

REPORT OF THE SUPERINTENDENT

UNITED STATES COAST SURVEY,

showing

THE PROGRESS OF THE SURVEY
QB
296
dURING

WASHINGTON: GOVERNMENT PRINTING OFFICE.

1874

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:
This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage (http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 10, 2003

In tie Senate of the United States, May 14, 1872.
The following resolution, originating in the Senate February 12,1872 , was concurred in by the House of Representatives May 14, 1872 :

Resolved by the Senate, (the House of Lieprescntatives conemting,) That thero bo priuted thirty-five hundred extra copies of the Report of the Snperintendent of the United States Coast Survey for 187, of which fifteen hundred shall be for the use of the Honse of Represcutatives, one thousand for the use of the Senate, and one thousand for the use of the Superintendent.

Attest:
GEO. C. GORHAM,
Secretary.

LETTEK

THE SECRETARY 0F THE TREASURY,

TRANSMITTING

THE ANNUAL REPORT OF THE SUPERINTENDENT OF TIIE U. S. COAST sURVEI FOR 1831.

Febidary 9, 1879.-Referred to the Committee on Commerce and ordered to le printed.

Treasury Department, February 9, 1872.
SIR: I have the honor to transmit, for the information of the House of Representatives, a report made to this Department by Prof. Benjamin Peirce, Superintendent of the Coast Survey, stating the operations and progress in the surcey of the Atlantic, Gulf, and Pacific coasts of the United States during the year ending November 1, 1871.

I have the honor to be, very respectfully,
GEO. S. BOUTW ELL, Secretary of the Treasury.
Hon. James G. Blaine, Speaker of the House of Representatives.

ABSTRACT OF CONTENTS OF REPORT.

Introductory remarks, p.1. Sites of active operations and progress of the survers, pp. 1-3. Vorage of the steamer Hassler, p. 4. Estimates, p. 5. Estimates in detail, pp.6-9. Comparison of estimates for this and the preceding year, p.9. Solar eclipse of December 22, 1870, pp. 9-14. Magaetism, p. 14. Obituaries, p. 15.

Part II.-Brief abstracts of field-work accomplished by the several parties, pp. 16-18. Field and office work, progress in, pp. 19-67. Summary of field-toork, pp. 19-64.

Section I.-Hydrography southeast of Moose-a-bec Reach, Maine, p. 19. Hydrography of Prospect Harbor, Maine, p. 19 Topography and hydrography of Somes's Sound, (Mount Desert Island,) Maine, p. 19. Topography of Seal Harbor, Maine, pp. 19, 20. Topography of Deer Isle Thoroughfare, p. 20. Topography of Penobscot Bay, Maine, pp. 20, 21. Topography of Tsleborough, (Penolscot Bay,) Maine, p. 21. Hydrography of Penolscot Bay, Maine. p. 21. Topography and hydrography of the Androscoggin River and Cathance River, Maine, pp. 21, 22. Sailing directions for the coast of New England, p. 22. Topography of Saco Bay, Maine, pp. 22, 23. Geodetic points in New Hampshire, pp. 2:3, 24. Longitude observations at Cambridge, Massachusetts, p. 24. Edgartown, Nantucket, and Vineyard Haven, Massachusetts, pp. 24, 25. Providence, R'tode Island, p. © 2. Topography of Narragansett Bay, Rhode Island, pp. 25, 26. Tidal observations, p. 26.

Section II.-Triangulation fron Point Judith westward, pp. 26, 27. Station marks, p. 27. Triangulation and topagraphy near New Haven, Connecticut, pp. 27, 23. Survey of Lake Champlain, pp. 28, 20. Triangulation of Lake Champlain, pp. 29, 30. Shore-line survey of Lake Champlain, pp. 30,31. Hydrography of Lake Champlain, p. 31. Hudson River, New York, pp. 31, 32. Survey of Newark Bay, New Jersey, p. 32. Triangulation near Barnegat, New Jersey; p. 32. Altitude of stations, pp. 32,33. Topography of Great Bay and Little Egg Harbor, New Jersey, p. 33. Iydrography of Little Egg Harbor, Great Bay, and Absecom Inlet, New Jersey, p. 33. Survey of the "Horse-Shoe," (Delaware River, and of the Schuylkill near Philadelphia, pp. 33, 34. Tida! observations, p. 34.
Section III.-Topography and hydrography of the Broadwater, Virginia, pp. 34, 35. Latitude, azimuth, and magnetic observations on Chesapeake Bay, pp. 35, 36. Mragnetic observation, p. 36. Pendulum observations, p. 36. Hyarography of the Chesapeake estuaries, p. 36. Thiangulation of the James River, Virginia, p.37. Primary triangulation in Virginia, p. 37. Gulf siream, p. 37. Tidal observations, p. 37.
SEction IV.-Triangulation of Pamplico Sound, North Carolina., p. 38. Latilude, azimuth, and magnetic observations at Portsmouth, North Carolina, pp. 38, 39. Topography of Pamplico River, North Carolina, p. 39. Fydrography of Pamplico River, North Carolina, pp. 39, 40. Hydrography of Hatteras Shoals, North Carolina, p. 40. Topography of Bogue Inlet, North Carolina, pp. 40, 41.
SECTION V.-Topography and hydrography of the sea-island channels of South Cacolina, pp. 40, 41.
Section VI.-Topograyhy of Nassan Sound, Florida, p. 42. Hydrography of Nassau Sound, Florida, pp. 42, 43. Triangulation south of Matanzas Inlet, Florida, p. 43. Hydrography near the 「ortugas, pp. 43, 44.
Section VII.-Hydrography of Cedar Keys, Florida, p. 44. Tydrography of Saint George's Sound, Florida, pp. 44, 45. Measurement of base-line and azimuth at Saint Joseph's Bay, Florida, p. 45. Triangulation of Saint Andrew's Bay, Florida, pp. 45, 46. Latitude and azimuth at Saint Andrew's Bay, Florida, p. 46. Topography of Saint Andrew's Bar, pp. 46, 47. Trianyulation, topography, and hydrography of Santa Rosa Sound, Florida, pp. 47, 48. Latitade and longitude of Cleveland, Ohio, p. 48. Latitude and longitude of Columbus, Ohio, p. 49. Latitude and longitude of Oakland, Ken-- tucky, p. 49. Latitude and longitude of Shelbyville, Kentucky, p. 49.

Section VIII.-Topography of Chandeleur Sound, Louisiana, p. 50. Thiangulation, topography, and hydrography of Mississippi River, Louisiana, p. 50. Hydrography of Lake Pontchartrain, Louisiana, pp. 50,51. Defp-sea soundings oft the Mississippi Delta, Lonisiana, p.51. Hydrography of Trinity Shoal, p.51. Geodetic points in Illinois and Missouri, Pp. 51, 52.

Section IX.-Hydrography of Matagorda Bay and Espiritu Santo Bas, Texas, pp. 52,53. Latitude and longitude of Chetopa, Kansas, p. 53.

Section X-Geographical reconnaissance between Sau Diego and Panama, pp. 53, 54. Off-shore hydrography, p. 54. Longitude and triangulation of San Diego, California, pp. 54, 55. Triangulation and topography of Bahia Ona, California, p. 55. Triangulation and topography of the Santa Barbara Channel and islands, California, pp. 55, 56. Triangulation anti topography of San Luis Obispo Bay, pp.56,57. Triangulation and topography of San Simeon Bay, p. 57. Falmouth Shool or Reed Rocks, p. 5\%. Survey of Table Mountain and of wharf-lines at Oakland, California, pp. $57,58$. Blossom Rock, San Francisco Bay, California, p. 58. Rocks in Mission Bay, (San Francisco harbor,) p. 58. San Francisco Bay and approaches, p. 5. Triangulation and topography north of Point Arena, California, pp. 58, 59. Triangulation and topography south of Cape Mendocino, California, p. 59 . Sunken rocks south of Punta Gorda, California, p. 59. Triangulation and topography of the coast north of the False Klamath, California, pp. 59, 60. Rook in Crescent City Bay, California, p. 60. Azimuth at Eureka and Crescent City, California, p. 60. Aids to navigation, pp. 60, 61. Tidal observations, p. 61.

Section XI.-Triangulation and topography north of Cbetko River entrance, coast of Oregon, p. 61. Hydrography of Orford Reef, coast of Oregon, pp. 61, 62. Triangulation and topography of Cohmbia River, Oregon, p. 62. Triangulation and topography of Shoalwater Bay, Washington Territory, p. 62. Longitude of Seattle, Washiogton Territory p.63. Triangulation and topography of the Strait of Fuca, Washington Territory, p. 63. Dydrography of Partridge Bank, Lawson Reef, and Belle Rock, pp. 63, 64. Tidal observations, p. 64.

Section XTI.-Recontaissance of Alaska Territory commenced, p. 64.
Office-Wonk.-Offcers in charge, pp.64-67. Hydrographic division, p. 65. Computing division, p. 65. Tidal division, p. 65. Drawing division, pp. 65, 66. Engraving division, p. 66. Electrotyping and photographing, p. 66. Dirision of charts and instruments, p. 60. Conelusion of report, p.67. Appendices, pp. 71-219.

CONTENTS OF APPENDICES.

No. 1. Distribetion of parties during surveying seasons of $1870-71$
Pages.
No. 2. Information furnished in reply to special calls. 78-79
No. 3. Drawing division.-Charts completed or in progress during the year $80-81$No. 4. Engraving division-Plates completed, continued, or commenced during the wear
$80-8$
84-92
No. 5. List of original tofograpmical and mydrographic smeets registered in the archives of the United States Coast Survey from January 1, 1866, to December 31, 1871$93-99$
No. 6. Report of meteonological effects on tides, from observation by Professor Wm. Ferrel$100-10=$
109-133$120-133$134-143
No. 10. Hints and sugGebtions uron thid location of harbor-lines, by Assistant Heury MitchellNo. 9. Report concepning Nacsett Beachand tie Peninsula of Monomoy, by Assistant Henry Mitehell

$$
144-153
$$

No. 11. Comparison of the methods of metermining heights by means of leveling, vertical angles, and barometric measures, from observations at Bodega Head and Ross Mountain, California, by George Davidson aud Charles A. Schott, Assistants
No. 12. Repont on the neveling operations between Keyport, on Raritan Bay, and Gloucester, on the Delaware River, to determine the height above meau-tide of the primary stations, Beacon Hill, Dishorough, Stony Hill, Monnt Holly, and Pine Hill, by Assistant Richard D. Cutts
Heights above mean-tide, determined by spirit-level, p. 171; tidal stations, p. 171; instruments, pp. 171, 172 ; field observations and records, p. 172 ; table of heights of bench-marks above half-tide, p. 173 ; table of heights of primary triangulation stations above balfatide, p. 174 ; table of benchmarks and barometer-cisterns above half-tide, p. 174; table showing comparison of difference in heights as determined by barometer and spirit-level, p. 175; table showing resulting heights of triangulation stations, p. 175.
No. 13. Report of observations of the total solar eclipse of December 22, 1870, by assistant George W Dean.
Abstract of the chronographic records, p. 179.
No.14. heport of the observation of the eclipee of the sun, of December 22, 1870, by Dr. C. H. F. Peters, Director of the Litchfield Observatory of Hamilton College180-184
characteri of the surface of country and other causes, by Assistant Charles A. Schott
No. 15. Report on the adaptation of triangulations to the varioue conditions of configuration and
No. 16. Description of a new fomm of merclirial horizon, in which vibrations are speedily extingaished, by J. Homer Lane, United States Coast Survey1851 to 1870.
Key to index, p. 193. Geodesy : latitude, p. 193 ; longitude and time, pp. 193-195; azimuth, p. 195 ; baselines, p. 196; geographical positions, pp. 196, 197. Astronomy: p. 197. Mathematics: p. 193. Surveying : triangulation, p. 198; topography, pp. 198,199 ; hydrography, p. 199; reconnaissances, pp. 199, 200. Physical hydrography : pp. 200-202; Gulf Stream, pp. 202, 203. Terrestrial magnetism : pe. 203-207. Drawing, engraving, and electrotyping: pp. 207, 208. Miscellaneous, technical, and other subjects: pp, 203, 209.
No. 18. Errata from 1851 to 1870 \qquad
Errata 1851, pp. 210, 211; 1852, p. 211; 1853, pp. 211, 212; 1854, pp. 212-214; 1855, pp. 214-215; 1856, p. 215 ; 1857 , p. $216 ; 1858$, p. 216 ; 1859 , p. 216; 1860 , pp. 216,217 ; 1861, p. 217 ; 1862, pp. 217, 218; 1863, no errata; 1864, p. 218; 1865, p. 218; 1866, p. 218; 1867, p. 218; 1868, no errata; 1869, p.218; 1870, p. 219.

ALPHABETICAL INDEX.

1
ABBAE, MR., of Wadham Colege, Oxford. Ohsorvation with mattroscope, p. 13.
ABBOT, ILENRY L., Dajor of Engincers, L.S. A. Servires to the
Solar Eelipe Enpedition, 1850. p.11; also Pl, 180, 181.
ABSTRACT OF CHRONOGRAPHIC RECORD, at Jerez, Suam. 157e, p. 179.
ADAMS, ASSTSTANT FULL. Topugraphy of baco lay, Me., 3.22. ADAMS, member of British Commission, Ghacrvations ol solar eclipse, 1870, p. 1 sz.
ADAMSON, I. B. Serrices in Section VI, p. 4t; in Seetion IV, p. 74. ADAPTATION OF TRLANGCLATIONS to the variolis conditions of configuration, de., loy Charles A. Schott. Appendix No. 15, mr. 185-188.
AGASSIZ, PROFESSOR. Sorvices on brand the Steamer Hammer, 1, p. 4, 5.
AGASSIZ, (schoonet.) Work in Section VII, me Ah, 1e.
AGNELLO, member of Italizn Commission. Observations solar eclipse, 1870, p. 181 .
AGOSTA, SHCILY. Observing station, solar eolipse, 1r70, p. 1el.
AIDS to narigation, Pacific Ocean, p. 60; at Partridge Bank, p. 63.
ALASKA TERRITORY, Pacific coast. Party in charge of Acting Assistant W. II. Dall, for hydrograplic sarvey, tillal observations, and general information, p. 64.
ALEXANDER, GENERAL, U. S. Engineers, p. 154.
ALTITUDES of strtions in Section II, n. 32.
ANCHORAGE space and winding room. Part of 11. Mitehuth res port on barbor-lines, p. 150.
ANDERSON, SCBASSASTANT HOLACLD. Serviecs in Section I, hydrography sontheast, of Mose-a-bee Ieach, Mo., ju. 19; Prospect Harbor, p. 19; hydrography of Saint George's Somel, j. 44; mebtioned in Mitchell's report on harbor-lines, p. 149.
ANDROSCOGGIN RIVER. Topograplyy and hydrograpby, p. at.
APPENDICES, p. 70. No. 1. Distrilntion ot surveying parties, dec, pp. 71-7\%. No. 2. Iuformation furnished, p. 78. No. 3, Charts completed or in progress, p. 80. No. 4. Plates completed, contimued, or conmonced, $p .89$. No. 5. List of original topographical sheets reg. isterecl, p. 84; list of original hydrographical sheets registered, \dot{p}. s8. No. 6. On meteorological effects on tides, \&e., p. 03. No. 7. Meteorological register, Alaska Territory, p. 100 : Alaska Territory, p.101. No.8. The Snperintendent's letter to the Chamber of Commerce, N. Y., with, \&c., p. 110. No. 9. Concerning Nansett Beach and the Peninsula of Monomoy, p. 134. No. 10. Hints and sugges. tions on the location of karbor-lines, \&e., p. 144. No.11. Comparison of methods of determining hetgets by meaus, \&c., p. 154. No. 12. On leveling operations between Keyport and Maritan Bay, \&o., p. 171. No. 13. Total solar edipse observations, \&c., p. 176. No. 14. Total solar eclipse observations, \&e., p. 180. No.15. Adaptation of trianmulations to the various, \&e., p. 185. No. 16. New form of a mercurial horizon, \&e., p. 189. No. 17. General index of profeasional and scientitic papers, p. 193. No. 18. Errata from the years 1851 to 1870.

ARAGO, (schooner.) Sorvices, pp. 39, 113.

ASTORIA, OREGON. I'idal observations, p. 64.
ASTRONOMCICAL observations at Cambridgo Observatory, Mass., pp. 24, 49; Cove Point, Tangier Island, and Wolf Trap, Chesapeake Bay. p. 35; near Portsmouth, N. C., p. 38 ; on Capitol Mill, Wasbington, D. C., pp. 14, 36 ; Eagle Harbor, Saint Joseph's Bay, Fla., p. 45; Davis's Point, Saint Andrew's Bay, Fla., p. 46 ; Cleveland, Ohio, and Falmotath, Ky., D. 48; Oakland and Shelbyville, Ky., p. 49; Chetopa, Tansas, p. 53 ; Sau Diego, Cal., p. 34 ; Eureka. Crescent City, Cal., p. 60; Senttle, Wagh. Ter., p. 63 ; in Section XII, p. 64.

C S ——II

ASTRONOMY, wellatimbex. Apqumbix 15, p. 1:t
ATLANTMC COAST and bays of Marylate and Yirgmia, baludinf seaports and rivers, p. 34; of North Carolina, including seaports and rivers, p, 3 ; mul sea-water cbanuels of Soth Carolina and

ADMOSPDELIC prossare for difterence of heighte. Ikente at hourly oberrations at Bultes ITead and Cross Mountain, Cal., pp. 10.7no.

AZIMCTII. At stations on Chesamenke Bay, ${ }^{2}$. 5 ; Calvert Station. 3. 35 ; Tangier Islank, p. 35: Wolf Trap, Va., p. 36 ; Clark's Mount. dilu, near Rapidan, Va., p. 34; Imill Run Mountain, Va., p. St; Portsuouth, X.C., Be; at Eagle Manbor, Saint Ioseph's Bay, Fa, p. 45: at Davis's Point, Limt Andrew x Say, Fla., p. 46; at Lureka and Crament City, Cal. p. in
1.
 B.IGHE, ASSISTANT C. M. Jopography of Great Bay and Lithle Erer Harbor, N. J., p. 33 .
B.LCHE, G. M., (shomer.) Services, p. 41.

BACHE, Sl BASSTSTANT 11. W. Services in fection 14, p, 3:.
BicHE, ASBLSTANT L. M. Topography near Now Haven, Coun.. 1. 83.

BABIA ONA, CAL. Jrianghation and topographry p. 55.
IBALEY, (schooner.) Sorvices of, pu, 33, 34.

BULATAMLA, (xmall temeler, Serrices of, p. 50.
BALNARD. A. F. Sorriees in Section I, p.20; in Section IV, p, 3!, BAINARD, H. S. Gervices in engraving division, p. Ge.
BAROMETUICAL OHSERVATIONS at Bodega flead and lusw Monntain, Cal. Heport of pp. 154-1\%0.
HASE-LINE. Measurement of, at Saint Josephis Bay, Ma., ph dis: prelininary measurement of a base-line near Kesslers, in Missouri. p. 52 : at Navarro Ridge, near San Luis Ohispo, Cal., p. 5 .
B.\SEETI, R. T. Tillal oliserver, Section II, p. 34.

BATH, N.C. Historical rillage, p. 3u.
BAUERNFEIND, DR., p. 160.
HEACON HILI. Triangulation station, p. 171 .
BEGN, F. W. Asaistance rendered, p. 10 .
BENAER, F. W. Services in engraving division, ph. Gi.
MHBB, (steaner.) Servicea, pp.40, 43, 44.
BISSELLA. G. W. Cnited States Coast Survey, II. 15; services in Seetion VIL, p. 44.
SLAKE, TR, SUBASSISTANT F. Latitute of Clarli's Momatain. Fa., near Japidan, p. 3\%.
BLASERNA, menber of Italian Commission. Olservatious of solar eclipse, 1870, p. 181.
BLOSSOM ROCK, San Franciseo, Cal. Hydrographicsurvesof, pit. BLUNT, MIS Jielative to New Tork Harbor, p. 110.
BODEGA HEAD, CAL. Observation for determining heirht ef, kiport, pp. 154-170.
BODELL, W. J. Tital observer, Section III, p. 37.
BOGUE INLET, N. C. Topograpliy of, p. 40.
BONANNO, DR. Assistance rendered to Aneriean ollitert of the Solar Eclipse Expedition, 1870 , p. Ies.
BOND, PlROFESSOR GEOLGE P. Pendalum observations, p, St
BOUTELLE, C. B., aid. Services, p. 3 .
BOUTELLE, ASSISTANT C. O. Primary triangulation in Vir ginia, p.37; examination of navigable nivers in vicinity of the sea istands, S. C., p. 74.

BOWEN, menber of British Commission. OLservation of solar echipse, 1870, p, 182.
JOYD, ASSLSTANT C. H. Topograplig aud hydrograplyy of the Audroscoggin and Catbance Fivers, Me., pp. 21, 22; topography of Chaudeleur Sound, La., p. 50 ; triangulation, topography, and hydro graphy of Mississippi River, p. 50.
BKADBCRY, TR., BION. Service in Section I, p. 26 ; in Section FI, р. 42.

DRADFORD, SUB-ASSISTANT GEILSHOM. Snrrey of entrance and bay of Mardalena, coast of Lower Californin p. 53 ; search \mathbf{f} (reported danger of Falmouth Shoal, or Recd Rocks, 800 miles west of the Goldon Gate, p. 57; hrdrography of San Francisco Bay aud approaches, $p .58$; hydrography of Orford Reef, coast of Oregon, p. 61.

BRADFORD. ASSISTANT J.S. Sailing directions for the coast of New England, p. 22; hydrography of Lake Pontehartrain, p. 50; deepsea sontudings of the Mississippi Delta, La., p. 51 ; hytrography of Trinity Shoal, La., p. 51.
BRAID, ANDLEW. Services in Section II, p. 31; hydromrapley, Section TI, p. 43
BRETT, member of Jritish Commission. Ohservations of solat eclipse, 1870, p. 182.
IKIGHT, W. T. In charge of drawing division, p. 65.
BROADWATER, coast of Virgiuia. Topography and hydrography p. 34.

BRO'HERS, member of British Cummission. Observations of solar eclipse, 1870, p. 182.
BRYANT, CAPTAIN CHARLES. Meteorological observations, Section XII, p. 64; metcorological register for Saint Paul's Island. Alaska, pp. 100-108.
BULL RUN MOUNTAIN, VA. Occupation for primary triangulation, p. 37.
BURGESS, MR. Services rendered to Solar Eclipse Expedition, 18\%0, p. 11 .
BURTON, mcmber of British Commission. Obaervations of solar eelipso, 1870, p. 182.
BUTTEHMILK CHANNEL, New Fork Earbor. Changes in, p. 113 C.

CACCIATORE, director of the olservatory at Palemio and vicepresident of the Italian commission to observe the solar eclipse of 1H0, p. 181.
CAPE MESDOCINO, CAL. Triangulation and topography, south of, p. 59.
©APE PASSARO, SICILT, p. 181.
CARCAKAZZ1, villa, Sicily, p. 184.
CA RLENTLI, station for observing the solar eclipge of $1800, \mathrm{p} .182$
CASA INGLESE, MOUN'L ETNA, p. 181.
CASA TERENTINA DEL BOSCO, observing station of the solar eclipse of 1870, p. 182.
CASINO DIS. GEILNOANO, CATANIA, station for observing the nolar eclipse of 1870, p. 132.
CASINO I GABINEITO LETTERARIO, hospitality shown to American Commission of Solar Eelipse Expedition of 1870, p, 184.
CATANIL, SICLLY, station for observing the solar echipse of 1870 p. 18:

CATHANCE RIVER, ME. Topography and lıydrography of, p. 21. CATTANEO, SR, Italiau consul, assistance rendered, p. 10.
CEDAR KEI'S, FLA. Hydrography of, p. 44 .
OHANDELEUR SOUND, LA. Topograply, p. 50.
CIIANGES in Now York Hurbor, pp. 110-113; of the Jetsey Flats, pp. 111, 112; in Battermilk Chammel, p. 113; in the vicinity of Mid, dle Gronnd Shoal and Gowanus Bay, p. 113; at and near SandyHook entrance, pp. 113, J14; of Chatham Beach, in detail, pp. 140143.

CHAPIN, H. M. Mentioned in pp. 139-143.
CHATMAN, I. C. Photrgrapher to Bolar Eclipse Expedition of 1870, services, p. 11.
CHLASE, SUBASSISTANTA. W. Services in Section X, pp. 55, 56 ; triangulation and topegraphy from Crescent City, Cal., south to False Klamath, Cal., p. 59 ; discovery and survey of a rock in Crescent City Bay, Cal., p. 60 ; triangulation and topography of Chetko Liver entrance, coast of Oregon, p. 61.
CHATHAM. Physical history of the neighborhood of, pp. 134-140.
CHATHAM BEACH. Recent movements of pp. 140-143.
CHESAPEAKE ESTUARTES Hydrography of, $p, 36$.
CHETKO RIVER ENTRANCE, coast of Oregon. Triangulation

CHEW, L. F. Services in Section II, pp. 31-33.
CLANCY, F. W. Assistant to chief clerk, p. 6\%.
CLARK, JOHN. Sapervisiou of repairing and reconstrueting instrmments, p. 66.
CLARE'S MOUNTAIN, VA., near Rapidan, Occupied for priwary triangralation, p. 37.
CLEVELAND, OHIO. Latitnite and longitude of, p. 49 .
CLIFFORD, member of British Commissien. Observations of the solar eelipse of 1870, p. 182.
COLST of California, including bays, harbors, \&c, p. 53 ; of Oregon and Washington Territory, including bays, ports, \&c., p. 61.
COLONNd, B. A. Reconnaissance of the east am of Lake Champlain, p. 29; services in Section II, p. 32 ; in Section III, p. 37; in Section II, p. 171.
COLUMBIA RIVER, OREG. Triangulation and topograply of, p. 62.

COLUMBUS, OHIO. Latitute and longitude of, p. 49.
COMPARISON OF METHODS, \&c., by George Daridson and Charles A. Schott, Assistants, pp. 154-170. 1. Results of the leveling operations, pp, 154, 155. 2. Results of heurly observations, \&e., Pp. 15s-164. 3. Results of hourly observations of atmospherie pressure, \&c., pp. 165-1\%0.
COMPUTING DIVISION. Summary of work, p. ff.
COOPER, W. W. Chief clerk in oftice of the Superintentent, p. 67.
COERTENAY, E. H. Services in Computing Division, p. 65; services on eontract in Engraving Division, p. 46.
CRESCENT CTTY BAT, CAL. Rock ("Cuase ledge") in, discovery and surver, p. 60.
CLMMING member of British Commission. Observations of the solar eclipse of 1870 , p. 182.
CUTTS, ASSISTANT RIGHARD D. In charge of secondary triangulation, pp. 17, 171; of work at Lake Champlain, p. 29 ; triangulation near Barnegat, N. J., p. 32 : inspection of triangulation at, James River, p. 37; reconnaissance into Illinois and Missouri for geodetic points, p. 51.
D.

DANA, PROFESSOR JAMES D., of Tale College, p. 28 .
DANA, (schooner.) Services, p. 32.
DALL AUTING ASSISTANT W. H. Magnetic observations of the coast of Alaska, p. 15 ; in charge of surveys of tho Pacifie coast, Alaska Territory, p. 64.
DARWIN, member of British Commission. Observations of the solar eclipse of 1870, p. 18w.
DAVIS, W. H. Serrices in Engraving Division, p. 6f.
DAVIS, R. H. AND BROTHER. Services readered to the Solar Eclipso Expedition of 1880, pp. 12, 128.
DAX, LIEUTENANT MURRAY S., U. S. N., on board of CoastSuryey steamer Hassler, p. 5; magnetic observations, p. 15.
DEAN, ASSISTANT G. W. Services to Solar Eelipse Expedition of $18 \% 0$, pp. 12-14; observations for longitude of Cleveland, Ohio, from Cambridere, p. 48; longitude of Columbus, Obio, from Canbridge, p. 49; longitude observations at Shelbyville, Kyr, p. 49 ; observa tions of total solar eclipse in Spain in 1870, pp. 176-179.
DEEPSEA SOUNDINGS OEF THE MISSISSIPPI DELTA, p. 51 , DEER ISLE THOROUGHFARE. Topography of, p. 20.
DE LISA, member of Itslian Conmission. Observations of the solar eclipse of 1870, p. 181.
UENNIS, ASSISTANT W. M. Topography of Deer Isle Thoroughfare, p. 10 ; topography of Musele Ridge Islands completed, p. 19 ; topography of Nassau Soand, Fin, p. 42
DESCRIPTION OF A NEW FORM OF MFRCURLAL HORIZON, \&c., by J. H. Lane. Appendix No. 16, pp. 189-192.
DETACHED SURVEYS, mentioned on p. 17; Edgartown, Nan. tucket, aud Vineyard Haven, Mass., p. 24; city of Providence, R. I., p. 25 ; Newark Bay, N. J., p. 32; Forse-Shore (Delaware River) and tho Soluylkilt, near Philadelphia, Pa., p. 33 ; Bay of Magdalena, Lower California, p. 53; Table Mountain and wharflines at Oakland, Cal., p. 57 ; of Pacific coast of Alaska Territory, p. 64.
DE WEES, SCBASSLSTANT H. M. Services in Section I, pp. 19,
s0; Section VII, p. 46; topography of Saint Andrew's Ray, Fla., p. 46. DICKINS, E. F. Services in Section X, pp.58, 59.
DIGGS, JOHN II. Culored messenger, p. 15.
DILLAWAT, C. P. Services in Section II, p. 32 ; in Section VIII, p. 51.

DLSBOROUGH, N.J. Triangalation Station, p. 171.
OISTRIBUTION of aurveying parties upon the Atiantic, Gulf, and : Pacific coasts of the United States, \&uc., in 1870, pp, 71-77.

DTVISION OF CHARTS AND XNSTRUMEXTS. Summary of work, p. 66.
IONATI, member of Italian Commission. Obsertations of the solar eclipse of 1870, p. 181.
DONN, ASSISTANT J. W. Topography and hydrograpby of Somes's Sound, Monnt Desert Island, p. 19; topography and hydrography of the Broadwater, Va., p. 34.
DOHL, ASSISTANT F. W. Topography of Penobscot Hay, Me., up to Kuight's Point, p. 20; topography of Pamplico River up io Wasbiugton, N. C., p. 39.
DOW, MP. Relative to New Fork IIarbor, p. 110.
UOWNES, J. Services in Tidal Division, p. 65.
DRA WING DIVISION. Summary of work, p. 65; charts completed or in progress daring the jear ending Octoler 31, 1851, pu. 80, 81. DRAWING. General Index, Appendix 17, p. 20 T.
DURHAM, T. V. Services in the Division of Charts, p. 66.

E.

EASTMAN. Services to Solar Eclipse Expedition of 1870, p. 189.
EASTMAN, MRS. Services to Solar Eelipse Expedition of 18in, p. 182.

EAST AND HUDSON RTVERS. Tidal current computations, p. 117.

EDGARTOWN HARBOR. Resurrey and changes, p. Te.
EIMBECE, SUBASSISTANT W. Services to Solar Eelipse Expedition of 1870, pp. 11, 12, 182, 183; services in Section YIII, p.51; corresponding observations for lomitude of Chetopa, Kansas, made at Saint Lonis, Mo., p. 53.
ELECTROTYPING AND PHOTOGRAPHING DIVISION. Summary of work, pp. 66, 20\%.
ELLICOTT, SUBASSISTANT EUGENE. Services in Section IT, p. 40; topography of Straits of Fuca, Washington Merritory, p. 63. ENCROACHMENTS ON THE CHANNELS, part of Mitchell's report on harbor-lines, pp. 147, 148.
ENDEAVOR, (steamer.) Services of, pp. 41, 42.
ENGRAVING DIVISION. Summary of work, p. 66 : plates completed, continued, or commenced, pp. 82, 83.
ENTHOFFER, J. Services in Engraviog Division, p. 66.
ERNST, O. H., Captain of Engineers, U. S. A. Serrices to Solar Eclipse Expedition of 1870 , pp. 12-24.
ELSHEMAN, F. Services in Division of Instruments, p. 66.
ESPIRITU SANTO BAY, TEX. Hydrograply of p. 52.
ESTIMATES IN DETATL, pp. 6-9.
ESTIMATES OF WORK, pp. 5-9.
ETNA, SLOPE OF MOUNT. Station for olserving solar eclipse of 1870, p. 181.
EVANS, J.J. Services in Section 11, p. 33 ; in Section IF, p. 40.

F.

FAIRFAX, F. Service in Drawing Division, p. 65.
FATRFAX, W. Services in Drawing Division, p. 65.
FAIRFTELIS, ASSISTANT G. A. Triangulation of both sides of Lake Champlain, p. 29 ; triangulation of Pamplico Souud, N.C., p. 38.
FARLEX, ASSISTANT JOHN. Iuspection of station-marks in Section LI, p, 27.
FARQUHAR, SUB-ABSISTANT GEORGE. Services in Section X, p. 58.

FALMOUTH SHOAL OR REED ROCKS, PACIFIC OCXAN゙, p. 57.

FALSE KLAMATE, CAL. Triangulation and topography of the coast north of, p. 59 .
FATHOMER, (small steamer.) Servlcea, p. 31.
FERGOLA, SR. Observations, Capo di Moute, Naples; services, p. 12.

FERGUSON, SUB.ASSISTANM CHARLES. Services in Section 11, p. 171.
FERNEX, CAPTATN THOMAS H. Serviees in Section IL, p. 40.
FERREL, WHLIAM. Report of meteorological effects, \&c., by, pp. 93-99.
FITZ, H. J. Services to the Solar Eclipse Expedition of 1870, p. 11.
FOERSTER. Services rendered, p. 11.
FOLLER, J. Services in Division of Instruments, \mathbf{p}. 66.
FORNEY, SUBASSISTANT S. Serrice日 in Section X, pp. 53, 56.
FOUNTLEROY, E. H. Observations at Bodega Mead, Cal., p. 155.
G.

GANNET, HEWEY. Services to the Solar Eclipse Experition of 1670, pp. 13, 17\%.

GARDEN OF THE BENEDICTINES. Observing station of the Solar Eelipse Expelition of $18 \% 0$, p. 181.
GARDNER, CHAXLES L. Services in Section TI, p. 44: Suction IV, p. 74.
GASPARIS, PROFESSOR DE. Director of the observatory at Capo di Monte, assistanee rendered, p. 12.
GEMELLAFO, DR (iIUSEPPE. Giving meteorologinal informa. tion, p. 182.
GENERAL INDER OF PROFESSIONAT AND SCTENTIFIC PAPERS, sic. Appendix 17, p. 193.
GEODESF. Appendix 17, General Index, p. 193.
GEODETIC POLNTS, New Hampshire, p. 23; Minois and Missouri, p. 51.

GEOGRAPHICAL RECONNAISSANCEBETWEENSAX DIEGO AND PANAMA, p. 53.
GEISDES, ASSISIANT F. H. Survey of Newark Lay, N.J., p. 32.
GILBERT, SLBASSISTANT J.J. Triangulation and topography of Shoalwater Bay, Washington Territory, p. 62; mentioned in Mitchells Report on Physical History of Chatham, p. 139.
GLECK, MR. Montioncd in Mitchella report on Physical History of Chatham, p. 139.
GLOCCESTER CJTE, N.sT. Teminus of leveing-line, p. 171
G(ILDEN GATE, San Francisco Bay, Cal. IH ydrographs of, p. 52.
GOODFELLOW, ASSISTANT EDWARD. Triangulation in Nar. ragansett Bay, p. 26 ; triangulation mear New Haven, Coun.. p 2; ; latitude observationg at Cleveland, Ohio, p. 4e; magnetic observations at Clevelant, Ohio, p. 48.
GOTTHETL, A. Sorvices in Tidal Division, p. 65.
GOFERNOLS ISLAND, New York Harbor. Tidal observations, 1. 34.

GIAANGER, SUBASSISTANT F. D. Hydrography of Lake Champlain, p. 3t; hydrography of Matagorda Bay and Espiritu Santo Bay, Texas, p. 52; mentioned in Mitchelfs report on Chathan Beach, p. 142.
GRAPHIC REPRESENTATION of relative amonnts ad direction of the wiud, de., at lBoston, Mass., p. 97.
GREAT BAY AND LITTLE EGG HARBOL. Topography, p. 33; hydrography, p. 33.
GREENWELL, ASSISTANT W. E. Services in Section $\mathrm{X}, \mathrm{p} .56$.
GIIFFITHS. Member of British Commission on observatiuns of the solar eclipse of $1870, \mathrm{p} .182$.
GTADALUPE, ISLAND DE, located aud elevation determined, p. 53.

GLLF COAST AND SOCNIDS. Western Florida, de., p.44; West ern Louisiana and Texas, p. 52.
GULF STREAMr. Temperature, 1.3 .

H.

HACKENSACK, N. J. Somndings, p. 32.
HALL, PROFESSOR A. Eervices in Solar Eelipse Expolition of 1870, p. 182.
HALL, (schooner.) Services of, p. 50.
HALTER, ASSISTANT R.E. Triangulation of James River, p. 3:; establishment of geodetie points for triangulation of Illinois and Missouri, p. 51.
HARLNESS. Member of American Commiasion on observations of the Solax Eclipse Expedition of $1870, \mathrm{p} .182$.
HARDING, SDBASSISTANT W. W. Died p.15; hydrography of Little Egg Harbor, Great Bay, and Absecom Iulet, N. J., p. 33 ; liydrography of Chesapeake estuaries, p. 36.
HARRINGTON, M. W. Serviees in Section XII, 1 , 7 .
HARRIS. Momber of British Commission on observations of Solar Eelipas Expedition of 1870, p. 182.
HARLLSON, ASSISTANT A. M. City of Provileuce inscried on the chart of Narragansett Bay, p. 25; topography of the same completer, pp. 25-26.
HASSLER, (steamer.) Services of, p. 53.
HATTERAS SHOAIS. Hydrography of, p. 40.
FAWKINS, R. L. Clerk in office of disbursing agent, p. 67.
IIEIN, HAREYS. Clerk in office of disbursing eggent, p. 15 .
HEIN, SAMCEL. General disbursing agent of the Coast Sirvey, p. 6%.

HERBENT, W. A. Clerk in office of disbursing agent p. 07 .
FERGESHEIMER, ASSISTANT E., in charge of Engraving Division, p. 66.
HEIEGESHETMER, JOSEMIT. Sarvices in Section 1, p. 21; in Section VIII, p. 50.
HETZEL, (steamer.) Services of, p, 39.

HILGARD, I. E. Assistant in charge of Coast Surver Ofice, p. 64 HILL, DR. THOMAS. Services on board of steamer Hasser, pe. 4, 5, 15.
HINTS AND SUGGESTIONS upon the location of harbor lines, dс., pp. 144-153.
HITCHCOCK, (steancr.) Services of, p. 3 e.
HOTFMAN, C. S. F. Serfices in Section I, p. 21
HOOVER, CLATTON A. Services in Hydrographic Division, p. 67.
HOOVER, J. T., in charge of Division of Charts and Instraments, p. 66.

HORSESHOE (Delaware River) and schuylkill near Philadelphia, Pa., survey of, p. 33.
HOSMER, ASSISTANT CHARIES. Triangulation of Lake Cham. plain. p. 30 ; snrvey of Sea Island channels, S, C., p. 41
HOWELL, LIEUT. COMMANDER JOHN A., U.S.N., in clrargo of Coast Survey steamer A. D. Bache, pp. 44, 74.
HOWLANT, H. Tidal observer Boston nary vard, p. 26.
HUDSON, F. Services in Computation Division, p. 6 .
HUDSON RIVEH, A. Y. Thysical survey of, p. 31 ; report on the pp. 110-133; phenomena in the path of, p. 114
HUMBOLDT, (schooner.) Services of, p. 64 .
HYDROGRAPEIC DIVISION. Silmmary of work, 1 . 6s.
HTDROGRAPHY. Southeast of Moose-R-bec Reach, Me., p. 1! Prospect Harbor, Me., p. 19 : Somes's Sound, Mount Desert Islands Me., p. 19 ; Andrgacoggin River and Cathance River, Me., p. 21 sailing directions for the coast of New England, p. 22 ; Laize Cham plain, p. 31 : Little Egg Harbor, Great Bay, and Absecom Inlet, N. J., p. 3.3; the Broadwater, Ya., p. 34 ; of the Chesapeake estuaries, 1. 36 ; Pamplico River, N. C., p. 39 ; Hatteras Shoals, N. U., p. 40 ; sea-island channels, S. C., p. 41 ; Nassau Sound, Fla., p. 42; ncar the Tortugas, p. 43 ; Cedar Keys, Fla., p. 44; Saint George's Sound, Fla., p. 44 ; Santa Losa Sound, Fla., p. 47 ; Mississippi River, La., p 50: Lake Pontchartrain, La., p. 50; deep-sea sonndings off the Mis sissippi Delta, La., p. 51 ; Trinity Shoal, La., p. 51; Matagorda Bay and Espiritu Santo Bay, Tex., p. 52 ; off shore between San Dieg and Panama, p. 54; Falmonth Shoal, or Reed Rocks, Cal., p. 57 1Hossom Rock, San Francisco Bay, Cal., p. 58; rocks in Mission Bay and approaches, p. 58; sunken rocks south of Punta Gorda Cal., p. 59 ; Orford Reef, coast of Oregon, p. bl; Partridge Bank, Lawson Reef, and Belle Rock, p. 63

1.

ILLINOTS. Geodetic points in, p. 51.
INCREASE OF JEREEY FLATS, p. 11 L .
INFORMATION FURNISHED in reply to spccial calls, \&e., jp. 78,79 .
1SLEBOROUGF, ME. Topography completed, p. 2.
ISODYNAMIC LINES, p. 148
J.

JACOBI, WILLIAM. Serriees in Division of Instruments, p. G6 TAMES RIVEK, VA. Triangulation, p. 37.
JATINELLA, ASSISTANT C. T. 'Topography of Penobsrot Bay, Me., p. 20 ; services in Section 11, p. 39.
TEPREZ, SPAIN. Priucipal station of obecrvation of solar eclipse of $1870, \mathrm{p} .176$
JERSEY FLATS. Increase of, pp. 111, 112.
JOHNSON, PHILIP C., COMMANDER, U. S. N. Commanding
Coast Survey stcamer Hassler, p. 5 ; in service, p. 54.
JOSEPH HENRY, (schooner.) Services of p. 2 .
JUNKKN, ASSISTANT CIIARLES. Scrvices in Hytuographie Division, Section II, p. 34.

K.

KARCBER, LOUIS. Services in Drawing Division, p. 65 .
KENNEDY, CHARLES W., LIEUT. COMMANDER, U.S.N. On loard of Coast Survey stenmer Hassler, p. 5 ; in service, p. 54.
KEITE, PROFESSOR R. Latitude aud longitude of Chetopa, Kans., from Washington, D.C., p. 53; services in Computing Division, p. 65.

KEY PORT, RARITAN BAY, N. J. Initial Point, lercling line, p. 171.

KMG, E. H. Services in Section I, p. 22.
KING, V. E. Clerk in office of assistantin chargr, p. 67.
KNAPP, WILLXAM, in eharge of self-registering gauge, San licgo, Cal., ${ }^{6} 61$.
KNIGHT, H. M. Serrices in Engraring Dicision, p. 6 .
KNIGHT, JOHN. Services in Engraving Division, p. कf
KONDHUP, J. C. Serviees in Engraving Divigion, p. 66

L.

LACKEY, F. E. Saviees in Division of Instmanents, p. 66
LAKE CHAMPLAIN. Topography, p. 18 ; reconnaissance of cach sam, p. 29 ; frianguation, p. 29 ; shore-line survey of, p. 30 ; lyabo graphy, p. 31.
LAKE PONTCHATTEAEN, LA. Hydrography, p. 50
1.AMONT, DR, Assistance rendered, p. 11.

IANE. J. HOMER. Services in the Solar Eclipse Expedition of 1azo, pp. 11, 182; report of new form of mercurial horizon, \&c., pp. 18d-169.
LANGLEY, PROFESSOD S. P. Serviees ill Solar Eelipse Expedi tion of 1870, pp. 12-14.
LaTITUDE UF STATTONS. Chesapeake bay, p. 35; Tangier Island, p. 35; Wrolf Trap Station, p. 36 : Calvert Station, p. 3.: Clark's Mountain near Rapidan, Va., p. 37; Bull Rnn Mountain, Va., p. 37 ; Portsmouth, N. C. p. 38; Davis's Joint, Saint Andrew's Ihay, Ele., p. 4f; (Cleveland, Ohio, p. 48; Columbus, Ohio, p. 49; Gakland, Ky. p. 49 ; Shelbyville, Ky., p. 49 ; Chetopa, Kans., p. 53.
LAWS ESTATBLISHING HARBOR LINES, part of Mitehells re. port, \&c., p. 153.
LAWSON, F. A. Serviecs in Section XI, p. 64 .
LAWSON, ASSISTANT J.S. Triangulation of the Strait of Fuca, Wash. Ter., p. 63; hydrography of Partridge Bank, Tawson Iecif and Belle Rock, p. 63.
LEGNAZZI. Member of Italian Commission on observations of the solar eclipse of $1870, \mathrm{p}, 18 \mathrm{f}$,
LEVELING OPERATIONS at Bodega Read and Cross Monntain pp. 154, 155.
LINDENKOHL, A. Services in Drawing Division, p. 65,
LINDENFOHL, H. Services in Section II, p. 33.
LIST OF MEMBERS of varions nations connected with the obset vations of the solar eclipse of $1870, \mathrm{pp}$. 181, 18.2 .
MTYELIY, (steam launch,) Services of, p. 64.
LOCKIER, T, NORMAK, in charge of Englisle party on observations of solar eclipse of $1870, \mathrm{pp} .11,182$.
LockyER, MAS. Scrvices in English jrarty on observations of solar eclipse of 1870, p. 182.
LONGFELIOW, ASSISTANT A. W. Topography of Isheborough, completed. p. 81
LONGITUDE olservations at Cambridge, Mass., p. 4 ; of Chevelend, Obio, from Cambridge, p. 4e; of Columbus, Ohio, from Cambridge, p. 49; of Dakland, Ky., from Cambridge, p. 49; of Shellyville, Ky., from Farvard Observatory, p. 49 ; of Chetopa, Kans., p. 53 ; of San Diego, Cal., p. 54; of Seattle, Wash. Ter. p. 63.
LORENZONI. Menker of Italian Commission on observations of solar eclipse of 1870, p. 181.
LOWHEX, T. J. Serviees in Section II, p. 34; Scetion VIII, p. $\mathbf{5 1}$. .

M.

MCATLTSTER \& BROTHER. Thermometer compar., pr 155.
MOCLENTOCK, J. N. Survices in Section I, p. 23; Section II, p. 30 ; Section V, p. 41 , Section 11, p. 173.
McCLINTOCK, W.E. Servicesin Section I, p. 20; Section VI, p. 4 ; MCCORKLE, ASSISTANT S. C. Triangulation of west side of Iake Champlain, p. 30; measurement of base-line of Saint Josephts Bay, Fla., p. 45 ; triangulation of Saint Androw's Bay, Fla., p. 47. McCOF, G. Services under contract in Engraving Division, p. 66 . McDONNELL, THOMAS, in charge of Map-room, p. 66. McMurtrie, W. Services in Drawing Division, p. 65.
MADDEN, LOREN $\%$. Services rendered, p. 10.
MAEDEL, A. M. Services in Engraviug Division, p. 66.
MAEDEL, E. A. Serviecs in Engraving Division, p. 66.
MAGDALENA BAY, LOWERCAL. Detached survey, p. 5it.
MAGNETIC OBSERVATIONS. General report of Superintendent, pp. 14, 15 ; station on Chesapeake Bay, p. 33; Calvert Station, p. 35 ; Tangier Island, p. 35 ; Wolf Trap, Va., p. 35 ; Washington, D. C., Capitol Mill, p. 36 ; Portsmouth, N. C., p. 38; Cleveland, Ohio, p. 48; Oakiand, Ky., p. 49.
MATN, J. Services in Computing Division, p. 65.
MANSFIELD, H. B., MASTER, U. S. N. On duty on steamer Hasslec, p. 54.
MARCHESE, SIGNOR. Kind services rendered, p. 184.
MARCY, ($e \mathrm{chooner}$) Services of, pp. 53, 57,58, 61 .
MAMGARITA ISLAND, entrance to Magdalena Bay, Lower Cal., elevation determined, p. 54.
MARIKDIN, SUBASSISTANT F. T. Charts of Eigartown, Nantacket, and Vineyard Haven, Mass., p. 2i ; services in Soction 1I, p. 32; relating to Jerrey Flats, pp.111-115; mentioned in Mitchell's Report on the Plysical Fistory of Chatham, pp.199, 140, 141.

MATAGORDA BAY, TEX. Hybrography̌, p. 5I ; changes, p. 52. MATANZAS INLET, FLA. Triangulation, p. 43.
MATHEMATICS, general index. Appendic 17, p. 198.
MATHIOT, GEORGE. In charge of Electrotype and Photograph IVivision p. 66.
MEASTREMENT of hase-line and arimuth, Sant Juseph's Lay. Fla. p. 45.

MENDELL, BREVET COLONEL G. H., U. S. A Supervision of tidal station, Pacific coast, pp. 61, 64.
MIDULE GROLND SHOAL AND GOWANUS IAY, New York Harbor. Changes in, p. 113.
MISCELLANEOUS, technical, and other subjects. General index. A prendix 17, p. 20 e.
MISSISSIPPI DELTA. Deep-sea soundinge ofic p. it.
MISSISSIPPL RIVER, Triangulation, topography, and hydrography, p- 50.
MISSION BAY, San Franciseo Harbor. Hocks in, lucated, p. 5e.
MISSOCRI. Geodetic points in, p. 51.
MITCHELL, ASSISTANT HENRY, Partial sturtey of Elgartown. Nantreket, and Vincyard Haven, Mass., p. 24 ; report on the physical survey of New York Harbor, pp. 31, 110, 133; report concerning Nausett Beach and Pexinsula, Monomoy, pp. 134, 143; hints add snggestions npon the location of harbor-lines, pp. 144-153.
MODICA, MESSRS. Civilities shown ly, p. 184.
MOLKOW, E. Services in Engraving Division, p. 166.
MONTAGNUOLA, MOUNT EETNS, p, 183.
MONTE ROSSI, SICILY. Geographical position of, p. 182.
MONTOP, CAPLAIN JOSE L., Chief of the Spauish Coast Survey. Kind co-operation of, pp. 14, 176, 177.
MOOSE-A-BEC REACH, ME. Tydrography of, p. 19.
MORRISON, GEORGE A. Services in Engraving Division, p. 66.
MOSMAN, ASSISTANT A. T. Latitude, azimuth, and magnetic observations of Chesapeake Bay, p. 35; latitude, azimuth, and magnetic observations of Portsmouth, N. C., p. 38; azimuth, Eagle Earbor, Saint Joseph's Bay, Fla., p. 45; azimuth and latitude, Daris's Point, Saint Andrew's Bay, Fla., p. 40; latitude, Columbus, Ohio, p. 49; observations of latitude, longitude, and magnetic declination, Onkland, Ky. p. 49; longitude, Shelbyville, Ky., from Harvard Observatory, p. 49.
MOUNT HOLLE, N J. Oecnpied, p. 32; triangulation station, F . 171.

MOVEMENTS THROUGH EAST RIVER, New Iork Harbor, pp. 115, 117; their relation to those over the bar, pp. 118, 119.
MÖELLEK, DLAMILLA, member of Italian Commission. Obser-
vations of solar eclipse, 1870, p. 181.

N.

NARRAGANSETM BAI, R.I. Topography completed, p. $2 \overline{2}$.
NASSAU SOUNI, FIA. Topography, p. 42; hydrography, p. 42.
NES, ASSLSTANT F. F. Hydrographic services in Section II, p.
34; lıydrography, Pamplieの River, N. C., p. 39 ; relative to Now York Harbor, p. 113.
NEW HAVEN, CONS. Triangulation and topography, p. 27.
NEWARK BAY, N.J. Survey of, p. 32.
NEW YORK HARBOR. Sonndings, p. 32; its condition, pp. 109-133; increase of Jersey Flats, pp. 111-113, 120-122; changes in vicinity of Middle Ground Shoal and Gowanus Bay, pp. 113, 123-126; changes at and near Sandy Hook entrance, pp. 113, 114; tides and cuarents, p. 114; phenomena pathway of the Hudson, pp.114, 115; movements through the East River, pp. 115-117; East River and Hudson tidal currents compared, pp. 117, 118; relation of East River novements to those over the bar, pp. 118, 119; tables accompanying report of
3refessor H. Mitehell on New Fork Harbor, pp. 120-133.
NICOLOSI, MOUNT ATNA, pp. 182, 184.
NIPSTC, (C.S. gun bost, p. 44.
NHSSEN, H. Services in Division of Claarte, p. 66.
NOBILE, momber of Italian Commission. Observations of solar eclipme, 1870, p. 181.
NORTE. Serviees in Section II, p. 32.
NOTES ON THE STATE OF WEATHER, \&C. p. 159.
0.

OAKLAND, KY. Latitude and longitude of, p. 49.
OBER, F. Serviees in Flectrotype and Photograph Dirision, p. 6 .
OBITUARIES, pp. 15, 16.
OFFICE-WORK, United States Coast Survey, pp. 64-68.
OFF-SHORE HYDROGRAPHY, p. 54.
OGDEN, S. N. Servicee in Section I, p. 21 ; Section WII, p. 4e.

OGDEA, SUBASSISTANT H. G. Survices in Section I. p. 2f: Sec fiou II, $\rho .31$; topography and liydrography of sata Rusa Sound, Fla., pp. 47, 48.
OLD POLNT COMFORT, VA. Tidal observations, p. 3:.
OLIVAR, SPAIN. Obserring station, pp. 17T, 178.
ORFOFD HEEF, COAST OF OREGON. Hyduggaply of, $1,61$.
OUR TATRBOIS GENERALLT, y.144.

P.

PACIFIC COAST, ALASKA TEREITORY, p. 64.
PAINE, R. T. Observations of solar eclipse. 1870, p. 9.
PALFREF, R. 13. Services in Section II p. 30 ; Section IV, p. 40 : Section VII, 1. 45.
PAMDLICO RIVER, N.C. Topography up to Washington, N. C. p. 39 : hydrography, pp. 39, 40.

PAMPLICO SOUND, N.C. Triangulation, p. 38.
I'Ansonis, DR. T. W, Serrices in Solar Eclipse Expedition, 1sto, 1 . 12.

PARSONS, MRS. Serrices in Solar Eclipse Expedition, 1870, p. 182.
PARTRIDGE BANK, LA WSON REEF, \&C. Hydrography of p. 63.
PATTERSON, CAPTAIN C. P. Hydrographic inspection, p. 12 ; in charge of IIfdrographic Dirision, p. 65; serrices in physical survey of New York Harbor, special report. pp. 110-133.
PEARL, A. F. United States Coast Survey, p. 15; services in Section VII, p. 44.
IEDLAR, member of British Commission. For obsertations of solar eclipse, 1870, p. 181.
PEIRCE, C. S. Services in Solar Eolipse Expedition, 1870, pp. 10. 11 ,
FEIRCE, H. H. D. Services in Solar Eclipse Expedition, 18\%0, pu. 11, 189.
PEIRCE, MRS. C. S. Services in Solar Eelipse Expedition, 1870, pp. 11, 182.
PEIRCE, PROFESSOR BENJAMNN, Superintendent Tnited States Coast Survey. Reconnaissance of the region alout Saint Louis, Mo., p. 51 ; letter to Chamber of Commeree, N. Y., with report of Irofessor I. Mitchell on the physical survey of harior, N. Y. pp. 109-133; olservations of solar eclipse, 1870, pp. 180-184.
PENDULEM OBSERV゙ATIONS, p. 36.
PENOBSCOT BAT, ME. Tupography continued, p. 20; hydrography, p. 20 .
PERATONER, A. Aid rendered, p. 184.
PKRKINS, SUBASSISTANT F. W. Services in Section II, pp. W, 30: Section IV, p. 3 E .
PETERS, DR. C. II. F. Services in Solar Echipse Expedition, 18:0, ب1. 11,12, 180, 184.
PETERSEN, A. Services in Engraving Division, p. G6.
PIIENOMENA in the pathway of Hudson River, p. 114.
PHYSICAL HISTORY of the neighborhood of Chatham, pp. 134-140. PHYSICAL HYDROGFAPHX. General index, Appencix 17, p. 200. PHYSICAL SUEVEKS, ICDSON RIFER. Reconvaissance for, pp. 31, 110-133.
PICKENLNG, PROFESSOR EDWARD C. Services in Solar Eclipse Expodition, 1870, pl. 12, 14.
PINE HILL, N.J. Barometric station, p. 171.
PLATT, ACTLNG MASTER ROBERT, U.S. N. A soistant U. S.
Coast Survey. Hydrographie services in Scetion IV, p. 40; hydrography дear the Tortugas, \&c., p. 43.
PLEASANTS, E. B. Services in Section I, p. 19.
POINT ARENA, CAL. Triangulation and topography north of, p. 58.

PORTSMOUTH, N. C. Latitude, azimuth, and magnetie observations, p. 38.
POURTALES, ASSTSTANT L. F. Services on lhoard steamer Hassler, p. 5 ; temperature of Gulf Stream, p. 3 .
PROSPECT HARBOR, Hydrography of, p. 19.
PUJAZON, CAPTAIN CLCLLIO, director of observations at San
Fernando, Spain. Assistance and eo-operation prottered, pp. 17ti178.

PUNGO RIVER, N. C. Triangulation, p. 38.
PENTA GORDA, CAL. Discovery of sunken recks south of, p. 59.
Q.

QCIMIP, PROFESSOR. Geodetic points of New Hampshire, p. 23. R.

RALEIGI, (ship.) Towed to Key Wegt by, \&e., p. 44.
RANYARD, mewber of British Commission. Obserrations of Solar
Eelipse Expedition, 1870, p. 18\%.

RECENT MOVEMENTS OF CHATHAM PEACH, \&C. p. 140.
IECCONNAISSANCE. Each arm of Lake Champlain, 1.29 ; gechetic points of Illinois aud Missouri, p. 51; between San Diego and Panama, \&c., p. 53, and (Sketch No. 10) to Fatmouth Shoal, or Reed Rocks, Pacific, p. 57, (Sketch 34.)
RELATIONS OF EASI TRVER MOTEMENTS to those, de., pp. 118, 119; between channels and tides, se., p. 146.
REMEF, MASTENE. W. On tuty, de., p. 5.
IELPORT. Meteorological effects on tides, de., pp. 93-99; physical survey of New Fork Harbor, \&c., Pp. 110-133; concerning Nausett Bench and Peninsula, Monounoy, pp. 134-143; leveling operation between Keyport, Raritan Bay, aud Gloucester, \&e., by R. D. Cutte, Assistant Coast Surver, pp. 171-175.
REPORTS OF OBSELVATHONS of total solar eclipse 1870, by G. W. Dean, Assistant, pp. 170-179; same subject by Dr. C. II. F. Peters, director of Litchfield Observatory, \&c., pp, 180-184.
REPORT ON RESULTS OF BAROMETRIC obserrations at Bodega Head, \&e., California, pp. 165-170.
REQUISITE DEPTII OF FRONTAGE, aud requisite length, dc. Part of Mitehell's report on harbor-lines, pp. 151-153.
RESTTLTS OF LEVELING OPERATIONS, p. 154; of horrly observation of reciprocal and simaltaneous zenith-distances, \&c., p. 155; of hourly observations of atmospheric pressure for difference, \&c., p. 105.

IICHARDS, T. \& A. T. Contractors for construction of a suitable building for United States Coast Survey Oftice, p. 64.
RING, F. W. Sorvices in Section II, p. 31 ; Section IX, p. 52.
RIPARIAN RTGHTS, p. 151.
ToCK in Crescent City Bay, Cal., p. 60.
RoCks in Mission Bay, p. 58.
ROCKWELL, ASSISTANT CEEVLAND. Triangrlation and topo graphy of San Simeon Bay, p.57; triangulation and topography of Columbia River, Oreg., p. 69.
IKODGERS, ASSISTANT AUGUSTUS F. Survey of Table Mount ait and wharflines, Oakland, Cal., p.57; triangulation and topography south of Cape Mentocino, Cal., p. 59; discovery of sunken rocks soutl of Punta Gorda, Cal., p. 39.
ROSCOE, member of British Commission. Observations of Solar Eclipse Expedition, 18\%0, p. 182.
ROSS MOUNTATN, CAL. Determination of height, p. 155 ; report of olseervations there, pp. 181, 152.
RUHLMANN, N. Barowetric measurewent of heights and their relations, de., p. 165; formula used, p. 16t.
RUMPF, DIR. G. Services in Computing Division, p. 65.

S.

SACOBAY, ME. Topography, N .29 .
SAGADAHOC, (steam launch.) Services, p. 19.
SATLING DLRECTIONS, coast of New Eugland, p. 22,
SAINT ANDREW'S BAY, FLA. Triangulation, p. 45 ; latitude and aziruuth, p. 46; topography, p. 46.
SAINT GEORGE'S SOUND, FLA. Hydrography, p. 44.
SANTT JOSEPH'S BAY, TLA. Measurement of base-lide and azinuth, l. 45.
SAINT NICOLA, SICILY. Principal observing station of solar eclipse, 1870, p. 10.
SAINT IAUL'SISLAND, ALASKA. Metcorological registor for, pp. 100-108.
SdMUELSON, member of Brithsh Commission. Oloservations of solar eclipse, 1870, p. 182.
SAN DIEGO, CAL. Iongitude and triangulation, p. 54.
SAN FRANCISCO BAY and approaches, California. Hydrography, p. 58.

SANGIULLANO, MARQUIS DI. Kind services, pp. 11, 184.
SAN LUIS OBISPOBAY. Triangulation and topography, p. 56. SAN SIMEON BAY. Triangulation and topography, p. 5\%.
SANDF HOOK ENTRANCE. Changes at and near the, pp. 113, 114.
SANTA BARBARA CHANNEL and islands, California. Triangalation and topography, p. 55.
SANTA ROSA SOUND, FLA. Triangulation, topography, and hydrography, p. 47.
SCHIO, COUNT DE, member of Italian Commission, Observations of solar celipse, 1870, p. 181.
SCHOTT, ASSLSTANT CHARLES A. In charge of Compating Division, p. 65 ; services on board steamer Massler, pp. 4, 15; services in Solar Eclipse Expedition, 18to, pp. 11, 12, 181,183; magnetic obaervations on Capitol IIII, Washington City, p. 14; pendulum obserrations, p. 36; repart of obseryations for deternining lucight of

Bodega Head and Loss Mountain, Cal., pp. 154-170; adaptation of triangulation to the various conditions of configuration, \&e., reported on by, pp. 18.-1e8.
SOORESBE, (schooner.) Sertices, p. 10.
SCOTT, A. FI. Services, p. 37.
SEABROEE, member of British Commission. Observations of sular eclipse, 1870, p. 182.
SEAL HARBOR, ME. Topograples, p. 19.
SLARLE, G. M. Magnetic observations, Clark's Monntain, Ya., p. 37. SEATTLE, WASHINGTON TERRTTORY. Longitude of, p. 63.
SECCHI, member of Italian Commission. Observations of solar colipse, 1870, p. 181.
SECTIONS I, II, III, IV, V, VI, VII, VHI, IX, \mathcal{I}, XI, XII. Nstiraates, pr. G-E.
SENGTELAER, A. Services in Engraving Division, p. 66.
SENGTELLER, SUHASSISTANT LOUIS A. Triangulation and fopography of San Luis Obispo Bay, p. 56 ; triangalation and topography north of Point Arena, Cal., p. 58.
SERRA, member of Italtan Commission. Observations of solar odipse, 1870, p. 181.
SHELBFYILLE, KY. Latitnde, lougitude, and maguetic observations, p. 49.
SHOALWATER BAY, WASH. Triangulation and topography, p. 69; changes in, p. 62.
SHORE-LNNE SURVET, Lake Champlain, p. 30.
SILLIMAN, (schooner.) Services, pp. 19, 44.
SILFESTRRI, PROFESSOR O., member of the Italian Commission. Obserrations of solar eclipse of 1870, p. 182.
SIPE, E. H. Serrices in Engraving Division, p. 66 .
SMITH, EDWIN. Services in Section ILI, p. 35; Section IV, p. 38 Section YiI, pp. 45, 46.
SMITH, F. Services in Orawing Division p. 65.
SMITH, C. H., keeper of the Chatham Lights, p. 141.
SOLAR ECLIESE, December $2 \geq, 1870$. General report of Superintomident, pp. 9-14.
SOMESS SOUND, Mount Desert Islaud.) Topography and hydrography, p. 19.
SOUTH CALOLINA. Topography and bydrography of Sea Islands chavuels, p. 41.
SPAULDING, J. G. Tidal olservations in Section I, pp. 20, 99. SLRANDEL, J. Services in Hydrographic Division, p. 65.
STACKPOLE \& BROTMER. Leveling instrument, p. 154.
STATION-MARKS. Inspection of, in Section II, by Assistant J. Farley, p. 27.
STEARNS, W. H. Services in Section I, p. 26; Scetion II, py. 26, 30 Section VI, p. 43.
STETNDACHNER, DR. FRANZ. Services on board the steamer Hassler, p. 5.
STEINHEIL. Telescope of, p. 180 ; hand comet-seeker, p. 180.
SIEVENS, I. I., (revenue steamer.) Services, p. 52
STONY HILL, N. J. Triangulation station, p. 171.
STRATTOF FUCA, WASH. TER. Iriangulation, topography, p. 63.
SULLIVAN, ASSISTANTJ. A. Services in Soction I, p. 26 ; trian-
gulation from Point Judith westward, p . 26 ; triangulation south of Matanzas Inlet, Fla., p. 43.
SUNKEN ROCKS sonth of Punta Gorda, Cal., p. 59.
SURYEY. Of Lake Champlain, p. 18; of Newark Bay, p. 32 ; of the
Horseshoc, (Delaware River, and of Schuylkill, near Philadelphia, p. 33 ; of Table Mountain and wharflines, \&c, p. 57.

SURVEYING. General Index, Appendix 17, p. 198.
SCTER, LI. British consul at Larissa. Assistance given, p. 12.
SYRACUSE, SLCILT. Observing atation of Solar Echipse Expedition of $18 \% \mathbf{1 8}$ p. 182.

T.

TABLE. Of appropriations for $1872-73$, p. 9 ; of heights of difereut bench-marks between Keyport and Gloncester City, \&c., pp. 173175; of Mitchell's report, pp. 119-133.
TABLE OF LOGARITHMS of ralius of curratare, sc., appended to report on barometrical observations, p. 169.
TABLE MOCNTADN, CAL. Survey of, p. 57.
TACCHINI, A., member of the Italian Commission. Observations of solar eclipse of 1870, p. 181.
TACOHINI, P., member of the Italian Commission. Observations of solar eclipee of 1870, p. 181.
TAGLYARINI, photographer of the Italian Commission. Observations of solar eclipse of 1870, p. 181.
TAORMENA, SICILY, p. 181.

TERRA NOOVA. Observine station of the Italian Commission of the solar eclipse of $1870, p .181$.
TERRESTRIAL MAGNETISM. General Index. Appendix 17, p, 203. THOMAS, MISS M. Servicos in Tidal Division p. 65.
THOMPSON, F.P. In charge of self-registering gange, Fort Point, Cal. p. 61.
THOMPSON, J. G. Services in Engraviog Division, p. 00,
THOMPSON, W. A. Serrices in Engraving Dirision, p. 66.
THORPE, momber of the Dritish Commission. Observations of solar eclipse of $1870, \mathrm{p}, 182$,
THROCKMORTON, S. R. Services in Washington Square Observatory, San Franoisco, Cal., pp. 54, 55 ; in Mission Bay, California Har. bor, p. 58; azimuth olsservations, p. 60 ; longitude and magnetic observations, Seattle, Wash., p. 63; leveling at Ioss Mountain, Cal., p. 154.

TIDAT DIVISIOX. Sammary of work, p. 65.
TIDAL OBSERVAT1ONS. Section I, p. 26; Section II, p. 34 ; Section III, p. 37 ; Matagorda Bay, Espiritu Santo Bay, Tex., p. 52 ; Section X, p. 61 ; Section XI, p. 64; proposed, at Ilonlionk, near the eastorn end of Aleutian Islands, Alaska. p. 64.
TIDAL VOLUME. Value of ; part of Mitchells report on harborlines, pp. 145-147.
TIDES AND CUREENTS. New Fork Harbor, p. 114; East River completed, \&c., pp. 11\%-118.
TITTMANN, O.II. Triangulation of Santa Rosa Sound, Fla., p. 47; Services in Section VIII, p. 51.
TOPOGRAPHICAI SHEETS, registered archives, United States Coast Survey, from Jannary 1, 1866, to December 31, 18\%1, pp. $84-88$. TOPOGRAPHY. Lake Champlain completed, p. 18 ; Somes's Sound, (Monnt Desert Island,) p. 19; Seal Harbor, Me., p. 19; Deer Isle Thoroughfare, p. 20; Penobscot Bay, Me., p. 20; Androscogrin River and Cathance River, p. 21; Saco Bay, Mc., p. 22 ; Narragansett Bay, R. I., p. 25 ; near New Haren, Conn., p. 27 ; shore-line, Lake Champlain, p. 30; Great Bay and Little Eger Harbor, N. d., p. 33 ; the Broadwater, Va., p. 34 ; Pamplico River, N. C., p. $3 y$; Bogue Inlet, N. C., p. 40 ; Sea Island Channels, S. C., p. 41 ; Nassan Sound, Fla., p. 42 ; Saint Andrew's Bay, Fla., p. 46; Santa Rosa Sound, Fla., p. 47; Chandeleur Sound, La., p. 50 ; Mississippi River, p. 50 ; Bahia Ona, Cal., p. 55: Santa Barbara Channel and Islands, Cal., p. 55; San Luis Obispo Bay, Cal., p. 56 ; Saint Simeon Bay, p. 57 ; Table Mountain, p. 57; Point Arena, Cal., p. 58 ; Cape Mondocino, Cal., p. 59 ; Coast north of False Klamath, Cal., p. 59 ; north of Chetko River entrance, coast of Oregon, p. 61; Colimbia River, Oreg., p. G2; Slioalwater Bay, Wash., p. 62 ; Strait of Fuea, Wasl., p. 63.
TORREF, (schooner.) Services, p. 45.
TORTUGAS. Hydrography near the, p. 43.
TRLANGULATION. Geodetic points, New Hampshice, p. 23 ; from Point Judith westward, p. 20; near New Haven, Conn., p. 27 ; Lake Champlain, p. 29; near Barnegat, N. J., p. 32 ; primary in Virginia, p.37; Tames River, Va., p. 37 ; Pamplico Sonnd, p. 33 ; Bouth of Matanzas Inlet, Fla., p. 43 ; Saint Andrew's Bay, Fla., p. 45 : Santa Kosa Sound, Fla. p. 47; Mississippi River, La., p. 50 ; geodetic points, Missouri and Illinois, p. 50; San Diego, Cal., p. 54; Jahia Ona, Cal., p. 55 ; Santa Barbara Channel and Islands, Cal., p. 55 ; San Luis Obispo Bay; Cal., p. 56; Saint Simeon Bay, p. 57; Table Mountain, p. 57 ; Point Arena, Cal., p. 58 ; Capo Mondocino, Cal., p. 59 ; Coast north of False Klamath, Cal., p. 59 ; north of Chetko River entrance, coast of Oregon, p. 61 ; Columbia River, Oreg., p. 62 ; Shoalwhter Bay, Wash., p. 62 ; Strait of Fuca, Wash., p. G3.

TRDNITY SHOAL. Hydromaphy of. p. 3.
TRYER, member of the British Commission for abserving the solar eclipse of 1870, p. 182.

V.

FAN ORDEN, C. H. Services in Section 1. p. 19 ; Section Y III, p. 50. VAILNAA, (schooner.) Services; p. 50.
VIA GRANDE, Sicily, p. 184.
FILIAMUNDA, Sicilr. Station of Eritish Commission for ob. serving the aolar eclipse of $1870, p .182$
FIKAL, W. I. Services in Section I, p. 22; hydrography, Section II, p. 33; services in Section IV, p. 40.

VOYAGE OF THE COAST SURVEY STEAMER ILASSLER. pp.4.5.
W.

WAINWRTGET, D. B. Servicee in Section I, p. 21 ; Scetion VI, \mathbf{p}. 43; Section VII, p. 44.
WaLTERSEAUSEN. BARON SAETORICS VON. Triangulation of Mownt Etna. p. 182.
WATSON, PROFESSOR JAMES C. Serviees in the Solar Eclipse Expedition of 1870, p. 12.
WEBBER, ASSISTANT F. P. Hydrography of Penobseot Jay, Me., p. 21; of Nassau Sound, Fla., p. 42; of Cedar Keys, Fla., p. 4.
TVERNER, ASSISTANT T. W. Services in Computing Division, p. 65.

WESSDAML, F., mailing-master. Services in Section IX, p. 54.
WESTERX CXIOXTELEGRAPH COMPAXI. Services ia longi. tude observations, pp. 4b, 53, 54, 63.
WIITING, ASSISTANTT M. L. In charge of field topograply, pp. 17, 18; partial survey of Edgartown, Nantncket, and Vineyard Haven, Mass., p. ©4; in Mitehelfs reports, pp. 140, 146. WIER, Mr. Services in Section II, p. 32.
WILTENBÜCHER, E. Services in Hydrographic Division, p. 65.
WILLEY, H.J. Services in Section X, pp. 55, 60 ; Section XI, p. 63 ; in leveling operations, p. 154.
WILLIAMSON, LIECTENANT R.S., Ťnitod States Topographical Engineors, pp. 155, 165; his tabala, p. 16%
WriLLIARD, O. H., photographer. Services in the Solar Eclipse Ex. pedition of $1870, \mathrm{pp} .13,176$.
WILsON, GEORGE H. Services in Section 5. p. 57 ; Scetion XI, p. 62.

WILSON, L. In charge of self-registering tide-gauge at Astoria, Oreg., p. 77.
WINLOCK, PROFESSOR JOSEPH. Services in Solar Eelipae Ex pedition of $1870, \mathrm{pp} .12,13$; longitude ouservations at Cambridge, Mase., p. 24; longitude observations for Ohio and hentucky, p. 49 ; letter to, ©ic., pp 176, 178.
WRIGHT, I. B. Services in Section I, p. 19; Section MII, p. 34.
WitrDeNANN, CHARLES F. Services in Division of Instruments, p. 66.

I.

YEITMAN, A., MASTER CARPENTER, p. 66.
FOENG, PROEESSOK C. A. Servieed ju the Sular Eelipse Expedition of $18 \% 0, \mathrm{pp} .12,13,1 \% \%$
2.

ZENTTH, distances for different heimhts, sec, pp- 150-104.
ZDMBROCK, A. Serrices in Division of Charts and Ingtruments, p. 60.

ZURRIA, PROFESSOR G. Tuformation giren to American Commission for observing the solar echpse of 1870, p. 18.

REPORT.

> Coast Survey Office, Wastington, D. C., December $12,18 \pi 1$.

Sin: I have the honor to present this detailed report, showing the operations of the parties allotted for the survey of the coast during the year ending with the month of October, and including in a few cases mention of work carried on until this date.

It is a distinguishing feature of the service under my charge, that while it has a specific and direct object in its bearing on the interests of commerce and navigation, the performance involves operations and investigations which almost rival in value the primary function of the survey. The methods and processes used have been at all times the best afforded by science and art, and the form of publication has gained in accuracy and beaty, so that our charts from the first have been unsurpassed by any which have been elsewhere produced. The methods of astronomical observa. tion employed in the survey are now miversally adopted, and have greatly increased the precision with which elements of the relative position of places upon the earth are determined. Oar deep-sea explorations have incidentally opened new worlds of discovers to the naturalist and the physicist The laws of the tides and of the distribution of magnetism have been traced with increased distinctness, and have been made more intelligible by the observations made in the progress of the survey. And, in the general mention of incidental advantages, it may be added that the necessary connection between the geodetic operations upoin the two sides of the continent gires opportunity, the sugges. tion of which camot be justly omitted, to take steps for the geodetic survey of the country as the essential foundation of all local survess, topographical or geological. It opens, moreover, the opportunity of extending to the States of the interior benefits similar to those which have already been afforded to States on the sea-board. The interest manifested in a few determinations of geographical position within the year in the Western States shows a full appreciation of the advantage that most inure from extended operations similar in kind, in the local development of that great region. The few points at the west now in geodetic relation with such as have been determined in the progress of the survey of the coast will be mentioned in the following general summary, whichis giveu in accordance with the usage in previous reports. It will lee seen that, with the exception of Delaware and Alabama, the survey has been in progress in all the sea-board and Gulf States, and that determinations have been made of latitude and longitude at several points in the interior. In correspondence with the order given in this brief statement, the body of the report will contain short abstracts of the operations in each site of work.

On the coast of Maine the topographical surveys include Somes Sound and Soutliwest Harbor; several of the Fox Islands which bound Seal Harbor, and others at the entrauce of Penobscot Bay; the western shore of that bay between Camden and Belfastaud Isleboro', near the entrance to Belfast Bay ; the shores of Androscoggin and Cathance Rivers between Brunswick and Bowdoinham; the shores of the Saco; and the coast northward to Spurwink River. The hydrography has developed Prospect Harbor, and the ledges in the vicinity of Moose-a-bec Reach; Somes Sound including Southwest Har. bor; Seal Bay and the western channel of Penobscot Bay between Candeu and Belfast; Gilkey's Harbor at Isleboro'; ledges near the Fox Lslands; the lower parts of the Androscoggin and Cathance Rivers; the vicinity of Cape Porpoise and Stage Island; Winter Harbor; the approaches to Saco River ; and the present condition of harbors generally between Cape Small Point and Boston, with reference to accuracy in the sailing directions. Tidal observations have been continued at North Haven in Penobscot Bay, and at the Boston nary-yard. Points hare been determined by triangulation on the Androscoggin and Cathance Rivers; and others in geodetic connection with primary stations in New Hampshire. At Cambridge, Mass., astronomical observations were made to deter-
mine longitude at several points in the Western States. Special examinations at Edgartown, Vineyard Haven, and Nantucket Harbor, were conducted with a view to determine the causes which aftect the harbor facilities. Plane-table work done in Rhode Island completes the detailed survey of Narragansett Bay, including the coast in the vicinity of Point Judith. Points have been determined for extending the topography westward. Station-marks along the coast of Connecticut and Long Island have been examined with reference to their preservation. The triangulation and topography in this section include work near New Haven; the shore-line surrey of the greater part of Lake Champlain, and the development of its channels between Burlington, Yt., and Platsburgh, N. Y. Special hydrographic operations have been conducted in Hudson River, and in New York Harbor, including tidal observations; and the survey of Newark Bay has been extended to include the navigable rivers whieh enter it. In New Jersey the field-work comprised operations in the vieinity of Mount Holly, Great Bay, and Little Egg Harbor. In Delaware River a close hydrographic survey develops the vicinity of League Island, and the lower part of the Schaylkill. The sites of work in Marrland and Virginia are the Broadwater on the Atlantic const, Calvert Station, Tangier Island, aud Wolf Trap, in Chesapeake Bay; the Severn, Chester, and Choptank Rivers; James River, and tidal observations, as heretofore, at Old Point Comfort. The main triangulation has been continued along the Blue lidge, and magnetic observations have been recorded at Washington, D. C. On the coast of North Carolina the survey has been advanced by additional work in the waters of Pamplico Sound; latitnde, azimuth and magnetic observations near Portsmouth, N. C. ; the development of Pamplico River to the viciuity of Washington; soundings on the Hatteras Shoal, and the plane-table survey of Bogue Sound and the adjacent coast. Progress bas been made on the coast of South Carolina by the development of parts of the Combahee, Chechesse, and Wright's Kiver, with others in the system of inside sea-water channels. On the coast of Georgia and Florida, the work of the year includes Amelia and Talbot Island, the shores and approaches from seaward of Nassan Sound, the sea-water channels between the Saint Mary's and Saint John's Rivers, and Matanzas River below Saint Augustine. Further development has been made by hydrographic operatious in the vicinity of the Tortagas. On the Gulf coast the principal channel at Cedar Kejs was sonuded, as also the unfinished part of Saint George's Sound; other operatious were couducted at Saint Joseph's Bay and Saint Andrew's Bay. Farther westward the Gulf coast, including Santa Rosa Sound, was developed from Choctawhatchee entrance to the entrance of Pensacola Bay. In the interion of this section, latitude, longitude, and the magnetic elements were determined at Cleveland and Columbus in Ohio, and at Falmouth, Oakland, and Shelbyville in Kentucky. On the Gulf coast the eastern part of Lake Pontchartrain was sounded. Operations on the coast of Louisiana include part of the Chandeleur Islands, the Mississippi Biver to Point La Hache, the Gulf approaches to the delta of that river, and hydrographic work in the vicinity of Trinity Shoal. In the interior of this section points have been determined by triangulation across the Mississippi River in the vicinity of Saint Louis. On the coast of Texas the Lydrograplic work has been completed in Matagorda Bay and its branches, and soundings have been extended southward in its connecting waters. In the interior of this section observations were made for latitude and longitude at Chetopa, in Kansas.

On the coast of Lower Califormia some positions have been determined in advance of the hydrographic reconnaissance, which is intended for developing the dangers in navigation between Panama and San Diego. A special survey las been made within the year at Magdalena Bay. Operations north of Sau Diego include in triangulation, topography, or hydrography the coast of California, at Bahia Ona, and a stretch in the vicinity of Point Conception; Santa Barbara Island; San Miguel Island; the vicinity of San Luis Obispo, and San Simeon; soundings in the approaches of San Francisco Bay, and others by the same party in the neighborhood of a reported shoal in the Pacilic; hydrographic developments inside of San Francisco Bay; the survey of the north side of the entrance; additional work at Oakland; and tidal observations at San Diego and San Francisco. North of that port the field-work has been continued near Mendocino Bay and near Shelter Cove; in the vicinity of the False Klamath, and at Crescent City; and astronomical and magnetic observations have been made at San Diego, San Francisco, Eureka, and Crescent City. At the request of the Department, special tests were made of the coin weights in use at the branch mint in San Franciseo.

On the coast of Oregon and Washington Territory progress has been made in the survey near Cape San Sebastian, aud the Orford Reef has been developed. Field operations include also parts of the Columbia River, Shoalwater Bay, tidal observations at Astoria, and work in the vicinity of Seattle. The triangulation, topography, and hydrography have been advanced also in the Strait of Fuca, and in Admiralty Inlet, and several local survess have been made in those waters.

On the western coast the season was generally unfavorable for field operations on account of high winds, heary fogs, and the smoke from burning forests in Oregon and in Washington Territory. Nevertheless, the work done is beyond the average of past seasons. Longitude has been determined within the year at San Diego and at Seattle, so that the nost remote detached triangulations on the Pacific Coast are now in kuown geographical relation. Astoria and Eureka will be ascertained in longitude when telegraphic facilities permit.

There is now a large extent of well-defined shore-line ready for the operations of the lyybo. graphic party, which is at present on the passage to San Francisco, and provided with an ample outfit for off-shore soundings.

When the appropriation for the present fiscal year lecame available, a parts, previonsly orgauized, was sent from San Francisco, without delay, to make such development in hydrography, and such other observations of interest and value as may be practicable in the vicinity of the Alentian Islands, off the coast of Alaska. The partry sailed in A ugust, but there is yet no advice of the arrival of the vessel at her destination.

Within the year laborious computations have been completed, giving final values for the longitude of points intermediate between the Atlantic and the Pacific Consts. Of these, the principal ones are Omaha, Salt Lake City, and San Francisco.

Computations are in progress for determining the transatlantic longitude, which depends upon the observations made last year at Brest and Duxbury.

The discussion is continued, of full series of tidal observations, with reference to the construction of tables of prediction.

In the Coast-Survey Office the operations of the several divisious have kept pace with the fieldwork. Twenty new charts have been published, including, three new editions of charts made neelful by extensive changes. Fifty eight charts have been in hand in the drawing division, of which nine were commenced within the year. Of the varions engrared charts, about ten thousand copies have been printed, and an equal number of copies distributod from the Office. Of the mannscript maps on file in the archives, sixty-six have been copied or traced within the year, to meet calls for information from various brauches of the public service.

Tide-tables for the ports of the United States, for the year 1852, have been computed and issued from the Office.

In the hydrographic division, special care has been taken in regard to the marked places of buoys on the publiswed charts. Most of the sea-marks liable to shift have been carefully determined in position, and marked on the charts which admitted of such changes without detriment to the sailing directions.

Specifications for the construction of several steam-vessels and schooners, to replace such as had been worn out in the service, were carefully drawn up by the hydrographic inspector, when means became available under the appropriation for that object. The smaller ressels were completed first, and went into service in the winter of 1870 . Within the present year tro steam-ressels were fitted out, and are now employed in the duty for which they were inteuleal.

The internal arrangements of all the new vessels are admirably adapted to the demands of the service. Their qualities as sea-boats and fast salers have testified to the excellence of their motels and to the ability of Captain Patterson as a naval constructor.

The iron steamer Hassler, intended for hydrographic service on the Pacific coast of the United States, was launched at Kaighn's Point, N. J., on the 12 th of September of the present year. 'While the hull of the ressel was under construction, the officer detailed by the honorable Secretary of the Navy for the command of the hydrographic party gave personal attention to the details specified in the plan of the hydrographic inspector. As soon as possible the steamer was rigged for sea, and at the end of October trial was made of the engine in a run from Philadelphia to Boston. Commander Johnson was entirely satisfied with the performance of the vessel as a sea-
boat, and with special gratification reported that a rate of about seven and a half knots was maintained during the day by the consumption of only two and a half tons of coal. This unequaled economy in fuel deserves attention, which will donbtless be more closely attracted by the working of other engines similar to that now in the steamer Hassler.

The rigging, outfit, and final adjustment of the machinery of the steamer for a long royage were completed at the Charlestown nary-yard, where also the magnetic condition of the ship was finally tested, with reference to the use of compasses in steering at seat. This important service was performed by Assistant Charles A. Schott, aided by Dr. Thomas Hill, of Waltham, Mass. The officers of the vessel are fully informed in regard to the means requisite for maintaining the effectire use of the compasses.

The steamer Hassler is a three-masted screw-propeller of three hundred and fifty tons, and is believed to be in all respects admirably designed for general hydrographic service. Incidental duty, in which the vessel is now emploged, will be briefly mentioned under the next head.

The second steamer, built and fitted out under the supervision of the hydrographic inspector, and designed for hydrographic work on the coast of the Atlantic and, Gplf of Mexico, is of two hundred and eighty tons barthen. This ressel was lannched in August and was named after the late Superiutendent A. D. Bache. The hydrographic party now on board, under Lieutenant Commander Tohn A. Howell, U. S. N., is engaged in running lines of soundings and noting temperatures with a view of developing the characteristics of the Gulf Stream. In general the vessel will be employed for off-shore hydrography, in gathering material for the larger sailing clarts.

VOYAGE OF TILE COAS'L-SURVEY STLAMER HASSLER.

As already mentioned, the Massler was planned and built for hydrographic service on the western const of the United States. In her transfer from the Atlantic side the intelligent and energetic officers detailed by the honorable Secretary of the Nary for duty in that vessel would un. doubtedly have made valuable observations; they would have continued the researches which were commenced by officers of the Coast Survey upon the phenomena of the ocean, aud which have become the stimulns to general scientific inquiry. The deep-sea soundings have suggested the existence of intimate relations between the currents and natural channels of the ocean; the dredgings have brought to light new fana peculiarly related to the natural history of the globe; and even the temperatures and densities of the ocean at various depths, and in different localities, appear to be subject to laws worthy of the most careful investigation. Other nations have recognized the significance of the facts first developed by the Coast Surver, and have pursued corresponding inquiries under conditions much less opportune than those presented by the incidental royage of the steamer Hassler around Cape Horn. But it is evilent that whatever general interest may be felt by the Navy officers on board, and however anxious they may be to collect data, their labors must be greatly facilitated by the assistance of those who bave advanced, through gears of patient study and comparison, toward the end songht in such investigations. Without the co-operation of men eminent in science, the royage would be much restricted in time, and correspondingly restricted in special resuits. I therefore felt it to be a duty not to limit this vogage to the least requirements of navigation, but to take advantage of the occasion for the solution of momentons questions, or at least to add something to the knowledge now generally admitted to be of special consequence by its direct bearing upon important unsolved inquiries. The wish toward that end has been nobly met by the men of science and their friends. At my invitation the direction of the desired scientific researches has been undertaken by Professor Louis Agassiz, and he has been assisted with large means furnished by enlightened men of fortune. He has undertaken the expedition in the spirit which has pervaded his life-with intense devotion to the interests of his adopted country, and with increasing desice that its scientific fame may be commensurate with the rank which we otherwise hold amongst the nations of the civilized world. The departure from sight and daily intimacy of that eminent man, upon a long and, it may be, perilous voyage, leaves a void which cannot be filled. But while the exploration intended is a consummation worthy of his great life, he alone is equal to the grandeur of the enterprise. We hope to meet him on the shores of the Pacific Ocean in the vigor of his pristine strength.

Professor Agassiz is accompanied by Thomas Hill, LL. D., ex-president of Harvard University ; L. F. Pourtales, esq., Assistant in the Coast Survey; and Dr. Franz Steindachuer, all of them experienced observers.

Commander Philip C. Johnson, U. S. N., now in command of the steamer Hassler, is assisted in the bydrographic service by Lient. Commander Charles W. Kennedy, Lieut. Murray S. Day, and Masters Henry B. Mansfield and Edward W. Remer. With an outfit sufficient for all the obserrations that will be practicable within the period allotted for researches, the ressel started on her voyage from Boston on the 4 th of the present month.

ESTIMATES.

In some gencral remarks which accompanied my estimates in September last for the work of the next fiscal year, and of which a copy will be included with this report, attention was called to the interest now alive in the interior States in regard to accuracy in geographical positions. A few additional remarks are suggested by incidents which hare since transpired.

By means of a limited number of well-ascertained points in each State, the existing maps might be corrected by State authorities, and used in the improved form, as they are used now, for general purposes. Special needs will in time press for the minute surves, first of one part and then another, until the whole area of each State is correctly mapped. If, therefore, positions are determined in adrance, and sufficient in number for the area, more or less, after serving for the partial correction of State maps, the same points avail for the State authorities in making future topographical and geological survegs. Secured for identification by marks set in the ground below the reach of needful operations in tillage, and protected from willful displacement by State law, the points at places not to be speedily developed may await for years the occasion for reference to them. Instances of the recovery of old stations will be mentioned in this report under the head of stationmarks, in Section II. Bat, to be in true relation, points must be determined in reference to their connection with each other, and economp in fixing them is in proportion to their number. One only, settled in latitude and longitnde, involves far greater cost than the average of ten or more bronght into connection with it by angular measurement. It need not be here explained that the longitude of any one in a series of points determines all adjacent positions that have been properly joined by triangulation. Within the year, a few geographical positions have been in this way determined in the vieinity of Saint Louis, and others in the States of Ohio, Illinois, and Kentucky, under a proviso in the last appropriation bill which allotted a small sum for such purposes. The results very forcibly illustrate the wisdom and expediency of giving without delay, as can be done at small cost, a sure basis for surveys that may be undertaken at the West by State authorities. Last year the longitude of Saint Louis was well ascertained, a station there being of importance as one of several at which observations were made on the solar eclipse of 1869 .

At the state-house in Columbus, Ohio, the longitude deduced from observations made in October last by one of our most experienced assistants, proves that the previously accepted position is in error by as mach as three miles. This discrepancy was not known when the governor of Ohio applied for the benefit of the provision made by Congress.

The points proposed for determination in the vicinity of the Mississippi are from ten to eighteen miles apart. It is intended to connect all of them with the nearest section corner of the survers made for the General Land-Office. Hence the work done by the Government in the geodetic connection of the Atlantic with the Pacific Coast, as proposed in the estimates, incidentally avails for the geographical adjustment of large and populous areas at the West, and presents a motive for early action in regard to correct State maps, in the issue of which the Government has collateral interest, through the requirements of the postal service.

Early in the present season, aid given for the direct uses of the Department of the Interior, has added a point still further westward to our list of well-ascertained positions. At the request of the Commissioner of the General Land.Office, latitude and longitude were determined at a station on the southern boundary of Kansas, near the ninety-fitth meridian, as will be noticed under the head of Section IX in the body of this report.

Telegraphic facilities now extending into the interior afford ready means for correcting longitude by the process first used and now mainly depended upon in the survey of the coast. Many points
along the sea-board, and several in the middle of the continent have been already fixed by the application of that method.

