```
43d Congress, }

\section*{REPORT OF THE SUPERINTENDENT}

\section*{UNITED STATES COAST SURVEY,}
showing

\section*{THE PROGRESS OF THE SURVEY}
boning

TIIE YEAR 1873.


WASHINGTON: GOVERNMENT PRINTING OFFICE, 1875.

\title{
National Oceanic and Atmospheric Administration
}

\section*{Annual Report of the Superintendent of the Coast Survey}

\section*{ERRATA NOTICE}

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

\section*{Please Note:}

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage (http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

\author{
LASON
}

Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 13, 2003

\section*{LETTER}

\title{
THE SEORETARY OF THE TREASURY
}

TRANSMITTING
THE ANNUAL REPORT OF THE SUPERINTENDENT OF THE COAST SURVEY.

February 16, 1874.-Referred to the Committee on Commerce and ordered to be printed.

\section*{Theasury Depabtment, February 16, 1874.}

Sir: I have the honor to transmit, for the information of the House of Representatives, a report made to this Department by Prof. Benjamin Peirce, Superintendent of the Coast Survey, stating the operations and progress in the survey of the coast during the year ending November 1, 1873.

1 have the honor to be, very respectfully,
WHLLIAM A. RICHARDSON, Secretary of the Treasury.
Hon. James G. Blaine, Speaker of the House of Representatives.

\section*{ABSTRACT OF CONTEN'IS OF REPORT.}

Introductory remarks, p. 1. Sites of active operations and progress of the surveys, pp. 1-5. Estimates, p. 3 . Estimates in detail, pp. 5-8. Comparison of estimates for this and the jreceding year, p. 8.

Pant II-Brief abstracts of field-work accomplished be the several parties, pp. 8-9.
Field and office work. Progress in, pp. 8-60.
Summary of field-work, pp. 8-60.
Eection I.-Topography and hydrography of Mount Desert Island, Maine, p. 9. Topography of Castine Harbor, Maine, p.10. Hydrography of Castine Harbor and vicinity, p. 10. Topograghy of Isle-an-Ifant, Maine, p. 10. Topography of Penobscot River, Maine, p. 10. Topography of Penobscot River at Winterport, Maine, p. 11; Portland Harbor, p. 11; Old Orchart Beach, Maine, p.12. Triangulation, geodetic connecfiom, New Hampshire, p. 12. Magnetic obscrradions, p. 13; George's Shenl, p. 13; Atlantic Coast Pilot, p. 13. Astronomical observations, p. 14. Penduhum cxperiments, p. 14; Chatham, Cape Cod Peninsula, p.14. IIydrography, Monomoy and Nantucket Shoals, Massachusetts, 11.15. Tidal observations, p. 16; Providence Harbor, Rhode Island, p. 17.

Section II.-Triangulation and iopography west of Point Judith, Rhode Island, p. 17 ; shrvey or New Haven Harbor, Conmecticnt, p. 18 ; New York Harbor, pp. 18, 19, 20 ; survey of Raritan River, New Jerser, pp. 20-2l. Geodetic conneetion, p. 21. Reconnaissanee for triangalation, Hudson River to Lake Champlain, p. 21. Topography of Lake Champlain, p.22. Hydrography of Lake Champhain, p. 22. Magnetic obyer rations, p. 22. Tidal observatious, p. 22. Survey of Fire Island Inlet and Great South Bay, Long Island, New York, p. 23 ; Station-marks, p. 23. Triamgataon near Barnegat Light-house, New Jersex, p. 23 . Topography between Baruegat Light-house and Manahawken, New Jersey, p.24. Hydrography of Little Egg Harbor, New Jersey, p. 24. Hydrography at New Castle, Delaware, pp. 24-25. Shoreline survey of Schurlkill River, Pennsylvania, p. \(2 \underset{\sim}{2}\).
Section III.-Triangulation, Hampton Roads and vicinity, Virginia, p. 26. Shore-line survey of Elizabeth River, Virginia, p.26. Hydrography of Elizabeth River, Virginia, p. 20. Topography and hydrogrophy of James River, Virginia, 17. 26. Tidal observations, p. 27. Aflantic Coast Pilot, p. 27. Magneite obseveations, p . 27. Reconnaissance for triangula-


Section IV.—Latilude and magactic elements, p. 28. Triangulation, Currituck Sound, Virgimia and Nortl Carolina, pr. 28-29. Hatteras Shoals, p. 29. Latitude, p. 29. Triangulation of Pamplico Sonnd, North Carolina, pp. 29-30. Topography of Pongo River, North Carolima, p. 30. Hydrography of Pamplico Sound, North Carolina, pp. 30-31. Topography of Core Somd, North Carohina, pp. 31-32.
Sectron V.-Hydrography of Cape Fear River, North Carolina, p. 32. Coast motsurement, triangulation, and topography below Little River, Sonth Carolina, pp. 32-33. Topography and hydrography of North Santee and South Santee River, South Carolina, 1. 33. Topography of Sea Islands, South Carolina, pp, 33-34. Latitude, p. 34.
Section VI. - Itiangulation, Atlautic Coast of Florida, p. 34. Coast fopography betwean Matanzas Iulet and Halifin River, Florida, pp. 34-3̄. Hydrography, Florida Reef, p.35. Triangulation, hydrography, and topography, western coast of Florida, pp. 35-36. Tidal observations, p. 37.
Shetion VII.-Triangulation eastward of Appalachee Iay, Florida, pp. 37-38. Hyaroprophy near Saint George's Sonnd, Florida, p. 35. Atlanta base-line ard triangulation, (sketeh No. 11,) pp. 33-39. Triangulation, Georgia, p. 39. Rrconnaissance for geodetic connection, Georgia, p. 40.
Skction VIII.-Hydrography of Chandeleur Soand, Mississippi, p. 40. Trianguhation, topography, and hydrofraphy of Mississippi River, Louisiana, p. 41. Triangulation in Missouri, p. 42. Geodetie conrection, pp. 42-43.
Skction IX.-Triangulation at Galveston Harbor and of the coast from East Bay toward Saline Pass, Texar, p. 43. Hydrography of Espititu Santo and San Antonio Bays, Texas, pp. 43-44. Interior goodetio conneotion, west of Mississippi River, pp. 44-45.

Section X.-Coast of California, including the bays, harbors, and rivers, (Sketches Nos. 14, 15, and 16, ) p. 45. Latifude and longifude of the Trausit of Yenus station, 1769, pp. 45-46. Geographical and hydrographical reconnaissance, San Diego to Cape San Lucas, pp. 46-47. Magnetic observations at San Diego, pp. 47-48. San Diego Bay, p. 48. Triangulation and topography between San Pedro and San Juan Capistrano, pp. 48-49. Triangulation and topography of Catalina Harbor, p. 49. Hydrography of New River and Anaheim River, California, p. 43. Triangulation and topography of Santa Rosa and adjacent islands, pp. 49-50. Topography between Gariota Pass and Point Couception, California, p. 50. Reconnaissance for main triangulation below Monteres, California, p. 50 . Magnetic observations at, Point Conception, pp. 50-51. Triangulation and topography near San Luis Bay, California, p. 51 . Latitude, longitude, and azimuth at San Simeon and San Luis Obispo, Calitornia, p.51. Magneticobservations at Point Pinos, p. 5 . Triangulation and topography north of Piedras Blancas, pp.51-52. Longitude observations, San Prancisco, California, p52. Magnetic observalions at San Francisco, p. 52. Topography of Table Mountain, San Francisco cntrance, pp. 52-53. Sand-dunes of San Francisco Peninsula, p. 53. Hydrography of San Francisco Bay and approaches, p. 53. Tidal observations, pp. 53-54. Hydrography of Cordell Bank, p. 54 . Falmouth Shoal, p. 54. Triangulation and topography north of Menducino Bay, p. 54. Tringulation and topography between Noyo River and Shelter Cove, California, p. 55. Offshore hydrography near Humboldt Bay, 55. Hydrography off Crescent City; California, p. 55. Reconnaissance and triangulation from Rocky Point to Klamath River, pp. 55̈-56. Aids to navigation, p. 56.
Section XI.-Triangulation and topography between Mack's Arch and Rogne River, Oregon, p. 5f. Hydrography of Hunter's Cove and Chetko entrance, Oregon, p.57. Latitude, longitude, and azimuth of Kalama, Oregon, p.57. Triangulation of the Columbia River, pp. 5\%-58. Magnetic observations at Cape Disappointment, Washington, p. 58 . Triangulation and topography of Shoalwater Bay, Washington, p. 58. Tidal observations, p. 58. Triangulation aad topography of Puget Sound, Washington, pp. 58-59. Hydrography of Puget Sound, Washiogton, p. 59.
Sectur XII.-Teconnaissance of the coast of Alaska, pp. 59-60. Tidal observations, p. 60 .
Ofmer-work-Offeers in clarge, p. 60. Hydrographic division, p.61. Computing division, p. 61. Tidal division, pp. 61-62. Drawing division, pp. 62-63. Engraving division, p. 63. Electrotyping and photography, p. 63. Division of cheris and instruments, pp. 63-64. Clerical force, p. 64. Conclusion of report, p.64.
A Prindices, pp. 65-180.

\section*{CONTENTS OF APPENDTCES.}
No. 1. Distribution of surveying parties for the surveying season of 1872-73.
Page. ..... 67-73
No. 2. Statistics of field and offee work during the year 1872 ..... 74-75
No. 3. Infonmation fumsisimed in reply to special calls during the year ending November \(1,1873\). ..... 76-77
No. 4. Drawing Division.-Charts completed or in progress during the year ending November 1, 1873. ..... 78-7
No. 5. Engraving Division.-Plates completed, continued, or commenced during the year 1873 ..... 80-81
No. 6. List of oniginal topographical sheets registered from June, 1865, to January, 1873. ..... \(82-87\)
No. 7. List of hydrographic sheets registered from June, 1865, to January, 1873 ..... 88-93
No. 8. Report on the physical survey of Portland Harbor ..... 94-102
No. 9. ADditional report concerning the changes in the neighborhood of Chatham and Monomoy ..... 103-107
No. 10. Note concerning changes in the submerged contours off Sandy Hook ..... 108-110
No. 11. Repont of geographical and hydrographical explorations on the coast of Alaska ..... 111-192
No. 12. Measurfment of a primary fase-ifne on Peach-Tree Ridge, near Atlanta, Ga., in 1872 and 1873. ..... 123-136
No. 13. NoTt on intervisibility of stations ..... 137
No. 14. A list of stars for observations of latitude ..... 138-174
No. 15. Endata in the Heis catalogue of stars. ..... 175-180No. 16. Results of magnetic olservations, (omitted.)

\section*{ALPHABETICAL INDEX.}

\section*{A.}

ADAMS, HULL, Amistant. Services in Section f, p. 12.
ADAMSON, J. B. Services in Section III, p. 20.
ADDITIONAL REIORT coacerning the changes in the neigbborhood of Chathom and Monmay. Gemerai index. Appendix No. 9, pp. 10:3107.

AGASSIZ, Schooner, services of pp, \(35,34\).
AID TO NA YlGA Tion on Pacific Const, p. 56.
ALASKA, reconnaissance of coast of, p. 59 ; report of geographical and
hydrographied expiorations on the coast of, by W. H. Dall, pp. 111-122. ANAHETM RIVER, Gal, bydrography of, p. 40.
ANDERSON, HORACE, A8sistant. Hydrography of Castine Harbor and vielnity, Me., p. 10; bydiosraphy near Saint George's Sound, Fla. p. 38.

ANGLES, M. Drawing division, Coast Survey Office, p. 62.
APPALACHEE BAY, Fle, triangulation eastward of p. 37.
AP \({ }^{\prime}\) ENDICES. General Index, pp. 65-180.
A HAgO, steamer, gervices of, np. 19,30 .
ASTORIA. Tidat observations at, p. 58 .
ASTRONOMICAL MBSERVATIONS. FOR determining longitude of a point near Port Jervis, N. Y., p. 14; for base-line near Cedar Keys, Fla., p. 35; for determination of geogaphical points in Wiscousin, \(p\). 42.

ASTRONOMCAS STATIONS. Aleutiar Islands, Alaska, pp. 117120.

ATtANTA, Triangulation of primary bate line near, p .33.
ATLANTIC COAST of Mainc, jnciltding harbors and rivers, pp. 9-19; of Massachusetts, including thosis and harbors, pp. 13-17; of Connecficut, New York, New Jevey, I'ennsylvania, and Delaware, ineluding bsys and rivary, p. 17 ; bays of Maryhad and Yirginia, including sea. ports and rivers, p. 86 ; sumds of North Carolina, including seaports and rivers, p. 2\$; sea-water channels of South Carolina and Georgia, ineluding sounds, harborg, and rivers, p. 32; and Gulf Coast of the Forida Peningula, including reefs and keys, and aeaports and rivers, p. 34.

ATLANTIO GOAST PILOT Fial examiuations on New England coast continued, pp. 1:3. 14; ou Cluexapeade Bay and its tributaries, p. 27 .

AVERY, IR. S. In eharge of That Divison, Coast Survey Office, p. 61 ,
AZIMUTH, At statiens in New Jersey, p. 2i; at stations in Lower California, p. 47 ; at Sam Sineou and Sun Luis Obispo, Cal., p. 51 ; at Point Conception, p. 51; at Point Pioos, p. 5l; at San Francisco, Cal., p. 52 ; at Filama, Oreg., p. 5 ; ; at stations in Alaska, p. 117 .

1 1.
BACFIE, A. D., Stermer, wervices of, pp. 13, 96,3j.
BACHE, C. M. Assistant. Topograpby between Baraegat light house and Mauabawken, N. J., p. 24; topography between Core Sound, N. C., and Beanfort Harbor, p. 32.
BACHE, G. M., Schooner, services of, p. 33.
BACHE, H. W, Sub-Assistant. Servieegis Section II, p. 24; Berviees in Section YV, p. 32.
BACHE, R. M., Aswintant. Survey of New Haven Harbor, p. 18.
BALLEX Schooder, services of, pp. 24, 2 .
BAKER, MARCUS. Services in Suction XII, p. 60.
BARKER, JOHN R. Services in Section I, p. 14.
BARNARD, H. S. Engraving Division, Coast Survey Office, p. 63 .
BARNEGAT LiGFTMFOUS名, N. J., triangulation near, p. 23; topog.
raphy between and Mnadbawken, N. J., p. 24.
BARTLE, R. F. Drawing Division, Coast Survey Office, p. 6\%; En Bxaviog Division, Const Survey Office, p. 63.
BASELINE, menaured on west mide of Little River, S. C., p. 32 ; meapurement of, near Athata, Ga, pp. 38, 129-13i.
BASEETT, R. T. Tidal obscrvations at New York, p. 名
BAYEOR, J. B. Servhes in Sactions FIII and TX, pp, 43, 44.

BENNER,F. W. Engraving Division, Coast Survey Office, D. be?
BIBB, Steamer, services of, p. 26.
PLALR, H. W. Services in Section MI, p. 20 .
BLAKE, F., Assistant. Observation for geodutic conmection at Malison, Wis., p. 42.
BLUNT, W. T. Services in Section II, p. \(\mathfrak{g O}\).
BOND, W. S. Services in Section II, p. 20; services in Section YI, p. 34. Bolist, W. W., of Denver and Rio Grande Railway Company. Faciities extended to astronomieal observers in Colorado, p. 45.
BOSTON, Mass., Tidal observations at. p. 1r.
BOUTELLE, C. O., Atsistant. Hearurement of Atanta basc-line and
triangulation, pp. 39, 123.
BOWDITCH, Schoover, services of, p. 19.
BOYD, CHARLDS II, Assistant. Triangulatom, topography, arat
hydrograpby of Misoissipg Niver, Las, F 41 ; triavgulation in Miswotic, p. 4 .

BRADBLTRY, BION. Services in Section If. p. 18 ; nervices in Seerion VI p. 35.
BRADBURY, C. A., Master, I. S. N. Services in Section 1, p, 13.
BRADFORD, GERSHON, Astistant. Hydrography of San Francixco
Bay and approaches, p. 53 ; hydrography of Cordell Bank, p. 5 ; off whore hydrograpily nour Itambelit Bay, Cal., p. 55.
BikADFORD, J. S., Asisistant. Final examinations for Athantic Conat Pilot, pp. 13, 14, 27.
BRAID, ANDREW. Services in Section VI, p. 35 .
BRIEF ABSTRACTS of feld-work accomplished by the several marveying parties. General index, pp.e-9.
GRIGHT, W. T, In charge of Drawing Division, Coast Survey Offee, p. 62.

BRYANT, CHARLES, Captain. Tidal observations at Saint Paulk Ieland, in Behring Sea, p. Co.
e.

CAPE DISAPPOINTMENT, Wagh., Magretic observations at, p. fe.
CAPE FEAR RIVER, N. C., Hydrography of, p. 32.
CAPE SAN LUCAS, Ceographical and hydrographic recounaissanet of, p. 46.
CARSON, JAMES, Captain. Aid rendered to hydrographic party, in Section IV, p. 32.
CASTINE HARBOR, Me., Topography and bydrogrophy of, w, 10.
CASWELL, Schooner, services of, pp. 19-33.
CATALINA HARBOR, Triangulation cad topography of, p. 49.
CEDAR KEYS, Astronomical obeervatioux at, p. 35.
CHASE, A. W., Assistant. Trianguation and topography between San Pedro and San Juan Capistrang, pp. 48, 49; triangulation and topography of Catalina Harbor, p. 49; hydrography of New River and Antheim River, Cal., p. 49 ; reconnaissance and triangolation from Rocky Point to Klameth River, p. 55 ; triangulation and topograpthy between Mack's Arch and Regne River, Oreg, p. 56.
CHARTS AND INSTRUMENTS, Difision of, Coast Survey Office, p. 63.

CHATHAM, CAPE GOD PENINSULA. Chamge oceurring in Cetat. pp. 14, 15.
CHETKO ENTRANCE, Oreg., Hydrograply of, p, 57.
CLANCX, F.W. Cherical force, Coast Survey Ofice, p. 64.
CLARK, JOHN. In charge of instrument-whop. Coast Survey Oitice, p. 64.

CLERICAL FORCIE, Coast Survey Office, p. 64.
COAST•MEASUREMENT below Little River, S.C. p. 32
COAST SURVEY OEFICE, Operations of, for the year, p. 60; organ-
ization of, p. 61; Hydrographic Division, p. G1; Computing Division, p. 61; Tidal Divimion, p. 6l; Drawiag Division, p. 62 ; Engraving Division, p. 63; Electrotyping and Photographing. p. 63; Division of Charts apd Instrumonts, p. 63; Clerical Force, p. 64.
coburn, Clarlags. Services in Section I, p. 10.
COLONNA, B. A. Services in Section IV, p. 30.
COLLMBIA RIVER, THangulation of, p. 57.
COMPENSATION BASE-APPARATUS of the Vuited Srates Coant
Sarvey, Description of, pp. 132-136.
COMIDTLNG DIVISION, Coast Kurvey Office, p. 6 .
CONCLCSION OF REPORT of Superintenitent of Tuited States Ceant Surpey, p. 64.
COOKE, Professor. Services in Section I, p. 10.
COOPER, W. W., Ansistant. Superintendent's Office, Coast Survey, p. 64.

COIEDELL BANK, Hzdrograply of, p. of.
ComRTENAS. F. H. Compating bivinom, Const Surgey Offer, p. ©
counteniy, F. Fngraving Division, donst Survey office, p. 63.
CRESCEXT COTY, Chl, Hydmgraphy off, pos; Tidat obsorvations :at, p. 5n.
UROATAAN SOI:ND, N. C. Hydrography of a portion ot, p. at.
CEBRITEUK SOLND, Triangulation of, p. 29 .

\section*{D.}

DALL, W. II., Assistant. Recomatiseance of coast of Alaska, p. 59 ; report of geographical and bydrozraphical explorations on the eoast of Alamka, p. 111-122.
DANA, Schooner, serviess of, p. 3!.
DAVLDSCIN, GEORGE, Areistant. In Charge of operationt on const of California, p. 4z; latitude and longitnde of 'Transit of Vonus station of [769, pp. 45, 40: gregraphical and hydrographical rocomanasance; San liego to Cope San Lueas, p. 46 ; magnetic ofservations af Point Conception, pan 50, 51; longitud? obsurvation at Stan Franciseo, Cal,
 bavisation, b. 56.
DAVIS, CHAKLIDS II, Rear-Admiral. Nerviees in Section I, p. IS
DAFIS, W. H. Engravige Division, Coast Survey Office, p. 63.
DFAN. G. W., Assintant. Geodetic points in New Jersey, p. 21; astronomical observatiens in Wisconsin, pp. 49, 43,
DEFR ISLE, Me, Topography of, p. S.
DENNIS. W. H., Aseistant. Topography or Deer tse, Me. p. 9; topog. rathy and hydrograpley of North Santee and Sollh Santer Rivers, s. c.. p. 33.

DENVER, Colo. Oleservanions for geadetie conuection, p. 44
DF WEES, 1I. M. Subassistant. Serviees in Section II, pp, 20, 24 ; servicex in section IV, p, 32 ,
MCKINS. E. T. Services in Section X, pp, \(53,55\).
LILLAWAY, C. P., Subassistant. Services in Section II, p. 20 ; services in Seetion IV, p. 31.
DISTRIEUTION OF SURVEYING PARTIES for the surveying seasm of 18t2-23. General Index, Appendix No. 1 , pp. 6\%-73.
DoNN, F. C. Aht in operations of Section \(1, p\) of cection IIL, pp, 2G, it.
DonN, 1. W., Assistant. Topography ind hydrography of Monnt Dexer I Inand, Me, 1. 9 ; triangulation of Hampton Roads and vicinity, Ya, p. 26; thagraphy and hydrograpity of James River, Fa., p. 26.
עOOLILME, M. H. Computing Division, Coast Survey Offee, p. fil.
DORR, F. W.. Assistant. Topography of Penobscot River at Winterport, Me. p. 11; topography of Pungo River, N. C. p. 30.
DOWNS, J. Tidal Divibion, Coast Survey Office, p. 61 .
DLAWING DIYISION, COBst Survey Ofice, p. 62; charts completed or in progress during the year ending November 1,1873 , General Index, Apperdix No. 4, pp. 78, 79.
DURHAM, T. V. Division of Charts and Instruments, Coast Survey
- Offiee, p. 63.

\section*{E.}

ECKERT, THOMAS T. Use of Wentern Union Telegraph in geodetic connection in New Jersey, p. 21.

\section*{EDMUNDS, A. W. Serriees in Section I, p. 14.}

EDWARDS, W. S. Services in Section X, pp. 45, 50, 51 .
EICHEIOLTZ, It. Drawing Division, Coast Survey Office, p. 62.
EIMBECK, WILLIAM, Subassistant. Services in Section \(X, p p .46\),
47; reconnaissatace for main triangulation below Monterey, Cal, p. 50 ; latitude, longitude, and ezimuth at Kalams, Oreg., p, 57.
ELECTROTYPING ANS PEOTOGRAPHING DIVISION, Coas Survey Office, \(p\), 63 .
ELLZABETH RIVER Va., Sbore-live survey of, p. 26; hydrography of, \(\mathbf{p}\). 26.
ELLIOTT EUGENE, Sabaskintant. Serfices in Stcion X, p. 50.
ENDEAVOR Steaner, services of; pp. \(15,29,40\).

ENGRAVING DIVIGION, Coast Survey Onfce, p. 63 ; plates completed, continned, or commenced during the year 1873. Generallndex, Appendix No. 5 , pp. 80, 81.
ENTHOFFER, J. Edgraving Division, Coast Survey Office, p. 63.
ERICASEX, I. Drawing Division, Coask Sarvey Obice, p. 63.
ERRATA in the Heis Catalogue of Stars. General Indux, Appendix
No. 15, Ip. 175-180.
ESHLEMAN, E. Division at Charts and Lastruments, Const Survey Otice. p. 64.
ESIIRITUSANTO BAY, Hytrograpby of, rp.43, 44.
ESTIMATLSS, Increase of, p. 5 ; in detail, pp. \(5-8\); comparism of, for the present and preceding years, p. \(R\).
EVANS, H. O. Engraving Division, Coant Survey Office, p. 63.
 32.

\section*{F.}

FAIRFAX, F. Imawing Division, Cosst Survey Oftice, p. 69.
FAIRFIELD, A. A., Assistatht Triagulation of Pampfico Sourd, p. 29.

FAIRFAX, W. Drawing Divinion, Coast Survey Offet, p. 62.
FAIRFIELD, W, B, Services in Section IV, p. 30.
FALMOUTH SHOAL. Failure to find, in Pacific Oeean, p. 51.
FARLAFY, JOHN, Asxistant. Inspention of station-markw, \(\boldsymbol{y}\). 93. FARQIVHAL, GEOHGE, Subassistant. Gervieas in Sbetion X, p. \(\mathbf{3}\). FARQLIMAR, H. Servitax in Shetion 1, r. It.
FATHOMER, steamer, serviess of r 2 z .
FLItGCSON, C. Tidal Divinion, Unant Survag office, p. fil.
 Fied ISl.AND INLE'I, Long Idand, N. Y., Survey of, p. ©S
FiTOI, U. H. Serviees in Section IX, p. 15.
FIENSERE, W. T. Oturical forec, Coat Survey Offee, p. 64.
FLorilla, triangitation, topograplyy, and hydrography of wexte:i coast of, pp. 35, 36.
FOLLER, JUFN. Division of Intrumenta, Const Survey Office, p. 64.

FORNEX, STEHMAN, Sulasbistant, Triaghataion ad topegraphy of Santa Rosa and adjacent islands, p. 49.
FORT POINT, Cal., Tidal observations at, p. 53.
FORTRESS MONROE, Va., Tidal observations at, p. 37
FRENCE, W. B. Services in Section II, p. 20,22 ; Computing Division, Cuast. Survey Office, p. 61.
\(\theta\).
GALVESTON IIARBOR, Triangulation at, p. 43.
GARDNER, C. L. Services in Scetion IV, p. 9 ; Computing Bivision, Cosst Survey Offere, for.
GAVIOTA PASA, Cal., Topography Vetween, mad Point Conception, p. 50.

GEODE [JC POANTS, in New Hampaire, p. 12; in New Jersey, p. 21 ;
in Codgia, I. 40; in Wixconsin, p. 42; in the Territories, p. 44,
GEOGRAPHIGAL RECONAAISSANCE. San Digg to Uupe San Lucas, p. 46; on the coast of Alaska, pp. Ili-122.
GEORGE'S SHOAL, examinetion of, p. 13.
GEORGYA, triangulation in, p. 39; reconnaigsance for geodetic connec. tion in, \(\mathrm{p}, 40\).
GERDES, F. Fi., Assistant. Survey of Raritau Rivet, N. J., p. 90.
GERDES, H. H. Compating Division, Coant Survey Otice, p. 61.
GILBERT, J. J., Subassistant. Triangulation and topegraphy of Shoal. water Bay, Wakhington, p. E®.
GILBERT, W. W. Services in Section I, p. 11.
GODWIN, BRYANT. Services in Section V, p. 33.
GOODFELLOW, EDWARD, Agsistant. Observations for geodetio connection at Omaba, Nebr, pp. 42, 44.
GOTTHEIL, A. Tidal Division, Coast Survey Office, p. 6 I .
GRANGER, F. D., Subassistante Hydrography of Monoang and Nantucket Shouls, Mass, p. 15; bydrography of Chandeleur Sound, Miss., p. 40.
GREAT POIST, Nantucket, Mass, examination of shoal near, p. 15.
GREAT SOUTH BAY, Long Iviand, N. Y., Eurvey of, p. 23.
GREENWELL, W. E., Absistant. Topography between Gaviota Pasi and Point Conception, Cal., p. 50.
GREY, E. Tidal obgervations at Fort Point, mear San Franciszo, Cal., p. 53.

GULE COAST and sounds of Western Fiorids, including perts and rivers, p. 37; bays of Alabama and sounds of Mississippi and Louleians to Vermilion Bay, including ports and rivers, p. 40 ; Wentera Loniniana and Texas, incloding bayn and tivers, p. 43.

\section*{H.}

HAGENMAN, J. W., Lieutenant, U.S. N. Services in Saction I, p. 13. halter, R. E., Absigtant. Triangulation of Currituck Sound, Va. and N.C., pp. 28.29.
HAMPTON ROADS and vicinity, Triangulation of, p. 26.
hanson, D. C. Services in Section I, p. 16 ; services in Section VIII, p. 40.

HARRISON, A. M., Assistant. Triangulation and topography west of Point Judith, R. I., p. 17; triangulation of Athantic coast of Florida, p. 34 ; coast topography between Matamzas lulet and Halifax River, Fla. p. 34 .
HASSLER, Stemmer, services of, pp. 46, 47, 48, 54, 55, 57 .
HATTERAS SHOALS. Discovery of new thoal spot, p. 29.
HAWKINS, R. S. Clerical force, Coast Survey Ofice, p. 64.
HEIN, SAMUEL, Goneral disburaing agent, Coast Survey Office, p. 64.

HEIS CATALOGUE OF STARS, errata in, p. 275.
fierbert W. A. Clerical force, Coast Survey Office, p. 64.
HERGESHEIMGR, E. In charge of Engraving Division, Coast Sirvey Office, p. 63.
HERGESHETMER, JOSEPH, Subassistant. Services in Section I, p. 10; services in Section VLIL, p. 41.
HATZZEL, Steamer, services of, p. 30 .
HILGARD, J. E., Agsistant. In charge of Cobst Survey Office, p. 60 ; determination of length of iron standard bar used in measurement of primary base-line near Athanta, Ga., p. 123; note on interflsibilty of stations, p. 137.
HILGARD, T. C., Dr. Magnetic observationg in Section 1, p. 13; in Section II, p. 22.
HITCHCOCK, Steamer, services of, p. 29.
HODGEINS, W. C. Services in Section;I, p. 11; serviees in Section IV, p. 31.
MOOVER, C. A. Clerical force, Cosst Survey Office, p. 64.
HOOVER, JOHN T. In charge of Division of charts and Instruments, Const Survey Office, p, 63.
HORTIG, F. Drawing Division, Coast Survey Office, p. 62.
HOSMER, CHARLES, Assistant. Survey of Fire Island Inlet and Great South Bay, Long Island, N. Y., p. W3; topography of sea-iklands, S. C. . p. 33.

HOWLAND, H. Tidal observationa at Boston, Mass, p. 17.
HOWELL, J. A., Assistant, Commander E. S. N. Examination of George's Shoal p. 13; hydrography of Florida Reef, p. 35.
HUDSON, F. Computing Division, Coant Survey Office, p. 61.
HUDSON RIVER, reconnaissance of, to Lake Champlain. p. 21.
HUMBOLDT BAY, Cal., off shore bydrography near, p. 55.
HUNTEE'S COVE, Oreg., hydrography of, p. 57 .
HYDROGRAPGIC DIVISION, Coast Survey Office, p. 6., *
HYDROGRAPHIC RECONNAISSANCE, San Diego to Cupe San Lucas, p. 40.
HYDROGRAPHY. Mount Desert Island, Me., p. 9; Castine Harbor and vicinity, p. 10 ; Monomoy and Nantucket Shoals, Mass., p. 15 ; of Lake Champlain, p. 22 ; of Little Egg Harbor, N. J., p. 24; at New Castle, Mel., p. 24; of Hlizabeth River, Va., p. 26; of James River, Va., p. 26; of Pumplico Sound, p. 30; of lower part of Ronnoke Sound, p. 31; of Cape Foar River, N. C., p. 32 ; of North Santee and South Santee Rivers, S. O, p. 33 ; of Florida Recf, \(\mathbf{p}\). 35 ; of weatern cobat of Florida, p. 35; near Saint George's Sormd, Fla., p. 38; of Chandeleur Sound, Mism., p. 40; of Misaissippi River, La., p.4L; of Espiritu Santo and San Antonio Bays, Texas, p. 43 ; of New River and Anabem River, Cad. p.49; of San Francisea Bay, p. 53; of Cordell Bank, p. 54; off shore near Humboldt Bay, Cal, p. 55; off Crescent City, Cal., p. 55; of Hanter's Cove and Chetko Entrance, Oreg., p. 57; of Puget Sound, Wesh., p. 59.

\section*{I.}

IARDELLA, C. T., Assistant. Topography of Penobsent River, Me, p. 10 ; topography of Core Soand, N. C., p. 31 ,

1SLE-AU-HAUT, Me, topography of, p, 10 .
INFORMATION FURNISFED in reply to speclal calla furing the year ending November 1, 1873. General Index, Appendix No. 3, pp. 76-77. INTERIOR. Went of Mlasiswippi River, p. 44.
INTERYIGIBELITY OF STATIONS, Bote on, p. 137.
1NTRODUCTORY REMARKS. General Index, p. 1.
IVES, C. A. Serviees in Section I, p. 16; services in Sevtion VIII, p. 40 . J.

JAGKBON, W. E., of Denver and Rio Grande Railway Company.
Facilitien extemied to astronomital observers in Colorado, p. 45. H. Ex. 133-II

JACOBI, WILLIAM. Division of Instrumenty, Coast Survey Office, p, 64.
JACOBS, E. S., Lieutenant, U. S.N. Services in Seetion r, p. 13.
JACQUES, W. H., Lieutenant, U. S. N. Services in Section I, p. 13; services in section VI, p. 35.
JAMES RIVER, VA., topograpby and bydrography of, p, 26.
JOHNSON, P. C., Assistant, Commander, U.S. N. Hydrography of coast
of Lower California, pp. 47, 48; search for Falmonth Shoal, Pacific Ocean, p. 54 ; hydrograpby off Crescent City, Cal., p. 55 ; hydrography of Hanter's Cove and Chetko Entrance, Oregon, p. 57.
JOSEPH HENRY, Schooeer, services of, p. 10.
JUNKES, CHARLES, Assiatant. Hydrography of Lake Champlain, p. 22; hydrography at New Castle, Del., p. 25.

\section*{K.}

KALAMA, Oreg, latitade, Iongitnde, and azimuth at, p. 52.
KAMPF, F., Dr. Computing Division, Coast Survey Office, p. 61.
KARCHER, L. Drawing Division, Coant Suryey Office, p. 61.
KEITH, R., Prof. Computing Diviaion, Coast Survey Offee, p. 6 L.
KERR, L. C. Engraving Divisina, Coast Survey Ofice, p. 63.
KING, E. H. Services in Section I, p. 10; services in Soction VIff, p. 3 . KING, V. E. Clerical force, Coast Survey Office, p. 64.
KLAMATH RIVER, reconnainsance and triangulation between, and Rocky Point, p. 55.
KNOTT'S ISLAND, Va., latitade and magnetic elements of p. 28. KONDRUP, J. C. Eugraving Division, Coast Survey Office, p. 63. KNIGHT, J. Engraving Divimion, Coast Survey Office, p. 63. KNIGHT, H. M. Engraving Division, Coast Sarvey Office, p. 63. KNIGHT, W. II. Eagraring Division, Const Sarvey Office, p. 63.

\section*{L.}

LACKEY, F. E. Division of Charts and Inktraments, Coast Survey Office, p. 64 .
LAKE CHAMPLAIN, reconnsissance of, to Hudson Rirer, p. 2l ; topog. Taphy of, p. 22.
LATITUDE, at Kalama, Oreg., p. 57; of Knott's Islana, Fa., p. 28 ; of Portsmonth Island, N. C., p. 29 ; of Saint Simon's 1sland, Gia., p. 34 ; at San Simeon and San Luis Obispo, Cal., p. 3 L.
LAWSON, FRED. A. Services in Sectiou XI, p. 59.
LAWSON, JAMES S. A Asistent. Triangulation and topography of Puget Sound, Washington, p. 58 ; hydrography of Puget Sound, Washington, p. 59.
LEWIS, C. E. Drawing Division, Coast Surver Office, p. 62.
LINDENKOHL, A. Drawing Division, Coast Survey Office, p. Ge \(^{2}\)
LINDENKOHL, H. Drawing Division, Coast Survey Offiee, p. 62.
LIST OF HYDROGRAPHIC SHEETS registered from June, 186n, to January, 1873. General Index, Appendix No. 7, pp. 88-93.
LIST OF ORIGINAL TOPOGRAPHICAL SHEETS registered from June, 1865, to January. 1873. General Index, Appendix No. \(6, \mathrm{pp}\). 89-87.
LIST OF SKETCHES, p. 182.
IIST OE STARS for observations of latitude. Generul ladex, Appendix No. 14, pp. 138-174.
LITTLE EGG HARBOR, N. J., hydrogr \(\lrcorner\) phy of, \(p\). 24 .
LITTLE RIVER, S. C., coast-measurement, triangulation, and topog rapisy below, pp. 32-35.
LONGFELLOW, A. W., Assibtant. Topography of Castine Harbor, Me., p. 10.

LONGITUDE OBSERVATIONS at San Francisco, Cal., p. 52; at Kalama, Oreg., p. 57; of Transit of Venus Station, 1769, pp. 45, 4f; at San Simeon and San Luis Obiapo, Cal., p. 51.
LOWRY, T. J. Geographical and bydrographic reconaliarance, San Diego to Cape Sau Lueas, p. 46; latitude, longitude, and azimuth at Kalama, Oreg., p. 57.
M.

MACK'S ARCK, triangulation and topography between, and Rogue River, Oreg., p. 56.
MAEDEL, A.M. Engraving Division, Coabt Survey Office, p. 63.
MAEDEL, E. A. Engraving Divistion, Coast Survey Ofice, p. 63.
MAGNETIC OBSERVATIONS, at Eastport, Bruswick, and Portland. Me.; at Gorham, Fanover, and Litlleton, N. EY., p. 13; at Burlisgton and Rutland, Vt., p. 22; at Sandy Hook and Contral Park, N. Y., p. 22; at Wushington, D. C., p. 27; at Knote's Itland, Va., p. 28; at Denver, Col., p. 44 ; at Trinidad, Colo., pp. 44, 45 ; between Sau Diego and Cupo San Lucar, Lower Cailormia, p. 46; at San Dego, Cal., p. 47; at Ioint Conception, Cal., pp. 50, 51 ; at Point Pinos, p. 51 ; at Sun Francisco, Cal, p. 52 ; at Cape Disappointment, Wash., p. 38.
mAGNETIC DECLINATIONS AND POSICIONS. Aleutian Islands, Alabka, pp. 117-121.
MAIN, J. Computing Division, Coast Survey Offee, p. 6 .
MANAHAWKEN, N. J., topography between, and Barnegat Lighthonse, p. 24.
MARCY, Schooner, services of, pp, 53, 54.
MARINDIN, H. L., Subassistant. Serviees in Seetion I, p. 15 ; serviees in section II, p. 19.
MARYLAND, reconnaissance for triangulation in, p. 27.
MATHIOT, GEORGE. In charge of Electrotyping and Photographing Division, Coast Survey Office, p. 63.
MCCLINTOCK, J. N., Subassistant, Topography of Isle an Hatt, Me., p. 10; triangulation of Atlantic Coast of Florida, p. 34.

Meclintoce, W. E. Services in Section 1, p. 14; services in Section IV, p. 30.
McCorkLe, S. C., Assistant. Recounaissance of Hudson River to Lake Ohamplain, p. 21; triangulation at Galveston Harbor and on the const from Enat Bay toward Sabine Pass, Texas, p. 43.
MCDONNELL, T. Dirision of Charty and Instramonts, Doast Survey Office, p. 63.
measurement of a primary basedine on Peach Treo Ridge, near Atlanta, Ga., in 1872 and 1873. General Index, Appendix No. 12, pp. 38, 123-136.
mendell. G. H., Colonel, United States Engineers. Tidal observations near San Francisco, p. 53 ; tidal observations at Astoria, p. 58.
Mendocino bay, Cal., Triangulation and topography north of, p. 54.

MISSISSIPPI RIVER, Law, Triangulation, topography, and bydrography of, p. 41.
MISSOURI, Triangulation in, p. 42
mitchell, HENRY, Assistant. Reburvey of New York Harbor, pp. 18. 19 ; special survey of Portland Harbor, pp.11, 94, 95 ; inspection of Chathan, Cape Cod Peninsola, p. 15; hydrography of New Castle, Del.. p. 25; additional report concerning changes in the naiglaborhood of Chatham and Monomoy, pp. 103-107; note concerning changes in the submerged contours off Sandv Hook, New York Harbor, pp. 108-110.
MOLKOW, E. Drawing Division, Coast Survey Office, p. 62.
MONOMOY SHOAL, Mass. Hydrographic examination of, p. 15.
monterey, Cal. Reconnaigsance for main triangulation below, p, \(50-\)
moore, Frank. Division of Charts and Instrumenth, Corst Survey Office, p. 63 .
morlison, G. A. Services in Section 1I, p. 24.
MOSMAN. A. T., Assistant. Recounaiswauce for triaugulation in Mary land, West Virginia, and Penngylvenia, p. 87 ; ouservations for 1atitude and magnetic elements at Knott's island. Va., p. 28; observations for determining latitude on Portmmouth Island, N. C., p. 29; askistance in measurement of Atlanta base-line and triangulation, p. 39.
MOUNT DESERT ISLAND, Me., Topography and hydrography of, p. 9.

\section*{N.}

NES, F. F., Assiatant. Hydrography of New Yolk Harbor, pp. 19, 29; bydrography of Pamplico Sound, N. C., pp. 30, 31.
NESBIT, E., Mrs Drawlag Division. Ceast Survey Office, p. 62.
NESSEL, L. Tidal observations at Port Townsend, Wawh., p. SK .
NEW CASTLE, Del., Hydrography at, p. 24.
NEW HAMPSHIRE, Geodetic connection, p. 12.
New haven harbor, Conn., Survey of, p. 18.
NEW RIVER, Cal., Hydrography of, p. 49.
NEW YORK HARBOR, Resurvey of, p. 18; tidal observations in, \(p\). 22.

NISSEN, H. Divislon of Charts and Instrumenta, Coast Survey Office, p. 63.

NORTH CAROLINA. Triangulation of, p. 88.
NORTH, F. H. Services in Section I, p. 10; services in Section VII, p. 38.

NORTH HAVEN, Me., Tidal observations at, p. 17.
NORTH BANTEE AND SOUTH SANTEE RIVERS, S. C., Topography and hydrography of, p. 33.
NOTE concerning changes in the submerged contours off Sandy Hook Goneral Index, Appendix No. 10, pp. 108-110.
NQTE on Interviniblity of Stations. General Index, Appendix No. 13 p. 137.

NOYO RIVER, Triangulation and topography betweea, and Shelter Cove, Cal., p. 55.
o.

OBER, F. Electrotyping and Photographing Division, Coast Survey Office, p. 7.

OGDEN, H. G., Assistant. Topozraphy of Lake Champlain, p. 22; shore-ine survey of Schaylkill River, Pa., p. 25 ; triangulation, topography, and hydrography, western coast of Florida, pp. 35, 36.
OGDEN, S. N. Services in Section I, p. 9 ; services in Section VI, pp. \(35,36\).
old orchakd heach, Me., Framination of, p. 12.
OMAHA, Nebr. Observations for geodetic connection, p. 44.

\section*{\(\mathbf{P}\).}

PACKARD, Dr. Services in Section T, p. 13.
Palfrey, R. B. Services in Section II, pp. 23, as; forviees in Section V, p. 34.
Palinukus, Sohooner, services of, p. 14.
palmer, W. J., Goneral, president Denver and Rio Grande Railway
Company. Discrimination in rates of transportation for astronomical parties, p. 45.
PAMPLICO SOUND, N. C., Iriangulation of, p. 29; hydrography of, p. 30.
Patterson, C. P., Captaio. In charge of hydrographic divikion, Coast Survey Office, p. 61.
pelrce, benjamin, Superintendent Upited Stater Coast Survey, p. 64.

PEIRCE, C. S., Assistant. Pendulum experiments near North Adams. Mass., p. 14 ; relfeved fron temporary charge of Coast Survey Office, p. 60; selection of list of stary for observations of latitude, p. 138 ; errata in Heis Catalogue of Stars, p. 175.
PENDULUM EXPLRIMENTS zear North Adams, Mass., p. 14.
PENNSYLVANIA, reconnaiskance for triangulation in, p. 27.
PENOBSCOT RIVER, Me., topography of, p. 10.
PERKINS, F. W., Subassistant. Triangulation near Barnegat Lighthouse, N. J., pp. 23, 24; triangulation eastward of Appalachee Buy, Fla., pp. 37, 38.
Pledras blancas, triangulation and topagraphy north of, p. 51.
Platt, Robert, Acting Mabter, U.S.N. Services in Section IIL, p. 26; services in Sectioa IV, p. 29.

PLEASANTS, E. B. Services in Seetion II, p 20; services in Section IV, p. 31.
POINT PINOS, maguetic ohservations at, p. 5 L.
POLLOCK RIP, marked ehagger in, p. 16.
PORT IERVIS, N. Y., astronomical observations at, p. 14.
PORTLAND HARBOR, specisi sarvey of, pp. 11, 12.
POSITIONS AND MAGNETIC DECLINATIONS, Aletian Isladds, Alakka, p. 117-121.
Pratt, J. F. Services in Section II, r. 24.
PRimary base-LiNE, measarement of, near Atlanta, Ga., pp, 38, 123-136.
progress of suryeys. Geueral Index, pp. 1-5.
PROVIDENCE HARBOR, R. I., examination of limits of proposed changes in, p. 17.
PUGET SOUND, Washington, Irlangulation and topography of, p. 58 ; hydrography of, p. 59.
PUNGO RIVER, N. C., topography of, p. 30.

\section*{Q.}

QUIMBY, E. T., Profeseor, Geodetic points in New Hampshire, p. 12.

\section*{n.}

RABITAN RIVER, N. J., survey of, p. 20.
meconnaissance. Hudzon River to Lake Champlain, p. 21; ha Maryland, West Virginia, and Pennsylvania, p. 27; for geodetic connection, Georgia, p. 4C; for main triangulation below Monterey, Cal., p. 50; from Rocky Point to Klamath River, p. 55; of ccast of Alaska, p. 59; of San Diego, Cal., p. 46.

REPORT ont the physical survey of Portland Earbor, Me. Creneral Index, Appendix No. 8, pp. 94-102; of geographleal and hydrographical explorations on the cofst of Alaska, General Index, Appendix No. 11, pp. 111-122.
RING, F. W. Services in Secifan IT, pp, 22, 24; Bervices in Section IX, p. 44.

ROANOKE MARsiLES, N. C., shore-line survey of, p. 31.
ROANOKE SOUND, N. C., hydrography of lower pari of, p. 31.
ROCKWELL, CLEVELAND, Aspistant. Triangulation and topography at Piedran Rlancas, p. 51 ; triangulation of Colnmbia Rivar, p. \(5 \%\).
ROCKY POINT, recoandissmee and triangolation from, to Klamath River, Cal., p. 55.
RODGERS, A. F., Asuiatant. Topography of Table Monntain, Ean Franctico Entrance, p. 52; mand-dunes of San Francinec Peninsuls, p. 53; triangulation and topograyby between Noyo Eiver and Bhelier Cove, Cal., p. 55.

ROGUE RIVER, Oregon, trisngalation and topography between, and Mack's Areb, p. 56.
RUMPF, Dr. G. Comprating Divinion, Coast-Survey Office, p. 61 .
IUUSH, RICHARD, Lientenant U. S. K. Services in Sectiou I, p. 13.

\section*{S.}

SAGADAHOC, Steam-landeh, gery ices of, p. 10.
SAINT PAUI'S ISLAND, Behriag Sea, tidal observations at, p. 60. SAINT THOMAS, W. K., tidal observationa at, p. 37.
SAN ANTONIO BAT, Texas, hydrograply of, p. 43,44.
SAN DIEGO, CaI. Geographiehl and hydrographical recommasance, p. 46.

SAN DYEGO BAY, Cal, positions of buoys in, p. 48.
SAND-DLNES of San Francfico Penimaila, p. 83.
SAN FRANCISCO, Cal., Longitade observations al, p. 52; magnetie observations a 1, y. 52.
SAN FRANCISCO BAY, Cal., hydrography and approaches of p. 53. SAN FRANCISCO PENINSULA, Cal., Sand-dunes of, p. \(\ddagger 3\).
SAN JUAN CAPISTRANO, triangulation and topography betwen, and San Pedro, pp. 48, 49.
SAN LUIS BAY, Cal., trimgalation and topography near, p. 54,
SAN LUUIS OBISPO, Gal., latitnde, longitude, and ngimnth at, p. 5i.
SAN PEDRO, triangulation and topography letweev, and San Juan Copistrano, pp. 48, 49.
SAN SIMEON, Cal., latitude, longitude, and ar minth at, p. 51.
EANTA LOSA, Cal., and adjacant island, triangulation and topography of p. 49.
SOHOTT, CHARLES A., Assistant. Afagnetic observations on Capitol Hill, Washington, D. C., p. 27 ; in eharge of Compating Division,
Coast Survey Office, p. 61 ; special discussions made by, p. 61 .
SCHUMACHER, PAUL. Services in Section X, p. 56 .
SCHUYLKILL RIVER, Pa.. shore-line suryey of, p .25.
SCORESBY, Schooner, services of, pp.9, 26.
SCOTT, A.H. Services in Section VIT, p. 39.
SEA ISLANDS, S. C., topography of, p, 33.
SENGTELLER, A. Engraviag Division, Coast Eurvey Office, p. 63.
SENGTELLERR, L. A., Assistant. Triangulation and topography near San Lais Bay, Cal., p. 5L; triangulation aud topography north of Mendocino Bay, Cal. i p. 54.
SHELTER COVE, Cal, triangulation and topography between, and Noyo River, p. 55.
SHIDY, L. P. Computing Division, Coast Sarvey Offied, p. 61 ; Tidal Division, Coant Survey Office, p. 61 .
GHOALWATER BAY, Wash., triangulation and topography of, p. 5e.
SHORE-LINE SURVEY. Of Schuylkill River, Ia. p. 2t; of Eixubeth River, Vi, p. 26 ; of Roanoke Marshes, p. Fl.
SIEBERT, S. Engraving Division, Coast Survey Ofice, p. 6\%.
SILLIMAN, Schogner, services of, pp. 10, 28.
SIPE, E. If. Engraving Division, Coast Survey Office, p. 63.
SITES OF ACTIVE OPERATIONS n A progrest of the surveys. General index, pp.1-5.
SKETCHES, List of, p. 182
BMITH, EDWIN. Deteraination of longitude at Port Jervis, N. Y., p. 21 ; astronomical observations at Cedar Keys, p. 35; observations for geodetje connection at Denver, Colo., p. 44.
SMITH, F. Drawing Division, Corst Survey Office, p. 62.
SOL THOMAS, Stemm-tug, Bervices of, p. 53.
SOMMER, E. J. Drawing Division, Coast Survey Office, p. 62.
SPAULDING. J. G . Tidal observations at North Heven, Me., p. 17.
SPEEDWELL, Schooner, services of, p. 35.
sPRANDEL, J. Dranghtsman in Hydrogrephic Division, Coast Survey Office, p. 61.
GTAGER, ANSON, General, superintecdent Wentera Ution Telegraph lines, eotoperation in astronomical observations west of Mississippi River by telegraph, p. 45.
STANTON, Paymaster, of Steamer Traspler. Services in Section X, p. 18.

STATION-MARKS, ingpection of, in Section \(\mathrm{HI}_{2}\) by Assistant Johs Harley, p. 83
STASHETICS OF FIELD AND OFEICE WORK daring the year 1872 General Index, Appendix Ko. 2, pp. 74-75.
STEADEĀST, Sloop, Bervice of, p. 34 .
STEARNS, W. H. Services in Secion II, p. 17.
STEVENS, Revenacerater, getvices of, pp. 30,43
SULLITVAN, JOHN A*, Assistant. Reconnaissance for geodetic connection in Georgia, p. 40; reconnxissance for location of primary baseline in Georgit, p. 120.

SUESS. WERNER. Division of Chart and harmments, Coast Survey Office, p. 64.
SUMMARY OF FLELD. WORF, pp.8-60.
SURVEX. Of Raritan Hay, N. J., p. 2 ; of New Haven Harbor, Conn.,
p. IR ; of Fire Fiand Inlet and Great Sonth Bay, Lont Ieland, N. Y., p. 23.

SURVEYS, progress of General Initex, we. 1-s.

\section*{T.}

TABLE MOUNTAIN, Cal., topography af, p. \(5:\)
TABLES. Of horizontal distances betmeen temporary marks in measurement of primary base-line near Athanta, Ga, p. idy; of heights of monntains in Alaska, de ermided in 1873 by triangalation and by bes tant altitudes, p. 192 ; of them for 18:4, p. 62.
THOMAS, M. Miss. Tidal Division, Coast survey Office, p. fil.
THOMPNON, J. G. Engravigg Division, Soast Survey Gftice, p. 63.
THOMPSON, W. A. Engraving Division, Coast Survey Othee, p. 63.
THROCKMORTON, S. J., jr. Services in Secion X. p. 45; magnetic observations at Sem Yiego, Cal., pp. 47, AF; magnetic observations at 1roint Concepition and Point Pimos. pp. 50, 51 ; latitude, longitude, abd afimuth at San Simeon and San Luis Obispo, Oal., p. 51.
THÖLSTRUP, Cohonel. In chagge of the-ginge at Saint Thomas. W. I., p. 3 H.

TIDAL DIVISION, Coast Survey Offef, p. Gi.
TIDAL OBSERVATIONS. At North Haven. Me., p. 17; at Brston, p. 17; at New York, p. 22; at Fortress Monroe, Va., p. 27; at Saint Thomas, W. I., p. 37; uear Sum Franciseo, Cal., p. 5a ; at Cresent City, Cal., p. 55; at Astoria, p. 5 ; at St. Paul's Istand, in Jehring Sea, p, 60.
TIDE.TABLES for 1874, computnd and published. p. 62.
TITTMANN, O. H., Subassisiant. Coastmeasurement, triangulation, and topography below Little River, S. C., p. 32; triangalation on the Pacitic cosst, p. 50.
TOPOGRAPHY. Mount Desert Iniand, Me, p.9; Decr Isle, Me., p. 9 ; Cantine Harbor, Me. D. 10; 1she-an-Hant, Me., p. 10; Penobsect River, Me., p. 10: Penobscot Niver at Winterport, Me. p.1I; west of Point Judiht, R.I., p. I7; of Lake Champlain, \(\boldsymbol{J}\). \(2 \boldsymbol{2}\); betwern Barsegat light-house and Manahawken, N. J., p. 24; of James River. Ya., p. 26; of Pongo River, N. C., 1 , 30; of Core Sound, N. C., b. 31 ; below Little River, S. C., p. 32 ; of North Santet and South Santee Rivers, S. C. . p, 33; of Set-J lands, S. C., p. th ; betwen Matankas Inlet and Halifux River, Fla., p. 34; of weterm ecast of Florida, p. 35; of Miskissippi River, Lar, p. 41 ; between San Pedro and San Juna Capistrano, pp. 48, 40 ; of Catalima Harbor, p. 44; of Santa Tona and adjacent Eslanda, p. 49 ; between Gaviota Pase and Point Conecptios, Cal, p. 50 ; near San Luis Bay, Cal., p. 51; north of Hedmas Blancar, p. 51; of Table Monntain, San Francisco entrace, p. 52; porth of Mendocino Bay, Cal., p. 54; between Noyo Rivor aral Shelter Cove, Cal., p. 55; between Mack's Areln and Rogue Niver, Orere, p. 56 ; of Shonlwater Bay, Wash., p. 58 ; of Puget soand, Wrab., p. 58 .
TRIANGULATION. Geodetic connection, Nuw Hemprhire, p. 12 : west of Point Judith, R. L., p. 17 ; near Buruegat Lighthonse, N.J., p. 23 ; of Hampton Roads and vicinity, Va, p. 2f; of Currituck Sound, Virginia and North Caroline, p. 28 ; of P anplico Souod, N. C., p. 99 : below Little River, 8. O., p. 32 ; of Athatic Coast of Florida, p. 34 ; of western const of Florida, p. 35 ; eastward of Appaiachee Bay, Fla., p. 37 ; near Athota, Ga., pp. 38, 39 ; in the State of Gergia, p. 39 ; of Mississlphi River, Lan, p. 41; in Missouri, p. 42; at Galveston Harbor and of the coast from East Bay toward Sabine Psan Texas, p. 43; between San Pedro and San Juan Capistrano, pp. 48. 49; of Catalina Harbor, p. 49 ; of Santa Rosa and adjacent islands, p. 49 ; near San Luis Bay, Cal, p. 51 ; north of Pjedras Blancas, p. 51 ; north of Mendocino Bay, Cal., p. 54; between Noyo River and Shelter Cove, Cal., 55 ; from Rocky Point to Klamath River, p. 55 ; between Mack's Arch and Rogue River, Oreg., p. 56; of Columbia River, p. 57 ; of Shoalwater Bay, Wash., p. 58; of Puget Sound, Wash., p. 58.

\section*{U.}

UHLIG, C. Services in Section X, p. 49 .

\section*{V.}

VAN ORDEN, C. F. Serviees in Section VII, pp. 41, 42.
VARINA, Sehooner, servicos of, p. 41.
VINAL, W. J., Subebsistant. Hydrography of Mittle Fgg Larber, N.
J., p. 24 , bydrography of Cape Fear River, N. C., p. 32.

FIRGLNLA, trianguiation of, p. 98 .

WiNTERPORT, Me., Topography of, p. 10.
WOLCOTT, D. S. Services in Section I, p. 16; services in Soction IX, p. 43.

WOODWARD, THOMAS P. Services in Section X, p. 50.
WRIGHT, L. B., Subassistant. Hydrography of Lake Champlain, p.
22 ; hydrography of Espiritu Santo and San Antonio Bays, Tex., p. 43. WURDEMANN, OHARLES F. Division of Charts and Instruments, Coast Survey Office, p. 64.
WYANDA, Kevenue-Cutter. Services of, p. 53.
WYVILL, E. H. Services in Section II, p. 22; services in Section V, p. 33.

\section*{Y.}

YEATMAN, A. Division of Charts and Instruments, Coast Survey Office, p. 64.
YUKON, Schoozer. Services of, py, 59, 60, 111.
Z.

ZUMBROCK, A. In clarge of Electrotyping and Photographing Divibion, Coast Survey Office, \(\mathbf{p}, 63\).

\section*{REPOIRT.}

\author{
Coast Survey Office, \\ Washiugton, D. C., December 30, 1573.
}

Sin: I have the honor to present the following report on the progress made during the past year in the survey of the Atlantic, Gulf, and Pacific coasts of the United States. For conrenicht reference, the distribution of the surveging-parties is given in tabular form in Appendia \(N_{0}\). 1 , and in conformity with that, the work done in each site will be mentioned in geographical order in the boty of the report.

In one or more of its branches, the survey has been in progress within the present year in each of the seaboard States of the Union, and geographieal positions have been determined in several of the interior States.

The subdivision of the coast into sections marks the judicious policy of my predecessor. Under corresponding arrangements at the ontset, the harbors most frequented and the coast approaches most dangerous to foreign commeree and to the coasting-trade were first surveyed in the order of their importance, and charts issued from time to time met the immodiate requirements of commerce and navigation, withont waiting for the completion of work on intervening stretches of coast. It will he readily understood, however, that while thus mectiug important local needs the general interests of commerce were much concerned in the development of the parts of coast intermediate between the surveys of the principal ports. For these intervals, and in advance of the issue of final charts for general purposes, the local triangulations which were first completed must be joined. It has in consequence followed that parts of the Atantic and Gulf coast, unsettled on acconnt of the low, swampr, and sickly character of the shores, are now occupied by parties of the surves, and, as was to be expected, many impediments are encountered in pushing the triangulation. Amongst these is the necessity of depending upon distant points for supplies required by the parties; and in some places the only fresh water to be hal is brought many miles during tie. working-season. The great lines of triangulation along each coast are absolutely necessary, and are organie parts of the original plan of the survey. By such means more than fourteen thousand points in all have been well determined in latitude and longitude for defining the shore-lines of the arljacent oceans, bays, harbors, inlets, and river-entrances; and the triangulation itself has been checked at intercals by elaborate oloservations for geographical position. The general sketch (No. 1) which accompanies this report shows only the main courses of the fiell.work, as no may of ordinary dimensions would admit of representing, in relation to each other, all the stations which have been occupied for the coast-triangulation.

Formerly, the local data gathered in the progress of the survey of the coast, such as the topography of harbor-shores, the adjacent soundings, precise knowledge of the tidal variations deduced from long series of observations, and knowledge of the effects of the currents, were called for only by engineers and constructors at our sea-ports, or at points of consequence along the coast. But, of late years, no step has been taken to modify natural conditions, even in remote places, without recourse to data and conclusions which at least point out what should be avoided. The ill ehect of encroachments upon channel-spaces relied on for the benefit of the public has been clearly demonstrated in repeated instances. If the bottom of the channel is anything but rock, the material has probably been brought by the current, and has been deposited by natural forces. These may be so exactly balanced that any contraction of the water-way, and consequent acceleration of the H. Ex. 133-1
current, will disturb the bottom, especially if the material is soft. In other cases, the tendency of the material to remain in place may preponderate. But if in any case the material at the bottom of a commonly-used channel is moved, it is well known that bars or shoals are formed near the ontlet of the channel. In a case noticed under the head of Section I, in the following report, mention will be made of the method employed for determining the limits which admit the rights of marginal owners, and at the same time preserve the accustomed ronte of navigation for the public benefit. At several of the northern sea-ports, questions of this kiud are now pending. In fact, the conviction is general at all our ports, that, inasmuch as changes for the worse may be actually in progress without intention, it is mowise to neglect any means that may tend to maintain the facilities that now exist for commercial purposes.

It need not loe explained that, excepting determinations of the latitude and lougitude of the place, all the conjoined data of the survey enter into the consideration of such questions as are here alluded to. Including all the methods and processes, the outlay for the survey of the coast and harbors, and for the determination of points in the interior States, costs less than one-twentieth of one per cent. reckoned upon the coastwise commerce of the United States.

Intimate relations with the Light-House Board have been maintained as heretofore, and in that connection my personal attention bas been given, as chairman of the committee on lighting, to the local details pertaining to aids for uavigation on the A tlantic and Pacific coasts and on the lakes. These need not be specified, nor the bearing upon them of developments made in the progress of the survey, as the routine of interchange by established usage properly makes known to others any collateral information gathered in either branch of the public service.

Regarding the definition of the coast and harhor lines, and the development of their approaches, as for Government uses alone, a manifest special adrantage inares to the seaboard States in the determination of points requisite for defining the trend of the shore-line. The main points are preserved by marks in the ground, and, by recourse to them, ultimate State survers along the seaboard can be prosecnted at moderate cxpense. But the geodetic connection between the survey of the Atlantic and the surver of the I'acitic coast is in itself of much general interest. Several important questions, outside of the advantage which attaches to accurate surveys of the interior, depend upon such connection. Congress has therefore wisely authorized the determination of points in such of the interior States as make provision for their topographical or geological surveys. Already, the advantage to them is generally, and soon will be universally, recognized by the interior States. In New Ilampshire, where the work is well advanced, part of the ontlay for determining geographical points is met by the State treasury. The sum appropriated by Congress for the work of this season was small, as will be seen by reference to the cstimates which follow; but, within the year, the geodetic connection has been carried on in the States of New Hampshire, Vermont, New York, Wisconsin, and Minnesota for the northern line, in Maryland, West Virginia, Pennsylvania, Illinois, Missouri, and Colorado for the middle, and in Georgia and Alabama for the southern; the points following each other in succession at elevations most arailable for the determination of long lines of triangulation. In each of these States, stations have been occupied or selected, and, when the number is increased, each State will have a frame-work npon which to construct a State map. While the benefit to the State is immediate, advantage to the General Government is equally certain in the future, as explained in previons reports. In one of the old States of the Union, map-errorsin regard to prominent landmarks have been detected by the work of this year; the positions as marked varying by from two to eight miles from the true positions. Similar cases have been mentioned in my previous reports. The public adrantage gained by such corrections is unquestionable.

The surveying-parties were all in the field when my estimates were presented in September last for contiming work during the next fiscal year. Tbe detailed estimates are here annexed, and with them, as illustrating the scope of the field-work, a recapitulation of the operations of the present year.

The survey has been adranced on the coast of Maine by topography and soundings on the eastern side of Mount Desert Island; by the survey of Deer Isle and the adjacent reefs, and of islands, including lydrograpliy, near Castine and between Cape Rosier and the Fox Islands, where tidal observations have been continued; on Isle an Haut and the neighboring islands; sarvey of the

Penobscot shores between Winterport and Bucksport; special survey and current observations in Fore Liver at Portland, and revisiou of shore-line at Old Orchard Beach; by the determination of magnetic elements in Msine, and of geogmphical points and the magnetic: elements in New Hampshire; by somaings on George's Shoal; deep-sea lines northward to Cape Sable; dredgings on the fishing-banks off the coast of Massachusetts; the selection of proper sailing.eomrses for entering the harbors of New England ; tidal observations at boston ; astronomical observations at Cambridge for determining the longitude of a point in New York; experiments on local variations in gravity ; and the development of marine allerations at Nanset beach, Nonomoy Point, aud the eastern approaches to Noutucket. Sound; special examination and series of tidal observations at Providence, R. I.; sailing-contses for movigating from the eastward and throghont Narragansett Bay; topography of the coast west of Point Judith advanced to quonochontang Pond; on the coast of Conmecticnt, survey of the water-front of New Haven, including the harbor-shores. In the vieinity of New York, the operations include tidal and current observations, and soundings near Sandy Hook and in East River; topography of, the western shore north and south of Jersey City; survey of the Raritan and Hackensack Rivers, New Jersey; determinations of latitude, lougitude, azimuth, and the magnetic elements at Port Jervis, N. I.; of the magnetic elements at sandy Hoob and New York City, and at Burlington and Ruthand, in Vermont; surver of the shores, aud soundings, in Lake Champlain, and selection of stations for commecting that survey with the coast-triangulation; development of the changes in shore-line and depth at Great South Bay, Long Island; the examination of station-marks on Long Island, and nearlerth Ambos, N.J.; geodetic connection of Barnegat light-house with the main coast triangulation ; topography of the coast of Now Jersey near Barnegat and Manahawken, iucluding Mullica River; somblings in the upler part of Little Egg Harbor ; special surrey at New Castle, Del.; and shore-linesurvey of Schuyhill Riverat Philatelphia.

In the vicinity of Chesibeake laty, the work of the year inchates the shore-linesurver, the hydrography, and determination of the position of aids to navigation in the approaches to Elizabeth River, Virginia; tidal olservations al Fontress Monroe; tests of sabing-conrses and supplementary soundings in the waters of Chesapeake Bay; magnetie observations at Washington City, D. U.; and reconnaissance for the selection of geographical points westward from Harper's Ferry. On the coast south of Cape Renry, latitude and the magnetic elements have been determined at Fnott's Island, and triangulation has been extended through Curituck Sound, North Carolina; the Hatteras Shoals have been closely examined; the survey has atranced ou the shores and in thes waters of Pamplico Soued and its branches; also on the shores of Core Sound, and in the vicinity of Beaufort, N. O. At Cape Fear, hydrographie operations have developed the Seward Channel as it now exists, and the chanuel of the river up to Wilmington, N. C. Little River entrance has been surveyed, and the coast of Sonth Carolina between it and Winyah Bay, also the North Santee and South Santee Rivers; and the sea-islauds at the head of Saint Helena Sound, Sonth Carolina, including the adjacent sea-water chaunels of the inland navigation. Latitude has been determined at Saint Simon's Island, Georgia.

On the Atlantic coast of Florida, the survey inchudes the upher part of Halitax River and the adjacent main; soundings on the Florida Reef near Garden Key, and exteusion of hydrography in the vicinity of the Tortugas; survey of the Gulf coast between Tampa entrance and Saint Joseph's Bay (south);' and soundings in Boca Ceiga Bay. Under special arrangement, tidal observations have been continued at Saint Thomas, West Indies.

On the Gulf coast, triangulation has been advanced between Cedar Keysand Appalachee Bay, and hydrography at the approaches of Saint George's Sound, Florida; geodetic operations have been completed near Atlanta, Ga., and for the triangulation extended in that ricinity connectingstations have been selected in Georgia and Alabama. In Chandeleur Sound, Mississippi, the bydrography has been completed; the detailed survey of the Mississippi River has been extended to the vicinity of New Orleans; geographical points have been determined in Illinois and Missouri, east and west of Saint Louis; also in Wisconsin, Minnesota, and Colorado.

On the coast of Texas, field-work has been in progress from East Bay toward Sabine Pass; triangulation at Galveston Bay has included the positions of the light-houses and beacons; and the hydrography of Espiritu Santo and San Antonio Bays has been completed.

On the lacifie coast, geographical positions have been determined in Lower California, including the station occupied in 1769 by M . Chappe de l'Auteroche for observing the trasit of Venus; dangers to narigation between Cape San Lucas and San Diego have been developed, and much of the erroneous published shore-line on foreign charts of the coast of Lower Califormia has been corrected; at several sites, the survey has advanced on the shores and on the islands of the Santa Barbara Channel, and in the vicinity of Point Conception, where also the magnetic elements have been determined; stations have been selected for triaugulation between that point and Monterey Pay; intermediate operations include coast-topography near San Luis Obispo Lay, latitude and azimuth there, and at San Simeon, and magnetic observations at Point Pinos, coast topography' northward of Piedras Blancas; astronomical and magnetic observations at San Francisco, Cal.; topography of the north side of the Golden Gate, and of the sand-dunes near San Franciseo; tidal and current observations and soundings in San Francisco Bay and its approaches; coast-topography north of Mendocino Bay ; development of numerous rocks off Cape Mendocino; bydrography of the vicinity of Orescent Oity Leef; triangulation between Klamath River and False Klamath; reconnaissance for extending the survey of the coast of California to Rocky Point; and topography north of Noyo River entrance.

On the coast of Oregon, topography has been extended from Crook's Point to Cape Sebastian, and reconnaissance for the triangulation northward to Rogue River; anchorages have beeu developed by soundings at Chetko Tiiver entrance and Hunter's Cove; field operations include triangalation of the Columbia River from Westport to Kalama, and observations for latitude, longitude, and azimuth at the last-named place.

In Washington Territory, work has been completed on the shores of Shoalwater Bay, aud that surver has been joined with the triangulation of the Columbia River; tidal observations have been continued at Astoria, and magnetic observations repeated at Cape Disappointment; tidal observations have been commenced at Yort Townshend ; topographical work includes the shores of Budd's Inlet, and soumdings have developed its approaches from the waters of I'uget Sound.

On the coast of Alaska, besides the development of numerous harbors, anchorages, and marine characteristics, tidal observations have been recorded at Unalaska, and at Saint Paul's Islaud, in Hehring Sea.

The preparation of a "Coast Pilot" or Sailing Directions, for all the harbors aud constwise mavigatiou between Eastport, Me., and Newport, R. I., has been completed, and that work is now ready for publication. Much additional data gathered within the year will be embodied in new editions of the Sailing Directory for the Pacific Coast.

The work in the Coast Surver Office, which includes the computation of results from the fieldobservations, and the drawing, engraving, and publication of maps and charts, has kept pace with the operations in triangulation, topography, and hydrography. Nineteen charts, engraved on copper, have been completed within the gear, and twenty-wine are in hand, exclasive of six charts issued by means of the photolithographic process, which greatly expedites the publication of new material. In the Drawing Division, sixty-three charts have been in hand. Fourteen thousand copies of copper-phate charts and fifty-three hundred of lithographic charts have been printed, and nearly as many issucd to sale-agents, and to departments of the Government, chiefly the Navy and the Revenue Marine.

Tide-tables for all sea-ports of the United States for the year 1874 have been computed and issued.

The important matter of reproducing the original topographical maps of the coast, which exist only in a single manuscript copy of each, has received constant attention. Satisfactory results have been obtained by the comparatively inexpensive process of photolithography, and, in the order of their importance, these maps will be reproduced when the requisite force is available and means can be applied to that object.

In order to continue the field and office operations of the survey on a scale corresponding with the rate of progress now reported, a small increase in the two leading items of the estimate seems unavoidable, ou account of continued increase in the cost of supplies refuired in the field-service.

For continning work in the geodetic connection, my estimate was, for the present fiseal year, fifty thonsand dollars, in view of additional demands for the determination of points within the
merior States. The appropriation of thirty-six thousand in lien of the estimated sum has not availed for the requirements of the service; two other States, Wisconsin and Kentucky, having applied within the year for the benefit intended by that item in prosecuting their geological sur veys.

The determination in the interior of points in trut geographical relation to the easteru and western coasts of the United States, limited as the work is to "each State of the Union which shall make requisite provision for its own topographical and geological survers," now requires an increase of means for extending the provisions of this item in the West, and it is hoped that the increase of the estimate to sixty-fice thousand dollars will enable the survey to perform all the work which may be required duriug the next fiscal year in the several States that are now entited to the service.

\section*{ESTIMATES IN DETAIL.}

For general expenses of all the sections, namely: Rent, fuel, materials for drawing, engraving, and map printing, and for transportation of iustruments, maps, and charts, for miscellaneous office expenses, and for the purchase of new instranents, books, maps, and charts, will require.
Section I. Coast of Maine, New Humpshise, Massachusetts, and Whode Iskand-Melbwork, -To continue the topography of the western shores of lassamaguody Bay and its estuaries, and of the coast and islauds between Castine and Mount Desert; to determine the heights of the principal trigonometrical points in the section; to complete the hydrography of Penobscot Bay aud River, and to continue the soundings eastward to Mount Desert ; to make such additional triangulation as may be required for the topographic and hydrographic survegs; to continue the resurves of Monomoy and Nantucket Shoals, and the oftshore hydrogathy of this section, and make special examination for the sailing-lines for charts; to continne the tidal observations, and to make such astronomical and magnotic observations as may be required. Office-work.-To compute results from the field observations; to continue the drawing of charts Nos. 1 and 2 , showing the approaches to the coast of Maine, between Passamaquoddy entrance and Petit Manan light-house; to continue drawing and engraving for charts Nos. 3, 4, and 6, which inclade Frenchmin's Bay, Blue Hill Bay, the approachestof the Penobscot and the coast between Kennebec entrance and Saco; also for local charts of Mooseabec Reach, Mount Desert Island, Eggemoggin Reach, Ponobscot Bay (east), Penobscot River, and the viciuity of Monomoy Shoals, will require
SECTION IL. Coast of Connecticut, New lork, New Jersey, Iemnsyleania, and part of Del-aware.-Fimbd-work.-To continue the resurvey of the north shore of Long Island Sound; to make such examinations as may be required in New York Harhor; to continue observations on the tides and currents; to extend, if practicabie, the plane-table survey of Hudson Niver above Haverstraw; to make the requisite astronomical observations; to connect the triangulation of Hudson River with that of Lake Champlain, and to complete the topography of the shores of Barnegat Bay; and to commence the resurvey of the hydrography of Delaware Bay and River. Officework.-To make the computations and reductions; to complete the drawing and engraving of a chart of New Haven Harbor; to continue the engraving of chart No. 21, showing the coast between Sandy Hook and Barnegat Inlet; the drawiug and engraviug of Nos. 22 and 23, between Barnegat and Cape May, and to commence a new chart of Long Island Sound, will require
SECTION III. Coast of part of Delaware, and that of Maryland, and part of Virginia.-Fibld-work.-To connect the Atlantic-coast triangulation with that of Chesapeake Bay, near the boundary-line between Maryland and Virginia; to complete the detailed survey of the James River, Virginia, inchiding the hydrography, and continue the plane-table survey of the Potomac River; to continue southward the main triangulation along the Blue Ridge parallol with the coast, including astronomical and magnetic observations; to complete the supplementary bydrograploy required
in this section; and to contime the tidal observations. Ofrice-wokk.-To compute results from the records of tield-observations; to complete the drawing and engraving of the chart of James River below City Point; and to make additions to the charts and sketches of the section, will require
\(\$ 35,000\)
Section IV. Coast of part of Virginia and part of North Cerolina.-Field-worr.-To continue the triangulation of Pamplico Sound and the topograply of its western shores between the Roanoke marshes and Swan Quarter ; to measure a base of verification and determine azimuth for the coast-triangulation south of Gape Lookout; to make the astronomical and magnetic observations requisite; to continne the offshore hydrography of the section, and that of Pamplico Sonnd and its rivers. OfFice-work.-To make computations from the fidd-data; to continue the drawing and engraving of charts Nos. \(37,39,45,43,44,45,46\), and 47 , showing parts of the Atlantic coast between Cape Henry and Cape Lookout, including Pamplico Sound, will require

40,000
SECTION V. Coast of South Caroline and Geovia.-FIEld-work.-To extend morthward the primary triangulation along the Blue Ridge; to continue the topographical surves sonthward of Cape Romain; to determine azimnth for the triangulation of the const of South Garolina; to complete the detailed survey of the sea islands and water passages between Charleston and Savannah, and to make tidal observations. OFPICE-wonk.-To make computations and reductions; to continue the drawing and engraving of the general chart of the coast between Cape Romain and the Saint Mary's River, and of chants Nos. 51 and 52 between Cape Fear aud Winyah Bay; and to make additions to the charts and sketches, will recuire......
