36)	(2)	25	8	35	9	(22)	(7)	2	3	10	9	130	38	1,27	0.42
Pebruary	(17)	(3)	9	16	17	9	(13)	(9)	3	2	11	2	70	41	0.70	0.46
March	(23)	(5)	11	15	17	7	(15)	(6)	10	14	9	5	85	52	0.83	0,57
April	(27)	(5)	10	15	14	17	7	14	25	14	15	7	98	72	0.95	0.80
May	(17)	(4)	18	15	8	6	7	8	4	13	3	8	57	54	0 55	0.60
June	3	5	15	16	17	13	2	10	3	4	5	7	45	55	0.44	0.61
July	17	27	5	25	14	26	11	9	6	9	(7)	(11)	60	107	0.58	1.18
August	20	20	18	31	55	9	67	13	25	19	(20)	(11)	205	103	2.00	1.14
September	36	20	14	43	11	49	6	21	18	13	(11)	(21)	96	167	0.92	1.86
October	68	26	31	60	17	69	6	10	23	30	(15)	(36)	163	925	1 58	2.50
November	11	8	41	40	11	11	5	3	16	26	(15)	(14)	99	102	0.96	1.12
December	77	6	21	31	1	4	2	2	12	14	(8)	(10)	124	67	1.21	0.74
Sum	232	112	224	315	217	229	113	90	147	161	53	38	1232	1083	12,00	12.00
Corrected mean	352	131	•••••				163	112			129	135	ļ			
Total	4	83	5	39	4	46	27	75	3	08	2	64	2	315		••••••

The ratios show a general correspondence in the number of westerly and easterly deflections; the westerly deflections seem to occur most frequently in August, while the easterly predominate in October; the secondary maximum of either series is in April. The minima remain nearly as before, one minimum of eastern deflection occurring in January.

With respect to the whole number of westerly and easterly deflections, we deduce the proportional sums from the following table:

Year.	W.	E	Sum.	
1840	352	131	483	Weight 4.
1841	224	315	539	
1842	217	229	446	
1843	163	112	275	Weight 3.
1844	147	161	308	
1845	129	135	264	Weight 1.
Sum	1232	1083	2315	
Proportional sums by weight.	937	912		

On account of the incompleteness of the record in the years 1840, 1843, and 1845, the number of eastern and western disturbances relative to the total number cannot be ascertained with accuracy. They are about equal in the record. At Toronto the eastern predominate over the western in the proportion of 1. 17 to 1 (for the years 1841 to 1848,) and nearly to the same extent for each year, taken separately.

The numbers in the column headed "sum" do not indicate the law of the eleven year period as plainly and systematically as they did the investigation of the diurnal amplitude; yet giving half weight, on account of the want of record, to the sums for 1840 and 1845, the minimum number falls in the year 1843. More consistent results would, no doubt, have been obtained if the year 1845 had been complete.

If we distribute the disturbances (1,942 in number for the even hours) according to their respective hours of occurrence, the following table results from observations between 1840 and 1845:

	w.	E.		RAT	70s.	A 11 101	337	5 0		RATI	os.
Add 193 m.	Aud 155 III. W. E.	Sum.	W.	E.	Add 19½ m.	w.	Е.	Sum.	w.	Е	
Hours.						Hours,					-
0	67	95	162	0.82	1. 20	Noon.	93	57	150	1.13	0.71
2	97	92	1890	1.18	1.16	14	79	54≎	1330	0.95	0.67°
4	89	79	168	1.08	0.96	16	88	GO	148	1. 07	0.78
6	1100	63	173	1.359	0.80	18	72	71	143	0.87	0.90
8	105	56	161	1. 29	0.70	20	34°	1330	167	0.40°	1.660
10	107	71	178	1. 32	0.88	22	45	125	170	0. 54	1.58

Maxima and minima values are distinguished by an asterisk.

The numbers in each vertical column show a regular progression; and the number of disturbances, irrespective of their direction. have a minimum at 2 p.m. and a maximum at 2 a.m.* The principal contrast is between the hours of the day and the hours of the night; in the former case the numbers being below, but in the latter above the mean value. This is in close correspondence with the Toronto results. The most striking result of the above table is, that the westerly disturbances have their minimum precisely at the hour (8 p.m.) when the easterly have their maximum value; and the exact coincidence of this result with that deduced by General Sabine for Toronto is not less remarkable. For the westerly disturbances, the hours 6 a.m., (maximum,) and 8 p.m., (minimum,) and for the easterly disturbances the hours 2 p.m., (minimum,) and 8 p.m., (maximum,) are specially contrasted. These results also agree with those found at Toronto; and the accordance with that station even goes so far as to exhibit the secondary minimum of eastern disturbances at 8 a.m. In connection with this subject it may be here stated that the same distinguished magnetist found a singular mutual relation to subsist between the phenomena at Toronto and Point Barrow, on the shores of the Arctic sea-the laws of the easterly deflection at one station being found to correspond for the same local hours with those of the westerly deflections at the other station, and vice versa. This contrast holds good for Philadelphia as well as for Toronto.

We now pass to the consideration of the amount of deflections caused by the disturbances, classifying the same according to years, months, and hours:

Aggregate values of the disturbances and mean values in the different years.

Year.	Aggregate values.	Same corrected to 12 months.	Number.	Average value of a disturbance.	Same in minutes of arc.	Same at Toronto for comparison.
	d.	d.		d.	i	,
1840	5140.0 (7 months.)	7155.5	483	14.8	6.70	
1841	7844.4	7814. 4	539	14. 6	6. 61	6, 34
1842	6019. 1	6019. 1	446	13. 5	6, 11	5, 90
1843	2465. 7 (9 months.)	2932. 2	275	10.7	4, 85	5, 62
1844	4227.3	4227.3	308	13, 7	6. 21	6, 49
1845	1138. 6 (6 months.)	3521.4	264	13, 3	6. 02	5.84

^o At Toronto the respective hours are 2 p. m. and 22 p. m.

The table includes only the series of bi-hourly observations, the reduction of the numbers from incomplete years to the correct sum for the whole year being effected by means of ratios, as in the discussion of the number of disturbances. For comparison the average value of a disturbance at Toronto is added. It must be remarked that the amount of deviation from the normal, constituting a disturbance, was nearly but not quite the same at Toronto as at Philadelphia, so that the ratios of the corresponding numbers in the last two columns should be compared.

The eleven year period is well marked in the aggregate value of the disturbances as well as in their average value in the different years; and the year 1843 is decidedly indicated as the minimum. To find a more precise value for the epoch of the minimum, the formula

$$\delta = 7'.09 - 0'.930 (t - 1840.5) + 0'.149 (t - 1840.5)^2$$

has been constructed, which represents the observed values as follows:

Year.	Observed amount.	Computed amount.	Difference.	Year.	Observed amount.	Computed amount.	Difference.
1840. 5	6'. 70	7'. 09	+0'. 39	1843. 5	4'. 85	5'. 64	+0′. 79
1841. 5	6'. 61	6'. 31	—0'. 30	1844 5	6'. 21	5'.75	0'. 46
1842. 5	67, 11	5′. 83	0'. 2 8	1845. 5	6'. 02	6.16	+0′. 14

The first and last value have only half weight. According to the formula, the minimum took place in August, 1843. (See diagram 3, sketch No. 37.)

As the resulting epoch from the differential observations with the declinometer, we find the month of June, 1843, by giving double weight to the result deduced from the inequality of the diurnal amplitude.

Separating into western and eastern disturbances, we find-

1	West	deflections		East deflections.			
Year.	Aggregate value.	n.	Average value.	Aggregate value.	n,	Average value.	
	d.		,	d.		,	
1840	5064.8	352	6. 52	2090. 7	131	7.20	
1841	2935.5	224	5, 93	4908. 9	315	7.07	
1842	2645.9	217	გ. 53	3373. 2	229	6.70	
1843	1741.6	163	4.85	1190. 6	112	4. 85	
1844	2019.7	147	6. 21	2207. 6	161	6. 21	
1845	1489. 2	129	5, 25	2032. 3	135	6.84	

From which it appears that the easterly values preponderate over the westerly in the ratio of 1.14 to 1. The ratio from the Toronto observations between 1844 and 1448 is 1.28 to 1.

· The following table shows the aggregate amount of disturbances in each month of the different years, or the annual inequality of the aggregate disturbances.

Month.	1840.	1841.	1842.	1843.	1844.	1845.	Mean.	Ratio.
	d.	d.	d.	d.	d.	d.	d.	·
January	(418.4)	423.6	585.9	(171.0)	45.3	269.2	318.9	0,72
February	(323, 0)	402.3	310.1	(131.9)	99.7	160.1	237.8	0.54
March	(400,5)	327.9	264.4	(163.6)	430.0	167.4	292.3	0.66
April	(544, 6)	294.7	481.1	281.7	601.5	289.7	415.6	0.94
May	(329.0)	442.8	184.4	206.8	205.5	111.0	246.6	0.56
June	83.1*	355.5	353.1	133,9	50.4	141.2	186.2	0.42
July	668,8*	416.8	546.8	271.5	168.3	(220.4)	382.1	0.87
August	618.6	823,1	873.5	953,9	552.6	(434.2)	709.3	1.61
September	853.5	1242.7	779.9	301.5	448.6	(484.1)	685.0	1.56
October	1319.1	1376.2	1253.2	195.0	668.1	(639.3)	908.5	2.06
November	314.6	1054.2	339.3	87.1	591.1	(387.4)	452.3	1.06
December	1282.3	684.6	47.4	34.3	366.2	(217.4)	438.7	1.00
Sum	7155.5	7844.4	6019.1	2932.2	4227.3	3521.4	5283.3	12,00

^{*}The differences of the disturbed readings from their respective normals, during the month of June and part of July, 1840, were first converted from the old scule into equivalent new scale values.

The last column of ratios of the aggregate value of the disturbances of each month to the mean of all corresponds very closely to the analogous ratios deduced in a preceding table for the number of disturbances, giving the law in reference to the number and amount of disturbances in a year as the same, or nearly so. The maximum amount of disturbances occurs in October, (at Toronto in September,) the minimum amount in June, (the same at Toronto;) the secondary maximum occurs in April, (as at Toronto), and the secondary minimum in February, but at Toronto in January, from comparison with the years 1843, 1844, 1845.

The next tables give the aggregate monthly values in the six years, separated into west and east deflections:

West deflections.

Month.	1840.	1841.	1849.	1843.	1844.	1845.	Mean.	Ratio.
	d.	d.	d.	d.	d.	ď.	d.	
January	(495.5)	308.4	444.8	(170.4)	23.8	161.6	967.4	1.21
February	(238.0)	147.2	217.1	(82.0)	28.0	69.9	130.4	0.59
March	(288.7)	127.2	168.5	(99.5)	172.8	117.5	162.4	0.73
April	(432.2)	97.9	216.9	98.9	370.1	171.0	229.5	1.04
May	(212.8)	229.5	84.4	109.7	43.5	8.3	114.7	0.52
June	30,9	170.4	194.9	21.7	12.6	65.9	82.6	0.37
July	186.7	51.1	140.5	153.3	28.9	(42.9)	100.6	0.46
August	275.9	228,4	721.3	809.7	304.5	(247.5)	431.2	1.95
September	495.3	257.8	116.7	65.2	249.3	(123.5)	917.9	0.99
October	1019.9	422.5	172.5	74.4	340.3	(185.5)	369.2	1.67
November	178.4	5E6.9	159.6	39.1	267.1	(196.9)	238.0	1.09
December	1210.5	308.2	9.4	17.7	178.8	(98.7)	303.9	1.39
Sum	5064.8	2935.5	2645.9	1741.6	2019.7	1489.2	2647.8	19,00

East.	defle	ctions.

Months.	1840.	1841.	1842.	1843.	1844.	1845.	Mean.	Ratio.
	d.	d.	d.	d.	d.	d.	d.	-
January	(27.9)	115.2	141.1	(22.7)	21.5	107.6	72.7	0.33
February	(55.7)	255.1	93.6	(38.5)	71.7	90.2	100.7	0.46
March	(81.8)	200,7	95.9	(53.4)	257.2	49.9	123.2	0,56
April	(116.7)	196.8	264.2	182.8	231.4	118.7	185.1	0.84
May	(66.2)	213.3	100.0	97.1	162.0	102.7	123.6	0.56
June	52.2	185.1	158.9	112.2	ಚ7.8	75.3	103.6	0.47
P iy	482.1	365.7	406.3	118.2	139.4	(177.5)	281.5	1.29
August	342.7	594.7	152.2	144.2	248.1	(194.8)	279.4	1.28
September	358.2	984.9	663 2	236.3	199.3	(358.3)	466.7	2.19
October	299.2	953.7	1080,7	120.6	327.8	(453.0)	539,2	2.46
November	136.2	467.3	179.7	48.0	324.0	(187.6)	223,8	1.09
December	71.8	376.4	38.0	16.6	187,4	(116.6)	131,4	9.6
Sum	2090.7	4908.9	3373.2	1190.6	2207.6	2032.2	2633.9	12.00

NOTE.—Maxima in September (mean of August and October) and April; minima in June and January, as at Toronto.

The following table gives the aggregate values of the disturbances distributed into the different hours of the day, as deduced from bi-hourly observations made from 1840 to 1845:

Philadelphia	l .	LUES OF WESTER DEFLECTIONS, A	•	MEAN AGGRE	BATE VALUES P	OR ONE YEAR.	RATIOS.			
hour, (+19½ m.)	w.	E.	Sum.	w.	E.	Sum.	w.	Е.	Both com- bined.	
À.	å.	d.	ď.	d.	d,	d.				
0	897.4	1438.5	2335.9	149.6	239.8	389.4	0.83	1.24	1.04	
2	1259.7	1278.2	2537.9	209.9	213.0	422.9	1.16	1,10	1.13	
4	1255.5	1075.5	2331.0	209.2	179 3	388.5	1.16	0.92	1 04	
6	1581,7	773.6	2355.3	263.6	128.9	392.5	1.46	0.67	1.06	
В	1512.4	769.9	2282.3	252.1	128.3	380.4	1.39	0.67	1.02	
10	1315.2	901.9	2217.1	219.2	150.3	369.5	1.22	0,77	0.99	
Noon	1114,8	733.2	1848.0	165.8	122.2	308.0	1.03	0.63	0,83	
14	1056.4	735.0	1791.4	176.1	122,5	298.6	0.98	0.63	0.80	
16	1063.1	825.8	1893.9	178.0	137.6	315.6	0,99	0.72	0.85	
18	902.1	965.2	1867.3	150.3	160.9	311.2	0.84	0.89	0.84	
20	408.9	2175,4	2584.3	68.2	362.6	430.8	0.38	1.88	1.15	
22	610.4	2180.3	2790.7	101.7	363,4	465.1	0.56	1.88	1.25	
Sum	12982.6	13852.5	26835.1	2163.7	2308.8	4472.5	12.00	12.30	12.00	
Mean				180.3	192.4	372.7				

If we compare these ratios with the corresponding numbers in the preceding tables showing the bi-hourly distribution in regard to the number of disturbances, we find, irrespective of the directions of the deflections, the 2 p. m. minimum preserved; the maximum occurs at 10 p. m. At Toronto, from a five years' hourly series, commencing with 1844, these hours are respectively 1 p. m. and 9 p. m. At Philadelphia, as at Toronto, the ratios are nearly invariable from 10 a. m. to 6 p. m., being then below unity; and again from 8 p. m. to 8 a. m., when they are above unity.

The easterly maximum and the westerly minimum at 8 p. m., appear again as a decided feature, and in general the respective ratios exhibiting the diurnal distribution of the disturbances, both in an easterly and westerly direction, show almost a perfect correspondence in regard to both number and amount.

The next table exhibits the excess of westerly disturbance over easterly (the sign — indicating a defect, or excess of easterly over westerly) in the aggregate values of the five-year series, and in the last column the mean effect of the same at each even hour is given as obtained by dividing the aggregate differential value of the preceding column by the actual number of days of observation during the whole period. The last column exhibits, therefore, the mean diurnal disturbance variation. The number of days is very nearly 1,500.

time.	over east.		tion caused by isturbances.	n: Disturbance Torunto, 1843. .ven hours.)	ime.	over east-		tion caused by isturbances.	at Toronto, 1843— nt even hours.)
Philadelphin mean t	Excess of westerly or erly values.	In scale divisions.	In minutes of arc.	For comparison: Di variation at Toru v44-345, (at even l	Philadelphia mean time.	Excess of westerly o	In scale divisions.	In minutes of arc.	For comparison: Divariation at Toros 744-'45, (at even b
h. m.	đ.	d.	,	,	h. m.	d.	d.	,	,
0 191	-541.1	0.36	-0.15	-0.36	Noon. 191	+381.6	+0.25	+0.11	+0.09
2 192	— 18.5	-0.01	-0.01	-0.20	14.19	+321.4	+0.21	+0.10	+0 04
4 193	+180.0	+0.12	+0.05	0.03	16.19	+242.3	+0.16	+0.07	+0.03
6 19 <u>1</u>	+808.I	+0.54	+0.94	+0.02	18, 19 1	-63.1	0.04	-0.02	0.16
8 191	+742.5	+0.50	+0.22	+0.10	20,191	-1766.5	—1.18	0.53	0.56
10 195	+413.3	+0.28	+0.13	+0.06	22.19	1569.9	-1.05	0.47	0.75

The law governing the disturbances during a solar day is clearly shown, and systematic in character. If we plot the disturbance curve on the same scale, or actually superpose it on the curves of the regular diurnal variation, (diagram 2, sketch No. 37,) the difference would hardly show to the eye. The diagram (No. 4) showing the disturbance variation has, therefore, been plotted on a larger scale.

The curve has but one maximum and one minimum; its most prominent feature is the easterly deflection at 8 o'clock (+ 19½ m.) p. m., (at Toronto it is at 9 p. m.) At that hour the maximum deflection amounts to 32" of arc, and to 45" at Toronto. The greatest westerly deflection occurs at 6h. (+ 19½m.) a. m., and amounts to but 14"; the Toronto hour is 8 a. m. with 6", and from a five years' series of observation with 31" of deflection.

The range of the disturbance variation equals 46"*. The disturbance amplitude, as well as the regular variation amplitude, is greater at Toronto than at Philadelphia, the occurrence of the maximum and minimum disturbance deflection seeming to be about one hour earlier at the latter station. From three in the morning till five in the afternoon, the mean effect of the disturbances is to deflect the north end of the magnet to the west, and during the remaining hours (principally at night) to the east. The westerly and easterly disturbance deflections during a day balance within 0".02.

The annual inequality in the amplitude of the diurnal disturbance variation might be satisfactorily shown by the proper combination of the results for consecutive years, comparing each two-year series successively; but owing to the small amount of the amplitude itself, and the incomplete or partly interrupted series of observations in the years 1840, 1843, and 1845, it was thought best to restrict the present discussion to the mean disturbance variation.

It is my intention to continue the discussion of the observations made at the Girard College observatory.

eAt Toronto 51", and from a five years' series 83".

After the above was written, No. 1,185* of the Astronomische Nachrichten came to hand, containing Prof. R. Wolf's interesting results on the close connection of the variation in frequency of the solar spots, and the corresponding inequality in the amplitude of the diurnal variation of the declination. He deduces for Munich the formula $\beta = 6'.273 + 0'.051$ a—in which a is a relative number, expressive of the frequency of the solar spots directly derived from observation, and β the amplitude of the diurnal variation. He finds a very close correspondence between the computed and observed values of β , and gives in a table Dr. Lamont's and his own results between the years 1835 and 1850. He also reaffirms his former value for the average length of the solar spot period, viz, 11.11 years \pm 0.04 years, the limits of variation being 8 and 16 years. This period is deduced from observations of maxima and minima since 1626.

For Philadelphia we have $\beta = 7'.080 + 0'.039 \alpha$, representing the observed amplitudes as follows:

Year.	a (from solar spot) observations.	β derived from a.	Observed amplitude, or β .	Difference observed and computed β.	Year.	a (from solar spot) observations.	β derived from a.	Observed amplitude, or β .	Difference observed and computed eta .
1840	51.8	9'. 10	9'. 08	-0'. 02	1843	8.4	7'. 41	7'. 46	+ 0'. 05
1841	29.5	8'. 23	8'. 06	0'. 17	1844	12.2	7. 55	7'. 51	-0'. 04
1842	19. 2	7′. 83	7'. 83	0.00	1845	32. 4	8'. 34	81. 53	+ 0'. 19

The correspondence between the observed diurnal amplitude and the same derived from observations of the solar spots is further exhibited by diagram 5, Sketch No. 37, the heavy line representing the magnetic, the other the solar, amplitude curve. The dotted curve is from the Toronto magnetic observations, merely multiplied by $\frac{8}{9}$ to reduce (approximately) to the Philadelphia scale. The next maximum amplitude, according to the solar spot observations, would be in 1848, amounting to 11'.00; and the whole range of the inequality in the amplitude of the diurnal motion would, therefore, be 11'.00—7'.46 = 3'.54. The last quantity, it must be observed, is slightly variable with each period; thus, according to the solar spot observations, the year 1837 was a maximum, amplitude 11'.41; and the year 1856 a minimum, amplitude 7'.24, the difference being 4'.17.

It is much to be desired that this interesting branch of physical inquiry should be further studied, as it forms one of the links connecting terrestrial with cosmical phenomena.

[•] For former communication by Prof. Wolf, see Nos 839, 1,043, 1,091, 1,132, 1,160, and 1,181, ibid.

APPENDIX No. 23.

Results reported from the observations made by Assistant Charles A. Schott, for magnetic declination, dip, and horizontal intensity, in Sections I and II, and Canada, 1859.

No.	Locality.	Date.	La	titude.	Lon	gitude.	Declination West.		Dip omh.	Horizontal intensity.	Total intensity.
		1859.		,		,	. ,	-	, ,		
1	Beacon Hill, Gloucester, Mass	July 8	42	36.4	70	38.4	12 03	74	45.6	3.645	13,86
2	Thompson, Cape Ann	9	42	36,7	70	43.5	11 09	74	30.4	3.674	13.75
3	Rockport, Cape Ann	11	42	39,8	70	36.3	11 37	75	05.9	3.529	13,72
4*	Annisquam, Cape Ann	11	42	39,4	70	40.3		74	56.1	3,589	13,81
5	Ipswich, Mass	12	42	40.8	70	49.8	11 14	74	37.3	3.598	13.57
6	Plum Island, Newburyport	13	42	48.0	70	48.5	10 58	74	52.9	3,528	13,53
7	Kittery Point, Portsmouth	14	43	04.8	70	42.7	11 15	75	04.2	3,496	13,57
84	Bowdoin Hill, Portland	15	43	38,8	70	16.2	12 20			3 456	
9	Quebec, Canada	18 & 19.	46	48,4	71	14.5	16 17	77	17.5	2.991	13,60
101	Montreal, Canada	20	45	30,5	73	34.9		76	51.4	3.111	13.68
11	Rutland, Vt	21	43	36	72	55	9 49	75	19.8	3.464	13,68
12	Deerfield, Mass	23	42	33	72	36	9 25	74	35.3	3.617	13.61
13	Chesterfield, Mass	25	42	24	72	51	8 54	74	21.2	3.667	13,60
14	Springfield, Mass	26	42	06	72	32	8 39	74	14.9	3.691	13,60
155	Hartford, Conn	27	41	46	72	40	[74	07.4	3.716	13.58
- !	Coast Survey Office, Washington, D. C	29 & 30.	38	53, 1	77	00.9		71	24.4	4.306 }	13.51
	· · · · · · · · · · · · · · · · · · ·							l		4,308}	

- * Owing to a considerable disturbance at the time of occupation the result for declination has been rejected.
- † The dip at Portland, 74° 58'.7, seems to be too small, probably owing to a disturbance at the time. The total intensity was left blank accordingly.
- † The declination seems to have been affected by a considerable disturbance at the time, and the result, 12° 21′, had better not be used.
- § The declination seems to be affected by a disturbance, the value, 7° 17', being too small.
- || Occupied for intensity June 22 and 23, 1859, and July 30, 1859; for dip, June 23 and July 29. Mean date for dip and intensity, July 11.