A cony of the detailed estimates for continuing the work of the surver during the fiscal year 1872-73, which were submitted in September last, is Lere subjoined :
For general expenses of all the sections, namely: Rent, fuel, materials for drawing, engraving and printing, and for transportation of instruments, maps, and charts; for miscellaneous office expenses, and for the purchase of new instruments, book, maps, and charts, will require.
Section I. Coast of Maine, New Hampshire, Massachusetts, and Rhode Island. Field work.-To continue the triangulation of the branches of Passamaquoddy Bay, and to extend the work so as to include the northeastern boundary along the Saint Croix River ; to determine subsidiary points on the coast of Maine for the ase of planetable parties; to continue the topography of the western shore of Passamaquoddy Bay, the estuaries of Frenchman's Ray, that of Mount Desert Island, and of the islands and shores of the Penobscot and of Isle au Haut Bay, and that north of Saco Bay; to continue off-shore soundings along the coast of Maine, and the hydrography of Frenchman's Bay, Goldsborough Bay, Penobscot Bay, and Isle au Hout Bay; to continue tidal and magnetic observations, and to make such astronomical observations as may be requisite in the section. Ofrick-work.-To make the computations from field observations; to continue the drawing and engraving of General Coast Chart No. 1, (Quoddy Head to Cape Cod;) to continue the drawing and engraving of Coast Chart No. 4, (Naskeag Point to White Head Light, including Penobscot Bay;) to complete No. 6, (Kennelec entrance to Wood Island Light;) No. 7, (Seguin Light to Cape Porpoise Light;) and Coast Chart No. 13, (from Cuttyhunk to Point Judith, including Narragansett Bay;) to draw and engrave preliminary charts of South West Ilarbor and Somes Sound, (Mount Desert Islend;) to continue the drawing and engraving of the harbor and river charts of the coast of Maine, and complete charts of Narragansett Bay and Lake Champlain, will require
Section II. Coast of Connecticut, New York, New Jersey, Pennsylvania, and part of Delarave. Firld-work.-To make supplementary astronomical observations; to continue the triangulation of Connecticut River, and plane-table work near New Haven; to complete the triangulation between Mount Molly and Barnegat Light-house, New Jersey; to continue the detailed topography of the coast of New Jersey below Little Egg Harbor and that of the shores of the Hudson River, above IIaverstraw ; to execute such supplementary hylrography as may be required in the vicinity of New York Bay and Delaware Bay; to continue the tidal observations. Office-work.-To make the compatatious and reductions of field work; to continne the drawing and engraving of Coast Charts Nos. 21, 22, and 23, (from Sandy Hook to Cape May, will require
SECTION III. Coast of part of Delasare, and that of Maryland and part of Virginia. Field-work.-To make the requisite astronomical and magnetic observations in this section ; to connect the outer coast triangulation with that of Chesapeake Bay, across the Peuinsula; to continue the primary triangulation parallel to the coast southward along the Blue Riage in Virginia and North Carolina; to connect with the primary, the triangulation of the Upper Potomac; to continue the topography of the sea-coast and bays of Virginia, north of the Broad Water; and that of the shores of the James River, including the requisite triangolation; to complete the shore-line survey and hydrography of bays and inlets remaining unsurreyed in this section ; to continue tidal observations. Office-work.-To make the computations from field-work; to complete the drawing and engraving of Coast Charts Nos. 29 and 30, (from Chincotcague Inlet to Cape Henry, and of General Coast Cbart No. 4, (approaches to Delazeare and Chesapeake Bay;) to continue work on a ehart of the lower part of James River, and to draw and engrave the supplementary surveys of the estuaries of Chesapeake Bay, will require

Section IV. Coast of part of Virginia and part of North Carolina. Feld-work.-To continue the triangulation of Pamplico Sound, and to make the requisite astronomical and maguctic observations; to continue the topography of tho western shores of Pamplico Sound, and complete that between Neuse River entrance and Core sound; to contiune the off-shore hydrography of the section and that of Currituck and Pamplico Sounds, and their estuaries; and to coutiuue observations on the tides and currents. Office-wokk.-To make computations and reductions; to draw and engrave Coast Charts No. 38 and No. 39, (Nag's Head to Cape Hatteras;) to continue the drawing and engraving of Charts Nos. 42, 43, and 44, (Pamplico Sound and estuaries;) to complete No. 50, (Cape Fear River and approuches to Wil. mington;) and to continue work on the chart of Pamplico River, will require.
Section V. Coast of South Carolina and Georgite. Field-work.-To make the requisite astronomical and maguetic observations, and the triangulation between Little River and Winyah Bay, South Carolina; to continue the topography between Winyah Bay and Cape Romain ; to complete the topography and sound the inland waterpassages between Charleston Harbor and savannah River; to continne the off-shore hydrography of the section aud tidal observations. Ofyice-work.-To make the computations; to continue the drawing and engraving of General Coast Chart No. VII, (from Cape Romain to Suint Mary's River;) complete Coast Charts No. 56 and 57, (from Saxannah River to Saint Mary's River;) and charts of Doboy and Altamaha sounds, Saint Andrew's Sound, and the inland tide-water commmication along the coast of Georgia, will require.
Section Yl. Coast, heys, and Eefis of Florida. Finid-work.-To determine the longitude of points on the western coast of Florida; to continue the triangulation and topography from Matanias Inlet southward towards Mosquito Inlet; to continue the survey of Tampa Bay; to complete the hydrography of the Florida Reef, and that of the bay of Florida; to make explorations in the Gulf Stram, and the tidal and magnetic observations. OFFICE-WORK.-To make the computations from field observations; to draw and engrave additions to offishore Chart No. X, (Florida Straits, and No. XI, (Key West to Tampa Bay;) and engrave Coast Charts No. 70 and No. 71, (Key West to Tortugas,) will require
Section VII. Gulf Coast of the Florida Peninsula uorth of Tampa Bay and coast of West Florida. Field work.-To continue the triangulation and topography of Chattahoochee Bay, and of the Gulf Coast eastward and westward from it; to measure a base of rerification, and to make such astronomical and magnetic observations as may be requisite in the section; to survey and sound the entrance to the Suwance River ; to complete the hydrography of Saint George's Sound; and to continue the tidal observations. Office-work.-To make the computations from field-work; to continue the drawing and engraving of Coast Charts No. 82 and No. 83 , (from Ocilla River to Cape San Blas ;) of General Coast Cbart No. XIII, (Cape San Blas to Mobile entrance,) and of Coast Charts No. 86 and No. 87, (Choctawhatehce entrance to Mobile Bay, will require
Sedrion VIII. Coast of Alabama, Mississippi, and part of Louisiana. Field-wonk.To extend the triangulation westward from the Mississippi Dolta, along the Gulf Coast, and to make the astronomical and maguetic observations required in this section; to continue the survey of the Mississippi River, and determine points in the vicinity of Saint Louis and Cincinnati; to continue the hydrography of the Mississippi between the head of the Passes and New Orleans; to complete the survey to the nortliward of Isle au Breton Sound, and to make the tidal observations. Office-work.-To make the computations pertaining to field-work; to continue the drawing and engraving of the General Chart No. XIV, (Gulf Coast betucen Mobile Point and Vermilion Bay;) to complete Coast Chart No. 91, (Lake Borgne and Lake Pontchartrain;) continue No. 92 and No. 93, (Chandeleur Islands to Southvest Pass;) and complete No. 94, (Mississippi Delta and River,) will require

50,000

Section IX. Coast of part of Louisiana and Coast of Texas. Tield-work.-To measure a base-line for verification; to continue the triangulation aud topography of Madre Lagoon, from Corpus Christi Bay southward; to complete the hydrography of San Antonio and Espiritu Santo Bays; to continue the off-shore hydrography, and to make the requisite tidal observations. Office-work.-To make the office computations; to continue the drawing and engraving of General Cuart No. XVI, (Gulf Coast from Galveston to the Rio Grande,) and to engrave charts of Corpus Christi Pass, Aransas Tass, and I'ass Cavallo, will require

835,000
Total for the Atlantic Coast aud Gulf of Mexico
$\$ 391,000$
The estimate for the Western Coast of the Jnited States is intended to provide for the following progress in the surver:

SEction X. Coast of California. Field-Work.-To make the requisite observations for latitude, longitude, and azimuth, at stations on the coast; to extend the triangulation and topography from Gaviota to Point Conception and Point Arguello, and the survey north and south of Shelter Cove; for the topography of Tamal Pais, and of the southeast Farallon; to extend the topograply between San Gabriel River and San Juan Capistrano; to continue that of the coast south of San Simeon, and from San Luis Obispo to Point Sal; also from Cuffee's Cove towards Mendocino Bay; to continue the plane-table surves of the Santa Barbara Islands, and make the requisite triangulation; to continue the hydrographic reconnaissance between San Diego and Panama, and soundings in the western part of the Santa Barbara Channel; to extend the coast hydrography from False Klamath northward to the upper limit of the section; to continue tidal observations. Office-work.-To compute results from the field records; to draw and engrave preliminary charts of the coast from Point Vineente to Foint Conception, including Santa Barbara Channel, and of the coast from Humboldt Bay to Trinidad Head; to make additions to the General Chart, showing the coast between San IVicgo and Cape Mendocino, and for the issue of a chart of the vicinity of Point Saint George, inclnding Crescent City Harbor ; also for operations in-
Section XI. Coast of Oregon and of Washington Territory. Field-work.-For the determination of latitude, longitude, and azimuth, at stations in the section: to continue the triangulation and topography from Cape San Sclastian towards Port Orford, and include the hydrography of the Orford Reef; to extend the detailed survey of Shoalwater Bay southward; to continue the topography of the shores of Columbia River ; to extend the hydrography of the coast of Oregon southward from Cape San Sebastian; to continue the topography and requisite triangulation of islands in Washington Sound; to extend the hydrography in their vicinity, and the survey in Pugot's Sound; to make tidal observations. OfFICE-work.-To make computations; to draw and engrave charts of Orford Reef, Port Iniscovery, and Warhington Harbor; and to make additions to the charts of Washington Sound, Fugets Sound, and of the coast from Cape Mendocino to Vancouver Island; and for operations in-
SECTION XII. Coast of Alaska.-To continue the hydrographic reconnaissance in the vicinity of the Aleutian Islands, with observations on the tides and currents; to draw and engrave the results of the explorations; and to make additions to the three hydrographic sheets of the coast of Alaska, will require
For extending the triangulation of the coast survey so as to form a geodetic connection between the Atlantic and Pacific Coasts of the United States, including compensation of civilians engaged in the work, per act of March 3, 1871: Provided, That the triangulation shall determine points in each State of the Union which shall make requisite provision for its own topographical and geological surveys

For pay and rations of engineers for the steamers used in the coast surrey, no longer supplied by the Navy Department, per act of June $12,1858 . \ldots . .$.
For continuing the publication of the observations made in the progress of the coast survey, including compensation of civiliaus engaged in the wort, per act of March 3,1843 , the publication to be made at the Government Printing Office.

10,000
For repairs and maintenance of the complement of ressels used in the coast survey, per act of March 2, 1833

The annexed table shows in parallel columns the appropriations made for the fiscal year 1871-72, and the estimates now submitted for the fiscal year 1872-73:

Objects.	Estimated for fiscal year 1 men	Appropriated for fiscal yen $1=2112$
ing eompensation of civiliens engaged in the work, and cxeluting pay and cmohunent of where of the Army and Nary. and detty offirers and men of the Nary emphey in the work, per art of Mancla 3, 143....	8391,	8391,009
For continning tie surver of da western coast of the Enited States, including conmensation of ejviians engagel in the work, per act of Sopteniber 30, 12:0	20.000	240000
For exteming the triangulation of the Coast surver so as to fom a reodetie comection between the A thatic and Iacitic coasto of the United States, and assisting in the State sarvers, inclading componsation of civilians cugaged in the work, per act of March 3, 1871.	30,000	15,000
Department, per act of Jume 12, 18.58	19, 000	5,000
For continuing the publication of the obscrations mate in the progress or the Coast Surver inchaing compensation of civilians engaged in the work, per act of March 3, 1eti, the publication to be made at tho Govermment Printing Office	10, 000	10,000
For repairs and mantenance of the complement of vessels used in the Const Surve, per act of Marel 2 , 1833 :	45, 000	4.3.00\%
Total.	726.040	700, 6000

SOLAR ECLIPSE OF DECEMBER $2 \because, 1870$.
Certain astronomical phenomena of rare occurrence and high importance for the advancement of human knowledge, have, in all civilized countries, since modern science has been cultivated, been deemed matters of national importance. Among these are total eclipses of the sun, amd for many years it has been customary for the great nations to organize expeditions for the observation of them. The first total eclipse visible in this country since the formation of the Government was that of Jume, 1806. This was accurately observed at several points, and a valuable painting was made of it. We were not favored with another until November 30, 1834, when the moon's shadow passed over the continent from northwest to southeast. This eclipse was observed by R. T. Paine, esq., of Boston, at Beaufort, S. C. A third eclipse did not visit our conntry until 1860; hence, at that time this wonderful phenomenon was for most American astronomers a matter of hearsay.*

The path of the eclipse of July 18,1860 , was from Washington Territory to the northern shore of Labrador, and thence across the oceau to Spain. This eclipse was observed by expeditions organized under the Superintendent of the Coast Survey, and the results are published in the report for that jear. It was also observed by the astronomers of several governments abroad, and was the first total eclipse which was photographed. In 1868, British, French, and German expeditions were fitted out for the observation of a total eclipse in India. On this occasion brilliant discoveries were made in regard to the spectrum of certain rose colored prominences seen about the sun at such times; and these discoveries have been increasing in interest ever since. In 1869 another total eclipse was visible in the United States. It was observed by parties organized by the Coast Survey and other Government bureaus. The results were of high importance. Photographs of the whole corona were taken for the first time; the tirst observations were made apon the speetrum of the corona; the radial polarization of the corona was first observed with care, while the former knowledge of the subject was advanced in every direction. The results of these two

[^0]2 cs
eclipses were of such importance in regard to one of the chief scientific problems of our time, the constitution of the suu, as to excite the profoundest interest throughont the world. It was felt by everybody, even casually interested in science, that the eclipse of 1870 afforded an opportunity for removing the last obscurity from the subject of the corona, such as ought not to be let slip, the more so as no other eclipse was expected to be observed during this century.* In accordance with these views the Hon. John A. Bingham, of Ohio, introduced a joint resolution, which was approved by Congress and the Executive, authorizing the fitting out of an American expedition, such as were to be sent out by Germany, by France, by Great Britain, by Italy, and by Spain, to study the phenomena of this eclipse. The late unbappy war prevented the first two nations from sparing any of their energy for this peacefnl emulation, but extensive preparations were made by all the others. The American aud English parties were in co-operation and afforded each other mutnal aid. It is hoped that the good feeling thas engendered was not without influence beyoud the circle of science. The observations of this eclipse had for their general result the triumphant vindication of the American observations of the year before, the novelty of which had made them somewhat suspected in Earope; as well as the establishment of the superior accuracy of the American lunar predictions. Some new features were observed in the corona and in the chromosphere, and other observations were multiplied. This is, however, not the place for entering upon the details of scientifie proceedings, which will be given with all desirable fulness in the appendix.

With a view of selecting localities where astronomical conditions, as well as those of the weather, might be expected to be favorable for observing, Mr. Cuarles S. Peirce proceeded to Europe in advance under my direction, and after visiting Italy, Spain, and European-Turkey, recom. wended the occupation of stations in Southern Spain and in Sicily. The conntry east of Italy over which the track of the totality passed had the sun too low for photographic purposes. Considering the probable distribution along the line of totality of the European astronomers, I decided finally to dispatch two parties, one to be stationed in the vicinity of Xeres, in Spain ; the other under my immediate personal direction, to occupy positions on the island of Sicily, in the neighborhood of Catania. In selecting observers I availed myself of such as had previons experience, which, in matters pertaining to solar eclipses, is of much importance, and whose former services in the special lines of duty assigued gave full assurance that no fact that conld possibly be noted under the circnmstances would be lost.

The party organized for service in Sicily had the threefold duty assigned of making measures of precision, including the determination of the geographical position, and local time of contact; of getting photographic impressions of the various phases of the eclipse and of the corona; and of analyzing the corona by means of the polariscope and spectroscope. Accompanying phenomena were also to be recorded. To improve, as much as possible, the chances of the weather, the party was spread over as large an area as could conveniently be inchded, a precantion which proved of great value, as may be gathered from the account of the labors of the party.

A most cordial co-operation with the party of British observers, several members of which took position at Catania, was maintained throughout our stay. While in England and on the continent, on my way to the place of observation, the opportunity was taken to procure additional instruments required for our purpose.

The party is indebted to Mr. Wilding, our vice-consul at Liverpool, and to Signor Cattanco, Italian cousul at that port, for affording facilities to pass our instruments through the Messina custom-house. Our thanks are especially due for most effective assistance rendered in receiving, storing, and forwarding our instruments, and reshipping them for New York, to our consul, Mr. F. W. Behn, at Messina, and the vice-consul, Mr. Aug. Peratoner, at Catania. We were indebted also to Professor Lorenzo Madden and Professor Orazio Silvestri, of Catania, for assistance, and to the municipal authorities for permission to use the grounds occupied by the observers.

The distribution of the party in the vicinity of Catania, and the nature of the results secured, will be briefly mentioned.

Our principal station was in the garden of the Benedictine convent of Saint Nicola, in the

[^1]western part of the city-a position selected by Assistant Charles A. Schott, who determined early in December the latitude and longitude, and also the local time. L. M. Rutherfurd, esq., of New York, provided photographic apparatus for use by Mr. H. G. Fitz, optician, who was sent in charge of the equatorial, and was assisted by Mr. D. C. Chapman and Mr. Burgess, photographers. For determining time and latitude, Mr. Schott used the portable meridian telescope C. S. No. 9, and sidereal chronometer Kessel, 1287, which was rated at Washington, and checked at London, Berlin, Munich, and Naples. For local time comparisons the party is indebted to Dr. Förster, director of the Berlin observatory; to Dr. Lamont, director of the Munich observatory : and to Professor de Gasparis, director, and Mr. Fergola, assistant of the observators at Capo di Monte at Naples.

Transits were recorded on five vights, and thirteeu pairs of stars were observed for latitude; the longitude depends upon that of Naples and Munich. In order to secure accuracy, Mr. Н. Н. D. Peirce compared chronometer times at Syracuse with the party of observers from the Cnited States Naval Observatory, thos rerifying the determination for longitude of the respective stations. A number of chronometers were in advance rated for the use of the observers, and a small triangulation was made uniting the eclipse stations in the garden with the triauguhation by Dr. Peters and Baron Waltershansen, who surveyed that ricinity previous to the year 1841 . It is gratifying to note the very close accordance between the earlier astronomical determinations and those taken thirty years afterward. Timesignals, by heliotropes, were sent and received by the observers at Catania and at the Monte-Rossi station. Mr. Schott included in his series of geographical positions the threc places occupied in the garden of the convent, two by the English party in charge of Mr. J. Norman Lockyer, and the other by Mr. J. H. Lane, of the office of United States Weights and Measnres, who, though fully prepared for spectroscopic observations, was prevented br unfavorable weather from recording special results. The photographic party secured forts-five negatives of the sum, serenteen during the eclipse and before totalits, and fourteen after it, at irregular intercals, taking advantage of breaks in the clonds. The direction of a parallel of declination was indicated by the image of a thread so adjusted before the eclipse that a solar spot might be seen as moving along the thread during the transit. Mr. Fity operated the equatorial and timed the pictures. Au attempt was made by means of an ordinary camera to secure an impression during the momentary appearance of a portion of the coroua. The time of the first contact was noted by Mr. Schott, who was apprised by a pistol tired by a member of the English partr, (the report by pre-concert,) indicating that Mr. Lockyer had already spectroscopically noted the approach of the moon's limb over the solar chromosphere. The dease clouds which came from the direction of Mount Etua and to the west of it defeated all attempts at observing the times of the inner contacts, and of the last contact. Mr. Schott, however, saw through a rift in the clonds a part of the corona to the northward and eastward of the sun's center for about three seconds. It appeared in sharp outline, nearly concentric with the moon's limb, of white, silvery light, extending, by estimation, to about one-third of the moon's radius. The light tint of orangeyellow, usnally accompanying total eclipses, was seen about the southern and eastern horizon. The first contact, or beginning of the eclipse, as predicted from data in the American Ephemeris, was only three and nine-tenths seconds earlier than the time actually noted in observing at Catania.

My own station was about three miles uorth of Catania, at the villa of the Marquis di San Giuliano, whose obliging courtesy is a subject of grateful remembrance. There the weather was more favorable than at the city, and afforded a full view of the corona, the study of wrich was made a special object. Mr. C. S. Peirce obserred with a polariscope and obtained good results. Mrs. O. S. Peirce was successful in drawing the corona, and distinctly recognized the dark rifts which bave become the subject of discussion, and which were photographed by Mr. Brothers, of the British party, at another station. Farther north were stationed Byt. Brig. Gen. H. L. Abbott, United States Engineers, Professor Roscoe, of Eugland, and Signor Amerigo de Schio, Dr. Vogel, of Berlin, and others. Their object was to observe the phenomena of the celipse at the greatest possible height on the southern slope of Mount Etna, for comparison with similar observatious taken at stations near the sea-level. It is much to be regretted that this party was overtaken by a snowstorm, which obscured the sky, and obliged them to descend during the time of the eclipse.

A few miles to the westward and northward of Catania, at one of the trigonometrical signals on the western peak of Monte Rossi, Dr. C. H. F. Peters, of Hamilton College, Clinton, N. Y., aud Sub-Assistant W. Eimbeck, selected a position for observing the eclipse. Dr. Peters had a
spectroscopic apparatns, and Mr. Eimbeek a comet-seeker. This parts, also, had unfavorable weather, but succeeded in noting the times of the first contact aud of the last contact-the last through thick haze. The interior contacts were lost on account of a passing hail-storm. Mr. Eimbeck also assisted Mr. Schott in recording transits and other observations at Catama.

Professor J. C. Watson, of Aun Arbor, Mich., ocenpied a station on the high gromed near Carlentmi. The weather there was favorable during the time of totality. Professor Watson made observations which resulted in two colored drawings of the corona, of unrivaled fulluess of detail and accuracy. Dr. T. W. Parsons, at Syracuse, also made an elaborate colored representation of the eclipse.

It will thus be seen that my party in Sicily were distribnted to the north of the track of total eclipse, while stations to the south of it were occupied by the party from the United States Naval Observatory. Stations on the central hine were occupied by the Italian astronomers, inclading the Padre Secchi, Professor Cacciatore, ant others.

A detailed account of the results of observations will be fonnd in the Appendix No. 16 of the report of 18 . 0 .

I take this opportunity to mention the kindness of Henry Suter, esq., Her Britannic Majesty's rice consul at Larissa and Volo, who, when it was contemplated to send a party to Larissa, afforded every facility for the prosecution of inquiries; and was in readiness to assist further, if it had been expedient to occups a station near that city.

The general charge of the observations to be made in Spain was assigned to Professor Joseph Winlock, director of Harvard College Observatory, Cambridge, Mass., with Assistant George W. Dean, of the Const Surver, as executive officer.

The party of elevell persons from the United States was organized early in October, 1870. Nearly all were seientific observers, and had been so engaged duriug the total eelipse in August, 1869.

Two English and one Spanish observer joined the expedition at Jerez, and it is highly gratifying that notwithstanding the unfavorable weather on the day of the eclipse, most of the observers were quite successful.

It being desirable to obtain as far as practicable in advance, information in regard to the meteorological conditions of the winter climate of Southern Spain, Assistant Dean, before leaving England, collected statistics which proved of much value in selecting the locality in Spain for observing the eclipse. Mr. Dean was cordially assisted in his inquiries by the Astronomer Royal, and by several members of the Royal Astronomical Society.

Professor Winlock, Capt. O. H. Ernst, of the United States Engineers, Professor C. A. Young, Professor S. P' Langley, Professor Edward C. Pickering, and several other members of the expedition, sailed from New York for Liverpool early in November and reached London about the middle of that month. Most of the instruments and equipments were reshipped at Liverpool for Gibraltar, arriving at the latter port near the close of November, and from thence were forwarded by steamer to Cadiz.

The information obtained from commanders and chief officers of steamers plying between England and Mediterranean ports, in regard to probabilities of weather, was confirmed by the observations of other gentlemen, who had long resided in Southern Spain. Comparison of statements showed that the prospect for fair weather on the day of the eclipse might be hoped for at points on or near the Atlantic Coast.

The geographical position of Jerez being favorable; with good facilities for transportation by railruad from Cadiz, Professor Winlock decided to make the necessary arrangements for observing the eclipse near that place.

The priucipal station was located about a mile northeasterly from the city, in an olive grove belonging to Messrs. Richard H. Davies and brother. These gentlemen placed their grounds and buildings at the disposal of the expedition, and their constantaid and generous hospitality to all the observers during their stay at Jerez is gratefully acknowledged.

Some delay was experienced in obtaining lumber and other materials, but all diffeculties were readily met. On the 16 th of December the instruments were in position, and good observations
for time and latitude were made by Assistant Dean and Captain Erust, assisted by Mr. Henry Gamett, of Harvard College Observatory.

These observations were repeated on several favorable nights, immediatels preceding the day of the eclipse, at which date the latitude and local time at the ectipse station had been well determined, completing the necessary arrangements for observing the phenomena.

The day preceding the eclipse was unusually pleasant, but about midnight clouds began to cover the sky, and in a few hours the rain fell rapidly, with a strong wind from the southwest. The prospects for success on the morning of the 22 of December were exceedingly donbtinl nevertheless, each ohserver continued to perfect his arrangements, hoping that before the bergining of the eclipse the clonds would open, and give an opportunity to all to complete the observations so earnestly desired. These hopes were in the main realized. The time of the "first contact" was successfully recorded by Assistant Dean, and a fow seconds later the photographer of the expedition, Mr. O. H. Willard, of Phihadelphia, obtaned a good photograph of the sum. During the progress of the eclipse Mr. Willard, with the assistance of Mr. A. Mahoney, took fourteen photographs of the echipse, one of them exhibiting very satisfactorily the coronal structure dumg totality. The equatorial telescope used by the photographer has a focal length of about seven feet, with an aperture of six and a half inches, corrected for actinic rays. This instrmment and several others for the service were fumished by Professor Wintock. The photographie telescope used by Mr. Gamett had a focal length of about thirty-five fret, with an aperture of four inches. This telescope was firmly adjasted in a horizontal position, receiving the solar rays from a movable heliostat near the objective. Mr. Gamett obtained five photographs in the course of the eclipse, but owing to partial obscuration by clonds they were not entirely satisfactory.

The time at which each photograph was taken was recorded by the chronograph,
Spectroscopic observations upon the sun were made by Professor Winfock with two prisms, attached to a five and a half inch achromatic telescope. Professor Winlock had devised a very complete apparatus for recording the positions of the lines seen in the spectroscope as rapidly as the observer could point upou them, and with a precision equal to measurements with a microme. ter. Before leaving America, each spectroscope for use in Spain was prorided with this apparatus, which consisted essentially of a steel point or graver, movable by a micrometer-serew, so that in pointing upou any line seen in the spectroscope the exact position of the line would be recorded upon a small silver plate, when the observer pressed the graver key. Professor Winloek observed a faint continuons spectrum, without dark lines. Of the bright lines, the most conspicnons was Kirchoff, 1474, which was seen in all the spectroscopes.

Professor Young, of Hanover, N. H., used a new spectroscope, recently designed by him, and constructed by Messrs. Alvan Clark \& Sons, of Cambridgeport, Mass. It has a train of six prisms of heavy flint glass, each two and one-fourth inches high, and having a refracting angle of tifty-iive degrees. As eventh half prism follows, on the back of which is cemented a right-angled prism, by which, after two total reflections, the light is sent back through the upper part of the same train of prisms until it reaches the observing telescope. A description of this instrument has been published by Professor Young in our seientific journals.

With this spectroscope attached to the Dartmouth College equatorial, having a focal length of nine feet, and aperture of six and a half inches, l'rofessor Young was enabled to watch the ocenltations of the protuberances, and announce the approach of the moon several seconds before the "first contact." With the slit of the spectroscope placed tangeutially at the moment of obscuration, the field of the instrument was filled with bright lines.

Mr. Pye, a young gentleman who assisted Professor Young, saw this with a spectroscope of one prism.

Mr. Abbay, of Wadham Collegn, Oxford, also observed with a spectroscope, and his results were soon after published in the Euglish journals.

Professor Langles, of Allegheny, Pa., observed the structure of the corona with a grand achromatic of four inches aperture, and a power of about one hundred and fifty. He reports that, on the closest scrutiny of the part nearest the sun, nothing was seen but a nearly unitorm diffined light, except that one dark ray in the field was noticed to be absolutely straight, and nearly radial.

The outline of the corona was roughly quadrangular, the larger diagonal making an angle of nearly forty-five degrees with the vertical. Professor Langley also used a Sarart's polariscope, which was attached to a small telescope of one and a half inches aperture. During totality the bands were distinctly seen on the corona, and were brightest where normal and tangent to it. As the polariscope was slowly rotated, no marked change of their brightness was seen during the whole revolution, and they presented the appearance and characteristics of radial polarization.

Captain Ernst occupied an elevated station about half a mile northwest of the principal eclipsestation. His observations were upon the general appearance of the corona and landscape during totality. Mr. Gordon, who resides in the vicinity, was at the same station, and made an excellent sketch of the corona.

Professor Pickering, of Boston, also ocenpied the station last mentioned, and successively used an Arago polariscope, one of the Proymowski form, and a Savart, and obtained similar results with each, which indicated the radial polarization of the corona.

The light covering the moon's dise was observed to be polarized throughont in the same plane, and the observations showed that the Arago and other polariscopes dependent on color, were sufticiently delicate to determine the pane with accuracy.

Mr. Ross, at the same station, used a moditication of the Bunsen photometer, and obtained several accordant measuremeuts, showing that the light was about equal to that of a candle burning at a distance of two feet.

While the preliminary observations at the "Olivar station," at Jerez, were in progress, a meridianline, one hundred and forty-six metres in length, was established and carefully marked with stone posts by Assistant Dean.

With the friendly co-operation of Captain Pujazen, director of the San Fernando Ouservatory, arrangements were also made for exchanging clock-siguals by telegraph, for the purpose of determining the lougitude of the Olivor station, but the continual stormy weather prevented the execution of this work. Assistant Dean acknowledges the valuable assistance rendered by Capt. Jose S. Montop, chief of the Spanish Coast-Surver, who, in addition to other data furnished, kindly offered to connect the American eclipsestation by triangulation with the Spanish survey.

Captain Montop's observations place the longitude of our eclipse-station, at Jerez, $4^{\prime} 55^{\prime \prime} .3$, or $19^{8.7}$, east of the observatory at San Fernando, which would give for the Olivar station approximately $4^{\text {h }} 43^{\text {m }} 42{ }^{25} .1$ east of Washington.

The expedition was successful, and results of great value have been obtained. In the appendix (No. 16 of the report of 1870) will be found the details noted by the several observers.

MAGNETISM.
Observations made by the field-parties for determining the magnetic declination, dip, and horizontal intensity will be mentioned in connection with other processes of the survey, to which the observations were incident in several of the coast-sections.

At the magnetic station on Capitol Hill, in Washington City, Assistant Charles A. Schott recorded, in Jone, a complete series, and from his obserrations dednced the declination, dip, and intensity. His successive yearly results make parts in the discussion of the secular variation at Washington City.

In several instances, within the year, observers not connected with the survey have availed themselves of the means afforded at the standard station for testing and comparing their magnetic instruments. Those now in use in the Arctic expedition, under Captain Halls were adjusted by the assistance of Mr. Schott. The instruments used by the exploring party of Lieutenant Wheeler, in the region of the Colorado River, were tested at the same station. Assistant W. H. Dall, now on the coast of Alaska, is provided with the means of making reliable maguetic observations; all the instruments for use under his direction having been compared at the station on Capitol Hill just previous to his departure for the Aleutian Islands.

Late in November, when the iron steamer Hassler was about to sail from Boston, As sistant Schott, at my request, made elaborate observations for testing the magnetic condition of the vessel, and for determining the heeling error, and such other data as might be requisite for the effective
use of the compasses in steering. The application of instruments provided as tests, and which. were left on board, was fully explained by Mr. Schott. As practical illustrations he measured the dip, the ratios of the horizontal and vertical intensities, on shore and on the vessel, aud the deviation of the standard compass for the heading of the vessel at the time. Lieutenant Maray S. Diy, of the Hassler, assisted in these observations. The records and manuals on the deviation of rompasses on board of iron ships were left in the charge of Dr. Hill, who accompanied the hydrographic party in the Hassler.

OBITUARIES.

The year 1871 has been unnsually marked with sadness to us by the prematare death of five of the younger men attached to the Surver, each of whom was known among his associates and to myself as of the most active and usefal in his grade.

To the hydrographic division the change thas wrought has been especially severe. The record of deathsincludes one of its most trusted members. and two thoronghly-trained aids, who had given great promise of efficiency in hydrographic pursuits.

Sub-Assistant William W. Hardiny died of typhoid fever at Philadelphia on the 2ath of Sep. tember, suddenly closing, in the midst of special adaptation and earnestness in duty, a period of twelve years of service. At the date mentioned his party was engaged in hydrographic work on the coast of New Jersey. Summer and winter, for sereral years previous, he had umremittingl. pushed similar duty to complete the survey of the branches of the Chesapeake Bay, himself tracing the shore-lines, and in large results giving sure evidence of patience, energy, and skill. IIe had in full measure all the qualities desirable in his profession. In him a caltivated mind was ready at auy time to be enforced by a strong will, and the utmost which could thus be done in any direction he had of himselt subordinated to the interests of the work committed to his charge.

The social qualities of Sub-Assistant Harding endeared him to all in the Survey, and to a large circle of friends outside of its membership.

Arthur F. Pearl and George W. Aissell, two hydrographic aids of great merit, were drowned near Apalachicola, Fla., on the 26th of February, together with four men of the party on service in that vicinity. The disaster resulted from the upsetting of their sail boat in a very sudden squall of wind on their return to the anchorage of the schooner Silliman, which was about four miles ofi, after having attended church at Apalachicola.

These aids were young men highly valned for their contirmed moral worth, and for industry and attention in the performance of daty. Both were good sailors, and, besides being well qualified in other respects, they had evinced strong inclinations toward the hydrographic service. in that branch their thorough training had been strongly seconded by their own native energy and readiness to encounter any dangers incident to the course of duty.

During several seasous the senior aid served in Chesapeake Bas, in the party of Sub-Assistant Harding, whose subsequent untimely death has been already mentioned. For the winter service of 1870 , Mr. Pearl, at his own request, was transferred to the warmer air of a station on the Gulf coast, his over-exertion in the Chesapeake hydrography having brought on hemorrhage of the lungs. His amiable companion, Mr. Bissel, had been previously associated with several hydrographic parties in different sections of the Atlantic coast.

Harry S. Hein, jumior clerk in the office of the disbursing agent, died at his home in George town, D. C. on the 17 th of September, haring jast passed the twenty-first year of his age.

Under the eye of his father, and by implicit filial obedience greatly endeared, this estimable young man recently entered upon the discharge of daties pertaiving to the accomats of the Surver. He was then robust and without any symptom of the rapid decline which, after a short ilhess, terminated in death. The break thus made in a loviug family circle strongly moves our sympathies, and our regret for the loss to the service of so much promise. In the short period of his service, Mr. Hein had won regard by his amiable deportment and by readiness in business.

John H. Diggs, colored messenger, died of consumption, at his own house in Washington, on the 12th of July, aged thirty-six years. Before the close of boybood he came into service in the Coast

Surrey Office, and his intelligence and tact, shown in years of personal attendance on the Superintendent, kept for him the unvarying esteem of the late Professor Bache. The same qualities soon won my personal regard. I valned him also as a man who had ripened in knowledge by constant devotion to the interests of his ofticial superior.

A few years ago, when stricken with pulmonary weakness, John was assigned to such service at the Otice as least taxed his vital strength. The progress of disease was not lessened, yet his duties were performed with but few intermissions until a few weeks before his death.

PART II.

In this part of the report will be given short abstracts of the work done by the several parties. The notices will be, as heretofore, arranged in geographical order, beginning on the Athantic with the coast of Maine, and closing with mention of work done on the coast of Texas. On the Pacific side, the most southern site of work will be mentioned first, and others in geographical order going northward, the notices closing with mention of arangements made for hydrographic service on the const of Alaska. Field-work at points intermediate between the Atlantic and Pacific will be phaced in conformity with the longitude of the sites.

Hence reports on the determination of geographical positions in Ohio, Ilinois, Kentucky, and Missouri will be classed with abstracts of work done on the coast of the Gulf of Mexico. The statements, concise as possible, will be limited generally to mention of the sites, names of the assistants employed, and brief mention of statistics. Before entering upon these details, a few remarks are due to the distinctive branches of the work.

The progress of the triangulation on the Athatic and Gulf coasts during the past year has fully realized the views which were embodied in my estimates of September, 1870 . No plam, how. ever, in regard to special localities, made out a year in advance, can be adhered to in every detail. Unforeseen emergencies arise, and calls are made for special information. To such contingencies the extended operations of the survey have been subject during recent years in the interests of commerce and for other public uses. Hence, while the triangulation has not been continued at every locality proposed in the estimate referred to, other sites, and sometimes other duties, have been substituted, according to the necessities of the service. In some cases, parties have been concentrated, where immediate results were advisable.

Inchoding the usual reconnaissance and astronomical work inseparably connected with the triangulation, thirteen parties have been engaged in the course of the year at twenty seven sites on the Atlantic coast and Gulf of Mexico. This is exclusive of other branches, in one or other of which parties have operated within the year ou the borders of all the seaboard States of the Union, excepting Delaware and Alabama.

In accordance with the recommendation contained in my preliminary report of September, 1870, a small appropriation was made by Congress; at its last session, for commencing the geodetic connection between the Atlantic and Pacitic coasts, and for the determination of points in any of the interior States which may require them as the basis for State surveys, or for the construction of State maps. The expenditure of part of that small sum has already revealed a considerable error in the hitherto accepted geographical position of so prouinent a point as Columbus, Ohio. It is certain that any expenditure which may be made for this purpose will soon be repaid to the General Government by the more accurate information thas acquired in regard to distances, or the length of post-routes, upon which contracts for the postal service are principally based. By the 1st of July, at which date the appropriation became available, applicatious had been made by the governors of New Hampshire, Ohio, Indiana, and Missouri for the determination of geographical positions within the limits of their respective States. Accordingly several parties were assigned, and have been engaged in this duty and in the geodetic connection during the past five months. Statements in detail of their labors and results will be found further on in this report. Near the end of November last, the governor of California made a similar request.

On the 1st of December, 1870, a commmication was recival tom the How. G. C. Walker, governor of Virginia, appling, in conformity with a joint resolution of the geveral asembly of that state, "for the assigmment of a competent corps of surveross to the duty of ascentaming and locating the true bounday-lines betwen the State of Virginia and tise sates or Maryand, Somth Carolina, and Temessee" On the 15 th of January last a somewhat similar apmication was made by the Hon. Oden Bowie, governor of Maryland, in terms as tollows: " By an act of the gentral assemby of Maryand, of 1 sts, a commission was appointed to neet a commission to be appointed by the State of Virginia, to settle and adjust the boundarylime on the eastem shore of the Chesapeake Bay, between the States of Virginia and Maryand. It is parionlary desired that the surrey required in this wonk shouk he made by the most competent and experienced comp of surveyors. I, therefore, on the part of Marylaid, appy to wou for the assignment of such a corps from those engaged in the Coast Snrex."

These aphlications were refered to the Department, with a recommendation that they shond be faromby eonsidered. The apporal of the Secretary of the Treasury was given in February, with the understanding that the operations of the pary detailed shond be confined to the work of ascertaining and lowang the "true boudary-lines between Virginia and Maryland," and "that all proper expenses incurred be paid by the States interested." In pursuance of this authority, Richard D. Cutts, esq., the assistant in charge of the secoudary timgulation, was requested to take general charge of the proposed surves; to meet the joint commission, and, after consultation, to make the neessay arrangements for the prompt exceution of the work. It was not, howerer, until the 17 the of Norember last that a meeting of the commission wats called at Crisfield, Min., to which point Mr. Catts proceeded a few days atterward. A magority of the Maryand comminsioners not being in attendace, and the samon for fiph operations being unfanathe, considering the delay that must oceur before a survesing part, at the short notice given of the mepfing, cond be organized, the survess were postponed. The commission adjourned to meet in May next.

In a general review presented by Assistant (intts, 1 recogize the special adrantage of his services in the study of details comected with the secondary twagnation. To him is due also the recognition of ralnable suggestions for commencing the determination of points in the interion, the plan for which was settled early in the summer by a reconuaisance in the Western States, in which I was accompanied by Mr. Catts. Previousty he had completed the computations resultiug from an extended series of observations and measurements for determining the heights of geodetic stations in Section II. Late in Jume, Assistant Cutts organized his party and prosecuted field service near Mount Holls, mention of which will be made in its pace in the boty of this report. In the conrse of the season he reviewed the progress of several of the triangulation partics in the field, including those engaged on Lake Champlain, and there made arrangements for extendiag the triangulation northward to the United States boundary, by parties aralahle for that service from other sections after mid-summer.

In field topography, under the general charge of Assistant H. L. Whiting, satisfactory progress has been maintained.

As most of the important points along the Athantic coast have been corered by local survers, the basis is well lad for systematic operations in the execution of general progress work. Special attention has also been given and special force assigned to the filling up and completion of rarions gaps in work which earlier demands for the surver of particular localities made mavoidable. During the current suveying vear detached survers have been united on the consts of Florida, South Oarolina, Virginia, Rhode Island, and Maine, so that the coast topography is now contiunous from below Saint Augustine, Florida, to Broad River, Soutin Carolina; and from Beaufort Harbor, North Carolina, to Penobscot Bay, on the coast of Maine. The particnlar gaps in former work which have been closed during the ourent vear are as follows: Nassau Inlet, Florida, between Savannah River and Broad River, South Carolina; on the sea-const of Virginia near Cape Charles; on the lower islands in Narragansett Bay, Rhode Island; between Saco River and Richmond Island, and in the upper reaches of the Kemebec River, Maine.

In general progress work the coast topography has been carried torward on the Gulf coast of Florida and Louisiana, on the iuterior shores of Pamplico Sound, North Carolina, and in the resurvey 3 cs
of the sea-coast of New Jersey, made necessary by the changes in its sandy inlets and beach formation. On the coast of New Eighand needful resurvers hare been made on the outside coast of Rhode Ishand ; and active operations have been contimed in Pemobscot Bay and Monnt Desert Bay, on the coast of Maine.

The surver of the topography of the northern part of Lake Champlain has been completed under the general direction of Assistant Whiting. On notice and application from the State board of hatbor commissioners of Massachusetts, in reference to certain changes on the seacoast of the State, special surveys have been made of the harbors of Edgartown, Vinevard Haven, formerty Holmes' Hole, and Nantucket. The resurves at Edgartown Harbor reveals one of the most important physical changes which has occured on this section of the coast for many years, and the change involves the destruction (anless measures are taken to preserve it) of one of the most valnable harbors of reflige on the Atlantic seaboard. The subject of these changes, with the details of fesults, will be theated in reports from the offeers who made the special survers.

Besides the charge of details for hame-table work and the inspection of such field-sheets as requined res ision, Assistant Whiting has retaned his advisory connection with the State board of hanbor commissioners for Massachusetts. This, aithongh incidental, has become an important and ardnons service, and has maintained a desiable relation between the General Govermment and the Commonwealth of Massachmsetis in the improvement and preservation of harbors on the extensive and important sea-board of this State.

The hydrographic inspector, Capt. C. P. Patterson, has provided as usual for the transportation of the ficld parties needing ressels, and for the service aftoat. The relation is direct between the fieldwork and hydrography, and both, for the earliest productive uses, are dependent on the condition of work in the drawing and engraving divisions of the oftice. Hence the allotments for bydrographic service are wade to supplement the feld-work, and, when practicable, to complete the chars that may be furthest advanced toward publication. Among the details in the care of the bydrographic inspector are the notes of dangers, and sailing dipections for charts, the correct marking on them of booss and other aids to navigation; inspection of the sheets when marked with sonndings, and the selection from all the soundings of such as will represent without needless repetition the hydrographic features of phaces where surveys have been made.

To the ondinary duties and responsibilities of the bydrographic inspector have been added within the year others growng ont of the necessity for replacing vessels that have worn out in the service.

The details of work on the Pacific coast will be given in the body of the report, under the head of Sections \mathcal{I} and XI. I am specially indebted to Assistant George Davidson, who makes his intimate knowledge of that c : st effertive by snggestions, for placing the several parties to the best advantage for the phblie service. The onerations of his own field party will be stated in geographical order in the two sections. Assistant Davidson made available at the earliest moment the telegraphic lines recently passed along the western coast, for the determination of longitude, and has thus, and by latitude ohservations, largely added to our list of reliable geographical positions. The trequent recurrence of his name in Appendix No. 1, which shows the distribution of parties during the year, is evidence of characteristic onergy and devotion to the public welfare. For the Coast Pilot of California, Oregon, and Washington Territory, written by Assistant Davidson, and already published in several editions, he collected further materials while passing to and fro within the present year between San Diego and Olympia.

In addition to regular daties Mr. Davidson made a thorongh comparison of the working weights and coin weights, and tested the balances now in ose in the branch mint at San Francisco. This examination was undertaken at the special request of the Treasury Department. The necessity for such accuracy as cau be maintained only by rigid examination, repeated from time to time, will be understood on mention of the amount coined, which, at San Francisco, rises to nearly thirty millions of dollars in a single year.

Under the head of Sections, hegimning at the northeastern boundary on the coast of Maine, will now be given briff reports of each of the separate operations of the year. A condensed view of the field service, couformable in arrangement to the several abstracts, is shown in the Appendix No. 1.

SEUTION

Hydrography southenst of Moose aber Remef, Me.-Somdings whicl were made last rear developed the roadsted hown as Moose-a-hec Reach, and also the hyonography of the ammathes to it east and west. In order to complete the survey of the ricinity a parts was sent in Jnly in charge of Sul-Assistant Homee Andersom, with the schooner siliman. The onter ledges in the southem and southeastern apmoach were defined by somblings in the comre of the month of August. Mr. Anderson then completed the bydrography in the vicinity of the hager ishands, and added such details as were needed to the three sheets of the survey of last year. Mang dangerous sunken ledges were developed by the supplementary sommbers. The statistics of this work, which was closed on the 16 th of september, will be included under the next head.

Hydrography of Prospect Harbor, Me-This hydrographies survey occupied the party of Sub-Assistant Anderson from the $18 t h$ of September uutil the $20 t h$ "of October, An accident to the boiler of the small steam-launch sagadatoc, which was in the service of the party, ocemrell a few days after the somdings were taken up, and rembered the vessel useless for the remamber of the season. The hydrography was of necessity prosechted with the sehooner Sillman. Among the developments at Prospect Harbor were incladed the dangerous ledges which bie about a mile south of the entrance. Sub-Assistant Auderson was adted in this section by Messrs. C. H. Van Orden and E. B. Pleasants. The statisties subjoined inchade the work done in the approaches to Moose a-bec Reach :

Miles run in sonnding. 340
Angles measured.. 307
Number of soundings... 18, 807
In the early part of the sear Mr. Anderson conducted a hydrographic party in Section VII, as will be further mentioned under that head. He is now making preparation to return to the same site of work.

Topograply and hydrogrephy of Somes' Sound, (Mount Desort Istand, Mc.-The smeer of this harbor was made in the conrse of the summer by Assistant J. W. Donn with a party in the schooner Scoresby. Sonthwest Harbor, an indentation on the western side of Somes' Sonud, and all the islands in the vicinity were included, and are represented ou the resulting chat. (See sketch No. 18 in report for 1870 .) The topographical details, as usual in this section, are intricate, but permanent in character. Hence the phat table sheets, which year by year pass into the archices, may be expected to represent for a long time to come the surface features of this part of the coast of Maine. The details presented by Mr. Doun truly depict the ground passed over by his party. Statistics are subjoined of the field-work and soundings which were completed in October:

$$
\begin{aligned}
& \text { Miles of shore-line surveyed } 104 \\
& \text { Miles of roats . } 37 \\
& \text { Area of topography, (square miles) ... } 2 s \\
& \text { Miles run in sounding . } 404 \\
& \text { Angles measured... 3. . 341 } \\
& \text { Casts of the lead. 20, 583 }
\end{aligned}
$$

Tidal observations were carefnly recorded as usual while the soundings were in progress.
Sub-Assistant L. B. Wright was attached to the party in the sobrebly. Ile had previously assisted in the party in Section III, where Mr. Donn is now in reatiness to lesume feld-work. Mr. Wright is moder instructions to conduct a hydrographic party in section IN.

Topography of Seel Harbor, Me.-This harbor of refuge is a recess in the sontheastern part of the Fox Island gronp at the entrance of Penobscot Bay. The pane-table work recently tarned in by Sub-Assistant H. M. De Wees completes the topographical surver of the islands, including the shores of the harbor, of which the area is about three and a half square miles. The water-
space is greatly crowded with small ishands and ledges, and these are such that the harbor is not navigable at low water.

Mr. De Wees resumed fold work in this section on the Dth of Aughst, and closed the survey on the 19th of september. He had been previonsly employed in Section VII. The statistics of the sheet showing the vicinity of seal Harbor ate as foliows:

```
Miles of shore-hine trued . . . . . . . . . . . . . . . . . . . . . . . . . . ...................... . . 27
```

Miles of roads . $3 \frac{1}{2}$

Area of topography, (nquare miles) 5
A tracing from the pane-table sbeet was furnished to A ssistant Webber, who, being then : engaged in the general hydrography of Penobscot Bay, incidentally developed the ledges in Seal Harbor. Sub-Assistant De Wees has been assigned to service for the winter on the Gulf of Mexico.

Topography of Dear 7nle Thmounfore-The plane table surver of this pass between the large islanls which bound Isk an Hant Bay on the eastward, has been mate by dssistant W. H. Dennis. As asmal in the work of this cicinity, the shores of all the adjacent small ishemes were traced at low water, and many ledges vere defined. Field-work for the season was closed on the 3 d of November.

On the western side of Penobseot Bay, Assistant Dennis completed the topographical survey of the Muscle Ridge Istands, where the wort of his party was commenced on the 10th of Jnly. He was aided in the service in this section by Mr. A. P. Banamel.

The statistics of the two planetable sheets are subjomed:
Miles of shore-line traced . 45
Miles of rotds... 2
Area of topography, (square miles) 18
Field-work previously done by the party of Mr. Demis will be mentioned under the head of Section VI. He is now completing arangements to resume plane table duty on the coast of South Corolina.

Topography of Pembsent Bey, Me.-In the middle of July Assistant F. W. Dorr resumed phane-table work near Camden, Me., and extended the topography of the western side of Penobscot Bay toward Belast. Assistant C. T. lardella at the same time worked on the shores of Belfast Bay with a separate phane table. Mr. Dorr's sheet at its upher limit includes Kuight's Point and the details southward to Spring Brook in the vienity of Camden. Westward it takes in part, of Megunticook, one of the Camden IIills, and shows the surface features to an average breadth of about two miles in grme northward. Knight's Point on this sheet is an important landmark for ressels bound up Penobscot Bay. The harbors or roadsteads of Lincolnville and Duck Trap, which are slight indentations, appear on the lower sheet of this survey. These have no protection from bay winds, but the month of Duck River ofters a small imer harbor at high tide for ressels of light dranght. At low tide the chamel is nearly dry.

Along this part of Pemobsot Bay the topography is much broken. The elevations are high, and being shore charateristics they will be represented npon the final charts. On the topographical sheet of Assistant Dorr heights are shown ranging from four hundred and fifty to about fourteen hondred feet. For the tertiary triangulation needed in this part of the work, signals were set up under the direction of Mr. Dorr by the Aid, Mr. W. E. Mcolintock, who subsequently occupied the stations with a theodolite. Some points thus determined had been prerionsly fixed by means of the plane table, and proved to be closely coincident, showing the completeness of the projections sent from the office for plane-table work. Above Kuight's Point Assistant Dorr traced the shore-line on a second sheet, to provide for the advance of the hydrographic party of Assistant Webber, leaving the details for completion in another season.

From the northern limit of the phane-table sheet last mentioned, Assistant Iardella extended the survey nortliward to include the shores of Belfast Bay. By the close of September he had completed the topography near the town, and then extended the survey eastward aromod Moose Point, making the work conformable with that of Assistant Dorr. By means of points already
determined the surver about Belfast can be readily joined next season with the detailed topography near Camden. The statistios of the two parties are as follows:


```
Miles of rivers and streams . . . . ..................................................... . . . %s
Miles of roats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Area of topography, (square miles) .-....-....... . ............................. 32
```

The field-work of Mr. Hor, here described, was suspended on the 1 bth of October. A very large area was mapped by the same party in the preceding winter, mention of which will he mande under the head of Section IV. Assistants Dorr and Iadella we now making peparations to resume field-service in that section.

I visited the camp of Mr. Dorr, near Lincolnville. Me., in August last, and took pheasure in noticing its neatness and economy. He is energetic in the field and by forecast saves thme. I conld readily identify the details of his work as fathful representations of the features along the Pamb. scot Bay. The details then on the phane-table sheet of Assistant Iardella showed also mutiong patience to secure acmacy. Mr. Iardella kept the tich until the midde of Sovember, and then. together with Assistant Borr, proceeded to topographical duty in Section IV.

Topography of Isfoboro, (Pemobsey Inay,) Ma-The surver of last year be Assistant A. W. Longfellow included the isiands in the westem part of Penoliscot lay, below Ishboro, and also the lower part of that ishand, of which the total length is about eleven miles. la the latter fant of May plane table work was resumed at the limit reached last season. From thence Mr. Longfollow continued the detailed surves northward, and included the entire area of ishemo. As ustal, all the islets and rocks in view are represented on the tonographical sheets. The feld work was compheted on the 16 th of Oetober.

In Angust 1 witnessed with great satisfaction the earnestness of Assistant Longfellow in the prosecution of this surrey. He was efficiently aded by Mr. Joseph Hergesheimer, on whom devolved, toward the end of the season, the completion of the work, in consequence of the semions illness of the chief of the party. Mr. Hergeshemer is now on duty in Section VIIL, where he was also engaged daring the preceding winter.

Hyarography of Pemobsot Bay, Me.-The hydrography of Penobscot Bay has been extended northward from its previous limit by the party of dssistant F. P. Webber, working with the steamer Endeavor. Soundings were taken u_{p} in Jaly at the southern end of Islehoro. In the course of the summer the work was extended to the northern end of that island, developing Gilkeys Harbor, Bomity Core, the chamed between Isleboro and the main, and the eastern part of Penobscot Bay to Cape Rosier.

On a second hydrographic sheet Assistat Webber photed sonndings made by his party in Seal Bay, a harbor of refage to the eastward of Long Island, in the Fox Island gronp, at the entrance of Penobscot Bay. A small rock, very dangerous to vessels entering from the eastward, was determined in position near the Fox lshand thoronghfare.

Before taking op work north of Camden, Mr. Webber examined the bar at Tenmat's Harbor, and forwarled to the office some additional somotiugs.

The statistics of the hydrographic work are subjoined:
Miles run in sounding 1 , 092

Number of soundings. 54 . 881
Messes. D. B. Wainwright, S. N. Ogden, and C.S. F. Hoffman were attached to the party in the Endeavor. Under Sections VI and VII reference will be made to the previous operations of Assistant Webber. He is now prosecuting hydrographice duty in Section V.

The arragements for work in the party of Mr. Webber, and the judgment shown in prosecuting the hydrography, were subjects of special gratification when I visited his party in August in Penobscot Bay. Operations were contiuned until the 17 th of October.

Topography and hydrography of the Androscoggin River and Cathance lirer, Me. The survey by Assistant C. H. Boyd in this Section develops the water-commonication between Brunswick, on the Androscoggin, and Bowdoinham, at the head of navigation on the Cathance River. Plane-
table work was commenced on the 24th of July. Some additional points needful in extending the survey on the western side of Merry-Mecting Bay were determined by triangulation. In that service Mr. Boyd occmpied six stations with the theodolite. The topography includes both shores of the Androscoggin up to Brunswick, and the neck of land between Morry-Mecting Bay and Bowdoinham, the load joining the two towns, and, intermediate between them, the course of Muddy Rirer. As usual, where the water-level is subject to considerable change, the plane-table sheets are marked with high-water and low-water shore-lines. Current observations were made in the rivers, mal the tides were carefully recorded. The soundings in the two rivers include the navigable parts and join with work previonsly completed in Merry-Meting Bay. A summary of the statistics is appended:

$$
\begin{aligned}
& \text { Siguals crected. } \\
& \text { Points determined. } 7 \\
& \text { Miles of shore-line traced, (low water). } 48 \\
& \text { Miles of roads . } 31 \\
& \text { Area of topographs, (square miles) .. } 16 \\
& \text { Casts of the leat .. 12, } 377
\end{aligned}
$$

The two tidal statious were eight miles apart. Between them a line was run with the level to determine the plane of reference for the two tideganges. Mr. W. I. Vinal aided in the field-work until the 4 th of October, when he took charge of a hydrographic party, the operations of which will be meutioned in the next section of this report.

Assistant Boyd completed the field-work near Brunswick in the latter part of October and then made preparations to resume feld-service in Section VIII, where his party had been engaged in the preceding winter.

Sailing directions for the coast of New England.-The duty of preparing sailing directions for the coasts of Mane, New Hampshire, and Massachusetts has been continued by Assistant J. S. Bradford. In addition to this work, Mr. Bradford was directed to make a final examination of Casco Bay, including the approaches to Portland, in advance of the intended issue of a chart which will embrace the waters between Cape Small Point and Cape Elizabeth. The examination was laborious, owing to the great number of ledges and shoals to be examined, but Mr. Bradford successfully verified the hydrograply between the two points named.

The party in the schooner Joseph Henry also surveged the approaches to Saco River, including Winter Harbor and the Pool, and resurveyed the harbors of Cape Porpoise and Stage Island The sailing directions heretofore used were revised and such additions and alterations were mate as had become necessary. These were due, in some cases, to changes in the buoys, and in others to developments made by the sonndings of this season.

Much of the service by this party was necessarily office-work. Forty-three ledges were examined, inchuling fifteen which had not been previonsly described. The statistics are as follows:

Miles run in sounding .. 63
Angles... 288
Nunber of soundings...... 6, 571
The report of Assistant Bradford was accompanied by sailing directions for all the harbors between the Damariscotta and Boston.

Operations on the coast of New Eugland were closed on the 1st of November. The vessel was then laid up at Cousin's Island in Casco Bay. Mr. E. H. King served as aid in the hydrographic; party in this section. Assistant Bradford had been previonsly engaged in Section VIII, as will be further mentioned under that head.

Topography of saco Buy, Mc.-The plane-table work required to fill a gap in this part of the surver of the const of Maine was resumed by Assistant Hull Adams in Jaly at a point about three miles north of Saco River entrance. Going northward and eastward the topography was continued to Spmrwink River, where it now joins with the detailed survey of the vicinity of Cape Elizabeth. Last season the month only of Saco liver was included in the plane-table survey. In the work of this year the topography of the banks of that river was mapped, and also the vicinity of Saco and Biddeford. The field-work closed there on the 20th of November. To the northward the details include the roads along Old Orchard Beach, the lower reaches of Little River, and

Scarborough River; Prout's Neck and the beach beyond; and the islauds and rocks in the vicinity of Saco Bay.

Assistant Adams was aided by Mr. J. N. MeClintock until October, when the services of the aid were required in Section II. He rejoined the party, however, at the end of that month aud completed the survey of the Saco River.

The statisties of the season are as follows:

$$
\text { Miles of shore-line surveyed . } 70
$$

Miles of outline of shoals and marsh....... 2
Miles of roads 40
Area of topography, (square miles) 18
After turving in the plane table sheet of the ricinity of Saco, Sub-Assistant McClintock was assigued to duty in Section VII.

Geodetic points in New Hampshire-In compliance with the application of the governor of Sew Hampshire for the determination of points for the topographical and geological suryeys in that State, under authority given to the Superintendent by the proriso attached to an item of the last appropriation by Congress, instructions were given authorizing Prof. E. T. Quimby, of Dartmonth College, to commence the work in July, when the appropriation beame available. The operations were arranged to accomplish the particular object desired, as well as to facilitate the progress of the geodetic work for the survey of the coast, and for that of Lake Champlain. With this donble object in view, he was directed to start from the established base, Monadnock-Vnkonomuc, to lay out a scheme of secondary triangles in the direction of the lake; to determine such tertiary points as might be most available and useful for local surveys; and to provide proper bases for the coutinuation of the triangulation to the northward and southward whenever needed, the whole to constitute a thorongh reconnaissance for the extension of the primary triangulation to our frontier on Lake Champlain.

In accordance with his instructions, Professor Quimby took the field on the 1st of July and spent that month in reconnaissance and in the erection of siguals at the points to be occupied as secondary stations. These stations were ten in number, as follows: Stoddard Heights, Pollard's Mount, Hartwell Hill, Lovell's Mount, Mount Kearsarge, Stewart's Peak, Sumapee Mount, Rattlesnake Hill, Crotchet Mount, and Mason's Hill. Siguals were also set on Monadnock and Unkonoonuc.

On the 1st of August the observing party was organized and the measurement of horizontal and vertical angles was commenced at Crotchet Mount, in Hillsborough County. During the month of August, the aid and one man were employed in erecting tertiary signals at Lyndeborough Pinnacle, Pack, Monadnock, Barnett Monut, Duncan Hill, Bald Hill, Nelson Pinnacle, Bacon Ledge, Tuttle Hill, Hedgehog Hill, Deering Pinnacle, Orany Hill, Cochran Hill, and Mine Hill. Between the 1 st and 18 th of the month observations were made on the secondary and tertiary signals visible from Orotchet Mount, as well as npon a number of church-spires aud other prominent objects. Professor Quimby reports that during this time only six days of good weather permitted observations.

On the 19th the party moved to Mason's Bill for the purpose of making at that station the observations required to complete the parallelogram with Monadnock, Crotchet, and Unkonoonuc. This was accomplished by the 29 th, bot, howerer, without the same experience of haze, clouds, aud fog, as at Crotchet.

On the 29th of Angust the station on Stoddard's Heights, in Cheshire County, was ocempied. Professor Quimby succeeded by the end of the month in measuring the angles at that point lelong. ing to the triangles around Crotchet, and in thus obtaining the latitudes and longitudes of several new points.

The period having arrived for the return of Professor Quimby to his duties as professor of mathematics and astronomy at Dartmonth College, the party was discharged on the 1st of September. The instruments and camp equipage were then stored at Hanover.

During the short season of two months signals were erected and observed upon in nineteen townships of the State. The statistics of the work executed are as follows:
Secondary angles observed... 13

Tertiary angles observed.. 58
Vertical angles observed... 12
Number of measurements.. 1, 637
In reference to the determination of pints for the special benefit of the State, Professor Quimby suggests a plan for the erection of tertiary signals which would reduce the expense, and, at the same time, iuterest the people in the work.

He proposes to issne, in the form of a printed circular, a minute description of the signal, of the method of setting it, and a form for describing the station, and to send these circulars to the authorities of the different towns, with a view to induce them, at the expense of the town, to erect, under the supervision of the assistant condncting the observations, such tertiary siguals, and at such points as he may think advisable.

Longitude obsercations at Ciambridge, Mass.-Under separate heads in Section Vll of this report, mention will be made of longitude determinations at Cleveland and Columbus, in the State of Ohio; and at Falmouth, Oakland, and Shelbyrille, in the State of Kentncky, where stations were ocmpied for observing the total solar eclipse which oecurred in Augnst, 1869.

During autumu of the pesent year, Prof. Joseph Winlock, director of the Cambridge Observatory, was in communication with the observers in Ohio and Kentacky, and exchanged timesignals with them severally by telegraph for the respective longitude determinations. It is gratitying to refer to the steady aud usefnl co-operation of the Western Union Telegraph Company in affurding, free of cost, the facilities for exchanging clock-signals between distant stations. The work is done at night, and after the telegraph-oftices are closed for business. Nevertheless, much of the success recorded in our longitude determinatious has been due, beyond the use of the lines, to the assistance cheerfully given by the officers and operators of the telegraph company. For the observations required at the western stations the wires in each case were connected with Cambridge Observatory, so that time-siguals might pass directly between Professor Winlock and each of the observers in Ohio and Kentucky.

Edgartoun, Nantucket, and Vinegard Haven, Mass.-Darly in the summer application was made to me by the Massachnsetts Board of Harbor Commissioners for informatiou which should ad them in the consideration of certain petitions from citizens of Martha's Vineyard and Nantucket, relative to the proposed opening of passage-ways through the beaches of Edgartown and Nantucket Harbors, and the closing of the intet at the lagoon of Vineyard Haven. In response to this application, partial surveys were made by Assistants H. L. Whiting and Henry Mitchell, in order to furnish for the desired conclusions data drawn from the present condition of the places in question.

The coast section, in which these harbors lie, is of special interest because of the wasting of its headlands, the shifting of its beaches, and the singular tidal phenomena in the approaches by sound and sea.

As long ago as 1846, Lientenant Commanding (now Rear-Admiral) Davis first called attention to the physical changes that were in progress along this part of the coast of Massachusetts, and in the same year Mr. Whiting made his first survey of the special locality in question. My own connection with these studies dates back to 1855 , when the problems arising from Mr. Mitchell's tidal inguiries were referred to me for solntion by my predecessor.

Aside, howerer, from these circunstances, which give to the neighborhood a scientific interest, the national importance of the two ports of Martha's Vineyard entitles them to watchfuluess on the part of the Coast Survey, especially when fears for their utility and permanence are reflected in the petitions of intelligent citizens. In calling upon Mr. Whiting and Mr. Mitchell for reports concerning the changes, I instructed them to make such survers, each in his own field, as might seem to them desimble.

It appears from these reports that the southern opening of Edgartown Harbor through Cotamy Beach has been closed upward of two years, and this closure has greaty embarrassed the fishing interests of the place, and given rise to apprehensions that the main entrance from the north may fill up because of the loss of tidal circulation. No shoaling of the main entrance has, however, yet occurad. In the chamel-way over the bar the depth has increased one fort within the last twenty-five years, and is now sixteen feet at mean low water; bat within Chappaquiddick

Point a shoaling has taken place opposite the town wharces. This shoaling extends quite across the channel, but has not seriously diminished the depth. That the apprehensions referred to are groundless I would by no means imply, but that the barbor, in its principal points of excellence. remains unchanged after two years of closure, at the sonth beach, is beyond question.

There have been several closures of the Cotamy Beach since the settlement of the island, and each new inlet has repeated essentially the history of its predecessor. It has first burst through the western portion of the beach, then worked to the eastrard, till in course of time it reached the firm land at Wasque, where it made a stand, and finally succumbed after a somewhat protracted struggle for existence.

The levelings over the beach brought into sharp contrast the wind-worn and water-worn sections. The first gives for contours a congeries of curres; the second two systems of nearly straight lines. The beach where subject to the action of the wind is covered with irregular sandhills, while that portion which is still under the occasional control of the sea presents two sinooth surfaces declining in opposite directions from a crest-line. The sand-hills scarcely reach the dignity of dunes, but each water-worn section is in form and function a dike, differing, however, from the artificial structure as usually built in the order of its slopes.

These natural dikes appear to have the same form of cross section and nearly the same altitude of crest above the tide, whether observed upou the south shore of Martha's Vinevard or the east shore of Nantucket, as if the direction of exposure made no difference.

The survey of the interference tides of the sound and its approaches, made in 18:4, becomes peculiarly valuable in connection with the schemes for opening the beaches I have referred to, since we are able to give rules showing at what age of the moon, and at what hour of the tidal day, the greatest difference of level between the lagoon and the sea may be expected.

Althongh the tides of this neighborhood are small, there is a great proportional difterence between the morning and evening tides, between neaps and springs, and between consecutive springs. Moreover, the winds from different directions are unequal in their effects upon the absolute and relative elevations of the lagoon and the sea; so that the engineer cannot dispeuse with the tables deduced from the observations of Assistant Mitchell, and which are now on file in the Coast Survey Office.

After parts of the shore-line had been traced, hydrographic surveys were made in the course of the summer at Vineyard Haven and Edgartown Harbor; and, in addition, the tides and currents were carefully studied.

The charts were made by Sub-Assistant H. L. Marindin. Upon them are plotted in the aggregate 139 linear miles of sounding lines, and depths selected from 20,547 recorded casts of the lead, the positions of which were determined by 2,016 angles.

The tides were observed at three statious and the currents at ten. Particular attention was paid to movements along the bed of the sea, and the record shows about one thousand observations.

In the report of Assistant Mitchell special mention is mate of the energy and skill shown by Mr. Marindin. The party was also assisted by students from the Rensselaer Iustitute of Troy, N. Y., and from the Institute of Technology of Boston, who volunteered in their vacations to take part in this instructive work.

Providence, R. I.-In order to provide for the insertion of the city of Providence in the usual generalized form on the chart of Narragansett Bay, a compilation from his own and other data was made by Assistant A. M. Harrison in August. Several years ago he surveyed the wharf-lines at Providence, and in so doing determined a few triangulation points in the vicinity. The data then gathered was applied to the existing city map for the compilation referred to, the object being to show in a general way the principal streets in their relation to the water-line. This work was done at an interval during which Mr. Harrison transferred his party for service that will be referred to under the next head.

Topography of Narragansett Bay, Rhode Island.-At the date of my report last year the detailed survey of Narragansett Bay was nearly complete. What then remaived was mapped at intervals during the winter by Assistant Harrison, under whose charge the entire survey has advanced from the tracing of the shore-lines at the commencement of the work.

40 s

Sub-Assistant H. G. Ogden, after closing work last winter at the south end of Rhode Island, and before taking up duty in Section VIT, joined Assistant Harrisou at Wickford, on the west side of the bay, and assisted in adding some details to the survey in that vicinity. Mr. Harrison, in December, resumed the outstanding work in the neighborhood of Newport, and by the end of March completed the detailed survey. In the course of the winter he ran lines with the level, to an aggregate length of twenty-three miles. The harbor commissioners of Newport having previously assigned means for a minate survey of the wharf-lines, on a scale larger than that needed for the chart, Assistant Harrison was authorized, in April, to comply with their wishes. The requisite triangulation was made by Assistant Edward Goodfellow. From the twelve points thus given, Mr. Harrison traced and mapped the entire city front, and the shore-line for some distance above aud below the city limits, on a scale sufficient for all legal requirements. This work was closed in May. Soon after, his party was organized for the summer, and, resuming the topographical survey at Narragansett Pier, extended it around Point Judith. For its progress to the westward, points were furnished by a party in charge of Assistant Sullivan. As in other parts of the survey of Narragansett Bay, the work along the north shore of Long Island Sound is intricate, the surface presenting topographical details of all kinds.

Mr. Bion Bradbury, jr., served as aid in this party during the season, and Mr. Stearns from the $10 t h$ until the end of August, when he was assigned to field duty in Lake Champlain. Both are now under instructions to accompany Assistant Harrison for service during the winter in Section VI. The plane-table survey going west of Point Judith was suspended early in November, when the following return was made in statistics:

Miles of shore-line survered. 70
Miles of creeks and marsh-line surveyed.. 6

Area of topography, (square miles) $20 \frac{1}{2}$
Tidal observations.-The self-registering tide-gauge established last year at North Haven, on the Fox Islands, as the principal tidal station and point of reference for that part of the coast of Maine, a general account of which was given in the report for 1870 , has been kept running continuously. Its record is as nearly perfect as could have been anticipated. The apparatus for preventing the formation of ice around the moving parts of the tide gauge has worked admirably, so that no tides have been lost from this cause. This station, judging from the curves traced by the gauge, appears to be well suited to the purpose for which it was selected. Mr. J. G. Spaulding, a very attentive observer, has been in charge, and has also kept up a regular series of meteorological observations.

Mr. Howland has continued the series of tidal and meteorological observations at the Boston nary-yard. The gauge there has failed to record tides during the coldest parts of winter, owing to frequent stoppages by ice. To supply the deficiencies in the record, parts have been added from the curve traced by the experimental glycerine-gange working beside it. This last, however, has never yielded a perfect curve, but generally gives a close approximation. Short series of tidal observations have been made at several other places in this section by hydrographic parties as usual. These are primarily for the purpose of reducing soundings, but the registers lead to valuable results when studied in connection with those made at the permanent stations.

SECTION II.

ATLANTIC COAST, AND SEA-PORTS OF CONNECTICUT, NEW YORK, NEW JERSEY, PENNSYLYANIA, AND DELAWARE, INCLUDING BAYS AND RIVERS. (Sketch No. 3.)

Triangulation from Point Judith westward.-In order to provide for the extension of the planetable survey in this quarter, so as to complete a chart of the westeru approach to Narragansett Bay, thirteen points were determined by, Assistant J. A. Sullivan in the latter part of July. Four stations were occupied with the theodolite, the last being in the vicinity of Charlestown, R. I., and about eight miles west of Point Judith.

Mr. W. H. Stearns aided in the triangulation, and made the field computations. The records of the work, with descriptions of the stations, have been filed with similar data pertaining to this
section. Assistant Sullivan communicated the results of his measuremeuts to Assistant Harrison, and the plane-table survey, which was then in hand, went forward without delay. Culer the heal of Section VI mention will be made of the previous occupation of Mr. Sullivan. His aid, Mr. Stearns, was on service in that section, and later in the season reported to Assistant Cutts for duty on Lake Champlain, respecting which further remarks will be made before closing the notices of work in Section II.

Station marks.-From the earliest period of the survey marks have been set in the ground immediately under the position occupied by the theodolite at each point determined in the triangulation of the coast. Of themselves the marks are indestructible, and they are so placed as not to interfere with tillage, or, except where excavation may be needful, with any requirement in the advance of settlements. The stations have been selected generally with a view to their preservation. Nevertheless, some marks set for future reference may be disturbed by natural changes. From willful derangement, or removal, they are protected as far as possible by State laws, the importance being obvious of having at all times the means for fixing geographical positions beyond dispute.

Within the present year the examinations of Assistant John Farley at some of the principal stations on both shores of Long Island Sound confirm what was previously known in regard to the necessity of positive means for preserving the ground-marks. At Montank Point the depression was found which indicated the place once occupied by the signal-pole, but the earthen cone buried at the foot of the pole had been dug out and destroyed. Mr. Farley took qearings aud measurements sufficient for identifying the station. The marks on Shelter lsland, being in a more sequestered place, had not been disturbed. Ordinary search for the exact point occupied at Friar's Head, on Long Island, was unavailing. The vicinity being now a deserted waste that was formerly well settled and cultivated, the reference marks conld not readily be identified, but, it the absence of other than natural canses, the cone buried when horizontal angles were measured from that point may be regarded as in position. Farther westward on Long Island the small marble post set at Clarke station, in 1865 , was readily found. This point is near Manbasset, and will be carefully preserved by the present proprietor, J. M. Clarke, esq. Three stations on the coast of Rhode Island were visited. Watch Hill station has not been disturbed, but Mr. Farley took additional ranges and views for identifying the point. The cone is probably in place on Champlin Hill, the outside reference marks being found as they were left. Such indications were wanting at Lantern Hill, but the cone was found in position.

Nickerson station, on the coast of Connecticut, is on an unfrequented hill. The signal-pole originally used was set between two large rocks, and these yet correspond to descriptions filed with records of the triangulation. At Willians's Hill, also in Connecticut, evidence gathered by Assistant Farley was satisfactory in regard to the security of the station. Sugar-Loaf Hill, farther westward, in the vicinity of New Haven, shows in the circlet of stones and a slight mound, the indications which were left by the triangulation party.

Evidence of the vicissitudes to which ground-marks are subject was revealed in the examination made by Mr. Farley of "Yard" station, near Philadelphia. Several years ago ho was at the place, and recorded the position in which were found two pieces of the original earthen cone. The proprietor of the place, Mr. William Q. Baxter, with commendable interest, marked the position of the fragments by burying a granite bowlder, in which was previonsly fixed a leaden plate duly inscribed. Some time afterward, having occasion to move the ground in the vicinity, Mr. Baxter found the true cone. Assistant Farley visited the station in November, and, by additional measures and ranges related to the present surroundings, has recorded anew the exact position which was occupied by the theodolite while the triangulation was in progress near Philadelphia.

The results of his inspection were embodied by Mr. Farley in a special report, accompanied by sketches showing the vertical and horizontal contour of the ground at each station.

Triangulation and topography near New Haven, Conn.-The work of this year near New Haven was begun by determining points for the plane table survey from two stations of the early triangulation. Mount Carmel was occapied to the northward of the city, and Milford station on the western side of the entrance to New Haven Harbor. For this service Assistant Edward Goodfellow took the field in June and closed in July. He occupied, in addition to the stations already
mentioned, three others in the immediate vicinity of the city. After turning in the records of his triangulation Mr. Goodfellow was assigned to duty, which will be further noticed under the head of Sertion VII.

As soon as possible after the preliminary triangulation was finished, Assistant R. M. Bache took up the topographical surver. This region comprises about a huudred square miles, and geologically consists of four ridges of trap and sand-stone, trending in a general north and south direction, bounded on the north by a transverse ridge of trap, the heights, as distinguished from the New Haren plain, varying from about two hundred to upward of seven hundred feet. It is drained through valleys, which are here a broad marsh, there a narrow seam, and again, a central rising plain dicersiffed by rolling land. The vicinity is of singular topographical and geological interest. In his report Assistant Bache remarks: "All the various features conducive to beauty in map delineation are here present, and here, too, plainly legible, is a volume of the aucient physi. cal bistory of the globe, in which, amid the work of the uphearing, depositing, and denuding forces through long ages, is seen the rude inscription of the great northern glacier, which molded these sand-stone hills, grooved and abraded the trap-rocks, and scooped out the valleys."

The map of a region containing one of the chief seats of learning in our country should include all the surface-features of special interest. When this work is doue Professor James D. Dana, of Yale College, will represent upon copies of the plane table sheets the results of his close stady of formations, and thus meet all future inquiry by an example of the best method of geological delineation, applied to a minute topographical survey. Assistant Bache employed as aids in his party members of the scientific school of the college, who sought the incidental adrantage of instruction in the use of the plane-table. In the recurrence of such instances the country at large, which, in its rapid development, is beginning to offer to skilled topographers a field of labor great in proportion to the number fitted to occupy it, will be benefited to the extent to which schools along the sea-board may arail themselves of proper opportunities.

Assistant Bache commenced the survey by running a number of lines of level, the two principal being up the central valley north of New Haven. This is a sloping plain nine miles long, which starts from the beight of about thirty feet at the barbor, and attains an elevation of ninety feet at the base of Mount Carmel, the transverse ridge of trap before mentioned. He says: "Much curiosity being excited in regard to some of the chief heights, they were, by request, and with your special permission, published, dispelling long-cherished illusion on the subject. Mount Carmel, commonly reputed to be over nine hundred feet in beight, is not much over seven hundred. East Rock, in the very outskirts of New Haven, once underwent a similar diminution of its grandeur ; for, as we learn from ono of a scries of articles published in journal form in the Atlantic Monthly, entitled, 'A Virginian in New England thirty-five years ago,' East Rock was then reputed to be five hundred feet in height, but long since it has been known not to exceed three hundred and sixty. The popular tendency to exaggeration, growing out of the delight of wonder, is observable everywhere before the taking of accurate observation, no height or depth ever being underrated. The effect of special mental training in producing accuracy is perceptible even in guesswork."

The season was generally unfavorable for field-work, but, besides lines of level aggregating thirty-five miles, and plane-table triangulation giving points within an area of thirty square miles, Assistant Bache completed over six square miles of the most intricate of the topography. This area comprises the Quinuipiac River, and its branches and marsh, for two miles and a half from the mouth; the country eastward to the first main road, and the southern half of Quinnipiac Ridge, lying to the west of the river. The length of shore-line of rivers and other water courses surveyed was thirty-three miles, and of roads twenty five miles. With the early spring, operations will be resumed by the party of Assistant Bache.

Survey of Lake Champlain.-The survey of Lake Champlain was resumed in July, and was continued until the close of the season in November. Two triangulation parties, two topographical, and one hydrographic party have been employed on the lake, some for the season and others for part only, according to the date of their return from the duties assigned on the southern coast. The triangulation now extends from Juuiper Island northward to the boundary-line between the United States and Canada, and covers more than half and the most important part of the lake.

Two short bases for the verification of the work on the east and west arms were measured near the boundary. The triangulation was connected with and closed upon the astronomical station in New York, occupied in 1845 by Maj. J. D. Graham, United States commissioner for the determiuation of the boundary-line, and upon three of the iron monuments marking that line on the frontier of Vermont. The surves of the shore-line was continued as rapidly as the points required for its execution were furnished, and the number of parties specially detailed for this duty would permit, and embraces, with the exception of the northern part of the east arm, the entire field covered by the triangulation. The hydrography was carried on whenever the weather was at all favorable, the party in charge devoting the season to the broadest part of the lake, lying between Burlington, the Four Brothers, and Valcour Island, and to a close survey of such shoals and dangers to uavigation as were found to exist. The several branches of work will be briefly mentioned in separate notices.

The early date of the appropriation by Congress, occurring at every alternate year or session enabled the parties at the south to continue in the field somewhat beyond the end of the fiscal year in sections where the weather was favorable, and it was not, therefore, until the middle of August that such of the returning assistants as were available conld be assigned to the operations contemplated on the lake.

In the mean time, and with a view to hasten the progress of the work, Assistant R. D. Cutts, then engaged in the triangulation across New Jersey, detailed his aid, Mr. B. A. Colonna, to proceed to Burlington, Yt., and, with such assistance and means of transportation as conld be found, to make a reconnaissauce of the east arm; to lay ont a scheme of triangulation with the usual quadrilaterals and checks, and to erect the necessary siguals. Mr. Colonna reached Burlington on the 15th of August; was at work on the 19th, and before the close of September the signals, forty-two in number, were erected at interrals between Kible's Point and the boundary, including two or three on the Canadian shore, required for the determination of points on Missisquoi Bay, in Vermont. The energy and good judgment displayed in the execution of this duty received the commendation of the assistants whose future movements depended on his progress and success.

On the 28th of August Assistant Cutts finished the observations at Mount Holly, and started for Lake Champlain to take general charge of the checks and verification required at the closing of the work on the frontier. After visiting the different parties and making such arrangements as were deemed necessary, he proceeded to Alburgh Springs, near the boundary, expecting to find on the neighboring peninsula a site for a common base of verification for the two parallel series of triangles covering the east and west arms. Not succeeding in this, owing to the broken and rolling character of the country, he selected two sites, one on a level beach in the ricinity of Rouse's Point, and the other on the railroad bridge and track over the east arm, for the verification, respectively, of each series. At the same time a triangulation station, visible from both arms, was selected for the comparison of azimuth. The work of measuring the two bases was assigned to Snb-Assistant Perkins.

Triangulation of Lake Champlain.-In continuation of the survey of Lake Champlain, Assistant Charles Hosmer, after returning from work on the coast of South Carolina, took the field in July in the vicinity of Colchester Point. Signals were set up along the shores of the eastern channel of the lake as far north as Kibbe's Point, and intervening stations were occupied with the theodolite for the measurement of horizontal angles. Points having been thus determined, Mr. Hoswer resumed the shore-line survey with the plane-table. Separate mention will be made of the prosecution of that service. At Kibbe's Point the triangulation was taken up by Sub-Assistant F. W. Perkins, and was pushed northward as far as Ball's Island, to provide points in adrance for the plane-table parties and for the soundings. Assistant G. A. Fairfield, after closing the season in Section IV, was instructed to co-operate in the determination of points on both shores of the eastern chanuel of the lake above Ball's Island. He commenced angular measurements on the 1st of September, signals for the purpose having been previously set up under the immediate direction of Assistant Cutts, by the Aid, Mr. B. A. Colonna, as already stated. Sub-Assistant Perkins having brought up the triangulation to Ball's Island, joined Assistant Fairfield, and, in going farther northward, stations on both sides of the channel were occupied at the same time. By this arrangement favorable intervals of weather, in a season which proved to be generally
unsuitable for such work, were improved to the utmost. The triangulation was extended northward through MeQuam Bay, and beyond it through the eastern chanuel to the end of the lake, in Missisquoi Bay. Two stations of the triangulation done by this party are north of the United States boundary. Mr. Fairfield closed the triangulation of the eastern part of the lake on the 8th of October.

For verifying the triangulation which had been brought from the vicinity of Burlington, a base-line was measured by Sub-Assistant Perkins on the railroad bridge near Alburgh, Vt. This is about three miles south of the United States boundary. The measurement of the line, which is more than three quarters of a mile, differs from the computed length by less than one inch and a third. In order to verify the triangulation, which at the same time was extended through the western channel of the lake above Plattsburgh, Mr. Perkins measured a base line at Windmil Point, on the eastern side of that channel and opposite to Rouse's Point. The comparison between the computed and the measured length of the line is satisfactory. The triangulation of this season from Colchester Point northward into Missisquoi Bay, including the operations of Assistant Hosmer, Sub-Assistant Perkins, and Assistant Fairfeld, is represented by the following statistics:

Stations occupied . 49
Angles measured 313
Points determined. 50
Number of observations... 7, 472
Assistant Fairfeld is now engaged in triangulation work in Section IV, and Sub-Assistant Perkins in similar field-service in Section VII.

On the 10th of July Assistant S. C. McCorkle commenced the triangulation of the west arm of the lake, and the reconnaissance for a scheme of secondary triangles. Owing, howerer, to the urgent necessity of points for the plane-table party ordered to that locality, the latter duty was discontinued, and he devoted his entire time and attention to the progress of the tertiary work. The triangulation was taken up at the line Crab Island-North Sawyer's Point, and by the $22 d$ of October it was connected with the base of verification and with a mark of the boundary-line near Rouse's Point. The preliminary computations show a satisfactory agreement between the length of the line as obtained by direct measurement, and its length as deduced from the Plattsburgh base.

In consequence of the ill-health of Mr. McCorkle, which he reported toward the close of July, Mr. William H. Stearns was detailed for duty, and on the 1st of September was assigned as aid. Inhis report Assistant McCorkle states that after the 5th of September Mr. Stearns erected six signals and made all the field observations up to the close of the season, and his zeal and attention to duty are commended.

The following statistics show the work executed by this party, in addition to which it may be mentioned that the computations were kept up with the observations in the field:

Siguals erected.... 20
Stations occupied 33

Observations 5, 250
Shore-line surrey of Lake Champlain.-Two parties being available after midsummer for tracing the shores of Lake Champlain, the triangulation was urged so as to provide points for the comple. tion of the field work north of Burlington before the close of the season. This purpose has been accomplished.

Assistant Charles Hosmer resumed with the plane-table on the 1st of September at Colchester Point, and kept the field until the 25 th of October. Five topographical sheets were projected, which he has returned to the office marked to represent the shore-line of the lake on the easteru side, from Colchester Point northward to Butler's Island. These comprise in the aggregate one hundred and one miles of the lake shore. In this survey Assistant Hosmer was aided by Mr. R. B. Palfrey.

At Shanty Point the work was taken up by Mr. J. N. McClintock, and extended northward to Stevenson's Point, the sheet of work comprising both shores of the eastern channel of the lake,
and at the norubern extremity taking in the shore of McQuan Bay. Mr. Mcolintock traced twenty-four miles of shore-line, and at the end of October returned to field-service near Saco, Me.

Sub-Assistant II. G. Ogden took the field early in August to trace the shore-line of the westorn passages of the lake, with five sheets projected for the purpose. These he filled, and returued to the office at the end of October. Commencing at Cumberland Island light-house, Mr. Ogden defined the western shore of the lake, and the western sides of South Hero and North Hero Islands, and the entire shore-line of Isle la Motte, and from thence, northrard to the United States boundary, both shores of Lake Champlain. Mr. Andrew Braid aided in this surver, and in November extended the topography of the eastern branch of the lake from the head of McQuam Bay north ward, taking within the limits of two plane-table sheets the boundary of Vermont and the southern shores of Missisquoi Bay. The shore-line traced by the party of Sub-Assistant Ogden amounts to one hundred and fifty-two miles. These seven sheets represent also thirty miles of road.

Of the topographers emploged in the survey of Lake Champlain, Assistant Hosmer had been previonsly engaged in Section V, and is now about to resnme field-duty there. The previous work of Sub-Assistant Ogden will be mentioned under the head of Section VII, where his party is now ready to resume operations.

North of a line joining Ligonier Point on the western side with Shelburn I'oint on the eastern side, below Burlington, Vt., the shore-line and islands of Lake Champlain have been accurately traced and mapped. South of that line, the course being unbroken by islands, it is probable that the field-work may be advanced rapidly.

Hydrography of Lake Champlain.-In this work sonudings have been extended from Blaff Point and the lower end of South Hero Island southward to Ligonier Point, in the vicinity of the Four Brothers, the space included coinciding in limits with the shore-line survey of last seasou. No means being available on the lake for hydrographic work, the small steamer Fathomer was transferred throngh the Erie and Oswego Canal into Lake Ontario, and thence by the Saint Latrrence and throngh the Saint John's Canal into the northern end of Lake Champlain. Sub-Assistant F. D. Granger joined the steamer at Plattsburgh on the 27 th of July. Soundings were taken up in the conrse of a few days, and were prosecuted withont interruption until the 1st of October. The party remained in readiness to improve every opportunity, but stormy weather continued for several weeks. Hydrographic oporations were closed at the end of October. Many reefs were developed, some of which were unknown to the boatmen of the lake. While the soundings were in progress the level of water was carefully noted at Burlington and at Plattsburgh by simultaneous observations. The recorded depths were adjusted by reference to a bench-mark at Valcour Island.

Messrs. F. W. Ring and L. F. Chew served as aids in the hydrographic party, the former also in Section IX, where Sub-Assistant Granger was employed during the preceding winter and spring.

A synopsis is subjoined of the statistics of hydrographic work in Lake Champlain:
Miles run in sounding . 615
Angles measured . 3, 915
Casts of the lead. 14, 131
The work is comprised on two hydrographic sheets. After turning them in at the office, SulAssistant Granger was assigned to duty in Section VIII.

Hudson River, New Iork.-In the course of the season Assistant Heury Mitchell conducted observations with reference to a physical survey of the Hadson. His study of the slopes of the river presents points of special interest. One of these dereloped in his preliminary report indicates that a line of inquiry has been opened promising direct results in regard to Hudson River. The criticism subjoined to the description of the method of determining elevations along the course of a tidal river is by a distinguished Belgian hydrographer, who las been many years engaged in a physical survey of the Scheldt, and who now proposes to take up the problem in the form to which it has been brought by the researches of the Coast Surrey. Exclusive of many notes relative to temperatare, density of water, and character of bottom, the record of work in the Hudson shows over seven thousand observations on the currents. Under the direction of Assistant Mitchell, the
details of the sursey were prosecuted by Sub-Assistant H. L. Marindiu, aided by a few students from the Rensselaer and Technological Institutes, who engaged in the service with enthusiasm! during their vacation.

With the same party, aided also by Messrs. North and Wier, about thirteen soundings were made in the course of the season on the flats in New York Harbor, and in Buttermilk Chanuel. The plotting of this hydrographic work is now in hand, with a riew to determine the cause of the changes that may be in progress.

Survey of Newark Bay, New Jersey.-The party of Assistant F. H. Gerdes was employed during the summer and autumn in shore-line surveys and hydrography in the vicinity of New, York Harbor. Along the Passaic River the shore line survey was revised and extended above Newark, and the surrey of the bauks of the Hackensack was continued to the point where it is crossed by the Erie Railroad. Portions of the Jersey Central, the Newark and New York, and the Boynton Branch Railroads coming within the limits of the survey were traced.

Assistant Gerdes, aided by Mr. C. P. Dillaway, sounded the rivers within the limits just mentioned, and also Newark Bay, revising, when needful, the sheets which represented the previous shore-line survey. On the bay and rivers this revision included an aggregate of about sixty miles. Tidal observations were commenced by the party of Mr. Gerdes in July and were continued until November. The schooner Dana was used in the soundings.

A synopsis of statistics is subjoined:

Assistant Gerdes is now engaged in iuking the sheets resulting from the field-work of his party. In the preceding winter Mr. Dillaway had been employed in Section VILI, and is at present on hydrographic service in Section IV.

Triangulation near Barnegat, $N . J$.-In my last report it was stated that a reconuaissance had been made across New Jersey and a scheme found practicable for the connection of the primary triangulation ou the Delaware with the const series near Barnegat light-house. This scheme was commenced by Assistant R. D. Cutts toward the close of June. The level character of the country between Mount Holly and the coast rendered it advisable to erect high tripods and seaffolds for the elevation of the theodolite to secure the proposed length of triangle sides, and to save the expense in labor and damages that must otherwise have been incurred by cutting lines of sight through timber-land. Mr. B. A. Colonna, the aid in the party, put up suitable structures at Mount Holly, and at four other stations, being those immediately required for the proposed triangulation. The instruments were mounted at the Mount Holly station early in Angnst, and the observations required there were completed before the end of that month.

While the observatories were under construction in Jnly, Mr. Cutts accompanied me on a visit of iuspection in Section I. During August and September he directed the preliminary field-work on Lake Champlaiu, as already mentioned elsewhere.

On the 4th of October Assistant Catts returned to New Jersey and reorganized his party at Stony Hill, with the hope of completing angular measurements at that station before the close of the season. The underground marks of the old point occupied by Superintendent Hassler having been found by Mr. Colonna just previous to his departure for Lake Champlain, the tripod was moved from the eccentric to the true station, the distance to which was about eight meters. The theodolite was adjusted in its place, but in the middle of the month the smoke which generally hangs over the charcoal-burning district so thickened as to prevent observations. Soon after, Mr. Cutts being called away by other duties, the triangulation party was discharged for the season.

Altitude of stations.-The determination of the heights above mean tide of the primary stations has been continued, under the direction of Assistant Cutts, by a line of spirit-levels from Gloucester City, on the Delaware River, to Pine Hill station, and by others to Mount Holly. This duty was executed by Mr. Colonna during the month of June and the latter part of October, and according to the method described in my last report. The entire distance leveled, forward and back, was seventy-five miles. Bench-marks were established at the villages through which the lines passed, for the use of local or State authorities,

Assistant Cutts makes special mention of the energy and efficiency of his aid, Mr. Colonna, and commends also Mr. Louis F. Chew, who was temporarily attached to his party.

Topography of Great Bay and Little Egg Harbor, N. J.-The topography of Great Bay was taken up in the middle of May by a party in charge of Assistant C. M. Bache. After tracing the shore-lines, the surface features adjoining the water-line were carefully mapped. These include the small branches, and at the head of the bay several miles of the course of Mullica River. The entrance of the bay, known as little Egg Harbor, is comprised in this survey. The statistics of work are suljoined:

Miles of shore-line traced . 337
Miles of roads . 24
Area of topography, (square miles) . 60
Sub-Assistant H. W. Bache assisted in this survey. The party is now engaged in Section IV.
Hydrography of Little Egg Harbor, Great Bay, and Absecom Inlet, N. J.-A party was organized to work in this section with the schooner Bailey during the summer and autumn under the charge of Sub-Assistant W. W. Harding. The bar of New Inlet, at Little Egg Earbor, was sounded, and also Great Bay. In August the progress made and circumstances attending the work gave hope for the completion of the survey allotted to the party. At this juncture Mr. Harding was taken with fever. He died on the 25 th of September. The care of the schooner Bailey devolved on the aid, Mr. J. J. Erans, until the arrival of Sub-Assistant W. I. Vinal, who was then in service ou the coast of Maine. Mr. Vinal reached Atlantic City on the 14 th of October. Siguals were set up and tidal observations commenced without delay. At favorable intervals until the 1st of November soundings were made outside and through Absecom Inlet, and inside of the inlet so as to develop all the water-passages within three miles of the coast-line. A bench-mark was established at Atlantic City and others at New Inlet and Great Bay, where the tides had been observed during the summer by Mr. Harding. For the determination of positions twelve stations were occupied with the theodolite on shore while the soundings were in progress. The statistics of the hydrographic work are as follows:

Miles run in sounding 313
Angles measured .. 825
Number of soundings. 17, 17, 320
After the return of the schooner Bailey to Baltimore for repairs Mr. Vinal completed and turned in the records of the work on the coast of New Jersey, and is now making preparations for hydrographic service in Section V.

Survey of the "Horse Shoe," (Delaware River,) and of the Schuylkill near Philadelphia.-This work was undertaken at the request of the delegation in Congress from the city of Pbiladelphia, the object being to determine the practicability of expedients for keeping the channel of the Delaware from being gorged with ice in the vicinity of the Horse.Shoe. In order that the question might be met with reference to the probable limits within which the observed effects were wrought, a close survey of the banks of the Delaware was made from the vicinity of the navy-yard to the lower end of League Island. Subsequently, at the instance of the delegation, the survey was made to include the lower part of the Schnylkill.

In December, $187 \boldsymbol{\theta}, \mathrm{Mr}$. A. Lindenkohl traced the shore-line of the Delaware from the nary-jard to a point opposite to the middle of. League Island, and the opposite or New Jersey side from Kaighn's Point to Red Bank. The dikes remain as shown by the old survey, but Mr. Lindenkohl found that the river at two places has been very much narrowed by artificial structures. Below the navy•yard these extend into the river from both sides, so that the breadth across to Kaighn's Point is five hundred metres less than it was twenty-five years ago. At Gloucester, about two miles down the river, large factories stand where the old river-flats were, and two hundred metres outside of the former shore-line. The ferry-wharf at Gloucester is about a hundred metres beyond the old shore. On the opposite side "Broad Marsh" seems to be washing away between Greenwich Point and League Island, the last survey showing the loss of a strip about seventy metres in width-

By reason of the severity of the season and prevalence of ice in the river it was found im-
5 cs
practicable to make the soundings during winter. Assistant Charles Junkeu, however, observed while ice was forming on the sboals at and near the Horse-Shoe, and also the conditions under which the ice gave way and its course in drifting after a thaw or freshet. Such suggestions as seemed to bear upon the questicn of lessening the tendencr of the ice to drift into Ladd's Cove were embodied in notes and placed on file in the bydrographic division.

In Angust, of the present year, the desired soundings were made by Assistant F. F. Nes. Two sheets were projected to represent the results on a scale sufficiently large for any ulterior purpose. In the Delaware numerous and careful soundings were taken between Point Airy, at the lower end of Windmill Island, and the light-honse abreast of Fort Mifflin. The Horse-Shoe Shoal was ; specially developed, and also the Back Channel as far as the bridge, between League Island and Philadelphia.

Subsequently, Assistant Nes sounded out the Schuylkill from its mouth, near League Island, upward to Fairmount, completing the survey on the $2 d$ of December.

The statistics are subjoined:

> Miles run in sounding . 255
> Angles measured... 6,412
> Number of soundings. 21, 295

Two tide-gauges were kept in operation by the hydrographic party, one at the Philadelphia navy-yard and the other at League Island.

Mr. T. J. Lowry aided in this work and in similar duty in Section VIII. The previous service of the party of Assistant Nes will be mentioned under the head of Section IV.

Tidal observations.-Mr. R. T. Bassett, an experienced tidal observer, has continued the series of tidal observations at Governor's Island, in New York Harbor, with a self-registering gauge, occasionally noting the reading of a box-gauge at the Hamilton avenue ferry in Brooklyn for comparison with the other. This series, though at times somewhat broken, has furnished data for many purposes. Indeed, no improvement can be made along the shores of the harbor or of its connected waters, bor can any costly structure be properly erected near the water-line without resort to the tide-levels which may be deduced from this series of observations.

SECTION III.
atlantic coast, and bays of maryland and virginia, including sea-ports and rivers
(Sketch No.4.)
Topography and hydrography of the Broadwater, Va.-The name Broadwater which has been given to a marshy expanse of the coast of Virginia, north of Cape Charles, is somewhat applicable at high tide. At other times only the numerous channels are seen that meander through the marsh. The lower part of the Broadwater was surveyed and sounded last year. In December, 1870, Assistant J. W. Donn resumed the work, and by the end of the season developed the coast region extending to the northward as far as Metompkin Inlet. Sub-Assistant L. B. Wright was attached to his party. The schooner Bailey was used for transportation. With the plane-table Mr. Donn mapped the details of the mainland, prosecuting the survey there when the weather was unfavorable for sounding in the channels of the Broadwater. As before stated, much of the area to be passed over was a grassy marsh at low tide; hence ordinary methods for topographical delineation were of no avail. Some of the channels which traverse these extensive flats are of local importance. The Great Machipongo flows for fifteen miles through a marsh so wide that the river course is visible only at low water. In making his survey Assistant Donn determined first, and mapped the high-water lines algng the mainland, and with them the hummocks, islands, and inlets as they appeared at that stage of the water. Next, the line of grassy marsh was traced, with the intersecting channels. Lastly, the creeks and channels were surveyed, to show their true courses, and the depth at low tide. In the hydrographic survey, lines of soundings were ran with a view to develop the channels alone, the depth elsewhere being often insufficient to float the sounding-boat.

This work, prosecuted with great patience and energy by Assistaut Donn and Sub-Assistant Wright, completes the survey of the outer coast of Virginia between the head of Magothy Bay and Metompkin Inlet.

A synopsis of statistics is appended:
Miles of shore-line traced 475
Miles of roads 112
Area, (square miles) 185
Miles rnu in sounding 302
Angles measured 4,091
Number of soundings 22, 019

After turning in the sheets of this work, the party of Assistant Donn went on field-service in Section I. He is now makiug preparation to extend the survey of the James River, Va. SubAssistant Wright will conduct a party during the coming winter in Section IX.

Latitude, azimuth, and magneticobservations at stations on Chesapeake Bay.-The operations of the party of Assistant A. T. Mosman in this and in other southern sections, extending through twelve consecntive months, will be mentioned in the usual geographical order, and not in the crder in which his nine distant sites of work were successively occupied. Daring the inclement months of the seasou, which would not have permitted field-work in this section, the party was engaged on the Gulf coast, and afterward in Section IV, as will be stated hereafter.

Mr. Mosman and his aid, Mr. Edwin Smith, jr., landed on the 19th of July at Cove Point, Maryland, and as soon as possible mounted the astronomical instruments in a temporary observatory at Calvert station, one of the points in the primary triangulation which passes southrard through Chesapeake Bay. At favorable intervals preceding the 20 th of August ten nights were employed in observing twenty-four pairs of stars for latitude, one hundred and thirty-nine measurements being recorded. Two sets of observations were made for the micrometer value. Time was determined in the course of thirteeu vights by forty-nine observations on eighteen stars; and for arimuth of the line to Meekin's Neck, two hundred and-sixteen observations were recorded on five nights in Augnst and September with theodolite No. 16.

At Calvert station the magnetic declination was derived from observations continued through three days; five sets of experiments were made for vibration, and eight sets for deflection on two days. The dip of the magnetic needle was ascertained in the usual way.

The observations for azimuth were closed on the 6th of September. Mr. Mosman soon afterward turned in at the office an aggregate of twenty three volumes, with duplicates of the same, comprising the records of the stations previously occupied, and all the computations due from his party. He passed the remaiuder of the season in fixing the latitude and longitude of points in Ohio and Keutucky, mention of which will be made under the head of Section VII.