Section VI. Coast, keys, and reffs of Florida.-Fiemb-wonk.-To extend southward from Cape Cauaveral the triangulation, topography, and hydrography of the sea water channels adjacent to the castorn coast of the Florida peninsula; to make the requisite astronomical observations; to continue the off-shore hylrography of the Flonida peninsula, and observations on the Gulf Stream; and to complete soundings in the vicinity of the reefs and keys. Office-work.-To reduce and compute from the field-records; to contiune the drawing and eugraving of the general chart of the coast from Saint Mary's Ricer to Cape Canareral, and of charts Nos. 58 and 59 from Cumberland Sound to Mosquito Inlet; and to make additions to the charts of the section, will require

35, 000

45,000
SECTION VII. Gulf coast of the Florida peninsula north of Tampa and coast of Western Florida.-FIELD-WORE.-To make the astronomical and magnetic observations requisite in this section; to continue the triangulation, topography, and bydrography of Tampa Bay and of the western coast of the peninsula between Cedar Keys and Appalachee Bay; to run lines of soundings in the Gulf of Mexico, and develop the hydrograply of the Gulf coast included in the field-operations. Office-work.To compute from the astronomical and field records; to continue the drawing and engraving of charts Nos. 79, 82, 83, 86, and 87 , showing parts of the Gulf coast between Chassahowitzka River and Peusacola entrance, and of the chart of Tampa Bay, will require
Section VIII. Coast of Alabama, Mississippi, and part of Louisiana.-Fielo-workTo connect the survey of the Mississippi hiver at New Orleans with that of Lakes Borgne and Pontchartrain; to determine geographical positions, and make the astronomical and magnetic observations required in this section; to extend the triangulation and topography westward of the Mississippi delta, and continue the hydrography of the Gulf of Mexico. Orfice-work.-To make the compntations required; to continue the drawing and engraving of charts Nos. 91, 92, 93, 94, and 95, showing Lake Borgue, Lake Pontchartrain, Isle au Breton Sound, and the Mississippi River between New Orleans and the Gulf of Mexico, will require

45,000

45,000

Section IX. Coast of part of Louisiana and coast of Texas.-Field-work.-To extend the triangulation and topography of the coast of Texas westward from Sabine Pass and south of Corpus Christi; to measure a base of verification, and make the astronomical and magnetic observations refuisite in this section ; to continue the hydrog. raphy of the approaches to the coast, and of the bays and passes. Office wonk. To compute results from olservations recorded in the field; to continue the drawing and engraving of the general chart between (alveston and Rio Grande, and of charts Nos. 109 and 110, Nhowing Aransas Bay, Copana Bay, and Corpus Christi Iay, will require

Total for the Athantic const and Gulf of Mexico.
425,000 The estimate for the survey of the western coast of the United States is intended to provide for the following progress :
Sedtion X. Coast of California.-Fielt-work.-To make the requisite olserrations for latitude, longitude, azimuth, and the magnetic elements at stations along the Pacific coast of the United States; to continue of-shore soundings on the coast of California and tidal observations at San Diego; to continue the coast-triangulation and topography near San Juan Capistrano and Newport, and that of the Santa Barbara Islands; to continue the detailed survey of the coast north and south of Point Conception, also between Point Sal and San Luis Obispo, and northward of Piedras Blancas ; to continue the main triagulation between Santa laarbara and Monterey, the hydrography of the western part of Santa Barbara Chanmel, and to make sommlings between the islands; to develop the Falmonth Shoal, and the hydrographic changes in San Francise Day and its approaches; to continue tidal observations at the Golden Gate, and observations on the ocean currents along the coast of California; to continue hydrographe work within the limits of field-opera. tions; to continue the triangulation, topography, and hydrography of the coast between Mendocino City and Shelter Cove, and in the viciuity of Klamath liver entrance; to complete the detailed survey between the last-named print and Crescent City, and the off-shore hydrography at Crescent City Recf. Office-work.-To make computations from the observations recorded in the field, and additions to the general and local charts of the section ; also for the operations in-
SEction XI. Const of Oregon and of Washington Territory.-Field-work.-To continue the triangulation and topography of the coast of Oregon from Mack's Arch northward toward Cape San Sebastian and Port Orford; to determine the latitude, longitude, and azimuth at stations on the coast of this section; to complete the survey between Tillamook Head and Cape Adams; to continne the surrey of the Columbia River, and tidal observations at Astoria; to complete the topography between Cape Disappointment and Shoalwater Bay, and extend the detailed survey from thence along the coast of Washington Territory toward Gray's Bay; to measure a baseline and continue the triangulation of the Strait of Fuca, Puget Sound, and Washington Somd ; and to develop the hydrography of harbors in Puget Sound. Ormem-work.-To make the requisite computations, and to draw and engrave the results of field work as additions to the charts and sketches of the section; also for the operations in-
SEction XII. Coast of Alaska.-Freld-work.-To make the reqnisite astronomical and magnetic observations, and to continne hydrographic researches in the vieinity of the Alentian Islands, the Shumagins, and nearthe Kadiak group, with observations on the tides and currents. Office-woris.-To compate results from the recorded observations, and to draw and engrave the shore-line and sonndings derived from the reconnaissance, will require.
For extending the triangulation of the Coast Suryey to form a geodetic connection between the Atlantic and Pacific coasts of the United States, and assisting in the State surveys.

For repairs and maintenance of the complement of vessels used in the Coast Survey... \(\$ 50,000\) For continuing the publication of observations made in the progressof the Coast Survey. 10,000

The annexed table shows in parallel columns theappropriations made for the fiscal year 1873-74 and the estimates herein submitted for the fiscal year 1874-95:
\begin{tabular}{|c|c|c|}
\hline Obiects. & Estimated for fiscal year 1874-75. & Appropriated for fiscal year 1873-'74. \\
\hline For continuing the survey of the Athatic and Gulf eoast of the Vnited States, and Lake Champlain, inclad ing conprasafim or civitians mgaget in the work, and pay and rations of enghecrs for tho steamers used in the Coast Sartey, per acts of Mareh 3, 1str, and That 12, 185\%.................................... & *-25, 044 & \$ 4100000 \\
\hline For continuing the sirvey of the western const of the United States, including eompensation of eivilians, and par and rations of phgineers for the sleanars used in the work, per act of September 30, 1850.......... & 275,000 & 260, 000 \\
\hline For extending the triangulatiou of the Coast Survey toform a geodetic comection hetween the Atlantic and Pacific coasts of the United States, and assisting in the Shate sarvegs, inchung compensation of cisil iatsengaged in the work, per act of March 3, 1871 . & (65, 000 & 36, 000 \\
\hline For repaixs and maintenance of the complement of vessets used in the Coast survey, per act of Auphat 18, 1850. \(\qquad\) & 50,000 & 50, 010 \\
\hline For contiming the pabication of whervations mave in the progress of the Coast survey, including com pensation of civiliaus engaged in the work, the prblication to le marle at the forserment Printing Onier peract of March 3, Je69 \(\qquad\) ................................................. & 10,090 & 10,000 \\
\hline Total. & 825, 000 & 766, 000 \\
\hline
\end{tabular}

The operations of the surreying parties in the couse of the year will now be described briefly in geographical order, beginning on the Atlautic side with the coast of Maine, aud terminating with the coast of Texas. Of the western coast, mention will first be made of work between Cape San Lucas and San Diego, and from thence northward, sites will be noticed in regular order, closing with an abstract of the operations of the year along the coast of Alaska.

The work of triangulation has been prosecuted in each section of the Atlantic coast. In the difficulties to be met at some places by this branch of the service, as already mentioned, the long experience in the field of Assistant lichard I). Cutts has availed much. Instructions to the parties engaged in secondary triangulation have been based upon his careful study in each case in regard o the requirements of the sercice. On these parties, besides the determination of points for advancing along the coast, devolve minor duties, amongst which may be mentioned the supply of new points for occasional resurveys, made vecessary by changes in the direction and depth of channels, and determinations of the positions of new light-houses, beacons, and buoys, in order that the publishei charts and sailing-directions may be conformable to the other aids provided for the benefit of mavigation and commerce.

During the summer, Assistant Cutts scrved as an honorary commissioner at the National Exposition in Yienna, aud there noted nnongst observing-instruments of the various classes, cognate to those used in the survey of the coast, such as were presented as improvements or as affording special facilities in method or precision in observing. His views in regard to the comparative merit of instruments now employed in geodetic determinations are of much interest.

In regard to limits and details of the topographical surveys, of which abstracts will follow, I have had the experienced adyice of Assistant Henry L. Whiting.

Systematic order has been held in view in pushing work to close the intervals in marginal topography occasioned by the necessarily detached order of work in the earlier surveys, for which order reasons were stated in my opening remarks. In the course of the season, Mr. Whiting visited the working.groumd of most of the plane-table parties on the coast of Maine, and personally condacted special surveys at Portland and near New York, as will be stated under those heads in the abstracts which follow. He also inspected the operations of parties on the coast of New Jersey, Virginia, North Carolina, South Carolina, and Georgia. His detailed report makes gratifying men-
tion of the accuracy and generally-improved style and inish of the plane-table sheets which hare passed through his hands.

The hydrographic inspector, Capt. C. P. Patterson, though with much-impaired heath, has conducted as heretofore the details of his dirision. After completing plans and specifications for new vessels required in the service, and arranging for the continuance of oflice-duties pertaining to the hydographic work of the year, he was absent from the Office daring summer, with the sanction of the Treasury Department, and my own permission, accorded in the hope that by renewal of health his valuable services might be retained for the interests of the surver.

\author{
SECTION I. \\ atlantic coast of maine, new mampsimpe, massachusetrs, and riode island, inceluding SEA-PORTS, BAYS, AND RIVERS. (Sketcimes Nos. 2 AN, 3 .)
}

Topography and hydrography of Mount Desert Island, Mfeine.-The survey of Mount Desert Island was resumed by a party noder the charge of Assistant J. W. Doun early in July, and in the course of the season the eastern end was mapped by means of the plane table from a point west of Bar Harbor around to a point westward of Seal Cove. Field-work was favored by almost uninterrupted good weather until the close of operations in October. All the islands adjacent to the eastern end of Mount Desert are included in this survey. It is estimated that the details jet outstanding ean be filled in by a plane-table party before the close of another working-season.

As heretofore, Assistant Donn used the schooner Scorcsby in this section. The soundings made by his party define the castern sea-approaches to Mount Desert to the distance of one mile from the shore line. Bar Harbor was sounded, Otter Cove, Seal Cove, and other indentations, and the rocks and reefs in the immediate vicinity of the eastern end of Mount Desert Tsland, were carefully developed. The general statistics are:
Miles of shore-line surreyed. ..... 25
Miles of roads ..... 33
Miles of streams ..... 44
Area of topography (square miles). ..... 31
Miles run in sounding ..... 235
Angles measured ..... 2,33
Number of soundings ..... 7, 766

The party of Assistant Donn lad been previously engaged in Section III, as will be stated in detail under that head. His arrangements are now complete for resuming work in that section. Mr. F. C. Donn efficiently aided in the operations of this party.

Topography of Deer Isle, Maine.-Assistant W. H. Denuis resumed plaue-table work in this, section on the north side of Deer Isle early in July. In continuation of the surver, he mapped the western side, including Ship Island and the shore of Penobscot Bay, to Northwest Harbor; tracing also the shore-line of Deer Isle beyond, nearly to its northern extremity. Eastward, the detailed work of this season includes the shores of Southeast Harbor, Greenlaw's Neck, Stinson's Neck, the small islands in that vicinity, and the eastern side of Deer Isle adjacent to Eggemoggin Reach. Many isolated low-water ledges are represented on the plane-table sheet. The shore-line, as usually fond in this quarter, is very irregular; and the hills near it, as far as they were included within the topographical linits, are rocky and rough, though not of great height.

Mr. S. N. Ogden served acceptably as aid in this plane-table party. Field-work was continned on Deer Isle until the 28th of October, when arrangements were made for the transfer of the party to resume duty in Section \(V\), under which head the previous work of Mr. Dennis will be mentioned. The statistics of work done this season by the party on the coast of Maine are :
```

Miles of shore-line traced68

```
Miles of roads ..... 35
Area of topography (square miles) ..... 24
The site of this survey is shown on sketch No. 2.
```H. Ex. 133-2
```

Topography of Castine Harbor, Maine.-Having traced the shore-line of Cape Rosier district in the preceding season, Assistant A. W. Longfellow prosecuted the detailed survey during the summer, and filled in the topography of Brookville, the north end of which bounds Castine Harbor. On the north side of the harbor, some of the surface-features in the vicinity of Castine were mapped. Subassistant Joseph Mergesheimer was attached to this party, and assisted in the field and office work.

Hydrography of Castine Harbor and vicinity, Maine.-With a party in the schooner Silliman, and attended by the steam-launch Stgadahoc, Assistant Horace Anderson commenced sounding on the 230 of June at Castine Harbor. The completed sheet of this guarter includes the entive harbor and Bagaduce River. A second sheet was nearly filled with soundings made in Penobscot Bay between Cape Rosier and the Fox Islands, joining there with hydrographic work of former seasons. Some ledges within the limits of this sheet, and the approaches to several of the islands, will be specially examined in another season. All the soundings in this vicinity were referred to a bench-mark on Commercial wharf, Castine, where Mr. Anderson had set up a tide-gange in June. The work of this party in Penobscot Bay was closed at the end of October, when Assistant Ander. son proceeded to Harpswell Neck, and made additional soundings for the development of a ledge in that vicinity. He was aided in this section by Messrs. F. II. North, E. H. King, aud Charles Cobmrn. Of work in Penobscot Bay, the general statistics are:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 685 \\
& \text { Angles measured....... ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 5,450 \\
& \text { Number of soundings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, } 868
\end{aligned}
$$

Daring the preceding winter, Assistant Anderson conducted hydrographic work in Section Vil, under which head mention will be made of the occupation of his party.

Topography of Iste au Haut, Maine.-The plane-table survey of this island, in which some progress had been made in the preceding season, was continued during the summer by Subassist. ant J. N. McClintock, who worked with a party in the schooner Joseph Heary. Of three sheets returned to the Office, one contains the completed survey of Isle au Hant. Most of the surface represented is rock, but the soil between outcropping ledges supports a dense growth of pine and alder. The outlying islands, which partly fill the other two sheets, are of the same general character, having rocky, precipitous shores, long reaches of exposed granite and shale ledges, with a dense but stunted growth of pine. Ea gle Island and Butler Island differ from others in the vicinity in being fertile and well cultivated. The group included in the operations of the party of Mr. Mc Clintock this season lies between Northern Fox, Deer, and Little Deer Islands, Cape Rosier, and Islesboro'. Field-work was continued on the group until the end of October, when Mr. McClintock was assigned to special field-service in Section II. The statistics of work on the islands are:

Miles of shore-line surveyed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Area of topography (square miles)......................................................... . . . 14
Oue hundred and eighteen small-islands and ledges are already represented on the two par. tially-completed sheets. Daring the preceding winter, Subassistant McClintock was in service in Section VI. He is now making arrangements to conduct a party which has been assigned to tield duty in Section IX.

Topography of Penolscot River, Maine.-At Stockton, to which point the plane-table survey had been extended last year along the western side of Penobscot Bay, the work was resumed in the middle of July by Assistant O. T. Iardella. After carefully tracing the shore-line, and contouring the peninsula known as Cape Jellison, the detailed survey of the western bank of Penobseot River was carried upwards to a point opposite to Backsport. The water-front of that town was traced on a second plane-table sheet, as was also the outline of Orphan's Island, that forms in that vicinity the eastern side of the Penobscot. Nineteen signals were set up and determined in position.

The marginal topography on the western side of the bay was made nniform with that of previons years. As shown by the contour-lines, that shore is bounded by hills that range in height from 100 to 600 feet; all being thickly wooded with pine, ash, and birch. Field-work was continued by

Assistant Iardella until the 5th of November, when he was assigned to service in Section III. Until the close of September, he was aided by Mr. W. C. Hodgkins. The following are statistics of the topography on the Penobscot:

Miles of shore-line surveyed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Miles of streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Area of topograply (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $15^{\frac{1}{2}}$
Under the head of Section IV, notice will be made of the previous work of this party,
Topography of Penolscot River at Winterport, Me.-Above the limits of the work described uuder the last head, Assistant F. W. Dorr made a plane-table survey of the stretch of the river included betreen Indian Point and Parker's Point. The resulting topographical sheet represents both banks of the Penobscot, the town of Winterport, and the usual surface-details aljacent to the shore-line. Part of Prospect River is within the limits of this surrey. Field-work was begun on the 21 st of July, and was continued until the 23 d of October; the last month being employed by the aid, Mr. D. B. Wainwright, in filling in details of the vicinity of Frankfort, after Assistant Dorr had been detached for special duty at the Coast Survey Office.

Except in the vicinity of Winterport, the returned plane table sheet represents only rocky and sterile ground, of which the shore-line is either steep bluff, or low, soft marsh. Several stone. quarrics are shown. At many places, the flats at low water stretch out far into the river, and are mentioned by Assistant Dorr as consisting of soft mud mixed with sawdust, which the rivercurrent brings down from the Bangor mills.

Mr. W. W. Gilbert served in this party as temporary aid. The following are statistics of the work:

Miles of shore-line surveyed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 . 23 .
Miles of creeks and marsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Area of topography (square miles)............................................................... 15
Under the head of Section IV will be described the operations of the party of $A$ ssistant Dorr during the preceding winter. The aid, Mr. Wainwright, has becu assigned to service in Section VI.

Portland Harbor.-The harbor-commissioners of Portland having requested advice for locating proper harbor-limits in Fore River, the details requisite for reaching a conclusion were committed to Assistants H. I. Whiting and Henry Mitchell.

While a topographical survey, made by Assistant Hull Adans, was in progress, the currents of the river and its special hydrographic features were developed. The results were combined ou a map, which showed also, besides the shore-lines, the recent structures along the shores, the encroachments, and the obstructions affecting the channel.

The current-observations, upwards of 2,600 in all, recorded in July, were designed to give the curves of equal relocities at maximum ebb and at maximum flood for the entire leugth of Fore River, as evidently the harbor-lines to be drawn ought to preserve the scouring force. For the most part, the bottom in Fore River is very soft mud, which by any considerable encroachment on the water actually in motion might be moved down iuto the broader and more important parts of the harbor. In advance of determining the amount of tide-water passing throngh each of ten sections of the stream, Mr. Mitchell computed the capacity of the channel from data afforded by the hydrographic survey of 1869. Current-observations were then made simultaneonsly at four or more points in each of the sections, to determine the transverse curve of velocity, which curve was reduced to the mean by applying a co-efficient so as to make the velocities multiplied iuto the depths correspond with the volume previously computed from data of the hydrographic surrey. After thus reducing the ten transverse curves of velocity, it was easy to draw upon the map lines for each tenth of a nautical mile of relocity, and such lines were drawn both for ebb and flood. The results proved that the water in actual motion does not occupy the entire section of the channel at some points, and that at others the movement is evidently impeded by artificial cncroachments. Selecting one of the sections at which velocity had been so much increased as to disturb the bot-
tom, special observations were made, and a limit in velocity was fixed beyond which it will not be safe to encroach upon the stream there or elsewhere. The full report of Assistant Mitchell will be found in the Appendix (No. 8).

In the study of proper harbor-limits for Fore River, commercial advantage, adaptation, natural features, and the character of the shore were jointly aud carefully cousidered; and, though the lim. iting lines drawn and accepted by the city government of Portlaud are in striet accord with the limits of velocity determined by the elaborate survey of Assistant Mitchell, it is a gratification to add that they also favor the most useful occupation of the harbor-frontage for commercial pur poses. Mr. J. B. Weir served as aid in the party of Assistant Mitchell.

After the close of observations in Fore River, a map and plans showing the principles accord. ing to which the limiting lines were drawn were furnished to the harbor commissioners.

Old Orchard Beach, Maine.-In the latter part of October, Assistant Hull Adams examined the beach above and below the month of Little River, across which an extended damdas been built since the completion of the survey of that ricinity. The new structure has eaused a considerable change in local features. In a large basin, which now exists inside of the embankment, the water, during heavy storms, stands above the level of tide, the former outflow from Little River now pass. ing through Jones Creek. In that quarter, an embanked road has been made to pass from Blue Point and across the marshes to the ocean-beach. These and other existing features were mapped by Assistant Adams, to be filed with the former detailed survey of this part of the coast of Maine. His party is now under instructions for topograpbical duty in Section IV.

Triangulation-Geodetic conncction-New Hampshire.-The object and resulting benefits of this and similar schemes of triangulation in other States were referred to in my last annual report. It is, therefore, ouly necessary to add in this connection that the State of New Hampshire, under her law of 1872 , has again contributed to this important operation by paying the expense of erect. ing all the tertiary siguals which were put up during the past season.

In accordance with my instructions of April, Prof. E. T. Quimby resumed field-work on the 1 st of May and closed on the 24 th of September.

The month of May was occupied in reconnaissance for the purpose of selecting additional stations for extending the triangulation. This work proved more difficult than in previous years, aud a longer time was emploged in it in proportion to the number of stations established. One reason for this was the fact that the reconnaissance necessarily extended over a large part of New Hampshire and a part of Vermont. The number of main stations selected during this time was ten ; but many other points were visited to determine which were the most suitable for the purpose.

Towards the close of May, the party for triangulation was organized, and occupied a station on Mount Cardigan, in the town of Orange, N. H. The observations there were completed and the party was transferred to Bean Mill during the month of June. By the 15th of July, the augles at Bean Hill were measured, and the next station in order, Prospect Mount, in the town of Hold. erness, was occupied. The observations at this, the third, station were finished, and the moving of the party and camp to Moosilauk Mountain was accomplished by the 5th of August. This monntain is about 5,000 feet above tide. In consequence of winds and rain, the observations at the station were not concluded until the 24th of September. During the season, Professor Quimby kept an aid and one hand constantly employed in the selection of tertiary stations and in the erection of signals, the expense of which was paid by the State. The statisties of the season are as follows:

$$
\begin{aligned}
& \text { Stations occupied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4 \\
& \text { Signals observed upon. . ................................................................ . . . } 60 \\
& \text { Angular measurements with } 24 \text {-inch theodolite .................................... 3,000 } \\
& \text { Angular measurements with vertical circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, } 200
\end{aligned}
$$

An examination of the scheme of triangulation proposed and partly executed (Sketch No. 3) will show the progress made, and the expansive character and usefulness of the work which has been undertaken in conformity with the intentions of Congress.

On existing maps, Professor Quimby found that many mountains in New Hampshire were misplaced; the error being in some cases as much as five miles. The character of the discrepancies
has been referved to elsewhere in this report, in further illustration of the necessity for detemining points in the several States in advance of any considerable outlay for geological suryeys.

Magnetic ouservations.-The three elements of declination, dip, and intensity, were observed at Eastport, Brunswick, and Portland in Maine, and at Gorham, Littleton, and Hanover in New Hampshire, in the course of September and October, by Dr. T. C. Hilgard, acting under the immediate direction of Assistant J. E. Hilgard. The observations were as usual taken on three days at each station, and include determinations of the true meridian by observations of the sun. It Eastport and Portland, the same stations have been previously occupied and will be hereafter, for ascertaining the rate of secular change. The Brunswick station established at Rowdoin College will also serve the same purpose, as observations will be made frequently by the professors.

The results of the observations here noticed, and of others in Section II, are given in Appen dix No. 16.

Georges Shoal.-In the course of the summer the vicinity of this shoal, of the coast of Mas. sachusetts, was examined by the hydrographle party of Commander J. A. Howell, U. S. N., Assistant Coast Survey, in the steamer Bache, with a view of determining whether or not special changes in form, position, or depth had occurred since the surrey of 1835 . The resalting chart, in comparison with the early sheet, shows differences in the position of shoal spots, but not such as to indicate any actual change in position ; and the least depth found corresponds with that of the previous survey.

Lines of deep-sea soundings were run by the party eastward from the outer edge of George's Bank. In reference to the assumed position of "Hope Bank," the existence of which was reported in 1869 as in longitude $63^{\circ} 20^{\prime}$ W., Commander Howell says: "The result of our soundings seems to demonstrate that there is no bank having forty-nine fathoms of water within twenty miles of the position given as that of Hope Bank." Somewhat to the eastward a specimen of bottom was obtained in $\mathbf{1 , 8 5 6}$ fathoms. From the same vicinity lines of soundings were run to Cape Sable, and from thence southward to the latitnde of George's Bank. A heavy non-detaching lead was used, with registers for determining depth, and thermometers for temperature. The last-named instruments, as between two at the same depth, varied four degrees in temperature indication, and the registers as much as 6 per cent. in indicating deptb. The off-shore soundings were made daring July and Angust.

In September the vessel, in furtherance of the general work of the Fish Commission, was engaged in dredging on Jeffrey's Bank, Cashe's Ledge, Jeffrey's Ledge, Stellwagen's Bank, and to the northward and eastward of Cape Cod, under the direction of Dr. Packard and Professor Cooke, of the Peabody Academy of Science. Many specimens of marine fauna were procured. The defective boilers of the steamer, however, lessened the service intended in dredging. On the 8 th of November the vessel reached Baltimore, and, after refitting with new boilers, will he assigued to hydrographic work in the Galf of Mexico. Under the head of Section VI, mention will be made of previons duty done by the party of Commander Howell.

Early in September the party and vessel then in service on the coast of Maine narrowly escaped disaster. Having repaired one of the boilers of the steamer, Commander Howell sailed from Portland on the 2d, and was detained at Peak's Island in consequence of another defect. Off Manhegan Island a tube blew out of the forward boiler, and both being then disabled the vessel conld not move by steam. Using sail to the best adrantage, in a thick fog, a position was gained judged to be within a mile of Burnt Island, when the ship was anchored, but with increase of the gale the hawser parted soon after midnight of the 5th. Fortunately for that emergency the boiler defects had been then so far repaired as to admit of the use of steam. The vessel having drifted into seventeen fathoms, steamed slowly through the dense fog and was safely brought to anchor to the leeward of Burnt Island. When the bluff was first seen through the fog, the steamer was very near it, having bat six fathoms of water under the bow and sixteen and a half fathoms under the stern.

Commander Howell was ably assisted in hydrographic duty by Lientenants W. H. Jacques, J. W. Hagenman, E. S. Jacobs, and Ricbard Rnsh, U. S. N., and by C. A. Bradbury, Master, U. S. N.

Atlantic Coast Pilot.-Final examinations preparatory to the publication of Sailing Directions for the Atlantic Coast of the United States have been continued by Assistant J. S. Bradford. His
party left Baltimore on the 3 d of July, in the schooner Palinurus, and resumed inspection in Penobscot Bay. After testing proper lines for navigating up to Bangor, a hydrographic survey was made of Weskeag River, from its mouth to South Thomaston; and the survey of Tenant's Harbor was completed to the head of Long Cove. Several very dangerous rocks in the Musele Ridge Channel were developed by soundings, and were located apon the chart. After finishing this work the party proceeded to Boston and commenced on the second section of the work, which extends from that port to New York. Sailing directions, prepared for all the harbors between Boston and Point Judith, include the results of a thorough examination of Vineyard and Nantucket Sounds and Bazzard's Bay, with its numerous interior harbors. Narragansett Bay was also fully examined, and many additions and correctious were made to charts of harbors between the limits named. Views of harbors, and of the approaches to them, were taken from such points as seemed most likely to render the sketches of use to mariners. These will be embodied in the forthcoming edition of the Coast Pilot. The work of preparing for publication the notes of this and previous voyages has been continued by Mr. Bradford in person.

Some of the buoys in Roston Harbor having shifted, the positions of all were determined this season under my special direction by the party in the Palinurus. While in the vicinity of Cape Ann, Assistant Bradford made a hydrographic survey of Milk Island Bar. The result shows that the bar has seren feet of water between Milk Island and the main land. The party remained in service on the coast of New England until the 19th of November, when the Palinurus proceeded to Baltimore to resume work in Chesapeake Bay, where the party is now engaged. The manuscript, in the aggregate nearly fifteen hundred pages, of the first section of the Coast Pilot, which includes the Atlantic coast, from the northeastern boundary to Boston, is now ready for the printer, and will be put in hand for publication at once. It includes accurated escriptions of the coast, and sailing directions for every harbor between Calais and Boston. Many of the harbors were never proviously described, and of many on the coast of Maine, as mentioned in my report of last year, no charts as yet exist.

On the coast of New England, Assistant Bradford was efficiently aided by Mr. John R. Barker, draughtsman, whose sketches and views of the different harbors give evidence of the veracity and fine finish which characterized all his previous drawings. After completing the examination of harbors in the Chesapeake, the party of Assistant Bradford will engage in similar duty, during the winter and ensuing spring, along the southern coast and in the Gulf of Florida.

Astronomical observations.-For determining the longitude of a point near Port Jervis, N. Y., in the boundary-line between New York and New Jersey, where an observer was stationed for the parpose in May and June, Prof. Joseph Winlock, at Cambridge Observatory, conducted the requisite exchanges of clock-signals by telegraph. Under the head of Section II further mention will be made of the operations near Port Jervis.

Pendutum experiments.-Tests for determining local variations in gravitation have always been considered as essential in geodetic surveys, but have been deferred in the operations of the Coast Survey, under the hope of improvement in the methods heretofore adopted for such experiments. Of late years, however, the subject has had renewed attention; and important improvements in the apparatus have been brought into practice.

In August last, a party under the charge of Assistant C. S. Peirce occupied a station near North Adams, Mass., in the immediate vicinity of the Hoosac Tunnel, and there recorded a series of observations. The pendulums used were single picces of brass, swung upon steel knife-edges resting upon surfaces of agate. Inside of a glass receiver with two walls, the space between which was filled with water, the pendulums were swung in vacuo, and were thus protected from changes of temperature. Assistant Peirce was aided in the operations by Messrs. W. E. McOlintock, H. Farquhar, and A. W. Edmnnds. The first-named aid made a careful topographical survey, and determined the mountain contour within a radius of two miles from the station at which the experiments were recorded.

Chatham, Cape Cod peninsula.-The coast of the peninsula near Chatham, Mass., has been recently subjected to unusual abrasion by the waves of the sea during heavy gales. In the autumn of 1871, an inlet opened through Nauset Beach, exposing the town-front to the ocean, and elevated land near the light-houses was undermined by the action of the waves. Accompanied by Rear-

Admiral Chas. H. Davis and by Messrs. H. Mitchell, and H. L. Whiting of the Coast Survey, 1 personally inspected the changes which had been wrought. The mere opening of an inlet was of little moment, records showing similar instances. On our southern coast, moreover, breaks through the littoral cordon occur commonly during violent storms, and there, and elsewhere, snch breaks have had no physical significance. But in this case a diminution had been observed for years of the area of Nauset Beach, and apparently the protecting barrier of sand was soon to disappear. The evident wasting away at this point was considered in conncction with the reported increase of obstructions at the entrance of Nantucket Sound. Mr. Mitchell was, therefore, instructed to visit the place from time to time, and to note and report the rate of alteration. Under his immediate direction several survegs have been made by Subassistant H. L. Marindin, the last in Norember of this year, and the results Mr. Mitchell has included in a review of the history of this part of the coast, from the visit of Champlain; in 1606 , down to the present time. That review shows that between parallels $41^{\circ} 39^{\prime}$ and $41^{\circ} 42^{\prime}$ the beach-area was maintained from the time of Champlain down to the year 1847, although the cordon seemed to have fallen back, much diminishing the water-way between this beach and the main sand of Chatham. Champlaia's map shown a wooded island of about one hundred acres, which Mr. Mitchell identified as the one marked Ram Island on the Coast-Survey map, where it is represented as having an area of about thirteen acres, an elevation of twenty feet, and with an inlet in front, which exposed the island to the wear of the sea. In a lapse of twenty-one years, Minot's gale and other great storms having caused changes, the scond examination by the Coast Survey showed that between the parallels named the beach had lost two hundred and thirty-nine acres, and that Ram Island had been entirely washed away. Except the loss of this island, however, the upland suffered but little, being protected by the strip) of beach, lessened to about one-half of its former area. In November, 1871, the beach began to break up. Nearly one-third of it disappeared between 1868 and 1872 , and the town front, an irregular elevated drift formation, lost so much that at some points the crest-line of the bank receded one handred feet.

During the present year, $\mathbf{1 8 7 3}$, the beach has lost twenty-eight per cent. of its area, so that now there exists between the parallels before named only about one quarter of the area found by the Coast Survey in 1847. The main land has suffered but little in the coarse of the year, but liability to abrasion has been considered so imminent that buildings have been moved back.

Coincident with the wasting of Nauset Beach, a rapid extension of the peninsula of Monomoy has taken place; and the bight at its extremity, popularly known as "The Powder Hole," has declined from a valuable harbor of refuge to a nearly-closed lagoon, accessible only to boats. Mr. Mitchell's reports show that, in a more or less fitful way, Monomoy has been gaining to the southward since 1750 ; but the movement between 1802 and 1853 was only thirty feet per year, while that in the short interval from 1853 to 1856 was one hundred and thirty-eight feet a year. The yearly gain during twelve years, ending with 1868, was one hundred and fifty-seven feet.

Mr. Mitchell's observations show also that Monomoy Point curves to the westward as it advances, apparently tending to form another and larger bight which may in time become a desirable anchorage for the coasting-fleet. At present, there is no refuge for ressels in this dangerous neighborhood; and as the cost of an artificial structure would be enormons, special interest attaches to this gradual movement of the sands.

The inquiries here sketched I have connected with the hydrography of the approaches to Nantucket Sound. Subassistant Granger, whose work will be referred to under the next head, was therefore directed to act under the advice of Mr. Mitchell, so that comparisons desirable for developing the physical character of this part of the coast might be made without delay.

In the Appendix, No. 9 , will be found Mr. Mitchell's second report, accompanied by Mr. Marindin's sketch, which gives the shore-lines of Chatham and Nauset Beach as they existed in the years 1606, 1847, 1868, 1872, and 1873.

Hydrography, Monomoy and Nantucket Shoals, Massachusetts.-In continuation of researches commenced last season, Subassistaut F. D. Granger, with his party, in the steamer Endeavor, started early in July from Hyannis and made an examination of the shoal near Great Point, Nantucket. A few lines of soundings proved conclasively that what was supposed to be a permanent channel with four fathoms does not exist between the shoal and the point. The depth found was
about nine fuet; the passage is narrow; the tide sweeps through with great velocity, and, as the locality is subject to rapid changes, the passage is very hazardous for any vessel not entirely familiar with the currents.

A careful examination this season of the broken part of Pollock Rip showed marked changes in the narrow "rips," but the depths generally correspond with the results of soundings made last year. As the sand ridges hardly exceed thirty feet in width where the depth of water is least, doubtless they shift in position in the course of one season. Mr. Granger developed a shoal in twelve feet, and several lumps having only ten feet of water, near black can-buoy No. 1.

The hydrography of this season joins with the soathern limits of work done last year. East and west the sonndings include Great Round Shoal and the space between it and the Handkerdhief light-vessel. The bydrography was carried southward as far as Nantucket light, and in its course a large area of broken ground was developed. Subassistant Granger found on Great Round Shoal as little as five and a half feet at mean low water, and a depth of forty feet only two hundred yards to the southward. In balancing the conficting statements made by fishermen and others, some of which represent that parts of the shoal have been seen dry at low water, it seems probable that the position of definite soundings is subject to remarkable changes from year to year.

The northern part of Stone Horse Shoal was covered by the soundings made last year. This season the outlines and curces of depth were developed. Mr. Granger says: "Since the survey of 1857 , this shoal seems to bave mored somewhat to the southward and westward, leaving a number of disconnected spots of ten, eleven, and fifteen feet. There has been a gradual wearing away of the northern part, and seventeen feet of water is now found where depths were only nine and ten feet. A spot of only seven feet on the northwest part was found in 1857 , but in the same approximate position eleven and fourteen feet were found this year. On the southern part there has been a decrease in depth, soundings showing only nine feet in places which are marked on the old chart as laving twelve and fourteen feet. About seventy-five yards south of black can-buoy No. 3 there is now a shoal spot of eighteen feet at mean low water where the depth was four fathoms in 180̆7."
"Within the three-fathom curve Stone Horse Shoal and Little Round Shoal are connected. The least water (five and one-half feet) was found near the southeast part, and, as at Great Round Shoal, the depth was found to drop off suddenly into deep water at the southward."
"As was noticed last year, comparatively few vessels appeared this season in the channel between Great Point Rip and Great Round Shoal, although this channel is much wider and somewhat deeper than the northern passage. Perhaps a few miles are saved by the northern channel, but, if the southern channel were marked by light-vessels and bnoys, it would be preferable to the northern channel, especially for deep-dranght ressels."

Mr. Granger carefully determined the position of lights and buoys which mark the Monomoy Shoals, but these are of necessity moved, and are moored in general conformity with changes in the position of the shoals.

The two bench-marksmade last year at Powder Hole Wharf were destroyed by ice in the winter. Mr. Granger repeated tidal observations for mean low water, and referred the results, to two benchmarks established on the shore.

The following are statistics of the hydrographic work in this quarter:

$$
\begin{aligned}
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,996 } \\
& \text { Miles run in sounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 715 \\
& \text { Number of soundings.............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, } 168
\end{aligned}
$$

Messrs. D. C. Hanson, D. S. Wolcott, and O. A. Ives served efficiently as aids in this party. The report for the season mentions also the acceptable service readered by Mr, H. Barrows, of the Institute of Technology, Boston, in making observations for determining the position of the Handkerchief light-ship.

The steamer Endeavor, after needful repairs at New York, was assigned for service with the party of Subassistant Granger, in Section VI. His work during the preceding winter and spring will be mentioned in detail under the head of Section VIII.

Tidal observations.-The excellent series of tidal and meteorological observations made at

North Haren on the Fox Islands, off the coast of Maine, have been kept up by J. G. Slaulding, a very good observer. The self-registering gatge now used here is furnished with daplicate cylin. ders, and with conreniences for tabulating, so that high and low waters and the hourly odinates are read and recorded by the observer regularly. There is also a heating-apparatus for circtating warm water through the float-box to guard against freezing. This has prored a safeguard, and no tides are wauting in the registers of this station. The curve traced is very regular, and the indications have always been that the place is remarkably well suited for a permanent tidal station.

The series of tidal and meteorological obserrations made at the Boston nary-gard, have been continued by Mr. H. Howland. The gauge often stopped in previous winters by ice, but has been supplied with heating apparatus similar to that used at North Haren. Last winter no tides were lost at this station from the effects of freezing, but, owing to some defects in the float and floatbos, some losses occurred. This gauge is now in good order, and is working w ithout interruptious.

The new form of tide-gauge, with duplicate cylinder, reading-box, \&e, lent to the city of Providence last smmer, and put in the care of J. H. Shedd, esq., ergineer of the Proridence WaterWorks, has been furuished for running another year. The record of observations will finally be turned over to the Coast Survey, thongh they were primarily undertaken for the local surveys, and the working-expenses are borue by the city.

Several short series of tidal obserrations have been made during the season at other places in this section by hydrographic parties. These series, after being used for the adjustment of sonnd. ings, will be reduced and compared with those made at the permanent stations.

Providence Harbor, R. I.-In the latter part of August $m y$ attention was called to some proposed restrictions in regard to water-space, and to the construction, then in progress, of a whart or pier inteuded to project a thousand feet into the harbor from its eastern shore. Doubtless these changes were deemed by many residents as not likely to harm the large interests coucerned in the present condition of the harbor. That view, however, was questioned bs some, who doubted whether such decided eucroachments could leave the harbor mimpaired. This view is warranted by the almost general belief that too much caution cannot be exercised in regard to artificial structures in our harbors, and in general none are nowadays ventured upon without careful study of their probable effect upon present and prospective interests.

At my request, Assistant Whiting, in September, examined, in a general way, the limits of the changes proposed in Provideuce Harbor, and reported that they were such as have been by other cities invariably made the subjects of special investigation. In canformits with this view of the pending matter the mayor and harbor esmintoe of Providenes subseruentry asked for such a survey, at the cost of the citr, as might fumish data for an opinion in radard the the effer the proposed alterations. The desired survey will be made as soon as practicable in the coming spring.

## SECTION II.

## ATLANTIC COAST AND SEA-PORTS OF CONNECTICUT, NEW YORK, NEW JERSEY, PEVNSYLVANIA, ANT DELAWARE, LNCLUDING BAYS AND RIVERS; AND ALSO LAKE CHAMPLAN. (Shetcafes Nos. 4 ind i.)

Triangulation and topography west of Point Judith, R. I.- Ender the direction of A ssistant i M. Harrison, the determination of points for continuing the plane-table surves of the coast of Rhode Island, was taken up at Green Hill in the middle of June br Mr. W. H. Stearas. West. ward from Green Hill, at convenient interrais, stations were occupied between it and Watch Hill, the distance being about seventeen miles. Mr. Stearns closed observations with the theotolite at Watch Hill Bay on the 12th of August, and then was assigned for similar duty in Section I.

The topographical survey was resumed by Assistant Harrison on the 7th of August at a station about half a mile west of Cross's Mills, and was pushed westward to include Charlestown lood and Quonochontang Pond, with the details of roads and other features found within two miles and a half of the coast line. A series of large, shallow lagoons is shown on the plane table sheet, as separated from the ocean by a narrow strip of sand-hills rising in some instances to the height of fifty feet. Back of these ponds the land undulates with a gradual upward slope, broken here aud there by a prominent hill, but merging finally, berond the post-road, into wooded Lills, difficult of H. Ex. 133-3
delineation. The frequent occurrence on this stretch of coast of inclosed depressions upon the slopes and among the hills, as remarked before, is a marked and interesting geological fegture, and special care was taken in representing them.

Assistant Harrison was aided in this section and also in Section VI, where his party passed the preceding winter, by Mr. Bion Bradbury. Field-work was closed on the coast of Rhode.Island on the 4 th of November, the progress of the season being, in statistics:

$$
\begin{aligned}
& \text { Miles of shore-line surveyed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 6 \\
& \text { Miles of roads surveged ...................................................................... } \text { in }^{\text {. }} \\
& \text { Niles of creeks and ponds surveyed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 58 \\
& \text { Area of topography (square miles) . . . ...................................................... } 20
\end{aligned}
$$

The party of Assistant Harrisou is now in effective order for resnming work for the winter on the Atlantic coast of Florida, near Mosquito Inlet.

Surcey of New Haven Harbor, Conn.-Assistant R. M. Bache resumed field-work early in the spring, and in the conrse of the season determined by triangulation twenty-one points in the immediate vicinity of New Haveu. In June, a large part of the city-front adjoining the harbor was mapped with the phane-table. Subsequently, the western shore was surveyed as low down as Oyster Point and the eastern side of the harbor to include Fair Haven. The details, on seven topographical shcets of large scale, embrace nearly eight miles of wharf and other shore-line features. Most of the ontlay for this work has been defrayed by the city authorities; and one of the plane-table parties, directed by Assistant Bache. was made up entirely of members from the graduating class of the Sheffield Scientific School, who volunteered their services, without cost to the city.

During the preceding winter and spring Assistant Bache plotted the sonndings and completed the sheets of his shore-line and hydrographic survey of last year. That elaborate work iucludes the development of every known rock or ledge in New Haven Harbor. For the use of the city and the harbo-rcommission the results have been furnished in large manuscript maps, and a duplicate showing the topography and hydrography has been prepared for the archives of the legislature of Connecticut. An extension of this sarcey will be prosecuted in the coming season, at the expense of the city anthorities. Field-work for the present scason was discontinued at the end of October.

New Fork Harbor.-The resurvey of New York Harbor, to which some time has been devoted, under the direction of Mr. Henry Mitchell, was not, when commenced in the year 1871, intended to include the entire port and its approaches, but only certain channels, shoals, and water-fronts, where changes for the worse had been reported by the Pilot Commissioners, and which changes had been noticed also by the Chamber of Commerce. As the work adranced, however, the necessity was seen for examining all the ground covered by the published chart which was based upon the very careful surves made about fifteen years ago. Doubtless it would have been expedient to test the former soundiugs at an early day, if known chauges in the condition of the harbor had not been actually reported.

The examination now in progress, like the preceding surver, includes physical studies, designed to show the effects of changes both natural and artificial.

My report of last year commented upon the increase of the Jersey Flats, and mentioned the fact that deposits by tidal action no longer take place in the middle of the Flats as formerly, but rest rather on the exterior slope, thereby encroaching continually upon the deep water of the main chaunel. Much of the shoaling, as made manifest by the surver, is artificial, and is due to the dumping of material dredged from the city slips and elsewhere; but, exclusive of this, there is evideutly mach deposit brought to this locality by the streams.

Since, therefore, the Flats serve no longer as a catch-basin for sediment, but merely the subordinate purpose of a tidal reservoir, there is apparently no good reason why they should not be turned to account for docks and commercial occupation, due caution being observed in regard to the exterior limit of structures. To this end it was deemed important in the survey now in prog. ress to determine the proper outer limit of occupation. Observations were accordingly made on the currents to admit of comparison between the transverse curves of relocities and the normal
sections, the principal object being to show that the line along wheh no abrasion wow take pace would be the safe limit of a quar-line where depths would not alter after walls are buit.

Observations of like character were extended by Assistant Mitchell, and under himetion by Subassistant H. L. Marindin and Mr. J. B. Weir, up the Hudson, in comection wit. eareful soundings in order to determine how the occupied harbor-lines of New York City and Jer, $\begin{gathered}\text { (ity }\end{gathered}$ have affected the channel, and at the same time to afford means for predicting the effectswhich would be consequent apon the occupation of the Jerses Flats. Changes contemplated hy the Sew Fork City anthorities in regard to the barbor-lines drawn after careful study by the United Sites Advisory Council in $1857-58$ will be kept under view in the investigation now pending.

In the East Piver many observations were recorded for the use of the board of commissionet, on Brooklyn pier lines. There, the transverse curves of relocity were carried across the river ann clearly showed the ill effect of encroachments male by the two cities upon this confined arm of the sea. There, also, landmarks established by the commission of 1857-58 had heen changed un. fer special legislative enactments, and the commission now acting has merely to morlify the odd limits so as to include recent encroachments, withont iucreasing the difficulties of narigation which were induced by the change.

Two tidal-stations and one hundred and uinety-seven current-stations were ocenpied by the party of Mr. Mitchell. The schooners Caswell and Bowditch were used in this service from the beginning of August until the middle of October. A synonsis of the statistics of work is appended:

$$
\begin{aligned}
& \text { Observations on currents ............................................................. . . . . . . } 501 \\
& \text { Angles determined.................. . ................................................... 1, } 041 \\
& \text { Number of soundings ................................................................. 4. } 045
\end{aligned}
$$

Observations made late in 1872 at Gowanus Bay were, soon after their completion, discussed by Assistant Mitchell. The identification of that bay as a fiord is the nataral result of the discussion. His demonstration (Appendix No. 10) that the Middle Ground shoal oceapics the exact position due to it under the law of dynamical equilibrium, and which, though deduced from theory, is fully confirmed as a fact by observation, is of special interest. The result, shows that great harm may inure to commercial interests from such variations in shore line as tend directly to change the conditions of this dynamical equilibrium.

The detailed hydrography done this season, under the direction of Assistant Mitchell, is thus described in the report of Assistant F. F. Nes, who prosecuted sonndings with a party in the steamer Arago: "After establishing a tide-gange at Saudy Hook, erectirg aud determining the positions of sigsals, and setting range-stakes, lines of soundings were run to develop the aproning around Sandy Hook from Government wharf to the Hook Beacon, and also about a mile down the beach."
"The hydrography of New York lower bay was then commenced and was prosecutel, as the weather facored, antil the 4 th of September, when observations were taken up aud continued until the 19 th , on the currents of East River, in conjunction with parties in the schooners Casuell and Bowditeh."

In the early part of October, Assistant Nes made repeated attempts to resume somandins in the lower bay, but bad weather interfered and finally on the 11 th the steamer was disabled by the giving way of the crown-sheet of her boiler.

In the East River, near the foot of Ninetecnth street, on the New York side, and opposite to Green Point, the British steamer Easby struck on a point of rock on the 1st of August. Seareh was made at once, under the direction of the board of pilot commissioners, and by others, but the development proved tedions, the rock being small, though within two hundred fards of the waterline. Weather and tide favoring, in the latter part of September, Assistant Nes rent to the place and by a sweep of the dredging-line found the point on which the Easby had struck. A buor, furuished by Commodore Trenchard of the light-house service, was placed on the rock by the party of the steamer Arago. Full information in regard to the dauger, and a sketch showing the depth of water in its immediate vicinity, were at the same time furuished to the pilot commissioners. In East River Mr. Nes occupied seven stations at ebb and flood for determining the current. Tides
were observed at four stations between Sandy Hook and the nary-yard. The soundings as made by the parts were plotted and the resulting charts were forwarded to the Office.

Assistant Nes was aided in this section by Mr. E. B. Pleasants, and, during part of July, by Mr. W. B. French, who, on being assigned to another hydrographic party, was replaced by Mr. W. T. Blunt, of the Boston Institute of Technology.

The gentral statisties of hydrographic work done this year in the vicinity of New York are:

$$
\begin{aligned}
& \text { Miles ran in sonnding . .................................... . . . . . . . . . . . . . . . . . . . } 280 \\
& \text { Angles measured. ........................................................................ } 9,937 \\
& \text { Number of soundings................................................. . . . . . . . . . . . . . . 10, } 003
\end{aligned}
$$

During the preceding winter Assistant Nes conducted a hydrographic survey in Pamlico Sound, mention of which will be made under the head of Section IV. The steamer Arago has been repaired, and is now on her way with the party to resume work in that section.

In connection with the physical surver of New York Harbor, it became necessary to retrace the water-front of Jersey City from Castle Point downward, so as to include the extensive structures of the New Jersey Central Railroad Compans at Communipaw and the docks and quass at Hoboken. A thorough resurvey betreen these limits, made in November, by Assistant H. L. Whiting, shows extensive and important changes since the year 1869 . Within the last four years, part of the western side of the barbor has been occupied by some of the largest commercial depots of the country.

The extension of wharves along the water-front, between Communipaw and Castle loint, was intended to be in conformity with harbor-lines established on the New Jersey side of the channel. Mr. Whiting's recent surveg does not show that any special encroachments have been made on the channel-way, although the outer faces of the piers are not as true in alignment as it would be desirable or adrantageous to have them. In round numbers, the area here occupied by solid filling since 1869 amounts to about three hundred acres. Thirty-four wharves, many of them extensive structures, have been built within four years, making now a linear frontage of about five miles.

Subassistant H. M. De Wees was engaged in the survey near Jersey Citf, under the direction of Mr. Whiting.

Of the artificial changes developed by this examination, the effects, if any, upon the general conditions under which the harbor exists, or local effects consequent apon the changes, will be the subject of discussion hereafter.

Survey of Raritan River, A. J.-This work, which had been deferred, for reasons stated in my preceding report, was taken up by Assistant F. H. Gerdes at the end of July, and was completed on the 20 th of September. The survey is represented by two plane table sheets, one of which shows the Raritan valley and river, between Sayersville and New Brunswick; the other contains details of the survey of the South River and English Creek, which are navigable branches of the Raritan. At intervals, while the feld-work was in progress, the chanuels of the river aud its principal branches were sounded, and the data thus gathered was plotted on a hydrographie sheet to which the shore line had been translerted.

Early in October, Assistant Gerdes proceeded to the Hackensack, and revised the survey of that river between the railroad bridges, where considerable alterations had recently been made in improvements. The soundings generally were made by Subassistant C. P. Dillaway, who conducted also the plane-tahle work on the branches of the Raritan, under the supervision of Assistant Gerdes. Mr. W. S. Bond was attacbed to the party as aid. Tides were observed at eight stations while soundings were in progress. Twenty-six signals were erected by the parts in the course of the season. The general statistics of the work are:
Miles of shore-line surveyed ..... 33
Miles of roads ..... 28
Area of topography (square miles) ..... 10
Signals determined in position ..... 59
Angles measured. ..... 726
Number of soundings. ..... 8,367

The party engaged in this service was discharged on the 6th of Norember. Awistant Gerdes then took up the compatations aul other office-work pertaining to the operations of his parts. Subassistant Dillaway, who was emplored daning the preceding winter in Section IV, has been assigned to serrice in Section VI.

Geodetic connction.-In March hast Prof. G. M. Cook, in behaif of the State geological surver of New Jerser, requested that latitude and longitude might be detemined at points along the boundary established in $175 \pm$ between that State and New Fork, so as to facilitate the emetion of additional monuments to mark the dirision-line. The geographical position of the eastem end of the line, on the west bank of the Hudson, was detormined by Coast Survey observers several years ago, but the western teminus on Carpenters Point, at the confluence of the Delaware with the Neversink licer, was, until the present season, known only by the approximate determination of the preceding century, when the boundary was traced.

For detemining the longitude of Carpentors Point, Assistant $\mathcal{L}$. W. Dear made the man arrangements. At his request, the Western Union Telegraph Company by its superiuteudent. Gen. 'Thomas T. Eckert, placed oue of its lines at the disposal of the observers. I'rof. Joseph Winhed, director of the Cambridge Observatory, co-operated by exchanging coek-signals by telegraph during six nights with Mr. Edwin Smith, who was stationed at Port Jervis, near Carpenter's Loint. The clock and instrumental corrections at that station were ascertained bs Mr. Smith, from one hundred and fiftr-three observations on thirty-four zenith and cireumpoiar stars, observed on twelve nights with the 46 inch transit, C. S. No. 5:

For latitude at Pori Jervis, serentr observations were recorled, using seventeen pains of stars: on seren nights, with zeuith telescone No. 2 .

Azimuth was determined with transit No. 5, by one humdred and dive observations upon Polaris, at lower culmination, and ninetr-one upon 32 Camelopard alis, at its upper culmination, all being referred to a meridian-mark abont a mile aud a half from the station. The bearing of the State line was determined by careful measurement of the angle between its direction and the meridian-mark.

Much farored by good weather at this station, the desired series of observations were satisfactorily recorded between the Sth of May and the $\mathbf{2} 3 \mathrm{~d}$ of June. In these are included careful determinations of the magnetic elements. Mr. Smith obserred on three days for the magnetic declination. Two needles were used in ascertaining the dip; and horizontal magnetic intensity was determined, as usual, by recording the deflections and ribrations of a suspended magnet.

Later in the season, the party of Assistant Dean was engaged in the determination of seo graphical points in the interior, as will be stated more in detail under the head of section VIII.

Reconnaissance for triangulation, Irudson River to Lake Champlain.-Recommassance for the connection of the surver of Lake Champlain with the triangulation of the Hudson River, near Albany, was assigued to Assistant S. C. MeCorkle, after the completion ol service which will be mentioned under the head of Section IX.

The line from Perry's Peak, in Massachusetts, to Follow Pine, in New Iork, determined in length by $\Delta$ ssistant Blunt in 1860, was adopted as a base, and from this a scheme was laid out by Mr. McCorkle to connect the primary triaugulation of the coast with the Adiroudack and Grech Mountain ranges, and from the height and isolated character of the peaks to be found in these ranges the scheme admits of extension to the boundary line, or even to the Saint Lawrence hiver, as well as of expansion eastward and westward to provide for fature necessities. The leng th of the lines will vary from 18 to 70 miles, and the height of the stations above tide from 700 to 4,200 feet Points for an inner or subordinate series of triangles were also selected, by means of which a connection can be effected with the triangulation and survey of Lake Champlain. The scheme extends over the valleys of the Mohawk and Epper Hndson, and includes the region about Lake George and Schroon Lake.

The report of Assistant MeCorkle describes the general character of the stations or summits selected, whether wooded or bare, and the facilities now existing for reaching them. In some cases much labor will be required to clear the stations, and in others roads must be partially opened. The people of the country trarersed in the reconnaissance favored the operations of the parts, and
the citizens of lutland promised to open a road to Killington Penk, the highest station of the series, when a parts might be ready to occupy it.

Assistant McCorkle closed obserrations in this section at the ent of October, and is now engaged in recomarssance for triangulation in Section VII.

Jopography of Letke Champlain.-Progress has been made in the detailed survey of the shores of Lake Champlain, by a party working with two plane tables under the direction of Assistant H. G. Ogden. The details mapped between the middle of July and the niddle of October, are on four sheets, which give all the topographical features within a mile of the water-line on the west side of the lake from Bhati Point sonthward to Jones's Point, and including Port Kent, Port Donglass, Valcour Lsland, and Willsbore' Point. On the east side of the lake, below Burlington, this survej includes the details on the eastern shore of shelburn Bay. The mouth and part of the course of Au Sable River are represented on one of the plane-table sheets, and on all the contour of surface is indicated in the usual way by curves. The general statistics are:

$$
\begin{aligned}
& \text { Miles of shore-line traced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 45 \\
& \text { Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 69 \\
& \text { Miles of streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 19 \\
& \text { Area of topography (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 34
\end{aligned}
$$

Eanler in the season this party was engaged in a survey which will be mentioned in detail muder the head of Section VI. Assistant Ogden has resumed field-work there, and Subassistant Andrew Braid, who aided him in work on the shores of Lake Champlain, has commenced hydrographie service with a party in Tampa Bay, Florida.

IIydrography of Lake Champlain_-Assistant Charles Junken reached Alburg, Vt., on the 1:th of July, and, farored by the season, prosecuted sonndiugs in the northeast arm of Lake Champlain until the 24th of September, when the hydrography was completed as far as the United States boundary-line. The part sounded includes McQuam Bay and Alburg Passage from the north end of Butler's 1sland, and also the lower end of Missisquoi Bay. Below Butler's Island the waters of the lake bad been sounded in previous seasons as far to the sonthward as the Four Brothers. At. that limit the work was resnmed this season by Subassistant L. B. Wright, who extended the hydrography to the vicinity of Crown Point, essentially completing the lake hydrography. The narrow channel south of Crown Point will be developed in another season.

During the temporary absence of Assistant Junken, for service in another part of the section, the operations of his party were conducted by the aid, Mr. F. W. Ring. Subassistant Wright used the steamer Futhomer, and was aided by Messrs. E. H. Wyville and W. B. French. The previous ocenpation of Mr. Wright will be mentioned under the head of Section IX, in which quarter he is now preparing to resume work for the coming winter and spring. A synopsis of statisties returned by the two sounding parties on Lake Champlain, shows:

$$
\begin{aligned}
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, } 466 \\
& \text { Number of soundings. ..................................................................... } 52,517
\end{aligned}
$$

After completing the records pertaining to the hydrography of Lake Champlain, Mr. Junken entered upon duty as draughtsman, at the Office.

Magnetic Obserrations.-The stations at Burlington and Ratland, in Vermont, and at Saudy Hook and in Central I'ark, in New York, where magnetic observations had previously been made, were re-occupied in October and November last, by Dr. T. C. Hilgard, acting under the immediate direction of Assistant.I. E. Hilgard. Magnetic declination, dip, and intensity, were determiued at each station by observations made on three or more days. Observations for azimuth by the sun were also made. The results are given in Appendix No. 16.

Tidal obserations.-The self-registering series at Governor's Island, in New York Harbor, has been continued as usual by Mr. R. T. Bassett, an experienced observer: He also makes, as heretofore, occasional day observations, for comparison, with a box-gauge at Hamilton Avenue ferry, Brooklyn. The observations at New York, as stated in previous reports, are the bases for surveys around and near the harbor, relating to docks, bridges, tunnels, dikes, and other structures, and it
is, therefore, desirable that all prospective requirements for such important uses should be fully met.

Another permanent station, at or near Sandy Hook, wonld be adrantageons for perfecting the tidal survey of the waters connected with New York Harbor, and the establishment of a selfregis tering gange for that purpose is under consideration.
survey of Fire-Island Inlet and Great South Bay, Long Island, New Iorti-For developing the marked changes which have been caused in this quarter by the action of the sea, Assistant Charles Hosmer was detailed with a partr, in June, to trace the shore-lines, and in general to determine the alterations in contour aud depth at Fire-Island Inlet and in Great South Bay. Field operations were commenced early in Juls. The triangulation needful for the shore line surver rests upou two stations of the survey made some rears ago, and points determined by Mr. Hosmes and his aid, Mr. R. B. Palfrey, suffice for including about fifteen miles east and west of Great south Bay. Its north shore and iudentations were surveyed from Conklin Point to a station about cleven miles eastward. The topography includes, also, seven miles of the westen part of Fire Island. both sides of Fire-Island Inlet, and the islands in its vicinity. The inlet was sounded, and the body of the bay adjacent from Nicoll's Point westwarl to Couklin Point. This sarrer rests upon thirtyseven points, which were determined by occupying seventean stations with the theodolite. The plane table and bydrographie statisties are:

$$
\begin{aligned}
& \text { Miles of shore-line, including creeks................................................ an } \\
& \text { Miles of roads............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 41 \\
& \text { A rea of topography (square miles).................................................. } \\
& \text { Miles run in sounding.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 234 \\
& \text { Angles measured............................................................................. } 1 \text {. 46. } \\
& \text { Casts of the lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 38,363
\end{aligned}
$$

Assistant Hosmer discharged lis pasty in this section at the end of October, and then resumed duty in Section V, where he had been engaged in the preceding winter, as will be mentioned in detail hereafter.

Station-marks.-The periodic inspertion of station-maths of the coast triangulation at important localities, with a view to their preservation for future ases, has been contimued by Assistant John Farley.

In the course of the summer, the stations Bloomfield, in New Jersey; Terry and Jontaut, on Long Island, and those on Shelter Istand and Gardiner's Istand, were itentified, and new marks, measurements, and descriptions were made for their further secmits. The stations at Horton's Point, Mattituck, and Friar's Heat, on the south shore of the sound, having been located on the summits of sand-hills, in order to obtain the eleration needful for observing across the sound with the theodolite, are lost, except for ordinary local surveys. The sand-dunes have mored on gradually to the west and south, in the direction of the prevailing high winds, and the points which were occupied by the theodolite now correspoud in place with the foot of the hills or dunes, but no marks are left to show the exact positions of the stations.

During the last thirty-five years, the sand-dmes on Long Island have mored at the mate of between one and two feet per annum. Of the station at Fiar's Mead, Mr. Farles reports that "the crest of the hill for the space of several acres has been blown away by minds to the depth of 30 or 40 feet, leaving an immense chasm, and destroying, conseguently, crery trace of the origital aspect of the place."

Triangulation near Barnefrat Lighthouse, I. et.-The object of this mork has been stated in previous reports. Being nearly in the meridian of Hudson River, which is traversed by a carcful triangulation as far north as Troy, and not far from the chain of primary triangles which passes through the ralley of the Delaware, Barnegat has been brought into geodetic connection with the lutter, so as to furnish data for determining the exact length of a considerable are of the meridian. Subassistant $F^{F}$. W. Perkins took the field early in Jup, and in the course of the season ocenpied five stations. At these, by the measurement of horizontal angles, the detailed survey of the coast of New Jersey was finally connected with the main triangulation, which of necessity in this section passes southward at some distance from the sea.

Mr. J. F. Pratt served efficiently as aid in this party until the 1st of September, but, being then taken seriously ill, he was replaced by Mr. F. W. Ring.

The length of the triaugle sides determined by the party raries from ten to twenty miles. Eight points were determined by angular measurements, of which the aggregate in the records is upward of two thousand. Subassistant Perkins had been previously engaged in work of which mention will be made under the head of Section VII. He is now ou the way to resume duty on the Gulf coast.

Topography between Barnegat Light-House and Manaluatien, N. J.-Early in July, Assistant C. M. Bache resnmed field-service in this section, having been at the outset of the year engaged in duty which will be mentioned under the head of Section IV.

Lfter tracing the coast-line to a point abont eleven miles below larnegat Light, Assistant Bache mapped the interior shore-line, the opposite side of the bay and inlaud, the details generally as far as the road which rans parallel with the coast between Barnegat and Manahawken. This serrice occupied the main party until the 95 th of October. A detached party meanwhile was engaged on the shores of Mullica River with a plane-table in charge of Subassistant H. M. De Wees. The survey of that stream was resumed at the mouth of Bass River, to which the former plane table work was carried by Assistant Bache, and was extended upward to Green Bank. Mr. De Wees included also the vicinity of Port Republic, and all the ground adjacent to the navigable part of Mullica River, which, within the limits of his surver, has a depth of about seren feet.

Subassistant II. W. Bache was attached to the party, and worked between Manabawken and Bamegat. The statistics of this season in the section are:

Miles of shore line surreyed............................... . . . . . . . . . . . . . . . . . . . . . 210
Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $10^{2}$
Area of topography (square miles) ...................................................... 70 .
This party was emploged daring the preceding winter in duty which will be described under the head of Section IV. Assistant Bache is now preparing to take the field for service in Section III.

ITydrographay of Little Egy Harbor, N. J.-The deveiopment of Little Egg Harbor by soundings was resumed in the middle of July, by a party under the charge of Subassistant W.J. Vinal, with the schooner Bailey. At all farorable intervals of weather work was steadily prose cuted until the Eth of Norember, at which date the detailed hydrography had been extended north ward and eastward from Little Egg Harbor entrance to within a few miles of Barnegat. Further progress in that direction beiug impracticable, by reason of the severity of the weather, the work was discontinued for the season, it being evilent that the outstanding hydrography could be more readily completed by passing the vessel through Barnegat Inlet in a future seasou. The rork done by the party is contimons with that reported last rear. A summary of the additional hydrography is appended:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
\end{aligned}
$$

Mr. J. J. Evans served as aid in this party, and Mr. G. A. Morrison was detailed from the Office for temporary duty while the soundings were in progress. Thirty-six signals were erected by the party, and a large number of objects were determined in position, to insure accuracy in plotting the soundings.

The previous service of this party will be mentioned under the head of Section $V$, to which Subassistant Vinal is about to return for hydrographie duts, which will oceupy his party during the present winter and ensuing spring.

Hydrography at New Castle, Del.-By means of large ice-brealing steamers, maintained by the General Government, the harbor of New Castle has in former years afforded refuge to ressels that would otherwise hare been cut through in the waters of the Delaware by floating ice. Of late years, however, the shoaling of the harbor has made the use of the full complement of ice-breakers impracticable. The depth of fifteen feet between the wharves at Harmong street and Delaware
street in the year 1828, was represented by only six feet in 1841, and the same place is now bare at low water.

Late in May, when the town authorities had under consideration the extension of quars into deeper water, the aid of the Coast Survey was requested, for determining such limit and direction in wharflines as might best preserve the depth required by shipping at New Castle.

Assistant Charles Junken, under my direction, in June, traced the shore-line of the Delaware River, adjacent to the town, and made upwards of three thousand sonndings. These were plotted at once, and a copy of the resulting chart was furnished to the authorities.

In Angust, A ssistant Henry Mitchell, accompanied by Mr. Junken, visited New Castle amd made careful observation with reference to the proper limit in wharfage. The results, in the form of a chart showing the desired wharf-line, and a report descriptive of the conditions heht in view in its selection, were transmitted, early in September, to John H. Rodney, esq., chairman of the town commissioners.

Through the courtesy of Colonel Kurtz, of the United States Engineers, who had charge of Government works in the Delaware, Messrs. Mitchell and Junken were furnished with mannemipt
 These, with the two Coast Survey charts of the harbor, gave a good $l_{\text {hy }}$ sical history of the phace for a period of nearly seventy years.

The first piers, built in 1805, now lie within the occupied frontage of the town. The extension in 1827, of Elbow pier and Junction pier ontward from the wharffront proving injorious, parts of them were removed by the Government officers in 1835 , since which time, althongh the water again deepened, the original depth has not been regained. Piers subsequently built on the plan introduced by Major Delatield, in 1837, and intended to secure protection without creating any shoals, will, when the system is complete, gice a harbor of refuge, with ample depth for shiphing, at New Castle. In recent years, however, the decrease in depth of water was plainly due to the erection of a coal-wharf 600 feet long, which projects far ont into the stream. The structure, by throwing the water front and part of the harbor into the deat angle of waves and currents, moved the low-water line, at an average, fifty feet farther from the town, and at one place, as much as two humbed and fifty feet, at the same time decreasing the depth at many points by five feet; and at some the consequent decrease in depth was found to be as much as eight feet. The effect of the coal-whaf was to disturb the equilibrium of the ebb and flood currents which traversed the marginal flate of this part of the Delaware River, but the wharf servedalso to catch all mud which the natural interchange of carrents set_in, motion.

Careful examination proved, however, that the wharf might have extended 400 feet from the shore, without producing the injury which was cansed by making it 690 feet long; and that the removal now of 290 feet from the outer end of the wharf would not, all of it, be of equal value in the restoration of the former good depth of water. A quay-line was therefore recommended restricting the extension of ordiuary wharves, and suggesting the removal of 160 feet of the onter extremity of the coal-wharf.

Shore-line survey of Schuylkill River, Pennsylvania.-After closing work for the season on the shores of Lake Clamplain, and before proceeding to Section VI, where his party is now engaged, $\Delta$ ssistant H. G. Ogden traced the shore-lines of the Schuylkill River from its mouth, at League Island, and upward as far as Fairmount, at Philadelphia. Mr. R. B. Palfrey aided in this survey. The streteh of river is represented on two sheets, which show an aggregate of nearly nine miles of wharf-line in a total sbore-line of about thirty-one miles. In general the levee-lines were taken as the waterlimits, Mr. Ogden observing that the grass at high tide was in water, at some places, several feet deep.

This work was closed on the 27 th of November. After sending the results to the Office, Assistant Ogden proceeded to Section VI. Mr. Palfrey, at the same time, joined a field party in Scetion IV.
H. Ex. 133-4

## SECTION III.

ATLANTIC COAST AND BAYS OF MARYLAND AND VIRGINIA, INOLUDING SEA-PORTS AND RIVERS. (Sketch No. 6.)

Triangulation, Hampton Roads, and vicinity, Virginia.-The position of the light-house on Thimble Shoals, inside of Chesapeake entrance, and of others built on the Elizabeth River subsequent to the original survey of the approaches to Norfolk, not having been determined, Assistant J. W. Donn was directed to connect the light-houses on Thimble Shoal, Craney Island, Lambert Puint, and that at the naval hospital with the triangulation executed in previous years. This duty was in progress at the date of my last annual report. The work consisted in measuring a number of preliminary triangles starting from bases supplied by the old triangulation.

Stations occupied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Angles weasured . . . . . . . 10
In the report of $A$ ssistant Donn it is mentioned that the points determined, in addition to the light-honses, were in such positions as to be of service to the hydrographic party of Acting Master Platt, U. S. N., who was then engaged in sounding the waters of Elizabeth River.

Shore-line survey of Elizabcth River, Virginia.-After determining points in the vicinity with the theodolite, Assistant Donn made a shore-line survey of the Clizabeth River and its principal branches. With a separate plane-table parts, the aid, Mr. F. C. Donu, mapped the eastern branch and Tanner's Creek, while work was in progress by the main party on the sonthern and western tributaries. Assistant Donn traced anew theentire water front of the cities of Norfolk and Portsmonth, and as the shore-line survey advanced, furnished points for the hydrography. The shoreline survey was completed by the 20 th of February, when the party took up work on the James River. This winter a party will be detailed to fill in the topographical details for the chart of Elizabeth River. Assistant Doun and his aid traced 138 miles of shore-line and mapped six square miles of area.

Hydrography of Elizabeth River, Tirginia.-For this work Acting Master Robert Platt, U. S. N., Assistant Coast Survey, with his party in the steamer Bibl, put up signals in September, 18i2, and determined positions sufticient for the adjustment of soundings mate in the following month. Subsequently other points and the entire shore-line were supplied by Assistant Donn, as aheady stated. Of two hydrographie sheets projected by Acting Master Platt to join at the maval hospital, one on a large scale represents Norfolk Harbor, including the nary-yard. The other sheet takes in the channel between the naval hospital and Sewall's Point. Additional sheets, filled in the course of the spring and summer, represent the branches and tributaries of Elizabeth River. The chart of soundings with accurate shore-line is now complete, leaving the topographical details adjacent to the water-line to be mapped by a party which is now on the way for that service.

Mr. J. B. Ada mson served as aid in the hydrographic party.
As stated in my report of last year this service was assigned to Acting Master Platt because the steamer Bibd was no longer arailable for duty in off-shore soundings. That officer has transferred his party to the steamer A. D. Bache, and will be engaged during the present winter in developing the luydrography of the Gulf coast in Section VI.

The statistics of work in the hydrography of Elizabeth River are:

Topography and hydrography of James River, Virginia.-In March, Assistant Donn resumed the detailed survey of the James River, with a party in the schooner Seoresby. Field-work was joined at Warwick River, (Sketch No. 6,) to which point the survey had been advanced in the previons year. After completing the plane-table and hydrographic details abont Warwick River, the work bas continued through Burwell's Bay aud up to Jamestown Island. All the tidal estuaries of the main river are included in this survey, as well as the usual margin of topography aud careful sonndings. In two seasons; the last closing at the end of May, Assistant Donn has advanced the final survey of the James River a distance of thirty-five miles above Newport News.
The following statistics pertain to the operations of the present season:
Miles of shore-line surveyed......................... . . . . . . . . . . . . . . . . . . . . . . . . 110

Miles of streams, not tidal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Area of topography (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Miles ran in sounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Angles measured................................................................................ 3, 250
Number of soundings ....................................................................... 23,143

Mr. Donn noticed that in consequence of some changes, probably unasual iu the condition of James River during winter, all the buoys from point of Shoal light-house to Swan Point had been forced out of their positions.

During the summer this party was engaged in Section 1 , and is now about to resume feldwork at Jamestown Island. Mr. F. C. Donn served as aid acceptably throughout the year.

Tidal observations.-At Fortress Monroe, the self-registering gauge, which had been removed from its old position, on account of the destruction of the wharf, and placed in a new building of the Quartermaster's Department, in accordance with GeneralBarry's orders, worked badly on account of the frequent stoppages of its pendulum-clock by the jars of steamers in striking the wharf. It was therefore deemed best to substitute a gange of the new form, furnished with duplicate cylinder, reading apparatus, \&e, and having a clock with a balance instead of pendulum. This has been working only a short time, but seems to promise well for preserving the series of observations at this important station.

Athantic Coast Pilot.-The work of compiling sailing-directions for the Atlantic coast, and their verification, was continued during the season by Assistant J. S. Bradford. In the schooner Palimurus he proceeded, in November, 1872, to examine Chesapeake Bay and its tributary rivers. The uuusual severity of the winter very mach retarded the progress of the work, the vessel being at one time held fast by ice in the harbor of Norfolk. Good progress was, however, made, and final sailing-directions have been prepared for the bay itself, and for entering the Elizabeth, Nansemond, James, York, Piankatank, Rappahannock, Potomac, West, South, Severu, and Magothy Rivers, on the west side of the bay. On the east side of the bay, the examinations include Tangier and Pocomoke Sounds, and the Annemessex, Manokin, Wicomico, Nanticoke, Little Choptank, Sassafras, and Elk Rivers. Sailing directions for all the channels of the Patapsco up to Baltimore were also prepared.

In addition to this work, Mr. Bralford made complete surress of Cherry-stone Inlet, and Ohd Plantation Creek, connecting the surrey of these streams with that of the adjacent shores of the bas, and developing important changes in the channels, cansed by the washing away of the Chesapeake shores in that vicinity. Work was closed for the season about the middle of June. On the 3d of July the Palinurus left Baltimore for service on the coast of Maine, mention of which has been made under the head of Section I.

