## REPORT

${ }^{o f}$
2769

THE SUPERINTENDENT

OF THE

SHOWING

THE PROGRESS OF THE SURVEY


DURING
$\overline{5}$
$\qquad$ THE YEAR 1862.


GOVERNMENT PRINTING OFFICE.
1864.

# National Oceanic and Atmospheric Administration 

## Annual Report of the Superintendent of the Coast Survey

## ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image. such as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library. the Office of Coast Survey and the National Geodetic Survey. To view the original document. please contact the NOAA Central Library in Silver Spring. MD at (301) 713-2607 x124 or www.referenceonodc.noaa.gov.

## Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service. located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON<br>Imaging Contractor<br>12200 Kiln Court<br>Beltsville, MD 20704-1387<br>January 10, 2003

In the House of Representatives, January 9, 1863.
On motion of Mr. Clark, from the Committee on Printing-
Resolved, That there be printed three thousand extra copies of the Report of the Superintendent of the United States Coast Survey for the year 1862; two thousand of which shall be for distribution by the Superintendent, and one thousand for the ase of the members of the present House.

Attest:
EM. ETHERIDGE, Clerk,


## ERRATA.

## IN COAST SURVEY REPORT FOR 1861.

Page 152, last line, for "Coquilla" read "Coquille."
Page 232, line 15 from bottom, for " $41^{\circ}$ " read " $43^{\circ}$."

## IN COAST SURVEY REPORT FOR 1362.

Page 12, line 5 from bottom, for " $1861-62$ " read " 1860-'61, and is much diminished from those of 1861-'62."
Page 178, line 13, for "sketch No. 50 " read "sketch No. 48."
Page 182, line 10 from bottom, for "sketch No. 50 " read "sketch No. 48."
Page 272, line 17 from bottom, for "of Sergus" read "Las Sergas." The full title of the book is "Las Sergas del Mey
Esforvado Cabalero Esplandian hijo del Excelente re Amadis de Gaula."
Page 272, line 13 from bottom, for "Sergus" read "Sergas."
Page 275, line 7, after the word " pages " insert " $45-49$. "
Page 285, line 7, after the word "page" insert " 15 ."
Page 286, line 16 from bottom, before the word "side" insert "NW."
Page 288, line 10 from bottom, for " 12 ". 9 " read " 11 ".6."
Page 290, line 9, for " 10 ". 2 " read " 09 ".8."
Page "o. line 17 from bottom, for "bend" read "trend."
Page 29i, line 12, for " 58 ".1" read " 51 ".8."
Page 297, line 5, for " 17 " " read " 11 "."
Page 299, line 6, for " 55 " read " 5.5 ."
Page 299, line 21, for " of Point" read " off Point."
Page 299, line 8 from bottom, for "undergo is" read "undergoes."
Page 299, line 5 from bottom, for "presents" read " present."
Page 301, line-11 from bottom, for " 10 ". 0 " read " 03 ".7."
Page 302, line 23, for " 56 ". 9 " read " 50 ". 5 ."
Page 303, line 8, for " 37 ". 4 " read " 31 ". 0 ."
Page 303, line 2 from bottom, after "southward" insert " of Point Lobos."
Page 303, line 1 from bottom, for "Point Lobos" read "it."
Page 304, line 12, for " intimated" read " ascertained."
Page 307, line 18, for "straight" read "strait."
Page 316, line 15 from bottom, for "moon" read "noon."
Page 323, line 14, for " $\$ 12,000,0000$ " read " $\$ 12,000,000$."
Page 325, line 8, for "are formed "' read " is found."
Page 327, line 7, for " 375939.4 " read " $377^{\circ} 59^{\prime} 39^{\prime \prime} .4$."
Page 327, line 2 from bottom, for "levated" read "elevated."
Page 328, line 21 from bottom, for " 31.6 "" read " 31 ". 6 ;" for " 54.9 " " read " 54 ". 9 ."
Page 328, line 11 from bottom, for "islet" read "islets."
Page 329, line 4, for " $4 \frac{1}{2}$ " read " $3 \frac{1}{2}$."
Page 329, line 19, for "four" read " three."
Page 344, line 16 from bottom, for "Oregon," read "Oregan."
Page 355, line 8 from bottom, for " $127^{\circ} 58^{\prime \prime}$ " read " $123 \circ 58^{\circ}$."
Page 359, line 12, for "after " read " before."
Page 360, line 10, for " 311-315" read " $44-48$."
Page 362, line 19, for "channel one," read "channal, one -.."
Page 363, line 2, for "norhernmost" xead " northernmost."
Page 364, between lines 21 and 22, insert--
"The two bars bore from each other SE. by E. and NW. by W., and their distance apart was 24 miles, with the seaward extremity of the Middle Bank in line between them.
"The Middle Bank between the north and south channel was about a mile wide, and regular up to the cape, except the off-ahoot to connect with Sandy island, which bore E. by S. $\frac{1}{4}$ S. $3 \frac{1}{8}$ miles from Disappointment, aud NW. $\frac{3}{4}$ N., two miles from Adams. N.NE. from it the Chinook shoal stretched southward within less than a mile.
"The western tail of the great Middle Shoal, eastward of Point Adams, lay NE. $\frac{3}{4}$ N. $1 \frac{3}{4}$ mile from that point.
"The channcls north and south of this bank had changed very much, but to them we shall not again refer.
"We note the following changes since the survey of 1841 :
"That the south sands, then stretching 6 miles westward from Point Adams, had been cut through at a point half their distance out by a wide channel, with deep water, running S . by W . from Sandy island, but the bar of this channel was not yet fairly cut through, having less than 3 fathoms upon it. This cbannel was therefore running at right angles to the one of 1841 , and over the very spot marked bare in 1839.
"That the north channel retained the same general features, but had moved to the southward; its southern part cutting away over a mile of the west end of the south sands of 184 l . It still had over a fathom more water than the south channell Inside of Cape Disappointment it retained the same general direction as in 1839 and 1841 , bit was more contracted.
"That the Middle Bank was much changed, but its northern portion similar to that of the two previous surveys. The eastern point hal moved N.NW. three-quarters of a mile since 1841. Sandy island had much increased in size, and apparently moved with it.
"That a long sand bank had made ont over a mile NW. from Point Adams, and was called the Clatsop spit.
"That the western tail of the great Middle Shoal, eastward of Poin Adams, had been cutaway three-quarters of a mile.

$$
\text { " survey of } 1852 .
$$

"This was the second exmmination by the United States Coast Survey, founded upon a complete triangulation and the topography of Point Adams, Sandy islaud, aud Cape Disappointment.
"Two chaunels remained as in 1850. The south had becone more defined, having $3 \frac{1}{2}$ fathomsacross the bar, which was threc-quarters of a mile wide, and the general direction of the channel N. $\frac{1}{2}$ W. From Point Adams it bore SW. $\frac{3}{4} \mathrm{~S}$., distant 34 miles, and from Cape Disappointment S SE, $5 \frac{3}{4}$ miles. It was $2 \frac{1}{2}$ miles distant from the beach south of Point Adams.
"The north channel was S. $\frac{1}{2}$ W., 3 miles from the cape, and W. $\frac{7}{3}$ S., $4 \frac{1}{2}$ miles from Point Adams; it had $4 \frac{1}{2}$ fathoms upon it toward the southern eide, and its width was three-quarters of a mile. The midhannel course for $1 \frac{1}{2}$ mile was NE. by $N$, then $N$. by $W$. towards the cape. turning to the enst balf a mile before reaching $i t_{r}$ and after a mile on this course runaing LEE. past the norti side of Sandy island; or, continuing past the cape within a quarter of a mile, then steering E NE. one mile, in irom 8 to 5 fathoms, changing to SE. by E. through a 3 -fathom channel, past the NE. side of Sandy ishand. The old spit bank of $179 z$ had made out balf a mile nearer the cape than then existing, but having a 3 -fathom chaunel across it."

Page 364, line 29, for "bank" read "shoal."
Page 364, line 9 from bottom, for "bark" read "shoal
Page 365, line 6, for " js " read " are."
Page 365, line 11, for "bank" read "shoal."
Page 367, line 18, fur "Columbia" rear "Columbiars."
Page 370 , line 22 from bottom, add " from the south bar."
Page 371, line 12, for "which" read "it."
Page 376 , line 14 , for " 377 " read " 110 ."
Page 376 , line 18 from bottom, for "is" read "are."
Page 379 , line 4 from bottom, insert " 110 " in the blank.
Page 383 , line 4 from bottom, for "ow" read "low;" for " findl" read "find "
Page 387, line 2, for "refitted their ships here" read " were refitted here."
Page 387, line 30, for "and -_" read "136-148."
Page 389, line 4 from bottom, " for good withholding " read " with goud holding."
Page 392, line 3, for " northwest " read "northeast."
Page 396 , line 17 from bottom, delete "first."
Page 399, line 16, in blank space insert "distant."
Page 402, line 8 from bottom, for "Cordowa" read "Cordova."
Page 404, line 18 from bottom, for "sweeps" read "sweep."
Page 408, line 24, for " the shore" read " the eastern shore."

## LETTER

## FROM <br> THE SECRETARY OF THE TREASURY,

 TRANSMITTINGTHE REPORT OF THE SUPERINTENDENT OF THE UNITED STATES COAST SURVEY.

## Treasury Department, December 19, 1862.

Sir : I have the honor to transmit, for the information of the House of Representatives, a reportmade to this department by A. D. Bache, LL.D., Superintendent of the United States Coast Survey, stating the operations and progress in that work during the year ending November 1, 1862, and an engraved sketch showing the general progress which has been made in the survey of the Atlantic, Gulf, and Pacific coasts; also, the manuscript map of progress, brought up to the same date, in accordance with the act of Congress approved March 3,1853 .

I have the honor to be, very respectfully,

Hon. Galusha A. Grow,

## S. P. CHASE, <br> Secretary of the Treasury.

Speaker of the House of Representatives.

# ABSTRACT OF CONTENTS OF REPORT. 

Introductory remarks on the blockade of the coast, pp. 1,5,6. On defences, p. 1. Commission, p. 1. Progress, pp. 1,5-7. Co-operation with navy, pp. 1, 5, 6. With army, pp. 1, 5, 6. Assistants in military service, p. 6. Maps and charts, pp. 6, 7, 8. Estimates for fiscal year 1863-64, pp. 8-12. Developments and discoverics, p. 13. Special surveys, p 13. Invasion of Pennsylvania, p. 14. Tide tables, p. 14. Table of depths, p. 14. Information furnished from office, p. 14. Statistics, pp. 14, 15. Records and results, p. 15. Longitude, pp. 15,16. Magnetism, pp. 16, 17, 18. Solar spots, p. 17. Earthquake waves, (1854,) pp. 17, 18. Flonida reef, p. 18. Heights, p. 18. Expansion of base bar, p. 18; of drawing paper, p. 18. Aids to navigation, p. 18. Pacific Coast Directory, pe. 18, 19. Army and mavy officers, p. 19. Obituaries, p. 19.
Field and office. Progress in :
Section 1.-Summary-Fíld-work, p. 21. Offee-work, p. 22. Triangulation of Machias bay, Englishman's bay, Moose-a-bee, Indian river, and adjacent islands, Maine, p. 22. Triangulation of Eggemoggin reach, Maine, p. 22. Triargulation of Penobscot bay, Maine, pp. 22, 23. Shore-line survey of Eastport harbor and of West Quoddy bay, Maine, p. 23. Tupography of Frenchman's bay and Winter harbor, Maine, p. 23. Topography of Seal harbor, Wheder's bay, Tennant's harbor, and islands in the lower part of Penobscot bay, Maine, pp. 23, 24. Topography of Back river, Little river, Robin Hood's cove, etc., between the Shecpscot and Kennebec rivers, Maine, p. 24. Topography of Yarmouth and Freeport ivers, pp. 24,25. Reconnaissance of the environs of Portland, Maine, p. 25. Topography of Narragansett bay, Rhode Island, pp. 25, 26. Hydrogrophy between Wiscasset and Bath, Maine, p. 26. Hydrography of Casco bay, Maine, pp. 26, 27. Physial survery of Cape Cod bay, Massachusetts, p. 27. Hydrography of Barnstable harbor, Massachusetts, p. 27. Hydrography of Narragansett bay, Rhode Island, pp. 27, 28. Maguetic observations, p. 28. Tidal observations, p. 28.
Section II.-Summary - Field-work, pp. 28, 29. Office-work, p. 29. Geodetic observations at Morent town and Sandford, (Massachusetts and Connecticut,) pp. 39, 30. Magnetic and meteorological observations, p. 30. Triangulation of Connecticut river, pp 30, 31. Triangulation along east side of Hudson iver, p. 31. Triangulation of coast of New Jersey, p. 31. Topography between Flushing and Jamaica, Long Island, p. 31. Topography of Hudson river, near Sing Sing, pp. 31, 32. Shore-line and hydrography of Hudson river, above Tivoli, New York, p. 32. Hydrographic examination of Delaware river, between New Castle and Reedy Point, pp. 32, 33. Magnetic observations in Pennsylvania and New York, p. 33. Tidal observations, New York harbor, p. 33.
Saction III.-Summary—Field-uork, p. 34. Office-work, p. 34. Triangulation of the Potomac river, p. 35. Topography of the Potomac, pp. 35, 36. Plane table survey about Williamsport, Maryland, p. 36. Topography near Bladensburg, p. 36. Topography of the military defences of Washington, District of Columbia, pp. 36, 37. Topography of Fairfax county, Virginia, p. 37. Topography of Manassas Junction, Virginia, p. 37. Topography of the Rappahannock, above Fredericksburg, Virginia, pp. 37,38. Topographical duty on the Peninsula, between Fork river and James river. Virginia, pp. 38,39. Verification of topography, near the head of Pocomoke sound, Virginia, pp. 39, 40. Topograply of Accomac county, Virginia, about Drummondtown, p. 40. Plane table strveys, near Norfolk and Portsmonth, Virginia, pp. $40,41$. Hydrography of the Potomac river, p. 41. Operations of the hydrographic party in York river, Virginia, pp. 41, 42 . Hydrography of Metomkin inlet and bay, Virginia, pp. 42, 43. Yidal observations, p. 43.
Sxcrion IV.-Summary-Field-work, p. 43 Offce-work, p. 44. Hydrography of Hatteras and Oregon inlets, North Carolina, pp. 44,45. Physical survey of Hattelas inlet, pp. 45, 46. Hydrographic resurvey of Beaufort harbor, North Carolina, pp. 46, 47.
Section V.-Summary-Field-work, p. 47. Offce-work, p. 48. Operations with the South Atlantic blockading squadron, p. 48. Rattlesnake shoal sounded, p. 48. Triangulation, topagraphy, and hydrography of Stono entrance and bar, with adjacent rivers, pp 48, 49. North Edisto entrance, pp 49, 50. St. Helens sound, South Carolina, p. 50. Port Royal cound, South Carolina, pp. 50, 51. Tybee roads, Calibogue sound, and Savannah river, p. 51. Wassaw sound, Georgia, pp. 51, 52. St. Simon's bar and sound, Georgia, p. 52. Fernandina bar and Cumberland sound, Georgia, p. 52.
Sectron V.-Summary-Field-wort, p. 52. Office-toork, p. 53. Hydrography of Florida reef, pp. 53, 54. Magnetic observations, p. 54.
Section VII.-Remarks on condition of survey, p. 54. Offce-work, p. 55.
Section VIII.-Remarks, p. 53. Offce-work, p. 55. Co-operaion with the Western Gulf blockading squadron, pp. 65-57. Mfititary surveys, near St. Lonis, Missouri, pp. 57, 58. Tidal observations at Isle Derniere, Ionisiana, p. 58.
Section IX.-Remarks on condition of survey, p. 58. Office-teork, p. 58.

Section X.-Summary-Field-work, pp 58,59. Ofies-iwork, p. 59. Triangulation of Santa Barbara channel and San Clemente ieland, Califormia, pp. 59, 60. Topography of Half Moon bay, California, p. 60. Topography of Bodega bay, Califomia p. 60. Hydrography of Karquines strait and bar, on San Pablo bay, p. 60. Hydrography of Bodega bay, Califoraia, p. 61. Tidel $0^{\text {² }}$ servations at San Diego and San Francisco, California, p. 61.
Section XI.—Summaty—Fifld-work, p. 6i. Offce-work, p. 61. Tupogrophy of Koos bay, Oregon, pp. 61,62. Hydrographic reconnaissance of Koos bay, p. 62. Hydrography of Gray's harbor, W. T., pp. 62, 63. Tidal observations at Astoria, Oregon, p. 63.
Office-work.-Officers in charge, p. 63. Hydrographic division and summary of occupation, pp. 63, 64. Tidal division, p. 64. Computing division, p 64. Drawing division, pp. 64,65. Engraving division, p. 65. Photograph and electrotype division, p. 65. Lithographing division, p. 65. Miscellaneous division, pp. 65, 66.
Appendix, pp. 67-434.

# CONTENTS 0F APPENDIX. 

I.-FIELD, HYDROGRAPHIC, AND OFFICE DETAILS.<br>A.-GENERAL LISTS OF COAST SURVEY PABTIES AND RESULTS.

Page.

No. 2. Information furnished from the office by tracings from original sheets. ..... 74,75
No. 3. Statistics of field and office work

$$
76-78
$$

B.--NAVIGATION.
No. 4. Discoveries and developments of dangers and facilities in navigating the coasts of the United States.-. ..... $79-85$
No. 5. Deptis at high and how water in the channels to ports, harbors, anchorages, and roadstends on the Atlantic, Gulf, and Pacific coasts of the United States ..... $86-92$
No. 6. Rocis in Narragansett bay, Rhode Island. - Notice of position and directions, by Assistant H. Mitehell,for clearing dangers discovered in 186293
No. 7. Baxtic shoax, off the coast of Maryland, -Notice to mariners, preliminary to an examination eastward of Winter Quarter shoal ..... 93
C.-TIDAL.
No. 8. Tide tables for marneers, for the coasts of the United States, and descriptions of co-tidal and sailinglines along the Atlantic coast, by A. D. Bache, Superintendent United States Coast Survey -........-
No. 9. Co-tidal hings of the Gulf of Mexico, deduced from recent observations, by A. D. Bache, Superin-tendent United States Coast Survey
No. 10. Tibal stations.-heport of Assistant L. F. Pourtales, on series of observations and office-work. ..... 128, 129
D.-OFEICE-WORF.
129
No. 11. Report of J. E. Hilamrd, Assistant in charge of the Coast Survey office
Hydrographic Division-Report of Captain C. P. Patterson, on details of work ..... 130
Tidal Divisiom.-Report of Assistant L. F. Pourtales, on employment ..... 131
Computing Division.-Report of Assistant C. A. Schott, on work of computers ..... 131, 132
Drawing Division.-Report by Assistant J. E. Hilgard, on the occupation of dranghtsmen......... ..... 133-135
 ..... 136-146
Photograph and Electrotype Division.-Report of Mr. George Mathiot, giving summary of work.... ..... 146-150
 ..... 150-152
Miscellaneous Division.-Report of Mr. W. L. Nicholson, on printing, distribution, etc. ..... 152-155
II.-SPECIAL OPERATIONS AND SCIENTIFIC DISCUSSIONS.

A.-ASTRONOMICAL.
No. 12. Longitudr of Ambrica from Europe. -Report of Prof. Benjamin Peirce, of Harvard, on the result from occultations of the Pleiades.
No. 13. Lenar tables used in reducing observations of the Pleiades for longitude.-Remarks by Prof. Benjn. Peirce, on their progressive improvement
No. 14. Longurudes in Maine, Alabama, and Florida.-Report by Dr. B. A. Gould, on progress in compating results from telegraphic observations

## B.-MAGNETISM.

No. 15. Magnetic misturbances in horizontal forck.-Pairt IV of an investigation of the eleven-year period, from observations made at Girard College, Philadelphia, in 1840-1845, by A. D. Bache, Superintendent United States Coast Survey
No. 16. Solar didranal fariation of the horizontal force, and its annual inequality.-Part $V$ of the discussion of observations made in 1840-1845, by A. D. Bache, Superintendent United States Coast Surrey.....-
No. 17. Lunar influenge on the horizontal force.-Part VI of the discussion of observations made in 1840-1845, by A. D. Bache, Superintendent United States Const Survey ..... 202-212
No. 18. Drclination, dip, and intensuy, determined in 1862, at stations in Penneylvania and New York, and at Washington, District of Columbia, by Assistant C. A. Schott ..... 212
No. 19. Magnete struet of Penurylvauia and parts of adjacent States, at intervals from 1834 to 1862. -Discus- sion of results, by A. D. Bache, LL.D., Superintendent United States Coast Survey- 212-229
No. 20. Dechinatiox, dif, and intensitr, at various stations.-List supplementary to Appendix No. 28 of Coast Survey report for 1860 ..... 230, 231
C.-MISCELLANEOUS
No. 21. Solar spors observed at the Coast Survey office in 1861, by Assistant C. A. Schott.-Supplementary to Appendix No. 25, Coast Survey report for 1861 ..... 231, 232
No. 22. Bessei's Periodic Functions developed for periods frequently occurring in magnetic and meteorologicalinvestigations.$232-235$
No. 23. Dipfing nbede.--Description of a new form of axis, changeable in position, devised by Assistant J. E. Hilgard ..... 236-238
No. 24. Eabthquare wafes.-Reprint of a paper, by A. D. Bache, Ll.D., Superintendent United States Coast Survey, deducing the depth of the lacific Ocean from the effect of the Simoda earthquake on the tide gauges of California and Oregon in 1854 ..... 238-241
No. 25. Flobida reer, its origin, growth, substructure, and chronology, by Captain E. B. Hunt, United States Engineers ..... 241-248
No. 26. Base-measuring apparatus.-Abstract of experiments for determining the length and expansion by heat of the standard bar ..... 248-255
No. 27. Drawing fafer tested with reference to expanion and contraction under atmospheric changes ..... 255
III.-SPECIAL DUTY WITH ARMIES AND BLOCKADING SQUADRONS, AND OTHER OCCUPATION ON THE ATLANTIC COAST.
No. 28. Survefing parties in military departments or with blockading squadrons-service ending June 30..... ..... 256
No. 29. Occupation of parties on the coast of the Atlantic or in military departments, between June and November ..... 257
No. 30. Oregon inlet and Neuse hiver, Nobth Carolina.--Report on surveys, by Abeistant Henry Mitchell.... the South Atlantic blockading squadron ..... 257-259
No. 32. Stram Transport Misissippi.-Letter from Major General B. F. Butler to Assistant C. O. Boutelle, ac- knowledging service rendered by his party ..... 260, 261
No. 33. Stono extrance, South Carolina.-Letter of Commander Percival Drayton, United States Navy, relative to Coast Survey maps and charts

$\qquad$ No. 34. Bombardmext of Fort Jackbon, Loulbiana, etc.--Letters of Commander David D. Yorter, United States Navy, respecting the co-operation of a Coast Survey party ..... 262
No. 35. Prarl miver, Lovisiana.--Report of Assistant F. H. Gerdes to Coinmander D. D. Porter, after making special reconnaissance ..... 263,264
No. 36. Ards to nafigation.-List of harbors, etc., buoyed by Coast Survey parties during the present year....
No. 37. Nafy-xabd comaision - Resolution paebed by the Navy Board relative to assistance rendered by the Coast Survey in the examination of League island (Delaware river) and the harbor of New London and Narragansett bay ..... 265
IV.—WESTERN COAST OF THE UNITED STATES.
No. 38. Coabr Survey operations. - List of the surveys made in spccial localities and of the maps and sketches published. ..... 266-268
No. 39. Directory for the Pacifio coast of the Unitrd States, by George Davidson, Assistant United Btates
No. 39. Directory for the Pacifio coast of the Unitrd States, by George Davidson, Assistant United Btates Coast Survey ..... 268-430
OBI'UARIES.

No. 40. Lleutemany Colonel Wm. R. Palmbr, United States Topogeaphical Engineers, late Absistant in charge of the Coast Survey office

Captain Jobx R. Saead, United Sratms artilaray, recently chief of the engravipg division of the Coust Survey office

## ALPHABETICAL INDEX.

| A. |  |
| :---: | :---: |
|  | Page. |
| Admiralty Head | 406 |
| Admiralty Inlet | 403 |
| Aids to Navigation | 18,265 |
| Albion River | 334 |
| Alcatraz Island | 305 |
| Alden's Bank | 399 |
| Altan Island | 395 |
| Allen's Bank | 408,411 |
| Anacapa Island | 289 |
| Anderson, Horace, services in se | 61, 62 |
| Angel 1sland .-.. | 307 |
| Angelos Poin | 384 |
| dnita Rock. | 3116 |
| Apple Tree Cov | 408 |
| Arago, (Coast Survey schooner)- |  |
| Section IL | 32 |
| Section V | 48,52 |
| Archer's Creek, South Carolina, | 51 |
| Archipelago de Haro | 391,402 |
| Archives. | 155 |
| Arch Rock | 306 |
| Army, co-operation of Coast Surv | 5,6,256 |
| Army Officers.. | 19 |
| Assistance, rendered to transport Mississipp | 51,261 |
| Asristants (Coast Survey) in military service | 6 |
| Astor Puint. | 306 |
| A tos Creek | 297 |
| Avery, R S . Services in tidal divisi | 64,131 |
| Azimuth determined at Mt . Tom and Sandford station. $\qquad$ | 30 |
| B. |  |
| Baaddah Point. | 381 |
| Bache, A. D, Superintendeat- |  |
| ford $\qquad$$29,30$ |  |
| Discussion of magnetic obs rvations.. 16, 17, 161-212 |  |
| Notes on co-tidal lines in the Gulf of Mexico 126, 127 |  |
|  |  |
| Remarks on the career of General I. I. Stevens, Major Palmer, and Captain Smead_ - 431-434 |  |
| Bache, Sub-arsistant C. M.- |  |
| Topography of ground, near Bladensburg, Maryland. |  |
| Of Manassas Junction | 37 |
| Bache, H. W. - |  |
|  |  |
| Services in section I. | 25 |
| Services in Section III | 40-43 |
| Hache, Assistaut R. M. Topography of St. Louis defences. |  |
| Black River, Maine- |  |
| Topography | 24 |
| Bahia Ona, California---.-.------------------- |  |
|  |  |
|  | 59 |
| Description. | 279 |
| Cambridge Island. | 409 |
| Baker's Bay | 367 |
| Balbach, A. Services in hydrographicdivision.- 63, 64, 130 |  |
|  | 412 |
| 13ald Peak. | 397 |
| Bulmain C. Services in miscellaneous division | 152 |


|  | Page. |
| :---: | :---: |
| Baltic Shoal (supposed) | 93 |
| Bancroft, (Coast Survey schooner) - |  |
| Section I | 27 |
| Section IV | 44,45 |
| Bank off Cape Flatter | 380 |
| Bank off Umpquah. | 353 |
| Barnard, H. S., engr | 65,137 |
| Barnard, J. G, Major General, United States Army | 36 |
| Barnes' Island | 398 |
| Bar off Sun Francisco entrance | 303 |
| Barrett, John, copper plate priating | 152 |
| Bartle, R. F., engraver | 65, 138 |
| Bast-measuring Apparatus, experiments for determining expansion, \&c. $\qquad$ 18,248-255 |  |
| Basc, for survey of Potomac River.--.-...--....... | 35 |
| Bassett, R T. Tidal observations, se | 33 |
| Buttery Point | 419 |
|  | 346 |
| Beaufort, North Carolina. Hydrography and aids for narigation | 46,47 |
| Beaufort River, South Carolina, sounde | 51 |
| Beecher Bay. | 388 |
| Beechy Head | 388 |
| Begg Rock | 288 |
| Pell Boat, San Francisco | 303 |
| Belle Rock | 396 |
| Rellevue Iskand | 392 |
| Dellingham Bay | 403 |
| Bellingham Chan | 397 |
| Benoer, F. W.. engra | 65, 138 |
| Bessel's Periodic Functions | 232-235 |
| Fibb, (Coast Survey steamer) Section | 48,51 |
| Birch Bay . | 400 |
| Bird Rock, (San Francisco Bay) | 306 |
| Bird Rocks, (Rosario Strait) | 396 |
| Bishop Rocks.. | 286 |
| Bixby, C. L. Services in Section | 28 |
| Mack Rock, (Pacific Coast) | 397 |
| Bladensburg, Maryland. Topography of vicinity | 36 |
| Blake Island | 410 |
| Blakely Larbor | 410 |
| Blockade of southern coast, bearing of survey | 1,5,6 |
| Blondeatr, A., engrave | 65,137 |
| Blossom Rock | 306 |
| Blunt. As-istant Edmund. Tijangulation, east of Hulson River | 31 |
| Blunt's Rocks | 336 |
| Bodega Bay, California- |  |
| Topography | 60 |
| Hydrograph | 61 |
|  | 331 |
| Bodega Head. | 331 |
| Boschke, A. Resurvey of Beaufort, North Carolina | 46,47 |
| Boulder Reef. | 397 |
| Boutelle Assistant C. O.- |  |
| Service with blockading squadron, coast of Sonth Carolina and Georgia. | 48 |
| Hydrograpby, Savannah entrance. | 51 |
| Wassaw Bar.. | 51,52 |
| St. Simon's and Fernandina | 52 |
| Naval urders for duty | 260,261 |
| Bowditch, C. P..-....... | 30 |
| Bowditch, (Const Survey schooner.) Section I | 23 |
| Bowie, T. C.- |  |
| Services in Section I. | 26 |


|  | Page. |
| :---: | :---: |
| Bowie, T. C.- |  |
| Services in Section III. .----- .-.-.-.----. | 36 |
| On Mississippi River | 55 |
| Boyd, C. H.- |  |
| Services in Section V | 49 |
| Services in office. | 63 |
| Brace Point. | 411 |
| Brackemidge Bluft | 373 |
| Bradford, J. S- |  |
| Services in Section | 48 |
| Services in office | 63 |
| Braine, D. L., Lieutenant Commander, U S. N-.-- | 14 |
| Brannal, J, M., Brigadier General, U. S. A | 53 |
| Bright, W. T. Drawing division | 64, 133 |
| British Columbia.. | 401 |
| Brotchy Ledge. | 390 |
| Buckle, A. Engraving divisio | 65, 138 |
| Buckeport.. | 339 |
| Budd's Inlet. | 413 |
| Budd's or Washington Harbor | 386 |
| Buoys, set on bars of southern harbors | 18,265 |
| Burnside, A. E., Miajor General, U. S. A | 44,45 |
|  | 396 |
| Bush Point. | 407 |
| Butler, B. F., Major General, U. S. A | 56,261 |
| C. |  |
| Calibogre Sound, South Carolina. Hydrography-- | 51 |
| California, origin of name | 272,273 |
| Callam bay | 383 |
| Callan, C, O. Services in engraving division .... | 136 |
| Camplell, Arch'd, esq | 55 |
| Canal de Haro. | 392 |
| Canel River | 383 |
|  | 350 |
|  | 347 |
| Cape Broughton | 366 |
| Citpe Cburch. | 388 |
| Cape Cod Bay, Massachusetts. Physical survey-: | 27 |
| Cape Disappointment. | 357 |
| Cape Falcon. | 355 |
| Cape Fear, North Carolina, entrance examided.. | 14 |
| Cape Flattery. | 379, 380 |
| Cape Fortunas | 336 |
| Cape Foulweath | 353 |
| Cape Gregory . | 349 |
| Cape Lookout, (Tacific coast) | 354 |
| Cape Meares.... | 354 |
| Cape Mendocino | 836 |
| Cape Orford. | 347 |
| Caje Perpetua. | 353 |
| Cape Shoalwater | 369 |
| Carmel Bay . | 295 |
| Casco Bay, Maine. Topography | 24 |
| Cassidy, A. Serviees in Section X.-....-.......... 61 Caswell, (Coast Survey schooner)- |  |
|  |  |
|  | 26 |
| Suction V | 52 |
| Celeste River. | 353 |
| Cballam Point. | 386 |
| Chandler's Bay, Maine. Triangulation. | 22 |
| Charts- |  |
| Gencral series | 6, 7, 8 |
| Drawn during year.. | 134,135 |
| Engraved during yea | 138,139 |
| General list...... | 140-146 |
| Chase, A. W. Services in Section X | 60 |
| Chatham Island. | 391 |
| Chehalie River. | 874 |
| Chetko River. | 344 |
| Chickahominy River | 39 |
| Chinook Point | 365 |
| Chars's Island. | 308 |
| Clipper Pasacges. | 317 |
| Consters' Marbor Island, Rhode lsiand. Topogruphy | 25 |



| INDEX. |  |  | XIII |
| :---: | :---: | :---: | :---: |
| Page. |  |  | Page, |
| Donn, J. W.- |  | Farallones. | 327,328 |
| Services in Section II | 31,32 | Farley, Assistant John. Triangulation, coast of |  |
| Services between Yorktown and Eichmond, |  | New Jersey | 31 |
| Virpinia.- | 38,39 | Farragut, D. G., Admiral, U. S. N | 55 |
| Dorr, Sub-assistant F. W. - |  | Fauntleroy, A. R - |  |
| Topographical reconnaissance, near Portland, |  | Services in Section II, | 31 |
| Maine.-.-.-......-...........-.----.-. 25 |  | Services in Section Y1 | 53 |
| town and Richmond, Virginia.----.... |  | Fauntleroy, (Coast Survey brig.) Section | 62 |
|  | 38,39 | Fauntleroy Cove... | 411 |
| Double Bluft $\qquad$ 407 |  | Fauntleroy Rock | 336 |
| Dow, J. E. Services in computing division. .-... | 64,131 | Fendall, Sub-arsistant C.- |  |
| Downes, John. Services in tidal division-...... | 64, 131 | Services in Section I | 26 |
| Uragon Rocks.-.... | 343 | Services on Elorida reet | 53 |
| Drake's Bay. | 325 | Ferguson, Sub-assistant C. - |  |
| Drawing Division- |  | Topography, shore of Penobscot bay, Maine | 23 |
| Progress of year | 7 | Triangulation of Potomac river............. | 35 |
| Persons employed | 64,65 | Ferguson, G. F. Services at Key West observatory | 54 |
| Report on occupation | 133-135 | Feruandina Bar, Florida, buoyed. | 52 |
| Experiments on the contraction and expansion of drawing paper-...................... |  | Fern Cove. | 411 |
|  | 18,255 | Fjdalgo lsland | 395 |
| Drayton, Percival, Commander, U. S. N...-...... | 262 | Field p-ries, list showing occupation of year | 67-73 |
| Drayton Harbor | 400 | Fin Kock | 348 |
| Duer, R. K., Master, U. S. N | 49 | Figgard Island | 390 |
| Duntze Rock. | 379 | Flattery Rocks | 377 |
| DuPont, S. F., Admiral, U. S. N......-...-.... 48 | 260,261 | Flying Dragon, position of ship's wreck | 306 |
| Dutch Island Harbor, Phode Island. Topography | 13, 25 | Florida Reef- |  |
| Duwamish Bay.. | 409 | Hydrography. | 53 |
|  | 324 | Memoir on reef structure..--........... 18, | 241-248 |
|  |  | Florida Tlax Cornmissioners. | 25 |
| E. |  | Fug Bell, San Fraucisco entranc | 303 |
| Eagle Harbor.- | 410 | Fort Jackson, La. Service of parties preceding the bombardment |  |
| Earthquake Waves.........................- 17, 18, | 238-241 | bombardment <br> Fort Point | 56, 262 |
|  | 393 | Fort hoss. | 332 |
| Erstport Harbor, Maine. Topography-.........- | 23 | Fort St. Philip. Services of parties preceding the | $3{ }^{\text {a }}$ |
| Ediz Hook. | 384 | Fort st. Philip. Services of parties preceding the bombardment | 56,262 |
| Edwards, Sub-assistant W. S.- |  |  | 56, 262 |
| Triangulation of Connecticut River.....-..- | 30,31 | Fox Island. | 412 |
| Hydrography of Calibogue Sound and de- |  | Franklin, W. B., Major General, U. S. ${ }^{\text {A }}$ | 36 |
| pendencies, South Carolina............... 48, 50,51 <br> Eel River |  | Frazer, Persifer, jr.- |  |
| Eggemoggin Reach, Maine. Triangalation | 22 | Services in Section I | 23 |
| Ei Coxo.... .-.-.-.-.-. .-. - .-. . | 283 | Services in Section | 32 |
| Electrotype division | 65 | Frazer's River. | 401 |
| Lectrotype Reprt on occupation | 146-150 | Freeman, K-................................ | 132 |
| Elliot, G. H., Lieutenant, U. S. Engineers, in |  | Freeport River, Maine. Topography | 24 |
|  |  | Freuchman's Dar, Maine. 'Topograph | 23 |
| charge of tidal observations on the Pacific const | 61, 6.3 | Freshwater Bay | 383 |
|  | 293 | Fries, Ignatias. | 152 |
| Elwha River. | 383 |  |  |
| Engineer Department | 1 |  |  |
| Engtishman's Bay, Maine. Triangulatio | 22 | Geodetic observations, at Mt. Tom, Massachusetts, |  |
| Engraviog Division- |  | and at Sandiord, Connecticut. | 29 |
| Progress of year | 7 | Geographical positions of points on the lacific coast |  |
| Persons employed | 65 | of the United States. | 418,420 |
| Report on ocenpation | 136-146 | Gerdes, Ascistant F. H.- |  |
| Enthoffer, J., engraver. | 65, 137 | Hydrography of passages hetween the Sheep- |  |
| Entrance Rock ... | - 395 | scot and Kennebock Rivers, Maive...... | 26 |
| Esquimault Harbor | 390 | Service with Westeru Gulf blockading squad- |  |
| Estero Americano. | 331 | ron | 55,56 |
| Estero de Limantour | 326 | Report on reconnaissance of Pearl River | 263, 264 |
| Estimates, for fiscal year 1863-64 | 8-12 | Gerdes, F. H., ir. Services in Section I........... | 26 |
| Eureka. | 339 | Gibson, A. A., Captain, U. S. A..... --...---..... | 32 |
| Evans, II. C., engra | 65, 137 | Gig IItarbor | 411 |
| Expansion, of standard base | , 248-255 | Gilbert, Sub-assistant W. S. Obituary-....-.... | 19 |
| drawing paper | 255 | G. M. Buche, (Coast Survey schooner.) Section I | 26 |
| F. |  | Gold Bluff...-.. .................-........-. .-.-.... | 341 |
|  |  |  | 301 |
|  |  | Goldsborough, L. M., Admiral, U. S. N......... | 41,42 |
| Fairfax, F , draughtsman | 65, 133 | Goodfellow, Assistant Edward- |  |
| Frairfax, W., draughtsmen | 65, 134 | Latitude observations at Mount Tom, Mass., |  |
| Fairfield, Assistant G. A- |  | and at Sandford, Conn. | 30 |
| Triangulation, coast of Maine | 22 | General assistant in office..--.-.------- |  |
| Hydrography, Florida reef | 53 | Charge of miscellaneous division | 65,152 |
| False Dungeness.-.............. | 384 | Gordon River-.-..............----...... | 387 |
| False Klamath. | 342 | Gosport navy yard, surveyed | 40,41 |
| False Mendocino | 336 | Gould, Dr. B. A., on telegraphio longitude .... 16, | ,158-160 |
| False Tillamook. | 355 |  | 367 |


| Gray's Harbor | Page. 372 | Hydrography- | Page. |
| :---: | :---: | :---: | :---: |
| Greenwell, Assistint W. E. Triangulation of San |  | Potomac River. | 41 |
| Clemente Island | 59 | Hatteras and Oregon Inlets, Virginia | 44 |
| Guemes Island | 403 | Beaufort Harbor, North Carolina | 46,47 |
| Gulf of Geargia | 399 | Stono River and Bar- | 49 |
| Gulf of Mexico, co-tidal lines i | 126, 127 | North Edisto Inlet | 49,50 |
|  |  | St. Helena Sound, South Carolina | 50 |
| H. |  | Port lioyal Sound, South Carohna, and Scull Creek $\qquad$ | 50,51 |
| Habainish Harbor | 415 | Calibogue Sound, South Carolina, and Tybee |  |
| Half-Moon Disy |  |  | 51 |
| Topography Description | 60 | Florida Heef.-.-- | 53 |
| Hall, (James,) Coast Survey sch | O | Karquines Strait, Mare Island Strait, and the bar of San Pablo Bay, California | 6 |
| Section 1- | 22 | Bodega Bay, Californi | 60 |
| Section VI. | 53 |  |  |
| Halter, Sub-assistant in E.- |  | Koos Bay, Orecon, and Gray's Harbor, Wash. ington Territory $\qquad$ | 62 |
| Services in Section II. | 29 |  | 63 |
| Topography of Potomat River-............. | 35 | Hydrographic on occupation | 130, 131 |
| Services with Wentern Gulf Blockading Squadron | 55, 56 | Hydrocra;hic office, Navy Department, supplied |  |
| Harding, W. W. - |  | with charts from Coust Survey office | 7 |
| Services in Section II. | 32 36 | I. |  |
| Services in Section III Services in Section V. | 36 | I. |  |
| Services in Section V. | 50 | Iardella, Sub-assistant C. T.- |  |
| Farpswell Harbor, Maine. Hydragraphy | 26 | Topography of water passages between Wis- |  |
| Harris, Joseph S. Services with Western Gulf |  | caset and Bıth, Maine. | 24 |
|  | 55,56 | Hydrography of Florida Reef | 53 |
| Hatrison, Aswistant A. M. - |  | Illinois liver. | 345 |
| Topoglaphy of Narragansett Bay .-......... | 25 | Iudian River, Maine. Triangulation | 22 |
| Verification of plane table worls in Northampton county, Virginia.......................... | 30, 40 | Iuformation, furnished from Cuast Survey archives List | $\begin{array}{r} 14 \\ 4,75 \end{array}$ |
| Surveys at Forfolk and Fortsmonth, Virginia | 40 | Invasion of the State of Pennsylvania | 14 |
| Hydrography of Metomkin lalet, Virginia - | 43 |  |  |
| Hascler, (Coast Survey schnontr.) Section 1...... | 22 | J. |  |
| Hatteras Inlet, N.C. Hydrography examined.... | 44,45 |  |  |
| Hautboy Island. | 397 | Java Head | 393 |
| Haven's Anchorage | 333 | James Hall, (Coast Survey schooner.) Section I.- | 22 |
| Hazel Point | 415 | Janes 's Island, South Carolina | 48 |
| Heceta lank | 353 | James's Island, Pacific coast | 397 |
| Heights, for hypsometrical | 18 | Jericho Creek, South Carolina, sounde | 51 |
| Hein Bank | 394 | Johnson, Subassistant W. M. | 60 |
| Hein, C. S. Services in Section II | 32 | Johnstone. M. T. Services in map-roo | 152 |
| Hein, Samuel, disbu:sing agent. | 66 | Joseph Henry, (Coast Survey scbooner.) Section IV | 47 |
| Henry, Alexander, mayor of Philadelph | 14 | Juan de Fuca. Straits deseribed. | 381 |
| Henry Island...... | 392 |  |  |
| Hergesheimer, E., draughtsman.................... | 64, 133 | K. |  |
| HiJgard, J. E.- |  |  |  |
| Assistant in charge of office....-......-..... | 68 | Karcher, L. Services in bydrographic division.-.Karquines Strait. Hydrocraphy | 64, 130 |
| Report on office occupation................- | 129 | Karquines strait. Hydrography | 60 |
| heport on new form of axis for dipping nerdle. | 236-238 | Kelp, fields on the western coast of the United States | 394 |
| Hinkle, David. Services in phatograph and elec- |  | Kerr, David Section X. | 60 |
| trotype division...................... .-........ | 65 | Key West, Florida. Magnetic observations | 54 |
| Hoakomwak Bay, Maine. Hydrography ............ | 26 | Kilisut Harhor ...- | 406 |
| Hood's Canal - ..... ................................... | 414 | Kincheloe, Julius. Services in Section X | 59 |
| Hood's Head | 414 | King, M. C., ti lal observer, Old Point Comfort, Va_ | 43 |
| Hooe, B., jr. Services in drawing division .-....-.- | 65, 134 | Klahiing, C. T., engraver | 65, 138 |
| Hoover. J. T. Services in Superintendent's office- | 66 | Klamath River | 341 |
| Hosmer, (harles- |  | Kright, John, engrave | 65, 136 |
| Triangulation and topegraphy of Potomac |  | Koitlah Puint | 381 |
|  | 35,36 | Kondrup, J. C., engrav | 65,137 |
| Topography near Williamsport, Maryland .- | 36 | Koos Bay, Oreqon- |  |
| Topography near Drummondtown, Vi ginia_ | 40 | Topography | 61 |
| Housam, F. Services in folding-room............ | 152 | Hydrography | 62 |
| Howard's Bay, Maine. Triangulation.............. | 22 | Bay described. | 350 |
| Hudson Kiver. Hydrography above Tivoli ....-.- | 32 |  |  |
|  | 337 | L. |  |
| Humboldt, (town) | 339 | - - |  |
| Hunt, E B. Captain, U. S. engineers, on corals. 18,2 | 241-248 | Lake Monntains, Cypress Islands | 397 |
| Hurl Gate, Maine. Hydrography | 26 | Lake Washington | 410 |
| Hydrography - |  | Langran, W., engraver | 65,137 |
| Between Wiscasset and Bath, Maine-...-.- | 26 | Latitude, observed at Mount Tom, Massachusetts, |  |
| In the upper part of Casco Bay, Maine....- | 27 | and at Sanford, Connecticat | 29 |
| Barnstable Harbor, Massachus tts...---.... | 27 | Lawson, Sub-assistant J. S.- |  |
| Narragancett Bay, Rhode 1sland | 27 | Survey of Koos Bay, Orego | 61 |
| Hudson River above Tivoli. | 32 | Survey of Gray's Harbor, Washington Ter | 62 |
| Delawaro River uear League Island | 32 | Leadbetter Point. | 369 |
| Metomkin Inlet, Virginia.................... | 42, 43 | League Island, (Delaware hiver) ................... | 13, 265 |


| $\begin{array}{ll}\text { Lee, Captain T. J. Charge of drawing division. } & \text { Page. } \\ \text { 64, } 133\end{array}$ | McMurtrie, W, B., draughtsman | Page. 65, 134 |
| :---: | :---: | :---: |
| Library, (Coast Survey) ........................... 155 | McNeil Lisland ...-.-. | 412 |
| Light-house Board ..............-. .-. --.-.-....... 265 | Mechan, Sub-assistant Juhn- |  |
|  | Hydrograplay of Hudson River...-......... | 32 |
| Lindenkohl, A., draughtsman ...............-.... 64, 133 | 'loporiaphy of the lotomac .--...........- | 35,36 |
| Lindenkohl, H., dranghtsman ...............-.... 65, 133 | Survey of the cnvirons of St. Louis, Missouri, |  |
| Lithographing division ...-........ .......--.-.... 65 | for defence | 57,58 |
| Report on occupation ....................... 150-152 | Memoirs, descriptive of the stiantic and Gult Coast | 7,65 |
| Little River, Maine- |  | 334 |
|  | Merodith, (Uast Suryey schooner) | 25 |
|  | Mericonig tound, Maine. Hydrography -------- | 26 |
| Lockwood, H. H., Brigadier Geueral, U. S. A..... 40 | Mertz, W. Services in foldingroom-............ | 152 |
| Longfellow, Assistant A. W.- | Metamkin Tulet, Virgiuid. Hydrography-..--... | 42,43 |
| Topography of Casco Bay, Maine...-.-.-.- 24 | Metzeroth, G. B, elgraver | 65, 137 |
| Topography of Potomac River....-......... 35 | Middle Farallou | 328 |
| Longfellow, H. W. Services in Section I..........- 25 | Mile Racks | 302 |
| Long Island, Shoalwater Bay...--.....-.......-...- 371 | Minor Island | 394 |
| Longitude - | Mission of San Buenavente | 279 |
| Methods for determining -..-............... 15, 16 | Nississippi Delta. Surveys fur co-operating with |  |
| Rewarks by Professor Benjamin Peirce..... 155, 156 | Wentern Gulf Blockating squadron. | 55-57 |
| Report of Dr. B. A. Gould..-............... 158-160 | Military surveys by topographers of the Coast Sur- |  |
|  | rey | 256 |
|  | Vicinity of Porthand, Maine | 25 |
| Lus Cormados..............-.-....-................. 272 | Banks of the Potmme River | , 36,37 |
|  | Rappanannock liver at Fredericksburg, Va. | 37.38 |
|  | Peninsula between York town and the Chick- |  |
| Lueber, F. A.- | abomiuy .-.-........................... | 38,39 |
| Services in Section 1...........-. ....... .... 25 | Defences of St. Lonis, Missour | 57,58 |
| Services in Section III.....-...--........- $36,40,41$ | Mitchell, A. C.. | 51 |
|  | Mitchell, Assistant Henry- |  |
|  | Physical survey of Cape Cod Bay .-....-... | 27 |
| Lunar influence on magnetic force, discussed.-....- 202-212 | Hydrography of harastable Harbor, Mass. . | 27 |
| Lunar tables, remarks on, by Professor Benjamin | Hydrography in Narragansett Bay, R I.... | 27 |
|  | Hydrography of Hatteras and Uregon inlets, |  |
| Lyman, S. H. Services in Section II.............. 30 | North Carolina, and the marking of the channel of Neuse Liver ............ 44,46 | $257-259$ |
| M. |  | 296 |
|  | Montseag Bay, Maine. Bydrography. | 26 |
| Macbias Bay, Maine. Triangulation.............. 22 | Moose-a-bee Eay, Mane. Triangulation | 22 |
| Macomb, J. N., Colonel, U.S. engineers.........-. 36,37 | Mosman, A. T, - |  |
| Maedel, A , engraver-........-..............-...-. 65,137 | Services in Section II. | 31 |
| Maedel, E. A., engraver............................ 65,137 | Services in Section YI | 53 |
| Maedel, J. W., draughtsman ...................... 65, 134 | Services in Section XI | 61,62 |
|  | Mount Baker | 399,406 |
| Magnelism- | Mount Buchon | , 293 |
| Observations at Eastport, Maine ...-...--- 17, 28 | Monnt Carmel, CO | 29 |
| Observations at Mount Tom, Massachusetts, | Mount Chatham | 346 |
| and at Saadford, Connecticut...-.-...-- 30 | Mount Constance | 415 |
| Ohservations at stations in New York and | Muunt Constitu | 398 |
| Penncylvania-...-...........---.-.-. 33, 212-229 | Mount Douglas | 302 |
| Ouscrvations at Washington city, D. C. .--- 43 | Mount Erie ... | 397 |
| Observations at Key West, Florida.-.-.-.- 17,54 | Mount Hood | 368 |
| Declination, dip, and intensity found at ra- | Mount Magruire | 388 |
| rious stations....-................... 212,230,231 | Mount Olympus | 375 |
| Discussion relative to disturbances of the | Mount Rainier. | 325 |
| horizontal force................... 16, 17, 161-212 | Mount Seymour | 390 |
| Description of new form of axis for dipping | Mount St. Helen | 368 |
| needle ...... ..................... ..... 18,236-238 | Mount fom, Massach usetts. Geodetic observations | 29 |
|  | Mutiny Bay. | 407 |
| Main, James, computer ............................ 64, 132 | Hutiay Bag. |  |
| Maps- | N. |  |
| General series..--.-.........-................ 6 6, 7, 8 | N. |  |
| Progress in drawing .-..-.-......-....-....- 134,135 | Nanaimo Bay | 402 |
| Progress in engraving........................ 138,139 | Narragansettit Buy ${ }^{\text {R }}$ Rode Island- |  |
|  | Special survey | 19 |
| Marcy, (Coast Survey schooner) Section X..... 61 | Rocks found in | 93 |
| Mare Island Strait. Hydrography ................ 60 | Narrows, the, Washington Territor | 412 |
| Marrowstone Point.................................. 406 | Nasal River................. | 370 |
| Mathiot, George. Charge of photograph and elec- | Navy officers | 19 |
| trotype division......-.-...........-*.... 65, 146-150 | Navy, co-operation with by parties | 5,6,257 |
| Matia Group of islauds ....... ..................... 398 | Navy yard commission. | 13, 265 |
|  | Nawuggah River..---................................ | 354 |
| Mattaponi River, Virginia....-....-.-.-.-.-.-..- 42 | Nechesne River....... ....... ....... .-.......... ..... | 354 |
| McClellan, G. B., Major General, U. S. A....... 38, 39,45 |  | 381 |
| McClery, M. J., draughtsman.......... ........... 64, 133 | Nehalem River --.-... | 355 |
| McCorkle, Sub-asistant S. C. Triangulation of Pe- |  | 354 |
| nobscot Bay, Maine ............................. 23 | Nes, Sub-assistant F. F. Services at Key West... | ${ }_{6}^{54}$ |
| McCoy, George, engraver....-.-................... 65, 136 | Nestuggah River ..........--.....-........----. ---. | 354 |



| Porter, D. D., Admiral, U. S. N | Pago. $55,262$ |
| :---: | :---: |
| Portland, Maine. Reconnaissance of environs...- | 25 |
| Port Royal Sound, South Carolina- |  |
| Hydrography | 50,51 |
| Orders relating to service with Blockading Squadron. | 260,261 |
| Portsmouth, Virginia. Topogrophy of defences.. | 40 |
| Possession Sound . | 408 |
| Potomac River. Triangulation, topography, and hydrography | 35,41 |
| Pourtales, Assistant L. F. Charge of tidal division | $\begin{aligned} & 64,128 \\ & 129,131 \end{aligned}$ |
| Presidio of San Francisco. | 307 |
| Presidio Shoal | 306 |
| Printing (Coast Survey) of maps and charts | 7,153 |
| Prisoner's Harbor. | 289 |
| Progress. Summary of year | 1-5,7 |
| Protection Island | 386 |
| Puerto Falso | 276 |
| Puget's Sound. | 412 |
| Punta de Arena. | 333 |
| Punta de los Cavallos | 307 |
| Punta de la Santa Cruz | 296 |
| Punta Gorda, north | 335 |
| Punta Gorda, south. | 294 |
| Q. |  |
| Quartermaster's Harbor | 412 |
| Queenhythe | 377 |
| Que-naith-sath | 376 |
| Quê-ni-âtl River | 376 |
| Quimper Peninsula | 387 |
| Quoddy Bay, Maine. Topography | 23 |
| R. |  |
| Race Rocks. | 388 |
| Rain at San Francisco | 316 |
| Rattlesnake Shoal, South Carolina, buoyed. | 48 |
| Ready, T. E., tidal observer at Charlestown, Massachusetts. $\qquad$ | 28 |
| Rebellion, how affecting transfer of parties. | 256, 257 |
| Records and results | 15 |
| Red Bank, (Delaware River) | 13 |
| Red Bluff, California. | 339 |
| Red Bluff, Washington Territory | 407 |
| Redding's Rock.-....-...- | 341 |
| Restoration Point | 410 |
| Richardson, W., Master, U. S. | 53 |
| Rincon .-...-.-.-...... | 307 |
| Rio del Pajaro | 297 |
| Robbins, T. W. Services in Section IL............ | 37 |
| Robin Hood's Cove, Maine- |  |
| Topography | 24 |
| Sounded | 26 |
| Rock Duncan | 379 |
| Rock Island | 397 |
| Rockwell, C.- |  |
| Topography of Frenchman's Bay, Maine... | 23 |
| Topography of Port Royal Sound, S. Carolina | 50 |
| Rodgers, Assistant A. F- |  |
| Topography of Bodega Ray, California ..... | 60 |
| Charge of Hydrographic party ........ | 61 |
| Rogers, Professor fairman. Charge of survey of Potomac River | 35 |
| Rogues' River and Reef | 345 |
| Rollé, A., engraver. | 65,137 |
| Rosario Strait. | 395 |
| Ross Mountain | 333 |
| Round Island. | 371 |
| Rumpf, Gottleib, computer- | 64,132 |
| Rutherdale, John, copper-plate printer | , 152 |
| Russian River | 333 |
| S. |  |
| Eachem, (Coast Survey steamer.) Section VIII... | 56 |
| Sail Rock | 383 |
|  | 297 |



| Smead, J. R , Captain, U. S. A. Obituary -....... | $\begin{aligned} & \text { Page. } \\ & 19,434 \end{aligned}$ | Topography of Eastport Harbor and West Quoddy | Page. |
| :---: | :---: | :---: | :---: |
| Smith's Island. | 393 | Bay, Maine- |  |
| Smith's River | 344 | Between Flushing and Jamaica, Long Island | 31 |
| Smith, T. R. Drawing division | 65, 134 | Shores of Rudson River, New York........- | 31,32 |
| Solar Spots.-.. | 17 | Vicinity of Williamsport, Maryland......... | 36 |
| liecord of observations | 231, 232 | Vicinity of Bladensburg, Maryland......... | 36 |
| Sooke Inlet. | 388 |  | 36 |
| South Farallon | 327 | Fairfax county, Virginia.-.....-...-........ | 37 |
| Special surveys | 13 | Manassas Junction. | 37 |
| Statistics of field and office work............... 14, | 5,76-78 | Vicinity of F'almouth and Fredericksbarg, |  |
| Steilacoom | 412 |  | 37,38 |
| Stevens, I. I., Brigadier General, U. S. A. Obituary | 19,433 | Shores of the Potomac River, Maryland, and |  |
| St. George's Bay | 344 | Virginia. | 35,36 |
| St. Helena Sound, South Carolina. Hydrography. | 50 | Verification between Chincoteague and Po- |  |
| St. Simon's Sound, South Carolina. Buoys set on |  | comoke Sound, Virginia...-.--. .-...... | 39 |
| Bar | 52 | Vicinity of Drummondtown, Virginia....... | 40 |
| Stono Inlet, South Carolina, soun | 48,262 | Reconnaissance between Yurktown and Rich- |  |
| Strait of Juan de Fuca | 381 | mond, Virginia. | 38,39 |
| Strausz, Alex. Services in Section I | 26 | Of defences and Norfolk navy yard, Virginia | 40 |
| Strawberry Biy. | 397 | Of Half Moon Bay, California .-.- ........- | 60 |
| Striped Peak. | 383 | Of Bodega Bay, California.-. | 60 |
| Stuart Island. | 392 | Of Koos Ray, Oregon | 61 |
| Sturgeon Bank | 401 | Torrey, (Coast Survey schooner.) Section I.-..-- | 23 |
| Sucia Group of islands. | 393,398 |  | 391 |
| T. |  | Triangulation of Machias, Englishman's and Moose-a-bec Bays, and of Indian River, Maine.......... | 22 |
| Table Bluff. | 339 | Of Eggemoggin Reach, Maine.-.- ------. | 22 |
| Tables- |  | Of Penobscot Bay, Maine....-.-...--...... | 22 |
| Distribution of parties. | 67-73 | Primary Triangulation at Mt. Tom, Massachusetts, and Sandford Station, Connec- |  |
| Information furnished from office | 74,75 | ticut..........................-....... | 27 |
| Statistics | $76-78$ | Triavgulation of Connecticut miver continued | 30,31 |
| Discoveries and developments.---------- | 79-85 | Along east side of Hudson River | -31 |
| Depths of water at port entrances | 86,92 $93-126$ | Along east side of Hudson River. | 31 31 |
| Table Point................. | 93-126 414 | Cotomac River---- | 35 |
| Talcott, R. H. Services at Eastport, Main | +28 | Stono River, South Carolina .-.....--...... | 49 |
|  | 378 | Santa Barbara and San Clemente islands, |  |
| Tax Commissioners for Florida | 25 | Californio | 59 |
| Telegraph Hill... | 305 |  | 340 |
| Tennant's Harbor, Maine. Topography | 23 | Trinidad Head | 340 393 |
| Termination Point.-.-------- | 415 |  | 393 31 |
| Terrill, W. R., Brigadier General, U. S. A | 31 | Tybee Roads, Georgia. Hydrography-...---..... | 81 |
| Obituary--.----- --.---- | 19 | U. |  |
| Tichenor's Rock. | 346 |  |  |
| Tidal Division | 64 | Whrlandt, H. E., tidaI observer. TiSection X.-...- | 61 |
| Report on occupation....-.-. .......... 128, | 129, 131 |  | 351 |
| Tidal observations at Eastport, Maine............. | 28 |  | 392 |
| Botween the Sheepscot and Kennebec Rivers | 26 | Useless Bay -.................... .-..................... | 408 |
| In Casco Bay...- | 26 |  |  |
| At Charlestown navy yard, Massachusetts- | 28 | V. |  |
| In New York Harbor. | 33 |  | 387 |
| At Old Point Comfort, Virginia | 43 | Vashon's Island | 412 |
| At Last Island, Louisiana-.. | 58 | Vashon's Island | 412 403 |
| Co-tidal lines of the Grulf of Mexico | 126, 127 | Vendovi Island <br> Victoria Harbor | 403 390 |
| Observations at San Diego and San Francisco, California. | 126,127 61 |  | 390 41 |
| At Astoria, Oregon | 61 | Vierbuchen, J. Instrument shop.................. | 155 |
| Tidal gauges, lost and recovered | 14,54 |  | 398 |
| Tide tables for mariners........ | ,93-126 |  | 398,403 |
| For the Western Coast of the United States. | 421-429 | Vixen, (Coast Survey steamer)- |  |
| Thomas, M. Tidal division .-...-..........----- | 64, 131 |  | 50 |
| Thompson, J. G., engraver. | 65, 138 |  | 53 |
| Thompson, W. A., engraver | 65, 138 | W. |  |
| Tillamook Bay | 355 | W. |  |
| Tillamook Head | 356 | Waaddah Island. | 381 |
| Tomales Bay. | 330 |  |  |
| Tongue Point | 366 | Services in Pamplico sound.-------------- | 44,45 |
| Topography of Eastport Harbor and West Quoddy |  |  | zex 19 |
| Bay, Maine.---.-.-.-...-.-- | 25 |  | + 393 |
| Of Frenchman's Eay, Maine | 28 |  | 393 |
| Of Seal Harbor, Wheeler's Bay, and Tennant's <br> Harbor, Maine. | 23 | Walker, Samuel. Charge of magnetic observations at Eastport and at Key West | 28 |
| Between Wiscasset and Bath, Maine....... | 24 | Washington City, District of Columbia. Survey of | 28 |
| Farmouth and Freeport Rivers, Maine.... | 24 |  | 36 |
| Reconnaissance of approachen to Portland, |  |  |  |
|  | 25 |  | 81 |
| Narragansett Bay, Rhode Island....... .-... | 25 |  | 995 |


| Webber, Sub-assistant F. P. - | Paga. | Williams, L. D., draughtsman | Page. <br> 64, 133 |
| :---: | :---: | :---: | :---: |
| Triangulation, coast of Maine | 22 | Williamson's Rocks.-.-...... | 396 |
| Potomac River | 35 | Williamsport, Maryland. Topograp | 36 |
| Werner, T. W., computer | 64, 132 | Wilson, L. Services in Section XI | 63 |
| Western Coast of the United States- |  | Winchester Bay | 352 |
| List of surveys made, \&c | 266-268 | Winsor, Captain C. F | 62, 63 |
| Directory for navigation | 268-430 | Wolf's Neck, Maine. Topography | 24 |
| West Point, W. T- | 409 | Wool, Jno. E., Major Geueral, U. S. A | 40 |
| West Quoddy Bay, Maine. Topography | 23 | Woolwich, Maine- |  |
| West, Sub-assistant P. C. F. Reconnaissance between Yorktown and Richmond, Virginia | 38, 39 | Topography <br> Hydrography | 24 26 |
|  | 393 | Wreck, (tlying Dragon.) Determined in position | 306 |
| Wharton, Edward. Report on occupation of en-gravers.........-...................................... 65, | $136-146$ | Y. |  |
| Wheeler's Bay, Maine. Topography .-.-.-. --...- | 23 | Yaquinnah River...-................. ....-.. .-.-. | 353 |
| Whidbey Island.- | 380,403 | Yarmouth River, Maine. Topography.......-.... | 24 |
| Whilapah River. | 370 |  | 155 |
| White Oak Swamp, Virginia | 39 |  | 306 |
| Whiting, Assistant H. L- |  | York River, Virginia, operation | 41,42 |
| Topography in Narragansett bay, Rhode |  |  | 38 |
| Island-----------.----------- | 25 | Young's Bay-.-. | 367 |
| Between Flushing and Jamaica, Long Island | 31 | Young's Island | 397 |
| Of Hudson River | 31, 32 |  | 366 |
|  | 35 |  |  |
|  | 37 | Zare Rock 2. | 393 |

## REP0RT.

Coast Survey Station,<br>Near West Cheshire, Connecticut, November 7, 1862.

Sir : I have the honor to submit my report for the surveying year ending November 1, 1862, as required by law and the regulations of the Treasury Department. With it is an engraved map showing the general progress of the survey, and a manuscript map prepared at the Coast Survey office, in accordance with the act of Congress of Mareh 3, 1853.

The survey has been in progress, in its field or office work, in all the States of our coast-Atlantic, Gulf, and Pacific, though upon the diminished scale required by the diminished appropriations for the fiscal year. The officers and the work have rendered essential service to the flects and armies of the Union. A bricf and general statement of both these classes of operations will be given in the prefatory chapter (Part I) of this report, and a more detailed account in Part II.

The estimates for the next fiscal year, upon the same reduced scale as those of the past year, are contained in Part I.

The experience of the usefuluess of the survey in the various war and blockade operations of the coast was hardly needed, to show that it ought to be pushed forward as rapidly as the means of the government will permit, if we would be prepared in those sections where danger may at any moment be imminent. The flows and ebbs of public feeling on that subject during the past year demonstrate the necessity of such preparation.

I have taken the opportunity, presented by the visits of inspection of the chief engincer, General Joseph G. Totten, to inform myself personally, through the kindly official and personal relations between as, of the progress and direction of the plans for defences on the coast, with a view to special reference thereto in the progress of the surveys. I was much gratified to find that as far as we had advanced the progress was in the right direction, though I could not but recognize that the information obtained would enable me in the future to make the connexion even more intimate than in the past, when no such exigencies as are now probable seemed to be among the possibilities of the times. I would be glad to make rapid provision for these exigencies, could adequate means be furnished. Perhaps some opportunity may yet occur to carry out such a purpose. It is certain that accurate maps must form the basis of well-conducted military operations, and that the best time to procure them is not when an attack is impending, or when the army waits, but when there is no hindrance to, or pressure upon, the surveyors. That no coast can be effectively attacked, defended, or blockaded without accurate maps and charts, has been fully proved by the events of the last two years, if, indeed, such a proposition required practical proof. The persons employed upon the various coasts being in the service of the government, their personal experience has been available in the various and complicated duties of pilotage, for lighting, for placing beacons, buoys, \&c., in times of exigency, and during the derangement of regular modes of eupply and inspection.

The honorable Secretary of the Navy has mentioned in his report the services of the Superintendent of the Coast Survey, as a member of the commission, in reference to plans of blockade, \&c., and has since, with your approval, placed him on an important commission for selecting a site for a navy yard for iron clads and iron vessels, in order to lay the foundation of an iron navy. The indispensable usefulness of the Coast Survey results to these two commissions was generously acknowledged by votes of each without dissent. The resolution passed by the second board, transmitted to me by its president, Admiral Stringham, will be fund in the Appendix No. 37. The communication from the president of the first board, Admiral DuPont, was given in the Appendix of my last annual report.

It will be observed that though general publications of maps and charts are made, the goverument has always more advanced and fresher information than other parties, whether domestic or foreign, and that due
discretion has guided us in the mode of publication and distribution of new maps and charts and of new information.

The zeal with which the Coast Survey cfficers have thrown themselves into such service as the government required is truly commeudable, and has procured for them the praise of the distinguished army and navy officers under whose immediate direction they have served.

## GENERAL STATEMENT OF PROGRESS.

The general sketch of progress (No. 45) shows that the triangulation, primary or secondary, of the Atlantic coast is continuous from our northeastern boundary to sonth of the line between North and South Carolina, and, with an interval of about sixty miles, from Winyah bay, S. C., to Matanzas inlet, south of St. Augustine, Fla.

This year three triangulation, six topographical, and two hydrographic parties have worked upon the coast of Maine. The triangulation (Sketch No. 2) includes Eastport harbor, and that of the sea-eoast is complete from Machias bay to Mount Desert, and from the entrance and approaches of Isle an Haut bay, including Penobscot bay, to Kittery, Me. The topography is about two seasons behind the triangulation, and the hydrography is proportionately advanced. This season's topographical work on the coast of Maine has been in the neighborhood of Eastport, at Frenchman's bay, below Rockland harbor, along the water passages which connect the Sheepscot and the Kennebee, in the upper part of Casco bay, and near Portland, (a reconnaissance for defensive purposes.) The liydrography has been that of the water connexions between the Sheepscot and Kennebec rivers, including also Wiscasset bay, the upper part of Casco bay, including Yarmouth and Freeport rivers, and supplementary work near Portland.

The work on the coast of New Hampshire and Massachusette (Sketch No. 3) is nearly completed. During the past season a hydrographic party has added to the previous work. The special surveys in Boston harbor have been continued. Two topographical and one hydrographic party have worked on the coast of Rhode Island, one of each class co-operating in the examination by the navy yard commission. The tidal and maguetic observations have been kept up at Eastport, and the tidal observations at Boston. Two triangulation parties, one also making astronomical observations, have been working on the coast of Connecticut (Sketch No. 3) near New Haven, and on the Connecticut river below the head of tide.

Two triangulation, one topographical, and one topographical and hydrographic party have worked on the coast of New York and New Jersey ; on Hudson river, (Sketch No. 11,) near Rhincbeck and Poughkecpsie, and above Tivoli; near the western end of Long Island, and on the ocean shore of New Jersey, (verification survey.) Tidal observatious have been kept up at Brooklyn, New York. Examinations of hydrographic changes have been made in the Delaware river, near Fort Delaware, and near the mouth of the Schuylkill, in Delaware, New Jersey, and Penneylvania. Magnetic obscrvations for the secular change of the declination and intensity have been made in New York and Pennsylvania, (Sketch No. 47.) The rate of progress on the coast of Sections I and II, (Maine to Maryland,) has quite equalled the estimates made in my reports for 1857 and 1859. Five parties triangulating and sketching in shore-line and the topography of the banks of the Putomac, (Sketch No. 13,) and cooperating through one chief, have finished the preliminary survey of that river from Blakistone island up to Georgetown. These, while at work, were in part protected by the Potomac flotilla, in part by the army detachments on the banks, and in part worked freely without need of protection. A hydrographic party is still engaged and will complete the soundinge of the Potomac below Indian Head. The same party had previously rendered good service in the North Atlantic blockading squadron, in the York, Pamunkey, and Mattaponi rivers. An additional hydrographic party has sounded the Potomac between Alexandria and Georgetown, there being great need for a chart of the river . near Washington.

Two topographical parties have mapped the environs of Williamsport, Maryland, for the use of the army; another was for a short period employed in the topography of military defences near Fort Lincoln; one is now engaged in the vicinity of the District line near Bladensburg in plane-table work for military purposes; a survey was made by another of the rebel position and works at Manassas; a fifth party is now engaged in mapping the western approaches of Fort Marcy, in Fairfax county; another party surveyed the north bank of the Rappahannock at Fredericksburg, and sketched the roads leading to the Potomac; and a seventh made reconnaissances and surveys on the Peuinsula, between the York and James rivers. These parties worked under the immediate direction of the chief topographical engineers of the armies of the Potomae and Rappahannock.

Two topographical partics with the army of Maryland worked on the eastern shore of Virginia, near Drummondtown and Norfolk, and one of them made a hydrographic resurvey of Metomkin inlet.

There are now (November 7) four topographical parties surveying with the different corps of the army under General McClellan along the line of the Potomac. Observations have been made at the Wablington magnetic station, and the tidal observations have been continued at Old Point Comfort, Va.

On the coast of North Carolina (Sketch No. 21) a resurvey was made of Hatteras inlet at the opening of the present surveying year, and it was in part re-examined subsequently, and service in marking by buoys and stakes rendered there, in connexion with the North Atlantic blockading squadron, by a second Coast Survey party. Oregon inlet was completely surveyed by a third party, which also made examination of the tides and currents and of their action upon the site of Fort Hatteras. The same partics, last named, made a reconnaissance of the Neuse river to a point above Newbern, and placed channel stakes and buoys on the middle ground. Scrvice was rendered in the attack upon Roanoke island. As soon as Beaufort, N. C., was taken by our forces, a hydrographic party was sent there and made a resurvey, tracing anew portions of the shore line, and sounding the bar, the entrance, and the interior of the harbor. Some useful observations were communicated to us, by permission of the Navy Department, by one of the officers of the blockading squadron, who lead been supplied with instruments from the Coast Survey office. These parts of the coast had been recognized as changeable in our opcrations of previous years.

On the coast of South Carolina, (Sketch No. 25.) Georgia, and Florida, acting under the immediate direction of the flag officer of the South Atlantic blockading aquadron, were four parties, one of which had officers for all the surveying operations and a stean vessel; another for topography and hydrography, and two for topography, which were led by officers of experience upon this part of the coast-co-operating with each other through one chicf and under the orders of Flag Officer DuPont. The operations of these parties, which received much commendation, will be given in detail under the head of Section $V$, only the surveying service being referred to here. Stono inlet and river, and parts of Folly and Kiawah rivers were sounded out, the bar having entirely changed. The banks of those streams were traced and mapped. I'art of North Edisto river was reaurveyed; part of St. Helena sound, and part of Port Royal sound, including Broad and Beaufort rivers and their tributaries, and also Skull creek and Calibogue sound; part of Tybee Roads, Ga.; part of Wassaw sound; part of St. Simon's somm, and the bar at Fermandia, Fla. Buoys were placed and sailing directions furnished to the flag officer. In connexion with the hydrography, the shore-lines were also traced of parts of John's, James', Cole's, Kiawah, and Folly island; of the inside of Port Royal island, and of parts of Broad river, S. C., and its tributaries. Offcers were furnished to reconnoitring expeditions afloat and ashore.

The survey of the Florida reef (Sketch No. 32) was continued by a hydrographic party with a steamer, one triangulation, and one topographical party; and magnetic observations by photography were kept up at Key West.

On the coast, from Mobile entrance to New Orleans, (Alabama, Mississippi, and Louisiana-Sketch No. 35,) a very strong party with a steam vessel lent by the Navy Department, including assistants familiar with the different operations of the survey and with this part of the coast, made reconnaissances; determined the best channels of the mouths of the Mississippi, and buoyed that of the Southwest Pass; gave positions and distances for stationing the mortar boats near Fort Jackson, and other useful services which have been acknowledged by the flag officer of the western Gulf blockading squadron, and by Commodore D. D. Porter, under whose immediate direction they acted. The same party made examinations of localities designated by General Butler, U. S. A. One of the surveying officers was inmediately connected, for some time, with Flag Officer Farragut in the Hartford. Two topographical parties were detailed, at the request of General Halleck, and under orders of his aide-de-camp, Colonel R. 13. Cutts, Assistant in the Coast Survey, to make military surveys of the ground occupied and commanded by the defensive works erected at St. Louis in 1861. These surveys are nearly completed.

Arrangements are now making for the detail of parties to accompany the expedition of General Banks to the coast of Texas, and Commodere Porter's to the Mississippi.

On the Pacific coast, in Sections X and XI, (Sketches Nos. 37, 38, and 42,) one triangulation party, one triangulation, topographical, and bydrographic, two topographical, one of them a double party, and one hydrographic party, have been employed. The triangulation of San Clemente island (one of the Sauta Barbara islands) and of the main between San Pedro. and Point Duma, has been completed. The topography of Bodega bay has been completed in connexion with the coast adjacent south to Tomales, and several miles north of Bodega entrance. Soundings for veritication have been made in Karquines strait, opposite to Mar-
tinez; also at the junction of the strait with the channel to Mare Island navy yard, and off Point Wilson, in San Pablo bay. The hydrograply of Bodega bay has been completed, inchuding the roadstead and that of the coast between it and Tomales entrance. Tidal observations have been continued at San Diego and San Francisco, besides those in connexion with the hydrography. The steamer Active has assisted in guarding the navy yard at Mare island in time of emergeney.

The hydrography of Koos bay, Oregon, (Sketch No. 43,) has been extended; and the bar and entrance of Gray's harbor, W. 'T., have been sounded. Tidal observations has been continued at Astoria.

The diminished appropriation for the western coast has required the withdrawal of one of the parties. The steamer Active being much out of repair, a favorable opportunity was taken to dispose of her. She will require to be replaced when a proper opportunity occurs.

Office-wurk.-The regular work of computing, drawing, photngraphing, lithographing, engraving, and electrotyping has gone on in the office. Many of the charts for the memoirs for distribution to officers of the army and navy connected with coast expeditions have bern executed in a preliminary way by lithographing. Some, of which but a few copies were required, have been photographed. Photography, as a mode of reduction of field-work to the publication scale, has become a part of the regular routine of the office.

It will be necessary soon to make some reduction in the number of persons employed in the office; in fact, it has been commenced, but it is hoped that it may not be necessary to extend it much further, as the work requires thorough training to be effectively executed, and it will be difficult to recover our trained computers, engravers, and others, should they once become engaged in other offices.

The titles are here appended of drawings for maps and charts and of the engraved plates worked on during the year which ended on the 1 st of November:

Section I.-The drawing for a finished ehart and the engraving in a preliminary form of Barnstable harbor have been completed; the engraving of Portland harbor as a finished chart, with additions to the hydrography, has been nearly completed; and a preliminary chart of Mount Hope bay has been drawn and ergraved. Progress has been made in the drawing and engraving of coast charts No. 8, Seguin island to Kennebunkport, Me.; No. 9, Cape Neddick to Cape Ann, Mass,; and No. 11, Plymouth to Hyannis, Mass.; and of the chart of Sheepseot and Kemebec rivers, Me. The drawing of general coast charts No. I, Quoddy Head, Me., to Cape Cod, Mass.; No. 1I, Cape Ann to Gay Head, Mass.; and of coast chart No. 7, Muscongus bay to Portland, Me., has been continued; and the engraving of coast chart No. 7, Muscongus bay to Portland, Me, and the drawing and engraving of No. 10, Cape Aun to Plymonth, have been commenced. Additions have been made to the chart of Salem harbor and to coast charts Nos. 12 and 13, Nantucket sound and Vineyard sound, as also to the progress sketches of the section; and a new progress sketch of the coast of Maine has been drawn and engraved.

Section 1I.-The engraving in outline of the new edition of coast chart No. 21, New York hay and harbor, has been completed, and the chart issued in a preliminary form; the drawing of the same as a finished chart has been continued. Progress has been made in the drawing and engraving of the Hudson river, (sheet No. 1,) from New York to Haverstraw, and in the drawing of sheet No. 2, Haverstraw to Poughkeepsie; the engraving of the latter has been commenced; and additions have been made to the progress sketch of the section.

Section III.-The engraving of coast chart No. 35, Chesapeake bay, (shect No. 5 ,) from Pocomoke sound to York river, has been completed; progress has been made in the engraving of coast chart No. 36, Chesapeake bay, (sheet No. 6,) mouth of York river to entrance of bay; and of Patuxent river, lower sheet, as a finished chart. The drawing of Potomac river chart in four sheets, and the engraving of general coast chart No. IV, Cape May to Currituck sound, and of Potomac river, (sheet No. 3,) from Lower Cedar Point to Indian Head, have been commenced. Additions have been made to coast charts No. 31, head of Ohesapeake bay to Magothy river; No. 32, Magothy to the Hudson river, Md.; No. 33, from the Hudson to the Potomac river; and to the progress sketch of the section. The following preliminary charts and maps have been lithographed and issued to mect the immediate wants of the public service, viz: Atlantic coast, from Chesapenke entrance to Ocracoke inlet; Chincoteague bay ; Hampton roads ; James river, up to City Point, (new edition;) reconmaissance of Pamunkey and Mattaponi rivers; Potomac river, up to Georgetown, in four sheets; road map of District of Columbia; plan of wharves at Alexandria; military reconnaissance map of southeastern Virginia, in nine sheets; and a general map of Virginia, in colors.

Section IV.-The engraving of coast chart No. 37, Atlantic coast, from Cape Henry to Currituck sound, has been commenced; and preliminary charts of Hatteras inlet (resurvey of 1861) and of Beaufort harbor, N. C., (resurvey of 1862,) have been drawn and lithographed.

Section V.-The engraving of Sapelo sound, Ga., Ossabaw sound, Ga., and of St. Simon's sound, Brunswick harbor, and Turtle river, as finished charts, has been completed. The drawing of general coast chart No. VII, Atlantic coast; from Winyah bay, S. C., to St. Jolm's river, Fla.; and that of Calibogue sound and Skull creck, forming the inland passage from Tybee roads to Port Royal sound; and the engraving of Savamah river as a finished chart, have been in progress. Additions have been made to the progress sketch of the section. The following preliminary charts have been drawn and lithographed for immediate use, viz: Sea-coast of South Carolina; sea-coast of Georgia and Florida to St. Augustine; Port Royal entrance, with Beaufort, Broad, and Chechessee rivers; Calibogue sound and Skull creck; Wassaw bar ; St. Helena sound; the addition of James island and Stono river to the chart of Charleston harbor; and a chart of Stono inlet, with parts of Stono, Folly, and Kiawah rivers, from the survey of the present year.

Sction VI.-The drawing and engraving of the chart of St. Augustine harbor, and the engraving of St. Mary's river and Femandina harbor, have been completed. Progress has been made in the drawing and engraving of general coast clart No. X, Florida reef, from Key Biscayne to Marqueas keys, and coast chart No. 71, New-found harbor key to Buca Grande; the engraving of coast chart No. 70, Garden key to Lower Matecumbe key, has been commenced; and the amnual additions to the progress sketches of the section have been made. A preliminary chart of the vienity of the Tortugas, Fla., has been lithographed.

Section VII.-A sheet showing the entrance to Santa Rosa bay, and a general chart of the northeastern part of the Gulf of Mexico, in two sheets, have been drawn and lithographed for the use of the blockading squadron. The engraving of the chart of Maria de Galvez bays, Fla, has been completed.

Section VIII.-The engraving of coast chart No. 93, Lakes Borgne and Pontchartrain, has been commenced. Additions have been made on coast chart No. 92, western part of Mississippi sound, and to the progress sketch of the section; and a hydrographic sketch of the southwest pass of the Mississippi has been lithographed. Drawings and photographs have also been made of the approaches to Fort Jackson and Fort St. Philip, below New Orleans, and of a survey of Fort Jackson after the bombardinent.

Section IX.-The drawing of coast chart No. 108, Matagorda and Lavaca bays, Texas, and of general chart No. XVI, Gulf coast, from Galveston bay to the Rio Grande, has been continued ; progress has been made in the engraving of chart No. 106, Gulf coast, from Galveston bay to Oyster bay, Texas; and the annual additions to the progress sketch of the section have been made. A general chart of the northwestenn part of the Gulf of Mexico, in two sheets, has been drawn and lithographed for the use of the blockading squadron.

Section X.-The drawing of Napa creek and Petaluma creek, as finished charts, and the engraving of the same in preliminary form, have beeu completed; and a preliminary chart of Tomales bay has been drawn and engraved. The engraving of the chart of San l'ablo bay is nearly completed, and progress has been made in the drawing and engraving of that of Drake's bay. The drawing of the lower part of San Francisco bay, and of a chart of the Pacific coast from Point Pinos to Bodega Head, has been commenced. Additions have been made to the progress sketches of the section, and to plates of charts previously engraved.

Section XI.-A preliminary chart of Koos bay, Oregon, has been drawn and engraved; and the drawing and engraving of a new edition of the chart of Washington sound, W. T., and the engraving of that of Coquille river entrance, Oregon, have been completed. Additions have been made to the progress sketeh and other plates of the section.

## COAST SURVEY SERVICE WITH BLOCKADING SQUADRONS AND WITH ARMIES IN THE FIELD.

Thongh the statements of the use made of the Coast Survey parties in different important military and naval expeditions will be given in the body of my annual report, with the acknowledgments made by their chiefs, it will conform to the general plan of this report to make a brief abstract of them here. The scrvices at Port Royal and in the Lower Mississippi, where the survey gained so much credit, were only a fractional part of those rendered.

Three Coast Survey steamers have been kept at work during nearly the whole season-the Corwin, the Bibb, and the Vixen-being, when not actually employed by the survey, used by the Navy Department. The services of the Vixen, under command of Assistant C. O. Boutelle, were acknowledged by Admiral DuPont in his official report of the action at Port Royal. The familiarity of her commander with that part of the coast made his personal services of the greatest importance.

The Sachem, lent to the Coast Survey by the Navy Department, iu place of the Heteel, was also officered and manned by a surveying party. She accompanied the expedition to the Lower Mississippi, and there rendered services which have been warmly acknowledged by Admiral Dnvid D. Porter.

The Corwin, when not engaged in her regular work-as at Hatteras and in the Potomac-was under the orders of Admiral Goldsborough, and performed good service in York river and its tributaries-the Pammeney and the Mattaponi. Reference to these several localitics, in full detail, will be made under the heads of Sections III and IV, Section V and Section VIII, and in the first of these will also be stated the service of topographical parties for military purposes in the State of Virginia. No opportunity has been lost to fumish for the public service officers familiar with the parts of the coast which have been visited by our flecte and military expeditions.

The operations here alluded to have, in general, been executed by the civil assistants, sub-assistants, and aids of the Coast Survey; all the naval officers but one, and all the officers of the army, having been detached from the work and returned to their respective services.

Six of the civil officers of the survey have, under your authority, received furloughs, without pay, to join the voluuteer service, and have shown great capacity in their several positions. Another, formerly an officer of the corps of engineers, has been absent from the office temporarily, and is yet under the orders of the chief engineer.

Sixteen officers of the survey, of different grades, have been detailed for service, chiefly topographical, with the army of the Potomac, near Washington, in the Peninsula, and on the Cpper Potomac; with the army of the Rappahanmock, near Fredericksburg and at Manassas; with the army of Maryland and Virginia, on the Eastern Shore and at Norfolk; and with the army of North Carolina, at Hatteras, Roanoke island, Newbern, and Beaufort, N. C.

The regular work has gone on upon the Flovida reef, and parties were at and near Key West, ready to co-operate with the army if active operations had been deemed advisable on the western coast of the Florida peninsula.

The regular work on the Pacifie coast has gone steadily forward.
Of seventeen assistants, fourteen sub-assistants, and eighteen aids, serving in the field or afloat, fifteen assistants, eleven sub-assistants, and fifteen aids have devoted the whole or a part of the year to the regular progress of the survey; and eight assistants, ten sub-assistants, and fourteen aids (thirty-two officers) have rendered scrvice in connection with the operations of the army and navy, generally in addition to their regular duties. This last-named service was, of course, not without its special dangers. Sub-Assistant Dorr narromly escaped when the lamented Wagner and a soldier of Mr. Dorr's plane-table party were mortally wounded in front of Yorktown. The planc-table which Mr. Dorr was using was shattered to pieces. Sub-Assistant Oltmanns was badly wounded in the breast by a Minic ball during the reconnaisance of Pearl river, while attached to the steamer Sachem, which was then under command of Assistant F. H. Gerdes, and serving with the flotilla of Commodore (now Admiral) D. D. Porter.

The bravery of Mr. J. S. Bradford, Mr. C. H. Byyd, and their comrades, of the party of Assistant Boutelle, alone saved them from capture on James island, S. C., and put in their hands several prisoners, who were delivered to the custody of the flag-officer of the squadron.

Of the officers who have thus served, the chiefs of parties-Assistant Charles O. Boutelle, under Admiral DuPont, and Assistant F. H. Gerdes, under Admiral D. D. Porter-bave made themselves especially useful, and have won the special commendations of the gallant officers under whom they served. A more satisfactory view of the $p$ rsonnel of the service alluded to will be found in the Appendix, (Nos. 28 and 29,) showing the details made during the year when the changes were the greatest, as in the months previous to June, compared with those between June and November.

## MAPS AND CHARTS.

In my general reports for 1856,1857 , and 1858 , I gave an account of the several series of sheets intended to show the topography and hydrography of the Atlantic and Gulf coast. These were one hundred and thirteen coast or in-shore maps and clurts, in forty-two series, on a scale of ${ }_{\overline{80}} \frac{1}{0} \overline{00}$; sixteen general or off-shore charts, on a scale of $\frac{3000}{40000}$; and harbor maps and charts on various scales, from $\frac{3}{500 \pi}$ to $\frac{1}{0000}$. In advance of these was a preliminary series, thirty-three in number, upon a scale of $\frac{10}{200000}$, intended to provide for the publication of the coast hydrography as soon as possible, when the number of sounding parties was at the maximum, and without the addition of the details of topography. Several of these were published in previous years; but of late it has been found more expedient to issue charts on either of the scales, as preliminary, or with only the shore-line, it not being in all cases practicable to continue the bydrography with strict reference to the completion of sheets which might be in progress in the drawing and engraving divisions.

Of the series first mentioned (in-shore maps and charts) twenty-five have been published, representing the most important parts of the coast, and fourteen are yet in the hands of the engravers. The same topography and hydrography, reduced to one-fifth and generalized in details, are used for the general coast charts, four of which are now in progress and advancing towards completion as the material applicable to the localities which they represent comes in.

The whole number of charts which have been engraved upon copper for publication, and which are now in use, is three hundred and eight. This is exclusive of twenty-three copperplates, containing the progress sketches, and thirty-two plates of diagrams. The number of maps, charts, and sketches lithographed in the offee, in addition to the engraved ones, is one hundred and twenty-nine.

In the Drawing Division seventy-one sheets have been worked on within the year which ended on the 31 st of October. In the classification which has been referred to, ten of these were maps and charts intended to be in full detail, and seventeen others of the same kind, but not connected with the coast seies, their scales being various. Ten others are prelininary charts, and twenty maps and sketches for lithographic transfer. Besides twelve of the progress sketches to which additions were made, and two sheets of diagrams, thirtyfive of the drawings have been completed and twenty-two are now in hand.

In the Engraving Division six firstclass maps and charts have been brought to completion within the year, and supplementary work has been added to four others which had been prblished. Five second-class charts and sketches have also been engraved, and three diagrams for my last annual report. Twenty-eight plates are now in progress, of which thirteen were commenced within the present year. This gives a total of forty-six plates worked on, the details of eighteen of which were completed. There are, in addition to these, in the division, the plates of seven charts in various degrees of forwardness. Several of them have received all the material which the field-work has as yet furnished, and others, engraved in parts, are about to be joined and put in hand for completion.

In order to supply new maps and charts as rapidly as they were wanted for military and naval use, we, last year, established lithographic rooms in the office for ordinary lithography, engraving on stone, and transfer printing. The demand having greatly increased, all the persons attached to this branch of the office have been very closely employed. Two lithographic presses are yet kept in use. Color printing has been intro. duced for maps of the seat of war, and has proved very acceptable, the sale of the mape more than reimbursing the cost of their production.

Of the charts printed within the year, which have greatly exceeded in number the issue of previous years, 25,925 have been furnished to the active superintendent of the Hydrographic office of the Nary Department to be distributed to our naval vessels. Two hundred and twenty-three captaine and pilote of vessels in government service, who have made application in person at the Coast Survey office, have received in the aggregate 1,863 copies of varioue charts. It will be seen by the report from the Miscellaneous Division, (Appendix No. 11,) that a total of 44,195 copies has been distributed during the year, of which by far the greater part were for the use of the nary and the army.

In addition to the ten memoirs descriptive of the coast, mentioned in my report of last year as lithographed and bound up with charts, and distributed to officers of the navy and of the army in command of expeditions, two other memoirs have been completed, and copies issued in like manner. Of the twelve which were prepared by the Superintendent and Assistants specially for the use of naval and military commanders, an aggregate of three hundred and eighty-five copies have been furnished since August, 1861, when the first was ready for issue. All the details in regard to the distribution of maps, charts, memoirs of the coast, \&c., will be found in the Appendix before referred to.

The following list contains the titles of the maps, charts, and sketches which accompany this report. They are arranged in geographical order, as usual, and marked with numbers corresponding to the numbers in the margin of the list:

1. A.-Progress sketch, Section I, (primary triangulation.)
2. A bis.-Progress sketch, Section I, northern part, (secondary triangulation, topography, and hydrography.)
3. A bis.-Progress sketch, Section I, southern part, (secondary triangulation, topography and hydrography.)
4. Kennebec and Sheepscot rivers, Maine.
5. Portland harbor, Maine.
6. Barnstable harbor, Massachusetts.
7. Bristol harbor, Narragansett bay, Rhode Island.
8. Newport and Coasters' harbor, Narragansett bay, Rhode Island.
9. Dutch Island harbor, Narragansett bay, Rhode Island.
10. Connecticut river and New Jersey coast triangulation.
11. 13--l'rogress sketch, Section II.
12. Hudson river, No. 3, Ponghkeepsie to Glasco.
13. C.-Progress sketch, Section III.
14. Coast chart No IV, Cape May to Currituck.
15. Chesapeake bay, sheet No. 6.
16. Metomkin inlet, Virginia.
17. Potomac river, No. 1-entrance to Piney Point.
18. Potomac river, No. 2-Piney Point to Lower Cedar Point.
19. Potomac river, No. 3-Lower Cedar Point to Indian Head.
20. Potomac river, No. 4-Indian Head to Georgetown.
21. D.-Irogress sketch, Section IV.
22. Oregon inlet, North Carolina, survey of 1862.
23. Hatteras inlet, North Carolina, survey of 1861.
24. Atlantic coast from Nantucket to Cape Hatteras.
25. L.-Progress sketch, Section V.
26. Port Royal entrance, with Beaufort, Broad, and Chechessee rivers, South Carolina.
27. Calibogue sound and Skull creek, South Carolina.
28. Ossabaw sound, Georgia.
29. Sapelo sound, Georgia.
30. St. Simon's sound and Brunswick harbor, Georgia.
31. St. Mary's river and Fernandina harbor, Florida.
32. F bis.-Progress sketch, Section VI, Florida keys and reef.
33. St. Augustine Larbor, Florida.
34. Coast chart, No. 71, Florida reef from Newfound harbor to Boca Grande key.
35. H.-Progress sketch, Section VIII.
36. Southwest Pass, Mississippi river, 1862.
37. J.-Progress sketch, Sectiou X, Pacific coast from San Diego to San Luis Obispo.
38. J bis--Progress sketch, Scetion X, Paeific coast from San Luis Obispo to Bodega Head.
39. San Francisco, upper bay, California.
40. Coast from Point Pinos to Bodega Head, Califurnia.
41. Bodega bay and roadstead.
42. K-Progress sketch, Section XI.
43. Koos bay, Oregon.
44. Gray's harbor, Oregon.
45. General progress sketch, Atlantic, Gulf, and Western coast.
46. Cotidal lines in the Gulf of Mexico.
47. Magnetic map of Pennsylvania and part of New York.
48. Diagrame illustrating discussions of magnetic horizontal force observations.
49. Diagrams illustrating experiments in length of standard bar.

Nore.-Those of the above maps and charts which represent portions of the coast under blockade at the time of publilication of this report will not appear.

## ESTIMATES FOR THE FISCAL YEAR 1863-'64.

The estimates now submitted are intended to provide for the usual progress on the coast from Passamaquoddy to the capes of Virginia, and the progress which seems most probable from thence to the Rio Grande. They also provide for parties to aid the fleets and armies operating on the coast, in pursuance of the plan which you have fully approved, and which has, under your direction, proved so useful. Flexibility, in a work like this, is a most important feature, and that you have successfully impressed upon it. If I have erred in the estimates, it is in restricting them too much, the safest side upon which to err under the circumstances.

I suppose that one more appropriation, of about the amount now asked, will enable us to complete the survey of the Florida reefs and keys. There is now a gap in the hydrography of this dangerous part of the coast, which I expect to be able to have completed this season. It may require the application of the am: ll appropriation for the triangulation across the peninsula, which cannot be used, under present circumstances, for completing the work for which it was designed, for this purpose. All these matters of detail will be set forth in my annual report.

The estimates include, as usual, separate items for the Atlantic and Gulf coast, Florida reefs, and western coast of the United States, without, however, the facilities formenly extended by the War and Navy Departments by the detail of officers.

## ESTIMATES IN DETAIL.

For general expenses of all the sections,* namely, rent, fuel, materials for drawing, engraving, and printing, and ruling forms, binding, trausportation of instruments, maps, and charts; for miscellaneous office expenses, and for the purchase of new instruments, books, maps, and charts
$\$ 19,000$
Section I. Coast of Maine, New Hampstire, Massachusetts, and Rhode Island. Field-work.-To complete the primary triangulation in this section, and to continue the astronomical and magnetic observations connected with it; to continue the triangulation of Passamaquoddy bay; to extend the secondary triangulation over Machias bay, and eastward; to complete that of Penobscot bay and the Fox islands, and to extend it over Bluekill bay and up the Penobscot river; to continue the topography of Passamaquoddybay, and to complete that of Eastpont harbor, Me.; to commence that of Goldsborough harbor, Me.; to continue that of the approaches to Penobscot bay, and to complete that of Rockland, Rockport, and Camden learbors, Me.; to continue that of the Kennebec river to Augusta and of the Sheppsot river, Me., and of the passages connecting them; to complete that of Cape Cod bay, Mass.; to continve that of Bristol Neck, Mount Hope, and Prudence and Connanicut islands and main of Narragansett bay, in R. I. and Mass.; to continue the in and off shore hydrography of the coast of Maine, including Passamaquoddy, Muscongus, and Penobscot bays, and the ledges off the coast ; to continue the tidal and magnetic observations at Eastport and Purtland, and to make tidal observations in connexinn with the hydrography. Office-work.-To make the computations required by the field-work; to commence the drawing of coast chart No. 6, Isle au Haut bay to Muscongus bay; Casco bay, Me.; Damariscotta entrance, Me.; Narragansett bay, R. I.; to continue Eastport harbor, Me.; general coast chart No. I, Quoddy Head, Me., to Cape Cod, Mass.; coast chart No. 7, Muscongus bay to Portland, Me.; Rockland harbor, Me.; coast chart No. 8, Seguin island to Kennebunkport, Me.; coast chart No. 9, Kennebunkport, Me., to Cape Ann, Mass.; coast chart No. 10, Jpswich to Grecn harbor, Mass.; coast chart No. 14, Buzzard's bay to Block island smund, R. I.; Bristol harbor and approaches; to complete Sheepscot and Kennebec rivers, Me.; to commence the engraving of Eastport harbor, Me.; general coast chart No. I, Quoddy Head, Me., to Cape Cod, Mass.; Damariscotta entrance, Me,; Rockland harbor, Me.; Bristol harhor and approaches, R. I.; Narragansett bay, R. I.; to coutinue Rochland harbor, Me.; coast chart No. 7, Muscongus bay to Portland, Me.; coast chart No. S, Seguin island to Kennebunkport, Me.; coast chart No. 9, Kennebunkport, Me., to Cape Ann, Mass.; coast chart No. 10, Ipswich to Green harbor, Mass.; coast chart No. 14, Buzzard's bay to Block island sound, R. I.; to complete Sleeppcot and Kennelee rivers, Me.; and general coast chart No. II, Cape Ann to Gay Head, Mass., will require
Section 1I. Coast of Connecticut, New York, New Jersey, Pcnnsylvania, and part of Delaware. Field-wonk.- To complete the connexion of the bases in sections I and II; to contiaue the triangulation of the Connecticut river to Hartford, and of the Thames above New London to Norwich, and the verification of the triangulation on the sea-coast of New Jersey, south and west of Long Branch; to continue the topography of the shores of Connecticut river; to continue that of the Hudson; to commence that of the sea-coast of New Jersey, (verification;) to continue the hydrography of the Hudson river from Coxsackie northward, and the verifi-

- Viz : of all included in this item, inclusive of Sections I to IX, and exclusive of Section VI. c) 2
cations off the coast of New Jersey; to make further surveys for changes in the Delaware at points important for defence; to continue the tidal observations in the section. Office-work.-To make the requisite computations; to commence the drawing of Hudson river No. 4, Hudson to Troy; coast chart No. 22, Sandy Hook to Jones river bay, N. J.; to continue Hudson river No. 2, Huverstraw to Pought cepsic; to complete Hudson river No. 3, Poughkeepsie to Hudson; Hudson river No. 1, ewtrance to Haverstravo; coast chart No. 21, New York bay and harbor; coast chart No. 25, Delaware bay and river, (uew survey;) to commence the engraving of Hudson river No. 3, Poughleepsie to Hudson; to continue that of coast clart No. 21, New Fork Zay and harkor; Hudson river No. 2, Haverstraw to Poughkeepsie; to complete Hudson river No. 1, entrance to Haverstraw; aud coast chart No. 25, Delaware bay and river, (new survey,) will require.
Secion III. Coast of part of Delaware and that of Maryland, and part of Virginia. Fiblu-work.-'To continue the astronomical and magnetic observations required in the section; to examine and preserve the more important triangulation stations; to continue, if practicable, the topography of the shores of the Potomac; to complete the surveys of the District of Columbia and approaches, and, if practicable, of James river and the lower part of Chesapeake bay; and to continue the off-shore hydrography of the section; to continue the topography of the Eastern shore of Maryland and Virginia and of the Rappahannock. Office-work.-To make the reductions and computations required; to continue the drawing of coast chart No. 30, Chincotcague inlet to Great Machipongo inlet, Va.; general coast chart No. IV, Cape May to Cwrituch, Va.; to complete Potomac river No. 1, entrance to Pincy Point; Potomac river No. 2, Pincy Point to Lower Cedar Point; Potomac river No. 3, Lower Cedar Point to Indian Head; and Potomac rieer No. 4, Indian Head to Chain bridge; to commence the engraving of coast chart No. 30 bis, between Great Machipongo inlet and Cape Henry; to continue general coast chart No. IV, Cape May to Currituch, Va.; to complete Potomac river No. 1, entrance to Pincy Point; Potomac river No. 2, Piney Point to Lower Cedar Point; Potomac river No. 3, Lower Cedar Point to Indian Head; and Potomac river No. 4, Indian Heal to Chain bridge, will require............ Section IV. Coast of part of Virgitia aud of part of North Carolina. Fielo-work.-To complete, if practicable, the primary triangulation of Pamplico sound, and the secondary triangulation connected with it; to make the necessary magnetic observations; to commence the triangulation of the Neuse and of the Pamplico rivers; to complete the topography of the outer shore of North Carolina south of Hatteras to Core sound; to continue the in and off shore work of the sea-coast of North Carolina, and of the sounds, and the observations of tides and currents, and of the Gulf stream. Office-work.-'To make computations from field data; to commence the drawing of coast chart No. 44, Cape Hatteras to Ocracole inlet, N. C.; to continue coast chart No. 46, Cape Lookout to Bogue inlet, N. C.; to complete Oregon inlet, N. C.; to continue the engraving of coast chart No. 37, Cape Henry to Currituck sound, N. C.; and complete Oregon inlet, N. C., and Beaufort harbor, N. C., (resurvey,) will require

15,000
Sbction V. Coast of part of North Carolina, and that of South Carolina and Georgia. Field-work.-To execute such work of triangulation, topography, and hydrography as may be practicable in the section, filling up the places not yet embraced in the surveys. Office-work.-To continue the computations from field records; to commence the drawing of Wassaw sound, Ga.; Doboy sound, Ga.; St. Catharine's sound, Ga.; coast chart No. 57. Sapelo sound to St. Andrew's sound, Ga.; to continue coast chart No. 53, between Stono inlet and Fripp's inlet, S. C.; coast chart No. 54, Fripp's inlet, S. C., to Ossabaw sound, Ga.; general coast chart No. VII, Winyał bay, S. C., to St. John's river, Fla.; to complete Savannah river, Ga., (additions;) Port Royal sound, Beaufort and Broad rivers, S. C.; and the chart of Skull creck and Calibogue sound, S. C.; to commence the engraving of Wassaw sownd, Ga.; Doboy sound, Ga.; St. Catluarine's sound, Ga.; and coast chart No. 53, between Stano inlet and Fripp's intet, S. C.; coast chart No. 54, Fripp's inlet, S. C., to Ossabaw sound, Ga.; to complete Savannah river, Ga., (additions;) Port Royal sound, Beaufort and Broad rivers, S. C.; and the chart of Skull creek and Calibogue sound, S. C., will require

Section VI. Coast, keys, and reefs of Florida.-(See estimates of appropriations for those special objects.)
Sections VII, VIII, and IX. Part of the uestern coast of Florida, northern coast of Florida, coasts of Alabama, Mississippi, Lozisiana, and Texas. To continte such portions of triangulation, topography, and in and off shore hydrograply, as may be practicable in filling up the portions unsurveyed of these coasts, (contemplates the employment of one steamer and two sailing vessels.) Office-work.-To make computations; to continue the drawing of coast chart No. 84, Ocilla river to Crooked river, Fla.; coast chari No. 88, Choctarhatchee bay to Pensacola bay, Fla.; general coast chart No. XIII, Waccasassa river to Choctawhatchee river, Fla.; general coast chart No. XIV, Choctawhatchee river to the Mississippi delra, La.; coast chart No. 93, Lake Borgne to Lake Pontchartrain, La.; coast chart No. 96, Delta of the Mississippi, La.; coast chart No. 100, Point au Fer to Marsh island, La.; to commence coast chart No. 110, Aransas bay to Corpus Christi bay, Texas; to continue general coast chart No. XVI, Gutveston to the Rie Grande, Texas. To commence the engraving of coast chart No. S4, Ocilla river to Crooked river, Fla.; coast chart No. S5. St. George's sound, (eastern part;) to continue coast chart No. 81, Chossahouritaka river to Ccdar Keys, Fla.; to commence general coast chart No. XIV, Choctawatchee river to the Mississippi delta, La.; to continue coast chart No. 93, Lake Borgne and Lake Pontehartrain, La., will require

Total for the Atlantic coast and Gulf of Mexico.

The estimates for the Florida coast, keys, and recfs, and for the western coast of the United States, are intended to provide for the following progress:
Section VI. Coast, keys, and reffs of Florida. Field-work.-To continue, if practicable, the surveys of the eastern coast of the peninsula from the present limits; to complete the triangulation and topography of the southern keys and coast of the peninsula from Card's sroud to the work at Cape bable; to complete the bydrography of the reefs, by comecting the work at Kry Rodriguez and Upper Matacumbe, and to run off-shore lines from the reef and coast of the section; to continue the magnetic observations at Key West. Orfice-work.-To compute results from field records; to commence the drawing of Charloite harbor, Fla.; to continue general coast chart No. X, Florida reefs and keys, Kcy Biscayne to Marquesas key; coast chart No. 70, Long key to Big Pine key, Fla.; coast chart No. 69, Garden key to Lower Matacumbe key. To commence the engraving of Charlotte harbar, Fla.; to continue general coast chart No. X, Flarida reffs and keys, Key Biscayne to Marquesas key; coast chart No. 70, Long key to Big Pine key, Fla.; coast chart No. 69, Garden key to Lower Matacumbe key, will require.
Secyon X. Coast of California. Field-work.-To continue the triangulation from the Santa Barbara base northward and westward towards Point Conception, and to complete that of the islands off Santa Barbara channel; to continue the triangulation from Bodega northward; to continue the topography in connexion with the Santa Barbara and San Francisco triangulations; and to extend that north from Bodega. To continue the hydrography off and in shore from Point Bolsena to Point Piedras between Monterey and San Francisco bays; to execute verification work off Point Wilson in San Pablo bay, for changes; lines of approach northward and westward from Point Reyes, Drake's Zay, approaches to Crescent City harbor from westward, southward, and southwestward; to continue the tidal observations at San Diego and San Francisco. Office-work.-To continue the computations and reductions of the field-work; to commence the drawing of general coast chart from San Diego to Point Conception; soundings off Humboldt bay, Cal.; to complete topography of Tomales bay, Cal.; sea-coast chart from Bodega Head to Point Pinos, including the bay of San Francisco, $\frac{10000}{2000}$; and San Francisco bay, lower part; to commence the engraving of general coast chart from San Diego to Point Conception; to continue San Francisco bay, lower part; sea-coast chart from Bodega Head to Puant Pinos, including the bay of San Francisco, $\frac{10}{200 b 00}$; to complete topography on that of Tomales bay, Cal.

Also tor the operations in-
Section XI. Coast of Oregon and Washington Territory. Field-work.-To complete the topography and hydrography of Gray's harbor, Washington Territory; to extend the topography and hydrography up Admiralty inlct; to continue the tidal observations required in the section. Office-work.-To compute results; to commence the drawing of $S a n$ Juan island; Gray's harbor, W. T.; soundings off Cape B7anco, Oregon; sommings off Port Orford, Oregon; Admiralty inlet and Puset's sound; to continue Washington sound, W. T.; to complete topography on that of Koos bay, Oregon. To commence the engraving of Gray's harbor, W. T.; Admiralty inlet and Puget's sound; to continue Washington sound, W. T.; and to complete topography on that of Koos bay, Oregon, will require..

The other items of appropriation asked for are small; the items for the line across the Florida peninsula, and for fuel and quarters of army officers are omitted; that for the pay of engineers, according to the reduced scale of four steamers, is reinserted.

Those items are:
For publishing the observations made in the progress of the survey of the coast of the United States, hy act of March 3, 1843 .
For repairs of steamers and sailing schooners ased in the survey, by act of March 2, 1853.....
Both these items are less than those appropriated for the same objects last year.
For pay and rations of engineers for four steamers to be used in the hydrography of the Coast
Survey, and no longer supplied by the Navy Department......................................
9, 000
The amounts thus estimated for the fiscal year 1863-'64, and the appropriations for the present year and 1861-'62, are given in parallel columns.

| Object. | $\begin{gathered} \text { ' } 79,-898[182 \Lambda \\ \text { [rosy Jof soteunith } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: |
| For survey of the Atlantic and Gulf coasts of the United States, including compensation of civilians engaged in the work, per act of March 3, 1843. | \$178,000 | \$178,000 |  |
| For continuing the survey of the westerv coast of the Uuited States, including compensatin of civilinns engased in the work, per act of Sentember 30, 1850... | 100, 000 | 100,000 | 110,000 |
| For continuil $g$ the survey of the Florida reefs and keys, including compensation of civiltans engayed in the work, per act of March 3, 1849 | 11, 000 | 11,000 | 25,000 |
| For completiog the line to connect the triangulation on the Atlantic coast with that on the Gulf of Mexico, across the Florida peniasula, including compensation of civilians engaged in the work, per act of March 3, 1843 |  |  | 5,000 |
| For publishing the observations made in the progress of the survey of the coast of the United States, including compensation of civilians engaged in the work, per act of March 3, 1843. | 4,000 | 0 | 5,000 |
| For repairs of steamers and sailing schooners used in the survey, per act of March 2, 1853 | 4,000 | 5,000 | 10,000 |
| For fuel and quarters, and for mileage or transportation, for officers or enlisted soldiers of the army serving in the Coast Survey, in cares no longer provided for by the quartermuster's dt partment, per act of August 31, 1852. |  |  | ${ }^{\circ} 5,000$ |
| For pay and rations of engineers for seven steamezs used in the hydrography of the Coast Survey, no longer supplied by the Navy Department | $\dagger 9,000$ |  | +12,800 |
| Total | 306, 000 | 299,000 | 402,800 |

* Formerly included in estimates of War Departmens.
$\dagger$ Formerly included in eatimates of Navy Department.
The amount of these eatimates is but about six per cent. more than half those of 1861-'62, as shown by the comparative table. All the items are either the same as, or less than, those appropriated last year, except the one for the pay of enginecrs for the steam veasels, which was omitted last year, as there was a sufficient surplus, from the reduction of the previons year in the number of steamers, to last until the close of the year 1862-'63.


## DEVELOPMENTS AND DISCOTERIES.

The general list of developments and discoveries, containing the items arranged in geographical order, is given in Appendix No. 4. Those convected with the work of the present year are here appended, and will hereafter take their places in the gencral list.

The difficulty of finding rocks, of which we have had so many instances, cannot be better illustrated than by the fact that two should have been discovered in and near the entrance of so well surreyed and so well known a harbor as that of Newport. The particulare in regard to position, \&c., of these, which stand first in the appended list, are stated in Appendix No. 6.

For the notice given in Appendix No. 7, in reference to a shoal spot supposed to exist to the eastward of the Winter Quarter shoal, (coast of Maryland,) I am indebted to G. W. Blunt, esq., of New York city.

1. Two rocks discovered in the approaches to New port harbor, R. I ; one with fourteen and a quarter feet of water on it at mean low tide, the other with seventeen feet at mean low water. Ten other rocks in the vicinity (previously known) were determined in position.
2. The shifting of the bar of Metomkin inlet, Va., and changes of shore-line, but without alteration of depth on the bar.
3. Determination, by close soundings, of the best line of water for crossing the Kettlebottom shoals, Potomac river, there being no well defined channel over the shoals.
4. Changes in depth and outline at Oregon inlet, N. C.
5. Special examination of the tides and currents, with reference to the hydrographic and shore-line changes at Hatteras inlet, N. O.
6. Development of the alteration in outline and depth at the entrance of Beaufort harbor, N. C.
7. Re-examination, by soundings, of the Rattlesnake shoal, coast of South Carolina.
8. Stono entrance, S.C., sounded, and channel found half a mile to westward of its former position, with slight increase of depth.
9. The shoaling of North Edisto entrance from its former depth, giving now only nine feet of water.
10. St. Helena entrance, S. C., examined, and a new channel from the eastward found, giving sixteen feet at mean low water.
11. The south chamel of Port Royal sound developed, and nineteen and a half fcet found to be the least depth in it.
12. The channel of the inland passage thoroughly sounded, leading from Port Royal sound into Tybee roads, through Skull creek and Calibogue sound.
13. The bar and entrance of St. Simon's sound, Ga., examined, showing no material change of depth within the past two years.
14. The shifting to southward, and shoaling by several feet, of the channel into Fernandina harbor, Fla., having now only eleven feet at mean low water.
15. The further encroachment of the sand spit at the confluence of Karquines and Mare Island straits, upon the channels which brauch towards the nary yard and Benicia.

## SPECIAL SURVEYS.

The maps and charts for the United States commissioners on the harbor of Boston, called for by the city in the study of means for the preservation of the harbor, have made good progress in Mr. Boschke's hands, and it is expected will be finished soon after the opening of the new year.

Special surveys of the shore-line of Prudence Island, of Taylor's cove, Connanicut, Dyer's Island harbor, and of Dutch Island harbor, in Narragansett bay, were promptly made for the navy yard commission by Assistants A. M. Harrison and Henry Mitchell and their parties, and the maps needed for the use of the commission were rapidly drawn apd furnished. A special survey, also, of Coasters' Harbor island and of the adjacent shore was made by Assistant Henry L. Whiting, and the drawing promptly returned. This is on a large scale, and upon it the study of the suitableness of the island as a site for the Naval Academy may readily be made. Mention of these surveys will be found under the head of Section I.

The levellings required by the nary yard commission at League island, and Red Bank, opposite to it, in New Jersey, were made by Assistant George Davidson, and notice of his work in that vicinity will be given under Section II.

One of the naval officers, who has in former years served acceptably in the work of the Coast SurveyLieut. Commander D. L. Braine, U.S. N--addressed me, last summer, offering, if means were supplied from the office, to determine the condition and capacity of the western channel at the Cape Fear entrance. This was to be incidental to his dutics in command of the L. S. stcamer Monticello, then, as now, in service on the blockade of the coast of North Carolina. After consulting the Navy Department, the instruments and projection needed were furnished, and the promise of Lieut. Commander Braine as promptly fulfilled. In the channel over the bar of the westem entrance he found some improvement in depth. This channel had but nine feet at mean low water in 1856. In reference to the examination which he made in September of the present year, Lient. Commander Braine states that he "is led to believe that there is a depth of fifteen feet at high water, which would give in the channel ten and a half feet at mean low water."

This survey was, of course, made under many disadvantages, and will be further pushed by the commander of the Monticello as opportunity occurs. Its difficulty and danger are apparent from the fact that the soundings were made at night, and almost immediately under the guns of the enemy's batteries. In allusion to this, it is remarked in the report that " the sentry's hail on his post could be distinctly heard on the deck of the Monticello."

On hearing of the raid into Pennsylvania, in October last, I volunteered the services of Coast Survey officers (the Secretary of the Treasury approving) for any military reconnaissances which might be desired, and for making the maps which I thought might be desirable. The presence of Assistant George Davidson near the city of Philadelphia would have rendered immediate service practicable. This offer was communicated to the committee of councils on defence by the mayor, Alexander Henry, esq.

## tIDE TABLES FOR MAIINERS-TIDES AND CURRENTS.

An edition of the tide tables, revised by Assistant L. F. Pourtales, is printed in Appendix No. 8. In it a few errors which had heretofore escaped detection have been corrected.

The tidal stations, with two exceptions on the Atlantic coast, and all those upon the Western coast, have been kept up; but it has been necessary to abandon, for the present, those on the Gulf of Mexico. The self-registering gauge left by Mr. Donegan at New Orleans, in the summer of 1861, has been recovered; that at Fernandina, Fla., is believed to have been destroyed by the rebels. The one which was formerly used near Pensacola was, in all probability, destroyed by the burning of the navy yard. Nothing has yet been heard of the self-registering gauge which was on board of the schooner Twilight at the time of her seizure at Aransas.

## TABLE OF DEPTHS

The table containing a statement of the depth of water at the entrances of all the considerable harbors and inlets of the United States, which was published in my annual report for 1859 , has been revised in the Mydrographic Division of the office, and will be found in Appendix No. 5. The table contains eeveral entries which were not given at the previous date.

## INFORMATION FURNISHED.

The information furnished under authority of the Treasury Department during the past year is stated in the form of a list, in Appendix No. 2, to which are also added the tracings from the orginal shects needed by the military and naval officers in command of expeditions. The list does not contain a large amount of information communicated for their use by other modes, as the compilation of geographical data for parts of the coast not regularly surveycd, and the preparation and distribution of special notes and photographs of special surveys.

Great care has been taken to discriminate in regard to the applications for tracings, \&c., for the purposes of civil life.

## statistics.

The table of statistics has been added to, so as to bring it up to the present surveying year, and is given in Appeadix No. 3.

Up to 1861, inclusive, the triangulation had embraced an area of nearly fifty-four thousand two hundred square miles, within an area of nearly sixty-two thousand square miles covered by reconnaissance; and had
developed a general extent of coast of over four thousand five hundred miles, and a sbore-line of about twenty-three thousand miles, determining nine thonsand four hundred and fifty-two geographical positions.

For longitude determinations, eighty five stations had been occupied; for latitude, one hundred and twenty-seven, and for azimuth, eighty-four stations.

The topography had extended over an area of nearly seventeen thousand square miles, having a general coast line of four thousand miles, and over forty-two thousand two hundred miles of shore-line, measuring the indentations.

The hydrography extended over an area estimated at forty-six thousand square miles, in which one hundred and ninety-six thousand miles were run in sounding; six million three hundred and ninety-eight thousand soundings were made, and over eight thousand four hundred specimens of the bottom obtained.

The number of manuscript maps and charts constructed was two thousand one hundred and eighty-one, and of engraved maps, charts, and sketches there had been produced four hundred and ninety-tliree plates.

DISTRIBUTION OF ANNUAL REPORTS AND MAPS.
It has been judged expedient during the past year to hold still in abeyance the usual foreign distribution of the printed annual reports through the Smithsonian Institution, as was done during the year which ended with October, 1861, as was stated in my last annual report.

During the past year 4,028 copies of reports of various yeare have been distributed to institutions and individuals in the loyal States of the Union, leaving on hand a limited number of copies for the years from $185 t$ to 1860 , inclusive. Of those remaining on the 1 st of November there were of the report for 1851 two hundred and twenty copies; of that for 1805 , four hundred and twenty copies, and of that for 1857 , three hundred and twenty-eight copies left. Of the dates $1853,1856,1869$, and 1860 , the copies disposable for general distribution is larger. This decidedly unequal number of copies of the reports of various back years makes it necessary to discriminate carefully in their issue. It is also to be remembered that for the years 1859 aud 1860 no copies have been sent to the States which now disavow their allegiance to the goverument of the Union, but which will at some future day feel interested, in common with the others, in the informat tion which they embody. To provide for the best issue of these remaining reports (1851 to 1860) a circular has been sent to the principal librarics in the more important cities of the north, and to those of universities, colleges, and other institutions, to ascertain what reports may be needed in order to complete their series, so that entire sets may in future be within reach for purposes of reference in all the States to which they are now sent.

As already stated under the head of maps and charts, upwards of forty-four thousand copies of printed maps, charts, and sketches have been sent from the offee since the date of my last report-a number more than double the distribution in the year 1861, and upwards of five times the average annual distribution of former years. This large and increasing issue of charts within the past two years has been due to the constant demands of the Navy and War Departments, every effort to supply which still continues to be made.

Besides the printing of charts by the transfer process, the production of the hydrographic memoirs of the coast with facility offers further proof of the advantage of establishing a lithographic division at the office, though induced as it was by the emergency of last year for copies of charts. The course taken in the preparation of the hydrographic notes was mentioned in my report of last year, and has also been alluded to in this, under the head of maps and charts. The testimonials from the different commanding officers as to their value have been numerous and emphatic.

A summart of the details of distribution of the annual reports, maps, charts, \&c., is contained in the report from the miscellaneous division of the office, Appendix No. 11 .

## RECORDS AND RESULTS.

I call attention again to the fact that this publication is postponed for more auspicious times, as I have repeated applications for copies. The -present appropriation merely enables us to prepare the materials for publication, but not to publish.

## LONGITUDES.

The history of the determination of longitudes in connexion with the survey of the coast, from the law and plan of reorganization of 1844 to 1858 , was given in my report for 1858 , including the methods by astronomical observations, by the transportation of chronometers, and by the electrical telegraph. The
problem of longitudes by occultations of the Pleiades is described in the appeadix of my report for 1856. Professor Peirce has been engaged since 1854 in stimulating observers to a new series of observations, by preparing predictions and chats of the occultations, as explained in my report for the year 1858. These observations were collected during the period from 1857 to 1861 , or until the moon's path ceased to pass among those stars. While this new series of observatione was in progress with modern instruments and methods, Professor Peirce was occupied in recomputing the older series, for the period 1838 to 1842 , by the aid of the new lunar tables. The results are given in his report, which was printed as Appendix No. 17 in my report of last year. "The conformity of the observations with theory is quite remarkable, and shows that this, the most delicate of all the observations of the moon, demands and justifies the utmost precision of calculation. The final determination of the longitude will, undoubtedly, surpass all others in precision."

Some of the particulars of this interesting series of results are stated in the professor's report, Appendix No. 12. Certain of the accultations which were observed both in Europe and America will serve to determine the errors of the tables, and hence to compute with suitable corrections those which were observed only in America, and to obtain a second determination of the longitude. Professor Peirce remarks that "the various observations will also serve the subsidiary purpose of determining the relative longitudes of the different places which are upon the same contineut either of Europe or America, and also to correct the places of the stars, and, finally, to determine the value of the lunar semi-diameter, and the necessity of having regard to the protuberances of the moon in the complete solution of the problem."

Professor Peirce has addressed to me a special letter in relation to the tables of the moon used in the reduction of the observations of the Pleiades, (Appendix No. 13.) The Professor gives his reasons for asing Hansen's tables in the computations, and, referring to the "full and generous" statements of Mr. Lubbock, in the thirtieth volume of the Memoirs of the Royal Astronomical Society, in praise of the American tables prepared by Profesor Peirce for the Nautical Almanac under the direction of Captain Davis, U. S. N., corrects some historical statements in reference to the labors of mathematicians who have been occupied with the important task of improving the lumar tables.

- The observations made by telegraph for the difference of longitude between Macon, Ga., and Eufaula, Ala., in the working season of $1859-60$, have been discussed by Dr. B. A. Gould. He reports that the difference in time between the astronomical stations is, Eufaula 6m. 3.02s. west of Macon; which result, he adds, cannot be crroneous by more than five-hundredths of a second of time.

The detailed report on the results of the ohservations made in Georgia and Alabama is in course of preparation. I have placed in the Appendix No. 14 Dr. Gould's report on the progress which has been made in computing the results for all the stations between Calais and New Orleans.

## MAGNETISM.

The publication of the results of a discussion of the Girard College observations, from the Smithsonian Contributions to Knowledge, commenced in my reports of 1859 and 1860 , is continued in this, embracing the diacussion of the observations of horizontal magnetic force. The difficulty which stands at the threshold of the discussion of these observations is the correction for temperature, the magnetic bars changing in their own intensity of force with changes of temperature. The attempts to obtain the value of this correction are fully stated, and their application is shown and verified in various ways, in Part IV of the memoir, (Appendix No. 15.) Tables of the results, reduced to a standard temperature of $63^{\circ}$ Fahrenheit, are then obtained, and corrected for the progressive change in the readings of the magnets. The observations are next separated into regular and disturbed readings by the aid of Peirce's criterion, and the disturbancesobeing taken out, there remain the normal results for the hour, day, and year. These show the same period of ten or eleven years in number and extent of disturbances which was deduced from the declination observations, corresponding with the period of change in the solar spots. The results agree very well with those obtained at Toronto, Cunada. The curves of daily change of horizontal force come out very perfectly in each year's result, the carves showing two maxima and two minima in the course of the day, and the day changes being much more considerable than those of the night.

The next part of the memoir, Part V, (Appendix No. 16,) contains the investigation of the diurnal and annual variations of the horizontal magnetic force, from the means of the results for the five yeare of observation. The normal value of the horizontal intensity for the several hours of the day and months of the year of the five years is deduced, applying all the required corrections. The summer and winter results are compared in formulx, and by curves, with the mean for the whole year. At 6 a. m. there is scarcely any change
of horizontal force throughout the year, and at $11 \frac{1}{2} \mathrm{a}$. m . it is also nearly constant. Two other points of the same sort occur at $7 \frac{3}{2} \mathrm{p} . \mathrm{m}$. and at $11 \mathrm{p} . \mathrm{m}$.

From this discussion results a series of curves (Sketch No. 48) which show the horizontal force at every hour of the day of every month of the year. These correspond to the curves of declination referred to in my report of 1860 . Both have been beautifully represented, by modelling, by Mr. F. Engel, of the Coast Survey office.

Part VI of the memoir (Appendix No. 17) shows the influence of the mon on the magnetic horizontal force. The magnetic tide, so to speak, has two ebbs and flows in the lunar day. The times of maxima are two hours, and of the minima seven and a half hours after the culminations. The influence of the relative positions of the sun and moon on the horizontal magnetic force, though small, is distinctly perceptible, and the same is true of the moon's declination changes. When the moon is nearest the earth the horizontal magnetic force is decidedly lessened, and when at the greatest distance from the earth is increased.

At Eastport, Me, the magnetic olservations intended chiefly to furnish results bearing on the study of the secular change have been continued. Besides the change of the three magnetic components, these observations will also give the means of tracing the connexion of the diurnal range of the declination with the relative frequency of solar spots, and furnish, in addition, standard anmual means for the general discussion of magnetic observations which have been made along the entire northeastern coast of the United States.

At Key West the observations, both differential and absolute, have been continued, and the former now present an unbroken series of daily records. The photographic records of the three elements are revised regularly at the office, and have been tabulated with a view to their general discussion in a form somewhat similar to that used in the treatment of the Girard College series, of which mention has been already made. Though strictly scientific in character, these investigations will give ready means for tracing the secular changes that are now going on in the eastern part of the Gulf of Mexico.

In the ycars 1840 and 1841 I made a detailed magnetic survey of the State of Pennsylvania and of adjacent parts of New York, Ohio, and Maryland, to which other observations were added in 1843, while on a tour through Western New York, Canada, New Jersey, and Pennsylvania. These observations have recently been worked up and prepared for the press, having been made with the best instruments then available. An abstract of the discussion of them is given in Appendix No. 19. The declination was determined at sixteen stations, and the dip and intensity at forty-eight.

In July and August, 1862, six of the stations in my series were reoccupied by Assistant Charles A. Schott, (Appendix No. 18.) The expense incurred for the three which fell outside of the limits of Coast Survey operations was defrayed by the Smithsonian Institution, and this co-operation has added greatly to the expected ralue of the results. This is believed to be one of the earliest systematic surveys, that includes the three magnetic elements, as yet made in any of the States. Its object is intimately connected with an important part of the operations of the Coast Survey. In Appendix No. 19 I give an abstract of the individual results, as well as a general account of the discussion and of the expressions deduced for the distribution of magnetism over the area surveyed. The subject is further illustrated by Sketch No. 47, which shows the isomagnetic curves for the epochs 1842 and 1862.

The regular biennial publication of results found for the magnetic declination, dip, and intensity, at stations which have been occupied by Coast Survey parties within the last two years, is contained in Appendix No. 20. This comprises twenty-two stations, numbered in continuation of those given in Appendix No. 28 of my annual report for 1860.

## SOLAR SPOTS

The record of solar apots which was kept at the Coast Survey office by Assistant Schott with considerable regularity until the close of the year 1861 has since been only partially kept up, in consequence of the pressure of routine duties. Appendix No. 21 gives a continuation of the records which were published in 1860 and 1861 as Appendix No. 25 in my reports for those years. European observations, made regularly and published every year, will supply the place of the omitted records in the discussion of magnetic observations.

## EARTHQUAKE WAYES.

The renewed interest awakened on this subject by the presence in our country of Captain Lessoffsky, of the Russian navy, who was in command of the flag-ship Diana, Admiral Fontiatine, wrecked by the effects of the earthquake of December 23, 1854, in the harbor of Simoda, Japan, has called my attention to errors, cs 3
some of them typographical, in the printing of my paper on earthquake waves, and the depth of the ocean as deduced therefrom, in the Coast Surrey report for 1855. As the best mode of correction, I have included the paper for reprint with the appendix matter of this report. It will be found in the Appendix, No. 24.

FLORIDA REEF.
Captain E. B. Hunt, of the corps of engineers, has contributed for this report an interesting paper on the origin, growth, substructure, and chronology of the Florida reef, which will be found in the Appendix, No. 25. Its conclusions will meet with examination and criticism from those who have been occupied in these and similar studies. The practical part referring to soundings, currents, winds, \&c., is of decided interest to navigators.

HEIGHTS.
The collection of data, from all available sources, for heights over the continent of North America has been continued during the past year; and the preparation of a map to form a basis for the projection of contour lines has been carried on as far as the time of the Assistant charged with this subject would allow from other pressing calls.

This collection of heights has been placed at the disposal of the chief topographical engineer of the army of Washington.

## EXPERIMENTAL INQUIRIES.

The experiments for determining the length and expansion by heat of the standard bar, referred to in my report for 1860 as being in progress, were completed early in 1861, under the direction of Assistant J. E. Hilgard, by Mr. W. L. Nicholson, aided by Mr. J. K. Gilliss and Mr. Thomas McDonnell; but, owing to the pressure of business in the office, a complete discussion of results was not made until the present year. An abstract of the experiments and results is given in Appendix No. 26, from which it will appear that complete success has attended these delicate operations.

A special mode of construction of the axle of the magnetic dipping-needle, admitting of its being turned in its arbor, in order that observations may be made with the needle resting upon different parts of the pivots, has been devised and put in practice by Assistant Hilgard. A description of the new arrangement and an abstract of experiments are given in Appendix No. 23.

In my last report a eomparison of the relative change by atmospheric moisture in the dimensions of maps. drawn on "parchment" paper and on drawing paper backed with muslin was stated to have resulted in favor of the latter. Specimens of an improved quality of parchment paper having been sulmitted, similar comparisons were again made, but with a like result, as will be seen by reference to Appendix No. 27.

AIDS TO NAVIGATION.
The lists which have appeared in my previous annual reports, giving the recommendations of the Assistants of the Coast Survey for aids to navigation in special localities in which the need for them was open to observation, are this year almost entirely represented by one, (Appendix No. 36,) showing the number of buoys set by the working parties at the port and harbor entrances of the southern States for the use of the blockading squadrons. All of the sailing marks seem to have been taken up and destroyed or secreted carly in 1861. In some cases the buoys belonging to a channel wore found at the ncarest town, but in other instances new ones were required. They were all replaced with reference to the hydrographic changes which have occurred since they were first put in place.
directory of the pacific coast.
Thave availed myself of the convenient access which Assistant George Davidson at present has to the office, having returned two years since from the Western coast, to invite him to prepare a second edition of the Directory of the Pacific coast, which was published in my annual report for 1858. It is to be understood that this embodies the information collected in our archives by the labors of the Assistants in the Coast Survey since 1849 , as well as the researches into historical and other matter by the author, and his personal experience and observation. Thus are embraced the astronomical determinations of Assistants $\mathbf{R}$. D. Cutts and George Davidson, and Sub-Assistant J. S. Lawson ; those from triangulation by Assistants Cutts, Davidson, Rodgers, Greenwell, and Lawson; the topographical by Assistants Cutts, Harrison, Rodgers, and Johnson; and the hydrographic by Lieut. Com'g W. P. McArthur, the pioneer of the hydrography; by

Lieut. W. A. Bartlett; by Captain James Alden, the able commander for nine years of the well-named surveying steamer Active; by Licut. R. M. Cuyler; and by Captain B. F. Sands.

The directory, as revised and extended by Assistant Davidson, is given as Appendix No. 39.
OFFICERS OF THE ARMY AND NAYT.
The very acceptable aid which we have in formor ycare received from the officers of the army and navy, and which was returved to the government by the experience acquired in the various operations of the survey, has necessarily been withdrawn from us, the war placing us in the position of giving aid instead of receiving it. Lieutenant Commander Phelps is at this time the only officer of the navy left with us, and we have not a single army officer on full duty with us. Captain Elliot, of the corps of engineers, is still, however, permitted to examine and send to us the tidal observations from the Western coast.

## OBITUARIES.

Assistant Alexander S. Wadsworth died, suddenly, in the city of Washington, on the 9th of August, 1862. He joined the survey in 1848 , and, opportunity and his merit concurring, rapidly rose to the position of Assistant, which he occupied at the time of his death. His triangulation and plane-table work on the coast of North Carolina were among the most rapid and successful works of their class.

Sub-Assistant Wyllys S. Gilbert, of Zanerville, Ohic, died of pulmonary disease on the 12th of January, 1862, at Wakatomaka, within a few miles of his home. He was an excellent topngrapher, having been trained carefully by his accomplished brother, Assistant Samuel A. (iilbert, (acting hrigadiey general, second brigade, second division, army of Kentucky.) Although but little exposed to the rigore of a uorthern climate, Sub-Assistant Gilbert contracted, a few years ago, the disease of which he died; and notwithstanding efferts made to save him by assigning continuous service in the southwest, his strength gradually wasted, and he was added to the victims in our corps, of consumption of the lunge.

General Isaac I. Stevens had so thoroughly identified himself with the Coast Survey, during his four years of service as Assistant in charge of the office, that those with whom he had zealonsly and ably served could not suffer his death, upon the field of Chantilly, to pass unmarked by the deepest tokens of their respect and regret, and met to give expression to their feelings towards their former associate and chief, and of condolence with his bereaved family, in the resolutions and remarke which are given in the Appendix, No. 40.

Major William R. Palmer, U. S. topographical engineers, brevet lieutenant colonel U. S. army, remained on service in the Coast Survey while aid to Major Genelal McClellan, until the army moved forward into Virginia last spring, when it was necessary to accompany the general's staff. The same zeal which made him so serviceable in the office displayed itself in the field; and the hardships of the Peninsular campaign, acting upon a somewhat delicate constitution, laid him open to the attack of typhoid fever of which he died, on the 18 th of June. He was able to return home to the care of his devoted wife, but so much eufecbled by disease as not to rally, and on the day after his arrival in Washington he breathed his last, mourued by a large family circle to whom he had been always deeply attached, and regretted by numerous friends who had shared his hospitality and good offices. The officers of the Coast Survey expressed their regret in the resolutions given in Appendix No. 40. My own relations to Major Palmer were such as are due tu a proved, true, and life-long friend.

Captain John R. Smead had left the Coast Survey office, on the breaking out of the war, to command the Washington Rifes, and after the campaign, in which they were so much distinguished for diecipline and readiness of service, had returned to his position in the fifth regiment of U. S. artillery. He perished in the bloody fight near Mauassas, on Saturday, August 30, leaving a young and helpless family to the care of his country, for which he had laid down his life. The Appendix already referred to contains the resolution passed by his recent associates in the office on the occasion of his death.

Brigadier General William R. Terrill, of Virginia, was in charge of a Coast Survey party on the western coast of the peninsula of Florida when the rebellion broke out. He promptly disentangled his party and the government property from the bands of the rebels, when seizure became imminent, and, returning north, ranged himself unflinchingly on the side of the whole country, seeking at once service of the most active kind with the army. By nature morally, as he was also physically, dauntless, he resisted every effort of his relatives who sided with the State of Virginia, and declared himself a soldier of the Union. After service in drilling the earlier companies that arrived in Washington, he joined his regiment, (fifth regiment of artillery, having been promoted to a captaincy. His marked intrepidity in the battle near Pittsburg Landing, in Tennessee, and before Corinth, in Mississippi, won for him a commission as brigadicr general of voluntecre.

In the summer campaign he was in service with the army of Kentucky, under General Buell, and was mortally wounded in the battle which was fought at Perryville on the 8th of October. The genial memories which his name would have elicited at all times amongst his former associates in the work of the survey are turned to sadness by the early death of this truly upright and patriotic officer.

By an accident at the Mare Island navy yard, on the night of April 2, which caused the death, by drowning, of William F. Sands, the survey has lost the only hydrograplic aid then attached to the work. His naturally good abilities had been developed to a promise of great usefulness by his father, Commander B. F. Sands, U. S. N., with whom the deceased had served from early boyhood in the practical details of hydrography. Remarkable for an amiable and teachable disposition, he had gained proficiency in hydrographic drawing, and was fully qualified to make return for the high expectations which had been formed in his training. At the time of his death Mr. Sands was acting master in the hydrographic party, and was engaged in the prosecution of the survey in Section X.

## PARTII.

The brief summary of progress in the field and office already given will be represented in this part of the report by the details of work done in each section of the coast to which partics have been assigned. As usual heretofore, the statements will be given in geographical order, the work of triangulation being described first, as preceding the other operations in order of time, and the topography as preceding the hydrography in the order of execution, in each section.

## SECTION I.

from passamaquoddy bay to point judith, including the coast of the states of mane, new hampshire, massachusetts, and rhode island.-(Seeice a, Nos. 1, 2, and 3.)

Under this head abstracts will be given from the reports of Assistants on the following field operations:

1. Triangulation of the coast of Maine from Machias bay southward and westward to Pleasant bay, including Englishman's bay, Moose-a-bec reach, Indian river, and islands in the vicinity of each.
2. The triangulation of Eggemoggin reach, and of the northern part of Isle au Haut bay, Me. This work connects with the triangulation of Penobscot bay.
3. The triangulation of Belfast bay, Winter harbor, Searsport bay, and Mill cove, in the upper part of Penobscot bay, including, also, the lower part of Penobscot river.
4. A shore-line survey of part of Passamaquoddy bay, Me., embracing West Quoddy bay, the shores of Eastport harbor and Johnson's bay, and the western side of Campobello island.
5. Detailed topography of the eastern side of Frenchmau's bay, Me, including Jones's cove, Bunker's cove, Hammond's cove, the islands opposite, and the shores of Winter harbor.
6. A topographical survey of the western side of the entrance to Penobscot bay. This includes the shores of Tennant's harbor and Wheeler's bay, and, in detail, the islands and reefs of the Muscle Ridge channel.
7. Plane-table work, nearly completing the survey of the steamboat passages between the Sheepscot and Kennebec rivers.
8. The detailed topography of Yarmouth river, Freeport river, and Wolf's Neck, in the upper part of Casco bay.
9. A reconnaissance, relative to purposes of military defence, in the vicinity of the city of Portland, Me.
10. A special topographical survey of Coasters' Harbor island, Coddington cove, and the shore of Rhode Island above Newport.
11. Detailed surveys of parte of Connanicut island, Dutch island, including Taylor's cove, and Dutch Island harbor, for the use of the navy yard commission; and shore-line survey of Providence, Patience, Dyer's, and other islands in Narragansett bay.
12. Soundings nearly completed in the several channels which connect Wiscasset bay and Sheepscot river with the Kennebec.
13. The hydrography of the upper part of Casco bay, including that of Yarmouih and Freeport rivers. The eame party made supplementary soundings near the entrance of Portland harbor.
14. A special examination in Cape Cod bay for the determination of questions before the commissioners of the Cape Cod ship canal.
15. Supplementary soundings to complete the chart of Barnstable harbor, Mass.
16. The hydrography of the eastern and middle passages of Narragansett bay, joining completed work at Half Way rock and below Goat Island light. This includes Newport harbor, in the approaches of which several points of rock were developed.
17. Magnetic observations at Eastport, Me.
18. Tidal observations at Eastport, Me., and at the Charlestown navy yard, Mass.

Office-work.-The drawing for a finished chart, and the engraving, in a preliminary form, of Barn: stable harbor has been completed; the engraving of Portland harbor as a finished chart, with additions to the hydrography, has been nearly completed; and a preliminary chart of Mount Hope bay has been drawn and engraved. Progress has been made in the drawing and engraving of coast charts No. 8, Seguin island to Kemebunkport, Me.; No. 9, Cape Neddick to Cape Amn, Mass.; and No. 11, Plymouth to Hyannis, Mass.; and of the chart of Sheepscot and Kennebee rivers, Me. The drawing of general coast charts No. I, Quoddy Head, Me., to Cape Cod, Mass.; No. II, Cape Ann to Gay Head, Mass.; and of coast chart No. 7, Muscongus bay to Portland, Me., has been continued; and the engraving of coast chart No. 7, Muscongus bay to Portland, Me., and the drawing and engraving of No. 10, Cape Ann to Plymouth, have been commenced. Additions have been made to the chart of Salem harbor, and to coast charts Nos. 12 and 13, Nantucket sound and Vineyard sound, as also to the progress sketches of the section; and a new progress sketch of the coast of Maine has been drawn and engraved.

Triangulation of Machias bay, Englishman's bay, Moose-a-bec reach, Indian river, and adjacent is7ands, Me.-This is in contimeation of work which has been pushed, by the same party under Sub-Assistant F. P. Webber, from Mount Desert island to the northward and eastward along the coast of Maine. The secondary and tertiary work is kept in close connesion with the primary triangulation, as may be seen by reference to Sketches Nos. 1 and 2.

The triangulation of this year was taken up on the 8th of August, previons to which date Mr. Webber bad been employed in Section III. From the entrance to Little Machias bay signals were set np to the southward and westward in positions proper for defining the numerous indentations of the coast. The angular measurements made at them in September and October furnish points for the topographical survey of Machias bay, Howard's bay, Little Kennebee river, Englishman's bay, Chandler's River bay, and Moose-a-bec reach, and of the islands which lie off their entrances. At eight of the stations vertical angles were measured on thirty-six signals by three hundred and ninety observations. Mr. Webber used the ten-inch Gambey theodolite, No. 63, and the six-inch Brunner, No. 52, in the determination of angles. His party worked with the schooner Hassler until the beginning of November, when operations closed for the season in this section. The following is a summary of the field statistics:

Signals erected.............................................................................. 35
Stations occupied...................................................................................... 17 . 17 .
Angles mcasured .................................................................................. 318
Objects observed on . ............................................................................... . . 309
Number of observations ...................................................................... 2,718
Fifty-three points were accurately determined for topographical purposes.
The schooner Hassler was laid up at Portland.
Duplicates of the records of observations have been completed and sent to the office. The computations of the work have also been finished and turned in.

Triangulation of Eggemoggin reach, Me.-In continuation of his work of last year which connected stations in Penobscot bay with others to the eastward in Great Blue Hill bay, Assistant G. A. Fairfield resumed work on the 7th of August at Blake's Point. A signal was erected there, and in the course of the month points were selected and signals set for the triangulation of Eggemoggin reach, the location of which may be seen by reference to Sketch No. 2. Observations with the theodolite (ten-inch, No. 91, by Blunt) were commenced on the 3d of September and closed at the end of that month, when Mr. Fairfield proceeded to Blue Hill primary station and observed on such of the signals of his triangulation as were within view from it. The islands in the expanse which lies north of Isle au Haut bay and west of Eggemoggin reach are included in the triangulation of this season. The following are the statistics of work :

Siguals erected............................................................................................ 5
Stations occupied....................................................................................................... 9
Points determined ..................................................................................... 23
Angles measured.................................................................................. . . . 113
Number of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,208
Assistant Fairfield continued the observations necessary for connecting the secondary with the primary triangulation until the middle of November. The schooner James Hall, which was used by his party, was then taken to Portland and laid up for the winter.

Triangulation of Penobscot bay, Me.-This work has been nearly completed by the extension of a system of triangles above the line which joins Dickey's bluff with Cape Rosier. It now includes Belfast
bay, (Sketch No. 2,) Searsport bay, and Winter harbor, on the western side of Penobacot bay; Mill cove, at the mouth of the Penobscot river; and Castine bay. Sub-Assistant. S. C. MeCorkle, working with a party in the schooner Torrey, resumed this duty on the Sth of July, and, as it advanced, erected in all nine tripod signals, some of which were set up so as to include the lower part of the Penobscot river in the scheme of triangulation. Before returning from the section he made a reconnaissance northward to Bangor and selected stations for continuing the preliminary survey. A summary of the general statistics is here given:

$$
\begin{aligned}
& \text { Signals erected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 9
\end{aligned}
$$

$$
\begin{aligned}
& \text { Angles measured ................................................................................... } 185 \\
& \text { Number of observations ............................................................................ 1,879 }
\end{aligned}
$$

The angular measurements were made with the Gambey theodolites-ten-inch, No. 15, and six-inch, No. 29. Mr. McCorkle coneluded his work on the 18th of October, and laid up the schooner Torrey at Portland. He then joined Assistant Fairfield, whose party was still at work to the eastward, and concerted means with lim for perfecting the connexion between the triangles of Great Blue Hill bay and those of the upper part of Penobscot bay. Four of the stations, the signals of which have been observed on from other stations, will be occupied for the final completion of the work in Penobscot bay.

Shore-line survey of Eastport harbor and of West Quoldy bay, Me.-Sub-Assistant W. H. Demnis resumed the survey of Passamaquoddy bay on the 1 st of August, and prosecuted that work until the 6th of November. The three sheets which he has returned contain the western shore-line of Campobello island, from East Quoddy Light to a point opposite to West Quoddy Head; the western shore of West Quoddy bay, including the Head; the peninsula of labec, and in connexion with it the shores of Johnson's bay; the entire shore-line of Moose island, including the town of Eastport ; the south end of Deer island, and the numerous small islands lying between it and Campobello. Taken together the plane-table sheets give the outlines in connexion of West Quoddy bay, Eastport harbor or Friar road, and both shores of the St. Croix river to Pleasant Point. Part of the details were traced in the work of last season. The limits comprised in this year's survey (Sketch No. 2) fully provide for the hydrography of Eastport harbor and its approaches. Sixty-four miles of shore-line were traced, exclusive of thirteen miles of low-water shore-line which required to be surveyed separately. Details were filled in to cover an area of three and a half square miles.

Sub-Assistant Dennis had passed the winter and spring in topographical service connected with the naval expedition of Commodore (now Admiral) Du Pont on the coast of South Carolina. He is now making preparation to rejoin the expedition and continue the survey in Section $V$.

- Topography of Frenchman's bay and Winter harbor, Me.-The topography of the coast of Maine, cast of Mount Desert island, was begun on the 1st of September by Mr. Cleveland Rockwell, the basis for it being the triangulation made by Sub-Assistant Webber in 1860 . The shect, which was completed by the 18 th of November, takes in West Goldsborough harbor or Jones's cove, Bunker's cove, Hammond's cove, Winter harbor, and the lesser indentations of the eastern side of Frenchman's bay, together with Stave island, Jordan's and Iron-bound islands, and many smaller ones in the bay. Sketch No. 2 shows the locality. Mr. Rockwell's plane-table work is continuous in shore-line and surface details from Hall's Point southward to and inclusive of Winter Harbor entrance. The statistics are as follows :


The earlier part of the working season was employed by Mr. Rockwell in Section V, as will be stated under that head.

Topography of Seal harbor, Wheeler's bay, and Tennant's harbor, and of islands in Penobscot bay, Me.-This work is comprised on two plane-table sheets which connect with each other, and, to the uorthward, with a survey made last year of Rockland harbor and Owl's Head bay. The upper sheet (see Sketch No. 2) shows in detail the Muscle Ridge islands, and has marked ou it in position the very numerous rocks, reefs, and shosls in their vicinity. This part of the duty of the season was accomplished by means of a boat in calm weather, the points not being approachable under other conditions. Careful intersections were made with the plane table so as to fix in their relative places the isolated rocks of the group.

Sub-Assistant Charles Ferguson resumed this work on the 18 th of July with a party in the surveying schooner Bowditch. His sheet containing the survey of the Muscle Ridge group extends from Munroe island, in Owl's Head bay, southward and westward to White Head light-house. The islands lie off
the western shore of Penobecot bay, which was surveyed last year, and from two to three miles distant. Of the group the principal ones shown on the map are Andrew's island, Dix island, High island, Pleasant, Grafton, and Crow islands, Great Two Bush, and Little Two Bush. The reef which stretches about half a mile from the north end of Great Two Bush island is also delineated on the sheet. This part of the survey defincs the shape and limits of two small harbors in the Muscle Ridge group: Dix harbor, between Dix island and High island, and Horne's harbor, near the north end of Pleasant island.

At the island last named the second shect cxecutcd by Mr. Ferguson connects with the former and continues the survey of the lower part of the western shore of Penobscot bay from the limit reached last season. It shows the outlines and topographical character of the shores of Seal harbor, Wheeler's bay, Long cove, Temnant's harbor, and Mosquito harbor, besides minor indentations and numerous islands, the plane-table work being contimuons on it from north to south. Of the islands represented on this sheet Sprucehead is noted for its extensive quarries of granite, as is also Dix island, which is shown on the adjoining sheet. The numerous buoys and stakes marking the entrance to Seal harbor were determined in position by Mr. Ferguson, and are included as part of the detaile of his survey.

Field-work was continued until the 27 th of October, when the vessel was takeu to Portland and there laid up. The following summary of statistics is given in the field report:

```
Shore-line surveyed..................................................................... . 72 miles.
```



```
Crecks...............................................................................................
Area of topography, (square miles)...................................................... 16
```

During the early part of the present surveying year Sub-Assistant Ferguson was employed in Section III.

Topography of Back river, Little river, Robin Hood's cove, \&c., Me.-The plane-table survey of the neck between the Sheepscot and Kennebec rivers, below Wiscasset and Bath, was resumed on the 1st of August, and has been nearly completed. The party detailed for this service was in charge of SubAssistant C. T. Iardella. Shore-line was furnished to the hydrographic party which worked in the channels between the two rivers at the same time. The water passages defined by the topographical sheet of Mr. Lardella are known as Little river, Hall's bay, Riggs's cove, Long or Robin Hood's cove, and Little Sheepscot river, all of which are marked in a general way on Sketch No. 2.

Before taking up this survey Sub-Assistant Iardella had been employed in Section VI.
The plane-table work on the Woolwich peninsula was completed on the 25 th of November, with the exception of a small portion of details of surface. A summary of the statistics is appended.


Mr. Jardela is now employed in inking his topographical sheets.
Topography of Yarmouth river, Frecport river, and Wolf's Neck, \&c., Casco bay, Me.-The shore-line of the upper part of Casco bay was traced last year from Drinkwater Point to the entrance of Maquoit bay, by Assistant A. W. Longfellow. This season he filled in the topographical details within the same limits, and traced, in addition, thirtcen miles of shore-line.
" Yarmouth river was surveyed from its mouth and confluence with Cousin's river, at Parker's Point, two miles upwards, to the falls, where are the wharf and ship-yards; and thence on, under the name of Royall's river, it was traced upwards a mile and a half further, to the crossing of the Atlantic and St. Lawrence railroad.
"Yarmouth village was surveyed from the wharves at the head of tide three-quarters of a mile back, to include the railroad depot. South Freeport village was a growth from the ship-building interest on the shores of the Freeport or Harfseeket river. Here, as at Yarmouth, vessels of fourteen hundred tons have been . built. This estuary is included in the survey as far as the narrows, where, at the edge of the plane-table sheet, the channel passes up to Harriseeket Landing. Part of the village of Bartol's Point Landing is also embraced in the detailed work, the in-shore boundary of which is the main country road, running generally about a mile from the shore."
'The detailed survey off-shore includes Lane's island, Great and Little Moges islands, Trenche's and Bustin's islands, and the group known as the Silver islands, all lying in the upper part of Casco bay. The location of the work is shown on Sketch No. 2.

Assistant Longfellow commenced work in this section on the 1 Sth of July, and continued in the field until the middle of October. He had keen engared during the carly part of the summer in Section III. His party used the schooner Meredith for transpurtation and guarters while prosecuting the topography of Casco bay. The following is a synopsis of the plane-talle statistics:


Reconnaissance of the cnvirons of Portland, Me.-This service was called for with reference to purposes of military defence, and was executed by Sub-Assistant F. W. Dorr, who had passed through the peninsular campaign in plane-table surveys for the army of the Potomac, mention of which will be made under the head of Section III. Mr. Dorr commenced work on the 10th of September, and consulted freely at Portland with Captain Casey, of the corps of engineers, in regard to the direction and extent of his reconnaissance. The best county map being taken as the basis, its scale was enlarged and the roads were traced on the reconnaissance sheet. To these were added the curves of elevation, sketehed by the eye, and such other dctails as were wanting in the map, but which the experience of Mr. Dorr with the army surveys of the present and the working season of last year suggested to be of moment for military purposes. The field_ work was concluded on the 9 th of October. The compilation of the material was then taken up and nearly completed before the close of the month. Meanwhile application had been made to me by the tax commissioners appointed for Florida for the services of a topographer. Mr. Dorr's local knowledge of that coast being extensive and his qualifications ample, he was assigned to accompany them, and, in accordance with directions, reported in person to the commissioners at New York in November previous to their departure for Fernandina.

Mr. H. W. Longfellow aided Mr. Dorr in the field-work near Poriland. The reconnaissance map, which is now at the office, contains the following among ather details of surface:


Topography of Narragansett bay, R. I.-Assistant Henry L. Whiting commenced a special plane-table survey of Coaster's Harbor island and its vicinity on the 26 th of June. Its surface was carefully contoured, and that of the adjacent part of Rhode Island, from Coddington cove nearly to the environs of Newport, and eastward, to include Miantonomy Hill.

This survey was executed at the request of the Navy Department, and in order to furnish data for deciding the question at issue, Mr. Whiting made close soundings between the southwest face of Coaster's Harbor island and the Gull rocks. The work was closed on the 12th of July. Assistant Whiting then took up topographical duty in Section 11. He had, before taking up duty in Narragansett bay, made several surveys in the vicinity of Washington city, in Section III.

The plane-table work in Narragansett bay was continued, between the 16th of August and the 1st of November, by the party of Assistant A. M. Harrison, who had also been, during spring and summer, engaged in field duty in Section III.

For the special use of the United States board which was appointed to examine and report on sites for navy yards, and which met in Narragansett bay early in September, a survey had been directed of parts of Connanicut island, including Taylor's cove, Dutch island, and Duteh Island harbor. This was executed by Mr. Harrison, on the scale of $\frac{1}{1000}$, and met all the requirements of the commission. The other topographical duty of the party was confined to the determination of shore line and of the principal points needed for the correct plotting of the hydrographic work of the present season. These results were supplied to the party under Assistant Mitchell.

During the entire working season in Narragansett bay, Assistant Harrison was aided by Mr. H. W. Bache, and during part of it by Mr. F. A. Lueber. The following are statistics of the plane-table survey:

| Shore-line surveyed. | 44 miles. |
| :---: | :---: |
| Roads. | 82 |
| Creeks and ponds | 54 |
| Marsh line. | 84 |
| Area of topography, (square miles) | 9 |

Besides the special localities already referred to, the additions this year to the regular survey of the shores of Narragansett bay comprise the shore-line of Prudence, Patience, Dyer's, Gould, and other islande, and the western side of Rhode Island, from a point opposite to Coaster's island and northward, to limits of previous work. Only a few of the smaller islands in the bay remain to be traced in outline.

Hydrography between Wiscasset and Bath, Me.-The water passages which intersect the Woolwich peninsula, and which connect the Sheepscot and Kennebec rivers, have been sounded out by a party in charge of Assistant F. H. Gerdes. Most of the shore-line had been previously traced. The concluding portion was supplied for the use of the party by Sub-Assistant Iardella.

Mr. Gerdes took up the hydrograply at Wiscasset (Sketch No. 2) on the $23 d$ of August, and in sounding; Wiscasset bay connected his work with the survey of the Sheepscot made in 1858 by Lieutenant Commanding Moore. Thence in a direction southward and westward he sounded Back river, Montseag bay, Hoakomoak bay, and Little river, which, taken together, afford a continuons water passage between the Sheepscot river at Wiscasset and the Kennebec at a point about seven miles below Bath. The character of the other passage between the two rivers, made up of Upper Hurl Gate, the Rapids, and Great Hurl Gate, was also developed. These connect the Kennebec at Bath with the Sheepscot opposite to Mahan's island. Measured together, and including Robin Hood's cove, which was also sounded, these channels make an aggregate of thirty-four miles in length. The peninsula traversed by them is from five to ten miles in breadth.

Sub-Assistant Clarence Fendall assisted Mr. Gerdes. Mr. T. C. Bowie and Mr. F. H. Gerdes, jr., were attached to his party as aids. The schooner G. M. Bache was used for transportation.

Tidal observations were commenced at Wiscasset when the hydrography was taken up, and were continued at that station until the end of September, when the work was completed. During each day the state of the tide was noted every ten minutes, as were also the high and low waters that occurred at night. Observations for shorter periods were in like manner made on the tides in Little river and in Upper and Great Hurl Gates.

The party of Assistant Gerdes determined about seventy points for hydrographic purposes, and used above twenty others which were furnished by Sub-Assistant Iardella.

The gencral statisties of the work are as follows:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . ..................................................... } 160 \\
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1,167 \\
& \text { Casts of the lead ............................................................................ 11,000 }
\end{aligned}
$$

Both of the paseages referred to in this notice are navigable. A steamer passes semi-weekly from Bath to Boothbay through Upper and Great Hurl Gates.' Excepting Little river at low tide, the water is quite deep in all the passages between the Sheepscot and the Kennebec.

After the completion of the service assigned, the schooner was laid up at Wiscasset. The soundings were plotted by Mr. A. Stransz, and the sheet containing them is now on file in the office.

Assistant Gerdes and his aid, Mr. Bowie, had been previously engaged in Section VIII. Mention will be made of their employment there under the corresponding head of this report. In October Mr. Bowie was detailed for plane-table duty in Section III.

Hydrography of Casco bay, Me - Hydrographic operations were resumed in the upper part of Casco bay on the $3 d$ of August by a party in the surveying schooner Caswell. The charge of the work was given to Mr. Edward Cordell, of large expericnce and qualification as a hydrographic draughtsman, who hed previously served with a number of the regular hydrographic parties on all parts of the Atlantic coast. The soundings made were in continuation of the work of last year by Assistant Schott, which had stopped on a line running east from the north end of Cousin's island to Harpswell Neck, (Sketch No. 2,) and, south of the Neck, on a line from the lower cnd of Jewell's island eastward to include Drunken Dick ledge. North of the first-mentioned line Mr. Cordell sounded Yarmouth river, Cousin's river, and Freeport river, and from their entrances the body of Casco bay eastward to Harpswell. He completed also the hydrography north of the line last mentioned, comprising that part of the bay which lies between Bailey's island and Crotch island. This survey includes Mcriconig sound, Harpswell harbor, and the channel between Harpswell Neck and Great Whaleboat island.

On the tides, day and night observations were made at three stations, one of which was at South Freeport, where the record was continued until the 13th of October. Those at Harpswell and at Little Moges island were kept up until the end of September.

Six current stations were occupied in different parts of the bay while soundings were in progress.

In the vicinity of Portland harbor Mr. Cordell made supplementary soundings near Trundy's reef, and others in a resurvey of White Head passage, between Peak's and Bangs's islands. He also determined in position a rock off the southeast end of Little Jebeig island. This rock has only nine feet of water on it at mean low tide.

The channel which has been artificially made across the Middle Ground since the date of the survey of Portland harbor was sounded out by the party of Mr. Cordell, and will be represented on a new edition of the engraved chart.

The soundings made in the upper part of Casco bay this season show depths of from one to forty fathoms.

A summary of the statistics of work is here appended:


Mr. Cordell has plotted and sent to the office the sheets containing the hydrographic work of the season, together with the records of angles, soundings, and tidal and current observations, in duplicate. He was aided in duty afloat by Messrs. L. L. Nicholson, L. A. Sengteller, and J. A. Sample, and makes special mention in his report of the ready and intelligent service rendered by them.

Physical survey of Cape Cod bay, Mass.-In the early part of the present year I directed Assistant Henry Mitchell to make some experiments in Cape Cod bay, with a view of furmishing information required by the committee on the Cape Cod canal appointed by the Massachusetts legislature. This committee had under discussion the question whether the proposed canal and artificial harbor would be obstructed by ice during the winter months.

During a previous season's work we had discovered that a sub-current from the deeper portion of Cape Cod bay cropped out in the neighborhood of Scussett at one of the proposed sites for the breakwater and basin. In this region the temperatures were quite at variance with those of the surface of the sea elsewhere; they were very uniform, and corresponded with the thermal conditions obscrved at the depth of fifteen fathoms wider out in the bay. Our observations had been made in the summer, and could not, therefore, furnish more than a guess as to the conditions which should obtain in winter.

On the 9 th of February Mr. Mitehell reported upon a new set of experiments made during a cold per:od earlier in the same month, and I sent his manuscript immediately to the committee.

In the course of this report it is stated that a specimen of the Cape Cod bay water began to freeze at $28 \frac{1}{4}^{\circ}$ Fahrenheit, and that, after being for eleven hours exposed in air at $16^{\circ}$, one-third of its bulk became a spongy ice, the residue still remaining in a liquid state at $27^{\circ}$. This ice, though quite fresh itself, held some salt water suspended in its cells. At each attempt to freeze the residuum water there was obtained a lower temperature and a higher specific gravity for that still remaining liquid.

The water off Scussett was observed to fall as low as $32^{\circ}$-that is, within about four degrees of its freezing point-and this at the end of a period of severe cold.

Mr. Mitchell concludes from his stndy that, while the natural circulation of the currents is unobstructed, no sea-water ice can actually form in the particular district off Scussett, although he believes that bottom ice may be found in localities where fresh springs are welling from the sands.

Hydrography of Barnstable harbor, Mass.-In October the party of Assistant Henry Mitchell made supplementary soundings in the vicinity of Barnstable, and completed the hydrographic sheet which was turned in last winter. The engraved chart, in preliminary form, accompanied my annual report for 1861.

Hydrography of Narragansett bay, R. I.-In continuation of the work of last year, Assistant Mitchell, with a party in the schooner Baneroft, took up soundings at the south end of Prudence island, (Sketch No. 3,) and extended the hydrography of Narragansett bay southward in the Middle Passage to a point about a quarter of a mile below Goat Island light. Soundings comprised within an area of about a square mile were made also in the Western Passage, in the immediate vicinity of Dutch island.

This party resumed the work on the 1 st of August and continued duty afloat until the end of September, when the vessel was returned to New York. She had previously been in use by the party of Assistant Mitchell in Section IV, under which head mention will be made of other service.

The statistics of the hydrographic work in Narragansett bay are as follows:
Miles run in sounding ...................................................................... 212
Angles observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,322
Casts of the lead ............................................................................. 5,729
The currents were observed at thrce stations while the party was engaged in sounding.
In the course of this season's work Mr. Mitchell developed the positions of ten hidden rocke, and found in the approaches to Newport harbor two others, the existence of which was unknown. These are all marked on the hydrographic sheet which is now in preparation, and which will be turned in before the close of the year. In Appendix No. 6 a copy is given of the notice issucd to mariners at the time of the discovery.

Messrs. C. L. Bixby, C. P. Dillaway, and Persifer Frazer, jr., were attached as aids to this party.
'The work doue by Assistant Mitchell was directed with a view to the requirements of the navy yard commission which met in Narragansett bay in the first week of September.

Magnetic observations.-The observations near the middle of each month of the year have been continued at the Eastport station, in Maine, without interruption. These now furnish a well-conducted series of determinations of the magnetic declination, djp , and intensty, extending over a period of nearly three years.

Mr. Samuel Walker had charge of the instruments at Eastport until March of the present year. His services being then needed at Key West, the station was put, and still remains, in charge of Mr. R. H. Talcott.

Before leaving Eastport Mr. Walker determined the value of the coefficient of temperature, and the moment of inertia for the magnets $A$ and $C$.

Early in November Mr. Taleott wä̈ relieved by Assistant Edward Goodfellow, and was attached to the topographical party of Sub-Assistant W. H. Dennis, to work in Section V.

Tidal observations - The tidal station at Enstport, Me, remained in charge of Mr. Samuel Walker until March last, when the observations were intrusted to Mr. R. H. Talcott, the services of Mr. Walker being needed at Key West, in connexion with the magnetic station at that place.

A substuntial staff-gange has been set up at Eastport for comparing results with the self-registering tidegauge, the tape or band heretofore used having proved unrcliable from irregular expansion.

Mr. Talcott also continued the magnetic and meteorological obscrvations at Eastport until November.
At the Charlestown navy yard, Mass, the tidal observations have been kept up by Mr. T. E. Ready with his accustomed punctuality. The Boston harbor commissioners laving put in his charge a self-registering gauge for an independent series of observations, and provided a building for its protection, the occasion has been improved by actting up in the same a substantial box-gauge, from both of which observations are recorded, in addition to those at the permanent station.

## SECTION II.

From point judith to cape henlopen, including tee coast of the states of connecticur, new YORK, NEW JERSEY, PENNSYLYANIA, AND PART OF DELAWARE.-(Sk кTCh B, No. 11.)
Statements of the work done in this section will be noticed in the following order ;

1. Geodetic, astronomical, and magnetic observations at primary stations in Massachusetts and Connecticut. The triangulation work is for connecting the primary base on Epping Plains, Me., with that on Fire Island, N. Y.
2. Triangulation continued along the course of the Connecticut, between Goodspeed's Landing and Higganam.
3. Triangulation on the eastern side of Hudson river, near Rhinebeck and Poughkeepsie.
4. Supplementary triangulation for revising work on the const of New Jersey, near Shark river and Manasquam river.
5. A detailed topographical survey east of Brooklyn and between Flushing and Jamaica. This work completes the material needed for finishing the new chart of New York harbor.
6. The plane-table survey of Hudson river, continued from Tarrytown to Croton river, embracing the eastern shore of Tappan bay, the village of Sing-Sing, and other villages.
7. Shore-line survey from 'Tivoli upwards to Coxsackie, and liydrography of the Hudson river extended from Tivoli to Four-Mile Point.
8. Hydrographic examination of the vicinity of Pea Patch island, in the Delaware river. Levellings were made by the same party at League island and Red Bank for the use of the board appointed to examine sites for navy yards.
9. Magnetic observations in New York and Pennsylvania.
10. Tidal observations in New York harbor.

Offee-work.-The engraving in outline of the new edition of coast chart No. 21, New York bay and harbor, has been complcted and the chart ifsued in a preliminary form. The drawing of the same as a finished chart has been continued. Progress has been made in the drawing and engraving of the Hudson river sheet No. 1, from New York to Haverstraw; and in the drawing of aheet No. 2, Haverstraw to Poughkeepsie. The engraving of the latter has been commenced, and additions have been made to the progress sketch of the section.

Geodetic observations at Mount Tom and Sandford, (Mass. and Conn.) -The party under my immediate direction was organized carly in June, to continue the primary triangulation on the coast of New England, for connecting the Fire island and Epping bases.

The preliminarits required in the erection of signals and posting the heliotropers were attended to by Assistant G. W. Dean and Sub-Assistant R. E. Halter, while the preparations required for occupying the stations were made, as usual, by Mr. Thomas McDommell.

Station Mount Tom, in the township of Northampton, Hampshire county, Massachusctts, was first ocenpied. The measurement of horizontal angles at this point was commenced on the 111/h of Joly, but the atmosphere during the months of July and August proving unusually hazy, and the distances to several of the signals being more than fifty miles, these obscrvations were not completed until the 16 th of August. Memwhile the requisite latitude and magnetic obscrvations were made by Assistant Edward Goodfellow, aided by Mr. S. II. Lyman.

On completing the observations at Mount Tom, the instruments and camp equipments were transferred to Station Sanford, in the northwestern part of the township of Hampden, New Haven county, Comecticut. The operations at this station were similar to those at Mount Tom.

The measurement of horizontal angles at Sanford was begon on the 9 th of September, but the weather during that and the following month proving still less favorable for geodetie operations than July and August, the observations were not completed until the 11 th of November.

At Station Mount Tom cight hundred and twenty-six observations were made with the thirty-inch theodolite C. S. No. 1, upon five signals and an elongation mark. The heights of the several stations were determined from three hundred and ninety measurements of vertical angles, with the eight-inch Gambey vertical circle O. S. No. 57.

At Station Sanford twelve hundred and seventy-nine observations were made with the thirty-inch theodolite, upon eight signals and an elongation mark, and the elevations of the several trigonometrical points were ascertained from five hundred and twenty-eight measurements of the vertical augles, with the vertical circle No. 57.

At Mount Carmel the angle between Stations Tashua and Sandford was measured with the Gambey theodolite C. S. No. 57.

The most distant signals which were observed on during the season were those at Mount Tom and Station Sanford, being about fifty-six miles from each other in a dircet line. Two other signals were more than fifty miles distant, and two were about forty-three miles from the point of observation. The relative positions of the several stations may be seen by reference to Sketch No. 1.

The area within the limits of the triangulation completed during the season-estimated in the usual manner-is thitteen hundred and seventy-five square miles. The geodetic observations were chicfly made by Assistant G. W. Dean and Sub-Assistant R. E. Halter.

Latitude-At Mount 'Iom one hundred and seventy-two observations were made with the zenith teleseope C.S. No. 5, upon thirty-six sets of stars, and the are value of the micrometer was obtained from one hundred and twenty-two observations upon Polaris, near its eastern elongation. The local time was obtained from one hundred and thirty-two observations upon twenty-four zenith and circumpolar stars, with the twonty-four-inch transit O. S. No. 10.

At Station Sanford the latitude was ascertained from one hundred and sixty-one observations with the equal altitude instrument C.S. No. 5 , upon thirty-five sets of stars, and one hundred and twenty-two observations were made upon Polaris, near its eastern elongation, for ascertaining the are value of the micrometer divisions. The are value of the level divisions upon the zenith telescope was carefully determined, loth at Station Mount Tom and Station Sanford, from several series of readings of the micrometer, the pointings being made in the usual manner upon the cross threads of a small collimator, which was adjusted a few feet
from the telescope. The local time was ascertained from one hundred and twenty-two observations upon nineteen zenith and circumpolar stars with the twenty-four inch transit C. S. No. 10.

The observations for latitude and time were made by Assistant Edward Goodfellow, aided by Mr. S. H. Lyman.

Azimuth.-The astronomical meridian and bearings of the trigonometrical lines from Stations Mount Tom and Sandford were determined with the thirty-inch theodolite by the usual methods of the survey. At Mount Tom eighty-four observations were made upon $\delta$ Ursæ Minoris, near its upper culmination, and eighty observations upon Polaris, near its eastern elongation, in connexion with one hundred and fifty readings on the clongation mark, which was established in a favorable locality near the summit of Mount Holyoke, about four and a half miles from the geodetic station at Mount Tom.

At Station Sandford the azimuth observations consisted of ninety readings upon Polaris, near its eastern elongation, and eighty-two readings upon $\lambda$ Urse Minoris, near its upper culmination, in comexion with one hundred and sixty-two observations upon the elongation mark, which was favorably located upon the summit of a small bill, about one and a half miles in a westerly direction from the station-point at Sandford.

These observations were made by Assistant Dean, who was assisted by Sub-Assistant Halter. The field operations were closed on the 1 the of November.

Magnetic observations.-The geological formation of Mount Tom being chiefly of trap rock, (green stone,) no reliable magnetic results could be obtained near the geodetic station, although, by way of experiment, the maguctic declination and dip were approximately ascertained at several localities near the summit. For this purpose four complete sets of observations were made by Assistant Goodfellow with the dip circle C. S. No 4, at two points, the results of which differed ten degrees. The resulte obtained for declination were still less satisfactory than those for dip, as it was soon ascertained that the needle of a land surveyor's compass would take any indicated direction by changing the position of the instrument only a few inches. The same phenomenon was also observed by Mr. Dean at the summit of Mount Holyoke, the geological formation of that mountain being similar to that of Mount Tom.

Experimental observations for ascertaining the magnetic declination and dip were made within the enclosed grounds of Williston Seminary, near the centre of the village of Easthampton, about two and a half miles in a northwesterly direction from the station at Mount Tom. No unusual local disturbances were noticed at this locality ; and Mr. Williston, with the other gentlemen connected with the seminary, kindly offering to extend to the Coast Survey every required facility, a complete set of magnetic observations was made near the seminary baildings. These cousisted of one hundred and sixty-five observations, on three days, for ascertaining the declination, and four sets for determining the dip of the needle. The horizontal intensity and moment of inertia were deduced, from three sets of vibrations and deflections, on two days.

At Station Sandford experimental observations were made at several points in the immediate vicinity of the geodetic station, but no indications of local attraction were discovered; accordingly, a complete series of magnetic observations were made near the summit of the hill. For this purpose, one hundred and seventyfive observations were made, on three days, for determining the declination, and four sets, with three needles, werc obscrved for ascertaining the inclination of the needle at two points. The horizontal intensity and moment of inertia were obtained from three sets of vibrations and deflections, on two days.

The magnetic observations were made by Assistant Edward Goodfellow and Mr. Lyman.
Meteorological observations.-The usual meteorological journals were kept by Mr. H. M. Dewees, who was attached, as geodetic recorder, to my party during the season. Two hundred and ninety readings of the barometer, and the wet bulb and dry bulb thermometers, in connexion with the direction and force of the wind, were noted in the journals.

Mr. C. P. Bowditch was attached as voluntecr aid in my party during the five weeks of his college vacation in July and Angust, and his efficient strvices were appropriately acknowledged by Assistant Dean.

All the original records were duplicated, and the reductions of the latitude, azimuth, and magnetic observations were completed before the party left the field.

The number of volumes of records and reductions deposited in the archives at the close of the season. was forty-nine.

Triangulation of Connceticut river.-This work was again taken up at Goodspeed's Landing, and has been extended northward and westward to include the course of the river to the vicinity of Higganam. Sketch No. 10 shows the exteut of the river embraced in the work of this and the previous season. SubAssistant W. S. Edwards resumed the triangulation soon after his return from Section V, his service in which will be stated in another place in this report.

The points furnished by the triangilation work done this year are sufficient to enable a plane-table party to define twelve miles of the course of the Connecticut. Mr. Edwards continued with his party until the 30 th of September. Just previous to that date application had been made, through me, by the late Brigadier General Terrill, for the services of Sub-Assistant Edwards, who had been his recent associate in the work of the Coast Survey. The request was promptly met. Mr. Edwards left the party in charge of his aid, Mr. F. H. Dietz, and hastened to Kentucky, but reached Perryville only in time to take charge of the remains of the deceased general.

The following summary of statistics is taken from the report sent in by Sub-Assistant Edwards previous to his departure for the west:

$$
\begin{aligned}
& \text { Signale erected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 19 \\
& \text { Stations occupied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 8 \\
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 157 \\
& \text { Number of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1,0 \mathrm{C} 0 \\
& \text { Area of triangulation, (square miles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 44
\end{aligned}
$$

On the 1st of November Mr. Edwards resumed work on the Connecticut, and continued the triangulation until the end of the month. He then made preparation for resuming duty in Section $V$.

Triangulation.-In the vicinity of the boundary line between the States of Connecticnt and New York, and in connexion with his triangulation of the Hudson river, Assistant Edmund Blunt ocenpied cight principal stations between the 16th of August and 21 st of October. He was aided in the field and in office work by Mr. A. T. Mosman, who had previously been employed in Section XI, and more recently in the presen season in Section VI, and also by Mr. A. R. Fauntleroy. The following are the statistics of this trian gulation :

| Stations occupicd. | 8 |
| :---: | :---: |
| Angles measured. | 31 |
| , | 3,702 |

After the completion of the office-work Mr. Mosman was assigned to duty in the longitude party in charge of Dr. B. A. Gould.

Triangulation of the coast of New Jersey.-The revision commenced last year at Sandy Hook, and extended to the vicinity of Shark river, (Sketch No. 10,) was resumed in July ly Assistant John Farley. Observations were completed at the stations selected last year. Other stations were chosen, chiefly aloug the beach above and below the mouth of Shark river, and most of the signals erected at them were observed on. The most southern stations occupied are about a mile below the entrance of Manasquam river. Mr. Farley continued the work during August and September, having visited fifteen stations in the course of the season. Including the preliminary measurements made last year, the number of observations with the theodolite was two thousand one hundred and fifty.

Supplementary topography between Flushing and Jamaica, (Long Island,) N. Y.-The final field-work required for the completion of the new chart of New York bay and harbor was taken up, at the end of July, by the party of Assistant H. L. Whiting. The space requiring to be filled with detailed topography on the plate lies castward of the city of Brooklyn, and between Jamaica and Flushing, as was shown by the preliminary chart which accompanied my report of last year. Mr. J. W. Donn aided Mr. Whiting in the field-

This work occupied the party until the 25 th of October, when it was transferred to another locality in this section.

The following are the statistics of the plane-table work near Flushing :

| Outline of creeks and ponds. | 81 miles. |
| :---: | :---: |
| Marsh line. | 84 " |
| Roads | 921 ${ }^{4}$ |
| Area of topography, (square miles). | 15 |

Assistant Whiting and Mr. Donn had passed the earlier part of the working season in Scetion III.
Topography of Hudson river, N. Y., near Sing Sing.-The regular plaue-table survey of the banks of the Hudson was resumed by Assistant Whiting on the $28 t h$ of October. Near Tarry town he joined the work of Sub-Assistant Mechan of 1859-60, and from thence extended the detailed survey of the castern side of Tappan bay up to the mouth of Croton river. The sheet worked on embraces the village of Sing Sing and
others on the bank of the river above and below it, including, in addition, all the surface featares between the old post road and the river. In some places the average breadth, for the sake of symmetry, was stopped at the Croton aqueduct, the fringe of topography being about half a mile in width. Mr. Doun aided in this work, and his efficicncy and judgment in the execution of intricate details of contour is specially mentioned in the report of Assistant Whiting. A synopsis of the statistics is appended:

| Shore-line surveyed | 6 miles. |
| :---: | :---: |
| Roads. | 30 " |
| Croton aqueduct. | 6 |
| Area of topog | 3 |

This party is still in the field, and will probably continue plane-table work until the close of November. Assistant Whiting had previonsly executed a survey, which has been noticed under the head of Section I. Further mention of the work of his party and of the previous service of Mr. Donn will be made with the statements of work done in Section III.

Topography and hydrography of Hudson river above Tivoli, N. Y.-At the limit which he had reacked last year Sub-Assistant John Mechan, with a party in the schooner Arago, took up work near 'Iivoli on the lst of August, having previously been engaged in field duty, which will be stated under the head of Section VIII.

For the joint operations on the Hudson Mr. Mechan divided his party, himself running the shore-lines of the river twenty-three miles upwards to Coxsackic, and extending the hydrography to Four-Mile Point, about midway between Hudson city and Coxsackie. Mr. W. W. Harding, one of lis aids, took angles and assisted in plotting them for the chart. Mr. C. S. Hein recorded the soundings as they were made, and duplicated the hydrographic records and journals. Mr. Persifer Frazer, jr., also served as aid to Sub-Assistant Mechan during the latter part of the season.

The work of this party is comprised on three sheets, two of which are filled with soundings and the third partly filled.

The following statistics show the progress of the present season :

$$
\begin{aligned}
& \text { Miles of slore-line traced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 49 \\
& \text { Miles run in sounding. ............................................................................ } 210 \\
& \text { Angles measured................................................................................. 1,674 } \\
& \text { Number of soundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14,675 }
\end{aligned}
$$

The work on the Hudson was discontinued for the season on the 15th of October. Sub-Assistant Mechan and Mr. Harding were soon after assigned to topographical service for the 6 th army corps in Section III. The schooner Arago was laid up at Poughkeepsie.

Hydrogrophic examination in Delaware river.-In March last instructions were given to Assistant George Davidson to make a special and detailed examination of the vicinity of the Pea Patch, in Delaware river, for purposes of defence, and to proceed in that duty under the direction of Captain C. F. Pendergrast, U. S. N., commandant of the navy yard at Philadelphia.

From his exmminations of the previous year Mr. Davidson was enabled to determine immediately the locality which required examination. The work was reduced at once, and tracings from the sheet were - placed in the hands of the commandant. The original sheets and traced copies were also forwarded to the office.

In fitting out his party for service at very short notice, Assistant Davidson acknowledges the aid cheerfully rendered by Captain T. Turner, U. S. N., at the navy yard.

Tracings also of parts of the survey made last year were furmished to Captain A. A. Gibson, U. S. A., commanding at Fort Delaware, and duplicates of all the sheets of work from Neweastle to Reedy Point were sent to General Totten, chief of the corps of engineers, who has apecially acknowledged the importance of the developments. The original sheet of 1861 and duplicates of the sounding and tidal registers have been filed in the office.

A comparative chart of the Delaware river, between Newcastle and Reedy Point, was made in the office last spring, to represent, together, the hydrographic surveys of 1841 and 1861. This sheet exhibits great and important changes that have occurred within the space of twenty years. Their nature was clearly stated in a special report made by Assistant Davidson soon after closing his survey. The changes appeared of euch monent to the commerce of Philadelphia that I placed the map before the Board of Trade, and, at their
request, Mr. Davidson gave the members full and clear oral explanations in regard to the alterations that had taken place, and of the importance of the developments which are yet in progress. Resolutions were passed by the board thanking him for the statements.

Assistant Davidson was occupied during the summer with a party in Section VI, to the operations of which allusion will be made further on in this report. In the autumn he executed levellings at League island and Red Bank for the use of the navy yard commission, and made himself useful, besides, by his special knowledge of localities.

Magnetic observations.-In some of my previous annual reports charts have been given showing approximately the direction of the lines of equal magnetic variation traced seaward and inland from stations along the coast at which the elements have been from time to time well determined. Those alluded to may be found in the report for 1856, Sketch No. 61, and in that for 1861, Sketch No. 30, and they show the present state of our knowledge on the subject.

With a view to greater precision in the direction of the lines given for the coast of the middle States, in which I had personally determined the magnetic elements in 1840-'41, Assistant C. A. Schott was directed to rcoccupy seven of the stations in July and August of the present year. The observations at the coast stations were made at the expense of the Coast Survey, and those of the interior ones at the cost of the Smithsonian Institution. Mr. Schott commenced at Harrisburg, Pa., and on the 28th and 29th of July determined the declination, dip, and horizontal intensity of the magnetic needle in the grounds of the State capitol. Proceeding westward he made similar observations on the 31st at the position which I had previously used, on the national road, about five miles east of Brownsville, in Fayette county. At Erie, Pa, the elements were determined in like manner, on the 6th and 7th of August, on Seventh street near French. At Bath, N. Y., the station in the public park, opposite to the post-office, was occupied in the same way on the 11th; and on the 13th of August the position near Dickinson seminary, in the borough of Williamsport, Lycoming county, Pa. Two stations in the grounds of the Girard college, Philadelphia, were occupied on the 15 th and 16th of August.

The observations at each of the places comprised: for declination, three sets to ascertain the time and azimuth, of six readings each, and frequent readings of the scale of the declination magnet, continued for several hours.

For the magnetic dip two sets of observations were recorded from two needles, and the same number with the polarity reversed.

The intensity was ascertained by two sets of vibrations and two sets of deflections. Six sets of observations were made in determining the time of one hundred and fifty vibrations.

For all three of the magnetic elements the various processes, either in full or in part, were repeated, so as to have one set of observations recorded in the forenoon and the secoud set in the afternoon.

The instruments used were magnetometer, No. 3; the Barrow Dip Circle, No. 8; and mean time chronometer, Hutton 211. Determinations of the instrumental constants and also of the magnetic elements were made at Washington, further notice of which will be seen under the head of Section III.

Taking into account the interval of time between the series of observations in 1840-'41 and that of the present season, it is reasonable to expect that comparison of the results will give much information in regard to the secular change of the magnetic elemente. The discussion of the observations is nearly completed, at my own expense, and will probably be published in the Smithsonian Contributions to Knowledge.

Assistant Schott was accompanied by Mr. P. H. Donegan, who recorded the observations and duplicated the registers. Both sets, as well as the detailed computations, have been placed in the office. The results found are given, in tabular form, in Appendix No. 18.

Tidal observations.-The permanent self-registering tide-gauge at Governor's island, in New York harbor, has continued in operation during the year, under the charge of Mr. R. T. Bassett. Observations for comparison have also been made at the dock of the Atlantic Ferry Company, in Brooklyn.

I am indebted to the courtesy of the superiatendent of the Union Ferry Company, who has replaced the small building which covered the tide-gauge at Brooklyn by a better one, after it had become necessary to remove the old structure for repairs to the wharf.
c. 8.5

## SECTION III.

from dape henlopen to cape henify, incluting the coast of part of delaware, the coast of maryland, and part of the coast of virginia.-(Sketer C, No 13 )

All the work done in this section was in furtherance of military or naval operations, and under orders of the War and Navy Departments, throngh authorized officers. It will be described under the following heads:

1. Complete triangulation of the Potomac river from Blakistone island to Georgetown. This laid the basis for a chart of the lotomac, which was specially requested by the Navy Department.
2. The topographical survey of the immediate banks of the Potomac from Blakistone island to Washington eity. All the rebel works erected in 1861 are shown on the sheets of this survey.
3. A plane-table survey of Williamsport, Md., and of its environs, including the opposite bank of the Potomac, for the use of the sixth corps of the army of the Potomac.
4. Detailed topography, for military purposes, near Bladeusburg, and in the vicinity of the northeastern part of the District of Coumbia.
5. Topography of the vicinity of Fort Lincoln and other defensive works near the Capitol.
6. Additions to the details of the military map of Fairfax county, Va. These include the topography between Fort Marcy and Falls Church.
7. Minute survey, embracing the contour of ground about Manassas Junction, with the lines of rebel intrenchments, barracks, sites of ruins, roads, \&c.
8. A plane-table survey of the ground opposite to Fredericksburg, Va., and mapped reconnaissance of roads leading from the Potomac to the Rappahannock river.
9. Surveys and reconuaissances for the army of the Potomac on the peninsula between the York and James rivers. The party assigned to this duty was actively employed during the whole of the campaign.
10. Verification of topography between Chincoteague lay and Pocomoke sound, across the northern part of Accomac county, Va. This work was done incidentally by a party assigned to make surveys for military purposes.
11. Topograply of the middle part of Accomac county, Va., for the use of the army of occupation, stationed in the vicinity of Drummondtown.
12. Plane-table surveys, including the rebel works erected for the defence of the approaches to Norfolk, Va., and survey of the navy yard at Gosport, showing its condition when evacuated by the insurgents.
13. A hydrographic survey of the Potomac river, complete from the limit of former work near Blakistone island, to Indian Head, and from Alexandria up to Georgetown and to the Washington navy yard. The chart which this survey furnishes was specially called for by the Navy Department, to replace the hydrographic reconnaissance chart of last year.
14. Operations of the Coast Survey hydrographic party in York river and its tributaries, under the orders of the flag-officer of the north Atlantic blockading squadron.
15. Hydrography of Metomkin bar and iulet. Buoys were permanently set to mark the bar and entrance. This work was for the use of the army of occupation in eastern Virginia.
16. Magnetic observations at the station near the Coast Survey office, in Washington, D. C.
17. 'Tidal observations at the station near Fortress Monroe, Va.

Office-work.-The engraving of coast chart No. 35, Chesapeake bay, (sheet No. 5,) from Pocomoke sound to York river, has been completed; progress has been made in the engraving of coast chart No. 36, Chesapeake bay, (sheet No. 6,) mouth of York river to entrance of bay; and of Patuxent river, lower aheet, as a finished chart. The drawing of the Potomac river chart in four sheets, and the engraving of general const chart No. IV, Cape May to Currituck sound, and of Potomac river, (sheet No. 3,) from Lower Cedar Point to Indian Head, have been commenced. Additions have been made to coast charts No. 31, head of Chesapeake bay to Magothy river; No. 32, Magothy to the Hudson river, Md.; No. 33, from the Hudson to the Potomac river; and to the progress sketch of the section. The following preliminary charts and maps have been lithographed and issued to meet the immediate wants of the public service, viz: Atlantic coast, from Chesapeake entrance to Ocracoke inlet; Chincoteague bay; Lampton roads; James river, up to City Point, (new edition;) reconnaissance of Pammkey and Mattapony rivers; Potomac river, up to Georgetown, in four sheets; road map of District of Columbia; plan of wharves at Alexandria; military recomaissance map of noutheastern Virginia; and a general map of Virginia, in colors.

Triangulation of the Potomac river.-At the end of the surveying season of 1860 this work had reached Blackistone islind, (see Sketeh No. 13,) where its further progress from the entrance of the river was stopped for a year by the hostilities which broke ont in the spring of 1861 . In order to meet the demand consequent upon the war, a rapid hydrographic recomaissance was ordered at once, the particulars of which were stated in my report of last year. The resulting sketch was much in demand during the ensuing twelve months, and was largely distributed for the use of the navy.

On the opening of the spring campaign of 1862 special request was made by the Nary Department for a minute hydrographic survey of the Potomac, and steps were at once taken for resuming the triangulation at Blackistone island. By the authority of the Hon. Secretary of the Treasury, Professor Fairman Rogers, of Philadelphia, was made acting Assistant in the Coast Survey, and was put in charge of the general field and office arrangements of this survey. Sub-Assistants F. P. Webber and Charles Ferguson were assigned to assist in the preliminary work, and competent topographers were detailed to make the plane-table survey, as will be stated at more length presently.

A reconnaissance was made by Professor Rogers early in May, and a preliminary base line of 1.188 metres measured by him at the west side of the mouth of Port Tobaceo river, with the slide contact wires Nos. 5 and 6. From the stations at the ends of the base the triangulation was extended down the river to Blackistone Island light, and from the base up the river as far as Occoquan, by the 19th of June, when Professor Rogers was called away by other duties and relinquished the service, which, it is here in place to remark, he had undertaken to prosecute for a limited period as a volunteer. At the date mentioned the very considerable stretch of sixty miles of the course of the Potomac had been triangulated, and the topographical survey, which was commenced som after the triangulation, was in progress.

On the 19th of Juy the triangulation was resumed at Occoquan by Mr. Charles Hosmer, and in the following thirty days was pushed quite up to Georgetown, and to a connexion with the triangulation of part of the District of Columbia, made by himself and by Sub-Assistant Ferguson in the winter of 1861-'62.

In the me surement of the preliminary base Professor Rogers was assisted by Messrs. Longfellow and Halter, of the topographical party.

The statistics of the triangulation of the river from Blackistone island to Georgetown are as follows:


One hundred and nine points were determined for the use of the plane-table parties.
In the work below Occoquan three theodolites were used, viz: the Gambey ten-inch, No. 82; the Würdemann eight-inch, No. 86; and the six-inch Brumer, No. 64. The angles above Occoquan were measured with the six-inch Gambey, No 65.

Professor Rogere bears testimony to the cordial disposition manifested by the officers on duty at the Washington navy yard to assist him in the work by all means in their power. For the reconmaissance the steamer P'owell was lent by Lieutenant Commander Wyman.

Sub-Assistants Webber and Ferguson, who had worked assiduously in the triangulation of the Potomac, took up field duty in Section I early in July.

The theodolite stations used for the survey of the Potomac were marked by small wooden posts, and those below Occoquan were set in hydraulic cement.

Topography of the Potomac river:-The fall provision made for this work has been referred to in a previous notice in this chapter. Four experienced topographers-Assistants H. L. Whiting and A. W. Longfellow, with Sub-Assistants John Mechan and R. E. Halter-were assigned for the survey. Two schonncrs were furnished for the use of the parties. Soon after the work commenced Mr. Charles Hosmer replaced Sub-Assistant Halter, who had been taken ill. The topography was begun on the 19th of May. Eleven plane-table sheets were turned in by the 25th of June. Of these one was executed by Mr. Whiting, showing the Virginia shore of the Potomac from Persimmon Point to Metomkin Point, and, on the Maryland side opposite, the shores of Port Tobacco river. Four sheets were tarned in ly Mr. Longfellow, containing surveys of the Maryland shore from Swan Point to the "Trunk," above Pasquehanaa creck; also from Upper Cedar Point to Smith's Point, and from Budd's Ferry to Indian Mead. Mr. Mechan returned three sheets, giving the Virginia shore from Lone Locust Point to Persimmon Point; also from Metomkin Point to Aquia creek, and from Quantico creek to High Point, including also the mouth of the Occoquan river. A
fourth sheet sent in by him contains the shore-line survey of Nanjemoy river, on the Maryland side. Mr. Hosmer traced the Maryland shore from Cob Point to Swan Point, and, on a second sheet, the Virginia side from Aquia creek to Quantico creek.

The length of river-course included in the sheets above referred to is about sixty miles, and the aggregate of shore-line traced was one hundred and twenty-nine miles. The mouths of the principal creeks which empty into the Potomac were followed, and careful surveys were made of the immediate sites of all the rebel batteries that had been erected on the Virginia shore of the river during the year 1861.

Mr. Hosmer, after completing the triangulation of the Potomac between Indian Head and Georgetown, as mentioned in a previous notice, took up and completed the survey of the remaining thirty miles of shoreline, closing the topography on the 30th of August, on the plan adopted for the sheets below Occoquan.

The lateness of the season and restriction in time making it impracticable to take in the usual breadth of shore, so as to permit the issue of a full chart of the river this year, the plane-table survey of the immediate shores only was executed. The total of shore-line tracel by the parties is one hundred and fifty-nine miles.

Mr. Hosmer's closing work in August joins near Mount Vernon with a reconnaissance made in the previous year by Sub-Assistant Mechan. On the Maryland side he traced twenty-one miles of shore above Indian Head.

Before the close of August a chart of the Potomac was issued in three sheets, showing the banks and channel, the buoys and lights, and the sailing lines, from the entrance of the river to the mouth of the Occoquan. The fourth sheet, making the chart of the river complete to Georgetown, was issued in September. These contain the preliminary soundings determined by the reconnaissance made in 1861. I will state further on, the details of hydrography, done on the basis of the recent plane-table surveys.

The topographers who worked on the lower part of the Potomac were in June assigned to duty in Sections $I$ and $I I$.

Plane-table surveys at Williamsport, Md.-This work was done at the request of Major General Franklin, who occupied the vicinity of Willinmaport in October with the sixth corps of the army of the Potomac. Mr. Charles Hosmer was detailed to execute the required topography on the $2 d$ of October, and on the 15th was joined by Mr. F. A. Lueber. The principal roads leading out of the town towards Hancock, Hagerstown, and Sharpsburg were, respectively, traced to the distance of three miles. At the end of the munth the party was further increased by the assignment of Sub-Assistant John Mechan and Mr. W. W. Harding, and in the course of the first week of November the ground around Williamsport was surveyed in detail. The working sheets show the general contour of surface of about fiftecn square miles, with about five miles of the course and banks of the Potomac at Williamsport.

Mr. Hosmer moved at the end of October with the corps of General Franklin into Virginia, and continued recomaissance duty. He has since received instructions to report to. Major General Banks for epecial topographical service on the coast of Texas, for which his local knowledge promises great usefulness.

The previous duty of the parties employed with the sixth corps will be stated in other parts of this chapter. Mr. Harding had passel the greater part of the working season in Section V, as will be mentioned under that head.

Sub-Assistant Mechan remained near Williamsport until the 14 th of November, and completed the survey of the environs. He forwarded the topographical sheet to the office, and then was placed under orders for duty with the army division of General Franklin.

Topographical survey near Bladensburg, Md.-A map of the country lying just outside of the District of Columbia, and north and east of Bladensburg, was commenced in the middle of October by Sub-Assistant C.M. Bache. This, like similar work done last year, was under the inmediate direction of Lieutenant Colonel J. N. Macomb, of the topographical engineers. Details of hands and means of tranaportation were furnished by the military department. Mr. Bache is still engaged with the plane-table in the vicinity of the northeastern corner of the District, and has already mapped abont five square miles of area, within which over twenty-five miles of roads have been traced and nearly four miles of water-course. The tract on which he is employed will probably occupy the party until the end of November. His map, like others of the environs of Washington of which mention will be made, shows the contour of the ground and the surface details generally.

Mr. T. C. Bowie has been assigned to duty in this party.
Topography near the military defences of Washington.-At the request of General Barnard, U.S. Engineers, Sub-Assistant J. G. Oltmanns was detailed in the latter part of September to make close topographical surveys of the sites and surroundings of Fort Lincoln and other defensive works to the north and cast of the city of Washington. Mr. Oltmanns commenced work and for a short period prosecuted it, under
the immediate direction of General Barnard. He was, however, soon compelled to close field duty, not having sufficiently recovered from the effects of a rifle-shot by which he was wounded in the lunge whice cngaged in Section VIII. Being still anxious for such ficld service as he might find practicable in a climate milder than that of this section, he has been directed to report for general duty on the southwestern coast, in the performance of which he will be under the immediate orders of Major General Banks.

Topography of Fairfax county, Va.-This work was additional to extensive plane-table surveys made last year of the entire ground which was occupied by the army of the Potomac. As stated in my last amoual report, the topography was executed under the direction of Lieutenant Colonel J. N. Macomb, then chief topographical engineer of that army. The maps made and photographed last summer at the office showed a vacant space of several square miles, corresponding to ground which was then occupied by the enemy, to the north and east of Falls Church. The topngraphy along the Potomac shows on the same sheets a breadth of only a mile and a half between Fort Marcy and Bailey's Cross-roads.

On the 4th of October, and after the completiou of much service of the same kind, which will be stated in geographical order in this section, the survey of the ground alluded to was commenced by Mr. T. W. Robbins. Details of men and facilities for transportation were furnished, as beforc, by Coloncl MacombPoints requisite for the topographical adjustment were supplied from the office.

From Falls Church Mr. Robbins extended the survey towards Lewinsville as far as was deemed needful by Colonel Macomb, and then along the District line taking in a breadth of three miles and including Minor's hill and its vicinity. Late in October the party moved to the neighborhood of Fort Marey, and at the date of this report is engaged in prosecuting the survey in the vicinity of Langley and towards Lewinsville.

This work, as before stated, is in full detail, and adapted to all the requirements of military operations or defence. The roads, bridle paths, and contour of the ground are shown, as was done by the plane-table parties which worked in Fairfax county last year.

Topography of Manassas junction, Va.-After the evacuation of this important position by the rebel amy in March last, Assistant H. L. Whiting was directed to make a minute plane-table survey, so as to meet any possible military contingencies that might arise in the future. He proceeded, as in making similar sarveys in the section, under the special order of Colonel J. N. Macomb, chief of topographical engincers. Sub-Ausistant C. M. Bache assisted Mr. Whiting in this duty, and details of men for the work were made from the 88 th Pennsylvania and 101 lst regiment of New York volunteers. The survey was began on the 27 th of March, and embraced the contonr of a belt a mile in breadith, mostly on the south side of the Orange and Alexandria railroad. Three miles of the track to Alexandria, and nearly as mach of the branch leading from the junction towards Centreville, with the wagon roads and numerous intersecting tracks, were traced and carefully mapped. The contour lines were drawn in for successive elevations of ten feet. All the intrenchments were sketched in position, including an extensive detached work alout two miles east of the junction; also the positions of the ruined structures at the junction, and the extensive barracks found at three points on the south side of the railroad.

The map of the locality was drawn on a large scale, and was at once photographed at the office, so as to meet possible requivements.

This work occupied the party until the 6th of May. Mr. Whiting left Manassas a few days before, for field service on the shores of the Potomac, and was afterwards employed in Sections I and II. Sub-Assistant Bache at once took up topographical duty for the army of the Rappahannock.

Topographical service on the Rappohannock river, Va.-The advantage, for transportation and other military uses, of correct maps of the ground occupied by Lis army had been fully appreciated by Major General McDowell in the campaign of 1861 . At his request, which was made known to me through Colonel J. N. Macomb, A. D. C. and ehicf of topographical enginecrs in the army of the Rappahannock, the services of Coast Survey topographers were continued after the arrival of the staff at Frederickaburg, Va. SubAssistant O. M. Bache and Mr. T. W. Robbins, being assigned to duty, reached headquarters on the 9 th of May, and reported to Colonel Macomb. On the 12th a general topographical reconnaissance was made; the stations uaed in the survey of the Rappahannock in 1853 were visitcd, and means were taken for connecting the new work with the points then determined.

The centre line and grades, requisite as data in the reconstruction of the railroad bridge across the river, were farnished by the party, as were alzo the pointe for locating a side track to lead from the main line to the foundry, near the middle of the city of Fredericksburg.

On the 26th, direction was given by Colonel Macomb for a gurvey from the right bank of the Rappahannock below the city, the topographers to report to Brigadier General King, the staff officers having been
recalled to meet at Manassas. The working force necessary to the efficiency of the two parties was detailed by General King, and, after consultation with General Mclall, the railroad was understood as the line on which the working parties should join, Sub-Assistant Bache intending to take the tract west of it, and Mr. Robbins that lying eastward. This service, however, was soon deemed too hazardous, in the judgment of the military governor, Brigadier General Reynolds, the pirkets on the south side of the river having been driven in on the 30th of May. The parties were aecordingly removed to the north bank, and commenced work, one opposite to Fredericksburg and the other near Falmouth, ou the $2 d$ of June. Field-work with the planetable, compass, and chain was continued by both parties until the 7th of July. The contour of the ground and all details, as roads, streams, \&c., of importance for defensive purposes, on the left bank of the Rappahannock, were mapped on two sheets, which show the country from Falmouth to a point nearly a mile below the railroad bridge, and several miles back from the river, towards Aquia creek and Potomac creek. On a third sheet Mr. Robbins traced in from recomaissance the line and topography of the main road from Fredericksburg to Belle Plain, at the mouth of Potomac creek, and, from a point higher up that stream, the Fredericksburg railroad and the main wagon road to a junction with the survey of Sub-Assistant Bache, near the head of Claiborne's creek.

The details of men required for this work were furnisked by Brigadier General Augur, from the 24th regiment New York volunteers.

As soon as practicable after their completion the planc-table shcets were inked and turned in at the office in Washington. The results were there reduced in scale and combined at once into a single map, of which, at the request of Colonel Macomb. copies were made by the photographic process and furnished to him for the use of the army. An area of about ten square miles is represented by the map, exclusive of the lines of road which connect the environs of Fredericksburg with the waters of the Potomac.

After inking his sheet Sub-Assistant Bache was assigned to plane-table duty in Section II; but, a call having reached me very soon after for topographical service in another division of the army, himself and Mr. Robbins were recalled, and held subject for duty in any emergency that might arise.

Top' graphical service betueen York and Jumes rivers, Va.-Mention was made in my last annual report of the connexion of Coast Survey parties with the army of the Potomac, in the summer of 1861 , in the vicinity of Washington. The high testimony then given by the military authorities as to their usefulness led to the assigument of Sub-Assistant F. W. Dorr and Mr. J. W. Donn for special field duty in the campaign which was begun in March last by Major General McClellan. In order to secure conformity to all the requirements of the military department, the services of Mr. Dorr and Mr. Donn were placed at the disposal of Brigadier General A. A. Humphreys, chief of topographical engineers in the army of the Potomac, to whom the two topographers reported for duty on the 20th of March.

On the way to Fortress Monroe the party engaged in the compilation of a map of the peninsula between York and James rivers, and completed it several days after their arrival at the fortress on the 8th of April.

The next duty assigned and executed was a plane-table survey of the road and adjoining country from Half-way House to headquarters, or within five miles of Yorktown. Subsequently the survey was extended to the outer lines of the army when distant only about three-quarters of a mile from the rebel intrenchments. The positions of important points were determined from a base of which one end rested at the building known as the "White House," the other end being the furthest point reached in the survey of the main road. Besides these, determinations were made of prominent houses lower down, on the river shore. The positions thus ascertained sufficed for connecting the work with the topographical survey of the shore of York river made in 1857 by Assistant Seib.

On the 15 th and 16 th of April, Messrs. Dorr and Donn surveyed the Warwick road, from Harward's mill to Warwick Court-House, and connected their work with a plane-table survey, made from the CourtHouse to Lee's mill, by Sub-Assistant P. C. F. West, who was then on furlough from the Coast Survey and serving as aid to Brigadier General W. F. Smith. On the following day, while Mr. Dorr was connecting Mr. West's survey with that of the main road, his plane-table was struck by a shell from a rebel battery near Wynn's mill and entirely destroyed, together with a part of the working sheet. The part, however, on which were represented the positions of the butteries and the desired connexion was fortunately uninjured. Lieutenant Orlando G. Wagner, of the topographical engiueers, standing near by at the time, was mortally wounded, as was also one of the soldiers, Private Jerry Lather, of the second Rhode Island regiment, attached to the surveying party. One of the pickets was killed outright and several were wounded. The alhidade was blown from Mr. Dorr's hand and the sleeve of his coat torn away, but he received no personal injury
except a slight scratch on the hand. He resumed the survey at once with a compass and chain, and completed it from Yurk river to Lee's mill and Warwick Court-Honse on the 18th of April.

Another plane-table, to supply the place of the one destroyed, having been promptly forwarded from the office by request of Gencral McClellan, Mr. Dorr carcfully surveyed Wormley's creek and its branches, making a junction with the survey of Mr. Seib, previously referred to, as well as with his own surveys. That work was closed just previous to the evacuation of Yorktown. A short interval before had been em. ployed in making tracings from the completed surveys, for military use.

After the retreat of the enemy up the peninsula, Sub-Assistant Dorr surveyed the works which had been erected by the insurgents between the main road and Lee's mill, and that service was not quite complete when the party was ordered to move on after the army. Sub-Assistant West had made a careful plane-table survey of the battle field of Williamsburg, to accompany a repart of the battle, by Brigadier General Smith. Three miles west of the town that survey was again taken up on the 10 h of May, and continued by the party uninterruptedly to New Kent Court-House, including also the road leading thence nearly to Eltham, and that to Cumberland on the Pamunkey river. Mr. Dorr reached "White House," on the Pamunkey, on the 16 th of May. Mr. Donn next day surveyed the wagon road and line of railroad leading out from that point westward, as far as Tunstall's Station. On the $18 t h$ a general reconnaissance was ordered by various rout s to the Chickahominy river. The line of railroad and country adjacent to it were allotted to the party of Mr. Dorr. By nightall he had advanced seven miles, and had sketched a belt of about a mile in breadth. The reconnaissance was pushed forward to the railroad bridge across the Chickahominy, and its condition was reported. Returning, the road was run which leads from Turner's mill southward to Baltimore Crossroads, a point on the main road passing from New Kent Court-House to Bottom's bridge.

Immediately after the movement of the army to the Chickahominy, which took place on the 21st and and 2zd of May, Mr. Dorr surveyed the road from Despatch Station to Coal Harbor, sketching'in the topographical features between the road and the river, and making careful examinations with reference to suitable positions for bridges. His survey was then connected near Dr. Guines's house with plane-table work by Sub-Assistant West, which took in details between the same road and the river, but higher up, and to a point within three miles of Mechanicsville. All the roads diverging from Mechanicsville, excepting the one which leads to Meadows's bridge, were run by Messrs. Dorr and Donn, and contour lines of twenty fect elevation were traced around the village and to the distance of several miles in all directions.

Sub-Assistant Dorr mapped the vicinity of the railroad, from the Chickalominy to Fair Oaks Station, on the 28th of May, and then surveged the Williamsburg road fiom Savage Station west ward to the outer line of pickets. Mr. West at the same time made a plane-table survey of the west bank of the Chickahominy, between Sumner's upper bridge and the upper trestle bridge. Contour hines also were run with great care by the party for each ten feet of elevation of most of the ground in frout of General Sumuer's position. The road from 'Iyler's house to Savage Station, across Sumuer's lower bridge, was traced and mapped by Mr. Donn.

South of the railroad and west of the Chickahominy the ground generally, including the minor roads near Fair Gaks and the various roade leading to the White Oak Swamp, were examined and traced by the party of Mr. Dorr.

When the flank movement of the army had been decided on in the latter part of June, the party was ordered to examine all the roads branching from the Williamsburg stage road in the direction of the swamp. This was promptly done, and of a number examined and reported on, one practicable route, in addition to the one in previous use, was found. Near midnight of the 28 th of June, Messrs. Dorr and Donn were detailed as guides for General Sykes's division, which had been ordered to pass through to the James river. The intense darkness and heavy rain made the service somewhat difficult, but the entrance of the road was soon found, and the division reached Woodbury's Ford early on the following morning.

Mr. Donn returned to the Coast Survey office on the 3d of July, and near the end of that month joined the party of Assistant Whiting in Section II.

Sub-Assistant Dorr remained with the army and made a survey' of the ground of occupation in the vicinity of Harrison's Landing, on the James river. He was detached from duty with the army on the 14th of July, and reported at the office on the following day. During the autumn he executed a ficld reconnaissance aud made a map of the environs of Portland, Me., for military defence, which has been more fully referred to under the head of Section I. He is now under orders for duty in Section VI.

Verification of topography.-Assistant A. M. Harrison ran a line with the plane-table for connecting the survey of Chincoteague bay with that of Pocomoke sound, across the northern part of Accomac county,

## REPORT OF THE SLPERINTENDENT OF

after the completion of work which will be referred to further on in this chapter. "The line was started at Snead Station on Chincoteague bay, (sce Sketch No. 13,) w th two other triangulation points, for obtaining a correct position, and then a series of courses was run in the same general direction with the plame-table and chain for a distance of 15.41 miles, to the head of Pocomoke sound, which had been surveyed by Assistant Seib." The number of courses was forty, the longest being nearly a mile and the shortest about a hundred and fifty yards in length. The station marks on the Chesapeake side being lost, made it impracticable to connect the two surveys at any intermediate point, without triangulation, or to verify the topographical survey which had been carried nearly across the head of the peninsula in the vicinity of the boundary line, in the surveying season of $1859-60$.

On closing with the Chesapeake shore-line, Assistant Harrison found a difference of fifty metres, which may properly be regarded as due to the error of the plane-table, when worked without occasional reference to points of triangulation as checks.

Mr. Charles Hosmer, who had completed an extensive survey for military purposes, aided Mr. Harrison in this duty. Mr. H. W. Bache was attached to his party as aid, aud was employed in this and other duty in the section.

Topography of Accomac county, Va.-At the request of Major General Dix, a party, in charge of Mr. Charles Hosmer, was assigned in December, 1861, for the survey of the vicinity of Drummondtown, that part of Accomac county being then occupied by United States forces under Brigadier General Lockwood, as was stated in my last annual report. Mr. Hosmer, aided by Mr. F. A. Lueber, commenced, on the 17 th of December, a survey (see Sketch No. 13) which joins on the cast with one of the topographical sheets of the Atlantic coast, and on the west with a sheet of the survey of Chesapeake bay. All the roads, woods, and other surface features within a breadth of about eight miles north and south, and passing quite across the middle of the county, were mapped.

Assistant A. M. Harrison, who had been, during the same period, employed in sounding out Metomkin bay and inlet, when that work was done, joined Mr. Hosmer with his own party, and assisted in the planetable survey. Mr. Hosmer had previously assisted in the work at Metomkin bay, to which further allusion will be made in this chapter. The topographical survey was closed on the 21st of May.

From the sheet of the approaches to Drummondtown, including the soundings in Metomkin inlet, a careful tracing was made at the office and forwarded to Brigadier General Lockwood. The following axe statistics of the topography :


For this survey General Lockwood made details of men from the second Delaware regiment, and, towards the close of the season, from the second regiment of Maryland volunteers. Means and facilities for transportation were supplied by Captain Tyler, brigade quartermaster, to whose courtesy and obliging disposition the working parties were much indebted.

Although generally level the country around Drummondtown is much intersected by roads, and these, with other features, present a large amount of detailed work on the topographical sheet.

After completing this survey, Mr. Hosmer assisted Mr. Harrison in revising the topography at the head of the peninsula, near the Virginia boundary line. The parties returned to the office in the latter part of May, and made immediate preparation for other field duty. During the summer Mr. Hosmer was employed on the shores of the Potomac.

Plane-table surveys ncar Norfolk and Portsmouth, Va.-An carly opportunity was taken, after the possession of Norfolk was regained to the government, in May last, to trace on the original plane-table sheets of the Coast Survey the numerous batteries which had been erected in its vicinity by insurgents during the course of the previons year. This service was performed by Assistant A. M. Harrison, in June, the requisite facilities for working having been furmished by Major General Wool and Brigadier General Viele.

In the immediate vicinity of Elizabeth river the rebel forts and the entrenched camp on Sewell's Point were surveyed and mapped, as were also the fortifications on Craney island, besides thirteen, mostly of small size, at varions points along the shores, and the Gusport navy yard, with a battery directly opposite to it on the river bank.