APPENDIX No. 24.

Report of Assistant Charles A. Schott on the latest results of the discussion of the secular change of the magnetic declination, accompanied by tables showing the declination (variation of the needle) for every tenth year from the date of the earliest reliable observation, for twenty-six stations on the Atlantic, Gulf, and Pacific coasts of the United States.

COMPUTING DIVISION, COAST SURVEY OFFICE, November 4, 1859.

DEAR SIR: In accordance with the Superintendent's letter of January 21, 1859, I have prepared a set of tables for practical use, giving the secular change of the magnetic declination, and showing for every tenth year, from the date of the earliest reliable observations to the present time, the magnetic declination (commonly called the variation of the magnetic needle) for stations on or near the northeastern coast of the United States, and also for some stations on our southern and western coasts—as derived from my several discussions of the secular change, in which have been included the latest data in possession of the Coast Survey. For the eastern and southern coasts the following papers may be referred to: Coast Survey Report for 1855, Appendix No. 48, pp. 306-337: Coast Survey Report for 1858, Appendix No. 25, pp. 192-195; and Appendix No. 26, pp. 195-197. For the western coast, Coast Survey Report for 1856, Appendix No. 31, pp. 228-235, may be consulted.

In general, the secular change of the declination appears to be of a periodic character, but

in no instance has a whole cycle been completed on either coast. Its length, therefore, remains necessarily in a great measure uncertain, and the tentative analytical process so far followed has for its main object the proper representation of all reliable observations made at any one station, so as to furnish the means of interpolation, and also to enable us to calculate the magnetic declination for any required place and date within the limits of the discussion. In the investigation of 1855 a linear function was used in the discussion, which does not involve the duration of the period, and on this account the results were, in regard to time, of rather limited extent.—(See remark on p. 337 of Report for 1855.)

For the Western Coast stations, I still prefer to retain this form of the discussion. Subsequently, by means of the knowledge gained in that discussion, an attempt was made to substitute a circular function, directly involving a period or periods, the length of which, as well as all other numerical co-efficients in the formula for the secular change, has been determined by applying the method of least squares. The use of a circular function—commenced in 1858 with two stations—is now extended to eighteen, within the limits stated above, and it has also been applied to some stations in Canada, the southern coast of the United States, and Central America, in order to furnish material for the generalization of the law, so far as ascertained, in reference to epochs and rate of change. A secondary period within the first was traced at several stations, its length, however, being much more variable and uncertain was found fluctuating between one-half and one-fifth of the primary period, while its amplitude was on the average fifteen times smaller than that of the primary wave for stations forming group 1, or within the geographical limits of Portland, Burlington, and Williamsburg. This smaller amplitude was found nearly constant, and equal to 0°.4.

To make the present paper more complete, it contains also the record of all observations used in the discussion not heretofore published in the Coast Survey reports.

As long as the cause producing the secular change remains altogether unknown, it is not safe to trust too far to the continuation of the law thus empirically derived; and in the following tables no value, deduced by the formula, has been inserted antecedent to the first observation by more than ten years. The tabular values may, therefore, be regarded in the light of a strict interpolation between actual observations; and since the analytical treatment will equalize and remove, in a measure, accidental errors of observation, they may be considered as certainly more trustworthy than any single observation, particularly in cases where the number of observations available for the discussion exceeds half a dozen, properly distributed in relation The probable error of any single representation will be found in the second table. For all ordinary use by the surveyor (or navigator) the tabular values are sufficiently precise; when greater accuracy is required, the annual inequality of the declination and the diurnal The former correction will variation for the time required must be taken into account. probably not exceed, in any case, one minute, and the latter may amount in summer, in maximo, to minus or plus six minutes, and in winter to minus or plus three minutes-numbers which were derived from Prof. Bache's discussion of the Philadelphia observations. The table will also answer for intermediate places, for which they furnish the necessary data of interpola-

It is proper to state that the present formulæ should be considered as liable to future changes and improvements depending on the accumulation of additional observations; and it is hardly necessary to state that their number also may hereafter be considerably increased by the accession of new material. The utility of a publication of tables showing the declination for

every tenth year was suggested by Mr. T. B. Brooks. In the numerical calculations, I was assisted by Mr. G. Rumpf, of the computing division.

Formulæ expressing the secular change of the magnetic declination (commonly called variation of the magnetic needle) used for calculating the tabular values.

Group I.—Stations between Portland, Me., and Williamsburg, Va.—A positive sign of D indicated west declination, a negative sign east declination: n equals the number of years (and fraction of a year) from 1830, positive for years after and negative for years before this epoch. Longitudes are reckoned from Greenwich.

No.	Locality.	Leti	tude.	Long	it ud e,	
		•	,	•		0 0 0 0 0
1	Burlington, Vt		27		10	$D = +11.55 - 4.10\cos(1.30 n + 36) + 0.21\cos(7.2 n + 290.)$
2	Portland, Me	43	39	70	16	$D = +10.70 - 2.63 \cos(1.33 n + 87.)$
3	Portsmouth, N. H	43	05	76	43	$D = +10.20 - 2.45 \cos(1.37 n + 72.)$
4	Rutland, Vt	43	36	72	55	$D = + 9.89 - 3.66 \cos (1.5 n + 45.)$
5	Cambridge, Mass	42	23	71	07	$D = +9.65 - 2.78\cos(1.30n + 71) + 0.22\cos(2.7n + 220.)$
6	Newburyport, Mass	42	48	70	49	$D = + 9.55 - 2.56 \cos(1.4 n + 78.)$
7	Boston	42	20	71	02	$D = + 9.16 - 2.55 \cos (1.39 n + 76) + 0.22 \cos (3.6 n + 222.)$
8	Providence, R. I	43	50	7 L	24	$D = +9.11 - 2.99 \cos(1.45 n + 58) + 0.19 \cos(7.2 n + 246.)$
9	Hartford, Conn	41	46	72	40	$D = + 8.60 - 3.59 \cos(1.25 n + 45.)$
10	New Haven, Conn	41	17	72	55	$D = +8.13 - 3.49 \cos(1.33 n + 39.)$
11	Albany, N. Y	42	39	73	43	$D = + 7.65 - 2.74 \cos(1.42 n + 62.)$
12	Oxford, N. Y	42	27	75	42	$D = + 6.55 - 3.69 \cos(1.3 n + 40.)$
13	New York	40	43	74	00	$D = + 6.47 - 2.32 \cos(1.6 n + 55.)$
14	Philadelphia	39	58	75	10	$D = + 5.37 - 3.44 \cos(1.6 n + 39.)$
15	Hatborough, Penn	40	07	75	08	$D = +5.23 - 3.28 \cos(1.54 n + 47) + 0.22 \cos(4.1 n + 347.)$
6	Baltimore	39	16	76	35	$D = + 2.70 - 2.25 \cos(1.5 n + 49.)$
7	Washington, D. C	38	53	77	00	$D = + 2.42 - 2.0 \cos(1.5 n + 49.)$
18	Williamsburg, Va	37	15	76	40	$D = + 2.22 - 2.6 \cos(1.5 n + 22.)$

The following table contains the number (n) of observations (single or combined) upon which each formula is based; the probable error (ε_0) of an observation, expressed in minutes, as a measure of the degree of accuracy with which the observations are represented; the epoch of the last minimum of west declination, (or of maximum east declination,) together with the least west declination, (greatest east,) and lastly the annual variation for the years 1840, 1850, and 1860, expressed in minutes. The positive sign expresses west declination increasing, (east diminishing.)

Locality.	n.	٤	Epoch of min-	Least west de-		NNUAL CHANG	E
			imum west declination.	clination.	Variation for 1840.	Variation for 1850.	Variation for 1860.
		,		•		,	,
Burlington, Vt	9	± 5	1813	+ 7.4	+ 4.1	+ 3.4	+ 4.5
Portland, Me	5	14	1765	+ 8.1	+ 3.6	+ 3.4	+ 3.6
Portsmouth, N. H	4	10	1777	+ 7.7	+ 3.5	+ 3.5	+ 3.5
Rutland, Vt	4	18	1800	+ 6.2	+ 4.9	+ 5.5	+ 5.1
Cambridge, Mass	22	12	1782	+ 6.9	+ 4.3	+ 4.3	
Newburyport, Mass	4	12	1774	+ 7.0	+ 3.7	+ 3.6	+ 3.
Boston	8	10	1782	+ 6.7	+ 4.5	+ 4.3	+ 3.
Providence, R. I	30	5	1779	+ 6.1	+ 5.3	+ 3.8	+ 3.0
Hartford, Conn	8	14	1794	+ 5.0	+ 4.0	+ 4.4	+ 4.1
New Haven, Conn	14	10	1801	+ 4.6	+ 3.8	+ 4.4	+ 4.1
Albany, N. Y.	10	3	1787	+ 4.9	4 3,9	+ 4.0	→ 3. 9
Oxford, N. Y.	10	11	1799	+ 3.0	+ 4.0	+ 4.6	+ 4.9
New York	13	13	1795	+ 4.1	+ 3.7	+ 3.9	+ 3.6
Philadelphia	11	16	1805	+19	+ 4.7	+ 5.3	- 5.4
Hatborough, Penn	18	5	1796	+1.8	+ 4.2	+ 4.3	4.4.4
Baltimore	3	13	1798	+ 0.5	+ 3.2	+ 3.4	+ 3.
Washington, D. C	6	8	1798		+ 9.8	+ 3.1 + 3.1	+ 3.1
Williamsburg, Va	3	15	1815	+ 0.4 0.4	+ 2.4	+ 3.2	→ 3.1

Table of magnetic declinations for eighteen stations, forming group 1, on or near the northeastern coast of the United States, between the years 1680 and 1860. West declination is indicated by a plus sign, east declination by a minus sign, and is expressed in degrees and fractions of a degree.

Year.	Burlington, Vt.	Portland, Me.	Portsmouth, N. H.	Rutland, Vt.	Cambridge, Mass.	Newburyport, Mass.	Boston.	Providence, R. I.	Hartford, Conn.	New Haven, Conn.	Albany, N. Y.	Oxford, N. Y.	New York.	Philadelphia.	Hatboro', Penn.	Baltimore.	Washington, D. C.	Williamsburg, Va.
1000	•	•		•	•	٠	۰	٠	۰	٠	•	۰		٠		•	۰	•
1680 1690			· · · · · · · · · · · ·		•••••				••••	· · · · · · · · · · · · · · · · · · ·		••••	+ 8.8		+ 8.5	•••••	•••••	
1700	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	+9.9		+ 9.7		•••••	•••••	••••	••••	8.7 8.5	1.00	8 3 7.9	•••••		+4.8
1710					9.4	••••	9,0	+10.4			•••••		8.0	+ 8.8 8.4	7.5		i	+4.8
1720				••••	:	*** '**'	8.3	9.5			••••	••••••	7,6	7.9	7.0	••••	*****	••••
1730			• • • • • • • • • • • • • • • • • • • •		8.4	•••••	7.8	8.9			•••••		7.0	7.9	6.3	•••••	*****	
1740		••••	••••		7.9		7.4	8.3		••••		•••••	6.4	6.3	5.6		•••••	1
1750		••••	••••		7.5		7.2	7.7					5.8	5.3	4.7	••••		
1760		+ 8.1			7.2	·····	7.0	6 9		+ 6.1			5.2	4.4	3.8	••••		•••••
1770			+ 7.8		7.0	+ 7.0	8.8	6.3		5.5			4 7	3.5	2.9		•••••	+1.2
1780		8.3	7.7		6.9	7.0	6.8	6.1	45.2	5.0			4,4	2.8	2.2	i		
1796	+ 7.8	8.5	7.9	+6.3	6.9	7.2	6.8	6.3	5.0	4.8		+ 3.0	4.9	2.2	1.8			+0.2
1800	7.5	8.9	8.1	6.2	7.1	7,5	7.0	6.4	5.0	4.6		3,0	4.2	2.0	1.8		+0.4	-0.2
1810	7.3	9.4	6.5	6.3	7.5	7.9	7.3	6.5	5.2	4.7	15.4	3.1	4 3	1.9	2.1	+0.6	0.5	0.4
1820	7.6	10.0	8.9	6.7	8.0	8.4	7.8	6.8	5.6	5.0	5.8	3.4	4.7	2.2	2.6	0.8	0.8	0.4
1830	8.30	10 6	9 4	7.3	8.58	9.0	8.41	7.46		5.42	6.3	3.82				1.2	1.1	-0.2
1840	9.07	11.2	10.0	8,1	9.28	9.8	9,13	l .	t	5,98	7.0	4.43			1	1	1.5	+0.1
1850	9.69	11.8	10.6	8.9	10.0	10.3	9.88	9.14	7.4	6.71	7.7	5.15	6.37	ŀ	!	1	2.0	0.6
1860	+10.30	+12.3	+11.2	+9.9	+	+10.B	+10.56	+ 9.68	+8.1	+ 7.46	48.3	+ 5.95	+ 7.01	+ 5.19	+ 5.32	1	+2.6	+1.2

Note.—At Cambridge, Mass., the observations after 1855 require further examination. At Williamsburg the values between 1700 and 1770 were not considered sufficiently reliable for insertion. The expression for Baltimore depends for length of period and time of minimum on the Washington formula.

The total number of observations upon which the tabular values and the formula are based is 180; the average number for any one station is 10; and the average probable error of any single representation is $\pm 11'$.

If we arrange the stations geographically, we find that at the eastern stations the minimum (west) declination occurred earlier than at the more western and southern stations; thus, from six stations, between Portland and Providence, it occurred about the year 1777 in the Connecticut and Hudson valleys, and along the sea-coast as far south as Washington; the year of the minimum does not differ much from 1797; Williamsburg, in Virginia, gives 1815. The transition, as we pass from the New England States, is somewhat abrupt, but too well marked to be accidental. Extending the investigation further north, I find for Quebec, Canada, the year of the minimum 1769; going further west, we find that at Toronto it must have occurred before the year 1842; and at York Fort, Hudson Bay, I find the year 1842, (as already ascertained by Gen'l Sabine, after the receipt of Capt. Blakiston's observations of 1857.) This latter station is nearly halfway across the continent; and if we proceed to the Western Coast, we find that the eastern declination there has not yet reached its maximum, (equivalent to a western minimum,) but it is highly probable that it will reach it before the close of the present century. The present reverse, or western motion of the isogonic lines in our eastern States, which commenced about the year 1777, will gradually be communicated to the more westerly stations, and will, it is highly probable, be participated in on our Western Coast before or at the close of the present century, the direction of the motion in this latter locality being at present still to the eastward and southward, though with a diminishing rate. - (See p. 235 of Coast Survey Report of 1856.)

The following equations, constructed for the two northernmost stations, may be added here: York Fort, Hudson Bay, $D = +5^{\circ}.1 - 14^{\circ}.2 \cos (1^{\circ}.6 n + 340^{\circ}.)$

Quebec, Canada, $D = +12.84 - 3.7 \cos (1.6 n + 97.)$

The second group comprises the stations on the southern portion of the Atlantic Coast and Gulf Coast, only three in number, to which have been added some stations located further south.

Group II.—Southern stations.

No.	Locality.	Latitude.	Longitude.	Magnetic declination.				
1 2 3	Charleston, S. C	32 45 32 05 30 41	81. 05	$D = -2.12 - 2.02 \cos (1.55 n. + 56.)$ $D = -2.95 - 1.24 \cos (1.5 n. + 20)$ $D = -6.5 - 0.77 \cos (1.6 n. + 16.)$				

	n.	ε	of maxinum declination.	of east tion.	Annual change.			
Locality.			Epoch of r	Maximum of declination	1840.	1850.	1860.	
				0	,	,	,	
Charleston, S. C	5	± 9	1794	- 4.1	+ 3.1	+ 3.2	+ 3.2	
Savannah, Ga	4	12	1817	4. 2	+ 1.1	+1.5	+ 1.8	
Mobile, Ala	6	12	. 1820	— 7. 3	+ 0.7	+ 0.9	+ 1.1	

Proceeding in a southerly direction, the next station discussed outside of the boundaries of the United States is Havana, Cuba, latitude 23° 09′, longitude 82° 22′, for which place I found $D = 4^{\circ}.82 - 1^{\circ}.45 \cos{(1.3 n + 26^{\circ})}$ with 1810 as the year of maximum east declination.

The values collected for Jamaica were not discussed, but the 9 values I was able to obtain will be found in the appended record. For Panama, New Granada, lat. $+8^{\circ}57'$, long. $79^{\circ}29'$, the southernmost station discussed, I find $D = -6^{\circ}.9 - 1^{\circ}.04 \cos{(1.2 n + 74^{\circ})}$ an equation satisfying the observations, but not considered as preferable to the following expression: $D = -5^{\circ}.57 - 2^{\circ}.21 \cos{(1^{\circ}.2 n + 34^{\circ})}$, which supposes the maximum to occur in 1802.

Going westward and northward, I found for Vera Cruz, Mexico, lat. 19° 12′, long. 96° 09′, $D = -4^{\circ}.2 - 5^{\circ}.04 \cos (1^{\circ}.1 n + 7^{\circ})$, with the maximum east declination in 1824.

The following table has been calculated from the preceding equations:

Year.	Charleston, S. C.	Savannah, Ga.	Mobile, Ala.
1770	o 3.7	0	o
1780	4. 0	<u> </u>	
1800	4.1 4.1	-4.1	— 7. 1
1810	4. 0 3. 6	4. 2 4. 2	7. 2 7. 3
1830	3. 0 3. 2	-4.1	— 7. 2
1840	2. 8 2. 2	-4.0 -3.7	-7.1 -7.0
1860	-1.7	3. 5	6.8
1			

The following formulæ for sta	ations on the Western (Coast between San Diego and Cape Disap-
pointment, forming group 3, ha	ave been copied from p	page 234 of the Report for 1856:

No.	Locality.	Latitude.	Longitude.	Magnetic declination.
,		• 0 /	0 /	o
1	San Diego	32 42	117 13	$D = -12.17 - 0.019 n. + 0.00018 n^2.$
2	Monterey	36 38	121 54	$D = -14.19 - 0.050 n. + 0.00047 n^3.$
3	San Francisco	37 4 8	122 27	$D = -15.14 - 0.028 n. + 0.00025 n^2.$
4	Cape Mendocino	40 25	124 22	D = -16.29 - 0.029 n.
5	Cape Disappointment	46 17	124 02	D = -19.65 - 0.019 n.
	-			

The total number of observations used for the construction of the above formulæ is 21, the greatest number for any one station being 6, the least 3; the average probable error of any single representation is \pm 12'. The annual change (increasing east declination) may be taken the same for all stations, viz:

	•
In 1840	— 1.6
In 1850	-1.2
In 1860	-0.8

Yеагв.	San Diego.	Monterey.	San Francisco.	Cape Mendocino.	Cape Disap pointment
	0	٥	٥	o	0
1790	- 11. 1	-11.4	13. 6	— 15. 1	— 18. 9
1800	11.4	12.3	14. 1	15. 4	19. 1
1810	11.7	13.0	14. 5	15. 7	19. 8
1820	12,0	13.6	14.8	16.0	19. 8
1830	12, 2	14.2	15. 1	16. 3	19.7
1840	12.3	14. 6	15. 4	16.6	19.8
1850	12. 5	15. 0	15. 6	16.9	20.
1860	— 12. 6	15.3	-15.8	- 17. 2	— 20. 2

The next station discussed, south of California, is San Blas, Mexico, lat. 21° 32′ north, long. 105° 16′ west of Greenwich, which gave the following expression.—(See p. 234, Coast Survey Report of 1856.)

$$D = -8^{\circ}.63 - 0.042 n - 0.000 31 n^{2}$$

which equation, when compared with those above, shows a reversal in the sign of the co-efficient of n², or an opposite curvature. The annual easterly increase at San Blas in 1850, according to the above formulæ was 3.3 per annum. This station, however, is already within the area of the peculiar form of the isogonic lines, which position may possibly render an immediate comparison impracticable. The station Sitka, in Russian America, is the next place, north of Washington Territory, discussed. I find for it the approximate formula:

$$D = -28^{\circ}.12 - 0.0607 \text{ n} - 0.00025 \text{ n}^2.$$

It depends for its latest declination (1858) on the tabular value assigned by Mr. Evans on his late map of the lines of equal magnetic variation reduced to 1858.

Record of all observed declinations made use of in the above paper, not heretofore published in the United States Coast Survey Reports.