At Tangier 1sland, in Chesapeake Bay, Virginia, observations were commenced by Assistant Mosman on the 16 th of Iune, and were closed by the middle of July. Latitude observations were made during nine nights on twenty-three pairs of stars by one hundred and forty-four observations with meridian telescope No. 7. The micrometer value was acertained as usual. Time was determined by eighty measurements with twenty-nine stars on twelve nights, and three other nights were employed in observations for azimuth of the line to Watts' Island light-house. This is not one of the principal stations in the triangulation of Chesapeake Bay, and the geodetic station at Smith's Pointlight house could not be seen from the ground at the azimuth station. To avoid loss of time and the expense incident to building a platform which must needs be forty feet high to bring into view Smith's Point, Mr. Mosman occupied as an eccentric station a chimuey of the old Beach House on Tangier Island. At this noint were recorded by the aid seven hundred measurements of the horizontal angles made by lines joining the chimney with the two light-houses and the azimuth station. The azimuth was observed at the eccentric station on six uights by six hundred and twelve measurements with the theodolite.

Magnetic declination at Tangier Island was determined on three days, and the dip and horizontal intensity were ascertained in the usual manner.

Wolf.Trap, Va., a primary station on the west side of Chesapeake Bay, below the month of the Rappahannock, was occupied by Assistant Mosman from the middle of April until the 7 th of Jone. A sigual was erected at New Point Confort, primary station, and the angle between it and the light-house at New Point Comfort was determined from Wolf-Trap by one hundred and forty
four measurements with the theodolite signals were also set up for determining the position of Wolf-Trap-Spit light and York-Spit light, one hundred and ninety-two meusurements being recorded for that purpose. Both lighthouses were occapied with the theodolite as stations.

For the latitude of Wolf-Trap station Mr. Mosman and his aid, Mr. Smith, observed and recorded, during sixteen nights, an aggregate of two hundred and uinety results from forty-five pairs of stars. Sixteeu stars were observed on ten nights, for time and instrumental corrections, by fiftyfour measurements. The value of the divisions on the level and of the micrometer were carefully ascertained. For azimuth two hundred and seventy-six measures were made, on six nights, of the angle between Pularis and New Point Comfort light, which, not being coincident with the primary ; station, is referred to it by the angular measurements already mentioned.

At Wolf-Trap a complete set of observations was made by Assistant Mosman for the magnetic decliuation, dip, and horizontal intensity ; and a full set by his aid, Mr. Smith, who also took part in the observations for latitude, azimuth, and triangulation.

Further mention will be made of the operation of this party under Section IV.
Magnctic observations.-At the station near his own dwelling, on Capitol Hill, Washington City, the usual annual series of observations were made in June by Assistant Charles A. Schott, chief of the computing division. From these were determined the magnetic declination, dip, and horizontal intensity. The results serve as a check upon conclusions heretofore drawn in regard to the secular variation of the magnetic elements.

Pendulum observations.-Among the iustruments deemed useful in the outfit of the expedition now in the aretic regions, under Captain Hall, was included the pendulum belonging to Dr. I. I. Hayes, and which had been used by Mr. Sonntag in a previous expedition to Smith's Sound. Careful experiments were made with that bar some years ago by Prof. George P. Bond, at Cambridge Observatory, Massachusetts. Assistant Schott made a new series of observations with the pendulum in the early part of summer, and recorded the results. The instrument was then packed at the office, and delivered to Captain Hall, with full information in regard to the experim ents needful for purposes of comparison.

Hydrography of the Chesapeake estuaries.-The descriptions in my report of last year included mention of the work done by the party of Sub-Assistant W. W. Harding previous to Dece mber 1870. Soundings and tidal observations were completed on the branches of Chester River on the 10th of that month, and similar work was commenced a few days after in the upper waters of the Severn River, and in the branches adjoining Annapolis Harbor, where soundings were prosecuted until the chanvels were closed by ice. This occurred near the end of the year. The party in the schooner Hassler returned by the 1st of March, and completed the hydrography of the vicinity of Anuapolis. Before the close of that month a number of small branches of the bay along the eastern shore were sounded out, Sub-Assistant Harding, as in other cases, tracing the shore-line. In the course of ten days, preceding the 5th of April, the several brauches of the Big Choptank were traced and sounded, and, subsequently, the arms and creeks that make into the Little Choptank, also on the eastern shore of Chesapeake Bay. Twenty six of the smatler branches of Chesapeake Bay were traced and sounded out by the party during the winter and spring in addition to the work done in the head-waters of the Severn above Annapolis, and in the body of the bay between Thomas' Point and Tally's Point.

During much of the time the party was of necessity under way in the ressel, the sites of work not being continuous, but, as before explained, limited to the small branches and estuaries which were passed by in the first issue of the chart of Chesapeake Bay for the general purposes of commerce.

In the aggregate, thirty-nine miles of sbore-line were traced by Mr. Harding; the lines of soundings were in all about one hundred miles, and are represented in the record-books by depths found with fifty-seven hundred casts of the lead.

Late in April Sub-Assistant Harding was assigned to service in Section IV, and bat for severe lameness, which disabled him temporarily, he would have conducted a party for the sarvey of the chanuels of Cape Fear River. On his recovery he organized a party for hydrographic duty in the schooner Bailey, in Section II, and had well advanced the work under his charge when he was seized with illuess, which cansed bis death, as mentioned in the obituary notice in the jotrodaction te this report.

Triangulation of the James River, Va.-This work has been carried on by Assistant R. E. Halter, with but slight interruption, from its commencement in October, 1869, until Mar last, when it closed at stations near City Point. At the date of my last report the triangulation had advanced as far as the line, Cypress Shields, and from this base it was continued up the rirer until the close of December, 1870, when the running ice compelled Mr. Halter, for the safety of the schooner Bowditch, to seek an anchorage in Elizabeth River. On the 6th of January he returned to the field, and although still, at times, delayed by ice and bad weather, was enabled to continue the triangulation with advantage thronghont the winter and spring.

Ou the 5th of April his work and scheme of triangles were inspected by Assistant R. D. Cutts, in charge of the secondary triangulation. An examination was at the same time made in regard to the practicability of enlarging the scheme with a view of connecting with the primary triangulation coming down, parallel with the coast, through the eastern valley of Virginia. For this rerification, however, on the scale desired, the character of the country offers few natural facilities. It was, therefore, deemed advisable to suspend the triangulation for the present at City Point. The party was disbauded early in May. Assistant Halter, after fiuishing his compatations, was assigned to duty in Section VIII. The statistics of the season on James River are subjoined:

Siguals erected .. 32
Stations occupied . .. 21
Namber of observations 8, 546
Assistant Halter was aided in this section by Mr. B. A. Colonna.
Primary triangulation in Virginia.-For continuing the maiu triangulation sonthward along the Blue Ridge, Assistaut C. O. Bontelle made a reconuaissance early in the summer, and selected stations for extending the work to the vicinity of Lyuchburgh. Of these he subsequently occupied two, and completed at them the usual series of geodetic observations, closing operations at the first, (Clark's Mountain,) near Rapidan, on the 8th of September. At this station astronomical and maguetic observations were recorded, those for latitude and for time from measurements by SubAssistant F. Blake, and for the magnetic elements from observatious by Messrs. A. H. Scott and C. B. Boutelle, aids in the geodetic party.

The sides of the primary triangles, in this part of the series, range from twenty-three to sixtyfour miles in length. From Clark's Mountain the siguals at nine stations were observed on, including one near Fredericksburg taken in for connecting with the main work the secondary triaugulation, which passes up the Rappahannock River. At Bull Run Mountain, subsequently occupied, the juvetion of the river survey with the primary work was completed. Assistant Boutelle made the measurements for horizontal and vertical angles, and determined the azimuth, using an artificial horizon of mercury without any glass roof, and observing within two hours of the elongation of the pole-star. Special care was bestowed on the determinations for azimuth.

Gulf Stream.-While crossing the Gulf Stream, on the 8th of December instant, in the steamer Hassler, Assistant L. F. Pourtales recorded the temperature of the water at the surface. A trauscript of the observations forwarded on the arrival of the steamer at St. Thomas shows that the warm water, which is characteristic of the Gulf Stream, was, early in this mouth, wore than half a degree farther south than it was in the year 1860, and that the band of warm water was somewhat broader. A colder band was crossed in going farther southward, but no other alternations of cold and warm water. The observations were made in the latitude of Cape Heary.

Tidal observations.-At Old Point Comfort the series of observations with a self-registering gauge has been continned by Mr. W. J. Bodell. The record includes curves for many years, bat the series has been often interrupted by storms, the situation being of necessity exposed to the force of the sea. The instruments are now in good condition, and the fixtures at the station have been strengthened. A new box gauge and a porcelain staff were recently set up for comparisons. Valuable results are expected from the discussion of this series of tidal observations. Several short series of tides hare been recorded in the course of the season by the hydrographic party engaged in the waters connected with the Chesapeake, and these have materially added to our knowledge of the tides in this section.

SECTION IV.

ATLANTIC COAST AND SOUNDS OF NORTH CAROLINA, INCLUDING SEA-PORTS AND RIVERS.
(Sketch No. 6.)
Triangulation of Pamplico Sound, N. C.-The work of this year, by Assistant G. A. Fairfield, includes also the riangulation of Puago River, the third in order of the large branches of Pamplico Sound.

The steamer Hitchcock, one of the new vessels, was expected to be in readiness for service about the middle of January, but some changes needed in the machinery delayed the delivery of the vessel. Mr. Fairfield joined the steamer, at Norfolk on the 27th of February, and reached New Berne on the 6th of March. A few days after, the party, having taken in Assistant Mosman and his aid, as stated elsewhere, landed at Portsmouth. There Mr. Fairfield set up a tripod and observing scaftold, and, while Mr. Mosman was engaged in astronomical work, the requisite angular measurements were made for connecting the base-line with the triangulation of Pamplico Sound. A granite post was set by the triangulation party to mark the northeast end of the base line, which is coincident with the station occcupied by Assistant Mosman.

Early in April the triangulation of Pungo River was taken up, and by the end of May that work was completed, making fill provision for the plane table survey in the course of the coming wiuter. Points were determined on the shores to a distance of twelve miles above the month of the river. Returning to Ocracoke Inlet Assistant Fairfeld occupied, in succession, as primary stations the three light-bouses in that vicinity, and also the southwest end of the Portsmouth baseline, and was engaged with the theodolite in this part of the triangulation until the end of July. The general statistics of the field-work are as follows:

Sub-Assistant F. W. Perkins rentered effective service in this party, and was also associated with Assistant Fairfield in duty which was prosecuted during the summer, as has been stated under Section II. The triaugulation of Pungo River is already connected with that of Pamplico Sound. Angular measurements are yet to be made at Swan Quarter Island, after which the lines in the scheme of triangles increase to an average length of about twenty miles. The work is about to be resumed by Assistant Fairfield.

Latitude, azimuth, and magnetic observations at Portsmouth, N. C.-Assistant A. T. Mosman reached New Berne late in Febrnary after completing field duty, which will be mentioned under the head of Section VII. The triangulation party, in charge of Assistant Fairfield, arrived in Pamplico Sound a few days after, in the steamer Hitcheock, and, before taking up routine work, landed the astronomical party and instruments at Portsmouth, on the south side of Ocracoke Inlet, and assisted in setting up the temporary observatory needed at the northeast end of the base-line, which had been measured by Assistant Fairfield near Portsmouth. The astronomical instruments were in place by the 16th of March, but unfavorable weather permitted only occasional observations antil the 27 th of that month. Clear nights following until the 5th of April, Mr. Mosman and his aid, Mr. Edwin Smith, jr., completed the needful observatious. Twenty-four pairs of stars were observed on for latitude, and in the course of ten nights one hundred and thirty-seven results were recorded. For value of the micrometer in the meridian telescope No. 7, five sets were observed on four nights; and as many sets on two days for the value of the level divisions. Time and instramental corrections were ascertained from forty-nine observatious on eighteen stars, tests for the purpose being made on thirteer nights. The azimuth of the line to Ocracoke light-house was determined from one hundred and forty-four measurements on five nights. The magnetic dechination, dip, and horizontal intensity were ascertained from observations continued through four days at the station near Portsmouth.

Assistant Fairfield received the astronomical party on board of his vessel on the 7 th of A pril, and next day returned to New Berne. From thence the instruments to be used by Mr. Mosman,in

Section III, were sent by rail to Norfolk. His operations in that section have been already described.

The computed results and records pertaining to the obserrations made by Assistant Mosman in this section have been received, and placed in the office. Uuder the head of Section VII mention will be made of the previous occupation of the astronomical party.

Topography of Pamplico River, N. C.-The survey made by Assistant F. W. Dorr in this section comprises the topography of the shores of Pamplico River above Lee's Creek, and extending to the immediate vicinity of Washington, N. C. With the addition of some few details to represent the town outlines the survey of the river will be complete. All the important creeks or branches of the Pamplico are represented on the plane-table sheets, and, in order to include them, the survey necessarily was carried back more than the usual distance from the shore line of the river. Its branches mapped this year are Durham's Creek, Bath Creek, Blount's Creek, with the expanse known as Blount's Bay, Chockowinity Bay, Broad Creek, and many of less note. The roads traversing both sides of Pamplico River were traced, and in other particulars the survey of this year was made conformable to that of the lower part of the river.

This work was taken ap on the 6th of December, 1870 , Mr. Dorr using, as heretofore, the bull of the steamer Hetzel for quarters, and as means for moving from place to place in going up the river. The-season was marked by unusual cold, and in consequence the vessel was blocked in ice for several days. Party operations were much impeded from this cause during three weeks.

A little village called Bath, marked on the lower of the two plane-table sheets of this season, is of interest by reason of its historical associations, that being, in the colonial period, the official residence of the chief magistrate. At present the channel which leads up to the village has ouly seven feet of water at the ordinary stage.

Durham's Oreek affords eight feet of water through a narrow, winding channel as far as the steam saw-mill, just inside of the entrance. Another mill about a mile farther up the creek meets large orders from northern factories for spindles and spools, which are made of dogwood, persimmon, and other suitable wood found in the vicinity.

The shores of Pamplico River alternate between sand and a narrow fringe of marsh, with occasional blufis and some high land. On the sonth shore near Nerill's Creek (Sketch No. 32) the bank is forty feet high.

At Hill's Point, six miles below the town of Washington, the river is only one mile wide, and there, during the war, two rows of piles were set quite across the channel to obstruct the upward passage of the United States gun-boats. Many of the piles remain in place and the passage through is at present quite narrow.

Assistant C. T. Iardella ably cooperated in the survey of Pamplico River. Mr. A. P. Barnard served as aid in the plane table party. The statistics of work are as follows:

Miles of shore-line, river, and branches. 163
Miles of streams 431
Miles of roads. 415
Area, (square miles) . 194
The very large area developed with a single plane-table gives evidence of close and conscientious application to duty by the members of the party. In the course of the present winter Assistant Dorr will map the vicinity of Washington, N. C., and then continue plane-table work along the western shore of Pamplico Sound; and include the survey of Pungo River. In conjunction with Assistant Iardella he prosecuted field-work during the summer, as stated under the head of Section 1.

On the 24th of May the steamer Hetzel was laid up at Washington to be in readiness for the completion of the survey at the head of Pamplico River.

Hydrography of Pamplico River, N. C.-In its progress from the southward the hydrography of Pamplico Sound rested, at the opening of the present season, at the entrance of Pamplico River. Soundings in the lower part developed the channels of that river as far upward as Indian Island. Assistant F. F. Nes made preparations in December, 1870, for completing the hydrography of Pamplico River, with a party in the schooner Arago, Assistant Dorr having previously adranced
the plane-table survey from the entrance as far up as Lee's Creek. The vessel, needing extensive repairs, was placed in charge of the senior aid, Mr. W. I. Vinal, at New Berne. Other preparations being made in the same interval, the party took up soundings in Pamplico River on the $23 d$ of February, Assistant Nes had been entirely disabled by rheumatism, which seized him at the approach of winter, while closing hydrographic work on the coast of Maine. He was in consequence unable to join his party in Section IV. Under his general direction, however, the operations were carried forward with success by Mr. Vinal. The work is comprised on three sheets, taking in all the shore-line which has been traced by the plane-table party. Mr. Vinal recorded tidal observations at four stations in Pamplico River. In going up the channel sextant angles were measured at forty-five stations. Fourteen buoys were determined in position by occupying forty-three points ' along the banks of the river. For the adjustment of soundings the party in the Arago set up sixtyone signals. Mr. Vinal was aided by Mr. R. B. Palfrey until the 17th of Mareh, and until the close of work, near the end of May, by Mr. J. J. Evans. The sailing-master of the Arago, Capt. Thomas H. Ferney, besides his care of the vessel, rendered important service in this hydrographic survey. The general statistics are:

$$
\begin{align*}
& \text { Miles run in sounding } \tag{665}\\
& \text { Angles.. } 1,927 \\
& \text { Number of soundings... 49, 404 }
\end{align*}
$$

The depths, tides, and angles are registered in twenty-four volumes.
At the approach of spring Assistant Nes was able to resume duty afloat. His occupation during the summer and autumn has been mentioned under the head of Section II. Mr. Vinal was at the same time on duty in a party in Section I, but was sent to the coast of New Jersey in October to continue hydrographic work which had been suspended by the death of Sub Assistant Harding. A like distress occasioned the transfer of the aid, Mr. Palfrey, to Section VLI, as will be noticed under that head.

Hydrography of Hatteras Shoals, N. C.-Under the expectation of favorable weather in July, Acting Master Robert Platt, United States Navy, Assistant Coast Survey, sailed early in that month from Norfolk with his party in the steamer Bibb, and set signals along the beach of Pamplico Sound, the intention being to ran lines of sonndings to seaward and develop the depth now to be found in crossing the Hatteras Shoals. Several lines were successfully run before the end of July. Bad weather then set in. Ten times during the month of August the steamer was on the shoals, but no weather suitable for completing the survey at that season presented itself. The work was subsequently accomplished and the results will be marked on the general sailing chart of this section.

The hydrographic party in the steamer Bibb was previonsly engaged in Section VI.
Topography of Bogue Inlet, N. C.-East and west of Bogue Inlet, at the opening of the winter season, an interval was outstanding in the topography of the coast of North Carolina. Assistant Hull Adams reached Swansboro on the 19th of December, 1870, and organized a party for plane-table service, the intention being to make the belt of topography in that vicinity conformable to the survey of the shores of Bogue Sound, where the coast topography was suspended in 1868. When the party arrived the cold was severe and the sound was soon atter frozen over. The sandhills, moreover, had so changed that none of the points marked in the triangulation which was made previons to the war could be identified. Assistant Adams, in consequence, started from stations marked on the shores of Bogue Sound in 1868, and going westward renewed the triangulation by means of the plane-table, tracing at the same time the outside shore-line as far in that direction as New River Inlet. This is about twenty-five miles from the point at which he started. His work completes the survey of Bogue Sound, including also the inlet of that name, and the mouth of White Oak Rirer in the immediate vicinity of Swansboro. Farther westward the outside shore-line was traced, including the openiags known as Bear's Inlet and Brown's Inlet. The details inside of the shore-line will be mapped in the course of the present winter. Before leaving the section, at the end of May, Mr. Adams and Sub-Assistant Eugene Ellicott, who was attached to his party, found the marks of eight of the stations occupied some years ago in making the triangulation between Swansborongh and New River Inlet. These will aid much in the early comple-
tion of the detailed survey on this part of the coast of North Carolina. Bogue Sound, toward its western end, terminates in marsh at a point about four miles from Strausboro, and the marsh continues westward as far as New River Inlet. There are, however, two channels extending through the marsh to Swansboro. Bogue Sonnd is there about four miles wide, but less to the eastward where the water deepens. The detailed surver was suspended at a point about three miles west of Swansboro, where it is now abont to be taken up for early completion by Assistant C. M. Bache.

The statistics of the work, as far as yet accomplished, are as follows:
Miles of shore-line surveyed. 198

Miles of shoals. 20
Miles of roads . 27
Area, (square miles) . 73
Sub-Assistant Ellicott continued in service with this party until the 13 th of May, when he was assigned to duty of which mention will be made under the head of Section XI.

Assistant Adams passed the working season at the North in Section I, as already mentioned.

SECTION V.

atlantic coast and sea-water channels of south carolina and georgia, including sounds, harbors, and rivers.

Topography and hydrography of the sea-island channels of South Carolina.-The survey in this section has been advanced to include two of the branches of Coosaw River, near the head of Saint Helena Sound, and also the upper waters of Port Roral Sound, and of Calibogue Sound.

Having refitted his vessel, the schooner G. M. Bache, at Savannah, Assistant Charles Hosmer resumed work on the sea-islands on the 12 th of December, 1870 , aided by Mr. J. N. McClintock. Joining with plane-table details which were mapped in the spring of 1870 , on the north shore of Savannab River, the survey was continued nortbward and eastward, and included in its course the upper part of Wright's River, and all the water-passages between it and Broad River. The passages were sounded, and some additional triangulation needed for plane-table work near the Savannah, and also for the extension of the survey so as to take in Chechessee River, was made by the party. Twelve stations were occupied with the theodolite for this purpose. The detailed survey is comprised on two sheets.

Later in the season the party developed by a shore-line survey and soundings a stretch of six miles in Bull River, and in the same region about four miles of the course of the Combahee River. The parts surveyed include the phosphate deposits, so valuable for the fertilizing properties of the material which is largely taken from the beds of the rivers.

At the end of April the schooner Bache was laid up at Savannah. The following is a synopsis of the field-work by this party :
Miles of shore-line of rivers surveyed. 155
Miles of creeks and marsh surveyed 192
Miles of roads surveyed 40
Area of topography, (square miles) 78
Miles run in sounding 326
Angles measured 1, 031
Casts of the lead 32, 309

The field-work subsequently done by Assistant Hosmer has been described under Section II, where Mr. McClintock was also employed after several months of service in Section I.

In the course of the winter, while engaged in bringing ap computations resulting from his field-work in this section, Assistant C. O. Boutelle at intervals examined the navigable rivers in the vicinity of the sea-islands of Sonth Carolina, and noted such peculiarities as must be of account in deciding upon the method proper for the survey of these channels of communication 6 c s
with the upland district. His obserrations were communicated in the form of a comprehensive report. The racts embodied are of much value, and bear directly on the future development of this interesting region of the sonthern coast. Mr. C. B. Boutelle served as aid in this section, and subsequently with the party in Section III.

SEOTION VI.

ATLAN'IC AND GUIF COAST OF THE FLORIDA PENINSULA, INCLUDING THE REEFS AND KEYS, AND THE SEA PORTS AND RIVERS. (SKETCH NO. 7.)

Topography of Nassau Sound, Fla.-The work to be noticed under this head completes the survey of the inland water-passages between Saint Mary's River, at the bonndary of Georgia, and Saint John's River, Florida. The passages, as mentioned in previous reports, permit a water communication along a route generally parallel with the outer coast-line of the Southern States, but free from the risk of sea navigation.

Assistant W. H. Demnis commenced operations this year on the 3d of Jannary. After tracing the shore-line of Amelia Island he determined the positious of signals for the nse of the bydrographic party of Assistant Webber, and then proceeded with the plane-table survey of Nassau Sound. The sheet returned shows the ontlines of that body of water and its tributaries, the principal ones being South Amelia River ant Nassau River. Of these streams the former makes part of the inland water communication before mentioned.

The work done by Mr. Demis represents the ground surface from the coast-line to a distance of seren miles westward. It comprises Nassau Sonni, with the lower part of Amelia Island on the borth side, and Talbot Island on the south side of the entrance. The surface features are like those of the southern coast generally, there being a great deal of marsh traversed in all directions by ıivers or creeks. On the main, pine barrens are common, but the sandy coast islands bear, besides pine, also a grow th of oak, with much underbrush.

Mr. Bion Bradbury, jr., served as aid in the plane-table party. Field-work was closed on the 23d of May. After laying up the schooner Caswell at Jacksonville, Assistant Dennis returned to the worth, and during the summer was engaged in Section 1. On the coast of Florida bis work was furthered by occasional aid from the bydrographic party of Assistant Webber. The statistics of the plane-table surrey of Nassau Sound are as follows:

Miles of shore-line traced . 137
Miles of roads surveyed .. 52
Miles of marsh-line surveyed. 103
Miles of creeks surveyed 83
Area of topography, (square miles) . 104
Excepting some few water-passages between the sea-islands of Sonth Carolina, the plane-table survey is now complete from Charleston southward to Saint Augustine, on the coast of Florida. Assistant Dennis is now organizing a party for plane-table duty near Winyah Bay, in Section V.

Hydrography of Nassau Sound, Fla.-In connection with soundings which develop the inland water communication between Saiut Mary's, Ga., and Fort George Inlet, near the entrance of Saint Johu's River, Assistant F. P. Webler has completed the in-shore hydrography of the vicinity, so that the work is now continuous to the southward as far as the approaches to the Saint John's. This service was performed with a party in the steamer Endeavor, which reached Fernandina on the 27 th of December, 1870. Tidal observations were commenced immediately at Fernandina and near Nassau Bar, and were continued as usual for the adjustment of soundings. Many of the points determined in this section previons to the war, along the Saint Mary's, having been destroyed, Mr. Webber was under the necessity of renewing the triangulation partially, so as to join with the sonthern limit of previous work. Sonth of the Saint Mary's the points were found as they had been left by the triangulation party. Snch additional ones as were needed about Anelia Island were furnished by the plane-table party of Assistant Dennis.

Farorable weather was employed in ranning lines of soundings off-shore from Amelia Island. At intervals unsuitable for such a purpose the boats of the Endeavor were occupied in developing

Nassau Sound, and the channels which connect it mith Saint Mary's River and Saint John's Rirer. North and south the inshore soundings develop the coast apmoaches for twenty miles. The depth seaward was determined to a distance of about seven miles.

Mr. Andrew Braid was attached to the party in the Endeavor, and conducted the hydrography, during the temporary absence of Assistant Webber, at Cedar Keys, where he mate a survey which will be referred to more particularly under the head of Section VII.

Ou Nassau Bar the depth, as given by this survey, is about eight feet at mean low water. The channel is narrow, and by sailing vessels the bar can be safely crossed only with a fair wind,

Messrs. Dallas B. Wainwright and W. E. MeClintock served as aids in the hydrographic party. By their close application the large amount of offee-work resulting from the operations afloat was closed at the end of May, when the steamer returned to Baltimore. The statistics of the hydrography near Nassau Sound are as follows:

The hydrographic party erected twenty-eight signals, and determined forty-seven points by observations on shore. Under Section I reference has been made to the occupation of the party of Assistant Webber during the summer season. His preparations are now in hand for an early return to hydrographic service on the southern coast.

Triangulation south of Matanzas Inlet, Fla.-For the extension of the surrey south of Saint Augnstine, along the eastern side of the Florida Peninsula, a flat-hottomed vessel was prorided last winter by the hychrographic inspector, but it was unfortunately destroyed by the buruing of a ship-yard at Baltimore, while being fitted out for service. Thns deprived of the meals for insuring the wished-for progress, Assistant J. A. Sullivan proceeded to Saint Augustine in Janaary, and with a small open boat took up the triangulation below Matanzas Inlet. From statious at which the work had been suspended, he advanced the triangulation sonthward to Braddock's Point by occupying alternate stations on the shores of Mantanzas Riser. Six points were determined by eight hundred measurements with the theodolite. The work done by Assistant Sullivan and his aid, Mr. W. H. Stearus, terminates at a station near which the imner sea-water chamel, which is so distinctive a feature of the coast above Saint Augustine, is interrupted by about twelve miles of swamp and hammock. Difficulties thus presented in the progress of the survey it is hoped may be overcome by pushing in at high water with a flat-bottomed vessel, now ready for the service, and so advancing as far as practicable by the northern end of the swamp; entering afterward at Mosquito Inlet, and making the survey from the southward to join with work at the swampy barrier. Assistant A. M. Harrison is now preparing to take up plane-table worls below Saint Augustine, and to extend the detailed survey southward. Mr. Sullivan retmened from this section in April. His party was subsequently engaged in Section I.

Hydrography near the Tortugas.-With the steamer Bibb, which was refitted in the course of the winter, Acting Master Robert Platt, C. S. N., Assistant Coast Surrey, set sail in January, to complete soundings to the borthward of the Tortugas, in the Gulf of Mexico. Siguals had been left standing for the purpose, but they had all gone down in the hurricane of October, 1870. Some days were occupied in establishing the requisite points of reference, and in restoriug the signals. The bydrography was then continued north of the Tortugas and Quicksauds, the lines run being extended to distances of twenty five miles beyond the ten-fathom curve. This work was laid aside in May for special service, which will be referred to presently. Acting Master Platt was again on the working ground before the end of that month. After completing the hydrography of the Quicksands, he made a close survey of a large bank about lour miles to the northward. This, which is parallel with the Quicksands, he has called the Nex Ground. Several spots were found on it with ouly eight feet of water, and on the north side of the bank the water shoals very suddenly from ten fathoms to less than ten feet. The New Ground is composed of large coral rocks, sand, and grass. Iron buoys, lent by the light-house inspector at Key West, were temporarily used as reference marks while soundings were in progress in the vicinity of the Quicksands. The statistics of that work are as follows:

Miles rum in sonnding .. 746
Angles .. 1,695
Number of soundings..................... 6,950
Uuder instructions given on the 1st of May, Acting Master Platt took in tow the ship Raleigh, then at Key West, having on board the cable of the International Ocean Telegraph Company. The Raleigh, drawing eighteeu and one-half feet, and consequently unable to pass by the Northwest Channel from Key West, was towed by the steamer Bibb around the Quicksands, and through the Rebecca Channel. On the passage to Ponta Rasa, (Charlotte Harbor, Fla.,) the vessels met strong head-winds and a heary sea. Fortunately the weather changed. Under very' favorable conditions the cable was started at Punta Rasa, and snccessfully laid in a straight course sonthward and by the shortest route to Key West. On the night of the arrival of the Bibl, with the telegraph-vessel in tow, (20th of May,) the Cuited States gun-boat Nipsic parted her chains in a heary squall and went ashore. Receiving notice of the disaster at midnight, Acting Master Platt had the steamer Bibb in readiness, and when the morning tide served, towed off the Nipsie into deep water. As before stated, the hydrographic work was then resumed and was completed near the Quicksands by the end of May. The Bibb reached Norfolk on the 11th of June, and was subsequently ou service in Section IV.

Messrs. J. B. Adamson and C. L. Gardner served efficiently as aids in this hydrographic party.

The hydrographic party of Lieut. Commander John A. Howell, U. S. N., Assistant in the Coast Survey, is now organized for service with the steamer A. D. Bache, oue of the new vessels completed within the year. After some trial to determine the working qualities of the steamer the party will run in the course of the winter, lines of deep sea soundings in the Gulf of Mexico, within the limits of this section. The officers detailed for duty in the party of Lieutenant Commander Howell are Masters W. H. Jaques, E. S. Jacob, Richard Rush, and W. L. Field.

SECTION VII.

GULF GOAST AND SOUNDS OF WESTERN FLORIDA, INCLDDING THE PORTS AND RIVERS. (Shetch No. 8.)
Hydrography of Cedar Keys, Fla.-Iu March Assistant F. P. Webber left his hydrographic party, then at work uear Nassau Inlet, on the eastern coast of Florida, under charge of the senior aid, and crossing the head of the peninsula by railroad, accompanied by Mr. D. B. Wainwright, he made an examination of the present capacity of the principal channel at Cedar Keys. Finding the marked ends of the base, but none of the adjacent stations, Mr. Webber determined eight additional points with the theodolite, aud then sounded from the railroad-wharf through to a point about a mile below Sea-Horse Key. He fonud ten and twelve feet in the middle of the chanuel at mean low water. The chaunel is narrow, and needs permanent marks, those now in place being liable to destruction in every gale. The hydrographic work at Cedar Keys is represented by the following statistics:

Miles run in sounding . 55
Angles measured 740
Namber of soundings. 7,477
The subsequent operations of the party of Assistant Webber have been described uuder the head of Section 1 .

Hydrography of Saint George's Sound, Fla.-For the hydrographic work required in Saint George's Sound a party was organized under charge of Sub-Assistant Horace Auderson, and sailed from Baltimore, in the schooner Silliman, on the 16th of January. The vessel was delayed on the passage southward. In a heavy sea off the Frying. Pan Shoals, the shackles at the mast-head gave way, and the standing gear came down on deck; but by great exertions the masts were saved, and the schooner safely reached Savannah, where she took on board the working boat intended for service in the Gulf. By reason of light winds after leaving that port the party did not land at Apalachicola until the 13th of February. Work was commenced without delay. The chief of the party and his two aids, Arthur F. Pearl and George W. Bissell, were young, strong, and active, and the crew was thoroughly efficient. Under these and other favorable conditions work was contiuued
until the evening of Saturday the 25th of February. Next day the aids, at the close of churchservice, left Apalachicola in the sail-boat, with four men, to return to the schooner Silliman, which was at anchor abont four miles from the town. By a very sudden squall of wind at 1 p . m. the boat was upset, and all on board were drowned. The bodies of the aids, and of two of the crew, were found in the course of the week following, and were buried at Apalachicola. My sense of the loss sustained by the survey in the death of the two hydrographic aids has been expressed elsewhere in this report. Of the boat's crew that perished with them, James Scott was shipped at Baltimore; the other three, Henry Austin, Joseph P. Ridley, and James Anderson, belonged to Apalachicola.

Sub-Assistant Auderson, having discharged the sad duties which devolved upon him by this disaster, resumed work, and extended the hydrography of the sonud from Bulk-head Point eastward to Royal Bluff. His survey develops many sand-bars and oyster-beds in the eastern approach to Apalachicola. There is, however, a three-fathom channel from the eastward as far in as the bulk-head, where the depth on the bar, which extends across the sound to Cat Point, lessens to seren feet, and where it is frequently less than six feet. The tidal observations made in April and May showed the effect of winds, and that a rise and fall of about eighteen inches might be regarded as the average.

Mr. R. B. Palfrey joined the party as aid on the 1st of April, and is warmly commended in the report of Sub-Assistant Anderson for untiring efforts to repair, as far as possible, the untoward circumstances that marked the early progress of the work. The following is a synopsis of statistics :

$$
\begin{aligned}
& \text { Miles run in sounding . } 310 \\
& \text { Angles measured... . . } 1,090 \\
& \text { Number of soundings . 25, } 048
\end{aligned}
$$

On the $22 d$ of May the hydrographic party left Apalachicola in the schooner Silliman. During the summer Mr. Anderson was engaged in service in Section I. Mr. Palfrey was at the same time on field-duty in Section 11. The vessel is now in readiness to continue the bydrographic surrey near Apalachicola.

Measurement of base-line and azimuth at Saint Joseph's Bay, Fla.-Under the nest head mention will be made of the general occupation of the party of Assistant S. C. McCorkle during the winter of $1870-71$ in this section. Azimuth determinations being needful at two sites on the Gulf coast, the vessel to be used in triangulation was relied on to afford also transportation for the party and instruments of Assistant Mosman. In February, when the observers were ready for service at Eagle Harbor, Assistant McCorkle made his arrangements conformable to the require--ments of the astronomical party, and at the same time measured the base upon which his triangulation of Saint Joseph's Bay depends. The ends of the line were connected in the usual way with the adjacent triangulation points by the measurement of horizontal angles. The position of the base-line is shown on the progress sketch of the section. Sub-Assistant H. M. De Wees assisted in the measurement.

Assistant A. T. Mosman, under arrangements made with Assistant McCorkle, was landed from the schooner Torrey at Eagle Harbor, on the 5th of Februars. All needful aid was given by the triangulation party in monnting the astronomical instruments, and in erecting a shelter to protect them from injurs. With theodolite No. 16 Mr . Mosnan and his aid, Mr. Edwin Smith, observed for aximuth on four favorable nights preceding the 14th of the month, and recorded seventeen sets of observations. In order to connect the azimuth-station with points in the triangulation of saint Joseph's Bay, horizontal angles were measured by twelve sets on three days. The time was determined by severteen sets of observations made on five days with the sextant and artificial horizon.

This work is noticed in its proper geographical order, but was preceded by similar duty at Saint Andrew's Bay, as will be mentioned presently.

Triangulation of Saint Andrew's Bay, Fla.-Last year the eastern and northern arms of this bay were included in the operations of Assistant McCorkle. In order to complete the triangulation, he returned to Apalachicola early in December, 1870, expecting to move immediately westward with the schooner Torrey, which was uuder his charge for the use of his party. But preparations for sailing had been delayed by the sudden death of the ship.keeper. The vessel of necessity
was refitted under the immediate supervision of Assistant McCorkle, and could not reach the working ground in Saint Andrew's Bay untll the night of the 26 th of December. On the passage Assistant Mosman was landed at Daris' Point, (Sketch No.8,) the place of work for the season including also the determination of azimuth. Sub-Assistant H. M. De Wees accompanied the party into West Bay for topographical service.

After erecting signals on the shores of the bay, horizontal angles were measured as usual with the theodolite. Four of the lines of sight required to be opened by cutting throngh the woods, in order to bring the signals into view. Sketch No. 8 shows the scheme of triangulation.

The field statisties are:
Signals erected . 19
Angles measured .. 97
Number of observations. ... 1, 872
Assistant McCorkle co-operated in the work assigned to Assistant Mosman by transferring his party when needful, aud affording help in procuring lumber at Apalachicola. His party aided also in the erection of the camp, and in mounting the astronomicai instruments at Davis' Point.

The latter part of the season in this section was employed by Mr. McCorkle in a reconnaissance along the coast toward Choctawhatchee Bay. Beyond Saint Andrew's Bay to the westward the country is heavily wooded. Many swamps were passed making in at right angles to the shore of the Gulf of Mexico. The difficulty of extending the triangulation is great, but possibly the obstacles presented in this stretch of about forty miles may be lessened by examining the ground which intervenes between the upper waters of Saint Andrew's Bay and those that enter into Choctawhatchee Bay. As jet no well-defined roads are laid ont, but a party has been organized for such service as may be practicable in the development of this region.

Late in April the schooner Torrey was laid up at Apalachicola in the charge of a ship-keeper. Assistant McCorkle theu passed northward, and during the summer and fall was occupied in fieldwork in Section II.

Before leaving Saint Andrew's Bay the base-line upon which the triangulation depends was carefully remeasured, as also the angles connecting it with the triangulation. Sub-Assistant De Wees co-operated in this service.

Latitude and azimuth at Saint Andrex's Bay, Fla.-At Davis' Point the astronomical instruments jnteuded for the determivation of latitude and azimuth were landed from the schooner Torrey late in December, 1870. Before leaving for the prosecution of routine work, aid was given by the triangulation party in the schooner for setting up tents and securing the instruments in their places. Everything being in readiness, Assistant Mosman commenced astronomical observations on the 4th of January, and employed every clear night until the 17 th , seven being occupied in observing on twenty pairs of stars with zenith telescope No. 6 for latitude. Time was deter. mined ou nine nights by observations on sixty-four stars with transit No. 12. Twenty-four sets of observations were made on six uights for azimuth with theodolite No. 16 ; and by measuring horizontal angles on five days, the azimuth-station was connected with the triaugulation of Saint Andrew's Bay.

Mr. Edwin Smith serced as aid and recorder in the astronomical operations. Assistant Mosman left Apalachicola on the 20th of February, for service in Section IV. He was afterward engaged in Section III, and toward the end of the season co-operated in astronomical work in Ohio and Kentucky, further mention of which will be made before closing notices of work in Section VII. Dnplicates of all the records kept by Assistant Mosman on the Atlautic and Gulf coasts have been deposited in the office, together with the field computations for latitude, azimuth, and magnetic observations.

Topography of Saint Andrew's Bay, Fla.-The plane-table work outstanding at Saint Andrew's Bay when the season opened included some details additional to the survey which had been made, in the preceding year, of the eastern and northern arm, and the survey of the western part of the bay. As already mentioned, the triangulation there was taken up by Assistant McCorkle early in January. Following in order as points were furnished, Sub-Assistant De Wees, after filling in supplementary details to the eastward, traced the shore-line of the western arm, including the
bayous and creeks which empty into it, and thus made the field-work at Saint Andrew's Bay complete. The plane-table sheet represents West Bay as bounded by marsh generally, in some places quite narrow, but in others having a width of a quarter of a mile. The marsh is backed by pines aud underbrush with a few live-oaks and some palmetto. Light.draught vessels can pass throngh the western arm of Saint Andrew's Bay. The shores, however, with the exception of occasional hummocks, are so low aud swampy for some distance inland as to be impassable. SubAssistant De Wees closed work in May, with the following return in statistics for this section :

Miles of shore-lines surveyed $47 \frac{1}{2}$
Miles of bayous and creeks . 108
Area, (square miles)... 47
After discharging the plane-table party Mr. De Wees returned to the office aud was assigned to duty on the coast of Maine, as mentioned under Section I. He is now under instructions for service in Section IV.

Triangulation, topography, and hydrography of Santa Rosa Sound, Fla.-The Gulf coast between Choctawhatchee Bay and Pensacola Bay, a distance east and west of about forty-five miles, has been thorougbly surveyed by a party under the charge of Sub-Assistant H. G. Ogden. Santa Rosa Sound connects the waters of the two bays, and is separated from the Gulf by a low sandy island fifty miles long. The width of this barrier at the average is about a quarter of a mile. Sauta Rosa Sound itself, stretching east and west, varies in breadth, being two miles across toward the western end, where it joins Pensacola Bay, hut is less than three hundred yards wide near its entrance into Choctawhatchee Bay. Field operations were commenced late in December, 1870, and closed ou the 16th of the following May.

Sub-Assistant O. H. Tittmann, who was attached to this party, made the needful triangulation, starting from two stations, (Fort Pickens and the navy-yard,) which had been occupied previousif in the survey of Pensacola Bay. Going eastward he set up siguals, and occupied alternately many stations on the north and along the south shore of the sound, aud extended his triangulation into Choctawhatchee Bay. The western part of that body of water was also included in the survey of this year, and also East Pass, which is an outlet from Choctawhatchee Bay into the Gulf of Mexico.

The conditions being unfarorable in some places along the sound for extended lines in the triangulation by reason of the intercention of trees and sand-hills, great care was taken in the determination of horizontal angles, thirty six measurements being recorded for each angle. Additional to the arrangement in quadrilaterals, angles were measured from their stations to counect with them any siguals that wight be visible in the adjoining quadrilaterals. The scheme of triangles shown in the progress sketch, and the statistics of the work, are eridences of untiring patience, and the results are highly creditable to the members of the party.

The topography of Santa Rosa Sound was commenced by Sub-Assistant Ogden early in February, at a point eleven miles from Fort Pickens. Three sheets were filled in going eastward, the last taking in the western part of Choctawhatchee Bay with Garnier Bayou, Five-Mile Bayou, and the shores of East Pass, which connects the bay with the Gulf of Mexico. Santa Rosa Island, as represented on the plane-table sheets, is covered in spots with grass and pine trees. Patches of marsh are met in a few places along the inside shore. The saud-hills on the island are generally isolated, but in a few instances they occur as ridges. Along the Gulf shore, however, a nearly continnous ridge of sand from five to ten feet high, and covered with grass, presents a barrier so effectual that the island has nowhere been cut through by the waters of the Gulf. In many places the ridge shows like an artificial structure, so regular are the slopes. The topographical survey shows but one break in the entire length of this peculiar sand-barrier.

The mainland, or north shore of Santa Rosa Sound, is mostly swampy to the distance of a quarter of a wile from the water-line, and is covered with a growth of pines, among which are a few live-oak trees. At a few places hard land skirts the sound, but firm ground is continuons along the Narrows and eastward to Choctawhatchee Bay. As far as yet surreyed the bay-shores are dry, and have elevations of tweuty or thirty feet.

Soundings were commenced at Deer Point, the eastern limit of Pensacola Bay, and from thence eastward the channel of Santa Rosa Sound was thoroughly dereloped to its connection with

Choctawhatchee Bay, the westeru part of which and its bayous, as well as East Pass, were included in the hydrographic operations.

Off Deer Point, at the western end of the sound, Sub-Assistant Ogden found a depth of twentyfive feet. Ten miles eastward the depth in Santa Rosa Sound is no more than eighteen feet. Twenty miles east of Deer Point the depth is only twelve feet, and there occurs the first bar across the sound, the least depth being eight feet. Going farther eastward and through the Narro ws the channel is tortuous, with frequent bars, four of which are used as crossing-places, the depth being only four or fire feet, but there are interveniug depths of more than twenty feet.

On the bar of East Pass the sounding party found a depth of about eight feet, and somewhat more through the pass into Choctawhatchee Bay. The current was very strong through the pass.:

Tides were observed at five places on the shores of Santa Rosa Sound by the party of Mr. Ogden, and for mean low water all results were referred by simultaneous obserrations to the old tidal station at the wharf of Fort Pickens. In the sound the observed tide is very small, and Mr. Ogden states that in Choctawhatchee Bay the water-level seems to be governed entirely by the wind.

Before leaving this section the party remeasured the angles of the triangulation going westward across Pensacola entrance, and from Fort Pickens verified the measurements which determine the positions of Fort McRae; those of the beacons, inside and outside of the entrance to the bay; the position of the light-honse, and that of the nary-yard wharf.

Sub-Assistant Ogden commends for energy, care, and precision, the work of his associate Snb-Assistant Tittmann, and also the serrices of his aid, Mr. S. N. Ogden, and of the sailingmaster of the schooner Agassiz, which was used in the surveying operations. Afield and afloat the party developed an aggregate area of one hundred and ten square miles. The particulars of work are as follows :

```
Signals erected63
```

Stations occupied 52
Angles measured 293
Number of angular measurements 9, 368
Miles of shore-line traced 150
Miles of roads 13
Miles run in sounding 439
Sextant angles 3. 591
Casts of the lead 32, 993

The records connected with this work have been duplicated as usual. During the summer Mr. Ogden was engaged in Section II, and Mr. Tittmann at the same time in Section VIII. The schooner Agassiz was laid up at Mobile, to be in readiness for service in the prosecution of the survey of the Gulf coast eastward of Choctawhatchee Bay. If the present winter proves favorable it is hoped that the survey westward of Saint Andrew's Bay may be joined with the work here described.

Latitude and longitude of Cleveland, ORio.-In accordance with the proviso in the appropriation bill authorizing determinations of latitude and longitude in the interior States of the Union, Assistant George W. Dean was directed in the latter part of July to make arrangements for occupying important points in Ohio and Kentacky. He was joined on the 10th of Augast by Assistant Edward Goodfellow, who proceeded with suitable instruments to Cleveland, and there established a temporary astronomical station near the Marine Hospital. Unfavorable weather in September made it impracticable to determine the longitude, but in the course of the following mouth clocksiguals were successfully exchanged on five nights with an observer at Cambridge observatory for lougitude.

Assistant Goodfellow determined the latitude of the station at Cleveland by 126 observations on thirty pairs of stars; and the local time and instrumental corrections by 204 observations on thirty-six stars.

The maguetic declination was determined by Mr. Goodfellow from observations on three days; and the inteusity from three sets of vibrations and two sets of deflection. Four days were employed in ascertaining the maguetic dip.

Observations were completed at Cleceland on the 16 th of November. Mr. Goodfellow then transferred the instruments to Fabmouth, one of the stations occupied in Kentucky, in Augnst, 1869, for observing the total solar eclipse.

Latitude and longitude of Columbus, Ohio--By permission of Gorernor Hayes, the astromomial station was established near the conrthonse at Columbus. Assistant Dean exchanged clock-sighals with Cambridge on six nights between the $\mathbf{3 3 d}$ of September and the midde of the following month, recording in that period 123 observations on 26 zenith and circumpolar stars. The determinations; were made with a 46 -inch transit, (No. (i,) a break-circuit chronometer, and the spring governorchronograph No. 2. Mr. Deans computation gives for the State-house at Columbus a position nearly fourteen seconds in time, corresponding to more than three statue miles, farther east than former determinations.

Observations for latitude were made at Columbus by Assistant A. T. Mosman on six nights, closing with the 9 th of October. The record shows 165 measurements on 29 pairs of stars. Two sets of observations were made for the micrometer value.

The astronomical station at Columbus was referred by geodetic measurements to the center of the dome of the State-house.

Prof. Joseph Winlock, director of the Harvard College observatory, Cambridge, Mass., co-operated with the parties in the determinations for longitude at points in ohio and Kentucky. The president of the Western Union Telegraph Company, Hon. William Orton, extended as heretofore all the facilities needful in the telegraph-work for lougitude.

Latitude and lomgitude of oakland, Fy.-A station was occupied at Oakland during the solar eclipse which was total in that vicinity in Angust, 1869. At that time the telegraph line now in use had not been established. As several other points were to be occupied in the course of the present season in the Western States, the opportunity was taken to determine the longitude and latitude of the eclipse station, near Oakland. When the purpose was wade kuown the officer in charge of the Western Cnion Telegraph Company's line passed a loop to the observing station at the request of Assistant Mosman, and placed at his disposal the facilities needful for exchanging clocksiguals with an observer at Cambridge observatory, in Massachusetts. Siguals were successfully observed on the nights of the 4 th, 5 th, 6 th, and 11 th of November.

At intervals on the same nights on which observations were recorded for longitude, Mr. Mosman determined the latitude of the eclipse-station, using ≥ 4 pairs of stars and noting 109 observations.

At the same station Assistant Mosman occupied three days in olserving the magnetie decination, dip, and horizontal intensits. Having completed the work reguired at Oakhad, the instruments were packed on the l4th of November and dispatched to Shelbyville.

Latitude and longitude of Shelbyville, Ky.-Late in July, 1869, the latitude was determined at Shelbyville, at a station selected for use in the following month by one of the parties under my direction for observing the solar eclipse, which was total in that viciuity. At that time telegraph. wires had not been extended so as to admit of special observations for longitude; hence the station was marked and the desired determination was held in reserve until the present season, when similar service was to be undertaken at other places in the section. Telegraphic facilities meanwhile had been extended to the neighborhood of Shelbyville.
,
Assistant Mosman having made arrangements at Shelby cille in the latter part of Norember, was joined by Assistant Deau. Clock-signals were exchanged, on six nights, with an observer at Harvard College observatory, under circumstances farorable for letermining the difference of longitude. Observations were made in the usual way between the observers for ascertaining personal equation.

After completing the work at the station near Shelbrville, Assistant Dean took charge of the records for computation. Assistant Mosman and his aị, Mr. Smith, are now making arrangements for astronomical duty in Section V.

At all the stations occupied in Ohio and Kentneky, the magnetic elements were determined. Field-work was closed at Shelbyville on the 11th of December.

7 cs

SECTION VIII.

GULF COAST AND BAYS OF ALABAMA AND THE SOUNDS OF MISSISSIPPI AND OF LOUISIANA TO VERMILION BAY, INCLUDING THE PORTS AND RIVERS. (Snetch No. 9.)

Topography of Chandeleur Nound, La.-In May, after closing operations which will be described under the next head, Assistant C. H. Boyd made a plane-table survey along the west side of Chandeleur Sound, continuous with his work of last year, which terminated in the upper part of Isle an Breton Sound. This survey defines the broken ground and patches lying about ten miles north and south in the vicinity of Live-Oak Bayon. The statistics will be included with details which; occupied the party during the preceding month of the working-season in this section. Messrs. Joseph Hergesheimer and C. H. Vau Orden aided in the topographical surver.

Triangulation, topography, and hydrography of Mississippi River, La.-Assistant Boyd resumed work at Grand Praicie, above Fort Jackson, late in December, 1870, with a party in the schooner Hall. Twenty miles of the course of the Mississippi are included in the operations of this season. The survey was suspended on the last of Δ pril at Point La Hache, which is about sixty miles from the light-house at South Pass, on the Gulf of Mexico. In selecting stations for carrying the triangulation up the river, Mr. Boyd met many diffieulties, lines of sight to points otherwise favorable for the work being intercepted by buildings or by clumps of trees. The theodolite, moreover, at nearly every point was, of necessity, placed on a plat form of timber, to give stability on the soft prairie and to insure the line of sight. Another disadvantage was that arising from the fogs that prevail morning and evening during the greater part of the year. These are attributable to the meeting of the belt of cool air along the river with the warmer air of the Gulf coast. Without a more expensive outfit the currents, as observed at two stations in the river, must also be impediments in field-work, which includes both banks, the current at one place being five miles per hour.

The topographical survey by Assistant Boyd and his aids, Messrs. Hergesheimer and Van Orden, includes both banks of the Mississippi within the limits of the triangulation, and such bayous as were found within three miles of the river. On the eastern side the bayous were traced to their connections with Isle au Breton Sound.

In prosecating the hydrography Mr. Boyd found the depth in the Mississippi much less than is usually reported, averaging at the most about twenty fathoms, instead of thirty, in the stretch betweeu Point La Hache and Fort Jackson. Before leaving the sectiou arrangements were made for keeping up, during the year, a series of tidal observations at the quarantine-station. Near the upper limit of his work Assistant Boyd selected and marked the ends of a base-line, about two and a quarter miles in length. This will be measured by his party in the coming winter. The statistics of the survey of this year on the Mississippi are as follows:

$$
\text { Signals erected } 30
$$

Stations occupied 25
Points determined 36
Horizontal angles measured. 199
Number of observations 4,008
Miles of shore-line trdced 258
Miles of roads traced. 39
Area of topography, (square miles) 118

Fifteen hundred soundings were made within the topographical limits. The tidal record was kept up during four months. All the registers of observations and the resulting sheets of work have been received at the office.

Assistant Boyd, during summer and autumn, conducted a field-party in Section I, and is now on his way to resume the survey of the Mississippi.

Hydrography of Lake Pontchartrain, La.-Assistant J. S. Bradford reached New Orleans on the 10th of December, 1870. He at once took charge of the schooner Varina and a small tender, the Barataria, which had been laid up at the end of the previous season in Pearl River. The vessels were refitted without delay, and the party was in working order early in January. Thence onward soundings were prosecuted in Lake Pontchartrain until the 8th of April, when the limits of the
shore-line survey were filled. The hydrography comprises the eastern part of the lake somewhat beyond Ragged Point, on the north shore. On the south site soundings extend as far as the lighthouse which stands on the lake-shore north of New Orleans. In this and other service in the section, mention of which will be made under separate heads, Assistant Bradford was aided by Mr. C. P. Dillaway. The statistics of work in Lake Pontehartrain are:

$$
\begin{aligned}
& \text { Miles run in sounding } 571 \\
& \text { Angles mensured... 1,056 } \\
& \text { Number of soundings. 41, 453 }
\end{aligned}
$$

Deep-sea soundings off the Mississippi delta, La.-Assistant Bradford, after closing work in Lake Pontchartrain, laid up the launch Barataria at Fort Pike and reached Pass a Lontre with the schooner Varina on the $22 d$ of April. Stormy weather prevailed until the end of that month, but as soon as practicable deep-sea soundings were begun near Southwest Pass and South Pass, and lines were run at all favorable intervals until the 18 th of May, when the Varina was required for special hydrographic work in the Gulf of Mexico, westward of the delta, as will be further mentioned under a separate head. The lines run in the Gulf, near the delta, make an aggregate of a hundred and seventy-five miles, and depths were determined at six hundred and eight positions. Mr. Dillaway efficiently aided in this and in the subsequent operations of the party. Mr. T. J. Lowry, the jumior aid, having recovered from illness which seized him on his arrical in the section, also served acceptably.

Hydrography of Trinity Shoal.-This was the concluding work of Assistant Bradford in this section. The shoal lies in the Gulf of Mexico, about one hundred and fifty miles westward of the Mississippi delta. In order to determine the proper site for a light-house the vicinity was sounded by the hydrographic party in the schooner Varina in the latter part of May. Mr. Bradford dereloped the ground in question by upward of a thousand casts of the lead, and sent to the office a chart sufficient for the present requirements by the Light-House Board.

Early in June the schooner Varina was laid up in the Mississippi, at the head of the passes. Assistant Bradford then reported at Washington, and subsequently prosecuted hydrographic duty in Section I.

Geodetic points in Illinois and Missouri.-In further application of the sum voted for determining points in the interior, to serve as the bases of survers that, when made by the several Western States, will be in true geographical relation to the coast, I made a reconnaissance in June last of the region about Saint Louis, in Missouri. Assistant Richard D. Cutts accompanied me in this service, and to his large experience in field operations I am indebted for an early decision on the feasibility of occupying intervisible stations for triangulation within an area of about a thousand square miles in Illinois and Missouri. Late in June Mr. Cutts returned to the Atlantic coast to conduct the operations of his own field-party in Section II, mention of which has been made under that head.

The locality having been selected for the determination of geodetic points, instructions were given to Assistant R. E. Halter to organize his party and to lay out a scheme of triangulation across the Mississippi River extending to the westward in Missouri and to the eastward in Illinois, keeping in view the determination of spires and other prominent objects as additional points for the use of the local authorities. The determination of an astronomical azimuth and the selection of a site for a base and its preliminary measurement were also included among his duties. SubAssistants Williain Eimbeck and O. H. Tittmann, both residents of Saint Louis, and possessing serviceable information of the country in its vicinity, were detailed to assist in the field.

Mr. Halter reached Saint Lonis on the 7th of July. With the necessary outfit and means of transportation the selection of stations was commenced, and was continued until the end of August, when it was deemed advisable to divide the party. Assistant Halter, with Mr. Tittmann, took charge of the work on the Illinois side, and Mr. Eimbeck of the operations in Missouri. The examination was somewhat retarded by excessive heat and haze in July and Augast, and later in the season by the sickness of each member of the party.

The scheme for the triangulation so far laid out extends, north and south, from a station below Saiut Louis to Alton, a distance of thirty miles, and about the same distance, east and west, from

Sugar Loaf, in Illinois, to Kessler's, in Missouri. A site for a base, (see Sketch No. 9,) five miles in length, was selected near the station last mentioned. The longest line is eighteen miles, and the a verage of the triangle sides about ten miles in length.

Assistant Halter reports that, after reaching the Mississippi Bluffs, in Illinois, his farther progress to the eastward, in the axis of the scheme already established, was impeded by a heary growth of timber, extending fou or five miles before the open conutry could be again reached; and that he had examined this tract for abont twenty-five miles, north and south, without finding any practicable opening. If lines of sight cot throngh this belt of timber will entail considerable expense, the alternative will be to extend the scheme of triangles down the river to the high lamds which overlook it.

On the Missouri side the country was found more broken, and although considerable cutting had to be done, a scheme of triangles was found practicable.

After selecting the stations and erecting cleven signals, the measurement of horizontal angles was commenced by Assistant Haiter aud Sub-Assistant Eimbeck. The former occupied and observed the angles at the stations of Dryer and Olark's Mound, in Illinois, and the latter at one of the stations in Missouri.

The preliminary measurement of the base was made by Mr. Halter late in November. Mr. Eimbeck determined the azimuth, closing operations for the season on the 1 st of the present month. The winter being very unfavorable for field-work in Missouri, the ditferent members of the party were assigued to duty on the lower sections of the const.

With a view to make the work now in progress in lllinois and Missouri inure as early as possible to the advantage of the States, the points determined by the triangulation party will be connected with adjacent section-corners of the surveys which have been already made by the General Land-Office.

SEOTION IX.

GULF COAST OF WESTERN LOUISLANA AND OE TEXAS, INCLUDLNG BAYS AND RIVERS. (SkEtci No. 9.)

Mydrography of Matagorda Bay and Espiritu Santo Bay, Tex.-The party of Sub-Assistant F. D. Granger reached Indianola on the 20th of December, 1870 , and before the close of that month commenced the bydrography of Lavaca Bay. The schooner Stevens was used in this service. By the end of January following, soundings were completed in the bay, inchaling also its branches, known as Keller's Bay, Cox's Bay, and Chocolate Bay, the last in the immediate vicinity of the town of Lavaca. Five other sheets were filled in the course of the season. Trespalacios Bay was sounded out thoroughly in Febriary. The resulting sheet shows that the course of the chanuel has changed in recent years, and that the depth has decreased to five feet. In Carankaway Bay, which is another of the branches of Matagorda Bay, soundiugs were completed on the $23 d$ of March. Among the changes at the head of this bay, Mr. Granger notes the washing away of a small island at the mouth of Carankaway River. From the carefal soundings made helow Palacios Point in the latter part of March and early in April, it is shown that Half-Moon Reef is gradually projecting into the body of Matagorda Bay. The light-house is now in four feet water, but the extremity of the shoal, which was at the light when erected, is now one hundred and fifty metres beyond the light-house. After sounding at the entrance to Matagorda Bay, in the vicinity of Decros Point, the party moved into Espiritu Santo Bay, and there continued soundings until the 6th of May, when work was suspended. At that date the hydrography of the bay had been extended to Vanderveer's Island. Careful tidal observations were made during the entire season by Sub-Assistant Granger and his aid, Mr. F. W. Ring. The record shows the tides of January at Lavaca, day and night tides for February and March at Half-Moon Reef, and a series observed at Saluria Bayou while the work was in progress at Matagorda entrance and in Espiritu Santo Bay. Comparisons were taken by simultaneous observations at the several stations, the plane of reference used for the reduction of soundings being deduced from observations at Half-Moon Reef. The general statistics of work are as follows:

```
Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,20̃6
Angles measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 693
Number of soundings .................................. . . . . . . . . . . . . . . . . . . 72, 433
```

The six hydrographic sheets containing this work have been deposited in the office.
Sub-Assistant Granger and Mr. Ring were on service during summer and antumn in Section II, and are now in readiness for resuming hydrographic duty on the coast of Lonisiana.

Latitude and longitude of Chetopa, Kans.-Early in the summer collateral service in the Depart. ment of the Interior called for the determination of the longitude of a point on the southern boundary of Kausas near the 90th meridian, west, for the purposes of the Cnited States land surveys. Contractors who had engaged to subdivide parts of Kansas and Indian Territory into land-sections were reqnired by the Department to make the intersection of that meridian with the State boundary a point of departure, and by advice of the Commissioner of the General Land-Otice the temporary service of one of our observers was requested. The contractors for the land-survers having engaged to defray the incident expenses, the assistant in charge of the office proviled instrumerts immediately, and the longitude observations were committed to Prof. R. Keith, then in service as a computer for the Coast Survey Office.

The determination was made by exehanging timesignals from the nearest telegraph-station with an observer at Saint Louis, the longitude of a station there having been acourately ascertained in previous operations. By observing transits and comparing chronometers by telegraph on three nights, the longitude of Chetopa, Kansas, was determined to be $1^{\text {l }} 1^{214} 198.37$, west of Washington, with an uncertainty of $0^{5} .07$. At Saint Lonis the requisite onservations were made by Sub-Assistant W. Eimbeck. These inchuded the determination for personal equation between the observers, which was fonnd to be 0 . 16 . Each observer noted time by his own cinonometer on the same night while observing stars of about the same declination, the chronometers being at the same time compared by coincidence of beats. The whole series of observations was formed into equations of condition, assuming two chronometer corrections, one for each observer.

By observing transits in the prime vertical, Professor Keith found for the latitude of his station at Cletopa $37^{\circ} 02^{\prime} 13^{\prime \prime} .0$, north.

This work was greatly facilitated by the conrtesy of the railroad and telegraph officials. The Western Union Telegraph Company, with accustomed liberality, gave the use of the line for determining the longitude.

SECTION X.

COAST OF CALIFORNIA, INCLUDING THE BAYS, HARBORS, AND RIVERS. (SkETCH No. 10.)
Geographical reconnaissance betweon San Diego and Panama.-Preparatory to the undertaking of the hydrographic reconnaissance for which the steamer Hassler is now in transit by the way of Cape Horn, Assistant George Davidson has connected Sau Diego with San Francisco by a full series of telegraphic observations for longitude, thas giving a well determined starting point for the reconnaissauce. From his triaugulation-stations in Sim Diego Bay he has also determined the position and elevation of readily-recognized mountains on the coast of Mexico.

In March Sub-Assistant Gershom Bradford was instructed to make a surver of the entrance and bay of Magdaleaa, on the coast of Lower California, and for this duty the survering schooner Murcy was assigned to him. On his passage from San Francisco Mr. Bradford stopped at the island of Guadalupe, verified its position, and determined its elevation. The height was found to be 2,570 feet.

The triangalation of the bay of Magdalena was founded on measured base of 4,414 metres. Points on the shores were determined by sextant-angles with sufficient accuracy for the hydrographic work. The longitude of a station was determined by chronometers brought from San Francisco, and the azimuth of one of the lines of the triangulation by observations on Polaris. Long and continuons series of tidal observations were made at two stations, and some current data obtained. The bydrography was carefally executed, and great changes are indicated by comparison with previous surveys. Special examination was made for a reported rock off the south point of the entrance to the bay, but nothing appeared to indicate its existence.

The following statistics exhibit the work executed between March 9 aud June 30 :
Signals erected
Stations occupied33

Number of observations	601
Miles of shore-line survered	90
Miles run in sounding	1,020
Angles measured	7,470
Number of soundings	31, 719

The records of the work are comprised in twenty volumes. Charts resulting from the hydrographic work have been received at the office.

Sub Assistant Bradford was aided in this special service by Mr. Westdahl, the sailing-master of the schooner Marcy. After returning to San Francisco the party sailed to make search for the Falmouth Shoal, as will be hereafter noticed.

Mr. Daridson has furnished a view of the entrance and approaches to Magdalena Bay. Before leaving that vicinity he determined the elevation of several of the mountains of Margarita Island, which forms the south side of the entrance.

The bay of Magdalena, as described by Assistant Daridson, is one of the most spacious on the Pacific coast, rivaling the Gulf of Fonseca and the bay of San Francisco. The entrance is three miles in width, has no bar, carries a depth of t wenty fathoms, aud has bold headlands rising from deep water to a height of about one hundred feet. The height increases as they recede. The northeru head is marked by two rocks like beacons, the outer one being much the larger. On making the entrance the conical peak of Mount Isabel is seen as a prominent landmark, and is easily recognized. Margarita Island, forming the south point of the entrance, is very bold, high, and broken. In the clear weather which prevails on this part of the coast there is no difficulty in making the entrance. The prevailing wind is from the westward, and blows directly in, but not too strong for a good working breeze in going out. There is avother entrance to the bay at the southern extremity of Margarita Island, but it is long and made tortuous by sand shoals, and has less than three fathoms of water. This channel is never used. The drawback to Magdalena Bay is its large expanse and regular form, which oulige vessels to shift their anchorage with changes of the wind. On the west side the shores are bohl, rugg ed, and covered with cacti. Deep water is found close under the shores. The eastern shores are sandy dunes, in part covered with cacti. Extensive margins of shoal water mark that side of the bay. There is an absence of fresh water on the shores generally, and a very scant supply of wood.

Off-shore hydrography-The steam-vessel requisite for prosecuting off-shore soundings in this section sailed from Boston on the 4th of December instant, and is now on her course toward San Francisco by the way of Cape Horn. Commander Philip C. Johnson, U. S. N., assistant in the Coast Survey, and chief of the hydrographic party in the Hassler, is anthorized to make incidental researches during the voyage by deep-sea soundings, and other observations, which will postpone for a short period the commencement of regular service on the coast of California. It is expected, however, that some advance may be made before the close of the present fiscal year in the development of dangers in the narigation of the Pacific coast between San Diego and Panama. This will be the first service of the party in the steamer Hassler after reaching the section.

Commander Johnson is assisted by Lieut. Commander C. W. Kennedy, Lieut. M. S. Day, and Masters H. B. Mansfield aud E. W. Remey.

In the introduction of this report I have explained the general character of the marine researches which will be made by the officers of the party while the steamer is in the course of trausfer to her destined station for general hydrographie duty.

Longitude and triangulation of San Diego, Cal.-For the determination of the difference of longitude between San Francisco and San Diego, Assistant Davidson occupied an astronomical station at San Diego, and by the liberality of the Western Union Telegraph Company, had a loop of their main line to San Fraucisco carried to the temporary observatory. Mr. S. R. Throckmorton, jr., aid, at the same time occupied the station in Washington Square, in the last-named city. This work was successfully accomplished duriug the month of May. Assistant Davidson's observations embrace twelve double altitudes of the sun, two hundred and ninety five transits of seventy eight stars on nineteen nights, and the exchange of clock-signals on eleven nights. The meridian instrameut No. 1, Frodsham break circuit chronometer, 3479, and the Hipp chronograph, 3753, were
used for this determination. Records of the observations in duplicate, and the chronograph-fillets, have been received at the office. Mr. Davidson was aided by Mr. II. I. Willey.

At the request of the trustees of the citr of San Diego, Assistant Davidson established a meridian-line on the peninsula, four miles south of the astronomical station, as a permanent mark of reference for the determination of the magnetic declination, and for the use of the city and county surveyors.

After completing the observations for longitude at San Diego, the observers met at San Francisco, and, for personal equation, recorded seventy transits, on three nights, with six chronographsheets.

At Washington Square, in San Francisco, Mr. Throckmorton observed four hundred and twenty-four transits of ninetr-five stars, on twenty-five mights, and sent clock-siguals on twelve nights. His records, including seventy-one chronograph-sheets, have been daplicated, and are now at the office.

At two of the triangulation-stations, of 1851 , in San Diego Bay, angular measnrements were made to connect the astronomical station occapied in May, and also the light-house, with the scheme. The principal line of the triangulation Mr. Daridson transferred to two stations not liable to be disturbed by improvements for many years. All the stations were carefully marked. The statisties of this work are subjoined:

Signals erected ... 7
Stations occupied.................................. 5
Angles observed 34
Observations .. . 0.1
Vertical angles were measured to determine the elevation of the stations; of the Coronados Islands, and of Table Mountain and others, in the vicinity of Sau Diego.

Near the astronomical station at San Diego, Mr. Davidson determined the magnetic declination, dip, and horizontal intensity by observations continued through three days.

Triangulation and topography of Bahia Ona, Cal.-Assistant Daridson erected three signals on the shores of Bahia Ona, aud occupied the stations San Pedro Hill aud Point Duma. After connecting the latter with the main triangulation, he determined the position of a station ou Santa Barbara Island, where a signal has been erected by Sub-Assistant Chase. At the commecting stations Mr. Davidson observed on five signals by one hundred and fifty observations of six angles; and also recorded twenty double altitudes of eight objects for eleration.

San Miguel Island will be joined in the triangulation next season. To that end a signal was put up at the principal station by Sub-Assistant Forney. The local survey on that island will be mentioned in a subsequent notice.

Before returning to San Francisco Mr. Davidson examined the coast from Point Duma to San Diego with reference to facilities for the development and progress of the triangulation. Besides the surveys of ranchos bordering the coast which were collected in the jonruey, he added details obtained by special examiuation. Mr. H. I. Willey aided in the work on the shores of the Santa Barbara Channel.

Early in the winter of 1870 sub -Assistant A. W. Cbase forwarded to the office the records and computations connected with his work of the preceding season near Point Saint George. He then resumed the triangulation and topography from his previous limit of work near Point Vincente, and carried the survey to the main station, West Beach. Part of the topography represents the western end of San Pedro Mountain; other details iuclude the rolling hills which border the coast of the Santa Barbara Chanuel. The old sea-benches that mark San Pedro Mountaiu are well exhibited on the topographical sheet.

The following statistics show the work doue before Mr. Chase transferred his party to the vicinity of Crescent City for the survey in that quarter, which will be noticed in regular order.

Miles of shore-line traced . 11
Area, (square miles).. 18
Triangulation and topography of the Santa Barbara Channel and Islands, Cal.-The work near Point Vincente was prosecuted during the winter by the aid of the party. Meanwhile Mr. Chase proceeded to Santa Barbara Island, measured a base of six hundred metres, and covered the island
with a small triangulation for the plane-table survey, which he carried on at such intervals as the generally unfarorable season would permit. The original sheet has been received at the office. Statistics of the work are subjoined:

The topographr represents a fringe along the shore line, of which fire miles are represented on the plane-table sheet. Mr. Chase has given a full description of the outlying dangers, anchorages, \&c., of Santa Barbara Island. After closing this duty he returned to his party at Point Vincente.

Assistant Davidson provided a camp for the party of Sub-Assistant Stehman Forney, who was instructed to commence the tonography and necessary triangulation of San Miguel Island, the westermmost of the Santa Barbara group. This windward islaud is peculiarly exposed to continuous fogs and heary northwest winds, the prevalence of which has marked the present season. Nevertheless, a good return has been made by the party of Mr. Forney. Some of the triangnationstations were recovered, and a scheme of tertiary triangles was developed to make a good trigonometric connection with the survey of Santa Rosa Island. A whale-boat was employed for this difficult duty. There is no water on San Miguel Island; even the fuel needed had to be brought from the mainland. The following are statistics of work executed by this party:

Signals erected 17
Stations occupied .. 8
Siguals observed...... 14 .

Miles of shore-line surveyed . 17
Miles of bluff outline . 10
Square miles of topography 24
Topographical signals erected . 14
The positions of dangerons rocks lying off San Miguel Island were determined, and marked on the survey. Mr. Fomey will continue in the field until hefinishes the work on San Miguel Island. His report includes a full description of Cuyler's Harbor.

Assistant W. E. Greenwell has continued the survey of the coast of California westward from Point Pelican, near Santa Barbara, and has reached a point midway between Sauta Barbara and Point Conception. The season was unfavorable there, as elsewhere on the western coast. At the end of Angust Mr. Greenwell was iaken dangerously ill, and, after much suffering, was constrained to discharge his party for the season.

The topography is based upon the tertiary triangulation of previons years, and has been carried to the limit of the preliminary work near Gaviota Pass. It is comprised on two sheets, showing details along the southern flank of the mountain range, which here crowds down close to the shores of the channel. The country is rolling, partly wooded, and in some localities settled and improved. The following statistics show the work executed by this party:
Miles of shore line traced 242
Miles of bluff outline 14
Miles of creeks surveyed. 9
Miles of roads surveyed 32
Area, (square miles) 33

In the course of the season Assistant Greenwell inked and forwarded to the office three other sheets of topography and one sheet of hydrography.

Triangulation and topography of San Luis Obispo Bay.-Sub-Assistant L. A. Sengteller, after inking his topographical sheets of last year, sent tracings to the office, and forwarded, also, the computations resulting from the triangulation of the season. He then made arrangements for resuming field operations.

In January his party was organized at San Lais Obispo Bay. After measuring a line of nine hundred and fifty-five metres with the subsidiary base apparatns a tertiary triangulation was
extended for the topographical work. Mr. Sengteller also observed a prelimiuary azimuth for his triangulation.

Part of the topography is carried over a very difficult and wild country, forming the southern tlank of Mount Buchon, the base of which terminates in abrupt rocky cliffs bordering the sea. The mountain is covered with dense chaparral, through which it was necessary to open trails. The survey embraces the shores and approaches of the bay, the outlying rocks, and the eastern landing. A tracing of the uninked sheet was forwarded to the office with the records of the triangulation. The following are statistics of the work:

Signals erected ... 10 . 10
Stations occupied .. 9
Angles measured.. 53
Stations determined . 10
Observations... 1, 197 197
Miles of shore-line traced . 63
Miles of streams surveyed. $4 \frac{18}{2}$
Miles of roads snrveyed . 5
Area, (square miles)... 5
In April Mr. Sengteller transferred his party to Point Areua.
Triangulation and topography of San Simeon Bay.-Assistant Cleveland Rockwell completed, in the course of the winter of 1870 , the office-work on bis three sheets of the Columbia River topography. In January he transferred his party to San Simeon Bay, measured a line of eight hundred and sixteen metres with the subsidiary-base apparatus, and extended a tertiary triangulation therefrom for his topography, which now includes the bay of San Simeon and the sbore to the westward. The country is a moderately elevated series of rolling hills, mostly covered with grass, and offering facilities for the work. The statistics are annexed:
Signals erected 9
Stations occupied 9
Angles measured 47
Observations 969
Miles of shore-line traced 8
Miles of roads surveyed 134
Area, (square miles) 10

The duplicate of the triangulation record has been received at the office.
Assistant Rockwell was aided by Mr. George H. Wilson. At the end of March he transferred his party to the northern coast for service, which will be mentioned under the head of Section XI.

Falmouth Shoal or Reed Rocks.-In July last, after closing work at Magdalena, in Lower California, and before the return of the schooner Marey to San Francisco, Sub-Assistant Gershom Bradford made prolonged search in the Pacific about eight hundred miles west of the Golden Grate, in the vicinity of a reported danger. The authorities are positive in regard to the existence of the rock or shoal, but discordant, as might be expected, in reference to the geographical position. The assigned latitudes of the place range as much as a quarter of a degree.

During this examination the vessel ran over one thousand miles. Fifty-niue positions were determined in the vicinity. Soundings were frequently tried, but no bottom was found even with the deep-sea line of 1,850 fathoms. The weather was favorable.

In the opinion of Assistant Davidson, who collated the authorities and conferred personally with the navigators who report the danger, the rocks are probably isolated points coming from a great depth. The deep blue water of the vicinity, smooth when the weather is fair, and the absence of efin-gulls and seals, that harbor in the vicinity of certain shoals, make the position difficult to find.

Another examination will be conducted with a view to the hydrographic development of the vicinity in which the reported danger exists.
(See Sketch No. 34.)
Survey of Table Mountain and of wharf-lines at Oakland, Cal.-Assistant A. F. Rodgers passed 8 c s
the winter of 1870 at San Fraveisco, in computing and duplicating his triangulation records of the previous season. He also inked the plane table sheets of last year, and made a comparative map to show changes at Eel River entrance. Tracings of his survey of the vicinity of Trinidad Head were made for the Light House Board.
After tracing on the proper topographical sheet the wharves and improvements recently made at Oakland Point, Mr. Rodgers took up the survey of Table Mountain, the well-known headland north of the entrance to San Franciseo Bay. The triangulation made as a basis for the topography connects with that of the vicinity of San Francisco. Before completing the survey of the land mark, the time arrived for resuming field-work near Cape Mendociuo, to which reference will be made under a separate head.

Assistant Rodgers was aided in the work near San Francisco by Mr. E. F.•Dickins. The detailed survey of Table Mountain will be completed after the return of the party from the upper part of the section.

Blossom Rock, San Francisco Bay, Cal.-After the close of operations by the United States engineers for the removal of Blossom Rock, a hydrographic survey was made uader the direction of Assistant George Iavidson. Great care was exercised in the determination of the depth, and in fixing the position of each sounding, as well as in the reduction of the soundings to the datum of mean low water. This detailed survey was made by Sub-Assistant G. Farquhar, On aceount of the strong and irregalar currents, the time for sounding was limited to one hour at each tide on fair days, and casts were recorded only when made in smooth water. An aggregate of about one thousand soundings were plotted from over two thonsand angular measurements with the theodolite. The resulting chart, on a large scale, is now at the office. As shown by the soundings, the operations of the engineers have increased the deptb of water on Blossom Rock to twenty-four feet.

Sub Assistant Farquhar has made in general the projections needed for the hydrographic work on the western coast, though suffering mach during the season from disease incurred in the pros. ecution of previous duty afloat. He is now in service in the party of Assistant Daridson.

Rocks in Mission Bay, (San Francisco Harbor.)-While Assistant Davidson was at San Francisco, a small rock was reported as having been found in Mission Bay to the southward of the city. Going at once to the vicinity with his aid, Mr. S. R. Throckmorton, two small heads of rock were found, having only twelve and a half feet on them at mean low water, the depth around the rocks being five and six fathoms. Mr. Davidson, after determining the position, published a notice containing the ranges for avoiding the rocks. Subsequently the Light-House Board placed a buoy on this danger to the navigation of Mission Bay.

San Francisco Bay and approaches.-Some progress has been made at intervals by the hydrographic party of Sub-Assistant Gershom Bradford, with the schooner Marcy, in the minute hydrographic survey of the Golden Gate and its approaches, the object being to determine what changes are going on, and to establish a basis for future comparisons. The work has been subject to the requirements of the service in other quarters; hence it was discontinued when call was made for the hydrographic development at Magdalena Bay, which was mentioned in a preceding notice. The party resumed work near the Golden Gate in October, after completing the survey of the Orford Reef, of which meution will be made under a separate head. Observations made in regard to the currents have already afforded matter of great interest. Nearly three thousand soundings were recorded by the party in the vicinity of the entrance to San Francisco Bay.

Triangulation and topography north of Point Arena, Cal.-As soon as the season would permit, Sub-Assistant L. A. Sengteller transferred his party to Cuffey's Cove, deferring until winter the continuance of work near San Luis Obispo, of which mention has already been made. Having measured a base-line of 1,075 meters at Navarro Ridge, north of Point Arena, the triangulation was brought up to that limit and connected with the base. Mr. Sengteller, before returning the apparatus to San Francisco, also measured the base which had been laid ont at the commencement of the triangulation at Point Arena. This work is now connected with the astronomical station occapied by Assistant Davideon in 1852.

Bad weather prevailed in this section during the year. The topographical survey, however, was extended to Mendocino Bay. The following synopsis comprises the statistics of field-work :
Signals erected 33
Stations occnpied 30
Angles measured. 293
Number of observatious 5,810
Miles of shore-line surveyed 19
Miles of roads surveyed 21
Area, (square miles) 8

The smoke of great fires in the forest north of Point Arena conjoined with dense fogs and strong winds to retard the progress of this party. In the course of the season Mr. Sengteller completed the records of his previous work, and transmitted results to the office. He is now making arrangements to resume field-duty on the coast south of Monterey.

Triangulation and topography south of Cape Mendocino, Cal.-When the season opened for fieldwork north of San Francisco, Assistant A. F. Rodgers resumed his survey of the coast south of Cape Mendocino. His party is yet on the coast near Shelter Cove, the triangnlation having been extended southward from the cape. The region is difficult of access, rugged mountains coming down quite to the coast-line. Ten of the stations used for the triangulation are at elevations of more than two thousand feet, and in order to reach them trails were cut through the chaparral. As the party remained at work after the setting in of the wet season, the following synopsis represents only part of the results of the year :

Stations occupied .
Positions determined
75
Positions determined . 75
Number of observations . 1, 000
Area, (square miles) . 80
While Assistant Rodgers carried forward the triangulation, his aid, Mr. E. F. Dickins, mapped the coast southward of Cape Mendocino. A few miles south of Shelter Cove the topography will be taken up with two plane-tables. Great energy has been manifested in the prosecation of this work under many natural difficulties. Some of the signals were destroyed by forest-fires, the smoke from which also retarded operations. At this time the survey in charge of Assistant Rodgers comprises three sheets of detailed topography below Cape Mendocino, and four others on which shore-line has been traced to a point several miles south of Shelter Cove, where the party is yet at work.

Views drawn by Assistant Davidson were received at the office in January, representing the appearance from sea of Cape Mendociwo and Cape Fortunas. The drawings were accompanied by special riews of the rocks adjacent to the two capes. These, with others furnished by Mr. Davidson, will be engraved for the general charts of the coast.

Sunken rocks south of Punta Gorda, Cal.-While prosecuting the coast topography south of Punta Gorda, Assistant Rodgers noticed a rery heary, but not frequent, break in the water about one mile off shore, caused evidently by a sunken rock. The tide was low, and the water, at the time, was smooth, but a heary swell was coming in from the eastward. Mr. Rodgers determined the position of the sunken rock. It is generally known that such dangers exist on parts of the coast not yet reached by the hydrographic operations. Where, as in the present case, the danger lies near the coast line, the practice of steamers in making their courses quite near to the shore cannot be justified. In ordinary weather, during which the sea in the vicinity of Punta Gorda is marked by " white-caps," it is probable that this danger would be overlooked by passing vessels.

Triangulation and topography of the coast north of the False Klamath, Cal.-Mention has been made, under another head, of the occupation of the party of Sub-Assistant A. W. Ohase during the winter. At the opening of the season he resumed work near Crescent City, and extended the triangulation southward as far as the False Klamath. This part of the coast of Califoruia is high and rough. The ocean-front of the mountains is about twelve hundred feet high at the distance of a mile from the water-line, and, being forest-clad, the region preseats many obstacles to the progress of the triangulation.

After completing the angular measurements, Mr. Ohase extended the plane-table survey so as to
include ten miles of the coast north of the False Klamath. His party was then transferred to a site of work which will be referred to in the next section.

In his general report Assistant Davidson makes favorable mention of the expedients nsed for carrying on the work below Orescent Oity, after having personally examined that stretch of coast with reference to the means proper for its development.

A synopsis of the statistics of work north of the False Klamath is subjoined :

$$
\begin{aligned}
& \text { Signals erected .. } 22
\end{aligned}
$$

$$
\begin{aligned}
& \text { Angles measured... } 79
\end{aligned}
$$

$$
\begin{aligned}
& \text { Miles of shore-line survesed. .. 101 . } 10 \text {. } \\
& \text { Area of topographs, (square miles) } 8 \frac{1}{2}
\end{aligned}
$$

The outlying rocks along the coast were carefully marked in position and appear on the planetable sheet.

Rock in Crescent City Bay, Cal.-In the course of the seasou in this section Sub-Assistant Chase discovered and surveyed a dangerous ledge lying directly in the way of steamers entering Crescent City Harbor from the southward. In ordinary winds from the northwest, the water does not break on the ledge, but doubtless does in heavy southwest weather. The rock is several hundred yards in extent, and is not well marked by kelp. The depth on it, as determined by 165 casts of the lead, is 4 fathoms at mean low water, with 13 to 15 fathoms all around the ledge. This dauger, which I have named "Chase Ledge," is less than two miles from Orescent City light-house. A description has been published in the usual form as a notice to mariuers.

Azimuth at Eureka and Crescent City, Cal.-In the course of the season Assistant George Davidson occupied a station of the triangulation near Crescent City, and observed for azimuth with the twelve-inch theodolite No. 37. The record includes 54 observations on the sun and Polaris. A second station of the triangulation being used as an azimuth-mark, the connection is direct and complete. For this work the transit instrument was pat in the meridian, and eight transits were recorded for time, in addition to twelve double altitudes of the sun. Mr. Davidson made 108 measures of thread intervals with the micrometer. The transcripts of the work have been received at the oftice. Messrs. S. K. Throckmorton and H. I. Willey aided in the observations.

The station Eureka, in Hamboldt Bay, was occupied by Mr. Davidson for azimuth, with theodolite No. 37, by means of which he recorded 42 observations on Polaris. The connection was made direct, as at Crescent City, by using one of the stations of the triaugulation as an azimuthmark. With the transit instrument in the meridian, 25 passages of 18 stars were observed on 2 nights. The record in duplicate is now on file in the office.

Observations for the value of the level scale were made by 24 repetitions with the vertical circle of theodolite No. 57.

Assistant Davidson has computed a table of the azimuths and apparent altitudes of Polaris for varying latitudes and hour-angles, to assist in placing the instrument in the plane of the meridian. As a result, the time occupied in adjusting the new meridian instrument is less than half an bour.

At the astronomical station near Eureka, observations were made to determine the maguetic declination.

Before leaving this section, Mr. Davidson made a careful view from sea, showing Orford Reef and the neighboring const-features. The drawing is now ou file in the office.

Aids to navigation.-In furtherance of the general interests of navigation, several commanications from the Assistants in this section and Section XI have been transmitted to the Light-House Board within the year. Assistant Davidson reports that in heavy north west weather a good lee and safe anchorage can be had at Dume Cove, two miles east of Point Dume. At present, versels under stress of weather usually run for San Pedro. Assistant Greenwell several years ago called attention to the shelter afforded at Dume Cove.

In other reports Mr. Bavidson recommends the placing of lights on Point Hueneme and Anacapa Island, and buoys for the bar, entrance and barbor of San Francisco. He specifies also
the dangers to navigation off Point Año Nuevo. Special attention was given in the course of the year to exactness in the assigned geographical positions of the lights. After verifying the record, Mr. Davidson furnished a complete list for the use of the Light-House Board.

Assistant Rodgers recommends the erection of a light at-Shelter Cove, and, in specifying the dangers between that anchorage and Cape Mendocino, calls attention to the risk incurred by steamers in passing northward too near to the shore.

At Crescent City Bay, buoys to serve as aids in navigation are recommended in the report of Assistant Davidson.

Tidal observations.-The stations on the Pacific coast have remained under the very efficient supervision of Bvt. Col. G. H. Mendell, U. S. A., who has ably met every requisition from the office in Washington. The observations at these stations are generally excellent, and the observers experienced and attentive. Mr. William Knapp has remained in charge of the selfregistering gauge at San Diego, and Mr. F. P. Thompsou in charge of the one at Fort Point. Each observer has also kept up a good series of meteorological observations, and tabulated the readings of high and low waters taken from the tide-rolls by using the improved graduated glass scales furnished from the office for this purpose.

SECTION XI.

COAST OF OREGON AND OF WASHINGTON TERRITORY, INCLUDING THE INTERIOR BAYS, PORTS, AND RIVERS. (Sketches Nos. 11 and 12.)
Triangulation and topography north of Chetlo River entrance, coast of Oregon.-After completing a plane-table sheet of the upper part of the coast of California, Sub-Assistant A. W. Chase moved his camp and party to the coast of Oregon, and took up the triangulation north of Chetko River, where he had discontinued work last year. From that limit he extended the triangulation northward and westward toward Cape San Sebastian. Land operations on this part of the coast are almost impracticable. There being no roads, Mr. Chase was able to occupy his stations ouly by cutting trails through chaparral from one point to another. Two of the stations are on large outlying rocks, one of which was occupied with the theodolite. About eight miles of the coast are represented on plane-table sheet. The general statistics of the work are:

```
Signals erected .................................................................................... }2
```


Angles measured . 106
Number of observations.. 1,272
Miles of shore-line surveyed....... 11
Area of topography, (square miles)... 8
This field-work was closed late in October. Progress was much hindered by strong winds, and during August and September by smoke from the burning forests to the northward of Cape San Sebastian.

Sub-Assistant Chase is now engaged with a party at San Pedro Bay.
Hydrography of Orford Reef, coast of Oregon.-This work was taken up by Sub-Assistant Gershom Bradford, after the return of his party in the schooner Marcy from the vicinity of Falmouth Shoal, which was the subject of a preceding notice. Unfarorable weather interrupted the operations generally on the coast of Oregon, but Mr. Bradford succeeded in sounding out the ship-channel between the main shore and the reef, and partly developed the reef and islets. On the plotted chart the limits of safe navigation are well marked, and also the approaches from the southward. The following is an abstract of statistics :

Siguals erected	7
Miles run in sounding	140
Angles of position	1,040
Number of soundings.	2,533

The party returned to San Francisco late in October, and before laying up the vessel made additional soundings in the vicinity of the Golden Gate, as already stated.

Orford Reef and the coast-features adjacent to it are well represented by a drawing, which was furnished in January last, by Assistant Davidson.

Triangulation and topography of Columbia River, Oregon.-Assistant Cleveland Rockwell resumed the surves of the Columbia River in May. Many difficulties were encountered in advancing the triangnlation. The shores are covered with heavy timber, through which at high points lines of sight were required to bring stations into view that otherwise would be hid by the dense growth of timber on the islands in the river. By well-conditioned triangles, however, Mr. Rockwell succeeded in extending the preliminary work to Westport, which by the river course is about twelve miles above Cathlamet Point.

The topography was taken up at Three Tree Point, on a sheet projected by Mr. Rockwell to take in the river shores as far as the lower end of Puget Island. His plane-table survey includes both banks of the Columbia, which, between the limits stated, is nearly three miles wide. All the islands between Cathlamet Point and Puget Island are represented on the sheet. The river banks are shown as being high, abrupt, and broken; densely timbered and covered with thick underbrush. In the site of work occupied by the party this year there is no river valley; the shores have a steep pitch at the water-line. The basin of the Columbia is from two to five miles wide, and the area between the shores is filled with an intricacy of low marshy islands, which are covered with spruce, cotton-wood, and alder. The islands are overtlowed by freshets and by high tides.

While carrying on the triangulation, Assistant Rockwell determined the positions of notable mountain peaks and ridges that were in view from the stations occupied for his work. A synopsis of the statistics is subjoined:

$$
\text { Signals erected . } 13
$$

Stations occupied .. 13

Number of observations . .. 1, 461
Miles of shore-line surveyed . 71
Area of topography, (square miles) ... 13
The operations of this party, as of the parties geuerally on the western coast, were retarded by dense smoke from the burning woods of Oregon and Washington Territory.

Mr. G. H. Wilson aided in the field-work on the shores of the Columbia.
Assistant Rockwell is now in service near San Simeon Bay, in Section X.
Triangulation and topography of Shoalwater Bay, Wash.-For the service in Shoalwater Bay, Assistant Davidson provided a suitable outfit of teuts and instruments, and at his suggestion the work was intrusted to Sub-Assistant J. J. Gilbert. Field operations were commenced in the spring with a view to connect this survey with that of the Columbia River, and to join it at the north with the survey of Gray's Barbor.

Shoalwater Bay, as the name implies, is filled with great shoals; the channels are tortuous, and the low shores are covered with timber and underbrush. Notwithstanding the disadvantages for progress, Mr. Gilbert established a good triangulation, and determined also a series of points along the low wooded peuinsula which separates the body of the bay from the ocean. Among the points is included the light house on Cape Shoalwater.

Sub-Assistant Gilbert surveyed the shore-line and mapped the topography within the limits of his triangulation. The following are statistics of the field-work:

```
Siguals erected45
```

Stations occupied
29

Angles measured 279
Number of observations 1,980
Miles of shore-line traced 73
Area, (square miles) 23

At the entrance of the bay extensive changes have taken place within recent years. Where a large island existed in 1854, the water is now ten feet deep. Leadbetter Pointand Cape Shoalwater have increased rapidly. Buth are marked by loose sand-dunes that change in form and position with every wind. Mr. Gilbert traced the shore-lines of Shoalwater Bay separately at high and at low water. His party is yet at work, and will continue in the field as long as the season will permit.

Longitude of Seattle, W. T.-While Assistant George Davidson was engaged in special examinations at the United States branch mint in San Francisco, his party was at Seattle in charge of the aid, Mr. S. R. Throckmorton, jr., to occupy an astronomical station there for the determination of longitude by telegraph from San Fravcisco, where Mr. Davidson directed operations from the station in Washington Square. By the usual liberality of the Western Uniou Telegraph Company, this work was successfully accomplished, although the condition of the line was much disturbed by great fires in the forests of Oregon and Washington Territory, which sometimes destroyed the connections. At the Washington Square station, Mr. Davidson observed 602 transits of 81 stars on 38 nights, and transmitted clock-signals on 12 nights. After the return of Mr. Tbrockmorton, observations were made, as customary, for personal equation. These inchaded 92 transits of 54 stars on 4 nights. This longitude-work, in 4 volumes and 61 chronograph sheets, has been duplicated. No aid being available at San Francisco, Mr. Davidson, under the necessity, conducted the mint comparisons while the operations for lougitude were in progress.

Before leaving Seattle, Mr. Throckmorton, aided by Mr. H. I. Willey, determined the magnetic declination, dip, and horizontal intensity at the astronomical station.

Triangulation and topography of the Strait of Huca, W. T.-Assistant James S. Lawson was engaged during the winter of 1870 in computations resulting from his field-work of the prerious season, and in inking plane-table sheets. Eight in all were forwarded to the office, with twentyfive records containing the observations and results. When the season opened for field-work, his party was organized and operations resumed near Nisqually. A base of 900 meters was measured in May on the plains, and the line was connected by angular measurements with the triangulation made last year between Puget Sound and Muck Prairie. On the completion of this work the party, in the brig Fauntleroy, sailed for the Strait of Fuca. Arrangements were made without delay for connecting the triangulation of Admiralty Inlet with the stations which had been occupied on the shores of Rosario Strait and the Canal de Haro, but the smoky atmosphere made the continuance of the work impracticable at that time.

Sub-Assistant Eugene Ellicott joined the partr in June, and was assigned to service with the plane-table on the west side of Whidbey Island. For the extension of his work, points were determined by Assistant Lawson from Deception Pass to the southward, the stations having been pre. vionsly selected. Stations were also occupied to embrace the eastern end of the Strait of Fuca in the general triangulation, aud, by a series of smaller triangles, the upper part of Admiralty Inlet and Kilisut Harbor were included.

The topography was commenced at.Deception Pass. After tracing the shore-lines the survey was extended northward to Sares Head, on Fidalgo Island. Southward of the pass the plane-table work was continued, and finally joined with previous work near the light-house ou Almiralty Head. The western part of Penn's Cove, a harbor of Whidbey Island, is included in the survey made by Sub-Assistant Ellicott. He completed also the topography of Kilisut Harbor, which had been commenced by Mr. Lawson, who found a good depth and safe anchorage while eugaged in the survey. The aggregate statistics of field-work are as follows :

Signals erected ... 18
Stations occupied 32
Angles measured... 178
Number of observations . 5, 536
Miles of shore-line surveyed.. 71
Miles of road surveyed . 22
Area of topography, (square miles) ... 40
Hydrography of Partridge Bank, Lawson Reef, and Belle Rock.-Heavy westerly winds prevailed in July and August, while Assistant Lawson was engaged in the development of Partridge Bank, and these, conjoined with the irregular currents in the vicinty, made the prosecution of soundings a work of great difficulty. The survey, however, was snccessfully made. It shows that between the ten-fathom curves the bank is three miles long and a mile and a half wide, and that the eastern end is within four miles of the shore of Whidbey Island. The soundings have developed a very dangerous rocky ledge, on which the depth of the lowest tide is ouly fourteen feet. By the
very strong and irregular currents, the kelp, which would otherwise be a warning, is sometimes torn off, or run under, so that vessels on the lookout cannot make sure of the position to be avoided. On the recommendation of Assistant Lawson, a buoy was placed on the bank by direction of the Light-House Board. Lawson Reef was discovered by the party in the brig Fauntleroy last year. Mr. Lawson made the bydrographic development in the steam-launch Lively, in the course of the present season, while conducting other operations in the field, and under circum. stances of weather very unfavorable. The least depth found was twenty feet. Being compelled by stress of weather to seek a harbor, the party found good anchorage at the south end of Burrow's Bay, in a position which heretofore has had no repute as a harbor.