The survey of the navy yard was made on a large scale, to show its condition after the destruction of the buildings and shipping by the insurgents. Mr. Harrison says: "It presented a sad picture of devasta-

## THE UNITED STATES COAST SURVEY.

tion. Excepting the officers' quarters and one or two other buildings, all the edifices were burnt. The dry dock and the g anite lumber dock were not materially injured, though an attempt had been made to blow up the masonly which held the gate hinges of the $d$ y dock. The gates were destroyed."

Bastions which had been crected near the wall, to command the approaches to the navy yard from the south, were also surveyed, and the positions determined of the remains of several vessels of the navy which had been buint in the harbor.

General Viele furnished a steam tug and hands to aid in making the surveys. Mr. Harrison mentions, also, his indebtedness to Lieut. S. Lee Perkins, 2d regiment New York volunteers, acting engineer to Geveral Viele, for sketches of several of the batteries on Elizabeth river.

The positions of two other intrenched camps, designed to guard the approaches. to Norfolk from north or south, were marked on an engraved sketch, so as to admit of being transferred to the topographical sheets.

Mr. H. W. Bache and Mr. F. A. Jueher assisted in field duty in this section, and also accompanied Assistant Harrison when he resumed topog aphical work in Section I, in the latter pat of July.

The special surveys made by the pa ty in the vicinity of Norfolk are on two shects containing the details of the numerous intrenchments. Their positions have been laid down on the original topographical sheets of the survey of 1854 . All of these are now on file in the office.

Hydrography of thr Potomac river.-The hyd og aphic reconnaissance which was made last year in order to meet the exigencies of the naval and military se 1 vice, and which was then reported on, has been replaced by a thorongh suivey of the greater part of the Potomac below Georgetown.

Lieutenant Commander T. S. Phelps, U. S. N., Assistant Coast Survey, wish a party in the steamer Corwin, took up the regular hyding aphy on the 29th of July. Abreast of Britton's bay and St. Clement's bay (Sketch No. 13) he joined work with the soundings which harl been made in 1860, and thence upwards extended the hydrography towards Indian Head. At the Kettlebottom shoals the soundings were made more than usually close, no $p$ oper channel having been developed by sounding in the ordinary way.

The tiangulation and plane-table survey on which the hydrography of the Potomac was based has been noticed alteady in the begioning of this chapter. Lieut. Commander Phelps is still at work, and expects to complete the hydrography up to Indian Head by the elose of the year. The following are the statistics of work at the present time:

| Miles run | 1,668 |
| :---: | :---: |
| Augles measured. | 7,190 |
| Number of soundings | 109,794 |

The tides were observed at six stations. About six hundred and fifty miles were run in sounding at the Kettlebottoms alone.

Special service in which the party in the Corwin was employed during the spring will be referred to presently. Mr. Chasles Junken aided in the hydrography, and plotted the chart of the lower Potomac. The results will be transferred to the sheets of the preliminary chart which was at first issued with the soundings given by the reconnaissance.

During such intervals as the duties of the office would permit, the Potomac, between Alexandria and the aqueduct at Georgetown, was carefully sonnded by Captain C. P. Patterson, chief of the Hydrographic Division. He was aided, until the 11th of July, by Mr. L. Karcher, having commenced work on the 27th of May. The course of the Easterm branch and the channel passing to the navy yard are included in this survey.

After closing work, which was done at the end of August, the soundings were plotted for the upper sheet of the chart of the Potomac.

Tidal obseryations were made as usual while the hydrography was in progress.
The following are statistics of the work above Alexandria:

$$
\text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 205
$$


Angles measured..................................................................................... 1, 342

Opcrations of the hydrographic party in York river, Va.-At the opening of the campaign on the Peninsula, between Yolk river and James river, the steamer Corwin, with the hydrographic party under Lieut. Comdr. Phelps, was so placed us to pass at once under the orders of Commodore (now Admi al) Goldsborough, if the exigencies of the naval or military service should so require. In the progress of the siege es 6
of Yorktown, in which the Corwin engaged as one of the flotilla, it was perceived, on the morning of the 4th of May, that the intrenchments had been abandoned by the enemy. Lieut. Comdr. Phelps at once reported the fact to the flag-ship, and was directed to start up York river in company with the steamer Currituck. Near Queen's creek a company of rebel cavalry was dispersed by shells from the Corwin, and a schooner, a sloop, and a launch were captured within a run of thirteen miles above Yorktown, with military stores and personal effects of officers.

Being so directed, the steamer joined the United States gunboat Chocura, which was then passing up, on a reconnaissance towards the head of the river. West Point was found unoccupied, though fifty prisoners from civil life had been left there by the enemy, in wretched condition and without necessary subsistence. Efforts had been made to burn the lumber stored there, and the Corwin, in consequence, remained to prevent further destruction.

A few hours before reaching West Point the party had captured a second schooner, above Bigler's wharf, and next day took possession of a third, and of the sloop Water Witch, which had been abandoned in the Pamunkey river. Much information was gaiaed by Lieut. Comdr. Phelps respecting the movements of the rebel foces, and at once transmitted to the proper quarter.

At this time the hostile garrison which had occupied Gloucester Point was known to be retreating up the east side of York river. To cover the possibility of an attempt to pass through West Point, LieutComdr. Phelps, under ditection of the naval authorities, anchored near the ship-yard, on the night of the 6th, so as to command the approaches to the town. Learning, next morning, that previous measures had diverted the retreat to the east side of the Mattaponi, the Corwin started up that river, and by $3 \mathrm{p} . \mathrm{m}$. had gone thirty-six miles above West Point, learning on the way, however, that the rebel force had crossed during the night. In the evening the steamer returned to her anchorage at the ship-yard, and by throwing shells during the night prevented the burning of the timber there by a party which had destroyed all the other public property in store.

Under permission of the senior naval officer, the party of the Corwin disabled Trice's mill, in King and Queen county, which was at work for the rebel army, learing it, however, capable of being run for the use of the neighboring inhabitants. The party took, at the same time, three teams laden with flour, which were on their way to the rebel troops at Dunkirk.

On the departure of the senior naval officer, Commander William Smith, on the 15 th of May, for the James river, Lieut. Comdr. Phelps was left in charge to protect the government property which was then accumulating at West Point and in the Pamunkey river. During this period of duty the Corwin retook several items of government property, amongst others twelve mail bags which had been the property of the Cnited States Post Office Department, and recovered the gun of a rebel boat that had been burnt by her crew, on the 4th of May, to escape capture by the steamer.

On the 14th of June the schooner Starlight was seized by a party from the Corwin, in the Potopotank river, and sent to the fleet, the fact being made clear that her owner was then serving as lieutenant in the insurgent army at Richmond. Others had been detained, and, after due process, released. The Corwin had, just previously, made another trip up the Mattaponi, in which all was found quiet.

In the afternoon of the 21st of June the third officer of the Corwin, Mr. E. L. Taylor, was sent, with a boat's crew, to King and Queen county, and found, in mail matter which was taken in its passage between Caroline connty and Richmond, intimation that strong re-enforcements had reached the rebel army on the 11th of that month. The letter containing it was immediately sent to General McCleflan.

Lieut. Comdr. Phelps remained at Weat Point until the evening of the 1st of July, and then, in conformity with orders, dropped down to Yorktown. Before doing so, he turned back the steam transport Phila delphia, which, having passed up the river in the night with horses, had so missed notice of the evacuation of the depot on the Pamunkey.

In the course of his service in the vicinity of West Point, Lieut. Comdr. Phelps made and sent to the office a reconnaissance map of the Mattaponi river as far up as the junction of the Mantapike, and also of the course of the Pumunkey river, from West Point to the military station at White Honse.

On the 13th of July orders were received from the Hon. Secretary of the Navy, in accordance with which the Corwin returned to Washington, and was afterwards employed in the duty which has been referred to under the previous head.

Hydrograpky of Metomkin inlet and bay, Va.-This work was ordered for the use of Brigadier General Lockwood, the depth and position of the bar and course of the channel from the inlet to the public wharf on Folly creek being necesmary in the water communication with his command at Drammondtown. The inlet
had been surveyed in 1852 , but, the character of the changes being unknown, commissary stores for the troops had been landed at Pungoteague after its occupation, and from thence carted fifteen miles. After the survey by Assistant Harrison, which will now be referred to, the stores were taken by the most direct way to the military station.

Mr. Harrison commenced the resurvey in January, and met with unusually stormy weather, which much retarded the work. He found no noticeable change in depth at Metomkin inlet, though the bar itself had shifted. Considerable changes had taken place in the shore-line. In reference to the alterations he says:
"The beach just inside of the northern point at the entrance of the inlet has washed away as much as one hundred and fifty metres; the entrance has widened; and the outer shore below the entrance has at one point been swept away for a breadth of more than three handred metres."

Details of men from the 2d Delaware and 2d Maryland regiments, and mcans for transportation, were furnished by General Lock wood.

On the 6th of April Mr. Harrison placed a can buoy on the bar, with such means for security as were then available, but this was swept away a few days after by an unusually severe northeast storm. Two others, with sufficient chain, were afterwards procured at Chincoteague island. One of them, "a spar buoy, thirty feet long, painted red," was placed on the bar about a mile seaward from the entrance; and the other, "a second class can buoy, painted black and white," near mid-channel, about half a mile outside of the mouth of the inlet, and as much inside of the bar.

After completing the hydrography Mr. Harrison's party joined that of Mr. Hosmer, and assisted in the planc-table survey ncar Drummondtown. A tracing combining the results of both surveys has been furnished to General Lockwood.

Mr. H. W. Bache served as aid in the party of Assistant Harrison.
After the completion of the hydrographic sheet the party was assigned to topographical duty in the vicinity of the boundary line between Maryland and Virginia, of which notice has been taken in this chapter, and, later in the summer, in the neighborhood of Norfolk. Mr. Harrison has been subsequently engaged in Section I, and now has charge of the Drawing Division, at the office in Washington.

Magnetic observations.-Before taking the field for the series of observations which has been described under the head of Section II, Assistant C. A. Schott determined at the station near the Coast Survey office the constants of the instruments intended to be used.

After his return to Washington Mr. Schott observed, as at the other stations of the present season, for the magnetic declination, dip, and horizontal intensity at the station near the office. The results found are included with those of Section II in Appendix No. 18.

The instruments employed and general order pursued in regard to the observations have been referred to in the preceding chapter.

Tidal observations.-The tidal observations at Old Point Comfort have been continued successfully by Mr. M. C. King throughout the year, notwithstanding the great liability to interruption last spring. A few intervals in the series, but of no great importance, were occasioned by the jarring of numerous transport steamers in bringing up at the wharf.

## SECTION IV.

FROM GAPE HENRY TO CAPE FEAR, INCLUDING THE COAST OF PART OF VIRGINIA AND oF PART OF NORTH CaROLINA.-(Sketch D, No. 21.)

The surveys made in Section IV were for the use and chiefly under orders from the chief of the military department of North Carolina and the flag-officer of the north Atlantic blockading squadron. They comprise the following :

1. Hydrographic sarvey and development of Oregon inlet, N. C., and buoying of the channel into Pamplico sonnd. Buoys placed to mark the Middle Ground, and reconnaissance for marking the channel of the Neuse river to a point above Newbern.
2. Physical sarvey of Hatteras inlet, N. O. This was directed by the commander-in-chief of the army, and was prosecuted with reference to the cause of encroachment on, and the devising of means for preserving, the site of the forts from further action by the waves of the sea.
3. Hydrographic resurvey of Beaufort harbor, N. C., determining important changes in depth and in the direction of the channels. The same party traced the altered shore-line of the entrance at Beaufort. This survey was made by special request of the Navy Department.

Office-work.-The engraving of coast chart No. 37, Atlantic coast from Cape Henry to Currituck sound, lias been commenced; and preliminary charts of Hatteras inlet (resurvey of 1861) and of Beaufort harbor N. C., (resurvey of 1862,) have been drawn and linhographed.

Hydrography of Hutteras and Oregon infets, N. C., and specia' service in Pamplico sound.-My report of last year contained a notice of the hydrographic resurvey of Hatteras inlet and examination of the currents, intended to facilitate the naval operations which were in progress in the fall of 1861 . The result was that the new chart of the inlet only made more apparent the natural difficulties of the passage. Tracings from it were furnished for the use of the second expedition, which was preparing in the winter, under the command of Major General Burnside and Commodore (now Admiral) Goldsborough, to move in the waters of Pamplico and Albemarle sounds; and, as intimated in my last report, a party, well acquainted with the localities, was assigned to accompany the expedition, in crder to render such further service as might be needed.

Assistant A.S. Wadsworth joined the military expedition of Major General Burnside at Annapolis on the 8th of January, and reported at once to Brigadier General Foster. When the fleet arrived off Hatteras inlet the weather was bad; yet the local knowledge of Mr. Wadsworth was made effective in verifying the recorded soundings, and in piloting vessels of the expedition through the intricate channel of Hatteras inlet, and in keeping the channel buoyed. Though subject to rapid changes, the shoals near the entrance were found to have only slightly altered in contour since the careful survey made by Lieutenant Commander Phelps, in November, 1861.

Tracings from all the plane-table sheets of the vicinity of Roanoke island and other quarters on this part of the coast had been made at the office on the full scale, and supplicd for the use of the military and naval commanders.

Mr. Wadsworth accompanied the joint expedition in the successful attack which was made early in February on the rebel forts and intrenched lines on Roanoke island, and after its occupation supplied tracings of the environs of the forts from the topographical sheets. Fortunately, the minute topographical survey of the island was almost complete when the war commenced, the instruments with which Sub-Assistant Mechan was working at its south end, to close the survey, being seized in the spring of 1861.

Having intimate local knowledge of the shores of Albemarle sound, Mr. Wadsworth also attended the detachment sent to Elizabeth City and to other points on its north side, and returned to Hatteras on the 11th of March. He accompanied the army in the expedition to Newbern, and there took charge of the schooner Bancroft, which had arrived on the 24th of March, with facilities for executing any special hydrography that might be needed in the military operations. The party in the schooner was employed until the 5th of April in sctting stakes to mark the channel above Newbern, and on completing that service returned to Hatteras, where preparations were at once made for joining the party of Assistant Henry Mitchell, who had been specially assigned in March for the survey of Oregon inlet. This work was undertaken in the hope that a practicable channel might be found to shorten and facilitate the passage of small transports to Roanoke island.

Assistant Wadsworth crceted the signals and assisted in measuring the requisite angles. Returning with the party to Hatteras inlet in the latter part of May, he went with it again to Newbern, and assisted in sounding the Middle Ground and in setting buoys. This service having been completed he returned to the inlet soon after, and reached Philadelphia with the Bancroft on the 14th of June.

In his report (Appendix No. 30) Assistant Mitchell gives details of his own operations, and refers to special work performed for the military authorities, which, however, lay quite within the scope of his instructions. This embraced a reconnaissance of a portion of the Neuse river and the buoying out of the Middle Ground.

Sailing directions were furnished for the use of the military department as soon as Oregon inlet was buoyed, which was done under the direction of Mr. Mitchell a few days after the arrival of his party. Tracings of the finished chart were sent at once to Major General Burnside and Commodore Goldeborough, the service being completed on the 20th of May.

The sounding out of the bar and seaward approaches of Oregon inlet was the work of only four days; but the survey of the Swash, where the winding channels are narrow and traversed by atrong tidal drifte, proved a very slow and arduous undertaking. Assistant Mitchell says:
"Oregon inlet has worked to the southward since the plane-table survey of 1849 , and as an avenue for commerce it has greatly deteriorated. The chart shows only six feet and a quarter over the bar at mean low tide, and the channel lies so close along the north beach that it can scarcely be regarded as safe for sailing vessels, even in the best weather."

The currents of this as of all other inlets connecting our inland sounds with the ocean are of the half-
tidal class; that is, slack water occurs two or three hours before and after the high water stand, and the maximum flood and ebb drifts occur, respectively, at high and low waters.

The shallowest bulkheads of the Swash, as shown on the chart, are. by one channel, four and a quarter feet; by the other, three feet. Vessels, especially steamers, when under good headway, may force throngh these sand ridges with, perhaps, a foot greater draught. The recent continual passing of steamers over the Hatteras Swash has, I am informed, deepened its channel materially.

The steamer Albemarle, for the use of which Mr. Mitchell received an order from Commodore Goldsborough, having met with an accident just before his party reached Newbern, arrangements were made with Assistant Wadsworth by which the two parties were combined, as already stated, on board the scleoner Bancroft. Special allusion is made by Assistant Mitchell to the cordial co-operation of Mr. Wadsworth.

Mr. Edward Cordell was attached to this party as hydrographic draughtsman, and was prompt and efficient in plotting the work and preparing the chart. Mr. O. P. Dillaway served as aid, and Messrs. Ames and Sengteller as observers.

Assistant Mitchell returned to the office at the end of May, leaving Mr. Wadsworth in charge of the vessel. He was subsequently employed in hydrographic duty in Section I.

Assistant Wadsworth remained at the office after his return in June. He died in Washington on the 9th of Angust.

In a letter addressed to me, dated "Headquarters Department of North Carolina, May 31, 1862," Major General Buruside says:
"I beg leave to express to you my high appreciation of the scrvices of Mr. Henry Mitchell and party, of your department, at Oregon inlet and in the Neuse river. They have worked most faithfully, and given us very valuable charts, sailing directions, and general information."

Physical survey of Hutteras inlet, N. C.-In my report of last year I referred to the fact that 1 had, at the request of Major General McClellan, sent one of my assistants, Mr. Henry Mitchell, to inquire into the nature and causes of the encroachments of the sea upon Fort Hatteras, and the changes in the form of the inlet. Mr. Mitchell remained at and ncar Fort Hatteras until the 9th of Jnouary, when, having completed his observations and compiled bis notes, be returned to the office. A short time after he furnished a full report upon the subjects of his mission, which I communicated to the War Department.

It may not be out of place to refer here to some of the more general inductions which this report contains. The long, sarrow strip of sound which separates Pamplico sound from the ocean is spoken of as "a ridge made by the waves of the sea, which have disintegrated the borders of shallow flats and gradually elevated or heaped up that portion of the material which could not be dissolved or carried off by currents."
"The waves upon a beach are observed to make a selection among the carths with which they come in contact. The vegetable mould and light soils are washed out and borne away in the recoil of the sea and by littoral currents, while the gravel and coarse sands are left rolled up in ridges, near the highest reach of the rollers."

Examinations about Hatteras inlet seemed to show that at the depth of fifteen to cighteen feet below the low water plane the action of waves is not traceable, and that here the antecedent soil of the country may be found.

The report is very full upon the causes of inlets, and shows how dependent the depths of these avenues are upon the amount of outflow and the angle at which this outfow encounters the waves of the sea.

The tides and currents were carefully studied. "In small harbors and bays upon our coast the epochs of the tides and currents are coincident : that is, slack current occurs at the stand of the tide, at high water and at low water. But where the tide wave enters a narrow inlet, connecting with a great inland basin, the case is different. The basin, being nearly tideless, has its surface lying at about the mean level of the seathat is at the half-tide plane-and it is upon this plave that the currents of the inlet must take the initiative. Flood currents can only commence to run in at the inlet when the surface of the ocean has risen above that of the basin; and ebb current must commence when the surface of the former falls below that of the later. Moreover, the maximum velocities must occur when the greatest contrasts of beights between the ocean and sound obtain; that is at ligh water for the fload and at loo water for the ebb. At Hatteras inlet the conditions described are in a great degree realized, although it would appear that the land waters which have accumulated in Pamplico sound have raised its surface somewhat above the half tide plane of the ocean, so that the flood current does not commence until three and a half hours after low water, and gives place to the outflow in less than three hours after high water.
"It is a well known paradox of Hatteras harbor that if a tight vessel grounds on the Bulhhead at high
water, during the strength of the flood current, she will 'cut off', at low water, during the strength of the ebb drift."

An opportunity was offered Mr. Mitchell to examine into the claracter of quicksands of various kinds. He attributes the formation of the deeper class of quicksands to the "drifting of fine silicious dust into lagoons and slues during the prevalence of dry winds." The slucs, which have been occasioned by violent storms, soon become bordered by dangerous quicksands as the wind-drifts encroach upon them. "Sloughs are sometimes caused by the escape of gases from the sands on the rise of the tide."

Among the diagrams accompanying this report there is one showing the variations of density and temperature of the water which occur at different stages of the tide. It was observed that during the cbl or : ouflowing current the water was continually freshening and falling in temperature, the least density and lowest temperature being recorded on the slack of the rising tide. On the other hand, the waters of the flood current came in warmer and denser, reaching their maxima on the slack of the falling tide. This warm water was evidently from the Gulf Stream. "I observed," says the report, "that the state of the atmosphere was much affected, especially at spring tides, by the currents; that it was sensibly more humid and mild during the inflow than during the outfou. A thermometer hanging on the outside of my quarters indicated the changes of the currents at the inlet.

The report contains specifications for building dikes and causeways, and some of the plans are new. In a locality like Hatteras, where material is limited both in quantity and varicty, original methods of construction must be resorted to. Instead of using baskets of stones to protect the exterior slope of a dike, as in Holland, it is proposed to place a large number of cedar trees inclined against the fore shore slope, their butts to be loaded with pig iron, and to lie six or eight feet apart in a trench. These trees are to be connected by two parallel rows of chains, the lower chain sceuriag the trunks, and the upper passing among the branches; thus a continuous matting may be formed which cannot be torm asunder by the breakers, but on the contrary may cause the sands to collect in permanent masses.

Every facility was offered Mr. Mitchell by the commander of Hatteras, the late Brigadier General Thomas Williams, and in a letter from the latter, dated February 4, the return of my assistant is solicited with flattering comments.

Hydrographec resurvey of Beaufort harbor, N. C.-The chart of Beaufort harbor was published in 1857, but, like all other harbors on the South Atlantic coast, its bar and chaunels are known to be subject to changes of very serious consequence to navigation, if not from time to time pointed ont.

The capture of Beaufort and the reduction of Fort Macon by Major General Burnside, having restored the harbor to the possession of the government, a resurvey was ordered in May, so that the port might be made as available as the capacity of the channels would allow for the purposes of the Navy Department. The duty of making the examination and soundings was intrusted to Mr. Albert Boschke, and the schooner Joseph Henry was assigned for the use of his party. The vessel reached Beaufort on the 28th of May.

By natural or artificial changes most of the triangulation marks had been lost, and it was found necessary to determine thirteen stations anew. Nine of these required the erection of large tripods for observing with the theodolite. Mr. Bosehke occupied eleven of the stations and observed eleven hundred and eighty angles. Mr. E. H. Courtenay served as recorder, and the work was drawn by Mr. Charles Heyne as the observations were completed at the several stations. The triangulation was completed on the 13th of June and the soundings commenced next day. For this last duty assistance was furnished by the commander of the United States gumboat Daylight.

The changes in outline noticed at Beaufort entrance made it necessary to resurvey ten miles of the shore, which was done in the usual way, with the plane-table. The nature of the changes will be again referred to. A summary given in the report of Mr. Boschke contains the following as statistics of the hydrography :


Seven current stations prere occupied, each during one full ebb and flood. A tide staff was act ap at the government wharf, Fort Macon Point, from which the tides between the 8 th of June and the $26 t \mathrm{l}$ of July were recorded by Mr. Thomas Thompson.

As the hydrography advanced the ploting of the chart was pushed or, the sailing lines were drawn, and new positions assigned for buoys, 80 as to conform to the actual alterations in the proper courses. The

United States quartermaster at Beaufort furnished a stcam-tug, and the engineer of the Daylight procured the temporary moorings for the buoys. The buoys belonging to the port were found in the city, where they had been deposited by the parties who removed them at the outset of the war.

The following remarks on the changes which have taken place in Beaufort harbor are extracted from the report of Mr. Boschke :
"Considerable changes have occurred on the shores of Bogue and Shackleford banks. The west end of Shackleford bank has made out three hundred aud sixty yards; and from Bogue bank, at Fort Macon Point, sixty yards have washed away. 'Co the westward of Fort Macon Point, on the seaside, and to the eastward of Shackleford Point, the shores bave grown from one hundred to one hundred and fifty yards seaward.
"The present channel and bar are about a third of a mile further west than they were in 1857. The depth on the bar at mean low water has slightly improved. The former channel is obstructed and now gives only seven feet at low water, or no more than the western slue.
"The southwest breakers have changed considerably, there being now a shoal bare at low water in their place. A spot is also barc at low tide on the Middle Ground, and both shoals are at present increasing in size. The channels and shoals of the inner harbor have not matcrially changed."

The resulte of the examination made by Mr. Boschke render it probable hat the bar of Beaufort entrance will continue to move westward for some time in the direction of the main ship channel, and that the depth of water on it may further improve. From a reduction furnished by Mr. Boschke, a new preliminary chart of Beaufort harbor was lithographed at the office in August and distributed for the use of the navy and of the army transports.

The schooner Joseph Henry returned north at the end of July, reaching Boston on the 12th of AugustShe was at once assigued for use to the party of Assistant Harrison, in Section I. The records of observations, the duplicates, and the original chart of the resurvey of Beaufort harbor, are now at the office in Washington.

## SECTION V.

from care fear to sr. mary's river. including part of the coast of north carolina, and the COAST OF SOUTH CAROLINA AND GEORGIA.- (Sketch E, No 25)
The service performed in this section was by parties which accompanied the South Atlantic blockading squadron. Some of the orders of Admiral DuPont, under whose immediate direction the work was done, will be found in Appendix No. 31. The details are stated in the following order, after a few preliminary remarks relative to the organization of the partics, and reference to duty connected with the capture of Fort Walker and Fort Beauregard, the particulars of which were stated in Appendix No. 31 of my report of last year:

1. Rattlesnake shoal, examined by sounding, and buoys placed to mark its ends.
2. Stono river and bar mapped and sounded, including also Folly and Kiawah rivers, and topographical survey of their shores and of the islands near Stono entrance, S. C., showing the forts and rebel intrenchments. The requisite triangulation for these surveys was executed during the present working season. Stono bar and entrance was permanently buoyed by the party.
3. North Edisto entrance, S. C., sounded out. The changes of the channels were developed and buoys set in conformity with the present courses for entering.
4. St. Helena entrance, S. C., examined and buoyed. Sketches were made of the defensive works found on the shores of the sound.
5. Port Royal sound, including Broad and Beaufort rivers and Skull creek; S. C.; extended topographical and shore-line surveys and hydrography, with plans of the rebel fortifications. Buoys were permanently set to mark the channels into Port Royal, and others for the navigation of the interior of the sound.
6. Calibogue sound, S. C., and Savannah river entrance thoroughly sounded and buoyed.
7. Wassaw entrance, Ga., examined, and buoys set to mark the bar.
B. St. Simon's bar, Ga., sounded, and chauges in depth developed. Buoys were placed to mark the channel into the sound.
8. Fernandina harbor, Fla., examined ly soundings on the bar and in the chaunel. The buoys which had been removed by the enemy early in 1861 were found and replaced.

The list given in Appendix No. 36 shows the number of aids to navigation placed by the working parties in each locality for the use of the blockading squadron on the coast of South Carolina and Georgia.

Office Work.-The engraving of Sapelo sound, Ga., Oseabaw sound, Ga., and of St. Simon's sound' Brunswick harbor, and Tutle river, as finished clarts, has been completed. The drawing of general coast chart No. VII, Atlantic coast from Winyah bay, S. C., to St. John's river, Fla., and that of Calibogue sound and Skull creek, forming the inland passage from Tybee roads to Port Royal sound, and the engraving of Savannah river as a finished chart, have been in progress. Additions have been made to the progress sketch of the section. The following preliminary charts have been drawn and lithographed for immediate use, viz: sea-coast of South Carolina ; sea-coast of Georgia and Florida to St. Augustine; Port Royal entrance, with Beaufort, Broad, and Cheehessee rivers ; Caliboguc sound and Skull creek; Wassaw bar; St. Helena sound ; the addition of James' island and Stono river to the chart of Charleston harbor ; and a chart of Stono inlet, : with parts of Stono, Folly, and Kiawah rivers, from the survey of the present year.

Coast Survey operations on the coast of bouth Carolina, Georgia, and part of Florida.—As stated in my last annual report, the party of Assistant C. O. Boutelle, at the end of the year 1861 , was in active service with the naval and military expeditions which moved in several directions from the naval station in Port Royal sound, S. C. Two surveying steamers for a short period, but ultimately only one, (the Bibb being sent to replace the Vixen when disabled, and two schooners, the Arago and the Caswell, were assigned to the charge of Mr. Boutelle. Several of the most active sub-assistants and aids had been attached to his party, their selection being made so as to insure the most thorough efficiency.

Under the orders of Commodore (now Admiral) DuPont, the first duty performed by the party was the temporary buoyage of the south channel into Port Royal sound, and piloting the fleet and army transports over the bar, as stated in my previous report.

After the successful naval attack of the 7th of November, by Admiral DuPont, which restored the waters of Port Royal sound to the possession of the government, the several members of the party were occupied in local surveys until the 24th of that month, or a little beyond the close of the surveying year, at which time my annual report is made up.

In noticing the further operations of the party of Assistant Boutclle reference will be made to the localities in geographical order, in accordance with the plan of previous reports, though this will, in snme cases, invert the order of dates at which the work was executed. The parties proceeded from lort Royal as a centre, and worked north and south of it, but I will notice first the most northern locality of operations, and proceed with the others in the usual order, going southward.

The surveyors were repeatedly under the fire of the enemy, either while co-operating with the naval or military forces by reconnaissance, or when employed in usual field-duty in this section.

Rattlesnake shoal.-It having come to the knowledge of the flag-officer that most of the vessels which ran the blockade of Charleston had taken the advantage of local knowledge to cross the Rattlesnake shoal, Mr. Boutelle was directed to examine it, and to place buoys so that the movements of our blockading vessels might be free from danger. This was promptly done, the buoys being set on the 10tb and 11th of May. The steamer Bibb was used in running the necessary lines of soundings, and the buoy vessel, which was then serving as her tender, in placing the buoys. Two first-class buoys were fixed in position, one at each end of the shoal. The result of the examination was made known to the squadron, and that, with the marks which had been set, had much effect in checking the evasions of the blockade that had become quite frequent in that quater.

Triangulation, topography, and hydrography of Stono entrance and bar, and of Stono, Folly, and Kiawah rivers, S. C.-On the 18 th of May Mr. Boutelle received orders to tranafer his party to Stono inlet, to examine the bar, to buoy the channel, and, if practicable, to pilot in the gunboats which had been sent there as the preliminary to an attack on the fortifications of that vicinity.

On the morning of the 19th the Stono bar was examined, and a channel found giving seven feet at low water. This was temporarily buoyed by the party at once, and permanently marked on the following morning. Assistant Boutelle, aided by Mr. J. S. Bradford, piloted in the gunboats Unadilla, Ottawa, and Pembina. The reconnaissance was extended up the Stono, above Legareville, to a fortification known as "Old Battery," on James' island. When the gunboats were anchored for the night Mr. Boutelle and Mr. Bradford returned to the bar, the steamer Bibb, owing to her dranght, being as yet obliged to anchor outeide.

Some days were occupied in sounding the lower part of the Stono in the vicinity of Bird key, and the remaining part of May and the month of June in hydrographic duty, and in the preliminary work requisite for it. In that interval Assistant Boutelle made two short visits to Port Royal on public gerrice. At Stono he was rejoined by Sub-Assistant W. S. Edwards, in the surveying schooner Arago, and by Mr. Cleveland Rockwoll, these parties haviug completed extensive surveys for military purposes near Port Royal. Mr-

Edwards rendered able assistance in the survey of the rivers connected with Stono inlet, and Mr. Rockwell by tracing the shore-line of the adjacent islands.

The resurvey of Stono bar and inlet revealed great changes which had occurred in the direction of the channel. and in the depth of water. All of the hydrography was, of necessity, done in boats, though the heat of the weather was extreme. The Stono, Folly, and Kiawah rivers were sounded. Mr. Edwards, taking the upper part of the Stono, extended the soundiags to Newtown Cut, above which his progress was stopped by a strong rebel battery.

By the untiring industry of Mr. Rockwell the shore-line survey of Coles, Folly, Kiawah, and James's islands, and that of Bird Key, was ready for the use of the hydrographic party when called for.

The triangulation of this part of the coast of South Carolina was executed in 1855. Some of the stations then used being necessary for the topography and hydrography, the duty of restoring the signals, a work attended with danger, was assigned to Mr. C. H. Boyd. This was done in armed boats, and in one instance, (Big Sandy Pt. station,) it was necessary to have aid from one of the gunboats stationed in the river. Captain J. B. Creighton, of the Ottawa, kindly sent his first cutter, in charge of Master R. K. Duer, to accompany the cutter of the Bibb, which was in charge of Mr. Bradford. No reconnaissance had been made previously. Mr. Bradford reset the signal, and his party returned in the afternoon. Other signals were in like manner set up, and the positions of the buoys and hydrographic points were determined from them.

The position of Fort Pemberton, a rebel intrenchment on Wappoo creek, and of other batteries, and of lookout stations erected by the enemy in the neighborhood of "Secessiouville," was determined in the same way. The exact distance from them to given points, being in each case deduced and stated, proved of great advantage to the gumboats in ranging their guns.

It is proper to remark that during the stay of the Coast Survey party at Stono the buoy vessel was in service as the tender of the steamer Bibb, and, in charge of members of the party of Mr. Boutelle, she piloted in from time to time from the outer bar buoy the gumboats and transports as they were assigned to service in the river. Mr. Boutelle was for the most part personally engaged, under Commander Drayton, senior naval officer at Stono, in reconnaissance, for which his intimate local knowledge fitted him. He accompanied and piloted the expedition up Folly island river, as also the recomaissance of Fort Pemberton, made with the gunboat Ellen, and another, made with the steamer Bibl, up the Kiawah river.

The Coast Survey party left Stono inlet on the 23d of June, the Bibb being then much out of repair, and the time of most of her crew having expired. She had been in service with the party afloat during six consecutive months. On the 1st of July she left Charleston bar, having passed the intervening week at Port Royal, and, after touching on her way north at Fortress Monroe, returned to New York. The Caswell reached New York on the 12th of that month, and the Arago on the day fullowing.

Among the incidents while the party was at work in the vicinity of Stono inlet was the capture of six out of a company of outlying rebel pickets belonging to the twenty-fifth South Carolina regiment, one of whom was about to fire on Mr. Boyd when he was taken. This was effected by Messrs. Boyd and Bradford, who had landed from their boats with four men opposite to Legareville, to examine the western side of James's island. The prisoners were brought in by the party and delivered to Captain Godon, who was at that time (May 21) the senior naval officer at Stono.

North Edisto entrance, S. C.-A partial examination of this harbor was made in December, 1861, with -the steamer Vixen, when Assistant Boutelle piloted into the river the naval expedition under Captain Percival Drayton, U.S. N. No attempt was then made to buoy the channel, nor until the 11th of the following February, after General Sherman had decided to occupy Edisto and the adjacent islands. At that date, and under the orders of Commodore DuPont, Mr. Boutelle, with the steamer Bibb, convoyed the army transport Ben Deford, with the furty-seventh regiment New York volunteers, and, in company with the gunboat Crusader, protected the troops for some time after their landing on Edisto island from night attack, the enemy being then in force only a few miles from Rockville. Daylight was employed by the party in sounding the bar, and the boats of the Bibb returned each night to the vicinity of "Point of Pines House" to guard the approaches to the military station. The hydrographic work was made very difficult by stormy weather, but the labors of the party were successful. A new channel was found to the southward of the old one, and with more water. The bar was thoroughly sounded, and temporary buoys were laid, from the boats.

Commodore DuPont requiring the services of the party in Port Royal sound, the steamer Bibbleft North Edisto on the 23d of February, and did not return until near the end of April. In the last week of that month both channels were permanently buoyed, and a first-class bnoy was placed at the paint where the
channels meet; the sailing lines were plotted; and the sailing directions were drawn out and communicated to the flag-officer.

The triangulation work done at North Edisto was auxiliary to the hydrography, and was executed by Mr. Boyd. Some of the old points were restored, and those, as well as the hydrographic signals and the new buoys, were determined in position. The survey was completed by the end of April, and on the 1st of May the vessel returned to Port Royal. Duxing both of her visits to North Edisto the Bibb had been constantly employed in the protection of the shores, and in scrvice incidental to the objects of the military and naval expedition.

St. Helena sound, S. C.-Assistant Boatelle's party went with the naval expedition which visited St. Helena sound on the 24th of November, and at that time made a preliminary examination of the bar and placed some temporary buoys. As the different vessels of the squadron passed to the bar, they were piloted by members of the Coast Survey party. Drawings and plans of the rebel works were also furnished, the intrenchments there being strong and elaborate. Mr. Bontelle's local knowledge was again made effective, and under his direction the sloop-of-war Dale was piloted through Parrot creek to her anchorage off Otter island. Soundings were made through the tortuous channels of Morgan river and the creek just mentioued, a service rendered hazardous by the narrowness of the streams, as the pilotage was made difficult by the fact that the Dale drew fourteen feet of water. After closing this preliminary service the party left for another station, and did not return to St. Helena until the 5 th of April, for the survey of the bar and entrance. Commodore DuPont having special duty for the stcamer Bibb, Mr. Boutelle, with one of her officers, went to work with the buoy tender, partially sounded the channels, placed large iron buoys in one, determined their position, and took measures for restoring the triangulation points. On the 19th the Bibb, having been relieved, returned with the party, and by the 23 d the bar and channels were thoroughly sounded and buoyed.

Port Royal sound, Beaufort and Proad rivers, Skull creek, \&c., S. C.-As already stated in the beginning of this chapter, the party of Mr. Boutelle was employed in local surveys in the vicinity of Port Royal between the 7th and the 24th of November, 1861, and had in use the steamer Vixen and the schmoner Arago. During that interval obstructions in Port Royal harbor were buoyed; a hydrographic survey of Skull creek was commenced; and some of the party were occupied in restoring the triangulation points, in setting up signals, and in observing with the theodolite, so as to give data for extending the shore-line survey beyond the limits of the published charts.

Sub-Assistant W. H. Dennis and Mr. Cleveland Rockwell arrived on the 1st of December in the steamer Bienville, and at once reported for duty. Mr. Rockwell was directed to take up for military purposes the topography of the inside shore of Port Royal island, and that of the adjacent inside islands. This service he steadily prosecuted, under the orders of Brigadier General I. I. Stevens, to the extent required inland, and his zeal and activity were warmly commended in a communication addressed to me by that commander. Mr. C. L. Bixby aided in this plane-table work.

To Sub-Assistant Dennis was at the same time assigned the topographical survey of the shores of Broad and Beaufort rivers and that of Archer's creek, and the outside shore-line of Port Royal island. The work was commenced immediately, and will be again referred to in the course of this notice.

Sub-Assistant W. S. Edwards reported for duty on the 21 st of December, and with him returned Mr. Bradford, of the party in the Vixen, who had been sent from Port Royal with official despatches after the naval attack of the preceding month. Mr. Edwards at once took charge of the schooner Arago, and began the sounding of Skull creek. He was aided by Mr. W. W. Harding. Mr. Bradford returned to his former position on board of the Vixen.

The party in the steamer proceeded on the $22 d$ to the important labor of surveying and permanently buoying the south and southeast channcls into Port Royal sound, and by the end of December ten first-class iron buoys had been fixed in position in both passages. A change in the direction of the channels was observed, and an iucreased depth. In the south channel was found nineteen and a half feet of water, and in the southeast channel twenty-one feet.

The hydrography of Skull creek was finished by Mr. Edwards on the 3d of January, and that of Broad river at once taken up. About a week afterwards the light-vessel for Port Royal which had been sent out by the Light-House Board was taken to her station and safely moored in the position indicated by Mr. Boutelle. Sailing directions for Port Royal sound were then made out, and, after being approved by the flag-officer, were published for the use of the navy and of the army transports.

The arrival of the steamer Bibb on the 12th of January relieved the Vixen, which had become unfit for service. By an arrangement with the chief quartermaster, Captain Rufus Saxton, U. S. A., the disabled
vessel was shortly after taken in tow by the steamer Baltic as far north as Cape Henry, and thence made her way unaided to New York.

During the month of Janury the ficld-work and lydrography were vigorously carried on. The Bibb was elsewhere employed. Messrs. Demis and Rockwell were surveying the shores of Broad river and Port Royal island. By the end of February the hydrography of Broad river was extended up as far as Hogg's Neck, but it was found impracticable to continue soundings through Whale Branch to Port Royal ferry, as had been intended when the work was taken up.

As already mentioned, the Bibb had been some time on service at North Edisto. She was detained after her return to Port Royal to act as an armed vessel in concert with the Varuna, the greater part of the fleet having gone southward to repossess certain points on the coast of Florida. Mr. Boutelle was also directed to sound and buoy an anchorage proper for the United States ship-of-the-line Vermont, then daily expected at 1'ort Royal. His party executed that duty early in March.

On the 2d of March the steam transport Mississippi, having on board Major General Butler and fourteen hundred soldicrs, destined for the coast of Louisiana, reached Port Royal in distress, the vessel having struck on the Frying Pan shoals. She was then leaking badly. Commander Boggs, senior naval officer at Port Royal, assigned the charge of the repairs to the party in the Bibb, and, by the unremitting labore of Sailingmaster Platt and Chief Engineer French, the transport in the course of a week was declared seaworthy. At the request of General Butler Mr. Boutelle detached Sailing-master A. C. Mitchell from the Arago, with direction to proceed with the expedition to the Gulf of Mexico, his local knowledge of its northern coast being extensive and accurate.

Commodore DuPont detailed the steamer Bibb on the 5th of $\Lambda$ pril to make special visits at the naval stations between Port Royal and Mosquito inlet. Assistant Boutelle being then engaged at St. Helena sound, the vessel went in charge of Mr. Platt, and returned on the 11th. The flag-officer came on board, visited Fort Pulaski, which had just surrendered, and then proceeded in her to Port Royal, where she was returned to the charge of Mr. Boutelle on the 18 th.

The Cuited States frigate Savannah having in the absence of the party struck on a shoal point near the southeast channel, a spar buoy was set to mark the position. This was done after the return of the party from the survey of North Edisto. Mr. H. W. Longfellow, one of the aids in the party of Mr. Boutelle, was detached on the 10th of May and returned to the north, in consequence of illness.

The hydrography of Beaufort river, Archor's creek, Jericho creek, and Cowan creck was reported by Sub-Assistant Edwards complete on the 23 d of May. Mr. Rockwell at the same date had completed the topography between the shores of the Beaufort and Consaw rivers, and was then under orders to report at Stono inlet. Mr. Dennis finished the shore-line survey of Beaufort river and of Archer's and Cowan creeks near the end of May. He returned to the north soon after and engaged in other planestable duty, as I have stated under the head of Section I.

Tybee roads, Calibogue sound, and Savannah river, S. C. and Ga.-In accordance with orders from Flag-Officer DuPont, the surveying party proceeded about the middle of January to examine and bnoy the channels into Tybee roads and Calibogue sound, and notwithatanding the extremely stormy weather at that period, the entrance of the Savannah (Tybee bar) was marked with iron buays, and the sound with spar buoys, by the end of the same month. Other duty, which has been mentioned under several preceding heads, was performed in the succeeding three months.

On the 1st of May, Mr. Boutelle made a careful examination of the lower part of the Savannah river between Fort Pulaski and Square Beacon. Three large hulks had been sunk there by the enemy, and it was found that they had deepened the channel by as mach as nearly six feet. It was, moreover, found that the obstructions could be easily removed.

Sub-Assistant Edwards had taken up the hydrography of Calibogue sound on the 8th of March. He completed that work by the 23d, and then returned to Beaufort river.

One of the baoys set at the entrance of Calibogue sound having been carried away by the collision of a vessel, the working party placed larger buoys in May, and slightly changed the sailing lines, so as to give the best water across the bulkhead.

The facts ascertained in regard to the channel into Savannah river were promptly commumicated to the flag-offeer. Sailing directions to accord with the changes observed were reported without delay.

Wassaw sound, Ga.-Immediately after closing his first examination of Tybee entrance and Calibogue sound, Assistant Boutelle sounded and buoyed the Wassaw bar, and the channel leading into Wassaw sound. This work he finished on the 8th of February, and on the next day furnished sailing directions for the sound
in a report to the flag-officer. He also forwarded a preliminary chart of Wassaw sound to the office in Washington, copies of which were at once made by lithograph, and distributed from the Naval Observatory for the South Atlantic squadron.

The survey of Wassaw entrance, as mentioned in my report of last year, was provided for by instructions issued for the surveying season of $1860-61$. The instructions were not then carricd out, for reasons given in the same report.

St. Simon's bar and sound, Ga.-The surveying party reached St. Simon's entrance on the 23d of March, and at once proceeded to set buoys in place. The examination made then showed that the bar had decreased in depth since the survey of 1857 , the chart of that ycar showing seventeen feet. Mr. Boutelle found only fifteen feet on the bar at low water.

The light-house at St. Simon's having been destroyed by the rebels, the party set a large signal on the ruins, and marked it as a conspicuous object for the use of vessels of the squadron, as a range, when they might have need to run into the sound.

This survey was finished on the 27th of March. Sailing lines proper for entering were at once reported to the flag-officer.

Fernandina bar and Cumberland sound, Fla.-On the 13th of March the surveying steamer Bibb arrived at Fernandina, and at once commenced the examination of the bar. The fact was soon established that the depth of water had changed for the worse, and also that the bar had shifted to the southward. Ouly twelve feet depth was found on it at low water. The channel was buoyed by the party with the old buoys, which had been removed and hidden by the enemy.

Mr. Boutelle, on the occasion of a visit of General Sherman, whom he accompanied to Jacksonville, found thirteen buoys and a lot of mooring chain which had been provided by the Light-house Board. The property was brought away and put to its proper use on other parts of the coast of this section.

In all of the uine harbors examined this year by Assistant Boutelle, the triangulation done was merely auxiliary to the plane-table surveys and hydrography, and was effected by restoring the station points which had been used in the regular progress of the Coast Survey. Without such data the buoys set in position, fifty-four in all, could not have been properly marked on the charts.

I give, in conclusion, a summary of statistics from the field-books of the topographical parties, and from the journals of the hydrographic parties:

TOPOGRAPHY.


HYDROGRAPHY.


It has been stated already, in the notice of work done at Stono inlet, that the steamer Bibb and schooners Arago and Caswell retuined to New York in July. The party in these three vessels had been nine months uninterruptedly employed in their several spheres of duty.

## SECTION VI.

FROM ST. MAKY'S RIVER TO ST. JOSEPH'S BAY, (SOUTH,) INCLUDING THE EASTERN AND PART OF THE Western coast of florida, with The reefs and Keys.-(Sketcr F, No. 32.
The only party available for continuing the survey of this section was prepared to co-operate by reconnaissances, or hydrographic duty, in any military or naval service which might be deemed expedient by the commanders of the department of Florida. None of the harbors of the peninsula below St. Augustine and Cedar Keys having been occupied by the forces of the government during the working season, the party took up and continued the hydrography of the Florida reef This important work will be completed by a party which is now preparing to return to the section.

The magnetic observations have been continued at Key West.
Office-work.-The drawing and engraving of the chart of St. Augustine harbor, and the engraving of St. Mary's river and Femandina harbor, have been completed. Progress has hecn made in the drawing and engraving of general coast chart No. X, Florida reef, from Key Biscayne to Marquesas keys, and coast chart No. 71, Newfound-harbor key to Boca Grande; the engraving of coast chart No. 70, Garden Key to Lower Matacumbe, has been commenced; and the annual additions to the progress sketches of the section have been made. A preliminary chart of the ricinity of the Tortugas, Fla., has been lithographed.

Hydrography of the Florida Reef-Being advised by General Brannan that in the spring of the present year such arrangements would be in progress in his department as might render it desirable that Coast Survey parties should be detailed for work on the coast of Florida, instructions were issued in April, in accordance with which Assistant George Davidson organized a party in the surveying steamer Vixen and schooner James Hall. As in other cases, on the coast below Cape Henlopen, he was directed to co-operate, as far as possible, with any military operations that might be devised. To that end the Vixen was furnished with two Parrott guns, and was well provided with other means for making or resisting attack. Some delay occurred in fitting out the Vixen, the call, at that time, for iron-clad gunboats having pre-engaged all the suitable mechanies. The vessel did not reach Key West until the 14th of May, having touched at Port Royal to deliver despatches from the blockading squadron off Charleston and to take in coal. Admiral Dul'ont, at Port Royal, promptly ordered such facilities as furthered the wishes of Assistant Davidson to be at his destination.

Upon consulting with General Brannan, at Key West, it was found that operations by the land forces were not contemplated. The bays on the western coast of Florida, moreover, were all in possession of the enemy, so that the unfinished work could not be profitably taken up.

In accordance with the discretionary instructions which had been given, Assistant Davidson transferred his party to the Florida reef, on which a stretch of twenty-five miles remained to be sounded in order to complete the chart. The parties of Assistant G. A. Fairfield and Sub-Assistant C. T. Iardella being under his general direction were likewise moved to that locality in the schooner James Hall, and signals were erected for the prosecution of the outside hydrography. The weather proved unfavorable, being marked by excessive rains and heary squalls. Attempts were made to work by the boats, but these being frustrated the sounding-lines were mostly run by the steamer. The area sounded out embraces Alligator, Crocker, Conch, and Pickle reefs, (See Sketch No. 32,) and leaves a gap of but a few miles in the outside hydrography of the reef. Soundings were carried seaward to the depth of forty fathoms. While the work was going on the positions of the steamer and most of those of the boats were determined by two theodolites from long bases.

The statistics of this work are as follows:

| Hydrngraphic signals erected | 10 |
| :---: | :---: |
| Miles run in sounding. | 422 |
| Angles measured. | 1, 119 |
| Number of soundings. | 15,965 |
| Area sounded out, (square miles) | 70 |

A tidal station was occupied on Indian Key, at which nearly a thousand observations were recorded in the space of twenty-six days. The zero of the tide-staff was referred to the bench-mark previously used, and which was more distinctly marked by Mr. Davidson. He also reported on the condition of the lettered beacons on the Florida reef, some of which had been displaced. In the interest of navigation, the following remark occurs in his report: "As seen from seaward, Indian Key is so well and so peculiarly marked by the houses and cocoa trees that a sketch of it was taken from the edge of the Gulf Stream, on the line of best water for crossing the reef to the anchorage in soft bottom about six hundred yards off the key, and also to give Alligator reef on the starboard hand a good berth." This sketch will be engraved for the finished chart of the Florida reef.

Sub-Assistant C. Fendall was attached to the party of Assistant Davidson. Messrs. A. T. Mosman, L. L. Nicholson, and A. R. Fauntleroy served as aids. Assistant Fairfield and Sub-Assistant Iardella heartily co-operated in prosecuting the hydrography.

During a heavy blow on the 4th of June the schooner Hall dragged her anchors and was driven on the coral rocks of Indian Key. After three days of severe labor she was hauled off by the steamer Vixen. Assistant Davidson acknowledges the valuable assistance of Acting Master Wm. Richardson, U. S. N., in his efforts to get the veasel off.

Late in June the two vessels repaired to Key West, where the needful facilities for coaling and watering had been on different occasions supplied by General Bramnan. The season for active operations in this section being past, both parties returned to New York. Assistant Davidson rcported to me personally at Washington, and then took up the reduction of the season's work. The other members of the parties have, since the middle of July, been employed at various localities in Sections I and II.

The steamer Vixen, with her armament, was transferred to the Navy Department on the 12th of July. At the end of October she was returned to the Coast Survey, and is now fitting out for the completion of the hydrography ontside of the Florida reef.

Magnetic Observations.-Sub-Assistant J. G. Oltmanns remained in charge of the magnetic instruments ' at Key West until near the end of March of the present year, when he was detailed for duty near the mouths of the Mississippi, of which notice will be taken in a succeeding chapter. The regular photograplic and differential observations were continued by Sub-Assistant F. F. Nes, aided by Mr. G. F'. Ferguson, until May, when Mr. Samuel Walker was left in charge, and Sub-Assi-tant Nes assigned to duty in Scetion II.

In May of the present year magnetometer No. 6 was sent to replace the instrument which was stolen from the temporary observatory at Key West in the midst of the public troubles, and which has not yet been traced.

The records from Key West have been regularly received from Mr. Walker since April.
Tidal Observations.-The series of observations which had been conducted at Fort Clinch was stopped soon after the breaking out of the present war, as stated in my last annual report.

After the port of Fermandina had been regained to the authority of the government, steps were taken for the recovery of the self-registering tide-gauge, but so far without success. According to the most direct information yet obtained the instruments were destroyed at an early date in the war.

## SECTION VII.

FROM ST. JOSEPH'S BAY (NEAR TAMPA) TO MOBILE BAY, INCLUDING PART OF THE WESTERN COAST OF flofida, and the coast of alabama.

Of the most important harhor in this section (Pensacola) the survey is nearly complete, and the chart published sevcral years ago is sufficicut to meet all the present requirements of the naval and transport service. The work yet needed is chiefly in the upper part of the dependencies of the bay, in localities now held by the enemy.

My regret that no party was available for continuing the survey of the western side of the Florida peninsula is lessened by the consideration that none of the unsurvcyed parts have been occupied by the government forces. For the ports visited by our blockading vessels, the preliminary charts have sufficed. Those already published give the soundings in Waccasassa bay, in Cedar Keys harbor, Ocilla river entrance, St. Mark's harbor, the passes of St. George's sound, Apalachicola bay and harbor, and St. Andrew's bay. The hydrography most pressing, and for which preparation has been made by preliminary work, is that of St. Joseph's bay at the lower end of the section, (near Tampa,) and the coast soundings northward from it in the approaches to Bayport, Chassahowitzka bay, Homosassa bay, Crystal bay, and We-thlocco-chee bay. These include St. Martin's reef. The party last employed in St. George's sound, and which, but for the outbreak of the rebellion, would have completed hydiography for the full chart by soundings from Royal Bluff westward to Apalachicola entrance, has been constantly on duty afloat near the seat of war in Virginia and North Carolina. Of other bydrographic work which might be taken up, if means and the requisite parties were available, may be mentioned that to the eastward of, and between St. George's sound and St. Mark's harbor, and that of St. Joseph's bay near Cape San Blas. The triangulation which was commenced in the working seavon of $1860-61$ for the survey of the latter, and the completed topography of the first named locality, furnish ample preliminaries for the soundings

The double party which has usually divided its field-work between this section and Section VHI, passed the entire season in active service at the delta of the Mississippi, of which further mention will be made in the next chapter. Besides this and the single hydrographic party alluded to, the only assistant heretofore connected with the section, and who has usually worked on the western coast of Florida in winter and spring, has been employed in Section I.

Though all due interest has been shown by the blockading officers to whom the inventories were referred, none of the property of the survey which was forcibly taken by rebel citizens from the custody of the topographical party while working last year near Bayport, as stated in my report for 1861, has yet been recovered.

It is supposed that the tide-gauge which had been in use at several stations near Pensacola, and finally stored at Warrington, was destroyed by the buiming of the navy yard.

Office-work.-A sheet showing the entrance to Santa Rosa bay, and a general chart of the northeastern part of the Gulf of Mexico, in two sheets, have been drawn and lithographed for the use of the blockading squadron. Copies of these and of the charts referred to in the notice of the field-work of the section have been largely supplied for the Gulf squadron and for the transport service. The engraving of the chart of Escambia and Santa Maria de Galvez bays, Fla., has been completed.

## SECTION VIII.

FROM MOBILE BAY TO VERMILION BAY, INCLUDING THE COAST OF MISSISSIPPI AND PART of THE COAST OF LOUISIANA.-(Fketon H, No. 3ू.)
The issue of the labors of the party sent to this section shows in a strong light the soundness of the policy which provided means for their supply. The steamer which had been used for the hydrographic work was lost at sea in 1860, and had not been replacel when the war broke out, though I have requested an appropriation for the purpose. Neither of the few vessels left to us by the emergency of the spring of 1861, capable of standing a long sa voyage, was available for the accommodation of the party. The difficulty thus presented was overcome by the liberality of the Hon. Secretary of the Navy, to which further allusion will be made in the detailed notice of the work done.

Office-work.-The engraving of coast chart No. 93, Lakes Borgae and Pontchartrain, has been commenced. Additions have been made on coast chart No. 92, western part of Mississippi sound, and to the progress sketch of the section; and a hydrographic sketch of the southwest pass of the Mississippi has betn lithographed. Drawings and photographs have also been made of the approaches to Forts St. Philip and Jackson, beluw New Orleans, and of a survey of Fort Jackson after the bombardment.

Coave Survey operations between Mebile bar and New Orleans.- UPon the application of Commodore (now Rear Admiral) D. G. Farragut, U. S. N., Sub-Assistsnt R. E. Halter was detailed as topographical assistant to accompany him in the flag-ship Hartford. Subsequently a complete topographical and hydrographical party was organized to accompany the western gulf blockading squadron of Admiral Farragut, and to be especially attached to the mortar fleet of Commodore (now Rear Admiral) David D. Porter, U. S. N. Assistant F. H. Gerdes was placed in charge of this party, his personal knowledge of the Gulf coast, ite harbors, inlete, and anchorages being cxtensive and precise, from a service of many years in this quarter. Sub-Agsistant J. G. Oltmanns and Mr. T. O. Bowie were attached to this party, and some time after SubAssistant Halter also joined it. Mr. Oltmanns and Mr. Halter had both served for several years with Mr. Gerdes on the Guif coast.

In a ready spirit of co-operation in the government service, the Commissioner of the Northwestern Boundary Survey, Archibald Campbell, esq., placed at my disposal for the same duty, the services of Mr. Joseph S. Harris, who had previonsly been attached to a Coast Survey party in this section, and who was also well acquaiuted with the localities in which the squadron was to operate. His intelligence and characteristic energy fully met the expectations which I had formed in organizing the party.

Sub Assistant Halter preceded the other members assigned to this section, having in accordance with my instructions reported to Commodore Farragut on the 17th of January at Philadelphia. He reached Ship island in the flag-ship Hartford, and, under the orders of the commodore, a few days after took up the sound. ing and buoying of the channel of the southwest pass of the Mississippi. For this service, which was completed on the 11 th of March, the schooner Wilder was detailed for his use, by the flag-officer, with a working crew. On the 14 th Mr. Halter piloted the sloop-of-war Brooklyn over the bar, and on the 16 th took in the Gag-ship. Other vessels of the squadron intended for the reduction of New Orleans were furnished with sailing directions for entering the Mississippi by the Southwest Pass.

At the end of March the party in the Wilder, which was then provided with a twelve-pound gun and a well-armed crew, made a reconnaissance to the rear of Fort St. Philip, the object of the commodore being to ascertain the depth that could be carried towards Raccoon Point. It was found that the water approach to the fort afforded only seven feet in depth at a distance of rather more than three miles.

Sub-Assistant Halter returned to the head of the passes on the 5th of April, and reiransferred the Wilder to the naval authorities. When not employed in surveying or reconnaissance, the schooner had served as a tender to the larger vessels of the fleet, and in that way had rendered much general service while in charge of Mr. Halter. On the 10th he reported to Assistant Gerdes, who had arrived in the Mississippi
a short time before, by way of Ship Island, in one of the naval transports. Sub-Assistant Oltmanns reached the Scetion in the same vessel, from Key West, where he had been employed on other duty, to which I have referred under the head of Section VI. Both had rendered assistance in passing vessels of the squadron over the bar of the Southwest Pass, as Mr. Halter had done in the case of the flag-ship and others.

For the use of the Coast Survey party, when it was organized in February, the honorable Secretary of the Navy temporarily transferred to the Treasury Department the steamer Uncas, with a suitable armament. That vessel left New York on the 27th of February, in charge of Mr. Harris, but stormy weather on the run to Hampton Roads showed clearly that she conld not make the passage to the Delta without extensive repairs. With as little delay as possible, the steamer Sachem, of the same class, was there substituted by the Navy Department, and, in charge of Mr. Harris, after a tedious paseage, reached the mouth of the Mississippi on the 10th of April, where she was joined by Assistant Gerfes and the other memhers of his party. By previous arrangement with the Hag-offiecr their services were phaced at the dispoas of Commander D. D. Porter, who was then about moving with the bomb flatilla of the squadron to attack Fort Jackson

In the season previons to the breaking out of the rebellion, the triangulation of the Mississippi delta had been extended up to the vieinity of the lower defences of the river. The points then determined, and the computed distances between them, gave the means for assigning exact distances from either of the forts, by the aid of some additional observations. Mr. Gerdes took up this work on the 12 th. Next day all the members of the party were employed in it, and by the morning of the 18th, when the mortar vessels, twenty-one in number, were in position, the exact distance of each of them from Fort Jackson, and the precise direction, had been made known to the officers in charge. 'Ihis hazardous and difficult service, the river being at that time over its banks, was mainly performed by Mr. Harris and Sub-Assistant Oltmanns, aided by Mr. Bowie. While measuring with the theodolite, Mr. Oltmanns was, in one instance, fired on by riflemen from the bushes on the river bank, but, though at short range, only the oars of his boat were struck. In nearing the forts, on the last day employed in making observations, the party of Mr. Harris came under the fire of the enemy's gunboats, but no casualty occurred, though the distance was inconsiderable.

The bombardment of Fort Jackson opened immediately after the completion of the measurement of distances to the several positions occupied by the mortar vessels. For the next three days Messrs. Harris and Oltmanns remained with the flotilla, and when, from various causes, any of the vessels had to shift their berth, the distances to other positions were computed for them anew. The rest of the party were meanwhile engaged in furnishing manuscript charts of the Mississippi in the neighborhood of the defences, for the use of the Heet, the regular hydrography of the river not having extended, previously, above the passes.

At the request of Commodore Porter, the Sachem dropped down the river on the 22d, to await the return of a detachment which he had sent to reconnoitre in the rear of Fort Jackson. Mr. Oltmanns, having charge of the vessel, then completed an examination which had been commenced the day before by Mr. Harris, Mr. Halter, and himself, of the channels which start near Fort Jackson and connect the Mississippi with the Gulf. Next day the Sachem took the wounded men of Commodore Farragut's fleet to the hospital at Pilot Town.

On the 24th of April Assistant Gerdes accompanied Major General Butler into the waters north of Fort St. Philip, and piloted his boats to the quarantine ground on the east bank of the Mississippi, the intention of the general being to turn the forts, which had not, at that date, surrendered. Sub-Assistant Halter piloted the army transports to the anchorage nearest to the intended landing place, and marked the way for boats to pass up into the quarautine bayou. In performing this duty his party necessarily came within range of the guns of Fort St. Philip, but received no injury. Scveral days after, when the Sachem reached the anchorage of the army transports, soundings to the northward of the fort were begun, to ascertain whether the lightdraught vessels could approach near enough to attack from that side, but the surrender of all the defences of the Mississippi, on the afternoon of the $28 t h$, made it umecessary to continue the operations. The party therefiore rejoined the flotilla of Commodore Porter in the vicinity of Fort Jackson. As a matter of interest a map was made, at his request, by Mr. Harris, to show the condition of the fort at the time of surrender, with marks corresponding in position to the places in which solid shot and shells had struck during the bombardment; the parts burnt, and the portion of the site overflowed by the effect of shot on the levee, that, until so damaged, had always kept out the water of the river at its highest level. A reduction of the drawing here referred to appeared in a printed report from the Navy Department to Congress in June last.

Sub-Assistant Halter was detached from the party on the 30 th of April, and soon after reporting at the oftice in Washington was assigued to field duty in my party in Section I.

On the 6th of May the party in the Sachem accompanied the bomb flotilla to Mobile entrance, and on
the following morning buoyed the bar, so that vessels might pass Sand Island light. The purpose being merely a reconaissunce of the defences at the entrance of Mobile bay, the steamer returned with the fleet, on the 9 th, to the anchorage at Ship Island.

The assistants on board of the Sachem being well acquainted with all the waters in the vicinity of New Orleans, that vessel was taken to pilot the steamers Westfiell, Clifton, and Jacksou on an expedition intended for Lakes Borgne and Pontchartrain on the 13th; but finding at Madisonville that Lieutenant Commander Read, with the gruboat New London, had been looking after the vessels of the enemy in that quarter, Lieutenant Commander Renshaw, senior naval officer of the expedition, decided to return and make an examination of the same kind in Pearl river. This was done on the 15 th. At a point about fifteen miles above the mouth, the river being there so narrow and crooked that the larger vessels conld not pass the bends, Jieutenant Commanders Renshaw and Baldwin came on board the Sachem, and that vessel proceeded alone towards Gainesville, where it was supposed that a small armed vessel of the encmy was lying. With great labor the Sachem was warped around the sharp tums of the stream and taken up as far as the town site of Napoleon. The breadth there and at some places below was barely equal to the length of the vessel. Suddenly a vol. ley of musketry was fired on her from the wooded shore, and that, though instantly returned, was followed by a second volley. Sub-Assistant Oltmanns, executive officer of the Sachem, being at that moment in an exposed position, was severcly wounded by a bullet which pierced his right breast. With this exception, all the officers on board, and the crew, were uninjured, though nearly twenty shots had struck the veseel. To disperse the enemy the Sachem fired round shot and grape into the woods, and was not further molested. Where this occurred the river was not over fifty yards wide, and the bushes were so thick on both banks that the enemy could not be seen. Lieutenant Commander Renshaw deeming it unadvisable to proceed further up, the steamer was swung around with difficulty and passed dowa the stream. After receiving surgical treatment, Mr. Oltmanns was sent to New York. He recovered in part from his hurt, and has since been engaged in field duty in Section III, but is still suffering from the effect of the wound.

Mr. Gerdes had meanwhile collected the buoys belonging to the Delta, all of which had been taken up and secreted by the insurgents, and had towed them to the Southwest Pass. After making the requisite soundings, six buoys were set in place in the channel. A thorough hydrographic reconnaissance of the bar was made, and materials collected for the issue of a chart of the pass. This work ocenpied the party in the Sachem until the 7 th of June, when the vessel was ordered to accompany the flotilla to Vicksburg. The health of Mr. Gerdes having declined, he was obliged to give up the charge of the party after it had reached New Orleans. Mr. Harris again took command of the steamer, but at his request Commander Porter detailed Acting Master E. C. Merriman as executive officer, the sailing-master and the first mate of the Sachem being both sick. Mr. Harris started up the Mississippi on the 13th of June, but near Baton Rouge the machinery of the propeller was disabled by a snag, and the party returned to New Orleans. The Sachem was there transferred to Commodore Farragut, to be put in order for naval service, which he then had in view weat of the Mississippi.

The work for which he had been assigned to the western gulf blockading squadron having been completed, Assistant Gerdes left New Orleans on the 18th of June and reported at the office in Washington.

Mr. Harris sailed for the north on the 10 th of July, and after discharging his party resumed inis duties in the office of the Northwestern Boundary Survey.

Mr. Gerdes has, since his return from this section, completed a hydrographic survey, to which reference has been made under the head of Section I. He is now making arrangements to resume work on the Mississippi in connexion with Admiral Porter. Mr. J. W. Domn, who has performed much duty in plane-table and ordinary recomnaissance in aid of the military operations in Section III, has been assigned to service with the same expedition.

Military surveys in the vicinity of $S t$. Louis, Mo.-This service was performed at the request of Colonel R. D. Cutte, of the staff of Major General Halleck, whose headquarters during the winter of 1861-'62 were at St. Lonis.

Sub-Assistant John. Mechan commenced work on the 15 th of Janary, taking the northwest quarter of the city suburbs, aud surveyed the ground to a range of rather more than three miles in front of the five forts which had been erected there. The forts are included on the plane-table sheets, and also the auxiliary lines of defence. The contour of the ground is represented in his survey by curves of twenty fect clevation, showing, amongst others, one height of a hundred and sixty-five fect. These curves were run carefully with the military water level. Colonel Thorn, of the topographical eugineers, supplied the initial altitudes, which facilitated the execution of the detailed topography.
c. S. 8 .

Mr. Mechan closed work on the 5th of April, and after inking his plane-table sheet and turning it in at the office, was assigned to field duty in Section II, of which mention has tlready been made. His sheet of the military defences of St. Louis shows an area of about fifteen square miles.

Assistant R. M. Bache commenced work in the southern suburbs on the 12th of March, and continued the survey to Carondelet, joining at Chouteau avenue with the work of Sub-Assistant Mechan. He is still engaged in the contouring of the ground, which will probably occupy his party until the end of December, Four miles of the river shore are shown on the sheet, as well as the details of ground three miles back from the shore. These include the sites and surroundings of five forts, and all the particulars of surface that could be needed in the arrangement of military operations. -

The map of Assistant Bache represents ninety-nine miles of road and twenty-eight miles of the courses of creeks and other water-line within an area of fourtcen square miles.

Tidal Observations.-The self-registering tide-gauge left by Mr. P. H. Donegan at the office of the British consul, in New Orleans, after the observer's release from captivity, the particulars of which were stated in my previous report, was recovered after the eapture of that city, and together with the other instruments used by Mr. Doncgan has been returned to the Coast Survey Office.

The ubservations taken at Isle Derniere (Last island,) in April and May, 1861, were received from New Orleans throngh the post office in June of this year, but without explanation. Since the breaking out of the present war nothing has been ascertained either in reference to the observer or the instruments which he had in charge.

## SECTION IX.

FROM VERMILION BAY TO THE RIO GRANDE BOUNDARY, INCLUDING PART OF THE COAST OF LOUISIANA AND THE COAST OF TEXAS. * .
The death of Sub-Assistant Wyllys S. Gilbert, in January of the present year, of which notice has been taken, under the head of Obituarics, in the introductory part of this report, has left the charge vacant of the ouly party that worked in this section during the season of $1860-61$, under a civilian. The only other party available during that year was in charge of Captain George Bell, U. S. A., who was detached from the survey in April, 1861. Mr. Charles Hosmer, who assisted Mr. Gilbert on the coast of Texas, has been constantly employed during the present year in Section III, as was stated under that head. He is now preparing for duty under the orders of Major General Banks, and is specially qualified for rendering assistance in reconnaissances or special surveys by his local knowledge of the most important parts of the southwestern coast, over which he has passed in prosecuting the shore toporraphy in previous years.

In addition to the active assistance, the expedition has been furnished with copies of the coast momoir relating to Texas, and copies of all the charts which have been issued for the western part of the Gulf of Mexico.

Several efforts have been made, but thus far without avail, for the recovery of the schooner Twilight, which, together with the property on board, in April, 1861, was seized by the insurgents at Aransas, and for the property supposed to have been detained at Corpus Christi. The particulars of these seizures were stated in my last annual report. Inventories of the lost articles have been furnished to officers of the blockading squadron, whose convictions of the usefulness of the survey, and interest for its success, were well known. Copies of them have also been made for such contingent use in regaining the articles as the events of the coming winter may render practicable.

Office-work.-The drawing of coast chart No. 108, Matagorda and Lavacea bays, Texas, and of general chart No. XVI, Gulf coast, from Galveston bay to the Rio Grande, has been continued. Progress has been made in the engraving of chart No. 106, Gulf coast, from Galveston bay to Oyster bay, Texas, and the annual additions to the progress sketch of the section have been made. A general chart of the northwestern part of the Gulf of Mexico, on two shocts, has been drawn and lithographed for the use of the blockading squadron.

## SECTION X.

from san diego, on the southern bodndary on the pacific, to the forty-second parallel, including the coast of california - (Skexches J, Nob. 37 and 38.)
The surveys made during the year in this section have developed the coast-line and hydrography in the following named localities :

1. From Point Duma eastward, triangulation has been extended to meet the work going northward and
westward from San Pedro. The stations occupied this year give the shore-line of Bihia Ona, (part of the Santa Barbara channel,) and provide for the topography of San Clemente island.
2. Topographical survey of Bodega bay, and, in comexion with it, that of the coast above and below the entrance. The plane-table work is now continuous from the Golden Gate northward to Bodega bay, inclusive.
3. A hydrographic resurvey made in the lower part of Karquines strait, and continued into Mare Island strait, developing important changes since the previous survey, (1856-57.) Ohanges were also noticed in the hydrography of the eastern part of San Pablo bay, Cal.
4. Bodega bay and roadstead sounded out, in connexion with the coast hydrography between it and Tomales entrance, Cal.
5. Tidal observations at San Diego and San Francisco.

Office-work.-The drawing of Napa creek and Petaluma creek, as finished charts, and the engraving of the same in preliminary form, have been completed, and a preliminary chart of Tomales bay has been drawn and engraved. The engraving of the chart of San Pablo bay is nearly completed, and progress has been made in the drawing and engraving of that of Drakes hay. The drawing of the lower part of San Francisco bay, and of a chart of the Pacific coast from Point Pinos north to Bodega Head, has been comm need Additions have been made to the progress sketches of the section, and to plates of charts previously engraved.

Triangulation of the Santa Barbara channel and of San Clemente island, Cal.-This work was in active progress at the end of the last surveying year, the party of Assistant W. E. Greenwell not having then returned to San Francisco. Before closing for the season he erected thirteen signals on San Clom nte island, intending to go on then with the triangulation; but his vessel, the surveying schooner Humboldt, was driven away by a southcast gale of unusual severity. Mr. Greenwell states that no suason since the antumn and winter of 1849 has been so unfavorable as the last for field operations on the lower part of the Western coast.

Previous to disbanding his party for the winter, Mr. Greenwell set up a tripod signal on the west end and another on the eastern end of Santa Cruz island, (Sketch No. 37.) A similar one was ereeted on Anacapa island, and a fourth at Station San Buenaventura, on the main shore of the channel.

With the opening of spring the triangulation of San Clemente island was resunied, and completed by the 1 st of June. Twenty-five signals were used in that work, additional to the ones prepared in the preceding autumn. The only two anchorages being at the extreme ends of the island, the field operations proceeded from them, and met at stations near the middle. Mr. Greenwell found that San Clemente istand is twentyfour miles in length. Its entire surface is broken into gulches or valleys, without a vestige of wood or running water. The siguals required were got into their places only by great labor and with much difficulty, there being no inhabitant on the island, nor any animals, with the exception of about one hundred and fifty head of wild sheep. Mr. Greenwell states that the highest point on the surface of the jsland has an elevation of about difteen hundred fect.

During the summer the coast triangulation was taken up at Point Duma, (Sketch No. 37,) and stations were occupied for defining seventeen miles of the shore-line eastward, which constitute the bight known as Bahia Ona. This work was joined with the secondary triaugulation, which had been pushed upwards from San Pedro in a previous season. To provide for field operations during the winter, Mr. Greenwell readjusted the main signals, intended for connecting the islands with the coast, and took his camp fixtures to Santa Barbara, the next station which will be occupied on the shore of the channcl. The schooner Humboldt returned to San Francisco in September, field-work for the autumn having been discontinued on the 14th of that month.

Assistant Greenwell was aided by Mr. Julius Kincheloe, and makes special mention of his readiness and efficiency in the performance of duty.

Four volumes, containing the records of the work of the season, with computations and sketches, and descriptions of signals, have been received and deposited in the office. The following statistics, reported by Mr. Greenwell, include also the work of last seasom, the returns of which were not received in time for my last amual report:





```
Number of observations................................................................. 3, 268
```

The angular measurements were made with the eight-inch Gambey theodolite, No. 44.
Mr. Greenwell, in the course of the present scason, again examined the lagroon at the month of the Santa Anna river, the general character of which was described in my previous amual report. Inis attempts to pass in were in all cases attended with risk, and he states that the entrance, for any general puposes, may be regarded as inpmacticable.

Topography of Half Moon bay, Cat.-No report of the season's work has yet been received from SubAssistant W. M. Johnson, who has been engaged in the survey of the shores of Half Moon bay, though it is known that good progress has been made.

One of his plane-table sheets of the survey of Santa Cruz island has been forwarded to the office by Mr. Johmson, and three others of different localities are reported to be nearly complete in their office details.

Topography of Bodega bay, Cal.-This survey, made by Assistant A. F. Rodgers, completes the land work on the shores of Bodega bay. It iucludes the topography of the coast to the southward and westward, and connects with the plane-table survey of Tomales bay, which was made last year by the same party. Above the entrance to Tomales bay, (Sketch No. 38,) the work was taken up early in December and carried on during the winter and spring. In the latter part of April the party commenced the topograplyy of the shores of Bodega bay, and furnished shore-line for the hydrographic sheet of this season, the particulars of which will be mentioned presently. The plane-table survey was extended to a point about four miles north of the mouth of Bodega bay, and from that point southward the topography is continuous to the Golden Gate. It has throughout a breadth of about a mile and a balf.

Assistant Rodgers was aided by Mr. David herr.
The following are statistics of the work, which was closed early in October:
Shore-line surveyed.................................................................... 35 miles.
Area of topography, (square miles)...................................................... . . . 25
The finished topographical sheet of Bodega bay is now at the office.
Assistant Rodgers is at present with his party on the shores of Suisun bay. He will, also, for the time being, take the oversight of the labors of the hydrographic party now on board of the schooner Marey.

Mr. A. W. Chase has been assigned to duty under the direction of Mr. Rodgers.
Hydrographic resurveys in Karquines strait, Mare Island Strait, and off Point Wilson, San Pablo bay, Cal.-These localities were examined by Commander B. F. Sands, U. S. N., assistant in the Coast Survey, soon after the great flood of February, 1862, and the results have been reported on after comparison with the soundings made in 1850-'57.

In reference to Karquines strait, between Benicia and Martinez, Commander Sands remarks :
"The water on the three fathom bank, off the ferry wharf at Benicia, has deepened to four fathoms, and we now find four fathoms on the lump off the Pacific Company's wharf, which in $1856-157$ had only three fathoms on it, but around the wharf itself the water has shoaled in some places five and in others as much as fifteen feet. On the south side of the strait the six and twelve feet curves have made out considerably from the shore."
"At the confuence of Karguines and Mare Island straits an important change has taken place. The spit of the shoal which stretches out from the north shore, at the meeting of the straits, has been cut off and shifted to the southward and westward since the survey of 1856. This encroachment has materially narrowed at its entrance the channel which passes up to the navy yard."

Commander Sands promptly communicated to the light-house inspector of the district the fact concerning the lessened width of the channel into Mare Island strait, and recommended the marking of the spit by a buoy. He thus continues, in allusion to the "bar" or shoal water in San Pablo bay off Point Wilson :
"At the bar, or shoalest water through San Pablo bay, in passing towards the navy yard aloreast of Point, Penole and loint Wilson, the depth serms to have changed somewhat. The four fathom curve of the resurvey is different from that shown by the survey of 1856 , and the bar has shoaled about a foot. The six feet curve also has made out from a quarter to a half a mile from the castern shore of the bay, in the bights between the several points which are represented on the chart."

The finished chart of San Pablo bay, the engraving of which is now nearly completed, will contain the results given in the three hydragraphic sheets forwarded by Commander Sands. The following are the general statistics of the work :

```
Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 150
```



```
Carts of the lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,295
```

The labors of Commander Gands in this part of the section are associated with a sad revent-me losa of his son, Acting Master William I'. Sands, who was drowned in conseguence of an accident near the Mare Island navy yard, on the night of the $2 d$ of April.

The steamer Active was sold, in accordance with my instructions, on the $12 t$ of June, the extent of repairs required to make her seaworthy being too great to be made by our limited appropriation. The hydrography will be done with the schooner Marcy, transferred from the revenue service, until another steamer can be had and maintained.

Hydrograyhy of Bodega bay and roadstead, Cal. -This survey was made in August by Commander Sands, with the schooner Marcy. Shore-line for the chart (Sketch No. 41) was furmished by Assistant Rodgers. The location of the bay is shown by the general chart (No. 40.) Besides the bay and roadstead, the soundings made develop the coast hydrography between the roadstead and the bar of Tomales bay, which was sounded out last year. From Tomales entrance a line of comdings was continued to Point Reyes in the track of vessels that make that headland from the northward. The following is a syopsis of the statistics:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 135 \\
& \text { Angles observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 437 \\
& \text { Casts of the lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4,277
\end{aligned}
$$

This work was concluded on the 2 d of September. Of the chameter of the bay, Commander Sands sars: "Bodega bay will admit vessels of less dranght than eight feet. The roadstead is a good harbor of refuge during the summer monthe from the northwest winds and sea that prevait at that season."

Commander Sands was detached from service on the Coast Surver by an order from the Nary Department dated October 11th. Since his departure from the section, the natical duty in the hydrographic party has been conducted by Aeting Master A. S. Hussey, under the genemal direction of Assistant Aug. F. Rodgere.

Tidal observations.- Under the general supervision of Lieutenant G. H. Elliot, of the corps of engineers, the self-registering tide-gauges at San Dicgo and San Francisco have been kept in sucecseful operation in charge of Messre. A. Cassidy and H E. Uhrlandt.

Mr. Uhrlandt has also, as heretofore, read off the results of the observations for the two stations named above, and for the thind permanent station, (Astoria,) previous to forwarding the rolls to the Coast Survey office.

## SECTION XI.

FROM THE FORTY SECOND PARALLEL TO THE NORTHWESTERN BOTNDARY OF THE UNITED STATES, INCLUD. ING THE COAST OF THE STATE OF OREGON AND THE COAST OF WASHLNGTON TERRITORY.-(Sketcl K, No. 42.)

The work of the only party which was available for duty in this section comprises the following surveys:

1. Supplementary triangulation and topography contiuued at Koos bay, Oregon. A clart of the entrance to the bay has been published.
2. A hydrographic reconnaiesance in Koos bay, supplementary to work done in the vicinity of the bar.
3. Hydrography of the bar and entrance of Gray's harbor, W. T.
4. Tidal observations at Astoria.

Office-work.-A preliminary chart of Koos bay, Oregon, has been drawn and engraved; and the drawing and engraving of a new cdition of the chart of Washington sound, W. T., and the engraving of that of Coquille river entrance, Oregon, have been completed. Additions have been made to the progress sketch and other plates of the section.

Topography of Koos bay, Oregon.-This work was referred to in my last annual report as being in progress at the latter part of the surveying year. Before returning to San Francisco for the winter, SubAssistant J. S. Lawson reoccupied two of the stations used in his triangulation, and at them and two others intended for topographical purposes measured twelve angles by over five hundred repetitions, with the ten inch Gambey theodolite, No. 20. The concluding work for the season was the tracing of shore-li.e and topographical details along the south side of the entrance from Koos Head to Cape Gregory, (Sketch No. 42 .) and further plane-table work in the South Slough. This duty proved difficult by reazon of the dense fogs that prevailed. Six miles of shore-line were added to the plane-table shect, and, as last year intimated, measures were taken for sounding out the entrance of the bay.

Mr. Lawson was aided by Messrs. A. T. Mosman and H. Anderson.

The party in the brig Fauntleroy sailed for San Francisco on the 22d of October, and returned to Koos bay alrout the midde of April. During the winter the computations of the season's work were made, the topographical sheets were inked, and these, with duplicates of the records of observations, were forwarded to the office. The preliminary chart of the entrance of Koos bay which accompanied my previous annual report containe the shore-line traced during the working season.

Hydrographic reconnaissance of Koos bay--The soundings in the chaunel and approaches and on the bar of Koos bay, as chown by the preliminary chart referred to in the preceding notice of work, were made in October, 1861. Sub-Assistant Lawson used for this service the steam-tug Fearless, the sailing vessel employed generally by his party not being suitable for the purpose. The work inside of the entrance was done with one of the boats of the brig Fauntleroy. Tidal observations were made while the party was engaged in soumding. The following are statistics of the reconnaissance:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 65 \\
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 377 \\
& \text { Number of soundingg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,167 } \\
& \text { Area sounded, (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 10
\end{aligned}
$$

This work was plotted soon after the return of the party to San Francisco. The sheet containing the soundings is now at the office, with duplicates of the journals of observations.

Mr. Mosman, one of the aids of the party, was detached on the 1st of November, and has been on duty in the Atlantic sections. Mr. Horace Anderson also aided Mr. Lawson at Koos bay and in the execution of his office-work during the winter.

In April the party in the Fauntlcroy again proceeded to Koos bay, and made a reconnaissance of its upper shores, with a view of completing the entire hydrography of the bay, if practicable, in the carly part of the season. Some of the requisite signals were erected, but it was found, as the party advanced, that natural difficulties there would make it impracticable to take up work in another locality which was also included in my instructions for the season. The inside soundings have been for that reason deferred, but will be resumed and completed at an early date.

HI, drography of Gray's harbor, W. T.-In July the party with the surveying brig Faumteroy proceded northward, the intention being to take up and prosecute to completion the soundinge necessary for a chart of Gray's harbor, provision laving been made for that work by the triangulation, and by the topography which was concluded last year. Sub-Assistant Lawson, after providing what was necessary for the service, took passage from San Francisco and rejoined his vessel at Port William, in Shoal Water bay. Three days had been spent by the crew of the brig in attempting to pass into Gray's harbor. No one belonging to the ricinity would consent to take the ressel in, the belief being general that no definite channel existed to lead across the bar.

Before Mr. Lawson's arrival, his aid, Mr. Anderson, had taken up stores and had commenced work with a boat and crew. A tide-gange was set up, and a register kept of each high and low water. The signals required hat heen erected. Soundings were commenced immediately, but frequent interruptions occarred, in consequence of bad weather. Mr. Lawson met hindrances also in the currents, which are naturally very strong in that vicinity. Close watch was kept for opportunity to work th the bar, but during his stay of nearly two months he reports that only three days offered in which a boat could be risked for sounding, and that during one of them there was a break until the flood tide had run a considerable time. Arrangements had been made for determining the positions of the boat while on the bar by simultaneous angular measurements at three stations on the shores, which were to be occupied, respectively, by Mr. Lawson, Mr. Anderson, and Captain Charles F. Winsor, of the quartermaster's department, who had kindly offered his assistance, and who seconded all the efforts of Sub-Assistant Lawson during the entire working season. At this juncture the sailing-master refused to do duty, and Mr. Lawson was constrained to take charge of the boat, leaving his shore station unoccupied.

The hydrography was continued until the middle of September, when it had embraced about four miles of the inside of the harbor, the anchorage in South bay, and part of the north channel, as will be seen by reference to the reaulting chart (Sketch No. 44,) which accompanies this report. The following is a summary of the hydrographic statistics:
Miles run in sounding ..... 128
Angles measured ..... 1,036
Number of soundings ..... 15,230
Area sounded, (square miles). ..... 24

Two hundred and eighty-five observations were made with theodolites in determining the positions of the boat when sounding on the bar.

The party of Mr. Lawion returned to their vessel at Bhoal Water bay, and went to sea on the 2sth of September, his purpose being to stop at Koos bay. A very heary and long-continued gale made it impracticable to do so. The Fauntleroy reached San Franciseo on the 8th of October, and was there laid up for the winter. After discharging his crew Mr. Lawson and his aid took up their office-work.

The embarrassment before referred to in connexion with the charge of the boat was relieved by the continued kinduess of Captain Winsor. Under the terms of a loave of absence from the quartermaster at Gray's harbor, he acted as sailing-master of the Fauntleroy and conducted the vessel to San Francisco. His unremitting disposition to oblige is specially mentioned by Sub-Assistant Lawson as having furthered the work of the party.

Mr. Lawson's report contains the following remarks in allusion to the character of Gray': harbor:
"The results of the work confirm my precions estimation of the nature of the entrance. There seems to be no well-defined channel across the bar, and the bar is very uneven and lumpy. In one place I found nine feet of water on it. Nor is the channel as straight as I supposed; it takes a curve to the northward," "According to my experience on the bar the coast current always sets to the northward. The flood tide sets in across the South sands, and not in the channel across the bar. The strong ebb tide striker this off-shore current and is deflected to the north, thas, probably, cansing the curve in the channel. I estimate the off-shore current that runs across the bar to have an average rate of about three knots per hour."

Mr. Anderson was detached from the party of Sub-Assistant Lawson on the 21 st of October, and has since reported in person at the office in Washington. He had served in this section from May, 1860.

Tidal observations.-Mr. L. Wilson has continued, under the general supervision of Lientenant G. H. Eliot, U. S. Engineers, to keep in operation the self-registering tide-gauge at Astoria, in Oregon. He has also furnished a very complete series of meteorological observations.

## COAST SURVEY OFFICE.

Major W. R. Pulmer, U. S. Topographical Engineers, Assistant Coast Survey, retained the charge of the office until the 11 th of April, taking occasional supervision of the division details, while at the same time attached to the staff of Major General McClellan, and at intervals performing active military duty in the army of the Potomac. Since that date the office operations have been directed by Assistant. J. E. Hilgard, the permanent charge having devolved upon him by the death of Brevet Lieutenant Colonel palmer in Junc.

The duties of general assistant were performed until June by Assistant Edward Goodfellow; since that time in turn by Mr. W. L. Nicholson and Mr. J. S. Bradford, of whom the last-named had passed the first half of the working year in field service in Section V, which he is now about to resume. He has been replaced by Mr. C. H. Boyd, who was also of the field party which worked until Jume on the coast of South Carolina.

The report of Assistant Hilgard, (Appendix No. 11,) and the sub-reports accompanying it from the chiefs of the several divisions, give a general view of the occupation in each. Though the foree of the office has been materially reduced since the outbreak of the war, it will be seen by the statistics given in the subreports that the average of work heretofore done has not been remitted. No change in the charge of either branch has occurred within the year excepting in the Drawing division, the charge of which was resigned by Captain T. J. Lee on the 8th of April, his services having been requested by the Bureat of Topographical Engineers.

I proceed to review here briefly the report of the assistant in charge, referring for further details to the Appendix. The office divisions will be mentioned in their usual order.
'Hydrographic division.-The details of office-work, arrangements in regard to vessels for the parties assigned to duty afloat, and an emergency requiring his personal services for the hydrography of the Potomac river, have fully tried the energy of Captain C. P. Patterson, the able chief of this branch of the office. At certain junctures during the year the requisites for service in conncxion with the blockading squadrons, to which reference has been made under the heads of sections, have called for more than usual address and promptitude in action. As the instances occurred, the difficalties have been met and overcome with the sound judgment that has also directed the ordinary details of his division. These have been exceuted, as heretofore, chiefly by two draughtsmen.

Mr. Arthur Balbach, principal hydrographic draughtsman, has verified the reductions prepared for
engraving, and also the soundings on the engraved proofs of charts and on lithographed sheets, adding the sailing lines and the positions of buoys, beacons, \&e., plotted for the purpose in the division, from data furnished by the Light-house Board or by assistants of the Coast Survey. He also verifies the work shown by the original hydrographic sheets, and teste the ranges of sailing directions sent in by the working parties, as a preliminary to the engraving of motes on charts. In addition to the routine duties of the year, he has revised and made additions to the table of depths at port entrances of the United States, which is given in Appendix No. 5 , and, as heretofore, has furnished information to the hydrographic aids as they were assigned to duty in connexion with parties afloat.

Mr. Louis Karcher has made the projections required for the work of the hydrographic partics, and, generally, the reductions for the engraver and lithographer from the original hydrographic sheets. He has assisted in the verification of soundings marked on the sheets turned in, and has plotted two sheets of soundings from the hydrographic journals, in addition to those now in hand of the survey of the Potomac river between Georgetown and Alexandria, in which he assisted Captain Patterson during June and part of July. The miscellaneous duties performed have been, among others, the tracing of curves of equal depth for the cngraver, and the addition of soundings to tracinge from topographical sheets on the full scale.

Tedal Division-Whis has remained under the charge of Assistant L. F. Pourtales. The force of the division has been kept nearly at a minimum, owing to the lessened number of observations received since the breaking out of the rebellion. In Appendix No. 10 the field return is given of the observations recorded within the year, and in Appendix No. 11 a report on the office-work and computations.

Mr. R. S. Avery bas continued the reduction of tidal observations, tabulated the daily inequality for several stations, and has completed the graphical decomposition of those made in the Gulf of Mexico. He is now employed in examining the record of diurnal tides. Mr. John Downes has read off the sheets from the self-registering tide-gauges and reduced the results. Mr. P. H. Donegan, though still suffering from the ill-treatment received at Calcasieu and New Orleans, the particulars of which were stated in my last annual report, has continued on duty and has made various reductions from the tidal registers, besides completing a catalugue of the tidal records now in the archives. In July and August he served as recorder to Assistant Schott in field duty in Section II. Some of the ordinary reductions, and the copying required in the workof the division, have been performed by M. Thomas and S. D. Pendleton.

Computing Nivision.-The charge of work in the computing division has remained with Assistant Oharles A. Schott, of whose qualification for its important duties I have made repeated mention. When engaged in field service in Section II during parts of July and August, the assistant in charge of the office, Mr. Hilgard, directed the detaile of the division. The current office-work has been kept up, though no change has been made in the number of computers, which was diminislied last year. In the Appendix, Nos. 18 and 21 are given the reports of Assistant Schott on observations additional to the duties of the office. In Appendix No. 11 will be found a detailed statement of the labors of each computer. They have been in general as follows : Mr. T. W. Werner has been chiefly employed in computing triangulations. Mr. E. Nulfy in reducing maguetic obervations and in making computations for time, azimuth, latitude and longitude. Mr. James Main has been engaged, generally, in revising astronomical computations, and also in calculations for the magnetic clements at certain stations. Mr. G. Rumpf has been employed in geodetic computations; in extenting the geographical registers, and in the office adjustinent of triangulations. Mr. J. Wiessner has made reductions from the records of angles in primary and other triangulations.

During the year the clerical duties of the division have been discharged in turn by Mr. J. E. Dow and. Mr. G.J. Pinckard.

Drawing Division.-Until the 8th of April, this branch of the office continued under the charge of Captain T.J. Lee, and since under the supervision of Assistant Hilgard, who, a few days after, as already stated, took the general direction of this and of the other divisions of the office. In the matter of details pertaining to the oversight of the division he was assisted by $M r$. W. T. Bright. The distribution of work amongst the draughtsmen has been as follows: Assistont M. J. MLClery has added topographical details to the photographs taken from original plane-table sheets, and propared the photographs for engraving. Mr. $E$. Hergesheimer has been engaged in compiling military maps from the sheets of this and of last year, and in making projections for others. He has also generalized the details of original sheets intended to be photographed, and executed the lettering for first class maps and charts. Mr. A Lindenkohl has worked on topographical and hydrographic reductions, and made projections for the field parties. He has also continued the compilation of geographical sketches of the coast, and the addition of details for the progress sketches. Mr. L. D. Williams has been engaged on fine reductions of topography and hydrography for copper-plate
engraving, and on projections and verification of details. Mr. H. Lindenkoid has continued the construction of lithographic maps and sketches by compilation and engraving on stone, and has also worked on reductions from original plane-table and hydrographic sheets. Mr. F. Fairfax has made reductions of various kinds, projections, and tracings. Mr. J. W. Maede! has executed lithographic tracinge, and others to be used in photography for engraving, besides ordinary tracings and miscellancous work. Mr. T. Petingale has worked upon miscellaneous maps and tracings, and also assisted in another branch of the office in the distribution of charts and compilation of statistics. Messrs. B. Hooe and W. Fuirfux have been employed in making tracings. Mr. T. K. Smith has been engaged since February on tracings and in miscellaneous work. Mr. W. B. MeMurtrie was transferred to this division in August, and has been employed in plotting hydrographic work and in inking plane-table shects.

Engraving Division - The distribution of the details of work in this part of the office has remained during the year in charge of Mr. Edward Wharton. The engravers have been employed as follows: Aessrs. G. McCoy, A. Relle, and J. Enthoffer, upon topographical details from photographic reductions; Mr. John Fheight, upon lettering for first-class clarts; Messrs. A. Scugteller, H. C. Ecans, A. Blondeau, and A. Maedel, upon topography; Mr. W. Phillips, upon topography and sanding; Mr. G. B. Metzeroth, upon topography, sanding, and views for charts; Messrs. H. S. Burnard and WV. Ogrileic, upon sanding generally; Mr. J. C. Kondrup, upon topography and outline engraving for first-class charts; Messrs. E. A. Maedel and W. Langran, upon lettering and figures; Mr. A. Petersen, upon topogmphy and lettering; Mcssrs. $R . F$. Bartle, W. A. Thompson, and $F$. W. Benner, upon topograply, eandiug, and miscellaneous eugraving; Messrs. C. T. Klakring, J. G. Thompsom, and E. H. Sipe, upon lettering and diamams; and Mr. A. Buch/e in further practice with punches as substitutes for cut figures to represent soundinge on charts. Three plates have been prepared by this process for publication.

Photograph and Electrotype Dieiszon.-The details of work done in this division will be found in the report of $M r$. George Mathiot, (Appendix No. 1l,) who has continued in charge. Further improvement has been made in the photographic process, and an important advance in the reversion of the collodion plate in the camera, instead of the tracing which is to be reproduced as a glass "positive." The results of experiments which Mr. Mathot has made in photo-lithography are also given in the appendix.

The newer applications of the photographic process have mod facilitated the miscellaneous work required in the office, and extensive use has been made of them during the past year in producing copies of maps for military purposes. This has been done in addition to the routine work of electrotyping plates and photographing for the use of the engraving division.

Mr. David Hinkle, the intelligent and efficient assistant of Mr. Mathiot, has been constantly employed in the division.

Lithographing Division.-This division, which was organized and added to the office establishment during the month of May, 1861, to meet the increased calls for charts arising out of the exigencies of the war, has been continued in active operation under the charge of Mr. W. L. Nicholson.

Besides the printing of a number of charts from transfers, in order to assist the issue from the copper. plate presses, many impressions have been taken from original drawings, some engraved or drawn npon stone, and others transferred by the ordinary lithographie process. The requirements of the War and Navy Departments have been promptly met. On the two lithographic presses nearly thirty-one thousaud copies of charts and sketches have been printed during the year ending with October, and assistance has been rendered in special cases for the use of the War Department by the rapid duplication of the details of military maps and sketehes.

The preparation and distribution of lithographed descriptions of the coast have been continued. Of the edition now on recond, three hundred and eighty-five copies with accompanying charts have been furnished to officers of the army and navy, in command of expeditions, since the commencement of their issue in August, 1861. Appendix No. 11 shows in full detail the operations in this branch of the office.

Miscellaneous Division.-The duties connceted with the oversight of the copper-plate and lithographic printing, and distribution of maps, charts, and sketches, and the distribution of the annual reports, have also been discharged by Mr. Nicholson since the lat of Jume, when Assistant Edward Goodfellow, who had the charge up to that date, was assigned to field service.

The demand for maps and charts for the use of the army and nary having increased more than sevenfold within the past two years, has called for great activity with the limited means at our disposal for keeping up the supply of printed sheets. The detailed report of Mr. Nickolson (Appendix No. 11) aliows that over fifty-one thousand copies of maps, charts, and sketches have been printed within the year, and that more than cs 9
forty-four thousand of them have been distributed, the greater part (about twenty-six thousand) through the naval obervatory, and the others to officers of the army and nary, the government departments, to captains and pilots in the transport service, and, with the discrimination alluded to in my report of last year, to loyal citizens.

Of special topographical sheets of the vicinity of Washington, which for obvious reasons have not been either engraved or lithographed, about a hundred photographic copies have been furnished from the office for the use of the corps of engincers and principal commanders of the army.

The supervision of hydrographic details in the office, and the arrangements in regard to the vessels of the survey, have bcen, as last year, under the able charge of Captain C. P. Patterson, hydrographic inspector, whose unremitting excrtions in the public service are worthy of all praise.

The services of the general disbursing agent, Samucl Hein, esq., have been continued with his usual zeal and fidelity.
'The clerical scrvices in the office of the superintendent have been acceptably discharged, as heretofore, under the direction of $W . W$. Conper, esq., and the clerical duties with the superintendent in the field, which have been unusually intricate and onerous this year, have been most thoroughly and zealously performed by Mr. J. T. Hoover.

Respectfully submitted by
A. D. BACHE,

Superintendent United States Coast Survey.
Hon. S. P. Chase, Secretary of the Treasury.

## APPENDIX.

## APPENDIX No. 1.

Distribution of the parties of the Coast Survey upon the coasts of the United States during the surveying season of 1861-'62.


APPENDIX No. I-Continued.

| Limits of sections. | Parties. | Operations. | Persons concuctius tions. | Localitios of operations. |
| :---: | :---: | :---: | :---: | :---: |
| Sretion I-Continued. | No. 8 | Tupgraply ....... | A. W. Longfellow, assistant- | Detailed survey of the shores of Iarmouth and Freeport rivers, and of Wolf's Neck, in the upper part of Casco bay, Me. (See aiso Section III.) |
|  |  | Plane-table reconnaissance. | F.W. Dorr, sub-askistant; H. <br> W. Longfellow, aid. | Reconnaissance for defensive purposes, and mapping of the en vironsand southern approaches of the city of Portland, Mc. (See also Section III.) |
|  | 10 | Topography........ | H. L. Whiting, assistant.... | Special plane-table survey of Coaster's Harbor island and of the adjacent shore of Narragansett bay from the environs of Newport, northward, to include Coddington cove, and eastward to Miantonomy Hill, and other details. (Sec also Sections II and III.) |
|  | 11 | Topograpby...-. .- | A. M. Harrison, assistant ; H. W. Bache, aid; F. A. Lucber, aid. | Plane-table survey continued on the islands of Narragansett bay, including parts of Connanicut and Dutch islands, with Taylor's cove and Dutch lisland harbor; and shore-line survey of Prudence, Patience, Dyer's, Gould, and other islands. (See also Section III.) |
|  | 12 | Hydrography ....-- | F. H. Gerdes, assistant; C. Fendall, sub-assistant; T. C. Bowie, aid; F.H.Gerdes, jr., aid. | Soundings completed between the Sheepscot and Kennebec rivers, including Wiscasset buy, Montseag hay, Great and Little Hurl Gate, Little river, and Robin Hood's cove. (See also Seetion VIII.) |
|  | 13 | Hydrography ..... | Edward Cortell, L. L. Nicholson, L. A. Sengteller, J. A. Sample, aids. | Hydrography of Casco bay extended by soundings east of Crotch and Jewel islands to Mark Island ledge; and from Harpswell Neck to the main shore, westward, above Cousin's and Whale Boat islands, and as far as the mouth of Freeport river; Yarmouth and Freeport rivers sounded; supplementary soundings made in the vicinity of Peak's and Bangs's islands, and between Trundy's reef and Portland Head. |
|  | 14 | Hydrography .-.-- | Henry Mitchell, assistant; 0. <br> L. Bixby, O. P. Dillaway, <br> P. Frazer, jr., aids. | Soundings continuedin Narragansett bay, R. I., from Half Way rock, southward, to a point below Goat Island light, including the approaches to Newport harbor, and bydrography of the western passage in the vicinity of Datch island. (See also Section IV.) |
|  |  | Magnetic observations. | Samuel Walker, (part of season.) R. H. Talcott, (part of season.) | Determination of magnetic constants continued montbly at Lastport, Me. (See also Section VI.) |
| Smetron II. |  | Tidal observations. | R. H. Talcott, T. E. Ready .- | Series of tidal observations continued at Eastport, Me., with self-registering and staff gauges; and at Charlestown navy yard, Mass., with box gauge and selfregistering gauge. |
| From Point Judith to Cape Henlopen, including the cuast of Connecticut, $\mathbf{N}$. York, New Jersey, Pennsylvania, and part of Delaware. | 1 | Qeodetic,astronomical, and mag. netic olservations. | A.D. Bache, superintendent; G. W. Dean, assistant; Edward Goodfellow, assistant; R. E. Halter, subassistant; 8. H. Lyman and H. M. De Wees, aids, | Mount Tom, Harnpshire county, Mass., and Sandford Station, in New Haven county, Conn., occupied for connecting the primary lase on Epping Plains (Section 1) with that on Fire island. Observations made at bothstations for latitude, azimuth, and the magnetic elements. |

APPENDIX No. 1-Continued.

\begin{tabular}{|c|c|c|c|c|}
\hline Limits of sections. \& Parties. \& Operations. \& Persons conducting operations. \& Localities of operations. <br>
\hline \multirow[t]{8}{*}{Scetion IIContinued.} \& \multirow[t]{2}{*}{No.

3} \& Triangulation \& W. S. Edwards, sub-assistant; F. H. Dietz, aid. \& Trianzulation of Connecticut river estended upwards from Goodspeed'slanding to Higganam. See also Section V.) <br>

\hline \& \& Triangulation \& | Edmund Blunt, assistant; A. |
| :--- |
| T. Mosman and A. R. Fauntleroy, aids. | \& Triangulation on the east side of Hudson river, in the vicinity of Hhinebeck and Poughkecpsie. <br>

\hline \& 4
5 \& Triangulation \& John Farley, assistant \& Revision of triangulation on the coast of New Jersey from Shark river, southward, to Green island. <br>
\hline \& 5 \& Topography....... \& H. L. Whiting, assistant; J. W. Donn, aid. \& Supplementary topography between Flushing and Jamaica, L. I., and details extended westward to the enrirons of Brooklyn, for completing the new edition of the chat of New York harbor. Planc-table survey of the Hudson river exteuded on the enstern side from Tarrytown, northward, to Croton river, including Sing Sing and other villages. (See also Sections I and III.) <br>
\hline \& 6 \& Topography and hydrography. \& John Mechan, sub-assistant; W. W. Harding and C. S. Hein, aids. \& Shore-hine survey extended to Coxsackie, and soundiegs continned in Iludson river, upwards, from Tivoli to FourMile Point below Coxsackie. (See also Section VIII.) <br>
\hline \& 7 \& Hydrography .-... \& George Davidson, assistant.. \& Special hydrographic examination made in the vicinity of Pea Patch island, Delaware river, and development of changes by comparison with previous survers. Lines of level run on League island, and at Red Bank, N. J. (See also Section VI.) <br>
\hline \& \multirow[t]{3}{*}{8} \& Magnetic obscrvations. \& C. A. Scbott, assistant; P. H. Donegran, aid. \& Magnetic elements determined at Phila. delphia, at Harrisburs, near Brownsville, at Eric, and at Williamsport, Penn'a.; and at Bath, N. Y. (See also Section IIl.) <br>
\hline \& \& \multirow[t]{2}{*}{Tidal observations.} \& \multirow[t]{2}{*}{R. T. Bassett. .-.-.-.-.-.-.} \& \multirow[t]{2}{*}{Obecrvations continued at the station on Governor's island, New York harbor, with self registering tide gauge.} <br>
\hline Section III. \& \& \& \& <br>
\hline \multirow[t]{3}{*}{From Cape Henlopen to Cape Hen$r y$, including the coast of part of Delaware and the coast of Maryland and part of Virginia.} \& 1 \& Triangulation and topography. \& Fairman Rogers, acting asassistant; H. L. Whiting and A. W. Longfellow, assistants; F. P. Webler, Chas Fergueon, Jobn Mechan, and R. E. Halter, sub-assistants; Chas. Hosmer, aid. \& Triangulation and plane-table survey of the banks of the Potomac completed from Blakistone island to Washington, and joined with the topographical survey of the District of Columbia. (See also Sections 1 and II.) <br>
\hline \& 2 \& Topography........ \& John Mechan, sub-assistant; Charles Hosmer, W. W. Harding, and F. A. Lueber, aids. \& Detailed survey of the environs of Williamsport, Md., for military purposes. (See also Sections II and TIII.) <br>
\hline \& 3. \& Topography....-... \& Charles M. Bache, sub-assistant. \& Topography for military nse of the ground north and west of Bladensburg, Md., along the line of the District of Columbia. <br>
\hline
\end{tabular}

APPENDIX No. 1-Continued.


APPENDIX No. 1-Continued.


APPENDIX No. 1-Continned.


APPENDIX No. 1 - Continued.

| Limits of sections. | Parties | Operations. | Persons conducting onera- | Localities of operations. |
| :---: | :---: | :---: | :---: | :---: |
| Srction XContinued. | No. 4 | Hydregraphy ..... | Commander B. F. Sands, U. S. N., assistant. | Hydrographic survey of Bodega bay and roadstead, and of the coast of California between it and the bar of Tomales bay. Soundings made in Karquines strait, between Benicia and Martinez. and at the junction with Mare Island strait; and development of the bar and shoal water off loint Wilson in San Pablo bay. |
|  |  | Tidal observations. | A. Cassidy, H. E. Uhrlandt.- | Regular series continued with self-registering tide-gauges at San Diego and San Francisco. |
| Section XI. <br> From the 42 d paral lel to the northwestern boundary of the United States, including thecoastof Oregon and that of Washington Territory. |  |  |  |  |
|  | --------- | Hydrography ....- | James S. Lawson, sub-assistant; A. T. Mosman, aid, (part of season ;) H. Anderson, aid. | Soundings further extended in Koos bay, Oregon, and hydrographic survey commenced of the bar and entrance of Gray's harbor, W. T. |
|  |  | Tidal observations. | L. Wilson | Observations continued at Astoria, with self-registering tide-gruge. |

cs 10
AP PEN D IX No. 2.
Information furnished from the Coast Survey offce by tracings from original sheets in reply to special calls
during the year 1861-62

| Date. |  | Names. | Data furnished |
| :---: | :---: | :---: | :---: |
| $1861 .$ <br> Nov. |  | Navy Departmunt | Tracing of the topography of the coast of North Carolina from Cape Hatteras to Ocracoke inlet. |
| Dec. | 3 | Captain R. F. Loper, U. S. A | Tracing from the bydrographic resurvey of Hattcras inlet, N. $\text { C. , } 1861 .)$ |
|  | ${ }^{3}$ | Brig. Gen. John G. Foster, U. S. A | Tracings from the hydrographic and topographical sheets of Roanoke island and vicinity, N. C. |
| Jan. | 4 |  | Tracing of the shore-line of the coast of North Carolina 1-200,000. |
|  | 4 |  | Tracings from the hydrographic and topographical sheets of Roanoke island and vicinity, N. C. |
|  | 24 | d | Tracings from topographical sheets, coast of North Carolina. |
| Feb. | 12 | Brig. Gen. Seth Williams, U. S. A. | Tracings from reconnaisbance sheets of White House Point, Lower Cedar Point, and Mathias Point, Potomac river. |
| March | 21 | Brig. Gen. Joseph G. Totten, chief engineer, U. S. A. | Tracing from hydrographic sheet of Casco bay, Me. |
|  | 17 | Com G. J. Pendergrast, U. S | Hydrography of the Delaware river, above Fort Mifflin. Hydrography of the Delaware river, below Fort Miffin. |
|  | 18 | Hon. Henry Ingalls, M | Hydrography and topograpliy of the Sheepscot river, Me. |
|  | 18 | Brig. Gen. W. B. Franklin, E. S. A | Tracing of the topography of the Pocosin river, Chesapeake bay. |
|  | 18 | Lieut. Col. J. N. Macomb, corps of topographical engineers. | 'racing from topographical sheet of the city of Richmond, Ya. |
|  | 20 | do | Tracing from hydrographic and topograplical sheets of the A puomattox river to Petersbarg, Va. |
| A ${ }_{\text {r }}$ ril | 14 | Hon. P. H. Watson, Aseistant Secretary of War_ | Tracing of the topography and hydrography of Sewell's Point, Hampton roads, and vicinity, Va. |
|  | 15 | John A. Clarke, esq, Philadelphia. | 'lopography of Lockwood's Folly inlet and vicinity, N C. |
|  | 16 | Col. Andrew A. Humphreys, corps of topographical engineers. | Topography of Yorktown and vicinity, Va. |
|  | 26 | Lieut. Col. J. N. Macomb, corns of topographical engineers. | Tracing of the topography of Fredericksburg and vicinity, Va . |
|  | 29 | Col. Richard Delafield, corps of engineers. | Hydrography and topography of the vicinity of Fort Schuyler, N. Y. |
| May | 7 | War Department | Tracing of the plane-table survey of Richmond, Va. |
|  | 12 | Bowdoin, Larocques \& Barlow, N. | Shore-line of the Rio Grancie river, Texas, with six, twelve, and eighteen feet curves. |
|  | 12 | do | Geographical positions mouth of the Rio Grande river, Texas. |
|  | 20 | Hon. Denj. Stark, Washington, D. C | Shore-line of the Rio Grande river, Texas, with six, twelve, and eighteen feet curves |
| $J$ tine | 14 | United States district attorney for the southern district of New York. | Tracing showing shore-line, soundings, and currents in the East river, near the Brooklyn navy yard. |
|  | 14 | Charles Hastings, consulting engineer, Brooklyu navy yatd. | Tacing sbowing shore-line, foundings, and currents in the East siver, near the Brooklyn navy yard. |
|  | 14 | Navy Department | Topography and hydrography of League island and vicinity, Delaware river. |
|  | 18 | . do | Hydrography of the upper waters of Stono river, S C , and of the inland passage between Oharleston and Savannah. |
|  | 21 | do | Tracing of the hydrogruphy and topography of the Drlaware river from the Philadelphia navy yard to Fort Miffin. |
| July | 8 | Maj, Gen. George B. McClellan, U. S A.....- | Tracing of the plane-table survey of James river from Harrison's Point to Curl's Neck, Va. |

APPENDIX No. 2-Continued.

| Date. | Names. | Data furnished. |
| :---: | :---: | :---: |
| 1862. |  |  |
| July $\begin{aligned} & \\ & \\ & \\ & \\ & 1 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 2\end{aligned}$ | Maj. Gen. George B. McClellan, U. S. A....--- | Tracing of the plane-table survey of James river from Curl's Neck to Falling creek, Va. |
|  | Brig. Gen. Andrew A. Humphreys, U. S. A...- | Tracing of the James river survey from Kingland's creek to Falling creek, including site of Fort Darling, Va. |
|  | Hon. Henry May, Maryland. | Topography of St. Michael's river, with part of Thirdhaven creek, Md. |
|  | Brig. Gen. Andrew A. Humphreys, C. S A | Topegraphy and hydrography of James river from Sandy loint to Harrison's bar, Va. |
|  |  | Topography of James river from Curl's Neck to Wilton, Va |
|  | do | Topography of James river from Curl's Neck to Cogain's Point, Va. |
| August | Hon. G. V. Fox, Assistant Secretary of the Nary- | T acing of part of Narragansett bay, $\mathbf{R}$ I. |
|  |  | Hydrography of Potomac river from the entrance up to Indian Head. |
|  | Col. Richard Delafield, corps of engineers | Topography and hydrography of the vicinity of Castle Richmond, N. Y. |
|  | Navy Yard Commiseion | Hydrography and topography of League island and vicinity, Delaware river. |
|  | -do | Hydrography and topography of New London harbor and Thames river, Conn. |
|  | Brig. Gen. H. H. Lockwood, U. S. A. | Topography of part of Accomac county, with hydrography of Metombin inlet and Onancock creek, Va. |
|  | Brig. Gen. Andrew A. Humphreys, U. S. A.... | Topography of Appomattox river from City Point to Petersburg, Va. |
|  | Col. Richard Delafield, corps of engineers ..... | Topography and hydrography of Willet s Point and ricinity, L. I sound. |
| Sept. | Lieut. Col. J. N. Macomb, corps of topographical engineers. | Topography of the left bank of the Rappahannock river, Va. |
|  |  | Tracing of a reconnaissance of the roads near Fredericksburg, Va. |
|  | Navy Department | Hydrography of the resurvey made in 1862 of Beaufort harbor, N. C. |
|  | Gouverneur Morris, esq. | Hydrography of Throg's Neck reach, Long Island sound. |
| Oct. | Prof. Warren Holden, Philadelphia | Results of azimuth computations for Girard College, Philadelphia. |
|  | Navy Department | Topography and hydrography of James river from Harrison's Point to Fichmond, Va., manuscript map in three sheets on full scale of survey. |

APPENDIX Yo. 3.
Statistics of fuld and office work of the Vhited States Coast Surrey during the years-


APPENDIX No. 3-Continued.

|  | Previou <br> th 1844 | 1844. | 1845. | 1846. | 1847. | 1848. | 1849. | 1850. | 1851. | 1852. | 18i3. | 18.74. | 1855. | 1856. | 1857. | 1858. | 1859. | 1860. | 1861. | Total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H. drography - <br> Namber of miles run while sounding Area sounded out, square miles... Mites run additional of outside or deep-sea soundings ............. goundings, number of ............. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 29,214 | 1,85; | 3,493 | 3,559 | 3,138 | 8,047 | 4,299 | 5,995 | 10,500 | 9,531 | 9,0:3 | 9,141 | 13, 145 | 15,305 | 12,377 | 8.884 | 9. 4.6 | 9,438 | 2,434 | 168,896 |
|  | 9,601 | 663 | 677 | 574 | 979 | 2,185 | 1,335 | 2,12 | 3,200 | 2,823 | 2, 061 | 1,937 | 3,433 | 3,743 | 2,765 | 1,799 | 4,310 | 1,651 | 223 | 45,913 |
|  | 1,800 | 1,020 |  |  | 210 | 2,240 |  | 1,198 | 2,037 | 360 | 1,902 | 2,793 | 5,219 | 1,202 | 3.218 | 2.093 | 2,353 | 2.375 | .... | 30,019 |
|  | 888,147 | 120.827 | 125, 773 | 220,402 | 128, 402 | 255,003 | 265, 824 | 364,718 | 371,660 | 288,375 | 305,331 | (6, 2 ,45 | - 2, $_{6} 875$ | 434,614 | 506, (134 | 513,607 | 392, 053 | 373,851 | 201,978 | 6,398,774 |
| soundinge in Gulf Stream for tem- <br> perature $\qquad$ |  |  | 118 | 581 | 207 | 4.5 |  |  |  | $\ldots$ | 1,0\%3 | 257 | 310 |  | 478 | 173 | 23. | 230 |  | 4,072 |
| Tidat stations, permanent. | ...... | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 7 | , 7 | 7 | 8 | 8 | 10 | 10 | 11 | 7 | ..... |
| Tidal rtations occupied temporarily. | 127 | 34 | 33 | 39 | 33 | 99 | 35 | 41 | 51 | 78 | 78 | 89 | 81 | 77 | 74 | 53 | 33 | 50 | 33 | 1,434 |
| Tidal parties, number of, in each year $\qquad$ | 2 | 5 | 5 | 5 | 5 | 8 | 11 | 11 | 12 | 9 | 11 | 12 | 13 | 14 | 14 | 13 | 10 | 12 | 7 | . |
| Current stations occupied.... |  | 27 | 42 | 41 | 59 | 54 | $\underline{9}$ | 44 | 41 | 24 | 89 | 10 | 81 | 84 | 156 | 47 | 38 | 84 | 36 | 978 |
| Current parties, number of, in eacls year. $\qquad$ |  | 3 | 5 | 3 | 3 | 4 | 6 | 4 | 7 | 7 | 5 | 3 | 5 | ${ }^{6}$ | 6 | 2 | 2 | ! | 2 | ......... |
| Specimens of bottom, number of... | 1,029 | 2.776 | 89 | 129 | 371 | 769 | 287 | 381 | 278 | @ ${ }^{\text {a }}$ | 141 | 135 | 235 | 1.46 | 429 | 663 | 164 | 182 | 11 | 8,154 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Trinngulation, originas, number of voluthes.......................... | 97 | 12 | 17 | 23 | 17 | 32 | 38 | 40 | 33 | 33 | 61 | 46 | 79 | 96 | 76 | 93 | 94 | 120 | ${ }^{2}$ | 1,095 |
| Astronemical observations, ariginals, number of volumes ...... | 17 | 10 | 11 | 10 | 16 | 23 | 72 | 30 | 41 | $4{ }^{4}$ | 29 | 88 | 3. | 12 | 3.3 | 63 | 27 | 35 | 13 | 614 |
| Magnetical observations, originals, number of volunes. | 4 | 2 | 1 | 6 | 7 | 4 | 3 | 5 | 5 | 7 | 6 | 1 | 33 | 13 | 4 | 10 | 9 | 13 | 17 | 153 |
| Duplicates of the above, number of voluties $\qquad$ | 27 | 26 | 32 | 33 | 44 | 49 | 19 | 23 | 43 | 33 | 76 | 84 | $13: 1$ | 301 | 140 | $16^{18}$ | 77 | 111 | 103 | 1,369 |
| Computati ns, number of volumes | 78 | 23 | 17 | 21 | 26 | 23 | 57 | 24 | 40 | 20 | 101 | 91 | 109 | 99 | 83 | 101 | 88 | 115 | 63 | 1,236 |
| Hydrographic soundinzs and augles, originals, volumes ............. | 188 | 22 | 9 | 19 | 54 | 154 | 134 | 170 | 219 | 206 | 183 | 66 | 332 | 197 | 319 | 102 | 396 | 124 | 123) | 3,307 |
| Ifydrographic somulings and mages, dupticates, votumes. $\qquad$ | 28 | 2 | 6 | 4 | 11 | 11 | 12 | 12 | 16 | 27 | 15 | 7 | 26 | 27 | 91 | 20 | 19 | 10 | 4 | 237 |
| Jidal and current observations, originals, volames. | 127 | 23 | 47 | 31 | 44 | 40 | 67 | 88 | 114 | 199 | 123 | 71 | 193 | 110 | 24.7 | 104 | 75 | 64 | 37 | 1,750 |
| Tidal and currunt observations, du plicates, volumes $\qquad$ |  | 23 | 47 | 31 | 44 | 41 | 63 | 79 | 35 | 132 | 11.4 | 79 | N7 | 100 | 67 | 7 | 57 | 5 | 14 | 1,510 |
| Shets from seffregistering tide gutges, number of $\qquad$ |  |  |  |  |  |  |  |  |  | 26 | 72 | 1106 | 80 | 1193 | 119 | 141 | 149 | 181 | 116 | 1.092 |
| Tuat reductious, manter of vols.. |  | 40 | 94 ! | 102 | $8{ }^{8}$ | 80 | 16 | 54 | 22 | 26 | 17 | 49 | 79 | 73 | 93 | 64 | 5 | 119 | 415 | 1.065 |
| Toual mumer of volumes of records. | 566 | 191 | 257 | 453 | 351 | 456 | 481 | 529 | 914 | 763 | i2s | 69 | 1,115 | 89\% ${ }^{\text {c }}$ | 1,021 | 1,020 | 804 | \%is | 511 | 12,458 |
| Mape and chats- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Topograplical maps, nrig uls .... | 168 | 14 | 16 | 24 | 29 | 20 | 23 | 30 | 41 | 47 | 54 | 45 | 5. | 51 | 36 | 46 | 45 | 42 | 33 | 874 |
| Hydrographic charts, origimbls ..... | 142 | 4 |  | 18 | 18 | 21 | 16 | 90 | 47 | 56 ; | 56 | 32 | 65 | 62 | 51 | 33 | 41 | 37 | 13 | 20\% |

APPENDIX No. 3-Continued.

general note.

Purtien,-An average number is given for the years previous to 1844 . A party operating in more than one
section during the year is cuin section during the year is counted but once.
Chesapguation.-The extent of general coast is measured in general outline, including Delaware and Chesapeake, as well as all open byys, but onitting the minor indentations of the sea eonast. The extent of
Ahore-line is also measured in general outine, and incluiles such rivers only as have been riangulated shore-line is also measured in general outine, and includes such rivers only as have heen iniangulated
Topography.-The length of general coast is measureul similarly to that under triangulation; tui shore line under topograply represents the whole water-line surveyed, including all the minor indentations, as represented on the plane-table sheets
Records.-The total number of volumes of records given in the table is greater than the number now on
nuud, owing to the binding up of separate volumes.

Engraved piates. - Piogress sketches (averaging fourtenen yearty) are unt counted.
Preliminary charts and sketches pullished.- Ineluding a large number of maps of the scene of operations of
the war. Library. - The number of volumes purchased and donated up to 1819 was 655.
In is the he remarked that the numbers appearing in the cellumm of this table for the year inmediately preceling that of its compilatim are, in some cases, suly et to be changed, more or less, in the succeeding report, owing to

## APPENDIX No. 4.

GENERAL LIST OF COAST SURVEY DISCOVERIES AND DEVELOPMENTS TO 1861, INCLUSITE.

1. A ledge with four fathoms of water on it, discovered S.SW. $\frac{1}{4} \mathrm{~W}$. (truc) and a mile and a quarter from P'emaquid light-house, coast of Maine, 1860.
2. Numerous dangerons reefs and ledges developed at the entrance and in the approaches of Damariscotta river, Maine, 1860.
3. Two rocke, one with three and a quarter fathoms, the other with only tea fect of water, and a ledge with three and a half fathoms, found in the chamel of Booth bay, Maine, 1860 .
4. Jeffrey's bank and Jeffrey's ledge, off the coast of Maine, thoroughly sounded out, 1860.
5. Only eighteen feet at mean low water found on the rock one mile to the southward of Seguin island, coast of Maine, 1859.
6. Temple's ledge, near Cape Small Point, Maine, 1857.
7. True position of the Hussey rock, in Casco bay, determined, correcting the erroneous one assigned on previous charts, 1859.
8. Determination of the position of a sunken rock on which the steamer Daniel Webster struck, in Casco bay, on the evening of the 13th of October, 1856.
9. Determination of the dimensions of Alden's rock, near Cape Elizabeth, Maine, 1854.
10. Determination of the position of the "Hue and Cry," the "Old Proprietor," and other dangers off Cape Elizaheth, Maine, 1859.
11. Huzzy:s rock, south of Fletcher's Neck, Maine, determined in position, 1859.
12. Development of a four-fathom bank off Cape Porpoise, Mainc, 1859.
13. Fishing ledge, off Kennebunk, Maine, thoroughly sounded, 1859.
14. A rock one mile to the southward and westward of Boon island, with seventeen feet water. The sea breaks on it in heary weáther, 1858.
15. Development of a rock off Ogunquit, bare at low tides, and very little kiown, 1859.
16. Development of Boon Island ledge, coast of Maine, 1858.
17. A rock off Cape Neddick, Maine, determined in position, 1858.
18. A detached rock, two thirds of a mile northward and castward of York ledge, Me., 1858.
19. Determination of the position of a rock more than a mile off the mouth of York river, Maine, bare at low tides and dangerous to coasters, 1858.
20. Development of Duck Island ledge, 1858.
21. A fishing bank sounded out off Wood island, coast of Maine, 1859.
22. A very dangerons rock, with only six and a half feet water, off the entrance to Portsmouth harbor, New Hampshire, about four nautical miles eastward from the Whale's Back light, 1858.
23. A rock with twelve feet at mean low water about four miles and a third eastward of the Whale's Back, 1858.
24. Determination of the positions of four points of rock in Sandy bay, (Cape Ann,) Mass. 1861.
25. A rock (not on any chart) in the inner harbor of Gloucester, Massachusetts, discovered in 1853.
26. Determination of rocks of Marblelead and Nahant, 1855.
27. Determination of the position of White Rock ledge, at the entrance of Saugus river, Massachusetts, 1860.
28. A bank ninety miles eastward of Boston, with ahout thirty-six fathoms of water, probably a knoll connected with Cashe's ledge, but with deep water between it and the ledge, 1553.
29. Boston harbor; Broad Sound channel thoroughly surveyed and marks recommended, 1845.
30. Several rocks in the fair channel-way in Boston harbor entrance, 1854.
31. An extension of the sand-pit to the southward of Sunken ledge, Boston harbor, since the survey of 1847, 1858.
32. Discovery of a rock with only seventeen feet of water at mean low tide in the Narrowe of Boston harbor, 1860.
33. Special investigation of the curreuts of Boston harbor, 1860 and 1861.
34. A bank (Stellwagen's bank) with ten and a half to fourteen and a half fathoms of water on it, at.
the entrance to Massachusetts bay, and serving as an important mark for approaching Boston and other harbors, 1854.
35. Extension of Stellwagen's bank to the sonfliward and eastward some sisteen or seventeen square miles, enclosed by the twenty-fathom curve, 18.55 .
36. Changes in the vicinity of East harbor, (Cape Cod,) 1857.
37. Special tidal and current obecrvations at the mouth of Scusset river, (Cape Cod bay,) 1860.
38. A dangerous sumken ledge (Davis's ledge) to the eastward and in the neighborhood of Minot's ledge, 1854.
39. Development of a reef extending between Minot's and Scituate light, 1856.
40. A sunken rock, with only six feet on it at low water, off Webster's Flag-staff, Massachusetts bay, 1856.
41. A dangerous rock near Saquish Heal, entrance to Plymouth harbor, 1856.
42. Three rocks determined in position, partly bare at low water, off Manomet Point, Massachusetts bay, 1856.
43. Determination of a rery dangerous rock off Indian Hill, and four miles southward of Manomet Point, Masachusetts bay, with as little as six feet water on it, 1856 .
44. The currents of Cape Cod bay observed with reference to their physical effects on the shores, 1861.
45. Determination of the position of a small rock with less than four feet at mean low water, near the channel and in the vicinity of Great Rock, Myannis harbor, Massachusetts, 1859.
46. Jrobable connexion of George's bank and the deep sea banks north and east of Nantucket, 1855.
47. The decrease of depth, with general permanence of form of George's bank, off the eoast of Massachusetts, 1857.
48. A shoal spot near Little George's bank, 1857.
49. Yon-existence determined of "Clark's bank" and "Crab ledge," laid down on certain charts as distinct from an immense shoal ground off Cape Cod peninsula, 1856.
50. Nantucket shoals; Davis's New South shoals, six miles south of the old Nantucket south shoals, in the track of all vessels going between New York and Europe, or running along the coast from the eastern to the southern States, or to South America; discovered in 1846.
51. Two new shoals north and east of Nantucket; discovered in 1847.
52. Six new shoals near Nantucket, the outermost fourteen and a half miles from land, and with only ten feet water; discovered in 1848.
53. McBlair's shnals off Nantucket ; diseovered in 1849.
54. The tidal currents of Nantucket shoals and the approaches, 1854.
55. Davis's bank, Nantucket shoals; discovered in 1848, and survey finished in 1851.
56. Fiehing Rip, a large shoal extending north and south, about ten miles to the eastward of Davis's bank, and thirty miles from Nantucket, with four and a half fathoms; surveyed in 1852.

5\%. A ridge connecting Davis's New South shoal and Davis's bank; found in 1853.
58. A small bank or knoll with but five fathoms on it, about five miles east of Great Rip, with twelve fathoms between it and Davis's bank and Fishing Mip, the water gradually deepening outside of it to the northward and enstward beyond the limits of the series of shoals, 1853.
59. Discovery of a shoal lying N.NE., over six miles long, and twenty-four miles southeast of Davis's south shoal, with ten to ten and a half fathoms of water, 1860.
60. Discovery of three small banks off the Nantucket shoals in the vicinity of Phelps's bank, and further development of the extent of that shoal ground, 1861.
61. Discovery of Edwards's shoal, one mile and seven-eighths southward of Nantucket light-boat, 1855.
62. Examination of the interference tides of Nantucket and Martha's Vineyard sounds, 1855.
63. The study of the tidal currents of the Vineyard and Nantucket sounds, 1857.
64. Contraction of the inlet at the north end of Monomoy island, and opening of a new entrance to Chatham harbor, 1853.
65. Muskeget channel, surveyed hy Lieutenant C. H. Davis, in 1848, and Lieutenant C. H. McBlair, in 1850.
66. Discovery of two shoal spots, with twelve and thirteen feet water, eastward from Great and Little Round shoals, Nantucket sound, 1856.
67. Determination of two shoal spots near the northern extremity of Davis's bank, with fourteen and eighteen fect water, 1856 .
68. Further development of Edward's shoal, three-fourths of a mile from the southern Cross Rip; Nantucket sound, 1856.
69. Shoal sand ridges diseovered northward of Great Point light, Nantucket somad, 1 s.te.
70. Important changes in geographical feature at the southeastern end of Martha's Vineyard, Maskeret clannel, 1850.
71. Numerons rocks in Mariha's Vineyard sound, Long Island sound, and the varions bays and harbors connected with them.
79. Luddington rocks determined in position, about ten yards apart, a mile and a haff (natical) southwest by compass from New Haven light, 1858.
73. The tidal currents of Long Island somed, 1854.
74. The tidal currents of Hell Gate, 1857.
75. Least water on the Hell Gate rocks determined by dragging, 1857.
76. Tidal currents in Last river, New lork, and surface and sub-currents investigated in New York harbor, the lower bay, and on the bar, 18 as.
77. The currents of the great bay between Massachusetts, Libode Lslaud, Connecticut, Now Fork, and New Jersey, 1855.
78. Gedney's channel in New York bay, having two feet more water than the old channels. Had the true depth of this channel been known in 1778 , (then probably existing, as seen by comparing old and new charte, the French flect under Count D'Estaing would have passed into the bay and taken the assembled British vessels, 1845.
79. The changes in New York harbor, near New York city, between 1845 and 1855.
80. Increase of depth in Buttermilk chanel, ascertained and made known in 1845 by survey of Lientenant D. D. l'orter, United States navy.
81. The existence of a seventeen-foot spot on the shoal off the battery, New York hathor, the extension of the shoal towards the chamel, and the shoaling of the water generally between the shoal and shore, 1859 .
82. Shoal in the main ship chamel of New York harbor, $185 \overline{2}$.
83. The existence and character of sub-currents ascertained as bearing on the physical conditions of New York harbor, 1859.
84. The tides of Hudson river, 1856.
85. Sandy Hook; its remarkable increase traced from the surveys of the topograhical cugineers and olhers, and by several successive special surveys mate between 1844 and 1857.
86. Development, by soundings, of a ridge lying sixteen miles off Barnegat, N. J., with cleven to thirteen fathoms of water, and sixteen fathoms between it and the coast, 1861.
87. Special examination made and changes noted in the vicinity of the Five-fathom bank, oft Cape May, 1861.
88. Delaware kay; Blake's channel at the entrance discovered in 1844; open when the eastern channel is closed by ice. This diseovery has served to develop strikingly the resources of that portion of Delaware.
89. Blunt's channel in Delaware bay.
90. Changes in the Delaware, near the Pea Patch, 1847.
91. Hydrographie changes developed in the Delaware river, at the Bulk Head shoal, near Fort Delaware, at the bar off Fort Miftin, and opposite to Pliladelphia, 1861.
92. The true extent and position of the dangerous shoals near Chineoteague inlef, Virginia, 1852.
93. Metomkin inlet, Virginia, shoaling from elcven to cight feet in the chamel during 1852.
94. Two chancls into Wachapreague inlet, Virgiuia-one from the northward and the other from the eastward; both with seven feet water at low tide, 1852.
95. A shoal half a mile in extent, not put down on any chart, five and a half miles cast from the uorth end of Paramore's island, Virginia. It has but four fathome water on it, and nine fathoms around it, 180 .
96. Great Machipongo inlet, Virginia. Found to have a fine wide channel, with deven feet water on the bar at low ebb and fourteen at high tide. Good anchorage inside, from two to tight fathoms. The bext harbor between the Chesapeake and Delaware entrances, 185.
97. Two shoals near the entrance to the Chesapeake-one four and three quarters matical miles SE. by
E. from Smith's Island light-house, with seventeen feet water upon it; the other, E. by S., nearly seven and three-quarters miles from the same light, with nineteen and a half feet ulen it, 1853.
98. Only three feet water upon the "inner middle," the shoal part of the middle ground, west of the "north channel" at the Chesapeake entrance, 1852.
c $\$ 11$
99. A twenty-five fathom hole two and a half miles W.SW. from Tazewell triangulation point, eastern shore of the Chesapeake. All other charts give not more than sixteen fathoms in this vicinity.
100. A shoal at the mouth of the Great and Little Choptank, in Chesapeake bay, 1848.
101. The sounding and measurement of the bars in Rappahannock river, 1855.
102. The general permanence of the Bodkin channel and shoals in its vicinity, at the entrance of the Patapsco river, between 1844 and 1854 .
103. Changes developed in the shore-lines at the entrance of Little Aunemessex river, Chesapeake bay, 1859.
104. A shoal (New Point shoal) in Chesapeake bay, with sixteen feet water on it, southeast from New : Point Comfort light-house, off Mobjack bay, 1854.
105. Re-examination of York spit, Chesapcake bay, and least water determined, (nine feet,) 1855.
106. York river, Va., as a harbor, 1857.
107. A reconnaissance of the Wimble shoals, near Nag's Head, coast of North Carolina, 1854.
108. Submarine range of hills beyond the Gulf Stream tracked from Cape Florida to Cape Look* out, 1855.
109. Deep water found on Diamond shoal, and a dangerous nine-feet shoal off Cape Hatteras, 1850.
110. A new channel, with fourteen feet water, into Hatteras inlet, formed during the year 1859, which is better and straighter than the old channel.
111. Changes at Hatteras and Ocracoke inlets, 1857.
112. Extent of the sea eucroachment at Cape Hatteras, and changes found near Hatteras inlet, N. C., 1860 and 1861.
113. The general permanence in depth on the bar of Beaufort, N. C., with the changes of position of the channel, 1854.
114. Changes on the bar of Beaufort, N. C., 1857.
115. The well-ascertained influence of prevailing winds in the movement of the bars at Cape Fear and New Inlet entrances, and the gradual shoaling of the main bar; the latter fact being of great importance to the extensive commerce seeking that harbor, 1853.
116. Changes in the main Western and New Inlet channels in Cape Fear, 1855.
117. Frying Pan shoals, off Cape Fear, N. C.; a channcl of two and a half fathoms upwards of a mile wide, distant eleven nautical miles from Bald Head light-house across the Frying Pan shoals. A channel extending from three to four miles from the point of Cape Fear to eight or eight and a half miles from it, with sufficient water at low tide to allow vessels drawing from nine to ten feet to cross safely. A channel at the distance of fourteen nautical miles from Bald Head light-house, one mile wide, with three and a half to seven fathoms water on it. The Frying Pan shoals extend twenty nautical miles from Bald Head lighthouse, and sixteen, seventeen, and eighteen feet water is found seventeen and eighteen nautical miles out from the light, 1851.
118. Shoaling of Cape Fear River bar thoroughly examined for purposes of improvement, 1852.
119. Changes of shore-line and hydrography determined at the Cape Fear eutrances, N. C., 1858.
120. Changes of the Cape Fear bars and channels, 1857.
121. Changes at the entrance of Winyah bay and Georgetown harbor, and the washing away of Lighthouse Point at the same entrance, 1853.
122. Less water found off Cape Romain, by preliminary examination, than has been heretofore assigned, 1859.
123. Maffitt's new channel, Charleston harbor, with the same depth of water as the ship channel, 1850.
124. The changes in Maffitt's channel, Charleston harbor, S. C., from 1852 to 1857.
125. Increase of depth developed in Maffitt's channel, Charleston harbor, S. C., 1858.
126. Changes in the main ship channel, Charleston harbor, 1851.
127. Changes in the channels at the entrance of Charleston harbor, 1852.
128. The remarkable discovery of continuous deep-sea soundings off Charleston, and of soundings in the depth of between four and five handred fathoms beyond the Gulf Stream, 1853.
129. Development of the changes affecting the entrance to North Edisto river, S. C., 1856.
130. Greater depth found throngh the channel of Coosaw river, S. C., (inland passage,) than has been hitherto supposed to exist, 1860.
131. Discovery of a new channel between Martin's Industry (shoal) and the sontheast breakers, Port Royal entrance, S. C., 1856.
132. Discovery of cold water at the hottom of the ocean below the Gulf Stream, along the coast of North and South Carolina, Gcorgin, and Florida, 1853.
133. The discovery of the cold wall, alternate warm and cold bands, and various other features of the Gulf Stream, especially such as concern its surface and deep-sea temperatures, and its distribution relative to the shore and bottom of the ocean.
134. Various facts relative to the distribution of minute shells on the ocean bottom, of probable use to navigators for recognizing their positions.
135. Changes in shore-line and in depth observed in Ossabaw sound, Ga., 1860.
136. A new channel developed leading into Sapelo somd, Ga., three-quarters of a mile southward, and better than the one in use, 1860 .
137. Examination of Doboy, St. Simon's, and Cumberland entrances, 1855.
138. A shoal inside of the entrance to Amelia river, Fla., 1857.
139. Hetzel shoal, of Cape Cañaveral, Fla., 1850.
140. A shoal spot found off the coast of Florida, ten miles from land and fifteen miles NE. of Indian River inlet, 1860.
141. Temperature of $34^{\circ}$ beneath the Gulf Stream, thirty five miles east of Cape Florida, at a depth of three hundred and seventy fathoms, 1855.
142. Further explorations and investigations in developing the character of the Gulf Stream in the Florida channel, 1859 and 1860.
143. A harbor of refuge (Turtle harbor) to the northward and westward of Carysfort light-honse, Florida reef, with a depth of water of twenty-six feet at the entrance, 1854.
144. A new passage, with three fathoms water, across the Florida reef, to Legare harbor, under Triumph reff, (latitude $25^{\circ} 30^{\prime} \mathrm{N}$., longitude $80^{\circ} 03^{\prime} \mathrm{W}$., which, if properly buoyed, will be valuable as a harbor of refuge, 185\%.
145. A safe rule for crossing the Florida reef near Indian key, 1854.
146. Tennessee shoal, Florida reef, developed, giving only twelve feet of water on its outer patch, 1860.
147. The position of a sunken wreck determined and marked, lying off Grassy key, Florida reef, and near the track of vessels, 1860.
148. A new channel into Key West harbor, 1850.
149. Co-tidal lines for the Atlantic coast of the United States, 1854.
150. Rules for navigators in regard to the tidal currents of the coast, 1857.
151. Isaae shoal, near Rebecea shoal, Florida reef; not laid down on any chart, 1852.
152. Channel No. 4, a northeast entrance into Cedar Keys bay, 1859.
153. Directions for entering the harbor from Crystal River offing, west coast of Florida peninsula, 1856.
154. A new channel discovered, leading into St. George's sound, (Apalachicola, Fla.,) at the east end of Dog island, and anchorage connceted with it, 1858.
155. Shoals near the east and west passes of St. George's sound, (Apalachicola, Fla..) and a new chanmel found between St. George's and St. Vincent's islands, 1858.
156. Indications noticed of a decper and better channel forming to lead to the East Pass anchorage, StGeorge's sound, Fla., 1860.
157. Changes in the depth of water observed by comparison of soundings at Perdido entrance, 1860.

15s. Mobile Bay Entrance bar; in 1832 only seventeen feet at low water conld be carried over it ; in 1841 it had nineteen, and in 1847 it had twenty feet and three quarters, as shown by successive surveys, 1847. 159. The diminution, almost closing, of the passage between Dayphine and Pelican islands, at the entrance of Mobile bay, 1853.
160. The currents of Mobile bay specially investigated, 1860.
161. Horn Island channcl, Mississippi sound, 1852.
162. The removal of the east spit of Petit Bois island in the hurricane of 1852 , opening a new commumication between the Gulf and Mississippi sound, and the rendering of Horn Island Pass more eacy of access by the removal of knolls, 1853.
163. The accurate determination of Ship shoal, of the coast of Louisiana, in connexion with the site for a light-house, 1853.
164. An increase of depth of water on the bar of Pass Fourchon, La., 1854.
165. Deep-sea soundings in the Gulf of Mexico, 1855-'56.
166. Tidal phenomena of the Gulf, 1855.
167. The changes at Aransas Pass, Texas, as bearing on the question of a light-house site, 1853.
168. Co-tidal lines of the Gulf of Mexico, 1850.
169. On the effect of wind in disturbing the tides of the Gulf of Mexien, 1856.
170. Development of a har at the entrance of San Diego bay, Cal., 1556.
171. A shoal inside of Ballast Point, San Dicgo bay, with only twelve and a lialf feet of water, not aid down on any chart, 1852.
172. The detcrmination of the position and soundings on Cortez bank, off the coast of California, 1853.
173. Completo hydrographic survey and determination of a point of rock on Cortcz shoal, 1856.
174. Tides of San Diego, San Francisco, and Astoria, 1854.
175. 'The non-txistence of' San Juan island, usually lad among the Santa Rarbara group, 1852.
176. Co-tidal lines of the Jacific coast, 185 E .
177. Determination of Uncle Sam rock, 1855.

17S. Investigation of the currents of Santa Barbara channel, 1856.
179. Red sand marking the entrance to the Golden Gate, 1855.
180. Channel sounded out between Yerba Buena and the Contra Costa, San Franciseo bay, $185 \overline{5}$.
181. A reef developed off the Contra Costa flats, San Francisco bay, Cal., 1858.
182. Whiting's rock determined in position, near the "Brothers," at the entrance of San Pablo bay, Cal. 1858.
183. Further development of the extent of Commission rock, San Pablo bay, 1836.
184. Changes in the chanuel entrance of Humboldt bay or harbor, Cal., 1553 and 1853.
185. Sonth chauncl, Columbia river, surveyed and made arailable to commerce, 1851 . Changes of channels, their sonthward tendency, and a new thee-fathom channel from Cape Disappointment due west to open water, Columbia entrance, 1852. Further changes, 1853.
186. The depth of water on the bars at the entrance of Rogue river and Umpquah river, Oregon, 1853.
187. A shoal at the northern entrance to the strait of Losario, W. T., giving good holding ground in thirty-three fret, 1854.
188. Boulder reef, northwest of Sinclair island, Rosario strait, partly bare at unusually low tides, and surrounded by kelp, 1854.
189. A bank of three and a half fathoms, about a mile off the southwest point of Sucia island, at the northern entrance of Washington sound, W. T., 1858.
190. Belle rock, in the middle of Rosario strait, visible only at extreme low tides, 1854.
191. Entrance rock, at the entrance of Rosario strait, 1854.
192. Unit rock, in the Canal de Haro, W. T., visible only at extreme low tides, 1854.
193. A three-fathom shoal in the strait of Juan de Fuca, off the southeast part of Bellevue, or San Juan island, 1804.
194. Allen's bank, Admiralty inlet, W. T., $185 \%$.
195. A five fathom shoal in the strait of Juan de Fnca, between Canal de Haro and Rosario strait, 1854.
196. A bank in eleven fathoms off the southern entrance to Canal de Haro, 1854.

19\%. The non-cxistence of two islands at the northern entrance of Canal de Haro, laid down on charts, 1853.
195. Various surveys and charts of small harbors on the Pacific coast of the United States, and a conthuous reconnaissance of the entire $W$ estern Coast and islands adjacent, a great part of which was imperfectly known.
199. Winds of the Western Coast of the United States, 1857.

## ADDITIONAL LIST FOR 1862.

1. Two rocks discovered in the approaches to Newport harbor, R. F. One of these has fourteen and a quarter feet of water on it at mean low tide; the other has seventeen feet at low water. Ten other rocks, before known, were determined in position.
2. The shifting of the bar of Metomkin inlet, Va., and changes of shore-line, but without alteration of deptli on the bar.
3. Development of the best line of water for crossing the Kettlebottom shoals, Potomac river, them being no well defined channel.
4. Changes in depth and ontline at Orepon inlet, N. C.
5. Special examination of the tides and currents, with reference to the hydrograplice and shore-Tine changes at Hatteras indet, N. C.
6. Development of the alteration in outline and depth, at the entrance of Beaufort harbor, N. C.
7. Reexamination, by soundings, of the Rattlesnake shoal, S. C.
8. Stono entrance. S. O., sounded, and channel found half a mile to westward of its former position, with slight increase of depth.
9. The shoaling of North Edisto entrance from its former depth, to nine feet of water.
10. St. Helena entrance, $S$. C., examined, and a new channel from the eastward found, giving sixteen feet at mean low water.
11. The south channel of Port Royal sound developed, and ninctcen and a half feet found to be the least depth of water.
12. The channel of the inland passage thoroughly sounded, leading from Port Royal sound to Tybee roads, through Skull creck and Caliboguc sound.
13. The bar and entrance of St. Simon's sound, Ga., examined, showing no material change of depth within the past two years.
14. The shifting to southward and shoaling by several feet of the channel into Fernandina harbor, Fla., having now only eleven feet at mean low water.
15. The further encroachment of the sand spit at the confluence of Karquines and Mare Island etraits upon the channels which lead to the navy yard and to Benicia.

## APPENDIX No. 5.

Table showing the least water in the channcls of certain harbors, rivers, and anchorages on the coasts of the United States; rcprinted from the list of 1859 and revised with additions and tidal data.

| Places. | Limits between which depthe are given. | heast water in chankel way - |  |  |  | Auhorities. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | mean. |  | Spring tides. |  |  |
|  |  | - |  |  |  |  |
| Kennebec river. | On sailing line up to Hanniwell's Peint | $\begin{aligned} & \text { Fect. } \\ & 25.5 \end{aligned}$ | $\begin{gathered} \text { Feet. } \\ 33.6 \end{gathered}$ | Feet. <br> 25.1 | Fett. 34.4 | c. 6.11858. |
| Portand, Maine | From Cape E izabeth to Portland lipht ...................... | 45 | 53.9 | 44.5 | 54.4 | C. S., 1850, 1853, and 1854. |
|  | *Front Portland light to break water .................... ..... | 36 | 44.9 | 35.5 | 43.4 |  |
|  | From breakwater to end of Muajoy Pbine | 30 | 389 | 29.5 | 39.4 |  |
|  | From bieakwater to anchorage ............................ | 16 | 24.9 | 15.5 | 25.4 |  |
|  | Channel way off town and wharves | 27 | 35.9 | 26.5 | 36.4 |  |
|  | From Mmij, y to railroad bridge | 19.5 | 28.4 | 19 | 2x. 9 |  |
|  | From Whate's Batk to Fort Constitution. ............. .... | 42 | 50.6 | 41.4 | 51.3 | $\text { c.s., } 1851 .$ |
|  | From Fort Constitution to the Narrows ...................... | 51 | 59.6 | 50.4 | 60.3 |  |
|  | From the Natrows to the city........... ....... .......... | 45 | 53.6 | 44.4 | 54.3 |  |
|  | Off the wharves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 63 | 71.6 | 62.4 | 72.3 |  |
| Newburyport | Over bar . ......................... ........................ | 7 | 14.8 | 6.6 | 15.7 |  |
| Ipswich... | Over bar ..... ..... ........ .............. .... .............. | 7.5 | 161 | 6.6 | 168 | C. S., 1857. |
| Anuisquam.. | Over bar | 6.5 | 15.5 | 5.6 | 16.4 |  |
| Gloucester ................. | Channel ints southeast harbor. | 30 | 38.9 | 29.1 | 89.8 | \} C. s., 1854. |
|  | Inner harbor chandel to abreast Ten Pound Island light...... | 31 | 39.9 | 30.1 | 40.8 |  |
|  | $\mathrm{U}_{\mathrm{p}}$ into inmer batbor...................................... | 24 | 32.9 | 23.1 | 33.8 |  |
| Salem, Mass . ........... . | Northern slif chanmet, between Baker's and Misery islands. . Sonthern ship chamel, passing Half way Rock, Gonseberry and Eagle islands to the nortliward, and Cat island and | 52 | 61.2 | 51.3 | 61.9 | C. $8 ., 1850$ and 1851. |
|  | Coney island to the southward........................... | 28 | 37.2 | 27.3 | 37.9 |  |
|  | Inside of Salem Neck...................................... | 19 | 28.2 | 18.3 | 28.9 |  |
| Boston, Mass.. | Main ship clannel, between Lovell's and Gallop's islanda.... |  |  |  |  | C. S., 1846, 1847, 1842, and 1843 . |
|  | Broad sound, south chamel ...................... ........ | $19.5$ | 29.5 | 18.8 | 30.1 |  |
|  | President's roads, anchorage ................................... | 31.5 | 41.5 | 30.8 | 48.1 |  |
|  | Main ship channet, between Governor's island ant Castle istand $\qquad$ | 18 | 28 | 17.3 | 28.6 |  |
| Plymouth ................. | Entrance off Gurnet lights.................................. | 21 | 31.2 | 20.3 | 31.7 |  |
|  | South of Duxbury pler, in mid channel | 48 | 582 | 47.3 | 58.7 |  |
|  | Un to anchorige inside the pier head on Long Beach.......... | 14 | 24.2 | 13.3 | 24.7 | C. S., 1857 |
|  | At anchorage inside the pier head. | 24 | 34.2 | 23.3 | 34.7 |  |
|  | Alchorage in the cow Yard ................................ |  | 34.2 | 23.3 | 347 |  |
|  | Uver bar <br> Entering with Boston Neck of port habd, Beavertail and Dutch island lights on starboaril hand, passing between Canonicut Point and Hope island. . | 7.7 | 17.0 | 6.7 | 17.5 | C. s., 1862. |
| Narragemsett bay to Prudence ishad. |  |  |  |  |  | Com. Wedswoth, |
|  | the starlioard hand, up to Gon island | 60 | 63.9 | 59.6 | 64.2 |  |
|  | Anchorage smuthward and westward of Gtat istand.......... |  | 369 | 326 | 37.2 |  |
|  | Abreast of wharves inside of gloat island |  | 24.9 | 20.6 | 25.2 |  |
|  | From Newport harbor, inside of Gult Rocks to Prudence Bland $\qquad$ | 31 | 34.9 | 30.6 | 35.2 | C. s, 1848. |
|  | To Mount Hope bay | 42 | 45.9 | 41.6 | 46.2 |  |
|  | To Mount Hope hay, with Cormornnt Rock, Sachuest Point on port, and Sauglikonnet Point on starboard hand ........ |  | 23.9 | 19.6 | 24.2 |  |
| New York, ................. | Grdney is chasmel......... ............................... | 23 | 27.821.8 | $\begin{aligned} & 92.6 \\ & 16.6 \end{aligned}$ | 28.122.1 | C. s., 1855 und 1256. |
|  | Swash cliannel ......................................... | 17 |  |  |  |  |
|  | Oid South chanmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  | $\begin{aligned} & 25.8 \\ & 33.8 \end{aligned}$ | $\begin{aligned} & 20.6 \\ & 30.6 \end{aligned}$ | 26.1 |  |
|  | Main ship channet, passing Sandy Hook to SW. spit buny.... Main stip channel, after passing sW. zpit buny on NE. | 31 |  |  | 36.1 | le. s., 1855 |
|  | course, one mile up the bay for New York | 23 | 27.8 | 22.6 | 28.1 |  |

* The iepth in channel way varier hetween 6 and $8 t$ fathoms.

APPENDIX No. 5-Continued.

| Places. |  | tieast water in chanfinay. |  |  |  | Authorities. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Meain. |  | Spring tides. |  |  |
|  | Limits between which depths are given. |  |  |  |  |  |
| Arthur's kill ............... |  | F'eet. | Feet. | Feet. | Fect. | C. s., 1855. |
|  | Anchorage at Perth Amh | 22 | 20.9 | 21.5 | 27.5 |  |
|  | From anchorage to $W$ oodbridge whar | 23 | 26.9 | 21.5 | 27.5 |  |
|  | *Fron Woodbridge wharf to Rossville | 13.5 | $1 \times .6$ | 13.0 | 19.2 |  |
|  | from Rossville to Chetsen............................... | 14 | 19.1 | 13.5 | 19.7 |  |
|  | (From Clicisea, in the western chamnel, to Eliznbethport...... | 13 | 18.1 | 12.5 | 18.7 |  |
|  | From Elizabethpert to Shooters' island................ | 6.5 | 10.9 | 6.0 | 11.5 |  |
| Kill van Kull .............. | From Shnoter's island to Hergen Point light house ........... |  |  |  |  |  |
|  | From Bergen Point light-house to New Brighton. ... ........ | 27 | 31.3 | 20.5 | 31.9 |  |
| Newark bay $\qquad$ <br> Hudson river $\qquad$ | From Bergen Point light-house to the mouth of Hackensuck river. $\qquad$ | 7 | 11.6 | 6.5 | 12.2 | $\begin{gathered} \text { C. } 5 ., 1835 . \\ \text { Do. } \\ \text { Do. } \\ \text { C. S., } 1853 . \\ \text { Do. } \\ \text { Do. } \\ \text { c.s. } 1854 . \end{gathered}$ |
|  | From Castle Garden to Manhatanville ...... .... . . . . . . . . | 12 | 36.0 | 31.6 | 36.8 |  |
|  | From Manhatanville to Yonkers | 27 | 34.8 | 23.7 | 31.3 |  |
|  | TFrom Yonkers to Piermont Ferry ...................... ... | 39 | 42.6 | 38.7 | 43.0 |  |
|  | **From Piermont Ferry to Sing Sing .......................... | 94.5 | 23.0 | 24.3 | 28.3 |  |
|  | From Sing Sing to Haverstraw | 26 | 29.1 | 258 | 29.8 |  |
|  | From Haverstraw to Peekskill | 27 | 30.1 | 26.8 | 30.8 |  |
| Delaware bay............. | ttMain ship channel, passing Delaware breakwater ........... | 61 |  |  | 64.9 | C. S., from 1840 in 1844, inclusive. |
|  | Off Brandywine Iight-house. | $43$ | 46.5 | 42.4 | 40.9 |  |
|  | Main ship channet, passing False Liston's trec to abreast of Bombay Hook light $\qquad$ | ${ }^{27,5}$ | 33.4 | 27.3 | 34.2 |  |
|  | Blake's channet, along Flogger shoal........................) | 13.5 | 13.4 | 13.3 | 20.2 |  |
|  | Blake's channel, passing Mahon river light .... ............. | 13.5 | 19.4 | 13.3 | 20.2 |  |
|  | Main slip channel approaching Liston's Puint............... | 20 | 25.9 | 19.8 | 26.7 |  |
| Delaware river . . . . . . . . . | Main ship channel up to Repdy istand ..................... |  |  | 19.6 | 26.3 |  |
|  | Main ship elhanmi, opposite Reedy isiand light-house. ...... | 21.5 | 30.5 | 24.1 | 30.8 |  |
|  | Opposite Delaware City | 30 | 36 | 29.6 | 363 |  |
|  | Up to Christiana Creek light | $20.5$ | 27 | 20.3 | 27.2 | C. S., from 1840 to 1844, inclusive. |
|  | Up to Marcus Hook. $\qquad$ | 20.5 | 87. | 203 | 2 2 .2 |  |
|  | Opposite Chester...................... .................... | 24.5 | 30.7 | 24.4 | 31.2 |  |
|  | Bar off Ulig island ........................................ | 18.5 | 24.7 | 18.4 | 25.2 |  |
|  | Between Gruenwich Point and Gloucester Point. ....... ... | 31.5 | 37.5 | 31.4 | 38.2 |  |
|  | From Grrenwich Point up to Philadelphia. . ................. | 21.5 | 27.5 | 21.4 | 28.2 |  |
| Chesapeake bay ............ | From capes at entrance to Hampton Roads ................. |  |  | 29.8 | 32.8 | 1859, 1853, and 1854. |
|  | Anchorage in Hampton Roads ........................... | 59 | 61.5 | 58.8 | 61.8 |  |
|  | From Hampton Roads to Sewall's Point ................ ... | 25 | 27.5 | 24.8 | 27.8 |  |
|  | South of Sewalls Point, (one mile and a half) ............... | 21 | 235 | 20.8 | 23.6 |  |
|  | Up to Norfoik. .................. . ...... ................. | 23 | 25.5 | 22.8 | $¢ 5.8$ |  |
|  | From Hampton hoads to Sames river, entering to the northward of Newport News midlle ground.. $\qquad$ | 22 | 24.5 | 21.7 | 24.8 |  |
|  | From Hampton Roads to James river, entering to the southward of Newport News middle ground. $\qquad$ | 27 | 29.5 | 26.7 | 29.8 |  |
| Putomac river . . . . . . . . . . | ward of Newport News midar ground..................... |  |  |  |  |  |
|  | ............................................... | .... |  | . |  |  |
|  | .... ...... ................. ............ .... ...... .... ... |  |  |  |  |  |
|  | .... |  |  | …… |  |  |
| York river, Va. | From abreast the tail of York gpit up to Yorktown............. | 33 | 33.5 | 32.7 | 35.8 | 1852, 1853, and 1854. |

* Two bare, each a quarter of a mile, have a less depth than 18 feet.
f A small ahoal, win 12 feet, lies in the middle of the kill, opposite the wharf at Blazing Star; and another, with 10 feet, a quarter of a mile to th nortiward; but depper water is found on east side of both.
$\ddagger$ A shoal, with 4 feet, obstructs the eastern chanmel, half way between Chelsea and its junction with the main channcl.
A Channel very narrow in the vicinity of Black beacon.
|| From Bergen Point light, half way to Newark Bay light house, 17 feet may be earried.
- In a atraight line.
** A shoal of 21.5 feet occura aboni $x$ mile betow Sing Sing.
$\dagger$ Sonndings varying between 10 and 15 fathoms.

APPENDIX No. $\overline{\text { E C Continued }}$


The effect of spring and neap tites is very small. The depth is affected much more sensibly by the stage of the river ahove. $\dagger$ The tide diminishes rapidy after entering the inlet. $\quad$ There are no lunar tides in Albemarle, Currituck, and Pamplico snunds.

APPENDIX No. 5-Continued.


APPENDIX No. 5-Continued.


* The bighest tides occur at the moon's greatest declination, and are applied in the column headed "spring tides.'

APPENDIX No. 5-Continucd.


APPENDIX No．5－Continued．

| Places． | Limits between which depths are given． | heast watarin chanmel way． |  |  |  |  |  | Date． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean lowest of day． |  | Spring tides． Mean． |  | Spring tides． Moon＇s greatest decliation． |  |  |
|  |  | 苞 | 宲 | $\begin{aligned} & \text { Lowect low } \\ & \text { water. } \end{aligned}$ |  |  |  |  |
| Columbia river ．．．．．．．．．．．．． |  | －eet． | －eet． | Feet． | Feet． | Feet． | Feet． |  |
|  | North channm to Baker＇s bay | 24 | 30.5 | 23.3 | 32.4 | 226 | 32.7 | 1852. |
|  | ＊Entrance into south chamat | 19 | 25.5 | 18.3 | 27.4 | 17.6 | 27.7 | 1852. |
| Shoalwater bay ．．．．．．．．．．．．． | On bar of south chanael | 16 | 20． 5 | 15.3 | 24.4 | 14.6 | 24.7 | 1853. |
|  | On bar | 18 | 24.5 | 17.3 | 26.4 | 16.6 | 29.7 | 1851. |
|  | North channel | 22.5 | 29.0 | 21 8 | 30.9 | 21.1 | 312 | ．．．． |
|  | South channel．．． | 25 | 31.5 | 24.3 | 33.4 | 23.6 | 33.7 | 1853. |
| Grenville harbor ．．．．．．．．．．．．． | A nchorage three－quarters of a mile inside of Point Grenville， and same disture from bhore $\qquad$ | 的 | 28.5 | 21.2 | 30.5 | 20.5 | 31.0 | 1854. |
| Neé－qith harbor ．．．．．．．．．．．．． | Anchorage a mileinside of Waddah ishand，and 450 yards from share $\qquad$ | 36 | 42.5 | 35.0 | 44.7 | 34.3 | 45.3 | 1851. |
| Fituse lingeness ．．．．．．．．．．．． | Harbor anchorage | 54 | 60.4 | 53.2 | 62.3 | 52.2 | 62.5 | 1853. |
| New Dungeness ．．．．．．．．．．． | ．．．．do． | 45 | 51.4 | 44.3 | 52.9 | 43.1 | 53.3 | 1855. |
| Smith＇s island，（north side）． | Anchorage near kelp， 430 yards from shone ．．．．．．．．．．．．．．． | 25 | 31.4 | 244 | 32.7 | 23.1 | 33.0 | 1854. |
| Bellingham bay．．．．．．．．．．．．．． |  | 60 | 66.4 | 59.4 | 67.7 | 58.1 | 67.9 | 1855. |
|  | Archorage 400 yards zouthowest of Fitzbugh＇s wharf．．．．．．． | 18 | 94.4 | 17.4 | 25.7 | 16.1 | 25.9 | 1855. |
| Port Townshend．．．． | $\dagger$ Anchorage 400 yards east of custom－house．．．．．．．．．．．．．．．．． | 48 | 54.4 | 47.4 | 55.7 | 46.1 | 55.9 | 1854. |
| Port Luttow ．．．．．．．．．．．．．．．．． | †Anchorage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | 36 | 42.4 | 35.4 | 43.7 | 34.1 | 43.9 | 1855. |
| Port Gamble． | ，do | 18 | 244 | 17.4 | 25.7 | 16.1 | 25.9 | 1855. |
| Seatile ．．．．．．．．．．．．．．．．．．．．．． | t．．．．do | 20 | 28.0 | 19.3 | 29.5 | 17.9 | 30.0 | 1854. |
| Blakely harbor ．．．．．．．．．．．．． | $\dagger$ Anchorage 450 yards insifle of entrance．．．．．．．．．．．．．．．．． | 46 | 54.0 | 45.3 | 55.5 | 43.9 | 56.0 | 1856. |
| Steitacoom hatbor ．．．．．．．．．． | $\dagger$ Anchorage off Steilacoom creek， 400 yards． | 18 | 29.5 | 17.0 | 32.0 | 15.3 | 32.2 | 1855． |
| Olympia barbor．．．．．．．．．．．．．． | ＋Mid－channel，fown $1 \frac{3}{2}$ mile distant，mission hearing E．NE．． | 11. | 22.5 | 10.0 | 25.0 | 8.3 | 25.2 | ．．．．．． |

＊Twenty－nne feet may be carried in at mean low water by keoping a litile northward and westward，nearer the breakers of the middle sands，and， at the tura，haulung up for Cape Disappointment．
$\dagger$ The last column at these stations gives the beight of highest water of spring tides at the time of the moon＇s declination being zero，the highest high watery of the menth occurring at that time．

## APPENDIX No. 6.

Notice to marinetrs.
In the approaches to Newport barbor, Rhode Island, two rocks have been discovered by Ifenry Mitchell, Assistant United States Coast Survey.

1. Lies about 700 yards west from the poor-house on Coaster's Harbor island, and 375 yards north by east from Red Buoy No. 6. This rock is about one acre in extent, with 17 fect at mean low water on ite shoalest spot, which is not over 6 feet square. At the lowest spring tides there will probably not be less than 15.2 feet on this spot.

This rock lies in nearly mid-channel of the northern passage. To clear it, hug elosely the bold shore of Coaster's Harbor island.
2. Lies nearly on the line between the Rose Msland spindle and Goat Ishand lighthouse, and about 325 yards from the lose Island spindle. This rock has two sharp peake lying NW. and SE., with $14 \frac{1}{2}$ feet on the outer one at mean low water. To the westward of this rock the depth is 5 ; to the northward, ${ }^{7}$; to the castward, 8 ; and to the southward, 7 fathoms water. This rock lies outside of the line between the Rose Island spindle and Buoy No. 3. To clear it, keep on the Goat island side of the chanel.
A. D. BACHE,

Superintendent Uuited States Cuast Surcey.
Coast Suryey Office,
November 4, 1862.

## APPENDIX No. 7.

## notice to marineers.

Notice is hereby given to mariners that the Baltic, Captain J. J. Comstock, is reported to have run aground, drawing $18 \frac{1}{2}$ feet, on a shoal spot situated about $2 \frac{1}{2}$ miles due east from Winter Quarter shoal, on the coast of Maryland, and about 11 miles from the shore. 'Whis shoal is not laid down on the charts, and a survey of the ground will be made at the earliest practicable moment.
A. D. BACHE,

Coast Survey Office,
November 5, 1862.

## APPENDIX No. 8.

TIDE TABLES FOR MARINERS, fREPARED FROM THE COAST SURYEX OBSERVATIONS, By A. D. BACHE, SUPERINTENDENT.
[Furnished by authority of the Treasury Department to E. and G. W. BLunt, New York, and revised October, 1862]
The following tables will enable navigators to ascertain the time and height of high and low water in some of the principal ports of the United States. The results are approximate, the observations being still in progress, but they may safely be used for practical purposes. The number of places of observation, and the time during which many of them have been made, are steadily on the increase as the Coast Survey advances.

The tides on the const of the United States, on the Atlantic, Gulf of Mexico, and Pacific, are of three different classes. Those of the Atlantic are of the most ordinary type, ebbing and flowiug twice in twentyfour bours, and having but moderate differences in height between the two successive high waters or low waters, one occurring before noon, the other after noon.

Those of the Pacific coast also ebb and flow twice during twenty-four hours, but the morning and afternoon tides differ very considerably in height, so much so that at certain periods a rock which bas three feet and a half water upon it at low tide may be awash on the next succeeding low water. The intervals, ton, between successive high and successive low waters may be very unequal.

The tides of ports in the Gulf of Mexico, west of Cape St. George, ebb and flow, as a rule, but once in twenty-four hours, or are single-day tides. At particular parts of the month there are two small tides in the twenty-four hours. The rise and fall in all theen ports is small. East of Cape St. George the rise and fall increases; there are two tides, as a ralk, during the twenty-four hours, and the daily inequality referred to in the Pacific tides is large.

These peculiaritios require a different way of treating the cases, and in some of them separate tables.
I propose to euable the narigator to find, from the Nautical Almanac and the following tables, the time and height of high and low water at any date within the ordinary rauge of difference produced by winds and other variable circumstances. I will endeavor to divest the matter of unfamiliar technical expressions as far ; as practicable, though for shorthesseake some such tems may be employed after defiuing them. The discussion of the Gulf tides has not been carricd so far as to emable me to present the results in as definite a form as the others.

As is well known, the interval between the time of the moon's crossing the meridian (moon's transit) and the time of high water at a given place is nearly constant; that is, this interval varies between moderate limita, which can be assigned. The interval at full and change of the moon is known as the establixhment of the port, and is ordinarily marked on the charts. As it is not gencrally the average of the interval during a month's tides, it is a less convenient and less accurate quantity for the use of the navigation than the average interval which is usted on the Const Survey charts, and is sometimes called the " mean" or "corrected establishment."* The following table gives the principal tidal quantities for the diffrent ports mamed in the first column, where they are arranged under specific heads. The third column of the table gives the mean interval, in hours and minutes, between the moon's transit and the time of high water next after the transit; the fourth, the difference letwern the greatest and the least interval occurring in different parts of the month, (lunar.) A simple inspection of this column will show how important it is to determine these changes in many of the ports where they amount to more than half an hour, or to more than fifteen minutes from the average interval. The fifth, sixth, and seventh columns refer to the height of the tide. The fifth gives, in feet, the average rise and fall, or average difference between high and low water. The sixth gives the greatest differnec commonly known as the rise and fall of spring tides, and the seventh the least difference known as the rise and fall of the nomp tides.

The average duration of the flood or rising tide is given in the eighth column ; of the ebb or falling tide in the ninth; and of the period during which the tide neither rises nor falls, or the "stand," in the tenth. The duration of the flood is masured from the middle of the stand at low water to the middle of the stand at high water, so that the whole duration from one high water to the next, or from one low water to the next, -hould be given by the sum of the numbers in the eighth and uinth columns. At most of these places given in the list a mark of reference has been established for the height of the tide. I have omitted the description of these make, (except in the following localities, as of no particular interest in this connexion.

## BENCH-MARKS.

Boston.-Whe top of the wall or quay at the entrance of the dry dock in the Charlestown navy yard is fourteen feet $\frac{69}{1 n(0)} 14.69$ feet) above mean low water. $\dagger$

New Fork.-The lower edge of a straight line cut in a stone wall, at the head of a wooden wharf on Governor's island, is thirtecn feet ${ }^{9} \% \boldsymbol{\%}$ (or 13.97 feet) above mean low water. The letters U. S. C. S. are cut in the same stome.

Old Point Comfort, Va-A line cut in the wall of the light-house, one foot from the ground, on the soutliwest side, is cleven feet ( 11 feet) above mean low water.

Charleston, S. C.-The outer and lower edge of embrasure of gun No. 3, at Castle Pinckney, is ten feet $\frac{13}{100}$ ( 10.13 fect) above mean low water.

- This term was introduced by the Rev. Dr. Whewell, who has done so much fur the investigation of the laws of the tiles
$\dagger$ In consequence of alterations made to the wall during the year 1860, the coping is seven hundredths of a foot lower than formerly.

Table 1.
Tide table for the coast of the Crited States.

| PORT. | STATE. | INIERVAL BETWEEN TIME OF MOON'S TRANSITAND TIME OF HLGH WATER |  | hise and fall. |  |  | mean diration df- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\dot{\overline{\bar{y}}}$ |  |  |  | \# | 䓓 |
| 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 11. |
| COAST from fortland tu new york. | Maine... .......... | h. 1 n . | h. $m$. | Fect. | Feet | Feet. | h. m. | h. m . |  |
| Honniwell's Poayt, Kemebec river....... |  | 111. | 1.7 1 14 | 8.1 | 9.3 | 7.0 | 616 | 611 | 622 |
| Poriland................... ......... | . ${ }_{0}$ | 1145 | 044 | 8.9 | 9.9 | 7.6 | 614 | 618 | 20 |
| Portsmbuth ............................ | New Hampshire... | 1183 | 53 | 8.6 | 9.9 | 7.2 | 622 | 0 | 21 |
| Newiuryport ........................... | Mossachuetta. | 1123 | 50 | 7.8 | 9.1 | 6.6 | 516 | 79 | 24 |
| Rockport. | . d o | 10.57 | 42 | 8.6 | 10.2 | 7.1 | 617 | 69 | 30 |
| satem | do | 1113 | 50 | 9.2 | 10.6 | 7.6 | 619 | G 6 | 6 |
| Bnston Light. | ....do. | 1112 | 35 | 93 | 10.9 | 8.1 | 520 | B 6 | 15 |
| Broston... | ...do ............ | 1127 | 43 | 10.0 | 11.3 | 8.5 | 613 | 613 | 9 |
| Prymouth. | do | 1119 | 51 | 10.2 | 11.4 | 9.0 | 613 | G 17 | 29 |
| Welltleet | do | 115 | 113 | 11.2 | 13.2 | 9.2 | 66 | 617 | 15 |
| Provitcetown**....................... | do | 1123 | 40 | 9.2 | 10.8 | 7.7 | 616 | 6. 10 | 21 |
| Mondmoy .......................... ..... | ...do.......... | 1158 | 37 | 3.8 | 5.3 | 2.6 | 625 | 559 | 36 |
| Nantucket | ...do. | 12.24 | 3 | 31 | 3.6 | 2.18 | 623 | 544 | 9 |
| Hyannir . ............................... | ...do .......... | 1222 | 30 | 3.2 | 3.9 | 1.8 | 644 | 541 | 9 |
| Edgartown.............. | ...do............. | 1216 | 34 | 2.0 | 2.5 | 1.6 | 651 | 529 | 24 |
| Holmes's Hole | do | 1143 | 31 | 1.7 | 1.8 | 1.3 | 641 | 591 | 12 |
| Tarpautin Cove........................ | do | 84 | 49 | 2.3 | 2.8 | 1.8 | 69 | 617 | 34 |
| Wond's Hole, nrth side.. | . . do............. | 759 | 53 | 4.0 | 4.7 | 3.1 | 651 | 531 | 33 |
| Wond's Hole, south side .... ............ | .do.............. | 89 | 45 | 1.6 | 2.0 | 1.2 | 517 | 210 | 59 |
| Menemsha Bight. ........... . .......... | do | 745 | 10 | 2.7 | 3.9 | 1.8 | 614 | 614 | 4 |
| Quick's Hrie, north side.... ............. | ..do. | 731 | 115 | 3.7 | 4.3 | 2.9 | 031 | 554 | 39 |
| Quick's llole, south side................. | ...do.. | 736 | 110 | 3.1 | 3.8 | 23 | 629 | 555 | 40 |
| Cutysunk. | ...do. | 740 | 49 | 3.5 | 4.2 | 2.9 | 631 | 554 | 39 |
| Keule Cove. | . . do | 748 | 10 | 4.3 | 5.0 | 3.7 | 617 | 64 | 29 |
| Bird Esland Light. . . . . . . . . . . . . . . . . . . | . do | 759 | 45 | 4.4 | 5.3 | 3.5 | 651 | 538 |  |
| Now Redford entrance, (Dumpling Rock).. | ...do............ | 757 | 41 | 3.8 | 4.6 | 2.8 | 650 | 53 | 42 |
| Newport..................... ......... | Lhode Island... | 745 | 24 | 3.9 | 4.6 | 3.1 | 621 | 63 | 23 |
| Point Judith . ........................... | ..do. | 732 | 46 | 3.1 | 3.7 | 2.6 | 612 | f. 10 |  |
| Block Islatid. ........................... | ..do. | -36 | 41 | 2.8 | 3.5 | 2.0 | 623 | 6 2 | 5 |
| Montauk Point, L I. | New York. | 820 | 111 | 1.3 | 2.4 | 1.8 | 617 | 67 | 31 |
| Sandy Hook.. | ....do.... | 729 | 47 | 4.8 | 5.6 | 4.0 | 610 | 615 | 21 |
| New York ......... | ...do.............. | 813 | 43 | 4.3 | 5.4 | 3.4 | 60 | 625 | 28 |
|  |  |  |  |  |  |  |  |  |  |
| Doble's Fersy . ............................. | New Yerk. ........ | 919 | 44 | 3.6 | 4.4 | 2.7 | 65 | 618 | 17 |
| Tarrytown............................. | ..do.............. | 957 | 58 | 5.5 | 4.0 | 2.7 | 66 | 6211 | 43 |
| Verplanek's Point....................... | ..do............. | $10^{8} 8^{-}$ | 34 | 3.1 | 3.8 | 2.5 | 525 | 712 | 16 |
| West Point | ....do.............. | 112 | 37 | 2.7 | 3.2 | 2.0 | 528 | 710 | 0 |
| Poughkeepsie ............................ | .do.............. | 1234 | 54 | 3.2 | 3.9 | 2.4 | 541 | 644 | 2 |
| Tivoli ................................... | ....do............. | 124 | 51 | 4.0 | 4.6 | 3.2 | 541 | 654 | 25 |
| Etuyvesamt. | ....do.............. | 323 | 48 | 3.8 | 4.4 | 3.0 | 518 | 72 | 31 |
| Castletun. | ....do.............. | 429 | 55 | 2.7 | 3.0 | 2.3 | 51 | 723 | 20 |
| Greenbush. | .do.............. | 522 | 40 | 2.3 | 2.5 | 1.9 | 426 | 759 |  |
| long island sound. |  |  |  |  |  |  |  |  |  |
| Watch Hill....... ....................... | Rhode Ieland ...... | 90 | 23 | 2.7 | 3.1 | 2.4 | 63 | 556 | 14 |
| Stoningtori... . | Connecticut ...... | 97 | 30 | 2.7 | 3.2 | ¢.2 | 6 E | 610 | 25 |
| Litte Gull island.. | New York. ....... | 938 | 17 | 2.5 | 2.9 | 2.3 | 6 | 621 | 37 |
| New London | Connecticut . ..... | 928 | 52 | 2.6 | 3.1 | 2.1 | -560 | 626 | 22 |
| New Haven... | ...do............. | 1116 | 18 | 5.9 | 6,9 | 5.2 | 624 | 63 | 33 |
| Bridgeporn... | ....do ............. | 1111 | 13 | 6.5 | 8.0 | 4.7 | 61 | 67 | 30 |

* From Major J. D. Graham's observatious.

TABLE I-Continued.


TABLE I-Continued.


* See remarks oa page 102 and following.

Note-The mean interval in column 3 has been increased by $12 h .26 \mathrm{~m}$. (half a man lunar day) for some of the ports in Delaware river and Chesapeake bay, so as to show the succession of times from the mouth. Therefore $12 / .26 \mathrm{~m}$. ought to be subtracted from the establishments which are greater than that quantity before using them.

The foregoing Table I gives the means of determining, roughly, the time and height of high water at the several ports named. The hour of transit of the moon preceding the time of high water is to be taken from the Almanac, and the mean establishment being added, the time of high water results. Thus :

Example I.-It is required to find the time of high water at New York ou November 5, 1854. The American Almanac gives $0 h .0 \mathrm{~m}$. as the time of transit of the moon on that day. The mean interval for New York, from.Table I, column 3, is $8 h .13 \mathrm{~m}$., which, as the transit was at $0 \lambda$., is, roughly, the time of high water. The moon being full, the height is that of spring tides of column 6, viz: 5.4 feet. If the soundings on the chart are reduced to low water spring tides, 5.4 feet are to be added to them to give the depth at high water. If the soundings are reduced to mean low water, the rise and fall of mean tides being 1.1 foot less than for springs, the rise or increase of depth will be half of this, or 0.6 of a foot less than 5.4 feet, which is 4.8 feet, or nearly four feet ten inches.

Example II.-Required the time of high water at Boston ou January 23, 1851. From the American Almanac we find the time of the moon's southing or transit on that day $5 k .1 \mathrm{sm}$. a. m., and from Table I the mean interval at Boston dry dock is 11 h .27 m .

We have then $5 h .18 m$. time of transit.
To which add $11 \quad 27$ mean interval from Table I.

$$
1645 \text { time of high water, or } 4 \mathrm{~h} .45 \mathrm{~m} . \text { p. m. }
$$

If the Greenwich Nautical Almanac is used, add $2 m$. to the time of transit of Greenwich for every hour of west longitude, and its proportional part for less than an hour. It will suffice to take the half hour which may bo over any number of hours, as the correction for less than this would be less than one minute, and c $\$ 13$
need not be taken into account. Thus, Boston is $4 \pi .44 \mathrm{~m}$. west of Greenwich. The correction to be applied to the time of transit of the moon is, for the four hours, eight minutes, and for the forty-four minutes, one minute. The time of transit on the date assumed in the preceding example is 177.9 m . of the 22 d , or 5 h .9 m . a. m. of the 23d, to which add nine minutes; the correction just found gives 57.18 m ., as before ascertained from the Amcrican Almanac.

In using the Cnited States Nautical Almanac, in the astronomical part of which the transits of the moon are given for the meridian of Washington, the corrections required may, in this first approximation for the Atlantic coast, be neglected. To find the time of the next following low water, add, from Table I, the duration of ebb tide.

This gives $47.45 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. time of high water.

| $6 \quad 13$ | duration of ebb tide from Table I. |
| :---: | :---: |
| $10 \quad 58$ | p.m. |

By subtracting the duration of flood tide we obtain the time of the preceding low water, $10 \mathrm{~h} .32 \mathrm{~m} . \mathrm{a} . \mathrm{m}$. , recollecting that $4 h .45 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. is the same as $16 h .45 \mathrm{~m}$. reckoned from midnight.

The height of this tide, corresponding to the transit of $5 k$., will bring it nearly to a neap tide, and the rise and fall obtained from column 7, Table I, is 8.5 feet. The next following high water may be had by adding to the time of low water the duration of flood from Table I, thus:
$10 \pi .58 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. time of low water January 23.
$6 \quad 13$ duration of flood from Table $\mathbf{I}$.
Sum 1711 or $5 l .11 m$. on Jannary 24.
Or, having found the time of high water, the time of the next following high water may be found by adding the duration of flood and ebb together, and their sum to the time of high water found, thus:

6h. 13 m . duration of ebb tide from Table I.
613 duration of flood.
Sum 1226 duration of whole the.
445 p. m., January 23, time of high water.
Sum 1711 or $5 k .11 \mathrm{~m}$. a. m., January 24, time of the next succeeding high water.
Subtracting the same quantity will give the time of the preceding high water, thus:
$47.45 \mathrm{~m} . \mathrm{p} . \mathrm{m}$., or 16 h .45 m . from midnight, is the time of high water.
1226 duration of flood and ebb tide.
$4 \quad 19 \quad$ a. m . of the $23 d$ for the preceding high water.
The duration of the flood and the ebb being reckoned from the middle of one stand or slack water to the middle of the next, the time of beginning of stand of ebb or flood will be found by subtracting half the dure tion . of stand or slack water given by column 10, Table I, from the time of high or low water, and the time of the end of the stand of ebb or flood by adding the same. A nearer approximation to the times and heights of high water may be obtained by the use of Tables II and III.

TABLE II.
Interval between the time of moon's transit and the time of high water for different hours of transit, and for scxeral different ports.

| Time of moon's ransit. | Boston, Mass. | New York N. Y. | Philadelphia, Pa. | Old Pt . Comfort, Va. | $\begin{gathered} \text { Baltimore, } \\ \text { Md. } \end{gathered}$ | $\begin{aligned} & \text { Emithville, } \\ & \text { N. C. } \end{aligned}$ | Charleston, 8. 0 . | $\begin{aligned} & \text { Pt. Pulaski, Sa- } \\ & \text { vannan, Ga. } \end{aligned}$ | $\begin{gathered} \text { Key West, } \\ \text { Fla. } \end{gathered}$ | San Prancisco, Cat. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| h. m. | h. m. | h. m. | h. m. | h. m . | ${ }_{\text {h. }} \mathrm{m}$. | h. $m$. | h. m. | h. m. | h. $m$. | h. m. |
| 0 0 | 1138 | 820 | 131 | 833 | 47 | 26 | 738 | 730 | 933 | 12 5 |
| 030 | 1133 | 818 | 128 | $8 \quad 27$ | 642 | 721 | 733 | 725 | 926 | 1159 |
| 10 | 11.3 | 815 | 125 | 821 | 637 | 716 | 727 | 719 | 919 | 1153 |
| 130 | 1124 | 810 | 121 | 815 | 631 | 713 | 721 | 715 | 913 | 1147 |
| 2 | 1120 | 86 | 1 18 | $8 \quad 9$ | 626 | 79 | 716 | 711 | 96 | 1141 |
| 230 | 1116 | 80 | 114 | 84 | 621 | 76 | 712 | 7 | 9 | 1138 |
| 3 | 1113 | 755 | 111 | 80 | $6 \quad 17$ | 7 | 7 | 76 | 857 | 1133 |
| 330 | 1110 | 752 | 18 | 756 | 613 | 3 | 75 | 75 | 853 | 1133 |
| 40 | 117 | 752 | 1 G | 752 | 611 | 72 | 72 | 7 | 853 | 1138 |
| 430 | 116 | 752 | 13 | 749 | 610 | 73 | 72 | 7 | 856 | 1146 |
| 50 | 11.6 | 753 | 10 | 748 | 610 | 4 | 7 | 74 | 32 | 115 |
| 530 | 11 | 756 | 059 | 750 | 613 | 76 | 7 | 7 | 910 | 123 |
| 6 | 1113 | 759 | 059 | 753 | 619 | 7 9 | 712 | 78. | 922 | 1211 |
| 630 | 1119 | 85 | 11 | 80 | 625 | 13 | 719 | 712 | 933 | 1216 |
| 70 | 1125 | 811 | 17 | 87 | 632 | 717 | 724 | 716 | 949 | 1223 |
| 730 | 1132 | 817 | 115 | $8 \quad 15$ | 639 | 723 | 732 | 7 22 | 10 | 12.9 |
| 8 | 1138 | 823 | 123 | 824 | 644 | 728 | 738 | 728 | 10 * 6 | 1234 |
|  | 1143 | $8 \quad 27$ | 129 | 833 | 649 | 733 | 745 | 7 34 | 10 | 1237 |
| 9 | 1147 | 832 | 134 | 840 | 652 | 737 | 748 | 730 | 10 | 1236 |
|  | 1148 | 834 | 139 | 845 | 654 | 739 | 750 | 742 | 10 | 1234 |
| 10 | 1149 | 835 | 142 | 848 | 653 | 740 | 750 | 743 | 959 | 1230 |
| 1030 | 1148 | 834 | 143 | 848 | 652 | 740 | 47 | 741 | 956 | 1224 |
| 11 | 1147 | 831 | 141 | 846 | 650 | 736 | 44 | 737 | 948 | 1217 |
| 1130 | 1143 | 825 | 137 | 640 | 648 | 30 | 41 | 784 | 940 | 129 |

TABLE III.
Showing the rise and fall of tides, and corrections to be applied to determine the depth at high water of soundings on charts referred to mean low water, and to low water spring tides.

| Time of <br> mbon's <br> transit. | Eoston, Mass. |  |  | New York, N. Y. |  |  | Philddelphia, Pa. |  |  | Old Paint Comfort. |  |  | Baltimore, Md. |  |  | Time of moon's transtt. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A. | B. | c. | A. | B. | C. | A. | B, | 0. | A. | B. | C. | A. | B. | 0. |  |
| Hour. | Feet. | Feet. | Feet. | Fect. | Feet. | Feet. | Feet. | Feet. | Feet, | Feet. | Feet. | Feel. | Feet. | Feet. | Feet. | Hour. |
| 0 | 11.2 | 10.6 | 11.3 | 4.9 | 4.5 | 4.9 | 6.3 | 6.2 | 6.3 | 2,9 | 2.6 | 2.9 | 1.5 | 1.4 | 1.6 | 0 |
| 1 | 11.3 | 10.6 | 11.3 | 4.9 | 4.5 | 4.9 | 6.4 | 6.4 | 6.5 | 3.0 | 2.7 | 3.0 | 1.5 | 1.4 | 1.6 | 1 |
| 2 | 11.2 | 10.5 | 11.2 | 4.7 | 4.4 | 4.8 | 6.6 | 6.5 | 6.6 | 2.9 | 2.7 | 2.9 | 1.5 | 1.3 | 1.5 | 2 |
| 3 | 10.6 | 10.3 | 10.0 | 4.3 | 4.2 | 4.6 | 6.6 | 6.5 | 6.6 | 2.6 | 2.6 | 2.8 | 1.4 | 1.3 | 1.5 | 3 |
| 4 | 10.0 | 10.0 | 10.7 | 3.8 | 4.0 | 4.4 | 6.4 | 6.4 | 6.5 | 2.3 | 2.4 | 2.7 | 1.3 | 1.2 | 1.4 | 4 |
| 3 | 9.2 | 9.7 | 10.4 | 3.5 | 3.8 | 4.2 | 6.1 | 6.2 | 6.3 | 2.1 | 2.3 | 2.6 | 1.1 | 1.1 | 1.3 | 5 |
| 6 | 8.8 | 9.4 | 10.1 | 3.3 | 3.7 | 4.1 | 5.7 | 5.9 | 6.0 | 2.0 | 2.2 | 2.5 | 0.9 | 1.1 | 1.3 | 6 |
| 7 | 8.6 | 9.3 | 10.0 | 3.3 | 3.7 | 4.1 | 5.4 | 5.6 | 5.7 | 2.0 | 2.3 | 2.5 | 0.9 | 1.1 | 1.3 | 7 |
| 8 | 8.9 | 9.5 | 10.2 | 3.6 | 3.8 | 4.2 | 5.2 | 5.3 | 5.4 | 2.2 | 2.4 | 2.6 | 1.0 | 1.2 | 1.4 | 8 |
| 9 | 9.4 | 9.7 | 10.4 | 4.0 | 4.0 | 4.4 | 5.4 | 5.4 | 5.5 | 2.5 | 2.5 | 2.8 | 1.1 | 1.3 | I. 5 | 9 |
| 10 | 10.1 | 10.0 | 10.7 | 4.5 | 4.3 | 4.7 | 5.7 | 5.7 | 5.8 | 2.8 | 2.7 | 2.9 | 1.3 | 1.4 | 1.6 | 10 |
| 11 | 10.7 | 10.3 | 11.0 | 4.8 | 4.5 | 4.9 | 6.0 | 6.0 | 6.1 | 3.0 | 2.8 | 3.0 | 1.4 | 1.4 | 1.6 | 11 |

TABLE III-Continued.

| Time o: moon's transit. | Smithrille, N. C. |  |  | Charlestom, s. C. |  |  | Fort Pulaski, Savamah emitance. |  |  | Key West, Fia. |  |  | San Francisco, Cal. |  |  | Time of mon's transit. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A. | E. | c. | A. | B. | c. | A. | B. | c. | A. | 日. | C. | A. | B. | c. |  |
| Howr. | Fcet. | Feet. | Fcet. | Feet. | Feet. | Feet. | Feet. | Fect. | Feet. | Hour. |
| 0 | 5.2 | 4.8 | 5.1 | 6.0 | 5.5 | 6.0 | 7.8 | 7.4 | 7.8 | 1.5 | 1.4 | 1.5 | 4.5 | 4.0 | 4.4 |  |
| 1 | 5.1 | 4.8 | 5.1 | 5.9 | 5.5 | 5.9 | 7.9 | 7.4 | 7.9 | 1.5 | 1.4 | 1.5 | 3.9 | 3.7 | 4.1 | 1 |
| 2 | 5.0 | 4.7 | 5.0 | 5.7 | 5.4 | 5.8 | 76 | 7.3 | 7.7 | 1.5 | 1.4 | 1.5 | 3.7 | 3.6 | 4.1 | 2 |
| 3 | 4.6 | 4.5 | 4.8 | 5.3 | 5.2 | 5.6 | 7.1 | 7.0 | 7.5 | 1.4 | 1.3 | 1.4 | 35 | 3.5 | 4.0 | 3 |
| 4 | 4.3 | 4,4 | 4.7 | 4.7 | 4.9 | 5.4 | 6.5 | 6.7 | 7.2 | 1.2 | 1.2 | 1.3 | 3.1 | 3.3 | 3.8 | 4 |
| 5 | 4.0 | 4.3 | 4.6 | 4.4 | 4.8 | 5.2 | 6.1 | 6.5 | 7.0 | 1.0 | 1.1 | 12 | 2.8 | $\theta_{3.1}$ | 3.6 | 5 |
| 6 | 3.8 | 1.2 | 4.5 | 4.2 | 4.6 | 5.1 | 5.8 | 6.4 | 6.8 | 0.9 | 1.0 | 1.1 | 2.7 | 3.1 | 3.6 | 6 |
| 7 | 3.8 | 4.1 | 4.4 | 4.3 | 4.7 | 5.1 | 6.0 | 65 | 6.9 | 09 | 1.1 | 1.2 | 3.0 | 3.3 | 3.7 | 7 |
| 8 | 4.0 | 4.2 | 4.5 | 4.5 | 4.8 | 5.3 | 6.4 | 6.7 | 7.1 | 1.0 | 1.2 | 1.3 | 3.4 | 3.5 | 39 | 8 |
| 9 | 4.3 | 4.3 | 4.6 | 5.0 | 5.0 | 5.5 | 6.9 | 6.9 | 7.4 | 1.2 | 1.3 | 1.4 | 38 | 3.6 | 4.1 | g |
| 10 | 4.7 | 4.6 | 49 | 5.5 | 5.3 | 5.8 | 7.4 | 7.0 | 7.6 | 1.4 | 1.4 | 1.5 | 4.0 | 3.8 | 4.2 | 10 |
| 11 | 5.0 | 4.7 | 5.0 | 5.9 | 5.5 | 5.9 | 7.8 | 7.2 | 7.8 | 1.5 | 1.4 | 1.5 | 4.2 | 3.8 | 4.3 | 11 |

In these the variations in the interval between the moon's transit and high water are shown for some of the principal ports contained in Table I. These variations of intervals depend upon the age of the moon, and, as they go through their values in half a lunar month, are known as the half-monthly inequality of interval. The table cxtends from the 0 h. of transit, midnight of the calendar day, or full of the moon, to $11 \frac{1}{2}$ hours. The numbers for change of the moon correspond to those of $0 h$., and for 13 hours (or 1 h p. m. of the calendar day) to 1 hour, and so on up to 23 houre. The ports for which the numbers are given are designated by the heading of the columns.

The mean interval, it will be seen, does not occur at full and change, but nearly two days afterwards, on the Atlantic coast. At Key West it occurs more nearly at full and change, and at San Franciseo still more nearly.

The same remark applies to the heights. Spring tides occur about two days after the full and change of the monn, and neaps two days after the first and last quarters. The use of this table of nearer approximation is quite as simple as that of Table I.

Rule to find the time of high water-Look in the Almanac for the time of moon's transit (or southing) for the date required. In the table corresponding to that time will be found the number to be added to the time of transit.

Example III.-Required the time of high water at New York October 1, 1856. Using the United States Nautical Almanac, we find the time of moon's transit 1 h .24 m . astronomical reckoning, or 1 h .24 m . p. m. calendar time. From Table II we have, under the heading of New York, for 1 h .30 m . (the nearest number to 17.24 m . in the table) $8 h .10 \mathrm{~m}$.

Thus, to 1 h .24 m ., time of moon's transit,
Add $\quad$ \& 10 interval found in Table III.
The sum $9 \quad 34 \quad \mathrm{p} . \mathrm{m}$. is the time of high water on the 1 st of October, 1856.
If the sum of these numbers had exceeded twelve, the tide would have belonged to October 2 , and we must have gone back to the transit of the day before and computed with it to obtain the tide of October 1.

Rule to find the hoight of high water.-Enter Table III, column 1, with the time of moon's transit. In the column headed with the name of the place, and marked $A$, will be found the rise and fall corresponding to the time of transit; in column $B$, the number to be added to soundings on the chart, where the soundings are given for mean low water; in column $C$, the number to be added to charts of which the coundings are given for low water spring tides.

In the foregoing example, (III,) the time of transit being 1 and 2 hours, we find from 'Table III the rise and fall of tides on the 1st of October, 1856, between 4.9 and 4.7 ; the number to be added to soundings given for mean low water 4.5 feet, (column B,) and for low water spring tides (column C) 4.9 feet.

Having found the time of high water, that of low water may be obtained, nearly, by adding the duration of ebb from column 9, Table I. The time of the next preceding low water may be found by subtracting the duration of flood from column 8, Table I. The time of the next following high water may be found by
adding the duration of both flood and ebb, and of the next preceding high water by subtracting the same duration of the whole tide.

Example IV.-To find the next high water following that of Example III.
The duration of flood, column 8, Table I, for New York, is $6 \hbar .0 \mathrm{~m}$; and of ebb, from column 9, is $6 h .25 \mathrm{~m}$.; the sum is 12 l .25 m .

To 97.34 m. p. m., October 1, time of ligh water found,
Add 1225 duration of flood and cbb.
Sum 2159 or $9 h .59 \mathrm{~m}$. a. m. of October 2, the time of the next high water.

## TIDES OF THE PACIFIC COAST AND OF PART OF THE COAST OF FLORIDA.

On the Pacific coast there are, as a general male, one large and one small tide during the day, the height of the two successive high waters occurring one a. m. the other $\mathbf{p}$. m. of the same twenty-four hours, and the intervals from the next preceding transit of the moon are very different. The inequalities depend upon the moon's declination; they disappear near the time of the moon's declination being nothing, and are greatest about the time of its being greatest. The inequalities for low water are not the same as for high, though they disappear and have the greatest value at nearly the same times. The tides of the southern part of Florida and of the western const of that peninsula, as far as St. Mark's, are of the same character.

In Puget's sound the inequalities for the interval of high water and for the height of low water follow this rule; but those for the interval of low water and height of high water disappear about one day before the moon's declination is greatest, and are greatest about four or five days before the greatest declination.

When the moon's declination is north, the highest of the two tides of the twenty-four hours occurs at San Franciseo about eleven and a half hours after the moon's southing, (trausit;) and when the declination is south, the lowest of the two high tides occurs about that interval.

The lowest of the two low waters of the day is one which follows next the highest high water. The nature of these tides will probably appear more plainly from the annexed diagrams. In them the height of
 the tide is set off at the side on a scale of feet, and the hours of the day are at the top. At 12 noon, for example, the tide-gange marked 6.7 feet. Joining all the heights observed in the twenty-four hours, we have a curve like that marked in the figure. The two high waters are $a$ and $c$; the two low waters $b$ and $d$. If $a$ is the high water which occurs about twelve hours after the transit of the moon, when the declination is south, the ebb $a b$ is quite small, and the high water, $a$, is much lower than the next high water, $c$. If the moon's declination is north, it is the large high water, $a$, of the second diagram which occurs next after the transit, and about twelve hours from it. At Key West the contrary obtains, diagram 1 applying when the moon's declination is north, and diagram 2 when south. Tables IV and V give the number to be added to the time of moon's transit to find the time of high water almost as readily as in the former case. They are of double entry, the time of transit being, as before, placed in the first column. The number of days from the day at which the moon had the greatest declination is arranged at the top of the table. Entering the first columm with the time of transit, and following the line horizontally until we come under the column containing the days from the greatest declination, we find the number to be added to the time of the transit to give the time of high water. If the moon's declination is south, 'Table IV is to be used ; if north, Table V.
Tables IV to IX, inclusive, have been recomputed, using more complete data for the inequalities above

* referred to, and to those for San Francisco similar tables have been added for San Diego, Astoria, Port Townshend, and Key West, Fla. For the other places on the Western Coast given in Table I the following rules will give sufficiently close approximations.

To obtain the times of high or low water for San Pedro, Cuyler's harbor, and San Luis Obispo, compute first the time for San Diego by Tables IV, V, or VIII; then add to the time thus obtained 30 minutes to obtain the time for San Luis Obispo, and subtract 13 minutes for Cuyler's harbor. At San Pedro the time of high or low water is sensibly the same as at San Diego.

For Monterey, South Farrallone, Mare island, Benicia, Ravenswood, and Bodega, compute first the time for San Francisco; then subtract from the time thus obtained $1 h .44 m$. for Monterey, $1 / \mathrm{h} .29 \mathrm{~m}$. for the South Farallone, and 49 m . for Bodega; and add 34 m . for Mare island, 1 h .4 m . for Benicia, and 30 m . for Ravenswood. For Humboldt bay, Port Orford, and Neeah harbor, compute first the time for Astoria; then subtract from it 40 m . for Humboldt bay, 17.16 m . for Port Orford, and 9 m . for Neeah harbor.

For Stcilacoom and Semiahmoo bay, compute first the time for Port Townshend, and add to it 57 m . for Steilacoom and $1 k$. for Semiahmoo. The approximation will be only a rough one for Steilacoom.

For the heights, Tables VI, VII, and IX for San Diego can be osed without change for San Pedro, Cuyler's harbor, and San Luis Obispo. These tables for San Francisco are also applicable to Monterey, South Farrallone, and Bodega. For Mare island add 1.2 foot, for Benicia 0.9 foot, and for Ravenswood 2.7 fect, to the rfuantities for San Francisco.

For Humboldt bay, Port Orford, and Neeah harbor, the tables for Astoria may be used, subtracting 1.7 foot for Humboldt bay, and 1.0 foot for Port Orford. For Neeah harbor the tables will give approximate results without change.

For Semiahmoo bay, add one foot to the quantities in the tables for Port Townshend. For Steilacoom, a rough approximation may be obtained by adding 4.6 feet to them.

For the coast of Florida, compute the times of high or low water for Key West, and subtract 1 h .7 m . for Indian key, and add 26 m . for Tortugas and 1 h .51 m . for Egmont key, $3 \% .45 \mathrm{~m}$. for Cedar keys, and 4h. 8 m . for St. Mark's. For the heights, add half a foot for Indian key, and use the tables without change for Tortugas and Egmont key. For Cedar keys and St. Mark's, the results could not be obtained with much accuracy in this way: special tables will be prepared for those places.