The following record containing only additional observations, we have to consult the preceding reports of 1854,*'55, '56, and '58, if we desire to collect all results which may have been used at any one station. The stations are arranged geographically, commencing with the northern and eastern stations, and concluding with the stations on the Western Coast. D = observed declination.

```
York Fort, Hudson bay.—(From the proceedings of the Royal Society of London, for January,
   1858, by Maj. Gen. Sabine.)
     1725 · · · · D = 19° 00′ W.; Captain Middleton.
    1787 \cdots
                    5 00 W.; Hansteen's map.
                     6 00 E.; Sir J. Franklin.
    1819. Sep.
    1843. July
                     9 25 E.; Capt. Lefroy.
                    7 37 E.; Capt. Blakiston.
    1857. Aug.
Quebec, Canada.
    1649 · · · · D = 16° 00′ W.; P. Bressau, Hansteen's Erdmag's. Barlow Cycl. Met.
    1686 . . . . .
                   15 30 W.; De Hayes
    1810 ....
                   11 00 W.; Becquerel, Traité du magnetisme.
                   11 50 W.; Kent; Becquerel, Traité du magnetisme.
    1814 . . . .
    1831 \cdots
                   13 38 W.; Bayfield;
                                                  4.6
    1842 \cdots
                   14 12 W.; Capt. Lefroy.
    1859. July
                   16 17 W.; Chas. A. Schott, Assistant United States Coast Survey.
Burlington, Vt.—(See former observations in 1855 report, pp. 326, 337.)
    1837... D = 8° 45' W.; Prof. Benedict.
    1840 \cdots
                    9 42 W.; J. Johnson; Thompson's History of Vermont.
                    9 22 W.; D. J. Locke; Smithsonian Cont. to Knowledge, Vol. III, 1852.
    1845. June
Portland, Me.
    1763.....D = 7° 45' W.; J. Winthrop, Sill's Journal XXXIV, 1838, Prof. Loomis's
                                   collection.
                    8 30 W.; J. F. De Barre's Atlantic Neptune, London, 1781.
    1775 . . . .
    1845. June
                   11 28 W.; Dr. J. Locke, Smithsonian Cont. to Knowl., Vol. III, 1852.
    1859. July
                   12 20 W.; Chas. A. Schott, Assistant U. S. Coast Survey. (See also
                                  Coast Survey Report of 1856, p. 215.)
Portsmouth, N. H.
    1771.....D = 7° 46' W.; Holland; Sill's Journal XXXIV, 1838; Prof. Loomis's col-
                                  lection.
    1771 ....
                    7 48 W.; Holland.
    1775 ....
                    7 45 W.; J. F. De Barre's Atlantic Neptune.
    1859. July
                   11 15 W.; Chas. A. Schott, Assistant U. S. Coast Survey.
                                 Coast Survey Report of 1856, p. 215.)
Rutland, Vt.
    1789. Apr. D = 7° 03' W.; Dr. Williams; Sill's Journal, XVI, 1829.
                      6 04 W.;
    1810. May
```

The table of the declinations in that report is reprinted and enlarged in the report of 1855.

```
1811. Sept. D = 6° 01' W.; Dr. Williams; Sill's Journal, XVI, 1859.
                      9 49 W.; Chas. A. Schott, Assistant U. S. Coast Survey.
    1859. July
Cambridge, Mass.—(See pp. 317, 318 of Coast Survey Report of 1855; also Coast Survey
  Report of 1856, p. 222.
    1845. June D = 9° 32′ W.; Dr. J. Locke; Smithsonian Cont. to Knowl., Vol. III, 1852.
    1855. May
                     10 54.6 W.; W. C. Bond, (in a letter to Superintendent of Coast Survey.)
    1856. May
                     10 50.3 W.;
    1856. July
                     10 06 W.; Karl Friesach, Imp. Academy of Sciences, Vienna, Vol.
                                     XXIX, 1858.
  Note.—More recent observations still require examination.
Newburyport, Mass.
    1775.....D = 6° 45' W.; J. F. W. De Barre's Atlantic Neptune.
    1781 \cdot \cdots
                    7 18 W.; Dr. Williams; Sill's Journal, XXXIV, 1838, Professor Loomis's
                                  collection.
                   10 58 W.; Chas. A. Schott, Assistant United States Coast Survey.
    (See also Coast Survey Report, 1856, p. 215.)
Boston, Mass.
    (See Coast Survey Report, 1855, pp. 316, 317, 337.)
Providence, R. I.
    (See Coast Survey Report, 1855, pp. 307, 308, 309, 337.)
Hartford, Conn.
    1786 \cdot \cdots D = 5^{\circ} 25' \text{ W.}; \text{ Dr. Williams};
    1810 . . . .
                    4 46 W.; Asher Miller;
                                                  Professor Loomis' collection in Sill's Jour-
    1824 \cdot \cdots
                    5 45 W.; N. Goodwin;
                                                    nal, Vol. XXXIV, 1838.
    1828 . . . . .
                    6 03 W.; N. Goodwin;
    1829 . . . .
                    6 03 W.; N. Goodwin;
    1859. July
                    8 04 W.; an interpolated value from observations at Springfield and New
                                   Haven in 1859 and 1855.
New Haven, Conn.
    (See Coast Survey Report, 1855, pp. 319, 320, 337.)
Albany, New York.
    1847. Nov. D = 7° 35' W.; Regent's Report, (geological survey.)
                     8 35 W.; Karl Friesach, Imperial Academy of Sciences, Vienna, Vol.
                                   XXIX, 1858.
    (See also Coast Survey Report, 1855, pp. 328, 337; and Coast Survey Report, 1858, p. 191.)
Oxford, New York.—The following observations, marked E. B. W. C., are from a letter of Mr.
  E. B. W. Call to the Superintendent of Coast Survey, December 22, 1858:
    1792-95 \cdot \cdot D = 3^{\circ} 00' \text{ W.}; \text{ E. B. W. C.}
    1817....
                    3 00 W.; E. B. W. C.
                    4 30 W.; E. B. W. C.
    1828. July
    1834. Oct.
                    3 52 W.; Regent's report: Sill's Journal, XXXIV, 1838.
    1836. Oct.
                    4 09 W.; Regent's report; Sill's Journal, XXXIV, 1838.
    1838. July
                    4 30 W.; Regent's report; observed at Guilford.
    1849. Nov.
                    5 11 W.; E. B. W. C.
```

```
1857. Apr. = 5^{\circ} 44' W.; E. B. W. C.
    1858. Feb.
                    5 47 W.; E. B. W. C.
                    5 50 W.; E. B. W. C.
    1858. Dec.
New York.
    (See Coast Survey Report of 1855, pp. 320, 321, 333, and 337; also Coast Survey Report,
      1856, p. 217.)
Philadelphia.
    (See Coast Survey Report of 1855, pp. 313, 314 and 337.)
    (See Coast Survey Report of 1858, pp. 192, 193, 194, and 195.)
Baltimore, Md.
    1808 \cdot \cdot \cdot \cdot \cdot D \equiv 0^{\circ} \cdot 10' \text{ to } 15' \text{ W}.; D. Byrnes, Vol. XVIII, 1830, Sill's Journal.
    (See also Coast Survey Report, 1856, pp. 219, 227; also Coast Survey Report, 1858, p. 191)
       Washington, D. C.)
Washington, D. C.
    (See Coast Survey Report, 1858, pp. 195, 196, 197.)
Williamsburg, Va.
    1694 · · · · D = 5° 00′ W.; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
    1780 \cdots
                    0 50 W.; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
    1809 \cdot \cdots
                    0 33 E.; Sill's Journal, Vol. XXXIV, 1838, Prof. Loomis' collection.
    1856. Aug.
                    1 04 W.; deduced from observations at Petersburg, Old Point Comforts
                                   and Norfolk.
Charleston, S. C.
    1857. Apr., D = 1° 56' E.; derived from observations at Savannah in 1852 and 1857.
    (See Coast Survey Report, 1855, pp. 322, 323.)
Savannah, Ga.
    1817.... D = 4° 00' E.; Becquerel, Traité du magnetisme.
                    5 05 E.; Sill's Journal, XXXIX, 1840.
                    3 31 E.; Sill's Journal, XXXIX, 1840.
    (See also Coast Survey Report, 1856, p. 220, and Coast Survey Report, 1858, p. 192.)
Mobile, Ala.
    (See Coast Survey Report, 1855, p. 323; also Coast Survey Report, 1858, p. 192.)
Havana, Cuba.
    (See Coast Survey Report, 1855, p. 324.)
    1357. January, D = 5° 15' E.; Karl Friesach, Imperial Academy of Sciences, Vienna,
       Vol. XXIX, 1858.
Jamaica, West Indies.
    1732 · · · · D = 6° to 6° 5′ E.; J. Harris, at Black river in March and April, Phil. Trans.,
    1789-1793
                    6° 50' E.; J. Leard, map of Port Royal.
    1791-1792
                    6 45 E.; J. Leard, map of Port Royal.
    1819 . . . . .
                    4 50 E.; De Mackau, Becquerel's traité du magnetisme, Paris, 1846.
    1821 \cdot \cdots
                    4 50 E.; De Mayne, Becquerel's traité du magnetisme, Paris, 1846.
```

```
1822 \cdot \dots
                    4 54 E.; Owen, Becquerel's Traité du Magnetisme, Paris, 1846.
    1832 \cdot \cdot \cdot \cdot
                    5 13 E.; Foster, Becquerel's Traité du Magnetisme, Paris, 1846.
    1833? \cdots
                    4 40 E.; from a map.
    1840?....
                    4 00 E.; General Sabine's isogonic map of the Atlantic Ocean.
                    3 40 E.; Karl Friesach, Imperial Academy of Sciences, Vienna, vol.
    1857. Mar.
                                   XXIX, 1858.
Panama, New Granada.
    1775. Nov., D = 7° 49' E.; Encycl. Brit.
    1791. Dec.
                      7 49 E.; Encycl. Brit.
                      8 00 E.; Encycl. Brit.
    1802 . . . . .
    1822 \cdot \cdot \cdot \cdot
                      7 00 E.; Hall, Becquerel's Traité du Magnetisme.
    1837 .....
                      7 02 E.; Sir E. Belcher.
    1849 .....
                      6 55 E.; Major Emory, (Mexican boundary survey.)
    (See also Coast Survey Report, 1856, p. 223.)
Vera Cruz, Mexico.
    1726-27 \cdot D = 2^{\circ} 15' E.; J. Harris, Phil. Trans. R. S., anno 1728.
    1769 \cdot \cdots
                    6 40 E.; Ency. Brit., 7th edition, 1842.
                    6 28 E.; Ency. Brit.
    1769. Mar.
    1776 \cdot \cdots
                   7 30 E.; Don Ulloa, Ency. Brit.
                   10 37 E.; Malony, Ency. Brit.
    1815 \cdot \dots
                    9 16 E.; Wise, Ency. Brit.
    1819. Apr.
    (See also Coast Survey Report, 1856, p. 214.)
San Diego, Monterey, San Francisco, and Cape Mendocino, Cal., and for Cape Disappointment,
  Washington Territory.
    (See Coast Survey Report, 1856, pp. 228 to 235.)
Sitka, Russian America.
    1804 \cdots D = 26^{\circ} 45' E.; Lissiansky,
                    27 30 E.; Kotzebue, Becquerel's Traité du Magnetisme.
                    28 19 E.; Erman,
    1829 ....
    1858 . . . . .
                    30 00 E.; from Evans' map of isogonic lines for 1858.
                    Yours, very respectfully,
```

CHAS. A. SCHOTT,

Assistant Coast Survey, in charge C. D.

Capt. W. R. PALMER, T. E.

Assistant Coast Survey, in charge of office.

APPENDIX No. 25.

Gulf Stream explorations.—Third memoir: Distribution of temperature in the water of the Florida channel and straits: By A. D. Bache, Supt. U. S. Coast Survey. (Communicated, by authority of the Treasury Department, to the American Association for the Advancement of Science.)

The results of the explorations of the Gulf Stream in the survey of the coast have been communicated to the Association from time to time, as phenomena of peculiar interest have been developed.

The original plan of these explorations having been carefully studied, and having proved successful, has steadily been adhered to. The more recent observations have been directed to that part of the stream, between Havana and Cape Florida, known as the channel and strait of Florida. I have now to present four sections, showing the depth and temperature in this most important region of the Gulf Stream. These results are from the observations of Commander B. F. Sands and Lieut. Comg. T. A. Craven, U. S. N., assistants in the Coast Survey, whose names have already been mentioned before the Association in connection with explorations of the Gulf Stream, and furnish a sufficient guarantee that the results have all the reliability which care, experience, and zealous labor could give them.

Section No. 1, (Sketch No. 35,) from Cape Florida to Bemini, was run by Lieut. Comg. Craven in May, 1855; Section No. 4 by Commander Sands in May, 1858; and Sections Nos. 2 and 3 by Lieut. Comg. Craven in April and May of the present year, 1859.

Sections 2, 3, and 4 are perpendicular to the direction of the stream at distances of about fifty, one hundred, and two hundred miles from Cape Florida. The lines of sections are shown upon the chart marked A. The Florida strait is funnel-shaped, being about ninety miles wide at Havana and about forty-five miles wide at Cape Florida, the narrowest part.

Form of bottom.

The area of the water way and the form of the bottom are represented on diagrams 7, 8, 9, and 10, (Sketch No. 35.) The Arabic numerals at the top represent distances from the Florida coast (the keys) in miles, and the numbers below them the positions at which observations were made. The numbers at the left hand represent the depth in fathoms.

Commencing at the Cape Florida section, it will be seen that there is a rapid descent of the bottom to the Havana section, from three hundred and fifty fathoms to eight hundred fathoms, or twenty-seven hundred feet in a distance of two hundred miles. The most shallow, as well as the narrowest part of the stream, is, therefore, at Cape Florida. The deepest water follows the coast of Cuba and the Grand banks, the depth being eight hundred fathoms at a distance of only five miles from Havana, nearly four hundred fathoms within five miles of Salt Key bank, and three hundred fathoms close to the island of Bemini. The descent from the Florida side is for the most part gradual, but from the opposite side abrupt. This effect seems to have been produced by the action of the sub-current in wearing a deeper channel upon the concave side of the stream. At Havana there is an abrupt descent of nearly a mile within five miles of the shore, while on the side of the Tortugas and Key West the water is comparatively shallow and the descent gradual. This fact goes to confirm the conclusion that the stronger current

of the Gulf Stream makes the circuit of the Gulf of Mexico; since, if it impinged directly upon the islands of Key West and the Tortugas, we should find its effects in the wearing of a deeper channel on that side.

TEMPERATURES.

Change of temperature with depth.

In a former communication the law of change of temperature with depth was discussed, and types of the curves representing the law were given for different parts of the stream. These curves were all merely modifications of a more general form. Thus, the cold water between the Gulf Stream and the coast gave one form, the axis of the stream another, and the water beyond the axis a third form, while in the Strait of Florida a fourth was developed. It would be natural to expect, in the course of many years' explorations by different individuals, with different instruments, not even of the same class, that general phenomena of this character should present some contradictions and some inexplicable results.

Experience, however, has confirmed the first conclusions and the constancy of the phenomena. It is not difficult, having the curve representing the temperatures at any position from the surface to the depth of several hundred fathoms, to determine, from the temperatures alone, in what part of the stream they were taken.

Temperature in a direction perpendicular to the stream.

Diagrams 2, 3, 4, and 5 (Sketch No. 35) show the changes of temperature for the same depth in each of the sections, and diagrams 7, 8, 9, and 10 the depth for the same temperature.

Bands of warm and cool water.

In the section from Cape Florida to Bemini the division of the stream into bands is plainly exhibited, though more faintly than in the northern sections, and the form of the bottom in this section shows also elevations and depressions corresponding to the divisions. In the sections south of Cape Florida all traces of the bands seem to disappear, as well as the ridges of the bottom. The bands, therefore, seem to have their origin near Cape Florida; and the conclusion stated some years ago as the probable one is strengthened, that they are caused by the ridges and valleys of the bottom parallel to the general course of the stream, and along which the stream and counter-stream have their course.

The Cold Wall.

The Cold Wall, as an exception to the remark made above in reference to the bands, is traced as far as the Tortugas, and is plainly shown in all the sections with more or less distinctness. In the Sombrero key section (No. 3) it is strongly marked at depths ranging from seventy to a hundred fathoms, while in all the sections the warm water at the surface overflows the Cold Wall and reaches quite to the shore.

Diagram No. 6 represents the comparative curves of the Cold Wall in different sections of the Gulf Stream, including those in the Straits of Florida. The figures at the top show the distances of the cold wall from the shore in the different sections, and the numbers on the left the degrees of temperature. The curves are drawn for different depths in the several sections, as shown in the notes at the bottom of the diagram. The dotted curves, g, h, i, k, represent the Cold Wall in the four sections under consideration.

Longitudinal sections.

It has been found very difficult to deduce any satisfactory law for the decrease of surface temperature along the axis of the stream, owing to the variability of the temperature of the waters of the regions from whence the Gulf Stream is supplied. Two modes of investigating the subject have been pursued; one, by following the stream from the Gulf of Mexico, and making hourly observations of the temperature of the water, and the other by comparing the mean temperatures of the various sections with each other and with the temperature of the Gulf of Mexico. In the first method the vessel must be allowed to drift with the current of the stream, a difficult condition except in the best weather, even for a day, and to float along thus for hundreds of miles would rarely be practicable. Any motion communicated by sails or by steam must carry the vessel beyond the water in which she commenced her voyage, and the lateral overflow carries the water constantly from the axis towards the edges of the stream. In the comparison of mean temperatures of the different sections the fact has been established that the temperature of the water of the stream at any point may be higher than at a point nearer the source, and hence vessels in running along the stream may, and generally do, pass through water not of a constantly diminishing temperature, but from cool to warm, and the reverse. This is to be explained mainly, though not entirely, by the variability of temperature at the source.

By taking the mean temperature of any one section and going back to the date of the departure of the waters from the Gulf of Mexico as determined by the velocity of the stream, and comparing the temperatures observed with the temperatures of the Gulf waters, it was supposed that a solution of the question might be obtained. The temperatures were taken from the most authentic meteorological records of the Gulf for a series of years, and those periods sought which corresponded to the dates desired. The uncertainty of the temperatures of the waters of the Gulf of Mexico, as obtained from air temperatures taken here and there along its shores, rendered the results unsatisfactory. Enough seems to have been determined, however, to show that the surface temperature of the Gulf Stream along its course is variable; that a vessel sailing along the axis at a more rapid rate than the motion of the stream will pass through water of higher and lower temperature, depending generally upon two conditions, viz: the distance from the Gulf of Mexico, and the temperature of the Gulf at the time the water entered the straits of Florida; and further, that the latter cause is the predominating one in the parts of the Gulf Stream adjacent to the Atlantic coast, where the current is rapid.

The influence of the form of the bottom in forcing the cold counter current of the bottom upward has been adverted to, and the fact appears to be well established in the cross sections, where the ridges and valleys parallel to the direction of the stream separate it into bands of warmer and cooler water, and this conclusion, as has just been stated, is strengthened by the fact that the bands and ridges simultaneously disappear south of Cape Florida. This phenomenon is moreover strikingly exhibited in the longitudinal section of the bottom in connection with the lower temperatures.

The shallowness of the stream in the Strait of Florida, connected with the fact that the bottom falls off rapidly to the north and south, afforded an excellent opportunity for testing this question. If the cold water of the under polar current follows the bottom it should appear in the shallow part of the strait, and here the warm water of the surface and the cold water of the bottom would approach each other. Diagram No. 1 shows the curves of 40°,

45°, and 50° (bottom temperatures) along the deepest part of the stream, commencing at Sandy Hook and running as far as the Tortugas. All these curves rise with the bottom and pass over the ridge which divides the bed of the Atlantic from that of the Gulf of Mexico, and again fall with the slope of the bottom towards the Gulf. In the narrowest part of the strait, where the depth is three hundred and fifty fathoms, the temperature, from the surface to the bottom, ranges between 80° and 40°.

On the effects of pressure on Saxton's Deep-sea thermometer.

In the explorations of the Gulf Stream the temperatures below one hundred fathoms have mostly been determined by Saxton's metallic thermometer, and although the results have been consistent amongst themselves, and have agreed well with the indications of other thermometers, yet it was thought advisable to determine the effect of pressure by direct experiment.

Saxton's thermometer consists essentially of a compound ribbon of silver and platinum, fused and pressed together by rollers. This ribbon is wound in a spiral form, one end of the spiral being firmly fastened to an interior solid axis, and the other left free. Upon the free end is placed an index arm, which moves over a circular graduated scale, carrying with it a friction hand or indicator, which is left at the extreme point of the arc reached by the true index. The instrument is enclosed in a case, to which the water is freely admitted. A variation of temperature is immediately noticed, as the effect is to give a rotary motion to the index.

The experiments to determine the effect of pressure were made at my request by Mr. J. M. Batchelder, with means devised by Mr. Thomas Davison at the Novelty Iron Works. The following description of the apparatus employed is given by the last named gentleman.

"The gauge (Sketch No. 35) consists of a brass cylinder H about eight inches long, into which a steel plunger is fitted, the upper part of the plunger at A being .70 of an inch in diameter, and the lower at B about .786, so that the difference in area of the ends is equal to one-tenth of a square inch. The cylinder is bored out a little larger than the plunger, except for about a fourth of an inch near each end, at C and D, where both are accurately fitted. To the branch E a pipe connects, communicating with the hydraulic cylinder, and leading the water into the centre of the gauge, which it reaches after passing through the chamber F, filled with sponge to prevent any impurities in the water from reaching the plunger. The upper end of the plunger connects by a wire W to a spring, as shown in the sketch at G, so constructed as to indicate pressure from 0 to 450 pounds, the spring being so strong that 450 pounds produce a movement of the plunger equal to three-eighths of an inch. It is evident that, as the difference in area of the ends of the plunger is one-tenth of an inch, one hundred pounds pressure from the water on this surface, as indicated by the balance, would equal a pressure of water of 1,000 pounds per inch, or a pressure ten times as great as that indicated by the balance throughout its scale. The only difficulty in the use of the gauge is that of fitting the plunger to the cylinder, so that, while it is perfectly free to move, it is also watertight. This difficulty, however, has been overcome, and much advantage was also derived from Mr. Batchelder's suggestion for supplying the wear of the plunger and cylinder by depositing brass on the plunger through the galvanic process."

Connected with this gauge by a pipe is a strong wrought-iron cylinder sixteen inches long by four inches in diameter, in which the thermometer was placed, the opening being firmly closed by a screw plug. This second cylinder was immersed in a tub of water for the purpose

of regulating the temperature. The thermometer once placed in the cylinder is not again removed, the index being read by means of a mirror until the observations are completed.

By the use of this apparatus the effect of pressure up to 4,000 pounds per square inch was observed upon two thermometers, and the results are given below. The observations were made to indicate the effects of 500, 1,000, 1,500, 2,000, 2,500 pounds pressure, &c. Seven series of experiments were made with thermometer No. 5, and five series with No. 10. The mean results show that a pressure of 1,000 pounds per square inch has no effect upon the thermometer; at 1,500 pounds the effect is less than one degree; and from 1,500 to 4,000 pounds per square inch the effect is to diminish the readings, the maximum effect being seven degrees.

The diagram (Sketch No. 35) exhibits the law of diminution by increase of pressure, and the depth corresponding to different pressures. The correction to be applied varies with the depth-for thermometer No. 5 it is only four-tenths of a degree Fahrenheit at the depth of 600 fathoms. For thermometer No. 10 it is one degree at the same depth. At 1,500 fathoms the corrections are respectively five and a half and seven degrees.

Nearly all the temperatures observed in the Gulf Stream have been taken at depths less than 600 fathoms.

Table showing differences of readings of Saxton's thermometer, under pressure and free from pressure.

THERMOMETER No. 5.

Number of corior	PRESSURE IN POUNDS.							
	1,500.	2,000.	2,500.	3,000.	3, 500.	4, 000.		
	0	0	0	0	0 ,	0		
	1.6	0.00	3. 75	0.00	0. 00	0.00		
	0.	1.00	2.	2.8	4. 5	5. 5		
	0.	1.00	2. 25	3.75	4.75	5.7		
	0.	0.5	0.5	2.0	3. 6	5.5		
	0.	1. 75	2. 25	3.5	5. 0	6.5		
	0.	1. 25	2. 25	3.75	6. 0	6.5		
	0. 5				3, 5	4. 25		
Means	0.3	1.1	2, 1	3. 2	4.5	5. 6		

THERMOMETER No. 10.

Number of series.	PRESSURE IN POUNDS.						
	1,500.	2, 000.	2,500.	3,000.	3, 500.	4,000.	
	0	0	0	0	0	0	
1	0.00	2.00	3. 25	4.5	6. 25	8. 25	
2	2.00	1.00	3.5	4.5	6.00	7. 25	
B	0.75	2.00	3. 0	3. 25	5. 5	6.5	
4	1.75	2.00	3. 5	4.75	5. 5	7.25	
5	0.75	1.75	1.75	3.75	5. 0	6.75	
Means	1.00	1.75	3. 00	4. 25	5.6	7. 25	

APPENDIX No. 26.

Report of Assistant Henry Mitchell on the physical surveys of New York harbor and the coast of Long Island, with descriptions of apparatus for observing currents, &c.

Boston, September 30, 1859.

SIR: I have the honor to inform you that the field-work comprehended in your plan for the physical survey of New York harbor has been completed by the operations of the past season.

At the commencement of this work it was quite impossible to foresee the form it would ultimately assume, the questions to which it would give rise, or the investigations to which it would lead. Neither the precise character of the observations to be made, nor the extent to which they should be carried, could be estimated in an undertaking in many respects quite novel and without precedent.

Certain changes in the forms of shoals and channels had been revealed by the comparison of the early surveys with those of more recent date, and the questions arose—To what causes are these changes due? and—To what end do they progress? What are the natural forces which build in one direction shoals and beaches, while opening elsewhere new channels, or wearing away the shores? These were the problems for the solution of which the physical survey was instituted.

The general plan of this work, to which you first directed my attention, has been adhered to throughout; since your subsequent instructions have referred to the limits of each season's work, rather than to the character of it. By this plan we have been required to observe, and make note of, every natural operation, whether of tides, currents, winds or waves; in fine, to compile for a certain period a complete physical history of these elements from a systematic course of inquiry.

The field over which our observations have spread includes not only the harbor proper, but its approaches in all directions, extending up the Hudson river to Fort Washington, into Long Island sound as far as Execution light, through the kills, over the bar, and sixty miles out to sea. Throughout this field the periods, velocities, and paths of the various currents are determined, as are also the experiences of the tide waves (both from the sound and the ocean) in the different channels and avenues which they traverse. The disturbing effects of winds and freshets, the appearance of rips and eddies, together with general meteorological phenomena, have all been noted carefully.

The whole number of tidal and current stations which we have occupied exceeds one hundred and fifty, and at these the observations number many thousands. Many of the tidal stations were occupied one or more entire lunations, and at some of the current stations the observations were continued in unbroken series of half-hourly records for seven, nine, and fourteen days. The aggregate amount of time spent on the field-work has not exceeded twelve months.

Rough computations of our observations were made in the intervals between the working seasons, and these acquainted us with the progress we were making, and pointed out the direction which succeeding inquiries should take. From the results of our labors we gained at each step confidence and encouragement. What appeared at first a tangled skein of accidental or inconstant causes, we ultimately recognized as orderly and harmonious relations; and, our

methods of observing improving steadily, the work advanced to its close at a pace constantly accelerated.