Assistant Lawson noticed, while sounding in the vicinity of the reef, that the tides were very irregular, there being for several days only one high and one low water each day. In one case the ebb continued to run for a period of fourteeu hours.

Belle Rock was sounded and determined in position. The least depth found by Mr. Lawson was eighty fathoms. The following is a synopsis of the statistics:

```
Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
```

Angles measured 1, 594
Number of soundings . 3, 3, 739

Mr. F. A. Lawson served as aid in the hydrographic party, and also in the field operations.
Assistants Davidson and Lavison united in the recommendation for placing buoys on Itsami Shoal and Toliva Shoal, as aids in the navigation of Puget Sonnd.

Iidal observations.-The station at Astoria, with the others on the western coast, has remained under the able supervision of G. H. Mendell, major engineers, brevet colonel, United States Army. The self-registering gauge is attended by Mr. L. Wilson, who has for many years kept up an excellent series of both tidal and meteorological observations at this station. He also tabulates the readings of high and low waters, taken from the tide-rolls, with a graduated glass scale.

SEOTION XII.

PACIFIC COAST, ALASKA TERRITORY.

A party in charge of Assistant W. H. Dall is now in the vicinity of the Alentian Islands, with the schooner Humboldt. The equipment for service included means for making hydrographic surveys, recording tidal observations, and for increasing generally our information in regard to the coast of Alaska.

Before leaving San Francisco in August, Mr. Dall conferred freely with Assistant Davidson, who had collected many particulars of interest and importance in his reconnaissances of the coast of Alaska in 1867, and during his visit to the Kuterr-River for observing the solar eclipse of 1869.

No returns have been received as yet from the party of Mr. Dall, but report of the safe arrival of the Humboldt at Kodiak is hoped for daily. A self-registering tide-gauge, carefully adjusted at the Coast Survey Office, was sent in the vessel, to be set up at Ilionliouk, near the eastern end of the Aleutians. At Saint Paul's Island, abont two hundred and fifty miles northwest from the proposed tidal station, my friend, Capt. Charles Bryant, recorded meteorological observations continuously for a period of eight months, beginning with November, 1870. By his kindness I am enabled to include a copy of the record, which will be found in Appendix No. 7.

OOAST SURVEY OFFICE.

The operations of the Coast Survey Office have been conducted, as heretofore, by Assistant J. E. Hilgard.

The inconvenient and insecure condition of the buildings occapied by the offce had long occasioned apprehension as to the safety of the valuable records accumulated during many yeara, besides involving much loss of time, from the fact that the houses occupied were seattered at different points within a square of the city. In order to correct these disadvantages, an arraagement was entered into with Messrs. T. and A. T. Richards for the construction of a suitable building, situated between the Capitol and the former site of the office, which was ready for occupation
on the 1st of January, 1871. By the 1st of March all the different departments of the office had been moved into it. Besides the security of the records by the fire-pronf character of the buildiug, great advantage has been experienced from having all the operations of the office under the same roof.

The following statement gives a succinct account of the operations of the office during the past year, which have fully kept pace with the adrance of operations in the field.

Hydrographic division.-The planning and verifying of the work of the sounding parties is under the immediate direction of Capt. C. P. Patterson, inspector of hydrography, who also has charge of the construction, repairs, aud disposition of the ressels belonging to the Coast Surver service. The office-work under his direction has been performed by Mr. E. Willenbiicher, as principal bydrographic draughtsman, who has plotted sixteen original hydrographic sheets, in addition to making the verification of sheets drawn by others, besides drawing numerous projections, reductions, tracings, and performing other miscellaneous work relating to ligits, buoys, and saingdirections. Mr. J. Sprandel, as assistant draughtsman, has equally performed a creditable amount of work.

Computing dirision.-Assistant Cuarles A. Schott continued in charge of this division during the past year. The force of permanent computers, consisting of Messrs. T. W. Werner, James Main, G. Rumpf, and E. Courtenay, has remained the same, in addition to whom the assistance of Messrs. F. Hudson and R. Keith was occasionally nsed, in order to keep up with the rapidy-increasing amount of field-work, both in triangulation and astronomical observations.

Assistant Schott served as a member of the party of the Superintendent for observing the solar eclipse of December 22, 1870. His services as an observer at Catania, Italy, are noticed in Appeudix No. 16 to the report of 1870 .

Magnetic observations for declination, dip, and intensity were made by him in June, at washington, in continuation of the regular series observed by him. Among the great number of reports submitted by him as chicf of the computing dirision, the following may be specially mentioned: On the results from pendulum observations, made at the Coast Survey Office; on the present state of the question of peudulum observations in comection with geodetic survers; on the comnection of the primary base-lines of Kent Ishand, Md., and Craney Island, Va., and on the degree of accuracy of the interreuing triangulation; a new investigation of the secular changes in the magnetic declinatiou, dip, and intensity of the magnetic force at Washington, D. C.; results of eclipse observations at Catania, and on the result of the micrometer measures of the negatives of the eclipse of the sum, taken at Springfield, Ill, August, 1869. He also investigated two recent hypsometrical formule, one relating to trigonometrical, the other to barometrical measures, besides furnishing numerous reports on the routine work of the division, and promptly meeting all calls upon him for data needed in other branches of the survey.

Tidal division.-The duties of this division, consisting of the reduction of the tidal and meteorological observations taken at the several established stations on the Atlantic and Pacific coasts, correspondence with observers, inspection of new apparatus, and supervision of repairs to those in service, have been directed by Mr. R. S. Avery, assisted by Mr. A. Gottheil, Mr. J. Downes, and Miss M. Thomas. The tables of predictions of tides for the principal ports for the year 182^{2} have been computed and published. Various improvements have been introduced in the method of prediction by the comparison of predictions with observations in each succeeding year. All information for use in office and field-work, and in reply to applicatious for information relative to tides, has been promptly furuished. The particulars relating to the several permanent tidal stations have been mentioned under the heads of the respective sections in which they are situated.

Drawing division. -The operations of this branch of the office have been conducted under the immediate direction of the assistant in charge, Mr. W. T. Bright assisting in charge of the details. The following draughtsmen, comprising the permanent force of the division, have executed the drawings for engraved charts: Mr. A. Lindenkohl, chief drnughtsman, and Messis. H. Lindenkoli, L. Karcher, F. Smith, and F. Fairfax. Mr. W. Fairfax made traced copies of maps as they were required for office and field purposes. Mr. W. McMurtrie was engaged during the year in taking views of headlands and approaches to harbors. A list of the manascript maps and charts furniahed to other branches of the public service and to private persons, the cost thereof being 9 cs
paid by the latter, is given in Appendix No. 足. A tabular statement of the charts completed or in progress during the gear, with the names of the draughtsmen engaged upon them, is shown by Appendix No. 3.

Engracing firision.-This division has remained under the charge of Assistant E. Hergesheimer, whose executive ability, no less than his professional knowledge and caltivated taste, has done much to advance the efficiency of the work under his charge aud to improve the perspicuity of the charts, while maintaining their artistic character. Mr. Hergesheimer reports the completion of twentythree charts, engrared on copper, the commencement of work on seven new plates, and the advancement of the engraving upon twent-eight, some of them fully up to the field-work.

During the year the custody of the "altos," or electrotype relief-moulds, has been transferred from the electrotype to the engraving division. Thes have all been examined and assorted. Such as had served a temporary pupose in the construction of new "bassos" have been condemned, the remainder having been registered and stored in convenient cases in the basement of the office.

The engraved and electrotype plates have heretofore been stored together in the order of their accumulation. The remoral to the new office has afforded an opportunity to make a careful examination of the same and a separation of the standard and printing-plates, with a selection of the most important of the former for storage by themselves. Some standards that have become obsolete will be boxel for preservation. The priuting plates occups a room separate from the standards, and convenient to the printing-ofice.

The force of engravers has remained the same as last year : Messrs. J. Enthotier, H. U. Evans, A. Sengteller, and A. M. Maedel, topographical engravers; John Knight, E. A. Maedel, and A. Petersen, letter engravers; H. S. Baruard, J. C. Kondrup, R. F. Bartle, W. A. Thompson, H. M. Knight, J. G. Thompson, F. W. Benner, E. H. Sipe, and W. H. Davis, miscellaneous engravers. During part of the year Mr. F. Courtenay has engraved lettering and Mr. George McCoy views, both on contract. Mr. E. Molkow has continued the use of the pantograph, and Mr. George A. Morrison has performed the clerical duties of the division.

A tabular statement of the charts worked upon during the year, with the names of engravers engaged upon them, is giver in Appendix No. 4. The system and styles of lettering used on the Coast Survey charts are exhibited by Sketch No. 31.

Electrotyping and photographing.-The operations of this division of the office during the year, continued by Mr. George Mathiot, with Mr. F. Ober as assistant, embrace the production of thirtytwo electrotypes of the engraved plates of the survey, the reduction of sixteen topographical fieldshects by photography for engraving on the scale of the coast chart series, furnishing the requisite positives on glass for the direst use of the engraver, and reduced prints on paper for the elaboration of details by the draughtsman.

Division of charts and instruments.-Mr. John T. Hoover has directed, with his accustomed zeal and energy, the duties of this division, which comprise the safe-keeping of records and maps, printing and distribution of charts, and work of the mechanician's and carpenter's shops, including the dispatch of instruments for field-parties. The registering and fling the original maps and charts, and records of observations made in the field, has continued with Mr. A. Zumbrock.

Withiu the year 8,931 copies of charts and sketches have been printed from the copper-plate press, worked by Mr. T. V. Durham.

The preparation of backed sheets of drawing-paper for field and ofice use, and the miscellaneous duties pertaining to the bindery and folding room, have been very satisfactorily performed by Mr. H. Nissen.

Mr. T. McDonnell has remained in charge of the map room. There have been issued during the year an aggregate of 10,283 copies of charts, and a distribntion of 1,970 copies of the anuual reports of various years has been made.

The work of repairing and reconstructing instruments was done under the supervision of Mr . John Clark, by J. Foller, W. Jacoli, C. F. Wurdemann, and apprentice, E. Eshleman.

The wood-work of instruments, their packing for transportation, and all carpentry-work required in and about the office, was done by Mr. A. Yeatman, assisted by Mr. F. E. Lackeg.

The duties of chief clerk of the office, the charge of the general correspondence, and the office
accounts have, as heretofore, been performed by Mr. V. E. King, assisted, since Apill. hy Mr. F. W. Claner. Mr. C. A. Hoover acted as writer in the hydrographic division during the entire rear Mr. R. L. Hawkins has discharged the duties of principal accountant and book keeper in the office. of the general disbursing agent of the Coast Surver, Samuel Hein, esq., and the clerical duties of that office have been performed by Mr. W. A. Herbert, assisted by Mr. H. Hein as writer.

CONCLUSION.
Previous to the completion of the edifice now occupied by the office, the assistant in charge, J. E. Hilgard, esq., had, in the plan of the building, marked ont the quarters to be allotted to the several divisions. After the removal I made a carcfal inspection of each of the offee divisions, and was gratified by the good judgment shown in their new arrangement. While binging together, as was desirable, the branches of work most nearly related, it was borne in mind that they include many members with special talent and decided individnality. Hence the adjustment with reference to unity and effectiveness was not an easy task, but it has been accomplished to my entire satisfaction. My thanks are due ako for the earnest co-operation of Mr. Hilgard in conducting the work of the present year.

Samuel Hein, esq., continnes in charge of the finances of the surver, and it is known at the Department that his accomots are presented iuvariably in lucid form. As disbursing agent, his serupulons regard to econony and promptness in stating the means available for service at any period of the season have been indispensable adjuncts in the proper control of the observations of the survey. The experience of Assistant W. W. Cooper in official details has also furtbered, as heretofore, the discharge of the administrative daties which devolve on the Superintendent.

It is just to add, in conclusion, that the cordial assistance of able oficers has liberated me from much labor in the rontine of the service. Time is thas afforded for considering suggestions that have bearing upon the general interests of the work and its relations, as well to the requirements of onr commerce, navigation, and national reputation, as to the demands of science. In an age so practical as the present these several objects may be regarded as commensurate.

Respectfully submitted,
BENJAMIN PEIRCE, Suporintendent Thiter states Coast Surrey.
Mon. Georese S. Boutweile, Geeretary of the Treaswry.

APPENDIX.

APPENDIX No. 1.
Distribution of surveying parties upon the Atlanti, Gulf, and Pacific coasts of the Cnited States dur. ing the surveying sectson of $1870-1$.

Distribution of surveying parties upon the A tlantic, Gulf, and l'acific cousts, dec.-Continued.

\begin{tabular}{|c|c|c|c|c|}
\hline Coast sections. \& Parties. \& Operations. \& Persons conducting operations. \& Localities of work.

\hline \multirow[t]{3}{*}{Section I-Continned...

Section II.} \& \multirow[t]{3}{*}{No. 13} \& Tonograpisy and lydrography. \& H. L. Whiting, assistant: H. Mitchell, assistant; H.L. Marindin, sub-assistant. \& Shore line survey and bydrography, with record of changes attecting the harbor facilities at Fdgartown, Vincyard Haven, and Nantucket, Mass. (See also Section II.)

\hline \& \& Topography \& A. M. Harrison, assistant; Bion Bradbury, jr.. aid; W.II.Stearns, aid, (part of season.) \& Topographical survey of the shores of Narragansett Bay completed, and details extended west. ward of Point Judith to the vicinity of Wakefield, R. I. Survey of wharflines for the harbor commissioners of Newport.

\hline \& \& Tidal obsercations. \& T. G. Spaulding. L. Howland. \& Serics of observations continued with self-registering tide-ganges at North Haven, in Penobscot Bay, Me., and at Charlestown navyryard, in Boston Harbor, Mass.

\hline \multirow[t]{3}{*}{Atlantic coast and seaports of Connecticut New York, New Jersey, Penusglvania, and Delaware imeluding bays and rivers, and also Lake Champlain.} \& 1 \& Triaggnation..... \& J. A. Sullivan, assimant; W. II. Stearns, aid. \& Points determined from Point Judith westward to the vicibity of Charlestown, R. l., on the horth shore of Loug Island Sound. (Sec also Section VI.)

\hline \& 2 \& Preservation of
stations. \& John Farle \mathbf{y}, assistant \& Examination of station-marks formeny placed at Montauk Point, Shelter Island, Friar's Hoad, and Clarke Station, on Long Island; at Wateh Hill, Champlin Hill, and Lantern Hill, on the coast of Rhode Island; at Nickerson, William's Hill, aud Sugar Loaf Hill, on the coast of Conneeticut, and at Fard Station, near Philadelphit.

\hline \& 3 \& Triangulation. \& Edward Goodfellow, assistant.. \& Determination of points for the survey of Now Haven Harbor. (See also Section VII.)

\hline \& 4 \& Topography \& R. M. Bache, assistant. \& Detailed topographical surver, ineluding the Quinnipiac River and its brancles, in the vicinity of New Haven, Conn.

\hline \multirow[t]{8}{*}{,} \& 5 \& Reconnaissance. - \& Richard T. Cutts, assistant ; R. A. Colonma, aid. \& Reconnaissance and selection of sites for veritica. tion bases near the north ond of Lake Champhan; signals erected for the lake triangulation betueen Kible's Point and the United States boundary.

\hline \& ${ }^{6}$ \& Triangulatiou. \& F. W. Perkins, sulbassistant \& Triangulation of the eastem brauch of Lake Champlain, from Kibbers Point northward to Ball's Island, and measurement of verification bases. (See also Section IV.)

\hline \& 7 \& Triangulation \& G. A. Fairfield, assistant ; F. W. Perkins, sul-assistant. \& Triangulation of the eastern channel of Lake Champlain, from Ball's Island northward into Missisquoi Bay. (Soealso Section IV.)

\hline \& E \& Ttiangulation..... \& S. C. McCorkle, assistant ; W. H. Stearns, aid, (part of scason.) \& Triangulation of the western channel of Lake Ciamplain, from Plattsburgh north to the Vuited States boundary. (See also Sections I, VI, and VII.)

\hline \& $\begin{array}{r}9 \\ \\ \\ \hline 18\end{array}$ \& Triangulation and topography. \& Charles Husmer, assibtant; R. B. Palfrey, aid. \& Shore-line survey of the eastern part of Lake Champlain, from Culchester Point northward to Butler's Island. (See also Section V.)

\hline \& 10 \& Topograply \& d. N. Meclintock, aid.............. \& Shores of the eastern branch of Lake Champlain traced from Batler's Island northward, to include McQuan Bay. (See aleo Sections I and V.)

\hline \& 11 \& Topography \& H. G. Ogden, sub-assistant ; Audrew Braid, aid. \& Western shores of Lake Champlain traced, and islands intervening, between Cnmberland Head and the United States bonndary, including the southern shore of Missisquoi Bay. (Ste also Sections VI and VEI.)

\hline \& 12 \& Hydrograpby \& F. 1. Grariger, sub-assistant; F. W. Riug, aid; L. F. Chew, wid. \& Soundings in Lake Champlain, from the upper end of Valcout Island sonthward to Ligonier Podnt and Shelburne Puiat. (See alad Section IX.)

\hline
\end{tabular}

Distribution of surveying parties upon the Atlantic, Gulf, and Pacific consts, dc.-Continued.

Distribution of surveying parties upon the Athantic, Gulf, and Patific coasts, de.-Continued.

Distribution of surveying parties upon the Athatic, Gulf, ant Pacific consts, de-Continued.

Coast sections.	Parties.	Observations.	Persons conducting operations.	Luctitiee of work.
Sxetion VII-Continued.	No. 6	Trangulation, topography, and hy:drography.	H. G. Oghen, sub assistant: © H. Tittmanm, sul-assistant; S. N. Ogren, aid.	Complete surver of Santa Rowa Sombl. Fla.. iu. chuning tha finf conat fom Choctawhatere entrance westwate to lensacola Bay. (Ser also Sections 1. II. and VIIL.)
		Astronomical observations.	Edward Goodfellow, assistant....	Latitute. bongitule, and the marnetio elements determined at Clevelabd. in Ohio and at Falwouth, in Kedtack. (See alse section II.)
		Astronomical observations.	G. W. Deav, assistant ; A. T. Mos. man, assistant; Edwin Smith. aill.	Latitude. Jompitule, am the magntic elfonents derembined at Columbas, Ohic. (Sce also See. tions 111 and IV.)
		Astronomical observatious.	A. T. Mosman, assistant ; Elwin Snith, aid.	Latitude, louritude, ant the magnetic elements detemined at Oakland and at Shelbyvill', Ky. Gee ulso sections ILI amil IV.)
Gulf coast and bays of Alabama, and the mounds of Mississippi and Louisiana, to Fer. milion Bay, including the ports and rivers. Sketion 1X.	1	Triangulation, to pogaphy, ated hydrography:	C. H. Doyd, assistant: Joseph Hergesheimer, aid; C. D. Yan Or. den, aid.	Topmaraphy of the west side of CLandeleur Somed, inchang Live-Oak Isayou. Complete surver of the Mississippi hiver, extended fom Grand Prairie upward to Point La Hache. (Sere almo section I.)
	2	Hydrograplị	J. S Bradford, assistant ; C. P. Dilllaway, aid; T. J. Lowry aid.	Hydrography of the castern part of Lake Pontchartrain : deep-sea soumdings in the approsaches of the Mississippi Felta : sonadings on Trinity Shual, in the Gulf of Mexico. See also Ste. tion I.)
	3	Traugulation....	R. E. Halter, assistant : Willian Cimberk, sulvassistant: O. H. Tittmann, subassistant.	Triangnation accuss the Mississippi River from stations in Illinois and Missouri, including the vieinity of Saint Louis. (See also Sections III, FIL, and 1X.)
Gulf coast of Western Louisiana and of Texas, including bays and rivors. Biction X.		Hydrograpliy .	F. D. Granger, subasistant; F. w. ling, ain.	Sondinge mompleting the hydrography of Matagorela and Lavaca Bays, and including the upper part of Espinitu Santo Bay, Tex. (See also Sec. tion 1I.)
		Astronomical observations.	R. Keith, olserver ; William Eimbeck, sul-assistant.	Latitude and longitude determined at Chetopa, Kaus., by transits in the prime vertical and ex. change of time signals by telegraph from Saist Louis, Mo. (See also Section VIII.)
Pacifec coast of Califormia, including the bays, harbors, and nivers.	1	Astronomical observations.	George Davidson, assintant.......	Determination of positions for a hydrographic reconnaissance of the coast appreaches aor th of Panama. Observations for loagitude and for the magnetic eloments at San Diego, Cal. (See also Section XI.)
	2	Hydrography	Gershom 7 Pradford, sub-assistant: F. Westahl.	Shore-line survey and bydrography of Magdalena Bay, in Lower Calitorna. (See also Section XI.) Hydrographic party organized to contime off-shore somdings aloug the coast of Califormia. Triaugulation at Bahia Ona, and aletemmination of the position of Santa Barbara lshand in retation tothe coast ot California. Reconnaissance of the eoast from San Diggonorthward to l'oint Imane. (Ste alsestection XI.)
		Hydrography	Commander Philip C. Johnson, U. S. N., assiztant; Lieot. Commander C. W. Kennedy; Lieui. M. S. Day ; Masters H. B. Mansfield and E. W. Remey.	
		Trinngulation ...	George Davident, assistant; H.I. Willer, aid.	
		'Lriangulation ami topegraphy.	A. W. Chase, subassistant	Plane table surver of the shere of Bahia Oua inorth of Point Vincente, and of part of Santa Barbara Island, Cal. (See aiso Stetien XL.)
		Triangnlation and (0,ograply.	Steliman Fornes, sul-assi	Topugrauhical survey of San Miguel Island, in Sabta Barbatachamel, Cal.

Distribution of surveying parties upon the Atlantic, Gulf, and Pacific coasts, de.-Continued.

Coast sections.	Parties.	Operutions.	Persons conducting opurailons.	Localities of work
Section X-Continued.	No. 7	Topograph:	W. E. Green wetl, assistant.	Detailed survey of the coast of Caliornia from Point Pelican, mar Santa Barbara, westward towarl Point Conception.
		Topography	L. A. Senuteller, snl-assistant	Plane-table survey of the shores of San Latis Obispo Bay; Cal.
		Topography	Clevelam Rock well, assistant : (G. H. Wilsom, aid.	Topography of the shores of San Simem Bay, Cat: and aljacent emant to the westrard. (See alm Sectiou XI.
	10	Hytromephy	Gershom Shatord, whloassistimi.	Hydrographic exploration to determine the position of Falmouth Shoal, or Reed Rorks, off the east of Calitomia Comparative soundings and olservations on currents near the Golden Grate (Ste also Section XI.)
	11	'Topography	Aug. F. Rodgers, assistant: E. F. Dickins, aid.	Topugraphical survey of Table Mountain, on the nortlu side of San Francisco entrance. Wharflines tracell as now existing at Oalland Point.
	12	Astronomical ob. servations.	George Davidson, assistant	Station in San Francisco occupied for exchange of clock-signals, to determine the longitude of Seattle, W. T. Special comparison of ooin wights at the Cnited States branch mint in San Francisco.
	13	Hydrograpty .	George Davjdson, assistant; G Farquiar. subassistant; S. R. Throckmorton and H. I. Willey, aitls.	Hydrographic survey of Blossonin Rock, in San Fraucisco Bity. Rocks determined in position in Mission Bay, and the positions of buove off the Gelden Gate. (Nee also Section KI.)
	14	Triangulation and topography.	L. A. Sengteller, sub-assistant	Jetailed surver of the coast of California from Cuffey's Cove northwart to Mendocino Bay.
	15	Triangulation ami topography.	Aug. F. Rolgers, assistant; E. F. Diekins, aid.	Topographical survey from Cape Mendocino southward hevoul Shelter Cove, Cal. Position Hetermined of a sanken rock south of Punta Gorda.
	16	Triangulation and - topography.	A. W. Chase, snb-assistant.	Topographical survey of: the coast of California from the False Klamath north to the ricinity of Crescent City. Discovery and development of a rock in Cresecnt City Bay. (See also Section XI.)
	17	Astronmical obs. servations.	George Davidson, assistant; S. R. Throckmorton, aid; H. I. Willey, aid.	Arimuth and magnetic elements determined at Eureka, and azimuth at Crescent City, Cal. Views of Cape Mendocino and Cape Fortunas, and of Orford IReef, with the adjacent coast. (See also Section XI.) .
	18	Tidalobservations.	Maj. G. H. Mendell, United States Engineers; William Knapp; F. P. Thompson.	Series of observations continued with the selfregistering tide-ganges at San Diego and at Fort Point, near San Francisco, Cal. (See also Section XI.)
Sretion XI. Paeftic coast of Oregon and of Wastington Territory, including the interior lays, ports, and rivers.	12	Triangulation and topography.	A. W. Chase, sub-astistant	Detailed survey of the coast of Oregon between Chetho River and Cape San Sebastian. (See also Section X.)
		Hydrography	Gershom Bradford, subemsistant. .	Hydrograpby of the Orford Reef, off the coast of Oregon. (See also Section X.)
	3	Topngraphy	Cleveland Rockwell, assistant; G. H. Wilson, aid,	Topographical survey of the shores and islands of the Columbia Fiver, betweed Cathlamet Poist and Puget Island. (See aligo Section X.)
	4	Triangulation and topography.	J. J. Gilbert, sub-astistant.	Detailed survey of the entrance and northern shores of Shoulwater Bay, W. T.
		Astronomical ob. servations.	George Davidson, assistant ; S. R. Throckmorton, aid ; H. I. Willey, aid.	Longitude of Seattle, W. T., ascertained by ex change of clock-siguals with San Franciseo. Magnetic elements determined. (See also Section X.)

Distribution of surveying parties upon the Atlantic, Gulf, and Pacific coasts, de.-Continned.

Coast scetions.	Partics.	Operations.	Persons conducting opreratious.	Lecalities of work.
Seetion XI-Continued.	No. 6	Triangulation, to pography, and leydrography.	James S. Lawson, arsistant; Eugene Ellicott, sub-assistant; F. A. Lawbon, aid.	Triangulation of the eastern part of the Strait of Fuca, inchading the ontrance to Admialty larlet and Kilisut Harbor, Wash. Mcasurement of base-libe on Nisquatly Plains. Topography of the west end of Whidbey Island, including part of Pennes Cove. Hydrography of Partridge Bank, Lawson Reef, and Belle Rock. (See also Section IV.)
		Tidal observations.	Maj. G. II. Mendell, United States Engineers; L. Wilsou.	Series continued with the self:reristering tiongatuge at Astoria, Oreg. (See alson Section X)
Coast of Alaska Territory, ivclurling the Alentian Islandes.	1	Astronomical observations and hydrography. Tidal observations.	W. E. Dall, acting assistant : M. W. Harriugton.	Party organized to determine geographical masitions, and to make local survers along the coast and islands of Alaska Territory.
			W. H. Dall	Series of tidal observations emmenced with a self-repistering gange at Ilioniouk, on the Aleutian Islands, Alaska.

APPENDIX No. 2.

Information furmished from the Coast Survey Office, by tracings trom original sheets, de., in reply to special calls, during the year ending November, 1871.

Date.		Name.	Data fraished.
January	5	Col. J. II. Simpson, Corps of Eugineers	Topographical survey of the westeru coast of Florida, from saint Vineent's Ieland to Saint Joseph's Point, including the shores of Saint Joseph's Bay.
	6	Mai. T.J. Treadwell, United States Army	Topographical survey of Frankford arsenal and vicinity, Delaware River.
	13	Col. Thomas L. Casey, Corps of Eugineers	Topographical survey of the west dile of the Narragansett Bay, from South Ferry to Narragansett Pier.
	10	Thomas A. Scott,	Topographical survey coast of California, from the Santa Clara River to Point Maga.
Febrbary	4	Col. W. P. Craighill, Corps of Engineers	Hydrographic survey of the Rappahamock River, from Farleyvale to Castle's Ferry: together with the survey of the bars, vicinity of Millbank and Tobago Bay.
	4		Tidal information of the Rappohannock River, Va.
	4	Hon. Hamilton Fish, Secretary of State	Topographical and hydrographic survey of the Hudson River, from Anthony's Nose to Phillipse's Point.
	4	Capr C. W. Howell, Corps of Engine	Hydrographic survey of Pass Cavallo and Aransas Pass, Tex.
	7	Hon. Janes Buffinton, Mass	Topographical asd bydrographic survey of Fall River, Mass.
	25	A. H. Richards, esa	Latest information about Little Exg Harbor, N. J.
	27	Light-House Board	Topographical survey of Point Reyes, Cal.
March	11	R. P. Paul. esa	Hydrographic survey of part of the Darien River and Catish Bar, Ga.
	11	Col. Thomas L. Casey, Corps of Engineers	Topographical survey of the west side of Narragausett Bay, from south Ferry to Big Fock Point.
	11	Lient.Col. J. G. Foster, Corps of Eagineers	Hydrographic survey of Wellfeet Harbor, Mass.
	11	dodo	Projection, scale $\bar{z} \overline{\frac{1}{0}} \mathbf{0} \bar{j}$, and pointe of Wellfect Harbor, Mass.
April	6	Col. J. H. Simpson, Corps of Engineers	Hydrographic survey of part of Tampa Bay, Fla.
	97	Col. George Thom, Corps of Eugineers.	H_{Y} drographic survey of the Kenuebec River, from Richmond to Gardiner, Me.
May	4	Department of Docks, N. Y	Shore-line marveys of Sandy Hook of 1855 and 1862.
	8	Maj. G. K. Warten, Corps of Engineers	Hydrographic survey of Norwalk Harbor, Conn.
	11	Providence Daily Journal, R. I.	Distances and geograpbical positions in Narragansett Bay, R. I.
	11	Providence Evening Bulletin	Do. Do.
	11	Newport Mercury	Do. Do.
	11	Newport Daily News.	Do. Do.
	17	Maj. Gr. K. Warren, Corps of Engineers	Projections, scale $5 \delta^{\frac{1}{2}} \mathbf{0}$, of Port Jefferson Harbor and mouth of the Housatonie River, Conn.
	22	Col. George Thom, Corps of Engineers.	Topographical survey coast of Maine, vicinity of Well's Harbor.
June	15	Professor N. S. Shaler, State geologist of Mase	Entire topographical survey of the island of Rhode Island.
July	10	Captain C.F. Hall	Sketch of the Polar regions.
	11	Lieut.Col, J. D. Kartz, Corps of Engineers	Hydrographie and topographical survey of the Delaware River, from Fort Miffin to Cooper's Point, from surveys of 1843.
	11		Compiled map of Leagne Island and vicinity.
	11	do	Shore-line survey of the Delaware River, from Red Bank to Kaighn's Point, 1870.
	11		Hydrographic survey of the Delaware River, from Fort Mifflin to Red Bauk, survey of 1861-68.
	11	Appointment office, Treasury Department	Charts of the Atlantic, Gulf, and Pacific coasts, with lights colored.
	19	Col. George Thom, Corps of Engineers.	Topngraphioal survey coast of Maire, Webhannet River and vieinity.
	24	Maj. G. K. Warreu, Corps of Engineers.	Hydrographic and topographical survey of Huntington Harbor, N. Y.
A ugust	3	do........................do	Shore-line survey of Bridgeport Hartor and Pequanok River to paper factory.
	10	John Halliday, eaq., civil engiveer	Hydrographic survey of Corpus Curisti Pass, Tex.
	19	E. A. Marshall, esq	Topographical and hydrographic survey of entrance to Bull and Combahee Rivers, S. C.
	23 30	Board of trustees, town of San Diego, Cal Capt. A. N. Daurell, Corps of Engineers.	Hydrographict and topographical survey of Sam Diego Bay. Shore-line survey of St. Genrge's Sound and trigonometrical points, Fla.

Information furnished from the Coast Survey Office, by tracings, dec.-Continned.

Date.		Name.	Data furnished.
1871.			
August	1	T. S. Hardee, State engineer of Missisaippi	Hydrographic surver of 1sle au breton Sound and approackes, La.
		do.	Sbore-line survey of the Mississippi River, from \triangle Point Tiger to \triangle Point Bohemia.
October	4	Daniel T. Van Buren, New Fork.	Topograpby of the westeru shore of the Hudson River, from Whiskey Poiut tu Kingston Polnt. Topographical survey of Point San Pablo, Cal. Hydrographic survey of Duxbury Bay, Mass. Topographical survey of the npper part of Manhattan Island, N. Y. Foree of current of Catharine and Wall Street ferries, N. Y. Topographical survey of the coast of California, from near San Buenaventara to Point Mugn.
	11	Light-House Board	
	11	Col. George Thom, Corps of Engineers	
	26	Department of Docks, New York	
	30	S. T. Williams, New York	
	30	James F. Stuart, esq., California	
November	6	Col. George Thom, Corps of Engineers	Hydrographic approaches to Seal Harbor, coast of Maine, showing south breaker.

APPENDIX No. 3.

DRAWING DIVISION.

Charts completed or in progress during the year ending Octoler 31, 1871.

1. Hydrography. 2. Topography. 3. Drawing for photographic reduction. 4. Detajls on photographic outhines. 5. Verification. 6. Lettering.

| Title of chart. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Charts completed or in progress during the yeur, de.-Contimed.

Title of chart. Scale.	Draughtsmen. lemarlis.
Guif of Mexico, (eastarn part) . 1-1, 200, 000	1. A. Lindenkohl........................ Adrlitions : completed.
	1. H. Lindenkohl. 2. F. Erichsen....... Completud.
Coast chart No. 91, Lakes Borene and Pontchartrain, La....... $1-80$, 000	1. H. Lindenkohl.
	2. A. Lindenkahl.
Coast chart No. 107, Matagorda and Lavaea Bays, Tex......... $1-80,000$	1. A. Liwtenkohl 2. L. Kareher- Completrd.
Corpus Christi Pass. Tex.-. 1 1-40, 000	1. L. Kaveher-. .-. .-. Completed.
Santa Barbara Chaunel, chart No. 2. 1 --200, 000	1. 2. A. Lindenkoht and H. Lindenkohl.
San Francisco Peuinsula, Cal .	2. H. Lindenkohl. e. F. Fairfax. 2. P. Completed. Erichanan.
Entrance to San Francisco Bay, Cal . 1 . 50,000	1. L. Karcher Aditions; completed.
	3. H. Lindenkohl Completed.
Saint Georges Reei and Cresecnt City, Cal .-. 1 1-40,000	1, 2. H. Lindenkohl. 2. A. Lindenkohl.
	2. F. Fairfax . Completed.
	1. I. Karcher.
	9. A. Lindenkohl. Additions ; completed.
Northwest chart No. II, Dixon Entrance to Cape Saint Elias... 1-1, 200,000	1, 2. A. Lindenkoh].
Northwest chart Nu. IL, Icy Bay to Seven Islands............. 1-1, 200, 000	1, 2. A. Lindenkohl.

11 c s

APPENDIX No. 4.

ENGRAVING DIVISION.
llates completed, contimud, or commenced during the year 1871 .

'rithe of plate.	Scate.	Eugravers.
completes.		
Northwest coast of Amprica No. 2 , (prelim. enf.)	1-1, 200, 100	4. F. Courteuay.
Northwest coast of A merica No. 3, (prelin. ed.)	1-1,200, 000	4. F. Comrtenay:
Coast chart No. We.ll's to Cape Amm	1-30, 000	2. A. Sengtelle: 3. H. S. Barnard. 4.J. Knisht.
Coast chati No. 9, Fuston Bay	1-40, 000	Views, Gearge McCoy. 4. E. A. Maedel.
Coast chart No. 2^{2}, whe of Wight to Chincoteamu	1-80, 0003	4.J. Knight.
	1-80,000	1 aul 2. A.Senyteller. 3. H.S. Barnard. 4.J. Knight.
Comt chart No. 10, Galveston to 0jster Bay	$1-0,60 \cdot 1$	4. A. Petersen.
Fox Inlands Thamouthare	1-20,000	4. J. C. Thompser.
Casw bay	1-40, 000	9. W. A. Thompron. 4. A. Petersen.
Pretland Harbor, (hew mbl.)	1-20, 000	1 aud A. M. Mactel. 3. I. M. Koight. 4. W. H. Davis.
bustun lamimy, (tum ent.)	1-40,000	3. F. W. Penner. 4. F. Comrtenay. Views, George MeCoy
Winkford Harther	1-50, 600	3. F. W. Penner. 4.J. G. Thompson and E. H. Sipe.
Patapsco River: (thew est.)	1-60, 000	
lomonac liver X \% z	1 1-6iticho	2. A. M. Matel. 4. A. Petirsen.
Saint Catharin's sound.	1-40,000	2. W. A. Thompson.
Plate Sheals.	1-00.003	1,3, ami 4. F. H. Sipe.
Saint Marys Liwer and Fernandina Eutrauce, (new ed.)	1-20, 00:	1 aml 3. It. M. Kinght. 4. W. H. Davis.
Corpta Cluinti Pass	1-40,060	1 imd t. W. M. pavis.
San Francisme Perinsuba	1-40, 000	1.J.C. Koulrup and E. Molkow. थ. W. A. Thompsom. 4. A. Petersen and F. Courtenay.
Saint George's Reef and Cresent City (prolim. ed.)	1-4ก. 000	1 and 4. J. (it. Thompron. 3. F. W. Benner.
Cape Octiond and reef, (prelime eth)	1-40,000	1 and 2. W. A. Thrmpson. 3. F. W. Benuer. 4.J.G. Thompson.
Yaquma River Entrance, (prolitu.el.)	1-40,000	3. H. M. Knipht. 4 J. G. Thompson aud E. H. Sipe.
Columbia hiver No. 1 ((melim, ed.)	1-40,000	3. F. W. Bemer. 4.J. G. Thompson and E. H. Sipe.
contivieb.		
General coast chart No. I. Quoddy Head to Cape Cond	1-400,000	1 ande. J. Enthoffer.
General coast chart No. IV, Cape May to Cape Henry .	1-400, 000	1 and 2. A. M. Maedel.
General coast chart Nu. V, Capu Henrs to Cape Looknot.	1-400, 000	1 and 2. A. M. Maedel. 3. H. S. Barnard. 4. A. Petersem.
General coast chart No. VLI, Cape Roman to Saist Mary's Riser.	i-100, 000	2. A. M. Maedel,
General coast chart No, X Straite of Florida	1-400, 000	2.J.C. Kondrup.
Genctal coast chart No, XIII, Cape San Blias to Mississingi Delta.	1-400, 000	1 and 2. A. M. Mated. 3. H. M. Knign
Coast chart No. 4, Pemobseot Bay	1-80,60)	1 and 2.J. Enthofter.
Coast chart No: Whitehearl Light to Segrin Light	$1-00,0100$	4. E. A. Maedel.
Coast chart No.6, Squuin Light to Fletcher's Neck.	1-30,000	1 and 2. J. Enthoffer.
Coast chart No. 7 , Cape Small to Kemiehnnkport,	1-80,000	1 and 2. J. Enthoffer.
Coast chart No. 10. Cape Cod Bay	1-80,000	4. F. Conrtenay. Views, G. MeCoy.
Coast chart No. 13. Narraganset Bry, \&e..	1-80,009	1 and 2. J. Enthoffer.
Coast chart No. 30. entrance to Chesayeake Bay	1-80, 000	1 aml 2. H. C. Evans.
Coast chart No. 31, Chesapeake bay No. 1	1-80, 000	1 ands. H.C. Evans.
Coast chart No. 32, Chesapeake Bay No. 2 .	1-80,000	1 and $2 . \mathrm{H}: \mathrm{C}$. Evans. 3, F. W. Benner. 4. J. Knight.
Coast chart No. 50 , Cap Fear and approaches	1-80, 000	1 and 2. A. M. Maedel, 4.J. Knight.
Coast chart No. 55 , Hunting Isl nd to Ossabaw	1-80,000	1 and 2. A. Seugteller. 3. H. S. Barnard.
Coast chart No. 56, Saramah to Doboy Light	1-84, 000	2. i. Sengteller. 4. E. A. Mredel.
Coast chart No. 75, Charlotte Harbor, \&o	1-80, 000	3. H. M. Knight. 4.J. Knight.
Coast chart No. 94, Mississippi River Entrauce.............	1-80, 000	1 and 2. A. M. Maedel. 3. H. M. Knight. 4.J. Kniglit.
Coast chart No. 107, Matagorda Bay ...	1-80, 000	1 and 2. J. C. Kondrup. 4. A. Petersen.
Saint Genrge's River and Muscle Rillge Chammel.	$1-40,000$	1. E. Molkow aud J. C. Konalpup.
Damariscotta and Medomak Livers	1-41, 000	4. A. Peterson.

Plates completed, contiuued, or commenced, de-Continued.

Title of plate.	Scale.	Engravers.
Narraganget Bas (upper)	1-10, 000	2. H. C. Evans. 3. F. W. Demmer. 4. A. Petrisen.
Narraganset Hay, (lower)-.......-. --............	1-40, 000	1. E. Molkow, J. C. Kondrup, and W. A. Thompsen. 3. H. C. Evans. 4. A. Petersen and E. Δ. Madel.
New York Bay and Marbor, (upper) .	1-40, 000	2. R. F. Bartle. 4. E. A. Maedly.
New Fork Hay and Harbor, (lower)	1-40,000	2. R. F. Bartle. 3. H. M. Knight. 4. E. A. Minde.
Inside passage between Port Royal and Saint Helema Sonnds	1-40, 000	1.J. G. Thompson.
commexcers.		
Coast chart No. 57, Doboy Light to Fornandina	1-80,000	1. A. Sengteller.
Penobscot Bay, (west)..	1-40,000	1. E. Molhow.
Platt Shorls	$1-80,000$	1, $3_{\text {, and }}$ 4. E. H. Sipc.
Doboy adi Altamaha Sounde	1-40.0.0)	1 and 4. E. H. Sipe.
Corpus Christi Pass..	1-40,000	land 4. W. M. Mavis.
Saint George's Reef and Croscent City	1-40, 000	1 and 4.J. G. Thomspon.
Cape Orford and reef.	1-40,000	1 and 2. W. A. Thempsont 4. J. G. Thompson.

A PPENDIX No. 5.

List of original topographicalsheets registered in the archices of the United States Coast Survey from January 1, 1866, to December 31, 1871.

List of original topographical sheets registered in the arehices, de-Continued.

Localities.	State.	Scale.	Date.	Topegraphor.	Repister unabler.
Coast from Ogangit, in Wells, to Mousam River	Maine	1-10, 900	1869	H. Allams	1121
Coast from Kittery to Yok	(t)	1-10, 000	16Ti	dio	1054
Coast from Boars Head to Rec Harhor	New Hampsine	1-10, 000	1866	.10.... -..... . .	10.3
Coast from Rye Harhor tos near Portenouth	do	1-10, 000	1867	d1,	1047
Cape Cod Bny, western shore, from Ship Point to West Sandwich:	Massachusetts	1-10,000	186%	P. C. F. Whest	106~
Cape Cod Bay, western shore, from Eel Rirer to Ship Point	. do	1-10, 000	1860	tho	1063
Cape Cod Bay, buthern shore, from Orleans to Breweter	do	1-10.600	180%	If. Adams	10 c
Cape Cud Bas, north shore, fom North Dennis to Brewster	do	1-10, 600	180^{2}	P.C.F.W-\%t	108-
CapeCod Bay, eastern shore, from Pleasant Bay to Nausett Harbor	do	1-10,000	1862	H. Adams	10:
Cape Cod, southera extrenits. incluting village of Chatham.	do	$1-10.00$	156	H. WV. Bache	108.a
Cape Cod, from Pleasnat Point to Mouomoy Island		1-10,000	1 160	C. E. Boyel	10-5 5
Monemoy Point	(d)	1-20,000	186	P. C.F. West	1090
City of Fall liver and vicinity	do	1-10,000	1867	A. M. Harrisom	10.3
Tawn of Hant greenwiele and vicinity	Rhadt Iswamd	1-10, 010	186 m	do	$10: 9$
Mount Hope Bars, worthern pat	do	1-10, $\mathrm{CoCO}^{\text {c }}$	1865	do	10-4
Cits of Providenee, wharfline	do	1-5,000	1867	do	1041
Prudenco Ishand	. 10	1-10,000	1265	. do	10.54
Narraganset lier to Sonth Fers	10	1-10,000	1209		1118
Seaconnet River, eastern 1 art	do	1-10, 000	1870	Charles Hosmer	11.54
Seaconnet Point	do	1-10,000	1870	to	116 I
Island of Hbode Island, from Black I'oint to Easton	do	1-10,004	1870	H. (G. Ogr	$1 \mathrm{~L} \cdot 3$
Island of Rhode Island, northen p	fo	1-10,000	1870	A. M. Harrison	1162
Newport and vicinity	do	1-10.000	18T0-71	. do	1194
Comanicut, Dutch, and Gonld Islands	lo	1-10,000	126	do	11193
Navy-yard near Now London	Connecticut	1-1, 200	1869	H. G. Ogien	1110
Lake Champlain, from White's Landing to Appletree Point. .	Vermont	1-10, 000	$18 \% 0$	F. W. Lorr	11 l
Lake Champlain, from Appletret Point to Hogback Island.	do	1-10,000	1870	do	1182
Lake Chmmplain, from Trenbleat Point to Port Jackson		1-10,000	1570	do	1183
Lake Champlain, from Tremblean Point to Ligouier Point.	do	1-10,000	1870	F^{*} W. Dorm \& Clı. Hosmer	1185
Lake Champlain, vicinity of l'latomargh	New Tork	1-10,000	$18 \% 0$!	Chaties Hosmer	1184
Lako Champlain, vicinity of Phatsburgh.	Vermon	1-10, 000	1570	do	1181
Lake Champlain, ricinity of Mallett's Jay		1-10, 000	1871	do	120\%
Lake Champlain, shoreline survey	do	1-10,090	1871do	1206
Lake Champlain, shore-live surveys	do	1-10, 000	1871	do	120%
Lake Champlain, shoredine surves	do	1-10, 000	1851	do	1208
Lake Champlain, shore-line survers	do	1-10, 000	1871	do	1:209
Lake Champlain, from Cumberland Head Point to Point au-Rocle	New Fork	1-10.000	1871	I. G. Ogden	1217
Lake Champlain, the Gut and Pointan-Roche	do	1-10,000	1871	. .do	1912
Lake Champlain, from Pointan-Roche to Long Point	do	1-10, 000	1871	do	1219
Lako Champlain, La Motte and Alourgh Passages	do	1-10, 000	1871	do	1230
Lake Champlain, from Isle La Mutte to boundary-lin	do	1-10,000	1871	. do	1 ± 1
Lake Champlain, part of Missisquoi Bay	Vermont	1-10,000	1871	. .do	1922
Lake Champlain, Missisquoi Bay south of Loundary-line.	do	1-10, 000	1871	do	1×23
Hudsoy River, from Authony's Nose to Cold Spring	New York	1-10,000	1861	Joha Mechan	1010
Hudnon Liver, from Cold Spring to Newburgh.		1-10, 000	1861	do	1011
North and South Shrewsbury Rivers	New Jersey	1-10,000	1805	C. M. Bache	1005
Shrewsbury Kiver, south	.do	1-10. 000	1866	.do	1092
Coast hetween Deal and Squan Beach	do	1-10, 000	1867	do	1083
Coast between Squan villare and Baruegat Bay	do	1-10,000	1868	do	1084
Barnegat Inlet	. do	1-10, 060	1866	C. Wendall	1015
Absecum lulet and vicinity	. do	1-20, 000	1869-70	C. M. Bache	1166
Potonac River, from Saint George's River to Xiggins Point.	Maryland	1-20. 000	1868	J. W. Dona	1103
Potomac River, from Clement's Ray to Swan Point	. do	1-20,003	186\%	do	110.3
Patapseo River, north shose, from Fort Marshall to Bear Creek.	do	1-10, 100	1856	; C. T. Iardel	10.4
Fors chaplin, Mahan, and Sedgwick	District Columbia.	1-10,000	1865	C. M. Macho	10:36
Arlington, part of, sheet No. 1	Virginia	1-1, 200	1eti4	E. Herceshoimer	1025
Arlington, part of, sheet No. 2do	1-1, 200	1864	do	1026
Upper Potomac, from Lock No. 36 to High Knob	Maryland and Virginia.	1-10, 000	$1 \mathrm{F66}$	J. W. Domil	1013
Upper Potomac, from High Knob to Shepherdatown.	do	1-10,000	1865-66	. .do	1014
Yeocomice aml Coan Rirers	Virginia	1-20,000	1866	- 40	1102
Nomini und Currioman Bass	. . . do	1-20,000	1863	. . do	1104
Matox Creck and part of Nomini Creek	...dn	1-20,000	1868	. . . do	1106
P'anketanik River	. do	1-20,000	1 AB	. . do	110

List of original topographical sheets registered in the archives, dc.-Continued.

Localites.	State.	Scale.	Date.	Topographer.	Hegister number.
Mobjack Bay, North, Ware, and Severu Ri	Virginia	1-20,000	1860, 68	G. D. Wise \& J.W. Donn	1101
Newport News Point.	. ${ }^{\text {do}}$	1-10,000	1865	E. Hergesheimer	1008
East shore of Virginia. Rroad water, sheet No. 3	do	1-20,000	1871	J. W. Donn	1200
East shore of Virginia, Broad water, sheet No. 4	d	1-20,00)	1869-70	do	201
East shore of Virginia, Broad water, sheet No. 2	do	1-25,0:0	1869-70do	1202
East shore of Virgiuia, Broad water, sheet No. 1		1-20,000	1869-70	-.....to	1203
Last shore of Virginia, head of Machipongo Rive	do	1-20, 000	1871	do	204
Pamplico River, from Rumley Marshes to Ragged	North Carolina	1-20,000	1871	F. W. Dorr.	1210
Pamplico River, from Mauls' Point to Rodman's Point,	do	1-20,000	1871	. ${ }^{\text {do }}$	11
Pauplico River, from Atams' Point to Rumley Ma	do	1-20,000	1871	. .do	1212
Pramplico liver, from Light-house to Indian Islan	do	1-20,000	1871	.do	13
Bay River, Pamplico Sound	do	1-20,000	1869	do	1094
Shore-line from Bay River to Pamplico Sonnd	do	1-20,000	1869 do	1095
Neuse River, from New Berue to Johnson's Point	do	1-10,000	1866	...do	1031
Neuse River, from Tohnson's Point to Beard's Creok	do	$1-20,000$	1866	do	1018
Neuse River, from Beard's Creek to Wilkinson Point	do	1-20,000	1807	do	1051
Neuse River, from Wilkinson Point to Cedar Point	do	1-20,000	1867	do	1052
Neuse River, from Cedar Point to Brown's Creek.	do	1-20,000	1868	.do	073
Neuse River, from Brown's Crenk to Point of Marsh	do	1-20,000	1883	do	1074
Portsmouth Island and part of Core Beach	do	1-20, CO	1866	c. Fendall	1016
Core Sound, northeast part of	o	1-20,000	1866	W. H. Dennis	1020
Core Souml, montliwest part of	do	1-20,000	1866	do	1017
Bogue Sound, from Broad Creek to Queen's Creek	do	1-20,000	18.1	II. dams $^{\text {d }}$	1215
Bogre Sound, part of.	do	1-10,000	1867	A. W. Longtellow	1110
New Inlet, including Feleral Point, Zeek's and Smith's Islands.	,	1-10,000	1865	J.S. Bradford	999
Parry and Cane's Istands.	South	1-90,000	1868	C. Hosmer	1070
Port loyal and vicinity.	. do	1-20, 000	1865	W. H. Denmis	1006
Rroad River; southern part of	do	1-20,000	1865	R. E. Halte	8
Between Broad and May liters, containing lydrograply	do	1-20, 000	1870-'71	C. Hosmer	1195
Savanual River to Cooper River, west of Danfuskie Islet, containing hydrography.		1-20, 000	1870-71	. .do	1196
Saranmak Fiver, Forts Jackson and Lee, Batteries Tatnall and Barnwell.	. .do	1-5,000	1866	C. O. Boatelle and H. L. Marindin.	1027
Romerly Marsh Creek.	Georgia	1-20,000	1869	C. Eosmer	9
Ogeechee to Medway Bay		1-20,000	1869	do	1109
Saint Catharine's lsland and vicinity		1-20,060	1867	C. Rookwell and J. A. Sullivan.	1060
Between the Medway and Julienton Rive	do	1-20,000	1869	C. Hosme	1155
Doboy Sound and vicinity	do	1-20,000	1868	W. H. Dennis	1080
Altamaha sound and vicinity	do	1-20,000	1869	...do	1114
Darien City.	do	1-20,600	1869	...do	1114bis
Saint Simon's and Long Islands	do	1-20,000	1869	C. T. Iardella	1108
Mackay's River and vicinity.	do	1-20, 000	1869	W. H. Dennis	1113
Saint Audrew's Sound and vicin	do	1-20, 000	1869-70	C. M. Bache	1145
Cumberland Island, part of		1-20,000	1870	W. H. Dennis	1152
Western amm of Saint Andrew's Bay	Florida	1-20,000	1871	H. M. De Wees	1187
Coast from Saint Augustine to Matansas	. .do	1-20,000	1867	C. M. Bache	1082
Head of Key Biscayne Bay.	do	1-20,000	1867	C. T. Iardella.	1049
Shoreand kers of Rarnes' Sou	do	1-30, 000	1868-do.	1071
Barnes' Sound.	. ${ }^{\text {do }}$	1-40, 000	1870	J.G. Oltmanns	1154
Pine Lsland Sound, Charlotte Rarbor	do	1-20, 000	1866-67	C. T Iardella	1048
Saint Joseph's Day, Capo San Blas and vicinity	do	1-20, 000	1868	H. M. De Wee	1065
Saint Joseph's Bay to Saint Andrew's Point	do	1-20,000	1869do	1091
Saint Andrew's Bay, eastern and western bran	do	1-20, 000	1870	C. T. Tardella	1146
Saint Andrew's Bay, northera brauch	do	1-20, 060	1870	... do	1147a
Saint Audrew's Bay, eastern branch.	do	1-20, 000	1870	do	11476
Choctawhatchee Bay and Santa Rosa Sound	. .do	1-20,000	1871	H. G. Ogden.	1191
Santa Rosa Sound, from longitude $86^{\circ} 43^{\prime}$ to $86^{\circ} 58^{\prime}$	do	1-20,000	1871	. do	1192
Santa Rosa Sonnd, from longitude $86^{\circ} 58^{\prime \prime}$ to $87^{\circ} 7^{\prime}$	do	1-20,090	1071do	1193
Ceast hetween Pensacola to Mobile, went part of Big Lagoon	..do	1-10,000	1867	J. G. Oltmanns .	1034
Coast between Pensacola, from lagoon to mouth of Perdido Inlet	Florida and Ala bama.	1-10, 000	1867	. do	1035
Const between Peusacola, from Perdido Entrance to east Gulf sliore.	do	1-10, 000	1867	. 10.	1042

List of original topographical sheets registered in the archives, dec.-Continued.

List of original topographical sheets registered in the arehives, de.-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Regiater number.
Admiralte Bay, Puget Sound	Washington Ter.	1-10,000	1868	J.S.Lawson	1164
Shilshole Bay, Admiralty Inlet.	do	1-10, 000	1867	d d	1064
Port Discovery entrance, sheet No. 1	do		1860-'69	\ldots....do	1124
Port Discovery, sheet No. 2.	do		1869	do	1125
Port Discovery, sheet No. 3	. ${ }^{\text {d }}$		1869-70		1126

List of hydrographic sheets registered in the arehives of the United States Coast Survey from January 1, 1866, to December 31, 1871.

List of hydrographic sheets registered in the archives, de.-Continued.

Localities.	State.	Scale.	Date.	Hydrngrapher.	Reginter number.
Town, Fore and Back Livers, Weymouth	Massachnsetts	1-10, 000	1468	J. s. Bradtord	1121
Duxbury Bay.	do	1-10.600	1885, \% $\%$	I. Anderson	103:
Plymouth Harbor	do	$1-10,000$	1570	do	1664
Monomay Shoals, recounaissan		1-40,000	1668	F.F.Nes	901
Vineyard Maven Harbor	do	1-10,000	1571	II. Mitclell	1106
Mitchells Fills, Merrimack River	do	$200 \mathrm{ft}$. to 1 in .	1867do	1012
Narragansett Bay, from Quonset Point to Inteh Isiand	Minde Islan	1-10,006	186	F.P. Webber	92
Narragansctt Bay, frem Hope Islaud to P'atieuce Islaud.	do	1-10.000	1867-68	. do	39
Greenwicl may	do	1-i, 000	1567do	40
Narragansett ISay, head of, and Providence River	do	1-10,000	1865, 63do	-0
Provilenee River, from city of Providenee to Stargut Island	do	1-5, 400	5	do	878
Warmen Rwer.	do	$1-5,000$	1260	do	3e8
Thames River, near New Loudon	Com	1-1, 200	18189	Charles Junkin	1006
Frying Pan and Pot Rock	New York	1-1, 980	1866	W. S. Fdwards	896
Wallabout Bay	do	1-1, 250	1269	F.F. Nes.	108.5
Off the Battery	da	1-2, 500	1864	W s. Edwards	910
New Fork Day, het ween Governor:s Island and 1	do	1-10, 000	1268	F. H. Gerrles	\%
Swash Chanmel, examiuation of		1-20,000	1866	W. S. Edwards	807
Main cbannel between Sandy Hook and Flyons Kuoll and Scotland Shoal.	do	1-20, 000	1869	F.F. Nes.	1011
Hondout Harbor, from entrance to Slcight.		1-2. 500	1068	F. H. Gerdes and F. F. Nes.	979
Rondout Harloor, from Sleight's Ferry to entrance of Delarave and Hudson Canal.	. do	1-1,200	1868	do	978
Lake Champlain, from Cumberland Heal to Valcour Islan	do	1-20, 006	1870	Charles Junken	1058
Burlington Harbor	Verm	1-10,000	$18 \% 1$	F. D. Grascer.	1105
Barncgat Inlet.	Now Jerser	1-10, 090	1866	C Fendall	883
Delaware River, from Ridieys Creek to Wulsh Streel Wharf.	Pembylvaia	1-1, 200	$18 \% 0$	Chorles Junken	$1057 \times$
Drlaware River, from Walsh Street Wharf to Carson's Wharf	...do	1-1, 200	1870	do	105\%
Susquehanna River, mouth	Maryland.	1-10,000	1367	E. T. Webler	898
Sassaliras Hiver	.	1-10, 000	1870	W. W. Harding	1071
Komney, Farky's, Stillpond, Churn, and Loyds Creeks	do	1-10, 000	1270	do	1072
Chester River, No. 1, and Morgan's Creek.	do	1-5, 000	18691-70	do	1026in, b
Chester River, No. 2	do	1-5,000	1269-70	do	1087
Langford Creek.		1-10,000	18%	. do	10 \%
Patapeco River, mouth of	do	1-20,000	1866	F.P. Webber	13
Patapsco River, Brewster's Channel.	do	1-10,000	1 F 66	. ${ }^{\text {do }}$	914
Patapseo River, Brewster's Channel, enlarged from No.		1-10,000	1266do	5
Patapseo liver, creeks emptying into	do	1-20, 000	1969	J. W. Donn	1007
Tributaries of Severn and South Rive	do	1-20, 000	1870-71	W. W. Harding	107\%
Head of Severn River	do	1-20, 000	187	do	1075
Tributaries of Wye River.		1-10,060	18:0	do	1050a
Tributaries of Saint Michaels Riser.	do	1-10,000	180	do	10506
Heads of Huris, lroad, and Porter* Creeks	do	$1-10000$	1871	do	10493
Tributaxies of Tredhaven Creck.	do	1-10, 000	1870	. do	1049a
Choptank River, from Wing s Landing to Donton	do	1-10, 000	$16 T 0$..do	1048
Potomac River, from Analostan Lsland to Long Rridge	District Columbia.	1-5,009	1865	C. Fendall	10\%2
Wicomico River, Saint Clement's and Breton's Bay.	Marrland.	1-20,090	1860, \% 6	W. T. Huse C. S. N. and J. IF. Donn.	969
Nomini Bay, Lower Machodec and Mattox Creeks	Virginia	1-20, 000	1868	J. W. Demus	198
Yencomico and Coan Creceksdo . .	1-20,090	1868	do	968
Smith's, Goose, and Fox Islands, Tangier Sound	. do	1-20,009	1869	W. W. Harding	997
Little Annemessex liver	do	$1-10,000$	1868-69	. do	\%
Pocomoke Sound, crèke from Messongo Creok to Onancock Creek.	do	1-20,000	1669	do	993
Pocomoke River Entrasice	do	1-11, 000	1860	do	1004
Pocomoke River, sheets Nos. 1 and 2	do	1-5,000	1869	do	1025a, 6
Pocomoke River, sheets Nos. 3 and 4	do	1-5, 1000	1869	..do	$1023 a_{r} b$
Pooomoke River, sheets Nos. 5, 6, and 7.		$1-5,000$	1809	...ato	1094a, b, e
Oecohannock, Craddoek, and Nandua Creeks		1-20,000	$186{ }^{\text {e }}$	C. Fendall	${ }^{976 a}$
Naswaddex Creek.	do	1-20,000	1868	do	的
Hinger's Creek.		1-20,000	1868		97
Great Wicomico River.	do	1-20,000	1869	J. W. Donn	1003
Little Bay, Nantepoison, Tapp's, Dimer's, Iudian, Dividing, and Mill Creeks.	. .do	1-20,000	1849	...do	1005

12 cs

List of hydrographic sheets registered in the archives, de.-Continued.

Localities.	State.	Scale.	Date.	Hyorgrapher.	Rogister number.
Estuaries of the Corrotoman River.	Virginia	1-10,000	1869	J. W. Donn	1002
Estuaries of the Rappalannock Rive	.. do	1-20,000	1869	do	1001
Bowler's and Corner Rock, Rappabannock River	do	1-2, 500	1867	. do	37
Piankatank River...	do	1-20,000	1869do	988
Milford Haven, (also topography)	do	1-20,000	1868-69do	987
Estuaries of Mobjact Bay	do	1-20,000	1868	do	984
Back and Pocosen Rivers	do	1-20,000	1868	C. Fendall and W. W. Harding.	977
Magotly Bay	do	1-20,000	1869	W. W. Harding	1013
Broadwater, from Ship Shoal Iolet to Sand Shoal Inlet	do	1-20,000	1870 do	1070a
Broadwater, from Sand Shoal Inlet to Hog Island Inlet	do	1-20,000	18\%0	do	$1070 b$
Broadwater, Great Machipongo River, and branches	do	1-20,000	1871	J. W. Domn	1103
Little Machipongo, to load of liroadwater	.do	1-20, 600	1871	. do	1104
Newport Xews Point .	do	1-10,000	1865	E. Hergesheimer	877
Elizabeth River, from Washington Point to navy-yard	do	1-2,500	1866	R. Platt, U. S. N	894
Off-shore soundings from Sheephouse Hill to Killdevil Hills	Virginia and Norti Carolina.	1-40,000	1.868do	96.5
Off-shore from Killdevil Hills to Loggerhead Inlet	North Carolina.	1-40, 000	1870	do	1053
Off-shore soundings from Loggerhtad Inlet to Cape Hatter	do	1-40, 000	1869-70	do	1056
Off-shore soundiugs from Cape Hatteras to Federal Point	.do	1-240, 000	1360-66	do	884
Lookout Shoals	do	1-40,000	1365-'66	R. Plattand C.Junken,	885
Lamg Shoal, Pamplico Sound, reconnaissance	do	1-10,000	1866	J. S. Bradford.	887
Pamplico Sound, from Royal Shoal to Brant Island	.do	1-40,000	$\begin{array}{r} 1866, ' 69, \\ 1870 \end{array}$	J. S. Bradford and F. F. Nes.	1033
Pamplico Sound, western pa	do	1-20, 000	1869	F. F. Nes.	1010
Bay River	do	1-20,000	1869	do	1009
Pamplico River, from Pamplico light-horse to Indian Island.	do	1-20, 0001	1869	- do	1038
Pamplico River, from 4 dame Point to Rumloy Marshes.	do	1-20,000	1868, 21	R. E. Halter and F. D. Granger.	1099
Pamplico River, from Rumley Marshes to Ragyed Point	do	1-20,000	1871	F. F. Nes	1100
Pamplico River, from Ragged Point to city of Washingto	..do	1-20,000	1871do	1101
Cedar Island, bay, and vicinity.	do	1-20,000	1870	$\ldots . . . d o$	1079
Nense River, from Point of Marsh to Cedar Point	...do	1-20,000	1868	J. S. Bradford and F. F. Nes.	074
Nense River, from Cedar Point to Wilkinson's Point	do	1-20,000	1868	J. S. Bradford	963
Nense River. from Cherry Point to Johnson's Point	.do	1-20,000	1867-'68	do	956
Neuso River, from Johmson's Point to Fort Auderson	do	1-10,000	1860	do	892
South River, Turnagain Bay, and other tribataries to Nense River.	do	1-20,000	1868-'69	J. S. Bradford and F. F. Nes.	975
Entrance to Cape Fear River, the bars of Oak Island, and Bald Head Channel.	do	1-5,000	1871	Charles Junken....	1089
Entrance to Cape Fear River	do	1-10,000	1805	J. S. Bradford.	870
Eutrance to Cape Fear River, New Inlet	do	1-10, 010	186.5 do	875
Cape Fear River, between Forts Caswell and Johnson	. do	1-10,000	1866	do	876
Cape Fear liver, inner bar.	. do	1-10,000	1870	F. F. Nes	1014
Main Channel over Charleston Bar	South Carolin	1-20,000	1869	R. E. Halter.	081
Charleston Bar	do	1-20,000	1865	C. O. Boutello	874
Charlestou Harbor	do	1-10,000	1865	. do	881
Bull and Cambahee Rivers	do	1-10,000	1871	Charles Hosmer	1084
Broad River	do	1-10,000	1865	R. E. Haller.	869
Jericho, Cbowan, and Ballast Creeks, tributarics of Beaufort River.	do	1-10, 060	1868	Charles Hobmer	962
Off-shore soundinge from Port Royal Entrance to Wassaw Sonnd, Grakiu and Joiner's Banks.	South Carolina and Georgia.	1-40,000	1866	C. O. Boatelle	966
Sayannab River Entrance.	Georgia..........	1-20,000	1866	. . do	944
Savanuah River, from Tybeet Light to Elba Island		1-10,000	1866	do	945
Savanoal River, from Elba Island to Fig Island.	do	1-10,000	1865-66	do	946
Savanuah River, city front	do	1-5,000	1865-66	do	047
Entrance to W assaw Sound	do	1-20,000	1864, '66	.-do	004
Saint Catharine's Sound and estuari	do	1-20,000	1867	Char is Junken.	916
Saint Catharine's Entrance.	do	$1-20,000$	1867		928
Inland passages between Sapelo and Doboy Sound	do	1-10,000	1868	do	959
Doboy Inlet and approaches.	do	1-20,000	1868	do	957
Doboy Sonnd, with Darien and North River, and adjacent creeks.	. do	1-10,000	1868	.do	964
Saint Andrew's and Jekyl Sonnds..	do	1-20,000	1870	R. E. Halter.	1020
Coast from Saint Andrew's Bar to Saint Mary's Bar	do	1-20,000	1870	Charles Junken	1082

List of hydrographic sheets registered in the archives, de.-Coutinued.

Localities.	State.	Scale,	Date.	\#ydrographer.	Register number.
Florida Passage, from Saint Andrew's Sound to Camberland Ieland.	Georgia.	1-20,000	1870	Ch. Jumken	1063
Main ship-channel over Saint Mary's River Dar	Florida	1-20,000	1869	R.E. Halter.	980
Saint Augustine and vicinity.	.do	1-10, 000	1880	H. Anderson.	1036
North and Guano Rivers	do	1-10,000	1870	do	1046
Matanzas River.	do	1-10, 000	18.0	do	1047
Off-shore soundings from Sombrero to Sand Keys	do	1-160, 000	1808	Rob. Platt, V.S. N.	10 ¢f6
Off-shore soundings, Straits of Florida westward	...do	1-400, 000	1369	. l_{0}	1090
Off-shore soundings, Straits of Florida east ward	...do	1-400, 000	1869	. . do	1091
Off-shore sonndings from Key West wo Charlotte Harbor	. ${ }^{\text {do }}$	1-400, 000	1807d 0	11
Offshore soundings from Sand Key to Marquesas Keys	do	1-40,000	1867	. ${ }^{\text {d }}$	112
Off-shore soundings from Marquesas Keys to Rebecea Shoals	..do	1-40,000	1880	. ${ }^{\text {d }}$)	1052
Off-shore soundings, approaches to Dry Tortugas Kers	do	1-40, 000	1867-68	. d_{0}	95.5
Florida Reefs, from Marquesas to Dry Tortugas Koys.	...do	1-80, 000	1867-68	. do	9,4
Florida Reefs, western end Marquesas to Dry Tortugas Keys	do	1-80,000	1871	. ${ }^{\text {do }}$	1086
El Moro to Playa de Marianao, north eoast of Cuba.	Cuba	1-10,000	1867	W. S. Edwards	900
San Carlos Bay and Caloosa Entrance	Florida	1-20, 000	1866, 67	. do	917
Pine Island Sound, part of, and approaches to the Caloosahatchee.	do	1-20, 000	1866	C. T. Tardella	908
Cedar Keys, main channel	do	1-10,000	1871	F. P. Webber	0eo
Saint George s Sound.	do	1-20, 000	1871	H. Anderson	1092
Santa Rosa sound, the Natrows, and west end of Choctawhachee lay.	...do	1-20,000	1871	H. G. Ogden...........	1107
Santa Rosa Sound, from Deer Point to Long Pritchard Point	do	1-20,000	1871	do	1108
The Rigoleta	Inuisiana	1-20, 000	1870	F. P. Wellber	1054
Lake Borgne.	do	1-40,000	1870	do	1055a
Eastern part of Lake Pontelartrain	- do	1-40, 000	1870	do	10556
Isle an Breton Bay.	do	$1-\mathbf{4 0 , 0 0 0}$	1869	. .do	99
Isle au Bretors Sound, southeast par	do	1-40,000	1869	. ${ }^{\text {do }}$	1000
Passe a Loutre and Southeast Pass	do	1-20,000	1867	F. H. Gerdes	89
Passe à Loutre and Bar	do	1-10,000	1867do	027
Northeast and Southeast Pass	do	1-10,000	1867do	26
West, East, aud Garden Island Bays	. . do	1-40,000	1868	F. P Webler	991
South Pass	. . do	1-20,000	1867	F. H. Gerdes	990
South Pass Bar	. ${ }^{\text {do}}$	1-10,000	1867	. do	925
Southwest Pass	do	1-20,000	1867	. do	923
Southwest Pass and Bar	do	1-10, 000	1867	..do	924
Mississippi River, part of	do	1-10,000	1860	do	922
Mississippi River, from Grand Prairio to Bohe	do	1-20,000	1871	C. H. Boyd	1093
Galveston Entrance aud Bar	Texa	1-10, 000	1867	F. F. Nes.	06
Galveston Bay, resurvey	...do	1-20,000	1867do	918
Gaiveston Bay, resurves	do	1-10,000	1867	C. H. Boyd	919
Galveston Harbor, comparative chart showing changes from 1851 to 1867.		1-10000	1867	.do	919bis
Galveston Bay, western entrance		1-20, 000	1867	F. F. Ves.	931
West Galveston Bay	do	1-20, 000	1867to	332
Matagorda Bay, part of.		1-20,000	1866, '71	F. P.Webler and F. D. Granger.	1031
Trespalacios and Turtle Bays	do	1-20, 000	1871	F. D. Granger.........	1094
Carancahua Lay	do	1-20,000	1871do	1095
Pass Cavallo	. . do	$1-20,000$	1871		1097
Latvaca Bay and vicinity	do	1-20, 000	1871	..do	1098
Espiritu Santo Bay	. ${ }^{\text {do }}$	1-20, 000	1871	..do	1096
Aransas Pass	do	1-10,000	1868	F. F. Nes	996
Aransas Bay .	.do	1-20,000	1869	H. Auderso	99
Corpus Christi Pass	do	1-10, 000	1869	do	994
Corpus Caristi Bay.	do	1-20,000	1868	F. F. Ne	95
Entrance to Brazos Santiago and Laguna Madre	do	1-20,000	1867	C. H. Boyd............	909
Santa Barbara Channel, in-shore sounding, No. 1.	California	1-10, 000	1669	E. Cordell and G. Farqubar.	1038
Santa Barbara Chamel, in-shore amming, No. 2	. ${ }^{\text {do }}$	1-10,000	1869	do	1039
Sauta Rarbara Channel, in-shore sounding, No. 3	do	1-10, 000	1869	do	1040
Santa Barbara Channel, in-shore sounding, No. 4	do	1-10, 000	1869	. do	1041
Santa Rarbara Channel, in-shore sounding, No. 5	. . do	1-10, 000	1869	. do	1042
Sauta Rarbara Channel, in-shore sounding, No. 6.	. .do	1-10,000	1869	do	1043

List of hydrographic sheets registered in the archives, dec.-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Register Number.
Sauta Barlara Channel, in-shore sounding, No. \% .	California...	1-10,000	1269	E. Cordell and (t. Fariuhar.	1044
Santa Banlara Chanuel, off-shore soundings	do	1-100, 010	1ع69	10	1045
Santa Barbara Channel, entrance Coxo auchorage	do	1-10,000	1869	do	1037
Roadstead under Point Sal.	. 10	1-5, 000	1867	E. Cordel.	921
Harbor of linenaventara	do	1-10, 000	18%	W. E. Grcenwell	1031
Off shore soundings, Point Pedro, Santa Craz	do	1-100, 000	186	E. Cordell.	875
Suisun Bay, Corlelia, Suisum, and Montezuma Creeks	do	1-20, 000	1267	-.....do	948
Suisun Bay, with confluence of Sacramento aud San Joaguin Rivers.	do	1-20, 060	1866-67	. ${ }^{\text {do }}$	915
Sacramento and San Joaquin Rivers.	do	1-10,000	1867	do	935
Carquines Straits, part of	. 10	1-10, 000	1866	. do	879
Off-shore soundings from Point Reyes to Bodega Head	do	1-100, 000	1866	do	889
Offshore sonndings from Point Reyes to Tomales Point	do	1-50, 000	1860	...do	890
Creseent City lieef.	do	1-20, 000	1869	A. W. Chase	1025
Corse Bay.	Oregon.	1-10,000	1865	J. S. Lawson	901
Coose Bay	do	1-10, 000	1865do.	$90: 2$
Yaquina Bay.	do	1-10.000	1868	A. W. Clase	998
Nehalem River Entrance.		1-5,000	1868	E. Cordell and \mathbf{G}. Far. quhar.	983
Tillamook Bay	do	1-10,000	1860-67	J. Einchcloe.	936
Columbia River, from Three Tree Point to Gray's Bay.	do	1-10, 000	1857-69	E. Cordell.	1015
Columbia River, from Cathlamet Head to Sottler's Point	do	1-10, 000	1868	do	1016
Columbia River, from Settlers Point to Tongne Point.	. d 0	1-10,000	1868	. d 0	1017
Columbia Fiver, from Tougue Point to Cape Disappointment.	do	1-20,000	1868	do	1018
Cohumbia River tentrance	do	1-29),000	1268	.do-	1019
Destruction Island and ricinity	Washington Ter..	1-10,000	1866	J. S. Lawson	886
Port Madison	- . do	1-10,000	1868	do	1102

APPENDIX No. 6.

REPORT OF METEOROLOGICAL EFFECTS ON TIDES, FROM OBSFRYATIONS BY PROF. WM. FERREL.
Cambridge, Mass., May 31, 1873.
Dear Sir : I have the honor to submit the following fiual report on the discussions of the tidal observations of Boston Harbor, pertaining to the meteorological effects of the winds and the changes of barometric pressure upon the heights of the tides. The heights of high and low waters for six years, from 1856 to 1861 , inclusive, were computed by the formulas and tables given in a previous report and the results compared with the tidal observations and the residuals noted. From the manuscriptrecords of the observatory of Harvard College, which were permitted by the director to be used for the purpose, the corresponding barometric pressures and forces and directions of the wind were obtained and collated with the residuals. The range of the barometer was then divided into seven parts, and all the pressures belonging to each one of these divisions were grouped together, and also the corresponding residuals belonging to both the high and the low waters, and the arerages of the residuals compared with those of the barometric pressures. The observations when the barometer was rising were kept separate from those when it was falling, in order to determine whether there is any seusible difference on account of the inertia or the friction of the water preventing it from assuming at each instant the condition of static equilibrium. The following results were obtained

	Rising barometer.			Falling barometer.			A verages.		
	No. of obs.	Barometric pressure.	Tidal residuals.	No. of obs.	Barome1ric pressure.	Tidal resilnals.	No. of obs.	Harometric pressure.	Tidal residuals.
Himh waters.....		Inehes.	Feet.		Inches.	Fect.		Inchers.	Feet.
	92	29,505	1-0.250	171	99.475	$+0.245$	263	99. 493	$+9.248$
	180	29. 710	0.110	31.9	29. 790	0.180	499	29.715	0.229
	225	29.845	$+0.035$	280	29.840	+0.000	505	29.843	+0.043
	313	24. 940	-0.100	330	99. 935	-0.010	649	29. 0138	-0.050
	457	30.050	0.130	408	30.050	0.080	865	30.050	0. 10%
	480	30.195	0. 165	402	30.190	0.190	882	30. 197	0.193
	305	30.415	-0.330	214	30. 410	-0.320	519	30. 417	-0.326
Low waters. ${ }^{\text {a }}$	66	29.445	$+0.395$	108	29. 185	+0395	174	29.488	$+0.395$
	183	29. 703	0.195	250	29.714	0.245	43.	29.710	0.147
	224	29.840	0.065	23.	20. E45	0.11%	463	20.843	0.085
	349	29.945	0.040	359	29). 945	0.080	708	29.945	0.060
	430	30.055	$+0.000$	412	30.0.0	$+0.010$	842	29.053	+0.008
	482	30. 200	-0.068	443	30. 190	-0.060	925	30.195	-0.063
	323	30.425	-0.190	358	30. 420	-0.165	381	30. 423	-0.178
Averages $\{$	158	29. 502	$+0.307$	2\%	29. 480	$+0.320$	437	29. 491	$+0.316$
	363	29.708	0.152	569	29. 717	0.912	932	29.71\%	0.154
	449	99.842	0.050	519	90.813	0.082	962	29.842	0.064
	602	29.943	-0.030	695	29.940	$+0.035$	1,357	89. 942	$+0.003$
	887	30.053	0.062	820	30.0 .50	-0.035	1,707	30.059	-0.049
	962	30.197	0.115	845	30. 190	0.125	1,807	30.194	0. 124
	628	30.422	-0.260	472	30.415	-0.942	1,100	30.419	-0. 251

If the tables from which the heights of the tides were computed were correct, the algebraic sum of all the tidal residuals in the last column of the preceding table for the high waters, and likewise for the low waters, should be 0 . The average of the former for the seven groups of observations, giving each equal weight, is -0.024 feet, and that of the latter, 0.005 feet. This indicates an error, $\mathbf{- 0 . 0 2 0}$ feet for the mean level, and of 0.044 feet for the mean amplitude, of the
tide from the tables. The former may be regarded as falling within the limits of the errors of observation in a series of six years only, or it may be due to a small change of the zero of the tidegauge during the full series. The discrepancy in the amplitude, being abont a half-inch, cannot be regarded as falling within the limits of the errors of observation, and must be due, at least in part, to a small error in the tables.

The average atmospheric pressure at the observatory, as deduced from all the observations, is 30.007 inches. If we, therefore, put p for this pressure at any time expressed in inches, we have, for the expression of the correction of the heights of the tide due to changes in the barometer, $\left(30^{\mathrm{ju}} .007-p\right) \mathrm{C}$, in which C is a constant, to be determined from observation. This expression put equal to each of the tidal residnals expressed in inches in the lower right-hand column of averages in the preceding table, using the corresponding values of barometric pressure for the values of \boldsymbol{p}, we get seven equations for determining the most probable value of C. Giving the equations weight according to the number of observations, we thus get-

$$
\mathrm{C}=7.33 \pm 0.05
$$

The theoretical value of this constant is 13.56 , this being the ratio between the densities of water and mercury. I am unable to explain why its value in Boston Harbor is little more than half as much. The value of this constant also, as deterinined from observation for several other ports, is much greater. M. Daussy found that at Brest the ocean rises 0.223 of a meter for a depression of 0.0158 of a meter in the mercury, (Connaissance $d u$ temps, 1834.) This gives 14.11 for the value of the constant at that port, which is a little greater than the theoretical value. Labbock obtained 11.1 for the value of this constaut at Liverpool ; but at London he fonud that the water rises 6.3 inches for a depression of 0.90 of an inch of the mercury, (Phil. Trans., 1836, p. 121.) This gives only 7.0 for the value of the constant at London, which is less than the value obtained for Boston Harbor. The value of this coustant, then, seems to differ very mach for some reason in different ports.

By comparing the tidal residuals of rising barometer with those of falling barometer at the bottom of the preceding table of results, it is seen that there is a perceptible difference near mean barometer, and that the sea-level is a little lower when the barometer is at the mean and rising than it is when the barometer is at the mean and falling. It was overlooked in my preliminary report, which has been pablished in Silliman's Journal, that this difference is exactly contrary to what we would sappose it would be, and seems to indicate that the changes of sea-level anticipate the forces upon which they depend. When the barometer is rising, the sea-level is falling; and when the former has arrived at the mean, the latter, if the changes are retarded by inertia or friction, should be still a little above the mean, whereas the residuals in the preceding table, whether we consider those belonging to high and low waters separately, or the averages of the two, clearly indicate that the sea-level is already below the mean. And almost every individual result belonging to the different groups of observations gives the same result. We cannot, therefore, suppose that it may be an accidental result falling within the limits of the possible errors of observation. I think it may be satisfactorily explained in this way: When the barometer is rising, we usually have clearing-off weather, with west or south west winds, which tend to lower the sea-level, and cousequently they more than counteract the effect of inertia or of friction, if these latter effects are at all sensible; when the barometer is falling, we usually have east winds, or at least an absence of west winds, and hence the sea-level at this time is a little above the mean level from this cause.

In order to obtain the effect of the winds from the different points of the compass upon the heights of the tides, all the tidal residuals for the six years belonging to the winds from each of the eight principal points of the compass were grouped together, and the averages taken, and also the corresponding average forces of the winds and of the barometric pressures. The forces of the winds in the record of the observations were denoted by the numbers $0,1,2,3$, and $4 ; 0$ denoting a calm and 4 the strongest winds recorded.

The following results were thas obtained:

Wind.	No. of olservations.	Barometric pressure.	A verage force of wind.	Average tidal resimuals.	Corrected residuals.
		Inches.		Feet.	Fect.
N.	244	$30.007+.005$	1.6	+0.21	$\div 0.21$
N.E.	317	$+.009$	1. 7	$+0.23$	+0.24
E.	274	$+.035$	1.3	+0.04	+0.07
S.E.	131	$+.053$	1.5	+0.02	$+0.05$
S.	165	-. 074	1.8	-0.03	-0.07
S. W.	796	-. 021	1.5	-0.10	-0.11
w.	677	-.073	1.6	-0.18	-0.22
N. W.	527	+. 001	1.6	-0.10	-0. 11
Calm.	946	$+.051$	0.0	-0.01	$+0.02$

The number of observations in the second column denotes the relative frequency of the winds from the several different points of the compass. From the column of barometric pressnres it is seen that with winds from NW, around by N. to SE. the barometer stands above the mean, but that with winds from SE. around by S. to NW. the barometer stands below the mean. The average tidal residuals follow very nearly the same law. The full effect of the wind, therefore, is not shown by the fifth column, since the tidal residuals are always affected by a corresponding change in the barometer, and require to be corrected by the preceding expression of the correction with the value of the constant C as determined. The last column, containing the residuals thus corrected, indicates the effect of a wind from each of the several points of the compass having the average force of the wind from that point.

It is pretty generally thought that the winds cause rery considerable changes of sealevel, but it is seen from the last column of the table above that an average NE. wind raises the sea-level only about three inches, and that a SW. wind depresses it not quite so much. If the numbers in the scale of forces represent the velocities of the winds, the elerating and depressing effect of the winds may not be proportional to the forces, so that a strong wind denoted by 4 in the scale may raise or depress the sea-level three or four times as much as a wind of a rerage force, this depending upon the law of friction between the wind and the water. Very strong winds, therefore, may change the sea-level in Boston Harbor a foot or more; and this agrees well with individual obser. vations. Of about 700 tidal residuals of high water throughout the year 1859 , obtained from a comparison of computation by the formulas and tables with observations, only ten amount to as much as one foot. If, therefore, we suppose that these residuals are due to the effects of the winds only, and no part of them to other disturbing canses, and to errors of the tidal formulas and tables, even upon this supposition we know by actual measurements with the tide-gauge that in the course of a whole year, the sea-level of Boston Harbor is not often changed by the winds as much as one foot.

An important meteorological result is shown in the fourth column of the preceding table, which is that the barometer during calms stands very near the maximum of all the averages of the winds from the different quarters. This indicates that the winds are genevally of a cyclonic character, prevailing mostly in the interior of the cyclones where there is barometric depression, and that the calms are mostly in the external part where there is high barometer.

The following table of results brought out in the discussion shows the annual changes of the barometer. As the unreduced observations were used, a correction for temperature in this case has to be applied, to reduce the barometer to the mean of the year to correspond with the preceding results, in which the arerage corresponds to the mean temperature of the year, or to reduce them, as usual, to the temperature of freezing.

In the following table the reduction is to freezing and for capillarity:

Moutlı.	Number of obserra. tions.	Barometer.	Reduced to 32° and for capillarity.	Corrected baroneter.
		Inches.	Inches.	Iuches.
Tanuary	324	29.995	-0.004	29.034 + . 057
February	310	30.007	0.020	- . 053
March.	363	29. 886	c. 0.43	$-.091$
April	347	20.957	0. 006	$-.043$
May	354	30.013	0.090	-. . 011
June.	3 f	29.961	6. 110	$-.083$
July .	354	30.021	0. 121	$-.035$
August	377	30.003	0.119	$-.030$
September	360	30. 104	0. 104	- . 066
October	358	30.058	0.076	+.048
Norember	335	29. 347	0.046	$+.007$
December.	320	30.053	-0.020	$+.001$

The mean barometer at the height of 71 feet above mean sea-level, and reduced to the temperature of $32 \bigcirc$, is 99.934 inches. Adding 0.082 inch for the reduction to mean sea-level, we get 30.016 inches for the mean height of the barometer at mean sea-level in Boston Harbor.

The last column in the table shows that there is a very small inequality, with an annual argument, and a co-efficent of about 0.05 inch, making the barometric pressure a minimum abont May and a maximum iu November. The number of observations was not sufficient to eliminate the accidental irregularities, and to determine this small annual inequality very accurately; but it is evidently too small to account for much of the observed annual inequality in the mean sea-level.

The following table of results is obtained from classifying the observations of the winds according to their directions for each of the four seasons and for the whole year :

Season.	N.		N. E.		L.		S. E.		S.		S. W.		W.		N. W.	
	Ohs.	S. 5 .	Obs.	S. P.	Olus.	S. F .	Olus.	S. F.	Obs.	S. F.						
Winter	12	153	51.	75	22	37	23	36	36	68	189	¢88	221	578	193	337
Spring	68	117	120	183	106	137	45	63	57	109	183	293	181	323	113	210
Summer	34	52	85	149	101	143	37	61	50	64	269	416	150	238	104	176
Autuma	60	97	73	129	51	82	31	48	43	75	178	309	167	275	156	264
Wholt: year	954	419	329	536	280	399	329	208	186	319	829	1,306	219	1,214	566	987

The number of observations denotes, also, the relative frequency of the winds from the different points of the compass. It is seen that the predominating winds are from W. and SW. during all seasons of the year. The numbers headed S. F. are the sums of the numbers in the obsercations denoting the forces of the wind. There is some uncertainty with regard to the seale used by Professor Bond in denoting the forces, but it is supposed to be the scale from 0 to 6 , in which 0 denotes a calm and 6 a velocity of eighty-five miles per hour, the numbers representing the forces being very nearly proportional to the velocities. At any rate, the sums of the forces above may be regarded as representing the relative sums of the distances passed over within the limits of the errors of such observations. With a table of latitude and departure, therefore, we readily determine the relative distances passed over and the directions for each season of the year and for the whole year. We thas get the following table of directions from which the wind blows, and the relative distances traveled over :

| Winter. | N. 788° | W. | 726 |
| :--- | :--- | :--- | :--- | :--- |
| Spring | N. 85 | W. | 386 |
| Summer...... | S. 71 | W. | 383 |
| Autumn | N. 84 | W. | 498 |
| Whole year ... | N. 87 | W. | 1,920 |

It is seen that during the winter the wind blows from a point on the average $12^{\circ} \mathrm{N}$. of W ., but
in the summer from a point 190 S . of W . This difference is caused by the difference in the relative temperatures of the land and sea in the two seasons, and sbows that the winds have slightly a monsoon character. Daring the spring and fall, when the relative temperatures are about the same, the winds blow very nearly from the same point, which nearly corresponds with that of the resultant of the whole rear, the direction of which is from a point $3 \circ \mathrm{~N}$. of W . The atmosphere in the course of the whole year moves a little more sonth than north. Dividing 1,920 by 3,299 , the whole number of ouservations, we get 0.58 for the average force in the direction of the resultant. This, by the supposed scale used, corresponds to a velocity of about eight wiles per hour, in a direction a little south of east.

The accompansing sketeln contains a graphic representation of the relative amounts of wind or distances traveledover, from the different points of the compass during the course of the year, and

of the effects of the winds upon the sea-level and the height of the barometer. The ordinates in the inner circle, determined for the eight principal points only, represent the relative amounts of wind daring the year and not the average force of the wind, the center of the circle being in the direction in which the wind blows. The ordinates upon the circumference of the middle circle
represent the effect of the average force of the wind from the different points of the compass upon the sea-level, the ordinates within the circomference denoting depression of the sea-level, and those on the outside of it denoting elevation of sea-level. The scale is oue foot to the inch. The effect of the winds upon the barometer, if it is an effect, and the winds and the changes of barometer do not belong to some common canse, is indicated by the ordinates upon the circumference of the outer circle. These ordinates represent the absolute amount of change in the height of the mercurial column.

It also contains a representation of the relative amounts and of the directions of the wind for each of the four seasons and for the whole vear. It is readily seen from this that the resultants are mostly in an easterly direction, and that the motion east during the winter is nearly twice as much as it is during the summer. The effect of the east winds upon the resultant for the springseason is also seen.

Sketch No. 38 contains a graphic representation of the heights of the tides and of the lunitidal intervals given by the tables and by observations, and of the effects of the winds and changes of atmospheric pressure, for the month of July, 1858. This is the time when the obliquity of the moon's orbit to the equator is greater than in any other part of the whole series, and, consequently, when the dinmal tide is the greatest. This causes the alternate heights of high and low waters to be greater and less, as represented in the sketch, near the times of the greatest declinations of the moon, the maximum of the lunar and principal part of this effect occarring two days after the greatest declination. At this time, also, the moon's perigee occurs near the tine of one syzigy and its apogee near the time of the other. Hence the predominating influence of the lunar parallatic inequality over that of the solar, or half-monthly, is well represented by the sketch. At the time of the new moon and the moon's perigee these two inequalities combine and make the tides unasually large, but at the time of tull moon and the moon's apogee the parallactic inequality more than counteracts the half-monthly inequatity, so that when in Luropean ports there is a second maximum, though smaller, in Boston Harbor this second maximum is entirely destroyed by the predominating effect of the lunar parallactic inequality, and the magnitude of the tides do not come up to the mean tide.

The angular points in the sketch represent computation, and the dots observation uncorrected for the effects of meteorological changes. A fter correcting the observations for variations of barometric pressure by the formula which has been given with the value of the constant C, as determined from observation, and also for the effects of the winds as determined in the preceding discussion, the observations thus corrected are represented by the dash. In general, this correction of the observations improves the agreement with theors, but it sometimes happens that it is the reverse. Of course, this correction for the meteorological effects is only partial aud very imperfect. While, perhaps, the primeipal effects clepend upon the local state of the barometer and of the winds, yet a very great part, no doubt, depends upon the meteorological conditions in distant parts of the ocean; for if the barometer and the wiuds in Boston Harhor, and for a considerable distance around, were to remain the same, yet the meteorological changes in distant parts of the ocean would still canse considerable changes in the sea-level, as well as other oscillations, independent of any astronomical forces. The corrected residuals, represented by the spaces between the angular points and the dashes, depeud upon the imperfection of the corrections for the meteorological effects, upon errors of the tables, and of theory. It is not claimed, of course, that the theory is perfect, and the tables do not represent accurately the theory. To attempt to represeut aceurately the theory would require very complex formulas and tables, which would increase very much the labor of computing the tides; and siuce no accurate comparisons can be made between theory and individual observations, such aceuracy was thought of too little importance to make these tables very complex, and thus to increase the labor of computation; for if we had at theory and tables absolutely perfect, so great are the varions abnormal effects which cannot be taken into the theory that there would scarcely be any perceptible decrease of the residuals.

No attempt has been made to determine the meteorological effect upon the times of the tides. These are, no doubt, very great in individual cases, but it is doabtfal whetber much of these effects could be represented by any arguments. The times, therefore, as represented in the sketch, are entirely uncorrected for any of these effects. The very nature, also, of such observations renders them inaceurate; for very small errors change considerably the mere time of the
maximum or minimum. Very small abnormal effects also, about these times, may affect very muth the obserced time of the maximam or minimum. If the general sea-level is rising about the time of high water from a change of barometric pressure or the winds, the time of the maximum is later, and the reverse, if it is falling at that time. The abnombal oscillations of various periods, which are always observed more or less, may also affect very much the timeobservations. In forming the tables, also, it was seen that the effect of the lunar and solar diurual tides in all their various relative phases upon the mere times of high and low water could not be accurately represented in all individual cases withont making the tables very complex.

The average of all the residuals, uncorrected for any meteorological effects, belonging to the six years, are as follows:

Y(a).	II. W.	I. W.	Meas.
	Feet.	Feet.	Fect
1056.	0.44	0. 43	0.44
18%	0. 20	0.49	0.39
185\%	0.36	0.35	0. 36
1859	0.31	(0.35	0. 38
1<60..	9. 34	0. 35	0. 30
1861.	0.33	0.35	0. 35

The residuals of the first two years are generally much larger than those of the following years, and the effect is seen in the averages. There was a change of observer in August, 185.

By taking the monthly averages of the residuals in the heights for the last four years, and of the residuals in the times for the year 1858 only, we get-

	Feet.	Min.
January	0.52	\%. 4
Februnry	.0. 44	5. 2
March	0. 40	6. 6
April	0. 36	5.0
May	0.30	4.5
June	0.97	3.9
July	0.27	4. 3
August	0.31	4. 7
Seytember	0.32	5.0
Octoher	0. 39	6. 2
November	0.37	8.0
December	0.44	8.6

It is seen that in both the beights and the times the residnals are only about half as great in summer as in winter. This shows that the residuals are due mostly to meteorological effects, and that they are least in summer, because the meteorological changes are then least. If, then, these effects were entirely absent, the residuals would be still much more reduced.

The computations of the tides from the formulas and tables were made mostly by Mr. J. G. Spaulding, aid in the Coast Survey, and they seem to have been made with great accuracy and faithfuluess throughout.

Very respectfully, yours,
Prof. Benjamin Peirce,
Superintendent United States Coast survey.

APPENDIX No. 7.
METEOROLOGICAL REGISTER, ALASKA TERRTHOLYY, 1870-ヶ1.
Saint l'aul's Island.-Latitude, 370 N.; longitude, $170^{\circ} \mathrm{W}$. of Greenwich.-Observer, Capt. Charles Bryant.

[The station is forty feet above tide-level.]
Fairhaven, Mass., October 2, 1871.
Sir: I have the honor to transmit the inclosed copies of a meteorological record kept by myself while on official duty at Saint Paul's Island, Alaska Territory, from November, 1870, to July, 1871, iuclusive. This being the first winter record kept at that point since the cession of the Territory to the United States by Rassia, it is proper to state that the cold during February, March, and April, 1871, was considered unusually severe by the oldest native inhahitants.

Yours, truly,

CHARLES BRYANT, Special Agent Treasury Department.

Prof. Benjamin Peirce,

Superintendent Chited States Coast Survey.

Meteorological register for Saint Paul's Island, Alaska Territory.
[Latitude, 57° north; longitude, 170° west; height of barometer above tide-level, 40 feet.]
november. 1870.

Average daily mean. thermoneter, $32^{\circ} .15$; warment daf, (12 th, mean, 350.33 : coldeet day, (10th,) mean, 290.00 ; choudiness, 0.49 ; rain.fall. ${ }^{2}$ nehes, 1.91.

Meteorological register for Saint Paul's Island, Alaska Territory—Continued.

[Latitude, 57° norin; longitude, 170° west; height of barometer above tide-level, 40 feet.]
DECEMBER, 1870 .

Average daily menn, thermometer, $27^{\circ} .39$; coldest day, (31st, mean, 80.66 ; Cloudiness, 0.72 ; rain-fall, inches, 2.30 .

Meteorological register for Saint Paul's Isiand, Alaska Territory-Continued.
[Latitude, 57° north ; longitude, 170° west; beight of bavometer above tide-level, 40 feet.]
JANUARY, 1871.

Average daily mean, thermometer, $27^{\circ} .60$; coldest day, (1 st,) 90.00 ; clondinese, 0.63 ; rain-fall, inch, 0.25 .
Daring the afternoon of the 5th, large bodies of drift-ice were seen approaching the island from northeast; dividing on the east end, a portion passed on the southeast side. On the night of the 7th, the sontheast wind drove it to the north, and it passed the island. This ice contained sand and gravel; and some of the higher portions were coated with sand, as if it formed near a shore, and the dirt was blown on it by the wind. After the 7th no more of it was seen.

Meteorological register for Saint Paul's Island, Alaska Territory-Continued.
[Latitude, $57 \circ$ north; longitude, 170° west; height of barometer above tide-fwn, qu fet.)