TABLE IV.-KEY WEST.

|  | south declination--days rrom monn's oreatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Berore- |  |  |  |  |  |  | 0 | Aner- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 |  | 2 | 1 |  | 1. | 2 | 3 | 4 | 5 | 6 | 7 |
| 教. m. | h. m. | h. $m$. | h. m. | h. m. | h. m. | h. m. | h.m. | h. $m$. | h.m. | h. m. | h.m. | h. m . | h. m. | $h . m$. | h. m . |
| 000 | 940 | 930 | $918 *$ | 907 | 901 | 849 | 844 | 840 | 840 | 846 | 854 | 906 | 916 | 9 97 | 937 |
| 030 | 933 | 923 | 911 | 900 | 854 | 842 | 837 | 833 | 833 | 839 | 847 | 85.4 | 949 | 920 | 930 |
| 100 | 9 25 | Y 16 | 904 | 853 | 847 | 835 | 830 | 826 | 826 | $8: 32$ | 840 | 852 | 902 | 813 | 923 |
| 130 | 990 | 910 | 858 | 847 | 841 | 829 | 824 | 820 | 820 | 826 | $\varepsilon 34$ | 840 | 850 | 907 | 917 |
| 200 | 913 | 908 | 851 | 840 | 834 | 828 | 817 | 813 | 813 | 819 | 8 27. | 839 | 849 | 900 | 910 |
| 2 30 | 908 | 858 | 846 | 835 | 829 | 817 | 812 | 808 | 808 | 814 | 822 | 834 | 844 | 8 55 | 905 |
| 300 | 904 | 854 | 842 | 831 | 825 | 813 | 808 | 804 | 804 | E 10 | 818 | 830 | 840 | 8 al | 901 |
| 330 | 900 | 850 | 838 | 827 | 621 | 809 | 804 | 800 | 800 | 806 | E 14 | 826 | 835 | 847 | $8: 5$ |
| 4 to | 900 | 850 | 838 | 827. | 821 | 809 | 804 | 800 | 800 | 806 | \& 14 | 896 | 833 | 84 | 857 |
| 430 | 903 | 853 | 841 | 830 | 824 | 819 | 807 | 803 | 2 03 | 849 | 817 | 829 | 839 | 850 | 900 |
| 500 | 909 | 854 | 847 | 836 | 830 | 818 | 813 | 809 | 809 | 915 | 823 | 835 | 845 | 856 | 906 |
| 530 | 917 | 907 | 855 | 844 | 838 | 826 | 821 | 817 | 817 | 823 | 831 | \& 43 | 853 | 904 | 914 |
| 600 | 929 | 919 | 907 | 856 | 850 | 838 | $\triangle 33$ | 829 | 829 | 835 | c 43 | 855 | 905 | 916 | $9: 6$ |
| 630 | 940 | 930 | 918 | 907 | 901 | 849 | 844 | 840 | 840 | 846 | 8.34 | 906 | 916 | 327 | 937 |
| 700 | 956 | 946 | 934 | 923 | 917 | 905 | 900 | 856 | 85 i | 902 | 910 | 922 | 132 | 943 | 953 |
| 730 | 1007 | 957 | 945 | 934 | 928 | 916 | 911 | 907 | 907 | 913 | 921 | 933 | 943 | 954 | 1004 |
| 800 | 1013 | 1003 | 951 | 940 | 934 | 922 | 917 | 913 | 913 | 919 | 927 | 93 | 949 | 1000 | 1000 |
| 830 | 1014 | 1004 | 952 | 941 | 935 | 923 | 918 | 914 | 914 | 920 | 928 | 940 | 950 | 1001 | 1011 |
| 900 | 1013 | 1003 | 951 | 940 | y 34 | 922 | 417 | 913 | 913 | 919 | 927 | 939 | 949 | 1000 | 1010 |
| 930 | 1010 | 1000 | 948 | 937 | 931 | 919 | 914 | 910 | 910 | 916 | 924 | 936 | 946 | 957 | 1007 |
| 1000 | $10 \mathrm{U6}$ | 956 | 944 | 933 | 927 | 915 | 910 | 906 | 906 | 912 | 920 | 932 | 942 | 953 | 1003 |
| 1030 | 1003 | 953 | 941 | 930 | 924 | 912 | 907 | 903 | 903 | 909 | 917 | 929 | 934 | 950 | 1000 |
| 1100 | 955 | 945 | 933 | 922 | 916 | 904 | 859 | 855 | 855 | 901 | 909 | 921 | 931 | 942 | 952 |
| 1130 | 947 | 937 | 925 | 914 | 908 | 856 | 851 | 847 | 847 | 853 | 901 | 913 | 923 | 934 | 944 |

TABLE V.-KEY WEST.

|  | Nortir dechination.-days from moon's gheatest deceination |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Befure- |  |  |  |  |  |  | 0 | After- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h. m. | h. m . | h. m . | \% m. | h. m. | h.m. | A. m. | h. in. | h. m. |
| 00 | 929 | 936 | 943 | 953 | 1006 | 1016 | 1022 | 10.22 | 1022 | 1018 | 1006 | 956 | 943 | 934 | 997 |
| 030 | 922 | 929 | 936 | 946 | 959 | 1009 | 1015 | 1015 | 1015 | 1011 | 959 | 949 | 936 | 927 | 920 |
| 10 | 915 | 922 | 959 | 939 | 952 | 1002 | 1008 | 1008 | 1008 | 1004 | 952 | 942 | 929 | 920 | 913 |
| ] 40 | 909 | 916 | 923 | 933 | 946 | 956 | 1002 | 1002 | 1002 | 958 | 946 | 936 | 923 | 914 | 907 |
| 20 | 902 | 909 | 916 | 926 | 939 | 949 | 955 | 955 | 955 | 951 | 939 | 929 | 916 | 907 | 900 |
| 230 | 857 | 904 | 911 | 921 | 934 | 944 | 950 | 950 | 950 | 940 | 934 | 324 | 911 | 902 | 855 |
| 30 | 853 | 900 | 907 | 917 | 930 | 940 | 946 | 946 | 946 | 942 | 930 | 990 | $90 \%$ | 858 | 851 |
| 330 | 849 | 856 | 903 | 913 | 926 | 936 | 942 | 942 | 952 | 933 | 926 | 916 | 903 | 854 | 847 |
| 40 | 849 | 856 | 903 | 913 | 926 | 936 | 942 | 942 | 942 | 938 | 926 | 916 | 903 | 854 | 847 |
| 430 | 852 | 859 | 906 | 916 | 929 | 939 | 945 | 945 | 945 | 941 | 939 | 929 | 906 | 857 | 850 |
| 50 | 858 | 905 | 912 | 922 | 925 | 945 | 531 | 951 | 951 | 947 | 935 | 025 | 912 | 903 | 856 |
| 530 | 906 | 813 | 920 | 930 | 943 | 953 | 959 | 9.59 | 959 | 955 | 94.3 | 933 | 920 | 9 11 | 904 |
| 80 | 918 | 985 | 932 | 942 | 955 | 1005 | 1011 | 1011 | 1011 | 1007 | 955 | 945 | 932 | 923 | 916 |
| 630 | - 29 | 936 | 943 | 953 | 1006 | 1016 | 1022 | 1022 | 1022 | 1013 | 1006 | 95 | 9.93 | 934 | 927 |
| 70 | 945 | 852 | 959 | 1009 | 1022 | 1032 | 1038 | 103 | 1038 | 1034 | 1022 | 1012 | 959 | 950 | 943 |
| 730 | 956 | 1003 | 1010 | 1020 | 1033 | 1043 | 1049 | 1049 | 1049 | 1045 | 1033 | 1023 | 1010 | 1001 | 954 |
| 80 | 1002 | 1009 | 10.16 | 1026 | 1039 | 1049 | 1055 | 1055 | 1055 | 1051 | 1039 | 10 39 | 1016 | $100 \%$ | 1000 |
| 830 | 1009 | 1110 | $10 \mathrm{J7}$ | 1027 | 1040 | 1050 | 1056 | 1056 | 1056 | 1052 | 1040 | 1030 | 1017 | 1008 | 1001 |
| 90 | - 1002 | 1009 | 1016 | 1026 | 1038 | 1049 | 1105 | 1055 | 1055 | 1051 | 1039 | 1029 | 1016 | 1007 | 1000 |
| 930 | 959 | 1006 | 1013 | 1023 | 1038 | 1046 | 1052 | 1052 | 1052 | 1048 | 1036 | 1026 | 1013 | 1004 | 957 |
| 100 | 955 | 1002 | 1009 | 1019 | 1032 | 1042 | 1048 | 1048 | 1048 | 1044 | 1032 | 1022 | 1009 | 1000 | 953 |
| 1030 | 952 | 959 | 1006 | 1016 | 1029 | 1039 | 1045 | 1045 | 1045 | 1041 | 1629 | 1019 | 1006 | 957 | 950 |
| 110 | 944 | 951 | 958 | 1008 | 1021 | 1031 | 1037 | 1037 | 1037 | 1033 | 1021 | 1011 | 958 | 949 | 942 |
| 1130 | 935 | 943 | 950 | 1000 | 1013 | 1023 | 1099 | 1029 | 1029 | 1085 | 1013 | 1003 | 950 | 941 | 934 |

TABLE IV.-SAN DIEGO.

| $\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$ | south declination.-dayg frommoon's greatest decination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Berore- |  |  |  |  |  |  |  | After-- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h. m. | h. m . | h. m. | $h \mathrm{~m}$. | h. $m$. | h. m. | h. m. | h. $m$. | h. $m$, | $h . m$. | $h . m$. | h. m. | h. m. | h. m. | h. $n$. | h. $m$. |
| 00 | 925 | 940 | 952 | 103 | 1012 | 1020 | 1025 | $10 \%$ | 1099 | 1025 | 1019 | 1010 | 10 | 947 | 930 |
| 030 | 915 | 931 | 942 | 953 | 102 | 1010 | 1015 | 1019 | 1019 | 1015 | 109 | 100 | 950 | 927 | 920 |
| 10 | 98 | 923 | 935 | 946 | 955 | 103 | 108 | 1012 | 1012 | 108 | 102 | 953 | 943 | 930 | 913 |
| 130 | 91 | 916 | y 28 | 939 | 948 | 956 | 101 | 105 | 105 | 101 | 955 | 946 | 936 | 923 | 96 |
| 20 | 854 | 99 | 921 | 932 | 941 | 949 | 954 | 958 | 958 | 954 | 948 | 9 39 | 929 | 916 | 859 |
| 230 | 849 | 94 | 916 | '927 | 936 | 944 | 949 | 953 | 953 | 949 | 94.3 | 934 | 924 | 9 ! | 854 |
| 30 | 848 | 93 | 915 | 923 | 935 | 943 | 948 | 952 | 952 | 948 | 942 | 933 | 923 | 910 | 853 |
| 830 | 848 | 93 | 915 | 925 | 935 | 943 | 948 | 952 | 952 | 948 | 942 | 933 | 923 | 910 | 853 |
| 40 | 859 | 97 | 919 | 930 | 39 | 947 | 952 | 956 | 956 | 952 | 946 | 937 | 927 | 914 | 857 |
| 430 | 856 | 911 | 923 | 934 | 943 | 951 | 956 | 100 | 100 | 956 | 950 | 941 | 931 | 918 | 91 |
| 50 | 915 | 930 | 942 | 93.3 | 102 | 1010 | 1015 | 1019 | 1019 | 1015 | 109 | 100 | 950 | 937 | 920 |
| 530 | 937 | 952 | 104 | 1015 | 1024 | 1032 | 1037 | 1041 | 1041 | 1037 | 1031 | 1023 | 1012 | 959 | 942 |
| 60 | 955 | 1010 | 1023 | 1033 | 1042 | 1050 | 1055 | 1059 | 1059 | 1055 | 1049 | 1040 | 1030 | 1017 | 100 |
| 630 | 1012 | 1027 | 1039 | 1050 | 1059 | 117 | 1112 | 1016 | 1016 | 1112 | 116 | 1057 | 1047 | 1034 | 1017 |
| 7 | 1018 | 1033 | 1045 | 1055 | 115 | 1113 | 1118 | 1122 | 1122 | 1118 | 1112 | 113 | 1053 | 1040 | 1023 |
| 730 | 1020 | 1035 | 1047. | 1058 | 117 | 1115 | 1120 | 1124 | 1124 | 1120 | 1114 | 115 | 1055 | 1042 | 1025 |
| 80 | 1022 | 1037 | 1049 | 110 | 109 | 1117 | 1192 | 1126 | 1126 | $11{ }^{12}$ | 1116 | 117 | 1057 | 1044 | 1027 |
| 830 | 1024 | 1039 | 1051 | 112 | 1111 | 1119 | 1124 | 1188 | 1128 | 1124 | 1118 | 113 | 1059 | 1046 | 1029 |
| 90 | 1018 | 1033 | 1045 | 1056 | 115 | 1113 | 11.18 | 1122 | 1122 | 1118 | 1112 | 113 | 1053 | 1040 | 1023 |
| 930 | 1010 | 10 | 1037 | 1048 | 1057 | 115 | 1110 | 1114 | 1114 | 1110 | 114 | 1055 | 1045 | 1032 | 1015 |
| 108 | 100 | 1015 | 1027 | 1038 | 1047 | 1055 | 110 | 114 | 114 | 11 | 1054 | 1045 | 1035 | 1022 | 105 |
| 1030 | 953 | 108 | 1020 | 1021 | 1040 | 1048 | 1053 | 1057 | 1057 | 1053 | 1047 | 1038 | 1028 | 1015 | 938 |
| 110 | 945 | 100 | 1012 | 1023 | 1032 | 1040 | 1045 | 1049 | 1049 | 1045 | 1039 | 1030 | 1020 | 107 | 950 |
| 1130 | 936 | 951 | 7103 | 1014 | $10 \times 3$ | 1031 | 1036 | 1040 | 1040 | 1036 | 1030 | 1021 | 1011 | 958 | 941 |

TABLE V.—SAN DIEGO.

| $\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$ | norte deglination.-daye from moon's greatert declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before- |  |  |  |  |  |  | 0 | After- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | コ | 2 | 1 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h. m. | h. $m$. | h. $m$. | h. m. | h. $m$. | h. m. | k. m. | h. $m$. | h. m. | h. m. | h. m. |
| 00 | 930 | 916 | 94 | 853 | 844 | 836 | 831 | 817 | 827 | 831 | 837 | 846 | 856 | 99 | 926 |
| 030 | 921 | 6 | 854 | 843 | 834 | 826 | 821 | 817 | 817 | 821 | 837 | 836 | 846 | 859 | 416 |
| 10 | 914 | 859 | 847 | 836 | 827 | 819 | 814 | 810 | 810 | 814 | 820 | 829 | 839 | 852 | 9 y |
| 130 | 97 | 852 | 840 | 829 | 820 | 812 | 87 | 83 | 83 | 87 | 813 | 822 | 832 | 845 | 92 |
| 20 | 90 | 84.5 | 833 | 822 | 813 | 85 | 80 | 756 | 756 | 80 | 86 | 815 | 825 | 8 39 | 855 |
| 230 | 855 | 840 | 328 | 817 | 88 | 80 | 755 | 751 | 751 | 755 | 81 | 810 | 820 | 833 | 850 |
| 30 | 854 | 839 | 827 | 816 | 87 | 753 | 754 | 750 | 750 | 754 | 80 | 89 | 819 | 832 | 849 |
| 330 | 854 | 833 | 827 | 816 | 87 | 759 | 754 | 750 | 750 | 754 | 80 | 89 | 819 | 83 | 849 |
| 40 | 858 | 843 | 831 | 820 | 811 | 83 | 758 | 754 | 754 | 758 | 84 | 813 | 823 | 836 | 833 |
| 430 | 92 | 847 | 835 | 824 | 815 | 87 | 82 | 758 | 758 | 82 | 88 | 817 | 827 | 840 | 857 |
| 50 | 921 | 96 | 854 | 843 | 834 | 828 | 821 | 817 | 817 | E 21 | 827 | 836 | 846 | 859 | 916 |
| 530 | 943 | 928 | 916 | 93 | 856 | 848 | 843 | 839 | 839 | 843 | 849 | 858 | 98 | 921 | 938 |
| 60 | 101 | 946 | 834 | 923 | 914 | 96 | 91 | 857 | 857 | 91 | 97 | 916 | 926 | 939 | 956 |
| 630 | 1018 | 103 | - 51 | 940 | 931 | 923 | 918 | 914 | 914 | 918 | 924 | 933 | 943 | 956 | 1013 |
| 70 | 1924 | 109 | 957 | 945 | 937 | 929 | 9 | 920 | 920 | 924 | 930 | 939 | 949 | 102 | 1019 |
| 730 | 10,26 | 1011 | 959 | 948 | 939 | 931 | 926 | 922 | 922 | 925 | 932 | 941 | 951 | 104 | 1021 |
| 80 | 1028 | 1013 | 101 | 950 | 941 | 933 | 928 | 924 | 924 | 928 | 934 | 943 | 953 | 106 | 1023 |
| B 30 | 1030 | 1015 | $10 \quad 3$ | 953 | 943 | 935 | 930 | 986 | 926 | 930 | 936 | 945 | 955 | 108 | 1025 |
| 90 | 1024 | 109 | 957 | 946 | 937 | 929 | 924 | 920 | 920 | 994 | 930 | 039 | 949 | 102 | 1019 |
| 930 | 1016 | 101 | 949 | 938 | 929 | 921 | 916 | 912 | 912 | 916 | 922 | 931 | 941 | 954 | 1011 |
| 100 | 106 | 951 | 939 | 928 | 919 | 911 | $\begin{array}{ll}9 & 6 \\ 8 & \end{array}$ | 92 | 92 | 96 | 912 | 921 | 931 | 944 | 101 |
| 1030 | 939 | 944 | 932 | 921 | 912 | 94 | 859 | 855 | 855 | 859 | 95 | 814 | 924 | 937 | 954 |
| 110 | 951 | 936 | 924 | 913 | 94 | 856 | 851 | 847 | 847 | 851 | B 57 | 86 | 916 | 929 | 946 |
| 11 3) | 942 | 927 | 915 | 94 | 855 | 847 | 842 | 838 | 838 | 842 | 848 | 857 | 97 | 920 | 937 |

TABLE TV.-SAN FRANCISCO.

| $\begin{aligned} & \text { Time of moon's } \\ & \text { trimsit. } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Befrem- |  |  |  |  |  |  |  | Ater- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h. $m$. | h. m. | h. m. | h.m. | 6. ${ }^{\text {a }}$ | h. $m$. | h. m . | h. 7 . | h. 7 . | it. 117. | 4. m . | f. m. | h. m. | h. m. | f. $m$. | h. m. |
| 00 | 1143 | It 59\% | 1:1 15 | 1233 | 12 50 | 1303 | $1: 3$ | 1320 | 1319 | 1314 | 18 | 12 \% | 1245 | 1232 | 1218 |
| 030 | 1137 | 1153 | 1249 | 129 | 1244 | 19\% | 1311 | 1314 | I3 13 | 1348 | 1301 | 1231 | 123 | 1226 | 12120 |
| 10 | 1131 | 1148 | 1243 | 1221 | 123 | 12.1 | 1305 | 1308 | [:3) ${ }^{\text {a }}$ | 1342 | 1320 | 1245 | 1237 | 1294 | 1204 |
| 130 | 1125 | 1141 | 1157 | 1215 | 1233 | 1245 | 1934 | 1312 | 1: 01 | 12 m | 1246 | 1234 | 12 | 12 14 | 1200 |
| 20 | 1119 | 1135 | 1151 | 1519 | $1: 27$ | 1239 | 12.53 | 12 S | 1255 | 1250 | 1243 | 12.3 | 1221 | 1208 | 1154 |
| 230 | 1114 | 1130 | 1145 | 1204 | 1221 | 1\%34 | 129 $4{ }^{2}$ | 130 | 1250 | 1245 | 12 \% | 123 | 1216 | 1203 | 1149 |
| 31 | 11.11 | 1127 | 114.4 | 12 Ul | 12 IN | 1231 | 1245 | 124 | 124\% | $12+9$ | 1:23.5 | 122 | 1213 | 1200 | 1146 |
| 330 | 1111 | 1187 | 114 | 1201 | 12 ir | 1931 | 1245 | 1248 | 124: | 1242 | 123 | 128 | 1213 | 1200 | 1146 |
| 40 | 11.16 | 11.32 | 1148 | 1200 | 1295 | 1234 | 1250 | 12.53 | 12 22 | 1247 | 1243 | 123 | 1216 | 120.5 | 11.3 |
| 430 | 1124 | 1140 | 1120 | 1214 | 1231 | F) 4 | 1258 | 1301 | 1300 | 125. | 124 | 1235 | $12 \leq 6$ | 1213 | 1189 |
| 50 | 1138 | 1149 | 120 | 129 | 1240 | 1283 | 1:3 4 | $1: 10$ | 1309 | 1304 | 125 | $1: 45$ | 1:35 | 1220 | 1208 |
| 530 | 1141 | 11 蔀 | 1213 | 1231 | $1: 46$ | 1361 | $13 \%$ | 13 kr | 1317 | 1310 | 1309 | 12.55 | 12.4 | 1230 | 1216 |
| 60 | 1149 | 1205 | 12 ¢ | 1234 | 123 | 1309 | 1393 | 13:3; | 138 | 1350 | $1: 13$ | 1303 | 1251 | 5638 | 1294 |
| 630 | 1154 | 1210 | 15 26 | 1244 | 1301 | 1314 | $1: 328$ | 1531 | 13.3 | 13 -5 | 1315 | 120s | 12.8i | $1: 243$ | 12.9 |
| 70 | 1201 | 1217 | 1233 | 1251 | 130 O | 1321 | $13: 5$ | 1:3 3. | 133 | 1332 | 138 | 1315 | 19.8 | 1250 | 1236 |
| 730 | 1207 | 1293 | $1: 34$ | 12. 57 | 131 \% | 132 | 1341 | 13 - 4 | 1313 | 133 | 1: 31 | 13 2] | $13 \%$ | 1200 | 1242 |
| 80 | is 12 | 1228 | 1241 | 1502 | 1319 | 1332 | 1340 | 1340 | 1313 | 1343 | 13 as | 1920 | 1314 | 13111 | 124 |
| 830 | 1215 | 1231 | 124 | 1505 | 139 | 1337 | 1349 | 1353 | 1351 | 1316 | 1384 | 1324 | 13 i | 13.41 | 12汹 |
| 90 | 1214 | 1230 | 1245 | 1304 | 1321 | 1331 | 13 x | 135 | 1350 | 1345 | 23 dx | 13.8 | $1: 316$ | 1363 | 1.29 |
| 930 | 1212 | 1223 | 194 | 130 | 1319 | 1332 | 1340 | 1340 | 13 4s | 1343 | 138 | 1326 | 1314 | 136 | 12 4 : |
| 100 | 1208 | 12 S | 1140 | 1 ES | 1315 | $13 \%$ | 1342 | 1345 | 1341 | $1: 139$ | 13.6 | 13 | 1310 | 105 | 1543 |
| 1930 | 1208 | 1218 | 1234 | 12.52 | 1304 | 1392 | $133 i$ | -13 39 | 13 3 | 13.3 | 1356 | 1316 | 1304 | 1231 | 1237 |
| 110 | 115 | 1211 | 1227 | 124 | 1302 | 1315 | 132 | 13.22 | 13 31 | 1326 | 13 J | 1309 | 12 \% | 1244 | 1230 |
| 1130 | 1147 | 1203 | 1219 | 1237 | 12.54 | 1307 | 1321 | 1324 | 1523 | 1018 | 1311 | 1301 | 1249 | 123 | 12.2 |

TABLE V.-SAN FILNCIBCO.

|  | north dechination, - iaya from mon's gheatest dechinstion, |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | nefure - |  |  |  |  |  |  | 0 | After- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | ${ }^{2}$ | 1 |  | $i$ | $\because$ | 3 | 4 | 5 | 6 | 7 |
| $h m$. | h. $n$. | 4. m. | A. m | h. $m$. | 4. m. | ${ }_{\text {h. }} \mathrm{m}$. | h. m. | h. $m$. | h. m. | h. 1 n . | h. $\quad 1$. | h. m. | h. $m$. | 7. $m$. | h. $m$. |
| 00 | 1227 | 1211 | 1155 | 1137 | 1120 | 1107 | 1053 | $10 \quad 30$ | 1051 | 1056 | 1103 | 1113 | 1125 | 1138 | 1152 |
| 030 | 1221 | 1205 | 1149 | 1131 | 1114 | 1101 | 1047 | 1047 | 1045 | $10 \quad 50$ | 111 | 1105 | 1119 | 1132 | 1146 |
| 10 | 1215 | 1159 | 1143 | 1125 | 1108 | 1055 | 1041 | 1038 | $10 \quad 39$ | 10.44 | 10.33 | 1101 | 111.3 | 1126 | 1140 |
| 130 | 1209 | 1153 | 1137 | 1119 | 1102 | 1049 | 1035 | $10 \quad 32$ | 11133 | 108 | 10.45 | 1105 | 110 | 1120 | 1134 |
| 20 | 1203 | 1147 | 1131 | 1113 | 1056 | 1043 | 1029 | $10 \quad 23$ | $10 \quad 27$ | $10 \quad 32$ | 1099 | 1049 | 1101 | 1114 | 1128 |
| 230 | 1158 | 1142 | 1126 | 1108 | 1051 | 1038 | 1024 | $10 \quad 21$ | 1023 | 1027 | 1031 | 11.4 | 1053 | 11.69 | 1123 |
| 30 | 1155 | 1139 | 1123 | 1105 | 1048 | 1035 | 1021 | 1018 | 1019 | $10 \quad 24$ | 1031 | i10 41 | 1053 | 1106 | 1120 |
| 330 | 1155 | 1139 | 1133 | 1105 | 1048 | 1035 | 1021 | 1018 | $10 \quad 19$ | 1024 | 1031 | 1041 | 10 ni | 1160 | 11) |
| 40 | 1200 | 1144 | 1128 | 1110 | 1053 | 1040 | 1106 | $10 \quad 23$ | 1021 | 1089 | 1036 | 1045 | 10 ar | 1111 | 112 |
| 430 | 1208 | 1152 | 1136 | 1118 | 1101 | 1048 | 1034 | 1031 | 1033 | 1637 | 11044 | 10 sk | 1106 | 1115 | 113 |
| 50 | 1217 | 1201 | 1145 | 11.97 | 1110 | 1057 | 1043 | 1040 | 1041 | 1046 | 1053 | 1103 | 1115 | 1125 | 1142 |
| 530 | 129 | 1209 | 1153 | 1135 | 1118 | 1105 | 1051 | 10 4x | 1049 | $10 \quad 54$ | 110 | 1111 | 1123 | 1136 | 1151 |
| 60 | 1233 | 1217 | 1201 | 1143 | 1126 | 1113 | 1059 | $10 \quad 56$ | $10 \quad 57$ | 1102 | 1109 | 1119 | 113 | 1141 | 1180 |
| 630 | 1238 | 1222 | 1206 | 1148 | 1132 | 1118 | 1104 | 1101 | 1103 | 1107 | 1114 | 1124 | 1136 | 1149 | 120. |
| 70 | 1245 | 1229 | 1213 | 1155 | 1138 | 1125 | 1111 | 1108 | 1109 | 1114 | 1121 | 1131 | 1143 | 1156 | 1210 |
| 730 | 1251 | 1235 | 1219 | 1201 | 1144 | 1131 | 1117 | 1114 | 1115 | 1120 | 1127 | 113 | 1149 | 120 | 1216 |
| 80 | 1256 | 1240 | 1224 | 1206 | 1149 | 1136 | 1192 | 1119 | 1120 | 118 | 1132 | 11.12 | 11.11 | 120 | 12.1 |
| 830 | 1259 | 1245 | 1227 | 1209 | 1152 | 1139 | 1125 | 1122 | 1123 | 1198 | 1135 | 11.45 | 118 | 12 Fil | 12.24 |
| 90 | 1258 | 1242 | 1226 | 1208 | 1151 | 1133 | 1124 | $11 \quad 21$ | $\begin{array}{ll}11 & 22\end{array}$ | $11 \quad 27$ | 1134 | 1144 | 11 \% | [20 | 12 23 |
| 930 | 1256 | 1240 | 1224 | 1206 | 1149 | 1136 | 1122 | 1119 | $11 \quad 20$ | 1125 | 1132 | 119 | 1151 | 120 | 1291 |
| 100 | 1252 | 1236 | 129 | 1209 | 1145 | 1132 | 1118 | 1115 | 1116 | 1121 | 1124 | 1136 | 1150 | 1203 | 1217 |
| 1030 | 1246 | 1230 | 1214 | 1156 | 1139 | 1126 | 1112 | 1109 | 1110 | 1115 | 1122 | 1132 | 1144 | 115 | 1211 |
| 110 | 1239 | 1223 | 1207 | 1149 | 113 | 1119 | 1105 | $\begin{array}{ll}11 & 02\end{array}$ | 1103 |  | 1115 |  | 113 | 1150 | 1204 |
| 1130 | $12: 11$ | 1215 | 1159 | 1141 | 1124 | 1111 | 1057 | $10 \quad 34$ | $10 \quad 55$ | 1100 | 110 | 1117 | 1103 | 1142 | 1156 |

TADLE IV.-ASTONLA.


TABLE V.-ASTORIA.

|  | nolth declinathas.-tay from mon's gheatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before- |  |  |  |  |  |  |  | After- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h. $m$, | ¢. $m$ | h. in. | h. m | h m | h. $m$. | h. m. | ${ }^{h} \mathrm{~m}$. |  |  |  |  | h.m. | h. m. | h. m. | h. m. |
|  | 1316 | 1257 | 1247 | 1234 | 122. | 1214 | 1211 | 127 | $126$ | $128$ | 1212 | 1218 | 1228 | 1233 | 1250 |
| 030 | 134 | 12.31 | 1241 ! | 12 L | 12 ! | 128 | $12 \quad 5$ | 121 | 120 | $12 \quad 2$ | 1: 6 | 1212 | 1222 | 1232 | 1244 |
| 10 | 1257 | 1234 | 1234 | 1291 | 1211 | $1 \cdot 1$ | 1158 | 115 | 1158 | 1155 | 1159 | 125 | 1215 | 1225 | $12 \quad 37$ |
| 130 | 1251 | 1228 | 122: | 1215 | 12 is | 1155 | 1152 | 1148 | 1147 | 1149 | 1153 | 3159 | 129 | 1219 | 123 |
| 2 | 1243 | 1230 | 1220 ! | 127 | 1157 | 1147 | 1144 | 1140 | 173 | 1141 | 1145 | 1151 | 121 | 1911 | 1.23 |
| 230 | 1237 | 12.4 | 1214 | 121 | 1151 | 1141 | 1133 | 1134 | $11 \quad 33$ | 1135 | 1139 | 1145 | 1155 | 125 | $12 \quad 17$ |
| 30 | 1231 | 1218 | 128 | 115 | 114 | 11. 35 | $113 ?$ | 1128 | 1127 | 1199 | 1133 | 1139 | 1149 | 1159 | 1211 |
| 330 | 12 2n | 1213 | 123 | 1159 | 1140 | 1130 | 1127 | 118 | 11 22 | 1194 | 1128 | 1134 | 1144 | 1151 | 126 |
| 40 | 1225 | 1212 | 122 | 1149. | 1139 | 1129 | 1123 | 112 | 11 | 11123 | 1127 | 1133 | 1143 | 1153 | 125 |
| 430 | 1228 | 121.5 | 12.5 | 1153 | 1142 | 113 | 11 - 23 | 1125 | 1124 | 1126 | 1130 | 1136 | 1146 | 118 | 128 |
| 50 | 1236 | 1223 | 1213 | 120 | 1150 | 1140 | 1137 | 1133 | 1132 | $\begin{array}{ll}11 & 34\end{array}$ | 1138 | 1144 | 1151 | 124 | 1216 |
| 530 | 1243 | 1230 | 1290 | 127 | 1158 | 1147 | 1144 | 1140 | 1139 | 1141 | 1145 | 1151 | 121 | 1211 | 129 |
| 60 | 1233 | 1240 | 123 | 1217 | 127 | 1157 | 1154 | 10.50 | 1149 | 1151 | 1155 | 121 | 1211 | 1221 | 1233 |
| ${ }^{7}$ 20 | 134 | 1251 | 1241 | 1298 | 1218 | 128 | $12 \quad 5$ | 12 | 120 | 129 | 126 | 1212 | 1222 | 1232 | 1244 |
| 70 | $1: 113$ | 130 | 1250 | 1234 | 1288 | 1217 | 1214 | 1210 | 129 | 12 H | 1215 | 1221 | 1231 | 1241 | 1253 |
| 730 | 1323 | 1310 | 130 | 1247 | 1237 | 1227 | $12 \quad 24$ | 1220 | $12 \quad 19$ | $12 \quad 21$ | 1225 | 1231 | 1241 | 12 51 | $13 \quad 3$ |
| 80 | 1331 | 1318 | 138 | 1255 | 1245 | 1235 | $12 \times 2$ | 1228 | $12 \quad 37$ | 1229 | 1233 | 1239 | 1249 | 1259 | 1311 |
| 830 | 1336 | 1323 | 1313 | 130 | 12.0 | 1240 | 1237 | 1233 | 123 | 1234 | 1238 | 1244 | 1254 | 134 | 1316 |
| 90 | 1338 | 1325 | 1315 | 132 | 1259 | 1242 | 1239 | 12.35 | 1234 | 1236 | 1240 | 1246 | 1256 | 136 | 1318 |
| 930 | 1337 | 1324 | 1414 | 131 | 1251 | 1241 | 1238 | 1234 | 1233 | 1235 | 1239 | 1245 | 1255 | 135 | 1317 |
| 100 | 1333 | 1320 | 1310 | 1267 | 1247 | 1237 | 1234 | 1230 | 1229 | 1231 | 1235 | 1241 | 1251 | 131 | 1313 |
| 1030 | 1327 | 1314 | 134 | 1251 | 1241 | 1231 | 1298 | $12 \quad 34$ | 1223 | 1225 | 1229 | 1235 | 1245 | 125 | 137 |
| 110 | 1321 | 13 13 13 | 1258 | 1245 | 1235 | 1225 | 1222 | 1218 | 1217 | 1219 | 1223 | 1229 | 1239 | 1249 | 131 |
| 1130 | 1314 | : 131 | 1251 | 1235 | 1224 | $12 \quad 18$ | 1215 | 1211 | 1210 | 1212 | 1216 | 122 | 1232 | 1242 | 1254 |

TABLE IV．－－TORT TOWNSHEND．

|  | south declination－dase from moon＇s greatert dechinatios． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Befera－ |  |  |  |  |  |  | After－ |  |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $\begin{aligned} & h . m . \\ & 0 \quad 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { h. m. } \\ & 345 . \end{aligned}$ | $\begin{aligned} & \text { h.m. } \\ & 3 \mathrm{~g} . \end{aligned}$ | $\begin{aligned} & \text { h. } n \mathrm{n} . \\ & 23 \mathrm{y} \end{aligned}$ | $\begin{aligned} & \text { h.m. } \\ & 2!2 \end{aligned}$ | $\begin{aligned} & h . m . \\ & 1: 30 \end{aligned}$ | $\begin{aligned} & \text { h. m. } \\ & 113 \end{aligned}$ | $\begin{gathered} h . m \\ 1 \geqslant 0 \end{gathered}$ | $h \mathrm{~m} .$ | $\begin{aligned} & \text { L.m. m. } \\ & \equiv \equiv \end{aligned}$ | $\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & h \mathrm{~m}_{2} \\ & \mathrm{z} 42 \end{aligned}$ | $\begin{aligned} & 4 . m, \\ & 257 \\ & 25 \end{aligned}$ | $\begin{aligned} & \text { n } m \\ & 315 \end{aligned}$ | $\begin{gathered} \text { h. } m . \\ 3: 33 \end{gathered}$ | $\begin{array}{r} \text { h. } m \text {. } \\ 345 \end{array}$ |
| 0 3） | 338 | 314 | 244 | 185 | 123 | 16 | 110 | 137 | 155 | 214 | 235 | 930 | 38 | 326 | 338 |
| 1 6 | 382 | 38 | 238 | 19 | 119 | 10 | 113 | 131 | 14.1 | 2 | 29 | 24. | 32 | 320 | 332 |
| 130 | 321 | 32 | 232 | $14: 3$ | 113 | 454 | 17 | 125 | 143 | 22 | 293 | $23=$ | 256 | 314 | 326 |
| 20 | 391 | 98 | 29 | ］ 38 | 18 | 049 | 12 | 120 | 138 | 157 | 218 | 233 | 251 | 39 | 321 |
| 230 | 318 | 254 | 224 | 135 | 13 | 046 | 053 | 117 | 135 | 154 | 215 | 220 | 248 | 36 | 318 |
| 30 | 310 | 208 | 29 | 133 | 13 | 044 | 057 | 115 | 133 | 152 | 213 | 22 e | 246 | 34 | 316 |
| 330 | 317 | 203 | 223 | 131 | 14 | 0 4 4 | $00^{2}$ | 116 | 137 | 153 | 214 | $\underline{29}$ | 247 | 35 | 317 |
| 40 | 321 | $2 \pi$ | $\bigcirc 97$ | 13 r | 18 | 049 |  | 120 | 138 | 157 | 218 | 233 | 2.51 | 39 | 321 |
|  | J 26 | 32 | 232 | 143 | 113 | 0.51 | 1 | 125 | 143 | 22 | 2 2 3 | 233 | 286 | 314 | 320 |
| 50 | 332 | 38 | 238 | 149 | 119 | 10 | 113 | 131 | 149 | 2 8 | 289 | 244 | 32 | 390 | 332 |
| 530 | 341 | 312 | 247 | 158 | 126 | 1 | 12 | 140 | 13 | 217 | 33 | 283 | 311 | 399 | 341 |
| 60 | 359 | 328 | 25 | 2 | 139 | 120 | $1: 33$ | 151 | 29 | $\bigcirc 29$ | 249 | 34 | 327 | 340 | 352 |
| 630 | 41 | 337 | 37 | 218 | 148 | 129 | 142 | 20 | 218 | 23 | 2 ce | 310 | 331 | 349 | 41 |
| 70 | 48 | 344 | 314 | 225 | 155 | 136 | 149 | 2 i | 285 | 941 | 35 | 300 | 338 | 356 | 48 |
| 730 | 41.5 | 351 | 321 | 232 | 12 | 143 | 156 | 214 | $23 \%$ | 2.51 | 310 | 327 | 345 | 43 | 415 |
| 80 | 418 | 354 | 324 | 235 | 25 | 146 | 159 | 217 | 235 | 254 | 315 | 339 | 348 | 4 | 418 |
| 830 | 419 | 355 | 325 | 236 | 25 | 147 | 20 | 218 | 236 | 265 | 316 | 331 | 349 | 47 | 419 |
| 9 － | 418 | 354 | 324 | $\underline{23}$ | 25 | 146 | 159 | 217 | 235 | 2动 | 315 | 330 | 348 | 46 | 418 |
| 930 | 415 | 351 | 321 | 232 | 22 | 143 | 156 | 214 | $\bigcirc 32$ | 251 | 312 | 327 | 345 | 43 | 415 |
| 100 | 410 | 346 | 316 | 227 | 157 | 133 | 151 | 29 | ロ 2 | 246 | 3 ： |  | 340 | 358 | 410 |
| 1030 | 46 | 342 | 312 | 333 | 153 | 134 | 147 | 25 | 283 | 242 | 33 | 318 | 3：6 | 354 |  |
| 110 | 40 | 335 | 3 ¢ | 217 | 147 | 198 | 141 | 159 | 217 | 236 | $25 \%$ | 312 | 330 | 348 |  |
| 1130 | 354 | 330 | 30 | 211 | 141 | 122 | ${ }^{1} 135$ | 153 | 211 | 230 | 231 | 36 | 324 | 342 | 354 |

TABLE Y．－PORT TOWNSHEND．

| $\begin{gathered} \text { Time of mom's } \\ \text { transit. } \end{gathered}$ | nortif declination．－days from monde greatest dechination． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Betore－ |  |  |  |  |  |  |  | After－ |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| h．m． | h．m． | h．m | h．$m$ ． | 4 m. | h．\％n． | $h^{\prime} \cdot \mathrm{m}$ | h． 刀n． | h． m ． | h． m ． | h．$m$ ． | h．m． | 4．$m$ | h．$m$ ． | h．m． | h．m． |
| 0 0 | 34.5 | 49 | 434 |  | 5 50 | 617 | 64 | 540 | 528 | $5{ }^{5}$ | 448 | 433 | 418 | 357 | 345 |
| 030 | 338 | 42 | 4 32 | $5 \geqslant 1$ | 551 | 610 | 557 | 539 | 521 | 52 | 441 | 426 | 48 | 350 | 338 |
| 10 | 332 | 326 | 426 | 515 | 54.3 | 64 | 551 | 533 | 515 | 436 | 435 | 420 | 42 | 344 | 332 |
| 130 | 3 ๕ | 350 | 450 | 59 | 534 | 553 | 545 | 527 | 5 | 430 | 4.29 | 414 | 356 | 3 38 | 326 |
| 20 | 321 | 345 | 415 | 54 | 534 | 553 | 540 |  | 54 | 44.5 | 424 | 49 | 351 | 333 | 321 |
| ${ }^{2} 30$ | 318 | 342 | 412 | 51 | 531 | 530 | 537 | 519 | 5 | 442 | 421 | 40 | 348 | 330 | 318 |
| 30 | 316 | 340 | 410 | 439 | $5 \mathfrak{x y}$ | 548 | 535 | 517 | 459 | 440 | 419 | 44 | 346 | 328 | 316 |
|  | 317 | 341 | 411 | 50 | 530 | 549 | 536 | 518 | 50 | 441 | 4 23 | 4 | 347 | 329 | 317 |
| 40 | 391 | 345 | 415 | 54 | 534 | $5 ¢ 3$ | 540 | 523 | $5 \pm$ | 443 | 494 | 49 | 351 | 3 n | 321 |
| 430 | 326 | 350 | 420 | 59 | 5 39 | 558 | 345 | 527 | 5 | 450 | 429 | 414 | $3 \dot{8}$ | 338 | 326 |
| 50 | 332 | 356 | 426 | 515 | 545 | 64 | 551 | 533 | 515 | 456 | 435 | 420 | 42 | 344 | 332 |
| 530 | 341 | 45 | 435 | 524 | 554 | 613 | 60 | 542 | 594 | 5 | 444 | 499 | 411 | 353 | 341 |
| 60 | 352 | 416 | 446 | 535 | 65 | 624 | 611 | 553 | 535 | 516 | 453 | 440 | $4 \geqslant 2$ | 44 | 352 |
| 630 | 41 | 423 | 45.5 | 544 | 614 | 633 | 620 | 62 | 54 | －5 2.5 | 64 | 449 | 431 | 413 | 41 |
| 70 | 48 | 432 | 52 | 5 51 | 691 | 640 | 627 | 69 | 5.31 | 53 | 511 | 436 | 438 | 420 | 48 |
| 730 | 41.5 | 439 | 59 | 558 | $6{ }_{6}{ }^{\text {2 }}$ | 647 | 634 | 616 | 558 | 53 | 518 |  | 44 | $4 \geqslant 1$ | 415 |
| 80 | 418 | 492 | 512 | 61 | 631 | 650 | 637 | 619 | 61 | 542 | 521 | 5 | 443 | 430 | 418 |
| 830 | 419 | 443 | 513 | 62 | 632 | 651 | 638 | $6 \% 0$ | 62 | 543 | 522 | 57 | 449 | 431 | 419 |
| 90 | 418 | 442 | 512 | 61 | 621 | 650 | 637 | 619 | 6 I | 54 | 521 | 56 | 448 | 430 | 418 |
| 930 | 415 | 439 | 59 | 5 | 693 | 647 | 634 | 616 | 558 | 539 | 5：8 |  | 445 | 427 | 415 |
| 100 | 410 | 434 | 54 | 553 | 623 | 642 | 629 | 611 | 553 | 534 | 5 ：3 | $45^{2}$ | 440 | 49 | 430 |
| 1030 | 46 | 430 | 50 | 549 | 619 | 638 | 625 |  | 549 | $53 \%$ | －9 | 431 | 435 | 416 | 46 |
| 110 | 40 | 431 | 454 | 543 | 613 | 6 6， | 619 | E 1 | 54.7 | $5 \cdot 24$ | 5 3 | 4 ： | 430 | 412 | 40 |
| 1130 | $3 \mathrm{S4}$ | 418 | 448 | 537 | 67 | 696 | 613 | 5 5．5 | 53 | 513 | 45 |  | 404 | 46 | 354 |

If we disregard the daily inequality, the column heated San Franciseo in Table IT would give us, as in the examples on the Athantic coazt. the means of deternining the time of hich water.

Erample F.-Required the time of high water at Nouth Beach, Som Francisco, Cal, on the 7th of February, 183.3.

1st. The time of the mom's transit at Crecnwich, from the Nautical Almanac, is $11 / 2.41 \mathrm{~m}$; the longitude of San Franciseo $8 / .10 \mathrm{~m}$. , requining a correction of 16 m . to the time of transit for San Francisco, which is thus found to be $11 \% .57 \mathrm{~m}$.

2d. The monn's declination is south, and at the time of transit about two days after the greatest. Entering Talle $J V$, we find $12 h$ ( (or 0h.) of transit, the nearest number to 11 h .57 m . which the table gives; ; and following the line horizontally, until we come to two days after the greatest dechation, we find $13 \not \mathrm{~h} .14 \mathrm{~m}$.
 transit, and wo days atrex greatest dectination; the sund, 250 . 11 m ., or 1 h . 11 m . February s , is the time of high water, corref ponthg to the transit which we took of Fehnary 7 . If we desice the tide of February 7 we most go back to the momis transit of the 6 h. The example was pupposly assumed to show this case.

11/. 01m, time of transit Februars 6, 1 Sjas.
1351 number for $11 / 4$. transit, and one day from greatest declination.
Sun :24 :3: time of high water 0h. 32 m a. m. February 7. $==$

The height of high water.-The height of high water is obtained in a similar manner by the use of Table VI and Table VII, entering these in the same way with the time of transit and days from the greatest declination. 'Table YI is for south declination, and Thile VII for noeth.

TADLE VI.—太EY WEST.


Table vil. -hey west.


TARLE VI.-SAS DIEGO.

| $\begin{gathered} \text { Time of moon's } \\ \text { transit. } \end{gathered}$ | SOUTH Dechination.-daye from moovib areatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before- |  |  |  |  |  |  |  | Alter- |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 |  | 0 | 1 | 8 | 3 | 4 | 5 | 6 | T |
| Hour. | $F t$. | Ft. | F\%. | Ft. | Fi. | Fio | F\%. | F\% | $F 1$. | $7 \%$ | F\%. | ft. | Ft. | $F 7$. | $F{ }_{\text {F }}$ |
| 0 | 4.7 | 4.5 | 4.3 | 4.8 | 4.1 | 4.1 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 | 4.8 | 5.1 | 5.5 | 5.8 |
| 1 | 4.6 | 4.4 | 4.2 | 4.1 | 4.0 | 4.0 | 4.0 | 4.0 | 4.1 | 4.2 | 4.4 | 4,7 | 5.0 | 5.4 | 5.7 |
| 2 | 4.4 | 4.2 | 4.0 | 3.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.0 | 4.9 | -1.5 | 4.8 | 5.2 | 5.5 |
| 3 | 4.1 | 3.9 | 8.7 | 36 | 3.5 | 3.5 | 3.5 | 5. | 3.6 | 3.7 | 8.9 | 4.2 | 4.5 | 4.9 | 5.2 |
| 4 | 3.8 | 3.6 | 3.4 | 3.3 | 3.2 | 3.2 | 3.2 | 3.2 | 3.3 | 3.4 | 3.6 | 2.9 | 4.2 | 4.6 | 4.9 |
| 5 | 3.6 | 3.4 | 3.2 | 3.1 | 3.0 | 3.0 | 3.1 | 3.0 | 3.1 | 3.2 | 3.4 | 3.7 | 4.0 | 4.4 | 4.7 |
| 6 | 3.6 | 3.4 | 3.2 | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.1 | 3.2 | 4.4 | 3.5 | 4.0 | 4.4 | 4.7 |
| 7 | 3.7 | 3.5 | 3.3 | 3.2 | 3.1 | 3.1 | 2.1 | 3.1 | 3.2 | 3.3 | 3.5 | 3.8 | 4.1 | 4. $\%$ | 4.8 |
| 8 | 3.8 | 3.6 | 3.4 | 3.3 | 3.2 | 3.5 | 3.2 | 3.2 | 33 | 3.4 | 3.6 | 39 | 4.3 | 4.6 | 4.9 |
| 9 | 4.4 | 4.2 | 4.0 | 3.9 | 3.8 | 3.8 | 3.8 | 3.8 | 匋! | 4.11 | 4.2 | 4.5 | 4.6 | 5.2 | 5.5 |
| 10 | 4.7 | 4.5 | 4.3 | 42 | 4.1 | 4.1 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 | 4.8 | 5.1 | 5.5 | 5.8 |
| 11 | 4.8 | 4.6 | 4.4 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.3 | 4.4 | 4.6 | 4.9 | 5.2 | 56 | 5.9 |

TALLE VII, -SAN DIEGO.

| Time of moon'stransit. | nortit mbclination - dats from moon'a greatest dectivation. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before- |  |  |  |  |  |  |  | After- |  |  |  |  |  |  |
|  | 7 | 0 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Hour. | Ft. | $\ldots 4$. | Ft. | Ft. | Ft. | Ft. | Ht. | Ft. | Ft. | $F t$. | Ft. | $F 2$. | FY. | Ft. | $F t$. |
| 0 | 5.7 | 5.9 | 6.1 | 6.2 | 6.3 | 6.3 | 63 | 6.3 | 6.9 | 6.1 | 5.9 | 5.6 | 53 | 4.9 | 4.6 |
| 1 | 5.6 | 5.8 | 6.0 | 6.1 | 6.2 | 62 | 6.2 | 62 | 6.1 | 6.0 | 5.8 | 5.5 | 5.2 | 4.8 | 4.5 |
| 2 | 5.4 | 5.6 | 5.8 | 5.9 | 6.0 | 6.0 | 6.0 | 6.0 | 5.9 | 5.8 | 5.6 | 53 | 5.0 | 4.6 | 4.3 |
| 3 | 5.1 | 5.3 | 5.5 | 5.6 | 5.7 | 57 | 5.7 | 5.7 | 5.6 | 5.5 | 5.3 | 5.0 | 4.7 | 4.3 | 1.0 |
| 4 | 4.8 | 5.0 | 5.2 | 5.3 | 5.4 | 5.4 | 5.4 | 5.4 | 5.3 | 5.2 | 5.0 | 4.7 | 4.4 | 4.0 | 3.7 |
| 5 | 4.6 | 48 | 5.0 | 5.1 | 5.2 | 5.2 | 5.2 | 5.2 | 5.1 | 5.0 | 4.6 | 4.5 | 4.-1 | 38 | 3.5 |
| 6 | 4.6 | 48 | 5.0 | 5.1 | 5.2 | 5.2 | 5.2 | 5.2 | 5.1 | 5.0 | 4.8 | 4.5 | 4.2 | S. $\varepsilon$ | 4.5 |
| 7 | 4.7 | 4.9 | 5.1 | 5.2 | 5.3 | 5.3 | 5.3 | 53 | 5. | 5.1 | 4.9 | 4.6 | 4.5 | 3.9 | 3.6 |
| 8 | 4.8 | 5.0 | 5.2 | 5.3 | 5.4 | 5.4 | 5.4 | 5.4 | 5.3 | 5.2 | 5.0 | 4.7 | 4.4 | 4.0 | 3.7 |
| 9 | 5.4 | 5.6 | 5.8 | 5.9 | 6.0 | 6.0 | 6.0 | 6.0 | 5.9 | 58 | 5.6 | 5.3 | 5.17 | 4.6 | 4.3 |
| 10 | 5.7 | 5.9 | 6.1 | 6.2 | 6.3 | 6.3 | 6.3 | 6.3 | 6. | 6.1 | 5.9 | 5.6 | 5.3 | 4.9 | 4.6 |
| 11 | 5.8 | 6.0 | 6.2 | 6.3 | 6.4 | 6.4 | 64 | 6.4 | 6.3 | 6.2 | 6.0 | 6.7 | 5.4 | 5.0 | 47 |

TADLE YI.-SAX FRANCISCO.

| $\begin{gathered} \text { Time of moon's } \\ \text { transit. } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Detiore- |  |  |  |  |  |  |  | Anier- |  |  |  |  |  |  |
|  | $\because$ | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Hour. | Feet. | Feet. | Fet. | Feet, | Fcet, | Feet. | Feat. | Fiel. | Feet. | Feet. | Feet. | Feel. | Feet. | Feet. | Feet. |
| 0 | 4.8 | 4.7 | 4.3 | 4.3 | 4.3 | 4.2 | 43 | 4.3 | 4.4 | 4.5 | 4.7 | 4.6 | 5.19 | 5.3 | 5.5 |
| 1 | 4.7 | 4.6 | 4.4 | 4.2 | 4.9 | 41 | 4.2 | 4.2 | 4.3 | 4.4 | 4.6 | 4.7 | 4.9 | 5.2 | 5.4 |
| 2 | 4.6 | 4.5 | 4.3 | 4.1 | 4.1 | 4.0 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 | 4.6 | 4.8 | 5.1 | 5.3 |
| 3 | 4.5 | 4.4 | 4.2 | 4.0 | 4.0 | 3 3.4 | 4.0 | 4.0 | 4.1 | 4.2 | 4.4 | 4.5 | 4.7 | 5.0 | 5. 2 |
| 4 | 4.3 | 4.2 | 4.0 | 3.8 | 3,8 | 3.7 | 3.8 | 3.8 | 3.9 | 4.0 | 4.2 | 4,3 | 4.5 | 4.8 | 5.0 |
| 5 | 4.1 | 4.0 | 3.8 | 3.6 | 36 | 3.5 | 3.6 | 3.6 | 3.7 | 3.8 | 40 | 4.1 | 4.3 | 4.6 | 4.8 |
| 0 | 4.1 | 4.0 | 3.6 | 3.6 | 3.6 | 3.5 | 3.6 | 3.6 | 3.7 | 3.8 | 4.1 | 4.1 | 43 | 4.6 | 4.8 |
| 7 | 4.2 | 4.1 | 3.9 | 3.2 | 3.7 | 3.6 | 3.7 | 3. | 3.8 | 3.9 | 4.1 | 4.2 | 4.4 | 4.7 | 4.9 |
| 8 | 4.4 | 4.3 | 4.1 | 3.9 | 3.9 | 38 | 3.9 | 3.9 | 4.0 | 4.1 | 4.3 | 4.4 | 4.6 | 4.9 | 5.1 |
| 9 | 4.5 | 4.4 | 1.2 | 4.0 | 40 | 3.9 | 4.1 | 4.0 | 4.1 | 4.2 | 4.4 | 4.5 | 4.7 | 5.0 | 5.2 |
| 10 | 4.7 | 4.6 | 4.4 | 4.2 | 4.2 | 4.1 | 4.2 | 4, 2 | 4.3 | 4.4 | 4.0 | 4.7 | 4.9 | 5.2 | 5.4 |
| 11 | 48 | 4.7 | 4.3 | 4.3 | 4.3 | 4.2 | 4.3 | 4,3 | 4.4 | 4.5 | 4.2 | 4.8 | 5.0 | 5.3 | 5.5 |

TADLE YII.-SAN FRANCISCO.


TABLE VI.-ASTORIA.

| B | Berire- |  |  |  |  |  |  |  | Atter- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Hour. | Fiel. | Feet. | Feet. | Fcet. | Feet. | Feet. | Feet. | Fiet. | Feet. | Fret. | Feet. | Feet. | Feet. | Feet. | Fiet. |
| 0 | 8.0 | 8.3 | 84 | 8.5 | 8.6 | 8.6 | 8.6 | 8.6 | $\star .5$ | 8.4 | 8.3 | 8.1 | 7.7 | 7.4 | 7.0 |
| ] | 8.0 | 8.2 | 8.4 | 8.5 | 8.6 | 8.6 | 8.6 | 8.6 | 8.5 | 8.4 | 6.2 | 8.1 | 7.7 | 7.4 | 7.0 |
| 2 | 7.8 | 8.1 | 8.2 | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 | 8.3 | 8.2 | 8.1 | 7.9 | 7.5 | 7.2 | 68 |
| 3 | 7.5 | 7.8 | 7.9 | 8.1 | 81 | 8.1 | 8.1 | 8.1 | 80 | 7.9 | 78 | 7.6 | 7.2 | 6.9 | 6.5 |
| 4 | 7.1 | 7.4 | 7.5 | 7.7 | 7.7 | 7.7 | 7.7 | 7.7 | 7.6 | 7.5 | 7.4 | 7.2 | 6.8 | 6.5 | 6.1 |
| 5 | 6.7 | 7.0 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 | 7.2 | 7.1 | 7.0 | 6.8 | 6.5 | 61 | 5.7 |
| 6 | 6.5 | 6.8 | 7.9 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.0 | 6.9 | 68 | 6.6 | 6.3 | 5.9 | 5.5 |
| 7 | 6.7 | 7.0 | 7.1 | 7.2 | 7.3 | 7.3 | 7.3 | 7.3 | 7.2 | 7.1 | 7.0 | 6.8 | 6.4 | 6.1 | 5.7 |
| 8 | 7.0 | 7.3 | 7.5 | 7.6 | 7.6 | 7.9 | 7.6 | 7.6 | 7.5 | 7.4 | 73 | 7.1 | 6.8 | 64 | 6.0 |
| 9 | 7.5 | 7.8 | 8.0 | 8.1 | 8.1 | 8.1 | 8.1 | 8.1 | 8.0 | 7.9 | 7.8 | 7.8 | 7.3 | 6.9 | 6.5 |
| 10 | 7.9 | 82 | 8.4 | 8.5 | 8.5 | 8.5 | 85 | 8.5 | 8.4 | 8.3 | 8.8 | 8.0 | 7.7 | 7.3 | 6.9 |
| 11 | 8.1 | 8.4 | 86 | 8.7 | 8.7 | 8.7 | 8.7 | 8.7 | 8.6 | 8.5 | 8.4 | 8.2 | 7.9 | 75 | 7.1 |

TABLE VII.-ASTORIA.


TABLE VI.-POHT TOWNSHEND.

|  | north neclination-mays frim mion's greatest dechination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Befor- Aner- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 3 | 3 | 4 | 5 | 6 | 7 |
| Hur. | Ft. | F\%. | Ft. | Ft. | Ft. | Fl. | Fi. | Ft . | F\%. | Ft. | Ft. | Ft. | Ft. | F\%. | Ft. |
| ${ }^{0}$ | 6.6 | 63 | 6.9 | 6.1 | 6.4 | 6.9 | 7.2 | 7.4 | 7.5 | 7.5 | 7.5 | 7.5 | 7.6 | i. | 7.9 |
| 1 | 6.7 | 6.4 | 6.0 | 6.2 | 6.5 | 7.0 | 7.5 | 7.5 | 7.6 | 7.6 | 7.6 | 7.6 | 8.7 | 7.8 | 8.0 |
| $\stackrel{2}{2}$ | 6.6 | 6.3 | 5.9 | 6.1 | 6.4 | 69 | 7.8 | 7.4 | 7.5 | 7.1 | 7.5 | - 5 | 2.6 | 7.7 | 7.9 |
| 3 | 6.3 | 6.0 | 5.6 | 5.8 | 0.1 | 6.6 | 6.9 | 7.1 | 7.2 | 3.2 | 7.2 | 7.2 | 7.3 | T. 4 | 7.6 |
| 4 | 6.0 | 5.7 | 5.3 | 5.5 | 5 8 | 6.3 | 6.6 | 6.8 | 6.9 | 69 | 6. 9 | 6.9 | 2.11 | 7 | 7.3 |
| 5 | 5.3 | 5.6 | 3.2 | 5.4 | 5.7 | 6.2 | 6.5 | 6.7 | 6.8 | 68 | 6.8 | 6.8 | 6.9 | 7.0 | 7.2 |
| 6 | 6.1 | 5.8 | 5.4 | 5.6 | 5.9 | 6.4 | 6.7 | 6.9 | 7.0 | 2.0 | 7.0 | 7.1 | 3.1 | T-2 | 7.4 |
| \% | 6.4 | 6.1 | 5.7 | 5.9 | 02 | 6.7 | 7.0 | 7.2 | 7.3 | 73 | 7.3 | 7.3 | 7.4 | 7.8 | 7.7 |
| 8 | 6.5 | 6.2 | 0.8 | 6.0 | 6.3 | 6.8 | 7.1 | 73 | 7.4 | 7.4 | 7.4 | 7.4 | 2.5 | 7.6 | 7.8 |
| 9 | 6.5 | 6.2 | 5.8 | 6.0 | 6.3 | 6.8 | 7.1 | 7.3 | 7.1 | 7.4 | 7.4 | 74 | 7.5 | 7.6 | 7.8 |
| 10 | 6.6 | 6.3 | 5.9 | 6.1 | 64 | 6.9 | 7.2 | 7.4 | 7. 5 | 7.7 | 7.5 | 2.5 | 76 | 7.7 | 70 |
| 11 | 6.6 | 6.3 | 5.9 | 6.1 | 6.4 | 6.9 | 7.2 | 7.4 | 7.5 | 7.5 | 7.5 | 7.5 | 2.6 | 7.7 | 7.9 |

TABLE YH.-POL'T TOWNSHEND.

| Time of moun'stransit. | Before- |  |  |  |  |  |  |  |  | After- |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | $\underline{2}$ | 3 | 4 | 3 | 6 | 7 |
| Honr. | F\%. | Fl. | Fc. | ft | Fl . | Ne. | $F 1$. | $F t$. | Ft. | $F$ F. | Ft. | Ft. | F\%. | Fi. | Ft. |
| ${ }^{1}$ | 7.6 | 7.9 | 8.3 | 8.1 | 7.8 | 7.3 | 7.0 | (6. 8 | 6.7 | 6.5 | 6.7 | 6.7 | 6.6 | 6.3 | 6.3 |
| 1 | 7.7 | 8.0 | 8.4 | 8.2 | 7.9 | 7.4 | 7.1 | 0.9 | 6.8 | 6.8 | 68 | 6.8 | 6.7 | 66 | 6.4 |
| 2 | 7.6 | 7.9 | 8.3 | 8.1 | 7.8 | 7.3 | 7.0 | 6.8 | 6.7 | 6.7 | 6.7 | 6.7 | 6.6 | 6.5 | (6.3 |
| 3 | 7.3 | 7.6 | 8.0 | 78 | 7.5 | 7.0 | 6.7 | 6.5 | 6.4 | 6.4 | 6.4 | 6.4 | 6.3 | 6. | 610 |
| 4 | 7.0 | 7.3 | 7.7 | 7.5 | 7.2 | 6.7 | 6.4 | 62 | 6.1 | 6.1 | 6.1 | 6.1 | 6.0 | 3.3 | 5.7 |
| 5 | 6.9 | 7.2 | 7.6 | 7.4 | 7.1 | 6.6 | 6.3 | 6.1 | 6.0 | 6.0 | 6.0 | 6.0 | 5.9 | 5.8 | 5.6 |
| 6 | 7.1 | 7.4 | 7.8 | 7.6 | 7.3 | 8.8 | 6.5 | 6.3 | 6.2 | 6.2 | 6.2 | 6.2 | 6.1 | 6.1 | 5. 8 |
| 7 | 7.4 | 7.7 | 8.1 | 7.9 | 7.6 | 7.1 | 6.8 | 6.6 | 6.5 | 6.5 | 6.5 | 6.5 | 6.4 | 6.3 | 6.1 |
| 8 | 7.5 | 7.8 | 8.2 | 8.0 | 7.7 | 7.2 | 6.9 | 6.7 | 6.6 | 66 | 6.6 | 6.6 | 6.5 | 6.4 | 6.2 |
|  | 75 | 7.8 | 8.2 | 8.0 | 7.7 | 7.2 | 6.9 | 6.7 | 6.6 | 6.6 | 66 | 6.6 | 6.5 | 6.4 | 6.2 |
| 10 | 7.6 | 79 | 8.3 | 8.1 | 7.8 | 7.3 | 7.1 | 6.8 | 6.7 | 6.7 | 6.7 | 8. 7 | 6.6 | 6.5 | 6.3 |
| 11 | 7.6 | 7.9 | 8.3 | 8.1 | 7.8 | 7.3 | 7.0 | 6.8 | 6.7 | 6.2 | 67 | 6.7 | 66 | 0.5 | 6.3 |

Note.-To use these tables will a chart on whicla the soundings ar referred to mean low water, enbtract 1.2 foot from che numbers in the tables fiom San Diego for Astoria, 1.7 foot for Neeah harbor, 2.3 for Por Townshend, and 2.7 for Semidurion and Steilacoom.

Example TI.-In Example V, to obtain the height of tide on February 7 , the declination being south, we cnter Dable VI for sin Prameiseo, with oh. of transit, and two days atter greatest declination, and find that the tide will be 4.5 fiet alnwe the mean of the lowest low waters, or that 4.5 fect are to be added to the soundings of a chart redued to the mean of the lowest low waters of each day. If the somdinge of the chart are given for mean low water, then 1.2 foot ouglit to be subtracted from the Tables VI and VII. Thus, in this exumple, it would be 3.3 feet.

The appoxmate time of the successive low and high waters of the day will be fonud by adding the numbers in Tahle VIII to the time of the first high water alrcady determined. The table gives the numbers for the different days from the greatest dectination.

Tubles contaming number: to the added to the time of high water foum from Tables IV and $\Gamma$, to obtain the successioc high and low waters.


THE UNITED STATES COAST SURVEY.

TABLE VIII.-SAN FRANCIBCO.


TABLE VIII.-ASTORIA.

|  | gouth mecenmation. |  |  | morth dechination. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Low water. (Small.) | High water. (Large.) | Low nater. (Large.) | Low water. (Large.) | High water. <br> (Small.) | Low water. (Smal.) |  |
|  | A. m. | h. m . | ${ }_{6} \mathrm{~m}$. | t. m. | K. m. | h. m. |  |
|  | 638 | 1259 | $19 \quad 17$ | $6 \quad 18$ | 1203 | 18 -41 | 71 |
| - 6 | $6 \quad 14$ | 1233 | 1915 | 642 | 1289 | 1843 | 6 |
| - 5 | 555 | 12 l | $19 \quad 14$ | 701 | 1249 | 1844 | 5 e |
| $E_{0} 4$ | 534. | 1147 | $19 \quad 09$ | 723 | $13 \quad 15$ | 1849 | 4 ) |
| ¢ 3 | 520 | 1187 | 1903 | 736 | $13 \quad 35$ | $18 \quad 55$ | 3 \% |
| 2 | 509 | 1107 | $18 \quad 54$ | 747 | 1355 | 1904 |  |
| 1 | 505 | 1101 | 1852 | 751 | 1401 | 1906 | 1 ] |
| 0 | 503 | $10 \quad 53$ | 1846 | 753 | 1409 | $19 \quad 12$ | 0 |
| ${ }^{1}$ | 505 | $10 \quad 51$ | 1842 | 751 | 1411 | 1916 | 17 |
| 2 | 511 | 1055 | $18{ }^{49} 9$ | 745 | $14 \quad 07$ | $19 \quad 18$ | 2 |
| $=3$ | 518 | 1103 | 18 - 11 | 738 | 1359 | 1917 |  |
| E 4 | 532 | $11 \begin{array}{ll}15\end{array}$ | $18 \quad 39$ | 724 | $13 \quad 47$ | 1919 | $4\}$ |
| 45 | 5.50 | 1135 | 1841 | 706 | 1387 | 19 17 | 54 |
| 6 | 611 | 1155 | $18 \quad 40$ | 645 | 1307 | 1918 | 0 |
| 17 | 635 | 1219 | $18 \quad 40$ | 6 21 | 1243 | 1918 | 7 , |

15 os
-
TABLE VIIT.-PORT TOWNSHEND.

|  | south declination. |  |  | norti deglination. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Low water. | High water. | Low water. | Low water. | High water. | Low water. |  |
|  | h. $n$. | h. $m$. | h. m. | h. m. | h. $m$. | h. $m$. |  |
| 7 | 605 | 1226 | 1805 | $5 \quad 39$ | 1226 | 1831 | 7 |
| 6 | 638 | 1314 | 1820 | 506 | 1138 | $18 \quad 16$ | 6 |
| 9-5 | $7 \quad 18$ | $14 \quad 14$ | 1340 | 4.26 | $10 \quad 38$ | $17 \quad 56$ | 5 - |
| č ${ }^{\text {ch }} 4$ | 813 | 1552 | 1923 | 331 | 900 | $17 \quad 13$ | $4\}$ |
| ¢ 3 | 836 | 1658 | 2000 | 308 | 800 | $16 \quad 35$ | 3 \% |
| 2 | 843 | 1730 | 2031 | 301 | 722 | 1605 | 2 |
| 11 | 812 | 1704 | $20 \quad 36$ | 332 | 748 | 1000 | 1 J |
| 0 | 740 | 1628 | $20 \quad 32$ | 404 | 854 | $16 \quad 04$ | 0 |
| 1 | 718 | 15.52 | $20 \quad 18$ | 425 | 900 | $16 \quad 18$ | $1)$ |
| - | $6 \quad 59$ | 1514 | 1959 | 445 | 938 | $\begin{array}{ll}16 & 37\end{array}$ | 2 |
| $\pm 3$ | 638 | 1432 | 3938 | 506 | $10 \quad 20$ | $16 \quad 58$ | 3 = |
| 奈 24 | 624 | 1402 | 19 22 | 520 | $10 \quad 50$ | $17 \quad 14$ | 4 鲑 |
| \& 5 | $6 \quad 10$ | 13 20 | 1900 | $5 \quad 34$ | 1156 | $17 \quad 36$ | 5 - |
| 6 | $5 \quad 59$ | $12 \quad 50$ | $18 \quad 35$ | 545 | 1202 | 1801 | 8 |
| 17 | 542 | 12 26 | $18 \quad 98$ | 602 | 1226 | 1808 | 7 , |

The days from the greatest declination are written in the first and last columns of the table. :cond, third, and fourth columns refer to south declination, and fifth, sixth, and seventh to north, an everse for Key West. The second column gives the number which is to be added, according to the de on, to the time of high water, obtained by means of Tables IV and V, to give the next low water, wh re small low water, $b$, of diagram I. The third contains the numbers to be added to the same to gi sond or large high water, $c$, of diagram I. The fourth, the numbers to be added to the same to gir cond or large low water, $d$, of diagram I. The suceeeding columns give the numbers to be used me way for north decination to obtain the low water, $b$, (large, of diagram II; the high water, $c$, ( $s$ id the low water, $d$, (small,) of the same diagram. The rise and fall of the same successive tides $m$ tained by inspection from Table IX, in which the first column at the side contains the time of transi e successive columns the numbers corresponding to that time and to the number of days from gr sclination. The arrangement of this table is like that already given.

The numbers for the small ebb tide, a $b$, of diagram I, or $c d$, of diagram II, are first given; then r small low and large high waters, $b c$, of diagram I, and $d e$, of diagram II; next, the large ebb tid, 'diagram I, or $a b$, of diagram II; and lastly, from the large low water to the small high water,, $\operatorname{agram} \mathrm{I}$, or $b c$, of diagram II.

TABLE IX. - KEY WEST.

|  | manle ebe tide. |  |  |  |  |  |  |  |  |  |  |  |  |  |  | small how to large migh water. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Days from moon's greatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Days from moon's greatest declination. |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{*}$ |
|  | Before- |  |  |  |  |  |  | 0 | After- |  |  |  |  |  |  | Before- |  |  |  | 2 1 0 |  |  | After- |  |  |  |  |  | E |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  | 1 | 2 | 3 | 4 | 5 | 6 |  | 76 | 5 |  | 3 |  |  |  |  | 2 |  | 4 5 | 5 | 7 | E |
| H. | F2. | Ft. | Ft. | Ft. | Ft . | Ft. | Pt. | Ft . | Ft. | Fe | Ft |  |  | Ft | Ft. | Ft. Ft. | $F t$ | Fi. | Ft |  | Ft. | F1. |  | $F t$. | $\boldsymbol{F}$. $\boldsymbol{F}$ | Ft. ${ }^{\text {F }}$ | Ft: Ft. | $F t$ | H. |
| 0 | 1.6 | 1.4 | 1.1 | 1.0 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 0.9 | 1,1 | 1.2 | 1.5 | 1.8 | 1.41 .9 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 |  | 1.6 | 1.71 | 1.71 .6 | 1.61 .5 | 1.4 |  |
| 1 | 1.6 | 1. ${ }^{1}$ | 1.1 | 1.0 | 0.8 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8 | 0.61 | 1.1 | 1.2 | 1.5 | 18 | 1.41 .8 | 1.5 | 1.6 | 1.6 |  | 1.7 | 1.7 | 1.7 | 1.6 | 1.71 | 1.71 .6 | 1.61 .5 | 1.4 | 1 |
| 2 | 1.6 | 1.4 | 1.1 | 1.6 | 0.8 | 0.7 | 07 | 0.7 | 0.7 | 0.8 | 0.9 | 1.1 | 1.2 | 1.5 | 1,8 | 1.41 .4 | 1.5 | 1.6 | 1.6 |  | 1.7 | 1.7 | 1.7 | 1.6 | 1.71 | 1.7. 1.6 | 1.61 .5 | 1.4 | 2 |
| 3 | 1.5 | 1.3 | 1.0 | 0.9 | $0 .:$ | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.8 | 1.0 | 1.1 | 1.4 | 1.7 | $\begin{array}{llll}1.3 & 1.3\end{array}$ | 1.4 | 1.5 | 1.5 |  | 1.6 | 1.6 | 1.6 | 1.5 | 1.61 | 1.61 .5 | 1.51 .4 | 1.3 | 3 |
| 4 | 1.3 | 1.1 | 08 | 0.7 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 | 1.11 .1 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 1.4 | 1.4 | 1.3 | 1.41 | 1.41 .3 | . 31.2 | 1.1 | 4 |
| 5 | 1.2 | 09 | 0.6 | 0.5 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.6 | 0.7 | 1.0 | 1.30 | 0.90 .9 | 1.0 | 1.1 | 1.1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.1 | 1.21 | 1.21 .1 | .11.14 | 1.9 | 5 |
| 6 | 1.0 | 0.8 | 0.5 | 0.4 | 0.2 | 0.1 | 0.1 | 0.1 | 01 | 0.2 | 0.3 | 0.5 | 0.6 | 0.9 | 1.20 | 0.80 .8 | 0.9 | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1.11 | 1.11 .0 | . 00.9 | 0.8 | 6 |
| 7 | 1.0 | 0.8 | 0.5 | 0.4 | 0.8 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.5 | 0.6 | 09 | 1.20 | 0.80 .8 | 0.9 | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1.11. | 1.11 .0 | . 00.0 | 0.8 | 7 |
| 8 | 1.1 | 0.9 | 0.6 | 0.5 | 03 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.6 | 0.7 | 1.0 | 1.30 | 0.910 .9 | 1.0 | 1.11 | 1,1 |  | 1.2 | 1.2 | 1.2 | 1.1 | 1.21. | 1.21 .1 | .1 1.0 | 0.9 | 8 |
| 9 | 1.3 | 1.1 | 0.8 | 0.7 | 0.5 | 04 | 0.4 | 0.4 | 0.4 | 0.5 | 0.6 | 0.8 | 09 | 1.2 | 151 | 1.11 .1 | 1.2 | 1.3 | 1.5 |  | 1.4 | 1.4 | 1.4 | 1.3 | 1.41. | 1.41 .3 | . 31.2 | 1.1 | 9 |
| 10 | 1.5 | 1.3 | 1.0 | 0.9 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | $0 . \varepsilon^{3}$ | 1.0 | 1.1 | 1.4 | 1.71 | 1.31 .3 | 1.4 | 15 | 1.5 |  | 1.6 | 1.6 |  | 1.5 | 1.61. | 1.61 .5 | . 51.4 | 1.3 | 10 |
| 11 | 1.6 | 1.4 |  | 1.0 | 0.4 | 0.2 | 0.7 | 0.7 | 0.7 | 0.8 | 0.9 | 1.1 | 1.2 | 1.5 | 1.8 | 1.41 .4 | 1.5 | 1.6 | 1.6 |  |  | 1.7 |  |  | 1.71. | 1.71 .6 | . 61.5 | 1.4 | 11 |

TABLE IX.-KEY WEST-Continued.

|  | harge fab tide. |  |  |  |  |  |  |  |  |  |  |  |  |  |  | large low to small higil water. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Days from moon's greatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Days from moon's greatest deelination. |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Before- |  |  |  |  |  |  | 0 | Aner $\rightarrow$ |  |  |  |  |  |  | Before- |  |  |  |  |  |  | 0 | Anter- |  |  |  |  |  |
|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |  | 5 | 4 | 3 | 2 | 1 |  | 1 | 2 | 3 | 5 | 5 | E |
| H. | Fr. | $F t$ | rat | F. | Ft. | 14. | Ft. | nt. | Ft. | FY | Fi | F4. | F2. | Ft | Ft. | Ft | Ft | Ft. | Ft | Ft |  | Ft. | Ft . | Ft. | Ft | $\mathrm{F}_{6}$ : Fl . | Ft. | ${ }_{\text {Ft }}$ | Fl. H . |
| 0 | 1.4 | 1.6 | 1.9 | 2.0 | 2.2 | 23 | 2.3 | 2.3 | 2.3 | 2.2 | 2.1 | 1.9 | 1.8 | 1.5 | 1.2 | 1.6 | 1.5 | 1.5 | 1.4 | 1.4 |  | 1.3 | 1.3 | 1.3 | 1.4 | 1.31 .3 | 1.4 | 1.5 | 1.60 |
| 1 | 1.4 | 1.6 | 1.9 | 2.0 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.2 | 2.1 | 1.9 | 1.8 | 1.5 | 1.2 | 16 | 1.5 | 1.5 | 1.4 | 1.4 | 1.3 | 1.8 | 1.3 | 1.3 | 1.4 | 1.31 .3 | 1.4 | 1.5 | 1.6 |
| 2 | 1.4 | 1.6 | 1.9 | 2.0 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.2 | 2.1 | 1.9 | 1.8 | 1.5 | 1.2 |  | 1.5 | 1.6 | 1.4 |  |  | 1.3 | 1.3 | 1.3 | 1.4 | 1.31 .3 | 1.4 | 1.5 | 1.6 |
| 3 | 1.3 | 1.5 | 1.8 | 1.9 | 2.1 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.8 | 1.7 | 1.4 | 1.1 | 1.3 | 1.4 | 1.4 | 1.3 |  | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.21 .2 | 1.3 | 1.4 | 1.5 |
| 4 | 1.1 | 1.3 | 1.6 | 1.7 | 1.9 | 0 | 2.0 | 2.0 | 20 | 1.9 | 1.8 | 1.6 | , | 1.2 | 0.9 | 1.3 | 1.2 | 1.2 | 1.1 |  |  | 1.0 | 1.0 | 1.0 | 1.1 | 1.01 .0 | 1.1 | 1.2 | 1.3 |
| 5 | 0.9 | 1.1 | 1.4 | 1.5 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.7 | 1.6 | 1.4 | 1.3 | 1.0 | 0.7 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 |  | 0.4 | 0.8 | 0.8 | 0.9 | 0.80 .8 | 0.9 | 1.0 | 1.1 |
| 6 | 0.8 | 1.0 | 1.3 | 1.4 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.5 | 1.3 | 1.2 | 0.9 | 0.6 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 |  | 0.7 | 0.7 | 0.7 | 0.8 | 0.70 .7 | 0.8 | 0.9 | 1.0 |
| 7 | 0.8 | 1.0 | 1.3 | 1.4 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.5 | 1.3 | 1.2 | 0.9 | 0.6 | 1.0 | 0.9 | 0.0 | 0.8 |  |  | 0.8 | 0.7 | 0.7 | 0.8 | 0.70 .7 | 0.8 | 0.0 | 1.0 |
| 8 | 0.9 | 1.1 | 1.4 | 1.5 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.3 | 1.6 | 1.4 | 1.3 | 1.0 | 0.7 | 1.1 | 1.0 | 1.0 | 0.9 |  |  | 0.8 | 0.8 | 0.8 | 0.9 | 0.80 .8 | 0.9 | 1.0 | 1.18 |
| 9 | 1.1 | 1.3 | 1.6 | 1.7 | 1.9 | 2.0 | 20 | 2.0 | 2.0 | 1.9 | 1.8 | 1.6 | 1.5 | 1.2 | 0.9 | 1.3 | 1.2 | 1.2 | 1.1 | 1.1 |  | 1.0 | 1.0 | 1.0 | 11 | 1.01 .0 | 1.1 | 1.2 | 1.3 |
| 10 | 1.3 | 1.5 | 1.8 | 1.9 | 2.1 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 1.8 | 1.7 | 1.4 | 1.1 | 1.5 | 1.4 | 1.4 | 1.3 | 1.3 | 1.8 | 1.2 | 1.2 | 1.2 | 1.3 | 1.21 .2 | 1.3 | 1.4 | 1.510 |
| 11 | 1.4 | 1.6 | 1.9 | 2.0 | 2.2 | 2.3 | 2.3 | 2.3 | 2,3 | 2.2 | 2.1 | 1.9 | . 8 | 1.5 | 1.2 |  | 1.51 | 1.5 | 1.4 |  |  | 3 | 1.3 | 1.3 | 1.4 | 1.31 .3 | 1.4 | 1.5 | 1.611 |

TABLE IX.-SAN DIEGO.


TABLE IX.-SAN DIEGO-Continued.


TABLE IX.-SAN FRANCISCO.

'TABLE IX.-SAN FRANCISCO-Continued.


TABLE IX.-ASTORIA.


TABLE IX.-ASTORIA-Continued.


TABLE IX.-PORT TOWNSHEND.


TABLE IX.-PORT TOWNSHEND-Continued.


Example VII.-Thus, in Example VI, the high water of February 7th was found to be 3.3 feet above mean low water. The declination being south, Diagram I applies, and this high water is the emall one. To obtain the fall of the next low water or small low water, we enter Table IX, for San Francisco, with 0h. of moou's transit, and two days after the greatest declination in the first part of the table, and find 1.9 foot, which will be the difference in the height of this high and low water. Entering with the same transit and day in the second part, we find 3.0 feet, which is the rise of the large high above the small low water; the difference between 1.9 and 3.0 , or 1.1 foot, is the difference of height of the two successive high waters.

It is easy to zee how, in this way, the soundings of a chart can be rednced to what they would be approximately at all the successive high and low waters.

## TIDES OF THE GULF OF MEXICO.

On the coast of Florida, from Cape Florida around the peninsula to St. Mark's, the tides are of the ordinary kind, but with a daily inequality which, small at Cape Florida, goes on increasing as we proceed westward to Tortugas. From the Tortugas to St. Mark's the daily incquality is large and sensibly the same, giving the tides a great resemblance to those of the Pacific coast, thought the rise and fall is much smaller. Between St. Mark's and St. George's island, Apalachicola entrance, the tides change to the single day clase, ebbing and flowing but once in the twenty-four (limar) hours.

It St. George's island there are two tides a day, for three or four days, about the time of the moon's declination being zero. At other times there is but one tide a day, with a long stand at high water of from six to nine hours. From Cape St. Blas to and including the mouth of the Mississippi, the single day tides are very regular, and the small and irregular double tides appear only for two or three days, (and frequently even not at all,) about the time of zero declination of the moon. The stand at high and low water is comparatively short, seldom excceding an hour.

To the west of the mouth of the Mississippi the double tides reappear. At Isle Derniere they are distinct, though a little irregular for three or four days near the time of the moon's zero declination. At all other times the single day type prevails, the double tides modifying it, however, in the shape of a long stand of from six to ten hours at high water. 'This stand is shortest at the time of the moon's greatest dechation, sometimes being reduced to but one hour. At Calcasicu the tides are distinctly double, but with a large daily ineqtality. The rise and fall being small, they would often present to the ordinary observer the same appearance as at Isle Dernière. At Galveston the double tides are plainly perceptible, though small, for five or six days at the time of the moon's zero declination. At other times they present the single day type, with the peculiarity that, after standing at high water for a short time, the water falls a small distance, and stands again at that height for several hours, then continues to fall to low water. Sometimes it falls very slowly for nine or ten hours following ligh water, and then acquires a more rapid rate to low water. At Aransas Pass and Brazos Santiago the single day tides prevail. Small, irregular, double tides are only perceived for two or three days at the moon's zero declination. At all other times there is but one high water in the day, with a long stand of from six to nine hours, during which there are often small, irregular fluctuations or a very slow fall. In the following table the mean rise and fall of tides at the above stations are given.

The highest high and the lowest low waters occur when the greatest declination of the moon happens at full or change; the least tide when the moon's declination is nothing at the first or last quarter. The rise and fall being so small, the times and heights are both much influenced by the winds, and are thus rendered quite irregular.

TAELE X.
Rise and fall at several statzons on the Gulf of Mexico.

| Stations. | Mean rise and fall of tides |  |  |
| :---: | :---: | :---: | :---: |
|  | Mean. | Atmoon'sgreatest declination. | At moon's lcast declination. |
|  | - Het. | Feet. | Fete. |
| St. George's island, Florida | 1.1 | 1.8 | 0.6 |
| Pensacola, Florida | 1.0 | 1.5 | 0.4 |
| Fort Morgan, Mobile bay, Alabama | 1.0 | 1.5 | 0.4 |
| Cat island, Miesissippi | 1.3 | 1.9 | 0. 6 |
| Southwest Pass, Louisiana | 1.1 | 1.4 | 0.5 |
| Isle Dernière, Louisiana | 1.4 | 2.2 | 0.7 |
| Entrance to Lake Caloasieu, Louisiana | 1.9 | 2.4 | 1. 7 |
| Galveston, Texrs | 1.1 | 1.6 | 0.8 |
| Aransas Pass, Texas. | 1. 1 | 1. 8 | 0.6 |
| Brazos Santiago, Texas | 0.9 | 1.2 | 0.5 |

TO DETERMINE THE RISE AND FALL OF THE TIDES FOR ANX GIVEN TIME FROM HIGY OR LOW WATER.
It is sometimes desirable to know how far the tide will rise in a given time from low water, or fall in a given time from high water, or to approximate to the time which has elapsed from low or high water, by knowing the rise and fall of the tide in the interval. If the proportion of the rise and fall in a given time were the same in the different ports, this would casily be shown in a single table, giving the proportional rise and fall, which, by referring to Table I, showing the rise and fall of the tide at the port, would give the rise and fall, in feet and decimals. The proportion, however, is not the same in different ports, nor in the same ports for tides of different heights. The following table XI shows the relation between the heights above low water for each half hour for New York and Old Point Comfort, and for spring and neap tides at each place. Units express the total rise of high water above low water, and the figures opposite to each half hour denote the proportional fall of the tide from high water onward to low water. For example, at New York, three hours after high water, a spring tide has fallen six-tenths (sixty-hundredths) of the whole fall. Suppose the whole rise and fall of that day to be 5.4 fect, (Table $I$;) then, three hours after high water, the tide will have fallen 3.24 feet, or three feet three inches, nearly. Conversely, if we have observed that a spring tide has fallen three feet three inches, we may know that high water has passed about three hours.

Table Xit.
Giving the height of the tide above low water for every half hour before or after high water, the total range deing taken as equat to 1.

| Tine before or after high water. | New York. |  | Old Point Comfurt. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Spring tide. | Neap tide. | Sping tide. | Neap tide. |
| h. m. |  |  |  |  |
| $0 \quad 0$ | 1.00 | 1.00 | 1. 00 | 1. 00 |
| 030 | 0.98 | 0. 98 | 0.98 | 0.98 |
| 10 | 0.94 | 0.93 | 0.95 | 0.94 |
| 130 | 0.89 | 0.86 | 0.88 | 0. 87 |
| 20 | 0.80 | 0.72 | 0. 80 | 0. 78 |
| 230 | 0. 72 | 0. 59 | 0.70 | 0.68 |
| 30 | 0.60 | 0.45 | 0.59 | 0.57 |
| 330 | 0.49 | 0. 31 | 0.49 | 0. 44 |
| 40 | 0.39 | 0.19 | 0.37 | 0.34 |
| 430 | 0.28 | 0.10 | 0.26 | 0.22 |
| 50 | 0. 18 | 0.02 | 0.17 | 0.13 |
| 530 | 0.09 | 0.00 | 0.08 | 0.05 |
| 60 | 0.05 |  | 0.03 | 0.01 |
| 630 | 0.00 |  | 0.00 | 0.00 |

## TIDES IN COASTING.

By observing the time of high water and low water along the coast we find the places at which they are the same. The map of co-tidal lines (Sketch No. 65, C. S. Rep., 1857) shows that it is high water nearly at the same hour all along the coast from Sandy Hook to Cape Cañaveral; of course not in bays aad harbors and up the rivers, but on the outer coast. .

It is high water exactly at the same hour all along the line marked X II, seen on the chart, near Sandy Hook, and north and south of Hatteras, and, with small interruptions at Cape Lookout and Cape Fear, all the way to near Cape Cañaveral. This same line extends eastward to near Block inland, and sonth of Nantucket, and then passes away from our coast. At full and change of the moon, along this line, (approximately, ) it is high water at twelve o'clock, Greenwich time, the local time of high water depending upon the longitude 16 c s
of the place; or, to speak more correctly, in the average of a lunar month it is ligh water so many hours after the time of the mon's passing the meridian of Greenwich. By these lines, called co-tidal lines, we can determine what tidal currents the navigators must expect to meet in coasting; and for this purpose we divide the ports of the coast into two sets, those south and those north of New York.

The sailing lines of coasters bound to southern ports this side of the straits of Florida are marked upon the map, and also of those bound through the sounds to eastern ports, and outside to Halifax and Earopean ports.

## Vegsels to AND from ports south of new york.

South of Sandy Hook, New Jersey, the line of XII hẹurs is nowhere more than 18 miles from the coast ; that of $\mathrm{XI} \frac{3}{4}$ nowhere more than 35 miles; that of $\mathrm{XI}_{2}$ nowhere more than 48 ; and XI nowhere more than 110. The distance of these lines of XII to XI hours, (corresponding within four minutes to VII and VI of New York time, for different parts of the coast, is slown from table A, where the first column gives the name of the place, and the second, third, fouth, fifth, respectively, the distances of the co-tidal lines of XII, XI $3, ~ X 1 \frac{1}{2}$, and XI hours. The distances are measured from the ports on perpendiculars to the co-tidal lines. They may be taken as if measured on the parallel of latitude at all the points for the line of XII hours, and at all between Sandy Hook and Cape Hatteras for the lines of XI $\frac{3}{4}$ and $X I_{\frac{1}{2}}$ hours.
A.

| Names of locations. | Distance from coast, measured on perpendicular to co-tidal lines. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | At XII bours. | At XI ${ }^{3} \mathrm{l}$ hours. | At $\mathrm{XI}_{2} \mathrm{~h}$ hours. | At XI hours. |
|  | Nautical mile | Nautical miles. | Nautical miles. | Nautical miles. |
| Sandy Hook | 12 | 32 | 53 | 100 |
| Beurnegat. | 2 | 29 | 39 | 78 |
| Cape May | 15 | 30 | 46 | 92 |
| Came Heniopen. | 18 | 38 | 47 | 92 |
| Assateague. ..... | 7 | 22 | 36 | 82 |
| Cape Honry | 12 | 28 | - 43 | 100 |
| Cope Hatteras. |  | 8 | 20 | 63 |
| Ocracoke inlet. |  | 11 | 26 | 71 |
| Cape Loukout. |  | 7 | 18 | 56 |
| Beaufort entrance, Nortl Carolina. | 6 | 15 | 24 | -63 |
| Cape Fear. |  | 6 | 16 | 55 |
| Cape homans. |  | 10 | 21 | 67 |
| Charleston light. | 3 | 15 | 27 | 70 |
| Pont Royal entrince. | 5 | 17 | 29 | 78 |
| Tybee entrance. | 6 | 17 | 31 | 82 |
| St. Mary's entrance. | 12 | 25 | 40 | 110 |
| St. John's entrance. | 17 | 35 | 48 | ---------- |
| Cape Caũaveral. | 16 |  |  |  |
| Cape Florida. - |  |  |  |  |

The co-tidal lines are in such directions that at 10,20 , and 30 miles from the coast, between Sandy Hook and the St. Joln's, there is but a variation of seven minutes, and even to Cape Cañaveral anly of eight minutes.

Keeping ten miles from the shore, the coaster would pass from 12 hours at Sandy Hook to 11 hours 45 minutes at Hatteras, and increase again irregularly to 12 hours 7 minutes at the St. John's, as shown more explicitly in table B. These three tracks of 10,20 , and 30 miles are inside of the cold wall of the Gulf Stream, and generally in the cold current, cacept at Cape Cañaveral.

## B.

| Names of stations. | Co-tidal hour at 10, 20, and 30 nautical miles from the coast, perpeudicular to the const. |  |  |
| :---: | :---: | :---: | :---: |
|  | Ten miles off. | Twenty miles off | Thirty miles off. |
|  | h. $m$. | h. $n$. | h. $m$. |
| Sandy Hook | 120 | 1152 | 1145 |
| Barnegat.. | 1152 | 1144 | 1135 |
| Cape May.. | 125 | 1153 | 1145 |
| Cape Henlopen. | 127 | 1157 | 1148 |
| Assatengue. | 120 | 1148 | 1137 |
| Cape Henry. | 125 | 1148 | 1142 |
| Cape Hatteras. | 1145 | 1130 | 1122 |
| Ocracoke inlet. | 1147 | 1136 | 1125 |
| Cape Lookout | 1145 | 1130 | 1120 |
| Beaufort entrance, N. C. | 115 | 1138 | 1125 |
| Cape Fear. | 1138 | 1125 | 1118 |
| Cape Roman. | 1145 | 1133 | 1124 |
| Charleston light. | 1152 | 1133 | 1125 |
| Port Royal entrance. | 1157 | 1145 | 1132 |
| Tybee entrance..- | 1155 | 1143 | 1130 |
| St. Mary's entrance. | 128 | 1157 | 1145 |
| St. John's entrance. | 127 | 1156 | 1150 |
| Cape Cañaveral. | 128 |  |  |
| Cape Florida. | 1310 |  |  |

It follows, hen, as a gencral thing, from these two tables, that the coaster, in passing from Sandy Ilook to the St. John's, would have the tides the same, within some fifteen minutes, as if he remained at Sandy Hook; so that leaving, for example, at high water, he would, according to the elapsed time, have the elil and flood alternating every six hours and a quarter, nearly, as if he had remained near Sandy llook. As the flood tide sets in generally to the northward and on shore, and the ebb to the southward and off shore, he would know by the time that elapsed from his departure and the period of the tide at which he started what tidal currents he might expect to meet as he passed along the coast. This, of course, is not peculiar to Sandy Hook as a point of departure, but would be true for any of the entrances given in the table, takirg care not to mistake the time of tides within for that at the entrance.

By referring to George W. Blunt, esq., I have obtained the tracks of sailing and steam vessels passing from New York to ports to the south of it, as shown by the lines on the chart accompanying this paper. (See Sketch No. 65, C. S. Rep., 1557.) Tracing these on the map of co-tidal lines, I have determined how the navigator would find the tides as he passes from port to port. The results are shown in the annexed table, (C) in which the port between which and Sandy Hook the mariner passes is at the head of the table, and, at the side, the place off which the co-tidal hours will be found, as stated in the table.
C.

| Off- | Cortidal hours on sailing lines measured on parallels of latitude of places named in the first column, between New York and- |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Delaware bay. | Chesaneake bay. | Ocracoke inlet. | Cape Fear. | Charleston. | Savannah. | St. John's. | Cape Florida. |
| Sandy Hook.. | $\begin{array}{rr} 4 . & m . \\ 12 & 5 \end{array}$ | $\begin{array}{cr}\text { h. } & 31 . \\ 12 & 5\end{array}$ | $\begin{array}{rr}\text { h. } & \text { m. } \\ 12 & 5\end{array}$ | $\begin{array}{cr}\text { h. } & \text { m. } \\ 12 & 5\end{array}$ | $\begin{array}{cr}\text { A. } & \text { m. } \\ \text { te } & 5\end{array}$ | h. $m$. 125 | $\begin{array}{lr} \text { h. } \quad m . \\ 12 & 5 \end{array}$ | h. m. 125 |
| Barnegat.. | 1157 | 1157 | $\begin{array}{lll}11 & 57\end{array}$ | 1157 | 1157 | 1157 | 1157 | 11 57 |
| Cape May. | $12 \quad 10$ | 11.52 | 1145 | 1145 | 1145 | 1145 | 1145 | 1145 |
| Cape Healopen |  | 1151 | 11 43 | 1143 | 1143 | 1143 | 1143 | 1143 |
| Assateague. |  | 1155 | 1133 | $11 \quad 33$ | 1133 | $11 \quad 53$ | 1133 | 11* 33 |
| Cape Heary. |  | $12 \quad 13$ | 1124 | 1184 | 1124 | 1124 | 11 24 | 1154 |
| Cape Hatteras. |  |  | 1148 | 1148 | 11.48 | 1148 | 1148 | 1148 |
| Ocracoke inlet. |  |  |  | 1142 | 1142 | 1142 | 1142 | 1142 |
| Cape Lookont........ |  |  |  | 1139 | 1139 | 1134 | 1132 | 1124 |
| Beautort entrance.... |  |  |  | $11 \quad 39$ | $11 \quad 39$ | 1139 | 1132 | 1124 |
| Cape Fear............ |  |  |  |  | 11.36 | 1136 | 1124 | $11 \quad 0$ |
| Cape Homan...... |  |  |  |  | 1146 | 1146 | $11 \quad 19$ | .... |
| Charlezton light... |  |  |  |  |  | 1152 | 1118 | ......... |
| Port Royal emtrance.. |  |  |  |  |  | 123 | 1118 | ......... |
| Tybee entrance...... |  |  |  |  |  |  | 1116 | ... |
| St. Mars ${ }^{\text {s }}$ + $\mathrm{ntrance} . .$. |  |  |  |  |  |  | 1155 |  |
| St. John's entrance... |  |  |  |  |  |  | 1210 | . ........ |
| cape Cañveral... |  |  |  |  | ...... | ...... |  |  |
| Cap Florida.... |  |  |  | .......... | ...... |  |  | . . |

Thus, from Sandy Hook to Delaware bay, starting with 12 hours 5 minutes, of Barnegat there would be, at the same instant, 11 hours 57 minutes, and off Cape May 12 hours 10 minutes, so that the navigator would have the same succession of tides whether he remained at Sandy Hook or passed onward to Delaware bay, or whether he came from Delaware bay to Sandy Hook. So from Sandy Hook to Charleston he will find, at the same inst:ont, 12 hours 5 minutes at Sandy Hook, 11 hours 57 minutes off Barnegat, 11 hons 45 minutes off Cape May, and so onward upon the parallels of latitude for the several points. For all practical purposes, then, of coasting, the succession of the tides, ant, of course, of the tidal currents of . Aood and cbl will be the same as if the navigator remuined stationary. Leaving at low water he will meet the flood for 6 hours 15 minutes, and then the ebb for another 6 hours 15 minutes, and so on. It is the simplest of all rules that has thus come out of this investigation. That remarkable change of the temperature between the waters of the in-shore cold current and the warm waters of the Gulf Stream occurring in so short a distance that Lieutenant Bache called it the "cold wall," takes place at distances off the coast of from 170 to 29 miles, (see Table D,) between Sandy Hook and Cape Cañaveral, measured, from the several points named in the table, at right angles to the direction of the course, or measured along the parallels of latitude of the points, at distances, from 195 to 28 miles, between Assatcague and Cape Cañaveral, (Table D.) The points where the parallels north of Assateague meet this division line have not been accurately determined.

The annexed table shows these distances measured at right angles and on the parallels.
D.

| Distance from coast to "cold wall" of Gulf Stream, off- | Measured at right angles to coast. | Measured on parallel of latitude. |
| :---: | :---: | :---: |
|  | Nautical miles. | Nautical miles. |
| Sandy Hook......- | 170 |  |
| Barnegat. | 135 |  |
| Cape May- | 137 |  |
| Cape Healopen. | 137 |  |
| Assateagae. | 95 | 195 |
| Cape Henry. | 92 | 107 |
| Cape Hatteras. | 30 | 31 |
| Ocracoke inlet. | 53 | 52 |
| Cape Lookout. | 53 | 65 |
| Beaufort entrance. | 62 | -------------- |
| Cape Fear. | 54 | 97 |
| Cape Roman.. | 57 | 103 |
| Charleston light | 61 | 9.5 |
| Port Royal entrance. | 79 | 97 |
| Tybee entrance. | 79 | 95 |
| St. Mary* | 90 | 87 |
| St. John's. | 85 | 82 |
| Cape Cañaveral. | 29 | 28 |
| Cape Florida. |  |  |

The coasting line of thirty miles keeps inside of the cold wall all the way to Cañaveral, and all the routes traced on the chart from Sandy Hook to southern ports are on the inside of it. The Gulf Stream lines, as drawn on the chart, show how the route to Bermuda and to the Bahamas cuts the alternate bands of warm and cold water of the Gulf Stream.

VESSELS TO AND FROM PORTS EAST OF NEW FORK.
The plate shows the sailing lines of vessels bound from New York to eastern ports and to Halifax, outside. The annexed table (E) gives the Greenwich time of high water off the several points named in the first column on the routes to and from the places named in the leading of the table. The distances are measured at yight angles to the co-tidal curves.
E.

| Off- | Co-tidal hours on sailing lines between New York and- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Newport. | New Bedfurd. | Nantucket. | Boston. | Portsmouth | Portland. | Halifax. |
|  | h. m. | $h . m$. | h. $m$. | $h . \quad n$. | h. $m$, | h. $m$. | h. m. |
| 'Throg's Point. | $16 \quad 16$ | $16 \quad 16$ | $16 \quad 16$ | 1616 | 1616 | 1616 |  |
| Fisher's island | 1348 | 1348 | 1348 | 1348 | 1348 | 1348 | ------ |
| Block island. | 1216 | 1216 | 1216 | $12 \quad 16$ | 1216 | 1216 | 1130 |
| Monomoy - |  |  |  | 1610 | 1610 | 1610 |  |
| Cape Cod. |  |  |  | $1 \pm 35$ | $14 \quad 35$ | 1435 | 1215 |
| Cape Ann....- |  |  |  |  | 1500 | $14 \quad 40$ |  |
| Portland |  |  |  |  |  | $15 \quad 30$ |  |

In passing from New York to an eastern port the first great change in the tides and tidal currents is between the East river and Long Island sound. The difference between Governor's ishand and Negro Point, on Ward's island, at the eastern entrance to Hell Gate, is two hours and forty-five minutes. Between this point and Throg's Point the change is small. The mariner is now in the full tide of the sound, and between Throg's Point and Fisher's island there is a difference of time of but two hours and twenty minutes, the greatest part of which is at the head of the sound and at its entrance, that is, near Throg's Point and Fisher's island. From off New London to off Sand's Point the difference is but one hour and forty minutes; so that, if the marincr, instead of remaining at Throg's Point, passes onward to Fisher's island he would lose but half a tide in the whole passage. In other words, he would have the same succession of rise and fall, ; according to the time elapsed, whether stationary or passing onward, within two hours and a half, or less than half a tide.

The tidal current lines show that even a less allowance is to be made for the change of current than for the change of tide, the difference in the change of current between Throg's Point and Fisher's island, along the middle of the sound, being of no practicable importance. Passing ont of Long Island sound the tidal hours grow carlier, until off Block island that of Sandy Hook is again reached. The co-tidal line of Sandy Hook and Block island being the same, it is the struggle of the same tide through New York bay and the narrow Last river, and obstructed Hell Gate, and through Fisher's island and Long Island sound, and to Throg's Point. The tidal currents meet near Throg's Point.

The lower part of Narragansett bay has the co-tidal hour 12 hours nearly. Buzzard's bay has nearly the same co-tidal hour, the tide wave reaching the shore at nearly the same time all around the bay.

It would be impossible to give in a small compass a minute account of the tides of Martha's Vineyard and Nantucket sound. In general, it may be said that as far as Holmes's Hole and Wood's Hole they resemble those of Block IEland sound, and afterwards those of Monomoy, at the eastern entrance; but this generalization is unsatisfactory without more details than there is space here to give. In these sounds takes place the remarkable change of between three and four honrs, the greatest change of our coast, dislocating, as it were, the times of high water at places south and west and east and north of Nantucket. The whole of this change takes place between the castern entrance of Nantucket sound and the western of Martha's Vineyard, giving rise to quite a complex condition of both tides and currente, which it has occupied much time to unravel. The dominant co-tidal line of our coast, from Block island to Cape Cañaveral, is that of 12 hours of Greenwich time; that of our castern coast, from Nantucket to Passamaquoddy, is, in general, 15 hours. Passing out of Nantucket sound coasters carry nearly the same co-tidal hour to Cape Cod, and thence vary their time about half an hour in passing to Boston, to Portsmonth, to Portland, or to Passamaquoddy. It has long been known that the tidal almanac for Boston might practically be used for eastern ports. Vessels from New York to Halifax, and New York to Europe, which keep outside, and should keep well off the Nantucket shoals, and off St. Gcorge's, as shown by the track on the chart, vary their co-tidal hosur but little, keeping between the lines of 12 and $11 \frac{1}{2}$ until quite well on their course, and beyond Cape Sable. The same rule will apply to their case as has been given for ressels between New York and a southern port.

## APPENDIX No. 9

ADDIIIONAL RESEALCLIES ON THE CO-TIDAL LINES OF THE GULF OF MEXICO, BY A. D. BACHE, SLPERIN-TENDENT.-(Sketch No. 46.)

In the Coast Survey Report for 1856 I published a paper on the approximate co-tidal lines of the Gulf of Mexico. This paper was based on observations made at numerous stations during the progress of the survey. But with the exception of four stations where the observations were extended over more than a year, the stations were scldom occupied more than two months. Corrections for the amount of variation derived from the nearest complete station were applied to the means; still, it was thought that better observations carried over longer periods would clear up many of the doubtful points.

Accordingly, a systematic plan of observations was laid out, involving the occapation of four stations simultaneously, with self-registering tide-gauges during one year uninterruptedly. The execution of this plan was begun by establishing the stations of Cape Florida, Indian Kcy, Key West, and Tortugas. After the
completion of the year the gauges from the former three places were transferred to Charlotte ILarlor, Tampa Bay, and Codar Keys; Tortugas remaining as a permanent station of reference, which position it also retained during the observations at a third set of stations comprising St. Mark's and St. Vincent's island, (western entrance to Apalachicola, and two intermediate stations at 1 Dog island and New inlet. Observations at the two latter stations were not kept up during a whole year, having merely been established to study a rather rapid change in the features of the tides in that region. The ganges were afterwards transferred to the Southwest Pass of the Mississippi and to Last island, on the coast of Lomisiana. A seffregistering gange was also kept up for some time at l'ensacola by the kindness of S. T. Alert, esq., civil engineer of the nary yard.

After a year's observation at St. Mark's and St. Vincent's island, the gauges were transerred to Calcasieu inlet and Aransas Pass, but at that time the rebellion of the southern States broke out and the vessel employed in their trausportation was sejed at Aramsas, and the observer stationed at Calcasicu was arrested and imprisoned for several months at New Orleans. The scheme having thus beco broken before its completion, I am able to give only the resulte obtained for the enstern part of the Gulf. The observations, which were ably directed by the late G. Wurdemann, and after his deatl by Mr. A. C. Mitchell, were decomposed by a graphical method after they were receised in the office. 'This laborious work was performed by MessesAvery, Downes, Balmain, and J. R. Gillis. To the latter I am particularly indelted for sereral time and labor saving improvements in the mode of working.

The times and heights of diurnal and semi-diumal high water were reduced in the usual way. The ammal means were reduced to Greenwich time and corrected for transit and for depth in the manner explained in my former paper. The results are given in the following tables:

Semi-diurnal tide.


Diurnal tide.

|  | Longitude in time. | Mean diurnal isierval. | Suth. | Correction for transit. | Correction for depth. | Co-tidal line. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | h. m. | h. m. | h. 9 n. | m. | m. | h. 7 m . |
| Cnpe Florida | 5 21 | 1359 | 1920 | - 28 | - 20 | 1832 |
| Indian Key | $5 \quad 23$ | 1651 | 22 14 | 3.4 | 15 | 2125 |
| Key West. | 528 | 198 | $24 \quad 36$ | 38 | 19 | 2359 |
| Tortugas...... | 530 | $18 \quad 55$ | 2427 | 38 | 10 | 23 30 |
| Charkate Harbor | $5 \quad 29$ | $21 \quad 24$ | $26 \quad 53$ | 43 | 20 | 2.) 50 |
| Esmont Key | 531 | 203 | 2534 | 40 | 20 | 24 34 |
| Cedar Keys | 532 | 2186 | 203 38 | 43 | 4.5 | 2530 |
| Bnint Mark's. | 537 | 2150 | $27 \quad 33$ | 44 | 22 | $26 \quad 27$ |
| Dog island | 539 | 2127 | 276 | 43 | 15 | 26 \% |
| New inlet | 540 | 2133 | $27 \quad 13$ | 43 | 13 | $26 \quad 17$ |
| Saint Vincent's. | 541 | 2182 | 273 | 43 | 13 | 267 |
| Pensacola .. | 540 | 2203 | $27 \quad 52$ | -44 | - -17 | 2651 |

These numbers are set down on the accompanying maps and appropiate co-tidal lines drawn by the eye so as to give the best possible agreement. It will be seen, by comparing these liacs with those on the map
appended to my paper in the Coast Survey Report for 1856 , that the new results have modified the former ines but inconsiderably. Some particulars formerly supposed to be due to errors of observation are con firmed; thus, for instance, the earlier co-tidal hour of the semi-diumal tide at Indian Key than at Cape Florida.

The question of the interference of the tidal waves coming through the Florida channel and through the Caribbean sca has not made any progress, nor is it likely to do so until the features of the tides at the west end of Cuba and the extremity of Yucatan are better known.

## APPENDIX No. 10.

## REPORT TO THE SUPERINTENDENT BY ASSISTANT L. F. POURTALES, IN CHARGE OF THE FIELD AND OFFICE

 WORK RELA'TING TO TIDAL OBSERVATIONS.Coastr Survey Office, October 1, 1862.

Sin: I have the honor to submit the following report on the field and office work performed by the tidal party under my charge during the past year.

Ficld-work.-The tidal observations made under the direction of this division have been confined altogether to the permanent stations at Eastport, Me;; Boston, Mass.; New York; Old Point Comfort, Va.; San Diego and San Francisco, Cal.; and Astoria, Oregon. No temporary stations were occupied except those conneeted with the hydrographic parties.

The station at Eastport remained in charge of Mr. Samuel Walker until March, when he was ordered to go to Key West, to take charge of the magnetical station. Mr. R. H. Taleott took his place. As in formor years, magnetical observations form a part of the observer's duties at this station.

At the other stations uothing has occurred worthy of particular remark.
Of the self-remistering tide-gauges seizcd by the rebels last year, only one has thus far been recovered. It is the one used by Mr. Donegan at Calcasicu entrance, which, when he was imprisoned at New Orleans, he had deposited with the British consul, from whom it was obtained after the capture of the city. Two sheets from the tide-gauge formerly at Last island, La., were received last June with the New Orleans post office mark, but without letter stating by whom they were forwarded. 'They contain the observations for April and part of May, 1861 , ending on the 13th of that last month, when a note on the sheet informs us that the observations were stopped "by order of the governor of Louisiana."

The other gauges are in places not yet brought back under the control of the government, except Fort Clineh. From information obtained at that place by Assistant Boutelle, it appears that the gauge was destroyed by the inhabitants previous to the capture of the town.

The following table gives a recapitulation of the observations received at the office during the year. with the exception of those taken by the hydrographical parties for the reduction of their soundings.

List of observations received during the year ending September $30,1862$.

|  | Name of station. | Nume of observer. | Kind of Station, per- | Time of | cupation. | $\dot{\tilde{x}}$ | Hemarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | ! |  | Lemporary | Froba- | To- | 感 |  |
| 1 | Eastpart, Me | $\left\{\begin{array}{l} \text { S. Walker ..... .. } \\ \text { R. H. Talcott. .... } \end{array}\right\}$ | S. R..... Permanent . | Oct. 1, 1801 | Sept. 30, 1831 | 365 |  |
|  | Boston Dry Dock... | T. E. Ready | Box.............. do | Oct. 1, 185t | Sept. 30, 1E61 | 365 |  |
| II | Governor's Istand, N. Y | R. T. Bassett | S. K...... ...do....... | Oct. 1, Je6i | Sept. 30, 1861 | 365 |  |
|  | Brooklyn, N. Y........ | ...do ..... | Box..... ${ }^{\text {a }}$.do | Oct. 1, 1831 | Sept. 30, 1861 | 365 | Day observations for |
| 115 | Ond Paint Comfor, Va. | M. O. King | s R.........do ...... | Oct. 1, 186L | Sept. 30, 1E61 | 365 | comparison. |
| VIII | Last Island, La .......... ... | H. P. Wilson ....... | S. R..... Temporary .. | Aprit 1, 186i | May 13, 186l | 43 |  |
| X | san Diego, Cut.............. | A. Cassidy .......... | S R..... Permanert .. | Aug. 1, 1861 | July 1, 1832 | 334 |  |
|  | San Francieco, Cal........... | H. E. Unrlandt ...... | B. R..........do........ | Aug. 27, 1661 | Juy 14, 1862 | 321 |  |
| XI | Astoria, Oregon............... | L. Witson | S. R. .......do ....... | Aug. 1, 1861 | July I, 1809 | 334 |  |

Office-work.-The persons employed in this division during the year were: R. S. Avery, J. Downes, P. H. Donegan, (since December 23, 1861,) M. Thomas, and S. D. Pendleton.

Mr. Arery was engaged in making out tables of the daily inequality at St. Mark's and Cape San Lueas,
n reading off and reducing the tidal obscrvations at Eastport and Vera Cruz, and in completing the decompositions and reducing the diurnal and semi-diurnal tides at the stations in the Gulf of Mexico. The results were used in the preparation by yourself of a paper on the co-tidal lines of the eastern part of the gulf in another part of this volume. After that he was engaged in computations relating to the discussion of the diurnal tides. This has not been brought to a close yet, on account of a severe illuess under which he has been suffering for some time.

Mr. Downes has had the duty of reading off and reducing the sheets from the self-registering tide-ganges, and has also made various other reductions.

Mr. Donegan made a catalogue of the tidal reductions in the archives, and also of the sheets of the selfregistering tide-gauges, putting the later in order by stations and years for easier reference. He has also made ordinary reductions and miscellaneous other work.
M. Thomas has been chiefly engaged in copying the readings of the self-registering observations according to a uniform system, besides various other copying.
S. D. Pendleton has made ordinary reductions of the self-registering observations of the western coast. Very respectfully, your obedient servant,
L. F. POURTALES,

Assistant U. S. Coust Survey, in charge of tidal division.
Prof. A. D. Bache, LL.D.,
Supcrintendent C. S. Coast Survey.

APPENDIX No. 11.

REPORT OF ASSISTANT J. E. HILGARD, IN CHARGE OF THE OFFICE, AND SUB-REPORTS OF THE CHIEFS OF OFFICE DIVISIONS.

Coast Survey Office, Washington, November 1, 1862.
Dear Sir: The operations of this office, which I took charge of in April last, when Licutenant Colonel Palmer joined the army of the Pot mac, have been continued with uninterrupted activity during the past year. While the regular progress of the work has been steadily kept up, the energies of several branches of the offee have been severely taxed to meet the demands arising out of the paval and military operations in which the nation has been engaged. It will be scen from the detailed reports of the chicfs of office divisions, that beside the issue of the extraordinary number of over forty-soven thousand printed maps and charts, the hydrographic, drawing, lithographic, and photographic forces have prepared a great deal of special information for the Navy and War Departments from the archives of the office, which for obvious reasons has not been published. The facilities of this office for multiplying manuscript maps, either by photograph or lithograph, have also been placed at the disposal of the topographical engineer officers of the army engaged in the preparation of military maps, and have proved of much service.

The reports of the several chiefs of divisions of the office are herewith submitted, accompanied by the usual tabular statements of office statistics.

The clerical duties of the office have been performed with great efficiency by Mr. V. E. King, assisted at various times by Mr. S. H. Lyman and Mr. J. E. Dow.

My acknowledgments are due to the chiefs of divisions for the support I have received from them by their ready co-operation at all times; and also to Samuel Hein, esq., our veteran disbursing officer, whose experience and advice have ever been freely available, as well as to Joseph Saxton, esq., the assistant in charge of the office of weights and measures, for general superintendence of mechanical construction.

Yours, very respectfully,

J. E. HILGARD,<br>Assistant in charge of office.

[^0]
## Report of Captain C. P. Patterson, hydrographic inspector, in charge of Hydrographic Dizision.

## Const Survey Office, Washington, October 1, 1862.

During the past year the hydrographic duties of this office have consisted of a more miscellaneous and laborious chameter than usual, in consequence of the new and immense demand for charts of all parts of our southern coast for the use of the greatly increased number of our naval vessels and the vast fleet of transports in the employ both of the army and navy along the whole extent of that coast. These duties consist, in the main, in the examination and verification of original hydrographic sheets, together with the original records of soundings and angle-books belonging to those soundings. duplicating these records in some cases by fair copies; the reduction of some and the examination and verification of all reduced sheets for publication; the plotting of light-houses, light-vessels, beacons, and buoys, as determined by our own parties in the field or from data furnished by the Light-House Board; making, revising, and plotting of sailing directions and sailing lines; the description of dangers; the plotting of tidal and current stations; making projections for the use of hydrographic parties in the field; and comparative tracings of localities of which two or more surveys have been made. In addition to these there has been a very large amount of smaller detail, occupying much time, but impossible to specify.

Mr. Arthur Balbacll has had principal charge as draughtsman, and in consequence of his long eyperience, great accuracy in the minutest detail, and remarkable memory in regard to them, he has been subject to constant calle to supply information required from several divisions of the office, and to correct inaccuracies. His work which can be specified has been as follows:

> Original hydrographic sheets compared with the original records and verified........... 21
> Printed maps and charts verified............................................................. 30
> Reduced drawings of hydrographic sheets verified........................................... 19
> Examined and ruled sailing lines in charts................................................... 16
> Reduced parts of charts........................................................................... 3
> Selected soundings in original shects for reduction.......................................... 7
> Examined original records in regard to rocks, shoals, and discrepancies . . . . . . . . . . . . . . . . $12^{60}$
> Made comparative maps.............................................................................. 3

$$
\begin{aligned}
& \text { Made tracings of maps and charts............................................................... . . } 17
\end{aligned}
$$

To Mr. Balbach I am indebted for much valuable information not otherwise to be obtained. During the past year his services were lost to the office for a number of weeks in consequence of a very severe and painful illness, which for many days threatened his life, and from the effects of which he has not even now recovered. Yet his fidelity has caused him to work many days in the office under great suffering, and at all times to perform his duty in or out of the office hours, with the utmost cheerfulness.

Mr. I. Karcher, draughtsman, has been the only assistant to Mr. Balbach. Mr. Karcher was given a short leave of absence last autumn, to visit his family in Europe, from which he returned and reaumed his duties in the office, November $25,1861$.

From May 29 to July 11, 1862, he was employed as assistant in the party under my charge working in the Potomac. With this exception he has been constantly and most diligently employed in the office, and besides a large varicty and amount of smaller detail, has done the following work:
Projections made, single sheets, scale $\frac{1}{500}$ ..... 2
Projections made, double shects, scale $50 \frac{1}{50}$ ..... 1
Projections made, single sheets, scale $\frac{10}{10000}$ ..... 5
Projections made, single sheets, scale $\frac{1}{20 \frac{1}{000}}$ ..... 9
Projections made, single sheets, scale $\frac{1}{40 \frac{1}{000}}$ ..... 6
Projections made, single sheets, scale $\frac{1}{800^{n}}$ ..... 4
Total. ..... 27


By Mr. Karcher's assiduity and accuracy he saves much time in the verification of his work, and completes a most satisfactory amount of results.

The draughtsmen attached to the several hydrographic parties bave been at work in the office at various times, completing the plotting and copying of the work of their respective parties, under supervision of the chiefs of those parties.

## Report of Assistant L. F. Pourtales, in charge of the Tidat Division.

Coast Scrvey Office, Washington, October 1, 1862.
The following report of the occupation of the computers in this division during the past year is respectfully submitted:

Mr. R. S. Acory was engaged in making out tables of the daily inequality of St. Mark's and Cape San Lucas, and in reading off and reducing the tides of Eastport and Vera Cruz. He also completed the graphical decompositions and reductions of the diumal and semi-diumal tides at the stations in the Gulf of Mexico. He afterwards took up the computations relating to the discussion of the diurnal tides.

Mr. J. Downes has made the readings from the sheets of the self-registering tide-ganges, and has reduced the results, besides making various other reductions.

Mr. P. H. Donegan reported for duty December 23, and was employed in making a catalngue of the tidal reductions in the archives; also one of the shects from the self-registering tide-gauges, at the same time putting the latter in order by stations and years of observations, for easier reference. He has also made ordinary reductions and other miscellaneous work.
M. Thomas has been chiefly engaged in copying the readings of the seff-registering observations according to a uniform system, besides various other copying.
S. D. Pendleton has made ordinary reductions of the self-registering observations of the westem const.

> Report of Assistant Charles A. Schott, in charge of the Computing Division.

Coast Survey Office, October 1, Is62.
The usual annual report on the work done by the several computers for the year ending October 1, 1862, is herewith respectfully submitted.

The force of the computers has remained the same as last year, with the same general distribution of work and organization. Mr. J. E. Daw, clerk to the division, was transferred January 22, 1862, to the assistant in charge of the office, Mr. E. H. Courtenay taking lis place. On May 8, Mr. Courtenay was ordered on field duty; he returned to the division August 20 ; in the interval Mr. G.J. Pinckard temporarily acted as clerk from May 21 to August 10, when he was transferred to the Engraving divieion. The number of computers was barely sufficient to attend to the current field-work and to all calls from the office for information, which were attended to, and but little time remained to adjust work of preceding epasons. Mr. Main acted in charge of the division during October, 1861, when I was absent on other duty. From July 26 to August 20 I was again engaged on field-work. Up to the month of June the colar spot observations continued regularly; after this date, however, owing to pressure of other official duty and for want of regular assistance, they were nearly discontinued. The duplicate astronomical, geodetic, and magnetic records remain
in charge of this division；they are contained in forty－nine boxes，and comprise fourteen hundred and six separate volumes．

During the year eighty－three reports have been submitted on various suljects connected with the duty of the division．The work done by each computer is herewith given in detail．

Assistant Theodore W．Werner supplied L．M．Z．compatations to the St．John＇s river triangulation； computed the triangles of East bay，near Galveston，1860－＇61，and reduced the observations of vertical angles in Section I，1856－＇⿹勹巳－＇59；deduced the horizontal angles at primary stations Monadnock，Boxhill， and Baldhill，1861；coraputed the triangulations of Koos bay，1861，and of Penobscot bay，1861，Assistant G．A．Fairficld and Sub－Assistant S．C．McCorkle＇s work；computed the additional triangulation near Boston，Assistant C．O．Boutelle，1860－＇61；completed the second computation of the angles at Agamenticus， and made good progress with Assistant E．Blunt＇s new triangulation in Thode Island and Connecticut of 1861.

Mr．Eugene Nulty made the second computation of Mr．Vose＇s magnetic observations at Lastport，Me．， in 1860 and 1861 ；computed the time，azimuth，and latitude of Station Pigeon．Koos bay， 1861 ；computed the longitude，from observed occultations by $\Lambda$ ssistant $G$ ．Davidson，of Point Restoration，Point Hudson， Point Pinos，Hunboldt，Searborough，and Telegraph hills，all on the western coast．

Mr．Jame＇s Main revised the longitude computation from observations of the solar echipse of Jnly，1851； revised time and latitude computations of Point Henson， 1860 ；also computed the azimuth at this station； revised the computations for latitude of the following statione：San Diego，Point Pinos，Cape Dieappointment， and Western lidge；also the azimuth at the last station；computed the position of the solar spots for the date of the eclipse in July，1860；introduced the latest defemination of the star places into our azimuth computations，and computed the longitude of Station Iigeon，Section XI，from a chronometer transmission； revised time，azimuth，and latitude computations at this station，and also of Gunstock，Section I；revised time and azimuth computations of Wachusett，Section 1；computed the three magnetic components at Stations Tray，Boxlill，and Baldlill；reduced my maguctic observations of 1862 ；and nearly completed the revision of the time and azimuth computations at Azimuth Point，near Monterey bay．He also performed some miscellaneous astronomical and magnetic computations．

Dr．Gottlich Rumpf completed the computation of the triangles of Penobscot bay，1858－59，and of Chatham bay，Section VI，1861；adjusted the horizontal angles at Western Ridge；computed L．M．Z．to the triangles of St．Augustine and the work joining Sections V and VI；assisted in preparing the annual statistics for 1860，and computed some additional positions in Sections V and VI ；computed the triangulation in the vicinity of Washington by Charles Hormer，1861；made a second computation of the horizontal angles at Wachusett；deduced the length of the Koos bay base line；nearly completed Sub－Assistant Webber＇s triangulation on the coast of Maine，1860－＇61；assisted on the second computation of the horizontal angles in Section I，primary triangulation，（Scbattis and Mount Independence；）computed new primary triangulation， Section II；commenced the second computation of horizontal angles of Station Agamenticus；and computed the triangulation of the Potomac river from Blackistone island to Washington，1862，by F．Rogers and Charles Hosmer；also that about the District of Columbia of Sub－Assistant Ferguson of 1862.

Mr．Johen Wiessacr completed the computation of the Gray＇s harbor triangulation，Section XI，1860； deduced horizontal angles at Station Barkley Point 2，Section VII；reduced horizontal anglee at Gunstock， and adjusted computed elevations of points in Scetion I，1856－＇58－＇59；made a second computation of the horizontal angles at Mounts Harris and Cnkonoonuc，1861；of Howard and of Mount Desert；revised the angles at Ragged and Mount Blue，and computed weights to each direction of the lines of the primary triangulation round Epping base；made progress with the least square adjustment of this part of the trianpu－ lation ；computed L．M．Z．of Mr．Hosmer＇s triangulation of the Potomac，1862；also assisted in the prepara－ tion of the list of new geographical positions near Boston．

Mr．J．E．Dow attended to the clerical duty of the division，assisted occasionally at the archives，and compared original and duplicate records．On Jamuary 22 he was transferred for duty to the assistant in charge of the office．
－Mr．E．H．Courtenay was appointed aid in the United States Coast Survey January 22，and performed the clerical duty of the division，and also supplicd and revised duplicates．IIe was ordered on field duty May 8，and returned to the division August 20.

Mr．G．J．Pinckard temporarily filled the position left vacant by Mr．E．H．Courtenay between May 21 and August 10.

R．Freeman attended to the extra copying of the old original records of the Survey．

Report of the operations of the Drawing Division.
Coast Survey Office, Norember 1, 1s62.
The Drawing division remained under the charge of Assistam, 7 . . T. Lee until April, since when the work has been carried on under the immediate direction of the assistant in charge of the office, with the efficient aid of Mr. W. T. Bright. The numerical force of this divivion has romained the aame as at the date of the last report, the gain in time and labor by the use of the method of reduction by photography being such as to allow, in addition to the regular progress of work, the production of a large number of drawings and tracings of epecial maps called for by the wants of the public service. The distribution of labor has remained the same as last year, and the detailed statement of the work of each draughtsman is. given below.

Assistont $M$.7. MeClery has been employed in drawing the hill topography upon plotograplis on a seale of ${ }_{4} \frac{1}{0} 0 \overline{0}$, to serve, when reduced by $\quad$ hotugrap hy to one half that scale, as a guide for the engraving of the following const maja and chats on a scale of Folog, viz: No. 7 , Muscongus bay to Portland, Me.; No. 9, Cape Neddick, Me., to Cape Am, Mass.; No. 11, Jlymouth to Hyannis, Mass.; and No. 21, New York bay and harbor.

Mr. E. Hergesheimer has been engaged upon the meneralization and preparation of plane-table sheets for the photographic roduction to the scale of publication of const maps and charts No. 7 , Museongus bay to Portland, Me.; No. 10, Cape Ann to Plymouth, Mass.; No. 21, New York bay and harbor; No. 108, Matagorda and Lavaca bays, Texas; and of the finished map of Irake's bay, Cal. He has continued the drawing of hill topography for the finished map of the Kennebec and Sheepseot rivere, Me., $\frac{1}{4} \frac{1}{0}$; and made additions to map of Charleston harbor and approaches, scale $\overline{3} \frac{1}{0} \sigma$, for lithographic transter. The verifieation of engraved topography and the arangement of lettcring on the finished charts have been made by him. He has, in addinion, lad charge of the combination of the surveys in the vicinity of the capital, and of the preparation of photographic copies of the same for the use of the army, and has from them drawn a topographical map of the approaches to Washington City.
 Head to Cape Cod, Mass.; No. 1I, Cape Ann to Gay Head, Mass.; No. VII, Winyah bay, S. C., to St. Joh's river, Fla.; No. XIII, Waccasasea bay to Choctawhatehee bay, Fla.; No. NVI, Galvestou bay to the Lio Grande, Texas; has completed the preliminary chart of Potomac river, sheet No. 1 , from entrance
 Point to Indian Head, reate $\overline{60} \overline{0} 0$; finished the hydrography of Hudson river, shect No. 2, from Sing Sing to Poughkeepsic, scake $\frac{1}{0} 00$; and reduced Wilkes's survey of 'Iybee bar and Calibogue sound, S. C., scale $\overline{60000}$. He has made additions to coast maps and charts Nos. 12,13 , and 14 , from Monomoy and Nantucket shoals to Hlock Island-sound, R. I., scale $\frac{1000}{8000}$; and has been engaged upon lithographic maps, coast of South Carolina and Georgia, scale 200000 ; Port Royal sound and vicinity, scale ${ }_{6} \overline{0}{ }^{1} 000$; progress sketches, projections for ficld parties, projects, projections on copper, diagrams, and verifications. He has also continued the hydrogmphy of const map and chart No. 7 , from Muscongus bay to Portland harbor, Me., scale $\bar{\varepsilon} \frac{1}{0} \overline{0}$; and has now in hand a chart of part of the western coast, from Bodega Head to Point Pinos, including the bay of San Francisco, scale $\frac{1}{0000}$.

* Mr. L. D. Williams has continued the topography of Hudson river, sheet No. 1, from entrance to Sing Sing, scale $\frac{10}{6000}$; lettered coast map and chart No. 21 , New lork bay and harbor, scale $\overline{80} \frac{1}{000}$; revised hydrograpliy on coast map and chat No. 12 , Monomoy and Nantucket shoals to Muskeget chanmel, Mass., scale $\overline{80} \frac{1}{0} \overline{0}$; drawn additional topography to map of Savannah river, Ga., scale $\frac{1}{40} \overline{0} \overline{0}$; completed topography and part of hydrography of preliminary chart of Potomac river, shect No. 2, from Piney l'oint to Lower Cedar Point, scale $\bar{\sigma} \overline{0} \overline{0} \overline{0}-$. He has also been engaged upon projects, projections for field parties, projections on copper, verifications, and has made the amual additions to the Congress map. He has now on hand finished map of San Francisco bay, (lower part,) scale $\frac{50000}{\frac{1}{0}}$.

Mr. II. Lindenkoh, who is equally efficient as a draughtsman and engraver, has been chicfly employed in the Lithographic division, where he has made numerous drawiugs and engravings on stont. He has made the reduction of part of Potomac river, sheet No. 4, from Indian Head to Chain bridge, 4 oboo, and has engraved the topography of the entire sheet on stone. He has also been engaged upon projections for field parties, tracings, and miscellaneous maps. -

Mr. F. Fairfax has completed the photographic outline of topography of Petaluma crcek, Cal., scale
$\frac{1}{30000}$; photographic outline of topography of Napa creek, Cal., scale $\frac{1}{300 \overline{0}}$; preliminary chart of Koos bay, Uregon, scale $\overline{2007}$; preliminary chart of Tomales bay, Cal., scale $\frac{1}{30000}$, and made tracings for photographic ontline of same. Hé has also completed the preliminary ehart of Mount Hope bay, R. I., scale $\overline{40} \frac{1}{0} \overline{0} 0$, and has been employed upon projections for field partics, tracings, and statisties.

Mr. J. W. Maedel has drawn the preliminary chart of Calibogue sound and Skull creek, S. C., scales ${ }_{2} \frac{1}{0} \frac{7}{000}$ and $\frac{1}{400 \overline{0} 0}$; made lithographic drawings, diagrams, lettered plane-tahle sheets, and made tracings of original sheets for photographing, under Mr. Hergesheimer's direction, and of various original sheets required for the use of the army and navy.

Mr. T. Petingale entered the office on the 21st of May, and since that time has been employed upon miscellaneous maps, tracings, and statistics.

Mr. T. R. Smith entered the office on the 25th of February, and has been engaged inking plane-table eheets in the vicinity of Washington, and upon tracings.

Mr. B. Hooc, Jr., has continued on tracings, statistics, and miscellaneous office-work.
Mr. W. Fairfux has been employed upon tracings, coloring proofs, statistics, and miscellaneous work.
Mr. W. B. McMurtrie was assigned to duty in the office in August, and has been engaged inking plane-table sheets and plotting hydrographic work.

List of maps and sketches completed or in progress during the year ending November 1, 1862, arranged in order of Sections.

| Name. | Scale. | Description. | Remarks. |
| :---: | :---: | :---: | :---: |
| Section 1. |  |  |  |
| Progress sketch A | 1-600, 000 |  |  |
| Progress sketch a bis | 1-400,000 |  |  |
| General coast chart, No. I, from Quoddy Head to Cape Cod, Mass. | $1-400,001$ | Finished chart | In progress. |
| General coas chart, No. II, frow Cape Ann to Gay Head, Mass.. | 1-400, 000 | do | Do. |
| Sheepseot and Kennelbec rivers, Maine | 1-10,003 | Finished map | Do. |
| Barbstabie harber, Mass. | 1-20, 000 | do | Completed. |
| Mount Hope bay, Rhode Island. | 1-40,000 | Prelininary chart | Do. |
| Const map and chart, No. 7, from Muscongus bay to Portland harbor, Maine. | $1-50,000$ | Finished map and chart. | In progress ; outline by pisotography. |
| Coast map and oh crt, No 8, from Seguin Island light to Kennebunkfort, Maine. | 1-80,000 | do | Do. |
| Coust map and chart, No. 9, from Cape Neddick, Maine, to Cape Ann, wass. | 1-80,000 | -do------------- | Do. |
| Cape map and chart, No. 10, Massachusetts bay and harbor..... | 1-80,000 | . do | Do. |
| Srction IL. |  |  |  |
| Progress sketch B, No. 2. | 1-1, 100,000 |  |  |
| Coast map and chart, No. 21, New York bay and harbor | $1 \cdot 1,200,000$ $1-80,000$ | Finished map and chart. | In progress ; outline by photography. |
| Hudson river, from entrance to Sing Sing, New York- | 1-60, 000 | Finished map...--.... | In progress. |
| Hudson river, from Sing Sing to Puughkeepsie, New York. | 1-60, 000 | .....-do........-...-...... | Lo. |
| Section III. |  |  |  |
| Progress sketch C---........ | 1-400, 000 |  |  |
| Potomac river, from entrance to Piney Point.. | 1-60, 000 | Preliminary chart.... | Completed. |
| Potomac river, from Piney Point to Lawer Cedar Point | 1-60, 000 | . .-. - do.-...-. - | Uo. |
| Potomac rivor, from Indian Head to Chain Bridge. | $1-60,000$ $1-40,000$ | d | In progress. |
| Norfolk harbor, Virginia, (litbograph drawing) - | 1-10, 000 |  | Completed. |
| Reconnaissance of Pamunky and Mattapony rivers, Virginia, (lithograph drawing). | 1-60,000 | ..do |  |
| Section IV. |  |  |  |
| Progress sketich D. | 1-600,000 |  |  |
| Cowst map and chart, No 41, Albemarle sound, (eastern part,) additions. | 1-80, 000 | Finished map and chait- | Do. |

List of maps, sketches, \&r.-Continued.


Report of Mr. Eduard Wharton, acting in charge of Engraving Division.
L- S. Coast Survey Office, October 31, 1862.
I have the honor to present the annal report of the operations of this division during the year ending October 31, 1562.

The division has remained under my charge since the date of the last report, and I have been very materially assisted in thg discharge of its duties by Mr. C. C. Callan as clerk to the division, and whose valuable services, I regret to say, we have lately been depr:ved of by his transfer to the Adjutant General's, office. The position of clerk is now filled by $\mathrm{I}_{\mathrm{I}} . G_{.}$. J. Pinckard.

The operations of the division have continued the same as in previous years, and the system of engraving upon copper from drawings reduced by photography has been further prosecuted with increasing success; and at the present time there are seven charts of the most important localities on our coast, of the 80000 series, engraving from these reductions.

The practice of engraving the figures of somndings by means of punches has received continned attention, and promises to be successfully used for at least the second-class charts, if not for those executed in the highest style of art.

The engraving foree has remained the sume as last year, consisting of twenty-three engravers, of various degrees of skill. The usual detailed statement of the occupation of each is given below. During the last month the services of five of these have been dispensed with, owing to the necessity of a reduction in the office expenses, arising from the diminished appropriation for the year.

The engraving of the following finished maps and charts has been completed, viz: coast chart No. 35, Chesapeake bay, (No. 5,) from Pocomoke sound to York river, $\frac{1}{800 \pi}$; Sapelo sound, Ga., $\overline{300} \bar{\sigma}$; Ossabaw sound, Ga., $\frac{1}{3000}$; St. Simon's sound, Ga., $\frac{1}{4000}$; St. Mary's river and Fernandina harbor, Fla., $20 \frac{1}{000}$; St. Augustine harbor, Fla., $\frac{\overline{3}}{0} \frac{1}{000}$; and various corrections and additions to the following charts, previously reported as finished, have been made: coast chart No. 31, Chesapeake bay, (No. 1,) from head of bay to the Magothy river, $\frac{1000}{\mathbf{0}}$; coast chart No. 32 , Chesapeake bay, (No. 2,) from the Magothy to the Hudson river,
 coast chart No. 92 , western part of Mississippi sound, from Round island to Grand island, $\frac{30}{600}$.

The following maps and charts have been prepared for preliminary editions, viz: Barnstable harbor, Mass., $\frac{1}{20000}$; Mount Hope bay, R. I., $\frac{10}{0} \frac{1}{00}$; coast chart No. 21, New York bay and harbor, $\frac{10}{8000}$; Hudson river, (No. 2,) from Haverstraw to loughkeepsie, $\frac{1}{60 \pi \bar{\sigma} \pi}$; western part of St. George's sound, Fla., $\frac{1}{4000}$; Escambia and Santa Maria de Galvaez bays, Fla., $\frac{1}{3000}$; Petaluma and Napa creeks, Cal., $\frac{1}{3000}$;
 Washington Territory, $\frac{80000}{}$; and Washington sound, Washington Territory, (new edition,) $\frac{1}{200000}$.

Considerable progress has also been made towards completion upon the following important charts. viz: coast charts $\mathrm{N}_{\mathrm{os}} .8,9$, and $11, \frac{1}{8000}$, embracing portions of the coast of Maine, all of New Hampshire, and part of Massachuecte; Shecpscot and Kennebee rivers, Me., $\frac{1}{4000} 0$; Portland harbor, Me., $\frac{1}{20 \frac{1}{0} 00}$, now nearly completed; Hudson river, (No. 1,) $\frac{10}{600}$, from entrance to Haverstraw ; Patuxent river, Md., (Lower
 No. 71, Florida reefs, from New-found Harbor key to Boca Grande key. $\frac{1}{8000}$; Savannah river, Gai, 10000 ; general coast chart No. X. Florida reefo, from Key Biscayne to Marquesas keys, $\frac{1}{40} \frac{1}{0} \overline{0} 0$; coast chart No. 106, Galveston bay to Oyster bay, Texas, ${ }_{80000}^{7}$; San Pablo bay, Cal., $\frac{1}{5000}$, now nearly completed; and Drake's bay, Cal., $\frac{1}{40} \frac{1}{00}$.

The following important charts have been commenced, viz : coast chart No. 7, Muscongus bay. to Portland, Me., $\frac{1}{80} \frac{1}{00}$; coast chart No. 10, Cape Ann to Plymouth, Mass., $\frac{1}{80000}$; Potomac river, (No. 3,) from Lower Cedar Point to lndian Head, $\overline{6} \frac{1}{00} \overline{0}$; coast chart No. 37, from Cape Henry to Currituck sound, N. C., $\overline{8000}$; coast chart No. 10, Long key to Big Pine key, Fla., $\overline{80000}$; coast chart No. 81, Cedar keys to Chassahowitzka river, Fla., $\frac{1}{k_{0} 00}$; coast chart No. 93, Lakes Borgue and Pontehartrain, La., $\frac{1}{80} \frac{1}{00}$; and general const chart No. IV, from Cape May to Currituck, ${ }_{4000}^{100}$.

The engraving force has been principally employed as follows:
Mr. Mc Coy, topographical engraver, has continued the topography upon coast chart No. 11, Plymouth harbor to Hyannis harbor, Mass., $\overline{80} 1000$, from photographic reductions; engraved a view upon Portland harbor, Me., $\overline{40000}$, and one upon coast chart No. 8, Seguin island to Kennebunkport, Me., $60 \mathbf{0} 00$.

Mr. Knight, letter engraver, has engraved the title, notes, and general lettering upon coast chart No. 21,

New York bay and harbor，$\frac{1}{80 \frac{1}{000}}$ ：a portion of the soundinge upon enast chart No．9，Cape Neddick to Cape
 and notes upon Hudson river，（No．2，）from Haverstraw to Poughkecpsie，$\frac{\text { Gabon }}{}$ ；additional soundings upon Hudson river，（No．1，）from entranee to Haverstraw，$\frac{1}{6010}$ ；and various corrections and additions to other plates．

Mr．Rollé，topographical engraver，has been employed principalty in continuing the topography upon coast chart No．9，Cape Neddick to Cape Am，Mass．，$\overline{\overline{8} \overline{0} \overline{0} \overline{0}}$ ，and coast chart No．11，Plymouth harbor to Hyannis harbor，Mass．，$\frac{1}{8000}$ ，entirely from photographic reductions．

Mr．Enthoffer，topographical engraver，has continued the topography upon coast chart No．S，Seguin island to Kennebunkport，Me．，$\frac{1}{\text { Go }} \frac{1}{0} 0$ ，and has made considerable progress upou coast chart No． 7 ，Muscongus


Mr．Sengteller，topographical engraver，has completed the topography upon coast chart No．36，Chesa－
 chart No．37，from Cape Henry to Currituck sound，$\overline{80} \overline{0} 0$.

Mr．Phillips，topographical engraver，completed the topography and afterwards the sauding upon coast chart No．35，Chesapeake bay，（No．5，）from Pocomoke sound to York river，反णGou ；and is at lresent employed upon the topography of coast chart No．93，Lakes Borgre and Pontchartrain，La．，$\frac{1}{5} \frac{1}{00 g}$ ．

Mr．Metzeroth，topographical engraver，completed the topography and a partion of the and upon Portland harbor，Me．，$\frac{{ }_{4} 0 \frac{1}{000}}{}$ ；has engraved some additional sand uph coast chart No．12，Nantucket smud， Mass．，$\overline{80000}$ ，（lower halt；）and const chart No． 92 ，western part of Missisippi found，from hound inland to
 present employed upon the views upon San Pablo bay，Cal．，$\overline{\text { 万百者包．}}$

Mr．Blondeau，topographical engraver，has engraved the topography upou gencral coast chart No．$\lambda$ ， Florida reefs，from Key Biscayne to Marquesas keys，$\overline{4} \bar{\sigma} \overline{0} \overline{0} 0 \pi$ ；a portion of the toprgraphy upon const chat No．70，Long key to Big Pine key，Fla．， k $^{\mathbf{T} 000}$ ；has completed the topography upou coast chart No．71． Florida reefs，from New－found Harbor key to Boca Gande key．$\overline{\overline{8} \frac{1}{0} \overline{0} 0}$ ；and upon coast chart No．81，from Cedar keys to Chassahowitzka river，Nla．，$\frac{1}{8000}$ ．

Mr．Evans，topographical engraver，has continued the topography，as far as material in the office，upon Sheepscot and Kenncbec rivers，Mane，$\frac{10}{400}$ ；and is now engaged upon Hudson river No．1，from entrance to Haveratraw，$\overline{60} 0 \overline{0} 0$

Mr．Barnard，topographical engraver，has engraved the sand upon geueral coast chart No．10，Florida reefs，Key Biscayne to Marquesas keys，$\frac{\text { प00 }}{4000}$ ；coast chart No．71，Morida keys，from New－found Harbor
 and is now engaced upon the sand of coast chart No．36，Chesapeake bay No． 6 ，from Tork river to entrance of bay，$\frac{1}{80000}$ ．

Mr．A．Macdel，topographical engraver，has completed the topography upon sapelo sound，Georgia， $3{ }^{\frac{1}{0} 00}$ ；and is now engraving the topography upon Potomac river No． 3 ，from Lower Cedar Point to Indian Head，${ }_{60} \frac{1}{9} \overline{0} 0$.

Mr．Kondrup，miseellaneous engraver，has engraved a portion of the topography upon Patuxent river，Md．，（lower shcet，） $\bar{\sigma} \frac{1}{6} \bar{\sigma} \overline{0}$ ；and is now engaged upon the outlines of coast chart No．10，Cape Ann to Plymouth，Mass．，$\frac{1}{\text { हо0 }} 0$ ．

Mr．E．A．Maedel，letter engraver，engraved the title，and general lettering upon Hudson river No．2， from Haverstraw to Poughkeepsic，$\overline{60} \frac{1}{0} \overline{0}$ ；a portion of the soundings and general lettering upon Sheepseot and Kennebec rivers，Maine，$\frac{10}{4000}$ ；and misecllancous corrections and additions in hydrography and lettering upon various charts，Nos $8,9,14,21,71$ ，and 92 ；and is now engaged upon the sonndings of gencral coast chart No．4，from Cape May to Currituck，$\frac{70}{4000} 0$.

Mr．Ogilnie，miscellaneons engraver，has completed the sand upon Savannah river，Georgia，$\overline{\text { a }} \frac{1}{0 \pi}$ ； San Pablo bay，California；$\frac{1}{50800}$ ；and upon coast chart No．106，from Galveston bay to Oyster bay， Texas，${ }^{3}{ }^{3} 0_{00}$ ．

Mr．Langran，letter engraver，has finished the notes mpon Cedar keys，Florida，zoloo，the sailing directions，and corrections in soundings on Rappahannock No．6，（lower sheet，${ }_{60} \frac{1}{6 \theta}{ }^{6}$ ；additiounh soundings on Washington sound，Washington Territory，（new edition，） 200000 ；the outlines of Barnstable harbor，Mass．， $2 \frac{1}{0000}$ ；and some miscellaneous work．

Mr．Petersen，miscellaneous engraver，has engraved the topography on Ossabaw sound，（ieorgia，$\frac{1}{3000}{ }^{\circ}$ ； cs 18
the outlines, soundings, title, and general lettering on Petaluma and Fapa crecks, California, $\overline{30} \frac{1}{0} \overline{0}$; the soundings, title, motes, and lettering on Tomales bay, Californa, $3 \overline{0} \frac{1}{00}$; and on Barnetable harbor, Maes., $\overline{2} \overline{0} \overline{0} \overline{0}$; and miscellancous work.

Mr. Bartle, topographical ongraver, has completed the topography upon St. Mary's river and Fernandina
 California, $\frac{10}{600}$; and some miscellancous work; and is now cngaged uron the wet sand of Petaluma and Napa creeks, California.

Mr. W. A. Thompson, topographical engraver, has engraved the topography upon St. Simon's sound,
 additions to the progress sketches; and is now employed npon Drake's bay, Califman, $\frac{1}{40000}$, in engiaving a system of hill curves or contour lines.

Mr. Benmer, miscellaneous engraver, has engraved the sand and topogrmphy nom Shoalwater bay, Washington Territory, $\bar{\varepsilon} 0 \overline{v_{0}}$; a portion of the topograpliy on Savamah river, Georgia, $\frac{1}{40} 000$; the sand on Hudson river No. 2, from Haverstraw to Poughkeepsie, $\frac{1}{000}$; besides progress sketches and miscellaneous work.

Mr. K/abring, miscellaneous engraver, has engraved the topography, sand, title, notes, and lettering on Cognille river, Oregon, $\frac{1}{00} 00$; the soundings, title, notes, and letteriug on Koos bay, Oregon, $\frac{1}{20} 00$; and a large amount of work on progress sketchos, and miseellaneous retouching and correcting.

Mr. Sipe, mise llaneous encraver, was transferred to the printing division during the greater portion of the year, on account of the great press of work.

Since his return to this division, in June, he has engraved diagrams of magnetic observations at Girard College, Philadelphia; some work on progress sketches; and the outliues, title, notes, and lettering on Mount Hope bay, Rhode Island, 40000 .

AIr. J. G. Thompson, misctlianeous engraver, has engraved the topography upon St. Anguetine harbor,
 and miscellaneous work.

Mr. Burkle has punched the sounclings on diagram expansion of drawing paper; on a basso of New London harbor, as a specimen; and on Mount Hope bay, Rhode Island; and has executed some miscellaneous work, and has perfected himself in the practice of punching.

Mr. Davis, appreitice, has been employed on miscellaneous work and practice.

List of maps, prehminary charts, and shetches engraved or engraving during the yoar ending October 31, 1862, arranged in order of sections.


List of maps, prelimina: $y$ charts, and sketches, $£$ c.-Continued.



| No. 50. Coast chart No. 31, Chesapeake bay No. 1, (upper series) | 1-80,000 |
| :---: | :---: |
| 51. Do.... No. $32 . \ldots$. do . . . . . . No. 2. . . . do do | 1-80,000 |
| 52. Do.... No. $33 \ldots$... do...... No $3 \ldots .$. do | 1-80, 000 |
| 53. Do.....No. $35 . \ldots .$. do....... No. 5, (lower series) | 1-80, 000 |
| 54. Patapsco river, Maryland. | 1-60, 000 |
| 55. Harbor of Annapolis and Severn river, Maryland. | 1-60,000 |
| 56. Mouth of Chester river................ do | 1-40,000 |
| 57. St. Mary's river, Cornfield harbor and Point Lookout, Maryland | 1-60, 000 |
| 58. Rappahannock river, sheet No. 1, from Fredericksburg to Moss Neek, Virginia. | 1-60,000 |
| 59. Do....... .sheet No. 2, from Moss Neek to Port Royal..... . do. | 1-60, 000 |
| 60. Do........sheet No. 6, from catrance to Deep creck........ do | 1-60, 000 |
| 61. York river, from entrance to King's creek. . . . . . . . . . . . . . . . . . . . . . . do | 1-60,000 |
| 62. Do....from King's creek to West Point......................... . . do | 1-60, 000 |
| 63. Pasquotank river, North Curolina. | 1-60,000 |
| 64. Coast chart No. 40 , Albemarle sound, North Carolina, west | 1-80,000 |
| 65. Do.... . No. 41. . . . . . do. . . . . . . . . . . do | 1-80,000 |
| 66. Beaufort harbor . . . . . . . . . . . . . . . . . . . . . do | 1-20,000 |
| 67. Cape Fear river, from entrance to Federal Point, North Carolina | 1-30,000 |
| 68. Do... do . . from Federal Point to Wilmington . . . . do | 1-30,000 |
| 69. Charleston harbor, South Carolina, (new edition,) 1858 | 1-30,000 |
| 70. North Edisto river.... do ........ (new edition) | 1-50,000 |
| 71. Ossabaw sound, Georgia | 1-30, 000 |
| 72. Sapelo sound....do. | 1-30,000 |
| 73. St. Simon's sound, Brunswick harbor, and Turtle river, Georgia | 1-40, 000 |
| 74. St. Mary's river and Fernandina harbor, Florida. | 1-20,000 |
| 75. St. John's river, from entrance to Brown's creek, Florid | 1-25,000 |
| 76. St. Augustine harbor . . . . . . . . . . . . . . . . . . . . . . . do | 1-30, 000 |
| 77. Key West harbor and approaches............... do | 1-50, 000 |
| 78. Coast chart No. 68, Florida reefs, Key Biscayne to Carysfort reef, Florida | 1-80, 000 |
| 79. Entrance to Pensacola bay | 1-30,000 |
| 80. Entrance to Mobile bay, Alabama | 1-40, 000 |
| 81. Coast chart No. 90, Mobite bay, Alabama | 1-80, 000 |
| 82. Do.....No. 91, eastern part of Mississippi sound, Bonsecour's bay to Round island | $1-80,000$ |
| 83. Do.....No. 92, westem part of Mississippi sound, Round island to Grand island.. | 1-80, 000 |
| 84. Cat and Ship Island harbors, Mississippi. | 1-40, 000 |
| 85. Entrance to Galveston bay, Texas, (new edition,) 1856 | 1-40, 000 |
| 86. San Diego bay, California | 1-40,000 |
| 87. Entrance to San Franciseo bay, California | 1-50, 000 |
| 88. Mare Island straits. | 1-30, 000 |

## 2. List of preliminary charts and sketches engraved.

| No. 1. Alden's rock, Maine. | 1-1000 |
| :---: | :---: |
| 2. Edgemoggin reach, Maine | 1-20,000 |
| 3. Kennebec river...... do | 1-30,000 |
| 4. Portland harbor. . . . do | 1-20,000 |
| 5. Do..... (commisioner's line, ) Mane | 1-10,000 |
| 6. York river harbor. . . . . . . . . . . . . . . do | 1-20, 000 |
| 7. Portsmouth harbor, New Hampshire | 1-20,000 |
| 8. Stellwagen'a bank, (second edition,) Massachusetts. | 1-400, 000 |
| 9. Boston bay . . . . . . . . . . . . . . . . . . . . . do. | 1-175, 000 |
| 10. Current chart, Boston bay . . . . . . . . . . . . do | 1-100,000 |
| 11. Minot's Ledge. . . . . . . . . . . . . . . . . . do. | 1-10, 000 |
| 12. Sea-coast United States No. 4, south part of Massachusetts. | 1-200, 000 |
| 13. Barnstable harbor, Massachusetts. | 1-20,000 |


No. 67. Winyah bay and Cape Roman shoals, South Carolina. $1-100,000$
68. Do. . . . and Georgctown harbor . . . . . . do. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40, 000
69. Bull's bay. . . . . . . . . . . . . . . . . . . . . . . . . . . do ..... 1-40,000
70. Comparative chart, Maflitt's channel, South Carolina, (new edition)

$$
1-5,000
$$

71. Maftitt's chanucl, scetions, South Carolina
72. Romerly marshes $1-10,000$
73. Savanuah river entrance, (ieorgit ..... 1-30, 000
74. Savanuah city, front and back rivers, Georgia ..... 1-20, 000
75. Savannah river . . . . . . . . . . . . . . . . . . . . do. ..... 1-40, 000
76. Doboy bar and inlet. . . . . . . . . . . . . . . . do ..... 1-40, 000
77. St. Simon's sound and Brunswick harbor . . do. ..... $1-40,000$
78. St. Andrew's shoal ... ....... . . . . . . do $1-60.000$
79. St. Mary's bar and Fernandina harbor, Florida, comparative chart. ..... $1-20,000$
S0. Mosquito inlet. . . . . . . . . . . . . . . . . . . . . . . do ..... $1-10,000$
80. Cape Cañaveral. .. .......... ...... . do ..... 1-60. 000
81. Florida reefs. ..... 1-200,000
82. Turtle Larbor. . . . . . . . . . . . . . . . . . . . . . . . do $1-40,000$
83. Beacons on Florida reef's. . . . . . . . . . . . . . do
84. Coflin's Patches . . . . . . . . . . . . . . . . . . . do 1-20,000
85. Key Biscayne, Cape sable and bases . . . . . do . . . . . . . . . . . . . . . . . . . 1-60, 000 \& 1-400, 000
8\%. Tegare anchorage...... . . . . . . . . . . . do. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20, 0000
86. Key West harbor, (second edition)...... do 1-100,000
89-94. Do . . . tidal diagrame. . . . . . . . . . do
87. Rebecca shoals. . . . . . . . . . . . . . . . . . . . . . do 1-600, 000
88. Reconnaissance of vicinity of Cedar keys. do $1-300,000$
89. Channel No. 4, Cedar keys............... do ..... 1-30, 000
90. Cedar keys and approaches, (new edition). ..... 1-50, 000
91. Ocilla river. 1-20,000
92. St. Mark's bar and channel............. do 1-40,000
93. Middle or main and western entrances, St. George's sound, Plorida. ..... $1-80.000$
94. Eastern part of St. George's sound. . . . . . . . . . . . . . . . . . . do. $1-10,000$
95. Western. . do. . . . . do. . . . . . . . . . . . . . . . . . . . . . . . . . . dn ..... 1-40, 000
96. St. Andrew's bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . do. 1-40, 000
97. Eseambia and Santa Maria de Galvaez bays . . . . . . . . . . . . . . . do ..... $1-30,000$
98. Sea-coast of part of Alabama and Mississippi ..... $1-200,000$
99. Mobile bay, (second edition,) Alabama ..... 1-200,000
100. Horn Island pass and Grand bay, Mississippi ..... 1-300, 000
101. Do...... (ucw edition) . . .... do. . 1-40, 000
102. Pascagoula river. . . . . . . . . . . . . . . do 1-20, 000
103. Biloxi bay. $1-40,000$
112-121. Cat island tidal diagrams ..... do.
104. Pass Christian. . . . . . . . . . . . . . . . . . do ..... $1-40,000$
105. Delta of the Mississippi, Lonisiana. ..... $1-60,000$
106. Passe à l'Outre.............. . do. ..... 1-20,000
107. Gulf of Mexicn, with profiles of deep-sua soundings, (new edition). ..... 1-2, 400,000
108. Barataria bay entrance, Louisiana ..... $1-30,000$
109. Pass Fourchon. . . . . . . . . . . do. ..... $1-10,000$
110. Timballier bay entrance.... do. ..... 1-20,000
111. Isle Derniere or Ship Island shoals, Louisiana ..... 1--80, 000
112. Atchafalaya bay .do ..... 1-50, 000
113. Entrance to Vermilion bay and Calcasicu river, Lonisiana. . . . . . . . . . 1-30, 000 \& 1-40, 000
114. Sabine Pass, 'lexas. ..... 1-40, 000
115. Sea-coast of Texas, from Galveston, south ..... 1-200,000
116. Sea-coast of United States, No. 31, part of Texas $1-200,000$
No. 135. San Luis Pass, Texas 1-20, 000
117. Aransas l'ass, (second edition,) Texas 1-30, 000
118. Entrance to Brazos river ..... 1-10, 000
119. Do...to Rio Grande river.... . do . ..... 1-20, 000
120. Diagrams of heights and luni-tidal intervals of diurnal and semi-diurnal tides in theGulf of Mexico
140-141. Co-tidal lines, Gulf of Mexico, (2 plates)
121. Type curves ..... do.
122. Wind curves, Cat island
123. Alden's reconnaissance, western coast, lower sheet, San Francisco to San Dicgo, (newedition,) California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1, 200, 000
124. Cortez bank ..... 1-100, 000 \& 1-1, 200, C00
125. San Diego entrance, (new edition,) California $1-150,000 \& 1-25,000$
126. Geological map of San Diego. ..... $1-1,608,000$
127. Catalina harbor. do. ..... $1-15,000$
128. San Pedro anchorage and vicinity of Santa Barbara, California $1-20,000 \& 1-40,000$
129. Anacapa island, (sketch,). ..... do.
130. Do...... and east end of Santa Cruz island......do. ..... 1-30, 000
131. Prisoner's harbor, Cuyler's harbor, and north anchorage, San Clemente island, Oal- ifornia 1-20, 000
132. Santa Barbara, Califomia ..... 1-20, 000
133. Eastern entrance to Santa Barbara channel, Califormia ..... 1-80, 1000
134. San Simeon, Santa Cruz, San Luis Obispo, and Coxo harbors, California 1-20,000 \& 1-10,000
135. Point Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . do ..... $1-40,000$
136. Point I'iños ..... 1-20,000 ..... do
137. Monterey harbor ..... 1-40, 000
138. Monterey bay ..... $1-60,000$
139. Geological map of Monterey ..... 1-150, 0C0
140. Santa Cruz and Año Nuevo harbors. ..... do $1-1,200,000 \& 1-40,000$
141. San l'edro harbor. ..... 1-20,000
142. Entrance to San Franciseo bay 1-400,000
143. San Francisco city, (new edition) ..... 1-10, 000
144. Geological map of San Francisco. ..... $1-150,000$
145. South Farrallone island-150,000
146. Tidal diagrams, Rincon Point
1-400, 000
147. Pulgas base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . do
$1-20,000$
148. San Antonio creck ..... do
$1-30,000$
149. Petaluma and Napa crecks171. Alden's reconnaissance, western coast, middle sheet, San Francisco to Umpqua river,California and Oregon$1-1,200,000$
150. McArthur's reconnaissance, western coast, from Monterey to mouth of Columbia river,sheet No. 1, (third edition)
151. McArthur's reconnaissance, western coast, from Monterey to month of Columbiariver, sheet No. 2 , (third edition).
152. McArthur's recommaissance, western coast, fronr Monterey to mouth of Columbiariver, sheet No. 3 , (third edition)
153. Alden's reconuaissance, western coast, northern sheet ..... 1-1,200,000
154. Point Reyes and Drake's bay, California ..... $1-40,000$
155. Drake's bay..................... . do ..... 1-40, 000
156. Geological map of Point Reyes. . do
1-30, 000
157. Tomales bay....................... do
1-30,000
158. Humboldt bay, (new edition).... do
$1-20,000$
No. 182. Shelter Cove, Mondocino City, Crescent City harbors, and Port Orford, or Eving

159. Crezcent Clity harbor, Califomia. ..... 1-20,000
160. Coquille river, Oreqon ..... 1-10,000
161. Koos bay......do. ..... 1-20, 000
162. Lmpqua river. do. ..... 1-20, 000
163. Mouth of Columbia river, Oregon, (second cdition). ..... 1-40, 000
164. Do..........do.........do. ..... 1-200,000
165. Entrance to Columbia river do ..... 1-40, 000
166. Tidal diagrams, Rincon Point, San Diego and Astoria, California and Oregon191. Cape Disappointment, Washington Territory1-20,000
167. Shoalwater bay, Washington Territory. ..... 1. 80,000
168. Alden's reconnaiseance, western const, from Gray's harhor to Admiralty inlet, Wast- ington Territory 1-600. 000
169. Greuville harbor, Washington Territnry ..... 1-29, 000
170. Cape Flattery and Nei-ah harbor, Washington Territory ..... $1-40.000$
171. Fulse Dungeness. do. ..... 1-30, 000
172. Xew Dungeness . . . . . . . . . . . . . . . . . . . . . . . do ..... 1-40, 010
173. Washington sound, (new edition)........... do do ..... - $1-600,000$
174. l'ort Townshend. . . . . . du. . . . . . . . . . . . . . . . do. ..... 1-40, 000
175. Duwamish bay and Seatte harbor. ..... 1-40,000 ..... do
176. Smith's or Blunt's island ..... 1-20,000
177. Port Ludlow. ..... $1-20.000$
178. Port Gamble. ..... 1-20. 000
179. Olympia harbor ..... 1-20,000
180. Stcilacoom harbor ..... 1-30,000
181. Bellingham bay ..... 1-40, 000
182. Blakely harbor-... ............................ . . . do ..... 1-10, 000
183. Semi-ah-mon bay ..... 1-30, 000
184. Base apparatus
1-10,000,000
185. Ce-tidal lines, Atlantic coast
1-10,000,000
186. Self-registering tide-gauge
187. Graven's current indicator11. Cinw? span indiar.1. Ctaven's specimen box for deep-sea soundings.
188. Mitchell's sea-coast tide-gauge.
189. Figures to illustrate Appendix No. 33, 1854
190. Diagrams of secular variation of magnetic dip, Atlantic coast
191. Diagrams of sceular variation in magnetic declination, 1855.$1-1,500,000$
192. Bontelle's scáffold for stations, and Farley's simals.
193. Boutelle's apparatus for measuring preliminary bases222. Diagrams to illustrate earthquake waves at San Diego and San Francisco
194. Diagrams of secular variation in magnetic declination. 1856
195. Sands's gas-pipe tripod.225. Sands's specimen box for deep-sea soundings and revolving heliotropes
196. Map of magnetic declination
197. Map of magnetic dip and intensity
198. Apparatus for measuring minor bases
199. Polyconic development of sphere
200. Diagrams illustrating telegraphic methods for difference of longitade.
201. Diagrams showing injury to boiler of steamer Hetzel.
202. Project limits for charts $\frac{100000}{20000}$ and $\frac{1}{400000}$
203. Diagrams of winds of the western coast

           C s 19
    
# No. 234. Diagrams illustrating loss of maguetism <br> 235. Appatatus for measuring prelininary hase lines <br> 236. Trenchatd's tide-gange. <br> 237. Mitchell's tide-gauge <br> 238. Diagrams illustrating the descent of sounding weight and line in deep-sea soundings. . <br> 239. Project limits for finished maps $\frac{1}{800} \overline{0}$ on the Atlantic and Gulf coasts <br> 240. Three sketches illustrating the Superintendent's paper on currents near Sandy Hook. <br> 241. Diagrams of magnctic and meteorological observations at Girard College, Philadelphia, in 1840, '41, '42, ' 43 , ' 44 , and ' 45. <br> 24. Diagrams of observations for temperature, wind, and atmospheric pressure, made by Dr. E. K. Kane, U. S. N., at Van Rensselaer harbor in 1553 and $1555 . . .$. <br> 243. Lines of equal magnetic variation for 1858 <br> 244. Trowleidge's improved deep-sea sounding apparatus. <br> 245. Mitchell's sul-curvent apparatus and form of pile for sea strncture.................... <br> 256. Sketch showing the progress of the Coast Snrvey to 1862. <br> 247. Plan of magnctic obscrvatory at Key West. <br> 248. Diagrams showing results of magnetic observations at Key West <br> 249. Mitchell's specimen cup and Gillis's dividers <br> 250. Diagram illustrating phenomena of the solar eclipse of July, $\mathbf{1 8 6 0}$ <br> 261. Diagram illustrating the results of experiments on the expansion of drawing paper.. <br> 252. Diagrams of magnetic and meteorological obscrvations at Girard College, Philaphia, 1862. <br> 253-275. Progress sketches 

Report of Mr. Georgc Mathiot, in charge of the Electrotype and Photographic Division.
Coast Survey Office, Wastington, October 1, 1862.
I respectfully present the following report of the operations of the Electrotype and Photographic Division since October 1, 1861.

By the clectrotype process we have made forty-three plates. Of this number twenty-seven were "altos," or moulds, and sixten were "bassos," or duplicates of engraved plates.

The electrotype work in this office is now conducted with so much facility, certainty, and regularity, by means of the improved apparatus which has been introduced from time to time, keeping pace with the progress of physical science, that there now remains but little experimental interest in the work. Improvemett in the process has ceased to be made, from the perfection attained; but experiment has, neverthelesa, continned. 'The great improvement in the carbon plates employed for telegraphic batteries has induced me to test the practicability of employing these plates for the negative plates of our galvanic batterics. The experiment has shown that the substitution would be practicable, though not advantageous. I find a carbon plate possesses about onc-half the energy of a silver plate of the same extent of surface, but that it has several "working" advantages over the latter. The first of these is in the exemption of the carbon from that liability of the silver to get amalgamated by the mercury on the zinc plates, which is not only a cause of great expense and annoyance, but completely prostrates the electrical action of the plate. The carbon appears also to be free from the deposits of copper and other hase metals incidentally present in the batteries, which sometimes coat the silver $\mathrm{p}^{\text {lates and }}$ decrease their action. This last peculiar advantage of the carbon is probably owing to the porosity of the plate, by which the deposited metal is dissipated over a very large surface, and its action thus destroyed. But that the deposition really takes place, though rendered inactive by its great distribution, is shown by the fact that, with a strong metallic solution and long-continued action, the deposited metal at length appears on the surface. In this way I completely silver-plated a carbon plate; the silver was, bowever, all dissolved off again in the course of a couple of days by the action of the cyanogen retained in the pores of the plate. I also find that the carbon plates, as well as the silver plates, can have their action advantageously increased by platinizing.

During the year occasion has been taken to renew entirely the platinized silver as well as the zine plates of the batteries, and to put the electrotype apparatus in complete order; it is now more effective than it has been at any former time.

The photographic reduction of the plane-table sheets of the survey has continued in suceessful operation, and maintains that high importance and utility which $I$ anoounced for it in my last annual report. The number of shects reduced has indeed fallen off, from the effect of the carrent war on the operations of the survey, but this falling off in our own appropriate work has been more than made up by photographs for our army. That facility which photography presents for rapidly copring has caused this division to be busy in multiplying important plans, maps, and reconnaissanees connected with the operations of our armics in the field. During the year we have photographed forty-four separate military maps, and furnished five hundred and sixty two copies of the same. Of the value of these maps, and their aid in the prosecution of the war, my position or information does not enable me to judge. I do know, however, that if these photographe were of aid to our commanding generals, the country is indebted for that aid particularly to the survey; for it is only by the perfection of the photographic apparatus and methode of this office that those large and detailed military maps could have been photographed as required.

The photographic art has lately been emriched by the production of a new form of lens by nur countryman, Mr. C. C. Harrison, the well-known working optician of New York. I have been so fortunate as to procure from Mr. Harrison the very first leus of this manufacture, but the few weeks that $I$ have had it in hand have not sufficed for me to test all its qualities as I could wish for a definite statement to accompany this report. Its superiority, however, over all other forms of lenses I find to be conspicuous, and immediately strikes the observer. Its angle of vision is surprisingly great, with a very flat field ; it also bears more light and has a better defining power than other lenses. With this improved lens I expect to greatly increase tho utility of our photographic operations, by being able to make single photographs of thirty inches square, if not greater.

During the year I have paid much attention to the new art called photo-lithography. The result of all my observations has been to confirm me in the opinion which I formerly expressed, that this process, as at present known, is too coarse and mechanical in its nature and unecrtain in practice to be of practical service in copying maps or drawings possessing any fineness of outline or delicacy of finish.. The new lens of which I have spoken alove will, however, enable us to obtain such negatives as will do away with much of the uncertainty which attends the process. I will, therefore, again endeavor to apply photo-lithography to the coarser maps and drawings of the survey.

During the year I have been assisted by Mr. D. Hinkle, with his usual industry and fidelity.
Tables of the electrotypes and photographstproduced during the year are appended:
List of plates electrotyped in "Allo."
Name of chart. No. made.
Const chart No. 14, from entrance to Buzzard's bay to Block island ..................... 1
Coast chart No. 13, from Muskeget channel to Buzzard's bay ............................ 1
Coast chart No. 12, from Monomoy to Hyanmis . ............................................. 1
Coast chart No. 40, Albemarle sound. ............................................................ 1
Shoalwater bay ..................................................................................... 1
Chesapeake bay, No. 1 ............................................................................. 1
Chesapeake bay, No. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chesapeake bay, No. 3.......................................................................... 1
Coast chart No. 106, Galveston bay to Oyster bay ............................................. 1
Salem harbor ........................................................................................ 1
St. George's sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
General coast chart No. III, Gay Head to Cape Henlopen.................................
Lake Huron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Barnstable harbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
New York bay and harbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. 1
Escambia and Santa Maria de Galvaez bays..................................................... 1
Coast chart No. 68, Florida reefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ossabaw sound....................................................................................... 1
Name of chart. Ko. mado.
Entrance to the Rio Grande ..... 1
Bull's bay ..... 1
Drake's bay ..... 1
Preliminary sca-coast chart No. 31, Texas ..... 1
Doboy bar and inlet ..... 1
Winyah bay and Cape Roman shoals ..... 1
Coast chart No. 40, Albemarle sound. ..... 1
Mississippi sound, middle part ..... 1
List of plates clectrotyped in "Basso."
Coast chart No. 40, Albemarle sound ..... 1
Preliminary sca-coast chart No. 31, Texa ..... 1
Mississippi sound, middle part ..... 1
Coast chart No. 6S, Florida reefs ..... 1
Coast chart No. 41, Albemarle sound ..... 1
New London harbor ..... 1
Chesapeake bay, No. 1 ..... 1
Chesapeake bay, No. 2 ..... 1
Chesapeake bay, No. 3 ..... 1
York river entrance ..... 1
Salem harbor ..... 1
St. George's sound ..... 1
General coast chart No. III, from Gay Head to Caye Menlopen ..... 1
Barnstable harbor ..... 1
Lake Huron ..... 1
New Mork hay and liarbor ..... 1

Table of photographs.

| Irototypes. | Scale. | rositites. |  | negatives. |  | PRints. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Nc. | Scale. | No. | Scale. | No. | Scale. |
| Map of the District of Columbia, by A. boschke $\qquad$ |  |  |  |  |  |  |  |
|  | 4 inches to 1 milc |  |  | 1 | 1-30,000 | 19 | 1-30,000 |
| Map of the District of Columbia, by A. Boschise |  |  |  | 1 |  | 1 |  |
| A tracing from amap of Loudon county, |  |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
|  |  |  |  | 1 | 3 inch to 1 mile.. | 25 | $\frac{1}{2}$ inch to 1 mile. |
| A tracing from a $n$ ap of Jefferson county, Virginia |  |  |  | 1 |  | 25 |  |
| A tracing from a map of Berkeley county,Virginia |  |  |  |  |  | . | ...do.....-. |
|  |  |  |  | 1 | . $\ddagger 0$ | 25 | .do |
| Map of the physical geography of Virginia |  |  |  | 1 |  | 6 |  |
| A tracing from topographical sheet No. -, (Patuxent river) $\qquad$ | 1-20;000 | 1 | 1-60, 000 | 1 |  |  |  |
| A tracing from topographical sheet | $1-20,000$ |  | 1-60, 000 | 1 | $1-60,000$ | 1 | 1-60,000 |
| No. -, (Napa creek)---..-......... | 1-10, 000 | 1 | 1-60,000 | 1 | 1-60,000 | 1 | 1-60,000 |
| A tracing from topgraphical sheet No. |  |  |  |  | 1-60,00 |  |  |
| 381, (Patuxent river) | 1-20,000 | 1 | 1-60,000 | 1 | 1-60,000 | 1 | 1-60,000 |
| A tracing from topographical sheet No 388, (Patuxent river) $\qquad$ | 1-20, 000 | 1 | 1-80,000 |  | 1-60,00 | 1 |  |
| Map of the approaches to Washington |  |  | 1-60,000 |  | 1-60,000 | 1 | 1-60,000 |
| on the northwest..................... | 1-15,000 |  |  | 1 | 1-30,000 | 29 | 1-30,000 |
| Map of the south side of the Potomac river, above Washington. | 1-15, 000 |  |  | 1 | 1-30,000 | 29 | 1-30,000 |

Table of photagraphs-Continned.

| Prototyss. | Scale. | postives. |  | reqatitas. |  | meints. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | Scale. | No, | Scale. | Nu. | Scale. |
| Map of Anne Arundel county, Maryland, <br>  |  |  |  |  |  |  |  |
| Map of Washington county, Maryland, |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| tered. San Pablo bay. | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 140,000 |
| Plane-table sheet No. - , (not yet registered.) San I'ablo bay. | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,600 |
| San Puilo bay | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40.000 |
| A tracing from plane-table sheet No. - , San leablo bey. | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40, 090 |
| A tracing tromplane-table sheet No.-, | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| A tracing from plane-table sheet No. - , San Pablo bay $\qquad$ | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Plane-table sheet No. 400, (not y et registered, San Pablo bay | 1-10,000 |  |  | 1 | 1-40.000 | 1 | $1 \mathrm{40,000}$ |
| Plane-table shect No. :3 3 , not yet registered, San Pablo bay. | 1-10,000 |  |  | 1 | 1-10,000 | I | 1-40,000 |
| Plane-table sheet No. 472, (not yet registered,) San Pablo bay. | 1-10,000 |  |  | 1 | $1.80,000$ | 1 | 1-80,000 |
| Plane-table sheet No. 415, (not yet registered.) San Pablo bay |  |  |  | 1 | 1-80, 000 | 1 | 1-80,000 |
| Patac-table sheet No. 321, (not yet registered, ) Say Pablo bay - |  |  |  | 1 | 1-80, 000 | 1 | 1-80,000 |
| Plane-table sheet No. 361 , (not yet registered, San l'ablo bay |  |  |  | 1 | 1-80, 000 | 1 | 1-80, 000 |
| A tracing-reconnaissance of part of | 1-15, 000 |  |  | 1 | 1-30,000 | 25 | 1--20,000 |
| A drawing-topographic survey near Alexandria, Tirginia. | 1-15,000 |  |  | 1 | 1-30,000 | 10 | 130,000 |
| A tracing from plane-table sbeet No. 728 , coast map, No. 7. | 1-10,000 | 1 | 1-80, 000 | 2 | 1 of 1-40,000 1 of 1-80.000 |  | 1 1 1 of 1 I 40,0000 |
| A tracing from plane-table sheet No. 728, coast map, No. 7. | 1-10, 900 | 1 | 1-80,000 | 2 | 1 of 1 - 40,000 |  |  |
| A tracing from plane tableshect Nos. 801 and 802, coast map, No. 7-2......... | 1-10,000 | 1 | 1-80,000 | 2 | 1 of $1-40,000$ 1 of $1-80.040$ |  |  |
| A tracing map of Frederick county, Md.. A tracine map of Baltimore comnty, Md. - |  |  |  |  | $\frac{1}{4}$ meh to 1 mile. | 40 | $\frac{2}{2}$ inch to 1 mile. |
|  |  |  |  | 1 | -- do...-- | 10 | --da.-.------ |
| A tracing map of Harford county, Md... A tracing map of Pritice George's Co., Md. |  |  |  | , |  | 10 | ....do.---.-... |
|  |  |  |  |  |  | 5 | .-..do...-...... |
| A map of Henrico county, Va., (traced). Plane-table sheet No. 578, western coast. <br> Plane-table sheet No. 818, western coast. <br> Plane table sheet No. 817, western coast. Plane-table sheet No. 552, western coast. A tracing from plane-table sheet No. 795 , coast chart No. 11.................... - |  |  |  | 1 | 1 inch to 1 mile.- | 12 | 1 inch to 1 mile. |
|  | 1-10, 000 |  |  | 1 | 140.000 | , | 1-40, 190 |
|  | 1-10, 000 |  |  | 1 | 1-40, 000 | 1 | 1-41, 000 |
|  | $1.10,000$ |  |  | 1 | 1-10, 000 | 1 | 1-40,000 |
|  | 1-10, 000 |  |  | 1 | 1 140,000 | 1 | 1-40,000 |
|  | 1-10,000 | 1 | 1-80, 000 | 1 | 1-80,000 | 1 | 1-80,000 |
| A tracing from plane-table sheet No. 464 , Maryland | 1-10,000 |  |  | 1 | 1-80,000 | 1 | 1-80,000 |
| A tracing from plane-table she No. 572 , coast chart No. 81 $\qquad$ | 1-10,000 |  |  | 1 | 1-80, 000 | 1 | 1-80, 000 |
| A tracing from plane table sheet No. 734, coast chart No. 21 | 1-10, 000 | 1 | 1_80, 000 | 1 | 1-80,000 | 1 | 1-80,000 |
| A tracing from plane table sheet No. 751 , coast chart No. 21 .. | 1-10, 000 | 1 | 1-80,000 | 1 | 1-80, 000 | 1 | 1-80, 000 |
| A tracing from plane-table sheet No. 734 , coast chart No. 21 | 1-10,000 | 1 | 1-80,000 | 1 | 1-80,000 | 1 | 180,000 |
| Railroad from Harper's Ferry to Winchester, (traced) $\qquad$ |  |  |  | 1 | 1-30,000 | 20 | 1-30, 040 |
| Chart of the Mississippi river in vicinity of Fort Jackson | 1-10, 000 |  |  | 1 | 1-20,000 | 4 | $1.20,000$ |
| A tracing-map of the boundary between Eastern Virginia and Marsland.. |  |  |  | 1 | 1-20,000 | 3 | 1-20,000 |
| A drawing-reconnaissance near Mount Vernon, Virginia................. | 1-15.000 |  |  | 1 | 1-40.000 | 1 | 1-40,000 |
| A tracing-city of Richmond, Virginia.- | 1-1\%, 000 |  |  | 1 | 1-10,000 | 27 | 1-10,000 |

Table of photographs-Continned.

| Prototypes. | Scale. | positives. |  | negatives. |  | Prints. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | Scale. | No. | Scale. | No. | Scale. |
| A tracing--Henrico county, Virginia. |  |  |  | 1 | 1 inch to 1 mile.- | 22 | 1 inch to 1 mile. |
| A tracing from plane-table sheet No 563, Mare island | 1-10,000 | 1 | 1-40,000 | 1 | 1-40,000 | 1 | 1-40, $000^{\circ}$ |
| A tracing from plane-table sheet No. 303 , coast chart No 10 $\qquad$ | 1-10,000 | 2 | 1-80, 000 | 2 | 1-80,000 |  |  |
| A tracing from plane-table sheet No. 304, coast chart No. 10 $\qquad$ | 1-10,000 | 3 | 1-80, 000 | 2 | 1-80,000 | -- |  |
| A traciug from plane-table sheet No. 305, coast chart No. 10.. | 1-10,000 | 2 | 1-80,000 | 1 | 1-80,000 |  |  |
| A tracing from plane-table sheet No. 340 , coast chart No. 10 | 1-10,000 | 1 | 1-80,000 | 1 | 1-80,000 |  |  |
| Part of the Potomate river, (traced for lithographing) | 1-10, 000 |  |  | 1 | 1-40,000 | 2 | 1-40, 000 |
| Drawing - Fort Jackson, Miss -showing effects of the bombardment. |  |  |  | 1 | 1-10,000 | 18 | 1-10,000 |
| Drawing-reconnaissance near Drainesrille, Virginia $\qquad$ |  |  |  | 1 | 1-30,000 | $s$ | 130,000 |
| Tracing from plane-table sheet No. 403, Drake's bay - | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Tracing from plane table sheet No. 456, Drake's bay. | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Tracing from plane-table sheet No. 805, Drake's bay | 1-10, 000 |  |  | 1 | 1-40, 000 | 1 | 1-40,000 |
| Tracing from plane-table sheet No. 806, Lrake's bay. | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Tracing from plane-table shect No. 807, Drake's bay - | 1-10,000 |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Tracing-Henrico county, Virginia, with some additions $\qquad$ |  |  |  | 1 | inch to 1 mile. | 12 | $\frac{1}{2}$ inch to 1 mile. |
| Chart of the hartor of Charleston, S. C., by Nary Department. |  |  |  | 1 | 1-40,000 | 1 | 1-40,000 |
| Map of hockbridge county, Va., (traced) |  |  |  | 1 | inch to 1 mile.. | 5 | $\frac{1}{2}$ inch to 1 mile. |
| Map of Frederick county, Va, (traced) - |  |  |  | 1 | -. d | 5 | ---do.------- |
| Chart of James river, in vicinity of Fort Darling. $\qquad$ | 1-10,000 |  |  | 1 | 1-10,000 | 18 | 1-10,000 |
| Map of Henrico county, Virginia, with some further additions. $\qquad$ |  |  |  | 1 | inch tol mile.. | 27 | $\frac{1}{2}$ inch to 1 mile. |

Report of Mr. W. L. Nicholson, in charge of the Lithographing Division.

## Coast Survey Office, Washington, November 1, 1862.

The following report of the operations of the Lithographing Division is respectfully submitted :
This division, organized and added to the regular establishment of the office during the month of May. 1861, to meet the increased calls made for charts arising out of the exigencies of the war, has been continued in active operation, employing two presses in printing transfers from some of the copper-plate engravings of the survey, and a large number of original drawings engraved or drawn on stone, or transferred to stone from prepared tracings or drawings.

Mr.C.G. Frels has been engaged in part as printer, but for the greater portion of his time in engraving or drawing on stone and making tansfers.

Mr. H. Lindenkold has been during the greater part of the year detailed from the Drawing Division and employed in engraving and drawing on stone, in which his experience and skill as a draughtsman have been of much service.

Mr. D. B. Morgan, assisted by Mr. William Morgan, and reeently, since his resignation, by Mr. W. Benner, have been employed as printers.

A list of the charts put on stone during the past year is appended, as also the number of shects of one hundred and ten charts and sketches printed duriug the year, (30,838 in number.) Their distribution will be found included in the report of the Miscellaneous Division.

To the ten memoirs descriptive of the coast south of Delaware bay, mentioned in my last yea's report as having been lithographed and distribnted with the appropriate charts bound up, two other memoirs were added, prepared in similar manner by and under the direction of Professor A. D. Bache, Superintendent, and by Captain C. P. Patterson, hydrographic inspector Coast Survey; and copies of all the memoirs have continued to be issued to commanding officers of expeditions along the coast, amounting in all, since August 1, 1861, to the number of three hundred and eighty-five copies, in about equal portions to offeere acting under the War and Navy Departments.

These memoirs have been bound up by Mr. M. T. Johnstone, before and since his assigmment from this division to the care of the map room, in August last.

In accordance with the uniform practice of this office in offering every aid practicable in assisting the other departments of the public service, several maps prepared by topographical engineers attached to the army and others for the use of the quartermaster's department have been put on stone, and copies printed and furnished with a rapidity and economy not to be casily obtained in such sudden calls for work; in some cases many copies of important maps of surveys have been in a condition to be issued on the same day, in a few hours after being handed to us for multiplication.

In addition to the printing of our charts proper, a map representing the seat of war in Virginia was, at the suggestion of the Superintendent, compiled by myself during the past year, and printed in colors, partly as an experiment in that class of work, and partly to meet the popular demand for information on the movements of our armies. This map has met with unexpected success, and has heen much called for, and copies quite freely distributed; but, in order to cover the expenses of its getting up and printing, a number of copies have been placed in the hands of our sale agents, the proceeds of which have more than covered expenses; in all, some five thousand five hundred copies have been printed, over twenty-five handred sold, and nearly three thousand copies gratuitously distributed.

Our experipnce with this color-printing has been of service in the proposed treatment of some of our regular preliminary charts and sketches by representing gradations of soundinge, land, sand-banks, \&e., by a system of light coloring. This method will be prosecuted as the pressure of work may permit.

In conclusion, I would bear testimony to the assiduity of all the employes in this division during the past year of incessant demands upon our care and attention.

Drawings, transfers, and engraxings on stone made in the Lithographing Division during the year ending October 31, 1862.

## Section III.

Potomac river, shect No. 1, (entrance.)
Potomac river, sheet No. 2.
Potomac river, sheet No. 3.
Potomac river, sheet No. 4.
James river, lower part, (new edition.)
Reconnaissance of Pamunky and Mattapony rivers.
Chincoteague bay.
Hampton roads.
Road map of District of Columbia, for the quartermaster general of the army of the Potomac.
Plan of wharfage at Alexandria, for the quartermaster general of the army of the Potomac.
Map of Alexandria, for the Sanitary Commission.
Military map (in nine sheets) of southeastern Virginia, for Major General J. A. Dix, U. S. A.

## Section IV.

Atlantic coast, Chesapeake bay entrance to Ocracoke inlet.
Sketch of coast of North Carolina and Virginia.
Hatteras inlet, (survey of November, 1861.)
Coast of North Carolina, from Oregon inlet to Ocracoke inlet.
Beaufort harbor, N. C., survey of 1862 , (in colors.)

## Section V.

Sketch of coast of South Carolina and Georgia.
Charleston harbor, S. C., with additions of Stono inlet and river, \&e.
Stono inlet, S. C., (survey of 1862.)
St. Helena sound, S. C.
Port Royal entrance, S. C., (new edition.)
Skull creck, Hilton Head island, S. C.
Calibogue sound and Skull creek, S. C., (1862.)
T'ybee bay and C'alibogue sound, (from survey of Lientenant C. Wilkes, U. S. N., 1838.)
Savannalt river, (with additions.)
Atlantic coast, from Saramah river, Ga., to St. Mary's river, Fla.
Depths on Wassaw bar, Ga., with directions for entering.
Section VI.
Sketch of the Tortugas islands, Fla.

## SEction YII.

Entrance to Santa Rosa bay, Fla., (from survey of Lieutenant Coloncl Perranlt, U. S. Topographical Engineers, 1826.)

## SEction VIII.

Reconnaissance of the Southwest Pass and bar of the Mississippi river, $186 \%$.

> Diagrams.

Megnetic declinations on the Atlantic coast, 1860.
Magnetic declinations on the Gulf of Mexico, 1860.

Report of Mr. W. L. Nicholson, in charge of the Miscellaneous Division.
Coast Survey Orfice, Washington, November 1, 1862.
The following report of the operations of the Miscellaneous Division is respectfully submitted.
This division, consisting of the copperplate printing office, map-ronm, and office for the distribution of maps and reperts, has been under my general supervision since the 1st of June, when Assistant E. Goodfellow left the office for duty with the Superintendent's party in the field. The reenrds have been kept by Mr. Charles Balmain, who has been also engaged since the 1 st of Angust in the preparation of miscellaneous copy and abstracts.

The map-room, including, besides the regular supply on hand of our own charts, a very large collection of miscellaneous maps presented by foreign governments and from other sources, has been, since the 1 st of August, under the charge of Mr. M. T. Johnstone, who has re-arranged and is engaged in cataloguing these maps for ready reference.

Mr. John Rutherdale, assistel by Mr. Joln Barrett, (and since his deceasc, March 24, by Mr. J. Frirs,) has printed most of the maps (from the copperplates) issued from the office; Mr. Henry C. Benner and Mr. $E$. A. Sipe having been occasionally engaged as printers when the exigencies of the demand for charts pressed too closely upon our usual arrangements.

The preparation of backed chart-paper for the topographic and hydrographic parties, of the presentation copies of maps, and the repairs of sheets in use, are in charge of Mr. W. Mertz, who was assisted until July 19th by Mr. F. Housam.

The usual statements, (with, as 1 believe, a better and more systematic exhibit and classification than hitherto adopted,) showing the distribution of maps, charts, and sketches during the year; the distribution of the anntual reports of the Superintendent; and the number of map, charts, and sketches, printed in the copperplate printing office, are herewith appended.

I'hese statements, to harmonize with the date of the other division reqorts, have been brought up to November 1, although the report of my predecessor was brought up only to the 1st of October of last year.

During the above period the aggregate number of sheets printed by the copperplate presses has then 23,584 , in addition to 30,838 sheets printed by the lithographic presses, mentioned in my report on the lithographing division ; in all 54,422 sheets were turned ints our map-room for distribution. The total number of copperplates printed from was 177 , and of lithographs $1 \% 9$.

During the above period 47,652 copies of pinted maps, charts, and sketches have been issued from the office, a relative amount of distribution moth more than double that of the preceding year, and upwards of five times the average amual distribution of former years.

Of these chars 25,925 copies were distributed throngh the Naval Observatory, and 1,863 empies were supplied directly to captains and pilots ( $2 e 3$ in number) of vesels engaged in the govemment transport service, calling on us with vachers from the Quartemater's depertment.

An abstract of the distribution miy be thas stated:
Coast survey maps, charts, shetches, and diagrams distributcd during the year ending October 31, 1862.

| Distributud to |
| :--- |

* Including a large numbor of charts furnished to Coast Surver purtes ncempanying naval squadrous on active servied.

To furnish this great amount of published matter, much of it got up with all rapidity possible to meet the urgent calls of the War and Navy Departments, has demanded the constant and unwearied attention of all engaged in printing, assorting, and despatching the charts, and I am happy to be able to testify to the general assiduity of all concerned.

The distribution of the Superintendent's report of 1860 has , as in the case of that of 1859 , been confined to individuals and institutions in the loyal States of the Union. The usual foreign distribution of reports through the Smithsonian Institution has been suspended for the present.

During the past year 4,028 copies of reports for various years have been distributed, an abstract of which may be thus stated.

Distribution made during the year of reports of the Thited Slates Coast Surrey for the years 1851, 1852, $1505,1854,1855,1850,1857,1858,1859$, und 1860.


There now remains on hand a limited number of back copies of the years 1851 to 1860 , of which, for the years 1551, 1855,1857 , there were on hand at 1st of November, 220,420 , and 328 copies, respectively, while for the years $185 \%, 1856,1859$, and 1860 there were on hand $1,514,1,551,2,883,4,710$ copies, respectively.

This decidedy unequal number of copies of various back years wonld seem to render it necessary that a careful discrimination should be used in their issue, while it is also to be borne in mind that for the years 1859 and 1860 no copies have been sent to the insurgent States. To provide for a selected issue of these remaining reports, ( 1851 to 1860 ,) a circular has been sent to the principal libraries in the more important cities, and to those of universities, colleges, and other institutions, inquiring into the state of their deficiencies in this respect, and proposing to fill such up, so that complete sets of these reports may in future be within easy reach for reference in all parts of the country.

I have the honor to enclose along with this report the statistical table prepared by me showing the field and ofine work of the survey, brought up to the close of the year 1861, to form, as usual, one of the appendices to the Superintendent's amnual report.

Arefives and Tibrary.-The archives and lihrary have continued maler the care of Mr. E. Fitzgerald.
Doring the past your three hundred and nimety-nine volumes of orimind and duplionte recods, one hundred and twelve volumes and cahere of computations and reductions, whe hamted and sixtan rolls from self-registering tideganges, and fity-seven original triwgraphical and hydromphical shets, have been added to the archives of the survey; also one hmdred and eighty-six sea-bothm suecimens.

Fifty-eight volumes have been purchased for the libary, and one hundred and five volumes, including thirty-three volumes of publications of the Royal Observatory, Greenwich, added by presentation during the same period.

The records of triangulation, astronomical, and magnctic work, excented under the superintendeney of Mr. Hassler, have been re-arranged by Mr. hmmpfo of the computing division, and a new register made which greatly facilitates reference to them. With the assistance of Mr. Donegan, of the tidal division, the solfregistering tidegrage rolls have been arranged by stations and years, put up in separate packares and registered. The total number of self-registering tide-gauge rolls now in the archives, as shown by the register, is eleven hundred and twenty-cight. A new set of sketches showing the limit, of all the registered topographical and hydrographical shects, to take the phace of the set now in use in the archives, which is nearly worn out, has been commenced and considerable progress made upon it,

Carpentry.-In the carpenters' shop. Mr. A. Jeatman remains in charge, as master carpenter, assisted by one workman and an appentice. The work excented during the year consiste of fitne new cases for instruments of various kinds, 6 cases for duplicate records, 2 large cases for Cuast Survey charts, 2 large cases for copperplates, 3 cases for photographic negatives, woodwork complete for \% uew phane-tahies, 5 new plane-table boards, 4 now stands for plame-tables, 3 stands for theodolites, 5 frames for photugraphic and 18 for electrotype purposes, 8 battery cells, and 5 vats, for clectrotype dirjsion; 6 rods and 6 sigual poles for field parties have been painted and graduated, and 20 tin cases for original sheets have been painted and numbered, 6 large paneled frames for backing purposes have been made, as also one writing table for office. A large amount of miscellaneons work has been done, and the woodwork of instrumente returned from the field have been carefully repaired; 90 ruming feet of new fencing has been put up, and the office buildinge kept in repair.

Instrument shop. -The force of this shop consists of Mr. J. Vicrbuchen, master instrument-maker, three workmen, and two apprentices. During the year 4 sounding apparatus, 12 specimen cuje for sea soundings, 1 winding machine for deep-sea soundings, 2 plane-tables complete, 26 metre scales. 2 theodolites, 4 reconnoitring telecopes, 2 heliotropes, 5 prismatic compasses, 2 beam compasser, 5 half-round protractors, 13 metre chains, and 1 chock for office, have betn made; and all the repairs of instruments used during the year have been made, consisting in part of 2 sounding apparatus, 2 deep-sea themometers, 5 self-registering tidegauges, 27 sextants, 30 theodolites, 29 planc-tables, 6 recomoitring teleseopes, 11 heliotropes, 4 prismatic and 7 surveying compasses, 28 metre chaius, 15 marine $s p-$ ghasses, 1 diviling machine, and 6 beam compasses, in addition to a variety of miscellancous work for the use of the office and parties in the field.

## APPENDIX No. 12.

## report of professor benjamin peiboe, of hargard, on the computations of the occlltations of the pleiades for longltude.

## Cambridge, Mass., Nucember 1, 1869.

Sin: The computation of the group of the occultations of the Pleiades, from $1838-1842$, inclusive, and the corresponding determination of the longitude of America from Europe, are now far advanced, and several of the special repurts upon the individual occultations will soon be sent to the office in their completed form The conformity of the observations with theory is quite remarkable, and shows that this, the most delicate of all the obserrations of the moon, demands and justifies the utmost precision of calculation. The final determination of the longitude will, undoubtedly, surpass all other in precision.

There were eighteen different nights of occultation in the group of $1838-12$, which I will number in the iaverse order of their occurrence.
I. The immersions of April 13, 1842, which were observed at Edinburgh.
II. The immersions of January 21, 1842, which were ohserved at Washington and Cambridge in Massachusetts.
III. The immersions of November 27, 1841, which were olserved at Cambridge in England and at Washington. These observations were made within soventeen hours of full monn, and I have thought that twenty-four hours from full moon was as near an approach to this phase as it would be safe to admit.
IV. The emersions of October 31, 1841, which were observed at Dorpat, Pulkova, Vienna, and Wilna. The moon was so nearly full that these observations are omitted.
V. The emersions of September 6, 1841, which were observed at Washington.
VI. The enocrsions of August 10, 1841, which were observed at Altona, Berlin, Copenhagen, Edinburgh,: Geneva, Harnburgh, Leyden, and Pulkova.
VII. The immersions of February 27 , 1841, which were oberved at Edinburgh and Leyden.
VIII. The immersions of January 31, 1841, which were observed at Pulkova.
IX. The immersions of Decomber 7, 1S40, which were observed at Altona, Bresha, Copenhagen, Gottiogen, Hamburgh, and Krememunster.
X. The emersions of October 13, 1840, which were observed at Ashurst, Breslau, Edinburgh, Greenwich, Vienm, Cumbridge, (Mass., and Washington.

X1. The immersions of January 14, 1840, which were observed at Apenrade, Berlin, Bonn, Brestau, Craeow, Gera, Grisswald, Hamburgh, Fomigeberg, Fremsmunster, Leyden, and Vienna.
XII. The occultations of November 20, 1839, which were observed at Cambridga, Leyden, St, Louis, Yulkova, Dorchester, Washington, and Port Royal, (Jamaica,) which occurred at the tine of full moon, and are consequently omitted.

XIIT. The emersions of September 26, 1839, which were observed at Ashurst, Berlin, Breslau, Greenwich, Rista, Cambridge, Philadelphia, Southwick, and Washington.
XIV. The emersions of August 3Q, 1839, which were olscrved at Breslau, Cambridge, (England,) Hamburgh, and Leyden.
XV. The emersions of July 6, 1839, which were observed at Iudson, Philadelphia, Washington, and Yorktown.
XVI. The immersions of March 19, 1839, which were olserved at Ashuret, Cambridge, (England,) Dorpat, Greenwich, Konigsberg, and Leyden.
XVII. The immerions of December 27, 1839, which were observed at Ashurst, Breslan, Cambridge, (England,) Cracow, Dover, Edinburgh, Greenwich, Boston, Dorchester, Southwick, Princeton, and Philadelphia.
XVIII. The emersions of November 2, 1838, which were observed at Philadelphia, and may need to be neglected on account of the proximity to full moon.

Of these observations, therefore, III, IV, XII, and probably XVIII, will be rejected, and the other 14 nccultations will be retained. The occultations X, XIII, and XVII were the only ones which were observed in Eurgie as well as in America, and which can be used independently of the others and without regard to the accuracy of the tables of the moon's longitude, for the determination of the longitude. These occultations, together with the others observed in Europe, namely, the 1, VI, VII, VIII, IX, XI, and XIV, will serve to determine the crrrors of the tables, and thence the corrections which must be applied to the tables, to compute the occultations II, V, XV, and XVIII, which were only obeerved in America, and thence to get a second determination of the longitude. The various observations will also serve the subsidiary purpose of determing the relative longitudes of the different places which are upon the same continent, either of Europe or America, and also to correct the places of the stars, and fually to determine the value of the lunar semidiameter and the necessity of having regard to the protuberances of the moon in the complete solution of the problem.

Although this plan of combining the occultations will be carefully followed, yet reports will be made upon the several occultations independently, and the equations of correction will be given for each as separate results.

Very respectfully,
Profeasor A. D. Bache,
Superintendent of the Coast Surcey.

## APPENDIX No. 13.

 HEID 2 E , OF HARYARD.

November, 1862.
Sin: It is expedient that I should address you a special litter upon the tables of the moon used in the reduction of the obserrations of the Plejades. They are those constructed ly Hansen. I adopted them becatse they were the most recent, and had, therefore, the advantage of all previons experience. They purport to be the pure resulte of thenry, and white, upon the one hand, I had full confidence in the actaracy and ability of their author, I was, upon the other hand, pecuaded, from the use of the tables which I had myself constracted for the Nautical Almanae, under the direction of Captain Daris, that analysis without empiricism was adequate to the construction of the hanar thenry and tables. The testimony to this point furnished by Lubboek, in a memoir on the Lanar Theory in the thioteenth whme of the Memoirs of the Royal Astronomical Society, is full and generous. The following pasage occurs upon page 12 of his memoir:
"As it appeared to me that astronomere would vilw with greater confidence a comparison of places given by the American tables, made by jursons whe cond have no interest in enhaneing their value. I made application to Mr. Hind, the Superintendent of the Toutical Almanac, and in conserfuene he directed Mr. Farley to procure places of the mon from the Ameriean Almanar and compare them with the ohservations made at Grecnwich for the years 1856,1057 , and 1858 ; and as Mr. Hind has kindly allowed me to publinh them with this paper, any oue can see at one how extromely accurate the places given by these tables are, and how much more so than places given ly Burchardt's tables."

Lubbock gocs on to make clams upom these tables in the following pasages:
"In these American tables, enefficients are emplored, with very few exceptions, and those of no moment, founded upou our labors-that is, M. Plana's. M. de Ponteoulant's, and my own-and due to theory alone. I am confident, therefore, that a just posterity will give to $u$ - -that is, to Phana, Ponticoulant, and Lubbock, who in 1846 furnished the means of constructing tables of the mon without any empirical hypothesis--the credit of first bringing the errors of the lunar the ry within the limits of the errors of observation, and thereby of bringing to perfection the solution of the problem of finding the longitude at sea by means of lunar observations."

The Ameriean tables wre actually constructed, as they profess to be, "from Plana's theory, with Airy's and Longstreth's corrections, Hansen's two inequalities of Long priod arising from the action of Vemus, and Hansen's values of the secular variations of the mean motion and of the motion of the Perigee." But Labbock centends that all of Longstreth's corrections of Phana were those of cocfficients which had heen designated as erroneons by Ponticonlant, "and in eight out of eleven instances the values of Pontecoulant were employed" instead of those of Plana. There is even a suspieion expressed that Longstreth had been unfair to Ponticonlant, and appropriated his corrections without acknowledgment. This suspicion, however, was expressed before having seen the original memoir of Longstreth, the examination of which instantly exoserates Longstreth from so minast a charge, for Longstreth expressly says: "The" coeffieients deduced from theory by Damoiseau, Plana, Pontecoulant, and those deduced from observation by Burckhardt, (though differing considerably,) give the moon's place with nearly the same acenacy; when a difference exists, 1 have carefully compared them with observation, and deduced the most probable value." In the only three cases (see the note at the cud) in which Longstreth has rejected Pont coulant's terms, and thereby declared them to be wrong, the subsequent investigations of Poutécoulant himself, which are published by Labbock, show that Pontécoulant was in error, although right in the other cases, and, consequently, the skill and accuracy of Longstreth's comparisons and the justness of his verdict are triumphantly sustained.

In regard to the decisions of posterity I may be mistaken; lut it seems to me that the whole sories of reductions of the lunar observations of Greenwich from 1750 to 1851 , made under the direction of the astronomer royal, and of the comparizons with Plana's theory, demonstrate that to Plana alone will be given the credit of first bringing the lunar theory to a degree of perfection sufficient for the practical "solution of the problem of finding the longitude at sea by means of lunar observations."

I am moreover convinced that a still higher claim can be established for Lubbock and Pontécoulant. The ordeal to which I have been subjecting the tables of Hansen is much more severe than that of meridian observations of the moon; and so far as I have gone, they have stood it wonderfully. The mean cror of the
tables in longitude seems to be less than a second of are, during the period embraced by my investigations. It is thought that more recent observations indieate wider diserepucies ; but if this be so. I believe that it will be found to arise from some accidental canse of non-conformity which can be casily remedied. I am equally confident that when our Ammican tables are revised, as they soon must be, the small differences between them and the corrected theories of Labbock and lontscoulant will disappear, and they will then assume the same degree of accuracy which 1 am now disposed to attribute to those of Hansen. The time, then, seems to be at hand when mevidional olservations of the moon will no longei serve to test the accuracy of the tables: when extra-meridional observations will be set aside as useless and cumbersome superfuity; when the observations of occultations on the dark limb of the moon will assume a new importance; and when it will be admitted that a single observation of an occultation reduced by the exclusive aid of the lunar tables without any use of simultaneous observations, will determine a longitude with a probable error not exceeding a second of time. The geometere to whom the final credit of this great result must be given are Lubbock and Pont coulant. What test is reserved for the ultimate comparison of the theories of Pontecoulant, Hansen, and Delaunay?

> Very resjectfully,

Professor A. D. Bache, Superintendent of the Coast Survey.

Note. -- There is still a fourth coefincient, that of arymment 22, in which Plana's coefficient of $3^{\prime \prime} .309$ was rejected, and Lublock inconsiderately attilutes to Longetreth the new cotficient $0^{\prime \prime} . x$, which is adopted in the American tables and attributed to Plana. lut it was take by me from Airys table of cuefficients in the reduchon of the Greenvich cbservatuons of the moon, and no other origin of the cofficients of that table but flama is acknowledged in that work. The answer to the question of authority in this chae must, therefore, be sought by Mr. Lubbock from the Asrronomer hoyal.

## APPENDIX No. 14.

REFORT OF DR. B. A. GOULD ON THE PROGRESS OF COMPUTATIONS FOR DEDUCING LONGITUDE FROM observations by 'telfgraph berween calais, me., and new orleans, la.

Cambridge, November 13, 1862.
Dfar Sir: During the last year the Coast Survey operations under my direction have consisted exelusively of computations and reductions, the field-work being suspended in consequence of the war. The same cause has acted to retard the progress of the reductions to a considerable extent, and but for the diminution of my party which it has occasioned, 1 might at present enjoy the satisfaction of reporting the whole of the longitude work as completely reduced. No small progress has, however, been made, and the work has been completed upon four of the campaigns, viz: Calais-Bangor; Apalachicola-Eufaula; Macon-Eufaula; Pensacola-Mobile.

The discussion of these observations, although extended and minute, has elicited few results of general scientific interest which have not been brought to light by the computation of former longitude measurements. The phenomena attending the transmission of signals have been similar in these and in former campaigns, showing in all approximately the same velocity of transmission, and the same dependence upon the position and strength of the batterics.

So, too, the same result: have been deduced from the examination of the personal differences of observers; and it is now beyond question that, by the chronographic method, at least, the personal equations, although manifest, are very far from constant, varying greatly with external circumstances and with physical condition. Indeed, their variability is so decided as to lead me, in the discussion of the observations, to aim always at their elimination, rather than at their determination, contrary to the course oripinally pursued.

The mean error of observations appears to vary but little for the same observer, its average ranging, for different obscrvers, between nine and fourteen hundredths of a second for a single tap.

The changes of azimuth during the period of observation have been referred to in previous reports, and constitute one of the most interesting and striking phenomena which the computations have brought to light. In all the telegraphic longitude measurements without exception, both in summer and winter, in the northern and the southern States, the transit instruments have been found affected by a motion in azimuth differing in
amount and in regularity at different stations, hut almost without exception having the same general tendener, viz : a motion of the westerly end of the axis towards the south as the night advanced. The only apparent exceptions in twelty-five series of observations are at Macon in 1856 , and at Mubile in 1858 ; hat the arise at Macon in 1855 and 1860, and Mobile in 1857 and 1861 , confirm the general ruld, and I surpect the exceptions to be rather apparent than real. I do not mean to say that the change has been in this direction on every night, at each station, in every campaign, but that the apparent exceptions have been so few and so marked as to lead to the conviction that they are due to some special and abormal iufluence, such as a jar to the instrument or some exroneous observation.

The uniform occurrence of this azimuthal change, and the uniformity of its divection, naturally lead us to seek its origin, not in local disturbance, but in some geognostic law. The conviction has been forced upon my mind that the change is due the the dimution of temperature of the earth's surface travelling westward with the diumal rotation. These changes in azimuth serm, in some degree at least, to depend on the thermal changes over an area too large to enable us to comect them with the thermometrie variations at the phace of obeevation ; or, if they should in fact be functions of these local variations, the laws by which the changes of surface temprature follow the atmosplieric changes are not sufficiently understood to render the investigation easy, even with fuller detail than our observations permit.

Nowhere have thest change been so great and so morm as at the station Lower Peach Tree, on the Alabama river, about midway between Montgomery and Mobile. All attempts to cxchange Iongitude signals between these two cities directly having proved unavailing, it became necessary to establish an internediate. station. An astronomical station was therefore constructed at Lower l'each Tree, and its differences of longitude from Rontgomery and from Mobile were detcrmined soparately. At this station the avrage change in azimuth on eight "telegraph nights," between the first and last observations, was +0 s.57; the mean hourly change being +0 s.052 during the first ten days of $A_{\text {pril, }}$ and averaging + 0s.145 during the period between the 19 th and 28 th of the same month. Cpon five nights between Nay 21 and Jum 7 the total change averaged +0 s.697, and the mean hourly change was +0 s.123. On only one night out of sixtern for which the observations have been carefully studied does there appear any exception to the direction of this change. On this date the azimuthal change between the earliest and latest observations was negative, but there is strong reason to suspect some disturbance of the adjustments during the exchange of signals on that night, and all the more as each of the two series of obserrations for azimuth, treated by itself, gives unmistakable indications of the same positive change observed on other nights.

It has been impossible to do justice to the observations at this station without the regular employment of a term dependent upon the time in the adopted value of the azimoth. Such a term has, indecd, been habitually employed in discussing the results of other campaigns, but hitherto rather as a refinemert than as a necessity. It has, in practice, been made directly proportional to the time during the night's work, but there are some indications that the change was less rapid in the early part of the evening than in the later hours.

The simultaneous changes at Montgomery, though much less in amount, were none the less deciderd. Here, on eight telegraph nights, the average hourly variation was +0.013 ; and the examinetion of the shorter serics of observations made on other nights gives the same value.

It should be stated that, for the instrument at Peach Tree, motions in azimuth were so great as to render it necessary to adjust the position of the axis at the commencement of every nights work. The instrument used was the Coast Survey transit instrument No. 8, which has been employed in most of the previons longitude measurements, and, like the others used for the same purpose, consists of a forty-six incli telescope, of which the axis is supported by a castiron frame, formed of a single piece, so that the two $Y$ beds are parts of one and the same casting. This frame is ordinarily made to rest upon a granite block, three feet wide and one foot thick, sunk in the ground to the depth of more than three feet, and rising to a height of thirty inches above the surface; but, in the unexpected contingency of the establishment of the station at Peach Tree, it became necessary to use wood, since there was neither granite in the reqion nor time to obtain it from the north. The wooden block was, however, hard and well seasoned, and the experience of former years, when the employment of wood bccame necessary, affords no reason for supposing the azinuthal changes to have been in any way connected with the material of the pier. The soil of the region consisty of red elay, covered to the depth of about six inches with sandy loam. The wooden support of the instrument was inbedded to the depth of three and a half feet, resting on a compact bed of sand, placed there for the parpose, and surrounded by sand well rammed down between the surrounding ciay and the pier.

Among the observations of the Macon-Cufanta and Pensacola-Mobile campaigns are several series of clock signals, or simultaneous records of the beats of the clocks at both stations, recorded on all the registers. These clock siguals were made alternately with series of observations for time, in the hope that some method might yet prove equal in accuracy to that of star signals, which should be at the same time less tedious, laborious, and expensive. The experiment has been thas again fairly tried, but, I regret to say, found wanting. At least, with the portable instruments which from the very nature of the case we most use, the crror and rate of the clocks cannot the determined closely enough to give differences of longitude equal in accuracy to those obtained by the method of star signals. The accordance of results during any one series is admirable and seductive; but the comparison of the results of different series and on different dates umasks the delusion, and shows that the clock rates camot be relied upon as sufficiently constant, although the clocks are of the best workmanslip of Kessek, Mardy, and Krille.

During the past year the circumpolar and time star Lists to which 1 have frequently alluded in former reports, and which had been improved from time to time during the past cight years, have been adopted by the Naval Observatory and by the Nautical Almanac as standards of right ascension, and have been printed together with tables of mean phaces of each of the one hundred and seventy-six stars for the beginning of the thirteen years 1851-1863. The methods and details of their formation, together with the discussion of the systematic differences of the several catalogues antseries of observations employed, are prepared in full detail for publication with the "Records and Licsults" of the Coast Survey. The equinoctial point corresponding to Argelander's " ILLX Stellarum Fixarum Postiones Medice" was selected as the fundamental zero for both catalogues, and all the materials employed were suljected to the corrections requisite feferring them to this zero before they were introduced into the equations of condition. All obscrvations since the time of Bradey which seemed likely to add to the precision of resultant values were incorporated in the determinations, and I think we may he justified in regarding the positions and proper-motions of these lists as commensurate in accuracy with the present condition of practical astronomy, and therefore not unworthy of the title " standard right ascensions."

The brgiming of the year $18 \bar{\pi} 5$ was chosen as the epoch of the two star lists, primarily because it was a date near to, yet in advance of, the time at which their preparation was begun, viz : 1852 ; but there seemed an additional appropriateness, inasmuch as this epoch is precisely one century later than that to which Bradly's observations are referred in the Funtamenta Astronomice.

The right ascensions deducible from the ficld observations of the telegraph parties, although made with small portable instruments and a magnifying power never exceeding one hundred, have, to my astonishment and delight, been proved by these computations to surpass in accuracy a majority of the observations upon which the determination of the "standard places" was necessarily based. I have, therefore, taken steps towards collecting the observations of the stars of our lists from the records of the several campaigns, with the purpose of employing them in the next revision to which the increase of observations and the lapae of time may render it desirable to subject them.

Moreover, as each successive longitude campaign has been computed, the right ascensions of the signal stars employed have been dedueed and placed on record; and 1 hope before long to submit a catalogue of the right ascensions of between five and six hundred of these signal stars, as an incidental fruit of the careful zeal of the observers, especially of Messrs. Dean and Goodfellow, by whom far the greater part of the observations have been made.

Since my last report I have, to my great regret, lost the services of two accomplished and valued aids, Messrs. James H. Toomer und Johis. bradford, the former by reeignation, the latter by his transfer to a wider field of usefuhess. I have, however, been aided, as in former years, by Professor George Searle and Mr. Cleveland Albe, to whose assiduity and care the value of the work done is in great measure due.

Very respectfully and truly, yours,
B. A. GOULD.

## Professor A. D. Bache,

 Superintendent United States Coast Survey.
## APPENDIX No. 15.

DISCUSSION OF THE MAGNETIC AND METEOROLOGICAL OBSELTATIONS MADE AT THE GHLARD COLLERF, OBSEGVATORY, PHILADELPHIA, IN 1840, 1841, 1842, 1843, 1844, AND 1845. PABC IV. -INVESTIGATIOS OF THE ELEVEN (OR TEN) YEAR PERIOD, AND OF THE DISTLRBANELN OF TIL HOLLZONTAL COMPOSENT of the magattio force. by a d. bache, ll d., SUPERINTENDEST USITED states COAST sURVEY.

Volume XI of the Smithsonian Contributions to Knowledge contained a discussim, in three parts, of the observations for magnetic declination; the first part referring to the eleven (or ten) yars period in the amplitude of the solar diumal variation, and of the disturbmes of the magnetic declination; the second, to the annual inequality of the solar diumal variation; and the third, to the influence of the moon on the magnetic declination. The present diseussion refers to the changes of horizontal forec, and will be caried on in the same order as the former, so as to dispense with explanations in the mode of treatment, moless in those portions involving the peculiarities of the horizontal-force instrument and reeord. Clearles A. Schott, esq., has rendered me the same assistance in this work stated in the introduction to fart I.

The horizontal-force instrument was one of Gause's large bifiar magnctometers, made by Meyerstein, of Göttingen, the weight of the magnctic bar being about twenty-five pounds, and its lageth being thirty-six inches and fivereightis. The suspension wires were slightly inclined, the smatler distances between them being above the larger. The value of one division of the scale in parte of the horizontal force was detcrmined to be: in May, 1840, 0.000035 ; in June, 1841, 0.000038 . The meant, or 0.0000365 , is the value used throughout the series. The sensibility of the instrument was thas rery considerable. The instrunent having been properly adjusted with the bar at right angles to the mean magnetic meridian, the torsion angle $Z$ was found to be $71^{\circ} 43^{\prime}$. The relation $Z=a$ cotan. $Z$ expresses the value of one seale division $k$ in parts of the horizontal forec, $a$ being the value of a seale division in parts of the radius; or $0.00011=0^{\prime} .3 \mathrm{~S}$, and $Z$ the angle of torsion. Increase of readings on the seale corresponded to decrease of horizoutal force.

The instruments were placed in position by the equations deduced by Professor Lloyd for the case of the declinometer in equilibrium with the horizontal and vertical foree mogetometers, the position of instable equilibrium being taken necessarily from the form and position of the observatory. The cffect of the small verfical-force bar at first used upon the lifilar was quite insensible, and that of the declinometer bar affected the value of the seale but slightly, the effect of both instruments changing the ralue of the seale divisions only in the ratio of 1 to 0.9956 .

A thermometcr, by Francis, of Philadelphia, divided to half degrees of Fahrenheit's seale, and casily read to tenths, was plated in the box of the horizontal-foree magnetometer, and as wear as practicable to the bar.

After the bifilar was set up, a motion commenecd in the direction indicating decrease of foree; it was progressive, though not steadily so. After a time an extra scale was required on occasions of auroval or other disturbances, and finally the ordinary readings were upon this extra scale. On the occasion of the change of the vertical-force magnctometer, in January, 1541, by the substitution of Saxton's balance magnetometer for Lloyd's, the magnetism of the horizontal-force bar was examined and found to have sensibly decreased; its force amounted to 0.9601 of its original force, in May, 1840. The experiments were made by means of deflections with a subsidiary declinometer bar, the only means then available. A further experiment of the loss of force was made in June, 1841, when the instrument was accidentally disturbed by one of the observers. The loss of magnetism then found, by means of a new determination of the angle $Z$, was 0.0314 of its amount in Jannary, 1841. To ascertain the change of maguetism of the bars of the magnetometers, vibrations were also made use of, but they led to no satisfactory result. The progressive change of the scale readings from the change of the horizontal force and loss of magnetism of the bar will be investigated further on.

The observations between Junc, 1840, and September, 1843, were made bi-hourly, and fiom Octoker, 1843, to the close of the series, hourly. The series, extending over five ycars, is not quite continuons. No observations were made on eleven days in January, 1841, on the occasion of the introduction of a new vertical force magnetometer, and the consequent necessity of readjusting the instruments; in Jamury, February, and March, 1843, the work was reduced to but a single reading a day, by circumstances clsewhere stated; there
are also some minor disturbances at other times, when the differences in the readings, however, were ascertained and allowed for. Full statements bearing on the contimity of the series will be given in subsequent pages.

The reduction proper necessarily commences with the operation of bringing all the readings to the same standard temperature, to render them comparable among themselves.

Correction of the readings of the bifilar magnetometer for changes of temperature.
The care bestowed on the experiments to ascertain the effect of the temperature on the instrument, and the perseverance with which they were carried out, were not rewarded with a corresponding degree of agreement in the results obtained by the various pocesses employed. This, it will be recollected, was also the case at other obseryatorics. The subject of the coefficient of temperature for the bifilar magnet is fully treated in the preface to the three volumes containing the record, and it will, therefore, in this place only be necessary to recapitulate in general the results, and to state the nature of the experiments there described.

The first observations for the temperature cocficient were made on $J u l y$ 16, 1840 . Oscillations were observed alternately at the ordinary temperature and near the freczing point, obtained by surrounding the box containing the maguet with ice; at the same time, comparative oscillations of a bar in another building were observed to furnish the necessary data to correct the lifiar results for any change in the horizontal force during the progress of the experiments. The value deduced was 2.8 seale divisions for a change of $1^{\circ}$ Fahrenheit. No reliance was placed on this result, on account of the comparatively rude indications of the subsidiary instrument, and also on account of an irregularity at a certain point in the curve representing the connexion of change of force with change of temperature.

The method of deflections was tried and abandoned on account of the small amount of deflection at a distance sufficiently great to prevent the chance of permanent changes from the mutual action of the bars.

On the 22 d of February, 1841 , comparisons by vibrations were again resorted to, but with no better success, the correction for change of force during the interval being unsatisfactory. The result deduced was 3.0 scale divisions for 10 Fahrenheit.

Applying the results to the readings of the bar when mounted on the bifilar suspension wires in the observatory, they were so little satisfactory that it was determined to get the change of intensity of the bar by leating and cooling the observatory while the bar remained in situ.

In January and February, 1842, a continuous series of abservations was made by allowing the observatory to attain the winter temperature on one day, and obtaining thus a result by comparison with the preceding and succeeding days, when the room was artificially warmed. The value found was 1.55 scale divisions for $1 \circ$ Fahrenheit. At this time the observatory was warmed by a soapstone stove with copper fixtures.

About the close of the year 1842 an effcient set of subsidiary instruments was mounted in one of the college buildings, the bifiar magnet being about nine inches in length. After the relative value of the scales of the instruments had keen ascertained, cumparative observations were made, six each day, in the morning and afternoon. These observations and results are given in a table extending over eleven months in 1843 , and over eleven months in 1844 . The results were fluctuating, and the discrepancies proved, conclusively, that other causes were at work which would not be accounted for. The changes in the force were generally small. In the course of these cxperiments I found, beyond a doubt, that instruments of the same dimensions were required to give comparative results. During an aurora the small instrument in the college gave by no means the same results as the large instrument in the observatory. There were numerous comparisons determining this. I had reason also to believe that the large bar had its induced magnetism easily disturbed, and not regularly renewing itself, so that the correction for temperature may be supposed compound, one part permanent and one part temporary. 'The following results were obtained:

| Observations between February and June, 1843, | 2.50 | scale divisions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| " | " July and December, 1843, | 2.28 | " | " |  |
| " | " | January and June, 1844, | 1.94 | $"$ | $"$ |
| $"$ | " July and December, 1844, | 2.00 | " | " |  |

for 10 Fahronlieit. It may also be stated that no reasonable supposition in regard to differences of temperature between the indications of the thermometer aud magnetie bar, or to changes in the cocfficient varying with the temperature, will explain all the cases of discrepancics. In these comparisons, always near cach other in time, small differences in intensity, as shown by the subsidiary instrument, were allowed for, but the corrections for temperature of this latter instrument were neglected, as the changes of temperature in the building where it was placed were small.

Another method, not quite so unobjectionable as the preceding onc, was tried; it consisted in taking the results corresponding to the highest temperatures during each winter, and comparing them with those corresponding to the lowest temperatures, a correction being made to reduce the changes of force by means of the secondary instrument. These comparisons were hable to be affected le the unequal distritution of the results used over the different parts of the month. The result was: for combinations and comparisons, from

$$
\begin{array}{ll}
\text { Jamuary, 1844, to June, 1844, } & 2.03 \text { scale divisions } \\
\text { July, 1844, to December, } 1844, & 2.29 \text { " " }
\end{array}
$$

for each degree of Falurenheit's scale.
The mean value of all the results obtained by the various processes explained, is 2.6 scale divisions, and, as a preliminary measure, it was supposed that the coefficient was changeable; and hence a correction for change of temperature was applied, varying from 3.2 seale divisions in 1840 , to 3.0 seale divisions in 1844.