The observations of the past season were confined to no special locality, but were made at various points where previous operations were incomplete or required connecting links.

Our field-work commenced the first of June, and the quiet weather which prevailed during this month was improved for the occupation of the more exposed stations—those near shallow portions of the bar and along the outside coast. We had designed to occupy a station which should, if possible, lie quite beyond the reach of the New York harbor drift, and enable us to determine whether any oceanic current sweeps into the great bay formed by the coasts of Long Island and New Jersey. For this purpose we anchored, in thirty fathoms water, nearly sixty miles east-southeast of Sandy Hook, where, during a period of fifteen hours, we measured the currents at the surface, and at depths of twenty-three and one hundred and fifty feet, besides a few determinations of the mean motion for the entire depth. At this station, nearly forty miles from the nearest land, we found regular tidal currents, nearly as strong as those observed at the light-ship the previous season. No oceanic current could be detected, but the augmentation of the ebb current, caused by the drainage of the land waters, was very appreciable. The velocities of the currents are not so regular at this station, from the fact that the depth of the moving water stratum is variable, at one time extending to the bed of the sea, at another reaching but a short distance below the surface. The directions of the flood and ebb drifts were found to be respectively west-southwest and east by south; which, making due allowance for the disturbing effects of the land waters, would indicate that the tide-wave has here a westerly motion. The land waters of which we have spoken are doubtless the combined drainage from New York harbor and the various inlets; for, extending our observations along the south shore of Long Island, we found that they outlive the tidal currents, and establish themselves as a constant coastwise stream along the eastern portion of Fire Island beach.

The stations outside of the bar were eleven in number, at which above seventeen hundred observations were recorded, and of these more than five hundred were made at points below the surface.

The greater part of our season's work lay in the lower bay or in the vicinity of the bar, where there remained some localities unexamined and others at which previous examinations had given discordant results.

From the computations which followed the field-work of 1858, it appeared that where observations were sufficiently numerous the causes of a certain class of shoals were immediately deducible from the data obtained. It was ascertained, on making a composition of the currents at each station, with the assumption that they are to be regarded as forces acting simultaneously, that the resultants take directions towards the shoals as focal points; making it evident that the sand which forms these shoals is gradually swept together from the neighboring channels. Simple as the dynamics of this natural process may be, its form can only be developed from the most accurate determinations of the elements. The resultant, for instance, may be a very small quantity from a station at which the adverse currents are very violent. In a case like this, the slightest error of observation, or even the selection of an unsuitable period, may give us a false result and lead us entirely astray. If the observations are not sufficiently frequent, they may fail to give the exact durations of certain phases of the currents; or if the positions

of the stations are not closely determined, errors enter into the directions of the forces. Again: if the observations are not continued long enough to eliminate the diurnal inequalities, an undue weight will be given to some of the elements which enter into the problem. At the commencement of the past season, forewarned of these difficulties, I placed in the hands of my observers printed rules for their guidance, and required of each person a strict conformity to them. Twenty-one stations were occupied in the portion of the work to which I have just referred, and at these the aggregate number of observations reaches nearly five thousand, of which above eighteen hundred are from points below the surface. At these stations the observations were usually kept up in unbroken series of twenty-five hours each.

A more suitable period for observations of so exact a character could scarcely have been chosen; our operations were rarely suspended by bad weather, and few delays of any kind occurred.

In making observations upon bars and shoals, the disturbing effects of strong winds cannot be disregarded; for it not unfrequently happens that they change the direction of the current, or wholly reverse its course. In districts of shallow water the waves created by the winds have a motion of translation whose effect upon the log is very great; and although the observer is able to distinguish this sudden and uncertain motion from that of the more steady current, he cannot introduce a correction for it. Where the sea is deep, the impulses it receives from the winds result in simple undulations, giving to the log no horizontal motion whatever, so that, even when the swell is very heavy, accurate current observations are possible. As far as our experience has gone, we have never observed in the waves any power of transportation where the depth of water exceeds three fathoms.

Above the Narrows there were eight stations occupied—three in the main channel of the harbor, two in the Hudson, and three in the East river. At these there were recorded over seventeen hundred observations, of which above eight hundred were made upon the subcurrents.

The stations in the harbor, as well as those in the Hudson river, were designed to furnish us with additional data relative to a class of remarkable counter-currents discovered the previous season. The former observations had established the fact that along the main channel the currents of the lowest water stratum maintain velocities and directions quite at variance with those near the surface. It, however, remained to be proved whether the phenomena observed were continuous from station to station or mere local conditions; and if their continuity could be shown, the exact limits of their domain were to be ascertained. The information now in our hands affords, I am convinced, a full and faithful exhibit of these points.

The three stations in the East river lie in positions which the previous work had shown to be important, as embracing the terminus of the Hell Gate interference current. At one of these stations, which lies in the deep basin westward of the point of Blackwell's island, some curious conditions of the sub-currents manifested themselves. Here the axis of the ebb (westerly) drift was observed to lie about twenty feet below the surface throughout the entire duration of this current; in other words, the current is stronger at this depth than at any other point above or below. There are resemblances between this phenomenon and those already referred to as appearing in the main channel of the harbor, but I am doubtful whether we can class them together. In the discussion of our results, we propose to group the currents of the upper harbor according to tidal hours obtained from the self-registering gauge at Governor's

island, and those of the lower harbor and its approaches, according to tidal observations made simultaneously by some of our own party at Sandy Hook.

The closing work upon the physical survey of New York harbor, which we have briefly described, did not occupy us during the entire season, and there proved to be ample time for the other operations directed by your instructions, viz: inquiries into the physical conditions of the bays and inlets along the south shore of Long Island.

Glancing at a chart of our coast, one may see on the south shore of the island of Nantucket a series of small ponds separated from the sea by narrow reaches of sand. On Martha's Vineyard the same features may be observed along the outer shore, except that here the larger basins or lagoons have occasional outlets through the strips of sand beach. Further to the westward, upon the coast of Long Island, appear similar basins, so extensive as almost to form inland seas with outlets of considerable depth, through which vessels may pass. Here are fully established the forms which may be distinguished as the leading characteristics of the Atlantic coast to the southward, and of the entire Gulf shore. From the past history of the sandy portion of our sea-coast, it appears that the outlets to which we have referred are never permanent, but continually shift their positions, either by gradual encroachments and recessions of the sand reaches, or by suddenly closing up at one point and breaking away at another. The design of our study was to ascertain, if possible, the causes which maintain these extended sandy reaches, and the agencies which create the channels through them. In this undertaking, the line of stations, to which reference was made in the former part of this report, extending along the coast, at intervals of from five to twelve miles from Coney island to a point twentyfive miles east of Fire Island light, gave us all the requisite data for a complete knowledge of the shore currents; and we added to these series of current observations at Fire island, Crow Gut, and Rockaway inlets, besides others from stations in the Great South bay. By half-hourly records at gauges temporarily erected, the form of the tide wave as it enters Fire Island inlet was compared with that observed at Sandy Hook on the one hand, and that at the eastern extremity of the Great South bay upon the other. At some of the outside stations we threw over sinking articles, hoping to find them again upon some portion of the beach, and thus be able to determine the direction of the movements on the bottom of the sea. The first class of articles we tried were balls made of cement, with corks enclosed, giving them what we supposed to be the requisite specific gravity. On a former occasion these cement balls were used quite successfully along the shores of Sandy Hook, but we now found them to fail entirely on this coast, where the currents are more feeble. We subsequently had recourse to the large skim. mer shell (mactra solidissima) which we collected from the shores, and marked with drills. Some of these, cast over in three fathoms water off Oak Beach, travelled eastward, and crossing Fire Island inlet, were swept on shore four miles to the eastward of their place of deposit. In the performance of this journey they were occupied over two weeks, during a prevalence of easterly winds. Of three hundred shells cast into the sea, one hundred were recovereda much larger proportion than we could possibly have expected to find among the shifting sands and the miscellaneous stranded articles upon these beaches. The easterly preponder ance in the movements of the currents along the bed of the sea, which the journey of these shells revealed, corresponds with the results from previous observations of the surface drifts

As our inquiries proceeded, it became evident that the currents, powerful though they may be to scour channels and form the ocean bed, cannot alone effect the peculiar changes which are observed to take place in the beaches, but that the waves take a part, not insignificant, in

these operations. In the shallow waters along these alluvial shores the waves, driving in from the ocean, acquire violent horizontal movements, and dash along the beach with a force in comparison with which the strongest currents are quite impotent. In order that we might the better understand and determine the precise action of the waves and the relation of their office to that of the current, we made a very careful examination of the conditions in miniature forms of bays and inlets, where the limited field of observations afforded us a comprehensive view of the natural activities at work. The results of this examination have already been laid before you with such conclusions from them as were immediately obvious.

In the course of this and former reports I have referred repeatedly to the observations of currents at different depths, and it has occurred to me that some description of the apparatus in use should here be given, in order that the reliability of the results should be established.

Descriptions of Apparatus.

For observations upon the surface currents we use a "tube-log," which is simply a tin cylinder four inches in diameter and six feet long. This tube is partially filled with water, so as to sink nearly its whole length and maintain an upright position; and a graduated line being attached, the observations are made as with an ordinary ship's log. We have found that a log of less draught than this is liable to be affected by the wind.

When we desire to obtain the mean motion of a stratum of greater depth, we use twenty-four feet tubes, and in some cases those as long as forty-eight feet.

If the velocity of the current in the lowest water stratum is desired, we take the following course: Two copper globes of equal dimensions are connected by wire rope of the smallest possible size compatible with the strength required. One of these globes, being filled with water, is allowed to sink the whole length of the connecting line, while the other, being empty, or only partially loaded, swims at the surface of the sea. To the upper globe the log line is secured. The velocity with which the globes, thus connected, will move, is a mean of the rates at which the upper and lower water strata are flowing; and if simultaneous observations are made with this apparatus and the surface log, before described, we are furnished with the means of obtaining by calculation the velocity of the lowest stratum. This method may be employed where the water is not so deep as to give to the connecting wire rope an extent of surface which, exposed to the current, may require consideration in the problem.

The instruments I have described thus far are similar to those which have been used in determining the discharge of canals in Europe. In the application of these to inquiries on a larger scale, I have found it necessary to make certain modifications of them to insure accuracy.

It not unfrequently occurs that the velocity of the surface drift is many times greater than that of the lower stratum, or holds altogether a reverse direction, so that the motion of the globes is quite at variance with that of the surface log. In a case like this, the graduated line secured to the globes is borne away by the surface current, and the observer is deceived. The full extent of this difficulty will be appreciated when it is considered that the line of which I have spoken is necessarily of considerable size, the strength of six men being sometimes required to draw in the globes. I propose to obviate this difficulty by the following arrangement: Within the upper globe, made of wood in this case, a reel is placed, upon which a small log-line, passing in at an aperture at the pole, is wound by a crank from without. The extremity of this log-line is secured to a third globe, which swims freely upon the surface of the sea. When making an observation, the log-line is wound up until the floating globes are

brought together; then, at a signal, the reel is loosened; and now, if the surface and sub currents differ in velocity, the free globe separates from the others, and the observer notices the number of divisions of the log-line drawn out in thirty seconds. In this experiment the apparatus is in nowise connected with the vessel, but the observer follows in a boat until the trial is completed. Figure 1 (Sketch No. 40) shows the relative position of these globes during the course of the observations. In this figure A and B are the connected globes, while C is the free float. The weight of the globe B causes the swimming globe A to sink nearly to its pole, and the free float C is loaded so as to sink about the same distance. The graduated line, which measures the separation of the floating globes, may be seen, one end fastened to a ring upon the free float C, the other passing in at the pole of the globe A. Figure 2 is an enlarged representation of the globe A, opened so as to show the reel within. The water, which enters the globe freely, acts as a check, preventing this reel from acquiring an undue momentum with any sudden jerk of the line caused by the waves. In this figure may be seen the position of the crank by which the reel is wound; this crank is, of course, removed after the floating globes are drawn together. Upon the outside of the globe containing the reel every ten degrees are marked that the observer may note in his record the amount submerged. In the reduction of these observations the extent of the wetted surfaces of the two connected globes must be considered, since, in the case of a difference of velocity between the upper and lower strata, the effective areas of the surfaces exposed to the two streams enter into the problem. In all positions the effective surface which a globe wholly immersed presents to the current is a great circle. The velocity attained by the connected globes is a simple mean of the velocities of the superficial and lower strata when the effective surfaces are equal; and when these surfaces are unequal, the mean by weight. If x = velocity at surface, y = velocity at lowest point; then with equal surfaces we obtain velocity of globes $=\frac{1}{2}(x+y)$. If the effective surfaces opposed to the drifts (portions of great circles) are unequal, and their areas be represented by a and b, we have the velocity of globes $=\frac{1}{a+b}(ax+by)$. This expression represents the immediate result obtained by the original manner of using the globes if the vessel be at anchor; but, in our modification, the result of our experiment is the difference between the motion of the free and that of the connected globes, or $x-\frac{1}{a+b}$ (ax + by). The extent of the wetted surface of the free globe will not affect the result, but it is convenient to have this globe of the same size as the others so as not to be greatly affected by winds.

If the paths of the surface and sub-currents do not lie in the same vertical plane, the connected globes take an intermediate course, with velocity $=\frac{1}{a+b}\sqrt{\{(a\ x\ \text{sin.}\ \beta_1+by\ \text{sin.}\ \beta_2)^2+(a\ x\ \text{cos.}\ \beta_1+by\ \text{cos.}\ \beta_2)^2\}}$, and $\tan\theta$ (angle of direction) $=\frac{a\ x\ \text{sin.}\ \beta_1+by\ \text{sin.}\ \beta_2}{a\ x\ \text{cos.}\ \beta_1+by\ \text{cos.}\ \beta_2}$ when β_1 and β_2 represent the respective angles of direction of the upper and lower drifts.

When observations are to be made at sea, where there is a great depth of water, a further modification of the apparatus is necessary. In place of the two connected globes in the foregoing description, a hempen line is used, (perhaps two inches in diameter,) terminating in a wooden pole above and a leaden cylinder below, the former serving to float the shaft, while the latter sinks and straightens the line, and the reel is transferred to the free globe. (See Fig. 3, Sketch No. 40.) The apparatus, thus modified, will serve to exhibit the difference between the

surface drift and the mean velocity of a stratum of water whose depth equals the length of the shaft immersed. If we know the surface velocity we may readily obtain the velocity of the lowest point reached, if we suppose the change of velocity from point to point to be uniform, by subtracting the surface rate from twice the mean velocity. This supposition is not always correct, and must be tested by the following experiment: The log-line having been unfastened, the pole is passed through a copper globe, and the line drawn up until the globe can be secured at a point which will occupy a middle position of the wetted surface on again letting the shaft sink as far as it may.—(See Fig. 4, Sketch No. 40.) Upon a new trial, if the velocity observed is still the same, we may conclude that our supposition is correct; if not, we may, by shifting the position of the globe again and again, making at each remove an observation and record, or by using simultaneously several such shafts, calculate approximately the conditions of the sub-currents and the curve at which our deep shaft hangs. The globes which we have used measure two feet in diameter.

Before closing this rapid sketch of our devices for obtaining the data required by your instructions, I would refer briefly to a new form given to a pile used in securing a tide-gauge at Fire island, and which, I think, possesses some peculiar advantages for use upon sandy coasts where there is a heavy sea. This pile is of oak, or other heavy and strong wood, and is so cut that the lower portion of it, for a space of six or eight feet, presents the appearance of a number of inverted frustrums of cones, placed one above another—the series terminating in a sharp and heavy shoeing. As a whole, it is required to have a greater weight than the sand and water it is intended to displace. On working this pile into the sand, by swaying it to and fro, in the usual manner, each cone, as it sinks, acts upon the sand above and below, as at once a lever and a wedge, giving to the whole a continual downward thrust. In the same way the waves, instead of tearing it up, cause it to work deeper and deeper, and thus the lateral oscillation of the sea is converted into vertical motion, and brought to our aid. Of course this downward tendency of the pile can be easily checked if too great for our purposes. As my description of this pile is not altogether clear, I annex a diagram, (Sketch No. 40,) which will require no explanation.

Very respectfully, yours,

HENRY MITCHELL,

Assistant Coast Survey.

Professor A. D. Bache, Superintendent Coast Survey.

APPENDIX No. 27.

Report to the Superintendent by Assistant L. F. Pourtales, in charge of the field and office work relating to tidal observations.

COAST SURVEY OFFICE, October 1, 1859.

Sir: I have the honor to submit the following report on the field and office work performed by the tidal party under my charge during the past year:

FIELD-WORK.—The permanent stations at which the tides are observed for a long period of years are the same as mentioned in former reports, viz: Boston, New York, Old Point Comfort, Va., Charleston, S. C., and Fort Clinch, Fla., on the Atlantic coast; and San Diego, San

Francisco, and Astoria, on the Pacific coast. The following table will show the date at which the series of observations began at each of those stations, and the number of years over which it consequently extends up to this date.

Station.	Kind of gauge.	Date of beginning of series.	Length of s up to Oct 1, 1859.	
Boston New York Old Point Comfort Charleston, (Castle Pinckney)	S. R	December 12, 1852	12 6	
Charleston, (Castle Pinckney)	i	July 16, 1855, to December 10, 1856 February 1, 1856		9
Fort Clinch	S. R	February 20, 1856	3	7
San Diego		July 6, 1853, to September 20 1853 September 22, 1853	6	3
San Francisco		- '	6	4
Astoria		July 11, 1853	6	3

The stations have, during the past year, given generally good results. The station at Fort Clinch has, however, suffered an interruption by the sickness and subsequent sudden leaving of the observer, and the inexperience of the person he had left in charge. The stations on the Western Coast, under the supervision of Lieut. G. H. Elliot, U. S. Engineers, have continued to give very satisfactory results.

The temporary stations were not numerous. The tide-gauge at the Washington navy yard is still kept up. Owing to the frequent changes of the officers in the ordnance department of the yard, it was found more advantageous to have the gauge attended to by Mr. Walker, of this division of the office.

The stations mentioned in last year's report as having been established by Mr. Würdemann at Charlotte harbor, Egmont key, and Cedar keys, have, together with the one at Tortugas, afforded very satisfactory results. The series being extended over more than a year, the gauges will shortly be transferred to new stations at and to the westward of St. Mark's. Mr. Würdemann has suffered greatly from sickness superinduced by exposure, and was obliged to leave that section at the approach of warm weather, without detriment, however, to the observations, thanks to the careful training he had given to the observers. On his way north, Mr. Würdemann visited the tide-gauges at Fort Clinch, Charleston, and Old Point Comfort.

The self-registering tide-gauge established at Warrenton navy yard, Pensacola, Fla., by the kindness of S. T. Abert, esq., civil engineer of the yard, gives very good results, and will supply a useful link in the chain of stations which it is intended to establish successively along our shores on the Gulf of Mexico.

Good self-registering observations were obtained at Benicia, Cal., under the direction of the hydrographic party of Commander J. Alden, U. S. N., Assistant Coast Survey.

A list of the observations received during the year is herewith presented. It contains, as usual, only those which were made under the direction of this division of the office, and not those made by hydrographic parties for the reduction of their soundings.

ď	Name of station.	Name of observer.	Kind of	Stations, permanent	TIME OF O	CCI PATION.	Total	Remarks.
Section.			gauge.	or temporary.	From—	To-	day .	
1	Boston Dry Dock, Mass.	T. E. Ready	Staff	Permanent	Oct. 1,1858	Sept. 30, 1859	365	
п	Governor's Island, N.Y.	R. T. Bassett	S. K	do	Oct. 1,1858	Dec. 30, 1858	91) Obs'ns made at Brooklyn
	Do	do	do	do	April 7, 1859	Sept. 30, 1859	177	during the cold weather.
	Brooklyn, N. Y	do	Box	do	Oct. 1,1858	Sept. 30, 1859	365	Only day observations dur-
								ing the summer.
	Dobb's Ferry, N. Y	W. H. Roberts	Staff	Temporary	July 23, 1858	July 31, 1858	9	
	Verplank's Point, N. Y.	J. G. Rotche	do	do	July 22, 1858	Aug. 3,1856	13	
	Do	do	do	do	Sept. 10, 1858	Sept. 14, 1858	5	
-	Cold Spring, N. Y	do	do	do	Sept. 11, 1858	Sept. 14, 1858	4	
	Poughkeepsie, N. Y	do	do	do	July 22, 1858	Aug. 1,1858	11	
	Tivoli, N. Y	G. R. Martin	do	do	July 22, 1858	Aug. 1,1858	11	
	Stuyvesant, N. Y	D. B. Jenks	do	d>	July 22, 1858	July 31, 1858	10	
	Castleton, N. Y					Aug. 2,1858	12	
	Greenbush, N. Y	j .	,		, ,	July 31, 1858	10	
Ш	Old Point Comfort, Va.	M. C. King	S. R	Permanent	Oct. 1, 1858	Sept. 30, 1859	365	
	Wash, Navy Yard, D. C.	Off. Ordnance Dept.	do	Temporary	Oct. 1,1858	Jan. 8,1859	160	
	Do	S. Walker	do	do	Feb. 10, 1859	Sept. 30, 1859	232	
v	Charleston, S C	W. R. Herron	do	Permanent	Oct. 1,1858	Sept. 30, 1859	365	
VI	Fort Clinch, Fla	F. A. Rebarer	do	do	Oct. 1,1858	Dec. 14, 1858	21	Stopped from Oct. 16 to
					}			Dec. 9, obs'ver being sick.
	Do	1		do	, ,	Sept. 30, 1859	261	
	Tortugas, Fla					Sept. 1, 1859	396	
	Charlotte Harbor, Fla	i	1	do	, ,	Aug. 2, 1859	265	
	Egmont Key, Fla			do	, ,	Aug. 31, 1259	375	
VII	Cedar Keys, Fla	i		do		Sept. 1,1859	386	
	Do	l .		do	,	Jan. 6, 1859	11	
	Warrington Navy Yard,	S. T. Abert	S. R	do	Nov. 20, 1858	Aug. 18, 1859	266	
	Fla.							
X				Permanent	,	, , , , , , , , , , , , , , , , , , , ,	365	
	Fort Point, Cul			do			365	
	Benicia, Cal		1	Temporary	1 '		8 8	1
XI	Astoria, Oregon	Louis Wilson	do	Permanent	Aug. 1,1858	July 31, 1859	365	

List of tidal observations received during the year ending September 30, 1859.

OFFICE-WORK.—The following persons have been permanently employed during the year: R. S. Avery, S. Walker, J. Downes, M. Thomas, and S. D. Pendleton; and the following temporarily for longer or shorter periods during the intervals of their duties in the field or in other departments of the office: Lieut. J. P. Roy, U. S. A.; Sub-Assistant C. Fendall; James Gilliss, R. E. Evans, O. Hinrichs, J. Donegan, A. W. King, and T. C. Bowie.

Mr. Avery has continued the discussion of the Boston tidal observations. Having computed a set of co-efficients from a period of observations extending over nine years, he has compared the times of high water computed by means of them with the observed times for the whole period of twelve years over which the series extend. The differences between the computed and observed times came out generally quite small.

The readings of the sheets of the self-registering tide-gauges were made by Mr. Walker, who has also had charge of the correspondence with the observers, of the examination of the observations returned by them, and of the tide-gauge at the Washington navy yard. This combination of duties has been very useful, as by reading the sheets no defects in them could escape him, and the remedy could be pointed out more intelligibly from the experience gained in managing a tide-gauge himself.

The ordinary reductions of tidal observations were made chiefly by S. D. Pendleton, and part of the year by contract, by A. W. King; also, occasionally, by Lieut. J. P. Roy, and J.

Gilliss, R. E. Evans, O. Hinrichs, and T. C. Bowie. They thus keep but little behind the receipt of the observations. The whole sets of reductions of the permanent stations on the Western Coast were revised by Mr. Walker.