Magnetic olservations.-The series of observations made yearly, since 1866, for determining the magnetic declination, dip, and horizontal intensity at the station on Capitol Hill, was repeated in June of the present year by Assistant Charles A. Schott, chief of the computing division in the Coast Survey Office. Some years having elapsed since local observations were discussed, Mr. Schott renewed investigation with a view of developing the secular changes by including data not attainable until now, and even now not as far adranced in the series as could be desired. The results show that the magnetic declination in the District of Columbia will probably continue to increase for some years. Local disturbances there are known to be considerable.

Reconnaissance for triangulation in Maryland, West Virginia, and Pennsylvania.-In pursuance of instructions, Assistant A. T. Mosman, after completing the astronomical work assigned to him in Section IV, proceeded to Winchester, Va., and resumed reconnaissance for the geodetic connection where it was suspended in November, 1872. He was employed on this duty during June and July, and from September 3 to Norember 8. The month of Angust was passed in Section VII in assisting in the remeasurement of the Atlanta Base, under the charge of Assistant C. O. Boutelle.

The reconnaissance extended over the country lying between Cumberland, Oakland, and

Cheat River on the sonth, and Bedford and Hillsborough, Pa., to the north. Toward the close of the season a partial recomaissance was made to the ridges, and facilities forcarrying on the work from Hillsborough to the Ohio River. The scheme so far laid out extends from Harper's Ferry to the vicinity of Waynesborough, Pa., and consists mainly of quadrilaterals, the lines varying in length from fifteen to sixty-five miles. It was intended that the seheme should follow the thirty-ninth parallel, but, althongh the mountain-ranges on that line are somewhat the highest, the examination of the previous season showed that the restriction was impracticable. In consequence the scheme was laid out between the thirty-ninth and fortieth parallels, and has been continued to the westward within those. limits. Assistant Mosman spent June and July in a thorough examination of the mountains between Cumberland, Md., and Bedford, Pa., on the east, and of those between Morgantown, in West Virginia, and Monnt Pleasant, Pa., on the west. This region is unfavorable for long lines of sight, the moun-tain-chains being only four or five miles apart, all, moreover, running nearly parallel in a northeast and southwest direction, with no prominent peaks, and all are beavily wooded on their summits.

On the return of Assistant Mosman from Georgia, the country, as far south as Oakland, was examined in the hope of finding longer lines"aud better-shaped triangles by bending the chain more to the southward. The tract around Oakland, and westward to the Cheat River, was found utterly impracticable for the triangulation, for although very high, Oakland being 2,700 feet above the sea, it is a glade country filled with mountains of moderate elevation, and all heavily wooded. No prominent peaks there afford a view, in any direction, of more than ten or fifteen miles.

A reconuaissance was also made of the Laurel Mountains, north of the Cheat River, the most westerly range of the Alleghanies, but with no success, except so far as to make available the gap where the Youghiogeny breaks through the range, for connecting Ragged Mountain with the hills in the valley of the Monongabela.

Between the western line of the scheme reported and the Ohio River the country is one vast plateau, in which the streams have cut deep channels, so that the range of hills are nearly of the same height, and consequently are rery unfavorable for long lines, in triangulation.

Assistant Mosman found the work very laborious. The only means of transportation was by wagon and horseback over a region which had few roads and most of them rough, and in which many of the summits were heavily wooded, so that, to avoid the expense of cutting lines of sight, the view and the approximate angles could only be obtained by climbing trees. His previous occupation will be stated! under the head of Section IV.

## SEOTION IV.

## ATLANTIC COAST AND SOUNLS OF NORTH CAROLINA, INCTIUDING SEAPORTS AND RIVERS. (SKETCTI No. 7.)

Latitude and magnetic elements.-At the end of March, Assistant A. T. Mosman commenced a series of observations for latitude, at a station near the north end of Knott's Islaud, Fa. Owing to the prevalence of clondy weather, the series desired was not completed until the 21 st of April, when the party returned to Norfolk and was transferred to the mountain region for reconnaissance, as stated under the head of Section III.

The maguetic elements were determined at Knott's Island while observations for latitude were in progress. The records and field computations pertaining to this work were received at the office early in May. Ten nights were employed for the determination of latitude, and the nsual number in ascertaining the magnetic declination, dip, and intensity. Similar observations were recorded by Mr. Mosman at another station in this section, as will be stated presently, and also at a station in Section $V$.

Triangulation, Currituck Sound, Virginia and North Carolina.-In view of the importance of the connection between the primary triangulation of the Chesapeake Bay and the Bodies' 1sland Base, coustituting a part of the arc of the meridian from Principio to Ocracoke light-house, it was deemed advisable to continue the scheme of verification commenced by Assistant Richard D. Cutts in 1869 and described in my report for that year. Accordingly, instructions were issued to Assistant $R$. E. Halter to take up the work where it was left off and to obtain another comparison of distance and direction farther to the southward.

Assistant Halter reached Norfolk and organized his party early in Jannary, but owing to ice and bad weather did not get into camp and fairly ready for work until the latter part of the month. Starting from the triangle side, Coffee Point-Three Sisters, shown on Sketch No. 9, the triangulation was extended down the sound, by a series of quadrilaterals, to Thoronghfare Station, where second junction was effected with the old work. The results of the comparisons were entirely satis. factors.

The progress of the work was greatly interfered with, thronghont February, by the unusually cold and stormy character of the weather. The operation was completed and the party broken up, by the middle of July. The following are the statistics of the work:

Signals exẹcted ................................................................................. 14
Stations occupied...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Angular measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 97s
Assistant Halter was aided in the field br Mr. C. L. Gardner, who erected nearly all the signals and duplicated the records.

During the winter and ensuing spring, this party will be engaged on the shores of Pamplico Sound.

Hatteras Shoals.-On a shoal spot, the existence of which was generally unknown until it was developed by Acting Master Robert Platt, Assistant Coast Survey, in his thorough survey of the dangers to navigation in passing Cape Hatteras, the steamship General Sedgwick struck, in March last, while on a voyage to New Orleans. The official notice of the accident was accompanied witi notes of the estimated position of the ressel, consistent with the supposition that the lump in question had not been traversed by either of the many sounding lines run by the partr of Acting Master Platt. In consequ n the steamer Endeavor was temporarily assigned to his command, and, with that ressel, in Mar, he subjected his previons soundings to the severest test in the reported vicinity of the shoal. An observer with a theodolite was sent to Cape Hatteras light-house, and flags were placed at the outer slongh buoys, both of which, having somewhat shifted, were carefully determined in position. The Endeacor, then moving into the supposed position of the shoal hump on which the General Sedgoick had struck, found eleven and twelve fathoms. At the same time an observer, stationed by Acting Master Platt at the mast-head, had in view that small shoal and other spots of broken ground known by developments in the previous surver. The result of this examination is gratifying, as it fully confirms the confidence felt in accepting as final the chart completed last year by Acting Master Platt to show the dangers in the vicinity of the Hatteras Shoals.

Latitude.-Observations for determining latitude were repeated by Assistant Mosman at two stations on Portsmouth Island, N. C., between the middle of February and the middle of Mareh. The stations are distant from each other rather more than half a mile, and both are connected with the base line of the triangulation of Pamplico Sound. Eight nights were employed by the party at one station and six nights at the other, with the zenith telescope No. 2. The micrometer value was carefully determined in the usual way.

Mr. Mosman had been previously engaged in astronomical duty, as will be stated under the head of Section 7 .

Triangulation of Pamplico Sound, North Caroline.--The triangulation of Pamplico Sound hasbeen continued without intermission since the date of my last annual report. In pursuance of instructions, Assistant C. A. Fairfield organized his party early in December, 1872, and remained in the field during the summer and fall months. He is still at work, and will prosecute the triangulation during the coming winter and spring. This conrse was deemed advisable in order to a void loss by using, as soon as possible after their construction, the high tripods and siguals crected for observing across the sound. With a single exception, the party has so far escaped sickness.

The progress of the work was considerably delayed by the difficulty in obtaining lumber, and the coal required for the steamer Hitcheock, which is in' service for the transportation and accommodation of the party, and by the long distances which it was necessary to run for coal and provisions.

Four sets of primary tripods and scaffolds rere erected, one at each of the stations of Hog

Island, Egg Shoal, Gulf Island, and Long Shoal Point, ranging in height from 51 to 50 feet. On each of these tripods high poles were set up and secared, to be observed upon as signals. The tiu cone on the top of the pole at Long Shoal Point was 111 feet above the ground. At Hog Island the pole was a hollow tin tube, secured by three sets of wire gays. This stood until June 17, wheu a very violent squall crushed the tube and the pole fell. Iron pipe was thereafter substituted for the tin tubes, and so far with entire success. The structures at the stations are beliered to be now so firmly erected as to be able to withstand the most violent gales to which the sound is subject. It will be readily understood that on the character and permanency of the high tripods, scaffolds and signals much depends in the triangulation of so wide an expanse of water as Pamplico Sound, the shores of which are rarely more than two or three feet above high-water mark. Several of the triangle sides exceed twenty miles in length.

The observations at the primary stations, Swan Quarter, Royal Shoal, and Ocracole light-house, have been completed, and those required at Egg Shoal nearly so.

The secondary triangulation as far eastward as Bluff Point has been fimished. In the execution of this work tripods and scaffolds were erected to enable the observer to overlook the high grass of the marshes over which the lines passed.

Assistant Fairfield mentions with commendation the services rendered by his two aids, Messrs. B. A. Colonna and W. B. Fairfield. The former erected all the tripods, and during the temporary absence of Mr. Fairfield in June, occupied Bluff Point and made part of the observations needed at Sisan Quarter aud Royal Shoal Stations. The statistics for the year are as follows:


Topography of the Pungo River, North Carolina.—On the 12th of December, 1872, Assistant F. W. Dorr again took charge of the Hetzel, a worn-out steamer, which, as a hulk, has been some time used for quarters in the field operations of this section. His plaue-table party was organized at Washington, N. C., and started for Pungo River, in the old vessel, on the 6th of January, the excessive cold of the preceding month having frozen the Pamplico from shore to shore. Head winds and storms kept the Hetzel a week on her short passage, but by the middle of January the survej was resnmed in the upper part of Pungo River. Assistant Dorr had previonsly mapped the shores of the river as high up as the mouth of Pungo Creek and Duran's Point. From those points, in going northward, he traced the shore-lines of the large, branching tributaries known as Pingo Creek and Pantego Creek, and many smaller streams. The numerous roads which traverse the vicinity, and all natural features near the shores of the Pungo, were included in the survey. A summary of statistics on the plane table sheet shows:

```
Miles of shore-line surveyed... 13s
Miles of streams 209
Miles of roads 202
Area, including river (square miles).. . . . 110
```

Assistant Dorr was efficiently aided in this work by Mr. W. E. McClintock. Under the head of Section I, mention has been made of the subsequeat operations of the party.

The survey of the Pango River was completed at the end of April. Early in May the revenuecutter Stevens, Capt. C. A. Abbey, to whom the survey is indebted for many acts of courtesy and assistance, took the Hetzel in tow, and, as desired, left the bulk at Edenton, where it will be available for the use of a party in the surrey of Chowan River during the present winter. Before lear. ing the section in May, Mr. Dorr made a reconnaissance of the lower part of that river in order to facilitate the prospective operations.

Hylrography of Pamplico Sound, North Carolina.-With the steamer Arago, the party of Assistant F. F. Nes started on the 7 th of December, 1872, to resume the hydrography of Pamplico Sound, bat,
in passing from Baltimore southward, by the line of inland navigation, the ressel was frozen up in Currituck Sound. Continued severity of weather in Jannary opposel the expected progress, but signals were set up and determined in position, and soundings were resumed by the mindle of that month. The work done is contained on three hydrographic sheets, one of which develops the waters of Croatan Scund as far up as Croatan Light. Another shows the bydrography of the lower part of Roanoke Sound. On the third sheet the hydrography of Pamplico Sound was continued from Long Shoal Light, northward, to a junction with soundings made aud plotted on the two preceding sheets

In reference to Croatan Sound, Assistant Nes reports: "I found that off"Pork Point there was a hulk near the channel, in nine feet water, with less than three feet on the hulk; and that others, seven in all, filled with stone and sunk during the war, remain as they were then placed. On these the depth of water is now from two and a half to seven feet. The positions of all were accarately determined, and soundings on and around them were carefully made and recorded."

Finding noticeable changes in the vicinity of the Roanoke Marshes, Mr. Nes erected signals and careftrly traced the shore-lines. Jackson Island, formerly known, has been entirely wastred away.

Subassistant C. P. Dillaway was attached to this party, and Mr. E. B. Pleasant served as aid.
All the buors, twelve in number, within the working limits, were determinedin position and marked on the chart. The tides were recorded at three stations between the midde of becember and the middle of May. Other statistics of the work include:

Miles run in sounding	829
Angles measured.	5, 304
Number of soumdings	46, 785

Assistant Nes was employed in Section II, during the summer, bat is again engaged in pros ecating the lyydrography of Pamplico Sound.

Topograplyy of Core Sound, Forth Carolina.-For the detailed survey of the shores of Core Sound, Assistant C. T. Iardella took the field on the 13th of January. After identifying two points which had been determined in the triangulation of the lower part of Pamplico Sound, Mr. Iardella commenced operations at Cedar Island, (Sketch No. 7,) and extended the triangulation sonthward and west. ward throngl Core Sonnd, as far as Bell's Point, on the lower side of Jarrett's Bay. In this preliminary work, eleven stations were occupied with the theodolite. At intervals, as changes of weather permitten, during a very inclement season, the phane-table survey was prosecuted within the limits of the triangulation. This work includes both shores of Core Sonwd, and on the inner side defines the entrances to Thoroughfare Bay, Nelson's Bay, Brett's Bay, and Jarrett's Bay. The plane-table sheet joins with one which was also filled this season by Assistant C. M. Bache, and to which further reference will be made presently. Assistant Iardella was aided by Mr. W. C. Hodg. kins. His party used the schooner Dana.

At Cedar Inlet, about two miles from the anchorage of the Dana, the Italian barque Loren*o Valerio went ashore in a heavy northeast storm, on the 30 th of April. Mr. Iardella immediately started for the place and found that the captain and crew were in imminent peril. The sailing. master of the Dana, Mr. John F. Abbott, at the risk of his own life, boarded the Italian vessel from shore in a small boat, though it was sevcral times upset in passing through the breakers, and, after laboring several hours, brought ashore a raft with water, provisions, and sails for the shelter of the captain and crew, who were safely landed toward evening. Next day, by direction of Assistant Iardella, the sailing-master took the hoat of the Dana and landed the captain and his mate at Beaufort, where arrangements were made for floating the ressel. The statistics of work done by this party on the shores of Core Sound are:

$$
\begin{aligned}
& \text { Miles of shore-line surveyed................................................................. . . . . } 60 \\
& \text { Miles of streams ................................................................................. } 20 \\
& \text { Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 41 \\
& \text { Area (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4 \text {. }
\end{aligned}
$$

The working-season at the north was passed by Mr. Iardella in service which has been noticed under the head of Section I. During the winter he will be engaged in filling in the topography of the shores of Pamplico Sound, in Section IV.

From the southern limits reached by Mr. Iardella, the survey of Core Sound was extended toward Beaufort, by Assistant C. M. Bache, the topography being carefully joined with the work of this season as well as with the previousisurvey of Beaufort Harbor. Subassistants H. M. De Wees and H. W. Bache were attached to this party, and assisted also in its operations, later in the year, in Section II. The plane-table survey of Core_Soundiwas_closed on the elst of June. The following is a synopsis of statistics from the report of Assistant_Bache:


The party of Assistant Bache is now engaged in a detailed plane table survey in Section ILI,

## SECTION V.

ATLANTIC COAST AND SEA-WATER CHANNELS OF SOUTH CAROLINA AND GEORGLA, INOLUDING SOLNDS, HARBORS, AND RIVERS. (SкетCh No. \&.)

Hydrography of Cape Fear River, North Curolina.-In continuation of his previous work at the Cape Fear entrauces, Subassistant W. I. Vinal was directed, in November, 1872 , to organize a party for service in the schooner Bailey, and to develop the channels of Cape Fear River as far up as Wilmington. Signals were put up in the latter part of the following month, but the unusual severity of the weather during last winter much retarded the progress of operations. The work done at farorable intervals, closing at the end of May, was returned to the Office on five sheets, which represent, besides the depths of water in the course of the river, the numerous artificial obstructions, such as ballastrocks, rows of heavy piling bare only at low water, railroad iron, and other impediments intended to obstruct the ordinary channel duriug the war. Advantage was taken by Mr. Vinal of the presence of these obstacles. Signals were set on them for the measurement of angles needful in plotting the soundiugs.

Toward the close of the working season in the section a resurvey was made of the Scward channel, showing that its direction had changed considerably since April, 1872. At the request of the officers of the Engineer Corps United States Army, engaged in constructions for maintaining the chamnels near Cape Fear, Subassistant Vinal marked the Searard chaunel by four bnoys, to facilitate the investigation of future changes in that passage.

Captain James Carson, of the revenue-cutter Seward, kindly afforded aid to further the operations of the surveying party in the schooner Bailey. Foar tidal stations were occupied while the hydrography was in progress. The general statistics of work done this season in the Cape Fear River are:

$$
\begin{aligned}
& \text { Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 362 \\
& \text { Angles measured..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . } 3,829 \\
& \text { Number of sonndings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, } 470
\end{aligned}
$$

Under Section II, mention has been made of work prosecuted by Subassistant Viaal during the suminer, in which, as also in the survey of Cape Fear River, he was aided by Mr. J. J. Evans. The party is now engaged in soundings near the bar of Beaufort Harbor, North Carolina.

Coast measurement, triangulation, and topography below Little River, South Carolina.-The measurement and survey of the interval on the coast of South Carolina, between Winyah Bay and Little River, have been completed by Subassistant O. H. Tittmann. This season the rork was resumed at Little River in January, and was carried southward and westward to meet the survey of 1872 , which started from Winyah Bay and followed the coast in a northeasterly direction. The junction was effected toward the close of April.

A base was measured on the west side of Little River, and from this the triangulation was extended across the inlet, and so far to the eastward as was necessary to adjust the survey of Mr. Tittmann to that execated in 1860 ; and, also, to the westward as far as practicable. For the purpose of verifying the direction of the lines, an astronomical azimuth was observed at Battery station, and that point was connected with the triangulation.

At the terminal point of the last triangle to the westward the direct measurement of the coast
was commenced, and was carried along the beach by means of a succession of lines and transfers of azimuth to the station where the operation was suspended in the previons year.

The measurement was made with a Stackpole tape, 15 meters in length, haviug at the forward end a handle attached to a steel spring, by means of which a uniform strain was applied to the tape. It was adjusted on tripods, and its temperature, inclination, and alignment were secured by a thermometer, a Locke hand-level, and a Casella magnetic theodolite. With important improvements, the apparatus was similar to that described in the annual report of 1869 . A speed of half a mile per hour was readily maintained while the measurement was in progress. The details of this work are:

Stations occupied ............................................................... 24

Miles of beach measurement ............................... ......................... 15
At the same time that the operations just referred to were going on, a topographical surrey of the coast was made, including Little River and the different inlets, and of the country and roads immediately back from the line of coast. During the progress of the surver, the position of certain marks and rains, said to be on the boundary line between North and South Carolina,

Yoformpre Fiout
12956

Miles of shore-line traced, including rivers and creeks ............................... 130
Miles of roads.
48
Area surveyed (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Messrs. D. B. Wainwright and E. H. Wyvill served as aids, and the former made a considerable part of the topographical survey.

After closing this work, Subassistant Tittmann was detailed for service on the western coast, operations on which will be described under the head of Section $X$.

Topography and hydrography of North Sentee and South Sentee River, South Carolina.—With his party, in the schooner Castell, Assistant W. II. Dennis commenced the survey of North Santee River, in the latter part of December, 1879. The bar has only 62 fect on it at high water, and could be crossed by the vessel only under the most favorable circumstances.

After joining work with a sheet filled in the previous season, Mr. Demis surveyed the course of the river to a distance of eleven miles, and mapped the topographical details between the main branches and north and south of the shore-lines, including also the lower part of South Island. The main road from Charleston to Georgetown, S. C., was taken as the western boundary of the survey. Subsequently, the South Santee and its branches were included within the limits of work. All the water-courses adjacent to the completed topography were carefully sounded. It is noticed in the field-report that some of the numerous rice-fields, which were of necessity traversed by the plane table party, having been uncultivated for a few years, are now covered by a growth of vines and canes, so as to be almost impassable. The sonndiugs made, in the aggregate nyward of thirtytwo thousand, were checked by nearly a thousaud measured angles. Mr. Bryant Godwin joined the party early in February, and aided in the plane-table work and hydrography until the close of work, on the 11th of May, when the ressel was sent to Baltimore. The topographical statistics are:

Miles of shore-line traced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Miles of roads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Area of topography (square miles)...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Field-work and hydrography will be continued daring the winter in this section, by Assistant Dennis. The operations of his party during the summer have been mentioned under the head of Section I.

Topography of Sea 1slands, South Carolina.-The detailed plane table survey of the sea islands adjacent to the mouth of Coosaw River, at the head of Saint Helena, Sound, was resumed by Assistant Charles Hosmer, at the end of November, 1872 , with a party in the schooner G. M. Bache. Under favoring conditions of weather, the service assigned to the party in this section was completed by the middle of April. The operations included also the sounding of the water-passages within H. Ex. $133-5$
the topographical limits. Two plane-table sheets, returned to the Office by Assistant Hosmer from the field, show the hydrographic development of Ashepoo River and its branches, the lower part of the Combahee, seven miles of the course of the Coosaw, and parts of all the smaller streams that enter at the head of Saint Helena Sound. Assistant Hosmer was aided by Mr. R. B. Palfrey. The statistics of work are:

$$
\text { Miles of shore-line of rivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 119
$$

Miles of creeks and marsh outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.
Miles of roads....................................................................................... . . . . 75
Area (square miles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Upwards of twelve thousand soundings were made and recorded for developing the channels through the varions water-courses that came within the limits of field-work.

Assistant Hosmer is now prosecuting a detailed survey uear Savannab, Ga. Daring the summer he was engaged in service, of which mention was made under the head of Section II.

Latitude.-Assistant A. T. Mosman reached this section at the end of December, 1872, and without delay resumed observations, in continuation of the series recorded last year, for the determination of latitude at Butler's Station, on Saint Simon's Island, Georgia. Two instruments were employed, zenith telescope No. 2, and the meridian telescope No. 7 , and with these an aggregate of ninety results were found on thirteen nights. Time observations were recorded during nine nights, and the usual sets were registered for finding the micrometer value. Mr. Mosman completed observations at this station on the 27 th of January. His subsequent occupation has been already mentioned. In August he assisted in the measurement of the primary base-line near Atlanta, Ga, mention of which will be fonnd under Section VIl.

## SECTION VI.

atlantic and gdlf coast of the florida peninstla, including repfe and keys, and the: SEA-PORTS AND RIVERS. (sietcin No. 9.)

Triongulation, Atlantic Coost of Florila.-The triangulation along the Atlantic coast of Florida was continued during the past season under the direction of Assistant A. M. Harrison, aud was extended from the headmaters of the Matanzas River southward, to include Halifax River, for a distance of sisteen miles. That points required for the topographical survey might be determined before the arrival of the plane-table party, Subassistant J. N. McClintock was sent early in November, with directions to take up the triangulation where it was left off at the end of the previons season, and continue it to the southward. Mr. Mcdintock began field-work December 1st, and after a personal interview with Mr. Harrison, who reached Saint Angustine on the 5th of Janary, the triangulation was continued southward until the 26 th of March. During the latter half of the season Mr. McClintock assisted Mr. Harrison in the detailed work, which was prosecuted with the sloop Steadfast, the vessel bailt for the accommodation of the party operating in this section.

The progress of the work during December and January was somewhat delayed by the difficulty of obtaining transportation for camp-fixtures and lumber, and especially by the necessity of opening most of the lines of the triangulation observed to the northward of Halifax River. The denselywooded section known as the "Barrier" is now passed, and greater progress will be made hereafter in advancing the survey toward Cape Canaveral. The statistics of the work are as follows:

Stations occupied .......................................................................... 18 . 18
Siguals observed upon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Observations with theodolite.... ............................................................ 3, 930
Subassistant McClintock was subsequently engaged in Sections I and II, and is now under instractions for daty in Section IX.

Coast topography between Mfatanzas Inlet and Halifax River, Florida.-In the middle of the Barrier, which has been mentioned in preceding reports, Assistant Harrison resumed the detailed survey of the Atlantic coast of Florida this season, and going southward extended the work sixteen miles. The resulting sheet shows the upper part of Halifax River and its tributaries, and all the water-conses, as well as the road, which runs evenly within three miles of the Atlantic
coast in that vicinity. The stretch thus developed is known as Graham's swamp, and is traversed by Bulow's Creek and Smith's Creek, both of which are northern tributaries of Halifax River. Part of Tomoka Creek, another tributary, coming from the southrard and cmptying into the river near its head, is also included in the survey of this year.

Mr. Bion Bradbury served efficiently as aid in the plane-table party, and, under the personal supervision of Assistant Harrison, mapped most of the ground included in the operations of this season. The statistics of topography are:

$$
\begin{aligned}
& \text { Miles of shore-line surveyed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \text {. } 1 \text {. } \\
& \text { Miles of marsh, creeks, and ponds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 183 \\
& \text { Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 24 \\
& \text { Area (square miles) ........................................................................ } 5 \operatorname{lit}_{\frac{1}{1}}
\end{aligned}
$$

Under the head of Section II, mention has been made of the occupation of the party of Assist. ant Harrison during the summer. Points have been determined along the Halifax River for extending the survey in this section to include Mosquito Inlet, and Mr. Harrison is now preparing to resume topographical service in that quarter. Before learing the section in May last, he established two tidal stations, and erected signals along the shores of Malifax River, the hydrography of which will be taken up early in the course of the coming winter.

Hydrography, Florida Kecf.-The bydrographic party of Commander J. A. Howell, United States Navy, left New York in the steamer Bache on the 1st of December, 18\%2, and, after a stormy passage, reached Tortugas on the 2d of January, having touched, in the interval, at Norfolk and at Key West. The following mouth was employed in erecting and determining the position of signals ou Bird Key, Garden Kes, and Long Ker, and in the measurement of a base-line for hydrographic purposes on Loggerhead KeJ. As weather permitted, the adjacent liydrography advanced, and was ploted by Lieuteuant Jacques, United States Nays, to whose personal care in regard to details this mention is due.

From the 20 th of April until the 121 h of May, soundings were extenden in the vicinity of the Tortugas. The vessel sailed at the last-mentioned date for New York, and was subsequently in hydrographic service, as stated under Section I.

For soundings along the reef, abont 1,500 angles were measured, and 11,169 casts of the lead were recorded.

On the passage northward from this section, Commander Howell noticed a rery strong current in the Gulf Stream. When further means are provided, special observations will be made by the same officer in regard to that important feature of the Atlantic coast approaches.

Triangulation, topography, and hydrography, western coast of Florida.-The work of coutinuing the survey, in all its branches, from Clear Water Harbor to Tampa Bay, was placed under the charge of Assistant Herbert C. Ogden, and, in view of the different classes of work to be executed, Messrs. Andrew Braid and S. N. Ogden were assigued to him as aids, and the schooners Speetwell and Agassiz for the use and accommodation of the party.

The Speedwell, from Baltimore, reached Cedar Keys on the $2 d$ of January; and the Agassiz, from Mobile, after stopping at Appalachicola for the base-apparatus, arrived at Tampa Bay on the 29th of December. The Agassiz, soon after learing Appalachicola, encountered a succession of severe gales, during which the vessel sprung a leak. At one time the water was over her cabinfloor, and, being an old ressel, she was found, on her arrival, to be in an unfit condition to leave the bay.

The work of the season was commenced by the measurement of a base on the north end of Sand Key, Clear Water Harbor, by the determination of an astronomical azimuth and latitude at a station of the first quadrilateral from the base, situated on the east side of the harbor, and by the connection of the base with the triangulation of 1861. The base, consisting of two lines slightly inclined, was two miles in length, and was measured with the secondary apparatus. The astronomical observations were made by Mr. Edwin Smith, aid, who had joined Assistant Ogden at Cedar Keys. Mr. Smith redetermined the direction and length of the sides of the most soathern triangle of 1861, and strengthened the connection by angular measurements on Umbrella Pine, the position of which is shown on Sketch No. 10.

When the work required to the northward of the base was complete, the triangulation was extended to the southward, down Clear Water Harbor; throngh Indian Pass, where the triangles were necessarily small ; thence down Boca Ceiga Bay, in which the scheme was gradually onlarged; and, finally, across the entrance of Tampa Bay to Anna Maria Key, in Sarasota Bay, terminating at a site selected for a base of verification. The crossing of the bay was effected by two quadrilaterals, in which the longest side was fourteen miles in length, and with eastern points well up the bay. For the rerification of the work seven lines, varying in length from two and a half to nine miles, were carried through the scheme, independent of the general triangulation.

The season, which was made a most successful one, notwithstanding the delay caused by the non-arrival of the Speedwell as early as expected, closed on the 16 th of May. The triangulation, of which the following are statistics, covers the line of coast Iying between Hampa Entrance and Saint Joseph's Bay, (south:)
Statious occupied ..... 56
Signals observed upon ..... 82
Main angles measured ..... 297
Subsidiary angles measured ..... 101
Number of observations ..... 8,274

The topographical survey was kept up with the triangulation, and embraces the coast from Olear Water Harbor to Tampa Bay and the islands lying off the entrance of the latter. The mainland, on Clear Water Harbor, is high, reaching 20 feet, a little back in the woods, but gradually recedes, merging into marsh, and, abreast of Indian Pass, it entirely disappears. The shores of Boca Ceiga Bay are low and generally dry, with little marsh. In this quarter the coast is covered with a growth of pines, interspersed here and there with a few round leaf and live-oak trees. The islauds are all of the same general character, low and sandy, and free from dunes. Their interior sides are bordered with mangrove, and many of the smaller islands are snbmerged at high tides. Good fresh water was very scarce, and neither the water taken by the party from the wells nor from the few streams which were found, wonld keep jits quality longer than a few days. The statistics of the topography are :
Miles of shore-line traced ..... 221
Miles of marsh-line traced ..... 13
Miles of creeks and ponds ..... $27 \frac{1}{2}$
Miles of road ..... c9

In consequence of the condition of the schooner Agassiz, no attempt was made to bring the vessel up to the main party at Sand Key. Mr. Andrew Braid, who had charge of the schooner, was, therefore, directed to measure a preliminary base in the vicinity of where he then was; to erect signals and make a plane-table triangulation, and upon that sheet to develop the topography and hydrography. The signals were afterward determined by triangulation, and the work executed by Mr. Braid was thereby checked and found to be satisfactory.

The hydrography extends from the north point of the entrance to Tampa Bay, to Big Pass, and includes the six inlets on the coast, and the passage from Boca Ceiga into Tampa Bay, A channel of about 5 feet water was found through Clear Water Harbor and Boca Ceiga Bay, but the narrow strait connecting the two was impassable for even a small boat, except at very high tides. About 7 or $7 \frac{1}{2}$ feet can be carried over the bars of all the inlets, except Indian Pass, which is almost dry. Extensive flats make out from the shores of the inclosed basins, stretching sometimes nearly all the way across, and rendering the channels tortuons and difficult of navigation. The details of hydrography are:

```
Miles run in sounding569
```

Sextant angles measured. ..... 4, 009
Oasts of the lead ..... 55, 187

Messrs. S. N. Ogden and W. S. Bond served efficiently as aids during the season. Assistant Ogden occupied the summer in prosecuting field-work, which has been mentioned under the head
of Section II. He is now about to resume the survey of Tampa Bay, for the bydrography of which Subassistant Braid has been detailed with a separate party.

Tidal observations.-A self-registering gange furnished from the Coast Survey Office has been running well for nearly a year at St. Thomas, West Iudies, in the care of Colonel Thiilstruip of the Royal Danisin engineers, under arrangements made with the governor of the island. This series of observations is expected to throw light on the formation and progress of tidal waves and on their cbanges of form.

SECTION VIJ.

GULF COAST, AND THE SOUNDS OF WESTERN FLORIDA, INCLUDING FORTS AND RIVERS. (SkETCH No. 10.)

Triangulation eastcard of Appalachee Bay, Florida. -The triangulation of the comparatively unknown coast from Saint Mark's toward Cedar Keys was assigned to Subassistant F. W. Perkins, with instructions to strengthen the triangulation connecting Saint George's Sound with Appalachee Bay before taking up field-work at Saint Mark's.

Mr. Perkins left Appalachicola in the schooner Torrey at the end of December, $18 \pi \%$, and reached Alligator Harbor, Saint James Island, on the 3d of January. After a diligent search one point only, Wells, of the former triangulation, could be identified, but as others were required, a rough triangnlation was made, in which the line from $W$ clls to a point assumed as one of the stations previonsly occupied was used as a base. By this method Franklin Point was recovered, and Mr. Perkins found that the granite block marking the station had not been disturbed. Search was continued in this vicinity, but proring unsuccessful, the Torrey was taken around into Ocklockony Bay, on the north side of the island, and on the day of the arrival of the party, January 16, the two stations, Chaires and Piccoline Bayou, were found. With these as a base, the line from Chaires to Lansing was redetermined, and from each of the two last stations a line six miles in length was opened through the woods and across the islaud to Frauklin Station, effecting the desired junction by a single well-shaped triangle. To enable the observer to see ocer the ridges of high ground in the interior, tripods and scaffolds, ranging in height from 18 to 29 feet, were erected at the three principal stations. While occupging Frauklin Point the angle between Lansing and Wells Stations was measured in order to transfer the azimuth to the other side of the island. The improvement consisted in substituting a direct connection across the island in place of the small triangulation following around its shores. The statistics of the work are as follows :

Tripod signals erected................................................................................ 6
Stations ncenpied .................................................................................... 5
Angles measured ............................................................................... . . . 16
Angular measurements ..................................................................... 864
Immediately after completing the work just described, Mr. Perkins proceeded with his party to the mouth of the Ocilla River, to continue the triaugulation from Saint Mark's toward Cedar Keys. Two points about midway between Saint Mark's and the Ocilla River were recovered, and from this base the triangulation was extended down the coast to Warrior River, a distance of fifteen miles.

The following extracts from the report of Mr. Perkins well describe the character of this part of the coast of Florida, and the difficulties to be encountered in the prosecution of the work: "This marsh which forms the coast-line extends back to the woods, a distance of from one to two miles. The coral underlies this at a depth of from two to eight feet, occasionally cropping out and giving a foothold for the cabbage-palmetto and red-cedar which at those places form hummocks of a few rods in extent."
"Numerous creeks and rivers traverse this marsh in all directions, their beds and often their' banks being formed of the solid coral-rock. Some of the rivers are quite deep, bnt the majority of the creeks are merely the natural surface-drains which carry off the water left upon the marshes by each high tide."
"Upon ascending the larger rivers four or five miles, I found their beds olstructed by large bowlders of coral-rock, the shores low and swampy, but with a rapid current. A little farther on, the banks were high, firm land, and the current in the contracted channels more uniform."
"There are no inhabitants near the coast, and but very few upon the high land visited in the interior."
"A near approach to the coast is quite difficult and attended with more or less danger. The shoal water extends from one to three miles from the shore, and ledges or reefs of coral-rock, rising abruptly from a very level bottom, make the greatest care necessary in coasting within sight of land."
"The bottom is of fossil-coral generally covered with a deposit of mud from one to three feet indepth."
"Shoals, impassable for boats, except at high water, extend from half a mile to a mile and a half from the shore, and these, together with the distance at which it is necessary to anchor the ressel, make landing with lumber and for observations very difficult, and cause much delay in the prosecution of the work."
"As the condition of the atmosphere over the marsh was generally unfavorable for observations, and the difficulty of reaching the wood-line very great, signals were erected upon the offlying shoals, and the points along the shore-line were occupied with the theodolite."
"This left one.concluded angle in each triangle, but the better seeing over the water and the greater rapidity with which the work was carried forward, more than counterbalanced the possible error so introduced."
"The legs of the water-signals were sharpened and driven down to the bedrock and then braced together. No difficulty was found in making them stand during the time required to complete the measurements, but the summer gales will probably destroy most of them."
"As all the points that it was possible to occupy were in a nearly straight line, it became necessary to determine such third-order points as were required by the three-point problem."

In reference to the possible error dependent upon concluded angles, it should be mentioned that the work was checked by the transfer of the azimuth from the fartlest risible station back to the most distant visible point forward, the line of verification passing generally through four triangles. The details of this work are:

```
Signals erected
24
```

Stations occupied...................................................................
Points determined. . . . . . . . . . . . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Number of observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 , 610
Wuring the summer Sub-Assistant Perkins was engaged in Section II. He is now about to resume the coast-development between Cedar Keys and Appalachee Bay.

Hydrography near Saint George's Sound, Florida.-For developing the hydrography of the Gulf of Mexico in the approaches to this sound, Assistant Horace Anderson established a tide-gange near Saint George's light-house, in the middle of January, and during four months continued the record of high and low waters. Soundings, meanwhile, at all favorable intervals, were extended into the Gulf, the lines run being geuerally more than ten miles in length. These, crossed by others in a northeast direction, were properly joined with the work of last year. The space sonnded defines the approaches to New Inlet, three miles to the south of which a shoal was developed having only nine feet of water. At all other parts of the working ground the water was found to deepen uniformly in going broad off into the Gulf. Assistant Anderson used the schooner Silliman for service in this section, and also in Section I, where his party was employed during the summer. He was aided in both seasons of work by Messrs. F. IL. North and E. H. King. The following is a synopsis of the Gulf hydrography:

Assistant Anderson is now on his way to resume work in the Gulf of Mexico near Cape San Blas.

Atlanta base-line and triangulation, (Sketch No.11.)-The site of the primary base near Atlanta,

Ga., was chosen as the natural terminus of a chain of large triangles, some of which have been already determined by occupying stations in the mountain region of the middle of Virginia. Assistant C. O. Boutelle determined the length of the base, toward the end of last year, by means of the primary base apparatus, but, in view of the importance of the site, a remeasurement of the line in hot summer weather was deemed adrisable to insure accuracy, as upou the reracity of this line must depend, also, the correctness of positions chosen for the geodetic connection through this entire region.

Having provided all suitable means for comparing the standard bar with those used in the tubes of the base apparatus, Mr. Boutelle commenced the measurement of the line at the end of July. Assistant A. T. Mosman had then joined his party and assisted in the operation, which, as previously arranged, was prosecuted six hours daily in the field at an average temperature of upward of 900 Fahrenheit. At marked points, where the two measurements shofed any appreciable, difference, elaborate tests were made to determine whether or not the compensation provided for in the measuring-bars was effective beyoud a limited range above and below arerage temperature. Many observations, recorded for this purpose, will be fully discossed hereafter. The remeasurement of the line was completed on the 21 st of August, when Mr. Mosman left the party and engaged in service to which he had been previously assigned in Section III. Geodetic operations in the vicinity of the base were perfected by the careful selection of outlying statious. These, as opportunity offered, were occupied with the theodolite, and brought by augular measurements into connection with the ends of the line. Extended reconnaissance has already determined the proper conrses for two series of large triangles, one going westward and the other northward from the Atlanta base. The height of the site of the line abore the level of the Gulf of Mexico will be determined by Assistant Boutelle during the present winter. He has been aided in the field by Messrs. A. H. Scott, H. W. Bhar, and Habersham Barnwell.

Five quadrilaterals, including in all cleren triangles, were closed at Stone Mountain on the 20 th of the present month, December. The measurement of horizontal angles at that station required only nine days, the facorable condition of the atmosphere being almost umprecedented in the expericace of observers engaged in the primary triangulation. Two months were occupied in securing the same number of angular measurements at the preceding station.

Triangulation, Georgia.-This work, which had been assigned to Assistant F. I'. Webber, was commencel in February. During the preceding months of November and December, and part of January, he was engaged in observations for magnetic declination, horizontal intensity, and dip, at a station near the Atlanta base, and in assisting in the first measnrement of that base under the direction of Assistant Bontelle. The latter part of January and the following month were occupied in the erection of primary siguals on Sawnee Mountain and Kenesaw Mountain, and in making anew set of magnetic observations. March and April were spent in reconnaissance with Assistant Sullivan, though the countrylying to the westward of Kenesaw Mountain, and in erecting primary siguals on Carnes, Pine Log, and Lavender Mountains, and secondary siguals on Coosa, Pine, and Lost Mountains, the point selected for the extension of the triangulation. At the end of May Mr. Webber proceeded to Kenesaw Mountain, where his camp had been pitched, bat owing to rains weather the observations there were not completed until the middle of Augnst. The observations made include a set for magnetic decination, horizontal intensity, and dip.

Toward the close of Augast the party was transported to Sweat Mountain, to the summit of which a road had to be built for a distance of two miles. At this station the measurements of horizontal and vertical angles and the magnetic observations were completed by October 10. The camp was then removed to Carnes Mountain, a distance of fifty miles, where operations will be continued until the end of the year.

The 30 -inch theodolite was used at the two stations last mentioned, but was subsequently employed by Assistant Boutelle at other points.

The statistics of work at Sweat and Kenesaw Mountains are as follows:


Reconnaissance for the geodetic connection, Georgia.-Reconnaissance in Northern Georgia for points in the geodetic connection was resumed by Assistant John A. Sullivan in March, and was continued until the middle of June, but was suspended in consequence of illness. In September, Mr. Sallivan again took the field, and closed his reconnaissance in October. In the preceding winter he assisted in the measurement of the base-line near Atlanta.

After visiting the fonr western stations previously adopted, and adding a station still further to the westward, Mr. Sullivan made a thorough examination of the country as far as the Sand; Mountain range, and selected fire additional points, by means of which two bases will be supplied for crossing the Sand Mountain plateau and for a practicable connection with the Lookout range, as well as one for the extension of the triangulation to the northward across Tennessee to the Cumberland Mountains. He also made a reconnaissance of the country northeast of the Atlanta base, and beyond its immediate counections, resulting in the selection of two points, Skitt Mountain and Currabee Mountain, for extending the primary triangulation parallel with the Atlantic coast and toward the Shenandoah Valley. The scheme of triangulation is so arranged as to connect with the primary series before referred to, and independent of the base, to cover the entire northern part of Georgia. (Sketeh No. 11.)

Assistant Sullivan reported at the Office in December, and during the present winter will be engaged in special field daty in Section II.

## SECTION VIII.

GULF COAST ANT BAYS OF ALABAMA, AND THE SOUNDS OF MISSISSIPPI AND LOUISIANA, TO VERMILION BAY, INCLUDING THE PORTS AND RIYERS. (Sкetch No. 12.)
Hydrography of Chandeleur Sound, Mississippi--The steamer Endeavor left Baltimore on the 7th of December, 1872, with the party of Subassistant F. D. Granger, but owing to bad weather did not reach the vicinity of New Orleans until the 18 th of January. As soon as practicable the party was at work on the eastern side of Chandelenr Sound, and there continued operations until the middle of April. Owing to natural changes of recent years, and to the wanton displacement of screw-piles which marked the stations of the triangulation at the outset of the war; Mr. Granger was under the necessity of determining such points as were needful in the hydrography. The soundings subsequently made develop the eastern part of the sound, and join with work done in previous jears. Sume of the lines of sonndings being fifteen miles distant from the Chandeleur Islands, were determined by observing, on signal-poles mounted on rafts, three of which Subassistant Granger moored at snitable positions, rarying from six to ten miles from land, from time to time moving the rafts as occasion required. The signals of his device were visible seven miles; and the rafts being held in place merely by mushroom weights, were readily moved into other positions. The resnlts of this survey show that eleven to twelve feet of water can be carried through the eastern part of the sound. In reference to the channels, Mr. Granger says: "With Chandeleur light-house bearing east, one mile off, by steering S. by W. 3 W., ressels of eleven feet draught can go through, and will pass between Old Harbor Keys and a shoal which lies about three miles and a half northwest of said keys. This shoal is narrow, and extends about four miles in a N. by E. and $S$. by W. direction, and has as little as $4 \frac{1}{2}$ feet of water on it."
"The channels of the sound are known to few, except those who earn their living by fishing in its waters. Many ressels drawing only seven or eight feet pass to and fro eastward of the Chandelear Islands, not daring to venture through the sound."

The report of Mr. Granger specifies many changes which have occarred in the contour of the islands, and corresponding alterations in the positions of some of the keys lying to the westward of the Chandeleurs. Fe was aided in this section by Messrs. D. C. Hanson and C. A. Ires. The general statistics are:

Miles ran in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
Angles determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 175
Namber of soundings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 505
The subsequent work of this party has been noticed under the head of Section I. Subassistant Granger is now engaged in Section VI.

Triangulation, topography, and Jydrography of Mississippi River, Louisiama.-Assistant Charles H. Boyd resumed work in this section on December 29, 1872. The progress made during the season in the triangalation, topographical survey, and hydrography of the river, has been entirely satisfactory. The weather was unusually favorable for field-operations.

Commencing at the base, Fanny Jcsuit, where the work was suspended early in 1872, the triangulation was extended up the river to New Orleans, a distance of 26 miles, and was well checked throughout its length. The connection with the point formerly occupied in New Orleans was partially effected; that with the Lake Borgue triangulation was arranged, and the intervening country was examined preparatory to the opening of the lines through the cypress-swamps.

In regard to the difficulties encountered in carrying on this work, Assistant Boyd mentions, among others, the necessity for extreme care in selecting lines across the belt of fast-luud bordering each bank of the river. This belt is either deusely wooded, or cultirated in sugar, rice, and fruits and hence, much labor was required to find the courses most free from obstructions and most favorable for the work, and, at the same time, unobjectionable to the proprietors of the land. So far, no damages have been paid or asked for. Behind the strip of fast-land are the cypress-swamps. Owing to the level character of the country, the theodolite, as in previous seasons, was clevated on tripods, from 20 to 25 feet in height, at every station occupied by the observer, except in cases where chimneys, steeples, and buildings could be used as substitutes.

Mr. C. H. Van Orden served as aid in the triangulation, and Mr. J. Hergesheimer in topography. Both performed their respective duties acceptably.

Field-work was closed on the 24th of April, when the schooner Farina, which had been used for the accommodation of the party, was sent to the "Head of the Passes" for the winter. Assistant Boyd and the triangulation-party then proceeded to Illinois to take up the work there, as will be presently referred to. The statistics of the triangulation on the Mississippi are as follows:

Lines opened .......................................................................................... 21
Points determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Angles measured.................................................................................. 278
Number of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 776
The topographical survey covers all the fast-lands adjacent to the Mississippi, giving the swamp and marsh line, and showing all connections between the river and the bayous behind. The surrey closed for the season with a full sheet, six miles below New Orleaus. It was expected that another sheet would have been completed, but with the hope of closing the triangulation at New Orleans during April, the whole force of the party was given to that special work, aud, after $A$ pril, funds were not available for carrying out the plan of leaving the topographical party to bring up the surrey. The plane-table statistics are:

Miles of shore-line surveyed................................................................. 40
Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Area (square miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
The hydrography of the Mississippi also closed with a full sheet, just below "English Turn," where the freshets and rapid carrents overtook the party in March. Soundings between that point and New Orleans can be made with greater accuracy and less labor in the early part of the coming season, at which time the river is low and the current less. The hydrographic statistics are:

Sounding-lines in miles.	75
Casts of the lead.	1,917
Sextant-angles.	636
Sets of current-observations	${ }^{6}$
Days' record of tides, January 1 to May 1	120

The party of Assistant Boyd is now arranged for resuming the detailed survey of the Mississippi in the vicinity of New Orleans. Under the next head mention will be made of its occupation during the summer and autumn.
H. Ex. 133——6

Triangulation in Missouri--The triangulation-party, under Assistant Boyd, was transferred at the end of April, from Louisiana to the vicinity of the base, in Illinois, opposite Saint Louis, where the work of the geodetic connection was resumed on the 1 st of May. During that month, the four stations on the Illinois side of the Mississippi River, including the ends of the base measured on the American Bottom, were successively occupied, and, in June, the measurements of horizontal angles, at statious on the Missouri side, were in great part completed. The progress of the observations at these stations was greatly delayed by the smoke hanging over Saint Lonis, through which some of the lines of sight necessarily passed. Early in July, the intense heat increased the difficulty of seeing the signals, and the malaria of the season and locality made all the party ill. Under these circumstances, it was impossible to obtain results at all adequate to expenditures. Field-work was consequently suspended during that month and August. Assistant Boyd and his aid devoted this interval to the large amonnt of office-work on hand, belonging to the survey of the Lower Mississippi.

Field-work was resumed near Saint Louis early in September, and contimued until the $\mathbf{3}$ d of November, when the season closed. During this period the reconnaissance was extended, aud the triangulation, the sides of which vary in length from eight to eighteen miles, was completed for a distance of thirty-two miles westward of Saint Louis.

The principal obstacle to rapid progress in this triangulation is found in the forests of hardwood, which cover all the ridges, and through which, without cutting lines of sight, the use of the theodolite is impossible. This natural impediment cannot well be met in July and Angust, for reasons already stated. The best months for carrying on the work, Assistant Boyd states, from the experience of two years, to be the season from September 15 to November 15, and during May and June.

Mr. C. H. Van Orden, the aid in the party, is commended for efficiency in the reconnaissance and triangulation. The statistics for this season are :

$$
\begin{aligned}
& \text { Signals erected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stations occupied .............................................................................. } 14
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 678 }
\end{aligned}
$$

This work will, if practicable, be resumed early in May of the coming year.
Geodetic connection.-The State of Wisconsin, having made ample provision for its geological survey, Dr. J. A. Lapham, chief geologist, in April, applied for the bencfit of the provision of Congress in regard to the determination of geographical points on which to base the subsequent State survey. Prof. J. E. Davies, of the State University, at Madison, qualifed himself for field-work in triangulation by personally witnessing the operations of Professor Quimby, who passed the summer in determining points within the limits of the State of New Hampshire. Owing, however, to the limited means available for continuing work already begun in the geodetic connection, it was found inexpedient to commence triangulation in Wisconsin within the present fiscal year. That the request of the State geologist might be met in part, arrangements were made for the determination of several geographical points by observations for latitude and longitude.

In July, Assistant G. W. Dean conferred with Dr. Lapham, at Madison, and established an astronomical station in the grounds of the university, about a mile west of the State-house. The station was carefully marked by stone piers, and the longitude of the point was determined by exchanging clock-signals during five nights in the latter part of July, between Assistant F. Blake, at Madison, and Assistant Edward Goodfellow, at Omaha; the longitude of the last-mentioned point having been determined in 1869.

At Madison, Assistant Blake determined the latitude by observing twelve pairs of stars during five nights with the zeuith telescope.

At La Crosse, Wis., a station was marked in Court-House Square, and clock-signals were exchanged with the observer at Omaba during four nights. Latitude was determined at the same station from the record of observations on thirteen pairs of stars during three nights.

While these operations were in progress, request was made by Prof. William Folwell, president of the Minnesota State University, for the determination of a point at Minneapolis; some prelimi-
nary action having been taken in the State, in regard to a trigonometrical surver, which might soon be commenced, under the direction of the officers of the university. In accordance with the application, Assistant Blake was sent to Minneapolis, and marked a station near the university building. Clock-signals for determining the longitude of the point were exchanged on four nights with the observer at Omaha. Mr. Blake ascertained the latitude of the station at Minneapolis by observing on ten pairs of stars during five nights.

Telegraphic facilities for the work in Wisconsin and Minnesota were furnished free of charge by Z. G. Simmons, esq., president of the Northwestern Telegraph Company. All the astronomical records of the party have been completed in duplicate, and good progress has been made in the computation of results.

At Omaba, Assistant Goodfellow was cordially assisted by members of the Board of Edncation. His report mentions also his indebtedness to Mr. Frank Lehmer, manager of the Western Union Telegraph Office, at Omaha, for information and for many facilities in the prosecution of the work. Mr. J. B. Baylor served as aid in the astronomical party at Omaha. Leaving the observers to complete the details, which were planned at the outset of the season, Assistant Dean passed on westward to arrange for the determination of points in Colorado. The operations of his party there will be stated further on in this report, under the heading "Interior."

## SECTION IN.

## GULF COAST OF WESTERN LOLISIANA AND OF TEXAS, INCLUDING BAYS AND RIVERS. (SkETCH No. 13.)

Triangulation at Galveston Harbor and of the coast from East Bay toward Sabine Pass, Texas.The duty of determining the position of the light-houses and beacons erected in Galreston Harbor since the date of the surres, and of continuing the triangulation of the coast of Texas eastward from the head of East Bay, where it was suspended in 1861, was assigned to Assistant S. C. MeCorkle.

The surreying party reached Galreston on the 7 th of December, 1372 , in charge of the aid, Mr. D. S. Wolcott, and a week after was joined by Mr. McCorkle. Two of the station-marks being found, viz, Dollar Point and Bolivar Point, a high tripod with its accompanying scaffold was erected at the latter, from which to observe on the cathedral tower, as within a few fears a large building had been put up in the city, cutting off the view of the cathedral from the ground at Bolivar Point. A new station on Pelican Island was determined in position from the tro stations mentioned, and was checked by observations on the cathedral. With these three the positions of the light-houses and beacons were fixed.

In the beginning of February the party was transferred to the head of East Bay, where, after diligent search, three of the interior points were identified. The line conuecting two of these, Oyster Bayou and Northwest Bend, (Sketch No. 13,) was adopted as a base, and from this the triangulation was extended to the eastward as far as the season would permit. Unusually wet and stormy weather; the diffeulty of obtaining means of transportation suitable to the character of the country, and the high charges for such service in that section, all conjoined to reduce the results below the standard usually reached by the same allotment for party expenses. While Assistant McCorkle was disabled by contimed illness, the field-work was carried on efficiently by Mr. D. S. Wolcott, the aid in the party. The statistics of this work are :

```
Signals erected. 12
Stations occupied . 12 . 12
Angles measured
76
Number of observations . 2,040
```

Assistant MeCorkle was occupied in field-work during the summer in Section II, and is now preparing for reconnaissance duty in Section VII.

Hydrography of Espiritu Santo and San Antonio Bays, Texas.-The hydrographic survey of the inclosed basins of water on the coast of Texas was resumed in November last by Subassistant L. B. Wright. The schooner Stevens was assigned for the work; but, as that ressel could not cross
several of the bars, the inside waters were sounded by means of a small coasting-schooner chartered for the parpose.

As in the case of Matagorda Bay, the triangulation-signals which had been erected, previous to the late civil war, on Espiritu Santo and San Antonio Bays, had been either blown down or destroyed; and only in a few cases could their positions be identified. Two of the old stations were found, and with the line connecting these as a base, a plane-table triangulation was carried, with good success, 31 miles; and with the new points thus established two hydrographic sheets were completed. These show in statistics:

Miles of sounding-lines................................................................... . . . . 560
Number of angles measured......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,936
Number of soundings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 334
Messrs. F. W. Ring and J. B. Baylor served efficiently as aids in the bydrographic party. Subassistant Wright passed the summer and autumn in service at the north, as mentioned under the head of Section 1I. He has now resumed hydrographic duty on the coast of Texas, and will there conduct a party during the winter and ensuing spring.

## INTERIOR.

## WEST OF MISSISSIPII RIVER.

Geodetic connection.-In the interest of the geological surver, which is now in progress in the Territories of the United States under the direction of Prof. F. V. Hayden, application was made early in the present season by James T. Gardner, esq., chief of the geographical and topographical staff, for determinations of latitude and longitude at several points in Colorado. As already stated in this report, similar requests were made somewhat later in the year, in behalf of surveys contemplated by the States of Wisconsin and Minnesota.

The position of a station in Omaha, Neb., is known by careful determinations made for latitude and lougitude in 1869. By proper arrangements, therefore, one observer at Omaha sufficed for the exchange of clock-signals by telegraph with several observers, each at a distant station. The telegraph circuit between that place and Denver, in Colorado, about six hundred and twenty miles, was the least distance through which signals were exchanged by the parties, the circuit between Omaha and Minneapolis being about nine hundred and twenty miles. Assistant George W. Dean, having made the requisite arrangements with telegraph companies in advance of taking the field, organized his party so as to occupy several stations at the same time. Assistant Edward Goodfellow was stationed at Omaba, and was there engaged from the beginning of July until the close of September in exchanging clock-signals with observers at six distant points, the exact longitude of which had not been previously known. By Mr. Goodfellow and his aid, Mr. J. B. Baylor, an aggregate of nine hundred and twenty observations on ninety-four stars were recorded, in the course of seventeen nights, for determining the clock and instrumental corrections.

At Denver, in Colorado, Assistant Dean selected a point favorable for connection with Mr. Gardner's survey of the mountain-ranges of the Territory. The longitude of the station was established by exchanging clock-signals during four nights with the observer at Omaha, local time and instrumental corrections being found in the usual way, by observing zenith and circumpolar stars.

Mr. Edwin Smith, aid in the party of Assistant Dean, determined the latitude at Denver by observing on sixteen pairs of stars during six uights. The magnetic declination, dip, and intensity were also ascertained by full series of observations at that station.

The position occupied at Denver by the àstronomical instruments was referred by geodetic measurements to the spire of the public-school building in that city. At Colorado Springs a station was occupied, at which the summit of Pike's Peak is in full view. Observations for determining longitude were made as at other places, clock-siguals being exchanged during four nights with Assistant Goodfellow, who remained at Omaha. Eight nights were employed by the party at Colorado Springs in observing fourteen pairs of stars for latitude. The magnetic elements were determined by the usual method.

At a third station, Trinidad, near the southern boundary of Oolorado, observations similar to
those already mentioned were recorded for the determination of latitude, longitude, and the magnetic elements. Mr. C. H. Fitch aided in the service at this station.

The report of Assistant Dean mentions renewed obligations for the friendly co-operation of General Anson Stager, superintendent of the Western Union telegraph lines, in addition to the free use of the lines accorded by the company for the exchange of time-signals. My thanks are due also to General W. J. Palmer, president of the Deurer and Rio Grande Railway Companr, for discriminating in rates of charges for transportation requisite in the service; and to Messrs. W. s. Jackson and W. W. Borst, of the same company, for facilities extended to the several observers who were engaged in Colorado.

The party of Assistant Dean is now arranged for determining the longitude at southern stations of the Atlantic and Gulf coast.

## SECTION X.

COAST OF CALIFORNLA, INCLUDING THE DAYS, HARBORS, AND RIYERS. (Sketcines Nos. 14,15, and 10.$)$
On the western coast the season has been generally unfavorable for field-work, but the autumn opened with good weather, and operations have been pushed so that a good average is shown by the abstracts of the several field-reports. As usual, the abstracts will be arranged in geographical order, beginuing with mention of work done on the sonthern coast of California. All the chiefs of field-parties under my general instructions, assigning them to duty in specified sites, have had the advice of Assistant George Daridson in regard to the limits and character of their work. His intimate knowledge of the requirements of the serrice on this coast has availed also, as heretofore, in making the most judicious subdivision of the means allotted for continuing the surver.

The progress of work on the Santa Barbara Islands and their trigonometrical connection is very satisfactory. Mr. Davidson's party is now engaged in connecting points on then with the main triangulation of the coast of California, the scheme of which is now complete by reconnaissance from Santa Barbara to Monterey.

The geodetic connection across the continent has not been pressed from the western side for want of means. If practicable, recomnaissance for suitable stations will be resumed in the coming spring.

In addition to the details of estimates for the several parties, Assistant Davidson has supplied information verbally and in writing, to such as have applied for data needful in important local operations. By act of Congress approved in March, 1873, the President of the United States desig. nated three commissioners to report upon the feasibility of plans for the ircigation of the Sacramento, San Joaquin, and Tulare Valleys, two of the commissioners to be officers of the Corps of United States Engineers, and the third from the Coast Survey. Assistant Davidson was appointed on account of his long service and familiarity with the geographical features of the western coast, and is now engaged in the joint report on their investigations.

The valleys just mentioned constitute, in reality, but one great valley betweeu the Sierra Nevada range and the coast mountains, and between the thirty-fifth and forty-first degrees of latitude. The valley is four handred and twenty miles long, has an average width of over forty miles exclusive of the foot-hills, and is a special feature of the Pacific coast geography. Mr. Davidson calls it the Valley of Californit, and, in his opinion, ten millions of acres of rich land in it admit of irrigation. The entire region and the surrounding foot-hills have been repeatedly traversed by the commissioners. Limited means in the appropriation did not admit of detailed obserrations on the soil, water-supply, and topographical features, but the commissioners are strongly impressed with the apparent feasibility of rendering the great valley the granary of the western coast.

Latitude and longitude of the Transit of Tenus station, 1769.-Under special instructions, Assistant Davidson, accompanied by Messrs. S. R. Throckmorton, jr., and W. S. Edwards, aids, with two men, went to San Jose del Cabo in March, to identify, if possible, the transit of Vemus station occupied by M. Chappe de l'Auteroche in 1769. Mr. Davidson had previously eudeavored to gather information in regard to the locality, and Assistant Hilgard had songht, in Paris, to obtain a detailed description of the place, but without success; Cassini's meager description was the only guide available. Mr. Davidson's special report of April 12 made known the difficulties of ascertaining
the exact station. The mission mentioned in the old record had occupied four positions, including that of 1769 , within a stretch of five miles along the river, but there were no church records to specify the years of change. Some of the foundations were found, by personal examination. The third and the fourth, or present location of the building, were nearly identical. Fortunately the priest now in charge, an uneducated Indian, was able to point ont the foundations of the third mission-building and the traditional position of the "large granary" attached to it. In this granary the French astronomer had erected the instrument, piers of masonry, \&c., but all traces of piers or foundations were gone or covered up. The relative position and the limits of the granary were known to have been within certain circumscribed limits; and after sifting this and other evidence, and studying the peculiar topograpby of the site, Assistant Davidson became satisfied that the Venns station of 1769 was on the southeast side of the present sacristy, and between it and the wall bordering the street. His conclusion is that he has recovered de l'Anteroche's position within an area of twenty feet square.

The station thus identified was at once connected by triangulation with the Geographical Reconnaissance station used by Mr. Eimbeck at San José del Cabo a fortnight before Mr. Davidson's arrival. For this purpose a base of 3,804 feet was measured; observations were made for time by the sextant and for azimuth upon Polaris near elongation with theodolite No. 37. The records of this work were promptly transmitted to the office.

Assistant Daridson made diligent inquiry for the location of Don Joaquin Velasquez de Leon's Venus station at Santa Ana, not far from San José del Cabo, where the transit of 1769 was also obserred; but there are no available church records, no local history or even tradition; and the govermment archives at Madrid and contemporary records at Paris have vielded scarcely any light upon the subject, although Assistant Hilgard, while in Europe, joined in every effort to obtain information.

During the voyage from San Francisco to San José del Cabo, Assistant Davidson seized every opportunity to obtain views of the points, capes, islands, and mountains on the coast, and made forty-two views from positions in the regular track of the steamers trading between Califormia and Mexico.

Geographical and hydrographic reconnaissance, San Diego to Cape San Lucas.-In January, Assistant Davidson detailed from bis party Sub-Assistant Wm. Eimbeck, Mr. T. J. Lowry, aid, and an efficient observatory hand, to accompany the steamer Hassler and make observations for determining the latitnde, longitude, and magnetic declination, at points between San Diego and Cape San Lucas, Lower California. For this purpose, Mr. Davidson obtained from the Nary Department the use of twelve chronometers; seven were furnished from his own stock of instruments and the observer had the use of five belonging to the Hassler. In order to obtain a preliminary traveling rate for the chronometers, Mr. Eimbeck made observations at San Francisco, and also at San Diego, where the work really commenced. The work along the western coast of Lower California embraced the occapation of fourteen astronomical stations, at six of which the magnetic elements were determined.

The following summary exhibits the statistics of the feld-work commenced January 11, and terminated April 7 : San Francisco, 49 star-transits on 4 nights; San Diego, 50 on 3 nights; Todos Santos Bay, 15 on 1 night, and 8 pairs of latitude-stars; San Martin's Island, 29 star-transits on 2 uights, 4 pairs of latitude-stars, and observations for magnetic declination; San Geronimo Island, 24 star-transits on 2 nights, and 6 pairs of latitude-stars; La Playa Maria, 15 star-transits on 1 night, and 13 pairs of latitude-stars; Lagoon Head, 14 star-transits on 1 night, 13 pairs of latitude-stars, and obserrations for magnetic declination; Cerros Island, 43 star-transits on 3 nights, 12 pairs of latitude-stars, and the magnetic elements; Cape San Lucas, 13 star-transits on 1 night, and 12 pairs of latitude-stars; San José del Oabo 15 star-transits on 1 night, 14 pairs of latitude-stars, and the magnetic elements ; Magdalena Bay, 16 star-transits on 1 night, 10 pairs of jatitude-stars, and the magnetic elements; Pequena Bay, 16 star-transits on 1 night, and 10 pairs of latitude-stars; Abreojos Point, 13 star-transits on 1 night, and 10 pairs of latitude-stars; Ascensioñ Island, 20 star-transits on 2 nights, 8 pairs of latitude-stars, and magnetic declination.

The instruments used were the meridian instrument No. 1, which has proved itself well adapted for such work; and the theodolite magnetometer No. 3. The stars for time were taken from
the field catalogue of 1,057 stars, prepared by Assistant Davidson, with mean places reduced to $\mathbf{1 8 7 0 . 0}$. Observations for azimuth, in connection with the observations for magnetic declination were made on the Sun's limb. The stations were all permanently marked, and full descriptions and sketches have been filed with the records. Upon the return of the party to San Francisco, observations were made for the value of the micrometer screw of the meridian instrument, and for the value of the "finder" level divisions, as the delicate latitude-lerel had been broken by the blowing down of the portable observatory in a high wind on San Martin's Istand.

During the voyage Messrs. Eimbeck and Lowry computed approximate results for the latitude and longitude. After the return of the party to San Francisco the records were duplicated and complete reductions and computations were made of all the observations. These results were furnished for the use of the hydrographic party, and give special value to the reconvaissance between San Diego and San José del Cabo, a stretch of the Pacific coast known to be very erroneously laid down on the most recent London charts, and a site of disaster to several steamships.

Magnetic observations at San Diego.-In November, 1872, Assistant Davidson sent his aid, Mr. S. R. Throckmorton, to San Diego, to determine the magnetic elements at the station occupied by the former in 1871, and to connect it with the present scheme of triangulation. The results point to a much larger annual increase than had been derived from previous discussions. Mr. Throckmorton recorded 64 obserrations for declination on three days; 32 for dip, with two needles; 30 for deflection; 27 for vibration. Observations for time were made with the sextant; and two stations were occupied with the theodolite.

Commander P. C. Johnson, Caited States Navy, Assistant Coast Survey, left San Francisco on the 15th of Jannary, with his hydrographic party in the steamer Hassler. At San Diego, examination was commenced for the development of such dangers to navigation as might be found in the vicinity of the ordinary sailing route to Cape San Lucas. To the southward and westward of San Diego, and nearly five miles off shore, a kelp-patch was struck with eleven and three-quarter fathoms of water about it. Subsequently this locality was sounded, and the position of the kelp was marked on the chart.

Farther to the southward Todos Santos Bay was sounded by the party; and the shore-line, erroneous there as elsewhere on charts of the coast of Lower California, was carefully retraced, as was also the shore-line of Colnett Bay, where the steamer anchored on the night of the 2sth of January. In passing southward, errors in shore-line, as given on the charts, were found to be larger, the most notable being at San Sebastian, Viscaino Bay, the shores of which were traced from the northward to a point opposite to Cerros Island.

At San Martin Island, where Subassistant Eimbeck was landed, with suitable instruments for determining its geographical position, his temporary observatory was blown away by a violent rainsquall on the night of the list of February. One side of the observatory was thrown a handred feet across the rocks, and all the instruments were injured. While means were taken for repairing the damage as far as possible, soundings were made in the vicinity of the island. The dangerous rock reported to be near the route followed by vessels was found and developed. Commander Johnson states that it has only 9 feet of water on it, and that its position is south $3^{\circ}$ east (magnetic) from the eastern end of San Martin Island, and distant 3.2 miles. While the party was searching, it was noticed that a vessel of less than 9 feet dranght had passed directly over the rock. Before leaving the vicinity a map was carefully made of San Martin Island and of the adjacent coast, fortyfive miles of shore-line being traced in passing from the island to Point Baja, where the steamer anchored on the 6th of February.

The position of San Geronimo Island, as determined by the observations of Subassistant Eimbeck, decidedly differs from that given on the London published chart. In fact, certain points marked on them, as prominent headlands, do not exist. The intention of the party in the Hassler was to determine in position such as were prominent, but of those so marked none were found conformable to the actual trend of the coast. The points, however, which were occupied by the party are well distributed; and the results, with the large amount of corrected coast-line, will arail for the speedy correction of the general sailing-chart of the coast of Lower California. Near Plaza Maria, the position of which was determined by the astronomical party, the shore-line was sar-
veyed, and was found to differ greatly from the published outline. A point lower down, where a marked change occurs in the character of the coast, was named Lagoon Head, because of the large stretches of lagoon, which it is believed were formerly places of resort for whales. The position of the bead was determined, and lines of soundings were run in the vicinity. Several days were passed in examining the waters near Cerros Island, while the party on shore made observations for its position and for determining the magnetic declination. Soundings were made in the passage between Natividad Island aud l'oint Eugenio, in which passage a rock had been reported as having on it ouly 12 feet of water. During a heavy swell the chanvel was carefully observed, but the swell nowhere in it revealed such a danger. One heavy breaker was located for the chart, but the spot is much out of the channel, and is surrounded by kelp. The conclusion of Commander Johnson is that no dangers to navigation exist in this passage, except such as are well marked by kelp. Leaving Cerros Island on the 19th of February, the Hassler was kept on the usual route, going southward and eastward. In rounding Point Abreojos, soundings very suddenly shoaled from ten and a half fathoms to only four and a half, when the anchor was let go about three-quarters of a mile from shore. The reef and shoal in that vicinity were examined, and proved to be very extensive.

On the way southward Pagmaster Stanton, of the steamer Hassler, made a panoramic sketch of the coast, specially including headlands and other landmarks, as material for engraved views to accompany the final chart of the coast of Lower California. At San Jose del Cabo Subassistant Eimbeck was landed, and determined the geographical position by the usual series of astronomical observations. The station was carefully marked, and by the president of the district and Eugene Gillespie, esq., United States consular agent, who visited the party on board of the Hassler, assurances were given to Commander Johnson that care would be taken to preserve the stationmarks for any fature parpose.

In turning northward from Cape San Lucas, no point on the coast was found suitable for landing the astronomer short of Magdalena Bay. Under favorable circumstances, landing was possible at Todos Santos River, but greater uncertainty attended reembarkation; hence the first station occupied in the upward passage was at Magdalena, where John Ricketson, esq., resident there for several fears, kiudly put up a durable monument to mark the astronomical station. While the observations were in progress, Lientenant Mansfield, of the hydrographic party, carefully examined the offing at Cape Redenda, and found that a rock said to be outside of the ten-fathom curve has no existence, the position of rocks inside of the ten-fathom curve having been probably misjudged by passing vessels.

Continuing northward, a station was occupied at Pequeña Bay, and from that bay to Abreojos Point the published erroneous shore-line was corrected. At Cerros Island the vessel stopped to test the run of the chronometers, after which the steamer passed on to San Diego. About five thousand soundings were made and recorded in the course of the reconnaissance. The shore-line surveys made by the party are comprised on five sheets. Off Point Loma search was made for a rock said to be only nine feet under water, but no rock was found.

Near Point Fermin, a rock reported by Captain Parker, of the Pacific Mail Steamship Company, was found and determined in position by the party in the steamer Hassler. This rock has seven feet of water on it. The vessel reached San Francisco on the 6th of April, and, needing repairs, was refitted for service on the northern part of the coast of California, as will be mentioned under another head.

Commander Johuson is now conducting hydrographic operations in the Santa Barbara Channel, assisted by Lieut. Commander C. W. Kennedy, U. S. N., and Lieutenants H. B. Mansfield, E. W. Remey, George W. Tyler, and J. D. Adams, U. S. N. Lieutenant M. S. Day, who joined the steamer Hassler in 1871, was detached from Coast-Survey service in May last.

San Diego Bay.-In November and December Mr. S. R. Throckmorton, of Assistant Davidson's party, determined the positions of the buoys which mark the entrance and approaches to San Diego Bay. By previous understanding with the local officers of the Light-House Board, as in all similar cases, the buoys, when found in their intended positions, are at once marked on the chart.

Triangulation and topography between San Pedro and San Juan Oapistrano.-During the wiuter Assistant A. W. Chase was engaged in inking and tracing his topographical sheets of the coast
between Chetko River and Mack's Arch, Oregon; computing the triangle sides and duplicating records. Four volumes were transmitted to the Office and two topographical sheets. On the $2 \mathscr{L}(1$ January, his party took the field for triangulation and topography on the shore of San Pedro Bay, from New River eastward. The country is very low and flat, and the coast bordered ly broad marshes and intersected by sloughs, creeks, and small rivers. Secondary triangutation was extended from the main series developed in 1853 by Assistants Davidson and Orrl. On the plains it was necessary to erect scaffolding upon which to mount the instrument. In this work measures were made from the two main stations to determine the position and elevation of peaks of the Sierra Madre, San Bernardino, and Temescal Mountains. The following are the statistics of the .triangulation :

Signals erected.	14
Stations occupied	14
Angles observed.	66
Observations	1,010

The topography of one sheet, extending eastward from the work of last year, was carried to the Bolsas Chico, and on this the marsh-lines were traced out so as to include all the overflowed areas. The coast-line is a low, broad, sand beach. On this sheet the statistics are :


```
Miles of rivers . 1: 1:
Area (square miles) ...
```

Before leaving the field for the North, Assistant Chase added to his previous plane-table shect of Wilmington the improvements in that vicinity ; the progress of the breakwater or jetty ; clanges in the shore-line of Rattlesnake Island adjacent, and the changes of the low-water line; all making a very interesting stady. In his report be acknowledges the effective aid rendered by Mr. © Uhlig. In May, Assistant Chase transferred his party to a site of work above Crescent City, mention of which will be made under the head of Section XI.

Iriangulation and topography of Catalina Harbor. -In April, Assistant Chase went with his party to Catalina Island and completed the topographical survey of the harbor and its approaches from the north and sonth sides of the isthmus. The map represents elerations of 1,200 feet, with high, rocky, and precipitous shore-line; and embraces an area of two and a half square miles and four miles of coast-line. Mr. Chase discovered and located a dangerons sumken rock, having ouly four feet of water upon it at low-water, and lying about a mile to the westward of the north harbor. At the request of Assistant Davidson he also examined a peak of 1,730 feet elevation west of the isthmus, with reference to the practicability of occupying it as a station to connect with the main scheme of coast-triangulation.

IIydrography of New River and Anaheim River, Califormia.-The bars to these rivers, which empty into the Santa Barbara channel, on the easteru side of San Pedro Bay, are crossed by boats and lighters in the transfer of passengers and freight. They were examined by Assistant Chase in April, and the depth was found to be inconsiderabie; in fact, less than two feet at low water. The positions of the bars are constantly clanging, and they are only crossed at high water. The approaches to the entrances were dereloped, and in this work sixteen miles were ran in the boat, and 993 soundings were made, and adjusted by 36 angles, measured for position. Mr. Chase was aided in this work by Mr. C. Uhlig.

Triangulation and topography of Santa Rosa and adjacent islands.-Subassistant Stehman Forney remained in the field during the autumn, winter, and spring, engaged in the topographical survey of Sauta Rosa island, and in completing the connection of the islands of San Miguel, Sauta Rosa, and Santa Cruz by triangulation. The topography of the islands is executed upon a scale of $\frac{1}{20 \frac{1}{00}}$, and detailed work is carried inland the usual distance; but, for the benefit of navigators approaching the coast, the interior topography of the island, embracing all the peaks, has been generalized. The coast-line of Santa Rosa is very bold, rough, and precipitons; the ravines, gulches, and slides are special features on the map. There are no large trees on the island, but
H. Ex. 133-7
scrub-oak, \&c., grow in the gulches. The hills and table-lands are covered with herbage that supports a large number of sheep and some horses. A traced duplicate of the plane-table sheet of Santa Rosa Island has been received at the Office. The following are statistics of the work :

```
Signals erected. 18
Stations occupied }1
Stations observed upon . 4. 48
Angular measurements . 3, 3, 819
```



```
Area of topography, (square miles) . }3
```

Mr. Forney took the field on Santa Oruz Island early in October, and is now carrying on the detailed survey.