On resuming the discassion it was thought desiable to deduce a value for this enefficient directly from the entire mass of observations, as this could not fail to satisfy the whole series. For this purpose it was indispensable to make the series of observations contimuous, or, in other worde, to refer the readings, extending over five consecutive years, to the same initial division of the scalc. This is, therefore, a proper place for stating all cases wheu the instrument suffered any disturbance, and the amount of seale correction required. All necessary explanations are given in the record.

The first break in the series occurcd August 27, 1840, at $12^{\text {h }} 22^{m}$ (Philadelphia time, when the mirror was accidentally deranged. The observed numbers from this date to September 2?, at $12^{2 \prime} 22^{2 \prime \prime}$, have been brought to comparison with former mumbers by the mean position of the bar for six previous days, (in some cases seven, and by the home, from ()$^{11} 22^{m}$ to $22^{\mathrm{b}} 22^{\mathrm{m}}$ inclusive. This correction is already applied in the record; its probable error is given as 3.3 scale divisions.

On September 22, 1840, the instrument was readjusted.
An interruption of eleven days occured in Janary, 1841 , owing to the introfuction of a reflecting vertical-force magnetometer, and requiring a now arrangement of the instruments. The borizontal-foree magnetometer was left in its place. The mean values for Jamury, viz: 944.6 divisions for the bifilar, and 360.5 for the corresponding temperature, as given in volume I of the record, may be reduced to the true mean by the interpolation of values between Decenber 31 and January 12. The daily mean (at 320) on December 31 was S42.3, and on January 12, 913.0 ; hence, omitting the readinge for Jinnary 3d and 10th, as Sumdays, the complete monthly mean should be 15.6 divisions less, or equal 926.0 .

The obscrvations were resumed on the 124 h , and continued to February Sth at $22^{1 \mathrm{l}} 492^{\mathrm{m}}$, when the wires were found to have been slighty deranged. Two days previously, February $6,18^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphatime,) a great change in the position was noticed; on re-arranging the instrument, it did not return to its former readings. A correction of +116 has been applied (in the record) to the previous mean readings only in this month, and in consequence +116 divisions should be added to each individual reading from the commencement of the series; but on account of another disturbance of the instrument, on the 22 d , at $16^{\mathrm{h}} 22^{2 \mathrm{~m}}$ (Philadelphia time,) a further correction of +92.8 scale divisions should be applied. The total correction is, therefore, +208.8 . Besides these corrections, the readings on the $22 d$ from $0^{11} 22^{14}$ (Philadel phia time) to $10^{\text {h }} 22^{\text {m }}$ (Philadelphia time) inclusive, should be inereased by +25.1 divisions, the alhidade of the instrument having been disturbed.*

On the $2 d$ of June, 1841, the suspension wires were struck aceidentally, deranging the instrument; the readings were then near the end of the subsidiary scale, and in re-arranging the instrument the new reading; were brought near the middle of the scale. The total difference between the old and new scale readings, the latter commencing with the first of the month, is 900 sale divisions. The means between June 1st and

- The corrected daily means for the month of February, 1841, should, therefore, raad as follows-

| 1st | 1163.5 | 10th | 1131.1 | 19 th. | 11279 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 d | 11448 | 11th | 1103.8 | 20th | 11300 |
| 3 d | 1141.9 | 126h | 1082.5 | $22 d$ | 11529 |
| 4 th | 11330 | 13th | 1083.5 | $23 d$ | 1182.6 |
| 5 th. | 1138.1 | 15\%h | 11000 | 24 th | 11280 |
| 6 6th | 1138.6 | 16th | 11221 | 25 th. | 11077 |
| 81 h | 1181.2 | 17th | 11397 | 26 tb | 1144.6 |
| 9th | 1150.6 | 18th | 1137.0 | 27 h | 1162.3 |
| Mea |  |  |  |  | 11:35.7 |

5th are already corrected in the record, but the individual bi-honrly readings require a correction of $+213^{*}$ seale divisions to produce these means. It was thought best not to apply this correction of - 900 divisions to the observations betwen June, 1840, and Jnne, 1841 , but simply to state the quantity, siuce it can be applied casily to any result heroatier.

At the close of 1842 the regular observations werc discontinued for three months, during January, February, and March, 1543 ; a daily reading was tiken at $14^{\mathrm{h}} 22^{\mathrm{nm}}$ (Philadelphia time,) in order to keep up a continuity in the serics. By means of the reduced readinge in the same months in the other years, it was found that a correction of $-3^{4} .4-3^{4} .7$ and $+1^{1.5}$ for Jannary, February, and Mach, respectively, was, required to refer the mean at $14^{\mathrm{h}} 22^{\mathrm{mm}}$ to the mean of a complete bi-hourly daily series. Applying these cor- : rections, the corrected montbly means become-

$$
\begin{aligned}
& \text { For January, } 1543 \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 803^{1.7} \text { at } 590.2 \\
& \text { For Fehuary, } 1843 \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . } 79 \text {. }^{4} .9 \text { at } 510.9 \\
& \text { For March, 1843. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 815^{11} .1 \text { at } 480.7
\end{aligned}
$$

On the 154 h of April, 1843, the instrument was carefully examined and found in adjustment.
At $6^{\prime \prime} 50^{\prime \prime \prime}$ on May 4, 1843, the bifilar was disturbed, but readjusted on May 5, before the regular observation at $2^{14} 21^{" 1} \mathrm{p} . \mathrm{m}$. A correction of -16 divisions during the interval is to be applied to the readings. After this date the instrument remained undisturbed.

We lave, therefore, for discussion the following continuous series of monthly means of the readings of the bifilar magnetometer with its corresponding mean temperature. The serics extends over five years and me month. To cbtain a better riew of the series, the correction of -900 divisions for the first twelve months has been applied; it gives a negative value to the June mean of 1840 .

Table I.
Recapitulation of montlly mean readings of the lifilar magnetometer, corrected so as to present a continuous scries.


Under the supposition of a uniform progression in the change of the mean monthly readings (due to change in the horizontal force and loss of magnetism of the bar) the bifilar readings for a given period may be represented by the form-

$$
B=B_{m}+\Delta e x+\Delta t y
$$

where $B_{m}$ a mean bifilar reading for the period.
$x$ the change during a period.
$y$ the change in the reading due to a change of $1 \circ$ Fahr.
$\Delta e=$ difference between any single period and the mean epoch.
$\Delta t=$ " " any temperature and the mean temperature.
The formula was first applied to the monthly means resulting from five jears of observation; it gave $y=+1.0$ scale division; but the remaining differences showed that the irregular changes between June and

[^1]July, and Decomber and January, of the years 1840-'41, had an undue effect on the result. The first year's observations were, therffore, omitted, and the process repeated for the remaining four years. The twelve conditional equations gave the normal equations-

$$
\begin{aligned}
& +2143.15=+143 x-200.4 y \\
& -2549.73=-200.4 x+711.1 y
\end{aligned}
$$

whence $x=$ monthly effect of the progression $=+16.5$ scale divisions.
$y=$ temperature correction for 10 Faln. $=+1.8$ " $\quad$ "
An examination of the observed and computed values showed that the introduction of a term $\Delta e^{2} \approx$ would improve the agreement. Solving the ihree normal equations we found-

$$
\begin{aligned}
& x=+17.6 \\
& y=+1.62 \\
& z=-0.31
\end{aligned}
$$

The following table shows the comparison of the observed and computed monthly mean readings of the bifilar:

| 1841-1845. | Mean temperature. | Henu observed bifilur reading. | Mean compued. | Difference c. -0. | C. $-0 .+3.5$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June.............. ............... | $73^{\circ} .3$ | 72.9 | 7792 | $+7.0$ | $+10.5$ |
| July . . . . . . . . . . . . . . . . . . . . . | 7.2 | 811.8 | 806 | - 5.6 | -2. ${ }^{\text {a }}$ |
| Augus... | 76.5 | 8.36 | 824.7 | - 9.2 | - 3.7 |
| September ........................ | 71.9 | 847.1 | B37.0 | $-10.1$ | -6.6 |
| Oetober ..... ........ ............ | 61.2 | 8534 | E43.3 | $-10.1$ | $-6.6$ |
| November.. | 57.7 | 849.9 | 851.4 | $+1.5$ | $+5.0$ |
| December. .... ................... | 57.7 | 872.2 | B67.8 | $-4.4$ | $-0.9$ |
| January.......................... | 57.8 | 805.0 | 8 8.f.0 | $-9.0$ | $-5.5$ |
| Fcbruary.......................... | 55.2 | 903.8 | 897.9 | $-5.9$ | - $\mathbf{2} .4$ |
| March ........ .................. | 58.5 | 918.6 | 910.3 | $+0.7$ | $+4.2$ |
| Aprit............................. | 65.2 | 950.3 | 945.4 | $-4.9$ | -1.4 |
| May .................... ......... | 67.5 | 955.5 | 963.5 | $+8.0$ | $+11.5$ |
| Mean . .......... ............ | 65.17 | 872.0 |  |  |  |

Adding +3.5 scale division to the mean value of $B_{m}$ the abore differences will balance. According to the above results, the annual progressive change is $+17.6 \times 12=211.2$ scale divisions, and the change in magnetic moment of the bar for a change of 10 Falir. in the temperature, or $q=+1.62 \times 0.0000365=0.0000591$. This agrees with the best direct determination, being the one in which the observatory was alternately heated and cooled.

To test these resulte, a combination of the six warmest months with the six coldest months, by alternate means, furnished several values for $q$ depending merely on the assumption of a gradual regular progressive change during each year and a half, for which separate results were deduced; this series comraences with May, 1841, and ends with April, 1845, and contains, therefore, the same number of months as the first combination, excludiag at the same time the two defective portions noticed above. This combination also possesses the advantage of showing the pariations in the values of $q$.

Combination by alternate means of the uarmer months, from May to October inclusite, with the colder months, from Jocember to April inclusive.

|  | Bifilar. | Temperature. | Alternate means. |  | $\Delta d$. | $\Delta t$. | $q$ in scale divisions. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May, 1841, to Oct., 1841.. | 461.5 | 68.87 |  |  |  |  |  |
| Nov., 1841, to April, 1842.... | 559.1 | 59.05 | 582.9 | 70.25 | 23.8 | 11.20 | + $2.1{ }^{\text {\% }}$ |
| May, 1842, to Oct., 1842... | 704.3 | 71.92 | 683.0 | 58.38 | 21.3 | 13. 54 | $+1.6$ |
| Nov, 1842, to April, 1843. | 806.8 | 57.72 | 833. 1 | 22.35 | 16.3 | 14.65 | $+1.1$ |
| Muy, Jet*, to Oet., 1243... | 941.9 | 72. 82 | 911.4 | 5¢. 12 | 30.5 | 14.70 | +2.1 |
| Nov., 1843, to April, 1844... | 1016.0 | 58.52 | 1029.8 | 72.72 | 13.8 | 14.20 | +1.0 |
| May, 1-44, to Oet., Ie44... | $111 \% .7$ | 72.62 | 1113.6 | 58.72 | 4.1 | 13.90 | $+0.3$ |
| Nov., 1844, to April, 1845.... | 1211.3 | 58.93 |  |  |  |  |  |
| Sum |  |  |  |  | 109.8 | 82. 19 | Mean +1.3 |

The result from this combination +1.3 confirms the preceding value. The result according to weight or +1.5 scale divisions, or $q=0.0000548$ in parts of the horizontal force, has, therefore, been adopted in the reduction of the bifilar readings to a standard temperature, for which $+63^{\circ} .0$ Fahrenheit has been determined upon as the mean temperature of the magnetic bar during the five years' series of observations.

The difference in the resulting value for $q$, when obtained from deflections or vibrations, and from combinations of the bifilar readings themselves, has been remarked before, and no satisfactory explanation has as yet been given of it. Thas, for instance, at Toronto, the two respective values were 2.69 and 1.63 scale divisims, as shown in General Sabine's remarks (Vol. HI.) The existence of a similar discrepancy in the case of the Makerstown bifilar has been detected by Mr. Broun. Whatever may be the cause of the difference, there can be no hesitation in saying that the result derived from the bifilar observations themselves is the one to be preferred. At St. Helena, (Vol. II, London, 1860,) the two values were 1.45 and 0.98 . The half-yearly comparisons at this station even show a less value, viz., 0.88 scale divisions; 0.98 (for convenience 1.0 ) was adopted in the reduction. Dr. Lamont, in his Handbook of Terrestrial Magnetism, (p. 206, edition of 1849,) says: "It descrves to be remarked that the value obtained by comparing monthly mean readings of the bifilar at high and low temperatures is amaller than that obtained by direct observation."

In the present discussion the value $\frac{q}{\ell}=\frac{0.0000548}{0.0000365}=1.5$ has been adopted. At Toronto this value was $\frac{q}{k}=\frac{0.000142}{0.000087}=1.63$, and at St. Helena $\frac{q}{k}=\frac{0.00019}{0.00019}=1.0$.

It will be seen from these values that the Philadelphia bifilar magnetometer was very sensitive; its scale value in parts of the horizontal force is bat four-tenths of the Toronto value, and only two-tenths of that of the St. Helena instrument.

In the computations which follow the tenths of scale readings have been omitted, (keeping only the nearest unit,) as contributing nothing to the accuracy of the results, and merely increasing the labor of reduction. The uncertainty in the readings arising from the uncertainty in the value of $q$ probably affects the units, and the same may be said of the declination changes, so that in extreme (individual) cases the next higher figure may be affected.

The next step of the reduction consisted in transcribing the whole body of the observations after conrecting them individually for differences of temperature; the adopted standard temperature being $63^{\circ}$ Fahrenheit.

The following table contains the monthly means of the bifilar readings reduced to the standard temperature; the series has been made continuous by the application of certain corrections explained before.

The readings are in scale divisions of 0.0000365 parts of horizontal force; increasing numbers denote decrease of force. The time is Observatory mean time, counted to twenty-four hours for convenience sake.

Table II.
Monthly means of the bifitar readings, taken at interrats of two hours and reduced to the standurd tcmperature, $63^{\circ}$ Faltrcnheit.

| philadelftia time, (a. m.) |  |  |  |  |  |  | philadelpima time, (p, m.) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0h. 22 m . | 24.22m. | 4h. 222 n . | 6h. 22 m . | 8h. 22 mm . | 10h. 22 m | 12h. $22 . n$. | 144.22m. | 16h. 21 m . | 18h. 222 m | 204.92m. | 22h. 2 mm . |
| 1840. | Divs. | Divs. | Divs. | Diss. | Divs. | Divs. | Dirs. | Divs. | Divs. | Divs. | Divs. | Divs. |
| Јиле. | -96 | -98 | -101 | $-113$ | -102 | - 79 | -94 | -115 | -16 | -96 | -88 | -20 |
| July ........ | + 74 | $+67$ | + 63 | +60 | $+86$ | +100 | +81 | + 58 | $+41$ | +74 | +i9 | $+79$ |
| August...... | 129 | 117 | 117 | 11:3 | 146 | 157 | 1.37 | 113 | 110 | 129 | 126 | 113 |
| September.... | 158 | 147 | 143 | 138 | 169 | 201 | 143 | 157 | 152 | 153 | 157 | 153 |
| Oetuber.. | 155 | 149 | 137 | 140 | 153 | 179 | 177 | 161 | 15.3 | $15 \%$ | $1: 8$ | 13 S |
| Novetuter | 160 | 35\% | 149 | 141 | 153 | 171 | 179 | 165 | 16. | 159 | 160 | 161 |
| December. | 203 | 192 | 185 | 178 | 184 | 210 | 218 | 206 | 142 | 196 | 202 | 20.2 |
| 1841. | 04. 2 ztm . | 2h. 212 m. | 4. 22 an. | 6h. 22 m . | 8 h .22 m | 10h. 22 m | 12h. $22 m$. | 144. 22 m | 16h. 22 m . | 183. 22 m n. | 204.22 m | 22h. 22 m . |
| January ... | 296 | 287 | $2 \vdash 6$ | 276 | 272 | 294 | 322 | 366 | 289 | 298 | 294 | 298 |
| February.... | 279 | 270 | 265 | 256 | 261 | 285 | 303 | 945 | 276 | 283 | 283 | 2.5 |
| March. | 276 | 253 | 267 | 280 | 272 | 298 | 299 | 272 | 2\%9 | 281 | 288 | 280 |
| April....... | 285 | $2: 8$ | 268 | 265 | 287 | 312 | 314 | 2 ez | 273 | 280 | 2 E, | 286 |
| May.... | 311 | 312 | 311 | 303 | 318 | 335 | 333 | 30.1 | 298 | 307 | 312 | 315 |
| June...... | 420 | 417 | 414 | 405 | 418 | 427 | 406 | 462 | 408 | 416 | 426 | $4: 7$ |
| July .. | 444 | 440 | 435 | 435 | 447 | 457 | 449 | 499 | 430 | 442 | 453 | 448 |
| August | 490 | 490 | 485 | 481 | 499 | 515 | 500 | $4: 9$ | 481 | 496 | 501 | 497 |
| September. | 517 | 520 | 517 | 514 | 534 | 561 | 538 | 522 | 5:2 | 598 | 523 | 584 |
| October. | 528 | 520 | 517 | 518 | 539 | 540 | 545 | 535 | 529 | 530 | 531 | 530 |
| November | 523 | 589 | 522 | 515 | $52 \overline{3}$ | $5: 35$ | 539 | 593 | 523 | 523 | 528 | 529 |
| December. | 545 | 541 | 537 | 534 | 539 | 551 | 582 | 550 | 347 | 553 | 553 | 551 |
| 1842. | 0h. $21 \frac{1}{2} n$ | 2h. 212 m . | 4h. $21 \frac{1}{2} \mathrm{~m}$ m. | 6h. 215 m . | 8h. $21 \frac{1}{x} \mathrm{~m}$. | 105. 213 m . | 12h 212 m , | 14h. $21 \frac{1}{4} \mathrm{~m}$ m. | 16h. $21 \frac{1}{1} \mathrm{~mm}$ | 18h. $21 \frac{12}{8} \mathrm{~m}$. | 20h. 214 m | 22h. $21 \frac{1}{8} \mathrm{~m}$. |
| Jamary ... | f60 | 558 | $55 \%$ | 554 | 553 | 575 | $5: 9$ | 564 | 559 | 568 | 565 | โ65 |
| Felinuary .. | 532 | 576 | 574 | 568 | 570 | 580 | 593 | 582 | 5:8 | 583 | 589 | 56. |
| March. | 573 | 564 | 561 | 561 | 567 | 589 | 573 | 567 | 563 | 574 | $5: 6$ | $5: 7$ |
| April..... | 605 | 599 | 598 | 593 | 601 | 618 | 612 | 596 | 592 | 605 | 607 | 6 t ? |
| мay... | 618 | 614 | 609 | 609 | 634 | $6 \times 1$ | 622 | 607 | 609 | 618 | 620 | 6:2 |
| June | 652 | 655 | 619 | 641 | 65.2 | 664 | 654 | 642 | 6xy | 652 | 655 | 6.5 |
| July.... | 684 | 689 | $6 \times 2$ | 683 | 695 | 710 | 698 | 681 | 674 | 687 | 693 | 697 |
| Augist.. | 702 | c95 | 695 | 693 | 212 | 220 | 203 | 689 | 690 | 200 | 204 | 763 |
| September | 721 | 723 | 719 | 712 | 732 | 240 | 734 | 202 | 718 | 729 | 730 | 327 |
| Octoter | 757 | 250 | 747 | 747 | 255 | 74 | 378 | 72 | 766 | 704 | 76 \% | 76 |
| Norenber | 780 | 774 | 772 | 269 | 78 | 791 | 786 | $7 \times 2$ | 778 | 778 | 781 | 745 |
| December | 783 | 780 | 778 | 776 | 779 | 793 | 800 | 791 | 760 | 781 | 7e4 | 76.5 |
| 1843. |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2. 23.2 | 2h. $21 . \mathrm{mm}$. | 4h. 21 \%m. | 6h. 210 ma . | $8 \mathrm{c} .21 \mathrm{~m}_{4} \mathrm{~m}$. | 10h. 215 | 12n.21m. | 4h. $21 \frac{1}{8} \mathrm{~m}$. | 16 A .218 m | 184.21/ ${ }^{\text {m }}$ m | 20.248 | , $2 \lambda .21{ }^{2} \mathrm{~m}$ |
| January ... | ..... | ........ |  |  |  | .... |  | 813 |  |  |  | . |
| February.. | ... | .... |  |  |  |  |  | 819 | ... |  |  |  |
| March |  |  |  |  |  |  |  | 835 |  |  |  |  |
| April | 860 | 850 | 853 | 853 | 867 | 880 | 875 | 860 | 859 | 863 | 866 | 859 |
| May.. | 868 | 864 | 862 | 830 | 875 | 877 | 862 | 855 | 856 | 863 | 873 | 870 |
| June. | 884 | 883 | 879 | 876 | 886 | 895 | 887 | 873 | 873 | 884 | 887 | ER8 |
| July... | 924 | 921 | 921 | 920 | 933 | 940 | 932 | 920 | 916 | 99 | 931 | 929 |
| August | 938 | 931 | 931 | 928 | 950 | 957 | 944 | 924 | 925 | 930 | 936 | 935 |
| Beptember. | 968 | 967 | 962 | 957 | 977 | 990 | 981 | 966 | 968 | 970 | 970 | 966 |

HOURLY SERIES.

|  | 0h. $21 \frac{1}{2} \mathrm{~m}$ | 1h. $21 \frac{1}{2} \mathrm{~m}$. | 2h. $21 \frac{1}{2} \mathrm{~m}$. | 3h. $21 \frac{1}{4} \mathrm{~m}$. | 4h 213m | 5h. $21 \frac{1}{1} 2 m$. | 6h. $21 \frac{1}{2} m$. | Th $21 \frac{1}{2} \mathrm{~m}$. | 8h. $21 \frac{1}{8} \mathrm{~m}$. | 9h. $21 \frac{1}{2} \mathrm{~m}$. |  | 11th $21 \frac{1}{2} \mathrm{~m}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1813. | Dives. | Divs. |
| Oezober. | 983 | 978 | 980 | 978 | 976 | 978 | 977 | 980 | 984 | 987 | 991 | 992 |
| Noventer. | 988 | 987 | 986 | 981 | 983 | 981 | 981 | 984 | 988 | 992 | 994 | 994 |
| Decender | ¢96; | 994 | 993 | 992 | 990 | 988 | 988 | 988 | 992 | 992 | 993 | 998 |
|  |  | 13h. $21.12 m$. | 14h. $21 \frac{1}{2} \mathrm{~m}$. | 15h. $21 \frac{1}{1} m$. | 16h. $21 \frac{1}{1} \mathrm{~m}$. | 1\%h. 212 m . | $18 \mathrm{~h} .21 \frac{1}{4} \mathrm{mt}$. | $10 \mathrm{~L} 21 \frac{1}{2} \mathrm{~m}$. | 20h. $21 \frac{1}{6} \mathrm{~m}$ | 21h. $21 \frac{1}{12} \mathrm{~m}$. | $202.21 \frac{2}{2}$ | 13h. $21 \frac{1}{4}+$ n. |
| October.. | 991 | $9 \times 9$ | 085 | 983 | 983 | 983 | 985 | 985 | 985 | 984 | ¢83 | 934 |
| Novendier. | 992 | 990 | ges | 987 | 985 | 985 | 987 | 987 | 988 | 988 | 989 | 989 |
| Decenater | 1000 | 999 | 997 | 994 | 992 | 991 | 993 | 996 | 996 | 996 | 998 | 999 |
| 1844. | Oh 211 2 m. | 1h. $\mathrm{Ql}_{1}^{1} \frac{1}{6}$ | 2h. 21 y m. | 3h. 211 ${ }^{1} 2$ | 4h $21 . m$ | 5h. 21\%m. | 6h. $21 \frac{1}{2} m$ | 7h. ${ }^{\text {! }}$ ! m. | 8h, 213 $m$. | 0h. $21 \frac{1}{2}$ m. | 10 L 21] m . | 11h. $21 \frac{1}{2} \mathrm{~m}$. |
| January ............ | 1019 | 1097 | 1006 | 1004 | 1092 | 1002 | 1001 | 1001 | 1004 | 1007 | 1010 | 1013 |
| February ........... | 1031 | 1031 | 1131 | 1029 | 1026 | 1026 | 1025 | 1028 | 1629 | 1030 | 1034 | 1136 |
| Marel. | 1650 | 1048 | 1947 | 1016 | 1045 | 1044 | 1045 | 1046 | 1051 | 1058 | 1060 | 1062 |
| Apil............... | 1067 | 1066 | 1065 | 1092 | 1059 | 1059 | 1062 | 1062 | 1067 | 1075 | 1079 | 1079 |
| May. | J066 | 1066 | 1064 | 1063 | 1063 | 1092 | 1062 | 1065 | 1069 | 1075 | 1076 | 1071 |
| June | $10 \times 0$ | 1079 | 1078 | 1079 | $10 ; 9$ | 1177 | 1075 | 1079 | 1082 | 1084 | 1086 | 1083 |
| July... | 1103 | 1104 | 1106 | 1107 | 1107 | 1106 | 1105 | 1105 | 1110 | 1117 | 1119 | 1115 |
| Aurust............ | 1129 | 1130 | 1130 | 1130 | 1129 | 1127 | 1126 | 1131 | 1139 | 1148 | 1149 | 1143 |
| Seprember......... | 1108 | 1108 | 1108 | 1109 | 1105 | 1107 | 1106 | 1113 | 1123 | 1199 | 1133 | 1129 |
| Octaher | 1132 | 1128 | 1t2\% | 112: | 1122 | 1124 | 1125 | 1130 | 1137 | 1143 | 1146 | 1141 |
| Novcmber | 1126 | 1135 | 1133 | 1132 | 1131 | 1127 | 1128 | 1129 | 1134 | 1141 | 1147 | 1149 |
| December | 1903 | 120 L | 1198 | 1196 | 1191 | 1192 | 1138 | 1191 | 1192 | 1196 | 1207 | 1215 |
|  | 12h, $21 \frac{1}{13} \mathrm{~m}$. | 134. $21 \frac{1}{4} \mathrm{~m}$. 1 | 14h. $21 \frac{1}{\text { \% }} \mathrm{m}$. 1 | h. $21 \frac{1}{2} m$. |  | 17h. $21 \frac{1}{4} m$. | ith 213m. | 194. $21 \frac{1}{1} \mathrm{~m}$. | 20h. $21 \frac{1}{4} \mathrm{~m}$ | 21h. $21 \frac{1}{2} \mathrm{~m}$ | $22 h 21 \frac{1}{2} m$. | 23h. $21 \frac{1}{1} \mathrm{~m}$, |
| January ............. | 1011 | 1008 | 1003 | 1001 | 1000 | 1002 | 1004 | 1005 | 1005 | 1006 | 1067 | 1009 |
| Fthruary . . . . . . . . | 1035 | 1032 | 1028 | 1028 | 1032 | 1031 | 1032 | 1033 | 1034 | 1033 | 1034 | 1033 |
| Mtreh..... ......... | 1067 | 1063 | 1050 | 1049 | 1052 | 1054 | 1054 | 1053 | 1051 | $10: 2$ | 1052 | 1051 |
| April . ......... | 1074 | 1059 | 1663 | 1059 | 1051 | 1059 | 1065 | 1067 | 1068 | 1069 | 1066 | 1369 |
| May. | $1 \mathrm{c6a}$ | 11558 | 10.54 | 1054 | 1052 | 1055 | 1060 | 1064 | 1065 | 1065 | 1064 | 1054 |
| June | 1079 | 1074 | 1069 | 1067 | 1067 | 1069 | 1073 | 1075 | 10.7 | 1079 | 1079 | 1080 |
| Juy. | 1107 | 1101 | 1097 | 1094 | 1693 | 1094 | 1097 | 1100 | 1102 | 1103 | 1104 | 1105 |
| August | 11.34 | 1125 | 1117 | 1115 | 1117 | 1193 | 1130 | 1131 | 1132 | 1131 | 1132 | 1131 |
| Septrmber.. | 1119 | 1108 | 1102 | 1100 | 1101 | 110.5 | 1108 | 1110 | 1111 | 1111 | 1112 | 116 |
| Oetoher | 1139 | 1134 | 1128 | 1129 | 1128 | 1132 | 1133 | 1133 | 1135 | 1132 | 1183 | 1130 |
| November . | 1446 | 1145 | 1139 | 1187 | 1138 | 1138 | 1139 | 11.43 | 1141 | 1138 | 1135 | 1139 |
| December. | 1215 | 1210 | 1205 | 1200 | 1195 | 1196 | 1197 | 1197 | 1197 | 1201 | 1201 | 1201 |
| 1815. | Oh. 214m. ${ }^{\text {a }}$ | 14. $21 \frac{1}{2} \mathrm{~m}$. | 2h. $217 \frac{7}{\text { m }}$ | 3h. $21 \frac{1}{6} \mathrm{~mm}$. | 4h. $21 \frac{1}{6} \pi n$ | 5h. $21 \frac{1}{1} \mathrm{~m}$ | 6h. $21 \frac{1}{4} \pi n$ | 7h $21 \frac{1}{6} \mathrm{~m}$. | 8h. $21 \frac{1}{5} \mathrm{~m}$. | 9h. $21 \frac{1}{6} \mathrm{~m}$. | 10h. 21\% ${ }^{\text {m }}$ m. | 11h. $21 \frac{1}{8} \mathrm{~mm}$. |
| Jinuary ............ | 1233 | 1230 | 1231 | 1229 | 1227 | 1235 | 1224 | 1226 | 1230 | 1238 | 1244 | 1248 |
| February ............ | 1232 | 1234 | 1232 | 123) | 1230 | 1227 | 1224 | 1228 | 1234 | 1238 | 1246 | 1249 |
| March.............. | 1237 | $12: 5$ | 1235 | 1236 | 1235 | 1235 | 1231 | 1231 | 1242 | 1250 | 1256 | 1262 |
| April ............... | 1253 | 12.0 | 1249 | 1247 | 1245 | 1243 | 1241 | 1247 | 12.5 | 1270 | 1280 | 1279 |
| May ............... | 1249 | 1248 | 1246 | 1245 | 1241 | 1238 | 1235 | 1242 | 1274 | 1264 | 1265 | 1263 |
| June ................ | 1274 | 12.4 | 1274 | 1273 | 1268 | 1267 | 1252 | 1265 | 1273 | 1284 | 1240 | 1289 |
|  | 12h. $21 \frac{1}{2} \mathrm{~m}$, | 13h. 2 ! 1 m | 14h. 21112 | 15h. $21 \frac{1}{1} \mathrm{~m}$ m. | 16h. $21 \frac{1}{4} \mathrm{~m}$. | 17h. $21 \frac{1}{4} \mathrm{~m}$. | 18h. $21 \frac{1}{19} \mathrm{~m}$ | 19h. 21 l m. | 201h. 2113 | 21\% 21130 | 22h 213m. | 33h. 212 m . |
| January ............ | 1245 | 1241 | 1238 | 1235 | 1233 | 1236 | 1237 | 1233 | 1232 | 1231 | 1231 | 1224 |
| February ...... .... | 1251 | 1247 | 1240 | 1286 | 1235 | 1233 | 1234 | 1236 | 1236 | 1232 | 1232 | 1233 |
| Mareh. | 1261 | 1294 | 1246 | 1240 | 1241 | 1943 | 1245 | 1242 | 1241 | 1238 | 1241 | 1240 |
| April ............... | 1271 | 1267 | 1255 | 1253 | 1249 | 1251 | 1254 | 1237 | 1257 | 1254 | 1251 | 1252 |
| May............ .... | 1256 | 1248 | 1242 | 1242 | 1248 | 1246 | 1251 | 1251 | 1251 | 1253 | 1251 | 1245 |
| June ................ | 1882 | 1278 | 1269 | 1267 | 1266 | 1269 | 1274 | 1278 | 1277 | 1276 | 1275 | 1275 |

The monthly means are containcd in the following table:
Table III.
Monthly means of the preceding bifilar readings reduced to the standard temperature 63 Fatrenkeit.

|  | 1840-'41. | 1841-42. | 1842-43 | 1843-44. | 1844-45. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dirs. | Dirs. | Divs. | Dirs. | Tims. |
| June | $-39$ |  |  |  |  |
| July. | + 71 | 443 | $6-9$ | 926 | 1104 |
| Aligiast | 127 | 493 | 701 | 935 | 1130 |
| September. | 159 | 527 | 720 | 971 | 1112 |
| Octoher. | 150 | 530 | 761 | $5 \times 1$ | 1132 |
| November. | 160 | 527 | 780 | $9 \%$ | 1138 |
| Decemiber. | 197 | $54 \%$ | T84 | 994 | 1199 |
| January | $\cdots 874$ | 563 | ters | 1005 | 1233 |
| February. | 278 | $58 \%$ | $\ddagger 814$ | 10 sl | 1235 |
| March | 25. | 570 | $\ddagger 88$ | 1052 | 1243 |
| April. | 225 | 603 |  | 1066 | 125 |
| May | 312 | 617 | 86 | 1064 | 1949 |
| June - | +415 | 651 | 883 | 107 | 124 |

Correction for progressive change in the readings.-The observations having been referred to a uniform temperature, still require a correction for the effect of the progressive change during each month before Peirec's criteriou can be applied for the purpose of equating the disturbances. We have seen that the mean monthly value of this change due to loss of magnetism of the bar and to change in the horizontal force itself was $17 . \mathrm{G}$ scale divisions; on the average, therefore, a correction must be applied to the observations on the first and last day of each month of +8.8 and -8.8 scale divisjons, and in proportion for the intermediate days. At Toronto, also, the progressive change in some months was so great as to present a practical difficulty by its interference with the proper comparability of the observations, and in these cases new means at shorter intervals than a month were taken. At Philadelphia the progressive change is so large as to require a systematic correction throughout the series. In the manuscript tahles used for the prepration of the monthly nomals and containing the observations reduced to $63^{\circ}$ Fahrenheit, the readings corrected for progresive change were written in blue ink undemeath exch ohservation. If the monthly differences are taken from Table No. III, it is apparent that the change is irregular, and in three cases at least it is certain that other causes were in operation, which produced larger monthly differences than could be attributed to the gradual loss of magnetism. These cases are the following (already noticed in the preceding temperature discussion:) between June and July, 1840, a difference of 170 divisions; between December and January, 1840-'41, a difference

[^2]22 cs
of 77 ; and between May and June, 1841, a difference of 103 divisions. They require separate treatment, as will be presently explained. For the correction of the progressive changes the mean reading from one month's series was made out for the first, middle, and last of each month. By this process of taking the mean from 14 days preceding and 14 days following cach of the epochs the lunar effect on the solar variation is practically eliminated from the resulting mean value.* These means corresponding in time to the begiming, the middle, and the end of each month, furnish the rate of change for the first and second half of the month, and by simple interpolation give the correction for progressive change for each day. If the rates for the first and second half of the month are different, the monthly means of each hour (from the bluc figures) will differ by a small but consiant quantity from the former monthly means. Thas, for instance, for the month of June, 1842, the monthly mean is 651 divisions, corresponding in time to the middle of the month; the mean of the readings (at $63^{\circ}$ ) for the second half of May and the first half of June is 641 , corresponding in time to the first of Junc; and the mean of the readings (at $63^{\circ}$ ) of the second half of June and the first half' of July is 673 , corresponding in time to the last of June; the correction applied to the bi-hourly readings (at $63^{\circ}$ ) on June 1 was +10 , and to the readings on June 30 was -22 divisions. At the middle of the month the correction is zero, and for the intermediate days it is in proportion to their respective distances from the midale. The algebraic sum of the daily corrections divided by the number of days of observation is -3 , which gives the new monthly mean 648, as corrected for irregularity in the progressive change. In the exceptional case of a break, or heginning and termination, the required rate of change for half the month was found by a similar process, using half-monthly and quarterly means.

The following table, No. IV, contains the monthly means of the bi-hourly and hourly readings of the bifilar magnetometer referred to a uniform temperature ( $63^{\circ}$ Fahrenkeit,) and corrected for irregularity in the progressive change. It is here inserted for the purpose of comparing it with the monthly normals, showing the change produced by the exclusion of the disturbances. The means in the month of June, 1840, are suppressed, and the readings between June 1 and June 5, 1841, were not used.

* In connexion with this subject, the first part of an interesting paper by Mr. Broun may be consulted, viz: "On the lunar diurnal variation of the magnetic declination at the magnetic equator."-Proceedings Rogal Socity, Vol. $X$, No. $39,1860$.

Table IV.
Monthly means of the hi-hourly and hourly realings of the biflar mngnetometer, reduced to a uniform temperature and corrected for irrcguiarity in the progressive change.


- *The mean of 17 days is given; to refer it to a complete month subtract 19 divisions.
- The mean of 19 days is given; to refer it to a complete month add 8 divisions.

Table IY-Continued.
hourly series.


Table V.
Monthly means of the preceding bifilar readings referred to a uniform temperature and corrected for irregularity in the progressive change.

The column 1840-41 contans a donble set of figures: the first are the monthy monas directly obtained from table IV; the second contains the means when the series is made conthuous for the two braks already noticed. Jhe mean diftrence between May and June (from four vears) is twentr-five scale divisions, and between December and Janury if is twenty two scale divisions; these corrections were applied in the second set of figures.

|  | 1840-41. |  | 1841-42. | 1242-43 | 184:-44. | 1-44-45. | Monthy: means of series. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Divs. | Divs. | Divs. | Diva. | Dive. | Divs, |  |
| $J \mathrm{~J} \mathrm{l}_{\text {y }}$ | 8 | 215 | 444 | 692 | 929 | 1103 | 6.4 |
| August | 128 | 256 | 495 | 710 | 934 | 1184 | 704 |
| Srptember. | 162 | 290 | 589 | 728 | 983 | 1106 | 223 |
| October. | 154 | $2 \times 2$ | 529 | 765 | 984 | 1130 | 730 |
| November. | 155 | 223 | 524 | 779 | 926 | 11:3 | 741 |
| December | 196 | 324 | 548 | 781 | 993 | 1201 | 769 |
| January | 297-19 | 346 | 561 | 81.3 | $100 \%$ | 1934 | 791 |
| February | 278 | 346 | 5e3 | 814 | 1031 | 122.4 | 402 |
| March | 278 | 346 | 566 | 831 | 1053 | 1242 | 818 |
| April | $28 \%$ | 350 | 648 | 866 | 1069 | 125 | 830 |
| May | 308 | 376 | 614 | 864 | 1063 | 1244 | 832 |
| June | $393+$ r | 401 | 648 | 880 | 1075 | 1981 | 83 |
| Amual means |  | 318 | 554 | 793 | 1008 | 1192 | 73 |

The differences in the successive annual means indicate that the progressive change may be assumed to have been uniforn from year to year, and applying the usual method we find an annual progressive change of 220 scale divisions.

Introduction of the horizontal intensity in absolute measure and separation of the offect of the loss of magnetism of the biftlar har from the effect due to the secular change of the horizontal intensity. - Although some experiments were made to determine the gradual loss of magnetism of the bar, as, for instance, in January, 1841, when the anount was found to be 0.9601 of the force in May, 1840, and again in June, 1841, when the amount was 0.9686 of its amont in January, 1841, yet the experiments do not extend over the whole period of observation, and consequently we are obliged to deduce the effect of the secular change of the horizontal intensity from other independent means, and, after converting it into scale divisions, we can assign the proper proportion of what is due to secular change and to loss of magnetism, in the whole progressive change of 220 seale divisions in a year.

In connexion with the operations of the Lnited States Coast Suryey, Assistant Schott has investjeated* the secular change of the horizontal intensity at a number of stations on the Atlautic and Pacific coasts. At several stations the results were subsequently improved by a discussinn of my observations for intensity, made in part in connexion with a magnetic survey of Pennsylvania, and also extending into adjoining States, and, in one of the journeys, into Canada. From the complete material the values in the following table of observed horizontal and total intensities have been collected. The horizontal intensity $\mathbf{X}$ and total intensity $\varphi$ are expressed in absolute measure (grains and feet.)

[^3]| No. | Year. | Observer. | References from which the values were derived or thken. | X. | $\phi$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1835.0 | Bache and Courtenay. | Tians. Amer. Phil. Soc., vol. V, 1857........-.-.- | 4. 195 | 13.58 |
| 2 | 1836.7 | Bache. |  | 4. 159 | 13.46 |
| 3 | 1839.5 | Loomis. | Trans. Amer. Hhil. Soc., vol VIIL | 4. 149 | 13.41 |
| 4 | 1840.9 | Bache |  |  | 13.41 |
| 5 | 1841.5 | Locke. | Phil. Trans. Roy. Soc., 18-1 | 4. 172 | 13.51 |
| 6 | 1841.8 | Bache |  |  | 13.46 |
| 7 | 1842.5 | Locke. | Phil. Trans. Toy. Soc., 1846 | 4. 174 | 13.52 |
| 8 | 1342.8 | Lefroy | Phil Trans. Roy. Soc., 1846 | 4. 176 | 13.50 |
| 9 | 1813.0 | Bache |  | 4.172 | 13.46 |
| 10 | 1844.5 | Locke | Phil. Trans. Roy Soc, 1-46 | 4. 162 | 13.47 |
| 11 | 1846.4 | Locke | U. S. Coast Survey records. | 4. 143 | 13. 42 |
| 12 | 1855.7 | Schott |  | 4. 226 | 13.89 |
| * 18 | 1802.6 | schott |  | 4. 088 | 13. 30 |

* Added while this paper is passing through the press.

The first three observations were not made at the Girard College grounds; and it appears from Professor Loomis's observation, when compared with Dr. Locke's, that a correction of 0.023 in the value of X should be added to these. To the twelfth observation I have assigned only half weight. It was, probably, made during a disturbance. From the general discussion an annual diminution in the horizontal force of 0.0011 parts was deduced for a number of stations on the Atlantic coast. At Toronto (vol. III of Gencral Sabine's Discussion) the amual decrease was fomd 0.0010 in parts of the homzontal force. Being somewhat guided by these results, after scyeral trials, the following combination of the results in the table has been adopted, as perhaps best representing the values for the time during which the Girard College observations were made, these latter being merely of a differential character:

| Combination. | Mean epoch. | Mean horz'l int. X. |
| :--- | :---: | :---: |
| $1,2,3$ | 1837.1 | 4.191 |
| $5,7,8,9$ | 1842.6 | 4.174 |
| $10,11,12,13$ | 1852.3 | 4.145 |

The annual diminution of X is 0.0030 , or, when expressed in parts of the horizontal force, $=0.0007$; its equivalent in scale divisions is 19.2. The total annual change was found to be 220 scale divisions; hence, 200.5 scale divisions of annual change is due to loss of magnetism of the bar.

The mean epoch is 1844.0 , and the corresponding mean $X=4.170$; the mean epoch of the observation tuken at the Girard College is January, 1843, for which, therefore, the mean value of $X=4.173$. This value has been adopted whenever it was desirable to introduce the horizontal force in absolute measure.

Separation of the larger disturbances.-The observations having been referred to a uniform temperature, and corrected for progressive change, Peirce's critcrion was applied separately to each month. For this purpose, a systematic application was made extending over the whole series of observations, commencing with the hour 0 and the month of July, next with the hour 2 and August, followed by hour 4 and Sepiember, and so on in regular progression. This process eliminates from the result the diurnal variation and the annual variation of the disturbances themselves. The value for $0^{h}$ in July, 1840 , was omitted as affected by two very large disturbances. The following table shows the limiting value of difference from the mean (the monthly mean for the respective hour,) also the number of observations in each year subjected to the process:

| Limits of rejection by Peirce's Criterion. |  |  |  |
| :---: | :---: | :---: | :---: |
| $1840-41$ ex | $=$ | 53 | $n=241$ |
| $1811-42$ | $"$ | 44 | 312 |
| $1842-43$ | $"$ | 37 | 309 |
| $1843-44$ | $"$ | 28 | 313 |
| $1844-45$ | $"$ | 33 | 313 |
| Mean valuc, | $\overline{39}$ | Sum, | $\overline{1488}$ |

The limiting value derived from nearly 1,500 observations is 39 seale divisions, and the separate annual values show plainly the effect of the eleven (ten?) year period, the year 1843-4 being a minimum year. Certain limits in the adoption of a separating value are allowable, and upon trial as to the actual number of disturbances separated, the value 33 scale divisions was finally adopted. Any observation differing 33 divisions or more from its respective montlly mean was, therefore, marked and excluded from the mean. 33 divisions equal 0.0012 parts of the horizontal force, and in the value of the absolute scale it amounts to 0.005 . At Toronto the limiting value was 14 divisions, $=0.0012$ parts of the horizontal force, equal to 0.004 in the absolute scale.-(Vol. III of the Toronto Olservations.)

Table VI
Shows the number of observations and the number of the larger disturbances separated by the ratue 33 , as the limit, for each month, year, and the whole period.


Total number of observations . . . . . . . . . . . . . . . . . . . . . . . . 24,231
Total number of disturbances .
The limiting value separatcd, therefore, one in every 14.3 observations. At Toronto one in every 12.5 was marked as a disturbance.

The larger disturbances having been excluded, new monthly means were taken, and the process was repeated several times, when required, until all readings differing 33 scale divisions or more had been exeluded; the final means constitute the normals as given in the following table:

Table VII．
Monthly normal of the bi－lourly and hourly readings of the bjflar magnetometcr，reduced to a mormal temperature and corrected for irregularity in the progressive change．

| pililadelimita time（a，m．） |  |  |  |  |  |  | Phihabeifhia time（f．m） |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year． | 0h． 23 m. | 2h． 22 m. | 4h． 22 m ． | 6h． 227 m | 8h． 22 m ． | 10h． 22 m ． | 12h． 22 mm ． | 14h． 22 mm | 164．92m． | 15h． 22 m. | 20h． 22 m ． | 22R． 23 m. |
| 1840. | Divs． | Divs． | Divs． | Divs． | Dive． | Dits． | Divs． | Divs． | Divs． | Divs． | Divs． | Dives． |
| July．．．．．．．．．．．．．．．． | 113 | 97 | 89 | 50 | 112 | 116 | 961 | 59 | 52 | 92 | 93 | 108 |
| August．．．．．．．．．．．． | 108 | 112 | 117 | 106 | 138 | 153 | 134 | 103 | 111 | 114 | 121 | 120 |
| \＄feptember ．．．．．．．． | 155 | 147 | 130 | 141 | 18.1 | 202 | 177 | 155 | 35.3 | 158 | 157 | 150 |
| Octaber．．．．．．．．．．．． | 142 | 137 | 122 | 128 | 153 | 166 | 159 | $1: 8$ | 148 | 146 | 148 | 151 |
| Nuvember．．．．．．．．．． | 155 | 150 | 144 | 133 | 144 | 154 | 175 | 157 | 151 | 148 | 144 | 160 |
| Decenter | 196 | 188 | 176 | 166 | 178 | 208 | 917 | 193 | 183 | 185 | 200 | 194 |
| 1841. | 0h．22ma． | 2h． $22 \ldots$ ． | 4 h .22 m. | 6h． 21 m ． | 84． 22 m ． | 10h．2\％n． | 1\％h． $22 n$ | 142． 22 m ． | 16h． 22 m ． | 18h． 22 m ． | 20h． 22 m ． | 22h． 22 mm |
| Jintary＊ | 993 | 200 | 294 | 294 | 281 | 302 | 326 | 311 | 289 | 296 | 301 | 302 |
| February．．．．．．．．．．． | 269 | 261 | 204 | 237 | 265 | 288 | 297 | 289 | $2: 5$ | 274 | 275 | 272 |
| March．．．．．．．．．．．．．． | 268 | 972 | 967 | $25 \%$ | 971 | 20.4 | 286 | 267 | 266 | 238 | 264 | 272 |
| April．．．．．．．．．．．．．．． | 273 | 271 | 262 | 262 | 22：3 | 317 | 315 | 279 | 268 | 271 | 283 | 280 |
| Nay ．．．．．．．．．．．．．．． | 311 | 305 | 306 | 907 | 306 | 323 | 313 | 301 | 204 | 306 | 309 | 313 |
| June＋．．．．．．．．．．．．．．． | 393 | 340 | 392 | 386 | 400 | 401 | 395 | 382 | 38.2 | 392 | 402 | 392 |
| July ．．．．．．．．．．．．．．． | 442 | 442 | 435 | 455 | 447 | 458 | 419 | 438 | 430 | 444 | 448 | 439 |
| Aughst ．．．．．．．．．． | 490 | 494 | 487 | 48. | 501 | 518 | 502 | 483 | 483 | 497 | 500 | 495 |
| Septomber ．．．．．．．．． | 510 | 514 | 515 | 508 | 531 | 542 | 532 | 516 | 519 | 520 | 515 | 515 |
| Oetober ．．．．．．．．．．．．． | 521 | 517 | 518 | 514 | 520 | 537 | 547 | 530 | 52\％ | 527 | 529 | 528 |
| November．．．．．．．．． | 519 | 517 | 515 |  | 518 | 529 | 531 | 514 | 518 | 513 | 516 | 518 |
| Deemmber． | 546 | 541 | 533 | 535 | 537 | 348 | 552 | 549 | 545 | 547 | 550 | 552 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1812. | Oh． $21 \frac{1}{2} \mathrm{~m}$ ． | 2h． 221 m ． | 4h．21年m． | 6h． 213 zm ． | 8h． $21 \frac{1}{2} \mathrm{~m}$ ． | 10h． $21 \frac{1}{2} m$ ． | 12h． $21 \frac{1}{2} m$ ． | 14h．21者m． | 105．217m． | 18h． $21 \frac{1}{4} \mathrm{~m}$ ． | 20A．214m | 22h．21年m |
| January ．．．．．．．．．．． | 561 | 556 | 535 | 558 | 853 | 573 | 577 | 559 | 554 | 564 | 563 | 504 |
| February．．．．．．．． | 580 | 5.3 | 572 | 567 | 568 | 569 | 569 | 578 | 578 | 580 | 590 | 578 |
| March ．．．．．．．． | 565 | 559 | 557 | 551 | 563 | 574 | 575 | 551 | 565 | 571 | 567 | 566 |
| April．．．．．．．．．．．．．． | 595 | 598 | 597 | 594 | 604 | 6：20 | 618 | 603 | 598 | 607 | 608 | 611 |
| May．．．．．．．．．．．．．．．． | 61.4 | 610 | 611 | 605 | 621 | 630 | 622 | 606 | 607 | 615 | 618 | 619 |
| June．．．．．．．．．．．．．． | 619 | 652 | 645 | 638 | 640 | 659 | 650 | 639 | 638 | 649 | 648 | 650 |
| Juty．．．．．．．．．．．．．．．．． | 692 | 686 | 682 | 678 | 695 | 708 | 700 | 680 | 677 | 690 | 694 | 700 |
| August，．．．．．．．．．．．． | 659 | 694 | 695 | 692 | 711 | 721 | 700 | 688 | 689 | 701 | 703 | 702 |
| September．．．．．．．．． | 726 | 733 | 722 | 717 | 739 | 750 | 737 | 730 | 727 | 777 | 757 | 734 |
| October ．．．．．．．． | 764 | 758 | 757 | 757 | 764 | 781 | 783 | 776 | 776 | 768 | 769 | 764 |
| November | 774 | 774 | 77 | 768 | 777 | 789 | 787 | 781 | 778 | 775 | 776 | 776 |
| December． | 780 | 777 | 775 | 773 | 776 | 790 | 795 | 786 | 773 | 776 | 781 | 782 |
| 1843. | 0h． 213 L m． | 2h． $21 \frac{1}{4} \mathrm{~m}$ ． | 4h． $21 \frac{1}{2}$ in． | 6h． $21 \frac{1}{2} \mathrm{~m}$ ． | 8h．21年m． | $107.21 \frac{1}{4} \mathrm{~mm}$ ． | $12 h .21 \frac{1}{8} m$ | 144．21\％${ }^{\text {a }}$ m． | 16k． $21 \frac{1}{4} m$ | 18h． $21 \frac{1}{4} \mathrm{~mm}$ ． | 20h． $21 \frac{1}{8} \mathrm{~m}$. | 22h． $21 \frac{1}{2} \mathrm{~m}$ ． |
| January．．．．．．．．．．． |  |  | ．... |  |  |  |  | 818 | ． 1.00 | ．．．．．．．．．．． | ．．．．．．．．．．． | ．．．．．．．．．． |
| February．．．．．．．．．．． | ， |  | ．．．．．＊ |  |  |  |  | 817 |  | ． |  | ＊ |
| March．．．．．．．．．．．．．． |  |  |  |  |  |  |  | 829 | ． |  |  | － |
| April．．．．．．．．．．．．．．． | 861 | 861 | 854 | 854 | 868 | 883 | 878 | 863 | 860 | 861 | 865 | 859 |
| May．．．．．．．．．．．．．．．．． | 864 | 862 | 858 | 857 | 875 | 872 | 864 | B55 | 856 | 862 | 867 | 863 |
| June．．．．．．．．．．．．．．．． | 881 | 870 | 876 | 878 | 883 | 894 | 884 | 870 | 870 | 881 | 881 | 885 |
| July ．．．．．．．．．．．．．．．． | 927 | 924 | 924 | 923 | 935 | 941 | 934 | 923 | 916 | 921 | 928 | 931 |
| August．．．．．．．．．．．．． | 9.1 | 930 | 931 | 927 | 947 | 954 | 938 | 921 | 924 | 929 | 932 | 933 |
| September．．．．．．．．．． | 974 | 967 | 965 | 960 | 980 | 992 | 985 | 972 | 972 | 975 | 974 | 973 |

＊The mean of 17 days
t The mean of 19 days．
＇Table VII－Contimued．
HOURLY SERUES．

| Year． | 0h．21wn | 1h． 211 mm ． | 2h． $212 \frac{1}{2} \mathrm{~m}$. | 3in． $21 \frac{1}{1} \frac{1}{2} n$ | 44．218m． | Fh $21 \frac{1}{1} \mathrm{~m}$ ． | chi $31 . \mathrm{m}$ ， | 7h． $21 \frac{1}{6} \mathrm{~m}$ ． | 84． 213 m ． | 9h． 21. | 10h．21\％ | 1：h．2rim． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1843. | Divs． | Divs． | Livs． | Divs． | Divs． | Dis． | Diss． | Divs． | Dive． | Dirs． | Hivs． | Divs． |
| October | 983 | 978 | 983 | 978 | 930 | $5 \%$ | 97 | $9 \times 11$ | 83 | 5 | 991 | 992 |
| November | 98 | 95 | 985 | 983 | 9en | （ev） | $9 \times 6$ | 923 | ） | \％1 | 962 | 993 |
| Lecember．．．．．．．．．． | 993 | gus | 993 | 991 | yet | 987 | 987 | 9x： | 991 | 931 | 99. | $94 \%$ |
|  | 12h． 219 | 13h． 212 m m | 14h． $21 / 1 \mathrm{~m}$ | 15t． $21 \frac{1}{2} \mathrm{~m}$ m． | 16h．21年m | 17h． $21 \frac{1}{2} \mathrm{~m}$ | \％eh． $21 \frac{1}{2} / m$ | 19h．213 ${ }^{\text {m }}$ m | $29 \mathrm{h} .21 \frac{1}{2} \mathrm{~m}$ | 24． 21 \％m |  | 23i． 812 m ． |
| October | 491 | 989 | 05.5 | 983 | 983 | 983 | 985 | 985 | 98\％ | 5 | 993 | 981 |
| November． | 991 | 69 | 967 | 929 | ge4 | 985 | $9 \% 6$ | 080 | 985 | 987 | 98. | ges |
| December | 999 | 998 | 896 | 943 | 991 | 900 | 992 | 935 | 925 | 465 | 997 | 39， |
| 1844. | （1／ 211 m ． |  |  | $3 \mathrm{~h} .21 \frac{1}{2} \mathrm{~m}$. | 4． 21.1 mm ． |  |  | Th． 21.15 | 2h． $212 m$ ． |  | $10 \mathrm{k} \mathrm{I}_{1} \mathrm{~m}$ | 114．218．m． |
| Janary | 1003 | 100ia | 1004 | 1002 | 1000 | 1000 | 989 | 009 | 1602 | 1003 | 1008 | 1011 |
| February． | 1031 | 1031 | 1031 | 10.9 | 1025 | 1426 | 14 Ca | 1028 | 1029 | 1600 | 109 | 1034 |
| March． | 1048 | 1047 | 1040 | 046 | 046 | 1143 | 1043 | 1047 | 1650 | 19.4 | （0） | 1003 |
| April． | 10：0 | 1668 | 11068 | 1065 | 1 n 63 | 1162 | 1094 | 10.5 | 1005 | 1074 | $10 \%$ | $10: 8$ |
| May． | 1965 | 1065 | 1063 | 10\％ | 1062 | 1061 | $100{ }^{\text {i }}$ | 1054 | 1068 | 10.6 | 1074 | 1109 |
| June． | 1078 | 1077 | 1076 | $10: 7$ | 10：7 | 1025 | $10 \cdot 3$ | $10: 7$ | Jeso | 100？ | 1084 | 1005 |
| July | 1102 | 1103 | 1105 | 1106 | 1106 | 1103 | 1104 | 1101 | 1109 | 1116 | 1118 | 1114 |
| August．．．．．．．．．．．． | 1133 | 1139 | 1134 | 1133 | 1133 | 1131 | 1130 | 13.3 | 1143 | 1152 | 1153 | 1145 |
| Soprember． | 1103 | 1104 | 110\％ | 1105 | 1101 | 1101 | 1100 | 1107 | 111\％ | 1125 | 1193 | 1125 |
| Oetober | 1133 | 1132 | 1131 | 112 | 1194 | 1125 | 11.9 | 1134 | 1141 | 1149 | 1150 | 1145 |
| November | 1131 | 1150 | 1：29 | 1196 | 1125 | 1123 | 1109 | 112.5 | 1130 | 113） | 1198 | 114？ |
| December．．．．．．．．．． | 1213 | 1202 | 1200 | 1193 | 1196 | 114 | 1190 | 1113 | 1194 | 1197 | 1209 | 1217 |
|  | 12 h 218 mm ． | 134．211m | 14h． $21 \frac{1}{2} m$ | 15tt． $21 \frac{1}{2} \mathrm{ma}$ | $1649_{1 \frac{1}{2} \mathrm{~mm}}$ | 12 h .21 L m | 18h $21 \frac{1}{3}$ n | 19h．931m． | 2 Oh 21 lm ． | 21h．211／m | 234.21 mm |  |
| January | 1003 | 1006 | 1003 | 099 | nos | 1000 | 1002 | $10 \%$ | 1003 | 1004 | 1004 | 1055 |
| Fehriary． | 1035 | 193 | 09 | Jobe | 1039 | 1031 | 1032 | 1033 | 1034 | 1039 | 1032 | 1030 |
| March | J063 | 1061 | 1057 | 1050 | 1051 | 1050 | 1050 | 1052 | 1050 | ］est | 1150 | 1048 |
| April． | 1077 | 1071 | 1066 | 1062 | 1064 | 1002 | 1068 | 3nce | 10. | 10：1 | 1068 | 1169 |
| May ．．．．．．．．．．．．．．． | 1083 | 1057 | 105.3 | 1023 | 1031 | 100：4 | 10.9 | 11663 | 116.4 | $70 \cdot 4$ | 1063 | 10 n |
| June． | 1077 | 1072 | $166 \%$ | 16.5 | 106.5 | 1007 | 10\％1 | 10：3 | $10 \%$ | 1077 | 1077 | 1087 |
| July ．．． | 1106 | 1160 | 1096 | 1009 | 1092 | 1003 | 1096 | 1094 | 1101 | 110 | 1103 | 1104 |
| August． | 1133 | 1129 | 1191 | 1119 | H21 | 1127 | 11.34 | 11.35 | 113.3 | 1134 | 1125 | 1135 |
| Stptember | 1115 | 1104 | 1097 | 1095 | 169 | 1160 | 1102 | 1104 | 1104 | 110： | 1107 | 110 |
| Oetober | 1145 | 1187 | 1134 | 1130 | 1132 | 1134 | 1137 | 1157 | 113 | 1134 | 1137 | 1135 |
| November | 1135 | 1133 | 1129 | 1197 | 1124 | 1131 | 1128 | 1120 | 1130 | 1130 | 1131 | 1131 |
| December | 123） | 1212 | 1209 | 1202 | 1201 | 1201 | 1203 | 1193 | 1：209 | 3204 | 1503 | 1206 |
| 1845. | 0h． 212 l m． | 1h． 215 m ． | 2h． $21 \frac{1}{2} \mathrm{~m}$ ． | 3h． $21 \frac{1}{9} \mathrm{~m}$ ． |  | 5h． 21 号． |  | Th． $21 \frac{1}{1} \frac{1}{1} \mathrm{n}$ ． | 8 ${ }^{\text {2 }} 2121 \frac{1}{6} m$ | 9h． $21 \frac{1}{1} \mathrm{~m}$ ． | 10a． 217 m | 11h． $21 \frac{1}{\mathrm{~m}} \mathrm{~m}$ ． |
| Janunty．． | 1233 | 1223 | 1231 | 1330 | 1298 | 1286 | 123 | 1220 | 1231 | 1241 | 1248 | 1232 |
| Fibruary．．．．．．．．．．． | 1230 | 1230 | 1231 | 1229 | 1299 | 1236 | 12.3 | 1297 | 1231 | 1236 | 1943 | 1244 |
| March | 1236 | 1236 | 1934 | 1235 | 1334 | 1234 | 1231 | 1233 | 1241 | 1249 | 1255 | 1261 |
| April．．．．．．．．．．．．． | 125：3 | 1250 | 1249 | 1247 | 1245 | 1243 | 1241 | 1244 | 1253 | 1908 | 1278 | 1281 |
| May ．，．．．．．．．．．．．． | 1244 | 1243 | 1241 | 1289 | 1836 | 1283 | 1229 | 1236 | 1251 | 1961 | 1263 | 12.8 |
| June． | 1280 | 1981 | 1981 | 1081 | 1875 | 1271 | 1283 | 1273 | 1282 | 1243 | 1295 | 1292 |
|  | 12h． $21 \frac{1}{2} \mathrm{~m}$ ． | 13h． 21 ¢m． | 4h 213 m ． | 15h． $21 \frac{1}{3} \mathrm{~m}$ |  | 17 h 211 m | 184．21 ${ }^{\text {cma }}$ ． | 19h． $21 \frac{1}{8} \mathrm{~mm}$ ． | 20h． 214 m | 214．21娄m |  | 23h． $21 \frac{1}{2} m$ ， |
| January ．．．．．．．．．．． | 1249 | 1242 | 1239 | 1233 | 1229 | 1230 | 1233 | 1231 | 1230 | 1931 | 1299 | 1299 |
| February．．．．．．．．．． | 1250 | 1242 | 1238 | 1231 | 1233 | 1229 | 1231 | 1233 | 1235 | 1231 | 1231 | 1232 |
| March | 1260 | 1253 | 1245 | 1239 | 1240 | 1242 | 1244 | 1240 | 1289 | 1237 | 1940 | 19 |
| April．．．．．．．．．．．．．．． | 1268 | 1267 | 1255 | 1258 | 1248 | 1253 | 1256 | 1254 | 1254 | 12：3 | 1250 | 1254 |
| May．．．．．．．．．．．．．．． | 1253 | 1244 | 1238 | 1236 | 1237 | 1239 | 1245 | 1246 | 1246 | 1248 | 1247 | 1212 |
| June．． | 1286 | 1280 | 1272 | 1269 | 1269 | 1273 | 1278 | 1231 | 1290 | 127 | $12: 9$ | 1280 |

23 c s

Increase of scale readings corresponds to decrease of force. Value of one division of the scale $=0.0000365$ parts of the lorizontal force, or in the absolnte scale equal to 0.0001523 .

Investigation of the Eleven- Year (also called Ten-Year) Period, as shown in the Changes of the Amplitude of the Solar Diurnal Variation of the Horizontal Force.-The variation in the amplitude of the diurnal motion of the horizontal foree is subject to the same inequality of about eleven years as the declination, and the means of investigation will be analogous to those used in Part I of this discussion. For greater convenience, the preceding monthly normals were united into annual means and the results put into an analytical form, using lessel's function applicable to periodical phenomena, and determining the numerical quantity by the application of the method of least squares.

In the following table of the regular solar diurnal variation of the horizontal force the means for 1842-43 depend only on nine months of observation ; the correction given to refer them to twelve months of observation depends on the mean difference between the results of the same nine nonths and twelve months of the preceding and following year; this correction is nearly constant, and the same within one scale division for the adjacent years. In the second corrected column for $1842-$ ' 43 the effect of the annual inequality is thus eliminated. In the year 1843-44 the resulte from nine monthe of observation at the odd hours were reduced to twelve month: by means of corveponding differences in the series of even hours; thus (omitting the minutes) at hour 2 , mean of 12 months - 1006, mean of 9 months $=1028$; at hour 3 for the same 9 months, mean $=1026$, or 2 divisions less; at hour 3 for 12 months the mean is therefore 1004 , and the same result is found $\mathrm{b}_{\mathrm{y}}$ comparing with the fullowing hour 4 ; the mean is given in case of a difference in the two results.

Tabee VilI.
Regular solar diurnal variation of the horizontal force for each year of observation, expressed in scale divisions.
Increaced numbers indicate decrease of force. The minutes at the head of euch column are to be added to the hours given in the first vertical column. Each year commences with the nonth of July.

| Howr of the day. | $\begin{gathered} 1840-{ }^{\prime} 41 . \\ 22 m . \end{gathered}$ | $\begin{gathered} 1841-42 . \\ 213 \mathrm{~m} . \end{gathered}$ | $\begin{gathered} \text { [842-'43 } 9 \\ \text { months. } \\ 21 \frac{1}{2} m . \end{gathered}$ | Correction. | $\begin{gathered} 1842-43 . \\ 21 \frac{3}{2} m . \end{gathered}$ | $\begin{gathered} 1843-' 44 . \\ 21 \frac{1}{2} m . \end{gathered}$ | $\begin{gathered} 1844-45 \\ 211 \mathrm{~m} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Divisions. |
| 0 (a.m ).. | 223 | 549 | 782 | $+6$ | 788 | 1008 | 1191 |
| 1.-.... |  |  |  |  |  | 1007 | 1189 |
| 2 | 219 | 548 | 780 | + 6 | 786 | 1006 | 1189 |
|  |  |  |  |  |  | 1004 | 1188 |
| 4 | 214 | 545 | 777 | +6 | 783 | 1003 | 1186 |
|  |  |  |  |  |  | 1002 | 1184 |
| 6 | 206 | 642 | 774 | $+6$ | 780 | 1002 | 1182 |
| 7 |  |  |  |  |  | 1005 | 1186 |
| 8 | 226 | 552 | 788 | $+5$ | 793 | 1010 | 1194 |
|  |  |  |  |  |  | 1013 | 1202 |
| 10. | 244 | ¢64 | 799 | $+5$ | 804 | 1017 | 1206 |
| 11...-- |  |  |  |  |  | 1016 | 1207 |
| 12 (p. m.).- | 241 | 563 | 792 | $+6$ | 798 | 1014 | 1202 |
| 13....... |  |  |  |  |  | 1010 | 1195 |
| 14.-. | 221 | 547 | 781 | $+7$ | 788 | 1005 | 1189 |
| 15 |  |  |  |  |  | 1002 | 1186 |
|  | 215 | 547 | 778 | $+7$ | 785 | 1002 | 1185 |
| 17 |  |  |  |  |  | 1004 | 1188 |
| 18 | 222 | 5.53 | 733 | $+7$ | 790 | 1006 | 1190 |
| 19. |  |  |  |  |  | 1008 | 1191 |
| 20 | 225 | 554 | 786 | $+7$ | 793 | 1008 | 1191 |
| 21....---- |  |  |  |  |  | 1009 | 1191 |
| 22.....--- | 227 | 553 | 785 | $+6$ | 791 | 1008 | 1191 |
| 23. |  |  |  |  |  | 1008 | 1191 |
| Mean ...... | 223.5 | 551.5 |  |  | 789.9 | 1007.4 | 1191. 4 |

(Philadelphia local time, counted from midnight to midnight, 24 hours.)

The preceding mean diumal variations were put in the following analytical form, in whith the ancle $H$ counts from midnight at the rate of $15^{\circ}$ an hour :


```
    " \(1841-42 \mathrm{H}=551.5+4.03 \sin (\theta+24407)+6.58 \sin (2 \theta+13132)+4.48 \sin (3 H+31219)\)
    " \(1842-43 \mathrm{H}=789.9+4.14 \sin (\theta+25006)+7.07 \sin (2 \theta+18224)-3.74 \sin (3 \theta+323\) o6)
    " \(1843-{ }^{\prime} 44 \mathrm{H}=1007.4+2.14 \sin (\Theta+27355)+5.09 \sin (2 \theta+12858)+2.35 \sin (3 \theta+31758)\)
    " \(1844-45 \Pi=1191.4+4.40 \sin (\theta+27113)+6.86 \sin (2 \theta+12325)-4.11 \sin (3 \theta-32126)\)
```

To show the degree of correspondence in the formule when deduced from the observations of the even and odd hours separately, the results for the last year have been added, viz:
Even hours $H=1191^{\top} .3+4^{4} .20 \sin \left(\theta+271^{\circ} 28^{\prime}\right)+6^{n} .95 \sin \left(2 \theta+122^{\circ} 36^{\prime}\right)+4^{\prime} .11 \sin \left(3 \theta+322^{\circ} 35^{\prime}\right)$ Odd hours $\mathrm{H}=1191.5+4.60 \sin (\theta+27059)+6.73 \sin (2 \theta+12413)+4.12 \sin (3 \theta+32017)$

The close agrecment between the observed and computed values is shown geuerally in diagram $A$, of Part IV, Sketel No. 50.

The following table exhibits the differences for the year 184--43, an an crample of the munerical correspondence:

|  | . M. | Computed. | Observed. | $\mathrm{C}-\mathrm{O}$. | P M. | Computed | Observed. | C-O. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21等h | 788.7 | 788 | +0.7 | $12 \mathrm{~m} 21 \frac{1}{2} h$. | 799.5 | 793 | $+1.5$ |
| 2 | " | 780.6 | 786 | $+0.6$ | 14 | 787.6 | 788 | -0.4 |
| 4 | * | 781.3 | 783 | $-1.7$ | 16 | 784.5 | 785 | $-0.5$ |
| 6 | " | 781.2 | 780 | +1.2 | 18 | 790.2 | 790 | +0.2 |
| 8 | " | 792.5 | 793 | -0.5 | 20 ، | 792.9 | 793 | -0.1 |
| 10 | " | 803.3 | 80.1 | -0.7 | 22 " | 720.5 | 791 | $-0.5$ |

The differences, nsing three terms in the equations, are within the uncertainty of the observed values. The probable error of a single representation is +0.6 rule divisions, or +0.00009 in the absolute seale.

The curves show a double progression in the daily motion, with a prinejpal maximum of horizontal fore in the morning, a principal minimum before noon, and a secondary maximum in the aftomoon; the precise epochs (to the nearest five minutes) and extreme values were computed by means of the preceding formulie.

| Year. <br> From July to July. | Principal it. m. maximum of horizontal foree. |  | Principal a, m. minimunt of horizontal force. |  | Diurnal range in- |  |  | Secondary p. m. maximum of hor. foree. |  | $\begin{aligned} & \text { Less than } \\ & \text { a. m. } \\ & \text { max. by } \\ & \text { divis. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Epuch. | Amoute. Divis. | Epoch. | Amount. <br> Divis. | scale divis. | Parts of tiori zontal force. | Value int absol. seale. | Epachs. | Ambinat. Lwis. |  |
| 1840-'41 | 5h. 4.5 m | 207.3 | $11 / \mathrm{mm}$. | 246.1 | 38.8 | 0.00142 | 0.0059 | 4h. 05 m | 213.5 | 6.2 |
| 1841-'42 - | $5 \quad 50$ | 541.7 | 115 | 565.5 | 23.8 | 0.00087 | 0.0036 | 350 | 545.1 | 3.4 |
| 1842-'43 - | 530 | 779.8 | 1055 | 803.9 | 24.1 | 0.00088 | 0.0037 | $3 \quad 50$ | 784.0 | 4. 2 |
| 1843 '44 | 540 | 1001.7 | 1050 | 1016.9 | 15.2 | 0.00055 | 0.0023 | 40 | 1002.0 | 0. 3 |
| 1844-45 | $5 \quad 40$ | 1182.4 | 1050 | 1206.6 | 24.2 | 0. 00088 | 0. 0037 | 40 | 1184.8 | 2. 4 |
| Mean | 541 |  | 1056 |  |  |  | 0.0038 | $3 \quad 57$ |  |  |

The secondary maximum is reached about $8 \hbar .30 \mathrm{~m}$. p. m. with a comparatively small range.
The mean value of the force is attained about 7 h .55 m . a. m., and again about 17.55 m . p. m., with considerable regularity; it is again reached at 63 h . and 112 h . p. m., though with less regularity.

At Toronto (see vol. II of the Toronto observations) the diurnal variation of the horizontal force has a principal maximum at a little after $4 \mathrm{p} . \mathrm{m}$., and a principal minimum at 10 or $11 \mathrm{a} . \mathrm{m}$.; the secoudary maximum
oceurs about 6 a. m. There is, therefore, this specific difference in the diurnal motion at these two stations: in that at Philadelphia the morning maximam is the higher of the two, while at Toronto it is the afternoon maximum. The difference between the two maxima, as shown above, is almost nothing in the minimum year 1843-'4, but increases before (and after) this epoch in proportion to the interval. At Toronto the daily range seems to be slightly grater. The secondary minimum at 'Ioronto occurs about 2 or 3 a . m., or about six hours later than at Philadelphia; this is a second though less significant point of difference.

The minimum daily range occurs in $1843-44$; its value is then less than one-half what it was in $1840-141$.
The following equation expreses the mean dimnal range in scale divisions:

$$
\mathrm{R}=+19.68-3.78(t-1843)+2.77(t-1843)^{2}
$$

It represents the observed values as follows:


The minimum range as given by the formula is in September, 1843. In Part I of the disenssion we found the minimum range of the dechation in May, 1843 , and the minimum from the disturbances of the declination in Ansust, 1843.

Before proceeding to the discussion of the disturbances in the horizontal force, the formula given for the diumal variation reguire to be put in a different form for future use, and for convenience of comparison with other places.

The scale divisions were multiplied by the value of one division of the sealo ( 0.0000365 ) and again by the value of $X$ found for the year, the numerical constant was replaced $b y, X$, and the angular quantities were changed by $180^{\circ}$, so as to make increasing numbers correspond to increase of force; we then obtain in absolute measure the following expressions for the regular solar diumal variation of the horizontal force at the Girard Collegre:

$$
\begin{aligned}
& \text { Year } 1840-41 \mathrm{H}=-4.178+0.00091 \sin \left(\theta+72^{\prime} 14^{\prime}\right)+0.00178 \operatorname{sen}\left(2 \theta+301^{2} 16^{\prime}\right)+0.00090 \sin \left(3 \theta+134^{\circ} 42^{\prime}\right) \\
& \text { " } 1841-42 \mathrm{H}=4.175+0.00061 \sin (\theta+6107)+0.00100 \sin (2 \theta+31132)+0.00069 \sin (3 \theta+13219) \\
& \text { " } 1849-43 \mathrm{H}=4.173+0.00063 \sin (\theta+70 \quad 06)+0.00105 \sin (2 \theta+31224)+0.00057 \sin (3 \theta+14306) \\
& \text { " } 1843-44 \mathrm{H}=4.170+0.00033 \sin (\theta+5355)+0.00078 \sin (2 \theta+30858)+0.00036 \sin (3 \theta+13758) \\
& \text { " } 1844-45 \mathrm{H}=4.168+0.00067 \sin (\theta+9113)+0.00104 \sin (2 \theta+30325)+0.00063 \sin (3 \theta+14126) \\
& \text { The angle } \theta \text { counts from midnight; the middle epoch to which each equation refers is January. }
\end{aligned}
$$

Investigation of the Eleven (Ten?) Year Inequality in the Disturbances of the Horizontal Magnetic Force- In Table VI the number of disturbances in each month has been given as found from the observations; these numbers are, however, not directly comparable with one another-first, on account of some omissions in the record; and secondly, on account of the change from a bi-hourly to an hourly serics. For any incomplete month the number of disturbances for the whole month is oltained by simple proportion from the number during the part of the month recorded; for January, 1841, the total number becomes 35; for June, 1841, the total number is 18 . For January, February, and March, 1843, the mean total number of the disturbances, as found in the came months in the preceding and following year, was substituted; this mean gave 8, 20, and 20, reppectively. The number of disturbances after October, 1843 , were halved to make them comparable with the bi-hourly scries. There were two anomalous months, July and December, 1840, in which the disturbances amount to 165 and 120 , with an annual moan of 64 , whereas in the same months in the following year they only amount to 26 and 26 respectively, with an annual mean of $2^{\%}$; the mean annual difference 37 was applied to the numbers found in 1841 , which give 63 and 63 as a substitute for the anomalous values in July and December, 1840. This anomaly does not exist in the phenomenon itself, but is unquestionably due to the irregularity in the progressive change.

Table IX contains the number of disturbances as distributed over the several years and months, all referred to a uniform series of bi-hourly observations. To this table the monthly means and their ratio, when compared with the annual mean, have been added; also for comparison, the corresponding ratios found in Part I of the discussion of the disturbances of the declination.

| Month. | 1840-341. | 1841-423 | 1842-43. | 2843- 44. | 1844 '45. | Mean. | Hor. force. Ratio. | Dedination. Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | (63) | 26 | 24 | 15 | 0 | 26 | 1.09 | 0.86 |
| August | 73 | 17 | 3 | 11 | 2 | 21 | 0. 89 | 1. 59 |
| September. | 54 | 41 | 44 | 16 | 13 | 34 | 1. $43 *$ | 1. 36 |
| October | 63 | 28 | 53 | 2 | 16 | 33 | 1. 39 | 2. 120 |
| November | 49 | 32 | 15 | 0 | 21 | 24 | 1. 00 | 1. 08 |
| December. | (63) | 26 | 5 | 0 | 23 | 23 | 0. 97 | 1. 00 |
| January - | 35 | 14 | 8 | 1 | 13 | 14 | 0. 59 | 0.77 |
| February | 50 | 37 | 20 | 3 | 9 | 24 | 1. 00 | 0.52 |
| March | 61 | 25 | 20 | 14 | 2 | 25 | 1. 06 | 0.68 |
| Aptil | 48 | 38 | 14 | 8 | 16 | 25 | 1. 06 | 0.91 |
| May | 46 | 30 | 25 | 2 | 10 | 23 | 0.97 | 0.58 |
| June | 18 | 15 | 4 | 0 | 28 | 13 | $0.55^{\circ}$ | $0.53{ }^{\circ}$ |
| Sums | 628 | 330 | 235 | 72 | $15 \%$ | 285 | 12.00 | 12. 00 |
| Mean | 52 | 28 | 20 | 6 | 13 | 24 | -------- |  |

In the columns of ratios the principal maxima and minima are indicated by an asterisk.
The anuual means exhibit plainly the eleven-year inequality; they have been represented by the formula:

$$
\mathrm{N}=+14.4-10.2(t-1843)+4.8(t-1843)^{2}
$$

| Jamuary, |  | Observed N . | Computed N. |
| :---: | :---: | :---: | :---: |
|  | 1841. | 52 | 24 |
| " | 1842. | . 28 | 29 |
| " | 1843. | - 20 | 14 |
| " | 1844. | . 6 | 9 |
| " | 1845. | . 13 | 13 |

According to the formula, the minimum occurs in Janaary, 1844.
We have next to consider the eleven-year inequality in the magnitude of the disturbances of the horizon tal force. Table X contains the aggregate amount of the disturbances expressed in scale divisions, and also their mean amount obtained by application of the number of disturbances already given in Table VI.

For reasons already explained, the amount of disturbances in $\mathrm{Jul}, 1840$, equal to 10761 scale divisions, has been diminished in the ratio of $165: 63$. The ratio of each monthly mean to the mean amount of the year is also given, together with a column of corresponding ratios derived from the disturbances of the declination, as made out in Part I of the discussion.

Table X.
Asgregate and mean amount of the disturbances of the horizontal force, cxpressed in scale divisions.

| Month. | 1840-'41. | 1841-'42. | 1842-'43. | 1S43-'44. | 1844-'45 | Mean amount. | Hor. force. Ratio. | Declinat" n . Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July --- | (4089) | 1157 | 1295 | 669 | 0 | 56 | 1. 10 | 0.87 |
| August. | 4084 | 755 | 131 | 471 | 142 | 52 | 1.03 | 1.61 |
| September | 3092 | 3075 | 2099 | 660 | 1228 | 56 | 1. $11{ }^{*}$ | 1.56 |
| October | 3720 | 1284 | 2399 | 169 | 1412 | 49 | 0.97 | $2.06 \%$ |
| November | 2390 | 1991 | 915 | 34 | 2173 | 54 | 1.06 | 1.06 |
| December.. | 6515 | 1225 | 239 | 0 | 2283 | 52 | 1. 03 | 1.00 |
| January | 1186 | 601 | 0 | 111 | 1402 | 49 | 0.97 | 0.72 |
| February.. | 2664 | 1822 | 44 | 200 | 896 | 50 | 0.99 | 0.51 |
| March. | 3112 | 1176 | 39 | 1412 | 127 | 49 | 0.97 | 0.66 |
| April. | 2138 | 2075 | 676 | 861 | 1604 | 49 | 0. 97 | 0.94 |
| May. | 2456 | 1211 | 1187 | 131 | 789 | 47 | 0.93 | 0.56 |
| June | 560 | 794 | 164 | 0 | 2393 | 44 | $0.87 \%$ | 0. $42^{*}$ |
| Mean amount. | 53.9 | 52.0 | 48.6 | 46.3 | 46.8 | 50.6 | 1. 00 | 1.00 |

Maxima and minima in the columns of ratios are marked with an asterisk.
The inequality in the mean amount of the horizontal force disturbances in each year, indicates the year 1843-'44 as the minimum year.

From the preceding results, we may assume the month of November, 1843, as the cpoch for the minimum of the eleven (ten?) year inequality, as far as indicated by the differential observations of the horizontal force.

Further Analysis of the Disturbances of the Horizontal Force.-The distribntion of the disturbances in number and mean amount over the several months of the year has been given in Tables IX and $X$. From Table IX we learn that the disturbances are greatest in number in September and March or April, or about the time of the equinoxes, and least in number about January and Junc, or about the time of the solstices. At the autumnal equinox the numbers execed those of the vernal equinox; the same law was found at Toronto; also the numbers are smaller at the summer solstice than at the winter solstice, in perfect accordance with the result found at Toronto. These results are shown graphically on Diagram B of Part IV, (Sketch No. 50,) which contains also the ratio of the disturbances for the declination in which the same law is apparent.

Table $\AA$ shows that, in reference to the average magnitude of the disturbances, the same law holds good, to wit: the greatest rclative magnitude occurring about the time of the equinoxes; the greater amount corresponding to the autumnal equinox, and the least to abont the time of the solstices, the smaller amount occuring near the summer solstice. The average magnitude of the disturbances of the declination was found subject to the same law.

If we separate the disturbances which increase the force from those which decrease it, we may form the two following tables of the distribution of the disturbances in number and average amount over the several months of the years.

Table XI.
Annual inequality in the number of disturbances increasing and decreasing the horizontal force.

|  | $1840 \sim 41$. |  | 1841-’42. |  | 1842-43. |  | 1843-44. |  | 1844--'45. |  | Sum. |  | Ratios. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inc. | Dec. |
| July - | (38) | (25) | 6 | 20 | 5 | 10 | 1 | 14 | 0 | 0 | 50 | 78 | 1.2 | 1.0 |
| Angust | 18 | 55 | 6 | 11 | 1 | 2 | 2 | 9 | 0 | 2 | 27 | 79 | 0. 7 | 1.0) |
| September | 25 | 29 | 5 | 36 | 38 | 6 | 11 | 5 | 9 | 4 | 88 | 80 | 2. 1 c | 1. 1 |
| Octobe | 18 | 50 | 11 | 17 | 37 | 16 | 1 | 1 | 8 | 8 | 75 | 92 | 1.8 | 1.2 |
| November | 13 | 36 | 1 | 31 | 4 | 11 | 0 | 0 | 0 | 21 | 18 | 99 | 0.4 | $1.3{ }^{*}$ |
| December | (25) | (38) | 8 | 18 | 0 | 5 | 0 | 0 | 1.5 | 8 | 48 | 69 | 1.1 | 0.9 |
| January | 19 | 16 | 6 | 8 | 3 | 5 | 0 | 1 | 3 | 10 | 31 | 40 | 0.8 | 0.6 |
| February | 15 | 35 | 4 | 33 | 2 | 18 | 0 | 3 | 0 | 9 | 21 | 98 | 0.5 | 1. 2 |
| March | 17 | 44 | 10 | 16 | 3 | 17 | 0 | 14 | 1 | 1 | 31 | 92 | 0.8 | 1.2 |
| April | 18 | 30 | 14 | 24 | 1 | 13 | 1 | 7 | 0 | 16 | 34 | 90 | 0.8 | 1. 2 |
| May. | 24 | 22 | 16 | 13 | 10 | 15 | 1 | 1 | 5 | 5 | 56 | 56 | 1.3 | 0.7 |
| June | 9 | 9 | 6 | 10 | 1 | 3 | 0 | 0 | 7 | 21 | 23 | 43 | 0.5 | $0.6 \%$ |
| Sum | 239 | 389 | 93 | 237 | 105 | 134 | 17 | 55 | 48 | 105 | 502 | 916 | 12.0 | 12.0 |

In each year the number of disturbances increasing the force is less than the number which decrease it; the uumbers of increase are to the numbers of decrease as $1: 1.8$. The numbers of the monthly ratio for the increasing disturbances exhibit the same law as found in Table IS: with respect to the numbers for the decreasing force the law is alparently less distinetly marked; the maximum seems to occur about two months later, (before the winter solstice,) at a time when the number for increasing force is apparently at its minimum. This indistinctness in the law may possibly be due to an irregular distribution in reference to the hours of the day, and could only disappear through a longer scries of observations.

Table XII.
Annuat inequality in the mean amount of the disturbances of the horizontal force. Agsgregate amount for increasing and decreasing disturbances, expressed in scale divisions.

| Month. | 1840-¢ 1. |  | 1841-42. |  | 1842-43. |  | 1843-'44. |  | 1844-45. |  | 1849-45. |  | Average amount. |  | Ratios. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inc. | Dec. | Inc. | Dec. | Inc. | Dec. | Inc. | Dee. | Inc. | Dec. | Inc. | Dec. | Ine. | Dec. | Inc. | Dic. |
| July.... | (2202) | (1827) | 214 | 943 | 292 | 1003 | 41 | 623 | 0 | 0 | 2749 | 4461 | $5{ }^{5} \mathrm{~d}$ | 574 | 1.2 | 1.1 |
| Angust. | 794 | 3290 | 261 | 434 | 51 | 80 | 69 | 402 | 0 | 142 | 1175 | 4408 | 44 | 54 | 1.0 | 1.0 |
| September | 1082 | 2010 | 106 | 2889 | 1857 | 242 | 452 | 208 | 873 | 355 | 4450 | 5704 | 45 | 56 | 1.0 | 1.1 |
| Oetaber | 720 | 2994 | 421 | 863 | 1685 | 714 | 128 | 41 | 691 | 721 | 36.51 | 5333 | 44 | 53 | 1.0 | 1.0 |
| November | 520 | 1870 | 35 | 1956 | 185 | 730 | 0 | 34 | 0 | 2173 | 740 | 6763 | 41 | 56 | 0.9 | 1.1 |
| December | 2204 | 4311 | 289 | 936 | 0 | 233 | 0 | 0 | 1483 | 800 | 3976 | 6826 | 47 | 56 | 1.0 | 1.1 |
| January .. | 723 | 463 | 231 | 370 | 0 | 0 | 0 | 111 | 302 | 1100 | 1256 | 2044 | 48 | 50 | 1.1 | 0.8 |
| February. | 649 | 2015 | 140 | 1638 | 0 | 44 | 0 | 200 | 0 | 808 | 789 | 4747 | 42 | 52 | 1.0 | 1.0 |
| March ... | 643 | 2469 | 415 | 761 | 0 | 39 | 0 | 1412 | 37 | 90 | 1095 | 4771 | 39 | 52 | 0.9 | 1.0 |
| April. .... | 732 | 1406 | 550 | 1525 | 54 | 622 | 75 | 786 | 41 | 1563 | 1452 | 5902 | 40 | 52 | 0.9 | 1.0 |
| May .... | 1000 | 1456 | 696 | 515 | 412 | 775 | 83 | 48 | 398 | 391 | 2589 | $31 \times 5$ | 42 | 52 | 1.0 | 1.0 |
| June..... | 307 | 253 | 284 | 510 | 50 | 114 | 0 | 0 | 604 | 1786 | 1245 | 2663 | 4 | 44 | 1.0 | 0.8 |
| Sum..... | 11582 | 24424 | 3722 | 13444 | 4586 | 4602 | 848 | 3870 | 4429 | 9927 | 25167 | 56267 |  |  | 12.0 | 12.0 |
| Number . . | 254 | 414 | 93 | 237 | 97 | 32 | 20 | 82 | 96 | 211 | 560 | 1036 |  |  |  | $\ldots$ |
| Mean .... | 46 | 59 | 40 | 57 | 47 | 50 | 42 | 47 | 46 | 47 | 45 | 54 |  |  |  |  |

The average amount of a disturbance increasing the horizontal force is 45 scale divisions, or 0.0069 in absolute mcasure; the average amount of a disturbance decreasing the same is 54 scale divisions, or 0.0082 in absolute value. The ratio oi these numbers is as $1: 1.2$, whereas at Toronto the ratio is $1: 6.4$.

The law of the monthly inequality for amount of increasing or decreasing disturbances is, as in the preceding case, very indistinct and further obscured by the small absolute amount of variation.

In the following table, XIII, the larger distarbances have been distributed over the different hours of their occurrence; in this combination the bi-hourly series (of the even hours) of observation has been used throughout.


Directing our attention to the columns of aggregate amount and of ratios of number of occurrence, we find the principal maximum about 11 a. m., which seems to correspond to the secomary maximum of corresponding ratios at Toronto occurring about three hours earlier ; the principal minimum occurs about 5 a. m., which corresponds to the secondary minimum at Toronto occurring between 5 and 6 a. m.; again at Philadelfihia the secondary maximum at midnight is about two hours earlier than the principal maximum at Toronto, and the secondary minimum about 4 p . mecoresponds in time to the principal minimum at Toronto occurring between 2 and $6 \mathrm{p} . \mathrm{m}$. Thus, the curves at the two stations, representing the diumal variation of the disturbances (irrespective of increase or decrease) of the horizontal force, is double erested with an exchange of the principal and secondary maximum, and also of the principal and secondary minimum.

In the next table, XIV, the diumal variation of the disturbances is exhibited separately for disturbances inereasing and disturbances decreasing the horizontal force.

| Hour. | disturbances mereasing horizrntal fonce |  |  | disturbances decreasing horizontal force. |  |  | Excess of aggregate decrease overaggregate increase. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of occurrences | Aggregate amount. | Ratio. | Number of occurrences. | Aggregate amount. | Ratio. |  |
| 0 (midnight) | 57 | 2878 | 1. 28 | 85 | 5238 | 1. 21 | 2360 |
| 2 | 44 | 2173 | 0.97 | 65 | 3794 | 0.87 | 1621 |
|  | 42 | 1998 | 0.89 | 51 | 296.3 | 0.68 | 965 |
| 6 | 28 | 1213** | 0.54 | 66 | 3538 | 0.81 | 2325 |
| 8 | 48 | 2345 | 1.04 | 56 | 3217 | 0.74 | 872 |
| 10. | 61 | 2732 | 1.22 | 85 | 4989 | 1. 15 | 2257 |
| 12 (noon). | 74 | $3134{ }^{\circ}$ | 1. 39 | 87 | 3691 | 0.85 | 557 |
| 14. | 48 | 2239 | 1.00 | 79 | 4397 | 1.01 | 2158 |
| 16. | 49 | 2200 | 0.98 | 86 | 4434 | 1.03 | 2234 |
|  | 45 | 2005 | 0.89 | 87 | 4889 | 1. 13 | 2884 |
| 20. | 39 | 1758 | 0.78 | 100 | $5816^{\circ}$ | 1. 34 | 4058 |
| 22. | 50 | 2296 | 1.02 | 89 | 5062 | 1.18 | 2766 |
| Sums | 585 | 26971 | 12.00 | 936 | 52028 | 12.00 | 25057 |

The disturbances increasing and those decreasing the horizontal force evidently follow different laws; at Toronto they were found completely opposed; they are less so at Philadelphia. The principal maximum of increasing disturbances (at noon) secm to be cotemporancous with a secondary minimun of the decreasing disturbances; again the principal maximum of the decreasing disturbances (at 8 p . m.) corresponds to a secondary minimum of the increasing disturbances. In reference to the main feature, the maximum disturbance of those increasing the force and of those decreasing the force, the Philadelphia ratios show even a greater resemblance to the results at St. Helena and the Cape of Good Hope than to those at Toronto. At the two southem stations the maximum in the disturbances which increase ocers at 11 a. w. and the maximum in the disturbances which decrease occurs about 6 or $7 \mathrm{p} . \mathrm{m}$.-(See vol. II of the St. Helena Observations.)

Table XIV contaias also the hourly excess of the aggregate amount of the disturbances which decrease the horizontal force over those which increase the same. If we divide the numbers by the whole number of days of obscrvation (nearly 1500) we obtain the diurnal disturbance variation expressed in seale divisions.

Table XV.
Diurnal disturbance variation.

| Hour. | S D. | In absolute measure. | Hour. | S. 1. | In absolute measure. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 (midnight).. | 1.6 | 0. 00024 | 12 (noor). | 0.4 | 0.000:16 |
| 2. | 1.1 | 17 | 14. | 1.4 | 21 |
| 4 | 0.7 | 11 | 16. | 1.5 | 23 |
| 6. | 1.6 | 24 | 18. | 2.0 | 30 |
| 8. | 0.6 | 09 | 20. | 2.8 | 43 |
| 10....-.-..---- | 1.5 | 23 | 22. | 1.9 | 29 |

The average amount by which the disturbances tend to decrease the diurnal variation of the horizontal force is 1.4 scale divisions, or 0.00021 in the absolute scale. The maximum eflect takes place at 8 p . m., at exactly the same hour when the declination disturbances reach their greatest effect.

In the preceding tables, XIII, XIV, and XV, to the hours indicated $21 \frac{1}{2}$ minutes shond be added, the observations being made so much later than the even hours.

The preceding discussion shows that for two stations, even at a comparatively short distance, as for Philadelphia and Torouto, there are, gencrally speaking, some close coincidences in the laws derived from independent observations; but there are also certain differences in other results; yet it must not be forgotten that for a strict comparability we require, if not simultancons observations, at least observations extending over similar parts or the whole of an eleven-year period. The Philadelphia series includes a minimum year of that inequality, with the greater extent of observations before that epoch, whereas at Toronto the series begins after the minimum epoch, and barely extends to a maximum year.

For the purpose of obtaining a better view of the absolute amount of the disturbances and their frequeney of occurrence,* they were classified in nine groups of equal differences of 20 scale divisions; the number of disturbances in each was found as follows:

[^4]1223356 west
h.m. s
Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \& 10 15.7

```

The saw-mill here is the largest and most effective in this part of the Territory, cutting at the rate of six or seven millions of feet of lumber per year. Attached to it are lath, shingle, and planing marhines. A large quantity of the lumber and rough spars for masts are carried to Australia and the Sandwich Islands. Within two or three seasons, ending with that of 1857, the number of outward-bound vessels trading to the Sand wich Islands was 15 ; the average passage \(26 \frac{1}{2}\) days; the shortest passage 19 days, and the longest 32 . From the islands to the mill the number of ressels arriving was 16 ; average passage 25.2 days; sbortest passage 15 days, and the longest 35 days. Of these one reported a passage of 15 days to the mouth of Fuca strait, and mine days thence to the port, in the carly part of September, having encotntered nearly continuous calms in the strait and inlet.

From this place, called Teckalet, (the Iudian name of the bay,) a road is being constructed (185\%) by the Mill Company to Port Madison.

The steam and smoke from the saw-mill are distinctly visible from part of Port 'Cownshend over the low ground betweon that bay and Oak cove.

It received its present name from the U. S. Exploring Expedition in 1841.
The Coast Survey Report for 1856 contained a hydrographic sketch of Port Gamble.
Three miles from Hood's Head, on the western side of the canal, Suquamish harbor* opens. A large sand bank occupics its centre, and extends a mile in length N.NW., by half a mile in width. The approaches to the shoal, which is in part bare, are detected in thick weather by the lead, the soundings decreasing regularly from 20 fathoms. Keep, however, close under the northern shore, which runs two miles W.SW. from the low point called Termination Point.*

Fourteen miles from Hood's Head the canal curves more to the southward, and then to the S.SW. around Hazel Point, \(\dagger\) on the west side of which a large arm of the canal makes north for ten miles, bifurcating near its head. On its western side the eastern spurs of the Olympus range reach its waters, and form the western shore-line of the canal to the great bend. The sharp peak named Mount Constance \(\ddagger\) attains an elevation of \(7,7 \% 7\) feet.

Two miles south of Hazel Point, and on the eastern side of the canal, is a fine harbor, formerly called Hahainish harbor,* but the name has been changed by scttlers, who have lately built a small saw-mill there. It is formed by Seabock island on the west, and is about a mile long by half a mile wide, with good bottom in from 10 to 15 fathoms, the depth decreasing to the head.

South of the harbor Hood's canal is slightly contracted in width, but continues in the same general direction to about latitude \(47^{\circ} 21^{\prime} \mathrm{N}\). . ("Vancouver's farthest,") where it takes an abrupt turn, and stretches E . by N. \(\frac{1}{2}\) N. four miles. The width in that part contracts to half a mile, and the shores overlap. From this it takes another slight bend, runs NE. by N. eight or nine miles, and reaches within two or three miles of the

\footnotetext{
*Named by the U. S. Exploring Expedition in 1841.
\(\dagger\) Named by Vancouver in 1792.
\(\ddagger\) Named by the U. S. Coast Sarvey in 1855.
}
northern extremity of Case inlet，＊an arm of Puget＇s sound．A large lake lies between the inlet and the canal． When Vancouver reached the first sharp turn he thought he saw the termination of the canal，and has plotted it in accordance with that view on his chart，four miles beyond the point marked＂Vancouver＇s farthest＂on the Admiralty charts．This was，in fact，the highest point to which he carried his boats．
＇The name，Hood＇s Canal，was given to it in 1792 by Vancouver．Its extent of shore－line is not less than 192 miles．

Before quitting our undertaking we are induced to append the following meteorological table，as it，will give a good idea of the summer climate in this section．The observations were made upon a vessel in the waters of Fuca strait，Admiralty inlet，and Puget＇s sound，the instruments being kept in the best shade practicable．The barometer was an aneroid，read at the hours \(10 \mathrm{a} . \mathrm{m}\) ．and \(4 \mathrm{p} . \mathrm{m}\). ，except in heavy weather， when it was read every hour．＇The thermometer readings are Fahrenheit，and reduced to the standard．

Abstract of meteorological observations made on board the United States Coast Surveying brig R．H．Faunt－ leroy，in the Strait of Juan de Fuca，Archipelago de Haro，Admiralty Inlet，and Puget＇s Sound，during the summers of 1855，＇56，and＇57．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1855. &  &  &  &  &  & Range of minima. &  &  & 音 \\
\hline & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(=\) & 0 & 0 & c & nehes． & Inehes． \\
\hline July．． & 71.5 & 53.3 & 90.9 & 29.9 & 48.2 & 9.4 & 33.7 & 0.44 & \\
\hline August & 70.2 & 53.4 & 83.3 & 24.7 & 49.8 & 6.6 & 29.7 & ． 43 & Not meas． \\
\hline September．．．．．．．．．－．．．－ & 65.8 & 59.5 & 77.7 & 18.3 & 49.3 & 8.6 & 20.0 & ． 91 & ured． \\
\hline Three weeks in October－ & 63.2 & 52.2 & 76.7 & 20.2 & 45.3 & 11.9 & 27.6 & ． 38 & \\
\hline
\end{tabular}

Greatest range of temperature during the above period， \(45^{\circ} .6\) ．
Greatest range of barometer from June 24 to October \(18,=0.92\) inch．
A dry season；heary SE．gales in September．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1856. & Means of daily max－
ima． &  &  &  &  &  &  & Range of barometer． &  \\
\hline & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & － & － & \(\bigcirc\) & － & Inches． & Inches． \\
\hline May & 67.1 & 48.7 & 85.7 & 31.1 & 45.0 & 7.4 & 38.1 & 0.53 & \\
\hline June． & 69.0 & 51.2 & 84.4 & 27.4 & 45.7 & 10.3 & 34.0 & ． 53 & Et \\
\hline July ． & 72.5 & 51.7 & 84.7 & 29.7 & 43.4 & 14.0 & 41.3 & ． 43 & 鴙 \\
\hline August．． & 72.2 & 53.5 & 83.7 & 25.5 & 48.4 & 10.2 & 30.2 & ． 56 & E \\
\hline September & 72.8 & 51.1 & 85.1 & 27.5 & 42.0 & 14.4 & 36.5 & ． 69 & \\
\hline
\end{tabular}

Greatest range of temperature during the above period， \(43^{\circ} 7\).
Greatest range of barometer from April 25 to September 30，0． 85 inch．
A wel season．
© Named by the United States Exploring Expedition， 1841.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1857. & Means of daily max-
ima. & \[
\begin{aligned}
& \text { Means of daily min- } \\
& \text { ima. }
\end{aligned}
\] &  &  &  & Range of minima. &  &  & 䂞 \\
\hline & \(\bigcirc\) & Inches. & Inches. \\
\hline Thrce weeks in May .-... & 71. 7 & 48.4 & 101.5 & 46.9 & 38.5 & 18.1 & 46.0 & 0.52 & 0.79 \\
\hline June. & 78.2 & 50.7 & 90.1 & 29. 2 & 43.0 & 13.1 & 36.9 & . 62 & 1. 19 \\
\hline July & 74.9 & 51.6 & 89.2 & 26.5 & 46.9 & 9.3 & 33.1 & . 44 & 0.01 \\
\hline August.- & 73.8 & 51.1 & 88.0 & 28.0 & 47.1 & 9.7 & 37.8 & . 46 & 0.08 \\
\hline September & 65.5 & 49.8 & 76.4 & 23.3 & 45. 2 & 8.5 & 30.8 & . 73 & 0.70 \\
\hline Two weeks in October .-. & 60.1 & 48.9 & 68.7 & 16.3 & 43.4 & 7.8 & 25. 1 & . 65 & 0.74 \\
\hline
\end{tabular}

Greatest range of temperature during the above period, 630.0.
Greatest range of barometer from May 12 to October 13, 0.79 inch.
A dry season, and marked by a week of remarkably hot weather at the close of May and beginning of June.
The working season of 1858 was wet. The working season of 1859 was dry.

The following table will give a few additional items of the winter months of 1860-61.
The observations were made at Olympia, at the office of the surveyor gencral.


The cerealia generally grow well, but the climate is too cold for maize. During the winter a great amount of rain falls-as much as 60 inches-and heavy weather prevails principally from the southward. It is never cold enough to form thick, clear, solid ice, which has to be brought from Sitka for the San Francisco market.

Table of geographical positions of important headlands, bays, rivers, light-houses, fe., on the western coast.-Compiled from the "Directory for the Pacific Coast of the United States."



\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Latioule month.} & \multicolumn{2}{|l|}{Lougitude, west.} & \multirow[t]{2}{*}{Magnetie variation, east.} & \multirow[t]{2}{*}{Time of detemination.} \\
\hline & In are. & In time. & & \\
\hline 1 & - ' 1 & R. & " & \\
\hline 328346 & 1171301 & ' 4853.4 & & \\
\hline 323158.5 & 1170611 & 74824.7 & & \\
\hline 334013.0 & \(117 \quad 13 \quad 17\) & 74853.0 & & \\
\hline 3381857.9 & \(\begin{array}{llll}117 & 13 & 22\end{array}\) & \(7 \quad 4853.5\) & 129 & April, 1851.* \\
\hline 3302 & 1183400 & 75416.0 & & \\
\hline 32 257 & 119805 & ............ & & \\
\hline 3311411.6 & \(\begin{array}{llll}119 & 25 & 09\end{array}\) & \(\begin{array}{lll}7 & 57 & 40.0\end{array}\) & & \\
\hline \(\begin{array}{lllll}33 & 26 & 31.8\end{array}\) & \(118 \quad 2845\) & 75355 & ..... & ............. \\
\hline 3330 & 11980 & & & \\
\hline \(\begin{array}{llll}33 & 43 & 19.6\end{array}\) & \(\begin{array}{lll}118 & 16 & 03\end{array}\) & \(7 \quad 5304.2\) & 1330 & Nov., 1883. \\
\hline 3301 & 11919 & . ...... & & \\
\hline 3408 & 11919 & 75636 & & \\
\hline 3401098 & \(\begin{array}{ll}119 & 40 \quad 10\end{array}\) & 75840.0 & & \\
\hline 3403 &  & 80121.8 & & \\
\hline \(\begin{array}{llll}34 & 23 & 35.4\end{array}\) & 1194205 & 75848.3 & & \\
\hline \(\begin{array}{llll}34 & 24 & 24.7\end{array}\) & \(\begin{array}{llll}119 & 40 & 18\end{array}\) & \(7 \quad 5841.2\) & & \\
\hline \(34 \quad 2046.6\) & \(\begin{array}{llll}120 & 27 & 00\end{array}\) & 880148.0 & & \\
\hline \(\begin{array}{llll}34 & 26 & 56.5\end{array}\) & \(\begin{array}{llll}120 & 25 & 39\end{array}\) & 80142.6 & 1350 & Sept, 1850. \\
\hline 3434 & 12038 & - & .... ..... & \\
\hline \(\begin{array}{llll}35 & 10 & 37.5\end{array}\) & 12043 & \(\begin{array}{llll}88 & 02 & 54.1\end{array}\) & \(14 \quad 17\) & Feb., 1854. \\
\hline  & 121 1022 & 80441.5 & & \\
\hline 3539 & 12115 & & & \\
\hline -6 19 & 19152 & ... & & \\
\hline \(36 \quad 37 \quad 52\) & 1215500 & 80740,0 & & \\
\hline \(36 \quad 37 \quad 59.3\) & 19154 & \(\begin{array}{llll}8 & 07 & 37.7\end{array}\) & \(14 \quad 38\) & Feb, 1851. \\
\hline \(36 \quad 57 \quad 26.9\) & \(12200 \quad 10\) & 80800.7 & & \\
\hline 3707 & 12219 & & & \\
\hline \(37 \quad 3545\) & 1923034 & 81002 & & ............. \\
\hline \(\begin{array}{llll}37 & 41 & 48.8\end{array}\) & 1925005.2 & \(\begin{array}{lllll}8 & 11 & 56.3\end{array}\) & & \\
\hline \(\begin{array}{llll}37 & 46 & 50.5\end{array}\) & 1983939.5 & 380958.6 & & \\
\hline \(\begin{array}{llll}37 & 47 & 07.0\end{array}\) & 122323 & 880930.1 & & \\
\hline \(\begin{array}{llll}37 & 47 & 29.8\end{array}\) & 12286 & \(\begin{array}{llll}8 & 09 & 45.0\end{array}\) & 1527 & Feb., 1852. \\
\hline \(\begin{array}{lllll}37 & 47 & 52.8\end{array}\) & 1888319.4 & 8 809 33.3 & & ............. \\
\hline \(\begin{array}{llll}37 & 48 & 00.1\end{array}\) & \(192 \begin{array}{lll}193 & 29.4\end{array}\) & \(\begin{array}{llll}8 & 09 & 33.3\end{array}\) & & \\
\hline \(\begin{array}{lllll}37 & 48 & 31.4\end{array}\) & \(1 \begin{array}{llll}122 & 27 & 37.9\end{array}\) & \(8{ }^{8} 09505\) & & \\
\hline \(\begin{array}{llll}37 & 49 & 03.7\end{array}\) & 1223050.3 & \(8 \quad 1003.3\) & & \\
\hline
\end{tabular}


TABLE OF GEOGRAPHICAL POSITIONS-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline d & \multirow[t]{2}{*}{Name of station.} & \multirow[t]{2}{*}{Locality.} & \multirow[t]{2}{*}{Latilude, north.} & \multicolumn{2}{|l|}{Lengitude, west.} & \multirow[t]{2}{*}{Magnetic varation, east.} & \multirow[t]{2}{*}{Tlime of determination.} \\
\hline & & & & In arc. & In time. & & \\
\hline 82 & Port Gamble.. & Four miles inside the entrance to Hood's canal, East Po & \(\cdots{ }^{\circ} 1\) & - ' " & h. m. s. & , & \\
\hline 83 & Restoration Point. 2 A ....................................... & st. point of Baintridge island, Admiralty inlet.. & 45 5.0 & \(\begin{array}{llll}122 & 33 & 56\end{array}\) & \(\begin{array}{llll}8 & 10 & 15.7\end{array}\) & .......... & \\
\hline 84 & Point Pully. 2 A............................. ............... & E. side of Admiralty inlet, opposite Vashon's island. & 47 35 03.8 & \(\begin{array}{llll}122 & 28 & 00.0\end{array}\) & 8 O9 52,0 & ........ & \\
\hline 85 & Lummi. 2 A. & Sand point on the NE. side of the island ........... & \(\begin{array}{llll}47 & 97 & 07.3\end{array}\) & \(122 \quad 2291.5\) & 80999.4 & & \\
\hline 86 & Lummi North .............................................. & N. point of the island .................. & \(\begin{array}{lll}48 & 44 & 01.7 \\ 48 & 44 & 5.2\end{array}\) & 122 40 37 & 81048.5 & & \\
\hline & & & \(\begin{array}{llllll}48 & 44 & 53.2\end{array}\) & 1224212 & 81048.8 & & \\
\hline & foouver island. & & From & the Admiraty & clarts. & & \\
\hline 67 & Observatory Rockk. ...... ..................................... & SF. point of Ean Juan harbor, Strait of Juan de Fuca. & 483130 & \(124 \quad 2815\) & \(\begin{array}{lllll}8 & 17 & 53.0\end{array}\) & & \\
\hline 88 & Benchy Heqad...... ....... .................................. & E. of Some inlet, Etrait of Juan de Fuea....................... & \(48 \quad 18 \quad 30\) & \(\begin{array}{llll}123 & 38 & \text { 27 }\end{array}\) & \(\begin{array}{lllll}8 & 14 & 37.8\end{array}\) & & \\
\hline 89 & Race Rocks light-bout, II-FI. W. every 10 secs .............. & Southernmost point of Vancouver, Strait of Juan de Fuca, 118 f . & \(48 \quad 17 \quad 30\) & \(\begin{array}{llll}123 & 32 & 15\end{array}\) & 881409.0 & & \\
\hline 90 & Figgrad sland light-house, IV-F.-15. See page 391........... & W. हide of entrance to Esquimault harbor, Strait of Juan de Fuca, 70 feet bigh. & \(48 \quad 25 \quad 38\) & \(123 \quad 2710\) & \(\begin{array}{llll}8 & 13 & 48.7\end{array}\) & & \\
\hline
\end{tabular}

TIDE TABLES FOR SAN DIEGO.*
TABLE I.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Time of moon's } \\
\text { transit. }
\end{gathered}
\]} & \multicolumn{15}{|c|}{houtil declination.-days from moon's gheatebt declination.} \\
\hline & \multicolumn{7}{|c|}{Before-} & \multirow[b]{2}{*}{0} & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline h. m. & h. m . & h. m. & h. m . & h. m . & h. m . & h. m. & h. m. & h. \(m\) & h. \(m\). & h. m. & h. \(m\). & h. \(m\). & h. \(m\). & h. m. & h. m. \\
\hline 00 & 925 & 40 & 52 & 10 a & 1012 & 1020 & 1025 & 1029 & 1029 & 1025 & 1019 & 1010 & 100 & 947 & 930 \\
\hline 030 & 915 & 930 & 942 & 953 & 102 & 1010 & 1015 & 1019 & [1019 & 1015 & 10 o & 100 & 950 & 98 & 929 \\
\hline 10 & 98 & 923 & 935 & 946 & 955 & 103 & \(\begin{array}{ll}10 & 8\end{array}\) & 1012 & 1012 & 108 & 102 & 953 & 943 & 930 & 9 : \\
\hline 130 & 91 & 916 & 928 & 939 & 948 & 936 & 101 & 105 & 105 & 101 & 955 & 946 & 936 & 923 & 96 \\
\hline 20 & 854 & 99 & 921 & 932 & 941 & 949 & 954 & 958 & 958 & 954 & 948 & 939 & 929 & 916 & 859 \\
\hline 230 & 849 & 94 & 916 & 927 & 936 & 944 & 949 & 953 & 953 & 949 & 943 & 934 & 924 & 911 & E 54 \\
\hline 30 & 848 & 93 & 915 & 926 & 935 & 943 & 948 & 952 & 952 & 918 & 942 & 933 & 923 & 9 10 & 853 \\
\hline 330 & 848 & 93 & 915 & 926 & 935 & 943 & 948 & 952 & 954 & 948 & 942 & 933 & 923 & 910 & 853 \\
\hline 40 & 858 & 97 & 919 & 930 & 339 & 947 & 952 & 956 & 956 & 952 & 946 & 937 & 927 & 914 & B 37 \\
\hline 430 & 856 & 911 & 923 & 934 & 943 & 951 & 956 & 100 & 100 & 956 & 950 & 941 & 931 & 918 & 91 \\
\hline 5 & 9 15 & 930 & 942 & 953 & 102 & 1010 & 1015 & 1019 & 1019 & 1015 & \(\begin{array}{lll}10 & 9\end{array}\) & 100 & 950 & 937 & 920 \\
\hline 530 & 937 & 9 52 & 104 & 1015 & 1024 & 1032 & 1037 & 1041 & 1041 & 1037 & 1031 & 1022 & 1012 & 959 & 942 \\
\hline 60 & 955 & 1010 & 1022 & 1033 & 1042 & 1050 & 1055 & 1059 & 1059 & 1055 & 1049 & 1040 & 1030 & 1017 & 100 \\
\hline 630 & 1012 & 1087 & 1039 & 1050 & 10.59 & 117 & 1112 & 1016 & 1016 & 1112 & 116 & 1057 & 1047 & 1034 & 1017 \\
\hline 70 & 1018 & 1033 & 1045 & 1055 & 115 & 1113 & 1118 & 11 @ & 1122 & 1118 & 1112 & \(11 \quad 3\) & 1053 & 1040 & 1023 \\
\hline 730 & 1020 & 11035 & 1045 & 1058 & 137 & 1115 & 1120 & 1124 & 1124 & 1120 & 1114 & 115 & 1055 & 1042 & 1025 \\
\hline \(\otimes 0\) & 1022 & 1037 & 1049 & 110 & 119 & 11.7 & 1122 & 1126 & 1126 & 1122 & 1115 & 11 - & 1057 & 1044 & 1027 \\
\hline 830 & 1024 & 1039 & 1051 & 112 & 1111 & 1119 & 1124 & 1128 & 1128 & 1124 & 1118 & 119 & 1059 & 1046 & 1029 \\
\hline 90 & 1018 & 1033 & 1045 & 1056 & 115 & 1113 & 1118 & 1122 & 119 & 1118 & 11 12 & 113 & 1053 & 1040 & 1023 \\
\hline 930 & 1010 & 1025 & 1037 & 1048 & 1057 & 115 & 1110 & 1114 & 1114 & 1110 & 114 & 1055 & 1045 & 1032 & 1015 \\
\hline 100 & 100 & 1015 & 1027 & 1038 & 1045 & 105 & 11 & 114 & 114 & 11 & 1054 & 1045 & 1035 & 1022 & 105 \\
\hline 1030 & 953 & 108 & 1020 & 10 S1 & 1040 & 1048 & 1053 & 1057 & 1057 & 1053 & 1047 & 1038 & 1028 & 1015 & 958 \\
\hline 110 & 945 & 100 & 1012 & 1023 & 1032 & 10 40 & 1045 & 1049 & 1049 & 1045 & 1073 & 1030 & 1020 & 10 \% & 950 \\
\hline 1130 & 936 & 951 & 103 & 1014 & 1023 & 1031 & 1036 & \(10{ }^{40}\) & 1040 & 1036 & 1030 & 1021 & 1011 & 958 & 941 \\
\hline
\end{tabular}

TABLE II.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{7}{|c|}{Before-} & & \multicolumn{7}{|c|}{After} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline h. m. & h. \(m\). & h. m. & h. m. & h. \(m\). & h. m. & h. m . & h. m . & h. m. & 4. m. & h. \(m\). & h. m. & h. \(m\). & h. m. & A. m. & h. m. \\
\hline 00 & 930 & 916 & 94 & 853 & 844 & 836 & 831 & 827 & 827 & 831 & 837 & 846 & 856 & 99 & \({ }^{26}\) \\
\hline 030 & 921 & 96 & 854 & 843 & 834 & 826 & 821 & 817 & 817 & 821 & 827 & 83 & 846 & 859 & 916 \\
\hline 10 & 914 & 859 & 847 & 836 & 827 & 819 & 814 & 810 & 810 & 814 & 820 & 823 & 839 & 8 52 & 9 9 \\
\hline 130 & 97 & 852 & 840 & 829 & 820 & 812 & 87 & 83 & 83 & 87 & 813 & 822 & 83 & 845 & 92 \\
\hline 20 & 90 & 845 & 833 & 82 & 813 & 85 & 80 & 756 & 756 & 80 & 86 & 815 & 825 & 838 & 855 \\
\hline 230 & 855 & 840 & ¢ 28 & 817 & 88 & 80 & 755 & 751 & 751 & 755 & 81 & 810 & 820 & 833 & 850 \\
\hline 30 & 854 & 839 & 827 & 816 & 87 & 759 & 754 & 750 & 750 & 754 & 80 & 89 & 819 & 832 & 849 \\
\hline 330 & 854 & 839 & 827 & 816 & 87 & 759 & 754 & 750 & 750 & 754 & 80 & 89 & 819 & 832 & 849 \\
\hline 40 & 858 & 843 & 831 & 820 & 811 & 83 & 758 & 754 & 754 & 758 & 84 & 813 & 823 & 836 & 853 \\
\hline 433 & 92 & 847 & 835 & 824 & 815 & 87 & 82 & 758 & 758 & 82 & 88 & 817 & 827 & 840 & 857 \\
\hline 50 & 921 & 96 & 854 & 843 & 834 & 826 & \(8{ }^{81}\) & 817 & 817 & 821 & 887 & 836 & 846 & 859 & 916 \\
\hline 530 & 943 & 928 & 916 & 95 & 856 & 848 & 843 & 839 & 839 & 843 & 849 & 858 & 98 & 921 & 938 \\
\hline 60 & 101 & 946 & 934 & 927 & 914 & 96 & 91 & 857 & 857 & 91 & 97 & 916 & 926 & 939 & 956 \\
\hline 630 & 1018 & 103 & 951 & 940 & 931 & 923 & 918 & 914 & 914 & 918 & 924 & 93 & 943 & 956 & 1013 \\
\hline 70 & 19 & 109 & 957 & 946 & 937 & 929 & 924 & 920 & 920 & 924 & 930 & 934 & 949 & 102 & 1039 \\
\hline 730 & 1026 & 1011 & 959 & 948 & 939 & 931 & 926 & 92 & 920 & 926 & 932 & 941 & 951 & 104 & 1021 \\
\hline 80 & 1028 & 1013 & 101 & 950 & 941 & 933 & 988 & 994 & 924 & 928 & 934 & 943 & 953 & 106 & 1023 \\
\hline 830 & 1030 & 1015 & 103 & 952 & 943 & 935 & 930 & 926 & 926 & 930 & 936 & 945 & 955 & 108 & 1025 \\
\hline 90 & 1024 & 109 & 957 & 946 & 937 & 929 & 924 & 920 & 920 & 924 & 930 & 439 & 949 & 102 & 1019 \\
\hline 930 & 1016 & 101 & 949 & 938 & 929 & 921 & 916 & 912 & 912 & 916 & 92 & 931 & 941 & 954 & 1011 \\
\hline 10 0 & 106 & 951 & 939 & 988 & 919 & 911 & 86 & 92 & 92 & 96 & 912 & 921 & 931 & 94 & 101 \\
\hline 1030 & 959 & 944 & 932 & 9121 & 912 & 94 & 859 & 855 & 855 & 859 & 95 & 914 & 984 & 937 & 954 \\
\hline 110 & 951 & 936 & 924 & 913 & 94 & 856 & 851 & 847 & 847 & 851 & 857 & 96 & 916 & 929 & 946 \\
\hline 1130 & 942 & 927 & 915 & 94 & 855 & 847 & B48 & 838 & 838 & 842 & 848 & 857 & 97 & 920 & 937 \\
\hline
\end{tabular}
* For the manner of using these tables, see the example for San Francisco, pages 3/1-316.

TABLE III．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{3}{|c|}{south dechination．} & \multicolumn{2}{|r|}{nortri declination，} & Low water． （Small．） &  \\
\hline 7 & \[
\boldsymbol{l} . \boldsymbol{m}
\]
\[
544
\] & \begin{tabular}{l}
h．\(m\) ． \\
12 28
\end{tabular} & \[
\begin{array}{cc}
\text { h. } & \boldsymbol{n} . \\
18 & 44
\end{array}
\] & \[
\text { h. } \boldsymbol{\pi r}
\]
\[
616
\] & \begin{tabular}{l}
h．\(m\) \\
\(12 \quad 16\)
\end{tabular} & \[
\begin{array}{cc}
\text { h. } \boldsymbol{m} . \\
18 & 00
\end{array}
\] & 7 \\
\hline 6 & 518 & 1156 & 1840 & 642 & 1246 & 1804 & 6 \\
\hline \(\therefore 5\) & 500 & 1134 & \(18 \quad 34\) & 700 & 1310 & 1810 & 5 － \\
\hline 気 4 & 447 & 11.12 & \(18 \quad 25\) & 713 & \(13 \quad 32\) & \(18 \quad 19\) & 4 家 \\
\hline \(\pm 3\) & 434 & \(10 \quad 54\) & 1820 & 720 & 1350 & 1824 & 3 梹 \\
\hline 2 & 424 & \(10 \quad 38\) & \(18 \quad 14\) & 736 & 1406 & \(18 \quad 30\) & 2 \\
\hline （1） & 417 & 1088 & 1811 & 7 43 & 1416 & \(18 \quad 33\) & 1 ］ \\
\hline 0 & 412 & \(10 \quad 20\) & 1808 & 748 & 1424 & 18 36 & 0 \\
\hline 11 & 414 & 1020 & 1806 & \％ 46 & \(14 \quad 24\) & 1838 & 1 ？ \\
\hline 2 & 424 & \(10 \quad 28\) & 1804 & 736 & 1416 & 1840 & 2 \\
\hline － 3 & 438 & 10.40 & 1802 & 722 & \(14 \quad 04\) & 1842 & 3. \\
\hline E\｛4 & 501 & \(10 \quad 58\) & \(17 \quad 57\) & 659 & 1346 & 1847 & 4 圱 \\
\hline 45 & 525 & 1118 & \(17 \quad 53\) & 635 & 1346 & 1851 & 5 ＊ \\
\hline 6 & 549 & 1144 & \(17 \quad 55\) & 611 & 1300 & 1849 & 6 \\
\hline 17 & 618 & 1218 & 1800 & \(5 \quad 42\) & \(12 \times 6\) & \(18 \quad 44\) & \\
\hline
\end{tabular}

TABLE IV．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Time of moon＇s
transit．} & \multicolumn{15}{|c|}{bouth declination－days from moon＇s oreatest dechmation．} \\
\hline & \multicolumn{7}{|c|}{Beiore－} & \multirow[b]{2}{*}{0} & \multicolumn{7}{|c|}{After－－} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline Hour． & Ft． & Ft． & Ft． & Ft． & Ft． & Ft． & \(F t\). & \(F 2\). & Ft． & Ft． & \(F t\). & Ft． & Ft． & \(F \cdot\) & F2． \\
\hline 0 & 4.7 & 4.5 & 4.3 & 4.2 & 4.1 & 4.1 & 4.1 & 4.1 & 4.2 & 4.3 & 4.5 & 4.8 & 5.1 & 5.5 & 5.8 \\
\hline 1 & 4.6 & 4.4 & 4.2 & 4.1 & 4.0 & 4.0 & 4.0 & 4.0 & 4.1 & 4.2 & 4.4 & 4.7 & 5.0 & 5.4 & 5.7 \\
\hline 2 & 4.4 & 4.2 & 4.0 & 3.9 & 3.8 & 3.8 & 3.8 & 3.8 & 3.9 & 4.0 & 4.2 & 4.5 & 4.8 & 5.2 & 5.5 \\
\hline 3 & 4.1 & 3.9 & 3.7 & 3.6 & 3.5 & 3.5 & 3.5 & 3.5 & 3.6 & 3.7 & 3.9 & 4.2 & 4.5 & 4.9 & 5.2 \\
\hline 1 & 3.8 & 3.6 & 3.4 & 3.3 & 3.2 & 3.2 & 3.2 & 3.2 & 3.3 & 3.4 & 3.6 & 3.9 & 4.2 & 4.6 & 4.9 \\
\hline 5 & 3.6 & 3.4 & 3.2 & 3.1 & 3.0 & 3.0 & 3.0 & 3.0 & 3.1 & 3.2 & 3.4 & 3.7 & 4.0 & 4.4 & 4.7 \\
\hline 6 & 3.6 & 3.4 & 3.2 & 3.1 & 3.0 & 3.6 & 3.0 & 3.0 & 3.1 & 3.2 & 3.4 & 3.7 & 4.0 & 4.4 & 4.7 \\
\hline 7 & 3.7 & 3.5 & 3.3 & 3.2 & 3.1 & 3.1 & 3.1 & 3.1 & 3.2 & 3.3 & 3.5 & 3.8 & 4.1 & 4.5 & 4.8 \\
\hline 8 & 3.8 & 3.6 & 3.4 & & 3.2 & 3.2 & 3.2 & 3.2 & 3.3 & 3.4 & 3.6 & 3.9 & 4.2 & 4.6 & 4.9 \\
\hline 9 & 4.4 & 4.2 & 4.0 & 3.9 & 3.8 & 3.8 & 3.8 & 3.8 & 3.9 & 4.0 & 4.2 & 4.5 & 4.8 & 5.2 & 5.5 \\
\hline 10 & 4.7 & 4.5 & 4.3 & 4.2 & 4.1 & 4.1 & 4.1 & 4.1 & 4.2 & 4.3 & 4.5 & 4.8 & 5.3 & 5.5 & 5.8 \\
\hline 11 & 4.8 & 4.6 & 4.4 & 4.3 & 4.2 & 4.2 & 4.2 & 4.2 & 4.3 & 4.4 & 4.6 & 4.9 & 5.2 & 5.6 & 5.9 \\
\hline
\end{tabular}

TABLE \(\nabla\) ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Time of moon＇s
transit．} & \multicolumn{15}{|c|}{north declination－dats from moon＇g greatert drcilnation．} \\
\hline & \multicolumn{7}{|c|}{Beforem} & & \multicolumn{7}{|c|}{After－} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline Hour． & Ft． & \(F t\). & F7． & Ft． & Fit． & Ft． & \(F \cdot\) & Ft． \\
\hline 0 & 5.7 & 5.9 & 6.1 & 6.2 & 6.3 & 6.3 & 6.3 & 6.3 & 6.2 & 6.1 & 5.9 & 5.6 & 53 & 4.9 & 4.6 \\
\hline 1 & 5.6 & 5.8 & 6.0 & 6.1 & 6.2 & 6.2 & 6.2 & 6.2 & 6.1 & 6.0 & 5.8 & 5.5 & 5.2 & 4.8 & 4.5 \\
\hline 2 & 5.4 & 5.6 & 5.8 & 5.9 & 6.0 & 6.0 & 6.0 & 6.0 & 5.9 & 5.8 & 5.6 & 5.3 & 5.0 & 4.6 & 4.3 \\
\hline 3 & 5.1 & 5.3 & 5.5 & 5.6 & 5.7 & 5.7 & 5.7 & 5.7 & 5.6 & 5.5 & 5.3 & 5.0 & 4.7 & 4.3 & 4.0 \\
\hline 4 & 4.8 & 5.0 & 5.2 & 5.3 & 5.4 & 5.4 & 5.4 & 5.4 & 5.3 & 5.2 & 5.0 & 4.7 & 4.4 & 4.0 & 3.7 \\
\hline 5 & 4.6 & 48 & 5.0 & 5.1 & 5.2 & 5.2 & 5.2 & 5.2 & 5.1 & 5.0 & 4.8 & 4.5 & 4.2 & 3.8 & 8.5 \\
\hline 6 & 4.6 & 48 & 5.0 & 5.1 & 5.2 & 5.2 & 5.2 & 5.2 & 5.1 & 5.0 & 4.8 & 4.5 & 4.2 & 3.8 & 3.5 \\
\hline 7 & 1.7 & 4.9 & 5.1 & 5.2 & 5.3 & 5.3 & 5.3 & 5.3 & 5.2 & 5.1 & 4.9 & 4.6 & 4.3 & 3.9 & 3.6 \\
\hline 8 & 4.8 & 5.0 & 5.2 & 5.3 & 5.4 & 5.4 & 5.4 & 5.4 & 5.3 & 5.2 & 5.0 & 4.7 & 4.4 & 4.0 & 3.7 \\
\hline 9 & 5.4 & 5.6 & 5.8 & 5.9 & 6.0 & 6.0 & 6.0 & 6.0 & 5.9 & 5.8 & 5.6 & 5.3 & 5.0 & 4.6 & 4.3 \\
\hline 10 & 5.7 & 5.9 & 6.1 & 6.2 & 6.3 & 6.3 & 6.3 & 6.3 & 6.2 & 6.1 & 5.9 & 5.6 & 5.3 & 4.9 & 4.6 \\
\hline 11 & 5.8. & 6.0 & 6.2 & 6.3 & 6.4 & 6.4 & 6.4 & 6.4 & 6.3 & 6.2 & 6.0 & 5.7 & 5.4 & 5.0 & 4.7 \\
\hline
\end{tabular}

Nows．－To une thege tables fith a chart on which the soundinga are referred to mean how water，subtract 1,2 foot from the numbers in tha cables for all places from San Dlego to Astoria．

TABLE VI.


TABLE VII.


TIDE TABLES FOR ASTORIA.* table I.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{16}{|c|}{sodtis dechination.-days from moon's greatest declination.} \\
\hline & \multicolumn{7}{|c|}{Before-} & \multirow[b]{2}{*}{0} & \multicolumn{8}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & & \(\underline{9}\) & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline h. m. & h. m. & h. \(m\). & h. m. & h. m. & A. \(m\). & h. m. & h. m . & h. m. & h. \(m\). & h. \(m\). & h. m . & h. m. & \(h, m\). & h. m. & \(n\). & m. \\
\hline 00 & 1242 & 1255 & 135 & 1318 & 1328 & 1338 & 1341 & 1345 & 1346 & 1344 & 1340 & 1334 & 1324 & 1314 & 13 & 2 \\
\hline 030 & 1236 & 1249 & 1259 & 1312 & 1392 & 1382 & 138 & \(13 \quad 39\) & 1340 & 13 38 & 1334 & 1398 & 1318 & 138 & 12 & 56 \\
\hline 10 & 1229 & 1242 & 1252 & 135 & 1315 & \(13 \quad 25\) & \(13 \quad 23\) & \(13 \quad 32\) & \(13 \quad 33\) & \(13 \quad 31\) & 1327 & 1321 & 1311 & 131 & 12 & 49 \\
\hline 130 & 1223 & 1236 & 1246 & 1259 & 139 & 1319 & \(13 \quad 22\) & 1380 & \(13 \quad 27\) & 1325 & 1321 & 1315 & 135 & 1255 & 12 & 43 \\
\hline 20 & 1215 & 1228 & 1238 & 1251 & 131 & 1311 & 1314 & 1318 & 1319 & 13 17 & 1313 & 137 & 1257 & 1247 & 12 & U5 \\
\hline 230 & 129 & 1292 & 1232 & 1245 & 1255 & 135 & 138 & 1312 & 1313 & 1311 & 137 & 131 & 1251 & 1241 & 12 & 29 \\
\hline 30 & 123 & 1216 & 1226 & 1239 & 1249 & \(12 \quad 59\) & 13.2 & 136 & 137 & 135 & 131 & 1258 & 1245 & 1235 & 12 & 23 \\
\hline 330 & I1 58 & 1211 & 1221 & 1234 & 1244 & \(12 \quad 54\) & \(12 \quad 57\) & 13 & \(13 \quad 2\) & 130 & 1256 & 1250 & 1240 & 1230 & 12 & 18 \\
\hline 40 & 1157 & 1210 & 1220 & 1233 & 1243 & \(12 \quad 53\) & \(12 \quad 56\) & 13 & 13 & \(12 \quad 59\) & 1255 & 1249 & 1239 & 1229 & 12 & 17 \\
\hline 430 & 120 & 1213 & 1223 & 12 36 & 1246 & 1256 & \(12 \quad 59\) & \(13 \quad 3\) & 13 & 132 & 1258 & 1252 & 1242 & 123 & 12 & 20 \\
\hline 50 & 12 B & 1221 & 1231 & 1244 & 1254 & 134 & 137 & 1311 & 1312 & 1310 & 136 & 130 & 1250 & 1240 & 12 & 28 \\
\hline 530 & 1215 & 1228 & 1238 & 12 51 & 131 & 1311 & 1314 & 1318 & 1319 & \(\begin{array}{lll}13 & 17\end{array}\) & 1313 & 137 & 12 5\% & 1247 & 12 & 35 \\
\hline 60 & 1225 & 1238 & 1248 & 131 & 1311 & 13 21 & \(13 \quad 24\) & \(13 \quad 28\) & \(13 \quad 29\) & \(13 \quad 27\) & 1323 & 1317 & 137 & 1257 & 12 & 45 \\
\hline 630 & 1236 & 1249 & 1259 & 1312 & 139 & 1332 & 1335 & \(13 \quad 39\) & 1340 & 1388 & 1334 & 1328 & 1318 & 138 & 12 & 56 \\
\hline 70 & 1245 & 1258 & 13 B & 1321 & 1331 & 13 4i & 1344 & 1348 & 1349 & 1347 & 1343 & 1337 & 1327 & 1317 & 13 & 5 \\
\hline 730 & 1255 & 138 & 1318 & 1331 & 1341 & \(13 \quad 51\) & \(13 \quad 54\) & 1358 & 1359 & 1357 & 1353 & 1347 & 1337 & 1327 & 13 & 15 \\
\hline 80 & 133 & 1316 & 1326 & 1334 & 1349 & 1359 & 142 & 146 & 14 & \(14 \quad 5\) & 141 & 1355 & 1345 & 1335 & 13 & 23 \\
\hline 830 & 138 & 1321 & 1331 & 1344 & 1354 & 14 & 14 & \(14 \begin{array}{ll}11\end{array}\) & \(14 \quad 12\) & 14.10 & 146 & 140 & 1350 & 1340 & 13 & 28 \\
\hline 90 & 1310 & 1323 & 1333 & 1346 & 1356 & 146 & 149 & 1413 & 1414 & \(14 \quad 12\) & 148 & 142 & 1352 & 1342 & 13 & 30 \\
\hline 930 & 139 & 1329 & 1332 & 1345 & 1355 & 145 & 148 & 1412 & 1413 & 14 II & 147 & 141 & 1351 & 1341 & 13 & 29 \\
\hline 100 & \(13 \quad 5\) & 1318 & 1388 & 1341 & 1351 & 141 & \(14 \quad 4\) & 148 & \(14 \quad 9\) & \(14 \quad 7\) & 143 & 1357 & 1347 & 1337 & 13 & 25 \\
\hline 1030 & 1259 & 1312 & 1322 & 1335 & 1345 & 1355 & 1358 & 14 & 143 & 14 & 1357 & 1351 & 1341 & 1331 & 13 & 19 \\
\hline 110 & 1553 & 136 & 1316 & 1329 & 1339 & 1349 & \(13 \quad 52\) & 1356 & \(13 \quad 57\) & 1355 & 13 J & 1345 & \(13: 5\) & 1395 & 13 & 13 \\
\hline IL 30 & 1246 & 1254 & 13 y & 1322 & 1332 & 1342 & 1345 & \(13 \quad 49\) & \(13 \quad 50\) & 1348 & 1344 & 1338 & 139 & 1318 ! & 13 & 6 \\
\hline
\end{tabular}
table iI.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Time of moon's
transit.} & \multicolumn{15}{|c|}{north declination.-Dats from moon's greategt declination.} \\
\hline & \multicolumn{7}{|c|}{Before-} & \multirow[b]{2}{*}{0} & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline h. m. & h. m. & h. \(m\). & h. m. & h. \(m\). & h. m. & h. m. & h. m. & h. m. \\
\hline 00 & 1310 & 1257 & 1247 & 1234 & \(12 \mathrm{E4}\) & \(12 \quad 14\) & 1211 & 12 \% & 126 & 128 & 1212 & 1218 & 1228 & 1238 & 1250 \\
\hline 030 & 134 & 1251 & 1241 & 1298 & 1218 & 123 & 125 & 121 & 120 & 12.2 & 126 & 1212 & 1222 & 1232 & \(12 \quad 44\) \\
\hline 10 & 1257 & 1244 & 1234 & 1221 & 1211 & 12 l & \(\begin{array}{ll}11 & 38\end{array}\) & 1154 & 1153 & 1155 & 1159 & 125 & 1215 & 1225 & \(12 \quad 37\) \\
\hline 130 & 1251 & 1238 & 1228 & 1215 & 125 & 1155 & 115 & 1148 & \(\begin{array}{ll}11 & 47\end{array}\) & 1149 & 1153 & 1159 & 12 g & 1219 & 12 al \\
\hline 20 & 1243 & 1230 & 1220 & 12.7 & 1157 & 1187 & 1144 & 1140 & 1139 & 1141 & 1.45 & 1151 & 121 & 1211 & 1223 \\
\hline 230 & 1237 & 1224 & 1214 & 121 & 1151 & 1114 & 1138 & 1134 & 11.33 & 1135 & 1139 & 1145 & 1155 & 125 & 1217 \\
\hline 30 & 1231 & 1218 & 128 & 1155 & 1145 & 11. 35 & 1132 & 1128 & 11 27 & I1 99 & 1133 & 1139 & 1149 & 1159 & 1211 \\
\hline 330 & 1228 & 1213 & 123 & 1150 & 1140 & 1130 & \(\begin{array}{ll}11 & 27\end{array}\) & 1123 & \(11.22^{*}\) & \(11 \quad 24\) & 1128 & 1134 & 1144 & 1154 & 12 G \\
\hline 40 & 1225 & 1212 & 122 & 1149 & 1139 & \(11 \quad 29\) & 1186 & 1122 & 1121 & 1183 & 1127 & 1133 & 1143 & 1153 & 125 \\
\hline 430 & 1228 & 1215 & 125 & 1152 & 1142 & 1132 & 1192 & 11 25 & 11.24 & 1156 & 1130 & 1136 & 1146 & 1156 & 12 B \\
\hline 50 & 1236 & 1223 & 1213 & 120 & 1150 & 1140 & 1137 & 11 33 & 1132 & \(\begin{array}{ll}11 & 34\end{array}\) & 1138 & I1 44 & 1154 & 124 & \(12 \quad 16\) \\
\hline 530 & 1243 & 1230 & 1220 & 127 & 1157 & 1147 & 1144 & 1140 & 1139 & 1141 & 1145 & 1151 & 121 & 1211 & 1223 \\
\hline 60 & 1254 & 1240 & 1230 & 1217 & 127 & 1157 & 1154 & 1050 & 1149 & 1151 & 1155 & 121 & 1211 & 1221 & 12 ll \\
\hline 630 & 134 & 1251 & 1241 & 1298 & 1218 & 128 & 125 & 121 & 120 & 12 L & 126 & 1212 & 1222 & 1232 & \(\begin{array}{ll}12 & 44\end{array}\) \\
\hline 70 & 1313 & 130 & 1250 & 1237 & 12 x & \(\begin{array}{lll}12 & 17\end{array}\) & 1214 & 1210 & 129 & \(12 \quad 11\) & 1215 & 1291 & 1231 & 1241 & 12.53 \\
\hline 730 & 1323 & 1310 & 130 & 1247 & 1237 & 1297 & \(12 \quad 24\) & 12.20 & 1219 & 12 11 & 1225 & 1231 & 1241 & 1251 & 13 3 \\
\hline 80 & 1331 & 1318 & 138 & 1255 & 1245 & 1235 & 1232 & 1288 & \(12 \quad 27\) & 1229 & 1233 & 1239 & 1249 & 1259 & 1311 \\
\hline 830 & 1336 & 1323 & 1313 & 130 & 1250 & 1240 & 1237 & 1233 & 1232 & 1234 & 1238 & 1244 & 1254 & 134 & 1318 \\
\hline \(y 0\) & 1338 & 1325 & 1315 & 132 & 1252 & 1242 & 1239 & \(12 \quad 35\) & \(12 \quad 34\) & 1236 & 1240 & 1246 & 1256 & 136 & 1318 \\
\hline 930 & 1337 & 1324 & 1314 & 131 & 1251 & 1241 & 1238 & \(12 \quad 34\) & 1283 & 1235 & 1239 & 1245 & 1255 & 135 & \(13 \quad 17\) \\
\hline 100 & 1333 & 1320 & 1310 & 1257 & 1247 & 127 & \(12 \quad 34\) & 1230 & \(12 \quad 29\) & 1231 & 1235 & 1241 & 1251 & 131 & \(13 \quad 13\) \\
\hline 1030 & 1327 & 1314 & 134 & 1251 & 1241 & 1231 & 1288 & 12.24 & 12 2 & \(12 \quad 25\) & 1229 & 1235 & 1245 & 1255 & 137 \\
\hline 110 & 1321 & 138 & 1258 & 1245 & 1235 & \(12 \quad 25\) & 12 n & \(12 \quad 18\) & \(12 \quad 17\) & \(12 \quad 19\) & 1223 & 1229 & 1239 & 1249 & 13 \\
\hline 1130 & 1314 & 131 & 1251 & 1238 & 12 28 & 1218 & 1215 & 12 il & 1210 & 1212 & 1216 & 1298 & 1232 & 1242 & 1254 \\
\hline
\end{tabular}
* For the menner of using these tables, see the examples for Ban Prancisco, pages 311-316.

TABLE III.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{3}{|c|}{south declination.} & \multicolumn{3}{|c|}{morth declimation.} & \multirow[t]{2}{*}{} \\
\hline  & Low water. (Small.) & \begin{tabular}{l}
High water. \\
(Large.)
\end{tabular} & Low water. (Large.) & Low water. (Large.) & \begin{tabular}{l}
High water. \\
(Emall)
\end{tabular} & Low water. (Bmall.) & \\
\hline \multirow[b]{9}{*}{} & h. \(m\). & h. m. & h. m. & h. m. & h. m. & h. \(m\). & \\
\hline & 638 & 1259 & \(19 \quad 17\) & 618 & 1203 & 1841 & 71 \\
\hline & \(6 \quad 14\) & \(12 \quad 33\) & \(19 \quad 15\) & 642 & 12.29 & 1843 & 6 \\
\hline & \(5 \quad 55\) & 1213 & \(19 \quad 14\) & 701 & 1249 & 1844 & 5 ¢ \\
\hline & 534 & 1147 & \(19 \quad 09\) & 722 & 1315 & \(18 \quad 49\) & 4 欵 \\
\hline & 520 & 1127 & 1903 & 736 & 1345 & 1855 & 3 - \\
\hline & 509 & 1107 & \(18 \quad 54\) & 747 & 1355 & 1904 & 2 \\
\hline & 505 & 1101 & \(18 \quad 52\) & 751 & 1401 & 1906 & 1. \\
\hline & 503 & 1053 & 1846 & \(7 \quad 53\) & 1409 & \(19 \quad 12\) & 0 \\
\hline \multirow{7}{*}{突} & 505 & 1051 & 1842 & 751 & 14 12 & \(19 \quad 16\) & 17 \\
\hline & 511 & \(10 \quad 55\) & 1840 & 745 & \(14 \quad 67\) & \(19 \quad 18\) & 2 \\
\hline & 518 & 1103 & 1841 & \(7 \quad 38\) & \(13 \quad 59\) & \(19 \quad 17\) & 3. \\
\hline & 5 32 & \(11 \quad 15\) & \(18 \quad 39\) & \(7 \quad 24\) & \(13 \quad 47\) & \(19 \quad 19\) & \(4\}\) \\
\hline & \(5 \quad 50\) & 1135 & 18 41 & 706 & \(13 \quad 27\) & \(19 \quad 17\) & 54 \\
\hline & 611 & 11. 55 & 1540 & 645 & \(13 \quad 07\) & \(19 \quad 18\) & 6 \\
\hline & & 12.19 & \(18 \quad 40\) & 621 & 1243 & \(19 \quad 18\) & \\
\hline
\end{tabular}

TABLE IV.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Time of moon's
transit.} & \multicolumn{15}{|c|}{gouth dechindtion.-days fron moon's greategt declination,} \\
\hline & \multicolumn{7}{|c|}{Before--} & & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline Hour. & Fcet. & Feet. & Feet. & Feet. & Feet. & Feet. & Feel. & Fret. & \({ }^{4}\) eet. & Feet. & Feet. & Feet. & Feet. & Feet. & Feet. \\
\hline 0 & 8.0 & 8.3 & 81 & 8.5 & 8.6 & 8.6 & 8.6 & 8.6 & 8.5 & 8.4 & 8.3 & 8.1 & 7.7 & 7.4 & 7.0 \\
\hline 1 & 8.0 & 8.2 & 8.4 & 8.5 & 8.6 & 8.6 & 8.6 & 8.6 & 8.5 & 8.4 & 8.2 & 8.1 & 7.7 & 7.4 & 7.0 \\
\hline 2 & 7.8 & 8.1 & 8.2 & 8.4 & 8.4 & 8.4 & 8.4 & 8.4 & 8.3 & 8.2 & 8.1 & 7.9 & 7.5 & 7.2 & 6.8 \\
\hline 3 & 7.5 & 7.8 & 7.9 & 8.1 & 8.1 & 8.1 & 8.1 & 8.1 & 8.0 & 7.9 & 7.8 & 7.6 & 7.2 & 6.9 & 6.5 \\
\hline 4 & 7.1 & 7.4 & 7.5 & 7.7 & 7.7 & 7.7 & 7.7 & 7.7 & 7.6 & 7.5 & 7.4 & 7.2 & 6.8 & 6.5 & \(6.1{ }^{*}\) \\
\hline 5 & 6.7 & 7.0 & 7.2 & 7.3 & 7.3 & 7.3 & 7.3 & 7.3 & 7.2 & 7.1 & 7.0 & 6.8 & 6.5 & 6.1 & 5.7 \\
\hline 6 & 6.5 & 6.8 & 7.0 & 7.1 & 7.1 & 7.1 & 7.1 & 7.1 & 7.0 & 6.9 & 68 & 6.6 & 6.3 & 5.9 & 5.5 \\
\hline 7 & 6.7 & 7.0 & 7.1 & 7.2 & 7.3 & 7.3 & 7.3 & 7.3 & 7.2 & 7.1 & 7.0 & 6.8 & 6.4 & 6.1 & 5.7 \\
\hline 8 & 7.0 & 7.3 & 7.5 & 7.6 & 7.6 & 7.6 & 7.6 & 7.6 & 7.5 & 7.4 & 73 & 7.1 & 6.8 & 6.4 & 6.0 \\
\hline 9 & 7.5 & 7.8 & 8.0 & 8.1 & 8.1 & 8.1 & 8.1 & 8.1 & 8.0 & 7.9 & 7.8 & 7.6 & 7.3 & 6.9 & 6.5 \\
\hline 10 & 7.9 & 8.2 & 8.4 & 8.5 & 8.5 & 8.5 & 85 & 8.5 & 8.4 & 8.3 & 8.2 & 8.0 & 7 7 & \%.3 & 6.9 \\
\hline 11 & 8.1 & 8.4 & 86 & 8.7 & 8.7 & 8.7 & 8.7 & 8.7 & 6.6 & 8.5 & 8.4 & 8.2 & 7.9 & 75 & 7.1 \\
\hline
\end{tabular}

TABLE \(V\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Time of moon's } \\
& \text { transit. }
\end{aligned}
\]} & \multicolumn{15}{|c|}{NORTE DECLINATION.-DATA PROM MOON's GREATERT DECLINATION.} \\
\hline & \multicolumn{7}{|c|}{Before-} & & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline Hour. & Feel. & Feet, & Feet. & Fert. & Fiet. & Feet. & Fect. & Feet. & Feat. & Feet. & Fcet. & Feet. & Feet. & Feel. & Feet. \\
\hline 0 & 7.4 & 7.1 & 6.9 & 6.8 & 6.8 & 6.8 & 6.8 & 6.8 & 6.9 & 7.0 & 7.1 & 7.3 & 7.6 & 8.0 & 8.4 \\
\hline 1 & 7.4 & 71 & 6.9 & 6.8 & 6.8 & 6.8 & 6.8 & 6.8 & 6.9 & 7.0 & 7.1 & 7.3 & 7.6 & 8.0 & 8.4 \\
\hline 2 & 7.2 & 6.9 & 6.8 & 6.6 & 6.6 & 6.6 & 6.6 & 6.6 & 6.7 & 6.8 & 6.9 & 7.1 & 7.5 & 7.8 & 8.8 \\
\hline 3 & 6.9 & 0.6 & 6.5 & 6.3 & 6.3 & 6.3 & 6.3 & 6.3 & 6.4 & 6.5 & 6.6 & 6.8 & 7.2 & 7.5 & 7.9 \\
\hline 4 & 6.5 & 6.2 & 6.1 & 5.9 & 5.8 & 5.9 & 5.9 & 5.9 & 6.0 & 6.1 & 6.2 & 64 & 6.7 & 7.1 & 7.5 \\
\hline 5 & 6.1 & 5.9 & 5.7 & 5.6 & 5.5 & 5.5 & 5.6 & 5.6 & 5.7 & 5.7 & 5.9 & 6.0 & 6.4 & 6.7 & 7.1 \\
\hline 6 & 5.9 & 5.7 & 5.5 & 5.4 & 5.3 & 5.3 & 5.3 & 5.4 & 5.5 & 5.5 & 5.7 & 5.9 & 6.2 & 6.5 & 6.9 \\
\hline 7 & 6.1 & 5.8 & 5.6 & 5.5 & 5.5 & 5.5 & 5.5 & 5.5 & 5.6 & 5.7 & 5.8 & 6.0 & 6.3 & 6.7 & 7.1 \\
\hline 8 & 6.4 & 6.2 & 6.0 & 5.9 & 5.8 & 5.8 & 5.8 & 5.8 & 5.9 & 6.0 & 6.2 & 6.3 & 6.7 & 7.0 & 74 \\
\hline 9 & 6.9 & 6.7 & 6.5 & 6.4 & 6.3 & 6.3 & 6.3 & 6.4 & 6.4 & 6.5 & 6.7 & 6.8 & 7.2 & 75 & 7.9 \\
\hline 10 & 7.3 & 7.1 & 6.9 & 6.8 & 6.7 & 6.7 & 6.7 & 6.8 & 6.9 & 6.9 & 7.0 & 7.2 & 7.6 & 79 & 8.3 \\
\hline 11 & 7.5 & 7.2 & 7.1 & 7.0 & 6.9 & 6.9 & 6.9 & 6.9 & 7.0 & 7.1 & 7.2 & 7.4 & 7.8 & 8.1 & 8.5 \\
\hline
\end{tabular}

Nors.-To use these tables with a chart on which the sounding are referred to mean low water, suburact 1.2 fout from the numbers in the tables for Astoria and 1.7 for Neeah bay.

54 Cs

TABLE VI．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{13}{|r|}{mall ebr tide，or from small mion water to amali low water．} & \multicolumn{15}{|c|}{from small low water to lakge hioh water．} & \multirow[t]{2}{*}{灾} \\
\hline & \multicolumn{13}{|c|}{Days from moon＇s greatest declination．} & \multicolumn{15}{|c|}{Days from moon＇s greatest declination．} & \\
\hline & \multicolumn{6}{|c|}{Before－} & \multicolumn{7}{|c|}{After－} & \multicolumn{7}{|c|}{Before－} & \multirow[b]{2}{*}{0} & \multicolumn{7}{|c|}{After－} &  \\
\hline & 7 & 6 & & \(3{ }^{3}\) & 1 & 0 & 1 & 2 & 2 & 4 & 5 & 6 & 7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \％ \\
\hline \(\boldsymbol{H}\) & Fl & Ft．Ft & Ft & Ft Ft． & \(F\) F． & Ft． & Ft． & Ft． & t．\(F^{\prime \prime}\) & Ft． & \({ }_{\text {ct }} \mathrm{Ft}\) & Ft． & Fl & Ft & \(F t\) & \(F\) & Fr． & Ft． & & Ft． & Ft ． & Ft． & Ft． & Ft． & Ft & Ft & Ft & Ft & \\
\hline 0 & 8.46 & 6.6 6．0 & 5.45 & 5.0 .4 .6 & 4.5 & 4.5 & 46 & 64.7 & 4 75.1 & 15.5 & 5． 6.2 & 6.9 & 7.8 & 8.0 & 7.8 & 87.5 & 7.2 & 6.8 & 6.4 & 46.3 & 6.2 & 6.1 & 6.2 & 6.2 & 6.3 & 6.3 & 6.3 & 6.4 & \\
\hline 1 & 7.56 & 6.86 .1 & 5.5 & 5.14 .7 & 4.6 & 4.6 & 4.7 & 74.8 & 8.8 .2 & 25.6 & 6.6 .5 & 7.0 & 7.9 & 8.1 & 7.4 & y 7.6 & 7.3 & 6.9 & 6.5 & 5 6．4 & 6.3 & 6.2 & 6.4 & 6 & 6.4 & 6.4 & 6.4 & 6.5 & 1 \\
\hline 2 & 7.26 & 6.5 .5 .8 & 5.2 & 4.84 .4 & 4.3 & 4.3 & 4.4 & 4.4 .5 & ¢ 4.9 & 95.3 & 86 & 6．7 & 76 & 7.6 & 7.6 & 67.3 & 7.0 & 6.6 & 6.2 & 26.1 & 6.0 & 5.9 & 6.0 & 6.0 & 6.1 & 6.1 & 6.1 & 6.2 & 2 \\
\hline 3 & \(66_{i} 5\) & 5．9． 5.2 & 4.64 & 4.23 .8 & 3.7 & 3.7 & & 8．9 & 943 & 314 & 75.4 & 6.1 & 7.0 & 7.2 & 7.0 & 0.6. & 6.4 & 6.0 & 5.6 & ． 5.5 & 5.4 & 5.3 & 5.4 & 5.4 & 5.5 & 5.5 & 5.5 & 5.6 & 3 \\
\hline 4 & 5.95 & 5.24 .5 & 3.93 & 3.53 .1 & 3.0 & 3.0 & 3.1 & 13.2 & 23.6 & 4.0 & 0.4 & 5.4 & 6.3 & 6.5 & 6.3 & 36.0 & 5.7 & 5.3 & & 4.8 & 4.7 & 4.6 & 4.7 & 4.7 & 4.8 & 4.8 & 4.8 & 4.9 & 4 \\
\hline 5 & 5.24 & 4．5． 3.8 & 3.2 & 2.82 .4 & 2.3 & 2.3 & 2.4 & 42.5 & 52.9 & 3.3 & 3.4 .0 & 4.7 & 5.6 & \(5 . \varepsilon\) & 5.6 & 65.3 & 5.0 & 4.6 & 4.2 & 4.1 & 4.0 & 3.9 & 4.0 & 4.11 & 4.1 & 4.1 & 4.1 & 4. & 5 \\
\hline \(f\) & 4.84 & 4.13 .4 & 2.82 & 2.420 & 1.9 & 1.9 & 2.0 & 2.1 & 12.5 & 2.9 & 9.3 .6 & 4.3 & 5.2 & 54 & 5.2 & 24.4 & 4.6 & 4.2 & 3.8 & 3．7 & 3.6 & 3.5 & 3.6 & 3.6 & 3.7 & 3.7 & 3.7 & 3.8 & 6 \\
\hline 7 & 5.04 & 4.3 3．6 & 3.62 & 2．6． 2.2 & 2．1： & 2.1 & 2.2 & 2.3 & 3.2 .5 & 2.1 & 13.8 & 4.5 & 5.4 & 5.6 & 5.4 & 45.1 & 4.8 & 4.4 & 4.0 & 3.9 & 3.8 & 3.7 & 3.8 & 38 & 3.9 & 3.9 & 3.9 & 4.0 & 7 \\
\hline 8 & 5.54 & 4.84 .1 & 3.5 & 3.12 .7 & 2.6 & 2.6 & 2.7 & 72.8 & 83.2 & 3.6 & 4.3 & 5.0 & 5.9 & 6.1 & 5.9 & 9．6 & 5.3 & 4.9 & 4.5 & 4.4 & 4.3 & & 4.3 & 4.3 & 4.4 & 4.4 & 4.4 & 4.5 & 8 \\
\hline 9 & 6.35 & 5.64 .9 & 4.33 & 3.93 .5 & 3.4 & 3.4 & 3.5 & 3.6 & 6.4 .0 & 4.4 & ． 5.1 & 5.8 & 6.7 & 6.9 & 6.7 & 76.4 & 6.1 & 5.7 & 5.3 & 5.2 & & 5.0 & 5.1 & 5.1 & 5.2 & 5.2 & 5.2 & 5.3 & 9 \\
\hline 11 & 7.06 & 6．3． 5.6 & 5.04 & 4.64 .2 & 4.1 & 4.1 & 4.2 & 4.3 & 314.7 & 5.1 & 5．8 & 6.5 & 7.4 & 7.6 & & 7．1 & 6.8 & 6.4 & 6.0 & 5.9 & 5.8 & 5.7 & 5.8 & 5.8 & 5.9 & 5．9＇ & 5.9 & 6．0． & 10 \\
\hline 11 & 7.36 & 6.66 & 5.34 & 4.94 .5 & & 4.4 & 4.5 & 4.6 & 65.0 & 5.4 & 6.1 & 6.8 & 7.7 & 7.9 & 7.7 & 7.4 & 7.1 & 6.7 & 6.3 & 6.2 & 6. & 6.0 & 6.1 & 6.1 & 6.2 & 6.2 & 6.2 & 6.3 & 1 \\
\hline
\end{tabular}

TABLE VII．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{14}{|l|}{large ebi tide，or from large migh water to large low water} & \multicolumn{14}{|c|}{from large how water to smalig high water．} & \multirow[t]{2}{*}{董} \\
\hline  & \multicolumn{14}{|c|}{Days from moon＇s greatest declination．} & \multicolumn{14}{|c|}{Days from moon＇s greatest declination．} & \\
\hline  & \multicolumn{6}{|c|}{Before－} & \multicolumn{8}{|c|}{After－} & \multicolumn{7}{|c|}{Before－} & \multicolumn{6}{|c|}{After－} & & \\
\hline \[
\stackrel{\Xi}{i}
\] & 76 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & \multicolumn{2}{|l|}{45} & 6 & & 7 & 6 & & \multicolumn{2}{|l|}{} & 2 & 1 & 0 & & \({ }^{3}\) & 4 & & 6 & 7 & 景 \\
\hline H． & Ft．Ft． & Ft． & Ft． & Ft． & \(F 2\) ． & Ft． & & Ft． & Ft & Ft． & & Ft． & Ft． & Fe． & Ft ． & & Ft． & \(\boldsymbol{F l}\) ， & & Ft． & Ft． & Ft． & & \(\mathrm{Fl}, \mathrm{Ft}\) ． & Ft． & Ft． & Ft． & Ft． & H． \\
\hline 0 & 7.07 .7 & 8.4 & 9.0 & 9.4 & & 9.9 & 99 & 9.8 & 9．7 & 9.3 & & 82 & 7.5 & 6.6 & 6.4 & 6.6 & 6.9 & 7.2 & & 8.0 & 8.1 & 8.2 & 8.38 & 8.28 .2 & 8.1 & 8.1 & 8.1 & 8.4 & \\
\hline 1 & 7.17 .8 & 8.5 & 9.1 & 9.5 & & 10.0 & 100 & 9.9 & 9.8 & 9.4 & 9.0 & 8.3 & 7.6 & 6.7 & 6.5 & 6.7 & 7.0 & 7.8 & & 8.1 & & 8.3 & 8.48 & 8.38 .3 & 8.2 & 8．2 & 8.2 & 8.1 & \\
\hline 2 & 6.87 .5 & 8.2 & 8.8 & 9.2 & 9.6 & 9.7 & 9.7 & 9.6 & 9.5 & 9.1 & \(8 . \%\) & 8.0 & 7.3 & 6.4 & 6.2 & 6.4 & 67 & & 7.4 & 7.8 & 7.9 & 8.0 & 8.18 & 8.08 .0 & 7.9 & 7.9 & 7.9 & 7.8 & \\
\hline 3 & 6.26 .9 & 7.6 & 8.2 & 8.6 & 9.0 & 9.1 & 9.1 & 9.0 & 8.9 & 8． 5 & 8.1 & 2.4 & 6.7 & & 6． 6 & 5．8 & 6.1 & & & 7.2 & 7.3 & 7.4 & 7.57 & 7.47 .4 & 7.3 & 7.3 & 7.3 & 7.2 & \\
\hline 4 & 5.516 .2 & 6.9 & 7.5 & 7.9 & ع．3 & 8．4 & 8.4 & 8.3 & 8.2 & 7.8 & 7.4 & 6.7 & 6. & 5.1 & 4.9 & 5.1 & 5.4 & 5.2 & 6.1 & ¢．5 & 6.6 & 6.7 & 6.86 & 6.767 & 6.6 & 6.6 & 6.6 & 6．5 & \\
\hline 5 & 4.85 .5 & 6.2 & 6.8 & 7.2 & 7.6 & 7.7 & 7.7 & 7.6 & 7.5 & 7.1 & 6.7 & 6.0 & 5.3 & 4.4 & 4.2 & 4.4 & 4.7 & & 5.4 & & 5.9 & 6.0 & & 6.06 .0 & 5.9 & 5.9 & 5.9 & 5.8 & \\
\hline 6 & 4.45 .1 & \(5 . \varepsilon\) & 64 & 6.8 & 7.2 & 7.3 & ． 3 & 7.2 & 7.1 & 6.7 & 6.3 & 5.6 & 4.9 & 4.0 & 3.8 & 40 & 4.3 & 4.6 & 5.0 & 5.4 & 5．5 & 5.6 & 5.75 & 5.65 .6 & 5.5 & 5.5 & 5.5 & 5.4 & 6 \\
\hline 7 & 4．6， 5.3 & 6.0 & 6.6 & 7.0 & 7.4 & 7.5 & 7.5 & 7.4 & 7.3 & 6.9 & 55 & 5.8 & 5.1 & 4.2 & 4.0 & 4.2 & 4.5 & & & 5.6 & & 5.8 & 5.95 & 5.8 .5 .8 & 5.2 & 5.7 & 5.7 & 5.6 & \\
\hline e & 5.15 .8 & 6.5 & 7.1 & 7.5 & 7.9 & 8.0 & 8.0 & 7.9 & 78 & 7.4 & 7.0 & 6.3 & 5.6 & 4.7 & 4.5 & 4.75 & 5.0 & 5.3 & & & & 6.3 & 6.46 & 6.36 .3 & 6.2 & 6.2 & 6.2 & 6.1 & \\
\hline 9 & 5.96 .6 & 7.3 & 7.9 & 8.3 & 8.7 & 8.8 & 8.8 & 8.7 & 8.6 & 8.2 & 7.8 & 7.1 & 6.4 & 5.5 & 5.3 & 5.5 & 5.8 & 6.1 & 6.5 & 6.9 & 7.0 & 7.1 & 7.27 & 7.17 .1 & 7.0 & 7.0 & 7.0 & 6.9 & 9 \\
\hline 10 & 6.67 .3 & 8.0 & 8.6 & 9.0 & 9.4 & 9.5 & 9.5 & 9.4 & 9.3 & 8.9 & 8.5 & 7.8 & 7.1 & 6.2 & 6.0 & 6.2 & 6.5 & 6.8 & & 7.6 & 7.7 & 7.8 & ． 97 & 7.87 .8 & ． & 7.7 & 7.5 & 7.6 & 10 \\
\hline 11 & 6.97 .6 & 8.3 & 8.9 & 9.3 & 9．7 & 9.8 & 9.8 & 9.7 & & & 8.8 & 8.1 & 7，4 & 7.5 & 6.3 & 6.5 & 6，8 & & 7.5 & & 8.0 & 8.1 & & 8.18 .1 & 8.0 & 8. & 8.0 & & 11 \\
\hline
\end{tabular}

TIDE TABLES FOR POR'T TOWNSHEND.*
TABLE 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{15}{|c|}{godth declination, -days from moon's greatest declination.} \\
\hline & \multicolumn{7}{|c|}{Before-} & & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \[
\begin{array}{lr}
\text { h. } & \text { m. } \\
0 & 0
\end{array}
\] & \[
\begin{aligned}
& \text { h. } m . \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& \text { h.m. } \\
& 321
\end{aligned}
\] & h. m.
\[
251
\] &  & \[
\text { h. } m \text {. }
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 113
\end{aligned}
\] & \[
\begin{gathered}
\text { h. m. } \\
192
\end{gathered}
\] & h. \(\boldsymbol{m}\). & \begin{tabular}{l}
h. m . \\
32
\end{tabular} & \[
\begin{gathered}
\text { h. } m . \\
291
\end{gathered}
\] & h.m.
\[
242
\] & \[
\begin{gathered}
\text { h. } m . \\
257
\end{gathered}
\] & \[
h . m .
\] & h. m. & h.m.
\[
345
\] \\
\hline 030 & 338 & 314 & 244 & 155 & 125 & 16 & 119 & 137 & 155 & 214 & 2 35 & 250 & 38 & 326 & 338 \\
\hline 10 & 332 & 38 & 238 & 119 & 119 & 10 & 113 & 131 & 149 & 28 & 2929 & 544 & 32 & 320 & 332 \\
\hline 130 & \(3 \mathbf{2}\) & 32 & 232 & 143 & 113 & 054 & 17 & 125 & 143 & 22 & 283 & 238 & 256 & 314 & 325 \\
\hline 20 & 321 & 257 & 227 & 138 & 18 & 049 & 12 & 190 & 138 & 157 & 218 & 233 & 951 & 39 & 391 \\
\hline 230 & 318 & 254 & 224 & 135 & 15 & 046 & 059 & 117 & 135 & 154 & 215 & 220 & 248 & 36 & 318 \\
\hline 30 & 316 & 252 & 222 & 133 & 13 & 044 & 057 & 115 & 133 & 152 & 213 & 228 & 246 & 34 & 316 \\
\hline 330 & 317 & 253 & 223 & 134 & 14 & 045 & 058 & 116 & 134 & 153 & 214 & 229 & 247 & 35 & 317 \\
\hline 40 & 321 & 257 & 29 & 138 & 18 & 049 & 12 & 190 & 138 & 157 & 218 & 233 & 251 & 39 & 321 \\
\hline 430 & 3 26 & 32 & 232 & 143 & 113 & 054 & 17 & 125 & 143 & 22 & 223 & 238 & 256 & 314 & 326 \\
\hline 50 & 332 & 38 & 238 & 149 & 119 & 10 & 113 & 131 & 149 & 28 & 289 & 244 & 32 & 390 & 332 \\
\hline 530 & 341 & 317 & 247 & 158 & 123 & 19 & 122 & 140 & 158 & 217 & 238 & 2 53 & 311 & 329 & 341 \\
\hline 60 & 352 & 398 & 258 & 29 & 139 & 120 & 133 & 151 & 29 & -28 & 249 & 34 & 322 & 340 & 352 \\
\hline 630 & 41 & 337 & 37 & 218 & 148 & 189 & 142 & 20 & 218 & 237 & 258 & 313 & 331 & 344 & 41 \\
\hline 70 & 48 & 344 & 314 & 525 & 155 & 136 & 149 & 27 & 225 & 244 & 35 & 320 & 338 & 356 & 48 \\
\hline 730 & 415 & 351 & 321 & 232 & 22 & 143 & 156 & 214 & 232 & 251 & 312 & 327 & 345 & 43 & 415 \\
\hline 80 & 418 & 354 & 324 & 235 & 25 & 146 & 159 & 217 & 235 & 251 & 315 & 330 & 348 & 46 & 418 \\
\hline 830 & 419 & 355 & 325 & 236 & 26 & 147 & 20 & 218 & 236 & 255 & 316 & 331 & 349 & 47 & 419 \\
\hline 90 & 418 & 354 & 324 & 235 & 25 & 146 & 159 & 217 & 235 & 254 & 315 & 330 & 348 & 46 & 418 \\
\hline 930 & 415 & 351 & 321 & 232 & 2.2 & 143 & 156 & 214 & 232 & 251 & 312 & 327 & 345 & 43 & 415 \\
\hline 100 & 410 & 346 & 316 & 227 & 157 & 138 & 151 & 29 & \(2: 27\) & 246 & 37 & 32 & 340 & 358 & 410 \\
\hline \(10 \quad 30\) & 46 & 342 & 312 & 323 & 153 & 134 & 147 & 25 & 28 & 242 & 3 3 & 318 & 35 & 354 & 46 \\
\hline 110 & 40 & 336 & 36 & 217 & 147 & 128 & 141 & 159 & 217 & 236 & 257 & 312 & 330 & 348 & 40 \\
\hline 1130 & 354 & 330 & 30 & 211 & 141 & 122 & 135 & 153 & 211 & 230 & 951 & 36 & 324 & 342 & 354 \\
\hline
\end{tabular}

TABLE II.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{15}{|c|}{north declination.-days from moon's getatest declination.} \\
\hline & \multicolumn{7}{|c|}{Betore-} & \multirow[b]{2}{*}{0} & \multicolumn{7}{|c|}{After-} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline h. m. & h. m. & h. m. & h. \(m\), & k. m. & h. 9 n . & h. \(\quad\) m. & h. \(\mathrm{m}^{\text {. }}\) & d. m. & & h. 78. & h. m. & h. m. & h. m. & h.m. & h.tn \\
\hline 0 0 & 345 & 49 & 439 & 528 & 558 & 617 & 64 & 546 & 588 & 59 & 448 & 433 & 415 & 357 & 345 \\
\hline 030 & 338 & 4. & 432 & 521 & 551 & 610 & 557 & 539 & 5 91 & 52 & 441 & 426 & 48 & 350 & 338 \\
\hline 10 & 33 & 356 & 426 & 515 & 545 & 64 & 551 & 533 & 515 & 456 & 435 & 420 & 4 2 & 344 & 332 \\
\hline 130 & \(3 \approx 6\) & 350 & 420 & 59 & 539 & 553 & 545 & 527 & 59 & 450 & 429 & 414 & 356 & 338 & 326 \\
\hline 20 & 391 & 345 & 415 & 54 & 534 & 553 & 540 & 522 & 54 & 445 & 424 & 49 & 351 & 333 & 321 \\
\hline 230 & 318 & 342 & 412 & 51 & 531 & 550 & 537 & 519 & 51 & 442 & 421 & 46 & 348 & 330 & 318 \\
\hline 30 & 316 & 340 & 410 & 159 & \(5 \% 9\) & 548 & 535 & 517 & 459 & 440 & 419 & 44 & 346 & 328 & 316 \\
\hline 330 & 317 & 341 & 411 & 50 & 530 & 549 & 536 & 518 & 50 & 441 & 480 & 45 & 347 & 329 & 317 \\
\hline 40 & 321 & 345 & 415 & 54 & 534 & 553 & 540 & 528 & 54 & 445 & 424 & 49 & 351 & 333 & 321 \\
\hline 430 & 326 & 350 & 420 & 59 & 539 & 558 & 545 & 527 & 59 & 450 & 429 & 414 & 356 & 338 & 325 \\
\hline 50 & 332 & 356 & 426 & 515 & 545 & 64 & 551 & 533 & 515 & 456 & 430 & 420 & 42 & 344 & 332 \\
\hline 530 & 341 & 45 & 435 & 524 & 554 & 613 & 60 & 542 & 524 & 55 & 444 & 429 & 411 & 353 & 341 \\
\hline 60 & 352 & 116 & 446 & 535 & 65 & 624 & 611 & 553 & 535 & 516 & 455 & 440 & 422 & 44 & 359 \\
\hline 630 & 41 & 425 & 455 & 544 & 614 & 633 & 620 & 62 & 544 & 525 & 54 & 449 & 431 & 413 & 41 \\
\hline 70 & 48 & 43 & 52 & 551 & 621 & 640 & 627 & 69 & 551 & 532 & 511 & 456 & 438 & 420 & 48 \\
\hline 730 & 415 & 439 & 59 & 558 & 628 & 647 & 634 & 616 & 5 58 & 539 & 518 & 53 & 445 & 427 & 415 \\
\hline 80 & 418 & 442 & 512 & 61 & 631 & 650 & 637 & 619 & 61 & 542 & 521 & 56 & 448 & 430 & 418 \\
\hline E 30 & 419 & 443 & 513 & 62 & 632 & 651 & 638 & 620 & 62 & 543 & 522 & 57 & 449 & 431 & 419 \\
\hline 90 & 418 & 442 & 512 & 61 & 631 & 650 & 637 & 619 & 61 & 542 & 521 & 56 & 448 & 430 & 418 \\
\hline 930 & 415 & 439 & 59 & 558 & 628 & 647 & 634 & 616 & 558 & 539 & 518 & 53 & 445 & 427 & 415 \\
\hline 100 & 410 & 434 & 54 & 554 & 623 & 642 & 629 & 611 & 553 & 534 & 513 & 458 & 440 & 422 & 410 \\
\hline \(10 \quad 30\) & 46 & 430 & 50 & 549 & 619 & 638 & 625 & 67 & 549 & 530 & 59 & 454 & 436 & 418 & 46 \\
\hline 110 & 40 & 424 & 454 & 543 & 613 & 632 & 619 & 61 & 543 & 524 & 53 & 448 & 430 & 412 & 40 \\
\hline 1130 & 354 & 418 & 448 & 537 & 67 & 68 & 613 & 555 & 537 & 518 & 457 & 442 & 424 & 46 & 354 \\
\hline
\end{tabular}
* For the manner of asing there tablen mee the example for San Francisco, pages 311-316.

TABLE III.


TABLE \(V\).
 for Port Townshend and 2.7 for Semiahmoo and Steilacoom.

TABLE VI.


TABLE VII.


Table of magnetic east declination on the Pacific coast of the United States for the year 1863.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Latitude N ．} & \multicolumn{4}{|c|}{Longitude west．} \\
\hline & \(110^{\circ}\). & \(115^{\circ}\). & \(120^{\circ}\). & \(125^{\circ}\). \\
\hline 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 30 & 119 & 12 & 12 & \\
\hline 31 & 12 & 124 & 121 & \\
\hline 32 & 122 & 129 & 128 & －－． \\
\hline 33 & 128 & 13 & 13 & 137 \\
\hline 34 & 134 & 134 & 134 & 14 \\
\hline 35 & 137 & 14 & 14 & 1417 \\
\hline 36 & & 144 & 148 & 15 \\
\hline 37 & ．－． & 14星 & 15 & 157 \\
\hline 38 & & 15 & 15？ & 16 \\
\hline 39 & ．．．． & \(15 \frac{1}{4}\) & 16 & \(16 \frac{1}{2}\) \\
\hline 40 & & 16 & \(16 \frac{8}{8}\) & 17 \\
\hline 41 & & \(16 \frac{1}{4}\) & 17 & 171 \({ }^{2}\) \\
\hline 42 & & 17 & 17\％ & 18 \\
\hline 43 & － & \(17 \frac{1}{2}\) & \(18 \frac{1}{4}\) & 188 \\
\hline 44 & & 18 & 18 星 & 194 \\
\hline 45 & & \(18 \frac{3}{3}\) & \(19 \frac{1}{8}\) & 192 \\
\hline 46 & & \(19 \frac{1}{3}\) & 19 星 & \(20 \frac{1}{8}\) \\
\hline 47 & & \(19{ }^{\frac{8}{8}}\) & 208 & 21 \\
\hline 48 & & 204 & 21 & 217 \\
\hline 49 & & \(20 \frac{3}{3}\) & \(21 \frac{1}{2}\) & \\
\hline
\end{tabular}

\section*{APPENDIX No. 40.}

TRIBUTE TO THE MEMORY OF THE LATE COLONEL WILLIAM R. PALMER, U. S. ARMY.
At a meeting of the assistants and other persons engaged in the Coast Survey, held at the Coast Survey Office, in Washington, on the 19th of June, the following resolutions were submitted by Assistant J. L. Hilgard, and were unanimously adopted:

Whereas we have received with deep regret the intelligence of the death of Major William R. Palmer, corps of topographical engineers, and brevet colonel U. S. army, whose long association with the work of the Coast Survey had founded among its members respect and lasting esteem: Therefore

Resolved, That, in deploring his death as an associate, who had become endeared to us by his most excellent qualities of head and heart, efficient in the exceution of every duty, cordial in co-operation, kind in command, we recognize that our grief is deepened by his loss to the country at this time as an able and energetic officer, and a devoted defender of its rights.

Lesolved, That we will attend the funeral in a body to-morrow at noon, and the usual badge of mourning he worn by us for thirty days.

Resolved, That we offer our sympathy to the bereared family, and that a copy of the above resolutions be transmitted to them.

Upon the adoption of the resolutions, Professor Bache, Superintendent of the Coast Survey, made the following remarks, which were listened to with deep cmotion by those present:

Brevet Lieut. Col. Palmer was born in London, where his parents were temporarily, on the 15 th of April, 1809. His home was at Elizabethtown, New Jersey, which had long been the home of his family. Our intimacy goes so far back that I can hardly remember when I did not know him well. It was in fact a hereditary friendship, for his mother and mine were from youth onward very intimate friends. Though pursuing very different careers, our lines of life have tonched so often that I feel almost as if they had been very near, throughout his too short life. As a child, he was amiable, quick of apprehension, and easy in acquisition. As a boy, perseverance of purpose developed itself, which, notwithstanding intervals of ill health in early manhood, secured professional attainment and skill, culminating in his career in connexion with the present war, for which he had already received a brevet for gallant and meritorious services. Time only was wanting to secure to him the honors already earned, and to give opportunity for new ones.

The fatigues, excitements, and exposures of the campaign in the malarious region between the York and James rivers were too much for his physical constitution, and brought on an attack of fever, which terminated in typhoid, and carried him off about noon on the 13th of June. By a merciful Providence his cousin, Mrs. General Ricketts, was led to the White House, near the Pamunky river, and finding him so ill brcught him home, securing for his last days the nursing of attentive friends, and for his last hours the comforts of his home and the tender care of a devoted wife.

I wish to say a few words of three specially interesting parts of William Ricketts Palmer's life. As he grew towards youth, he determined to prepare himself for the profession of a civil engineer, and came to West Point to look for the instruction in mathematics, which was much less diffused in our country at that day than now. It was a somewhat bold adventure thus to come as an outside pupil among the regular recipients of the instruction of that school. It required no little perseverance to overcome obstacles which this position naturally raised up. It required his good temper and tact to make friends of those who held the keys of the cabinet of knowledge, and to induce them to open to him. It required facility of acquisition not to make the task too heary for his volunteer gaides through this treasure cabinet. He succeeded not only in this, bat in making friends for life. Among the most prominent of these were Robert P. Parrott, now of the West Point foundry, then an instructor in the Military Academy, who is now in his fame, as he was then in preparing for distinction, the dear friend of our deceased comrade.

Governeur Kemble, long the able manager of the West Point foundry, with whom Palmer was in constant intercourse at this time, was a friend derived from his mother's family, who early noticed William Palmer's
capacity, and pushed his fortunes then and subsequently with consistent and characteristic kindness and tenacity of friendship. During the years I remained at West Point as instructor, William Palmor was my room-mate, and I had the opportunity to note the faithfulness with which, avoiding all the temptations around, he steadily kept to the purpose for which he had sought the academy, winning by his conduct the good opinion of Colonel Thayer (that upright judge of many of our country's youth) and of the professors generally.

Mr. Kemble caused Palmer to enter the West Point foundry, and subsequently, when the corps of topographical engineers was organized in 1838, obtained for him a lieutenant's commission in it. Here, under the training of able and experienced officers, he perfected himself in the practical operations of the: field, and developed his abilities as a constructing and surveying officer.

In 1852 Captain Palmer took charge of a triangulation party on the Coast Survey, working principally upon rivers of Virginia, to be a few years later the scene of such important operations in war. In reconnaissance he was very really, and in laying out the work and in its execution very neat and well-defined in his purposes. His triangles always closed well, verifying his accuracy of eye and judgment in time and circumstances of observation. As a chief of party, he was mild and gentilemanly in euforcing duties, expecting to do most by example in his own person. His work always gave entire satisfaction.

In 1856 Captain Yalmer took charge of the Coast Survey Office, during the absence of Captain (now General) H. W. Benham in Europe, which he administered so successfully that he was recalled to it in 1858, and retained it until called to the more stirring duties of military reconnaissance and the field of war. His administration was easy, characterized by great tact and by observation of men's character, which enabled him readily to keep up a steady but gentle pressure.

As the rebellion developed itself, it was easy to see that Captain Palmer would soon make choice of more stirring duties. He entered the staff, first of General Mansfield and then of General McClellan; made two reconnaissances, at Mathias Point on the Potomac, and at Flint's Hill, which showed that the qualities of the topographical engineer of the field were his in a high degrec-coolness, determination, judgment, and discretion.

As the army of the Potomac crossed the river into Virginia, Major Palmer was nominated by the Hon. E. M. Stanton, Secretary of War, for the brevet of lieutenant colonel, and was at once confirmed by the Senate.

As second to General A. A. Mumphreys, Major Palmer accompanied the staff of General McClellan to the Peninsula as topographical engineer, and took a full part in the siege of Yorktown. At Williamsburg he was one of the first, if not the first, of our officers under fire, and General Stoneman, of the cavalry, who had applied for his services for his command, speaks in the most complimentary terms of the services which he rendered in that hardly-contested fight. Accompanying General McClellan in the passage of the Chickahominy he rendered excellent service, enjoying a full share of the general's confidence, regard, and affection. The insidious disease which attacked him early in June was called at first neuralgic headache, but soon proved to be fever of a violent type, and be was brought to his home only to die, to end his consistent career of a gallant officer; of an effective, respected, and beloved member of the corps of topographical engineers; of useful administration in the Coast Survey, and of its work in the field; of full and persevering preparation for the profession of the engineer, which he had early selected.

So much for the outward eareer; but friendship recognizes in him deeper and higher claims to distinction. As a son, as a brother, and in the family relations generally, William Palmer was permanently kind, generous, and dutiful. To a large family circle his loss is irreparable. He has preceded to the tomb a mother whose every recollection is of his goodness and care throurhout a diversified life.

The prayers of many have ascended to the throne of grace for him daring his illness. These prayers have failed to keep him with us. His life is now with Christ in God.

\section*{TRIBUTES TO THE MEMORY OF THE LATE GENERAL STEVENS AND CAPTAIN SMEAD.}

At a meeting of the officers and employés of the Coast Survey Office, held on the 12th of September, to give expression of their sense of the loss sustained by the death of Brigadier General I. I. Stevens, United States volunteers, and Captain John R. Smead, United States army, both of whom had long been connected (the last quite recently) with the Coast Survey, the following addresses, prepared by Professor Bache, who is absent from the city, were read, and the subjoined resolutions passed.

My Friends: How soon we are called upon again to mourn and publicly to express the feelings which move us. One of our old associates, a leader among us, as he was in the armies of his country, has perished upon the field of glory. The colors of his regiment in his clenched hand, he has died as the brave love to die, as he had expressed his wish to die. His whole mind was given to the enthusiastic encouragement of his troops at the instant the death shot pierced his temple.

How little like are such scencs to those in which we best knew General Stevens in this office, and yet how fully persuaded we all have been that just so he would act under such circumstances! He was not one of those who led by looking on, but by example.

As we knew him in the Coast Survey Office, so he was in every position of life-so in action in civil life, so in the field.

Brought up to an active life upon hia father's farm near Andover, Massachusetts, his bodily frame had early been hardened, and his spirit had shared in the process, so that energy and mental power were developed in a well-knit frame. He was prepared for West Point only by the instruction acquired at the common school, and yet was so prepared that by the exercise of the faculties with which nature had richly eudowed him, and which labor had shaped, he was prepared successfully to cope with many older, many better instructed, many more accomplished than himself, and to wrest in the hardy academic strug, le the palm of the generous West Point strife, the first place in a distinguished class. His friendships were many and ardent, and he was admired as well as loved. The spirit of self-reliance which be cultivated, and which circumstances aided him to cultivate, did not prevent the warmest attachments, nor interfere with an intrinsic modesty which only disappeared when the ardor of an enthusiastic and impulsive character carried him beyond his ordinary self.

He selected the engineer corps of the army as affording him the best opportunity of usefuluess, laboring by study and practice to prepare himself for any career which might offer in the future. He was distinguished in the war with Mexico, breveted captain for meritorious and gallant services at Contreras and Churubusco, and major for Chepultepec. In 1849 he was sclected by the chief engineer, General Totten, to fill an application for an officer in charge of the Coast Survey Office, and with words of commendation which showed how well he had served his chief and his country in his career in the engineers. This place he filled, more than filled, for four years, with a devotion, an energy, a knowledge \(n \cup t\) to be surpassed, and which left its mark upon our organization, our progress, our persomnel, upon the execution of what was passiug in the present, and what reached into the future. He knew how to read personal character, to stimulate, to encourage, communicating some part of his own hopeful and ardent character to those connected with him. His very fault of thinking too favorably of men was the source of much good to them, for it often induced them to efforts which otherwise they would not have made. His sense of even-handed justice was very great; he gave it to all, and expected it in return. His tact in bringing about a sharp and well-defined result, even in a complicated case, was very remarkable, and his drilling of those employed by him to precision, which was one manifestation of his quality, was wonderful. Gencrous and noble in his impulses, he left our office with the esteem and regret of all, and with the most enthusiastic expressions of admiration of his characer, appreciation of his services, and hope for his future success. He left us to conduct the reconnaissance of the northwestern Pacific railroad route, to be governor of Washington Territory, and the leader of its people in a fierce and savage Indian war, to be its delegate in Congress, a volunteer at the breaking out of the rebellion, the colonel of a distinguished regiment in the volunteer army of the country, a brigadier geueral, the hero of the well-fought field of Chantilly. We claim the privilege to mourn him with his associates in the army. with the citizens of the State of his birth, with those of the State of his adoption, with his countrymen of the Union, who educated him, and to whom he gave his life.

We mourn him as heroes should be mourned. We embalm his memory in our hearts, as Massachasetts has embalmed his mortal remains. We preserve his spirit in our heart, as Rhode Island has his ashes in her soil.

Resolved, That, having looked in sorrow on the mortal remains of the lave gallant Brigadier General Isaac I. Stevens, we tender our condolence to his family, under a sense of the depth of their bereavement in the loss of one whose memory was dear to us in the associations of the past.

Resolved, That we recognize in the remarks which have been read in our hearing the strength of character and ability by which the deceased general was known to us at an earlier period of the survey, and that we mourn his loss to the sacred cause of the nation, to which he devoted his energies and hie life.

55 cs

My Frienos: Let us not part without the tribute of sorrow for another of the heroic dead, the gallant Captain Smead, of the United States army, one of the first volunteers for the defence of Washington during her darkest days. The war found him in charge of one of the divisions of the Coast Survey Office-a charge in which his duty was most creditably and acceptably performed. The frst tap of the drum aroused him, and, placing himself at the head of volunteer citizens of Washington, he soon converted them into wellorganized soldiers, and led them into active service. When the first emergency was passed he returned to his position in the regular army, and was constantly in the field. He served with distinction with the fifth regiment U . S. artillery, and laid down his life for the defence of the capital of the nation in the bloody fight of Saturday, August 30.

Rcsolved, That in the death of the brave Captain Smead, United States artillery, we have cause to mourn the loss of a recent associate, whose amiable character and manly bearing had endeared him to us. His devotion to the cause of the country had been followed with admiration, and we now grieve for the untimely death which has closed a career that promised varied usefulness in the public service.

Resolved, That we offer our sympathy to the bereaved family, and that a copy of the above resolution be transmitted to them.

\section*{INDEX OF SKETCHES.}
1. A.-Progress sketch, Section I, (primary triangulation.)
2. A bis.-Progress sketch, Section 1, northern part, (secondary triangulation, topography, and hydrography.)
3. A bis.-Progress sketch, Section I, southern part, (secondary triangulation, topography, and hydrography.)
4. Kennebec and Sheepscot rivers, Maine.
5. Portland harbor, Maine.
6. Barnstable harbor, Massachusetts.
7. Bristol harbor, Narragansett bay, Rhode Island.
8. Newport and Coasters' harbor, Narragansett bay, Rhode Island.
9. Dutch Island harbor, Narragansett hay, Rhode Island.
10. Connecticut river and New Jersey coast triangulation.
11. B.-Progress sketch, Section II.
12. Hudson river, No. 3, Poughkcepsie to Glasco.
13. C.-Progress sketch, Section III.
14. Coast chart No. IV, Cape May to Currituck.
15. Chesapeake bay, sheet No. 6.
16. Metomkin inlet, Virginia.

12. Potomac river, No. 1-entranec to Pincy Point.
18. Potomac river, No. 2-Piney Point to Lower Cedar Point.
12. Potomac river, No. 3-Lower Cedar Point to Indian Head.
20. Potomac river, No. 4-Indian Head to Georgetown.
21. D.-Progress sketch, Section IV.
22. Oregon inlet, North Carolina, survey of 1862.
23. Hatteras inlet, North Carolina, survey of 1861.
24. Atlantic coast from Nantucket to Cape Hatteras.
25. E.-Progress sketch, Section V.
26. Port Royal entrance, with Beaufort, Broad, and Chechessee rivers, South Carolina.
27. Calibogue sound and Skull creek, South Carolina.
28. Ossabaw sound, Georgia.
29. Sapelo sound, Georgia.
30. St. Simon's sound and Brunswick harbor, Georgia.
31. St. Mary's river and Fernandina harbor, Florida.
32. F bis.-Progress sketch, Section VI, Florida keys and reef.
33. St. Augustine harbor, Florida.
34. Coast chart, No. 71, Florida reef from Newfound harbor to Boca Grande key.
35. H.-Progress sketch, Section VIII.
36. Southwest Pass, Mississippi river, 1862.
37. J.-Progress sketch, Section X, Pacific coast from San Diego to San Lais Obispo.
38. J bis.-Progress sketch, Section X, Pacific coast from San Luis Obispo to Bodega Head.
39. San Francisco, upper bay, California.
40. Coast from Point Pinos to Bodega Head, California.
41. Bodega bay and roadstead.
42. K.-Progress eketch, Section XI.
43. Kuos bay, Oregon.
44. Gray's harbor, Oregon.
45. General progress sketch, Atlantic, Gulf, and Western coast.
46. Cotidal lines in the Gulf of Mexico.
47. Magnetic map of Pennsylvania and part of New York.
48. Diagrams illustrating discussions of magnetic horizontal force observations.
49. Diagrams illustrating experiments in length of standard bar.

Note.-Those of the above maps and charts which represent portions of the const under blockade at the time of publication of this report will not appear.

\title{
National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey
}

\section*{Please Note:}

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service. located on the Historical Map and Chart Project webpage (http:/historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910```


[^0]:    Prof. A. D. Bache,
    Superintendent U. S. Coast Survey
    17 c :

[^1]:    * For the first day only +142 , according to the mean in the record.

[^2]:    - The actual mean of 17 days was 293 ; to reduce this to the mean of 27 dars, 19 scale divisions were subtracted, resulting from an interpolation between January 1 and January 12; the mean of 7 days preceding and following the gap was made use of.
    $\dagger$ Owing to causes already explained, the means of May and June difiry so much as to affect the continuity of the series; the same is to be said of the differences between June and July, 1840, and between December, 1840, and January, 1841: the corresponding differences between the same montbs in the other four years furnish us with the means of correcting the series for the first year, as will be seen hereafter; it also appeared advisable to omit the readings in June, 1840 , altogether, the instrument not having been in stable adjustment.
    $\ddagger$ The numbers in table II have been slightly changed, to refer the mean of the hour of observation to the mean resulting from observation of 12 hours a day. Comparing the mean at $14 h .22 \mathrm{~m}$. in each month with the respective monthly means in the other four years the above corrections became -5, -5 and 0 for January, February, and March.

    The bar between September and October, 1843, separates the means from the bi-hourly and the hourly series.
    In the application of the reduction for temperature no attempt whatever has been made at interpolation in the magnetic series, but whenever temperature reading was accidentally omitted, it has been supplied by comparison with the observed temperature immediately preceding and following. No magnetic reading can be supplicd by interpo ation, howerer short the interval, as long as the law of the occurrence of the disturbances remains unknown.

[^3]:    - Report to Superintendent, dated January 19, 1861.

[^4]:    e A table analogous to that given above, showing the distribution of the disturbances in declination, is bere added for comparison:
    

    24 c s
    

    The numbers in the last column cannot be considered as entirely independent of the eleven-ycar period, and in attempting to apply the theory of probabilities in reference to the number of disturbances which ought to occur between the assigned limits, it became apparent that the larger disturbances greatly preponderate-a fact no doubt intimately connceted with the difficulty in correctly allowing for the progressive change during the first year of olservation.

    ## APPENDIX No. 16.

    discussion of the magnetic and meteorological observations made at the girabd college observatory, philadelphia, in 1840, 1841, 1842, 1843, 1844, aND 1845.-PART V.

    ## Investigation of the Solar-Diurnal Variation, and of the Annual Inequality of the Horizontal Component of the Magnetic Force. By A. D. Bache, LL. D., Superintendent Vnited States Coast Survey.

    The discussion of the diurnal and annual variations of the horizontal force is based on the resulting monthly normal values for each observation hour as given in the preceding part (IV,) in which the horiz ntal force has been discussed in relation to the ten or eleven year period, and which also contains the investigation of the disturbances; in the same part all necessary statements are given relating to the instrumental data and the absolute values of the horizontal force.

    The normals, as has been shown, are refcred to a uniform standard temperature; they are corrected for irregularity in the progressive change, and are necessarily freed from all the larger disturbances. The use of the normals instead of the simple means of the readings (corrected for difference of temperature) will insure greater regularity in the variations of the horizontal force, now under consideration.

    The diurnal variation requires an arrangement of the five-year series of monthly normals according to the months of the year and hours of the day. In general, the method of interpolation for an occasional omission in either a month or hour, is the same as that used in Part II of the discussion of the Girard College observations; there is, however, this difference in the tabulation of the monthly values, that in the present case the results are consolidated in a five years' arrangement, and in consequence the year commences with the month of July. This arrangement was preferred, particularly since it was found desirable to make no use of the observations in the first month of the series.

    Tabulation of monthly normals for each observing hour, and each observing year, beginning and ending with July. The individual values are taken from Table VII of the preceding part, (IV.)

    After applying the corrections of -19 scale divisions to the normals for January, 1841, and of +8 seale divisions to those of June, 1841, to allow for defective number of observations in these months, a further correction of +68 scale divisions was applied to all values between July, 1840, and May, 1841, inclusive, and
    of +60 to all values between July, 1840 , and December, 1840 , inclusive, to allow for defects in the regularity of the progressive change, thus making the total correction for the latter months $=128$ scale divisions. The above corrections, when divided by 5 , in order to give the correction to the means derived from five years, become, thercfore: for months between July and December inclusive, +26 ; for January, +10 ; for Fobruary, March, April, and May, +14 ; for June, +2 . These corrections are constant for each hour of the day in any one month, and consequently do not affect the diurnal variation; but they have nevertheless been applied at once to facilitate subsequent deducious. Their origiu has also been explained in the remarks aceompanying Table V of the preceding part.

    The following example of the process of interpolation for the odd hour valuer will suffice for all similar cases: Required the mean normal from the five-year series for $57.21 \frac{1}{2} \mathrm{~m}$. a. m., in June, (see tabular values and results below.) The mean normals for the two last years at $4 h .21 \frac{1}{2} m ., 5 / 4.21 \frac{1}{2} m$., and $67.21 \frac{1}{2} m$., are 1176,1173 , and 1169 , respectively; the mean at $5 h .21 \frac{1}{2} m$. is therefore 3 divisions less than the mean at $4 h .21 \frac{1}{2} \mathrm{~m}$.; and since the mean of the five-year series at $4 \% .21 \frac{1}{2} \mathrm{~m}$. is 853 , the result for $5 \mathrm{~h} .21 \frac{1}{2} \mathrm{~m}$. becomes 849 . Again, adding 4 divisions to 847 , the mean at 6 h . $21 \frac{1}{2} \mathrm{~m}$., we find 851 ; the mean of the two values, or 850 , is that given in the table, to which +2 has been added, making the final result 859 . The means of the odd hours, thus found from the adjacent even hours, in general, do not differ by as much as a scale division.

    The time given in the tables of the normals is mean local time, counting from midnight to midnight to twenty-four hours. The observations were taken (on the average) $21 \frac{1}{2}$ minutes after the full hours, as indicated in the tables. Increase of scale readings indicates decreace of horizontal force; the value of a scale division equals 0.0000365 parts of the horizontal force, or 0.0001523 in absolute measure, the mean horizontal force being 4.173 (in absolute measure.) Proper weights have been given to the normals of the even aud odd hours, in proportion to the number of observations, as will be seen hereafter. Other special remarks will be found at the end of the month to which they refer.

    Tabulation of the hourly normals for each month and the mean of the five-year series, expressed in scale division readings and reduced to the standard temperature of $63^{\circ}$, (Fahrenheit's scale,) also corrected for all irregularities in the progressive change. The regular progressive and secular change, therefore, remains in the tabular quantities.

    Normals of the horizontal force for July.

    | Year. |  | 0 h : | 1 h . | 9. | 3 3. | 4 h. | 5 S. | 0 h. | 7 l. | 84. | 92. | 10 h . | 11h. | $12 \%$. | 13 h | 1/h. | 15h. | $16 \pi$. | 17h. | 18h. | 19. | 20h. | 21h. | 22 h. | 23 h. | +214m. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1840............... | .. | 113 | $\ldots$ | 97 | .... | 80 | $\ldots$ | 50 | $\ldots$ | 119 | .... | 116 |  | 94 |  | 59 |  | 5 |  | 92 |  | 93 |  | 108 |  | $\ldots$ |
    | $1841 . . . . . . .$. |  | 42 | ..... | 442 | ..... | 435 | $\ldots$ | 43.5 | $\ldots$ | 447 | $\ldots$ | 458 |  | 449 | .... | 123 | $\cdots$ | 430 | … | 444 | $\cdots$ | 448 |  | 449 | ..... |  |
    | 1842. |  | 692 | ... | 686 | ..... | 682 |  | 678 | .... | 69. | .... | T08 |  | 800 | .... | 68) | $\cdots$ | 6动 |  | 699 | ..... | 691 |  | 700 | ..... | ....... |
    | 1843. |  | 927 |  | 924 | ..... | 924 | .... | 923 | …. | 935 | ..... | 941 |  | 934 | ..... | 923 |  | 916 |  | 921 |  | 928 |  | 931 | ..... |  |
    | 1844. |  | 1102 | 1103 | 1105 | 1106 | 1106 | 1105 | 1104 | 1104 | 1109 | 1116 | 1118 | 1114 | 1103 | 1109 | 1096 | 10:3 | 1092 | 1093 | 1091 | 1099 | 1101 | 1103 | 1103 | 1104 | ........ |
    | Mean |  | 645 | ... | 631 |  | 647 |  | 638 | .... | 660 |  | 668 |  | 657 | ..... | 637 |  | 633 |  | 649 |  | 653 |  | 651 |  | ....... |
    | Keferred mean |  |  | 653 |  | 649 |  | 642 |  | 647 |  | 666 |  | 684 |  | 646 |  | 634 |  | 640 |  | 651 |  |  |  | 657 |  |
    | Constant correction +26 . | Normak. | 681 | 679 | 677 | 675 | 673 | 618 | 664 | 673 | ${ }^{88}$ | 698 | 694 | 690 | 683 | 672 | 663 | 660 | 659 | 666 | 675 | 67 | 679 | 681 | $68 \%$ | 683 |  |

    Nonthly mean normal from the even hours $\left(+21 \frac{1}{2} \mathrm{~m}\right) 676.3$, weight 5 . Nonthly mean hormal from the ond hours ( $+21 \frac{1}{8}$ m. $)$ 676.3, weight 1 .
    Normals of the horizontal force for August.
    
    
    Normals of the horizontal force for Soptember.

    | Year. | 0/4. | th. | 2h. | 3 h. | 4. | 5. | $6 \mathrm{hb}$. | 7. | 8 \% | 9 h . | 10.4. | 11h. | $12 h$. | $13 h$. | 14h. | 15h. | $16 h$. | $17 \%$ | 184. | 19h. | 204. | 21\%. | 22h. | 23 | $+21 \frac{1}{2} m$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $1840 .$. | 155 |  | 147 |  | 139 |  | 141 |  | 180 |  | 202 |  | 177 | .... | 155 |  | 153 | ... | 158 |  | 157 | $\ldots$ | 50 |  |  |
    | 1841. | 510 |  | 514 |  | 515 | ..... | 508 |  | 531 |  | 54 | $\ldots$ | 537 | ..... | 516 |  | 519 |  | 520 |  | 515 |  | 515 |  |  |
    | 1842. | 726 |  | 733 |  | 723 | ..... | 717 |  | 739 | .... | 750 | $\ldots$ | 737 | ..... | 730 | ... | 227 |  | 737 | ... | 737 |  | 734 |  |  |
    | 1843. | 974 |  | 967 |  | 965 |  | 960 |  | 980 |  | 992 |  | 985 |  | 972 | ... | 972 |  | 97. |  | 974 |  | 973 |  |  |
    | 1844. | 1106 | 1104 | 1107 | 1105 | 1101 | 1101 | 1100 | 1107 | 1117 | 118 | 1128 | 1183 | 1115 | 1104 | 1097 | 1095 | 1093 | 1100 | 1102 | 1104 | 1104 | 1108 | 1107 | 1108 |  |
    | Mean | 694 |  | 694 |  | 688 | $\cdots$ | 685 |  | 709 |  | 723 |  | 710 |  | 694 |  | 693 |  | 698 |  | 697 |  | 696 | $\therefore$ |  |
    | Referred mean. |  | 692 |  | 692 |  | 687 |  | 693 |  | 718 |  | 720 |  | 700 |  | 692 |  | 687 |  | 699 |  | 699 |  | 690 |  |
    | Constant correction + 26, Normals.......... | 720 | 718 | 720 | 73 | 714 | 713 | 711 | 721 | 735 | 744 | 749 | 746 | 736 | 726 | 720 | 718 | 719 | 723 | 724 | 725 | 723 | 225 | 22 | 722 |  |

    Monthly mean normal from the even hours $\left(+21 \frac{1}{4} \mathrm{~m}.\right)$ 224.4, weight 5 . Monthly mean normal from the odd hours $\left(+21 \frac{1}{\mathrm{~m}}\right.$.) 724,9 , weight 1 .

    Normals of the horizontal force for October.

    | Year. | 0 h . | 14. | 2 2. | 3 h. | 4 h. | 5 5. | 6. | 7 h . | 84. | $9{ }^{\text {r }}$. | 104. | 11 h. | 12 h. | 13h. | 14h. | 15h. | 16 h. | 17h. | $18 h$. | 19 h. | 20 h. | $21 \mathrm{h}$. | 22h. | 23h. | +214m. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1840,....................................... | 142 |  | 137 | ..... | 192 | $\ldots$ | 138 | $\ldots$ | 153 | $\cdots$ | 160 | $\ldots$ | 159 | $\ldots$ | 158 | .... | 148 | $\ldots$ | 146 |  | 148 |  | 151 |  |  |
    | 1841........................................ | 521 | - | 517 | ... | 518 | .... | 514 | .... | 526 | ..... | 537 | ..... | 547 | .... | 530 | ..... | 525 | ... | 527 | .... | 529 |  | 528 | ... |  |
    | 1842. | 764 | ..... | 759 | . | 757 | ..... | 757 | .... | 764 | .... | 781 | . ... | 783 | $\ldots$ | 76 | ..... | 776 | ..... | 768 | ..... | 769 | ... | 764 | .... | ........ |
    | 1843. | 983 | 978 | 983 | 978 | 976 | 978 | 977 | 980 | 983 | 787 | 991 | 99. | 991 | 189 | 985 | 983 | 983 | 983 | 985 | 985 | 985 | 986 | 983 | 984 | ... |
    | 1844. | 1133 | 1132 | 1131 | 1127 | 1124 | 1185 | 1129 | 1134 | 1141 | 1149 | 1152 | 1145 | 1145 | 1137 | 1134 | 1130 | 1132 | 1134 | 1135 | 1137 | 1138 | 1134 | 1137 | 1135 | ........ |
    | Mean ...................................... | 709 | ... | 765 | .... | 689 | $\cdots$ | 703 | $\ldots$ | 713 | ..... | 725 |  | 725 | $\ldots$ | 717 | $\ldots$ | 713 | ..... | 712 | ..... | 714 | $\ldots$ | 713 |  | ....... |
    | Referred mean. | . | 70.5 |  | 701 |  | 702 |  | 7118 | ... | 720 |  | 724 |  | 221 |  | 714 |  | 713 |  | 713 |  | 713 |  | 712 | ........ |
    | Constant correction + 26. Normals... ....... | 735 | 731 | 731 | 797 | 765 | 728 | 729 | 734 | 739 | 748 | 751 | 750 | 731 | 747 | 243 | 740 | 739 | 739 | 738 | 734 | 740 | 749 | 739 | 733 |  |

    Monthly mean uormal from the even hours ( $+21 \frac{1}{2} m$.) 738,3 , weight 5 . Monthly mean normal from the odd hours ( $+21 \frac{1}{2} m$.) 738.2 , weight 2 .
    Normals of the horizontal force for November.

    | Year. | 0 \%. | 1 h . | 2 h. | 34. | 4 th | 5 b. | 6 h. | 7 h . | 8h. | 9 h . | 10 h. | 11 h. | $12 h$. | 13 h | 142. | 15. | 16. | 17h. | 18 . | 196. | 24. | 21 h. | 23. | 23. | $+21 \frac{1}{8} \mathrm{~m}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1840 | 155 | $\ldots$ | 150 |  | 144 | .... | 143 |  | 144 |  | 154 | .... | 175 | .... | 157 |  | 151 |  | 148 | $\ldots$ | 14. | .... | 160 |  |  |
    | 1841. | 519 | ... | 517 |  | 515 | ..... | 509 | ..... | 518 |  | 529 | .... | 531 | .... | 514 | $\cdots$ | 518 |  | 013 | $\ldots$ | 516 | .... | 518 |  |  |
    | 1842. | 774 |  | 770 |  | 771 | $\ldots$ | 768 | $\ldots$ | 77 | .... | 789 | ... | 787 | ... | 781 | ... | 778 | .... | 775 | .... | 776 | .... | 776 | ... | ........ |
    | 1843. | 987 | 986 | 985 | 983 | 982 | 980 | 920 | 983 | 987 | 991 | 992 | 993 | 991 | 989 | 987 | 985 | 984 | $98 ;$ | 986 | 986 | 987 | 987 | 988 | 188 | ........ |
    | 184. | 1131 | 1130 | 1187 | 1126 | 1125 | 1123 | 112 | 1125 | 1130 | 113.3 | 1138 | 1142 | 1136 | 1133 | 119 | 1127 | 1124 | 1131 | 1128 | 1129 | 1130 | 1130 | 1131 | 1131 | ........ |
    | Mean | 713 | $\ldots$ | 710 | . | 767 | $\ldots$ | 703 | $\ldots$ | 711 | .... | 720 | .... | 734 | ... | 714 |  | 71 |  | 710 | $\ldots$ | 71 | .... | 715 |  | ....... |
    | Referred mean, | ... | 712 |  | 708 |  | 704 |  | 706 |  | 717 |  | 725 |  | 720 | ..... | 712 | .... | 713 |  | 710 |  | 713 |  | 714 | ........ |
    | Constant correction + 28. Normals, | 739 | 738 | 736 | 234 | 723 | 730 | 728 | 732 | 737 | 743 | 740 | 781 | 750 | 746 | 740 | 738 | 737 | 739 | 738 | 736 | 737 | 379 | 741 | 740 | ....... |

    
    Normals of the horizontal force for December.

    | Year. | 0 \% | 1 h . | 2h. | $2 h$. | 4h. | $5 h$. | 64. | 7h. | Eh. | 9 h | 10.1 | $11 h$. | 123. | 13 h. | 14. | 15h. | 16h. | 17h. | 1th. | 19 h. | 20h. | 91 h . | 93h. | 23 h. | $+21 \frac{1}{8} m$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1840. | 196 |  | 168 |  | 176 |  | 166 | $\ldots$ | 178 | $\ldots$ | 208 | $\ldots$ | 27 | $\ldots$ | 193 |  | 182 |  | 185 |  | 200 |  | 194 |  |  |
    | 1811. | 546 | ... | 541 |  | 538 |  | 535 |  | 537 |  | 548 | .... | 562 | ..... | 549 |  | 545 | ... | 547 |  | 550 | ..... | 553 |  | ........ |
    | 1842. | 780 | … | 277 |  | 775 | .... | 773 | .... | 776 |  | 790 | .... | 795 | .... | 786 | $\ldots$ | 73 |  | 776 | $\ldots$ | 781 |  | 288 |  | ....... |
    | 1443. | 995 | 093 | 992 | 991 | 989 | 987 | 997 | 987 | 99 | 994 | 993 | 997 | 999 | 993 | 996 | 993 | 991 | 990 | 093 | 995 | 095 | 995 | 997 | 498 | ........ |
    | 1844 | 1213 | 1202 | 1200 | 1198 | 1196 | 1191 | 1190 | 1193 | 1194 | 1197 | 1209 | 1217 | 120 | 1212 | 1200 | 1202 | 1201 | 1201 | 1903 | 1198 | 1200 | 1204 | 1206 | 1206 | ......... |
    | Mean ... | 748 |  | 10 | .... | 735 | .... | 730 | . . $\cdot$ | 735 | .... | 749 | ..... | 759 | ..... | 747 |  | 738 |  | 741 | $\ldots$ | 745 |  | 716 | .... | ........ |
    | Referred tuean |  | 711 | ..... | 738 |  | 733 |  | 732 |  | 740 |  | 257 |  | 252 | $\ldots$ | 742 |  | 739 |  | 712 |  | 716 |  | 245 | ....... |
    | Constant curection + gr. Normals.......... | 772 | 767 | 766 | 764 | 761 | 759 | 756 | 758 | 761 | 766 | $7 \%$ | 783 | 785 | 778 | 773 | 768 | 264 | 765 | 767 | 768 | 771 | 720 | 72 | 771 |  |

    Normals of the horizontal force for January.

    | Year. | 0h. | 14. | 24. | 3 . | 4 h . | $5 h$. | 6 h. | 7. | $8 h$. | 92. | 10 h | 11\%. | 19h. | 13h. | 14 t. | 15h | 104. | 17 h. | 184. | 19n. | 204. | 214. | 22 h | 233. | +21mm. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1841. | 998 | ... | 300 |  | 294 |  | 284 | .... | 261 |  | 302 |  | 336 | $\ldots$ | 311 | .... | 289 | $\ldots$ | 296 | ..... | 301 | .... | 302 | .... | . $\cdot$..... |
    | 1842. | 561 | . | 556 | .... | 555 | ... | 558 | ... | 553 | . | 573 | ...... | 577 | .... | 559 | ... | 554 | $\ldots$ | 564 | .... | 563 | .... | 564 | ..... |  |
    | 1843. | (880) |  | ${ }^{817)}$ |  | (814) | …… | (815) |  | (814) | ...... | (897) | ..... | (830) | ...... | 818 | ..... | (813) |  | (820) | ..... | (820) | ... | ( 821 |  | ........ |
    | 184. | 1006 | 1005 | 1104 | 1002 | 1000 | 1000 | 999 | 999 | 1012 | 1005 | 1008 | 1011 | 1009 | 1006 | 1013 | 999 | 998 | 1000 | 1002 | 1003 | 1003 | 1004 | 1004 | 1005 |  |
    | 1845. | 1033 | 1298 | 1231 | 1230 | 1228 | 1296 | 1925 | 1296 | 1231 | 1241 | 1248 | 123 | 1249 | 1242 | 12:39 | 123 | 1:9, | 1230 | 1233 | 1231 | 1230 | 1230 | 1224 | 1229 | ........ |
    | Mean | TE4 | .... | 782 | $\ldots$ | 778 | $\cdots$ | 726 | ..... | 276 | …… | 792 | ...... | 768 | $\ldots$ | 78 | $\cdots$ | 77 |  | 783 | ..... | 783 | ...... | 78.1 | .... | ....... |
    | Referred mean................... ........... | ... | 782 |  | 780 |  | 777 | $\ldots$ | 774 | .... | \% 8 |  | 798 |  | 791 | $\cdots$ | 780 | ..... | 780 | $\ldots$ | 784 | ..... | 784 | .... | 786 |  |
    | Constant correction +10 . Normals... | 794 | 793 | 793 | 790 | 788 | 787 | 788 | 784 | 786 | 795 | 802 | 808 | 818 | 801 | 766 | 790 | 787 | 790 | 793 | 794 | 783 | 794 | 744 | 796 |  |

    
    The values for 1843 within brackets are interpolated by means of the continued readings at 14 h . $21 \frac{1}{2} m$; at this hour the difference of reading from the precediag year is 259 , which alded to the values of 1842 gave re
     value in 1844, gives a second determination tor the year 1e43; the mean of the two determinations for each hour has been inserted above.

    Normats of the harizontal force for February.

    | Year. | 0 h. | 1 h . | 2 h. | 3 h . | 4 n . | 54. | 6 6. | 7 h . | $8 h$. | 9 h. | 10h. | 11 h. | 12 h. | 13 h. | $14 h$. | 15h. | 16h. | 17h. | $1 \leqslant \%$ | 19h. | 20.4. | 21 h. | 22. | 234. | $+21 \frac{1}{4} m$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1811................................... | 269 | . $\cdot$ | 261 | ... | 264 | . | 257 | ..... | 265 | $\ldots$ | 288 |  | 247 |  | 289 |  | 275 | $\ldots$ | 274 | $\ldots$ | 25 | $\ldots$ | 922 | $\cdots$ | ........ |
    | 1842. | 580 |  | 573 |  | 572 | .... | 567 | ..... | 568 | ..... | 582 | .... | 589 | .. | 578 | ..... | 578 | ..... | 580 | $\ldots$ | 590 | .... | 578 | $\ldots$ | ...... |
    | 1843. | (820) |  | (816) |  | (815) | ..... | (810) | .... | (812) | ..... | (822) | …. | (825) | …… | 817 |  | (818) | .... | (820) | ..... | (826) | .... | (819) | ..... | ....... |
    | 1844..................... ................. | 1031 | 1031 | 1031 | 1029 | 1026 | 1026 | 1026 | 1028 | 1029 | 1030 | 1034 | 1034 | 1085 | 1032 | 1028 | 1028 | 1030 | 1031 | 1032 | 1033 | 1034 | 1033 | 1032 | 1030 | ........ |
    | 1845....................................... | 1231 | 1230 | 1231 | 1229 | 122; | 1296 | 1223 | 1227 | 1231 | 12336 | 124.3 | 1244 | 1250 | 1242 | 1234 | 1231 | 1233 | 1299 | 1231 | 1233 | 1235 | 1231 | 1231 | 1232 | ....... |
    | Mean | 786 |  | 789 | ... | 781 | .... | 777 |  | 281 | $\ldots$ | 794 |  | 769 | $\ldots$ | 790 |  | 787 | $\ldots$ | 787 | ..... | 792 | $\ldots$ | 786 | .... | ........ |
    | Referred mean........... | ... | 784 | $\ldots$ | 762 |  | 779 |  | 779 |  | 785 |  | 796 |  | 794 |  | 786 |  | 766 |  | 390 | ..... | 788 | ..... | 786 |  |
    | Constant correction +14. Normals. | 800 | 798 | 796 | 796 | 795 | 793 | 291 | 793 | 795 | 810 | 808 | 810 | 813 | 808 | 804 | 800 | 801 | 800 | 801 | ${ }^{804}$ | 806 | 802 | 801 | 800 | ....... |

    
    Normals of the horizontal force for March.
    碚

    | Year. | Oh. | 1 l . | 2h. | 3 h | 4 4. | $5 h$. | 6 h. | 76. | \& 2. | 9 . | 10 h. | 11h. | 12. | 13h. | $14 h$. | $15 h$ | 16h. | 17 h. | 184. | 19. | $20{ }^{\text {a }}$. |  | 23h. | 23h. | $+21 \frac{1}{2} m$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1841 | 288 | $\cdots$ | 279 |  | 267 |  | 237 | ..... | 271 | . | 294 | $\ldots$ | 286 | ... | 267 | $\ldots$ | 266 | $\ldots$ | 282 | .... | 264 |  | 279 | $\ldots$ | . $\cdot$. $\cdot$ |
    | 1842. | 565 | .... | 559 |  | 557 |  | 554 |  | 563 |  | 574 |  | 575 |  | 501 | .... | 565 |  | 571 | $\ldots$ | 567 | .... | 566 | .... |  |
    | 1843 | (827) | $\ldots$ | (823) | .... | (882) |  | (819) |  | (®27) |  | (846) |  | (839) |  | 829 | ..... | (888) | $\ldots$ | (831) |  | (883) | ..... | (888) | .... |  |
    | 1844. | 1048 | 1047 | 1046 | 1046 | 1446 | 1843 | 1043 | 1047 | 1050 | :074 | 1057 | 11063 | 1063 | 1061 | 1057 | 1050 | 151 | 1050 | 1050 | 1052 | 1050 | 1048 | 1050 | 1048 | ....... |
    | 1845. | 1236 | 1836 | 1834 | 1235 | 1234 | 1234 | 1231 | 1253 | 1241 | 1249 | 1255 | 1261 | 1260 | 1253 | 1245 | 1239 | 1240 | 1242 | 1244 | 1240 | 1239 | 1237 | 1240 | 1238 | .... $\cdot$ |
    | Mean | 789 | $\ldots$ | 787 | ... | 785 |  | 781 |  | 790 | $\cdots$ | 803 | . | 805 |  | 792 | $\ldots$ | 790 |  | 796 | $\ldots$ | 790 |  | 791 |  |  |
    | Referred mean. |  | 788 |  | 786 |  | 783 |  | $78:$ |  | 798 |  | 803 |  | 800 |  | 787 |  | 793 |  | 29.4 |  | 78 |  | 790 |  |
    | Constant correction + 14. Normals, | 803 | 802 | 801 | 800 | 799 | 797 | 795 | 799 | 804 | 812 | 817 | 832 | 819 | 814 | 804 | 801 | 804 | 807 | 810 | 808 | 804 | 803 | 805 | 804 |  |

    Monthy mean nornal from the even ! urss ( $+21 \frac{12 n .1}{4}$ 805.6, weight 4. Monthly mean normal from the odd hours ( $+21 \frac{1}{2} m$.) 805.8, weight 2 .
    The values for 1843 aro interpolated as in the preceding two monthas.

    Normats of the horizontal force for April.

    | Year. | Oh. | 1h. | 2 L. | 3h. | 4h. | 5 5. | 6 h. | 7 h . | 8 \% | $9 h$. | 10 h . | 11 h . | $12 h$. | 13 h. | 14h. | $15 h$. | 16. ${ }^{\text {a }}$ | 17h. | 184. | 19h. | 20 h. | 21. | $22 h$. | 23 . | $1+21 \frac{1}{2} m$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1841. | 273 | $\ldots$ | 271 | ..... | 262 |  | 262 | $\ldots$ | 283 |  | 317 |  | 315 |  | 279 |  | 268 |  | 871 |  | 283 |  | 280 |  |  |
    | 1842. | 595 |  | 598 | .... | 597 | $\ldots$ | 594 |  | 604 | .. | 620 |  | 618 | .... | 603 | .... | 598 | ... | 607 | $\ldots$ | 608 | $\ldots$ | 615 | .... |  |
    | 1843. | 861 |  | 861 |  | 854 |  | 854 | ..... | 868 | ... | 883 |  | 878 | ... | 863 | $\ldots$ | 860 |  | 861 |  | ¢65 | $\ldots$ | 859 | .... | ........ |
    | 1844. | 1070 | 1069 | 1088 | 1065 | 1063 | 1062 | 1064 | 1061 | 1067 | 1074 | 1073 | 1078 | 1077 | 1071 | 1086 | 1062 | 1064 | 1062 | 1063 | 1068 | 1171 | 1071 | 1068 | 1169 |  |
    | 1845. | 1222 | 1250 | 1249 | 1247 | 1245 | 1243 | 1241 | 1244 | 1853 | 1268 | 1278 | 1281 | 1288 | 1967 | 1255 | 182 | 1248 | 1253 | 1236 | 12.54 | 1254 | 1253 | 1250 | 1254 | .... ... |
    | Mean. | 810 |  | 809 | ... | 804 | $\ldots$ | 803 |  | 815 | .... | 83 |  | 831 |  | 813 | ..... | 808 | ..... | 813 |  | 816 |  | 814 | .... | ........ |
    | Referred mean.. |  | 809 |  | 808 |  | 803 | . | 806 | ... | 827 | $\cdots$ | 837 |  | 825 |  | 810 |  | 808 |  | 81 |  | 816 |  | 813 |  |
    | Constant eorrection +14 . Normals | 824 | 833 | 823 | 820 | 818 | 817 | 817 | 820 | 829 | 841 | 849 | 651 | 845 | 839 | 827 | 834 | 822 | 82 | 827 | 827 | 830 | 830 | 898 | 827 |  |

    Monthly mean normal from the even hours ( $\left.+21 \frac{1}{2} \mathrm{~m}.\right)$ 823.2, weight 5 . Monthly mean nonal from the odilhours ( $+21 \frac{1}{8} m$.) 828.4, weight 2 .
    Normals of the horizontal force for May.

    | Year. | 0 l . | 1 h. | $2 h$. | 32. | 43. | 5h. | 6 \%. | 7 h . | 8 \%. | 9 9. | 10 h | 11 h . | 1 L . | 136. | 14h. | $15 h$. | 16 h. | $17 \%$. | $18 h$. | 19 h. | 03. | 21 h . | $22 h$. | $23 h$. | +2/ 2 m . |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1841. | 311 |  | 305 |  | 306 |  | 297 |  | 306 | .... | 323 |  | 313 |  | 301 |  | 294 |  | 316 | $\ldots$ | 309 |  | 313 |  |  |
    | 1842. | 614 | ... | 610 | ..... | 611 | .... | 605 | ... | 621 | .... | $6: 10$ | ..... | 622 | .... | 605 | $\ldots$ | 607 | .... | 615 | .... | 618 | .. | 619 |  |  |
    | 1843. | 864 |  | 862 |  | 458 |  | 857 | $\ldots$ | 875 | ... | 872 | $\cdots$ | 864 |  | 855 |  | 856 |  | 869 | $\ldots$ | 867 |  | 863 |  | ....... |
    | 1844. | 1065 | 1065 | 1083 | 1062 | 1062 | 1061 | 1061 | 1064 | 1068 | 1075 | 1077 | 1070 | 1064 | 105\% | 1053 | 1058 | 1051 | 1154 | 1039 | 1063 | 1064 | 1064 | 106\% | 1063 | ....... |
    | 1845. | 1244 | 1243 | 124 | 1939 | 1233 | 1233 | 1229 | 1238 | 1251 | 1961 | 1269 | 1238 | 1233 | 1244 | 1235 | 1236 | 1237 | 1230 | 1245 | 1246 | 1210 | 1248 | 1247 | 1942 | ....... |
    | Mean. | 820 | . | 816 |  | 815 | ..... | 810 | $\ldots$ | 824 |  | 833 |  | 823 |  | 811 |  | 809 | $\cdots$ | 817 |  | 8.1 |  | E21 |  | ... |
    | Heferred moan.. |  | 819 | ... | 815 |  | 812 |  | 815 |  | 832 |  | 829 | $\cdots$ | 816 | ... | 810 |  | 811 | ...... | 818 | .... | 832 | $\ldots$ | 818 | ... .... |
    | Coustant correetion +14 . Normis | 834 | 833 | 830 | 829 | 829 | 828 | 824 | 829 | 838 | 816 | 817 | 843 | 837 | 830 | 885 | 824 | 423 | 835 | 831 | 832 | 835 | 836 | 83.3 | 832 | - |

    Monthy mean normal from the even hours ( $+21 \frac{1}{2} m$.) 832.3, weight 5 . Monthly mean normal fom the odd hours $\left(+21 \frac{1}{2} m\right.$.) 832. 1, weight 2 .
    Normals of the horizontal force for June.

    | Year. | 0 h . | 1 h . | ${ }^{2 h}$. | 3 h. | 4 h. | $5 h$. | 6 h. | 7h. | $8{ }^{2}$ | $0 \%$. | 10h. | 11. | $1 \pm h$. | 13h. | 14. | $15 h$. | 16 h. | 17 h. | 18 h ! | 19 h. | 204. | $21 h$. | 29. | 23. | +21+m. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1841. | 392 | ..... | 340 |  | 392 |  | 386 | $\ldots$ | 401 |  | 401 |  | 395 |  | :88: |  | 385 | ...... | 392 |  | 402 | $\cdots$ | 393 |  |  |
    | 1849. | 644 | .... | 6.5 | $\ldots$ | 646 | .... | $6: 8$ | ..... | 6.49 | .... | 6.59 | .... | 650 |  | 639 | .... | 638 | ..... | 619 | ... | 648 |  | (6iol | .... | ....... |
    | 1843 | 881 | .... | 879 | $\ldots$ | 676 | .... | 873 | $\ldots$ | PR3 | .... | 894 | .... | 88.4 | ..... | 870 | $\cdots$ | 874 | . | 831 | ...... | 8 Cl |  | 885 | ..... | ....... |
    | 1844. | 1078 | 1077 | 1076 | 1077 | 1077 | 1075 | 1673 | 1077 | 10:0 | 1082 | 1084 | 1081 | 1077 | 1072 | 1067 | 1065 | 1063 | 1067 | 1071 | 1073 | 1075 | 1177 | 1077 | 1078 | ....... |
    | 1843. | 1260 | 1281 | 1281 | 1281 | 1275 | 1271 | 1266 | 1273 | 1989 | 1193 | 1293 | 1292 | 1296 | 1200 | 129 | 1269 | 1288 | 1973 | 1278 | 1281 | 1280 | 1277 | 1279 | 1280 |  |
    | Mean. .... | 856 | ... | 855 | ..... | 853 |  | 847 | .... | 889 |  | 867 |  | 858 |  | 816 |  | 845 |  | 854 |  | 857 |  | 857 |  | , |
    | Referred meen. |  | 858 |  | 856 |  | 850 |  | $8: 3$ |  | 865 |  | 864 | .... | 853 |  | 815 |  | 849 |  | 851 |  | 856 | ...... | 857 | ........ |
    | Constant correction +2 . Normals | 858 | 858 | 858 | 858 | 855 | 852 | 849 | 85 | 801 | 867 | 869 | 836 | 860 | 8.5 | 848 | 8.47 | 847 | 851 | 856 | 858 | 859 | 858 | 859 | 859 |  |

    Table I.
    Recapitulation of the hourly normals of the horizontal force (expressed in scale diwisions) for each month of the year. Increase of scale readings denotes decrease of force.

    | 1840-1845. | Oh. | 17. | $2 h$. | 3 h . | 4 h. | $5 \%$. | 6 h. | 7 h . | 8 h. | 9 h. | $10 h$. | 11 h. | + $21 \frac{1}{3}+\mathrm{m}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July. | 681 | 6.9 | 677 | $6 \%$ | 673 | 668 | 664 | 673 | 686 | 692 | 694 | 690 |  |
    | August | 698 | 699 | 699 | 698 | 699 | 695 | 69.3 | 762 | 734 | 724 | 726 | 718 | ......... |
    | September.. | 721 | 718 | 720 | 718 | 714 | 713 | 711 | 221 | 735 | 744 | 749 | 746 |  |
    | October | 735 | 731 | 731 | 727 | 725 | 728 | 739 | 734 | 739 | 746 | 731 | 750 | ......... |
    | November. | 739 | 738 | 736 | 734 | 733 | 730 | 728 | 732 | 797 | 743 | 746 | 751 | ..... .... |
    | December | 772 | 767 | 766 | 264 | 761 | 759 | 756 | 758 | 761 | 765 | 775 | 783 |  |
    | Jnuary | 794 | 792 | 792 | 790 | 788 | 787 | 786 | 784 | 786 | 795 | 802 | 808 | ..... |
    | February | 800 | 798 | 796 | 796 | 795 | 793 | 791 | 793 | 795 | 800 | 808 | 810 |  |
    | March | 803 | 802 | 801 | 800 | 799 | 797 | 295 | 299 | 804 | 81.2 | 817 | 822 |  |
    | April. | 824 | 823 | 223 | 890 | 818 | 817 | 817 | 820 | 829 | 841 | 849 | 851 | .......... |
    | May | 834 | 833 | 839 | 429 | 829 | 826 | 894 | 829 | 833 | 846 | 847 | 843 | , ........ |
    | June | 858 | 858 | 858 | 858 | 855 | 852 | 849 | 855 | 861 | 867 | 869 | 866 | ......... |
    | Sear. | 721.5 | 769.8 | 769.1 | 767.4 | 765.7 | 763.7 | 761.9 | 766.7 | 773.7 | 781.3 | 786.1 | 786.5 |  |
    | Summer | 769.2 | 763.3 | 767.8 | 766.3 | 764.7 | 761.8 | 759.7 | 766.7 | 777.2 | 785.7 | 789.0 | 785.7 |  |
    | Winter | 773.8 | 771.3 | 70.3 | 768.5 | 766.8 | 765.7 | 764.2 | 766.7 | 770.3 | 777.0 | 783.2 | 787.3 | ......... |
    |  | 122. | 13 h. | 14h. | 15.2. | 16 h. | 17h. | 18h. | 192. | $20 \mathrm{h}$. | 21 k. | $22 h$. | 23 h. | +21 $\frac{1}{2} \mathrm{~m}$. |
    | July . | 683 | 672 | 663 | 660 | 659 | 666 | 675 | 677 | 679 | 681 | 683 | 683 | .. ...... |
    | August | 708 | 698 | 689 | 688 | 692 | 696 | 701 | 703 | 794 | 703 | 704 | 702 | .......... |
    | September. | 736 | 726 | 720 | 718 | 719 | 723 | 724 | 725 | 723 | 72.3 | 722 | 722 | ......... |
    | October. | 751 | 747 | 743 | 740 | 739 | 729 | 738 | 739 | 740 | 739 | 739 | 738 | .......... |
    | November | 70 | 796 | 740 | 738 | 737 | 239 | 736 | 736 | 737 | 739 | 741 | 740 | .......... |
    | Decemtrer | 785 | 778 | 773 | 768 | 764 | 765 | 767 | 768 | 771 | $7 \% 2$ | 72 | 771 | .......... |
    | January. | 808 | 801 | 796 | 790 | 787 | 790 | 793 | 794 | 793 | 794 | 794 | 796 | ....s. ... |
    | February. | 813 | 808 | 804 | 800 | 801 | coo | 801 | 804 | 806 | 802 | 800 | 800 | .......... |
    | March | 819 | 814 | 806 | 801 | 804 | 807 | 810 | 808 | 804 | 803 | 805 | 804 |  |
    | April. | 845 | 839 | 827 | 824 | 822 | 822 | 827 | 827 | 830 | 830 | 828 | 827 | .......... |
    | May | 837 | 830 | 825 | 824 | 823 | 82.5 | 831 | 832 | 835 | 830 | 835 | 832 | ... ...... |
    | June | 860 | 855 | 848 | 847 | 847 | 851 | 856 | 858 | 835 | 858 | 859 | 859 | ......... |
    | Year. | 782.9 | 766.2 | 769.5 | 766.5 | 766.2 | 768.6 | 771.6 | 772.6 | 773.4 | 7735 | 773.4 | 772.8 | ......... |
    | Summer | 778.2 | 770.0 | 762.0 | 760.2 | 760.3 | 763.8 | 769.0 | 770.3 | 771.7 | 772.2 | 731.7 | 770.8 |  |
    | Winter. | 787.7 | 78.3 | 777.0 | 772.8 | 772.0 | 773.3 | 774.2 | 774,8 | 775.2 | 774.8 | 775.2 | 774.8 |  |

    In the preceding table the normals for the summer half year comprise the months between April and September inclusive; those for the winter half year comprise the months between October and Mareb inclusive.

    The following table contains the mean values of the normals for each month and season:

    Table II.

    | 1840-1844. | Normal. | 1841-1845. | Normal. | 1840-1845. | Normal. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | July .. | 676.3 | Jinuary . | 793.3 | Year | 772.1 |
    | Angust.. | 702.2 | February | 800.6 | Summer. | 770.1 |
    | September..-- | 724.6 | March | 805.7 | Winter.-. | 774.1 |
    | October | 738.2 | April | 828.3 |  |  |
    | November | 738.5 | May | 832.2 |  |  |
    | December | 768.4 | June | 856.8 |  |  |

    Regular Solar-Diurnal Variation of the Horizontal Force.-If we subtract the hourly normals of Table I from their respective inonthly mean value as given in Table II, the difference (in scale divisions) will represent the regular solar-diumal varion for each month in the year. In like mamer we oltain the diurnal variation of the horizontal foree-free of the larger disturbances-for the summer and winter half, and for the whole year. Table III will exhibit these differences after their conversion from seale divisions into parts of the horizontal force (one scale division equalling 0.0000365 parts of the horizontal force.) The tahular numbers are expressed in units of the sixth place of decimals. A plus sign indicates a greater force, a mimus sign a less force, than the mean value. Casting the eye over the vertical columns, we obtain also a view of the: annual inequality of the diumal variation, which will be examined further on.

    Table III.
    Regular solar-diurnal variation of the horizontal component of the magnetic force expressed in parts of the horizontal.force.

    A phus sign indicates greater force than the mean. For convenience sake, the first three decinals ( 0.000 ) bave been placed on the side of the table.
    

    25 cs

    Table IV.
    Table 1 「 is derived from Tuble III by multijlication with the absclute ralue of the horizontal force, (4.173;) it comtains, therefore, the regular solar-diurnal varialisn of the horizontat furce in absolute measure.

    A phes rigu micates gruater torce than the mean. Two places of decimats have been pleded on the side of the table.
    

    Annual Incquality in the Diurnat Variation of the Horizontal Force.-The distinctive feature of the diurnal variation is shown in diagram (A,) Part V, Sketch No. 48, constructed from the mean annual and half-yearly values given in the preceding table, IV. It exhibits in the annual mean, as its characteristic type, a maximum value about 6 a m , a miminum value about 11 a. m., a secondary maximum value about $3 \frac{1}{2} \mathrm{p}$. m., and a secondary minimum about 9 p . m. For the half year when the sun has north declination, the morning minimum becones smaller and the afternoon maximum larger, thas increasing the diurnal range; the converse takes place in the other half of the year, when the sun has south declination. The $6 \mathrm{a} . \mathrm{m}$. maximum remains nearly unchanged throughout the year. The average summer range (April to September inclusive) is 0.0046 , and the average winter range (October to March inclusive) is 0.0025 , both expressed in absolute measure. The range between the morning maximum and the morning minimum is 0.0045 in summer and 0.0036 in winter, as will be explained further on.-(Sce diagram A of Part V, Sketch No. 48.)

    This semi-annual change in the diumal amplitude is more conspicuously represented in diagram $B$, (derived from diagram A,) by straightening out the annual curve, and using it as an axis of abscissæ for laying off the differences between the annual values and the summer and winter values at the same respective hours of the day.

    This diagram (B) may, with advantage, be compared with the analogous one representing the annal change of the diurnal variation of the declination, as given in Part II of this discussion. The construction is the same in either case.

    At $6 \mathrm{a} . \mathrm{m}$. there is hardly any change throughout the year. The maximum variation, in the enurse of a year, takes place at $9 \mathrm{a} . \mathrm{m}$. (range 0.00194 in absolute measure; ) atout $11 \frac{1}{2} \mathrm{a} . \mathrm{m}$. there is an cpoch of no variation ; at 2 p . m. a secoul maximum is reached (range 0.00167 ;) again at 72 and 11 p . m . points of no variation are reached. Owing to the prominent amual variation near 2 p . m., the range of the diumal variation betwen the morning minimum at $11 \mathrm{a} . \mathrm{m}$, and the afternom maximum at $3 \frac{1}{2} \mathrm{p} . \mathrm{m}$. if of more interest in the discussion of the diurnal fluctuation of the horizontal foree than the $6 \mathrm{a} . \mathrm{m}$. and 11 a . m. range, which latter range, as we have seen, is slightly greater that the first one.

    To find the turning epochs of the annual variation, the monthly values for the hours $9 \mathrm{a} . \mathrm{m} . \mathrm{and} 2 \mathrm{p}$. m ., when it is best developed, were taken from Table IV, and each value was again compared with its annual mean.

    Tarle V.-Annual variation at the hours 9 a.m. and 9 p. m.

    | Month. | $\begin{gathered} 9 \mathrm{a} . \mathrm{m} . \\ 0.00 \end{gathered}$ | Diffrences. $0.00$ | $\begin{gathered} 2 \mathrm{p} \mathrm{~m} . \\ 0.00 \end{gathered}$ | Dificrences. $\theta, 00$ | Mean difterence. $0.00$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | January | -025 | $+116$ | -041 | -081 | +:99 |
    | Februay | +609 | $+150$ | $-0.2$ | --032 | +121 |
    | March | -096 | +845 | -005 | -045 | +045 |
    | April | -193 | -052 | +020 | -020 | -016 |
    | May | -210 | -069 | +109 | +069 | -0.99 |
    | June | -155 | -014 | +134 | + r 94 | -05t |
    | July | -239 | -098 | +203 | $+163$ | -130 |
    | August. | -332 | -191 | +201 | +161 | -170 |
    | September. | -296 | -155 | +070 | + 30 | -092 |
    | October | -119 | +022 | --073 | -113 | +046 |
    | November | -068 | +073 | -022 | -062 | +1188 |
    | December | +037 | $+178$ | -070 | -110 | +144 |
    | Mean | -141 |  | +040 |  |  |

    Casting the cye over the columns headed "differences," we see by the change of sign and the magnitude of the valucs that the transition from a positive to a negative ralue occurs some time after the equinoxes, and that the maximum variation is reached about the time of the solstices-a result in close correspondence with the conclusions reached in the discussion of the amual inequality in the diurnal variation of the declination, (Part II of the discussion.) For convenience in the analytical treatment, a eolumn headed "mean difference" has been added to Table $V$, obtained by changing the signs of the 2 p . m. diftrences (the ammal variation being then opposite to the morning values, and taking the mean of the $9 \mathrm{a} . \mathrm{m}$. and $2 \mathrm{p} . \mathrm{m}$. differences. The values in thte culumn are tolerably well represented by the following formula:

    $$
    \Delta_{\mathrm{a}}=+0.00129 \sin \left(\theta+79^{\circ}\right)+0.00018 \sin \left(2 \theta+191^{\circ}\right)
    $$

    the angle $\theta$ counting from January 1 , at the rate of $30^{\circ}$ a month. Accordingly, we find the transition to take place shortly before the middle of April and October, or about twenty-two days after the equinozes. This is about twelve days later than the epoch found in Part II for the declination.

    Analysis of the Solar-Diurnal Variation of the Horizontal Force.-For convenience of investigation and proper comparison with similar results at other localitics, the values given in Table I have been put in an analytical form, and are represented by the following expressions. It will be seen that the difference between any monthly normal mean and the corresponding mean in Table V of Part IV, which latter mean is affected with the disturbances, does not exceed $2 \frac{1}{2}$ scale divisions. This small difference includes also a small effect due to the necessity of different methods of interpolation in the construction of the two tables. In the determination of the numerical quantities (by application of the method of least squares) in the monthly equations, due attention was paid to the relative weights of the values for the even and odd hours. The coefficients are expressed in scale divisions, (increasing numbers denoting decrease of force, and the angle $\theta$ counts from midnight at the rate of $15^{\circ}$ an hour.
    

    We have also: For summer half year (April to September inclusive,) for winter half year (October to March inclusive, aud for the whole year, the following expressions for the regular solar diurnal variations:
    

    The following expressions for January may serve as specimens of the agreement of the result derived from the even and odd hours independently:
    

    Giving to the first equation the weight 2 , and to the second the weight 1 , we obtain the equation as given above.

    The following comparison will show the agreement of the observed and computed values we have for August:

    | ( $\mathrm{A}, \mathrm{m}$ ) | Computed. | Observed. | $\triangle$ | (P. M.) | Computed. | Observed. | $\Delta$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $0^{\text {b }} 21{ }^{\text {m }}$ m | 698.3 | 698 | 0 | $12^{\text {b }} 212^{\text {m }}$ | 707.7 | 708 | 0 |
    | 1..."- | 698.3 | 699 | -1 | 13..." | 695.1 | 698 | -3 |
    | 2...". | 699.6 | 699 | +1 | 14..-" | 688.4 | 689 | $-1$ |
    | 3..." | 699.7 | 698 | $+2$ | 15.. - ${ }^{4}$. | 888.7 | 688 | +1 |
    | 4..." | 697.6 | 699 | -1 | 16...' | 692.5 | 692 | 0 |
    | 5.,." | 694.3 | 695 | -1 | 17..." | 697.1 | 696 | +1 |
    | 6... | 694.5 | 693 | +1 | 18..." | 700. 3 | 701 | -1 |
    | 7..." | 701. 2 | 702 | -1 | 19. | 702.6 | 703 | 0 |
    | 8... " | 712.7 | 714 | -1 | 20..." | 704.5 | 704 | 0 |
    | 9..." | 723.6 | 724 | 0 | 21..." | 704.8 | 703 | +2 |
    | 10..." | 727.1 | 726 | +1 | 22 | 703. 3 | 704 | -1 |
    | 11..." | 720.4 | 718 | $+2$ | 23. | 700.6 | 702 | -1 |

    Diagrams C and D (of Part V, Sketch No. 48) exlibit the regular solar-diumal variation of the horizontal force; the dots represent the olservations directly taken from Table I; the curves give the computed values from the preceding equations. These diagrams also cxhibit the general agrecment betwech the observed and computed values. The summer months are repersented on diagram C , the winter months on diagram D ; their comparison shows plainly the noch greater range of the diurnal variation when the sun is north of the equator than when south of it, as was also the case with the magnetic declination.

    Table VI contains the coefficients $B_{1} B_{2} B_{3} B_{4}$ of the general equation:

    $$
    \triangle_{1}=A+B_{1} \sin \left(0+C_{1}\right)+B_{2} \sin \left(20+C_{2}\right)+B_{3} \sin \left(3 \theta+C_{3}\right)+B_{4} \sin \left(4 \theta+C_{4}\right)
    $$

    expressed in parts of the horizontal force, by multiplying the corresponding quantitios in the preceding equations with the value of a scale division. The angles $C_{1} C_{2} C_{3} C_{4}$ will be found in Table VIl; they are the same as given before, increased by $180^{\circ}$, so as to make a corresponding change in the direction of the seale readings; increasing numbers will now indicate increasing force.

    The first three decimals (0.000) have been placed in front of the table.
    Table VI.

    | Month. | $\mathrm{B}_{1}$ | I | $\mathrm{B} ;$ | $\mathbf{B}_{4}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | Jantary | 135 | 249 | 146 | 073 |
    | February | 202 | 167 | 119 | 069 |
    | March | 239 | 195 | 104 | 070 |
    | April. | 27. | 349 | 188 | 043 |
    | May | 082 | 285 | 161 | 049 |
    | June | 077 | 234 | 1 (il | $0: 34$ |
    | Jaly | 125 | 420 | 224 | 029 |
    | Alugust. | 194 | 379 | 248 | 105 |
    | Ftetember | 295 | 350 | 25* | 073 |
    | October | 214 | 234 | 048 | 011 |
    | November | 151 | 222 | 071 | 017 |
    | December. | 181 | 295 | 145 | 048 |
    | Sunnmer | 138 | 333 | 196 | 0.52 |
    | Winter | 196 | 220 | 105 | 040 |
    | Year | 144 | 265 | 145 | 031 |

    In Table VII the same quantities are given in absolute measure; the first two places of decimals ( 0.00 ) are placed at the head of the columns. (Increasing numbers dente increase of force.) The nomerical values of $\Lambda$ will be found in connexion with the discussion of the annual variation of the horizontal force.

    Table YII.

    | Month. | $\begin{gathered} \mathbf{B}_{1} \\ 0.00 \end{gathered}$ | $\mathrm{C}_{1}$ | $\begin{gathered} \mathrm{B}_{\mathrm{S}} \\ 0.00 \end{gathered}$ | C | $\begin{gathered} B_{3} \\ 0.00 \end{gathered}$ | $\mathrm{C}_{3}$ |  | $\begin{gathered} \mathrm{I}_{4} \\ 0.00 \end{gathered}$ | $C_{4}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | January | 057 | 56052 | 100 | $276052^{\prime}$ | 061 | $102^{\circ}$ | 13 | 030 | 2770 |
    | February | 084 | 3826 | 070 | $282 \quad 29$ | 050 | 102 | 40 | 025 | 301 |
    | March | 100 | $63 \quad 31$ | 082 | 29414 | 064 | 136 | 04 | 029 | 293 |
    | April | 117 | $77 \quad 37$ | 146 | 30306 | 079 | 126 | 44 | 018 | 343 |
    | May | 034 | 13431 | 119 | 32053 | 007 | 150 | 05 | 020 | 34 |
    | June. | 032 | 17603 | 098 | 320 3? | 068 | 147 | 14 | 014 | 36 |
    | July | 052 | 18411 | 175 | 31914 | 094 | 150 | 15 | 012 | 30 |
    | August. | 081 | 13058 | 158 | 33346 | 104 | 155 | 55 | 044 | 23 |
    | September | 122 | 9157 | 146 | 31725 | 108 | 165 | 17 | 030 | 35 |
    | October | 123 | $57 \quad 57$ | 098 | 30367 | 020 | 145 | 20 | 005 | 354 |
    | November | 063 | $\begin{array}{ll}57 & 36\end{array}$ | 093 | 23001 | 029 | 130 | 45 | 007 | 31 |
    | December | 077 | $32 \quad 48$ | 123 | $27 \pm 14$ | 061 | 89 | 17 | 020 | 268 |
    | Summer | 058 | 11349 | 139 | 31910 | 082 | 149 | 17 | 022 | 22 |
    | Winter | 082 | 5136 | 092 | 28446 | 044 | 113 | 54 | 017 | 288 |
    | Year. | 060 | 7619 | 111 | 30505 | 060 | 137 | 31 | 013 | 345 |

    On diagram $\mathbf{E}$ (of Part V, Sketch No. 48) the average value of the diurnal variation throughout the year, together with the summer and winter ralue, has been represented as resulting from the numerical quantities in the above table. It exhibits the noticeable feature in the annal curve of a greater morning maximum (about $6 \mathrm{a} . \mathrm{m}$.) than afternoon maximum (aboul 3.1 l . m. .) whereas in the summer curve it is the afternoon maximum which is the greater of the two.* In the winter season the contrast is more maked, the morning maximum being considerably greater. These curves also show the gradual shifting of the maxima and minima to a later hour in winter than in summer, a phenomenon also well exhibited in the preceding diagrams O and 1). The numerical values of this change of hours will be given in tabular form further on. The small afternoon minimum about $9 \mathrm{p} . \mathrm{m}$. is less distinctly marked than any other feature of the diurnal curve.

    Table VIII contains the computed values of the time and amount of the morning maximum and minimum, and of the afternoon maximum. The values for the secondary afternoon minimum are taken from the diagrams. The time of the a. m. maxinum and minimum is within the nearest eighth minute; that of the $p$. m. maximum within the nearest tenth minute. The time for the $1 . m$. secondary minimum is within the nearest hour. The amount of change of horizontal force is expressed in scale divisions.

    Table Vilit.

    | Month. | Morning maximum. |  | Morning minimum. |  | Afternoou maxinum |  | Secondary after- Interval noon minimum. a m.min to p. m max. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\text { h. } \mathfrak{m} \text {. }$ | d. | h. $m$ | d. | h. $m$. | ${ }_{5}^{d}$ | $h .$ | $d$ | $h, m .$ |
    | Febra | 715 | -9.6 | 1140 | $+12.7$ | 400 | $-0.9$ | 7 | $+2$ | 420 |
    | March | 615 | $-9.2$ | 1130 | +16.4 | 320 | -2.3 | 6 | +3 | 350 |
    | Aptil | 600 | $-12.3$ | 1120 | $+22.5$ | 355 | $-6.6$ | 9 | +3 | 435 |
    | May | 550 | $-7.9$ | 1025 | $+15.5$ | 310 | $-9.8$ | 9 | +4 | 445 |
    | June | 550 | -6.3 | 1030 | $+12.5$ | 320 | $-10.4$ | 8 | +3 | 450 |
    | July | 535 | - 9.9 | 1030 | $+19.3$ | 325 | $-17.5$ | 9 | +6 | 455 |
    | August | 555 | -8.5 | 1010 | +24.8 | 245 | $-14.2$ | 9 | $+3$ | 435 |
    | Septumber | 535 | -14.9 | 1020 | $+25.9$ | 305 | $-6.7$ | 7 | -1 | 445 |
    | O.tober | 500 | $-12.6$ | 1115 | $+13.7$ | 510 | $-0.1$ | 9 | $+2$ | 555 |
    | November | 600 | -9.8 | 1125 | $+11.0$ | 515 | $-3.0$ | 11 | +0 | 550 |
    | December | 705 | $-12.1$ | 1205 | $+16.1$ | 435 | $-5.1$ | 10 | +4 | 430 |
    | Summer | 550 | $-9.8$ | 1030 | $+19.6$ | 325 | $-10.5$ | 2012 | +3 | 455 |
    | Winter | 615 | $-9.4$ | 1115 | $+13.9$ | 410 | $-2.2$ | 21 | $+2$ | 425 |
    | Year | 555 | $-9.6$ | 1100 | +15.6 | 335 | -6.0 | 203 | $+2.5$ | 435 |

    The extreme variation in the epoch of the a. m. maximum is therefore 27.15 m .; the variation for the $a . \mathrm{m}$. minimum is $1 / .55 \mathrm{~m}$.; for the p . m. maximum it is $2 h .30 \mathrm{~m}$.; and for the secondary afternoon minimum between 3 and 4 hours. In all cascs, the earlier hours occur in the summer scason.

    Table IX shows the diurnal range, expressed in scale divisions, parts of the horizontal force and in absolute measure. In the seend columu the range between the a.m. maximum and minimum is given; in the third column that between the a. m . minimum and the $\mathrm{p} . \mathrm{m}$. maximum. These two amplitudes for $\mathrm{a} . \mathrm{m}$. and for a. m. and p. m., are further illustrated in diagram F, (of Part V, Sketch No. 48, which shows the curve to be double crested, with maxima near the time of the equinoxes, and the greater of these near the autumnal equinox.

    | Month. | For a, m. | For a. m and p m | For a in | For a m atal pem. | Fora m. | For a. 11 . and p. m. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $d$. | d |  |  |  |  |
    | January | 24.9 | 21.0 | 0.00091 | 0.00077 | 0.0038 | 0. 0032 |
    | February . | 22.3 | 13.6 | $0 \times 1$ | 0.50 | 34 | 21 |
    | March | 25.6 | 18.7 | C93 | 063 | : 9 | 29 |
    | $\mathrm{A}_{1} \mathrm{rril}$ | 34.8 | 29.1 | 127 | 106 | 53 | 45 |
    | May | 23.4 | 25.3 | 085 | 092 | 36 | 38 |
    | June. | 18.8 | 22.9 | 069 | 084 | 29 | 37 |
    | July. | 29.2 | 36.8 | 106 | 134 | 45 | in |
    | Angust | 83.3 | 39.0 | 122 | 142 | 51 | 59 |
    | September. | 40.8 | 32.6 | 149 | 119 | 62 | 50 |
    | October | 26.3 | 13.6 | 096 | 050 | 40 | 21 |
    | Nuvember. | 20.8 | 14.0 | 0.6 | 051 | 82 | 21 |
    | Vecember | 28.2 | 21.2 | 0.00113 | 0.7 | 0.0043 | 0.8032 |
    | Summer. | 29.4 | 30.1 | 0.00107 | 0.00110 | 0. 0045 | 0. 0046 |
    | Winter. | 23.3 | 16.1 | 0.00085 | 0.00059 | 0. 0036 | 0. 0025 |
    | Year. | 25.2 | 21.6 | 0.00092 | 0.00979 | 0. 0033 | 0. 0032 |
    |  | In scale divisions. |  | In parts of lomizontal forec. |  | In absolute measure. |  |

    The next table contains the epochs when the mean horizontal force is reached in each day, as computed by the preceding formulas. The diurnal curves intersect the axis of abscisse four times, of which the talle contains onl. the a.m. and first p.m. intersection: those later in the afternoon and near midnight occur in
     and $11 \frac{3}{4}$ p. m., respectively.

    Table X.
    Principal epochs of mean horizonial force.

    | Month. | A. M. | P. ${ }^{\text {m. }}$ |
    | :---: | :---: | :---: |
    | January | $9^{3} 9{ }^{\text {m }}$ | $2^{\text {1 }} 36^{\text {a }}$ |
    | February. | 923 | 258 |
    | March. | 842 | 228 |
    | April..... | 814 | 219 |
    | May | 744 | 059 |
    | June. | 747 | 048 |
    | July. | 757 | 053 |
    | August. | 7 28 | 044 |
    | September | 742 | 129 |
    | October | 808 | 500 |
    | November. | 840 | 328 |
    | December. | 934 | 303 |
    | Summer. | 745 | 112 |
    | Winter |  | 307 |
    | Year. | 814 | 154 |

    The above times are generally eorrect within two minutes (aecording to the formula.) The morning hour of average daily horizontal fore is less variable in the course of a year than the afternoon hour.

    The following table contains the computed dumal varition of the horizontal foree. The values have been expresed in absolute measure. It compares directy with Table IV, which contains the obeerved values. It will be useful for the interpolation of observations, or for their redaction to the mean value of the day from observations taken at irregnar hours. The table also furms the basis for the construction of diagram $G$ (of Part V, Sketch No. 48.)

    Table XI.
    Computed solar diurnal rariation of the horizontal farce in absolute measure.
    The first two places of decimats (0. no) are placed in front of the table.

    |  | 1810-1845. | 0 h . | 1 h . | 2 2. | 3 h. | 4 h. | $5 h$. | 6 h. | 7 h . | 8h. | 9 h . | 10 ha . | 11\%. | +21m. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | July | - 061 | - 061 | - 030 | $+015$ | + 091 | +137 | + 137 | + 046 | - 102 | - 244 | - 290 | - 244 |  |
    |  | August | + 122 | +061 | 4030 | + 030 | + 065 | +122 | +120 | +015 | -167 | -335 | $-381$ | -274 |  |
    |  | Sepmember | +186i | + 0661 | +061 | + 107 | +182 | + 229 | + 198 | + 061 | $-152$ | - 320 | - 381 | - 320 |  |
    |  | October | + 046 | +091 | + 122 | $+167$ | +182 | + 182 | +137 | + 076 | -030 | -122 | - 182 | - 213 |  |
    |  | November | 000 | $+015$ | + 030 | $+160$ | +10\% | +158 | + 152 | +122 | +030 | -061 | $-197$ | - 167 |  |
    | $\stackrel{8}{8}$ | Hec | - 046 | 000 | + 030 | + 061 | $\bigcirc 091$ | +137 | + 167 | +182 | + 122 | + 015 | -122 | - 239 |  |
    |  | Janmary | - 030 | 000 | +030 | + 046 | + 961 | + 091 | $+107$ | $+120$ | + 091 | - 015 | - 137 | - 2:\% |  |
    |  | Fellruary | $+030$ | $+061$ | + 0:6 | + 076 | + 091 | $+107$ | $+137$ | $+152$ | + 197 | + 015 | - 107 | - 182 |  |
    |  | March | + 046 | + 061 | +0:6 | +102 | + 107 | +135 | + 137 | +122 | +030 | - 076 | - 198 | - 244 |  |
    |  | Apil | + 061 | $\pm 0 i 6$ | + 681 | $+107$ | +137 | + 107 | $+182$ | + 122 | - 015 | - 198 | - 320 | - 35\% |  |
    |  | May | 000 | 000 | 030 | +030 | $+061$ | + 108 | + 107 | + 048 | -076 | -198 | - 244 | - 182 |  |
    |  | June | 015 | $0: 3$ | -030 | 000 | + 046 | +091 | $+091$ | + 046 | -06i | - 152 | - 182 | - 305 |  |
    |  |  | 12 h. | 13 h. | 14h. | 15 h. | 164. | 3Th. | 18h. | 19h. | $20 h$. | 21 h. | 22 h. | 23 h. | +211 72. |
    |  | July, | - 091 | + 070 | +213 | +259 | + 229 | + 152 | $+046$ | - 015 | -062 | - 091 | -076 | -076 |  |
    |  | Auッด= | 091 | + 107 | - 213 | +193 | +152 | + 076 | + 030 | $-015$ | -030 | - 046 | -015 | + 015 |  |
    |  | Septemb | -152 | -015 | +091 | + 107 | + 076 | $+046$ | +015 | 000 | + 030 | $+030$ | $+046$ | + 076 |  |
    |  | October | -182 | $-137$ | -076 | -030 | $-015$ | 000 | $0: 0$ | - 015 | -015 | -030: | - 015 | + 015 |  |
    |  | Nuvember. | -13i | - 091 | - 046 | 000 | + 630 | + 046 | $+046$ | + 030 | + 015 | 000 | - 015 | - 015 |  |
    | $\stackrel{\text { B }}{ }$ | Decrmber | - 244 | -182 | -0.6 | + 015 | + 661 | + 061 | + 015 | -015 | -046 | - 061 | - 076 | - 061 |  |
    |  | Jamuary | - 29 | 137 | - 0331 | + Off | + 076 | + 0146 | + 015 | - 015 | -030 | -015 | -015 | - 030 |  |
    |  | Februar | - 182 | - 107 | -030 | + 015 | + 015 | -015 | -030 | -033 | -033 | - 015 | -015 | 009 |  |
    |  | Marc | - 198 | - 107 | 090 | +046 | + 015 | -015 | -046 | -030 | +015 | $+046$ | + 046 | + 046 |  |
    |  | April | - 274 | - 137 | 000 | + 076 | + 091 | +061 | +030 | 000 | -031 | -030 | 009 | + 030 |  |
    |  | May. | -0.6 | $+045$ | +122 | +152 | +122 | + 076 | +030 | - 015 | - 046 | -061 | -046 | - 035 |  |
    |  | June | - 046 | $+061$ | +137 | $+167$ | $+137$ | $+076$ | + 033 | - 015 | - 030 | 0.16 | - 0.30 | -015 |  |

    Dagram (f exhibits the changes in the horizontal foree (in absolute measure) from the monthly normal value for cach hour of the day and for each month of the year. The three variables are the hour of the day, the month of the year, and the difference of the horizontal force from the normal. The contour lines of the magnetic surface differ 0.000 of horizontal force in absolute measure. Full lines indicate greater value, lines of dashes less value, than the mean; dotted lines represent the normal value.

    Annual Variation of the Horizontal Forec.-For the discussion of the annual variation we make use of the monthly normal readings of the horizontal foree as given in Table II. If $m$ equals the monthly effect of the total progressive change, we obtain from the twelve equations, by the usual method, the value $m=+\mathbf{1 5 . 4 9}$, and the correction for progressive change for July and June, for instance, becomes +5.5 m and -5.5 m respectively. The following table contains the monthly normals uncorrected and corrected for progressive change; also the differences from the mean for each month, constituting the annual variation.

    Table XII.
    

    With the exception of the month of November, the values given above for the annual variation are tolerably regular in their progression, and considering the delicacy of the test applied to the observations in deducing the annual variation, this exceptional irregularity in the Norember value will not affect the general conclusion. We have as the general result : a greater horizontal force in summer (from April to August) and a smaller horizontal force in winter (from September to March) than the average anual valuc. The maximum nccurs in July, (at Toronto in June,) and the minimum in January, (at Toronto in December.)
    For Toronto we have the expression for the annual rariation:

    $$
    3.531+0.002 \sin (0+3120 .)
    $$

    For Philadelphia (omitting the November value:)

    $$
    4.176+0.001 \sin \left(0+306^{\circ} ;\right)
    $$

    the angle 0 in both equations counting from January 15.
    The annual range is 0.0021 (in absolute measure.) The transition appears to take place about the time of the equinoxes or a short time bcfure.

    Table XIII contains the monthly normal values of the horizontal force in absolute measure, obtained by adding (algebraically) 4.1730 to the values in the last column of Table XII. These numbers, it will be observed, are corrected for secular change; if we apply the same, we obtain the resulting montlily mean values of the horizontal force answering to the epoch January, 1843. The quantity $A$, mentioned in the explanatory remarks to Table VII, is given in the last column of Table XIII.

    26 cs
    'Table XIll.

    | Month. | Nommals corrceted for sceular change. | Monthly means (affected with recular chinnge.) |
    | :---: | :---: | :---: |
    | July | 4. 1746 | 4.1759 |
    | August. | 4.1730 | 4. 1740 |
    | September - | 4. 1720 | 4.1727 |
    | Octuber. | 4.1723 | 4. 1728 |
    | November | 4.1746 | 4.1749 |
    | Dectubier. | 4. 1724 | 4. 1725 |
    | January | 4.1710 | 4. 1709 |
    | Feliruay | 4.1722 | 4. 1719 |
    | March_ | 4. 1738 | 4. 1733 |
    | April.. | 4. 1727 | 4.1720 |
    | May ... | 4. 1715 | 4. 1735 |
    | June-.. | 4. 1731 | 4.1718 |
    | Mean. | 4. 1730 | 4. 1730 |

    ## APPENDIX No. 17.

    DISCUSSION OF THE MAGNETIC AND METLOROLOGICAL OBSERVATIONS MADE AT THE GIRARD COLLEGE OBSERV A'GORY, PHILADEPHIA, IN $1840,1841,1842,1843$, 1844, AND 1845. PART VI. -BY A D. BACHE, LL.D., SUPERINTENDENT UNITED STATES COAST SURVET.

    Inrestigation of the influence of the Moon on the Magnetic Horizontal Force.
    The method pursued in the investigation of the lunar effect on the horizontal force is, in general, the same as that explained in Part III of the discussions of the Girard College observations. The process may be briefly recapitulated as follows: Each horizontal force observation, after it liad been corrected for the effect of difference from the standard temperature and for progressive change, the disturbed readings being omitted, (as fully explained in Part 1V,) was marked with its corresponding lunar hour. The observation nearest o the time of the moon's upper transit over the true meridian of the obscrvatory was marked $0^{\text {h }}$, that nearest to the lower transit was marked $12^{\text {h }}$, and the observations between, for western and eastern hour angles of the moon, were marked with the proper lunar hour by interpolation. In the hourly series where thirteen observations are recorded in twelve lunar hours, that observation which is nearest midway between any two consecutive lunar hours was omitted. Each observation and reduced reading thus marked with its corresponding lunar hour was subtracted from the monthly normal belonging to its respective hour, and these differences were set down in tabular form, arranged according to lunar hours and keeping each monthly result separate for future combination. Let $n=$ any nornal belonging to any reduced reading $r$, the following tables contain the mean monthly values of the differences $n-r$; a positive sign, thercfore, indicates greater force, a negative sign less force than the normal. It need hardly he repeated that in the original record of the horizontal force increasing numbers denote a decrase of the force. The greatest possible difference is 33 , the number of scale divisions, which, according to the criterion, separates a disturbed from an undisturbed observation. For the formation of these differences, which amount to more than 22,000 , the manuscript tables of the reduced record were used. These tables have already been referred to in the preceding Part IV.

    The units in which the differences $n-r$ are expressed are scale divisions, one division being equal to 0.0000365 parts of the horizontal forec, or equal to 0.000152 in absolute measure, the mean $X$ being $=4.173$ (in units of grains and feet.)

    The lunar effect on terrestrial magnetism being exceedingly minute, the process required for its elucidation is proportionally delicate; all the regular and irregular deviations arising from other sources must first be
    eliminated. In the method, as indicated alove, the magnetic disturbances (as far as they enold be recognized as such,) the diurnal and annal solar variation, as well as the eleven (or ten) year inequalify and secular change, are all eliminated, leaving numbers fitted for the lunar research.

    The readiags taken in the month of June, 18t0, have not been tised in this diseussion, (these had likewise been rejected in the two preceding parts, on account of the imperfect manner in which the allowance for the progressive change conld only he made at that time. For the lunar hour 21 in July, 1840 , the number of differences is so small that the mean had necessarily to be reduced; one-fourth of its anount was set down in the table. In January, February, and March, 1843, the observations were discontimued, excepting a single daily reading. These months, therefore, do not oceur in the lunar discussion.

    The number of observations used are distributed over the sereral months and years, as shown in the following talle:

    Table I.
    Number of observations for lunar discussion.

    | Month. | 1840 1841. 1841 1842. 1842-1843 |  |  | 1813-18 | 1844-184. | Sum. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July ... | 157 | 297 | 284 | 294 | 627 | 1659 |
    | August. | 235 | 295 | 318 | 313 | 622 | 1783 |
    | September - | 258 | 269 | 265 | 296 | 550 | 1644 |
    | October | 255 | 281 | 257 | *602 | 597 | 1992 |
    | November | 245 | 279 | 297 | 003 | 564 | 1088 |
    | December. | 199 | 297 | 318 | 603 | 559 | 1976 |
    | Jantary | 179 | 298 |  | 021 | 601 | 1699 |
    | February | 233 | 250 |  | 575 | 541 | 1604 |
    | March | 260 | 297 |  | 576 | 601 | 1734 |
    | April | 262 | 271 | 286 | 586 | 575 | 1980 |
    | May | 264 | 271 | 299 | 623 | 612 | 2069 |
    | June.. | 212 | 295 | 309 | 579 | 522 | 1917 |
    | Sum | 2764 | 3400 | 2633 | 6271 | 6977 | 22045 |

    © Commencement of the hourly series.
    Table II.
    Distribution of the number of observations according to western and eastern hour angles of the moon.

    | Year. | Western hous nogles. | Eastern hour angles. |
    | :---: | :---: | :---: |
    | 1840-41 | 1371 | 1393 |
    | 1841-42 | 1683 | 1712 |
    | 1842-43. | 1320 | 1313 |
    | 1843-44. | 3138 | 3133 |
    | 1844-45. | 3499 | 3478 |
    | Sum. | 11016 | 11029 |

    Tables III, IV, V, VI, and VII, contain the monthly and annual means of the lunar-diurnal variation for the years 1840 to 1845 . The numbers are expressed in scale divisions.

    Table III.
    Differcnces from the monthly normals, 1840-41, western hour angles of the moon.

    | 1840-94. | $\begin{gathered} 0 h . \\ \text { Up. cui. } \end{gathered}$ | 1 h . | $\underline{2}$. | 3 h. | 4h. | $5 h$. | 6 h. | 7 h . | $8 h$. | 93. | 10h. | 114. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July .. .... ........... ...... ...... .. | +2 | $+1$ | $+3$ | -9 | $+3$ | $+7$ | -1 | -17 | +12 | -4 | -3 | -8 |
    | Auguit ................. .. ... ..... ... | - | - 4 | + 3 | - 5 | $+6$ | +2 | - 4 | -4 | -2 | +2 | + 5 | -1 |
    | September | -2 | 1 | +8 | $+1$ | 0 | - 4 | - 5 | $+2$ | -4 | $-7$ | $+8$ | $+4$ |
    | October | 3 | 1 | $-1$ | +1 | 0 | -4 | -4 | $+1$ | -7 | $+7$ | + 4 | +10 |
    | November | -6 | $+3$ | ${ }^{0}$ | -4 | $+1$ | -5 | $+1$ | -4 | - 4 | $+1$ | $+6$ | -1 |
    | Deerember | -4 | $-3$ | $+3$ | $+4$ | $+2$ | $-7$ | -5 | -3 | 0 | $+3$ | -8 | $+9$ |
    | Jamuary | $+1$ | $+3$ | -1 | $+8$ | $-7$ | + 3 | -8 | -1. 1 | $-9$ | -4 | 0 | $\pm 2$ |
    | Fetruary | + 7 | $+5$ | 0 | $+6$ | $-3$ | $+4$ | -2 | 0 | - 4 | 0 | - 2 | 0 |
    | Mirch. | -4 | $+4$ | +1 | 0 | $+3$ | $+3$ | -7 | - 1 | + 8 | $+1$ | $+3$ | $-2$ |
    | April. | 0 | $+6$ | $+1$ | - 2 | -2 | -1 | - 1 | $+3$ | -1 | $-2$ | $+1$ | -1 |
    | May... | + 3 | -3 | $+1$ | -1 | -8 | +2 | - 1 | -1 | $-6$ | 0 | $+2$ | - 5 |
    | Juar | $-1$ | -5 | 0 | - 3 | $+4$ | $+4$ | + 5 | $+8$ | - 1 | $+1$ | -1 | -8 |
    | Mean. | -0.4 | $+0.5$ | $+1.5$ | $-0.3$ | $-0.1$ | $+0.3$ | - 2.4 | -1.3 | - 1.5 | -0.0 | $+1.8$ | $-0.1$ |
    |  | $\begin{gathered} 12 h . \\ \text { Low. cut } \end{gathered}$ | 13 . | $14 / 2$. | $15 \%$. | 164. | 17. | $18 h$ | 19h. | 20 h. | $2: \%$. | 2!h. | 23h. |
    | Suly. | $+11$ | -9 | - 5 | +2 | $+6$ | - 0 | - | - 5 | $+6$ | - 5 | -4 | -9 |
    | August | $+7$ | $+6$ | $+9$ | +1 | $+5$ | $+2$ | $+5$ | - 3 | $+5$ | -11 | 0 | 2 |
    | September. | - 2 | $-1$ | $+2$ | $+6$ | $+5$ | +4 | -4 | $\bigcirc 1$ | -8 | - 3 | - 1 | -2 |
    | Octoher | $-16$ | $+14$ | -9 | $+4$ | -7 | $+3$ | -10 | -2 | -1 | + 6 | -3 | $+5$ |
    | November | - 2 | $+1$ | - 1 | $+4$ | $-6$ | 0 | +1 | -1 | $+4$ | $+6$ | +1 | $+5$ |
    | llecember | $\pm 6$ | $+9$ | $+2$ | $+10$ | -3 | +2 | -6 | -12 | - 3 | -6 | $+3$ | $+5$ |
    | January | - 2 | -4 | $+3$ | $-1$ | $+1$ | -1 | $+4$ | -2 | -2 | +1 | $+3$ | $+7$ |
    | February | - 5 | $+4$ | -4 | -7 | -6 | +5 | +1 | $+2$ | $+1$ | - 5 | $+3$ | $+4$ |
    | March | $-4$ | 0 | -5 | $+2$ | -1 | $+4$ | $-10$ | $\pm 2$ | -2 | -2 | +2 | $+2$ |
    | April. | -1 | $-3$ | $+3$ | -8 | -3 | -4 | 0 | $+3$ | -2 | +2 | $+4$ | $+2$ |
    | May... | +88 | $-3$ | 0 | -3 |  | 0 | -2 | $+8$ | $+3$ | - 2 | $-2$ | $+2$ |
    | June | + 8 | -4 | $+6$ | -3 |  | -8 | -5 | $-7$ | 0 | -7 | $+1$ | -11 |
    | Mean | + 1.0 | $+0.8$ | $+0.1$ | + 0.4 | - 0.2 | $+0.6$ | - 2.3 | -1.3 | + 0.6 | -2.1 | +0.6 | +1.2 |

    Table IV.
    Differences from the monthly normals, 1841-'42, western hour angles of the monn.

    | 1841-'42. | $\begin{gathered} \text { oh. } \\ \text { Up. cul. } \end{gathered}$ | 1 h. | $2 h$. | 3 h. | 4 h. | 5 . | 6 h. | 7h. | 8 h. | 9 h . | 10 h. | 11h. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July .. | $+4$ | $+5$ | 0 | +8 | -4 | 0 | 0 | -2 | 0 | -'8 | $+2$ | 0 |
    | August. | -1 | , | - 2 | + 2 | +2 | $+3$ | $+3$ | 0 | - 5 | 0 | $+1$ | $+5$ |
    | September. | 3 | $+8$ | $+2$ | -1 | + | -1 | $-5$ | $-3$ | $+1$ | 0 | -3 | +10 |
    | October | $+7$ | $-1$ | + 4 | $+4$ | 0 | $+1$ | -1 | $+4$ | $+1$ | -2 | 0 | $+1$ |
    | Navember | 0 | $+6$ | -3 | +1 | - 7 | , | $-3$ | -1 | +6 | $+3$ | $+1$ | $+3$ |
    | D | $+8$ | -4 | +12 | -2 | -1 | $-3$ | +2 | $-3$ | -2 | -1 | $-3$ | 0 |
    | January . | 2 | $+8$ | $+2$ | +2 | - 1 | $+7$ | 0 | $+3$ | $-2$ | $+1$ | $+5$ | 0 |
    | February | $-5$ | $+1$ | $-1$ | - | $+4$ | +2 | + 4 | -7 | -5 | $+5$ | 0 | $+2$ |
    | March | $+4$ | $+3$ | +2 | -1 | +2 | -1 | + | 0 | - 1 | -1 | $-8$ | 3 |
    | April . | - | 0 | +1 | -1 | 0 | $+4$ | +1 | $+3$ | $+2$ | -1 | 0 | +1 |
    | May.. | 0 | $-2$ | $+10$ | +1 | $+5$ | $+4$ | +6 | -4 | $+5$ | -7 | $-3$ | $-4$ |
    | June | $+1$ | 0 | $+3$ | 1 | $+4$ | $-3$ | $-1$ | $-3$ | -5 | -5 | 0 | $-3$ |
    | Mean | $+1.1$ | $+2.0$ | +2.5 | $+0$. | $+0$. | $+1$ | $+0.7$ | - 1.1 | $\simeq 0.4$ |  | -0.2 | $+1.0$ |

    Table TV.-Difercnces from the monthly normals, 1841-'的, western hour angles of the moon-Continued.
    

    Table V.
    Differences from the monthly normal., 1842-43, western hour angles of the moon.
    

    Table VI.
    Differences from the monthly normals, 1843-'44, western hour angles of the moon.
    

    Equal weight has been given to each monthty result in the formation of the annual mean.

    Table VII.
    Differences from the monthly normals, 1844-'45, western hour angles of the moon.

    | 1844-35. | $\begin{gathered} \text { oh. } \\ \text { Up. cul. } \end{gathered}$ | 1 h. | 22. | 3 h. | $4 h$. | $5 h$. | 6h. | 7 h . | 8h. | 9h. | 10h. | 114. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July ................ | 0 | $+1$ | $+1$ | $+1$ | 0 | $+1$ | $+2$ | $+2$ | 0 | $+1$ | 0 | -2 |
    | August. | -3 | +1 | $-1$ | 0 | $+2$ | 0 | +1 | $+3$ | $+1$ | -3 | -2 | +1 |
    | September...... | 2 | 0 | -3 | 0 | -2 | $+2$ | + | +3 | +2 | + 2 | +2 | +4 |
    | October ........... | 0 | $+4$ | $+5$ | $+2$ | + 3 | $+$ | +2 | + 0 | 0 | +1 | $-3$ | 0 |
    | November. | $-1$ | + 3 | $+1$ | +2 | +1 | +3 | $+3$ | $+3$ | $+3$ | $+3$ | $+2$ | $-1$ |
    | Deeumher | 1 | 0 | $-1$ | 0 | -2 | -3 | -3 | -2 | $-1$ | -1 | +1 | $-1$ |
    | January ........... | $+1$ | +2 | +4 | $-2$ | - 3 | -4 | 1 | -3 | 0 | -1 | $+4$ | $\underline{+2}$ |
    | Februmy ...... | $+1$ | +1 | + | 0 | $+1$ | +1 | $+1$ | $+2$ | -1 | -2 | 0 | +4 |
    | March | $+1$ | $-3$ | $-3$ | -3 | 0 | 0 | $+1$ | +1 | 0 | $+1$ | $+1$ | 0 |
    | April | -4 | $+2$ | +2 | + 2 | 0 | +2 | 0 | +2 | -2 | -2 | $-1$ | $-1$ |
    | May.. | $+2$ | 0 | +2 | +2 | 0 | $-2$ | 0 | $-1$ | - 1 | -2 | +1 | 0 |
    | June | -5 | 4 | - 3 | -1 | 0 | $+3$ | $+1$ | +1 | $+1$ | 0 | $-5$ | -4 |
    | Mean. | 0.9 | +0.6 | $+0.5$ | + 0.3 | 0.0 | $+0.6$ | $+0.6$ | $+0.9$ | $+0.1$ | -0.3 | 0.0 | $+0.2$ |

    Table VII.—Differences from the monthly normals, 1844- 45 , westorn hour angles of the moon-Cont'd.

    |  | 13 h. | 14. | $15 h$. | 16 h. | 17 h. | $18 h$. | 19h. | 20 h. | 21 h . | $2 h$. | 234. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | July ... | 0 | + 1 | 0 | -1 | 0 | 0 | 0 | -2 | 2 | - 2 | - 3 |
    | Angust | $+2$ | $+3$ | $-1$ | 0 | -2 | 0 | 0 | - 3 | 3 | 0 | - |
    | Sepiember | $+3$ | $+1$ | $+1$ | $-1$ | -2 | -3 | -3 | - 4 | -3 | -4 | -4 |
    | Oetober | +2 | $+1$ | +2 | 0 | 2 | - 2 | 4 | -4 | $-5$ | 0 | - |
    | November | -4 | 0 | -2 | 0 | 0 | $-3$ | $-2$ | -1 | $+1$ | -4 | $-3$ |
    | Hecembe | 0 | -1 | +2 | 0 | +2 | +2 | $+1$ | 0 | $+3$ | $+2$ | 0 |
    | Jamuary . | 0 | $+2$ | -1 | -5 | - 4 | 4 | - 4 | 0 | $+2$ | +1 | $+2$ |
    | Fetruary | +2 | $+1$ | -1 | - 3 | $-1$ | - 2 | -1 | - 5 | -1 | -1 | -1 |
    | March. | $+2$ | $-1$ | 0 | $+4$ | + 3 | $+2$ | $+1$ | - 3 | -2 | -1 | $-3$ |
    | April. | $+1$ | 0 | 0 | +1 | +1 | $+3$ | -1 | $-3$ | -4 | $-3$ | -4 |
    | May.... | - 2 | 2 | -2 | $-2$ | 0 | - 1 | 0 | $+1$ | - 3 | 0 | $+2$ |
    | June | - 1 | + 1 | +2 | -1 | + 4 | + 4 | $+3$ | $+2$ | +2 | 0 | $-1$ |
    |  | $+0.4$ | $+0.5$ |  | -0 | -0.1 | -0.3 | -0.8 | -1.8 | -1.2 | $-1.0$ | $-1.6$ |

    ## 'Table Vill.

    Rerapitulation of the annual means exhibiting the lunar diurnal variation, from 2:,045 observations betuecn 1840 and 1845, expressed in seale dicisions.
    

    If we give weight to the annual means according to the number of obscrrations, they would be, one for the first and second year, three-fourths for the third year, one and three fourths for the next ycar, and two for the last year. A general examination, however, shows that, owing to the disturbing effect of the progressive change, the monthly means are very nearly of equal value, derived either from the bi-hourly or the hotrly serics. It will also be shown in the sequel that the lunar diurnal variation is nearly the same in the summer and winter seasons. The means of Table V and the final means of Table VIII have, therefore, been adopted without reference to combinations or weights.

    A comparison of the values of Table VIII among themselves shows them to be very irregular, although derived from many thousand observations. A five-year series of observations seems barely sufficient to cxhibit a tolerably regular progression. In the following table two groups have been formed, one of results from three years, 1840 to 1843 , comprising 8,797 observations, the other from the remaining two years comprising 13,248 observations. From these it appears that the lunar diurnal variation during these two periods exhibits the same general character.

    Lunar-diurnal variation during the periods 1840-'43 and 1843-'45.
    

    Before proceeding to the analysis of the final result of Table VIII, the separate results have been combined into summer and winter groups ; the first group comprising the months from April to September, the second group the months from October to March.

    Table IN exhibits the lunar-diurnal variation of the horizontal force during the summer and winter seasons.

    Table IX.
    Lunar-diurnal variation in swmmer.
    (In scale divisions.)
    

    ## Lunar-diurnal variation in winter.

    | Octuber to Mareh. | (In scale divisions.) |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{gathered} 0 h . \\ \text { Lp. cul. } \end{gathered}$ | 1 h . | $2 h$. | 3 h . | 4 h . | 5h. | 6 h | 7 h. | $\varepsilon \%$. | 9\%. | 10h. | 11/n. |
    | 1840-911. | $-1.5$ | $+1.5$ | + 0.3 | +2.5 | $-0.7$ | -1.0 | $-3.7$ | $-1.0$ | - 9.7 | + 1.3 | $+0.5$ | $+3.0$ |
    | 1811-42 | $+2.0$ | +2.2 | +2.7 | +0.2 | -0.5 | $+1.0$ | $+0.7$ | $+0.7$ | -0.5 | + 0.8 | +0.2 | +0.5 |
    | 1842-'43. | $+0.3$ | $-2.3$ | -2.3 | $+13$ | $-3.3$ | +1.3 | -1.0 | +0.3 | -1.3 | + 1.0 | $-0.7$ | + 1.0 |
    | 1843-'44. | $+0.2$ | $+0.3$ | $+1.2$ | +1.3 | +0.5 | 0.0 | $+0.7$ | +0.2 | $+0.5$ | -0.3 | 0.0 | 0.0 |
    | 1844-'45. | +0.2 | +1.2 | +1.0 | -0.2 | 0.0 | + 0.2 | $+0.5$ | +02 | + 0.2 | $+0.2$ | + 0.8 | +0.7 |
    | Mean | $+0.6$ | $+0.6$ | + 0.6 | +1.0 | -0.8 | $+0.3$ | -0.6 | -0.2 | -0.3 | + 0.6 | $+0.2$ | $+1.0$ |
    |  |  | 13t. | 14 h. | 15h. | 16. | 17.2. | $18 \%$. | 194. | 2 F . | 21 h. | 22 h . | 23, |
    | 1830-'41 | $-3.8$ | $+4.0$ | $-2.3$ | +2.0 | -3.7 | +2.2 | $-3.3$ | $-2.2$ | - 0.5 | 0.0 | + 1.2 | + 4.7 |
    | 1811-429 | $+17$ | +0.8 | -0.7 | -2.5 | $-3.2$ | $-2.8$ | $-0.7$ | $-0.5$ | -0.5 | $-0.3$ | -0.8 | + 0.3 |
    | 1842-'43 | -2.0 | -0.7 | + 1.0 | -1.0 | + 1.7 | $+1.3$ | $-0.3$ | +4.0 | +0.7 | $+0.7$ | $+30$ | $+2.3$ |
    | 1843-144....... ........... | $+0.3$ | +0.3 | 0.0 | +0.3 | + 0.3 | $-1.0$ | - 1.2 | -1.3 | -1.3 | $-0.5$ | $-0.5$ | $-0.8$ |
    | 1844-45 | $+1.2$ | +0.3 | +0.3 | 0.0 | -0.7 | -0.3 | -1.2 | -1.3 | 二2.2 | -0.3 | -0.7 | -1.2 |
    | Mea | $-0.5$ | $+0.9$ | -03 | -0.2 | -1.1 | - 0.1 | -1.3 | $-0.3$ | -0.8 | -0.1 | +0.5 | + 1.1 |

    The results are exhibited in Diagram A of Part VI, Sketch No. 48. The number of observations (about 11,000 for each group) is evidently too small to eliminate the greater irregularities.

    If there is any marked difference in the lunar-diurnal variation in the summer and winter season, the summer range is slightly greater than the winter range. As to the epoch, there is no doubt that in winter the lunar maxima and minima are earlier than in summer. It is a remarkable fact that we have found the same features in the lunar effect on the declination, viz: a greater amplitude in zummer and an earlier occurrence of the maxima and minima in winter. The amount of the shifting of the two curves appears to be nearly the same. From the ten-year series of observations at Prague (i840-'49) Mr. Karl Krcil found a larger lunar effect in the summer months than in the winter months.

    Recurring to the final values of the lunar-diurnal variation of the horizontal force as given in Table VIII, they can be represented by the usual Besselian form of periodic functions.

    The angle $\theta$ counts from the moon's upper culnination westward at the rate of 150 to an hour; a + sign indicated greater, a - sigu less force than the average normal. The observed values are represented by the following expression :

    $$
    H_{\mathbb{J}}=-0.01+0.40 \sin \left(\theta+13^{\circ} 29^{\prime}\right)+0.60 \sin \left(2 \theta+35^{\circ} 43^{\prime}\right)+0.155 \sin \left(3 \theta+244^{\circ} 31^{\prime}\right)
    $$

    The three co-efficients are expressed in sale divisions. If expressed in parts of the horizontal force, the equation may be written as followe ( $M$ signifies millionth parts of the forec:)

    $$
    \underset{\mathbb{M}}{\boldsymbol{M}=\underset{-0.36+14.60}{ } \sin (0+130.5)+21.90 \sin \left(20+35^{\circ} .7\right)+5.64 \sin \left(3 \theta+244^{\circ} .5 .\right)}
    $$

    If expressed in absolute measure, and if $n=$ number of hours after the upper culmination, it may be written

    $$
    \underset{H_{0}}{\boldsymbol{M}=-1.5} \stackrel{M}{M}+61.0 \sin (15 n+13.5)+91.5 \sin \left(30 n+39^{\circ}\right)+23.6 \sin \left(45 n+244^{\circ} .5 .\right)
    $$

    The curve is double-crested and is cxhibited, together with the observed values, in Diagram B, of Part VI, Sketch No. 50. It prescnts two maxima and two minima, which are found from the equation

    $$
    \frac{d H}{d \theta}=0=+0.40 \cos \left(\theta+13^{\circ}\right)+1.20 \cos \left(2 \theta+39^{\circ}\right)+0.45 \cos \left(3 \theta+245^{\circ}\right)
    $$

    The lunar effect on the declination we have found likewise to present two maxima and two minima.- (See Part III of the discussion, Coast Surycy Report for 1860. )

    We find: Principal maximum $2^{\text {h }} 52^{\text {na }}$ after Upper Culmination; +0.87 scale divisions.

    | Secondary | " | 1 | 7 | $"$ | Lower | $"$ | +0.51 | " | " |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Principal minimum | 6 | 41 | $"$ | $"$ | $"$ | -0.57 | $"$ | " |  |
    | Secondary | $"$ | 8 | 19 | $"$ | Upper | $"$ | -0.42 | $"$ | $"$ |

    The epoch of the horizontal-force tide for the high values is nearly two hours after the culminations, and for the low values it is $7 \frac{1}{2}$ hours after the same phases.

    For Makerstown, in Scotland, at General Sir Thomas M. Brisbane's observatory, in 1843-'4G, Mr. J. A. Broun found (Trans. Royal Society of Edinburgh, vol. XIX, p. 11, 1849) the smaller maximum of the horizontal force two hours after upper culmination, the greater maximum one and one-fourth hours after the lower culmiation, the smaller minimum eight hours after the upper culnination, and the greater minimum nine hours after the lower culmination.
    At Prague all extremes appear from two to three hours later. Mr. Karl Kreil (Denkschriftea of the Imperial Academy of Sciences, at Vienna, vol. V, 1853) found from the ten-year series at Prague (1840-'49) maxima of horizoutal force between four and five hours after the upper and lower culminations, the latter being the greater of the two; and minima between ten and eleven hours after the same epoch, that after the upper culmination being the greater of the two.

    From the Toronto observations, continued for fire years, Major General Sabine deduced the formula (see vol. III of the Toronto Magnetical and Meteorological Observations, London, 1857.)

    $$
    \Delta_{x}=+0.05+0.215 \sin \left(a+353^{\circ} .6\right)+0.3324 \sin \left(2 a+13^{\circ} .5 .\right)
    $$

    The co-efficients are in decimals of scale divisions ( 1 div. $=0.000087$ ) parts of the horizontal force; ) the angle $a$ counts from the superior culmination, giving a curve of which the general features are in exact accordance with those deduced from the Philadelphia observations, viz: a principal maximum after upper culmination, followed by the secondary minimum; the secondary maximum after the lower culmination, followed by a principal maximum. The times and amount of these values are compared in the following Table $\mathbf{X}$ :

    ## Table X.

    Comparison of the lunar-rliurnal variation of the horizontal component of the magnctic force as reduced from 92,045 observations between 1840 and 1845, at Philadetphia, and as deduced from 34,303 obscreations bitween 1844 and 1818, (a five-year series,) at Toronto, Canada.

    |  | 'Toronto. |
    | :---: | :---: |
    | Time of principal maximum | $3 h$ after up. cul. |
    | Time of secondary minimum | 9 " |
    | 'Inme of secondary maximmm. | 2 " low.cul. |
    | Tine of principal minimum | 8 " |

    In parts of horizontal foree.

    | Amount of principal maximum - | , |  |
    | :---: | :---: | :---: |
    |  | $+0.000032$ | +0.000046 |
    | Atmount of secondary minimum | -0.000016 | -0.000010 |
    | Amount of secondary maximum | +0.000019 | +0.000024 |
    | Amount of principal minimum | -0.000032 | -0.000041 |


    |  | In absolute measure. |  |
    | :---: | :---: | :---: |
    | Amount of principal maximum | +0.000133 |  |
    | Amount of secondary minimum | -0.000068 |  |
    | Amount of secondary maximum | +0.000078 |  |
    | Amount of principal minimum | -0000133 |  |

    Proballe error of any single representation of the Philadelphia values $= \pm 0^{d} .25= \pm 0.000009$ parts of the Lorizontal force $= \pm 0.000038$ in absolute measure.

    Investigation of the horizontal force in reference to the lunar phases.-The following process of reduction has been adopted: After marking the days of the full and new moon, and also the days preceding and following, the daily means of the horizontal-force radings were taken (already corrected for difference of temperature and progressive change.) In the place of any disturbed observation, the monthly normal, belonging to the respective hour, was substituted before taking the daily mean. All accidental omissions in the record of the hourly or bi-hourly series were supplied by the hourly normal of the month. The means thus obtained are independent of the solar diurnal variation. The monthly normal was next compared with each daily mean and the differences (normal, minus mean) were tabulated.

    A positive sign signifies a greater, a negative sign a less force than the normal value. As the results deduced from a single year are yet too much affected by the incidental irregularities of the observations, the collective results from the five-year series (1840-'45) are herewith presented.

    Table XI.
    Influence of the lunar phases on the horizontal force.

    |  | Scale divisions. | Parts of the hor, force. | In absolute measure. |
    | :---: | :---: | :---: | :---: |
    | One day before full moon | $-1.0$ | -0.000036 | -0.00015 |
    | On the day of full moon | $-1.5$ | -0.000055 | -0.00023 |
    | One day after full moon. | $-0.2$ | -0.000007 | -0.00003 |
    | One day before new moon | +0.0 | +0.000000 | +0.00000 |
    | On the day of new moon. | +2.4 | +0.000091 | +0.00038 |
    | One day after new moon | $+0.9$ | +0.000033 | +0.00014 |
    | Difference for new full moon. | 3.9 | 0.000146 | 0.00061 |

    The average number of observations from which any one of the above six means were deduced is over 800 , and the probable error, in scale divisions, of any one of the results is $\pm 0.7$ (nearly.)

    From the Makerstown observations, Brom found for the veare 1843 -' 46 a minimum at the time of the full moon, and a maximum at the time of the new moon. Kreil, from the Prague observations, between 1843-46, found the same result, all in accordance with the Philadelphia results, as given ahowe. It must be remarked, however, that after the year 1848 Kreil found that the signs were reversed, and eonsequently it appears that the lunar influence on the horizontal force is sulject to a eycle of short period. This last rumark does not apply to the effect of the moon's declination and variations in distance.

    Influence of the moon's changes of declination on the horizonta? force. -The method of investigation is precisely the same as that adopted for the phases. We find:

    ## Table XII.

    

    It seems probable that the greatest effect takes place rather a day after than on the day of the moon's greatest decination. Taking means, as indicated in the above table, we find about the time of the maximum north declination an increase of horizontal force of 1.1 scale divisions (or 0.000040 parts of the horizontal force.) At the time of the moon's crosing the equator the foree is decreased 1.2 scale divisions (or 0.000044 parts of the horizontal force.) The horizontal force also appears decreased about the time of the moon's greatest south declination. The amount is about half that of the other two cases, and is somewhat doubtful, from an apparently excessive value on the preceding day.

    According to Broun, there is at Makerstown a maximum horizontal force at the time of the moon's greatest north and south declination, with a minimum force at the time of her crossing the equator. In two cases therefore, viz : for north declination and no declination, the Makerstown and Philadelphia results agree, while in the third case they disagree or remain doubtful. Kreil's results, from the Prague observations, do not appear to me sufficiently decisive and regular to admit of comparison.

    Influcnce of the moon's variation in distance on the horizontal force.-By a process of reduction that fol lowed in the preceding investigation we find:

    Table XIII.

    | One day before perigee $\qquad$ <br> On the day of perigee $\qquad$ <br> One day after perigee $\qquad$ | $s$ d. | $s . d$. |
    | :---: | :---: | :---: |
    |  | $-1.5$ |  |
    |  | $-1.9$ | Mean -1.8 |
    |  | $-2.0$ |  |
    | One day before apogee | +2.3 | $)$ |
    | On the day of apogee. | +2.3 | Mean-2.4. |
    | One day after apogee | +2.7 |  |

    The probable error of any one result is about the same as in the preceding results (Tables XI and XII) The results for variation in the moon's distance are more consistent and satisfactory than those depending on the phases and declination changes. The lunar effect is to diminish the horizontal force by its 0.000066 part in perigee, and to increase it by its 0.000088 part when she is in apogee.

    The Prague results are the same, viz: a greater horizontal force at and after the moon's apogee than at and after her perigee. A three-ycars' series of observations at Milan, however, do not agree therewith.

    In no branch of magnetic research would additional results from independent observations, particularly at stations widely apart, be more acceptable and valuable than in the stady of the lunar effect in its various manifestations.

    ## APPENDIX No. 18.

    Results from olservations made by Assistant Charles A. Schoth, in July and August 1862, for magnetic declination, dip, and horizonfal intensity, in Pennsylvania, including also one station in the District of Columzia, and one in New York.

    | No. | Locality and station. | Date. | 蓠 |  |  | 㐫 |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 1862. | $\bigcirc$, | $\bigcirc 1$ | $\bigcirc 1$ | $\bigcirc 1$ |  |  |
    | ¢1 | Path, N. Y., opposite post office | August 11 | 4220.8 | $\bigcirc 721.0$ | 447.9 | 7426.2 | 3. 639 | 13.563 |
    | 02 | Erie, Pa., Mr. Reed's, on 7th street. | Angust 6-7 | 4207.5 | 8000.0 | 133.0 | 7352.2 | 3. 728 | 13.419 |
    | 3 | Williamsport, Pa., near academy | August 13 | 4114.0 | 7702.0 | 425.7 | 7251.0 | 3.924 | 13.308 |
    | 4 | Harrisburg, Pa., State capitol | July 28-29 | 4016.0 | 7653.0 | 344.5 | 7231.6 | 4.012 | 13.362 |
    | ${ }_{5}$ | Near Rrownsville, Pa., Johnson's, now Hatfield's $\qquad$ | July 31 | 3959.5 | 7947.8 | 113.6 | 7156.9 | 4. 138 | 13. 354 |
    | 6 | Philadelphia, Girard College. | Aug. 15-16 | 3958.4 | 7510.0 | 500.0 | 7205.8 | 4. 088 | 13. 298 |
    | 7 | Washington, D. C., Coast Survey Office | Aug. 18-19 | 3853.1 | 7700.2 | 239.4 | 7119.0 | 4. 255 | 13. 283 |

    Note. - The units of intensity are the foot, the grain, aud the second, of mean time. At Wakhington observations were also made July 21, 22, and September 4.

    - Occupied at the expense of the Smithsonian Institution.


    ## APPENDIX No. 19.

    abstradt of results of a magnetic survey of pennsylvania and parts of adjacent states IN 1840 AND 1841 , WITH SOME ADDITIONAL RESULTS OF 1843 AND 1862 .-BY A. D. BACHE, GUPERINTENDENT UNITED STATES COAST SURVEY. (Sketce 47.)

    In the years 1840 and 1841 I madc a detailed magnetic survey of Pennsylvania and adjacent parts of New York, Ohio, and Maryland, determining, at a number of stations, suitably selected with regard to the course of the isomagnetic lines, the magnetic declination, dip, and intensity. To these I added some observations for dip and intensity in 1843, while on a tour through western New York and Canada.

    The total number of declination stations is 16 , and of dip and intensity stations 48.
    After assuming the duties of Superintendent of the United States Coast Survey in 1843, I could not find the necessary leisure to work up these observations, although Mr. J. S. Ruth and Mr. G. Davidson had commenced preparing, under my direction, a partial abstract, confined to dip and intensity observations, and to relative results. In the spring of 1862 I availed myself of the services of Charles A. Schott, $\dagger$ Assistant in the United States Coast Survey, who reduced, under my direction, the observations, discussed the distribution of the three magnetic elements, presenting the latter results, also, graphically, and prepared this report for the press.
    $\dagger$ This work was done by Mr. Schott out of office hours, and at my own expense.

    In the summer of 1862 Mr . Schott visited six of the stations previously occupied by me, and redetermined the magnetic elements. Three of these stations, falling within the scope of the operations of the United States Coast Survey, were at the expense of the Const Surrey. The observations at the three western stations were secured by the liberality of the Secretary of the Smithsonian Institution, who at the same time offered to publish the observations and results in the Smithsonian Contributions to Fnowledre.

    The observations of 1862 greatly enhance the value of my older operations, and furnish the means of presenting results for two epochs about twenty years apart, thus not only giving the most modern values, but also determining, by the known secular change of the three elements, any intermediate results.

    The fruit of these labors, undertaken for this continent at a comparatively early period, and comprising the three elements, and the whole conducted systematically, with insiruments well constructed for the time, will no doubt afford adequate means of watching hereafter the secular changes of terrestrial magnetism within the geographieal extent of this survey.

    The dechations were determined with a new Gambey declinometer belonging to the Girard College. The astronomical obvervations were made with a sextant and vertical circle and chronometer, (Grant, No. 3,S61.) The dip was determined with a portable cirele, by Robinson, and a magnctic bar and cylinder, according to the method described by me in the American Phil. Trans., vol, V, 1837, in which the vibrations are made in a rarified medium.

    The full paper, with records, will shortly be printed in the Smithsonian Contributions to Knowledge.
    Results of the magnetic declinations observed by A. D. Bache in Pennsyluania and adjacent States in 1 S40 and 1841.
    These observations were made with a Gambey declinometer belonging to Girard College. Onc division (small) of the scale was found equal to $14 .^{\prime \prime} 54$, as determined in 1844, at Sandy Hook, by Lieut. G. M. Bache, (see Coast Survey Records:) 1 large division $=60$ small divisions.

    The observations were made with telescope direct, with slit to the right hand, or $E$., and with telescope inverted, with slit to the left, or $W$; also with needle direct, or hairs up, and with needle inverted, or hairs down. With ncedle north, W. readings are + , E. readings -; with needle south, W. readings are -, E. readings + .

    Throughont the record the apparent direction (E. or W.) is given; the same is to be understood in this reduction. Apparent $E$. is real W., and when the angle is W. of truc north, apparent $E$. is + for the north of the needle; but as the azimuth circle reads from north to east, this sign is to be reversed, if we apply the corrction directly to the circle roading.

    Table of results for magnetic declination, 1640.
    

    Table of results for magnetic declination, 1841.
    

    ## Comparison of declination for secular change; results of 1840, 1841, and of 1862.

    |  |  |  |  |  | 1862. <br> Schott) | Annual increase |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\bigcirc$ | 1 |  | , | , |
    | Philadelpha, (Girarl College) | . July and Nor., 1841.. | 3 | 53.7 W . |  | 00.0 W. | 3.2 |
    | Harrisburg | .July, 1840 | 3 | 12.5 W. |  | 44.5 W . | 1.5 |
    | Williamsport | .July 1841 | 3 | 31.2 W. | 4 | 25.7 W . | 2.6 |
    | Johnson's Tavern, near Browns | Aug. 1840 | 0 | 25.2 W . | 1 | 13.6 W . | 2.2 |
    | Erie | Ang. 1841 | 0 | 30.0 W . | 1 | 33.0 W . | 3.0 |
    | Bath. | .Aug. 1841.......... | 3 | 31.4 W. | 4 | 47.9 W . | 3.6 |
    | Mean |  |  |  |  |  | 2.7 |

    Harrisburg was occupied in July, 1862, and all the other stations of 1862 in August.

    ## Chronometric results for longitude.

    In the tour of 1840 the error and rate of chronometer determined at Philadelphia was depended upon for time. The longitudes of the stations were taken from the best authorities.

    In the tour of 1841 observations for time were made at stations, and the error of the chronometer was determined at Philadelphia before setting out, and after return.

    ## Table of geographical positions.

    Taken from special observations, H. F. Walling's large map of Pennsylvania, J. H. French's large map of New York, the United States Coast Survey, and from railroad and canal map of Pennsylvania, Tanner, 1834, and other sources.

    Tour of 1840, through southern Pennsylvania, and part of Ohio, Virginia, and Maryland :

    |  | Latitude. | $\begin{gathered} \text { Lomgitude. } \\ 0 \end{gathered}$ |
    | :---: | :---: | :---: |
    | Philadelphia, Girard College, Pa. | 3958.4 | 7510.0 |
    | Reading, Pa. | 4019. | 7555. |
    | Harrisburg, Pa. | 4016. | 7653. |
    | Duncan's Island, Pa. | 4025. | 7701. |
    | Lewistown, Pa. | 4035. | 7736. |
    | Huntingdon, Pa. | 4030.5 | 7802. |
    | Armagh, Pa. | 4029. | 7904. |
    | Economy, Pa. | 4037. | 8016. |
    | Homewood, near Pittsburg, Pa | 4028. | 7959.5 |
    | Steubenville, Ohio | 4025. | 8039. |
    | Wheeling, Va. | 4008. | 8042. |
    | Johnson's Tavern, near Brownsville, Va | 3959.5 | 7947.8 |
    | Frostburgh, Ya.. | 3941. | 7856. |
    | Irwin's Mill, near Mercersburg, Va | 3947. | 7756. |
    | Baltimore, Md... | 3917.8 | 7636.6 |
    | Frenchtown, Md. | 35. |  |

    Tour of 1841, through nörthern Pennsylvania, and part of Ohio and New York:

    | Doylestown, Pa. | 4018. | 7510. |
    | :---: | :---: | :---: |
    | Easton, Pa | 4042. | 7515. |
    | Wilkesbarre, Pa | 4114. | 7558. |
    | Williamsport, Pa | * 4114.0 | +7702. |
    | Bellefonte, Pa | 4055. | 7749. |
    | Curwinsville, Pa. | * $40 \quad 57.7$ | +7836. |
    | Berlin's Tavern, Pa. | 4116. | 7936. |


    |  | $\begin{gathered} \text { Latitude. } \\ 0 \end{gathered}$ | $\begin{gathered} \text { Longitudc. } \\ 0 \end{gathered}$ |
    | :---: | :---: | :---: |
    | Mercer, Pa. | 4113.8 | 8016. |
    | Warren, Ohio. | 4117. | 8050. |
    | Ashtabula Landing, Ohio | 4154. | S0 4\%. |
    | Eric, Pa. | ${ }^{4} 4207.5$ | +8006. |
    | Dunkirk, N . Y. | ${ }^{*} 4229.3$ | +79 23. |
    | Ellicottville, N. Y | ${ }^{*} 4218.1$ | t7s 44. |
    | Belviderc, N. Y. | 4213. | 7806. |
    | Bath, N. Y. | ${ }^{4} 4220.8$ | 7721. |
    | Owego, N. Y. | 4208. | 7617. |
    | Silver Lake, N. Y | ${ }^{*} 4156.6$ | +7602. |
    | Milford, Pa. | 4119. | +7451.5 |
    | Bushkill, Pa. | 4107. | 7502. |
    | ur of 1843, through Now York, part of Canada, and New Jersey : |  |  |
    | Princeton, N. J. | 4020.7 | 7439.6 |
    | Schenectady, Union College, N. Y . | 4248. | 7357. |
    | Ctica, N. Y. | 4305. | 7514. |
    | Syracuse, N. Y | 4303. | **76 09.3 |
    | Geneva, N. Y. | 4253. | 77 ¢¢. |
    | West Point, N. Y. | 4123.4 | $735 \%$ |
    | Rochester, N. Y. | 4307. | 7739. |
    | Niagara Fulls, N. Y | 4304. | 7905. |
    | Toronto, Canada West | 4389.5 | 7921.5 |
    | Oswego, N. Y. | 4326. | 7635. |
    | Ogdensburgh, N. Y. | 4442. | 7531. |
    | Quebec, Canada East. | 4648. | 7114. |
    | Montreal, Canada East.. | 4530. | 7335. |
    | Troy, N. Y. . | 4243.7 | 7340.7 |

    ## Distribution of the magnetic declination for the epach 1842.0.

    From the comparison of the obscrvations for secular chauge we have:
    Harrisburg, annual increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5
    Jolmson's Tavern, annual increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2
    Philadelphia, amrual increase.............................................................. 3.2
    Williamsport, annual increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6
    Erie, annual increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0
    Bath, annual increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6
    Mean .................................................................................. 2.7
    Toronto, between 1845 and $1855 \ldots .$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3
    (Sce Vol. III of the Observations.)
    Latitudes determined astronomically are marked with an asterisk (e) ; longitudes determined astronomicaliy, combined with other determinations, are maked with a cross ( $\ddagger$ ). 00 From telegraphic determination.- (See Report of the Regents of the University of the State of New York, 1862.)

    Gencral table of results referred to the common epoch 1812.0 .

    | No. | Station. | Date. | Obs'd deel. W. | Red. to epoch. | Decl'n 1842.0. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | o | ; | - |
    | 1 | Harrisbarg . | 1840, July 25 | 312.5 | $+4.0$ | 316.5 |
    | 2 | Huntiugdon | 1840, July 30 | 152.3 | 4.0 | 156.3 |
    | 3 | Near Pittsburg | 1840, Aug. 10 | 0 08.0 | 4.0 | $0 \quad 12.0$ |
    | 4 | Near lhrownsville | 1840, Aug. 17 | 0 25. 2 | 4.0 | $0 \quad 29.2$ |
    | 5 | Near Mercersburg. | 1840, Aug. 24 | $\begin{array}{lll}0 & 54.4\end{array}$ | 4.0 | $0 \quad 58.4$ |
    | 6 | Bultimore | 1840, Aug. ${ }^{7}$ | 916.5 | 4.0 | 220.5 |
    | 7 | Philadelphia | $\left.\begin{array}{l} 1841, \text { July } 20 \\ 1841, \text { Nov. } \end{array}\right\}$ | 353.7 | $+0.7$ | $3 \quad 54.4$ |
    | 8 | Easton | 1841, July 23 | 338.0 | $+1.3$ | $\begin{array}{ll}3 & 39.3\end{array}$ |
    | 9 | Wiliamsport | 1841, July 28 | 381.2 | 1.3 | $3 \quad 32.5$ |
    | 10 | Cumbinsville | 1841, Ang- 1 | 145.1 | 1.3 | 1. 46.4 |
    | 11 | Mercer. | 184, Ang. 4 | - 051.2 | 1.3 | -0 49.9 |
    | 12 | Erie | 1841, Ang. 9 | 030.0 | 1.3 | $\begin{array}{ll}0 & 31.3\end{array}$ |
    | 13 | Dunkirls | 184, Aug. 12 | $\begin{array}{ll}0 & 52.5\end{array}$ | 1.3 | $0 \quad 53.8$ |
    | 14 | Ellicottrille | 1841, Aug. 14 | 235.7 | 1.3 | 237.0 |
    | 15 | Bath. | 1841, Aug. 19 | 3 31.4 | 1.3 | $3 \quad 39.7$ |
    | 16 | Silver Lake | 1841, Aug. 23 | $4 \quad 30.2$ | 1. 3 | $4 \quad 31.5$ |

    

    The small extent of the survey, as well as the comparatively small number of observations, will not permit the introduction of curvature in the isoganic lines; they are therefore treated as straight lines. This assumption also serves for the recognition of any local disturbances, as indicated by the differences of observed and computed values.

    $$
    \begin{aligned}
    & \text { Let } \mathrm{D}=+2^{\circ} .08+x d \mathrm{~L}+y d \mathrm{M} \cos . \mathrm{L}, \\
    & \text { where } d \mathrm{~L}=\text { Lat. }-40^{\circ} .98 \\
    & \quad d \mathrm{M}=\text { Long. }-77.95
    \end{aligned}
    $$

    The 16 conditional equations have been formed, and the values of $x y \mathrm{D}$ found from the normal equations are as follows:

    $$
    \begin{gathered}
    x=+0.5102 \\
    y=-1.206 \\
    \mathrm{D}=+20.08+0.5102 d \mathrm{~L}-1.206 d \mathrm{M} \cos . \mathrm{L} .
    \end{gathered}
    $$

    A comparison of the observed and computed declinations shows the necessity of introducing a term involving $d \mathbf{L} d \mathbf{M}$ cos. L. This has been done, and the solution of the normal equations gives us the following expression :

    $$
    \mathbf{D}=+20.14+0.513 d \mathbf{L}-1.231 d \mathrm{M} \text { eos. } \mathrm{L}-0.203 d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L} .
    $$

    Comparison of observed and computed values.
    

    The probable error of any single representation is $\pm 19^{\prime} .4$.
    The curves of $0^{\circ}, 2^{\circ}, 4^{\circ}$, pass through the following positions:

    | 0 | Lat. $41^{\circ}$ | $00^{\prime}$ | Lat. $42^{\circ}$ | $30^{\circ}$ | Lat. $39^{\circ}$ | 30 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Long. 80 | 15 | Long. 80 | 33 | Long. 79 | 54 |
    | 2 | Lat. 41 | 00 | Lat. 42 | 30 | Lat. 39 | 30 |
    |  | Long. 78 | 07 | Jong. 78 | 46 | Long. 77 | 5 |
    | 4 | Lat. 41 | 00 | Lat. 42 | 30 | Lat. 39 | 30 |
    |  | Long. 75 | 56 | Long. 76 | 59 | Long. 74 | 17 |

    These curves have been finally adopted.

    ## Distrilution of the magnetic dip and construction of the isoclinal lines for 1842.

    For the convenient appication of the usual analytical expression for the representation of the observed dips and for their interpolation the stations have been divided into six grouns, as follows:

    GROUP I.

    | No. | Station. | Latitude. |  | Longitade. |  | Date. | Observed dip. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | $\bigcirc$ | ! |  | $\bigcirc$ | , |
    | 1 | Philadelphia* |  | 58.4 | 75 | 10.0 | Feb., 1842 | 71 | 57.1 |
    | 2 | Doylestown |  |  |  | 10 | July, 1841 | 72 | 23. 1 |
    | 3 | Eastou |  | 42 |  | 15 | July, 1841 | 72 | 39.0 |
    | 4 | Reading |  | 19 |  | 55 | July, 1840 | 72 | 32.2 |
    | 5 | Frenchtown |  | 35 |  | 51 | Aug., 1840 | 71 | 40.2 |
    | 6 | Baltimore |  | 17.8 | 76 | 36.6 | Aug., 1840 |  | 33.9 |
    | 7 | Washingtont |  | 53.1 |  | 00.2 | Sept., 1841 |  | 15.9 |
    | 8 | Harrisburg |  | 16 |  | 53 | July, 1840 |  | 20.5 |
    | 9 | Duncan's Islund. |  | 25 |  | 01 | July, 1840 | 72 | 35.0 |
    | 10 | Near Mercersburg |  |  |  | 56 | Aug., 1840 |  | 47.3 |
    |  | Mean. |  | 57.1 |  | 16.8 | 1841.0 |  | 04.4 |

    *The dip is the mean from groups of Decenber, 1840, Oetober, 1841, and August, 1843.
    $\dagger$ This station has been added to the diecussion as we have abservations in 1840 and 1841. (See Appendix No. 25, Coast Survey Report of le5e.) Mean dip from several observers in $1841.0,71^{\circ} 188^{\prime} .3$, and in $1842.5,71^{\circ} 13^{\prime} .5$. Mean, $71^{\circ} 1,59{ }^{\prime}$ in 1841.8.

    GROUP II.

    | No. | Station. | Latitude. | Longitude. | Date. | Observed dip. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | - | $\bigcirc$ |  | $\bigcirc$ |
    | 1. | Armagh | $40 \quad 29$ | $79 \quad 04$ | Aug., 1840 | 72.18 .7 |
    | $\underline{2}$ | Frostburg | 3941 | 7856 | Ang., 1840 | $71 \quad 31.3$ |
    | 3. | Near Brownswille | 39 59.5 | $79 \quad 47.8$ | Aug., 1840 | $71 \quad 53.5$ |
    | 4 | Near Pittsburg | $40 \quad 28$ | $79 \quad 59.5$ | Aug., 1840 | $72 \quad 32.1$ |
    | 5 | Economy | $\begin{array}{lll}40 & 37\end{array}$ | 8016 | Aug., 1840 | $72 \quad 35.0$ |
    | 6 | Wheeling | $40 \quad 08$ | $80 \quad 42$ | Aug., 1840 | 7208.9 |
    | 7 | Steubenville | $40 \quad 25$ | $80 \quad 39$ | Aug., 1840 | $72 \quad 32.8$ |
    |  | Mean. | $40 \quad 15.4$ | 7954.9 | 1840.6 | 72 13.2 |

    GROUP III.
    

    GROUP IV.

    | No. | Station. | Latitude. | Longitude. | Date. | Observed dip- |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |
    | 1 | Curwinsville. | $40 \quad 57.7$ | $78 \quad 36$ | Aug., 1841 | $\begin{array}{lll}72 & 49.7\end{array}$ |
    | 2 | Belvidere | 4213 | 7806 | Aug., 1841 | $74 \quad 09.5$ |
    | 3 | Bath | 4290.8 | 7721 | Aug., 1841 | $74 \quad 27.5$ |
    | 4 | Owego | $42 \quad 08$ | $76 \quad 17$ | Aug., 1841 | $74 \quad 13.9$ |
    | 5. | Silver Lake | $41 \quad 50.6$ | 7602 | Aug., 1841 | $73 \quad 41.5$ |
    | 6 | Wilkesbarre | $41 \quad 14$ | $75 \quad 58$ | July, 1841 | 73 10.0 |
    | 7 | Williamsport | 41 14.0 | 7702 | July, 1841 | $72 \quad 54.4$ |
    | 8 | Bellefonte | $40 \quad 55$ | 7749 | July, 1841 | 7242.3 |
    | 9 | Lewistown | $40 \quad 3 \overline{5}$ | $77 \quad 36$ | July, 1840 | 7230.0 |
    | 10 | Huntingdon | $40 \quad 30.5$ | 7802 | July, 1840 | $72 \quad 17.8$ |
    |  | Mean. | $41 \quad 24.5$ | 7710.9 | 1841.4 | $73 \quad 17.7$ |

    GROUP V.

    | No. | Station. | Latitude. | Longitude. | Date. | Observed dip. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | - , | $\bigcirc$ |  | - |
    | 1 | Niagara Fulls. | 4304 | $79 \quad 05$ | Ang., 1843 | $74 \quad 510$ |
    | 2 | Toronto Observatory | $43 \quad 39.5$ | $79 \quad 21.5$ | Aug., 1843 | $75 \quad 11.4$ |
    | 3 | Rochester | $43 \quad 07$ | 7739 | Aug., 1843 | $74 \quad 43.5$ |
    | 4 | Geneva | $42 \quad 53$ | 7702 | July, 1843 | 74 33.2 |
    | 5 | Syracuse | 4303 | $76 \quad 09.3$ | July, 1843 | $74 \quad 51.2$ |
    | 6 | Oswego | $43 \quad 26$ | 7635 | Aug., 1843 | $75 \quad 07.1$ |
    |  | Mean. | $43 \quad 12.1$ | $77 \quad 38.6$ | 1843.6 | $74 \quad 52.9$ |

    GROUP VI.

    | No. | Station. | Latitude. | Longitude. | Date. | Observed dip. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | - | $\bigcirc$ |  | - |
    | 1 | Utica | 43 05 | $75 \quad 14$ | July, 1843 | $74 \quad 50.3$ |
    | 2 | Schenectady | $42 \quad 48$ | $73 \quad 57$ | July, 1843 | $74 \quad 54.8$ |
    | 3 | Troy | $42 \quad 43.7$ | $73 \quad 40.7$ | Aug., 1843 | $74 \quad 47.9$ |
    | 4 | West Point. | $41 \quad 23.4$ | $73 \quad 57.0$ | July, 1843 | 7312.2 |
    | 5 | New York*. | $40 \quad 46.1$ | $73 \quad 56.3$ | Dec., 1841 | $72 \quad 39.6$ |
    | 6 | Milford | 4119 | $74 \quad 51.5$ | Aug., 1841 | $73 \quad 47.6$ |
    | 7 | Bushkill | 4107 | 750.2 | Aug., 1841 | $73 \quad 31.4$ |
    | 8 | Princeton. | $\begin{array}{lll}40 & 20.7\end{array}$ | $74 \quad 39.6$ | July, 1843 | 7238.3 |
    |  | Mean. | $41 \quad 41.6$ | $74 \quad 24.8$ | 1842.9 | $73 \quad 47.8$ |

    *See Appendix No. 32 , Coust Eurvey Report of 1856. This station was added owing to the numerous observations taken in this locality. (At the Lunatic AFlum, dip, 1841. 3, $72^{\circ} 41^{\prime} .0$; in $1842.5,78^{\circ} 38^{\circ} .3$.)

    RECAPITULATION.

    |  | $\bigcirc$ | $\bigcirc$ |  | - | , |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Group I, No. 10 | $39 \quad 57.1$ | $76 \quad 16.8$ | 1841.0 | 72 | 04.4 |
    | Group 11, No. 7. | $40 \quad 15.4$ | $79 \quad 54.9$ | 1840.6 | 72 | 13.2 |
    | Group III, No. 7 | 4148.0 | $79 \quad 57.4$ | 1841.6 | 73 | 30.7 |
    | Group IV, No. 10. | $41 \quad 24.5$ | $77 \quad 16.9$ | 1841.4 | 73 | 17.7 |
    | Group Y, No. 6. | 4312.1 | $77 \quad 38.6$ | 1843.6 | 74 | 52.9 |
    | Group VI, No. 8. | 41 41. 6 | $74 \quad 24.8$ | 1842.9 |  | 47.8 |
    | Means | $41 \quad 23.1$ | $77 \quad 34.9$ | 1841.85 | 73 | 17.8 |

    By comparing the differences in latitude and the corresponding differences in dip for each place with the mean values of the group their general accordance was ascertained. None of the differences were large enough to require an exclusion from the series. It need hardly be remarked that a slight consideration shows that the dip depends almost exclusively upon the latitude; the longitude factors will therefore necessarily be very small.

    Method of discussion.-The interpolation formula, proposed by the Rev. H. Lloyd in 1838, (see the 8th report of the British Association, vol. VII, p. 91,) will be used here in a slightly altered form, to allow for the convergence of the meridians.

    Let $\mathrm{I}=$ resulting dip or inclination.
    $I_{o}=$ assumed mean dip for the epoch adopted, (1842.0,) and the mean latitude and longitude; $i$ its correction.
    $d \mathrm{~L}=$ difference of latitude, $d \mathrm{M}=$ difference of longitude.
    $x, y, z, p, q$, as well as $i$, are to be determined by application of the method of least squares from the observations themselves.

    $$
    \mathrm{I}=\mathrm{I}_{0}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}+z d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}
    $$

    Correction to epoch. -The mean epoch of the six groups is November, 1841 , for which we can substitute without material loss of accuracy, January, 1842, (or 1842.0.) Comparing the observations made by A ssistant Schott in July and August, 1862, with the corresponding observations about the cpoch 1842, we have the following table of differences of results for an interval of nearly twenty years:

    | Station. | Date. |  | ip. | Date. | Dip. | Average annual increase. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 0 |  |  | $\bigcirc$ | 1 |
    | Washington | Sept., 1841 |  | 15.9 | Aug., 1862 | $71 \quad 19.0$ | $+0.15$ |
    | Hatrishurg | July, 1840 | 72 | 20.5 | July, 1862 | $72 \quad 31.6$ | + 0.50 |
    | Near Brownswille. | Aug., 1840 | 71 | 53.5 | July, 1862 | 7156.9 | +0.15 |
    | Erie | Aug., 1841 | 73 | 46.6 | Aug., 1862 | 73 52.2 | $+0.27$ |
    | Bath | Aug., 1841 |  | 27.5 | Aug., 1862 | $74 \quad 26.2$ | $-0.06$ |
    | Williamsport | July, 1841 |  | 54.4 | Aug., 1862 | $72 \quad 51.0$ | -0.16 |
    | Philudelphia | Feb., 1842 |  | 57. 1 | Aug., 1862 | 7205.8 | + 0.43 |
    | Mean. |  |  |  |  |  | + 0.18 |

    Mean total change in 21 years $=3^{\prime} .8$.
    The increase of the dip is therefore very slight; and if we consider that according to Mr. Schott's investiga tion (Appendix No. 32, Coast Survey Report for 1856) the dip near the Atlantic coast, about the year 1841 to 1844 , was at its minimum value, and hence could not have changed sensibly for several years, we can without any sacrifice of accuracy in our reduction, use our results as if all belonged to the mean epoch 1842.0. No reduction to epoch has therefore been applied. It is probable that the present annual increase amounts to about 1'. At Toronto, between 1844 and 1855, (see vol. III, ) the annual increase was $0^{\prime} .8$. In the formula
    of interpolation I retain the factor cos. L, thus making it comparable with similar expressions for other localities where the introduction of cos. L may be more important. Tlee value of the magnetic survey of Pennsylvania is increased from the fact that the isoclinal lines are presented for an epoch at which the dip was probably near its minimum value. The conditional equations are of the form-

    $$
    o=\mathrm{I}_{0}-\mathrm{I}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{~L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}
    $$

    We find from the solution of the normal equations the expression:

    $$
    \mathrm{I}=73^{\circ} .26+0.876 d \mathrm{~L}-0.076 d \mathrm{M} \cos . \mathrm{L}-0.023 d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}+0.013 d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}+0.007 d \mathrm{~L}^{2},
    $$

    $$
    \text { where } d \mathrm{~L}=\text { Lat. }-41^{\circ} .3 \mathrm{~s}
    $$

    $$
    a \mathrm{M}=\text { Long. }-77^{\circ} .58
    $$

    This equation represents the mean values, as follows:

    | Group. | Latitude. | Longitude. | Observed dip. | Computed dip. | Observed-computed. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | , | , | , | , | , |
    | Group 1. | 39.95 | 76.28 | 72.07 | 76.06 | $+0.01$ |
    | Group II. | 40.26 | 79.92 | 72.22 | 72.22 | 0.00 |
    | Group III. | 41.80 | 79.90 | 73.51 | 73.58 | $-0.01$ |
    | Group IV | 41.41 | 77.28 | 73.30 | 73.30 | 0.00 |
    | Group V | 43. 20 | 77.64 | 74.88 | 74.87 | + 0.01 |
    | Group VI.. | 41. 69 | 74.41 | 73.80 | 73.80 | 0.00 |

    The preceding investigation was made for the purpose of ascertaining what terms should be finally admitted in the discussion. Next, nine groups, of five or six observations in each, arranged in regard to their geographical position and area with as much regularity as the nature of the case admitted of, give:

    $$
    \mathrm{I}=73^{\circ} .25+0.912 d \mathrm{~L}-0.069 d \mathrm{M} \cos . \mathrm{L}
    $$

    This equation represents the observations, as follows:

    | Group. | Observed dip. | Computed dip. | Diff. observedcomputed. |
    | :---: | :---: | :---: | :---: |
    |  | c | - | 0 |
    |  | 72.47 | 72. 54 | -0.07 |
    | II. | 71.73 | 71.68 | $+0.05$ |
    | 1 II | 72.20 | 72.11 | $+0.09$ |
    | IV. | 73.20 | 73.31 | -0.11 |
    | V. | 72.54 | 72.61 | $-0.18$ |
    | VI. | 74. 56 | 74.47 | $+0.09$ |
    | VII. | 73. 50 | 73.51 | $-0.01$ |
    | VIII. | 74.74 | 74.76 | -0.02 |
    | IX. | 74.31 | 74. 26 | $+0.05$ |

    The isoclinal lines of $71^{\circ}, 72^{\circ}, 73^{\circ}, 74^{\circ}$, and $75^{\circ}$, pass through the following positions:

    | $71^{\circ}$ | Long. $77^{\circ}$ | $00^{\prime}$ |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Lat. 38 | 49 |  |  |  |  |
    | $72^{\circ}$ | Long. 75 | 00 | Long. $78{ }^{\circ}$ | $00^{\prime}$ | Long. $81{ }^{\circ}$ | $00^{\prime}$ |
    |  | Lat. 39 | 49 | Lat. 39 | 59 | Lat. 40 | 10 |
    | $73^{\circ}$ | Long. 74 | 00 | Long. 78 | 00 | Long. 81 | 00 |
    |  | Lat. 40 | 50 | Lat. 41 | 05 | Lat. 41 | 15 |
    | $74^{\circ}$ | Long. 74 | 00 | Long. 78 | 00 | Long. 81 | 00 |
    |  | Lat. 41 | 57 | Lat. 42 | 11 | Lat. 42 | 22 |
    | $75^{\circ}$ | Long. 75 | 00 | Long. 77 | 00 | Long. 79 | 00 |
    |  | Lat. 43 | 07 | Lat. 43 | 13 | Lat. 43 | 20 |

    These lines have been finally adopted.

    Comparison of the observed and computed dip.
    All stations where the dip has been found indirectly only, by means of the Lloyd needles, are marked with an asterisk-27 in number.
    

    Comparison of the observed and computed dip-Continued.

    | Groups. | Observed dip. | Computed dip. | Diff. observedcomputed. | Remarks. |
    | :---: | :---: | :---: | :---: | :---: |
    | Groce VIII. | $\bigcirc$ | $\bigcirc$ | c |  |
    | Bath | 74.46 | 74.19 | $+0.27$ |  |
    | Rochester* | 74.72 | 74.87 | $-0.15$ |  |
    | Geneva | 74.55 | 74.69 | $-0.14$ |  |
    | Syracuse. | 74.85 | 74.89 | $-0.04$ |  |
    | Oswego*. | 75.12 | 75. 21 | $-0.09$ |  |
    | Group IX. |  |  |  |  |
    | West Point* ${ }^{\text {- }}$ | 73,20 | 73.49 | $-0.29$ |  |
    | Milford | 73.79 | 73.38 | $+0.41$ | Maximum difference. |
    | Utica* | 74.84 | 74.96 | -0.12 | $=2 \bar{a}^{\prime} .$ |
    | Schenectady | 74.91 | 74.77 | $+0.14$ | , |
    | Troy* | 74.80 | 74.72 | $+0.08$ |  |

    The probable erior of any single observation is $\pm 0^{2} .12= \pm 7^{\prime} .2$. The probable error of any observation with the regular dip needles and the Lloyd needles combined is 0.13 ; with the latter uecdles alone $\pm 0^{\circ} .11$. This shows that the irrcgularities in the observed dip are due to local attractions rather than to imperfectious in the needles employed. It is proper, therefore, to assign equal weights to results hy the direct and indirect mothod of observing.

    If we apply Pierce's criterion for the rejection of obscrvations differing too much from the regular value indicated by all other obscrvations, we find the limit of rejection to be $\pm 0^{\circ} .46$, or $\pm 28^{\prime}$. The maximum difference in the preceding table is $25^{\prime}$; hence no observation is excluded.

    General Sabine's resulting isoclinal lines, in his seventh contribution to terrestrial magnetism, (Plit. Trans. Roy. Soc., part III, 1846, p. 237,) refer to an average period between 1840 and 1842 , and correspond in their position very closely to those now presented. They are deduced from independent data.

    Distribution of the magnetic horizontal intensity and construction of isodynamic lines for 1842.
    If we group the observed intensities in the same manner as the dip, the mean epoch 1842.0 may likewise be assumed, and all observed intensities be reduced to that date.

    Corrtction to epoch.-We have the following direct comparisons:

    | Station. | Date. | X. | Date. | X. | $\mathbf{X}-\mathbf{X} \cdot 1$ | Annual decrease. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Washington* | January, 1843 | 4.320 | August, 1862 | 4.255 | 0.065 | 0.0033 |
    | Harrisburg | July, 1840 | 4.078 | July, 1862 | 4.012 | 0. 066 | 0.0030 |
    | Near Brownsville | August, 1840 | 4. 207 | July, 1862 | 4. 138 | 0.069 | 0.0031 |
    | Erie. | August, 1841 | 3. 792 | August, 1862 | 3. 728 | 0.064 | 0.0030 |
    | Bath | August, 1841 | 3. 677 | August, 1862 | 3. 639 | 0.038 | 0.0018 |
    | Williamsport | July, 1841 | 3. 983 | August, 1862 | 3. 924 | 0.059 | 0.0028 |
    | Philadelphia $\dagger$ | January, 1842 | 4. 166 | August, 1862 | 4. 088 | 0.078 | 0.0039 |
    | Mean |  |  |  |  |  | 0.0030 |

    * From Coast Survey Report of $1861-1842.5, ~ X=4.347$. Capt. Lefroy.

    1843. 5, $=$ 4. 292. Dr. Locke.

    Mean, 1843.0, $=4.320$.
    $\dagger$ In July and November, 1840, $\dot{X}=4.160\}$
    In July and November, $1841,=4.166\}$ Mean, 4.166 for 1842. 0 .
    In July $\ldots \ldots \ldots$..........-1843, $=4.172\}$.

    The average annual decrease in the value of $X$ between 1840 and 1862 is therefore 0.0030 , or, when expressed in parts of $X$, equal to 0.00076 . This result agrees tolerably well with that deduced by Assistant Charles A. Schott in the Coast Survey Report of 1861, where 0.00110 was found.

    Supposing the dip to increase at the rate of $1^{\prime}$ a year, and the total intensity to remain constant, the corresponding decrease of the horizontal intensity would amount to nearly the quantity found above. We cannot, therefore, as yet decide whether the total intensity remains stationary or is slightly changing.

    At Toronto (see vol. III) the armual decrease of $\mathbf{X}$ between 1845 and 1852 inclusive was 0.0037 , (in absolute measure, ) or, when expressed in parts of $X, 0.00105$.

    Formation of groups for the analytical cxpression of the distribution of the magnetic horizontal force referred to the rpoch 1842.0.
    [At stations marked with an asterisk the horizontal force was determined by vibrations; at those not so marked the horizontal force was determined by Lloyd's statical method.]

    | Groups. | Date. | X . | Correction to epoch. | X 1842.0. |
    | :---: | :---: | :---: | :---: | :---: |
    | Group I. |  |  |  |  |
    | Philadelphia ${ }^{\text {¢ }}$ | 1842.0 | 4. 166 | 0. 000 | 4. 166 |
    | Doylestown | 1841.6 | 4. 189 | -0.001 | 4.188 |
    | Easton | 1841.6 | 4.121 | $-0.001$ | 4.120 |
    | Reading . | 1840.6 | 4.000 | -0.004 | 3.996 |
    | Frenchtown | 1840.6 | 4.312 | -0.004 | 4. 308 |
    | Baltimore ${ }^{\text {c }}$ | 1840.6 | 4. 265 | $-0.004$ | 4. 261 |
    | Washington . | 1843.0 | 4. 320 | $+0.003$ | 4.323 |
    | Harrisburg* | 1840.6 | 4. 78 | $-0.004$ | 4.074 |
    | Duncan's Island. | 1840.6 | 3. 963 | $-0.004$ | 3. 959 |
    | Near Mercersburg* | 1840.6 | 4. 188 | -0.004 | 4. 184 |
    | Mean. |  |  |  | 4.158 |
    | Gnour II. |  |  |  |  |
    | Armagh | 1840.6 | 4.038 | -0.004 | 4.034 |
    | Frosthurg | 1810.6 | 4. 298 | -0.004 | 4.294 |
    | Near Brownsville ${ }^{\text {a }}$ | 1840.6 | 4. $\overline{207}$ | -0.004 | 4. 203 |
    | Near Pittshurg* | 1840.6 | 4. 049 | -0.004 | 4. 045 |
    | Econorny | 1840. 6 | 4. 008 | -0.004 | 4. 004 |
    | Wheeling | 1840.6 | 4.053 | -0.004 | 4.049 |
    | Steubenville | 1840.6 | 3. 347 | -0.004 | 3. 943 |
    | Mcan |  |  |  | 4. 082 |
    | Grove III. |  |  |  |  |
    | Warren | 1841. 6 | 3. 978 | - 0.001 | 3. 977 |
    | Mercer ${ }^{*}$ | 1841.6 | 4.000 | -0.001 | 3.999 |
    | Ashtabula Landing | 1841. 6 | 3. 838 | -0.001 | 3.837 |
    | Erie ${ }^{\text {a }}$ | 1841.6 | 3. 792 | - 0.001 | 3.791 |
    | Dunkirk | 1841.6 | 3.621 | - 0.001 | 3. 620 |
    | Ellicottville ${ }^{\text {c }}$ | 1841.6 | 3.726 | $-0.001$ | 3.725 |
    | Berlin's Tavern | 1841.6 | 4.026 | -0.601 | 4.025 |
    | Mean. |  |  |  | 3. 853 |

    Formation of groups for the analytical expression, \&c.-Continued.
    

    ## RECAPITULATION.

    | Group. | No. | Latitude. | Longitude. | X 1842.0. |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  | - , | - , |  |
    | 1 | 10 | 3957.1 | 7616.8 | 4.153 |
    | II | 7 | 4015.4 | 7954.9 | 4. 082 |
    | III | 7 | 4148.0 | 7957.4 | 3. 853 |
    | IV | 10 | 4124.5 | 7716.9 | 3. 883 |
    | V | 6 | 4312.1 | 7638.6 | 3. 558 |
    | VI | 8 | 4141.6 | 7424.8 | 3.818 |
    | Mean. |  | 4123.1 | 7734.9 | 3.892 |

    t At New York we have : 1841. 5, Dr. Locke, 4.015; 1842.7, Dr. Locke, 4. 008 ; 1842. 7, Capt. Lefroy, 4. 010 . Mean, 4. 014 for 1841.9 .

    Let $\mathrm{X}=$ resulting horizontal force.
    $\mathbf{X}_{0}=$ assumed mean horizontal for 1842.0 at the mean latitude and mean lougitude ; $\times$ its correction.
    $d \mathbf{L}=$ difference of latitude, $d \mathrm{M}=$ difference of longitude.
    $x, y, z, p, q$, and $*$ to be determined from the observations.
    $\mathbf{X}=\mathbf{X}_{0}+x+x d \mathrm{~L}+y d \mathrm{M} \cos . \mathrm{L}+\approx d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}$.
    Forming the conditional and normal equations we find the expression:
    $\mathrm{X}=3.890-0.1787 d \mathrm{~L}+0.0085 d \mathrm{M} \cos . \mathrm{L}+0.0161 d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}-0.0017 d \mathrm{~L}^{2}+0.0027 d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}$, where $d \mathrm{~L}=$ Lat. $-41^{\circ} .38$
    $d M=$ Long. - 77.58
    This formula is applied for determining the relative weights of the observations from vibrations and by deflections of the dipping needle; for this purpose the horizontal force was computed by the formula, and the results compared with observation.

    From the differences we find the probable error of an observation, (and local irrerularity,) $=0.036$ for the bar and cylinder vibrations, and $\pm 0.062$ for the Lloyd needle deflections and dip. The relative weights, therefore, become 754 for the former, and 257 for the latter, or nearly as 3 to 1 . These weights have been adopted.

    Nine groups, of five or six observations in each, with weights, were then formed.
    Recapitulation of mean (weighted) values of groups.

    | Group. | Latitude. | Longitude. | X. |
    | :---: | :---: | :---: | :---: |
    |  | 0 | $\bigcirc$ |  |
    | I | 40.39 | 74.83 | 4. 107 |
    |  | 39.68 | 77.01 | 4. 199 |
    | III. | 40.22 | 79.99 | 4. 103 |
    | IV. | 41.61 | 80.26 | 3.912 |
    | V | 40.68 | 78.14 | 4.035 |
    | VI. | 42.89 | 79.00 | 3. 618 |
    | VII | 41.56 | 76.27 | 3. 858 |
    | VIII | 42.85 | 77.17 | 3.606 |
    | IX. | 42.17 | 74.37 | 3. 665 |
    | Mean | 41.34 | 77.45 | 3.900 |

    $$
    \begin{gathered}
    \mathrm{X}=\mathrm{X}_{\mathrm{o}}+x+x d \mathrm{~L}+y d \mathrm{M} \cos . \mathrm{L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{~L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos . \mathrm{L} \\
    d \mathrm{~L}=\text { Lat. }-41^{\circ} .34 \\
    d \mathrm{M}=\text { Long. }-77.45
    \end{gathered}
    $$

    Forming the conditional and normal equations we deduce:

    $$
    \mathrm{X}=3.920-0.1936 d \mathrm{~L}+0.0146 d \mathrm{M} \cos \mathrm{~L}+0.0203 d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}-0.01587 d \mathrm{~L}^{2}
    $$

    $-0.0005 d \mathrm{M}^{2} \cos ^{2} . \mathrm{L}$.
    It is, however, preferable to shorten the formula, and use instead the following:

    $$
    \mathrm{X}=3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos . \mathrm{L}+0.02 d \mathrm{~L} d \mathrm{M} \cos . \mathrm{L}
    $$

    Comparison of olserved and computed values.

    | Group | X <br> observed. | X computed. | $\begin{gathered} \text { Observed } \\ \text {-computed. } \end{gathered}$ |
    | :---: | :---: | :---: | :---: |
    | I | 4. 107 | 4.095 | +0.012 |
    | II | 4. 199 | 4.227 | -0.028 |
    |  | 4. 103 | 4. 100 | +0.003 |
    | IV | 3. 912 | 3. 887 | $+0.025$ |
    |  | 4.035 | 4.028 | +0.007 |
    |  | 3. 618 | 3. 651 | -0.033 |
    | VII. | 3.858 | 3. 842 | + 0.016 |
    | VIII. | 3. 606 | 3. 599 | $-0.007$ |
    | IX | 3. 665 | 3. 670 | -0.005 |

    The next and last hypothesis:

    $$
    \mathbf{X}=3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos . \mathrm{L}
    $$

    in which the isodynamic lines are treated as straight lines, presents, perhaps, the best and most simple expression of the irregular distribution of the horizontal force. These lines run nearly parallel with the dip lines.

    Comparison of observed and computed walues on this hypothesis.

    | Group. | X <br> observed. | X computed. | Observed-computed. |
    | :---: | :---: | :---: | :---: |
    | 1. | 4.107 | 4. 057 | $+0.050$ |
    | II. | 4.199 | 4. 216 | - 0.017 |
    | III | 4. 103 | 4. 143 | $-0.040$ |
    | IV. | 3.912 | 3.876 | $+0.036$ |
    | $V$. | 4.035 | 4. 035 | 0.000 |
    | VI. | 3.618 | 3.616 | $+0.0002$ |
    | VII. | 3.858 | 3. 846 | $+0.012$ |
    | VIII. | 3. 606 | 3. 605 | $+0.001$ |
    | IX. | 3. 665 | 3. 708 | $-0.043$ |

    The difference between the lines of this and the previous hypothesis shows the large amount of local irregularity.

    The lines of this hypothesis pass through the following positions:

    | 4.2 | Long. | $81^{\circ} 0$ | Long. | $77^{\circ} 5$ | Long. | $74^{\circ} 0$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Lat. | $39^{\circ} 58^{\prime}$ | Lat. | $39^{\circ} 47^{\prime}$ | Lat. | $39^{\circ} 36^{\prime}$ |
    | 4.0 | Long. | $81^{\circ} 0$ | Long. | $75^{\circ} 5$ | Long. | $74^{\circ} 0$ |
    |  | Lat. | $41^{\circ} 01^{\prime}$ | Lat. | $40^{\circ} 49^{\prime}$ | Lat. | $40^{\circ} 39^{\prime}$ |
    | 3.8 | Long. |  | Long. | $77^{\circ} 5$ | Long. | $74^{\circ} 0$ |
    |  | Lat. | $42^{\circ} 02^{\prime}$ | Lat. | $41^{\circ} 51^{\prime}$ | Lat. | $41^{\circ} 41^{\prime}$ |
    | 3.6 | Long. | $81^{\circ} 0$ | Long. | $77^{\circ} 5$ | Long. | $74^{\circ} 0$ |
    |  | Lat. | $43^{\circ} 04^{\prime}$ | Lat. | $42^{\circ} 53^{\prime}$ | Lat. | $42^{\circ} 43^{\prime}$ |

    The observed and computed values of X by the previous and last hypotheses compare as follows:

    | Station. | X observed. | $\mathrm{x}$ <br> by previous hypothesis. | $\Delta$ | X <br> by last hypothesis. | $\Delta$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Philadelphia*. | 4.17 | 4. 19 | $-0.02$ | 4. 14 | $+0.03$ |
    | Doylestown | 4.19 | 4. 11 | $+0.08$ | 4.08 | $+0.11$ |
    | Easton. | 4.12 | 4.02 | $+0.10$ | 4.00 | $+0.12$ |
    | Reading | 4.60 | 4.10 | $-1.10$ | 4.08 | $-0.08$ |
    | Frenchtown | 4.31 | 4.27 | $+0.04$ | 4.22 | $+0.09$ |
    | Baltimore* | 4.20 | 4.32 | -0.06 | 4.29 | $-0.03$ |
    | Washington | 4. 32 | 4.38 | -0.06 | 4.37 | $-0.05$ |
    | Harrisburg* | 4.6 | 4.11 | -0.04 | 4.10 | -0.03 |
    | Duncan's Istand | 3.96 | 4.08 | $-0.12$ | 4.07 | $-0.11$ |
    | Near Mercersburg*. | 4. 18 | 4.21 | $-0.03$ | 4.20 | $-0.02$ |
    | Armagh. | 4.03 | 4.06 | $-0.03$ | 4.08 | $-0.05$ |
    | Frostburg. | 4.29 | 4. 20 | $+0.09$ | 4.24 | $+0.05$ |
    | Near Brownsville* | 4. 20 | 4.14 | +0.06 | 4.19 | $+0.01$ |
    | Near Pittslurg*. | 4.05 | 4.06 | $-0.01$ | 4.09 | $-0.04$ |
    | Economy | 4.00 | 4.04 | $-0.04$ | 4.07 | $-0.07$ |
    | Wheeling | 4.05 | 4.11 | $-0.06$ | 4.17 | $-0.12$ |
    | Steubenville | 3.94 | 4.07 | $-0.13$ | 4.11 | $-0.17$ |
    | Waren | 3.98 | 3.94 | $+0.04$ | 3.95 | +0.03 |
    | Mercer* | 4. 60 | 3.94 | $+0.06$ | 3.95 | $+0.05$ |
    | Ashtabula | 3.84 | 3.80 | $+0.04$ | 3.83 | + 0.01 |
    | Eric* | 3.79 | 3.81 | $-0.02$ | 3.77 | + 0.02 |
    | Dumkirk | 3.62 | 3.70 | -0.08 | 3.70 | $-0.08$ |
    | Ellicottrille*. | 3.72 | 3.75 | -0.03 | 3.73 | $-0.01$ |
    | Berlin's Tavern. | 4.02 | 3.93 | $+0.09$ | 3.94 | $+0.08$ |
    | Curwinsville* | 4.00 | 3.98 | $+0.02$ | 3.99 | $+0.01$ |
    | Behidere | 3.67 | 3.75 | $-0.08$ | 3.74 | $-0.07$ |
    | Math** | 3.68 | 3.70 | $-0.02$ | 3.70 | $-0.02$ |
    | Owego. | 3.61 | 3.73 | $-0.12$ | 3.74 | $-0.13$ |
    | Silver Lake* | 3.78 | 3.76 | $+0.02$ | 3.77 | $+0.01$ |
    | Wilkesharre. | 3.96 | 3.93 | $+0.03$ | 3.91 | $+0.05$ |
    | Williamsport* | 3.98 | 3. 92 | $+0.06$ | 3.92 | $+0.06$ |
    | Bellefonte | 4.07 | 3.99 | $+0.08$ | 3.99 | $\underline{+0.08}$ |
    | Lewistown | 3.98 | 4.05 | $-0.07$ | 3.05 | $-0.07$ |
    | Huntington* | 4. 10 | 4.06 | + 0.04 | 4.07 | +0.03 |
    | Niagara Falls* | 3.57 | 3. 62 | -0.05 | 3.58 | $-0.01$ |
    | Toronto*. | 3.54 | 3.53 | $+0.01$ | 3.47 | +0.07 |
    | Rnchester | 3.56 | 3.57 | $-0.01$ | 3.56 | 0.00 |
    | Geneva* | 3.64 | 3. 59 | $+0.05$ | 3. 60 | + 0.04 |
    | Syracuse* | 3.56 | 3.53 | +0.05 +0.03 | 3.56 | 0.00 |
    | Oswego | 3.47 | 3. 3.46 | +0.03 +0.01 | 3. 49 | $-0.02$ |
    | Utica. | 3.55 | 3.49 | +0.01 +0.06 | 3.54 | + 0.01 |
    | Schenectad ${ }^{*}$ | 3.51 | 3.51 | 0.00 | 3.58 | -0.0r |
    | Troy . | 3.58 | 3. 52 | +0.06 | 3.59 | $-0.01$ |
    | West Point. | 4.04 | 3.85 | $+0.19$ | 3. 86 | + 0.18 |
    | New York* | 4.01 | 4.01 | 0.00 | 3.97 | +0.04 |
    | Milford* | 3. 77 | 3.88 | $-0.11$ | 3. 88 | $-0.11$ |
    | Bushkill | 3.86 | 3. 92 | $-0.06$ | 3. 92 | $-0.06$ |
    | Princeton | 4.23 | 4.07 | +0.16 | 4. 06 | $+0.17$ |

    For the last hypothesis (straight lines) we find the probable error of an observation and local irregularity from the bar and cylinder vibrations $\pm 0.029$, and from the Lloyd needle deflections and dip $\pm 0.062$. For the previous hypothesis these quantitics are, respectively, $\pm 0.030 \mathrm{and} \pm 0.059$; showing but little gain in the representation of the observations by the additional term $d \mathrm{~L} d \mathrm{M}$ cos. L .

    For the general representation the probable crrors are $\pm 0.050$ and $\pm 0.051$.

    ## Representation of the total force.

    From the expressions-

    $$
    \begin{aligned}
    & \mathrm{X}=3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos . \mathrm{L} \\
    & \mathrm{I}=73^{\circ} .25+0.912 d \mathrm{~L}-0.0690 d \mathrm{M} \cos . \mathrm{L}
    \end{aligned}
    $$

    we have to deduce the total force $0=X$ sec. I.
    In the expression for $\mathrm{X}, \quad d \mathrm{~L}=$ Lat. $-41^{\circ} .34$, and $d \mathrm{M}=$ Long. - $77^{\circ} .45$.
    In the expression for $\mathrm{I}, \quad d \mathrm{~L}=$ Lat. $-41^{\circ} .32$, and $d \mathrm{M}=$ Long. $-77^{\circ} .39$.
    We have in
    $\left.\begin{array}{ll}\text { Long. } 81^{\circ} .00 & \mathrm{X}=4.200 \\ \text { Lat. } 39.97 & \mathrm{I}=71^{\circ} .825\end{array}\right\} \varphi=13.47$.

    Assuming in the expression for the total force-

    $$
    \begin{gathered}
    \varphi=\varphi_{0}+f+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}, \quad d \mathrm{~L} \text { and } d \mathrm{M}, \text { as in the expression for } \mathrm{X}, \text { we find: } \\
    \varphi=13.55+0.0451 d \mathrm{~L}-0.00682 d \mathrm{M} \cos . \mathrm{L} .
    \end{gathered}
    $$

    The lines of equal total force of $13.45,13.5,13.55$, and 13.6 , pass through the following positions:

    | 13.45 | Long. $81^{\circ}$ | Long. $77^{\circ} .5$ |  |
    | :--- | :--- | :--- | :--- |
    |  | Lat. $39^{\circ} 31^{\prime}$ | Lat. $39^{\circ} 07^{\prime}$ |  |
    | 13.50 | Long. $81^{\circ}$ | Long. $77^{\circ} .5$ | Long. $74^{\circ}$ |
    |  | Lat. $40^{\circ} 37^{\prime}$ | Lat. $40^{\circ} 13^{\prime}$ | Lat. $39^{\circ} 49^{\prime}$ |
    | 13.55 | Long. $81^{\circ}$ | Long. $77^{\circ} .5$ | Long. $74^{\circ}$ |
    |  | Lat. $41^{\circ} 43^{\prime}$ | Lat. $41^{\circ} 19^{\prime}$ | Lat. $40^{\circ} 55^{\prime}$ |
    | 13.60 | Long. $81^{\circ}$ | Long. $77^{\circ} .5$ | Long. $74^{\circ}$ |
    |  | Lat. $42^{\circ} 49^{\prime}$ | Lat. $42^{\circ} 25^{\prime}$ | Lat. $49^{\circ} 01^{\prime}$ |

    The observed and computed values of $\varphi$ at the stations where the bar and cylinder were employed compare as follows:

    | Station. | $\begin{gathered} \phi \\ \text { observed. } \end{gathered}$ | $\begin{gathered} \phi \\ \text { computed. } \end{gathered}$ | Observed-comlputed. |
    | :---: | :---: | :---: | :---: |
    | Philadelphia | 13.45 | 13.50 | $-0.05$ |
    | Harrisburg | 13. 44 | 13.50 | - 0.06 |
    | Huntingdon | 13.51 | 13. 51 | 0.00 |
    | Homewood | 13. 49 | 13. 50 | $-0.01$ |
    | Johnson's Tavern | 13. 54 | 13,48 | $+0.06$ |
    | Irwin's Mill . | 13.40 | 13.48 | - 0.08 |
    | Beltimore | 13. 49 | 13. 46 | + 0.03 |
    | Williamsport | 13. 55 | 13. 55 | 0.00 |
    | Curwinsville. | 13.55 | 13. 53 | + 0.012 |
    | Mercer. | 13.64 | 13.53 | $+0.11$ |
    | Erie .-. .-. | 13. 57 | 13. 57 | 0.00 |
    | Ellicottville | 13.77 | 13.59 | $+0.18$ |
    | Bath. | 13.72 | 13,60 | $+0.12$ |
    | Silver Lake | 13.47 | 13.58 | $-0.11$ |
    | Milford. | 13.50 | 13.56 | $-0.06$ |
    | Schenectady | 13.45 | 13.63 | $-0.18$ |
    | Syracuse | 13.61 | 13. 63 | -0.02 |
    | Genora | 13. 63 | 13.62 | + 0.01 |
    | Niagara Falls | 13. 64 | 13.62 | $+0.02$ |
    | Toronto | 13.84 | 13.65 | $+0.19$ |

    The probable error of any representation is $\pm 0.066$.

    ## APPENDIX No. 20.

    Continuation of the list of magnetic stations and results given in Appendix No. 28, Coast Survey Report of 185G, No. 24, Coast Survey Report of 1858, and No. 28, Coast Survey Report of 1860.

    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline  \& Name or station. \& 晏 \&  \&  \&  \&  \& Date. \& Locality, geology, and remarks. <br>
    \hline 205 \& Aulezavik Island, Lab.... \& $$
    5947.5
    $$ \& $$
    6413.2
    $$ \& $$
    5123.5 \mathrm{~W} .
    $$ \& $$
    82 \text { 14.3 }
    $$ \& 1.696 \& $$
    \begin{gathered}
    1860 \\
    \text { July } 16-20
    \end{gathered}
    $$ \& Nortliwest side of Aulezavik island, near Cape Chudteigh. The magnetic station is in a direction $33^{\circ} 57^{\prime}$ west of south from the astro nomical station, and distant from it 3,25I feet. Position marked by a tent pin driven into the ground; over this a botte was placed, covered with a beap of stones. The surface of the ground is traversed by irregular ridges of rock. The geological formation consiots of gneiss, with traces of sienitic rock; portions of which contain garnets. No indication of the firesence of magnetic oxdde of iron. <br>
    \hline 206 \& Gunstack, N. H . $\ldots \ldots . . .$. \& 4331.1 \& 7121.9 \& 1054.1 W \& 7543.6 \& 3.401 \& July 16,20, 25; Aug. 4. 1861. \& Magnetic station near the summit of the mountain, 110 metres from the geodetic station, and ill a northwesterly direction from it. The geological formation of the mountain appears to be chiefly felspathic granite intersected by dykes of trap rock. At several points considerable local attraction was detected. <br>
    \hline 207 \& Troy Village, N. H....... \& 4249.7 \& 7210.6 \& 903.3 W \& 7445.7 \& 3.575 \& Aug. 20-22

    1860. \& Magnetic station near the south side of "Old Muster Field,', in a northerly dircetion from the Town Hell. The geological tormation in the vicinity appears to be diluvium. At the station at Monadnock the dip is $74^{\circ} 44^{\prime} .4$. <br>

    \hline 208 \& Wachusett, Mass...... .. \& 4229.2 \& 7152.9 \& 848.0 W. \& 7428.8 \& 3.622 \& $$
    \begin{gathered}
    \text { Sept. } 19- \\
    \text { Oct. } 20 .
    \end{gathered}
    $$ \& Near the summit of the mountain, about 93 metres in a southerly diroction from the geodetic station. The peological formation of the mountain appears to be chiefly gneiss, with come felspathic granite and Ioosterocks of taic. <br>

    \hline 209 \& Provincetown, Cape Cod. \& 4203.2 \& 7010.8 \& 1123.5 W. \& 7409.7 \& 3.656 \& Sept. 14-15 \& On the western slope of the sand-bith, behind the Pilgrim's Home; flagstaft of Town Hall i:i range with the northern edge of the steeple of the Hall. The ground consists of white silicenus sand, alluvium. <br>
    \hline 210 \& Wellfleet, Cape Cod...... \& 4156.1 \& 7001.5 \& 1043.5 W \& 7420.2 \& 3.688 \& Sept-12-13 \& The station is on the right side of the road from the hotel to the harbor light, on the sop of the first (lower) hill, near the conner of the fence, and distant about 850 yards from the hotel. The ground consists of white sand and pebbles, drift. <br>
    \hline 211 \& Chathain Lights, Cape Cod. \& 4140.2 \& 6956.6 \& 1111.6 F. \& 7346.2 \& 3.744 \& Sept. 10-11 \& This station is in range with the two lights, and is $184 \frac{1}{2}$ feet sonth and a litite west of the southern lisht; it is also five feet north of the fence. The ground consiets of white sand and pebbles, drift. <br>
    \hline 212 \& Bald Hill, Conn...... . . . . \& 4158.3 \& 7211.3 \& 850.4 W. \& 7359.0 \& 3,706 \& Sept. 16-20 \& The magnetic station is near the summit of Bald Hill, 422 feet in a southerly direction from the geodetic station. The geological formation of the hill seems to be micaceous ferruginous gnciss. Dipabont 100 metres north of the magnetic station, $73^{\circ} 36^{\prime} .0$ <br>
    \hline 213 \& Box Hill, Conn. .......... \& 4147.9 \& 7227.0 \& 830.4 W. \& 7357.9 \& 3.728 \& Oct. $16-25$
    1860. \& The maghtic station is near the summit of the hill, about 185 feet in a southwesterly direction from the geodetic station. The geological formation of Box Hill seems to be chicfly mica slate. <br>
    \hline 214 \& Sag Harbor, Long Istand.. \& 4059.9 \& 7217.1 \& 827.7 W \& 7320.9 \& 3.903 \& Sept. 4-5 \& This station is situated on Mulford's Hill, neariy in the centre of an old redoubt of 1812. It is nearly in range with the old Episeopal church, and the old signal at Smith's farin. It is also nearly in range with the aquare-towered belfry and Cedar Ialand light. It is over the higher of two mall gneiss ledges. <br>
    \hline 215 \& West Base, Fire Island. .. \& 4037.8 \& 7312.5 \& 745.7 w \& 7300.8 \& 3.900 \& Sept. 1-2 \& The magnetic station is coincident with the West terminus of the Firc Island baze line. The ground consists of white quartz sand, with ehells. <br>

    \hline 72 (b) \& Mount Prospect, Brooklyn \& 4040.3 \& $$
    7357.7
    $$ \& 644.0 W . \& 7240.8 \& 4.052 \& Sept. 20-m \& The magnetic station is on the southem corner of the reservoir at the outer edge of the coping, and is very fear the place where the old trigonometrical signal stood. No iron in the immediate vicinity; the nearest iron plpes being 350 feet distant. The ground congists of small bouldert and diff. <br>

    \hline 916 \& Barnegat light .......... \& 3945.8 \& 7406.0 \& 594.0 W . \& 7205.3 \& 4.108 \& Aug. 25-26 \& Thit station is eituated on the road constructed for carrying materials to the light-house. It is on the 45 th sleeper from the light-honae fence, eight feet from Mr. Brown'm fence, $4^{7}$ feet from the southwest corner, and 67 feet from the southeast corner bf the fence. <br>
    \hline
    \end{tabular}

    Continuation of the iist of magnetic stations and results, \&c-Continucd.
    

    ## APPENDIX No. 21.

    Report on observations of the solar spots, made ot the Coast Survey Office, Washington, D C., from January to August, 1862, inclusive, by Assistant Charles A. Schott, (additional to Appendix No. 25, Coast Survey
    Report for 1861.)
    

    Report on observations of the solar spots, \&c:-Continued.
    

    APPENDIX No. 22.

    DEVELOPMENT OF BESSELS FUNCTION FOR THE EEFECT OT PERIODIC FORCES, FOR DURATIONS OF PERIODS FREQUENTLY OCCURRING IN METEOROLOGICAL AND MAGNETICAL INVESTIGATION゙S; WITH EXAMPLES.COMMUNICATED BY CHARLES A. SCHOTE, ASSISTANT UNITED STATES COAST SURVEY.

    The effect of the action of periodic forces can be expressed analytically by a function of the form :

    $$
    \Psi=A+\mathrm{B}_{1} \sin \left(\theta+\mathrm{C}_{1}\right)+\mathrm{B}_{2} \sin \left(2 \theta+\mathrm{C}_{2}\right)+\mathrm{B}_{3} \sin \left(3 \theta+\mathrm{C}_{3}\right)+\cdots
    $$

    where $A$ represents the mean amount.
    $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \ldots$. the parameter of its fluctuations in the principal and subordinate periods; the period involving $2 \theta$, being of half the duration of the first; that involving $3 \theta$, of one-third the duration, \&c.
    $\theta$ represents an are proportional to the time, and inversely proportional to the length of the period; which is represented by $360^{\circ}$.
    $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ - - are angular constants, determining the epochs of their respective flactuations.
    The frequent and easy application of this function, especjally in meteorologieal and magnetical investigations, also in tidal discussions, renders it convenient to have a collection of the forms, which the general expression assumes for such numbers of observations in a cycle, as most frequently occur. The general expression for the law of the formation of the quantities $A B_{1} \mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{C}_{3} \ldots$, as well as a more complete exposition of the function, will be found in Sir John F. W. Herschel's article, "Meteorology," in the Encyclopædia Britamica, (8th edition.)

    The maxima and minima of the function are obtained by differentiation, and the finding of the roots of the equation,
    $0=\mathrm{B}_{1} \cos \left(\theta+\mathrm{C}_{1}\right)+2 \mathrm{~B}_{2} \cos \cdot\left(2 \theta+\mathrm{C}_{2}\right)+3 \mathrm{~B}_{3} \cos .\left(3 \theta+\mathrm{C}_{3}\right)+-$
    The most probable numerical values for the co-efficients $A B_{1} \mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{O}_{2} \ldots$, for twenty-four equidistant observations, $S_{1} S_{2} S_{3} S_{4} \ldots S_{24}$ in a cycle, the same ending with $\mathbb{S}_{24}$, are given by the following formulæ:

    $$
    \begin{gathered}
    A=\frac{1}{S_{4}}\left(S_{1}+S_{2}+S_{3}+\cdots+S_{24}\right) \\
    12 a_{1}=0.966\left(S_{1}-S_{11}-S_{13}+S_{23}\right)+0.866\left(S_{2}-S_{10}-S_{14}+S_{22}\right)+0.707\left(S_{3}-S_{9}-S_{15}+S_{21}\right) \\
    +0.500\left(S_{4}-S_{8}-S_{16}+S_{20}\right)+0.259\left(S_{5}-S_{7}-S_{17}+S_{19}\right)-S_{12}+S_{24} . \\
    12 b_{1}=0.259\left(S_{1}+S_{11}-S_{13}-S_{23}\right)+0.500\left(S_{2}+S_{10}-S_{14}-S_{22}\right)+0.707\left(S_{3}+S_{9}-S_{15}-S_{21}\right) \\
    +0.866\left(S_{4}+S_{8}-S_{16}-S_{20}\right)+0966\left(S_{5}+S_{7}-S_{17}-S_{19}\right)+S_{6}-S_{18 .} \\
    B_{1}=\sqrt{a_{1}{ }^{2}+b_{1}^{2}} \text { and tan. } \mathrm{C}_{1}=\frac{a_{1}}{b_{1}}
    \end{gathered}
    $$

    $$
    \begin{aligned}
    & 12 a_{2}=0.866\left(S_{1}-S_{5}-S_{7}+S_{11}+S_{13}-S_{17}-S_{19}+S_{23}\right)+0.500\left(S_{2}-S_{4}-S_{2}+S_{10}+S_{14}-S_{10}-S_{20}+S_{22}\right) \\
    & -S_{6}+S_{12}-S_{18}+S_{24} \text {. } \\
    & 12 b_{2}=0.500\left(S_{1}+S_{5}-S_{7}-S_{11}+S_{13}+S_{17}-S_{19}-S_{23}\right)+0.866\left(S_{2}+S_{1}-S_{8}-S_{10}+S_{14}+S_{16}-S_{20}-S_{22}\right)+\cdots, \ldots, \ldots \\
    & \mathrm{B}_{2}=\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}} \quad \text { tan. } \mathrm{C}_{2}=\frac{a_{2}}{b_{2}} \\
    & 12 a_{3}=0.707\left(S_{1}-S_{3}-S_{5}+S_{7}+S_{9}-S_{11}-S_{13}+S_{15}+S_{17}-S_{19}-S_{21}+S_{23}\right)-S_{4}+S_{8}-S_{12}+S_{16}-S_{26}+S_{24} \\
    & 12 b_{3}=0.707\left(S_{1}+S_{3}-S_{5}-S_{7}+S_{9}+S_{11}-S_{13}-S_{15}+S_{17}+S_{10}-S_{21}-S_{23}\right)+S_{2}-S_{6}+S_{10}-S_{14}+S_{18}-S_{22} \text {. } \\
    & \mathbf{B}_{3}=\sqrt{a_{3}{ }^{2}+b_{3}{ }^{2}} \quad \tan . \mathrm{C}_{3}=\frac{a_{3}}{\bar{b}_{3}} \\
    & 12 a_{4}=0.500\left(S_{1}-S_{2}-S_{4}+S_{5}+S_{7}-S_{0}-S_{10}+S_{11}+S_{19}-S_{14}-S_{16}+S_{17}+S_{19}-S_{26}-S_{22}+S_{23}\right)-S_{3}+ \\
    & S_{6}-S_{9}+S_{12}-S_{15}+S_{13}-S_{21}+S_{24} . \\
    & 12 b_{4}=0.866\left(S_{1}+S_{2}-S_{4}-S_{5}+S_{7}+S_{8}-S_{10}-S_{11}+S_{13}+S_{14}-S_{16}-S_{17}+S_{19}+S_{29}-S_{22}-S_{23}\right) \\
    & B_{4}=\sqrt{a_{4}{ }^{2}+b_{4}{ }^{2}} \quad \text { tan. } C_{4}=\frac{a_{4}}{L_{4}}
    \end{aligned}
    $$

    The next term, involving $5 \theta$, comes rarely into use.
    For twenty-four observations in a cycle-for instance, hourly observations in the diurnal period-it has been found advisable to separate the observations into two parts, as the formula for twenty four values are not sufficiently convenient. Treating the bi-hourly observations at the even hours, and those at the odd hours, separately, we obtain, also, an advantageous check on the final expression. The most probable numerical values for the coefficients $A B_{1} \mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{O}_{2} \ldots$, for twelve equidistant observations, $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \ldots \ldots$ - $\mathrm{S}_{12}$ in a cycle, the same ending with $\mathrm{S}_{12}$, are given by the following formula:

    $$
    \begin{aligned}
    & A=\frac{1}{12}\left(S_{1}+S_{2}+S_{3}+\cdots+S_{12}\right) \\
    & 6 a_{1}=0.866\left(S_{1}-S_{5}-S_{7}+S_{11}\right)+0.5\left(S_{2}-S_{4}-S_{8}+S_{10}\right)-S_{6}+S_{12} . \\
    & 6 b_{1}=0.5\left(S_{1}+S_{5}-S_{7}-S_{11}\right)+0.866\left(S_{2}+S_{4}-S_{8}-S_{10}\right)+S_{3}-S_{9} . \\
    & \mathrm{B}_{1}=\sqrt{a_{1}^{2}+b_{1}^{2}} \text { and } \tan . \mathrm{C}_{1}=\begin{array}{l}
    a_{1} \\
    b_{1}
    \end{array} \\
    & 6 a_{2}=0.5\left(\mathrm{~S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{4}+\mathrm{S}_{5}+\mathrm{S}_{7}-\mathrm{S}_{3}-\mathrm{S}_{10}+\mathrm{S}_{15}\right)-\mathrm{S}_{3}+\mathrm{S}_{6}-\mathrm{S}_{9}+\mathrm{S}_{12} . \\
    & 6 b_{2}=0.866\left(S_{1}+S_{2}-S_{4}-S_{5}+S_{i}+S_{8}-S_{10}-S_{11}\right) \\
    & \mathrm{B}_{2}=\sqrt{a_{2}^{2}+b_{2}^{2}} \quad \quad \tan . \mathrm{C}_{2}=\frac{a_{2}}{b_{2}} \\
    & 6 a_{3}=-S_{2}+S_{4}-S_{6}+S_{8}-S_{10}+S_{12} . \\
    & 6 b_{3}=S_{1}-S_{3}+S_{5}-S_{7}+S_{9}-S_{11} . \\
    & \mathrm{B}_{3}=\sqrt{a_{3}{ }^{2}+b_{3}{ }^{2}} \quad \quad \tan . \mathrm{C}_{3}=\frac{a_{3}}{b_{3}}
    \end{aligned}
    $$

    The third term generally suffices. The fourth one is found from-

    $$
    \begin{gathered}
    6 a_{4}=0.5\left(-S_{1}-S_{2}-S_{4}-S_{5}-S_{7}-S_{8}-S_{10}-S_{11}\right)+S_{3}+S_{6}+S_{3}+S_{12} \\
    6 b_{4}=0.866\left(S_{1}-S_{2}+S_{4}-S_{5}+S_{7}-S_{3}+S_{10}-S_{11}\right) \\
    B_{4}=\sqrt{a_{4}^{2}+b_{4}^{2}} \quad \tan \mathrm{C}_{4}=\frac{a_{4}}{b_{4}}
    \end{gathered}
    $$

    For eight equidistant observations in a cycle we have the formula:

    $$
    \begin{gathered}
    A=\frac{1}{8}\left(S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}+S_{7}+S_{8}\right) \\
    4 a_{1}=0.707\left(S_{1}-S_{3}-S_{5}+S_{7}\right)-S_{4}+S_{8} . \\
    4 b_{1}=0.707\left(S_{1}+S_{3}-S_{5}-S_{7}\right)+S_{2}-S_{6} \\
    4 a_{2}=\left(-S_{2}+S_{4}-S_{6}+S_{3} .\right) \\
    4 b_{2}=\left(S_{1}-S_{3}+S_{5}-S_{7}\right)
    \end{gathered}
    $$

    The next term is generally not required.

    $$
    \begin{gathered}
    4 a_{3}=0.707\left(-S_{1}+S_{3}+S_{3}-S_{7}\right)-S_{4}+S_{3} \\
    4 b_{3}=0.707\left(S_{1}+S_{3}-S_{5}-S_{7}\right)-S_{2}+S_{6}
    \end{gathered}
    $$

    The formation of $B$ and $C$ is the same as in the preceding cases.

    For six equidistant observations in a cycle we have the formulx:

    $$
    \begin{aligned}
    A & =\frac{1}{6}\left(S_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\mathrm{S}_{4}+\mathrm{S}_{5}+\mathrm{S}_{6} .\right) \\
    3 a_{1} & =0.5\left(\mathrm{~S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{4}+\mathrm{S}_{5}\right)-\mathrm{S}_{3}+\mathrm{S}_{6} . \\
    3 b_{1} & =0.866\left(\mathrm{~S}_{1}+\mathrm{S}_{2}-\mathrm{S}_{4}-\mathrm{S}_{5} .\right) \\
    3 a_{2} & =0.5\left(-\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{4}-\mathrm{S}_{5}\right)+\mathrm{S}_{3}+\mathrm{S}_{6} . \\
    3 b_{2} & =0.866\left(\mathrm{~S}_{1}-\mathrm{S}_{2}+\mathrm{S}_{4}-\mathrm{S}_{5} .\right)
    \end{aligned}
    $$

    The last term is not generally used.

    $$
    \begin{aligned}
    & 3 a_{3}=\left(-S_{1}+S_{2}-S_{3}+S_{4}-S_{5}+S_{6}\right) \\
    & 3 b_{3}=0 .
    \end{aligned}
    $$

    B's and C's are formed as before.
    Examples: In part V of the discussion of the magnetic observations made at Girard College, Philadelphia, under the direction of Prof. A. D. Bache, the diurnal variation of the horizontal component of the magnetic force, during the years 1840 to 1845 , is expressed by the following scale readings. Increasing numbers denote decrease of force, and one division of the scale equals 0.0000365 parts of the force. 700 has been omitted from each number:

    | Time, a. m. | Horizontal force reading. | Time. | Horizontal force reading. | Time, P . m . | Horizontal force reading. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | h. m. | $d^{\prime} s$. | h. m. | $d^{\prime} s$. | h. m. | d's. |
    | 121.65 | 69.8 | $9 \quad 21.65$ | 81.3 | $17 \quad 21.65$ | 68.6 |
    | $2 \quad 21.65$ | 69.1 | $10 \quad 21.65$ | 86.1 | 18 21.65 | 71.6 |
    | 3 21.65 | 67.4 | 1121.65 | 86.5 | 19 21.65 | 72.6 |
    | 421.65 | 65.7 | $12 \quad 21.65$ | 82.9 | $20 \quad 21.65$ | 73.4 |
    | 521.65 | 63.7 | $13 \quad 21.65$ | 76. ${ }^{\text {2 }}$ | 21 21.65 | 73.5 |
    | 621.65 | 61.9 | 14 21.65 | 69.5 | $22 \quad 21.65$ | 73.4 |
    | 721.65 | 66.7 | 15 21.65 | 66.5 | $23 \quad 21.65$ | 72.8 |
    | 821.65 | 73.7 | 16 21.65 | 66.2 | $24 \quad 21.65$ | 71.5 |

    In this case the results at the even and odd hours have different weights, and the values were separated into two groups of 12 observations each.

    $$
    \text { We have for the even hours : } \begin{array}{lll}
    \mathrm{S}_{1}=69.1 & \mathrm{~S}_{7}=69.5 \\
    \mathrm{~S}_{2}=65.7 & \mathrm{~S}_{8}=66.2 \\
    \mathrm{~S}_{3}=61.9 & \mathrm{~S}_{9}=71.6 \\
    \mathrm{~S}_{4}=73.7 & \mathrm{~S}_{10}=73.4 \\
    \mathrm{~S}_{5}=86.1 & \mathrm{~S}_{11}=73.4 \\
    \mathrm{~S}_{6}=8.9 & \mathrm{~S}_{12}=71.5
    \end{array}
    $$

    And substituting these values in the formula for twelve observations in a cycle, as given above, we find:

    $$
    \begin{aligned}
    \mathrm{A}=72.1\left|a_{1}=-3.87\right| a_{2}=+5.08\left|a_{3}=-1.77\right| a_{4}=-0.11 \\
    \left|l_{1}=-0.62\right| h_{2}=-5.23\left|b_{3}=+3.67\right| b_{4}=-0.83
    \end{aligned}
    $$

    whence the equation:

    $$
    \begin{gathered}
    r_{1}=72.1+3.92 \sin \left(\theta+260^{\circ} 54^{\prime}\right)+7.29 \sin \left(2 \theta+135^{\circ} 35^{\prime}\right)+4.08 \sin \left(3 \theta+334^{2} 21^{\prime}\right) \\
    +0.84 \sin \left(4 \theta+188^{\circ} .\right)
    \end{gathered}
    $$

    The angular equivalent of $21^{\mathrm{m}} .65$ being $5^{\circ} 25^{\prime}$, since 24 hours are represented by $360^{\circ}$, we can refer the epoch of the above equation to midnight, by changing the angles $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots$ by $-5^{\circ} 25^{\prime}$, twice - $5025^{\prime}$, thrice - $5^{\circ} 25^{t} \cdots \cdots$ and find:

    $$
    \begin{gathered}
    F_{\mathrm{ii}}=72.1+3.92 \sin \left(\theta+255^{\circ} 29^{\prime}\right)+7.29 \sin \left(2 \theta+124^{\circ} 45^{\prime}\right)+4.08 \sin \left(3 \theta+318^{\circ} 06^{\prime}\right) \\
    +0.84 \sin \left(4 \theta+166^{\circ}\right)
    \end{gathered}
    $$

    In like manner, we find for the odd hours, where $S_{1}=69.8, S_{2}=67.4, S_{3}=63.7$, \&cc., the equation referring to the epoch $23^{\mathrm{h}} 21^{\mathrm{m}} .65$ :

    $$
    \begin{gathered}
    \Psi_{1 i 1}=72.1+4.03 \sin \left(\theta+249^{\circ} 15^{\prime}\right)+7.11 \sin \left(2 \theta+106^{\circ} 54^{\prime}\right)+3.58 \sin \left(3 \theta+287^{\circ} 03^{\prime}\right) \\
    +0.91 \sin \left(4 \theta+123^{\circ}\right)
    \end{gathered}
    $$

    Which becomes, when referred to midnight, as the epoch from which the angle $\theta$ counts, at the rate of $15^{\circ}$ an hour:

    $$
    \Psi_{1 v}=72.1+4.03 \sin \left(\theta+258^{\circ} 50^{\prime}\right)+7.11 \sin \left(2 \theta+126^{\circ} 04^{\prime}\right)+3.58 \sin \left(3 \theta+315^{\circ} 48^{\prime}\right)
    $$

    $$
    +0.91 \sin \left(4 \theta+161^{\circ}\right)
    $$

    The values in equation $\mathscr{F}_{\mathrm{ii}}$ have the weight 57 ; those in equation $\Psi_{\mathrm{iv}}$, the weight 21 . The mean, by weights, of the two equations, furnishes the final equation:

    $$
    \Psi=72.1+3.95 \sin \left(\theta+256^{\circ} 19^{\prime}\right)+7.25 \sin \left(2 \theta+125^{\circ} 05^{\prime}\right)+3.96 \sin \left(3 \theta+317^{\circ} 31^{\prime}\right)
    $$

    $$
    +0.86 \sin \left(4 \theta+165^{\circ}\right)
    $$

    which will be found to represent the obscrvations very closely.
    Maxima or minima occur at 5 h .55 m . a. m.; at 11 h .00 m . a. m. ; at 157 h .35 m . (p. m., and about $203 \mathrm{3} h$. (p. m.)
    To illustrate the use of the formula for eight observations in a cycle, I select an example from my discussion of the meteorological observations of Captain (now Sir Leopold) M'Clintock in the Arctie regions in 1857-'58-'59.

    In Baffin Bay, latitude $72^{\circ} .5$, longitude $65^{\circ} .8 \mathrm{~W}$., the elevating and depressing influence of the wind from different directions was found as follows. + indicating a temperature above the mean; - below the mean :

    | True direction of wind. | Effect on temperature. |
    | :---: | :---: |
    |  | 0 |
    | N. | $-0.8$ |
    | NE. | $+0$. |
    |  | $+0.1$ |
    | SE. | + 3.0 |
    | S. | $+0.4$ |
    | SW. | -1.7 |
    |  | $-0.9$ |
    | NW...-..-.-.- | $-0.8$ |

    Counting $\theta$ from the north, in the direction E., S., \&c., to $360^{\circ}$; putting $S_{1}=+0.7, S_{z}=+0.1, \& c$., and working ont the numerical equations according to preceding formulx, we find:

    $$
    \Psi=+10.5 \sin \left(\theta+338^{\circ}\right)+0^{\circ} .8 \sin \left(2 \theta+173^{\circ} .\right)
    $$

    The SE. wind is, therefore, the warmest, and elevates the temperature $2^{\circ} .2$; the SW. wind the coldest, and depresses the same $1^{\circ} .4$

    In my discussion of the tides at Van Rensselaer Harbor, North Greenland, the form of the spring-tide wave is represented by the following ordinates, (in feet,) for twelve phases, from trough to trough. Selecting six of these for our example, we have:

    | Phase. | Ordinate. |  |
    | ---: | ---: | ---: |
    | 0 | 0.0 | $\mathrm{~S}_{0}$ |
    | 60 | 3.9 | $\mathrm{~S}_{1}$ |
    | 120 | 9.4 | $\mathrm{~S}_{2}$ |
    | 180 | 11.1 | $\mathrm{~S}_{3}$ |
    | 240 | 7.9 | S |
    | 300 | 2.1 | S |

    Applying the preceding formula for six observations in a cycle, we find:

    $$
    \Psi=+5.73+5.67 \sin \left(\theta+280^{\circ}\right)+0.20 \sin \left(2 \theta+295^{\circ} .\right)
    $$

    Which formula represents the shape of the wave at apring tides, the total range being then 11.1 feet

    ## APPENDIX No. 23.

    ## description of a new mode of constructing the axle of a magnefic dipping neldie -by <br> ASSISTANT J. E. HILGARD.

    In observations of the magnetic dip the mean result is cleared of the effects of collimation, balancing, and index errors, by the inversion of the needle in its bearings, the reversal of polarity and the recersal of the cirele. The efficet of the errors in the figure of the pivots alone remains uncompensated, execpt so far as the supporting on four different parts of the pivots has that effect. Nor can the agreement of the indications of the needle in its different pesitions increase our confidence in the absence of errors of that class, because they would be compensated in the adjustment for reducing the other errors to a minimum.

    The necessity for repeating obscrvations, with the needle resting on different portions of the pivots, has always been felt, not only in order to eliminate original crrors in the figure of the pirots, but also in order to recognize and avoid the effects of minute particles of rust which are liable to be found, especially when the needles are exposed to the sea air. The method of effecting this, proposed by Mayer, of balancing the needle by means of weights, so as to assume various inclinations, has the disadvantage not only of the directive force being diminished, and the vibrations aluggish in certain positions, but also of the absolute strength of magnetization entering into the result, rendering it mecessary that the magnetism of the needle should be the same before and after reversing its polarity-a condition diffieult to accomplish.

    The other modes in frequent use, of observing at different azimuths, fails in part, in high magnetic latidude, where only a small range of the circumference of the pivots becomes available, since all dips so observed must be between the true dip and $90^{\circ}$.

    In the report on the magnetic survey of the British islands, 1839, Major Sabine states that some needles were used, in which the axle, instead of being permanently fixed to the needle, was sccured in its place merely ly strong friction, and could be taken out, turned a portion of a circle on its own centre of rotation, and replaced, thus cnabling the points of the circumference of the axle, in contact with the supporting planes, to be varied in successive trials.

    The plan seems to have worked well, but appears not to have boen subsequently used. Whether this was owing to the more perfect figure afterwards given to the pivots of ordinary needles, by Gambey and Barrow, or to some defect in the construction of the revolving axles, is not understood. That principle of construction has, howover, lately been revived, in, perhaps, a somewhat novel form, by Assistant J. E. Hilgard, and has been successfully executed by Mr. Wm. Würdemann, on needles Nos. 1 and 3 of the dip circle No. 10.

    The axle admits of being turned about itself (without being removed) in the brass collar or arbor, by means of which it is attached to the needle. In this manner the ncedle may be made to rest on any portion of the pivots, and by means of an index on the square shoulder, by which the axle is turned, and a graduation on the brass collar, observations may be made in symmetrically arranged positions of the pivots. The axles fit closely into these arbore, and turn smoothly, yct with very sufficient friction.

    In the pair of needles first furnished with these axles, the pirots are not perfectly concentric with the axles, as is apparent from the subjoined observations; but that defect should disappear for each position in the mean or the reversals. The positions marked 0 upon 0 are those in which the balance of the needles wae adjusted.

    Observations of magnetic dip, with needles No. 1 and No. 3, at the Coast Survey offec, Washington city, September 12, 13, and 15, 1862, by C. A. Schott.
    

    ## RECAPITULATION.

    

    The above observations are so arranged, that in cach position we have two results virtually cleared of collimation, balance, and index errors, the circle having been reversed, as well as the needle inverted, for each state of polarity. These separate results are brought out in the column of "crossed meane." We see, in fact, in general, a very close agreement of the two values, while, in a few cases, there is a considerable difference. This is, doubtless, to be looked upon as arising from some accidental cause, as the attachment of some mote to the needle, and indicates that these observations ought to be repeated.

    On each day the observations were made in three positions of the axle, and the mean, therefore, depends
    upon twelve different portions of the cylindrical surfaces of the pivots. The individual results show wider differences than we should have looked for, and we believe that a more perfectly cylindrical figure of pivots can be attained.

    The close agreement of the means by both needles, nevertheless, points to a compensation of errors, and inspires confidence in the result.

    ## APPENDIX No. 24.

    Notice of Earthquake waves on the western coast of the united siates, on the 23d and 25 th DECEMBER, 1854.
    [Communicated to the American Association for the Advancement of Scicnce, by A. D. Bache, Superintendent, under authority of the Treasury Department.]

    In February, 1855, I received from Licut. W. P. Trowbridge, of the Corps of Engineers, assistant in the Coast Survey, in charge of the tidal observation on the Pacific coast, a letter calling my attention to the singular curves traced by the self-registering tide-gauge at San Diego, on the 23d and 25th of December, and remarking that the irregularities of the curve could not be produced by disturbances from storms, as the meteorological records for the whole coast showed a continuance at that time of an ordinary state of weather, and the length of the wave was too great to be explained by such action. "There is every reason to presume (he continues) that the effect was caused by a sub-marine carthquake." No shock, however, has been felt. at San Francisco.

    When the record sheet of the self-registering gauge at San Francisco was received, similar irregularities in the curves for the same days were found upon it. The sheet for Astoria presented little or no special irregularity. These were the only self-registering gauges actually in operation at this time.

    Waves of short period would, of course, escape detection by the ordinary hourly or half-hourly observations.

    About the 20th of June, we received accounts from Japan of a violent earthquake on the 23d of December, the notice of which was more circumstantial than usual, from the damage to the Russian frigate Diana, in the port of Simoda, on the island of Niphon, from the excessive and rapid rise and fall of the water.

    A detailed account of the phenomena of this earthquake, and of the rise and fall of the sea produced by it in different places on the coasts of the Pacific, is much to be desired, and I have thought that by the publication of the results obtained by the Coast Survey, the publication of official reports of the phenomena might be induced. Perhaps even similar observations may have been made, and these registers of the selfacting tide-gauge will show what observations it is desirable to have for comparison.

    Thus far we are left to the public prints for the information obtained,* and the different accounts are quite discrepant where they give details, and are usually, as intended merely for general information, too vague in the statements to give satisfactory means of comparison.

    A correspondent of the New York Herald, writing from Shanghae, gives the following notes, stated to be derived from an officer of the frigate Diana:
    "At $9 \mathrm{a} . \mathrm{m}$. on the 23 d of December, weather clear, thermometer ${ }^{7} 2^{\circ}$, barometer $30^{\circ}$, a severe shock of an earthquake was felt on board the frigate, shaking the ship most severely. This shock lasted full five minutes, and was followed at quick intervals by rapid and severe shocks for thirty minutes."


    "At 9.30 a . m . the sea was observed washing into the bay in one immense wave, thirty fect high, with awful velocity; in an instant the town of Simoda was overwhelmed, and swept from its foundations.' * * * * "This advance and recession of the water occurred five times. * * * By $2 h .30 \mathrm{~m} . \mathrm{p} . \mathrm{m} \cdot$ all was quict."

    A communication in the same paper, purporting to give an extract from the log-book of the 'Diana, states that-
    "At a quarter past nine, without any previous indication, the shock of an earthquake, which lasted two or three minutes, causing the vessel to shake very much, was felt both on deck and in the cabin; at ten o'clock a large wave was observed entering the bay. * * * * The rising and falling of the water were very great, the depth varying from less than cight to more than forty feet; and these changes, at intervals o about five minutes, continued uatil noon. * * * * * Scarcely had half an hour elapsed when the rising and falling of the water became more violent than before. Between this time and a quarter past two (when the agitation again became much less) the frigate was left four times on her side, and once while thus, laid in only four feet of water."
    "Continuing to decrease in violence and frequency, by three $p . m$. the agitation of the water, and the motion of the vessel consequent thereon, were very slow. * * * * At this time a fresh west wind was blowing, the barometer stood at 29.57 , and the thermometcr was 10.50 degrees R., (about 55.63 degrees $F$.")

    The official report of the disaster to the frigate will probably contain further and more precise particulars of the phenomena.

    Mr. P. W. Graves gives in the Polynesian a notice, for which I am indebted to Mr. Meriam, of an extraordinary risc and fall of the waters at Peel's island, one of the Bonin islands, on the 23d of DecemberThe first rise noticed was fifteen feet above high water, followed by a fall which left the reefs entirely bare. The hour when this occurred is not stated. "The tide continued to rise and fall during the day at intervals of fifteen minutes, gradually lessening until the evening."

    At Peel's island the waters rose, on the evening of the 25th of December, to the height of twelve feet I have not, however, seen any notice of an earthquake on that day.

    I present to the association a copy of the curves traced by the self-registcring gauges at the Coast Survey tidal stations at San Diego, San Francisco, and Astoria, on the 23d and 25th of December, 1854, (Plate No. 50.)

    The curves, representing tides of short period, being traced upon the falling or rising curve of the regular tide, their peculiarities are not so readily seen as when shown in the second diagram, (Plate No. 50, where the regular tidal curve is represented as a horizontal line. The times of the San Diego curve are reduced to San Francisco time. The carve at Sau Diego presents many minor irregularities, from the motion of the float not having been sufficiently checked to prevent the recording of the waves caused by the wind,

    Upon a falling tide the crests of these waves will be met carlier, and the hollows later, than upon a horizontal surface, and the intervals from crest to crest, or from hollow to hollow, will be affected by the change of rate of fall. Upon a rising tide the reverse will occur.

    There can be no doubt that these extraordinary rises and falls of the water at short intervals were produced by the same cause which determined the extraordinary rise and fall in the harbor of Simoda, in Japan, and at Peel's island.

    The San Francisco curve presents three sets of waves of short interval.
    The first begins about 47.12 m ., and ends at 87.52 m. , the interval being $4 h .40 \mathrm{~m}$. The second begins at about $9 h .35 \mathrm{~m}$., and ends at $13 \hbar .45 \mathrm{~m}$., the interval being $4 \hbar .10 \mathrm{~m}$. The beginning of the third is about $133 /$., and its end is not distinctly traceable.

    The crest of the first large wave of the three sets occurred at the respective times of $47.42 \mathrm{~m} ., 9 \%$. $54 m$., and $14 h .17 m$., giving intervals of $5 h .12 \mathrm{~m}$. and $47.23 m$.

    The average time of oscillation of one of the first set of waves was 35 m ., one of the second 31 m ., and of one of the third about the same. The average height of the first set of waves was .45 of a foot on a tide which fell two feet, of the second .19 of a foot on a tide which rose three feet, of the third somewhat less than .10 of a foot on a tide which fell some seven feet. The phenomena occurred on a day when the diurnal inequality of the tide was very considerable. The greatest fall of the tide during the occurrence of the first set of waves was. 70 of a foot, and the corresponding rise .60 of a foot. In the second the corresponding quantities were .30 of a foot, and in the third .20 of a foot. These waves would not have attracted general attention.

    There is a general analogy in the sequence of the waves of the three sets which seems to mark them as belonging to a recurrence of the same series of phenomena. In the Diagram No. 3 A, (Plate No. 50,) the heights of the successive waves of the first set at San Francisco are shown by the dots joined by full lines, and of the sceond by those joincd by the fine dotted line. The full faint lines show the heights of the first series at San Diego, and the broken faint lines the heights of the secoud.

    The heights in hundredths of a foot are marked at the side of the diagram, and those of the successive waves are placed at regular intervals, the waves being numbered from 0 to 7 at the top of the diagram. The height is the mean of the fall from a crest to a hollow, and of the succeeding rise from the same hollow to the nest crest. The times of oscillation from one crest to the next succeeding are placed on the same diagram, the times being written at the right hand, and the wave being designated at the lower part of the Diagram No. 3 B, Plate No. 50. The full line represents the times of the first series at San Francisco, and the broken line the times of the second. The full and broken faint lines represcnt the times of the first and sceond scries at San Diego. The intervals between the times of occurrence of the crests of the successive waves in the first and second series diminish from $5 h .10 \mathrm{~m}$. to 4 h .48 m . by irregular differences.

    The effect of the rising or falling tide, upon which these waves occur, is, of course, greater in disturbing the heighte than the times.

    The series itself looks like the result of several impulses, not of a single one, the heights rapidly increasing to the third wave, then diminthing as if the impulse had ceased; then renewed, then coasing, leaving the oscillation to extinguish iteelf.

    If we had a good scientific report of the facts as they occurred at Simoda, the subject would lose the conjectural character which must otherwise belong to it. Although we have no account of the place where the earthquake had its origin, the violence of its cffects in Japan, and the diminished effects at Yeel's island, show that Japan was certainly not far from the seat of action.

    Five successive waves of considerable height are apoken of as having occurred at Simoda, while by the gauge we trace cight, of which seven are of considerable height. 'The highest wave at Simoda was estimated at thirty feet, at Peel's island at fifteen feet. At San Francisco it was .65 foot, and at San Diego in the first series .50 foot.

    At San Diego, the same three series of wares are distinctly shown. The first begins 12.22 m . later than at San Francisco, correction having been made for the difference of longitude, and ends 07.52 m . later. The interval is 30 m . less than at San Francisco, the oscillation being rather shorter than at the last named point. The second begins 07.54 m . later than at San Francisco, and ends 34 m . later. The third begins about 54 m . Jater than at San Francisco. The average time of oscillation of the first set of waves is 31 m ., and of the second 29 m ., being respectively 4 m . and 2 m . less than of the corresponding series at San Francisco.

    The average height of the first waves was .17 foot lower than at San Francisco, and the second as much higher. This fact, taken with the difference in the times of oscillation, leads me to suppose the difference in the two series due to interference, which is also suggested by the position of San Diego, in reference to the islands separating the Santa Barbara sound from the ocean.

    The gencral analogy in the succession of heights of the mean of the two series, as shown in Diagram No. 3 C , and in the times as shown in D , of the same diagram, is very satisfactory.

    The difference in the periods of the tide at which the waves occurred would tend to cause discrepancies.
    The first series occurred on a rising tide of four feet, while at San Francisco it was upon a falling tide of two feet. The second began near high water, and was chiefly upon a falling tide of seven feet, while at San Francisco it was upon a rising tide of four feet.

    The forms of some of the individual waves in the second series at San Francisco and San Diego accord remarkably, as those marked $1,3,4,5$, and 6 , when reduced to the horizontal line. The comparison on the curve where the distortion remains, is also very instructive. The waves marked 1, 4, 6, and 7, are not unlike in the first and second sets at San Diego.

    The observations at San Diego confirm, then, in general, the inferences derived from those at San Francisco. The register at Astoria throws no new light upon the subject. The bar at the entrance of the Columbia river would explain why the oscillations were lost or greatly reduced at Astoria, even if they arrived off the entrance of the river. The disturbance is marked on the register, but in an irregular and confused manner.

    It was also, apparently, preceded by unusual oscillations of the water.
    After allowing for the very fee action of the float of the San Dicgo gauge, there appear to have been
    indications of disturbance previons to the great earthquake shocks, and following them, occuring at intervals for several days after the 23 d of December. The San Francisco gauge presents similar indications.

    No special effect appears to have been produced upon the time or height of high or low water by the earthquake, which merely caused series of oscillations upon the great tidal wave.

    I now proceed to draw from these results some conclusions as to the progress of the ocean wave accompanying the carthquake.

    The latitudes and longitudes of the places referred to are as follows:

    |  | Latitude N. | Longitude W. |  |
    | :---: | :---: | :---: | :---: |
    |  | c , | c | t. m. |
    | San Diego. | 3242 | 11713 | 749 |
    | San Francisco | 3748 | 12296 | 810 |
    | Simoda | $34 \quad 40$ | 22102 | $14 \quad 44$ |

    The distance from San Diego to Simoda, from these data, is 4,911 nautical miles; and from San Francisco to Simoda, 4,526 nautical miles.

    According to one account, the disturbance began at Simoda at $9 \mathrm{a} . \mathrm{m}$, or 23 d 11 h .44 m . Greenwich mean time, and the first great wave half an hour after. The first disturbance at San Franciseo was at 23d $0 h .22 \mathrm{~m}$., or $12 h .38 \mathrm{~m}$. after that at Simoda, and the first great wave at 23 d 0 h .52 m ., giving the same interval.* The distance and time from this account give for the rate of motion of the wave 358 miles per hour, or 6.0 miles per minute.

    The second account would give for the time of transmission 192.15 m ., and for the rate of motion 370 miles per hour, or 6.2 miles per minute.

    The San Diego observations give for the time of transmission of the wave from Simoda to San Diego 14 h .0 m . by the first account, and 13 h .45 m . by the second account, which combined with the distance, give 354 miles per hour for the mean result, or, sensibly, the same result as derived from the beginning at San Fraucisco. The first great wave would give identically the same result,

    From the results obtained, we may determine the mean depth of the Pacific occan in the path of the earthquake waves. We have found for the rate of motion from 6.0 to 6.2 miles per minute, and for the duration of an oscillation 35 minutes at San Franciseo, and 31 at San Diego. This would give for the length of the wave on the San Francisco path 209 miles to 216 miles; and on the San Diego path, 183 miles.

    A wave of 212 miles in length would move with a velocity of 6.1 miles per minute in a depth of 1,887 fathoms, (Airy, Tides and Waves, Encyc. Metrop. p. 291, Table II;) the second account would give a depth of 2,005 fathoms. The corresponding depth on the San Diego path is 1,843 fathoms.

    The disturbance of the 25th of December presents at San Francisco three sets of waves of seven each, and at San Diego one set of seven, agrecing in their gencral features with those at San Franciseo; and then a set of seventeen, in which, at first, intermediate waves seem to be wanting at San Francisco, or which have no analogous oscillations there. The crests of the first set occurred at a mean about 17 minctes earlier at San Diego than at San Francisco; the heights on the average were nearly the same, being . 39 foot at San Diego, and . 44 foot at San Francisco, and the time of oscillation at the two places the same, namely, 41 m . The origin of the disturbance was probably nearer to San Diego than to San Francisco.

    ## APPENDIX No. 25.

    ON THE ORIGIN, GROWTH, SUBSTRUCTURE, AND CIIRONOLOGY OF THE FLORIDA REEF.-BY CAPTAIN E. B. HUNT, CORPS OF ENGINEERS, U. S. A.

    New Haven, Conn., November 1S, 1862.
    Sir: The examination of the Florida reef, keys, and mainland by Professor Agassiz in 1850-'51. (Coast Survey Report, 1851, Appendix No. 10,) marks an era in our knowledge of the singular geological problems there exhibited, and expecially of their zoological phases. This. exploration, made under Coast Survey
    *The time is reckoned for Simoda, eastward, and for California, westicard, from Greenwich.
    31 cs
    auspices, was amply justified by the fact that the Florida reef is the great American danger to navigation. One of the best aids in avoiding reef risks is a clear insight into the structure of the reefs and keys, and this can only result from scientific rescarches, aided by the Coast Survey detailed hydrography, now well advauced. The millions of propery wrecked on the reef are in great part sacrificed to a needless ignorance of hydrography, reef structure, currents, winds, and even lights and beacons. Reef pilots are not employed, and shipmasters are so poorly supplicd with precise knowledge of the kind needed for insuring safe navigation amid these dangers, that many wrecks result solely from their ignorance. During the five seasons (1857-'62) in which I was charged with the construction of Fort Taylor, at Key West, I had good opportunities for knowing the history of the wrecks, occurring about at the average rate of one a weck. I am now of the opinion that the loss of property in wrecks, which would be preventable by such accurate knowledge as can be furnished to navigators when the Coast Survey shall have published the complete reef hydrography, and its full scientific discussions of recf structure, tides, currents, and winds, has regularly exceeded the annual expense of the entire survey. Many shipmasters are incorrigibly ignorant, and several wrecks have, to my knowledge, occurred by masters not knowing new lighte which had been for many months conspicuously advertised in all the custom-houses and in commercial papers. Should shipping merchants insist on having none but intelligent captains, and then furnish them with the very best information concerning the reef neighborhood, a large portion of the wrecks would be prevented. I think the study of currents, and cspecially of current cariations, in and near the Flonda channel, is now peculiarly necded for preventing wrecks in this region. The fluctuations of currents from their supposed normal type, certainly cause numerous disasters. The lack of distinct ideas as to the relations between the reef and the keys, and ignorance of the manifest signs of proximity to the reef, are the real causes of many disasters. The Coast Survey has done so much to disarm the reef of its terrors and to make known its true character, that, aside from my own connexion with the Coast Survey organization, it scems appropriate for me to present to fou some views on the origin, growth, substructure, and chronology of the recf, which have resulted from my observations while at Fort Taylor, and which may prove a needful supplement to Prof. Agassiz's report.

    The grand curve of our Atlantic coast terminates in the remarkable crescent of keys and rcefs which begins some miles north of Cape Florida, and extends in a well-defined curve some two bundred and forty statute miles to Tortngas bank. At Cupe Florida its axis is north and south. In moving down the reef this direction revolves with the sun, until at Tortugas it bears about $5^{\circ} \mathrm{N}$. of $\mathbf{W}$. This crescent consists of a line of keys and a parallel outer line of recfs which are separated on an average between five and six miles by a navigable channel obstructed by coral heads. The reef terminates about opposite the Marquesas, some fifty miles cast of Tortugas bank. Between the line of keys and the mainland of Florida is a body of shoal water, shaped much like a cornucopia, which embraces Key Biscayne bay, Card's sound, Barnes's sound, and the bay of Florida.

    The line from Tortugas to Cape Romano, which may be taken as the mouth of this cornucopia, is one hundred and twenty miles long, the deepest water on it being twenty fathoms, and all within or cast of it being still shoaler and characterized by singular evenness of bottom. The straits of Florida, between the reef and the Cuban coast, are about a hundred miles wide, and the bottom slopes from the reef down to eight hundred fathoms, just off the submerged clifis of Cuba. The one hundred fathom curve of the bottom is abont seven mikes ont from Cape Florida, and from thence to Tortugas it gradually separates further from the keys, being there over twenty miles out.

    The well-traced curve along which this grand Florida bank thrusts itself out into the deep water of the (rulf, is strikingly significant of some continuous and regular agency in its production. The adjacent flow of the Gulf Stream would, most naturally, be assumed to govern in some way the production of this curve. It, however, rums in the wrong direction to serve this explanatory use, and it is, in fact, rarely found to run close in upon the reef. There is, however, an eddy counter current, intermitting in character and of variable rate; but, on the whole, a positive and prevailing current.* At Cape Florida it is narrow and precarious; but it widens as it sweeps to the westward, occasionally becoming over ten miles wide at Key West, and twenty miles off 'Tortagas. It sometimes runs over two knots, and is a great help to vessels bound west, when their masters know the reef well enough to venture so near. There is much need of more precise observations to make out the characteristics of this current; but its existence and its intermitting and sometimes powerful set are facts attested by all who know these waters thoronghly.