The graphical decompositions of the tides observed simultaneously at the four stations Cape Florida, Indian key, Key West, and Tortugas, have continued to be made and the results to be reduced and compared by Mr. Downes, with the assistance for part of the time of Messrs. Fendall and Evans. This discussion is now nearly completed, and some progress has also been made in the decomposition of the observations at the next stations—Tortugas, Charlotte harbor, Egmont key, and Cedar keys. The daily inequality was deduced from a part of the ordinary reductions of the above stations by Mr. Gilliss.

The meteorological observations made at the tidal stations of the Western Coast have continued to be tabulated by M. Thomas, who has also read off some of the self-registering sheets from Florida, and plotted the result preparatory to decomposition, besides copying and miscellaneous work.

Very respectfully, your obedient servant,

L. F. POURTALES,

Assistant U. S. Coast Survey, in charge of Tidal Division.

Prof. A. D. BACHE, LL.D.,

Superintendent U. S. Coast Survey.

APPENDIX No. 28.

Circulars found in current bottles thrown from the surveying steamer Corwin in 1857 and 1859, in the vicinity of the Florida reef.

U. S. COAST SURVEY.

TO SHOW THE SET OF CURRENT.

This bottle was thrown overboard in the Gulf Stream.

Lat. 24° 21′ 00" N. Date: Midnight, March 28, 1857.

Long. 81° 56′ 00″ W. Wind west.

From surveying steamer Corwin.

Lieut. Comd'g T. AUG. CRAVEN, U. S. N.

The finder will confer a favor by forwarding this paper to A. D. Bache, Superintendent U. S. Coast Survey, Washington, D. C.

Record below the date and place where found.

Found on the beach about twenty miles south of Cape Cañaveral light-house on the 1st of May, 1859.

MILLS O. BURNHAM, Light-keeper, Cape Cañaveral, Fla.

Particulars of	$six\ other$	$cards\ of$	the same	form from	surveying steam	ner Corwin.

When thrown over.	Latitude N.	Longitude W.	Direction of wind.	By whom returned.	Endorsements made by the finder.
May 2, 1859	* ' '' 25 00 27	° ' ' '' 79 44 15	North; light	Mills O. Burnham	Found June 2, 1859, about five miles south of Cape Ca
Do	25 00 27	79 44 15	North; moderate	do	flaveral light-house. Found June 18, 1859, about four miles south of Cape Canaveral light-house.
April 30, 1859		80 45 13.05	From W.NW.; light.	Pedro Antonio Ebora.	Found May 7, 1859, at Cruz del Padre, twenty-one miles N.NE. of Cardenas, north coast of Cuba.
Do	24 22 07	80 53 08	From south; light	W. S. Harris	Found June 2, 1859, twenty and a half miles south o Cape Caffaveral light-house.
May 2, 1859	1			do	Found June 2, 1859, twenty miles south of Cape Caña veral light-house.
Do	25 01 11	79 45 13	Northwest	do	Found June 10, 1859, nine miles south of Cape Caffa veral light-house.

APPENDIX No. 29.

Extracts from a report by Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant in the Coast Survey, relative to commercial advantages afforded by the upper waters of Port Royal sound, S. C.

United States Surveying Schooner Varina,

Colleton river, S. C., May 21, 1859.

Sir: * * * The hydrographic work was commenced at Pinckney's island, connecting with the survey of Lieut. Comg. Maffitt, in 1855. That survey shows that the bar of the Chechessee river affords twenty feet at mean low water, with a mean rise and fall of 6.6 feet. The depth increases in passing upward, and vessels that enter Port Royal sound will find in the Colleton river at the Neck, and at its confluence with the Chechessee, a capacious, completely protected, and easily accessible anchorage, in from four to seven fathoms water.

Colleton Neck, Foot Point, or Victoria Bluff, as it has been more recently called, is only eleven miles from the Charleston and Savannah railroad, and, by reason of the fact before stated, offers a very eligible site for purposes of trade and commerce. In the event of blockade of the southern coast by a naval power this point could be easily made a sure protection to the inland commerce passing between Charleston and Savannah.

The bluff is considerably higher than the adjacent island, and is said to be healthy. The approach from Broad river is used by steamers continually, and might be improved so as to enable vessels of fifteen feet draught to pass. At present I think it safe to say that but ten or twelve feet at mean low water can be carried through. So soon as I can obtain the requisite tidal observations the soundings will be reduced and a chart sent to the office.

Very respectfully, your obedient servant,

CHAS. M. FAUNTLEROY,

Lieut. Comg. U. S. N., Assistant Coast Survey.

Professor A. D. Bache, Superintendent Coast Survey.

APPENDIX No. 30.

Letter to the Secretary of the Treasury, reporting the completion of the survey of Sapelo sound, Ga., and communicating extracts from a report by Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, relative to its commercial facilities as a harbor.

COAST SURVEY OFFICE, May 24, 1859.

Sir: I have the honor to report the completion of the field-work and hydrography requisite for a chart of Sapelo sound and river, including the bar and approaches, from a limit ten miles seaward of the entrance. The soundings in the vicinity of the bar were made by the party of Lieut. Comg. C. M. Fauntleroy, U. S. N., assistant Coast Survey, who closed the operations there at the end of April.

I append some remarks made in the report of that officer, bearing on the commercial advantages of Sapelo sound as a harbor, and suggestions in reference to buoys and beacons for aiding vessels to enter it:

"This harbor derives its importance commercially from its ease of access and from the good depth of water in its main approach. Sixteen feet at mean low water may be carried throughout to safe anchorage inside of the entrance. As a cut-off connecting with it affords a convenient and safe inland passage for traders bound south coastwise during the winter season, this entrance is preferred to the more difficult entrance at Doboy. While the soundings were in progress in March and April, more than fifty schooners and steamers (chiefly the former class) passed into Sapelo sound and through Mud river.

"At present the channel over the bar is marked by two buoys. The inner one ('No 3') should be at once removed and replaced at the extreme northeast point of the shoal designated as 'Consort shoal.'

"There is both a swash and a beach channel here, and vessels drawing from five to eight feet of water may enter the harbor against northwesters—a facility uncommon on our Atlantic seaboard.

"Upon a rough comparison (before plotting the soundings) with the survey made by Lieutenant Glynn, U. S. N., in 1841, there appears to have been little or no change since, either as to depth or in the direction of the main channel-way.

"Masters of vessels, if not well acquainted, avail themselves of daylight for entering at Sapelo. It would be of important service to the coasting trade if two small beacon lights were established, instead of the two beacons now on the point of St. Catharine's island, as such an arrangement would prevent confusion with the Doboy light. The schooner 'Blooming Youth,' lost off Sapelo entrance in March, could have made the harbor in safety with such guides as those now proposed."

Regarding the aids for navigation recommended by Lieut. Comg. Fauntleroy as of general interest to masters of vessels engaged in the coasting trade, I would respectfully request that a copy of this communication may be transmitted to the Light-house Board.

Very respectfully, yours,

A. D. BACHE, Superintendent.

Hon. Howell Cobb,

Secretary of the Treasury.

APPENDIX No. 31.

Extracts from reports made by Sub-Assistants F. W. Dorr and Charles Ferguson, describing the topographical and other features of Charlotte harbor, Florida.

Boston, March 29, 1859.

Sir: * * * The work of the season was resumed on the western half of Sanibel island at a point where its breadth is about two miles and a quarter. From thence the island runs in a W.NW. direction five miles and a half, and gradully narrows as it approaches Blind Pass. The inside shore is very irregular and broken by large lagoons, which connect with each other by narrow tortuous channels. On the outside a fine sloping beach, composed of sand and shells, is washed by the waters of the Gulf of Mexico. The interior of the island is open prairie, bearing only scattered clumps of palmettoes. Mangrove, buttonwood, &c., are found fringing the shores of the lagoons, and this growth occasionally attains a breadth of a quarter of a mile.

The entrance to Blind Pass, as the channel which separates Sanibel from Captiva island is called, is almost entirely blocked up from the inside by extensive shoals, which are dry, or nearly so, at ordinary low water. On the southern side of these shoals are eight small keys, called the Lawrence keys. They are scarcely anything more than clumps of mangrove. Blind Pass is merely a boat channel; for although the passage is deep in some places, the bars both on the inside and outside preclude the possibility of carrying through a vessel of any draught of water.

Captiva island overlaps Sanibel island at Blind Pass for a distance of a mile and a half, and from that opening stretches in a N.NW. direction upwards of ten miles to Captiva Pass. This island, or key proper, scarcely averages a quarter of a mile in width. I say the key proper, as two other keys of some size, completely separated from it, have hitherto been supposed to join it; all three being comprised under the name of Captiva island.

Captiva, like Sanibel island, has a regularly curving beach of sand and shells on the outside, while the inside shore is skirted with mangrove, and is very ragged. Extensive flats, too, make off eastward from most of the prominent points of land on the inside.

Captiva Pass, the opening between Captiva and La Costa islands, is about five hundred yards wide. Vessels drawing not more than five feet of water can pass through; yet the channel is somewhat intricate.

* * * * * * *

Yours, very respectfully,

F. W. DORR, Sub-Assistant.

Prof. A. D. Bache, Superintendent U. S. Coast Survey.

Washington, D. C., April 8, 1859.

DEAR SIR: * * * * Boca Grande, the pass between La Costa and Gasparilla islands, is the proper entrance to Charlotte harbor. It contains at low tide fifteen feet of water, and inside the bay has three or four fathoms. Vessels can carry eighteen feet some fifteen or twenty miles beyond the northern extremity of Pine island.

SIR:

La Costa island is similar in character to Captiva island, as described in the report of Sub-Assistant Dorr.

Pine island forms the eastern side of Charlotte harbor, or what may be more correctly termed the Charlotte harbor approach. It is about ten miles in length and three in width. A pine barren runs through the centre nearly its entire length, and its western shore is lined with a belt of keys and islands. Lagoons break the western side and run in towards the interior of Pine island.

This island is remarkable as having been a favorite burial place of the aborigines. There are several huge mounds on the keys along the shore. The largest are at "Brown's" station, a small fishing ranch on Pine island, (nearly opposite the middle of La Costa,) where some are found sixty and eighty feet high and four hundred yards in circumference. Here also may be seen the remains of a canal which has passed at a former period quite across the island. Its site is now so overgrown with mangrove, pine, and palmetto that the trace is barely discernible.

Very respectfully, yours,

CHARLES FERGUSON,

Sub-Assistant.

Prof. A. D. Bache, Superintendent U. S. Coast Survey.

APPENDIX No. 32.

Extracts from the report of Assistant S. A. Gilbert, descriptive of the coast of Texas intervening between Matagorda bay and Corpus Christi.

Zanesville, O., August 23, 1859.

Espiritu Santo bay is about fifteen miles long, northeast and southwest, by about five miles in width. It communicates with the Gulf of Mexico through two small bayous at the northeast end, and connects also with Matagorda bay at Pass Cavallo. Through one of the bayous (McHenry's) the State authorities of Texas have caused a channel to be opened affording a depth of four and a half feet at average high water, and the digging of a channel of ten feet from the bayou into Pass Cavallo, to form a harbor or dock for steamers and other sea-going vessels, has been undertaken by private enterprize. The town of Saluria is situated at the east end of this bayou. Throughout the bay there is an average depth of seven feet, the bottom being generally soft mud and shells, except in one locality, known as the "Middle Ground," which is sand, and a portion of which is usually bare at low water. The shores are low and marshy on all sides. Along the northwest shore is a range of marsh islands, approaching towards the cluster designated as the "First chain," which divides Espiritu Santo from San Antonio bay. Through these also the State has opened a channel to the depth of four and a half feet, but flats are forming rapidly at both ends, and constant attention will be required to keep it open.

San Antonio bay is of an irregular and somewhat triangular shape, the greatest length being, from north to south, about twenty miles, and the width ranging from four to eighteen miles.

It has no direct communication with the Gulf of Mexico, and is, therefore, but little affected by the Gulf tides. Frequently the water is made fresh by the discharge from the Guadalupe river, which enters at its northeast end, and it is almost always muddy. The average depth of the south half of the bay is about six and a half feet, with soft mud bottom, except in the vicinity of the oyster shell reefs, of which there are many. One of them, "Panther Point reef," extending through the middle of the bay, north and south, about fifteen miles, is awash in some places and in others has five feet of water over it. In approaching the mouths of the river, the water of the bay shallows, and the bottom becomes very soft, and is covered with eel-grass and other sea-weeds. The State, in the spring of 1858, opened a channel of four and a half feet from the southern mouth of the Guadalupe to a like depth in the bay, which was found at the distance of a mile, but it is now much obstructed by drift logs. Without the use of artificial means, the average depth of water into either mouth of the river would not be more than eighteen inches.

The shores of San Antonio bay are varied in character. Along its south and east sides are the low marshy shores of the islands, (Matagorda island and others,) which are the resort of immense numbers of water fowl. Thousands of swans, geese, brant, and ducks of several varieties, cover the waters and prairie of this region during January, February, and March; and in all seasons the pelican, cranes of perhaps every variety, the snipe, and other shore birds, are found in countless numbers. Oysters are plenty, and also redfish and trout, when the water is not too fresh.

Near the north end, on the east side of the bay, the prairie of Matagorda island comes to the shore in a bluff twenty feet high, along which (for several miles) are scattered clusters of oak and hackberry trees. This locality, known as "Long Motts," contains fifteen or twenty houses.

The northwest shore is the delta of the Guadalupe, a low alluvial formation, scarcely raised above the level of the adjacent waters, and covered with a dense growth of cane-grass, jungle, and forest trees. On the west shore the elevated prairie also comes to the bay in a bluff or bank of twenty feet, and is likewise dotted over with the houses of settlers, and with oak and hackberry trees. The soil is fertile, the range for stock excellent, and the locality is said to be very healthy. At one place on this side a singular range of sand hills, known as the "Sand Mounds," approaches the shore. The highest peak is about seventy-five feet above the bay. The mounds are covered with bushes, and the valleys between them filled with trees, so that, at a distance of five or six miles, the whole presents the appearance of a forest of live-oak or similar timber, forming a marked feature in that otherwise level prairie region. Deer, wolves, and wild turkeys are plenty, and rattlesnakes and other reptiles numerous. In the direction towards Lamar, a distance of about thirty miles, there is now but one dwelling, and hence the wild game has not been much disturbed.

Mission bay is a small, shallow sheet of water cut off from the head of San Antonio bay, on the east side, by the delta of the Guadalupe river, and having not over eighteen inches of water into or through it. A small bayou, entering on its east side, drains Green lake, which is a small sheet of fresh water lying some miles further up the delta.

Hines bay, on the west side of the delta, is of the same character, but is larger, being about three and a half miles in diameter and shaped like a horse-shoe. It is also deeper than Mission bay, affording about three feet of water to its head. On the north side is the swamp of the

delta, but on the south a prairie bluff twenty feet high bounds the shore, and here, within space of three miles, some twenty or thirty houses form what is called "Crescent Village."

San Antonio bay is divided from Mezquit bay by a chain of islands known as the "Second chain," and by an oyster shell reef, designated as "Ayre's reef," through which a four-feet channel has been opened by the State. The small islands composing the Second chain are mostly covered with lignum vitæ and mezquit bushes, from six to eight feet high, and in these the smaller varieties of crane have their building place. The bushes are covered with nests and throughd with cranes all spring and summer, there being no similar resort for a hundred miles either way along the coast.

Mezquit bay is about five miles long, northwest and southeast, and about three miles wide, with an average depth of four feet throughout, and soft muddy bottom. It has direct communication with the Gulf of Mexico through Cedar bayou, into the north end of which there is but one foot of water, through the bayou about ten feet, and at the Gulf outlet, or south end, about four and a half feet. Its length is three miles, and average width about a hundred and sixty yards. The oysters of this bay are noted as being the best on the coast. Fish are abundant, and to be had at all seasons of the year.

The shores of Mezquit bay are marshy, except on the northwest side, near which lie two islands, with oyster shell ridges, ranging from five to fifteen feet in height, and covered with chaparral. It is separated from Aransas bay by the cluster of islands called the "Third chain" and by two oyster shell reefs. Through these the State has opened a channel of four feet.

Aransas bay is about twenty miles long from N.NE. to S.SW., and of an average width of about six miles. About five miles from the north end lies an oyster shell reef, called "Long reef," which extends across the bay, from St. Joseph's island to Lamar. This is bare in several places, forming islands much subject to change in outline and extent by the action of the waves during the prevalence of the summer winds. There are several channels through the reef, two of which are nearly a quarter of a mile wide, with six feet water; and that is about the average depth of the bay north of the reef. South of Long reef the bay is open and free from obstructions, with an average depth of ten to twelve feet, and soft, muddy bottom, excepting near the shell reefs and shores. The beach is composed of hard sand, and the bottom, out to a depth of five feet, is of the same character, except in a locality about eight miles from Lamar, where it is rocky, a remarkable bed of natural concrete being developed there. At the bluff the formation is six feet in thickness above the surface of the water, and appears to extend about ten feet below it. I have no knowledge of any similar formation along the coast, except in the high prairie back of Copano bay, near the mouth of the Aransas river, the bed there being entirely above the level of the bay; and in Laguna Madre, about thirty miles southward of Corpus Christi bay, in which instance the formation is said to be wholly below the water level. rock in question has been used in building walls and chimneys at St. Mary's. While in place it is soft and easily cut, but after exposure to the atmosphere it becomes as hard as ordinary limestone. The color is a dirty white, and the fracture irregular. From the point at which the rock occurs a sand-flat ranges northward along the northwest shore of the bay, covered to a depth of five or six feet with "turtle grass." Large numbers of green turtle are caught here, and shipped to New Orleans during the spring and summer. There are occasional beds of oysters throughout the bay, and an abundance of fish of all the varieties that inhabit the Gulf.

Aransas bay connects with the Gulf of Mexico through Aransas Pass, which is said to be subject to changes in depth at the bar and in the channel. During last winter and spring there was an average of more than eight and a half feet over the bar at low water, as we were informed by the pilot. At the close of the working season in June arrangements were in progress for running a line of steamers from the bay to New Orleans or Mobile. The communication with Corpus Christi bay is through a narrow and crooked channel between islands and mud flats for about five miles, called Corpus Christi bayou. Its natural depth is about four feet, but a channel to admit vessels drawing six feet has been opened by a private company.

The entrance to Copano bay, between Live Oak Point and Lamar, is over a mile in width. Lap reef, much of which is bare, lies at the west side of the entrance, but there is a channel nine feet deep leading through it into Copano bay. This entrance forms what is known as "Lamar harbor," a space of about six miles in area, over much of which there is a depth of twelve feet water, with soft bottom. The harbor is sheltered either by reefs that are nearly or quite bare, or by land, on all sides.

The shores of Aransas bay are low on the south and east. On the north a chain of small islands divides it from St. Charles bay; and on the northwest side stretches Live Oak peninsula, with its high sand bluffs and hills, some of which are fifty or sixty feet high, and covered with a scattered growth of live-oak and other trees, and an undergrowth of many kinds of bushes and vines. The Mustang grape, a native of the soil, and from which is made a very fine flavored wine, grows here in abundance. Fresh water is plenty, but the range for cattle on the peninsula is not good. There are at present but four families living on it, within an area of fifty square miles.

The town of Lamar lies between the outlets of St. Charles and Copano bays. St. Charles bay is about nine miles long north and south, by about a mile in average width. A narrow, crooked channel affords about two and a half feet of water into it, but after the main part of the bay is reached the depth increases to four, and in some places as much as eight feet. Cavasso creek, coming in about six miles up, on the west side, and Salt creek, at the head of the bay, are merely drains for the rain water which falls on the adjacent prairie. In the dry season their beds are filled with salt water from the bay. The shores of the bay are mostly marshy, but at many points the marsh is interrupted by prairie bluff of eight feet or more in height. Along the east side stands a body of wood known as "The Black Jacks." The soil there is sandy, and the general surface marked by numerous hills, as at the Sand Mounds, at Lamar, and on Live Oak peninsula, and by fresh water springs and ponds. In all other localities within my knowledge along the coast of Texas there is no fresh water below the surface except immediately along the Gulf shore, on sandy islands. In many other places I have dug, but always found the water salt, as in the Gulf.

Copano bay is about fifteen miles long from northeast to southwest, and about seven miles wide. It is divided nearly across the middle by an oyster shell reef called "Copano reef," around the south end of which passes a channel of nine feet at an average stage of water, and that depth may be carried to the head of the bay during the ordinary summer tides. There are other obstructions to navigation throughout the bay to be developed in the progress of the hydrographic work. Copano creek empties into the northeast end of the bay; Mission river through Refugio Mission bay, on the northwest side; and Aransas river at the western angle of the bay. All these are inconsiderable streams, there being no more than one foot of water leading into them from the bay. The shores are mostly high, and along the north and west

shores, except near Mission or Refugio bay, the prairie fronts the water-line as a bluff, rising from fifteen to thirty feet high. That portion between the Aransas and Mission rivers is wooded; the rest is prairie, with occasional spots of timber in view. The southeast shore of Copano bay is formed by Live Oak peninsula, and is marshy along the water-line, but a short distance back rise the high sand ridges and prairie that characterize these localities. The two towns, Copano and St. Mary's, the former one of the earliest settlements made in this part of Texas, lie on the northwest side of the bay, and are still but small villages.

The land seems to be valued only for grazing, although sea-island cotton and corn have been successfully cultivated in small tracts.

Puerto bay is a small arm extending from the southwest corner of Copano bay, about five miles in a southwest direction. The entrance to it is shallow, and the depth inside is only four or five feet. The shores are generally low and marshy. A small creek, which is merely a surface drain, discharges at the head of the bay.

Refugio bay is about three miles across in either direction, and is very shallow.

The climate of this part of the coast of Texas is generally considered very healthy, and the quarter is frequently resorted to by persons who have become sickly from residence on the alluvial bottoms along the rivers. The temperature during January and February of the past winter averaged about 56° Fahrenheit, the lowest being 28° for a few hours only towards the close of a "norther," which lasted three days. During March and April it was about 70°; and for May and June, which are said to be the hottest months of the year, the average was 84°. The highest temperature recorded was 91° on the 27th of May.

There is almost a constant breeze from the Gulf day and night after the middle of April.

Respectfully, your obedient servant,

SAM'L A. GILBERT, Assistant U. S. Coast Survey.

Prof. A. D. BACHE,

Superintendent U. S. Coast Survey.

APPENDIX No. 33.

Tables for projecting maps of large extent, arranged by J. E. Hilgard, Assistant U. S. C. S.

These tables are based upon a polyconic development of the earth's surface, which supposes each parallel of latitude to be represented on a plane by the development of a cone having the parallel for its base and its vertex in the point where a tangent to the parallel intersects the earth's axis. The degrees on the parallel preserve their true length, and the general distortion of area is less than in any other geometrical mode of representing a given portion of the earth's surface.

Denoting by a the equatorial radius of the spheroid, e the eccentricity, then the normal to any point on the parallel of latitude L, produced to the minor axis, is

$$N = \frac{a}{(1 - e^2 \sin^2 \mathbf{L})^{\frac{1}{2}}}.$$

The radius of curvature in the meridian is

$$\mathbf{R}_{\mathbf{m}} = \frac{a(1 - e^2)}{(1 - e^2 \sin {}^{2}\mathbf{L})^{\frac{3}{2}}}$$

The radius of the parallel, $R_p = N \cos L$.

The radius of the developed parallel, or the side of the tangent cone, $r = N \cot L$.

Designating by n any arc of the parallel, or difference of longitude to be developed, and by θ the corresponding angle subtended by the developed parallel at the vertex of the cone, then the length of the given arc will be $n R_n = n N \cos L$, and also

$$\theta r = \theta N \cot L$$
 whence $\theta = n \sin L$.

To determine the rectangular co-ordinates x and y for projecting from the middle meridian the points of intersection of the meridians and parallels, we have simply, the developed parallels being arcs of circles,

$$x = r \sin \theta$$
, $y = r \operatorname{versin} \theta$.