Meteorological register for Saint Paul's Island, Alaska Territory-Contiuned.
[Latitude, 57° north; longitude, 1700° west; height of barometer above tide-le vel, 40 feet. 1

Aterage daily mean, themomoter, 80.80 ; coldest day, $(2 \pi,) 3^{\circ}$ below zero : cloudiness, $0 \circ .44$; snow, inches, 40.

Meteorological register for Saint Paul's Istand, Alaska Territory-Continued.
\{Latitude, 57° north; longitade, 179° west; height of barometer above tide level, f0 feet.]
APRIL, 1871.

Average daily mean, thermometer, 290.33 ; coldest day, (18 t , 130.00 ; warmest day, (3 d, , 350.33 ; cloudiness, 0.75 ; rain-fil, inch, 0.07 ; snow, ineh, 0.08.

Meteorological register for Saint Pauls Island, Alaska Territory-COntinned.

[Latitude, 57° north; longitude, 170° west; height of barometer above tide-level, 40 legt.]
MAY, 1871.

Average daily mean, thermometer, 34.29 ; warmest day, (25th, 410.33 ; ciondiness, 0.93 ; rain-fall, inch, 0.98 .

Metcorological rogister for Saint Faul's Island, Alaska Territory Coutinued.

[Latitnde, 57° north; longitude. 170° west; beight of barometer above tide-level, 40 feet.]
jUNE, 1871.

Average daily mean, thermometor, $40^{\circ} .20$; coldest day, (6th,) $34^{\circ} .60$; warmest day, (181 h , 44°. 66 ; clondiness, 0.80 : rain fall, inches, 1.03.

Meteorological register for Saint Paul's Island, Alaskia Territory-Continued.
[Latitude, 577° north; longitude, 1700° west; height of barometer alove tide-level, 40 feet.]
NOVEMBER, $18 \% 1$.

[^2]
APPENDIX No. 8.

ThE HARBOR OF NEW YORK : ITS CONDITION, MAY, $18 \% 3$.

Letter of Prof. Benjamin Pcirce, Superintendent United States Coast Survey, to the Chamber of Com. merce of New York, with the report of Prof. Henry Mitchell on the physical survey of the harbor.

Cambridge, Mass., May 30, 1383.
Dear Sir: The resolntion passed in the chamber of commerce March 4, 1869, has been under careful consideration during the interval which has elapsed, and a continuous investigation of all the phenomena of New York Harbor has been conducted under the direction of Prof. Hemy Mitchell, to whom the physical hydrography of the survey has been especially intrusted. -

The inclosed report from Professor Mitchell illnstrates the character and progress of the survey up to the present time. In it important mumerical data are skillfully arranged, and in many cases exhibited in the forms of diagrams. All these data may be regarded as fiual as far as they go, and it should be especially considered that nothing in the report is specnlative or merely theoret. ical. The paper is an embodiment of facts and observation. It is systenatic experience, which is the most valuable as it is the most fruitful experience. The deductions are not from prejudice or unfounded fancy; they result from careful study and inquiry by men who are familiar with New York Harbor, and with the general laws of the drnamic action of waves, tides, and curreuts. The observers have sought the opinions of pilots, ship-captains, and engineers, and have neglected nothing which could conduce to a judicious conclusion. Wherever, therefore, injury to the harbor is specified, there can be no doubt that the proper remedy should be applied without umecessary delay, and no undertaking can wisely be pressed in reference to the harbor that is manifestly opposite to the teachings of observation developed in this report of Professor Mitchell.

It will be observed that the Jersey Flats no louger receive the deposits formerly carried by currents upon its interior space. The extension of wharves, \&c., at Jersey City have placed the flats under the lee, and the deposits now accumulate on the fore slope of the bauk, so that the flats are rapidly growing out into the main chamel. In large measure, these deposits are dredgings brought down from the city-docks and elsewhere, but some of the material found on them is still to be accounted for. Auy scheme of occupation for these tlats should provide specially for keeping the frontage bold, and the harbor-line should not lie far back from the present front of the flats.

In the vicinity of Middle Grouud Shoal and of Gowanus a similar movement outward seems to bave resulted from the artificial eucroachments at Red Hook, but there the accumulation from foreign sources is small, and the changes ouserved have not been permanent.

There is no indication that the bar-channels have declined in any way. These will be reached by the survey last of all, unless something should appear to attract attention to them in advance.

The Lower Bay anchorage has changed, and this has been examiued, but a further extension of work and close soundings are desirable there before results can be declared.

Mr. Mitchell's observations relative to the sub-current up the Hudson River develop the interesting fact that the flood predominates below six fathoms.

The depth on the bar is about equal to the seaward scour through the barbor, namely, twentytwo feet at low water; but this does not depend upon deusity, nor has it directly to do with dead angle.

Professor Mitchell gives good reasons for preferring middle time in the East River to the time of high or low water as that to be giveu to navigators: first, because it is less liable to fluctuation from accidental causes; and, then, it is nearer the time of the most rapid velocity, which is especially of importance to the sailor.

The whole amount of water which flows int, New York Harbor in the course of each tide through the East River is sufficient of itself to raise the water of the harbor by one foot and onetenth. If this flow from the East River into the harbor oceapied the whole of ebb-time, it would increase by just this amount the outer flow through the Narrows and over the bar, and the ratio which this water bears to the whole outer flow would exactly represent the benefit of the East River in preserving the depth of water over the bar of the harbor. But this coincidence does not exactly occur. The ebb commences two hours before the turn of the tide in the East River, and during these two hours the flow is towards the East River instead of from it. Hence the amount of flow into the harbor must be proportionally diminished, and reduced to nine-tenths (0.9) of a foot. Now, the harbor at high tide has four and two tenths (4.2) feet more of water in it than at low tide, which runs ont during the ebb, together with the flow from the Hudson, which is about the same as that of East River. The whole of the flow, then, through the Narrows, which is independent of East River, corresponds to five and three-tenths (5.3) feet in elevation of the surface of the harbor, and this is the amount which would run if East River were to be cut off. The additional nime tenths (0.9) of a foot which arises from East River gives a total of six and twotenths (6.2) feet as representing the flow through the Narrows and over the bar. If the East River were cut off, the corresponding decrease in the flow of water would involve a proportionate decrease in the water-space over the bar, or a reduction of the depth of water upon the bar of about three feet and a balf.* Such is the measure of the importance of East River to the preserration of the entrance to New York Harbor. The loss of this river would involve a fatal injury to the harbor, and any obstruction to its flow or reduction of its capacity must be proportionally injurious.

Believing that the accompanying report embraces the principal points which deserve immediate attention, it is respectfully presented for the consideration of the chamber of commerce, and I hope that it will be considered to deserve immediate publication.

Yours, respectfully,

> BENJAMIN PEIRCE, Superintendent United States Coast Survey.

George W. Dow, Esq., Chairmen.

REPORT OF PROF. HENRY MITCHELL.

May 6, 1873.
Dear Sir: The physical survey of New York Harbor and its approaches was resumed in 1971, and has made, during the past two years, considerable progress, so that some resnlts can be stated quite safely. The immediate occasion of the resumption of these iuquiries was a resolution of the New York Chamber of Commerce, dated March 4, 1869 , calling upon you to consider "an apparent change going on in the formation of the harbor of New York and its entrance, which, if not soon attended to and corrected, threatens to be productive of very great injury." You, in reply, named Capt. C. P. Patterson and myself as your associates in the study snggested, and asked for a committee of conference, which was at once appointed by the chamber, and has been retained up to this time. This arrangement has been a great adrantage to me, since it has given me, in feldoperations, a claim upon your special interest and the co-operation of Captain Patterson. I have also felt free to consult Mr. Dow and Mr. Blunt (of the committee) from time to time, and thas the work has been more closely confined to practical objects and wants than it was in our first attempt fifteen years ago.

You will not, of course, expect, in this progress-report, any general discussion; I am, in fact, not prepared for this, but I shall take up certain shoals and channels and state facts regarding their changes and conditions of existence as far as we have learned.

[^3]Changes for the worse being the most important, I shall commence with them; but in order that our facts may not produce an exaggerated impression, I feel that it is necessary to say heforehand that no eridence of a general deterioration of the port has yet appeared, and that we need apprehend nothing of the kind if wise counsels prevail in future.

```
INCREASE OF JERSEY
    FLATS.
```

In the autumn of 1872 , the survey of Jersey Flats was completed by Mr. Marindin and his party, and the figures given in the appended tables are those resultiug from a comparison of the recent survey with that of 1855 , which has been replotted at Washington under the special care of Captain Patterson, who has advised with us in these surveys from the first.

The plan of comparison we have purstied has been as follows: A line has been drawn upon our field-sheet from Robbin's Reef light-house to Bedloe's Island flag-staff, thence (slightly deflecting) through Ellis's Island flag. staff to the New Jersey Cenrtal Railroad wharf. This datum-line lies above all marked changes, and is so placed as to fall nearly parallel to the border of the flats, so that ordinates from it are essentially normals to the characteristic contours upon the bank of the main channel. We have drawn 38 of these normals between Robbin's Reef light and the Central Railroad, at distances of 500 feet; and at

DIAGRAM A
ii ?

 .
 t

 i.
center. Upon these normals we have measured the changes in the positions of the $6,12,18,24$, and 30 feet curres since 1855 , and stated our results numerically upon Table 1. This first table shows the advance or retreat of the contours at the points where ther are intersected by the normals. You will observe that all the curves have been pushed outward since 1855 , but most conspicuously the 24 -feet curre, which in the average has moved out 303 feet, and at the maximum 825 feet. By just so much the main channel of the harbor, for heavy ships, has been reduced in width. The extreme reduction stated, however, equals only one-sixth part of the former width of the channel.

In this neighborhood deposits of material dredged from the citr-docks and elsewhere had been deposited for many sears previous to 1871, when, at our suggestion, the Pilot Commission declined to grant the pricelege of further deposits. As I understand the matter, this commission had desiguated, as a site for deposits, the deep waters of the main channel off Oyster Island, where our printed map showed depths of over 10 fathoms. Whether or not the parties who dumped the material were careless of their whereabouts, and found it more convenient to drop their loads on the border of the flats, we are not adrised; but we feel pretty sure from the aspect of the case that the great shoaling in this place is artificial. The greatest eleration of deposit since our survey of 1855 is $31 \frac{1}{2}$ feet, reducing to 4 fect depth a portion of the main ship-channel where some seventeen cears before the Great Eastern could have passed with 250 feet between her and the 30 feet curve. The foregoing is an extreme case, of course, but we are able to state that the flats, throughout the entire distance from Robbin's Reef to nor mal XXXIII, a distance of over three statute-miles, have grown out into the main channel to the injury of navigation. Some excavations, and deposits incidental to these excavations, seem to have disturbed the order of things between Ellis's Island and the Ceutral Railroad wharf, so that no general statement can be safely made concerning the change in the area of the flats in this neighborhood. If we regard the 24 -feet contour as being the true border of the flats on the side toward the main channel, we may state the increase of the shoal-ground to be 129 acres.

Next in magnitude of change, and most important from a commercial point of view, is the outward movement of the 18 -feet curve, which amounts in the average to 211 feet, and represents over 92 acres. Upon normal XVII, (the dumping-ground above referred to, the maximum movement outwards is 930 feet, and upou adjacent normals, on either hand, 710 feet. The 12 -feet curve has advanced to a still greater extent on normal XVII, where it is found to be over a thousand feet farther out than in 1855!

The 6 -foot curve is so near the general plane of the surface of the flats that its movements are on the whole uncertain and insignificant. All the movements stated above are those which have taken place ontside (seaward) of the axial line from which our normals are drawn; within this line the nearly horizontal surface of the flats has remained essentially the same where unoccupied.

At the point of the flats near Robbin's Reef, the border of the shoal-ground has retreated over a hundred feet, except along the 12 feet curve, where little change has occurred. (See Table No. 2.)

In Table No. 3 I have furnished in detail the areas of change upon planes of $6,12,18,24$, and 30 feet depths at low water.

Finally, in Table No. 4, I furnish the volumes which have been added since 1855. You will observe that nowhere along the front of the flats bas there been any loss, but in every reach of a thousand feet a considerable gain-not less than $1,540,000$ cubic feet any where.

The total deposit upon the border of the main channel, since 1855 , is $76,859,250$ cubic feet, or $\mathbf{2 , 8 4 6 , 6 4 0}$ cubic yards. To dig out this mud again, and carry it where it could be of no possible harm, would cost nearly a million of dollars. This is rather a startling disclosure when you consider the narrow belt that our figures cover. It is, however, less alarming than the result of the previous comparison made by the advisory council to the New York Commissioners on Harbor Encroachments, in 1855-57; but it is more certain, because we have the survey of that council for our basis, and have proceeded as carefully ourselves in repeating the survey.

That council pointed out as a canse of deposits the unwise extension of piers at Jersey City, but their warning voices were unheard or nnheeded. As I have stated, much of the recent deposit appears to have been artificial, but there is enough unaccounted for to warrant an appeal to the State of New Jersey to adopt measures for preventing unwise encroachments hereafter.

OHANGES IN BUTTERMILK CHANNEL.

In my report of last year, printed by the Pilot Commissioners, as an appendix to your letter to the president of the board, bearing date of February 16, 1872, I described the results from a comparison of surveys made in Buttermilk Channel, and over the shallow ground sonthward of Governor's Island. The only striking point stated was the diminution of depth on the summit of the shoal at the eastern entrance of this channel. Captain Patterson has discovered, in overhauling the records, that a sounding of $9 \frac{1}{2}$ feet was made on this very spot in 1855, and omitted from the plotting, perhaps intentionally, after diligent search for the place had failed to repeat the observation. It is a very small knoll, and therefore difficult to find.

CHANGES IN THE VICINITY OF MIDDLE GROUND SHOAL AND GOWANUS BAY.
The eastern side of the harbor, below the Atlantic Docks, was resurveyed during the past season by Mr. F. F. Nes, and his party of the steamer Arago. The funds for this work were mostly supplied by the Commission on Pier-Lines, for whose use our chart was made; but we have instituted a close comparison between this survey and the one of 1855. The method of comparison which I have adopted in this case, and shall describe below, differs from that employed for Jersey Flats, you will perceive, and you will easily see that in each case it is intended to make prominent the character of the change. In one instance a flat is growing out into a deep channel; in the other the bottom is shifting. In the former the horizontal area and the volume are most important; in the latter the vertical changes of depth attract our attention.

Upon our field-sheet we have drawn a straight line from the city-hall, tangent to Red Hook, which terminates at Bay Ridge flag-staff. This line, which we may consider the onter chord of Gowanus Bay, we have made onr axis of ordinate3, and drawn these ordinates at intervals of 500 feet. We have also drawn parallels to our chord at distances of 250 feet, and at the points where these cross the ordinates we have determined the changes of depth, and stated the same in Table No. 7, and Diagram B. It was only by thus cutting up the ground into equal spaces that we could ascertain with any certainty the total deposit from foreign sources, and distinguish between accumulation and shifting. The general result is a shoaling, which, on the harbor-side of our chord, is in the average only a quarter of a foot, and in Growanus Bay, exclusive of the Erie Basin, less than a half-foot. The Erie Basin itself, notwithstanding considerable dredging, is in the average 0.61 foot shoaler now than in 1855.

Referring to this diagram you will discover that there has been a deepening off Red Hook, which we follow along the chord of the bay, and down two parallels ou either side of this chord, as if a stream had swept round Red Hook and across the opening of the bay, roashing away the bottom irregularly. It may be that the completion of wharves, extending from Red Hook, has quickened the stream from above a little, and changed somewhat its direction. You will remember that I reported to rou some time since the causes of the Middle Ground as observed, and predicted that if Red Hook were extended this shoal would move out. I had not then made the comparison, and was nos aware that any movement of importance had really taken place. You may trace in the groups of figures outside of the shoal npon our diagram a decided movement towards the main channel, and at the foot of the shoal the growth to the southwestward is striking.

The lower mouth of the Middle Gronnd Channel, off Bay Ridge, seems to have had a shifting bottom, but no harmfal change bas taken place in this neighborhood. The bar of this channel, which lies between normals XVII and XXII, and between parallels 500 and 2000, (see Diagram B,) has shoaled nearly a foot in the arerage, and there are places upon it which have 3 an 4 feet less water than formerly.

Within the Erie Basin, and at its northern entrance, artificial changes appear; and notwith standing that mach dredging has been done, the shoaling is in decided excess of dëepening.

GHANGES AT AND NEAR THE SANDY HGOK ENTRANOE.
Our resurveys have been confined thas far to localities where changes are reported or suspected, and the Sandy Hook Basin has been under examination with some interesting results, $15 \cdot \mathrm{cs}$
but until we can so extend the work as to comprise a wider range than that covered by the bydrography of Mr. Nes last antumn, I do not feel ready to discuss this part of my subject.

I presume Mr. Nes will join me again the coming season, and complete this work. The west side of the Lower Bay, as far as examined in our surveys for the Department of Docks, had undergone no change worth mentioning.
-
TIDES AND CURRENTS.
Although I have not yet made all the observations requisite for a complete riew of the tidal phenomena in the harbor and approaches of New York, I have reached that point where I can exhibit my results in tables complete as far as they go, and therefore I have thought best to ask you to accept these data, and have them printed, that they may be accessible to those persons whose public or private interests lead them to follow us in these inquiries.

I shall commence by introducing tables showing at what interral after the transit of the moon the strength of the current occurs; I call this the lunar-tidal interval of middle time, because I do not use the time of the highest velocity recorded, but the middle of the curve (for flood or for ebb) given by all the velocities carefully plotted. This plan suggested itself to me when working on the carrents of San Francisco, where the diurnal irregularities are very large and the effects of freshets and prevailing winds rery considerable. I concluded that, because the diarnal irregularities in the intervals of high and low water ha ve different signs, the time of any intermediate phenomenon (like masimum velocity) must be more or less free of this inequality. Moreorer, l concluded that the maximum velocity would occur at the same time whatever constants might enter, so that in great measure this ti me would be unaffected by regular winds or continued 'riverfloods. In the case of San Francisco, my computations came out indifferently, but in treating New York the advantage of using middle time instead of slack-water is very decided. My method is illustrated in Fig. 1 of Diagram 0, in which the observed curve is plotted in full line, while the chords and the axis are given in dotted lines.

The mean time of the axis (which is a line drawn downward so as to bisect all the chords) is what we call the "middle time." You will observe that this element is dependent upon all the observations, and not apou one or two, which might be the very ones affected by irregular causes. Table No. 8 contains the numerical data from which the first figure upon our sketch is plotted; and Tables Nos. 9, 10, 11 furnish all the principal elements of the tides and tidal currents. Tables Nos. 9 and 11 furnish the results from actual observations, while Table No. 10 is a recapitulation of Table No. 9, adjusted and extended. This adjustment is effected by plotting the observed results, and drawing through the figures swooth curves, which are supposed to strike out only those irregularities which have been due to strictly local peculiarities and errors of observation. The vertical tides, i. e., the rise and fall, have required very little adjustment, because, being observed for long series, they give, from averages, a smooth curve. Our manner of observing the vertical tide by recording the times of thigh and low water, and referring these to the moon's transit, is far less certain of giving the truth from short series of observations than our method of using middle time in the case of currents, or even the use of slack-water intervals; but the convenience with which the rise and fall of the tide can be observed enables us to repeat observations till the mean results come very near to the truth.

To the adjusted table (10) we have added columns of deflections, depths, sections, perimeters, mean radias, \&c., all the elements which might be expected to vary the tidal phenomena.

Speaking in a general way, the delay of tidal epochs from point to point may be said to increase slowly as we go up the river, while the delay of the current epochs decreases rapidly.

PHENOMENA IN THE PATHWAY OF THE HUDSON.

In Table No. 12 we have given the velocities of the currents at different depths below the surface at our principal stations in the pathway of the Hudson River; and in Diagram O we have plotted the results for alternate lunar hours, so as to exhibit the changes from the Narrows to Forty-first street.

You will observe from this table (12) and Diagram C that over the bar the greatest relocities near the bottom are reached during the ebb, but that at and above the Narrows the flood seems to predominate over the ebb along the channel-beds wherever the depth exceeds six fathoms.

In reports some years ago, I called your attention to the fact that for several consecutive hours we have at the mouth of the Hudson a comparatively fresh strcam running searard upon the surface, and a salt stream taking the opposite course below. I conceived that in the months of summer, the season of our work, the head of the river so declines that it cannot balance the seawater, which consequently flows in along the bed. During the past two seasons we have taken pains to measure densities, and have traced the sea-water along the channel-bed as high up as Carthage, seventy miles from Sandy Hook; but the surface-water was found essentially fresh at Teller's Point, forty-three miles from Sandy Hook.

There is a native oyster found in the Tappan Sea, which is too small for the market, but is a favorite for planting elsewhere, and it was reported to us that oysters had also been foumd in Haverstraw Bay, and sea-crabs as high up as Carthage, ten miles below Poughkeepsie.

In Table No. 13 we give the specific gravities, observed at the different stations, corrected for temperature by Hälström's rule. These data were collected by Mr. Marindin, while our current observations were in progress in the year 1871. The water was pumped up through pipes, so that no mixtures of different strata affect our table.

The density of the sea on the chord of the great bay, which lies between Nantucket and the capes of the Delaware, was observed by me in 1867, and found to be 1.024 at the temperature of 60 . This may be set down as the normal density of the Atlantic in the approach to our coast, while yet beyond the direct influence of our rivers. In the year 1865 we made some observations npon temperature and density between New York and Cape Cod by the inland route, finding in the Race a density of 1.0224, and outside 1.0233, which density was carried through the Vineyard and Nantucket Sounds. Observations of 1871, in the Race, gave us a density of 1.024 .

It appears from our table (No.13) that in the portion of the Hudson bordering on New York City there is no great contrast of densities between the top and bottom of the sea, although it is decidedly marked at Twentieth street at the close of the ebb-current. Above this point there is a rapidly-increasing variation of density with the depth for the close of the flood-current; but the close of the elbb-current presents little contrast of densities until we get above Dobb's Ferry, or well into the Tappan Sea. At Teller's Point, which lies between the Tappan Sea and Harerstraw Bay, the differences of density between surface and bottom are very great. It would seem that these great basius store up the sea-water somewhat, as does the Mystic Pond, at the head of Mystic River, above Boston. (See special report of United States commissioners on Boston Harbor, published in 1861.) The great basins terminate, essentially, at Verplanck's Point, where the difference between surface and deep waters is conspicuous only on the flood. Abore this point all contrast declines, and, finally, at Barnegat, seventy-five miles from Sandy Hook, the river is of uniform density at all depths, being essentially fresh.

Although no critical comparison can be made between the different stations represented in Table No. 12, because the observations were not simultancous, and have not been corrected for half-monthly inequalities, yet we may venture to suggest that at the depth of 22 feet at low water-which is that of the bar-channel-there is still ample seaward scouring-force all along the line; that the bar does not lie in the dead angle between the salt and fresh water, but, in its general character, belongs to the same class as those at our southern inlets; in other words, it is a broken part of the littoral cordon of sand that skirts the coast, and is kept open in this case by the tidal circulation, which I have referred to in previous reports as the "life-blood of the harbor."

MOVEMENTS THROUGH THE EAST RIVER.

. In Table No. 11 we have given the tidal elements of the East River and its approaches. These elements are from actual observations, which we have not attempted to "adjust," as in the previous tables. The currents of the East River, from the southern entrance of Buttermilk Channel to Throg's Neck, belong to the interference system, which I hare discussed in my report on Hell Gate,

Appendix No. 13 of the Coast Survey Report, published separately in 1869. I find it necessary to quote a few paragraphs from this report, in order to illustrate my subject, and explain in what manner this table (No. 11) differs from those previously given for the Hudson:
"New York Harbor is visited by two derivations from the tide-wave of the ocean, one of which approaches by way of Long Island Sound, the other by way of Sandy Hook Entrance. These two tides meet and cross, or overlap, each other at Hell Gate; and since they differ from each other in times and heights, they cause contrasts of water-elevations between the Sound and the harbor, which call into existence the violent currents that traverse the East River.
"In the course of our laborions tabulations of the data from my physical surveys of 1857 and 1858 , it has become apparent that the general order or scheme of the tidal interference is very simple, and that the- apparent complications result from the miugling of local peculiarities; for this reason I deem it essential to offer a general view of the scheme, denuded of all its details, before inviting you to follow through tables and diagram to the phenomena actually observed.
"If the entrance from the Sound were closed at Throg's Neck, the tide which comes in over the bar would prevail all over New York Harbor, and we should have on the west side of Hell Gate a tide of 42 feet range, with its time of high water about one-half hour later than at Sandy Hook ; i. e., eight aud a half hours after the southing of the moon. In passing through the gate aud spreading out upon the broader spaces beyond, this tide would essentially lose its wave character, and become very much reduced in range, so that at the Brothers Islands it would be scarcely sensible.
"If, on the other hand, the Sound entrance were to remain open and the Sandy Hook Entrance be closed, a very different order of tides would prevail. On the east side of Hell Gate the tide would have a range of abont seven feet, and high water would occur there about twelve hours after the moon's transit. In passing the gate, it would suffer degradation, but not very rapidly, till it had advanced beyond the Blackwell's Island channels. In the basin of the upper harbor, however, it would become very small, and essentially waste itself and disappear in the lower harbor. If these two suppositions are correct, we ought, with both entrances open, to find at Hell Gate a tide, whose times and heights are intermediate between those now observed at Sandy Hook on the onehand, and Throg's Neck upon the other; while at other points the proportions would be unequal, according as our place of observation was more distant from the meeting-point on either side.
"Premising that all currents are caused Jy disturbances of the surface-level, we may see, without effort, that in harbors visited by a single tide-wave, (not materially distorted in its figure from point to point,) slack current must follow the stand of the tide, since at this time the surface-level is restored. Again, for this single tide, the maximum velocity must occur near the time of half. tide, because at this time the greatest rise or fall, and consequently the greatest filling or draining, is taking place. In the neighborhood of Sandy Hook, or at Throg's Neck, the currents do follow, in the manner we have stated, the local tide; but in the East River, where two tide-waves approach from opposite directions, the changes of surface-level, and consequently the currents bear no direct relation to either tide-wave considered by itself, but depend upon the nature of the 'interference,' as it is called. $\quad * \quad * \quad * \quad * \quad{ }^{*} \quad$ * $\quad * \quad$ * $\quad * \quad$ * $\quad * \quad$ *
"These differences of surface-level are the vertical measures of the slopes-tidal heads, if we may use this term so loosely-and they increase from zero to maximum (4.87 feet) in about three

"The following summary of the leading points which I have attempted to illustrate will serve as my guide in the arrangement of my observed data:
"First. Two tide-wares visit New York Harbor, meeting and overlapping at Hell Gate.
"Second. Near the meeting-point of these two tides, the observed heights and times of the compound tide are intermediate.
"Third. The corrents of Hell Gate are called into existence by the variations in the relative heights of the Sound and harbor; their epochs have no direct relations with those of the local tide or its components, and their velocities do not depend upon the local rates of rise or fall of tide.
"Fourth. The current flowing westward through Hell Gate occupies a greater section than
that flowing to the eastward, because the former prevails during higher stages of the local tide than the latter."

The third point made in the above quotation seems to be confirmed, because we find that subtracting the observed tides on the east side of the gate from those observed upou the west side, we have maximum differences of level at $6^{\mathrm{h}} 41^{\mathrm{m}}$ and $12^{\mathrm{h}} 13^{\mathrm{m}}$ after the transit, and the maximum velocity of the tidal currents at the north end of Biackweli's Isiand (see Table 11) at $6^{11} 30^{\mathrm{m}}$ and $12^{\mathrm{h}} 38^{\mathrm{n}^{2}}$. When we consider that these differences of level and times of maximum velocity are modified by so many local circumstances, the reaction of numerous reefs, the passing of great fleets of vessels, the winds, \&c., I think the above agreemeuts are about as near as we could expect from short series. If we had observed long series of tides at Throg's Neck and Governor's Island, which we did not, I have no doubt we should have come much closer. Mr. Striedinger, an assistant to MajorGeneral Newton, who has leveled very closely through the gate, tells me that the local disturbances are very considerable as reflected in the varying slopes.

We may, without material error, use the following rule for the East Tiver current: The strength of the flood-curvent occurs six hours and a half after the transit of the moon, and the streagth of the ebb-current at twelve hours and a half after the same transit, (or about twenty minutes after the immediately preceding transit.)

The above rule at neap tides will cover the axis of the entire channel from Atlantic Dock to Throg's Neck, but at spring-tides would extend easterly only as far as Old Ferry Point.

Current observations at the Race were made, but under circumstances not altogether favorable, and those for points below the surface I have rejected as far as velocities are concerned, because I am convinced that the stray-line (whose out-run is designed to permit the lower log to sink to the full length of the connecting wire, before the observer begins to count) was not in this case long enough, so that added to the real velocity is the descent of the \log in part. Our vessel was anchored in 40 fathoms of water. Concerning the tides and currents of Long Island Sound, Mr. Schott has written a paper in the Coast Survey Report of 1854.

In Table No. 14 we furnish the observations made at several stations simultaueously in a line across the East River at Wall street. The velocities given are those observed at the surface, but a pretty thorongh examination was made of those below the surface withont revealing any changes which we could connect with the lunar hours.

By reason of the delay of the tide through the East River, the relations of flowage to section differ from point to point. While at Hell Gate the greater section is that of ebb, (westerly flow, the greater section at Wall street oecurs during the flood, (easterly flow.) You will learn from Table No. 15, which is made out from very careful data-comprising velocities at different depths, at different distances across the stream, and at different times-that the section during the flood is $\mathbf{9 1 , 5 6 0}$ against 86,960 square feet during the ebb. The volumes passing in the two directions are mach the same. The small difference which appears in the table is probably due to errors in reduction. The mean movement is that of $4,362,300,000$ cubic feet in either direction. If a canal of the same width and section as the East River at this point were extended without limit, and visited, like the Hudson, by one tide only, no such movement as this could be generated-this is a matter of compatation-so that the phenomena we have observed are those peculiar to the co-existence of two inlets traversed by different tides. The strong currents in the pass between Martha's Vineyard and the main-land in the neighborhood of Vineyard Haven, where the channel is over threo miles wide, and more than 60 feet deep in the average, are due entirely to the interference of two tides differing, like those that visit New York Harbor, both in time and range.

EAST RIVER AND HUDSON TIDAL CURRENTS COMPARED,

Table No. 16 gives in detail the soundings and positions of stations in two cross-sections, one of which was in the East River, and has been commented upon, the other in the North River at Forty-second street.

Table No. 17 contains our observations at Forty-second street in full, together with a recapitulation of the velocities arranged according to lunar hours, and corresponding to table No. 14. These observations are illustrated upon Diagram D, in explanation of which I shall offer a few comments. The curves are those for surface-velocities, and do not represent the movements for all
depths. Those above the axis are plotted from flood-velocities, which take a northwardly direction in the Hudson, and an easterly direction in the Last River; while those below the axis are reverse courses. In the first figure of this diagram the abscissas are hours of civil time, but in all the others they measure distances from the west shore. In Fig. 1 it will be observed that the ebb is everywhere in excess of the flood, but most conspicnously so in the middle of the river, and least so upon the western shore, where the two drifts approach equality. These curves indicate that middle time as well as all other elements vary in the transverse section, and that some of the irregularities which appear in Tables 9 and 10 are due to the circumstance that our stations were not always located in the axis of the stream.

Passing on to the transverse curves you will observe that for nearly three hours, between III and VI hours, after the transit the ebb of the Hudson may be supposed in part to flow towards the Sound; while the East River ebb is a tributary of the Hudson flood for scarcely two hours, between IX and IX hours. You will bear in mind that the terms "flood" and "elob" as applied to the East River streams are merely used in their popular sense. The general inference from the above statements would be that the East River is an outlet and feeder of the Hudson for several hours of each day.

RELATIONS OF EAST RIVER MOVEMENTS TO THOSE OVER THE BAR.
Computations made upon the observations at different depths in 1858 gave for the discharge of the Hudson at the close of the wet season, (1st June,) $6,038,000,000$ of cubic feet, and at the close of the dry season, (September,) 3,360,000,000. Our more extended observations of 1872 (October) give nearly equal inflows and outflows, amounting to $4,511,000,000$, which is about the mean of the two gangings of 1858 . Now, this added to the ebb-volume of the East River, which was $4,383,000,000$, gives $8,894,000,000$. If to this we add the harbor tidal prism, $17,862,000,000$, (which includes Newark and Raritan Bays and the Kills, we have $26,756,000,000$ of cubic feet. The gauging across the mouth of the harbor from Sandy Hook to Coney Island gave, from observations of 1858, an outflow of $27,663,000,000$ of cubic feet, which is only about $2 \frac{1}{2}$ per cent. more than the preceding computation. Perbaps this little excess is due to the discharges of streams and creeks not considered in the previous computation, because not ganged. I confess that I had expected a much greater excess, because I had not counted in the Passaic, Hackensack, Raritan, and Shrewsbury Rivers, from which considerable volumes, even in the dry season, must escape by way of Sandy Hook and by way of Hell Gate. Without claiming that all the water that comes in through the East River goes ont over the bar, and aids in the scour of its chamel, I think this computation authorizes us to regard the East-River stream as too important to be treated lightly.

I think you have fully explained the entire discrepancy between the views expressed by Mr. Dow and those which we have based upon our observations, in pointing out that Mr. Dow is reasoning upon the supposition of a harbor visited by a single tide entering simultaneously by two mouths. If this supposition were correct, i.e., if the same tidal undulation came up from Throg's Neck and in over the bar at the same time, the office of draining and filling the harbor and river with tidewater would be divided between the two outlets, and the currents of flood and ebb would be much weaker than now through these outlets-much weaker, in such a case, with two outlets than with one, of course. But as a matter of fact, the order of things is quite different from these supposed cases. The tide coming in at Sandy Hook not only has to feed New York Harbor, but for a while the Sound also; and, vice versa, the water flowing in from the East River not only has to feed the harbor and its rivers, but the ocean outside of Sandy Hook (being for several hoars at a lower level than the East River) receives the drainage of the Sound in addition to that of the harbor. In this way New York Bar is crossed in either direction by a volume of water considerably greater than the simple filling and emptying of New York Harbor and its rivers would demand. If you were to close the East River by a dam, you would reduce both flood and ebb currents on the bar very sensibly, because, as we have seen, several millions of cubic feet would be cut off, which now traverse the seaward channels four times a day.

I must add one general statement concerning a harbor with two or more outlets. It does not follow, even when such a harbor is visited by only one tide, that there is a disadvantage in having more than one pathway to the sea. On the contrary, a majority of the first-class harbors of the world
have several. Among sands it is not wholly upon the strength of the current that effective scour depends, but upon the power of these to dispose of the material advantageonsly. Equal and opposite tidal currents, however strong, cannot remove the bars of our southern inlets, because in the short period of six hours the very slow dune-like movement of the sand has not carried it beyond the influence of the adverse stream with which it works back to its old place; but where the ebb and flood are unequal, the material is swept entirely away from the mouth of the harbor. Now, with harbors of two outlets, it often happens (and I speak here with plenty of observed data at my command) that one channel is more favorably situated for discharge than the other, so that, in effect, there is a circulation in at one door and out at the other. It is precisely for the sake of inducing such a circulation that a second outlet is now being constructed from a sandy harbor on the west coast of Denmark.

One may presume that if there were no tides at all in New York Harbor, the two openings would be of advantage to each other. In a northeast gale, for instance, the Sound waters, driven before the wind, mount up several feet at Hell Gate, and would rise much higher except that they escape through the harbor of New York, and out to sea over the bar. In this case the entire Sound is useful, because it is a shallow sea in which the effect of the wind is largely translation instead of oscillation, (as in the ocean.) The wind cannot blow from any quarter without disturbing the balance of the two outlets, and this disturbance is represented in effective scour at the bar.

Very respectfully, yours,

Prof. Benjamin Perrce,
 Superintendent United States Coast Survey.

List of tables accompanying report of Prof. IT. Mitchell on New Tork Harbor, 1873.
No. 1. Advance and retreat between Roblin's Reef light and the Central Railroad wharf.
No. 2. Same round the point of the fiats. Changes on the Jersey Flats.
No. 3. Horizontal areas.
No. 4. Volumes.
No. 5. Depth of water in 1855.
No. 6. Depth of water in 1872.
No. 7. Changes of depth between 1855 and 1872. $\}$
No. 8. Currents of Gedney's channel.
No. 9. Tides and currents in Hudson River and approaches.
No. 10. Tidal elements of Hudson River, adjusted.
No. 11. Tides and currents in East River and approaches.
No. 12. Currents at different depths in the Hudson and New York Harbor.
No. 13. Specific gravities of water in the Hudson.
No. 14. Currents of East River at Wall street.
No. 15. Volumes passing through East River at Wall strce .
No. 16. Mean low-water sections at Forty-second and Wall streets.
No. 17. Currents of Hudson River off Forty-second street.
List of Diagrams accompanying report of Prof. H. Mitehell on New York Harbor, 1873.
B. Showing changes in the vicinity of Gowanas Bay.
C. Showing vertical-current curves; also method of computing "middle time."
D. Transverse curves of velocities in the Hudson and East Rivers.

Table No. 1.-Changes on the Jersey Flats, New Fork Harbor, as shown by the surveys of 1855 and 1871-72.

Number of nor mal from Robbin's Reef light.	Distances from the datum-lines of the 6, 12, 18, 24, and 30-feet curves.															Depths along the datum-lines.		
	6. feet curve.			12-feet curre.			18 -feet curve.			24-feet curve.			30 -feet curse.					
	1855.	$\stackrel{\pi}{9}$		1355.	$\begin{aligned} & \stackrel{i}{i n} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$		1855.	$\frac{1}{6}$		1855	$\frac{\stackrel{i}{1}}{1}$		1255.			1855.	$\frac{\square}{\frac{1}{1}}$	
	Feet.	et.	Feet.	Feet.	Feet.		Fet	Feet		Feet.	Feet	et.		et.	Feet	Feet.	Feet.	Feet.
				95		+ 135	825	05	+ 80	30	1,065	$+135$	1,160	1, 165	+ 5	0	0	± 0
1				290	515	+ 225	570	850	+ 280	650	970	+ 320	1,115	1,075	- 40	84	8	
II				175	335	+ 160	380	750	+ 370	585	880	+ 295	975	1,020	+ 45	10	94	
11				90	165	+ 75	275	520	$+245$	550	850	$+300$	850	935	+ 85	10	104	$+$
IV				0	40	$+\quad 40$	200	285	+ 85	410	700	+ 290	800	500	+ 100	12	114.	-
V							150	210	1	460	570	$+110$	775	900	+125	14	13	- 1
\checkmark							100	170	+ 70	400	575	+175	825	82	± 0	15	13	- 2
VII							60	175	+ 115	315	575	+ 260	820	740	so	16	1412	$-1 \frac{1}{1}$
VIII							0	225	+ 225	250	525	+ 275	823	741	- 85	18	15	- 3
IX							0	225	+285	220	500	+280	760	725	- 35	18	$15 \frac{1}{2}$	-24
X							0	320	$+320$	185	500	+ 315	730	765	+ 35	18	16	- 2
XI							0	325	+325	150	500	$+350$	700	785	+ 85	18	15	-3
XII							15	225	$+210$	190	515	+ 325	625	810	$+185$	17	14	-3
XI							50	125	+ 75	185	600	$+415$	590	835	+ 245	16	14	2
XIV							co	110	+ 50	175	6\%5	+ 450	575	875	+ 300	$17 \frac{1}{t}$	14t	- 3
XV					0	± 0	70	225	+ 155	275	800	+ 525	575	950	+375	16	12	- 4
XVI					350	+ 350	110	820	+ 710	320	1,050	+ 730	585	1,200	+635	16	$9 \frac{1}{2}$	${ }^{6}$
XV				40	1, 075	+1,035	215	1, 145	+930	450	1,275	+ 825	590	1,375	+ 785	10	94	-
XVII				130	800	+ 670	265	975	+710	490	1,190	+ 700	640	1,300	+660	$6 \frac{1}{2}$	71	+ 1
XIX	40		-40	235	440	+ 205	330	675	+ 345	550	985	+ 435	660	1, 180	$+520$	5	6	+11
XX	160	120	- 40	310	260	- 50	465	400	-65	575	875	$+300$	690	1,185	+ 495	4	3	-1
XXI	135	210	+ 75	345	28.5	40	445	500	+ 55	625	850	+225	725	1, 150	+ 425	5	3	-2
XXII	65	110	+ 45	355	325	- 30	475	440	- 35	620	890	+ 270	775	1,160	+ 385	51	53	± 0
XXI	80	135	+ 55	375	350	- 3	530	525	- 5	650	965	+ 315	860	1, 270	+ 410	,	31	-1
XXIV	230	230	± 0	400	330	- $\quad 20$	475	900	+ 425	735	1, 285	+ 550	950	1, 400	+ 450	51	41	- 1
X	330	360	+ 30	420	365	- 55	480	575	+ 95	750	1,175	+ 425	985	1, 400	+ 415	$5{ }^{4}$	31	- 2
$\mathbf{x x y}$	375	345	- 30	465	410	- 55	575	430	- 145	825	1,200	+ 375	1,075	1,425	+ 350	0	0	± 0
XX	370	370	± 0	635	575	- 60	840	1,120	+ 280	1, 180	1,375	+ 195	1,350	1,500	+ 150	3	3	\pm
XxVIII	340	365	+ 25	820	675	- 145	1,115	1,160	+ 45	1, 210	1, 515	+ 305	1,430	1, 635	+ 205	3	37	
XXIX	375	400	$+\quad 25$	900	725	175	1, 200	1,270	+ 70	1, 450	1,580	+130	1,570	1, 770	+200	5	41	
$\mathbf{x X X}$	415	460	+ 45	915	765	- 150	1, 175	1, 290	+ 115	[1, 375	1,650	+ 275	1,625	1, 876	$+245$	5	5	± 0
XX	450	450	± 0	340	780	- 60	1,020	1,260	+ 240	1, 150	1,700	+ 550	1,720	1,910	+ 190	5	41	-
XXXII	500	430	- 70	750	710	- 40	875	1,270	+ 395	1, 325	1, 710	+ 185	1,923	2,025	+ 105	$4 \frac{1}{4}$	4 4	± 0
Xxxinf	550	487	- 63	710	645	- 65	835	1,285	$+450$	1, 475	1,725	+250	2, 100	2080	- 20	$4 \frac{1}{2}$	4	± 0
XXXIV	'470	525	+ 55	665	800	+ 135	790	1,280	+ 490	L, 700	1,650	50	2,175	2,115	- 60	0	0	± 0
XX	265	550	+ 285	646	875		1,360	1,250	- 110	[1,635	1,590	- 45	2,240	2, 125	- 115	3	3	± 0
XXXVI	75	565	+ 490	540	880	+ 340	1, 175	1,240	+ 65	1,610	1, 630	+ 20	2,230	2, 165	- 65	4	41	$+$
XxXVII		540	+ 540	425	850	+ 425	1, 050	1,100	+ 50	1,550	1, 470	- 80	2, 140	2,075	-65	6	41	1
XXXVIII				360		- 70	950	920	- 30	1,610	1,415	- 195	1,910	1,920	+ 10	7	10	$+3$
Mean			+ 64			+ 100			$+211$			+ 303			+ 201			

Nots.-The normals, which are 500 feet apart, are drawn towards the channel from two datnm-lines, the first runuing from Rollobin's Reef lighthonse to Bedloe's Istand flag-staff; the second, from Bedloe's Island flag-staff, through Ellis's Istand flag-staff, to the New Jersey Central Railroad wharf.

Table No. 2.—Changes on the point of Jersey Flats, as shown by the surveys of 1855 and 1871-72.

	Distances from Robbin's Reef light of the 6, 12, 18, 24, and 30 feet curves.														
	6.feet curve.			12-feet curve.			18 -feet enrre.			24-feet curre.			30-feet curve.		
	1855.	$\underset{\sim}{\text { ¢ }}$		1855.	$\stackrel{\text { g }}{\stackrel{i}{1}}$		1835			1855.			1855.	$\frac{\square}{2}$	
0.	Feet. 150	Feet. 210	$\begin{aligned} & \text { Feet. } \\ & +\quad 60 \end{aligned}$	Feet. 495	Feet. 630	Feet. $+135$	Feet. 85	Feet. 905	$\begin{aligned} & \text { Fect. } \\ & +\quad 80 \end{aligned}$	Feet. 930	$\begin{aligned} & \text { Feet. } \\ & 1,065 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & +135 \end{aligned}$	Fect. 1, 160	Fect 1, 165	$\begin{aligned} & \text { Feet. } \\ & +\quad 5 \end{aligned}$
I..	240	200	- 40	635	750	$+115$	1,110	976	- 140	1,200	1,150	50	1,330	1,280	50
11.	325	165	- 160	925	925	\pm	1,395	1,180	- 215	1, 540	1,490	50	1,875	1,675	200
III	375	175	- 200	1,030	995	33	1,615	1,535	- 60	2, 130	1,970	- 60	2.500	2,250	250
IV.	400	190	- 210	1,040	970	- 70	1,640	1,470	- 1710	1, 180	2,050	+ 70	2,800	2, 730	70
Mean			-118			+ 28			115 ;			14			-133

 ED. II. FOOTE, Computer.

Table No. 3.-Changes on the Jersey Flats, as shown by surreys of 1855 and 1871-72.

Between mormals.	Increase or decrease of horizontal area.				
	6-feet plane.	12 feet plane.	18 -feet plane.	24-feet plane.	30-feet plane.
	Square feet.				
0 and II		+ 186, 250	+ 252,500	+ 206, 500	- 7,500
II and IV		+ 87,500	+ 236,20	+ 996,250	+ 78,500
IV and VI			+ 68,750	$+171,200$	$\div 87,500$
VI and VIII			+ 131,250	+ 249,500	- 61,250
VIII and X			+ 278.750	+ 287,500	- 30,000
X and XII			$+\quad 995,000$	+ 335,000	+ 97,500
XII and XIV			+ 102,500	+ 401,200	+ 243,750
XIV and XVI			+ 267,500	+ 557, 510	+ 421,250
XVI and XVIII		+ 720300	$+820,000$	+ 770,000	+ 76020
XVIII and XX		+ 162, 500	+ 333,750	+ 467,510	+ 548, 30
$X X$ and $X X I I$	$\bigcirc 38,750$	- 40,000	- 2,500	$+255,000$	- 432, 500
XXIT and XXIV.	+ 38,750	- 25,000	\cdots	1 $+\quad 302500$	+ 413,730
XXIV and XXVI.	+ 7,500	- 46, 250	$+117,500$	+ 443, 250	+ 407,500
XXFI and XXVIII.	- 1,250	- 80,000	$+165,000$	+ 267,500	+ 213,750
XXVIII and XXX.	+ 30,000	- 161, 250	+ 75,000	+ 142,500	+ 212,500
XXX and XXXII	- 6,250	77, 500	+ 2477 ,500,	+ 322,500	+ 187,500
XXXII and XXXIV	- 35,250	- 8, 750	+ 446, 250	+ 158, 250	+ 1,250
XXXIV and XXXVI	+278, 750	+ 230,750	+ 83, 550	- 30,000	88,750
XXXVI and XXXVII		+ 280,600	$\begin{array}{r}33,750 \\ \hline\end{array}$	- 83,750	46, 230
Total.	+351,000	$+1,286,750$	-4,052, 500	+5,635,000	+3, 82, 50, 50

16 cs

Table No. 4.-Changes on the Jersey Flats, New York Harbor, as shown by surveys of 1855 and 1871-72.

Between normals-	Increase or decrease of volume between depths of-					Total.
	Datum-line and 6 feet.	6 and 12 feet.	12 and 18 feet.	18 and 24 feet.	24 and 30 feet.	
	Culic feet.	Cubie feet.	Cubic feet.	Cubic seet.	Cubic feet.	Cubic feet.
0 and II.		*+ 525,000	$\div 1,316,250$	+. 1, 556,500	+ 765,000	+ 4, 162,750
II and IV.		+ $+82,000$	$+\quad 971,250$	+ 1,597,500	$+1,125,000$	+ 3,775,750
IV and 71			$+\quad 270,000$	+ 720,000	+ 776,250	+ 1,766,250
VI and VIII.			+ 271,250	+ 1,121,250	+ 543,750	+ 1,936,250
VIII and X.			+ 342,500	+ 1,698,750	+ 772,500	+ $2,813,750$
X and XII.			- 434,000	+ 1,887,500	† 1, 977,500	+ 3,619,000
XII and XIV.			+ 267, 250	+ 1,511,250	+ 1,435,000	+ 3,213,500
XrV and XVI.			+ 1,196,750	+ 2, 475,000	+ 1,936, 250	+ 5,608,000
XVI and XVIII		* $+1,078,000$	+ 4, 836,250	+ 4,770,000	+ 3, 458,750	+14,143,000
XVIII and XX		+ 542,000	$+1,776,500$	+ 2, 403,750	+ 3,051, 250	$+7,774,500$
XX and XXII .	+132, 000	- 3,500	$-112,500$	+ 772,500	+ 2,062,500	+ 2,851,000
XXII and XXIV	+ 90,000	+ $+\quad 41,250$	$+\quad 460,000$	$+1,372,500$	+ 2, 328,750	+ 4,298,500
XXIV and XXVI.	$-190,000$	- 116,250	+ 463,750	+ 1,683,750	+ 2,553,750	+ 4,775,000
XXVI and XXVIII	- 48,000	- 251,250	+ 105,000	+ 1,147,500	$\div 1,443,750$	+ 2,397,000
XXVLIL and XXX	+ 40,000	- 393,750	- 958,750	+ 885,000	+ 1,267,500	$+1,540,000$
KXX and XXXII	+ 48,000	- 251,250	+ 510,000	+ 1,912,500	$+1,717,500$	+ 3,936,750
XXXII and EXXIV	+ 3,000	- 132,000	+ 1,312,500	$+1,815,000$	+ 480,000	+ 3,478,500
XXXIV and XXXVI.	+341,000	+1,545,000	+ 960,000	+ 161,2\%0	- 356, 250	+ 2, 651,000
XXXVI and XXXVIIL.		+1,917, 500	+ 941, 250	- 150,000	- 390,000	+ 2,318,750
Total	+802,000	+4,582, 750	+16, 064, 250	+29, 141,500	$+26,268,750$	+76,859,250

Note.-Those volumes marked with an asterisk (*) are between the datum line and the 12 -feet line.
ED. II. FOOTE, Computer.

Table No. 5.-Changes in the bottom of New York Harbor, in the vicinity of the Middle Ground Shoal, from a comparison of the surveys of 1855 and 1872.

Table No．6．—Changes in the bottom of Neic York Harbor，in the vicinity of the Middle Ground Shoal，from a comparison of the surveys of 1855 and 187？．

$\frac{\square}{8} \frac{10}{4}$	depths in feet on the norbals，at distances of gio feft，each way，hrom the anis，in 1872.																																									
若	Distances from the axis toward the main channel．																							Distances from the axis toward shore．																		
	웅	薂	$\stackrel{\delta}{5}$	量	亭	骨	$\mid \stackrel{8}{2}$	18	啝	$\left\lvert\, \begin{aligned} & \text { 品 } \\ & \hline \end{aligned}\right.$	呬	突	鱼		苟	总	僉	$\stackrel{\substack{6 \\ \hline}}{ }$	槀	ip	$\stackrel{\circ}{\circ}$	毼	$\frac{\dot{W}}{4}$	穿	膏	呂	$\stackrel{8}{8}$	$$	8	e	${\underset{\sigma}{6}}_{\substack{2}}$	8	$\left\lvert\, \begin{gathered} 8 \\ 0 \end{gathered}\right.$	俞	$\stackrel{\stackrel{\rightharpoonup}{p}}{p}$	突	8	$\frac{8}{2}$	曹		呂	
			28	27	26	934	243	\％ 24	23	$3{ }^{24}$	22	20	20	$0{ }^{0} 23$	27	31	36	424	41	38	26	17	0																			
1.			27	27	24	22	21	21	20	20	19	18	21	123	20	30	30	45	43：	42	28	12	0																			
II．		28	48	27	24	21	21	20	194		18	18	18	821	24	27	31	30	44	38	331	${ }^{1} 18$	9																			
III．		24	28	27	25	22	22	24	218	$1{ }^{19}$	18	16	16	6.17	20	21	22		281	137	34	24		13																		
IV		30	30	27	24	25	24	23	19	9 l 19	18	17늘	16	6 154	16	18.	20	30	34	35	33	－ 28		17	712	12 f																．$\cdot \cdots$
\checkmark ．	30	30	29	28	36	25	23	21	20	0 19	18	174	$17 \frac{1}{8}$	$7{ }^{7}$（1715	18	19	19	22	26	34	325	\％ 38		21	15	15	4															
VI．	31	30	26	26：	24	23	29	22	201	20， 19	19	16	154	54 154	154	151	17	20	26	32	32	30		25	519	1914	8	4														
VII	32	30	29	27	25	24	22,	22	21	119	19	17	17	7 15t	14	14	17		120	24	29	32	29	27	2782	22 16	13	10														
VIII	314	30	29	25	243	23	224	21.	H 21	120	18	17	16	$6{ }^{6} 15$	14	14	134	16	188	120	28	82	29	27	27	2417	1.5	12														
IX	31	29，	29	263	25	24	23	21	207	20	18	18		$6{ }^{63} 15$	14	14	14	14	18	18	22	24	29	28	88	2621	17	15														．．．．．．
X	30	29	28	28t	25	24	23	224	21	21	19	18	17	714	14	13	13	134	16	20	193	20	26.	28	88	2418	17	15	12	10	4											
XI		30	23	267	25	23	23	20	21	119	19	18	17	7151	15	14	131	14	138	15	17	｜19	23	28	28.26	26 20t	18	16		11	8	3										
XII		30	29	26	26	24	23	22	21	$1{ }^{19}$	18	$16{ }^{1}$	172	7516	1518	141	14	14	14	14	13 t	13t 17	19	20	205	25.24	22	19	14	14	10	6										．．．．．．
XIII		30	59	28	26	26	24	22	20.1	20， 19.	18.18	175	17	$7{ }^{7} 17$	151	15	15	134	14	13	131	315	17	198	1931	21 22x	25	19		13	12	${ }^{92}$										
X			30	$28+$	28	25	24	22	21	$1{ }^{2}$	181	184	18	$8{ }^{17}$	16	16	14	15	14	13咅	14	414	13	13	1319	1921	23	22	21	18	16			101	5							
XV				31	27	26	25	23	22	2203	\％ 19.	18	18	8 17	171	17	15	15	$13 \frac{1}{2}$	$\frac{134}{} 1$	$13 \frac{1}{2}$	［142	16	17	716	1618	19	19	17	15	14	12		10	5							
XVI				30	28	26	25	234	20_{3}	20	191	181	184	88.19	171	16	16	143	142	$1{ }^{14}$	142	4215	13	14	416	$16_{3}{ }^{4} 15{ }_{3}$	16	18	163		12	11	11	9	9	3						－
XVII				29	${ }^{27}$	26	25	23	21	120	20	181	20	0	164	17	151	143	144	14	15	14	12	12	12.16	16，147	16	16	10	17	12	11		8	84	9	－					
XVIII					30	${ }_{28}$	263	4 243	422	21	20	20	21	120	18	171	16	16	$16 \frac{1}{2}$	17	16	14	12	11	114	14313	142	15		14	12	11		8	8	7	62	9	6			\ldots
XIX．					31	$\underline{29}$	26	24	42	42	21	201	21	120	19	$18 \frac{1}{8}$	17	171	$16 \frac{1}{2}$	17	16	15	13	111	1210	1015	13t	14	14	134	13	10		7	7	6	\checkmark	7	7	7	6	－
XX						30	28	26	24	4.21	21	21	21	$1{ }^{2} 20$	30	18	17	172	18	16	15	${ }_{5} 13$	124	111	111	11.12	13			134	14	10		6	5	$5 \frac{1}{2}$	7	7	6	7	7	$6{ }^{62} 5 . .$.
XXI						32	$\underline{29}$	\％ 27	4 26	$6{ }^{23}$	21	21	23	$3{ }^{213}$	20	19	191	19	18	16	15	${ }^{5} 514$	11t		$1{ }^{1} 10$	10 11 11 12 112 12	13	14 14	14	14	11	12		8	7	10	10	7	6	7 6	7	
XXII．							30	28	127	724	${ }^{25}$	24	23	3.29	22	20	182	19	20	17	15	13	11_{2}	$\frac{11}{11}$	$1{ }^{1} 11$	$11_{2} 12$	131	14	15	15	$6{ }^{\text {ct }}$	7		51	4	10	10	7	6 7	6	7	
XXIII						．．．	31	281	38	828	25	24	24	424	24	23	$21 \frac{1}{4}$	21	21	18	15	12	12		$1{ }^{1} 12$	12 12 12 12	14 16			4								6	7	${ }^{8} 8$	${ }_{7}^{7}$	6 $6 \frac{1}{2}$ 7 . 10 10 715
XXIV								30	29	929	28	25	25	$5{ }^{26}$	96	24	25	20	18	16	14	12	12	12	1212	12.15	16															$10{ }^{10}{ }^{7 \frac{1}{2}}$
XXV							．	30	29	9 ¢9	30	30	26	6.27	29	28	26	$\underline{2}$	18	17	15	$11{ }^{1}$	11	11	115	1519			18	7					7	6						\cdots
XXVI．															31	291	261	24	20	16					15.22	22.224																
XXVII．																30	29	24	211	［191：	${ }^{163}$	62 19	20	293	29328	28																
XXVILI																	31		26	23	20	23	274	125	3																	．
XXIX																				26	25	526	29																			．．
XXX																		40	291	28		25																				．
XXXI																				27		47																				
Lexi．																																										1

Table No. 7.-Changes in the bottom of New York Harbor, in the vicinity of the Middle Ground Shoal, from a comparison of the surveys of 1855 and 1872.

	increase (+) or decrease (-) of depths ln fret on nobmals, at yonts 250 feet apart, eaci way from the axis.																						
	Distances from the axis toward the main channel.																						
	5500	5250	5000	4750	4500	4250	4000	3750	3500	3250	3000	2750	2500	2250	2000	1750	1500	1850	1000	\% 50	500	250	
0			-3	$-2 \frac{1}{2}$	-3	- $\frac{1}{2}$	+ $\frac{1}{2}$	$+1$	- 7	$+2$	+2	0	-1	$+\frac{1}{1}$	-2	-4	-4	- 24	0	-6	-2	+11	0
I			-3	- 1	- 24	-3	-3	-2	-2	-1	- 1	- 1	$+21$	+1	+ $\frac{1}{3}$	+2	+1	+ 4	$+14$	+ 4	0	+ 3	0
11		-5	- 1	-1	-2	-34	-3	- 3	- $2 \frac{1}{2}$	$-1{ }^{\text {d }}$	-2	-1	- 1	-1	-2	-1	- 4	- 5	+ 2	- $4 \frac{1}{2}$	+512	$+6$	- 1
III		- 6	0	0	0	0	-1	+ 21	$+\frac{1}{2}$	-1	-2	$-1 \frac{1}{2}$	-2	-3	-2	- 5	$-7 \frac{1}{2}$	- $1 \frac{1}{2}$	$-\frac{1}{2}$	-3	-- 3	$+4$	0
IV		0	+2	0	-2	0	+ 11	$+2 \frac{1}{2}$	--6	-2	0	0	0	- ${ }^{13}$	-2	- 11	- 1	$+7$	+ 4	-3	- 2	0	$+4$
v	- 1	$+1$	+2	+2	0	0	+1	- 1	- 1	0	0	+ $\frac{1}{2}$	$+1$	+ $1 \frac{1}{2}$	+2	$+2$	-3	-4	-3	0	- $\frac{1}{2}$	0	$+3$
VI	+ 1	0	-3	$-1 \frac{12}{2}$	-2	$-\frac{1}{2}$	-1	- 1	$-1 \frac{1}{2}$	-2	+1	-1	-1	+ $\frac{1}{2}$	$+1$	-34	-3	0	$+3$	$+2$	0	-3	+ 1
VII	+	+14	+ 1	+ 1	- 1	0	$-\frac{1}{1}$	0	-2	- 1	$+1$	$+1$	$+2$	$+1 \frac{1}{2}$	- 42	-42	-11	$-2 \frac{1}{2}$	- 3	- 2	- 1	$+1$	-1
VIII	$+\frac{1}{2}$	+ 1	$+1$	-4	$-1 \frac{1}{2}$	- 3	- $\frac{1}{2}$	$-1 \frac{1}{2}$	0	0	$+\frac{1}{2}$	+1	$+1$	0	- 18	-2	-4	--91	0	- 1	$+4$	-1	-2
IX	-1	+	$+1$	- 1	$-\frac{1}{6}$	- 1	0	- 14	- 19	-2	+ 1	+ $+1 \frac{1}{2}$	$+1$	0	-1	-2	- 2	-3	-2	-2	+2	+3	- 1
X	-1	$-\frac{1}{2}$	0	- 1	-1	- 1	-2	- ${ }^{1}$	$+1$	+2	$+1$	$+1 \frac{1}{3}$	+ 1	--1	-- $\frac{1}{6}$	-14	- 1	0	- 3	$+3{ }^{\text {\% }}$	$+2$	+ 81	$-1 \frac{1}{2}$
XI		-	-1	-13	- 1	- 2	-2	- 4	- $1 \frac{1}{2}$	- 2	-1	+1+1	+ 1	+ $\frac{1}{2}$	0	- 17	-1	0	-1	- 3	- 1	-1	- 9
XII		+1	- $\frac{1}{2}$	- 2	$+1$	+2	$+\frac{1}{2}$	-1	-1	-1	- 2	-1	+1/	0	+ 1	+ 1	0	0	0	+ $\frac{1}{2}$	-11	+2	0
XIII		-1	0	+ 1	,	+1	0	-- 1	$-1 \frac{13}{2}$	-2	- 23	- +	+ ${ }^{\frac{1}{2}}$	$+1$	+1	+ \quad	+1	- !	11	- 1	- $1 \frac{1}{2}$	+2	0
XIV			0	- 1	0	- 2	- 1	- 1	- 1	- 2	-3	- 1	+ $\frac{1}{2}$	-1	+ 1	+ 2	+1	$+1$	0	- $\frac{1}{2}$	+ $\frac{1}{8}$	+ 1	-3
XV				+1	0	-2	-2	-1	0	- t	$-1 \frac{1}{3}$	- $1 \frac{1}{2}$	1.3	0	$\underline{1}$	+ 1	1.1	+1	- $\quad 1$	0	+ 4	+1	+1
XVI				,	- $\frac{1}{2}$	- 1	$+1$	- 1	- 91	-4	-- 2	--24	+ +	+ $1 \frac{1}{2}$	$+\frac{1}{2}$	- 1	- $\frac{1}{2}$	- 1	-1	-- $\frac{3}{2}$	+ $\frac{1}{3}$	+1	-1
XVII				- 2^{3}	-2	-3	-11	-3	-2	-4	-1	-38	$1 \frac{1}{2}$	0	-1	¢. 1	+	\cdots	- $1 \frac{1}{3}$	0	+19	+ 1	-1
XVIII					-1	+1	+ 1	$-\frac{1}{3}$	- 1	-2	- 1	- 2	$+1$	$+14$	41	- $\quad \frac{1}{2}$	\cdots	+ ${ }^{\text {d }}$	+ \quad \%	49	+1震	+11	0
XIX					0	0	- 11	- $\frac{1}{2}$	+ 1	0	- 1	- $1 \frac{1}{2}$	13	$+\frac{1}{4}$	$+\frac{1}{2}$	+ 1	0	0	+ 1	+ 1	1	$+2$	$+9$
x						0	-1	-2	0	-3	-- 2	-1	,	0	+ 1	0	0	-2	-1	-1	0	+1	$1 \cdot 2$
XXI						+2	-	- $\quad 1$	+1	+1 1	- 1	-1d	0	+ 21	+ 1	$+\frac{1}{6}$	+ 2	0	0	0	+	$+\frac{1}{2}$	+12
XXII							0	-- 1	0	- 1	-1	0	- 1	--1t	\cdots	- $\frac{1}{1}$	-- :	-1	+1	-1	0	11	+1 1
Xxili							0	- ${ }^{1}$	0	+ 1	1)	-1	-1	- $\frac{1}{2}$	-1	18	+ $\frac{1}{2}$	- 1	42	0	+1	415	+14
xxiv							,	0	0	+ 11	+2	-- 2	- 3	- $\quad 1$	+3	0	$+1$	0	-2	-11	-	11	$+2$
XXV								- 1	-1	0	+11	+2	- 3	--. 2	+ 1	--1	$-1 \frac{1}{1}$	0	0	$+1$	+1	- 1	-1
xxvi															0	1. 1	-1	0	0	0	0	-- -	$+11$
XXVII.																-3	+1	0	+ 93	+ 2	1	± 1	0
xxyili																	- 2	+11	+3	+	42	- - -	$1+1$
XXIX																		+1	--1	"	+ 1	-3	$+1$
XXX																			- 4	+ 1	434	+6	41
xXXI																			-- 2	$+1$	0	- 1	-5
Means.	-0.10	-0.45	-0. 25	-0.62	-0. 92	-0. 71	-0. 的	-0.88	--0, 95	-0. 84	-0.57	-0.58	+0.91	+0.07	--0.13	-0.57	\cdots - 0.26	-0,35	+11. 03	-0.18	0: 4.4	+1.01	10.3.)

Note-Mean lepth, chanmelwam, of axis :- - 0.92.

Table No. 7.-Changes in the bottom of New York Harbor, de.-Continued.

Note.-Mean depth, shoreward, of axis $=-0.47$; mean depth in Gowanns Bay, exclusive of Eric Basin $=-0.43$; mean depth in Erie Basin $=-0.61$.
EID. II. FOOTE, Computcr.

Table No. 8.-Curvents of Gedney's Channel, 18 en.

Time.	Velocity.	Time.	Felocity.	Time.	Velocity.	Time.	Velocity
h. m.	Naut. miles.	h. m.	Naut milles.	h. m.	Naut. miles.	h. tr .	Naut. miles.
Δ ug. 71300	-0.05	Aug. 71930	-0. 10	Aug. $8 \geq 00$	$\div 0.15$	Aug. 8 \& 30	-0.6.5
1330	+0.40	2000	-0. 20	230	$\bigcirc 0.40$	000	-1.20
1400	+1.00	2030	-1.00	300	+0. 25	030	-1.65
1430	+1.20	9100	-1.45	330	$\bigcirc 1.00$	1000	-1.98
1500	+1.35	2130	-1.85	400	+1.15	1030	-2.00
1530	$+1.45$	9200	-9.15	430	$+1.25$	1100	-1.e7
1600	+1. 52	2230	-1.80	500	+1.2	1130	-1. 20
1530	+1.42	2300	-1.65	530	-1. 20	1200	-1. d_{7}
1700	+1.32	2330	-1.48	(6)00	$+0.90$	1230	-1.22
1730	$+1.20$	Ang. 8000	-1. 40	- 630	+0.70	1300	-1.00
1800	+1.07	030	-1.05	$\div 00$	+0.35	1330	-0.45
1830	$+0.80$	$1{ }^{0} 0$	-0. 80	7 30	+0.07	1400	-0.80
1900	+0.57	130	-0.40	800	-0. 20		

Note-A diagram accompanies this table Between the hours of 10 and 13 , on the 8 th, some irregularities of the obserred curve are swept out by agraphical correction. ED. II. FOOTE, Computer.

Table No. 9.-Tides and currents observed in the IIudson River and seaward approaches.

Table No. 10.-Tidal elements of Hudson River adjusted.

Note.-In ploting the conrses we have drawn the longest possible lines within the chanucl bounded by the 18 -feet carves; each line beginning and euding in the middle of the channel as thas bounded.

ED. H. FOOTE, Computer.

Table No. 11.-Tides and eurrents observed in the Last River and its approaches.

- Compated from Mr. Schott's table, page 170, of Annal Report of Coast Survey for 1854.
\dagger Neape.
\ddagger Springs.

Table No．12．－Currents at different depths in the Hudson River and New York Harbor，from observa－ tions of 1858 and 1859.

	Station in Geduey＇s Chaumel，Aug．T，125e．											
Lunar hours．						家		E E E	$\begin{aligned} & = \\ & \text { E } \\ & \text { E } \end{aligned}$	音		荡
0	1． 6.9	Eastward．	1． 79	Eastward	1． 53	Eastward．	4.13	Eastward	2． 3 N	Eastrard	1.64	Eastward．
1	1． 26	do	1． 32	do	0.94	d	1.17	．do	1.83	dr	0.75	Do．
II	0． 30	do	0.13				0.80	．${ }^{\text {d }}$	0.71	do	0.13	Do．
III	0．78	Westward	0.05	Westward	0.61	Westward	0.87	Westward	0.97	Westward．	0.6	Wentward．
IV	1． 35	．．．．do	1.57	\ldots ．．．do	0.68	． d	1.50	．．do	1.87	．${ }^{\text {do }}$	0.50	Ho．
V	1． 50	．．do	1.77	．do	0.83	\ldots ．．do	1.89	．．do	2.19	．do	0.57	Do．
V1	1．32	．do	1.52	．．d	0．$\% 3$	－${ }^{\text {do }}$	1.50	．．do	1.73	．．do	0.50	INO_{2}
VII	1． 03	．．．do ．．．．．	1.19	．．．do	0.68	．．．do	0.62	．．．d ${ }^{\text {d }}$	0.84	．．．do	0.69	Do
VIII	0.06	Eastward．	0.11	.. do			0.96	Eastward	$0.8{ }^{2}$	Eastward		
IX	e． 76	do	0.75	Eastwar			1．62	．．．do	1.62	．．．do	0． 17	Eastward．
X	1．78	do	1．5．5	．．do	0． 40	Eastw	1．92	．．．de	1．76do	0． 84	Dr
XI	2． 0.5	do	1.93	do	1.31		415	． d o	2.31	$\ldots d o$	0． 97	Io．
Lunar hours．	Station between east and west lanks，June 24，25， 18.59.						Station in Narrows．Tuly 31 and Aug 1， 1838.					
				苞	碞				$\begin{aligned} & = \\ & \\ & =0 \end{aligned}$	至		
0	1． 08	Sonthward$\ldots . d_{0}$	1.07	Sontisward 0．02		Northward Sonthward	1.50	South ward	1． 4.5	Sonthward	$\begin{aligned} & 0.2 \sqrt{1} \\ & 0.22 . \end{aligned}$	
I	1． 49		1． 17	．．．do	0.17		1． 48	．．．do．．．．．	1． 76du.....		$\begin{gathered} \text { Northward. } \\ \text { too. } \end{gathered}$
II	1．76		1． 09	．．．do	0．27	Northward	1． 51	．－．do．．．．．	1.24	．．．d！	0.55	Do．
III	1． 43	d ${ }^{\text {d }}$	0.88	．．．do	0.38	．．．do	1.02		0.62	．	0.49	O
IV	0.94	．do	0.50	．．do．．．．．	0.32	． d 。	0.15		0.42	Nonthward	0.92	Do．
v	0． 40	．．do	0.01	Northward	0． 20	do	0． 52	Northward	0.5	．．．d	0.85	Do．
VI	0.16	Northward	0． 64	do	13． 49	do	0.86		0.73	．${ }^{\text {do }}$	1． 48	Do．
VII	0.75		6． 94	．${ }^{\text {do }}$	0.44	do	1． 03	do	1． 10	．${ }^{\text {d }}$ ）	1． 93	Do．
VIII	0.71	．${ }^{\text {d }}$	0.68 （？）	．do	0.060	． d o	0.54	．．．．d．．．．． Southward	4.93	．．do	1． 58	1 so
	0． 50	．．．do		．．．do．．．．．		do			0． 30		0． 12	Do．
X	0.51	Southward	0． 40	Southward		$\ldots \mathrm{do} \ldots$	0． 81	，．．．dlo．．．．．＇	0.70	Southward	0.19	Sontr ward．
XI	0.88	．．．do ．．．．．	0．89（？）	．do ．．．	0.01	Southward	1． 23			．．．dto．．．．	0.06	Do．
Lunar hours．	Station off Robbin＇s Reef．July 7，8，1859．						Station between frovernors sand Bedloe s Islands．Sept．1，2，1858．					
						$\begin{aligned} & \text { 晋 } \\ & \frac{4}{B} \end{aligned}$		淢 荅		苞		菤
0	0.87	Southward	0.97	Soutbward	0.34	Southward	1． 45	Southward	1．69	Southward	0.31	Southward． Io．
1	1.24	do	1.43	．${ }^{\text {do }}$	0.40		1． 4.5	．．．．do．．．．．	1.64	．．．do．．．．．	0.54	
II	1． 26	．．．do	1． 52	．do	0.41	do	3． 45		1． 4.5		0.53	$\begin{aligned} & \text { Io. } \\ & \text { Io. } \end{aligned}$
IIL	0.86	．．do	1.10	．do	0.29	－．do	1． 26	$\begin{aligned} & \ldots \text {. do } \ldots . . . \mathrm{d} \\ & \ldots . \text { do } \ldots . . \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.48 \end{aligned}$	．．．do ．．．．．	0.53	Northward．
IV	0.55	．．．．do	0.55	．．．．do	0.08	Northward	0.91	．．do		．．．．do ．．．．．		Do． Do．
IV	0． 40	．．．．${ }^{\text {do }}$	0． 32	．．．do	0.70	．．．．do．．．．．	0 3＊（？） do	0.0009	Northward	$\begin{aligned} & 1.09(0) \\ & 1.35(?) \end{aligned}$	
VI	0.47		0．69	Northward	1.34	．${ }^{\text {do }}$	$0.31(1)$	Northward	0.6330.84	．．．do．．．．．．		
VII	0.06	Northward			1.12	do	0． 63do			$\begin{aligned} & 1.35(9) \\ & 1.41 \end{aligned}$	Do． Do．
VIII	0.25	．．do ．．．．．	1.07	．．．do ．．．．	1.03	do	0． 48	$\ldots \text {. . do }$	0.81		$\begin{aligned} & 1.41 \\ & 1.35 \end{aligned}$	
IX	0.32	．do ．．．．．	0.71	．．do ．．．．．	0.75	$. . d o \ldots$	0． 12	．．．．do．．．．．．	0.350.53	．．．．to ．．．．	1． 48 （\％）	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
X	0.01	Southward	$\text { 0. } 38$	．．．do ．．．．．	0.15	．．．do．．．．	0.41	Southward		Sonthward	0.24	1 o． Southward．
XI．	0.24	．．．do ．．．．．	0.27	Sonthward	0． 12	Southward．	0． 89	．．．do	1． 24	. .do	0.39	

17 cs

Table No．12．－Currents at different depths in the Hu tsom River and New York Harbor，de．－Cont＇d．

Lanay hours．		Station oft Custle Gatien，Jinc e2，23．10．39．					Station ofl Furty－tirst street，Hudson River，Sept．4，5， 1858.					
			$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { B } \end{aligned}$	完	$\begin{aligned} & \equiv \\ & = \\ & 2 \end{aligned}$	悉	$\begin{aligned} & = \\ & \\ & \\ & y \end{aligned}$	空				
0	1． 20	Southward	0.84	Southward	0． 43	Sunthwama	0．75	Soullaway	0.71	Southward	0． 40	Southward．
I	1．73	du	1． 85	－．－do	0.69	do	1． 62	．．do	1.60	．．do	0.98	Do．
II	1． 75	．${ }^{\text {do }}$	1． $5: 2$	do	0.15	do	2.15	．do	218	．．${ }^{\text {do }}$	1． 44	1 O ．
III	1． 6.9	．do	1． 63	do	0.29	do	1． 96	do	9.04	．do	0.66	Do．
IV	1． 11	．do	1． 00	do	0.13	Northward	1． 45	do	1． 30	do	0.07	Northward．
V	0．98	．．do	0.37	．do	0． 41	do	0． 58	－．do	0.38	．do	0.98	Do．
VI	0.62	．．．do	0． 45	Nornhward	0.45	do	0． 60	Nortliwari	0．74	Notthward	0． 80	Do．
VHI	0.20	．．do	1.17	．${ }^{\text {d }}$ ）	0.50	．${ }^{\text {d }} 0$	0.01	．．do	0． 71	．．．${ }^{\text {do }}$		
VIII	0.11	do	1． 42	do	（1）． 64	do	1．12	do	1． 52	－do	119	Northward．
IS	0.17	．do	1． 10	．${ }^{\text {do }}$	0.65	．． 10	1．10	．．．．do ．．．．	1． 46	．．do	1.02	Do．
I	0.44	．．do	0.37	10	0.30		0． 69	－． 10	1.06	do	0.65	1 o．
XI	1． 20	－．．do	0．72	Soutliward：	0.19	Sonthwatd	0.22	．． d	0.22	．do	0.04	Do．

Note－－A diamam， C ，accompanies this table．
ED．H．FOOTE，Computer．

Table No．13．－Specific grarities of water in the Hudson River at and below the surjaee，reduced to temperature of 60° Faltrenheit．
seprimaber， 18 ti．

	Station．	Enid of flomechrrent．			Enil of ebl－current．		
		Surface．		Below．	Surface．		Below．
		Specific grav－ its．	Depth．	Specific grav－ ity．	Specific arav ity．	Dtpth．	Specific grav ity．
17t	Off Twentieth street．	1．019m	57	1．0203	（1872） 1.0141	53	1． 0181
342	Off Dohbs Ferry	1． 0024	30	1． 0114	1． 0013	30	1.0022
$38 \frac{1}{4}$	Off Tarrstown．．．．	1．0021	30	1． 083	1.0016	30	1．0076
43 ）	Off Teller＇s Point．	1．0011	30	1． 0007	1．0013	30	1.0087
493	Off Verplauck＇s Point	1． 0012	30	1． 0034	1.0014	30	1.0014
533	Off Iona Island	1.0017 （？	30	1． 0038	1． 0012	30	1．0012
563	Off Denning＇s Landing．	1．0016		1．0028	1．0012		1.0021
61	Off Colal Spring	1． 00 L5	30	1． 0026	1.0010		
65	Off New Windsor．				1． 0006		
$70 \frac{1}{2}$	Off Carthage．	1． 0003	48	1． 0016	1． 0006	48	1．0012
75	Off Barnegat．．．	1．0006	60	1． 0006	1.0006	60	1．00n6
793	Off Poughkerpsio	1．0007	48	1． 0007	1．0006	48	1.0005

H．L．MARINDIN，Computer．

Table No. 14.-Currents of East River, at Wall street, grouped acording to lunar hours, not corrected for tille.

Lunar hours.	Eastern station.	Mindilt. station.	Western station.	Remarks.
0	Nrouticit miles. -1.07	Nautical miles. -3.40	Namtical miles. -3.60	
I	-0.3E	-3.20	-3. 30	Distarces of stations from
II	+10.36	-2. 20	-2. 75	Harbeck's whart:
III	+0.50	+0.10	-0.30	Easturn station, 350 feret.
IV	$+1.15$	+1.25	+0. 0	Midhle station sex feet
T	+1. 70	+1.95	$\div 1.50$	Western station, 1.300 feet.
Y	+2.10	+2820	$\div 1.30$	Gior station, 1, 600 frect.
VII	+1.80	+2. 10	-2.00	Tupier No. 16. New York.
FIII	$+1.50$	+2.05	+1.20	2,000 feet.
TX	-6. 80	+0.65	$\div 0.15$	
X	-1.00	--2.60	$-2.60[?$	
NI	-1.46	-3.30	-3.10	

Velocity at (ifestion. $04=3.00$ natical miles.
Felocity 40 fret from jeer 15 , at $I^{4}=1.45$ natieal miles.
Velocity 60 tet from pier 16 at $I^{h}=1.90$ natatal miles.
11. I. MAlLTiDIN, Computer.

Table No. 15.-Volumes passing through East Rirer at Wrall-street setion.

Latios of scour, (varying with ν^{2}.)
Extreme 1 against 1.̃.
Meaи 1 agaiust 1.5.
H. MTCHELL, Computer.

Table No．16．－Mean low－water sections，（2．21 on staff at Governor＇s Island．）
1872.

North River，at Forty－second street，gas－house pier－ end．			East River，at Wall street，ond of Harbeck＇s wharf， Brooklyr．		
		Remarks．			Remarks．
0	18.5	Bowditeh gig， 95 feet from Forty－	0	22.0	Harbeck＇s wharf．
100	20.0	second street wharf．	100	47.2	
200	22.0		200	45.5	
300	24.0		300	42.7	Schoouer Hassler， 350 feet from
400	29.7		400	40.5	Harbeck＇s wharf．
500	32.5		500	40.0	
600	34.7		600	41.0	
700	35.5		700	42.3	
800	36.2	Schooner Bowditch， 800 feet from	800	43.0	Steamer Arago， 842 feet from Har－
900	36.0	Forty－second street wharf．	900	44． 4	beck＇s wharf．
1，000	35.5		1，000	43． 5	
1，100	35.5		1，100	45.3	
1，200	35，5		1，200	48.0	
1，300	35.7		1， 300	48． 6	Bowditch gig，1，320 feet from Har．
1，400	35.7		1， 400	48.0	beck＇s wharf．
1，500	35.7		1， 500	48.4	
1，600	36． 0		1， 600	47.5	
1，700	36． 2		1，700	42.5	Gig station，1，700 feet from Har＊
1，800	36．2		1，800	37．0	beck＇s wharf．
1，900	37.5		1， 000	30.9	
2，000	37.7		2，000	25.4	End of pier 16，New York．
2， 100	38.0				
2，200	39.0	Steamer Arago，2，200 feet from	Moan．－	41.6	
2，300	41.0	Forty－second street wharf．			
2， 400	44.0				
2，500	45.2				
2，600	45.7				
2，700	46.5				
2，800	47.2				
2，900	47.5				
3，000	47.2				
3， 100	46.0				
3， 200	44.5				
3，360	38.0				
3，400	32.0				
3， 500	26.5				
3，600	24.0				
3，700	20.0	Schooner Hassler，3，700 feet from			
3， 800	14．0	Forty－second street wharf．			
3，900	10.0				－
4.000	5.7	Hassler＇s gig，3，900 feet from For－			
4，100	4.0	ty－second street wharf．			
4，200	2.0				
4，300	1.2				
4，400	0.5				
4，500	0.0	End of line at Jersey shore．			
Mean．．	30，34				Mean rise．．．．．．．．．．．．．．．．．．．．．． 4.3

H．L．MARINDIN，Computer．

Table No. 17.-Currents of Hudson River off Forty-second street, September 13 and 14, 1872.

Sketeh D illustrates these tables.
Distances of stations from Gas-house wharf:
Gig station.................................... 95 feet.
Eastern station 800 feet.
Midule station 2, 200 feet.
Western station.............................. 3, $\mathbf{7} 00$ feet.
Gigstation..................................... 3, 900 feet.
Grouped according to lunar hours.

Lunar hours.	Eastern station.	Middle station.	Western station.	Lunar hours.	Eastern station.	Midde station.	Westem station.
	Velocity	Velocity.	Velocity.		Velocitr.	Velocity.	Velocity
0.	-1.37	-1.39	- 1.10	VI	-0.09	$+0.14$	+0.35
I.	- 2.32	- 2.15	-1.47	VII	+0.74	+ 0.88	+0.85
II	- 2.63	- 272	-1.35	VIII	+1.08	$+1.24$	$+1.05$
III.	-2.35	-2.46	-1.12	IX.	+ 0.85	$+1.35$	+1.00
1 V	- 1.82	-1.83	-0.40	X	+ 0.22	+0.98	$+0.36$
v	-0.93	-0.83	-0.01		-0. 0.5	-0.04	-0.40

Velocities:
At Gig station, 95 feet from wharf:

At H^{m}..- 1.10
Gig station, 3,900 feet:

$\operatorname{At} 1 X^{h} .$.

H. I Marindin, Omputer.

Abstract

APPENDIX No. 9. report to prof. benjamin peirce, superintendent united states coast survey, concerning nausett beach and the peninsula of monomoy.

In the autumn of 1870, during a violent easterly gale, a breach was made by the sea through the Nausett Beach, nearly opposite the Chatham south light, and the sea, driving throngh, attacked the water-front of the town. A short time after this event I received notice to join you in a visit to the neighborhood, accompanied by Rear-Admiral Charles H. Davis, and Prof. H. L. Whiting; and after reaching Chatham, we held a consultation with a view to making a little investigation into the tendencies of these changes along this portion of the coast. The result of oar conference was, that you ordered me to make surveys from time to time, and report.

With this order I hare complied, as well as I could with so many other duties, and this is my first report, in which I shall deal with facts onfy, learing all disenssion of causes till we learn more about them.

PHYSICAL HISTORY OE THE NEIGHBORHOOD OF CHATHAM.

The history of this portion of our coast really begins with Captain Champlain's narratives, (1606.) It is true that we find some coufused references to it in Archer's account of Gasnold's voyage, made some three or four years earlier, but there is in this account nothing shipshape; and I am convinced that Areher formed no conception of the lay of the land.

It is possible that the expedition may have approached and left "Elizabeth Isle" by different routes; in one case, passing through the sounds; in the other, going round the seaward islands and shoals, and that the narrator confomds the objects seeu in these two voyages. For instance, on the 21st of May they seem to have eutered Nantucket Sound from the eastocard, and speak of the mainland as trending southwestward; on the same day they fell in with No-Man's Land, which they call Martha's Vineyard-a "disinhabited" island, where they saw "fast ruming thirteen savages apparelled as aforesaid," and after lying three days in a place that I know from experience to be a very rough and dangerously exposed anchorage, they entered Vineyard Sound from the westward!

The parties of Champlain made two visits to Cape Cod, in the first of which they ran across from Port St. Louis, (Plymouth,) and in the second from "Cap St. Lonis," described as lying two leagues from the aforesaid port. In both trips they doubled the cape, and ran down the outer coast, but in the first only as far as Malle Barre, (Nansett Inlet,) where they found a bad bar at the entrance just as at the present day.

From the narrative of the second trip I quote the following passages:*

* * * "The last of September we left Beauport, passed Cap St. Louis, and ran all night for Cap Blanc. In the morning, an hour before day, we fond ourselves to leeward of Cap Blanc, in the Bay Iblanche, in eight feet of water, one league from the shore, where we came to anchor in order not to get too near while waiting for daylight, and to see how the tides were. Neverthejess, we sent out our boat to sound, and found no more than eight feet of water, so that it was neces. sary to consider before daylight what we ought to do. The water diminished even to five feet, and the heel of the ressel touched the sands, albeit without doing herself injury; for the sea was smooth, and not less than three feet deep beneath us, when the tide began to rise, which gave us good hope."
"At daybreak we perceived a very low sandy shore, to ward which we dragged further down to leeward, whence we sent a boat to sound towards a pretty high knoll, where they judged there would be plenty of water, and in fact they found there seven fathoms. We anchored there, and at once equipped the boat with nine or ten men to go on shore to see a place where they judged they should have a good shelter, if the wind should blow up stronger than it was. The search being successful we carried in two, three, and four fathoms of water, and found five or six fathoms after we got in.

[^4]There were plenty of oysters, which were very good, which we had not observel before and we named the place Oyster Harbor, and it is in 420 of latitude. There came to us thee cmoes of savages. The wind cant out fair in the course of the day, which induced us to quit our anchomage and to go to Cap Blanc, distant from this place five leagues to the north a quater nor thant, and we doubled it."
"The next day, 20 October, we were of Malle Barw, where we were detained sometime by head wints, during which Mr. Pritrincourt, with the boat and twelve to fifteen mev, visiled the harbor, where there came before them one hundred and fifty savages, singing and dancing in the usual way. After baving seen this place, we returned to our ressel, and the wind coming fair we sailed along shore ruming soothward."

Having come to the close of the anthor's chapter, I will pause in my quotation to diveuss a little the narrative thus far:

Beamport, from which they started, was Gloncester, of which a pretty good chart is wiven. with the depths the same as now. Cap St. Louis was possiby Cohnset, but more likely Gumet Poht, which is a promontory, apparently projecting far beyoud the adjacent lath, which is low. This point (as I make it) was the of the Northmen, and "Poynt George" of Capt. John Smith.

They ran throngl the night for Cape Con, which had received the name of Cap Blane in the previons voyage, "by reason of its white dunes," which are very remarkable in the Province Lamds. They did not fetch so far to windward as they expected, and so got down on the Billingsgate Bhoals, where they found eight feet of water at low tide-just as now.

After daylight they worked their way to the northward into seven fathoms water, of Great Island, perhans; whence they sent a somding parts into Welfleet, the entrance to which is just abont five leagues from the extremity of the cape, althongh in lower latitude (some tor) than given in the narrative.

The depths mputioned are much the same as our present eharts give. In the previons woyage they had got down into the bight of the bay mach in the same way, but then it was berame has they state) they thought the forearm of Cape Cod was an isham. It has that apmamed. and, I think, the Northmen, six hundred years before, made precisely the same mistake, and that the "island lying north of the main-land," seen by Leif, was the same. Thorfm Karlsefue, coming afterwards from the north, fell to the southward of the end of the cape outside, but believing it to be an island he attempted to go around the south end. These Nombmen called the cape hianiness, after the land-mark (the old keel of his ship) set up by Thorwald Ericson. Capt. John Smith maned the same point Cape James; some rears after Gosuold had given it the name it now bears Cape Cod.

The editor of this Quebec edition of Champlain makes the port, reached on the lst of Oetober, Barnstable, perhaps because it better suits the present bearing of Cape Cod, and he adds that "it seems to have bequeathed its ancient name to a portion of the present port, which is called O,ster Bay." Barnstable is in $41^{\circ} 43^{\prime}$, and distant from the extremity of the cape abont wenty-one man. tical miles. Our Const-Survey chart of Barnstahe mentions no Oyster Bay, but I need not go far off in any direction to find the word oyster applied in various ways.

Malle Bare was sketched on the previous royage, so that we may be pretty sure that it was the present Nansett. The opening among the hills seems to promise, as seen from sea, a geod port; but, on near approach, the mouth of the bay is nearly closed by a sand-beach, through which there have never been safe inlets.

It was into this place, I think, that Thorfim Karlsefue ventured in the hope of getting thomeh to Viuland. He seems to have subcequently gone up to Nantucket Somud, and, as he states, fommd himself to the southward of Viuland, which (as I make it; lay on the west shore of Cape Cod Bay, where the "high tides" were found.

As far as I know, this name, Malle Barre, is the only one from Champlain that has survived in Massachusetts; and even this showed at one time a disposition to slip off. As early as 1640 it had left Nansett, and appears in the Atlas Novos (a book of Dutch maps, accompanied by Latin text) at the elbow of the cape in copartnership with Diackehock.* The old name has gone out of popular use, bot still appears on our latest Coast-Survey chart attached to Monomoy Island.

[^5]"Continuation of aforesaid discoveries, and what they noticed remarkable. (lhapter XIX.-As we got some six leagues trom Malle Barre, we let go the anchor near the coast, because we had no wind. Along these parts we descried the smoke which the savages made, which made us think of going to see them; so to this end we equipped the boat. But when we came near the shore, which is arenaceous, we could not land because the breakers were too high. The savages, seeing this, launched a canoe, and came to us, eight or nine of them, singing and making signs of joy that they felt at seeing us, and showed us that lower down there was a port where we could find safety for our ressel. Not being able to land, the boat returned to the vessel, and the savages, who had been treated humanels, returned on shore.
"The next day, the wind being firorable, we continued onr route to the north (\%) five leagnes, and had no sooner made this distance than we found three and four fathoms of water, being a league and a half from the shore. Going on a little farther the bottom rose suddenly to a fathom and a half and two fathoms, which frightened us, seeing that the sea broke evergwhere without our seeing any passage by whieh we conld return mpon our road, becanse the wind was contrary. We were involved in such fashion among the breakers and sand-banks that it was necessary to pass at all hazards, according as one might judge of where lay the best water for our vessel, which was only four feet at most, and we came among the breakers up to four and one-half feet.
${ }^{4}$ Finally we succeeded, by the srace of God, in passing over a point of sand which juts out three leagues to the south sontheast, a very dangerous place.
\because Doubling this cape, that we named Cap Batturier, which is twelve to thirteen leagues from Malle Barre, we came to anchor in two and one-half fathoms, inasmuch as we saw around us everywhere breakers and shoals, except in some places, where the sea was not breaking very mach. We sent a boat to find a channel, in order to go to the place that we judged to be the place that the savages had told us about, and believed that there was a river where we could be in safety.
"Our boat arriving there, our men went ashore, and considered the place, and then returned with a savage, that they bronght off, who told us that at high water we could get in, which we resolved to do, and iomediately got up anchor, and were conducted by the savage, who piloted us to cast anchor in a roalstead in front of the port, having 6 fathoms of water and good bottom, for we could not get inside, because overtaken by the night.
"The next day we sent and pat marks on the end of a bank of sand, which is at the embouchure of the port, and then high tide coming on we ran in with two fathoms of water.
"Having got there, we praised God that we were in a place of safety. Our rudder had been broken, and tied wp with cords, and we feared that among the shallows and strong tides it wonld be broken again, which would have caused our loss.
"Within this port there is only one fathom at low water, and two fathoms at high water. To the eastward there is a bay which runs up to the northward some three leagues, in which there is an island and two other little bays, which diversify the country, where there is a good deal of cleared hand and many small hills, where they cultivate comn and other grains, upon which they live. They have also very fine grapes, quantities of hickory, oaks, eypress, and a few pines. All the people in this place are very fond of agriculture, and make provision of Indian corn for the winter. * * * This would be a vers proper place to found a republic if the port was a little deeper and the entrance more sure than it is.

* * * "Nerertheless, we sent a boat with five or six men aud a savage to see if they could find a better passage to go ont than that by which we had come. Having made five or six leagues and linded, the sarage ran away. * * \quad. When they retarned they reported to us that as far as they had been there was at least three fathoms of water, and that beyond there were neither banks nor shallows. * * * The 16 th of the month we left Port Fortuné, which we had so named for the mhappy circumstances which hat befallen us there. It is in latitude 411_{3}°, and some twelve or thirteen leagues from Malle Barre."

From the first clanse of the foregoing chapter, it would appear that after passing Nausett they made another landing on the open coast before getting beyond the limits of cultivated lands. The distance given is evidently an overestimate, since so loug a run directly south would have taken
them to Monomoy Island, which is only a strip of beach sand. Moreorer, when we consider that in the early part of the day, while "detained some time by head winds," they had assisted at a dance on shore, and in the latter part of the day had come to anchor in a calm and gone in their boat to meet the savages again, there would not seem to be much time left, in the light of an autumn day, to make all these leagues. So I conclude that night found them at anchor above Chatham, and that the next day's run was to the southward over the Pollock Rips, Shovelfull, and other shoals of Monomos, and northward up the west shore of Monomoy into the roadstead of Ond Stage Harbor. The distance is again overestimated, but not more so than I have often been prone to myself when rumning along a beach which offered to the eye no objects by which to mark our progress. The sudden coming upon shoals wide out from a shore that everywhere above had proved quite bold and free is narrated quite graphically, and any sailor who has been so unfortunate as to get among the Monomos Shoals will appreciate the hazard of atterapting to double the point within the banks.

Of course, the shoals and beaches have shifted very much and often since this strange littie vessel of four feet draught braved their dangers, but we know from our studies of such shoals that the relative order of banks and beaches remains about the same, however the system as a whole may change its location.

The estimated length of the point of sand which he calls Cap Batturier, (Cape Shallow, which is, of course, our Monomoy, proves quite correct; but I shall hereafter show that this is proving a little too much, because this feature in the physical geography of our coast has been rather steadily growing since we have known it intimately by the light of good survers.

The editor of the narrative under review interprets Cap Batturier to be Sankatr Head, Nantucket, in order, I suppose, to accommodate the distances stated. Sankaty Head is no more entitled to be called a "point of sand" than Bunker Hill, which is geologically of the same formation; and how a ressel coming from the north can double Sankaty Head and reach Chatham Roalstead the same day, via Maskegat Channel or round the Vineyard, I cannot see.

Chatham Roadstead, called on our Coast-Surver maps Old Stage Harbor, is a good plate in northerly and easterly gales, bat with very strong southwesterly winds ir is not safe even for able and well found vessels.

The ancient and recent charts of Chatham, which we have giren side by side in the sketch that accompanies this paper, resemble each other sufficiently to leave no doubt of identity; but still, by reason of very recent changes in the sand beach (the Lido in front of the promontory of Chatham) the likeness is not now so striking as it would have been if we had compared the ancient map with one of our previous surveys.

It will be observed that the aucient map is not properly oriented; it is, in fact, swoug out to the westward some 20° from the true meridian. I am surprised at this, because on the previous royage the rariation of the compass had been determined at Malle Barre, and found to be 18040^{\prime} W. Subsequent observations have shown that the decination declined througin the whole of the eighteenth century, falling as low as $6^{\circ} 30^{\prime} \mathrm{W}$. at Cambridge University, while the present century shows a steady increase, so that now the declination at Cape Cod is abont 110 W. Champlain has a good deal to say about the rariation of the compass, and explains with a diagram his manner of laying out a meridian line, which is good.

The latitude given in the narrative for Port Fortune, "forty-one and one-third degrees," is too low by about twenty minutes, while that given for "Beauport," "forty-three," is about as much too high. The distances measured by its run scale of toises upon the map of Port Fortune are very wild; the map has a twist, showing that it is, in great measure, prospective, corrected by estimated distances.

Notwithstanding all these defects, there is something very real about the pieture as it appears in its original form, with its hills and fields-more real, in fact, than our modern map. I have often thought, when looking at Chinese, Japanese, and old Dutch maps, in which appear the likenesses of real hills and trees upon the land and fishes in the sea, that I should much more easily recoguize the scemes if I were to visit them, after seeing such representations, than by the nse of oar modern topographical maps; and I believe that if the officers of Champlain, while at Port Fortune, had in prophetic vision seen our Coast-Survey plane-table sheet of Chatham, with all ics conventional, if not arbitrary, signs, they never would have dreamed what it meant. But our maps are not designed 18 c s
to furnish simply the means of recognition, or even a guide to navigation only. They are required to supply some of the wants of civil and military engineers, of geologists, agriculturists, \&c., \&c. To meet these wants, with the requisite economy of space, a technical language has been resorted to, which is not so artificial as the signs of mathematics, and almost as universal.