Topography betucen Gaviota Pass and Point Conception, California.-Assistant W. E. Greenwell was engaged during the wiuter in compating results from his field observations of the previous season and in inking and tracing the topographical sheets. In the spring he resumed the topographical survey at its western limit near the Gaviota Pass, and extended it to connect with Assistant Rockwell's former work at Point Conception. The detailed topography was carried inland to the usual limit; and to aid narigators in identifying this coast from a distance, the peaks and crestline of the Sierra de la Conception, or Santa Inez Mountains, were determined and their topography generalized. This crest-line lies three or four miles from the shore, and, near the Gaviota, rises nearly three thousand feet, with unusually broken flanks and deep, rough gulches. The season was more or less boisterous, with much fog during the summer months, which retarded progress in the work. The statistics are:

```
Miles of occan shore-line 20
Miles of streams 12
Miles of roads.. }1
Area (square miles). 47
```

Assistant Greenwell mapped in the wharves at Santa Barbara, San Buenaventura, and Goleta; and also surveyed the vicinity of the new town at Point Hueneme. Subassistant Eugene Ellicott was attached to his party. The field-report of Assistant Davidson acknowledges the aid rendered to his reconnaissance party by Mr. Greenwell.

Reconnaissance for main triangulation below Monterey, California.-After November, 1872, Assistant Davidson's party was engaged during several months, under charge of Subassistant Eimbeck, in reconnaissance for main triangulation to join the survey of Santa Barbara channel with that of Monterey Bay. The country traversed is marked at the south by mountain-ranges parallel with the coast of Santa Barbara channel, and reaching four thousand feet elevation. At the mid. dle, just south of San Luis Obispo, the range is broken by irregular and interfering chains of mountains, nearly four thousand feet high. At the north are bold, high chains of mountains, parallel with the coast south of Monterey, and separated by the valley of the Salinas which runs to the northwest. Toward Point Pinos the western range, Sierra Santa Lucia, is bold, covered with chapparal, destitute of trails, and attains an elevation of 6,200 feet.

The plan of examination had been thoronghly explained by Assistant Davidson, and the scheme presented by Mr. Eimbeck, after a reconsideration of detail near Santa Anna Mountain, and at Gaviota by himself and Subassistant O. H. Tittman, and at Point Pinos by Mr. Throckmorton, aid, is very satisfactory. It embraces a full series of well-conditioned quadrilaterals, except where the mountain-chains interfere near San Luis Obispo. This series has been further developed by Assistant Daridson to the line Santa Barbara, Santa Cruz west; aud connected with stations on the Santa Barbara Islands by a system of good secondary triangalation.

Soon after Subassistant Tittman reported for duty on the western coast, he took the field with the main triangulation party. At the date of Assistant Davidson's report Mr. Tittman was observing at a station on San Miguel Island, and observations for latitude and azimuth were in progress. He is aided by Messrs. W. S. Edwards and Thomas P. Woodward.

Magnetic observations at Point Conception.-Mr. S. R. Throckmorton, aid, under direction of

Assistant Davidson, determined the magnetic elements in December, 1872, at El Coxo, near Point Conception. For declination, 82 observations were recorded on 3 days; $3 \ddot{2}$ for dip, with two needles; 30 for deflections; 27 sets of vibrations; two sets of sextant observations for time, and 16 observa tions on Polaris for azimuth. Assistant Davidson reports that the results for yearly change confrm those found for the San Diego station.

Triangulation and topography near San Luis Bay, California-During the winter Assistant L. A. Sengteller was engaged in inking and tracing his topographical sheets, computing the triangle sides, and duplicating records. He has within the year transmitted to the Offee twenty-one rolumes of original records and computations, and the topographical sheet of his surrey north of Point Arena.

In January, Mr. Sengteller transferred his party to San Luis Obispo Bay and resumed work to the southward of the previous seasou's limits. The triangulation was enlarged and dereloped to the Arroyo Grande, and the topography was extended from South Point in San Luis Bay to a point beyond the Arrogo Grande. The topographical features of the country are raried. As represented by the sheet, the western part is high, rolling land, with bluff shore-line, cut by mumerous gulches; thence to the eastward runs a long line of sand-beach backed by sand-dunes, which become covered with chapparal and scrub-oak as ther recede from the shore. Before closing operations for the season a surver was made of the ricinity of Barehill station from the sea-face to the summit of the mountain. The winter months were unfavorable, but weather improved as the spring advanced. Statistics of the work are as follows:

Signals erected	10
Stations occupied	9
Angles measured.	53
Observations	867
Miles of ocean-shore line	63
Miles of streams and ponds.	14
Miles of roads and trails	12
Area (square miles)	9 y

On the 5th of May this party ras transferred to the upper part of the section near Novo River, as will be mentioned presently. Mr. Sengteller was aided by Mr. H. I. Willes.

Latitude, longitude, and azimuth at San Simeon and San Luis Obispo, California.-In the spring Assistant Davidson detailed his aid, Mr. S. R. Throckmorton, to occupy the secondary astronomical stations at San Simeon and San Lais Opispo, for the determination of latitude and azimuth at one of the triangulation-stations of each locality.

At San Lais Obispo, Mr. Throckmorton occupied the station Avila, and with the twelve-incli theodolite No. 37, determined the azimuth of the line Arila-West Base, by 72 observations non Polaris, near elongation. The time was determined by sextant observations.

At San Simeon station and with the same instrument, the azimuth of the line San SimeonNorth Base was determined by 84 observations upon Polaris, near elongation, time being determined in the usual way.

The duplicate record of these observations bas been received at the office. At both stations, Mr. Throckmorton was aided by Mr. W. S. Edwards.

Magnetic observations at Point Pinos.-In August and September Mr. Throckmorton, of Assistant Davidson's party, determined the magnetic elements at Point Pinos, where similar observations had been made by Mr. Davidson in 1851. In statistics, Mr. Throckmorton recorded 41 observatious for declination on 3 days; 32 for dip, with two needles; 30 for deflections; 27 sets of ribrations; observations for time with sextant, and 15 observations on the sun for azimuth. The results found by Assistant Davidson indicate large yearly increase in the magnetic declination.

Triangulation and topography north of Piedras Blancas.-Assistant Cleveland Rockwell haviug previously completed his office-work and made suitable projections, took the field, in February, at Point Piedras Blancas, and carried the coast triangulatiou and topography to the northward, near the southern extremity of the Santa Lncia range of mountains. He made a reconnaissance along
the seaward face of this range for eighteen miles beyond the Arroyo San Carpofero, and his observations confirm the previous descriptions of this bold, wild range.

The position of the Harlech Castle Rock, as determined by Assistant Rockwell, corresponds to that given by the preliminary surrey of the late Assistant Cordell. The wreck of the Sierra Nevada was also located upon the plane-table sheet. The Arroyo La Cruz and San Carpofero are both considerable streams, with deep channels between high hills, which rise sharply to 500 and 600 feet elevation. The weather during the winter and spring was very boisterous, and retarded field-work; nevertheless the triangulation was carried from Point Piedras Blancas to Valenzuela, beyond the Arroyo Carpofero, and angalar measurements were made upon mountain-peaks for position and elevation. The following are statistics of the work:


Assistant Rockwell was aided in this section by Mr. George $H$. Wilson, who is commended for zealous and efficient services in the field and in computation.

At the close of the summer season, this party was transferred to the Columbia River, as will be mentioned under Section XI.

Longitude observations, San Francisco, California.-For determining the difference of longitude between San Francisco and Kalama, on the Columbia River, Oregon, Assistant Davidson occupied the astronomical station in Washington Square, San Francisco. The station at Kalama was occu. pied by Sub-Assistant Eimbeck, whose operations will be noticed further on in this report.

The instruments used in this service were the Kessel clock, 1449 ; Hipp chronograph, 3753; and transit No. 3. The manager of the Western Union Telegraph Company gave the use of the line free of charge, at the request of Mr. Davidson.

Unusually foggy weather delayed the requisite astronomical observations, but they were completed by the 1st of October. Clock-signals were transmitted each way during six nights, and simultaneous time-observations were recorded. For instrumental and clock corrections Mr. Davidson recorded, during fourteen nights, 206 transits of 78 stars, orer twenty-five threads, filling thirtynine chronograph sheets. Observations for personal equation were made after Mr. Eimbeck's return from Kalama.

To assist observers in placing the transit instrument approximately in the plane of the meridian at any time, Assistant Davidson completed a table of the azimuth and apparent altitude of the Pole star at stations between latitude $30^{\circ}$ and latitude $60^{\circ}$ for each fifteen minutes of hour angle. This table has been printed for genercl distribution to observers.

Magnetic observations at San Francisco.-In 1852, Assistant Davidson determined the magnetic elements at the astronomical station, Presidio, near San Francisco. Under his direction, Mr. Throckmorton repeated the series of observations which had been renewed in December, 1871, and recorded 71 observations for declination on 3 days in October, 1872; 80 on 3 days in June, 1873 ; 67 on 3 days in Jnly, 1873; 86 on 5 days in August, 1873.

The results of the field-computation indicate, as do those at all other stations on the western const, that the annual increase of the magnetic declination has been about $2 \% .5$ since 1850 ; and they are especially interesting as showing that the maximum easterly declination is nearly, if not quite, attained.

Topography of Tablc Mountain, San Francisco entrance.-After completing his offce-work of the preceding season, Assistant A. F. Rodgers resumed field-work as early as practicable in the spring, and completed the detailed survey of Table Mountain, including its two principal peaks, the altitude of which was found to be twenty-six hundred feet.

This mountain, on the north side of the Golden Gate, is one of the notable land-marks for vessels approaching San Francisco Bar. As it presents from different points varied peculiarities, the flauk. ing-spurs were represented on the plane-table sheet by Mr. Rodgers. The sides of the mountain are extremely rocky, with strongly-marked gulches. This survey, which was completed in April, includes an area of seventeen square miles. The sulsequent operations of the party of Assistant Rodgers will be mentioned under another head.

Sand-dunes of San Francisco Peninsula.-In order to secure means for noting the progress of the sand-dunes in their encroachment apon the peninsula of San Francisco, especially those now advancing toward the city of San Francisco, Assistant Rodgers, who had made the original topographical survey, retraced the present outline of this great sand-drift, planted a number of properly marked stone-blocks in advance of its outline, and determined their relative positions. Annual or biennial examinations will henceforth be made to measure the rate of trarel of the sand. drift. In this work, Assistant Rodgers was aided by Mr. E. F. Dickins. The sand dunes are represented on a plane-table sheet of the scale used in the Coast Surves.

Hydrography of San Francisco Bay and approaches.-In the latter part of January, throughout February, and during parts of April and May, Assistant Gershom Bradtord was engaged in noting the surface and subsurface currents of the water in San Francisco Bay. The obserrations at each station were made night and day for a given period, and the times and stations are well connected. This work includes also a series of observations in regard to the currents on and around sonth ampton shoal. Of the following particulars, most have been plotted in graphical form, and the sheet exhibits very marked peculiarities in hydrography.

$$
\begin{aligned}
& \text { Stations occupied.............................................................................. } 19 \text {. } 19 \\
& \text { Angles and bearings of directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 3,249
\end{aligned}
$$

During three weeks in March, the party was employed in the vicinity of the wreck of the English ship Patrician, which struck on the outer eud of the Four-fathom bank and was lost. This wreck had become a serious danger to narigation. After its separation into two parts, one was traced and was fonnd to be harmless in deep water; the other was found by the aid, Mr. Ferdinand Westdahl, on the Four-fathom bank, near where the vessel had been run to save her from sinking. The exact position of the part of the wreck which is dangerous was determined and made known, for the benefit of navigators. In the operations needful, Assistant Bradford with bis party, in the schooner Marcy, had also the use of the stean-tug Sol Thomas, which co-operated for the service without charge; and of the United States revenue-cutter Wyanda. In Jane, the hydrographic party was transterred to the vicinity of Lumboldt Bay, for off-shore work, mention of which will be made under a subsequent head. In August, the schooner Maroy being unseaworthy, Assistant Bradford was directed to charter a tug and make a detailed survey of the approaches, the bar, and the Golden Gate of San Francisco Bay. This work was begun on the 7th of October, after the erection and determination of a sufficient number of signals for such service, and is well under way.

Enough has been done to indicate that important changes have probably taken place, and that the labor and care bestowed make this survey invaluable as a basis for future comparisons. At the date of Mr. Bradford's last report the weather continued farorable for soundings and for observing currents under apparently normal conditions. The following are statistics:



```
Angular measurements . 4, 407
Soundings. ... 7,900
```

Tidal observations.-The three permanent tidal stations on the western coast are jet under the care of Col. G. H. Mendell, United States Engineers. By the intelligent interest of that officer, the self-registering ganges have extended the series of observations. The gauge at Fort Point, near San Francisco, has worked remarkably well in the hands of the observer, Mr. E. Gray, who has
also continued the series of meteorological observations. Both sets of observations have been regularly tabulated by the observer.

For suggestions of special value in regard to the tidal stations on the Pacific coast $I$ am indebted also to Assistant George Daridson, whose recommendations have been met by the able co-operation of Colonel Mendell.

Hydrography of Cordell Bank.-In May Assistant Bradford was directed to extend soundings in the vicinity of this bank, but, on account of his illness, the duty devolved upon his aid, Mr.; Westdahl, who conducted the work in the schooner Marcy. Good weather during part of the time served for determining the position of the bank, by observing mountain signals of the main triangulation, and by subsequent soundings the bank was developed beyond the limits of former work. Bad weather, howerer, set in before the completion of all the soundings deemed needful in that vicinity. The temperature of the water and the currents were incidentally noted, while the party was on the bank. About the middle of June last, the mean temperature of the water was $49^{\circ}$ Fahrenheit.

Falmouth Shoal.-The site of a reported shoal in the Pacific, between the parallels $37^{\circ} 15^{\prime}$ and $37^{\circ} 38^{\prime}$ north, and between the meridians $137^{\circ} 05^{\prime}$ and $138^{\circ} 10^{\prime}$ west, has been again examined, but without finding any spot corresponding to that reported by the ship Falmouth several years ago. Commander Johnson, with the steamer Hassler, made 100 casts of the lead in the vicinity, but without finding bottom in 2,400 fathoms. In reference to the results of his examination, that officer says: "Lookouts were constantly aloft, but no indication of shoal water could be discovered. We frequently saw discolored water, caused by the shadow of a cloud. While on the ground we sighted, ran alongside of, and examined a saw-log of Oregon pine, squared at each end as for the saw-mill. The $\log$, about twenty-five feet long, and more than two feet in diameter, was thickly covered with barnacles and mussels, except at the surface, and the influence which brought the log would naturally bring kelp to that same locality."

The steamer ran fourteen hundred miles during this examination, which was commenced on the 24th of May and occupied the hydrographic party until the middle of June.

Triangulation and topography north of Mendocino Bay.-After quitting the field near San Luis Obispo Bay, as stated under the preceding bead, Assistant Louis A. Sengteller completed the office details pertaining to that survey, and transferred his party to the vicinity of Mendocino Bay, to resume the topography and triangulation from the northern limits of his previous work.

The shores of this part of the coast of California are moderately high bluffs bordered by innumerable rocks. From the flanks of the adjacent mountains the timber comes well down toward the shore-line, and adds to the dificulty of pashing triangulation along the ocean front. To avoid expense in opening lines, one of the stations occupied by Mr. Sengteller with the theodolite was upon a tree 103 feet above the gronnd. After determining a sufficient number of points the plane-table survey was extended along the coast from Russian Gulch to Pudding Creek, or several miles above the mouth of Noyo River. This survey includes the light-house site at Point Cabrillo, and the landing-places at Caspar Creek and Noyo River, at each of which, saw-mills now cut a daily average of thirty thonsand feet of lumber. The landings afford tolerable shelter for vessels from the prevailing winds of summer, but are uncertain in winter, and in that season are unsafe. After extending the topographical survey as far as practicable, Mr. Sengteller, aided by Mr. Willey, pushed a tertiary triaugulation to connect his work with that of Assistant Rodgers, whose party was employed to the northward. Both parties were yet in the field when the last reports from the section were received. The statistics of Mr. Sengteller's work are :
Signals erected ..... 15
Stations occupied ..... 25
Angles measured ..... 211
Number of observations ..... 3, 315
Miles of shore-line surveyed ..... 19
Miles of streams and ponds ..... $8 \frac{1}{2}$
Miles of roads and trails ..... 152
Area of topography (square miles) ..... $8 \frac{1}{2}$

Triangulation and topography between Noyo River and Shelter Cove, California.-As mentioned under a preceding head, Assistant A. F. Rodgers completed his office-work in the course of the winter of 1872, and early in the following spring took the field in the ricinity of San Francisco. In July, he trausferred his party to the coast of Califormia, north of Noyo River entrance, and resumed work where his operations had been closed in the preceding season. The region is wild, almost uninhabited, and destitute of roads. Mountain spurs, higb, broken, and abrupt, covered with heary timber and dense chapparal, came down boldly to the shore of the ocean. Adrance in any direction on land was difficult, and the natural obstacles to progress were increased during the summer by prevailing fogs. As autumn approached the weather became more favorable. Assistant hodgers pushed the needful triangulation, while his aid, Mr. E. F. Dickins, worked with the plane-table. The party, when the last report was receivel, was yet in the field, Mr. Rodgers intending to join his work with the survey which Assistant Sengteller was conducting along the coast from the south. ward. Statisties given in the field-report of Assistant liodgers are :

Signals erected	38
Stations occupied	25
Objects observed on	53
Angles measured	363
Number of angular measurements	11, 7 \%

The three plane-table sheets now with the party represent twenty-four miles of the coast of the Pacific, and in detail an area of 13 square miles.

Off-shore hydrography near Humboldt Bay.-In December, 1872, while the schooner Marey was under repairs, Assistant Bradford dispatched his aid, Mr. Westdahl, to watch in heavy weather, and determine the position of any undiscovered rocks off Cape Mendocino. In the course of a month he discovered five dangerous rocks, and saw the great swell of the Pacific breaking in two localities over large areas of ground on which subsequent soundings showed from 9 to 10 fathoms of water. He made 164 observations for the positions of ten sunken rocks, which had been indicated by sharp, distinct breakers.

Late in June the party sailed in the vessel for Humboldt Bay to prosecute the off-shore hydrog. raphy; but after the requisite operations on shore, the schooner was found to be naseaworthy, and returned to San Francisco in the middle of August. Before leaving Humboldt Bay, Assistant Bradford had erected twenty-one siguals, and occupied five stations for conducting the offshore hydrography. The work done after the return of the party to San Francisco has already been mentioned.

Hydrography off Crescent City, California.-The steamer Hassler, with the hydrographic party of Commander P.C.Johnson, United States Navy, Assistant in the Coast Surves, reached Crescent City early in July. Fogs and winds much interrupted progress in the soundings intendeci to be made in the vicinity. It was found, consequently, impracticable to run lines off shore to deep water, the needful signals being usually invisible when the vessel was only a mile or two from land. The reef off Crescent City was, however, thoronghly developed, and additional soundings were made in its vicinity. Tidal observations were recorded at Crescent City until the end of September, when the steamer returned to San Francisco. Uuder the head of Section XI, mention will be made of other surveys made by Commander Johnson.

Reconnaissance and triangulation from Rocky Point to Klamath River.-Late in the season, Assistant A. W. Chase transferred his party from the vieinity of Cape Sebastian, in Section XI, to the Klamath River, and made a reconnaissance and preliminary triangulation along the coast of California from the False Klamath to Rocky Point, north of Trinidad Bay, incidentally sketching in the shore-line and approximately locating the rocks along the coast. The shores traversed by his party being high, and covered with heary timber from the mountain-crests inland, affiord scanty means of carrying on the tertiary triangulation. Mr. Chase, however, found that a satisfactory trigonometrical connection can be effected between the Crescent City survey and the work on Mumboldt Bay. In this reconnaissance, 725 preliminary angles were measured from the selected sta-
tions. The statistics of triangulation completed from False Klamath to a point two miles south of the Klamath River are:

Signals erected	8
Stations occupied	6
Angles observed.	27
Obserrations	327

Assistant Chase was in the field at the date of his report. Daring the season he was aided by Mr. Panl Schumacher.

Aids to navigation.-In the course of the year Assistant Davidson has communicated for the information of the Light-House Board his views upon the best sites for light-houses and other aids to navigation on the western coast. His recommendations have included the erection of a lighthouse at Point Cabrillo, and of others in Admiralty Inlet, Puget Sound, and Hood's Canal, in the order of time in which the necessities of commerce may require them; a fog-whistle abreast of the sonthern limit of the bar of San Francisco Bay; a buoy to mark the wreck of the ship Patrician on the Four.fathom bank, near the Golden Gate; and a fog-whistle at the entrance to Humboldt Bay.

Subassistant George Farquhar has been employed, under the drection of Assistant Davidson, in making projections for the geographical reconnaissance of the western coast of Lower California, and projections for the inshore and offshore hydrography of the coast north and south of Crescent City reef. On these were plotted about two hundred trigonometrical points, the positions of which had been determined by field observations. He has also duplicated the numerous coast-views obtained by Mr. Davidson, exclusive of nearly one hundred views of points on the coast of Lower California and of the eastern shores of the Gulf of California kindly lent by Capt. William Metzgar. Of Scammon's Lagoon and others on the coast of Lower California, of which maps, with sailing directions, have been completed by Capt. C. M. Scammon, of the Uuited States Revenue Marine, copies were made by Mr. Farquhar and filed in the archives. He has furnished the numerous tracings required in the operations of the field and hydrographic parties, and, under the inspection of Mr. Davidson, compiled data for the stady of the great warm stream of the Pacific which passes the coast of Japan.

## SECTION XI. <br> COAST OF OREGON AND OF WASHINGTON TERRITORY, INCLUDING THE INTERIOR BAYS, PORTS, AND RIVERS. (Sketch No. 16, bis.)

Triangulation and topography between Mack's Arch and Royue River, Oregon.-After closing at San Pedro Bay in Section X, Assistant A. W. Chase was engaged for a month in computations and other office-duty pertaining to his previous field-work. He took the field in July in the vicinity of Mack's Arch, and erected signals for a scheme of triangulation turning on Northwest rock of the Crescent City Reef; but bad weather prevented observations with the theodolite. This part of the season was employed in pointing out the localities of the stations of previous years for the use of Commander Johnson, chief of the hydrographic party. The tertiary triangulation was subsequently extended from Crook's Point to Cape Sebastian, and from thence Mr. Chase made a reconnaissance to Rogue River. This work was conducted over one of the roughest stretches of the coast of Oregon. The region is sparsely settled and without roads. The following are statistics of the triangulation :

Signals erected

Stations occupied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Angles observed ........................................................................................ 95
Observations ................................................................................... 1,295
The topography was carried from Crook's Point to Cape Sebastian. A tracing made by plane table reconnaissance of Hunter's Cove anchorage was furnished to the hydrographic party. Mr. Chase also made sketches of Chetko River entrance and anchorage from seaward.

Hydrography of Hunter's Cove and Chetko cutrance, Oregon.-An anchorage, with good shelter for small coasting-vessels, under Oape Sebastian, and of which the shore-liue was traced this season, as already mentioned, was carefully sounded out by the hydrographie party of Commander Johnson, with the steamer Hassler. This anchorage is locally known as Hunter's Core. Schooners cau anchor safely under the lee of the island during stiff southeast winds.

Of Chetko Cove, which was also developed by soundings, Commander Johnsou reports: "This is an excellent summer anchorage; even preferable to that at Orescent City, in case of a sontheast wind, as there is more room for a sailing-vessel to work."

While soundings were in progress in the ricinity, simaltaneous observations for high and low water were recorded from July 17 until August 25 at Hunter's Cove and Chetko entrance.

Latitude, longitule, and azimuth at Kalama, Oregom. -In Augnst, Assistant George Daridson detached Subassistant William Eimbeck and Mr. T. J. Lowry from his parts to occupy a station at Kalama, on the Columbia River, for the determination of lougitude. As already stated, Mr, Davidson remained at San Francisco and exehanged signals by telegraph. The triangulation of the Columbia River includes the astronomical station of 1851 at Cape Disappointment, and is also connected with the surver of Shoalwater Bay. As heretofore, the Western Union Telegraph Company accorded the free use of their lines for this service. The season was favorable for work on the Columbia, but continnous fogs prevailed at San Francisco, so that on several nights when clock-signals were transmitted, one observer or the other was mable to make obserrations for time. At Kalama, transits were observed upon 18 nights, and signals were transmitted on 6 uights, when time observations were complete. The whole number of transits was 371 , upon 30 stars, with the Davidson meridian instrument No. 1. The registry was made on the Hipp field-chronograph No. 4848, with the Frodsham break-circuit chronometer No. 3479. After completing these, observations were commenced for latitude with zenith telescope $\mathrm{N}_{0}$. 1 , and continued for 10 nights. The total number of obserrations was 155 , upon 30 pairs and triplets. The reduction of this work is now in progress. Azimuth observations were completed in 6 nights, the record showing 120 measures for angle between the mark and Polaris, near eastern elongation, with the trelve-inch theodolite No. 37 , and 92 observations for time with the sextant.

Subassistant Eimbeck, after closing at Kalama, transferred his parts to Cape Disappointment.
Triangulation of the Columbin River.-In May, Assistant Cleveland Rockwell transferred his party from the soathern coast of California to the Columbia River to continne the work of previons seasons. As it was important to adjust the survey of the Columbia by observing at a point for longitude, instead of continuing the topography of the river shores, the triangulation was pushed forward from Westport to Kalama a distance of 32 miles. At the last-named point the Northern Pacific Railroad leaves the Columbia River and passes northward torard Puget Sound. The valley of the Columbia is heavily wooded, and progress throngh it is impeded by a dense undergrowth. The old limits of the river are steep, rocky, basaltic banks, heavily timbered, wherever trees can find room. Within the original banks lie extensive timbered fats, and broad marshes everywhere cut up by sloughs. A boat furnished the only means of transportation for the parts, and the work was consequently very laborions, especially when the freshets of June were rauning. In making the reconnaissance and reaching the stations, the only practicable route was through sloughs. Lines of sight had to be opened from each station, and erery forward line was studied under great disad vantages; but the sketch of the triangulation exhibits a satisfactory scheme, and the progress made is evidence of special energy in the service. On the Columbia the weather was favorable, and only a few days were lost by reason of the prolonged smoky season. The following are statistics of the work:
Signals erected ..... 34
Stations occapied ..... 29 ..... 29
Angles measured. ..... 129 ..... 129
Points determined ..... 40
Observations. ..... 4,640
Vertical angle-observations ..... 250
Heights determined ..... 40
H. Ex. 133

After connecting his triangulation with the point occupied by Subassistant Eimbeck, at Kalama, for determining longitude, Assistant Rockwell retarned to San Francisco, and is again engaged on the southern coast of California. He was aided in both sections by Mr. Geo. H. Wilson.

Magnetic abservations at Cape Disappointment, Washington.-After closing the service mentioned under a preceding head, Subassistant Eimbeck and Mr. Lowry occapied the two magnetic stations at Cape Disappointment, where Assistant Davidson had determined the magnetic elements in 1851. The records of this seasou iuclude 332 observations upon 9 days for declination; 125 observations: for deflection; 100 for vibration; and 248 observations for dip, with two needles. The azimuth was determined by 41 observations on the sun, and the local time by 72 double altitudes with the sex. tant. From Cape Disappointment the party returned to San Francisco aud engaged in the computations.

Triangulation and topography of Shoahoater Bay, Washington.-Subassistant J. J. Gilbert, after inking and tracing his topographical sheets and reviewing the field computations of bis triangulation of the coast of Washington Territory, took the field in April, and prosecuted work in Shoalwater Bay soutbward to connect with the survey of Columbia River. In order to do this, it was necessary to open nine avenues for lines of sight through dense fir forests, that cover the hills and low ground. The labor was great, but is repaid by the satisfactory junction of the two surreys. Both are now in known geographical relation by determinations made this season for the longitude of a station at Kalama, on the Columbia River. The following are statistics of Mr. Gilbert's triangulation :

$$
\begin{aligned}
& \text { Signals erected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 35 \\
& \text { Stations occupied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 27 \\
& \text { Angles measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 179
\end{aligned}
$$

$$
\begin{aligned}
& \text { Observations ................................................................................. . . 4, } 920
\end{aligned}
$$

The topography on four sheets represents the shores of Shoalwater Bay southward from the limits of the last season's work and connects with the plane-table survey of Baker's Bay. The statistics are:

```
Miles of ocean and bay shores. 52
Miles of sloughs. 25
```



```
Area (square miles) }3
```

Near the close of the season Mr. Gilbert started on a reconnaissance to examine the coast between Point Adams and Killamook, with reference to the practicability of conducting triangu. lation. He was engaged in that service at the date of his last report on field-work.

Tidal observations. The excellent series of tidal and meteorological observations made at Astoria have been continued by Mr. L. Wilson, under the supervision of Major G. H. Mendell, of the Corps of Engineers, Brt. Col. U. S. A., who has ably carried out the plans furnished from the Office. The tabulations of high and low waters and the hourly readings are now made by the observer.

The self-registering gauge formerly used at San Diego has been put up at Port Townshend by Assistant Lawson, and is now working regularly. Mr. Wilson left Astoria for a few days to assist Mr. Lawson in this work and to instruct the observer, Mr. L. Nessel, who also tabulates the tidal registers and keeps up a series of meteorological observations.

Triangulation and topography of Puget Sound, Washington.-During the winter of 1872, Assistant James $S$. Lawson was engaged in computing the results of his field-observations of the previons year, and in iuking and tracing the topographical sheets, duplicating records of observations, and making projections for work during the present season. Early in the spring he took the field for the triangulation, topography, and hydrography of Badd's Inlet and its approaches. The work includes the town of Tumwater, at the extreme sonthern end of Puget Sound, the town of Olympia, and the village of Swantown. In the immediate vicinity of the inlet the shores are thickly wooded,
and covered also with a dense undergrowth, but the "logging roads" afforded tolerable means for carrying on the topography, of which the following are statistics:

Miles of bay-shore line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $33 \frac{1}{2}$
Miles of roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $30^{9}$
Area (square miles) . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
At station Cooper, between Budd and Eld Iulets, Assistant Lawson made 114 observations, by double zenith distances, for determining the approximate positions of the north, south, and midde peaks of Monnt Rainiér, and the highest point of Mount Saint Helens.

In the field-work, aud in office-reductions, Assistant Lawson was efficiently aided by Mr. Fred. A. Lawson. The party had the use of the brig R. H. Fantleroy.

Hydrography of Puget Sound, Washington.-After completing the topography of Budds Inlet, Assistant Lawson took up and prosecnted the hydrography of the inlet and its approaches, and was so engaged until the close of the season. Fogs and smoke retarded the progress of the work. The surrey extends four miles northward of Olympia, and sonndings bave been made quite numerous on account of the proposed reclamation of the "flats" near Olympia. The bydrography inchades also the terminus of one of the branches of the Northern Pacific Railroad. While soundings were in progress, Assistant Lawson kept up a series of tidal observations. The following are statistics of the bydrography:


## SECTION XII.

## COAST OF ALASKA TERRITORY. (Sketch No. 17.)

Reconnaissance of the coast of Alaska.-Further progress has been made in the development of the coast of Alaska, by a party under the direction of Assistant W. H. Dall. An outline of the operations of the season will be found in the appended extracts from his report.

With the schooner Yukon, which hat been fitted ont under his immediate supervision, Mr. Dall left San Francisco on the 28th of April, and reached Iliuliuk on the 20th of Mas, making the shortest run get known between the two points. On the vogage very heary weather was encountered, lasting uearly a week, and a calm which lasted three days.
"We made land when serentecn days out near the Saunakh reefs, and during the calm discovered a bank lying some distance off shore with thirty eight fathoms of water and gravelly bottom. Here we found cod and halibot of large size and good quality in great abundance. We obtained a good series of observations, fixing the position, and approximately determining the sonthern and eastern limits of the Saunakh reefs. Within the limits of the bank, and between it and the shore, we found depths of 75 to 100 fathoms."

Mr. Dall remarks that this shoal ground in respect of distance from the nearest land corresponds with seseral other banks already known; in particalar one off the sontherm end of Kadiak; another discovered by Assistant Davidson in 1867 off Unimak; and a third, known as the "offshore ground" of the Shumagin fishermen; and from this correspondence at four places he infers the existence of a submarine ridge ramning parallel with the peninsula, from Unimak eastrard.
"Current observations were kept up during the vofage, the results tending to confirm the observations of previons years." * * * * * * * *
"The past winter in this region, as in the castern United States, has been one of unusual severity; and the season was fully a month later than the average. Field-ice on the $20 t h$ of May in Behring Sea reached to within 130 miles of Unalaska, and was from 10 to 40 feet in height above the water. This has not been paralleled since 1831, according to local tradition and the church records." * * * * * * * * *
"After rating our chronometers, we sailed from Unalaska for the Western Islands, and visited in the course of the summer nearly all the harbors previously known. A new and excellent one was discovered at the island of Adakh. Returning to Unalaska, we obtained the summer rate of the chronoweters, and, proceeding to the Shumagins, coutinued at work until the autumn storms rendered it advisable to close operations for the sear." During a tremendous gale on the $12 t h$ of Oc-
tober, the Iukon was held by three anchors in Humboldt harbor, which had been surveyed by the party last year, but the schooner William Whelan was driven ashore and totally wrecked at Unga, twelve miles to the southward. On receipt of a note which Captain Holder had sent by a native, Assistant Dall promptly went to the site of the disaster and brought the captain and crew of the wrecked ressel, on the schooner Iukon, to San Francisco.

In advance of sailing for Alaska the attention of Mr. Dall had been requested for the selection of a site proper for landing a telegraph-cable intended to traverse the Northern Pacific. This service his large experience in the operations of the Western Uuion Telegraph Company in prerious years enabled him to perform to the satisfaction of the agents of the enterprise. A site was chosen for a telegraph-station on the island of Kyska, and the harbor and its vicinity were carefully surveyed.
"We obtained over a thousand astronomical observations during the season, and nearly as many for nagnetic elements. The latter show an average decrease in the declination of more than two degrees at most of the stations, since observations were last taken, more than twenty years ago. Our stations are at nearly even distances from the Shumagins to the western end of the chain."
"Deep-sea soundiugs were made wherever opportunity offered, and much greater depths were found than any previously reported in Behriug Sea. We found, too, the deposition of Globigerina wud, or recent chalk-formation, going on at the depth of 800 fathoms."

Soundings made by the party in the Yukon disprore the existence of the Bogosloff reef, which has been marked on previous general charts as extending for twenty miles from Unimak. "We fonnd 800 fathoms and no bottom on the exact line of the supposed reef less than ten miles from the island."

The report of Mr. Dall includes special mention of the energy, interest, and competency displayed by Mr. Marcus Baker, the astronomical aid in the party, who lost no opportunity for securing results. Much of the season was passed amid rains and fogs, but a large store of important hydrographic particulars has been gathered, and the positions of most of the prominent volcanic peaks were determined approximatelf, as landmarks for charts.

The schooner Iukon arrived at San Francisco on the 6th of November, after a passage of eighteen daye, from the Shumagin Islauds. Assistant Dall and his aid, Mr. Baker, are now engaged in the computations aud other office details pertaining to the operations of the present year on the coast of Alaska.

The report made by Mr. Dall, after his return to San Franciseo, is given in the Appendix, No. 11.

Tidal observations.-The self-registering gange intended to secure a series of observations at Saint Paul's Island, in Behring Sea, arrived there in April, 1872, but unfortunately the fastenings of the clock-face had given way in the transit, and thos some parts of the apparatus had been injured. Capt. Obarles Bryant, to whom the instrument was consigned, repaired the clock as far as possible in the absence of ordinary facilities, and put the tide gauge into working order at Village Core, on the western side of the island, where it was fastened to a chib of timber filled with stone. A bench-mark was established on a rock near the crib. With occasional stoppages, owing to the injury which the clock had received on its passage, the times and heights of the tide were recorded during June, July, and August of 1879. After that the record was more frequently interrupted by defect in the moving apparatus, and Captain Bryaut, who bad done the utmost to preserve continuity of the record, was coustrained to remove the instrument in the middle of December. Soon afterward the northern drift-ice from Behring Sea, swept in by southwest winds, filled the cove, and in loosening with the approach of spring carried away the crib which had been constructed to sustain the tide gauge. The records for six months, of which the last three are marked by numerous interruptions, have been received at the office.

## COAST SURVEY OFFICE.

The operations of the Coast Survey Office have been couducted, as for many years past, by Assistant J. E. Hilgard, who resumed their immediate directiou upon his return from Europe at the begiauing of November, relieving Assistant C. S. Peirce from temporary charge of the Office.

The organization of the different divisions of the Office has remained unchanged. The following statement gives a succinct account of their operations during the past year, which have fully kept pace with the advance of the field-work.

Hydrographic division.-The planning and verifying the work of sounding parties is under the immediate direction of Capt. O. P. Patterson, inspector of hydrography, who also has charge of the construction, repairs, and disposition of the vessels belonging to the Coast Surver service. The office-work under his direction, consisting of plotting and drawing of hydrographic charts from the field records, has been performed by Mr. E. Willenbiicher, the principal hydrographic draugbtsman, who has also verified all reduced drawings of hydrograpby, and has prepared all notes relating to lights, buoys, and sailing-directions for the published charts. In drawing the charts from original notes, be was assisted by Mr. J. Sprantal.

Computing division.-The computing dirision of the Oftice has beeu continued in charge of Assistant Charles A. Schott, with the same general organization as in preceding years. The special duties assigned to the computers may be stated, in general, to have been as follows: To Assistant T. W. Werner, the compatation of current work connected with triangulations; to Dr. G. Rumpt, the comparison of field and office computations of geodetic wor $k$, aud charge of registers of results; to Mr. J, Main, the comparison of astronomical computations of time, azimuth, and latitude determinations ; to Mr. E. H. Courtenay, the least squares adjustments of completed triangulations; to Prof. R. Keith and Mr. F. Hudson, temporary computers, the reduction of astronomical obserrations; and to Mr. H. H. Gerdes, the clerical work of the computing division. The direction and examination of computations and the duty of makiug special discussions after, and reporting the results reached, derolved upon Assistant C. A. Schott. During the temporary absence of Assistant Hilgard, Assistant Schott was acting assistant in charge, between August 11 and September 8. Respecting the personnel, the following changes have occurred during the year: Dr. F. Kampf gave $u_{p}$ his connection with the surrey March 31; Mr. M. H. Doolittle was temporarils engaged betwcen April 21 and June 11, and took permanently the position vacated by Dr. Kampf, on September 1; Mr. W. B. French was assigned to field-duty March 6, and his position in the Office was filled by Mr. H. H. Gerdes, from that date; Mr. L. P. Shidy was temporarily connected with the computing division between July 19 and August 19, when he was transferred to the tidal division; Mr. C.L. Garduer was temporarily assigned to duty on September 1.

Of the special discassions made by Mr. Schott, the following may be mentioned : Results of hypsometric measures takeu at Bodega Head and hoss Mountain, in 1860 and 1872, by Assistant G. Davidson, (a joint paper with the observer;) results of the secular change of the magnetic declination at various stations; adaptation of triangulations to various conditions and configurations of the earth's surface; results of the secular change of the magnetic dechination, dip, aud intensity, at Washington, D. C.; results of differential observations of the magnetic declination made by Dr. Walker, at Fort Steilacoom, in 1866, and at Camp Date Creek, Arizona, in 1867. He also mate, on three days, the usual maguetic observations at Washington, and, in connection with these, tested the aceuracy attainable with the $\frac{23}{4}$-inch Casella theodolite, in observatious for astronomical latitudes and azimutli.

Tidal division.-The duties of this division, consisting of the redaction of the tidal obserrations taken at the several established stations on the Atlantic and Pacitic coasts; the prediction and publication of tide-tables for the principal ports of the United States; the preparation of all data relative to tides required for use in office and field work; correspondence with observers and in repy to inquiries; inspection of new apparatus, and the general supervision of the service, have been coutinued under the charge of Mr. R. S. Avery, who has been assisted in the compatations by Messrs. J. Downs, A. Gottheil, C. Ferguson, L. P. Shidy, and Miss M. Thomas. The particulars relating to the permanent tidal-stations, and observers at the same, have been mentioned under the heads of the respective sections in which they are situated.

The amount of office-work has been much reduced of late, by instructing the observers to tabulate the high and low water as well as the height of the ordinates for every hour ou suitablyprepared blank forms. This is done by the observers at North Haven, Fort Monroe, Fort Point, (San Fraucisco, Astoria, and Port Townsend; and it would appear that the character of the observations has been sensibly improved by their attention being directed to the inconvenience of occasional
failure. The tideganges of the new form, with cylinder rerolving once in twenty-four hours, receiving a week's record, have been specially provided with all that is requisite for tabulating conveniently and accurately. Where these tables have not been made by observers, they have been made in the Office as soon as convenient. The primary reductions for all the obserrations are made soon after they are received, and the results putin a shape convenient for use when wanted. The duplication of hourly readings is completed for North Haven, Santiago, Fort Point, and Port Townsend, and nearly up to date for Bostou and New York. For the latter places only selected years have been read, the earlier ones being too imperfect. The missing places in the Fort Point and Santiago series have been interpolated by curves.

On application of Mr. E. Roberts, of the British Nautical Almanac office, a copy of hourly readings of tidal observations at Fernandina, Fla., for one year, and of those at Eantiago, Cal., for two sears, were sent to him, to enable him to apply to them the new harmonic analysis of Professor Thomson, which had been used very successfully on sereral series of British observations, and on some of our own, previously sent to him.

The Tide-Tables annnally issued, containing predictions of tides for the principal ports of the United States daring the ensuing year, have been computed for 1874 , under Mr. Avery's supervision, and published. The predictions for Boston were contributed by Mr. Ferrel, based on his discussions of his observations for that port. The table of constants appended to these publications was improved and extended by means of new matter receired at the Office.

Drauing division.-This division is under the special direction of the assistant in charge of the Offce. Its immediate supervision, as heretofore, bas remained with Mr. W. T. Bright, who, from his long experience in the division, has been enabled efticiently to distribute the work, adapting it generally to the special fitness of the several draughtsmen. The duties of the division have been divided nearly as follows: (See also Appendix No. 4.)

Mr. A. Lindenkohl has been engaged in reducing for publication the topography and bydrography of the coast and harbor charts, and in making additions to the general coast and sailing charts. He has brought up to date the list of progress sketches that accompany the annual reports; made projectious on copper, projections for field parties, and diagrams. Mr. H. Lindenkohl was employed upon the finer topographical reductions as well as upon the hydrography of various charts of the coast. He has made field-projections, tracings, and a great portion of his time has been given to the production of a number of photolithographic maps and charts. He has also engraved on copper the topography of San Francisco and Tamal Pais peninsula, upon the $\frac{1}{200000}$ scale, chart of part of the western coast. Mr. L. Karcher has constructed the greater number of projections called for by the numerous field-parties, made diagrams and tracings, and has been eugaged upon photolithographic charts and sketches. Mr. F. Smith continued tracing for photographing to the publication scale of $\operatorname{sog}^{1}$, the original topographical field-sheets; made projects and copies of fieldsketches. Messrs. F. and W. Fairfax have made traced copies of original hydrographic and topographical maps and charts called for by the public service, and done miscellaneous duty. Mr. E.J. Sommer, until May, when he left the Office, was engaged upon preliminary charts and sketches. Mr. P. Erichsen has filled in upon photographic prints, scale $\frac{10}{8000}$, the topographical details, and has been engaged upon various classes of miscellaneous work. Mr. H. Eichholtz bas been employed upon adding corrections to charts already published. Mr. C. E. Lewis has attended to copring for the division and for the Office. Mrs. E. Nesbitt was employed in duplicating the volumes of geographical positions used by the division. Mr. E. Molkow was engaged during November and December in measuring the shore-line, \&c., of recent topographical sheets. Mr. F. Hartig was assigned to the division in July, and worked upon special maps, charts, and tracings. Mr. M. Angles joined the division in February, and has been employed upon photolithographic charts and miscellaneous work. Messrs. R. F. Bartle and I. Wehrhan were temporarily attached to the division during a portion of the year, and made tracings, corrected published charts, \&c.

Iu addition to the work shown in Appendix No. 4, the following statement as to the operations of this division is given :

```
Projects for new charts prepared.23
```

Projections made for the use of the topographical and bydrographical parties..... 96
Topographical sheets traced for reduction by photography............................. 11
Diagrams ..... 3
Projections on copper for engraved charts ..... 11
Tracings mate on special calls ..... 8.
Miscellaneous tracings and diagrams for field and office use ..... 117

The information furnished by this division of the Office in reply to special calls, usually in the form of tracings from the origiual maps and charts of the survey, is given in Appendix No. 3.

Engraeing division.-This division has remained under the charge of Mr. E. Hergesheimer, whose executive ability, no less than his technical knowledge of surveging, drawing, and engraving, is constantly exercised in promoting the efficiency of the work. The distribution of the work among. the different engravers, the supervision of its execution, and verification of the same, the preparation of all the lettering, titles, and notes, and the arrangement of the work of electroisping, are among the many duties performed by him.

During the last year the force of this division has been employed as follows: Messrs. J. Euthofter, S. Siebert, H. C. Evans, A. Sengteller, W. A. Thompson, and A. M. Maedel as topographical engravers; Messrs. J. Knight, E. A. Maedel, F. Courtenay and A. Peterson as letter engravers ; Messrs. H. M. Knight, H. S. Barnard, and F. W. Benner upon sanding ; Messrs. J. C. Kondrup, R. F. Bartle, J. G. Thompson, E. H. Sipe, W. H. Daris, and W. H. Knight as miscellaneous engravers; Messrs. J. Euthoffer, S. Siebert, H. C. Evans, and F. Courtenay have been employed only upon contract work; Mr. E. Molkow, who for several years has reduced outlines on copper with the pantograph, resigned the early part of the year; Mr. R. F. Bartle was engaged but one month during the year, on account of failure of sight; Mr. G. A. Morrison, the clerk of the division, Was transferred to the field in July; the clerical duties have since been performed by Mr. L. C. Kerr.

A tabular statement of the charts worked upon, and the work performed by each engrarer, is given in Appentix No. 5.

Electrotyping and photographing.-Mr. George Mathiot conducted these operations as heretofore until the last day of $\mathrm{May}_{\mathrm{a}}$, when his life was suddenly and unexpectedly ended by the rupture of a large blood-vessel. Mr. Mathiot had had charge of that important branch of the work for more than twenty years; and the great perfection of details and invariable success of the operations were, in a large measure, owing to his untiring zeal and ingenuity in experiment. A description of the process of electrotyping, as carried on in the Coast Survey Office, was given by him in the Coast Survey Report for 1851.

He was succeeded in charge of the work by Mr. A. Zumbrock, who had previonsly assisted Mr. Mathiot, and who has since carried on the operations with entire success, Mr. F. Ober assisting, as heretofore. Daring the year thirty-three electrotypes of the eagraved plates have been reproduced, and the photograpuic reductions required for the drawing and engraving divisions have been made as usual.

Division of charts and instruments.-The work in this division, which included, besides the safekeeping of archives, the may-priating, distribution of charts and reports, and the mechanician's and carpenter shops, has been directed daring the year by Mr. John T. Hoover.

The duty of registering and filing for convenient reference the original maps and charts of the survey, and the records of obserfations made in the field, and of keeping an account of the same, as they are used in the Office, was performed by Mr. A. Zumbrock until June; after that time by Mr. A. Schott.

By the press used for copper-plate printing 14,810 copies of charts and sketches have been printed within the gear. The copper-plate press was worked by Mr. T. V. Durban until June; after that time by Mr. Frank Moore.

The work of backing with muslin the sheets required for office and field use, and the miscellaneous duties pertaining to the folding room, were performed during the year by Mr. H. Nissen.

The map-room was in care of Mr. T. McDonnell. An aggregate of 16,584 copies of charts have been issued within the year, and 4,353 copies of anuunl reports of varions years have been distributcd.

The work in the instrament-shop was done under the supervision of Mr. John Clark, by John Foller, William Jacobi, Weruer Suess, Charles F. Würdemann, and E. Eshleman.

The wood-work of instruments, their packing for transportation, and all work of carpentry required in the Office has been performed by Mr. A. Yeatman, assisted by Mr. F. E. Lackey.

Clerical force.-The general correspondence and office accounts have been, as heretofore, under the charge of Mr. V. E. King, assisted by Mr. F. W. Clancy. Mr. C. A. Hoover acted as writer in the hydrographic division. Mr. R. L. Hawbins has continued to discharge the duties of principal accountant and bookkeeper in the office of the general disbursing agent, Samuel Hein, esq., and the clerical work of that office has bsen performed by Mr. W. A. Herbert and W. I. Flenner.

The paper which follows (Appendix No. 1) specifies the sites of work occupied in the past year. It is gratifying that, widely distributed as the parties have been, the survey has been advanced in each site, as far as the appropriation would permit, and withont special hinderance, either from accident or by reason of unusually unfarorable weather.

In many important details of the service the assistant in charge of the Ofice, Prof. J. E. Hilgard, has given his able co-operation. To the experience and care of the disbursing officer, Samuel Hein, esq., has been due the general promptitude in resuming work at the change of the season in places indicated by my instructions for the transfer of field and hydrographic parties, and in the arrangement of matter for this report and other office duties under my own direction. Assistant W. W. Cooper has rendered, as heretofore, acceptable services.

Respectfully submitted.
BENJAMIN PEIRCE, Superintendent United States Coast Suroey.
Hon. Wm. A. Rtcmardson,
Secretary of the Treasury, Washington, D. O.

## APPENDIX.

11. $\mathrm{Ex} .193-9$

# APPENDIX No. 1. 

Distribution of survoying-partics upon the Atlantic, Gulf, and Pacific coasts of the Critct Stetes durimg the surveying-season of 187:-73.


Distribution of surveying-parties upon the Atlantic, Gulf, and Pacific coasts, de.-Continned.


Distribution of surveying-partics upon the Atlantic, Gulf, and l'acife coasis, de.-Continued.

\begin{tabular}{|c|c|c|c|c|}
\hline Coast-sections. \& Parties \& Operations. \& Persoms conducting operations. \& Localities of works. \\
\hline \multirow[t]{9}{*}{Sechos If-Continud...} \& \multirow[t]{2}{*}{..} \& \multirow[t]{2}{*}{Magnetic observatinns. Tidal wharrations} \& T. C, moma \& \multirow[t]{2}{*}{\begin{tabular}{l}
Magmetie dechation, elip, and intensity drtermined at Lurlington and Intlath, \(\mathcal{V}^{\circ}\)., in Now \\
 Section 1.) \\
Continuous olaservations at the tical station on Gevernor's Ishand in New Sork llarbor: and occanional observations at Lamiltom Fers: Brooklyn.
\end{tabular}} \\
\hline \& \& \& 12. T. 1atict \& \\
\hline \& No. 11 \& Triangulatiom, to pography, and Jydrograpily: \& Charles Husmot assintaut: R IB Patres. aish. \& \begin{tabular}{l}
Topographical surves of the shores, and heritw praphie derelopment, fuchaing tha atiaent \\
 also Section V .)
\end{tabular} \\
\hline \& 12 \& Staion-marks..... \& John Farler, assistant \& Examination of marks set for preserving trian gulation-points on Long 1sland N. Y. aut near Pertla Ambor, Ni. ot. \\
\hline \& 13 \& Triamgulation .. \& I. W. Perhins, whassistant ; J. F. Jrat and F. W. Rinm aids. \& Triangulation near Rarnegat. connecting the detailed survey of the coast of Now Jersey with the primary triauguan. (see als ection vil.) \\
\hline \& 14 \& Toporiaphy \& C. M. Bacher, assiatant II. MI. Te Wees and II W. Mache, shlas. sistants. \& Detailed topograpin of the const of New , fersix. between Barnegat light-kouse and Manahawken, ath surver of the navigable fart of Mullica River, N. T. (Soce also Scetion IV.) \\
\hline \& 1.5 \& Hydrorraphy .... \& W. I. Vinal, sulassistant ; J. J. Evang and G. A. Morrisom, aids. \& Ifydrographe nearis completed, in the upper part of Little Exer Marbor N. .J. Aete also Section V.) \\
\hline \& \multirow[t]{2}{*}{14
17} \& Hyalrography \& JI. Mitehell and Charles Imikn, assistants. \& Soundings in the Delaware River, and determination of proper wharflines at Now Castle, Del. (See also Stection I.) \\
\hline \& \& Topagraply ..... \& II. G. Oglen, nasistant: R. D. Pal frey ant. \& Shoredine surves of Selmyhill Hiver at Miladelphia, from Lague Island upward to Farmonat. (Setalso Section CI.) \\
\hline \multirow[t]{6}{*}{Athantie coast and hays of Maryland and Virginit, fuchaling seaports and rivets.} \& \multirow[t]{3}{*}{1

2
2} \& Triangulation, topography, and hylrography. \& J. W. Iomn assistant; F. C. Ihom, ais. \& Positions determined of the light-louses on Thimble Shoal, Craney Island, Lambert Point. and Nuval Mospital, and shore-hine survey of Elizabeth River, Va. Detailed topormply amb hydrorraphy of James Liver, Ta., adranced upward, from Warwick River to Jaucstown Island. (See also Section I.) <br>
\hline \& \& H.drography . . . \& Acting Master Jobert Platt, U. S. N., assistant: J. 18. Adamson. aid. \& Complete hydrograpize sarvey of Elizah-th River, Va., including its branches and tribu taries, ©Se also Section IV., <br>
\hline \& \& Tilalobserrations \& .................................. \& Observations continued with self-recristering tide-gauge at Fortress Moure, ohl lomi Comfort, Va. <br>
\hline \& 3 \& Hydrograply . . . . \& J. S. Lradford assistart. . . . . . . . \& Special hydrographic examinations in Chesa peake Day and its branches, and tests of sailing-directions for publication in the it lantic-Coast l'ilot. (See also Section 1.) <br>
\hline \& \& Magneticobservations. \& Clarles A. Sclott, assistant \& Declination, dip, and intensity obserred at the magnetic station in Washington City, I. C., and repented disenssion of the secmar varia tion. <br>
\hline \& 4 \& Geratetic cumpetion. \& A. T. Mosman, nssiatant: W. 1. Frouch min! \& Reconnaissance from Harger's Ferry northward and wortward to the Monongabela River, Pa., for the selection of stations. (Hee also Sections IV. Y , and VIL. <br>
\hline
\end{tabular}

Distribution of surveying-parties upon the Atlantic, Gulf, and Pacific coasts, de.-Continned.

Const-sections.	Parties.	Operations.	Persons couducting operations.	Lacalities of work.
Athaticcoast and sounds of Notth Carolina. in"huling sea-ports and rivers.	No.	Astromomical observations.	A. T. Mosman, assistant ; W. J. French, aid.	Latitude and the mannetic elements determined at Kinoty's Island, const of Virginia. (see also Sections III, V, and YII.)
		Triangulation	R. E. Halter, assistant ; C. L. Gard ner, aid.	Tringulation of Curritnck Sound, N. C.
		IISdrograp	Aetiug Master Robert Platt, T.S. N., assistant: J. R. Adamson: aid.	Special examination of the shonls off Cape Inat. teras. (See also Scetion MI.)
		Astronomical observations.	A. I. Mosman, assistant ; W. B. French, aill.	Latitude ohservations completed at stations on Portsmonth Island, N. ©. (See also Sections MI, V , and VII.)
		Triampulation....	G. A. Fairfield, assistant ; B. A Colonna and W. B. Fairfleh, aidg.	Triangalation of Jamplico Soumd, N. C. contiment in the vicinity of Hatteras Inlet and Oerncoke Inlet. ${ }^{\text {. }}$
		Topograply .....	F. W. Dort, assistant; W. E. Mc Clintock, aid.	Detailed plane-table surver of the upper fhors: of Punge River. N. C. (See also Section I.)
		1lydrographs	F. F. Nes, assistant; C. P. Dillaway, sulbassistant; X. E. Pleasants, sid.	Hydrography of Croatan sound and Lwanoke Sound, including the atifacent parts of Pamphico Sound. (Seealso Section 11)
		Triangulatios and topograply.	C. T. Iardella, assistant: W. C. Hodgkins, aid.	Determination of points and plane talde survey of the shores of Core Sonud, N. C. from Cotar Island southward and westward to Jell's Point. (See also Section I.)
		Topramaply ......	C. M. Bache asststant ; II. M. De Wees and H. W. Hache, suibassistauts.	Topography of the western shores of Beanfort Harior, N. C., and of the lower part on Core Souml. (See also Section II.)
Atantic eanst and seawater channels of sonth ramina and Germeia, inclutiong sombids, fietbors and rivers.   Sinticy Vil	2	Hydrography ....	W. I. Vinal, subasqistant : J. J. Evans, aid.	Hydrograply of Cap Fear River, N. C., up to Wilmington, and resurvey of the "seward" Channel at Cape Fear entrance. (Seo also Section II.)
	2	Topography	O. M. Tittmatm, subassistant; D. 13. Waiawright and E. II. Wyvill, aide	Triangulation, azimuth, and sea-coast measure. ment from Little River, S.C., southward and westward, with topography atjucent to the shore-line. (See also Section X.)
	3	Tıp\%raphy .....	W. II. Denieis, assistant ; Bryant Gedwis, aid.	Plane-table survey, including the vicinity of North Santee and South Santer Rivers, S. C. (Sce also Section I.)
	4	Topograply and hydrograply.	Charles Mosmer, assistant; R. B. lalfrey, aid.	Detailed survey of sedislands at tho head of Saint Helena Sound, S. C., and sombings in the Coosaw, Combahee, Ashepoo, and adiacent. rivers. (Seo also Section II.)
	5	Astronomical observations.	A. T. Mosman, nssistant ; W. I. Freuch, aill.	Latitute-observations completed at Izutier atation, on Saint Simou's Island, Gal. (See also Seetioms III, IV, and VLL.)
Athantic and Gulf const of the Elorifa peninsnla, incituding reafs, and keys, and the sea. porteand rivers.	*	Triangulationand topography.	A. M. Martisen, assistant; I. N. MeClintack, subassistant; Bion Bralbiry, aid.	Topegraphical survey of the Atlantic coast of Florida below Matanzas Inlet, including the upper part of Halifas River. (See also Sec tious I and II.)
	*	Hydrography .....	Commander John A. Howell, U. S. N., assistant ; Licatenants W. II. Jacques, E. S. Jacoh, Hicharil Rush, and W. L. Fieh.	Sonntings neat Garden Key, completing hydregraphy on the Florida Reef; and extension of bydrograplyy in the vicinity of the Tortugas. (Sve also Scation I.)
	3	Iriangulation, to. pograply, and hydrography.	II. G. Oglem, nssistant; Elwin Suith, astronomical aid; Andrew 1raid, S. N, Ogden, and W. S. Bonl, aids.	Survey of the Gulf const of Florida between Tampe entrancend Saint Joseph's Bay (soutb), including sonndings in Loca Ceiga Bay. (See also Section It.)

Mistribution of surveying parices upon the Atlentic, Gulf, and I'acijic coasts, do.-Continmed.


Distribution of surveying-parties upon the Allantic, Gulf, and Pacifio coasts, dc-Continued.

Cuastsections.	Paties.	. Operations.	Iersous conducting operatious.	Localities of work.
Sibmon X -Continued....	No. 4	Topography	Stchman Forncy, subassistant	Topographical airvoy of Santn liosa Island, Santa Barbara Chamel.
		Jopmeraplay ......	V. E. Greenwell, assistant Eugene Ellicott, subassistant.	Plane-table survey of the coast of California between Gayiota Pass and Ioint Conception.
		Reconnaistanee and triamzulatien.	George Davidson, assistaut; Wil Liam Eimleck and O. H. Titimanu, subassistants; S. IS. Throckmorton, W. S. Edwards, and T. P. Woodward aids.	Triamgulation for connecting the Santa Barbara Islands with the shore line survey of Califorwia. Stations selected lur extending the main. triangulation to Monterer Bay. Marnotic elements determined at loint Conception. (Sce also Section XI:)
		Triangulationand topogaply.	L. A. Sengteller, atsistant; I. I. Willes, aid.	Topographical survey of the coast of Califoruia near San Luis Olispo Bay.
		Astronomical ob, servations.	George Davidsou, assistan! ; S. R. Throckmorton and W. S. Edwartis, aids.	Latitule and azimuth determined at San Luis Obispo and at San Sinucon, Cal. Magnetio elements determined at Point Pinos, Cal. (See also Section XI.)
	9	Triangulation and topograply.	Cleveland liockwell, assistant; George II. Wilson, aid.	Topegraphy of the coast of California north oll Piedras Lhneas. (See also Section XI.)
	10	Astronomical (1)servations.	George lonvilson, assistaut; S. L. Throckmorton, aid.	Telegraphic observatious at San Franciseo for determining the lougitude of Kalana on the Cohmbia River. Magnetio elemente determined at San Francisco. (See also Section II.)
	11	Topowraply	Aleg. F. Rodects, assistant: E. F. Jickius, aill.	Topographical survey of Table Mountain on the worth side of the Golden Gate. Survey of the sand duyes near San Francisco.
	19	Dydrograply	Gershom Lradfurd, assistant: F' Westdaht, aitl.	Special obsorvations on the currents of san Francisco lay, and soundings to develop the changes in depth in the bay and on the bar. Hydrography of Cordell Bank.
		Tidal ofmervations.	Col.G.H.Mendell, C.S. Engineers: E. Gray, observer.	Serics of tidal and meteorological ubservations continued at Fort Point near San Francisco. (See also Section XI.)
	13	Triangulation and topogrality.	L. A. Sengtelet, hesistaut ; II. I. Willer, aid.	Topography of the coast of Califurnia vorth of Mendocine Tbay.
	14 15	Triangulation and topograply.	Aug. F. Rodgers, nusistant; E.F. Dickias, aid.	Detailed survey of the coast of Califumia north of Noyo River entrance.
	15.	Mydrography ....	Geribion Bradford, assistant; F. Westdahl, aid.	Locks of the coast of Califormia detormined in position near Capo Mendocino.
	16	Itydrography .....	CommanderI'C.Jolnson, C.S.N., assistant.	Soundings along the const of California in the vicinity of Cresecnt City heef. (See also Sec. tiou XI.)
	17	Keconnaissance and trinngula. tion.	A. W. Chase, assistant	Triangulation betwecu Klanath liver and False Klamath; and reconnaissance for itsextension to Nocky Point, Cal. (See also Section XI.)
Const of Oregon and of Whahington Ierritory, iucluting the interior bave, ports, aud rivers.		Triangulation and topography:	A. W. Chase, assibiant	Topography of the const of Oregon from Crook's Point to Cape Sobastian, and reconnaissance for extending the coast-triangulation nerth. ward to Rogue liver entrance. (See also Section X.)
		$\begin{aligned} & \text { Iydregtapy .... } \\ & \text { Astronomical ob- } \\ & \text { scrvations. } \end{aligned}$	Commander 1. C. Juhison. U.S. N, assistant.	Soundings developing anchorage under Cape Selastian, and at Chetko entranee, Oreg. (Sce also Section X.)
	3		Willinm Eimbuck, subossistant; T. J. Lowry, aill.	Latitude, longitudo, and azimuth determined at Kalama on the Columbia River, Oreg. Magpetic declination, dip, and intensity determined at Cape Disappointment, W. T. (See also Section X.)

Distribution of surveying parties upon the Atlantic, Gulf, and Pacific cousts, de.-Continned.

Coast-sections.	Parties.	Operations.	Persons conducting operations.	Localities of work.
Section XI-Continued..	No. 4	Triangulation.	Cleveland Rockwell, assistant; George II. Wilson, aid.	Triangulation of the Colmbia River extented from Westport to Kalama Oregong (bine also Section X.)
		Triangulationand topography.	J. J. Gilbert, subassistaut	Detailed survey of the shores of Shoalwater Bey, W. T., and eonnection of work with the surves of Colnmuia Rirer.
		Tidal observations.	Col. G.H. Mendell, L.S.Enmineers; L. Wilson and L. Nessel, observers.	Tidal and meteorological observations continued at Astoria, Oreg. and at lort Townshend. W.   T. (See also Section X.)
		Triangulation, to pography, and hydrography.	James S. Lawson, assistant: F. A. Lawson, ail.	Topographical survey of the shores and hadrog. raphy of Budd's Inlet including the develog. ment of the approaches from luget somin, W.T.
Coast of Alaska Territory.	1	Geographical and hydrographic reconnaissance.	W. H. Dall, assistant ; Marcus Baker, aid.	Geographical positions determined, aud development of harbors, anchorages, and matine chatacteristice of the coast of Alaska.
		Tidal obserrations.	Capt. Charles Bryant, W. Il. Dall .	Series of tidalobservations record dat Saint rands Ishand in Behring Sea, and at the Alemian Iskants, Alaska.

H. Ex. 133

## APPENDIX No. 2.

Statistics of field and office work of the United States Coast Surrey during the year 1872.

Description.	$\begin{gathered} \text { Previous to } \\ 1872 . \end{gathered}$	$187 \%$	Total.
RECONAAISEANCE.			
Area in square miles.	69, 846	4, 057	73,903
Partien, number of	54	3	57
BASE-TINES.			
Primary, number of	12	1	13
Secondary, number of	84	8	92
Length of, in miles.	2343	484	2833
triavgliation.			
Area in square miles.	60,672	1,237	61, 909
Horizontal-angle stations ocoupied	6,992	370	7,362
Geographical positions determined.	13, 100	721.	13, 821
Vertical-angle stations ocenpied	382	8	390
Elovations determined, number of	798	23	821
Parties, number of	227	22	249
Astroxomical oferationts.			
Stations occupied for azimuth..................................................	115	3	118
Stations occupied for latitude	196	6	202
Stations occupied for longitude.	250	5	255
Permanent longitude-stations	42		42
Partiea, number of.	65	8	73
Magnetical stations occupied, number of	324	13	337
Larties, number of.	62	7	69
torograpiy.			
Area surveyed in square miles	21,726	679	22, 405
Lengtt of general coast in miles	5,288	98	5,386
Length of shore-line in miles, including rivers, crocks, and ponds.	60. 531	1,619	62, 140
Length of roads in miles.	32,428	746	33, 174
Parties, nnmber of.	312	21	333
hydrography.			
Parties, number of.	222	18	240
Number of mites rua while sounding	245, 8.4	10,621;	250, 505
Area sounded in square miles.	56, 276	1,873	64, 776
Miles run additional of outside or deep-sea soundings....................	30, 738	8,500	39, 238
Soundings, namber of....	10, 700, 631	612,514	11, 313, 145
Soundings in Gulf Stream for temperature.	4,072	.............	4, 072
Tidal stations, permanent.	168	8	176
Tidal stations occupied temporarily	1,335	52	1,387
Tidal parties, number of.	226	34	260
Currentrstations occupied.		55	
Current-parties.		3	
Specimens of bottom, number of ..............................................	9,609	89	9,698
- RECORDS.			
Triangulation, originals, number of volnmes.............................	1,464	102	1,566
A stronomical abservations, originals, number of volumes..............	821	83	909
Magnetical observations, originals, number of volumes .................	284	14	298
Dnplicates of the above, number of volumes..	1,891	119	2,010
Computations, number of volnraes .......	1, 805	93	1,898
Fydnographical soundings and angles, original, number of volumes...	5,449	321	5,770
Hydrographical sonndings and anglea, duplicates, number of volumes.	403	68	475
Tidal and current observations, originals, volumes, number of .........	2,229	106	2,335
Tidal and carrent observations, daplicates, volnmes, number of......-	1, 744	40	1,784
Sheote from self-registering tide-gauges, number of.......................	1,947	104	2, 051
Tidal reductions, namber of volumes .................w.....................	1,448	39	1, 487
Total number of volumes of records. ........................................	17,363	985	18, 348

Statistics of field and office work of the United States Coast Survey, dc.-Continued.


## A P PENDIX No. 3.

Information furnished from the Coast Survey Offee, by tracings from original sheets, de., in repiy to special calls, during the year cnding November, 1873.


Information furnished from the Coast Survey Office, by tracings, de.-Continued.

Date.		Name.	Data furnished.
1873.			
Jaly	7	Capt. R. H. Wyman, United States Navy, Hydrographic Office.	Porpoise Harbor,
	7		Shumagin's Istands, (Harbors of Alaska.
	7		Coal Harbor,
	7	. do ...........................................	Popoff Strait, Sanborn Harbor,
	24	J. F. Waring, forwarding agentCentral Railroad, Ga.	Distances from Sarannal, Ga., to Baltimore.
	24	.-.... .do	Distances from Savannall, Ga., to Philadelplia
	24	. do	Distances from Savannal, Ga., to New York.
	24	do	Distances from Savannah, Ga., to Boston.
	24	Col. J. D. Kurtz, United States Corps of Engineers.	Topographical survey of Cape May and ticinits, N.J.
Angust	7	Maj. Peter E. Hains, Enited States Corps of Engineers	Topographical survey of Morris Island, S.C.
	12	Town-commissioners of New Castle, Del	Hydrographic survey of harlor of New Castle, Del.
Septemiber	17	Verplanck Colvin	Duplicate projections of Lake Clamplain, with light-honses, de., plat ted  
	18	William McGeorge, jr., esq	Hydrographic and topographical surveys of Paramores Island and vicinity, Va.
	25	Joshua Gilbert, esq	Hydrographic and topographical surveys from: Saint Augustine to Halifax River, Fla,
October	8	Maj. Henry M. Robert, United States Corps of Engineers.	Hydrographic information of the Columbia River from above Astoria, Oreg.
	10	Gen.J.G. Barnard, United States Corps of Engineers	Hydrographic information of the Mississippi delta.
	17	Brown and Le Baron, ci vil engineers	Topographical surrey of part of Eastern l'oint, Gloucester, Mass.
	24	A.P. Barnard, esq	Hydrographic survey of entrance to New Haven Harbor, Conn.
	25	Hon. David Yulee, of Florida........................	Hydrographic survey of Sawpit and Sister Creeks between Nassau Sound and Saint John's River, Fla.
	30	John Daymond, esq	Topographical survey of the Mississippi River between Poverty Point and Jesuit's Bend, La.
November	7	Burear of Ordnance.	Topographical sarvey, east side of Potomac River, from Marbury Point toward Gissborough Point.
	11	Bvt. Brig. Gen. W. F. Raynolds, Cnited States Corps of Enginoers.	Projection and trigonometrical poiuts in the ricinity of Bulkhead Shoal, Delaware Miver.

## APPENDIX No. 4.

## DRAWING DIVISION.

## Charts completed or in progress during the year ending November 1, 1873.

1. Hydrography, 2. Topography. 3. Drawing for photographic redaction. 4. Details on photographicoatines. 5. Vorification. 6. Lettering.

Titles of charts.	Scale.	Draughtsmen.	Remarks.
Moose-a-bec Reach, Me.	1-40,600	1. H. Lindeukohl	Preliminary edition additions.
Coast-chart No. 3, Petit Meuan light to Naskeag Heat, Me	1-80, 000	3.	
Coast.chart No. 4, Naskeag Head to White Head light, including Penobscot Bay, Me.	1-80, 000	1. H. Lindenkohl. 3. F. Smith. 4. H. Lindenkohl. 4. P. Exichsen.	
Penobscot Bay, Me. (Testern part)	1-40,000	1. H. Lindenkohl. 2. A. Lindenkohl.	
Saint George's River and Muscle Ridge	1-40,000	2. II. Lindenisoh	New edition; com pleted.
General coast chart No. I, Quoddy Head to Cape C	1-400,000	1, 2. M. Lindenkahl. 2. A. Lindenkohl.	Additions.
Sheepscot and Kennebec Rivers, Me	1-40, 000	2. A. Lindenkoh	Additions; completed.
Const chart No, 7 , Kennebec entrance to Cape	1-80, 000	1. L. Karch	Additions ; completed.
Damariscotta and Medomac Rivers, Me	1-40, 000	2. H. Lindenkohl	Additions ; completed.
Const-chart No. 11, Monomoy and Nantucket Shoals to Muskeget Chamnel, Mass.	1-80, 000	1. A. Lindenkohl	Additions; completed.
General coast-chart No. II, Cape Ann to Gay Head, Mass.	1-400, 000	1. A. Lindenkobl.	Additions; completed.
Narragansett Bay, R. I. (upper part)	1-40,000	2. P. Erichsen. 2. A.Lindenk	Completed.
Narragansett Bay, R. I. (lower part)	1-40,000	2. H. Lindenkohl.	Completed.
Coast-chartiNo. 13, Narragansett Bay,	1-80, 000	2. A. Iindenkoll. 2. P. Erichsen. 2. H. Lindenkoh.	
Lake Ohamplain from Ligonier Point to Camberland Head light (sheet No. 2).	1-40,000	1,2. A. Lindenkohl. 2. L. Karcher .....	Completed.
Lake Champlain from Plattsburgh to Canada boundary (sheet No. 1).	1-40,000	1,2. A. Lindenkohl. 2. L. Karcher	Completed.
Barlington Harbor, Vt	1-10,000	1, 2. E.J. Sommer	Completed.
Now York Bay and Harbor (upper she	1-40,000	1,2. A. Lindenkoh1. 1. H. Lindonkohl..	Completed.
Atlantic coast No. II, Nantucket to Cape Hatteras	1-1, 200, 000	1. A. Lindenkol	Additions; completed.
Delaware River, nary-yard to Fort Miffin light	1-20, 000	1, 2. H. Lindenkoh	Completed.
Now Castle Harbor, Del	1-1, 250	1,2. F. Horteg	Completed.
Coast-chart No. 15, Plum Istand to Weich's Point	1-80, 000	1, 2. A. Lindenkoh	Additions; completed.
Ceneral coast-chart No. IV, Cape May to Cape Henry	1-400, 000	1. $\Delta$. Lindenkohl	Additions.
Coast-chart No. 32, Chesapeako Bay, York River to Pocomoke Sound, Va	1-80,000	1. A. Lindenkohl........................	Additions; completed.
Coast-chatt No. 44, Pamplico and Neuse Rivers, N. C ..........	1-80, 000	1,2. A. Lindenkoh	Completerl.
Coast-chart No. 50, Cape Fear and approaches, including the river to Wilmington, N. C.	1-80,000	1. A. Lindenkol	Additions; completed.
Coast-chart No. 57, Sapelo light, Ga, to Femandina,	1-80,000	1. A. Lindenkohl، 2. P. Erichsen	Additions; completed.
Doboy and Altamalia Sounds,	1-40,000	1. F. Fairfax.	Completed.
Saint Simon's Sound,	1-40,000	1. F. Fairfax. 2. F. Fairfax. 2, 工. Karoher.	Additions.
Saint Andrew's and Jekyl Sounds, Ga.	1-40,000	1. H. Lindenkohl. 1. F. Fairfax. 2. HI. Lindenkohl.	Completed.
General coastchart No. VII, Caped Romain to Saint Mary's River.	1-400,000	2. A. Lindenkohl.	Additions.
Saint Mary's River and Fernandinn Harbor.....................	1-20,000	1. H. Lindenkohl	Additions; completed.
Coast-chart No. 58, Cumberlaud Sound, Saint John's River, and coast sonthward.	1-80, 000	2. P. Frichsen. 6. H. Lendenkohl,	
Indian River Inlet, Fla	1-40,000	1, 2. I. Karcher.	Completed,
gaint John's River entrance, Fla.................................	1-30, 000	1. L. Karcher. 1. A. Lindenkohl ........	Additions ; completed.
Corstrchart No. 71, Tortugas, Loggerhead, and Garden Keys. Fla.	1-80,000	1. A. Liadenkoh.	
Saint George's Sound, Flan (eastern part).........................	1-40,000	1. E.J. Sommer.	dditions.