    After careful consideration, I am led to ascribe the peculiar shaping and growth of the Florida bank, including the keys, reefs, and aubstructure, mainly to the sweeps of this eddy counter current. Darwin, Dana, and Agassiz, have so fully stated the zoological and ofler ordinary elements of reef and key growth, that I need only refer to their works for details.* Special circumstances, however, so far modify the structure of the Florida reff that it is not fully embraced in the principles laid down by these writers. It is not an atoll, a fringing recf, or a barrice reef, in the accepted sense of these designations; but it is a reef, or bank, shooting out independently $l y$ its end into the deep Gulf waters. Such, at least, is the view to which I have been led by simply considering the existing agencies as actually working.

    The reef proper is the main field of coral growth. This growth is not in one compact mass, but in diversified coral heads, or detached masses. The bold slope of the recf, towards the Gulf Stream, to the proper depth of growing coral, which here does not exceed a hundred feet, and the broad top surface of tho recf section are teeming with solid corals and shells. The branching corals grow wherever the violence of the sea does not prohibit, and where moving sand does not forlid a secure foundation for coral colonies.

    In general, wherever there are solid surfaces free from sand and weed, and which are washed br warm moving salt water, the coral eggs, diffused throughout the reef waters, attach themselves and grow to the limit of their capacity. Thus, the stones of the Fort Taylor breakwater and foundations, palmetto piles, iron bars lost overboard, \&c., have become coated with branching and solid corals, whose growth, between the date of immersion and that of diving up, give a measure of coral increasc. Throughout the sand-covered bottom, between the reefs and keys, along the sand-faced south beach slope, towards the recf, and over the mud bottom nortl of the keys, there are no living corals, except on such accidental bases as may occur, and in the coral heads which have grown upon these bases. Thus, coral masses are mainly produced where the action of storms is most violent, and they are constantly giving way before the assaults of the waves and the corrosions of the numerous and active boring shells. A coral mass, once broken loose, undergoes active attrition and disintegration into calcareous saud of varying fineness. This sand and the accompanying detritus of shells and "echinoderms which abound intermixed with the living coral, are, by degrees borne on by the waves towards the south beaches of the keys, where some of the sand is thrown upon the slope of the beach ridge. A coral mass, or shell once cast loose is killed, and is henceforth untiringly triturated by the waves until it escapes their action, or is reduced to impalpable powder. Every wave agitation of sand pulverizes it yet further, and brings it nearer to the consistency of the white mud which so largely prevails on the bank towards ite northern side. There is, thus, a constant coral and shell growth, and as constant disintegration in progress. All this action, however, takes place in the limited range of depth of less than a kundred feet, within which only can the reef-building coral grow. To accomt for the vast underlying mass between this limit of depth and the deep original sea-floor, is a problem hitherto unsolved, and one which I hope to elucidate.

    The tidal currents set strongly across the reef, and through the channcls, between the keys, the flood running to the nortli and the ebb to the south side of the key crescent. When storms occur the agitation of the waves extends to the bottom over the shallower portions of the grand bank and stirs up the sand violently. This causes the water to take up and maintain in mechanical suspension such finely comminuted particles as have too little sinking force, rapidly to reach the bottom again. The finer the particles the longer will they remain suspended, and the very coarse grains will hardly be lifted from the bottom. Between the coarsest and finest are grains of all intermediate sizes, and whether they will be suspended, or not, depends on the violence of the storm, and their interval of suspension varies with their size and the violence of the waves. It results that, , all storms of much violence, the water over the Florida bank becomes white with the bottom deposits. In long and severe northers or gales, the water becomes almost milk white across the whole bank. This "white water" is a familiar appearance, and is one of the sure signs of proximity to the reef. As storms subside the white sand mud is gradually thrown down, and the water clears, atter a day or two, to its peculiarly delicate transparency.

    During the "white water" periods the flood tidal currents set the white water over the north side of the bank into the bay of Florida, where, by reason of the greater depth, the process of deposition goes on, and thus the floor of this bay has become covered with white mud, and has been brought up with a singular


    cuemess to the prevailing depths. The portion of the bank north of the keys is mainly composed of this fine mud, and the north shores of the keys lave long shallow mud shopes, some portions of which seem to be poliditying. 'The chb tide corries the white water out towards the (iulf' Stream, and it is recognized at times many miles ontside the recf. Alereast the 'Wortugas, it is zometimes encountered over thirty miles out. The eddy comerer current selting, perlajs, two knots per hour, transports this white water and its suspended detritus to the westward into deepening water, where it has oportunity to settle as il goes, and finally reaches bottom some miles west of its point of formation. Onec on the bottom in deep water, below the action of the waves, nothing can remove it. Thus, we have in actual operation a perfect mechanism for triturating the coral and shell growths, and for transporting the comminut d products by wave disturbance, tidal currents, and the eddy currents, to the deep water further west. These ageneics beitg all unquestionably real, and now active, I find no reason to doubt but that they have been the eecular causes at work in extending the Florida bank by its western extremity.

    A careful examination of the bottoms, as shown on the several Coast Survey charts of the reef, affords signal confimation of this view. The indications of white mud, white sand, coral, and broken shells, over all the south frontage of the reef, half way to Cuba, to the west around Tortugas and Tortugas bank, and over the entire long slope by which the west end of the Florida bank runs down into depths of a hundred fathoms, and of four hundred and sixty to the southwest, as also the bottoms over the bay of Florida, and westward to the hundred fathom curve, arc all consistently indicative that the material of the bottom, thus brought to light, was originally organic, and has been worn down and transported to its present bed by some agencies like those I have described. The entire lack of any bottoms, in the slightest degree tinctured with Mississippi mud, is a perfect refutation of the view presented by Prof. Jos. Le Conte,* that the substructure of the reef, up to the depth where coral growth can begin, is a result of the deposition of Mississippi sediment, carried across the Gulf by the Gulf current. I venture the assertion that these bottoms are inconsistent with any view which does not derive them from the living coral to the cast of their present localities. Should it be said that these bottoms only indicate the mere surface character of the sea bed, it may be replied that the great mass of the bank substructure, shooting out to the west into the Gulf, and rising above the Gulf bottom on both sides, as is amply shown by the 10,20 , aud 100 fathom curves around the west end of the bank, is unmistakably a special formation subsequent to the general shaping of the Gulf bed. The actual causes now at work in producing coral or shell material, and in grindiug and transporting it, must necessarily result in a building up from the bottom along the line of the eddy current to the westward.

    Combine with this the fact, that the most effective winds and waves, both of trade and hurricane origin, come in upon the reef from the southeast, and must, therefore, help to transport detritus to the westward and northwest. Moreover, the heavy waves which wear the front face of the reef must work down along the south slope some of the detritus, and must thus aid in forming the actual double slope in which the bottom expands towards the Cuban cliff coast. It is unlikely that the wave actions extend with appreciable effect below, from fifty to a hundred feet, and detritus, once placed below their extreme range, becomes permanently fixed. It is to be observed that the very zone of coral growth is that of wave agitation, and that this must prevent the lodgment of sand and mud on the growing coral, as, after storms, the swell will always last here until the waters are cleared of white mud. This may, perhaps, be quite as effective a cause as increased pressure, in limiting the depth of coral growth to about the same range as that of wave actions.

    A careful consideration of auch facts as are now ascertained, leads me to the supposition that the growth of the line of keys and the line of reefs is simultaneous by their western extremities. The reef now ends opposite the Marquesas, while the quicksands, Retbece and Lzace shoals, the Tortugas keys and the Tortugas bank, indicate the extension of the line of keys beyond the line of reffe to the west. It is remarkable that the Tortugas keys are entirely without the solidification so prominent at Key West. Fort Jefferson, resting wholly on sand foundations has settled in all its circuit, and in some portions it has gone down nearly a foot, showing that a deep sand bed has yielded thus much to compression.

    In the sheltered waters among these keys, there is an active growth of branching corals, \&c., on sand foundations, which are torn up by storms, and tossed on the beaches by the waves to such an extent as to afford the vast mass of concrete materials used in the masonry of Fort Jefferson. There are, however, no extended rock masses, and the fierce vitality of the corals is shown in an active renewal of growth on dead coral sprigs. It is my impression that the mass of materials forming the Tortugas keys and bank has been
    transported westward by the eddy current, and north and northwest by the south and southeast storms and hurricane waves, from the recf abreast and east of Marquesas. The shaping of the bottom indicates this, and it is apparent that a westwach extension of the ref must be slowly taking place. It would thas appear that the keys, at least in their substructure, are, rather, resulto of the waste from the present line of reff, than an origimal and anterior ref growth. Concurring with this process is the growth of comal as now at Tortugas, and in such heads and masses as can find foundetions on the sund slopes of the keys.

    The solidifeation of the keys must be a slow and later process, and some thousands of years hence the sand masses of the Tortugas may assume an oolitic structure like that now seen at Key Weat. The calcarcous mud, wherever found, seems to be preparing for solidification, and in a single instance of hard mud from the castern portion of Key West, I observed what could easily be fancied to be the circles of incipient oolitic segregation. The erystallization of the contained salt soon broke up this appearance, and I never again observed it, though the confirmation of such an observation of oolite ab ovo would have great interest, in consideration of the vast masses of this rock in the carth's crust. That the fincly comminuted white sand or mud solidifies into oolite on Key West, is, I think, fully shown by the fossil traces of a peculiar vegetable scum which forms in the lagoons. This scum, as the lagoons dry up, forms a leathery sheet, which is, by drying, split into pieces, which roll up at the edges, sometimes with three or four turns. I have found these rolls fossilized, and looking much like bones; but distinctly showing the spiral curling in the section. Most of the oolitic stone of Key West shows, on weathering its fractures, a series of thin parallel edges, averaging perhaps, a half inch apart, which, being more resisting, rise on the weathered fracture above the softer parts between. These harder layers seem very like fossil scum sheets; but they are fond in stones much above the present ponds or lagoons, and it is hard to conceive that they are due to this origin.

    Whether a calcareous sand heap, wholly above the water, ean solidify into an oolite, is a question hard to answer; but it is only by such agency that I can explain the solid mound of nearly a mile in diameter, which forms the west part of Key West, and is wholly composed of oolite. The summit of this mound is about fifteen fect above high water, and is believed to le the highest point on the whole line of keys. The gale of 1846 raised the water to within seven feet of the apex, and we can readily eonccive that, before the recf barrier protected it, a harricane might have carried up sand to over fifteen fect above ordinary high water.

    The oolite, as shown in the wells of Key West, becomes coarser grained and softer in descending. It is so open that the water level of the wells, even in the heart of the key, or half a mile from the sea, fluctuates with the tides, following them at intervals, varying according to position; hut areraging, as nearly as I could ascertain, about three hours.

    The whole rocky mass of Key West is of this nolite, there being on the weathered surfuces, and occasionally in the mass, a yellowish brown crust, hard enough to receive a polish, and usually less than a quarter of an inch thick. The granite foundations of Fort Taylor, located in water of eleven feet, or less, were laid wholly on rock which was dressed to form the beds by the use of a diving bell. The submarine rock thus examined was much like the shore rock, except that the materials were coarser, rather less compact, and more brecciated. Occasional shell and coral brecciated masses are found on shore, but such traces are quite rare. In removing the beach sand ridge which skirted the whole sonth shore, I foud a limited stratum of about six inches thick and a few rods long, composed wholly of imperfectly comminuted pieces of small branching corals, averaging about an inch long and a third of an inch thick. Otherwise, this whole ridge of about ninety feet wide, and from five to eight feet thick above high water, was composed wholly of sand, much of which was somewhat blackened by vegetable loam from the ridge sand growth.

    It is observable that this calcareous sand is scarcely at all blown about by the winds. Once packed. it resists the blasts of northers and hurricanes so completely, that at a few feet from the reverse slope of the beach ridge, we find only marl and rock. It presents a marked contrast in this point, with silicions brach sands, which may, as in Provincetown, Cape Cod, build up hills of a hundred feet high, or be carried for miles in the interior. When dry, and freshly turned up, it blows freely; but it seems never to be moved by winds from the place where the sea deposited it. It is obvious that the sea is washing away the rock along the south side of Key West, while the north mud slope is being augrented. Several hundred fect of the original south beach rock have probably been cut away.

    I am indebted to Mr. Chas. Howe, now collector at Key West, for some accomnt of an artesiau well, which, in 1839-'40, he sunk to a total depth of one hundred and thirty feet, on Indian key, abont eighty miles northeast of Key West. To the depth of fifteen feet the rock was moderately soft and uniform. It
    there began to be unsound, the drill occasionally going down three or four feet at once. At forty-five feet a gravel bed of about five fect was found, below which the rock lecame harder, and continued very solid, with a few interruptions of unsounduess, to nincty-onc fect, when another gravel bed of several feet was struck, which gave much trouble. Below this the rock became exceedingly hard, and was "tinged with yellow specks." This continued to one hundred and thirty fect, with several interruptions, by " breaking through," the drill once going down five feet at one jump. The water injected to clear the hole brought up pieces the size of pigeon eggs; but, unfortunately, the specimens are now lost. I suppose, from Mr. Howe's verbal account that all this rock was purely calcareous, and that the very hard variety, which was taken to be quartz, was a compact limestone, such as Dana frequently found in the Pacific coral formations. The unsoundness would seem to be due to the interrupted nature of coral beds, whether in situ, or formed of coral boulders and sand.

    In general, the actual structure of the reef seems to result mainly from threc grand activities. 1 st. The ceaseless and persistent growth of corn animals and shells, on every appropriate site within their proper range of depth, temperature, and water supply, which growth, by secretion, separates the carbonate of lime from the mass of the ocean and gulf water. 2d. The untiring action of the winds, tides, and currents, (aided by boring shells,) in breaking up, triturating, transporting, and depositing the calcareous products of the zoological process. Sd. Solidification by time, pressure, segregation, and, possibly, by chemical transformation. It is a complex problem to trace the precise operation of these agencies as now at work, and from the present to pass back over the past, until that time when the Florida bank did not exist, and when the shore, from Cape Sable to Fort Dallas, was the open ocean front of south Florida. It seems, however, not too audacious to say, that the agencies now at work present a general type of operation which requires but unlimited time to realize results no less than the formation, not only of the line of keys and recfs, but of that immense substructure which rises from the great original plame of the gulf bed. This plane, along the Cuban coast, was over cight hundred fathoms decp, and it could hardly have been less than three hundred fathoms under the present Tortugas group.

    The evidence that South Florida and the base of the bank have recently undergone neither elevation nor depression, to any considerable extent, is quite convincing. There is a remarkable coincidence of general level along the crescent of keys, and no reliable evidence of vertical movement is found on any of them. Prof. Tuomey fancied he saw evidence of elevation through several fect at Key Vaccas.* Believing that he had mistaken boulders for masses in situ, I inquired of Assistant Hilgard, whose observations on the keys, during his surveying labors, have been extensive, and he replied, that he has "never seen any coral beds raised in silu above the water." He paid some attention to the subject, and remembers those at Key Vaccas, particularly, where he satisfied himself, by using a crowbar, that they were boulders bedded in sand." Prof. Agassiz and Prof. Le Conte report the same impression. During the growth of two hundred and forty miles of keys, there has been, then, no observable change of level. There is a dead fringing recf forming the Punta, or western angle of the entrance to Havana, which seems to have been elevated some six feet, and this is the only case of recent elevation in this vicinity with which I am acquainted.

    Prof. Tuome and Prof. Agassiz fully identify the formations at Fort Dallas with the rocks of the keys. The former reports the descent from the everglades, along the Miami river to tide-water, at six to eight feet, $\dagger$ and estimates the height of the ridge, where cut by the Miami, at twenty to thirty feet. Prof. Agassiz estimates the highest shore bluff in this vicinity as not above thirteen feet. The silicious sand which eaps the beach ridge around to Cape Sable was probably transported by the waves down the eastern coast. There scems ample reason to suppose that the crescent from Cape Sable, through the Mangrove awamp and Hunting Grounds, to Fort Dallas, and thence north along the coast ridge, is an older reef curve, and that the Everglades and Lake Okecchobee were the interior Hats, analogons to Key Biscayne bay, Barnes's sound, and the bay of Florida. The everglades, which cover about 4,000 square miles, have a substratum of coralline limestone of very rough and irregular surface, which is covered by sand, silicious in part, at least, and soft mud of from three to ten feet deep, which corcrs all but a few points of the limestone, and is overgrown with rank sawgrass. The water overlying this mud is about three feet deep in dry seasone, and rises after rains from two to


    three feet. Lake Okeechobee is but a decper extension of the Everglades, its depth averaging about twelve feet, and its area being nearly 1,200 square miles. The slight clevation of the Everglade region increases gradually to the north, and the Kissimmee river, which empties in the nortle margin of Lake Okeechobece, has a southerly course of near a hundred miles, with a current of half a mile to three miles. There is thus a very gentic rise throughout the peninsula, and in the general slope swecping the north margin of the Gulf and the south Atlantic.

    The existence of abundant coral fossils in the tertiary limestone strata of 200 to 300 feet thick, spreading from the Mississippi river around to the Cape Fear river in North Carolina, indicates an ancient coral origin. Prof. Tuomey was led by these evidences to a special examination of the Florida reef, from which he concluded that a continuons process of coral growth, through geologic ages, may have produced this immense coral limestone area. He agrees with Mr. Conrad in calling the Tampa limestones tertiary. In all this space of limestone strata, there is no point whose altitude approaches to equality with the depth of near a mile, found off the Cuban coast. The whole view of this subject leaves a strong impression that mo great changes of level have occurred during the formation period, not only of the prescut crescent of recfs and keys, and the Cape Sable and Fort Mallas creseent, but even in the ancient coral ages, which produced the* north peninsula and the coral limestones of the great Gulf and Atlantic slope.

    Confirmatory evidence is found in the Bahamas, Salt key, Cuba, and Yucatan reefs, which have attained great expansion, with but slight evidence of disturbance. There are nowhere indications of atoll formation by sinking; but Darwin (Appendix, p. 186) appeals only to cleration, and meets the fact of the singular coincidence of level over many disconnected banks of great area in the West Indies, by supposing that the elevated masses of the banks were uniformly washed away by the sea during their elevation. It is very evident that the remarkable evenness of soundings over these banks is a measure of the depth to which the destroying action of the waves extends in their several localities. The enomons accumulations on the Florida side of the Gulf Strean make it quite rational to suppose that Salt Key bank, for instance, may have resulted from a single nueleal peak, now worn away by the sea, which has afforded a basis for the growth of a fringing recf, and for a wasting action by the waves, whence an outward expansion may have resulted, which, in the course of ages, has accumulated the larger portion of the great truncated cone, now rising from near four hundred fathoms. To what extent the type of action which I have supposed instrumental in producing the Florida bank may be applied in the explanation of other cases of coral recfs, I am not qualificd to decide. It can hardly be supposed that such acute and philosophical minds as Darwin's and Dans's would fail to pereeive or give proper weight to this familar action of atrition, transportation, and deposition. Dana is very explicit in stating it, and I must, therefore, suppose that a satisfactory explanation of the growth of the Pacific coral islands demands vertical movements unlike any exhibited in the West Indics.

    If the views presented are correct, the chronology of the reef becomes stupendous. The most rapid instance of coral growth which I found on the breakwater and foundations of Fort Taylor was a Meandrina of about six inches radius, which was produced within twelve years; or the rate was a hatf inch per anum. Numerous specimens, derived from stones or piles, whose dates of immorsion were known, and whose surfaces were so rapidly coated by vegetation and corrallines that we can safely assume the caral colonies to have been planted soon after immerson, all indicate for the vicinity of Fort Taylor a general rate of growth less than the above. There is no obvious reason why this rate should not be identical with that on the reef proper, as the tidal currents supply ample moving waters, and the temperature is much the same.

    Bearing in mind that the living reef belt hardly averages a mile in width, and that this is much interrupted, while the shoal part of the bank averages between fifteen and twenty miles broad, and that this is but a small part of the breadth of the base of this bank on the original bottom, aside from the marl and sand, contributed to the bay of Florida, we are overwhelmed with the immense demand for time. We ought not to suppose less than three hundred fathoms of detritus built upon an average. Moreover, much of this calcareous material is likely to have been more than once used by the coral animals, and some must have been swept into the ocean waters.

    Taking the living reef at one-twentieth the breadth of the total bank, the depth of the bank at three hundred fathoms, and the rate of growth at half an inch per annum, we find, aside from other elements of protraction, 864,000 years as the time for building the bank, when considered in cross-section. Considering the growth as being by the west end from Cape Florida to Tortugas bank, a great increase of time is still demanded, so that we can hardly on these data diminish the chronology of the growth of the present Florida bank even to a million years. Appalling as this estimate of time for building appears, it seems impossible honestly
    to reduce it. If to this be added the time consumed in building the Capo Sable and Fort Dallas crescent, and, again, the inconceivable periods demanded in the growth of the main peniusula, and the limestone strata of the grand slope of the Gulf and South Atlantic, the imagination is appalled, and can only rest on limitless infinities. We can, indeed, readily make an arithmetical approximation to this inconceivable total. The nature of coral reefs limits the growing portion to the outer reef line, and it is a liberal allowance if we suppose a zone of one mile brond, regularly covered with growing surfuces. The solidified masses derived from this zone, wherever deposited, cannot possibly increase in the whole more rapidly than this zone can supply the materials. If we assume these masses at two hundred and fifty feet thick on their northern margin in Alabama, and eighteen hundred feet thick on the present southern boundary, we can safely assume an average thickness of mine hundred feet. The length of the general line of average cross-sections of the growing front cannot be less than two hundred and fifty to threc hundred miles, or, at the minimum, a horizontal growth of two hundred and fifty times the growing zone can be assumed. Taking the rate as before, at twenty-four years to the foot, we shall have for the total time $24 \times 250 \times 900$ on the data as stated; or, we find the total period of $5,400,000$ years as that required for the growth of the entire coral limestone foundation of Florida. The rate of coral growth is decessarily a rigid one, scarcely subject to fluctuation in any supposable period of time, and the limitation of growth to an outer reef of narrow scetion is also a necessity of organic hahits. If, then, it be a fact that all the limestone mass now considered is of coral origin, the time of coral growth cannot be reduced below the result given above. It is likely to be much greater, as all the elements have been assumed on the side of a minimum chronology, and no allowance $i_{s}$ made for growth by the west end, instead of by the front.

    The derivation of the substructure of the bank from coral growth makes the seemingly formidable chronology deduced ky Prof. Agassiz shrink into insignificance. But is this vastaess of time really incredible? Docs its shock to our ideas militate against its reality? It is not the method of true philosophy to belittle nature to our own idcal standard; but it is rather our duty to seek facts, without bias or preconceptionLooking thus squarely at the facts of the reef, in the aspect I have regarded them, the aggregate of time given scems really and truly insufficient. There are vast possibilities of error in such estimates; but are we not quite as likely to err through our preconceptions of limited chronology as by boldly submitting to the guidance of estimation from actual bases?

    Very respectfully, yours, \&c.
    E. B. HUNT, Captain of Engineers.
    .Prof. A. D. Bacine,
    Superintendent Coust Survey, Washington, D. C.

    APPENDIX No. 26.
    hESLLIS OF EXPERIMENTS FOR DETERMINING THE LENGTH OF THE SIX-METRE STANDARD BAR, AND IS hate of expansion by heat.-herorted by assibtant j. E. hilgard.
    The unit of length, to which all distances measured in the Coast Survey are referred, is the French metre, an authentic copy of which is preserved in the archives of the Coast Survey office. It is the property of the Americen Philosophical Society, to whom it was presented by Mr. Hassler, who had received it from Tralles, a member of the French committee charged with the construction of the standard weights and measures according to the decimal system. This metre is of iron, and was one of the twelve original bars used in the construction of the standard metre by comparison with the toise, which had served as unit of length in the measurement of the meridional ares in France and Peru. It posseses all the authenticity of any original metre extant, bcaring not only the stamp of the committee, but also the original mark ( $\because$ ) by which it was distinguished from the other bare during the operation of standarding. It is alwaye designated as the committee metre. A translation by Mr. Hassler of a paper by Tralles, detailing the process of construction, is to be found in House Doc. No. 299, XXII Congress, 1st session. (See also Base du Système Métrique, by Delambre.)

    Beside the committee metre, there is in the collection of the Coast Survey another iron metre of special value, having been made by Lenoir, the artist who performed the mechanical operations in the preparation of the original metres. It is designated as the Lenoir metre, and has been found by accurate comparisons
    with the committee metre to be shorter than the latter by $0^{110}, 0000258$. Both these metres have the same crosssection, being 1.133 inch wide, and 0.270 inch thick; the ends are squared off, and the abutting surfaces are formed by the entire cross-section.

    The compensating base apparatus, used since 1845 for the measurement of base lines, which has been described and figured in the Coast Survey Report for 1854 , is six metres long, and as it cannot be considered absolutely invariable in length, owing to some of its parts, on which the length depends, being liable in time to a slight wear by contact, it is on every occasion, when used in the field, compared with a standard iron bar of six metres in length, which may be assumed as retaining a uniform length, at the same temperature, so long as its figure and the polish of its ends are preserved unchanged.

    In order then to refer the length of the base lines to the committee metre as unit, it is necessary to ascertain with the minutest accuracy, first, the difference between six times that unit and the six-metre standard bar, at the temperature of melting snow, ( $32^{\circ}$ Fahr.,) at which the metre has its standard length, and secondly, the expansion of the standard bar for every degree of temperature, in order that its true length may be known at the temperature at which it has been compared with the base apparatus.

    The standard six-metre bar is 1.393 inch wide, and 0.270 inch thick; the abutting surfaces are squares in the middle of the end sections, formed by cutting away a portion from the width of the bar on each side. It is contained within a wooden box, about eight inches square in cross-section, and is supported upon rollers symmetrically distributed. The ends project slightly, and are covered by brass caps when the bar is not in use.

    This standard bar was first cut to length in March, 1847, Irevious to the measurement of the base line on Dauphine island, Alabama. Preliminary comparisons were made with three times the length of the committee and Lenoir metres, abutted together by means of the micrometer mieroscopes of the Troughton comparing appatus, the whole apparatus being in melting ice, by which the standard bar was found to be $0^{\text {m }} .0000005$ shorter than that combined length. Putting for the Lenoir metre the value above given, we have as the first approximate result :

    $$
    \text { Standard }=6^{\mathrm{m}}-0^{\mathrm{m}} .0000779 .
    $$

    These comparisons were made by the Superintendent, assisted by Mr. Joscph Saxton and Licutenant A. A. Inumphreys, U.S. A. The method employed, in which the terminal lines for optical observations are produced by placing abutting pieces acainst the ends of the bars, was not thought to admit of the greatest accuracy, and the result was only considered as preliminary.

    In order to attain a greater degree of accuracy it was proposed to compare directly the length of six single metres abutted together, with the standard bar, by means of the Saxton pyrometer. This instrument is described in detail, and figured in the Report of the Superintendent of Weights and Measures for 1856--(Senate Ex. Doc. No. 27, 34th Congress, 3 d session, 1857.) It may be essentially described as follows: While one end of the rod to be compared rests against a fixed abutting surface, the other is in contact witl a sliding piece, urged against it by a spiral spring; a delicate chain attached to the slide passes around a small drum on the axle of a mirror, mounted in pivots, which reflects into a telescope placed at a distance opposite to it, the graduations of a long scale placed immediately below the telescope. Any difference in the length of the rod causcs a motion of the slide, which occasions a turning of the mirror, and a corresponding change of seale reading, in the ratio of the radius of the drum to twice the distance of the scale from the mirror. Thus, if that distance is two hundred inches, and the effective radius of drum and chain one-fifth of au inch, any change in the position of the slide will be reproduced two thonsand fold on the scale. The ralue of the scale divisions are determined by moving the slide by means of a micrometer screw, the value of which has been accurately compared with the standard scale, and noting the corresponding change of scale reatings. In the experiments next described the scale was so graduated that one division corresponded to one twenty-five thousandth part of an inch in the length of the rod.

    Four additional iron metres were made by Mr. Saxton of the same figure as the committee metre, except that at the ends shoulders were cut, so as to present only a square of the thickness of the bar as abutting surfaces. These four bars, as well as the Lenoir metre, were compared with the committee metre by means of the pyrometer, at temperatures ranging from $31^{\circ} .8$ to $52^{\circ} .1$, by Mr. Saxton in December, 1862 . All the metres being of iron, and having very nearly the same expansion, no differences depending upon temperature were apparent in the results. The observations, being combined in such a manner as to eliminate the change of temperature during the times of comparisons, give the following results in scale divisions:

    | No. 1 | $=$ Com. metre | +3.6 prob. exror $\pm 0.23$ |  |
    | :--- | :--- | :--- | :--- |
    | No. $2=$ | +2.5 | 0.25 |  |
    | No. $3=$ | -0.6 | 0.31 |  |
    | No. $4=$ | +1.6 | 0.36 |  |
    | Lenoir $=$ | -25.4 | $\underline{0.20}$ |  |
    |  |  | -10 |  |

    Sum $=5$ Com. metres -18.3 prob. error $\pm 0.62$
    Or the six metres combined are equal to $6 \mathrm{M}^{\mathrm{c}}-0^{\mathrm{m}} .0000186$.
    The six metres were now placed in a wooden box similar to that containing the standard bar, supported upon : rollers at distances of half metres, and held in contact by spiral springs attached to pins inserted in the top of each bar near its ends. The fixed abutting serew and mirror plate of the pyrometer being, respectively, fixed upon stone piers six metres apart, in the base apparatus shed near the Coast Survey office, two trestles belonging to that apparatus were placed between them as supports for the boxes containing the bars, which were exchanged as rapidly as they conld be handled. The observations were only made when the temperature was nearly stationary, and the several observations on each occasion so combined, by alternate means, as to eliminate the effect of the variation of temperature. The pyrometer being a great deal more sensitive than the thermometers cmployed, about 40 divisions corresponding to one degree of Fahrenheit, no temperature corrections derived from the indications of thermometers can safely be applied. Moreover, the difference of specific heat renders it impracticable to infer with accuracy the temperature of the iron bar from that of the mercurial thermometer.
    The order of contact, which was several times changed, the range of temperature, and the results from each arrangement of bars, are given in the following table:
    

    It is apparent from an examination of the above results that the differences are not owing to temperature, but to the changes in the order of arrangement. Taking the mean of the five sets, without regard to the number of observations taken in each, we find the standard 50.3 scale divisions shorter than the six metres, with a probable error of $\pm 2$ scale divisions; and using the values previously stated we have:

    $$
    \text { Standard }=6 \mathrm{M}^{\mathrm{c}}-0^{\mathrm{m} .0000697 \pm 0.0000021 .}
    $$

    The experiments were made by Mr. Saxton, and discussed by Mr. Hilgard, under the immediate direction of the Superintendent. The wide range of the results of different combinations, far exceeding the uncertainties of the instruments of comparison, and of the probable irregularity of the abutting surfaces, is to be ascribed to the insufficient means of securing the contacts, (by means of a spring at the top of the bars,) which would admit a slight shifting of the ends consequent upon the jarring to which the boxes are exposed in being lifted to and from the positions in the comparing apparatus.

    It was determined, therefore, to make still further comparisons, in which the contact of the six metres was secured by clamps, as shown in fig. 1, plate 49. The clamping screws being of iron, no sensible difference in the strain conld arise from changes of temperature. Two new metres, Nos, 5 and 6 , with more highly finished square ends, like those of the first four additional ones, were substituted for the committee and lenoir metres. Their comparison with the committee metre in 1859 and 1860 gives the following result, in scale divisions of the pyrometer, which, since 1856. represent one fifteen-thousandth part of an inch:

    $$
    \text { No. } 5=\mathrm{M}^{\mathrm{e}}+2.91 \text { div., prob. error } \pm 0.13
    $$

    $$
    \text { No. } 6=M^{e}-3.41 \quad \pm 0.14
    $$

    whence, by combining with the values of the other four bars, we have for the combined length of the six bars $(1+2+3+4+5+6)=6 \mathrm{M}^{c}+0^{\mathrm{m} .00000646 \pm 0^{\mathrm{m}} .00000068 .}$

    In order to expedite the comparisons, Mr. Saxton contrived a rocking.frame (fig 2) as support for the boxes containing the bars, which permitted them to be alternately brought into the pyrometer-line with great facility, by being swung or rocked on the supporting points between stops so adjusted as to sccure at once the required position.

    The experiments, which extended from January 18 to March 28, 1860 , were made under the immediate direction of Assistant J. E. Hilgard by W. L. Nicholson, esq., assisted by Mr. Thomas MeDonnell, Mr. Saxton making, as heretofore, the changes in the arrangement of bars. The clamp serews were repeatedly loosened and retightened in each order of arrangement. It was intended to make the observations only under the favorable conditions, that the temperature should be near $32^{\circ}$, and nearly stationary, in order that the bars might be presumed to have the same temperature; since the standard bar, haviag a less cross-section and thickness than the metres, would with a similar exposure change its temperature more rapidly. The thermometers, of which three were in cach box, would serve only approximately as guides, as previously explained, and the changes in scale readings were relied on as indications of the changes of temperature. A large number of observations were thus taken that are not used in obtaining the result, otherwise than as furnishing a eriterion for those that are to be admitted, and inereasing general confidence in the result.

    Thus 13 sets of comparisons at increasing temperatures give a mean difference of...... 34.75 div. 24 sets of comparisons at decreasing temperatures give a mean difference of...... 41.0S

    Mern................................................................................ . . 37.91
    12 sets of comparisons at stationary temperatures give a mean difference of. . . . . . 38.89
    The indiscriminate mean of the 49 sets is.................................................. 3885
    It will be obscrved that the standard appears longer at increasing and shorter at decreasing temperatures, as was to be expected. In discussing the results the observations were grouped by means of diagrams, exhibiting at once the relative changes in the bars, ant the following 24 sets were selected as being unexceptionable as to change of temperature during the experiments. The reference numbers in the table are those used in the general abstract of the observations, which is not inserted here.

    Table of comparisons of standard bar with six metres.

    | $\begin{gathered} \text { No. of } \\ \text { set. } \end{gathered}$ | Diff. | No. of observations. | Mean of Thermometer. |  | No. of arrangement. | Mean difference by arrangements. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | Bar. | Metres. |  |  |
    |  | div. |  | 0 | 0 |  | div. |
    | 2 | 39.8 | 20 | 36.3 | 36.3 | 2 | ) 40 , |
    | 3 | 40.3 | 9 | 38.2 | 38.1 | 2 | \}-1....---.. 40.0., |
    | 16 | 38.1 | 6 | 34.6 | 34.5 | 5 |  |
    | 17 | 39.2 | 14 | 31.9 | 32.0 | 5 |  |
    | 20 | 37.8 | 6 | 32.5 | 32.8 | 6 |  |
    | 22 | 40.4 | 6 | 33.6 | 33.9 | 6 | \}-........... 39.10 |
    | 93 | 40.6 | 6 | 37.3 | 37.6 | 7 |  |
    | 24 | 38.2 | 6 | 36.7 | 36.7 | 7 | . 39.30 |
    | 25 | 39.1 | 6 | 32.1 | 32.1 | 7 |  |
    | 27 | 34.7 | 6 | 32.1 | 32.0 | 8 |  |
    | 29 | 37.3 | 6 | 37.1 | 37.1 | 8 | ... 30.00 |
    | 32 | 42.4 | 6 | 37.8 | 38.0 | 9 | . 42.40 |
    | 37 | 35.6 | 6 | 39.0 | 39.1 | 10 |  |
    | 38 | 36.6 | 6 | 38.8 | 39.0 | 10 | (-........... 37.67 |
    | 39 | 40.8 | 6 | 35.3 | 35.9 | 10 |  |
    | 40 | 37.2 | 6 | 35.5 | 35.6 | 11 |  |
    | 41 | 38.9 | 6 | 38.4 | 38.7 | 11 |  |
    | 43 | 37.7 | 6 | 49.7 | 42.9 | 12 | - |
    | 44 | 37.4 | 6 | 36.3 | 36.5 | 12 |  |
    | 45 | 39.3 | 6 | 40.7 | 41.0 | 12 |  |
    | 46 | 35.8 | 6 | 43.8 | 43.8 | 12 |  |
    | 47 | 39.6 | 6 | 35.7 | 35.8 | 13 | ) |
    | 48 | 39.8 | 6 | 36.0 | 36.4 | 13 | 39.90 |
    | 49 | 40.3 | 6 | 38.1 | 38.5 | 13 |  |
    | Mean. | 38.58 |  | 36.7 | 36.8 |  | Mean..... 38.87 |

    In the preceding table we have:

    $$
    \begin{aligned}
    & 12 \text { sets, with apparently stationary tempcratures, give........................... . . . . } 38.82 \\
    & 4 \text { sets, with sightly increasing tomperatures, give. . . . . . . . . . . . . . . . . . . . . . . . . } 38.27 \\
    & \text { s vets, with slighty decreasing temperatures, give. . . . . . . . . . . . . . . . . . . . . . . } 38.50
    \end{aligned}
    $$

    In each set the number of comparisons is 6 , except in three cases, where it was increased without improving the result. 'Ten out of thirteen different orders of arrangement or positions of the six metres are preserved. The mean temperature of the experiments, which were generally made about eight o'elock in the morning and ten in the evening, is $36^{\circ} .7$, ranging between $32^{\circ}$ and $44^{\circ}$.

    $$
    \begin{aligned}
    & \text { 'The indiscriminate mean difference is............. } 38.58 \pm 0.26 \\
    & \text { With the probable crror of any single result...... } \pm 1.26 \\
    & \text { The mean by positions is......................... } 38.87 \pm 0.37 \\
    & \text { With the probable error of any single result...... } \pm 1.17 \\
    & \text { The weighted mean of positions becomes......... } 38.7 \pm 0.3
    \end{aligned}
    $$

    Which has been adopted.
    The value of one seale division having been found, by very carefal obscrvations, to be $\frac{1}{\mathrm{~T} 450}$ inch $=0^{m} .000001690$, we have fimally:

    $$
    \begin{aligned}
    & \text { Standard }=\Sigma(1.2 .3 .4: \overline{5} \cdot 6)-0^{\mathrm{m}} .00006575 \pm 0^{\mathrm{m}} .00000051 \\
    & \Sigma(1.2 .3 .4 .5 .6)=6 \mathrm{M}^{\mathrm{e}}+0^{\mathrm{m}} .00000646 \pm 0^{\mathrm{m}} .00000068 \\
    & \text { Standard }=6 \mathrm{M}^{\mathrm{c}}-0^{\mathrm{m} .00005929 \pm 0^{\mathrm{m}} .00000085}
    \end{aligned}
    $$

    The last line gives us the relation of the six-metre standard to the committee metre with a degree of precision which apparently leaves nothing to be desired. The probable error ascribed to it is but one thirty. thousandth part of an inch, and we are safe in assuming that it is not actually in error by one ten-thousandth part of an inch. This conclusion is fully borne out by other experiments about to be detailed. That the standard is apparently longer than indicated by former experiments is probably the result of the more effectual manner of making the contact of the six metres, and securing the straightness and rigidity of the combined bar. In all these experiments the standard bar was in its own box, and in every respect precisely under the same conditions as when used in comparisons with the base apparatus.

    As it became necessary from time to time to take the standard bar into the field for comparison with the base apparatus, a copy of the same was made in February, 1855, for preservation at the office. This copy, or standard No. 2, is in every respect similar to the originai, except that it was subjected to a moderate process of annealing, after being hammered and planed, to guard agaiast any permanent change of length from variations of temperature; it has therefore a bluish color, while the original is of the metallic color of iron.

    At that time the two bars were both placed in the box of the copy, and clamped together at one end, resting on the same rollers. On the 15 th of February, 1855 , fifteen comparisons were thus obtained, agreeing well with each other, at temperatures ranging from $34^{\circ} .5$ to $41^{\circ} .4$, which gave standard No. 1 shorter than standard No. 2 by $0^{n} .0000323$.

    The observations are sufticiently accordant, but as the bars were not entirely under the same conditions as when used with the base apparatus, it was subsequently thought best to make further comparisons. Standard No. 2 was therefore compared in March, 1858, with the six metres combined, in the same manner as above described, and subsequently'with standard No. 1, in April, 1860.

    The former comparisons, consisting of eighteen sets, in three different arrangements of the single metres, at a mean temperature of $35^{\circ} .6$, give:

    $$
    \text { Standard No. } 2=\Sigma(1.2 .3 .4 .5 .6)-10.4 \text { div. } \pm 0.4
    $$

    The comparisons of standard No. 2 with No. 1, comprising sixteen sets, each of six comparisons, made at different times, but at the comparatively high mean temperature of $48^{\circ} .2$, give:

    Standard No. $2=$ Standard No. $1+26.6$ div. $\pm 0.35$,
    which, combined with the above, gives for the difference between the standard No. 1 and the six metres joined 37.0 scale divisions, while direct comparisons gave us 38.7 . The outstanding difference might very properly be distributed among the three values, which would severally be changed by only $\frac{10}{25000}$ part of an inch. Still, as there is a difference of $12^{\circ}$ in the temperature of the comparisons, a very slight variation in the expansion of the two bars would account for the difference, and it seems better for the present to adopt the results of the dircet comparisons with the six metres, which give:

    Standard No. $1=6 \mathrm{M}^{\mathrm{e}}-0^{\mathrm{nz}} .00005929 \pm 0^{\mathrm{m}} .00000085$
    Standard No. $2=6 \mathrm{M}^{\mathrm{e}}-0^{\mathrm{m}} .00001767 \pm{ }^{\mathrm{m}} .00000096$

    Expansion of standard har.-The next problem was to ascertain by direct experiment the rate of expansion of the standard bar from $32^{\circ}$ to about $96^{\circ}$, the extreme limits between which it is likely to be ued in the measurenent of base lines. The conditions to be fulfilled are, first, the establishment of two invariable points, by refercnce to which the changes in length of the bar ean be measured, and which must not be affected by the rariations of temperature to which the bar is exposed; and scoondly, the maintenance and exact ascertainment of various temperatures of the bar under trial.

    In order to attain the first condition of fixed points of references the experiments were made (by permission of the secretary) in the basement of the Smithsomian Institute; where the temperature is only subject to small and gradual changes. Large dressed slabs of marhle, four inches thick, were there laid apon the ground. which was levelled off accurately, without its natural condition boing disturbed by packing or ramming. On these marble slabs, alout twenty feet apart, the two blocks for the support of the abutting serew and the mirror piece of the pyrometcr were placed. They were eight inches high and twelve inches square on the base, laid in a very thin layer of hydraulic cement. The plates of the abntting serew and mirror piece were fastened by acrews to plugs of lead in the top of the stone blocks.

    In order to control the temperature of the bar, and to measure it by means of thermometers, it was immersed in sperm oil, contained within a wooden box of seven by eight inches in cross-section, with its walls two inches thick, and heated or cooled by means of hot or cold water circulating through iron pipes, disposed in the box as shown in fig. 3. The same diagram shows the relative positions of the standard bar and the thermometers, while fig 5 exhibits the gencral arrangement of the appratus. The heating pipes pass out at the side of the box, and are connected by pieces of flexible tubes with other pipes, well covered with felt, that pass into an adjoining room, where the water contained in them can be heated by means of a row of gas-burners, or cooled by means of ice, or salt and snow, in a tub, with which they communicate. Connected with the system of pipes is also a hand pump, for promoting a steady circulation of the water. The connexion by flexible tubes prevents any strain on the box from expansion of the pipes outsite, and the inside system of pipes is suspended by swinging hooks, so as to move freely under the influence of temperature. All these precautions to insure stability were attended with a very satisfactory result.

    As seen in the plate, there were five thermometers inserted in the top of the box, with the stems and scales inclined, so as to be easily read. The bulbs were very near the bar-almost or quite in contact with it. But the fact of both the bar and thermmeters being immersed in a large quantity of fluid, (about fify-six gallons of sperm oil,) the aggregate capacity for heat of which bore a very large proportion to that of the bar, was relied on to sccure the same temperature to loth.

    The contact between the ends of the bar and the pyrometer was effected by means of small steel pistons, one-fifth of an inch in diameter and three inches long, sliding frecly in a packing box, as seen in fig 4 . The groove near the outside end of the pistons prevents the small Ieakage of oil from interfering with the contactThe pistons are held against the bar by means of spiral springs. In order to assist in estimating the average temperature of the pistons a thermometer was inserted in each of the packing boxes, in contact with the piston, as shown in the diagram. This estimation is the least satisfactory part of these experiments, and although the uncertainty in the results arising from that cause is very small, yet it was thought well to devise a method by which it could te entirely removed. This consists in repeating the experiments on the pistons alone, in contact with each other, in a short box, by which the actual effect upou their length of the changes of temperature of the oil would be ascertained, and could be deducted from the observed effect upon bar and pistons combined.

    The plans for these experiments were devised by Assistant Hilgard, and the observations were made under his immediate direction by Mr. W. L. Nicholson, assisted at times by Messrs. J. M. Gillis and T. McDonnell.

    As the whole change of length to be observed amounted to about one-tenth of an inch, which is much beyond the reach of the scale, the abutting screw necessarily formed the essential part of the measure. It had been carefully compared with the standard Troughton scale, (June 23, 1857,) and found one turn equal to $0.01912 \mathrm{inch} \pm 0.00004$.

    The value of the pyrometer scale was repeatedly determined while the experiments were in progress, and one turn of the screw was found to be equal to $308.87 \pm 0.35$ scale disvisions, whence $1 \mathrm{dir}=0.0000619$ inch.

    The thermometers were made by Mr. Tagliabue in the shape shown in fig. 3. The length of one degree Fahrenheit is about one-eighth of an inch. They were thoroughly and repeatedly compared with a standard by Greiner, and one by Würdemann, both of which were tested at the freezing and boiling points. The latter
    was found to require no correction, and the fact being known that in its construction the uniformity of its calibre had beeu ascertained by micrometric measurement, it was adopted as the standard of comparison for the table of corrections to the five thermometers in oil. These corrections vary but about a quarter of a degree, and are the same at the extremes of the temperatures used; hence they have only a very slight influence on the resulting rate of expansion.

    The course of the experiments was this: After recording the incications of the mirror screw, and the nine thermometers, five in the oil, two attached to pistons, and two on the stone blocks, the oil being at the natural temperature of the apartment, the gas-burners were lighted under the pipe in the adjoining room, and the pump started. By this means the oil could be heated about sixty degrees in ten hours, readings of the pyrometer and thermometers being taken every half hour.

    After a high temperature of from $90^{\circ}$ to $100^{\circ}$ had been reached, and maintaned for some time, the apparatue was allowed to cool slowly, and the readings were taken less frequently. When cooled down to the temperature of the room, about $46^{\circ}$, which reguired thirty-six hours, ice was introduced into the tab, and the cold water caused to circulate in the pipes. It was found, however, that the temperature could not be reduced below $39^{\circ}$ by this means. On one night, therefore, March 14,15 , the windows were opened to allow the whole space to cool, by which means the indications of the pyrometer were temporarily disturbed, vitiating the observations from March 13th to 16 th. Snow and salt were subscquently used for cooling the water, and a minimum of $34^{2}$ was thus reached in the temperature of the oil.

    Upon the obscrvations being graphically represented, it was seen that in the process of heating the thermometers went ahead of the bar in temperature by about half a degree in the maximum, while in the slow cooling the most perfect correspondence was observed in both, within the limits of the instrumental indications. The results of the cooling only have, therefore, been made use of in deriving the rate of expansion. The use of the ascending series would not change the result, but would make it appear less certain than it really is. The diagram, fig. 6 , shows the several series of observations, from which the following results are derived.

    Scries A, February 22 to February 25 , expansion for $1^{\circ}$ Fahr........................24.54 scale div.
    B, February 27 to Marel 2, expansion for $1^{\circ}$ Fahr........................... 2444 scale div.
    C, March 16 to March 20, expansion for $1^{\circ}$ Falır................................ 24.45 scale div.
    D, April 3 to April 6, expansion for $1^{\circ}$ Fahr. . . . . . . . . . . . . . . . . . . . . . . 24.42 scale div.
    In the mean we have for the expansion of the six-metre standard bar for $1^{\circ}$ Fahr. 24.46 scale divisions $=0.00003846$ metres, with a probable error of about $\pm 0.00000010$ metres from all sources. Hence the resulting co-efficient of expansion for $1^{\circ}$ Fahr. is $0.00000641 \pm 0.00000002$.

    In the computation of the foregoing results the following supposition has been made in regard to the temperature of the pistons: The average temperature of the exposed fifth part of each piston has been assumed to be the mean between the attached and external thermometers, and the average of the other four-fifths the mean of the attached and interior thermometers. This supposition may be slightly too low, but any other probable assumprion would not sensibly vary the above results. Thus it has been estimated that if we were assign to the pistons temperatures higher by one-half the difference betwcen the adopted ones, and those of the bar, a supposition certainly too high, the resulting change would be within the probable error aboveassigned. The plau of measuring the expansion of the pistons independently, above marked out, has as yet been only partially executed. It is designed to push it to the same degree of accuracy as the preceding experiments, in connexion with those on the expansion of standard No. 2, which still remain to be made.

    In order to show the stability of the apparatus, the mean readings in the scale in the several series have been reduced to the same temperature, with the following result :
    
    showing an average variation of only 1.2 scale divisions, or $\frac{{ }_{13} \frac{1}{800}}{}$ part of an inch, during six weeks, which may be conceived as representing an uncertainty of one-twentieth part of a degree of the thermometer in the temperature assigned.

    In conclusion it may be stated. that from the experiments related, the length of the standard six-metre bar, at any temperature between $32^{\circ}$ and $100^{\circ}$, can be assigned in terms of the committee metre, with an uncertainty of less than ene ten-thousandth part of an inch, the following being the values:

    Standard bar $=6 \mathrm{M}^{\mathrm{e}}-0^{\mathrm{m} .00005929, ~ a t ~} 32^{\circ}$ Fahr.
    Co-cfficient of expansion $=0.00000641$ for each degree of Fahr.
    It will be observed that this rate of expansion is slightly less than that usually found from experiments between $32^{\circ}$ and $212^{\circ}$, which is generally given as 0.0000067 . It is possible that such differences may be found in different pieces of iron, but the less value for the low range of temperature is quite consistent with the fact that the rate of expansion increases with the temperature.

    ## APPENDIX No. 27.

    COMPARISON OF THE EFFECT OF ATMOSPHERIC MOISTURE ON THE DIMENSIONS OF DIFFERENT KINDS OF DRAWING PAPER.

    In the Coast Survey report for 1861 , the result of some experiments were given, showing that a new preparation of paper, called "parchment paper," recommended as a substitute for common drawing paper for maps, on account of its great strength and durability, is not preferable for that purpose, being greatly more affected in dimensions by atmospheric changes.

    New samples of parchment paper having been submitted, which were considered an improvement on the former, similar experiments were again made, the details being atteaded to, as before, by Mr. E. Hergesheimer, of the drawing division.

    The papers compared were common antiquarian drawing, thick parchment and thin parchment paper; each kind was cut into strips, lengthwise and transversely, two metres in length.

    The greatest changes observed during six months are given in the following table:

    | LENGTHWISE Strips. |  |  |  | Transverse strips. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{gathered} \text { Montlis. } \\ \text { I\&62. } \end{gathered}$ | Backed antiquarian. | Thick parchnent. | Thin parchment. | Montles. 1862. | Backed antiquarian. | Thick parchnieni. | Thin parchment. |
    | May. | Millimetres. $9.6$ | Millimetres. $14.6$ | Millimetres. $19.7$ | May | $\begin{gathered} \text { Millimetres } \\ 8.9 \end{gathered}$ | Millimetres. e. 7 | Millimetres. $\text { 13. } 2$ |
    | June | 11.1 | 15.5 | 20.9 | June | 10.3 | 9.6 | 15.0 |
    | July. | 6.1 | 7.9 | 7.9 | July. | 4.7 | 4.0 | 6.5 |
    | August | 10.9 | 14.1 | 15.3 | August | 9.8 | 8.7 | 12.7 |
    | September. | 10.1 | 13.1 | 14.0 | September | 9.5 | 8.9 | 11.6 |
    | October. | 6. 6 | 13.1 | 16.2 | Oetober. | 7.4 | 8.7 | 13.5 |
    | Means | 9.0 | 13.0 | 15.7 | Mcun | 8.4 | e. 1 | 12.1 |
    | Ratios | 1. 00 | 1.44 | 1.74 | Ratios | 0.93 | 0.90 | 1.34 |

    It will be seen that the parchment papers change more than the backed drawing paper, under the same atmospheric influences, and unequally, while the drawing paper is acted upon nearly the same in both directions-an important advantage, since the proportions of the map are at least preserved, although the dimensions are subject to change.

    ## APPENDIX No. 28.

    Coast Survey parties engaged in military departments, or on duty with blockadïng squadrons, during the working season ending with June, 1862.

    | No. | Section. | Locality* | Under immediate command of- | Names of assistants and aids. | service. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2 | III. | Accomac county, Va. | General II. L. Lackwood | A. M. Harrison, assistant | Topography \& hydrography. |
    |  | . do... | Accomac county, Va......... | Generat H, H. Lock wood....... |  |  |
    | 3 |  |  | Genern H. H. Luckwoon...... | F. A. Lueber, aid | Topograpby .... . . . . . . . . . . . . . |
    |  | . . . .do... | Yorktown, Va., and the peninsula above. <br> York river, Va, and Pamunkey and Matanony rivers; steamer Corwin. | General George R. McClellan, | F. W. Worr, Eub-askistant | тороgraphy................... |
    |  |  |  |  | J. W. Donn, aid ...... ...... . . . . . . . |  |
    | 4 |  |  | Admiral L. M. Goldsborough.... | T. B. Phelps, Lieut, commander U. S. N.. Charles Junken, draughtsman .......... | Reconnaissance, and naval duty with boats and armed crews. |
    | 5 | ...dio... | Fredericksburg, Va.... ..... |  | W. D. Du Barry, master's mat |  |
    |  |  |  |  | W. Butriek, master's mate. |  |
    |  |  |  |  | E. L. Taytor, master's mate |  |
    |  |  |  |  | R. B. Switt, second engineer ... |  |
    | 5 |  |  | General Irvin MeDowel, (Col. J N. Maeonb) | C. M. Bache, sub-assistant T. W. Kobbins, aid ....... | Topography . . . . . . . . . . . . . . |
    | 6 | . ...do. | Manassas Junction, Va | General Irvin Medowest | H. L. Whiting, assistant... | Topography.... .............. |
    |  |  |  | By request if Navy Department. |  | Triangulation .... . . . . . . . . . |
    | 7 | ....do... | Potomac river, Maryland and Virginin; schoouser Cobb and schooner Dana. |  | Profesmor Fairman Rogers, act'g assistant F. P. Webber, sub-assistant | Triangulation . ... . . . . . . . . . |
    |  |  |  |  | Charies Ferguson, sub-assistan | .... . do. |
    |  |  |  |  | Charles Hosmer, aid ..... | Topography ...................... |
    |  |  |  |  | A. W, Longfellow, assistant |  |
    |  |  |  |  | John Mechan, sub-nssistant | ...... do. |
    |  |  |  |  | R. E. Hatrer, sllb arsiztant Charles Hommer, aid...... | ......do. |
    | 8 | IV. | Orpgon injet and Nou*e river, N. U; shooner Bancroft. | General A. E. Burnside, (Gen. J. G. Foster.) | Henry Mitchelf, assist | Hydrography |
    |  |  |  |  | A E. Wadsworit, assistan | .... do... |
    |  |  |  |  | Euward Cordell, Graughts nat | do |
    |  |  |  |  | C.P. Dillaway, uid...... | '...do..... ....... .... |
    | 9. | ...do... | Beaufort hamor, North Oarolina; schooner Joseph Henry. | By requcst of Navy Department. | Abert Doschke, ceting assieta | Hydrography. ............... |
    |  |  |  |  | Charles Heyne, draughtsma E. H. Courthay, aid...... |  |
    | 10 | v. | Port Royal, S. C., and othermarbors of South Carotina,and of Georgia; steamerBibb, sehooner Caswelt,selhooner Arago. | Admiral S. F. DuPont .... ..... | C. O. Boutelle, assistant, in gen'l charge. | Hydrography................... |
    |  |  |  |  | E. Willenbucher, draughtsman........... | .....do..... ......... ...... |
    |  |  |  |  | Robert Platt, executive officer | . . . .do |
    |  |  |  |  | C. French, engineer <br> C. H. Boyd, aid | do. |
    |  |  |  |  | C. H. Boyd, aid .... <br> J. S. Bradtord, aid.. | do. <br> do. |
    |  |  |  |  | C. L. Bixhy, iid. |  |
    | 11 | ...do... | Broat and Benufort rivers, Skula creek, and Oatibogar found, (intind passage,) s. C., a ad stono river. Islands above Benufort, S. C.. | Admiral S. F. DuPont | W. A. Edwards, sub-assistant........... | Hydrography. . . . . . . . . . . . . . |
    |  |  |  |  |  |  |
    | 12 | . . .do... |  | Admiral S. F. DuPont | W. H. Dennis, sub-assistant | Topography |
    | 13 | ...do. | Port Royal island, S. C. | Genemal I. L. Stevens | Cleveland Rockwelt, aid. | do. |
    | 14 | VI. |  |  | W. W. Harding, aid. . . . . | ....do..... |
    |  |  | Ftorida recfa and keya........ | General J. M. Brannan........ . | George Davidson, aseistant.... | Hydrography . . . . . . . . . . . . |
    |  |  |  |  | W. B. MoMurtrie, draughtsman | ......do. |
    |  |  |  |  | A. R. Fauntteroy, aid .. | -......dido. |
    |  |  |  |  | O. T. Iardela, sub-assistan | Topography .... .. . . . . . . . . . |
    |  |  |  |  | C. Fendsil, sub-assistant | ...... do..... ......... ...... |
    |  |  |  |  | L. L. Nichtolson, aid. |  |
    |  |  |  |  | G. A. Fairfield, assista | Triangulation.,. ........... |
    |  | VItI. | Mississippi river and Mobile bay; stemner Sachem. | Admisal D. G. Farragut, (Com D. D. Porter.) | A. T. Mosman, aid...... | ... do................. |
    | 15 |  |  |  | F. H. Gerdes, assistant | Trianguation, mpography, and hydrography. |
    |  |  |  |  | J. S. Harris, acling assis1 |  |
    | $\begin{aligned} & 16 \\ & 17 \end{aligned}$ |  |  |  | T. C. Bowie, aid |  |
    |  | $\begin{aligned} & \text {...do. . } \\ & \text {....do... } \end{aligned}$ | St. Louis, Missouri | Geveral H. W. Halleck ........ | John Merhan, sub assi | Topography .................. |
    |  |  | St. Lonis, Missouri | (Col. R. D. Cutts.) - ....... ... | R. M. Bache, assistant . . . . . . . . . . . . . . . . | . . . . do..... . . . .... ....... |

    ## APPENDIX No. 99.

    Occupation of partics on the Atlantic coust and in military departments, between June and November, 1869.
    

    ## APPENDIX No. 30.

    ## PEPORT OF ASSISTANT HENRY MITCHELL ON HYDLOGRAPHIC SURVEYE AT OREGON INLET AND IN NELSE RIVER, MLITARY DEPARTMENT OF NORTH CAROLINA.

    Bos'ron, Mass., Tune 9, 1862.
    Dear Sir: The instructions which I received from you on the 25th of March last directed me to report to Commodore L. M. Goldsborough, U. S. N., and Major General A. E. Burnside, U. S. A., for the execution of certain hydrographic surreys in the military department of North Carolina. 1 accordingly proceeded to Hampton roads and communicated with the flag-officer, from whom I received an order on Captain Rowan, commanding the naval fleet in that department, for the captured steamer Albemarle, to be used for hydrographic purposes at Oregon inlet.

    By the first transport I left for Hatteras inlet, and thence went directly to Newbern. where, without delay, I reported to the commanding general, and presented my order to Captain Rowan.

    Greatly to my disappointment, I found that the steamer Albemarle lay at the bottom of the Neuse river, having been run down by a large vesel a tew days before my arrival. I was, however, assured that. after several days' delay, I could be furmished with another steamer suitable for my work, but that circumstances prevented her immediate delivery into my hands.

    Against all delays I had been especially cantioned by yourself and the flag-officer. I therefore had recourse to other expedients suggested in your instructions. I went on board of the Coast Survey schooner Bancroft, then in charge of Assistant A. S. Wadsworth, and requested the use of his ressel and lis own co-operation in our enterprise. Mr. Wadsworth, with his wonted zeal and spirit. at once assented, and united his party with my own.

    I found the Bancroft in good order, and as well adapted for my work as any sailing vessel. Her boats, however, were quite unsuited for sounding among breakers, and I was obliged to apply to Brigadier General Foster, military governor of Newberu, for the use of one of the life-boats. The cheerfulness with which the governor supplied this and other wants of my party convinced me that he still retained that lively interest in the Coast Survey which characterized his course while attached to our service years ago.

    Thus, happily sped by fortune, we left Newbern for the scene of our work, without delay.
    On our way up the sound, we man in over the Hatteras swash and loaded up the sehooner with spar buoys and sinkers, in order that we might possess the means of marking out all the channels and shoals as fast as we surveyed them.

    On reaching Oregon inlet, April 14, our first care was to make a hasty examination of the whole ground and write out a sketch of the inlet and swash, setting forth such prominent facts relative to the depths of the channels and the dangers of the bar as should enable the military and naval authorities to decide upon the usefulness of this avenue.

    Having sent off several copies of this sketeh, we at once applied ourselves to the systematic survey of the outer bar and approaches. By the 27th of the month we had sounded out the bar and lower channels of the inlet, and placed three buoys in proper positions for guiding vessels in from sea. We had also set ap ranges on shore, which were unmistakable, and sent to the commanding general full and complete sailing directions for entering the basin from the occan.

    For the swash no sailing directions conld possibly be written; the channel being some five miles in length, and very tortuous. This portion of our survey was exceedingly slow and tedious. We could work, accurately, only about the time of slack water, and even at such times the gusts of wind and the frequent grounding of the boat caused us to lose many lines. Among such rapid tidal currents a narrow channel can only be developed by running a multitude of short lines and coming to anchor, for the determination of position, at eacli change of course.

    Stakes had been placed upon the swash by one of the government pilots before our arrival ; but their number and positions had to be changed somewhat, as our survey defined the course of the channels. We placed a striped buoy to mark the approach to the swash from the sound side, and erected a conspicuous tripod at the entrance to the slue-way.

    In forwarding the chart of Oregon inlet, I must call your attention to the movements of the beaches and shoals, which have taken place since our previous survey. While, upon the one hand, the opening through the beach of Bodie's island has shifted to the southward, you will observe, upon the other, that the channcl over the bar has moved in the opposite direction; that it now opens to the northward, instead of leading out to the southeast, as formerly. The reason why this channel is now more shallow than formerly is obviously to be found in this unfavorable change of the course.

    From considerable experience in the study of waves upon the open coast, I have come to the conclusion that there is everywhere a prevalent, if not a permanent, angle at which the larger class of swells or rollers strike the general shore-line. I have observed, also, that the current flowing from an inlet is broken up or turned aside by coming in direct collision with the waves of the ocean, so that the stream inclines to escape along the trough of the sea, or in its wake.

    In the bend below Cape Hatteras, where the "ground swell," propagated from the northeastward, drives obliquely upon the coast, the outflowing stream from an inlet may purzue almost a direct path, and yet find its way along the trough of the sea, receiving no sudden check from the waves; but preserving for a gradual decline its scouring power, it may sweep its burden of sand far out from the coast, and distribute it uniformly over a great area.*

    The conditions at Hatteras inlet are favorable for the maintenance of a good bar, while those at Oregon inlet are quite opposed to this advantage.

    At Bodie's island the swell strikes the coast from the northeast. This direction, however, is not so nearly normal to the shore-line, but that a channel, leading out along the south beach, may have a decided advantage over that in any other direction.

    Our work in the vicinity of Bodie's island was completed on the 14 th of May, and, by the 20th, the chart was brought up, so that tracings were made and presented to Major General Burnside and Commodore Rowan. A copy was also prepared and sent through your hands to Flag-Officer Goldsborough.

    In the course of this survey, Mr. Wadsworth set up and determined the numerous signals, and made an interesting sketch of Fort Oregon, a five earthwork built by the enemy on the south side of the inlet, and of other objects.

    The accomplished draughtsman of the party, Mr. Edward Cordell, of the Coast Survey, occupied one of the deserted houses on Bodie's island, where he ploted each day's work done by me in the boats. As the plotting kept up with the field-work, we were able to watch our development of the channels, and the better fill in the details. Several blind chancls had to be followed up with somadings till their bulkheads were found and located on our map.

    Messrs. T. E. Ames and C. P. Dillaway were principally employed with the sextant; the former accompanied me in the boat, while the latter developed the shore-line.

    Mr. Sengteller accompanied the party as tidal observer. His conscientiousness of character gives value to the remarkably neat records which he kept. I should have been better satisfied if I could have furnished him with an assistant, so that the observations could have been kept up night and day; but this was impossible.

    Comparative tidal observations for the determination of the inclined plane of reference were made by Mr. Dillaway at different points on the swash. I plotted these, and ascertained that the tide wave euters Oregon inlet with a mean range of two feet; that it suffers a gradual degradation as it advances towards the sound, so that it becomes insensible upon a gange at the outer edge of the swash.

    I found. from a study of the current cpochs, that I could assume, without any considerable error, that the surface of the sound lay at the mean lecel of the sea. I therefore decided to refer my soundinga to an inclined plane, extending westward from the bar and rising one foot in five miles. The foot of this plane mean low water at the inlet, was computed from the observations made during a semi-lunation; its position was referred by levellings to the bottom or floor of the new light-house cistern, (the most permanent object we could find,) and ascertained to be 2.10 feet below this bench.

    The mean level of the sea, which may be so easily and accurately determined from a few days observations, and which is a plane common to all places upon the coast, would seem to be the most natural plane of reference for a hydrographic survey; but the use of this upon our charts would leave to the inexperienced navigator the task of making the very ealculations which we would avoid; for he desires to know the low water depths along the channel ways, and possesses but a vague notion of the motion and character of the tide wave.

    Before quiting the subject of Oregon inlet, I would mention that we found the Bodie's island light tower in ruins; it was blown up by the enemy. For what purpose this wanton act was committed it is hard to divine. The pilots testify that this light had often misguided coastere, who mistook it for Hatteras.

    By special request, I detained the schooner Bancroft and party for about a week, in order to examine the Neuse river middle ground-a bad shoal, five to nine miles below Newbern, upon which several gunboats and transports had grounded.

    Upon this shoal we placed three heavy spar buoys, within sight from each other, marking the upper end, middle, and lower end of the bank, along the southern side.

    The least water found by us, in our rapid reconaissance, was five feet upon the upper lobe, and eighteen and a quarter feet upon the lower knoll. There are several slues which cross the bank, connecting the channels on either side.

    At the time of our examination the river was high; the least water along the thread of the southern channel being eleven feet.

    We furnished, for the use of the military department, sketches showing the positions of our buoys and the soundings we had made.

    Major General Burnside has done me the honor to make me bearer of a letter to yourself, commending our services.

    Very respectfully, yours,
    HENRY MTTCHELL, Asst. U. S. Coast Surncy.
    Prof. A. D. Bache, LL. D., Sup'd't U. S. Coast Surrey.

    ## APPENDIX No. 31.

    ORDERS, ETC., FROM ADMMALL S. F. DUPONT, RELATIVE TO THE SERYIOE OF COAST SURVEY PALTIES FOR TGE EOUTH ATLANTIC BLOCKADING EQTADRON, ON THE COAST OH EOUTH CAFOLINA AND GEORGIA.

    Fiag-Siur Wabasi, Port Royal Roads, Noxember 5, 1861.
    Sir : I have to that you for your efficient assistance and co-operation in bringing the heavy ships of the squadron under my command, and transports, into Port Royal roadstead; and I shall take pains to inform the Superintendent of the Coast Snrvey that your services have met my cordial commendation.

    I have now to request that you will be pleased to make a hydrographic reconnaiseance of the channel between the North Breaker and Fishing Rip, placing such buoys on the latter as will make it safe to pass the sontheast or nothwest points of the shoal, or to crose it with gunboats at low water.

    I have the honor to be, sir, your obedient servant,
    S. F. DUPONT,

    Flag-Offcer, Com'g South Allantic Blockading Squadron.
    Charles O. Boctelle, Esq. Assistant U. S. Coast Surrey.

    Flag-Ship Wabash, Port Royal Hurbor, S. C., Junuary 9, 1862.
    Sir: It has occurred to me that we should have a better understanding as to your operations with the Coast Survey force, and I desire to make the following suggestions:

    I am expecting the light-ship here in a few days, and I will be obliged to you if you will drop a buoy to-day on the place she is to occupy.

    When I requested you to survey Skull creek and Broad river it was my expectation that the results of a rapid reconnaissance, showing the direction of the principal channel and the depths at mean low water, could be furnished in a few days, the completion of the work being left to a more leisurely time. I find, however, I can depend upon the skill of pilots and masters for the safe navigation of these passages; and I therefore will ask you to turn your personal attention to the placing of the buoys in the harbors and in the possession of the naval forces under my command, and to take them up in the following order: Tybec Entrance, St. Helena Sound, Wassaw Sound, South Edisto, Ossabaw Sound, North Edisto.

    Of these harbors the first four are, like Port Royal, permanently occupied. Vessels are passing in and out of their channels at all times; and if the latter are buoyed in such a manner that, with simple directions, they can be traversed by a stranger in security, much labor and delay will be saved.

    No one knows how to do this better than yourself, and I rely upon your judgment and zeal.
    Please deliver to this ship the harge taken in North Edisto.
    I am, reapertfully, your obedient servant,
    S. F. DUPONT,

    Flag-Officer, Commanding South Atlantic Blockading Squadron.
    C. O. Boltelle, Esq.,

    Assistant Coast Surrey, Port Reyal Hurbor.

    Flag-Ship Pawnee, Fernandina Harbor, March 7, 1862.
    Sir: On the receipt of this order you will immediately proceed with the Bibb to this place, with a proper supply of buoys, to mark out the channels to Feruandina and to Brunswick.

    The utmost despatch is necessary, as I consider this bar a very dangerous one. In my absence you will please report to Commander Drayton.

    The buoys taken up here are in good preservation, but without mooringe. I think, however, that car wheels, many of which can be had here, will answer the purpose. I see no chains.

    Respectfully, your obedient servant,
    S. F. DUPONT,

    Flag-Offcer, Commanding South Allantici Blo.kading Squadron.
    C. O. Boutblee, Eeq.,

    Assistant Coast Surrey, Surreying Stramer Bibh.

    Flag-Ship Wabash, Part Royal Harlor, S. C., May 9, 1862.
    Sir: I am informed by the blockadiag officers off Charleston that one or two buoys placed on the Rattlesnake shoal would assist them materially in covering that port.

    I have therefore to request that you will proceed with the Chited States steamer Bibb, under your command, off the bar of Charleston, aud, after communicating with the senior officer, Commander Parrott, proceed to plant, in accordance with his wishes and your intelligent judgment, such buoys as may be needed.

    Respectfully, your obedient servant,
    S. F. DCPONT,

    Flag-Offecer, Commandiug South Allantic BlarFiading Squadron.
    C. O. Bortelle, Esq., Asis't U. S. Chast Surcey,

    Command ng L.S. St amer Bibb, Port Royal.

    Flag-Shir Wabasif, Port Royal Harlor, S. C., June 30, 1562.
    SIR: Yon will procept with the L.. S. stramer Bibb, under your command, to Hampton Roads, stopping on your way at North Edisto, Stom, and Charleston, communicating with the commanding officers at those places, and delivering all mails and stores put under your charge.

    It will give me pleasure, in transmifting your various reports to the Secretary of the Navy, to call attention to the valuable services of the vesech of the Coast Survey since they have been attached to this squadron. and particularly to the zeal and carnestness which you have alwars exhibited, not only in the execution of the duties pertaining to the Coast Surver, but in ading important war operations on this coast ly assisting with your local knowledge the gunboats in crossing the varions bars and entering the difficult inlets, regardess whether they were brought under fire or not.

    You will please convey to all associated with you my appreciation and commendation of their services, and which I purpose to bring to the notice of the Superintendent of the Coast Surver.

    The buoy vessel, S. C. Steele, will be left in charge, for the present, of Commander Drayton, the senior officer in Stono, until I can give further directions.

    Respectfully, your obedient servant,
    S. F. DUPONT,

    Flag-Officer, Comitg South Allantic Blockading Squadron.
    C. O. Boutelle, Esq.,

    Assistant Coast Surrey, U. S. S. Bibl, Port Royat.

    ## APPENDIX No. 32.

    LETTER of MAJOR GENERAL B. F. BUTLER. ADDREEED TO ASSISTANT C. O. FOUTELLE. ON THE COMPIETION OF REPAIRS DY HIS PALITY TO THE Y S. STEAMER MHASSIPPI IN PORT HOYEL SUUND, s. C.

    ```
    Transport Steamer Missiesippi,
    Hilton Head Island, S. C., Marel, 10, 1862.
    ```

    SIR : I cannot allow myself to leave this port without tendering to you my cordial thanks for the great. assistance which you have rendered to the service, and to myself, during the past week, in making this vessel fit to pursue her voyage to Ship island in safety.

    With the injury which this vessel has received it would have been probably impossible to have gone forward in her; and it would bave been equally impossible at this place, within a reasonable time, to have repaired that injury without the constant and cheerfully tendered services of yourself, and the ingenious skill and unremitting labor of your officers, Chief Engineer Charles French and Executive Officer Robert Platt.

    To you, therefore, and to these officers, I owe it that I may now hope to reach my command in the gulf in season for active operations in that quarter.

    I shall take pleasare in causing a proper representation to be made to the government of your usefuhess in this regard.

    For the many courtesies experienced by myself at your hands, believe me, sir, your grateful fricnd and obedient serrant,

    BENJ. F. BUTLER, Majar General Commanding.
    Chas. O. Boutelle, Eaq.,
    Ass't U. S. Coast Surrey, Com'dg U. S. Stramer Bibl.

    ## APPENDIX No. 33.

    Letter of commander percival drayton, u. S. n., in reference to maps and charts, and to IHE SERVICES OF THE PARTY OF ASSISTANT C. O. BOULELLE, ON THE COAST OF SOUTH CAROLINA.

    ## United States Steamer Pawnee,

    Stono River, June 14, 1852.Dear Sir: The chats of this river, kindly sent me from your office some little time since, have afforded so much valuable information, which could be obtained nowhere else, and without which I scarcely see how either I or the commanders of the other vessels composing the squadron in these waters could have got on in their very intricate navigation, that I canuot but express the obligation I feel under, not only on this, but other occasions, for the great assistance the Coast Survey charts have been to me in properly understanding the complicated inland navigation of Carolina and Georgia. And I will also beg leave, at the same time, to call attention to the very valuable services of the same nature, rendered to vessels which I have had on detached service, by Captain C. O. Boutelle, of the Vixen and Bibb, during the last eight months. Without him I do not see how we could have got into St. Helena Sound, or North or South Edisto, to say nothing of Stono.

    Very truly, your obedient servant,

    P. DRAYTON,<br>Commander, Scnior Offecr at Stono.

    Professor A. D. Bache,
    Superintendeat Coast Survey, Wastington.

    ## APPENDIX No. 34.

    EXTRACTS FROM COMMODORE D. D. PORTER'S LEITER TO PROFESSOR A. D. EACHE, DATED "HARRIET LANE, FORTS JACKSON AND ST. PHILIP, APRIL 29, 1862."

    Dear Sir: Amid the exciting scenes here, and the many duties that are imposed on me, I must steal a few moments to tell you something of the share the Coast Survey has had iu our doings, and to thank you for the valuable assistance rendered me by the party you sent out here. * * * The results of our mortar practice here have exceeded anything I ever dreamed of ; and for my success I am mainly indebted to the accuracy of positions marked down, under Mr. Gerdes's direction, by Mr. Harris and Mr. Oltmanns'They made a minute and complete survey from the "jump" to the forts, most of the time exposed to fire from Fhot and shell, and from sharpshooters from the bushes. * * * The position that every vessel was to occupy was marked by a white flag, and we knew to a yard the exact distance of the lole in the mortar from the forts, and you will hear in the end how straight the shells went to their mark. Mr. Oltmanns and Mr. Harris remained constantly on board to put the vessels in position again when they had to haul off for repairs, or on account of the severity of the enemy's fire. ** * $\quad$. cannot speak too highly of these gentlemen. I assure you that I shall never undertake a bombardment unless I have them at my side. Mr. Gerdes has been indefatigable in superintending the work, laboring late at night in making charts and providing the officers in command of ships with them, marking the positions of obstructions in the channel, and making all familiar with the main way. No accident happened to any ship going throngh, notwithstanding the gentlemen in the forts thought the obstructions impassable. ** * ${ }^{*}$ You must excuse my hurried letter, but I could not omit writing to you to thank your good fellows for what they have done for me, and to thank you for sending them.
    

    DAVID D. PORTER.
    Prof. A. D. Bache,
    Superintendent U. S. Coast Survey.

    Letter of Commander D. D. Porter, L. S. N., to Prof. A. D. Backe, Superintendent U. S. Coast Surrey.
    U. S. Steamer Harriet Lane, Ship Island, May 16, 1862.

    Sir: I forward to you by the Baltic a plan of Fort Jackson, (or the remains of it, faithfully drawn, under the directiou of Mr. Gerdes, by Messrs. Harris and Oltmanns, Assistants of the Coast Survey. It is a striking specimen of the effects of mortar practice, showing what can be done when distances are accurately determined, as they were in this case, by the gentlemen belonging to the Coast Survey. If you can afford the expense it would be worth while to have the plan lithographed and kept as part of the history of this hidcous war.

    I regret to say that Mr. Oltmanns, of the Sachem, has been severely wounded in the left breast by a rebel rifle ball. I sent the Sachem, in company with three of the mortar steamers, to show them the way up Pearl river, in hopes of finding some of the enemy's gunboats, which have mysteriously disappeared, (now most likely burnt, ) and while trying alone to push up the river the Sachem was attacked by a body of riflemen. Mr. Oltmanns fell while directing the movements of the vessel. The battery of the Sachem was soon brought to bear and the rebels driven away, one of them being shot dead on the branch of a tree. Everything has been done to make Mr. Oltmanns comfortable. I intend to send bim to the hospital at Southwest Pass, where he can be properly attended to. I regret his loss very much, as he has made himself very prominent throughout the operations here, in performing the various duties he was called upon to do, as inded all the members of the Coast Survey party have. I have not spared the Sachem, but have treated her like the rest of the vessels, putting her under fire when it was necessary.

    On the 8th of this month, off Mobile entrance, the steamer Clifton went ashore on S.E. shoal, under the guns of Fort Morgan, and neither of the larger steamers could get near enough to help her without danger of grounding. I ordered the Sachem to go in and help her by carrying out anchors and lines, and though the shot from the fort were flying over and around the Clifton they went at it cheerfully and intelligently. The Clifton got off just as they got their lines ready and anchors down to heave her off, but Lieut. Com'g Bald win felt as much indebted to the party on the Sachem as if they had been the means of relieving him from his perilous position.

    I look upon the Sachem in the same light as I would upon a topographical party in the army, and if I lose her in such employment she will have well paid for herself.

    Mr. Gerdes will be employed, for the present, in looking up the numerous buoys which these people have stowed away or wantonly destroyed, as they have nearly everything elsc. When found he will put them all down in their proper places. ${ }^{*}{ }^{*}{ }^{*} \quad{ }^{*} \quad * \quad$ *

    Very respectfully, your obedient servant,

    DAYID D. PORTER, Commanding Flotilla.

    A. D. Bache, LL. D. Superintendent Coast Surtey.

    ## APPENDIX No. 35.

    meport of assistant f. h. gerdes, U. S. Coast survey, to commander d. D. Ponter, u. s. n, commanding mortar flotilla in the gulf of mexico

    ## U. S. Surveying Steambr Sachem, Off Ship Island, Mry 16, 1862.

    Dear Sir: Having received your verbal instructions to accompany the gunboats of your flotilla to Lake Pontchartrain and Pearl river, I got under way on the 13 th instant, at 50 'clock a. m., and was followed by the Westfield, Captain Renshaw ; Clifton, Captain Baldwin; and Jackson, Captain Woodworth, I led them south of Cat island to $\mathrm{St} \mathbf{J}$ oseph's light-house, they following close in my wake. We carried, for the least, nine feet, and no stoppages occurred. Near Grande island, your senior officer, Captain Renshaw, requested me to overhaul a vessel to the southward, as I drew the least water. Returning I led the course again, and went through the Rigolets, and over the middle ground, with eight feet, and thence directly to Mandeville and the mouth of the Chefuncta river, on which Madison is situated. I hought two more
    schooners to, and overhauled another, but all had passes from General Butler. We anchored here in company with the New London, and I believe also the Calluon. The former intending to go next day into the river and visit Madison, Captain Renshaw concluded to return to Pearl river, and search in Pearlington and Gainesville for vessels, and I took the lead again. On the middle ground, near Point aux Herbes, the Jackson ran aground, but the other vessels got over withoub tonching. The senior officer requested me to relieve her if possible, the Sachem not drawing over six and a half feet, bat it was found impossible. An artangement was made with the steamer Whiteman to come alongside next day, lighten the Jackeon, and $t_{0}$ her off. I anchored near the light-house of the Rigolets, close to the Westfield, having previously run ten miles further to the eastward and back to commumicate winh Captain Baldwin, and to bring lim Captain lienshaw's directions.

    On the 15 th instant we started early, and I took the lead into Pearl river. We passed Pearlington, and went up some thirteen miles, where, the river becoming so narrow that the Westfield and Clifton could not make the abrupt turns, both of those vessels came to. Their captains came on board the Sachem, and we went further up. About three miles from Gainesville we were fired upon with musketry, several balls striking the vessel, and one severely wounding my exceutive officer and assistant, Mr. Oltmamms, of the Coast Survey. Whe bullet hit him in the left breast, just over the lungs. He was carried down at once, and placed in the ribin, where he was as well attended to as circunstances would permit. We returned the fire, discharging perhaps some fifty or sixty musket shots, and finally grape and canister from the 32 -pounder, which scattered the eneny. The difficulty consisted in getting the Sachen turned, as the river had hardly the width of her length.

    The first cutter of the Sachem was lost, and Captain Baldwin lost his gig, both being crushed between the woode and the propelier in turning, and my laumeh was filled, and nearly lost too. The Sachem also lost her flag-staff, but the stars and stripes were hoisted directly on the main gaff. She now carries the marks of ten or twelve iffe or musket balls. The quartermaster at the wheel narrowly escaped, a bullet having passed through his clothes, and several other persons on board had very narrow escapes from injury. When we retured to the Clifton and Wesffield, Mr. Oltrnanns was transferred to the former vessel, and everything that the great kindness of Captain Baldwin could suggest was done for him. The doctor probed his wound, but did not find the ball. At seven o'clock we anchored near Grassy island, in Lake Borgne.

    We are deeply indebted to Captains Renshaw and Baldwin, both of whom ably directed affairs during the attack. 'The loss of Mr. Oltmanns from the party is very great, as he had learned to manage the Sachem for any service. Even if he recovers, he will be unfit for duty this season, and will have to take the first opportunity to return north. Late at night I visited the Clifton, and was told by the doctor that the wound was very severe; but that Mr. Oltmanns, with care, might recover.

    This morning, the 16 th May, we got under way, and stood for Cat and Ship islands. Mr. Harris takes the post of executive officer on the Sachem.

    Very respectfully,
    F. H. GERDES, Assistant C. S. Coast Survey.

    Capt. D. I. Porter, U. S. N., Commanding U. S. Mortar Flatilla.

    ## APPENDIX No. 36.

    Aids to navigation placed at the entrances of southern harbors for the use of the United Srates blackading squadrons, by parties of the Coast Survey, during the worting season of $1861-62$.
    

    ## APPENDLX No. 37.

    ## RESOLUTION PASSED BY THE COMMISSION APPOINTED TO EXAMINE SITES FOR A NAVY YARD.

    Navy Yard, Philadelphia, October 23, 1862.
    SIr : I have the honor to transmit to you a copy of a resolution passed by the board* on League island navy yard, etc., at their meeting of this day.

    Very respectfully, your obedient servant,

    S. H. STRINGHAM, Pres't of the Board.

    Prof A. D. Bache, Sup't U. S. Coast Survey.
    Whereas very important services have been rendered this board by the officers attached to the Coast Survey, in furnishing maps, charts, and other valuable information in reference to the various qualities of the localities which have been examined, thereby greatly reducing the labors of the board, and expediting the completion of its work, it is due to those gentlemen that the board should express its high appreciation of the great value of the assistance which has been so cheerfully and promptly rendered: Therefore-

    Resolved, That the thanks of this board be tendered to Professor Bache, and through him to the gentlemen connected with the Coast Survey, for the very valuable assistance which they have so kindly, promptly, aud cheerfully rendered in furnishing maps, charts, and other hydrographical and topographical information, whereby the labors of this board have been materially reduced, and the accomplishment of the object of its mission greatly facilitated.

    - Admiral S. H. Btringham, president ; Commodore G. J. Van Brunt; Commodore W. H. Gardner ; Captain Juhn Marston, U. S. N. ; Professor A. D. Bache, Superintendent U. S. Coast Eurvey; Civil Engineer W. P. S. Suuger.


    ## APPENDIX No. 38.

    List of capes, headlands, islands, harbors, and anchorages on the western coast of the United States, of which ether topographical, hydrographic, preliminary, or complete surveys have been made, or maps, charts, or sketches issued.
    

    List of capes, headlands, islands, \$o.-Continued.
    

    List of capes, headlands, islands, fr:-Continued.

    | Names in geographical order. | Character of survey. | Published. |
    | :---: | :---: | :---: |
    | San Antonio creek | Complete survey | Map .-..-.-. ....-.-. . . . . . . . . . . . . 1857. |
    | Petaluma creek. | ...-.-. do..- |  |
    | Napa creek. | do |  |
    | Du Vree's creek | do | On map of San Francisco entrance.... 1856. |
    | Mission creek | do | .-.-.-- do..---.--- . do.......... 1856. |
    | Tolay creek. | do | On map of San Fablo bay ....-.-. .-. 1856. |
    | Sonoma creek | do | .-.-.-.-.do..-.-... do .-... .-... .-... 1850. |
    | Novate creek. | do | . do ... . . . . do. . - . . . . . . . . . . . 1856. |
    | cities and towas. |  |  |
    | San Diego.. | Complete survey | On map of San Diego biy............- 1857. |
    | Santa Barbara | -----.do--.. | On sketch of Santa Barbara ........... 1853. |
    | City of Monterey | do | On map of Monterey bay .-.......... 1857. |
    | City of San Francico | do |  |
    | Oakland city | du | On map of Sam Antoni, creek --.- -- 1857. |
    | Brooklyn .-- | .-.. do | ------.do-----... do............. . 1857. |
    | Vallejo | do | On map of San Pablo bay ............ 1856. |
    | B-nicia | do |  |
    | Union city | . do..... . 1857 |  |
    | Alviso -- | . .-. .do.-..-. 1857 |  |
    | Martinez | . do | . .do ..-. .-. - do. .-. . . .-. . . . . . 1856. |
    | Napa city. | do | Map ....-----.-.-.-.-.-. .-. |
    | Petaluma city | d |  |
    | Newtown .- | do | On map of San Pedro harbor.......... 1859. |
    | Santa Cruz. | do | On sketch of Santa Craz harbor-.-.--1854. |
    | Mouldro city | do | On map of Tomales bay ................. 1861. |
    | Humboldt. | d | On sketch of Humboldt bay .-.-.---- 1858. |
    | Bucksport | do |  |
    | Eli.eka - | do |  |
    | Crescent City | do | On sketch of Crescent City harbor..... 1854. |
    | Trinidad .-. | Sketch . | On sketch of Triaidad bay................. 1851. |
    | Port Townshend | Complete surrey | On sketch of Port Tawnshend.......-- 1858. |
    | Steilacoon | Sketch .-...... | On sketch of Steilacoon harbur ..... .-. 1856. |
    | Olympia | .-du | On sketch of Olympia harbor.-........ 1856. |

    ## APPENDIX No. 39.

    DIRECTORY FOR THE PATFIC COAST OF THE UNITED STATES, REPORTED TO THE SUPERINTENDENT OF THE UNITFD STATES COAST SURVEY.-BY GEORGE DAYIDSON, ASSISTANT.

    ## INTRODUCTION.

    The directory furnished by Assistant Davidson, and first published in the Coast Survey Report for 1558, $i^{s}$ now in its revised form, preceded by a brief sketch of the commencement and progress of the survey of the western coast.

    California was ceded to the United States by the treaty which was ratificd with Mexico on the 30th of May, 1848. In that same year the march of improvement, having already gained the shores of Oregon, prompted applications to the Treasury Department that the Coast Survey organization, which had been working several years on the Atlantic side, might be made to include also the Pacific coast. In accordance with directions from the department, the Superintendent of the Coast Survey, in the autumn of 1848. organized a surveying party, assigning for the field work, in Oregon, James $\mathbb{S}$. Williams, one of the mont experienced of the civil assistants in reconnaissance, and, for the hydrography, Lieut. Com'g W. P. McArthur, U.S. N., of tried service in the survey of the Atlantic sections. Sub.Assistant Jos. S. Rath was detailed as topographer. For the general uses of the party, the schooner Ewing was despatched from New York on the 10th of January, 1849, under command of Lieut. W. A. Bartlett, U. S. N., and the party followed on the lst of February in the steamer Falcon, by way of the Isthmus of Darien. The Ewing, after a long and dangerous passage, passed the straits of Magellan, and finally reached San Francisco on the 1st of August, her time from Callao being fifty-one days. The opening of gold deposits near San Francisco had, monthe before, concentrated all the meank of coastwise transport there, leaving Mr. Williams unable to reach the mouth of the Colnmbia river. He occupied the time, after his arrival in April, by a general reconnaissance
    of the north shores of San Franciseo bay. Lieut. Com'g McArthur joined the party in the Ewing, at the end of August, to find that the retention of any part of her crew, while gold was to be picked up, would be a matter of extreme difficulty. The high rate of wages, moreover, and the lateness of the season, made it expedient to defer special operations till the next year. Notwithstanding the drawbacks alluded to, a general reconnaissance of the coast was made by this party from Monterey northward to the mouth of the Columbia river, and a preliminary survey of the entrance of that river. With full knowledge of the difficulties to be overcome in pushing the desired work further, four of the younger officers, who had been engaged on the Atlantic coast—George Davidson, A. M. Marrison, James S. Lawson, and John Rockwell-pledged the assurance of their exertions, and were sent out in May, 1850. These were followed in October by Assistant R. D. Cutts and by A. F. Rodgers, the result of whose labors has been the elaborate topographical survey of the shores of San Francisco bay, and of the coast northward to Bodega bay. The party first detailed for duty left the Pacific coast in the following autumn, having added the survey of Mare Island strait, and a large amount of general information relating to the coast, its harbors, and river entrances, and to the islands. Lient. Com'g McArthur and Lieut. Bartlett had given special attention to the lighting and marks needed for safer navigation, and furnished the sailing directions then requisite for passing up the coast and through the straits of Fuca.

    Assistant Davidson, of the party, which, in 1850 , so fully met my expectations, determined the geographical position of Point Conception, a service of the first consequence at that time for the rapidly increasing transit by sailing vessels along the coast of California. To this succeeded the determination of geographical positions, and of the magnetic variations at prominent points and headlands, and the topographical survey of various localities in California and Oregon, by the antiring energy of Mr. Davidson and the assistants who took up work during the same season. Their names are associated with most of the maps and charts of the western coast, which have since been published, and with descriptions of the field work in the annual rereports of the Superintendent.

    The survey of the shores of the Santa Barbara chamel was further extended by the detail for duty of Captain (now Brgadier General) E. O. C. Ord, U.S. A., and Sub-Assistant W. M. Johnson, in the summer of 1853, and by Assistant W. E. Greenwell, since February, 1855. Assistant G. A. Fairfield, in the same season, replaced Mr. Cutts in the triangulation which he had carried from Monterey to the north of San Francisco, and was in turn succeeded by Assistant Davidson, who had, in the interval, developed the geographical peculiarities of Washington Territory by the triangulation of Admiralty inlet, Puget's sound, and the numerous indentations of both, and by determinations of latitude, longitude, and the magnetic elements, at many points of the shores of the Territory, as he had previously done on the shores of Califormia and Oregon. At his return to the Atlantic coast, in December, 1860, the continuance of the work in Washington Territory devolved on Sub-assistant Lawson.

    Commander James Alden, U. S. N., took charge of the Lydrographic operations in August, 1851; revised the early reconnaissance of the entire western coast of the United States, and in the course of the nine years following brought the local hydrography up even with the data which had been supplied by the field parties. Working part of the time with two vessels, he was assisted in the command at intervals by Lieuts. Com'g 'Thos. H. Stevens, J. S. Kenmard, R. M. Cuyler, and Arch'd MacRae. As chief of the hydrographic party, the name of Commander Alden is connected with nearly all the charts which are referred to in the directory of the Pacific coast. For the tides, to which special attention has been given from an early period in the history of the survey, as to one of its most important adjuncts, the requisite observations, at points selected by the Superintendent, were first directed by Lieut. W. P. Trowbridge, and, for a short period after, by Lieut. N. F. Alexander; but since July, 1857, by Lieut. G. Hi. Elliot, severally of the Corps of Engineers. The results worked ont in the office for the tides, and for latitude and longitude, the sailing directions furnished by the hydrographic officers for the charts, the distances between points as measured on them, the dangers of the coast, and additional particulars within the personal knowledge or observation of Assistant Davidson, will be found embodied in his directory.

    A list of the special surveys made on the western coast is given in Appendix No. 38.

    Germantown, Pa., December 1, 1862.

    Dear Sir: In my answer to your letter of inquiry of November 10, it was stated that since writing the directory I had accumulated much valuable material.

    This having been incorporated, it is proper to mention that the principal sources of information were the reports of the progress of the Coast Survey in Santa Barbara channel and Monterey bay; your discussion of the mass of tidal observations; the establishment of new light-houses and changes in old ones; the work upon the approaches to San Francisco bay ; the detailed survey of Crescent City harbor; the examinations of the approaches, entrances, and extent of Koos and Gray's bays; the continuation of the work in the Gulf of Georgia; and two years' additional personal experience. In that time I made special examinations of the seaboard, from Half-moon bay to the Walalla river, embracing the first accurate determination of the position and extent of the middle and north Farallones.

    It will, perhaps, be gratifying to you to learn that, beyond the typographical errors in the first publication, it has not been found necessary to expunge a dozen lines, and that the few changes made have resulted from giving details where investigation had solved generalities.

    Many portions have been rearranged to brirg each item consecutively before the eye. Very respectfully, yours,

    GEORGE DAVIDSON, Ass't U. S. Coast Survey.
    Prof. A. D. Bache,
    Superintendent U. S. Coast Survey, Washington, D. C.

    Kensington, Pa., August 29, 1858.
    Dear Sir: In offering for your acceptance the following Directory for the Pacific Coast of the United States, it may not be amiss to state the circumstances under which it was undertaken.

    For nearly eight years the duties which you assigned to me in California, and in Oregon and Washington Territories, kept me moving continually along the seaboard in every manner of conveyance, and familiarized me with almost every mile of the coast, along which my various trips and explorations have amounted to an aggregate of between fifty and sixty thousand milcs. I early felt the want of reliable information in tangible form, instead of trusting to memory, and, upon assuming the charge of the coast surveying brig $\mathrm{R} . \mathrm{H}$. Fauntleroy, I determined to embody for publication the information acquired, but several years of failing health prevented the execution of more than regular duties, until the growing desire to leave the Pacific coast forced me to occupy the remaining leisure moments in arranging the matter while yet freshly photographed upon the mind. A small part was published in San Francisco, and although abounding in typographical errors, the avidity with which it was sought was a strong incentive to continue the self-imposed task. The result is now placed at your disposal, and having examined all the courses, distances, and positions, I trust that no essential errors have been overlooked; but whatever have, fall upon my own shoulders.

    My duties having been especially geodetic and astronomical, we naturally preceded the hydrography, and, working in comparatively unknown waters, have had constant occasion to use the lead. When seeking for an anchorage, drifting with currents, or on boat duty, I have almost invariably kept it going from my own hand. Several discoveries have rewarded our efforts.

    The historical notices of previous discoveries will be found few and short, as hardly coming within the scope of the present undertaking. The descriptions may reconcile some of the discordances of the early navigators.

    Very respectfully, yours,
    GEORGE DAVIDSON, Assistant Coast Survey.
    Prof. A. D. Bache,
    Superintendent U. S. Coust Surrey, Washington, D. C.

    ## INTRODICTORY

    Before the recent conquest of California and the discovery and development of its vast mineral wealth, comparatively little was known of the hydrography and geography of its coast, except by the few navigators trading along its seaboard, or the daring otter hunter, familiar with every cove, rock, and headland. All that had been accomplished forcibly showed that a great work had yet to be planned and executed.

    It would take us far from our prescribed path to trace the extent, bearing, and importance of the successive discoveries made during a period of more than three hundred years, between 1539, when Francisco de Ulloa first determined Lower Califurnia to be a peninsula, and 1853, when the Superintendent of the United States Coast Survey first despatched a party to give definite shape to our shores. If the carly adventurers and discovercrs made their explorations in small crazy vessels, with wretched and untrustworthy instruments and methods, it is no less true that the first Coast Survey parties made theirs with inadequate funds, and under difficultics and privations that the well-housed Californian of to-day can never fully appreciate.

    The task we have proposed to ourselves before leaving this glorious El Dorado, whose Golden Gate has admitted in ten years the commerce of every nation, and given egress to products worth five hundred millions of dollars, will be, to state all that is known at the present time of the hydrography and geography of the Pacific coast of the United States from the southern boundary in $32032^{\prime}$ to the northern boundary in $49^{\circ}$, embracing an ocean shore-line of over 3,120 miles, divided as follows: California, including the islands of the Sauta Barbara channel, 1,097 miles; Oregon 285 miles; Washington Territory, including the south side of the Strait of Juan de Fuca, Admiralty inlet, Puget's sound, the Archipelago de Haro, \&c., 1,738 miles.

    The descriptions of ports, bays, anchorages, reefs, capes, islands, \&c., will be given generally from personal observation made during an examination of the coast, extending through nearly eight years. Whatever has not come directly under our own criticism will be taken from the published reports and maps of the Coast Survey. The names adopted will be those most reliable. Where any changes have taken place, they will be stated if known.

    With these few words of introduction, we may be pardoned in expressing a conviction that the knowledge herein conveyed will be of advantage to our extended commerce, and in assuring the navigator approaching the bold outline of our coast, of the accuracy of the geographical positions. No work of the kind has heretofore been undertaken; and should it possess no other merit than serving as a nucleus for aggregating future discoveries and developments, we shall feel that our labor has not been wholly in vain.

    ## EXPLANATORY REMARKS

    - The longitudes of nine stations on the coast have been determined by the Coast Survey, by means of moon culminations, occultations, and solar eclipses. The observations of moon culminations at each station generally extended through three lunations. The latitudes were determined according to the most approved methods and with the most delicate instruments. These stations and twenty-four intermediate ones have been connected by means of a large number of chronometers, (from fourteen to twenty-one,) transported by steamer, for the determination of the longitudes of the intermediate ones, of which the latitudes were also accurately determined in the same manner as the principal ones. Other points, including light-houses, have been determined by triangulation.

    Where any position is given to the nearest minute only, it has been taken from the latest chart of the Coast Survey. The longitude is reckoned west from Greenwich.

    The prediction of the tides supersedes the crude approximations of previous explorers.
    Tables and examples will be introduced to show the manner of predicting the times and heighte of high and low waters at San Francisco and other harbors.

    Soundings are given for mean low water.
    Bearings are magnetic.
    Distances are expressed in geographical (nautical) miles.
    Magnetic declinations (variations) were determined with delicate and reliable instruments, and precautions were always taken to avoid the influence of local attraction.

    Descriptions of light-houses, fog-bells, buoys, \&c., are from the published notices of the Light-house Board.

    ## COAST DIRECTORY, MEXICO.

    ## LOS CORONADOS.

    These islands belong to Mexico ; lie about seven miles off the coast, and nearly eight miles south of the boundary between Mexico and the United States.

    They form a group of high, bold, and abrupt rocks and islets, of which the largest is 15 miles S. $11^{\circ} \mathrm{E}$. from Point Loma, about $1 \bar{s}$ mile in length by one-third of a mile in breadth, and lying in a NW. and SE. direction. It is a wedge-shaped mass, about 575 feet above the sea, the surface having some earth upon it, but entirely destitute of trees. A few small sbrubs exist, and during the rainy season the soil is covered with grase, and a great abundance of gaudily colored wild flowers showing in patches of orangis, purple, and yellow, when seen from the water. During the dry season everything is withered and the islet presents a sterile appearance. Cacti and other plants grow among the rocks.

    There is an anchorage about one-quarter of a mile to the eastward of the islet, and but one landing place; even there the ascent is difficult for fifty feet, and thence easy to the crest, about half a mile distant.

    The geographical position of the highest point, as determined by the Coast Survey, is :
    

    On the west and northwest sides of the islet, and about half a mile distant, lie two smaller ones, or rather two masses of rocks about 50 feet high, and destitute of vegetation. They are a favorite resort for the enormous sea elephants. Excellent anchorage is said to be found in the vicinity. The smaller of the two prominent islets is about half a mile in length; lies N. $58^{\circ} \mathrm{W}$. from the larger, and is distant $2{ }_{8}^{3}$ miles. It is a huge barren rock, with very sharp summit.

    In coming from the south, this group affords a good mark for making San Diego, although before being up with them Point Loma shows distinctly.

    Los Coronados were discovered by Juan Rodriguez Cabrillo in 1542, and named by Viscaino in 1602, in honor of Francisco Coronado, governor of the province of Xalizeo, under Cortes.

    ## PACIFIC COAST OF THE UNITED STATES. california.

    The name California is first found in the worthless romance of "Sergus, of Esplandian," the son of Amadis of Gaul, written by Garcia Ordoñez de Montalvo, the translator of the Amadis. It was first printed in 1510 , with editions in $1519,1521,1525,1526$, (two,) 1575,1587 , and the recent reprint of 1857.
    'The name appears in numerous passages, of which the following are given.
    Sergus, ch. 157. "Know that, on the right hand of the Indies, very near to the Terrestrial Paradise, there is an island called California, which was peopled with black women, without any men among them, because they were accustomed to live after the fashion of Amazons."
    "In this island called California, are many Griffins, on account of the great savageness of the country and the immense quantity of the wild game found there."
    "Now, in the time that those great men of the Pagans sailed [against Constantinople] with those great fleets of which I have told you, there reigned in this land of California a queen, large of body, very beautiful, in the prime of her years," \&c., \&c.

    The name California next occurs in the memoirs of the conquistador, Bernal Diaz del Castillo, who served with Cortes in the conquest of Mexico. He writes that "Cortes again set sail from Santa Cruz and discovered the coast of California." Here Cortes remained for some time, disheartened at the want of success of his various expeditions. The viceroy, Mendoza, despatched a vessel under the command of Ulloa with letters to Cortes. "Ulloa had a most favorable voyage, and soon arrived in the harbor where Cortes lay at
    anchor. The letters of his wife and those of his children and of the viceroy had so much effect upon him that he gave the command of his vessel to Ulloa, embarked for Acapulco, and, when he had arrived here, he hastened to Quauhnahuac, where his wife resided. * * * Shortly after, also, the troops arrived which had been left behind in California.'

    After a few months' repose Cortes sent out a more considerable expedition, under command of Clloa"This armament left the harbor de la Natividad in the month of June of one thousand five hundred and thirty, and so many years-I forget the exact year."

    The California referred to above is the peninsula of that name, generally known as Lower California, and the date 1535. They are the only times in which Diaz uses the namc. (Cap. CC.)

    In 1539 Francisco de Llloa determined Lower California to be a peninsula; this fact appears to have been subsequently forgotten, for it was called Ilas Carolinas, in honor of Charles II of Spain.

    The name California was gradually used to designate the region from the Gulf of California to the mythical "Straits of Anian."

    The country was called New Albion by Sir Francis Drake in 1079.
    In recent times the region north of San Diego was called Alta California.
    From the southern boundary, in latitude $32^{\circ} 32^{\prime}$, longitude $117^{\circ} 06^{\prime}$, to Point Arguello, in latitude $34^{\circ}$ $34^{\prime}$, longitude $120^{\circ} 38^{\prime}$, the coast runs W.NW. 225 miles; from Point Arguello to Cape Mendocino, in latitude $40^{\circ} 25^{\prime}$, longitude $124^{\circ} 22^{\prime}$, NW. 525 miles; from Cape Mendocino to Cape Flattery, in latitude $48^{\circ} 23^{\prime}$, longitude $124^{\circ} 44^{\prime}$, N.NW. 480 miles.

    The monument marking the western initial point of the boundary between Mexico and the United States is on the table bluff rising from the low land south of San Dicgo bay. It is an obelisk of white marble, about twenty feet in height, and resting upon a pedestal. It stands near the edge of the bluff, about two hundred yards from the sea shore, and is plainly visible from the water. Its geographical position, as determined by the Coast Survey, is:

    $$
    \begin{aligned}
    & \text { Latitude ................................................................... } 323158.46 \text { north. } \\
    & \text { Longitude................................................................. . . . } 1170611.12 \text { west. } \\
    & \text { h. } m \text {. } s \text {. } \\
    & \text { Or, in time.................................................................... } 748 \text { 24.74. }
    \end{aligned}
    $$

    A view of the initial point and surrounding country was published by the Coast Survey on the reconnaissance chart of 1853 .

    From the boundary the coast is low and flat, running N. by W. for about 7 miles; thence curving gradually westward until it is nearly east and west at the entrance of san Diego bay. The interior of the country is marked by high mountains.

    POINT LOMA.
    This is the southern part of the western boundary of San Diego bay, and the termination of a remarkable narrow spur of coarse, crumbling sandstone, which rises south of Puerto Falso, or False bay, and west of the town of San Diego, to the height of 300 feet, and after stretching south for about $5 \frac{1}{2}$ miles, gradually increasing in height to 422 fect, terminates very abruptly. It is covered with coarse grass, cacti, wild sage, and low bushes.

    ## SAN DIEGO BAY.

    Next to that of San Francisco, no harbor on the Pacific coast of the United States approximates in excellence that of the bay of Sau Diego. It is readily distinguished, easily approached, and a depth of 22 feet can be carried over the bar, which is three-quarters of a mile east of the southern extremity of Point Loma, and between it and the tail of the Zuniga shoal. The bar is about 650 yards across from the outer to the inner five-fathom lines.

    Vessels coming from the northwest make the ridge of Point Loma as a long, flat-topped island, when about 25 miles distant. This appearance is occasioned by the bay to the southrest, by the low land to the northeast, and by the Puerto Falso at the north.

    A thick field of kelp lies along the western shore of Point Loma, the inner edge being about one mile off-shore, and having a breadth of half a mile. The outer edge marks the line where the depth of water suddenly changer from 20 to 10 fathoms. The field commences off the bar at the entrance to False bay, and stretches southward $2 \frac{3}{4}$ miles south of Point Loma. Approaching the south end of Loma, along the 35 c
    outer edge of the kelp, pass through a partial break in it, and when the point bears NE. by E., distant $1 \frac{1}{2}$ mile, keep along the northern edge of the kelp in $4 \frac{1}{2}$ fathoms, and about half a mile from the point.

    As soon as the point is passed, a long, low beach of shingle is opened, making out from the east side of the point and forming a natural breakwater, formerly called Punta de Guiranas* by the Spaniards, but now designated as Ballast Point.

    Round up gradually until Ballast Point is brought in range with the casternmost house of La Playa, (distant one mile from Ballast Point and on the same side of the bay,) and be careful not to open more of the village, as the shoal called Barros de Zanigat stretches south from the east side of the entrance parallel to the ridge of Point Loma, and distant only three-quarters of a mile from it. Between Point Loma and this shoal runs the chamel, which is less than half a mile wide within the three-fathom lines. With the least swell the breakers show the position and extent of the shoal, and at low tides part of it is bare. It has been said that a rock, having but five or six feet of water upon it, lies in the channel; its position being marked by a patch of kelp, which is, however, torn away in heavy weather. 'The pilot-bnat Fanny reported being upon it in 1851, but the examinations of the Coast Survey have developed no such danger, and the report has been generally discredited.

    During the summer keep as close to Point Loma as the draught of the vessel will permit, and lay on the wind up to Ballast Point, off which four fathoms can be carricd within a ship's length, with 10 fathoms in mid-chamel, and a very strong current on the ebb and flood tides; the former setting over the Zuniga shoal. After passing Ballast Point steer for La Playa. and anchor anywhere in from 4 to 10 fathoms, with good holding-ground. Inside the point, and about 250 yards N. by W. from it, is a shoal having only 12 feet water upon it, in a line from Ballast Point to the westernmost house at La Playa. It is a quarter of a mile long. The shoals on the starboard hand, after entering, are plainly in sight, except at very high water. The chamnel, however, is buoyed, and cannot be missed. From La Playa to New San Diego, four miles distant, the channel curves to the right and contracts, but about six fathoms water may be carried that far. A mile or two beyond the town the bay becomes shoal and filled with flats, yet a very narrow three-fathom channel runs close along the eastern shore, nearly to the head of the bay.

    Coming from the south, run for the extreme end of Point Loma until Ballast Point and La Playa are in range, as beforc, and follow the foregoing directions.

    When inside the harbor vessels are perfectly safe, but during very heavy southerly weather the kelp is said to drive in such masses as to make vessels drag their anchors. We have never known such a case, and doubt if a vessel with good gromed tackle and proper attention would suffer from this canse. Certainly there is not reach enough for the wind to raise a swell, and the holding-ground is excellent. In heavy southeast weather the sea breake over Ballast Point, and in 1851 the pilot-boat Fanny was piled upon it.

    ## rolnt lona light-house.

    This primary sea-coast light is less than half a mile from the southern end, and situated upon the highest part of the point, which here attains an elevation of 422 feet above high water. The building consists of a stone dwelling of one and a half story, with a low tower of plastered brick rising from the centre sufficiently high to place the focal plane of the light 450 feet above the sea. The light is a fixed white light of the third order of Fresnel, exhibited (since November 15, 1855,) from sunset to sumrise, illumiuates the entire horizon, and in clear weather should be visible-

    From a height of 10 feet above the sea, at a distance of 28 miles.
    From a beight of 20 fect above the sea, at a distance of 29 miles.
    From a height of 30 feet above the sea, at a distance of 31 miles.
    The geographieal position of the light, as given by the Coast Survey, is:

    |  |  |
    | :---: | :---: |
    |  |  |
    |  | 4 $m$ |
    | Or, in time | 74849.5 |
    |  |  |

    Magnetic variation, $1 \mathscr{Z}^{2} 29^{\prime}$ east, in Apil, 1851 , with a yearly increase of $\mathbf{1}^{\prime}$.


    ## TIDES AT SAN DIEGO.

    General remarks upon the nature of the tides of the Pacific coast will be giveu further on, under the head of tides at San Francisco. The tables for San Diego will be given at the end of the Directory.

    Tables I and II are used for determining the time of high water, and table III will give the times of the other high and the low waters. Tables $1 V$ and $V$ give the height of high water, and tabies VI and VII the height of the other high and low waters. The explanation of these tables, with an example illustrating their application for San Francisco, will be found on pages

    The corrected establishment or mean interval between the time of the moon's transit and the time of high water at La Playa is IX $h$. XXXVILI $m$. The mean rise and fall of tides is 3.7 feet, of spring tides 5.0 feet, and of neap tides 2.3 feet; the mean duration of the flood is 6 h .25 m .; of the ebb, 6 h .0 m ; and of the stand 07.30 m . The arerage difference between the corrected establishment of the a. m . and $\mathrm{p} . \mathrm{m}$. tides of the same day is $1 / 2.20 \mathrm{~m}$. fir high water, and $1 / \mathrm{h}$. 6 m . for low water. The differences, when the moon's declination is greatest, are $2 h .4 \mathrm{~m}$. and 1 h .36 m ., respectively. The average difference in height of these two tides is 1.5 foot for the high waters and 2.1 feet for the low waters. When the moon's declination is greatest, those differences are 2.2 feet and 3.0 feet, respectively. The average difference of the higher high and lower low waters of the same day is 5.5 feet, and when the moon's declination is greatest, 6.3 feet. The higher high tide in the twenty-four hours occurs about 9 h .10 m . after the mon'r upper transit, (southing.) when the moon's declination is north, and about $3 h .16 \mathrm{~m}$. before when south. The lower of the low waters occurs about $7 \frac{1}{4}$ hours after the higher high ide.

    The greatest observed difference between two low waters of one day was 4.2 fect, and the greatest difference between the higher high and lower low waters of one day, 8.8 feet.

    The existence of a bar at the entrance of this port was discovered by Vancouver in 1793, and in criticising a plan of the harbor, published by Dalrymple in 1782, he remarks: "This plan, in point of correctuess, is justly entitled to much praise, but was yet capable, as far as came under my observation, of the following little improvements: the scale representing five nautical miles should only subtend three miles and a half; the shoals of Barros de Zooniga, though well placed, instead of being two distinct shoals ought to have been one entire shoal, stretching something further to the NW. and SE. than is therein represented; and the soundings between Barros de Zooniga and the land of Ponta de la Loma, (which is omitted,) are in no part, from the south extremity of the former directly across to the latter, more than four fathoms at high water, and form a narrow bar from the shore to the shoal, gradually deepening as well on the inside as on the outside of the bar, with a regular increase in mid-channcl, from five, close to the shore, to ten fathoms between the two low points that form the entrance to the port." - (Vol. II, page 473.)

    As the mean rise and fall of spring tides is five feet, and of neap tides about two and a half, Vancouver's and the recent examinations of the Coast Survey contirm cach other, and tend to show that the depth has remained the same for the last sixty-three years.

    The primary astronomical station of the Coast Survey is on the round-topped hill, 100 feet high, and a quarter of a mile W.SW. of La Playa.

    ## Its geographical position is:

    

    The eastern side of the entrance to San Diego bay is low and flat, covered with thick bushes and grass. It is called "The Island," although a peninsula, being very low and narrow towards the head of the bay. On Ballast Point, at the base of the Point Loma ridge, are visible the ruins of the old Spanish fortifications, \&c.

    From Ballast Point the bay runs about north for a mile and a half; thence curves gradually to the castward for three miles to New San Diego; thence to the head of the bay, southeast, seven miles. The average width of the bay after passing La Playa is a mile and a half, but at New San Diego, after contracting to a trifle over half a mile, it again expands to about a mile and a half, with low shores and extensive marshes and flats. Many years since the San Diego river changed its course during a freshet, and emptied into San Diego bay instead of Puerto Falso to the northwest. The result was a rapid filling in of the bay opposite
    the old town of San Diego. An appropriation was made by Congress to turn the channel of the river to its original bed. This was done a few years ago, but the works have not proved of sufficient strength.

    The great drawback in San Dicgo bay is the want of fresh water, which has to be brought from the river. An effort was made in 1851 to obtain a supply at La Playa by sinking an artesian well, but after boring 635 feet the attempt was abandoned. A similar attempt, with like results, was made at New Town, both confirming the previously expressed opinion of geologists. The same amount of money wonld have brought it in earthen pipes from the river. During the long dry season the river loses itself in the sand, and the inhabitants are compelled to dig in its bed to obtain their supplics. Fresh provisions are readily procured here. Wood is scarce and not good.

    The land in the region of San Diego bay is, with the exception of a small portion, well adapted to grazing. There are numerous tracts, of limited extent, which produce well, but they are favorably situated for irrigation, the want of rain being very much felt in every section. Back in the mountainous districts is found abundance of timber of many rarieties, such as oak, pine, cedar, fir, ash, sycamore, elm, \&c. Gold, silver, lead, copper, \&c., are found, but the product is not remunerative. A vein of coal (lignite) has Leen discovered near San Diego, is reported of excellent quality, and interested parties are erecting machincry to work the lead, but the experiment must prove a failure, because no genuine coal is to be found upon the coast, and in 1851 a report was made against this very deposit.

    When fishery assumes a practical shape on this coast the larbor of San Diego will become a position of importance. Already several small companies are engaged in the whaling business. The waters in this ricinity abound with the "California Greys," which are very troublesome to deal with, unless the bomblance is used in killing them.

    Communication with San Franciseo and the northern or wind ward ports is maintained every week by steamer, and by regular lines of sailing vessels.

    San Diego bay was discovered by Juan Rodrigucz Cabrillo, a Portuguese in the service of Spain, in September, 1542 ; called Port San Miguel, and placed by him in latitude $34^{\circ} 20^{\prime}$ N., showing the imperfection of the instruments and the modes of observing in those days. He found great numbers of Indians here, who received him hospitably, but with cautiousness. It received its present name from Sebastian Vizcaino, who surveyed it in November, 1602.

    In his time there existed a forest of tall, straight oak and other trees bordering the NW. side of the bay. This forest was said to be three leagues in length and half a league in breadth, and that to the northwest of it was a good harbor, now known as Puerto Falso.

    La Perouse (in 1787) gives a copy of an English map of San Diego, of 1782, (Dalrymple's,) on which no name is assigned to the Zuniga shoal, but the shoal inside Ballast Point and under the eastern shore is called "shoal of Zuniga." Ballast Point is called "Point Guisarros," and Point Loma, "Hill Point."

    At the north end of the ridge of Point Loma is an extensive shoal bay called Pucrto Falso, or False B.y. The bar at its entrance lies N. by W. $\frac{1}{2}$ W., distant $5 \frac{1}{2}$ miles from the southern extremity of Point Loma; and having but three feet of water, it can be crossed only in the smoothest weather. The entrance just inside the line of heavy breakers is about a quarter of a mile in width, but rapidly contracts to less than an eighth. The northern point of this bay is about two miles in length, very narrow, and covered with low saud duncs.

    A view of False bay and the surrounding country was given on the Coast Survey reconnaissance chart of 1853.

    To the north and west of this the shore becomes compaet and unbroken, except by the valleys of San Luis Rey and San Juan Capistrano. The waters off this stretch of the coast Vizcaino called the bay of Santa Catalina.

    The latest chart of San Diego bay is that accompanying the Report of the Superintendent of the Coast Survey for 1857.

    From the southern extremity of Point Loma the coast runs N. by W. for 22 miles; thence to Point Lausen, (of Vancouver, 1793,) forming the east point of San Pedro bay, NW. by W. $\frac{1}{2}$ W. nearly 60 miles.

    ## SAN LUIS REY.

    The mission of San Luis Rey is the largest in California, and the number of domesticated Indians formerly in its neighborhood gave it the appearance of a large and thriving settlement.

    It was founded June 13, 1798, stands in a rich valley from one to two miles wide, and is about three miles from the ocean, being separated therefrom by a range of hills.

    It is nearly in the centre of a section of country unequalled for salubrity and productiveness, but the scarcity of rain is an insuperable drawback.

    The mission is now a military post, but very few men are stationed there.
    The anchorage is very much restricted and unprotected, and now never visited. Its position on the coast will be seen by reference to the recomaissance sheet of the Coast Survey published in 15.53.

    Its approximate geographical position is :

    - :

    Latitude.. ..................................... . . . . . . . . . . . . . . . . . . . . . 3317 north.
    Longitude.................................................................. . . . . 11729 west.

    ## SAN JUAN CAPISTRANO

    Now a place of no importance, with an unprotected anchorage, rocky bottom, and bad landing.
    This mission, like all the others, is rapidly going to decay.
    The approximate geographical position of the anchorage is :

    $$
    \begin{aligned}
    & \text { Latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 3327 \text { north. } 117 \text { 43 west. } \\
    & \text { Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
    \end{aligned}
    $$

    The site of the mission is marked on the reconnaissance shent of 1853.
    In latitude $33^{\circ} 30 \frac{1}{2}^{\prime} \mathrm{N}$., about four miles northwestward along the coast from the western point of Capistrano anchorage, the line of equal mugnetic declination of $13^{\circ}$ east cuts the shore, and passes over the great transverse break of the island of Santa Catalina. This line annually moves southward a mile and a half.

    ## SAN PEDRO BAY.

    This bay is well protected in every direction, except against the winter gales from the southeast round to the southwest. During the spring, summer, and autumn, it is an excellent roadstead. From Point Fermin,* which is the southeast point of high land west of the bay, the line of bluff runs exactly north and south for about two miles, being bold, and averaging 60 feet in height.

    Vessels coming from the westward through the Santa Barbara channel make San Pedro hill, (1,600 feet in height,) forming the west side of the bay, as an island projected against the mountains to the southward and eastward. Approaching Point Vincente, which is the southwest point of the hill, vessels can keep it close aboard, there being from 50 to 50 fathoms within a mile of the shore; round Point Fermin within half a mile, in from 6 to 10 fathoms, and open the small island called El Moro, $\dagger$ run for that island, and when abreast of the landing, (readily recognized by the houses on the bluff,) about one mile nortl of Point Fermin, anchor in three fathoms, hard bottom, and half a mile off shore. Vessels must anchor a mile off to get five fathoms.

    Coming from the south with northwest winds, beat in boldy until abreast of the landing; keep the lead going and anchor anywhere in its vicinity. Do not approach the low shore, to the north and east of El Moro, closer than one mile, at which limit four fathoms water will be found.

    In winter, anchor further out, and more to the southward, in order to be able to slip the cable and go to sea should a heavy southeaster spring up. In 1852 we saw a vessel ride out a very heavy southeast gale of three days' duration. In March, 1863, the steamer Senator was lost in entering San Pedro in a fog.

    The waters of the lagoon, inside of the low sandy beach, and a mile or more northward of El Moro, find their principal outlet between that island and the bluff point half a mile west of it. The entrance is very narrow and crooked, and has two buoys, about 200 yards apart, to mark it. In 1859 it is stated $\ddagger$ that the "bar at the entrance to the creek remains about the same, (as it did in 1852.). At mean low water, throwing out the half tides, only two feet of water can be carried over it." A small tow-boat is now used for taking vessels to New San Pedro, situated about three miles inside the bar.

    Wood and water are not readily obtained, and charges are high. The beef raised here is remarkahly tough.

    The geographical position of the Coast Survey astronomical station on the bluff at the landing is :
    
    Longitude............................................................ 1181603.0 west.
    h. $m \quad s$.

    Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\quad$. 53 04.2.
    Magnetic variation, $13^{\circ} 30^{\prime}$ east, in November, 1653 , with a yearly increase of $1^{\prime}$.
    An appropriation has been made for a light-house on Point Fermin, and the necessary topographical survey completed. The site recommended to the Light-house Board, by the Superintendent of the Coast Survey, is $\mathrm{S} .15^{\circ} \mathrm{W}$., and fifteen-sixteenths of a mile distant from the astronomical station.

    Tides.-The corrected establishment or mean interval between the time of the moon's transit and the time of high water is IXh. XXXIXm. The mean rise and fall of tides is 3.7 feet, of spring tides 4.7 feet, and of neap tides 2.2 feet. The mean duration of the flood is 64.18 m ., of the ehb 67.5 m ., and of the stand $0 h .30 \mathrm{~m}$. The average difference between the corrected establishments of the a. m. and p. m. tides of the same day is $1 / h .10 \mathrm{~m}$. for high water, and $1 / \mathrm{l} .4 \mathrm{~m}$. for low water. The differences, when the moon's declination is greatest, are 1 h . $\overline{5} \mathrm{~m}$. and 17.38 m ., respectively. The average difference in height of these two tides is 1.5 feet for the high waters and 2.0 for the low waters. When the moon's declination is greatest, those differences are 2.3 feet and 3.1 feet, respectively. The average difference of the higher high and lower low waters of the same day is 5.6 feet, and when the moon's declination is greatest 6.6 feet. The higher high tide in the twenty-four hours occurs about 97.10 m . after the moon's upper transit (southing) when the moon's declination is north, and about $3 h .16 \mathrm{~m}$. before when south. 'The lower of the low waters occurs about seven hours after the higher high tide.

    The greatest observed difference between the two low waters of one day was 3.9 fcet, and the greatest difference between the ligher high and lower low waters of one day 8.4 feet.

    To find the times and heights of high and low waters, compute them for San Diego, the times and heights being sensibly the same for both places.

    The town of Los Angeles is 22 miles north by the road, from San Pedro, and is the centre of an extensive grazing, agricultural, and grape-growing country.

    The quantity of grapes, and fruit generally, shipped to San Francisco during the proper season is already enormous, being not less than $2,000,000$ pounds. At all seasons one steamer finds a profitable trade. The coasting trade of this place is now greater than the aggregate trade of all the other ports south of San Francisco. In nine months of $1856-57$ the number of vessels entering the port was 82 , with an aggregate tounage of 26,971 tons. Regular communication is maintaincd with San Francisco and other ports by steamers and sailing vessels.

    Over 100,000 gallons of wine, and 5,000 gallons of brandy, were produced in 1854, and the culture of the grape lids fair to outstrip all others. The quantity of wine produced from the vintage of 1857 was 350,000 gallons; of brandies 5,000 gallons. There is no doubt that in 1862 the yield is more than double these quantities.

    Cotton, sugar cane, tobacco, flax, and the cereals, yield productive crops, and the olive grows in abundance.
    Salt works have been established within a few miles of Los Angeles, but the pond from which the salt water is obtained covers only an area of 600 yards in length by 200 in width. The yearly product is about five tons.

    The country at the foot of the back hills is as productive as any in California, but its distance from a large market is a great hindrance to investment and improvement. The vast plains are literally covered with cattle, and many of the rancheros count their yearly increase by thousands. These cattle are driven to the mining districts and San Francisco, but during the not unusual droughts of summer great suffering is experienced, and large numbers of them perish.

    The Bay of San Pedro was discovered by Cabrillo in 1542, and was called the Bay of Smoke, (Fumos.)

    When Vancouver was seeking for San Pedro bay he found such deep water off Point Vincente that he thought this conld not be near the place; but after getting to the sonth and east he had a full view of the anchorage. He did not, however, enter it.

    A view of San Pedro bay and Sun Pedro hill was given on the Coast Survey sheet of 1853.
    In 1561 a preliminary examination was made of the lagoon, stuatel E. $\frac{1}{4}$ S., about 15 or 16 miles from San Pedro, and which receives the watere of the Santa Aama river. It was found to be some five miles long, and separated from the ocean by a narrow strip of low sand beach, over which washes the heavy swell from the northwest and sontheast storms. The lagoon has a breadth of only a few hundred yards, and a mouth abont 50 yards in width, with a narrow bar, upon which it is supposed 10 or 12 feet of water might be found at high tide. On this bar there is a very heary break at all stages of the tide, rendering it dangerous to cross in boats of any kind. There is said to be no safe anchorage off the entrance, and the low straight beach, with a trend nearly east and west, affords no protection whatever. The San Pedro wind gap lies between San Pedro hill and the Sierra San Juan, to the southeast of the Santa Anna, and the summer winds draw directly on the land, causing the northwest ewell to roll upon the beach with great forec. In winter the southeast and southwest swell breaks square upon this whole line of coast, and would prevent any vessel passing into or out of the lagoon, or riding at anchor near it.

    In summer the Santa Anna is said to frequently dry up before reaching the lagoon.
    From Point Vincente* the coast trends N. by W. $\frac{3}{4}$ W. for 17 miles; thence W. by S. to Point Dume, in latitude $34^{3} 00^{\prime}$ north, and longitude $118^{\circ} 41^{\prime}$ west; thence to ' $o$ oint Mugn, W. $\frac{1}{2} \mathrm{~N}$. for 17 miles. The last point lies NE. by E. $\frac{1}{3}$ E., distant 14 miles from the eastern end of Anacapa. This long curve in the coast is known as the Bohia Ona.

    Point Dume* rises into a dome-like form 202 feet ligh. The land immediately behind it falle away, so that in making it from the west it rises into view as an island close under the high mountains. Eastward of Dume the mountains spring directly from the water.

    A view of Point Dume is given on the Coast Survey sheet of 1853 .
    From Poinl Mugu to Sun Buenacentura, distant 17 miles, the coast has a general trend NW. by W.; but, about midway, it curves southwestward of this course $2 \frac{1}{2}$ miles towards Anacapa, thus contracting the eastern entrance to the Santa Barbara channel. Two miles west of Point Mugu is Laguna Point, close under which is rery deep water, the 10 -fathom line ruming within 250 yards of the shore. Between Mugu aud Buenaventura the coast is low, flat, and sandy, being the opening of the valley of Santa Clara, through which flows the Santa Clara river. This stream is nearly dry during the summer, and terminates in laroons and marshes, but in the rainy season a volume of water is brought down having sufficient force to break through the narrow sand beach and flow into the ocean. The configuration of the shore, and its relation to Anacapa and Santa Cruz island, are shown upon the preliminary chart of the castern entrance to the Santa Barbara channel, published by the Coast Survey in 1857.

    The eastern entrance to the Santa Burbara channel lies between the eastern end of Anacapa island and Point Hueneme, which is about halfway between Mugu and Buenaventura. From Anacapa, Point Hueneme bears NE. by N. $\frac{1}{3}$ N., distant $9 \frac{1}{4}$ miles. Directly off this point is found a remarkable example of a submarine valley, commencing with a depth of 10 fathoms, 400 yards from the beach, increasing to 50 fathoms in five-eighths of a mile, and to 113 in less than two miles. Its general direction is south, witi a width of a mile, and hounded on either side by depths of 12 and 15 fathoms. The best landing is directly on the point. Landing in the bight to the castward and leeward is impracticable.

    The erection of a promary sea-coast light at this point was recommended by the Superintendent of the Coast Survey, and has been authorized by Congress.

    The approximate geographical position of the site is:
    Latitude..................................................................... 3408 north.
    Longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 . 09 west.
    The computed magnetic variation, August, 1857, was $13^{\circ} 33^{\prime}$, with a present yearly increase of $1^{\prime}$.
    Vancouver says this was called Point Conversion on old Spanish maps; he placed it in latitude $34^{\circ} 09^{\prime}$, and retained the name.

    There is excellent holding ground off Buenaventura in 10 fathoms, but the landing is not good. The three-fathom line lies about a quarter of a mile off-shore.

    The Mission of Bucnaventura, situated at the foot of the dividing ridge of the valleys of San Buenaventura and Santa Clara, about a half a mile from the shore, was fonded March 31, 1782. Its approximate geographical position is:
    o Named by Vancouver, 1793.
    

    Fifteen miles westward of Buenaventura, on the coast, there is a rich deposit of sulphur, surface specimens of which have yielded 60 per cent. Around the locality are found ashes and scoria. The ground is hot, and the gas emitted is almost suffocating.

    ## SANTA BARBARA

    From San Buenarentura to Santa Barbara the distance is 23 miles, and the bearing nearly W. by N.
    Santa Bahbara is an open roadstead for all, except northerly winds, which are unfrequent. On the west side of the long, low, sandy beach is a bold bluff, called Point Felipe.* The hill rising behind it is called La Vigia.

    The landing is on the beach about half a mile east of Point Felipe; the shore is very low and flat as far as the town, three-quarters of a mile distant, but gradually rises to the mission, which is a prominent object about two miles inland.

    Vesecls coming from the westward first sight La Vigia, and, upon approaching the anchorage, keep outside of the line of kelp, (here nearly half a mile wide:) gradually round the point upon which is situated the light-house, two miles southwesterly of the landing, keep along the kelp until abreast of the town and anchor in seven fathoms; or pass through the kelp and anchor on the inside in $3 \frac{1}{2}$ fathoms, hard bottom. In anchoring far enough off to get 9 or 10 fathoms the bottom will be found sticky. A hydrographic sketch of the vicinity was published by the Coast Survey in 1855 . A view of the town and mountains accompanies the sleet of 1853 .

    No dangers have been discovered in the kelp off this beach.
    With the least swell the surf on the beach is a bad one, not falling square on, but cutting it at a sharp angle.

    In winter, vessels must anchor outside of the kelp, as the gales detach and drive it shoreward in such vast quantities that, coming across a vessel's hawse, it helps to bring home her anchors.

    In January, 1863, the Pride of the Sea was wrecked on the rocks under the light-house at this place.
    light-houje at santa barbara.
    The structure consists of a plastered dwelling of one and a half story, with a low grey tower, also plastered, rising through the roof. The illuminating apparatus is of the fourth order of the system of Fresnel, and shows a fixed white light, illuminating the seaward half of the horizon. It is situated at an elevation of 180 feet above the sea, two miles southwestwardly from the landing on the beach, and 183 yards from the edge of the bluff. The light, as seen from the sea, will be projected against the hill rising behind it.

    In clear weather it can be seen from a height of 10 feet at a distance of 19 miles; from a height of 20 fect at a distance of $20 \frac{1}{2}$ miles.

    It was first exhibited December 1, 1856, as a red light, but has since been changed.
    The geographical position, as given by the Coast Survey, is:
    

    Magnetic variation, $13^{\circ} 30^{\prime}$ cast in November, 1853; yearly increase $1^{\prime}$.
    The secondary astronomical station of the Coast Survey was on the slight grassy rise just in from the beach, and 60 yards from the west side of the road leading to the town. Its position is:

    | Latitude | 342424.7 north. |
    | :---: | :---: |
    | Longitude. | 1194018.0 west. |
    | Or, in time | $\begin{array}{lcc} \text { h. } m . & s . \\ 7 & 58 & 41.2 . \end{array}$ |

    Santa Barbara is a town of considerable size, lying in the middle of an agricultural tract, running cast and west, at the southern base of the Sierra Coneepcion, but of limited breadth. The trade with San Franciseo is not extensive; but this being one of the greatest stock-raising districts on the coast, vast droves of cattle pass through and are sent to San Franciseo and the mining districts.

    The mission, founded December 4, 1786, is ane of the largest and best establishments of the kiad in California, and in the gardens attached to it the grape and olive were cultivated with success. In the town of Santa Barbara there is a single grapevine which yielded during the year 1858 over two thousand pounds of grapes. A single stem rises from the ground a height of five feet, and its branches, supported by pole:, cover a very large area. At the base the trunk measures twe feet in circumference.-(California State Register, 1859.)

    A large bitumen pit, about eight miles west of Santa Barbara, empties directly into the ocean, and the bitumen, floating on the water, works against the summer or northwest winds even beyond Point Concefecion. Very frequently, in calm weather, a great extent of the surface of the channel becomes iridescent from the thin film of bitumen spread over it. The rocks along the shore, even to the westward of Point Concepeion, are covered with it, and when encamped at El Coxo, in 1850, we gathered it to start our fires. The Indians have always used it to pay the seams of their canoes.

    Sulphur, in large beds and of superior quality, exists along the seaboard, and manifests itself in all the warm springs.

    Wood and provisions in abundance can be easily obtained here. Water is plenty, but not so readily procured.

    A very short distance back from the coast line is a range of rugged hills, over 2,000 feet high, forming part of the Sierra Concepcion, (sometimes called the Sierra San Iucz, whose sides are sparsely covered with timber, and through some of whose gullies and gorges pass small streams abounding in the finest tront. From others issue warm springs having a temperature of about $117^{\circ}$ Fahrenheit, and highly impregnated with sulphuretted hydrogen. The height of the springs by barometric measurement is about 1,200 feet. They lie behind the village of Montecito, eastward of Santa Barbara.

    The coast trail to San Francisco passes along the shore for a distance of 15 or 20 miles to the Gariota pass; thence inland to the Santa Inez valley, which runs nearly parallel with the coast.

    Regular communication by steamers and sailing vessels is maintained with San Francisco and other ports.

    In 1542 Cabrillo visited this place and found great numbers of Indians, who came off to his ships in large canoes, and were quite hospitable. Close to shore he found an Indian town with "casas grandes." To it he gave the name Pueblo de los Camos.

    The coast line from Santa Barbara light to Point Concepcion light runs W. by S., distance 37 miles. The rugged hills westward of the Gaviota pass come close to the shore, forcing the traveller to leave the beach for their sea slope, the trail passing over steep ridges and down valleys.

    The simoom.-The only instance of the simoom on this coast, mentioned either in its history or traditions, was that occurring at Santa Barbara, on Friday, the 17 th of June, 1859. The temperature during the morning was between $75^{\circ}$ and $80^{\circ}$, and gradually and regularly increased until about one o'clock p. m., when a blast of hot air from the northwest swept suddenly over the town and struck the inhabitants with terror. It was quickly followed by others. At two o'clock the thermometer exposed to the air rose to $133^{\circ}$, and continued not lower than that point for nearly three hours, whilst the burning wind raised dense clouds of impalpable dust. No human being eculd withstand the heat. All betook themselves to their dwellings and carefully closed every door and window. The thick adobe walls would have required days to have become warmed, and were consequently an admirable protection. Calves, rabbits, birds, \&c., were killed; trees were blighted; fruit was blasted and fell to the ground, burned only on one side; and gardens were ruined. At five o'clock the thermometer fell to $122^{\circ}$, and at seven it stood at $77^{\circ}$. A fisherman, in the channel in an open boat, came back with his arms badly blistered.

    It is recorded that on the 23 d of June there was a remarkable hot day over Stanislaus comnty. The thermometer stood at $113^{\circ}$ in the shade, and the wind actually burned as from a hot oven. Birde dropped dead from the trees.

    At the entrance of the valley of El Coxo, near Point Concepcion, whilst engaged in making astronomical observations, during July, August, and September, 1850, we frequently experienced at night hot blasts coming 36 cs
    down from the Sierra Concepcion, after two or three days of clear, calm, hot weather; the north winds apparently bringing the heated air from the valleys behind the sierra. The records show many cases where stars suddenly became so very diffused, large, and unsteady by these short hot blasts as to be unfit for observation. Beyond the amoyance and delay occasioned liy this circumstance no ohservations were made to determine the temperature of the heated air. It had, of course, not near so elevated a temperature as that sweeping over Santa Barbara, and was quite fitful.

    ## POINT CONCEPCION.

    This characteristic and remarkable headland, about 220 feet in height, lies at lie western entrance to the Santa Barbara channel. Once seen, it will never be forgoten. When made from the northward, or from the eastward, it rises as an island, but, npon approach, is found to be a ligh promontory, stretching boldly into the ocean, and terminating abruptly. The land behind it sinks comparatively low, and at first gradually, but soon rapidly rises to the mountains, which attain an elevation of about 2,500 feet. Between three and four hundred yards smuth of the face of the cape is a large rock nearly awash, upon which some of the California steamers have struck in very foggy weather. A topographical sketch of the point accompanies the Superintendent's report on the Coast Survey for 1851. Views of it accompany the sheet of 1853.

    LIGHT-HOUSE AT POINI CONCEPCION.
    The buildings are erected on the cxtremity of the cape and upon the highest part, which is 220 feet above the sea, and covered with grass and hushes like the land behind. As scen from the southward by day it will be projected against the Sierra de la Concepcion, and appear about one-third of their height from the water. The part of the range behind the light-house seems very level along its summit, and the house is seen about onethird of the length of the level range from the western part of it. The structure consists of a brick dwelling, plastered, of one and a half story, with a low tower, also of brick, and plastered white, rising from the centre. The light was first exhibited February 1,1856, and shows from sunset to sunrise. It is a primary sea-coast light, consisting of an illuminating apparatus of the first order of the system of Fresnel, and exhibits a revolving white light, showing a fashevery half minute, throughout the entire sea horizon. It is elevated about 250 feet above the sea, and should be visible, in a favorable state of the atmosphere, from a height of -

    10 feet above the sea, at a distance of 21.8 miles.
    20 feet above the sea, at a distance of 23.3 miles.
    30 feet above the sea, at a distance of 24.4 miles.
    60 feet above the sca, at a distance of 27.1 miles.
    Its geographical position, as given by the Coast Survey, is:
    ○ 11
    Latitude.......... .................................................... 342647 north.
    Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202700 west.
    
    Magnetic variation, $13^{\circ} 50^{\prime}$ east, in September, 1850 ; y early increase, $1^{\prime}$.
    Fog-bell at Point Concepeion.-A fog-bell, weighing 3,136 pounds, is placed on the edge of the bluff, seaward of the lighthouse. The striking machinery occupies a frame building, whitewashed, on a level with the ground, and having the front open to receive the bell, which is sounded during foggy or other thick weather, night or day, every thirteen and a half seconds.

    The following bearings and distances are taken from the Coast Survey chart of this locality, published in 1853.

    The rock off the west end of the San Miguel island, S. $\frac{7}{2}$ E., distant 22 miles.
    The east end of San Migucl inlaud, SE. by S. $\frac{1}{4}$ S., distant 26 miles.
    The southwest end of Santa Cruz island, SE. by E. $\frac{1}{2}$ E., distant 40 miles.
    Next to the islands of the Santa Barbara channel, Point Concepcion is the most prominent and interesting featare between San Francisco and the peninsula of Lower California. It has very justly and appropriately been termed the "Cape Horn" and the "Hatteras" of the Pacific, on account of the heavy northwesters that are here met with on coming through the channel, with a great change of climate and meteorological conditions; the transition being remarkably sudden and well defined. An investigation of the temperature
    of the ocean, northwest and east of the cape, would be highly instructive, as some characteristies would naturally be expected from the abrapt change in the direction of the mountains and coast line. We have frequently seen vessels coming from the eastward with all sail set, and light airs from the north, in a very little time reduced to short canvas upon approaching the caje, and vessels from the northwest coming before a spanking breeze lose it within a few miles after passing the cape into the channel. These last would be fortunate in reaching Santa Barbara in a day. We have known a vessel to be three days working from San Buenaventura to Santa Barbara, whilst a ten-knot brecze was blowiug west of Point Concepcion.

    During some summer seasons the fog is almost interminable, but more particularly among the islands. For the space of six weeks, with clear days and nights at the cape, the islands have been incisible; rising, however, to an clevation of 1,000 or 1,500 feet, the observer plainly sees the summits of the islands over the sea of fog which envelops them.

    When the fogs prevail, they generally roll in from seaward at sunset, and clear away about ten o'clock next morning.

    Point Concepcion was discovered by Cabrillo in 1542, and called Cape Galera. He placed it in latitude $36 \frac{1}{2}$ N. It was afterwards named Punta de la Limpia Concepcion.

    The extent of shore-line from the southern boundary to Point Concepcion is about 250 miles.
    EL COXO.
    Two miles cast of Point Conecpcion is the anchorage of El Coxo, off the entrance to the valley of that name. This anchorage is a better one than that of Santa Barbara, and the kelp is not so compact. After passing the point from the westward, at a distance of about three-quarters of a mile, run E. by N., and gradually round the bluff one mile distant from the cape, giving it a berth of half a mile; run on a N.NE. course for three-quarters of a mile, when the valley will open with a sand beach off it. Anchor outside or inside the kelp, according to the choice of depth; five fathoms being obtained within a quarter of a mile of the shore, with hard, sandy bottom. Ten fathoms water will be found half a mile from shore.

    A hydrographic sketch of the anchorage was issued from the Coast Survey Office in 1852.
    There is a large rancho at El Coxo, and it is one of the very best tracts for grazing. The beef has a finer flavor and more delicacy than any we have met with on the const. At the head of the valleys and fn the mountains is a species of large live oak, very brash when newly cut, but growing hard by seasoning. Willow, for fuel, and water can be obtained here, but neither in abundance. The water is disagreeable to the taste.

    The primary astronomical station of the Coast Survey was on the top of the bluff, and between 2.50 and 300 yards W. $\frac{1}{2}$ S. from the mouth of the creek. Its geographical position is as follows:
    

    ## ISLANDS OF THE SANTA BARBARA CH+NNEL.

    The name El Canal dc Santa Barbara was given by Vizcaino, in Dccember, 1602, to the narrowest part of the channel lying east and west, and about 24 leagues in length.

    Until the Coast Survey first examined in detail the islands lying off the main, between San Diego and Point Concepcion, nothing accurate was known of their number, peculiarities, extent, or position. Upon all maps, of as recent date as 1850, an island called San Juan was laid down, and upon a map of the republic of Mexico, compiled in the United States, and dated 1847, we find no less than twelve large islands, the positions and extent of which are most grotesquely erroneous. The island of San Miguel, the most western of the Santa Barbara group, is placed 70 miles SE. of Point Concepcion, instead of 23 miles SE. by S. $\frac{1}{2} \mathrm{~S}$. The same general remarks will apply to the coast line as thereon represented. Three large rivers are made to flow into the sea between Santa Barbara and San Diego bay, which is increased in size to 20 miles by 15 , and running north, whilst two others rival it in extent. A Russian chart pullished in 1848 has a bay and
    river on the cast side of Point Dume. The geographical positions given previous to the Coast Survey operations are remarkably erroneous. We recollect well, when coming upon this coast, of finding in good nautical authority Point Concepcion over six miles distant from the latest determination in latitude; and we have heard of more than one vessel reaching California with only a school atlas for a chart.

    In Findlay's Directory for the Pacific Ocean, published late in 1851, we find a description of the already mentioned San Juan island, but it does not give it a very definite location. It may not be uninteresting to state how the error has been perpetuated. The first notice we can find of this island is its discovery by Martincz, in 1789, on his passage from Monterey to San Blas. The next time it turns up is in Vancouver, vol. II, page 474, where the following account is given :
    "At the distance of about eight leagues, somewhere about N. $55^{\circ}$ W., or N. $60^{\circ}$ W. from Point de la Loma, by a very uycertain estimation, is situated an island called St. John's, between which and the coast we passed without seeing it, [although he previously states having seen San Clemente and Santa Catalina,] nor did we observe it while we remained at anchor, excepting on one very clear evening, when it was scen from the Presidio [of San Diego] at a time when I was unprovided with a compass or any other means of ascertaining its direction, and was therefore only able to guess at its situation.
    "It appeared to be low and flat; is but seldom seen from the Presidio of San Diego, and was undiscovered until seen by Martincz, a few years before, in one of his excursions along the coast."

    As Vanconver has plotted this island on the line from Point Loma to San Clemente, and as it is gencrally so placed, we have no hesitation in assuming that, during peculiar states of the atmosphere, the top of San Clemente or of Santa Catalina has been mistaken for another and intermediate island.

    Having visited and examined San Clemente, Santa Catalina, San Nicolas, Santa Cruz, and San Miguel, we found them offering no induccments for agriculture, and very few, indeed, for raising stock, while there are so many advantages on the main. In a few words, we may characterize their disadvantages as want of water, and want of fuel, winh high, bold, and rugged sides, which in many places become precipitous. The surface of San Miguel and Santa Rosa is rolling, and covered with grass and busbes; the mountains of Santa Catalina almost inaccessible, and San Nicolas, and San Clemente, composed of coarse sandstone, presenting a dry, sandy, and sterile aspect.

    On the chart of the coast from San Diego to San Francisco, published by the United States Coast Survey in 1853, a remarkable and beautiful exbibition of the parallelism between the islands and the adjacent coast is presented. The four islands, Anacapa, Santa Cruz, Santa Rosa, and San Miguel, with the rocks seven miles W. by N. from the latter, lying broad off the coast between San Buenaventura and Point Concepcion, have their longer axes parallel to the trend of the shore-line, which is the general direction of the Sierra Conception immediately behind it. In Vizcaino's voyage, this parallelism was noted west of Santa Catalina, " where a regular row of islands exist, five or six leagues distant from each other, all populous, and the inhabitants trading with each other and the main, and the islands following each other in the same direction as the main land."

    Cortes shoal, the islands of Santa Catalina, San Clemente, San Nicolas, with John Begg's rock, seven miles from its northern extremity, have their longer axes NW. by W., and parallel to each other, whilst the sland of Santa Barbara is on the prolongation of the longer axis of San Clemente. In the third parallel the direction becomes perpendicular to the first described, for from latitude $33^{\circ} 05^{\prime} \mathrm{N}$. the trend of the coast and hills southward, through the longer axis of Point Loma, will pass through Los Coronados, although the islands lie NW. with respect to each other.

    Navigators, in making the Santa Barbara channel from the northwest, readily estimate their approach in thick foggy weather by the peculiar odor of the bitumen which, issuing from a large pit on the shore about eight miles west of Santa Barbara and Hoating upon the water, works against the summer winds far beyond Point Concepcion. This set to the westward is found to exist for about four miles off shore, and runs at a maximum velocity of a mile and a half per hour. Further out the current is variable, but even there its greatest velocity is attained when running to the westward. From Point Concepcion it strikes to the southward and westward, being doubtless influenced by a current from the upper coast.

    Vancouver is the first who calls attention to the bitumen, in the following language, vol. II, page 449 : "The surface of the sea, which was perfectly smooth and tranquil, was covered with a thick slimy substance, which, when separated or disturbed by any little agitation, became very laminous, whilst the light breeze that came principally from the shore brought wilh it a strong smell of tar, or of some such resinous substance. The next morning the sea had the appearance of dissolved tar floating upon its surface, which covered the
    ocean in all directions within the limits of our view, and indicated that in the neighborhood it was not sulject to much agitation."

    The following remarks of Sir Edward Belchcr, in October, 1839, are taken from the Voyage of the Sulphur, vol. I, page 320: "Off this part of the coast to the westward [of Santa Barbara] we expericnced a very extraordinary sensation, as if the ship was on fire, and after a very close investigation attributed it to a scent from the shore, it being more sensible on deck than below; and the land breeze confirming this, it occurred to me that it might arise from naphtha on the surface."-See remarks, page . Santa Barbara.

    Among the islands, as far as San Nicolas, the current runs to the southward, and there remains little doubt that the steamship. Winfield Scott was set out of her course, and upon Anacapa, by this current. On the Cortes shoal it frequenty roms against the NW. wind at the rate of nearly two miles per hour. At other times it has been found to run in an opposite direction nearly as strong.

    A preliminary chart of the eastern entrance to the Santa Barbara channel accompanied the annual report of the Superintendent of the Coast Survey for 1857.

    It may not be here amiss to call attention to the abundance of mackerel found in the channel. We have seen the water fairly alive with them, and have caught them by hundreds. Cray fish of a very large size are found in great numbers along the shores.

    The rainy season commences in the early part of November, and continues until the middle of March. The quantity of rain that falls does not average over 15 inches, but some seasons are marked by excessive drought. During the winter SE. gales prevail, and sometimes during the summer months southerly weather will bring up heavy rain.

    ## cortes shoal.

    Commencing at the southward, the first object that claims our attention is the dangerous bank and rock called the Cortes shoal, bearing SW. $\frac{1}{4}$ W. from the southeast end of the island of San Clemente, and distant 46 miles. The extent of this bank has been sounded out carefully, and found much greater than the early examinations led us to suppose. Withro the limits of the 50 -fathom curve the general trend is parallel with the islands of Santa Catalina, San Clemente, and San Nicolas, and it stretches about 17 miles, from latitude $32^{\circ} 24^{\prime} \mathrm{N}$., longitude $118^{\circ} 59 \frac{1}{2}^{\prime} \mathrm{W}$., to latitude $32^{\circ} 32^{\prime} \mathrm{N}$., longitude $119^{\circ} 17 \frac{1}{2}^{\prime} \mathrm{W}$., but curves slightly to the southwest. It has an average and nearly uniform width of $3 \frac{1}{2}$ miles. The nature of the bottom is hard, composed of white sand, broken shells, and fine coral at the southeast portion; and cand, with broken shells, at the northwest. The shoalest and most dangerous part is that kacwn as the Bishop rock, lying five miles from the southeast tail of the bank, and having but $2 \frac{1}{2}$ fathoms of water upon it. Around this danger the depth increases gradually, and in an extent of 22 miles in the general direction of the bank reaches but 15 fathoms. The geographical position of these rocks is, approximately :
    
    Longitude......................................................................... . 11905 west.
    From the northwest end of the island of San Nicolas the rocks bear SE. $\frac{1}{2}$ S., distant 57 miles; and from the southeast end of the idand of San Clemente they bear SW. $\frac{1}{4}$ S., distant 46 miles.

    The next shoal spot is one of 10 fathoms, about the middle of the bank, and of limited extent, being only half a mile square within the 15 -fathom curve. Its geographical position is, approximately:

    Latitude...................................................................... 32263 north.
    Longitude..................................................................... $11910 \frac{1}{2}$ west.
    From the northwest end of San Nicolas, the spot last mentioned bears SE. by S., distant 54 miles; and from the southeast end of San Clemente it bears SW. $4 \mathbf{W}$., distant 50 miles. From the Bishop rock it bears W. $\frac{7}{4}$ N., distant five miles.

    To the northwestward of this latter shoal spot the depth is nearly uniform at 49 fathoms for $7 \frac{1}{2}$ miles, and between it and the Bishop rock the depth is uniform at about 43 fathoms.

    Upon this bank the current is variable, frequently setting against the strong NW. winds with a vclocity of nearly two miles per hour, and producing at all times a heavy swell, and even in moderate weather breaking heavily upon the rocks. In passing over the bank at night we have been seasible of our proximity to it by the increased swell. In the detailed examination of 1856 it was found that the general set of the current was to the southward and eastward, and the greatest velocity a mile and a half per hour ; but no statement is made concerning the prevailing wind.

    The existence of this bank had been reported several times, and the following positions assigned to it: Swift's island, latitude $33^{\circ} 08^{\prime}$; longitude $119^{\circ} 06^{\prime}$, as seen by Captain Aulick, U. S. N.
    Rock, latitude $35^{\circ} 30^{\prime}$; longitude $119^{\circ} 06^{\prime}$; no authority.
    Bank, latitude $32^{\circ} 28^{\prime}$; longitude $118^{\circ} 42^{\prime}$; no authority.
    It lics in the direct route now followed by the Panama and San Francisco steamships, and was discovered by Captain Cropper, of the steamship Cortes, in March, 1853. His position was determined by bearings upon San Nicolas and san Clemente, and was very close, being within a mile of the latest and best assigned place. He says that the water around it was in violent commotion, and thrown up suddenly in columns at regular intervals of four or five minutes. At first he thought he saw breakers; and occasionally the water broke as on a recf, but he became confident that the disturbance was owing to submarine volcanic agency. The specimens of the bottom negative this idea. He found his depth of water reduced from 42 fathoms to 9, which convinces us that he was on the shoal spot, about the middle of the bank, and saw the water breaking upon the Bishop rock, the same appearance that he witnessed having been seen many times since by others, and the nature of the rocky bottom and depth of water supporting the assumption. The position of the bank was afterwards more closely determincd by the commander of the steamship Pacific; but in the Coast Survey operations the 10 -fathom spot was found, and the surveying schooner used in that duty was anchored on it five days.

    Attention was subsequently called to a more extended examination of the vicinity by the clipper ship S. S. Bishop, (now Grey Eagle,) of Philadelphia, striking upon the rock, since called by her name, ( $\mathbf{1 8 5 5}$, ) and, under unfavorable circumstances, two points of rock were aupposed to exist, to which approximate positions were assigned. In 1856 the bank was sounded out to the cxtent of 130 square miles; and from a consideration of the highly favorable circumstances under which this last survey was made, confidence is expressed that the point of rock above mentioned is the only one existing; but as it is very difficult to find detached single points of rock below the surface in a sea-way, we shall not be surprised if others be eveutually found. At all events the prudent navigator will give this bank a good berth. Its existence forcibly suggests the probability that other submarine ridges lie parallel to the coast.

    A chart of the Cortes shoal was published by the Coast Survey in 1856.

    ## ISLAND OF SAN CLEMENTE.

    This, like all the islands of the Santa Barbara channel, is high and bold, the southern end being the higher, and gradually falling to the northward.

    The general trend of the island is NW. by W.; its length 22 miles, with an average breadth of two miles, and 50 miles in circuit.

    The southwest point of the island bears W. $\frac{1}{2}$ S. from Point Loma, distant 60 miles. At the northwest end is a small indentation of the shore-line forming an anchorage, having a width of three-quarters of a mile, by half a mile in depth, with soundings decreasing from 12 fathoms, on the line of a large rocky islet at the
    side to a point E. by S., to four and five fathoms close in shore. Kelp will be found in 10 fathoms, but the bottom is tolerably regular and bard. It is anything but a pleasant or safe anchorage in bad NW. weather, and even in heavy southerly weather the swell must roll in disagreeably. A hydrographic sketch of it was issued from the Coast Survey Office in 1852.

    Under the SE. end of the island anchorage may be had in the deepest part of the indentation, but the bottom is rocky and irregular. The SE. point is a vast sandstone pyramid; and when it is brought to bear north, and the shore three-quarters of a mile distant, the anchorage will lie W. by N. $\frac{1}{2}$ N., one and three quarter mile inside the kelp, in 10 to 15 fathoms, and one-third of a mile from the narrow sand beach at the foot of the cliffs. Outside of the kelp the depth ranges from 10 to 30 fathoms.

    This anchorage will afford protection in heavy northwest weather. A hydrographic sketch and view of it accompanies the annual Coast Survey report for 1856.

    The soundings around the island show a depth of from 36 to 130 fathoms close in shore, except off the northwest point, from which a reef makes out about a mile.

    The Coast Survey secondary astronomical station was at the northwest anchorage, on the grassy rise, just inside of the high-water line, and bore $S .17^{\circ}$ E. from the north point of the rack ielet before mentioned. Its geographical position is :
    

    Neither wood nor water can be had here. The whole island appears unfit for raising stock, on account of the want of water. Very few trees are found, and the aspect is sterile.

    This island was discovered by Cabrillo in 1542 , and called by him San Salvador, after one of his two vesscls. The present name was given by Vizcaino in 1602.

    ## ISLAND OF SANTA CATALINA.

    This island rises to a height of about 3,000 feet, and is remarkable for the great transwerse break or depression, five miles from the northern end, running partly through it, and forming an anchorage or core at each side. The land connecting these is very low, say not over 30 feet; but the hills rise up on each side two or three thousand fect, and, when sighted from the north or south, the whole appears like two very high islands. The view on the Coast Survey chart of 1852 shows this very beautifully, and is highly characteristic. The general trend of the island is W. by N. $\frac{3}{4} \mathrm{~N}$. ; its length $17 \frac{1}{2}$ miles, with an average breadth of four miles to the southern part, and two miles to the northern, while the shore-hine amonnts to about 42 miles.

    The depression in the island bears S.SW. from Point Fermin, and is distant $18 \frac{1}{2}$ miles.
    The harbor or cove on the southern side, five miles from the northern end, is only about one-third of a mile in width, but its approaches are bold, and, so far as known, free from hidden dangers. To find it, run along the SW. side of the island and make the depression; then stand in for the opening, keeping a little left of mid-channel until a third of a mile inside of the heads. From thence keep in mid-channel until abreast of the long, low point on the right, and anchor in five fathoms, soft bottom. There is a depth of three fathoms inside of the low point, with hard bottom, but not room cuough for a vessel to swing. If the wind is blowing from the NW., vessels will lose it at the heads, and perhaps require to be towed in.

    The anchorage on the north side of the depressiou is also small, with a reef in the centre and two large outlying rocks. A steamer could run in on the west side of the rocks, and anchor off the low beach in 10 fathoms, when the reef would lie N. by E. from her, distant an eighth of a mile. Small craft will here find protection from the precailing wids, but experience difficulty in getting out, as there is always a swell setting in, and the wind blows in flaws and eadies on account of the high hills. Between the two points forming the anchorage the distance is half a mile, and the depth one third.

    The soundings around the island show bold water, from 19 to 75 fathoms, close in shore, with no outlying rocks except off the north cove. The shores are rocky, and on the southern side fearfully abrupt, but on the northern shore there are several indentations, where boats may land at almost any season. Deep and precipitous gulches are formed by the ridges of rock running diagonally across the island from NE. to SW., and occasionally a small valley varies the scene. Four or five settlers cultivate these spots, but their inconsiderable extent precludes the realizing of anything beyond a bare sustenance. About midway between the NW. extremity of the island and the great break there is a spring of good water, and at the SE. point good water has been obtained by sinking wells to a depth of fifty feet or more, but in the intermediate places water found at the same depth is brackish. There is a large pond on the low land between the anchorages, but the water is very brackish. Surub-oak is obtained for firewood, and a growth of thomy bushes covers the whole island, rendering travelling very difficult, The island was partially stocked with cattle and sheep, and at one time vast numbers of wild goats abounded, but they bave helped to supply the California market with fresh meat. In 1863 some old lead mines were rediscovered; the ore is described as argentiferous galena.

    From the tinth end of the near large rock at the north cove, the Coast Survey secondary astronomical station, which was on the edge of the bank, bore $\mathrm{S} .25^{\circ} \mathrm{W}$. Its geographical position is :

    | Latitude. | 332634.7 north. |
    | :---: | :---: |
    | Longitude. | 1182845 west. |
    |  | h. m. 8 . |
    | Or, in time | 75355.0. |

    This island was discovered by Cabrillo in 1542 , and called by him La Victoria, after one of his two vessels. It received its present name from Vizcaino in December, 1602, when it was thickly inhabited by a people reported to be very ingenions, particularly in pilfering and concealing; some examples of which accomplishments they gave the Spaniards. Padre de la Ascension, who accompanied this expedition, gives very particular descriptions of a kind of temple to the sun, with images and idols, found near the two coves.

    Hydrographic sketches of the anchorages have been published by the Coast Survey.
    ISLAND OF SANTA BARBARA.

    This is one of the only two small islands of the Santa Barbara group. It lies on the line between the north end of San Clemente and the east end of Santa Cruz, and almost exactly half way between them. From the north end of Santa Catalina it bears W. by S., distant 23 miles.

    The extent of the island would not exceed two miles of shore-line; its elevation at the highest part is about 500 feet, and the top has an area of about thirty acres covered with soil, but no water is found, and not a vestige of wood. The shores are rocky and abrupt, presenting on the northeast and south sides perpendicular cliffs exposed to the full force of the ocean swell.

    Landing is at all times difficult and dangerous. The water around it is deep, and there are no outlying rocks. It is said to be much more enveloped in fogs than the neighboring islands. Its approximate geographical position is :

    $$
    \begin{aligned}
    & \text { Latitude. ...................................................................... . . . } 3330 \text { north. } \\
    & \text { Longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 11902 \text { west. }
    \end{aligned}
    $$

    ## ISLAND OF SAN NICOLAS.

    Of the channel islands this is the most distant from the coast, as well as the driest and most sterile. It is about 600 feet high, abrupt, and, like San Clemente, comparatively flat-topped, but falling to the southern end. The sides are bold and precipitous, and composed of coarse sandstone.

    Its gencral direction is W.NW.; its length is eight miles, with an average and nearly uniform width of $3 \frac{1}{2}$ miles, whilst the extent of shore-line is about 22 miles.

    The north point of the island bears SE. by E. from Point Fermin, distant 67 miles; the line passing one mile south of the island of Santa Barbara.

    At the north end of San Nicolas heavy breakers make out two miles and a half, and the soundings towards the Begg rock show irregular and rocky bottom. Breakers also extend from the southern point to the distance of a mile and three-quarters, according to Kellet. This is doubtless the case in heavy weather.

    The soundings around the island show depths varying from 10 to 48 fathoms.
    Off the southeast point, which is low and sandy, vessels may anchor in 10 fathoms, hard bottom, with a current running steadily to the southward, which makes the landing bad, as the surf cuts the beach at an acute angle.

    The Coast Survey secondary astronomical station was on the sandy point just referred to, and its geographical position determined as followa:

    | Latitude | 331412.9 north. |
    | :---: | :---: |
    | Longitude. | 1192500 west. |
    | Or, in time | $\begin{array}{lll} \text { h. } m . & s . \\ 7 & 57 & 40 . \end{array}$ |

    This island was not seen by Vancouver in 1793.
    The Begg rock is situated on the prolongation of the longer axis of the island of San Nieolas, bearing NW. by W. $\frac{1}{2}$ W. from its nearest ( $N$ W.) point, and distant seven miles. The rock is about 40 feet high, bold, and well defined, and can be casily efen at a distance of ten miles. The soundinge between it and the ishand indicate the existence of a submarine ridge conncting them. Its approximate geographical position is:

    Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 22d north.
    Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 391 west.

    It was named after the ship John Begr, which struck upon a reef near it, September 20, 1824, and was nearly lost. The foul bottom is covered with kelp. The position of the rock relative to the island of San Nicolas is shown on the general chart of reconnaissance published by the Coast Survey in 1852.

    ## ISLAND OF ANACAPA.

    This is, in fact, a curiously formed group of three islands, extending in a nearly E.NE. direction, their entire length being five miles. The west end of Anacapa is a peak 930 feet in height, with a base of over two miles by three-quarters of a mile. This is separated from the middle island by a gap ten feet wide, through which boats can pase. The middle island is nearly two miles long by 500 yards wide, whilst the eastern island is little over a mile long by 500 yards wide. The gap separating the middle and eastern islands is over 200 yards wide, but so completely filled with rocks as to be impassable for boats, which can, however, land on the north side of the island.

    The west end of Anacapa is $4 \frac{1}{2}$ miles from the eastern point of the island of Santa Cruz, and bears E . $\frac{1}{2} \mathrm{~N}$. from it. The depth of water between these islands is 30 fathoms, with a very regular hottom composed of grey sand, coral, and shells. The eastern end of the island bears SE. $\frac{3}{4}$ E. from the Santa Barbara light, distant 28 miles, and from Point Hucneme or Conversion, the nearest point of the mainland, SW. by S. $\frac{7}{3}$ S., distant $9 \frac{1}{4}$ miles.

    Anacapa is in latitude $34^{\circ} 01^{\prime} \mathrm{N}$. , and between longitudes $119^{\circ} 19^{\prime}$ and $119^{\circ} 24^{\prime} \mathrm{W}$. Upon it the site for a light-house has been recommended by the Superintendent of the United States Coast Survey.

    The island is composed of coarse, dark grey sandstonc, very rotten and crumbling. The sides are perpendicular, and from 250 to 300 feet high. The main peak is marked on the north side by several deep gulches, with almost vertical sides running from the summit to the bluff. The whole formation is filled with innumerable cavities, giving it the appearance of an enormous blackened honeycomb. At the eastern extremity is found a very beautiful arch in one of the outlying rocks. This is well shown in the riew accompanying the Coast Survey chart of the vicinity of the island of Anacapa published in 1856. The soil is loose and thin, producing only a few dwarfed species of cactus and a thick-leaved succulent plant common to the sea-coast in dry sandy localities. Not a drop of water is to be found on the island.

    Anacapa is a place of great resort for the seal, sca lion, and formerly of the otter, but the latter have been nearly all killed off.

    It was on this island that the steamship Winfield Scott ran ashore during a dense fog at midnight, December 2, 1853, in calm weather. The vessel was steaming at full speed, and ran between and upon the rocks with such force that she remained fast by the bow until heary weather broke her up. The course of the steamer had been taken from Point Concepcion, but without a knowledge of the currents.

    Vancouver, in his narrative, calle this island Enneeapah, and repeatedly mentions it by that name; but upon the chart of his survey and explorations it is engraved Enecapah, which has given rise to every variety of spelling. Old Indiaiss at the present time pronounce it En-nee-al-pagh', with a very strong gattural intonation.

    A chart of Anacapa and the eastern end of Santa Cruz was published by the Coast Survey in 1856, and a preliminary map showing its relation to the mainland in 1857.

    ## ISLAND OF SANTA CRUZ.

    This island is the largest of the channel group, and lies broad off the coast opposite the town of Santa Barbara, at a distance of 20 miles. Its general direction is east and west, with a length of 21 miles and an average width of four miles, while the extent of its shore-line is not less than 53 miles.

    On the northern side of the island, and near the middle, the shore makes a moderately deep curve, forming a roadstead called Prisoncr's harbor, at the opening of a valley, where plenty of wood and water can be obtained. Anchorage may be had a quarter of a mile off the middle of the beach in 15 fathoms, sandy bottom; but there is no protection from the heavy swell setting in with a northwester. It must, however, afford excellent refuge in southeast weather. A hydrographic sketch of the harbor was published by the Coast Survey in 1852.

    The soundings around the island show deep water close to the shore; but there are rocks showing quite plainly one mile from the southwest point. A chart showing the hydrography of the eastern end of the island was published by the Coast Survey in 1856.

    The island is bold, and about 1,700 feet in height. Its eastern part is extremely irregular, barren, and destitute of water; and the surface of the northeastern portion is thickly strewn with large angular pieces of stone, broken as if with a hammer. Several species of cactus and some of the coarse grasses flourish. The only wild animal found bere is a small gray fox, of which there are great numbers.

    Santa Cruz island is composed of coarse, dark gray sandstone, crumbling and rotten, like that of Anacapa.

    The Coast Survey secondary astronomical station was on the eastern side of the fresh water. Its geographical position is :

    | Latitude | 340110.2 north. |
    | :---: | :---: |
    | Longitude | 1194000 west. |
    |  | h. m. s. |
    | Or, in time | 75840 |

    From the Santa Barbara light we have the following bearings and distances :
    East point of Santa Cruz island SE. $\frac{2}{3}$ S., distance 24 miles.
    Prisoner's harbor S. by E. $\frac{1}{2}$ E., distance 22 miles.
    West point of Santa Cruz island S. by W. $\frac{1}{2}$ W., distance 21 miles.
    $A$ site for a lighl-house at the castern end of the island has been reported upon and recommended by the Superintendent of the Coast Survey to the Light-house Board.

    This island was called Juan Rodrigucz by Ferrelo, who commanded the ships of Cabrillo after his death, which took place either in Prisoner's harbor, or in Cuyler's harbor (island of San Miguel.) The greater probability rests with the former, as there they could obtain water, and oak wood for repairs, \&c., while neither is to be had in the last-mentioncd harbor, except water, during the rainy season.

    The group comprising Santa Cruz, Santa Rosa, and San Miguel, was discovered and called San Lucas by Cabrillo in 1542.

    ## ISLAND OF SANTA ROSA.

    This is the middle island of the group off the coast between Santa Barbara and Point Concepcion. Its general shape is that of a parallelogram, with the direction of the longer axis almost exactly east and west, and fifteen miles in length; and the shorter north and south, giving it a width of ten miles. The extent of shore-line is about 42 miles.

    On the northwest side of the island, and midway between the north and west points, a reef extends out for a distance of a mile and a quarter.

    There is a good passage between Santa Cruz and Santa Rosa, with a width of five miles, and one between it and San Miguel of four miles. Both passages are frequently used by the California and Panama steamshipe.

    The soundings around the island do not show as decp water as around the others. On the northwest and northeast sides from fifteen to twenty fathoms are found two miles from shore, but on the southeast and southwest sides the water is much deeper.

    The outline of the island is bold, but not so high as Santa Cruz. The hills are rolling, and covered with coarse grass and bushes. No harbors exist around its shores, which are steep and broken. The relative position of Santa Rosa in the group of the Santa Barbara islands is shown on the reconnaissance chart of the Coast Survey published in 1852.

    The approximate geographical position of the south point of the island is:
    

    For the western point we have:

    $$
    \begin{aligned}
    & \text { Latitude............................................................................. } 3358 \frac{1}{2} \text { north. } \\
    & \text { Longitude....................................................................... } 120 \text { 121 west. }
    \end{aligned}
    $$

    On some early Spanish charts the western two of the Santa Barbara islands are called San Miguel and Santa Rosa, (naming the western first,) and upon others Santa Barbara and San Miguel. The present names and order are those adopted by Vancouver in 1793.

    ## ISLAND OF SAN MIGUEL. *

    This is the western of the Santa Barbara Channel islands, its longer axis lying E. $\frac{1}{2}$ N., and $7 \frac{1}{2}$ miles in length, with an average breadth of $2 \frac{1}{2}$ miles. The extent of shore-line is 21 miles. Its western extremity is bold and narrow, gradually increasing in breadth until it attains $3 . \frac{1}{2}$ miles. As seen from the southwestward, this end of the island appears to be several hundred feet in heigit, and composed of sand dunes, therein differing from all the other islands. The eastern face is nearly straight for two miles; the southern face is nearly straight along its whole length, with ligh, abrupt shores; and from 30 to 37 fathoms water are found close in shore. On the NE. side of the island is the small bay called Cayler's harbor, off which lies a rock or islet more than a fourth of a mile long, and several hundred feet high. From this islet to the deepest part of the harbor the distance is a mile and a quarter, and the course SW. Close under the western side of the harbor is anchorage in six fathoms, secure from every wind except the north, which ravely blows here. The eastern part of the bay is full of rocks and reefs, and ought to be avoided. The recf in the middle of the bay bears SW. from the west end of the islet, and is distant half a mile. It is the same distance from the west point of the bay, near the anchorage, and bears E . by S .

    SW. by S. $\frac{1}{2} \mathrm{~S}$. from the west end of the islet is a rock, and rocky bottom, distant a third of a mile; and on the same line another, half a mile distant. The southern part of the islet is about half a mile from the east shore of the bay. The bay shores are high, stecp, and rolling, and covered with coarse grass and bushes. There is no water here in summer, but during the winter water drains down the gully at the beach in the middle and southern part of the barbor.

    A hydrographic sketch of Cuyler's harbor was published by the Coast Survey in 1852.
    The western point of the island bears S. by E. $\frac{1}{4}$ E., distant 25 miles, from Point Concepcion, and SE. by S. $\frac{1}{2}$ S., distant 35 miles. from Point Arguello.

    A sea-coast light has been reported upon for this point of the island, and the subject referred to the Light-house board.

    Sheep and some stock have been placed upon San Miguel, but the success of the experiment has been doubtful-certainly unremunerative. A peculiar bobtail fox is found here.

    The Coast Survey secondary astronomical station is on the SW. part of Cuyler's harbor, about forty feet up, on the side-hill. Its geographical position is :

    $$
    \begin{aligned}
    & \text { Latitude.............................................. } 340300 \text { north, (approximate.) } \\
    & \text { Longitude............................................... . . . } 1202027 \text { west. } \\
    & \text { Or, in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \quad \begin{array}{rl}
    h & { }_{8}^{m .} \\
    801 & 81.8 . ~
    \end{array}
    \end{aligned}
    $$

    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is $\mathrm{IX} / \mathrm{Z}$. XXVm. The mean rise and fall of tides is 3.7 feet; of spring tides, 5.1 feet; and of neap tides, 2.8 feet. The mean duration of the flood is 67.13 m ., and of the ebb 6 h . 5 m . The average difference between the corrected establishment of the $a . m$. and $p$. m. tides of the same day is 1 h , 40 m . for high water, and 1 h .9 m . for low water. The differences, when the moon's declination is greatest, are $2 h .54 \mathrm{~m}$. and $2 h .12 \mathrm{~m}$., respectively. The average difference in height of these two tides is 1.6 foot for the high waters, and 2.5 feet for the low waters. When the moon's declination is greatest these differences are 2.6 feet and 3.6 feet, respectively. The average difference of the highest high and lowest low waters of the same day is 5.8 feet, and when the moon's declination is greatest, 6.8 feet. The highest high tide in the twenty-four hours occurs about 87.35 m . after the moon's upper transit, (southing,) when the moon's declination is north, and about 3 h .51 m . before when south. The lowest of the low waters occurs about $7 \frac{1}{2}$ hours after the highest high tide.

    To find the times of high and low waters first compute them for San Diego, and, from the numbers thas obtained, subtract 19 m . for Cuyler's harbor.

    San Miguel was discovered by Cabrillo in 1542, and Cayler's harbor is supposed by some to be the bay in which he wintered. He died January 5, 1543, having directed Bartolome Ferrelo, his pilot, to assume the command of the expedition and continue the exploration as far north as possible. Ferrelo afterwards named the island in whose harbor his commander had wintered, Juan Rodriguez. It is sometimes called San Bernardo.

    Cuyler's harbor was named by the U. S. Coast Survey in 1852.

    Two rocks, showing themselves well above water, lie NW. by W. from the western extremity of San Miguel, the larger being distant five miles. It bears S. $\frac{1}{2}$ E., distant 22 miles, from Point Concepcion, and S.SE., distant 30 miles, from Point Arguello. Off the inmer and smaller rock a reef extends a short distance to the southward and westward. Deep water is found around the rocks, and vessels may pass between them. The total extent of shore-line of the Santa Barbara islands is about 232 miles.

    ## FROM POINT CONCEPCION, NORTHWARD.

    The first headland to the northward of Point Concepcion is Point Arguello,* distant 12 miles, and bearing NW. by W. $\frac{1}{2}$ W. The shore is bold and compact, curving slightly to the eastward between the two points, and the mountains immediately behind are not less than 3,000 feet in height. Two or three hundred yards off Point Arguello are some detached rocks, upon which the steamship Yankee Blade struck and was lost on the 1st of October, 1854, and 415 persons perished.

    From this point the trend of the coast is NW. to Point Reyes, 240 miles distant, passing tangent to Point Sur in latitude $36^{\circ} 19 \frac{1}{2}$ N., and inside the South Farallon.

    Eight miles north of Point Arguello a small stream empties into the ocean. It was considered by Vancouver the largest he had seen south of the Columbia, but it is insignificant and unimportant. He states that on the old Spanish charts it is called the Rio de San Balardo. On a French chart of 1841 it is called the San Geraldo; on a recent Russian chart we find it called the river Benardo; on the Coast Surrey charts it is designated La Purissima, from the mission La Purissima Concepcion, situated a few miles inland. On the State map of California it is called the San Ines. It rises in longitude $119^{\circ} 20^{\prime}$, about 15 miles from the coast, and runs parallel therewith behind the Sierra Concepcion.

    The first point northward of Point Arguello is Point Purissima, off which makes a reef about a fourth of a mile to the S.SW. This is known on the coast as Point Pedernales, signifying Point of Flints, but now generally and erroneously printed Pedro Nales. Formerly it was called San Pedro Nolasco. Near this point the steamship Edith was lost in 1849. The State survey of California places Pedernales only two miles to the northward of Arguello.

    Between Points Sal and Purissima a small stream called the Guyamas opens.
    From Point Arguello N. by W. $\frac{2}{3}$ W., and distant 19 miles, is Point Sal,* which is marked by streaks of yellow sand, except at the extreme point. The extremity is formed by high, round, black rocks, off which are several sunken rocks, extending half a mile to the southward and westward. This stretch of the coast is very similar to that behind Concepcion and Arguello, but, after passing Point Sal, the mountains fall back, and the shore is formed of sand-hills. The general bend hence is north, until the shore commences sweeping westward to form the bay of San Luis Obispo, and the shores become high and abrupt.

    The line of equal magnetic variation of $14^{\circ}$ east cuts the coast line in latitude $35^{\circ} 01^{\prime} \mathrm{N}$., and crosses the meridian of $121^{\circ} 30^{\prime} \mathrm{W}$. in latitude $33^{\circ} 55 \frac{1}{2}^{\prime} \mathrm{N}$. It moves annually southward about a mile and a half

    ## SAN LUIS OBISPO.

    This bay is an open roadstead, exposed to the southward, and even during heavy northwest weather a bad swell rolls in, rendering it an uncomfortable anchorage. The landing is frequently very bad, and often impracticable, but the best place is in the mouth of the creek, keeping the rocks at its mouth on the starboard hand. Fresh water may be obtained at a small stream opening on the beach half a mile west of the creek. In the coarse sandstone bluff between these two places are found gigantic fossil remains.

    Off Point San Luis, which forms the SW. part of the bay, are some rocks, and in making the anchorage vessels should give this point a berth of half a mile, passing in six or eight fathoms; run on a N. by E. course, and anchor three-fourths of a mile from shore in six fathoms, sticky bottom; four fathoms can be got about a fourth of a mile from the beach. In winter, anchor far enough out to clear Point San Luis if a southeaster should come up. During southerly weather landing is frequently effected at the watering place, when impracticable at the creek.

    The distance from the rock off Point San Luis to the mouth of the creek is a mile and a half; from the same rock to a white rock bearing N. $70^{\circ}$ E. the distance is two and a quarter miles; and a black rock lies halfway between the white rock and the mouth of the creek.

    The Coast Survey secondary astronomical station is on the bluff at the east side of the small freshwater stream, west of the creek, and its geographical position is :

    | Latitude. | 351037.5 north. |
    | :---: | :---: |
    | Longitude. | 1204331 west. |
    | Or, in time | $\begin{array}{ccc} \text { h. } & \text { m. } & \text { s. } \\ 8 & 02 & 54.1 . \end{array}$ |

    The magnetic variation, $14^{\circ} 17^{\prime}$ east, in February, 1854 ; yearly increase, $1^{\prime}$.
    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is $\mathrm{X} h$. VIII $m$. The mean rise and fall of tides is 3.6 feet; of spring tides, 4.5 feet; and of neap tides, 2.4 feet. The mean duration of the flood is $6 / .25 \mathrm{~m}$., and of the ebb 57.58 m . The average difference between the corrected establishments of the $\mathrm{a} . \mathrm{m}$. and $\mathrm{p} . \mathrm{m}$. tides of the same day is 1 h .24 m . for high water, and $1 / .0 \mathrm{~m}$. for low water. The differences when the moon's declination is greatest are $2 h .0 \mathrm{~m}$., and $1 h .28 m$., respectively. The average difference in height of these two tides is 1.5 foot for the high waters, and 2.0 feet for the low waters. When the moon's declination is greatest, those differences are 2.0 feet and 3.1 feet, respectively. The average difference of the higher high and lower low waters of the same day is 5.4 feet, and when the moon's declination is greatest 6.1 feet. The higher high tide in the twenty-four hours occurs about 9 h . 32 m . after the moon's upper transit, (southing,) when the moon's declination is north, and about $2 h .54 \mathrm{~m}$. before, when south. The lower of the low waters occurs about seven hours after the higher high tide. The greatest observed difference between the two low waters of one day was 4.0 feet, and the greatest difference between the higher high and lower low waters of one day was 8.3 fect.

    To find the times of high and low waters, first compute them for San Diego, and to the times thus obtained add 30 m . for San Luis Obispo.

    The town of San Luis Obispo, which takes its name from the mission of that name, founded September 1,1772 , is not on the bay, but is situated about ten miles in the interior, in the middle of an extensive and excellent grazing country. Communication is maintained with San Fraucisco and other ports by regular steamers and lines of sailing packets.

    The bay was discovered by Cabrillo in 1542, and called by him Todos Santos.
    A preliminary chart of the harbor of San Luis Obispo was issued from the Coast Survey Office in 1852,
    To the northwest of the Bay of San Luis Obispo rises to a great height the Monte de Buchon, which is readily distinguished in coming from the northward or southward.

    We have been informed by old otter hunters on this coast that there exists a sunken rock about cight miles S.SW. from Point San Luis, and furthermore that they had found kelp upon it in four fathoms. On the old Spanish charts an island appears laid down in that direction, but distant about eight leagues. One of the Pacific mail steamships laid to in a southeast gale and thick fog off Point Concepcion, and drifting to the northward came unexpectedly upon a sunken rock, upon which the sea was breaking hearily. The commander supposed the vessel to be then off Point Sal, and had so plotted the rock upon his chart; but upon being informed of the alleged existence of a rock off San Luis Obispo, he was satisfied that he had been near it, but unfortunately had no opportunity of determining his position.

    This locality demands a thorough examination, as it is in the direct track of the whole California trade from San Francisco.

    From Point San Luis the coast trends in a straight line W.NW., for a distance of eight miles, and close along the shore of this stretch are several large rocks. Thence the coast trends abruptly to the north, running to the high conical rock called El Moro, distant eight miles-these two shores forming the seaward base of Mount Buchon.

    From EI Moro the shore-line gradually trends to the westward, thus forming a deep indentation or bay, called Los Esteros on the old Spanish charts, but designated as the Estero bay on the Coast Survey chart. It was discovered by Cabrillo in 1542 , and here he obtained wood and water. Behind El Moro are several lagoons or streams, and the high land retreats for some distance, leaving the shore low and sandy, while the north shore is rugged, and guarded by rocks. 'The NW. point of the bay is called Punia de los Esteros on
    the old Spanish charts, and bears NW. $\frac{1}{2}$ N. from the west point of Mount Buchon, distant 13 miles. A line joining these two points shows that the bay is about five miles deep.

    A view of El Moro is given on the Coast Survey sheet for 1853.
    From Point Arguello, Punta de los Esteros bears NW. by N., distant 53 miles.
    From Point Los Esteros to the western point of the anchorage of San Simeon the coast runs nearly straight NW. by W. for a distance of 15 miles. The shores are not so bold as to the southward or northward, and the mountains fall well back, leaving a fine rolling country of no great elevation, and well suited to agriculture. We have seen wild oats growing here over six feet in height-not one or two stalks, but in acres.

    ## BAY OF SAN SLMEON.

    This is a small exposed roadstead, but affords tolerably good anchorage during northwest winds. The southwest point of the bay bears NW. by W. from Point Esteros, and is distant 15 miles. The indentation of the shore-line forming the bay trends between N.NW. to N. for half a mile, and then sweeps away to the westward about a mile and a half, gradually taking a southeast direction. The land behind the bay is comparatively low and gently rolling, the high hills retiring well inland.

    Vessels coming from the northward may run boldly round the SW. point, within a few hundred yards of the shore in eight or nine fathoms, round up to north and anchor anywhere off the sand beach, in five fathoms, hard bottom, and a little more than a quarter of a mile from shore. The beach is half a mile long, stretching well out, and rendering the landing disagrecable with any swell; but in such cases it is usual to land at the western part of the beach. Eastward of the sand beach the shore-line is bluff and guarded with rocks. Vessels from the southward must make short tacks close in shore, or they will assuredly miss it. The only sure marks for it are the Piedras Blancas, as will be hereafter shown. It was in this bay that the steamship Pionecr put in leaking badly; was driven or dragged upon the beach, and after being abandoned by the underwriters was got off and carried to San Francisco. The bay affords not the slightest refuge in southerly weather. A hydrographic sketch of it was publisbed by the Coast Survey in 1852.

    In making this harbor from the northward vessels must sight the Piedras Blancas, (White Rocks,) four miles W. $\frac{3}{4}$ N. of the SW. point of San Simeon. They are two large white sharp-topped rocks, and nothing else like them is found on this part of the coast. The geographical position of the outer and larger rock is, approximately :

    > Latitude 0 ,
    > Latitude.......................................................................... 3539 north.
    > Longitude.................. ...................................................... . . . . . 12115 west.

    From Point San Luis they bear NW. $\frac{3}{4}$ W., distant 38 miles.
    From Point Esteros they bear NW. by W. $\frac{1}{2}$ W., distant 18 miles.
    From Point Arguello they bear NW. $\frac{1}{2}$ N., distant 72 miles.
    The secondary astronomical station of the Coast Survey at San Simeon is on the rise just off the beach, and bearing N. $5^{\circ} \mathrm{W}$. from the SW. point of the bay. Its geographical position is:

    | Latitude | 353824.4 north. |
    | :---: | :---: |
    | Longitude. | 1211022 west. |
    | Or, in tim | $\begin{array}{cc} h_{8}^{m} & \text { m. } \\ \hline 04 & 41.5 . \end{array}$ |

    This bay is supposed by some to be the "Bay of Sardines" of Cabrillo, where he anchored and landed in 1542.

    A view of the Piedras Blancas is given on the Coast Survey sheet of 1853.
    From Piedras Blancas the coast trends NW. $\frac{1}{2}$ W. for a distance of 57 miles, in an almost perfectly straight line. At a distance of 18 miles from these rocks the above-mentioned bearing cuts a bold bluff and rounded point called Punta Gorda, off which, and for two or three miles along the shore northward, there are many rocks. This point is the Cape San Martin of Cabrillo. He placed it in latitude $37^{\circ} 30^{\prime}$ N.; but applying the correction obtained from his erroneous determination of San Diego, we obtain $35^{\circ} 50^{\prime} \mathrm{N}$. as the position of San Martin, which is very nearly its proper latitude. As there is one point under Cape Mendocino, more generally known as Punta Gorda, it is recommended that this point retain the name given to it by Cabrillo, especially as all his names have been cast aside.

    Continuing on the same bearing, and at a distance of 49 miles from Piedras Blancas, is Point Sur, sometimes called Lobos, making out nearly half a mile. As seen from the north or south, at a distance of 10 miles, Point Sur appears as a high, large, round-topped island; but upon approaching it a low neck of land is seen, connecting it with the main. Its approximate geographical position is:

    Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3619 north.
    Longitude........................................................................... 12152 west.
    Vancouver, in passing down the coast in 1793, thought this "small, high, rocky lump of land, lying nearly half a mile from the shore," was detached, and that it formed an island.

    The highest peak of the range bordering the coast lies six miles square in from Point Sur, and attains an elevation of 4,414 feet.

    A view of the point is given on the Coast Survey sheet of 1853 .
    Still continuing on the same bearing, 57 miles from Piedras Blancas and $7 \frac{1}{2}$ miles from Point Sur, another slightly projecting point is passed, about a mile to the eastward of the course. Thence the coast trends more to the eastward, running N.NW. for eight miles, to Point Cypress, and passing Point Carmel, the sonth point of Carmel bay.

    From Point Arguello to Point Sur the bearing is N. $44^{\circ} \mathrm{W}$, and the distance 120 miles. From Point Sur to Punta de los Reyes the bearing is N. $43^{\circ}$ W., and distance 118 miles.

    The mountains, which had fallen back behind Los Esteros, gradually approach the shore-line north of San Simeon, and about 10 miles north of Piedras Blancas they come down abruptly to the coast, and ron parallel with it to Point Carmel, forming the boldest and most compact shore that we have yet passed, and attaining a uniform elevation of nearly 4,000 feet. These mountains were called by Cabrillo the "Sierras Altas," but at present the range is known as the Sierra de Santa Lucia. From their abrupt faces we have seen cascades falling from a height of forty or fifty feet directly into the sea.

    ## CARMEL BAY.

    Between Point Carmel and Point Oypress, which are about threc miles apart, lies the small, rocky and unsafe bay of Carmel. At the southem extremity is a small cove, sufficiently land-locked and protected for small vessels. In the vicinity there is an extensive quarry of granite, and several small coasting vessels are employed for its transportation to San Francisco; but there is so little space that they are compelled to warp in and out by buoys placed at the entrance. Point Oypress, the north point of the bay, is low, and covered with cypress to the water, and is the first wooded point met with in coming from the southward. The upper branches of the trees are spread out by the influence of the strong prevailing winds, and present a flat or umbrella-like appearance.

    The Mission del Carmelo is situated but a short distance from the shores of the bay, and can be seen from the water in certain directions. After the abolishment of the Society of Jesus, in Lower California, by the emperor Charles III of Spain, with the transfer of the administration of the missions to the Dominican monks, and of the property to the Franciscan order, the Visatador, Don Josef de Galves, of the latter order, in July, 1768, visited San Diego and Monterey, for the purpose of establishing missions. On the 3d of June, 1770, he founded that of San Carlos de Monterey, now usually called the Carmel mission.

    The name Rio Carmel was applied to the small stream emptying into Carmel bay, by Vizcaino, in December, 1602.

    From Point Cypress to Point Pinos the general direction of the shore is N. $\frac{3}{4}$ E., and the distance four miles.

    ## POINT PINOS

    makes out as a low rounding point, bringing the pines, with which it is covered, within a quarter of a mile of the shore, off which the rocks make out a quarter of a mile, and the line of threc fathoms nearly half a mile, when the depth suddenly increases to 10 or 15 fathoms, and at a mile reaches 40 or 45 fathoms. The three-fathom line follows the shore within a third or half a mile into Monterey, whilst outside of that line the depth increases as suddenly as off the point. Vessels should always give Point Pinos a good berth, as a very heavy swell almost invariably sets upon it. This point is the northern termination of the long and clevated range called Sierra de Santa Lucia, extending southward and forming the bold rocky coast-line to San Luia Obispo.

    A view of Point Pinos is given on the Coast Survey sheet of 1853.

    ## POINT PINOS LIGHT-HOUSE.

    This is a secondary sea-coast light, situated upon the northwestern part of Point Pinos, at the face of the growth of pines. The building is a grey granite dwelling one story in height, surmounted by a tower and lantern, which is 35 feet above the ground. The illuminating apparatus is of the third order of Fresnel, and shows a fixed light of the natural color, from sunset to aunrise. It illuminates about four-fifths of the horizon, and is elevated 91 feet above the level of the sea. During ordinary clearness of the atmosphere it can he seen from an elevation of-

    10 feet, at the distance of 14.5 miles.
    20 feet, at the distance of 16.0 miles.
    30 feet, at the distance of 17.1 miles.
    Its geographical position, as determined by the triangulation of the Coast Survey, is:

    $$
    \begin{aligned}
    & \text { Latitude................................................................ } 363758.1 \text { north. } \\
    & \text { Longitude................................................................. } 1215500 \text { west. }
    \end{aligned}
    $$

    The primary astronomical station of the Coast Survey is about half a mile eastward of the light, and has the following geographical position :

    $$
    \begin{aligned}
    & \text { Latitude........ .......................................................... . . . } 363759.3 \text { north. } \\
    & \text { Longitude.................................................................. . . } 1215425 \text { west. } \\
    & \text { h. } m \text {. } s \text {. } \\
    & \text { Or, in time.............................................................. } 807 \text { 37.7. }
    \end{aligned}
    $$

    Magnetic variation, $14^{\circ} 58^{\prime} .3$ east, in February, 1851, with a yearly increase of $1^{\prime}$. A topographical sketch of Point Pinos is given in the annual report of the Coast Survey for 1851.

    ## BAY OF MONTEREY.

    Point Pinos forms the southwest point of this bay, and Punta de la Santa Cruz, (forming the western shore of the anchorage of Santa Cruz, ) the northwest point. A line joining these two points runs N. $27^{\circ} \mathrm{W}$,, $19 \frac{8}{8}$ miles, and the greatest width of the bay, near the mouth of the Salinas river, is 93 miles.

    From Point Pinos to the anchorage off the town of Monterey, the course is E. by S. $\frac{1}{2}$ S., and the distance three miles. The shore towards the town is rugged, composed of granite, and covered with a heavy growth of fir; but to the eastward of the town is a long, sandy beach, backed by sand dunes of slight elevation. For a distance of 10 miles along this beach the line of three fathoms lies at a distance of 150 yards off shore, the water deepening rapidly beyond that, and the bottom almost everywhere hard.

    Vessels coming from the northward, bound to Monterey, follow the coast from Point Año Nuevo to Point Santa Cruz, then run well into the bay, but not too far, for fear of losing the wind, and to avoid the set of the heavy swell rolling towards the beach. Leaving Point Santa Cruz and keeping on a SE. by E. course about 15 miles, will bring vessels into 25 fathoms, and nearly two miles from the beach; thence a south course for eight miles will bring them to the anchorage in 10 fathoms, and half a mile from the landing. These precautions are necessary, because Point Pinos, with the whole bay, is almost continually enveloped in a dense fog. Very frequently the coasting steamers have to rum for the beach, and then be guided by the rote to the anchorage.

    A direct course from Point Año Nucvo to the anchorage is SE. $\frac{1}{2}$ E., and the distance $36 \frac{1}{2}$ miles. From Point Pinos to P'oint Año Nuevo the bearing is N. $47^{\circ} \mathrm{W}$., and the distance 34 miles.

    By anchoring well in at the western side of the anchorage vesscls will ayoid much of the swell that comes in with the heary northwest winds, but never sufficient to make any berth there dangerous. In heavy southerly weather Point Pinos breaks the swell, but the wind draws very strong over the anchorage. The water shoals from 15 to 3 fathoms in a distance of 300 yards, and the lead should be used to avoid running in too far.

    When the California mail steamships stopped at Monterey they frequently ran outside of Point Pinos, or in very dangerous proximity to it. This led to their firing a gun when approaching the harbor during foggy or dark weather, and upon the report being heard at the fort a gun was fired in answer, and the
    exchange kept up until the steamer was safe at her anchorage. We were encamped at Point Pinos when the steamship Carolina was brought in by this means, after she had got nearly as far down as Carmel bay.

    The approximate geographical position of the end of the wharf, abreast of the custom-house at Monterey, is:

    | Latitude.......................-........... . . . . . . . . . . . . . . . . 363617 north. |  |
    | :---: | :---: |
    | Longitude | 1215227 west. |
    |  | $h . m$. $s$. |
    | Or, in time | S 0729.8. |

    Tides.-Whe corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is $X h$. XIIm. The mean rise and fall of tides is 3.4 feet; of spring tides, 4.3 feet; and of neap tides 2.5 feet. 'The mean duration of the flood is $67.31 \mathrm{~m} . ;$ of the ebb, $6 h .2 \mathrm{~m} . ;$ and of the stand, 0 . 35 m . The average difference between the corrected establishment of the a. m. and p . m . tides of the same day is $1 \% .44 m$. for high water, and $17.2 m$. for low water. The differences, when the moon's declination is greatest, are $2 h .40 \mathrm{~m}$. and 1 h .28 m ., respectively. The average difference in height of these two tides is 1.4 feet for the high waters, and 2.4 feet for the low waters. When the moon's declination is greatest these differences are 2.2 feet and 3.7 feet, respectively. The average difference of the higher high and lower low waters of the same day is 5.3 feet, and when the moon's declination is greatest, 6.3 feet. 'The higher high tide in the twenty-four hours occure about 97.36 m . after the moon's upper transit, (southing, when the moon's declination is north, and about 27.50 m . before, when sonth. The lower of the low waters occurs about seven hours after the higher high tide. The greatest observed difference between the low waters of one day was 4.3 feet, and the greatest difference between the higher high and lower low waters of one day was 7.9 feet.
    'To find the times of high and low waters, first compute the times for San Franciseo, and from the numbers thus obtamed subtract $1 / .44 m$. for Monterey.

    The town of Monterey presents a very pretty appearance as secn from the water. Immediately behind it the country rises in plateaus, diversified by hill and valley, and beautifully dotted by oak groves. It was the capital of Califoruia while under the rule of Mexico, and for some years after it became a State.

    A Portuguese company has been formed here to engage in the whale fishery, and even with inadequate means it succeeded in ohtaining over 16,000 gallons of oil (which sold for $\$ 12,000$ ) in less than a year. Other companics hare since been formed; their cruising ground is the bay of Monterey, and a short distance to sea. Operatious are carried on by means of boats furnished with bomb lances during the season, which usually lasts nine months-from March to November.

    Regular communication is kept up with all parts of the coast by steamors and numerous sailing vessels. Stages communicate with Santa Cruz and all the towns to San Francisco.

    Following the shore from the town of Monterey, northward, it presents a uniform sand beach rmming nearly north, backed by low dreary saud dunes, producing aparsely the coarsest grasses and bushes, and entirely destitute of fresh water. This waste extends to the Salinas river, of which we reach the great bend at about $9 \frac{7}{2}$ miles from Monterey, and only one hundred yards from the beach. From Point Pinos it bears N. $30^{\circ}$ E., distant $8 \frac{1}{2}$ miles. From this bend the river follows the line of the beach, just inside of the low sand dunes, for a distance of $4 \frac{t}{2}$ miles, and then disembogues. From Point Pinos it bears N. $18^{2}$ E., and is distant 123 miles. This river has been designated by a variety of names-as Buenaventura, Monterey, and Salinas; but it is now generally known by the latter. It rises in the latitude of the Piedras Blancas; one branch about 20 and the other 33 miles from the coast. These branches meet at San Miguel, and thence the stream runs parallel with the coast and behind the Sierra Santa Lucia. From its mouth, which is only 60 yards wide at low water, to the entrance to the Rio del Pajaro, or San Antonio, the distance is $2 \frac{1}{4}$ miles; the shore trending to the N.NW. The entrance of that river bears N. $11^{\circ}$ E., 14 miles from Point Pinos.

    From here the coast runs NW. nearly straight to Atos ereek, a distance of seven or cight miles, and about six miles E. by N. of Santa Cruz, with the shore rocky and abrupt.

    North of the Salinas river commence rich meadow and table lands, affording to the settler spots unsurpassed for productiveness, even in the prolific State of California.

    A remarkable sub-marine valley, similar to that off Point Hueneme, has been discovered, and to some extent traced out in this bay. The head of the valley is five-eighths of a mile south of the mouth of the Salinas river, and the 20 -fathom line is only a quarter of a mile off the beach, the depth increasing to 50 38 cs
    fathoms in the next quarter of a mile. At this distance from shore the 20 -fathom lines are three-eighths of a mile apart. The general direction of the valley for the next two miles is SW. $\frac{1}{2} \mathrm{~W}$., where we find a depth of 117 fathoms, and the 50 -fathom lines lie about five-eighths of a mile apart; thence the valley runs about west, reaching a depth of 170 fathoms in a mile, and 240 fathoms in 34 miles, with 42 fathoms, less than a mile to the north of this. The soundings are not numerous enough to trace its outlines in deep water; but the indications are that, for 10 miles of its length, it runs S. $60^{\circ}$ W., with no bottom at 315 fathoms. The only available boat landing upon the beach of the bay shores is at the head of this sub-marine valley. There are no indications on the land of this peculiar formation, except that at its head the bay very gradually reaches its greatest easting.

    An extensive valley, called the Salinas plains, through which comes the Salinas river, extends inland from the eastern part of Monterey bay, nearly to the mission of San Miguel, sitnated on a plateau of the San Bruno mountains. This valley is said to be nearly 90 miles in length, and in breadth varying from two to ten. It contains some 200,000 acres of good agricultural lands, and the remainder affords excellent pasturage for horned stock, horses, and sheep.

    The bay of Monterey was discovered by Cabrillo in 1542, and called the Bay of Pines. It was surveyed by Sebastian Vizcaino in 1602, and the name was changed to Puerto de Monte-rey, iu honor of the Spanish viceroy of Mexico, Don Gaspar de Zuniga, Count de Monte-rey, who despatched the expediton.

    It was used by the Spanish galleons on their return from Manilla to Mexico.
    A preliminary chart of Montercy bay was published by the Coast Survey in 1857.
    The line of equal magnetic variation of $15^{\circ}$ east cuts the coast line of Monterey bay in latitude $36^{\circ}$ $45^{\prime}$ N., about half way between the great bend and mouth of the Salinas river, and crosses the meridian of $123^{\circ} 0^{\prime} \mathrm{W}$., in latitude $36^{\circ} 36^{\prime} \mathrm{N}$. This line moves annually southward about a mile and a half.

    ## SANTA CLUZ harbor.

    This harbor or anchorage is at the northwest part of the bay of Monterey, and is of very limited extent. It is protected from all the winds from the northward, but exposed to the full sweep of southerly gales, and many coasters have been driven ashore during the winter season. It is about three-quarters of a mile in depth northward, by $1 \frac{1}{2}$ mile cast and west.

    Vessels coming from the northward, after leaving Point Año Nuevo, follow the coast-line on a general course E.SE. for about 18 miles. The shore for this distance is abrupt, jagged, and moderately elevated, with a range of high hills, or mountains whose summits in summer are almost continually enveloped in fog. Skirting the shore at a distance of half a mile a depth of 6 to 10 fathoms can be carried, and upen making Point Santa Cruz, the top of which is moderately level for some distance back, four fathoms are obtained within a quarter of a mile of it; round up and run along in five fathoms until abreast of the beach, where good anchorage will be found half a mile from shore.

    Vessels from the south in summer keep well into Monterey bay, to escape the full force of the northwesters and the heavy head sea.

    During the winter months anchor well out, so as to be able to clear the shore westward of Point Santa Cruz in case a southeaster springs up.

    Landing on the beach is generally disagreeable, as it extends out some distance, but boats usnally land at the embarcadero, at the foot of the bluff in the NW. part of the harbor.

    The beach is over half a mile in length, and between its eastern extremity and the bluff point empties the San Lorenzo river, a amall stream running past the town and mission, which is situated a mile inland.

    A chart of the harbor and vicinity was published in the Coast Survey report for 1854.
    The country about Santa Cruz is exceedingly productive, and now thickly settled. A steamer runs regularly in the trade between this place and San Francisco, and numerous coasters find abundant freight from here and the Pajaro country to San Francisco.

    Regular stage communication is maintained with San Francisco and Monterey.
    The secondary astronomical station of the Coast Survey was at the top of the bluff at the embarcadero. Its geographical position is:

    ```
    Latitude................................................................ 36 57 26.9 north.
    Longitude............................................................. . . 122 00 10 west.
    h. m. s.
    Or, in time. . . . . ................................................... 808 00.7.
    ```

    An examination for the location of a harbor light has been made, and the site recommended to the Light-house Board by the Superintendent of the Coast Survey.

    The high mountain, N. $25^{\circ}$ E., $12 \frac{1}{2}$ miles from Santa Cruz, is named Mount Bache, and attains an elevation of 3,791 feet.

    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is $\mathrm{X} h$. XVIII $m$. The mean rise and fall of tides is 4.1 feet; of spring tides, 55 feet; and of neap tides, 2.9 feet. The mean duration of the flood is $6 k .47 \mathrm{~m}$; of the ebb, 5 h .45 m .; and of the stand, 0 h .20 m . The average difference between the corrected establishment of the a. m. and p. m. tides of the same day is $1 \% .44 \mathrm{~m}$. for high water, and 1 h .2 m . for low water. The differences, when the moon's declination is greatest, are $2 h .40 \mathrm{~m}$. and 1 h .28 m ., respectively. The average difference in height of these two tides is 1.4 feet for the high waters, and 2.4 fect for the low waters. When the moon's declination is greatest these differences are 2.2 feet and 3.7 feet, respectively. The average difference of the higher high and lower low waters of the same day is 6.0 fect, and when the moon's declination is greatest, 7.0 feet. The higher high tide in the twenty-four hours oceurs about 97.32 m . after the moon's upper transit, (southing,) when the moon's declination is north, and about 27.54 m . before, when south. The lower of the low waters occurs about $\% h$. after the higher high tide.

    It was off Point Santa Cruz that Cabrillo is supposed to have anchored on the 17 th of November, 1542, upon his return from the northward.

    From Point Santa Cruz to Point Año Nuevo the distance is 18 miles, and the general direction W. by N. $\frac{3}{4}$ N., at first curving to the southwestward of that course, and then to the northward, until within three miles of the rock of Point Año Nuevo, when the shore curves well to westward, (for the last mile to the southwest,) forming an anchorage protected somewhat against the heavy swell from the northwest, and having a depth of five fathoms within less than half a mile of the shore, and from 10 to 15 fathoms at the distance of a mile.

    At a quarter of a mile from the point lies a black jagged islet, consisting of a sloping ledge of rocks covered with a stratum of yellow clay about four feet thick, and this again covered with a mound of sand about 30 feet high. Upon this a light-house is to be built. The point itself is composed of rolling hills of shifting sand, varying from 20 to 100 feet in height, while behind them rises the Santa Cruz range of mountains. The coast trail, which followed the beach from the southward, here strikes up the hills belind the sand dunes.

    Steamers coming upon the coast from the southward in thick weather, always endeavor to make the land near Point Año Nuevo, and then follow the coast to the San Franciseo bar. On accoumt of its importance in this respect a light-house was recommended by the Superintendent of the Coast Survey.

    A map of the anchorage, with a view of the point, was published by the Coast Survey in 1854.
    From Point Año Nuevo the coast runs NW. 柔 N. for about 10 miles, to the rocky point called the Punta de la Bolsa, but designated Point Miramontes on the Coast Survey reconnaissance sheet, from Mexico to San Francisco, in 1853. The high mountain square in from La Bolsa, bearing N. $53^{\circ}$ E., and distant 13 miles, named Black mountain, attains an elevation of 2,809 feet. Two miles north of La Bolsa empties the Piscador, a small stream running through a valley of inconsiderable extent. For tue foregoing 12 miles the general formation of the immediate seaboard is that of a table land of three terraces, the lowest gradually sloping from the base of the second to the coast, which is exceedingly rocky and forbidding; the underlying stratum is sandstone.

    From Point Año Nuevo to Pillar Point, or Punta de Corral Tierra, forming the south and western point of Malf-moon bay, the general direction is NW. by N. $\frac{1}{4}$ N., and the distance 25 miles. Three and a third miles above the Piscador opens the San Gregorio, another small stream, and $2 \frac{1}{3}$ miles still further opens the Tunitas. The seaboard between the valley of the Piscador and that of the San Gregorin undergo is a striking chauge both in the character of its topography and its geology. Instead of the table land we meet with a spur of the coast mountains running into the sea, and having an elevation of 600 feet within a mile of it. The shore-line and the coast generally presents a very broken and rugged appearance, oceasioned by the deep gulches cut through to the accan.

    HALF.MOON BAY.
    This anchorage is six miles S.SE. from Point San Pedro, and 18 miles S. by E. from the Golden Gate. The sonthwestern point of the bay is formed by a bluff table land about 160 feet in height, called the Corral
    de Tierra, 325 yards south of which stretches a number of black rocks, which show as one when seen coming up the coast, but as three or four when approached from the northwest. The largest is nearly as high as the bluff, and locally known as Sail rock, or Pillar rock. The point is known as Pillar Point, and from its southeastern extremity racky and foul-bottom, marked by kelp, extends SE. $\frac{1}{3}$ E., seven-eighths of a mile, dropping suddenly from 14 feet to $\overline{5}$ fathoms. This is the inner reef, and makes the bay available as a summer anchorage. One mile and three-quarters southeast from the same part of the point a narrow ledge of rocky bottom, one-third of a mile long, and marked by kelp, stretches in the same general direction. The passage between this outer and the inner reef is three-quarters of a mile wide, with rocky and uneven bottom, from 34 to $10 \frac{1}{4}$ fathoms. These ledges lie parallel with the coast mountains, and with the shore-line from which the outer one is distant $1_{s}^{3}$ mile. From the eastern extremity of the point the shore runs NW. by N. for a quarter of a mile; then NE. for three quarters of a mile, curving to the eastward and southeastward in a long bend, for $2 \frac{1}{2}$ miles to the mouth of the Arroyo de los Pillarcitos, down which comes the only road crossing the peninsula of San Francisco, between the Laguna de Mercedes and Santa Cruz The highest part of this road, which crosses a depression of the peninsula, is near the Coast Survey station "Ridge," which is 1,093 feet above the ocean, and but a few feet higher than the road. The outer reef is nearly abreast of the Pillarcitos, from which the coast runs south four miles to Mirumontes point, which is S. $48^{\circ}$ E., five miles from Pillar Point; thence to the mouth of the Tunitas the distance is four miles SE. The greatest extent of the bay may be said to be between Pillar and Miramontes Pointa, but the part near the former only is available.

    The soundings between the rocky ledges and the shore are quite regular, decreasing from nine fathoms to three fathoms at less than a quarter of a mile from the beach, with sandy bottom. The passage to the anchorage is between the inner and outer reef, with the high, bare-topped mountain bearing a little north of east, and Pillar Point open to the westward. This mountain is steep, with straggling redwoods on its flanks, and the summit bare. It is locally known as Bald Pate; but, on the Spanish grants, as Cumbra de las Auras. When inside the reefs beat up until Pillar Point bears about SW., distant half a mile, and anchor in $4 \frac{1}{2}$ fathoms, hard sand. With southerly light winds a heavy swell sets in; but upon the approach of heavy southeast weather it is necessary to go to sea.

    The mass of redwoods cresting the mountains of the peninsula cease abruptly abreast of Miramontes, and only stragglers are seen to the northward. They are a good mark for recognizing this part of the coast when coming in from sea.

    Around Half-moon bay is a limited extent of agricultural country at the seaward base of the mountains, and small coasters carry the produce to San Francisco.

    About one mile along the coast to the northwestward is a small boat harbor, 100 yards wide, formed and protected by outlying rocks, and having $3 \frac{1}{2}$ fathoms in it. In the autumn months it is used as a whaling station. About a thousand barrels of humpback oil were obtained in the fall of 1863.

    Point San Pedro lies NW. by N. $\frac{1}{4}$ N., 30 miles from Point Año Nuevo, and S. $12^{\circ}$ E. from Point Lobos, at the entrance to the Golden Gate. It is a black, bold, rocky promontory, over 500 feet high, having a high, large, jagged rock at the northern part, and is a prominent and excellent mark for making the entrance to San Francisco. The principal rock is nearly a hundred feet high. Its south face is white, and shows the line of stratification plainly. From the west the dip of the strata shows about 60 degrees to the northward. It is connected with the main by some low rocks. Half a mile to the northeast of the point is the valley of San Pedro, from which the point takes its name.

    From Point San Pedro the bell-boat off the bar of San Francisco is distant 12 miles, and from Point Año Nuevo it is 40 miles upon a NW. by N. course.

    The range of mountains forming the northeastern shore of Monterey bay, and extending to Santa Cruz and Point Año Nuevo, is called Santa Cruz. Thence northward to the Golden Gate, and forming the peninsala of San Francisco, by bounding the bay on the west, the mountains are known as the Sam Francisco or San Bruno range.

    The extent of shore-line from Point Concepcion to Point Boneta is about 286 miles.

    ## BAY OF SAN FRANCISCO AND APPROACHES.

    This bay affords the finest and most commodious harbor on the Pacific coast of the United States. From its discovery it has commanded the admiration of navigators, and, since the wonderful rise of California, has well sustained its reputation. Its geographical position, its size and depth of water, its noble entrance
    and bold shores, the Sacramento and tributaries, draining the rich agricultural valleys and auriferous slopes of the Sierra Nevada, the magic eity upon its shores, and the salubrity of its climate, have conspired to make it emphatically the port of the Pacific.

    The Golden Gate is the entrance to the bay, and presents the character of a great cleft or fissure in the sea-coast range of mountains, thereby conncting the bay of San Francisco with the Pacific oceau. On approaching, it is difficult to imagine that a deep chamel lies ahead, so clear is the atmosphere, and so well defined the Contra Costa mountains, behind the bay. Both shores are bold, broken into pointe, and rocky; but the northern is much the bolder, rising almost perpendicularly from the water, attaining an elevation of about 1,000 feet, but a short distance back, and in seven miles rising to 2,600 feet. On the south side, between the points, are stretches of low beach; the hills are undulating and of moderate elevation, increasing very gradually in altitude to the southward, and reaching a height of 1,250 feet in about six or eight miles. The chart of San Francisco entrance, which accompanies the annual Coast Survey Report for 1856, shows the bold and characteristic topography of the vicinity of the Golden Gate.

    Point Boneta.-The north head of the entrance is formed by this point; a narrow, precipitous, rocky cape, nearly 300 feet high, and stretching from the light-house about half a mile to the SE. Behind it the mountains rise rapidly to an elevation of 1,500 feet. During the dry season the deposit of sea birds accumulates in such quantities on the ridge outside of Boneta light-house, as to make the bluff show white, but the first heavy rain carries it off, and then, throughout the rainy season, the point exhibits its natural color and appearance. There are no dangers off the point, the line of three fathoms rarely extending 300 yards from any portion of it. When the clipper ship San Francisco was lost on this head, we arc told that she first struck the bluff inside the heads; was carried by the currents around the point, and then cast ashore on the outside. 'The reef, or line of sunken rocks, stretching out three-quarters of a mile mpon some maps, has no existence, and only scrves to mislead those unacquainted with the locality. From five to six fathoms can be found on every side within a fifth of a mile.

    One mile and seven-eighths NW. of the point the steamship Tennessee went ashore whilst endeavoring to find the entrance in a thick fog, (calm weather,) and was lost. The Cortes had got in just before her, and as the fog was shutting down over the entrance.

    ## POINT BONETA LIGHT-HOUSE.

    The building is situated ncarly half a mile from the extremity of the point, and consists of a brick tower painted white, and surmounted by a lantern painted black. From scaward it is seen projected agrainst the dark, high hills behind it, and in clear weather is a very plaiu object. The illuminating apparatus is of the second order of the system of Fresnel, was first exhibited April 30, 1855, and shows a fixed light of the natural color from sunset to sunrise. It illuminates five-sixths of the horizon, and is elevated about 306 fect above the level of the sea. During ordinary conditions of the atmosplere it can be seen from an elevation of -

    10 feet at a distance of 23.6 miles.
    20 feet at a distance of 25.1 miles.
    30 feet at a distance of 26.3 miles.
    50 feet at a distance of 28.1 miles.