Table I gives the length, in metres, of one degree of latitude and longitude for each degree of latitude from 0° to 54° ; also the radii of the developed parallels which may be used to describe the parallels by means of beam compasses when the scale permits. It also gives the values of θ for 10° of longitude, by means of which the tables may readily be extended.

Table II gives the co-ordinates for thirty degrees of longitude on each parallel from latitude 1° to 54°. The numbers correspond to the actual dimensions of the earth in metres, and are to be divided by the proper number for any desired scale.

In order to project a map by the aid of these tables draw a straight line as middle meridian of the map, on which space off the required degrees of latitude by the values given in Table I. Through the points so marked construct lines perpendicular to the meridian and parallel with each other, which will be tangents to the parallels of latitude at their intersections with the middle meridian.

On these tangents lay off from the middle meridian, for each required longitude, the corresponding x from the tables, and off-set y perpendicular to it, towards the pole. Through the points so found draw continuous curves for the parallels and meridians.

The tables are based on the following constants, being Bessel's latest, and those used in the Coast Survey:

```
Equatorial radius of the earth ...... a = 6 377397 metres, log. = 6.80464346 Polar radii of the earth ...... b = 6 356079 " = 6.80318928 Square of the eccentricity \frac{a^2 - b^2}{a^2} .... e^2 = 0.00667437 " = 7.8244104
```

TABLE I.

Length in metres of one degree of latitude and longitude, values of the corresponding radii of the developed parallel, and angles at each pole for ten degrees of longitude.

Lat.	1° of latitude.	1º of longitude.	Radius of parallel.	θ for 10° of long
0	Metres.	Metres.	Metres.	0, "
0	110 563.7	111 306.6	Infinite.	0 00 00.0
1	110 564.0	111 289.7	365 361 200	0 10 28.3
2	110 565.0	111 239. 2	182 625 500	0 20 56, 4
3	110 566.7	111 155.0	121 689 100	0 31 24.1
4	110 569.0	111 037.3	91 202 500	0 41 51.2
5	110 572.0	110 885.8	72 895 830	0 52 17.6
6	110 575.8	110 700.9	60 679 100	1 02 43.0
7	110 580.1	110 482.4	51 942 300	1 13 07.3
8	110 585.1	110 230.5	45 380 470	1 23 30.2
9	110 590.8	109 945.2	40 268 590	1 33 51.6
10	110 597.0	109 626.6	36 171 660	1 44 11.3
11	110 604.0	109 274.9	32 812 850	1 54 29.1
12	110 611.6	108 890.0	30 007 630	2 04 44.8
13	110 619.7	108 472.1	27 628 210	2 14 58.2
14	110 628.5	108 021.4	25 583 340	2 25 09.2
15	110 637.9	107 538.0	23 806 090	2 35 17.5
16	110 647.8	107 022.0	22 246 270	2 45 22.9
17	110 658.4	106 473.4	20 865 480	2 55 25.4
18	110 669.4	105 892.6	19 633 870	3 05 24.6
19	110 681.1	195 279.7	18 527 860	3 15 20.5
20	110 693.3	104 634.8	17 528 600	8 25 12.7
21	110 706.0	103 958. 2	16 620 820	3 35 01.3
22	110 719.2	103 250.0	15 792 110	3 44 45.8
23	110 732.9	102 510. 5	15 031 865	3 54 26.3
24	110 747.1	101 739.8	14 331 780	4 04 02.5
25	110 761.7	100 938. 2	13 684 530	4 13 34.3
26	110 776.7	100 105. 9	13 083 990	4 23 01.4
27	110 792, 2	99 243.2	12 524 960	4 32 23,7
28	110 808.1	98 350, 2	12 002 960	4 41 41.0
29	110 824.4	97 427.4	11 524 770	4 50 53.1
30	110 841.0	96 474.8	11 055 200	5 00 00.0
31	110 858.0	95 492.9	10 623 179	5 09 01.4
32	110 875. 2	94 481.9	10 215 570	5 17 57.1
3 3	110 892.8	93 442.1	9 830 067	5 26 47.0
34	110 910.7	92 373.8	9 464 760	5 35 31.0
35	110 928.8	91 277.3	9 117 882	5 44 08.8
36	110 947.2	90 152.9	8 787 972	5 52 40.8
37	110 965.8	89 001.0	8 473 340	6 01 05.3
3 8	110 984.6	87 821.9	8 173 042	6 09 23.8
39 .	111 003.5	86 616.0	7 885 875	6 17 35.5
40	111 022.6	85 383.6	7 610 788	6 25 40.4
41	111 041.8	84 125.1	7 346 915	6 33 38. 1
42	111 061.1	82 840.8	7 093 423	6 41 28.7

TABLE I.

Length in metres of one degree of latitude and longitude, &c.—Continued.

Lat.	1º of latitude.	1º of longitude.	Radius of parallel.	$ heta$ for 10 $^\circ$ of long
0	Metres.	Metres.	Metres.	0 ' "
43	111 080.5	81 531.1	6 849 560	6 49 11.9
44	111 100.0	80 196.5	6 614 648	6 56 47.7
45	111 119.4	78 837.3	6 388 064	7 04 15.8
46	111 138.9	77 453. 9	6 169 244	7 11 36.2
47	111 158.4	76 046.8	5 957 663	7 18 48.7
48	111 177.8	74 616.3	5 752 845	7 25 53.2
49	111 197. 2	73 162.9	5 554 355	7 32 49.6
50	111 216.4	71 687.0	5 361 781	7 39 37.6
51	111 235.6	70 189.1	5 174 752	7 46 17.3
52	111 254.6	68 669.6	4 992 925	7 52 48.4
53	111 273.4	67 129.0	4 815 973	7 59 10.9
54	111 292.1	65 567.7	4 643 603	8 05 24.6

TABLE II.

Co-ordinates of curvature.

nde.	Latitude	10.	Latitude 2°.	
Longitude.	x.	y.	x.	у.
10	111290	17	111239	34
2	222580	68	222478	135
3	333869	153	333717	308
4	445149	271	444956	542
5	556448	424	556196	847
6	667738	610	667434	1220
7	779028	829	778672	1660
8	890317	1085	889910	2168
9	1001606	1373	1001148	2744
10	1112895	1695	1112386	3388
11	1224185	2051	1223622	4099
12	1335474	2441	1334859	4878
13	1446762	2864	1446094	5725
14	1558052	3322	1557330	6640
15	1669340	3814	1668565	762
16	1780628	4339	1779799	867
17	1891917	4898	1891033	979
18	2003205	5492	2002266	1097
19	2114493	6119	2113498	1223
20	2225781	6780	2224729	1355
21	2337068	7475	2335960	1494
22	2448356	8204	2447189	1639
23	2559643	8966	2558419	1792
24	2670930	9763	2669646	1951
25	2782216	10593	2780873	2117
26	2893503	11458	2892099	2290
27	3004789	12356	3003323	2469
28	3116075	13388	3114547	2656
29	3227360	14254	3225770	2849
30	3338645	15254	3336991	3049

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude	go.	Latitude 4	o,
Longitude.	x.	y.	x.	y.
10	111155	51	111037	68
2	222310	203	222074	270
3	333465	457	5 33111	608
4	444619	812	444149	1081
5	555774	1269	555183	1690
6	666927	1828	666218	2433
7	778080	2488	777251	3312
8	889232	3249	888284	4326
9	1000384	4112	999315	5475
10	1111535	5077	1110345	6759
11	1222685	6143	1221373	8179
12	1333834	7310	1332400	9733
13	1444982	8579	1443424	11425
14	1556128	9950	1554446	13248
15	1667273	11422	1665467	1520
16	1778417	12996	1776483	1730
17	1889560	14671	1887498	19534
18	2000701	16448	1998510	21899
19	2111840	18326	2109520	24400
20	2222977	20306	2220526	2703
21	2334113	22388	2331528	29807
22	2445246	24570	2442527	32713
23	2556378	26854	2553523	35754
24	2667508	29240	2664515	38931
25	2778635	31728	2775502	4224
26	2889760	34316	2886486	45689
27	3000883	37007	2997466	4927
28	3112002	39799	3108441	5298
29	3223120	42692	3219411	56839
30	3334234	45687	3330377	6082

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates & of & curvature — Continued. \\ \end{tabular}$

nde.	Latitude	50.	Latitude	6.
Longitude	x.	у.	x.	у.
10	110886	84	110701	101
2	221771	337	221401	404
3	332656	759	332101	909
4	443541	1349	442800	1616
5	554424	2108	553497	2524
6	665306	3036	664192	3635
7	776186	4132	774885	4948
8	887065	5397	885576	6463
9	997941	6831	996263	8179
10	1108815	8433	1106947	10098
11	1219687	10205	1217628	12218
12	1330556	12144	1328304	14541
13	1441422	14253	1438976	17065
14	1552284	16529	1549644	19791
15	1663144	18975	1669306	22719
16	1773998	21589	1770963	25849
17	1884849	24372	1881614	29181
18	1995696	27323	1992258	32714
19	2106537	30444	2102896	364 50
20	2217375	33732	2213529	40386
21	2328206	37190	2324152	44527
22	2439034	40815	2434768	48868
23	2549856	44610	2545377	53411
24	2660670	48573	2655974	58155
25	2771479	52704	2766566	6,3101
26	2882284	57005	2877148	68250
27	2993080	61473	2987719	73599
28	3103868	66111	3098282	79151
29	3214646	70916	3298828	84904
30	3325421	75891	3319368	90859

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude	70.	Latitude 8°.		
Longitude	x.	y.	x.	y.	
10	110482	118	110230	134	
2	220964	470	220460	53	
3	331446	1057	330689	120	
4	441924	1880	440914	214	
5	552402	2937	551139	334	
6	662876	4230	6 61 3 59	481	
7	773348	5757	771576	656	
8	883817	7520	881789	856	
9	994281	9517	991996	1084	
10	1104741	11751	1102196	1338	
11	1215196	14216	1212391	1619	
12	1325644	16919	1322578	1927	
13	1436087	19856	1432757	2262	
14	1546525	23028	1542929	2623	
15	1656954	26435	1653090	3011	
16	1767377	30077	1763243	3426	
17	1877793	33954	1873387	3868	
18	1988199	38065	1983515	4336	
19	2098596	42412	2093635	4832	
20	2208983	46992	2203742	5354	
21	2319360	51809	2313835	5902	
22	2429728	56859	2423920	6478	
23	2540085	62145	2533983	7080	
24	2650428	67665	2644033	7709	
25	2760760	73420	2754069	8364	
26	2871080	79409	2864087	9047	
27	2981388	85633	2974089	9756	
28	3091680	92092	3084076	10491	
29	3201959	98786	3194041	11254	
30	3312233	105713	3303988	12043	

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature — Continued. \\ \end{tabular}$

ude.	Latitud	le 9°.	Latitude	oude 10°.	
Longitude.	x.	y.	x.	y.	
10	109945	150	109626	166	
2	219889	400	219252	684	
3	329832	1351	328875	- 1495	
4	439771	2401	438495	2658	
5	549709	3752	548112	4153	
6	659642	5403	657723	5980	
7	769569	7354	767329	8140	
8	879492	9605	876927	10631	
9	986517	12157	986517	13455	
10	1096098	15009	1096098	16612	
11	1209215	18160	1205669	20099	
12	1319106	21611	1315229	23919	
13	1428987	25363	1424777	28071	
14	1538857	29414	1534311	32555	
15	1648716	3 3766	1643833	37372	
16	1758564	38417	1753340	42519	
17	1868397	43369	1862826	479 9 9	
18	1978215	48620	1972299	53811	
19	2088022	54171	2081754	59954	
20	2197811	60022	2191188	66429	
21	2307582	66172	2300603	73236	
22	2417340	72622	2409997	80374	
23	2527077	79372	2519369	87844	
24	2636797	86422	2628718	95646	
25	2746496	93771	2738043	103778	
26	2856174	101419	2847344	112242	
27	2965832	109367	2956614	121037	
28	3075467	117614	3065860	130163	
29	3185080	126161	3175080	139621	
30	3294668	135007	3284269	149409	

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature — Continued. \\ \end{tabular}$

nde.	Latitude 11°. Latitude		2 °.	
Longitude.	x.	<i>y</i> .	x.	y.
10	109275	182	108890	198
2	218548	728	217778	790
3	327819	1638	326663	1778
4	437086	2911	435545	3161
5	546349	4549	544420	4939
6	655605	6550	653288	7112
7	764855	8914	762148	9680
8	874095	11644	870997	12643
9	983326	14737	979836	16001
10	1092546	18195	1088661	19755
11	1201754	22014	1197471	23902
12	1310948	26198	1306266	28445
13	1420129	30745	1415045	33383
14	1529293	35657	1523804	38715
15	1638441	40932	1632543	44442
16	1747571	46569	1741261	50562
17	1856678	52571	1849955	57079
18	1965769	58936	1958626	63989
19	2074836	65664	2067270	71293
20	2183880	72754	2175886	78991
21	2292900	80210	2284476	87085
22	2401894	88027	2393035	95571
23	2510864	96208	2501563	104453
24	2619804	104752	2610057	113727
25	2728715	113657	2718517	123395
26	2837593	122925	2826940	133456
27	2946444	132556	2935326	143911
28	3055262	142550	3043675	154759
29	3164047	152906	3151984	166000
30	3272794	163624	3260251	177635

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature — Continued. \\ \end{tabular}$

nde.	Latitude	13°.	Latitude 14°.	
Longitude	x.	$oldsymbol{y}_{\cdot}$	x.	<i>y</i> .
10	108472	213	108021	228
2	216942	852	216040	913
3	325409	1916	324055	205
4	433871	3407	432065	3649
5	542326	5323	540067	570
6	65 0 773	7665	648059	820
7	759209	10433	756040	1117
8	867634	13627	864007	1459
9	976047	17246	971959	1847
10	1084443	21291	1077893	2280
11	1192822	25761	1187808	2758
12	1301185	30657	1295703	3283
13	1409526	35979	1403574	3853
14	1517846	41725	1511419	4468
15	1626141	47897	1619238	5129
16	1734413	54494	1727028	5835
17	1842658	61516	1834787	6587
18	1950873	68963	1942514	7385
19	2059060	76835	2050206	8228
20	2167214	85131	2157862	9116
21	2275334	93852	2265478	10050
22	2383421	102998	2373055	11029
23	2491470	112568	2480589	12055
24	2599481	122562	2588079	13124
25	2707451	132980	2695523	14240
26	2815380	143821	2802919	15400
27	2923265	155086	2910264	16606
28	3031106	166775	3017558	17858
29	3138899	178888	3124798	19155
30	3246644	191423	3231982	20497

TABLE II.

Co-ordinates of curvature—Continued.

Longitude	Latitude 15°		Latitude 16°.	
	x.	y.	x.	y .
10	107538	243	107022	257
2	215073	972	214041	1030
3	322604	2186	321055	2317
4	430128	3886	428061	4119
5	537644	6072	535058	6435
6	645148	8743	642042	9267
7	752641	11901	749012	12613
8	860116	15543	855963	16473
9	967575	19671	962896	20849
10	1075013	24285	1069806	2 5738
11	1182430	29383	1176691	31142
12	1289823	34967	1283549	37059
13	1397190	41036	1390377	43491
14	1504527	47590	1497173	50437
15	1611835	54629	1603935	5789€
16	1719109	62152	1710659	65869
17	1826348	70160	1817344	74355
18	1933550	78652	1923987	83355
19	2040712	87629	2030584	92867
20	2147834	97089	2137136	102892
21	2254911	107033	2243639	113430
22	2361942	117461	2350089	124480
23	2468925	128372	2456484	136041
24	2575858	139766	2562823	148115
25	2682738	151643	2669102	160698
26	2789563	164003	2775319	173795
27	2896332	176846	2881473	187403
28	3003041	190170	2987559	201520
29	3109688	203976	3093577	216147
30	3216273	218265	3199523	231285

 $\begin{tabular}{ll} TABLE & II. \\ {\it Co-ordinales of curvature} \end{tabular} - Continued. \\ \end{tabular}$

ıde.	Latitude	e 170.	Latitude 18°.	
Longitude,	x.	y.	x	у.
10	106473	272	105892	286
2	212944	1087	211781	1142
3	319408	2445	317664	2570
4	425864	4346	423538	4569
5	532309	6791	529399	7139
6	638741	9779	635245	10279
7	745155	13310	741072	13991
8	8 51551	17384	846879	· 18273
9	957924	22001	952660	23126
10	1064272	27160	1058413	28549
11	1170592	32862	1164136	34542
12	1276882	39107	1269825	41106
13	1383139	45893	1375477	48239
14	1489360	53222	1481089	55943
15	1595541	61093	1586657	64216
16	1701682	69506	1692181	73057
17	1807778	78460	1797654	82469
18	1913827	87955	1903075	92448
19	2019826	97992	2008441	102997
20	2125773	108569	2113748	114113
21	2231664	119687	2218993	125797
22	2337498	131345	2324175	138048
23	2443270	143543	2429288	150867
24	2548979	156280	2534332	164252
25	2654621	169556	2639301	178204
26	2760194	183372	2744194	192722
27	2865695	197726	2849006	207804
28	2971122	212619	2953736	223453
29	3076471	228048	3058380	239666
30	3181741	244016	3162935	256443

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature—Continued. \\ \end{tabular}$

ude.	Latitude 19 ^O .		Latitude 20°.	
Longitude	x.	y.	x.	y.
10	105279	299	104634	312
2	210554	1196	209264	1249
3	315824	2692	313888	2811
4	421083	4786	418500	4997
5	526328	7478	523096	7867
6	631556	10767	627674	11242
7	736764	14655	732230	1530
8	841948	19140	836760	19984
9	947105	24224	941260	25290
10	1052231	29904	1045727	31221
11	1157323	36182	1150156	37778
12	1262378	43056	1254544	44952
13	1367393	50528	1358887	52 755
14	1472362	58595	1463182	61176
15	1577285	67259	1567426	7022
16	1682156	76520	1671612	7988
17	1786973	86376	1775740	9017
18	1891733	96828	1879804	101089
19	1996431	107875	1983801	112620
20	2101066	119516	2087728	124772
21	2205630	131752	2191581	137545
22	2310126	144582	2295355	15093
23	2414545	158005	2399047	16494
24	2518888	172022	2502653	17957
25	2623149	186631	2606172	19482
26	2727326	201833	2709596	21069
27	2831414	217625	2812925	227170
28	2935410	234009	2916152	24427
29	3039312	250985	3019276	26199
30	3143116	268550	3122293	280322

 $\begin{tabular}{ll} \textbf{TABLE II.} \\ \emph{Co-ordinates of curvature} \end{tabular} \begin{tabular}{ll} \textbf{Co-ordinates of curvature} \end{tabular}$

Longitude.	Latitude	21°.	Latitude 22°.	
	<i>x</i> .	y	x.	y .
10	103958	325	103249	337
2	207911	1300	206494	1350
3	311856	2926	309730	3038
4	415790	5201	412953	5400
5	519706	8127	516158	8437
6	623603	11703	619341	12149
7	727475	15928	722498	16536
8	831319	20803	825623	21597
9	935130	26327	928714	27332
10	1038905	32501	1031765	33740
11	1142639	39323	1134771	40823
12	1246327	46794	1237729	48579
13	1349968	54915	1340634	57008
14	1453556	63682	1443482	66110
15	1557087	73097	1546268	75883
16	1660556	83160	1648989	86329
17	1763962	93869	1751638	97446
18	1867297	105226	1854214	109233
19	1970560	117228	1956708	121695
20	2073746	129876	2059120	134820
21	2176855	143169	2161446	148617
22	2279871	157107	2263676	163083
23	2382802	171689	2365815	178216
24	2485639	186914	2467844	194019
25	2588378	202782	2569772	210487
26	2691017	219294	2671591	227621
27	2793550	236445	2773294	245421
28	2895973	254239	2874881	263885
29	2998285	272672	2976343	283013
30	3100478	291745	3077677	302805

TABLE II.

Co-ordinates of curvature—Continued.

ude.	Latitude 23°.		Latitude 24°.	
Longitude	x.	y.	x.	y .
10	102510	34 8	101737	361
2	205014	1398	203472	1444
3	307510	3146	305196	3250
4	409991	5592	406905	5777
5	512453	8737	508592	9027
6	614893	12581	610254	12999
7	717301	17124	711885	17691
8	819677	22365	813481	23106
9	922016	28304	915036	29241
10	1024310	34938	1016543	36097
11	1126558	42274	1118003	43673
12	1228753	50305	1219404	51970
13	1330892	59033	1320740	60986
14	1432968	68457	1422013	70721
15	1534977	78577	1523217	81175
16	1636915	89393	1624339	92347
17	1738777	100903	1725381	104237
18	1840559	113108	1826337	116844
19	1942254	126006	1927200	130166
20	2043860	139598	2027967	144205
21	2145370	153882	2128631	158959
22	2246779	168859	2229188	174431
23	2548086	184526	2329632	190608
24	2449282	200885	2429959	207503
25	2550365	217932	2530164	225108
26	2651329	235669	2630241	243425
27	2752169	254094	2730186	262452
28	2852883	273205	2829993	282187
29	2953462	293004	2929657	302631
30	3053906	313488	3029174	323781

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude :	250.	Latitude 2	6°.
Longitude	z.	y.	x.	<i>y</i> .
10	100938	372	100105	383
2	201869	1489	200204	1532
3	302790	3350	300291	3446
4	403694	5956	400361	6127
5	504577	9305	500407	9573
6	605432	13399	600424	13784
7	706253	18237	700406	18760
8	807037	23818	800347	24501
9	907777	30142	900241	31007
10	1008467	37209	1000083	38277
11	1109102	45019	1099866	46310
12	1209677	53571	1199583	55107
13	1310187	62864	1299232	64666
14	1410624	72899	1398804	74988
15	1510986	83673	1498296	86070
16	1611266	95189	1597697	97914
17	1711456	107443	1697006	110518
18	1811555	120436	1796215	123882
19	1911554	134168	1895320	138004
20	2011450	148636	1994313	152884
21	2111235	163840	2093191	168521
22	2210908	179781	2191946	184914
23	2310458	196456	2290571	202061
24	2409884	213865	2389063	219963
25	2509178	232007	2487415	238619
26	2608336	250880	2585622	258026
27	2707352	270485	2683677	278184
28	2806220	290819	2781575	299092
29	2904936	311882	2879310	320749
30	3003493	333672	2976877	343150

THE UNITED STATES COAST SURVEY.

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature — Continued. \\ \end{tabular}$

ude.	Latitude	270.	Latitude 2	80.
Longitude	x.	<i>y</i> .	T .	y.
10	99242	393	98349	403
2	198478	1573	196692	1612
3	297702	3538	295021	3626
4	396907	6290	393330	6446
5	496086	9828	491614	10075
6	595235	14152	589864	14503
7	694346	19260	688074	19738
8	793414	25155	786238	25778
9	892431	31835	884350	32623
10	991392	39298	982402	40271
11	1090293	47545	1080388	48722
12	1189124	56576	1178302	57976
13	1287881	66389	1276136	68031
14	1386556	76985	1373886	78888
15	1485145	88362	1471542	9054
16	1583640	100520	1569100	10300
17	1682036	113458	1666552	11625
18	1780326	127175	1763893	13031
19	1878505	141672	1861115	14516
20	1976565	156944	1958212	16081
21	2074502	172994	2055178	17725
22	2172308	189819	2152005	19449
23	2269978	207419	2248689	21252
24	2367505	225791	2345221	23134
25	2464884	244937	2441596	25095
26	2562108	264853	2537807	27135
27	2659172	285539	2633848	29254
28	2756067	306993	2729711	31451
29	2852791	329214	2825392	33727
30	2949335	352201	2920883	36081

TABLE II.

Co-ordinates of curvature—Continued.