Saint Ceorge's Sound, Fla, (western part)	1-10,000	1. E.J. Sommer	Additions.
Const-chart No. 86, Pensacola Bay, ¢c., Flm.	1-80, 000	1. A. Lindenkohl. 2, P. Eirichsen.	

Charts completed or in progress, de.-Continued.

Titles of charts.	Scalo:	Draughtsmen.	İemarks.
Gulf coast, Key West to Rio Grande	1-1, 200,000	1. A. Lindonkohl.	Alditions.
Coastchart No. 91, Lakes Borgne and Pontchartrain, La.	1-80, 000	1. A. Lindenkohl.	
Goneral coast-chart No. XIUI, approaches to Mississippi delta.	1-400, 000	1. A. Liudenkohl.	Additions.
Coast-chart No. 94, passer of the Mississipipi	1-80, 000	1. A. Lindenkohl.	Completed.
Pacifie coast No. 2, Santa Barbara Channel, Ca	1-200, 000	2. A. Lindenkoll. 2. H. Lindelkohl.	
San Francisco Penibsula, Cal	1-200, 000	H. Lindenkohl, engraving topagraphs..	Completed.
Tamal Pais Peninsula, Cal	1-200,000	H. Lindenkohl, engraving topograplyy...	Completed.
Pacific coast No. 7, Meudocino City to Humboldt Bay, Cal.	1-200, 000	1. A. Lindenkohl.	
Trinidad Harbor, Cal.	1-15, 000	1,2. A. Lindenkohl.	Completed.
Crescent City and Saint George's Reef, Cal.	1-40,000	1. H. Lindenkoh1	Completei.
Cape Orford and reef, Oreg	1-40,000	1. $\Delta$. Lindenkohl.	Completed.
Yaquinna River ontrance, Oreg	1-20, 000	1. A. Lindenkohl.	Additions; completed.
Columbia River, Oreg. (sheet No. 2)	1-40,000	1. E.J. Sommer.	Completed.
freliminary photonthographic charts.			
Somes' Sound, Me.	1-10, 000	1,2. E. J. Sommer.	Completed.
Belfast Bay, Me.	1-15,000	1,9. F. Horteg.	
Vineyard Haven, Mass	1-15, 000	2. P. Erichsen. 1. M. Angles-.	Completed.
New Haven Harbor, Conn.	1-16,000	1. L. Karcher. 1. M. Angles. 2. P.Erichsen.	Completed.
Rurlington, Vt.	1-16, 000	1, 2. M. Angles.	Completed.
Plattsburgh and Cumberland Bay, N. X.	1-16,000	1. F. Horteg. 2. H. Lindenkoh.	Completed.
Lake Champlain, from Ligonier Point to Cumberland Head (sheet No. 2).	1-50,000		Completed.
Lake Champlain, from Plattsburgh to Canada boundary (sheet No.1).	1-50, 000	1,2. H. Liudenkehl	Completed.
Hatteras Shoals, N.C	1-80, 000	1. M. Angles.	Completed.
Saint Andrew's and Jekyl Sounds, G	1-60, 000	1,2. M. Angles.	Completed.
Triuidad Harbor, Cal ..............................................	1-20, 000	1, 2. H. Lindenkuln	Completed.
marbors of alaska.			
Sanborn Harbor, Nagai Island ...................................	1-40, 000	1,2,6. H. Jindenkoht	Completed.
Coal Harbor, Zachareffekaia Bay	1-20,000	1,2,6. H. Lindenkohl	Completed.
Popoff Strait and HumboldtiHarbor	1-40, 600	1,2,6. H. Lindenkohl	Completed.
Sketch of the Shumagin Islands..	1-1,000, 000	1,2,6. II. Lindenkoh	Completed.

# APPENDIX No. 5. 

ENGRAVING DIVISION.
Plates completerl, continued, or commenced during the year 1873.

Titles of plates.	Scale.	Eugravers.
completed.   Coast-charts.		
No. 5, from Perobscot Bay to Kennebec entrauce	1-80, 000	4. J. Knight and E. A. Maedel.
No. 31, entrance to Chesapeake Bay (edition of 1872).	1-80, 000	3. F. W. Benner. 4. E. A. Masdel and A. Petersen.
No. 32 , Chesapeake Bay, from York River to Pocomoke Sound (edition of 1872).	1-80, 000	3. W. A. Thonpson. 4. A. Petersen.
No. 33, Chesapeake Bay, from Pocomoke Sound to Potomac River (edition of 1872).	1-80, 000	3. W. A. Thompson. 4. A. Petersen.
No. 34, Chesapaake Bay, from Potomac River to Choptank River (odition of 1872).	1-80, 000	3. W. A. Thompson. 4. A. Petersen.
No. 35, Chesapeake Bay, from Choptank River to Magothy Iniver (edition of 1872).	1-80, 000	3. H. M. Knight. 4. A. Petersen.
No. 36, Chesapeake Bay, from Magothy River to head of bay (editon of 1872).	1-80,000	3. W. A. Thompson. 4. A. Petersen.
No. $\mathrm{si}_{\text {, }}$ from Hunting Island to Ossabaw Somal (edition of 1872).	1-80,000	3. H. S. Baruard. 4. E. A. Maedel.
Harbor-charts, de.		
Southwest Harbor and Somes' Sound.	1-40,000	1,3, 4. W. H. Knight.
Damariscotta and Medomac Rivers (preliminary edition) ...	1-40,000	2. W. A. Thompson. 3. II. M. Kuight. 4, A. Petersen.
Narragansett Bay (in two sbeets) ...........................	1-40, 000	2. W. A. Thompson. 3. F. W. Benner and W. A. Thompson. 4. E. A. Maedel and A. Petersen.
Barlington Harbor, Vt	1-10,000	1, 2. J. C. Kondrap and W. A. Thompson. 4. J. G. Thompson,
Ifatteras Shoals.	1-80, 000	1,3,4. W. H. Knight.
comtinued. Gencral ooast-charts.		
No. I, Quoddy Head to Cape Cod............................	1-400, 000	1, 2. J. Enthofler. 3. H. M. Kuight. 4. E. A. Maedel and F. Courtenay.
No. II, Cape Ann to Gay Head .............................	1-400, 000	2. W. A. Thompson, 3. H. M. Knight. 4. J. Knight, E. A. Maedel, and J. G. Thompson.
No. V, Cape Henry to Cape Lookout .......	1-400, 000	1, 2. A. M. Maedel. 4. E. A. Maedel.
No. VII, Cape Romain to Saint Mary's River.   Coast-charts.	1-400, 000	1, 2. A. M. Maodel. 4. F. Courtonay, E. A. Maedel, and J. Knight.
No. 3, Frenchman's and Blue Hill Bays.	1-80, 000	1, 2. J. Enthoffer. 4. E. A. Maedel.
No. 4, Penobscot Bay....	1-80, 000	1, 2. J. Enthoffer. 4. E. A. Maedel.
No. 6, Kennebec entrance to Saco River	1-80, 000	3. H. S. Barnard. 4. E. A. Maodel.
No. 7, Kennebed entrance to Cape Porpoise	1-80, 000	1, 2. W. A. Thompson. 4. E. A. Maedel.
No. 20, Chincoteague Inlet to Hog Inland	1-80, 000	3. F. W. Benner.
No. 30, Hog Island to Cape Henry	1-80,000	3. W. A. Thompson.
No. 56, Savannah to Sapelo Island..	1-80, 000	3. H. S. Barnard.
No. 57, Sapelo Island to Saint Mary's River	1-80,000	2. A. Songteller. 4. E. A. Maedel.
No. 91, Lakes Borgne and Pontchartrain .....................	1-80, 000	4. F. Courtenas.
No. 94, Missibsippi River No. 1	1-80,000	1, 2. A. M. Maedel. 3. H. M. Knight. 4. J. Knight.
Harbor-charts.		
Monse a-bee Rench.	1-40,000	1. W. H. Davis. 3. H. M. Knight. 4. J. G. Thompson.
Mount Desert Island, Sce. (east)	1-40,000	1. A. M. Maedel and J. C. Kondrap.
Penobscot Bay (east)	1-40,000	1. E. Molkow and J. C. Kondrup.
Tenobscot Bay (west)	1-40,000	1. E. Molkow, J. C. Kondrup, and A. M. Maedel. 4. F. Courtenay.
Saint George's River and Muscle Ridge Channel.	1-40,000	2. W. A. Thompeon. 3. H. M. Knight. 4. A. Petersen.
Plymonth, Kingston, and Duxbary Harbors............. .-	1-40,000	4. J. G. Thampson and J. Knight.
Pamplico River. ....... .........................	1-80,000	1. J. C. Kondrup. 4. A. Petersen. 2. H. C. Evans.

Plats completed, continuct, or commenced, de.-Continued.

Tilles of plates.	Scale.	Engravers.
Neuse River..	1-80, 000	1. J. C. Kondrup. 4. A. Petersen.
Colmblia River No. 1	1-40, 000	1,2. S. Siebort.
Santa Barbara Channel No. 2.	1-200, 000	1. W. A. Thompson. 4. A. Peterion.
Coast-chart No. e6, from Choctawhecher Bay to Pensacola lias.	1-80,000	1, 2. H. C. Evans. 4. A. Petersen and E. A. Mamel.
Hatteras Shoals.	1-00, 000	1,3,4. W. II. Kuight.
Saint Mary's liver and Fernandina Larbor	1-20.000	1. 4. J.G. Thompson. 2. J. C. Konitup.
Columbin liver No. 2	1-40.000	1, 4. W. H. Davis.

II. Ex. 133-11

APPENDIX No. 6.

List of origiual topographical sheets registered in the archires of the Usited states Coost surrey from Junc, 1865, to January, 1873.

Localities.	State.	Scale.	Date.	Toporrapler.	Regristernamber.
Letite IPassage and vicinity	New Brnoswick	1-10, 000	185)	W. II. Denuis	1007
Part of Fundy Hay	Maine and New ITrunswick.	1-10, 000	166	do	981
Saint Croix River (Calais and Saint stephen's)		1-10, 000	1869	do	1150
West Quoddy Bay	Maine	1-10,000	1865	. do	980
Eastport and vicinity	-19	1-10,000	1865	do	979
Morse-a-bee Reach (midulte sliert)	do	1-10, 0003	1870	J. W. Hobit	1:71
Moose-a-bee Heach (upper sheot)	. -10	1-10,000	1870	do	1172
Moose-a-hec keach (lower shect)	do	1-10,000	1270	. .do	1173
Goudtsiorough Bay	do	1-10, 1000	1 16a	C. Hockwell.	1039
Winter Harbor to Goublsborough lay	do	1-10, 000	1865	. ${ }^{\text {do }}$	1040
Mount llesert Tsland	do	1-10, 000	18.1	J. W. Domn	1243
Momint Desert Iskand, southwestern I	do	1-10,000	1878	do	12 d
Mount Desurt Island, western part	do	1-10,000	1829	do	1228
Islands south of Mount Ibescrt	do	1-10, 000	1271	do	1245
Great and Little Cranlerry Ishands, \&e	do	1-10, 000	1871	. ilo	1944
Belfast and Searsport	do	1-10,000	18.2	C. T. Iardela	1272
North Haven Ialand, including ledges and island nortl of Matn and Little Thorourhfares.	do	1-10,000	1867	F. W. Dorr'	1072
Nortiern part of Vinal Haven Ishan, with Stimpson's, Calderwood's, and Babibage Islands.	do	1-10, 000	1818	.... do. ..........	1075
North Islelorough, Penobscot Bay	do	1-10, 000	1871	A. WV. Long fellow	125\%
South Isteborongh, Penolseot Lay	do . . . . . . . . . .	1-10,000	1871	10	1:256
Penobscot Bay, islands south of Isleborough		1-10, 000	1870	do	1107
Penobscot Bay, western shore from Mrgunficon to Knights Point,	1	1-10, 009	181	F. W. Dorr.	1233
Fox Islends, wertera part of	10	1-10,000	1868	.-... 10	1093
Fox Inlands, soutlicastern part of	do	1-10,000	1870	H. M. De Wees	1157a
Fox Islands, southeastern part of, and Smith, Saddleback, and Brimstone Imlands.	. do	1-10, 000	1870	do	$1157 b$
Hocklami Harbor ant vicinity	. 10	1-10,000	1870	W. H. Denuis	1160
Friendsluip	do	1-10,000	1867	Charles Hosmer	1053
Soal, Tennant's, and Mobquito Harbors	do	1-10,000	1868	W. H. Dennis	1031
Saint George's River entranco	13	1-10, 000	1869	F. W. Dorr	1117
Saint Greorge's River		1-10, 000	1868	Charles Hosmer	1116
Wesketg River and vicinity	do	1-10, 000	1869	W.H. Dennis	1151
Merrymeeting Ray, includiag Androscoggin, Muddy, and Cathance Rivers.	...do	1-10, 000	$1 \times 71$	C. H. Bayd	1914
Mfuscongus Bay, ialands and ledge		1-10,000	1863	F. W. Dorr.	1001
Marcongus Bay, sonthern part.	. do .............	1-10, 000	1865	. do	1002
Muscongns lisy, from Round I'onsl to Hoca	. do	1-10, 0 (0)	1866	C. Rockurell	10.88
I'emmaquid Neck, including John's Ray and Pemmaquid Eiver	do ....... - - -- . -	1-10,000	1866	F. W. Dorr	1032
Pemmaquid Point, including New Harkor and west shore of Mnscongus Bay.	- .do	1-10,000	1866	. . .do	1033
Damariscotta River (luyer part)		1-10,000	1865	S. A. Gilbert	945
Damarisatta River (opper part)	. do	1-10,000	1865	do	994
Medomac River	. do	1-10,000	1867-68	Charles Hosmer	1076
linekin's Bay and Islands at month of Danariscota Itiver	do	1-10, 000	1865	F. W. Dorr.	1000
Westport and Arrowsic Ishands		1-10,000	1865	E. Hergesheiner.	982
Kennebec River, head of	do	1-10,000	1859, 65	R. M. Bache.	1061
Kenmebec River, from A bagalasace Point to Richmond	do	1-10, 000	1869	C. H. Boyd	1115
Kennebec Mirer, from Richmond to Gardiner	do	1-10, 000	1870		1158
New Meadow River, from Forster's Point to New Meadow bridge.	....do ..............	1-10, 000	1866	J. W. Dona	1021

List of original topographical sheets registered in the archives, tc.-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Jegister. number.
Caseo bay, from Midde bay to New Meadow hirer, inchuling north ond of Sebaskahegan Island.	Maine	1-10,000	1867-69	A. W. Longichow	112.1
Casco Bay, Sebaskahegan and Ort's Lslan		1-10, 000	1865	do	101
Casco Bay, sketch of Half Way Rock.		1-2,000	1867	C. H . Boyd	1056
Porthad Hatbor, whatf and shoreliue	do	1-5,000	1867	A. Y. Loncfelhow and II. W. Bache.	1111
Portland City and Harbor, special survey		1-1,200	1868-69	A. Eindenkul	114
Portland City and Harbor, special surver No. 2	do	1-1, 204	186\%-69	. ${ }^{\text {do }}$	11406
Porthand City and Harbor, special survey No. 3	no	1-1,200	1888-69	d ${ }^{\text {d }}$	141a
Fortlaud City and Harbor, special survey No. 4	do	1-1, 200	1869	Charles Hosmer	1136
lorthand City and Harbor, special survey No. 5	alo	1-1, 200	1269	do	114tr
Portland City and Harbor, special survey No. 6	do	1-1,200	1869	J. Wr. Donu.	114:\%
Portland City and llarbor, special survey No. 7	do	1-1, 200	1869	do	1143a
Portland City and Harbor, special survey No. 8	do	1-1, 2100	1269	Charles Hosmer	1143\%
Portland City and Ilarbor, special survey No.	do	1-1, 200	1869	J. W. Doun	1144a
Portland City and Harbor, special survey No. 10		1-1, 200	1809	J. N. McClintock	144
Mouth of Saco River and Biddeford Pool	do	1-10, 000	1870	LI. Adaus	11-6
Sace River and towns of liddeford and Saco	. . ${ }^{\text {do }}$	1-10,000	1871	.....do	1205
Grose Fair Creek to Spurwich River	do	1-10,000	1871	do	124
Kemmebunk Port and Cape P'orpoisc to Hrog's Neek	do	1-10, 000	1270	do	1180
Coast from Ogrunquit, in Wells, to Mousam River	do	1-10, 000	1869	do	11:1
Wells Beach, included in sheet No. 112	do	1-10, 0000	1867	(to	$105 \%$
Coast from Kittery to York	do	1-10,000	1807	10	1004
Coast from lioar's Head to lige Harbor	New Hamps	1-10, 000	1866	do	102 S
Coast from Rye Harbor to dear Portsmo	...do ......	1-10, 000	1867	. do	184
North River, sheet No. 1	Massach	1-5,000	1870	H. L. Whitug.	1:51a
Nurth River, sheet No. 2	de	1-5, 000	1870	......do	12.17\%
Cape Cod Bay, western shore, from Ship Point to West Sand wich	do	1-10,000	1867	P. C. F. West	1002
Cape Cod Bay, western shore, from Eel River to Ship Point.	do	1-10, 000	1266	..do	1403
Cape Cod Bay, sonthern shore, from Orleans to Brewster.	. l o	1-10, 000	1868	H. Adanz	107
Cape Cod 13ay, northern shore, from North Dennis to Brewster	do	1-10, 000	1868	I. C. F. Weest	10:
CapeCod lay, castera slrore, from Pleasant Bay to Nausett Harbor	do	1-10, 000	1868	II. Adam	1075
Cape Con, southern extremity, including vilhge of Chatham	do	1-10,000	1868	H. W. Bache	106a
Cape Col, from Pleasant Point to Monowoy Island	do	1-10, 000	1668	( C H. Hoyd.-	10cis
Monomoy Point.	do	1-20,000	1268	I.C. F. West	1090
City of Hall River and vicinity		1-10,000	1867	A. M. Harrison	10.3
Town of East Greenwich and vicinity	Rhode Isla	1-10, 000	186\%	d	1073
Mount Hope Bay, northern part	. ${ }^{\text {do }}$	1-10, 000	1863	. l \%	102.4
Seekonk River	do	1-5,000	1865	. 1	$97 \%$
City of Providence, wharf-line	do	1-5, 000	1867	.. ${ }^{\text {do }}$	10.11
Warren.	do	1-10, 000	1869	. ${ }^{\text {do }}$	1120
Prudence Island	. d (	1-10,000	1865	. ${ }^{\text {do }}$	10.4
Narragansett Pier to Sonth Fer	do	1-10, 000	1869	. do	116
Seaconnet River, eastern part	do	1-10,000	1870	Clarles Hosmer	11:5i
Seacondet Point	do	1-10,000	1870	. do	1161
Islaud of Rhede Islaud, from Hlack Point to Easton Po	do	1-10,000]	1670	H. G. Ogden.	1163
Island of Ehode Islaud, northern part	do	1-10,000	1870	A. M. Hatrison.	1163
Nowport and vicinity.	do	1-10,000	1870-「1	do	1194
Point Judith and vicinity.		1-10,000	1871	....do	\%
Conanicut, Dutch, and Gould Islands	do	1-10,000	1869	do	1119
Coast of Rhode Island, from Cross Mills castward		1-10,000	187	......do	12.1
Navy-Yard near New London	Gennention	1-1,200	1269	IL. G. Ogden	1107
Lake Champlain, from Whites Landing to Appletree loint	Vermont	1-10, 000	1860	F. W. Dorr	1181
Lake Champlain, from Appletree Point to Hogback Island	. 10	1-10, 0 OU	1870	. ${ }^{\text {do }}$	1182
Lake Cbamplain, from Tremblean Point to Port Jackson	do	1-10, 0000	1870	do	1103
Lake Champlain, from Trembleau Point to Ligonier Point		1-10,000	1870	F.W.DorrandC. Losmer	118.5
Lake Champlain, vicinity of Plattsburgh	New York	1-10,000	1870	Charles Iionmer	1184
Lake Champlaid, vicinity of Plattsburgh	Vermont	1-10,000	180	..do	1185
Lake Champlain, vicinity of Mallettes Bay		1-10,000	1871	do	1205
Lake Champlain, shore-line surveys.	do	1-10,000	1871	. 10	12mi
Lake Champlain, shore-line surveys.	do	1-10.000	1871	do	1207
Lake Champlain, eliaraline garveys	.alo	1-10,000	1871	. 10	$120 \%$
Lake Champlain, mhore-line surveys	do	1-10,060	1871		12093

List of original topographical shects registered in the archives, de.-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registernumber.
Lake Champlain, from Cumberland Head Pointto Point an-Roche	New York	1-10,000	1871	H. G. Ogiten	917
Lake Champlain, the Gut and Point-au-Koche.		1-10, 000	$1 \times 71$	.....do.....	1218
Lake Champlain, from Pointau Roche to Long Point	do	1-10,000	1871	.do	1219
Lake Champlain, La Motte and Albargh Passages		1-10,000	1871	do	220
Lake Champlain, from Isle La Motte to boundary lino	do	1-10,000	1871	do	1291
Lake Champlain, part of Missisquoi 3ay	Vern	1-10, 000	1871	. 10	1229
Lake Champhain, Missisquoi Bay south of boundar	do	1-10,090	1871	10	1223
Hudsou River, from Anthong's Nose to Cold Spring	New	1-10,000	1861	John Meohan	101
Hudson River, from Cold Spring to Nowburgh	. .do .............	1-10,000	1861	....do ..	1011
Nortle and South Shrewsbury Rivers	New Jersey	1-10,000	1865	C. M. Bache	: 5
Strewsbury River, South.	do	1-10,000	1860	do	22
Coast between Deal and Sguau Beach	. do . . . . . . . . . $^{\text {a }}$	1-10, 000	1867	do	1083
Coast between Squan Village and larneg		1-10,000	1868	. ${ }^{\text {do }}$	$10 \leq 4$
Barnegat Inlet.	do	1-10,000	1860	C. Fendall	1105
Alsecami Inlet and	do	1-20,000	1869-70	C. M. Bache	1166
League Island	lenusslyania	1-2,500	1865	R. M. Bache	75
Stakes in the Gut east of League Island	...do	1-2, 500	1865	......do...	975 bi
Baltimore and vicinity	Mary	1-10, 000	1865	C. T. Tardella	977
Patapsco River	. .do	1-10,000	1865	.....do ....	3
Patapsco Niver, north shore, from Fort Marshall to Bear Creek.	do	1-10,000	1866	do	1014
Potomac River, from Saint (reorge's Bay to Higgins' Point.	do	1-20, 000	1868	J. W\%. Donn	1103
Potomac River, from Clement's Bay to Swan Point.	,do	1-20,000	1868	.....do ...	1115
Potomac River, from Sharpsbargh to Bertin	do	1-10.000	1865	do	85
Potomac River, from Rertin to Heter's Island	do	1-10,000	1865	do	986
Potomac River, from Macon's Island to White's Ferry	do	1-10,000	1865	do	9 97
Potomac İiver, from Harrison's Island to Young's Island		1-10, 000	1865	...do	9 et
Potomat River, from Young's Island to Great Falls	do	1-10,000	1865	......do	9
Upper lotomac and Burnside Rivers	d	1-10,000	1865	......do	990
Upper Potomac, from lock Mo. 36 to Bigh Knob	Maryland and Vir. ginia.	1-10,000	1866	. ${ }^{\text {do }}$	1013
Upper Potomac, from High Knob to She	do	1-10,000	1805-96	.....do	1014
Arlingtog, part of, sheet No. 1	Virgiu	1-1,200	1864	E. Tergeshtimer	1036
Arlington, part of, abeet No. 2.	- ..ato	1-1, 200	1464	.....do	1035
Forts Chaplin, Mahan, and Sedgwi	Dist of Columb	1-10, 000	1865	C. M. Bache	1026
Feocomico and Coan Rivers	Virginia ..........	1-20,000	1868	J. W. Donn	1102
Nomint and Corrioman Bays	,	1-20, 000	1863	$\cdots \mathrm{d}$	1104
Mattex Creek and part of Nomini C		1-20, 000	1868	. . . do	1106
Piankatank River		1-20, 000	1869	.....do	1100
Mobjack Bay, North, Ware, and Severn	. .do ..............	1-20,000	1860, 68	G. D. Wise and J. W. Donn.	1101
Newpert News Point.	do	1-10,000	1865	E. Hergenheimer......	1003
James liver, Newport News to Pagan Creek.	do	1-20, 000	1872	J. W. Donn	1265
James River, Prgan Creek to Point of Shoal light-hons	do	1-20,060	1872	.....do ...	1266
Eastern shove of Virginin, Broadwater, sheet No. 3.	do	1-20,000	1871	do	1200
Easteru shore of Virginia, Broadmater, sheet No. 4	do	1-20, 000	1860-70	${ }^{\text {d }}$ d	1201
Eustern shore of Virgivia, Broadwater, shect No. 2.	. ${ }^{\text {do}}$	1-20, 000	1869, 70	...do . .............	1202a
Eastern shore of Virginia, Broadwater, New Inlet and north branches.	. 10	1-20,000	1871	.do	120:4
Eastern shore of Tirginia, Broadwater, sheet No. 1	do	1-20,000	1860-70	. do	1203
Eastern shore of Virginia, head of Machipongo	.do	1-20,000	1871	.....do	1204
Pungo River	North Carolina	1-20,000	1872	. ${ }^{\text {d }}$	1273
Pamplico River, from Rumley Marahea to Ragged Point	do	1-20, 000	1871	F. W. Dorr	1210
Pamplico River, from Maul's Point to Rodman's Point	..do	1-20, 000	1871	.....do ...............	1211
Pamplico River, from Adams' Point to Rumley Marshes	do	1-20,000	1871	. 410	1212
Pamplico River, from Light-houso to Indian Island.	do	1-20,000	1871	.do	1213
Washington and its envicons.	to	1-10,000	1872	. do	1274
Cape Hatteras to Hatteras Inlet	do	1-20, 000	1872	C. T. Latdella	1246
Hay River, Pamplico Sound.	do	1-20, 000	1869	F. W. Dorr	1094
Shoreline from bay River to Pamplico Sound	do	1-20, 000	$1 \times 69$	. do	1095
Neuse River, from New Berne to Johneon's Polat	do	1-10,000	1866	do	1031
Neuse River, from Johnson's Point to Bearl's Creek	do	1-20,000	186	do	1015
Neuse River, from Heard's Creek to Wilkinson Point	do	1-20, 000	1867	.do ................	1051
Neuse River, fronn Wilkinson Point to Cedar Point.	.-.do .............	1-20,000	1867	.do	1052
Neuse River, from Cedar Point to Browa's Creek	de .............)	1-20, 000	1868	do	1073

List of original topographical sheets registered in the archives, đc.-Continued.

Localities.	State.	Scale.	Date.	Topersapher.	Register- number.
Neose River, from Browns Creek to Point of Marsh	North Carolina	1-20,000	1863	F, W. Dort.	$10: 4$
Goldstorough, west of Wihnington and Weldon Railroad	do	1-10, 000	1865	......do	976
Groldsborougl, approachee to	do	$1-10,000$	1865	Cleveland Lischwen.	97
Cedar Island and vicinity	do	1-20,000	1872	C. T. Iardelta	127\%a, $b$
Portsmouth Island and part of Core Eeach	o	1-20,000	1866	C. Fendall.	1016
Core Sound, northeast part of .	.do	1-20,000	1866	W. H. Dean	1020
Core Sound, southwest part of	do	1-20,000	1866	do	1017
Bugue Sonnd, from Broad Creek to Queen's Creek	do	1-20, 000	1871	H. Adams	1215
logne Sound, part of	do	1-10,000	18f7	A. W. Longteltow	1110
Newr Inlet, including Federal Point, Zeels s, and Smith Islauds	$d_{0}$	1-10,000	186	J. S. Bradford	099
Winyal Bay and vicinity	South Carulina	1-20, 000	1872	W. H. Dennis	12 m
Defunse of Charlestou.	do		186з	C. O. Boutelle	87\%
Parry and Cano's Islands.	de	1-20,000	1868	C. Hosmex	10:\%
Port Royal and vicinity	do	1-20, 000	1865	W. H. Denuis	1006
Coobaw River and vicinity	do	1-20, 000	1867	.....do	1910
Broad River, southern part of	do	1-20,000	1865	1. E. Halte	
Broad Harbor	, do	1-20,000	1263	IR. E. Halter	197
Saint Helena and Lady's Imland	do	1-20,000	1872	Charles Husme	1250
Pocotaligo	do	1-10, 000	1865	F. W.Dorr	974
Between Broad and May Rivers, containing hydrography	d	1-20,000	1870-71	C. Hosmer	119
Savannah River to Cooper River, west of Daufushio Islet, containing liydrography.	. .do	1-20,000	1870-71	. do	1196
Savamnah River, Forts Jackson and Lee, Batteries Tatuall aud Baruwell.	.do	1-5, 000	1866	C. O. Fontelle aud $I 1$. L. Marindin.	1097
Coast of Soutl Caroina.	do	1-20,000	1872	O. H. Titmamm	12\%0
Coast of South Carolina	...do	1-20,000	1872	. . do	$12 \times 06$
Savannah, vicinity of	Georgia	1-47, 520	1865	W. II. Dennis	972
Summit of Lookout Mountain	$\begin{aligned} & \text { Tenuessee aud } \\ & \text { Georgia. } \end{aligned}$	1-10,000	1865	C. H. Beyd	173
Wilmington River and estuaries	Georgia	1-20,000	1265	C. Fendall	96
Rennerly Marsh Creek	...do	1-20, 000	1269	C. Hosmer	1ver
Ogeechee, Vernon, and Burnside I	Als	1-24, 000	1865	C. Fendall	94
Ogreerhee to Medway Bay	do	1-20,000	1859	C. Hosmer	110\%
Saint Catharine's Island and vicinity	do	1-20,000	1863	C. Rock well and J. A. Sullivan.	1060
Retween the Medway and Julienton		1-20,000	1869	C. Hosmer	15.5
Doloy Sound and vicinity.	do	1-20,000	1868	W. H. Mennis	1020
Altamaba Sound and vicinity	. 10	1-20,000	1869	. ${ }^{\text {do }}$	1114
Darien City.	do	1-20,000	1809	. do	1114bis
Saint Simon's and Long Island	.lo	1-20,000	1869	C. T. Iardella	110 s
Mackay's River and vicinity.	do	1-20, 000	1869	W. H. Dennis	1113
Saint Andrew's Sound and vicioity	do	1-20,000	1869-70	C. M. Bache	135\%
Cumberland Island, part of	do	1-20,000	1870	W. H. 1-nais	1152
Nassau Sound and vicinity	Florida	1-20,0000	1871	. do	$1232 a$
Sister Creek	do	1-20,000	1871	.....do...	126
Coast from Saint Augustine to Madanzas 1	do	1-20,000	1867	C. M. Bache	109
Matanxas River and vicinity.	. ${ }^{\text {do }}$	1-20,000	1872	A. M. Harriso	12 tax
Head of Key Biscayne Ray-	do	1-20,000	1867	C. T. Iardella	1049
Shore and keys of Barnes' Soumd		1-30,000	1888	....do	1071
Barnes' Sound.	. ${ }^{\text {d }}$ o	1-40,000	1870	J. G. Oltmann	1154
Pine Island Sound, Charlotte Harbor	. do	1-20,000	1806-67	C. T. Iardella	1048
Saint Joseph's Bay, Cape San Blas aud ticinity	do	1-20, 000	1868	II. M. De Wees	1065
Western arm of Saint Andrew's Bay ...	do	1-20,000	1871	do	11.97
Saint Joneph's Iay to Saint Andrew's Point. .	do	1-20,000	1869	.....do	1691
Saint Audrew's Bay, eastern and western branche	do	1-20,000	1870	C. T. Iardella	1146
Saint Andrew's Bay, northern brawch.	do	1-20,000	1870	......do	$1^{147 a}$
Saint Andrew's Bay, eastern brancls	. ${ }^{\text {do }}$	1-20,000	1870	......do	1476
Choctawhatchee Ray, western part .	do	1-29,000	1872	Herbert G. Ogden.	1269
Choctawhatcheo Bay, eantorn part.	. ${ }^{\text {do }}$	1-20,000	1872	..... do ....-.......	1270
Chectawhatchee bay and Santa Rosa Sound..	...do	1-20,000	1871	.....do ...............	1191
Santa Rosa Sound, from longitude $86^{\circ} 93^{\prime}$ to $86^{\circ} 58^{\prime}$.	.. do	1-20,000	1871	11. G.Ogden	11\%
Santa Losa Sound, from longitude $86^{\circ} 58^{\prime}$ to $87^{\circ} 7^{\prime}$	do	1-20,000	1871	do	1193

* Compiled from various sonrces.

List of original topographical shects registered in the archives, de.-Oontinued.

Localities.	State.	Scale.	Date.	Topographer.	Register mander.
Coast between Pensacola and Mobile, west part of Big Lagoon	Florida	1-10,000	1867	J. G. Oitmanns	1034
Coast betweon Pensacola and Motilo, from Lagoon to month of Perdido Inlet.	Florida and Alabama.	1-10,000	1807	do	103.)
Coast between Pensacola and Mobile, from Perdide cutrance to east Gulf shore.		I-10, 000	1267	.. do	1042
Entrance to Mobile Lay.	Alabama	1-20,000	1868	.....to	1060
Chandelent Sound, west side, from Morgan Harbor to Indiau Mound Ray.	Louisiana	1-20,000	187	C. H. Boyd	11\%
Isle an Bretou Sonnd, Deep Water to Califormia Point	do	1-20,000	1868-69	do	1097
Isle audreton Sound, California Point to Mozambitue Point	do	1-20,000	1869	.do	1038a
Isle au Breton Soond, California Point	do	$1-20,000$	1869	do	10ther
Isle au. Breton Sound, sonth side.	do	1-20,000	1869	do	1097
Isle an Breton Sound, Gardiner's to Otter B	do	1-20,000	1869-70	do	1099
Isle an mreton Sound, Otter Bayon to Point Comio	do	1-20,000	1670	do	1148
Isle an lireton Sound, Errol Islami.	do	1-20,000	1869	. do	1092
Mississippi delta, Sonthwest Pass, part of South Pass, East, West, and Garden Ioland Bays.	.do	1-20,000	106i	J. W. Domm	1037
Mississippi delta, South Pass, bayou Grand, and East Pass	do	1-20,000	11 ¢̂G7	.do	10.38
Mississippi River, from Cubit Crevasse to the forts and Bird Island Sount.	do	1-20, 600	1868	C. H. Moyd	$16 \%$
Mississippi River, fron the forts to Grand Prairio ..............	.lo ..............	1-20,000	1870	..do	1145
Mississippi River, from Grand Praitie to Puint it la	do ..............	1-20,000	1871	. do	1148
Mississippi River, from Bollemia to Poverty Puint	.to .............	1-20, 000	1872	.d	125xa
Mississippi River	do	1-20, 000	1872	. ${ }^{\text {do }}$	1990,
Matagorda Island.	Texas.	1-20,000	1859	W. H. Deanis	1030
Corpas Christi Bay, Corpus Christi to MeGloin's Blu	. . .to	1-20,000	1867	C. Hoswer	1043
Corpus Christi Bay, McGloin's Blaff to Mustang Inland	do ...............	1,20,000	1867	.do	104
Laguna Madre, castern shore.	. 10	1-20,000	1867	C. H. Boyd	1045
Iaguna Madre, Western shore	..do	1-20,000	1867	do	1045
Coast east of San Hedro Bay	Califo	1-10,000	1872	A. W. Chase	1203
Point Fermin to Point Saint Vincent	. . do	1-10, 000	1870	do	113:
Santa Darbara Chandel from Santa Darbara to Pelican's Point	. .to	1-10, 000	1870	W. E. Grcenwell	1230
Santa Barbara, town and ricinity	. ${ }^{\text {do }}$	1-10, 000	1870	do	(209)
Proint saint Vincent, northward	do	1-10,000	1871	A. W. Chase	1231
Santa Earbara to Sand Point	d	1-10, 000	1869	W. E. Grecnwell	11929
Sand loint to Gorda Point		1-10,000	1869	do	1127
1 lunta (forda and vicinity		1-10,000	1871	A. F. Rodgers.	1237
Pinta Gorda, Shelter Cov	do	1-10,000	1871	do	1243
Puntagorda.	do	1-10,000	1871		12:39
Punta Gorda.	do	1-10,000	1871	.....do	1240
Pauta Gorda, toward Buenaventura	do	1-10,000	1870	W. E. Greenwell	1184
Town of Buenaventura and vicinity.	...do	1-10,000	1870	..do	1190
Cañada de los dos Pueblos to Cañada de Tajiguas	...do	1-10,000	1871	.....do	1247
Santa Craz aud Santa Larbara Channel	do	1-10, 000	1830	W. M. Johns	1003
Santa liarlara Channel trom Pelican Point to los dos Pueblo	...do	1-10,000	1871	W. E. Greenwell	1267
Santa Barbara Island	do	1-10,000	1871	A. W. Chase	1180
San Migtel Island, Santa Barbara Channel	. do . ............	1-20, 000	1871	S. Forney	1242
Print Conception and vicinity, two sheets	..do	1-10, 000	1869	C. Rockwell	1122a, 8
Alder Croek to Welch $\triangle$	do	1-10, 000	1870	L. A. Sengteller.	1279
puint Sal, southern shore.	.do	1-5,000	. 1867	W.E.Greenwell	1055
San Simeon Ray and vicinity.	do	1-10,000	1871	C. Roekweil	1273
Const from Tunitas Creek north wa	..do	1-10, 000	1866	A. F. Rodgera	1009
Half Moon Ray.	do	1-10,000	1861	W. M. Johnson.	993
Hoint San Podro to Pillar Point.	. .do .............	1-10, 000	1866	A. F. Rodgers.	1019
Land-approaches to San Francisco	do	1-10, 000	1867	A. W. Chase ..	1059
Approauhes to San Franciseo	do	1-10,000	1867	C. Rockwell	1067
Approache to San Francisco	do	1-10, 000	1868	-.....do	1063
Soutis Farallon Island.	do	1-5,000	1872	A. F. Rodgers.	1259
Suisun Bay	do	1-20,000	1866	.......do	1029
Point Arena and vicinity	. do.............	1-10,000	1870	L. A. Sengtelier	1228
Humboldt Bay to Table Bluff	.do .............	1-20,000	1869	A. F. Rodgers.	1137
Humboldt Bay, three sheots.	... do .............	1-10,000	1870	......do ..	1174, 1175,

## List of original topographical sheets registered in the archives, de-Continmed.

Localities.	State.	Seate.	Date.	Hedrographer.	Hegister namber.
Coast north of Humboldt Bay	California.	1-10, 000	1870	A. F. Rodgers	1178
Coast south of Trinidad Head	..do	1-10, 000	1870	.....io	11\%
Const north of Trinidad Head	do	1-10,000	1870	.....do	117!
Centreville to False Cape	do	1-10,000	1869	do	1135
Shelter Cove and vicinity	do	1-10,000	1871	do	123 i
Cape Mendocino, south of	do	1-*0,000	1871	Io	1241
False Cape to Cape Mendocino	d	1-10,000	1869	.....do	1134
Eel River and vicinity	do	1-16, 000	146	. do	11369
Eel River, chauges from 1869 to 1870	do	$1-10,000$	1869-70	.....do	11368
From Crescent City southward	do	1-10,000	1871	A. W. Chase	124ea
From Sister Rock to False Klamath.	do	1-10,000	1871	. do	$1: 24 \geq 6$
Point Saint George and Crescent City Reef	do	1-10,000	1200	do	1134
From Point Saint George northward (Lake Ear)	do	1-10,000	1870	. ${ }^{\text {d }}$	119:
From Cone Station to near Oregon boundary	do	1-10,000	1850	do	1214
From Oregon boundary to Chetko River	Oregon	1-10,000	1870	. do	1 L
Coast of Oregon, near Port Orford, reconnaissance	do	1-20, 000	1869	d	1133
Orford Reer.	do	1-10,000	1869	....do	1131
Cape Blanco	d	1-10, 000	1869	. . do	1130
Goat Island to Whale's Island	. ${ }^{\text {do }}$	1-10,000	1871	do	1290
Cape Foulweather and entrance to Yaquina Bay	do	1-10, 000	1868	. d do	1086
Columbia River, from Point Adams to Young's lsay	. .d 0	1-10,000	1268	C. Rockw	1112
Cohnmbia River, from Young's Bay to John lay's River	...do	1-10, 000	1868	do	1123
Columbia River, from south site of Joha Day"s liver to Warren's Landing.	...do	1-10,000:	18:0		1234
Columbia River, from Warren's Landing to Tloree-Trec P'oint..		1-10, 000	1870	. do	3\%3
Columbia River, from Cape Disapnointment to Clinook Point.	do	1-10, 010	1869	. do	113\%
Columbia River, from Chinook Point to Gray's Point.	do	1-10,000	180	. ${ }^{\text {do }}$	1339 a
Columbia River, Sandy Island and Chinook Spit	do	1-10,000	1809	do	11598
Columbia River, from Gray's Bay to Snag Island...	do	1-10,000	1870	do	1249
Columbia River, from Three Point to Puget Island	do	1-10,000	1871	do	1250
Shoalwater Bay, sheet No. 1.	Washington Ter..	1-10,000	1871	J. J. Gilbert	1261
Shoalwater Bay, sheet No. 2		1-10,000	1881	do	1962
Shoalwater Pay, sheet No. 3	do	1-10,000	1871	. do	1263
Shoalwater Bay, sheet No.4.	-- do	1-10,000	1871	. do	12 CH
Washington Harloor, Strait of Juan de Fuca	do	1-10,000	1880	J. S. Laws	1165
Deception Pass to Finger $\triangle$.	. 10	1-10, 060	$1 \times 11$	do	1259
Finger $\triangle$ Point to Point Partridge, Whidher Island	do	1-10,000	18.1	do	1233
Point Partridge to eastward Whidbey Island.	do	1-10, 000	1871	do	1054
Killent Harbor	. ${ }^{\text {do }}$	1-10,000	1871	do	125
Now Dungeness, part of.	do	1-10,000	1 1\%\%		1108
protection Island to New Dungeness.	....do	1-10,000	1870	. ${ }^{\text {do }}$	1164
Smith Island	. do	1-10,060	1870	- do	1170
Port Madison	...do	1-10,000	1868	. do	10\%\%
Admiralty Bay, Paget Sonnd	do	1-10,000	1868	. 10	1164
Shilshole Bay, Admiralty Iulet.		1-10, cos	1867	do	1064
Port Discovery entrance, sheet No. 1	.do		1868-69	. d	1124
Port Discovery entrance, sheet No. 2			1869		11.95
Port Discovery entrance, sheet No. 3			1869-70	do	1126

## APPENDIX No. 7.

List of hydrogrophic shects registered in the archices of the United States Coast Survey from Junc, 1865, to Januavy, 1873.

Localitics.	State.	Sozale.	DatB.	Hydrographer.	Register. number.
Cumat from Musquito Marbor to Seal Harbur	Maine	1-10, 000	1866	1. E. Halter.	907
Quotly Roads and Johnson's Bay	do	1-10,000	1866	H. L. Matindi	895
Western entrance Moose-a-bec Roach		1-10,000	1870	F.F. Ne	1090
Moosoabec Reach		1-10,000	1870	......do	105
Indian liver		1-10,000	1870	do	1061
Winter Harbor and approaches	do	1-10,000	1867	I. Andcrann	938
Southwest Harbor, Mount Desert, western approaches	do	1-10, 000	1871	J. W. Dona	1130
Southwest Harbor, Mount Desert, eastern approaches.	. 10	1-10,000	1871	.do	1121
Sones' Sound		1-10,000	1871	do	1122
Prospect Uarbor	do	1-10, 000	1871	H. Andersoul.	1127
Entrance to Isle an Haut	do	1-20,000	1870	F. P. Webber.	1074
Isle au Haut bay.	do	1-20,000	1869	Charles Junken	1028
Hurricane Island Sound and ricinity	do	1-10,000	1869	. .do	1029
The Dasin, on Vinal Haven Idmad	do	1-10,000	1870	F. P. Weble	1075
Fox Island may and vicinity	do	1-10, 000	1870	.lo	1073
East sille of Fox Islant and Seal Bay	do	1-10, 000	1871	.	112
Fox Islands Thoroughfare, eastern part	do	$1-10,000$	1868	Charlen Junk	983
Fox Islands Thoroughtare, western par	do	1-10,000	1868	......do .......	98:
Penobseot Bay, approachos to.	do	1-20,000	1866, 7 ', '8	do	1051
Penobscot Bay, entrance to	do	1-20,000	1866-67	. do	943
Penobscot Bay, from Owr's Head to Eusign Island.	do	1-20,000	1869	F. P. Wedber	1086
Penobscot Bay, vetween Owl's Head and Fox Islands	do	1-20,000	1869	Charles Junken	1030
Peuobscot Day, islands south of Islesborough. .	do	1-10,000	1869	F.P. Webler	1087
Peuobscot Bay, from Camden to Belfast Bay	do	1-20,000	1871	......do ...............	1143
Gitkey's Harbor, Penobscot ibay.	.do	1-10,000	1871	.do	114.
Camden and Rockport Harbors	do	1-10,000	1865	H. Auders	873
Penobscot River, from Bangor to Hampden	do	1-10,000	1867	J. A. Sullivan..........	934
Muscle Lidige Channel	do	1-10,000	1806-67	1. E. Halter and Chas. Junken.	952
Muscle Ridge Istands.		1-10,000	1887	R. E. Halter ..........	953
Saint Gourge's River entrance	. ito	1-10,000	1865	R. E. Halter and c. Fendall.	882
Saint George's River, sheet		1-10,000	1864	F. P. Webber .........	858
Saint Gcorge's Hiver, sheet	do	1-10,000	1804	...do	59
Muscongus Bay		1-10,000	1267	R. E. Halter	950
Muscongus Bay...		1-10, 600	1868		986
Meduncook River and Point Pleasant Gut	do	1-10, 000	1866-67	. ...do	051
Medomac River	do	1-10,000	1866	H. Anderson	960
Medomac River, from Bremen to Mavener's Ledg		1-5, 000	1866		960 lis
John's Bay.......	,	1-10, 000	1867	R. E. Halter	920
Sanarisootta River, from New Castle Bridge to Clark's Cove		1-10,000	1866	E. Hergesheimer.......	903
Sheepscot Bay, between Griffith's Head and Fennebec River.	. do	1-10, 000	1808	J. S. Dradford. . . . . . . .	971
Ebenecook Harlor, Town's End Gut, Back River...........	do	1-10,000	1866	E. Hergesheimer......	891
Hell Gato, Back River..	do	1-10, 000	1865	H. Anderson ..........	893
Great and Little Hell Gates and Goose-Rock Passa	${ }^{\text {d }}$	1-5, 000	1867	J. S. Bradford	930
Hockomock and Kuublio Bays, Sasauoa River ...	.do	1-10,000	1867	......do..	929
Kennebec River, from Swan Island to Richmond	do	1-10, 000	1869	C. H. Bord	1064
Kennebee River, from Richmond to Gardiner	do	1-10, 000	1870	......do	1065
Vicinity of Cape Small Point.	do	1-10, 000	1868	J. s. Bradford	972
Now Meadow Rirer...........................................		1-10, 000	1866	d. W. Donn	899
Head of Maquoit, Midde, and Quohor Bays, and Harpswell sonnd.	. do	1-10, 000	1869	H. Anderson	1008
Off-shore soundinge from Segain Island to Cape Elizabeth......	do	1-40, 000	1867	R. Platt, T.S. N.......	933
Approaches to Portland Harbor	do	1-40,000	1864	Lieut. T. S. Pholps ....	860
Portland Harbor...........	. .do	1-5,000	1867	R. Plati, U.S. N......	949
Portiand City ade Earbor, shoet No. 1.	do	1-1,200	1888	H. Anderson ...........	1032
Portland City and Harbor, sheets Nos. 2 and 3.	do	1-2, 400	1869	do ................	1023a, 6

List of hydrographio shects registered in the archives, fe--Contioued.

Lsoalitien.	State.	Scale.	Date.	Hydrographer.	Reginter. number.
Portland City and Harlor, sleets Noss 4 and 5.	Maine	1-2. 400	1669	II. Auderson	1034a, b
Cape Porpoise and Stage Island Itarbor .......................	do	1-10, 000	1871	J.S. Bralforil	1117a, b
Wood Island Hartor and approaches to Sawo River ..........)		-10,		J. S. Brant	117m,
Saco River	do	1-5,000	1866	G. Davidson	882
Saco River, from Saco to Chandler's Iroint	do	1-5,000	$1-67$	F. F. Nes	941
Saco River, up to Chaodler's Peint	. ${ }^{\text {do }}$	1-5,000	1867	. du	948
Jeffrey's Ledgo	New Hampshir	1-150, 090	1863	Lieut. T.S. Phelps	8 Fi
Coast of Now Hampshire, frou Pulpit hock to Great Boars Head.	. . .to	1-10,000	1870	H. Anlersom	1068
Chast of New Hampshire, from Great Boars Head wesalisbury -	do	1-10,000	1870	do	1069
Enmergon's Foint and Milk Islaud	Maseaclubetts	1-10, 019	1873	J. S. Bradfurd	3106
Town, lore, and Back Rivers, Weymonth	do	1-10, 000	1869	.....do	1021
Duxbury lity	do	1-10, ¢ян	1867, 70	H. Andersom	1035
Plymonth Harlo	do	1-10,000	1570	d	1067
Monmmoy Shoals, reconnai	do	1-40,004	1868	F. F. Nes.	961
Vineyard Haven Harbor	. do	1-10,000	1871	H. Mitcbell	1106
Edgartown Harbor and Cotamy Eay	. .do	1-10, mots	1871	...do	1126
Mitchell's Falls, Merrinack River	do	$200 \mathrm{ft}$. to $1 \mathrm{iv}$.	1867	. $\mathrm{d}_{1}$	1012
Narragansett Bay. from Quonset Peiat te, Ditel Lsland	Hhode Istand	1-10, 000	136\%	F. P. Webler	954
Narragansett Bay, from Hope leland to Pationce Is land	do	1-10, 000	1807.68	. do	939
Greenwich Bay	do	1-5, 0000	1867	. do	940
Narragansett Bay, head of, and Irovidence Rive	do	1-10,000	1865-97	do	$8 \times 0$
Providence River, from cily of Providence to Stargut Islaud	do	1-5,000	1865	.....to	878
Warren River	do	$1-5,000$	1365	. do	888
Seekonk Ricer	do	1-5,000	1865	A. M. Harrison	865
Thames River, near New Londor1	Commec	1-1, 200	1869	Charles Junken	1006
Frying Pan and Pot Rock	New York	1-1, 280	1866	W.S. Efwards	896
Wallabout Bay	N6	1-1, 250	1869	F. F. Nes	1085
Off the Battery.	do	1-2, 500	1867	W.S. Edwards	910
New York Bay, between Governor's Istand and Roblin's R	do	1-10, 000	1868	F. H. Gerdes	970
Swash Chanuel, examination of	do	1-30,000	1866	W. S. Edwards	e97a
Shoal of vessel Warren, New York Lower Bay	do	1-20,000	1872	F. F. Nes.	8476
Main channel between Sandy Hook and Flym's Knoll and Scotland Shoal.	.do	1-90,090	1869	..do	1011
Rondont Harbor, fromentrance to Sleight's Ferry	do	1-2,500	1868	F. H. Gerdes and F. F. Nes.	979
Rondont Harbor, from Sleight's Ferry to entrance of Lelawave and Hudson Canal.	do	1-1,250	1868		978
Lake Champlain, from Gumberland Head to Valconr Istand	do	1-20, 000	$18 \% 0$	Charles Junken	1058
Lake Champlain, Valcour Island to Trembleau Point	do	1-20, 000	1871	F. D. Granger	1118a
Lake Champlain, Colechester and Hog's Back Reefs.	do	1-10, 000	1871	do	$1118 b$
Burlington Harbor.	Verm	1-10,000	1871	do	1105
Main chanmel between Saudy Hook and Flym's Knoll and Scothand Shoal.	New Jerrey	1-20, 000	1269	F. F. Nes	1009
Barnegat Inlet	do	1-10, 0000	1866	C. Fondall	883
Great Bay	..do	1-10,000	1871	W. W. Harding	1125
Hack Channel, League Island, Delawaro Liver.	Pennsylramia	1-2,500	1865	E. Hergesheimer	869
Delaware River, Fort Miftin to Gloncester Point.............) $\}$	d	1-5, 000	1871	F. F. Nes	114a, ${ }^{\text {a }}$
Delaware River, Gloucester Point to navy-yard...............)					
Delaware River, frem Ridley's Creek to Welshstreet	do	1-1,200	1870	Cbarles Junken	1057a
Delaware River, from Walsh Street wharf to Carmo	,	1-1,200	1870	.....do ...............	10576
Susquehanna River, month of	Marylaud	1-10,000	1867	F.P. Webber	898
Saceafras River	do	1-10,000	1870	W. W. Harding	1071
Rommey, Farley's, Stillpond, Chari, and Lloyd's Cree	do	1-10,000	1870	. .do	$16: 2$
Chester River, No. 1, and Morgan's Creek	do	1-5, 000	1869-70	do	10926, b
Chester River, Ne. 2.	..do	1-5, 000	1469-70	do	1027
Langford Creek.		1-10,000	1870	.....do	1078
Patapsco River, mouth of.	-do	1-20,000	1866	F. P. Weble	913
Patapeco River, Brewster's Chamnel.		1-10,000	1866	.....do	914
Patapsco River, Brewster's Channol, enlargod from No. $913 . .$.	do	1-10,000	1266	..... do ...............	
Patapeco River, creels emptying into.	. d do	1-20, 000	1869	T. W. Donn ............	1007
-Tributarien of Sovern and Soath Rivers.	. .do	1-20,000	1870-71	W. W. Harding -	

H. Ex. 133-12

List of hydrographio sheets registered in the arohives, de.-Continued.

Localities.	State.	Scale.	Inate.	Hydrographer.	Reqiater: numbers.
Head of Severn Miver	Maryland	1-24, 0000	1870	W. W. Harding	107\%b
Tribntaries of Wre River	.do	1-10, 000	1870	- ...... do .......	1050a
Tributaries of Saint Michaels River	do	1-10, 000	1870	......do	10506
Heads of Harris, Broad, and Porter's Creeks	do	1-10,000	1870	......do	10490
Tribntaries of Tredhaven Creek	do	1-10, 000	1870	do	1049a
Choptank River, from Winge Landing to Dentan	-. do	1-10, 000	12\%0	do	1048
Eastern Branch, Anacostia Eridge to Benuing's Eridge	Dist. of Columbia	1-5, 000	1865	A. Ballach	863
Eastera Branch, Benuiug'y hridge to Bladensburgh	. . do . . . . . . . . . .	1-5,000	186\%	. do	804
Potomac River, from Aualostan Ishus to Lung Brielge	...do	1-5,000	1807	C. Fendall	$10 \times 2$
Wicomico Kiver, Saint Clement's and Breton's Bay	Maryhud	1-20, 000	1860, 68	W. T. Muşe, U. S. N.. and J. W. Donn.	969
Nomini Bay, Lower Machorlec and Mattox Cree	Virg	1-20, 00f	1868	5. W. Donn ..........	967
Yeocunico and Coan Creeks	...do	1-20, 000	1868	. ${ }^{\text {do }}$	968
Soith's, Goose, and Fox Islauds, Tabgier hound	do	1-20, 000	1869	W. W. Hatding	99
Sitite Anuemessex River.	do	1-10, 000	1868-69	..... do ........	985
Pocomoka Sound, creeks from Messongo Creek to Onawevek Creek.	do	1-20,000	1869	..do ................	993
Pocosnoke River entrance	. . do	1-10,000	1369	.. 10	1004
Pocomoke River. sheets Nos. 1	dio	1-5,000	1869	do	1022a, b
Pocomoke River, sheets Noz. 3 and 4	. . do .............	1-5, 000	1869		1093a, $b$
Pocomoke Rivar, sheets Nod. 5, 6, and 7	do	1-5, 000	1869	do	1024a, b, e
Oceohannock, Craddock, and Nandua Cr	do	1-20, 000	1868	C. Fendall	$976 a$
Naswadiox Creek	. do	1-20,000	1868	do	9760.
Hunger's Cretk	..do	1-20,000	1868	.....do	9760
Great Wicomico River	do	1-20,000	1869	J. W. Donn	1003
Little Bay, Nantepoison, Tapp's, Dimer's, Indian, Dividing, and Mill Cresks.	...do	1-20,000	1869	. . ${ }^{\text {do }}$	1005
Estuaries of the Corrotoman River	da	1-10,000	1869	do	1002
Estorices of the Rappahannock R	do	1-20,000	1869	. do	1008
Powler's and Corner Rock, Rappahannock	do	1-2,500	1867	-...do	937
Piankatank Miver	d	1-20,000	1869	. d	188
Milford Haven (aleo topograph	do	1-20,000	18068-69	. 40	¢ 87
Eatuaries of Mobjack Bay	do ..............	1-20, 060	1868	.	964
Brack and Pocosen Kivers	.do	1-53,000	1868	C. Fendall and W. W. Harding.	977
Magothy Kry		1-20,000	1869	W. W. Harding	1013
Brasd water, from Ship Shoal Inlet to Sand Shoal I	do	1-20,000	1870	.....do ................	1070a
Broadwater,' from 'and Shoal Inlet to Hog Island I	do	1-20,000	1870	do ................	1070b
Broadw bter, Great Machipongo River and branch	do	1-20,060	1871	J. W. Denn	1103
Little Machipongo, to head of Broadw	do .............	1-30,000	1871	do	1104
Newport Newn Point.	do	1-10,000	1865	E. Hergerheimer ......	877
Elizabeth River, from Washington Point to navy yard.		1-2,500	1866	R. Plat, U.S. N.......	894
Offehore soundinge fromiSheephouse Hill to Killtevil Hills....	Virginia and North Carolina.	1-40,000	1868	do	965
Offshore from killdevil Hills to Loggerhead Inlet..............	North Carolina	1-40,000	1870	do	1053
Off shore soundings frotulloggeriead Inlet to Cape Hatte	.do	1-40,000	1869-70	..... do ................	1056
Offekore soundings from Cape Hatterae to Foderal Point	do	1-940,000	1805-66	......do	884
Cape Hatteras Shoala.	. do .............	1-20,000	1871-72	R. Platt, D.S. N	1135
Cape Hatteras Shomls, off-shore sonndings		1-40,000	1872	…..do	1136
Lemkout Shoale..	do	1-40,000	1865-66	In Platt and C. Junken	885
Long Shoal, Pamplico Sound, reconnaissance of		1-10,000	1866	J.S. Bradford .a.......	¢87
Pamplico Sound, from Royal Shoal to drant Island		1-40,000	$\begin{array}{r} 1866, ’ 69 \\ 1870 \end{array}$	J.S. Bradford and F. F. Nes.	1083
Pamplico Sound, weatern part		1-20,000	1869	F. T. Nes...	1010
Bay River..	do .............	1-20,000	1869	do	1009
Puago River, lower sheet.	do	1-20,000	1872	da	11406
Pango River, upper sheet.	do	1-20,000	1872	...do	11406
Pamplico River, from Pamplico light-house to Indian Island		1-20,000	1869	......do	1088
Pamplico River, from 'Adama' Point to Rumley Marshee		1-20,000	1868,'71	E. E. Halter and F. D. Granger.	1098
Pamplico River, from Rumley Mardree ${ }^{\text {co }}$ 'Ragged Point .	. $\mathrm{do} . . . . . . . . . . . .$.	1-20,000	1871	E.T. Ner...............	1160
Pamplico River, from Ragged Point'to eity of Wablington.	.do..............	1-20,000	1871	.do	1101
Pamplico River, fram Cedarigrove to Tar River	.do ..............	1-10,000	1872	......do...............	1138
Cedar Island, bay and vicinity	. .do ..............	1-20,000	1870	...do ................	1079

List of hydrographic sheets registered in the archives, ac.-Continued.

Localitien.	State.	Scale.	Date.	Hydrographer.	Registernamber.
Nonse River, from Point of Marsh to Cedar Point	North Carolina	1-20,000	1488	J. in. Bradford and F. F. Nes.	974
Nense River, from Cedar Point to Wilkinson's Point	do	1-290, 000	186\%	J. S. Pradforl	90
Neuse River, from Cherry Point to Johnson's Point	do	1-20,000	1867-'68	..... do ....	956
Nouso River, from Johnson's Point to Fort Anderson	do	1-10,000	1866	do	892
Bonth River, Turnagain Bay, and other tributaries to Netse River.	do	1-20,000	1886-69	J. S. Bralford and F. F. Nes.	975
Entrance to Cape Hear River, the bars of Oak Island and Bald Head Channel.	.. do	1-2, 2000	1871	Charles Jonken	1089
Eutrance to Cape Fear River	do	1-10, 000	1865	J. S. Bradford	870
Eutrance to Cape Fear River, New Inlet	do	1-10,000	1865	.. do	88
New Inlet, Cape Fear River.	de	1-10,000	1872	W. J. Tinal	11134
Cape Fear River, betweon Forts Caswell and Johnson	. ${ }^{\text {do }}$	1-10, 000	1866	J. S. Bradrord	876
Cape Fear River, inner bar.	.do	1-10,000	1870	F.F. Ner	1014
Cape Fear River, western entrance	.do	1-10,000	1872	w.J. Vinal	1128a
Main Chanuel over Charleston Bat	South Carolina	1-20, 000	1869	R. E. Halter	981
Charleston Bar	do	1-20,000	1865	C. O. Beatelle	874
Charleston Harbor		1-10,000	1765	d	881
Bull and Combahee River	do	1-10,000	1871	Charles Hosme	1084
Broad River and tributaries aud W	do	1-10,000	1865	R. E. Halter	863
Broad River	...do	1-10.000	1865	R. E. Halter	869
Jericho, Chowan, and Ballast Creeks, tributariesonfeanfort River	.do...........	1-10,009	1868	Charles Hosmer	962
Off-shore soundings, from lort Royal eutrance to Wassaw Sound, Gaskin and Joiner's Banke.	South Carolina and Georgia.	1-40,000	1866 $186 t$	C. O. Boutelle	966 944
Savannah River entrance.............	Georgla.........	1-50,000	$186{ }^{\text {d }}$	. do	944
Saranuah River, from Tybee Light to Elba Islaud	do	1-10,000	1866	do	945
Savanuah River, from Ciba Island to Fig Island	do	1-10, 000	186:- 66	ds	946
Savannah River, city.front	do	1-5,000	1865-66	.....do	948
Entranoe to Wasanw Sonnd	do	1-20,000	1864, 66	. ${ }^{\text {do }}$	904
Wilmington River and estuaries	- do	1-20, 000	1865	C. Fendall	866
Ogeechee, Vernon, and Bumside Rivers	do	1-20,000	1865	.....do	807
Saint Catharine's Sormd and estraries	do	1-20, 000	186\%	Charles Jumken	916
Saint Catharine's entrance	do	1-20,000	1867	...do	928
Inland pansagea between Sapelo and Doboy Sounds	. do	1-10,000	1868	. do	959
Doboy Inlet and approaches	do	1-20, 000	1864	....do	9.7
Doboy Sonnd, with Darion and North River, and aljacent creeks.	do	1-10, 000	1868	...do	964
Saint Simon's to Saint Andrew's Sound	do	1-20, 000	1899-72	R. E. Hatter and v. $P$ Webber.	1133
Saint Andrew's and Jekyl Somids	do	1-20, 000	1870	E. E. Halter	1020
Coast from Saint Andrew's Bar to Saint Mary's Bar.	do	1-20, 000	1870	Charles Junken	1062
Flerida Passage, from Saint Andrew's Sound to Cnmberland Island.		1-20, 000	1870	do	1063
Main ship chomuel over Saint Mary's River Bar	Florida	1-20, 000	1869	1. E. Halte	980
Coast of Florida, Saiut Mary's to Saint John's Bars	do	$1-20,000$	1871	F. P. Wetbe	1110
Passage from Fernandina toward Saint John	. ${ }^{\text {do }}$	1-10, 000	1871	-do	1111
Saint Mary's River and estuaries	do	$1-10,000$	1871	th	1112
Nassan Sound and estuaties		1-10, 000	1871		$1113 a, b$
Part of Nasban River		1-10,			
Saint Augustine and vicinit		1-10,000	1870	H. Anderaon	103i
North and Guano River	do	1-10,000	1870	....do ..............	1046
Matanzay	do	1-10, 000	1870	10	1047
Offshore soundings, from Sombrero tn Sand Keys	¢0	1-160, 000	1868	Kob. Platt, U. S. N	J6EF5
Off-shore sonudinge, Straita of Florida westwnri	. ${ }^{\text {do }}$	1-400, 000	1869	.....do ..-...........	1090
Offshore soundings, Straits of Florida eastward	do	$1-400,000$	1869	do	1091
Off-shore soundings, from Key West to Charlotte Hartor	10	1-400, 000	1867	.... do ............	911
Off shore soundings, from Sand Key to Marquesas Keys.	. ${ }^{\text {do }}$	1-40,000	1807	do	412
Off-shore soundings, from Marquesas Keys to Rebecca Sheals.	do	1-40,000	1870	...do	1052
Off-ghore soundings, approaches to Dry Tortugas Kesa.	do	1-40,000	1867 -'68	. do	45
Morida Reefs, from Marquesas to Dry Tortugas Keys	do	1-80, 000	1867-68	....do	934
Florida Reefs, western end marquenas to Dry Tortugas Keys	do	1-80,000	187	......do	1076
Key Weat, approaches from northwest	....do	1-80.006	1872	R. Platt, U. S. N	11
Deep-roa sondinge, west coant of Florina.,		1-600,000	1872	J. A. Howell, U.S. N	1138
Yocatan Channel, Cape San Antonio, Cuba to Cape Catocbe, Xacatan.		1-200, 000	1872	R. Platt, U.S.N.	1137

List of hydrographic sheets registered in the archives, de.-Continued.

Localities,	State.	Scale.	Date.	Hydrographer.	Registernumber.
El Moro to Playa de Marianso, north coast of Cuba	Cuba	1-10,000	1867	W. S. Edwards .	900
San Carlos Bay and Caloosa entrance	Florida	1-20,000	1866, '67	....do	917
Pine Island Sound, part of, and approaches to the Caloosaliatchee	.do	1-20,000	1866	C. T. Iardella.	908
Cerlar Keys, main channel.	do	1-10,000	1871	P. P. Webier.	1080
Saint George's Sound	do	1-20, 000	1871	H. Audorson	1092
Choctawhatchee Bay.	. do	$1-20,000$	1872	H. G.Ogden ..........	1141
Santa Rosa Sound, the Narrows, and west end of Choctaw. hatchee Bay.	do	1-20,000	1871	..do	1107
Santa Rosa Sound, from Deer Point to Long Pritchard Point.	do	1-20,000	1871	..do	1108
The Rigolets	Imisiana	$1-20,000$	1870	F.P.Weblber	1054
Iate Borgne	. ${ }^{\text {do }}$	1-40,000	1870	....do	1055a
Eastern part of Lake Pontchartrain	do	1-40, 000	1870	. .do	1055
Inake Pontchartrain	do	1-40, 000	1871	J. S. Bradford	1115
Isle an Breton Bay	.to	1-40,000	1869	F. P. Webber.	999
Isle an Breton Sound, southeastern part	do	1-40,009	1869	. . . do	1000
Approaches to Mississippi River	do	1-40,000	1871	J. S. Bradford	1116
Trinity Shoals	do	1-40,000	1872	F. D. Granger.	1139a
Trinity Shoals and Tiger Shoals	. .do	1-80, 000	1872	.....do	11396
Pasa i L'Outre and Southeast Pass	. .do	1-20,000	1867	F. H. Gerdes	989
Pass a L'Outre and liar	do	1-10, 010	1867	...do	927
Northeast and Southeast Passes	.do	1-10,000	1867	.....do	926
Weat, East, and Garden Island Bays	do	1-40, 000	1868	F. P. Webler	991
South Pass	do	1-20,000	1807	F. H. Gerdes	990
South Pass Bar	do	1-10,000	1867	.-...do	925
Southwest Pass	do	1-20, 000	1867	. do	923
Southwest Pass and Bar	do	1-10, 000	1867	.....do	924
Mississippi River, part of	do	1-10, 000	1866	....do	928
Mississippi River, from Grand Prairie to Bohemia	do	1-20, 000	1871	C. H. Boyd	1093
Galveston entrance and bar	Texa	1-10,000	1867	F. F. Nes.	906
Qalveston Ray, resurver	. .do	1-20, 000	1867	..do	918
Galveaton Bay, resurvey	..do	1-10,000	1867	C. H. Poyd	919
Galveston Harbor, comparative chart showing changes from 1851 to 1867.	do	1-10,000	1867	..do	919 his
Gaireston Bay, western entrance	do	1-20, 000	1867	F. F. Ne	931
West Galveston Pay	do	$1-20,000$	1867	. do	932
Matagorda Bay, part of	do	1-20,000	1866,'71	F. P. Webber and F. D. Granger.	1031
Trespalacios and Turtle Bays	. ${ }^{\text {do }}$	1-90, 000	1871	F. D. Granger ......	1094
Carancatina Bay	. do	1-20, 006)	1871	do	1095
Pass Cevallo	do	1-20,060	1871	. do	1097
Lapaca Bay and vicinity	...do	1-20,000	1871	.....do	1093
Espiritu Santo Ray	do	1-20,006	1871	. do	1090
A ransas Pass	. ${ }^{\text {do}}$	1-10,000	1868	F. F. Nes	996
$\Delta$ ranaas Bay .	ds	1-20, ve0)	1864	H. dinderson	995
Corpua Christi Pass	do	1-10, 0,0	1869	.....do	944
Corpue Christi Bay	do	1-20,006	1368	F. F. Nes.	958
Entrance to Brazoe Santiago and Lagnna Madre.	do	1-20, 000	1867	C. H. Boyd.	909
Magialera Bay, from the Narrews to Caruco Cove	Lower Califo	1-20,000	1871	G. Braulford	1123
Magdalena Bay, from Man-o'. War Cove to the Narrors	...do....	1-40, 000	1871	......do ...............	1124
Santa Earbara Channel, in-shore sounding, No. 1	California	1-10,000	1869	E. Cordell and G. Farquhar.	1038
Santa Barbara Chanuel, in-shore monnding, No. 2		1-10,000	1864	.do	1039
Santa Barbara Channel, in-shore sounding, No. 3	do	1-10,000	1869	..do	1040
Santa Harbara Chandel; in-shore sounding, No. 4	do	1-10,000	1869	. do	1041
Santa Barbara Channel, in-shore mounding, No. 5	...do	1-10,000	1869	do	1042
Santa Barbara Cbaunel, in-shore sounding. No. 6		1-16, 000	1809		1043
Santa Barbara Channel, in-shore sonnding, No. 7	do	1-10,000	1869	do	1044
Santa Barbars Channel, off-shore monndings	do	1-100, 000	1869	. do	1045
Santa Barbara Channel, ontrance Coxo anchorage	. $\mathrm{d}_{0}$	1-10,000	1869	. .do	1037
Roodetead under Point Sal	..do	1-5,000	1867	E. Cordell	921
Harbor of Buenaventura	do	1-10,000	1870	W. E. Greeawel	1081
Off-shore soundings, Point Pedro, Santa Craz.	...do	1-100, 000	1865	E. Cordell	871
Suisun Bay, Cordelia, Suifun, and Monteznma Groeks	. .do	1-20, 060	1867	...do	948

List of hydrographic sheets registered in the archives, de.-Continued.

Iocalities.	State.	Scale.	Date,	\#ydrographer.	Renister namber.
Suisun Bay, with confluence of Sacramento and San Torquin Rivers.	California	1-60, 600	1866 -67	E Cordell	905
Sacramento and San Toaquin Rivera	do	1-10, 10 m	1897	. 10	\%3.
Carquines Straits, part of	. do	1-10, 010	1869	---.- dor	-7:
Off-shore soundings from Point Reyes to Hoderit Mead	...do	1-100, 000	1060	....do	Reg
Off shore soundings from l'oint Reyes to Tomales Point.	do	1-20,000	1206	. do	80)
Crescent City Reef	. d 0	1-20,000	12004	A. W. Chase	10:3
Coose Bay	Oregon	1-10, 00\%	1806	J. S. Lawson	901
Coose Bay	....do .	1-10, 600	1805	-....alo	982
Yaquina Bay.	da	1-10, 090	1806	A. W. Clase	918
Nehalem River entrance	do	1-5,000	186	E. Cordell and 1. Far quhat.	973
Tillamook Ray	do	1-10.000	1860-66	t. K incheloe .......	936
Colombia Kiver, from Three-Tree Point to Gray's Jay	...dio	3-10, 000	1867-68	W. Sordell.	1015
Columbia River, from Cathlamet Head to Settler's Point.	. do	1-10, 000	1868	.....do	1016
Colunbia River, from Settler's Point to Tongue Point. .	do	1-10,000	12 ta	......da	1117
Columbia River, from Tongue Font to Capo Disappointment	...do	1-20,000	180	......d.	118
Columbia River entrance	do	1-20,000	1568	...do	1/4ts
Hestruction Ieland and vicinity	Washingtor	1-10, 0001	1 Cc	J.S. Jawson	Ex)
Lawton Reef, Rosario Strait	...to	1-10,000	187	......do	1109
Partridge Bank, Strait of Juan de Fuca	do	1-20, 1000	1871	...-dlo	1130
Port Matison .-.............................	. 16	1-10,000	1868	...... do	1109

## APPENDIX No. 8.

## REPORT ON THE PHYSICAL SURVEY OF PORTLAND HARBOR.

DEAR SIR: It is unnecessary for me to advert to the history of our renewed connection with the harbor-interests of Portland, because fou will probably embrace this in your own comments upon the season's work. Suffice it to say that we were called upon to recommend harbor-lines for Fore River, and money was appropriated by the city of Portland to meet the expenses ineurred in the preliminary examination of the locality.

My share in this examination involved a study of the movements of the tides and their relations to the channels and banks, which greatly interested me, because the instance before us was peculiar in some respects. Unlike most of the cases referred to us, we found, in the portion of the Fore River we were called upon to treat, a tidal channel with alluvial bed and banks nearly in their natural condition; and we were to suggest in what manner and to what degree this arenue could be encroached upon by wharves, \&c., without so disturbing the regimen as to cause the mud to start from the bottom and move down into more valuable portions of the port. In other words, we were called upon, practically, to draw the liue between use and abuse, to the end that no unnecessary restraint might be placed upon the commercial occupation of the water-front, and no Lncrease of the scouring power of the currents induced in a channel able to supply from its vast accumulations of mud enough material, if once set in motion, to do great mischief. The limits finally recommended were based mainly upon the "isodynamic lines", or lines of equal scouring. power, determined by us in a mannner that I propose to describe step by step.

With Mr, Horace Anderson's excellent hydrographic surver, we first of all, before making a single observation in the field, calculated the volume that most pass throngh different sections of the channel during the different hours of flood and ebb, at a time when the tides ware at their average. When you consider that with every change in the height of the tide, the cubical contents of basins and creeks with which the channel commonicates alter in a very irregnlar way, so that proportions can only be used for very small elements of height, you will appreciate the amonnt of labor which these computations involved. My skillful assistants, Mr. J. B. Weir and Mr. Ed. H. Foote, spent a busy month at the office in determining these standard volumes, as I shall hereafter call them. The next step was to determine from actual observations in what manner the volumes passing through the channel distributed themselves over the cross-sections; whether they ran over the flats or confined themselves to the channel; whether they pressed over on one shore in one part of the river or the other shore elsewhere, \&c.; in short, to follow the water in its meandering course from point to point. This field-work was also assigned to Messrs. Weir and Foote, who organized parties, and, with the assistance of onr friends at Portland, went into the field without a day's delay.

We selected ten characteristic lines, crossing the stream at right angles, and in each of them made simultaneous observations of the current on the ebb and on the flood, at four or more sta. tions, which gave us transverse curves of velocity. Nach transverse curve of velocity had then to be corrected for the mean. This was done by applying the co-efficient that would make the velocities multiplied into the depth of water give the standard volume previously computed for this section. Finally, all the transverse curves, having been observed and corrected for the mean, were plotted on a projection of the harbor, and lines of equal velocities were drawn along the borders of the stream, which were designated "isodynamic lines", because, properly speaking, they represented the mean movements from surface to bottom, and were, in effect, lines of equal scour.