This brings me to the consideration of the popular legend concerning a lost island which lay wide out to sea off Chatham. As far as I can learn, the story first appeared in print in the Massachusetts Magazine, and bears the date of December 1, 1790. It runs thus:
"When the English first settled upon the cape, there was an island off Chatham, three leagues distance, called Webb's Island, containing twenty acres, covered with red cedar or savin. The inbabitants of Nantucket used to carry wood from it. This island has been wholly washed away for almost a century. A large rock that was upon the island, and which settled as the earth washed away, now marks the place. It rises as much above the bottom of the sea as it used to rise above the surface of the ground. The water is six fathoms deep on this spot."

Mr. Chapin, to whose report I shall refer more particularly hereafter, mentions that "stumps bearing the marks of the axe still come on shore at Chatham."

The English Coast Pilot, 1707, has a map of Nantucket Sound and shoals, which contains the name "Webb's Island," extending from the flats below Ohatham. No island is represented, or any shoal ground, except the flats aforesaid. No mention is made of it in the sailing directions. There are three other islands off the point of Monomoy, called Seale Isles on this chart, which do not exist, but whose sites are dangerous shoals to-day, which run dry in spots.

Let us agree that a "Webb's Island" did exist; it remains to inquire whether it was a projecting part of the cape or really a separate land. The tradition says there was a rock on it, so we may conclude that it was upland (drift formation) and not a broken piece of beach. If the distance, "three leagues," is correct, it was separate, because at this distance from the land (whether we take Chatham of 1606 or 1872) there are 35 to 40 fathoms of water. If this distance was wrong (as such measures on the sea usually are in such traditions) but the depth (6 fathoms) correct, we may plot the island within 3,000 feet of points in Chatham which have remained permanent since the discovery of the continent. The six-fathom line hugs the shore now within 2,000 feet at many points.

Champlain's map of "Nouvelle Franse" does not give this island, although his officers made two trips down the coast of Cape Cod, and, on the second, passed this place a league and a half off shore. These oflicers speak of Monomoy and the shoals, but do not mention an object which, if it had existed, would have beeu represented by them as a terror.

Again, it is said that the Nantucket people took wood from this island. Is it at all likely that they would have gone out, passed the Handkerchief, Shovelful, Stone Horse, and the Pollock Rips, to an unsheltered island in the ocean, thirty-five miles from home, when they could have got all they wanted from Cotuit, Hyamis, and other points, from which they have brought wood within my knowledge? They had, in the early part of the eighteenth century, as also in the larger part of this, a passageway inside of the beach from Nantucket Sound all the way up to Pleasant Bay, above Chatham and some island accessible from this inside passage may have been visited for wood. Nantucket was settled in 1660, and the town of Sherburne incorporated 1687; at which time accounts state that the place was wooded, so we may presume that they were not driven to importing fuel till one generation at least had passed, before which time the strange island had gone down like the Royal George-nor do we find the stone that marks its grave.

Of conrse, I do not deny that great encroachments are being made by the sea wherever the uplands are exposed to the attacks of the waves. I say upland, because wherever a skirting of alluvial beach is found the work of destruction becomes intermittent or ceases. And by upland I mean the glacial drift, (so called,) which, if we may judge from the underlying beds of ahells in some cases, is itself an intrnder upon the original domain of the sea.*

The very locaility now under special examination affords a striking case of very recent

[^6]encroachment by the sea. Upon our two little maps of Chatham (see Sketch No. 39) 5ou will observe that the letter G in one case stauds for an "Isle remplis de bois," and in the other for the site of Ran Island, (washed away.) It is difficult to determine how much of an island this was in 1606, becanse the Champlain map will not bear vice application of its own scale, but it may have been a hundred acres. It was at that time protected from the sea by the beach. Upon our first topographical map, that of Mr. Glick, in 1847, this island is still found, with an area of thirteen acres, an elevation of twenty feet at several points, and a bouse or building of some kind upon it. Its situation relative to the ocean had changed; a broad inlet had opened directly before it, and exposed it to the fury of the storm-waves. Mr. Marindin, from recent inquiry at Chatham, learns that this island had been used as a pasture down to 1851, when the remarkable Minot's gale essentially closed its bistory. Traces of it remained for seceral years, but Messrs. Adans aud Marindin, who made a topographical survey thereabont in 1868, saw nothing of it.

But the neighborhood of Chatham has not been, generally, one of great change since the time of Champlain, except in the continual shiftings of the littoral cordon of sand which skirts the shore. Upon each of our little diagrams of Chatham (see Sketch No. 35) you will observe a pond marked E. It is a fresh pond in a hollow of the upland, and is no nearer the water now than it was tro humdred and sixty-six years ago, although the ocean has swept away and re-formed the beach in front repeatedly.

This strip of beach is familiar as a physical feature, and falls under the general designation of the littoral cordon, a name which was applied to it br M. Elie de Beadmont in his Géologie pratique.

Upon the New England coast it appears only here and there in a sporadic way, bat below Montauk Point, Long Island, it is the characteristic feature all the way to Yucatan.

I have discussed this formation somewhat at length in my article on the "Reclamation of tidelands," and shown in what manner it appears as the residual deposit after the sifting of the material torn from the coast by the waves.

Althongh it is prone to shift its position and change its form, its presence, on the whole, betokeus a check in the conquest of land by the sea. In the instance before as there would seem to have been a general falliug back of the cordon since 1606 , but if we compare the two charts by using the distance from the pond E to the south end of Morris Islantl as a base, the change is not large. I see no positive indication that the cordon is undergoing final destruction, although I cannot find that at any previons period its area has been so small as now.

The map of 1606 shows a passageway between Morris Island and the main hand, and I find that the closure of this strait occurred between 1752 and 1772.* This "island" is upland (drift) and is comected now by a sandy cordon with the adjacent uplands of the main-land. This sandy cordon has blown up into dunes, and a salt-marsh has formed in the rear of it, over a channel which used to be navigable. Mr. Marindin learned, while recently in Chatham, that taditions of this strait were quite familiar among the people, and that the last vessel that attempted the passage was a pinkey schooner. The closure resulted from the falling back of the beach; and upon Des Barres' map of 1764 Monomoy appears as a peninsula extending sonthward from Morris Island and the main-land.

Monomoy is a projection of the littoral cordon, and has evidently been built of materials torn from the cape-shore, and its seaward aproning, under the attacks of a northeast sea, and is, therefore, very modern in a geological sense, but not recent, I think, from a historical point of riew, as my accomplished young friend, H. N. Chapin, has presumed it to be in a recent commmication. It appears as a triangular shoal or dry flat upon Champlain's maps, and was referred to in the narrative quoted above quite distinctly. A century later it appears upon the chart of the English Coast Pilot as a large and broad island, and in the sailing directions it is said to lie "from the tail of the Horse Shoe about nine leagues ENE." Its point now lies NE. by E. $\frac{1}{2}$ E., (true, eleven and threefourths miles from the same place.

As no part of Monomos conld be seen from the Morse Shoe, and as the distance was a matter of lougitude, it is not remarkable that the estimate shonld be very wild. If we suppose the sailing course correct by compass, (of which the variation is stated to be 10°,) Monomoy was about a mile and a quarter shorter in 1707 than it appears upon our first survey loy Mr. Gilhert, (180̈3.)

[^7]In the "Description of Barnstable," (1802,) published in the Massachusetts Historical Collection, the location of a humane house is carefully stated to be "four wiles from the end of Monomoy Point, and six miles from Chatham Great Hill, which bore N. by W." Plotting this upon our chart, with bearing corrected for rariation, it appears that the house was situated close to the present outside shore-line near Wreck Core, Monomoy Island, and that the point of the beach lacked but a quarter of a mile of being as far out in 1802 as in 1853 , the date of our first Coast Survey topographical sheet.) In this paper of 1802 it is stated that the beach has been "continually gaining during the past fifty years."

Of conrse, there are plenty of maps extant which give different testimony, some of them published this rery year ; but all evidence is ruled out which is not from sources the mariner would respect, because to him and his protectors only had this worthless strip of beach the slightest significance. It was to him aterror, and chart-makers as well as humane societies made themselves familiar with its location.

Since $18{ }^{3} 3$, Monomoy has been advancing with great rapidity into Nantueket Sound, the point moving out at the rate of 138 feet per annum between 1853 and 1856 , and 157 feet per annum between 1856 and 1868. Like Sandy Hook, a similar formation at the mouth of Sew York Harbor, this peninsula of Monomos seems to have made alternately long pauses and rapid strides in its progress seawart.

If this movement should continue till it passes on to the Handkerchief Shoal, a grand harbor of incalculable value may be created in place of the little Powder Hole, which has recently ceased to be. A movement similar to this, no donbt, formed the grand harbor of Provincetown at the extremity of the cape, and I refer you to Prof. H. L. Whiting's report of 1867 for very interesting remarks concerning it.

The first mention of a harbor in the peninsula of Monomoy that I find is in the "Description of Barnstable" before mentioned. It is called "Stewart's Bend," and is said to afford safe shelter in three or four fathoms. The word "bend" indicates that it received its name before it was actually a harbor-while it was only a hook. In my boyhood the Powder Hole was considered a very raluable harbor of refuge, bat when I ran into it with the Coast-Survey schooner Bowditch in 1856, forty fishing vessels, which lay there at anchor, packed it nearly full. Three fathoms at low water could be carried into this snag little place when our chart of 1854 was issued, but Mr. Chapin found but two feet at the time of his recent visit.

REGEN'I MOVEMENTS OF CEATHAM BEACH IN DETAIL.

Since the consultation held at Chatham in the autumn of 1872 , Mr. Marindin has made one regular plane table survey in January, and a compass-survey during the present month. I quote the following clauses from his report to me of December 10:
"Since our sarvey of Chatham Beach in January, 1872, many changes have occurred, which I have noted in my last visit to this place on the 6th of December, 1872."
"The two iulets, one known as the North Inlet, into what was called Old Harbor, at the southern extremity of Pleasant Bay, and the inlet which was made November 15, 1871, during an easterly gale, nearly opposite Chatham lights, still exist. The former does not appear to have changed, but the latter has altered materially. The south end of the beach, (north end of opening of November 15,1871 ,) which in January last had been thrown nearly midway into the harbor, has gradually extended in a sonthwesterly direction, and, curving to the westward, has joined on the main land near Chatham lights. The height of the beach, where last winter there could be found two fathoms of water, is nearly three feet above high water, with a width varying from 100 to 135 feet. The whole beach as far as the inlet of 1851 , to the nortb, is gradually weakening and must finally be beaten in on the Chatham shore."
"The north end of the beach at this opening (now Monomoy Beach, since it is connected with Monomoy Island) has retreated to the southward, making the beach wider, as the opposite beach (at the worth side of the inlet) does not seem to have followed the same course, but has turned off towards the main to the westward; and during the latter part of October last, when the north end
was nearly opposite Chatham lights, the sea again broke through this part of the beach, cutting off the end into a small island, as shown in the sketch. This island is being worn off by the sea and tidal currents, and continually thrown farther into the harbor, so that in a few weeks it may no longer exist."
"There seems to be no distinct chamel through the inlet into the harbor, the whole distance across being a continnous line of breakers when visited on December $7,187 \pm$."
"Since the formation of the inlet, (November 15, 1871,) the main shore near Chatham lights has been exposed to the sea, and consequently much worn, so that fears were entertained by Mr. C. H. Smith, keeper of the lights, from whom most of my information was obtained, of the safety of the light-houses. The line of the bluff on which the lights stand has retreated nearly one hundred feet since the new opening of last year. At the present time, however, the new position of the south end of the north beach, resting as it does on the shore near the light-houses, has strengthened the shore, so that filling in is going on at the foot of the bluffs."
"From information gathered among the old inhabitants of Chatham, we find that great changes have taken place in the shores of this part of the cape. Two hundred years ago the neck of hand now connecting Morris Island with the main did not exist except as a shoaling up of the passage, and since that time tradition says that the last vessel which tried the passage was of the class known as "Pinkey", and that she grounded and failed to pass through."

We have been very much struck with the dimination in the area of the beach shown by the topographical maps since 1847 , but we do not know whether this change is wholly superficial or not. I hope next season to have the opportnnity to run a fer normal lines of soundings for future comparisous. Mr. Marindin's comparisons of areas and distances give the following:

No. 1.-Table of areas of Chatham Beach, between latitude $41^{\circ} 39^{\prime}$ and 410 42'.

From inspection of the above table we find the loss of area of the beach between $41^{\circ} 39^{\prime}$ and $41^{\circ} 42^{\prime}$, from 1847 to 1872 , to be 319 acres, or 63 per cent. of the area in 1847 . From 1847 to 1868 , the loss was 239 acres, or 47 per cent. of the area in 1847 . From 1868 to 1872 , the loss was 80 acres, or 30 per cent. of the area in 1868.

No. 2.-Table of distances of eastern shore of Chatham Beach, west from meridian $69{ }^{\circ} 55^{\prime}$.

On latitude-	Distance west of meridian in the years-				
	184\%.	1806.	Retreat, 1847 to 1868 .	1882.	Retrent, 1868 to 1872.
	Fect.	Feet.	Feet.	Feet.	Fect.
$41^{\circ} 39^{\prime} 0^{\prime \prime}$	6, 455	6, 075	P $+\quad 400$	6, 150	- 35
$41^{\circ} 39^{\prime} 15^{\prime \prime}$	5,523	5,650	- 125	5, 002	-152
$41^{\circ} 33^{\prime \prime} 30^{\prime \prime \prime}$	4, 425	5,225	- 350	5,595	-320
$41^{\circ} 30^{\prime \prime} 45^{\prime \prime}$	4,550	5. 005	- 455	5, 405	-400
$40^{\circ} 400^{\prime \prime}$	4,255	4,795	- 540	5, 095	-300
$41^{\circ} 40^{\prime} 155^{\prime \prime}$.	3,975	$4,5 \% 0$	- 54\%	Inlet, (1871)	
$41^{\circ} 10^{\circ} 30^{\prime}$	8,625	4, 285	- 660	4,635	-350
$41^{\circ} 40^{\prime} 45^{\prime \prime}$	2, 870	3,627	- 78 r	3, 895	-268
$41^{\circ} 41^{\prime} 0^{\prime \prime}$	2,060	3, 127	-1, 067	3, 127	± 0
$41^{\circ} 41^{\prime} 15^{\prime \prime}$	1,820	3, 085	$-1,265$	3, 060	+ 25
$41^{\circ} 41^{\prime} 30^{\prime \prime}$	1,520	4,355	-2,835	5,155	- -200
$41^{\circ} 41^{\prime} 4 \%^{\prime \prime}$	1,360	Northiulet.		NorthYulet.	
$41042^{\prime \prime} 0^{\prime \prime}$	Inlet.	InIet		Inlet.	
Note.-Width of beach on latitnate $41^{\circ} 41^{\prime}$ in 1847. Width of beach on latitude $41^{\circ} 41^{\prime}$ in 1868. Width of beach on latitude $41^{\circ} 41^{\prime}$ in 1872.					

The testimony of the preceding tables must not be understood as extending beyond the districts stated, because a large part of the littoral cordon on this part of the Cape Cod shore has remained unchanged since 1847.

I have already referred to a report from Mr. Chapin, aid in Mr. Granger's Coast-Survey party: touching this portion of Cape Cod. He was sent by my request to inquire into the circumstances under which the Powder Hole had been lost. He takes one of the interpretations of Archer's narrative, and gives to Monomoy a brief existence. I have no confidence in the narrative, but the physical history of Monomoy is an open question. If during the past two or three centuries the rate of growth southward has been as rapid as it has been since our surveys, there could not have been much of it in existence at the time of Gosnold's voyage. In my discussion of the case from old maps, I have concluded for myself that this peninsula is much older than our knowledge of the coast; perhaps not as dry land, however.

I do not regard the shore-line of these beaches as an important contour from a physical point of view, but would rather take submerged curves, for instance, the outhine of the base of such a shoal upon the floor of the ocean. In the instance of Sandy Hook, New York, or Brewster Spit, in Boston Harbor, the adrance is like that of a great mole building out into the sea, and it is more easily traced near the bottom, where it is not modified by causes so irregular as those near the surface. I think Mr. Granger's hydrographic surves, now in progress, will throw more light on this question which Mr. Chapin has raised. He presumes that the material which is adding to the point is from the waste of the Chatham Beach, \&c. In the case of Sandy Hook, I was able by depositing materials of different specific weights, at different depths along the coast, to determine precisely whence the building materials came, (1857-'58.) I found the source of supply in the neighborhood of Long Branch, twelve miles below the point of the Book, where the upland has no protecting cordon of sand. I shall ask Mr. Chapin to make similar experiments on the Monomoy shore.

Mr. Chapin learned that seventy-five years ago, before Monomoy extended as far as now, there were islands on the shoal beyond, and, as we knew from our charts, very shallow spots existed off the point before the recent advance. In the growth of the point, an apparent acceleration would take place on falling in with these. There are still some outlying dry spots, mentioned by Mr. Granger from his past summer's observations.

There is a portion of Mr. Chapin's report concenning the recent changes among the shoals,
which I should like to quote in full, because it is interesting ; but as he does not give his anthorities, and some of the old charts contradict him, I shall refer the matter to him again for review. When Mr. Granger's hydrographic survey is completed, these notes of Mr. Chapin's will furnish again valuable hints for the proper direction in which to make comparisons, and I expect to be indebted to him for further observations by that time.

Very respectfully, yours,

APPENDIX No. 10.
HINTS AND SUGGESTIONS LPON THE I OCATION OF HARBOR-IINES, BY HENRY MITCHELL, UNITED STATES COAST SURYEY.

Althongh we have, from time to time, through many years, been called upon to advise in fixing the safe and commodious limits of encroachment upon the harbors along our coast, we shonld find ourselves greatly embarrassed in the attempt to lay down rules for future guidance, because in almost every case that has arisen occupation of the water-front has already taken place in an irregnlar and injurious manner, and experts have been called in not so much to undo the wrong as to stay its further progress. Nevertheless, there are certain elements that enter into the discussion of all cases, and other elements that always appear in specific classes of cases, which we propose to make the subject of this nnambitious paper.

Our harbors generally.-If we run over a list of those sheltered indentations of the coast which have served us for harbors of trade or refuge we distinguish rery readily two grand divisions, into which they can be more or less accurately grasped. These are inlets, i.e., breaks through the littoral cordon of sand that skirts the coast, aud arms of the sea, or fiords. Sharply-defined instances of the first class are quite numerous along our southern coast, and Port Royal, S. C., may be taken as a type. So of the second class we have many examples, especially along the sea-board of New England, where we may select Portsmouth, N. H., or Casco Bay as a type.

Most of our rivers tind their way to the ocean through inlets and fiords. It is true tbat the Mississippi, scorning alike assistance and restraint, makes its way to the sea with no obstruction but its own debris; but this is exceptional. Many of our great rivers, like the Rio Grande, Alabama, Savannah, and Cape Fear, are pooled near the sea-board within barriers of sand cast up by the waves, through which they with difficulty maintain passes with the help of the tides; others, like the Saint Lawrence, Penobscot, Kennebec, Delaware, and Susquebannah, find their way through depressions more ancient than their action; while, in the case of the Hudson, we have a stream which empties its waters through a fiord in one direction and an inlet in the other.

These considerations, and the fact that rivers, however great in volume, effect but small changes at the sea-board by reason of the superficial flow of their light waters over the more dense waters of the sea, seem to warrant our ignoring the river-mouth as a distinct form of harbor, and make our two grand divisions all-sufficient.

The principal points of distinction between inlets and fiords are as follows: The inlet has a depression between the chops, indicating that the waters escape under restraint, and the material missing from the depression is piled up by the sea outside as a bar. There is usually an inside bar also. The fiord has no depression at its mouth, and no bar outside or inside.

Both of these great classes are subject to interior obstructions from accumulations of sand and mud, and present in their sheltered portions similar characteristics; they differ usually in the amount of waterial supplied for shoal formations, although they often agree in their dependence upon the working-power of curreuts for the maintenance of their principal avenues.

The fiord in its natural state, if not the recipient of fresh-water streams, is usually slow to change along its deep-water ways. The dash of the waves may wear its shores and extend its superficial area, but little of this material finds its way into the deep water. The small depth of silt on the bottoms of our great ponds in New England illustrates the slow progress of accumulation in still water. Dead angles along shore and abrapt depressions in the bottoms of the fiords of Maine are often found to be filled up with mud and sand; and if these are not pashed out by artificial change of regimen, the more central channel-ways fill up very slowly. If strong tidal currents occur in the fiord, the channel-ways they traverse are maintained; but the flats and dead angles receive deposits in greater ratio than they would if the fiord were tideless, because the
tides not only assist in washing away the banks, but they bring in from outside material supplied by the break of the sea along the coast, and this is in excess of what is carried off by the same agencies.

The considerations to be entertained in locating harbor-lines may be arranged under the following heads:

1st. No encroachment should be suffered that will materially reduce the tindal rolume, and by this means lessen the scour of the currents that maintain the channels belou.

2d. No encroachment should be suffered that will greatly augment the scour in the less important portions of the harbor, if the muterial of the bottom is yielding and likely to be swept doen into more valuable parts of the port.

3d. Artificial structures should be carried out to a regular line so as to have a uniform or uniformly varying fow of the current along the frontage.

4th. No encroachments should be suffered that injuriously reduce the anchorage-besins or the aindingroom near the commercial water-front.

5th. The harber-line must not be so drawn as to deprive any shore-oucnor of his frontage.
Gth. No riparian proprietor should be permitted to extend his wharves or lands to such a degree or in such manner as to obstruct or lengthen the patheays of vessels bound in or out from other water-fromts.

7th. The wharves should be carried out to water deep enough to float the class of vessels likely to visit the port for purposes of trade.

8th. Sufficient room should be left within the harbor line for slips or docks of sufficient length to accommodate the longest vessel likely to demand a berth.

9th. The law fixing the harbor-line should be explieit regarding its location.
Recalling what we have said in the opening clause of this paper, the above list of points to be considered will not be regarded as rules, and will not be supposed. as a whole, to apply in any particular case. We shall proceed to take up these propositions in detail, and discuss their application.

VALUE OF TIDAL VOLUME.
That in most of our tidal harbors the maintenance of the channels depends unon the preservation of the interior reservoirs with which ther commonicate is a general proposition so readily admitted by all who are conversant with the subject that we need not discass the general case. But since the only purpose that a commonity can have in protecting a port against injury is to make the most of it, now and hereafter, for conmercial uses, it behooves us to study the degree of harm which encroachments at any desirable point may effect, and to draw the line carefully between use and abuse.

If we compare differ nt harbors with each other, we discover that their navigable facilities do not vary in the ratio of their tides, whether we regard rise or volume. If, however, we compare repeated surveys of the same port, we find that a loss of tidal volume, by the filling up of a reservoir, has been, as a general rule, followed by a decline of section in the channel which formerly served as a couduit for filling and draining this basin.

The first comparison teaches that upon the arrangement and relative location of the reservoirs, as much as upon their tidal capacity, depends the existence of channels suited to our uses; while the second comparison shows that a tidal reservoir is worth preserving only in the proportion that its filling and draining tends to preserve the particular chaunels useful to commerce.

Compensation in kind.-It has many times been proposed by harbor-authorities to establish a law in each port that "for all encroachments upon tidewater, restitution in Find shoudd be made elsewhere." If by "elsewhere" is meant in adjacent portions of the same basin, this would be a safe rule of course; but if a transfer to another basin, or even to quite another part of the same basin, is within the meaning of the rule, it is a dangerous one, for it proposes to change the order of the tidal volumes upon which the channels, as we find them, depend. All this bas been so fairly discussed in the reports of the councils and commissioners on Boston and Portland that further comment is unnecessary. Suffice it to say that with the same tidal volume not one in a hundred of the indentatious upon our coast is a harbor suitable for our use, and this consideration alone 19 cs
should warn ns of the delicacy of any experiment which proposes to divert great forces like the tides from their natural course with the bope of making them serve equally well or better in another way.

Of course, where it has been ascertained that the tidal volume of a basin is essential to the maintenance of an important channel below, every endeavor should be made to prevent a reduction of this volume, and to this end it may be necessary to draw the harbor-line well up on the strand above low water, so that the dredgiug which will become necessary to convert this line into a proper commercial front will add as much tidal volume ontside of the line as the occupation of the space within may displace.*

On the other hand, rather than exercise a false economy by restricting in any degree the commercial progress of a port, it is often the best and wisest policy to draw the harbor-line well out from the shore, and provide for repairing the damage that ocenpation ont to this line may effect by charging ripariau owners for the space thus granted to them, and reserving this sum to defray expenses in dredging the channel. The State of Massachusetts has adopted this policy in its treat. ment of the upper harbor of Boston, where the oceupant of territory within the harbor-line is charged for every cubic yard of tide-water displaced a sum equal to that required for excavating the same amount. The board of harbor commissioners, nevertheless, make the explicit statement that "this compensation-fund is accumulated, not because Boston Harbor can be better preserved by dredging-machines than by maintaining the natural scour caused by the tidal reservoirs, whose action is independent of human effort and human supervisions, and costs nothing; it is accumu$l_{\text {ated }}$ to remedy the injury that is necessarily done in adapting a water-front to commercial uses, because this is the best that can be done to preserve the harbor, and at the same time use it."

Since it never happens, perhaps, that all the scour induced by the filling and draining of a basin is exercised to the best advantage as far as our wants are concerned, the cost of repairing the immediate injory done by displacement is hardly likely to exceed the cost of an equal amount of dredging, executed under the most ordinary conditions of depth and character of materials. The objections, however, to making, once for all, an assessment at a fixed rate, irrespective of the value of the territory, are obvious when it is considered that the burden falls unequally, that the repairs cannot be made once for all, and that money changes its value as represented in labor; and this suggests that the State would better collect a rental or tax as they do in providing for the repairs of other highways on shore.

There is one type-case to be mentioned where no indirect compensation for encroachment can avail; it is that of a lagoon, where the channel over a sandy bar, upon the outside coast, depends upon the filling and draining of this reservoir. The several attempts which our Govermment has made to deepen the channels over the outside bars of lagoon-inlets have been unsuccessful. "As a general rule," said the late Professor Bache, "you may as well attempt to bail out the sea as to dredge a channel through an inlet-bar."

Relations subsisting lietween the channels and the tides that traverse them.-The first step to be taken to determine in what manner a channel is formed or maintained by the tides is to compare velocities with depths at several cross-sections. Wherever the bed of the stream is alluvial, this comparison discovers to us, usually, that ebb and flood currents take very unequal shares in the work.

In the diagram which accompanies this paper, we have given in a sub-sketch such a comparison as that we have indicated in a characteristic case where the ebb is the principal working agent.

Where the bottom is sandy, there is, under ordinary circumstances, no suspension of the material, but the grains are rolled a little way by each stream, and the journey eventually made by these grains lies in the direction of and in proportion to the resultant of the forces precisely as if these forces were simultaneous. \dagger

[^8]In examining a case of this sort, we should take observations every fifteen minutes for a tidal day, at each of three or more stations in the cross-section, and work up the observations at each station by composition of forces, and then, instead of plotting maximum ebb and maximum flood as in our sketch, we should compare the transverse curve of resultants with the profile of section, and expect to find that it only requires a co-efficient to make the two curves agree closely.

Scour is a frictional action dependent directly upon velocity and independent of the weight of the superincumbent water. Nevertheless, since the relocity would depend upon the rolume passing a given section at different stages of the tide, it will be found that a tidal channel, through alluvia, enlarges its section as it nears the sea, and this must not be lost sight of in locating harborlines.

If we were to construct an artificial channel leading from a deep basiu to the sea, we should provide for a gradual eulargement of the channel-sections in the ratio of the tidal volumes at the stage of greatest fall-usually immediately after half-tide.

Comparisons like those we have indicated are useful in determining the relative values of different reservoirs, and also in ascertaining the probable effect of encroachments upon the width of the main channel. If the material prone to encumber the chamel is sand, a very distant reservoir is often much more useful than one nearer the scene of tronble. A distant reservoir, being filled late and drained late, tends to quicken the flood-current in the channel below when the latter is nearly full, and the ebb when the channel is quite low. The flood-relocity is augmented but little, while the ebb-velocity is increased very much. Such a reservoir performs a great service, and should be preserved. Of course, a reservoir may be so distant as to send its waters down the channel after the flood-current has commenced to run in at the mouth of the harbor. In this case it would be of no use, or even injurious. Of course, as we have selected for harbors those inden. tations of the coast which have good channels, we rarely find in the cases brought before us, natural reservoirs that do not play some useful part in the scour of the channels below them.

One of the greatest objections to compensation in kind is that by expending money in enlarging reservoirs, rather than by directly deepening the main channels with the dredge, we do not get our money's worth of practical advantage. We increase the scour through the whole length of the channel when much of it is deep enough already.

ENCROACHMENTS ON THE CHANNELS.

The comparisons made between the transverse curves of velocity and the profile of the section ofteu disclose the fact that there is a resultant, because the two streams differ in the positions of their maximum velocities, (as in our sketch.) Sometimes, in such a case, we find that two deep channels lie nearly parallel to each other with a bank between; in one channel, the resultant takes the direction of ebb; in the other, that of flood. If both streams were crowded into the same path, under such circumstances, we might have a channel much more shallow than either of those we had before, because the ebb and flood might counteract each other. We have often seen inside-bars at our southern inlets very shallow, although traversed br violent currents, because the outflow and the inflow were equal and opposite; such a bar is always in motion, but only moves to and fro.

Practically, we rarely find at a contraction an equality of ebb and flood currrents, not ouly because these two drifts prevail at different average heights of the tide, but also because ther are differently converged or gathered in as they approach the narrow pass. But just abore or below they balance each other, and shoaler water is found.

Where the bed and banks of a channel are of mud or other saspensible material, encroachments upon either side tend to deepen it, and this brings us to the question, how shall harbor-lines be drawn so as to provide, as far as possible, against disturbing the regimen of the streams. Before entering upon this question, we would repeat that we have selected our harbor from among the many indentations of the coast, because its channels are the most favorable as regards uniformity of good depth. If, then, we would maintain these advantages, we must guard against encroachments that will disturb the order of the scouring forces. The most ordinary cause of trouble in our harbors is the irregular encroachments upon the borders of the channel, which
quicken the stream at one point, and retard it at another, the effects of which are excavations at one point, and shoal-building at another.

The harbor-line, on either side of a channel, should follow as nearly as practicable the same isodynamic curve, a term which we introduce because it covers two kinds of scouring action, one of which is due to the simple velocity of ebb or food, the other to the resultant of these two.

Isodynamic lines.-If the channel-bed and banks are composed of soft material, liable to be. stirred up and suspended by any increase of velocity in the stream, our custom has been to draw lines of equal velocity for flood and for ebb, and in locating the harbor-lines make the best compromise possible between these two sets, or give the greater weight to the stream (ebb or llood) which has the greater velocity. In using the simple velocities we select the maximum flow, which occurs about the middle time of ebb or flood curreuts.

If the bed and banks of the channel are sandy, the resultants of the movements of ebb and flood are to be used instead of the simple velocities, because sand, as we have before stated, is prone to move in the direction of these resultants.

The difficulty in properly drawing these isodynamic lines lies in their reduction to the meanThe different transverse curves of velocity cannot be simultancously measured, and the observa. tions are, therefore, affected by the diurnal and half-monthly changes in the duration and magnitade of the tide. To meet this difticulty we proceed as follows:

Upon one of the lines crossing the channel at right angles to the flow, make observations euough at different points along the line, and at different depths below the surface, to ascertain the volume passing in either direction, selecting a day when the tides are about at their average, and correcting by simple proportions. If the basin to be filled, and the channel communicating with it, had vertical walls, it would be nearly correct to assume that the velocities are in proportion to the duration and height of the tide; but, as the bauks are sloping irregularly, we can only make this assumption when the observed tide is very near the average.

Having carefully determined the mean volume at one cross-section, we ascertain what it would be for the next by adding or subtracting the tidal volume for the space between, which tidal volume is simply the area multiplied by the rise or fall for the unit of time for which our velocities are stated. Knowing, then, what volume should pass any section under average couditions, we correct our transverse curve by applying such a co-efficient as shall make the velocities multiplied into the depths give this standard volume.

In our sketch the transverse curves given in light, full lines, having been each of them corrected in the manner above described, represent the mean velocities in the cross-section under the same average tidal conditions. As we may not have made this matter sufficiently plain, we give below an example from one of the curves giveu in our sketch.

Determination of the transverse curve of velocities for section $A B$, at middle time of elb, 1 h .43 m . after transil.

> Remars.-The distances in the second column are those of stations simultaneously occupied, and ate mensured from the right bank of the strean.
> The data in the fonrth columa areedtained from a pluting upon profile-paper of the actual velocities observed-given in the thind colam.
> The depths given in the fifth columin are from sonadiugs corrected for the height of tide at the time when the velocities were observed.
> The corrected veloctice given in the lest column are obtained by applying the co-efficient (1.111) to the data given in the fourth column.

Our first attempt at determining transverse curves of velocity, with the view of ascertaining the proper limits of encroachments, was made in San Francisco in 1870; but full applications of our method were first made at New York and Portland in 1872-.73.

In the case of Portland we had a hydrographic survey of the chamel and reservoir,* in which the slopes of the shore were given up to the plane of mean high water, so that, with the recorded heights of the tide before us, we could measure the volume drained or filled for every hour, and deduce the mean relocity that should obtain in each section of the channel. This process is more accurate than the one illustrated by our numerical example given above, provided the distance or extent of the reservoir is not so great as to involve large variations in the times of the tide. But under the most favorable circumstances likely to be met with in nature, the calculations for volume from the best survey of a tidal basin, are laborious and liable to errors. It must be remembered that an error in our standard volume neither affects the courses of our isodynamic lines nor their relative positions, but simply shifts the whole system a little too far out or in.

[^9]
REPORT OF THE SUPERINTENDENT OF

It is impossible to prescribe, in any general way, which of the isodynamic curves the harborline should follow, because this must depend upon the character of the bottom, \&c. Suffice it to say that we consider three-tenths of a nantical mile per hour as the minimum limit of scouringvelocity, and in composing the observed velocities to ascertain the resultant we reject all those which fall below this limit.

ANOHORAGE SPACE AND WINDING ROOM.

The popular rule for anchorage is, "Run out a scope of chain equal to three times the depth." Accepting this rule as applicable under ordinary circumstances, we find the swing-room at anchior (making due allowance for the slant of the chain, supposed to be taut) is a circle of which the radius is the leugth of the vessel added to 2.82 times the depti, If we take, as an example, a schooner 100 feet long, anchored in 30 feet of water, we make her allowance of swing-room a circle of 185 feet radius, having an area of two and a half acres.

In determining the anchorage capacity of a harbor, we plot upon the chart circles of different diameters corresponding to the different classes of vessels likely to visit the port, and miugle these in proportion to the number of each class, having due regard to draught.

We may conveniently diside vessels into four categories:
First-class ships, (including ocean-steamers,) 200 to 430 feet long, with 18 to 25 feet draught.
Ordinary barks, 130 feet long, with 15 feet draught.
Ordinary brigs, 103 feet long, with 10 feet draught.
Ordinary schooners, 93 feet long, with 10 feet draught.
As regards numbers of vessels in each of these categories, returns from our principal commercial ports give the ratios 1: 2: $1 \frac{1}{2}: 24 . *$

Practically, vessels, under ordinary circumstances, do not swiug over the whole circle we have provided, but simply over opposite quadrants; moreover, they swing together with the same wind or tide. Nevertheless, since vessels cannot be packed into an anchorage as economically as we can plot their circles upon the chart, our rule for measuring the anchorage-capacity of a basin will be found just and convenient. Take, for instance, Vineyard Haven, the most frequented refuge ou our coast. Our rule gives for this port 174 miscollaneous merchant-vessels, (barks, brigs, and schooners, measuring in the arerage 260 tons.) The port is sometimes so full that many vessels are prevented from entering, and those at anchor injure each other; yet the largest number ever conuted was 200 , with an average of 200 tons each-a very large proportion being schooners. The area of the anchorage-ground beyond the 18 -foot curve is 544 acres; from which we may infer that, in square measure, 2.7 acres is the best average that can serve a coasting-fleet in that roadstead.

The popular rule we have quoted above is not applicable to very large vessels, which generally require more scope. In ordinary roadsteads, of less than ten fathoms, a man-of-war requires 32 acres of swing-room; and the Spanish frigate Numancia, which lay in the lower bay of New York in the summer of 1872 , cruised over a space of 44 acres; although, as it proved, her scope of chain was not sufficient to prevent her from dragging a little. We mention this vessel, because she drew more water than was ever before brought over the bar. \dagger

In locating harbor-lines we have not only to provide against undue encroachment upon the anchorage-ground, but to take into consideration the wants of vessels under way, and those hanling in of out of the slips. If the chaunel has no abrupt turn in its course, steamers and ressels in tow of steam-tugs may be accommodated with a fairway of one hundred feet, but sailing vessels require room enough to go about. Vessels vary so much in their maneuvering qualities that no close rule can be laid down for the width of a convenient sailing-channel. A first-class ship requires a half-mile of sea room, and a medium schooner 600 feet, wheu beating to windward under ordinary circumstances.

To get in or out of a slip a ressel should be allowed three times her length beyond the pierheads.

[^10]
REQUISITE DEPTHS OF FRONTAGE.

The Government, in removing obstructions in New York Harbor, has adopted 25 feet at mean low water as the maximum depth required, and in Boston 23 feet. The former gives $2 \bar{i}$ feet from the mean level of the sea, the latter 28 feet.

Of the sailing-ships registered at Lioyds, only one-third draw orer 20 feet, while 95 per cent. draw over 16 feet. Of the barks only 3 per cent. draw over 20 feet, and 27 per cent. over 16 feet. Of the brigs only 3 per cent. draw over 16 feet. Coastwise coal-loaded steamers usually draw 15 feet, and coal-loaded schooners 12 feet; the average draught of merchant-schooners is. howerer, only 10 feet, and fishing-vessels less.

The contours of the natural frontage, where the bed and bauk of the stream are of rielding material, will asually be fonnd parallel to the isodynamic lines commented upon above, but not necessarily so to the direction of the current.

REQUISITE LENGTH OF SLIPS, ETC.

We have already spoken of the lengths of vessels, bat not of their widths. In the following table we give these and other details.

Dimensions of vessels, (mostly from Lloyd's Register.)

Vessels.	Tounage.	Length.	Beam.	Dranght.	liemarks.
		Fect,	Fret.	Feet.	
Large ocean steamers	4,000	430	42	94	Aroiding extrome cases.
Large sailing-suips.	1,700	210	41	22	16 per cent, of such ships draw 24 feet and over.
Ordinary ships.	1,000	178	35	20	
Small ships	400	140	97	16	
Sound steamers	3,000	373	83	12	" Bristol" and "Providence, " (beansorer all.)
Large const wise coal-steaners	1,500	200	37	15	Retatime Railread Compans.
Large barka	950	164	36	10	A voiding extreme cases.
Small barks.		102	23	$11 \frac{1}{2}$	$1)_{0}$
Large brigs	450	125	29	15	Do.
Ordinary brigs		10^{2}	55	12	
Large schooners	400	130	30	13	Avoiding extreme casels.
Ordinary scbooners	133	93	94	10	
Special coal-schooners.		130	30	12	Reading Raitroad Company.
Stone-sloops.			26	9	Pigeon Cove Granite Company.

In the foregoing table no projections beyond the hulls of the vessels are counted.
In order to furnish fair berths for two ships, the water-space between wharces should be about 100 feet wide, 250 feet long, and 20 feet deep as far up the slip as the ships' keels extend. These dimensions cover all necessary projections of headgear, de.; they also admit of the two ships being replaced by four ordinary schooners, leaving ample space for passage-way between those on opposite sides.

Although the water-fronts in most of our ports are now occupied only by whares, there are places where continuous quays would be much more economical, and other places where docks with open gateways would be safer and more convenient. In great estuaries, like Delaware Bay, where the alluvia along shore is liable to shift, and is prone to do so immediately after the erection of projections at right angles to the flow, a continuous quay, protected by ice-breakers, is the best and most permanently useful improvement of the water front. Our harbor-lines nsnally indicate simply the outer limits of pile or crib piers extending from the shore.

Riparian rights-Under the general principal that each shore ouner has a right of way out to sea from every part of his frontage, it would seem just that when he chooses to extend his wharf to the harbor-line he should be entitled to his proportional share of said line. Where the harbor-fine is parallel to the shore, his proportion is secured by extending the side-lines of his lot in directions normal to said harbor-line; but in the case where his estate lies upou the shores of a shallow cove, within which it is inexpedient to draw a harbor-line parallel to the shore, a special nethod of division must be resorted to, in order to secure to each riparian owner his due proportion of the harbor-line adopted.

Before referning to the methods of division heretofore adopted or proposed, we shall offer a rule, which seems to us of very general application.

Having plotted the harbor-line, which may either pass wholly outside of the mouth of the cose or bend into it, draw a sweeping-line through three or more salient points in the bigh-water margin of the cove in such manuer as to present towards the harbor a divergent curve, and extend the side lines of the riparian estates out to this line of rectification in directions normal to said line. Then (premising that the harbor-line has been parceled out to the owners above and below the cove) divide the unallotted portion of the line in front of the cove into parts proportional to the divisions of the line of rectification already referred to, and extend the estates by straight lines to embrace these parts.

One may easily see that if the harbor-line is drawn with no reference to the form of the cove, cases may arise where an application of this rule would be inequitable; but since the main purpose of the harbor-line is usually to secure to each his due share of the frontage, no such difficulty may be expected to arise. Where a harbor-improvement, beueficial to the many and detrimental to the few, is contemplated, the location of the harbor-line may be made regardless of the interest of some individuals, but in such cases the injured should be made whole from the "betterments" elsewhere.

The rule we have given is based upon certain decisions of the court in Massachusetts, and its slight departure from the actual usage will be appreciated by the following very iuteresting discussion, which we quote from Allen's Report of Cases Argued and Determined in the Supreme Judicial Court of Massachusetts, volume XIX. The court appointed commissioners to divide the flats of a cove in Gloucester, and this commission seemed to have assumed that this division was to be in proportional areas.
"No rule, to our knowledge, having been established for the division of flats in a cove of this description, out of which the tide never entirely ebbs, nor any rule of division in any case adopted which is capable of a general application to shores of different shapes, it was suggested to us that the mode heretofore adopted in some cases, olaimed to be aqalogous to the presont, of deep coves, out of which the tide entirely ebles, to wit, by drawing a line across the month of the cove between the headiands, and giving to each shore-owner his proportionate leugth of flats on that line, should be followed in this. But we were of opinion that this mode was not properly to be applied to this case, or to cases of coves from which the tide does not wholly ebb at the lowest tide, inasmuch as the base-line upon which the division would be made must pass outside of the limits of the ownership of the parties, and where no actnal measuremeuts or monuments could be had.
"And we have adopted the following mode of division as ove fair and proper in this case, to wit, we fix the boundaries by division-lines drawn through a series of points or lines between the established limits of the cove, equidistant from the line of high water, which points are found by dividing said equidistant lines in the ratio as the lengths of the lines of uphand owned by the parties on said high-water line, giving to each shore-owner his proportionate share of the area of each helt of flats thins formed around the cove, until the limit of his ownership in the direction of low water is reached, the said belts as represented upon the plan being ten feet in width; the division-lines so ascertained being represented upon the plan by the irregular and curved lines from the bound marks on high-water line to low-water line," (and marked, on the plan, ante, 73, a 1, b 1, c 1.) "It was objected to this mode that it gives division-lines of boundary, curved and irregnlar, and not adapted to the construction of wharres upon tho premises.
"But we have considered that the use for construction of wharves is not the sole purpose for which the premises are valuable, nor the purpose for which such property is always of the most value, and that by law the right of occupation of flats aljoining the uphand is not co-extensive with the ownership, since it caunot stop or hinder the passage of boats or vessels to other men's houses or lands; and further, that the conrses of these lines will not be inore irregular than the shore-lines upon which they depend, nor than the line of low water, nor than natural lines of boundary generally; and that they mark a division fair and proper in the premises, which gives to each owner his due proportion ; and that the rule by which they are run is capable of a general application to coves of all shapes, and to headlands and shores of the opeu sea as well, giving to the shore-owners in all cases their proportionate shares of the area of the adjoining flats, marked by boundary-lines in the direction of low water upon the courses indicated by nature in the formation of the shore.
"The petitioners objected to judgment upon the report of the commissioners for the following reasons: 1st. That the division reported by the commissioners is not the true and legal method for dividing the flats in said cove and determining the boundary-lines of said petitioners. $2 d$. That thes true method of divisiou is in the ratio of tho length of ownership of the petitioners respectively on bigh-water line, upon the line of lowest low water between the established limits of the cove as determined in said report, or upon the tangent-line between headland and headland, as these two methods of division are indicated upon the plans retarned by said commissioners. 3d. That said commissioners should have divided the flats in said cove, and determined the bonndaries of the petitioners by getting off to the petitioners the flats appartenant to their upland respectively, without reference to any wharves or structures upon the same.

Abstract

" The court is clearly of opinion that the mode preferred and selected by the commissioners is erronenus, It is novel and unprecedented, utterly different from and inconsistent with any of the principles aud rules which have boen laid down or suggested in the adjudged cases, and evinces more scientific ingennity than practical wistom. It is artificial and complicated, requiring much mathematical skill, minate surveys, and thaborate calculations, to apply it to particular cases. It does not give to each proprietor a width on his outer line either equal or proportional to that which he has at high-water mark. It determines the width of each parcel of flats, and the diroction of the side-fines thereof, neither by the natural line of low-water mark, nor by a base-line drawn between the natural monuments at the headlauds of the cove, nor by the outer line of proprietorship; but by a series of arbitrary lines, many of which fall partly within and partly without the flats to be divided, and which in the deepest parts of this cove lose even the apparent cousistenes aud approxination to a series of parallels with which they begin at high-water mark. The dividing-lines do not ran in the straightest and most direct course to any points on low-water mark, or the seaward limit of propritorship; but are curved and serpentine, making each lot of a shape peculiarly inconvenient for the building and use of wharves, while the flats continue to be appropriated to the parposes of commerce and navigation, and equally dificicnt of sale or improvement after the flats shall have been filled up."

LAWS ESTABLISHING HARBOR-LINES.
The legislative act establishing a harbor-line usually takes the form of a prohibition, thus: "No wharf, pier, or other structure in the harbor of ___ shall ever hereafter be extended into and over the tide-water of said harbor, beyond the line hereinafter described."*

In nearly all cases that have come before us for revision, there have been found serious faults in the description of the liues, especially as regards the deflecting-points whose exact positions are not carefully fixed, as they should be, by stated courses and distances from known and permanent objects. What we mean by known and permanent objects may be seen in the following quotation from a description of proposed harbor-lines recently drawn up by the Coast Survey at the request of the harbor commission of New Castle, Del.: "The quay line, beginuing at a point in the center. line of North street extended 790 feet seaward from the initial stone at the intersection of the centerlines of Market and North strects, runs southwesterly in a straight line to a point in the center-line of Chestnut street extended 882 feet frow the initial stone at the intersection of the center-lines of Chestnut and Market streets; thence south westerly in a straight line to the east corner of the rectangular ice-pier off Truss's wharf; thence along the outer face of said pier to the sonth corner of the same; thence southwesterly in a straight line to a point in the extended line of the west side of the old icepior (forming now a part of Holmes's wharf) 572 feet from the south corner of said pier; thence westerly in a straight line to a point in the center-line of Delaware street extended 464 feet from the initial stone at the intersection of the center-lines of Delaware and Front streets ; thence in a straight line to a point in the center-line of South street extended 1,002 feet from the initial stone at the iutersection of the center-lines of Pearl and South streets; thence westerly in a straight line to a point in the center-line of Johnson street extended 846 feet from the initial stone at the intersection of the center-lines of Johnson and South streets."

The above is, perhaps, as simple a case as could well be found, but the description might be improved by stating the true course of each line. It is customary to refer to light-houses, charches, and other public buildings, and to corners of street-blocks where no initial stones exist. It has also been customary to refer to corners of wharves, but this is not advisable unless the wharves are of stone already extending to the line.

Harbor-lines when fixed by the legislature are intended to be permanent, but the same authority can change them, and few old cases that have come to our kuowledge have escaped some change. Therefore, whèn a scheme of lines is presented to the legislature, it should be accompanied by a detailed report setting forth the reasons for the location of each section, in order that, if at any future time the exigencies of commerce may seem to demand some changes, all the original augments may be duly considered. Most of the old harbor-lines rest ouly upon the authority of the names of the experts who made up the commissions recommending them. In our own experience we have never made up a scheme of lines in which the different sections were equally well based, and in some cases we have felt obliged to state that this section or that was entirely arbitrary, and simply introduced as a connecting-link in the chain.

The foregoing is, as far as we know, the first attempt at a general essay upou harbor-lines, and this unust be our apology for its faults.

Submitted to Prof. Benjamin Peirce, Superintendent of the Coast Surver, November, 1873.

[^11]
APPENDIX No. 11.

COMPARISON OF THE METHODS OF DETERMINING HEIGHTS BY MEANS OF LEVELING, VERTICAL ANGLES AND BAROMETRIC MEASURES, FROM OBSERVATIONS AT BODEGA HEAD AND ROSS MOUNTAIN, CAL., BY GEORGE DAVIDSON AND CHARLES A. SCHOTT, ASSISTANTS, UNITED STATES COAST SLRVEX.

In the spring of 1860 , Assistant George Davidson organized a system of observations of heights with a view of determining the refraction of the atmosphere in the climate of California, and to give data for relative values of heights determined from leveling operations, from measures of zenith-distances, and from readings of the atmospheric pressure. The stations selected were Bodega Head, on the sea-coast, abont fifty statute-miles northwesterly of San Francisco, and Ross Mountain, about fourteen miles to the northward of Bodega Head. The "head" is about 240 feet and the "mountain" about 2210 feet above the level of the ocean. Starting from Bodega Head, the line passes for about one-third of its length close to the coast-line, and at two-thirds it crosses the deep valley of the Russian River. Local currents of the atmosphere, due to this valley, may possibly cause disturbances in the normal refraction.

The two stations were occupied in March, 1860, and between the 20th and 27 th hourly observations (from $7 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$.) were made of reciprocal and simultaneous zenith-distances, and of the pressure, temperature, and moisture of the atmosphere.

The height of Bodega Head was determined by leveling in August, 1860, but it was not till 1872 that an opportunity offered for carrying the levels up to Ross Mountain. The results of this paper will be given under the three divisious of the subject stated in the title.

1.-THE RESUITS OF THE LEVELING OPERATIONS.

These operations being well understood, and presenting nothing new or of special interest, the following brief statement will suffice:

The elevation of Bodega Head was determined by spirit-level, by Assistant George Davidson, August 20,1860 . The staff could be read by means of a vernier to 0.001 of a foot. He found-

Bodega Head mark above bench-mark near tidal station 234.6 feet.
Reduction to ground, or top of copper bolt...................... . 0.1
Reduction to half-tide level of ocean +6.6
Hence, Bodega Head, ground, above ocean. 241.1 feet $=73^{\mathrm{m} .49}$
By direction of Assistant Davidson the elevation of Ross Mountain was obtained by spiritlevel in January, February, and March, 1872, by Mr. S. R. Throgmorton, aid, United States Coast Survey, assisted by Mr. H. J. Willey. The levelings commenced at Bodega Head, and received a rough check by striking high-water mark at Salmon Oreek; from here the line of lerel crosses a ridge of about 250 feet, and descends again at the Russian River to tide-water level; the ascent of Ross Mountain was retarded by wet and windy weather, and in returning the work had to be abandoned after descending about 1,350 feet, on account of the wet and spongy ground. The check-levels during the descent were satisfactory. The leveling-instrument, by Stackpole \& Bro., of New York, was borrowed from General Alexander, United States Engineers. The rod was compared with the standard steel-yard, at 62° Fahrenheit, and the extreme length and intermediate graduation were found to agree with the standard.

The resulting difference of level is as follows:	Feet.
Ross Mountain, stone mark above ground, Bodega Head	1963.55
Reduction of mark to ground at Ross Mountain.	$+0.85$
Ross Mountain, ground, above Bodega Head	1964.40
And by preceding result, Bodega Head, ground, above of ocean	241.10

Hence, Ross Mountain, ground, above half tide of ocean............. 2.205 .50 feet, or 672.23 metres, and the difference of height of the ground at each station 598.74 metres, with an estimated probable error of $\pm 0^{\mathrm{m} .06}$

2.-Results of hofrly observations of reciprocal and simultaneous zenith-distances for difference of height of the two stations.

The observations at Bodega Head, between March 20 and March 27, 1860, were made by E. H. Fauntleroy, aid, United States Coast Survey. He used the 10 -inch vertical cirele No. 80 ; it is graduated to 5^{\prime}, and reals by 4 verniers to $3^{\prime \prime}$ each. Its optical power was rather weak for the work required. One division of the level equals $5^{\prime \prime} .53$, as determined by Assistant Davidson in 1859. The axis of the vertical circle was 62.5 inches (1.787 metres) above ground, aud the elevation of the heliotrope shown to Ross Mountain was the same. The zenith-distauces of the Ross Mountain heliotrope were measured on five days at every full hour, (excepting one on the first dar, between 7 a . m. and $5 \mathrm{p} . \mathrm{m}$. inclusive. Each measure consists of six repetitions of the double zenith-distance, and was corrected for defect of rerticality of axis as indicated by the level. Immediately before and after each measure the barometer, with attached thermometer, and the dry and wet bulb thermometers, were read, and the state of the weather noted generally, inchading direction and velocity of wind. The cistern of the mercurial barometer, Green No. 1343, was 0.336 wetre above ground. Its index-correction, when compared with Green's mercurial barometer No. 1347, which was stated to be correct, was - 0.010 inch, which correction was applied to the tabular results, as well as the graduation-corrections of the thermometers, No. 16, used as dry and wet bulb, and of No. 3, used as dry bulb, after the accidental breakage of wet bulb No. $\mathbf{1 6}$. These corrections are given further ou.

The observations at Ross Mountain, between March 20 and March 27, 1860, were made by Assistant George Davidson. He used the 10 -inch Gambey vertical circle No. 28 ; it is graduated to 5^{\prime}, and reads by 4 verniers to $3^{\prime \prime}$ each. Its optical power was considered weak. One division of the level equals $6^{\prime \prime} .29$, as determined by Assistant Davidson. The axis of the vertical circle was 61 inches (1.549 metre) above the ground; the heliotrope shown to Bodega Head was on a level with the vertical circle. Double zenith-distances of the Bodega Mead heliotrope were measured hourly, between $7 \mathrm{a} . \mathrm{m}$. and 5 p . m. inclusive, on five days, and at four morning-hours on the 6th day, when the observations had to be discontinued on account of wet and stormy weather. The measurement of the six repetitions of the double zenith-distance was commenced exactly at the full hour, and the arerage time occupied in making them was about five minutes. The level was read twice before and twice after reversal of the circle, and the results were corrected for defect in verticality of axis. The barometer and attached thermometer and the dry and wet bulb thermometers were observed as at Bodega Head; the state of the weather was carefully noted every hour. The cistern of mercurial barometer, Green No. 1347, which was borrowed from Lieut. R. S. Williamson, United States Topographical Engineers, was 0.378 metre above ground. The instrument is of the Smithsonian pattern. The thermometers were, No. 8, dry bulb, No. 13, wet bulb, and the comparisons by McAllister \& Bros. with a staudard, and again by Assistant Davidson, ga re the following index-corrections to the thermometers used at the two stations:

To No. 8	0.0
To No. 13	+0.6
To No. 16, dry.	$+0.9$
To No. 16, wet.	+1.2
To No. 3	+1.1

All the thermoneters have Fahrenheit's seale.

Table 1.-Resulting zenith-distances, measured at Bodega Head, of the hetiotrope at Ross Mountain March, 1860.

$88^{\circ} 33^{\prime}+$							
Hour of day.	20th.	21 st.	24th.	25th.	26 th.	27th.	Resulting mean from five days.
	"	"	\cdots	"	,	"	*
7 a.m.	(*)	7.8	29.9	8.0	6.5		12.1
8a. 17.	28. 4	14.9	20.4	6.6	16.2	31.5	17.3
$9 \mathrm{a} . \mathrm{m}$.	1[55.3]	29.5	38.1	[25.6]	18.9	33.3	99.4
$10 \mathrm{a} . \mathrm{m}$.	+[11.6]	31.7	[45.9]	23.9	17. 7	39. 6	[30.4]
11a.m.......	23.3	33.8	31.7	19.1	[20.3]		25.6
Noon	94.9	[37. 7]	35. 4	15.8	12.7		25.3
$1 \mathrm{p} . \mathrm{m}$	30.9	26. 3	2r.6	11.5	15.9		$\underline{29.4}$
$2 \mathrm{p} . \mathrm{m}$.	15.3	:3.2 2	32.4	20.9	14.9		93.3
$3 \mathrm{p} . \mathrm{m}$.	22.4	25.8	27.3	18.9	14.2		21.7
$4 \mathrm{p} . \mathrm{m}$.	24.6	29.6	20.0	16.5	14.9		21.1
$5 \mathrm{p} . \mathrm{m}$.	25.3	24.6	11.0	-9.2	10.5		12.4
Resulting daily mean	25.3	20.7	28.5	14. 3	14.8		21.9

The last colnmn contains the hourly means from five days of observations, rejecting the values of the 27 th, as a broken day. The maximum value on each day is indicated by an inclosure in brackets.

The probable error of any one mean zenith-distance, from five days of observation, is about $\pm 2^{\prime \prime} .1$.
Table 2.-Resulting zenith-distances, measured at Ross Mountain, of the heliotrope at Bodega Head, March, 1860.
$91^{\circ} 35^{\prime}+$

Hour of day.	20th.	21st.	24th.	25 th.	8th.	27th.	Resulting mean from five days.
	"	"	"	"	"	"	- , ir
$7 \mathrm{a} . \mathrm{m}$	44.9	63.4	87.3	79.4	69. 9	82.0	913610.0
8 a. m	58.5	8.5 .9	91.2	81.8	68.3	90. 2	17. 1
$9 \mathrm{a} . \mathrm{m}$	79.4	90.2	93.5	86. 2	81.3	95.3	26.1
$10 \mathrm{a} . \mathrm{m}$.	84.9	87.6	[98.4]	[87.5]	77.1	96.1	27.1
$11 \mathrm{a} . \mathrm{m}$.	81.0	90.2	90.8	84.1	[37.2]		[27.9]
Noon	[89.7]	8E. 9	92.0	77.6	83.2		26.3
1 p . ma .	87.6	[90.6]	94.4	77.2	77.3		25.4
$2 \mathrm{p} . \mathrm{m}$.	82.6	89.4	89.8	77.9	66.2		21. 2
$3 \mathrm{p} . \mathrm{m}$.	87.7	89.4	93.0	78.5	73.9		23.1
$4 \mathrm{p} . \mathrm{m}$.	89.4	86.1	90.7	82.4	70.4		25. 6
$5 \mathrm{p} . \mathrm{m}$.	86.7	80.6	89.2	80.5	69.4		21.3
Resulting daily mean \qquad	913619.3	25. 5	32.4	21.2	15.7		22.8

The observations on the 97 th are omitted from the mean. The daily maxima are indicated by brackets. It will be noticed that these maxima of measured zenith-distances all occur in the forenoon, and that they appear to connect themselves with the time of the daily maxima of the atmospheric pressure, (for which see tables further on.) The average hour is near $10 \mathrm{a} . \mathrm{m}$. This may possibly be quite local, and may be connected with the setting in of the sea-breeze about that time-a phenomenon which renders the daily fluctuation of temperature at San Francisco so different from the ordinary occurrence. The Bodega Head station seems to be slightly more exposed to this influence, as might be conjectured from its position close to the sea-coast.

[^12]The probable error of ang one mean zenith-distance from fire days of observation is about $\pm 1^{\prime \prime} .9$.

The heliotrope and instrument being $0^{\mathrm{n}} .035$ higher above ground at Bodega Head than at Ross Mountain, the angle $0^{\prime \prime} .3$ subtended by this difference will be subtractive to the resulting tabular zenith-distances at Bodega Head and additive to those at Ross Monntain, in order that the computed differences of altitude may at once refer to the ground at each station.
Table 3.-Resulting atmospheric pressures observed at Bodega Head, the height of the mercurial column being corrected for index-error and its temperature reduced to that of freezing water.

MARCH, 1860.

Howr of day.	20 h.	21st.	stth.	25th.	26 th.	97th.	Resulting mean trom 5 days.
7 a. m	Tuches.	Inches. 9 9. 715	Inches. 30.038	Inches. (4) 020	Inches. 29. 817	Inches.	Inches. 29.833
$8 \mathrm{a} . \mathrm{m}$	29.689	. 715	. 038	[.6301]	. 227	29.765	. 810
$9 \mathrm{a} . \mathrm{m}$. 731	. 734	. 042	. 922	[.832]	. 78	. 852
$10 \mathrm{a} . \mathrm{m}$	[.749]	[. 739]	[.049]	. 923	[. 832]	. 780	[. 858$]$
$11 \mathrm{a} . \mathrm{m}$	[. 749]	. 732	. 048	. 925	. 825		. 850
Soon	. 744	. 722	. 040	. 913	. 209		. 846
$1 \mathrm{p} . \mathrm{m}$. 739	. 713	. 018	. 897	. 791		. 832
2 p.m	. 741	. 702	30.000	. $\% 8$. 774		. 819
$3 \mathrm{p} . \mathrm{m}$. $7: 33$. 679	29.927	. 871	. 761		. 866
4 p. m	. 733	. 608	. 965	- 860	. 74%		. 795
$5 \mathrm{p} . \mathrm{m}$	-730	. 659	. 959	. 837	. 732		. 783
Mean	29.728	29. $70{ }^{\circ}$	30.017	29.898	29.795		29.899

* Interpolated value for this honr 29,674 inchos, usiug the observed difference at 7 and 8 at Lioss Monntain.
Inclosed valnes indicate the daily maxima of pressure.
The readings on the 27 th are not nsed in the means. The surface of the mercury in the cistern, in contact with the index-point, was $0^{\mathrm{m}} .336$ above gronnd; hence, to reduce the observed pressure to the ground, 0.001 inch is to be added.

Table 4.-Resulting atmospheric pressures observed at Ross Mountain, the height of the mercurial column being referred to the temperature of freezing water.

The readings on the 27 th are not used in the means.
To reduce the observed pressure to what it would have been on the ground, add 0.001 inch.
The next following tables contain the observed temperatures of the air and of evaporation; all the readings were corrected for index-errors of thermometers. The readings on the 27 th are omitted, maxima are indicated by brackets.

Table 5.-Observed temperature of the air and of evaporation at Bodega Head, March, 1860.

Hour.	20 th.		213 t .		24th.		25th.		26 th.		Mean of five days.	
	Dry.	Wet.										
	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc
7	*48.0	*46. 1	43.4	42.8	46. 7	45.6	48.4	46.8	49.5	48.5	47.2 F .	46.0 F
8	49.4	46.7	50.0	46.0	48.4	47.0	52.9	49.3	50.9	49.5	50.3	47.7
9	50.5	47.3	52.3	47.2	53.1	49.8	55.9	51. 2	52.3	50.6	59.8	49.2
10	50.8	47.9	55.4	49.7	58.5	3. 2	[57. 9]	53.0	53.5	51.0	55.2	51.0
11	50.8	47.9	[57.9]	51.0	59.4	52.4	56.1	51.5	54.8	51.7	55.8	50.9
Noon	50.6	46.8	57.0	50.5	60.5	53.3	55.9	51.3	56.1	53.8	56.0	51.1
1...	[50.9]	47.3	57.5	50.7	[60.7]	54.5	55.2	51.5	56.9	54. 2	[56. 2]	51.6
2	50.0	46.5	53.5	48.4	58.9	54.2	55.5	53.1	[58.1]	$\dagger 56.4$	55.3	51.7
3	49.9	46.5	52.4	48.3	58.3	53.8	53.9	51.9	56.5	55.1	54. 2	51.1
4	49.1	46.0	51.6	47.7	57.9	53.7	53.0	51.5	55.9	54.3	53.5	50.6
5	48.:	45. 7	50.1	47.7	56.5	52.3	52.6	51.1	55.5	54.1	20. 7	50.2
Mean	49.9	46.8	52.8	48.2	56.3	51.7	54.3	51.1	54, 6	52.7	53. 56	50.10

Table 6.-Observed temperatures of the air and of evaporation at Ross Mountain, March, 1860.

Hour.	20 th .		21st.		24 th.		25th.		26 th .		Mean of five days.	
	Dry.	Wet.	Dry.	Wet	Dry.	Wet.	Dry-	Wet.	Dry.	Wet.	Dry.	Wet.
	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	46.0	35.3	44.0	36.7	40.5	38.8	47.4	43. 4	49.6	43.2	45.5 F ,	39,5F.
8	45.0	36.6	43.6	36.6	43.1	40.2	48.7	43.6	51.6	44.7	46.4	40.3
9	48.5	39.7	45.3	38.7	45.1	41. 6	54.4	48.6	56.5	50.2	50.0	43.8
10.	49.7	42.2	47.7	41.1	48.2	43.0	55.2	47.8	57.5	49.5	51.7	44.7
11	51.3	44.9	49.3	42.7	51.0	45.6	56.5	50.6	60.0	52.5	53.6	47.3
Noon	[52. 2]	44.8	50.7	42.5	53.7	48. 5	57.0	50.8	62. 6	54.8	55.2	48.3
1	52.1	43.6	[52.0]	43.3	[56. 9]	50.3	57.3	50.5	[63.4]	55.6	[56.3]	48.7
2	51.9	43.1	49.5	42.3	55.4	49.6	57.2	48.9	61.8	53.7	55.2	47.5
3	51.0	44.2	50.7	42.9	54.2	48.0	[58. 4]	52.1	50.9	59.8	54.8	48.0
4	47.7	42.7	46.9	40.4	59.8	47.1	[58.4]	52.1	50.2	52.3	53.0	46.9
5	43.3	40.0	45.0	38.1	50.0	45.1	54.5	48.9	57.8	47.7	50.1	44.0
Mean.	49.0	41.6	47.7	40.5	50.1	45.3	55.0	48.8	52.2	50.9	51.98	45.36

Collecting our preceding mean results, we have the following data for computation :
March 20, 21, 24, 25, 20, 1860.

Hour of day.	Observed zenith distance at-		Atmospheric pressure at-		Atmospheric temperature at-		Temperature of evaporation at -	
	Bodega Head.	noss Mountain.	Bodega Head.	Ross Mountain.	Botega Head.	$\underset{\text { Monntain. }}{\text { Ross }}$	Bolega Head.	Ross Mountain
	- ' "	- "	Inches.	Inches.	-	\bigcirc	\bigcirc	\bigcirc
$7 \mathrm{a} . \mathrm{m}$	$88 \quad 3311.8$	$91 \quad 36 \quad 10.3$	29.834	27.750	47.2 F.	45.5 F.	46.0 F.	39.5 F .
8 am m	17.0	17.4	841	. 757	50.3	46. 4	47.7	40.3
$9 \mathrm{a} . \mathrm{m}$	29.1	2f. 4	. 853	. 766	52.8	50.0	49.2	43.8
$10 \mathrm{a} . \mathrm{m}$	30.1	27.4	. 859	. 773	55. 2	51.7	51.0	44.7
11 am	25.3	28.2	. 857	. 772	55.8	53.6	50.9	17.3
Noon	25.0	26.6	. 847	. 765	56.0	55.2	51.1	48.3
$1 \mathrm{p} . \mathrm{m}$.	22.1	25.7	. 833	. 751	56.2	56. 3	51.6	48.7
2 p.	23.0	21.5	. 820	. 737	55.3	55.2	51.7	47.5
$3 \mathrm{p} . \mathrm{m} .$.	21.4	23.4	. 807	. 785	54.2	54.8	51.1	42.0
4 p.m.........	20.8	25.9	. 796	. 713	53.5	53.0	50.6	16.9
$5 \mathrm{p} . \mathrm{m}$.	12.1	21.6	. 734	. 700	52.7	50.1	50.2	44.0
Mean	$88 \quad 33 \quad 21.6$	$\begin{array}{llll}91 & 36 & 23.1\end{array}$	29.830	27.747	53.56	51.98	50.10	45. 36

Notes respecting state of the weather at the two stations:
March 20, 1860.
Bodega Head.-At 7^{h} wind strong, WNW.; atmosphere hazy. At 11^{h} wind blowing a gale.
Ross Mountain.-At 7^{h} moderately clear, sky 0.3 covered with cirrus and cirro-stratus; wind moderate, NNW.; fog to seaward and in Russiau River. At 8^{h} fog disappeared in Russian River Valley. At 10^{a} fog forming along the coast south of Bodega; appears to blow fresh on the water. At 11^{h} wind north, light, weather getting a little thick. At noon, somewhat clearer. At 1^{h} wind moderately stroug, NNW. At 3^{L} atmosphere very hazy. At 5^{h} wind moderately strong, N .

March 21, 1860.
Bodega Head.-At 7^{h} weather clear, wind light, E. At 11^{h} wind light, SE. At 2^{h} wind fresh, SW. At $3^{1 \mathrm{~h}}$ horse tail clonds. At $5^{\text {b }}$ thick clouds overhead.

Ross Mountain.-At 7^{h} weather clear, calm. At 9^{h} wind very light, WSW., cirro-stratus to northward. At 11^{h} wind light, S. by W. At 1^{h} light wind, SSW. At 4^{h} sky 0.9 covered, threatening to the northwestward, wind SSW. increasing. At $5^{\text {b }}$ wind S., light. At $5^{4} 15^{m}$ parhelia formed, showing three fourths of a circle, lower part not visible; two very bright prismatic images of the sun, and a faint one at vertex.

$$
\text { March } 22 \text { and } 23,1860 .
$$

Weather quite stormy. At 8 a. m., on the 22 d , most sovere squalls of wind, with rain, from the SSW. On the 23d occasional squalls; wind SSW.

March 24, 1860.
Bodega Head.-At $7^{\text {b }}$ clear; wind light, SSE.. At noon wind light, SW.; atmosphere clear.
Ross Mountain.-At $7^{\text {h }}$ clear, wind very light, ESE. ; snow on all the mountains eastward. At 8^{b} wind light, E. by N. At 9^{h} wind light, ESE. At noon sky half corered with cumulus, wind light, S. At $1^{\text {h }}$ wind light, WSW., and S . for the rest of the day.

March 25, 1860.

Bodega Head.-At $7^{\text {L }}$ weather clear: wind very light from E. At $10^{\text {li }}$ wind light, $S W$. At noou fresh from W. At 2^{h} fog forming rapidly in line to Ross Mountain At 3^{h} heliotrope seen over the line of fog; scud flying over station.

Ross Mountain.—At 7^{h} clear, wind S., light; sky 0 . At $1^{\text {h }}$ wind light, SW. At $2^{\text {h }}$ fog forming rapidly over water, and coming in. At 3^{b} fog just inside our line, heliotrope seen over edge of fogcloud. At 4^{h} and 5^{h} wind light, W. and NW.; clear.

March 26, 1860.
Bodega Head.—At 7^{h} clear, light wind, WNW.; atmosphere hazy. At $3^{\text {h }}$ wind fresh from $S W$.
Ross Mountain.-At 7^{h} clear, wind moderate, N.; atmosphere hazy to S.. At 9^{h} wind very light, SW.; baze on line of sight. At 10^{h} almost calm, clear. At noon wind very light, ENE. 1h to $3^{\text {h }}$ wind light, S. $4^{\text {h }}$ to 5^{h} wind very light, SSW.; clear.

March 27, 1860.
Weather clondy, sky covered with cirro-stratus and cumulo-stratus; valleys covered with fog. Wind light ESE., between 7^{h} and 10^{h}. After 10^{h} rain in NW., working toward SE.; wet and stormy, with heavy gales from SE. round to SW. For the six succeeding days the fall of rain was registered $9 \frac{1}{2}$ inches.

The direction of wind given in the above notes refers to the true meridian. These notes are extracts from the more copious record.

The geographical positions of the stations are as follows :
Bodega Head.—Geodetic latitude, $38^{\circ} 18^{\prime} 18^{\prime \prime} .7$; longitude, $123^{\circ} 3^{\prime} 49^{\prime \prime} .2$ west of Greenwich.
Ross Mountain.-Astronomical latitude, $38^{\circ} 30^{\prime} 10^{\prime \prime} .0$; longitude, $123^{\circ} 7^{\prime} 13^{\prime \prime} .1$ west of Greenwich.

Geodetic distance of stations 22482.2 metres, and azimuth of line from Bodega Head $167^{\circ} 18^{\prime}$
$35^{\prime \prime}$, and reverse azimuth from Ross Mountain $347^{\circ} 16^{\prime} 29^{\prime \prime}$, counted from the south point around by west.

We have also the radius of currature, ${ }^{*}$ to the earth's surface, in latitude φ and in azimuth a

$$
=\frac{a\left(1-\epsilon^{2}\right)}{\left(1-e^{2}+e^{2} \cos ^{2} \varphi \cos ^{2} \alpha\right)\left(1-e^{2} \sin ^{2} \varphi\right) \frac{1}{2}}
$$

where-

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}
$$

and the semi-axes, according to Clarke,

$$
\begin{aligned}
& a=6378206 \text { metres; } \\
& b=6356584 \text { metres; }
\end{aligned}
$$

hence-

radius of curvature to our line $=6361215$ metres.
Reduction of observations of zenith-distances.-For reducing these observations we shall make use of Dr. Bauernfeind's investigations, as presented in Nos. 1478-1480 and in Nos. 1587-1590 of the Astronomische Nachrichten, (1866.) These developments are preferred to others on account of completeness, and for the reason that the simple fundamental assumptions made respecting the physical constitution of the atmosphere apparently lead to results in tolerably close conformity with experience.

Terrestrial refraction between any two stations is conceived as the difference of the astronomical refractions of a ray of light passing between them, and the equation to the refracted ray is determined with consideration of the particular circumstances of atmospheric pressure and temperature, as noted at the intersecting stations.

Let-
$\alpha_{0}=0.00027895$, a mean value for constant of refraction, at
$\beta_{0}=29.6$ inches ($751^{\mathrm{mm}} .83$) of atmospheric pressure, and
$\theta_{0}=5070.7$ Fahr., counted from the absolute zero;
$\beta=$ olserved atmospberic pressure, the mercurial column being at the temperature of freezing water;
$\theta=$ observed temperature $=459^{\circ}+\tau$, where τ must be expressed in degrees of Fahren. heit's scale;
$a=\frac{\theta_{0} \beta}{\theta \beta_{0}} \alpha_{0}=\frac{[7.67983] \beta}{459+\frac{z}{\gamma}}$ the rectangular brackets, including a logarithm and β to be expressed iu inches; \dagger
$r_{0}=$ the radius of curvature to the earth's surface in the latitude of the middle point of the are joining the stations and in the azimuth of the line;
$\boldsymbol{m}_{0}=$ a second constant (for a given latitude and elevation) depending on the refraction, and $=0.007464$ for the latitude of Königsberg; its values for various latitudes are given in the following table:

Lat.	m_{0}	$\operatorname{lng} m_{6}$	Lat.	m_{0}	$\log m_{0}$	Lat.	m_{0}	$\log m_{0}$
0	0.00-300	7.01907	$\stackrel{\circ}{41}^{2}$	0.007740	7.88875	$\begin{aligned} & { }_{51} \end{aligned}$	0.007547	7. 87782
10	8253	. 91666	42	719	8756	52	528	7668
20	8135	. 91040	43	697	8632	53	510	7564
30	7939	. 89977	44	675	8508	54	491	7454
35	7857	. 88531	45	655	8395	55	473	7351
$3{ }^{3}$	7839	. 83426	46	637	829\%	60	388	6856
37	7818	. 89310	47	619	8190	65	303	6352
38	7800	. 89214	48	602	8093	70	262	0109
39	7779	. 89092	49	585	7996	80	185	5646
40	7759	. 88984	50	567	7892	90	161	5499

[^13]$h=$ elevation of observing-station above the sea-level;
$y=\frac{h}{m_{0} r_{0}}$ and $m=\frac{(1-y)^{6}}{1+m_{0} y} \cdot \frac{a_{0}}{a} \cdot m_{0} ;$ also $v=\frac{5 \alpha}{m} ;$
$\rho=r_{0}+h$;
$d=$ horizontal linear distance between the two stations at the sea-lerel, expressed in metres;
$\psi=\frac{d}{r_{0}}=$ distance in parts of radius or $\frac{[5.3144251] d}{r_{0}}$ in seconds of arc ;
$\Delta h=$ difference of height;
$\zeta=$ observed zenith-distance; and
$p=\frac{m\left(\cos ^{2} \zeta+1-v\right)}{\cos ^{2} \zeta}$
$\Delta h=\rho \psi\left\{\cot \zeta+\frac{\cos ^{2} \zeta+1-v}{2 \sin ^{2} \zeta} \psi+\frac{2 v \cot \zeta}{3 m \sin ^{2} \zeta} \psi^{2}+\frac{v(p-3) \cot ^{2} \xi}{6 m^{2} \sin ^{2} \zeta} \psi^{3}+\ldots\right\}$
H $=$ elevation of observed station $=h+\Delta h$
Applying these formulæ to the hourly observations of zenith-distances, we obtain the follow. ing resulting values for difference of height:

These results are shown graphically on the accompanying diagram, which also gives a representation of the observed pressure and temperature of the air at the two stations.

It will be seen that the accord with the result from the leveling-operation is quite close, the difference only amounting to $0^{\mathrm{m}} .21$; but if we compare the results derived from the tro stations separately, we have a difference of $1^{\mathrm{m}} .88$, which reduces to $1^{\mathrm{m}} .36$ if we confine ourselves to the hours between 9 and 4 , both inclusive. This would indicate that the adopted constant of refraction requires a small change to suit the particular circumstances. The obscrvations at Bodega Head give too much difference of height, and the observatious at Ross Mountain too little difference of height. In either case, the constant employed makes the ray of light pass above the true height, which indicates that the adopted radii of curvature of the ray are too great, or that the assumed refraction is too small. If we increase α_{0} or v by one-ninth of its value, we find results which, in their mean values, are almost identical, viz, from observations at Bodega Head, $598^{\mathrm{m}} .69$; from Ross Mountain, $598^{\mathrm{m}} .35$; mean, $598^{\mathrm{m}} .52$; and after omitting results for the hours 7 and $8 \mathrm{a} . \mathrm{m}$. and $5 \mathrm{p} . \mathrm{m}$, when the atmosphere is too much agitated by currents, from observations at Bodega Head, $598^{\mathrm{m}} .40$; from Ross Mountain, $598^{\mathrm{m}} .58$; mean, $598^{\mathrm{m}} .49$. The character of the curves, as given
on the diagram, remains the same for any small change in a_{0}, but the investigation of the angles of refraction makes the desirability of any such change a matter of doubt.

Let-
Z and $Z^{\prime}=$ the true zenith-distances at the lower and upper stations, refraction having no existence;
H and $\mathrm{H}^{\prime}=$ the known (by level) elevations of the two stations; also $\mathrm{H}_{0}=\frac{1}{2}\left(\mathrm{H}+\mathrm{H}^{\prime}\right)$; and $d \psi r_{0}=$ the same quantities as before.
Then the values of Z and Z^{\prime} can be found from the expressions-

$$
\begin{aligned}
& \frac{1}{2}\left(Z^{\prime}+Z\right)=90^{0}+\frac{1}{2} \psi \\
& \frac{1}{2}\left(Z^{\prime}-Z\right)=\tan ^{-1}\left\{\frac{H^{\prime}-I I}{d}\left(1-\frac{H_{0}}{r_{0}}-\frac{d^{2}}{12 r_{0}{ }^{2}}\right)\right\}
\end{aligned}
$$

And the angles of refraction become-

$$
\begin{aligned}
\Delta \xi=\xi-Z ; \text { also the total refraction } r & =\Delta \zeta+\Delta \xi^{\prime} \\
\Delta \xi^{\prime}=\xi^{\prime}-Z^{\prime} & =\psi+180^{\circ}-\left(\zeta+\xi^{\prime}\right)
\end{aligned}
$$

In our case $Z=88^{\circ} 34^{\prime} 32^{\prime \prime} .9$ and $Z^{\prime}=91^{\circ} 37^{\prime} 36^{\prime \prime}$. 1 .
The following table contains the resulting refraction for the hourly measures:

Hour.	$\begin{gathered} 180^{\circ} \\ \left.-(5) \zeta^{i}\right) \end{gathered}$	τ	Observed angle of refraction at-	
	' ${ }^{\prime}$	17	1 "	\% 11
$7 \mathrm{a} . \mathrm{m}$.	-9 22.1	246.9	121.1	125.8
$8 \mathrm{a} . \mathrm{ma}$.	34.4	34.6	15.9	18.7
9 a . If.	55.5	13.5	3.8	9.7
$10 \mathrm{a} . \mathrm{m}$...	57.5	11.5	2.8	8.7
11 a.m.	53.5	15.5	7. 6	7.9
Noon	51.6	17. 4	7.9	9.5
$1 \mathrm{p} . \mathrm{m}$	47.8	21.9	10.8	10.4
$2 \mathrm{p} . \mathrm{m}$	44.5	24.5	9.9	14.6
$3 \mathrm{p} . \mathrm{m} \ldots$	44.8	24. 2	11.5	12.7
4 p. m...	46.7	22.3	12.1	10.2
$5 \mathrm{p} . \mathrm{m}$.	33.7	35.3	20.8	14.5

The values for the total refraction, r, show the ordinary diurnal variation, the refraction being least soon after 10 a. m., as exhibited in the second figure of the accompanying diagram, where, however, the value of $\frac{1}{2} r$ is represented.

These results from the observed refractions present the anomaly of the refraction at the upper station being greater than the simultaneous refraction at the lower station, except at the afternoon-hours 1, 4 , and 5 , when the reverse takes place.

Owing to this fact, we do not think it advisable to make any change in the value of α_{0}.
The angle of refraction for any particular state of the atmosphere with respect to pressure and temperature may be found from the following expressions given by Banernfeind:

$$
\begin{aligned}
& \Delta \xi=\frac{1}{2} v \psi\left\{1-\frac{4 v-m(5-6 v)}{3 v} p_{0} \psi-\left(\frac{1}{3} p+1\right) p_{0}^{2} \psi^{2}-\ldots \ldots\right\} \\
& \Delta \xi^{\prime}=\frac{1}{2} v \psi\left\{1-\frac{8 v+m(5-6 v)}{3 v} p_{0} \psi-(p-5) p_{0}^{2} \psi^{2}-\ldots \ldots\right\}
\end{aligned}
$$

for the lower and upper stations; also the difference of refraction:

$$
\Delta:-\Delta \zeta^{\prime}=\frac{1}{3} p_{0} \psi^{2}\left\{2 v+m(5-6 v)+v(p-9) p_{0} \psi+\ldots \ldots \ldots\right\}
$$

where $p_{0}=\frac{\cot \xi}{m}$ and $p=\frac{m\left(\cos ^{2} \zeta+1-v\right)}{\cos ^{2} \zeta}$ as before.

Applying these formulae, the angles of refraction at the lower station should be greater by $1^{\prime \prime} .1$ than the corresponding angles at the upper station.

The cause of the apparent anomaly of an observed greater refraction at the upper than at the lower station may be due to difference of station-errors or of that part of tie deviation of the plumbline which is effective in the vertical planes passing through the two stations. This cause would be a constant one. Or it may be due to a difference in the law of decrease of temperature with incrcase of height. Thus, the more rapid the decrease of temperature, the smaller the refraction, and, on the contrary, the slower the decrease of temperature, the greater the refraction. With a sufficiently rapid decrease of temperature the refraction may become zero, (and even be negative;) with no decrease, or for a constant temperature, the refraction is very large, and will yet increase should the temperature increase (with the height) instead of decrease. Winds at different altitudes, the currents having different temperature, sufficiently explain such occurrences.

Small defects in the absolute value of the atmospheric temperature are of little consequence with regard to measures of height; thus an increase or decrease of 10° Fahrenheit would only produce an increase or decrease of $0^{\mathrm{m}} .14$ in the difference of height of Bodega Head and Ross Mountain.

In asing the ordinary simple expressions for difference of height, taking the ray of light to be part of an are of a circle, or the refractions cqual at the two stations, which answer well enough for short distances and small heights, a knowledge of the so-called co-efficient of refraction (k) may often be desirable; it is nearly $\frac{1}{2} v$, and may be found for any particular pressure and temperature of the atmosphere by-

$$
2 k=v\left(1-2 p_{0} z^{\prime \prime}+\left(2-\frac{2}{3} p\right) p_{0}^{2} u^{2} \ldots \ldots \ldots \ldots \ldots\right)
$$

the letters baving the same signification as before. In the present case we can find for 9 a. m., at the Bodega Head station, $k=0.088$, whereas for that hour the reciprocal and simultaneous zenithdistances* give $k=0.092$, as found by-

$$
k=\frac{1}{2}+\frac{180-(5+\varepsilon)}{2}
$$

The following table contains the values of $\frac{1}{2} v$ for latitude 38° and for various atmospheric pressures and temperatures:

Pressure.	$30^{\circ} \mathrm{F}$.	$50^{\circ} \mathrm{F}$.	70 F	$90^{\circ} \mathrm{F}$.
30 inches.	0.094	0.090	0.087	0. 084
28 inches	0.088	0.084	0.081	0. 0 \%
26 inches.	0.0e9	0.078	0.075	0. 043
24 inche	0.076	0.073	0.070	$0.06 i$

Further and more extended observations for the daily variation of refraction have been authorized by the Superintendeut, and it is to be hoped that these may soon be made.

[^14]

3.-RESULTS OF HOURLY OBSERVATIONS OF THE ATMOSPHERIC PRESSURE FOR DIFFERENCE OF HEIGHTS OF THE STATIONS.

In the present state of barometric lypsometry it is most desirable to make and discuss barometric observations specially undertaken with a view of contributing information respecting the daily and the annual variation in deduced heights. It is only by means of such observations, made in different climates and under different circumstances, that we can secure the foundation for corrections to be applied to computed_differences of heights measured barometricalls at any hour of the day and any season of the year.

Ramond, about 1810, appears to have been the first to notice the relation between barometric-ally-deduced beights and the time of the day when these measures were taken. The annual variation was also indicated by his results. Kreil proposed the use of annual means of pressure and temperature to secure reliable results, especially for the case when the two stations lie horizontally a great distance apart.

Among those who have more recently occupied themselves with this subject may be mentioned Professor Plantamour, Dr. Bauernfeind, Dr. Rühlmann, and Major Williamson, U. S. A. Plantamour's Tables of Corrections have been reproduced in the Meteorological and Phssical Tables, pablished by the Smithsonian Institution, (third edition, 1859.) Further information will be found in Ruihlmanu's small but valuable work: "The Barometric Measurements of Heights and their Relation to the Constitution of the Atmosphere," Leipzig, 1870.*

A mong the conclusions reached are the following: Differences of heights, barometrically determined, appear to attain their maximum value shortly before the time of greatest heat of the day; they decrease rapidly during the afternoon, and slowly during the night, reaching their minimum about one or two hours before sunrise. From the least to the greatest value the rise is rapid. This daily variation in the computed heights appears fully dereloped only for those days on which the insolation of the ground is complete under a clear sky, and the loss of heat during the night by radiation is not interrupted. On cloudy or winds days the amplitude of the variation is much diminished, without, however, totally disappearing. The magnitude of the daily rariation, besides being dependent on the seasou of the year, is affected by local circumstances, connected with the capacity of the ground for absorption aud radiation of heat. Resulting heights, determined from daily or monthly means, also show an aunual period; they are found too small in winter and too great in summer. The amplitude of the annual variation is less than that of the daily variation. Heights determined from annual means generally give results differing little from the truth.

Observations are recommended to be made at the following hours, when the daily and annual variations are supposed to pass through zero-value:

$$
\begin{aligned}
& \text { In January, at } 1 \text { p. m. } \\
& \text { In February, at } 10 \text { a. m. and } 4 \text { p. m. } \\
& \text { In March, at } 8 \text { a. m. and } 6 \text { p. m. } \\
& \text { In April, at } 7 \frac{1}{2} \text { a. } \mathrm{m} \text { and } 7 \mathrm{p} . \mathrm{m} \text {. } \\
& \text { In May, at } 7 \mathrm{a} . \mathrm{m} \text {. and } 7 \mathrm{p} \text {. m. } \\
& \mathrm{In}^{-} \text {June, at } 6 \frac{1}{2} \mathrm{a} . \mathrm{m} \text {. and } 9 \mathrm{z} \text { p. m. } \\
& \text { In July, at } 6 \frac{1}{2} \text { a. m. and } 9 \frac{1}{2} \text { p. m. } \\
& \text { In"August, at } 7 \text { a. m. and } 7 \frac{1}{2} \mathrm{p} . \mathrm{m} \text {. } \\
& \text { In September, at } 8 \mathrm{a} . \mathrm{m} \text {. and } 6 \mathrm{p} . \mathrm{m} \text {. } \\
& \text { In October, at } 10 \mathrm{a} . \mathrm{m} \text {, and } 3 \frac{1}{2} \mathrm{p} . \mathrm{m} \text {. } \\
& \text { In November, at } 10 \frac{1}{2} \text { a. m. and } 2 \frac{1}{2} \mathrm{p} \text {. m. } \\
& \text { In December, at no time. }
\end{aligned}
$$

These hours refer to the middle of each month and to an average state of the atmosphere, and must be considered as correct only for the actual circumstances under which they were obtained; how far they apply to our various climatic conditions remains to be ascertained experimentally.

The recognized cause of the daily variation in the computed differences of heights is the defect

* This pamphlet contains a historical sketch of the development of barometric hypsometry, and includes a compilation of the principal barometric formulae offered by various writers, chronologically arranged; also a table of the literature of this branch of meteorology.
ive mean temperature introduced by the supposition that the mean of the observed temperatures at the two stations equals that of the intervening stratum of air. The daily variation of temperature, under a clear sky, is less the higher we rise above the surface, and is very small in the higher strata. The thermometers, which cannot be elevated sufficiently to place them above the influence of the radiation and conduction of the soil, cau, therefore, give but very defective information respecting the temperature of the elevated strata of air, except in the case of an overcast sky. The problem of barometric measures has, therefore, been inverted, and the mean temperature of the air has been computed from the observed pressures, and the difference of altitudes otherwise known or determined. This process leads to a system of corrections to the observed temperatures to be applied in the computation of ordinary hypsometric measures by means of the barometer.

It matters comparatively little which of the generally-recognized barometric formulae is used; or the case in hand we select from the class of formulae which introduce a distinct term for observed humidity, that given by Dr. Rühlmann, for which see his work on Barometric Measurements of Heights, (Leipzig, 1870,) or Astronomical Tables and Formulae, by Dr.C.F. W. Peters, (Hamburg, 1871.) Plantamour's and Batuernfeind's formulae give almost identical results, which, in the present case, are about three-fourths of a metre in excess; on the other hand, Laplace's, Baily's, and Loomis' formulae, all based upon an arerage degree of humidity, give results about one and one-half metre in defect of the result by Ruihlmann's formula. The effect ou the calculated height of the term, involving the hygrometric state of the air, is comparatively small; in the present case the result for complete saturation being $2^{\mathrm{m}} .7$ greater than the results supposing absolute dryness.

Let-

$h=$ difference in height, expressed in metres;
$b^{\prime}, b^{\prime \prime}=$ atmospheric pressure at the lower and upper stations, both readings reduced to refer the temperature of the mercury to that of freezing water; in the term involving the vapor pressure b^{\prime} and $b^{\prime \prime}$ should be expressed in millimetres;
$t^{\prime}, t^{\prime \prime}=$ atmospheric temperature, expressed in centigrade scale, at the lower and upper stations;
$\sigma^{\prime}, \sigma^{\prime \prime}=$ the vapor-pressure, expressed in millimetres, at the lower and upper stations;
$z=$ height of lower station above the sea-level; and
$\varphi=$ mean latitude of the stations:
then-

$$
\begin{gathered}
h=18400.2\left(1.00157+0.003075 \frac{t^{\prime}+t^{\prime \prime}}{2}\right)\left(1+0.378 \frac{\frac{\sigma^{\prime}}{b^{\prime}}+\frac{\sigma^{\prime \prime}}{b^{\prime \prime}}}{2}\right) \\
\times(1+0.002623 \cos 2 \varphi)\left(1+\frac{2 z+h}{6378150}\right) \log \frac{b^{\prime}}{b^{\prime \prime}}
\end{gathered}
$$

The logarithms of these terms are tabulated,* and putting for convenience-

$$
\begin{array}{ll}
\log \left\{18400.2\left(1.00157+0.003675 \frac{t^{\prime}+t^{\prime \prime}}{2}\right)\right\} & =\mathrm{A} \\
\log \left\{\log b^{\prime}-\log b^{\prime \prime}\right\} & =\mathrm{B} \\
\log \left\{1+\frac{0.378}{2}\left(\frac{\sigma^{\prime}}{b^{\prime}}+\frac{\sigma^{\prime \prime}}{b^{\prime \prime}}\right)\right\} & =\mathbf{C} \\
\log \{1+0.002623 \cos 2 \varphi\} & =\mathbf{D} \\
\log \left\{1+\frac{2 z+h}{637815}\right\} & =\mathrm{E}
\end{array}
$$

we have-

$$
\log h=\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}+\mathbf{E}
$$

If T and $T^{\prime}=$ temperatare of dry and wet bulb, $e=$ maximum vapor-tension at \mathbf{T}^{\prime}; then $\sigma=e-0.0008\left(\mathbf{T}-\mathrm{T}^{\prime}\right) b$
and in case the wet bulb is coated with ice,

$$
\sigma=e-0.00069\left(\mathrm{~T}-\mathrm{T}^{\prime}\right) b
$$

*Rithmann's Table I (also that given in Peters' tables) requires a small correction, easily applied, in the last place of decimals, to produce perfect accord with the numbers in the formula. It has been supplied in the present application.

The mean value of σ or $\frac{\sigma^{\prime}+\frac{\sigma^{\prime \prime}}{2}}{}$ and the mean pressure $b=\frac{b^{\prime}+b^{\prime \prime}}{2}$ form the arguments for the table giving the value of C with sufficient approximation.

The following table contains the resulting differences of height between Bodega Head and Ross Mountain for each of the observing-hours, and their excess (indicated by a minus sign) over the true difference, as found by the spirit-level:

Hour.	h	598.74-h
7 a.m.	$\begin{gathered} \text { m. } \\ 598 . B 0 \end{gathered}$	$\begin{aligned} & \quad m \\ & -\quad 0.06 \end{aligned}$
8 a. m	600.98	$\rightarrow 2.94$
9 a. m.	605.59	- 6.78
$10 \mathrm{a} . \mathrm{m}$.	60\%. 65	- 8.91
11 a. m.	608.84	-10.10
Noon	609.17	-10.43
1 p.m.	610.34	-11.60
$2 \mathrm{p} . \mathrm{m}$.	609. 73	-10.99
$3 \mathrm{p} . \mathrm{m}$.	608. 94	-10.90
4 p.m.	607.98	- 9.24
$5 \mathrm{p} . \mathrm{m} .$.	604.32	5.58

The small effect of variations in moisture in these results has already been stated; to ascertain effects of small changes in pressure and in temperature we have-

$$
d h=h\left\{\frac{a d \tau}{1+a \tau}+\mathbf{M} \frac{d b^{\prime}}{\log b^{\prime}-\log b^{\prime \prime}}\left(\frac{1}{b^{\prime}}+\frac{1}{b^{\prime \prime}}\right)\right\}
$$

where-

$$
\tau=\frac{1}{2}\left(t^{\prime}+t^{\prime \prime}\right) ;
$$

$\alpha=0.003675$;
$\mathbf{M}=$ modulus of common logarithms; and
$d b^{\prime \prime}=-d b^{\prime}$.
Supposing an error in the reading of the barometers of 0.004 inch, or 0.1 millimetre nearly, to have been committed at each of the stations, (but of opposite signs,) we find $d h=2.3$ metres; hence, in the mean value from five days of observations we may expect a remaining uncertainty of nearly one metre.

Supposing an error in the reading of the thermometer of $\frac{10}{3}{ }^{\circ}$ Fahrenheit, nearly $0^{\circ} .2$ centigrade, we have $d h=0.4$ metre, showing that the uncertainty in any one of the above hourly results arising from imperfect readiugs of instruments may be taken as $\frac{1}{\frac{1}{0} 0_{0}^{0}}$ of the height nearly.

The computed differences of height for each hour are shown in the accompanying diagram, to which has been added the resulting vapor-pressure at the two stations, as computed from Major Williamson's table.* The deduced vapor-pressures, as well as the observed temperatures at the two stations, are strictly local results, and give no true indication of the humidity and temperature of the intervening stratum of air.