ıde.	Latitude	290.	Latitude 3	80°.
Longitude	x.	y.	2.	y.
10	97426	412	96474	421
2	194845	1649	192940	168 4
3	292250	3709	289391	3788
4	389635	6594	385821	6735
5	486991	10303	482221	10522
6	584313	14836	578585	15151
7	681593	20192	674904	20620
8	778824	26370	771172	26930
9	875999	33372	867381	34080
10	973111	41194	963524	42068
11	1070153	49839	1059594	50896
12	1167120	69305	1155583	60562
13	1264003	69590	1251484	71064
14	1360795	80695	1347290	82404
15	1457490	52619	1442994	94579
16	1554080	105360	1538587	107588
17	1650559	118918	1634063	121432
18	1746920	133292	1729415	136108
19	1843156	148481	1824635	151615
20	1939260	164484	1919715	167955
21	2035225	181300	2014650	185120
22	2131044	198925	2109432	203115
23	2226710	217362	2204053	221936
24	2322218	236608	2298506	241583
25	2417558	256661	2392784	262057
26	2512727	277520	2486879	283345
27	2607715	299183	2580786	305456
28	2702516	321649	2674496	328387
29	2797124	344918	2768001	352137
30	2891531	368985	2861297	37669

TABLE II.

Co-ordinates of curvature—Continued.

ude.	Latitude 31°.		Latitude 32°.	
Longitude	x.	y.	z.	у.
10	95491	429	94480	437
2	190975	1717	188953	1748
3	286444	3862	283410	3932
4	381889	6866	377842	6990
5	477304	10728	472241	10921
6	572680	15447	566601	15725
7	668010	21024	660911	21402
8	763285	27457	755166	27950
9	858499	34747	849355	35370
10	953644	42891	943472	43661
11	1048712	51891	1037509	52822
12	1143694	61744	1131456	6285 3
13	1238584	72452	1225308	73751
14	1333375	84012	1319054	85517
15	1428057	96423	1412687	98150
16	1522625	109685	1506199	111648
17	1617069	123797	1599583	126011
18	1711382	138757	1692829	141237
19	1805557	154564	1785932	157324
20	1899587	171217	1878880	174272
21	1993463	188715	1971669	192078
22	2087177	207056	2064289	210742
23	2180723	226238	2156733	230263
24	2274093	246261	2248991	250637
25	2367279	267122	2341058	271863
26	2460273	288819	2432923	293940
27	2553070	311352	2524579	316866
28	2645660	334719	2616920	340638
29	2738036	358916	2707241	365256
30	2830192	383943	2798228	390715

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude	33°.	Latitude 3	4 °.
Longitude.	x	y.	x.	y.
10	93441	444	92373	451
2	186873	1776	184736	1805
3	280288	3997	277082	4057
4	373678	7105	369401	721
5	467034	11101	461685	11267
6	560349	15984	553926	16223
7	653612	21754	646113	22079
8	746817	28410	738240	2883
9	839954	35952	830295	36488
10	933014	44378	922272	4504
11	1025991	53689	1014160	5449
12	1118875	63884	1105953	6483
13	1211658	74960	1197640	7607
14	1304331	86919	1289213	8821
15	1396887	99757	1380663	10124
16	1489317	113475	1471982	11516
17	1581611	128071	1563160	12997
18	1673763	143544	1654189	14567
19	1765763	159893	1745061	16226
20	1857605	177113	1835766	17973
21	1949278	195206	1926297	19809
22	2040775	214171	2016644	21733
23	2132087	234004	2106800	23745
24	2223208	254704	2196754	25846
25	2314126	276270	2286499	28033
26	2404836	298699	2376026	30309
27	2495329	321989	2465328	32671
28	2585597	346138	2554394	35121
29	2675630	371144	2643217	37657
30	2765423	397009	2731788	40280

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude	35°.	Latitude 3	6°.
Longitude.	x.	y .	x.	y.
10	91276	457	90151	46
2	182542	1827	180293	185
3	273791	4112	270416	416
4	365011	7309	360510	739
5	456196	11419	450567	1155
6	547334	16443	540576	1664
7	638418	22378	630528	2264
8	729438	29225	720414	2957
9	820384	36982	810224	3743
10	911249	45650	899949	4620
11	1002022	55226	989579	5589
12	1092695	65711	1079104	6650
13	1183258	77104	1168517	7803
14	1273703	89402	1257806	9048
15	1364019	102605	1346963	10384
16	1454200	116711	1435979	11811
17	1544234	131720	1524842	13330
18	1634114	147628	1613546	14940
19	1723830	164437	1702080	16640
20	1813373	182142	1790434	18432
21	1902735	200741	1878600	20314
22	1991905	220237	1966569	22286
23	2080877	240623	2054330	24349
24	2169640	261899	2141876	26501
25	2258185	284062	2229196	28743
26	2346503	307110	2316281	31075
27	2434588	331042	2403123	33496
28	2522428	355854	2489711	36005
29	2610014	381544	2576038	38604
30	2697341	408110	2662093	41291

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude 37°.		Latitude 38°.	
Longitude.	x.	y.	x.	у.
10	88999	467	87820	472
2	177989	1869	175630	1887
3	266959	4206	263420	4246
4	355899	7477	351180	7548
5	444800	11681	438899	11793
6	533653	16821	526567	16980
7	622446	22893	614174	23109
8	711171	29897	701710	30179
9	799817	37833	789166	38189
10	888374	46699	876530	47138
11	976834	56495	963793	57026
12	1065184	67219	1050945	67850
13	1153421	78870	1137976	79611
14	1241529	91449	1224875	9230
15	1329499	104952	1311633	105934
16	1417322	119377	1398239	12049
17	1504990	134725	1484684	135989
18	1592491	150993	1570957	152400
19	1679817	168179	1657049	169742
20	1766957	186281	1742950	18801
21	1853902	205297	1828650	207199
22	1940643	225225	1914138	227308
23	2027170	246064	1999405	248334
24	2113472	267810	2084442	27027
25	2199543	290461	2169237	293129
26	2285370	314015	2253782	316893
27	2370945	338470	2338068	34156
28	2456258	363822	2422083	367138
29	2541301	390068	2505819	39361
30	2626063	417207	2589264	420989

TABLE II.

Co-ordinates of curvature—Continued.

ande.	Latitude	390.	Latitude 40°.	
Longitude.	x.	y.	<i>x</i> .	y.
10	86614	476	85382	479
2	173218	1903	170753	1916
3	259801	4281	256103	4310
4	346352	7610	841420	7662
5	432862	11889	426695	11971
6	519320	17118	511915	17236
7	605715	23297	597071	23456
8	692037	30424	682153	30632
9	778275	38499	767147	38762
10	864419	47520	852045	47845
11	950460	57487	936837	57879
12	1036385	68399	1021510	68865
13	1122186	80254	1106055	80799
14	1207851	93050	1190461	93681
15	1293371	106787	1274717	107509
16	1378733	121462	1358813	122282
17	1463931	137073	1442738	137997
18	1548951	153620	1526481	154653
19	1633784	171099	1610031	172247
20	1718421	189509	1693379	190777
21	1802850	208848	1776514	210241
22	1887062	229112	1859426	230637
23	1970045	250301	1942103	251961
24	2054791	272410	2024537	274212
25	2138290	295439	2106714	297386
26	2221530	319382	2188627	321481
27	230450 4	344239	2270264	346492
28	2387197	370005	2351617	372418
29	2469603	396678	2432673	399256
30	2551712	424258	2513422	427000

 $\begin{tabular}{ll} TABLE & II. \\ \end{tabular} \begin{tabular}{ll} Co-ordinates of curvature—Continued. \\ \end{tabular}$

nde.	Latitude 41°.		Latitude 42°.	
Longitude	x.	y.	x.	y.
10	84123	481	82839	484
2	168235	1926	165666	1935
3	252326	4334	248471	4353
4	336382	7705	331243	7738
5	420395	12038	413969	12090
6	504353	17332	496638	17407
7	588245	23587	579240	23690
8	672060	30803	661762	30936
9	755786	38978	744195	39146
10	839414	48111	826526	48317
11	922931	58200	908744	58451
12	1006327	69246	990839	69541
13	1089591	81246	1072798	81593
14	1172713	94198	1154610	94600
15	1255680	108101	1236266	108561
16	1338484	122953	1317753	12347
17	1421111	138753	1399060	139339
18	1503552	155497	1480176	156152
19	1585796	173184	1561090	173911
20	1667833	191812	1641791	192614
21	1749651	211378	1722270	212258
22	1831238	231880	1802512	232840
23	1912587	253314	1882509	254358
24	1993684	275679	1962249	276809
25	2074520	298970	2041721	300189
26	2155084	323186	2120915	324496
27	2235366	348322	2199820	349727
28	2315354	374376	2278425	375877
29	2395038	401344	2356718	402943
30	2474408	429223	2434691	43092

TABLE II.

Co-ordinates of curvature—Continued.

ude.	Latitude	43°.	Latitude 4	4 °.
Longitude	z.	y.	x.	y.
10	81529	485	80194	486
2	163047	1941	160377	1944
3	244541	4367	240536	4375
4	325001	7762	320660	777
5	407415	12127	400737	12150
6	488771	17461	480754	1749
7	570 058	23763	560702	2380
8	651264	31032	640566	3108
9	732378	39267	720337	3933
10	813387	48466	800001	4855
11	894282	58630	879549	5873
12	975050	69755	958967	6988
13	1055680	81841	1038243	8199
14	1136160	94887	1117367	9505
15	1216479	108889	1196327	10908
16	1296627	123846	1275112	12406
17	1376590	139756	1353708	14000
18	1456357	156616	1432106	15689
19	1535920	174425	1510294	17472
20	1615264	193180	1588258	19351
21	1694380	212877	1665990	21323
22	1773254	233516	1743477	23390
23	1851878	255091	1820708	25551
24	1930240	277602	1897670	27805
25	2008328	301042	1974355	30152
26	2086132	325410	2050748	32592
27	2163640	350703	2126840	35125
28	2240841	376917	2202620	37749
29	2317726	404048	2278076	40466
30	2394281	432092	2353197	43273

TABLE II.

Co-ordinates of Curvature—Continued.

nde.	Latitude	450.	Latitude 4	.6°.
Longitude.	x.	y.	х.	y.
10	78835	486	77452	486
2	157659	1946	154892	1945
3	236458	4378	232307	4375
4	315221	7782	309685	7778
5	393936	12158	387015	12152
6	472591	17505	464284	17495
7	551175	23823	541480	23809
8	629674	31109	618590	31091
9	708078	39364	695603	39341
10	786373	48586	772506	48557
11	864549	58774	849287	58738
12	942594	69925	925935	69882
13	1020495	82039	1002437	81987
14	1098239	95113	1078780	95052
15	1175817	109145	1154953	109074
16	1253215	124134	1230945	12405
17	1330425	140077	1306742	139982
18	1407428	156972	1382334	156868
19	1484219	174816	1457707	174691
20	1560784	193605	1532851	193465
21	1637111	213339	1607754	213180
22	1713189	234013	1682402	233834
23	1789006	255624	1756786	255423
24	1864550	278169	1830893	277945
25	1939811	301645	1904711	301398
26	2014775	326048	1978228	325770
27	2089434	351373	2051435	351067
28	2163773	377619	2124317	377280
29	2237784	404780	2196866	404406
30	2311449	432852	2269067	432441

THE UNITED STATES COAST SURVEY.

TABLE II.

Co-ordinates of Curvature—Continued.

nde.	Latitude	470.	Latitude 48°.	
Longitude.	x.	y.	x.	y.
10	76045	485	74614	484
2	152077	1941	149216	193
3	228085	4368	223792	435
4	304055	7764	298331	774
5	379976	12130	372820	1209
6	455835	17464	447246	1741
7	531619	23766	521597	2369
8	607317	31035	595860	3094
9	682916	39270	670022	3915
10	758404	48469	744073	4832
11	833768	58631	817997	5845
12	908997	69754	891784	6954
13	984077	81836	965421	8158
14	1058997	94876	1038896	9458
15	1133745	108871	1112197	10853
16	1208307	123819	1185309	12343
17	1282673	139717	1258223	13928
18	1356830	156563	1330925	15607
19	1430766	174354	1403403	17380
20	1504467	193088	1475645	19247
21	1577926	212761	1547639	21208
22	1651126	233370	1619372	23262
23	1724058	254912	1690833	25409
24	1796708	277382	1762009	27648
25	1869066	300779	1832869	29979
26	1941119	325097	1903461	32402
27	2012856	350332	1973712	34917
28	2084265	376481	2043631	37522
29	2155335	403540	2113207	40218
30	2226052	431504	2182427	43004

TABLE II.

Co-ordinates of curvature—Continued.

ıde.	Latitude	49°.	Latitude 50°.		
Longitude.	ž.	y.	x.	<i>y</i> .	
10	73161	482	71685	479	
2	146309	1927	143357	1917	
3	219432	4336	215003	4312	
4	292516	7708	286611	7666	
5	365550	12042	3 58168	11976	
6	438521	1 733 8	429661	17243	
7	511415	23594	501077	23465	
8	584220	30810	572403	30641	
9	656925	38985	643627	38771	
10	729515	48116	714736	47851	
11	801979	58203	785718	57882	
12	874303	69243	856558	68861	
13	946476	81235	927246	8078€	
14	1018485	94177	997768	93655	
15	1090317	108065	1068111	107465	
16	1161959	122899	1138264	122215	
17	1233401	138676	1208213	137902	
18	1304628	155392	1277946	154522	
19	1375629	173044	1347451	172073	
20	1446391	191631	1416715	190552	
21	1516902	211147	1485725	209955	
22	1587150	231591	1554471	230279	
23	1657123	252958	1622938	251520	
24	1726808	275246	1691115	273678	
25	1796193	298449	1758990	296739	
26	1865267	322564	1826550	320709	
27	1934017	347587	1893784	345580	
28	2002432	373513	1960680	371347	
29	2070500	400338	2027224	398006	
30	2138207	428058	2093407	425553	

THE UNITED STATES COAST SURVEY.

TABLE II.

Co-ordinates of curvature—Continued.

nde.	Latitude	510.	Latitude 52°.		
Longitude	x.	y.	x.	у.	
10	70186	476	68667	47	
2	140360	1904	137322	1888	
3	210510	4284	205950	424	
4	280618	7614	274541	755	
5	350676	11896	343078	1180	
6	420671	17126	411549	1699	
7	490586	23307	479946	2312	
8	560411	30434	548249	3019	
9	630133	38510	616451	3820	
10	699742	47530	684534	4714	
11	769219	57490	752487	5703	
12	838555	68398	820300	6784	
13	907736	80240	887956	7959	
14	976753	93020	955446	9227	
15	1045588	106733	1022753	10587	
16	1114230	121382	1089866	12040	
17	1182670	136963	1156777	13585	
18	1250890	153465	1223466	15221	
19	1318880	170893	1289926	16950	
20	1386627	189240	1356139	18769	
21	1454119	208503	1422095	20690	
22	1521346	228686	1487785	22681	
23	1588290	249775	1553192	24772	
24	1654943	271771	1618307	26954	
25	1721292	294670	1683114	29224	
26	1787322	318465	1747603	31583	
27	1853027	343153	1811762	34031	
28	1918390	368730	1875577	36566	
29	1983398	395193	1939040	39190	
30	2048043	422532	2002133	41898	

TABLE II.

Co-ordinates of curvature—Continued.

ade.	Latitude	53°.	Latitude 54°.		
Longitude	x.	y .	x.	y.	
10	67127	468	65567	463	
2	134241	1871	131117	185	
3	201329	4210	196645	416	
4	268378	7483	262131	740	
5	335375	11692	327566	1156	
6	402304	16832	392937	1665	
7	469157	22906	458226	2266	
8	535920	29911	523427	2959	
9	602576	37845	588521	3744	
10	669119	46707	653500	4621	
11	735530	56498	718347	5589	
12	801798	67215	783052	6649	
13	867910	78850	847602	7801	
14	933854	91407	911980	9043	
15	999614	104880	976178	10376	
16	1065180	119274	1040184	11800	
17	1130540	134578	1103977	13314	
18	1195684	150791	1167554	14917	
19	1260594	167908	1230894	16 611	
20	1325260	185930	1293993	18393	
21	1389665	204853	1356834	20265	
22	1453800	224670	1419401	22225	
23	1517653	245381	1481688	24273	
24	1581213	266977	1543671	26409	
25	1644465	289457	1605360	28632	
26	1707398	312820	1666725	30943	
27	1769999	337055	1727754	33339	
28	1832256	362163	1788440	35821	
29	1894155	388131	1848761	38389	
30	1955688	414965	1908730	41042	

APPENDIX No. 34.

Description of an apparatus devised by Assistant W. P. Trowbridge, and of the method of applying it in determining ocean depths and obtaining specimens of bottom.—(Sketch No. 40.)

U. S. COAST SURVEY OFFICE, April 6, 1859.

DEAR SIR: In my report to you of May 31, 1858, I had the honor of presenting the results of an investigation of the laws of descent of heavy bodies in the ocean, under the conditions required in deep-sea sounding.

The object of that investigation was to ascertain and develop fully the causes of failure and error in deep soundings, and to devise a more certain and reliable mode of measuring the depth of the ocean in the off-shore hydrography of the Coast Survey, and especially in the swift current of the Gulf Stream.

I have now to present for your further consideration a sounding apparatus based upon the developments given in my former report, and the result of further study and experiments on the subject.

The distinguishing feature of the method herein described, though exceedingly simple in its application, has never before been proposed, inasmuch as its necessity could hardly have been felt without a careful analysis of the circumstances of descent of the sounding lead and line. In the method of sounding heretofore employed, the influence of the friction of the water upon the line, or "endwise resistance," as it is called by Prof. Airy, was known to exist, but the amount of this endwise resistance in pounds, and its ultimate effects at great depths, had not been determined. It was supposed that by making use of a weight of thirty or forty pounds and a small fishing line, this resistance would be reduced to an inappreciable amount, or at least that its effect in retarding the descent of the lead would not be sufficient to destroy confidence in the results.

It appears, however, from the investigations referred to, that a weight, such as is ordinarily used in sounding, will be practically held in suspension at no very great depth, even when the line used is the smallest that will sustain the weight with safety in the air; and, in confirmation of this conclusion, the fact is well established that, notwithstanding repeated experiments made by the most skilful officers and with the utmost care, the bottom of the ocean has never been reached in its deepest parts; and even where the bottom has been attained, and specimens brought to the surface, the uncertainties of the results have given good grounds for controversy with regard to the depth.

These failures and uncertainties do not arise from the magnitude of the distance to be measured, nor from the impenetrability of the fluid through which the lead has to pass. Distances infinitely great and infinitely small in the universe, above and around us, have been measured with precision, and the unexplored depths of the ocean are occupied by a medium freely and equally penetrable at all depths. Yet, in this field—a field daily traversed by the commerce of the world—a distance of a few miles only has baffled all attempts to measure it.

The difficulty lies in the simple cause stated above, viz: the "endwise resistance," or friction upon the sounding line, which prevents the lead from going to the bottom where the depth is great.

The apparatus which I have devised is designed to avoid this friction upon the line, while at the same time the line is not dispensed with, but is made use of as in the ordinary mode.

Before describing this apparatus, I will briefly refer to some of the results given in my previous report on this subject.

The rate of descent of an iron globe or sphere, as the simplest geometrical form, was first determined when falling freely in the ocean, and it was found that a sphere will attain a certain maximum velocity within twenty-five feet of the surface, which velocity will be kept up without sensible increase or diminution to the bottom.

For a 32-pound iron shot this uniform velocity is about sixteen feet per second.

The conditions of descent when a small line is attached to the sphere and drawn down with it were then discussed, the line being uncoiled from a reel on the deck of the vessel, and drawn down by the weight of the sphere. The friction of this line in the water causes a remarkable change in the rate of descent. Nearly the same maximum velocity at starting is obtained, but the velocity becomes rapidly reduced until the sphere becomes suspended nearly motionless in the water.

Taking the simple case af a 32-pound shot attached to a small fishing line, the shot attains its maximum velocity of sixteen feet per second within twenty-five feet of the surface; but before a hundred fathoms of the line is drawn into the water this velocity is reduced to eight feet per second—a diminution of half the velocity from the friction of one hundred fathoms of line.

At five hundred fathoms the velocity is again reduced half, or to four feet per second; and at three thousand, to about one foot per second; whereas at this depth, if there is no line attached, the shot will fall with its original velocity of sixteen feet per second undiminished. Below this depth we may determine in the same way the circumstances in the two cases; the shot falling freely still retains its uniform velocity of sixteen feet per second at four, five, and six thousand fathoms depth; while with the line attached, at five thousand fathoms the velocity is reduced to a few inches per second, and at six thousand fathoms the descent is not perceptible under ordinary circumstances.

The time of descent becomes an important element also in practice. In the two cases given the shot falling freely will descend to the depth of three thousand fathoms in twenty minutes, and to the depth of six thousand fathoms in forty minutes; while, with the line attached, it will require two hours to descend three thousand fathoms, and eight hours to descend six thousand fathoms.

These effects were shown to be due to the friction alone; the amount of which in pounds was determined for different cases in which different forms of weight and different sizes of lines were used; and the entire inapplicability of the ordinary mode of sounding for great depths, and even for ordinary depths, where the object is to obtain a correct knowledge of the depths, was demonstrated.

Methods have been proposed in which a line is dispensed with by detaching a float at the bottom when the plummet strikes, and watching for the return of the float to the surface; but this is impracticable, as there is no material applicable, within our knowledge, that will float to the surface from the bottom of the sea, on account of the great pressure which condenses the bulk, so as to render bodies specifically lighter than water at the surface heavier than water at even moderate depths. A line must therefore be used to bring back to the surface, any machine by which the depth may be registered in the descent, and the motion of this line in an extended form in the water must be avoided.

The apparatus which I have devised is designed to secure this object by attaching to the sinker a tube or case in which the sounding line is compactly coiled, and from which it will be

discharged freely, thus causing the plummet to carry down the *coil*, while one end of the line is held fast at the surface; the line being uncoiled from the descending sinker, in the manner that a spider falling from a height gives out a thread in his descent by which he retains communication with the point above to which the thread is attached. The motion of the line in an extended form through the water being thus avoided, all the conditions of free descent are secured, and the plummet will descend to the greatest depths with a rapid and uniform velocity.

The depth is ascertained in the manner heretofore known as Massey's method, by a helix or curved blade, which is caused to revolve by the motion of the apparatus through the water. Instead of Massey's Indicator, however, which from its faulty construction does not give accurate results, I have adapted Saxton's Current Metre, a much more delicate instrument, to this purpose.

A specimen tube is also used, differing somewhat from those now in use in construction, but not in its essential points.

The lower end of the line is attached to the register and to the specimen box, which weigh together only two or three pounds; and as the line is hauled in from the bottom it brings up the register and specimen box, leaving the plummet and attached case at the bottom.

The details of construction are shown in the accompanying drawings and description of the apparatus.

Besides overcoming the principal difficulty in sounding, there are other important advantages secured by this arrangement which simplify rather than complicate the problem. These are as follows:

First. There is no strain upon the line in the descent, except from its own weight, no matter to what depth or with what velocity the plummet may descend. It is possible, therefore, to employ a very small line; a single thread of silk may, in fact, be extended to the bottom of the ocean. This permits of the use of a line which may be coiled compactly within a small space, the strength of the line being made just sufficient to insure its being hauled in with safety, bringing up at the same time the specimen box and the register. The strain brought upon it in hauling in will depend upon the velocity of the upward motion, which may be regulated accordingly.

Secondly. A rapid and uniform descent being secured, the indications of a revolving register will be reliable when attached to this plummet, while in the present mode of sounding the slow motion of descent at great depths renders such a mode of registering the depth uncertain and unreliable.

Thirdly. There being no strain upon the line in the descent, and the motion being uniform, it is practicable to determine the depth by the time of descent, making use of a small insulated wire as a sounding line, and determining the instant that the weight strikes the bottom by an electrical signal transmitted through the line. An apparatus was devised as long since as the year 1845, for ascertaining the moment when the weight strikes the bottom by electricity, but in the mode of sounding heretofore employed no particular advantage would result from this, while the danger of breaking the electric continuity is very great, owing to the strain brought upon the line in the descent; and the plummet as now used descends with such a varying velocity that even with the time of descent given no calculation will give the depth. The method has, therefore, never been put in practice. Whereas, in the method proposed, there is no strain upon the line in its descent, and the plummet will fall through each successive

hundred fathoms in the same time; the time of descent will thus furnish a simple means of calculating the depth. In this process it will not be necessary to recover the line, and the time required to sound the ocean at any point need only be that required for the plummet to sink to the bottom, moving with any velocity which may be desired.