Haring given the above general sketch of our proceeding, I shall now go back over the ground and give in greater detail the actual process employed in a type case-that of Section 4 (see tables.)

At Section 4, which extends from "Stone Wharf", the whole distance atross the water-way at high tide was found to be 1,586 feet, but the part in motion at the time of maximum ebb-current was only about 1,000 feet. Our stations lay at distances of 90 feet, 275 feet, 480 feet, and 720 feet from the wharf, and gave respectively $0.11,0.87,0.61$, and 0.34 nautical mile per hour. These we plotted upon profile-paper, using distances and velocities as co-ordinates; and we completed the curve by sweeping a smooth line through the determined points. Then we took out the velocities for even hundred feet, and entered them in the third column of our annexed table. The same course was takell with flood-velocities. The next step was to correct these velocities for the mean, which was done by applying a co-efficient, obtained in the following manner:

Over each space of 100 feet, we took from Mr. Anderson's hydrographic sheet the average depth, and, having corrected it for the eleration of tide at the moment of our observations, multi. plied it into the velocity and the distance ( 100 feet); then summed up the whole volume. This volume fell short of the standard for this section, because the fall of the tide for the day of observation fell below the mean, \&e. So we divided the standard volume by the volume observed, and found that we must increase all the velocities 13 per cent. in order to have our transverse curve represent the mean movement.

We have spoken of the "volume" obtained by multiplying observed velocities into distance and depth; but we would not be understood to indicate that the word is here used in the same seuse as in the case of standard volume for the section, because the observed velocities were those of the surface only. When corrected, as thes appear in the last column of our table, the figures given are the true mean velocities from surface to bottom. If' onr observations had extended over a semi-lunation and embraced every tide, we shonld have fonnd our average co-efficient below unity (perbaps about 0.90 ); because the mean rate from surface to bottom is usually less than the surfacevelocity in tidal channels.

In the case of Porthind, we had an advantage which we did not possess in New York. The Fore River is simply an arenue between the sea and interior basins, uot so distant as to occasion much delay with the filling and draining; so that, for any section we had a mind to choose, we could compute, from Mr. Anderson's surver, the passing volume, and correct our surface-velocities. But in the East River at New York we were obliged to spend a great deal of time in making observations from surface to bottom at the Wall-street section, in order to obtain an initial volume.

In the Aunual Report of the Coast Survey for 1871 , there will be found a general paper on the location of harbor-lines, in which $I$ have, with the help of a simple diagram, illustrated this matier of isodynamic lines more fully, and spoken of the conditions under which, not the simple velocities, but the resultant of all the velocities, are used; and it is for this reason that $I$ employ the term isodynamic lines instead of lines of equal velocity, the former being more comprehensive. There are conditions where, instead of using simple velocities, we should use their squares; but the Fore River does not seem to be one of the cases.

I have thought best to furnish a sketch with this report, showing our ten sections at Portland and illustrating our tables. These were not furnished at the time the dranghts containing the harbor-lines were sent to Portland, and may be of interest.

In drawing the harbor-line, we gave greater weight to the ebb, because it appeared to be the principal working agent; its thalueg lying more nearly over the line of greatest depression. We offer an illustration of this in our sketch, where, for "Section 3 ", we have compared both transverse curres with the profile of the bottom.

Mr. Weir sums up the statistics of his work as follows:
Number of sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Number of stations occupied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Number of observations recorded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 600
Respectfully submitted, by your obedient servant,

## Prof. Benjamin Peirce, Superintendent of the United Slates Coast Survey.

## To the honorable members of the City Council of Fortland:

Believing it is necessary that proper harbor-lines should be established in Fore River, to prevent encroachments that might be permanently injurious to the harbor, we respectfully ask your co-operation in appointing a commission to establish such lines as will, while protecting the harbor, give to riparian owners all the rights and privileges consistent with the public interest.

JACOB MCLELLAN,<br>S. T. CORSER,<br>C. H. FARLEY,<br>Harbor Commissioners.

Copy of records.
City of Portland, City Olelk's Office.
At a meeting of the city council, hold Octobor 17, 1872, a communication from the harbor com missioners was received, recommending that it is necessary that proper lines should be established in Fore River, to prevent encroachments, and asking co-operation to establish such lines.

Read and accepted, and referred to the harbor-committee, with power to carry out the views of the report.

A true copy. Attest:

## H. I. ROBINSON, City Clerk.

The recommendations of the harbor commissioners were subsequently carried ont, as per report of the advisory committee of the United States Coast Survey.

Attest:

## H. I. ROBINSON, City Clerk.

To the honorable Mayor and City Council of Portland:
The undersigned, harbor commissioners of Portland, have the honor to lay before you the report and accompanying maps, just received from the advisory council called together by us upou your authority to establish harbor-lines in Fore River. We obtained for this important work the services of Superintendent Peirce and Professors Whiting and Mitchell, of the United States Coast Survey, who, from their scientific knowledge and familiarity with such subjects, were best qualified to execute the work and give it a character of the highest anthority. Their services were gratuitously rendered; and we are under special obligations to them for the interest manifested in this inquiry, and for the early completion of the survey, in spite of other pressing duties, which might reasonably have been pleaded as a cause for delay.

The execution of the work has been based upon purely scientific principles, excluding prejudice and error, and equitably adjusting public and private interests. The work will not need to be repeated, and we would respectfully recommend that the lines like those in the lower harbor be established and confirmed by suitable legislation.

JACOB McLELLAN, ALBERT MARWICK, C. H. FARLEY, Harbor-Commissioners.

Portland, October 1, 1873.

At the regular meeting of the mayor and board of aldermen, October 7, 1873, the report of the advisory council of the United States Coast Survey, with plan and description of the harborlines, was presented, with a communication from the harbor-commissioners in relation thereto.

The following resolution was unanimonsly passed :
"The city government desires to express its sense of obligation to the members of the advisory council-Superintendent Bemjamin Peirce, and Professors Henry Mitchell and Henry L. Whiting, of the United States Coast Surveg-for the services they have rendered us in making an elaborate physical survey of our harbor, for the purpose of establishing limits in an important section of it, o which marginal structures may be safely extended. We realize the fact that it is to the adrantage of our city to secure in the development of our water front all the territory that can be turned into productive and taxable propertr, without limiting too much the capacity of the harbor, or affecting its perpetuity.
"We are aware, also, that to do this withont an accurate knowledge of the subject is dangerous, and may prove unprofitable. Questions of this nature belong to a branch of science of which these gentlemen are masters, and to a large extent the founders, and we gratefully recognize the high character of their services, their value to the city, and the interest and generosity manifested in rendering them gratuitously: Therefore,
"Resolved, That to these gentlemen individualls, and to the United States Coast Survey, Portland is again laid under deep obligations, and with its future bistory their names and serrices will be intimately associated."

Approved October 10, 1873.
GEO. P. WESTCOTT, Mayor of Portland, Me.
H. Ex. 133-13

SEGTON No. 1.-AT ROLLING-MLLS BRIDGE.
Velocities of tidal curvent.


SEcion No. Q.-AT VACGHN'S BIRIDGE.
Velocifies of tidul current.


Sbcton No. 3.-GN FLATS DELOW VAUUHN'S BRIDGE.

## Telocities of tidul current.



SEt mon No. L--FROM "STONE" WHARE.
Telocities of tidal current.


SECTION NO. 5--FROM PLASTER MLLL WHARF.
Velocities of tidal current.

	Observed maximum velacity.		Observed relocity rediced to mean maximun.		
	Flood.	Ebb.	Flood.	Ebl.	
Feet.	Naut. miles per hour.		Naut. miles per hour.		
			Cu-ef. $=$ 0.67	Co-er. $=$   0. 90	
0	0.00 (2)	0.00(?)	0. 00 (3)	0. 000 (?	Lat. $=43^{\circ} 38^{\prime} 34^{\prime \prime} .65$; Long. $=70015^{\prime} 37^{\prime \prime} .49$.
100	0.84 (3)	0. 94 (?	0. 56 (?)	0.84(?)	True azimuth of line $=353{ }^{\circ} 45^{\prime}$.
200	0.93	0.92	0.62	0. 82	
300	0.74	0.88	0. 50	0. 79	
400	0. 74	0.81	0. 50	0. 71	
500	0. 74	0.74	0.50	0. 67	
600	0.74	0.68	0. 50	0. 56	
700	0.74	0.48	0. 50	0. 43	
800	0.73	0.33	0. 49	0. 32	
900	0.68 (3)	0.17	0. $40(?)$	0. 15	
1,000	0. 21 (\%)	0.02	0. 14 (7)	0. 02	
1,010	$0.00(?)$	0.00	0.00 (?)	0.00	

Section No. 6.-FROM NORTHERN ABUTMENT OF P. S. AND P. R. R. BRIDGE.
Velocities of tidal current.


SEction No. 7.-AT PORTLAND BRIDGE.
Velocities of tidal current.


SECTION No. 8-FROM WHARF NEXT BELOW RAILROAD-WHARF.
Velocities of tidal current.

	Observed maximum velocity.		Observed velocity rednced to mean maximum.		Lat. $=43^{\circ} 38^{\prime} 51^{\prime \prime} .4 ;$ Long. $=70^{\circ} 15^{\prime} 3^{\prime \prime} .8$. True azimuth of line $=317^{\circ} 30^{\prime}$.
	Fleod.	Ebio.	Flood.	Ebib.	
Feel.	Naut milcs per hour.		Naut. miles per hour		
			$\begin{gathered} \mathbf{C o - e f}= \\ 0.74 \end{gathered}$	$\begin{gathered} \text { Co-ef. }= \\ 0.80 \end{gathered}$	
0	0.00	0.00	0.00	0.00	
100	0.99	1.08	0. 73	0.97	
200	1.06	1.10	0.78	0.89	
300	1. 01	1. 10	0.75	0. 88	
400	1. 05	1. 16	0.78	0.93	
500	1.21	1.34	0. 90	1.07	
600	0.99	1.00	0. 73	0. 80	
700	0.16	0. 12	0. 12	D. 10	
715	0.00	0.00	0.00	0. 00	

Section No. 9.-FROM BROWN'S WHARF.
Velocities of tidal current.

	Observed maximum velocity.		Observed velocity reduced to nicail maximum.		
	Flood.	Ebu.	Flood.	Ebb.	
Feet.	Naut. miles per hour. Naut, miles per hour.				Lat. $=43^{\circ} 39^{\prime} 1^{\prime \prime} .4 ;$ Long. $=70^{\circ} 14^{\prime} 49^{\prime \prime} .2$. True aximuth of line $=319050^{\circ}$.
			$\begin{gathered} \text { Co-ef. }= \\ 0.66 \end{gathered}$	$\begin{gathered} \text { Co-ef. }-- \\ 0.69 \end{gathered}$	
0	0. 54	0.6.7	U. 37	0. 46	
100	0.64	0. 99	6. 42	0.68	
200	0.75	1. 28	0. 50	0.84	
300	D) 83	1. 34	0.55	0. 92	
400	0. 89	1. 32	0.59	0.91	
5100	0.94	0. 9.4	0.62	0.65	
600	0. 95	0.51	0.63	0.35	
700	0.98	0. 35	0. 61	0.24	
800	0.80	0. 30	0. 53	0. 21	
900	0.62	0.25	U. 41	0.17	
1,009	0.43	0.20	0. 98	0.14	
1,100	0. 23	0. 15	0.15	0. 10	
1,200	0. 166	0.09	0.04	0.06	
1,900	0.00		0. 00		
1,300		0.03		0.02	
1,335		0.00	.....	0.00	

SECTION No. 10.-FROM CUSTOM-HOUSE WHARF.
Velocities of tidal curvent.



## APPENDIX No. 9.

## ADDITIONAL REPORT CONCERNING THE CHANGES IN THE NEIGHBORHOOD OF CHATHAM ANT

 MONOMOY.A year ago I had the honor to present a somerhat lengtby report concerning the coast of Chathan and the peninsula of Monomoy, since which time a few additional items of information have been collected, which deserve, perhaps, to be recorded.

In my previous report, I made some translations from Champlain's notes, made during a royage along our coast in 1600 , in which he speaks of Malle Barre (Nauset Inlet, of which he not only gives a special map on large scale, but distinctly marks the location upon his coast-chart of "Nouvelle Franse"), and of his coasting thence along an "arenaceous" shore and onward round a dangerous "point of sand which juts out three leagues to the S. S. E.-a very dangerous place", which he calls "Cap Batturier", and which we call Monomoy; and finally of his arrival at "Port Fortune", of which he gives a large-scale map, which we easily recognize as Chatham. I alluded to the popular tradition that Monomoy is a very recent creation of the sea, and cited maps and reports to show the connecting links of evidence between the Monomoy of to day and the "Cap Batturier" of Champlain. It is true that if Monomoy had been from the ontset increasing as rapidly as it has been since our first regular Coast Survey sheet of 1847 , we might argue that in 1606 nodecided peninsula existed. Still, in the face of its representation upon Champlain's map of "Nouvelle Franse", and upon the chart of the British Coast Pilot of 1707 , and in spite of its length being stated in the "Description of Barnstable," of 1802 , I did not think I could give any cousiderable weight to traditions, even thongh my excellent friend, Mr. Otis, of Yarmouth, had taken nerer so much care in collecting them. The fact that I was stating was simply the rapid gain of Monomor upon the waters of Nantucket Sound; and I looked back into the bistory of this to ascertain whether there was any probability that this strip of beach would cross the channel lying between its extremity and the neighboring shoals, or even annex Nantucket to the mainland. I was satisfied that its progress had been intermittent, and that the gain hail been at a higher rate recently than formerly; and I think any one who will go back over the charts, as I have done, selecting as authority only those which are professional in character, will come to the same conclusion.

The following table gives the distances from James Head (site of present Chatham lighthouses) to the extreme point of Monomoy :

Yoar,	Authority		Remarks.
1606	Champlain's estimate :   "3 leagues", common (?) $\qquad$   3 lergues, maritime (l) $\qquad$	$\begin{array}{r} \text { B. } 28 \\ 10.36 \end{array}$	(The common league of France in the eoventenath ceutury was 25 to the degree; the maritime, 20.
1707	English Coast Pilot:   Sailing Directions. $\qquad$   Chart $\qquad$	$\begin{array}{r} 7.75 \\ 10.00 \end{array}$	$\left\{\begin{array}{l} \text { The bearing of Monomoy Point from the Tail of the Horse Shoe is given in the Sailing } \\ \text { Directions. Upon the accompanging chart, Monomoy is represented as an ialand ten } \\ \text { miles long, and three miles wide at broadest place. } \end{array}\right.$
1781	Des Barres large-scale map .....	8.50	On this chart, for the first time, Monomoy is properly oriented, and takes the form which we see on recent charts (essentially). Se "Atlantic Neptune."
1802	"Deacription of Barnstable," Massachnaetts Hintorical Collection.	7.75	
1853	United States Goast Survey.......	800	Planc-table sheet of S. A. Gilbert.
1856	... ${ }^{\text {do }}$	8.08	Plase-table sheet of P. C. F. West.
1868	....do	8.36	Plane-table shest of C. H. Foyd. -

Note.-The estimate of Champlain will be increased if we suppose that be counted from Morris Island instead of James Head. Upon his general coast-map of "Nouvelle Franse", Mono-
moy is represented in a manner that makes it doubtful whether he designed to make it dry sands or simply an extending shoal. But in the Atlas Novus (Dutch maps with Latin text), 1640, it is represented as a strip of dry land extending nearly south about six miles. Here it is called Vlacke Hoeck, i. e., Flat Point. Chatham, on the same map, bears the name Ongeluckige Haven, probably from Champlain, who named the place "Port Fortunc, for the unhappy circumstances which had befallen us there." It is a far better map than Champlain's, showing that more correct information had by this time been obtained.

Des Barres was the most remarkable geographer of the eighteenth century. Indeed, his maps were only superseded by the Coast Survey. He gives a riew of Monomoy as seen from sea, in addition to his two maps, showing that he fully appreciated its importance to the mariner. It is very remarkable, then, that he should give this peninsula a length greater than it has to-day! Perhaps, as Captain Eldridge says, it was much longer before Egg Island broke off. I am, however, inclined to take the measurement stated in the "Description of Barnstable" as the first positive testimony concerning the true extent of this peninsula. It occurs in stating the position of a humane house, and is meant to be correct.

There are, as I stated in the previous article, plenty of old maps which give different testimony from that which my inrestigation has reached; but these are only popular pictures of the conntry, and not trustworthy, especially as regards worthless strips of beach. It was only a few weeks since that a bookseller in Boston showed me an expeusive atlas, recently issued, which he regarded as the most complete set of maps in the market, but which failed to give the Monomoy Peninsula. Had this work been a coast pilot, or assumed to be a collection of marine charts, such an omission would hare been fatal to its repute; but as it was nothing of this sort, the absence of a sand-bank, however notorious among sailors, was of no consequence to any one likely to purchase such an atlas.

Not wishing, however, to ignore traditions altogether, I have examined a sketch furnished me by Capt. George Eldridge, a resident of Chatham, who is well known as a practical pilot, a surveyor, and a chart-publisher. This sketch, although traditional, as it assumes to be, is confirnued, in one important feature at least, in Des Barres' remarkable chart of 1764 , in this: that toward the close of the eighteenth century, Monomos was joined to the upland, stopping the passage-way from the Sonnd, so that Pleasant Bay was only accessible from the ocean-side.

At the time of Des Barres, 1781; Nauset beach lay along the front of Pleasant Bay, and stretched balf-way down to the present Chatham light-houses, and had advanced two miles in the previous thirty years. (Atlantic Neptune.)

Lieut. (now Rear-Admiral) Charles H. Davis, writing in 1848, gives, as the rate of advance for Nauset Beach from the northward, two miles in twenty years, upon the testimony of Capt. Franklin Nickerson, of Chatham.*

One may easily see how the Nanset beach, composed of alluvia swept down the outside coast by the sea from the northeast, has extended itself along the resultant between the ocean-waves on the one hand and the oatflow of Pleasant Bay on the other. In this way, it has gone on till the too confined waters of Pleasant Bay have forced a more direct outlet again, and the march of the beach from above has recommenced. The early history of these movements is in no wise peculiar; the same may be observed at many other places upon our sandy coast. But this familiar history seems to be closed.

## THE REAL POINT OF INTEREST.

It now appears that Nauset beach does not extend itself to renew the cordon in front of Chatham, but that the glacial hills, upon which the village stands, are to be thronon open to the fury of the sea, and the place is destined to renew its ancient reputation as the Ongeluckige Haven.

Since our survey of 1847, Nauset beach, which was found lying nearly across the mouth of Pleasant Bay by Mr. Glück, has not advanced. If this change of regimen is really taking place, to what shall we attribute it to the failure of supply from above where the cliffs have lost their covering of sand and expose only hard clays to the present wear of the sea? or is the new order

[^0]of things the sign of larger operations of the ocean affecting the submerged contomes and foreing the samds back upon the continent? Should the supply of new material be really ent off, it is only at question of time when the sea, grinding along the shore, shall convert the present coarse gravel into dune-sand and deliver it to the wind and tide; for it is in this way that the material or our beaches is to be carried back into the interior or swept into sheltered bays and the advance of the sea continued, so that, geologically speaking, Monomoy may have but a short life before it.

The clay that underlies the gravel of Cape Cod does not supply beach-sand, properly speaking, when sifted by the sea, but ready-made dune-sand and fine material for salt-marshes. There is, I think, an interesting significance in this breaking-up of the littoral cordon at Cape Cod. We have wo other instance like it that I am aware of. On the contrary, the sand-barriers along our coast have generally streugthened since our earliest sarveys. For instauce, Hatteras Banks, which is a slender strip of saud one hundred and cighty miles in length, lying at some points thirty miles from the mainland, has fewer breaks in it to day than it had at the beginuing of this century ; and if we go back to the Raleigh chart, bearing date of 1583 , we find that the ummber of inlets hats diminished at least one-third. Mr. Frederick Kidder, who has given much stady to the geography of North Carolina, thiuks that the diminution in the number of water-ways through the beach has been the indirect results of the destruction of the forests and the cultivation of the soil upon the maiuland, which have diminished the outflow of land-waters.

Glancing at our general coast-chart of New Eugland, we see that a region of shallow water extends eastward from Cape Cod and Nantucket to a distance of one hundred and eighty miles, and we might hasten to the conclusion that here lies the foundation of lost lands, wasked away by the sea precisely as the present cape is being destroyed, and this has been frequently suggested by geologists. But since the movements of the ocean are touard the continent, where is the material to be found? There are not sufficiont beaches, dunes, and accumulations in sheltered bavs and sounds in this part of the continent to balance such an account. In fact, it takes all the dunes and beaches of Provincetown and Monomoy and the shoals and marshes of Nantucket Sound and Cape Cod Bay to balance the loss of the comparatively narrow belt of land that we see, from the present elevation of the glacial cliffs, must be admitted to have fallen a. prey to the waves.

As the glacial cliffs tumble down before the attacks of the sea, there are exposed, a short distance above the reach of storm-waves, as they now occur, rifts of oyster-shells like those of existing species, and the same are found also in wells far back from the coast, showing that, previons to the glacial deposit, there existed a bank extending into the sea; and I suggest that the shallow gronnd which I have spoken of above as stretching out one hundred and eighty miles to the eastward may never have been the site of glacial deposits.

There is one little point that I must touch upon here, which is irrelevant to the special subject of this report, but may interest somebody. It is this: the rate at which the coast falls bick is not, on our shores, dependent upon elevation, as Sir Charles Lyell believes it to be in parts of England. There are, for instance, all sorts of elevations along the onter margin of Cape Cod, and yet the shore-liue is remarkably smooth, having no indentations to mark the more rapid encroachments ujon low countries. The rapidity of encroachment seems to depend upon the character of the material almost exclusively. The glacial drift has been dumped into .the sea pell-mell, and, because so badly packed, is peculiarly perishable where attacked by the waves. On Martha's Vineyard, for instance, we have, in the same neighborhood, two lofty bluffs, Nashaquista and Gay Head, which have undergone very unequal erosion from the sea. The former (glacial) is falling rapidly away, while the lattor (sedimentary) has been lindly dealt with. One is treated as an intruder upon the ocean's domain; the other, as a peaceful settler.

## CORREOLIONS OF PREVIOUS PAPER.

In the sketch accompanying my former report, a portion of Morris Island, marked D, was stater to be "hillocks." I had not been on the precise ground at the time, and misinterpreted our topographical map. On fevisiting Chatham, a few weeks since, Lobserved that what I had called "hillocks" were really hills of considerable heights clustered together. Captain Champlain describes the same locality as "petis costaux de montaignes."

Captain Eldridge objects to my describing the little fresh pond, which appears on both Champlain's map and our own, as "lying in the bollow of the upland." A careful inspection shows that this pond rests against the upland on one side, and is separated from the sea ou the other by a natural dike of alluvium.

## RESULTS OF THE LAST SURVEY.

In the month of Norember last, Mr. M. L. Marindin, assisted by Mr. J. B. Weir, made another plane-table survey of the coast of Chatham, between the parallels $41^{\circ} 39^{\prime}$ and $41 \circ 49^{\prime}$, covering the area of waste, and he supplies the following tables, which are those previously published, brought up to date.

Table of arcas of Chatham beach between latitude $41^{\circ} 39^{\prime}$ and $41^{\circ} 42^{\prime}$ :


Loss betwoen 1872 and $1873=$ se per cent. of area in 1872 .
Table of distanees of the eastern shore of Chatham beach, west from meriduan $60^{\circ} \quad \mathbf{5 5}$.

On latitude.	Distance west of meridian in tho year-						
	1847.	1368.	Retreat, 1847 to 1808.	1872.	Retreat, 1868 to 1872.	1873.	Retreat, 1872 to 1873.
- , "	Feet.	Feet.	Feet.	Feet.	Feet.	Fect.	Feet.
413900	6,475	6, 075	+ 400	f, 150	- 75	6, 630	- 480
413915	5,525	5, 650	- 125	5, 802	$-152$	6, 120	-318
413930	4, 925	5,275	- 350	5, 595	-320	6, 140	-545
413945	4,550	5, 005	- 455	5,405	-400	Inlet.	
414000	4, 255	4, 795	- 540	5, 095	-300	Inlet.	
414015	3,975	4, 570	- 595	Iulet (1871).		Inlet. .	
414030	3,625	4, 285	660	4,635	-3.50	5,365	$-330$
414045	2,870	3,627	- 757	3,805	-968	4,345	$-450$
414180	2,060	3,127	$-1,067$	3,127	$\pm 0$	2,965	+182
414115	1, B20	3, 085	-1,265	3, 660	+23	3,180	$+120$
414130	1,520	4,352	-2, 835	5,135	-800	5,180	$+25$
414145	1,360	N. Tulet		N. Tulet.		Iulet.	
414200	Infet....	Inlet.		Inlet.		Inlet.	.

Note,-Width of beach on latitude $41^{\circ} 41^{\prime}$ in $1847=1,700$ feet. Width of beach on latitude $47^{\circ}$ $I^{\prime}$ in $1868=590$ feet. Width of beach on latitude $41^{\circ} 41^{\prime}$ in $1872=590$ feet. Wialth of beach on latitade $41^{\circ} 41^{\prime}$ in $1873=820$ feet.

The loss of beach between 1847 and 1868 was at the rate of 11.4 acres per annum; between 1868 and 1872, 20 acres; and, for the past year, 51.5 acres: so that the waste has been going on at an accelerating rate.

The most salient point of the remaining beach on the parallel of $41041^{\prime}$ has not wasten, but gained in width during the past year; this, however, seems to be a mere fluctuation.

The upland has been but little disturbed during the past year ; but attacks from the sea are so much apprebended that buildings have been moved back from places where inroads are threatened.

Mr. Marindin has got up for me a series of little sketches of Chatham, which I append, begin- . ning with the map of Champlain, "rectified", $i$. e., pat into proper shape, and oriented to the best of

WEAR OPTHE SEA
UPON THE COAST
Hlustrated by a comparison of different Surveys.

Note: In all the sketches the wolood (ghacial danif is given in parallet Tives tous while the beaches are vanded thers, wheske.

CHATHAM<br>CAPE COD<br>Scale : $\frac{1}{\text { Bo. }} 0000$<br>Statute Mries<br>

U. S.COAST SURVEY

Survey ly C.LBoyd in 1868 .


our ability. Those points which hare not been washed by the sea we supposed to have remained the same, and we have made them the base for determining the positions of other points that have undergone a" sea-change."

Between the time of Champlain, 1606, and the date of our first regular survey, 1847, Des Bar res' chart properly comes in; but the scale is smaller, and we should not fecl justified in enlarging a printed sheet. (See Atlantio Neptune.) The beach was broken in Des Barres' time in front of Ohatham, and the Monomoy Peninsula hooked on to the upland at James Head, near the present light-houses. Subsequently, however, Nauset beach advanced from the northward, and reproduced the littoral cordon in front of the town, as shown by Lieutenant Davis (before referred to); and finally, before 1847, another inlet opened above, since which Nauset beach has not advanced.
"Ram Island", which, upon the original map of Champlain, was called "Iste remplis de bois de. dans un grand cul de sac" (to quote the exact phrase), obtained its recent name on Des Barres' chart, and still appeared in the survey of 1847 , at which time it had an elevation of 20 feet, was used as a pasture, and had a building upon it. The subsequent surveyors fonnd no such island existing.

The dwindling of the beach from date to date is well illustrated by these sketches, upon which we hare carefully distinguished upland (glacial drift) from alluvia by shading the former in lines, the latter in dots.

Very respectfully, yours,

[^1]
## APPENDIX No. 10 .

NOTE CONCERNING CHANGES IN THE SUBMERGED CONTOURS OFE SANDY HOOK.
Dear Sir: Having insufficient time in which to prepare a full report upon the changes at Sandy Ilook, but deeming the matter too important to be postponed altogether, I sulbmit a few of our tables showing the results of comparisons among our repeated hydrographic surveys, with a rough sketch illustrating our mauner of computation.

The survey of Captain Gedney in 1840 furnished but little data, and that of 1855 by Captain Craven is incomplete (althongh good); but the surveys of 1863 by myself, and 1873 by Mr. Nes, were made expressly for the purpose of comparison.

The shore-line surveys, which I have never regarded as furnishing the kind of data really necessary to measure the advance of the Hook, I hare not used. I will remark, however, from memors, that there was little superficial change for several years before 1860 ; that a rapid growth took place between 1860 and 1863 ; and that since 1865 the Hook has apparently been washing amay. Next season we propose to make another shore-line survey in great detail.

Regarding Sandy Hook as a great mole bnilt out by the sea across the floor of the bay, I hare considered the submerged contours as those most unlikely to be affected by accidental causes, and that their changes of position should furmish the best measures for the progress of this remarkable worl of mature.

Inspecting the seven tables appended, with the help of the diagram which accompanies them, you will, I think, conclude that the Hook is rapidly advancing, and that we have no reason to suppose that its rate of progress has slackened.

Professor Bache, in his Reports of 1856 (Appendix No. 38) and 1857 (Appendix No. 37), gives the average rate of increase of the dry point of Sandy Hook $27 f$ feet per annum. Our comparison of submerged contonrs shows the increase recently to have been about 50 feet per annum! Professor Bache found that Flynn's Knoll, which lies on the other side of the main ship-channel, did not recede as the Hook adsanced, so that this channel declined in width $27 \frac{1}{2}$ feet per annum. We find that the base of Flynn's Knoll begins to give way at the rate of 17 feet per annmm, so that the main shipchannel loses about 33 feet per annum. The present width of this channel between the 24 -foot curves is 2,800 feet, which is about the minimum required for a heavy sailing-ship beating to windward, so that, unless Flynn's Knoll beats a more hasty retreat hereafter than heretofore, we shall soon find this important channel falling into disrepute.

The main ship-channel at Sandy Hook is the direct arenue to Sandy Hook Bay, the grand onter roadstead of New York Harbor, and the route pursued by most heavy ships bound to the city. The Swash Channel is improving, so that it is more and more used as a direct avenue from the sea to New York City, and may, before many years, become a safe and adequate channel at all times. Still the loss of the Lower Bay as an outer roadstead wonld be a misfortune that can scarcely be estimated.

The material forming Sandy Hook is swept up from the Long Branch coast by the diagonal wash of the sea. This was placed beyond dispute by my observations of 1857. Materials of the same specific we ight as the sand were placed in the sea at many different points down the outside shore, and at different distances off shore. Those within the action of the waves breaking near the shore were swept along to the northward, and finally collected at the point of the Hook. Those placed far off shore never came to land, so that I concluded that the tidal currents took very little part in the transaction.

Mr. Whiting suggests that the giving way of Flymn's Knoll has admitted the more rapid adrance of the Hook.

I think Captain Patterson and Major General Humphreys would feel an interest in seeing this report.

Very respectfully, yours,

> HENRY MITCHELL, Unitcd States Coast Survey.

Irof. Benjamin Peirce, Superintendent of the United States Coast Survey.

Comparison of changes in the submerged contours around Sandy Hook, from repected surveys.
I These talles and those that follow have been computed by H. L. Marindiu, assisted by Mr. John B. Weir and Mr. Fif. H. Foote, M. Mitchell.


Comparison of changes in the submerged contours around \$andy Hook, ©c.-Continued.



## APPENDIX No. 11.

REPORT OF GEOGRAPHICAL AND MYDROGRAPHICAL EXPLORATIONS ON THE COAST OF ALASKA, by W. H. Dall, assistant in the coast slevey.

San Francisco, Cal., November 10, 1873.
SIR: I have the honor of submitting the following report of our occupations during the past s eason, with accompanying papers.

We Ieft San Francisco, Cal., April 28, 1873, on the Cnited States Coast Surrey schooner Yukon, and arrived at Unalashka, Aleutian Islands, May 20, 1873. During the voyage, current and temperature observations were kept up, as on previous occasions. We remained at Unalashka until June 11. This was for the purpose of carefully rating our chronometers. Signals were erected and preparations for continuing the survey of Captain's Bay were made, at such times as the weather allowed, until the rating of the chronometers was completed. During this period, 113 observations for time, 58 observations for latitude, and 96 observations for magnetic declination were obtained. I have already reported to you in regard to observations made in the vicinity of Sannakh, including the discovery of a uew cod-bank, and the determination of the southern and eastern terminations of the celebrated reefs about Sanuakh. These obserrations were taken prior to our arrival at Unalashka, and will be more fully alluded to hereafter.

Leaving Unalashka, June 11, we sailed directly for Attu, the most western island of the chain, arriving June 18. Here 216 observations were taken for dip and magnetic declination, and 80 for time, latitude, and azimuth.

We sailed hence June 27, and in latitude $52^{\circ} 56^{\prime} 41^{\prime \prime}$ north, and longitude $175^{\circ} 38^{\prime} 20^{\prime \prime}$ east, sounded in 1,018 fathoms without reaching any bottom, though all our available line was used. The next day, in latitude $52^{\circ} 20^{\prime}$ north and longitude $177^{\circ} 17^{\prime} 00^{\prime \prime}$ east, sounded in 900 fathoms, finding the bottom to be composed of that peculiar ooze, full of Foraminifera belonging to the genus Globigerina, and which has been designated by the English investigators as "recent chalk." We arrived at the harbor of Kyska June 29 , and, having determined its suitable character as a landingpoint for a cable, proceeded to make a thorough reconnaissance-surrey of it. Here we obtained 51 observations for tides; 1,414 soundings over lines twenty-seven miles in extent; 253 observations for horizontal angles; 631 observations for shore-line, covering an extent of fifty-five and one-half miles ; 152 observations for azimuth, time, and latitude; and 192 for magnetic declination and dip. Observations were also taken for determining the position of the group known as the Davidoff Islands, which are placed about six miles too far north on the charts now in use. We left Kyska July 24, and arrived at Constantine Harbor, Amchitka, ou the following day. Here we obtained 96 observations for magnetic declination, and 90 for azimuth, time, and latitude; the weather being very unfavorable.

Sailing hence August 6, we arrived at Adakh on the 9th, and discorered a new harbor in the Bay of Islands, in which we anchored and of which a sketch accompanies this report. Here we obtained 32 observations for magnetic declination, and 46 for latitude, time, and azimuth, in spite of the most discouraging fog and rain. We then sailed for Atka on the 13th of August, and arrived in Nazan Bay on the 17 th . En route we obtained a sound in latitude $52^{\circ} 19^{\prime} 00^{\prime \prime}$ north, and longitade $175^{\circ} 23^{\prime}$ west, getting rocky bottom at 700 fathoms.

At Atka, the weather did not improve, and we were unable to obtain observations for latitude, but obtained 48 for azimuth and time and 64 for magnetic declination. Examinations were also made of Korovinsky Bay and the solfataras of Boiling Spring volcano.

We then sailed for the islands of the Four Craters. Here, as there are no harbors, we were unable to effect a landing, but obtained sufficient information to show that they bear no resemblance, in position, size, or form, to the group, as represented on the charts in use. We then continued on our way, and arrived, August 29, in the vicinity of the Bogosloff volcano, where again the heavy
sea prevented us from landing. We obtained observations, placing the island in $53^{\circ} 58^{\prime} 36^{\prime \prime}$ north latitude, and longitude about $167^{\circ} 33^{\prime} 30^{\prime \prime}$ west, agreeing with Liitké, but differing from all the other hydrographers by several miles. We obtained soundings on the line of the reported reef extending from this island to Umnak, and failed to obtain bottom at 800 fathoms within a few miles of shore, and the non-existence of the reef may be taken as demonstrated. Passing the northwest eud of Unalashka, we came upon the western end of the great Bering Sea plateau, with soundings in 60 fathoms, grarelly bottom. We arrived at Unalashka on the 31st of August. Here we proceeded to obtain the summer-rates of our chronometers, which had not done as well as we had hoped for. The triangulation of the bay was continued, Uknadok Island completely surveyed, aud our azimuth-observations continued and angmented.

We obtained here 113 observations for azimuth and time, 128 for maguetic declination, 430 for horizontal augles, and 182 observations for shore-line extending over fifteen and a half miles. The weather prevented our carrying on the soundings as I had hoped to do.

We then sailed, September 25, for the Shumagins, but, owing to long-continned gales, did not arrive there until the 5th of October, when we anchored in Humboldt Harbor, surveyed by us last year, and which has since become a favorite resort for vessels in this region daring bad weather. Here bad weather aud high winds were almost umremitting, yet we managed to obtain 185 observations for azimuth, time, and latitude, and 80 for magnetic declination. A genuine cyclone occurred on the 12th of Octoher, driving the schooner Wm. Irelan ashore on the coast of Unga. We did what we could for the sufferers, who called on us for assistance, and brought them down to San Francisco. The weather offering no hopes of doing more work, we sailed from Humboldt Harbor on the 18th of October for San Francisco. Adverse winds driving us nearly to the north end of Vancouver Island before we passed south of the parallel of $50^{\circ}$ north, we obtained a calm day, and having prepared a quantity of fine twine for the experiment, we sounded in latitude $49^{\circ} 24^{\prime} 01^{\prime \prime}$ and longitude $132^{\circ} 47^{\prime}$ west, and with an excellent opportunity, we ran out the whole, 1,664 fathoms, without obtaining any bottom. We reeled in over 400 fathoms; but a whale became entangled in the line, and we lost the rest just when we had a good opportunity of recovering the whole. The weight used was a ten-pound lead, and the practicability of usiug even this fine and common material (ordinary hemp twine) was thoroughly demonstrated. We arrived in San Francisco November 6 .

During the whole season, current and temperature observations were carried on, and observations for the height of many of the prominent peaks of the islands were obtained. The accompanying appendix contains much that I judged best to omit from this portion of the report for brovity's sake, with many of the observations in tabular form, and especially a table containing a list of the various determinations of latitude, time, and maguetic declination at the places where our observations were taken, arranged in chronological order. This is not without some historical, as well as comparative, value.

The officers of the vessel fulfilled their duties with care and promptitude. Mr. Noyes, as the records will attest, has used every endeavor to carry out his part of our work with neatness and care ; and I must especially refer to the onergy and interest displayed by Mr. Baker in seizing every opportunity for obtaining results under disadvantageons eircumstances, and to the capability he has shown for fulfiling the duties of his position.

I remain, with great respect, your obedient servant,
WILLIAM H. DALL,
Acting Assistant in the United States Coast Survey.

## Prof. Benjamin Peirce, Superintendent of the United States Coast Survey.

ATTU.
This harbor, which is difficult to enter or to leave except with a perfectly fair wind, is subject to the effect of the heary swell from northerly gales. It is very well represented on the chart pablished from the United States Naval Hydrographic Office, and constructed by Lientenant Gibson. The position, which has been given very variously by differeut navigators, agrees in the essentials with that of Gibson. The azimath will be found referred to ander that head farther on.

This harbor was examined with regard to its capabilities as a landing-place for the cable, but possesses no recommendations except its geographical position. The entrance is narrow, shoal, and rocky, and in the winter storms it breaks clear across the mouth of the harbor.

Inpursuance of your instructions, I examined Sarauna Bay, on the east end of the lsiand, and found it shoal and rocky, with no protection. Gotzeb Harbor, mentioned by Gibson, is an open bay with deep water and rocky bottom; and Massacre Bay is reported to have similar characteristics. We may, therefore, reasonably assume that the ishand of Attu possesses no facilities for the telegraphic enterprise.

BUULDYR ISLAND.
Boaldyr possesses no harbors or anchorages. Large shoals are doubtfully reported between this island and Kyska. We were close to their reported position in heavy weather, bit saw mo breakers.

KYSKA ISLAND.
I reported to you last season that, from information derived from old navigators in this region, I deemed it probable that it was more likely than any other to have the characteristics required for a landing-place for the cable. I am glad to be able to state that a thorough examination lias entirely confirmed the views I then expressed.

The harbor of Kyska is a noble bay, perfectly protected from all winds, with good holdingground and a moderate depth of water, which increases very gradually seaward. The bottom of the bay is an almost level floor of sandy mud, and the western shore is an almost continuous sandbeach. The position is somewhat farther east and south than that assigned by Gibson. $A$ thorough reconnaissance-survey was wade of the bay and its approaches. It has not been previonsly visited by a surveying-vessel, so far as I can discover. The entrance is wide enongh to enable a sailing-vessel to beat in or ont at any time. There are no hidden dangers, and the depth of water is sufficient for any vessel.

From this point, observations were made fixing the position of the Davidoff Islands, which are very greatly in error in the charts now in use, and, as to which; considecable confusion of names has arisen.

## АмсНITKA.

Enveloped in fog when we approached it, we were fortunately obliged to cnter Constantine Harbor, instead of Kiriloff Harbor, as wo intended, the reasons for which will preseutly appear. Constantine Harbor is open to the northeast, but otherwise is an excellent anchorage, as the southwest winds alone are prevalent during the summer months. The weather was almost constantly foggy, and we experienced the greatest difficulty in obtaining good astronomical observations. When obtained and repeated, these showed either that the whole island has been much misplaced on the charts, or that its eastern extremity has been erroneously elongated beyond its true position. The latitude is about the same as that given by most previons hydrographers, but the longitude is from 16 to 11 minutes of arc farther west than the charts putit. Our observations were sufficently numerous, and agreed sufficiently among themselves, to place this beyond a donbt; and the correctness of our position is probably as great as our instruments were capable of determining.

When making for Kiriloff Harbor, stated in the United States Naval Directory for Bering Sea to be "the only place where a vessel can lay to anchor in the island ", we could not find it. Hevee I took the large boat from Oonstantine Harbor, and proceeded up the coast of Amchitka in search of it. We reached the middle cape of the island, about five miles east of Constantine Harbor, without seeing any bay or harbor on our way. We stopped here to take tea and obtain some bearings, and on our return I noticed a cross on a hill. Putting in here, we found the old Kiriloff village, abandoned by, the Russians in 1849, and now in ruins, half covered by a laxuriant growth of nettles. Our astonishment may be imagined when we not only did not find any such bay as is represented on the charts, but on sounding found nowhere more than three fathoms of water, while our boat frequently touched on hidden rocks, and the only protection proved to be a narrow space between two broken reefs extending northward from the shore, and not room enough for a vessel to swing.

$$
\text { H. Ex. } 133 — 15
$$

Only the very smallest class of ressels could go in here at all. The place is un worthy the name of a harbor, and the only recommendation I can give is that vessels should steadfastly avoid going near it. It is about three miles west and about one mile north of Constantine ILarbor, amd its position consequently partakes of the corrections to be applied to the former.

ADAKH.
This island offering a favorable position for continuing our observations on the declination, we proceeded to an anchorage in Chagakh Bay, which had baen recommended to us by one of the Russian mavigators, but, finding it closed by a bar with only nine feet of water on it, we were unable to enter. I took the boat and proceeded to examine an opening in the land, which had struck me as likely to afford shelter when beating into the strait the day before. Here I discoverl an excellent anchorage, with good holding-ground, and shelter behind what proved to be au island forming part of an archipelago, which closes the mouth of a very large and beantiful bay known as the Bay of Islands. A sketch of the anchorage accompanies this report.

The topography here is rery broken, but covered with a carpet of luxariant green, while the myriad wiuding chanuels between the islands offered great temptations to us to remain and attempt a survey. Here we obtained numerous enormous crabs, from which it is possible that the name of the main island may be derived; Adakh signifying a erab in the Aleutian dialect. The bay of Waterfalls near by is open to the south, aud affords no safe anchorage.

It may be remarked that the Japauese junk whose wreck in 1871 attracted much attention, was rast ashore here, and not on the north shore of the island, as has been currently reported.

Our positions accorded tolerably well with the charts, on which, however, the shore-line, bay, and islands, are very insufficiently delineated.

ATKA.
On our way to Atkn, we observed that the positions of the voleanic crater-islands of Kasatochi and Koniugi do not agree with the positions on Gibson's chart; one or the other being out in latitude a mile or two.

The harbor of Atka, in Nazan Bar, was examined in regard to its capacity for a telegraphic station, and the conclusion which I arrived at was unfavorable, as the bay is full of reefs and rocks the bottom irregular, and the harbor but second-rate. Bad weather set in here, and we conld obtain no observations for latitude, and, with the greatest difficulty, those for azimuth and time. I obtained a skin-canoe and two natives, and crossed the island to Korovinsky Bay for the purpose of examining that locality and the deposits of coal said to exist in the ricinity. I found the harbor, nearly useless, having silted up within quite a recent period, so that not more than twelve fect can be carried over the bar at half tide. In the southeast corner of the bay, however, a good harbor exists, well sheltered, and with good holding ground in nine fathoms. This locality is knomn as Martin's Harbor, having first been entered and subsequently used by Capt. Martin Klinkofstrim of the Russian American Company's service. It is marked as Sand Bay on some charts. There are a number of rocks bare at ordinary tides, off shore, in Korovinsky Bay, which are not on any chart, and which might pick up a vessel attempting to enter in the night.

I examined the so-called coal-vein, and found it to consist of fragments of black silicifed woor, irregularly dispersed in the face of a bluff of crumbling sandstone.

After a fatiguing climb and walk, I reached the celebrated solfataras, or hot springs, of the Klucheffiskaia Voleano. They are about six miles from the coast in a ravine on the side of the volcano. The outlets of hot water are quite numerous, but no geyser-action was observed. They have a temperature of $192^{\circ}$ Fahrenheit, and contain lime, sulphur, and alum; the latter is abuudantly deposited around the springs, together with a limg earth of very bright red, yellow, and slaty colors. The Rassians had a house, bath-house, \&c., here for invalids; but the baidings are in rains. a brown leathery fucoid grew abundantly in the hot water, and the neighboring vegetation seemed little affected by the steam and hot water at its very roots. Two villages exist on Atka, with one on the adjacent end of Amlia. These, with that at Attu, are the only villages west of Umaak.

## AMLIA.

North of the east end of this island a high rock has been reported, while its existeme is denied by others. The foreman of the Aleut hanting-party, who arrived at Atka, while we wera there from this very locality, informed us that there was no such rock there, but that there was a patch in the locality indicated, with five to ten fathoms of water on it, ou which, in very heary weather, breakers were visible. The rock may have sunk or been broken away since it was originally reported.

## ISLANDS OF THE FOUR CRATERS.

On reaching this group, we hardly recognized it, so entirely different are the ishands in position and form from anything delineated on the charts. A very heary sea was ruming, though the weather was fine, and it was impossible to effect a landing. There were no appearances of auything like a harbor or anchorage. - We cruised abont the islauds for some time, seeking a shelter or landing-place, but found none. Contrary to the charts, one island, perhaps Chugoula of the eanliter charts, stands boldy to the northward of the others, and is separated from another by a narrow rocky strait. Sonth of these, separated by a strait several miles wide, was a latger island, with an almost ubroken northerly shore, ending in a loug narrow point to the westwad We saw a number of rocks above water, but no evidences of submerged reefs. The position of the group, as a whole, agrees with the charts.

## AGASHAGOK.

This islaud, otherwise known as Saint John the Theologian, or Joána Bogoslova in the Lhas sian language, has always been of peculiar interest. Rising from the sea on St. John's Day, 1702, it was surreyed in some shape by Sarycheff before 1826 , and on his chart is represented as a mile and threequarters long, with several rocks about it, and numerous soundings, including a reef of submerged rocks extending from it to the uorth end of Umnak. Very conflicting statements have been made as to its height and position and as to the existence of the great reef. Lithé appears to have been the only hydrographer who has approximated to its true position, as will be seen by ref erence to the accompanying table of positions. I stated the grounds for my disbelief in the exist. ence of the reef in my report of last year, and our observations this season completely sustain the position I took in regard to it. They also show the gross errors of Sarychefl's chart, and suggest that the conflicting statements referred to, are due to erroneous observations rather than to any great changes of level in the island itself. The Ship Rock and one other rock near to it have about the same relative position and height that are assigned to them by Sarycheff, and yet the absolate length of the islaud does not exceed three-quarters of a mile. Had any subsidence sufficient to produce these differences of size in the main island takeu place, one at least of the rocks above mentioned would have been entirely submerged, and to a considerable depth. Our soundings directly on the line of the submerged reef show no bottom at 800 fathoms, and we were only pre vented from running out all the line at our disposal by the heavy sea ranning at the time. The ishand is a sharp, serrated ridge, forming a very acute angle, and broken into numerous pimnacles toward the top, and it would seem impossible to scale it. There is no low land about it, and a landing cannot be effected except in very calm weather. Contrary to the received opinion, there is no crater, nor any appearance of a crater. The island is simply a jagged mass of rock upheaved through some channel by volcanic ejection. At the distance from which we saw it, it appeared of a light pinkish-gray color, totally devoid of vegetation or rater, and covered with myriads of birds. There are a few breakers off the south end of it, and a talus, ou which a landing under favorable circumstances might be effected. A large portion of the shore is, however, precipitous.

Ship Rock is a perpendicular square topped pillar, half a mile north and west of the north end of the island.

There is a small rock, also giren in Sarycheff's chart, half a mile north and east of the ishand which rises only a few feet above the water; and on all sides (except the west), and especially eastsoutheast of the island, scattered breakers were observed, extending less than three-quartere of a mile from the shore. From numerous observations, the height of the summit appears to be $84 t$ feet.

The position is farther to the north and east than any of the charts place it, while none of them agree; even two iu Tebenkoff's atlas differ nearly a mile, one lhaving the reef indicated and the other not, though both bear the same date.

## UNALASHKA.

The work done here chiefly related to the determination of the azimuth and the continuation of the triangulation and surves of Captain's Bay, commenced in 1871.

Uknadok Island was surveyed entirely; its position fixed by triangulation, as were the remarkable Needle Rock on the west side of Amaknak, and the east and west heals of Captain's Bay. The latter proved of more than usnal interest, showing that on chart No. 7 of the Coast Survey Atlas of Harbor Charts of Alaska, the east head is placed fully a mile too far south and west, and the west head nearly as much too far north, while a careful cxamination of the chart itself shows that in these particulars it does not agree with the observations of Professor Davidson's party in 1867, though even these fall short of our determinations, even when corrected for the latest deter. mination of the longitude from Sitka. In these respects this chart compares very unfavorably with that of Kotzebue (1804), from which it was principally taken; and that of Kotzebue still remains the most accurate delineation of Captain's Bay which has yet been published.

## SANNAKH REEFS.

Our observations determining a new cod-bank in this vicinity were forwarded to gou in the spring. At the same time, we determined the extent above water in an easterly and soatherly direction of the northeastern and southern terminations of this formidable congeries of re efs. The positions give nearly the same extent respectively that is given for the entire reef on the old chart of the liussian admiralty office, but it is probable that the submerged rocks extend some distance farther, especially to the south. Our position places the gr oup some miles farther sonth and east than that of Tebenkoff; and this difference may account for part of the difference ascribed to current by navigators who have sailed by Tebenkoff's charts.

POPOFF STRAIT,
Our observations here were limited to those for position and azimuth, which, on account of bad weather, we could not obtain last season. We were also enabled to correct an error in the position of one of the small islands in the strait to the south of our survey.

We have been informed most positively that rocks above water exist to the south and west of Simeonoff Island, as was stated on similar authority in my last report; but the bad weather prevented us from verifying this statement.

Hamboldt Harbor, since our survey, has been greatly frequented by vessels, and I am continually applied to for tracings of our manuscript chart of the strait and the Shumagin group, which requests, from obedience to the rules of the Surver, I have been reluctantly obliged to refuse.

## CURRENT-OBSERVATIONS.

Our current-observations were continuously carried on as usual. The overcast weather, however, prevented many observations of position on the return voyage, and hence the observations on that trip are very limited. Our up-voyage observations confirmed those of previous years; but the rate of the currents was mauifestly interfered with by the strong and constant westerly winds.

In Bering Sea, notwithstanding constant observations, I find nothing to modify my remarks iu last year's report.

The arctic character of the fauna in the western islands, and the comparatively low temperature of the sea-water, would lead to the inference that that portion of the Kuro-siwo which enters Bering Sea is comparatively chilled, or else of little importance compared with the Arctic or Kamchatka current.

We have definitely settled that the tide entering Bering Sea from the Pacific is iuvariably propagated from the east toward the west; that no efflux of importance takes place with the fall of the tide; and that the latter retains its compound and irregular character throughout the islands.

## AZIMIUTHS.

Lerhaps the most interesting feature of our work this year has been the determining of the magnetic declination at stations, at nearly equal intervals from each other, from the Shumagins to the western end of the islauds. Of course, from the great length of time which has elapsed since observations of this nature were taken in the islands to the westward, no elew is afforded as to whether the declination has been increasing or decreasing during that period, or any particular portion of it; or the rate at which the changes have occurred. From the observations of Professor Davidson's party in 1867, Kadin in 1869, and ours, this season, at Unalashka, it seems likely that at present the declination is decreasing in its amount of easting. This is rendered still more probable by the detection at the Presidio station, San Francisco, of a similar change, very recently.

At Unalashka, our observations were repeated until we became satisfied that they contained only such an amount of error as might reasonably be referred to the charactor of the instruments used.

The main result has been to show a decrease of the easterly variation at all stations where observations have been taken, when one results were compared with those heretofore published. Rejecting such changes as are evidently due to theory, unsupported by observations ou record (and such occur in some of the charts examined), the diminution is abont as follows:

Station.	Dato of old obserration.	Decrease.
		$\bigcirc$ -
Attu	1853	215.5
Kyska.	1849 ?	253.8
Amehitica	1849?	6 44.5
$\Delta \mathrm{dak}$,	1855	2080
Atka	$18.55^{*}$	O 03.0
Unalasbka	1667	$0 \quad 47.6$
Popoff Strait	1849	130.0

The largest gap is between Unalashka and Atka, which we had hoped to fill at tho Four Cra. ters, but were prevented by causes previously mentioned.

In the following chronological table of positions, under the head of "Authority", our results are tabulated against the name of the schooner "Ynkon", on which the work was done.

POSITIONS AND MAGNETIC DECLINATIONS, ALEUTLAN ISLANDS, A. T. 1.-Astronomical Station, Chichagoff Hobor, Attu Islanà.

Authority.	Date.	Where recorted.	Laitude.	Longitude.	Variation of compass.	Remarks.
Sarychoff	1826	Chart No. 18	525833	$1: 3960 \mathrm{E}$ E.	Not given...	Vers imperfect enart.
Rassian Hydrographic office.	1848	Chart N0. 7	5380	2500 E .	104500 E .	
Tebenkoff.	1849	Chart No. XXX	5600	313 E	113000 E .	
United States Naval Hydrographic Office.	1855	Clart No.55	53.45	1242 E	100000 E .	Hydrography by Licut git. зод.
Etolin .......................	?	United States Coast Surver Report, 1867.	5606	$2330 \quad$ E.	Not miren...	
United States Coast Survey..	1869	Atlas of Harbor Charts	5545	1242 E	110000 E .	Taken in part from Gilsous.
"Yukon".....................	1873		55.57 .03	12 20. 2 E	74430 Ec	
2.-Astronomical Station, Kyska Harbor, Hyska Island.						
Surychoff $\qquad$   Kabaian Mydrographic Office.   Tebenkoff. $\qquad$   Ingestrom $\qquad$   United States Naval Hydrographie Office.   "Xukon". $\qquad$	$\begin{gathered} 1826 \\ 1848 \\ 1849 \\ ? \end{gathered}$	Cuart No. 18	521200 0420 0420	174 480000.1		
		Chart No. $7 . .$.				
		Chart No. XXIX..............				
		United States Const Survey Report for 1867.	0300	$4030 \quad$ E.	Not given...	
	1855	Chart No.55......	0010	2700 E .	$? 130000 \mathrm{E}$.	
	1873		515859.11	2946.3 E .	110937 E.	

* Where an interragation-point precedes a given variation, the latter is obtained by interpolation between the most aljacent rariations given on the chart referred to.

POSITIONS AND MAGNETIC DECLINATIONS, \&c.-Continued.
3.-I'eak of Iron Island == Chugul of the Russian Mydrographic and Davidoff Island of Sarychett's chart of 1826.

5.-Kiriloff Harbor, Amelitia Island.

Saryeboft	1826	Chart No. 13	513700	1793000 E -	Not given.	Approximate.
Russian IIydrographic Oftice.	18.48	Chart No. 7	2550	1300 E	140000 E	
Tcheukoff . . . . . . . . . . . . . . .	1849	Chart No. XXIX.	2700	1900 E.	140000 E .	
Ingestrom..................	?	United States Const Survoy Report for 1867.	3600	1900 E.	Not given...	
Uuited States Naval Mydromraphic Ofice.	1850	Chart No. 55	2530	$1500 \quad \text { E. }$	? 141500 E	
United States Coast Survey..	1860	Atlas of Harbor Charts .......	2700	2000 E.	133000 E.	
"Yukon".	1873		2430	0000 E .	! 71500 EL	Approximate.

6.-Astronomical station, Bay of Islands, Adakh Island.

Saryelieff	1826	Chart No. 18	515200	1763200 W.	Notgiven...	Approximato only.
Nussian Hydrographic Office.	1848	Chart No. 7	4620	3700 W	...do ........	
'Tobenkoti.......................	1849	Chart No. XXVIII	4935	5500 W.	153000 E .	
Vnited States Nayal Mydrographic Oftice.	1855	Cbart No. $8 . . . . . . . . . . . . . . . . . . . . . ~$	$4840$	$4500 \mathrm{~W}$	$160000 \mathrm{E} .$	
United States Coast Survey   Yukou	1869 1873	Athas of Marbor Charto ........	Not given... 514915.6	Not given... 1763158.2 W.	1500   13   2003	Atilay of Waterfalls, near by

7.-Astronomical station in the village at Nazan Bay, Atha Island.

sarycheff	1826	Chart No. 19	521430	1740130 W.	Not given
Russiau Hydromraplic office	1848	Chart No.	1130	1735900 W.	$162100 \mathrm{E} .+5$
Tebenkoff	1849	Chart No. XXVIL	10 27*	$\pm 17400000$.	170000 E.
Salamatoff	?	United States Coast Surrey Report for 18f7.	10 27*	*1740100 W.	Notgiven...
United Stater Naval Mydrographic Office.	1855	Chart No. 8.	1035	1741115 W .	170000 E .
Thited States Coast Survey..	1869	Athas of Harbor Charts	$1035+$	-174 1115 W.	160000 EL .
"Yukon".	1373		Not obtained	1741457.9 W.	165703 E .

* In these cases, $3^{\prime \prime}$ of latitude have been deducted, and $30^{\prime \prime}$ of longitude added, for reduction to station from the anchorage.

POSITIONS AND MAGNETIC DECLINATIONS, de.-Continued.
8.-Peak of Agáshagok, Joánna Bogostóva, or the Toleanic Island of Saint John the Theologian.

Authority.	Date.	Where recorded.	Latitude.	Longitale.	Variation of compass.	lienaris.
Sarycheff ..........	1820	Chart No. 19...	$535500$	1 197500 50	o ، "	Sketch of islamomakishencth If mile:
Shitke.	1836	Voy Soniar. par. Naut., y 302.	5800			
Vasilieff	1848	Chart No. 8.	5640	5630 W .		
Telenkaff	1849	Chart No. XXVI............	5135	3 00 W.		
Telbenkoff.	1849	Chart No. XXP ..............	5100	3930 W .		
Krenitzin....	1869	United States Const Surves Report for $18 \% 7$.	5203	3900 W .		
"Yukon"..	1873		5836	3330 W.		Length not over \% of a mile.

9.-Points in Captain's Bay, Unalashlea Island. United States Coast Surcey astronomical station, 1867, Clakhta Spit.

Sarycheff	1792	Old chart..			190000 E .	
Sarycheff	1826	Chart No. 19	535490	11633130 W .	Not given	
Russian Hydrographic Oflice.	1848	Chart No. 8.	5340	2400 w .	193030 N	
United States Coast Survey parties.	1867	Unitol Statos Coast Surrey Report for 1807.	5358	2752 W.	4824 E .	
Unitel States Const Surfey.-	1869	Atias Harbor Clarts	5356.5	$2 \times 34.5 \mathrm{~W}$	47 mm E.	
Kadin	1870	Manuscript chart			45000 E .	
United States Coast Survey..	1870 1873	Oftice	5356.5	3091 W.	Not given...	Corrected from impoven sit   la position of 1-6a.
" Yukon '......................	1873	......			185944 E .	1rostion of 1 ent correcten adopted as a basis for :ll our work.

10.-Church in the middle of Iliuliuk Village.

Katzebue....	1806	Sarycheff Atlas No. XV....	535500	1604300 W.	192400 E	
Tehenkofr.	1849	Chart No. XXV	5200	200 W.	200000 EL .	
United States Coast Survey-.	1867	United States Coast Surver Iteport for 1867 .	5239	2906 T.	194794 E .	
United States Coast Surver..	1869	Offe.	52375	3135 W.	Not giver...	Corrected trom improved Sit ka position.
United States Naval Eclipso Expodition.	1869	Supplementary lieport .......	5238		Not given...	Sun dialjust north of charch.
United States Cosst Survey parties.	1871 1872 1873	¢L.m. Z. Comp...............	5237.7	3136 W.	185944 E	

11.-Cascade near Cape Cherful.


POSITIONS AND MAGNETIC DECLINATIONS, \&c.-Continued.
13.-Additional points determined by the party on the "Iukon."

Locality.	Latitude.	Longitude.	Femarks.
	C. 1	\%, "	
Priest Rock.	540036.5	1662203.9 W.	
Noedle Tiock.	535533.5	3119.2 W .	
Eider $\triangle$, northern bluff of Igoguak Point.	5751.2	3500.4 W.	
North end of Hog taland..	5406	3358 W.	

14.-Sannakh Reffs (our observations relate only to that portion of the reefs visible above urater for five mites).

Authority.	Date.	Where recorded.	Jatitude.	Longitade.	Variation af compass.	Renarks.
Rassian \#yerorraphic Onlice	184	Chart No. $=$	$541520$	1622010 W .		Latitude of smith ond and
Tebenkoff...................	1849	Chart No. XXV	2180	40.00 W.		fis referral
"Yukon".	1873		1600	2000 W.		Rocks above water only.

15- New col-hank near the Smmahh Reefs.

16.-Astronomical station, Sandpoint $\triangle$, Popoff Strait, Shumagia Islands.


Thermometer.
Metn of odservations for 1873.


Weather.

Snowy days	13	13	93	49	13	8	0	21	0	0	0	0	2	72
Voggy or mainy d	1	5	0	6	1	2	14	17	25	20	11	56	8	87
Cloudy daye.	16	5	4	25	13	13	10	36	3	7	16	26	4	91
Chear days	1	5	4	10	3	3	6	12	3	4	3	10	4	36
Days work done						16	9	15	15	10	15	40	4	59

*'To 21st, incluaivo.
$f$ We arrived at the Atedian Isiands May 20 , the record of working-days begianing then. Provions meteorological observations are dne to the Rev. Innocenting Shayeshmikoff. Tis hours of observation wore about $7 \mathrm{a} . \mathrm{m}$. , noon, and $8 \mathrm{p} \cdot \mathrm{m}$, Ours were every funr hours at som, aud Ga. m. and p. ma, and noon, when in port.

Surface of sea-water.
1873.

	May. *	June.	July.	August.	September.	October. $\dagger$	Whole period.
	-	-	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	0
Mean temperature.	38.8	42.2	42.2	40.3	46.5	47.3	43.9
Maximum	43	$4 \times$	46	51	48	49	51
Minimmm	36	39	41	42	44	45	30
Range ...	7	9	5	0	4	4	15

Sea-water five fathoms below surface.
[Observations made in port only.]

	$\bigcirc$	$\bigcirc$	-	-	$\bigcirc$	$\bigcirc$	$\bigcirc$
Mean temperature	40.9	41.1	42.2	43.8	44.3	47.1	43.2
Maximum	42	45	43	45	45	48	48
Minimum.	40	38	41	42	44	46.5	38
Range	2	7	2	3	1	1.5	10

Barometer.

	Inches.	Inches.	Inches.	Inches.	Inches.	Jnehes.	Inthes.
Mean of a.m. observations.	30. 149	30.056	30.115	30.182	29. 751	99. 590	29.962
Mean of noon observations	30. 163	30.070	30. 123	30.179	20. 724	29.548	${ }^{9} 9.966$
Mern of p. m. observations	30.176	30. 060	30. 101	30.100	29. 333	29.549	29.964
Maximum	30. 48	30.40	30. 59	30.55	30. 30	30.43	30.59
Minimum	29.62	29.48	29.51	24.55	28. 58	2 E .68	28.58
Range	0.36	0.92	1.08	1.60	1. 72	1. 75	2. 01

*From the 16th to the 31st of May.
†To 21st, inclusive.
Curvent-observations made on board the United States Coast Survey schooner "Iukon" during the voyage from San Francisco, Cal., to Unalashka, A. T., in May, 1573.

Dace.	Latitude.		Longitude.		Current.			Wind.	Temperature of air and water; distance and hour of olservation for each day.												Total dist.	
Nautical time.	D. R.	Obs.	D. R.	Obs.			Direction.	Direction aud strength.	4 hrs .		8 hrs .		12 hrs .		16 brs .		20 hrs .		24 hrs .		D. R.	
									T.	D.	T.	D.	т.	D.	T.	D.	T.	D.	T.	D.		
$\begin{gathered} 1873 . \\ \text { April } 30 \end{gathered}$	Ptw of de- 3710		Pt. of de. parture.	${ }^{\circ} 127$																	Naut. miles.	
								66		$\begin{gathered} 0 \\ 62 \end{gathered}$		60		- 5		¢ 59		70				
May 1	3708	3706		12922	12930	0.41	0.27	S. $81{ }^{\circ} \mathrm{W}$.	N.W., light.	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	15	$\begin{gathered} 60 \\ 59 \end{gathered}$	20	$\begin{array}{\|l\|l} 60 \\ 58 \\ \hline \end{array}$	17	60 57	19	$\begin{gathered} 60 \\ 57 \end{gathered}$	28	59 62	25	124
2	3730	3739	13154	13210	13.0	0.54	N. 77 W.	w. N. W. moderate.	$\begin{aligned} & 59 \\ & 60 \end{aligned}$	18	$66$	20	60 56	17	59 56	15	60 56	25	581	24	120	
3	3725	3721	13506	13444	18.0	0.75	S. 77 E .	moderate. N.W.	60 59	30	56	25	56   60	20	56 58	22	56   58	20	67 60	24	141	
									65		62		60		60		61		63			
4	3810	3811	13608	13556	9.5	0.40	N. 84 E .	W. by N.	62	5	62	11	62	15	10	20	60	20	59	28	99	
									64		60		56		56		58		67			
5	3922	3921	13812	13818	4.8	0. 20	S. 78 W.	E., light.	58	12	59	26	58	20	57	22	58	25	58	27	132	
									62		59		57		56		56		62			
6	4058	4101	14150	14125	19.0	0.79	N. 81 EF .	S. E., fresh.	58	27	58	29	56	33	56	32	55	32	54	36	169	
									62		56		55		52		52		56			
7	4250	4242	14504	14446	15.4	0.64	S. 58 E.	Southerls,	54	38	53	38	54	33	51	25	53	36	51	27	196	
								moderate.	56		51		51		50		51		52			
8	4403	4403	14752	14722	21.6	C. 90	East.	S. W., fresh.	50	30	49	29	49	32	50	24	49	25	48	29	159	
									50		45		42		44		44		47			
9	4530	4530	14853	14905	8.4	0.35	West.	S. W., gale.	47	28	45	21	44	12	46	14	45	14	46	20	109	
									48		44		43		43		43		48			
10	4654	4656	15039	15015	16.4	0. 68	N. 83 E .	S. W., gale.	46	17	47	15	44	19	45	16	44	26	44	14	107	
									43		43		42		42		42		45			
11	4842		15225	15323			Westerly.	S.W., strong	44	15	43	19	4	14	43	16	43	36	42	38	138	
								ow	45		43		41		40		39		42			
12	5027	5024	15605	15522	27.4	1. 14	S. 84 E.	W. S. W.	42	35	42	31	41	30	41	13	40	26	40	16	151	
								moderato.	41		40		40		38		39		44			
13	5207	5211	15610	15590	30.9	1. 29	N. 83 EF .	S. W., light.	40	17	39	14	40	15	39	16	39	21	39	20	109	

## Heights of mountains, determined in 1873 by triangulation, and by sextant altitudes.

(UNITED STATES COAST SURVEY SCHOONER "YUKON").

Peak of Bouldyr	Feet.   1,145
North peak of Kyska	4,085
Iron Island, or Chugul	3,109
Gareloi, highest north peak	5,334
Tanaga, highest north peak	7,108
Adakh, highest north peak	5,678
Atka, highest northeast peak	4,988
Vsevidoff volcano, Umnak	* 8,868
Bogosloff, rolcanic Island	844
Akutan Volcano, highest point	3,888
Aratanak Island, highest peak	1,207
Shishaldin Volcano	8,683

* The heights marked with an asterisk depend for their accuracy upon the position of the peak on the charts, which has been taken as the true one. Gareloi, from the United States Exploring Expedition of Ringgold and Rogers, and Vevidoff from Tebenkoff. Neither of them had previously been measured, but Gareloi has been supposed to be much higber, aud Vsevidoff lower than our results show. My own opinion is that the beights are not far from the truth.


## A PPENDIX No. 12.

MEASUREMENT OF A PRIMARY BASE-LINE ON PEACH-TREE RIDGE, NEAR ATLANTA, GEORGIA, IN 1872 AND 1873, BY C. O. BOUTELLE, ASSISTANT.-COMPUTED AND REPORTED BY CHARLES A. SCHOTT ASSISTANT.

A reconnaissance for the location of a primary base-line in Georgia or South Carolina, for the principal triangulation runuing along the Blue Ridge, was made in January, 1872, by Assistant J. A. Sullivan, under the direction of Assistant C. O. Boutelle, and resulted in the selection of a site on Peach-Tree Ridge, in De Kalb and Gwinnett Counties, Georgia, about fifteen miles northeast of Atlanta, Ga. The summit of the ridge is narrow and crooked; on it a line of about 5.8 miles in length was found within practicable grades and suitable terminal points for connection with the primary triangulation. The maximum slope for measure was fixed at abont $4 \circ$, being $1^{\circ}$ greater than had ever been attempted before, yet within the proper limits the apparatus would bear. After inspection and approval by the Superintendent, the site was adopted, aud subsequently measured three times. Near the southern end is a deep but narrow ravine, which the line had to cross on a grade about 6 meters above ground. Everywhere else the grades were within 3 meters of the surface. The ground consists of loam and clay; about 70 per cent. of the line lay in woodland. The gulch near the south end was crossed on trestle-work, consisting of two separate structares, each solidly braced with uprights covered by capsills, resting on which were string-pieces and sleepers for the floors. The whole was $4 \frac{1}{4}$ meters wide, and built on a descending slope of $3 \circ 35^{\prime}$; it proved abundantly stable. The measure was secured at each point of stoppage by a transfer to firm ground, for which purpose a portable transit was set up perpendicular to the line of the base. About $7 \frac{1}{2}$ meters off the line, a needle-drill-hole was made in a copper tack, placed vertically under the end of the agate of the tube. Hollows were crossed with the tubes high on the trestles, crests with the tubes low, for the purpose of diminishing the slope. A station in and near the middle of the base was occupied for astronomical latitude and azimuth. It is in approximate latitude $33^{\circ}$ $54^{\prime} .4$, in approximate longitude $84^{\circ} 16^{\prime} .6$ west of Greenwich, and the azimuth of the soathwest end of the base is about $52^{\circ} 8^{\prime}$. The approximate elevation above the sea-level is 320 meters. It is the seventh line measured with the primary apparatus. The southwest and the northeast ends of the base are each marked by a granite monument, with an upper and lower drill-hole mark iu copper bolts. Each monument is surrounded by four side-monaments: two in the line of the base and two at right angles to it. There are in the line of the base five smaller granite posts, like those surrounding the terminal monuments; they were intended to take the place of the usual (so-called) mile-stones in the older base-lines; these are placed in suitable positions on crests of ridges; they have a copper bolt with drill-hole, and are respectively distant from the southwest terminus $273,547,753$ (middle base), 978 , and 1276 tubes, each of nearly 6 meters. The whole number of tubes of the measure is $\mathbf{1 5 5 8}$.

The first and second measures being performed in opposite directions, it was expected that any effect in the resulting length due to difference of slope would become apparent. These measures were made in fall and winter : the first between November 8,1872 , and December 5, 1872; the second between December 5,1872 , and January 9,1873 . But the third measure was made in summer, luetween July 31, 1873, and August 21, 1873, in order to test to the utmost the quality of the tubes respecting their compensation for different temperatures and during rapid changes of temperature. Comparisons of the tubes with the standard bar were made immediately before the commencenent of the first measure and during this measure; again, soon after the close of the second measure. A more elaborate comparison was had with the standard immorsed in glycerine, the better to ascertain its temperature before the third measure; also during it and after its close.

The length of the iron standard bar, which was cut to length iu March, 1847, is $5^{\mathrm{m} .9999407}$ $\pm 0^{\mathrm{m} .0000009}$ at $0^{\circ}$ C. (for which see Coast Survey Report for 1862 , Appendix No. 26.) Its.coefficient
of expansion was ascertained to be $0.00000641 \pm 0.00000002$ (vide same report) ; both determiuations having been made by Assistant J. E. Hilgard.

The co-efficient answers between the limits of $32^{\circ}$ and $100^{\circ} \mathrm{Fah}$. The bar is consequently 6 meters in length at a temperature of $33^{\circ} .54 \mathrm{Fah} . \pm 00.025 \mathrm{Fah}$., expressed in terms of the original committee meter of the Americau Pbilosophical Society at Pbiladelphia. Comparisons, made in 1867, at Paris, by Dr. Barnard and Mr. Tresca,* showed its length equal to 1.00000336 meter of the archives at the temperature of freezing water. Since all base-lines of the Coast Survey and all its computations have this committee meter for their unit of length, $\dagger$ that of the Atlanta base will also be expressed in terms of the same, in order that all reductions hereafter desired may apply systematically to all measures.

Before entering upon the detailed account of the operations and results of the base, a few words respecting the condition of the bace-apparatus will find a proper place bere, especially since the mode of treatment in the reduction of the various measures in some degree had to conform to existing conditions, as developed by the comparisons themselves. Though the apparatus was described and figured in Coast Survey Report of 1854 , Appendix No. 35 , the present scarcity of this report made it desirable to reproduce the plates illustrating its construction in detail. (See Plate No. 18.) With the exception of two changes-one due to an accident, the other one of designthe apparatus has remained materially in the same condition as when constructed in 1845 and 1846 by Mr. W. Würdemann (under the direction of Superiutendent A. D. Bacbe). At Key Biscayne, during the measure of a base in 1855, one of the agates of Tube No. 1 was splintered, and a new one was substituted. This same tube was supplied with a new agate in 1872, owing to a defective knife-edge in the old agate. Tube 1, up to the accidental breakage of the agate, and Tube 2, up to this period (after the measure of the Atlanta base), when it became desirable to thoroughly examine the apparatus and repair such parts as showed signs of wear, both had evidently become shorter, partly it is supposed from wearing, partly from change of form; and it appeared also of late that there were reasons for doubting that the compensation had remained as perfect as it was at first. Advantage was taken at the same time to introduce some improvements, notably a Borda differential thermometer, by means of which, together with the immersion of the standard in glycerine during the field comparisons, it is confidently expected that a much greater accuracy in the measured length of a base can be attained than has been found practicable heretofore.

For determining the length of the tubes at the time of the measures of the base, we have the following data: The value of one turn of the abutting screw of the Saxton reflecting-comparator was found by repeated comparisons (in June, 1857) of fire turns of the screw with a magnitude of 0.1 of an inch derived from the Troughton yard-scale ; it equals $0.01912 \pm 0.00004$ inch, or 0.48565 $\pm 0.00102$ millimeter. During the comparisons for length, there were used six standard Casella and three Green thermometers, which were corrected for errors of graduation from special comparisons made in February and March, 1873. Another set of six Green thermometers, with metallic scales, used in connection with the comparisons in glycerine, and for the third measure, were also tested in July, 1873, and corrected for graduation errors. In the Casella thermometers, the maximum correction at any one temperature is 00.3 ; in the Green thermometers, it rises to 0.5 Fah. The value of one division of the scale of the comparator $\ddagger$ was determined by means of the known value of one turn of the abutting-screw, and found from a large number of sets of comparisons of whole turns and of fractions of turns for various parts of the screw and for various temperatures.