The true difference of height and the pressure at the two stations being known, we find the mean temperature of the air depending upon these data by-

$$
\tau=\frac{1}{a}\left(\frac{h}{h\left(\log b^{\prime}-\log b^{\prime \prime}\right)}-1\right)
$$

where k represents the constant in the approximate expression-

$$
h=k(1+\alpha \tau) \log \frac{b^{\prime}}{b^{\prime \prime}}
$$

Butit is more convenient and accurate to make use of the tables, forming the values $\frac{\log h}{\mathrm{~B}+\mathbf{C}+\mathrm{D}+\mathrm{E}}$, and entering the first table, which gives the value of $2:$ directly. Converting the hourly values of

[^15]τ so found into their equivalents in Fahrenheit degrees, we obtain the following numbers:

Hour.				
$7 \mathrm{a} . \mathrm{m}$.	$\stackrel{5}{40 .} 4 \mathrm{~F} .$	$\stackrel{\circ}{46.4} \mathrm{~F} .$	${ }_{0}^{\circ} 0.0 \mathrm{~F}$.	${ }^{\circ} \mathrm{C} .0 \mathrm{~F}$.
$8 \mathrm{am} . \mathrm{m}$.	48.4	46.4	-2.0	-0.6
$9 \mathrm{a} . \mathrm{m}$	31.4	45.6	-5.8	-2.6
10 a.m.	53.4	46.0	-7.4	-4.2
$11 \mathrm{a}, \mathrm{m}$.	54.7	46.2	-8.5	-5.1
Noor .	55.6	46.8	-8.8	-5.8
$1 \mathrm{p} . \mathrm{m}$.	56.3	46. 4	-9.9	-6.0
$2 \mathrm{p} . \mathrm{m}$.	55.2	46.0	-9.2	-5.5
$3 \mathrm{p} . \mathrm{m} .$.	54.5	45.9	-8.6	-4.6
${ }^{4} \mathrm{p} . \mathrm{m}$.	53.2	45. 7	-7.5	-3.3
$5 \mathrm{p} . \mathrm{m}$.	51.4	46. 6	-4.8	-2.0

The numbers in the last column are interpolations from Plantamour's Table XI, p. D. 82, of third edition of the Smithsonian Meteorological and Physical Tables; they refer to March 24, and were converted into degrees of Fahrenheit.

We thas arrive at the remarkable result that the temperature of the intervening stratum of air is nearly constant, viz, $46^{\circ} .2$, and shows apparently no trace of a daily variation, the rays of the sun passing throngh without sensibly heating it. The daily variation of temperature, therefore, would seem to be confined mainly to the layer of air in contact and close proximity to the earth's surface. The corrections derived from Plantamour's table (deduced from observations at Geneva and the great Saint Beruard) are smaller than those deduced from our observations, but the latter refer to a clear sky, (the heliotropes having been seen every hour.) To make Plantamour's corrections answer for our case, they require to be increased by two thirds of their amount; for the case of an orercast sky they must be diminished possibly by one-half or more. The one-third of the total solar radiation, which may be absorbed by the atmosphere, is probably consumed by the processes of expansion and evaporation, and thus gives no sensible heat. In the present case, however, the daily variation of temperature is very small, owing to the proximity of the ocean, and different and apparently less anomalous results may be expected for stations farther removed from the coast.

To estimate the effect of a small error in the observed pressure on the deduced mean temperature, and supposing, as before, $d b^{\prime \prime}=-d b^{\prime}$, we have from-

$$
d \tau=\frac{\mathrm{M}(1+a \tau)}{\alpha\left(\log b^{\prime}-\log b^{\prime \prime}\right)}\left(\frac{1}{\bar{b}^{\prime}}+\frac{1}{b^{\prime \prime}}\right) d b^{\prime}
$$

the relation $d \tau=10.8 d b^{\prime}$; hence, for $d b^{\prime}=0.1$ millimetre, $d \tau=10.1$ centrigade, or nearly 2° Fahrenheit, which shows the extreme sensitiveness of the operation.

If the barometric observations alone had been available, the safest result that might hase been deduced from them would have been that interpolated for the epoch $7 \frac{3}{4} \mathrm{a} . \mathrm{m}$., which is $600^{\mathrm{m} .5}$, and $1^{\mathrm{m}} .8$ in excess of the true value.

Table of logarithos of radius of curvature to the earth's surface, for warious latitudes and aimuths, based upon Clarlie's ellipsoid of rotation (1866), and for metric whit.

220 cs

APPENDIX No. 12.

REPORT ON THE LEVELING OPERATIONS BETWEEN KEYPORT, ON RARITAN BAY, AND GLOUCESTER, ON THE DELAWARE RIVER, TO DETERMINE THE HEIGHT ABOVE MEAN TIDE OF THE PRIMARY STATIONS BEACON HILL, DISBOROUGH, STONY HILL, MOUNT HOLLY, AND PINE HILL, BY RICHard d. CUTTS, ASSISTANT, COAST SURVEY, IN CHARGE OF SECONDARY TRLANGULATION.

Heights above mean Tide determined by the spirit-hevel.

The leveling was executed in 1870 by Charles Ferguson, esq., Sub-assistant, United States Coast Surrey.

The line started from mean tide at Keyport, on Raritan Bay, and, following the route most convenient for determining the height of the primary stations, ended at mean tide of the Delarare River at Gloucester City. The route pursued was not, therefore, the most direct; the one preferred being that on which the longest extent of tornpike and railroad track could be made arailable. The length of the main line was seventy-seven miles, and of the offisets, thirteen miles; the total distance leveled and releveled, one section after the other, being one handred and eighty miles.

The observations are contained in ten volumes. These latter will show the different sections into which the main line was divided ; the offsets to the triangulation-stations Beacon Hill, Disborough, Stony Hill, and Mount Holly; also, the offsets to the barometer-stations; and, finally, the height above mean tide of the bench-marks established at the villages through which the line passed.

An additional line of levels was run in 1871 by Mr. B. A. Colonna, aid United States Coast Survey, to connect the triaugulation and barometer station Pine Hill with the bench-mark at Gloucester City.

TIDAL STATIONS.

A tide-staff was set up at Keyport and another at Gloucester City, and the tides were observed at each station during a half-lunation for the purpose of determining the level of meau tide. This level, or the computed half-tide mark on the staff, was then transferred to a permanent bench-mark established in the vicinity of each tide-gauge; these two bench-marks being the termini of the line of levels.

INSITRUMENTS.

The instrument used was a pivot-level made by Würdemann. The telescope possessed a magnifying power of 30 , was provided with a reticule of three fixed horizontal wires about 4^{\prime} apart, and of two vertical wires, and with a riding-level, a division of which represented $3^{\prime \prime}$ in are at the average temperature at which the instrument would be used in the field.

The leveling-rod was made of seasoned Honduras mahogany and painted white; was $3^{\mathrm{m}} .2$ in length by $0^{m} .06$ in width and $0^{m} .04$ in thickness; and was provided with a wooden handle attached to the back part, about 5.6 feet above the bottom, and by means of which the rod could be carried and held in position, and, with two small levels, fixed at right augles, to secure its verticality. To prevent displacement, or change of level, when the rod was turned round for the back sight, the foot of the rod, incased in brass, terminated in a cylindrical button, fitted to and moviug freely in the socket of the iron foot-plate on which it rested. This plate, six inches in diameter, was armed underneath with sharp pointed legs, so that when it was dropped by the rod-man on reaching his station, it could be firmly planted in the ground by a stamp or two of the foot. A light chain, with a ring as a handle, was attached to the plate, by which the latter could be readily taken up
and carried forward by the rod-man. Three of such rods and foot-plates accompanied the levelinginstrument, two sets for constant use and the other held as a reserve.

The rods were divided to centimeters, the divisions aud comparisons having been made at the Coast Surves Ottice in Washington.

FLELD OBSERVATIONS AND RECORDS.

The first operation consisted in determining the values of the instrumental constants, viz:

1. Of a division of the level;
2. Of the angular distance between the horizontal wires; and
3. Of the reduction of the mean of the three wires to the middle wire.

By means of these constants, tables were made out, which gare, by inspection,
A. The distance of the instrument to the rod;
B. The correction to reduce the mean of the three wires to the middle wire;
C. The correction on account of the want of level at the moment of observation, and of the daily recorded instrumental errors; and
D. The correction for difference of distance between the back and fore sights.

The order in which the obserrations were made and recorded, and the directions followed in conducting the operation, may be stated as follows:
I. An adjustment of the instrument, either complete or closely approximate, with all the details duly entered in the record.

This adjustment was made at the commencement and end of each day's work, and consisted-
a. In making the axis of the level parallel with the optical axis of the telescope;
b. In making the axis of the level perpendicular to the vertical axis of the instrument; and
c. In bringing the middle horizontal wire and the middle of the two vertical wires in the optical axis of the telescope.

When this adjustment was approximate only, Tables B and C onabled the computer to apply the necessary corrections to the results of the day's leveling.
II. The placing of the instrument midway, and, if possible, in line between the two rods. In cases where the distance between the back and fore sights was necessarily or by accident unequal, as showu by the recorded differences between the extreme wires, Table \mathbf{D} supplied the correction to be applied on account of the resulting inequality of curvature and refraction.
III. The protection of the instrument from the direct rays of the sun by a cap when carried and an umbrella when in use.
IV. The adjustment for verticality of axis; of the focus for distinct vision; of the bubble to the middle of the tube and the recording of the divisions as shown by the eye and object ends; the reading of the heights on the rod crossed by the three wires, and the second reading and recording of the level-bubble. Table \mathbf{C} supplied the correction for the difference between the readings of the two ends of the bubble.
V. Bench-marks were established at the end of each day's work, at the different villages through which the line was carried, and whenever from any cause the leveling was suspended.

The details of the work were carried out in conformity with the order and principles contained in instructions specially prepared for the instrument used and the object in view, under the four following headings:

1. Tide-gauge, records, and tidal-station or bench-mark.
2. Adjustment of the instrument.
3. Formula, constants, and corrections.
4. Geueral directions for ranning a line of levels.

The relereling was required, not merely for the sake of verification, but for precision, as it is a well-established fact that there will be always a differeuce, irrespective of instrumental and personal errors, between the results obtained by the leveling of a line in one direction, and then back again to the starting point.

The heights will be giveu in all cases above the mean tide of Raritan Bay; the description of the principal bench-marks is given in the records.

Since the Annual Report of 1870 was published, in which the preceding part of the report of Assistant Richard D. Cutts appeared, one of the sectious of the main line and one of the offsets, in each of which there was a discrepancy between the forward and back measurements, have been releveled by Sub-assistant John N McClintock, and a revision made at the office of the results as well from the barometric as from the spirit-leveling observations.

The following table contains the heights, above the half-tide level, of the different bench-marks which were established on the main line from Keyport, on Raritan Bay, to the Delaware River, at Gloucester City, three miles below Philadelphia:

TABLE I.

The leveling shows that the half-tide level of the Delaware River at Gloucester City js $\boldsymbol{1}^{m} .04$, or 3 feet 5 inches, above the half-tide level of the ocean, supposing that the level of Raritan Bay is the same as that of the ocean, and that the tides in Delaware River were in their normal state, as believed to have been.

The next table contains the heights above half-tide of the primary stations of Beacon Hill, Disborough, Stony Hill, Mount Holly, and Pine Hill, determined by offsets from the main line.
table II.

Primary-triaustulation stations.	Forward measurement.	Back measarement.	Height abore halftide.	
Beucl-mark, Morgansville	Meters.	Meters.	Mcters. 52. 472	Feet. 172.10
Thence to bench-mark, Beacon Hill atation Bench-mark, Barnt Tavorn	$+61.257$	61.226	$\begin{array}{r} 113.713 \\ 63.730 \end{array}$	$\begin{aligned} & \text { 373. } 08 \\ & 209.09 \end{aligned}$
Thence to bench-mark, Disborongh station. Bench-mark, Hornerstown	-13.620	13.674	50.083 25.406	$\begin{array}{r} 164.32 \\ 83.35 \end{array}$
Thence to beuch-mark, Stony Eill station	+ 43.342	46.023	71. 583	234.87
Bench-mark, Mount Holly railroad-bridge			4.602	15.10
Thence to bench-mark, Sharpe's Corner.	+ 9.034	9.045	13.641	44.75
Thence to bench-mark, Mount Holly station	+41.614	41.716	55.306	181.45
Bench-mark, Buena Vista House, Gloucester			3. 480	11. 22
Theace to beach-mark, Ewen's house	$+10.367$	10.327	13. 767	45.17
Thence to beach-marls, Haddonstield	+ 8.784	8.816	22.567	74.04
Thence to bebcl-mark, Whitehorse station	- 2.892	2.912	19.663	64.52
Thence to bencl-mark, Taggart's house, Clemonton	+ 3.504	3.439	23. 163	75.99
Tbence to heheh-mark, Pine Hill station	+ 38.291	38.241	61. 499	201.54

Table III gives the heights above half-tide of the surface of the mercury in the cisterns of the barometers used in the hypsometric operations referred to in Appendix 8 of the Annual Report for 1870, so far as those heights were determined, as in the previous cases, by the spirit-level.
'TABLE III.

The lines of level were not extended to the triangulation and barometer stations of Mount Rose, Newtown, Willow Grove, Yard, Bethel, and Lippincott, as it was intended to measure the altitude of these stations by the barometer; and with this view, the difference in height between the bench-mark at each station and the cistern of the barometer observed near it, was determined by the spirit-level, and, as usual, by two distinct measurements.

Bench-mark, Mount Rose station, above cistern of barometer...... 15.639
Bench-mark, Newtown station, above cistern of barometer.......... 12. 237
Bench-mark, Willow Grove station, above cistern of barometer.... 4.876
Bench-mark, Yard station, above cistern of barometer.............. 41.874
Bench-mark, Bethel station, above cistern of barometer 12.674
Bench-mark, Lippincott station, above cistern of barometer........ 8.019
Bench-mark, Stony Hill station, above cistern of barometer 9.018
Bench-mark, Mount Holly station, above cistern of barometer..... 39.285
Bench-mark, Piue Hill station, above cistern of barometer......... 33.937
Bench-mark, Buena Vista House station, above half-tide.......... 3.420
Gloncester cistem of barometer, above half-tide 11.222

In the following table the differences in height determined respectively by the spirit-level and by the barometer are brought together and compared. The barometric results are slightly different from those given in Appendix No. 8, Annual Report of 1870, for the reason that the field-observations taken at $2 \mathrm{p} . \mathrm{m}$. have been excluded, and the differences of height computed from those taken for the middle of July at $6 \frac{1}{2} \mathrm{a} . \mathrm{m}$. and $9 \frac{1}{2} \mathrm{p} . \mathrm{m}$. ; for the middle of August at $7 \frac{1}{2} \mathrm{a} . \mathrm{m}$. and $7 \frac{1}{2} \mathrm{p} . \mathrm{m}$. ; and for the middle of september, those taken at $8 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$. The observations at the above epochs of the day-the latter changing with the month-are now believed to represent the atmospheric pressure, with a close approach to its real value.

The maximum difference between the results now given and those published in 18.0 is 0.3 of a meter.

TABLE IV.

Barometer-stations.	Difference in hoipht.		
	Barometer.	Spirit level.	
	Meters.	Meters.	Meters.
Siony Hill and Mount Holly	47. 16	46. 55	-0.61
Mombt Holly and Gloncenter	7. 006	4.80	-9.86
Gloucester and Pine Hill.	15.60	16. 27	-1.32
Mount Holly aud Pine Mill	10.33	11.47	$+1.14$

From the above comparisons it would appear that the differences given by the barometer may be assumed to be about $0^{\mathrm{m}} .75$ greater than by the spirit-lerel. Hence, in the cases where the altitudes of the stations depend entirely on the barometric differences, it would be but proper to decrease the latter by an amount of at least $0^{m} . \bar{b}$, and it is with this correction that the following final table is made out.

The table shows the resulting heights, above the half tide of Raritau Bay, of all the triangula-tion-stations embraced in the hypsometrical campaign.

TABLE V .

*The difference of heights, Monnt Holly-Stony Hill, was also determined by me by means of zenithdistances at Mount Holly. From these we find for height of Stony Hill, $\mathbf{5 5 m}, 31+16^{\mathrm{m}}, 43=71^{\mathrm{m}}, 74$.

APPENDIX No. 13.

REPORT OF OBSERYATIONS OF THE TOTAL SOLAR ECLIPSE OF DECEMBER 22, 1870, BY GEORGE W. DEAN, ASSISTANT UNITED STATES COAST SURVEY.

Fall River, Mass., March 20, 1871.
Dear Sir: Abont the 1st of September last I was informed by Professor Peirce, Superintendent of the United States Coast Survey, that my services would be required in making arrangements for observing the total eclipse, in Spain, in December.

The special observations assigned to me were those of precision, and, so far as practicable, the determination of the geographical position from principal eclipse-stations in Spain.

As the expedition was to be under your general directions, I improved an early opportunity of conferring with you in regard to its organization and plans of operation.

Our information relating to the meteorological conditions of the winter-climate of Southern Spain being quite limited, it was deemed advisable that I should, at an early date, proceed to England, and there obtain such iuformation on this sabject as might be practicable, and which would prove of great service in selecting the most favorable localities for observing the different phases of the eclipse.

During my stay in England, from the 1st until the 19 th of November, 1 obtained much information in regard to the climate of Sonthern Spain from the astronomer-royal at Greenwich, Louis P. Cassella, esq., and several other scientific gentlemen in London, to all of whom I was indebted for many courteous attentions.

This iuformation seemed to indicate that the probabilities for fair weather in Southern Spain were more promising near the Atlantic coast than upon the shores of the Mediterranean, from the fact that most of the storms in that section came from the south and east.

Information on this point was sought from the commanders and chief officers of the steamers plying between Southampton and ports in the Mediterranean, and also from gentlemen who, for many years, had resided at Gibraltar, all of whom confirmed the information previously obtained, and which I am gratified to state was also the opinion of Capt. Cecilio Pujazon, director of the observatory at San Fernando, and Capt. Jose S. Montop, chief of the Spanish Coast Survey, whom we had the pleasure of meeting at San Fernando early in December.

As the center of the path of the total phase would fall near the city of Jerez, which is located about twenty miles nertheasterly from Cadiz and ten or fifteen miles from the sea-coast, that point appeared to be one of the most favorable in Spain for observing the eclipse, and accordingly you gave directions that all the instruments and equipments of our expedition should be forwarded from Cadiz to Jerez.

The principal eclipse-station was located about a mile northeasterly from the city, in an olivegrove belonging to Messrs. Davies, who placed their grounds and buildings at the disposal of our party without compensation, and rendered most valuable assistance to all the members of the expedition during our sojourn at Jerez.

The requisite lumber for constructing the small observatory, photographic room, \&c., could not at once be obtained, and it was found necessary to have all our boards and scantlings cut from three-inch planks by manual labor. This, with much stormy weather, greatly retarded our preliminary preparations; nevertheless, the work was pressed forward as rapidly as possible, and, at the urgent solicitation of Mr. Willard, the photographic room, and other preparations required by the photographic department, were first completed.

On the 16th of December our small field-observatory was nearly: completet, ami on that evening good observations for astertaining the time aud latitude"were made.

The weather on the two following evenings proved unfarorable; but on the evenings of the $19 t h, 20 t h$, and 21 st, obserrations for time were obtainerf, and the corrections and daily rates of the several chronometers were satisfactority determined.

It may be remarked that the instruments used in ascertaining the local time were a 46 inch transit, with an aperture of 22^{3} inches, (U. S. Coast Suryey No. 5 .) a elronograph-register. (U. S. Coast Survey No. 2,) and two break eircuit chronometers, (Frodsham.)

The transit-instrument was firmly adjusted upou two pine posts, earlis by 12 inches and ad feet in length, which were sunk about 3 feet into the grouml.

Meridian-line.-While the preliminary astronomical observations at the Olirar station were being made, a meridian-line was established from a series of observations non zenith and circumpolar stars with the 46 -inch transit, (U. S. Const Surver No. $\overline{\text { b }}$.)

The length of this line was 146.3 meters, and the termini were marked by stone posts, which were sunk about 21 feet into the ground, and in the top of which small copper bolts were inserted.

Eclipseobservations.-.On the day preceliug the eclipse, all the instruments and telegraphapparatus were adjusted in good working order, and a clondless s'sy gave flattering promises for the following day; but about midnight clouds began to come from the southwest, and at $2 \mathrm{a} . \mathrm{in}$. the sky was entirely covered, and at intervals the rain fell rapidy motil 6 rolock, whell the clouds broke up a little, yet with no positive sigus of clearing.

Thus the day opened with gloomy prospects; still, each olserver went on perfecting his arrangements, meauwhile watehing patiently for views of the sum.

At half past 9 oclock our hopes of success were well-nigh exhauster, when the rain again began to fall rapidy; fortunately, however, the shower was of short daration, and at 10 a . m . the sky in the immediate vicinity of the sum became quite clear. As the time for the first contact drew near, the recording apparatus was placed in working onder, and I obtained a good observation of the begianing of the eclipse, and a few second later a photngraph of the sum was ohtained by Mr. Willard.

At favoralle opportmities during the progress of the eclipse, which continued for tro hours and fifty minutes, photographs of the different phases were taken by Messrs. Willard and Gannett, the exact instant of the exposure of each picture being recorded by the chronograph. As these gentlemen will probably present to you a full report of their photographic operations, it is only necessary for me to give the chronographie record of the several photugraphs, an abstract of which is herewith appended.

The instrument used by me in observing the tirst contact was a telescope (comet-seeker) equa torially monuted, having a focal length of 33 inches, with an aperture of 33 inches and power of 32, for the use of which I was indebted to Prof. C. A. Young.

During the progress of the eclipse, the sum, most of the time, was obseured by clouds, and, as the chronographic record of the photograph required much of my attention, I was unable to note many of the interesting phases of the ectipse.

Two first-class thermometers (made by Cassella, of London) were suspended in the shade upon the north side of our field-observatory, and the temperature was noted every fifteen minutes during the eclipse. At half past 9 a. m. the thermometers indicated $56{ }^{\circ}$, and at 30 minutes past 10, or about fire miuntes after the beginning of the eclipse, the temperature was 60°. As the eclipse progressed the temperature fell slowly for an hour, and at the time of totality it was 590 , and so continued until the close of the eclipse. Had the weather been clear, the temperature wond in all probability have fallen threc or four degrees duriug the echipse.

Just before the beginning of the total phase, an opening through the clouds enabled me to obtain a good observation of the first inner contact, or time of total immerwon, which was recorled by the chronograph.

The formation and rapid disappearance of what are now generally bnown as " Baily's beads" were noted, and the effect was exceedingly brilliant and startling. These observations were madewith a Clark telescope, (cometseeker,) which was equatorialls mounted. Its focal length was 23 C \$
about 36 inches, the aperture 3 inches, and the magnifying power was 25 . This instrument is the property of the Harvard College obsersatory, and I was indebted to *you for its use on this occasion.

In watching the different phases of the eclipse, my eyes were protected by colored glasses of different shades, now generally known as "London smoke;" but no shade-glass was used in observing the beginning of totality.

A few minutes preceding the total $p^{\text {hase, }}$ the force of the wind increased a little and blew in gusts, followed by brief lulls, which at once reminded me that I had before seen a similar phenomenon during the total echipse which I had the pleasure of observing in Kentucky on the 7th of August, 1869.

Several large glass lanterns had been specially provided for use by the photographers and myself during the totality; but Mr. Willard preferred coal-oil lamps, which, very unfortnnately, were not sufficiently protected from the wind, and all his lights were quickly blown ont, when a messenger was dispatched for my lantern, which I promptly sent to Mr. Willard. While I was engaged in procuring another light for the purpose of inspecting the chronographic record, the emersion occurred; and, to my great disappointment, I failed to observe the second inner contact, or the ending of the total phase. From this time until the close of the eclinse the sun was seldom visible, on account of dense cumalus and nimbus clouds, which prevented us from observing the fourth, or last, contact.

The day closed with a violent storm of wind and rain; but, fortunatels, all our instruments whe quickly dismounted and placed nuder shelter without serions damage.

Observations for ascertaining the latitude of the eclipse-station were made by Capt. O. H. Ernst, United States Engiueers; and with the cheerful co-operation of Capt. Cecilio Pujazon, director of the San Fernando observatory, arrangements were made for determining the longitude of the Olivar station, by exchanging time-signals by telegraph, but the unfavorable weather prevented the successful execution of these operations.

Capt. Jose S. Montop, chief of the Spanish Coast Survey, very kiudly offered to connect our eclipsestation with the triangulation of the Spanish surveys; and, in a letter which I have receired since I returned to the United States, dated at San Fernando, January 26, Captain Montop informs me that the proposed observations had been completed, and, from his determinations, the geographical position of our eclipse-station, Olisar do Buena Vista, is as follows: Latitude $36^{\circ} 41^{\prime} 36^{\prime \prime} .4$; longitude east of the observatory at San Fernando, $4^{\prime} 55^{\prime \prime} .3$, or, in time, $19^{\prime} .7$.

In the American Nautical Almanac for 1870, the longitude of the San Fernando observatory is assumed to be $4^{\text {b }} 43^{111} 22^{2} .42$ east of the meridian of Washington, which locates the Olivar eclipse-station $4^{4} 43^{14} 42.1$, east of the observatory at Washington.

In closing this official report, I again desire to express my sincere thanks to Messrs. Davies, at Jerez, for the many civilities, receired from them; and to Capt. Cecilio Pujazon, director of the San Feruando observatory, also to Capt. José S. Montop, chief of the Spanish Coast Survey, my hearty acknowledgments are bereby presented for the official co-operation and friendly attentions which they extended to the American Eelipse Expedition in Spain.

Yours, very respectfull:;

GEO. W. DEAN,
Erecutive Office:

Prof. Joserf Winlock,
Chief of American Eclipse Expedition in Spain.

APPENDIX No. 14.

REPORT OF OBSERVATJON OF THE LCLIPSE OF THE SUN OF DECEMDHE 22, 16π, BY DR. C. H'. F. PETERS, DIRECTOR OF THE LITCHFIELD OBSERVATORY OF HAMILTON COLLEGE.

Dear Str : I have the houor to report upon my participation in the observations of the solar eclipse of 22 D December, 1870 . When, on being appointed a member of the United States Eelipse Expedition to the Mediterranean, I received the gratifying order to accompany the party that, under your personal leadership, was to be stationed in Sicily, I belield that, besides contributing my share in the astronomical observations, the particular duty came necessarily to me to bring to bear what knowledge of the country, acquired there by a longer sojourn in former years, might be furthering the purpose of the expedition. It is consoling to me that while, in the former, the scientitic inrestigation, by a freak of the weather only a very partial success fell to my lot, for the rest, my company at least indirectly has been, as I hope, of some usefulness. This, however, for a great part, is owing to the characteristic hospitality and readiness to assist of the citizens of Catania. The names of some of the gentlemen who thas have hem of special help to us I shall take the pleasure to mention below.

In the preliminary preparations at home 1 directed my attention to fit my apparatus with the purpose to permit case and effectiveness for investigating the solar appendages by direct vision. The eclipse of August, 1869, as observed by myself and the members of my party at Des Moines, Iowa, had intimated so clearly a certain structural arrangement, both in protuberances and in corona, that a closer scrutiny of these phenomena seemed to me particularly desirable. I had at my position an excellent telescone of Steinheil, of four inches aperture, five feet focal length, the gift of Mr. Litchfield on occasion of the preceding eclipse. Its object-glass is of exquisite perfection; it has powers ranging from 40 to 300 , and is cquatorially mounted, with setting-circles and tangent-screw for right-ascensional motion. I had now made, in addition, (by Mr. Chnbbnck, of Utica,) a slide, which holds simultancously three of the ese-picces, so that, by the touch a spring, the power may be changed from the lowest to the highest almost without loss of time and without fear of deranging the position of the telescope. Thus, when all the three eje-pieces are adjusted to focas, and an object is seen near the center of field through the lowest power, in less than a second the highest magnifying-power may be brought to bear upon it. The consideration that nebule and gaseous bodies like comets usually reveal their various features only when riewed and examined under varied proportions between light and power, led me to expect much of the described arrangement in scrutinizing the luminous appendages of the sun.

Moreover, near to and at the side of the ordinary small seeker carried by the tube, (magnifying about nine times, I had attached one of those beautiful little instruments called "hand cometseekers" by Steinheil. The one in my possession, only six inches long, magnifying two and a balf times, with an aperture of one inch, has a field rather more than 17°, which enables the observer to take in at one glance the whole of the eclipse-phenomena, even to the remotest rays of the corona.

These together, therefore, may be said to represent, upon one and the same equatorial stand, five separate telescopes, differing in power and extension of field. The small seeker alone had a sun-glass; a wedge of neutral tint could be applied to either of the three ege-pieces of the large tube for graduating the light according to circumstances.

The instraments were packed in four boxes, and went, with the other instruments of the expedition, from Liverpool by sea directly to Messina. As it was your wish that I might be early in Sicily to reconnoiter for the observing-stations, I left Clinton on October 29, and arrived at Liverpool on November 14. Then, after a few days' sojourn in London, where we conferred with

Mr. Lockyer and some of the other English observers, by the way of Southampton, Gibraltar, and Malta, I reached Catania on December 7. Here I had the pleasure of meeting Mr. Charles A. schott, already arriced two dass before; also the Italian observers were already on the spot, centered at Angosta, and Professor Cacciatore, director of the observatory of Palermo, and vicepresident of the Italian commission, directed a grecting dispatch of welcome to the Americans on Sicilian soil, which was duly responded to in Mr. Schott's and my name.

The following days were spent in looking at localities in the neighborhood of Catania, where the instruments of the various observers might be established, and I extendel my reconnoitering trips over the slope of Mount Etna, and as far as Lentini and Carlentini. The zone of totality (as indicated also on the accompanying sketch) covered the whole southeast corner of the island of Sicily, including Cape Passaro, its northern limit intersecting the east shore of the istand a few miles north of Taormina. It would have been of some interest if observers could have been stationed along the whole coast from Cape Passaro to Taormina, forming a line nearly at right angle to the path of the moon's shadow, and extending nearly across the whole width of it. Various circumstances, however, combined to prevent this scheme. Transportation, especially in the southern part of the island, is still vers difficult, no carriage road leading to Cape Passaro or its surroundings. Alread 5 , for this reason, the more ponderons instruments were necessarily restricted to the neighborhood of the larger towns. Moreover, the photographic and spectroscopic apparatus, besides needing a longer accurate preparation and adjustment in a firm position, were to be stationed not too far from the central line of totality, in order not to have too much curtailed the duration of two minntes in maximum. Fortunately, there were the three towns of Angosta, situated very near the central line, and Syracuse and Catania, about half way from it to the southern and northern limits respectively. The Italian astronomers had established themselves at Angosta; at Syracuse was the party of the United States Naval Observatory; for our photographers, and as headquarters for time and latitude observations, the best opportmity was pre sented at Catania.

There remained the distribution of the portable telescopes for direct eye observation, which, supplementing the spectroscopic inrestigation in this eclipse, it was hoped would essentially contribute to solve the enigma of the nature of the corona. Between English and Americans now united, there were on hand, prepared for this purpose, observers sufficient in number to attack the corona from stations situated more or less eccentrically across the whole zone of totality. A still more promising arrangement, however, seemed to be offered spoutaneonsly by Mount Etna. Usually, this mountain becomes snow-covered, and ceases to be accessible beyond the "regione nemorosa" in the latter half of October. This year the monntain was quite exceptionally free of snow. I saw distinctly the Casa Inglese entirely free only two dass before the eclipse. It seemed as if thus the mountain itself invited the observers. The idea of having a series of stations with lesser and lesser densities of atmosphere (at the Casa Inglese the barometric pressure is only $540^{m u n}$, or two-thirds of that on the level of the sea) was too tempting; it would put decisively at rest the question whether the corona is simply an effect of our atmosphere. Consequently, a num. ber of forces were dispatched for the slope of Mount Etna, arranged, so to say, upon the third co-ordinate-that of altitude. The highest point was reached by General Abbot, United States Engincers.

I have tried to represent in one view upon the accompanying sketch the final disposition of all the stations in Sicily as they were occupied by parties of the various nations co-operating. There may be placed on record yet, as near as I could ascertain, the names of the observers of each station.

I. Italians:

Angosta.-Cacciatore, Secchi, Donati, Blaserna, Agnello, De Lisa, Photographer Tagliarini. Terra Nuova.-P. Tacchini, Lorenzoni, Leguazzi, Nobile, A. Tacchini, Diamilla Mialler, Serra. Slope of Mount Etna, (in about 8,000 fect elevation.)-Count Schio.
II. Amertcans:

Catania, (Garden of the Benedictines.)-Schott, Lane, Photographers Fitz, Chapman, Burgess.

Catenia, (casino di st. Giuliano, elevation about 500 fect.)-B. Peirce, Superintendent, Cbarles Peirce, with Mrs. C. Peirce and Mrs. Parsons.
Carlentini-Watson.
Monte Rossi, (elevation 3, 120 feet.)-Peters, Eimbeck.
Slope of Mount Etna, (elevation 8,000 feet.,-General Abbot.
Syracuse.-The party of the United States Naval Observatory, Harkness, Hall, Eastman, and Mrs. Eastman.

III. Englisit:

Catania, (Garden of the Benedictincs.)-N. Lockyer and Mrs. Lockyer, Seabroke, Cumming, Thorpe, Pediar.
Angosta.-Adams, Burton, Clifford.
Near Villasmunda.-Ranyard, Samuelson, Brett.
Syracuse.-Brothers, Fryer, Griffiths.
Slope of Mount Etna, (Casa Terentina del Bosco, elevation 5,500 feet.)-Roscoe, Bowen, Harris, Darwin, Photographer Dr. Vogel, and Professor Silvestri of Catinia.
I come now to report on my part taken in observing the eclipse. With your consent I located my station on the western top of the Monte Rossi di Nicolosi, on the identical spot that had formed a point in the triangulation of Mount Etna made years ago by Baron Sartorius von Waltershausen and myself. The immortal Gauss himself, for his own pleasure, in a leisure hour, had submitted our triangles to his theory of compensation, and derived the most probable values for the signal on Monte Rossi:

$$
\begin{aligned}
& -12776^{\mathrm{m}} .051 \text { north } \\
& +6090^{\mathrm{m}} .214 \text { west }
\end{aligned}
$$

connted from center of dome of the monastery of S . Nicola de' PP. Benedettini at Catania.
The geographical position of the latter place was ascertained by myself at the time, aud has been redetermined by Mr. Schott on this occasion. The co-ordinates stated, when reduced into are by means of Bessel's constants for the dimensions of the earth, will be-
$6^{\prime} 54^{\prime \prime} .45$ north, and
$4^{\prime} 8^{\prime \prime} .18=16^{\mathrm{s}} .545$ west of Catania;
aud the elevation above the level of the sea we had determined trigonometrically at $948^{\mathrm{m}} .7$.
You allowed me the assistance of Mr. Eimbeck. We started from Catania early on December 21 , and completed the last preparations at Nicolosi that same afteinoon ; in which was of much use to us the young Doctor Bonamo, a native of the place, who also gave us his company upon the mountain the following day. Nicolosi is the last village on the southern slope of Mount Etna, 707^{m} above the sea, whence to the top of Monte Rossi is about an hour's walk.

Mr. Eimbeck was provided with one of the Munich portable spy-glasses, (12 lines aperture, magnifying from five to six times,) and I used the telescope described above. Mr. Schott had given us one of the Coast Survey chronometers, (Sid. Chron. Hatton, No. 208,) which was compared at Catania immediately before and after the journey. Besides, in order to be independent of any change of rate the chronometer might suffer by transportation, it had been concerted between Mr. Schott and myself to exchange signals by flashes of light, as a sort of heliotropes, using a couple of common mirrors that were brought to reflect the sun's rays in the direction of our stations. The moments when the light was withdrawn by a sudden turn of the mirror were noted with our respective chronometers. The signals were given before the beginning of the eclipse. Though but few of them, as was found afterward, could be made use of, either on account of indistinctness or from uncertainty of identifying them or from want of correspondency, still, the precaution of a check proved of some value, as the rate of the chronometer of Monte Rossi really appears to have changed considerably.

The weather on the day of December 21 was fair, and promised a good success. In the afternoon, however, I was forewarned by my old friend, the venerable Dr. Giuseppe Gemellaro, the "guardian" of Mount Etna at Nicolosi, that the barometer was going down; and, indeed, toward evening clouds arose, the sky became overcast, and later it began to rain, storming during the night pretty heavily. The rain lasted still at 7 oclock in the morning of the momentous day ; but then it ceased, the clouds broke, the reil lifted itself, and Monnt Etna stood there in glorious and
beautiful clearness-suow-clad now, as if it had exchanged its dark hut of yesterday for a white holiday dress to honor the occasion. Quickly the mules, that had been kept in readiness with their pack-saddles, were loaded with the instruments, and gay-hearted we ascended to the top of Monte Rossi ; for the weather seemed to have exhausted its wrath, and everything went on promising beyond all expectations. Signals for time were exchauged with Mr. Schott, the sun shining bright through the purest sky. By the village-carpenter, whom I had hired to assist, the parallactic toppiece of the telescope was mounted on a wooden base. The axis I adjusted approximately to the meridian, pointing it by the eye a little east of the Montagnuola, (an eruption-crater of 1763 ,) where from Waltershausen's chart I judged the meridian of Monte Rossi to pass.

The beginning of the celipse was noted at-

$$
\begin{aligned}
& 18^{\text {h }} 40^{\mathrm{m}} 50^{\text {s }} \text { chronometer-time : } \\
& =15 \quad 39 \text { a3 . } 9 \text { sidereal time; } \\
& =\begin{array}{ll}
0 & 36 \\
36 & 4 \\
\text { mean time. }
\end{array}
\end{aligned}
$$

I am not sure, however, but that this was too late by some seconds; for the stroug undulations which agitated the sun's limb may have concealed the real indentation of the moon upou the disk several seconds before I became aware of it. Besides, though the instrument was placed on the side sheltered by the top, it was not quite exempt from being slaken by currents of wind, to which that rather isolated peak is freely exposed. Mr. Eimbeck, with his smaller glass, observed the first contact at-

$$
\begin{array}{rl}
& 18^{41} \\
= & 40^{\mathrm{m}} \\
= & 52^{\mathrm{s}} .5 \text { chroumeter-time: } \\
= & 39 \\
= & 36 \\
50 & 38.9 \\
\text { sidereal time; }
\end{array}
$$

and estimates that the true contact mas have occurred about two or three seconds earlier.
During the partial eclipse, while smaller and smaller was growing the solar crescent, the moon's edge was always rery steady and sharply defined. A great many people by and by had gathered around us-one might almost say the whole male population of Nicolosi had climbed the mountain. They were most orderly and respectful, however, and remained modestly at the distance, beyond the-limits marked off by two American flags; so that there was hardly need of the guard of three gensdarmes, whom the intendente of the province of Catania kindly had had the foresight to order to accompany us.

Mean while a very suspicious looking clond came creeping around the northwest corner along the slope of Mount Etna, drawing alarmingly nearer aud nearer in proportion as the sun's sickle became narrower. It was a quarter of an hour yet uutil totality; already I saw our companions at the Terentina enveloped in dense mist; five minutes later, and with a gusl of wind, down came upon us rain-drops with hail and sleet, so that for protecting the object-glass I had to put the cap ou. This hail-storm had the effect of driving the crowd of people precipitously down-hill toward home. The minute for the commencement of total eclipse was fast approaching; those were moments of great anxiety. There is hope yet: I see the end of the cloud; there is clear sky below it, on the horizon in the northwest. How slow the clond moves! but the clear spot is widening. "Time is up!" But, perhaps, there is an error in the computation, for the darkness is no greater get than any thick dense cloud alone would produce; we can read the chronometer all the time with the greatest ease. Throwing our eyes again upon that clear opeuing in the northwest; we behold it considerally enlarged, but shining now with a peculiar sombre, greenish-gray tint, that casts over the whole landscape a certain ave. It is the tinge produced by the shadow. There can be no doubt the total eelipse has begun. The cloudy vail is rapidly gliding away; its following edge is approaching the place where the star of the day must stand. We are ready with our telescopes. Now, on the cloudy rim, it brightens. "Venus!" my assistant called out. Nas! it was not Venus, but a small crescent of the re-appearing sun ; my more powerful magnifying.glass at the same instant revealed it too clearly. Totality was passed. With a disappointment, made only more painful by the thought that three minutes earlier would have sufficed for wituessing the entire phenomenon in a cloudless sky, I resigued myself to dismount the instrument. Mr. Eimbeck noted set the end of the celipse at-

$$
\begin{aligned}
& 21^{11} 24^{\mathrm{m}} 4^{8} .0 \text { chronometer-time; } \\
&= 21 \quad 23 \quad 7.5 \text { sidereal time; } \\
&=3 \quad 1923.2 \text { mean time. }
\end{aligned}
$$

The correction and rate of chronometer have been adopted as computed by Mr. Schott.

At Nicolosi we joined our companions from the higher stations on Mount Etua, who, equally unfortunate, moreover had had to sustain a greater degree of inclemency of the weather. Late in the erening we reached Catania.

It may not seem amiss here to touch shortly upon the hypothesis advanced by some at the time, that the cloud interfering with our observations in Sicily just at the critical moment, coming and passing by almost as rapidly as the obscuration of the sun, possibly might have been produced by the eclipse itself. The moon, it was argued, interposing herself before the sun, hence shatting. off the solar heat, effected a cooling of the particles of air, and condensed the vapors in the line of the shadow. Iudeed, if we incline to adopt the explanation advanced by a distinguished physicist of the origin of the solar spots, and in particular of the formation of the nuclei of the same, We might here find an analogon. But if such was the case, if an eclipse was capable of producing its own cloud, why is it that a total eclipse has ever been seeu at all? Iu the present instance, the data are at haud for subverting that hypothesis. The varions series of meteorological observations since published show unmistakably that the atmospheric pressure over almost the entire lasin of the Mediterranean began to diminish already on the day before the eclipse, the barometer thereupon contiuuing to fall steadily. The cloudy and stormy weather experienced, therefore, was preparing long before the eclipse began, and we can see nothing extraordinary in their coincidence. The same may be said likewise in regard to the variation of the magnetic needle observed by the Italian party at Terra Nuova.

In conclading this report I think it my daty to record the names of the gentlemen who, with so much kindness and disinterestedness, furthered our undertaking in Sicily, and who therefore have a just claim npon science for gratitude. In the first place, among these I must mention the Marquis di San Gialiano, who, besides endeavoring in many ways to make the sojourn at Catania personally pleasant to the members of the expedition, offered liberally, if desired as obserring-stations, the comfort of his villas at Viagrande, at Villasmunda, and at the Carcarazzi above Catania. Of these, the last one now has a place in science through the observations made there by the Superintendent's party. The aid of Mr. A. Peratoner, consular agent of the United States at Catania, was frequently called into requisition, too often perhaps in quite trivial matters. He gave his assistance assiduously; for this and for his other acts of kinduess, a grateful memory remains with every one of us. Prof. O. Silvestri, whose zeal and interest in the good success of the observations may be inferred from his participating in the hardships of one of the Etna parties, gave important assistance to our photographers by the use of his chemical laboratory. To my tried friend, Prof. G. Zurria, I owe moch valuable information about localities; he contributed to Professor Watson's good success by procuring a letter of introduction to the hospitable Messrs. Modica, at Carlentini. Many other gentlemen aided us in various ways, to name all of whom singly would be impossible. Oarthanks are due for a standing invitation to visit the rooms of the Casino and of the Gabinetto letterario Gioeni. The cindario of the city of Catania, Signor Marchese di Casalotto, to whose authority the abolished convent S . Nicola of the Benedictines now is subject, was always anxious with prompt orders to satisfy our wishes. From the Sicilian customhouse officers we experienced the greatest politeness. The Italian government, as is hown to you, had given direction for the undisturbed entry of our instrument-boxes. The same liberal spirit pervaded the intendente of the province in providing that we might do our work ummo lested. And, in thanking you, dearsir, for having offered me the occasion of seeing again a country that I had once seen sobbing under political absolutism, I may not omit to mention-if it does not seem improper in this place to speak of one's sentiments-how, in looking down from the top of Monte Rossi over the plains, I could not help feeling with joy that we, from the land of freedom, had come to a country not only blessed by nature in every respect, but, now, free too !

Yours, very respectfully and trals,

C. H. F. IETERS.

[^16]
APPENDIX No. 15.

ON THE ADAPTATION OF TRIANGULATIGNS TO THE YARIOUS CONDITIONS OF CONFIGTRATION ANI CHARACTER OF TIIE SURFACE OF COUNTRY AND OTHER CAUSLS,-REPORT TO PROF. BEXIJAMIN PEIRCE, SUPERINTENDENT, FEBRUARY 20, 18\%\%, BY CHARTES A. SCHOTT, ASSISTANT IMTTED STATES COAST SURVEY.

Whaterer may be the design of any geodetic operation, whether to survey a portion of the entire surface of a country, or only its coast or boundaries; or whether its purpose is to measure ares of the meridian, of the parallel, or inclinations in any azimuth, (as a contribution to the data for ascertaining the figure of the earth,) it must be based upon a triangulation, the greater or less complexity of which will depend chiefly and necessarily on the hypsometric features of the country and on the nature of its surface.

The adaptation of a triangulation to these various conditions, and, at the same time, paying proper attention to accuracy, economy, and rapidity of execution, requires special consideration in each case. Before discussing these conditions more closely, however, it will be advantageous to refer briefly to the different kinds of triangulation. For the sake of convenience they have been classified under the heads primary, secondars, and tertiary. These may be defined as follows:

Primary triangulation is characterized by the maximum development which the coufiguration of the country admits of. Its sides, therefore, may frequently exceed 160 kilometers (about 100 statute-miles) in length, while they rarely descend below 30 kilometers (about 19 miles) for slightly undulating surfaces, and never below 20 or 25 kilometers (about 12 or 15 miles) in perfecly level countries. Primary work is executed with the greatest possible accuracy, and the uncertaints in its resulting linear measures should be less than $\frac{\pi}{\overline{1}} \overline{0} \overline{0}$ of the length, (which represents an error
 or even a smaller fraction, requires the application of the most refined means at our disposal.

Tertiary triangulation, which should be accommodated to the wants of the topographer and the lydrographer, practically brings its sides down to the minimum length demanded for planetable work on a large scale, (about $\frac{1}{5000}$ to $\frac{10}{1000}$;) they may be as short as 122 or $2 \frac{2}{2}$ kilometers, (1 or $1 \frac{1}{2}$ miles;) ordinarily the sides vary between 5 and S kilometers, (about 3 and $\overline{5}$ miles.) In this work an uncertainty of $\frac{3}{500}$ in the resulting distances is not commonly considered excessive.

Secondary, or the intermediate, triangulation simply effects a connection between the above extremes.

Any one of these classes of triangulation may form a distinct or separate series, and the primary class always does so; or the secondary and tertiary may cover the same area as the primary, in which case they are directly checked by it. Any series of triangles (or combinations of triangles) desigued to connect two distant positions, such as opposite boundaries, termimal points of an are, or separate branches of a triangulation-for instance, those running along a coast or up a river-should be constructed as a main or principal scries, along which distances and azimuths are carried forward in the most accurate (relatively) and expeditions manner. The termination of such branches is usually strengthened by the measure of acheck-base and of an astronomical azimuth.

If a country is to be covered with a net-work of triangles, (or combination of triaugles, the question will arise how to arrange these in the most effective manner; we may, for instance, gradually cover the whole area with contiguous triangles, (and combinations,) all measured with equal care, taking advantage of the surface-irregularities to expand to the greatest scale practicable. 24 c s

This system has the disadvantage of leading rapidly into an unmanageable number of conditions to be satistied in the adjustment of the parts, and this necessitates the parceling out of the network into certain connected, y et in a measure arbitrary, figures, not too extensive to be separately adjustable; and the further gradual adjustment necessary to remove the discrepancies along the junction or boundary-lines of the contiguous figures. On the other hand, we may first surround the surface by a connected series of triangulation to serve as a frame-zork in which other primary traverse series may be inserted, and after adjusting this figare* may introduce a second system of parallel series of triangulation intersected by others (best at right angles to the former) in order to cut or snbdivide the interjacent (rectangularly-shaped) areas left by the preceding system, and to continue such subdivision of areas until the whole surface is covered sufficiently with trigonometrical stations. In adjusting any system, the preceding one upon which it depends is taken as not subject to any further correction. As in the first method, every advantage must be taken of the natural facilities offered by the ground, and sometimes diagonal or tie series may be more advantageous than rectangular connections. For the surver of a coast-line or boundary we may run a main series parallel to the general direction of the lines, and select for it the most suitable groand; lateral branches at intervals will connect the main series with the coast or boundary. A series of triangles following a mountain-range, or axis of elevation, may advantageously rest with one side on the crest or slope and with the other on the plane at the foot of the elevation; but the most farorable case is that of a valley, of the proper width in comparison with the relative elevations, and a well-shaped triangulation resting on the crest of the ranges or hills on each side. The most difficult ground to traverse for primary triangulation are heavily-wooded parallel ridges, closely packed, and of nearly equal height, running at right angles to the direction of the triangulation.

The general direction and character of a triangulation having been decided on, we have next to consider its composition. A series may be formed of a single string of triangles, of a double string, or hexagons, (or of other polygonal figures,) of quadrilaterals, or it may be composed of any combination of triangles. Since any of these systems may find its proper application, according to circumstances, a somewhat closer examination of their relative merits seems to be demanded.

The plainest form is that of a single string of equilateral triangles, and is the one to be adopted when economy and rapidity of execution are the first requisites; the hexagons (connected either axially or hinged) commend themselves when a large area is to be covered; and a third form, that of quadrilaterals, offers itself as the one possessing greatest strength or admitting of the greatest accuracy. The relative value of the usually mixed systems may be judged from their characteristics when compared with the three simple systems just mentioned.

If we take for the unit of length the maximum distance at which it is advisable to place two stations for observation, in conformity to the nature of the ground, the efficiency of the instroments,

[^17]and means at our disposal, we may estimate the relative value of the three systems under various aspect by examining their results for a given equal length. Since nine equilateral triangles, reaching to five units, carry us nearly as far as three hexagons, ($3 \sqrt{3}=5.20$ nearly, $)$ and slightly surpass seven quadrilaterals, having diagonals of unit-length, ($7 \sqrt{\frac{1}{2}}=4.9 \overline{0}$ nearly, a leugth of five may be taken as a convenient measure of comparison for efficiency.

The following talbe exhibits such numbers as are required for comparison :

With respect to the number of stations to be built up or occupied, system I is the most favorable, and II and III are almost equal; with respect to length of sides, of special importance when lines have to be cut through heavy woods or brush, system I is least unfavorable and system III slightly better than system II ; with respect to aroa covered, system II is by far the most adrantageous, the other systems showing but one-half and less, than the hexagonal; this system appears, therefore, best adapted when spread of triangulation is most desirable; but if axially arranged, the hexagon sare less favorably disposed, being narrower and lacking the salient points of the ordinary connection. With respect to the number of geometrical conditions, *system III is the most farorable, and, with these conditions satisfied, will consequently be capable of giving the greatest relative accuracy. Strength, however, is here gained at the expense of area. Generally, for comparatively flat surfaces, the hexagonal, and for countries traversed by mountain-rauges, the quadrilateral system, may be employed with advantage, while for rapidity of work and cheapness a string of single triaugles is unsurpassed; yet, however complicated, mixed, stretched, or distorted the actual scheme may be, we always keep in view that the greatest care is to be given to the measures connected with this main series, while at the same time due attention is paid to the secondary objects, thus saring re-occupation of the primary stations in connection with subordinate operations. \dagger

Two other systems of survey may here be noticed, designed to meet the special dificulty where want of breadth makes the ordinary methods inapplicable. Their use applies to the case of a narrow sea-beach fringed with woods which it may be undesirable or impracticable to penetrate. The system first to be described, and which has been successfully employed on certain parts of our southern coast, consists in actually measuring a series of connected lines, as in base-measures, either with rods or wires, the termini of each line being at the maximum distance admitting of intervisibility, and in measuring the angle or difference of azimuths at each junction. Each one of such lines may be composed of a number of broken lines, but the parts are referred to the single straight line at which angles are measured. Owing to the expense of line-measures, the application of this method is limited. In the second auxiliary method, due to Strave, \ddagger this objection is met by the substitution of a number of small base-lines-that is, one for each long line-and located so as to be at right angles and bisect each other as nearly as may be, thus forming a series of greatly drawn-out quadrilaterals. The horizontal angles are then measured at the ends of the little base, also at the terminal points of the long line, the length of which thus becomes known. The base may be from one hundred to several hundred meters in length, and that of the long line or diagonal

* If in system $I, n=$ number of stations, not less than 3 , then number of conditions $=n-2$; for system 11 , $n=$ number of stations, not less than 7 , and forming complete hexagons, number of conditions $=\frac{7 n-14}{5}$; for system III, $n=$ number of stations, not less than 4 , and forming complete quadrilaterals, numbor of conditions $=2 n-4$.
. in the measures of directions at a primary station, should a line offer special dificulties from its great length or want of transparency of the atmosphore, the expedient may be adopted of erecting a sigual at a moderate distance in the direction and measuring miorometrically the angular difference of the two objects undor favorable circumstauces. The use of so-called referring-objects is not recommended, as it unnecessarily increases by one the number of directions to be fixed.
\ddagger Astronomische Nachrichten, No. 3:36, (1837.)
may be from ten to fifteen times that of the base. Azimuthal differences are measured as before, and the computation of the latitude aud longitude of the points is effected as in ordinary triangula. tion. This last expedient may be of occasional help when operating on shores obstructed by watercourses, lagoons, or swamps. Islands or rocks, lying off shore at no great distance, frequently supply the means of carrying a subordinate series of triangulation along shore.

The following remarks on the length of primary base-lines, and on their mutual distances, may find a proper place at the conclusion of this paper. In the present state of practical geodesy, primary base-lines of a length of about 10 or 11 kilometers (nearly $6 \frac{1}{2}$ statute-miles) represent a fair average.* The intervening triangulation varies greatly in leagth. This depends principally on the size of the triangles and on the accuracy of the measures; yet ordinarily any two primary base-lines may be found separated by a distance from forty to eighty or even one hundred times the average length of a base; that is, from about 400 to 900 kilometers, (about 250 to 560 miles.) Tertiary base-lines are usually between $\frac{3}{4}$ and $1 \frac{1}{2}$ kilometers (about $\frac{1}{2}$ and $\frac{1}{2}$ statute-miles) in length, and in a chain of tertiary triangulation not otherwise checked may follow at intervals of about 40 or 70 kilometers, (nearly 25 or 44 miles.)

The properties of a base-line, or, more strictly, of its theoretical equivalent, have been but little investigated, and a few remarks respecting its definition may not here be deemed out of place.

A base-measure may be conceived to proceed from the starting-point A, on the surface of a spheroid, in a plane containing both its vertical and the terminal point B, and to be continued so that at any point of it its linear element be sittated in the plane passing through its normal and through the termini A and B. A curve so traced will in general be of double curvature, and lie between (excepting the case of A and B lying on the same parallel) the two plane elliptic arcs a and b, which result, the first from the intersection of the spheroid by the vertical plane containing the normal of A and the point B; the second from the intersection of the plane containing the normal of B and the point A. The element of the curve at A will necessarily coincide with the arc a, and at B with the arc b, and the curve will be similarly related to these arcs; that is, the same curve will be traced out whether we start from A toward B or from B toward A. It has, from its definition, the property that for any point in it the forward aud backward azimnths differ 180°; and since the terminal points A and B lie in the plane of its uormal, the azimuthal plane must contain the chord or straight line joining A and B. The curve will also be marked out by the junction of the foot-points of normals let fall from every point of the chord to the surface of the spheroid. The carve, being situated apparently in a direct line between the terminal points, may be distinguished by the name " direction-line," the name base-line having been given to the line actually measured, and which is composed of a number of straight lines. Doctor Bremikert pertinently remarks that the name " geodetic line" should properly have been given to this curve, since it actually enters into the two fundamental geodetic operations, viz, the linear and angular measures; the latter on account of the tangency of the curre to the plane of the are a in which the line of collimation of a theodolite stationed at A is situated. The name "geodetic line," however, is already appropriated for the shortest line (and which does not always lie between the arcs a and b) that can be drawn between two points on the surface of the spheroid, and which differs in direction from the curve here considered.

[^18]
APPENDIX No. 16.

DESCRIPTION OF A NEW FORM OF MEROURIAL HORIZON, IN WHICH VIBRATIONS ARE SMEEDILY

 EXTINGLISHED, BY J. HOMER LANE, OF WASHINGTON, D. C.In the operations of the Office of Weights and Measures, occasion has arisen for the use of the collimating mercurial horizon. This is not the place to report upon the special use to be made of it in this office ; but an improvement has been made in the mercurial horizon itself, which is likely to prove valuable for the purposes of practical astronomy. At the united request, therefore, of the Superintendent and Assistant Superintendent of the Office of Weights and Measures, I here commminate a description of it for the American Association.

The improvement consists simply in reducing the depth of mercury in the trough to a very small quantity. This extinguishes the oscillations or waves, which otherwise, upon the slightest causes, disturb the reflection when the horizon is used with a telescope. The least depth with which pure meveury will orerflow a horizontal non-metallic plane surface is a little over one-eighth of an inch. If, however, the mercurial lake be left of this full depth, at and near its boundary, with room for the capillary curve, then, inside of this encircling space, the bottom of the trongh may rise as near as we please to the level surface of the liquid.

The first trough which we have tried on this plan is the only one that has been used prior to this current week of the present meeting of the association. It was a wooden trough, formed in the lathe, with a horizontal circular plane or platean, of six inches diameter, on a lerel something like one-sixth of an inch higher than the bottom of the deepest part of a margin of two inches wide all around it. The deepest part of this depressed margin was in the middle of its width, the olject being to soften the horizontal shocks which may he commonicated to the mercury; but I think this is of little importance or value, since the capillary boundary will still be the origin of ripples produced by vertical shocks. The ripples of the surface of a mass of mercury produced by tremors are observed, in fact, to have their origin mainly at the borders; and this is the reason why the central flat platean of the trough was made so large as six inches in diameter, while the clear aperture of the telescope collimated orer it, was only from two to two and one-half inches in diameter.

In preparing the horizon, the trough was first set very nearly horizontal by a spirit-level. A sufficient quantity of mercury was then poured in to overflow the whole bottom of the trough, at least with the aid of a little displacement. The large excess of mercury was then drawnoff through a small hole which had been made at the deepest part of the deepened margin, and closed by a little plug. The mercury was allowed to flow until the level of its surface sank to the indication of a gange laid across the top of the trough, leaving a very thin layer only on the plateau. The effect of this artifice in curing the disturbance produced by tremors was charming and complete.

But to secure this effect, care must be taken that the depth of mercury on the plateau be reduced sufficiently. It is quite surprising to notice how small a depth is still sufficient to transmit across the plateau the little ripples that mar the sharpness of the reflection. I made no determination of the thickness used, but I think one-hundredth of an inch is small enough. It is easy, by gentle taps apon the trough as the mercury flows off, to notice when the ripples, with the dimin. ishing depth, begin to grow sluggish, and when the point is reached at which they quickly die out on the platean.

Although the depth is so small when this effect is thoroughly secured, it yet very greatly transcends the thickness of a mere bubble or film of capillarity, and, therefore, there is no room to anticipate that the surface of the plateau will have any influence upon the horizontality of the upper surface of the mercury. In point of fact, the horizon above described has been under the
severest telescopic test, and yet the irregularities of the plateau were not sufficiently copied by the mercurial surface to mar the definition of the object-glass. To the same purpose, I will state that on one occasion the trough was tilted slightly by pressure made on one side of it with a staff. Momentarily the mercurial surface tilted with the plateau by a large quantity, as seen in the telescope; but the changed inclination of the plateau being maintained by continuance of the pressure, the mercurial surface soon settled, upon the inclined platean, into its original position of horizontality, any difference being at all events quite insensible in this imperfect experiment. We shall now, however, have opportunity to pat this question to a more rigorous test with a cast-iron trough, which bas just been completed, and which, by the kinduess of Professor Hilgard, I am permitted to submit, ihrough him, to the inspection of the association.

This iron trough has a circular plateau of about six inches in diameter. The deepened margin around the platean increases the diameter to six and one-balf inches. This deepened margin, at its outer boundary, is extended downward all around in a very narrow anmular passage, to the depth of three-fourths of an inch below the level of the plateau, where it opens horizontally outward into an annular reservoir, one-half inch wide, which surrounds the platean, and rises a fraction of an inch above it. This antular reservoir is closed air-tight above, but is provided with a screw-valve to control the passage of air. When this screw-valve is opened, and air forced in through a flexible tuke with the month or otherwise, the mercury in the amular reservoir is forced through the annnlar passage gud fiows over the plateau, and is sufficient in quantity to flood it throughout. The continuity of surface over the plateau having been secured, the mercury is allowed to flow back into the amular reservoir; and the whole quantity of mercury may be adjusted so as to settle to the depth that is desired on the plateau. The rapidity of this return-flow of the mercury may be controlled by cheching the escape of air through the screw-valve. Should any accident cause the breaking of the film of mercury, the arrangement here described affords the means of its convenient and speedy renewal. The film will never break except by accident.

The screw-valve can also be used to suspend the return-flow until the trough, which is furnished with leveling-serews, can be leveled by the surface of the mercary.

The plateau should be made of a material pervious to air, so as to allow of the escape through it of the small bubble of air which the mercury imprisons in completing its continuity at the first flooding. The bubble does indeed flatten out a good deal under the capillary curve, but the conditions of the curvature fix a definite limit to the diameter of the bubble, and so to the smallness of its depth. Accordingls, in experimenting with the cast-iron horizon described, it was found that the thin film frequently broke over this air-bubble. This drawback was not encountered in the use of the wooden horizon first made, although that had, I believe, been varnished. The remedy proposed, viz, the use of a material pervious to air, is more simple and satisfactory than any method which has occurred to me of making the completion of continuity take place off of the platean. Though cast iron is, in a degree, porons, it is doubtful whether it can be made sufficiently pervious, though this may yet be tried by removing the outer film of the casting from the under surface as well as the upper, and avoiding all use of lacquer.

The objection to wood as the material of the platean is the difficulty or trouble of conquering its variability of form. A plate of plaster of Paris can easily be substituted for the cast iron in that part which forms the platean, and a little of the depressed border around it. Its comparative fragility will hardly be a serious objection in a fixed observatory. If plaster be the material chosen, the plaster plate would rest upon an annular shelf formed in the iron skeleton by the lathe, and may be cast in its place by inverting the iron skeleton upon a mold or former. The skeleton may be at a relatively low temperature at the moment of forming the plaster cast, or other means taken to guard against possible distortion by unequal expansion and contraction.

The accompanying wood-cut shows a vertical section through the center of the iron trough as it has been made. A A is the plateau, cut down around the border so as to leave space for the curve of capillarity, and for a considerable mass of mercury beneath this curve. The falling away of the plateau should, begin at a distance of not less than four-tenths of an inch within the wall that confines the mercory. BC is the narrow annular passage through which, by forcing in air at the air tube D, the mercury contained in the annular reservoir \mathbf{E} may be driven until it floods the plateau. After the mercury has been drawn down again under check of the screw-valve F, this screw-ralve must be left_fully open in order to avoid all risk of confining the air in the apper part
of the reservoir. When it is necessary to remove the mercury from the trongh, the last portions are drawn out at the screw-phg G. A much smaller screw-plag, Π, may be used, when charging

the trongh with mercarr, to adjust the quantity of mercury which is to be kept in the trongh, and which will fix the thickness of the film on the platean. The piece in which the reservoir E is formed is fitted at K tight enongh to retain the mercurs, and it is advisable to make it take off for cleaning.

DIRECTIONS FOR SFTTING UP AND USING 'THE HORIZON.
Place the trough upon a firm support. Level it by means of its three foot-screws, keeping these screws always secure from shake by means of their tighteuing nuts. The level or want of level is ascertained by laying a spirit-level across the top of the trough along two diameters, and turning it end for end on each diameter. If, however, the trough has not been made with the plane of its top truly parallel to the plane of the plateau, it should be furnished with a spirit-level short enough to rest upon the plateau itself. But care must he taken to aroid abrasion of the platean, especially if it be formed of plaster of paris. Across the top of the trongh lay the straight bar L L, or gauge-bar, in which works, near its front surface, a rertical screw of steel, fimished with a flat face at the lower end to form the gauge-point M. Take care that this gange-point is at first set sufficiently high not to strike and injure the surface of the plateau. Then screw it downward til ${ }^{\text {l }}$ it will begin to pinch a thickness or two of common writing-paper laid upon the plateau. This adjustment being made, lay aside the gauge-bar for after use. Now pour upon the plateau as much thoroughly purified and cleau mercury as is judged to be a slight overcharge, first taking care that the screw-valve F is fully open for the free passage of air. It will make its way through the annular passage BC into the annular reservoir E , driving before it the air of the reservoir, and none will be left on the platean unless the charge of mercury is considerably too large. For otherwise, the rapid flow, with the screw-valve F fully open, will break the film over the edge of the plateau while yot the small excess of mercury remains accumulated upon the central parts. See that the whole plateau, together with the higher part of its depressed border, is free from particles of dust or dirt, going over it if necessary with a soft brush or a linen rag. Being provided with a piece of quarter-inch India-rubber tube three or four feet in leugth, slip one end of it upon the air-tube D, and apply the mouth to the other end. Force in air by the action of the muscles of the mouth, as in using a blowpipe. In this way a steadily-sustained pueumatic pressure is brought to bear upon the surface of the mercury in the reservoir E. Under this the mercury is forced back through BC , and overflows the plateau. Should the volume of mercury be somewhat largels deficient, it may happen that an insular patch of the plateau is left uncorered after the mereury has been all expelled from the reservoir E : More mercury must then be added; and if in making this addition fresh speeks of dirt should come into contact with the platean, the mercury is allowed to flow back
again into the reserroir. This flow being unchecked, the plateau will be left uncovered, unless the addition of mercury has been considerably too large. Otherwise, break the remaining layer of mercury with a piece of clean paper, when it will all retire, at least with a little aid from a soft brush, into the space formed by the depression of the plateau along its border. The uncorered plateau is then freed from the adder specks of dirt, and the operation of flooding it with mercury is repeated as before. A certain volume will sumce to extinguish the insular patch of ancovered plateau, and form an unbroken lake of mercury. On then removing the mouth from the India-rubber tube, the lake of mercury will begin flowing freely back into the aunular reservoir. But before the surface of the lake has had time, in its descent, to break upon the border of the elevated platean, the screw-valve F is promptly closed. The flow of mercury from the lake into the annalar reserroir then ceascs, and the surface of the lake quickly becomes level throughout. The screw-valve F is then thrown open for a moment, and instantly closed again. The momentary renewal of the flow will produee a flow-wave, which will be seen by the cye to start at the border of the lake and end at its center. As rapidly as the level of the lake approximately renews itself, the momentary opening of the valre is repeated, until it is seen that no further flow takes place, and the mercury in lake and reservoir has settled to a common level. The valve is then left fully open. All this is quickly done after a little practice. If there be a deficiency of mercury, the film on the plateau will break before this stage is reached, and another addition of mercury must be made. If there be an excess of mercary, the film on the plateau is not only unbroken but may be too deep. The depth is ascertained by applying the gauge-bar with its previously-adjusted gauge-point M. Any excess of mercury is drawn off little by little at the serew-plag H till the film is reduced to the preseribed thickness shown by the gauge-point, or till the ripples produced by gentle taps made on the trough die sluggishly out without traveling half-way from border to center. After the charge of merciny has been once adjusted, nothing more is necessary than to keep it unchanged.

At the first flooding of the plateau it may happen that a speck of dirt is picked up by the mercury, borne on its surface, carried over the rolling and advancing edge of the moving fluid stratum, and so becomes buried beneath the mercury and in contact with the plateau. In this situation it will remain if not removed, and will, if thick enough, break the thin film of mercury to be formed.

If, in consequence of standing for a length of time unrenewed, the surface of the reflecting film becomes tarvished or dirty, a fresh cleau surface can be reproduced in a minute or two by breaking the old film, brushing it from the plateau if time has caused adhesion,* and repeating the process above described for flooding the plateau and forming the film anew.

A caution of general application to any mercurial horizon may here be added. For accurate astronomical purposes care should be taken not to use the reflecting surface too near the edge. The deflection of the surface from horizontality by the force of capillarity may amount to $1^{\prime \prime} .0$ at but little less than an inch from the extreme border of the mercurial lake, and increases very rapidly on any nearer approach to the border.

When for transportation it becomes necessary to remove the mercury from the trough, most of it can be poured out as from a plain trough, but a little will remain in the annular reservoir. This is readily removed at the screw-plag G. If care be taken to avoid loss of the mercury, and to store it in a bottle by itself, this will save the trouble of repeating the process of adjusting the quantity when the trough is rechargen, and the weight of the charge may also be recorded on the trongh.

[^19]
APPENDIX No. 17.

gENERAL INDEX OF FROFESSIONAL AND SCIENTIFIC PAPERS CONTAINED IN THE LNITED STATES COAET SURVEY REPORTS FROM 1851 TO 1870.

```
    -
Gromesy:
    Latitude.
    Longitude and Time.
    Azimuth.
    Base-lines.
    Geographical Positions.
Astronomy.
Mathematics.
```


Gromesy

```
Latitude
Longitude and Time
Azimuth.
Geographical Positions.
Mathematics.
```


KEY TO INDEX

```
Suryeymg:
    Triangulation.
    Topographr.
    Hydrography.
    Reconnaissances.
Pifysical Hydrograpix.
Terregtrial Magnetism.
Drawing, Engraving, and Electrotyping.
Miscellaneous,Tecmnical, and other Subjects.
```


GEODESY.

Latitude.

Year.	Pages.	Title of papers.
18.7	324-334	Lativune,-On the method of determination with the zenithetelescope.-C. A. Schott.-Principle of the method; determina. tion of value of wicrometer-examples; deterwination of value of level-example; correction for refraction-example; reduction to meridian-tables; selection of stars; sources of error in the determination of the value of mierometor; method of correcting value from the latitude-observations themselves; discussion of the resules of observation-example.
1088	184-186	Pensonal eqCation-A. D. Bache.-On the use of the zenith-telescope for determining latitude by Talcott s method-table showing results of oloservations for personal equation.
1860	72-85	Latitude if the zenfietelescope.-C. A. Schott.-1, gencral remarls on Talcott's method; 2, modification of instrument ; 3 , description; 4, adjustment; 5 , selection of stars for observation; 6 , directions for obsersing; $\boldsymbol{7}$, off the meridian; \boldsymbol{E}, general expression for the latitude; 9 , determination of the ralue of a division of mierometer; 10, of level; 11, correction for differential refraction; 12, reduction to the meridian; 13, record of the observations: 14 , reduction of the observations; 15, discussion of the results; 16 , combination of the results by weight.-Examples to articles $9,10,13$, and 14 .[Sketch 28.]
1865	160-165	Repobt on the latitude of Clovendon station n Cambringe.-B. A. Gould.-Miermmeter-values; reduction of star. observations-dableas ; discrepancies with uncorrected catalogue-places-table; resultant mean places of stars, duc.-table; dednced places for Cloverdon station-table; mean error; otber determinations.

LONGITUDE AND TTME.

1853	*88-*89	CAMBRDGE AND LITERPOOL CHRONOMETER-EXPEDITIONG iN 1849, 1850, AND 1851.-G. P. Bond.-Computations of results for determining difference of longitude.
1854	*138-*142	Chbonombtric longitude-expeditions, (Cambridge-Liverfool.)-G. P. Bond.-Results of the expeditions of 1e49, 1850, and 1851, and on the method of computation,-[Errata, 140; 1855, p. xrx.]
1855	8785-276	Chronometric longitudes.-W. C. Bond.-On moom-culminations observed by him, and the clmonometric expedition for determining the longitude difference between Cambridge, Mass., and Liverpool, England.-(Errata, 275: 1855, p. XVII.)
1856	182-191	CMronomethic regulis.-G. P. Bond.-Results of the chronometric expeditions of $1849,1850,1851$, and 1855 for difference of longitude between Cambridge, Mass., and Liverpool, England-table of longitudes by voyages of 1855.
1857	314-324	Chronometric determination of the difference of jongttlde between Savannah, Ga., and Fernandina, Fla., and dibcubsion of the method.-A. D. Bache mad C. A. Schott.-Chronometers used; personal equation; temperature-compensation; chronometor-comparisons-table; stationary and traveling rates-tables of compatison, and dibcussion.
$25 \leqslant \$$		

GEODESI-LONGITUDE AND TIME-Contiuncl.

Year.	Pages.	The of papers.
1851	480-481	Longtrude of harvary obsebvatory.-S. C. Walker.-By moon-enlminations, ectipses, transits, occultations, and telegraph.
1866	99-100	Longrtues.-[From Report for 1846.]-s. C. Walker.-Difference of longitude between Philadelphia and Greenwioli by reduc tion of Cambridge (Mass.) observations.
1866	102-105	Longtrbe.-[From Report for 1848.]-S. C. Walker-Difference of longitude between New Fork, Cambridge, and Greenwich.
1866	111-112	Longitbdes.-[From Report for 1851.]-C. L. Walker.-Harvard observatory, west of Groenwich; by moon, eclipses, transits, and occultations; result.
186%	57-133	Songitude, travsatlantic-A. A. Gould-1, Origin of the Coast Surver expedition in 1efin: 2, previons determinations of transathantic longitudes from oelipses and oconltations, from noon-culminations; from chronometers transported 'from Boston to Liverpool ; 3, history of the expedition; programme of transatlantic-longitude campaigu; 4, observations at Valencia; table of equatorial intervals; table of ebservations, October 25 to November 16. 186ij; 5 , observations at Newfoundand, October 25 to December 16, 1866; 6, observations at Calais, December 11 to 18, 1866; 7, longitude-signals between Foilhommerum and Heart's Content; clockeorrections; transatlantic longitude and transmission-time, Oetober 25 to November 9, 1866; 8, longitade-signals between Heart's Content and Calais; talles of New foundiand and Calais signals; tables of longitude and times of transtuission ; 9, personal error in noting signals; 10, persomal equation deter mining time; 11, final results for longitude ; 12, velocity of transmission ; cables of 1860 and 1865; tables of comparison.
18.1	476-479	Mrasures of wave-tme, made from 1649 to 1851.-S. C. Walker.-Specifications and tables of results.
1866	106-108	Longitudes.- From Report for 1850.]-S. C.Waiker.-1, experiments for galvanic-wave time between Washingion, D. C., and Saint Lauis, Mo.; 2, attempted experiments on wave-time through different couductors; 3 experiments with the chemical. tolegraph line; 4, progress of the researehes on the velocity of the galvanic current.
1866	109-111	Galvanic-Wave time.-[from Report for 1851.]-C. S. Walker.-On measurements from 1849 to 1851, with tables.
186:3	205	Indection time in relay. magnets.-G. W. Dean.-Report on erperiments made to determine their relative power.
1864	211-220	Edection-timb of relat-magnts, dedeced from experinents-G. W. Dean.
1851	462-463	Telegraphic armangement to determixe the differexch of longitune hetweex Cambhinge ani Hagifax.-S. C. Walker.
1833	*86-*88	Telegraphic longitume of Charlestos, S. C.-B. A. Gould-Results of observations for the detemination of difference of longitude by telegraph between Seaton station (Washiugton, D. C.) and Charleston, S. C.
1854	*128-*131	Telegrapinc longitude.-B. A. Gould.-On telegrapbic observations for the difference of lungitude between Raleigh, N. C., and Columbia, s.c.
1855	286-295	Telegraphic loxgitudes.-B. A. Gould.-Report on telegraphic operations for difference of longitade between Columbia, S. C., and Macon, Ga.; programme of telegraphic campaigu; for instrunental corrections and longitude-reductions: battery-memoranda; to put up Kessel's clock,-[Errata, 288: 1355., p. xvir.]
1856	162-181	Triegraphic method.-G. W. Dean.-Details of the methodused in the Coast Surtey for telegraphiedeterminations of differ ence of longitade; transit-instrument; astronomical clock; chronographic register; batteries; list of stars arrangel from the British Association Catalogue for determining the difference of longitude between Macon, Ga., and Montgomery, Ala., March, leasb; exchange of star-signals; reading off the chronographic sheets; exatuple of reduction; observations for determining the inequality of the pivots of Coast Surrey transit No. 8 : personal curuations.-[Sketch 66$]$ - [Errata. 169-170: 1856, p. xx.]
1856	163-166	Telegraphe.-B. A. Gould.-Operations for difference of longitude between Wimington, N. C. and Montgomery, Ala., witl list of stars for observation.
1857	205-310	Telegrapme longitedes,-On the progress made in the different campaigns.-B. A. Gould.-List of time-stars adopted difficulties and diserepancies of trassmission for signals between Wilmington, N. C, and Columbia, S. C.
1861	221-272	Longrtude of albany, N. Y.-B. A. Gould.-Abstract of a report on the determination by telegraph of the difference of longitude between New Fork City and Albany; table of instrumental corrections; collimation and azimuth-correction, and hourly clock-rate; personal equaions: comparative table of clock-values gained at oppositestations.
1862	158-160	Longitudes in Mainf, alabama, and Flohida-B. A. Gonld.-On progress in compating results from telegraphic observations.
1863	154-156	Longrude.-B. A. Gould,-On compatations connected with the telegraplic method.
1864	115-116	on results by telegraphic method.-B. A. Gould.
1865	150-151	Report on the resulta of determinang hongitdee by teleghaphic method.-B. A. Gould.
1866	100-102	Longrtude.-[Report for 1846.]-S. C. Walker.
1870	100	Results of the telegraphic determination of the longitude of San Francisco, Cal.
1870	101-106	Alstracts of results for difference of longitude between Harvard obeervatory, Massachusette, the Const Surver station Seaton, and the Naval Observatory, Washington, D. C., by Prof Joseph. Winheck, of Harvurd observatory, and Commodore B. F. Sauds, C.S. N.
1856	203-208	Occulfations on the wegtern coast.-G. Davidson,--Observations made at Port Townshend, Wablsington Territory, April and May, 1850; tables and remarks.
1855	267-274	Lovartodes-- Report on the method of determining longitudes by ofcultations of the Pleiades.-Benjamin Peirce.-[Errata, 268, 269, 270, 272, 273: 1855, p. xvili]
1856	191-197	Plemades.-Renjamin Peirce.-On the determination of longitude by occulations; formulan for the correction of the co-ordi nates of the stars; table for 1840 ; table of logarithme for k and k for the principal observatories.
1857	311-314	Longitcde-methods.-Benjamin Peirce.-On the relative precision of determinations by oocultations and solar eclipmes: upon the ase of the solar eclipses; upon the occultations of the Pleiades.
1861	196-221	Longrtude.-Benjamin Peirce.-Report on the determination of longitade hy occultations of the Pleiades, with an example showing the mode of computation; Greeawich, Cambridge, (England,) Asharst, Washington City, Philadelphia, and Boston observatories comprated ; solution of the equations for the correlation of the moon's place and of the longitudes.

GEODEST-LONGITUDE AND TIME-Contiaued.

Year.	Pages.	Title of papers.
1862.	155-156	itude of America from Eulote, -- Bemjamin Peince.--On the res
1862.	157-158	Lunar tabies deed dn heycting obeebvations of the Plelayes for longitvde.-Bebjamin Peirce.-On their progressive improvements.
1863.	146-154	Occeltations of the Pletanes m ie41-42--Benjamin Peirec-Ou computations for longitude, Yos. I, II, and Y: records of Edinhurgh, Washington, and Canbridge observations; ephemeris; sterengraphic co-ordinates of the moon referred Aleyone; equations for the correction of the moon's place and of the longitude; solutious.
1864..	114	Longitume.-On the method of determining by occultations of the Pleiades.-Benjamin Peirce.
$1265 .$.	138-146	Report on the phogres of determining longitude from occultationg of the lyelades, continted fhy fheylole неровтs.-Benjamin Peirce.-Values of $\Sigma_{2}-p$ for 1838-'42 and 1857-'61.
186.5.	146-149	Benjamin Peirce.-Corrections of lunar semi-diameter, mean place, ellipticity of orbit, longitude or peribelion, coefticient of annual parallax, and longitude of Furope and America; example.
1853.	+4	On longitude from moon-cclminations.-Benjamin Peirce.-Oa the determination of longitude fromobserrations of monculninations: standard probable etror of observation of interpolated lanar transits constant errers of epoch and periodical one of Lulflunations.
$1853 .$.	**4-*86	on moon culminatiox oberved be the "Amehican method," with remakes on the performance of Bonds"epring. governor." - W. C. Bond.-Comparison of records made by two spring-governons differing one-tenth of a secoul in time of pendular vibration; table of star-transits; amount of probable errors.
1854	108-120	Longitude de moon culminathons.-Benjamin Peirce-General considerations; constant errors and personal equations: corrction of the lunar ephemeris; standard probable error of obserration of a lunar transit; limit of accuracy attainable; longitude of the National observatory, Washington, D. C.; three forme of correcting lunar ephemeris and the modes of compntatiou.-[Erraid, 112, 113, 114, 115, 117: 1855, p. xix.]
1854	${ }^{120}$	Moox.clmmatioxs-W. C. Bond-observed by the American method; chronometric longitude of Cambridge and probable error.
1854	120	Moox.clmmatme-E. O. Kendall.-Obserred at High School observatory, Philadelphia.
1854	121	
1656	102-203	Lexhespot thavite-C. F. F. Potore - On the substitution of lunar spots for the moon's limbin observing eulminations.
1850	18ti-IE,	Loverrebes-Method of emputing from moon-culminations; notes on observations of moonculminations; forms and cxaniple.
1858	190	Moox-ctlminatose, efc-o. M. Mitchel- Namber of observations made by him for the Coast Survey.
1857	310311	Moon-cclminatroxs-W. C. Bond--hn the numher observed during the year at Cambridge, co-operative with those on the Pacific side ; star ocenltation photographs; cennection with Quebec.
1259	278	Moon-ctminations.-O. M. Mitehel,-Observations made for the Coast Survey at the Cincinnati ubservatory for longitule. purposes.
1861	182-195	Lovimuth-Benjamin Peirce,-Discussion of observations of the solar eclipse of July, 1851; observationa of the total phase; European observations, of which the begimang and the end, bothobserved at the same phace, have been admitted into the computation ; American observations; method of compatation.
1854	121	Discussion of probable error of observation at Wärdemanns (26-inch) portable transit; from observations by G. Davidson in 1853. [Report of 1866, Sketch 29.]-By J. E. Hilgard.
1855	276-278	Description of Würderamn's zenith-tclescope of 1955, used at Dixmont, Me.-By G. W. Dean.
1866	55.71	The transit-instrument, description, use, adjustment, and method of observation-By C. A. Schott.
1867	138139	Meridian and equal-altitude instruments,-By George Davidson.-[Sketch 28.]
1868	154-157	Addenfla to Appendis No.9, Coast Survey Report for 1866, on the determination of time by meane of the transit instrumfut. By C. A. Schott.
1869	226-232	On the use of the zenith telescoje for observations of time, witioan example of observation-By J. E. Hilgarl.
		AZIMUTH.
1856	208-209	Azmuth.- J. E. Higard-Methol of using the transit-iustrument for azimnth-observations; resinual errors of graduation and readings.
1866	86-99	Arthonomical azimuth-C. A. Schott-1, principal methods ; Q, astronomical azimuth; 3, geodetic azimuth; 4, primary aud secondary azimuths; 5 , time; 6 , instrumeuts used; 7 , azimath-marks; B_{1} errors eliminated; 9 , circumpolar stars used.
1868	157-165	[SUPPlement, 1868, p. 157.-Specimen table of local times of elongations and culminations of four circumpolar stars for 1873. latitude 40°, lougitude oh. west of Green wieh; correction for altered dates and latitudes. J-10, high atars: 11, sets of obser vations; 12, method of recording and reducing: 13, observations of a close circumpolar star uear ita elongation[Supplement, p. 158.-In vertical of star; example of recoril and rednetion; micrometer-values; deduction of azimath.]1\& at any hour-angle; 15, computation by fudamental trigonometrical formula; 16, by Napier's analogies; 17, by a development into a series; 18, at equal intervals before and after culmination.-[Supilement, p. 160 - (a) near eulmination ; example of record and compatation ; eye-piece micrometer, values determined aud applied to level-correction; (b,) pivotmicrometer, ditto, will example and record of reluction; single micrometer-turn, ditto; discussion of set of four stare: eentering of instrument for comnetion with tiangulations. $\mathbf{- 1 9}$, obsorvation of sun for azimuth; 20 . examples of records and reduetions to articles 11, 13, 14, 15, 17, 18, and 19.- [Sketches 26 and 27.]
1870	-178-179	Changes of chevation and azmuth cansed by the action of the sun at station Dominguez, Cal- By George Dayilmon.
1870	226-227	Azmuth and apparimt alitude of Polaris.-By George Davidmon.

Year.	Pages.	Title of papers.
1865	18\%-203	Results of the phmaty thiangelation of the coast of New England, from the northeastorn boundary to the vieinity of New York; length and accuracy of the Fire Island base-line; length and aceuracy of the Masachusetta base-line; length and accuraey of Epping base-line; geodetic connection of the three primary base-lines in Maine, Massachusetts, and New York, their degree of accordance and resulting accuracy of the primary triangulation intercening; resulting angles and distances of the primary triangulation betwen the Epping (Mass.) and Fire Island base-lines, [Errata, 198: 1866, p. 141.]
1866	49-54	Primary teiangllation of the Atiantic coast.-C. A. Schoti-Geodelir connection of the two primary base-lines in New Fork and Maryland, their degree of accordance and accuracs of the primary triangulation invervening, with the result. ing angles and distances as finally adjusiect.
1869	105-112	Connection of The primary masedines of Kebt Island, Ma, and on Craney Igland, Va., and on the degree of aceuracy of the intervening primary and subprimary triangulations.-C. A. Schott-Statistics of conditions; linear discrepancies in the base-lines; degree of acenracy; final correction of dircetions; aljustment of the subprimary stations; Cape Charles height and north end of measurement; adjustment of the secondary station. Hanpton Seminary ; table of Atlantie series of primary triangles continued.
1867	$134-137$	Comparison of meters.-F. A. P. Bamard and M. Tresch.-Comparison of an iron meter forwardel to France by the Goverament of the United States of America; Table I, the United States meter upon the comparator; II, the Couservatoire standard upon the comparator; IIT, the Cnited States meter upon the comparator; IV, results.
1868	14:-153	Reslelfs of the meabunemest of an arc of the meridian.-C. A. Schott-LLength of the are by four methods; accuracy of the preceding results; table and diagram; determination of the astronomical latitudes; recapitulation of results.
1854	+ $103-108$	
1855	264-267	Preliminary base-aptaratcs.-C. O. Bontelle.-[Sketch 53.]
1856	308-310	Subsmary base-aptabates.-Deseription of a mollficution devised for ascertaining the temperature of rols in as.[Sketeh 64.]
1857	395-398	Base-apparatis for weasuring subsidiary lines; description--J. E. Hilgard.-[Sketch ti9.]
1862	248-255	Babf-meaburing apraratcis-J. E. Hilgard,-Abstract of cxperiments for determiniug the length and expansion by heat of the standard bar, with table of comparisons of standard bar with 6 meters. -[Sketch 49.]
1857	302-305	Elping base, Maine.-A. D. Bache.-Notes on the preparation of site, measurement of line, and progress, as compared with other measuremente of the Coast Surver.-[Sketch 3.]
1864	120-144	Elping base-mine.-C. A. Schott.-Report on the method of computation and resulting connection with the primary triangu-lation.-1, general remarks on the method of reduction; α, instruments and methods of hotizontal measures employed in the triangulation near the Epping base; 3, determination of probable error and weiglt to each direction observed with the 30 -inch theodolite; station Howard; abstract of remaining differences; abstract of remaining ertors-tahle; 4, determination of probable error and weight to each angle aut direction frour observalions with a repeating circle: 5, resulting horizontal angles from the observations at each station, with their probable error; 6, effects upon the horizontal residuals in the sum of angles of each triangle, and their discussion; 9 , final determination of probable errors fand Weighta) to each direction; 10 , relative value of results from the 30 -inch and the 10 -isch reparting-theodolites; 11, formation of the conditional equation of the nomagon around the Epping base; 12, equation of correlatires and normal equations; 13 , resulting correction to the observed directions; 14, complete adjustment of the nonagon and final directions; 15, triangle side-computations; 16 , resulting distances from Monnt Desert to Humpback; 17, connection of the azimuth-mark with the adjusted directions.-[Errata, 143: 1866, p. 141.]
1868	133-139	Full explanation of the different successive operations connected with the measurement of a sulusidiary base.line.
1866	140	Length of the Kent Island base-line.-[Supplement to C. A. Schott's report on primary triangulation of the same gear.]

GEOGRAPHICAL POSITIONS.

1851	162-442	List of geogiraphcal posifions determined by the Coast Survey; sections; method of triangulation and verjfication; average error; assumed size and form of the globe; station-ertors; checking of geodetic longitudes by telegraph; longitule of Cambridge from Greenwich ; explanation of tables; list.-[Errata, 168, 109, 218, 304, 324, 372, 374, 375, 378: 1851, p. vili; Errata, 163, 169, 139, 190, 191, 194, 217, 218, 220, 258, 271, 276, 286, 324, 360, 372, 374, 375, 378, 400, 402, 404, 409, 416, 425, 480:
1853	*14-*42	List of geographical positions.-[Errata, *15, *16, et seq., ${ }^{*} 17, * 20, * 28, * 29, * 31, * 32, * 33, * 34, * 36, * 42: 1854$, p. xir; Errata, *19, ${ }^{* 20: 1855, ~ p . ~ x ~ v i n .] ~}$
1855	119-148	List of geographical positions.-[Errata, 138-140: 1856, p. xr.]
1857	264-301	List of geographical positions.
1859	216-277	List of geographical positions.
1864	144-182	List of geographical positions.
1865	99-136	List of geographical positions in Sections V. VI, VII, and IX.
1865	137	Liet of geographical positions determined approximately in West Virginia, Kentacky, Tonnenece, Alabama, Miseissippi, and Missouri.
1868	171-242	List of geographical positions determined by the Coast Surrey.

GEODESF-GEOGRAPHICAL POSITLONS-TOPUGRADHICAL AND HYDROGRADMC SHEETS.

Tear.	Pages.	Title of papers.
1857	233-264	office.
1859	212-216	List of topographical and hydrographic sheets coutinnex.
1861	176-180	List of topegraphical and hydrographic sheets continued.
1863	143-146	List of topographical and hydrographic sheets continued.
1805	$50-99$	List of topographieal and hydrographic sheets continued.
1867	265-274	List of topographical and bydrographio shects of Alaska, by Russian authurity.
1860	361-391	Formulas for computing latitudes longitades, and azimuths, with an exampte as usch in fine duast surey Othce, and tilbles for each minute of latitude from 23° to 50 .

ASTROKOMI.

Year.	Pages.	Title of papera.
1854	+122-127	Solar Eclipse, May 20. 1854.-Olserrations made at Breoklyu, Long lsland, reported by E. Blunt; at Seatom station, Wash ivgton, D.C., by C. O. Boutelle; at Roslyu station, near Petersburgh, Va, ly L. F. Pourtales ; Mack Mountain station, Cal., by R. D. Cutts; Benicia, Cal., by R. D. Catts; Humboldt Bay, Cal., by G. Davideon.
1e\%	972-324	Stab-cazalogers.-C. A. Schott.-Comparison of star-phaces given in Rumkers and the Twelve Tear Catalogues.-Table I, comparison of right ascensions; II, of north polar distances.
1860	209-275	Solar echipen, Jule 18, 1860.-Prof. Steph. Alexader.-Results of the expedition to Anlezarik Islamd, Labrator, ta observe the edipse of the 18th of duly, 1860: taloular comparison of chroumeters; arrangement and programme; description of the teleseope employed; syopsie of the observations; times of contacts; same in local mean time. (civil reckoning;) other observations: reports from special parties; earth teroperature, (Anlezavik;) atmospherical electricity : icebergs ; mirage se. : tript rambow; auroras; table of meteorological observations mate during the hours corresponding to the eclipse, at Aulezavik, from July 14 to July 23 ; during the continuance of auroras passim; observations with Aragos polariseope: report of photographers: clatiges of illuminatiou; seamen's obserrations; winds; magnetic elements: longitule hy chronometer-lSketeh 39.]-[Errata 239, 275: 1860, p. xx.]
1850	275-292	Solan bcilrse.-J. M. Gilles,-On the resultw of observations made uear Fort Stelacomm, Washiugton Territory, on the solar eclipse of July 18, 18f0; preliminary : table of meteorohgical observations on Muck Prairie; latitude obserrations; timeobserrations : chronometer errors and rates; longituife; the eclipse: reports from special parties.
1861	232-239	Solar eclipse of Juty, 1G60-A. I. Bache-Alostract of nbervations made at Ginnatock Mountain. N. H.; i, dis. after the eclipse; 4 , occultation of spats : 5, last contact: $\boldsymbol{6}$, phemomena-[Sketeh 29$]$-[Errata; $232: 1862$ front leat.]
1×61	231-241	first contact ; last contact; aftex the eclipse : heliographic position of the spots.
1861	241-24:	Solar melime of July, 1860.- B. A. Gould.-Abstract of observations made at Cambridge, Mass.
1×70	115-17\%	Reports of observations upon the solar echipse of Wecember 52,1870 ; extent of the corona as indicated be the spectroscopr, p. 150; nature of the coronal envelope and its relation to the sun, p. 152; constitntion of the solar atmosphere. a. 153; shicrestious with refereuce to the observation of future eclipocs, pp. 154-158.
1270	29	Report on the solar eclipse of December 2e. 1870.-By Prof. Benjamin Peince, LL. D.-[From rtport for 1-61.]
1869	110-198	Coast Survef at the following stations: Bristol, Tenn., in charge of R. D. Catts; Shelbywille, Kr., J. Wialock and G. W. Dean; Spriugfield, In, C. A. Schott; Des Moines, Iowa, J.E. Hilgard; and Kohklux, Chilkiht Rivor, Alaska, G. DavidsonGeneral path of the eclipse ; contacts: obscuration of solar spets; breaking of sum s limbly lumar asperitioe; uffecte of eptical inaccuracies; totality; protubemaces ; corona ; emergence ; nortbern and southem limits of totality ascertamed : speetrescopic observations; photographic records; reduction of micrometric photograph-measures ; deviation of photographed sme's outlint from a cirele, after corrections; compatations of results.-[Shetches 24, 25, and 26.7-[Errata 165.]
1869	113-115	Local veflections of the zenith in the vicinity of Washington City.-Report by Charles A. Schott.
1851	137-145	Prof. O. M. Mitchel.-Report on a new method of recording differences of north polar distances, or declination, by clectramagnetism.
1861	259-261	Solar srots.-C. A. Schott,-Abstract of observations made at the Coast Survey ofter, Washiugton, D. C.; table from August, 1860, to December, 1861, ami monthly relative numbers, compared with Wolf"s revised umbers; spotless days.[Sketch 29.]
1862	231-232	Solar spots.-Continuation of preceding paper.
1865	152-154	Report and tables on the declinations of standard timestars--B. A. Gould.
1865	155-159	Report and tables on the positions and proper motions of the four polar stars.-B. A. Gould.

MATHEMATICS.

Year.	Pages.	ritle of papers.
1854	6:3-7C	Competation of thandiation-Comparison of the rednetion of horizontal angles by the methods of "dependent directions" and of "dependent angular quantities" by the mothoul of hast squares.-Prot: A. D. Bache-[Sketeh \%e.]-[Errata, 65, $20,79,75,78,70,21,94: 1855$, p. גIN. $]$
1054	20-46	A ditsmmat of horizontin Angies-Charles A Schot.
1834	ع6-95	directions.-Charles A. Schote.
1854	1:31-13\%	
1856	307-308	PYonsmbe ERROR-Article from "Astronomische Nachrichten, No. 1034," transhated by Charles A. Sehott.-Determination of the probable error of an observation by the difterences of their oiservations from their arithmetical mean.
1570	200.-224	On The thegry of ernons of observations.-C. S. Peirce.
1855	255-264	Nohmal mquathons-Charles A. Schott.-Solution of normal equations by indirect climiastion.
1^60	392-396	Catcir's intemfolation-fonmulas; with remarks by Charles A. Schott.
1864	116-119	Pbonlem in geonesy.-Determining a position by angles observed from it on any number of stations.
1869	235	Solimion of the thaed-polvt moblem, by determining the point of istersection of a side of the given triaugle with a line from the oppesite point to the unknown point-A. Lindenkohl.

SURVEYING:

THIANGULATION.

Year.	Page	Title of papers.
183\%	363-364	Fableys shanl-T, Farley-Description and drawing of a convenient signal for observing on scoulary stations[Sketch 52.]
	344	Saxiss HELIOTBOPE.-B. F. Sands.-Deseription and drawing of a convenient signal for observiug on serondary stations.[Sketch 55.]
1000	361-363	prinary triangolation in Section T.-WSketch 5?.]
1rid	- Hax_{1}	Musmssiry Sounh.-J. E. Milgard. Details of the work of triangulation; signals amd station-marks.
18.96	:30-316	Theonolite test.-J. E. Hilgarl,-Examination and triats made of a ten-inch theodolite, applicable to the teating of instru ments of like construction.-Table 1 , readinge of erery 10 degrees on the cirche, and detcrination of angular distance of verniers : II determination of eccentricity; III, residual errors of graduation and readings; fighre of pivots.
$1 \geq 60$	35\%-361	Reilentixg-theonolite.-Supplement to the method of testing (lescribed in the preceding paper.)-Tablo I, readivgs of every 10 degrees on the circle, and determination of angular distane of verniers; II, derermination of eccentricity; II I, residual errore of gradiation and readioge.
1e6i\%	140-144	Pallwats, on the nge of, for geodetie sneveys--J. E. Hilgard.-Wheolrecorde; linemr measurement; rectifeation of curves; reduction of the measured lines ant augles to a simpler system.-[Skoteh 26.5
196i\%	145	Reflectox.-T. E. Hilgard.-Description of a new form of geodetic signals.-[Sketeh 26.1
1ebe	109-139	Memofanda helatisg to the fleid-wohk of a secondahy thianculation.-F. D. Cutts.-Selection of stations; names of stations; signale; tripods and scaffiolds; madermound statiuv-marks; surface station-marks; observations and records; number of observations; linit of arror; probableerror; reduction to center; correction for phase; correction for eceentricity; spherical excess; distribution of error; trigonometricalleveling; co-efficient of refraction; three-point problem; rectangular co-ordinates; measurements of subsidiary laselines; records, duplicates, and computations.
1868	140-146	Method of anjusthent of the secondahy thangulation of Long Island Sound.-C. A. Sebott.-Enample of redinetion of angular measne of Shelter Island; tinal computation and proof of correctuess.

torography.