    Its geographical position, as determined by the triangulation of the Coast Survey, is:
    

    Magnetic variation $15^{\circ} 27^{\prime}$ east, in 1852 , with a present yearly increase of $1^{\prime}$.
    From the light at Point Boneta to that on Fort Point the distance is $2 \frac{2}{3}$ miles, and bearing E. $\frac{1}{4}$ N.
    Fog-bell at Point Boncta.-The bell, with the machinery, is in a frame building, open in front, and placed on the bluff just in advance of the light-house tower, at an clevation of 270 feet above the level of the sea. The bell weighs 1,500 pounds, and during foggy and thick weather is struck six blows, at intervals of sixteen seconds each, followed by a pause of forty-four seconds.

    The fog-gun at Point Boncta has been discontinued since the placing of the bell-boat ontside the bar, March 18, 1858. It may not, however, be amiss to state here the design of the fog-gun. A twenty-four
    pounder was placed near the light-house, and during fogs or thick weather, either day or night, was fired at the hours and half hours of San Francisco mean time. It enabled vessels, before reaching the bar, to get the bearing of Point Boneta, and, by the loudness of the report, or better, by the soundings, to form an estimate of their distance from it.-(See remarks, page 296, Monterey bay.)

    We advocated this plan strongly soon after our arrival upon the coast, and it met with the hearty support and conmendation of officers of the navy and commanders of the steamships, clippers, and coasters. Continning to urge its adoption uutil the spring of 1855, we had the satisfaction of seeing it tried in August of that year. We have since learned, by British newspapers, that the Board of Trade and Liverpool Corporation have placed a gun of large calibre on Holyhead, to be fired during foggy weather, for the benefit of mail steamers passing up the Irish channel.

    Point Lobos.-The south head of the entrance to San Francisco bay is formed by this point, 375 feet high, upon which Congress authorized the erection of a sccondary sea-coast light, where a light has been regularly shown, and a fog-bell kept in operation by private enterprise. Upon the round-topped hill behind the point is erected a large frame building for a telegraph station, whence the electric wires run to the city of San Francisco. The first telegraphic message transmitted on the Pacific coast was over these wires. Southward of the head the sand dunes are conspicuous and easily recognized features in approaching the entrance. The strong northwest summer winds, drawing in over the land, raise the white sand from the three miles of broad beaeh, and carrying it inland over the hilltops, bury grass, bushes, and scrub oak. The quantity of sand driven in from this beach is enormous, and its accumulation has greatly modified the topography of the peninsula.

    The geographical position of the site selected for the lighu-house, as determined by the triangulation of the Coast Survey, is:

    $$
    \begin{aligned}
    & \text { Latitude.............................................................. . . } 374656.9 \text { north. } \\
    & \text { Longitude.............................................................. } 1222939.5 \text { west. } \\
    & h \quad \mathrm{~m} . \quad \mathrm{s} . \\
    & \text { Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 8 \text {. } 9 \text { 58.6. }
    \end{aligned}
    $$

    This position is 32 feet north and 1,317 fect west of the outer telegraph station.
    Off the western face of Point Lobos lie a number of black jagged rocks about 50 feet high, but all within the five-fathom line, and close in shore. They are called the Seal rocks, and one of them shows a large arch from particular directions. The outer one bears from Point Boneta SE. by S. $\frac{1}{4} \mathrm{~S}$., and is distant $2 \frac{1}{8}$ miles. From it the general trend of the shore runs in a line to Fort Point for nearly a mile, to a short jutting high point, off which lie the Mile rocks. From this point the shore runs well to the eastward for a mile, gradually trending to the north for a mile and a half to Fort Point. In the deepest part of this bend the shore is low, with small hillocks rising from the general surface and slope of the hills, and fronted by a long sand beach.

    Milc rocks.-These two rocks lie off Point Lobos, a short distance within the limit of the entrance of the Golden Gate. They are small, near each other, and have a height of 15 feet above water, with a good depth of water all around and close to them; but the current swirls and eddies about them in such a manner as to render a near approach anything but agrecable or safe with a light wind. The inner and amaller rock is one-third of a mile to the northward of the small jutting point inside of Point Lobos, and very nearly two miles SW. $\frac{1}{2}$ S. from Fort Point. Vessels running in on the line of Fort Point and Alcatraz island pass less than half a mile from the outer and larger rock. The rocks bear almost SE. from Boneta light, and distant $1 \frac{7}{\mu}$ mile. They were called "One Mile Rocks" by Beechy, in November, 1826.

    Fort Point.-This was formerly a bold, narrow, jutting promontory of hard serpentine rock, 107 feet above high water, and surmounted by a small Mexican fortification called Fort Blanco. The view from the point was one of the finest in the harbor; but the whole headland has been cut down to within a few feet of high water, and increased in area to form a large fortification, which will be mounted with guns of the largest range and calibre. Upon the hillside rising behind it are houses for the accommodation of the commandant, officers, soldiers, and workmen. Eastward of the point is a long substantial wharf, constructed for receiving stores, ordnance, \&c. Several large vessels have been lost on Fort Point by venturing too close during light airs and strong irregular currents.

    ## FORT POINT LIGHT-HOUSE

    This is a wooden building, painted white, and situated outside of the fortifications. The illuminating apparatus is of the fifth order of Fresnel, and shows a fixed light of the natural color from sunset to sunrise. It is 52 feet above the level of the sea, and, during ordinary states of the atmosphere, can be seen from an elevation of 15 feet at a distance of $12 \frac{1}{2}$ miles. The angle of visibility seaward is bounded by the extremity of Point Boneta, bearing W. $\frac{3}{4}$ S., and Point Lobos, bearing SW. by S. $\frac{1}{4}$ S.

    The geographical position, as determined by the triangulation of the Coast Survey, is:

    | Latitude. | 374837.4 north. |
    | :---: | :---: |
    | Longitude. | 1222737.8 west. |
    |  | $h . m .8$. |
    | Or, in time | 8 9 50.5. |

    The light-house first built upon the high point was taken down when the fortification operations commenced. The light in the present one was first exhibited March 21, 1855.

    The South Farallon light is visible from a vessel's deck when abreast of Fort Point.
    Fog-bell at Fort Point.-The framework supporting the lell is on the castern side of the light-honse, and almost touching it. The crown of the bell is $40 \frac{1}{2}$ feet above the surface of the ground, and supported by iron rods, 10 feet above the wooden structure in which it was formerly placed. The bell weighs 1,092 pounds, and during foggy or thick weather is struck by machinery, five blows at intervals of ten seconds, followed by a pause of thirty-four seconds.

    ## BELL-BOAT OUTSIDE OF SAN FRANCISCO BAR.

    A bell-boat is placed just outside of the bar, in 15 fathoms at mean low water, on the range of the Fort Point and Alcatraz Island light-houses. It is 30 feet long, painted red, and furnished with a day-mark of $3 \frac{1}{2}$ feet by four, elevated eight feet above the water. The bell weighs 500 pounds, is clevated 15 feet above the water, is rung by the action of the sea, and, under ordinary circumstances of wind and sea, should be heard from one to three miles. Mariners are cautioned not to run into or damage this aid to navigation. The fog-gun signal at Point Boneta was discontinued with the placing of this bell-hoat, March 18, 1858, as already stated; and the bar buoy on the same rauge was also removed.

    The approximate geographical position of the bell-boat is:
    Latitude....................................................................... 37 . $45 \frac{1}{2}$ north.
    Longitude........................................................................ . . $12238 \frac{1}{2}$ west.
    The bearings and distances of prominent objects from it are as follows:
    South Farallon Island light-house, SW. by W. $\frac{1}{2}$ W., 162 miles.
    Punta de Los Reyes, (light-house site,) NW. by W. $\frac{5}{6}$ W., $22 \frac{1}{4}$ miles.
    Duxbury Point, NW. by N. $\frac{1}{2}$ N., S $\frac{1}{2}$ miles.
    Point Boneta light-house, NE. $\frac{1}{4}$ N., $7 \frac{1}{4}$ miles.
    Fort Point light-house, NE. $\frac{3}{4}$ E., 94 miles.
    Point Lobos telegraph station, NE. by E $\frac{1}{2}$ E., $7 \frac{1}{2}$ miles.
    Point San Pedro, SE. $\frac{1}{4}$ E., $11 \frac{1}{2}$ miles.
    The course to enter the bay from it is NE. $\frac{3}{4}$ E., and it will be seen that it lies almost in the line from the S. Farallon light to the proposed Point Lobos light.

    From the bell-boat, Fort Point (two miles inside the south head formed by Point Lobos) is on with Alcatraz island, inside of the harbor. Fort P'oint and Alcatraz island have harbor lights upon them, and are the fair way line for crossing the bar.

    The bell-boat was upset about April 1, 1859, as seen from Table mountain. It was subsequently replaced, and again carried away. When we came out in November, 1860 , it was not on the bar.

    ## SAN FRANCISCO BAR.

    The bar off the entrance to the bay of San Francisco has a depth of five fathoms at the lowest tides. Its general form is that of a horse-shoc, commencing four miles southward, stretching out gradually to six miles abreast of Point Lobos; and when nearly up to the parallel of Point Boncta, running in shore towards
    that point and forming the "four-fathom bank," from a distance of four miles down to one. The average breadth of the bar within the limits of the six-fathom curve is about one mile. It falls off outside to 10 fathoms in half a mile, and deepens gradually insiłe. Not less than five fathoms exist over the bar when Point Boneta light bears between NE. by E. $\frac{1}{2}$ E., and N. by W. $\frac{1}{3}$ W.

    No vessel should anchor upon the bar if she can possibly avoid it; frequently a heavy swell scts in without wind, and if the current is running strong ebb, it allows little chance of escaping from an uncomfortable berth.

    The flood tide makes on the bar about 61 minutes earlier than at San Francisco.
    It has been given as a rule for steamers approaching in thick weather to run for the bar as nearly as they can estimate, keeping the lead going until they strike five fathoms, and run on until the depth is increased, when the armed lead should bring up gray sand with red specks, and they may conclude themselves within the bar. Recently it has been intimated that these peculiarities of bottom exist also outside of the bar.

    A line of large buoys, properly marked, ontside the bar in 10 fathoms is the next best expedient after a large fog-gum. From them the position of the bell-boat, could be known; and numbered bnoys from it across the bar would enable steamers in thick weather to feel their way in, and be independent of guessing about the velocity and direction of the current.

    The fog sometimes stands like a wall outside of a line from Fort Point across the entrance, while the bay inside is beautifully clear. After the greatest heat of the day is passed this fog creeps in and envelopes land and water.

    Buoy on the four-fathom bank.-A first class can buoy, with red and black horizontal stripes, is placed in four fathoms at mean low water near the western and seaward end of the "four-fathom bank," lying off Point Boneta. The following bearings and distances will give its position :

    It is on the prolongation of the line from Fort Point light to the extreme peint of Boneta.
    Point Boneta light bears E. $13^{\circ}$ N., distant $3 \frac{1}{2}$ miles.
    Outer telegraph station on Point Lobos bears E. $13^{\circ}$ S., distant 54 miles.
    The lighest part of the western ridge of Table mountain bears N. $13^{\circ} \mathrm{W}$.
    There is a spot having but $3 \frac{3}{4}$ fathoms upon it outside this buoy, bearing $\mathrm{S} .34^{\circ} \mathrm{W}$. and distant seveneighths of a mile.

    The shores of the Golden Gatc.-On the north side of the Golden Gate the shores are very precipitous, with an occasional short stretch of sand beach at the base of the bluffs, affording a boat landing. Point Diablo is the first point inside Boneta, and bears NE. by E. $\frac{2}{3}$ E., distant $1 \frac{1}{2}$ mile from it; between these the shore is indented about three-quarters of a mile, affording a boat landing during smooth weather for the light-house people. In the vicinity of Diablo the faces of the cliffs show of a reddish purple color. The rock is very hard and flinty, "traversed by seams of quartz, and has a banded or belted structure, so that it resembles varieties of jasper. * * * * * It exhibits its stratified character most distinctly. It is also found at the cimabar mine of New Almaden."

    The red specks found on the bar are doubtless derived from the disintegration of these reddish eliffs.
    From Diablo the shore is jagged and irregular to Lime Point Bluff, 495 feet high, distant one mile, and bearing NE. $\frac{3}{4} \mathrm{E}$. Off this point are several high rocks, but they are so close to the bluff as to be distinguishable only from certain directions. From Lime Point Bluff to Fort Point the distance is barely a mile, and the bearing S. by E. $\frac{3}{4} \mathrm{E}$. This is the narrowest part of the Golden Gate. Thence the bay begins to open well to the northeast.

    On the south side, eastward from Fort Point, the shore is low, flat, and marshy to Point San José, distant $2 \frac{1}{2}$ miles, and bearing E. by N. This point is moderately high, with a few houses clustering upon it, and is locally known as Black point. Off this reach was the "outer anchorage" of former navigators, and the Presidio of San Francisco is seen a short distance behind it.
    "It is a curious and interesting fact that the sand beach between Fort Point and Point San Josef has been thrown up by the surf upon an extensive alluvial deposit, which has the character of a peat bog or swamp. When the tide is very low the edge of this peat formation may be seen. Large masses of the peat are also broken out during storms, and thrown up on the sand of the beach. This sand and all the loose round boulders, from three to eight inches, or more, in diameter, rest upon a foundation of the peat; and the continuation of the peat is found in the swamp or flat meadow land which lies inside the belt of sand, and between it and the base of the sandstone hills. It is very difficult to account for the formation of this swamp under conditions like.those at present existing."
    "A strong current is constantly sctting back and forth through the channel, and the action of the surf constantly undermines and encroaches upon the beach, so that the present action is destructive, and the swamp could not possibly have been formed while the Golden Gate was open as we now find it." These remarks are taken from a geological report of the coast of California, by W. P. Blake, esq.-(Sec Coast Survey Report for 1855, page 359.)

    From Point San Jose to North Point, at the hase of Telegraph hill, the distance is one mile, and the bearing E. $\frac{3}{4}$ N. All this space forms part of the city of San Francisco, and is covered with houses. The shore-line is denominated the North leach, and from about the midde of the lowest part projects a long wharf over the flats to three fathoms water. This has naturally caused a great deposit around it, and now only $4 \frac{1}{2}$ feet of water can be obtained at the northwest part of the wharf at mean low water.

    Telegraph hill rises to a height of 301 fect above the mean level of the bay, and is envered with house; to its summit wherever building room can be obtained. The present plau of the city grades contemplates the entire removal of this hill.

    The gengraphical position of the triangulation station of the Coast Survey, upon its summit, is:
    

    Upon this hill was formerly erected a telegraph or semaphore, by which intelligence of the arrival of vessels off the Golden Gate was made known to the city-hence the name of the hill.

    ## ALCITRAZ ISLAND AND LIGHT.

    This is the first island that is opened in entering the Golden Gate, and upon it is crected a light-house. The island is ncarly 600 yards long, in a W.NW. direction, by about 260 in width, and rises to an elevation of 135 feet above high water. The summit is flat, falling away gently on all sides for some distance, and then at the sides dropping perpendicularly. Upon the top exists a thin layer of earth, but the ishand is composed of a fine-grained and "very compact sandstone of a dark bluish green color. It is regularly stratified in beds of varying thickness, and often separated by thin layers of argillaceous shale. It appears to contain a large amount of protoxide of iron, which changes to the hydrous sesquioxide on exposare." Deep water marks exist all round the island, and, with the exception of one or two places, the sides are so steep that a landing is effected with difficulty. Extensive fortifications are now in course of construction upon it. At the SE. side a small pier has been built to receive stores, ordnance, and materials. Off the NW. part, foul bottom makes out about 300 or 400 yards.

    Alcatraz Island light-house is built on the summit of the island, and bears NW. from Telegraph hill, distant 1 量mile; from Fort Point NE. $3_{4}$ E., distance $2{ }_{2}^{5}$ miles.

    The light is a fixed harbor light of the natural color, and of the third order of Freancl, illuminating the entire horizon, and exhibited from sunset to sunrise. It is 160 feet above the level of the sea, and should be seen from the sea, under ordinary states of the atmosphere, at a distance of 14 miles, or outside the bell-boat off the bar.

    Its geographical position, as determined by the Coast Survey, is:

    $$
    \begin{array}{ccc}
    0 & 1 & 11 \\
    37 & 49 & 20.6 \\
    20 & 24 & 18.8 \\
    h & m . & s .
    \end{array}
    $$

    Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374926.6 north.
    Longitude.................................................................... 122 . 2418.8 west.
    Or, in time............................................................. $\quad 8 \quad 9$ 37.3.
    Fog-bell on Alcatraz island.-The framework supporting the bell is built on the southeastern extrenity of the island, close to the watcr's cdge, and is elevated about 30 feet above the water. The bell weighs 1,092 pounds, and, during foggy or thick weather, is struck by machinery four blows at intervals of eight seconds, followed by a pause of fifteen seconds.

    Alcatraz is the Spanish name of the island; Beechy erroneously calls it Alcatrasses ; the local name is Bird island.

    No bidden dangers have been discovered in the eatrance outside of the line from Fort I'oint to lime Point Bluff, but there are several inside.

    Presidio shoal, having $3 \frac{1}{2}$ fathoms upon it, lies $1 \frac{1}{8}$ mile inside of Fort Point, and bears NE. by E. $\frac{1}{2}$ E. from it, or three-quarters of a point castward of the line between the lights on Fort loint and Alcatraz island. The shoal is about 700 yards long within the four-fathom curve, and over half a mile long within the five-fathom curve. It is very narrow, shows sandy bottom, and has decp water all around it. Its general direction is on the above mentioned bearing.

    From the shoalest part the Presidio flag-staff bears S. $\frac{1}{2}$ E., and we have ventured to distinguish the shoal by that name.

    Anitu rock shows above water at low tides, and is sitnated $1 \frac{1}{6}$ mile inside of Fort Point, and bears E. . by N. from it. It is only 300 yards from the low beach, and has deep water close around it.
    "A spar buoy, painted red, with even numbers, has been placed in threc-fathoms water, about half a eable's length due west from the shoalest part of Anita rock. Vessels shonld not approach this buoy within a cable's length, as a strong current sets across the rock." It was named after the United States quartermaster's barque Anita that struck upon it.

    Bird or Arch rock is a small pyramidal rock, about 45 feet in diameter, 30 feet ligh, and bearing W. 3 S., distant seven-eighths of a mile from the light-house on Aleatraz island. When seen in the direction from or towards the Presidio shoal, it presents a perforation at low tides.

    Shag rock is a low white-topped rock, about half a mile nearly N.NE. from Bird rock. From Alcatraz light it bears W. by N., distant one mile. For about 300 yards towards Alcatraz island the bottom is foul and irregular, but outside that limit 10 fathoms are found. The rock shows about four feet above the highest tides, being then not more than 8 or 10 feet in extent.

    Wreck.-The wreck of the "Flying Dragon," sunk early in 1862, inside the Golden Gate, has been found in the track of vessels passing close to or between Bird and Shay rocks. There is plenty of water around this obstruction.

    From it the following bearinge are given to determine its position:
    Shag rock, N. $14^{\circ}$ E., distant 670 yards.
    Bird rock, S. $88^{\circ}$ E., distant 330 yards.
    Bird rock is on with the highest point of Yerba Buena island from the wreck.
    Blossom rock is a ledge haring fire feet water upon it at the lowest tides, and, within the three-fathom curve, is about 300 by 200 yards in extent, with deep water outside these limits. A spar buoy, painted with red and black horizontal stripes, has been placed in four fathoms water, about half a cable's length due south from the shonlest part of the ledge. Vessels should not approach this buoy from any direction nearer than a cable's length. In the winter of 1863 -' 64 it was torn from its moorings during a heavy norther.

    This ledge bears E. by S. from Alcatraz light, and $1 \frac{1}{8}$ mile distant, being almost on the line joining the south points of Alcatraz and Yerba Buena islands. From the summit of Telegraph hill it bears N. $6^{\circ}$ W., distant one mile.

    It was discovered and named by Beechy, after his ship, in November, 1826.
    Terba Buena island is the large high island opencd to the east and south of Alcatraz after entering the Golden Gate. The western point of this island is $13 \begin{aligned} & 3 \\ & \text { mile from Telegraph hill, and the bearing NE. by E. }\end{aligned}$ Its peak is $\$ 43$ feet high; the sides steep and irregular, and rising to a ridge running nearly east and west. On the western or San Francisco side the water is very deep close in shore, but from the NW. point a three-fathom bank extends $1 \frac{1}{4}$ mile NW. by N., spreading to the eastward for half a mile, and thence running to the NE. point. The wreck of the ship Crown Princess lies in five fathoms on the western edge of this bank, and a day-mark, painted red, has been attached to her, consisting of a plank seven inches by three, 30 feet long, showing 15 feet above high water, with a board five feet long, nailed across just below the top. The following bearings and distances give its position:

    Alcatraz Island light-house, W. by S., 21 miles.
    Telegraph hill, SW. by S., 1 等 mile.
    West end of Yerba Buena island, SE. by S. $\frac{7}{3}$ S., $\frac{3}{4}$ mile.
    East end of Yerba Buena island, E. by S. $\frac{1}{4}$ S., one mile.
    In early times this island is said to have been densely covered with wood, and was known to navigators and whalers as Wood island. Now it has but a few scrubby trees. In 1839 a large number of goats was placed upon it, and it received the still popular name of Goat island. On a recent map of California (1858) it is called Ghote island.

    Angel island.-When passing through the narrowest part of the Golden Gate this large island bears about N.NE., and is scen as an island for a very short time when in the narrowest part of the Golden Gate. It has an irregular and bold shore-line of about five miles, and an area of onesquare mile. It rises to a height of 771 feet, is covered with grass and bushes, and cut in cyery dircotion by deep gulleys. As seen from the southeastward it appears part of the northern peninsula, but is divided from that on its N W. face by Raccom strats, three-quarters of a mile in wilth, having a depth of water ranging from 10 to 30 fathoms, and a very strong current. A narrow high jutting point makes out from the SE. portion of the island, bearing N. 3 W. from Alcatraz Island light, and distant 15 mile. From this head the general trend of the southern face for over a mile is W. by S. toward Saucelito Point.

    Punta de los Cavallos is half a mile N.NW. from Lime Point buff. The shore-line between them falls slightly back, and a very small valley makes down from the high hills behind.

    Point Saucelito.-From Point Cavallos the gencral trend of the shore is NTV. by N. for $1 \frac{1}{2}$ mile to Point Saucelito, with nearly a straight shore-liue. One mile from Point Cavallos is the anchorare of Saucelito, where men-of-war and whalers formerly anchored. It lies abreast of a few houses forming the town of Saucclito, whence moch of the water used in San Francisco was formerly taken in steam water-boats. North of this anchorage is a large bay, with but a few feet of water. From Saucelito Point to the western point of Angel island the distance is 13 mile, and the bearing NE. by $\mathrm{E} \frac{1}{2} \mathrm{E}$.

    To Peninsula Point, forming the southwestern part of Laccoon straight, the distance is one mile, and bearing NE. $\frac{2}{3} \mathrm{E}$.

    The following list of geographical positions in San Francisco bay is taken from the published reports of the L'nited States Coast Survey:
    

    ## SAILING DIREOTIONS FOR APPROACHING AND ENTERING SAN FRANCISCO BAY.

    In approaching the coast every opportunity should be seized for determining the vessel's position, as fogs and thick weather prevail near the land. Vessels coming from the southuard make the coast alout Point Año Nuevo, (lat. $37^{\circ} 07^{\prime} \mathrm{N}$., ) and follow it at a distance of four or five miles up to the bar. Steamers keep close under the land for fear of losing it in foggy weather. Coming from the urstward they first sight the South Farallon island, (latitude $37^{\circ} 42^{\prime}$ N.,) having the light-house upon it, and kerp upon either side of it; but it is preferable to go to the southward, especially in thick weather and at night, as the vicinity of
    the island has not yet been surveyed in detail. From the Soutl Farrallon light-house the Point Boneta light bears NE. by E., $23 \frac{2}{3}$ miles; and the bell-boat ontside the bar bears NE. by E. $\frac{1}{2}$ E., $16 \frac{1}{2}$ miles. Coming from the northwestward they make Punta de los Reyes, 597 feet high, in latitude $38^{\circ} 00^{\prime}$ N., longitude $123000^{\prime} \mathrm{W}$., and pass within two or three miles of it, 15 fathoms being found within a quarter of a mile from it, but ressels are apt to lose the wind by getting too close under it. From the western extremity of this point the Point Boneta light bears E. $\frac{3}{4}$ S., distant $25 \frac{3}{4}$ miles, the line passing over the tail of Duxbury reef, at a distance of $17 \frac{1}{4}$ miles from Los Reyes. To the lell-boat off the bar the bearing is SE. by E. $\frac{5}{6}$ E., and distance 221 miles.

    The bell-boat, $1 \frac{1}{2}$ mile outside of the bar, is placed on the prolongation of the range from Alcatraz island to Fort I'oint, giving a course NE. 3 E. for vessels entering the Golden Gate, and designated by Belcher the "fair way line", and he calls the island and fort the "fair way marks." But with a heary swell on the bar this mage should be used mercly as a line of reference, because on the bar it passes over a small five-fathom spot, while helf a fithom more can be obtained for a distance of two miles both north and south of it. In clear weather and with a favorable wind a vessel can cross the bar in not less than five fathoms from the line, having the north end of Alcatraz island just open by Point Boneta, (NE. by E. 哲 E..) round to the shore south of Point Lobos, (N. by W. $\frac{1}{3}$ W.) Northward of the former line the four-fathom bank (having 33 fathoms on it) commences one mile west of Boneta, and stretches out over three miles, with a breadth of one mile. Upon this bank the clipper Golden Fleece struck in 1857, and came into port with seven or eight feet of water in her hold. She was the second of her name that was unfortunate in entering the harbor, the first having been totally lost on Fort Point.

    Between the castern extremity of the "four-fathom bank" and the shore, the distance is seven-cighths of a mile, and within this space can be found the deepest water for entering the harbor, but it would be dangerous for a sailing vessel to attempt it with a flood tide and light winds. While it is breaking on the bank only a heavy swell is found through this 82 fathom channel, and small sailboats have passed in safety when they dared not try the bar. We entered by it in the brig. Wyandot, in June, 1854, and the steamship Columbia frequently used it in leaving the harbor for the upper coast when the heavy weather on the bar would otherwise have delayed her in port. Close in under the cliffs, two or three miles above Boneta, we anchored in eight fathoms, with muddy bottom.

    During clear, moderate weather any vessel can cross the bar, within the limits we have mentioned, without ruming until she has got on the "fair way line," whereby she might lose her slant of wind. Should the wind fail, or be light, and the current adverse, anchor outside the bar in 15 fathoms, mad and fine sand; or, after crossing the bar, in 6 to 10 fathoms, fine grey sand, with red specks in some places. Run in midchannel between the heads; avoid too close proximity to the northern shore, not only in entering, but in leaving; the high, bold bluffs causing calms and baffling airs, even with a southeaster blowing out. On the last of January, 1864, during a southeaster, three vessels were at one time becalmed under the northern shore, and baffled with variable airs and strong current eddies for several hours. One of them, the barkentine Tenny Ford, was carried on Point Diablo and totally wrecked. Between Fort Point and the opposite shore, take special care not to approach Fort Point too close, because the currents set around it irregularly and with great rapidity, and the bottom is uneven and rocky. A depth of 69 fathoms is given in the centre of the channel. In the Golden Gate we lave measured an ebb current running abont six miles per hour. As a general rule, the winds increasc within the heads, drawing in very strongly abreast of Fort Point. When off this point steer for Alcatraz light-house until the north point of Telegraph hill bears E. by S., then stece to give it a berth of a quarter of a mile, running through among the shipping.

    In making the port at night it is customary to run for the bell-boat, and cross the bar with Fort Point light on with Alcatraz island light, or better, the latter a little open to the northward. But this practice frequently involves much delay and amoyance when the wind will not permit a vessel to attain this position without a tack. With Boneta light bearing from N. by W. to NE. by E. a vessel may boldly run on within those limits, and, unless there be a heavy swell, safely cross the four-fathom bank. Give Boneta a berth of a mile, and when within the heads, and Boncta abeam, gradually open Alcatraz light north of Fort Point, until abeam of the latter; then run for Alcatraz until the lights of the shipping show the vessel's position. Hauling up for them, anchor off the north beach in 10 fathoms, or off the northeast front of the city in 10 fathoms, soft mud.

    In coming upon the coast in thick foggy weather, sailing vessels should not run into less than 50 fathoms because the water around the South Farallon, and off Point San Pedro and Punta de los Reyes, is very
    bold. It is believed, however, that a 30 -fathom bank exists at a considerable distance to the westward of the last. Southwest of the line passing through the Farallones and Noonday rock, the 100 -fathom curve is only four miles distant, and the 50 -fathom curve only two miles, with a very irregular bottom. If the Farallones be made, a course can be casily laid for the bar, but it would be unadvisable to run into less than 10 fathoms, soft mud, if the bell-boat be not lieard, as the set and strength of the currents off the hay are yet undetermined. Belcher says that, being caught in a fog, he anchored in 15 fathoms, to the southward of the bar, and determined "that southerly of the fair way line the ebb tide set N.NE., flood S.SW." The suppose he means from the N.NE., and from the S.SW. During the season of freshets in the Sacramento and tributaries the discolored water outside the bar will frequently point out the position of the entrance.

    Steamers in thick weather were accustomed to run close along the coast, and endcavored to make the land north of Point San Pedro, running in until they got about 15 fathoms, and then laying a course for the bar, shoaling upon it to about five fathoms, and then gradually deepening, while the fog-gun gave the direction of Boneta light. Before the establishment of the fog-gun the steamship "Tennessee" was wrecked two miles north of Boncta, when seeking for the entrance in a dense fog; the steamship S. S. Lewis, just north of Duxbury reef; and the U. S. revenue brig Lawrence, between points Lolos and San Pedro. Steamers and clippers are afraid to approach the bar in thick weather. We have entered in a dense fagg without hearing the bell, and the general opinion is that it is ineffective.

    As it has been frequently stated that Beechy did not intend to adopt the range, Fort Point and Alcatraz island as a fair way over the bar to the entrance, we here quote his directions, as published under authority of the Lords of the Admiralty. "In crossing the bar it is well to give the northern shore a good berth, and bring the small white island, Alcatrasses, in one with the fort or south bluff, if it can be convenicutly done, as they may then insure six fathoms; but if ships get to the northward so as to bring the south bluff in one with the island of Yerba Buena, they will find but $4 \frac{1}{4} ; * * * *$ to the northward of this bearing the water is more shallow."
    "Approaching the entrance, the island of Alcatrasses may be opened with the fort, and the best directions are to keep mid-channel, or the weather side."

    In his narrative he says: "The best part for crossing is with the island of Alcatrasses in one with the fort."-(Vol. 1, page 345.) When approaching the harbor he steered directly into it, and in crossing the bar the depth of water gradually diminished to five fathoms; "this would have been of no consequence had it not been for a swell which rolled so heavily over the bank that it contimally broke; and, though our depth of water was never less than $4 \frac{1}{2}$ fathoms, the ship on two or three nccasions disturbed the saud with her keel. The tide was, unfortunately, against us, and the swell propelled the ship just sufficiently fast for her to steer without gaining any ground, so that we remained in this position several hours."-(Vol. 1, page 345.)

    The U.S. sloop-of-war Vincennes, during the cruise of the Exploring Expedition, anchored on the bar in a calm, and, when the flood tide made it brought up a swell that broke over her.

    In beating out, vessels start on the last quarter of the flood, make the first tack to the northward of the Blossom rock, and weather it on the second; thence they keep between Aleatraz and the south shore, avoiding Bird rock, one mile west of the south end of the island, and giving a good berth to Fort Point, past which the ebb current will earry them rapidly, (with a strong tendency towards the south shore,) and a couple more tacks carry them clear of the heads. If the vessel be bound to the northward, and the weather shat in thick, with the wind to the northwest, she makes a tack off shore to the southward of the Farallones; if the weather be clear short tacks are made off shore until she works up to Los Reyes, because the sea to the leeward of that headland is much smoother and the current less; then stands off until a course can be made for her port.

    The winds.-It has been advised to work close along shore to northern ports during the summer northwest winds, and take the chances of land breezes to make latitude, but the attempt will double the length of any voyage. Baffling light airs and calms frequently exist along the coast, while vessels several hundred miles off have strong NW. winds. Moreover, along the coast we know that the current frequently sets two miles per hour from the northward, except very close under the shores. In our experience we never yet have met a wind off the land north of San Francisco, and very rarely, indeed, south of it, except in the region of the Santa Barbara channel. As a general rule, it may be safely stated that the summer winds follow the line of the coast, nearly, and gradually draw towards and over the land In winter, with winds from the southward, this is not so marked.

    From April to October, inclusive, the prevailing wind is from the northwest, changing to west in valloys opening upon the coast, but in no case so strongly as through the Golden Gate. During the summer the wind sets in strong about 10 a . m., increasing until nearly sunset, when it begins to die away. During its height it almost regularly brings in a dense fog, which, working its way over the peniusula, meets that already advanced through the Golden Gate, and envelopes San Francisco and the bay by sunset. As a rule, the breeze does not dispet the fog. If a fog exists ontside, the wind is sure to bring it in, but the heated earth dissipates it for a time.

    From November to March the wind is frequently from the sontheast, blowing heavily, working round to the southwest, with a large and broken swell from the SW., weather thick, rainy, and squally; the wind not unfreruently ending at NW., with an ugly cross sea. During heavy southeasters the sea breaks upon the San Francisco bar, clean across the entrauce, presenting a fearful sight. The sound can be heard at the anchorage in fiont of the city.

    During some winters a hard "norther" will spriug up and blow steadily and strongly from one to five days, with a clear blue sky, and cold bracing weather. Winds rarely blow from pointe between north, round by the east, to soubleast.

    The further north we advance, the heavier blow the gales in the winter. The northwest winds are not predicted by the barometer, but, from the southeast, almost invariably; the mercury falling one inch from its usual height of about thirty inches. When it begins to rise, the wind may be looked upon as soon to shift round by the west, and to decrease. Only in one instance during our experience has this failed, and that was off the Strait of Juan de Fuca.

    On the tops of the mountains bordering the coast, light variable and easterly airs are frequently experienced whilst the northwest winds are blowing freshly along the seaboard. Upon Sulphur Peak, in latitude $38^{\circ} 46^{\prime}$, and 26 miles from the coast, we have had fresh breezes from the E.NE., whilst the usual northwest winds were prevailing off shore. On Ross mountain, only three miles from the sea, and rising 2,197 feet from the right bank of the Slavianska river, we found variable airs when strong summer winds were blowing below.

    ## TIDES AT GaN flancisco.

    As a general rule, there are upon the Pacific coast of the United States one large and one smatl tide during cach day, the heights of two successive high waters-occurring one, a. m., and the other, p. m. of the same twenty-four hours-and the intervals from the next preceding transit of the moon are very different, so much so that at certain periods a rock which has $3 \frac{1}{2}$ feet upon it at low tide may be awash on the next succeeding low water.

    These inequalities depend upon the moon's declination. They disappear near the time of the moon's declination being nothing, and are greatest about the time of its being greatest. The inequalities for low water are not the same as for high, though they disappear and have the greatest value at nearly the same times.

    When the moon's declination is north, the higher of the two high tides of the twenty-four hours occurs at San Francisco about eleven and a half hours after the moon's transit; and when the declination is south, the lower of the two high tides occurs at about that interval. The lower of the two low waters of the day is the one which follows next the higher high water.

    The corrected establishment, or mean interval between the moon's transit and the time of high water at San Francisco, is XIIh. VIm. The mean rise and fall of tides is 3.6 feet; of spring tides, 4.3 feet; and of neap tides, 2.8 fect. The mean duration of the flood is $6 h .39 \mathrm{~m}$; of the ebb, 5 h .51 m .; and of the stand, 34 m . The average difference between the corrected establishment of the a. m. and p.m. tides of the same day is $1 h .28 \mathrm{~m}$. for high water, and 07.38 m . for low water. The differences when the moou's declination is greatest are $2 h .30 \mathrm{~m}$. and $0 \% .48 \mathrm{~m}$. The average difference in height of these two tides is 1.1 foot for the high waters, and 2.2 feet for the low waters. When the moon's declination ì̀ greatest those differences are 1.5 foot and 37 feet, respectively. The average difference of the higher high and lower low waters of the same day is 5.2 feet, and when the moon's declination is greatest, 6.1 feet. The higher high tide in the twenty-four liours occurs about 11 h . 22 m . after the moou's upper transit, (southing,) when the moon's declination is north, and about $1 h .2 m$. before, when south. The lower of the low waters, about $7 h$. after the higher high tide. The greatest observed difference between the two low waters of one day was 5.3 feet, and the greatest difference between the higher high and lower low waters of one day was 8.5 feet.

    The following tables will give the times and heights of high and low waters at San Francisco. Similar tables will be found at the end of the directory for San Diego, Astoria, and Port 'Townshend.

    Tables I and II give the number to be added to the time of monn's transit to find the time of high watcr. It is one of double entry, the time of tramsit being placed in the first column, and the number of days from the day at which the moon had the greatest declination being arranged at the top of the table. Entering the first columu with the time of transit, and following the line horizontally until we come under the column containing the days from the greatest declination, we find the number to be added to the time of transit to give the time of high water. If the moon's declination is south, 'Table $I$ is to be used ; if north, Table II.

    TABLES FOR SAN FRANCISCO.
    Table I.

    | $\begin{aligned} & \text { Time of moon's } \\ & \text { transit. } \end{aligned}$ | so |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Pefore- |  |  |  |  |  |  |  | After- |  |  |  |  |  |  |
    |  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
    | h. m. | $h . m$. | R.m. | k. m. | $h . m$. | h. 226. | 4 m . | h. $m$. | h. m. | h. m. | h. $n$. | h. $n$. | h. $m$. | h m. | h. $n$. | h.m. |
    | 00 | 1143 | 1159 | 1215 | 1233 | 1230 | 1303 | 1317 | 1320 | 1319 | 1314 | 1507 | 1257 | 1245 | 1232 | 1218 |
    | 030 | 1137 | 1153 | 1209 | 1227 | 1244 | 123 | 1311 | 1314 | 1313 | 1308 | 1301 | 1251 | 1239 | 3296 | 12 12 |
    | 10 | 1131 | 1147 | 1203 | 1221 | 1238 | 1281 | 1305 | 1308 ! | 1307 | 1302 | 1255 | 1245 | 1233 | 1220 | 1206 |
    | 130 | 1125 | 1141 | 1157 | 1215 | 1232 | 1245 | 1259 | 1302 | 1301 | 1256 | 1249 | 1239 | 1227 | 1214 | 1200 |
    | 20 | 1119 | 1135 | 1151 | 1209 | 1226 | 1239 | 1253 | 1256 | 1255 | 1250 | 1243 | 1233 | 1221 | 1208 | 1154 |
    | 230 | 1114 | 1130 | 11.46 | 1204 | 1221 | 1234 | 1248 | 1251 | 1250 | 1245 | 1238 | 1225 | 1216 | 1203 | 1149 |
    | 30 | 1111 | 1127 | 1143 | 1201 | 1218 | 1231 | 1245 | 12.48 | 1248 | 1242 | 1235 | 1225 | 1213 | 1200 | 1146 |
    | 330 | 1111 | 1127 | 1143 | 1201 | 1218 | 1231 | 12.45 | 1248 | 1247 | 1242 | 1235 | 1295 | 1213 | 1200 | 1146 |
    | 40 | $\cdot 1116$ | 11.32 | 1148 | 1206 | 1293 | 1235 | 1250 | 1253 | 1252 | 1242 | 1240 | 1230 | 1218 | 1205 | 1151 |
    | 430 | 1194 | 1140 | 1156 | 1214 | 1231 | 1241 | 1258 | 1301 | 1300 | 1255 | 1248 | 1238 | 1226 | 1213 | 1159 |
    | 50 | 1133 | 1149 | 1205 | 12.23 | 1240 | 1253 | $130 \%$ | 1310 | 1309 | 1304 | 125 | 1247 | 1235 | 1222 | 1208 |
    | 530 | 1141 | 1157 | 1233 | 1231 | 1248 | 1301 | 1315 | 1318 | 1317 | 1312 | 1305 | 1255 | 1243 | 1230 | 1215 |
    | 60 | 1149 | 12 c | 1321 | 1239 | 1256 | 1309 | $13: 23$ | 13 £6 | 1385 | 1320 | 1313 | 1303 | 1251 | 1238 | 1284 |
    | 630 | 1154 | 1210 | 129 | 1244 | 1301 | 1314 | 1328 | 1331 | 1330 | 1325 | 1318 | 1308 | 1256 | 1243 | 1229 |
    | 70 | 1201 | 1217 | 1233 | 1251 | 1308 | 13 21 | 133 | 1388 | 1387 | 1332 | 1325 | 1315 | 1303 | 1250 | 1233 |
    | 730 | 1507 | 12.23 | 1239 | 1257 | 1314 | 1397 | 1341 | 1344 | 1343 | 1338 | 1334 | 1321 | 1309 | 1256 | 1242 |
    | 80 | 1212 | $12 \pm 8$ | 12.44 | 1302 | 1310 | 1332 | 1346 | 1349 | 1348 | 1343 | 13.36 | 1326 | 1314 | 1391 | 1247 |
    | 830 | 1215 | 1231 | 1247 | 1305 | 1322 | 1335 | 1349 | 1352 | 1351 | 1346 | 1339 | 1329 | 1517 | 1304 | 1250 |
    | 90 | 1214 | 1230 | 1246 | 1304 | 1321 | 1334 | 1348 | 1357 | 1350 | 1345 | 1338 | 1398 | 1316 | 1300 | 1249 |
    | 930 | 1212 | 1228 | 1244 | 1302 | 1319 | 1332 | 1346 | 1349 | 1348 | 1343 | 1336 | 1326 | 1314 | 1302 | 1247 |
    | ]0 0 | 1208 | 1224 | 1240 | 1258 | 1315 | 1328 | 1342 | 1345 | 1344 | 1339 | 1332 | 1329 | 1310 | 1257 | 1243 |
    | 1030 | 1202 | 1218 | 1234 | 1252 | 1309 | 1322 | 1336 | 1339 | 1338 | 1333 | 1326 | 1316 | 1304 | 1251 | 1237 |
    | 110 | 1155 | 1211 | 1237 | 1245 | 1302 | 1315 | 1329 | 1332 | 1331 | 1326 | 1319 | 1309 | 1257 | 1244 | 1230 |
    | 1130 | 1147 | 1203 | 1219 | 1237 | 1254 | 1307 | 1321 | 1324 | 1323 | 1318 | 1311 | 1301 | 1249 | 1236 | 1222 |

    Table II.

    | $\stackrel{m}{\text { E/ }}$ | nortil declination.--days from moon's areatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | E震 |  |  |  | Before- |  |  |  |  |  |  |  | After |  |  |  |
    | $\underset{E}{E}$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
    | h. m. | A mas | h. m. | h. $m$. | h. $m$ | h. $m$. | h. $m$. | h. $m$. | 4. m. | h. m | h. $m$ | h. $m$. | l. $n$. | h. $m$. | h.m. | $h \mathrm{~m}$. |
    | 00 | 1227 | 1211 | 1) 55 | 1137 | 1120 | 110 | 1053 | 1050 | 1051 | 1056 | 1103 | 1113 | 1125 | 1138 | 1152 |
    | 030 | 1221 | 1205 | 1149 | 1131 | 1114 | 1101 | 1047 | 1044 | 1045 | 1050 | 1057 | 1107 | 1119 | 1132 | 1146 |
    | 10 | 1215 | 1159 | 1143 | 1125 | 1108 | 1055 | 1041 | 1038 | 1039 | 1044 | 1051 | 1101 | 1113 | 1196 | 1140 |
    | 130 | 1209 | 1153 | 1135 | 1119 | 1102 | 1049 | 1035 | 1032 | 1033 | 1038 | 1045 | 1055 | 1107 | 1120 | 1134 |
    | 20 | 1203 | 1147 | 1131 | 1113 | 1056 | 1043 | 1029 | 1096 | 1027 | 1032 | 1039 | 1049 | 1101 | 1114 | 1128 |
    | 230 | 1158 | 1142 | 1126 | 1108 | 1051 | 1038 | 1024 | 1421 | 1022 | 1027 | 1034 | 1044 | 1056 | 1109 | 1123 |
    | 30 | 1155 | 1139 | 1123 | 1105 | 1048 | 1035 | 1021 | 1018 | 1019 | 1024 | 1031 | 10.41 | 1053 | 1106 | 1120 |
    | 330 | 1155 | 1139 | 1123 | 1100 | 1048 | 1035 | 1021 | 1018 | 1019 | 1024 | 1031 | 1041 | 1053 | 1106 | 1120 |
    | 40 | 1200 | 1144 | 1128 | 1110 | 1053 | 1040 | 1020 | 1023 | 1024 | 1029 | 1036 | 1046 | 1058 | 1111 | 1125 |
    | 430 | 1208 | 1132 | 1136 | 1118 | 1101 | 1048 | 1034 | 1031 | 1032 | 1037 | 1044 | 1054 | 1106 | 1119 | 1133 |
    | 50 | 1217 | 1201 | 1145 | 1127 | 1110 | 1057 | 1043 | 1040 | 1041 | 1046 | 1053 | 1103 | 1115 | 1128 | 1142 |
    | 530 | 1225 | 1205 | 1153 | 1135 | 1118 | 1105 | 1051 | 1048 | 1049 | 1054 | 1101 | 1111 | 1123 | 1136 | 1150 |
    | 60 | 1233 | 1217 | 1201 | 114.3 | 1126 | 1113 | 10.59 | 1056 | 1057 | 1102 | 1109 | 1119 | 1131 | 1144 | 1158 |
    | 630 | 1238 | 1222 | 1206 | 1148 | 1131 | 11.18 | 1104 | 1101 | 1102 | 1107 | 1114 | 1124 | 1136 | 1149 | 1203 |
    | 70 | 1545 | 1229 | 1213 | 1155 | 1138 | 1125 | 1111 | 1108 | 1109 | 114 | 1121 | 1131 | 1143 | 1156 | 1210 |
    | 730 | 1251 | 1235 | 1219 | 1201 | 1144 | 1131 | 1117 | 1114 | 1115 | 1120 | 1127 | 1137 | 1149 | 1202 | 1216 |
    | 80 | 1256 | 1240 | 1224 | 1206 | 1149 | 1136 | 1122 | 1119 | 1190 | 1185 | 1132 | 1142 | 1154 | 1207 | 1221 |
    | 830 | 1259 | 1243 | 1227 | 1209 | 1152 | 1139 | 1125 | 1122 | 1123 | 1128 | 1135 | 11.45 | 1157 | 1210 | 1224 |
    | 90 | 1258 | 1248 | 1226 | 12 Ot | 1151 | 1138 | 1124 | 1121 | 1122 | 1127 | 1134 | 1144 | 1156 | 1209 | 1223 |
    | 930 | 1250 | 1240 | 1224 | 1206 | 1149 | 1136 | 1122 | 1119 | 1150 | 1125 | 1132 | 1142 | 1154 | 1207 | 1221 |
    | 100 | 1252 | 1236 | 1220 | 1202 | 1145 | 1132 | 1118 | 1115 | 1116 | 1121 | 1128 | 1138 | 1150 | 1203 | 1217 |
    | $10: 30$ | 1546 | 1230 | 1214 | 1156 | 1139 | 1126 | 1112 | 1109 | 1110 | 1115 | 1122 | 1132 | 1144 | 1157 | 1211 |
    | 110 | 12 39 | 1223 | 1207 | 1149 | 1132 | 1119 | 1105 | 1102 | 1103 | 1108 | 1115 | 1125 | 1137 | 1150 | 1204 |
    | 1130 | 1231 | 1215 | 1159 | 1141 | 1124 | 1111 | 1057 | 1054 | 1055 | 1100 | 1107 | 1117 | 1129 | 1142 | 1156 |

    Example.-Required the time of high water at North Beach, San Francisco, on the 7th of February, 1853. 1st. The time of the moon's transit at Greenwich, from the British Nautical Almanac, is $11 \% .41 \mathrm{~m}$.; the longitude of San Francisea, $8 h .10 \mathrm{~m}$., requiring a correction of 16 m . to the time of transit at San Francisco, which is thus found to be $11 / \mathrm{l} .57 \mathrm{~m}$.

    2d. The moon's declination is south, and at the time of transit about two days after the greatest Entering Table I, we find $12 h$. (or 07 .) of transit, the nearest number to $11 / .57 \mathrm{~m}$., which the table gives; and following the line lorizontally until we come to two days after the greatest declination we find 13 l .14 m .

    To 11 h .57 m . time of transit of monn, February 7, San Francisco,
    Add 1.314 from column 0 l . transit, and two days after greatest declination.
    Sum 2511 , or $1 h .11 m$., February 8 , is the time of high water corresponding to the transit which we took of Febmary 7. If we desire the tide of February 7, we must go back to the moon's transit of the 6th. The example was purposely assumed to show this case.

    To $11 / .01 \mathrm{~m}$, time of transit, February 6, 1853,
    Add 13 31, number for 11 $h$. transit, and one day from greatest declination.
    Sum 2432 , time of high water 0 h. $32 m$., a. m., February 7.
    The approximate times of the successive low and high waters of the day will be found by adding the numbers in 'Table III to the time of the first high water already determined by Tables I and II.

    ## TABLE III.

    The days from the greatest declination are written in the first and last columns of the table. The second, third, and fourth columns refer to south declmation, and the fifth, sixth, and seventh to north. The second column gives the number which is to be added according to the declination to the time of high water obtained by means of Tables I and II, to give the next low water, which is a small low water. The third
    contains the numbers to be added to the same to give the second or large high water. The fourth, the numbers to be added to the same to give the second or large low water. The euceceding columns give the numbers to be used in the same way for north declinations, to obtain the large low water, the small high water, and the small low water.

    |  | Low water. (small.) | III DECLINAT High water. (Large.) | on. <br> Low water (Large.) | Low water. (Large.) | If decirinat High water. (Small.) | Low water. (Snall.) |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1. $m$. | h. m. | h. m. | h. $m$. | h. m. | h. m. |  |
    | 17 | 558 | 1314 | 1858 | 541 | 1146 | 1744 | 77 |
    | 6 | 536 | 1242 | 1843 | 606 | 1218 | 1754 | 6 |
    | 55 | 514 | 1210 | $18 \quad 33$ | $6 \quad 28$ | 1250 | 1804 | 5 - |
    | c. 4 | 455 | 1134 | 1821 | 647 | 1326 | 1321 | 4 \} |
    | ¢ 3 | 437 | 1100 | 1805 | 705 | 1460 | $18 \quad 37$ | $3{ }^{1}$ |
    | 2 | 424 | $10 \quad 34$ | 1752 | 718 | 1426 | $18 \quad 50$ |  |
    | ( 1 | 412 | 1006 | 1736 | 730 | $14 \quad 54$ | 19.6 | $1)$ |
    | 0 | 412 | 1000 | 1730 | 730 | 1500 | 1312 | 0 |
    | $(1$ | 417 | $10 \quad 02$ | 17 2: | 725 | 1458 | $19 \quad 15$ | $1)$ |
    | 2 | $4 \quad 27$ | $10 \quad 12$ | 1727 | 715 | $14 \quad 48$ | $19 \quad 15$ | 2 |
    | 3 | 441 | $10 \quad 26$ | $17 \quad 27$ | 701 | 1434 | $19 \quad 15$ |  |
    | 灾 4 | 456 | 1046 | 1732 | 646 | $14 \quad 14$ | 19 10 | 4 \# |
    | < 5 | 514 | 1110 | 1738 | 628 | 1350 | 1904 | $5{ }^{<}$ |
    | 6 | $5 \quad 36$ | 1136 | 1742 | 606 | $13 \quad 24$ | 1900 | 6 |
    | 17 | 557 | 1204 | 1749 | 545 | 1256 | $18 \quad 53$ | 7 ) |

    TABLES IV AND T.
    The height of high water is oltained by the use of Tables IV and V, entering them in the same manner as Tables I and II, with the time of transit and days from greatest declination as argunent. Table IV is for sonth declination, and Table V for north.

    Table IY.

    | Time of moon'stransit. | soutr declination-Days from monn's greatest deceination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Sefore- |  |  |  |  |  |  |  | After- |  |  |  |  |  |  |
    |  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 9 | 3 | 4 | 5 | 6 | 7 |
    | Howr. | F'eet. | Fert. | Feet. | Feet. | Feet. | Feet. | Fert. | Feet. | Feet. | Feet, | Feet. | Feet. | Feet. | Feet. | Feet. |
    | 0 | 4.8 | 4.7 | 4.5 | 4.3 | 4.3 | 4.2 | 43 | 4.3 | 4.4 | 4.5 | 4.7 | 4.8 | 5.0 | 5.3 | 55 |
    | 1 | 4.7 | 4.6 | 4.4 | 4.2 | 4.2 | 4.1 | 4.2 | 4.2 | 4.3 | 4.4 | 4.6 | 4.7 | 4.9 | 5.2 | 5.4 |
    | 2 | 4.6 | 4.5 | 4.3 | 4.1 | 4.1 | 4.0 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 | 4.6 | 4.8 | 5.1 | 5.3 |
    | 3 | 4.5 | 4.4 | 4.2 | 4.0 | 4.0 | 3.9 | 4.0 | 4.0 | 4.1 | 4.2 | 4.4 | 4.6 | 4.7 | 5.0 | 5.2 |
    | 4 | 4.3 | 4.2 | 4.0 | 3.8 | 3.8 | 3.7 | 3.8 | 3.8 | 3.9 | 4.0 | 4.2 | 4.3 | 4.5 | 4.8 | 5.0 |
    | 5 | 4.1 | 4.0 | 3.8 | 3.6 | 3.6 | 3.5 | 3.6 | 3.6 | 3.7 | 3.8 | 4.0 | 4.1 | 4.3 | 4.6 | 4.8 |
    | 6 | 4.1 | 4.0 | 3.8 | 3.6 | 3.6 | 3.5 | 3.6 | 3.6 | 3.7 | 3.8 | 4.0 | 4.1 | 43 | 4.6 | 4.8 |
    | 7 | 4.2 | 4.1 | 3.9 | 3.7 | 3.7 | 3.6 | 3.7 | 3.7 | 3.8 | 3.9 | 4.1 | 4.2 | 4.4 | 4.7 | 4.9 |
    | 8 | 4.4 | 4.3 | 4.1 | 3.9 | 3.9 | 3.8 | 3.9 | 3.9 | 4.0 | 4.1 | 4.3 | 4.4 | 46 | 4.9 | 5.1 |
    | 9 | 4,5 | 4.4 | 4.2 | 4.0 | 40 | 3.9 | 4.0 | 4.0 | 4.1 | 4.2 | 4.4 | 4.5 | 4.2 | 5.0 | 5.2 |
    | 10 | 4.7 | 4.6 | 4.4 | 4.2 | 4.2 | 4.1 | 4.2 | 4.2 | 4.3 | 4.4 | 4.6 | 4.7 | 4.9 | 5.9 | 5.4 |
    | 11 | 48 | 4.7 | 4.5 | 4.3 | 4.3 | 4.2 | 4.3 | 4.3 | 4.4 | 4.5 | 4.7 | 4.8 | 5.0 | 5.3 | 5.5 |

    40 cs

    Table V.
    

    Example-'To obtain the height of the tide on February 7, 1853, the declination being south, we enter Table III, with 0h. of transit, and two days after greatest declination, and find that the tide will be 4.5 feet above the mean of the lower low waters, or that 4.5 feet are to be added to the soundings of a chart reduced to the mean of the lower low waters of each day. If the soundings of the chart were given for mean low water, then 1.2 foot ought to be subtracted from the Tables III and IV; thus, in this example, it would be 3.3 feet.

    The rise and fall of the same successive tides may be obtained by inspection from Tables VI and VII, in which the first column, at the side, contains the time of transit, and the successive columns the numbers corresponding to that time, and to the number of days from greatest declination.

    ## TAbles Vi AND VII.

    The arangement of these tables is similar to that already given. In Table VI the numbers for the small ebb tide are given, and then those for the rise from small low water to the larger high water. In Table VII the numbers for the large ellb tide are given, and then those for the rise from the large low water to the small high water.

    Table VI.

    | $\dot{\square}$ | amallebb tide, or from manll high watertobmall low water. |  |  |  |  |  |  |  |  |  |  |  |  | thom malle low water to harge higil water. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $E$ | Days from moon's greatest dectination. |  |  |  |  |  |  |  |  |  |  |  |  | Days from moon's greatest declination. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  | Before- |  |  |  |  |  | After- |  |  |  |  |  |  | Before- |  |  |  |  |  |  | 0 | After- |  |  |  |  |  |  |  |
    | $\stackrel{\Xi}{\Xi}$ | 7 | 6 |  | 4 | 3 L | 1 | 0 | 12 |  | 4 | 5 | 6 |  | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
    | H. | Ft. | Ft. | Fl. | $F t$ | Fl. Fl |  | Ft. | Fl. Ft | Ft | Ft. | Ft | Ft. | Ft. |  |  | Ft. | Ft. | Ft. | Ft. | Ft. | Ft. |  | Ft. | Ft. | Ft. | Ft. | Ft. | Ft. | . |
    | 0 | 4.2 | 4.0 | 3.4 | 2.9 | 2.4:2.0 | 1.8 | 1.7 | 1.21 .9 | 2.2 | 2.6 | 613 | 3.7 |  | 5.2 | 24.9 | 4.6 | 4.5 | 4.0 | 3.7 | 3.4 | 4. 3.2 | 3.1 | 3.0 | 3.1 | 3.1 | 3.3 | 3.4 | 3.5 | 0 |
    | 1 | 4.5 | 3.8 | 3.2 | 2.1 | 2.21 .8 | 1.6 | 1.5 | 1.51 .7 | 2.6 | 2.4 | 42.9 | 3.5 | 4.2 | 5.0 | 0.4 .7 | 4.4 | 4.3 | 3.8 | 3.5 | 3.2 | 3.0 | 2.9 | 2.8 | 2.9 | 2.9 | 3.1 | 3.2 | 3.3 | 1 |
    | 2 | 4.3 | 3.6 | 30 | 2.5 | 2.01 .6 | 1.4 | 1.3 | 1.31 .5 | 1.8 | 2.2 | 2.2 .7 | 3.3 | 4.0: | 4.8 | e 4.5 | 4.2 | 4.1 | 3.6 | 3.3 | 3.0 | . 2.8 | 2.2 | 2.6 | 2.7 | 2.7 | 2.9 | 3.0 | 3.1 | 2 |
    | 3 | 4.0 | 3.3 | 2.7 | 2.2 | 1.71 .3 | 1.1 | 1.0 | 1.01 .2 | 1.5 | 1.9 | 9.4 | 3.0 | 3.7 |  |  | 3.9 | 3.8 | 3.3 | 3.0 | 2.7 |  | 2.4 | 2.3 | 2.4 | 2.4 | 2.6 | 2.7 | 2.8 | 3 |
    | 4 | 3.6 | 2.9 | 2.3 | 1.8 | 1.30 .9 | 0.7 | 0.6 | 0.60 .8 | 1.1 | 1.5 | 50.0 | 2.6 | 3.3 |  | 13.8 | 3.5 | 3.4 | 2.9 | 2.6 | 2.3 | 32.1 | 2.0 | 1.9 | 2.0 | 2.0 | 2.2 | 2.3 | 2.4 | 4 |
    | 5 | 3.2 | 2.51 | 1.9 | 1.4 | 0.90 .5 | 0.3 | 30.2 | 0.20 .4 | 0.7 | 1.1 | 11.6 | 2.2 | 2.9 | 3.7 | 73.4 | 3.1 | 3.0 | 2.5 | 2.2 | 1.9 | 1.7 | 1.6 | 1.5 | 1.6 | 1.6 | 1.8 | 1.9 | 2.0 | 5 |
    | 6 | 3.2 | 2.51 | 1.9 | 1.4 | 0.90 .5 | 03 | 30.2 | 0.20 .4 | 0.7 | 1.1 | 11.6 | 2.2 | 2.9 | 3.7 | 73.4 | 3.1 | 3.0 | 2.5 | 22 | 1.9 |  | 1.6 | 1.5 | 1.6 | 1.6 | 1.8 | 1.9 | 20 | 6 |
    | 7 | 3.4 | 2.72 | 2.1 | 1.6 | 1.10 .7 | 0.5 | 0.4 | 0.4: 0.6 | 0.9 | 1.3 | 41.8 | 2.4 | 3.1 | 20 | 93.6 | 3.3 | 3.2 | 2.7 | 2.4 | 2.1 | 11.9 | 1.8 | 1.7 | 1.8 | 1.8 | 2.0 | 2.1 | 2.2 | 7 |
    | 8 | 3.8 | 3.12 | 2.5 | 2.0 | 1.51 .1 | 0.9 | 0.8 | 0.8 1.0 | 1.3 | 1.7 | 72.2 | 2.8 | 3.5 |  | 34.6 | 3.7 | 3.6 | 3.1 | 2.8 | 2.5 | 5.3 |  | 2.1 | 22 | 2.2 | 2.4 | 2.5 | 2.6 | 8 |
    | 9 | 4.1 | 3.42 | 2.8 | 2.3 | 1.81 .4 | 1.2 | 1.1 | 1.11 .3 |  | 2.0 | $0^{1} 2.5$ | 3.1 | 3.8 | 4.6 | . 4.3 | 4.0 | 3.9 | 3.4 | 3.1 | 2.8 | 8.6 |  | 2.4 | 2.5 | 2.5 | 2.7 | 2.8 | 2.9 | ${ }^{9}$ |
    | 10 | 4.5 | 3.83 | 3.22 | 2.72 | 2.21 .8 | 1.6 | 1.5 | 1.51 .7 |  | 2.4 | 4.2 .9 | 3.5 | 4.2 | 5.0 | 04.7 | 4.4 | 4.3 | 38 | 3.5 | 3.2 |  | 2.9 | 2.8 | 2.9 | 2.9 | 3. | 3.2 | 3.3 | 10 |
    | 11 | 4.7 | 4.01 | 3.42 | 2.92 | 2.42 .0 | 1.8 | 1.7 | 1.71 .9 | 2.2 | 2.6 | 6.1 | 3.6 | 4.4 | 5.2 | 24.9 | 4.6 | 4.5 | 4.0 | 3.7 | 3.4 | 43.2 | 3.1 | 2.0 | 3.1 | 3.1 | 3.3 | 3.4 | 3.5 | 11 |

    Table VII.
    

    Example.-Thus, in the preceding example the high water of February 7 was found to be 3.3 feet above mean low water. The declination being south, this high water is the small one. To obtain the fall of the next low water, or small low water, we cuter Table VT, with $0 \pi$. of moon's transit, and two days after greatest declination, in the first part of the table, and find 1.9 foot, which will be the difference in height of this high and low water. Entering with the same transit and day in the second part, we fiud 3.3 fect, which is the rise of the large high water above the small low water; the difference between 1,9 foot and 3.0 feet, or 1.1 foot, is the difference of height of the two successive high waters. It is easy to see low, in this way, the soundings of a chart can be reduced to what they would be approximately at all the successive high and low waters.

    TIIE SEASONS.-There are but two seasons on the Pacific coast, nsually denominated the dry and rainy seasons; the former corresponding to the Atlantic summer, the latter to the winter; but much error exists in regard to them, especially as to the amount of rain falling during the rainy seasou. Thu following totals of rain that fell at San Francisco during each wet scason, from 1850 to 1862 , will show that the yearly amount is not great:
    

    The wet season of 1861-' 62 was remarkable for the disastrous effects of the great rains in December and January. In the latter half of December, 6.3 inches fell ; in the first half of January, 15.9 inches; and in the latter half of January, 8.5 inches. At Sonora, Tuolumue county, no less than 72 inches were registered between November 11, 1861, and January 14, 1862. Millions of dollars' worth of property were destroyed in the Sacramento valley.

    The following table will show how the foregoing yearly amounts were distributed each month, from November, 1850, to the middle of April, 1862:
    

    Giving a yearly average of..... 23.25
    An examination of the extended tables from which the above results are derived, show that as a rule the greatest depth of water falls in December, and that during the latter half of December, and the first half of January, one-fourth of the average falls.

    There is a very notable abatement from the middle of Jannary to the middle of February. In 1851 we noticed this particularly when stationed at Point Pinos, because the above period was much prolonged. In 1852, while observing near the Presidio of San Francisco, we found this period to extend from the early part of January to near the end of February. In 185s-'60, and '61, and the exceptional part of 1862, we found this cessation marked.

    During the latter part of March heavy rains occur, and about the middle of April. The southerly winds generally bring the rain. During the scasons we passed about San Francisco, we never heard thunder or saw lightning, and never but once saw snow fall, and then only at an clevation of 400 feet; the live being distinctly marked, and the elevation being well determiued by a kuowledge of the height of the hills. On the mountains of the seaboard snow frequently falls, but with tritfing depth.

    The fogs that prevail upon the coast during the dry season have an elevation of 1,300 to 1,700 feet ; generally the former, and only upon one occasion have we determined the latter. Through this dense cloud the mountain tops picree as islands.

    The following statement will give a general idea of the temperature of the seaboard. The interior is much warmer, buf on account of the dryness of the atmosphere the cffect is not so enervating to the system as a lower temperature on the Atlantic.

    Mean tcmperature at sunrisc and noon for seven years, from 1851 to 1857, computed from the California Statc Register for 1859.

    |  | Sunrise. | Moon. |
    | :---: | :---: | :---: |
    | Tanuary | Deg. Fahr. <br> 44.2 | $\underset{57.6}{ }{ }^{\text {Deg. Fah. }}$ |
    | Fehnuary | 46.8 | 60.0 |
    | March .- | 47.8 | 63.0 |
    | April. | 49.6 | 65.7 |
    | May June. | 50.0 | 64.5 |
    | Jaly | 52.6 | 68.5 |
    | August. | 53.6 | 67.9 |
    | September | 53.8 | 69.8 |
    | October-. | 52.7 | 68.4 |
    | November | 49.4 | 62.0 |
    | December | 44.9 | 55.8 |
    | Average. | 49.8 | 64.2 |

    The lowest temperature experienced at San Francisco in the above six years was $25^{\circ}$ Fah., in January, 1854. In 1852, '53, '56, the temperature was always above freezing, and falling no lower than $28^{\circ}$ in 1850 ; $40^{\circ}$ in $1853 ; 29^{\circ}$ in $1855 ; 31^{\circ}$ in 1857.

    The highest temperature was $98^{\circ}$, in September, 1859 , and that may be considered remarkably high, $93^{\circ}$ and $90^{\circ}$ haring been reached but once.

    The mean temperature of spring is $54^{\circ}$, of summer $57^{\circ}$, of autum $56^{\circ}$, and of winter $50^{\circ}$, showing a difference of only seven degrees between the average of winter and summer. There is a range of nine degrees in the mean temperature of the months; and the mean of the whole year is about $54^{\circ}$.

    The mean temperature at Sacramento, latitude $38^{\circ} 33^{\prime}$ north, and longitude $121^{\circ} 20^{\prime}$, and 75 miles from the ocean, for five years observations, is $60^{\circ} 5$.

    Clipper passages.-The number of elippers arriving at San Francisco from New York during the 10 years, 1850 to 1859 , was 663 , and the average length of the passage was 135.7 days. In the same years 373 arrived from Bostou, and the average passage was 136 days.

    In 1850 six clippers arrived from New York averaging only 115 days; the Sea Witch being reported at 97 days, but her actual passage was 101. The average passage of all American vessels that arrived from Atlantic ports was 187 days.

    In 1851 only two clippers made the passage in less than 100 days-the Surprise in 96, and the Flying Cloud in 90, both from New York.

    In 1852 the Flying Fish made it in 98 days from Boston, and the Eword Fish in 93 from New York.
    In 18.53 it was made by the Contest in 97 days, Flying Fish in 92, Johm Gilpin in 93, and the Oriental reported 100; all from New Tork.

    In 1854 the passage was made by the Darid Brown in 98 days, the Flying Cloud in 89, the Hurricane in 99, the Witcheraft in 97, from New York; and by the Romance of the Seas in 96 days from Boston.

    In 1855 no vessel made it in 100 days, although the Herald of the Morning aud Neptune's Car reported in 100 from New York, and the Westward $\mathrm{H}_{0}$ in 100 from Boston.

    In 1856 the Antelope made it in 97 days, and the Sweepetakes in 91 from New York.
    In 1857 the Flying Dragon arrived in 98 days, and the Great Repablic in 92 from New York. The Danish clipper Cimbar made the trip from Liverpool in 106 days, the quickest on record.

    In 1858 the ship Twilight made the passage in 100 days, and the Andrew Jackson in 99 days from New York.

    In 1859 no vessel made the passage in 100 days. The Andrew Jackson made the shortest trip, in 102 days from New York.

    In 1860 the ship Sierra Nevada made the passage from Boston in $97 \frac{1}{2}$ daye, and the Andrew Jackson from New York in $90 \frac{1}{4}$ days.

    The shortest passage made from New York to San Franciseo by steamship, via the Isthmus of Panama, was by the Moses Taylor on the castern side, and the Golden Age on the western; their actual rumning time 19 days 23 hours; total time from dock to wharf 21 days, 2 hours, 13 minutes, arriving at San Francisco February 26, 1858.

    The clipper Northern Light, of Boston, is reported to have made the run from San Francisco to New York, in ballast, in $75 \frac{1}{4}$ days, and the Trade Wind, with cargo, in 84 days. The average time of passage is about 100 days.

    The average length of paseages from other prominent ports is given for the years 1857, '58, and '50.
    From China 32 vessels arrived in 1857, averaging 59 days, the quickest trip from Shanghai being 34 days, by the tern Spray, and from Hong Kong in 35 days, by the sehooner Giulietta.

    In 185828 vessels arrived, averaging 53 days, and in 185928 vessels, averaging $54 \frac{1}{2}$ days.
    From Honotulu 19 vessels arrived in 1851, averaging $19 \frac{1}{2}$ days, the shortest trip being made by the barque Yankee, in 13 days.

    In 185825 vessels arrived, averaging 15 days, the shortest trip being made by the barque lankec, in 11 days. In 185920 vessels arrived, averaging 20 days, the shortest passage being ly the barque Onward, in 10 days.

    For a period of five years ending August 1, 1859, a record was kept of 427 passages between San Francisco and Honolulu. The average time of 224 passages from San Francisco to Honolulu was 165 days, four being made in $9 \frac{1}{2}$ days cach. The average time of 203 passages from Honolulu to San Francisco was 20 days, three being made in 11 days each.

    From Valparaiso 17 vessels arrived in 1857, averaging 53 days, the shortest passage being made by the Danish ship Velox, in 37 days. In 185816 vessels arrived, averaging 73 days.

    From Australia 13 vessels arrived in 1857 , averaging $81 \frac{1}{2}$ days, the shortest passage by the topsail schooner Vaquero, in 57 days. In $18 \overline{8} 814$ vessels arrived, averaging 80 days, the shortest passage being made by the Vaquero, in 54 days. In 185927 vessels arrived, averaging 76 days.

    Statistics.-Previous to the discovery of gold in California, San Francisco bay furnished few inducements for traders or whalers to visit. Cattle were cheap, but about the only provisions to be obtained, and these were valuable solely for their hide and tallow; "fine fat bullocks, weighing from 400 to 500 pounds, hide included, were purchased at $\$ 5$ each, and sheep at $\$ 2$. . (BeIcher, Vol. 1, page 135.) "All the forts' were in ruins, and not even a single gun mounted" at the time of his visit in 1837, and Wilkes's description of the few miscrable adobe buildings at Yerba Buena, the site of San Francisco, fully proves how fast the country was driving to wreck. In 1848 the resources, the population, and geography of the State were almost unknown; but since then she has commanded the attention of the world. She stands alone as an example of all past time of a country emerging so suddenly from obscurity, and at one gigantic stride assuming the importance and complicated relatious of a large empire. In less than fifteen years she has acquired a population of over half a million, and has developed the wonderful resources comprised within her limited loundaries. On the site of half a dozen adobe buildings has risen a city of 90,000 inhabitants, in whose streets is seen the dress and heard the tongue of every nation. The last census represents the taxable property of San Francisco at $\$ 36,967,499$, and that of the catire State at $\$ 148,198,540$. Over 600 ships, under every known flag, have been anchored at one time in the harbor of San Francisco. The commercial enterprise developed has given kirth to a new era of naval architecture; the old-fashioned full, clumsy-bowed ships, that carried the early adventurers round Cape Horn, and made their passages in something less than a year, have played out their part, and have been succeeded by the famed clippers. In 1860 not one of the old deserted hulks disfigured the harbor.

    In the first three quarters of 1849 no less than 509 large vessels entered the bay; at the end of August of that year there were 62,000 tons of shipping at anchor, exclusive of vessels running on the Sacramento, San Joachim, the adjacent bays, and in the coasting trade. On the 24th of September over 11,000 tons of shipping entered the Golden Gate, and at the end of September there were 94,500 tons in the harbor. For a city one year old, and 17,500 miles from the nearest eastern ports, this may well be viewed as marvellous.

    Tonnage of San Francisco.-At the end of the fiscal year, June 30, 1855, there were registered, enrolled, and licensed, at the custom-house of San Prancisen, owned wholly or in part by citizens of California, 702 steam and sailing vessels engaged in trade upon the Pacific, distributed under the following heads:

    ## Registered tonnage.

    | 3 steamships | 1,058 tons. |
    | :---: | :---: |
    | 36 ships. | 14,428 tons. |
    | 59 harques | 15,999 tous. |
    | $50 \mathrm{brigs}$. | 8,592 tons. |
    | 49 schoone | 5, 887 tons. |

    Total.................................................................................
    45, 964

    ## Enrolled tonnage.

    | 45 steamships | 11,223 tons. |
    | :---: | :---: |
    | 1 ship. | 386 tons. |
    | 17 barques | 3, 759 tons. |
    | 28 brigs. | 4,667 tons. |
    | 127 schooners | 8, 774 tons. |
    | 59 sloops | 2,137 tons. |

    Total

    In addition to the above, there were licensed at that time, as coasters, 225 schooners and sloops below 20 tons each, with an aggregate tounage of. ......................................................... 2, 399

    Making a total of permanent registered, corolled, and licensed tomage of 702 vessels of 79, 309

    We have no means now at hand for ascertaining the increase up to 1857, but the following tables, exhibiting the tonnage entering and clearing the port of San Francisco, may not be without interest:

    Tonnage of the port of Sun Franciseo.

    |  | Years. | AREIGALS. |  | mepartures. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | American ressels from Anericam \& foreign ports. | Forcign vessels from fureign ports. | American vessels to Americalid foreign ports. | Foreign ressels to foreigu ports. |
    |  |  | Tons. | Tons. | Tons. | Tons. |
    | 1849 |  | 1UF, 644 | "65, 729 |  |  |
    | 1850 |  | 255,428 | *131,628 |  |  |
    | 1851 |  | 992, 940 | * 125 ), 965 |  |  |
    | 1852 |  | 906,797 | 132,094 | 344,760 | 131, 111 |
    | 1853 |  | 404, 220 | 124,874 | 501,229 | 132, 110 |
    | 1854 |  | 336, 158 | 70, 12\% | 426,775 | 83, 81 |
    | 1855 |  | 325, 102 | 55,148 | 369,213 | 48,322 |
    | 1856 |  | 305, 519 | 40,378 | 347, 451 | 41,869 |
    | 1857 |  | 3e2,958 | 44,608 | 291,879 | 45, 143 |

    * Books of customenouse destroyed by fire.

    A great number of vessels that arrived in 1849, ' 50 , ' 51 , began to clear in 1852 , when seamen could be obtained.

    The following shows in more detail the shipping operations of the year 1857:
    Table showing the shipping entercd and cleared at the port of San Francisco for the year 1857.

    |  | Entered. | Tons. |
    | :---: | :---: | :---: |
    | Number of American vessels from American ports | 1,328 | 291, 6101 |
    | Number of American ressels from foreign poris | 130 | 91,397 |
    | Number of foreign vessels from foreign ports | 125 | 44,603 |
    |  | $1,5 \times 3$ | 427,506 |
    | Number of American vessels for American ports. | Cleared. <br> 516 | Tons. <br> 102.538 |
    | Number of American vessels for foreign ports | 203 | 183, 341 |
    | Number of foreign vessels for foreign ports. | 199 | 45, 608 |
    |  | 848 | 357022 |

    The difference noticeable between the vessels entered from and cleared for American ports is owing to the fact that these vessels are not required to clear at the custom-house, and therefore many departures are not noticed.

    For the year 1860 the reported tonnage of vessels entered was 538,081 , and cleared, 303,355.
    Table showing the total tonnage entcred from castern States and from forcign ports, with the amount of freights paid upon the cargoes.

    | Years. | Tons. | Freight. |
    | :---: | :---: | :---: |
    | 18.3 .- | 407, 2\% | \$11,762,084 |
    | 1854 | 254, 714 | 5,311,612 |
    | 185\% | 247, $6 \times 2$ | 3,999,755 |
    | 1056 | 236, 389 | 4,592, 104 |
    | 185 | 197, 814 | 2,842,671 |
    | 1858. | 313,158 | 3, 836, 197 |
    | 1859 | 374,335 | 4,763,131 |
    | 1860. | 396, 678 | 4,110, 050 |

    The steamship tonnage entered from Panama and San Juan del Sur, and the coasting tonnage entered, were as follows:
    

    Daring the years 1856, 1857, the movemente of the filibusters retarded, and finally put a stop to all travel aeross the isthmus of Nicaragua, and the steamships were hauled off. In 1562 the line was again opened.

    Table of the value of imports, free and otherwisc, into the district of San Francisco.

    | 1854 | \$5,899,620 |
    | :---: | :---: |
    | 18 ¢5 | 7,144,075 |
    | 1856 | 9,155,507 |
    | 1857 | 9,528,291 |
    | 1558 | 8,984,688 |

    Table showing the value of imports of ecrtain aricles, such as flour, grain, salt meats, fr., now produced in California.

    | 1853 | \$14,021,940 |
    | :---: | :---: |
    | 1854 | 5,161,586 |
    | 1855 | 2,444,626 |
    | 1856 | 1,248,343 |
    | 1857 | 1,631,467 |

    Table showing the receipts of customs of the port of San Francisco, and the expenditures.

    | Year. | Receipts. | Expenditures. |
    | :---: | :---: | :---: |
    | 1848, 1849.. | \$1,581,640 | --- |
    | 1850 | 1,908, 220 | \$303,033 |
    | 1851 | 2,310,675 | 1,009,436 |
    | 1852 | 2,008,410 | 655, 694 |
    | 1853 | 2,589,406 | 654, 114 |
    | 1854 | 1,563, 103 | 646, 288 |
    | 1855 | 1, 204, 904 | 438,684 |
    | 1856 | 1,713,408 | 441,673 |
    | 1857 | 1, 504, 137 | 607, 090 |
    | 1858 |  | 425, 886 |

    Value of the exports of leading articles of California produce from San Francisce.

    | 1854. | \$1,496,761 |
    | :---: | :---: |
    | 1855 | 2,753,147 |
    | 1856 | 2,279,942 |
    | 1857. | 2,319,266 |
    | 1858. | 2,526,791 |
    | 1859. | 2,129,330 |
    | 1860. | 4,948,921 |

    Of these amounts the following are the principal items :

    | Year. | Wheat, oats, barley. | Flour. | Hides. | Wool. | Quicksilver. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1853 |  |  |  |  | \$611,000 |
    | 1854 | \$49,689 | \$523, 035 | \$107,500 | 814,000 | 648, 317 |
    | 1855 | 378, 351 | 925, 728 | 338, 310 | 36, 000 | 975, 621 |
    | 1856 | 92,500 | 588, 080 | 443,517 | 80,000 | 833, 185 |
    | 1857 | 445, 665 | 90,050 | 681,788 | 165,000 | 954, 100 |
    | 1858 | 404,226 | 179, 630 | 549, 032 | 199,969 | 870,500 |
    | 1859 | 736,484 | 164, 281 | 454, 092 | 356,737 | * 126,262 |
    | 1860 | 2,239, 939 | 590,763 | 600, 750 | 397, 192 | *338,330 |
    | 1861 |  |  |  |  | +952,518 |

    * In these yoars the New Almaden mines were stopped by legal embarrassments. $\dagger$ Up to the end of Oetober.
    Table showing the passengers arrived by steamship and saiting vessels at the port of San Francisco.
    

    41 cs

    The following table will exhibit the tonnage movement of the principal cities of the United States for the year 1856:

    | City. | Entered. | Cleared. | Total. |
    | :---: | :---: | :---: | :---: |
    | New York. | 1,681,659 | 1,520,623 | 3,202,2e2 |
    | Boston | 682,167 | 647, 404 | 1,329, 569 |
    | New Orleans. | 663, 067 | 773,162 | 1,436,229 |
    | San Francisco | 345, 897 | 389, 260 | 735, 157 |
    | Philadelphia | 173,179 | 129,739 | 302,918 |

    It would be doing injustice to the State not to give a few facts relating to her principal mineral wealth.
    The average amount of gold taken from the country during the nine years 1850-'59 has been fully $\$ 55,000,000$ per annum ; the average value of the exported cotton crop of the United States for the same period was $\$ 105,908,327$, and of the breadstuffs and provisions $\$ 46,022,165$.

    The following table exhibits the amount of gold shipped, per manifest, from San Francisco, from 1849 to 1863, inclusive:

    | 1849 | \$4, 921, 250 |
    | :---: | :---: |
    | 1850. | 27,676,346 |
    | 1851 | 42,582,695 |
    | 1852. | $46,586,134$ |
    | 1853. | 57, 331,024 |
    | 1854. | 51, 328, 653 |
    | 1855. | 43, 080,211 |
    | 1856. | 48, 887, 543 |
    | 1857. | 48, 976,207 |
    | 1858. | 47, 528, 786 |
    | 1859. | 47, 664, 999 |
    | 1860. | 42, 302, 346 |
    | 1861. | 40,639,090 |
    | 1862. | 42, 380, 809 |
    | 1863. | 41,569, 876 |
    |  | 633, 455, 876 |

    The gold and silver coinage of the branch mint of San Francisco, from its organization to June 30, 1862, has been as follows:

    | Year. | Gold. | Silver. | Total. |
    | :---: | :---: | :---: | :---: |
    | 1854. | \$9,731,574 |  | \$9,731,574. |
    | 1855. | 20,957,677 | \$164, 075 | 21, 121,752 |
    | 1856. | 28, 315,538 | 200,609 | 28,516, 147 |
    | 1857. | 12,490, 000 | 50,000 | 12,540,000 |
    | 1858. | 19,276, 096 | 147, 503 | 19,423,599 |
    | 1859. | 13,906,272 | 327, 970 | 14, 234,242 |
    | 1860. | 11, 889,000 | 572,912 | 12,461,912 |
    | 1861. | 12,421, 000 | 269,485 | 12,690,485 |
    | Total.. | 128,987, 157 | 1,732,554 | 130,719,711 |

    The following figures will exhibit the marked influence which the gold product of California has had upon the coinage of the United States. For the 57 ycars previous to 1850 the total gold, silver, and copper coinage was $\$ 162,161,731$; of this $\$ 55,349,197$ was gold. From January 1, 1820, to June 30. 1861, the gold coinage was $\$ 583,698,592$; the silver, $\$ 53,146,814$; the copper, $\$ 1,395,740$; or a total of $\$ 638,241,146$ in cleven and a half years. The entire deposit of domestic gold, since the organization of the mint, has been $\$ 523,529,409$, of which California produced $\$ 501,290,998$.

    California placer gold has a dark color from its light coating of oxide of iron; but, when fused, its light color indicates a large per-centage of silver. The average fineness of California gold, as determined by some thousand assays at the United States mint, Philadelphia, is 885 thousandthe, or 882 per cent. pure gold, and 115 thousandths, or $11 \frac{1}{2}$ per cent. of silver. The quantity of platinoid metals found in the gold is small, about $1 \frac{1}{2}$ pound of iridosmin having been obtained from about 25 tons of the gold ( $1 \frac{3}{000 \pi}$ ), but the greater part had, of course, passed into the coin, the coarse grains only being left.

    The recent developments of the silver mines of Nevada Territory, on the eastern boundary of California, lead to the conclusion that not less than $\$ 12,000,0000$ of silver will be produced from them in 1862.

    Agriculture.-The amount of land in California adapted to the purposes of agriculture is estimated at $41,622,400$ acres, exclusive of the swamp and overflowed lands, estimated at $5,000,000$; which, when reclaimed, will produce every variety of crop. On the Sacramento the experiment is being made to cultivate rice with Chinese labor. The amount of grazing land is estimated at $30,000,000$ acres. The amount of land under cultivation in 1856 was 578,963 acres; and of that enclosed for the purposes of agriculture, about 120,000 . The amount in wheat was 176,869 acres, and the product $3,979,032$ busbels; in barley 154,674 acres, and the product $4,639,678$ bushels; in oats 37,602 acres, and the product $1,263,359$ bushels. Part of this season was characterized by a severe drought.

    Ir 1858 the amount of land under cultivation was 756,734 acres. The amount in wheat was 186,464 acres, yielding $3,568,669$ bushels. Napa county was the heaviest wheat-growing district; 16,000 acres yiclded an average of $31 \frac{1}{8}$ bushels to the acre.

    The president of the State Agricultural Society, in his address of 1856, before that body, says: "It it is now a well-aseertained fact, established by several years' experience, that Califormia stands without a rival in respect to her capacity for producing wheat and other small grains. She produces it in larger quantities to the acre, of better quality, with more certainty, and with less labor, than any other country in the known world."

    In 1858 the number of acres under cultivation for barley was 237,692, producing $5,382,718$ bushels, exceeding the aggregate of the crops of the Lited States in 1850.

    Dr. Trask, in the "Geology of the State," says: "Toward the foot-hills of the mountains on the west of the San Joachim valley is a low table of the valley, apparently destitute of water, cither for the support of vegetation or animal life; in some parts this land has a slight gravelly appearance, but this is uot general. On one rancho, situated on this platean, there have been two full crops of barley harvested from the same piece of ground, and when I visited this place, in Octoler, the third crop was being then harrowed in, the whole having occurred within the term of 273 [consecntive] days."- (Page 54.)

    The following extract from the report of the visiting committee for 1856 will best illustrate the extra ordinary capacity of the soil for the culture of this important grain: "Near Alviso, Santa Clara county, there is a field of barley, fifty acres in extent, which has averaged the present season forty-three bushels to the acre This is the fifth crop from a single sowing; it has received no special care, and may be regarded as a memorable example of a succession of volunteer crops."

    In 1858 the number of acres under cultivation for oats was 44,616 , and the produce $1,322,221$ bushels. Crops of this grain have frequently averaged 75 bushels to the acre, and one crop from 32 acres, in Alameda county, averaged 134 bushels in 1856 . In Del Norte county, during the year of 1858, two crops of aats yielded an average of 125 and 157 bushels, respectively, and a crop of barley 100 bushels to the acre.

    The cultivation of the grape, and its manufacture into wines and brandies, is rapidly assuming a degree of importance, and increasing to such an extent that these products must soon become one of the most reliable and lucrative branches of the resources of the State. The experience of the last few years has proved conclusively that this country produces this fruit in the greatest variety and abundance, and in a few years will surpass the most extensive wine-producing countries of the world. The number of vincs in cultivation in 1856 was $1,532,224$, and the average yield over fifteen pounds of fruit. The number of all kinds of fruit trees that year was $1,296,783$, and the fruit far superior to any on the Atlantic or Gulf seaboard.

    In 1857 the number of vines was $3,954,548$, and the average yield 14 pounds. The number of all kinds of fruit trees was $1,963,349$. The partial returns for 1858 indicated an increase of seventy-five per cent. over 1857.

    The two great staples, cotton and flax, will render the country independent of other places for her manufactures, whilst the proluction of silk bids fair to go hand in hand with both. 'The true wealh of the country has but commenced its deyelopment, and in a short period she will successfully compete with the Atlantic States and Europe for the markets of the Pacific.

    Regular mail communication is maintained by steamships with the Atlantic and the Gulf States twice* a month, crossing the Isthmus of Panama by $47 \frac{1}{2}$ miles of railroad; the transit from steamer to steamer occupying four hours. For the year ending June 30 , 1856 , the namber of letters conveyed by this route was $2,365,902$, and newspapers $3,463,817$; the number of letters and newspapers exchanged between the United States and Great Britain, in British mails by the Collins, Cunard, Bremen, and Harre lines, for the same time, was $3,909,128$ (letters,) and $3,196,014$ (newspapers.) The comparison speaks well for the modern El Dorado.

    The entrance to San Francisco bay is supposed to have been first seen by Bartolome Ferrelo, pilot and successor to Juan Rodriguez Cabrillo, who, running down the coast with a gale strong from the north, on the 3 d of March, 1543 , descried what he supposed to be the mouth of a great river, having evcry appearance of draining a large extent of country; and steering SE. and E.SE. he soon after sighted Point Pinos, and on the 5 th the port in the Island of Juan Rodriguez, where Cabrillo is supposed to have died. If this account is correct, he was the first European that beheld the Golden Gate.

    Sir Francis Drake visited Califomia, which he named New Albion, in 1579, and we are of opinion that in this bay he overhauled and repaired his vessel; "it having pleased God to send him into a fair and good bay, with a good wind to enter the same." Curiously enough, we find the statement that "there is no part of the earth here to be taken up wherein there is not some probable show of gold and silver." In this harbor he remained over a month "trimming" bis ships and taking possession of the country.

    A land discovery of the bay was made in 1769 by Gaspar de Portola, who left San Diego to establish a Jesuit colony at Monterey; but by travelling along the eastern slope of the Coast mountains he passed Monterey, and towards the close of October came unexpectedly upon the shores of a great bay, which they supposed to be the Port St. Francisco of the old navigators. Having no supplies, the party returned to San Diego.

    Vancouver visited the bay in 1792 and 1793, and gives a good general map of the entrance. The presidio of San Francisco was then occupied by Spanish troops.

    The first accurate hydrographic survey was made by Capt. Fred. W. Beechy, in the Blossom, in November, 1826, he carrying his work to the Strait of Karquines.

    In October, 1837, Capt. Sir Edward Belcher ascended the Sacramento with the boats of the Sulphur, and starting from the "Fork" carried the survey down the river to connect with Beechy's survey. The "Fork" he calls Point Victoria, and places in latitude $38^{\circ} 46^{\prime} 47^{\prime \prime}$, and $0^{\circ} 47^{\prime} 31^{\prime \prime} .5$ east of the observatory on Yerba Buena. This point is formed by the confluence of the Rio de las Plumas, or Feather river, with the Sacramento, about 20 miles above Sacramento city. The river, but a short distance above his starting point, was fordable, and thence to its mouth traversed in its meanderings 150 miles. The head of steamboat navigation is at Red Bluffs, in latitude $40^{\circ} 10^{\prime}$.

    The Coast Survey charts of 1857 furnish all that can be desired in regard to the lower part of the bay of San Francisco, the upper bays, and the waters approaching the mouth of the Sacramento.

    ## DUXBURY POINT AND REEF.

    From Point Boneta to Duxbury Point, forming the west side of Ballenas bay, the course is W. by N. $\frac{1}{4}$ N., and the distance 94 miles. The point, sometimes called Ballenas, is a table land about 100 feet high, which stretches along the coast for a mile or more, and gradually rises to a narrow, nearly treeless "ridge, 1,389 feet high at its greatest elevation, and running in a straight line 254 miles NW. 7 W. to Tomales Point. The old Californians expressively call it the Cuchilla Grande. Parallel to this ridge on the east, and starting from the west end of the great cross ridge of Table mountain, runs another to the northwestward, and the depression between them, abreast of Duxbury Point, forms the Ballenas bay, as it does the Tomales bay further


    up the coast. This depression forms a long narrow valley, well watered and timbered, and in many places cultivated. Two streams running into each bay, have their sources nearer the bay from which each runs.

    Duxbury reef makes out $1 \frac{1}{4}$ mile SE. $\frac{1}{4}$ S. from the southern extremity of the point, and stretching towards Point Boneta, forms a safe anchorage in northerly weather. From the tail of the reef to the rocky point E.NE. from it, the distance is three miles, and from this line to the greatest bend of the bay the distance is $1 \frac{3}{4}$ mile. In this bay the three-fathom line makes off three-quarters of a mile from the southeast face of Duxbury Point, but approaching the low sand beach east of the narrow entrance to the lagoon. From four to eight fathoms of water, with a regular bottom of sand and mud, are formed in the bay, and six fathoms quite close to the reef. From Duxbury Point to the bluff, at the entrance to the lagoon, the distance is 14 mile NE. by N.

    In June, 1860, the British barque Camilla, from San Francisco to Melbourne, drifted in a dead calm near Duxbury reef, and let go her anchors in six fathoms. When she swung to the swell and current her stern struck, and she thumped for four hours.

    Quite close to Duxbury Point the steamship S. S. Lewis went ashore, April 9, 1853, in a thick fog and calm, while running at her ordinary speed. She was backed off and ran ashore again within a few hundred yards to the northward, and was totally lost in the breakers.

    The lagoon north of the bay is at the foot of the mountains, and, except small crooked channels, is bare at low tides, and filled with small islets. The south side of this lagoon is bounded by a long, narrow sand spit, stretching so nearly across it as to leave an entrance of but 100 yards wide at the southwest part of it. Only a few small vessels run between this place aud San Francisco.

    The shore north of Boneta is bold and high, presenting a marked and peculiar undulating surface at right angles to the sea front. This characteristic is well delineated on the Coast Survey map of the approaches and entrance to San Francisco bay, published in 1857.

    North of Duxbury the hard rocky shore continues bold and high, but gradually merges into cliffs, consisting chiefly of yellowish clay and sand resting upon granite, and, as the surface is regularly undulating, with the direction of the alternate ridges and valleys at right angles to the shore, the wearing action of the surf forms a continuous series of round-topped, bright, vertical bluffs, averaging nearly 100 feet high, and presenting a very noticeable feature from the sea. Its resemblance to portions of the coast of England was one of the reasons which induced Drake to apply the name New Albion to the country in June, 1579.

    The mountains in the back ground rise over 2,000 feet, and the "Table mountain" of Beechy attains an clevation of 2,604 feet, stretches nearly two miles inland at right augles to the coast, and forms a prominent mark from seaward and from the bay of San Francisco. A few large trees are seen along the top of the main ridge running parallel with the coast and behind the valley, connecting Ballenas and Tomales bays.

    Table mountain is a very sharp ridge, showing flat-topped only in two directions. From South Farallon light-house it bears NE. $\frac{1}{2}$ N., distant 24 miles; the geographical position of the castern peak is:

    ```
    - Latitude.............................................................. 37 55 36.7 north.
    Longitude............................................................... . . 12: 33 35.7 west.
    Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % % % 10 14.6.
    ```

    It was called Mount Palermo by the United States Exploring Expedition, but is known only by the name here used.

    By the old Californians it is called Tamal Pais, because this part of the country was inhabited by the Tamal Indians, who, in 1816, were within the jurisdiction of the mission of San Francisco. The Tamal, Numpal, and Suysum tribes tatooed themselves and spoke the same language; the first lived in the northwest, and the last two in the north.

    ## SIR FRANCIS DRAKE'S BAY.

    From the tail of Duxbury reef to the west end of Los Reycs the course is W. $\frac{3}{4}$ N., and distance $17 \frac{1}{3}$ miles. To the east end the course is W. by N., distance $14 \frac{2}{3}$ miles. From Duxbury the shore is bold and compact, running nearly NW. by W. for about 10 miles, then curving regularly to the westward, changing to a low shore, until it reaches its greatest latitude at the Estero de Limantour, which bears N. by E. $\frac{1}{2}$ E. from the east end of Los Reyes, distant three miles; thence the line curves to the southward and southwest, one mile west of the point, leaving a long, high, narrow point stretching to the east, and off which the
    breakers extend half a mile. This curving shore line ferms Sir Francis Drake's bay, which affords a large and admirable anchorage in heary northorest weather; and by anchoring close in under the north side of the point, in four or five fathoms, hard bottom, good but contracted anchorage is obtained in southeast gales, as the swell rolling in from the $S W$. is broken by the reef.

    The secondary astronomical station of the Coast Survey was, on the north side of the first small gulley, five-eighths of a mile from the eastern end of the head, and about 40 feet above the water. Its geographical position is:

    $$
    \circ \quad 1 \quad 11
    $$

    $$
    \text { Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 375935.0 \text { north. }
    $$

    $$
    \text { Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 12257 ~ 36.1 \text { west. }
    $$

    $$
    \text { Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 81150.4
    $$

    The computed magnctic variation in July, 1860, was $15^{\circ} 58^{\prime}$ east, and its present yearly increase $1^{\prime}$.
    Several esteros or lagroons open into the north side of the bay, but their entrances are very narrow and shoal. The largest is the Estero de Limantour, which stretches to the northward over three miles, and one of its numerous arms approaches within a mile of the ocean beach, five miles north of Point Reyes head. The entrance to this lagoon has cight feet of water, and is generally marked by breakers on either hand. Coasters can enter with the prevailing northwest wind. It is called Drake's Estero on the Coast Survey chart of Sir Francis Drake's bay, pullished in 1860. It was named after Limantour, notorious for his attempted great land claim fraud in California. He was a Frenchman, but a citizen of Mexico, and asserted that in trading upon this coast in 1841 he lost the Mexican vessel Ayachuco at the entrance to this estero.

    Drake's bay is the Port Francisco of the Spaniards, of about 1595. It was certainly known before the time of Vizeaino, who, having separated from his tender, sought her in Port Francisco, and, according to Venega's account, "to see if anything was to be found of the San Augustine, which, in the year 1595, had, by order of his majesty and the viceroy, been sent from the Philippines by the governor to survey the coast of California, under the direction of Sebastian Rodriguez Cermeñon, a pilot of known abilities, but was driven ashore in this harbor by the violence of the wind; and among others on board the San Augastine was the pilot Francisco Volanos, who was also chief pilot of the squadron." This pilot recogaized the bay as being that where he was wrecked.

    ## POINT REYES.

    This is the most prominent and remarkable headland north of Point Concepcion. It is distinctly visible from the entrance to San Fraucisco bay, and the summit of the ridge presents an irregular jagged outline, with the highest part about one-fourth of its length from the western extremity. Its southern face is a precipitous wall of hard sienitic granite, rising boldly from the ocean, attaining an clevation of 597 feet in 300 yards, and stretching nearly in a straight line E. by N. and W. by S. for three miles. This direction is peculiar on the coast, and would not be expected from a consideration of the trend of the coast mofuntains and of the Farallones, which are in line NW. and SE. On the north side the cape falls away regularly to a low undulating neck of land, cut up by esteros making in from Drake's bay. When made from the southward it is raised as a long, high island; but on approaching it from the westward it is projected upon the mountains ruming north from Table mountain, and its characteristies are not so readily recognized. Its base is very broken and rocky, and bordered by crags and hundreds of rocks. but may be boldly approached, and eight fathoms, hard bottom, obtained within less than a quarter of a mile. Off the eastern extrenity a reef makes out half a mile in continuation of the point. Upon this reef it breaks heavily in bad southerly weather, but nine fathoms can be had close to the breakers. Off the western head a depth of 12 fathoms is found quite near to the rocks.

    Vessels bound to San Francisco from the northward always make Los Reyes, and, when up to it, sight two mountains on the southern peninsula of San Francisco as islands. One of these is Blue mountain, 1,100 feet high, and the other, Abbey hill, 1,250 feet.

    In 1859, while occupying the Coast Survey station on Point Reges hill, 1,389 feet in altitude, and $8 \frac{3}{5}$ miles NE. $\frac{1}{2}$ N. from Point Reyes head, we observed a barque, during a perfect calm, having no steerage way, and turning round several times, drift to the northward past Point Reyes head, at the rate of one mile per hour. She was two miles to the westward of the head. On this and subsequent occasions we noticed the discolored water of the Sacramento from San Francisco bay close in shore, and extending to the northward
    of the head several miles. Different degrees of discoloration, as of successive ebb tides, were plainly marked.

    The light-house of Punta de los Reyes will be placed about a quarter of a mile from the western point. A height of 20 feet above the site selected will command the horizon from east round, scaward, to the north. The ocean face is precipitous, and the light will be at an elevation of about 500 feet above the water.

    The geographical position of the site selected is:
    Latitude................................................................ 375939.4 north.
    Longitude............................................................. . . . 1230013.3 west.
    
    The magnetic variation computed for July, 1860 , was $15^{\circ} 58^{\prime}$ east, with a present yearly increase of $1^{\prime}$.
    This headland was discovered by Cabrillo in 1542 , and placed by lim about the latitude of $40^{\circ}$; but by applying the correction $1^{\circ} 50^{\prime}$, obtained from his erroneous latitudes of San Diego, Point Concepecion, (Cape Galcra,) and Punta Gorda, (San Martin,) the latitude of $40^{\circ}$ becomes $38^{\circ} 10^{\circ}$, which is within ten miles of the latitude of Los Reyes. We believe he called it Cabo Mendozino, in honor of the viceroy of Mexico, who despatched him; but this name was applied to every cape first made by the Spanish galleons on the passage from the Philippines to La Natividad, New Spain. In this region Cabrillo found the mountains covered with snow. There can be little doubt that he also saw the Farallones.

    The present name was given by Viscaino, who anchored under the head in January, 1603, whilst searching for the wreck of the San Augustine.

    ## SOUTH FARALLON.

    The southern and principal one of the six rocky islets known as the Farallones de los Frayles, hies off the Golden Gate at a distance of $23 \frac{1}{2}$ miles; the whole group is disposed in a nearly staight line ruming NW. from the southern one. This is the largest and highest, extending nearly a mile cast and west, attaining an elevation of about 340 fect above the sea, and presenting to the eye a mass of broken, jagged rocks, upon which no vegetation exists, except a few stunted weeds. The rocks are sharp, angular masses, which, becoming detached by the operations of natural causes, roll dewn upon the more level parts of the islet and cover it with irregular boulders. Notwithstanding that it is the outcrop of an immense dyke of granite, the condition of the superficial portion is such that it could be separated into small fragments by a pick or crowbar. A more desolate and barren place can hardly be imagined. From the hills about the Golden Gate the South Farallon is plainly visible, rising in regular pyramidal form.

    Vessels from the westward, running for the Golden Gate, should keep to the southward of the South Farallon, especially in thick weather and at night. To the westward of it a depth of 50 fathoms is obtained at a distance of three miles, shoaling to 20 fathoms in two miles; whereas, inside of it, the bottom is very regular at 30 fathoms for ten miles, and then decreases regularly to the bell-boat. On the SE. side of the island there is said to be good holding-ground in 15 fathoms.

    The San Francisco pilot-boats cruise off the island.
    An extended and detailed examination around the island has not yet been published.
    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is Xh. XXXVIIm., and the difference between the greatest and least intervals 1 h .16 m . The mean rise and fall of tides is 3.6 feet; of spring tides, 4.4 feet; and of neap tides, 2.8 feet. The mean duration of the flood is 67.18 m ., and of the ebb 6 h .09 m .

    To find the times of high and low waters, first compute them for San Francisco, and from the numbers thus obtained subtract 1 h .29 m . for the South Farallon.

    The ship Lucas was wrecked on this islet in a fog, November 9, 1858, and 23 lives were lost.

    ## SOUTH FARALLON LIGHT.

    The tower stands on the highest peak of the principal island. It is built of brick, 17 feet in height, and is surmounted by a lantern and illuminating apparatus of the first order of the system of Fresnel. It is a reiolving white light, showing a prolonged flash of 10 seconds every minute throughout the horizon. The time of the flash varies on different nights. In 1859 we found the average time 13 seconds. It is levated about 360 feet above the mean level of the sea, and should be visible, in a favorable state of the atmospherc, from a height of -
    10 feet, at a distance of 25.4 miles.
    $20 \ldots$. do.....do..... 26.9 "
    $30 \ldots$ do.....do..... 28.1 "
    $60 \ldots$ do.....do..... 30.7 "

    At near distances, under favorable circumstances, the light will not wholly disappear between the intervals of greatest brightness. It is plainly visible from Sulphur Peak, distant 64.4 miles, and 3,471 feet above the sea.

    The gengraphical position of the light-house, as given by the Coast Survey, is:
    

    Magnctic variation $15^{\circ} 40^{\prime}$ east, in 1857 , with a yearly increase of $1^{\prime}$.
    The bearings and distances of prominent ohjects from it are:
    North Farallon, N. $64^{\circ}$ W.., $6 \frac{3}{5}$ miles.
    Western head of Los Reyes, N. by W. $\frac{2}{3}$ W., $17 \frac{3}{4}$ miles.
    Point Boneta light house, NE. by E., $23 . \frac{1}{2}$ miles.
    Bell-boat off San Francisco bar, NE. by E. $\frac{1}{2}$ E., 16 $\frac{1}{2}$ miles.
    Point San Pedro, E., $23 \frac{1}{2}$ railes.
    From abreast Fort Point the light is just visible above the horizon.
    Fog-whistle on the South Farallon.-In January, 1859, a fog-whistle, of six inches in diameter, was placed on the south side of the eastern part of the island, about 275 feet from the water. It is erected over a natural hole, in the roof of a subterranean passage, connected with and open to the ocean, and is blown by the rush of air through the passage, caused by the sea breaking into its mouth. The sound should be heard in the vicinity at all times, (its loudness depending upon the height of the tide and the waves,) except about an hour and a half before and after low water, when the sea does not enter the mouth of the passage. It is said to have been heard at a distance of seven or cight miles.

    ## THE MIDDLE FARALLON

    is a single rock, between 50 and 60 yards in diameter, and rising 20 or 30 feet above the water. It lies N. $56^{\circ}$ W., distant 21 miles from the light-house on the South Farallon. Its geographical position is, latitude $37^{\circ} 43^{\prime} 31.6^{\prime \prime}$ north, and longitude, $123^{\circ} 00^{\prime} 54.9^{\prime \prime}$ west.

    ## THE NORTH FARALLONES

    lie nearly in line with each other and the Middle and South Farallones, and consist of a group of four islets, having a pyramidal appearance as their name denotes, and comprised within a space of little more than halt a mile square. The northern three are quite high and bold, the highest peak of the middle one attaining an clevation of 166 feet, whilst the southern one of the group is a mere rock of about 35 yards in diameter, and hardly 20 feet above water. Viewed from the southwest or northeast, breakers extend across from the largest islet to the next one southeast, and during a heavy ground swell we have watched it from Point Reyes hill breaking on an isolated sunken rock lying apparently between the northern and largest islet. From certain direetions a small pyramidal detached peak shows close to the north side of the northern islet.

    The geographical positions and extent of the islet are as follows:
    

    The northern islet, therefore, bears N. $64^{\circ} \mathrm{W}$., distant $6 \frac{3}{5}$ miles from the light-house on the South Farallon. From the light-house site of Punta de los Reyes it bears south, distant 14 miles.

    To the southward and eastward from the North Farallones, at a distance of two miles, we are informed that a sunken rock exists, having four fathoms water upon it, with kelp around it, except when torn away
    by storms. In good weather the fishermen fish around it, but in bad weather the sea breaks upon it. We called attention to this several years ago, and since then have met with a Russian volune of charts, published at New Archangel, in 1848, wherein a rock in this vicinity is marked "overflowed." The Noonday rock, with $4 \frac{1}{2}$ fathoms of water upon it, lies W. by N., distant three miles from the North Farrollones, with intervening rocky bottom in 35 fathoms. Between them and Los Reyes the depth increases to 50 fathoms about midway.

    The Farallones de los Frayles were discovered by Ferrelo in February, 1543, and he is stated to have seen six islands in this vicinity, one large and five very small, which Cabrillo had passed on the previous voyage. He states that for five days it was impossible to effect a landing upon them on account of the southwest winds and heavy sea.

    Sir Francis Drake is the first that specially mentions them, in 1579, as lying off the harbor or bay where he refitted his ships.

    In some recent maps they are omitted.

    ## NOONDAY ROCK.

    This danger lies nearly on the prolongation of the line from the Bouth Farallom, through the Sorth Farallones. It is of very limited extent, and is, doubtless, a sharp isolated point of a small ledge, having from 20 to 30 fathoms immediately around it. It is plainly visible when directly over it, and hats $3 \frac{1}{2}$ fathoms of water upon it at mean low water; but at the extreme low water of sping tides there will be hardly more than four fathoms. In very heary weather and low water the sea breaks upon it, but this indication seldom exists, and must not be depended npon for ascertaining its position.

    From it the following learings will show its relation to other well-marked and determined points.
    Punta de los Reyes, western head, N. $13^{\circ} 25^{\prime}$ E., distant $13_{10}^{\frac{y}{10}}$ miles.
    North Faralion, S. $79^{\circ} 30^{\prime}$ E., distant $3 \frac{1}{10}$ miles.
    South Farallon light-house, S. $69^{\circ} 45^{\prime}$ E., distant $9_{1^{\prime}}^{7}$ miles.
    Point Boneta light-house, N. $71^{\circ} 32^{\prime}$ E., distant $30 \frac{3}{10}$ miles.
    Boneta light will not be visible from a ship's deck, but may be seen from aloft, under very favorable atmospheric circumstances.

    The approximate geographical position of this rock is:

    ```
    Latitude............................................................... 37423 north.
    Longitude...... ................................................................. 123 . 199 west.
    ```

    In the description of the South Farallon, and in the directions for approaching San Francisco, we have heretofore advised vessels approaching the Golden Gate at nimht and in thick weather to keep to the southward of the South Farallon light. This advice has now more significance, and should be followed. With Punta de los Reyes and the Farallones in sight, vessels bound in and running between them should keep the western head of Los Reyes open on a N.NE. course, coming nothing to the eastward, until the North and South Farallones are in range, then bear away for the Golden Gate. In that position the rock will bear SE., distant $2 \frac{1}{3}$ miles. Coming from the northweetward at night, vessels should not bring the South Farallon light to bear anything east of SE. by E., which will clear the rock by two miles, and the North Farallones by one mile.

    Southwest of the line passing through the Farallones and Noonday rock, the 100 -fathom curve is only four miles distant, and the 50 -fathom curve only two miles, with very irregular bottom.

    Notice of the ledge was first made known in April, 1860, it having been discovered on the 13th of March. The weather was calm, and the pilot boat, drifting with the current, was fishing off the North Farallones in 40 fathoms water. Suddenly the line slackened, and the depth rapidly decreased to ten, and finally to nine fathoms, when it increased again to the first depth. No other examination was made, as the boardiug boat was fishing some miles distant. The North Farallones bore E. by S. at an estimated distance of five miles; the single range taken was unavailable for ploting.

    On the 2d of January, 1863, the clipper ship Noonday, drawing 21 feet of water, struck twice upon the isolated rock forming the apex of the ledge ; passed over it, and within an hour sunk in 40 fathoms of water. At the time of ler striking the weather was clear, sea smooth, but with a very heavy swell from the northwest, and the wind from the northwest carrying her towards the Golden Gate, nlout 9 or 10 knots an 42 cs
    hour, with evcrything set. The tide was threc hours past the higher high water of the day, and 3.1 feet above the plane of reference, which is the mean of the lower low waters. The height of the higher high water of that day was slightly greater than the average of the higher high waters. She reported the rock eight miles from the North Farallones, which bore E. by S. $\frac{1}{2} \mathrm{~S}$.

    On the 29th of January the position of this danger was first accurately determined by the Coast Survey, and notice thereof immediately published.

    ## NEW SHOAL OFF SAN FRANCISCO ENTRANCE.

    It is reported, January, 1863, that a shoal has been discovered about 80 miles southwest from the ' Southeast Farallon. It is said to have but from five to seven fathoms of water upon it, and lies directly in the track of vessels bound into San Francisco. Its approximate geographical position from the above data is:

    | Latitude | 3706 north. |
    | :---: | :---: |
    | Longitude | 12422 west. |

    SHOAL IN TIIE PACIFIC, OFF THE CALIFORNIA COAST.
    In latitude $37^{\circ} 25^{\prime}$ north, and longitude $137^{\circ} 30^{\prime}$ west, rocks are reported having but from three to five fathoms of water upon them. This information was obtained in 1855 , and failing to ascertain anything more concerning it, is now published to call attention and invite further examination.

    ## POINT TOMALES AND TOMALES BAY.

    Northward of Punta de los Reyes we find a long reach of broad white sand beach, backed by sand dunes, and extending in a N. $\frac{1}{2}$ E. direction about 12 miles, curving to the northwest, and changing to a high precipitous coast ruming to Point Tomales, which bears N. by W. 15 miles from Los Reyes. Threequarters of a mile before reaching the point, a rocky islet 80 feet in height is seen close in shore. Eight miles above Point Reyes is the opening to an estero, the north point of which is low and sandy. The wider arm runs one mile towards the head of the western braneh of the Estero de Limantour, and little more than that distance from it. The other arm runs nearly a mile and a half to the northwestward. The ridge forming Tomales Point and the western shore of Tomales bay is the northern extremity of that starting from Duxbury Point. About $4 \frac{1}{4}$ miles from the point the ridge is 673 feet high, with slightly lower ground a few miles south. It is where the sand dunes strike this ridge that the coast changes its character; thence to the point it is bold and rocky, with breakers about one-third of a mile off the point, and on the prolongation of the ridge, which averages less than three-quarters of a mile in breadth for the last four miles.

    The bay of Tomales extends from Tomales Point SE. $\frac{3}{4}$ E. for $12 \frac{1}{2}$ miles, with an everage width of seren-eighths of a mile. The entrance is narrow, and obstructed by a bar having a depth of 10 fect, between sandy lumps of seven feet. The bar lies nearly half a mile east of the extreme point, and 400 yards from the bluffs. It is exposed to the full force of the northwest swell, and with the least swell from seaward it breaks across the whole entrance. For two or three miles this bay is contracted, but has a narrow, deep channel close under the western shore. Four miles within the point lies a small island near the middle of the bay; beyond it the depth of water becomes more regular. Its shores are becoming thickly settled, and trade in agricultural products has increased so much that a small steamer has been put upon the ronte to San Francisco.

    In 1852 the ship Oxford, after getting on the rocks outside of Tomales ridge, was deserted, floated off, drifted into the bay over the bar with the flood tide, grounded on the flats, and at the following high water floated off again; but no one being aboard, she again drifted on the flats and lay inside of Sand Point for some years

    In February, 1857, the waters of the bay changed to a deep purple color, and the fish died in such great numbers that the beaches and water were covered with them.

    This bay was known as Port Juan Francisco by the Spaniards when Vancouver visited the coast in 1792.

    In old Mexican grants it is called Tamales, and sometimes Tomales. The old Californians invariably pronounce it like the former.

    Belcher erroneously desiguates it as a part of Bodega bay.

    The Russians have a chart of it.
    De Mofras calls it the Estero Americano, which is another body of water emptying into Bodega bay. He calls Point Tomales Point Bodega.

    The topography of its entrance was executed by the Coast Survey in 1853. A map of the whole bay was published in $1 \times 61$.

    BODEGA HEAD.
    This point lies N.NW. 18 miles from Los Reyes, and forms the northern point of Bodega bay, considering Tomales Point the southern. The head is two or three hundred feet high, with a slightly rounding summit, and continues of nearly the same height for a mile or two northward, where it changes to a broad saud beach with low country near, but high hills in the back ground. The face of the land about here begins to change from its uniform want of trees to hills partially covered. It has been frequently held out as a warning not to mistake Bodega Head for Punta de los Reyes, but there exists no reasonable ground for raising a question on this subject, although navigators, who have lost or jeopardized vessels, offer as an excuse the great similarity of the const and headlands to those near the Golden Gate. We have never been able to detect it. The highest part of the head is about 265 feet above the ocean. From an examination of this section we believe that it is the continuation of the Tomales ridge.

    The geographical position of the Coast Survey station on the head is:

    $$
    \begin{aligned}
    & \text { Longitude.............................................................. } 1230247.2 \text { west. } \\
    & \text { Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \quad \begin{aligned}
    \text { h. } & 8.1211 .1 .
    \end{aligned}
    \end{aligned}
    $$

    This station is one mile from the southern extremity of the point.
    The magnetic variation observed near the mouth of the Estero Americano, in July, 1860, was $16^{\circ} 19^{\prime} .1$ east. The present yearly increase is $\mathbf{1}^{\prime}$.

    The Russians called this head Cape Romanzoff.

    ## BODEGA BAY.

    From Tomales Point to Bodega Head the course is NW. ${ }_{4}$ W., and the distance 43 miles. The average width of the bay to the castward of the above line is $1 \frac{2}{3}$ mile, with the shore runing nearly a parallel course. It is bordered by numerous rocks, is abrupt, and reaches a height of 594 feet less than a mile inland. The anchorage lies between the head and the mouth of the Estero Americano, (called Avatcha by the Russians,) which lies E. $16^{\circ}$ N., $2 \frac{1}{2}$ miles from the head. One mile west of the estero a low, narrow sand spit $1 \frac{1}{2}$ mile long, and covered with bushes, stretches towards the head, within one hundred yards of it, where a passage exists for the waters of the extensive lagoon north of the sand spit, having small and intricate chamels, but almost destitute of water at low tides. The anchorage is half a mile outside of this passage, and about N. $\frac{3}{3}$ E. of the rocky islet, in five or six fathoms, hard bottom of coarse sand and small patches of clay. It is protected by the head and the low rocky islet and reef, about three-quarters of a mile off the southeast face, from the full force of the northwest swell, which generally rolls in disagreeably in the open part of the bay if the weather is heavy. The reef is densely covered with kelp, and the breakers usually indicate its position. Between the islet and the head there is a narrow $4 \frac{1}{2}$-fathom passage opening directly upon the anchorageIn coming from the northwest in summer this channel is available; but in beating out it is too contracted to be safe. During the winter season it is necessary to anchor well out, to be ready to slip and run, as the sea-room is very contracted and the swell heavy. Some vessels have ridden out heavy southeasters, but several have been lost. In beating out, the only danger is the reef off the head.

    On account of the general depression of the coast hills behind Bodega bay, to abont 500 or 600 fect elevation, and the valley in which the Estero Americano lies being perpendicular to the coast line the summer winds draw in towards the Petaluma valley with great force. The trunks of the oak trees rise straight for about 10 feet, then bend almost at right angles, without a branch for 10 or 15 feet, and terminate in a clump of branches all dragged out by the force of the wind. Fogs are found drawing in sonner and more frequently than upon any other part of the coast.

    The country in the vicinity of the bay is very productive, both in the valleys and upon the hills. The produce is placed in lighters at the "port" or embarcadero, about one mile within the lagoon, and carried by the current to the anchorage.

    A fine tract of agricultural country stretches behind the coast lills, extending from Russian River valley to Petaluma creek, by which chamel the produce of this region finds its way to San Francisco.

    The secondary astronomical station of the Coast Survey was upon the western end of the sand spit; its geographical position is:

    | Latitud |  |
    | :---: | :---: |
    | Longitude. | 123 0: 17.4 west. |
    | Or, in time | $\begin{array}{ccc} \text { h. } . c_{0} . \\ 8 & 12 & 09.2 . \end{array}$ |

    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is $\mathrm{XI} / \mathrm{h}$. XVIIm., and the difference between the greatest and least intervals is 1 h .54 m . The mean rise and fall of tides is 3.6 feet; of spring tides, 4.7 feet ; and of neap tides, 2.7 feet. The mean duration of the flood is 67.19 m , and of the ebl 5 hl .59 m .

    To find the times of high and low waters, first compute them for San Francisco, and from the numbers thus obtained subtract 49 minutes for Bodega bay.

    Bodega bay was discovered by Heceta and Bodega in 1775 , and placed in latitude $38^{\circ} 18^{\prime}$ north. It was partially examined by Mr. Puget, under Vancouver's direction, in 1792.

    In 1512 , by permission of the Spanish governor of California, it was occupied by the Russian American Company, who afterwards refused to give it up, and retained possession until 1841. They erected two large wooden houses under the bluff, at the entrance to the lagoon; but these buildings were in ruins at the time of our visit in 1853. A recent Russian work (1848) says: "The bay of Bodega ('Tuliatolivo) was fully described in 1819, by Captain Hagemeister. It is similar to the port of Trinidad, in being convenient only during the summer, when the northwest winds blow along the const ; at any other season it is dangerous. Both its indentations within the NW. and SE. headlands are shallow and contracted, and therefore it is necessary to anchor in the open roadstead."

    In 1839, under Belcher's orders, Kellett commenced the survey of Bodega, in the schooner Starling, and was soon after joined by the Sulphur.

    The line of equal magnetic variation of $16^{\circ}$ east crosses the const line of Bodega bay in latitude $38^{\circ} 15^{\prime}$, and in latitude $38^{\circ} 06^{\prime}$ crosses the 124th degree of longitude. This is for January, 1859. The line moves southward about a mile and a half amnually.

    Fort Ross.-The rocky, contracted, and unsafe anchorage off this place is NW. $\frac{3}{4}$ N. from Los Reyea, distance 32 miles, and 15 miles from Bodega Head. The large white buildings of the Russians on the rising ground, and about 100 fect above the sea, are the only marks for making it, and the shore is so steep and guarded by rocks and reefs as to render approach dangerous.

    No trade is now carried on here.
    The approximate geograpical position is:
    

    On some charts it is erroneously placed in Bodega bay, with a large river running from the northward into the bay. Belcher states it to be 30 miles north of Bodega.

    The shore letween Bodega Head and Fort Ross curves slightly to the eastward of the line joining the two places. Sand dunes commence $1 \frac{1}{2}$ mile from the southern point of the head, and extend $2 \frac{1}{2}$ miles to the mouth of a small stream called Salmon creek; these dunes are bordered by a broad sand beach. Nine and a half miles from the head the Slacianska of the Russians empties into the sca, breaking through the coast hills that here reach an elevation of 2,200 fcet. During the summer months a dry bar furms completely across the mouth of the river, so that the travel along the coast passes over it. It requires heavy rains to break through it, and forms again after a few weeks of dry weather. During the summer the bed is dry above Healdsburg, 30 miles from the mouth, and can be forded in several places in that distance. Before breaking through the coast hills it comes from the northward through a broad, fertile valley. The
    arroyos and streams opening into the Russian river near the coast are filled with a very dense growth of heary redwood; and in 1860 a tram road was being graded along the coast to the lagoon inside of Bodega Head to carry the lumber from the mill on the river.

    From Loss mountain, 2,198 feet in height, we have frequently watched the discolored water of the river working along close inshore to the northward, and never to the south. The fishermen experience the same eddy current.

    This stream is usually known as "Russian river." De Mofras calls it the San Sebastian.
    Northward of this river again commence the high coast hills, covered with timber, which gradually approaches the coast, and reaches it about half way to Fort Ross. The Russian vessels used this as a distinctive mark for making that anchorage. Where the timber commences to skirt the coast a bold spur of the mountains comes directly upon the sea. At Fort Ross there is a small extent of open, cultivated ground, moderately low, but backed by the high wooded country. The coast and coast hills to the northward are mostly covered with dense forests of immense redwood, pine, and a thick undergrowth. At one of the Coast Survey mountain stations over 40 trees were cut down that measured from $5 \pm$ feet in diameter (spruce) to $8 \&$ feet (redwood).

    Two miles above Fort Ross is a small contracted anchomge, called Timber cove, where a great deal of lumber is sawed, and carried by coasters to San Franciseo.

    Eight miles above Ross is another contracted anchorage, under Salt Point, where coasters load lumber.
    From Fort Ross to Punta de Arena the coast is almost straight, running NW. by W. $\frac{1}{4}$ W. for 37 miles. It is compact and abrupt the whole distance, covered with trees to the water's edge, and backed by an unbroken ridge of hills about 2,000 feet high, and wooded to their summits.

    Haven's anchorage-About 24 miles northwestward along the coast from Fort Ross is a contrasted anchorage under high precipitous rocky islets, with a short stretch of beach on the main, affording a boat landing. There is a protection, when anchored close in, against heavy northwest weather; but it wonld he very difficult to recognize the locality unless the position of a vessel approaching it were accurately determined.

    On the top of the bluff, at the north side of a small gulley, a secondary astronomical station of the Coast Survey was estallished in 1853. Its geographical position is:
    

    Northward of this anchorage high bold rocks line the coast for four or five miles. They are generally known as "Fishing Roeks."

    A few miles south of this anchorage is the mouth of the Walalla river, open in the rainy season, but having a dry bar in summer. It rises south of Fort Ross, behind the first range of coast hills. One of the Coast Survey stations on the north side of the river, and three or four miles from the coast, has an elevation of 2,192 feet, and this may be taken as the general height of this coast range.

    ## POINT ARENA.

    This is the first prominent headland north of Los Reyes, from which it bears NW. $\frac{7}{4}$ W., distant 67 miles. Approached either from the northward or southward it presents a long level platean, stretching out about two miles west of the highlands, and terminating in a perpendicular bluff that averages about 200 fect in height, except the extreme northwest part, which is comparatively low, partially covered with sand, and destitute of trees for some distance inland. When seen from the southward, with the sun shining upon the face of the bluff, it shows remarkably white for the length of two miles. In fact no point upon the coast presents such a bright appearance, or such uniform vertical bluffs, composed of hard rocks, twisted and distorted into many plications. Bold water is found close off the point, ontside the kelp, which, stretehing strongly to the southward, shows the set and comparative strength of the current. In October, 1857, we judged it to be rumning at the rate of not lese than two miles an hour. In July, 1853, the computed distances between the astronomical stations, compared with the indications of Massey's patent $\log$, showed a current of from one to two miles, running along the coast to the southward.

    A recommendation has been made for a light-house upon this point, because it is much needed by the mail and coasting stoamers and sailing vessels.

    Theappearance of this and other parts of the coast induced Sir Francis Drake to call the land New Albion, whilst the same appearance and sandy line to the northward of it doubtless led the Spaniards to designate it La Punta de Arena. It suggests an inquiry concerning the numerous Cape Blancos that are found in their voyages and maps.

    A view of Punta de Arena is given on the Coast Survey sheet of 1853 .
    Ten miles above Point Arena is a small stream called the Nevarro, upon which is a lumber mill. Articles floating from this river are found on the coast to the northward of it.

    Albion river.-From Point Arena the first point to the northwestward is 24 miles distant, and bearing NW. by N. $\frac{2}{3}$ N. After passing Arena the coast trends to the eastward of north, and for six miles presents a low shore-line with sand beach, changing suddenly to a straight, high bluff shore with a few trees, and backed within half a mile by hills of 2,000 feet, covered to their summite with wood. Sixteen and a half miles from Arena is the mouth of the Albion river, a very small stream, with the barest apology for a harbor at its mouth. A saw-mill upon this stream induces coasters to obtain freights here, but a great many of those trading have been lost. In 1853 the Coast Surveying steamer Active passed in, but broke her anchor on the rocky bottom.

    Mendocino bay--Twenty and a half miles from Arena, and four above Albion river, is a contracted indentation called Mendocino bay, available for a few vessels in summer, but dangerous in winter. The northern and southern points are about three-quarters of a mile apart, and the eastern shore retreats nearly lalf a mile. At the southern head are several small rocks, and one large islet surrounded by rocks, off which are heavy breakers. Midway between the heads is a small reef upon which the sea breaks heavily, with very little swell. Deep water is found close around this reef. Off the northern head is very bold water close to it. Into the northeast part of the bay enters the river Noyon, or Rio Grande, between two and three hundred yards wide, with a good channel on the southern side, a broad sand flat on the northern, and a bar at the month with but a few feet of water, and upon which it always breaks. The eastern shore is bold and rocky. In the southeastern part is a sand beach, with a reef extending from its centre.

    The bay forms so slight an indentation in the coast-line that it is difficult to find without acquaintance with its minutest peculiarities, as there are no prominent marks by which to determine it. The north head is a table bluff about 60 feet high, and destitute of trees to the northward and some distance inshore. The south bluff is likewise destitute of trees, but more irregular in outline than the other. Vessele bound for it in summer work a little to windward; then run boldly in towards the north point, upon which the houses become recognized, keep as close as possible along the shore, gradually decreasing the distance to 100 yards just off the south end of the point in 6 fathoms, run on about 150 yards past the point, head up handsomely, and anchor in 5 or 6 fathoms hard bottom. It is a bad berth in summer, and in winter a vessel must anchor far enough out to be able to slip her cable and go to sea upon the first appearance of a southeaster. Several vessels have been driven ashore here.

    An extensive saw-mill is located on the north side of the river, some distance up; formerly (1853) it was on the north head, and a stationary engine was placed near the mouth of the river to draw loaded cars up the inclined plane, whence they were drawn to the mill. The lamber was slid down chutes into large scows, and carried to the anchorage.

    The place is now sometimes called Meiggsville; formerly it was Mendocino City.
    The secondary astronomical station of the Coast Survey is on the north head, and its geographical position-

    | Latitude | 391806.1 north. |
    | :---: | :---: |
    | Longitude. | 1234725.6 west. |
    | Or, in time | $$ |

    The computed magnetic variation, $16^{\circ} 35^{\prime}$ E., July, 1857 ; increasing about $1^{\prime}$ yearly.
    A view of the vicinity of Mendocino bay is given in the Coast Survey reconnaissance sheet of 1853.
    From the point just north of Mendocino bay, (the first one made from Arena,) the shore runs nearly straight for 28 miles N. by W. $\frac{1}{2}$ W., being low and bounded by rocks for 12 miles, when the back hills reach the water and present au almost vertical front 2,000 feet in height.

    From the deepest part of the bight the general trend of the coast to Cape Mendocino is NW .3 W ., and distance 45 miles, and for the whole of this distance it is particnlarly bold and forbidding, the range of hills running parallel to the shore and rising directly from it. It has been found impossible to travel along this stretch of seaboard; and the trail turns well into the interior valleys.

    For January, 1859, the line of equal magnctic variation of $17^{\circ}$ east crosses the coast-line in latitude $39^{\circ} 58^{\prime}$, and in latitude $39^{\circ} 48^{\prime}$ crosses the $125^{\circ}$ of longitude. This line moves southward about a mile and a half annually.

    ## SHELTER COYE.

    From the compact shore above described a plateau, destitute of wood, and being from 60 to 300 feet in height, makes equare out just above latitude $40^{\circ} \mathrm{N}$. for a distance of half a milc, affording an anchorage from nortbwest winds, and may, perhaps, be regarded as a harbor of refuge for small coasters which have experienced heavy weather off Cape Mendocino, and are short of wood and water, both of which may be obtained here from one or two gulches opening upon the sea.

    From Point Arena it bears NW. by N. $\frac{1}{3}$ N., distant 65 miles. The whole sea-face of the bluff is bounded by thonsands of rocks above and below water, and vessels coming from the north for shelter must give it a wide berth, rounding it within one-third of a mile, and anchoring in 5 fathoms, hard bottom, about one-third of a mile from shore. In this position fresh water comes down a ravine bearing about north, and an Indian village existed in 1853 at the bottom of the wooded ravine, a little further to the eastward. 'There is always a swell here, and boat landing may not be very easy.

    The secondary astronomical station of the Coast Survey was on the southeast part of the bluff, about 60 feet above the sea. Its geographical position is:

    | Latitude |  |
    | :---: | :---: |
    | Longitude | 1240302.9 west. |
    | Or, in time | h. m. s. 81612.2. |

    The computed magnetic variation, $17^{\circ} 02^{\prime}$ east, in July, 1857 ; increasing about $1^{\prime}$ yearly.
    Upon old Spanish charts a point in this vicinity is designated Point Delgado, doubtless referring to it.
    La Perouse. 1787, calls it Punta del Gada.
    A hydrographic sketch of Sheiter cove accompanied the Coast Survey Report for 1854.

    ## PUNTA GORDA

    Is 17 miles NW. by W. $\frac{1}{2}$ W. from Shelter cove, and, as its name implies, is a large, bold, rounding point. Half a mile off it lies a large rocky islet, with rocks close inshore, north of the point. From Puuta de Arena it bears NW. $\frac{3}{4}$ N., distant 81 miles, and the line passing tangent to Punta Gorda runs one mile outside of Cape Mendocino.

    La Perouse calls Cape Fortunas Punta Gorda.

    ## CAPE MENDOCINO

    Is 93 miles NW. $\frac{3}{4}$ N. from Punta de Arena. Here the range of coast hills from the southward appears to meet a range coming from the eastward, forming a mountainons headland of about 3,000 feet high, which is the western limit of the uorthwest trend of this section of the coast.

    The approximate geographical position of the cape is:

    ```
    Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 20. 20 north.
    Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12422 west.
    ```

    A primary sea-coast light is especially needed at this cape, because it is the point where the coast takes its great change of direction from northwest to nearly north.

    About three miles broad off the cape lies a reef, just under water, known as Blunt's rocks, or reef, upon which the sea generally breaks. This reef was noticed by Vancouver as being about one league off shore.-(Vol. 1, page 198.) Half way between it and the cape, and a little to the southward, is a sunken rock which has been discovered within the last two or three years, but not yet accurately located. It is called Fauntleroy's rock. Steamers have passed dangerously near it, and in 1857 it was distinctly seen almost under the wheel of the steamship Commodore. Vessels can, perhaps, pass over it in smooth weather, but with a heavy sea the water must break.

    Such was our description of this rock in 1858.
    In January, 1860, the steamship Northerner struck upon it. The weather was slightly hazy; long, large ground-swell from the northwest, no wind, and low tide. She was bound up the coast, and going over 10 knots per hour. As her bow sunk in the trough of the sea a very slight jar was felt forward, exciting no alarm among the uninitiated. The pumps were immediately sounded, and the ship found to be making water very fast. She headed for Humboldt, but was beached north of Cape Fortunas, and went to pieces in a heavy southwest blow that sprang up.

    To the southward, and inmediately off the pitch of the cape, lie numerous rocks and rocky islets, the latter being large and high, with a peculiar pyramidal or sugar-loaf appearance. Nonc of them seem to be more than half a mile from the shore, which is almost perpendicular and destitute of a beach.

    The face of the eape is very steep, rocky, and worn. Above this the general appearance is rolling, and the surface covered with timber. The pyramidal islets off it are very readily distinguished in approaching from the north or south.

    A view of the cape is given on the Coast Survey recomnaissance sheet of 1853.
    From Cape Mendocino the following are the bearings and distances to headlands to the northward:
    Trinidad Head, north, 39 miles.
    Redding's rock, N. $\frac{3}{4}$ W., 56 miles.
    Crescent City light-house, N. by W., $79 \frac{1}{2}$ miles.
    Cape Orford, or Blaneo, N. by W. $\frac{7}{x}$ W., 145 miles.
    The extent of shore-line from Point Boneta to Cape Mendocino is about 224 miles.
    It is generally stated that Juan Rodriguez Cabrillo named this cape in honor of Don Antonio de Mendoza, the vicoroy of Mexico; but the highest latitude he reached was Punta de los Reyes, to which he in reality applied that mame. It is quite probable that under the lee of the rocks off this cape Ferrelo, the pilot and successor of Cabrillo, anchored on the last of February, 1543, and named it Cabo de Fortunas, (Cape of P'crils,) although he places his position in latitude 430. The next day he may have been off Trinidad Head experiencing heary northerly weather, and his observations might have placed him in latitude $44^{\circ}$, but with his vessels, adverse currents, and a dead beat to windward, he could not have made a degree of latitude in a day. Here he turned back, passed the Golden Gate on March 3, and reached the island of Santa Craz on the 5th. It is utterly impossible that with his small crazy vessele he could make 800 miles (the distance from latitude $44^{\circ}$ to Santa Cruz) in four days.

    Seven miles south of Mendocino a small stream called the Mattole etapties. Upon the sides of the hills in lower Mattole, and not above a mile from the Pacific, coal oil springs were discovered in 1861. Along the course of this stream are numerous bottom lands under cultivation.

    CAPE FORTUNAS, OR FALSE MENDOCINO
    Lies nortliward of Cape Mendocina, distant five or six miles, and is another bold spar of mountainons headland, similar and almost as high as that cape. Between the two the shore recedes slightly, is depressed,
    and forms a beach receiving a small strean called Bear or Mr. Monald's creck, coning drwn thenugh a marow valley or oulch. Off this cape lie several rocky islcts prosuting the same pecularitiex as those off Memocino. There is no beach at the base of the almost perpendicnlar seaf face.
     It is reported that the somding have been oltaned well to the westwat of the eape; should such prore correct, the fact will he of importance to resels, eepecialy steamera, Inmend north or south, when near the coast and enveloped in fog, as it would enable then to judge of their position and change their course.

    After passing it the shore changes to a straight, low, wandy heath, with malleys ruming some distane inland.

    We have ventured to call this hendland Cape Fortums, to avoid the repetition of Mendocino, and to commemorate Ferrelo's discoreriss.

    La Perouse calls this eape l'mata Gorda. He reports seming a large voleano, in latitude $40048^{\prime}$, burning very brighty. By reference to this chart it would appar to have been mear this localify and chose to the shore. It was, doubtless, the burning of wood upou the summit or face of the mountains; possibly on the ligh peak 10 miles intam, and now ealled Mount Jieres.

    Eich ricer is a small strean with : bar at its mounth, and distant 14 mile from Cape Mandocino. It is very contracted and crooked, receiving the watcre of a grat many wough mear its month, and draning a most fertile valley, which is rapidly filling up with settere.

    An extensive business in salmon fisteries is carried on near the mouth.
    The first vessel that entered it was a schomer, in the spring of 1850 , whels searehing for Hombohet bay. She thumped over the bar, which is sad to have nine fect of water uron it at high tide. The Indian mane for the river is Weet. It rises by two heads in about latitude $39^{\circ} 30^{\prime}$, about 30 miles from the coast, and rums nearly parallel with it. Gne head of a small hanch called the Sonth fork is only fire miles from the coast, a short distance south of Shelter cove.

    ## * HUMDOLDT RAM.

    The entrance to this bay lies 21 miles from Sugar Loaf islet, of Cape Mendocino; and the bar, N. by L., $22 \frac{1}{2}$ miles from Blunt's rocks. The lar is $1 \frac{1}{3}$ mile from the entrance hetwech the sand points, or two miles from the southwest and highest point of hed Bhaff, which is the second blaff above Eel river. Like all the bar rivers on this const, it undergoes irregular changes, dependisg mach upou the prevalence, divection, and strengtle of the wind. Early in 1851 it hore NW., distant two miles from hed Bluft, and about hatf a mile from the beach of the north spit. Three and a half fathoms were found upon it, with a width of 250 yards between the thre fathom curves, retaining nealy the same width, and runing on a southeas course towards the bluff, but appraching closer to the north than to the sonth spit. When hetween the two, the depth of water was increased to 11 fathoms, suddenty shoaling to four fathoms inside. Vessids liept the north spit within 150 to 250 yords on the port hand for two or three miles after entering. In the fall of 1852 the bar was reported to have movel to the northward about its matire width, and the ranges for going in, as laid down by the survey of the previons gear, were entirely useless. In the winter of 1853-4 the bar changed much, and often suddenly. In the epring of 1554 it was more than its previous width to the sonthward of its position in 1851 , and the depth of water lad decreased, until iu The of that year, when we crossed, it was over half a mile in extent, with only 16 feet of water at high tide. A bare spot then showed at the lowest tides, W.NW. of the end of the south apit. We saw in that year a strange brig thump over the north samds, while on the course prescribed by the sailing directions of 1851 . In 1857 less than 13 feet at high tide could be found upon it, and its extent was very much increased. Eventually a deep and narrow chanmel will be cut through. About 1550 a steam-tug was phaced upon the bay, and has"rendered the most efficient service in determining the elanges of the bar. When vessels are seen approaching the bar a flag is hoisted on Red Bluff, and the tug groes out to take them in. If it is breaking so heavily on the bar that she cannot get through it, and it is yet practicable for the vessel to run in, she takes up a position and hoists her Hag as a signal for the vescel to steer for her. She is invaluable in towing out the deeply laden lumber vessels, as the summer winds blow directly in the chamel. In June, 1851, upon our first entering this bay, we found a brig, decply laden with frar, waiting for an opportunity to get out. She had made several attempts to beat through the then narrow chamed, hut always failed, and had in this maner occupicd 31 days. We have laid 14 days of the entrance, and passed in when the water was breaking on the bar. A preliminary chart of the entrance to llumboldt bay was issued from
    the Goast Survey Office in $15 \overline{0} 1$. It was subsequently resurveyed, and the chart of 1858 shows that the bar was $1 \frac{?}{n}$ mile from the highest part of Red Bluff, which bore E. by S. $\frac{1}{2} \mathrm{~S}$. It then had a depth of 33 fathoms, and a width of goo yards between the three-fathom lines. North and south breakers marked as usual the bondaries of the channel, which ran straight and close to the south spit.

    In April, 1859 , we rectived the finlowing information in regard to it, fromone who was with us there in 1851 and 1854: "The bar is now a mile south of where it was in 1854, three-quarters of a mile north of where it was last winter, and has five fathoms upon it. All the north point of the entrance is washed away, including the small lagoon on the imer side."

    The best adviee we ean offer in regard to entering the hay is to wait for the tug.
    In 1861 the steamship Columbia was detained in the bay six days by unusually heavy veather; at the same time a lumber-hath baque was unable to cross the bar for 25 days. The first reported case of any vessel being struck by lightuing on this coast happened at Humboldt, February $25,1861$.

    From experiments made in 1854 , we fond the ebb curreut to run 3 miles per hour, with a maximun velocity between 4 and 5 miles.

    ## HUMBOLDT BAY LGGITT-HOUSE.

    This building is erected on the north spit, three-quarters of a mile north of the entrance, and about midway between the bay and sea shores. It consists of a keeper's dwelling, of one and a half story, with a tower rising 21 feet above the roof from the centre; both being plastered and whitewashed, and surmounted by an iron lantern painted red. The light is a fixed white light of the fourth order of the system of Fresnel, and illuminates the entire horizon. It is clevated 53 feet above hirg water spring tides, and should be seen in clear weather from a height of-

    10 feet at a distance of 12 miles.
    20 feet at a distance of 132 miles.
    30 feet at a distance of $14 \frac{1}{2}$ miles.
    Its geographical position, as determined by the Coast Survey, is:

    | Latitude | 4046803.6 north. |
    | :---: | :---: |
    | Longitude. | 1241221 west. |
    | Or, in time | $\begin{array}{ccc} h . & m . & s . \\ 8 & 16 & 49.4 . \end{array}$ |

    Magnetic variation, 170 . $06^{\prime}$ east, in July, 1853 , increasing about $1^{\prime}$ yearly.
    The light, which is a secondary sea-coast, was first exhibited December 20, 1856, and shows from smmet to sunrise.

    A light on lied Bluff, which is nearly 100 feet high, would always serve as a leading range, as the flagstaft and ensirg placed there are now thus used by the pilots. It would be distinguishable readily at sea, when the present one might be obseured by the mist hanging over the surf on the beach. During the day the white buildings would be a capital mark against the green hills and trees in the background. This view, now and formerly expressed, has been repeatedly and earnestly urged upon our atlention by many captains, merchants, and the pilots of Humboldt bay.

    A vicw of Red Bluft and the back lills is given on the Coast Survey sheet of 1853.
    Tides.-The corrected establishment, or mean interval between the time of the moon's transit aud the time of high water, is XII $/$. IIm., and the difference between the greatest and least intervals is 1 h .11 m . The mean rise and fall of tides is 4.4 feet; of spring tides, 5.5 feet; and of neap tides, 3.5 feet. The mean duration of the flood is 67.19 m .; and of the cbb, $6 h .00 \mathrm{~m}$.

    The greatest observed difference between the two low waters of one day was 4.1 feet ; and the greatest difference between the higher high and lower low waters of one day was 9.0 fect.

    Io find the times of high and low waters, first compute the times for Astoria, and from the numbers so obtained subtract 40 minutes for Humboldt bay.

    The bay is situated immediately behind the low sand spits and dunes, and extends 9 miles north and 4 miles south of the entrance; being contracted to less than half a mile in width between the south spit and Red Bluffy it then expands to nearly three miles, and runs a mile and a half to the eastward of 'Table Bluff. The single channel running into this part of the bay divides into two crooked ones, which contain from one
    to three fathoms of water; all the rest shows a bare mud flat at low tides. Abreast of the entrance it is nearly a mile in width, with extensive sands bare at low tides, lying midway between the opposite shores, and running nearly parallel with them. 'To the northward its arerage width is half a mile for a distance of $3 \frac{1}{2}$ miles. It then expands into a large shallow shect of water, having two or three crooked chambe through it, hut the greater part being hare at low tides, showing extensive mud fats, bordered by a grassy flat nearly a mile in width. In the chanmel way close to the north spit, not lees than there fathoms may be carned, incerang for three, miles to $6 \frac{1}{2}$ fathoms. One mile north of the cntrance, and on the caston side, conters a small stream called Elk river. Two miles north of the cutrance, and on the east side, is situated the town of Bucksport, off which a depth of 3.2 fathoms is found within 150 yards of the shore. Vessels are got alongside the sawmill wharf here at high tide to load, at low tides they rest upon the muddy bottom. The military station of Fort Humboldt is on a reservation on the blaff about 100 feet high, and immediately behind the town. On the same side, and 4 miles north of the entrance, is the town of Eurcka, off which is a portion of the chanel, having nearly 3 fathoms in it, but no chamel reaching it having more than $1 \frac{1}{2}$ fathom. The town was lad out before this later fact was discovered. Vessels lic at the wharves, resting on the mud at low tide. Abreast of Eureka lie several low marshy islands cut up by sloughs and pouds. The largest, called Iudian islamel, is aloout a mile long (NE.) by half a mile in wilth. It is marked by two hillocks, surmounted by clumps of trees, near which were (1854) several wretched Indian huts. The smaller ishands lie between this and the castern shore and parallel with it. Arcuta, formerly Lniontown is situated on the northeast shore of the bay, and can ouly be reached by boats at high tide. It is the stioting point for the Triuity and Klamath mines. From it an extensive wharf stretches far out over the mad flat, which veseele can reach at high tides.

    The southeru spit from the entrance to 'Table l3luf' does not average one-quarter of a mile in width; is formed of low sand dunes and grassy hillocks, and bordered on the bay side by marsh. At the soumern extronity riees Table Blaff, which the name well describes, to a height of about 200 fect, ite wextern point hearly reaching the sea beach, and forming a good landmark for making the lay. Five miles cast of it the hills commence rising. Abreast of the north end of the south spit rises Red Bluff, presenting to the entrance a perpendicular face, composed of same and gravel colored by the decomposition of iron ore near its surface, which is 96 fect above high water, and destitute of tree or brush. The bay front of the bluff is about onethird of a mile long, gradually deelining to the low, flat land to the north, and also falling away to the sontli and east. On this bluff the pilots lave a flag-staff to range with known points of trees locyond, by which they cross the bar and keep the run of its changes. At the base of the highest part of this bluff we discorcred, in 1854, a tooth and part of the tusk of the clephas primigenius. The low land on the eastern shore above Red Blaff averages half a mile in width, and runs as far as Eureka, gradually changing to marsh, and bounded by plateaus and hills covered with wood. The north spit averages half a mile in wilth, and its southern extremity is composed of saud dunes and grassy hillocks disposed in a mathed mamer parallel with the direction of the northwest winds. Two miles from the entrance trese cover the hilhocks and rum northward one mile, when a space of a mile occurs without them. After that they continte along the shore.

    We have already mentioned the situations of three of the towns on Hunkoldt bay. Humboldt, the fourth town, is located on the south side of lied Bluff. It had eight or ten houses in 1854, and was gringr backward; in 1860 it had two houses. Bucksport has a goodly uumber of houser and one saw-mill, formed by hauling the steamer Commodore Preble on the beach, and using her engiues for mave power. Eureka has eight saw-mills and a grist-mill, and presents a thriving appearance; one of the saw-mills is formed by the steamboat Santa Clara. Arcata has one saw-mill. In 1804 we oltained a statement of the commerce of the bay for a period of eleven montle, ending May 31 of that year, from which it appeared that 143 vessels, ranging from 71 to 540 tons, with an aggregate of 22,060 tons, had brought to the bay 3,089 toms of merchandise, and $\overline{6} 62$ passengers, and taken away $18,932,000$ fect of lumber. Since that time other mifls have been added, with increased power, and at a low estimate we may safely say that all can turn out an average of 120,000 feet per day. Many of the vessels trading to this bay were ill dapted to contend against the summer winds. The average time of the above vessels from San Franciser war a trifle under 12 days. Some beat up in six days; others required over 20; all, however, are in very light hallast trim. With vessels adapted to the trade, the average time up should not exceed right days, and the pasage to lecward would average about four. The average tonnage had regulary increased, and there had been a decrease in the average length of the passage to the wind ward.

    It has been erroueously asberted that this bay was diseovered from sea in April, 1850, and by land in

    1549 ; but the following account from a recent Russian work, (1848, with an accompanying ehart, settles that question :
    "About $s t$ miles from the port of Trinidad is situated the entrance to the Bay of Indians, called entrance of Rezanof. By the colonial documents of the lisexian-Ameriem Company, it appears that it was discovered by citizens of the Thited States. In 1806 there was in it, ( $o n$ an American vessel, under command of Yintep, [ Yon tep, ] a beaver party of Alcutians, under the direction of Slabothikoff, which was met by the Indians inimically. This bay is not fully described, but it is known that it is very large; somewhat resembles the bay of San Francisco, only the entrance to it for vessels of large class is not convenient, and with strong southwest winds it is ereu impossible with any vessel. The deptl at the entrance is two sajhen, ( 14 feet, and then it breaks on the bar."

    The present name was given to the bay in 1850 , by those rediscovering it from sea.
    The Indian name of the bay is Qual-a-waloo.
    Mad river is said to empty into the sea about a mile north of Humboldt bay. It averages about 100 yards in width, with a bar at its entrane that prevents egress ; but the vast amount of timber in the valiey must eventualty find a passige through a canal to the noriliwest point of Humbold bay. A deep shogh from the latter is said to apmoch quite close to Mad river, thas favoring the execution of such a project.

    This river is the lio de los Tortolar of Heceta and Bodega, $17 \% 5$.

    ## 'TRINTDAD HEAD AND BAY.

    Trinidad Head lies N. $\frac{1}{} \mathrm{~W} ., 17 \frac{1}{2}$ miles from the har of Mumboldt bay, and north 39 miles from Cape Mendocino. The low sand beach off Hamboldt continues past Mad river to within a couple of miles of Trinidad bay, when it changes to a bluff, guarded by inmumerable rocks. For the entire distance of the low beach a deptla from 10 to 15 fathome may be found one mile from the shore.

    The bay or roadstead of Trinidad is very eontracted; but having deep water, and all dangers risible, forms a moderately grod summer anchorare. The "head," forming the western shore of the roadstead, and a prominent mark when sech from close in, is about 375 feet high, covered with a low, thick undergrowth of scrub burhes, has very stecp sides, and cight fathoms close to its southern base. Off the western face, for nearly half a mile out, lie several high, rocky islets, with one one-lalf a mile south of it, but having nine fathoms close to it. From the south face eastward to the thre-fathom curve the distance is one mile, and the depth of the bight to the northward of this line is about half a mile, with half a dozen rocks lying outside the three-fathom line, but well above water. In the northern part of the bay there is a sand beach extending about half a mile; thence eastward the shore is very rocky, the bluff being about 300 fect high, and covered with a heary growth of timber. The town, formenly a place of some promise, fronts on the northwest part of the roadstead, and the boat landing is on the north side of a round knoll making out about 100 yards from the low neck ruming to the "hoal." A wharf is now built here, at which vessels lie to load humber. A very considerable quantity of seawed lies off the shore.

    In working into the anchorage beat in boldy past the outermost rock until the rock just of the eastern side of the head is in range with the knoll (having a few trees upon it) between the town and the head, with the south fice of the lioad bearing W. by N., and anchor in seven fathoms, hard bottom, within one-third of a mile of the rock and head, having the neek visible to the westward of the knoll, and a sugar-loaf rock beyond the neek ehowing over it. A swell will generally be found setting in. In winter it is a dangerons anchorage, and if a vessel is mhtuckily caught, her chances of riding out a southeaster are very few. Several Spanish vessels were wrecked bere when it was visited by them, and a number of vessels have been lost within the last eight years. In February, 18sh, the barque Arcadia was totally lost in a southeast gale, her ground tackle being insulficient to hold her.

    A hydrographie sketch of the lay and view of Trinidad Head accompanied the Coast Survey Report for 1851. A view accompanies the recomaissance sheet of 1853.

    The secondary astronomical station of the Const Survey was on the neck near the town. Its geographical position is:

    | Lati | $\overbrace{}^{11} 00320.0$ north. |
    | :---: | :---: |
    | Longitude. | 1240808 west. |
    | Or , in time | $\begin{array}{lcc} \text { h. } \\ 8 & 16 . & 3 . \\ \hline 2.5 .5 . \end{array}$ |

    The town during the winter is nearly deserted, but a brisk trade is carricd on in summer. The connexion with San Francisco by stemers is yet uncertain. The land in this ricinity is very rich, and well adapted to agriculture. The redwood trees grow around it, and attain an enormous size. The stump of one which we measured was alout 20 fert in dianeter, and a dosen trees otmding in the ricinity abenged over 10 feet. One is affirmed to be standing on the bank of a small stream at the southeast part of the bas, that mearures over 90 feet in circumference. The bark of these trees has a thickucss of from cight to fourtecn incher; they grow perfeetly straight, retaining their thickness to a great height, begin to branch at 50 or 100 fect, and frequently attain 250 fect in height. The forests of this timber, when free from undergrowth, present an imposing sight.
    "Port Trinidad" was discovered June 10, 1775, by Heceta and Bodcga, and phaced in latitude $41^{\circ} 07^{\prime}$ N. Near it they place a stream which they call the Rio de los Torfohas, or Pigem river ; this is now called Mad river.

    It was risited in May, 1793, by Vancourer, who says, (rol. II, page 245:) "In an cxeursion made by Mr. Meazies to the hill composing the projecting headmad that forms the northwest wide of the hay, he found, agreeably with Senor Maureli's deseription, the [wooden] cross which the Spmiards had erected on their taking possession of the port; and though it was in a certain state of decay, it admitted of his eopying the following inseripion: 'Carolus III, Dei G. Ilyspaniarmm Ter.'."

    Vancouver phaced it in latitude $41^{\circ} 04^{\prime} \mathrm{N}$ - (Voh. I, page 200.)
    In some American maps antecelent to the Coast surver determinations on the l'acific the indentation of the coast between Mendocino and Trinidad was called "Bay of Trinidad."

    The lndian name of the bay is Shoran.
    The shore running NW. by $N$. from Trinidad Head for five miles is remarkably broken and rockr. which induced Vancouver to call its northern extremity Rochy Point. He placed it in $41^{\circ} 08^{\prime}$. Abont one mile off it lie several roeks that are sometimes known as the "Turtles."

    In Jannary, 1603, Vizeano's ressels separated during heary weather, and the smaller sailed, under Antonio Flores, the pilot, to the northward in search of Vizeaino ; and when in latitude $41^{\circ}$, with a gale from the sw., he ran before it until he foumd shelter behind a great rock, where he anchored.

    From Rocky loint the shore takes a gentle sweep eastward, making its greatest indentation at the moth end of the once famous Gold Bluff, in latitude $41^{\circ} 27^{\prime} \mathrm{N}$., and longitude $124^{\circ} 03^{\prime} \mathrm{W}^{\circ}$., and then trending westward to Cresent City. Gold Blafi has an extent of 10 miles, and is very hold and high.

    Between Rocky Point and Gihon's Bluff, which is the first one to the northward, there is a streteh of low cand beach, immediately behind which is an extensive lagoon several miles in length, and from a quarter to one mile in width. It lies parallel with the beach, and at some scasons is not connected with the ocean, but at others an opening exists at the northern extremity.

    The Indian name of this lagoon is A-showhor-ran.
    Redding's roek lies five miles broad off Gold Biuff, in latitude $41^{\circ} 21^{\prime}$, and longitude $124^{\circ} 10^{\prime}$. It is a single large rocky islet about 200 feet high, and reported to have deep watcr all around it, with no outlying dangers; but its vicipity has not been surveyed. Vaneonver places it in latitude 41025 on his chart, and four miles off shore; but in the narrative states the distance at half a leaguc, and that it is half a mile in circtit. His track lies inside of it. We have been informed that a reef, commencing at the shore two miles above the rock, stretches out towards it. The rock received its present name in 1849 or 1850.
    kLamath rivier.
    The mouth of this river is in latitude $41^{\circ} 33^{\prime}$ N., longitude $124^{\circ} 05^{\prime} \mathrm{W}$. It is, perhaps, 200 yards wide, having a long sand spit on the south side running northwest, and parallel to the high hills that form the north shore. South of the entrance for a mile and a half are outlying rocks, and at the north side of the entrance lie several others. It is reported to have 23 fathoms upon the bar. If pon passing it in 1853, within less than a mile, the sea was breaking across it, and no appearance of a safe chamel was presented. Small schooners enter it; but we have heen assured that the mouth was completely closed in the winters of 1851 and 1860 , and that the bar changes with every change of heavy weather.

    McArthur reported in 1850: "The river has 17 feet on the bar at mean low water. It is not difficult of entrance with a good brecze, but very dificult to get out of, the current roming so strong that sailing vessels must come out stern forcmost to be stecred." He did not, however, enter the river, 1u 1860 the tug from Humboldt bay endeavored to enter, but could not find sufficieut water, although it was very smooth; when the swell came in on the second day, she had to throw her remaining freight overboard and put to sea.

    Three or four miles northward of the Klamath is a small sharp indentation at the mouth of a gulch, off which lie one large and several small rocks; but from a distance of a mile and a half we were unable to determine whether any stream opened here. It hat, however, received the name of False Klamath, because it has misled small coasters secking for the Klamath, although there is no sand point on either side, as exists at the latter. The State map of California has a creck called Almen opening here. The coast continues bold for several miles, when the hills begin to recede and the shores present many pleasant slopes, unincumbered with forests and now under coltivation. The shore is low and regularly sweeps to the westward for a couple of miles, forming the roadstead, which will be next described.

    ## CRESCENT CITY BAY.

    This, the most dangerous of the roadsteads usually resorted to on the const, has acquired much importance on account of the town (Creseent City) being the depot for the supplies of miners working the gold diggings on the Klamath, Trinity, and Sahmon rivers. It is filled with sunken rocks and reefs, and has a goodly number slowing above water. No vessel should think of gaining an anchorage here without a pilot, or perfect knowledge of the hidden dangers. No sunken rocks are now known to exist outside of the line of visible ones, except one awash, SW. $\frac{3}{4} \mathrm{~W}$., and a little more than half a mile distant from the light-house. A depth of 10 fathoms exists all around it, and seven or cight fathoms outside of the visible rocks. The usual anchorage is on a line between the light-house and the north side of the large islet three-quarters of a mile east of it, in $3 \frac{1}{4}$ fathoms, hard bottom. To reach this position run for the small, round rack bearing S. $55^{\circ}$ E., seren-eighths of a mile from the light-honse; pass it on the east side, giving it a berth of 100 yards; stecr N. by W. $\frac{1}{4}$ W. for threc-eighths of a mile, passing 100 yards on the east of Fanntleroy rock, which is covered at three-quarters flood. If this rock be covered, its position is generally marked by a breaker. It is necessary to keep it close aboard, because there is a sharp bayonct rock having only two feet of water upon it, and 200 yards to the eastward. Head up for the town and anchor in 31 fathoms. 'To enter or leave it at night, as is done by the mail and coasting steamers, requires a perfect local knowledge of the dangers and peculiarities of the landmarks. Consting steamers, in fine wether, usually anchor close inshore to discharge freight, which is received in lighters.

    A wharf has been built out from Battery Point, and landing is now easily effected in good weather. In southeasters the breakers wash over it.

    This bay was first surveyed in 1853, and again in 1859 , from which our directions are in part drawn up, but principally from our examination in 1857. The following report (1859) will show clearly the dangerous character of the roadstead, and the knowledge required to enter it: "During the progress of the resurvey of Grescent City harbor, we found several new, dangerous rocks; but as they are not in the channels followed by steamers, and do not interfere with the anchorage in use, it does not seem necessary to notice them further in advance of the publication of the chart, as every one trading here knows that vessels drawing over nine feet should be very cautious in venturing out of the beaten track. The rocks at that place are of a peculiar character, standing isolated like bayonets, with their points just below the surface, and ready to picree any unlucky craft that may encounter them. After we finished the survey, and a fair way had been selected for a sailing line, we discovered a very sharp rock almost directly in the passage, with its point only three feet from the surface, and deep water all around it. This is mentioned to show that, although the greatest care was taken in the survey, the character of the points of rocks is such that it cannot be surprising if new ones be found for several seasons to come."

    In summer there is always some swell here, but in winter it rolls in fearfully, and vessels must choose a position to be ready to rin to sea at the approach of a southeaster.

    Communication is maintained with San Francisco and other ports by mail and coasting steamers, which generally carry as many passengers and as much freight for this place as they carry to the Columbia river.

    The town lies NW. from the anchorage, immediately on the low shore; old drift-logs, in some instances, forming the foundation for wooden houses. In August, 1853, there were about 135 houses of all descriptions. In 1860 the population was 553 , and the number of houses 176 .

    The lands adjacent are being cultivated; a grist-mill has been built which turns out 75 barrels of flour per day, and a good trail leads to the "diggings" on the Klamath and Illinols rivers.

    The SW. point of the bay is elevated about 25 feet and continues so to the westward. The light-house is erected on the rocky islet about 300 yards from the point, and connected with it at low tides by a broken mass of rocks, over which a single foot-bridge is constructed.

    Tides.-The (approximate) corrected establishment, or mean interval between the time of the moon's transit and high water, is XIh. XLIVm., and the mean rise and fall of tides, 4.7 fect.

    A hydrographic sketch of Crescent City harbor appeared in the Coast Survey Report for 1854, and a map of the harbor and adjacent coast in 1859. A view of Crescent City and its relation to Point St. George is given on the Coast Survey sheet of 1853 .

    ## CHESCENT CITY LIGHT.HOUSE

    The building consists of a keeper's dwelling of stone, the natural color (grey, and one and a balf stories high, with a low tower of brick, plastered and whitewashed, rising from the centre and surmounted by an iron lantern, painted red. It is situated at the southwest part of the roadstead on the seaward extremity of the inland point, which is here abont $4 \overline{0}$ feet above high water.

    The light is a fixed whete light varied by ffashes, of the fourth order of Fresncl. The interval of flazh is 1 m .30 s . It illuminates $315^{\circ}$ of the horizon, was first exlibited December 10, 1850 , and shows from sunset to sumrise. It is 80 feet above high sea level, and should be seen in a favorable state of the atmosphere-

    From a height of 10 feet at a distance of $\mathbf{1 4}$ miles.
    20 feet at a distance of $15 \frac{1}{2}$ miles.
    30 feet at a distance of $16 \frac{1}{2}$ miles.
    The geographical position of the light, as detemined by the Coast Survey, is:

    | Latitude | 41 ' $443^{\prime \prime} 2$ n north. |
    | :---: | :---: |
    | Longitude. | 1241122 west. |
    | Or, in time | $\begin{array}{ccc} h . & m . & s . \\ 8 & 16 & 45.5 \end{array}$ |

    Magnetic variation, $17^{\circ} 52^{\prime}$ east, July, 1851, with a yearly increase of $1^{\prime}$.
    From Cape Mendocino it bears N. by W. $792 \frac{1}{2}$ miles.
    The secondary astronomical station of the Coast Survey was on the point on the land side of the light. house, near a few Indian luts existing in 1853.

    Its geographical position is:

    | Latitude | ${ }^{\text {C }} 14^{\prime} 44^{\prime \prime} 4.0$ north. |
    | :---: | :---: |
    | Longitude. | 1241114 west. |
    | Or, in time | $\begin{array}{ccc} h . & m & s . \\ 8 & 10 & 449 . \end{array}$ |

    ## Point saint george.

    This point lies two miles W. by N. from Creseent City light. It is from 50 to 100 feet high, with table-land some distance back. It is bounded by hundreds of rocks, some of which rise perpeudicularly 200 feet from the water. Three or four of the largest present a remarkably white appearance, which serves to distinguish this point. The extensive reef in its vicinity nay have led to confusion among the old discoverers, by their confoumding it with Cape Orford.

    The point may possibly be the Caje San Sebastian of Vizcaino, who, after the separation of his vessele, continued his explorations northward, and, on January 20, 1603, when in hatitude $42^{\circ}$ N., reached a high white bluff, which he named in honor of the saint of that day. On the day preecding, Antonio Flores, his pilot, in the smaller vessel, supposed himself in latitude $43^{\circ} \mathrm{N}$., where the land formed a cape or point, which he called Cape Blanco, and from that point the land ran NW. Near the point he diseovered a large and rapid river, which he endeavored to enter, but could not from the force of the current. We are inclined to believe that both names refer to the same cape.

    Vizcaino, in January, 1603, gave the name Cabo Blanco de San Sebastian to a cape which he places near latitude $42^{\circ}$.

    The present name was given to the cape by Vanconver in 1792. He placed it in latitude $41^{\circ} 46 \frac{2^{\prime}}{} \mathrm{N}$.
    DRAGON ROCKS.
    This name is applied to the rocks and reef extending W.NW. from Point St. George for a distance of six miles. The locality has never been surveyed in detail, but a wide passage exists inside of the reef, and
    is invariably used by the mail and coasting steamers, when entering or leaving Crescent City bay. There are 10 or 12 outlying rocks, and many sunken ones, with the passage running between them and those close to shore. This passage is about a mile in width, has 10 fathoms in it, and the general course through is nearly XW. and SE., but not straight. Among the multitude of rocks on the land side of the paspage are three very large and prominent ones about 200 feet high. It has been already stated that several of the largest rocky islets have a well marked white appearanee, occasioned in part ly the deposits of seat birds.

    This name was first given by Vimeoner in 1792 . The general name now used is Crescent City reef.
    For Janary, 1859, the line of equal magnctic cariation of $15^{\circ}$ cast crosses the coast line north of Point St. George, in $41^{\circ} 50^{\prime}$, and in latitude $41^{\circ} 40^{\prime}$ crosses the $125^{\circ}$ of longitude. This line moves south-: ward about a mile and a half annually.

    ## PELICAN MAY.

    From Point St. George the coast runs straight for 12 miles N. $\frac{1}{2}$ W.; thence W.NW. for nine miles, forming a deep indentation, called by La Perouse, 1787, Pelican lay, and by Vancouver St. George's bay. On the Coast Surve recomaissance of it in 1800 it is nand Pelican lay. For eight miles from Iount St. Georce the shore is low for some distance back, and fronted by a sand beach to the mouth of a small stream called Smith's river. The entrance to this river we looked for in vain from the deck of the stemmer, although searecly two miles off shore, but were able to form a good estimate as to where it should open by the peculiarities of the uorthem bank, which was a low perpendicular bloff.

    Ite approximate geographical position is:

    $$
    \begin{aligned}
    & \text { Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 41 \text { if north. } \\
    & \text { Longitude ...................................................................... } 12411 \text { west. }
    \end{aligned}
    $$

    The "Smith's river" of recent majs and descriptions is a myth. Half way between Crescent City and the mouth of Smith's river there is a small sheet of water called Lake Talawa. North of this small stream the cosst acquires an elevation of about one or two houdred leet for a short distance inland, and is bouvded by high mountains.

    ## COAST OF OREGON.

    The etymology of the name Oregon has mot been satisfactorily explained. It is first mentioned by Jonathan Carver in the relation of his trading expedition to the head waters of the Mississippi, hetween June, 1766 , und Oetober, 1768 . Me did not penctate beyond the $95^{\circ}$ of west longitude, and meations the name but three times, in the following manner: The " hiver Oregon, or the liver of the West, that falle into the Pacifie ocean at the Straits of Amian;" the "Oregon, or the River of the West." He states that Robert Whitworth, in 17i4, designed to pursue the same route traversed by himself, "till, haviog discovered the source of the Oregon, or River of the West, on the other side of the summit of the lads that divide the waters which run into the Gulf of Mexien from those that fall into the Pacific ocean, he would have sailed down that river to the place where it is said to empty itself in the Strate of Anuian." Whis is the extent of his information on the subject, and was derived from Indians and traders.

    It will be remembered that Martin d'Agrailar reported to have found, in 1603 , a large river emptying into the lacifie in latitude $45^{\prime}$, and which was called the "River of the West."

    The theory that the Pen d'Oreilles tribe, inhabiting part of the region between the Columbia river and the Rocky mountains, was originally hesignated Orejon by the Spaniards, and hence gave the name to the river, is unsatisfactory.

    About three miles by the shore to the northward from the deepest part of Pelican bay, the boundary line of California and Orgon, of $42^{\circ} \mathrm{N}$. latitule, strikes the coast near a noticeable ligh pyramidal mound, rising abruptly from the platean, which is destitute of timber.

    ## CHET-KO RIVER.

    Five miles from the deepest part of Pelican bay, and in latitude $42^{\circ} 01^{\prime} \mathrm{N}$., Iongitude $124^{\circ} 15^{\prime}$ W., (both approximate,) empties a stream which is from 50 to 60 yards wide at its mouth, with banks about 100 feet high, and bounded half a mile in shore by very high hills. It appears deep and sluggish,
    and in Angust, 1853, was completely closed at the mouth by a heary gravel beach. The anchorape off it is open and exposed from west to south, with several reffs in and around it. So survey or recomaisamee las been made. We found Indian huts in great numbers upon both banke, but most of the Indians were engaged higher up the stream in taking salmon.

    On the Coast Survey charts of 1853 this stream was marked Illimois river, that being the name applied to it by miners prospecting from Crescent (ity, whereas the lllinois is the south branch of the Rogue's river. Similar errors lave frequently been made on the coast. Some give the Iudian name of this stream Chit-kn.

    From Point St. George to an arched rock about 40 feet high, in latitude $42011^{\prime}$, the course is NW. ly N. 27 miles. The coast between the Chetko and the point within a mile of the areh is high, bold compact, and bordered by vast numbers of rocks, with very deep water close in shore. From this the shore rums nearly NW. by N. $\frac{1}{2}$ N. for 40 miles to Cape Orford, making a long gentle curve of four miles to the castward. and being in general high, abrupt, and rocky.

    A view of the arched rock is given on the Coast Survey sheet of 1853.

    ## hogle's RIVER.

    Within the long stretch just referred to is fond the entrance of Rogue's river, in latitude $40^{\circ} 25$ N., and longitude $124^{\circ} 22^{\prime} T$., (both approximate, having a long, low, sandy point on the sonth side, and a high, stecp hill, with two large rocke off its base at the north side. It comes fron the interior between high momains, and it is next to impossible to travel along its course. Just within the entrance and on the north side were large lndian rillages in 1853 . When paseing it in moderate northwest weather the sea was hreaking heavily across the bar, and this is reported to be gencrally the case. It has not been examined or surveyed, and the depth of water on the bar is varionsly reported from 10 to 18 feet; the former, doubtless, nearer the truth. MeArthur reports ten feet on the bar, but that the chamel is too narrow for sailing vessels to urn in. In the spring of 1850 the New lork pilot-boat $W$. G. Hagetaff entered the river, and we believe was attacked by the Indians, deserted, plundered, and burnt. The next ressel that entered was the schooner Sam Roberts, in July of the same year, whieh got out sately. We know of no other vesels ever having made the attempt.

    Near the entrance commences the detached deposits of auriferous sand and gravel, which are fonnel northward along the coast to the Coquille river.

    The name of the river was suggested by the dishonest propensities of the matives in its vicinity. On the maps it is called Toutounis, and the Too-too-tut-na or klamet. These nemes, we judge, have arisen from misappechension, hecause the Tudians hereabouts, when asked a question which they do not umberstand, answered toó-ta, toci-ta; too-ta signifying negation, and rendered more emphatic hy repetition. Or the name may be derived from what is called the Too-too-tan rillage, some distance up the river. That existing (1853) on the north head of the mouth of the river is Tar-shoots. Several campaigus hare been made against the Rogue river Indians, and they have been found a wartike and tronlilesome race; hat the manner in which they were treated by some of the early settlers was well calculated to rotso them to a war of retaliation.

    ## ROGUE'S RIYER REEF.

    The rocky islets composing this ref are not so large as the Dragon rocks, and run more nearly parallel with the coast line. The southem group of rocks lies W. $\frac{1}{2}$ N., about four miles from the north head of the entrance to Rogue's river, and stretches northward three miles, where a gap oceurs between them, and another cluster lying a mile, and a half off shore. Off this iner group lie several dangerous smoken rocks, which must be sharply watched from aloft when the sea is not heary enough to break upon them. As seen from the southward, the inside rock of the outer group shows a perpendicular face eastward, and sloping back to the west. 'Ihe channcl through this reef is perhaps a mile wide, but more dangerous than any other on the coast. No hydrographic survey has been made of it, and it is never used by the coasting steamers. In 1 siss the Coast Surveying steamer passed through it. A view of the reef is given on the Coast Survey sheet of 1853.

    Abreast of the northern part of this reef is a five-mile stretch of low sand beach, backed by high, ragged, wooded hills, when the shore changes to an abrupt and precipitous face to Port Orford. Many rocks closely border the shore, and five miles south of Port Orford a high rocky islet lies nearly a mile off the base of the hill, about 1,000 foct high.

    44 cs

    ## PORT ORFORD.

    This is by fir the best summer roadstead on the coast hetween Los Reyes and the Strait of Juan de Fuca. From the extremity of the SW, point eastward to the main slore the distance is two milcs, and from this line the greatest bend of the shore northward the distance is one mile. The soundings within this space range from 16 fathoms close to Tichenor's rock, forming the SW. point of the bay, to three fathoms within one-quarter of a mile of the beach on the northeast side; with five fathoms at the base of the rocky points on the northwest side towards Tichenor's rock. One mile off the shores of the bay the average depth is about 14 fathoms, regularly decreasing inshore.

    The point forming the western part of the bay presents a very rugged, precipitous outline, and attains an clevation of 350 fect. Its surfice is covered with excellent soil and with a sparse growth of fir. From this point the shore becomes depressed to about 60 fect at the northern or middle part of the shore of the bay, where the town is located. The hills behind are covered with a thick growth of fir and cedar.

    The anchorage is usually made with the eastern end of the town bearing north, being just open to the east of a high rock on the beach, in six fathoms water, hard bottom, having a sharp, high point bearing NW. by W. me-quarter of a mile distant, the beach in front of the town distant a duarter of a mile, and thres rocks just in the threc-fathom line E. by N., distant half a mile. Steamers anchor a little to the eastward of this position, and closer to the town, in four fathoms. Coasters from the south in summer beat up close inshore, stretching inside of the outlying islets to avoid the heary swell outside. Coming from the northward they keep just outside of a high rock one-third of a mile off the western head, and round Tichenor's rock within half a mile. In winter, anchor far enough out to be ready to put to sea when a sontheaster comes up. During a protracted gale in December, 1851, a terrible sea rolled in, that no vessel could have ridden out The old stemer Sea Gull was driven nortbward, and lost two weeks in regaining her position, and the mail steamer Columbia hardly held her own for many hours off the Orford reef.

    The nsnal landing is between the rock called Battle rock, north of the anchorage, and the point of rock close on its west side. A road is cut from here up to the town, which consiste of but a few houses. Sometimes a landing is made on the recky beach a quarter of a mile westward of Battle rock, in the bight, where a sloping grassy lhuff comes to the water; bat this landing is over a rocky bottom. A road is eat up the slope to the site of the mulitary post of Port Orford, which is now abandonel.

    Fron "Battle rock" the shore castward is skirted by sand beach for 13 mile to a rough, rocky point called Coal Point. Abont midway in this distance empties a small creek, whose banks are composed of a deporit of auriferous sand and gravel, the same as fomel in front of the town abreast of Battle rock, and which has yielded as ligh as $\$ 30$ to $\$ 40$ per diem to each miner. Battle rock was so named, because the first adventurers made a stand against the Indians upon this rock in June, 1851. Coal Point was so numed from the reperted existence of coal in this vicinity.

    Several attempts have been made to open a road from this place to the mines, about 60 or 70 miles castward, but thas far without success. Several parties have gone through, but could find no direct available route for pack animats. Upon the opening of such a road it would become a large depot of supply for the interior. In the neighborhood of Port Orford are found immense quantities of the largest and finest white cedar on the coast, and for some years a saw-mill has been in operation, affording a small supply for the San Franciseo market of this lumber, mapproachable in quality by any on the Atlantic coast.
    'Th' high mountain alout 12 miles cast of Port Orford is called P'ilot Knob.
    The primary astronomical station of the Coast Survey, established here in 1851, is on the top of the ridge just west of the town, at a height of 262 feet above the sea, and within a few yards of the western edge of the bluti. Its geographical position is:

    $$
    \begin{aligned}
    & \text { Latitude. ................................................................... } 42 \text { 4́ } 4421.7 \text { north. } \\
    & \text { Lomgitude................................................................. . . } 1242847 \text { west. } \\
    & \text { Or, in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \quad 817 \text { 55.2 }
    \end{aligned}
    $$

    Magnetic variation, $18^{\circ} 29^{\prime}$ east, in November, 1851, with a yearly increase of about $1^{\prime}$.
    From this station Tichenor's rock bears S. by W., three-quarters of a mile distant.
    The secondary astronomical station (1853) is in front of the town, north of the Battle rock, and within 50 yards of the edge of the bluff. Its geographical position is:
    

    ```
    Longitude............................................................. 124 28 13 west.
    Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad\)\begin{tabular}{c}
    \(h\). \\
    \hline
    \end{tabular} 17 m.
    ```

    Tides.-The corrected establishment, or mean interval between the time of the mon's transit and the time of high water, is XIh. XXVIm. The mean rise and fall of tides is 5.1 feet, of pring tides, fis feet, and of neap tides, 3.7 feet. The mean thration of the flood is $6 / .19 \mathrm{~m}$, of the ebb, 67.7 m ., and of the stand, 07.39 m . The average difference between the corrected estublishment of the a. m. and p. m . tides of the same day is 1 h . 22 m . for high water, and 0 h .40 m . for low water. The differences when the moon's dechantion is greatcat are 27.12 m ., and 1 h . 28 m ., respectively. The average differences in height of those two tides is 1.4 foot for the high waters, and 2.6 feet for the low waters. When the moon's declination is greatest those differences are 2.3 feet and 3.9 feet, respectively. 'The average difference of the higher high and lower low waters of the same doy is 7.1 feet, and when the moon's declination is greatest, 8.2 feet. The higher high water in the twenty-four hours oceurs about 10 h .45 m . after the moon's upper transit, (southing.) when the moon's declination is north, and about 1 h .14 m . before, when south. The lower of the low watern occurs about seven hours aftur the higher high water. The greatest observed difference between two low waters of one day was $\overline{6} .5$ feet; and the greatest difference between the higher high and lower low waters of one day was 11.0 feet.

    To find the times of high and low waters, first compute the times for Astoria, and from the mumbers thas obtained subtract 1h. 16m. for Port Orford.

    This bay was called Ewing harbor in 1850 by MeArthur, but is now known by no other name than Port Orford, from its proximity to Cape Orford. A sketch of it was published by the Coast Survey (office in 1854.

    From the western extremity of Port Orford Cape Orford, or Blanco, bears N W. $\frac{1}{2}$ N., distant 6 miles, the shore line between them curving eastward about a mile. Immediately north of Port Orford it is composed of a very broad loose sand beach, backed by a long uniform sand ridge of 100 feet height, covered with grasa, fern, sallal bushes, and a few firs; while behind this the groud falls and forms lagoons and marshes. This ridge extends nearly to the mouth of a stream called E/k ricer, $3 \frac{1}{2}$ miles from Tichenor's rock. This narrow stream, fordable at its mouth at low tides, comes for miles through broad marshes covered with fir and white cedar, and an almost impenetrable midergrowth. The south side at the mouth is low, sandy, and flat; the north side, a slope rising from the marsh inshore and terminating on the beach in a perpendicular bluff, averaging 100 feet high, covered with timber to its very edge for a conple of miles, when the timber retreats some distance inland. The face of this bluff exhibits vast numbers of fossil shelle in the sandstone. At its base a sand beach exists which may be travelled at low water.

    At the mouth of Elk river, a bottle, nearly buried in the sand, was picked up on the 18th of May, 1860 , with a memorandum, stating that it had been thrown from the steamship Brother Jonathan iu latitude $42^{\circ} 00^{\prime}$, longitude $124^{\circ} 50^{\prime}$, on the $23 d$ of Mareh, 1860, the wind at the time strong from the south. It had travelled nearly north about 50 miles.

    ## CAPE ORFORD, OR BLAYCO

    In making this cape from the northward or southward it presents a great similarity to Point Concepcion, appearing first as an island, because the neck connecting it, with the main is comparatively low, flat, and destitute of trees, with which the cape is heavily covered to the edge of the cliff. It is, perhaps, orer 200 feet high, but the trees upon it make it appear at least 100 feet more. The sides are very steep, and worn away by the action of the sea, showing a doll whitish appearence usually, but bright when the sun is shining upon them. At the base are many black rocks and ledges stretching out to form the inner part of Orford reef; In the bend, southeast of the cape, rises a large, high, single rock, about 100 yards from the beach.

    The approximate geographical position of the cape is:
    

    Being thus the most western part of the main land until we reach latitude $47^{\circ} 50^{\prime}$.

    From it Crpe Mendocino bears S. by F. $\quad \mathrm{E}$., distant 145 miles ; Cape Disappointment light, at the north head of the entrance to the Columbia, N. by W. $\frac{1}{3}$ W., distant 207 miles; and 'Tatoosh island light, off Cape Flattery, N. NW., 332 miles. From the line joining Blanco and Cape Disappointment the coast does not, in any place, leave it more that 12 miles.

    A light of the first order is required upon this cape, or upon one of the rocky islets of the outlying reef.
    Upon old Sparish maps a cape near this latitude has been called Blanco, from the assertion that Antonio Flores discovered and so uamed it in 1603. He says that from this cape the const trende northwest, and near it he found a large river, which he tried to enter, but could not on account of the strong current ruming out.

    At that time the magnetic declination must have been about acro, and perheps several degrees west. Assuming it as zero, the coast thence northward for noarly 100 miles trended N. by E. $\frac{1}{2} \mathrm{E}$.

    The name Orford was given by Vancouver in 1792, and placed by him in latitude $42^{\circ} 52^{\prime}$. On the western coast this name is now almost invariably used.

    A view of Cape Orford is given on the Coast Survey shect of 1853 .

    ## ORFORD REEF.

    About 4 miles off the coast, between Port and Cape Orford, lies a gronp of rocky islets and smaken rocks.
    There are seven large high ones within an area of one square mile, with small once that are just awash, and others upon which the sea only breaks in very heavy weather.

    The sontheastern rock is called the "Fin rock," and has a perpendicular face to the sonthwest, with a sloping surface to the northeast. Near it are several low black rocks. The Fin rock lies W. $\frac{3}{4}$ N., distant 48 miles from the western point of Port Orford, and the general direction of the six others is N.NW. from Fin rock. West from l'ort Orford, and distant $4 \frac{1}{2}$ miles, is a small black rock, and near it a smaller one, upon which the sea breaks only occasionally. W. by N. $\frac{1}{2}$ N., distant 43 miles from Port Orford, lies the largest of the seven islets, rising up with high and nearly perpendicular sides. On the same course, and a mile and a quarter further out, is a small rock, and half way between them a rock awash. This is the northern limit of the group.

    Stretching S.SW. for a mile and a third from Cape Orford are numerous rocky islets and sunken rocks, with large ficlds of kelp; but ceasing at that distance, a passage is left one and half mile wide between them and the northern islets of the other group. The course through the middle of the passage, clearing the rock called Klooqueh, of the western point of Port Orford, is NW. by W., with ten fathoms rocky bottom on the shoalest part of that line.

    This passage is in constant use by mail and coasting steamers, but the hydrography of the reef has not yct been executed, and only a preliminary examination of the position of the outer rocks. Although the general trend of the southern group is N.NW., it is very probable that they are a continuation of the reef making out from the cape.

    When coming down this coast, in 1787, La Perousesays his latitude at noon was $42^{\circ} 58^{\prime} 56^{\prime \prime}$, and that two hours afterwards be was abreast of nine small islands or rocks lying about a league off Cape Blanco, which hore NE. by E. He called them the Nocker islands; evidently the group forming the Orford reef. है

    One mile north of Cape (orford empties a small stream having a great number of rocks off its mouth. In 1851 it was notully called Sikhs river, the Chinook "jargon" name for friend. On some maps we find a stream near this locality called Scqualchin river. The village upon the Sikhs is called Te-chéh-quat.

    Ten miles north of Cape Orford La Perouse places a cape called Toledo, but no headland exists between Orford and the south head of the Coquille, although a small stream called Flora's creek empties upon the coast about half way between them.

    From Point Boneta to Cape Orford the extent of shore-line is 388 milss, Boneta to Mendocino being 223 miles.

    General features.-From Cape Mendocino the hills upon the seaboard range from 2,060 to 3,000 feet high, running parallel with the coast at a distance of from 3 to 5 miles, receding somewhat at the Eel river valley and Point St. George, and at other points coming abruptly to the ocean. The whole face of the country is covered with dense forests, and offers almost insurmountable obstacles to the opening of roads intended to strike the trail leading along the valleys of the Sacramento and Wallamut.

    Northward of Cape Orford the appearance and nature of the coast assumes a marked change. Long reaches of low white sand beach occur, with sand dunes, broken by bold rocky headlands, and backed by high
    irregular ridges of momtains. On the sea-face and southern sides of many of these prominent pointe no timber grows, and they present a bright, lively green of feru, grass, and bushes. The general alitude of the mountaius appears the same as to the southward.

    COQLILLE RIVER
    From Cape Orford to the mouth of the Coquille, in latitude $43^{\circ} 07$, the coast runs exactly nopth for 17 miles, with a slight curve of a mile and a half eastward, and a short dintance noth of Orford consists of a low sand beach, immediately behind which are long shallow lagoons receiving the water from the mountains, but having no visible outlet to the sea. Along this shore the soundings range from 7 to 15 fathoms at a distance of a mile.

    The south point of the entrance to this river is a high bluff headland, whilst the urrth point is a long, low, narrow spit of sand, overlapping, as it were, the sonthern head, so that the channel runs parallel with and close under it, (1851.) A short distance off it lie several rocks, but not of sufficient size to leseen the western swell which breaks continually across the bar.

    In the winter of 1851 the boats of the propeller Sea Gull dfected a landing near the rocks, but it was attended with danger; subsequently hoats were carried by land from Port Orford. The widest part of the month is less than 200 yards, fter which the river spreads out into a large sheet of shallow water, abont two miles long by three quarters of a mile broad, and hounded by low ground. Into the: northeast part of this lagoon enters the river, which has been followed a distance of about 30 miles in a northeasterly direction, and having a depth throughout of not less than 15 feet, and an arerage width of 40 yards. It drains a very fertile region, densely covered with many varieties of wood. Nuwerous Indian cheampments were found along its banks from the mouth, and quite extensive fish weirs were discovered and destroyed. About 15 ming from its mouth there is a portage of $1 \frac{1}{2}$ mile to Koos river.

    The hydrographic reconnaissance of this river in 1859 by the Coast Survey shows only 3 fect of water on the bar, and it is reported inaccessible for vessels of ordinary draught. The north point is a loug streteh of dreary sand duncs, and has a single bold rock at its southern extremity. The channel makes out straight from the southern head, and north of the rocks (1859.)

    The approximate geographical position of its entrance is :

    $$
    01
    $$

    
    
    Tides.-The (approximate) corrected establishment is XIh. XXXm., and the mean rise and fall of tides 5.0 feet.

    A reconnaissance of the entrance and part of the river was published by the Coast Surry in 1661.
    When off the entrance in 1854 we saw about a dozen houses which had been huilt ly the miners cngaged in washing the auriferous sand and gravel at the back of the beach. In approaching this eonst we encountered a very heavy swell, with the water changing to a dark brown color, and after paseing through it tacked off shore, hove to, and sonnded near its outer limit, but fonnd no bottom with 84 fathoms of line.

    The alleged depredations of the Indians in this section led to a campaign against them in 18.51 .
    Some recent maps have a river here called the Soquils, and one within a short distance called the Cotamyts, but no such stream exists in this vicinity.

    ## CADE GREGONX.

    Between the Coquille river and this headland wo find another low sand beach for ten miles to the somthern part of Gregory, which rises up very precipitously; the hill attaining perhaps 2,000 feet clevation two miles back, rums in a straight line northward for three or four miles, and bounded by many rocks, slops to the northward to a sharp perpendicular point, about 60 feet high, and peculiarly cut and worn by the action of the sea. Thence it takes a sharp turn to the E.NE. for two miles, to the entrance to Kons bay. The cape, as scen from the southward, shows a couple of rocks a short distance from its western point. Along the low shore soundings in 10 fathoms are found one mile off. We have been informed that vessels anchoring clase under the north face of the cape may ride out heavy southeast gales. If so, it is very important, no other place between Sir Francis Drake's and Nee-ah bay, except, perhaps, under Destruction island, affording that protection. If a southeaster should haul to the SW., and then NW., as they usually do, the chances of getting out would be very few.

    The approximate geographical position of the NWr. point of the cape is:
    

    And it bears north 30 miles from Cape Orford.
    It was named by Captain Cook, who placed it by bearings in latitude $43^{\circ} 30^{\prime}$, and is described by lim as follows: "This point is rendered remarkable by the land of it rising immediately from the sea to a toleralle height, and that on each side of it is very low." Vaneouver placed it in $43^{\circ} 23^{\prime}$.

    It is sometines called by the recent appellation of Arago, which has been anopted on the Coast Survey: charts. It is known by both on the western coast.

    A view of it is given on the Coast Survey sheet of 1853.

    ## EOOS BAY.

    Nearly 2 miles E.NE. of the northern extremity of Cape Gregory is the wide and well-marked entrance to Koos bay. The south point, named Koos Head, is high and bold, being the base of the hills forming the cape, whilst the north point is low and sandy, with shifting sand dunes that reach 100 feet in height. In 1861 a narrow channel cut across the north point, forming a tolerably large island, which was washed away betore the close of the season. Such changes are constantly taking place, and involve changes in the bar and chanmel. The points lie nearly north and south of each other, and about three-quarters of a mile apart. The bar (1861) lies N. $62^{\circ} \mathrm{W}$. one mile from Koos Head; N. $35^{\circ} \mathrm{E} .1 \frac{3}{4}$ mile from Cape Gregory, and its width between the 12 feet lines on the north and south sides is only 150 yards, with a maximum depth of 13 feet. 'Thence the channcl, increasing in width, runs straight to the north tangent of the head, with 10 fathoms of' water at that point. In 1853 and 1854 a deptlo of only 9 to $9 f$ feet could be found on the bar. Daring the working scason of 1861 the bar moved to the northward, thus indicating great changes in this as in all other river bars on the coast. Vessels enter and leave on the flood tide because the bar is smoother; with the ebb there is a heavy break, unless the sea be remarkably smooth. The currents run very strongly, as might be supposed, from the extent of the bay and the size of the channel.

    We have seen the sea breaking completely across the entrance in moderate northwest weather, and know that the mail steamer has tried to conter, but upon sucing the danger would not take the risk. In 1861 the party examining it could get but one day's work on the bar during several months. In October, 1862 , the surveying brig Fauntleroy could not enter.

    Traffic is drawn hither by the mining of lignite, which is carried to the San Francisco market. It has been found unfit for steamship consumpion, hat is used for small stationary engines and domestic purposns. The geology of the country does not give promise of coal. A tur-boat is employed at the entrance for the towing of vessels over the bar. The saw-mills on the bay turn out about 15,000 feet of lumber daily.

    Tifes.-Whe corrected cstablishment or mean interval between the time of the moon's transit and the time of high water is XIh. XXVIm. The mean rise and fall of tides is 5.1 feet, of spring tides 6.8 feet, aud of neap tides 3.7 fect. The mean duration of the flood is $6 \% .19 \mathrm{~m}$., of the ebb 62.07 m ., and of the gtand 0 h .39 m .

    The approximate geographical position of Koos Head is:
    ○ 11
    

    The computed magnetic variation for December, 1861 , is $18^{\circ} 52^{\prime}$ east, with a yearly increase of $1^{\prime}$.
    The bay is very irregular in outline, and its general shape is somowhat like the letter $U$, with the convexity to the north. One small branch stretches southward behind Koos Hearf ; it is called the south slough, and has but two or three feet of water in it. North of the entrance the bay proper logins, and has a good depth of water. Abreast of the north point the width is 600 yards, and the depth from three to seven fathoms; thence north ward it increases in width to nearly a mile, and rung very straight on a N. by E. $\frac{1}{2}$ E. course. The channel runs on the castern side of this part, the western half being filled with sand flats and shallows. A sunken rock, called the Fearless rock, is on the eastern side of the channel, abreast of the upper part of the rocky shore. The whole length of the bay is belicved to be about 25 miles, the head of it heing a little further south than the entrance. Koos river empties into the head of the bay, and will give passage to boats for twenty miles from its mouth, where a small slough that empties into the Coquille river is so near as to
    leave a portage of only a mile and a halt between the two watcrs, and about 15 miles from the mouth of the Coquille.

    Execpting the peninsula, which forms the western shore of the bay north of the entrance, the entire country is an immense forest of various kinds of pine. No land for coltivation is found without eleariner, and even on Koos river the bottom lands, which afford excellent soil, have to be cleared of the thick growth of laurel, maple, and myrtle. The coal mines are beyond the great bend, near the head of the bay, and on the western side.

    The name Koos is that approaching nearest the Indian pronunciation of the word. On some maps we find a small stream called Cahoos, emptying just south of Cape Gregory. The Cuast Survey chart of the bay was published in 1861.

    The word Koos signifies, in the Too-tootan language, a lake, lagoon, or landlocked bay. Duftot de Mofras very amusingly translates it R. des Vaches.

    In January, 1859, the line of equal magnetio variation of $19^{\circ}$ east croses the const-line in latitude $43^{\circ}$ $39^{\prime}$, and in latitude $43^{\circ} 29^{\prime}$ crosses the $12.5^{\circ}$ of longitude. This line moves annually southward about $1 \frac{1}{2}$ mile.

    ## ZMPQUAH RIVER

    Noth of Koos bay to the Umpquah river is another straight, low sand beach, with sand dmes, backed by a high ridge of hills densely timbered. The showe runs nearly north, presenting a very white appearance when the sun shines upon it, and having from 10 to 15 fathoms of water one mile off the beach. The southern point of the entrance to the river is a marked spur of the mountains from the southeast, and is bordered by sand duncs. The north side of the entrance is a long range of white shifting sand hill, raming with the coast for two miles, and suddenly changing to high, rocky hills covered with wood. The river is the largest strean entering the P'acific between the Sutramento and Colmonbia rivers. It is 51 miles N. $\frac{1}{3}$ W. from Cape Orford, and 21 miles north of Cape Gregory. The lower reach of the river is long and narrow, running nearly north for 6 miles; bordered on the south side by a rocky, wooded shore; on the north, for two miles, by loose sand hills, changing after the first mile to sand sparsely covered with coarse grass, busher, and fir, and in four miles to steep, high, rocky banks covered with large trees. Au immense flat, mostly bare at low water, stretches somth from the north point to within 300 yards of the south eide of the cutrance, through which narrow space rums the chamel, having ( 1853 ) a bar with only 13 feet upon it, and less than 100 yards wide. From the bar the point of bluff, just inside the entrance, bears NE. by E., and is distant $1 \frac{1}{4}$ mile. About 1551 or $185: 2$ two range marks were placed on the south shore for ruming in by, and they are frequently referred to as data by which to trace the changes of the bar; but the eaptain who erected them has aseured us that the bar was not on their range, but to the southward of it.

    Buoys for crossing the Zar.-In January, 1858, it was annonnced that the bar had been marked by buoys. Two thied class um-buoys, painted white, with white and black perpendicalar stripes, are phaced in line with the lighthouse, which bears from them E. by N. $\frac{1}{4}$ N. The inner booy is just within the bar, and in 32 fathoms at mean low water, and can be passed on either hand, but only clowe to it. The onter buoy is just outside the bar, in 10 fathoms at the same stage of the tide, and can also be passed on cither hand. Kecping the two buoys in range with the light-house, 14 feet may be carried over the bar at mean low water.

    The above directions show that the bar of the river has moved about 400 yards to the northward of its position, as determined by the hydrographic survey of 1553, and has, moreover, deppened. In light weather it can be readily determined by the breakers on cach side, but with a heary swell the sea is terrific. In October, 1852, the Coast Surveying steamer Active lay off the bar two days try ing to get in, but found it impracticable. Several steamers have thumped heavily on the bar, one nearly carrying away her stern-post, and in $185 S$ the mail steamship Columbia in coming out had her decksswept fore and aft by the huge combers rolling in like ligh walls. In January, 1861, when going in, this same steamer suffered still more trribly. Several vessels have been lost at its entrance, and within a very recent period no pilots belonged to the river, lecause the trade was too small to pay.

    During the carly part of November, 1858 , the bar at the entrance to the Cmpquah changed greatly, and the depth of water upon it was so much decreased that the steamship Columbia, which thumped over it, could not leave the river for seveal weeks. Upon sounding at the entrance it was found that the chanmel across the bar had moved about half a mile northward of its former position.

    ## UMPQUAH RIVER LIGHT-HOUSE.

    The light-house is erected on the south side of the cutrance, close to the beach, which is of shifting saud. The structure consists of a kecper's dwelling of stone, with a whitewashed tower of brick rising above it, and surmounted by an iron lantern painted red, the entire height being 92 feet, and the height of the light 100 feet above the mean sea level. The light is a fixed white light of the third order of the system of Fresnel. It was first exhibited October 10, 1857, and shows every night from sunset to sumrise. In an ordinary state of the atmosphere it should be secn-

    $$
    \begin{aligned}
    & \text { From a height of } 10 \text { feet at a distance of } 15 \text { miles. } \\
    & 20 \text { feet at a distance of } 16 \frac{3}{\text { miles. }} \\
    & 30 \text { feet at a distance of } 17 \frac{3}{4} \text { miles. }
    \end{aligned}
    $$

    In the day time the tower will show projected against the dark green fir on the hills behind it, and with the sand dunes to the north be a capital mark for making the river.

    The geographical position of the light, as determined by the Coast Survey, is :
    Latitude. . . ................................................................ 4340 18.5 north.
    Longitude................................................................. . . 1241100.3 west.
    
    Computed maguetic variation $18^{\circ} 55^{\prime}$ cast, in July, 1851, with a yearly increase of $1^{\prime}$.
    From the bar the light bears E. by N. $\frac{1}{4}$ N., distant ahoat a mile, (1S5s.) After crossing the bar the chamel, when approaching the light-house, runs close to the south shore, and increases in depth from $3 \frac{1}{2}$ fithoms to $1: 3$ off the point of bluff. Abreast of the meeting of the sand beach and bluff on the south side, lies a rock, visible at extreme low tide, upon the threc-fathom linc. It is not had down on any chart, nor has its position been accurately determined. It has deep water around it. From the point of bhuff vesels steer across the river to strike the east side of the north point about one-third of a mile from its extremity, then haul across E.NE. to the other shore, close along which the channel runs. This course takes them clear of a flat and rocks in mid-river, and bearing E.NL. from the south end of the north point, and north five-eighths of a mile from the point of bluft on the south side. The small indentation of the shoreline on the right, after making the first streteh from the point of bluff, is called Winchester bay, having mo water, and being but an extensive mud flat. Three miles inside the light-house the river continucs half a mile wide, then expands to a mile, and is filled with numerous extensive sand and mud flats. Five miles from the light-house it bends sharply to the eastward.

    A preliminary chart of the entrance to Cmpquah river was issued from the Const Survey office in 1854.
    The secondary astronomical station of the Coast Survey was on the west side of the river, on the edge of the first grove of fir, and one mile from the end of the north point. Its gengraphical position is:

    $$
    \begin{aligned}
    & \text { Latitude.................................................................. . . . } 434145.3 \text { north. } \\
    & \text { longitude........................................................................ } 1240957.0 \text { west. } \\
    & \text { h. } \boldsymbol{m} \text {. } s \text {. }
    \end{aligned}
    $$

    This river is said to drain an extremely fertile region, abounding in prairie land well adapted to agriculture and grasing. Hoss Cos montions a pine tree discovered in the Umpquah valley measuring 216 feet to its lowest branches, and being 57 feet in cirenmference.

    The Indian name for the river below the rapids is Kah-la-wat-set, and to the upper part they apply the name Umpt'quah.

    The first vessel we know of entering it was the schooner Sam Roberts, August 4, 1850, after coming out of Rogue's river.

    This river is sometimes supposed to be the river discovered by Flores in 1G03, and afterwards referred to as the "River of the West." Carver, in his narrative, refers three times to the "Oregon, or River of the West."

    From the Umpquah the coast runs in a remarkably straight line N. by W. $\frac{1}{2}$ W. to the south point of the cutrance to the Columbia river, in no case varying more than three miles castward of the line joining these two places.

    Heceta Bawh.-NW. by N., distant 66 miles from Cape Orford, is the southern end of a bank extending parallel with the coast for 30 miles, and about the same distance from it the least depth yet discorered uphe it is 43 fathoms, and the nature of the bottom very variable, there beine blue mud, coarse blue sand, coral, pebbles, gravel, mud, and shells. Coasting vessels have often reported pasang over localities having a heavy swell upon them, and one frequently so reported near the Limpuah led to the examination which discovered this bank. When Heceta was upon this coast, and in this vicinity, he said: "On Sunday I found great differences [of depth; jat seven leagues I got bottom at 80 fathoms; and nomer the coast I sometimes found no botom." Should a thorough examination of his diseoverics here satisfactorily show that he did really cross this or any yet undiscovered adjacent bank, it would be a tribute to his explorations on this coast to apply his name to it.

    CAPE PLIPEAUA.
    After leaving the Umpquali two or three miles, a bold rocky coast, with high stecp hills covered with timber, runs straight for about eight miles, changing to low sandy beach with sand dunes, backed by a high ridge of hills. This continucs for 15 miles, when the hilhs stretch ont to the showe and crowd upon it for $1: 3$ miles, to end abruptly in steep bluff forming Cape Perpetua, which is 39 miles N. by W. W W. from Cmpquah light, with an approximate geographical position of latitude $44^{\circ} 19^{\prime}$, longitude $1=1 \circ$ o6'. The face of the cape is nearly five miles long, with very slight projection from the straight trend of the shore. It is very high, and has a regular although stecp descent to the shore, bringing the trees to its very edge.

    From the Umpquah to Perpetua, at a distance of a mile from the shore, somdings are lad down from 8 to 14 fathomes.

    This cape was maned by Gook in 1778 , and by bearings placed in latitude $44^{\circ} 06^{\circ}$. Vancourer, in 1792 , gave its position in latitude $44^{\circ} 1 z^{\prime}$.

    In recent maps we find a small stream opening south of Cape Perpetua, called the Seibtenm river. We could not detect it in 1853 from the distance of a mile, but helieve there is a stream with the name of Scius-clau, (pronomed Sai-yuse-claw, emptying about 25 miles above the lmpuah.

    To the northward of Perpetua the coast range of hills is cut by numerous valleys, through which flow many small streams to the ocean.
     It is said to expand into a bay, three miles long by $1 \frac{1}{2}$ wide puming nearly east, aud very mucla contracted at the midde, where a small islet exists. 'The south head to the entrance is formed by a spur of the hills from Perpetun. The north point has likewise a bold head with a low sand spit stretehing south halt a mile. The entrance is in latitude $44^{\circ} 27^{\prime}$ north, (approximate.)

    Recent map place the Aleifco river about this latitude. No name is given in the last Coast Survey reconnaissance, and it was not seen at all by Medrthur in 1850 .

    The names of the streams hence to the northward are very conflening, and will continue so until a lame exploration is made along the scaboard for determining their pecaliarities and the latitudes of their mouths.

    Celefse rifer. North of Perpetur the shore contimues straight, high, and bold for fife miles, when at cluster of rocks occur, and the bluff changes to low and beach, running nearly to the mouth of a small stream, about five miles south of Cape Foulweather, called the Alseya on the Coast Survey reconnaisance of 1850 , and the Celetse on the original sheets of 1853 . This name is the proper one. The north head, which is bold, has a rock close under it. Thence the shore is low and sandy to Foulreather. The country $i_{11}$ the interior is very broken and mountainone, and covered with wood.

    ## CADE FOULWEATHER

    From Perpetua to this cape the soundings range from 7 to 12 fathoms about a mile from shome. The cape is in latitude $44^{\circ} 45^{\prime}$ north, and longitude $124^{\circ} 04^{\prime}$ west, and forms a high, bold headland, half a mile in width, jutting out about half a mile from the low beach, and backed by high mountains. It is covered with wood, and has several small rocks on its southwest face, with one rocky islet a mile from it. To the northward of the cape are three rocky islets standing a short distance from the low bach, and readily distinguished by being projected against it. In August, 1853 , the astronomical party of the coast survey was very desirous of effecting a landing on or near this cape, but the sea was rolling in too heavily to warrant the attempt. There was no appearance of a landing being at all feasible, except in remarkably quiet weather. 45 c s

    This cape was named by Cook on the day he made the coast, March 6, 1778, but the point of the headlad, so called on the Coast Survey recomaissmee of 1853 , is not that referred to by him. At noon he was in latitude $44^{\circ} 33^{\prime}$, and the land extended from NE. $\frac{1}{2}$ N. to SE. by S., about eight leagues distant. In this situation he had 73 fathome orer a muddy bottom, and 90 fathoms a league further off shore. The land be decribes of moderate height, diversifed by hills and valleys, and principally covered with wood. No striking ohgect presented itselt, except a high hill with a flat summit, which bore east from him at noon. This may lave been what he subsequenty called Cape l'erpetua. At the morthern extreme the land formed a point, which he moncl Cape Foulweather, from the exceeding bad weather he met with soon after.
     but he judged the Foulweather he named to be in $44^{\circ} 5 \overline{5}$. Being liere driven off the coast by continued bad wather, he had no opportunity to rerify his position, and did not sight the land again until in latitude $47005^{\prime}$, thus passing by the entrance to the Columbia. Vancouver places it in latitude $44^{\circ} 49^{\prime}$. Both of these doterminations evidently reter to the northern part of the high land.

    Nekas river--Soon after passing Fonlweather the shore becomes abrupt and moderately high, with an increased deplin of water immediately off it. Four miles south of the Nekas, which is in latitude $44^{\circ} 56^{\prime}$, it changes to low sand dunes stretehing into a narow point, forming the south point of the strearn, white the north point is a low bluff. The entrance is very marrow and shoal, and inside the river is reported to spread out into a bay of about a mile in extent, and to receive the waters of a stream draining a valley coming from the castward.

    The name is that used on the Const Survey charts of 1800 and 1853. Previous maps have a small stremm enptying near this, called the Cowes river. De Mofras calls it the Yacom.

    From the Nekas to Cape Lookout the distance is 24 miles, and course N. by W. $\frac{1}{2}$ W., with a shore-line broken by several small streams, amongst which are the Fechene (reconnaisance, 1853.) in latitude $45^{\circ} 02^{\prime}$, with roeks in the entrance; the Nestuggah (recommaissance, 1853,) in latitude $45^{\circ} 06$, called Yayuima in recomaissance of 1850, and having a large rock off its mouth; the Jaunggah (recomaissance, 1853,) in latitude $45^{\circ} 14^{\prime}$, and on the south side of whose entrance is a single rocky islet, hereafter referred to.

    De Mofras has C. Lucuat in this latitude, and a small stream, R. Kaonai, south of it.

    ## CAPE LOOEOUT.

    The soundings from Foulweather to this cape show from 19 to 31 fathoms of watcr at a distance of a mile from the shore, increasing from 18 fathoms morth of latitude $45^{\circ} \mathrm{N}$.

    This cape is sitnated in latitude $45^{\circ} 20^{\prime}$, longitude $124^{\circ} 00^{\prime}$. It projects somewhat sharply into the sea for half a mile, and as seen from the south the top is tolerably flat aud regular, and at the highest part we judge it to attain an clevation of 3,000 feet. The face directly toward the ocean is perpendicula, high, and toward the south destitute of trees. About cight mites southward of it is a large single rock off the Nawuggah, csimated to be 250 feet high, and standing well out from the low sand beach behind it. No rocks lit off this cape, but one appears very close inshore, about a mile to the northward of it.

    This nime is that ued on the Coast Survey charts of 1850 and 1853 , and is intended to apply to the cape mentioned and fully described in July, 1778, by Meares, whose description has been corroborated by Vancouver, and iacidentally by ourselved.

    For Jomuary, 1859, the linc: of efual magnetic variation of $20^{\circ}$ east crosses the coast-line in latitude $45^{\circ} 23^{\prime}$, and in latitude $45^{\circ} 13^{\prime}$ croses the $125^{\circ}$ of longitude. This line annually moves about one mile southward.

    ## CAPE MEARES.

    Two or three miles after leaving Cape Looknut the land falls to a low sand beach, behind which is a long lagoon, called the Nat-a-hats, stretching northward, and having an opening under the south bead of the well-marked point to the northward, which is the termination of a spur or ridge running from the southeastward, presenting an abrupt front to the ocean for about two miles, and being part of the western boundary of Tillamook bay. In coming down this coast in the fall of 1857 , we made a few uotes upon some objects, and find the following memoravdum made whilst near this point: "Three high rocks (one arch) off point south of False Tillamook; one more on the north side." Not being then aware of any doubt as to the name of the cape, no other particulars were noted. Four rocks are laid down off the sonthwest face on the Coast Survey reconnaissance of 1850 , and one on the north. Three large rocks and one small one are laid down off the
    southwest face in the original sheets of the reconnassance of 18.52 , the most distant heing one mile from shore, with scveral small ones between them and the shore, and two or three others off the northwest face.

    In 1775 Heceta placed La Mesa, the Table, in latitude $45^{\circ} 28^{\prime}$-a flat-topped mountain, scen at a great distance.

    In July, 178s, Meares, in the Felice, after passing False Tillamook, says: "The distant southerly headland we called Cape Lookout. This cape is very high and bhaff, and terminates abruptly in the sea. At abont the distance of two miles from it there rase three large roeks, which are very remarkatle for the great resemblance they bear each other. The middle one has an archway, perforated, as it were, in its centre, through which we plainly diseovered the distant sea. They more particularly attaacted our notice as we had not observed between King George's sound and this place any rocks so conspicuously situated near the land; their distance from cach other might be one-quarter of a mile, and we gave them the name of the 'Three Brothers.' By eight in the evening we were within three or four leagues of Cape Lookout, which we judged to lie in latitude $45^{\circ} 30^{\prime}$ north, longitude $2355^{\circ} 50^{\prime}$ east."

    In 1792 Vancouver deseribed it as a small projecting point, yet remarkable for the four rocks which lie off it, one of which is pexforated as described by Meares. He places it in latitude $45^{\circ} 32^{\prime}$.

    This cape is very frequently, but erroneonsly, stated to be the "Clarke"s Point of View," as deseribed by Clarke in the winter of 1805-6.-(See remarks upon Tillamook Head.)

    In the Coast Survey reconnaissance of 1803 the northern part of this cape is placed in latitude $45030^{\circ}$, longitude $123^{\circ} 58^{\prime}$, and stretching southward two miles to the cluster of rocks above dereribed.

    We applied the name to this cape in 1857.

    ## TLLLAMOOK BAY.

    On the Coast Survey reconnaissance of 1853 the entrance to this bay is placed in latitude $45^{\circ} 34^{\prime}$, four miles north of Cape Meares. The southern point is low, and the termination of a spur from the crest of the cape, whilst the north head is high and bluff. The entrance is very narrow, and reported to have very little water upon the bar; inside it expands into a long wide bay, stretching to the S.SE. behind Cape Meares. No survey has yet been made of it, and sone doubts are expressed about the enlarging of the river to form a bay. Two miles northward of the northern head stands a couple of large rocks; thence the coast runs nealy straight to False Tilhamook, receiving a considerable stream, ealled the Ncha/cm, in latitude $45^{2} 41^{1}$. Clarke, when about five miles sonth of Tillamook Head, says that "the principal town of the Killamucks is situated 20 miles lower (south) at the entrance to a creck called Nielec, expanding into a bay, which be named Killamucks bay. Upon this bay were several Killamuck towns. Killamuck river is at the load of the bay, 100 yards wide, and very rapid; but having no perpendicular fall, is a great avenue for trade There are two small villages of Killamucks settled above its mouth, and the whole trading portion of the tribe ascend it till by a shore portage they carry their canoes to the Columbia ralley, and descend the Multnomah to Wappatoo island." This information he obtained from Indians and traders. On this short expedition he made all his distances from Cape Disappointment and Point Adams too great, and redueing the forementioned 20 miles by the proper proportion, it would give us 13 miles as abont the position of the Nehalem. His name seems to agree with this, but the description applies to what is generally hown as Tillamook bay.

    The shore about the Nehalem is low and sandy, with sand duncs backed hy high wooded hille, and cut up by many valleys. It was here that Meares stood in for an anchorage, (July, 1788,) until he found bottom in 10 fathoms, but hauled out again and named the place Quicksand bay, and the adjoining headhand nortit, Cape Grenville.

    ## CAPE FALCON, OR FALSE TILEAMOOK.

    The northern part of this headland lies in latitude $45^{\circ} 47^{\prime}$, longitude $127^{\circ} 55^{\prime}$. Epon passing close by it in 1857 , we judged it to be not less than 3,000 feet high, with the sea-faee coming precipitonsly to the ocean, and off it lie two prominent rocky islets. As seen from the southward the top is irrecular whilst the hills inshore fall away. Like some other points in this latitude, the southern face of the cape is destitute of trees, but covered with a thick growth of grass, bushes, and fern. Two miles eonth of it is a stretch of sand beach and sand dunes.

    From Cape Lookout to this headland a depth of 20 fathoms may generally be found a mile from shore; but, as upon the whole coast, a heavy regular swell always rolls in from the west.

    In 1775 Heceta placed a headland in latitude $45^{\circ} 43^{\prime}$, to which he gave tho appellation Cape Falcon. According to his description it had a rocky islet lying off it. This name would be far better than applying the term "false" to capes, bays, dec., the names of which were at first uncertain.

    In 1788 Meares called this cape Grenville.
    The Indian name for the head is Ne-a-kah-nic.

    ## TILLAMOOK HEAD.

    This prominent cape, in latitude $45^{\circ} 58^{\prime}$, is 12 miles N.NW. from Cape Filcon, and 19 miles SE. by, S. 1 S. from Cape Disappointment. The coast from Cape Falcon curves two miles castward; is bold and rugged, guarded by many high rocky islets and reefs, and in several places hordered by a low sand beach at the base of the elifts. Two miles south of the head, Clarke ( 1800 -'6) locates a creck 50 yards wide at its mouth, which he calls Ecola, or Whate creek. From the south bar of the Columbia river the summit of Tillamook appears flat for some distance lack, and has an estimated height of 2,500 fect. Off the face of the cape, which is wey stcep, lie several rocky islets; one of them is high and rugged, and stands ont abont a mile from the sonthwest face. Around it the water is believed to be deep, as we have seen a steaner come almost upon it in a thick fog; but inside of it lie several high rocks. From the bar two rocks can be distinctly seen, the imer being the larger, and its apparent distance from the head about half the apparent lucight of the cape. Whether the smaller is the one off Cape Falcon, we did not determine. As seen from the southward the large rock has a perpendicular face to the westward, and slopes to the east. It is the resort of thousands of seals.

    This cape is a good landmark for making the mouth of the Columbia river, no such high headland occurring on the coast northward of it for over 70 miles, and before being up with it the moderately high land of Cape Disappointment is scen and made as two islands.

    The face of the cape is much broken, and formed principally of yellow clay, presenting a bright appearance in the sunlight. Clarke says that 1,200 feet above the ocean occurs a stratum of white carth, then (1505-'6) used by the Indians as paint; and that the hill-sides slip away in masses of 50 to 100 acres at a time.

    Cpon the top of the eape Clarke says he found good, sound, solid trees growing to a height of 210 feet, and aequiring a diameter from 8 to 12 fiect.

    From Tillamok head southward many miles was the country of the Killanuck Indians, then estimated to number 1,000 people, and having 00 houses.

    In latitude $45-55$ La Perouse speaks of a cape, formed by a round-topped mountain, as the Cape Redondo of the Spaniards. It bore E. $5^{\circ}$ S. from his position.

    De Mofras calls it the Cap N. S. de la Lax.
    This is the head which is properly called "Clarke's I'oint of View."
    Some recent maps call this Cape Lookout.
    The coast from Point Orford to Tillamook Head is well diversified by high hills and valleys, presenting a country well watered by numerous small streams emptying into the ocean. It is densely covered with rarious woods, and for a few miles inland looks favorably from the deek of a vessel. Some distance in the interior ranges of mountains ofenr, the general direction of which appears to be parallel with the coast-line, which attained its greatest devation and compactness between Cape Falcon and Tillamook Head, after which a sudden and marked change takes place, and a stretch of low sandy coast commenees and runs for nearly 100 miles northward, only broken by Cape Disappointment.

    ## COLUMBIA RIVER.

    ## POINT ADAMS.

    Two miles northward of 'Tillamook Head commences a peculiar line of low sandy ridges, rnnning parallel to the beach towards Point Adams, and appearing like huge sand waves covered with grass and fern. Between some of them run small creeks, whilst the country behind is low, swampy, and covered with wood and an almost impenctrable undergrowth. About three miles north of the head Clarke says a beautiful stream empties with a strong rapid current. It is 85 yards wide, and has three feet at its shallowest crossing.

    Point Adams is low and sandy, covered with bushes and trees to the line of sand beach and low dunes; and although it is reported to have washed away over half a mile since 1841 , we find comparatively small changes since the-survey of Broughton in 1792 .

    The geographical position of the triangulation station of the Coast Survey on the point is:
    

    This station is on the inside of the point, and almost half a mile from it.
    No light-house exists here, but the necessity for one has been so repeatedly urged that we ramot refrain from calling attention to a few facts bearing upon the question. Off this point, SW. by S $3 \frac{1}{4}$ miles, lies (1852) the har of the south channcl, througl which the far greater portion of the trade has passed; and all vessels use this point as a standard point for their ranges. During the early part of the evening dense fogs, formed over the waters of Gray's and Shoalwater bays, are brought southward hy the summer winds, and roll over Disappointment, which they completely shat in before reaching across the river, so that a vessel might make a light on Point Adams when the other cape was invisible; but by sceing both lights a veasel could hold any required position at night near cither bar, and run in and take a pilot upon the first opportunity; for it would be assuming too great a risk to enter the river at night, or without a pilot.
    'Ihis point was called Cape Frondoso by Meceta, who discovered, but did not enter this river in Angust, 1775; and named Adams' Point by Captain Gray, in 1792 . The Indian nane of the point is Klacit-sop. It is now called Point Adams.

    The beach around Point Adams and to the sonthward some distance is usually called Clatsop beach. Upon it, many years ago, before the whites occupied the country, a Chinese or Japanese junk, with many hands and a cargo of beeswax, was cast ashore and went to pieces; but the crew were saved. In support of this Indian tradition, there are occasionally, after grat storms, pieces of this wax thrown ashore, coated with sand aud bleached nearly white. Formerly a great deal was found, but now it is rarely met with. Belcher mentions having a specimen. Many people on the Columbia possess them, and we have seen several pieces. In a late work* this wreck has been confounded with another that took place near Cape Flattery.

    ## COAST AND SHORES OF WASHINGTON TERRITORY AND OPPOSITE SIIORE OE VANCOUVER ISLAND.

    CAPE DISAPPOINTMENT.
    The north side of the Columbia river forms part of Washington Territory; it was the sonthern bondary of the "New Georgia" of Vancouver, 1792.

    This cape is the only headiand from Tillamook to latitude $47^{\circ} 20^{\prime}$ that breaks the low line of slore. It presents a geological formation not before met with on the seaboard, being composed of horizontal columnar basalt, rising to an elevation of 287 feet, disposed in a succession of huge round hills, broken on the sea front by short strips of sand beach, and covering an irregular area of about three miles by one. The sea-faces of all the hills and irregularly projecting knobs rise perpendicularly for many feet, then slope slightly inshore to narrow ridges; are destitute of trees, but covered with grass, fem, and bushes, and have an excellent though thin soil. Inland of their crests the trees commence, and their tops reaching above the summits of the hills increase their apparent height. The inshore slope of the hills is more gentle, so that pathe can be easily carried to their tops. In 1851 we opened an ox-team road to the summit of the cape. When the evening fogs from the northern bays do not cover the cape, we have sometimes experienced a dense fog rolling down the river about sunrise, enveloping everything below the top of the cape upon which we have stood, when it looked like an island less than a hundred yards in extent, and surrounded by the river fog, that must be felt to be appreciated. The evening fogs are so regular that we were 35 days on this cape before ubtaining a single night's observations.

    As seen from the southward, when off 'Tillamook ITead, Cape Disappointment is made as two romb-topped islands; approashed from the northwest it rises in a similar manner; from the west and southwest it appers


    projected upon the mountains inland, but the slightest haziness in the atmosphere brings it out in sharp relief. Thie cape being lasaltic, and showing an almost iron front to the river and sea, it is impossible that, "in the memory of many, Cape Disappointment has been worn away some hundred feet by the sea and strong currents that run by it."

    On the first landing beach on the inside of the cape we found a deposit of auriferous and ferruginous "black sand," the flakes of gold being very small and searee. This ferruginous deposit-the "black sand" of the California gold digger-caused a local disturbance in the magnetic variation, amounting to $26^{\prime} .2$, being that quantity less than the dechnation found upon the summit of the cape. Here we also found the remains of the ovens used by the shipwrecked crew of the United States sloop-of-war Peacock, lost on the north shoals of the north channel in 1841.

    ## CAPE DISAPPOLNTMENT LIGHT-HOUSE.

    The light-house is not upon the top of the cape, but upon a spur a litile to the west of the southeast point, and about 95 feet below the highest part. The tower is whitewashed, placed 192 feet above the level of the sea, and being 40 feet in height and projected against a dark green background, shows well in daylight,

    The light is a fixed uhite light, of the first order of Fresnel; was first exbibited October 15, 1856, and show from sumset to sunrise. Under a favorable state of the atmosphere it should be seen-

    From a height of 10 feet at a distance of 21 miles.

    | 20 | $"$ | $"$ | $22 \frac{1}{2}$ | $"$ |
    | :--- | :--- | :--- | :--- | :--- |
    | 30 | $"$ | $"$ | $23 \frac{1}{4}$ | $"$ |
    | 60 | $"$ | $"$ | $26 \frac{1}{3}$ | $"$ |

    Its geographical position, as determined by the Coast Survey, is:

    |  |  |
    | :---: | :---: |
    |  |  |
    |  |  |

    Magnetic variation, $90^{\circ} 45^{\prime}$ east, in July, 1851, with a yearly increase of $1^{\prime}$.
    Counting round seaward from the south, it commands the horizon for about 135 degrees; that is, from S.SE. to W.NW.; so that vessels coming from the northward cannot see the light until nearly in the latitude of the river. Placed on the top of the cape, it could have been casily made to show over the northwest part of it, and would also have commanded the cntive river and Baker's bay.

    From Cape Disappointment we have the following bearings and distances of oljects to the northward:
    

    The last line passes tangent to the coast in latitude $47^{\circ} 55^{\prime}$, where there are two well-marked rocks, which will be hereafter described.

    ## fog-bell at cape disappontment.

    A fog-bell of 1,600 pounds has been placed on the bluff in advance of the light-tower, and will be sounded during figgy or other thick weather, night and day. The distinctive mode of striking we have not yet found published. The machinery is on a level with the ground, in a frame building, whitewashed, and with the front open to reccive the bell.

    The primary astronomical station of the Coast Survey is on the highest part of the southern extremity of the cape. Its geographical position is:
    
    From Cape Blanco to Cape Disappointment the extent of ocean shore-line is not less than 285 miles.
    In August, 1775 , this cape was placed by Heceta in latitude $46^{\circ} 17^{\prime}$, and called Cape San Roque.
    In July, 1788 , it was called Cape Disappointment by Mcares, and placed in latitude $46^{\circ} 10^{\prime}$ "by an indifferent observation." It was called Cape Hancock by Gray, in 1792, and the entrance flaced in latitude $46^{\circ} 17^{\prime}$; he, however, changed this name to Disappointment, upon hearing that Meares had so named it.

    In 1792 it was placed in Iatitude $46^{\circ} 19^{\prime}$ by Vancouver.
    On the l'acific coast it is and has been known by no other name than Cape Disappointment.
    The Indian name for the cape is Kál-eese.

    ## THE ENTRANCE TO THE COLUMBIA RIVER.

    The entrance to this, the great river of the Pacific coast, is five miles wide between the nearest parts of Cape Disappointment and Point Adams, bearing S. $582^{\circ}$ E., and N. $582^{\circ}$ W. from cach other; but the passage is badly obstructed by shifting shoals that lie two or three miles outside of the line joining the points. The numerous sarveys that have heen made of this river prove so conclusively the great chauges which the chanels through the shoals undergo, that we shall not attempt to give any directions concerning the present north and south channcls. The best advice we can offer is, when up with the bar, wait for a pilot. The mail and consting steamere enter the south channel, (October, 185\%) parallel and close to the beach south of Point Adams; but, with a heary swell from the westwarl, they roll very much after rounding the point. In leavy weather some of them prefer entering the north channel, although it gives a detour of some miles, but that bar has, and always has had, more water upon it than that at the south channel, and does not change its position as much, from the unwearing nature of the cape. Sailing vessels camot beat into the south channel against the summer winds blowing from the northwest, lut almost invariably come out through it. The heavily laden vessels of the Hudson Bay Company have always used the north chamel.

    During heary weather, and especially in winter, the sca breaks with terrific fury from northwest of Cape Disappointment well to the southward of Point Adams; and we remember the mail stemer trying for 60 hours to find the smallest show of an opening to get in. Sailing vessels have laid of the entrance six weeks, waiting for a fair opportunity to enter, and many lie inside for weeks trying to get out. The mail steamer, meanwhile, exerting all her power, would drive through the combers, having her deck swopt fore and aft by every sea. Few places present a scene of move wildness than this bar during a southeast gate, contrasting strongly with many times during the sommer, when not a breaker is seen to mark the outline of the shoalest spot. From the summit of Cape Disappointment we have often watched the bar in varied states of wind and weather, and crossed it when calm and braking. What is most needed here is a powerful propeller tug, which the amount of trade would assuredly warrant, when we know that the much smather trade of Humbold bay supports handsomely a tug for that bar. In bad weather the pilot-boats camot venture out, but a steamer might; and the mail steamess, to avoid delay, now regularly carry a bar pilot with them.

    During the season of freshets, about June, the pilots say that the river brings down such a rast body of water that they can frequently take up for use fresh water upen the bar.

    When off the entrance in fine, clear weather, the beatiful snow peak of Mount St. Helcns* shows over the lowest part of the land inside, and apparently in the middle of the river valley. It is very regular in outline, and presents a pyramidal appearance, having a base equal to either side. It is orer ij miles castwarl from the entrance to the river, and attains an estimated elevation of 13,500 fect. It is volcanic, and occasionally discharges volumes of smoke.

    On the 23 d of November, 1842 , during an eruption, the ashes from it full over the Dalles of the Columbia like a light fall of snow. On the 13 th of November, 1843 , St. Helens and Rainier were both in action. Humboldt erroneonsly states that this volcano is always smoking from the summit crater.-(See remarks on page .)

    On October 22, 1792, Vancouver reported having seen several water-spouts off the entrance to the river, and that some of them passed quite near his ships.

    The current--ln October, 1851, whilst lying at mehor in the sonth chamel off Sandy island, we measured the strength of the ebb current, and found it to be nearly $5 \frac{1}{2}$ miles per hour.

    Tides.-At Astoria the corrected establishment, or mean interval between the time of the moon's trameit and the time of high water, is XIIh. XLIIm. The mean rise and fall of tides is 6.1 feet, of spring tides, 7.4 feet, and of neap tides, 4.6 feet. The mean duration of the flood is 67.03 m ., of the ebb, 67.28 m ., and of the stand, $0 h .33 \mathrm{~m}$. The average difference between the corrected establishments of the a. m. and P . m. tides of the same day is 17.02 m . for high water, and $0 \mathrm{~h}, 52 \mathrm{~m}$. for low water. The differences when the moon's declination is greatest are $1 \hbar .38 \mathrm{~m}$. and 1 h .15 m ., respectively. The average difference in height of those


    two tides is 1.4 foot for the high waters, and 2.3 feet for the low watcrs. When the moon's declination is greatest those differences are 1.9 foot and 37 feet, respectively. The average difference of the higher high and lower low waters of the same day is 7.9 feet, and when the moon's declination is greatest, 8.9 fect. The higher high tide in the twenty four hours occurs about $122.11 m$. after the moon's upper trancit, (southing,) when the moon's dectination is north, and about $0 \%$. 15 m . before, when south. 'The lower of the low waters occurs, about $7 \frac{1}{2}$ hours after the higher high water. The greatest observed difference between the two low watere of one day was 5.1 fect, and the greatest difference between the higher high and lower low waters of one day was $11 . \overline{5}$ fect.

    For the method of computing the times and heights of high and low waters for any date, see the example of San Francisco on pages 311-315, and use the tables given for Astoria at the eud of the directory.
    'Lhe tide makes 40 minutes carlier at Cape Disappointment than at Astoria.

    ## THE DISCOVERY OF THE RIVER AND THE CHANGES IN THE CHANNEL.

    The discoverer of this river was Brumo Heceta, commanding the Spanish ship Santiago. On the 15th of Angrast, 1775 , he was off the entrance of a great river or inlet, which he called Lusenada de Asuncion, (Asrumption inket;) but in the charts afterwards published in Mexico it was denominated Lineñada de Heceta, and the Rio de San Roque.

    In July, 1788, Meares sought an anchorage under Cape San Roque, and finding the breakers barring his progress, applied the name Deception bay to the mouth of the river; and doultless to vent his pique upon the Spaniards for the ill treatmont he had received at their hands, wrote: "We can now safely assert that there is no such stream as that of Saint lioc existing, as lad down in the Spanish charts; to those of Maturello we made continual references, but without receiving any information or assistance from them."