Four sets of observations in November, 1872, and January, 1873, give 1 div. $=1.384 \pm 0.003$ micron at $40^{\circ}$ Fah. (one mieron $=$ one millionth of a meter), and 1 div. $=1.378 \pm 0.003$ micron at $66^{\circ}$ Fah.

Again, seven sets of observations in July and September, 1873, give $1 \mathrm{div}=1.376 \pm 0.003$ micron, which last value was used in connection with the third measure of the base. The minute-

* See Coast Survey Report of 1867, Appendix No. 7.
$t$ The substitution of the meter of the archives would produce an increass of 14.6 units in the seventh place of decimals in the logarithm of the length of the Atlanta base.
$\ddagger$ A description of this instrument will be foand in the report of the Superintendent of Weights and Measures Senate Executive Document No. 27, Thirty-fourth Congress, third session, Washington, 1857, p. 15. It has since been slightly improved.
ness of this unit may be judged of by the fact that the expansion of the standard bar for 10 Fah. equals $38.46 \pm 0.12$ microns, or $27.9 \overline{6} 6 \pm 0.084$ scale-divisions. We have also one turn of the screw $=350.9$ scale-divisions at temperatures near $40^{\circ} \mathrm{Fah} .=352.3$ scale-divisions at temperatures near $66^{\circ}$ Fah. $=353.06 \pm 0.18$ divisions at 82.5 Fab. in connection with the last measure.

A very large number of direct comparisons of the tubes and standard were made at temperatures as nearly stationary as was practicable, or only slowly rising or falling, and for an absolute range between $32^{\circ}$ and $100^{\circ}$ Fah. In the reduction, care was taken, by using alteruate means of allowing as far as possible for change of leugth during comparison of tube and standard; and it may be noted that in the earlier comparisons they were made by passing, in succession, throngh the comparator the standard, Tube 1 and Tube 2 , which process was changed in the observations in connection with the third measure to taking five successive readings on cach before changing bar or tube. In the following synopsis of results for length of tnbes, the values are given arranged according to temperature of the standard for the comparisons in air, and of the tubes for those in glycerine, beginaing with the lowest and ending with the highest. The column headed " $n$ " contains the number of individual comparisons in each set; the colnmn headed "Con." indicates the condition of the temperature with respect to "rising", "falling", or "stationary"; the columus headed " $T_{1}$ (III)" and " $T_{2}$ " contain the restulting leagth of the first and second tubes, expressed in meters, and derived from the known length of the staudard at its temperature of comparison, and from the measured difference of length of it and the tubes in each experiment.

Synopsis of results for length of Tube 1 and of. Tube 2.

COMPARISONS IN ATR.							
Temp.	$n$	Con.	$\mathrm{I}_{1}(\mathrm{II})$	Temp.	$n$	Con.	$\mathbf{T}_{\mathbf{z}}$
$\bigcirc$			Meters.	0			Meters.
32.8	16	T	5.9999e87	33.3	16	$\tau$	5. 9996950
38.5	8	$\boldsymbol{r}$	994	39.1	8	$r$	6610
45.7	8	$f$	9630	45.4	8	$f$	5894
48.1	6	$\boldsymbol{r}$	9764	48.2	6	$r$	6322
52.0	25	7	6.0000332	52.5	25	r	6685
55.9	6	$r$	0189	56.0	6	$\boldsymbol{r}$	6777
60.0	75	$f$	0057	59.9	75	$f$	6458
63.8	8	$f$	0070	63.6	8	$f$	6574
65.4	4	$f$	0123	64. 8	4	$f$	676
COMPARLSONS IN GLTUERTNE.							
71.4	10	$j$	6.0000260	71.5	10	$f$	5. 9996\% 20
71.9	15	$f$	0301	71.9	15	$f$	6868
77.6	20	$r$	0550	77.6	15	$f$	7147
77.8	15	$f$	0599	78.8	85	$f$	7067
77.9	25	$\boldsymbol{r}$	0589	78.6	20	$r$	7020
78.1	25	$f$	0558	78.8	25	$r$	7007
78.4	40	$r$	0617	79.1	40	$r$	7093
70.2	25	$r$	0664	79.3	25	$r$	7005
79.2	25	T	0692	79.5	25	$f$	7606
79.6	25	$f$	1188	80.5	25	$r$	7093
82.7	25	r	0715	81.7	25	$\boldsymbol{r}$	7941
83.5	25	$r$	0078	87.7	25	T	7487
88.9	30	$r$	1638	88. 0	30	$\boldsymbol{T}$	7085
89.3	25	T	1267	89. 7	25	T	7668
89.7	25	$r$	1246	93.7	25	「	7814
94.2	25	$r$	1405	94. 5	25	7	7702
95.6	25	F	1512	96. 2	40	$\tau$	7761
96.1	40	T	1412	98.5	45	$\tau$	7882
99.0	45	T	1714	98.9	25	r	7922
99.6	60	r	6.0001646	59.8	60	r	5. 9997924

It is evident from the abore tables that the tubes expand slightly with increasing temperaturesin other words, that they are under-compensated, -a fact which was already suspected in January, 1864 , when the differential co-efficient of expansion was ronghly made out between 0.0000002 and 0.0000009 .

The above results, when projected in a diagram, further indicated that the compensation for changes of temperature was still close,--that is, about 21 parts of 22 remained compensated between the range of temperature from $32^{\circ}$ to $71^{\circ} \mathrm{Fah}$.; but, between temperatures ranging from $71^{\circ}$ to $100^{\circ}$ Fab., the tabes only compensated about 10 parts in 11. This break of continuity abont the tem. perature $71^{\circ}$ Fah. may be explained by the fact that when the apparatus was taken to pieces and examined in March, 1875, it was fonnd that the two knife-edges of each lever had worn or hammered (during transportation to and from the base) grooves into the vertical abatting-plates deep enough to be felt when running the nail across them. The results for length of tubes are somewhat obscured by the effect of rising or falling temperatures during the comparisons, and the probable error of the length assigned for the whole base-line is materially increased by the fact that there are more sets with rising than with falling temperatures.

For tube 1, we obtain 9 couditional equations for the coefficient $a_{\text {, }}$ in the two equations-

$$
\begin{aligned}
& T_{1} \text { with rising temperature }=6^{\mathrm{m}} .0000023+a_{1}(t-450.5) \\
& T_{1} \text { with falling temperature }=5^{\mathrm{m}} .9999970+a_{1}(t-580.7)
\end{aligned}
$$

the absolute terms arising from combination to a mean of 5 comparisons between 320 and $71^{\circ}$ with risiug, and of 4 with falling temperatures.

Similarly, for Tube 2, we find a value for the co-efficient $a_{1 \prime}$ in the equations-

$$
\begin{aligned}
& \mathrm{T}_{2} \text { with rising temperature }=5^{\mathrm{m}} .9996529+a_{\prime \prime}\left(t-45^{\circ} .8\right) \\
& \mathrm{T}_{2} \text { with falling temperature }=5^{\mathrm{m}} .9996426+a_{j g}\left(t-58^{\circ} .4\right)
\end{aligned}
$$

and taking the mean of the constant terms, the following expressions for the length of each tube were finally established, answering between temperatures $32^{\circ}$ and $71^{\circ}$, and consequently to be employed in the computation of the first and second measures:

$$
\begin{aligned}
\text { Length of Tube } 1(\mathrm{III}) & =5^{\mathrm{m}} .9999997+0^{\mathrm{m}} .000001873(t-52 \circ .1) \\
\text { Length of Tabe } 2 & =\tilde{0}^{\mathrm{m}} .9996478+0^{\mathrm{m}} .000002688\left(t-52^{\circ} .1\right)
\end{aligned}
$$

with the probable errors $\pm 0^{m \mathrm{~m}} .0000144$ and $\pm 0^{\mathrm{m}} .0000193$ respectively.
For use in connection with the compntation of the third measure at high temperatures, we hare similarly, from the second part of our table-
$\mathrm{T}_{1}$ with rising temperature $=6^{\mathrm{m}} .0001110+b_{l}\left(t-87^{\circ} .4\right)$
$T_{1}$ with falling temperature $=6^{\mathrm{m}} .0000582+b_{1}\left(t-75^{\circ} .8\right)$
with $b_{1}$ from 15 equations, temperature rising, and 5 , temperature falling; and $b_{1 \prime}$ from an equal number of equations for Tube 2, viz:-
$\mathrm{T}_{2}$ with rising temperature $=5^{\mathrm{m}} .9997513+b_{\prime \prime}(t-880.3)$
$\mathrm{T}_{2}$ with falling temperature $=5^{\mathrm{n}} .9997094+b_{1 \prime}\left(t-75^{\circ} .7\right)$
Hence-Length of Tube $1(I I I)=6^{\mathrm{m}} .0000846+0^{\mathrm{m}} .00000530\left(t-81^{\circ} .6\right)$
Length of Tube $2=5^{\mathrm{m}} .9997303+0 .^{\mathrm{m}} 00000445(t-820.0)$
with the probable errors $T \pm 0^{\mathrm{m}} .0000112$ and $\pm 0^{\mathrm{m}} .0000116$ respectively.
The above probable errors were made out irrespective of temperatures rising or falling, in order to include any defect that may arise from it.

The following table contains, for each of the three measures of the base separately, and for each subdivision of it by the middle and line monuments, first, the mean temperature of measure (thermometers corrected for graduation-error); secondly, the mean length of Tabes 1 (III) and 2 from the above expressions and for the temperature of measure; thirdy, the number of such mean tubes or of single tubes; fourthly, the total resulting length; fifthly, the correction for inclination of tubes (also reduced to the temperature of measure); and, lastly, the resulting horizontal distance measured between the marks near the monuments.

Table of horizontal distances measured between temporary marks near the monuments in each of the three measures.

	Sonthwest monument to line. monument No. 1.	Line. monizment No. 1 to linemonument No. 2.	Line-monument No. 2 tomonnment, middle base.	Middle basemonument to line monument No. 4.	Line-monument No. 4 to linemonument No. 5.	Line monument No. 5 to north. east monu. ment.
First measurc.						6
Mean temperatnre, $t_{1}$ of measure	59.83	410.18	$44^{\circ} .31$	51.91	57.93	59.35
Mean length of tubes at $t$	5 m .9998400	5m. 9997988	5m. 9998060	$5 \mathrm{~m} .999 \mathrm{ez33}$	5m. 9098355	5m. 9998244
Number of mean tubes, \&ic	$272+$ Tube 1	274	206	$224+$ Tube 2	298	282
Length represented	$\left\{\begin{array}{l} 1631 m .95648 \\ +6 m .00001 \end{array}\right.$	$\} 1643 m .94487$	1935 m .96004	$\left\{\begin{array}{l} 1343 m .96042 \\ +5 m .99965 \end{array}\right.$	$\} 1787 m .95098$	10. $1 m .95048$
Correction for inclination	- Im. 98162	- $1 m .63133$	- 1m. 57671	- 1m. 07381	- 2 m .24198	-- 1m. 15 T (
Horizontal distance measur	1635m. 97487	1642m. 31354	1234m. 38333	134Em. 88626	1785 mm . 70900	16907n. 23470
Second mearute.						
Mean temperature, $t$, of measure	42. 12	49.00	$39^{\circ} \mathrm{7l}$	37.34	42.03	55. 20
Mean length of tubes at $t$	5 m .9998010	5 m .9998167	5 m .9997955	5im. 9097901	5m. 999\%007	5 m .499 c 310
Number of mean tubes, \&c	272 + Tubo 2	274	96	$204+$ Tube 1	298	989
Length represented	$\left\{\begin{array}{l} 1631 m .94587 \\ +5 m .99962 \end{array}\right.$	$\} 1043 \mathrm{~m} .94978$	1235m. 9787	$\left\{\begin{array}{l} 1343 \mathrm{~m} .05298 \\ +5 m .99999 \end{array}\right.$	\} 1787 m .94061	1691 m .92234
Correction for inclination	- 1 m .96501	- 1m.5:995	- 1m. 54913	- 1m.05097	- 2m. 22488	- 1m. 72914
Horizontal distance measured..	1635m. 98048	1642m. 37683	1234m. 40874	1348 m .89600	1785m. 71573	1690m. 22290
Third measure.						
Mean temperature, $t$, of measure	93.80	93.00	90.61	89\%. 66	89.53	E70. 34
Mean leugth of tubes at $t$..	57n. 9999660	$5 m .9999625$	$5 m .9099505$	5m. 9999458	5 m .9099459	5m. 9999345
Number of mean tabes, dc...	$272+$ Tube 1	274	206	$224+$ Tabe 2	298	282
Leagth represented.	$\left\{\begin{array}{l} 1631 m .99075 \\ +6 m .00015 \end{array}\right.$	$\} 1643 m .98973$	$1235 m .98980$	$\left\{\begin{array}{r} 1343 m .98786 \\ 5 m .99976 \end{array}\right.$	\} $178 \% m .9836 \%$	1691 m .98153
Correction for inclination ......	- 1.97987	- 1m. 63179	- 1m. 55089	- 1m. 02120	- 2m. 19686	-- 1m. 65693
Horizontal distance rneasured..	1636 m .01103	1642m. 35794	1234 m .43891	1349m. 96642	1785m. 78681	1690m. 32460

The minimum temperature during which any one set of tubes was laid was 180.2 Fah. (the mean of 6 thermometers), and many tubes were laid with the temperature below the freezing-point of water. The maximum temperature during which any one set of tubes was laid was 1070.1 Fah.; and many were laid with the temperature of the air above $100^{\circ}$.

The maximum inclination of a tube laid was $4^{\circ} 43^{\prime}$; and there were a great many with inclinatious of $4^{\circ}$. An impression of the ruggedness of the profile of the base may be convered by the fact that the sum-total of the corrections for inclination amonnts to no less a length than $10^{\mathrm{m}} .22123$ in the first, and to $10^{\mathrm{m}} .03754$ in the last measure.

The preceding distances, as measured between the sites of the monuments, require to be reduced to them as finally marked, according to the following statements in the record:

The first measure started from assumed southwest monument, fixed sites for positions of monuments I, II, middle, $\nabla$, and VI, and fell short of position of northeast monument $1^{\mathrm{m}} .45695$, as measured with the C. S. Lenoir brass meter at $56^{\circ} .4$ Fah. Applying the correction for length and for expansion, this measured distance becomes $1^{\mathrm{m}} .45728$.

The second measure started from end of Tube 1558, or from the exact spot where the first measure had terminated; end of tube near $V$ fell north or short of mark $0^{m} .01235$; end of tube near IV fell north of mark $0^{\mathrm{m}} .00145$; end of tube near $M$ fell south or bevond mark $0^{\mathrm{m}} .01395$; end of tube near II fell south of mark $0^{\mathrm{m}} .03475$; end of tube near I fell south of mark $0^{\mathrm{m}} .09425$; and near southwest monament the second measure fell sonth, or beyond the starting-point of the first measure, $0^{\mathrm{ma}} .10670$.

The third measure started from southwest monument, as in first; near I, forward end of tube fell $0^{\mathrm{m}} .04455$ north of mark or beyond first measure; near II, end of tabe fell north of mark $0^{\mathrm{m} .09000}$; near M, end of tabe fell $0^{\mathrm{m}} .13705$ north of mark; near IV, end of tube fell $0^{\mathrm{m} .21840}$ north; and, near $V$, end of tube fell $0^{\mathrm{m}} .30005$ north of mark. The distance between end of tube and the northeast monument was $1^{\mathrm{m}} .05635$ at $85^{\circ}$ Fah., or $1^{\mathrm{m}} .05688$ when corrected; also, end of Tube 1558 fell $0^{\mathrm{m}} .40010$ north of end of tube in first (and second) measure.

Applying these quantities, we obtain the following table of measured horizontal distances between the monuments:

Monuments.	First measure.	Second measure.	Third measure.	Mean.
	Meters.	Meters.	Meters.	Meters.
S. W. to I	1635.97488	1635.96803	1635.96647	1635.96979
Ito II	1642.31355	1642.31733	1642.31248	1642. 31445
II to Mr	1234. 38334	1234. 38794	1234.39185	1234. 38771
M to IV	1348.88627	134E. 88060	1348.88506	1348.88398
IV to V	1785. 70901	1785. 70483	1785.70515	1785. 70633
Y to N. E.	1641.69199	1691.69253	1691.68152	1691. 68868
S. W. to N. E.	9838.05904	9338.95126	9338.94253	9338.95094

The discrepancies in these measures when compared with their respective means appear in the following table, expressed in millimeters:

Monuments.	First   measure.	Second   measure.	Third   measure.
	Millimeters.	Millimeters.	Millimeters.
S. W. to I	-5.09	+1.76	+3.32
I to II	+0.90	-2.88	+1.97
II to M	+4.37	-0.23	-4.14
M to IV	-2.29	+3.38	-1.08
IV to V	-2.68	+1.50	+1.18
V to N E.	-3.31	-3.85	+7.16
S. W. to N. E.	-8.10	-0.32	+8.41

The table sho vs a maximum deviation in results of about one in a million. The frequent change in sign of the above discrepancies is taken as a favorable indication that the lengths of the tubes have been correctly assigned; and the general accord of the three individual measures among themselves must be taken as a severe test of the accuracy of the co-efficient of expansion of the standard-bar as determined in $\mathbf{1 8 6 0}$.

To obtain the requisite data for the reduction of the measured base to its length at the sea. level, the following hypsometric operations were undertaken:

The base was lereled by spirit-level in A pril, 1872, and again in July, 1873. At south west, middle, and northeast stations, double zenith-distances were measured to the primary-triangulation station, Stone Mountain. At Stone Mountain, donble zenith-distances were measured to each of the three points of the base. A line of spirit-levelings was carried from Stone Mountain to the city of Augasta, Ga.. in December, 1873, and January, 1874. Between Augusta and Port Royal Sound, the levelings of the railroad-engineers were made use of; lastly, the Port Rojal and Beaufort, S. O., levelings were connected directly with tidal observations, giving the following results :

Alsolate beight,

in meters.
Mean of half tidal level of the ocean from a number of observed high and low waters com-
bined, with probable error of $\pm 0^{m} .013 \ldots . .$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.000^{*}$
Beuch-mark on wharf at Beaufort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.087
Bench-mark on gum tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.072
Bench-mark on Page's Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.024
Bench-mark three-fourths of a mile south of Yemassee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.861
Bench-mark at Yemassee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.988
Bench-mark on willow-oak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.250
Bench-mark No. 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.262
Bench-mark No. 20, at Augusta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.342
Bench-mark No. 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186.275
Bench-mark No. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259.267
Bench-mark No. 1, at Stone Mountain Village.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316. 207
And Stone Mountain © © ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.948

The non-simultaneous double zenith-distances between Stone Mountain and the base give the following resuits when reduced to middle base $\triangle$ :

From observations at southwest base and Stone Monntain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 318. 128
From observations at middle base and Stone Mountain . ........... . . . . . . . . . . . . . . . . . . . . . . 318. 296
From observations at northeast base and Stone Mountain ................................... 318. 728
Mean adopted
318.384

From the sime ohservations it also follows that the co-efficient of refraction is about 0.0735 on these lines and along the base. To obtain the mean elevation of the tubes during the measures we combine the above ralue for height of middle base with the levels of the base, and add $1^{m} .524$ for average height of tubes above ground. The reduction to the half-tide level of the ocean is found by $b\left(-\frac{h}{\rho}+\frac{h^{2}}{\rho^{2}} . . ..\right)$
where-
$b=$ length of base;
$h=$ elevation above ocean ; and
$\rho=$ radius of curvature * for the latitude and azimuth of the base ( $\log \rho=6.304356$ ).
The following table gives the average elevation of tubes for each part of the base, the corresponding reduction to the sea-level, and the resulting distances.

Monnments.	Arerage eleration.	Reduction tor ser-level.	Fesulting leagths.	
S. W. to 1	$\mathrm{ma}_{315,160}$	$\mathrm{m}_{-0.08089}$	m.	
I to 11	315.648	--0.08133	1642. 243312	$4512 \mathrm{~m}, 44 \%$
11 to M	320.109	-0.06201	1934. 39570	
M to IV	325. 614	-0.06891	$1348.8150 \%$	
] V to V	325.5.53	--0.09121	1785. 61512	$48096^{\prime \prime \prime} .0322$
V to. N. E.	326. 621	-0.08609	1694. 60199	
				93383. 4799

We also hare the separate values for leugth of base from first, second, and third measures, $9338^{\mathrm{m}} .4880,9338^{\mathrm{m}} .480{ }^{\circ}$, and $9338^{\mathrm{m}} .4715$, respectivels.

It was found by direct micrometric measures at southwest and northeast stations that the station middle base was 0 " 0423 off and to the north and west of the direct line between the terminal monuments; the measured angle at middle base being $1799^{\circ} 59^{\prime}$ 56 ${ }^{\prime \prime} .295$ between mortheast and sonthwest, counted in the direction of arimuths. The effect on the length of the lase from this want of alignment is insensible.

We have a check on the length of the base by means of the angles measured at the three basestations and at Stone Mountain; thus starting from the measured part, southwest base to middle base, we can compute by means of angles the length of the second part as well as that of the whole base.

Below are given the resulting angles at each station, directly derived from the least-square adjustment of the directions measured.t The corrections are due to the necessity that three geometrical conditions most be satisfied, viz: two angle-equations and the forward and backward azimuth of the base at middle base (in line) to differ $180^{\circ}$. The remaining excess of the angles over two right angles, in each group of three, is equal to the spherical excess.

* Appendix No. 11, Const Survey Report of 1871, p. 169.
f Those measured at middle base baring first been reduced to line from data given above.
H. Ex. 133-17

	- / 1	"
Northeast base.	82 4901.328	$+0.107$
Stone Mountain	165635.265	+0.080 Spherical excess, $0^{\prime \prime} .199$.
Middle base.	8014 23,381	+0.031
Northeast base.	824901.325	$+0.106$
Stone Monntain	312636.633	+0.073 Spherical excess, $0^{\prime \prime} .384$.
Southwest base	0.) 4432.204	+0.040

Starting with the smaller part, riz, $452^{\prime \prime 4} .43$, we find by the above angles the whole base $9338^{\mathrm{m} .502}$, with a difference from the measured line of only $0^{m} .02 \mathrm{~L}$. The measured length is of course superior to that trigonometrically deduced, and it is consequently a cheek on the latter operation.

The probable error of the computed length of the base may be ande out in two ways: firstly, by building it up from all known individual sources of error; secondly, by means of the tabular differences exhibited above for each part of the base, and resulting from the three separate measures. With respect to the individnal sources of error, the accumulative effect of which is to be found, we have:

First, effect on the length of the base of the probable crror assigned to the standard bar $= \pm 0^{010} .0000009 \times 1558= \pm 0^{010} .00140$.

Secondly, effect on the base of uncertainty in the co-efficient of expansion of standard. The standard is $6^{\mathrm{m1}}$ at 33.54 Fah. The mean temperatures during the three measures were $51{ }^{\circ} .41$, $44^{\circ} .70$, and 90.67 ; hence the probable errors, -

$$
\begin{aligned}
& \pm .00000002 \times 6 \times 17.87= \pm 0^{\mathrm{m} .000000214} \\
& \pm .00000002 \times 6 \times 11.16= \pm 0^{\mathrm{m}} .00000134 \\
& \pm .00000002 \times 6 \times 57.13= \pm 0^{\mathrm{m}} .00000686
\end{aligned}
$$

 and $\pm 0^{11} .01069$.

Thirdly, the effect of the probable crror of the comparisons of the tubes with the staudard, involving also the uncertainty of the differential expansions of the tubes. For the first and second measures we have the mean length of the tubes,-

$$
5^{\mathrm{m} .99982375}+0^{\mathrm{m} .0000022805}\left(t-52^{\circ} .1\right) \pm 0^{\mathrm{m} .0000108}
$$

and for the third measure, -

$$
5^{\mathrm{m} .99990745}+0^{\mathrm{m} .00000048750}\left(t-S 1^{c} .8\right) \pm 0^{\mathrm{m} .0000114}
$$

hence effect on first and second measures of base,-

$$
\pm 0^{\mathrm{m}} .0000168 \times 1558= \pm 0^{\mathrm{n}} .02617
$$

and on third measure,-

$$
\pm 0^{\mathrm{m}} .0000114 \times 15 \pi 8= \pm 0 \mathrm{~m} .01776
$$

Fourthly, the effect of transfers of end of tube to ground, or of the reverse operation from ground-mark to agate of tube. The number of transfers may be taken as four a day: one for picking up mark in the morning; two for securing work during lanch; and one of laying down mark at night. There were occupied in the three measures 17,13 , and 14 days, respectively; and, with the transfer error $= \pm 0^{\text {man }} 082$, as found from measures at Bodies Island in 1848 , the probable errors in length of base are,-

$$
\begin{aligned}
& \pm 0.082 \sqrt{ } 68= \pm 0^{\operatorname{mm} .676} \\
& \pm 0.082 \sqrt{52}= \pm 0^{\min .592} \\
& \pm 0.082 \sqrt{56}= \pm 0^{\mathrm{mm} .613}
\end{aligned}
$$

Fifthly, the effect of contact-errors, which include effect of instability of apparatus during measure as due to wind, to yielding of ground, or elasticity of the same, and to other minor causes. The value of a contact-error was determined at Bodies Island $\pm 00^{\mathrm{mrn}} .010$; hence effect on base, -

$$
\pm 0.010 \sqrt{1557}= \pm 0^{\mathrm{mm}} .395
$$

Combining the above fire principal errors by extracting the square root of the sum of their squares, we find-

Probable error of the	$\pm 26^{\text {unn }} 43$
Probable error of the second measur	
Probable error of the third measur	$\pm 20^{\mathrm{mm}} .7$

Expressed in terms of the length of the base, these errors are $\frac{1}{3 \pi} \frac{1}{3}$, , of the whole length. These fractions compare directly with the probable errors similarly expressed at the other base-fines, measured with the same apparatus, riz:


## from three measures.

The somewhat inferior acenracy reached in the first and second measures, when compared with the accuracy of the older base-lines, may be mainly attributed to deterioration in the apparatus from wear. The comparatively greater accuracy reached in the third measare is due to the com. parisons having been made in glycerine instead of those taken in air. The final accuracy, the greatest reached in any of our base-lines, is of course due to the fact that three measnres were made, which is believed to be unequaled in the history of geodesic operations.

It we attempt to deduce a probable error of the base from the differences of each measured part compared with its mean, which would include all errors except those arising from the uncertainty of the standard, we should find, after allowing for the latter, the probable errors $\pm 2$ man, 69 , $\pm 2^{m m} .93$, and $\pm 4^{m m} .10$, respectively, for the three measures. These errors are much smaller than those deluced above; bat there can be no question as to which set of values should be retained. In the lirst plase, it is a precarious proceeding to dednce probable errors from three separate (and not independent) measures; secondly, the iossibility of an accumulation of erfors of known individual maguitude cau not be ignored. That the probable errors last made out should be smaller than those first made out is rather fortaitons, yet satisfactory in itself. In conformity with our deductions for probable error of the older base-lines, we have:-

Leugth of base, first measure	$0833^{n} .4880 \pm 0^{\text {n }} .0264$
Length of base, second measure	$9833^{\mathrm{m}} .4802 \pm 0^{\mathrm{m}} .02 \mathrm{~L} 63$
Length of base, third measure	$9338{ }^{\text {m }} .471 .50^{\prime \prime} .020 \mathrm{~S}$

Consilering that these are socalled "entangled measures"-that is, they and their probable crors are not independent-we have weighted mean of the first and second measures, $9333^{\mathrm{m}} .4841$ $\pm 0^{\mathrm{m} .0263}$, and the combination, by weights, of this with the last measure, $9338^{\mathrm{m} .4763} \pm 0^{\mathrm{m}} .0166$, which latter ralue is proposed for aloption as the final length assignable to the $A$ thata base.

We have also the separate parts, using weights as above,-

The logarithons of these lengths, together with their probable errors, are as follows:-

which logarithms should be used in the computations for adjustment of the triangulation.

Description of the compensation base-apparatus of the United States Coast survey-By Lieut. E.B. Hunt, U. S. A., Assistant in the United States Coust Survey.-(With Sketch No. 18.)
[Reprint from Appendix No. 3e, Coast Survey Report for 1854, pp. *103 to *108.]
The main essentials for a base-measuring apparatus are embraced in the following general conditions:
I. The extreme points of the apparatus used as measuring-limits must, under all circumstances of operation, remain at an invariable distance from each other, or the corrections for variations in this distauce must be capable of easy and accurate determination.
II. The distance between the measuring-limits must be compared with the staudard unit of length to the last degree of attainable accuracy, and its precise leugth so determined.
III. In the apparatus, the necessary parts and constructions for its easy and safe transportation, firm support, accurate contacts or coincidences, for slope-measurements, and also all reguisite auxiliaries to the several adjustment-manipulations, must be so provided aud combined as to give the whofe a union of portability, convenience, and delicacy.

The Coast Survey apparatus, as it now stands, was devised with special regard to all the conditions for extreme accuracy and convenience in the field. Some slight modifications, indicated by experience in its ase during the measurement of three base-lines, have since been embodied; but, in the main, the apparatus remains ualtered from the plaus derised by Professor Bache in 1845, and executed, under his direction, in 1855 and 1846 , by Mr. Willian Wiirdemann, then mechanician of the Coast Sarver, to whom many of the details of arrangement are due. It may here be stated that the experience of three base-line measurements with this apparatus has fully shown it to be a highly satisfactory solution of the problem proposed, and it has been found to excel alike in accuracy, cconomy, and facility of use.

A base-line being duly reconnoitered, opened, and graded, and monuments being fixed for the permanent preservation of its extremities, or the base station-points, the measurement proper proceeds. The apparatus sent to the field for this purpose, when a primary base is to be finally measured, consists of the following parts: 1. Two measuring-tubes, exactly alike, each being packed for transportation in a wooden box. 2. Six trestles for supporting and adjusting the tubes, three being foretrestles and three rear-trestles, each of which is packed for transportation in a three-sided wooden box. 3. Eight or more iron foot-plates, on which to support the trestles; and a wooden frame is afterward made, to serve as a guide in laying down the foot-plates. 4. Manipu-lating-handles for the adjustments; a theodolite for making the alignment, and for occasionally referring the tube-end to stakes driven for the purpose; also some minor auxiliaries. 5. A standard six-meter bar of irou, in its wooden case, arranged for comparisons, and a Saxton's pyrometer, arrauged for indicating minute variations in length.

The measuring-tubes are carefully compared with the standard bar before beginning the measurement, and again after its completion, to make sure of the exact condition of the somewhat complex mechanism in the measuring-tubes. For these field-comparisons, the pyrometer is sim. plified, by causing the bar or tube undergoing comparison to abut against the spherical head of an arm, springing horizontally from the vertical axle, to which is attached the mirror for reflecting the remote arc-graduations into the telescope fixed on this arc. Variations or inequalities of the bars examined act on the arm, and thus turn the mirror, causing it to reflect the corresponding arcreading into the telescope. A spring is so arranged as to make the arm-head press with a constant pressure against the bar-end.

When the comparison with the standard is completed, the foot-plates are successively placed by the aid of the wooden spacing-frame, which gives an approximate distance and aligument. Four trestles are so placed and leveled on these plates that the three foot-screns of each rest in three radial grooves of the plates. The two tubes are then mounted on their trestles, and, the rear extremity having been adjusted vertically over the station-point, the fore-tube is then adjusted to make a contact with the rear-tube extremity by means of a level of contact. Both tubes have to be first aligned by the aid of a theodolite advanced some distance on the line or following the measurement, in the field of which two standing sights, one on each tube, are made to cover. The
placing of plates proceeds as fast as is necessary for keeping work always provided for the tubes, and, the extra trestles being duly placed and approximately adjasted, the rear-tube is carried forward in place and the adjustments execated. Thus the components of the apparatus are carried from rear to front in a determined order ; and the measmring operations consist in the preparation for, and execation of, these progressive transfers, in effecting the more delicate adjustments, and in making a full record of all the essential circumstances. Points marked on copper nails in the heads of well-driven stakes usually indicate temporarily the end of each day's work, and great care is taken permanently to secure the precise extremity, or base station point, from all disturbance.

From this synopsis of the general character and mode of using the Coast Survey hase-apharatus, a ready and intelligent transition to the details of its composition and construction can now be made. While many minute arrangements and parts of this apparatos must here be umotied, 1 will endeavor to present a satisfactory summary. ${ }^{*} \quad{ }^{*} \quad{ }^{*} \quad{ }^{*} \quad{ }^{*} \quad * \quad *$

The tabe is a spar-shaped donble casing, Fig. 1, designed especially to embrace and protect the trusses which support and stiffen the system of bars on which the actual measurement depmods. Its length is nearly six meters, or about twenty feet. The length of any simple bar of iron, or other metal, is so much affected by variations of its temperature as to make it necessary, where such hars are used for base-measurements, constantly to observe and correct for the temperature; the formula for correction being derived from previous experiments. But changes of temperature cannot, in this case, be exactly determined so as to know, at a given moment, the precise condition of the bar undergoing change; hence the temperature-correction is always uncertain in its ralue, besides cansing much extra labor in observing and reducing. This makes apparent the importance of an arrangement, the limiting points of which will always be found at a constant distance apart, under all fieldecircumstances of temperature. No single material can give this exemption from expansions and contractions. It is found, however, in a combiuation of two metals having difierent rates of expansion, and hence admitting a resort to the principle of compensation, illustrated in the gridiron or compensating clock-pendulum.

This principle was independendy applied to the construction of base-apratatns, composed of two bars, one of brass and one of iron, connected by a lever of connensation at their ends, first by Colonel Colby, in the Ordnance Surrey of Ireland in 1827 (see Captain Yolland's Lough Foyle Base, p. 10); and again by Mr. Borden, of Fall River, in the Massachusetts Survey, during the winter of 1830. (See Palfrey's Tables, Survey of Mass., p. 1 ; Am. Phil. Trans., vol. ix, p. 34; and N. Am. Rev., Uct., 1845 , pp. 458-461.) Mr. Borden made no provision for causing the two bars in his apparatus to change their temperatures at the same rate, though his tin tubular arrangement admirably checks the frequency and rapidity of such changes as in practice they must undergo. Colonel Colby attempted, by the aid of varnishes and lampblack coatings, as fixed by numerous experiments in 1897, to make both bars maintain the same temperature during the changes of surrounding heat. He made both bars of the same cross-section, and thought, by regulating the surface-radiation and absorption, to effect the required equalization of rate for heating and cooling. His method, though giving a good approximation, is radically faulty in not taking the specific heats and conducting powers of the bars into the account. The method tirst introduced and originated by Professor Bache is capable of insuring a very perfect equalization of temper. ature in the two bars. By numerous experiments in 1845 and 1846 , he so arranged the cross-sections of the bars as that, while the two have equal absorbing surface, their masses are inversely as their specific heats, allowance being made for their different conducting powers. Thus, while each receives the same accession of heat in a given time, the temperature of the two will continue equal, because, except for the conducting rates, their masses are inversely as their specific heats. The same varnish on both surfaces gives them equal absorbent powers. The last minute adjustment of compensation was effected by making one surface slightly more absorbent than the other, as required by circumstances. Thus, as both bars vary essentially together, the point of compeusation is never shifted by their diverse actions under thermal variations.

A bar of brass and a bar of iron, each less than six meters long, are supported parallel to each other, and, at one end, are so firmly connected together by means of an end-block, iu which each bar is mortised and strongly screwed, as there to preserve an unalterable relation. The brass bar, which has the largest cross-section, is sustained on rollers mounted in suspending stirrups; and
the iron bar rests ou small rollers, which are fastened to the iron bar, and run on the brass one. Supporting-screws through the sides of the stirrups are adjusted to sustain the bars in place, and also serve to rectify them. Thus, while the two bars are relatively fixed at one end, they are elsewhere free to move, and hence the entire expansions and contractions are manifested at the free end. The mediam of comnection between the free ends of the two bars is the lever of compensation, which is joinen to the lower or brass bar by a binge-pin, around which it turns daring changes of temperature. A steel plane on the end of the iron bar abuts against an agate knife-edge on the inner side of the lever of compensation. This lever terminates in a knife-edge, turued outward at such a distance from the center piu and the other knife-edge bearing, that the end edge will remain unmoved by equal changes of temperature in the two bars. The end edge presses against a steel face in a loop made in the slidingrod. This rod slides in a frame fastened to the top of the iron bar, and passes through a spiral spring, which acts with a constant force to press, the loop against the knife-edge. The onter end of the sliding-rod bears the limiting agate plane. Thus the end agate is not affected in position by the expansions of the brass and iron, acting as they do at proportional distances along the lever of compensation, measured from its sliding end bearing. The rates of expansion for iron and brass mily safely be taken as unform between tho extreme expansions and contractions to which they are subject, in practice, and the compensating adjastment onee made is permanent.

The stirrups sustaining the rollers on which the brass har runs are made fast to the main horizontal sheet of the iron supporting and stiffening work. This consists of a horizontal and a vertical phate of boiler-iron, joined along the midde line of the horizontal sheet by two angle-irons, all being permanently riveted. Circalar openings are cut out from both phates to lighten them as much as practicable. A continuous iron tie plate, turned up in a trongheform, connects the bottoms of all the stirrups. At the ends, stiffening braces conmect the two plates.

We now pass from the compensating to the sector end of the tube, at which extremity are arranged the parts giving the readings, and for adjusting the contacts between successive tubes in measuring, thus making it the station of the principal observer. The sector end terminates in a slidingrod, which slides through two upright bars, and at its onter end bears a blunt agate knifeedge, horizontally arranged, which in measuring is bronght to abut with a uniform pressure a gainst the limitiug agate plane of the compensating end of the previons tabe. At its inner end, this sliding-rod rests against a eylindrical surface on the apright lever of contact, so mounted as at its bottom to turn around a hinge-pin. At top, this lever rests against a tongue, or drop-lever, descending from the middle of the level of contat, which is mounted on tranions.* The sliding. rod, when forced against the side of the lever of contact, presses its top against the tongue of the level, and thus turns the level by overcoming a preponderance of weight given to its farther eud, to insure the contact being always at a constant pressure between the agates, the same force being always required to bring the bubble to the center.

The sector is a solid metal plate, mounted with its center of motion in the line of the slidingrod, and having its are graduated from a central zero to the limits of ascending and descending slopes on which the apparatus is to be used. A fised vernier in contact with the are gives the slopereadings. A long level and bubble-scale are so attached and adjusted to the face of the sec-tor-plate that the zeros of the level and of the limb correspond to the horizontal position of the whole tube. If, then, on slopes, the bubble be brought to the middle by raising or lowering the arc end of the sector (a movement made by a tangent-screw, whose milled head projects above the tin case of the tube), the veruier will give the slope at which the tube is inclined, and the sloping measure is readily reduced to the horizontal by means of a table prepared for the parpose. The level of contact and the lever of contact, with their appendages, are all mounted on the sector and partake of its motions. A knife-edge end of the sliding-rod presses on the cylindrical face of the contact-lever, this cylinder being concentric with the sector, and the sector can therefore be turned without deranging the contact. In fact, the contacts are made with the sector-level horizontal, thus insuring the accuracy of the contact-pressure. The contact-lever is supported at bottom by

[^2]two braces dropping down from the sector-plate, and a spring, acting on a pin in the lever, steadies it against an adjusting screw end. A bracket from the sector plate receives the trunions of the contact-level. A small serew projects from the end of the tube to clamp or set the lever and level of contact against a pin in the sector for security in transportation.

What is called the fine motion, required for adjusting the contacts between the successive tubes, is produced by means of a compensating rod or tube, one end of which is attached to the trussframe by a bracket over the rear trestle, and the other receives a screw terminating in a projecting milled head. This screw turns freely in a collar, bearing, by a projecting arm, against the crossbar which joins the main brass and iron bars, and its not is in the end of the compensation-rod. By turning the screw in one direction, the bars are pushed forward, and the opposite turning permits a spiral spring, arranged for the purpose, to push back the system of bars, which slides throngh its supports. Thus the contact is made by turning the screw until the contact-level is horizontal. The compensating-rod is composed of several concentric tubes, alternately of brass aud iron, arranged one within the other, and fastened at opposite ends alternately. Thus, when a contact has been made by the finc-motion screw, changes of temperature will not produce derangement, as would be the case if this rod were not compensating. The arrangement permits the observer conveniently to work the fine-motion screw, and to observe its action on the contact-level.

The apparatus thus described is inclosed iu a double tin tubular case; diaphragms being adapted for supporting and strengthening the whole. The air-chamber between the two cases, 1.2 inches apart, is a great check on heat-variations. Three side-openings, with tin and glass doors in each tube, permit observations of the parts and of inserted thermometers. The ends are closed, only the sliding-rod ends projecting at each extremity, exposing the agates. Brass guard-tubesprotect these, and for transportation tin conical caps are screwed on the tube ends. The fine-motion screw, the sector-tangent screw, and the contact-lever-clamp screw project beyond the case. The tube is painted white, which, with the air-chamber and thorough compensation, effectualls obviates all need of a screen from the sunshine, which has usually been deemed requisite.

The tube rests on a fore trestle and rear trestle, which are alike, except in the heads. Each trestle has three legs, composed of one iron cylinder moving in another by means of a rack, pinion, and crank, so as to raise or sink the head-plate. The leveling and finer adjustment are by means of a foot-screw in each leg, by working which a circular lerel on the connecting-frame is adjusted. A large axis-screw, resting on the connecting-frame, and rising into a tubular nut, is turned by beveled piuions worked by a crank, and thus raises or lowers this tubular nut and the cappliece which it supports at top. The axis-screw, the leg-racks, and the foot-screws give three vertical movements in the trestle, by which its capacity for slope-measurements is mach amplified.

In the cap of the rear trestle, a lateral and a longitudinal motion are provided for, by means of two tablets arranged to slide, the upper one longitudinally on the lower one, and the lower laterally on the head-plate of the axis-screw tube. Long adjusting screw-handles extend in the observer's stand from these two plates and from the axis-screw, enabling him to raise or lower, to slide forward or back, to the right or the left, the rear end of the tube. The fore trestle is similar, except that its head is only arranged for a lateral movement, and a second observer makes its adjustments by a simple crank.

Four men can carry a tube, by levers passed through staples in blocks strapped under the tubes. The principal observer and an assistant make the contacts and rectifications, the first assistant directs the forward tube, and another preserves the alignment with a theodolite. A careful recorder notes down the observations, and an intelligent aid places the trestles and foot-plates. The labor of grading, especially in level saud-lines, is quite trilling.

The first base-line measured with the apparatus now described was the Dapphine Islaud base, near Mobile, and about six and two-thirds miles long, which was measured by Professor Bache in 1847. (Coast Survey Report, 1847, p.39.) The party was on the ground six weeks, between April 30 and June 12, though only 17 working days were consumed in the final measurement. The greatest day's work was 183 tabes, or near seven-tenths of a mile. From some remeasurements the greatest supposable error for the entire base was computed to le less than six-teuths of an inch.

The second base-measurement with this apparatus was also by Professor Bache in 1848 (Coast Survey Reports, 1848, p. 43, and 1849, p. 38), being the Bodies Island base, North Carolina,
about six and three-quarter miles long. Ten working-days were employed in the actual measurement, between the 4 th and $23 d$ of November. The greatest day's work was 1,092 meters, or 1.06 miles, in eight and a half hours. Several partial remeasurements give the total probable error for the entire base at less than one-tenth of an inch, and the greatest supposable error at less than three-tenths of an inch.

The only other base hitherto measured with these means is the Edisto Island base, South Carolina, which operation was conducted by Professor Bache, between the $3 d$ and 18 th of Jannary, 1850 (Coast Survey Report, 1850, p. 34); thirteen days being occnpied in the actual measurement. Its length is about six and two-thirds miles, and it was much more uneven than the previous base. The greatest day's work was 1,122 meters, or about three-fourths of a mile. A partial remeasurement gave one-tenth of an inch as the probable accidental error of measurement for the whole base.

It will be abnodantly evident, on examining the results of other modes of measurement, that the Coast Survey apparatus is a superior combination of the requisite elements for such operations, giving a gain in aceuracy, rapidity, and economy of use over its predecessors. The multiplication of bases is no longer a sonrce of such formidable expenditures of time and money; hence geodetic operations are much facilitated and benefited by this fundamental improvement in the instrmments employed. The more perfect compensation from regulating the masses of the bars, the application of the principle of contact indication by the level, the stiftiness of the support for the bar-system, the sector for slope-measurements, and the trestles, combining such a variety of movement with very great firmness-these features all attest the thorough study of the problem, which was made by Professor Bache, preparatory to calling forth the peculiar skill of Mr. Wiirdemann. Bessel's contactlevel, before employed in the comparison of standards, has the same readily available accuracy in this apparatus, and should supersede the comparing-microseope entirely for final meas. urements. For field-comparisons with standards, the peculiarly elegant principle of Saxton's pyrometer is even better than the contact-level.

Whatever improvements may still need to be made in bas e-measuring apparatus, this important point is now reached: that the bases are measured at once with an accuracy far exceeding that of the angular measures given by any practicable number of repetitions on portable angle-instruments, and of the same order with the comparisons between the actual standards and their copies used in the measuremeuts.

## SUPPLEMENT.

Up to 1874, the indications of the thermometers within the tubes bavo been taken as the means for applying any residual correction for want of perfect compensation which might be shown to be reguisite. While this correction is only of very small amount, and affects the length of a base only so far as the mean temperature during the measurement of a base line is different from that at which the apparatus has been compared with the standarl bar, it is, nevertheless, subject to the uncertainty arising from the fact that those thermometers do not show the actual temperature of the compensating bars, except when the temperature has been stationary for some time. In order to obviate this source of error, an arrangement has been designed and adapted to the apparatus by Assistant J. E. Hilgard, by which the difference in the length of the two bars may be read on a scale attached to the iron bar by means of a vernier fixed to the brass bar, forming a "Borda thermometer", as shown in Fig. 3. The scale is divided to half-millimeters, of which the vernier indicates the fiftieth part, so that, by means of a long focus microscope, the difference may be read to the hundredth part of a millimeter without opening the case. Since the compensation can readily be made correct to within its thirtieth part, it is erident that the true length of the compound bars may be inferred at any time from the indications of the scale-reading, with an uncertainty no greater than the thousandth part of a millimeter, or a micron, as that value is now called. In making this correction, no reference to the thermometers is necessary, as the length is directly derived from the scale-readings. In the comparisons of the compensating measuring bars with the six-meter standard, the latter is immersed in glycerine, and its temperature and inferred length are very closely indicated by the thermometers distributed along its entire length, nearly in contact with it, and of course equally immersed in the liquid.

## APPENDIX No. 13.

NOTE ON INTERVISIBILITY OF STATIONS.

1. Let $h$, be the height in feet;
$d$, the distance of visibility to the horizon in miles, or 5,280 feet ; and
$r$, the average radius of curvature of the earth, say $20,590,000$ feet:
taking the distance as the chord, the height as the versed-sine (the angles being small, we have-

$$
h: d=d: 2 r
$$

which gives-

$$
h=0.5300 d^{2}
$$

This is to be increased by its $\frac{1}{6}$ part to allow for ordinary refraction, and we get-

$$
h=\frac{9}{16} d^{2} \text { and } d=\frac{4}{3} \sqrt{h}
$$

2. If we desire to know the height at which a line of sight will pass above the horizon, we will first seek the distance to the tangent-point, as follows: call $x$ the height above the tangent

parallel to the line of sight; $d$, the distance from the lower station to the tangent-point; $I$, the whole distance between the stations; $h, H$, their heights: then-

$$
\begin{gathered}
h-x=\frac{9}{16} d^{2} \\
\frac{H-x=\frac{9}{16}(D-d)^{2}}{H-h=\frac{9}{16}\left(D^{2}-2 D d\right)} \cdot d d=\frac{D^{2}-\frac{10}{9}(H-h)}{2 I} \\
\text { Thus if } h=900 \text { feet } \\
H=3600 \text { feet } \\
D=30 \text { miles } \\
x=h-\frac{9}{16} d^{2}
\end{gathered}
$$

then-

$$
d=10 \text { miles, } x=844 \text { feet }
$$

3. If we now wish to know at what height the line of sight passes orer a given point in its course, we have ouly to compute the height of visibility for the distance from the tangent-point, aud add the height $x$, by which the line passes above the latter. For a point $P$, distant ten miles from $H$, we shall bave the distance from the tangent-point $=60$ miles, the height of visibility $=$ 2025 feet, to which is added 844 feet for the elevation at which the line of sight from $I I$ to $h$ passes at $P$, or 2869 feet.
4. The co-efficient of refraction which enters into the rule $h=\frac{9}{16} d^{2}$ above given is rather low, corresponding to $m=0.0613$, and is therefore on the safe side for presumed intervisibility. The expression $h=\frac{4}{7} d^{2}$, corresponding to $m=0.0781$, will more correctly represent the actual visibilities in regions bordering on the ocean.

$$
\begin{gathered}
\text { For } d=50 \text { miles, we have- } \\
h=\frac{9}{16} d^{2}=1406 \text { feet } \\
h=\frac{4}{7} d^{2}=1429 \text { feet }
\end{gathered}
$$

J. E. HILGARD.
H. Ex. 133-13

## APPENDIX No. 14.

## A LIST OF STARS FOR OBSERVATIONS OF LATITUDE.

It has been the custom heretofore in the Coast Survey to select from the British Association's Catalogue the pairs of stars suitable for the determination of latitude, by the method of observing equal meridian zenith-distances with the zenith-telescope. The numbers of the stars so selected for observation at any station were sent to the Office, where the mean declinations for the year of observation were obtained by reference to all recent catalogues of precision, comprising the several Greenwich Catalogues, the Washington Observations, the Radeliffe and Armagh, and, where these failed, the Rumker Catalogue. For stars not found in at least two of these catalogues, and those which exhibited large discrepancies in position, express observations were made, by request, at the observatories at Washington and Cambridge.

This practice of dedacing the declinations of stars from observations made with different eircles and under varied circumstances has led to a great degree of precision in the assumed declinatious. The stars used in the method of equal zenith-distances comprise those down to the sixth magnitude, most of which have not been the object of precise determination as standard stars. Still we fud that the probable error of the declination of a star derived in the manaer above mentioned does not exceed $\pm 0^{\prime \prime} .3$. And the probable error of one observation with the instruments used being between $0^{\prime \prime} .3$ and $0^{\prime \prime} .5$, the obserration of sixteen pairs of stars on four nights never fails to reduce the probable error of the latitude below $0^{\prime \prime} .1$.

The British Association's Catalogue is now very difficult to obtain, and its constants have become obsolete by lapse of time. The continued demand on the Office for copies which could not be procured led to the preparation of the catalogue given below, which is intended to replace it as a list of stars available for the observation of latitude by the zenith-telescope in the limits of the United States. That list, giving the right ascensions only to the nearest tenth of a minute in time, and the declinations to the nearest minute of arc, for the epoch 1880 , is intended to serve merely for the selection of stars for the observation of latitude. They comprise all the stars that are found in the "Bonner Verzeichniss," or Nördliche Durchmusterung of Argelander, included between $88^{\circ} 40^{\prime}$ north and $1048^{\prime}$ south declination, and to his 5.9 degree of magnitude inclusive. The list was selected under the direction of Assistant C. S. Peirce, and their places computed for the epoch of 1880 with sufficient accuracy for the purposes above stated.

The magnitudes have been reduced to a scale of "equable distribution," according to the method explained in Mr. Peirce's Photometric Researches in the Annals of the Harvard College Observatory. It is the intention of the Coast Survey Office to reprint at an early day this list of stars, with their accurate positions in declination and right ascension as far as ascertainable. The Catalogue of Heis having been thoroughly compared in the preparation of this list, numerous errata have been discovered in the same, which are here given as a supplement.

The numbers of those stars which are contained in the British Association's Catalogue are given in the second column of the list: the third colnmn gives the usual designation by constellations. Other references are given in the last column; the following abbreviations being used:

## ABBREVIATIONS

A. Oe. Argelander Oeltsen, Wien, 1851-52.
B. Argelander, Bonn, 1861-62.
I. M. Durchmusterung.
F. Bradley's, Bessel, 1818.
L. L. Delalande, Baily, 1847.
P. Piazzi, 1814.

Rad. Radcliffe, 1860.
Ru. Rumker, 1843.
S. Strure, 1852.
W. Weisse, 1863.

W2. Weisse, 1842.

List of stars for latitude-observations.


List of stars for latitude-observations-Contiuned.

No.	B. A. C.	Constellation.	Magnitride.	Right asconsion, 1280.0 .	Declination, $18 e^{0} 0.0$.	Various.
				h. m.	-	
62	219	25 Cassiop ....................v..	5.1	0 420	$50 \quad 19$	
63	221	Piscinm ......................	5. 9	42.1	440	M. 20.
64	292	63 Pisciam ................... $\boldsymbol{\delta}$.	4. 5	425	656	
65	223	64 Piscium .......................	5.4	49.7	1618	
66	227	35 Androm ......................	4. 6	43.2	$40 \quad 26$	
67	228	Cassiop ......................	5.6	43. 5	$63 \quad 35$	
68	229	65 Piscium...................i..	5.3	43.5	$27 \quad 04$	
69		Cassiop .......................	4.9	45.9	6327	(18 H.)
70	242	20 Ceti ..........................	5.1	46.9	-148	
71	244	20 Cassiop ................... ${ }^{1} .$.	4.9	47.9	5810	
72	24.	66 Piscium . .....................	5.9	48.2	$18 \quad 32$	
73	256	67 Piscinm ....................k..	5.9	48.5	2633	
7.	253	Cussiop.................... $\gamma \cdot$.	2.6	49.5	6005	
75	251	28 Cassiop ...................v. ${ }^{2}$	4.9	49.5	58.31	
76	259	37 Androm ......................	4.3	50.1	- 3751	
IT	20.4	38 Androm ...................n..	4.5	50.8	2247	
8	261		5.9	51.0	6541	
7	967	68 Tiscium ....... ...............	5. 9	51.3	2821	
80	209	Discium......................	5.9	51.6	1304	M. 28.
81	.....	Cephei........................	4.9	526	8531	(43 H.)
82	283	39 Androm ......................	5.9	56.2	$40 \quad 41$	
83	285	Piscium . . . .-.-...-....... $\boldsymbol{\sigma}^{1}$ -	5.4	56.2	3110	
84	288	${ }^{7}$ Piscium....................c.	4.3	56.7	715	
85		Castiop...............(101 B.)..	5.9	57.0	$60 \quad 57$	313 Itad
86	--...	D. M. $220 . \ldots$..................	5. 9	57.0	5151	
87	295	26 Ceti	5.9	57.7	$0 \quad 43$	
88	303	73 Pisciam	5.9	58.7	500	
89	305	22 Piscium .......................	5.4	58.8	$14 \quad 18$	
961	$30 \%$	Pisciam .................. $\psi^{1}$..	4.9	59.3	$20 \quad 50$	
$90^{2}$	308	Piscium .......................	5.9	059.3	2050	
91	314	30 Cassiop .......................	5.4	10.4	5420	
92	318	41 Andxom .......................	5.1	1.1	4318	
93	322	79 Pisciam ................. $\psi^{2}$.	5.6	1.5	2906	
94	320	Cephei.......................	5.7	22	7902	(44 H.)
95	323	80 Pisciam-..................e.	5. 9	22	501	
96	330	42 Androm ................... $\phi$.	4. 4	25	4636	
97	327	31 Cassiop ........................	5.9	2.7	ce os	
98	334	43 Andrum ................... $\beta^{\text {. }}$	2.5	3.0	$34 \quad 39$	
9	336	81 Piscium .................. $\boldsymbol{\psi}^{3}$.	5.6	3.4	1901	
10.		F. $384 . .$. .....................	5.9	3.6	6333	
101	339	Cassiop .................... .. $^{\text {a }}$	4.7	3.8	5431	
102		Piscium .......................	5.9	3.8	2450	${ }^{1}$, 20 P.
103	338	32 Cassiop.......... ............	5. 7	4.0	64.21	
104	343	45 Androm.....................	5.9	4.4	3705	
103	344	33 Ceti.........................	5.9	4.5	147	
106	345	22 Piscium ..................g.g.	5.4	4.7	3047	
$10 \%$	349	83 Piscium .................t.	4.3	5.0	298	
108	3 ¢z	84 Hisciam ....................x.	4. 6	5. 0	2024	
109	365	85 Pisciam ................. $\phi$.	4.5	7.3	2356	
110	368	86 Pisciam ....................5..	5.1	7.5	657	
111	.....	Cephei.......................	5.9	8.1	7188	
112	374	38 Ceti..........................	5.6	8.7	-137	.
113	4188	89 Pisciam ..................f.	5.4	11.6	253	
114	395	90 Piscium ................v.	4. 6	- 12.9	-26 37	
115	393	Cephei..... .................	5. 9	- 13.4	7805	
116	400		5. 6	E3. 7	$-110$	
117	401	91 Мiscium.....................	4.9	14.5	2866	
118		Ors. Minor (Polaris)......a..	1.9	14.6	8840	
119	604	46 stadrom .....................	5.1	15.3	4454	
120	409	47 Andronn .......................	5.9	16.8	3706	
121	412	36 Cassiop ................... $4 .$.	5.1	117.5	Cr 30	

List of stars for latitude-observations_Continued.

No.	B. A. C.	Constellation.	Magni. tude.	Right aseen. sion, 1880.0 .	Declination, 1880.0 .	Various.
				h. $m$.	- ,	
122	416	37 Cassiop .................... d . $^{\text {\% }}$	3. 1	1180	5937	
123	425	Androm . . . . . . . . . . (207 B.) -	5.9	10.3	4249	
124	427	93 Piecinm .....................p.	5.3	13.8	1833	
- 125	431	94 Piscium	5. 4	20.2	1837	
126	432	48 Androm........................	4.9	20.5	4447	
127		D. M. 289.	5.9	20.5	4020	
128	.........	Cassiop .........................	5.9	2.5	6529	1505 A .00
129	441	49 Androm ......... ........ ${ }^{\text {A. }}$	5.6	22.3	$40 \quad 23$	
130	448	98 Piscium ................... $\mu$.	4.9	23.9	531	
131	453	99 Piscium . . . . . . . . . . . . . . . $\boldsymbol{\eta}_{\text {. }}$	4.2	25.1	1444	
132	456	39 Cassiop....................x..	5.9	96.1	$58 \quad 37$	
133	468	40 Cassiop.	5.1	21. 0	7285	
134	$40_{0}$	50 Androrn .......................	4.2	29. 7	4048	
135	482	Cassiop ......................	5.9	30.3	5722	
136	487	Persel $v$ (or 51 Androm.) ......	3.8	30.0	4801	
137	488	102 Piscium . . . . . . . . . . . . . . . т.-	5.9	30.7	11 32	
138	492	52 Androm ................... x $^{\text {. }}$	4.9	32.2	4345	
139	501	Audrom............. (22\% B.)	5.9	33.5	4241	
140	502	53 Androm .................... $\boldsymbol{T}$..	5.3	33.6	39 5n	
141	499	42 Cassiop .......................	5.1	33.8	7000	
142	510	Androm	5.3	34.5	4801	
143		Piscium	5.9	34.6	2508	28913.
144	514	Triangrali...............(8 B.).-	5.9	34.8	2927	
145	519	1 Trianguli. .....................	5.9	35. 2	3438	
146	518	106 Piscium ...................v..	4.9	35, 2	453	
147	515	44 Cassiop .......................	5.9	35.3	$59 \quad 57$	
148	523	$10 \chi$ liscium	5.3	36.0	1942	
149	522	Persei $\phi$ (or 54 Androw.)......	4.2	36.1	5005	
150	537	110 Piscium ....................o..	4.5	39.1	833	
151	544	Androm	5.9	41.6	3721	
152	546	Arietis.	5.9	41.7	1622	
153	556	1 Arietis	5. 9	43.5	2140	
154	558	1 Persei ..........................	5.4	44.1	5433	
155	561	54 Aries (or Ceti).................	5.4	41.5	10.28	M. 63.
156	564	45 Cassiop .....................є..	3.5	45.8	6305	
157	566	55 Androm ........................	5.9	46.1	$40 \quad 09$	
158	569	Triangali..................a...	3.8	46.3	2900	
159	568	46 Cassiop	5.1	46.8	6805	
-160	572	5 Arietis.................... $\boldsymbol{y}^{2}$..	3.7	46.9	1842	
161	574	111 Piscium .................... $\%$ -	4.5	47.4	230	
162	577	6 Arictis .................... $\beta^{\beta}$.	27	48.0	$20 \quad 13$	
163	580	56 Androm.	5.6	45.8	3641	
164	579	Avdrom .......................	5.6	49.1	3640	D. M. 355.
165	592	8 Artetia ....................t. .	5.4	30.8	1714	
166			5.4	50.9	$64 \quad 02$	
167	593	0 Arietis...................... $\mathrm{A}_{\text {. }}$	4.9	51.3	2301	
168	595	48 Cassiop .......................	4.5	59.1	$70 \quad 19$	
169	600	50 Caselop ......................	4.2	53.2	$71 \quad 50$	
170	597	47 Cassiop ........................	5.3	53.8	$76 \quad 42$	
171	608	49 Cassiop ...-...................	4.9	54.1	75 32	
172	610	52 Cassiop......................	5.9	54.1	$64 \quad 19$	
173	611	53 Cassiop......................	5.9	54.1	83 49	
174	614	4 Persei ..........................	4.9	54.4	$53 \quad 55$	
175	625	113 Piscium ...................a.	3.7	55.9	211	
176	624	3 Triangali	5.4	56. 1	3243	
177	628	57 Androm ................... $\gamma$.	1.9	56.6	41 45   4	
178	630	10 Arietis.......................	5.9	56.8	25) 21	
179	633	60 Ceti .........................	5. 9	57.1	-0 07	
180	644	12 Arictis ....................k.	5. 9	159.8	2205	
181	648	13 Ariotis ........................	1.9	$2{ }^{2} 80.4$	2255	
192	649	58 Androm ......................	4.9	21.3	3718	

## 142

List of stars for latitude-observations—Continued.

No.	B. A. C.	Constellation.	Magnitude.	Right ascension, 1880.0 .	$\begin{gathered} \text { Deelination, } \\ 1880.0 . \end{gathered}$	Farious.
				h. $m$.	$\bigcirc$,	
183	653	Persei (or Cassiop) ... (30 B.)..	5.9	22.1	5317	26023 A. Oe.
184	656	4 Trianguli ................. $\beta^{\text {. }}$	3.1	2.4	34.5	
185	657	14 Arietis	4.9	2. 6	$25 \quad 23$	
186	665	15 Arietis ........................	5.9	4.0	1856	
187	668	55 Casdiop.	5.9	5.2	$65 \quad 57$	
188	675	6 Trianguli.	4.9	5.4	2945	
189	676	60 Andrum .-.................b..	5.1	5.8	4340	
190	682	17 Arietis ........................	5.4	6.1	$20 \quad 39$	
191	683	19 Arietis	5.9	6.5	1442	
192	684	65 Ceti....................... ${ }^{1}$	4.5	6.6	817	
193	693	21 Arietis .......................	5.9	8.9	2430	
194	691	7 Triangali.......................	5.1	9.0	3249	
195	697	8 Trianguli ................... d $^{\text {. }}$	4.9	9.9	3342	
196	698	9 Trianguli................... 8 -	4.2	10.4	3318	
197	706	62 Androm....................c.	5.1	11.5	4649	
198	707	22 Arietis .................... $\theta_{\text {. }}$	5.9	11.5	19 21	
199	70 C	Ceti.	5.6	11.8	111	
200	710	10 Trianguli .....................	5.6	12.0	2805	
201		Arictis ............... (70 B.) --	5.9	12.2	$22 \quad 37$	1161 Ra
202	721	9 Porsei......................i..	5.4	14.0	5518	
203	729	69 Ceti.	5.4	15.6	-0 010	
204	722	70 Ceti	5.6	10.1	$-126$	
205	731	64 Androm .....................	5.6	16.5	49 27	
206	735	65 Androm .....................	4.7	17.7	$49 \quad 44$	
207	745	24 Arietis ..................... $\boldsymbol{\xi}$-.	5. 4	13.4	1005	
208	744	- Cassiop ..........-.............	4.6	19.2	6652	
209	752	11 Triangali......................	5.4	20. 4	3115	
210	757	12 Triangali ......................	5.4	21.2	2908	
211	760	73 Ceti...................... $\boldsymbol{\xi}^{2} \cdot$.	4.5	21.8	756	
212	$\ldots$	Arietis ............... (85 B.).-	5.9	22.4	2250	1627 Ku.
213	772	14 Triangali	5.4	24.8	$35 \quad 38$	
21.4	776	30 Ceti	5.4	25.3	145	
21.5	778	75 Ceti.	5.4	20.0	-134	
216	777	36 Cabsiop	4.9	20.8	7217	(36 H.)
217	........	Persei ........................	5.9	28.2	3048	$2^{\text {b }}, 642 \mathrm{~W}$.
218	786	15 Trianguli.....................	5.4	28.6	3410	
219	794	78 Ceti ....................... ${ }^{\text {. }}$.	5.3	29.6	505	
220	798	31 Arietis .......................	5.0	30.1	11.57	
221	784	Cephei........................	5.7	30.5	8056	
22	808	32 Arietis ......................	5.5	32.0	$21 \quad 27$	
223	811	82 Ceti ....................... $\mathbf{\delta}_{\text {.- }}$	3.8	33.3	-0 11	
224	813	33 Arietis ........................	5.4	33.7	2633	
225	816	11 Persei ........................	5.9	34.5	5436	
926	819	Persei................. (64 B.)..	5.9	34.5	5301	
227	821	12 Perвеі ........................	4.7	34.8	3941	
208	895	34 Arietis ..................... $\mu$.	5.6	35.6	$19 \quad 29$	
229	227	13 Persei ..................... ${ }^{\text {a }}$.	4.3	36.0	4843	
230	829	14 Persel	5.4	36.4	4347	
231	831	35 Arictis ........................	4.9	36.4	$27 \quad 12$	
232	837	86 Ceti....................... $\boldsymbol{y}_{\text {. }}$	3.7	37.1	244	
233	842	37 Arietis .......................	5.9	37.9	14.49	
234	844	38 Arietis .......................	5.1	38.4	11.57	
5235	845	Arictis (or u Ceti).............	4.2	38.5	936	
236	861	39 Axietis ........................	5.1	40.8	2845	
237	866	Arietis ..............(116 B.)..	5.9	41.8	2442	
238	867	40 Arietis ........................	5.9	41.8	1748	
239	863	15 Persei .....................n..	3.7	41.9	5524	
240	870	42 Arietis .........................	5.4	42.6	$16 \quad 58$	
241	872	41 Arietis ......................	3.8	42.9	2646	
242	871	16 Persei .......................	4.7	43.0	3749	
243		Persei ...........................	5. 9	243.7	4621	1833 A. Oe.

List of stars for latitude-observations-Continued.

No.	B. A, C.	Constellation.	Magnitude.	Right ascert siou, 1880.0.	$\begin{gathered} \text { Declination, } \\ 18 \tilde{0} 0.0 . \end{gathered}$	Yaions.
				7. m.	$\bigcirc$ -	
244	87	17 Persei ..........................	4.3	244.2	$34 \quad 34$	
245	$8 \times 1$	43 Arietis .-...-...-. . . . . . . . $\boldsymbol{\sigma}_{-}$	5.9	44.9	1434	
246	885	18 Pergei .......................t.	4. 3	45.8	5216	
'247	888	20 Persei	5.9	46.2	3752	
248		D. M. 591.	5.9	40.4	$61 \quad 02$	
249	......----	D. M. $6 \overline{\text { ® }}$	5.9	$4 \times .5$	$46 \quad 40$	
250	901	45 Arietis...................... $\rho^{2}$.	5. 9	49.1	1751	
251	904	21 Persei ...........................	4. 7	50.0	3124	
252	896	Cephei	5.4	50.3	\% 75	$47 \mathrm{H}$.
253	912	22 Persei ....................-.......	5.0	51.1	3911	
254	913		5.9	51.2	2010	
255	914	Persei................. (977 B.).. $^{\text {a }}$	5.	51.7	$46 \quad 44$	
256	915	24 Persei	5.3	51.7	3442	
257	918?	Persei	5.4	52.4	5154	(F. 431.)
258	921	48 Arictis. . . . . . . . . . . . . . . . . . . . .	4.3	52.4	$20 \quad 52$	
259	908	Cephei...........................	5.4	53.2	¢1 00	
260	999	91. Ceti ........................ $\lambda$.	4.7	53.3	8 90	
261	941	49 Axiotia	5.5	\%4. 8	2600	
262	949	92 Ceti .............................	2.7	50.0	337	
263	147	23 Persei ....................... $\boldsymbol{y}_{\text {. }}$	3. 4	56.1	63 02	
264		Cassiop	5.9	57.3	$63 \quad 36$	3411 A.ce.
265	033	25 Persei .......................p.	3.8 var.	57.5	3822	
206	957	52 Arietis	5.9	58.4	2447	
207	955 ?	Cassiop ...........................	5. 1	68.9	$73 \quad 56$	(3) II.)
268		Arietis .............. (14r B.).-	5.1	259.8	1244	5725 L. L.
209	963	${ }_{26} \mathbf{P}$ Persei .-...-................ $\beta$.	2 var.	$3 \quad 0.3$	$40 \quad 30$	
270	962	Persei.......................i....	4.3	0.4	$49 \quad 09$	
271	967	27 Persei . . . . . . . . . . . . . . . . . . к. .	4.5	1.4	$44 \quad 24$	
272	974	55 Arletis	5.9	2.4	$23 \quad 37$	
273	980	Arietis . . . . - . . . . . . . (155 B.) ..	5. 9	3.3	2626	
274	081	28 Pergei .........................	5.1	3.6	3909	
275	960	Urs. Minor	5.9	4.1	2429	
276	986	57 Arietis ...................... it..	4.3	4.8	1916	
277	994	94 Ceti	5.3	6.7	- 137	
278		Persei................ (122 B.)...	5.9	6. 7	5141	
279	995	Persei................(198 B.).--	5.9	7.6	50.29	
280	999	Arietis .....................-5..	4.5	8. 0	$20 \quad 36$	
281		Persei	5.5	8.1	$30 \quad 07$	$3^{4}, 12 \mathrm{P}$.
282	1001	Camelop	4.5	9.5	$65 \quad 13$	(1 H.)
283	1006	30 Persei	5.9	9.7	$43 \quad 35$	
284	1007	20 Porsei	5.4	10.1	49 48	
285	1011	31 Persei	5.4	10.7	4940	
286	1017	Persei	4.9	11.3	3346	(23 H.)
287	1083	59 Arietia	5.9	12.7	2638	
288	1028	96 Ceti...............................	5.3	13. t	256	
289	1025	Arietis	5.1	13. 1	2937	F. 144.
290	1026	32 Persei...................-.-. 6.	5.3	13.5	$42 \quad 54$	
201	1030	Camelop	5.9	14. 3	6409	D. M. 391.
292	1034	61 Arietis...................... ${ }^{1} .$. :	4.9	14.3	$20 \quad 43$	
293	1040	62 Arietis	5.4	15.0	2711	
94	1045	63 Arietis....................... $\boldsymbol{T}^{2} .$.	4.9	15.8	2019	
295	1043	33 Persei ...................... a.	1.9	15.8	$49 \quad 26$	
296	...........	Persei................(146 B.)..	5.4	17.0	33 Of	$3^{h}, 390 \mathrm{~W}$.
297	1052	64 Arietis ...........................	5.5	17. 2	$24 \quad 19$	
298	1053	65 Arietis	5.5	17.5	2083	
299	--------	Tauri ...................(88.)..	5.9	17. 6	1212	6268 L. L.
300	1057	1 Tauri........................ ..	3.8	18.4	$8 \quad 36$	
301	1058	Camelop .........................	4.5	19.4	5931	(2.1.)
302	1059	Eersei.................(147 B.)..	5.9	19.6	4839	
303	1062	Camelop .-........................	4.9	20.3	5828	(311.)
304	1068	2 Tauri........................ ..	4.2	$3 \quad 20.7$	919	

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magxitude.	Right ascension, 1880.0 .	Declination, 1880.0.	Vapimes.
				h. $m$.	0	
305	1066		5.3	320.8	4907	
3006		Persei................(152 B.)..	5.9	20.8	$33 \quad 23$	33656 B .
307		Camelop	4,7	20.9	5502	(4 H.)
308	1069	66 Arietis ......................	5.9	21.4	22.25	
309	1071	35 Persei.................... $\sigma .$.	4.7	2.1	$47 \quad 35$	
310	1084	4 Persei (or Tauri S.)...........	5.3	23.8	$10 \quad 56$	
311		Tauri.................iv 401)...	5.4	24.1	$27 \quad 09$	$3^{\text {h }}, 466 \mathrm{~W}$.
312	1087	5 Tauri ......................f..	4.2	24.2	$12 \quad 33$	
313	1083	36 Persei	5.9	24.2	$45 \quad 39$	
314		Camelop	5.9	24.5	5433	3875 A. Oe
315		Persei................(159 13.)..	5.9	25.0	3503	$3^{\text {b }}$, 484 W.
316		Persei................(160 B.).	5.9	25.7	3930	1004 Rad.
317	1061	Cephei .............. (323 В.)..	5.9	27.3	$86 \quad 16$	
318	1099	Persei...................... $4 .$.	5.2	28.0	4748	
319	1112	10 Tauri.........................	4.3	30.8	$-001$	
320	1111	Camelop.	4.9	31.7	6251	
321		Tanri.	3. 9	320	2031	6686 L. L.
329	1119	Tauri................. (33 B.)..	5. 9	32.7	$\begin{array}{ll}16 & 09 \\ 59\end{array}$	
323	1117	Camelop............... 4 B B \% .-	5. 9	32.8	5985	
324	1123	Persei................(164 B.)..	5.4	33.4	$37 \quad 12$	
325	1123	12 Tauri.	5.5	33.6	241	
326	1132	40 Persei	4. 7	34.8	3314	
327	1135	13 Tauri.	5.4	35.4	$19 \quad 19$	
328	1133	Caraelop	5.3	35.6	6258	(6 П1.)
329		16 Camelop.......................	5.4	36.8	$70 \quad 30$	
330	....-.	Persel............... (167 B.)..	5.4	30.8	3605	4 ${ }^{4}, 766 \mathrm{~W}$.
331	1138	Persei ......................o.	3.8	36.8	3154	
332	1140	14 Tauri..........................	5.9	36.8	$19 \quad 17$	
333	1139	persci .....................v..	4.2	37.0	4212	
334	1137	Camelop.	4.3	37.7	7056	(5 H.)
335	1147	17 Taurí..	4.6	37.8	2344	
336	1151	19 Tauri.	4.9	38.1	$24 \quad 05$	
338	1153	24 Eridani.	5.5	38.4	- 132	
388	1144	Camelop ............	4. 5	3 E .5	6509	(7 H.)
339	1154	20 Tauri.	4.7	38.7	2400	
340	1161	23 Tauri	4.5	39.2	2334	
341	1162	29 Tauri...................... $\mathbf{u}^{1}$.	5.4	39.3	540	
342		Persei .........................	5.9	39.5	$50 \quad 21$	1064 Rad.
343	1163	Tauri ......................刀..	3.4	40.4	2344	
344	1174	30 Tauri......................e..	5.1	41.7	1046	
345	1172	Persei............... (176 B.) --	5.5	41.8	4435	
346	1176	27 Tauri.........................	4.2	42.0	${ }^{23} 41$	
347	1175	42 Persel . ..................... . .	5.5	42.1	3243	
348	1192	Tauri	5.9	43.1	2314	(14 H1)
349		Camelop.	5.9	44.0	5736	4208 A .0 O.
350		Persei ...................... . $^{\text {. }}$	3.7	44.4	4724	
351	1207	44 Persei ......................6..	3.1	46.6	3134	
352	1203	Camelop .......................	5.1	46.8	6243	(8 H.)