1854	*95-* 103	Measurmext of hefghts.-T. J. Cram.-Experimental comparison of the methods of measuring heights by leveling, by vertical angles, by the barometer, and by the lwiling-point apparatus-[Hrrata, 102: 1855, p. xix.]
1860	397	I'able of heights foh tye use of topoghaphers,--C. A. Sobott.-Height in feet corresponding to a given angle of elevation and a given distance in meters, for use in the construction of contour-lines by plane-tables.
1870	75-76	REPORT ON THF Leveling-omehations between Keyport, on Karitan Bay, and Gloucester, on the Delaware River; to determine the heights above mean tide of the primary stations Beacon Hill. Disborough, Stony Hill, Mount Holly, and Pino Hill.-By Assistant Riclard D. Cutts.-Heighta above mean-tide, determined by the spirit-level, p. 75; tidal stations, p. 75 ; instruments, p. 75; tidal observations and records, p. 76.
1870	$77-89$	Report on the neguits of barometrical observations made in connection with the lime of spirit-loveling from Raritan Bay to the Delaware River to determine the heighta, sec.-By Assistant Richard D. Cutts.-Comparipon of instruments, and the determination of personal errors, pp. 7r-81; the compatations, pp. 81-89.
1870	90-91	List of heights, above the half-tide level of the ocean, of trigonometrical stations determined by the United stater Coast Survey.

SLRVEYING-TOPOGRAPHY-Continued.

HYDROGRAPHI.

1859	311-317	Phe for seculng thm-galges Mitehells.-\|Sketeh 40.]-\{See 311-317. New Fork Harbor.)
1853	*94-496	Shlf-reaistering tibe-gauge, Saxton's.-E. B. Hunt.-[Sketeh 54.]
18.4	*190*-191	
18.76	402-403	Tmedange, Trenclarl's.-[Sketeh 2 O .]
1857	403-404	Tilegagle for heel Water, Mitchells-[Sketeh 'il.]
1858	247-248	
1857	398-401	Sounding-aplabatus.-New method proposed by E. B. Hunt for somming in moderate depths.
1859	36\%-36fi	Themetcr.-hesults of experimmos made with the apparatus devised by E. B. Funt. -I. M. Batehelder.
1057	398	
$185:$	401-402	Experimental goundings made with Hunt's sounding-apparatis.-W. G. Temple.
185\%		
1830	301-364	Deepsea-sotnding alpabatus.-Deseription of a form devined by W. W. Trowbrifge, and explanation of its method and use,-[Sketch 39.]-[Errata, 359, 1860, p. xx.]
1861	135-139	Soundng-aftarate and log, - W. P. Trowbridge.-Leshlfs obtained witi an instrument devised by him.
1866	139	Berbymay apfaratus; rates of outrun of line.-(Nee 1857, Specimen soumding. Sketch i1.)
1854	191-*192	Chavents shechmex-box for deep-sea bottoms-T. A. Craven--[Sketch 56.]
1855	301	
1860	398	
1834		Cravex's clrremt-inucator.-[Sketch 55.]
1855	365-360	Island Bar.-[Sketeh 54 .]
1852	$97-98$	
1855	15\%-160	
1853	*93-*94	Altinitg nembector or interramer, Hunt's.-E. 13. Hunt.
1857	150-151	Metmon of sweeping.-(See Depths at Hell-Gate, \&-\%)
1860	165-176	de.-[Sketches 19~2..]
1856	1383-137	
1857	178-184	
1859	168-171	The same.
1×69	86-92	The same.

heCONNAISSANCEN

171-176	Florida Knys.-Survey for the General Lamdoffice, including reports on the general topography and triangulation, ou the determination of the shore-line, and reconnaissance of Lharnes's Sound, Florida.
286m989	Florima Keys.-Report of the Saperintendent to the Commissioner of tie General Land-Onfee on progress made in tht sur. vey and marking in quarter sections.
379-382	Flomida Pevinsula aif-line-Report of a reconmassance made between Fernandina and Cedar Kers.-By Capt. I. II. Simpson, United States Topographical Engineers.
389-390	Florida Kers.-Snperintendent's report to Commissiomer of feneral Land-office on progress made iu surver and marking of the Keys.
225-227	Flomid Keys.-Snperintendent's report to Commissioner of General Landoffice on progress made in survey and marking of the Keys-Continuted.
294	Eastern coast of Floriba, south of Saint John's River.-Teport of Suljassistant J. Mechan on local characteristic
*23-*30	Extracts from the report of F. H. Gerdes on the reconnaiseance of the coast of Lonisiana in 1854, (Mississippi Deha.)
$87-94$	Extracts from the report of Assistant F. H. Gerdes on a reconnaissance from Suwauneo River, Florida, to Delta of Mississippi.
104-107	Report of Lieut. Commander James Alden, U. S. N., on the reconnaissance from San Francisco to San Diego, including Santa Barbara Islands.
390-391	Coast of Santa mambara Chansml-Report of Sub-assistant W. M. Johnson on its topographical characteristics.
391-395	SANTA Barbara Islantog anit main.-Report on the character and progress of the work.-lby Assistant W. E. Greer

TUPOGRAPHY-RECONNALSSANCES-Continued.

Year.	Pages.	Title of papers.
18.5	*30-*31	Extracts from a report of W. E. Greenwell on the general features and peculiarities of the coast of Lower Texas, with suggestions in regad to facilities for navigation, from the harbor of the lirazos de Santiago to the month of the Rio Grande.
1854	5324-328	Coast of Lexas, embracing the shores of Lspiritit Santo, San Antonio, and Aransas Bays.-Report on a reconnaissance,-By Assistant S. A. Gilbert.
1860	356-357	Cories Chmisti Bay and Latuna Mmble, Texas.-General description of charaeteristics.-By Assistant S. A. Gilhert.
1861	263-264	Coast of Texas abore Galveston Bay.-Extracts from a descriptive report-my Capt. George Bell, C.S. A.
1867	149-157	Provincetown Harbof, Massacildsetts.-Special survey-Report by Aseistant H. L. Whiting. .

PHYSICAL HYDROGRAPHY.

Year.	Pages.	Title of yapers.
1856	249-251	Predictios tables.-Notes on the nrogress made in their preparation with reference to tides of Boston Harlog.-A. D. Bache.
1868	51-102	T
1868	103-108	Mone of hormivg a brief tide-table for a chart, with example.-R. S. Avery--[Sketch 20.]
1870	66 m ! 9	Tabular statements of results of computed tide-tahes for charts of the western coast of the Crited States.-By R. S. A.ver
1870	\%0-74	Mo
1869	\%-104	Reclamation of thelelands, and its relation to maygatign.-DI. Mitchell.-1, geberal discussiob; beour of tidal and river currents; general rule of bar-sconring; parallel works; transverse works ; physical history of salt-marshes; shiuglelevees; other natural levees; Peirces criterion; 2, feld-work; Green Harbor River; North River; tabular sections of shinglelevees; sand beach; section of slueway formed by Minot's gale; general rise; lucal changes of heights of tidetables; effect of a dam; general conclusions relative to the projects of reclamation : shore of Nahant; tabular sections: maps and diagrame (in text.)
E	213	Disamics of ocea
185	210-213	Co-tidal lenes of an inclosed sea, as derived from the equiibrium-theory-Berjamin Peirce.-1 general theory; a, its modification by the incompleteness of the inclosure.
1854	14i-159	Co-Tidal lisks, Atlantic.-A. D. Bache.-Preliminary determinations of co-tdal lines on the Atlantic coast of the Cuited States, from Coast Survey observations.-Table I, observations for cotidal hours; II, co tidal hours of ports on the Atlautic coast; III, rate and trend of co-tidal Limes.-[Sketch 36.1 -[Errata, 151: 1855, p. xix.]
18.56	252-260	Co-that lises, Gulf of Mexico-A. D. Bache-Tiserssion and preliminary determination.-Table I, diarnal wave; II, sta- ments of diurnal and semi-diurnal tides in the Gulf of Mexico.-[Sketches 35 and 36.1
1862	126-128	Co-tidal lanes of the clle of misico, dehteed from recent observations.-A. D. Bache.-Tabies of dinaal and semidiarnal tides.-[Sketch 46.]
185	332-342	Pacific co-mpat lines.-A. D. Mache.-Tidal observations.-Table I, tide-stations on the westeru coast of the Cuited Statea; 1I, data for co-tidal lines of the Pacific coast of the United States; co-tidal hours ; co-tidal groaps; III, discussion of the middle group bet ween Cape Mendocino and Point Concoption. -Chart of co-tidal lines.-[Sketch 49]
1837	342-34	Atlantic coast tiles.-Generalization of heights relative to the configuration of the coast.-A. D. Bache.-Table I (A), heights of tides on the Atlantic coast of the United States; If (B) on the coast of Cape Rreton and Nom Brunswich.[Sketch 65.]
1868	51-102	Dischsion of the tines in Boston Habmob-W. Fertel.-Tbe obserrations and the locality; expression of the disturbing forces; tidal expressions; object and plan of dischssion.-Tables I, II, III, and IV, of average normal values; ∇, the constant or mean tide; the scmi-monthly inequality; VI, iner uality depending upon the moon's mean anomaly; VII, in ennality depending upon the moon's longitude; FII bis, inequality depending upon the sun's anomaly and longitude; VIII, inequality depending upon the moon's node; IX, inequalities fepending npon η_{y} and η_{g}; diurnal tide; recapitulation of resulta; comparisons with the equilibrium theory; determination of the general constants; comparisons with the dynamic theors; prediction formulas and Tables I-XI; computation of a tidal ephemeris; conclasion; example of the computation of a tidal ephemeris.
1835	340-347	Gulf of Mexico tides.-A. D. Bache.-Observations and type-curves at the several stations, showing their lecomposition into diurnal and semi-diarnal tides.
1856	200-261	Trpe-cunves, Gulf of Mexico.-Deecriptive references to Sketch No. 38, reprosenting the decamposition of carves of ouger-rations.-[Sketch 38.]
1854	152-*155	Diego, San Francisco, and Astoria, with tables.-[Sketch 49.]-[Errata, 153: 1853, p. xix.]
18	138	Exilanation of magham of type-ccinyes of the tides on the Pacific Coast.-[Sketch 20]
185	271-272	Whins of Alprmarle Sousd.-Discussion of their effect upon the tides, -L. F. Pourtales.-[Sketch 10.]
1856	276-278	Whds and tidea ix Cat Islayd Habiok.-Iesalts deduced from observations made by G. W. Dean.-[Sketch 39.]
1856	272-276	Winds in tar Gclf of Mexico.-A. D. Bache.-Discussion relative to the disturbance cansed in the intervals of successive tidee at several stations on the Gulf coast; Table I, quantity aud direction of wind at Key Weat, Fla., 1551-'52; 1I, at Fort Morgan, Ala., 1847-49; III, at Galrebton, Tex.
1837	354-358	Winds of the wettrre coast--Discuscion by Prof. A. D. Bache.
18.5	279-280	Cambs from current-bottles.-Picked up on the shore of Loggerhead Key, Fla., and on the North Caicos, Bahamag.
859	320-321	m coast of Florida.

PHYSICAL HYORGGRAPHT-Continued.

Year.	Pages.	of papers.
1854	$* 189 \ldots+190$ $-35 m+37$	Cuhent-botrles. One from Mobile Bay to Mosquito lulet: and one from Cape Florida to Jupiter Inlet. Nantucket and Thersm, Souxi moes-M. Mitehell.-Method of securing Mitehell's tidegauge; remarksonavellb, [Sketch 5\%.]
1855	222-72	Nantcher Sornd.-H. Mitchelh.-Tidal observations; interference-phenomena
1856	261-263 $44-46$	Ixtebfenence.tinee.-H. Mitchelh-On observations made in Nantucket and Martbars Tineyard sounds. Held Gate (East Riter, N. Y.) tides.-H. Mitchell-Preliminars report on the interference-tides of Hell Gate, with direetione for reducing the sounding.-Thble of relative elevations of tidal planes from his obscrvations; tides and currents of Hell Gate, from observations of 1857 .
1867	158-169	Tides and curbents of Hell Gate, N. Y.-H. Mitchell.-General scheme of tides and currents: 1 , general scheme of tidal interference; observations and results; curves; 2 , tides from stations sulected as characturistic for Jew Fork Harbor and its approaches, $185 \%-58$, with diagram; 3 , intervals and heights of tides from simultaneous observations, May and June, 18 ant, arranged according to hour of transit; curves of half-monthly inequalities; 4, restoration of lerel between gaugen at Hell Gate Fery and Pot Cove, 1857 ; dagran; 5, currents of New Fork Harbor; gevemil sehente of chrents, graphic.
1853	* $71 \sim * * *$	Notes on thes at Kyy West.-A. D. Bache.-Table I, half-monthy mequality of tides, one feare observations: II, Dinmal incquality, with formola; decomposition of the curves of obecrvation; somi-diurnal tides: III, first six months; IV, Aecond six months; Y, the whole gear; diurual tides; YY , effect of mon's dedination; YII, moon's age; changes of nean level ; YIII, height of high water referred to moon's age, first and second months: IX, moathly mean level -isketches 27, (F, No. 4,) and 28, (F, No. 5.)]
1851	127-136	Notes on Cat Islami tides.-4. D. Bache.-Discussion ; table of diarnaland semidiurnal curves--[Shetela 35 , (H, Nos. 2-4.)]
185	111-12\%	Disclisbon of Cat Island tions.-A. D. Bache.-Table I. Sketch 1, diumal and semi diarnal curves deduced fromi obervations, with curces of sines: (A, dinral wave; heights and times; II, Sketeh 2 , maximum ordinates of diurnal curve. computed diurnal ordinateb compared with observations; VHI, Sketeh \&, residuals classed ly moon's ages: IX, Bame, corrected by change of cosines: X, diference of diarnal maximum ordinates, from last and from first methods of groupssemidimrnal effect; $X L$, correction to maximum diarnal ordinate fur high-water ordinate; XII to $\mathcal{X} V$, further residual corrections; comparison with hypotlesis ; (B,) semi-diurnal curve; NVI, half-monthly inequality in height; XTII dis. crepancies between observations and formula-[Sketch 25, (II, Nos. $5-9$.)]-[Errata. p. 115, 119, 12]: 1853, p. 182.1
1806	113-119	Thoal obemvations at Cat Islanio, Gulf of Mexico notes of a discussion, by A.D.Bache.-(Ifeport for 18,7.)-[Sketch 30.]
1853	*\%-*81	Notes on tines at Rincon Ponnt, Cal.-A. D. Bache.-[Tables I to IF.J-[Sketch 4e, (J, No. T.)]
18.3	*81-*82	Notes on the tides at San Francisco, Cala-A. D. Bache.
1554	* 37×40	Western coast tidal and magnetic observatioss. W. P. Trowbridge
1864	$91-92$	Thbes at Taimit, South Pachp Ocean, -Their general character.-J. Rodgers.-[Sketeh 40.]
1860	349-*402	Labradon expemmon.-A. Murray.-Report of a royage of steamer Bibl, and remarks on the winds and tidei
1870	92-97	Descriuthon of beachmathe at tidal-stations.
1870	190-199	On the mooxs mass, as fedured from a disenssion of the tides of Roston Harbor.-ry William Ferrel esu-
186	170-175	Merrimack River, Massachisftre.-H. Mitchell.-Surveys regpecting its navigation, with tables.-[Sketeli 2.]
1851	555-558	Hell Gate Cifannel-W. A. Bartlett.-Examination of reefs and changes produced by blasting.-[Sketch 8, (B. No. 4)][Errata, p. Ix.]
1852	84	On Pot Rock, Hell Gate.-W. A. Bartlett.
1857	150-151	Depths at Hell Gate on the sevrral rocks.-W. G. Temple.-Metlod of "swerping."
1854	*166-*168	Muskeget Channel and Mantha's Vineyand clmbents.-Diseused by C. A. Sehott.--Table showing the currente apd rate of current in Maskeget Channel and of the northeast coast of Martha's Fineyard; velocity of curcent; duration of eisb, flood, aulslackuater ; current-establishments.-[Sketch 14, (A, No. 13;) also,1855, Sketch 6.]-[Errata, p. 167.168: 1055.p.xix.] Nantucket Shoals cerbevt.-(C. A. Sehott-On the currents of Nantheket Shoals, from Coast Survey current observa-tions.-Table I, mean direction ; II, maximum velocity; IIK groups of luni-current intervals-[Sketch 13, 11, No. 12.)][Errata, p. 165, 166: 1855, p. xiN.]
1869	236-259	changes; Vinegard Haveu, its character as a port of refuge and tis present condition; Table $I_{\text {, exposure of anchorages }}$ in Provincetown Harbor; II, in Vinegard Haven; III, in Great Wood's Hole; IV, in Tarpanlin Cove; V. in Edgartown Kondstead; VI, in Old Stage Harbor; VII, in New Bedford Harbor and Quicks Hole; VIII, in Plymonth Harbor ; IN, in Boston Harbor and Nantasket Roads; X, in Boston Harbor and Hull Bay; XI, in Boston Marbor and President's Roads and George's Robde ; XII, in Marblehead Harhor ; NII, at Salem Harbor; XIV, at Gloucester Harbor; Xf, in Lowor Bay, New York Harbor; SVI, in Tpper Bay, New York Harbor; XVII, anchorage-room and average exposure in the respective harbors.- $\left(\mathrm{B}_{1}\right)$ surveys of summer, $1871: 1$, physical aspect and peculiarities ; 2 , Edgartown tides, difference of heights; 3 , Nantucket tite-talle; 4 , elements of the field-work.
1854	$\left.\right\|^{* 168-* 179}$	corrected or mean establishments, to April, 1853 ; Lll, set aud maximum rates of obl and flool streams; IV, luni-current interval for beginning of ontgoing streams; eastern part of the sound, 1e46-4; ; western part of New Fork Bay and Channel, 1844; New York Harbor, 1844-45; Hell Gate, 1845 ; Hell Gate and Throg's Neck, 1846 ; V, mean duration of slack-waters and of respective ebb and flood streams, trom the middle (timel of one slack-water period to that of the next; VI, irregularity of lumi-corrent intervals of auccessive tides.—[Sketch 16, (B, No. 2.)]-[Errata, p. 172, 174: 1855, p. xix. 1
185\%	350-354	Tides and cunrents in the Nantucket and Vineyard Sonnds and in East Rirer.-H. Mitehell.-Hell Gate and vicinity, tides and euments; Hudson River levelings; Nantucket and Martha s Vineyard Sounds, tides and currents.

PHYsICAL HYDROGRAPHY-Continued.

Year.	Pages.	Title of papers.
18.51	136-137	Graphical method of representing current-observations, as usel in the Coast Surses.-A. D. Bache.-[Sketch 3, (A, No. 3.)]
1853	189	Sandy Hook changes.-[Sketch 8 , (B, No. 3.)]
1855	164. 165	Sandy Hook changes.-(See New Jerses, etc.)-A. M. Harrison-[Sketch No. 9.]
1855	170-171	Remanks by Ma. Busche on servers made ar different periods in New York Harbor.
1856	263-264	Tidal curbents at Sandy Hook-Notes on the canses of northwardly increase of the peniusula-A. D. Bache.-[Ertata, p. 264 : $1856, \mathrm{p} . \mathrm{xX}$.)
1856	264-266	New York Harbor and mpendevcies.-H. Mitelell.-On tidal and enrent observations nade in New Fork Harbor, city docks, Newark Bay, and the Eills.
1858	19\%-203	New York Bay and Sandy Hook. - A. D. Bache.-On the character of the tidal eurrents in the vicinity of the bar: 1 , normal curronts at the ontrance to New Fork Bay; 2. False Hook Channel and the approaches; 3, currents of Saudy Hook Bay.-Table I to IV, lunar time, duration, velocity, and tirection of currents: V and VI, velocities corrected for diarnal and half-monthly inequalities.-[Sketch 39.]
1857	358-373	New York Harbor: report of adrisory council-- Physical causes of changes: 1, changes at sandy Hook; 2, northern side of entrance, Coney Lsland and south shore of Long Lsland; 3, Yew York bar ; 4, New York Upper Bay; 5, Newark Bay; 6, Hudson River; 7. East Hiver to Throg's Neck; statistic extracts.--[Errita, p. 272: 1858, p. xx.]
1858	204-207	East fiyci and New York Bay.-H. Mitcluelh--On the obserrations of surface and sub carrents.
1859	311-317	New Yone Harbob.- H. Mitchell.-On its physical surrey, with description of apparatus for observing the currente.[Sketch 40.]-[Errata, p. 317: 1260, P. xx.]
1856	206-267	Hidoson River.-G. Wurdemann.-On tidal observations made botween Albany and New Yorik City.-[Sketch 6.]
1851	482-484	Bealfort Earbor, Norti Cabolina.- Fi. L. Whiting.-Operative canses of its physical permanency.-[Sketeh 17, (D, No. 5.)]
1854	*21-+23	Bealfort Harbor, Nomth Carolina.-T. N. Mnfit.-Its capacity, changes, and improvements.-[Sketch 23.]
1857	152-153	Beaufort Harbon, Nonth Carolna.-C. R. P. Rodgers.-Present condition of bar and anchorage.-[Sketches 29 and 30.]
1864	57	Keamport Habbon.-E. Cordell-Tevelopment of ehavges at the bar and in the channel.-[Sketeh 96.]
1857	153-155	Cape Fear Entrances, North Cabolina.-J. N. Mafit.-Elements of phyaical changes wrought.-[Sketeb 33; also, 1855, Sketeh 16]
1858	150-151	Cape Fear Entrances--T. B. Huger.-Recent changus in its hydrography.-[Sketches 12 and 13.]
1865	45	Extrance to Cape Fear Rivele, Nonth Carolna.-J. S. Bradford.-Hydrographic changes.-[Sketch 13.]
1851	488-491	peninsula; E, light-bouses and booss; F, general remarks on Cedar Keys Harbor--[Sketehes 27.28 , and 29.1
1851	52e-530	San Diego Rivfli entrance,-[Sketches 0 and 7.]-(See C, statistics ; a, coast, western.)

GULF STREAM.

1853	46-51	(Report.)-ISketehes 15 and 16.)-Gulf Stream explorations.
1860	165-176	Gelf Stheam.-A. D. Bache.-General account of the methods used in developiug its bydrography, aud summary of results obtained; 1 , instruments for temperatures: for depth; for obtaining specimens of the botiom; 2 plan of the work; 3 , methol of discussion of results: 4, results; type-eurves of law of temperature with depth at the most characteristic positions; typecurves of law of distribution of temperature across the stream; curves of dopths of equal temperatures.-Table I, distance of the cold wall from the shore, and widthe of the several bands of cold and warm water of the Gulf Stream, measured on the lines of the sections; 5 , limit of accuracy of the determinations; II, probablo uncertainty in the determination of maximum and minimum points by running the same sections over in different years, by different observers; III, value of probable crror of determination of the bands for each section and the average of the whole; 6, figure of the bottom of the sea below the Gulf Stream ; 7, general features of the Gulf Stream.-[Sketches 19 to 22.]
1858	217-222	Flomida Gulf Stream.-E. B. Hunt.-Notices of certain anomalies; changes of current depending upon the winds and seasons.
1854	* 156 - 161	Gulf-Stheam temperatures.-A. D. Bache,-On the distribution of temperatares on and near the Gulf Stremm: 1, at different depths; 2, at the same depths on sections across the axis of the Gulf Stream.-Table I, probable uncertainty in determination of the maximum and minjmum points; 3, connection of the figure of the sea-botitom with the distribution of temperature; 4, the "cold wall;" 5, reference to shifting; f; chart of Gulf Stream.-[Sketches 24 and 25.]-[Errata, p. 158, 159, 160: 1855, XIX.]
1855	53-54	Gulf Stream exploration -Programme, Craven's Cape Florida section; Sands's soundings along the Gulf Stream axis; fepths; bottom-conflguration, temperatures, and bottoms.
1855	359	Bottlefaper-Current-bottle card thrown over near Sandy Hook and picked up at the bar at Santa Cruz, one of the Weatern Islands.
1855	84	(Report.)-[Gulf_Stream deep-sea soundings.-[Sketch 38, (H, No. 3.)]
1859	306-310	GUlf STREAM; distribution of temperature in the water of the Florida channel and straits.-A.D. Bache.-Form of bottom; change of temperature with depth; temperature in a direction across the stream ; bauds of warm and cold water; the "cold wall;" longitudinal"section; effects of pressure on Saxton's deep-sea thermometer, ander presenre and free from pressure ; thermometers Nos. 5 and 10.-[[Sketch 35.]
1868	166, 167	Note on Gulf-Staeam obsenvations.-H. Mitchell.-Decrease of bottom-temperature in still-water channels,-(Sequel to 1867, p. 179, below.)

PHYSICAL HIDROGRAPHY-GCLF STREAM-Continucd.

Year.	Pages.	Title of papers.
1866	35-44	Flobiba Sthats.-H. Mitchell.-Report on soundings; norihern approach; southern approach; dificulties in the way of laying a telegraph cable; remarks opon lines and leats; table of anmingsacross the Straits of Fhorida, from Sand Fey to El Moro, 1866.-[Sketch 17.]
1866	139	Supplement, p.139: diagram of rates of matrun of line, Berryman apparatus.
1867	176-179	Soundings in the Gulf Stream betweex Key West (Flomina) and Havana.-H. Mitchell.-Table I, soundings in the Gulf Stream near the coast of Cuba, 1867; II, ourrent obserfations,-[Sketch $25 .!$-(Supplement, 186e; pp. 166-10\%)
1853	*82-* 83	Exammatiox of spremens of bottom obtained in Grif Stream.-L. F. Pourtales.
185	360	Guti Stream botrons.-J. W. Bailey.-On the charaeteristics of some bottoms from the Cape Florida Gulf Stream section.
1858	248-250	Amalysis, microscofical, of specimens of bothom taken in souding.-L. F. Pourtales.-Green and ochraceous incrustation of Foraminifera, and jet tint of speciouens.
1867	180-120	Fadna of the Gulf Stream.-L. F. Pourtales.-Dredgings in the Straits of Florida.
1868	168-170	Refort upon dhedgings near the flomba Reef.-L. F. Pourtales--Organic specimens: corals, echinoderms brachiopods, sce.
1869	202-819	Report upon derp-sed tredginge in the Gulf Stheam during the thimp crutise of the United States nteamer Bibi- L. Agazziz.-Faunx of the submarive zones; reefzone; sedimentary zone; coral slope of liring cretacean trpes; floor of foraminiferine mud; geological inferences; inclination of the reefs; pot-holes; formation of oilithic, amorphons, and compact limestones; the Jurassic submarine seam; embryology of corals and formation of colonies by disk-embranclment: extinct forms representing modern developmental transitions: lines to be dredged.
1669	220-225	The Gulf Stheax.--Characteristics of the Atlantic seabottom off the coast of the Cnited States.-L F. Pourtales.-Mamuer of dredging ; silicenns formation; green-sad formation-
1858	228-246	Deep sea soundings.-W. P. Trowbridge.-Investigation of the laws of motion goveming the descent of the weight and line: formula of velocity of descent.-Table I, rates of descent and resistance, in pounds, upon the sinker and line, with one and with two 32 pound shot, 0.07 of an inch in diameter; II, same, with 96 and 126 pound weights-deep-sea line; ILI, influence of different lengths of line moviug with the same velocit: ; ratios of lengths to ratio of resistancos; VII, comparison of resistances upon the same lengths of lines of differeut diameters, moving at the same velocity; VI, influence of lengths at different depths; VIII, same, continued; $I X$, rates of descent, relocity, resistance to sinker and line, and weight of line in water, from observations made by Jos. Dayman ;-diameter of line, 2 inches; weight, 96 pounds; specific gravity, 1.3.-[Sketch 38 .]-[Errata, p. 235; 1878, p. xxi.] Tide-Tables for navigators, with description of bench-marks, explanations, and examples for use.-A. D. Bache.
1853	*67-*70	
1854	*180-+189	[Drrata, 181, 182, 183, 185: 1855, p. xx.]
1855	347-359	[Errata, 349, 351, 353, 351, 358: 1857, p. xvill]
1856	120-133	[Errata, 130: 1856, p. xx.]
1857	157-178	
1858	275-297	[Errata, 279: 1859, p. xvi.]
1859	136-167	[Errata, 140: 1860, p. xx.]
1860	131-164	[Errata, 161: 1860, p. xa. 1
1861	98-131	
1862	93-126	
1863	84-117	-
1864	58-90	
1866	47-49	Predictions for Eastport, as a specimen.

TERRESTRIAL MAGNETISM.

Year.	Pages.	Title of papers.
1856	226	Magetic obseryations-C. A. Schott-- Methods used in his obserrations of the present year magnet H,
1862	232-235	Bessel's pemodic functions developed for periods frequently oceurring in magnetic and motoorological investigations; with examples.-C. A. Schott.
1864	205-206	Girard Collmge obskrvations.-Iudex to discussion by A. D. Bache.-(See Magnetic elements; discussed.)
1860	350-351	Eastrort station, Mank.-General description of magnetic station.-L. F. Pourtales.
1860	326-349	Key West btation.-Description of instruments and plan of magnetic observatory; with results.-W. P. Trowbridge.Declinometer, recording cylinder, and clock; vertical-force wagnetometer; adjustments : mean daily range of tempera. ture for each month, 1851, 1852, and montuly range for four years; mean monthly temperature for fourtoen years; lamps; scale-messurements; temperature co-efficients of the horizontal and vertical forces of magneta; photographle arrangements; magnet H-axis and intensity; dip; seale-values for iatensity-maguets-tables and computation; experiments for temperatare co-efficients of horizontal-force magnet, with hot water and ice.-[Sketches 23 and 24.]
1862	236-238	Dipping-nkedle.-Description of a new form of axis, changeable insposition.-J. E. Higard.
1854	*142-*145	(1844-45.)-Table of magnetic declination,-G. W. Dean.-Results of Coast Survey magnetic observationa at 136 stations along the coast of the United States.--[Errata, p 144, 145: 1855, p. xxi.]
1855	295-306	(184-'55.)-Table of magneme declination, in geographical order, from Coast Surveg observations; with notes by A. D. Bache and J. E. Higard.-Discussion of magnetic declination: 1, northern part of Gulf of Mexico; 2, Atlantic cosst; 3. Pacific coast.-[Sketch 50.1

TERRESTRIAL MAGNFTISM-Continned.

Year	Pages.	0
1859	172-175	(1858) - Valliation of
1865	174-176	(1865.)-Report on the distribution of the magnetic declination on the coast and parts of the interior of the trited States.- O. A. Schott.-Isogonic chart for 18\%0.-[Sketehes 27 and 89.1
1855	306-337	(1717-1855.)-SECULAR vaRiation of magnetic declinations-C. A. Schott-Discussion of the secular change in the magnetic deelinations on the Athantic and part of the Gulf coasts of the Uuited States.-Mrovidence, R. I.; Hatborough, Pa.; Philadelphia, Pa.; Boston, Mass.; Cambridge, Mass.; New Maven, Conn.; New Tork, N. F.; Charleston, S. C.; Washington, D. C.; Pensacola, Fla.—[Sketch 51.]-[Errata, p. 314, 335; 1805, p. xvin.]
18%	298-235	(1792-1855)-SECULAL change of declination ; Western eoast-C. A. Schott.-List of magnetic declinations olberved on the western coast from the earliest to the present ones, arrauged in order of geographical latitudus.-Annal change: 1, San Diego; 2, Moaterey; 3, San Francisco; 4, Cape Mendocino; 3, Cape Disappointment-Recapitulation of results for secular change.
1870	111-114	Resuls of observations for deily varivtion of the magnotic declination, made at Fort Steilacoom. Washington Territory, in 1806, and at Camp Date Creek, Arizona, in 1867, by David Walker, acting assistant surgeon C. S. A., and discussed and reported by Assistant Charles A. Schott
1858	192-195	($1680-1850$. - Secelar variation of magnetic declination at Hatborolgh, Pa.-C. A. Schott.-Dincussion and development of an intermediate period.-Table of declinations from 1680 to 1850.-Diagram.-[Errata, p. 193: 1858, p. xxi.]
1858	195-197	(1809-1857.)-Secllar variation at Washington, D. C.-C. A. Sehott.-Dechination from 1806 to 1857.-Dip from 1839 to 1858.
1870	107-110	New investigation of the secular changes in the declination, dip and intensity of the magnetic force at Washington, D. C.Dy Assistant Charles A. Schote.
1859	296-305	(1680-1260.)-Secular change in Declination.-C. A. Schott.-Tariation of the needle on the coasts of the Uaited States for every tenth year since 1680 ; formulas expressing secular change, used for calculating the tabular values for Group I, stations between Portlanif, Me., and Williamsburgh, Va., with table of observations made between 1680 and 1860 ; for Gronp II, southern stations and western coast-Record of all observed decliyations wade use of in the above paper, not heretofore published in the Coast Surpey Reports.
1861	251-250	New discu*sion of the distribution of the magnetie dechination an the coast of the Guli' of Mexico, with a chart of the isogonic curres, for 1860-By Assistant Charles A. Schott.
1861	256-259	New discnssion of the distribation of the magnetic declination on the coast of Virginia, Sonth Carolina, and Georgia, with a chart of the isogonic curves, for 1860.-By Assistant Charles A. Sehott.
1856	235-245	(1780-1855.)-Secelar change of inclination; Atlantic coast.-C. A. Schott--Toronto, Canada; Albany and Greenbish, N. Y.; Cambridge, Mass. ; Proridence, R. I.; West Pointadd Cold Spring, N. F.; New Haven, Como. : New York, N. X.; Philadelphia, Ya.; Washington, D. C.; Baltimore, Md.; recapitulation of results.-WTable I, geographical positions and nmber of dip-observations; II, formula for each station; III, probable error, 'poch ol' minimum dip and annual variation in current year,-[Sketeh 63.]
1835	246-249	(1790-1855.)-SRCLEAE Chatge of mominatiox ; Western coast.-Apmoximate determination of the secular change of incli-nation.-C. A. Schott.-Table of obsercations made up to the present time; deductions therefrom.-1, San Diego; 2, San Pedro; 5, Monterey ; 6, San Francisco ; 8, Fort Vancoaver; 10, Cape Disappointment.
1857	334-342	Macnetism.-Gradual loss of magnetic momentum in the Coast Survey magnets,-C. A. Schott.-Aucount of magnets : S 8, O $32, \mathrm{C} 9, \mathrm{D}, \mathrm{C} 6, \mathrm{H}$, and Smithsonian magnet used in 1855 .-Table: recapitulation of values for magnets severally, and dis-cussion.-[Sketch 68.1
1861	242-251	Seclian chavge of intersmy.-C. A. Schott-Discmssion of obsertations made on the Atlantic, Gulf, and Pacific coasts of the Tnited States; intensity-statistics; notes; table of annual change for Atlantie and Pacifle groups.
1864	207-210	(1832-36.)-Lrchination, mir, And jntexsity, as derived from observations made by J. N. Nicollet in the Sonthern States.
1854	*37-* 40	(1853-54.) -Page 39: Reference to instrunents used. \&c, in California.-W. P. Trowbridge.
1855	337	(1825.$)$-MAGNETIC Ongenvations-C. A. Schott.-Results for dechination, dip, and horizontal intensity, on sixteen eastern stations, July to September, 1855.
1858	287	(1856.)-Magnetic elements-C. A. Schott.-Results of his observations for declination, dip, and intensity at stations in Delawars, Maryland, and Virginia.
18.78	191-192	(1850-1858.)-Magnetic Elemixis.-Continuation.
1859	296	(1859.)-Declination, mp, and intrasity.-C. A. Schott-Resilts of obserfations made by him in Canada, Maine, New Hampshire, Vermont, Masachusette, and Connecticut.-Foot-note on disturbances.
1860	351-352	(1859; also, 1855.)-DECLINATION, DLP, AND INTENEITY at various stations; (supplementary to 1856, p. 28\%, and 1858, p. 191.)
1860	352	(1860.)-Declination, mif, and intexsify, determined in 1860 on the coabte of Massachusetta, Long Tsiand, and New Jeregy.C. A. Schott.
1862	230-831	(186A-1861.)-Imectination, mi, and Intensity at various stations; (supplementary to list, 1860, pp. 351-358.)
1863	204	(1863.)-Declination, Dip, anv intensity, from observations, by C. A. Schott and G. W. Dean, in Maine, Connecticut, and the District of Columbia-discuseed.
1836	209-225	(1839-1855.)-TERRESTRIAL Magnefism-Discission relative to its distribution in the United States.-A. D. Bache and J. E. Hilgard.-Methods and sources used; corrections for secular variations; construction of maps, (Sketches 61 and 62 ;) comparioon of maps for decliuation, dip, and intensity; supplementary note, (Mexican observations; Table I, Atlantic, Gulf, and Pacific sections; II, near parallel 35', by J. C. Ives, Whipple's expedition; III, from various new eorceslakes, territories, Panama; IV, residual difference between the Coast Survey observations, reduced to 1850, and the valuea ohtained from the accompanying map,-[Sketches 61 and 62.]

TERRESTRIAL MAGNETISM-Continned.

Year.	Pages.	Title of papers.
1862	212-209	(1834-1862.) Magneme servey of Penasylvania ant parts of adjacent States from 1834 to 1862 --Diacussion bs A. D. Bache.Dedinations observed by him in 1840 and 1841 ; tabular comparisou of secular changes in 1840, 1-41, and 186之; chronometric results for longitade; geographical positions; distribution of dechination for 1843.0; general table of results referred to common epoch, 1842.0 ; comparison of observed and computed values; dip, listribution of and isoclimal lines for 1842 , groups 1 to 4 ; correction to epoch; comparison of observed and computed dip; horizontal intensity and isodynamic lines for 1842; tabular formation of groups for the analytical expression of the ilistribution of borizontal force referred to 1842.0 ; comparison of observed and hypothetical computed values; representation of the total force,-[Sketch 4. .] Girale College observationes, 1840 to 1 efs. Index of disenssion, by A. D. Bache. Section I.--Declimation. PARTI.-[Sketch 37.]-[Errata, p. 279, 280, 293: 1860, p. XX.]
1859	278	Introduction.
	279	Separation of disturbances and estahlishment of normal readings of the declinometer.
	285	Analytical expressions of the regular solar diurnal variation of the declination.
	280	Inequality of the amplitude due to the eleven (or ten) year period.
	287	Discussion of the number of disturbances of the declination; their annal inequalits.
	290	Dinrnal inequality of the number of disturbances of the declination.
	290	Deflections by disturbances; their mean anunal amount ; effect of the cleren (or ten) rear periot.
	92	Deffections by disturbances; their sean diumal amount.
	295	Connection of the frequeney of the solar spots with the changes in the amplitude of the diumal rariation of the declination. Part li.
1860	293	Investigation of the solar diurnal variation of the declination.
	302	Its semi-annual inequalits.
	303	Analytical and graphical exhibition of the solar diurnal variation for each month, summer, winter, and year.
	307	Maxima and minima, and times of average value of the declination; diurnal rangb.
	309	Annual variation of the declination.
		Part III.
1860	312	Lunar influence on the magnetic declination; tabulation of resnits according too the moon's hour-angle.
	318	Comparison of lunar dinmal variation for three elonths.
	319	Resulting lunar diurnal variation.
	321	Inequality in the Innar diurnal variation.
	324	Investigation of deflections depending upon lunar phases; variation in declination and in paralan.
		Section II.-Monzontal Fonce.
1862	161	Instrumental notice.
	162	Correction of readings for changes of temperature: scale-values.
	169	Correction for progressive instrumental change: hourly nommats for each month.
	173	Horizontal intensity, absolute value: effect of the loss of magnetism of the har: secular chamge.
	174	Separation of the larger disturbances.
	175	Corrected normals.
	178	Investigation of the eleven (or ten) year period, from changes in the amplitude of the solar dinrual rariaidon.
	180	Eleven (or ten) year inequality, as indicated by the distarbances.
	182	Analysis of the disturbuces; anmual and diurnal variation.
	185	Classification of disturbances accorling to their margitude.
		PANT Y-Sketen 48.
1862	186	Preparation of hourly normals for each month.
	193	Regular solar diurnal variation.
	194	Semi-amnal inequality in the dinrnal variation.
	195	Analysis of the solar dinrnal variation.
	198	Epochs of maxima and minima; amplitade; epochs of average ralue.
	200	Annual varintion of the force.
		PaET VI.
1862	202	Number of observations for lunar discussion and their distribution according to western and eastern hour-angles of the moon; differences from monthly normals, arranged for moon's hour-angles.
	200	Lunar diurnal variation for two periods.
	207	Lunar diurnal variation in summer and winter.
	209	Analysis of the lunar diurnal variation.
	210	Investigation of the horizontal force in reference to lunar phases.
	211	Influence of the moon's changes of declination.
	212	Influence of the moon's changes of parallax.

TERRESTRIAL MAGNETISM-Continued.

Year.	Pages.	Titlo of papers.
		Section MI.-Ventrcal force.
!		Part TII.-[Sketel 30.]
1863	156	Instrumental notice.
	157	Determination of the effect of changes of temperature: scale.values; rednction of observations to a aniform temperature.
	164	Recognition and separation of the larger disturbances.
	168	Investigation of the eleven (or ten) year period, in the amplitude of the diumal variation.
	171	Investigation of the eleven (or ten) year period in the disturbances, and their general analysis.
	172	Annual inequality in the number and amonnt of disturbances.
	174	Diurnal ineqnality of the distmbances.
	177	Classification of the distorbances accoring to their magnitude.
	178-183	Appendix: effect of the aurora borealis on the declination, the horizontal and rertical force. Part TIII-[Sketch 30.]
1863	183	Preparation of hourly normals for each month aud year.
	189	Regular solar dinrnal variation.
	190	Semi-annoal inequality of the diurnal variation.
	190	Analysis of the diurnal variation.
	193	Maxima and minima; ranges; epochs of arerage force.
	195	Annual inequality of the vertical force.
		Paik IX.
1863	196	Number of observations for luar discussion; distribution according to eastern and western honr-angles; differences from monthly normals, arranged for moon's hour-angles.
	201	Lunar diurnal variation in summer and winter.
	202	Analysis of the lumar diurnal variation of the vertical force.
	204	Lunar effect upou jnclination and total lorce.
		Section IV.-Dir And toral force.
		Part X.
1864	183	Formation of table of disturbauces of the two component parts and their combination for dip and total force.
	184	Analysin of disturbances of the inclination.
	185	Their annual inequality in amount and number; eleven (or ten) year inequality.
	186	Diurnal inequality, in amount and number.
	187	Classification of disturbances in dip, according to their magnitude.
	187	Analysis of disturbances of the total force.
	188	Their annual inequality, in amount and number; eleven (or ten) year incquality,
	189	Diurnal inequality, in amount and number.
	190	Classification of disturbances in total force.
		Pabt XI.-[Sketeh 38.]
1864	193	Combination of the diarnal nommals of the two components for dip and total force.
	193	Solar diurnal variation of the inclination.
	194	Its semi annoal inequality.
	194	Analysis of the solar diurnal variation of the dip.
	195	Maxima and minima; ranges and epochs of average value.
	196	Solar diurnal variation of the total force.
	196	Its semi-annual inequality.
	197	Analysis of the solar diurnal variation of the total force.
	198	Annual inequality of the dip and total force.
		Part XII.
1864	199	Discussion of the magnetic inclination ; introductory notice.
	200	Abstract of observations of dip ; monthly means.
	203	Collection of dip-observations at Philadelphia.
	203-204	Analytical expression of secular change of dip normal; absolute values of the magnetic declination, dip, horizontal, vertical, and total force for five epochs, and the mean epoch, January, 1843.
1865	166-174	(1860-1864.) -Reselts of magnetic observations made at Eastport, Me. vetween 1860 and 1864.-Declination; dinrnal range of ; annual inequality, (diagram;) epochs of greatest diamal deffection; mean monthly values of declination between Angnst, 1860, and July, 1864; annual effect of the secular change; annal inequality of the declination; same at Toronto; comparative curve.--[Sketeh 29 , (theodolite magnetometer.)]
1869	190-207	(1867-1869.)-Reront on the resalts from the observations made at the magnetic observatory on Capitol Hill, Washington, D. C., between 1867 and 1869.-C. A. Schott-Magnetic instruments; schems of observing; instrumental constants; results; declination on Capitol Hill; turning opochs; dip; horizontal force; tabular synopais of magnetie elements observed in the District of Columbia.

TERRESTRIAL MAGNETISM－Continued．

Fear．	Pages．	Title of papers．
		Other infuences：
1860	269－274	（1860．）－ECLIPse at Auleziavik；suspension of vibrations during totality．
1854	＊146	Meridian－lines．－Report of Agsistant G．W．Dean on the establishment of meridian－lines at Petersburgh，Fa．，and Raleigh and Wilmington，N．C．
1860	324－326	Solar spots－Report of Assistant C．A．Schott on the results of observations made during the first seron months of the year 1860.
1861	259－261	Sorar spote．－Alostract of observationg made at the Coast Survey Office，by C．A．Schott．
1862	231－4．32	Solar spots．－Abstract of observationsmade at the Coast SaryeyOffice，by C．A．Schott，supplementary to thepreceding report．
1863	205	Iniuction－time in melay－magnets．－Report on experments made by Assibtant G ．W．Dean，to determine their relative power．
1864	211－220	Ebliction－tme of relay magnets，deduced from experiments．－By Assigtant G．W．Dean．

DRAWING，ENGRAVING，AND ELECTROTYPING．

	Pages．	Hitle of papers．
18.53	＊96－＊163	Tables for projecting maps，with notes on map－projections．－C．A．Sohott and E．B．Hont．－Map－projections classified and defned；Bonne＇s or modified Flamstead＇s projection；the polsconic，ite properties and varieties；formulas used for the computation of projection－tables in use at the Coast Survey Othec；graphic construction of polyconic projections－Coast Survey methods；rectangular polyconie method；Table I relation letwoon the measures of length ased in different countries；II，for converting（A）meters into statute miles：（ B ，）statute miles into meters；（ C ，meters into yards；（ D ，） vards into meters；（ E ，）yarde into miles：III，length of a degree of the meridian in nantical and statute miles for each fifth degree of latitude between 20° and 50° ：IF，（ A ，length of a degree of longitude between the parallels of 17° and 50° ，for each degree of latitude，expressed in natical miles；（ B_{1} ）length of a degree of longitude between the parallels of 17° and 50° for each degree of latitude，expressed in statute miles：$Y,\left(A_{\text {，}}\right)$ Ifogth in metere of 10 of latitude and longi－ tude for each degree of latitule between 17° and 50° ；（ B ，coordinates of carvature for each degree of longitude from 10 to 35° ，between latitudes 17% and 50° ；VI，projection－tables，giving latitude and longitude arcs，aud co－ordinates of ＊159：1854，p．xif ；Errata，＊132，＊137：1856，p．גx．］
1856	290－307	Projecton－tables．－J．E．Higard．－Tables applicable to the projection of maps of large extent and minimmon distortion in represented area；method；earth＇s dimensions：Table I ，of co－ordinates for projecting the points of intersection of meridians and parallels ：II，length，in meters，of one degree of latitude and longitude from latitude 20° to 54° ：values of the corresponding radii of the developed paraliel，and angles at each pole for 10° of longitude；III，tables for converting meas－ ures，（A）of meters＿into statute miles；（B，of statute miles into meters；（C）of meters into yards：（D，）of yards into meters：（ E ，of yards into miles；IV．length of a degree of the meridian in natucal and statnte miles for each fifth degree of latitude between 20 and 500 ；V ，length of a degree of longitude for each degree of latitnde from 140 to 54 ． expressed in natical and statute miles：VI，radii and $⿴ 囗 十$ olyconic development of a sphere with ratins $=1$.
1259	322－358	Pronection－tables for maps of large extent．－J．E．Hilgard－Table I，length in meters of 10 of latitude and lougitule， values of the corresponding radii of the developed parallel，and angles at each pole for 10° of longitude； II ，coordi－ nates of curvature．
1865	176－186	Projection－tables for a man of Nortl America－Diagran ：table of lengths，in meters，of 50 of latithide on the straight meridian：table of the radii of the parallels，and 50 of longitude on each parallel ：L，table of coordinates，latitude 5° to 850 ；II，co－ordinates of curvatures，latitude 55° to 890 ；ILI，length，in meters，of 10 of latitnde and longitude 550 to 890 ．
1860	216－229	Topomaphical and hyorographical delineations．－H．L．Whiting．－On the contouring and reduction of maps：on the scale of shades，and on the apphication of photography in preparing details for the engraver； 1 ，generatization of contour and other natural features for reduction to 1－80，000 contour ；salt－marsh；sand－beaches and sand－hills；woods；fresh raarsh； shore－line；low water；2，hydrographic reductions；3，reductions by photography；4，scale of shades；report of E．Herges－ heimer．
186	20c－207	Harmison globe－leng．－J．E．Hilgard．－On tests made at the Coast Survey Office．
1860	396－399	Drviders for tidal curvbs．－Description of form invented by J．R．Gillis，for graphical decomposition．［Sketci 40．］
1861	186－181	Drawing－faper．－Results of experiments made on the relative expansion and contraction，under atmosphcric changes，of parchment paper and backed antiquariun paper．－［Sketch 31．］
1 E 62	25.5	Dhawing．raper tested with reference to expansion and contruction under atmospheric clanges．
1852	108－111	On lithograime－thanghicr printin
1853	＊90－＊93	Notes on lithography and lithographic transfer．－E．B．Hunt．
1854	＊201－＊212	Abt and fractice of engraving．－E．B．Hint．－Coast Survey eugraving；its oflice，organization，and history．－｜Errata，p． 204 ；see Index of errata．］
1867	52－56	The pantograph；its use in engraring．－E．Hergesheimer．－［Sketeh $\mathrm{gr}^{\text {\％}}$ ．］
1854°	＊54－＊57	On hlectrotypr operations and chemighymic expehments．－G．Mathiot．
1851	541－553	Electrotyping oprrations of the Coast Sulvex．－G．Mathiot－Adhesion of deposit to matrix；actions in the electro－ lytic solution ；lahoratory apparatus；manipulation．－［Sketch 58.$]$
1854	－193－＊201	Mathot＇s self－sustaining batriery．－G．Mathiot．－Ite principles and workinge．－［Emtata，p．194，190：185\％，p．xix．］
1855	366－368	Galvamic experiment．－G．Mathiot．－Time required to produce the maximum intensity of a voltai
185	369	Electrotype art．－G．Mathiot．－Improved methot for joining detached platis by electrotyping．
1855	370－373	Mathiots branch circut galvanometeh．－G．Mathiot．－On a method of measuring galvanic currents of great quantity

Year.	Pages.	Title of papers.
1850.	316-317	Elechiotries.-G. Mathiot.-On the result of experiments made in printing from thin plates.
1866.	130-138	Electrotyping oferations.-G. Mathiot-Hiatorical; adhesion of deposit to matrix; time and expense of electro-casting actions in the electrolytic solation; laboratory apparatus; manipulation.

MISCELLANEOUS, TECENICAL, AND OTHER SUBJECTS.

Year	Pages.	Title of papers.
1851	145-160)	Florida heefe, keys, and coast.-L. Agassiz.-Topography of Florida; mode of formation of the rcef; animal life: tho keys; coral reafs; ship-thannel; the main-land; coast survey; physical changes in the Gulf Stream; changes in ages to come.
1853	*50-*51	Clmate, soll, and general chabacter of Florida keys.-I. Totem.
1862	241-248	Flombe reef : its origin, growth, substructure, and chronology. By Capt. E. B. Hunt, U. S. Eng rs.
1×55	342-346	Earthquake-Waye, Pacific Ocean.-A. D. Bache.-Notice of earthquake-waves on the western coast of the United states,
1862	238-241	Eabthquane.waves.-A. D. Bache.-lieprint of a paper deducing the depth of the Pacific Ocoan from the effoct of the Si moda carthquake on the tile gauges in California and Oregron in 1854.-[Sketcli 50. .]
1869	233-234	Abstract of a paper read before the National Academy of Sciences, April 16, 1869 , on the earthquake-wave of August 18, 1368; wave.table.-J. E. Hilgard.
1868	243-259	Geocrarhlical mames on the coast of Maine.-Ed. Mallard.
18 ธั	251-270	Foreigy ceodetic survers.-W. P. Trowbridge.-Review showing their cost and progress, and other data, for comparison with the results of the Cnited States Coast Survey; trigonometrical surveys of England, Iveland, and Scotland; hydrography of Eugland; amalysis of the report of the select committee appointoci to consider the ordnavce survey of Scotland, \&o., 1876; France; India; Rassia; Prussia; table of statistics of topographical maps in Europe; recapitnlation; marine disasters-United States vessels, 1855, 185̈6, and 1857; inports, exporte, tonnage, \&e.; Great Britain, 1852 to 1855; Gulf of Mexico shipping; Florida reef.
185\%	270-273	Progress of tile Unimed Statee Conet smuey.-W. P. Trowbridgo--Ratio of reshlts for consective periode of twelve years.
1870	180-181	Ou the probable effect of extended piers in modifying the channelfacilities of San Francisco Bay, near Yerba Buena Island.-By Assistant Henry Mitchell.
1870	92-99	Extract from a report relative to a methof of determining elevations along the course of a tidal river, withont the aid of a leveling-instroment, by setting up graduated staves at such distances apart that the slacks of tho tidal currente extend from one to another.-Rule: the difference in the olevations of the zeros of thergauges is equal to one-half tho sun of the differences of their readings at the two slack waters.-By Aasistant Henry Mitchell.
1068	260-2\%	Coxdensed accolyt of M. Helleit's explohatioss on the Istimus of Panama; including his special exploretions on the Isthmus of Darien, with suggestions for conducting a future survey.-(. Davidson.-Explorations; plan for exploration of the river Darion; outfit and duties of engineers; instrumental outfit ; use of the heliotrope for communicating messages; forn of record of levelings, conrses, aud distances; rod for leveling, distance, and station-mark for courses; to pack, unpack, and refill steel barometer; methods of ascertaining the discharge of water in any stream.
1860	399-402	Labrador expentron.-A. Murray.-Report of a voyage of steamer Bibb, and remarks on the winds and tides, \&e.-(See Longitude by eclipse.)
1860	402-408	Geology or the coast of Labbador--Moten by O. M. Lieber.
1867	281-290	Alaska Termitory, geology of.-Th. A. Blake.-Ibid.
1867	299-317	Alaga Tebritoby, meteorology of,-A. Kellog.
1870	182-189	On the phosplate beds of South Carolina.-By Prof. N. S. Shaler.
1867	183-186	Grological and zoological researches; their relation and general iaterests in the development of coast-features.-L. Agassiz - (Sec, also, Coasts.)
1867	290-292	Zoology of Aimaka Territobr.-W.G. W. Hadford.
1867	318-324	Botany of Alaska Territory.-A. Kellog.
1867	2903-290	Vocabllames of the Kodiac, Unalaska, Kenai, and Sitka languages.
1867	325-329	Vocabllaby, Alaskan.
1856	319-322	Annals of discoveliy on the Atlantic coast.-J. G. Kohl- Abstract of a history of the progress of dibcovery on the Athantic coast of the Uniteri States.
1856	320-324	Anealis of digcovery, Gelf of Mexico. -J . G. Kohl--Abstract of a memoir on the discovery and geographical devolopment of the shores of the Gult of Mexico within the limits of the United States.
1857	414-433	Western coast annals of maritime discovery and exploration.-J. G. Kohl.-Report of the methot and acope of a memoir ou.
1855	374-375	Abetract of a complete historical accunnt of the progress of discovery on the western coast of the United Statea from the earliest period; compiled, under the direction of the Superintendent, by Dr. J.G. Kohl.
1864	220-222	Thajectory of micochet-shot, notes on.-C. A. Schott.
1864	223	Ranges of shot from heavy ordnance, remarka on.-C. A. Schott.
1856	335-340	Coabt Suryay steamer Hetzel.-Report on cause of builer-explosion.-[Sketch 67.]
1857	404-414	Index of scientific repirences,-E. B. Hunt.-Repost on progroas made toward completion.
1856	325-330	Index of sciestific beferences.-E. B. Hunt.-Ou the plan adopted aud progress made in ite preparation.

MISCELLANEOOS, TECHNICAL, AND OTHER SCBJECIS-Continued.

Tear.	Pages.	Title of papers.
1856	331-333	Abbreviations for soientific meferences.-E. B Hunt.-Suggestions for securing uniformity of desiguation.
1863	207	Triles of scientific paperg.-By the late Maj. E. B. Hunt, U. S. Eng'rs.
1851	526-528	Columbia River commerce.-W. A. Bartlett.
1851	528-530	Trimidad, Humboldt, and San Diego Bay-A. D. Bache.-Changes of current, and sailing-directions for San Diego-\|Sketches 6 and 7.]
1855	376-398	blake's geological befort, western coast.-W. P. Blake.-Observations on the physical geography and geology of the coast of California, from Bodega Lay to San Diego; physical geography of the imomnaiv-ranges adjoining the coast; geology of the principal bays and ports from Point Reyes to San Diego.-[Errata, p. 379, 380, 332, 387, 325, 392, 394, 395, 396 : 1857, p. xwme]
1857	354-358	Winds ox the wastrin coast.-A. D. Bache-Table for ded ucing from the three daily observations the mean of the day; quantities of wind; tables for Astoria, San Francisco, and San Diego, and special wiad statistics.- [Sbeteh 66.]
1867	187-329	Alaska Terkitory; coast-features and resources,-G. Davidson,-Directory of the coast, 2206-264; list of geographical posi. tions, 265-274; aids to narigation, 274-280.-Geology, by 'I'heod. A. Blake, 281-290.-Zoologs, by W. G. W. Harford, 290-292.Vocabulary of the Kodiac, Unalaska, Kenai, and Sitka languages, 293-296.-Meteorology, 299-317.-Botany, by A. Kellogg, 318-324.-Alaskan vocabulary, 325-329.-[Sketches 21 to 23.]-[Errata, 239, 22 from bottom read Escholtz Bay.]
1853	*89	Boilerincrustation.-J. Hewston,jr.-Analysis of two specimens of deposit from the boiler of the Coast Survey steamer Metzel.
1854	*192	Sba-water action on metals.-J. E. Hilgard.-On the action of sea-water on metals used in the construction of instriments, and on magnetic needles; Phenix disaster.-(SSe, also, Terrestrial maguetism.)-[Errata, p. *192, 5 from bottom, word 9 , read presence.
1856	317-318	Avalysis of gea-water.-Chemical analysis of the water of New York Harbor--Wolcott Gibbs.
1856	318-319	Analysis of sea-Land.-Woleot Gibles.-Examination of specimens of sea-soil taken from the basesites at Cape Florida and Cape Sable.
1851	136-137	Currentmotations.
1855	193-200	Coast Survey samidg-directiona, catalogue.
1851	530-331	Entrance of Columbia River to astoria, sailing-directions.-W. P. McArthur,
1855	297-458	Directory for the Pacific coast of the United States.-G. Davidson.-Sailing-directions; geographical positions; tide. establishments for San Francisco; rain-fall; temperatures; commerce; magnetics; meteorological observations in the Strait of Juan de Fuca, \&e.; and geographical positions.-[Errata, p. 359, 381, 429, 442: 1858, p. xxI.]
1862	268-430	Directory for the pacific coabt of the United Statrs.-G. Davidson.-Introduction and explanatory remarks : Mexico; Califormia; Oregon; Washington Territory and Vancouver's Island; British Columbia; Puget Soumd.-Tide-tables for San Francisco, 311; commercial statisties; meteorological observations, Washington Territory, 416; geographical positions, 418; tide tables for San Diego, 421 ; for Astoria, 424; for Port Townshend, 427 ;-0f magnetic declination, 1863, 430.-[Errata, 272, 275, 285, 286, 288, 290, 298, 296, 297, 299, 301, 302, 303, 304, 307, 316, 323, 325, 327, 328, 329, 344, 355, 359, 360, 362, 363, $364,365,367,370,371,376,379,383,387,389,392,396,399,402,404,408 ; 1866$, p. 141.]

27 c s

APPENDIX No. 18.

ERRATA FROM 1851 TO 1870 .

errata, 1851.

$\begin{aligned} & \text { igic } \\ & \text { E. } \end{aligned}$	Line from-		Mispriated.	Corrected.	Where oorrected.
	$\stackrel{\stackrel{y}{\circ}}{\stackrel{\circ}{6}}$	咅			
11		®	reduced	recorded	1851
17	32		VI	VII	1851
33	4		Hebattis	Mount Indepondence.	1851
34		11	Liverpool	Greenwich.	18.51
34	...	10	34.96.	29.96	1851
36	21		Мавоп	Nason.	1851
154	6		Macandriva	Mrandrina	1851
163	38		E3560:9.11	635е078.96	1853
108			Quaker, [longitude,] 54'.34	57\% 32	1851
169			Pocasset, [latitude,] 07"-20.	07". 23	1851
169			Pocasset, [latitude,] 11".36.	11".33	1853
185	14		$70^{\circ} 05^{\prime} 30^{\prime \prime} 39$	$70^{\circ} 05^{\prime \prime} 38^{\prime \prime} .59$	1854
189	3		Sursuit Creek, $41^{\circ} 45^{\prime} 39^{\prime \prime} 299,70^{\circ} 08^{\prime} 07^{\prime \prime} .02$	Sursuit Creek, $41^{\circ} 45^{\prime} 30^{\prime \prime} .25,70^{\circ} 08^{\prime} 15^{\prime \prime} .94$	1853
189	3		$55^{\circ} 49^{\prime} 44^{\prime \prime}$, Scargo Hill $235^{\circ} 48^{\prime} 11^{\prime \prime}$.	$54^{\circ} 49^{\prime} 44^{\prime \prime}$, Scargo Hill $234^{\circ} 48^{\prime} 11^{\prime \prime \prime}$.	1853
189	3		3943.7, 4312.7, 2.45	3744.1, 4094.4, 2.33.	1853
189	4		5799.3, $6341.9,3.60$.	5588.6, 6111.5, 3.47.	1853
189	12		10794.9, 11E05.0, 6.71.	108813.2, 11825.0, 6.72.	1853
190	5	3815.6, 4172.6, $2.37 . .$.	3849.6, 4209.8, 2.39..	1853
190	6		$87^{\circ} 45^{\prime} 11^{\prime \prime}$, Weat Chatham $267{ }^{\circ} 42^{\prime} 02^{\prime \prime}$.	$87^{\circ} 58^{\prime} 54^{\prime \prime}$, West Chatham $267^{\circ} 55^{\prime} 45^{\prime \prime}$	1853
190	6		6546.4, 7159.0, 4.07	6567.8, 7182.3, 4.08.	1853
191	23		6789.0, 7424.3, 4.22	6797.6, 7433.7, 4.22.	1853
192	21		Latitude, 420 03 ${ }^{\prime} 02^{\prime \prime} 10$.	Latitude, $48^{\circ} 03^{\prime} 02^{\prime \prime} .01$	1855
194	11		$70^{\text {c }} 09^{\prime} \mathbf{4 5}^{\prime \prime}$, Monk's Fill $2500^{\circ} 06^{\prime} 58^{\prime \prime}$	$318^{\circ} 08^{\prime} 24^{\prime \prime}$, Manomet $138^{\circ} 10^{\prime} 55^{\prime \prime}$	1853
194	16		$224^{\circ} 09^{\prime} 47^{\prime \prime}$	$264009^{\prime} 47^{\prime \prime}$	1853
217	21		$70^{\circ} 38^{\prime} 44^{\prime \prime}, 63$	$70^{\circ} 37^{\prime \prime} 04^{\prime \prime} .63$.	18:3
918	6	53/.07..	53, 04.	1253
20	19		$43^{\circ} 3 E^{\prime} 02^{\prime \prime} .03,70=17^{\prime} 02^{\prime \prime} .33$	$43^{\circ} 37^{\prime \prime} 55^{\prime \prime} .59,70^{\circ} 16^{\prime} 49^{\prime} .00$	1853
220	19		$219^{\circ} 48^{\prime} 26^{\prime \prime}$, Dramhall's Hill 380 $49^{\prime} 00^{\prime \prime}$.	$207^{\circ} 07^{\prime} 39^{\prime \prime}$, Bramhall's Hill $27^{\circ} 08^{\prime} 03^{\prime \prime}$	1853
229	19		1758.5, 1923.1, 1.09	1763.2, 1928.2, 1.10.	1853
203	21		Longitude, $71^{\circ} 35^{\prime} 49^{\prime \prime} .44$	$71^{\circ} 35^{\prime} 09^{\prime \prime} .74$	1855
25	14		8.09 miles	5.85 miles	1854
252	15		1350.3, 1476.7, 0.84	13503.0, 14766.5, 8.39.	1854
258	19		Sawpits..	Port Chester	1853
258	20		Captain's Island	Little Captain's Island	1853
271	9		W. Hubbet.	Uriah Hublel.	1833
276	17		Kakeout Hill.	Kieckout Hill.	1853
286	11		Aquackanonk.	Acquackanonk	1853
286	14		Aquackanonk.	Acquackanonk	1853
286	17		Aquackanonk.	Acquackanonk	1853
286	19		Aquackanonk.	Acquackanonk	1853
304			[Maulden's Mountain, latitade,] 12'01.	[Latitude, ${ }^{\text {1 11". } 98}$	1851
324	9		$76^{\circ} 13^{\prime} 58^{\prime} .50$	$75^{\circ} 13^{\prime \prime} 58^{\prime \prime} .30$	1853
340	11		$16^{\circ} 52^{\prime} 54^{\prime \prime}$; Harrison, 1960 $59^{\circ} 33^{\prime \prime}$.	$337037^{\prime \prime} 30^{\prime \prime}$; Harrison, $157^{\circ} 33^{\prime \prime} 46^{\prime \prime}$	1855
340	12		$337^{\circ} 37^{\prime} 30^{\prime \prime}$; Wilmer, $157^{\circ} 37^{\prime} 46^{\prime \prime}$.	$16^{\circ} 52^{\prime} 54^{\prime \prime}$; Wilmer, 1960 $52^{\prime} 32^{\prime \prime}$	1855
341	19		Longitude, 750 57' $42^{\prime \prime}$. 47.	Longitude, 75 ${ }^{\circ} 57^{\prime} 52^{\prime \prime} .47$.	1255
342	3		Longitade, $75^{\circ} 36^{\prime} 32^{\prime \prime}$.11.	Longitude, $75^{\circ} 56^{\prime} 322^{\prime \prime} 11$	1855
344	4		2479.3, 2711.1, 1.54.	1969.4, $2153.7,1.22 .$.	1855
346	12		Azimuth, $93034^{\prime} 2^{\prime \prime}$	Azimuth 93 ${ }^{\circ} 34^{\prime} 00^{\prime \prime \prime}$.	1855
360	21	.	$38^{\circ} 24^{\prime \prime} 00^{\prime \prime} .56$	$38^{\circ} \mathrm{m}^{\prime} 06^{\prime \prime} .56$.	1853
372	19		04".86 .	04',90..	1853

ERRATA, 1851-Continzed.

	Line from-		Misprintei.	Corrected.	Where correcten.
	$\underset{E}{{\underset{H}{4}}_{1}^{2}}$	㓪			
374	15		$76^{\circ} 14^{\prime} 24^{\prime \prime} .22$	$76^{\circ} 14^{\prime} 24^{\prime \prime} 33$	1853
375	14		$45^{\prime \prime} .55$	44 $4^{\prime \prime} 55$	1853
378	19	$75^{\circ} 10^{\prime} 08^{\prime \prime} .51$	$75010^{\prime} 10^{\prime \prime} .51$	1853
400	12		$47^{\circ} 54^{\prime} 14^{\prime \prime}$	$227054^{\prime} 14^{\prime \prime}$	1853
400	13		$2944^{\circ} 22^{\prime} 49^{\prime \prime}$.	$2940394{ }^{\prime \prime}$	1853
400	17		$124^{\circ} 49^{\prime} 48^{\prime \prime}$; Jack Shoal, $304^{\circ} 48^{\prime} 54^{\prime \prime}$	94.929 01" Jack Shoal, $274^{\circ} 21^{\prime} 13^{\prime \prime}$	1253
400	18		$168^{\circ} 39^{\prime} 02^{\prime \prime}$; New Inlet, North Point, $348^{\circ} 38^{\prime} 47^{\prime \prime}$.	$167838^{\prime} 20^{\prime \prime}$; New Inlet, Nordu Point. $34^{\prime}=38^{\prime} 11$.	18.3
400	21		94° 29'01"; Jack Shoal, $274{ }^{\circ}$ 211 $13^{\prime \prime}$.	$1244^{\circ} 49^{\prime} 48^{\prime}$; Jack Sloal, $304048^{\prime} 54^{\prime \prime}$.	1833
400	22		$167038^{\prime} 29^{\prime \prime \prime}$; New Inlet, North Point, $347038^{\prime} 11^{\prime \prime}$.	$168^{\circ} 39^{\prime} 02^{\prime \prime}$; New Inlet, North Point, $348 \times 3 \times 47^{\prime \prime}$	1853
402	12		Little Hill, $52^{\circ} 52^{\prime} 09^{\prime \prime}$	Little Mill. $52^{\circ} 4 \mathrm{z}^{\prime} 09^{\prime \prime}$	15.3
404	17		11869.0, 12979.6, 7.38	$6506.3,7115.1,4.04$	$1-5.3$
404	18		6506.3, 7115.1, 4.04	11860.0, 129\%9.6, 7.38	1853
409	17		$81^{\circ} 05^{\prime} 14^{\prime \prime}, 32$	$81{ }^{\circ} 05^{\prime} 16^{\prime \prime} .85$	1853
411	5,6			Lines 5 ant 6 from top to be struck ou	18.5
416	3		14678.7, 16059.2, 9.12	14613.6, 15981.0, 9.08	1853
416	4		$181^{\circ} 47^{\prime}$ 42'* ; Black Point, $1^{0} 48^{\prime} 34^{\prime \prime}$.	$181048^{\prime} 35^{\prime \prime}$; Black Point $1048^{\prime} 40^{\prime \prime}$.	1853
425	9		2376.1, 2596.3, 1.48	9576.1, 2817.1, 1,60	1253
480	33	-.	4h. 44 m .29 .05 s	4h.44m. 29.50 s .	1853
$\left.\begin{array}{l} 555 \\ 558 \end{array}\right\}$				The depth on Pot Rock was found, in subsequent sur. vey by Major Frazer, to be 18 feet, and, after addi. tional blasting, three points of 19 feat 3 inches remained, Decemher, 1852.	1851

ERRATA, 1852.

3		3		Dele "so"	1852
24	\cdots	3	the	three.	1859
28	.	7	position	portion	105:
34	2		N. N. W	S. S. E. 4 E	1804
43	3			Dele '(Appendix No. 16.)'	1852
			l'Outre	Loutre, (passim).	1852
71				A ppendix No. 1.-Change 1859-53 in heading to 1851-62	1852
72	9			After "latitude" insert "longitude".	1852
78	25,26			Transfer Lientenants Doty and Huger to "oftice" part of list.	1852
82	3			After " Reanfort Harbor" insert " N. C."................	185\%
101		1	Tatersh	Talo'osh, (passim)	1858
104		17	Farralones	Farallones, (passim)	1852
104		13	Farralone	Farallon, (passim)	1852
105	3	Ana	Año.	18.58
105	14	Arquilla	Arguilla.	1850
115	11	the phenomen	these!.	185\%
119		25	depressed	docreased	185%
119		19	mark	mask.	18.2
121		8		Insert " and" before " \mathbf{E} ".................................	1852
121				[Passim,] for " " $^{\prime}$ " read "(A)", and for "(E)" read " E '..	1802
137		18	Eastern State	Eastern city	185\%
137	18	Seacore	Secor.	1852
139		17	Sedwick	Sedgwick ...	1852
148		16	Washington	Fort Washington	1352

ERRATA, 1853.

	Linefrom－		Misprinted．	Corrocted．	震
	$\dot{\stackrel{i}{⿺}}$	告			
			［List of geographical positions］－Continued．		
＊20	27		15t21．9，17193．0，9．77．	15771．9，17247．7，9．80 ．．．．．．．．．．．．．．	1854
＊28	20	．．．．	$119^{\circ} 32^{\prime} 03^{\prime \prime} \ldots .$.	$1990{ }^{3}{ }^{\prime} 03^{\prime \prime}$ ．．．．．．．．	1854
＊29	－．．	14	1904.3 －．．．．．	1964.3 ．．．．．	1854
＊31	40	．．．．．	$3.93 . .$.	3.98 ．．．．．．	1854
＊32	5	\cdots	Beaufort，commandant＇s honse．	Commandant＇s houso．	1854
＊32	．．．	14	$35^{\circ} 05^{\prime} 38^{\prime \prime} .32$.	$32^{0} 05^{\prime} 38^{\prime \prime} .38$.	1854
${ }^{* 33}$	12	．．．．	5319.2 yards．	5379.2 yards ．．．．．	1854
${ }^{34}$	10	\ldots	$189025^{\prime} 15^{\prime \prime}$ ．	$1890{ }^{2}{ }^{\prime \prime} 15^{\prime \prime}$ ．	1854
$\times 36$	16	．．．．．．	3.02 miles．．．	8.02 miles．．．	1854
＊ 42	13	\ldots	83551.1 yards ．．．	8355.1 yards	1854
＊101	28	．．．．．．	［Projection tables，］ $\sin \ddagger \theta 30 n \sin \mathrm{~L} \sin 1^{\prime \prime}$	$\frac{1}{2} \theta=30 n \sin \mathrm{~L} \sin 1^{\prime \prime}$ ．	1854
＊101			［Throughoat page，x, y ．．．．．．．．．．．．．．．．．	X，Y $\ldots \ldots$	1854
${ }^{1} 113$	．．．	15	［Column 60＇，］1885．47．	1685.47	1854
＊113	－	5	［Column 60 $0^{\prime \prime}$ ，］16－3．21．	1683.21	1854
${ }^{1114}$	17	\cdots	［Column 10 ${ }^{\prime \prime}$ ， 9.9 ．	279.9	1854
${ }^{*} 115$	5	\cdots	1^{1} ，．．．．．．．．	$1^{\prime \prime}$.	1854
＊116	5		［Columi $20^{\prime \prime}, 1256.1$	556.1	1854
＊130		5	［Column ${ }^{\prime \prime}{ }^{\prime \prime}$ ， $0.8 . .$.	180.8	1854
＊132		5	［Column 50／7，1266．4．．	1276.4	1857
＊134	5	－．．．．	Minutes of longitude， $\mathbf{1}^{\prime \prime}$ ．	Minates of longitude， 1	1853
＊137		5	［Column 50 ${ }^{\prime \prime}, 11237.5$.	1237.2	1857
＊159	4		10．．．．．．．．．．．．．．．．．．．．	$10^{\prime \prime}$	1854

errata， 1854.

9	27		Appendix No． $7 .$.	Appendix No． $43 . . .$.	1854
34		15	De Barres．	Des Barres．	1854
35	19		uncertainty	indefinite．	1854
36	16	．．．．	Succunnesset	Succonesset．	1854
36	－．．．．．	3	Sketch Noi 26.	Sketch No， 34	1854
40	9		sites	sights．	1855
40		20	Barley＇s	Baily＇s	1854
40		1	6280.	6293	1855
41	2	．	improves	tmpairs ．．．．．．．．．	1855
43	14		Versalins	Vervalins ．．．．．．．	1854
49	3	．．．．．．．	New Point Comfort	New Port News．	1854
			．DV APPENDICES．		
	$\left\{\begin{array}{l}12 \\ 13\end{array}\right\}$				
＊19	$\left\{\begin{array}{l} 13 \\ 14 \end{array}\right\}$			At very low water of spring tides	1855
＊27	27		Eays．	Cayo．	1855
＊51	．．．．．．		［List No．2，No．56，］110000	$1 \cdot 80000$	1855
＊52			［List No．3，No．21，］1－30000 ．．．．．．．．．．．．．．．．．．．．．．．．．．．	1.20000	1855
＊33			［List No．5，No．15，］1－30000 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1．20000	1855
＊65	6		Sin C．Agamenticus．．．．．．．．．．．．．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		1855
${ }^{*} 65$	7	．．．．	Ag．．．	Unk．	1855
＊65	8	．．．．．．	Unkonoonsic．．．	Thompron．．．．．．．．．	1855
＊65	9	．	m	Sin C．Thompson．	1855
＊70	6	－－	9.905	9，925	1855
＊70		22	are вqually ．．	are nearly equally	1855
＊ 72	10	．．．．．．．	x，B ．．．－．．．．．．．．．．．．．．．．．．．．	\boldsymbol{x}, －B．．．．．．．．	1855
＊72	－	16		$p_{" \prime \prime}^{\prime \prime \prime} n_{" \prime}^{\prime \prime}$	1855
＊75	17	．		$=-[x n]$.	1855
＊78	4	．．．．．．		$+5$.	1855
＊79		1	but may．．	but the accuracy may	1855

ERRATA, 1854-Continued.

	Yine from-		Misprinted.	Corrected.	
	$\stackrel{\dot{1}}{\mathbf{A}}$				
*91		4	[Third colnmu,] 0.9	0.0..	1855
*94	23		0.667 ...	0.067	1855
\#102	4	+102.0.....	+105.0.	1855
*112	4		$0^{\prime \prime} .061,0^{\prime \prime} .105$.	08.061, 08.105	1855
${ }^{112}$	12		$0^{\prime \prime} 104$	08.104.	1835
${ }^{*} 112$	22		$0^{\prime \prime} .139$	08.139-. .	1855
*112	...	24	$2^{\prime \prime} .734$	28.734...	1855
${ }^{*} 114$	12		according	recording.	185
*115	24		5h. 8m. 298 s.	5 h .8 m .118.	18.5
${ }^{117}$	10			L^{1}	1855
${ }^{*} 131$	G		Germany and	Germany	1854
*131	8			Cambridge (England) and Greenwich, and Greenwich and Prussels.	1854
* 131			$[$ Passim, $]$ x, N, m, t, E.	$x_{1} N_{1}, n, t, c$	1854
$\begin{gathered} \text { et seq. } \\ +131 \end{gathered}$		1			1854
*132	4			$\int_{x}^{\infty} e-\frac{1}{2} x$	1854
*132				Expression " (D) " should read " $\mathrm{R}=e^{\frac{1}{\text { (}}\left(x^{2}-1\right)} \psi x^{\prime \prime} \ldots \ldots$.	1854
*132		20	third contain.	the third contains..............................	1854
${ }^{132}$.	15	only in very rare cases	in-rery rare cases ouly	1854
${ }^{133}$	6, 7		(A.J., IL, 162).	(Ast. Jour., II, 162).....	1854
*133	25		reliable.	trustworthy	1854
*133	...	23		$\int_{0}^{t} \frac{z_{e}-t^{2} d t}{\sqrt{\pi}}$	1854
${ }^{133}$	\ldots	21	e^{62} and $e^{-t 2}$	$e^{t^{2}}$ and $e^{-t^{2}}$	1854
*133	18			1854
${ }^{*} 133$		9	semi-diameter	semi-diameter of Venas.	1854
*134	22	.-.	8.522	9.522	1854
${ }^{*} 134$		12	1.015	1.007	1555
*135			[Opposite 22, in first column $]$ 5.060	5.068	1854
*136		4	[Column 7,] -3.361...	3.360	1854
*140	2		$a=\frac{u_{4}-u_{3}}{v^{\prime}}-\frac{1}{2} b\left(t^{\prime \prime}+t^{\prime}\right)$	$a=\frac{u_{4}-u_{3}}{t^{\prime \prime}}-\frac{1}{2} b\left(t^{\prime \prime}+t^{\prime}\right)$	1855
*144	...	29	73 3.7.	136.7.	1355
*144		19	739.6	139.6.	1855
${ }^{144}$	\cdots	18	205.9.	201.9.	1855
*145	6		$211.3 . \ldots .$. ...	111.3.	1855
${ }^{*} 145$	16		3551.8	3547.5	1855
${ }^{2} 145$	16		75 34.2.	75 31.6..	1855
${ }^{1} 145$	21	...	Drum's	Drane's.	1855
*145		45	84 10.6.	8412.5	1855
*145	.	38	8954.5 .	89 48,5.	1835
*151	3	Fourchno	Fonrehne Island.	1855
* 151	3			[In heading of column 7,] Geographical miles	1855
*15	3	oz ...	of z.	1855
${ }^{153}$			[Large table, column 8, line 2,] 1.63........................	1.03	1835
*153				[Same table, column 1, second argument of moon's declination, zero ought to be lowered 1 line.]	1855
*158	26		colora	lines	1855
*159			[Table No. 1, under socond maximum for Sandy Hook,] 1.00.	$0.00 .$.	1855
*159			[Table No. 1, under 4th maximum for Cape Henry,] 4.42..	$3.42 .$	1855
*159		[Table No. 1, under second maximum for finsl value,] 4,01.	4.00..	1855
${ }^{*} 160$	51		full line .	shade.	1855
${ }^{*} 160$	52	-	lines ..	shades	1855
*165		88		Wind light and variable.	1855
*165	24		Moderate wind from S. W	1855
*165		3		+	1855
			a*138.		

ERRATA, 1854-Continued.

$$	Line from-		Misprinted.	Corrected.	宮
*166	1	...	66.	166.	1855
${ }^{* 167}$		11	${ }^{7} \mathrm{Sa}$ ($7^{\circ} \mathrm{W}$.).	$7{ }^{\circ}$ (S. 7° W.).	1855
${ }^{*} 168$	7	.--	par-tide..	particle.	1855
*178	3		depth	breadth	1855
*174		6	N. 35	N. 35 E	1855
*181	14			Transpose commas after "transits" so as to stand after "declinations."	1855
*183	6	\cdots	[Colume 4, 22.	27	1855
*182	6	.-.	[Column 9,] 16...	13.	1855
${ }^{*} 182$	6	[Columu 10,] 18...	13	1855
*183			[In heading of Table II,] Smithville, S.C.................	Suithville, N. C.	1855
*185			[Upper table, last line, column 3,] 5,3...................		1855
-185			[0 pper table, line 2 from the bottom, column 3,] 0.0......	0.3	1855
*190	14	...	1854	1853	1855
*192	12		D		1855
*192	15	.	E		1855
*192		5	pressare.	presence	1855
${ }^{1} 104$	27		cars	burs.	1855
*108	32		investigated	invested.	1855
*198	35		quoted.	conted	1855
${ }^{204}$	12		[Et passim, 1 y jerne	genre, (Frencl)	1855
			[In index, 1 Lieut., \&c.	Capt. W. R. Palmer, U.S. A	1855

ERRATA, 1855.

5	1	...	[Strike ont] of...		1855
G		20	$259{ }^{\circ}$	250	1855
21	16		seventy	seventy-five	1855
41		18		With three buoys to mark its ontline, this channel, \&c ..	1855
$\begin{gathered} 138 \\ \text { to } \end{gathered}$				$\left\{\begin{array}{l} \text { Uuder heading. Winyah Day, iucrease all longitules by } \\ 3^{\prime} 56^{\prime} .7 \text {. The correction does not affect azimuth or } \end{array}\right.$	
140)				distances..	1855
268	22		+		5
268				At bottom insert "-" before numerator of fraction	1855
269			[In first and second equations,] K		1855
209	21			δx_{m}, the correction of the moon's co-ordinate in right ascensiou for the instant denoted by ε. \qquad	1855
209	23			$\dot{d} x_{\mathrm{s}}$, the carrection of the star's co-ordinate in right as. cension for the year 1840. \qquad	1855
264		6	δp	db..	1855
$\left.\begin{array}{c} 276 \\ \text { to } \end{array}\right\}$				(The formulas of these pages are affected with errors, which will require that they be reprinted in the next	
272				report of the surver	1855
273				[Line 9 of table, (columu g, ,] 1861.69.	1855
273				[Line 24 from bottom of table, (column β^{\prime},)] $24^{\circ} \mathbf{3}^{\prime} \mathbf{2 2 ^ { \prime \prime }} \mathbf{0}$.06.	1855
43				[Line 17 from bottom of table, (columin x_{n}, $)$] $596.85 \ldots$	1855
273				[Line 19 from bottom of table, (column $\left.x_{m}\right)$] ${ }^{\text {a }}$ (27.46...	1855
273				[Line 3 from bottom of table, (column y_{s},)]	1855
275		21	was	wer	1855
288				[Lines 21 and 22 of table,] Insert ς and a at beginning; and [of last four lines, $] \varepsilon, a, a$ and μ \qquad	1855
314		4		Insert t^{\prime} in middle of heading ...	1855
335				[Second table,] Insert d in heading of fifth column....	1855
342			[Line 9 of Appendix No. 51, $]$ has	had	1855
345		5	9 h .42 m	7h. 49 mm .	1855
349			[Table I, column 3, second line from bottom, 12h. 12m...	$12 \mathrm{h}$.	1857
351				[Table II, last column,] Subtract $6 m$.from quantities in last column.	1857
331			[Table 3, column 4, line 4,] 10.0	11.0..	1857
353				[Line 6,7 Strike outlline 6.	1857

ElliATA，1855－Continued．

$\begin{gathered} \dot{8} \\ \stackrel{8}{8} \\ \text { H } \end{gathered}$	Line from－		Misprinted．	Correctiod．	菏
	安	克			
354				［Tables $1 V$ and T ，S Subtract 6 m ．from all the qumit ties in the columns headed from 0 to 7 ．	1×5
354	\ldots	10	13h．3m．．．	12 h .57 m ．	1857
354		9	25 h .0 m	24h． 54 m ．	1857
354		9	1h．om．	0h． 14 m ．	1057
354	－－．．．	5	20 m	14 m	1857
354	\cdots	4	24h．21：n．and 0.21	214．15m．and 0.15	1857
358			［Table X，line 7，］1．1，1．5， 0.6	1．9，2．4，1．7．．	1857
379	13	．．	Jan José ．．．．．．．．．．．．	San Jose．．	1557
379	18	\cdots	that mountain．	Mount Diailo	1857
380	9	．	suggests	suggest．．．．．．．．	105
380	10			Insert a comma after＂direction＂．	1255
387	17		practioally	economically	1857
388	25	．－．．．	Sancelito	Saucelito ．．．	1357
392	94	．．．．	of the boring shells．	of boring shells．	1657
392	26	\cdots	granite．．．	granitic．．．	18.7
394		21	auti－clinal	anticlinal．	1857
394	\cdots	2	were	was	1857
395	1		Quarternary	Quaternary．	1557
395	12	．．．	primogenius．	primigenius	1557
395	19	．．．．．	Exudes．	exude．	18.7
395			［Foot－note，practical．	practicablo	1857
396	16	．．．	former．	older．	185\％

ERPATA， 1856.

41	\ldots	25	easterr：	uestern．	1856
59		8	6.8.	6.1	1056
59		7	8.3	7.3	1056
65		4	five feet and seren．tentins	5.9	1856
65		3	seven	6.7	1850
130			［Table IX，3d hour of col． 5 ，＂from small low water to large high，＂］ 3.0.		1856
130				［IX，6th hour of columus 1 to 7 ，＂small ebb，＂$\& e.] 0.3,0.5$, $0.8,1.2,1.7,2.4,3.0$ ．	1250
169	5		drawing B	drawing．1，\＆c．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1856
169	17			［After＂silver frame，＂］Insert＂the pivotholes being bushed with platinum．＂	185
169		4	chronographic recording in Bonds Chronographic Reg－ ister．	recording on a chronographic register regulated ly Bond＇s spring governor．	1856
170	5		B and B^{\prime} ．．	B^{\prime} and $B^{\prime \prime}$	1854
170	6	．．．．．	by intervening thin plates of ivory，（not represented in the tigure．）	by an intervening plate of ivory ．．．．．．．．．．．．．．．．．．．．．．．．．	1256
170	7	．．．．．	B and \mathbf{B}^{\prime}	B^{\prime} and $\mathrm{B}^{\prime \prime}$	1855
170	15		slips．	drops．	1850
170	19		［ Dele］is of the same diameter as \mathbf{A}^{\prime} and		1056
170	24	．．．．	slips．	drops	1856
170	25	．．．．．	B．		1856
170		21		［After＂register，＂］Insert＂of which the regulator was＂．	1 ± 56
170		11		［After＂pendnlums，＂］Insert＂the device of Mr．Ker－ rison，of Philadelphia．＂	1806
264		21		within a century it has increased nearly a mile，and at about the rate of one－sixteenth of a mile on tho aver－ age in the twelve years．	1856
325	18		investigation	investigator．．．．．．．．．．．．．．．．．．．	1857
327		90	themics ．．．．meteorology．	thermics ．．．．metrology．	1857

	Line from-		Misprinted.	Corrrected.	
	$\stackrel{\text { ¢ }}{\substack{\text { - } \\ \text { - }}}$	咅			
1	1	...	Office ...	Station	1857
111	15	1889	$18 \mathrm{sq} . \mathrm{m}$.	1858
144	26		1855 .. $:$.	1850	1857
182			["Key West-over Northwest Chanuel Bar;" "Low water of spring-tides,"] 17.\%.	11.7.	1857
183			["Santa Cruz Harbor-anchorage," in fifth colvmn of figures,] e6.6.	25.7	1857
183			["San Francisco Harbor-on the bar," in sixth column of figures,] 36.4.	37.4	1857
183	["At best wharves," sixth column,] 23.4	24.4	1857
190	26		covered	curved.	1857
220	19,29		Lymn......	Lyme.	1858
272	37		$40^{\circ} 50^{\prime} 00^{\prime \prime}$. 28	$40^{\circ} 56^{\prime} 06^{\prime \prime} .38$.	1858
272	8	$40^{\circ} 51^{\prime} 099^{\prime \prime} .44$	$40^{\circ} 511^{\prime} 07^{\prime \prime} .44$.	1858

ERRATA, 1858.

114	19	inspector	engineer.	1859
114	-....	16	in the harbor	outside of the harbor.	1859
122			[After "tidal observations," dele \|" with the selfregis. tering tide-gange."		1859
193	10			a_{1}	1858
193		10	a		1858
235	13		[Dele] $\frac{3009}{488}$		1858
359	20		$10^{\prime \prime} .3$	$20^{2 / 4} 4$	1858
339	21		$29^{\prime \prime} 0$	$28^{\prime \prime} .8$	1858
381	.	13	45.3.	$45^{\prime \prime} .3$	1858
429	3		$123^{\circ} 14$	$123{ }^{\circ} 14$	1858
442	9		$25^{\prime \prime} .6$	$25^{\prime \prime} .8$	1858

ERRATA, 1859.

36	1			Insert " ${ }^{\text {" }}$ before " Ursæ minoris ".
73		11	western	eastern
98	7	frustrum	frustum
98	...	1	reading	value.
145		15	\} Thunderholt	Humboldt.
238				
279	16	.	$40^{\circ} 50^{\prime}$.	$4^{\circ} 50^{\prime}$
280	10	...	for................................	from
293	18	\cdots	1840..	in 1840
317	19		frustrams	frustums
336			[Co-ordinates of carvatures; latitude 9°, column 4, longitude $2^{\circ}, \mathrm{]} 400$.	600.
359			[In title,] Sketch No. 40	Sketch No. 39.

ERRATA, 1860.

19	23		Lieut.	Commander	1860
54	1	inside	inside shore	1860
161		12	having	leaving.	1860
239		10	23 S	28 S	1860
275	4	25.18	23.22.	1860
275	5		24.36	23.87 .	1860
275	7-	0.86	0.37.	1860
275	8		. 253	. 240	1860
275	9		188. 76.	178.52.	1860
275	10		20	21	1860
275	14		18.76	17.5	1860

ELRATA, 1s60-Cominued.

FhindTa 1 wh.

EHMATA, NE:

EHRATA, 1803.
None.
EHIATA, 1Ef4.

14.3	2	$40^{\prime \prime} .009$	

EliRATA, 1865.

ERRATA, 1867.

ERRATA, 1868.

None.

ERRATA, 1869.

ERRATA, 1870.

LIST OFSKETCIES.

IROGRESS-SKETUIIES.

1. General Progress.
2. Section I, upper.
3. Section II, Lake Cbamplain.
4. Section III.
5. Section III, Primary Triangulation of the Alleghanies, (upper sheet.)
6. Section IV, lower.
7. Section VI, upper.
8. Section VII, (part of.)
9. Sections FIII and LX, (parts of.)
10. Section X, lower.
11. Section X, upper, and XI, lower.
12. Section XII, upper.

GENERAL COAST-CEARTS.
13. General Coast-Chart IV.
14. General Coast-Chart VII.

COAST-CHARTS.
15. Coast-Chart 11.
16. Coast-Chart 12.
17. Coast-Chart 13.

RIVER AND HARBOR CHARTS.
18. Saint George's River and Muscle Ridge Channel.
19. Plattslurgh.
20. Burlington.
21. New Haren.
22. New York Bay and Harbor, (1.)
©3. New York Bay and Harbor, (2.)
94. Delaware River, from navy-yard to Fort Miftlin light-house.
25. Neuse Ricer.
26. Passes of the Mississippi.
27. Falmouth Shoal, search for.
28. Puget Sound.

ILLUSTRATIONS.

29. Styles of lettering.
30. Diagram B of New York Harbor.
31. Diagram C of New York Harbor.
32. Diagram D of New York Harbor.
33. Monomoy.
34. Tides of Boston Harbor.
35. Diagram to illustrate Appendix No. 10.
36. Edgartown Harbor, to accompany Appendix No. 15 of Coast Survey Report for 1869.

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910

[^0]: * Mr. G. P. Bond had observed the eclipse of 1851, in Sweden.

[^1]: * Nevertheless, the British government has sent out parties to another eclipse in 1871, in India and Australia, and three American astronomers have been invited, through the Superintendent of the Const Survey, to joir the expedition.

[^2]: Average daily mean, thermometer, $43^{0} 00$; cleudiness, 0.02 ; rain.fall, inches, 1.18 .

[^3]: "This is a resull of a simple appication of the rule of three. The reduction of the depth upon the bar must bear the same proportion to the mean depth of 24.2 feet which the dininution of the flow of water represented by 0.9 bears to the whele flow represented by 6.2 ; i. e., the reduction most be a little more than one-seventh part, or, more exactiy, $3 \pm$ feet, for the water-way most evidently correspond in maguitude to the anonut of water which flows through it.B. ${ }^{P}$.

[^4]: * From " Eavres de Champlain, publieessou a le patronage de l'Universite Lavad, par l'Abbe C. H. Laverdiére, M. A., Professeur d'Histoire," \&c.

[^5]: * Upon this map Nantneket is called Vlieland, amd is joined to Marthas Vinevard, which is called Texel. Nantucket Sonnd is called Zuyder Zee.

[^6]: * The above had been written before I knew of Mr. Otis's account of the discovery of an ancient ship on the eastern shore of Cape Cod, which I have read with great interest and some dissent. As the locality of the wreck is above the reach of our present surveys, I propose to reserve all comment on this matter till I can sound along the shore very carefully next season.

[^7]: * Massachusetts Historieal Collection.

[^8]: * This precaution has been taken with regard to the Charles River Basin above Boston, in the manner recommended in a report of Prof. H. L. Whiting, Seventh Report Massachnsetts Board of Harbor Commissioners.
 †This was first shown to be the casc in our work on New York Bar. See Annual Report of the Coast Survey for 1859, Appendix 26.

[^9]: *Made ly Horace Anderson, assistant, Coast Survey.

[^10]: * Computed from Lloyds.
 \dagger This may be considered a proper limiting illustration, the Great Eastern being anomalous.

[^11]: *First section of the act entitled "Au act to establish harbor-lines in Cape Cod Harbor in Provincetown," passed by the general court of Massachusetits in the year 1867.

 30 C :

[^12]: *To complete the table, the value $15^{\prime \prime} .5$ was here interpolated; it was found by comparing the observed zenith distance at 7 a . m. on each day with the mean of the 10 observed zenith-distances of the day respectively. This difference is $10^{\prime \prime} .7$, which, subtracted from $26^{\prime \prime} .2$, or the mean of the 10 observations on the 20 th , gives $15^{\prime \prime} .5$.

 + Measures unreliable owing to high wind; the mean, or $33^{\prime \prime} .6$, will hereafter be sulustituted in the place of these measures.

[^13]: * A table giving the logarithm of the radius for various latitudes and azimuthe is appended to this paper. The uncertainties in the figure of the earth make the sixth place of the logarithms unreliable.
 \dagger For the centigrade scale and millimetres of pressure-

 $$
 \theta_{0}=282^{\circ} .1 \quad \theta=2 \pi 2^{\circ} .8+\tau \text { and } a=\frac{[6.01981] \beta}{272.8+\tau}
 $$

[^14]: *The values of k for each hour and the values of Δh found $\operatorname{ly} \frac{d \sin \frac{1}{2}\left(\sigma^{\prime}-y\right)}{\cos \frac{1}{2}\left(\sigma^{2}-\psi\right)}$ are contained in the following table:

[^15]: * Professional Papers of the Corps of Engineers, United States Army, No. 15, New York, 1868.

[^16]: Prof. Benjamin Peirce,
 Steperintendent U. S. Coast Survey, Chief of U. S. Eclipse Expedition.

[^17]: * Ir general, to close any circuit, four equations must be satisfied, which may be considered as arising from the following causes: first, the length of the connecting side must be the same, whether we arrive at it from one direction or from the opposite one; secondly, the direction or azimuth of this line must be the same; thirdly and fourthly, the latitude and the longitule of one of the end-points of the line must come out the same respectively. In the case of primary trav rses, the circuits are mutually dependent, and require to be treated collectively.

[^18]: *Thirteen lines of the Coast Survey average 6.2 statate-miles; ten of the Indian trigonometrical survey, 6.6 ; and seven of the English ordnance survey, 5.9 miles.
 \dagger Studien iuber höhere Geodäsie, Berlin, 1869. The name "field-line" is suggested by Doctor Bremiker, who gives the equation to the curve on page 66 of his pamphlet.

[^19]: * Adhesion, if it takes place, cannot be supposed to affect the lorizontality of the reflecting surface, since it does not interfere with the absolate flnidity of the stratum of mercury. It only takes effect at the surface of contact bet wren the fluid stratum and the platean.