I have made many experiments on the best method of coiling the line so as to secure its uncoiling with certainty, and without the possibility of a strain upon the line or the occurrence of a kink. I have also given much attention to the quality and size of the line to be used. Upon these points the practical working of the apparatus in a certain degree depends, but being merely mechanical questions they are easily settled. They are fully discussed in the description which accompanies the drawings.

The importance of the problem which is thus sought to be solved, in connection with the survey of the coast, has never been questioned; a knowledge of the configuration of the bottom of the sea adjacent to the coast is necessary to the solution of many questions of importance to navigation and to science, and especially that of the ruling feature of the Atlantic Coast, the Gulf Stream; but besides these considerations the question has become one of great public interest in connection with the laying of submarine telegraphs, the risks of such enterprises being diminished in proportion to the accuracy with which the depth of the sea is known at every point of any proposed line, and the ultimate practicability of such operations across the Atlantic being yet to be demonstrated by new and more accurate soundings.

Description.

The accompanying plate (Sketch No. 39) represents the instrument as at first constructed. Some slight modifications have since been made in the mode of attaching the register, but without affecting the general design.

Fig. 1 represents the plummet as it appears in its descent.

T, the tube or case containing the coiled line.

W, the leaden or iron weight inserted in the bottom of the tube.

C, the conical cap.

R, the register in its place upon the cap.

L, the line.

Fig. 1a represents a longitudinal section of the tube, weight, and cap, showing the mode of coiling the line in balls, and the small specimen box s passing through the hollow weight.

Fig. 2 represents the register on a larger scale.

h h, the helices or blades.

rr, the register wheels.

g g, the locks for gearing and ungearing the wheels.

Fig. 2a represents the plan or horizontal view of the register, it being constructed so as to offer the least resistance in passing through the water.

Fig. 3 shows the detailed construction of the register wheels and the helices.

From Fig. 1, it will be seen that the form of the apparatus admits of rapid motion through the water. The weight is conical and elongated and the register presents the edges only of brass plates to the water, and the line being uncoiled and discharged from the tube there is no retarding force to the descent from the line itself. Any desired velocity of descent may be given to the plummet by increasing or decreasing the weight W.

Fig 1 a shows the method of coiling the line.

There are various modes of doing this which are in common practice in twine and cotton factories; that which is here exhibited is the method of coiling in balls, all the balls exhibited in the tube being formed of one unbroken line, the line drawing out from the centre of each, until it is all drawn from the tube. The machinery for winding these balls is very simple.

The essential points in the coiling are to coil the line in as compact a space as possible, so as to insure certainty of discharge without danger of kinking. Two other modes of coiling are now under consideration, either of which may be better than the method by balls. One is to wind upon a spindle, and the other to lay the line in a sort of compound coil, directly in the tube. All these methods are now practiced in the factories on a large scale for winding twine and cotton.

The line used should be about five hundredths of an inch in diameter, and as strong as it can be made of that size. A braided line of Holland flax or silk of five hundredths of an inch in diameter may be made to bear a strain of forty or fifty pounds, which is abundantly strong for the purpose, as the weight and case are left at the bottom, the register and specimen tube only being brought up.

Tube.

The tube may be made of tin in sections of eighteen inches in length, with stove-pipe joints and bayonet fastenings. The object of this is to adapt the length of the tube readily to the amount of line which it is to contain. A tube four inches in diameter will contain nearly a mile of line to each foot of the tube.

Sinker and specimen tube.

The sinker is made of cast iron or lead of any desired weight, depending upon the desired velocity of descent. A weight of twenty-five pounds has been adopted.

The sinker is conical and is inserted into the lower end of the tube containing the line and fastened to this tube by screws or by a bayonet joint and fastening. The weight has a conical hole or cavity through its entire length, through which the small specimen tube passes in the manner shown in the drawing.

The specimen tube is a tube of thin brass passing through the weight and attached to the lower end of the line within the large tube. This specimen tube is fitted with a valve opening upwards in the bottom, which closes when the tube is drawn up, thus retaining the mud which is forced into the tube when the weight strikes bottom. The specimen tube fits loosely in the bottom of the weight so that it may be easily drawn out as the line is hauled in.

Cap.

The cap is used for two purposes: to contract the upper end of the tube containing the line so that the line cannot rise in bulk out of the tube, and for supporting the register. It is formed in the shape of the frustum of a cone, cut away on one side as well as open at the top, so as to allow the line to be discharged freely. A flat strap is fastened to the top of the frustum nearly in the line of the axis of the tube, and upon this strap the register is set, as shown in the drawing; the register is kept in its place by loose collars.

Register.

The apparatus for measuring the depth consists of a helix or curved blade attached to a vertical axis, and wheels gearing into an endless screw upon this axis. The revolutions of the helix, caused by the motion through the water, are communicated to the wheels, which are graduated so as to indicate the number of revolutions of the helix.

Two registers are attached to one plummet by attaching them together in the manner shown in figure 2, by means of brass plates. The blades are made to turn in opposite directions, and will operate as checks upon each other, and also counteract the effect of any rotary motion in the plummet.

The construction of the blades and wheels and the mode of gearing them with the endless screw are shown in figure 3. The wheels are differential wheels; that is, they are concentric, one of them having one hundred teeth and the other one hundred and one teeth. The cross bar (b) has a slight motion, carrying with it the wheels; this motion is governed by a spring s. To gear the wheels the cross bar is pressed towards the endless screw until the teeth gear with that screw and the bar is there locked, as shown in figure 2 at gg. The revolution of the blades will now cause both wheels to turn, and after one hundred revolutions the wheels will be found separated by one tooth or one division. The differences thus measure hundreds of revolutions. In the register from which the drawings were made, the blades revolve once in two feet; one hundred revolutions will therefore correspond to two hundred feet, or one division of the scale of the register to thirty-three fathoms.

When the register is hauled up, the arms at gg, figure 2, drop, and the springs cause the wheels to ungear and fly back, where they are held motionless by a projecting point at n, figure 3. The arms are made to drop by means of a small wire, which is attached to the cap, as shown at (u,) figure 1. This wire is fastened to, or hooks over the ends of the arms, and when the register is drawn off, the arms fall.

Mode of attaching the line to the register and specimen tube.

Before the line is put into the tube it is attached to the specimen tube at a point four or five feet from the end of the line, the spare end is passed through the tube, and when the balls are all put in the tube the extreme end of the line coming out at top is attached to the register, after taking a few turns around the top of the strap, the register being in its place.

The line is thus attached to the specimen tube and register only, and not to the large tube or weight.

When the plummet strikes the bottom a part of the line will remain in the tube coiled; by hauling in the line this part will, however, be uncoiled, and on coming to the bottom of the coil the specimen tube will be drawn up through the large tube, and after the specimen tube comes out the register will be drawn off the strap, and thus the large tube and weight will be disengaged from the line, specimen tube, and register, and by continuing to haul in, the register and specimen tube will be brought to the surface. The plummet on striking will, under most circumstances, remain sticking in the mud in an upright position.

Very respectfully, your obedient servant,

W. P. TROWBRIDGE,

Assistant Coast Survey.

A. D. BACHE, LL.D., Superintendent U. S. Coast Survey.

APPENDIX No. 35.

Extracts from letters of J. M. Batchelder, esq., stating the results of trials made with Hunt's tidemetre at Charlestown navy yard, Mass.

Boston, August 30, 1859.

Sir: * * Below are given the results of eighty observations made with the pressure tide-metre when the bag, tube, and guage were filled with air. The mean differences and error are also shown, but it is probable that the actual error is less than the result given in the column so designated, as the greatest difference occurred when the surface of the water was agitated, and the least when it was most calm.

To determine the effect produced by the escape of air, the bag was fully distended, and immersed to the depth of thirteen feet, and the position of the index noted. The instrument was then taken up and one-half of the air allowed to escape from the bag, but on being again immersed to the same depth the index remained as before.

No observations were made with reference to temperature, as the change of volume of the air from this cause would be very slight as compared with the distended and half-filled bag.

Depth of immersion in feet.	1	3	3	4	5	6	7	8	Maximum.	Minimum.	Mean.
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet .	Ecet.
8	2.92	2,97	2.87	2.90	2.90	3.06	2.92	2.90	3.06	2.87	2.93
1	3.87	4.02	3.96	3.96	3.87	4403	3.96	3.98	4.02	3.87	3.96
2	4.83	5.00	4.94	4.99	4.95	5.00	5,00	4,95	5.00	4.83	4.96
3	5.86	5,90	5.87	5.87	5.93	5.93	5,96	5,88	5.93	5.86	5.89
4	6.87	6,97	6.86	6.97	6.97	7.00	6,97	6,99	7.00	6.86	6.9
5	7.85	7,85	7.86	7.85	7.80	7.92	7.87	7.80	7.99	7.80	7.8
6	8,87	8.82	8.91	8.89	8.78	8,86	8,93	8,86	8.93	8.78	8.86
7	9,83	9.80	9.87	9.75	9.83	9.86	9.75	9,75	9.87	9.75	9.80
8	10,87	10,89	10,90	10.83	10.83	10.90	10.83	19.83	10.90	10.83	10.8
. 9	11.90	11,94	11.91	11.91	11.91	11.99	11.90	11,86	11.99	11.86	11.9
10	12.80	12.92	12.87	12.87	12.87	12,87	12.84	12.84	12.92	12.80	12, 8

Bag filled with air.

From the first mark (0) on the tube to the bottom of the air-vessel three feet.

Mean of eighty observations given above.

_	Difference.	Error.
Feet.	Foot.	Fed.
2.93		
3.96	1.03	.03+
4.96	1.00	.00
5.89	.93	.07 —
6.95	1.06	.06+
7.85	.90	.10 —
8.86	1.01	.01 +
9.80	.94	.06 —
10.86	1.06	.06+
11.91	1.05	.05 +
12.86	.95	.05 —

SEPTEMBER 17, 1859.

* * Notes are here appended of further trials of the pressure tide-meter, made at your request, the instrument being filled with pure water.

11.02 " higher,

as in the tenth line.

The intermediate observations would be equally accurate if the dial-plate of each instrument was graduated by marking the position of the index at each successive tenth of a foot immersed, beginning with a depth of not less than three or four feet. The bag, when in use, should always be at this depth below low-water mark.

The differences noted at the same depth of immersion (column nine) are mainly due to oscillation of the water, and in a very slight degree to friction of the index gear.

Trials made at Charlestown navy y	ard in	September,	1859.
-----------------------------------	--------	------------	-------

iff. of depth finmersion n feet.	Observations 1.	Observations 2.	Observations 3.	Observations 4.	Observations 5.	Maximum.	Minimum.	Difference.	Mean.
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
0	2.50	2.50	2.50	2.45	2.50	2.50	2.45	.05	2.49
1	3.00	3.10	3.08	3.96	3.00	3.10	3.00	.10	3.04
2	4.05	4.05	4.05	3.98	3.97	4.05	3.97	.08	4,02
3	4 80	4.80	4.80	4.72	4.65	4.80	4.65	.15	4.75
4	5.65	5.70	5.60	5.58	5.55	5.70	5.55	.15	5.62
5	6 40	6.38	6.37	6.38	6.35	6.40	6.35	.05	6.38
6	7.60	7.62	7.56	7.60	7.50	7.62	7.50	.19	7.58
7	8.75	8.78	8.60	8.68	8.70	8,78	8.60	.18	8,70
8	10.09	10.02	9.90	9.83	9,90	10.02	9.83	.19	9.93
9	11.05	11.05	11.00	11.00	11.00	11.05	11.00	.05	11,09
10 (12.05	11.95	11.95	12.05	12.00	12.05	11,95	.10	12.00
11	12.00	12.10	12.08	12.00	12,60	12,10	12,00	L	12.04

^{*} The figures on the last line are obtained by adding nine feet to those on the second.

To determine fully the practical value of this apparatus I think it should be set up with one of the common gauges, and the indications of each observed and compared daily for one or two months.

* * * *

Very respectfully, your obedient servant,

J. M. BATCHELDER.

Prof. A. D. BACHE,

Superintendent United States Coast Survey.

APPENDIX No. 36.

Letter of the Secretary of the Treasury relative to placing the Coast Survey steamer Active under the authority of Brevet Lieut. General Scott.

TREASURY DEPARTMENT, September 16, 1859.

Sir: I have to inform you that, by direction of the President, the Coast Survey steamer "Active" has been placed under the authority of Brevet Lieutenant General Winfield Scott, United States army, and Commander James Alden, U. S. N., has been instructed by this department, under date of the 15th instant, to obey all orders emanating from him.

Very respectfully, your obedient servant,

HOWELL COBB, Secretary of the Treasury.

Prof. A. D. Bache,
Superintendent Coast Survey.

APPENDIX No. 37.

Letter of Captain John Pope, U. S. N., commandant at Portsmouth navy yard, addressed to Lieut. Comg. Alex'r Murray, U. S. N., Assistant Coast Survey, on the occasion of service rendered by the C. S. steamer Bibb.

U. S. NAVY YARD, Portsmouth, N. H., October 1, 1859.

Sin: Your promptness in answering a request to tow the United States ship Cumberland from the lower harbor to this navy yard on the 3d ultimo calls forth my acknowledgment and thanks, and I trust that your action will be approved by the Superintendent of the Coast Survey. Had you not rendered the assistance you did in towing up the Cumberland that vessel would have been detained by head winds five or six days in the lower harbor.

Very respectfully, your obedient servant,

JOHN POPE,

Commandant.

Lieut. Comg. A. MURRAY,

Coast Surveying Steamer Bibb.

APPENDIX No. 38.

Letter addressed to the Superintendent by Captain D. G. Farragut, U. S. N., on visiting Beaufort river, South Carolina, with the United States steamship Brooklyn.

United States Sloop-of-War Brooklyn, Beaufort Roads, South Carolina, February 17, 1859.

Sir: Permit me thus to acknowledge the great service I have received from the Coast Survey, through the kindness of Mr. C. O. Boutelle, chief of the party encamped at Land's End, mouth

of Beaufort river, South Carolina, who volunteered his services, and handsomely piloted this ship up to within four and a half miles of the town of Beaufort and down again; and continued to extend every assistance and courtesy in his power during our stay in these waters.

Very respectfully, your obedient servant,

D. G. FARRAGUT,
Captain United States Navy.

Professor A. D. Bache, Superintendent Coast Survey, Washington city.

APPENDIX No. 39.

Letters addressed to Lieutenants T. A. Craven and J. N. Maffitt, U. S. N., on their detachment from the Coast Survey.

COAST SURVEY OFFCE, June 18, 1859.

DEAR SIR: I feel too deeply indebted for the sympathy and hearty co-operation manifested by you while attached to the Coast Survey to permit the occasion which returns you to general duty in the naval service to pass without expressing my sense of the value of your labors. Apart from the devotion shown as one of the naval assistants, it is natural to suppose that your early experience in the work gave enhanced interest to your later efforts, and I cannot but regard the long period of your co-operation in the survey as one of the happy incidents of my superintendence.

The large share which you have contributed to the hydrographic results of the Coast Survey would alone permanently associate your name with that national work. Those with whom you have acted will have also in memory the ready spirit for co-operation, the uniform courtesy, and the qualities of head and heart that never fail in contributing to success.

Receive, my dear sir, the assurance that my kind wishes will ever accompany you to whatever field of duty you may be called in the range of your profession.

Yours, respectfully and truly,

A. D. BACHE,

Superintendent U. S Coast Survey.

Lieut. Comg. T. A. M. CRAVEN,

United States Navy.

COAST SURVEY OFFICE, June 17, 1859.

DEAR SIR: I cannot permit the occasion to pass which severs your connection with the Coast Survey without expressing my deep sense of the value of your services while associated in that work. Where so many are employed, relative merits and special efficiency can be perceived and appreciated only by one charged with the general superintendence; and in that light it is now a pleasure to say that your labors in the prosecution of the hydrography must ever rank in my estimation as of the highest order. Your career during the extended period of your service, and since your recent assignment to Coast Survey duty, was marked by that

rare aptitude and intelligence in regard to the work which assist in planning, and by perseverance which left nothing to be desired in reference to the time of its execution. A comparison shows that in hydrographic results your efforts have been seldom if ever excelled by those of any other officer. The high estimation in which I have regarded them would be weakened by specification in addressing one so fully qualified for the widest range of duty in the naval profession. As nothing has occurred throughout the long period of your connection with the Coast Survey to stay the increasing regard won by your even courtesy and manly bearing, my regret in taking leave of you is the greater. I shall ever recur to your name as one of the most efficient of naval assistants of the Coast Survey with feelings of pride and pleasure.

Yours, respectfully,

A. D. BACHE,

Superintendent U. S. Coast Survey.

Lieut. Comg. J. N. MAFFITT,

United States Navy.

APPENDIX No. 40.

Aids to navigation recommended in reports made to the Superintendent by Assistants of the Coast Survey.

Sec.	Object.	By whom recommended.	Date of report, &c.
I.	Buoy on Huzzey's Rock, south of Fletcher's Neck, Wood island, Me.	Lieut. Comg. Alex. Murray, U. S. N	Referred to the Light-house Board Oct. 15, 1859. (Appendix No. 41.)
1.	Buoy to mark the extremity of a sand spit near Fletcher's Neck, Wood island, Me.	do	Referred to the Light-house Board Oct 15, 1859. (Appendix No. 41.)
I.	Buoy to mark the position of Cashe's Ledge, off the coust of Mass.	do	Referred to the Light-house Board Sept. 15, 1859.
V.	Buoys to mark the Bird Key and Cow Pen channels, St. Helena sound, S. C.	Lieut, Comg. J. N. Maffitt, U. S. N	Referred to the Light-house Board May 26, 1859. (Appendix No. 42)
V.	Buoys in the East channel, Port Boyal sound, S. C.	Lieut. Comg. C. M. Fauntleroy, U. S. N.	Referred to the Light-house Board July 8, 1859. (Appendix No. 43.)

APPENDIX No. 41.

Letter to the Secretary of the Treasury, communicating recommendations from Lieut. Comg. Alexander Murray, U. S. N., Assistant Coast Survey, for buogs in the vicinity of Fletcher's Neck, coast of Maine.

PHILADELPHIA, October 15, 1859.

Sir: I have the honor to communicate the following extract from a letter addressed to me, under date of October 9, by Lieut. Comg. Alexander Murray, U. S. N., Assistant Coast Survey, and would respectfully request that a copy be furnished to the Light-house Board:

"In the place indicated on the enclosed sketch (coast of Maine) there is a rock whose position has been determined by this party. It is called *Huzzey's Rock*; and being very sharp, with three and four fathoms of water about it, and contiguous to 'Wood Island harbor,' is dangerous. I recommend that a buoy be placed near it.

"Between 'Nigger island' and 'Fletcher's Neck signal,' near the spot indicated by red ink sand shoal-marks, is the end of a spit. This is in the harbor, and should be marked with a red buoy, as, entering through the west channel, it would be on the starboard hand."

Very respectfully, yours,

A. D. BACHE,

Superintendent U.S. Coast Survey.

Hon. Howell Cobb,

Secretary of the Treasury.

APPENDIX No. 42.

Letter to the Secretary of the Treasury, communicating a recommendation from Lieut. Comg. J. N. Maffitt, U. S. N., Assistant in the Coast Survey, for placing buoys in St. Helena sound, S. C.

COAST SURVEY OFFICE, May 26, 1859.

SIR: I have the honor to present for the consideration of the Light-house Board the following extract from a communication addressed to me by Lieut. Comg. J. N. Maffitt, U. S. N., Assistant Coast Survey, under date of May 25:

"For the convenience of steamers in passing through the South Edisto river into St. Helena sound, S. C., two second class buoys should be placed in what is called the Bird Key and Cow Pen channel. These would enable steamers to pass with a great saving in distance, and in comparatively smooth water while the wind is blowing fresh.

"The commanders of the steamers 'Edisto' and 'Everglade' have felt the necessity for these aids in navigation, and would willingly furnish the use of their boats for establishing the buoys in their places."

The positions of the desired buoys are marked 3 and 4 on the enclosed tracing.

Very respectfully, yours,

A. D. BACHE, Superintendent.

Hon. Howell Cobb, Secretary of the Treasury.

APPENDIX No. 43.

Letter to the Secretary of the Treasury, communicating the recommendation of Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, for buoys to mark the East channel into Port Royal sound, S. C.

CAMBRIDGE, MASSACHUSETTS, July 8, 1859.

Sir: In reporting the completion of soundings by the hydrographic party in the several channels of Port Royal entrance, S. C., Lieut. Comg. C. M. Fauntleroy, U. S. N., Assistant Coast Survey, suggests that the East channel passage should be buoyed out as soon as practicable.

The recommendation being based upon the results of his examinations, as shown by the hydrographic sheet, I would respectfully request that a copy of this communication may be transmitted to the Light-house Board.

Very respectfully, yours,

A. D. BACHE, Superintendent.

Hon. Howell Cobb, Secretary of the Treasury.

INDEX TO SKETCHES AND DIAGRAMS.

- 1.—A. Progress sketch, Section I, (primary triangulation.)
- 2.—A bis. Progress sketch, Section I, (secondary triangulation, topography, and hydrography.)
- 3.— Seacoast of Maine, from Kennebec entrance to Portland.
- 4.— Portland harbor.
- 5.— Lynn harbor, Mass.
- 6.— Muskeget channel, (new edition.)
- 7.—B. Progress sketch, Section II.
- 8.— Hempstead harbor, Long Island Sound.
- 9.—C. Progress sketch, Section III.
- 10.— Chesapeake bay (sheet No. 4) from Potomac river to Pocomoke sound.
- 11.— Chesapeake bay (sheet No. 5) from Pocomoke sound to York river entrance.
- 12.— Chesapeake bay (sheet No. 6) from York river entrance to Cape Henry.
- 13.— Patuxent river, Md.
- 14.- St. Mary's river, Md.
- 15.—D. Progress sketch, Section IV.
- 16.—E. Progress sketch, Section V.
- 17.— Bull's bay, S. C., (new edition.)
- 18.— Port Royal entrance and approaches, S. C.
- 19.— Sapelo sound and approaches, Ga.
- 20.-F. Progress sketch, Section VI.
- 21.—F bis. Progress sketch, Section VI, (Florida reefs and keys.)
- 22.— Florida reefs and keys from Newfound harbor key to Boca Grande key.
- 23.-G. Progress sketch, Section VII.
- 24*. Cedar keys, (new edition.)
- 25.— St. George's sound, Fla., (eastern part.)
- 26.-H. Progress sketch, Section VIII.
- 27.— The Rigolets, La.
- 28.—I. Progress sketch, Section IX.
- 29. Coast of Texas and Matagorda bay.
- 30.—J. Progress sketch, Section X, (lower part.)
- 31.—J bis. Progress sketch, Section X, (upper part.)
- 32. San Pedro harbor, Cal.
- 33.— Crescent City harbor, Cal.
- 34.-K. Progress sketch, Section XI.
- 35. Diagrams illustrating the distribution of temperature in the Florida straits.
- 36.— Sketch showing general progress in the survey of the Atlantic, Gulf, and Pacific coasts.
- 37.— Diagrams illustrating the results of magnetic observations at Girard College, Philadelphia.
- 38.— Lines of equal magnetic variation for the year 1858.
- 39.— Trowbridge's apparatus for deep-sea soundings.
- 40.- Mitchell's apparatus for measuring currents and improved pile for sea structures.

National Oceanic and Atmospheric Administration

Annual Report of the Superintendent of the Coast Survey

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage (historicals/histmap.asp) will includes these images.

NOAA Central Library 1315 East-West Highway Silver Spring, Maryland 20910