    In April, 7792, Vancouver sought for" this river, but finding a great line of breakers before bim, very wisely did not attempt to pass through them. On the 29 th of that month he apoke the Columbia, of Boston, commander by Captain Gray, who informed hin that he had laid off the mouth of a river in latitude $40^{\circ} 10^{\prime}$, where tho outset or teflux was so strong that for nine days he was prevented from entering; whereas Vanconver, having passed this position on the 27 th , wrote on that day "that if any inlet or river should be found, it must be a very intricate one, and maceesible to vessels of our burden, owing to the reefs and broken water."

    On the 11th of May, 1892 , about mon, Captain Gray's log states, that "being a little to the windward of the entrance into the harbor, bore away and run in E.NE. betiveen the brcakers, having from 5 to 7 fathoms water. When we came over the bar we found this to be a large river of fresh water, up which we steered." Without knowing of any reliable chart by him, we are of opinion that then the was but one channel, and that over the position now occupied by Sandy island. He evidently came upon the entrance after very favorable weather, becatse le not only pased over the bar between the breakers with all sail set, but had only made 6 hemen between daylight and noon. He remaned eight or nine days in the river, made a rough sketeh as far as 'lomgue l'aint or Gray's bay, and named the river after his ship, calling it the "Columbia's river."

    In October 179:, Vanconver tried to enter the river with the Discovery, but failing on aceount of the bad state of the bar, he ordered Lieut. Broughton, in the armed tender Chatham, to enter, which he did three days afterwards, and then commeneed a survey of the river, carrying it forward in boats to Point Vancouver, in latitude 45027 , and retuming to his vessel in ten days. He considered the widest part of the river for 25 miles as an inlet. This is the first reliable survey we have of the river. Gray'a eye sketch, which extended to about Gray's bay, showed $5 C$ miles from Cape Disappointment, whereas it is only 16 , following the course of the northern channel by the most recent surveys. After crossing the bar the Chatham anchored in 4 fathoms, $1 \frac{7}{7}$ mile E. by S. $\frac{9}{4}$ S. from the eastern part of Cape Disappointment. Within a cable's length of the ship the sea broke very heavily on the western ond of a shoal called the Spit Bank, the sonthern edge of which stretched about E. by N. in a direct line to Chinook Point,* behind which rises Scarborough hill, $\dagger$


    destitute of trees and covered with fern. Well up in Baker's bay,* north of the cape, he gives soundings in 3, 5, and 7 fathoms within less than a mile from the shore. From Cape Disappointment the southern edge of an outside shoal extended about 1212 mile SW. by S ., stretched W.SW. nearly 2 miles, then trended X.NW. parallel to the outer beach. A gie st shal oecupied the whole midde part of the river cast of Point Adams. Its nothern edge ran paallel with and half a mile from the shore between Gray's loint and Ellis' Point, there being from 7 to 14 futhons in the chan 1 between it and the siore. From Ellis' Pont it then stretched in nearly a straight line to within a mile of Poiat Adams, where the tail of it had but 2 fathoms; thence curved to the SE. about a mile, and stretched in a long curve to Tongue Point, $\ddagger$ keeping about three-quarters of a mile from the shore abreast of Point George, 5 miles from Point Adams; and in the channel between it and the shore he gives from 3 to 7 fathoms. Starting half a mile inside of Point Adams, and stretching over to the tail of the above shoal, was a bar having but 3 fathoms upon it.

    From Point Adams the northern edge of the breakers stretched seaward, first, W. $\frac{1}{2} \mathrm{~N}$. about $3 \frac{3}{4}$ miles; next, SW. by W. $\frac{1}{2}$. about 5 miles; then took a rounding course t, the southward, extending along the coast at a distance of nearly 8 miles. From this point of view (Adams) the north and south breakers were so shut in with each other as to present an entire line of heary broken water across the channel, which was about $1 \frac{1}{2}$ mile wide at the narruwest part, and having not less in any place than 4 fathoms. The outer line of 5 fathoms off the bar bore SW. by W. $5 \frac{1}{4}$ miles from Cape Divappointment.

    This channel permitted the heavy western swell to roll in over the bar, and break upou the shoal stretching between Point Adams and Point Ellis. The directions given by Broughton for chtering are, to bring Tongue Point, which looks like an island near the southern shore of the river, to bear about E. by N. and then steer for it, crossing the bar in 4 and 5 fathoms.

    In stating the distances above, we should mention that Bronghton gives the course from Disappointment to Adams as SE. by E. and the distance about 4 miles, whereas it is really 5 miles. Making this change in his base, and all other positions in proportion, we find that Tongue Point comes within half a mile of the determination by the triangulation of the coast survey, proving Bronghton's work right, but the base wrong.

    From the foregoing description we deduce the following facts: That but ome channel existed at the entrance to the Columbia river in 1792; its general direction across the bar was E. by N. $\frac{3}{4}$ N., passing $1 \frac{1}{2}$ mile sonth of Cape Disappointment; it was 6 miles lang from the outer five-fathom line to a line joiniag Point Adams and the cape; it was $1 \frac{1}{2}$ mile wide, and had not less than 4 fathoms in it; that the Spit Bank stretch nearly straight from about a mile east of the cape to Chinork Point. In the space bounded by the three lines joining Cape Disappointment, Chinook Puint, and Point Adans, 5 fathoms water was the least found. The deepest channel after getting in was close under the north side of the river eastward of Chinook Point, and that, between the river side of Point Adams and the shoal stretching from Gray's Point towards it, a narrow channel existed with 3 fathoms in it.

    Broughton says: "The discovery of this river, we were given to understand, is claimed by the Spaniards, who call it Entrado de Ceta, after the commander of the vessel, who is said to be its first discoverer, but who never entered it; he places it in $46^{\circ}$."

    After completing the survey he could not get out for several days, and the Jenny had been unable to cross the bar during the entire time he was up the river.

    In 1813, when the English sloop-of-war Raccoon arrived in the Columbia she found the shoals off the entrance had considerably changed in extent and position from the time of Broughton.

    British Admiralty Survey in 1809.-In 1839 the entrance was surveyed hy Sir Edward Belcher, in the Sulphur, and remarkable changes had taken place. Betwcen Cape Disappointment and Point Adams a large middle bank had formed, and near its eastern extremity a sandy island, with a bank $1 \frac{1}{2}$ mile in extent, visible at low water and full of snags and trees. Its northwesterm point bore E.SE. 23 miles from Cape Disappointment, stretching on this course $1 \frac{1}{2}$ mile further, so that its eastern extremity, off which was deep water, bore N. $\frac{1}{2} \mathbf{W}$., $1 \frac{1}{3}$ mile from Point Adarns. This island and the bank naturally divided the waters of the river, the greater volume running to the northward of the bank, through Befcher's channel, with 7 fathoms


    in it, and being a mile wide within the limits of the 3 -fathom lines until it aproached the cape, where it was contracted to less than half a mile on a line E.SE. from the cape, but having increased its depth to 16 fathoms. This chamel had cat away the western end of Spit Bakk, as laid down by Broughton. Fron the cape, which it washed, this chamel man south for 24 uiles, with an average depth of seven fathoms, and befing a mile wide within the thre-fathom lines; then it ran $S W$. $\frac{1}{2}$ W. for $2 \frac{1}{4}$ mils to the bar, expanding in width and decreasing in depth, but in no place giving less than 42 fathoms upon the bar, which bore S.SW. from the cape, distant 4 miles, and from Point Adams W. 3 S., distant 6 miles. In the northern angle. where the chamel made the east turn, he has laid down a sput bare at low water, with seven fathoms close under it. From the cape it bears s. by W. $2 \frac{1}{4}$ miles.

    The main channel eastward of Sandy island was under Chinook and Ellis Points, having deep water off them, but becoming shoaler and intricate beyond them.

    Between this chamel and the south shores lay the great shoal existing in 1792, not very much changed in features, with a narrow channel running from Point Adams to Ti ngue Point, having from $4 \frac{1}{2}$ to 9 fathoms.

    The west end of this, shoal stretched out to the Ine joiling Chin ok Point with Point Adams, about a mile from the latter, whilst between the tail of Sandy island and this shoal was a channel half a mile wide, and having fiom 3. to 43 f.thoms. Between Sandy island and Point Adams ran Quecn's clammel*, contracting to half a mile wide within the three-fathom lines, one mile from Point Adans, gradually expanding and running in a general direction W. by S. for $3 \&$ miles, when it divided into 1 wo-one runuing into the north chanel through a narrow four-fathon cut, and the other continning south, forming a south channel one, third of a mile widu, and having $3 \frac{1}{4}$ and $3 . \frac{1}{2}$ fathoms upon it. From Cape Dieappointment it bore S. $\frac{1}{2}$ E., distant four miles, and from Point Adams W. by S. $\frac{3}{2} \mathrm{~S}$., four miles. Between the two bars, about two miles apart, lay an irregular shoal of small extent, having 212 fathoms upon it. The joining of the North and Queen's chanocls enabled a vessel to lave a four-fathom chanael south of Sandy island, with a leading wind in summer time, while the north was a beating channel.

    A spot, bare at low water, existed $1 \frac{1}{4}$ mile from Point Adans, its northern extremity close to Qucen's channel, and bearing west from Point Adams. It stretched south half a mile, and was uearly a quarter of a mile in width.

    It may not be out of place here to note that the chanel on the sonth side of the river, east of Tongue Point, now known as the Woody Istand channcl, and claimed as a recent discovery, is clearly indicated by the soundings of Belcher.

    By a comparison with the partial survey of 1792 very remarkable changes will be seen to have taken place. The first is the formation of the great Midale Bank*, covering an extent of four square miles within the three-fathom lines, and part formed into an island occupying the track which Broughton, and doubtess Gray and Baker, sailed over with five fathoms; the formation of two channels; the bank on the SW. face of Cape Disappointment stretching $1 \frac{1}{2}$ mile southward of its old limit, and almost crossing the only channel of 1792 ; the existence of the M.ddle Bank, within half a mile of the cape, and having but one fathom upon its northwest point, where the Sulphur grounded, when Broughton states that he anchored $1 \frac{1}{4}$ mile E. by S. $\frac{3}{2} \mathrm{~S}$. from the inner part of the cape, there being deep water between him and the cape, whilst the Spit Bauk, which was within a cable's length of his anchorage, and stretching to Chinook Point, had been cut away by the broad Belcher channel; the eutting away of three miles of the western part of the shoal off Point Adans, and the opening of the channel along the Clatsop beach and south shore, past Point St. George and Tongue Point.

    Belcher calls the bank S.SW. of the cape the Spit Bank; and where Broughton's Spit Bank joins Chinook Point, he designatea it Chehalis Spit.

    In his narrative he remarks "that the choals in the entrance to this river have most materially changed their features within the last two years.'-(Vol. 1, p. 288.)

    Survey of the United States Exploring Expedition, 1841.-In this survey we find but one opening to the ocean, with the inside north and south channels eombining and passing through it. The sundings are not numerous enough upon and outside the bar to enable its proper form, extent, and depth of water being ${ }_{t}$ raced. Not less, however, than four fathoms are shown upon it, and as much as $4 \frac{1}{2}$ fathoms are fonnd on one particular line crossing it. Within the five fathom curve the bar was two thirds of a mile across, and stretched seaward in the form of a horseshoe from the north to the south breakers.

    From Cape Disappointment the shoalest part of the bar bore SW. by S. $\frac{1}{2}$ S., distant four miles; from the norhernmost trees on Point Adams it bore W. by S., distant $6 \frac{1}{2}$ miles; this line passing tangent to the north end of the soutlo breaker. Towards the contracted channel in-ide the bar the north shoal stretches S. $\frac{1}{2}$ W., $2 \frac{1}{2}$ miles from the cape, and the great snuth shoal streteltes mearly $\mathbb{W} . S W$., fire miler from Point Alams. At a distance of two miles inside the bar these shols contracted the channel to a width of one mile, and increased the depth to nine fathoms.

    From the bar the eourse in for the north clamel was E.NE. for $\frac{24}{4}$ miles, when Cape Disappoiutment bore N. by W.; then N. $\frac{1}{2}$ W., $3 \frac{1}{4}$ miles, to the inside of the cape, off which the chamel was less than half a mile wide, with five fathoms close under the bluff, and 17 fathoms in the deepest part. After passing the cape one-third of a mile the channel was wide, regular, and deep for four miles, ruming nearly E. by S. $\frac{1}{2} \mathrm{~S}$. towards Young's Point, and passing between the bare parts of the middle bank forming Sandy island, and the Chinook shoal. At the castern end of Sandy island the north and south chamels came together for three-quarters of a mile, with a depth of 41 fathoms, and the midde bearing north $1 \frac{1}{4}$ mile from Point Adams. The great middle shoal then separated them, and the north chamel ran close under the shores at Chinow Point and Pont Ellis, contracting and shathig to three fathons where the Tongue Point chamel entered

    From the bar the course for the south channel was E. by N. $\frac{1}{2}$ N. for $6 \frac{1}{4}$ miles, running within threequarters of a mile of Point Adams with five fathoms; thence along the Clatsop beach E. ly S., 32 miles in a grood channel, half a mile wide, and having from six to eight fathoms of water; and finally NE. by E. 21 miles, passing Young's Point, and ruming close under the souheru shore near Astoriat.

    The middle bank* was nearly triangular, with one point abreast of Cape Disapmintment; the second, $1 \frac{1}{3}$ mile N. by W. from Point Adams, and four miles E. by S. $\frac{1}{3}$ S. from the cape; and the third at the confluence of the chamele inside the bir, and $2 \frac{1}{2}$ miles SE . by $\mathrm{S} . \frac{1}{2} \mathrm{~S}$. from the cape. Each side waf, therefore, about three miles in length. Sandy island was then composed of two parts; the castem cud of the larger and southern one Learing N.NW. $1 \frac{1}{4}$ mile from Point Alams.

    The western tail of the great middle shoal,t lying eastward of Point Adams, bore from that point about N.NE., a little over a mile distant, and in range to Chinook Point; from Cape Disappointment it bore E. by S. $\frac{1}{4}$ S., distant $4 \frac{3}{4}$ milce.

    The map of the survey of the Uuited States Exploring Expedition shows the distance from Cape Disappointment to Point Adams as being only $4 \frac{1}{2}$ miles, with the bearing SE. by E. $\frac{1}{3}$ E. The distance should be almost five milhs, according to the triangulation by the U. S. Coast Surrer.

    The channel on the south side of the river and east of Tongue Point, mentioned as being clearly indicated by the admiralty survey of 1839, was developed by the U. S. Exploring Expedition in 1841. It was named the Boston chanacl, and strikes the north shore chanel $7 \frac{1}{2}$ miles above Tongue Point, and about one mile above the Pillar rock.

    The changes that had taken place since Belcher's survey, two years previous, were: that the south sands had stretched westward over the entrance of Queen's or the south chamel; and that chamel had joined with the north and emptied over one bar, which was almost identical in position and extent with the survey of 1839 .

    The north channel was, therefore, little changed; it had several lumps with only four fathoms upon them; its general direction was the same; it had at least a fathom more than the south channel, and retained the same shape and direction after passing inside the cape.

    The contour and position of the middle bank was nearly the same, but its eastern point had moved nearly half a mile to the NW., giving deep water where Belcher placed the eastern part of Sandy island, whilst the western islet occupied nearly the same position as formerly.

    The western extremity of the great middle shoal, east of Point Adams, was hardly changed.
    The course in over the bar, and through Queen's or the south channel, was straight for over six miles to abreast of Point Adams, and then ran in the same direction as in 1839.

    The United States sloop-of-war Peacock was lost on the north shoals, 112 mile S. by W. from Cape Disappointment.

    SUIVVEY OF 1850.
    This, the first examination by the Coast Survey, was undertaken under peculiar diffeulties which were successfully overcome.

    In this survey we find the formation of a new south entrance, but evidently of so recent date that the bar at the entrance cannot be said to have over 16 feet upon it, although two very narrow passages on either side of the middle ground of the bar give three fathoms. From Point Adams this bar bore SW., distant $3{ }^{3}$, miles, being S.SE. 54 miles from Cape Disappointment light-house. Inside the entrance, within the threefathom curve, the width of the chamel was balf a mile, increasing to over a mile, and the depth of water regularly increasing to 14 fathoms off Clatsop spit, $1 \frac{1}{2}$ mile from Point Adams, on a line to Cape Disappointment. The direction of the chemmel was straight, N. by E. $\frac{1}{2}$ E. to Sandy island, rounding Clatsop spit, and running close to and parallel with the beach cast of Point Adams, with a depth of from four to eight fathoms. From the ontside of the bar the south edge of the south shoal stretched toward the shore, the bottom changing from hard sand to soft mad in approaching the beach.

    The extent of the north bar had so much increased that it is diffienlt to describe, for it had an area of over two square miles, with from 4 to $5 \frac{1}{2}$ fathoms upon it, and the bottom vary ing from hard sand to soft mud. The middle of it lay south 33 miles from the highest part of the cape. Within the three-fathom line the entrance was $1 \frac{1}{2}$ mile wide, and in ordinary weather was marked by a line of breakers on either side. The course was nearly straight to the inner point of the cape, with the depth of water increasing to 11 fathoms abreast of it, where the channel was a little over a third of a mile wide, with the Sulphur spit on the east side. Passing the cape, and turning eastward and then F.SE., the three-fathom channel was crooked, and in one place only 400 yards wide.

    The north and south bars bore from each other SE. and NW., distant $3 \frac{1}{2}$ miles apart, with the seaward face of the middle bauk making a direct linc on that coursc. This bank had changed its contour, and was very irregular.
    W.SW. of Sulphur spit a three-fathom channel had nearly cut through the north sands. Should a channel open here it would doubtless remain a reliable one. From Cape Disappointment it bore SW. $\frac{\frac{1}{2} \text { W., }}{\text { W }}$ $1 \frac{1}{2}$ mile distant.

    Sandy island bore E. by S. $\frac{3}{4}$ S., three miles from the cape, and NW. $\frac{1}{4}$ N., two miles from Point Adams.
    The western tail of the great middle bank bore NE. by N. $\frac{1}{2}$ N., a mile from Point Adams.
    At the time of this surrey the channels were buoyed out, but subsequent gales displaced the buoys.
    We note the following changes since the survey of 1850, a little over two years:
    That the new south channel had been developed, and the bar moved three-quarters of a mile eastward, with half a fathom more water and the entrance wider.

    That the north channel had contracted to half its width at the bar, with its northern line upon the line of 1850 ; the depth of water not quite so great, but still having a fathom more than the south bar, the chaumel not as straight, and the formation of a swash chamel SW. of the cape across the north sands.

    That the Spit bank of $179:$ was being redeveloped.
    That the middle bank had increased in size, and Sandy island moved over a quarter of a mile W.NW., giving eight fathoms of water where the beacon of 1850 stood, and the bifurcation of the bank, bare at low water, west of it. Compared with the surveys of 1839 and 1841, we find that one part of Sandy island has retained the same position, but that a mile, stretching E. by S. $\frac{1}{2}$ S., has been completely cut away, and is now crossed by the south channel.

    That the Clatsop spit has changed its shape, trending more to the westward.
    And that the western tail of the great middle bank, east of Point Adams, occupies the position of 1839 and 1841 :

    No survey has been made subsequent to that of 1852 , but we can state, from personal observation, that in October, 1857, the south bar was within less than a mile of the beach south of Point Adams, and that the channel ran nearly parallel with, and not distant more tham three-quarters of a mile from the shore. It was unavailable with a very heavy sea on, as a vessel had to run it in the trough of the sea, and for sailing with a NW. wind it was a dead beat. We entered the north chanuel in May, 185\%, and found it wide and straight. It was reported to have one fathom more water on the bar than the south. Those of the old buoys that remained were of no use, on account of having been carried from their proper stations.

    Conclusions.-From all these examinations, aided by plotting the outlines upon the same shect and to the same scale, from corroborative evidence, and from personal observation, we find that the south point of the north sands stretching out from Cape Disappointment has remained nearly the same since 1839, bearing S. 3 W. from the light house, distant $2 \frac{1}{2}$ miles; has not varied its position half a mile; has never reached the southern shoal of 1792; and that the bar has never had less than four fathoms upon it, thereby indicating that this entrance and channcl is the less changeable, and has a fathom more water than the other, and that, with well-appointed buoys off its entrance, and range beacons on Sandy island and Chinook Point or Scarborough Hill, it will always prove the safer and better for the interests of the country.

    The position of the south entrance is continually changing, and the same causes that closed it between 1839 and 1841 will again close it.

    The great middle bank, stretehing from Point Ellis nearly to Point Adams, remains almost the same since its first determination,

    The formation of Sandy island prceludes the probability of the channel returning to the eapacity which existed at the period of Broughton's survey in 1792.

    In 1859 we published the following remarks in relation to river and bay deposits, and eapecially those forming Sandy island: "A large drift tree whose roots embrace a mass of hard clay or stones sufficient to give the whole mass a slightly greater specific gravity than water may very readily be caried outward by the strong effluent current of the Columbia, and especially in the season of freshets; but when the current slacked the root of the tree would remain upon the bottom, sink into the sands, and continue stationary whilst the remaining movement of the current would be able to shift the loose sand and deposit it around the roots, where it would remain during slack water. After a slack of half an hour, during which time the waves would give motion to the mass to work it deeper in the sands, the flood carrent making feebly at first, would then add more sand to the already incipient deposit; should this flood be a small one, or other farorable circumstances conspire, the tree or trees might, during the one slack-water, be firmly enough fixed to resist the action of the flood."

    During the heary freshets, late in 1861, immense trees floated down the river in a nearly perpendicular position, their roots holding amongsi them large guantities of earth and stone torn away when the bluff bauks were undermined by the rush of the currents. Such causes may have led to the formation of Sandy ieland.

    Hydrographic recomaissances and views of the entrance to the Columbia river were issued from the Coast Survey Office in 1850 and 1851.

    ## POINTS INSIDE OF COLUMBIA RIVER ENTRANCE.

    Sandy island, (1851.)-It is about onc-third of a mile long, ENE. and TV.STV., by 250 yards in width, and consists of loose sand raised a few feet above the river, and covered with drift logs, trees, \&e. To the westward of it extend two sand bars ncarly a mile in length, and bare at low water. The surveys of 1839, '41, '50, and '52 show that this part of the middle bank has oceupied one position, and will doubtless retain it. In 1792 the main channel of the river passed over this position, and a line of soundings in five fathoms ran across it. Considering the immense amount of huge trees coming ycarly down the river, we can readily imagine the manmer of its formation. A large beacon, erected upon it, distinguishable outside the bar, and ranging with another on Scarborough Mill, would serve to denote the position of the north chamel.

    From Cape Disappointment light-house it bears E. by S. $\frac{1}{2}$ S., distant $3 \frac{1}{6}$ miles.
    It received its present name from Beleher in 1839 . On the Coast Survey charts it is called Sand island.
    Chinook Point, on the northern side of the river, lies N. by L. $23 \frac{3}{4}$ miles from Point Adams, and E. 4 N. 43 miles from Cape Disappointment. It is a long, low sand strip at the base of the high wooded hills behind it. One of the hills, called Scarborough, is readily recognized by a great part of its southern slope being destitute of trees and covered with fern; no other hill near this vicinity possesses this peculiar feature.

    A number of fishing and Indian huts are situated upon the Chinook beach, the people being engared in catching and curing salmon, with which the waters abound. The mode of catching them is by means of nets; those of Indian construction being made of twine spun from the fibres of the spruce roots, and sometimes from a peculiar grass obtained from northern cosst Indians. The mode of curing is very rude and jnefficient, and thousands of barrels that have been shipped have proved worthless. There is no reason why this should not become a large and profitable branch of business. The fish are the largest on the const, often exceeding 80 pounds weight. We have purchased them weighing between 50 and 60 , canght upon the
    beach at the sea base of Cape Disappointment. They eommence to run about the end of May, and become remarkably plentiful by the third week in June. The Indians suppose that the salmon, coming directly from the ocean, lingor about the entrance several weeks before starting up the river, because they require time to become accustomed to the fresh water; attributing to a wrong canse this normal habit of the salmon-

    Chinook Point was the special Deation of the once powerful tribe of Chinook Indians, and here the celebrated one-eyed chief, Concomly, held sway. The tribe has dwindled to less than a hundred personsmen, women, and children-and they are poor, miserable, drunken, diseased wretches.

    The point was called Village Point by Broughton in 1792.
    In 1839 it was called Chenoke Point by Belcher. The Indian name is Nóse-to-ilse.
    Point Ellis, on the northern side of the river, is $2 \frac{3}{4}$ miles, ncarly east of Chinook Point; the sand beach between the two being in some places nearly a mile wide, ranning at the base of the hills, and surrounding a large lagoon near Chinook. From Point Adams it bears NE., distant $4 \frac{1}{3}$ miles.

    Behind Point Ellis rise two hills, the southern of which is used as a range with Point Adams for denoting the eutrance to the south channel, but, of course, the relative positions rary with every change of the bar.

    It was named Ellis Point by Beleher in 1839, and Point Ellice by the United States Exploring Expedition in 1841 , and this spclling is foumd upon all recent maps.

    The Indian name is No-wehtl-kai-ilse.
    Point George, on the southern side of the river, is the first point made after passing eastward of Clatsop beach. Inmediately behind it the land is high and densely wooded; and around its southern face opens Young'b river.

    It was called "Point George" by Broughton in 1792; "George Point" by Belcher in 1839; "Young's Point" by the United States Exploring Expedition in 1841; "Smith's Point" by the Coast Survey, in the triangulation of 1852 ; but it is, we believe, generally known as Young's Point.

    Astor Point, on the sonthern side of the river, lies L. $\frac{3}{4}$ N., distant $5 \frac{1}{3}$ miles from Point Adams. It is low at the river bank, but has moderately high wooded land behind it. The southern channel passes close to it. The name is derived from a Coast Survey triangulation and secondary astronomical station upon it, but it is in reality a part of Point George.

    The geographicat position of the station, which is about a quarter of a mile westward of the bay, in front of the town, is:

    $$
    \begin{aligned}
    & \text { Longitude................................................................... } 1234932 \text { west. } \\
    & \text { Or, in time. .............................................................. } 8 \text {. } 15 \text { 18.1. }
    \end{aligned}
    $$

    Tongue Point, on the southern side of the river, bears E.NE. $8 \frac{3}{4}$ miles from Point Adams, and NE. $\frac{1}{3}$ E. $3 \frac{1}{2}$ miles from Astor Point. It is a high, bold bluff covered with trees, and connected with the main by a moderately low, narrow strip of land. As first made, off the entrance, it appears like a low wonded island. Close to it runs the Woody Island channel, which is plainly foreshadowed in Belcher's survey of the river. The Indian name of Tongue Point is Soo-kum-its-éak.

    Between the last two points lie the rival villages of Upper and Lower Asteria. The lower is the western, and on the location extablished by the Pacific Fur Company in 1811, and to which was given the name of Astoria. A large saw-mill is in operation here, and a military post was established, but abandoned a few years since. The place contains less than fifty houses, and at one time, as a landing place, had an unenviable reputation on account of the character of the "beach-combers."

    The name of the place was changed to Fort George in 1813, on being taken by the sloop-of-war Raccoon. The original name was restored in 1818.

    At Upper Astoria is located the custom-house, off which is the rendezvous of the United States revenue cutter. A large saw-mill is built here, and a government military road is being opened to Salem, on the Willamette river. Between the viliage and Tongue Point lies the wreck of the Silvie de Grace, around which a sloal has formed.

    Cape Broughton is on the north side of the river, N.NW. $3 \frac{1}{4}$ miles from Tongue Point, and NE. 4 E. 53 miles from Ellis Point.

    It was named by Belcher in 1839, but was called Gray's Point by the United States Exploring Expedition. This last designation was also applied by the Coast Survey in 1852.

    The head between Ellis Point and Cape Broughton was named Chatham Head in 1839.
    Gray's bay lies to the NE. of Cape Broughton, and was named, in 1792, in honor of Captain Gray.
    Soung's buy lits between the castern part of the Clatoop beach (called Tansey Point) and Point George. Into it empty Yoneg's rirer, discovered, examined, and named by Broughton; Lewis and Clarke's river, examined by them in 1805; and one or two small etreams or sloughs.

    Baker's bay lies between Cape Disappointment and Chinook Point. It runs $2 \frac{1}{2}$ miles to the northward of the cape, and receives the waters of the small streams which head toward Shoslwater lay, and comnect with them by a small portage. The western and largest stream is the Wal-la-khut; the eastern, half-way between the cape and Chinook Point, is the Wap-pa-loo-che.

    Two or three houses on the shore of the bay, and a saw-mill, are all that remain of the settlement once designated as "Pacific City." The bay was named in honor of Captain Baker, whom Brongliton found anchored here in the schooner Jenny, of Bristol, when he entered.

    The Columbia river was called the "Oregon" from the mere mention of that name by Carver in 1766 . Much doubt exists as to the origin of the name.

    In 1775 it was called "Assumption Inlet" by Heceta, but afterwards the Rio de San Roque, from his naming the northern cape San Roque; and also the Enseñada de Heceta.

    In 1759 Meares called it "Deception bay."
    In 1792 it was named the "Columbia river" by Gray.
    Clarke says that, in 1805, the Indians knew it as the Shocatileum, and another name obtained from another body of the natives was Chockalilum; the two being evidently the same word differently pronounced; the accent should be on the penult.

    When the name given by Gray was first changed we cannot state. It was, perhaps, done by Yancouver or Broughton.

    Lewis and Clarks, in noticing the growth of trees on the Columbia, mention a fir near Astoria that was 230 feet high, and 190 feet of that height without a branch. Its circumference was 27 fiet. This same tree is doubtless referred to in the arrative of the United States Exploring Expedition, where the dimensions are given as follows: 391 feet in circumference at eight feet above the ground; bark, 11 inches thick; height of the tree 250 feet, and perfectly straight. Visitors used to be shown "the big tree" as one of the notable sights of the locality.

    Belcher says that "the timber of the Columbia, cither for spars or plank, cannot be compared to that of higher latitudes; for topmasts aud topgallant masts it is probably as tough, but heavicr. * * * * Probably no part of Western America can produce timber of the dimensions grown in the regions of the Columbia and the northern confines of Californa. Amongst the drift trees, on the banks of the Columbia, we measured one 174 fect long by 20 feet in circumference, and many 150 feet by 13 to 18 . These, of course, were washed from the banks, and therefore not the largest, which grow invariably in the thickest part of the wood."-(Vol. 1, p. 300.)

    In Baker's bay, in 1851, we measured a drift tree which had been thrown upon the beach. It was 267 feet long, 27 feet in circumference with the bark petled off, and where broken at the small end 20 inches in diameter. Very frequently, when trees are felled for cuttiag iuto lumber, the first 30 or 40 feet of the trunks are found too large for the saw-mill, and have to be cut off and left on the ground.

    ## general course of the columbia river.

    From the entrance to the mouth of the Cowlitz river the general course of the Columbia is E. by N., and the distance in a straight line 46 miles from the bar, and by the windings of the river about 52 miles. The Cowlitz runs N.NW. for 24 miles; thence NE. to its headwaters in the Cascades; it is navigated by canoes about 28 miles to the Cowlity landing. The stream is very rapid, and boats have to be poled the greater part of the way; at high stages of the water they are pulled up by hanling upon the bushes growing apon its banks. At the Cowlitz landing travellers take mules or horses through to Puget's sound, a trip of 52 miles. On the west bank of the Cowlitz, five miles above its mouth, are a few small honses, locally known as the town of Monticello. On the south bank of the Columbia, opposite the Cowlitz, is another small settlement, called Rainier.

    From the Cowlitz the next course of the Columbia is $S .32^{\circ}$ E. for 29 miles to the mouth of the Willamette river*. About 16 miles above the Cowlitz the Warrior branch or slough of the river makee in
    a A corraption of the Iadian name Wallamut. This ktream is the Multnomah of Lewis and Cl ake, 180 .
    from the west side and runs around Multnomalisland, coming into the Willamette two miles above its mouth. The Willamette continues the same general course of the Columbia for 16 miles to the falls, where is situated the town of "Oregon City," destined to become a place of importance, on account of the extensive waterpower; the river there falling perpendicularly 38 or 40 fect. Six miles lower down on the Willamette is the rapidly improving town of Portland, situated at the lear of ship navigation, with a population of nearly 5,000 . The valley of the Willamette is well settled, contains several thriving towns, and is remarkably productive.

    The river takes its rise on the western slope of the Cascade range, about latitude $433^{\circ}$, between the snow peaks of Mount Jefferson and Mount Langhlin; then runs westward to within 50 miles of the coast, and nearly in the latitude of Cape Perpetta, turning sharply to the northward, and very slowly leaving the coast.

    From the mouth of the Willamette the general course of the Columbia to Fort Walla-Walla is NE, by E. $\frac{1}{2}$ E., 170 miles.

    Five miles above the Willamette, on the north side, is the military post of Fort Vancouvcr, which, with the town of Vanconver, covers part of the gromds formerly occupied by the Hudson Bay Company as a mercantilo station, but then designated as Fort Vancouver. The Hudson Bay Company still have a trading station here, but their farms and grazing lands have been occupied by settlers. The site for a town is one of the most beautiful on the river, and capitally located for increasing trade.

    About 30 miles further up the river we reach the fuot of the Cascudes, which are a series of rapids four milea long, where the river busts through the castern part of the Cascade range of mountains, whose basaltic walls rise precipitously over 3,000 feet on either side, presenting a maguiftent sight. Below the rapids the current rushes by with great vclocity and deplh, but small steamboats ply regularly from Portland and Vancouver to the foot of the rapids; thence passengers are carried by stages to the head, where one or two fine steamboats convey them 50 miles to the Dalles. The Hudson Bay Company carried their large tradiug boats up the rapids by a system called cordelling. Steamboats have gone up one or two miles, and, in one instance, a brig, with every sail set and a moderate gale astern, was carried safely to the foot of the railroad, which runs from the head to within a mile and a half of the lower end. At each extremity of the rapids are small military posts.

    The snow peaks of the volcanic Mount S. Melens and Mount Hood lie exactly in line with the Cascades, the former NW. $\frac{1}{4}$ N., 35 miles distant; the latter SE. $\frac{1}{4}$ S., 28 miles distant.

    Mount Hood is an extinct volcano corered with cellular lava, and, according to Dana, is between 15,000 and 16,000 fect high. According to other authorities, it attains an elevation of 18,316 feet.

    At the Dalles the river is contracted between narrow perpendicular walls, and during freshets rises 100 feet above its ordinary level.

    East of the Cascades the forests cease, and above the Dalles stands the only tree in a stretch of 60 miles beyond Walla-Walla, where the river makes a great bend to the northward, in the direction of its source at the base of the Rocky monntains.

    On the lower part of the Columbia and Willamette many saw-mills have been erected since the gold discovery in Califonia, and a large trade was carried on in lumber. Between San Francisco and Portland a very large and increasing general trade exists.

    The weather off the Columbia entrance is cold and wet, with occasional thunder-storms, but these are rare. Vancouver says he saw several watcr-spouts off it in October, 1792 ; some of them were quite near bis vessel.

    ## SHOALWATER BAY

    The bold cliffs of Cape Disappointment, after extending about three miles northward, change suddenly to a low, broad, sandy beach, running N. by W. $\frac{1}{2}$ W. 18 miles, in nearly a straight line to the southern pointrof the entrance to Shoalwater bay. A mile and a quarter behind this beach lies the southern arm of the bay. Its waters reach within a mile or two of the north side of the cape, and the portage from them to the Wappalooche, emptying into baker's bay, is said to be about a mile long, and always used by the ludians and eettlers. The peninsula thus formed is covered with trees and a dense undergrowth of buahes. Within half a mile of its extremity it becomes very low and sandy, and has a covering of coarse grass, but no trees. This point was called Low Point by Mcares in July, 1788. On the recent Cbast Survey charts
    it is named Leadbetter Point. The Indian designation is Chik-lis-ilh. Its approximate geographical position, as given by the Coast Survey, is:

    | Latitude | 403645 north. |
    | :---: | :---: |
    | Longitude. | 1240045 west. |
    | Or, in time | $\begin{array}{ccc}h . & \text { m. } & s . \\ 8 & 16 & 03.0\end{array}$ |

    The computed magnetic variation, $20^{\circ} 35^{\prime}$ cast, July, 1851 , with a yearly increase of $1^{\prime}$.

    ## CAPE SHOALWATEL.

    From Leadbetter Point the north eape bears NW. by N. $\frac{2}{3} \mathrm{~N}$. , $5 \frac{1}{2}$ miles distant. Half a mile of the cape is low, sandy, and destitute of trees, but some tolerably high land covered with wood rises immediately behind it, being the only elevated groind between Cape Disappointment and Point Gremille that approaches the shore-line. On account of this formation of the point it has been said that the entrance resembles that of Columbia river. We have been unable to detect any resemblance after passing near it several times. The isolated position of Cape Disappointment and the seaward face of its bold cliffs without trees form a peculiar feature. This, with Scarborongh Hill, partly bare, lying five or six miles east of it, the high mountains inland, and in clear weather the beautiful snow-peak of Mount St. Helens, have no counterparts at Cape Shoalwater, and should remove all doubt in regard to gencral resemblance.

    The point was named Cape Shoalwater, and placed approximately in latitude $46^{\circ} 47^{\prime}$ by Meares in July, 1788. In 1792 Vancouver assigned the latitude of $46^{\circ} 40^{\prime}$. It was viewed from the north side of Cape Disappointment by Lewis and Clarke in 1805, and called Point Lewis, bnt is now frefuently known as Toke Point, from the name of an old Indian chief living here in 1854. The Indian name of the point is Quahpt-sum.

    IIGHT-HOUSE AT CAPE SHOALWATER.
    The lighthouse at the north point of the entrance to Shoalwater bay is a structure consisting of a keeper's dwelling, with a tower rising through it and surmounted by an iron lantern, painted red. Its height is $41 \frac{1}{2}$ feet above the ground, and about 87 feet above the mean level of the sea. The dwelling and tower are plastered and whitewashed, and situated about a mile from the extremity of the cape. The illuminating apparatns is of the fourth order of Fresnel, shows a fixed white light varied by flaskes, and should be seen from a height of-

    10 feet at a distance of $144^{-}$miles.
    20 feet at a distance of 16 miles.
    30 feet at a distance of 17 miles.
    It was first exhibited on the 1 st of October, 1858, and shows from sunset to suncise. The approximate geographical position of the light, as determined by the Coast Survey, is:

    | Latitnde . | 464411 north. |
    | :---: | :---: |
    | Longitude. | 1240224 west. |
    |  | h. m. s. |
    | Or, in time | 816096. |

    This light is sometimes known as Toke Point light. It was discontinued Septemher 1, 1859, and relighted (date not known.)

    The topography of the vicinity has not been executed.

    ## ENTRANCE TO SHOALWATER BAY.

    There having been no survey of Shoalwater bay previous to the preliminary one of the Coast Survey in 1852 , and the completion of it in 1855 , it is impossible to state what changes have taken place. Judging by the changes of the Humboldt, Cmpquah, and Columbia bars, we should conclude that similar effects take place here. In less heavy weather than would cause the sea to break on the Columbia river bars, it breaks here with fury quite across the entrance. This description applies to 1852. Charts lave been published by the Coast Survey of the respective dates already mentioned.

    Four miles off the entrance a depth of 10 fathoms is found, and when well off shore a high double-peaked mountain shows to the eastward, well inland. Meares noticed it, and placed it in latitude $46^{\circ} 30^{\prime}$, quite close

    47 cs
    to the coast, designating it as Saddle mountain, a name it still retains, although one of the same name is found SE. of Point Adams.

    At the present time there are two channels, denominated from their position the north and south channets, with a large shoal called the middle sands lying between them, and partly outeide of the line joining the two point.

    The bar at the south chomme? has four fathoms of water upon it, is a mile wide, and lies two miles off the beach south of Leadbetter l'oint, with the northernmost trees bearing NE. by E. Running in on this line a vessel shoals her water from 10 fathoms three miles off shore, to 4 fathoms two miles off; then gradually deepens it to 5 fathoms, when she should haul close np under the point of breakers northward of her, and about half a mile distant; run along in trom 6 to 7 fathoms until abreast of the low grassy point, when the course of the chamel will be N. by W. $\frac{1}{2} \mathrm{~W}$. for $1 \frac{1}{2}$ mile, with from 8 to 10 fathoms, hard bottom, its outline being well marked by the breakers outside. From thence a course NE. by N. for two miles will lead to 18 fathoms, and over a mile inside the line joining Leadbetter Point and Cape Shoalwater, the western trees on Leadbetter Point bearing S. $\frac{1}{2}$ E., $3 \frac{3}{4}$ miles distant. If the tide is low, sand bars and flats will show on both hands, one directly ahead; the broad deep channel to the southeast distinctly marked by bare patches on either side, and a narrow deep channel to the northwest running into the north channel. From the last position the western trees on Leadbetter Point lear somth, distant four miles. The greater body of water passes through this channel, and the current rums very strong. In summer, with a northwester blowing, it is a dead beat after passing the bar, and in some places the channel is less than half a mile wide between the three-fathom lines. Coasters do not enter it except with a southerly wind, and always pick out the channel from aloft. In summer they have a leading wind out, and start on the first of the ebb.

    The bar at the north channcl has about $3 \frac{1}{4}$ fathoms upon it, and bears SW. by S. $\frac{1}{4}$ S., three miles from the southern extremity of Cape Shoalwater. It is about a mile in extent within the three-fathom line.

    In making the bay from the southward in summer, work to the northward of Cape Shoalwater, then run in and follow the shore outside of the breakers in six or seven fathoms, gradually approaching them, and decreasing the depth to $4 \frac{1}{2}$ and 4 fathoms, when the southern side of the elevated ground of the cape bears NE. by N. $\frac{1}{2}$ N. Then head up as near that course as possible, crossing the bar in 34 fathoms, and continuing in that depth for at least a mile and a quarter, taking care not to decrease it on cither hand. Keep under the breakers on the north side in from 5 to 7 fathoms, hard bottom, and increase the depth to twelve well inside the point, when its southern extremity should bear NW. $\frac{1}{2}$ W., distant $1 \frac{1}{2}$ mile. If it is low water, sand banks will show in different directions, and the channels will be tolerably well marked.

    The present invariable practice of vessels entering is to seck out the channel from the mast-head. In calm weather the channels must be known, or a pilot employed, if one is to be found.

    The north bar bears NW. by N. $\frac{2}{3}$ N., distant five miles.
    The middle sands lie between the two channels. The southern tail is SW. 18 mile from Leadbetter Point, runs NW. by N. 2 N. for $2 \frac{1}{4}$ miles, then N.NE. $2 \frac{1}{4}$ miles, and E.NE. $1 \frac{1}{2}$ mile, with an average width of $1 \frac{1}{4}$ mile. Onc mile outside of it soundings are found in 7 fathoms.

    This bay, as its name implies, is so full of shoals that at low tides alont one-half of its area is laid bare. Good but narrow channels are found throughout its extent, but no direction can be given for running them Without a knowledge of them, or without a pilot, follow them only at low water. The currents then run with great velocity, and it is very difficult and frequently impossible to keep a course against them. The arm stretching southward toward Baker's bay is 15 miles long from Leadbetter Point, with an average width of not less than $3 \frac{1}{2}$ miles, whilst the upper portion stretches to the NE. for nine miles to the north of the Whil-a-pah river, reckoning from the middle of the line joining Cape Shoalwater and Leadbetter Point.

    The principal stream cmptying into the bay is the Whit-a-pah, at its northeast part. At about mine miles from Cape Shoalwater it is less than a quarter of a mile wide, with low swampy banks and steep bluffs on each side about a mile and a balf apart.

    The mouth of the Palux, or Copalux, lies five miles NE. $\frac{1}{2}$ E. from Leadbetter Point. It is half a mile wide at its mouth, contracts very much in two miles, and is bordered by marshes, with numerous sloughs running through them.

    The Násal enters about eleven miles south from the Palux, and abreast of the middle of Long island. It has over 20 feet water at its mouth, with bluff banks for some distance, until it begins to expand, when it is bordered by flats.

    Several streams open from the north side of the bay. One of these, the Necomanche, near the Whil-a-pah, has six feet in the main channel, and shows $1 \frac{1}{2}$ mile wide at high tide.

    There are three islands in the bay. Pine island, abont $1 \frac{1}{2}$ mile NW. by N. off the mouth of the Palux, is a small sand islet of only four or five acres in extent, and occupied by oystemen. It is near the chamel and oyster beds which stretch for a couple of miles to the N.NE. of it. The Indian mame of this island is Nasetoo. The north end of Lons island is eight miles from Leadhetter Point. This ishand runs irregularly about SE. for six miles, and has an average width of $1 \frac{1}{2}$ mile. It is covered with a dense forest of fir and undergrowth. One mile S.SE. of Long island is a very small ivlet called Round ishond, of ouly a few acres in extent, covered with wood and bushes. The shores of the hay, except on the peninsula, are mostly composed of low, perpendicular cliffs of a sandy clay, in which are strata of recent fossil shells and the remains of trees. Where the faces of the cliffs are not washed by the waters of the bay they slope gently, and have a snall grassy shore at their base.

    NE. $\frac{3}{4}$ N., distant six miles from Leadbetter Point, is a sharp narrow cliff, 60 fect high, making out into, the bay, which is wearing it away, and has exposed many large basaltic boulders. No other place on the bay presents this geological feature.

    The peninsulu is a long, flat, marshy, and sandy plain, elevated but a few fect above the level of the sea, and covered, like the entire surface of this country, with a dense growth of gigantic forest trees, principally spruce, fix, and cedar, with a few specimens of maple, ash, and black alder. The spruce ficquently attains a diameter of eight feet. The Indian mame of the peninsula is Tecechoots.

    The shoals are covered with shell-tish, among which the oyster is the most abundant, and the principal article of export. They are small and have a coppery taste. Codfish and halibut alound; sturgeon, said to be of good quality, are plenty, and salmon of several varieties and excellent flavor exist in infuite numbers. In spring vast shoals of small herring enter the bay. In winter wild fowl are innmerable, but these have been made shy by the bad shooting of the Iudiams. Black and white swan, geese, mallards, canvas-backs, \&e., always reward the experienced sportsman.

    The yearly shipment of oysters is about 30,000 bushels, and of piles and epars abont 30,000 feet. The average valuation of exports is $\$ 120,000$. The number of vessels entering yearly is about 25, nearly all of which are schooners, counting an agoregate of 2,500 tons. In 1855 the population on the bay was 190 males and 60 females.

    This bay was discovered by Lieutenant John Meares, July 5, 1788, in the Felice, when proceeding in search of the Rio de San Roque of Heceta. IIe approached it until the water shoaled to cight fathoms, when the breakers ahead warned him to haul off. "From the mast-head it was observed that this bay extended a considerable way inland, spreading into several arms or brancles to the northward and eastward, and the mountainous land behind it was at a great distance from us." He saw " what appeared a narrow entrance at the northwest part of the bay," but it was too remote for him to discover whether it really was sh, or ouly low land. "From under the [low] point a canoe came out, containing a man and boy," Sc. Unsettled weather prevented his sending in the long-boat to sound near the shoals, in order to discover whether there was any channel. He called it Shoalwater bay.

    Vancouver endeavozed to enter in 1792 , but, as it was breaking across the whole entrance, he considered it inaccessible to his vessels. He says, "The sandy beach was bordered by breakers catending three or four miles into the sea, and seemed to be completely inaccessible until 4 p . m., when the appearance of a tolerably good bay presented itself," and the point to the north was "somewhat more elevated than the rest of the coast," and in latitude $46=40^{\prime}$.

    It is not laid down on the coast chart of the United States Exploring Expedition.
    It is asserted by settlers here that boats, cannes, \&e., which have broken adrift and gone out of the bay, have, in every instance, been found on the beach north of the entrance, and gencrally between it and Gray's harbor.

    From Cape Shoalwater to Point Hanson, the southern side of the entrance to Gray's harbor, the distance is $13+$ miles, and the hard ocean sand beach furnishes an excellent road that can be travelled at half tide by wagons. The slightly elevated sandy bank is level, covered with coarse grass, and free from timber for nearly half a mile back, and to within two miles of the harbor. Back of this and parallel with the const is a cranberry meadow, six miles in length, and separated by a narrow belt of scrubby fir. This meadow is drained by two small rivulets forcing their way through the sand to the ocean. Sin Franciseo is the market for the cranberries, which are gathered by Indians and carried to Shoalwater bay and Gray's harbor. Land otter and beaver have their homes around the meadows and suall streams.

    ## GRAY'S HARBOR.

    In our description of this bay we can state nothing from personal experience. It is drawn up from the reports accompanying the recent surveys of 1860 , ' 61 , and ' 62 , and accounts reccived from persons who have examined it.

    The entrance to the bay is formed by Point IIanson on the south, and the southern point of Eld island on the north. The northern end of this island is connected with the outer part of Point Brown at low water, but at high tide the beaches are one-quarter of a mile apart. The south end of the island lies N. $59^{\circ}$, W., 15 mile from Point Hanson; its length is $1 \frac{3}{4}$ mile, and direction N. $50^{\circ}$ W., with a breadth of two to four hundred yards. Half-way between Point Hanson and the island lies the northeast end of a shoal or middle ground, bare at low water, and stretching $\mathrm{S} .15^{\circ} \mathrm{W}$. for 13 mile, with an average breadth of threeeighths of a mile. Between the northeast end of this shoal and the sonth end of Eld island passes the channel, with a width of less than five-cighths of a mile and a depth of 16 fathoms.

    We cannot state the position of the bar with relation to any of the above points.
    In 1860 the surveying brig Fauntleroy, drawing ten feet of water, laid off the bar several d:yb, the heavy breakers along the whole shoal allowing no clue to the bar, and the depth of water upon it unknowu. At a comparatively smooth time the bar was sounded with a beat and the vessel followed, crossing on the last quarter of the ebb with 22 fathoms. In 1861 the eutrance was reported tolerably good, and comparing favorably with the other bar harbors north of San Francisco. In June, 1862, the same vessel laid off the bar several days, and finding no possibility of crossing, ran into Sboalwater bay, and the party being mable to procure a pilot that could carry her into Gray's harbor, had to work from the former bay. There were only three days during the season when work conld be execnted on the bar, and the result showed that no welldeffined channel then existed across the bar, which was very uneven, lumpy, and in one place had ouly nine feet upon it. The channel was not straight, as anticipated, but the seaward end curved well to the northwardThe Coast Survey chart of the entrance is about to be published.

    At the time of Whidbey's survey, under the orders of Vancouver, a bar existed off the entrance, having the following position: From Point Hanson, SW. by W. 古W., $3 \frac{1}{2}$ miles distant, and from Point Brown, SW. by S. $\frac{1}{4}$ S., four miles distant. He does not give the depth of water on the bar in lis chart, lut in the narrative statcs it to be three fathoms. From this bar the chamel was a m:le wide, and straight to the uncrance between the points, was well marked by the breakers, and had from 4 to 10 fathoms in it until nearly abreast of the points, where it was contracted to half a mile, and the depth increased to 14 fathoms. Then it opened suddenly to both points, with from three to six fathoms between them. The course in, over the bar and through mid-channel, was NE. $\frac{1}{4}$ N., for $3 \frac{1}{4}$ miles to between the points, with two low sand islands in range on the course, and $6 \frac{1}{2}$ miles from the bar. A narrow channel existed on either side of these islands towards the Chehalis; the southern channel having from three to four fathoms, and that on the north side five or six.

    Whidbey believed the bar to be shifting, there being a very apparent difference in the channel between the times of his arrival and departure, when it seemed to be wider and shoaler. A dry sand bank which lay bare near their anchorage on the first evening. on the north side of the channel, was, at his departure, entirely washed away by the violence of the sea, which had broken incessantly upon the shoals and bar.

    In the indentation southeast of Point Hanson lay an island with a channel on either side, but that on the west was the better. Both led to the mouth of a smatl stream coming in from the east. He also gives a four-fathom channcl on the east side of Point Brown peninsula, and surveyed two miles up.

    In 1841, in the survey by the United States Exploring Expedition, we find no island in the middle of the bay, nor any east of Point Hanson, but a large one $1 \frac{3}{4}$ mile long by half a mile wide in the middle of the entrance, and connected by a shoal with Point Brown, whilst the channel ran between the island and the sonthern point. The bar bore SW. $2 \frac{1}{4}$ miles from Point Brown, and west 21 miles from Point Hanson, with a depth of ahont three fathoms. This position shows that the bar had moved to the N. by E. no less than two miles. According to that survey, the course for crossing the bar was to bring Point Hanson to bear east and run for it, the channel being straight.

    From a study of the map of that survey, we are satisfied that the soundings were carried outward to the inner edge of the bar, and not acrose it, the lines being probably stopped by the breakers.

    The foregoing examinations verify our statement in 1858 , that the changes are so great that the directions of one season for entering cannot be relied upou for the next. We have been off the bar, but never saw a fair chance for entering.

    The Superintendent of the Coast Survey has recommended to the Light-heuse Board the placing of booys to mark the chamel, and especially of one on the seaward extremity of the south sands, where the water probably breaks during heavy weather in winter, so much as four or five miles off shore. This buoy would be of great service to the coasting steamers.

    In 1860, while the surveying vessel was lying off the bar, a current running to the northward at the rate of $1 \frac{1}{2}$ mile per hour was distinctly noticed. An experience of two years has proved the set of the current along the coast to be always to the northward. Immediately off the harbor this current strikes the ebb current of the bay and deflects the mass of water to the northward, and carries the channel that way With the flood current the mass of water sets over the south sands. It is estimated that the off-shore current runs across the bar at an average rate of three miles.

    The Judians use a small swash channel under Point Brown to avoid crossing the bar.
    The peninsula terminated by Point Hanson is about three-quarters of a mile in breadth and $3 \frac{1}{2}$ miles long, and covered with fir to within half a mile of the point, which is a low sand spit embracing a small marsh. The general direction of the peninsula is northwest, and inside of it lies South bay, with a width of half a mile, affording the safest, and in fact the ouly safe anchorage near the entrance. More than half of this bay is occupied by mud flats. Tosecure the best position bere, bring the northernmost trees on Point Hanson to bear S. $71^{\circ} \mathrm{W}$., distant three-quarters of a mile, and anchor in the chanel in $3 \frac{1}{2}$ fathoms. This position places the vessel ont of the influence of the south channel ruming to the Chelalis.

    The anchorage under Point Brown is not only uncomfortable but unsafe to a vessel without heary ground tackle. At this point there is no protection against the full sweep of the heary summer winds, which, blowing at times comer to the strong currents in the bay, cause a very disagrecable, short sea. Another circumstance tends to render this anchorage unsafe: between Point Hunson and Eld island lies the middle shoal, which, being bare at low water, confines the waters to a narrow regular chaunel; but when the tide rises sufficiently to cover this shoal the conflicting currents cause a heavy overfall, especially on the large tides, strong enough to tear a vessel from her anchors. This happened to the surveying brig in May, $\mathbf{1 8 6 0}$.

    The peninsula, terminated by Point Brown, is about a mile in breadth and 42 miles long; its general direction is SE. by S. The bay shore is covered with fir. The outer shore is the commencement of a sand waste, stretching towards the Copalis river. Between the timber and this waste is a large pond or lagoon, and outside that the sand is covered with coarse beach grass and stunted lupine bushes, and cut up with the tracks of bears, cougars, wolves, elk, ete. From the north end of Eld island a body of water stretches into the sand waste parallel and near the ocean beach for about a mile. Close under the bay shore of this peninsula runs a narrow crooked channel, which Whidbey surveyed for two miles, and in which he gives four fathoms.

    The secondary astronomical station of the Coast Survey is on the extremity of the fast land of Point Hanson, and within ten feet of the marah. Its geographical position is:
    

    The computed magnetic variation for 1862 is $20^{-} 53^{\prime}$ cast, with a yearly increase of $1^{\prime}$.
    From Point Hanson the mouth of the Chehalis river bears N. $52^{\circ}$ E., distant 12 miles; and this course is the general direction of the southeast side of the bay, except the indentation forming South bay. The first bluff inside the point is Stearns,* bearing N. $57^{\circ}$ E., and distant $5 . \frac{1}{2}$ miles. Around the southwest side of this bluff comes John's river. Within a mile and a half of the mouth of the Chehalis the Neuskah'l enters, coming from the southeast.

    From Point Brown Paint Neut hes N. $39^{\circ}$ E., distant 43 miles, and having off it two rocks, now called Ned's rocks, and marked on Whidbey's chart.

    Brackenringe bluff $\ddagger$ commences about threequarters of a mile cast of Point New, and extembs three miles eastward to the low land bordering the Hoquiamts river. From loint New the shore-line runs nearly straight to the Chehalis, distant eight miles, and the point of Stearns bluff lies S. $43^{2}$ E., distant 44 miles.

    To the N.NW. of the line joining Points New and Brown lies North bay, consisting of an immense mud flat, bare at low water, and having an area of 22 square miles. At the head of it lies Saddle hill. In the stretch of four miles northwest of I'oint New are three small streams, called the Typso, Chinois, and Humtolayy, emptying into North bay. They work narrow crooked channels through the mud flats, but at low water there is not sufficient depth to carry a whaleboat through them.

    By measurement we find that more than nine-tenths of Gray's harbor is bare at low water. Inside of the entrance the area of the surface of the water, bounded by the flats, bare at low tide, is only $4 . \frac{1}{2}$ square miles. This will give a fair idea of the limited extent of the harbor. Through the flats lying between this, available space and the Chehalis run two contracted channels. The northern commences at a point two miles N. $67^{\circ}$ E. from Point Brown, is the only available one, and would require bouying out for its entire length. For about six miles it is threc-eighths of a mile wide, with a depth of four fathoms. The south channel commences just inside Point Hanson, and is very contracted and shallow. The flats are so extensive, and the mud so soft in places, that it is impossible to reach the shore, except at high tides. This fact has retarded the development of the trade in lumber, although the shores are hearily timbered.

    The trade of the bay amounts to carrying the supplies needed by a few settlers, and by the small mili, tary post on the Chehalis. During seven months in 1860 this reached one hundred and twenty-five tons.

    The Chehalis river has been navigated by a small steamboat for 20 miles, to the mouth of the Latsop, which comes from the northward. This is the head of tide-water; but enterprise would render the river navigable much higher. Boats have come from the bend of the Chehalis, at the mouth of the Skookumchuck, near the road passing from the Cowlitz river to Puget's sound. The country behind the bay appears low and flat, and well watered by the Chchalis and tributaries, which drain a section well timbered and dotted with many small prairies and bottom lands.

    In the winter of $1852-53$ the brig Willimantic was driven ashore upon Eld island, baving mistaken this for Shoalwater bay. After vainly attempting to launch her toward the sea she was dragged across the island and launched on the bay side. Then the island was a mere bank of sand, bare at all tides, and covered with logs and drift-wood.
    'The bay was discovered by Gray in May, 1792, and named Bulfinch harhor, after one of the owners of his vessel. He placed it in latitude $46^{\circ} 58^{\circ}$ worth.

    It was surveyed by Lieutenant Whidbey, in the storeship Dedalas, October, 1792, under the directions of Vancouver. He first sent in his boats, and then crossed the bar in three fathoms, with the ebb current ruming so strong that, although the ship was making ncarly five knots an hour, little actual progress was made. He applied the present name, Gray's harbor, in compliment to its discoverer. On some old maps we have fonnd it called Whidbey's harbor. He named Point Hanson after the commander of the Dredalus, and the northern point he called Point Brown, placing it in latitude $46^{\circ} 598^{\prime}$ north.

    The southern point was called Point Chickeeles by the United States Exploring Expedition in 1841, and placed in latitude $46^{\circ} 55^{\prime} 30^{\prime \prime}$; and the same name was applied to the river.

    In the first maps of the Coast Survey the southern point is termed Point Harrison-a clerical error. Among the few settlers in this region it is called Point Armstrong.

    The name of the river is derived from the Indian tribe inhabiting the bay and river. They pronounce it Teht-he-lis or Tsi-hæ-lis, signifying sand.

    For January, 1859, the line of cqual magnetic variation of $21^{\circ}$ east crosses the coast line in latitude $47^{\circ} 08^{\prime}$, and in latitude $46^{\circ} 58^{\prime}$ it crosses the $125^{\circ}$ of longitude. This line moves annually a mile and a half to the southward.

    ## COPALIS RIVER.

    We know nothing of this strean except from settlers who have passed it in travelling along the shore.
    From Point Brown the shore-line trends about N.NW. for ten miles to the mouth of the Copalis. The barren waste of Point Brown continues along this shore, commencing with a breadth of over one mile, stretching from the ocean to a dense forest of fir, and growing narrower as it approaches the Copalis, where the timber comes to the water's edge.

    This stream is about 100 yards wide, but the mouth is almost closed by a bar. Upon its banks reside the Copalis tribe of Indians, from whom the river derives its name. LLike all the streams on this coast it abounds in salmon, but those caught here are celebrated for their richness of flavor. Their general appearance
    is similar to those of the Columbia river, but this variety rarely exceeds two fect in length. They weigh from five to ten pounds.

    In or about October, 1854, there was discovered one mile north of the Copalis the whole stern frame of the propeller General Warren, which had been wrecked on Clatsop spit, at the mouth of the Columbia river, more than two years previnusly, having thus been carried by currents at least 60 miles from its original position. When the hydrographic survey of the entrance to the Columbia was made by the Coast Survey parties in 1852 this wreck was found and its position determined. From Cape Disappointment it bore SE. by E. almost four miles distant, and was consequently little more than a mile from Point Adams. It then rested on the north edge of the Clatsop spit. This shows a direction of the current, corroborating Vancouver's account when anchored off Destraction island, and agreeing with our experience.

    ## POINT GRENVILLE.

    From the Copalis to this point the shore runs NW. $\frac{1}{2}$ N. about 16 miles, and continues low, nearly straight, and bordered by sand beach, which changes to shingle, disposed in long rows parallel to the coast. These ridges of shingle dam the mouths of many small streams and form ponds, abounding in trout, and well stocked with beaver and otter, according to the accounts of the Indians. The high land also approaches much nearer the beach, and forms sandstone cliffs, with rocky ledges projecting into the ocean.

    Point Grenville is a bluff, rocky promontory, stretching westward about a mile, and then southward about a quarter, forming a very contracted and exposed roadstead; with the three-fathom curve exteading half a mile from the beach, compelling vessels, except of very light draught, to anchor so far ont that the point and the rocks off it afford but little protection from the northwest winds. It is useless during the winter months. The point has high hills lying behind it, and many rocks immediately off it. 'Iwo of these, about 75 feet ligh, lie E. by S., 400 yards distant; another lies SW. $\frac{3}{4}$ S., haif a mile distant. This, we believe, is the one that shows a large perforation through it when viewed from the southeast or northwest. It has five and six fathoms all around it. Others stretch along the coast to the northwest, one of them showing from the south as a leg-of-mutton sail. The bluff itself is composed of finc sandstone, is very steep, and may be ascended by a difficult trail, which is used by the Indians. It is said to be a great resort for sea otters, which are hunted by the natives.

    Its approximate geographical position is:

    |  | - 1 |
    | :---: | :---: |
    | Latitude. | 4720 north. |
    | Longitude. | 12414 west. |
    | Or, in time | $\begin{array}{ccc} \text { h. } & m & s . \\ \delta & \mathbf{1} 6 & 56 . \end{array}$ |

    From Cape Disappointment light it bears NW. by N. $\frac{1}{2}$ N., distant 62 miles, and from the cape soundings may be had in from 8 to 15 fathoms, three or four miles from the shore.

    This point is said to be the Punta de Martires of Heceta and Bodega, because in latitude $47^{\circ} 20^{\prime}$ seven of the crew of Bodega's vessel, the Señora, were massacred by the natives.

    It received its present name in 1792, from Vancouver, who placed it in latitude $47^{\circ} 22^{\prime}$, and describes as lying off it "three rocky islets, one of which, like that at Cape Lookout, is perforated."

    North of Grenville to Caye Flattery the shore is bold and rocky, with occasional short reaches of sand beach. The timber comes down to the water; moderately high hills approach the coast, through which empty numerous small streams, whilst the irregular Olympus range looms up far in the interior. In winter these mountains are covered with snow, which lies in the gorges and valleys nearly the whole summer. Mount Olympus is the highest peak of the range. It attains an elevation of 8,138 feet, according to determinations made in 1841 by the Uuited States Exploring Expedition, which placed it in Latitude $47^{\circ} 45^{\prime} \mathrm{N}$., and longitude $122^{\circ} 37^{\prime} \mathrm{W}$.

    It is said to have been first seen by Perez, in 1774, who placed it in $47^{\circ} 47^{\prime}$ N., and called it La Sierra Santa Rosalia, but the account of his voyage was not published until many years after that date, (1802.)'

    It was next deseribed by Meares, in 1788 , and placed in latitude $47^{\circ} 10^{\prime}$, the error arising from its bearing, and he supposing it much nearer the coast-line than it actually is. In his sketch it is marked quite close to the shore, in latitude $47^{\circ} 15^{\prime} \mathrm{N}$. He called it Mount Olympus, the only name by which it is now known.

    In 1792 Vancouver determined its position approximately, and gave the latitude as $47^{\circ} 50^{\prime} \mathrm{N}$.

    Qué-ni-itll river. The mouth of this small stream is between three and four miles NW. by W. from Point Grenville, and is almost closed by the shingle and gravel thrown up by the surf; there is, however, a contracted opening for the passage of canoes in calm weather. The closing of the entrance has so dammed the river as to form a small lake inside, upon the banks of which is situated a village of the Queniutls, a race of Indians hostile to all other tribes. Combined with others to the northward they have ever been notorious for their hostility and vindictiveness to the whites. Several Spanish, English, and Russian vessels and their crews were, in former times, taken and destroyed. Hence we meet with the names Destruction Island, Isla de Dolores, Punta de Martires, \&e., in this immediate vicinity. The river is said to head in a lake at the foot of the mountains.

    The name of this river is usually known by the old settlers as Que-noith, but the Indians are said to pronounce it as if spelled Qué-ni-itt, accenting the first syllable strongly, and the last so softly that many persons consider they call themselves simply Que-nai. A tribe still further north is called the Que-nait'-sath. The Mukkaws call it the Quin-aitl. De Mofras calls it "Kiniat."-(See remarks, page 377, Destruction island.)

    These Indians, when travelling by canoes along the low sandy beach south of Point Grenville, push out into the rollers, keep between the line of two scas that have broken, and pole the canoe through the surf. This peculiar mode is rather apt to excite the fears of those ignorant of what a canoe can be made to do when skilfully handled.

    For four miles above the Queniutl the coast trends in the same direction, NW. by W., is composed of sandstone cliffe, and bounded by many precipitous rocks, the beight and direction of which are generally that of the cliff. In the Coast Survey reconaassance of 1852 , one is placed $2 \frac{1}{2}$ miles off shore in latitude $47^{\circ} 27^{\prime}$, and the vessel's track is laid down inside of it. A great many large rocky islets lie close in shore in this vicinity, but northward the coast is nearly clear to Destruction island. It makes a slight curve eastward, and alternates with bold yellow cliffs and low shores.

    ## DESIRUCTION ISLAND.

    This island is the only one found deserving the appellation after leaving the Farallones. It is about 150 feet high, quite flat on the top, covered with grass, but destitute of trees, and has high perpendicular sides of the same height as the cliffs on the main. It is said that there are some remarkable perforations through a rock near it, but these are, doubtless, only seen in particular directions, for, in passing close to it, we have never noticed them. On the eastern end were formerly some rude Indian huts. In Vancouver's time he found two or three dwarf trees at either end.

    In rumning along the coast, 10 miles off, it is very difficult to make out this island, because, being within $1 \frac{1}{2}$ mile of the main, it is projected against the coast cliffs and cannot be distinguished from them until close upon it. It is narrow, but about $1 \frac{1}{2}$ mile long in a N.NW. direction, running parallel with the coast, and has rocks for a mile off its southern end. A reef and sand bank is represented as stretching thence W.NW. three miles to broken water, and from there running nearly straight to the northern end. A detailed examination of this locality might prove that good refuge could be had under the island during heavy southeast and southwest weather. No winter harbor of refuge exists between Point Reyes and Net-ah bay, unless this be such, in which case it is of very great importance.

    Between it and the main the soundings range from 7 to 12 fathoms, and to the northward from 10 to 14 .
    The approximate geographical position of the north end is:

    ```
    Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 47 4 41 north.
    Longitude..................................................................... 124 25 west.
    ```

    From Cape Disappointment it bears NW. by N. 84 miles.
    This island is called Isla de Dolores upon old Spanish maps. It received its present name, by which it is only known on the coast, in 1787, from Captain Berkely, who sent a long-boat from King George's sound to explore as far south as latitude $47^{\circ}$. The crew of a smaller boat entered a shallow river and rowed up some distance, where they were attacked and murdered by the Indians.

    In April, 1792, while Vancouver was at anchor in 21 fathoms, $3 \frac{1}{2}$ miles S.SW. of this island, he "had calms, and found a constant current, without intermission, setting in the line of the coast to the northward." After passing Cape Orford he had been regularly thus affected, and carried to the north 10 to 12 miles per day further than was expected. He gives the latitude of the island as $47037^{\prime}$ north.
    W. by N., distant 16 miles from Point Grenville, we discovered, in June, 1855, a bank having 15 fathoms upon it, with very soft mud bottom; at 21 miles distance, 17 fathoms; and at 29 miles, 36 fathoms; and three miles S.SE. of the first position we struck $1 G_{2}$ fathom $\%$, with the same bottom, in all the sounding; ; but had not time to make an extended examination. In Apil, 1856 , we found 45 fathoms in latitude $46^{\circ} 54^{\prime}$ N., longitude $125^{\circ} 03^{\prime}$ W., being 16 miles broad off shore. The somndings of 17,15 , and 19 fathoms, one mile from shore, would indicate a greater deptl than we obtained. Yancouver has 50 fathoms inside of our first soundings.

    From Destruction island northward the shore is composed of cliffes which form a recular curve to a point bearing NW. $\frac{1}{2} \mathrm{~W}$. from the north end of the ishand, and 11 miles distant; thence the shore rums nearly straight on that course for 10 miles to two high, abrupt, and well-marked rocks, standing a mile from shore. The onter one is bold and covered with tall trees, but the inmer one is bare. They are in latitude $47^{\circ} 55^{\prime}$, longitude $124^{\circ} 40^{\prime}$. Many athers, but smaller, lie inside of them, and 19 fathoms are found close outside. Along this stretch the shore is irregular and bluff, with many high rocky islete off it. A stream opens about midway in the stretch.

    In the indentation northward of Destruction island, and about four miles from it, empties a small stream, which we believe is called Hooch by the Indians.

    Meares calls the curve of the coast, about Destruction island, "Qucenly the bay," evidently a corruption of the Que-ni-utl, or Que'-noith.

    ## FLATTERY ROCKS.

    From the two rocks just mentioned to Cape Flattery, in $48^{\circ} 23^{\prime}$, the course is almost N.NW., passing through a group of high, well-marked, rocky islets, in latitude $48^{\circ} 12^{\prime}$ N., named the Flattery Rocks. Before reaching these the coast-line curves about a mile eastward, with a bluff shore ncarly free from rocks for about eight nilles, when a large white rock half a mile out looms up prominently, and is distiuctly seen against the main land.

    Flattery rocks extend betwecu two and three miles from shore; the outer ledge is awash with one islet in it, and the track of the coast surreying stemmer is laid down inside of it, with soundings in 9 to 20 fathoms. High abrupt timbered islets lie inside, with their ocean facee nearly perpendicular, abont 150 feet high, and sloping landward. Where destitute of trees, these are covered with grass, bushes. \&c. Tho latitude of the rocks is $48^{\circ} 12^{\prime}$ north.

    In March, 1778, Cook, having been driven seaward by heary gales off Cape Perpetua, made the land about the latitude of $47^{\circ} 35^{\circ}$, and four leagues from shore, as he says, when he was in hopes of finding a harbor to the northward under a small round hill which appeared to be an island, bat on approaching it he became almost convinced that the opening was closed by low lands, and being thus disappointed, he named the point of land to the north of it Cape Flattery, and placed it in latitude $48^{\circ} 15^{\prime} \mathrm{N}$. On recent English charts the cape is placed in the position of the Flattery rocks, although Vacourer adopted the present usage on this coast. From an examination of Cook's account, with a knowledge of the coast and the curreats here, we are satisfied that he was further north than he estimated on the morning of March 22 , for he says the small round hill like an island bore N. $\frac{3}{4}$ E., (true, ) distant six or seven leagues, while the coast extended from N. to SE., (true.) These facts conrince us that his position was in latitude $47050^{\prime}$, longitude $124^{\circ} 46^{\prime}$; from this situation the Flattery rocks are distant seven lengues, bearing N. 3 E., (true; the extremity of Cape Flattery bearing nearly N., (true;) the distance to the nearest point of land a little more than three leagues; and the coast northward of Point Grenville bearing SE., (truc.) The point of land northward of the Flattery rocks was, therefore, his Cape Flattery, and his estimated latitude of it eight miles too small. Before next day he had a very hard gale from the SW., accompanied with rain, and he did not sce land again until he reached latitude $492^{\circ}$. He arrived at the conclusion that between $47^{\circ}$ and $48^{\circ}$ there existed no inlet, as had been asserted.

    From Flattery rocks we find a high rocky coast, bordered by outlying rocks for cight miles, when a low sand beach occurs, receiving a small stream which runs E.NE. and finally north, behind the momatain constituting Cape Flattery, to within 200 yards of the beach in Neéah bay. A rise of 20 or 30 fert of the sea would make Cape Flattery an island, extending five miles (W.NW.) hy three miles in breadtl. This creek is used by the outer coast Indians during the prevalence of heavy winter gales, when the parage outside the cape would be impracticable.

    From Point Grenville to Cape Flattery the hills rising from the coast are about 2,000 feet high, densely 48 es
    covered with trees, and cut up by innamerable valleys. The shore is inhabited by numerous tribes of Indians, accustomed to war and bitterly hostile to the whites. They are far superior to the Indians found along the southern coast. Their villages are heavily stockaded, and the houses made of cedar boards, which they have cut with great industry fiom the tree. We have measured and found some of these boards to be over 4 fect wide and 20 fiet long; the outside edges being about an inch thick and three inches in the middle. Their houses are very large, and partitioned off into stalls for each family. The numerous streams emptying upon the coast afford them a never-failing supply of the finest salmon; and to obtain means of barter with white traders they fearlessly attack and capture the different species of whale on the coast.

    TATOUSH ISLAND.
    This island lies W.NW. half a mile from the point of Cape Flattery. It is composed of small islets comected hy reefs, is quite flat-topped, and without trees. The surface is 108 feet above high water, and the sides are perpendicular; the entire mass is composed of coarse sandstone conglomerate with an outcrop of basalt on one of the reefs. There is a depth of two or three feet of soil upon the top, which was formerly cultivated by the Indians, who resorted here in summer, alout 150 strong, and had several houses near the only loat landing on the inside of the island, ( 1850 .) A reef extends a quarter of a mile off the west side of the island, and the whole extent of the jsland and recf is only half a mile W.NW. by a third of a mile. Deep water is found upon all sides, except between it and the cape, where a reef exists upon which it breaks very heavily in bad weather. We are informed that small vessels have gone through when jammed by an unfavorable wind. In so doing great risk must have been incurred, as the currente in the vicinity run very irregularly and strong.

    From the top of the island a leaning rocky column, about 75 feet high and one-third of that in diameter, is seen to the southeastward close under the face of the cape. It is sometimes called Fuca's pillar.

    ## TATOOSH ISLAND LIGHT-HOUSE.

    This structure is erected on the highest part of the island, and consists of a kecper's dwelling of stone, with a tower of brick, whitewashed, rising above it, and surmounted by an iron lantern painted red, its height being 66 feet ahove the top of the islant. The light was first exhibited December 28, 1857, and shows every night, from sunset to sumise, a fixed white light of the first order of Fresnel. It is elevated 162 feet above the mean sea level, and in clear weather should be seen from a height of -

    10 fect at a distance of 18.2 miles;
    20 feet at a distance of 19.7 miles;
    30 feet at a distance of 20.9 miles;
    60 feet at a distance of 23.5 miles;
    so that a vessel from the southward will make it before being up with the Flattery rocks.
    'The gengraphical position of the light, as determined by the Coast Survey, is:
    

    Magnetic variation, $91^{\circ} 46^{\prime}$ east, in August, 1855 , with a yearly increase of $1^{\prime}$.
    'The angle of visibility from the land sonthward, round by the west to the extreme western visible point of Vanconver island, is $131^{\circ}$, and from the same starting point round by the west, up the Strait of Juan de Fuca, $265^{\circ}$.

    This island, with its outlying recf, is the most westem portion of the United States.
    The present name is that giren to us by the Indian tribe (Muk-kaw) inhabiting the cape and outer part of the strait. Their word to designate an island is opichuk't.

    On June 29, 1788, Meares, passing the entrance to the strait, hove to off this island, was visited by the Indians, and sent an officer to examine it, who reported that it was a "solid rock covered with little verdure, and surrounded by breakers in every direction." They also "saw a very remarkable rock that wore the appearance of an obelisk, and stood at some distance from the island." 'To this rock he gave the name of Pimnacle rock. It is the columnar leaning rock already described. He says the "island itself appeared to be a barren rock, almost inaccessible, and of no great extent; but the surface of it, as far as we could see,
    was covered with inhabitants, who were gazing at the ship." "The chief of this spot, whose nane is Tatooche, did us the favor of a visit, and so surley and forbidding a character we had not yet seen." The Indians evidently gave him the name of the island, which he mistook for that of the chici. His aketch of the island and cape also includes Rock Duncan.

    Too-tootele is the Nootka name for the "Thunderbird." The Mukkaws uriginally came from the west coast of Vanconver islaud.

    And here we may be permitted to remark, that from this place to Cape Lookout the descriptions of Meares are confirmed by our own observations.

    ## ROCK DUNCAN.

    This is a small, low, black rock rising above the highest tides, but always washed by the western swell. which breaks over it. Deep water is found close around it. From Tatoosh Island light it bears N. $33^{\circ} \mathrm{W}$. , distant $2,07 \mathrm{~S}$ yards, or more than a mile, and many vessels pass between them, as the chart shows 25 fathoms; but a rock has been reported in the channel, and it would be well to avoid it until the doubt is set at rest. Yancouver's vessels passed between them. The rock was first noticed by Mr. Duncan in 1788 , and placed in latitude $48^{\circ} 37^{\prime} \mathrm{N}$, which Vancouver, who gave it the present name, considered a typographical error.

    During a three monthe' stay at Nee-ah harbor in 1852, we tricd upon several occasions to land upon this rock with canoes, but could never effect our object.

    ## DUNTZE ROCK.

    Nearly a quarter of a mile off Rock Duncau, on the line from Tatoosh island, Kellet places a rock . having three fathoms water upon it, and to which he gave this name.

    With no wind, a heavy swell from the west, ebb current, and proximity to these nutlying rocks and island, a vessel's pasition is unsafe, and grcat caution should be exercised in navigating this part of the entrance to the Strait of Fuca.
    caple flattery.
    This cape forms the southern head of the entrance of the Strait of Juan de Fuca; it has a bold, wild, jagged sea-face, about 100 feet high, much disintegrated by the wearing action of the ocean; rises in a mile to an irregular hill of 1,500 or 2,000 feet in height; is cut up by gorges and covered with a dense growth of fir and almost impenetrable underbrush from the edge of the cliffs to the summit. The shore-line round to Nec-ah bay is of the same forbidding character, bordered by recfs, and having but one slomt stretch of beach at the foot of the hills. Upon this beach is situated (or was in 1852) Clissect's village. The somangrs half a mile from shore are deep and irregular, reaching 68 fathoms. The current runs as much as three miles per hour, and during the ebb sets irregularly round the cape, Tatoosh ishand, and Rock Duncan. When seen from the southwestward Cape Flattery looks like an island, on account of the valley three or four miles eastward. The best position for seeing this is when a single roek off the cape shows itself derached. From this direction the high mountains on Vancouver's island loom up and stretch firr away to the northwest and to the east.

    The extent of ocean shore-line from Cape Disappointment to Cape Flattery is 14 S miles.
    The name adopted is that which Cook gave to this headland in 177s. It has been called Cape Martinez by the Spaniards, from its asserted discovery in 1774 by Martinez, pilot to Perez, who announced many years afterward that he remembered to have observed a wide opening in the land between $48^{\circ}$ and $49^{\circ}$ north latitude.

    In 1758 Captain Duncan anchored on the south shore of the Strait of Juan de Fuca, off a village called Claasit, or Claaset, in $48^{\circ} 30^{\prime}$.

    On recent English charts it is called Cape Classet, because, in $\mathbf{1 7 9 2}$. Vancouver stated that as the name given by the Indians to distinguish it, but in a marginal note it is called "Cape Flattery." (See remarks on page in relation to this matter-Flattery rocks.) In 1852 we found that the then head chicf of the Muk-kaws, a powerful man, about 40 or 45 years of age, called himself, and was called by the tribe, Clisseet', but we could not ascertain whether this was an hereditary title.

    On the western coast it is universally known as Cape Flattery.

    It was near this cape that a Japanese junk was wrecked in 1833, accounts of which will be found in Belcher's narrative, and in that of the United States Exploring Expedition. See also Schooleraft's Indian Tribes of the Cuited States, page $21 \%$. This wreck, with that at Clatsop Point and others found at sea, shows strongly the direction of the prevailing winds and currents off shore.

    ## BANK OFF CAPE FLATTERY.

    At the entrance to the Strait of Juan de Fuca, 15 miles, by estimation, W.NW. from Cape Flattery, we have been informed that a bank exists having 18 fathoms upon it, and, moreover, that during a calm our informant fished upon it from his vessel, and caught a large number of codfish. His attention was called to it by a number of canoes fishing. While we were encamped in Nee-ah bay, in 1852, the Indians frequently went out upon some bauk off the strait to fish for cod, but we looked upon their assertions with distrust, and believed they canght the fish inside of the strait. Each season in passing, as we wished incidentally to seek for this bunk, we encountered southeast gales, which rendered the examination impracticable.

    ## STRAIT OF JUAN DE FUCA.

    The entrance to this strait from the Pacific lies between Cape Flattery and Cape Bonilla, on Vancouver island, which forms the northern shore. Its width is about 14 miles, and the bearing from Flattery to Bonilla NW. $\frac{3}{\text { I }}$ N. From this line the strait runs cast for 40 miles, with a uniform width of 11 miles. It gradually contracts to 8 miles between Beachy Head on the north and Striped Peak on the south; changes its direction to E. ky N. $\frac{1}{2}$ N. for 15 miles; then expands to the northward, attaining a width of 18 to 20 miles, and divides into two ship chamels, the Camal de Haro and Rosario strait, leading through the Archipelago de Haro northward to the Gulf of Georgia. It is terminated on the east by Whidbey island; at the southeast it passes into Admiralty inlet, and is bounded on the south by the main land of Washington Territory, which forms the entire anthern shore of the strait. From the ceean to Whidbey island the mid. channel distance is 84 miles. The depth of water throughout the strait is remarkably great, no bottom being found in its deepest parts with 150 fathoms of line. It is the main artery for the waters of Admiralty inlet, Puget's sound, Possession sound, Hood's canal, Canal de Haro, Rosario strait, Bellingham bay, and the vast Gulf of Georgia, extending between Yancouver island and British Columbia for 120 miles, with an average width of 20 . Its currents run with an average velocity of not less than three miles per hour, and off the Race island and Beachy Head over six miles an hour. Itsshores are bold, abrupt, and covered with a heavy growth of varied timber and deuse underbrush. On the north the mountains rise rapidly from the water, and many attain an elevation of not less than 6,000 or 7,000 fect. These are covered with fir to their summits. On the south, for 30 miles from the entrance, the shore is bounded by hills of 2,000 feet height, backed by the jagged Olympus range of $\mathrm{S}, 200$ feet. For the wext 50 miles the shore is generally a steep cliff, from 50 to 200 feet high, with a flat country extending nearly to the foot-hils of Olympus, and stretching further south as we move castward. On the east the face of Whidbey island is very steep; it is about 250 feet high, and appears flat, as does the whole country eastward to the sharp-cut outline of the Cascade range, stretching its serrated ridge northward, where the snow-peak of Mount Baker* is distinctly seen, and to the southward, where the higher peak of Mount Rainier* attracts the eye.

    Humboldt calls this Mount Regnier, depending upon the narrative of Frémont, who saw it in active operation, November 13, 1843. We believe it is over 15,000 fect in height.

    At the time of our first visit the southern shore of the strait was inhabited by large numbers of Indians, living in heavily stockaded villages. They were tolerably expert in the use of fire-arms, of which they seemed to have a good supply. They lived mostly by fishing, but raised a fair supply of remarkably good potatoes from the stock seed of the Hudson Bay Company.

    During dry summers the Indians and settlers set fire to the forests in every direction, and the country soon becomes enveloped in a vast smoke that lasts for two or three months. At such times it is frequently impossible to make out the shore at half a mile distance. The strong westerly winds coming up the strait disperse it for awhile, but only to fan the fires and give them renewed force and activity.

    In summer the prevailing wind draws into the strait, increasing towards evening, and frequently blowing a ten-knot breeze before midnight; but unless the wind is stroug outside little is felt in the strait, and


    very frequently vessels are a week from Cape Flattery to Admiralty inlet, or vice versa. In winter the southeast winds draw directy out, and create a very heary cross sea of the entrance, the great sonthwest swell mecting that rolling out. In such eases trading vesecls try to gain Nectah bey or San Juan harbor, and remain at anchor until the wind chances. In beating in or out vessels may run as close under either shore as wind and currents warrant, as no hidden dangers have been found half a mile off shore, exeept at the west side of the small indentation called Crescent bay, near Striped Peak, 44 miles inside of Rock Duncan.

    At the entrance the cmrents acquire, during the "large tide" of each day, a velocity of four miles per hour, and after strong northwest winds, a very large, short, but regular swell is eneountered west of Neéah bay during the ebb current. If the wind is light, and no steerage way on the vessel, the feeling is decidedly disagrecable, especially as the current seems emstantly to set close around Rock Duncan and Tatoosh island. If a vessel falls into the trough of this swell she is bound to fetch away something.

    Settlers are gradually advancing from Puget's sound and Admiralty inlet along the strait westward, and are destined to meet those coming up the coast from Gray's harbor and Shoalwater bay.

    Washington Territory has a climate excelled only by that of California. We know not where to point to such a ramification of inland narigation, save in the British posecsions to the northward. For depth of water, bolduess of approaches, freedom from hidden dangers, and the immeasurable sea of gigautie timber coming down to the very shores, these waters are unsupased, unapproachable.

    The Strait of Juan de Fuca was discovered by the long boat of the Imperial Eagle, under the command of Berkely, in 1787.

    In June, 1788 , it was examined by Meares, in the Felice, he having oltained information of ite exietence from Berkely. At the entrance it "apeared to be 12 or 14 leagues broad. Front the masthead it was observed to stretch to the E. by N., and a clear unbounded horizon was seen in that direction as far as the eye could reach." He frequently sounded, "but could procure no bottom with 100 fathome of line." Me afterwarde sent a party to explore the strait, who went up about 50 miles, determining the harbor of San Juan. He first applied the name "John de Fuca" to the strait.

    After the expedition of 1775 several Spanish expeditions were fited out for exploration in these latitudes, but we are not sufficiently acquainted with their results to state their claims and merits. Haro was in the strait in 1789 , Quimper in 1790, Eliza in 1791, and Galiano and Valdez in 1792.

    Gray entered the strait in 1792 , penetrated 50 miles in an E.SE. direction, and found the passage five leagues wide. He gives the latitude of Tatoosh ishand, or Cape Flattery, 48'24'. 'The extracts from his log-book, stating particulars of this and the Columbia river exploration, were not made publie until 1816. Most of Gray's latitudes, distances, and courses, are good and trustworthy.

    Vancouver entered the strait in 1792 , and gave to the world the first detailed and authentic account of it.

    ## THE SOUTHERN SHORE OF THE STRAIT OF JUAN DE FUCA.

    ## NEE-AH BAY.

    Koitlah Point, the western boundary of this bay, is four miles E. by N. I N. from the light-house on Tatoosh island. From Cape Flattery the shore is nearly straight, high, and rugged, backed by hills about 1,500 or 2,000 feet high, and covered with timber. Deep water is found within a third of a mile of the bluff, and at a distance of half a mile, a depth of 20 fathoms is obtained. Within a mile of Koitlah Point was a large village of the Mukkaws, (1852.)

    The bay is about a mile and a quarter long S.SE., and the same in width at the entrance. The western side is high, precipitous, and bordered by craggy outcropping rocks 300 or 400 yards from the shore. The three-fathom line ranges about 600 yards from the foot of the bluff. The general dircetion of this side is SE. for one mile, when the hills suddenly cease, and a low shore, with sand beach backed by wonds, curves gradually to the NE. by E. for a mile and a quarter to Ba-ad-dah Point, formed by a spur of the hills.

    The east side of the bay is formed by Waaddah ishand, the northern end of which lies $1 \frac{1}{2}$ mile from Koitlah E. by N. $\frac{1}{2}$ N. This island is a narrow, high ridge, about 250 yards wide, and half a mile long, covered with trees, and having a direction SE. $\frac{1}{4}$ E., puinting toward Ba-ad-dah Point, and presenting the appearance of a continuation of that spur, but separated from it by a four-fathom channel 500 yards wide. Off the southwest part rocks extend for 250 yards, and the three-fathorm line is 600 yards distant. Along the sand beach the three-fathom line is within 200 yards of the shore, the depth increasing to seven fathoms,
    then decreasing to five in the middle of the bay, and again increasing to ten on the outer line of the bay. Much kelp abounds in this harbor, even in deep watcr, the lower and thinnest portion being used by the Indians for fishing-lines. When coiled away and dry they break like grass, but soaking them in salt water renews their elasticity and strength.

    The best anchorage is in the south part of the bay, in about five fathoms, being then off the small stream which comes in at the castern foot of the hills. No direction can be given about anchoring off any particular village, as the Indians change their location so frequently; but near this stream will generally be found some houses, with an abuadance of fresh water. During southerly weather little swell is felt here, and the wind can do no harm; but when a large westerly swell is coming up the strait it reaches here, and a vessel rolls uncomfortably unless sle rides head to it.

    The low ground abreast of the anchorage, and but two or three hundred yards from the beach, is the head of a small stream that rums through the low prairie lands behind Cape Flattery, and empties into Nisco bay south of the cape, near a winter village of the Mukkaws, called Wa-atch. 'This stream is frequently used by them in winter, when they cannot take their canocs outside the cape.

    The primary astronomeal station of the Coast Survey was just back of the beach, about 400 yards east of the small stream before referred to. From the NW. end of Waaddah island it bears S. by W. $\frac{1}{2}$ W., distant $I_{3}^{3}$ mile. Its geographical position is:
    

    Magnetic variation $21^{\circ} 30^{\prime}$ east, in August, 1852, with a yearly increase of $1^{\prime}$.
    Soon after occupying this station the Indians dug up and destroyed all the marks fixed to recover it, under the belief that evil spirita were buried with them.

    Tides.-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is XIIh. XXXIIIm. The mean rise and fall of tides is 5.6 feet; of spring tides, 7.4 feet; and of neap tides 4.8 feet. The mean duration of the flood is 67.20 m ., and of the ebb 67.06 m . The average difference between the corrected establishments of the a.m. and p. m. tides of the same day is 1 k . 18 m . for high water, and $1 / \mathrm{h} .02 \mathrm{~m}$. for low water. The differences when the moon's declination is greatest are $2 h .20 \mathrm{~m}$. and $1 \lambda .56 \mathrm{~m}$., respectively. The average difference in height of those two tides is 1.7 foot for the high waters, and 3.5 feet for the low waters. When the moon's declination is greatest those differences are 2.8 feet and 0.0 feet, respectively. The average difference of the higher high and lower low waters of the same day is 8.2 feet, and when the moon's declination is greatest, 9.5 feet. The higher high water in the twenty-four hours occurs about 11 h .54 m . after the moon's upper transit, (southing,) when the moon's declination is north, and about 32 m . before, when sonth. The lower low water occurs about 7 h . after the higher high water. The greatest observed difference between two low waters of one day was 6.0 feet, and the greatest difference between the higher high and lower low waters of one day was 12.0 feet.

    To find the times of high and low waters, first compute them for Astoria, and from the numbers thus obtained subtract 9 minutes for Net -ah bay.

    This hay was known as Poverty cove by the early fur traders on the coast; next as Port Nuñez Guona, by Quimper, in 1790 . In 1792 the Spaniards, then establishing themselves at Nootka sound, attempted to found a colony here, and as late as 1847 bricks were found near the small stream abreast of the anchorage. We searched for vestiges of the settlement so late as 1852 , but found nothing. In 1860 a brick was dug up from the depth of two feet, on the site pointed out by the Indians. Vancouver noted the indentation of the coast here in 1792. It was next called "Scarborough Larbor," by the United States Exploring Expedition in 1841. The Indian name is that now adopted, and the only one by which it is known on the coast.

    In 1852, the Mukkaws about Flattery could muster 300 or 400 warrioxs, mostly armed with muskets and knives. They had several large stockaded villages and handreds of canoes. We have counted over 70 at one time fishing for salmon in the bay. They were brave and fearless; made voyages to Nitinat, Clayoquot, and Nootka sounds, and pursued the whale and black fish successfully. In three months they sold over 7,500 gallons of oil to the traders. They maintain trade with the Indians on the west of Vancouver, forcing them to dispose of their oil and skine to themselves directly, and not to the traders. By this means they make a large profit as intermediate traders. They estimate their wealth by the number of
    slaves and blankets, and the quantity of oil, they possess. In the fall of 1852 the small-pox was introduced among them, and nearly swept off the tribe, more than two-thirds falling victims to the diseasc-among them the Princimal chicf, Clissect, and the sceond chief, Flatery Jack.

    Two miles east of Waaddah island, and within the Jimits of the kelp, is a rock 150 feet high, called Sail rock by the Vinted States Exploring Expedition, and by Kellet, Klaholoh, (veals.) The Iudian name is Sackok. Behind it enters a small stream called the Okho on the Admiralty charts, but this is not the Indian name.

    ## CALLAM BAY.

    From the eastern point of Necali bay to Sckou Point,* the western part of Callam bay, the course is E. $\frac{1}{2} \mathrm{~S}$., and distance $13 \frac{1}{2}$ miles. The shore-line is nearly straight, bluff, and bordered ly rocks, with an occasional stretch of sandy beach. One mile off shore the average depth of water is 20 fathoms. The bay is at the western termination of a high, bold, wooded ridge, running parallel to the shore, with an almost perpendicular water face, and falling away rapidly inshore. This easily recognized ridge is about 1,000 feet high and seven miles long. The western extremity lies E. $\frac{1}{3} \mathrm{~S}$. from Waaddah island, is distant 16 milen, and called Sip Point;* the castem is designated Pi7lar Point.* 'The width of the bay from Sckou Point to Slip Point is two miles, and the bearing E. by N. $\frac{1}{3}$. Outside these limits 15 fathoms water may be struck. The form of the bay is nearly semicircular, and the denth of the curve nearly a mile, with six fathoms about the middle. Into it empties a small strean from the southeast, having low land on its eastern side, and a small rise on the west. Some sunken rocks are said to lie off $\mathrm{Slip}_{\mathrm{p}}$ Point.

    The water along the face of the ridge is very deep, and the bottom rocky and irregular. About half way along it is the entrance to a vein of lignite, which has been worked, lut it is mot fit for steamship consumption. Off this mine, at a distance of a cable's length, a depth of 35 fathoms is found, with a swell upon the rocks sufficient to destroy any boat loading there. The so-called coal is very casily broken, and crumbles by exposure to the weather. We saw it fairly tried upon a steamer, and it did not answer. An analysis of some of the best specimens yielded 68 per cent. of carbon, and we judge it to be bitumen. The geological formation of the whole region is opposed to the existence of coal. Among the bituminots shales we searched in vain for any specimens of fossil impressions.

    Pillar Point is nearly E. $\frac{1}{2} \mathrm{~S}$. from the north end of Waadah inland, and distant 23 miles. Its latitude is $48^{\circ} 13^{\prime} \mathrm{N}$. The peak is slightly separated from the main ridge by a depression. Trom this point the shore trends S.SE about a mile, and receives a stream coming from the westward, called Canel river.* An Indian village exists here. The Indian name of the stream is Pisht-st.

    From Pillar Point the next prominent olject is a wooded hill called Striped Peak,* bearing E. by N., and distant 17 miles. The shore retreats to the southward of this line about three miles, having alternate bluff and low shores, with many little streams opening upon them, and at the distance of 11 or 12 miles from Pillar Point, Low Point * makes out at the mouth of a stream called the Lyre. $\dagger$ Rocks abound close along the shore. The kelp generally extends out to five fathoms, and the aserame depth of water, a mile off, is 10 fathoms. One mile before reaching the western part of Striped Peak is a sunken roch, upon which the sea breaks at low water. A slight indentation of the shore here has received the name of Crescent bay.*

    Striped Peak is several hundred feet high, and wooded, and was doubtless named from a well-marked line upon its water side, occasioned by a land slide from its summit. This mark is being rapidly obliterated by the growth of vegetation. The base of the hill towards the water presents a straight line, rumiug E. by N. for three miles, with deep water off it.

    Fresheater bay.*-The eastern part of Striped Peak, with several rocks off it, is called Observatory Point on the Admiralty charts, and forms the western boundary of Freshwater bay. The eastern side is the low delta called Angelos Point, at the mouth of the river Clwha, and the line joining the two runs E. by N. $\frac{2}{3}$ N. three miles across. Inside of this line the depth of the curve is about $1 \frac{1}{4}$ mile, with water ranging from 16 fathoms to four or five close inshore. The western shore of the bay is bluff, the eastern ow, with bluff in the rear. The waters of the Elwha bring down such quantitics of earth that we find only 10 fathoms water at a distance of three-quarters of a mile off its mouth.

    - English Admiralty chart. 1847.
    + English dduralty chat, 1847. The Indian name of this river is K wa-ha-mish.


    ## PORT ANGELES, OR FALSE DUNGENESS.

    Four niles east of the Elwha commences a long, low, very narrow sand spit, stretching out from the bluff in a general E.NE. direction for three miles, to the point called $E d i z H o o k$, ${ }^{*}$ which lics $1 \frac{1}{2}$ mile off the main shore, thus forming an excellent and extensive harbor, with deep water of 25 to 30 fathoms, sandy bottum, close under the inside of the sand apit, almost to the head of the bay. Through the centre of the bay we found a line of 15 fathoms, sticky bottom, and between that and the main it shoals very regularly with the same kind of bottom. On the ontside of the spit very deep water is fond close to it, and the Hook may be rounded within a cable's length in 25 fathoms. In the indentation between Angelos Point and the head of the bay the water is shoal, 10 fathoms being found two miles from shore,

    The Hook is covered with coarse grass, and in many places with driftwood, showing that the sea sometimes washes over it. Although it lies well out of the line of vessels bound either in or out of the strait, it would be advisable to mark it with large, easily-recognized beacons, or to plant trees along part of it, as it cannot now be distinguished, even in good weather, until a vessel is close upon it. From the middle of the strait it cannot be made out unless the appearance of the bluff beyond is known. At the head of the bay is a large salt-water lagoon. Fresh water is found on the south shore in several places, but the extensive flats render it hard to obtain. The bluff, ro feet high, comes directly to the high-water line, and is covered with trees. Three Indian villages of the Clallums $\dagger$ existed on its shores in 1852, when a secondary astronomical station of the Coast Survey was established near the Iudian graveyard at the head of the harbor. Its geographical position is:
    O, "

    | Latitude | 480752.0 north. |
    | :---: | :---: |
    | Longitude | 1232721 west. <br> h. $m$. |
    | Or, in time | 81349.4 |

    From this station the extremity of Ediz Hook bears NE. by E., distant 25 miles.
    The bay was first disenvered by the Spaniards, and by them made known to Vancouver in 1792. We first heard of the name, False Dungeness, in 1852, when at Cape Flatery, from traders there. The United States custom-house for this district was located here in 1862. On the 16 th of December, 1863, the village and castom-house were destroyed by a torrent of water lursting from a gorge behind the town, where an accumulation of fallen timber had dammed up the waters. A preliminary chart of False Dungeness was published by the Coast Survey in 1853, and a second edition in 1856.

    Conl of fair quality is reported to have been found within three miles of the harbor.

    ## NEW DUNGENESS BAY.

    The shore from Point Angelos gradually curves to the northeast, and about eight or nine miles from Ediz Hook another long, low, narrow sand spit, covered with grass, leaves the bluff shore and stretches in a general N.NE. direction for $3 \frac{7}{8}$ miles, forming the northwestern shore of the roadstead of New Dungeness. On the inside, one mile from the eastern extremity, another narrow sand spit makes $1 \frac{1}{3}$ mile southward towards the main shore, forming a large inner sloal bay, with a narrow opening, through which the water passes, as over a rapid at low tide. Abreast of this point is a small stream, affording an abundance of fresh water but boats must ohtain their supply at low tide, and come out when the tide has sufficiently risen. The western side of this stream is a bluff 60 feet high, and upon it is a large village of the Clallums. The eastern shore of the stream is low, swampy, and covered with trees and brush. It forms the southern or main shore of the roadstead, and off it lie extensive mud flats, which are bare at low water for five-eighths of a mile, and run as far as Washington, or Budd'a harbor. Shoal water exists some distance outside of these flats. About 20 fathoms are found a quarter of a mile south of the Light-house Point, the depth regularly decreasing across the lay, with a soft, tenacious, muddy bottom. The usual and best anchorage is to bring the light-house to bear about N. by F. $\frac{1}{2}$ E., half a mile distant, when 10 fathoms are found one


    third of a mile, broad off the beack. With the light-house bearing NW. by N. three-quarters of a mile distant, the same depth and bottom are found. The nearest shore will bear south $1 \frac{1}{1}$ mike, and the mud flat three-quarters of a mile in the same direction. A southcast wind drawing out of the strait blows directly into this harbor, but the bottom will hold any vessel with good ground tackle. The only difficulty will be to get the anchors out of the mod after riding a couple of days to a gale. In the last position a ressel can readily get under way and clear the point.

    This point is so low that vessels hound in or out, before the crection of the light-house, were upou it before they were aware of their danger. Several hat run arhore on the outside beach, and in 1855 , while we were anchored close in, with the weather thick and hazy, a vessel from Admiralty inlet had been sct out of her course by the currents, and came driving in with studding-sails out, and only saw her mistake and danger when the black hull of our vessel attracted her attention.

    A shoal with $2 \frac{1}{2}$ fathoms makes out from the end of the point for half a mile, and a heary tide-rip runs over it at the change of the currents.

    A hydrographic sketch of New Dungeness was issued from the Coast Survey office in 180.0.
    LIGHI-HOUSE AT NEW DUNGENESS.
    The structure is about one-sixth of a mile from the outer end of the point, and consists of a keeper's dwelling of stone, with a tower of brick; the upper half being a dark lead color, the lower half white. The tower is surmounted by an iron lantern painted red; the entire height being 92 feet, and ite elevation above the mean sea-level 100 fect.

    The light was first exhibited December 14. 1857, and shows every night, from sumset to sumrise, a fixed whete light of the third order of Fresnel. It should be seen from a height of-

    10 feet at a distance of 15 miles.
    20 fect at a distance of 16.2 miles.
    30 feet at a distance of 173 miles.
    Its geographical position, as determined by the Coast Survey, is:
    
    (
    Or, in time................................................................ S 1224.5.
    Magnetic variation, $21^{\circ} 43^{\prime}$ east, in August, 1856 , with a yearly increase of $1^{\prime}$.
    From it we have the following bearings and distances:
    Striped Peak, SW. by W. $\frac{1}{2}$ W., distant 21 miles.
    Race Rocks light-house west, distant 18 miles.
    Esquimalt Harbor light-house, N. $66^{\circ}$ W. 20 miles.
    Victoria harbor, NW. by W. $\frac{3}{4}$ W., distant 173 miles.
    Smith's Island light-house, N. $31^{\circ}$ E., distant $13 \frac{1}{2}$ miles.
    Point Wilson, E. by N., distant $14 \frac{3}{3}$ miles.
    Admiralty Head light-house, S. $73^{\circ} \mathrm{W} ., 17 \frac{2}{3}$ miles.
    Fog-bell at New Dungeness.-Upon the outer extremity of the point a fog-bell of 1,100 pounds weight has been placed, and is sounded every ten seconds during foggy or other thick weather day and night. "The striking machinery is in a frame building, with the front open to receive the bell, painted black, raised 30 feet above the ground on an open structure, whitewashed."

    Tides.-The approximate corrected establishment is IIIh. IIIm., and the approximate mean rise and fall of tides 5.0 feet.

    Our experience in these waters suggests that the light-house building should be painted black, or a color most readily made out in foggy or smoky weather. Several years since we urged the advantage of planting trees along the spit to afford large dark masses, that a lookout might sce the danger before being upon it. A few settlers are now located about the bay.

    This harbor was first examined and made known by Vancouver, who applied the present name in 1792. It is known by no other.

    Eastward of Dungeness the shore is indented by Washington harbor, Port Discovery, and Admiralty inlet, the northwest point of the entrance to which is Point Wilson.

    49 c s

    ## WASHINGTON, OR BUDD'S HARBOR.

    From New Dungeness roadstead to the entrance to this harkor the immediate shore is low, flat, covered with trees, and bordered by an extensive mud flat; but behind it, at a very short distance, risce a level plateau. The bluff at the NE. point of the harbor is seen from Dungeness Point. The entrance to the harbor is nearly closed by a low sand spit stretching across it from the east, almost to the western part, where a narrow chamel way exists haviug two fathoms through it. This cannot be seen from Dungeness Point, which is $6 \frac{1}{2}$ miles NW., on account of the outward curving of the intermediate shore. Inside of the harbor we found 17 fathoms. Its width is a little orer a mile, and regular, its length about three miles, and the general direction SE. by S. One mile outside of the sand spit a depth of 10 and 12 fathoms exists, deepening rapidly to 30 and 35 , with a bottom of stiff mud.

    This harbor was surveyed first by the Lnited States Exploring Expedition, and called Budd's harbor; but there being a sheet of water in l'uget's sound bearing a similar name, we have adopted Kellett's appel$\mathbf{1}_{\text {ation. }}$. The Indian name of the bay is S quim, by which it is generally known to the settlers.

    - Quimper in 1790 explored the harbors in this vicinity, as did Galiano and Valdes in 1791.


    ## PROTECTION ISLAND.

    The western extremity of this island lies E. $2_{3}$ S., distant $7 \frac{1}{2}$ miles from Dungeness light-house, and extends $1 \frac{3}{4}$ mile NE. $\frac{1}{2}$ E., being narrow, curved outward to the strait, and having a low point at each end, with shoul water stretching from the western. Its sides are very steep, and about 200 feet high, the seaward part covered with timber, and that towards Port Discovery undulating and covered with fern. It lies two miles directly off (NW.) the entrance to Port Discovery. On the inside is found very deep water, but upon the outside a line of kelp, about half a mile out, marks the four-fathom curve, and from this a bank rums oun N.NW. for three miles, having from five to fifteen fathoms upon it, with a shoal spot of three and four fathoms two miles from the island. It affords a good anchorage, with light airs and strong adverse currents. The botom is inregular aud falls off suddenly. This shoal has been named the Dallas bank by the United States Coast Survey.

    This island, with Port Angeles and Now Dungeness, afford the first examples of the peculiar feature of low, sandy, and gravelly points covered with coarse grass and bushes, making ont from the high cliffs, where the tendency of strong currents would seem to be to cut them off.

    It was called Protection island by Vancouver in 1792, and on account of its position in relation to Port Discovery is very aptly named.

    ## POET DISCOVERY.

    From Dungenese light the west side of the entrance to Port Discovery, called Challam Point, bears E. by S. $\frac{1}{5}$ S., distant nine miles. From Washington harbor the distance is four miles. The intermediate shore is composed of ligh steep cliffs. Cape George, the castem point of the entrance, bears NE. $1 \mathbf{1} \mathbf{4} .1 \frac{1}{2}$ mile from Challam I'oint, and is a stecp bluff, rising directly from the water. The average width of the bay is nearly $1 \frac{3}{4}$ mile for nine miles of its length, and then decreases rapidly to the Salmon river. It makes four general courses from the catrance to the head, as follows: $1 \frac{3}{4}$ mile south, four miles E. by S. $95 \mathrm{~S} ., 2 \frac{1}{2}$ miles S. by E., and 13 mile SW. by S. The shores are abrupt, and covered with wood to their edges, and the projecting parts are all terminated by low points stretching out short distances. On the secoud point on the eastern side, were (1856) the remains of an extensive stockaded village of the Clallums. Mount Chatham* lies off the southwestern part of the bay, and reaches a height of 2,100 feet.

    When well in this bay Protection island so completely shute up the entrance as to make it appear as a large lake. The great drawback to this port is the depth of water, which in midechannel is not less in any place than 25 fathoms, and in some is 40 . Under the second low point on the east we could not find less than 25 fathoms a few ship's lengths from the beach, but found good anchorage in 20 fathoms, soft bottom, on the western shore, two miles S.SE. from Challam Point, and abreast of a low swampy beach. At the head of the bay it contracts in width, the water shoals, a large mud flat exists for the last mile, and the shores become higher, but in places the hills retreat, and give a scanty space for a few settlers' cabins. For a few yours after the settling of San Francisco many vessels came here for piles and spars; but a saw-mill has been built here.
    o Named by the United States Coast Survey in 1855.

    It was discovered in 1790 by Quimper, and called Port Quadra. In 1791 the Spanish discovery brig Sutil, Señor Don D. Galiano, and the schoner Mexicano, Señor Don C. Valde\%, refitted their ships here.

    It was first surveycd and made known by Vancourer in 1792 , who refitted his ships and established an observatory at the second low point on the western shorc. He gave it the present name, after one of his ships, and it is known by no other.

    In 1855 we found on the bluff back of Challam Point great numbers of trees that had been twisted off and uprooted by a tornado from the southeastward. The prostrated trees were plainly visible on the sloping hillside from the bay.

    Point Wilson is the western point of the entrance to Admiralty inlet. From Dungeness light it bears E. by N., distant nearly 15 miles, this course passing over the outer edge of the three-fathom shoal (Dallas bank) off Protection island. The extremity of the point is composed of low sandy lilloeks, covered with coarse grass; but west of it the hill rises 200 or 300 feet, and again falls inshore. This appearance is well seen in approaching it from the strait, and is a good mark. Between the point and Port Discovery the ehore is high, with steep yellow cliffs, and about midway a slightly projecting angle is formed, called Midde Point. 'Io the northwest of the point 15 fathoms can be obtaned a mile from the shore, but the water shoals suddenly, and in ruming in a fog the lead must be kept going. Off the eastern end of the point 20 fathoms can be got a ship's length from shore. During ebb tides a very strong eddy current sets to the eastward along shore between Discovery and Point Wileon. In 1855, when coming out of the inlet on the large ebb, with scarcely any wind, we kept outside of the rip showing the line of the eddy. A vessel two or three miles ahear was in the eddy at the same time. We were carried past Protection island, but she was drifted back to Point Wileon. The Indians when bound to I ungencs kecp well out in the ebb.

    A light-house was recommended for this point, as it presents many adrantages over the head on the opposite side of the inlet.

    When we were last there (1857) a small unfinished log hat, called Fort Mason, stood upon it.
    It received its present name from Vancower in 1792.

    * QUIMPER PEFINSULA.

    Between Port Discovery and Port Townshend lies a penimeula three miles in breadth and ten miles in length, offering great advantages as a location for a town. No mame has hitherto been applied $t o$ it, and we have ventured to designate it as above.

    For the description of Admiralty inlet, Puget's sound, and adjacent waters, see pages and —.

    ## VANCOUVER ISLAND,

    Originally called Quadra and Vancouver by the Spanish commander and Vancouver, who mot in the Gulf of Georgia in 1792, the former entering from the north, and the latter from the south, through the Strait of Juan de Fuca. The name Quadra has fallen into disuse.

    ## NORTH SHORE OF THE STRAIT OF JUAN DE FUCA.

    From Point Bonilla to Owen Point, forming the western head of the entrance to Port San Juan, the shore runs 13 miles E. $\frac{1}{3}$ N. It is nearly straight, rocky, and bluff, with high mountains rising immediately behind it, and all heavily wooded. From 10 to 20 fathoms are found within half a mile from the shore Vessels are apt to lose much of the wind when close under either shore, and at present it is impossible to say where the strongest currents run.

    ## PORT SAN JUAN.

    The eastern head of the entrance is formed by several large rocks, called Observatory rocks on the Admiralty chart of 1847 . From Tatoosh Island light they bear NE. by N. 1 N., 14 miles distant. The width of the bay is 12 mile from point to point, and their bearing E. $\frac{1}{4}$ S. and W. $\frac{1}{4}$ N. from each other. The length of the bay is $3 \frac{1}{2}$ miles on a general course NE. $\frac{3}{4}$ N., and the width almost uniform at $1 \frac{1}{4}$ mile to the very head, where several streams enter, amongst which are Conper inlet at the northeast, and the river Gordon at the north, where stands a large Indian village called Onismah.* Across the entrance a depth of ten fathoms is found, except near Observatory rocks,* where 17 exists close to them. Outside we find from 15 to 20 , and


    inside the bottom is very regular in seven to ten fathoms, up to the head, where it decreases evenly to four within half a mile of the shore. The eastern side has the least number of rocks, and a mid-channel course clears everything well. In heary southerly weather a swell rolls straight in, but by anchoring well up on either side vessels avoid it. The sides are steep, high, and backed by heavily timbered hills and mountains. At a distance in very clear weather it is difficult to distinguish the entrance unless one is acquainted with the locality, but in moderately hazy weather the indentation is readily made out.

    The approximate geographical position of Observatory rocks is:
    

    Meares first noted this bay in his map, and called the western point I'oint Hawksbury. He called Bonilla Point Point Duffire, after his first officer. It was afterwards examined by the Spaniards, and Vancouver stretched over to this shore and plotted it on his chart. It was surveyed by the United States Exploring Expedition in 1841, and by Kellet in 1847.

    From Ohservatory rocks the shore preserves the same features, running east in a straight line to Sheringham Point* $23 \frac{1}{2}$ miles, with soundings in from six to twenty fathoms a mile from shore, and in some places ten fathoms at least two miles off, then suddenly dropping into 50 and 60 fathoms. From Sheringham on an E. $\frac{1}{2}$ N. course to Otter Point* the distance is $4 \frac{1}{2}$ miles, with a curve in the shore of one mile, but the shore is generally so uniform in its claracter that it is hard to recognize these points in sailing close abreast of thom.

    ## SOOKE INLET.

    From Sheringham Point to Becchy Head* the distance is $11 \frac{1}{2}$ miles, and the course E. $\frac{1}{4}$ N. The shore is varied by an indentation one mile deep, called Sooke bay, and at a distance of four miles from Otter Point is broken by a very narrow crooked entrance, which is Sooke inlet. This leads to a large sheet of water three miles inland, called Sooke basin. One mile cast of this inlet is a large islet called Secretary island,* and on the western side is a bright yellow bliff, from which makes out a low sand spit NE. for half a mile across the entrance. To the eastward of this spit is the passage, only 100 or 200 yards wide, with an irregular and rocky bottom, and some sunken rocks. The currents run through with great velocity, and a thorough knowledge of these and the channel is necessary to enter this place. When a depth of ten fathoms is struck off the entrance a high hill called Mount Maguire* will bear about NE. It is partially covered with trees, but the bare rock shows distinctly in many places, and this fcature now commences to distinguish the soutleast part of Vancouver island. The shore in many places is bare and rocky, with patches of land covered with fern and destitute of trees, and the houses of settlers begin to appear.

    Off Beechy Head the water is very deep, and the currents go by with a rush. In this vicinity we recollect the instance of a Cuited States revenue cutter striking the bold shore with her flying jib-boom, and only striking her forefoot after the jib-boom had been carried away.

    The approximate geographical position of Beechy Head is:
    
    The pronunciation of Sooke is exactly like that of the English word "soak." The Indian word is T'sत̄k.

    Befcher bay* lies to the eastward of Beechy Head. Its general direction is north for about a mile and a half, width about the same, and the bottom is rocky and irregular, with decp water. Many rocky islets are found upon the castern side of the bay, and two large ones at the northern part. The channel rums between these with about 20 fathoms, and with from seven to ten fathoms beyoud the eastern one. The eastern head is formed by Cape Cluarch.* This bay is enclosed by high rocky hills.

    ## RACE ROCKS.

    From Beechy Head the outermost of these rocky ishets bears E. by N., distant five miles, and its distance from Bentinck island,* close under the main shore, is one mile. This cluster of islets numbers about ten principal ones, which cover an area of not less than half a mile square. They are low, and the larger ones are
    covered with grass, but are without trees or bushes. Stretching SE. from them for half a mile the bottom is irregular, with points of rock in five fathoms. The currents rush by with great velocity and irregularity, attaining a rate of six miles per hour, as we have measured by the log. This is a hard place for sailing vessels when the airs are light. See remarks in the directions for Esquimalt and Vietoria harbors from the Race rocks.

    ## light-holse on race rocks.

    The light-house on the Great Race has an clevation of 118 feet alove high water.
    The light is a white light, showing a bright flash every ten seconds. The illuminating apparatus is of the second order of Fresuel, and was first exhibited January 1, 1861. Uuder a favorable state of the atmosphere it should be seen from a height of -

    10 feet at a distance of 16.1 miles.
    20 feet at a distance of 17.6 miles.
    30 fect at a distance of 18.8 miles.
    The approximate geographical position of the light is :
    

    Computed magnetic variation $22^{\circ} 04^{\prime}$ east in 1861.
    Notice has been published by order of the governor of Vancouver island that after the first day of October, 1.864 , the tower of the light-house on the Race rocks will be painted in alternate broad horizontal bands of black and white.

    From Race rocks the strait opens to the northward, and we have the following bearings and distances to several important positions:

    Esquimalt Harbor light, north $8 \frac{1}{2}$ miles.
    Entrance of Victoria harbor, N. by E. $\frac{1}{2}$ E. 9 miles.
    Trial islands, NE. by N. $10 \frac{1}{2}$ miles.
    Discovery island, NE. by N. 15 miles.
    Smith's Island light, N. $65^{\circ}$ E. 26.2 miles.
    New Dungeness light, east 18 miles.
    From Race rocks the shore is very much broken to Esquimalt harbor, first by a narrow deep indentation called Pedder bay,* its northern point called William Head;* then Parry bay* and Albert Head,* and just before reaching Esquimalt a long, low spit, with a salt lagoon behind it. Along this shore the eblb current runs with great strength, the water being from 40 to 50 fathoms deep, and the general set ou the liace islands.
    ditections for esquimalt and victonia harbors from tae race rocks.
    The Race Rocks tower can be distinctly seen at a distance of 12 miles. On nearing it vessels should round it at a distance of not less than half a mile to a mile. The outermost danger is a rocky patch of five feet, lying SE. by E., nearly balf a mile from the tower.

    On rounding the rocks Esquimalt Harbor fixed light will be seen, and should be steered for on a benring N. $\frac{1}{2}$ W., which will lead clear of the recf extending a short distance off Albert Head. Keep the bright light in full view. If a vessel gets too far to the westward it will appear dim, and shortly become shaded green, when she should immediately steer to the eastward until it again shows bright. This precaution is necessary on account of the currents, which during spring tides run as much as six knots in the neighorhood of the liace rocks. The ebb runs almost in a direct line from the Canal de Haro to the rocks, and sets between them and the shore. There are also tide rips in the viciuity dangerons to boats and amall cratt.

    When to the northward of Albert Head, and wishing to anchor in Royal bay, a ressel shotid bring Esquimalt light to bear N. by W., when she will have 10 fathoms good withholding ground about one mile from the light, or, if desired, she may stand to the westward until the light becomes shaded green, when she should immediately anchor.

    In entering Esquimalt harbọ the light should be left from three to four hundred yards on the port hand, and when it bears S. by W. a ship may anchor in seven fathoms, or stand into Constance cove, (Village bay.) When the light bears NW. by W. it changes from bright to red, and shows the latter color in the harbor.

    In entering Esquimalt from the eastward the light should not be steered for until it shows bright, which is the mark for clearing Brotchy ledge off Victoria, and Scrogy rocks off Esquimalt. When the light changes from red to bright it leads clear of the Scrogy rocks about 120 yards.

    The course for the entrance to Victoria harbor, after rounding the Race light, is N. $\frac{3}{4}$ E., and when Esquimalt light changes from bright to red a vessel will be one mile from the shore in 33 fathoms.

    Ships, however, above the size of coasters, unless acquainted with the neighborhood, are recommended not to run for Victoria at night, when they cannot enter, but rather to anchor in Royal bay for daylight. With southeasters and stormy weather a ship should invariably run into Esquimalt harbor, which she can readily do with the assistance of the light on Fisgard island.

    ## ESQUIMALT HARBOR.

    This is the bay where all the British men-of-war lie. It is in the deepest part of the large indentation called Royal bay.* The entrance is a quarter of a mile wide, and has two rocky heads on either hand, the western having Fisgardt island off it, and the eastern outlying sunken rocks sonth of it, with several islets. From the entrance the general direction of the bay is N.NW., and the extrene length two miles. After passing the heads the harbor opens to the east, forming a small beautiful bay, called Village bay, or Constance cove, where men-of-war anchor in a uniform depth of six fathoms. In the entrance are seven and eight fathoms, and the approaches for a mile give from 10 to 13 fathoms.

    At the head of the harbor is Mount Scymour.*
    Five miles west of the head of Esquimalt lay is the head of a large bay coming from the north, and opening into the inside channel to the Nahny'moh coal mines.

    ## light-house at esqumalt harbor.

    The building is erected on Fisgard island, on the western side of the entrance to Esquimalt harbor. It consists of a keeper's dwelling of brick, with a tower 57 feet in height, whitewashed, and surmounted by a lantern painted red.

    The illuminating apparatus is of the fourth order of the system of Fresnel, and shows a fixed light, visible through an are of $220^{\circ}$ of the horizon. Through $20^{\circ}$ it exhibits a green light, through $58^{\circ}$ a bright or white light, and through $142^{\circ}$ a red light. It will show green when bearing between N. by E. 2 E. and N. $\frac{1}{4}$ W., white from N. $\frac{1}{4}$ W: to NW. by W. $\frac{1}{3}$ W., and red towards the harbor, or from NW.by W. $\frac{1}{3}$ W. to S.SE.

    It is placed at an elevation of 70 feet above the level of the sea at high water, and in favorable states of the atmosphere should be visible from a height of-

    10 feet at a distance of 13.2 miles.
    20 feet at a distance of 14.7 miles.
    The approximate geographical position of the light is: * . "
    Latitude............................................................. 4825 . 38 north.
    Longitude................................................................. . 1232710 west.
    Or, in time.... h. m. ${ }^{8}$
    Computed inagnetic variation $22^{\circ} 05^{\prime}$ east in 1861.
    The light was first exhibited November 19, 1860.

    ## VICTORIA HARBOR.

    The entrance to this harbor is 21 miles east of Esquimalt. As the channel is very contracted, crooked, and obstructed with a 10 -fect bar, ressels usually anchor ontside in 10 or 15 fathoms, taking care to avoid Brotchy ledge* with only seven feet of water upon it, lying alout half a mile S.SE. of the eastern head, and SW. $\frac{3}{4}$ W. from Mount Beacon,* upon which was a range, with one on the shore. We believe, however, that the ledge has been marked by a spar buoy since our visit there. The channel inside is well marked out by
    buoys, but a pilot is necessary to carry a vessel in. The whole length of the harbor is about three or four miles, with an average width of one-fifth of a mile. It is very tortuous, and the head stretches west nearly to the head of Esquimalt bay, where a portage exists.

    The approaches to the harbor are deep outside of Brotchy ledge, and from 10 to 20 fathoms are found inside of it.

    The approximate geographical position of Mount Beacon is:
    Latitude ................................................................. . . . . . $4824 \frac{1}{2}$ north.
    Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:3 221 west.
    The Hudson Bay Company has a flourishing settlement and trading establishment a mile and a half within the entrance, and much of the surrounding country is well cultivated, but the settlement hereabout must spread toward Esquinalt, or upon that harbor, not only on account of its superior excellence, but because fresh water is scarce about Yictoria. A steamer runs regularly between Victoria and Portland, (1864.)

    The shores are comparatively low, but rocky, and covered in part by trees, reminding one of the rocky parts of the coast of Massachusetts and Maine.

    ## TRIAL ISLANDS.

    These islands lie four miles E.SE. from the entrance of Victoria harbor, with a rocky, irregular, and moderately low shore. The islands are small in extent, and the currents set by them with great velocity.

    ## DISCOVERY AND CHATHAM ISLANDS.

    The former of these two islands lies $2 \frac{1}{2}$ miles off the southeast point of Vancouver island. It is abont a mile in extent, 230 feet high, partially covered with trees, and consists of granite rock, which shows in places without a particle of vegetation.

    Northwest of it, and separated by a narrow and intricate channel full of rocks, lies Chatham island, (composed of several small islets,) somewhat smaller in extent, and not so high as Discovery island, but similar in appearance and formation. Between these two islands and Yancouver lies an extensive bay nearly filled with rocks and reefs, the main body being called the Chain islands. Close around the western side of Discovery and Chatham is a channcl, having from 7 to 17 fathoms, but it is only fit for small craft. From the western part of Chatham to Cadboro' Point the distance is about three-quarters of a mile. Numerous rocks show close to the point.

    The approximate geographical position of the middle of Discovery island is:

    $$
    \begin{aligned}
    & \text { Latitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4826 \text { north. } \\
    & \text { Longitude................................................................. } 12314 \frac{1}{2} \text { west. }
    \end{aligned}
    $$

    A light-house is much needed upon Discovery island, as marking the southwest point of the southern entrance to the Canal de Laro.

    The islands were named by Kellett after Vancouver's two ships.

    ## ARCHIPELAGO DE HARO.

    This extensive group of islands was first seen by Lopez Gonzales de Haro, in 1789; next by Quimper, in 1790; and first circumnavigated by Don Francisco Eliza, in 1791. Vancouver, in 1792, passed through the Rosario strait from the south, and gives a good representation of the channel and islands, his boats evidently working among them. Galiano and Valdes, in 1792 , about a month later than Vancouver, passed through one of the straits from the north, and represented the mass of islands as one which they designated Isla de San Juan. The agents and factors of the IIudson Bay Company, doubtless, knew most of the channels and islands subsequently; still, up to 1853, they exhibited only eye-sketches of the Camal de Haro, north and east of Sidney island. In 1841 the United States Exploring Expedition made the reconnaisance of the archipelago, but did not lay down the islands on the western side of the Canal de llaro. The Rosario strait was surveyed, and called Ringgold's channel. Most of the islands, chamels, points, \&ce, were named after officers and vessels of the nary, and it is said to have been intended to call the whole group the Navy archipelago. The Canal de Haro is erronconsly called the Canal de Arro.

    The Canal de Haro and Rosario strait were surveyed by the United States Coast Survey in 1853 and 1854, and the archipelago called Washington sound.

    ## CANAL DE HABO.

    The southern entrance to this strait may be said to lie between Discovery island and the point of Bellevue or San Juan island,* nearly northwest and seven miles distant. Starting from this line and about three miles from Discovery, a course NW. by N. for 16 miles will run through the first strcteh of the strait; thence an abrupt turn is made towards the eastward, and the way out can be readily seen between the islands. The next course is NE. $\frac{1}{2}$ E. for 11 miles; finally, N.NW. $2 \frac{1}{2}$ miles, and a run of seven miles on that course will carry a vessel into the middle of the Gulf of Georgia.

    Commencing at the starting point, we have Bellevue island on the eastward, and pass it at the distance of $1 \frac{1}{2}$ mile. Its mountains rise to 1,070 feet, and some of them are only partially covered with wood. The bluffs are very precipitous and inaccessible, and the depth of water close to them is as much as 150 fathoms. The greater extent of the strait is to the westward, stretching off into bays and passages among the islands. Cordova bay $\dagger$ is the only available anchonage about this entrance. It commences at Gordon Head, $6 \frac{1}{2}$ miles NW. by W. $\frac{1}{4}$ W. from Discovery island; then stretches westward for two miles, and gradually curves to the N.NW., with a long high bluff, broken and bright, at Cowiction Head. $\ddagger$ Back of the southwest part of the bay rises a bold rocky-topped hill, (named Mount Douglas,f) which reaches a height of 690 feet. Fresh water is obtainable on the southern shores of the bay. The northern limit of the bay is Daray island, $\dagger$ N. $\frac{1}{2}$ W. four miles from Gordon Head, and on this course and 18 mile from the head is Zero rock, $\dagger$ a small white rock, showing a few feet above water, with plenty of water around it, but foul bottom and a patch of kelp, a few hundred yards N.NW. of it. A mile and a quarter west of it is a sunken rock. In the bay a depth of not over 20 fathoms is found, decreasing irregularly in advancing, but in the southern portion affording capital holding ground in 10 fathorns. A mile and a half E.SE. from Gordon Head are patches of kelp and foul bottom.

    When $8 \frac{1}{2}$ miles within the entrance the width of the strait decreases to 34 miles, having Darcy island (low and wooded) on the west, with a small islet off its NE. face, and very large fields of kelp stretching far off the southeast point into the Canal. In one of these fields we discovered in 1854 a sharp-pointed rock, which has heen named Unit rock,(1) lying S. $72^{\circ}$ E. from the SE. point of Darcy island, and distant from it three-quarters of a mile. The small, sharp apex of this rock rises about three feet above the very lowest tides. In recent charts deep water is placed around it, and when the coast surveying brig Fauntleroy beat through the field the existence of this danger was unknown.

    Since its discovery several rocks covering a space of half a mile square, and bearing $\mathrm{S} .72^{\circ} \mathrm{E}$. from the SE. point of Darcy island, have been found. They are marked by a field of kelp, and one point uncovers at the lowest tides. Near mid-channel a depth of 155 fathoms is found.

    The island to the eastward, nearly abreast of Darcy, with a small cove at its southern end, is Henry $i_{s}$ land,(2) having a high, rocky precipitous front, and a swirling current around it. Further on and to the westward is the southeast end of Sidney island,(3) $1 \frac{1}{2}$ mile northward of Darcy, with the Dot rocks between them, but nearer Sidney. This island is not high like those on the other side of the channel, and a landing is easily made at any point. The channel here, 10 miles from the entrance, is 23 miles wide. To the eastward it opens beyond the north end of Henry island, with high mountainous islands bounding the view. To the westward lie a couple of long, narrow islands a mile from Sidney, and between them and the latter is good anchorage and capital fishing ground for halibut; that near the canal is named Halibut island.(1) The moderately low wooded islands, three or four miles ahead, and on the western side of the channel, have not been named. Between them runs the inside channel for steamers to the Nahnymoh coal mines. The background of the view is occupied by wooded islands, overlapping each other and appearing like a continuous shore. The large high island on the eastern side, 15 miles from the entrance, is Stuart island,(4) and the canal is here contracted to a breadth of only two miles, this being the narrowest part. Two and one-eighth


    miles S. $67^{\circ}$ W. from the western point of Stuart island, the British surveying steamer Plumper found (1858) a rock covered at a quarter flood, and baving irregular bottom around it for the space of half a mile square, with soundings from 5 to 20 fathoms. Onc mile NW. of Stuart's island a depth of 190 fathoms is found.

    Stuart island in many places is very high and precipitons, and covered with timber, but in some parts sparsely. Near its southwest head a perpendicular wall of rock serves also to distinguish it. After passing the western end of this island at the distance of a mile, the channel takes an abrupt turn to the eastward, and the Gulf of Georgia is seen. The course now is NE. $\frac{1}{2}$ E. for 11 miles, having on the northwest side Saturna island, which rises into mountains. Java Head,(1) near its eastern extremity, stands up perpendicularly nearly 700 feet, but the extreme part, called East Point,* is a long sloping point, in many places destitute of trees. The small island lying off ite north shore is Tumbo.*

    On the east side the waters open well to the southeast, and the islands rise in high hills and mountains. The large island abreast of Java Head is Waddron,* which has good anchorage off its southwest side, where the shore-line curves well in. The western point is low and sandy; the southern, called Point Disney,* is perpendicular, high and rucky. Off its northern face lie two islets, called Shipjack islands.(2) The western one is about a mile from Waldron, moderattly high, and wooded; the eastern is smaller, about 40 feet high, destitute of trees, but covered with grass, and lics a mile cast of the former. Between these lies a sumben rock, and the curent wowes hy with great velocity.

    On some recent maps two islands, called Adolphus and George, are laid down close to the Skipjacks, but in 1853 we examined the vicinity and satisfied ourselves that they did not then exist.

    When Last Point bears NW. by W. $\frac{3}{4}$. W two miles distant, the rest end of Patos island(3) will bear N.NE $2 \frac{1}{2}$ miles, and the west end of the Sucia group,(4) E.NE. $3 \frac{1}{2}$ miles; the course ont lying N.N.W. between Patos and East Point, which are 29 miles apart. Scven miles on this course carries to the middle of the Gulf of Ceorgia. Close off East Point is found a depth of 120 fathoms, and off Patos island 170 fathoms. All these islands are moderately high and covered with wood. They are rugged and irregular, composed of saudstone and conglomerate, upheaved until the strata are nearly perpendicular in some places, and interspersed with small veins of lignite.

    West's recf(5) lics S. $66^{\circ} \mathrm{W}$., one mile from the SW. point of Sucia; it has less than two fathoms upon it, and is marked by a large mass of kelp.

    The approximate geographical position of two or three points will serve to check the courses above given : East point of Discovery island, latitude $48^{\circ} 25^{\prime} \mathrm{N}$, longitude $123^{\circ} 14^{\prime} \mathrm{W}$.
    West point of Stuart island, latitude $48^{\circ} 41^{\prime} 17^{\prime \prime} .5 \mathrm{~N}$. , longitude $163^{\circ} 14^{\prime} 29^{\prime \prime} .6 \mathrm{~W}$.
    West point of Patos island, latitude $48^{\circ} 47^{\prime} 03^{\prime \prime}$ N., longitude $122^{\circ} 57^{\prime} 31^{\prime \prime} .2 \mathrm{~W}$.
    The number of islands and the intricate channcls lying between the two straits we shall not attempt to describe. A proper appreciation of them can only be obtained from the chart. The position of the islands are shown on sketches issued from the Coast Survey office in 1854 and 1858.

    ## SMITIT'S ISLAND.

    Returning to the Strait of Fuca to enter the Rosario strait, we notice, first, Smith's island, lying at the eastern termination of the Strait of Juan de Fuca, within six miles of Whidbey island, and seven miles broad off the southern entrance to the Rosario strait. It is quite small, not occupying half a square mile, and rises regularly from the eastern to the western extremity, where it attains a height of about 55 feet, with an almost perpendicular cliff of clay and gravel. It sustained a few dreary looking trees, but none of great thickness or height, and the surface is covered with a growth of bushes ten or twelve feet high. There is no fresh water to be found on the islaud, and two or three feet below the surface is a stratum of hard, dry clay with pebbles.
    (1) Named by the U. S. Exploring Expedition in 1841 . On the English Admiralty chart of 1859 it is called Monareh Head.
    o Naned by the U. S. Exploring Expedition, 1841.
    (2) So called by the U. S. Exploring Expedition, 1841. Named Wooded island and Bare island by U. S. Coast Survey in 1853.
    (3) Old Spanish name. Called Gourd island by the U. S. Exploring Expedition. 1841.
    (4) Old Spanish name. Sucia signifies muddy. The harbor on the east has a sot muddy bottom. The U. S. Exploring Expedition called them the Percival group, 1841. The Indinn name is Choo-si-numg.
    (5) Discovered and named by the U. S. Coast Survey, 1858. Called Piumper reef on English Admiralty chart, 1859. 50 c s

    A very small, low islet called Minor,* exists one mile northeast of Smith's island, and at very low tides is connected with it by a narrow ridge of boulders and rocks. A field of kelp extends to the westward of Smith's island for $1 \frac{1}{2}$ mile, and has a width of a mile. In sailing through this ficld we found the depth of water very uniform at $6 \frac{1}{2}$ fathoms, and in no place did we get less. The bottom is hard and sandy, and no rocks have been discovered in it. Another smaller field is secn to the westward of the one just mentioned. Good anchorage is fomm on the north side of the island, east of the kelp, in from 10 to 5 fathoms, and on the south side, east of the kelp, in from 10 to 8 fathoms, hard bottom. We parted our cable here in a southeast gale, but the smooth sandy bottom enabled us afterwards to secure the anchor. Off the eastern end of the small islet very deep water is found close to it.

    ## THE LIGHI-HOUSE ON SMITH'S ISLAND.

    This structure consists of a keeper's dwelling, with a tower rising through it, and surmounted by an iron lantern painted red. Its height is $41 \frac{1}{2}$ feet above the surface of the ground, and about 90 feet above the mean level of the sea. The dwelling and tower are plastered and whitewashed, and situated on the highest part of the island, near the southwest point. All the trees have been cut down to afford a clear horizon in every direction. The illuminating apparatus is of the fourth order of Fresnel, shows a revolving white light, with a fasle cocry half minute, and should be seen from a height of-

    10 feet at a distance of 14.2 miles.
    20 feet at a distance of 16 miles.
    30 feet at a distance of 17 miles.
    It was first exhibited on the 18 th of October, $\mathbf{1 8 5 8}$, and shows from sunset to sumise.
    The approximate geographical position of the light, as determined by the Coast Survey, is:
    Latitude. ................................................................ . . . 4819 01.0 north.
    Longitude................................................................... 1225002 west.
    Or, in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 811 20.1.
    The light shows into the entrances of Canal de Haro, Rosario strait, and Admiralty inlet, and out into the Strait of Juan de Fuca.

    The following bearings aud distances will show the relative position of Smith's island:
    From Diseovery island it lies east 162 miles.
    From Race Island light NE. by E. $\frac{3}{4}$ E. $26 \frac{1}{2}$ miles.
    From New Dungeness light NE. by N. 132 miles.
    From Point Wilson NW. $\frac{1}{2}$ N. 11 miles.
    From southwest point of the entrance to Rosario strait S. $\frac{1}{2}$ E. $68 \frac{2}{3}$ miles.
    This island was discovered by Eliza in 1791, and named Isla de Bonilla.
    Vancouver gave it no name.
    It was called Blunt's island by the Lnited States Exploring Expedition in 1841.
    Called Smith's island on the English Admiralty chart of 1847, and is generally known by it.
    Fichls of kelp.-'Three miles S. $\frac{1}{2}$ E. of Smith's island is a field of kelp over a mile long by a mile wide. Through it the soundings range from six to twelve fathoms, and the bank stretches off to the E.SE. for two miles, with ten and twelve fathoms upon it. This locality requires sounding out, as it would prove a great advantage for vessels drifting at the mercy of the currents to know of the existence of such anchoring grounds. The detailed hydrography of all this sheet of water eastward of the Race islands will develop many interesting features of bottom.

    Bearing W. $\frac{1}{2}$ S. from Smith's island, and cight miles distant, is another field of kelp nearly a mile in extent. We came uncxpectedly upon it at night, in 1854, during a heavy blow, with rain. It was not then marked on any chart. Next morning we sounded through it, and found the depth of water very uniform at 5 fathoms.

    Recent partial examinations show that this field marks the NE. portion of the bank lying nearly north and south, with a length of 4 miles, and a breadth of $1 \frac{1}{2}$ mile within the limits of the 20 -fathom line.

    We have named it the Hein bank.

    The field laid down on the Amiralty chart of 1847 -nearly on this enurse, and four miles from Smith's island, having only ? fathoms marked upon it-has been sought for, but not found.

    One mile south of the sontheastern point of Bellevue island, and 81 miles N W. hy W. $\frac{1}{4}$ W. from Smith", island, lies a small field of kelp about half a mile square, with thre: fathoms marked upon it ; but we have been informed that the Hudson Bay Company's steamer Otter found as little as 6 feet of water within its limits. Recent examinations show that this is comected by a 4 -fathom bank with the SLS. end of San Juan island, and stretches S.SE. therefrom for $2 \frac{1}{2}$ miles, with a breadth of threequarters of a mile within the limit of the 10 -fathom line. It is named the Salmon bank.

    All these fields and patches of kelp should be avoided, as they denote rocky bottom; and isolated points of rock frequently exist among them and escape even a very scrutinizing surver

    Shoals.-E. by N. 5.2 miles from Discovery island, and S. by W. $\frac{1}{3}$ W. $4 \frac{1}{2}$ miles from the Ifudson Bay Company's settlement on Bellcuue island, is an 11 fathom shoal a mile or two in extent; but the very few soundings upon it leave the precise extent and smallest depth of water doubtful, (1857.)

    Recent partial examinations slow that the cxtent of this Middle bonk is about $2 \frac{2}{2}$ square miles within the limits of the 20 fathom line.

    NE. $\frac{1}{2}$ N. $7 \frac{1}{2}$ miles from Race rocks, and SE. by S. 4 miles from the entrance to Victoria harbor, are a couple of spots showing 9 and 13 fathoms. It is named the Consfance bank.

    Off Point Partridge (the western head of Whidhey island) is a 10 -fathom bank, with muddy bottom. We have run across it and found this depth, but the locality has not been sounded out.

    This bank was discovered by Yameouver in 1792.-(Yol. I, p. 291.)
    We have named it the Parfridge bank.

    ## hosario stbait.

    This strait was first seen by Quimper from Port Discovery, and called "Boca de Flon." From Protection island he could see through the whole length of the strait; he could not see Deception Pas from there.

    Lliza passed through it in 1791, and called it the Canal de Fidalgo.
    Vancourer passed through it in 1792 , and gives its peculiaritics very well.
    Galiano and Yaldes came through it in 1792, and called it Canal de Fidalgo.
    The Uuited States Exploring Expedition, in 1841, called it Ringgold's Pass channel.
    The English Admiralty chart of 1847 has it Rosario strait, and by this name it is always known on the Pacific.

    Rosario strait is the eastern of the two principal channels ruming through the Archipelago de Haro. between Vancouver island and the main. Its southern entrance lies N. by E., distant 7 miles from smith's island, and is $4 \frac{4}{4}$ miles wide. The western point of the entrance is formed by a point runniug ont from Watmough Head, (1) which is 450 feet high and on the southeast part of Lopez ishand.( $(2)$ Off this point lie several rocky islets, with deep water among them and a rushing current. The outer one, named South_ west island,(3) is abont 50 feet high, rocky, flat-topped, destitnte of bush or tree, narrow, and about one-third of a mile in length, east and west. $\mathrm{S} .53^{\circ} \mathrm{E}$. from it, at a distance of half a mile, lies Entrance rock, possibly bare at the lowest tides. A patch of kelp exists upon and around it, but the kelp is generally run under the surface of the water by the strength of the current. We discovered and named this rock in 1854, The English Admiralty chart of 1859 calls it Davidson's rock.
    'The whole southern face of Lopez island is guarded by rocks and reefs. The island itself is very rocky and moderately low.

    On the eastern side of the entrance is a small wooded islet called Deception island,(3) at the mouth of Deception Pass, an intricate and very narrow 3 -fathom channel, 3 miles long, running between the north, rud of Whidbey island and the south end of Fidalgo island.(4) In 1841 the Tnited States brig Bainbridge


    passed through it from the eastward. It is the Boca de Flon of Eliza, 1791, but is now known only by the apt designation given above.

    Vanconver called it Deception Pass in 1792 ; Galiano and Valdez called it Boca de Flon, thinking with Eliza that it was the strait of that name seen by Quimper in 1790 . It was named Deception Pass by the United States Exploring Expedition in 1841.

    In the middle of the entrance to Rosario strait Vancover auchored in 37 fathoms, black muddy bottom, in 1792.

    When at the entrance, and $1 \frac{1}{2}$ mile from the western side, a line will pass clear of everything from one end of the strait to the other. This course is N.by W. $\frac{1}{2}$ W., and the distance $19 \frac{1}{2}$ miles to the north entrance.' It passes between Bird and Belle rocks, and almost tangent to Point Lawrence, on Orcas island. Taking the courses through the mid-channel we should have the following: NW. by N. 2 N . for $11 \frac{4}{4}$ miles; N: by E. $\frac{3}{4} \mathrm{E}$. for $3 \frac{3}{3}$ miles; and NW. $\frac{1}{2} \mathrm{~W}$. for $6 \frac{1}{2}$ miles-making a total of $21 \frac{7}{2}$ miles.

    The shore for the first two miles on the western side is moderately high, declining to a point, a quarter of a mile cff which lies Kellett's ledge,(1) bare at the lowest tides, and having deep water all around it. 'The ledge is marked by a mass of kelp. Thence the shore makes a deep bend for a mile to the westward, with a low beach and marsh, over which Lopez bay(2) can be seen. This bend is called Shoal bight,(3) and has from 6 to 10 fathoms for a mile out, with level sandy bottom. In mid-channel rise the Bird Rocfes, (4) about 40 feet high, consisting of three small rocky islets very close together, and running in a north direction. They are somewhat pyramidal in form, and during the summer show yellowish, on account of the parched grass and the color of the rocks. Abreast of them, on the western side, is a narrow opening between two low rocky heads of Lopez and Decatur islands.(4) Inside is a line of islets ranging from the north head, and making the channel run towards the south. This barrier is called the Lopez Chain,(1) and the entrance the Lopez Pass.(1) Several large islands are found inside. Vancouver's boats evidently were in this bay, as his chart gives a good general idea of it. The anchorage of Shoal bight continues some distance northward of this opening, and abreast of some moderately high white bluff. N.NE. three-quarters of a mile from Bird rocks lies Belle rock, directly in mid-chaunel, making a very dangerous position. It shows 4 feet above the very lowest tides, and is covered by a patch of kelp, which is, however, generally run under by the strength of the currents. The rip upon it can sometimes be seen when the water is smooth, but with light winds and high tides its existence would not be suspected. On all sides of it the water is very deep. The extent of rock above water is about 20 feet square. We discovered and named this danger in 1854, and while placing a sigaal upon it noticed that the tide rose nearly $1 \frac{1}{2}$ foot while the current was yet running ebb at the rate of 3 miles an hour. Between it and the Bird rocks there is a submarine ridge with plenty of water, but marked by strong eddies. The steamship Republic lately ran upon this rock, and more recently the pilot-boat Potter.

    After passing Deception island on the east side of the entrance, the face of Fidalgo island is high, precipitous, and bare for two or three miles in a northwest direction. This is called Sarcs Head.* It then sweeps to the north, changing to the westward until abreast of and two miles from Belle rock. In this deep bay, and lying well off shore, are, first, Williamson's rochs,* a cluster of rocky islets about 40 feet high, with deep water close around them. From Deception island they bear NW. $\frac{2}{3}$ W. 3 miles distant, and from South west island off Watmough Head, NE. 5 miles. Half a mile northward of them is Allan island,* which is about three-quarters of a mile in extent, and about 200 feet high, with its southern face partly bare. A quarter of a mile off its SW. face lies the Denis rock.* This is never bare, but its position is marked by a patch of kelp.

    North of Allan island, and separated from it by a channel a quarter of a mile wide, is Burrows's island,* $1 \frac{1}{2}$ mile long SE. and NW. by half a mile in breadth. The island is between six and seven hundred feet high, and has a remarkably flat top, is wooded, and may be seen from the Strait of Fuca. At the eastern end of the
    (1) Named by the U. S. Coast Survey in 1854. Lopez pass is called Maury pass on the English Admicalty chart, 1859.
    (2) Called the Macedonian Crescent by the U. S. ExpIoring Expedition in 1841 ; named Lopez bay by the United States Coast Survey in 1854.
    (3) Named by the U. S. Coast Survey in 1854. We were the first to discover this available anchorage. It is called Davis's bay on the English Admirslty chart of 1859.
    (4) Named by the U. S. Exploring Expedition in 1841.
    o Named by the C. S. Exploring Expedition, 1841.
    passage, between the last two islands, is a small one called Young istand.* Through all the channels formed by these islands a good depth of water exists, and no dangers have been discovered.

    The breadth of Rosario strait at Belle rock is $3 \frac{1}{2}$ miles; but it is soon contracted by James island,* on the western side, and opens into a channel N.NE. called the Bellingham channel, t which is about two miles wide at its cutrance. A small channel runs from it more to the eastward along the north shore of Fidalgo island, and leads into Padilla bay. Upon Fidalgo rises Mount Erie* to a height of 1,250 feet, covered with woods, and presenting a flat appearance from certain directions. James's island consists of two heade a mile apart, and 250 feet high, but connected by a narrow ridge. The southern head is the higher, and not very heavily timbered. Close to the west of the ridge lies another head, connected with Decatur islaud by a low sand beach.

    Just below James's island is an opening on the west between Decatur island and Blakely island,* with 25 fathoms in it, but a rock, covered at a quarter flood, exactly in the middle of the entrance. On the cast, half a mile up the strait, appears the SW . point of Cypress island, $\ddagger$ off which lie rocks and foul bottom for half a mile on a line to Burrows's island. Around this locality extends a large body of kelp. The southern face of Cypress island consists of alternate perpendicular white cliffs, and sloping ground covered with fern or trees. On its western side, and $1 \frac{1}{4}$ mile from the sontlowest point, is found a snug little harbor called Strawberry bay, $\ddagger$ which is formed by the retreating of the shore-line, and an outlying rocky islet called Strawberry or Hautboy island.* In this bay excellent anchorage is found in from 6 to 10 fathoms, muddy bottom. Good fresh water is plenty here. A high white cliff is seen to the south of the hatbor, from the shores of which rise rapidly the Lake mountains, (1) to an elevation of 1,525 feet, and among whose peaks we found two large sheets of fresh water. These peaks are very noticeable from the Strait of Fuca, and being connected by comparatively low ridges with other hills on the island, they present a saddle-like appearauce from the southward and westward.

    Abreast of Strawberry island the channel contracts to a width of $1 \frac{1}{2}$ mile, where the bold rocky face of Blakely island rises to a height of between 900 and 1,000 feet. The greatest elevation of the northern part of the island is 1,044 feet. Nearly half a mile SE. from its east face lies a very small low rock called Blach rock,(1) and half way between it, and the south end of the island is a white rock,(1) a quarter of a mile from the shore. In this narrow part of the strait the depth of water is about 60 fathoms, and the current goes through with a roar like the sound of a gale of wind through a forest. When at anchor in 10 fathoms, under the low point $1 \frac{1}{2}$ mile north of Strawberry island, we found the current four miles per hour, and swirling so much that the vessel had to be steered to prevent her breaking her sheer. Thence the strait widens northward, and at the north end of Blakely, two miles above Strawberry island, twe channels lead to the westward around Obstruction island,(2) which lies between Blakely and Orcas islands. Both are narrow, and off the entrance to the south lie some sunken rocks, and others above water. Blakely island and Orcas island are three-quarters of a mile apart.

    When in the narrowest part of Rosario strait, a very marked perpendicular rocky peak is seen to the north over the low point of Cypress, and soon shows rising abruptly from the water's edge to a height of 750 feet. It is called Bald Peak.(3) Abreast of it the channcl takes the first turn, changing its course to N. by E. $\frac{3}{4}$ E. for 33 miles. Half a mile off the north end of Cypress island is a small islet covered with trees, and called Rock island.(1) NW. of it are some sunken rocks, but their exact position is not accurately known. The comparatively low island half a mile N.NE. of Cypress is Sinclair island,(4) the highest part of which is towards the eastern end. Off the northeast face of Sinclair island, and stretching half a mile, is Boulder reef,(5) visible at extreme low tides. It is covered with kelp, which is, however, generally kept under the surface of the water by strong currents. A huge erratic granite boulder is seen at ordinary tides inside of the outer point of the reef, and bears from it S. $70^{\circ} \mathrm{E}$., distant 500 yards. From the western point of the island the reef bears exactly north, distant three-quarters of a mile. The revenue cutte ${ }^{\text {. }}$


    (4) Laid down by Galiano and Valdes as Isla de Ignaso. Received its present name from the U. S. Exploring Expedition in 1841.
    (5) Named by the U. S. Coast Survey in 1854. Called Panama reef on English Admiralty cbart of 1859.

    Jefferson Davis and the steamship Panama have been upon it since we discovered it in 1854. On the north side of the island is anchorage in 10 to 15 fathoms half a mile off shore.

    Thre miles from Sinclair island lies Orcas, on the northwest side of the strait. It is a large island, with a mountain 1,120 feet high near its southern end. The point stretching furthest east and coming down to the water is Point Lavercace, ${ }^{*}$ and the low, trecless islets and reef passed $1 \frac{1}{2}$ mile before reaching this point, and lying over half a mile off shore, are the Peapods.* Deep water is found close to them. When upon this same mid-channel course, the island ahead is Lummi istand. $\dagger$ Its southern half is very much higher than the northern, and attains an elevation of 1,560 feet. The rock nearly 100 feet ligh off the highest part of the ridge, and a third of a mile from shore, is the Lammi rock, $\ddagger$ and a eapital boat harbor is found on its northwest side. A mile off its south end are the Viti rocks,* about 25 feet high, with plenty of water around them.

    Abreast of l'oint Lawrence the channel is over three miles wide, and it there changes to NW. $\frac{1}{2} \mathrm{~W}$. for $6 \frac{1}{2}$ miles to a line joining the Matia gromp with the north end of Lummi island. From Point Lawrence, along the morth face of Orcas, the shore is rocky and precipitous, and rises by two or three plateaux to Mount Constitution, $\S$ which is less than a mile in-shore and 2,423 feet high.

    The geographical position, as determined by the Coast Survey in 1854, is:
    Latitude. .......................................................... 4840 . 37.2 north.
    Longitude...... ...................................................... . . . 122490.83 west.
    The course out passes on the west some small rocky islets called The Sisters,* marked by one or two stunted fir trees; then Clark's island* and Barncs's island,* close under its western side, leaving a channel a mile wide between it and the north shore of Orcas, with very deep water and no anchorage. Abreast of Clark's island, on Lummi island, is a contracted auchorage and shelter from northerly winds under a low point called Village Point.* The anchorage is in 10 to 15 fathoms, but there is no fresh water, and the large Indian village is now deserted. After passing this point, anchorage may be obtained half a mile from shore in from 8 to 15 fathoms. Close to Clark's and Barnes's islands the depth is 50 and 60 fathoms, and a very stroug current runs near them. The channel between Village Point and these islands is two miles wide.
    W.SW. of the north end of Lummi island, and four miles distant, are three islands very close together, called the Matia group.(1) A mile and a half to the westward of them lies the Sucia group, consisting of one large and six small islands, with a reef off the north side of the group, and a beautiful harbor a mile long and half a mile wide, opening to the east, and carrying from 10 to 15 fathoms sticky, mud bottom.\| To the westward of this group lies Patos island, and a much smaller one close to its SW. point. The eastern point of Patos island bears W. $\frac{3}{4}$ S., 9 miles from the north end of Lummi. Two or thrce miles N.NE. of Lummi island opens a shoal bay, backed by low marshy ground, which is covered with trees and ewamp undergrowth. Into it empties one or two mouths of the Lammi river. The main entrance of that stream is at the north part of the bay, and can be reached with boats only at high tide. The NW. boundary of the bay is a low grasey point with a few bushes upon it, called Sandy Point.* From the north point of Lummi island it bears N. by W. $\frac{1}{2}$ W., distant 21 miles. Between these two points anchorage is had in from four to six fathoms, but the south end of Sandy Point should not be approached within less than half a mile. Down the east side of Lummi island, which is about a mile in breadth, runs Hale's passage,* three-quarters of a mile wide. It leads from Bellingham bay. In this passage $1 \frac{1}{2}$ mile, and bearing E. by S. $\frac{1}{2} \mathrm{~S}$. from the north end of

    Lummi island, is a low sandy point, upon which was established in 1853 a secondary astronomical station of the United States Coast Survey. Its geographical position is :
    

    This places the north end of Lummi island in-
    Latitude................................................................ 484453.2 north.
    Longitude............................................................... 1924211.9 west.
    The following geographical positions will serve to check the courses and distances we have given:

    $$
    \begin{aligned}
    & \text { Matia island, cast, latitude........................................... } 484436.8 \text { north. } \\
    & \text { " " longitude............................................. } 12248 \text { 28.6 west. } \\
    & \text { South end of Strawberry isiand, latitude. . . . . . . . . . . . . . . . . . . . . . } 48 \quad 3334.3 \text { north. } \\
    & \text { longitude. . . . . . . . . . . . . . . . . . . } 12: 4326.7 \text { west. } \\
    & \text { - , " } \\
    & \text { Southwest island, off Lopez island, latitude........................ . . } 482453.3 \text { north. } \\
    & \text { " " longitude..................... } 1924833.9 \text { west. }
    \end{aligned}
    $$

    Alden's shoal.-From the north point of Lummi ancxtensive shoal bears W. by N. $\frac{1}{4} \mathrm{~N}$.
    $5 \frac{1}{3}$ miles, and NW. by N. $\frac{1}{2}$ N. $3 \frac{1}{2}$ miles from the eastern of the Matia group. It lies upon the last direct course out of the strait, but has not been completely sounded out. Within the 15 fathom curve it is at least two miles square, and may be used when a vessel loses the wind and has a strong adverse current; but the swirls and eddies upon and around it will be very apt to foul any anchor.

    The least water found on this bank is $2 \frac{3}{4}$ fathoms, and this spot bears N. $35^{\circ} \mathrm{W}$., 32 miles from the castern islet of the Matia group.

    From about its middle part we have the following bearings of promiaent oljects:
    Eastern of Matia group, SE. by S. $\frac{1}{2}$ S. $3 \frac{1}{2}$ miles.
    North point of Lummi island, E. by S. $\frac{1}{4}$ S. $5 \frac{1}{3}$ miles.
    NW. point of Sucia group, with the wooded island of the Skipjacks just open, SW. $\frac{1}{4} \mathrm{~S}$. four miles.
    This position will bring the west side of Clark's island just on with Point Lawrence.
    The shoal was discovered by the United States Coast Survey in 1853.
    It is named Alden's bank on the English Admiralty chart of 1859.
    In $185 \%$ we attempted to reach this bank four or five times, from an anchorage off Hale's passage, with light airs, bat the currents invariably swept us away from it. Recently it has been anchored upon by the Cnited States Coast Surveying brig Fauntleroy.

    ## GULF OF GEORGIA.*

    Once in the Gulf of Georgia, through either channel, the three-mile face and timber-covered bluffs of Point Robertst (showing almost as an island) is seen to the northwest. On the west the mountains of Vancouver and its bordering islands rise up precipitously, and on the eastern or main shore a series of wooded cliffs 200 feet high. Far to the eastward the Cascade range is seen rising above intermediate ridges, with the snow-covered summit of Mount Baker,* which rears its head 10,900 feet above the level of the sea. To the W.NW. stretch the waters of the Gulf of Georgia, nine miles wide, abreast of Point Roberts, where it is narrowest, but spreading out to 20 miles, and having a length of 120 . A short distance above the 49 th parallel it receives Fraser's river, (the third great stream of the northwest coast,) the branches of which spread towards the Cascade range of mountains.

    If bound up the Gulf, vessels hold well to the eastern shore to avoid the rnshing currents, and to take the chances of an anchorage if the wind fails.
    † Named by the U. S. Exploring Expedition, 1841. The Indian name is Now-uk-sen.

    From Sandy Point to Point Whitehorn* the general trend of the shore is NW. $\frac{1}{2}$ W., and the distance 7 miles. The shore is a steep bhaff, about 150 feet high, and covered with wood. At Whitehorn the face of the point is worn away by the action of the sea, and shows bright, with rocks at its base.

    ## BHRCH BAY.

    The southern point of this finc bay is Point Whitehorn, and the northwest shore is formed by a long rounding high bluff, bearing about NW. from Whitehom, and distant 3 miles. The bay runs N.NE. $2 \frac{1}{2}$ miles, with a width of $1 \frac{1}{2}$. The bottom is very uniform, with capital holding-ground of soft mud in from 4 to 10 fathoms. The immediate shores are low, and edged with marshy patches, thick undergrowth, and heary wood. No directions are necessary for entering, as there is a depth of 15 to 20 fathoms a mile outside, and 10 fathoms water on the line of the entrance. During the heaviest southeast weather no swell is felt here in a properly selected anchorage. We scarched for fresh water, but found none in the space of more than a mile along its southeastern side.

    The approximate geographical position of Point Whitehorn is-

    $$
    \begin{aligned}
    & \text { Latitude................................................................. } 485307.3 \text { north. } \\
    & \text { Longitude ................................................................ } 1224627.1 \text { west. }
    \end{aligned}
    $$

    It received its present name in 1792 from Vancouper, who placed it in latitude $48^{\circ} 5 \mathrm{~s} \frac{1}{2}$.-(Vol. 1, pp. 315, 316.) The Indian name is Tsan-wuch.

    This is the furthest point northward to which our personal examinations have extended.
    Drayton harbor.-Passing the bluff NW. of Birch bay the shore trends about N.NE. for nearly 3 miles, and terminates in a long, low, sandy point, behind which lies Drayton harbor-a small land-locked bay having a depth of 10 fathoms just inside the entrance, but very shoal over nine-tenths of it. It opens to the north at the extremity of the sand point. With the end of the point bearing N. $60^{\circ} \mathrm{W}$., half a mile distant, the anchorage would be in 6 fathoms. South of this position it shoals gradually for over half a mile to 12 feet, with sticky bottom.

    The approaches to the bay do not show over 5 fathoms at a distance of a mile from the shore, and the same depth is found on gradually nearing the end of the low point. The southeast shore of the harbor is flat and marshy, and is not separated by much more than a mile from Birch bay.

    In this barbor the United States and British steamers attached to the Northwestern Boundary Survey were accustomed to anchor (1857.) The American commissioner encamped on the bluff about a mile north of the boundary, the site having been selected on account of fresh water, but it has an extensive flat in front.

    Drayton harbor was examined by the United States Exploring Expedition in 1541.
    A map of it was published by the United States Coast Survey in 1858.
    Semi-ah-moo bay.-This extensive bay stretches three or four miles to the westward of Drayton harbor, and is bounded on the north by a bluff from 300 to 400 feet high, covered with fir. The bottom is very regular, and the depth ranges from 10 fathoms soft, about two miles south of the bluffs, to 3 fathoms within half a mile of them.

    Tides-The corrected establishment, or mean interval between the time of the moon's transit and the time of high water, is IVh. Lm., and the difference between the greatest and least intervals is $2 h .24 \mathrm{~m}$. The mean rise and fall of tides is 5.9 feet; of spring tides, 10.9 feet. The mean duration of the flood is 6 h .11 m .; of the ebb, 67.19 m . and of the stand 29 m .

    To find the times of high and low water first compute them for Fort Townshend, and add 1 h . for Scmi-al-mo bay.

    A map of this bay was published by the United States Coast Survey in 1858.
    Stretching to the northwest is a large shallow marshy bay, fringed with trees and bushes. From its northern shore low land extends as far back as Fraser river. The western boundary of the bay is formed by the eastern shore of Point Roberts. It is named Mud bay on the United States Coast Survey map.

    POINT ROBERTS.
    When seen from the northern entrances of the Canal de Haro and Rosario strait this point stands out near the middle of the Gulf of Georgia as a bold wooded island. From Rosario strait the southwestern point bears nearly NW. by W. about 18 miles. From Point Whitehorn it bears west distant 12 miles.

    - Named by the U. S. Exploring Expedition, 1841.

    On the outer or Gulf of Georgia side of Point Roberts the shore runs about NW. $\frac{1}{4}$ W. for 9 mile: 10 the southern and principal mouth of Fraser river. To the mouth of the river at the outer edge of the Sturgeon bank the bearing is W. by N. and distance $9 \frac{2}{3}$ miles. The south face runs E.NE. $2 \frac{1}{2}$ miles, and presents for nearly the entire distance a bold bluff about 150 feet high, and covered with wood. Half a mile off this shore anchorage may be had in from 10 to 15 fathoms, but in southerly weather it must be avoided. The eastern shore of the point rums nearly parallel with the western for 4 or 5 miles. Off the southeast point rocks and foul bottom stretch out SE. for quite a mile.

    The geographical position of the southwestern point, as determined by the Cnited States Coast Survey, is-

    Latitude................................................................ 485815.1 north.
    Longitude . ............................................................... 123 . 0416.5 west.
    It is therefore nearly two miles south of the northwestern boundary of the Cnited States. Between this station and the bluff lies a marsh.

    Point Roberts was discovered and named the Peuinsula de Cepeda in 1791. It was named Poim Roberts by Vancouver in 1792, and is called Roberts Point on English Admiralty charts of 1847 and 1859.

    ## BRITISH COLUMBIA.

    The southern part of this territory was named New Georgia by Vancourcr in 1592. It received its present name by order of the British govermment in 1805 .

    FRASER RTVER.
    The mouth of the river on the Gulf edge of the Sturgeon bank lies W. by N. 923 miles from the sonthwest part of Point Roberts. That part of the bank south of the river is now called Roberts's bank, and to that northward is retained the name Sturgeon bank, given to the whole by Vancouver in 1792.

    The current of the river is said to have a velocity from 5 to 8 miles in some parts. Throurhout its navigable extent it is very narrow and crooked. Since the discovery of gold in this region a large traffe has arisen, and several steamboats run upon the river.

    The southern point of the entrance to the river is named Pelly Point; and the northern, Garry Point.
    The following official notice in relation to the buoys through the Sturgeon bank is all that we have to present. It was published in September, 1859:

    The entrance to Fraser river has been rebuoyed. All the buoys are placed on the northern or port side of the chanmel on entering, with the exception of one on the south sand head.

    The following memorandum points out the position and gives the description of each buny :
    On the south sand head.-A spar-buoy moored in 11 feet at low water. The spar is painted white and black in horizoutal stripes, and surmounted by a ball of the same colors, also in horizontal stripes.

    On the north sand head.-A spar-buoy moored in 11 feet. The spar is painted black and white in vertical stripes, and surmounted by a ball painted in the same manner.

    On the north side of the channel.-A spar-buoy moored in 9 fect. The spar is painted in black and white in horizontal stripes, and surmounted by a red ball.

    1. A spar-buoy moored in 12 feet. The spar is painted in black and white horizontal stripes, and surmounted by a white diamond marked 1.
    2. A spar-buoy moored in 12 feet. The spar is painted white and surmounted by a black diamond marked 2.
    3. A spar-buoy moored in 11 feet. The spar is painted white and surmounted by a red diamond marked 3.
    4. A spar buoy moored in 11 feet. The spar is painted white and surmounted by a crescent red and black, marked 4.
    5. A spar-buoy moored in 12 feet. The spar is painted in black and white vertical stripes, surmonnted by a red crescent, marked 5 .

    On entering the river, the Sand head buoy should not be approached within half a mile until the passage between them is brought to bear N. $\frac{1}{2}$ E., when a vessel may steer in, mid-channel, or pass the north Sand head buoy and the first one inside it about 300 yards.

    The remaining five bunys on the north side of the channel may be passed from 100 to 250 yards, kecping them on the port hand. After passing the inner buoy a straight course may be steered for Garry Point.

    It should be remembered that the ebb current sets to the southward over Roberts' bank, and the flood to the northward over the Sturgeon bank.

    The buoys assume a leaning position, varying from an angle of $35^{\circ}$ to $80^{\circ}$ according to the state of the current and wind, and can be plainly seen from vessels' decks at a distance of 3 miles in clear weather

    By following the foregoing directions, a vessel drawing from 15 to 16 feet of water may enter the Fraser river with safety at half tide.

    Vessels from the sonthward passing Point Roberts most avoid Roberts' bank, which is very steep; by not bringing the low part of the point to the southward of east the bank will be cleared.

    The river was discovered by Eliza in 1790; and in 1792 Galiano informed Vancouver that it was called the Rio Blancho, (Blanco,) in honor of the then prime minister of Spain, but that it had been searched for in vain. It receives its present name from its explorer.

    The shoal off it Yancouver called Sturgeon bank in 1792.
    NANAIMO BAY.
    This bay lies on Vancouver island beyond the 49th parallel, and we refer to it because supplies of coal (liguite) are there obtained by many stenmers.

    The outer entrance to the harbor is in latitude $49^{\circ} 12^{\prime}$ north, longitude $193^{\circ} 51^{\prime}$ west, and bears $W . \frac{1}{4}$ N. 33 milea from Point Roberts. From the entrance the mid-channel course runs S. $\frac{1}{2}$ W. five miles, passing a small island on the northwest at the distance of a mile, and a large island, with islets off its north point, three-quarters of a mile on the east. This course gradually approaches Douglas island on the west, abreast of a wide channel to the east, and is rounded quite close. The mines will then lie about W.SW. a mile distant, with a small islet in front of them. The bottom is uneven; some sunken rocks occur, and the anchorage near the rivers is so contracted that vessels mast moor. Pilots will be found here to take vessels in.

    The price of the coal per ton is about six dollars, but it is light; occupies onc-fifth more space than Welsh coal; burns rapidly with flame and much smoke; disengages a great deal of gas, and produces clinker in abundance. It is, however, superior to the coal of Bellingham bay.

    The usual spelling of this name is Nanaimo, but that best representing the sound is Nah-ny'-moh.
    Of the western shores of the Gulf of Georgia we can say but little. The currents rush past its precipitous shores with great velocity, and quite recently the coast surveying brig drifted, with 38 fathoms of chain at her bows, in a calm, for miles along and within 80 yards of the rocks before she brought up. In one or two instances preceding this the lead indicated bottom in 10 fathoms, the next cast showing 40 or 50 fathoms.

    ## ARCHIPELAGO DE HARO.

    ## THE TWO STRAITS.

    The experience of three seasons' surveying in this immediate locality has not increased our relish for navigating these channels in sailing vessels. With plenty of wind no navigation could be better, but in a calm vessels will frequently be jammed close to rocks, with only a few fathoms inside of their positions, but 40 or 50 outside, and a swirling current that renders towing with boats utterly impossible. Frequently, too, boats have been nearly swamped by the tide rips that exist through them. Off East Point, as an instance, a five-oared whale-boat entirely failed in trying to hold her own against the current, which we judged to be rushing (the only term applicable) at the rate of seven miles per hour. Throughout the Canal de Haro the roar of the conflicting currents can be heard for miles, and the main current runs frequently six miles per hour. No anchorages exist in this channel, except at Cordowa bay, but it is free of known hidden dangers, except Unit rock, and the continuation of the reef off Darey island. It is 10 miles longer than the Rosario strait, and makes a right angle in its course, but is a mile wider, and has much deeper water. Rosario strait is less curved, has several anchorages and known dangerous rocks, and a current of about $1 \frac{1}{2}$ mile less per hour. For steamers, either chanuel, or even some of the narrow intermediate channels, may be used; but for a sailing vessel the Rosario passage is preferable, although the total distance from the middle of the Strait of Juan de Fuca to the middle of the Gulf of Georgia is five miles longer. The winds are apt to fail in both channels, and during summer frequent calms prevail.

    ## BELLINGHAM DAY.

    Before passing to a description of Admiralty inlet we will notice this bay, as mines of enal (liguite) have been opened upon its shores.

    After learing Rosarin strait, the couree upon entering the Bellingham channel,* two miles wide, opening south of Cypress island, is NE. for two miles. The width then decreases to a mile upon torning sharp amund the SE. point of Cypress, and to the eastward are seen the bright bluffs of Guemes island. Between these two islands the channel runs alout three miles nu a N. by W. $\frac{1}{2} \mathrm{~W}$. course. Abreast of the north end of Guemes, (which is a stect, bluff) and on the west side of the chanmel are several small, high, wooded islets, called the Cone islands.t The moderately low, wooded island facing the channd is Sinclair; vessels pass between the southeast point of it and the north end of Guemes. The island a couple of miles to the NE. is Vendori; $\dagger$ pass north of it, but south of the small islet, (off Eliza's island,) which is two miles NE. by N. from the NW. point of Vendovi, and the southern part of Bellingham bay opens to the southeast; its northern part opens to the N.NW.

    If the current be flood and the wind light, keep close around Guemes and Vendovi, so as, not to be set past Sinclair island. The low, bare, rocky islets, $1 \frac{1}{2}$ mile NW. of Vendovi, are the Viti rocks:t and the point between them and Eliza's island is the southern extremity of Lammi island. From the islet last passed, a point on the eastern shore lies nearly north five or six miles distant. Run past this and follow the trend of the shore for two or three miles to the deepest part of that part of the bay, when houses, \&e., will denote the position of the mines and the villages of Schome and Whatcom. (3) Half a mile from the shore is capital anchorage in four fathoms, soft bottom, and the bay there is very smooth.

    The general direction of Bellingham bay is SE. and NW.; its width three miles and length 14, extending from latitude $45^{\circ} 33^{\prime}$ to latitude $48^{\circ} 48^{\prime}$. The depth of water rauges from 3 to 20 fathoms, with grood sticky bottom.

    We believe there are several companies mining here, but the amount of coal nbtained is not great. Its quality is not good, the furnaces producing sometimes as much elinker and ashes in bulk, aud half the amount in weight, of the coal put in. Deleterions gas is freely disengaged, and the combustion also evolves clonds of black smoke. In the experiment which we witnessed, in 1853, the steamer's furnaces could not, in two attempts, be kept up so as to produce a sufficiency of steam.

    A saw-mill is located upon the bay at one of the villages.
    Bellingham bay was first surveyed by Whidbey, under Vancouver's orders, in 1792, and then received its present name. In some recent maps the northern portion is called Gaston bay, and for the southern part the original name is retained; but Vancouver's designation is that universally adopted on the western coast.

    A military station is located at the upper part of the bay, opposite to the coal mines.
    A hydrographie sketch of the bay was published in the Coast Survey report for 1850.
    The amount of shore-line in the Archipelago de Haro, Bellingham bay, Possession sound, \&e., is 627 miles.

    We never heard thunder in this Territory, except in one instance, at Cypress island, in Rosario strait.

    ## ADMIRALTY INLET.

    Gencral feutures.-This inlet may be described as a vast canal, commencing at the southeast extremity of the Strait of Juan de Fuca, and running in a general SE. by S. direction for 60 miles to the south end of Vashon's island. It has for that length an average width of $3 \frac{1}{2}$ miles, and then branches into a multitude of arms, which cover an area of about 14 by 22 miles. Their general direction is SW. $\frac{3}{4} \mathrm{~S}$., and they comprise what is called Puget's sound.

    At 16 miles from the entrance to the inlet an arm called Hood's canal opens upon the western side, and runs 60 miles $S$. by W, with an average width of 112 mile. Tweaty-five miles from the entrance of the inlet another arm opens on the castern side, runs north and northwest behind whidbey island, forming Possession sound, Ports Gardner and Susan, \&c., and leads on to the Strait of Juan de Fuca through Deception Pass, at the north end of Whidbey island.

    The shores are generally bluff, ranging from 50 to 500 feet in height, with their sides kept bright by
    o Named by the U. S. Coast Survey in 1854.
    $\dagger$ Named by the United States Exploring Expedition, 1841.
    (3) The Iadian name for "Noisy Water," the outlet of the lake.
    the gradual wearing action of the water, and their tops covered with trecs and thick undergrowth to their very edges. There is so much sameness in the shores that it requires some acquaintance with the different points to recognize them by their triffing peculiarities. The depth of water in the channels is remarkably great, perhaps averaging 100 fathoms, and it is sometimes difficult to find anchorage sufficiently far from the shore to afford room for getting under way. Many superior harbors are found in cvery direction, and small settlements are gradually springing up in favorable localities.

    Admiralty inlet, Hood's canal, and Puget's sound, have an aggregate shore-line of not less than 803 miles, yet the number of dangers known to exist in them is remarkably few.

    One of the inlets or arms of Pugct's sound reaches within two miles of the head of Hood's canal, and between them lies a large lake. The southern waters of this sound are also within 65 miles, in a direct line, of the Columbia river, at the mouth of the Cowlitz, which is 52 miles from Cape Disappointment; and within 20 miles of the upper waters of the Chebalis river, which runs into Gray's bay. At present the route travelled from the Columbia is by canoes, for 28 miles, up the Cowlitz to the settlement at "Cowlitz Landing," (or by horse over a somewhat bad path,) and then by horses or mules to Olympia, 52 miles, over a tolerably level comitry, and by a road moderately good in summer but bad in winter. The distance can be made in one day with a good horse. From where the road strikes the Chehalis the river is said to be navigable for large boats to Gray's harbor. We judged the stream to be about 100 yards wide. It had apparently plenty of water and a slow current. The Cowlitz has a rapid current, and at a low stage of the water canoes are poled up its channel; during freshets they are dragged up, the crews clinging to the branches of the trees upon its banks. Two days of labor are then required for the trip, but in summer it is made in one.

    The importance of these close relations of the waters of the Columbia river, Puget's sound, Admiralty inlet, Gray's harbor, and Shoalwater bay, in view of the prosperity of the two Territories, must be manifest without entering into details of the feasibility of their connection by railroads and canals.

    The inlet was discovered by Quimper, in 1790, and called the Canal de Caamano. It was first explored and made known, in 1792, by Vancouver, who applied the present name to it.

    A reconnaissance sketch of Admiralty inlet was published by the Coast Survey in 1854.
    We shall not attempt to give in full and explicit detail all the peculiarities of this vast area of waters, but, following the mid-chanel courses, will only note generally the objects as they come under the eye of the navigator.

    The entrance to the inlet lies between Point Partridge, on Whidbey island, and Point Wilson, on the main, at the entrance to Port Townshend. The bearing of the latter point from the former is SE. by S. $\frac{1}{2} \mathrm{~S} ., 4 \frac{1}{2}$ miles; and the bluff head lying two or three miles to the east of this line, and destitute of trees and marked by a light-house is Admiralty head, around which the ebb current, and an ebb eddy on the flood, swecps with force.

    The first course inside of the entrance of the inlet is E.SE. $6 \frac{1}{2}$ miles, passing Port Townshend on the south, Admiralty head on the north, and changing the course abreast of Marrowstone Point on the W.SW.

    Point Partridge is the western point of Whidbey island, and directly faces the Strait of Juan de Fuca. It is very steep and yellow, and flat on the summit, which is covered with spruce, fir, and cedar. The point is so rounding that it is not easily recognized on coming from the westward, but from the south and north it is well marked and prominent. Its face is composed of loose sand, which, being blown up the hill by the strong weat winds, has formed a very peculiar ridge on the outer face of the top. This is so narrow that it cau Lardly be travelled, and in many places it is 35 feet above the ground inside; yet, being overgrown with bushes, the ridge is now permanent.

    The highest part of the point is about 260 feet above low water.
    The triangulation station of the Coast Survey was on the southern part of the point, and its approximate geographical position is:

    | Latitude | 481259 north. |
    | :---: | :---: |
    | Longitude | 1224507 west. |

    From Point Wilson it bears NW. by N. $\frac{1}{2}$ N., $4 \frac{1}{4}$ miles.
    From Admiralty Head light-house NW. by W. $\frac{3}{4}$ W., $5 \frac{1}{4}$ miles.
    The point received its present name from Vancouver in 1792.

    ## PORT TOWNSHEND.

    This harbor is favorably situated at the termination of the Strait of Juan de Fuea, at the outlet of the waters of Admiralty inlet, Puget's sound, \&e., and in proximity to the great inland waters of British Columbia. The entrance lies between Point Wilson* and Marrowstone Point,* the latter bearing E.SE. $3_{s}^{5}$ miles from the former. Upon this line, and even outside of it, lies a bank extending two-thirds of the distance from Marrowstone, and having from 6 to 15 fathoms, with hard, sandy bottom. Inside of Point Wilson, which is composed of low, eandy hillocks, as heretofore described, lies another low point called Point Hudson, $\dagger$ distant $1 \frac{13}{4}$ mile, SE. by $S . \frac{1}{2} \mathrm{~S}$.

    Starting from the entrance line, about $1 \frac{1}{2}$ mile from Marrowstone, the mid-channel course of the bay is S.SW., three miles, with an average width of two; thence SE. $\frac{1}{3}$ S. for 3 年 miles, with an average width of 14. The depth of water throughout is very regular, and ranges from 8 to 15 fathoms, with soft, muddy bottom inside of Point Hudson. Vessels coming from the strait steer for Point Hudson, as soom as it is opened by Point Wilson, passing the latter close, as 20 fathoms are found 100 or 200 yards off it. Upon approaching Point Hudson, and when within half a mile of it, gradually keep away about a quarter of a mile in from 5 to 10 fathoms, and, as it opens, run quite close, with the summer wind off shore, to save making $a$ tack; keep along half a mile to the town situated under the Prairie bluff, and anchor anywhere off the cnd of the wharf, in 10 to 12 fathoms, about a quarter of a mile from shore. In winter anchor further out, to clear Point Hudson in getting under way with a southeaster.

    When coming down the inlet, bound into the bay, with the current ebb, pass Marrowstone nearly threequarters of a mile before heading in for the town, and so avoid a very strong cddy which comes out of the bay along the bluff shore west of this point. If the wind be light and the current strong, pass the point quite close by ; run along the outside of the rip, and try to get upon the bank as soon as practicable.

    In summer vessels frequently drift about the entrance for days, without a breadth of wind, and in very strong currents.

    Thes.-The corrected establishment or mean interval between the time of the moon's transit and the time of high water is IIIh. XLIX $m$. The mean rise and fall of tides is 4.6 feet, of spring tides 5.5 feet, and of neap tides 4.0 feet. The mean duration of the flood is 62.34 m ., and of the ebb 5 h . 52 m . The mean difference between the corrected establishments of the a. m. and p. m. tides of the same day is $2 h .22 \mathrm{~m}$. for high water, and $0 \hbar .35 \mathrm{~m}$. for low water. When the monn's declination is greatest these differences are 4 h .38 m . and 0 h .27 m ., respectively; and when the moon's declination is zero they are 0 h .40 m . and 0 h .29 m . The mean difference in height of these two tides is 1.1 foot for the high waters, and 4.6 feet for the low waters; when the moon's declination is the greatest, they are 0.6 foot and 7.3 feet, and when the moon's declination is zero 1.4 foot and 1.4 foot. When the mom's declination is greatest, and north, the two high waters of the day follow the moon's upper transit, respectively, by about 6 h .8 m . and 13 h .56 m ., and when greatest, and south, by about $1 h .30 \mathrm{~m}$. and $18 \% .34 \mathrm{~m}$, the height of the two being abont equal. When the moon's declination is zero, and passing from north to south, they follow the moon's transit by about $4 h .9 \mathrm{~m}$. and $15 h .55 \mathrm{~m}$., and the first rises about 1.4 foot higher than the second. When the moon's declination is zero, and passing from zouth to north, they follow the moon's transit by about 3 h .29 m . and 16 h . 35 m ., and the second rises higher than the first by the same quantity. When the moon's declination is greatest, north or south, the two low waters follow the mon's transit by about 97.41 m . and 22 h .7 m ., but when north the second falls lower than the first by about 7.3 feet, and when south the first falls lower by that quantity. When the moon's declination is zero, the two low waters fall nearly equally. The greatest difference observed between the heights of the two low waters of a day was 8.6 fect, and the greatest difference between the ligher high and the lower low water of a day was 10.1 feet.

    For the method of computing the times and heights of high and low waters see the example given for San Francisco, and use the tables for Port Townshend, at the end of the Directory.

    The geographical position of the triaggulation station of the Coast Survey, upon Point Wilson, is:

    $$
    \begin{aligned}
    & \text { Latitude......................................................... } 480842.7 \text { north. } \\
    & \text { Longitude .......................................................... } 1224449.4 \text { west. } \\
    & h \text {. m. s. } \\
    & \text { Or, in time ........................................................... } 810 \text { 59.6. }
    \end{aligned}
    $$

    The position of the triangulation station on the extremity of Point Hudson, computed from the sec ondary astronomical station near the town, is:

    - , "
    Latitude...................................................... . . . 480706.7 north.

    Longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224425.8 west.
    h. m. s.
    
    Magnetic variation $21^{\circ} 40^{\prime}$ cast, in August, 1856, with a yearly increase of $1 .^{\prime}$
    From the above it will be seen that Point Hudson is about $1 m$. 20 s. west of Telegraph hill, Sank Francisco.

    The town of Port Townshend has increasel very much since the discovery of gold on Fraser river. No fresh water is to be had, but vessels can obtain a small supply near the military post. Some fine farms, lie near the town, and vegetables are plenty at reasonable prices. The place was noted for the rough character of its "beach combers."

    A military post has been cstablished on the bluff, $2 \frac{1}{2}$ miles S. by W. from the town, and on a site which commands one of the most beautiful views in these waters, having the bluff and varied shores of the bay on either hand; Admiralty Head, 6 miles distant, in the middle ground; several distant, wooded ridges, and in the back ground the snow-corered, double summit of Mount Baker, 10,900 feet in height, with the mouth of the crater distinctly visible between the peaks, and at times emitting vast volumes of smoke. The clevation of the line of perpetual snow upon this mountain is 3,145 feet. Humboldt is wrong in his description.

    On the east side of the bay, abreast of the town, lies a long sand spit, nearly closing the north entrance to Kilisut harbor, which ruus parallel to the inlet, and is separated by an island a mile wide and 6 miles long. At high tide this harbor communicates, by a crooked boat channel, with Oak cove, at the south end.

    At the head of Port Townsheud is a narrow channel opening into a large flat, bounded by a low, sandy beach, separating it from Oak cove. The Indians frequently use this as a portage.

    The shores are gencrally bluffs, about 120 feet high, and covered with wood, except behind the town. Between the town and Fort Townshend are two low pieces of grass and sand beach, backed by marsh and ponds. The 5 -fathom curve extends but a few hundred yards from any part of the shores. A small patch of kelp lies off the southern point of Prairie Blaff, and another off the north face of Marrowstone Bluff.

    Port Townshend was surveyed and first made known in 1792, by Vancouver, who gave it the present name, by which it is always known.

    A chart of it was published by the Coast Survey in 1858.
    In 1855-'56 a law was passed appropriating a sum for building a light-house upon "Red Bluff," but the recommendations of seafaring men had fixed generally upon Point Wilson as the most suitable location. Red Bluff, or Admiralty Head, has the advantage of being seen further up the inlet, but is shat out from Smith's Island light, while Point Wilson commands both it and Dungeness light. Around Point Wilson all the navigation and commerce of the inlet and sound turn, and from it vessels take their departure when going out in foggy or smoky weather. A vessel entering Port Townshend at night could easily know her position with the light on Point Wilson, and could enter it with certainty. Coming out of the inlet and bound into the bay she would have a good course to run by, when the light was opened by Marrowstone Point.

    Marrowstone Point is a low sandy point stretehing 300 yards eastward from the base of the bluff, and forming an indentation on its southern face, where anchorage may be had in 12 fathoms, with a current or eddy invariably runuing ebb. Small craft coming out of the inlet with a head wind can easily take advantage of this for 2 or 3 miles above the point.

    It reccived its present name from Vancouver in 1792.

    ## ADMIFALTY HEAD,

    Abreast of the entrance to Port Townshend, is a perpendicular cliff 80 feet high, falling on the eastern side to a low, pebbly shorc, which runs 2 miles to the L.NE. and strikes the high cliffs on the eastern side of the inlet. Behind this beach is a large lagoon, and off it is Admiralty bay, with hard, sandy bottom, in irregular ridges, and a depth of 15 to 25 fathoms of water. A strong current always makes out of the bay, and it is exposed to the full sweep of southeasters. The current is so strong that a vessel rides to it, and consequently lies in the trough of the sea.

    ## LIGHT-HOUSE ON ADMIRALTY HEAD.

    The structure consists of a keeper's dwelling, with a tower rising through the roof at one end ; both are painted white, and the iron lantern surmonnting the tower is painted red. The height of the tower from the base to the focal plane is 41 fect, and the elevation of the focal plane above the mean level of the inlet is 119 feet.

    The illuminating apparatus is of the fourth order of the system of Fresnel, and shows a fixed white 7ight. It was first exhibited January 20, 1861, and shows from sunset to sunrise. Luder a favorable state of the atmosphere it should be seen-

    From a height of 10 feet at a distance of 16.1 miles.
    From a lieight of 20 feet at a distance of 17.6 miles.
    Its geographical position, as determined by the Coast Survey, is:
    0111
    Latitude....................................................... 480921.6 north.
    Longitude ................................................... 1224008 west.
    The magnetic variation was $21^{\circ} 40^{\prime}$ in August, 1856, and the present yearly increase is $1^{\prime}$.
    It illuminates an are of $270^{\circ}$ of the horizon, and commands Admiralty inlet and the approaches. It sees New Dungeness light, but Smith's Island light is hilden by Point Partridge.

    From Point Wilson it bears NE. by E., distant $3 \frac{1}{4}$ miles.
    From Marrowstone Point N. by W. $\frac{1}{4}$ W., distant 31 miles.
    From New Dungencss light N. $73^{\circ}$ E., distant $17 \frac{2}{3}$ miles.
    From Point Partridge S. $60^{\circ}$ E., distant $5 \frac{2}{3}$ miles.
    Admiralty Head was named Red Bluff by the United States Exploring Expedition in 1841, but it has now no color to suggest the appellation. Both names are used on the l'acific coast.

    Starting from abreast Marrowstone Point the mid-chamel course up Admiralty inlet runs SE. by S. $\frac{1}{3} \mathrm{~S}$. for 7 miles. The shores on cither hand are bluffs of apparently uniform height, covered with trees. About 5 miles on this course is passed, on the eastern shore, a low point, with one or two clumps of trees and bushes, to which has been given the name Bush Point.* On the western shore is a rounding bluff point one mile north of the point which forms the northeast part of Oak cove. Off this point is good anchorage in 122 or 15 fathoms. The peculiar geological formations found in the vicinity suggested the designation Nodule Point,* which it now bears. The high bold headland, several miles directly ahead, is Foulweather Bluff,t and that to the E. SE. destitute of trees, except one large clump, which marks it conspicuously from this direction, is Double Bluff.* The deep indentation between it and Bush Point, with low land in the rear, is Mutiny bay,* in the northern part of which cxists a narrow bank of 11 fathoms, affording an excellent fishing ground. At the end of the course Oak cove $\ddagger$ opens to the westward, and stretches towards the waters of Port Townshend. It has bluff shores nearly all around it, those on the southwest face being limestone; but Basalt Point, § at the south, derives its name from its geological structure. The depth of water is 5 to 15 fathoms, except N.NW. of Basalt Point, where it reaches 25 and 30 fathoms. The length of the bay is 3 miles, and its average width about $1 \frac{1}{2}$ mile. In beating out of the inlet, with a favorable current, vessels must not attempt to work to this bay for the sake of a long tack.

    Vancouver named it Oak cove, his people having reported that oak trees stood upon its shores. We have traversed the greater part of the shores but found none.

    The opening west of Foulweather bluff is Hood's Canal. Vessels bound into it keep close to the western shore of the bluff, and pass two low points lying near together. The water off them is deep. Off the north face of Foulweather, for nearly a mile, less than 15 fathoms may be found. Kelp exists under the face of the bluff, and vessels may pass around it in 6 and 7 fathoms. The bottom along the edge of the: kelp is rocky. On the west side of the entrance to Hood's Canal is Port Ludlow, which will be described hereafter.

    The next or third course up the inlet is E.SE. for ten miles, passing on the eastward Double bluff, which stretches northeast for a mile, and rises 300 or 400 feet in height, having its top covered with wood. The bluff


    running also to the northward forms Useless bay.* This has deep water over the greater portion of it, with a large shallow bay called Deer lagoon $\dagger$ at its head. The high bluff forming the southern point of Uselese bay is Satchet head. $\ddagger$ A similar bluff lies 2 miles E. by S. of it. These form the southern extremity of Whidbey island, in latitude $47^{\circ} 54^{4}$ north, and are the turning points into Possession sound.

    The two heads are about 300 feet high, covered with wood, ard separated by a depression, which is in part overflowed at high tide, and then presents the appearance of a small bay. From the castern head round the western, and a mile towarl Ciseless bay, the low-water line makes out half a mile, the shore being bare where some recent mape have deep water. For nearly a mile south of both heads a depth of 8 and 10 fathoms and smooth sandy botom cau be found. We found, when anchored for several days off the eastern head, a strong under current running into Possession sound, and an upper current setting to the westward, at all tides. Vancouver makes mention of the shoal, and states that beating into the inlet he stood on the bank until he got 5 fathoms, but want of time precluded his examining it.

    On the western side of the last mid-channel course we passed Fowlweather bluff, which is perpendienlar on its N.NW. face, and about 225 feet high, with heavy firs upon its sammit. It slopes towards the east to a bluff 40 feet high, but is steep on the side next to Hood's Canal. The low point 4 miles east of it is Point No Point, § making well out, and destitute of trees or bushes. Between it and Foulweather is a deep bight, and the distance across the neek to Hood's Canal is only a quarter of a mile in one part, marked by the track of a recent toraado that has twisted off and uprooted firs of 3 and 4 feet diameter. On the south side of Point No Point is good anchorage in 10 fathoms; and thence the western shore runs nearly straight SE. by S. for ten miles.

    At the end of the last course, which carried us 3 miles beyoud Point No Point, the inlet expands to a width of 7 miles. A course E.NE. for $3 \frac{1}{2}$ miles carries us to the entrance of Possession sound, the first 6 miles of which run N. $\frac{1}{2} \mathrm{~W}$., with a width of 2 miles and bluff shores. It then turns to the northwestward to Port Gardner. The water is deep in the entrance, and affords no anchorage. The low point on the shore, 4 miles after entering, is Point Elliott, $\|$ and the bay opening to the northeast receives the Sinahomis or Senget river.

    The next, or fourth, mid-channel course up the inlet is S.SE. for 21 miles to Allen's bank, which lies a mile off the north end of Vashon's island. Five miles on this course, or scyen from Point No Point, brings us to an excellent little harbor on the western side of the inlet, called Ayple Tree cove," having a low point on the north side, with a soft mud flat extending several hundred yards up the inlet. From 5 to 12 fathoms water and sticky bottom are found off it and in the cove. There is no fresh water in the vicinity, but very good timber may be procured suitable for boat spars and booms. On the castern shore of the inlet, abreast of this cove, are two low points, a mile apart, making out from the bluff. The indentation between them forms a good though small anchorage; and the chances are good for fresh water at high tide. The southern point is named Point Wells,* the northern Point Edmund.* The inlet is here only 3 miles wide, and continues so to Point Jefferson,* two miles southward of Apple Tree cove. This is a moderately low, straight bluff, with the ground rising behind it, and covered with timber. Stretching broad off its eastern face for three-quarters of a mile we discovered, in 1856, a 9-fathom shoal, which affords capital anchorage for vessels when drifting with light airs and adverse currents.

    ## PORTS MADISON AND ORCHARD.

    Point Jeffersou is the northern side of the entrance to this port, which runs 3 miles W.SW., with an average width of 2 miles and a large depth of water, except under Point Jefferson, where anchorage may be had in 10 and 15 fathoms, hard sandy bottom, with patches of kelp inshore.

    The southeast point of the entrance is low and sandy, making out from high wooded ground. One mile west of it is the narrow entrance to a natural canal, upon which, in full view, are situated the Port Madison


    saw-mille, At the SW. part of the bay is the very narrow entrance to Port Orchard. The channel is somewhat crooked, but it has 3 and 4 fathoms water in it. On the western side of this entrauce are some white patches of beach, formed by clam shells. In 1857 an Indian rillage was sithated here, and an Indian sub-agency. Both sides of the entrance are bluffs. Veasels not well acquainted with the channel must enter under casy sail, and keep a lead going on cach side of the vessel to ascertain where the deepest water lies. After getting through give the point, one mile off on the western side, a berth of nearly half a mile, to avoid a shoal which makes ont east from it. Thence it is plain sailing in 15 to 25 fathoms of water. After passing the first point an arm opens to the NW., and many vessels load there with spars. Teu miles up the southern channel is, or was, a saw-mill. In coming ont of this port vessels should not trust the southern entrance, but leave as they entered. See remarks under heading Restoration Foint, page 411.

    Port Orchard was examined and named by Vancouver in 1792.
    Port Madison was named by the United States Exploring Expedition in 1841. The Indiau name is Noo-soli'kum.

    Bainbridgc island lies between Port Orchard, Port Madison, and Admiralty inlet. It is 8 or 9 miles long by $2 \frac{1}{2}$ in breadth, and its general direction is SE. by S. A few loggers huts stand on the western side and the Madison saw-mill at the north end. On the SE. part it is indented by two small harbors. It was named by the United States Exploring. Expedition in 1841.

    ## DUWAMSH BAY.


    #### Abstract

    Abreast of Port Madison the eastern shore of the inlet retreats and there receives several small streams of water, but it gradually makes out into a very long, low sand point, called West Point, * which forms the extreme northwest part of the entrance to Jowamish bay. The hay runs E. by S . $6 \frac{1}{2}$ miles and has a width of 2 miles. 'To the south point, called Battery Point, $\dagger$ which is low and bare, with a curiously shaped mound rising sharply behind it, the course is al out SE . by S , and distance $4 \frac{1}{2}$ miles. Tnder West Point there is anchorage in 10 to 15 fathoms after getting towards the bluff; but on the north side of the point the water is very deep. Through the centre of the bay the depth ranges from 88 to 40 fathoms. On the north side of Battery Point a vessel anchoring in 20 fathoms cannot have a greater scope of chain than 35 fathoms without being too close to the shore. When we anchored there in 13 fathoms and veered to 25 fathoms of chain the vessel's stern was in $2 \frac{1}{2}$ fathoms. The beach is smootl and very regular, being conoposed of sand and gravel. On this side of Battery Point is the deserted town of Alki, (the Indian phrase for "by and by.") The town has had several names, but there is nothing abont it to command trade.

    The bluff head within the bay, 2 miles N.NE. of Battery Point, is Duwamish Head.t It is stecp, about 150 feet high, covered with timber, and the beach af low water stretches out over a quarter of a mile N.NW. from it. The head of the bay receives the Duwamish river, and for one or two miles is an extensive flat, bare at low water.

    The town of Seattle is on a small point at the NE. part of the bay, a little over 5 miles inside of West Point. It consists of a few houses and stores, a church, and a small saw-mill; and a mumber of university buildings are to be erected, (1562.) It has but little trade.

    Seattle has been proposed as the terminus of the northern trans-continental railroad, penetrating the Cascade mountains by the Yakima Pass, and thereby making the line 140 miles shorter than by the Columbia River Pass, which is remarkably favorable, whilst the former is only possibly practicable.

    The usual anchorage is directly off the wharf in 10 to 15 fathoms water, with the large white house on the extreme point bearing about E. or E. by S. and at a distance from the beach about 500 yards. This position will enable a vessel to work out well by making the first tack to the southward towards the flat. If it, be high water this flat cannot be distinguished, and the lead must be kept going. When a depth of 15 fathoms is struck go about, for it shoals to 3 fathoms very suddenly, and keeping on would soon bring up a vessel on the flat. If the current be ebb, vessels bound out should stand well into the inlet; and if bound up, work close under and around Duwamish Head to Battery Paint. If the current be flood, vessels bound out should work under the north shore, and close to West Point; if bound up, work under the north shore about $3 \frac{1}{2}$ miles to Magnolia bluff, beyond a low marshy indentation in the shore, or until they can fetch well clear of Battery Point.

    There is said to be some good agricultural prairie land on the Duwamish river. Some distance up it is


    connected with Lake Washington, which is reported to be 25 miles long and several miles broad, with islands in it. It is but a fow miles in a direct line cast of Seattle. Anothe small lake exists about a mile back from the beach, a mile west of Seattle. This is reached by a trail.

    The town of Seattle was attacked by a small body of Indians in 1855, but the assault was repelled by the United States steamer Massachusetts.

    The bay was called Elliott's bay by the United States Exploring Expedition in 1841, but the present name is that by which it is invariably known, and was adopted from the name of the tribe of Indians imhabiting its shores. The name of the town is derived from that of the chief, Se-at-thl.

    The Coast Survey report for 1854 was accompanied by a reconnaissance sketcl of Dawamish bay and Scattle harbor.

    ## RESTORATION POINT.

    From the SE. point of Port Madison to this point the shore is bluff and somewhat irregular, and is indented first by Eagle harbor,* having a long pebbly spit making out 300 or 400 yards SE. from its north point; and next, at Point Restoration, by Blakely harbor,* having off its entrance a large rock, 15 feet high, with deep water all round it. The rock bears nearly N.NW. three-quarters of a mile from the point, and the bottom between is irregular, the depth ranging from 20 to 40 fathoms. Blakely harbor is only a quarter of a mile wide and three-quarters long, with 18 fathoms sticky bottom at its mouth, aud shoaling gradually inside, but most on the south side. A hydrographic sketch of the harbor will be found in the Coast Survey Report for 1556 .

    Eagle harbor is larger and more commodious than Blakely. We discovered the shoal off its north point in 1856.

    Restoration Point is in some respects very peculiar; no other in these waters, except Battery Point, presenting the same formation. For 300 yards it is flat, about 10 feet above high water, and has a foot depth of soil covered with grass over a limestone rock, upheaved nearly on edge, the dircction of the strata pointing toward Battery or a little south of it. Inshore it rises up sharply about 100 feet, its sides covered with grass and the summit with fir trees. Around the whole SE. face of the point these peculiarities exist. On the upper levels of the high land adjacent our party found small lakes of water.

    From the extremity of the point a ledge, bare at low tides, makes out 300 yards, but the depth is 6 fathoms 100 yards off its extremity, and 16 fathoms at a quarter of a mile. On the tail of this ledge the United States sloop-of-war Decatur struck in 1855. S.SE. of the point anchorage may be had in 15 fathoms, sticky bottom, a quarter of a mile distant; or, as a rule for finding anchorage, bring the rock north of it to range just over and inside of the point. Kelp exists along the southern face.
    'The geographical position of the triangulation station of the Coast Survey upon this point is :

    | Latitude | 473505.8 north. |
    | :---: | :---: |
    | Longitude | 1222315.2 west. |
    | Or, in time | h. m. $s$ <br> 80953.0 . |

    From this point Battery Point bears E. by N. $\frac{1}{2}$ N., distant 21 miles.
    Tides.-The approximate corrected establishment is IVh. IVm., and the approximate mean rise and fall of tides 7.4 fect.

    Vancouver anchored under this point in 1792 ; found large numbers of Indians located near, and first called it Village Point, but changed it to its present name in commemoration of the day on which he anchored. From this place his boats explored all the waters adjacent.

    South of Restoration the inlet opens to the westward for a couple of miles into a bay, in which is situated an island about three-quarters of a mile in extent, called Blake island.* From the northwest pari of the bay leads a narrow crooked pass 3 miles long to the southern part of Port Orchard, which spreads out into several arms. The pass is obstructed by rocks and is difficult of navigation. The winds are variable, light, and uncertain at its narrowest part, where it makes a charp turn, and is only a couple of hundred yards wide, with a rushing swirling current. The channel generally used, although narrower than the one just mentioned, is that leading into Port Madison.

    Our last course brought us to Allen's bank,* off the north end of Vashon's island, with Blake island to the westward, and three quarters of a mile distant. This bank is nearly a mile in extent, and has as little as 10 fathoms upon it, with a variable bottom, in some places mud, and in others hard sand. At our anchorage upon it in 11 fathoms the south end of Blake island bore N. $81^{\circ}$ W., and the NW. point of Vashon's island S. $5^{\circ}$ E. Between the anchorage and Blake island the water regularly deepens to about 18 fathoms in soft mud. This anchorage has already proved of service to vessels losing the wind and having adverse currents. In some recent maps 25 to 30 fathoms are marked in the position of this shoal. The castern point of Blake island is low and pebbly, and called by the natives Tatugh. Under it is anchorage in 17 and 18 fathoms, soft mud. 'The northeast point of Vashon's island is Dolphin Point, $\dagger$ the northwest point Point Vashon, the point abreast of it is Point Southworth, $+\frac{1}{}$ and the mile-wide channel, commencing between the last two points, is Calvos passage, $\ddagger$ ruming west of Vashon's island.

    The extent of shore-line from the entrance of Admiralty inlct to the north end of Vashon's island is 241 miles.

    The main body of the inlet continues about SE. for 8 miles, then S.SW. 8 miles further, with an average width of $\mathcal{Z}$ miles. In this stretch the currents are moderately strong, the chances for anchoring few, and it is sometimes calm while a fine breeze is blowing throngh Colvos Passage.

    Brace Point§ lies on the east side of the inlet, NE. from Dolphin Point. The round-topped point having two or three lone fir trees upon it, and situated on the same side of the inlet, 4 miles above Brace Point, is called Point Pully $\ddagger$ The water is very decp close to it on either side.

    The geographical position of the triangulation station of the Coast Survey on the summit of the mound at Point Pully is:

    $$
    0111
    $$

    Latitude.......................................................... 172707.3 north.
    Longitude ............................................................ 1222221.5 west. h. m. s.
    
    There is a small bight north of Brace Point, and between it and another low point, called Fauntleroy cove, $\dagger$ having good anchorage in 10 and 12 fathoms, and fresh water is easily obtained in the vicinity. Between Brace Point and Point Pully two or three small streams of water empty, and another from the valley a mile east of the high bluff at Pully. Off this valley a flat makes out with deep water at its edge.

    Under Dolphin Point there is very deep water; but off the north end of the island, near this point, we found anchorage in 14 fathoms, hard bottom.

    Calvos passage is the usual, we may say the invariably used ship channel towards Puget's sound. It is about a mile wide, with high bluff shores, varied by numerous small, low, sand points making out from the face of the bluff, and having deep water off them. The passage is 11 miles long to the south end of Vashon's islaud, which is called Dalco Point, $\ddagger$ and it runs with a nearly straight course S. by E. A mile and a half inside of Point Vashon there is a small carve in the shore line called Fern core, $\dagger$ with excellent anchorage in 5 and 10 fathoms. Abreast of Dalco Point on the western shore there is a small harbor, with a narrow and shoal entrance, called Gig harbor. $\ddagger$ Looking out of the passage to the north, Mount Baker shows distinctly in clear weather.

    ## COMMENOEMENT BAY.

    When abreast of Dalco Point this bay, at the termination of Admiralty inlet, opens to the E.SE., and over its low background shows the high snow-covered peak of Mount Rainier. The general direction of the bay is E. by S. $\frac{1}{2}$ S., with a length of three or four miles, a width of two miles, and a great depth of water up to the line of the extensive flat at its head, which is backed by marsh. There are no settlements upon it, but in 1857 we found some deserted fishing stations.

    It was named in 1792 by Vancouver, who thought this the entrance to some large arm of the inlet, on account of the low country beyond.

    We believe the Indian name for this bay is Puyallup.

    Vashon's island, lying between the sonthern extremity of the inlet and Colvos passage, is $11 \frac{1}{2}$ miles long, with an average width of $2 \frac{1}{2}$ miles. Half way down on its eastern side lies a curiously shaped peninsula, formed by a narrow, low, sandy neck of land, which makes out into the inlet, and then runs towards the south point of the islaud. The space between this peniusula and the island is an excellent harbor four or five miles long, and three-quarters of a mile wide, with five to ten fathoms water in it. The southeast face of the peninsula is high and steep, and bordered by water from 40 to 50 fathoms deep.

    The island is bigh, with steep shores, covered with wood and undergrowth. Its surface is marshy in many parts that are quite elevated. The present name was given by Vancouver in 1792. The harbor formed $b_{y}$ it and the peninsula was called Quartermaster's harbor by the United States Exploring Expedition in 1841.

    ## rolnc derlance and the nareows.

    The high, sharp yellow bluff facing the south entrance to Colvos passage is called Point Defiance, and between it and the western shore pass all the waters of Puget's sound. This passage is called the Narrows. Its average width is three quarters of a mile, and very uniform ; the shores are high, bold, and in some places rocky. For two miles to the SE . its course is a regular curve. The next turn is to the southward, and at a distance of two miles in that direction the waters of the sound open ahead, with a narrow pass between the main and Fox island to the west; and a small indentation, backed by low ground, and formed on the south by a small peninsula, on the east. In this light is anchorage in 15 fathoms, with swirling eddies. On the south face of this peninsula, and outside of the kelp, anchorage may also be had.

    ## IUGET'S SOUND.

    This collection of inlets commences after passing "The Narrows," and covers an area of 14 miles by 22 , with a general direction SW. $\frac{3}{4} \mathrm{~S}$. The aggregate shore-line of this sound, and the adjacent part of Admiralty inlet, with Colros passage, to the north end of Vashon's island, is not less than 370 miles. Upon its shores art sithated the settlements of Steilacoom, Nisqually, Olympia, and Newmarket.

    It received its preseat name in 1792 from Vancouver, in compliment to Lieatenant Paget, who explored it.

    ## STELLACOOM.

    On the eastern shore of Puget's sound, nine miles south of Point Defiance, is situated the town or village of Steilacoom, upon a rizing bluff. It consists of only a few honses. Fort Steilacoom standsabout a mile inland, upon a piece of gravelly prairie, and roads lead from it to the town and the creek.

    The neighboring country is only moderately well adapted to agriculture except along the bottoms of the small streams.

    The usual anchorage is off the small wharf, in 15 fathoms, hard bottom, and about 400 or 500 yards from the shore. An island lying $2 \frac{1}{4}$ miles distant to the west of that position is called McNeil, and between it and Fox island, to the northward, there is a passage a mile and a half wide. The passage on the south side of McKeil island, between it and Anderson island, is generally known as Balch's passage. It bears about SW. by W. from the anchorage, and is marked by a small wooded islet in it, called Eagle island, off which lies rocky bottom, and vessels keep closer to the north shore. This passage is the direct channel to Olympia, instead of following the broad one to the southward of Steilacoom.

    The north end of the island, showing to the southward, and $1 \frac{1}{2}$ mile from the anchorage, is Kitson island.

    One mile north of the anchorage is the mouth of a small stream called the Steilacoom river.
    In coming to Steilacoom, or bound direct for Olympia, a patch of kelp, with foul bottom and less than three fathoms of water upon it, must be avoided. It bears S.SE. one mile from the south end of Fox island, and NW. by W. 13 mile from Steilacoom wharf. The tide-rip upon it and abreast of the town is very great; quite sufficient with a little wind to swamp a small boat. The shores of the main and islands are bold, nearly uniform in height, and covered with trees.

    Tides.-The corrected establishment or mean interval between the time of the moon's transit and the time of high water is $I V h$. XLVIm. The mean rise and fall of tides is 9.2 feet, of spring tides 11.1 feet, of
    neap tides 7.2 feet. The mean duration of the flood is $6 h .3 m$., of the ebb $6 h .25 \mathrm{~m}$., and of the stand 28 m . The difference between the rise of the lighest tide and the fall of the lowest tide observed was 18.3 feet. The greatest difference observed between the height of the two low waters of one day was 12.2 feet, and the greatest difference between the higher high and lower low waters of a day was 17.7.

    When the monn's declination is greatest aorth the two high waters of the day follow her transit, respectively, by about 6 and 16 hours, and when greatest, and south, by 3.2 and 18.2 hours, the height of the two being about equal. When the moon's declination is zero they follow the moon's transit by about $4 \pi .46 \mathrm{~m}$. and $17 h$. 12 m ., but the first is higher than the second by about 2.7 feet when the moon's declination is changing from north to south, and when changing from sonth to north the second is higher than the first by that quantity. When the moon's declination is greatest, north or south, the two low waters follow the moon's transit by about 11 h .11 m . and $23 / \mathrm{h} .37 \mathrm{~m}$., but when north the second falls lower than the first by alout 9.7 feet, and when south the first falls lower than the second by that quantity. When the moon's declination is zero the two low waters are nearly equal in height; when changing from north to south they follow the moon's - southing by about 11 h .41 m . and 23 h . 7 m ., and when changing from south to north by 10 h .41 m . and 24 h .7 m .

    To find the times of high and low watere, first compute them for Port Townshend, and to the numbers thus obtained add 57 minutes.

    The pronumeiation of the name Steilacoom, as given to us by Indians, is Tchil'-xe-cum. On the Admiralty maps of 1847 we find it Chelakoom.

    A reconnaissance sheet of Steilacoom harbor was published by the Coast Survey in 1856.
    Nisqually, five miles south of Steilacoom, and on the rame side of the sound, is, at present, a place of no trade or importance. It was one of the early posts of the Hudson Bay Company, and is still occupied by them. An extensive mud flat exists off the month of the wide, marshy valley, but the depth of water is very great close to it, and the anchorage rom very much contracted. The river Nisqually emptics here, and we believe there are two small saw-mills upon it. The name is Indian.

    ## OLYMPIA.

    It would be almost useless to attempt to describe the route to Olympia from Stcilacoom, as a pilot or a map is absolutely necessary in making the passage. The mid-chamel course is 21 miles in length, and its width from half a mile to a mile and a half.

    Olympia is situated at the head of Budd's inlet,* which is six miles long, three-quarters of a mile wide. and runs nearly south. The shores are steep and wooded, and the head of the bay an inmense mud flat behind which is the town. It acquires prospective importance by being the capital of the Territory, but especially on account of its proximity to the Columbia river valley, and to the headwaters of the Chehalis. There is a saw-mill at Newmarket, two miles south on the 'Cumwater, and three others in the vicinity, besides one or two grist-mills.

    A depth of three fathoms can be carried on the west side of Budd's inlet, within one and a half mile of the wharf; and one fathom within a mile on the eastern side. Vessels are brought up to the wharf at the highest tides, and then rest in the mud until ready to leave.

    The greatest difference between the highest and lowest tides is reported about 24 feet, and is doubtless more than this when we compare its position with that of Steilacoom. The approximate corrected establishment is Vh. VIIIm., and the mean rise and fall of tides 9.2 feet.

    The approximate geographical position of the wharf is:
    

    The computed magnetic variation $20^{\circ} 47^{\prime}$ east, in July, 1856, and the present yearly increase $1^{\prime}$.
    A hydrographic reconnaissance of Budd's inlet was published by the Coast Survey in 1856.
    A small eaw-mill has been built on Hammersley's inlet,* and another on Henderson's inlet.*


    ## HOOD'S CANAL.*

    The entrance to this arm of Admiralty inlet lies between Basalt Point and Foulweather bluff, the latter bearing E. $\frac{3}{4}$ S., distant $3 \frac{1}{3}$ miles from the former.

    The first mid-chamel course is SE. for four miles, pointing directly into Port Gamble, at the entrance to which the houses and mill are plainly visible; and passing a high, round, wooded peninsula on the west side of the channel, and comected to the main by a narrow neck of low sand beach. This is frequently mistaken for an island, and is called Hood's Head. $\dagger$ Between this head and Port Gamble the camal changes its course and runs in nearly a straight line S. by W. 40 miles, with an average width of $1 \frac{1}{2}$ mile. In latitude $47^{\circ} .21^{\prime}$ N. it makes an abrupt turn, and runs for 12 or 13 miles about NE.

    ## PORT LUDLOW.

    Close to Basalt Point lie some rocks, with others about half a mile SE., called the Colvos rocks,* among which is one 25 feet high, but of small extent. Close in shore, and abreast of this, is a rock just awash at high tide, but between the two runs a channel with 15 fathoms water, having soft, muddy bottom. The bright bluff head $1+$ mile SE. of the Colvos rocks, and about two miles SW. by W. from Foulweather bluff, is Tala Point $\ddagger$ Half-way betweeu the Colvos and this point is the usual entrance, over a sand bar having $4 \frac{1}{2}$ fathoms. The 3 -fathom line stretches half a mile SE. of Colvos. If the wind and currents do not suit for this chamnel, run inside of the Colvos, carrying deep water and eight fathoms, soft, muddy bottom, anywhere inside of Tala Point, even past the saw-mill, if necessary. The general direction of the shore from Basalt Point to the saw-mill on the low sand point inside, is S.SE. $2 \frac{1}{2}$ miles. Abreast of Tala the width of the bay is three-quarters of a mile, but it gradually contracts to less than half a mile at the saw mill, at which vessels joad. Inside of the saw-mill point is an excellent anchorage in seven and eight fathoms. About a mile from the mill is an ample water-power, with an available head of 80 feet, but it is not used.

    We believe the Pacific Mail Stcamship Company were to have established a coal depot here for their Puget's sound steamships; but since the breaking out of the Fraser river gold excitement other arrangements have been made.

    Of all the small harbors in these waters we do not hesitate to give this the preference, as it is completely land-locked, and protected from gales from every quarter by the high land and high trees around it. The first steamboat built in these waters was launched here in 1860 .

    It received its present name from the Cnited States Exploring Expedition in 1841.
    The first rocks off Basalt lie at the narrow mouth of a small boat harbor, called Mats-mats. The entrance to it is over a half mile long, about 100 yards wide, and at the sharp turn obstructed by rocks, which allow a channel of only three feet water. Inside, the depth ranges to two fathoms, and the extent of the harbor is about three-quarters of a mile by a third in breadth.

    A map of Port Ludlow and Mat-mats was published by the Coast Survey in 1856.

    ## PORT GAMBLE.

    After passing Foulweather bluff keep closer to the eastern shore than to the western, to avoid the strong current passing round the low point which makes ont from Hood's Head. Run for the saw-mill, plainly in sight, on the westem side of the entrance to the bay, and when within a mile of it approach the eastern bluff within the third of a mile, in about 10 or 15 fathoms, gradually drawing closer in shore, and passing between the outer white and inner black can buoys. At the loweet tides the white one is in 15 feet, the black in 122, and the small spar buoy between them in mid-channel in 17 feet, but it rarely shows above water at any tide. After passing these buoys the mill bears almost S.SE. half a mile distant. Steer SE., or half-way between the mill wharf and the cast point, pass to the east of the white spar buoy, which is in $12 \frac{1}{2}$ feet, and run through the entrance, passing the wharf at about one-third of the distance between the points. Do not round up to the eastward, as a shoal makes out almost parallel with the point. It may be here noticed that these buoys were made and placed by the Puget Mill Company, for the bencfit of vessels trading to the port.

    If the wind is ahcad while beating up, it will be impossible for a large sized-vessel to get in, as the channel is half a mile long, and not over 100 yards wide at the narrowest part. Anchor off the buoys, and drop in with the early flood, or warp in with the last of the ebb. On the shoal forming the western side of the passage ten feet may be found until up with the white spar buoy.

    Inside of the points the bay appears to open well under the castern one, but the 3 -fathom line makes out on a line with the end of the point. On the western side is a crib, around which a shoal has formedanchor just beyond it in five fathoms, soft muddy bottom. The depth of water thronghout the bay is from four to nine fathoms, with mud hottom. The length of the bay is $2 \frac{1}{4}$ miles, its width three-quarters of a mile, and ite dircction southeast. The shores are steep, but not high, and are bordered by sand and pebble beach: offering capital chances for laying a vessel out. A better place, however, for that purpose, is at the end of the store wharf, especially for vessels with large dead rise.

    In summer the wind generally blows into the harbor lightly; in winter the SE. gales draw directly out. Loaded vessels must warp out in summer, or trust to a light southerly air in the morning, with an ebb tide. None but small, smart working vessels can beat out, and few of those have done so within the channel limits.

    The approximate geograplical position of the castern point of the entrance is:
    

    ```
    Longitude...... ...................................................... ```