353	1204	Camelop	5.5	47.0	6045	(9 Н.)
354	1210	Persei .........................	5.9	47.3	4732	(7. 89.)
355	1214	43 Persei .....................A..	5.4	47.7	5021	
356	1221	32 Tauri..........................	5.9	49.7	2208	
357	1819	45 Fersei .....................e...	3.4	49.8	3940	
358		Cephei .........................	4.7	50.0	8022	(49 H.)
350	1228	40 Persei ..................... $\boldsymbol{\xi}$.	4.3	51.2	3597	
360	1840	Tatri . . . . . . . . . . . . (163 B.)..	5.9	53.9	1752	
361		Camolop ......................	5.9	54, 0	6820	4351. A. Oe.
362	1241	95 Tamri...................... ${ }^{\text {a }}$.	2.8 rar.	54.0	1209	
363	1237	Camelop ......................	5.0	54.6	5849	(10 H.)
364	1244	Tauti ................ (167 B.)..	5.5	55.2	939	
365	1245	35 Eridani . . . . . . . . . . . . . . . . . .	5.4	355.5	$-153$	

Sist of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Marmitude.	Right ascen siod, 1880.0 .	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Various.
				h. $m$.	-	
366	1251	38 Tauri....................... . .	4.2	3 5ti. 8	539	
367	1253	36 Tauri.	5.9	53.2	2347	
368		D. M. 732.	5.9	57.3	5341 :	
369		Tauri.................(171 B.). .	5.7	54.5	752	34, 23 P.
370	1260	39 Tauri .................... A $^{2}$.	4.9	57.6	2145	
371	1254	4i Persei ......................A..	4.3	57.7	5001	
372		Tauri	5. 5	57.9	230	3. 238 P .
373	1262	41 Tauri..........................	5. 0	59.2	2718	
374	1265	42 Tauri . ....................4...	5.2	59.6	284	
375			5. 9	359.9	5430	
370	$1266^{\circ}$	48 Persei .....................c. . .	4.5	10.0	4724	
377	1268	49 Persei .........................	5.9	0.3	37 24	
378	1247	Cephei	4.9	0. 4	8331	
379	1269	50 Persei ........................	5.4	0.6	3: 44	
380	1272	Tauri ................ (180 B.)..	5.4	1.1	1701	
381	1279	44 Tauri.	5.5	3.5	2609	
382	1263	153 Cephei	4.9	3.8	8303	
383	1285	45 Tauri	5.9	4.9	513	
384		Tauxi................ (193 B.).	5.9	5.6	1659	4n. 59 w
385	1289	Tauri.	5.9	5.7	2207	(102 E.)
386	1287		4.3	6.1	4800	
387		Persei .......................	5.9	6.1	3739	43, 54 T .
388	1276	Cephei..................... .-	5.4	6.2	$80 \quad 32$	
389	1286	Camelop .....................	5.4	6.4	6133	(11 H.)
390	1291	52 Persei ...................f.	4.7	6. 7	$40 \quad 11$	
391	1296	46 Tanti	5.4	\%. 1	78	
392		Tauri	5.9	T.	12 2	19718
393	1903	Camelop	4.9	- 4	5.310	(1218.)
394	1298	47 Tauri.	4.6	7.4	4 Se	
395			5.4	e. 1	9 42	4h, t9 P
396	1304	49 Tauri ................... ,	4.5	9.0	\& 30	
397	1301	Persei.................... b $^{1}$	4. 7	9.9	50	
398	1300	Camelop	5.9	9.4	4451	(1:311)
399	1311	50 Tauri..................... $\omega^{2}$	5.4	10.2	2417	
400	1316	51 Tanri	5.9	11.3	21 17	
401	1313	Camelop	5.4	11.5	60.28	(14 II)
402	1324	56 Tauri.	5.5	12.5	2131	
403	1322	54 Persei:	4.9	12. 7	3417	
404	1323	53 Persei .....................d. ${ }^{\text {d }}$ -	5.0	13. 0	$46 \quad 13$	
405	1326	52 Tanri...................... ¢ $_{\text {. }}$	5.4	13.0	2704	
406	1328	54 Tauri..................... $\gamma_{\text {- }}$	3.8	13.0	1590	
407	1330	57 Tauri......................h..	5.4	13.2	1344	
408		85 Tauri	5.9	13.4	$18 \quad 26$	4t, 243 W .
409	1332	58 Tauri	5.7	13.3	1448	
410	1341	50 Tauri....................x..	5.4	15.3	$25 \quad 20$	
411	1343	60 Tauri..........................	5.4	15.3	1347	
412	1346	61 Tauti ....................d...	3.8	16.0	$\begin{array}{ll}17 & 15 \\ 10 & 31\end{array}$	
413	1350	63 Tauri	5.9	16.5	1631	
414	1349	55 Persei	5.9	16.7	$\begin{array}{ll}33 & 51 \\ 30 & \end{array}$	
415	1352	56 Persei ..................	5.9	16.9	3342	
416	1356	64 Tauri ...................... d2 . $^{\text {. }}$	4.7	17.9	17. 10	
417	1357	66 Tauri ..................... $7 .$.	5.1	17. 3	9 9	
418	1362	65 Tauri ....................... $\kappa^{1 . .}$	4.3	12.2	22 02	
419	1363	67 Tauri . .........................	5.9	18.3	2155	
420	1364	Persoi.	4.9	18.5	3110	( 45 HI )
421	1365	6s Tauri . . . . . . . . . . . . . . . . . ${ }^{8}$.	4.6	18.6	$17 \quad 39$	
422	1367	69 Tauri . . . . . . . . . . . . . . . . . $\boldsymbol{v}^{1} .$.	4.6	19.1	$22 \quad 32$	
123	1369	71 Tauri..	4.9	19. 5	$15 \quad 20$	
424		Camelop ......................	5.9	19.7	$72 \quad 16$	1221 Rad.
425	1370	73 Tauri..........................	4.9	19.8	$14 \quad 26$	
428		Tauri ....... ..................	5.9	421.3	3007	4t,423 W.

H. Ex. 133-19

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitade.	Right ascenmion, 1880.0 .	Declination, 1880.0 .	Various.
				h. m.		
427	1376	74 Tauri..........................	3.8	421.6	185	
428	1377	75 Tauri.	4.9	21.6	1606	
429	1380	77 Tauri ..................... $\boldsymbol{\theta}^{1} .$.	4. 2	21.7	$15 \quad 42$	
430	1381	78 Tauri . . . . . . . . . . . . . . . . $\theta^{2} .$.	4.2	21.8	1536	
431	1:384	79 Tauri .....................b...	4.9	22.1	1247	
432	1386	44 Eridani .......................	5.4	22.3	107	
433	1382	1 Camelop ....................	5.9	22.5	$53 \quad 39$	
434	1390	80 Tauri .........................	5.9	23.3	1522	
435	13913	Tanri	4. 9	23.7	$\begin{array}{ll}15 & 56 \\ 15 & \end{array}$	M. 16i).
436	1392	81 Tanri........................	5.4	23.8	$\begin{array}{ll}15 & 27 \\ 18 & 29\end{array}$	
437	1393	${ }^{6} 3$ Tauri.	5.4	239	13.29	
438	1403	45 Eridani .......................	4. 9	25.7	- 019	
439	1409	86 Tauri.....................p..	5.2	27.0	$\begin{array}{ll}14 & 35 \\ & \end{array}$	
440	1408	Tauri ..........................	5.4	27.1	$\begin{array}{rr}28 & 43 \\ 5 & 19\end{array}$	
411			5.9	27.8	519	8612 L L. L.
442	1414	58 Persei ....................e.e.	4.9	28.4	410	
443	1420	8\% Tauri......................a..	0.9	29.0	1616	
444	1421	8e Tauri..................... $\mathrm{d}_{\text {d. }}$	4.3	29.1	953	
445	14.4	a Camelop ......................	5. 2	30.5	5314	
446	1425	3 Camelop	5.3	30.5	5250	
447	14.31	49 Eridani ........	5.4	31.6	46	
448		Tauri.	5.5	31.2	2) 27	41.650 W.
449	1434	90 Tauri....................c. ${ }^{1}$.	4. 2	31.5	$12 \quad 16$	
450	1436	Tauri ........... (91 Arg. $) \sigma^{1}$.	5.3	32.3	1533	
451	1437		5. 3	32.4	1542	
452		Persei ............... (233 B.)..	5. 9	32.5	4804	1283 Rafl.
453		Tanri................(293 B.)..	5.5	32.6	738	P.
454	1428	Camelop ..............-......	5.9	32.8	7543	
435	1442	93 Taut ...................... ${ }^{\text {a }}$.	5.9	32.4	1158	
456	1444	Tauri.........................	4.9	33.8	2824	
457		Perbei ............... (235 B.)..	5.4	34.3	4945	12 E 9 Rad .
458	1445	59 Persei	5. 4	34.3	4308	
459	1449	94 Tauri ....................... $\boldsymbol{\tau}$.	3.4	35.0	2244	
460	1460	Tauri,	5.4	37.4	10 56	
461		Cephei.	5.4	38.0	80	(50 E.)
402	1456	4 Camelop	55	38.0	$\begin{array}{ll}56 & 33\end{array}$	
463		Orionis	54	39.4	1129	8943 L. L.
464	1470	Camelop	5.5	40.9	6318	
465	1475	Anrigle	5.9	41.5	32.94	
466		Aurige ......................	5.3	41.5	31.13	4b, 829 W.
457	1476	1 Aurigre.......................	5.4	41.8	3717	
468	1474	9 Camelop .....................-	5.0	49.1	6608	
468	1477	Aurigm .............. 9 B. $\%$..	5.5	42.2	4832	
470	1486	1 Orionis....................r1..	3.5	43.3	645	
471	1491	2 Orionis................... $\pi^{2}$.	4.9	44.1	842	
472	1493	97 Tauri..........................	-4.5	44.3	1839	
473	1492	2 Aurigw ........................	4.9	44.6	3631	
474	1495	3 Orionis .................... $\boldsymbol{\pi}^{\text {a }}$ -	4.2	44.8	3.84	
475	1494	5 Camelop .......................	5.5	45.3	5504	
476		D. M. r01......................	5.9	45.3	2742	
477	1500	4 Orionis .................... ${ }^{1}$.	4.9	45.8	1403	
478	1508	5 Orionis.........................	4.9	47.1	2.19	
479	1504	7 Camelop ......................	4.9	47.7	538	
480	1514	8 Orionis.....................n ${ }^{\text {b }}$.	3.7	48.0		
481	1516	7 Orionis ................... $\boldsymbol{r}^{4}$.	5.3	48.3	9 -39	
422		Orionis ............... (19 B.).-	5.4	48.3		4,236 P.
483	1520	3 Aurige $\qquad$	3.1 5.9	19.2 49.3	32 38   5 48	1311 had.
484		Cophei..............................	3.9 4.9	49.5	1319	1511 mad.
45	1525	9 Orionis $\qquad$   Taar $\qquad$	4.9	50.4	1658	M. 180.
468	1590	Taur   09 Tatari $\qquad$ $\qquad$	5.4	4 50.8 8	24.5	
487	159\%	08 Tatar . . . . . . . . . . . . . . . .k.k.	2.9	4 Se. 8		

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magni tude.	Right ascension, 18 e0.0.	$\begin{gathered} \text { Declination, } \\ \text { IEEO. } 0 . \end{gathered}$	Varions.
				$h . \quad m$.	- ,	
488	1530	4 Aurigæ......	5.4	451.1	3742	
489	1538	10 Orionis . . . . . . . . . . . . . . . . $\mathbf{n}^{\mathbf{5}}$.	4.9	52.3	133	
490	1536	10 Camelop .......... ...........	4.9	52.8	6016	
491	1540	7 Aurigw .....................e..	3.8 var.	53.4	$43 \quad 39$	
492	1541	8 Aurigæ ....................5..	3.8	54.1	$40 \quad 54$	
493	1546	11 Carmelop .....................	5.9	55.7	5848	
494	1551	102 Tanri .........................	4.7	55.9	2125	
495	1549	Camelop	5.4	57.3	7347	(18 H.)
496	1554	9 Anrigæ .......................	5.1	57.3	5126	
497	1557	11 Oxionis .......................	5.3	57.7	1514	
498	1558	10 Aurigø.......................	3.5	58.1	4104	
499		Orionis ................ (38 B.)..	5.9	59.2	101	
500	1568	104 Tauri .......... ..........m. ${ }^{\text {. }}$	5.1	459.9	1830	
501	1570	106 Tauri . .....................l.	5.3	$5 \quad 0.7$	$20 \quad 25$	
502	1572	103 Tauri	5.5	0.8	2407	
503	1584	14 Orionis.....................i.	5.5	1.3	821	
504	1582	Aurigæ............... (45 B.).-	5.9	1.8	4649	
505		'Tauri.........................	5.4	2.2	2753	4*, 1421 W.
506	1590	16 Orionis ....................h..	5.9	2.7	940	
507	1565	Camelop ......................	5.1	2.8	$79 \quad 05$	(19 H.)
508	1591	15 Orionis.	4.9	2.8	$\begin{array}{ll}15 & 27\end{array}$	
509	158.5	Camelop ............. (65 B.) .	5.5	3.6	73	
510	1601 ?	Orionis.	5.4	4.8	$15 \quad 54$	(F. 160)
511	1602	11 Auriga .........................	5.1	5.2	3821	
512	2611	17 Orionis ...................p..	4.7	7.0	243	
513	1614	14 Auriga ..............	5.4	7.6	3233	
514	1613	13 Aurige ................... a..	5. 3	7.8		
515		Orionis . . . . . . . . . . . . 67 B .) ..	5. 9	e. 4	501	9820 L. L.
510		Camelop.	5.9	9.2	6231	62742 B .
517	1624	18 Orionis ......................	5.9	9.4	1112	
518		Anrigæ.............. (60 B.).-	5.9	9.7	4240	1441 Rad .
519	1627	16 Aarige.......................	5.0	10.3	3315	
520	1631	15 Aurigæ.................... $\lambda$. .	4.7	10.7	3959	
521		Aurigw......................	5.5	11.8	$40 \quad 58$	54.266 \%
528	1636	19 Auriga.......................	5. 7	12.1	3550	
523	1637	109 Tanri.........................	5. 4	121	2159	
524	1642	16 Camelop .....................	5.2	13.2	5726	
525	1045	20 Aurizw ....................p..	5.9	19.4	4141	
526	1649	73 Auriga . . . . . . . . . . . . . . . . . .	5.9	13.6	29.27	
527		Auri¢æ ...............	5.9	14.0	$40 \quad 54$	1458 Fad.
528	1660	22 Orionis.....................0..	4.7	15.6	+030	
589	1663	\& Aurig* ....................0..	5.2	16.5	3716	
538	1665	23 Orionis -................... $\mathrm{mz}^{\text {a }}$	5.3	16.5	320	
531	1671	111 Tauri.	5. 4	17.4	1717	
533	1688	27 Orionis ....................p.	5.9	18.4	-10	
533	1685	25 Orionis .................. $\psi^{1}$.-	- 4.9	18.5	144	
334	1681	112 Tauri ...................... $\mathrm{Br}_{\text {. }}$	1.9	18.7	$28 \quad 30$	
535	1687	24 Oriouls .................... $\gamma .$.	1.9	18.7	614	
533	1676	17 Camelop ......................	5.9	18.9	6258	
537	1683	Aurigw......	5.9	19.7	3482	
538	1692	115 Tami.	5.9	20.2	$17 \quad 52$	
538	1095	114 Tauri ...........................	5.5	90. 4	2150	
540	1703	30 Orionis ................... $\psi^{2}$.	5.3	20.6	259	
541	1701	116 Tauri.	5.9	20.9	1547	
542	1707	118 Tauri . . . . . . . . . . . . . . . . . .	5.1	21.9	$\begin{array}{ll}25 & 03 \\ 85\end{array}$	
543	16621	Urs. Min........................	5.9	23. 5	8506	344 G.
544	1717	31 Orionis.........................	5.4	23.6	-1 11	
545	178	32 Ontonis ................... $\mathbf{A}$.	5.4	24.4	5151 306	
546	1783	25 Aurigw. ....................x.	4.7	24.6	306	
877	1720	119 Tanni.........................	4.4	25. 2	1830	
348	1730	34 Orionis .....................8.	1.9	525.9	-0 23	

List of stars for latitude－observations－Continued．

No．	B．A．C．	Constellation．	Magni． tude．	Right ascen－ sion， 1880.0 ．	Declination． 1880.0.	Various．
				h．m．	$\bigcirc$ ，	
549		Anrige	5.9	526.7	$54 \quad 20$	1503 Rad．
550		Orionis	5.9	86.7	－ 141	5i， 962 W ．
551	1736	Aurigre．．．．．．．．．．．．．（104 B．）．．	5.9	27.2	4740	
552	173\％	35 Orionis．	5.4	27.3	1413	
553	1742	121 Tanri	5． 2	28.1	8358	
554	1748	37 Orionis ．．．．．．．．．．．．．．．．．．． ¢ $^{1}$ ．	4.9	28． 2	924	
555	1749	39 Orionis ．．．．．．．．．．．．．．．．．．．．．．．－	3． 7	28.5	951	
556	1765	46 Orionis．．．．．．．．．．．．．．．．．．．．ع．．	1.9	30.1	－ $1 \begin{aligned} & 17\end{aligned}$	
557	1766	40 Orionis．．．．．．．．．．．．．．．．．．． de．$^{2}$ ．	4.5	30.3	913	
558	1751	Camelop．	5.9	30.5	$65 \quad 39$	
559	1767	123 Tauri ．．．．．．．．．．．．．．．．．．．．．．．．．．	3.3	30.5	2104	
560	1768	26 Auriga	5.9	31.6	3085	
561	1776	125 Tanri．	5.4	33.3	2550	
562	1782	47 Orionis ．．．．．．．．．．．．．．．．．．．w．．	4.9	32.9	403	
563	1792	126 Tauri	5.4	34.4	$16 \quad 29$	
564	1806	51 Orionis ．．．．．．．．．．．．．．．．．．．．b．．	5.4	36.3	$1 \pm$	
565	1804	27 Auriga ．．．．．．．．．．．．．．．．．．．．．．．．	5.4	36.6	4947	
566	1896	Orionis．	5.9	40.3	929	
567	1827	131 Tauri．	5.9	40.4	1427	
568	1830	29 Aurigm ．．．．．．．．．．．．．．．．$\tau$ ．．	4.6	40.9	3908	
569	1834	133 Tauri．．．．．．．．．．．．．．．．．．．．．．．．．．	5.3	40.9	1352	
570	1839	52 Orionis ．．．．．．．．．．．．．．．．．．．．．．．．．	5.4	41.6	625	
571	1237	132 Tauri	5.2	41.7	2433	
52	1846	194 Tauri．	5.0	42.8	1237	
573	1844	31 Aurigre．．．．．．．．．．．．．．．．．．．． ．	4.9	43.0	37 16	
574	1245	32 Auriga．．．．．．．．．．．．．．．．．．．．v．	4． 2	13.2	3908	
575	16.1	Orionis	5.9	43.4	950	
576	1852	133 Tauri．	5.4	43.6	1416	
577		Orionis ．．．－．．．．．．．．．．（200 B．）．．	5.9	43.9	423	11061 L．L．
578	1849	31 Cauelop ．．．．．．．．．．．．．．．．．．．．	5.4	44.2	5953	
579	18.4	30 Aurigm．．．．．．．．．．．．．．．．．．．$\xi_{\text {．}}$	4.9	44.8	， 5341	
580		D．M． 1110	5.9	45.3	1950	
581	1862	137 Tamri．	5.9	45． 5	1408	
582	1863	130 Tauri．．	5.4	45.8	2736	
583	1809	56 Orionis	5.5	46.2	149	
584	1576	54 Orionis ．．．．．．．．．．．．．．．．．．．． $\mathrm{x}^{1 . .}$	4.9	47.3	2016	
585	18 Fa	58 Orionis ．．．．．．．．．．．．．．．．．．．．a．．	1 var．	48.7	7 74	
586	1885	33 Aurige．．．．．．．．．．．．．．．．．．．． ．$^{\text {．}}$	4.2	49.6	5417	
587	．．．．．．．．	Tamri．	5.9	49，6	2414	412 B
588		Aurigae．	5.9	50.1	4955	1592 Rza ．
589	1809	139 Tauri．	5.1	50.6	25 56	
590	1505	34 Aurige．．．．．．．．．．．．．．．．．．．．．．．	1.9	50.7	4437	
591	1897	35 durigm．．．．．．．．．．．．．．．．．．．．．．．	4.7	51.0	$45 \quad 56$	
592	1900	3\％Aarigm．．．．．．．．．．．．．．．．．．．．．t．．	3.2	51.5	3712	
593	1902	36 anrigre．．．．．．．．．．．．．．．．．．．．．．．．	5.9	51.9	4752	
594	1913	60 Orionis ．．．．．．．．．．．．．．．．．	－ 5.4	527	032	
595	1914	Aarige．．．．．．．．．．．．．．．	5.9	53.5	49． 53	
596	1928	61 Oriouin ．．．．．．．．．．．．．．．．．．．．．．．．	4.9	53.8	9 ： 39	
597	1934	64 Orionis ．．．．．．．．．．．．．．．．．．$x^{3} .$.	5.4	56.4	124	
508	1938	1 Geminor．	5.1	56.8	2216	
599	1930	62 Orionis ．．．．．．．．．．．．．．．．．．．$\chi^{4}$ ．．．	5.0	56.8	2000	
600	1912	40 Anrig⿴囗十．．．．．．．．．．．．．．．．．．．．．．．	5.9	50.4	3830	
601		Orionis	5.9	58.7	29.31	183 B
602	1945	68 Orionis	5.9	38.8	－10	
603	1043	37 Camelop ．．．．．．．．．．．．．．．．．．．．．．	5.9	5.59 .4	$58 \mathrm{s7}$	
60.1	1958	07 Orionis ．．．．．．．．．．．．．．．．．．．．．．．．	4.5	60.7	144	
605	1952	36 Cammlop．．．．．．．．．．．．．	5.4	0.9	68	
006	1963	41 Aurigø．．．．．．．．．．．．．．．．．．．．．．	5.9	24	48.45	
607	．．．．．．．．．	Atrige ．．．．．．．．．．．．．．（184 B．）．．	5.9	$\therefore 43$	5112	1860 Rual．
088	＊＊＊＊791	Anriga ．．．．．．．．．．．．．．．．．．．．．	5.9	45	323	onge w．
699	1979	40 Catrslop ．．．．．．．．．．．．．．．．．．．．．．	5.5	14．9	000	

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Maguitude.	Right ascen sion, 1800.0 .	$\begin{gathered} \text { Deelioation, } \\ 1880.0 . \end{gathered}$	Various.
				h. m.	$\bigcirc$,	
610	1986	68 Oriomis	5.9	64.9	1949	
611	1989	69 Orionis . . . . . . . . . . . . . . . .n...	5.5	5.1	1609	
612	1990	70 Orionis .....................	4.7	5.1	1414	
613	1980	Camelop	4.6	5.6	6922	(22 H.)
614	1092	1 Lyncis.	5. 4	6.9	6133	
615	2002	7 Geminor...................t. ${ }^{\text {. }}$	3.4	7.6	2232	
616	2001	44 Aurigre..................... ${ }^{\text {. }}$.-	4.3	7.7	2932	
617	2009	72 Orionis .................f. ${ }^{\text {f }}$.	5.4	8.5	1610	
618	2012	73 Orionis .................. $k^{1} .$.	5.9	9.0	1235	
619	2007	2 LJucis.	4.9	9.1	5903	
620		D. M. 1235.	5.9	11.3	1426	
621	2024	45 Auriga	5.5	12.1	5330	
622		Orionis. . . . . . . . . . . (291 B.) --	5.5	13.2	1443	1205\% L. L.
623	....	Camelop	5.4	14. 5	$70 \quad 37$	1707 Rax .
624	2044	46 Aurige	5.9	15.7 .	4921	
625	2047	13 Gerninor . . . . . . . . . . . . . . $\mu$.	3.1	15.7	2235	
626	2045	5 Lyacis.	5.9	16.6	5889	
627	2057	\& Monocer ........................	4.7	17.4	343	
628	2082	48 Aurig*........................	5.3	20.9	3034	
629	2081	47 Aurigx........................	5.9	21.1	4645	
630	2086	77 Orionis	5.7	21.1	022	
631	2090	18 Geminor.......................	4.3	21.8	20 17	
632	2069	Camelop............. 121 B.)..	5.9	22.1	$7{ }^{7} 00$	
633	2083	Cametop	ธ. 9	22.8	3346	
634	2110	Auriga	5.5	24.6	3232	
635		Mопосяг. . . . . . . . . . (50 B.)..	5.4	25.1	1133	$12494 \mathrm{~L} . \mathrm{L}$.
636		Cumolop	5. 4	25. 8	73142	(23 H.)
637	2126	13 Monocer.	4.9	26.4	726	
638	..........	Camelup	5.9	26.4	7151	6978 A. Oe.
639	2129	Geminor. ............. (4仑̇ B.)..	5.9	2 f .8	1414	
640		Monoeer ............. (58 B.) -.	5.7	27.5	-107	12587 L. L.
641	2133	49 Auriga.	5.0	27.7	2307	
642	2159	50 Auriza . . . . . . . . . . . . . . . . .	4.7	30.8	4235	
643	2163	24 Gemizor.................. $\%$.	2.4	30.8	1631 :	
644	2170	54 Aurigm	5. 9	32.0	2822	
645	2182	55 Aurigme.	5.4	34.4	$44{ }^{39}$	
646	2185	15 Monocer............. ....-. .-.	4.2	34.4	1001	
647	2191	26 Geminor.	5.4	35.4	1746	
648	2157	12 Lyncis.	4.9	35.7	5933	
649	2194	27 Geminor................... $\boldsymbol{e}$.	3.4	36.6	2515	
650	2197	28 Geminor	5. 9	37.2	2906	
651	2199	30 Geminor.	5.0	37.2	13 21	
652			5. 9	38.1	5549	1806 Rad.
653	2900	56 Aurige	5.4	3 R 2	4342	
654	2198	42 Camelop.	5.1	38.4	6742	
655	2201	57 Aurigm.......................	5. 4	36.5	4854	
656	2206	31 Gemiaor......................	3.8	38.6	1302	
657	2:11	16 Monocer.	5.9	40.0	43	
658	229	43 Camelop	5.1	40.8	6902.	
659	2216	17 Monocer.	5.2	40.8	810	
660	$22 \times 2$	18 Monoce	4.7	4 LC 6	233	
661		Geminor. ............. (76 B.).	5.5	41.9	3244	$\mathrm{f}^{\mathrm{n}, 1227 \text { W. }}$
662	2923	58 Anrigte.	5.1	423	4156	
\% 9	210	Camelop.	4.6	426	7708	(24 H.)
664	- 2220	14.15	5.9	42.6	59.35	
665		Copher	4.9	43.8	87 15	31 H.
666	8233	36 gaminor .................d.	5.9	44.4	21 53	
817	2897	34 Geminor.................. $0^{\text {a }}$	3.3	44.9	3406	
048	290	Ls Lynds........................	4.9	46.9	58.8	
600	2047	Camelop ......................	5.9	47.7	7058	
670	985	38 Cominor.................te.	5.3	687.9	13.0	

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation. -	Mannitude.	Right ascension, 1880.0 .	Declination, 1880.0.	Varions.
				h. m.	- '	
671	2261	16 Lyucis. .............. .......	5.9	648.9	4517	
672	2285	41 Geminor	5. 0	53.4	1614	
673	2299	Geminor ..................t..	5.5	55.1	2423	
674		Geminer.............. (110 E.).-1	5.9	55.4	1755	$\mathrm{f}^{\mathrm{b}, 1630} \mathrm{~W}$.
675	.....	Geminor.............(111 B.)..	5. 9	55.4	1530	$6^{\text {b }, ~ 1633 ~ W ~}$
676	2305	43 Geminor.................... $\mathrm{S}^{\text {- }}$	4.2 rar.	57.0	20.45	
677	2306	Geminor......................	4.9	57.0	1107	(F. 10.)
678	2314	Auriga.......................	5.9	53.2	3440	
679	...	Aurigæ........ ..............	5.9	659.5	3411	$13704 \mathrm{~L} . \mathrm{L}$
680		Monocer.............. (32 R.) ${ }^{\text {a }}$	5.7	\% 1.3	740	13799 L. L.
681	2330	45 Geminor....................	-5.5	1.5	1607	
682	2338	63 Aurigx.	5. 3	3.4	3931	
683	2340	46 Geminer ...................t..	4.6	3.5	$30 \times 20$	
684	2343	47 Geminur.	5.4	3.9	2704	
685	2341	Lyacis.	5.9	4.0	5137	
686	2350	48 Geminor	5.9	5.2	$24 \quad 20$	
687	2349	18 Lyucis......................	4.9	5.4	5351	
688	2356	Canis Min.............(1 в.)..	5.9	5. 5	551	
689		Camelop .....................	5.4	5. 7	8239	(25 H.)
690	2358	22 Moncer........... .-.......	4.3	5.7	-018	
691	2362	51 Geminor.	5.4	6. 5	1682	
692	2361 !	Lyacis.............. (43 B.)..	5.4	7. 0	47 20	
693	0373	Canis Min? . ........ (141 B.)..	5.9	8.0	319	
694	2370	Lyncis.	5.2	9.4	4941	
695	2381	63 Aurige .	5.9	9.7	4106	
686	2398		4.0	11.2	1640	
697	-	Lyncis.	5.9	12.6	4587	1928 Riad.
698	2410	55 Geminor.................. ${ }^{\text {d. }}$	3. 7	13.0	2212	
694	2407	19 Lsncis.	5.4	13.1	5530	
:00	9416	6s Aurige.......................	5. 3	14.0	3 3 59	
701	2423	56 Geminor	5.9	14.9	$20 \quad 39$	
762	2429	66 Aurigw.	5.5	15.8	$40 \quad 54$	
703	2431	57 Geminor..................A..	4.9	16.2	2517	
70.4	9441	21 Lymeis...	4.5	17.7	49.27	
705	2444	1 Canis Min	5.5	18.2	1154	
706	2442	60 Geminor ....................s..	4.2	18.3	2802	
707	2439	Camelop............. (143 B.)--	5.4	18.4	6843	
768	2451	2 Canis Min_.................e.	5.3	19.1	931	
769		Lyueie ............... (51 B.).-	5.9	20.0	4886	1960 Rad.
710	2460	63 Geminor ......................	5.5	20.6	2141	
711	2462	3 Canis Min................ $\beta$.	3. 1	20.7	832	
712	2459	22 Lyncis...	5.9	20.9	4955	
713	2464	Geminor...................p.	4.1	21.4	3201	
714	2468	4 Canis Min .................r..	4.9	21. 6	9 10	
715	2465	5 Canis Min ................n.	5.9	21. 6	711	
716	2467	64 Geminar .................. ${ }^{10}$.	5.9	21.9	283	
717	2463	65 Geminor .................. ${ }^{2}$..	4.9	22.4	$98 \cdot 10$	
713	2473	6 Canis Min ...................	4.9	23.1	12.15	
719			5.9	25.7	23.69	
720	2480	7 Canis Min ................ $\mathrm{JI}_{.}$.	5. 5	25.	210	
721	2488	68 Geminor......................	5.4	96.8	1608	
722		Lyneis ............... (54 B.)..	5.9	27.0	3602	1998 Lad .
723	9485	66 Geminor....................a..	1.5	22.0	3200	
724	2488	Lyteis.........................	5. 9	27.2	48.87	
725	2493	69 Geminer...................	4.3	28.5	2710	
728	2504	70 Gominor.,.-.................	5.5	30.7	320	
288	2509	71 Geminor...................0..	4.9	31.3	345	
729		Iyneis .........................	5.7	32.2	3637	2006 Ruat.
729		Lypell .........t.... (08B).	5.5	324	464	2005 3ned.
730	2519	74 Geminer .................. 7 .	5.2	286	1157	
731	\% 5	10 Cunis Min ......................	5.5	783.0	**	

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	Riglt ascension, 1880.0.	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Farions.
				h. m.	$\bigcirc$ -	
732	2516	24 Lyncis.	4.9	733.1	$58 \quad 58$	
733		Geminor	5.9	33.8	43 19	${ }^{7}$ L, 955 W.
734	2532	Lyncis --.-........... (60 B.)..	5.5	35.0	50.42	
733		Geminor . . . . . . . . . . (120 B.)..	5.9	35.3	$14 \%$	14981 L. L.
736	2540	75 Geminor.................... $\sigma$.	4.9	35.8	94 10	
737	2551	77 Geainor.........................	3.8	37.2	2441	
738	2555	78 Geminor ................... $\beta^{\text {. . }}$	1.3	38.0	2819	
734		Lyncis.	5.3	3. 6	3748	$7^{7}{ }^{\text {b }} 1083 \mathrm{~W}$.
740	9558	81 Geminor..................p.	5.0	39.2	1848	
741	2563	80 Getainor..........................	5.3	39.7	3343	
742	2564	11 Canis Min	4. 9	39.7	1104	
743	2612	13 Canis Min . . . . . . . . . . . . $\zeta$.	f. 4	45.5	204	
744	2590?	Camelop.............. (161 B.)..	5.5	45. 8	7948	
745	2596 ?	Camelop. . . . . . . . . . (166 B.) -	5. 1	$45 . \mathrm{E}$	7414	
746	2609	26 Lyncis.	5. 4	46.0	$47 \quad 53$	
747	2617	83 Geminor --. . . . . . . . .-. . $\Phi_{\text {- }}$.	4.9	46. 2	4805	
748	2585]	Camelop..... . . . . . . . (156 B.) .	5.9	48.0	8424	
749	2632	85 Geminor.	5. 9	43.7	9013	
750	2639	1 Caneri.	5.9	50.2	1606	
751	2647	Canis Min	5.9	50.8	- 58	(F. 199.)
752		D. M .1139	5.9	51.4	$50 \quad 23$	
753	2649	Cancri................... (\% B.).	5. 9	51. 7	1649	
754	-...-.	Camelop.\%.	5. 11	51. ${ }^{\text {a }}$	$(3) 2$	
725	2653	14 Canis Min.	5.9	52.1	$\geq 33$	
756	26.59	3 Cancri	5.5	5.3. 9	1734	
757	2668	as Monocer	5.3	55.1	$-103$	
75	2673	Canib Min	4.9	56.0	240	(12 H
759	2672	6 Cancri.	5. 2	56.2	2808	
760	2690	¢ Canerí	5. 5	58.4	13 28	
761	2700	9 Cancri .............. ..... $\mu \mathrm{l}$	5.9	54.2	92513	
762	2697	27 Lyncia.	5.0	$7 \quad 59.4$	51 5:	
763	2714	10 Cancri ...................- $\mu^{2}$	5.3	$\pm 0.7$	$21 \quad 56$	
764	2707	Tre. Major . . . (55 Caw. Ven.).	4. 7	0.9	6550	(3 H.)
765		Camelop. ........... (173 B.)..	5.9	4.2	7607	2092 Rad.
766	9732	Heyneis.	5. 4	4.2	$56 \quad 49$	(F. 50.5.)
767	874	16 Caneri ...................... 5 .	4. 4	5. 3	$1 * 01$	
768	2747	15 Cancri	5.4	5.7	3002	
769	2757	29 Lyuchs	5.9	7.9	5956	
770	2765	Ure. Major.	5.9	8.9	6252	
771	2778	17 Cancri....................... 3.	3.8	- 10.0	933	
772	2986	18 Cancri...................... $\times$.	5. 4	12.8	3737	
773	2789	19 Cancri...........................	5.9	12.9	$24 \quad 24$	
774	2788	Caneri	5.9	13.4	2106	(F. 93.)
775	2783	31 Lyncia.	4.9	14.6	4335	
776	2702	Lymeis................. (97 B.)...	5.9	14.7	$53 \quad 36$	
77		Lyncis.................. (101 B.)..	5.9	17.4	$35 \quad 25$	16431 L. L.
78	2803	Urg. Majar.......................	5.9	18.4	67 42	
779	0815	20 Cancri ...................... $\phi 1 .$.	5.9	19.2	2817	
780		Lyncis ............................	5.9	19.3	4603	9111 Rad.
782	2817	23 Canori. ...... ................ $\phi^{2} .$.	5.4	19.5	$27 \quad 20$	
788	$\underline{2822}$	Caneri	5.1	19.5	$7 \quad 57$	(12 H.)
783	2e28	27 Cancri .............................	5. 5	20.1	1303	
701	2819	1 Ura. Major . . . . . . . . . . . . . . . 0.	3.5	20.3	6108	
765	2633	28 Canerr . . . . . . . . . . . . . . . . . . 2 . ${ }^{\text {a }}$	5. 5	21.5	2433	
780	2842	9 Urs. Major.................. A..	5.5	23.9	6533	
787	2080	30 Caneri .......................v3. .	5.5	24.4	24 20	
788	2885	31 Cancri........................ 0.	5.9	24.7	1830	
780	\%89	38 Coneri....................... ${ }^{1} \cdot$	5. 4	25.8	$20 \quad 51$	
790	2884	\$8 Levin...........................	5.7	27.1	3650	
791	19876	3 Ura Magor........................	5.5	28.5	6586	
TR	9899	Hydrre .... ..........-( 18 B.).	5.9	8 29, 5	702	

List of stars for latitude observations-Continned.

No.	E. A.C.	Constellation..	Magnitade.	Right asconsion, 1880.0.	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Varions.
				h. m.	- ,	
793	2884	4 Urs. Major ......................	4.7	- 20.7	$64 \quad 46$	
794	2897	36 Cancri ......................e. ${ }^{1}$.	5.9	30.6	1005	
795	2901	4 Hydre. ...................... $\delta .$.	4.5	31.3	6 07	
796	2011	5 Hydгя ............................	4. 7	32.5	346	
797	2909	34 Lyncis...........................	5.4	32.8	$46 \quad 16$	
798	2937	43 Cancri. . . . . . . . . . . . . . . . . $\%$ \%	4.5	36.3	2155	
799	2942	45 Cancri . . . . . . . . . . . . . . . . Al..	5.9	34.6	1307	
800	2945	7 Hydrx..............................	4.9	37.0	350	
801	2943	Urs. Major.......................	5.9	37.9	6708	P. 296.
802	2953	47 Cancri ...................... 8.	4.5	37.9	$18 \quad 36$	
803	2958	49 Cancri. ....................... ${ }^{\text {b }}$	5.4	38.2	$10 \quad 31$	
804	29965	48 Cancri .-.....................t.	4.3	39.4	2913	
805	2971	11 Hydræ...........................	3.7	40. 4	$6 \quad 52$	
806	2976	Hydra ................. (39 B.)..	5.9	41.2	- 128	
807	2978	13 Hydra. ......................p.	4.7	42. 1	$6 \quad 17$	
808	2962	5 Urs. Major...................b.-	5.4	43.5	62 24	
809	2989	35 Lyncis . . . . . . . . . . . . . . . . .	5.4	43.9	44 11	
810	2999	51 Cancri. .................. ........	5.9	45.2	3256	
811	3002	55 Cancri................. . ... $\mathrm{p}^{2} .$.	5.9	45.5	$28 \quad 47$	
812	3003	6 Urs. Major. ......................	5.9	46. 4	6504	
813	3016	57 Cancri......................... ${ }^{2}$ -	5.3	40.9	3103	
814	3033	59 Cancri	5.9	48.5	33122	
815	3028	58 Cancri . . . . . . . . . . . . . . . . . $\mathrm{p}^{3}$.	5.4	48.5	24 3	
316	3027	Lyncís............................	5.9	48.7	$40 \quad 40$	D. M. 2125.
817	3032		3.1	49.1	624	
818	3035	60 Caneri	5.5	49.4	1206	
819		Camelop	5. 9	50.2	8440	2218 Rail.
820	3047	62 Cancri .....................os..	5.4	50.6	$15 \quad 47$	
821	3048	9 Urb. Majur . . .-. .-...............	3.3	51.0	4831	
822	3053	Cancri	5.9	51.2	951	
1203	3049	B Urs. Major. ................	5.0	51.7	6806	
894	3055	65 Cancri . . . . . . . . . . . . . . . . . .a..	4.3	51.9	$12 \quad 19$	
225	3056	64 Cancri	5.4	52.2	3253	
826	3059	10 Drs. Мйіог........................	1.2	52.9	4216	
827	30772	Urs. Major . . . . . . . . . (44 B.). .	5.5	55. 2	54 4.5	
888	3075	Ura Major ......................	3. 7	55.4	4738	
829	3079	69 Cancri . ......................v.	5.3	55.8	2456	*
830	3087	11 Urs. Majot . . . . . . . . . . . . . . $\sigma^{2}$..	5.1	57.9	67 \$1	
831	3100	Lyמcis	4.6	53.3	$38 \quad 56$	(17 H.)
832	3105	18 Hydra ....-.....................	5. 4	59.7	535	
283	3099	13 Ura, Major.................02.	5.3	8. 59.8	$67 \quad 37$	
834	3106	15 Urs. Major . . . . . . . . . . . . . . $f$.	4.9	90.4	5205	
835	3109	72 Cancri....................... T .	3. 9	0.7	3003	
836	3108	14 Drs. Major....................	4.9	1.0	$64 \quad 00$	
837	3111	76 Cancri. ..........................	5.4	1.3	1109	
938	3113	75 Cancri . . . . . . . . . . . . . . . . . . . .	5.9	1.7	$27 \quad 67$	
839	3117	77 Cuncri. ......................	4.7	2.5	22.31	
840	31168	Ors. Major. . . . . . . . . . . . . . . .	5.9	3. 8	73.26	(1) 390.)
841	3125	16 Ura. Major. . . . . . . . . . . . . . . e.	4.9	4.9	6155	
842	3131	36 L.jncis. . . . . . . . . . . . . . . . . . . . . .	4.9	6.0	434	
813	3135	17 Urs. Major. . . . . . . . . . . . . . . . . .	4.9	6.9	57.13	$\because$
844	3140	18 Urs. Mayor. . . . . . . . . . . . . . . .e..	5.4	7.6	5431	
845	3146	9 Hydras ...................... ${ }^{\text {a }}$.	4.3	8.1	29	
846	3139	81 Caurxi n......................r1.	5.5	. 8.6	15.27	
847	3163	38 Lyacis............................	4.4	11. 4	3710	
Ef	31727	Ure. Mujur . . . . . . . . . . . . . . . . .	5	12.9	67 13	1.45.)
819	3178		3.3	13.8	3454	
850	3204	1 Eeonie ............................	43	17.7	260 4	
851	3189	Dracenis..........................	43	10.8	81.51	(1)
${ }^{85}$	32184	Ura Major (or 11 Lyuds) .....	54	98.9	4608	(2)
\%	3827	\% Lemnis .........................	33	$\because 920$	- 795	

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitude.	Right asconsion, 1880.0 .	Declination, 18B0.0.	Tarious.
				h. $m$.	\%	
854	3221	23 Drs. Major ................h..	3.7	922.1	6335	
855	3228	3 Leenis.	5.9	22.1	843	
856	3231	22 Urs. Major.....................	4.9	23.6	3244	
857	3232	24 Urs. Major.................d..	5.1	43.9	70.21	
858	3241	8 Leonis Min ....................	5.4	24.3	$35 \quad 39$	
859	3242	25 Urs. Major................. $\theta$..	3.1	24.8	5213	
860	3246	4 Leonis..................... d.. $^{\text {. }}$	4.5	24.9	2330	
861	32.50	5 Leonis....................... ¢ $_{\text {. }}$	5.3	25.5	1150	
862	3551	6 Leonis. .....................h..	5.9	45.5	1015	
863	3255	32 Hydrw .................... $\mathrm{r}^{2}$..	4.7	25.9	$-039$	
864	3256	26 Ura. Major....................	4.9	26.6	5236	
865	3261	10 Leonis Min	4.8	28.9	3650	
866	33285	Lyncis.	4.6	27.7	$40 \quad 09$	
867	32888	11 Leonis Min	5.4	$2 \times .5$	3622	
668	3273	Leonis.	5.3	29.6	3142	(6 H.)
869	3286	1 Sextantis (or 10 Leonis)	5.5	30.9	722	
870	3281	42 Lyncis..............	5.4	31.0	$40 \quad 47$	
871	3283	27 Urs. Major. . . . . . . . . . . . . . .	5.3	32.0	7248	
872	3295	2 Sextantic	4.9	322	511	
873	3234	Camelop (or Draconis) ........	5.9	33.0	7941	(182 P.)
874	3303	35 Fydre.	4.2	33.7	-0 36	
875	3307	43 Lyncis.	5.5	34, 6	1018	
876	3312	Leonis....................e..	3.8	34.8	1026	
877	3317	15 Leonis . . . . . . . . . . . .......f...	5.3	36.5	$30 \quad 32$	
878	3321	16 Leonis . ................... \% . $^{\text {, }}$	5.9	37.2	1434	
879	3324	Urs. Major . . . . . . . . 9 (99 B.) . .	4.9	38.1	3740	
880	3331	17 Ieonis	3.4	39.1	2480	
881	3336	Leonis	5.5	39.8	715	(F. 240.)
682	3339	Sextantis.............(12 B.)..	5.4	40.2	220	
$88^{8}$	3341	15 Leonie Min	5.7	40.8	4635	264.
884	3345	Ifeonit . .................... $\mathbf{R}$	6 var .	41.1	115	M. 480.
885	3346	29 Urs. Major ................v.	4.2	42.5	5936	
886	\$358	30 Ura. Major . . . . . . . . . . . . . ¢	4.9	44.0	5438	
887	3366	22 Leonis......................g.	5.5	45.1	2458	
888	3571	24 Leonis......................ر. .	4.2	45.9	2634	
889	3374	7 Sextantis	5. 9.	46.0	3 01	
$890 \cdot$	3381	31 Ura. Major.....................	5.4	47. 9	5024	
891	3399	19 Leanis Min	5.1	50.4	4138	
892	3402	Ure. Major.	4.9	51.6	$57 \quad 23$	(F. 301.)
893	3406	Leanis..................... ${ }^{\text {. }}$.	5.4	51.8	1300	
804	3409	Leenis .............. (92 B.).:	5.9	52.7	313	
895	3415	29 Leonis......................t.	4.9	53.9	* 37	
806	3416	* Leonis Min	5.5	54.1	3231	
897	3423	Leonis ....	5.2	356.1	3233	(15 II)
89	3448	21 Leonis Min	4.4	$10 \quad 0.4$	3550	
893	3453	38 Leonis ......................n..	3.5	0.8	1721	-
900	3457	31 Leonis .................... A....	4.9	1.5	1035	
901	3458	15 Sextantis	4.2	1.8	013	
002	3459	32 Leonis ......................a.	1.3	2.0	12.33	
908	3468	Leonis Min. .......... (64 B.)..	5.9	4.1	$38 \quad 00$	
904	3496	32 Urs. Major ....................	5.5	9.3	6542	
905	3500.	29 Leonie Min ....................	5.9	9.4	2954	
906	3505	33 Urm. Major.....................	3.7	9.9	4331	
907	3508	Leronis...................... S $_{\text {, }}$	3.7	10.0	2401	
408	3510	37 Leonid .........................	5.4	10.2	1421	
- 908		Cametop .......................	4.6	12.0	84.51	(20 H.)
910	3314	Urs. Major ...................	5.9	12.0	6922	F. 417.
911		Ura. Major ....................	5.9	120	4300	69, 1940 R.
018	3512	40 Leonis ........................	5. 7	13.3	20.05	
813	Stas	Leonts .................... $\boldsymbol{y}$ -	1.9	13.4	98.97	
814	3083	Uns Mator .....................	3.3	1015.8	406	- . .

H. 1Ex 133- -20

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitade.	Right ascension, 1880.0.	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Various.
				h. m.	$\bigcirc$	
915	3531	Ura. Major......	4.9	$10 \quad 15.5$	6611	
916	3542	27 Leonis Min	5.9	16. 2	3431	
917	3598	Camelop ........................	5.1	16.3	8310	(30 H.)
918	3548	28 Leonis Min	5.5	17.2	3419	
919	3560	30 Leonis Min	4.5	19.0	3425	
920	3561	44 Leonis	5.9	19.0	925	
921	3572	31 Leonis Min .....................	4.2	21.0	3719	
923	3580	36 Urs. Major.....................	4.6	23.0	5636	,
923	3597	30 Sextantis ......................	5.3	24.2	-0 01	
924	3593	Draconis.	4.9	24.6	7621	(9 H.)
925	3606	46 Leonis .....................i.	5.9	25.8	14 45	
926	3607	Urs. Major. . . . . . . . . . . . . .	5.1	26.2	41 03	(33 H.
927	3609	47 Leonis .....................p..	4.9	26.5	956	
928	3810	34 Leonis Min . . . . . . . . . . . . . . .	5.9	26.7	33.30	
929	3612	37 Urs. Major....................	4.9	27.4	5742	
930	3639?	Urs. Major . . . . . . . . (16f 33.)..	5.9	31.7	$54 \quad 17$	-
931	3640	37 Leonis Min	4.7	32.0	3236	
932	3641	38 Leonis Min	5.4	32.3	3831	
933	3645	Urs. Major.	5.4	33.4	6903	(F. 449.)
934	3647	38 Ura. Major.	5.1	33.8	6620	
935	3652	Urs. Major.	4.6	34.5	69 42	(35 H.)
936	3664	39 Urs. Mıjor.....................	5. 5	36.2	5749	
937	36ts	36 Urs. Major................. ..	5.1	36.5	4656	(36) H.)
938	3666	40 Leonis Min	5.2	36.5	2658	
939	3671	41 Leanis Min ....................-	5. 4	36.9	2349	
940	3685	42 Leonis Min ....................	5. 1	39.2	3119	
941	3691	51 Leovis .....................m.	5.4	37.0	1932	
942	3693	52 Leonis..........................	5.5	40.1	1451	
943	3708	53 Leonis ......................l.	5. 3	43.0	1111	
944	3714	42 Urs : M8jor.	5. 5	43.9	5957	
945		Urs. Major-...................	5.9	45.4	70.9	2569 Rad .
946		Urs. Mejor . . . . . . . (194 B.).	5. 9	45.4	5309	
947	3725	44 Urs. Major.....................	5. 4	46.3	5313	\{3572\}
948	3728	46 Leonis Min ....................	4.2	46.6	3452	
949	3729	45 Urs. Major .................w.	5.1	47.1	$43 \quad 50$	
950	3732	Loonis .....................pp $\mathrm{p}^{1+\text {, }}$	5. 4	47.6	- 130	(29 H.)
951	3742	54 Lomis.......................	4. 2	49.1	2583	
952	3741?	46 Urs. Maj. or Leon. Min. (128 B.)	5.4	49.2	3409	
953	.....	Ure. Major.	5.9	52.2	5232	11292 A. Oe.
954	3757	47 Ure. Major.....................	4.7	52.8	4104	
955	……...	Urs. Major .......... (208 B.).	5.9	52.8	368	10h, 203 P .
956	3758	Urs. Mrjor. . . . . . . . . . . . . .	5.9	53.4	1609	(39 H.)
957	3768.	38 Leonis......................a..	4. 3	54.4	416	
958	3765	59 Leonis .....................c.	5.1	54.5	644	
959	3767	48 Urs. Major ................. ${ }^{\text {P. }}$	2.6	54.6	5701	
960	3765?	49 Drs. Major....................	4. 7	54.1	3937	
961	3775	61 Leonds .................... $\boldsymbol{p}^{1}$.	5. 1	55.7	$-150$	
902	3776	60 Leorin .....-. . . . . . . . . . . .b.	4.3	55.9	20.4	
963	3777	50 Urs. Major.................a.	1.9	56.3	63.24	
964	3788	63 Leonis.................... $x$.	5.1	$10 \quad 58.8$	759	
965	3798	65 Leorin ...................... $p^{2}$ -	5. 9	$11 \cdot 0.8$	237	
966	3899	67 Learif........... . . . . . . . . . . . .	5.9	- 24	2520	
987	5811	Ure. Major .......... ( 2220 B ) .-	5.7	28	36 sc	
968	3812	52 Urs. Major ................ $\psi .$.	3. 7	29	- 4500	
969	3392	$6_{0}$ Leonis ..................... $\boldsymbol{p}^{5} .$.	5.3	7.6	036	
970	3354	68 Learis ...................... $\delta$.	2.6	7.7	21.11	
971	3838	70 Leonis . .-.................. 0.	3.5	79	16.6	
9.2	3849	7 Leomis	4.8	88	2815	
973	3843	73 Leonis....................n..	5.3	9.6	1388	
974	3046	Urs, Major....................	5.9	90	5080	(T.304)
975	3850	75 Leonti .-.-...............	5.4	11.11	2. 41	

List of stars for latitude observations-Continued.

No.	B. A.C.	Constellation.	Magni. tude.	Right ascen siod, 1 een.0.	Declination 1880.0.	Various.
				h. $m$.	$\bigcirc$	
976	3851	53 Urs. Major .................. ${ }_{\text {\% }}^{\text {. }}$	3.8	11 11.8	3213	
977	3852	54 Uts. Major....................	3.5	12.0	33 45	
978	38.56	55 Urs. Major...................	4.7	12.6	3851	
979	3862	77 Leanis ..........................	4.3	15.0	641	
980	3864	Urs. Major	5. 9	15. 1	6509	(F. 392.)
981	3668	56 Uts. Major...................	5.3	16.3	4409	
982	3577	78 Leonis . . . . . . . . . . . . . . . . . i.	4. 2	17.7	1112	
983	$3 \mathrm{F79}$	79 Leonis	5.9	17.9	204	
984	3686	81 Leonis	5.9	19.4	1708	
985	3900	Lconis ......................t.	4.9	21.8	331	
986	3905	57 Utr. Major....................	4. 9	22.6	40 Of	
987	3915	86 Leonis.	5. 4	24.2	1904	
988	3914	Draconis..................... I $_{\text {- }}$	3.5	24.3	7000	
989	3918	Ure. Mrjor	59	25.5	6144	(F.124.)
990	3932	90 Leonis.	5.4	$2 \times 5$	1787	
991	3931	- Urs. Major.......... (279 B.)..	5, 9	28.5	5587	
992	3933	2 Dracomis.	5. 1	29.0	7000	
993	3937 ?	Leonis	5. 9	30.0	28.26	(45 H.)
994	3946	91 Leonis ...................... .	4. 6	30.8	-0 10	
995	3949	Tre. Major .......... (283 B.). .	5.9	31.4	5118	
996	3952	59 Urs. Major.	5.9	32.0	4417	
997	3964	92 Imonis	5.4	34.6	2201	
998	3965	61 Ure. Major	5.0	34.8	3453	
999	3968	62 Grs. Major...	5.9	35.4	$32 \quad 25$	
1000	3968	3 Draconis.	5.3	35. 8	-67 25	
1003	3979	2 Virginis ........................	4.9	39.1		
1002	3981	62 Ers. Major ................ $\boldsymbol{X}$ -	4.2	39.7	4827	
1003	3982	Virginis ..................23..	4.3	39.7	719	
1004	3985	Urs. Major.	5.4	40.5	5619	(F. 123.)
1005	3990	93 Leonis.	4.2	41.8	$20 \quad 53$	
1006	3989	4 Virginis................... ${ }^{\text {A }}$. ${ }^{\text {a }}$	3.9	41.8	855	
1007	3905	04 Leonis..................... ${ }^{\text {a }}$.	1.9	42. 9	1515	
1008	3998	\$5 Ura. Major....................	5.2	43.3	3536	
1009	4002	5 Virginis .................. ${ }^{\text {P }}$.	3.5	44.4	2 27	
1010	4017	64 Urs. Major ................ $\%$.	2.7	47.5	5422	
1011	4027	6 Virginis .................. ${ }^{2}$.	5.4	48.9	907	
1012	4031	95 Leonis .....................o..	5.9	49.5	1620	
1013	4033	66 Urs. Major ............	5.9	49.7	5715	
1014		Urs. Major..............	5. 9	53.1	3350	12, 1013 W .
1015	4049	7 Virginis ........-.-.-..... $\mathrm{b}^{\text {. }}$	5.5	53.8	420	
1018	4052	8 Virginis .......................	4.5	54.7		
1017	........	Urs. Major.....................	5.4	55.5		(57 H.)
1018	4057	${ }^{67}$ Ura, Major.	5.0	56.0	43.43	
1019	4066	2 Comæ.........................	5.9	58.6	2207	
1020	4072	9 Virginis ....................0.	4.3	59.1		
1021		Draconfs......................	5.5	59.4		2794 Had
1022	4074	Urs. Mrjor .......... (366 B.) ..	5.9	1150.7	$\begin{array}{ll}63 & 36 \\ 17\end{array}$	
1023	4099	3 Comı.........................	5.9	124.4	17.8	
1024	4100	Coma	5.7	4. 7	$27 \quad 37$	
1025	4107	4 Cornm.	5. 4	5.8	2632	
1086	4110	5 Com凶 .........................	5.9	6.1	21 13	
1027	4111	Drmeonis......................	5.0	6.6	7817	(4 H.)
1098	4122	Draconis...............(17 B.)..	5.9	9.4	763	
1029	4183	Urs. Major-................d.	3.5	9.5	5742	
1030	4125	6 Comm.	5.0	9.9	$15 \quad 34$	
1031	4126	2 Can. Ven.	5.4	10.1	4120	
1039	4127	7 Cemm........................	5.3	10,3		
1033	4198	Can. Ven..... - . . . . . . . . . . .	4.9	10.5	3344	(2).)
1004		Comm................ (36 B.)..	5.5	16.5	29.37	
1025	4143	Draconis......................	5.5	${ }^{19} 11.5$	7515	(5 H.)
1080	4145	15 Virgimis .................... $7 \cdot$.	3.4	12.13 .4		

List of stars.for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	Right ascension, 1880.10 .	Declination. 1880.0.	Various.
				h. $\boldsymbol{m}$.	$\bigcirc$,	
1037	4148	3 Can. Ven.......................	5.4	12 l 13.8	4939	
1038	4152?	Comar.........................	4.9	13.9	$97 \quad 17$	52 B .
1039	4151	16 Virgiuis ...................c..	5.1	14.3	359	
1040	4153	Com®..........................	5.9	14.3	2744	55 B.
1041	4156	11 Comar	4.5	14.7	1827	
1042	4169	12 Comre	4.9	14.7	9631	
1043	4180	5) Can. Ven	5.1	16.5	3212	
1044	4181	13 Соих .........................	5. 2	1 P .3	2646	
1045	4154	Comat ....... ....... (69 B.)..	5.9	19.2	2436	
1046		Urs. Major.	5.9	14.5	6429	$400 \mathrm{B}$.
1047	4188	f Can. Ven......................)	5.2	20.0	3941	
1048	4191	Come	5.0	20.4	2754	(14 H.)
1049	4197	15 Conat . .................... $\gamma .$.	4. 6	21.0	2834	
1050	4196	16 Coma........................	5.1	\$1.0	2729	
1051	4203	73 Urs. Maior......................	5. 9	21.8	5619	
1052	4207	17 Comæ.........................	5.9	22.9	2635	
1053	4209	18 Comat	5.4	23.5	2446	
1054	4212	20 Coma.	5.5	23.7	2134	
1655	4216	74 Era Major.	5. 4	24.3	5904	
; 1056	4222	4 Draconis	4.6	25.0	6952	
1057	4223	\&1 Comm.	5. 2	25.0	2514	
1058	4233	Can. Ven	5.3	27.8	3355	(5 H.)
1059	4235	8 Can. Ven .................. . . $^{\text {. }}$	4. 5	28.0	4201	
1080	4239	5 Draconis	3.5	28.4	$70 \quad 27$	
1061	4240	23 Соmæ.........................	4.7	28.9	2317	
1062	4242	24 Comar.	4.3	¢9.1	1902	
1063	4246	${ }_{6}$ Draconis	4.7	29.7	7042	
1064	4248	25 Comx.	5.5	31.0	1745	
1085	4254	Virginis............ (20 B.).	5.9	32.3	231	
1066		Virginis...................R..	6 var.	32.4	734	7,2561 B.
1067	4860	2f Coms.........................	5.4	33.2	2144	
1068		Can. Ven............. (44 B.) ..	5.9	36. 4	3638	124, 683 W.
1069	4268	2) Virginin.................. $\boldsymbol{y}_{\text {. }}$	9.8	35.6	-0.47	
1070	4274	31 Virginis...................d. .	5.9	35. 9	728	
1071	4271 ;	30 Virginis ...................p..	0.1	35. $t$	10.54	
1072	4287	Can. Ven ............. (60 B.)..	5.4	39.5	4605	
1073	4236		59	39.6	820	
1074	4290	27 Come	5.1	40.7	1714	
1075		Ura, Mяjor ......... (414 B.)..	5.9	423	6326	2013 Read.
1076	4302	7 Dracomis.	5.3	426	6727	
1077	4301	29 Comp........................	2.9	42.9	1447	
1078		तотв . . . . . . . . . . . (128 R.) $^{\text {a }}$	5.9	43.0		124, 254 W.
1079	4303	11 Can. Ven.	5.9	43.2	490	
1080	4305	Ura. Major .......... (115 B.)..	5.9	43.3	60.58	
1081	4311	Can. Ven	5.9	44.4	3811	(6 H.)
1082	4315	31 Comas.	4.9	45.9	2812	
1083	4383	35 Comms.	5.1	47.4	21.54	
1084	4329	41 Virginis ......................	5.9	47.8	1304	
1065	4339	Camelop ................... $r$.	5.4	48.2	84 04	(32 H.)
10e6	4335	77 Urs. Major.................e.	1.9	48.7	537	
1087	4341	Can. Ven.....................	5.5	49.5	4751	
1088	4340	43 Virginis .................. $\delta$.	3.1	49.6	403	
1009		70 Ure. Major .....................	5.9	50.0	583	
1090	4346	12 Can. Fen ......................	3.1	50.4	38.58	
1091	4347	8 Draconis	4.9	50.7	6606	
1092	4351	3 30 Camme	4.7	50.0	180	
1008	4380	37 Commo.	5.1	54.3	3180	
1094		Praconis . . . . . . . . . . . . . . .	3.8	55.2	7602	2080 kel .
1085	4365	9 Draconia.	5.5	55.3	-13	
1096	4960	78 Era. Major.	4.9	$12 \pi 56$	5701	

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magti. tude.	Right aseension, 1800.0 .	$\begin{aligned} & \text { Deelination, } \\ & 1880.0 . \end{aligned}$	Various.
				h. m.	1.	
1097	4367	Virgini*....................e.	3.1	1956.2	1138	
1098	4371	Draconis............. (33 B.)..	5.9	57.0	6416	
1099	.	Can Ven...............(87 B.).	5.4	1258.4	4383	2955 Rad.
1100	4384	14 Can. Ven.	54	130.1	33 c 26:	
1101	4389	Can. Ven .............. 928 Br ) .	5. 9	0.5	455	
1102	4387	39 Come	5.9	0.5	21 4F	
1103	4388	43 Comae	5.5	0.6	2310	
1104		Ure. Minor ............. (8) l )	5. 9	1.1	7340	2963 Raid.
1105	4393 ?	Come........................	5.0	1.4	5816	124.854 W.
1106	4392	Urs. Major . . . . . . . (4: ( $_{\text {a }} \mathrm{B}$.).	5.9	1.7	6242	2065 Rad.
1107	4407	44 Can. Ven ........... . 97 В.).	5. 9	4.1	3805	
1108	4406		49	4. 2	1810	
1109	4421	43 Comre ...................... . $^{\text {. }}$	4.9	fi. 3	988	
1110	4423	Virginis . . . . . . . . . . (404 18.).	- 9	6. 6	1212	
1111	4433	Can. Ven	4.9	8.3	40 47	(11 H.)
1112	4438	19 Can. Veu.	5. 9	10.2	41 30	
1113	4440	f9 Virginis ...................e.e.	5.9	10.8	$10 \quad 03$	
1114	4448	Virginis............ (485 B.).	5.4	11.3	1419	
1115	4446	60 Virginis . . . . . . . . . . . . . . . . $\boldsymbol{c}_{\text {. }}$	\%. 1	11.5	606	
1116	4451	20 Can. Ven.	4.3	12.2	4112	
1117	.	Draconis.	5.9	12.5	69	13510 A. 0 e,
3118	4456	21 Can. Ven.	4. 9	13.1	5019	
1119	4467	23 Can. Ven.	5.4	15.0	$40 \quad 17$	
1120	4470	Virginis	5.5	15.6	243	F. $38 \%$
1121	4479	Can. Yen.	5. 0	12. 5	3739	(191 B.)
1122	4884	79 Urs. Major................. ${ }^{\text {S }}$	1.!	19.1	25 33	
1123		Conua'	5.4	19.4	2428	(1- H)
1124	4493	80 Trs. Major................g.	4.9	20.4	$55 \quad 37$	
1125		(Can. Ven............ (147 H.)..	5.9	21.1	4639	3013 Rad.
1186	4499	\%o Virginis	5.4	22.0	1427	
1127	4506	Canis Min .............(9⿴囗.)..	5. 9	93.0	7301	
1128	4510	Urs. Major.	5.3	94.0	6035	(69 H.)
1129	4527	Camelop... .........(215 B.)..	5. 9	53. 1	7015	
1130	4596	Comes.	5.9	27. 1	$24 \quad 39$	
1131	4529	78 Virginis	4. 9	38.1	416	
1132	4532	79 Virginis ........... ....... 8 -	3.7	428.6	001	
1133	4536	Can. Fea	2.1	99.4	3748	(17 H)
1134	4540	81 Urs. Maior.	t. 0	9. 6	55.58	
1135	4538	24 Can. Ven	4. 7	29. 6	4938	
1136		Come	5.9	31.3	25 13	(20 H.)
1137	4552	${ }^{25}$ Can. $V$ en	5.2	32.1	3654	
1338		D. M. 516	5.9	33.1	7710	
1139	4359	Brotis (or Virginis) ...........	5.4	33.6	1121	(1 H.$)$
1149		Ura, Minor . . . . . . . . (13 B.)..	5.5	34,4	7151	3068 Rad.
1141		Cad. Ven.	5.9	34.8	3137	134, 606 W ,
1142	4564	82 Tra. Major	5.5	34.9	5331	
1743	4582	1 Hootio	5.4	34.9	$20 \quad 34$	
1144	4566	2 Bootis	5.4	35.4	$23 \cdot 09$	
1145	4568	83 Urs. Major....................	5. 4	36.2	55.17	
1146	4570	84 Virginis ...................a.	5. 4	37.1	409	
1147		Can. Van . . . . . . . . . (194 B.) ..	5.9	37.4	4217	3074 Rad.
1148	4577	Draconis.	5.9	37.7	65 96	
1149		D. M. 2678 .	5. 9	41.1	39 06	
1150	4587	Can. Ven......... ............	5.4	41.2	4141	(20) H )
1131	459	3 Bootis .........................	5.9	41.2	$26 \quad 18$	
1152	4597	4 Botis ...................... 5.	4.5	41.6	$18 \quad 03$	
1153		Can. Ven.....................	3.4	41.8	$39 \quad 10$	(21 H.)
1184			5.5	42.1	$78 \quad 40$	
4155	4607	85 Ure Major. ................ ${ }^{\text {\% }}$.	1.9	42.8	$49 \quad 55$	
1156	4610	Can. Ven......................	5.4	43.3	3147	(F.131.)
1157	4615	5 Beetia ......................v.	4.3	13 43.7	16.24	

List of stars for latitude-observations-Continned.

No.	A. B.C.	Constellation.	Magni. tude.	Right ascen-   sion, 1880.0.	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Various.
				h. $m$.	$\bigcirc$	
1158	4618	6 Bootis......................e..	5.0	13 44.0	21.58	
1159	4628	Can. Ven	5.5	45.9	3517	(23\%.)
1160		Draconis ............. (44 B.)..	5.9	46.0	6205	3103 Rad.
1161		D. M. 2496	5.4	46.5	3502	
1162	4640	Hootis	5.9	47.7	9915	T. 213.
1163	4646	10 Draconis . . . . . . . . . . . . . . . . i..	4. 7	47.9	0519	
1164		Draconis.	5.9	48.1	6854	46 B.
1165	4648	\& Bootis ......................r.-	3.4	49.0	3900	-
1166	4649	86 Urs. Major.	5. 9	49.5	5419	
1167	4651	92 Virginis ......................	5.5	50.4	138	
1163	4656	9 Bootis	4.9	51.1	2805	
1169	4604	10 Bootis	5. 4	53.0	$22 \quad 17$	
1170		Bootis................(33 B.)..	[) 9	55.4	929	$2{ }^{25746}$ E. L.
1171	4672	93 Virginis ...................t..	4.3	55.6	207	
1172		Can. Ven.....................	5.9	57.4	4620	25839 L. L.
1173	4684	Bootis	5.9	1358.6	5134	D. M. 1889.
1174	4696	11 Draconis	3.5	141.1	$64 \quad 57$	
1175	4699	Bootis	5.3	3.1	4425	(9 H.)
1176	4701	13 Beotis	5.4	3.7	50	
1177	4706	12 Bootis . ....................d.	4.7	4.9	25.40	
1178		Draconis	5. 9	5.1	5954	52 B
1179	4713	Virginis	4. 7	6.2	258	(42 H.)
1180	4724	15 Bootis	5.3	9.0	$10 \quad 40$	
1181	4726	Bootis......................x.	4.5	9.2	5221	
1182	4733	4 Ure Minor.	4. 9	9.3	$78 \quad 07$	
1183	4732	Ura. Minor.....................	5.3	9.9	7000	(3 H.$)$
1184	4729	16 Bootis .....................a..	5.3	10.2	1949	
1185	4741	19 Bootis ........................	4.2	11.8	4638	
1186	4742	21 Bootis..........................	4. 5	11.9	5135	
1187	4747	Bootis ...... .............. A.	4.7	13.0	3604	(16 H.)
1188	4748	100 Virgints . . . . . . . . . . . . . . . . ${ }^{\text {. }}$.	4.0	13.4	-142	
1189	4751	18 Bootis.	5.4	13.5	$13 \quad 34$	
1190	4753	50 Bootis	5.3	14.1	1651	
1191	4758	Brotis ............... (149 B) .	5.9	14.9	3922	
1192	4766	Bootis.	4.9	17. 3	900	(18 п.)
1193	4773	Bootis (or Virginis) ........ (\%). .	5.4	12.2	622	(19 \#.)
1194	4789	23 Bootis ..................... $\theta$..	4.2	21. 1	5224	
1195	4792	105 Virgiuis ................... ¢ $^{\text {. }}$	4.9	22.0	-141	
1196	4804	24 Bootis ......................g.	5.5	24.6	5023	
1197	4808	\% Bootis .....................p.	4. 2.	26.7	3034	
1198	4810	20 Bootis .........................	53	27.1	2247	
1199	4812	27 Bootis ..................... $\gamma .$.	2.8	27.2	3850	
1200	482	5 Ure Minor.	4.9	27.8	$76 \quad 14$	
1201	..........	Draconis.	5.7	28.8	5556	14665 A .00.
1202	4803	28 Bootis .........................	5.0	29.5	30.16	
1203		F. 481 .........................	5.4	90. 5	4954	
1804	4841	Bootis ............... (244 B.). .	5.9	33.7	4410	
1295	4845	Bootis .............. (258 B.). .	5.5	34.4	5432	
1206	4843	33 Bontis .........................	5.3	34.4	445	
1207		Bootis . . . . . . . . . . . (248 B.). .	5.9	34. 9	230	14, 703 W.
1208	4847	29 Bootis* . ................... $\mathrm{r}_{\text {- }}$	3.8	35.1	1856	
1509	4849	30 Bootis ., ....................5.	3.7	33.4	1415	
1810	4850	31 Bootis	5.4	35.8	841	
1212	4853	32 Bootis	5.3	36.0	196	
1812	4864	34 Rnotis ..........................	5.5	38.2	87	
1213	4874	Dracomis . ......... . . (588 B.) -	5. 9	39.0	6146	
1214		Virginis.............(718 B.)..	5.9	38.0	- 05	2686 L. L.
1215	4874	Bodi8...............(274 B.).-	5.4	39.1	10. 57	
1216	4873	\$5 Protis ..................... $0 .$.	4.5	39.7	179	
1917	4376	36 Bootib......................e.	26	3 Ac 8	3735	
1918	487	109 Thginis ......................	42	14402	22	

* Doxiblestar; manaller $=+054-1400$ in Dees.

List of stars for latitude observations－Continned．

No．	B．A．C．	Constallation．	Magni－ tude．	Right ascen－ sion， 1880.0 ．	$\begin{aligned} & \text { Declination, } \\ & 1880.0 \text {. } \end{aligned}$	Farions．
1219		Bootis ．．．．．．．．．．．．（279 B．）	5.4	h．$m$ ．   1440.5		14， 178 P ．
1220	4898	11 Lyre	4.5	44.8	－148	
1221		Bootis ．．．．．．．．．．．．．．．．（\％96 B．）．	5.5	44.9	2425	14t， 945 W.
1222	4903	38 Bootis ．．．．．．．．．．．．．．．．．．．．．．．．	5.9	45.1	4637	
1223	4907	39 Bootis ．．．．．．．．．．．．．．．．．．．．．．．	5.5	45.6	4913	
1224	4906	Bootis	5． 5	45.6	3746	（34 H．）
1225	4905		4.9	45.9	1936	
1226	4918	Draconis ．．．．．．．．．．．．． 61 R.$) .$.	5.4	48.3	5947	
1227	4936	7 Ure．Minor ．．．．．．．．．．．．．．．．．．．．	2.4	51.1	7439	
1228	4931	1 Serpentis．．．．．．．．．．．．．（4e B．）．．	5． 9	51.4	${ }^{9} 19$	
1229	4837	Hootis	5.9	52.4	50 of	F． 203.
1230	4943	40 Bootis	5.4	55.1	3345	
1231	4949	Utrs．Minor（or Draco）	4.5	53.7	66.25	（2 H.$)$
1232	4951	110 Virginis	4.6	56.8	234	
1233	4953	41 Brootis	4.6	56.9	250	
1234	4958	42 Bootis ．．．．．．．．．．．．．．．．．．．．．．． 3 ．	3． 1	57.4	40 52	
1235	4961	Bootis	5.5	52.3	3341	（39 IL．）
1236	4982	Camelop（or Urs Min）．（223 B．）－．	5.9	58.4	8301	
1237	4967	Draconis．．．．．．．．．．．．．．（63）B．）．．	5.9	58.6	6041	
1238	4969	43 Bootis．．．．．．．．．．．．．．．．．．．．． 4.	4.6	59.3	2785	
1299	4974	44 Bortis．．．．．．．．．．．．．．．．．．．．．．．is．	4.5	1459.8	4807	
1240	4980	47 Bootis ．．．．．．．．．．．．．．．．．．．．．．．．．．	5． 4	$15 \quad 1.5$	4838	
1241	4981	45 Brotis．．．．．．．．．．．．．．．．．．．．．．c．．	4． 7	2.0	8520	
1242	4989	Draconis ．．．．．．．．．．．．．（41 B．）．．	5.5	2.2	6623	
1243	4992	Draconis	5.4	2.9	5301	
1244		Beotis ．．．．．．．．．．．．（384 B．）．．	5.7	6.6	19.26	151， 106 W．
1245	5026	Bootis．．．．．．．．．．．．．．．．（390 B．）．．	5.9	9.0	3342	
1246	5024	3 Serpentis	5.3	9.2	524	
1247	5031	48 Bootis ．．．．．．．．．．．．．．．．．．．．．$\times$ ． ．	5.4	9.5	29 36	
1248	5030	4 Serpentis ．．．．．．．．．．．．．．．．．．．．	5.7	9.7	049	
1249	5036	49 Bootis ．．．．．．．．．．．．．．．．．．．．． 8	3.1	10.7	3346	
1250	5047	5 Serpentis	4.9	13.2	213	
1251	5058	Urs．Minor	5.1	13.3	6748	（1 H.$)$
1252		D．M． 2052	5.9	14.2	4003	
1253	5061	1 Coronm	5.9	15.3	3002	
1254		Coronse	5.9	15.9	第 24	3 B.
1255	5071	Draconis	5.4	16.5	528	
1256	5072	50 Beotis	5.4	17.0	3321	
1257	5079	11 Urs．Minor．	5.4	17.2	7215	
1258	5076	Bootis ．．．．．．．．．．．．．．．．（408 B．）．	5.4	182	40 01	3369 Rad ．
1239	5075	Coronre ．．．．．．．．．．．．．．．．．．．．${ }^{2}$ ．	5.1	18.2	3043	
1260	5084	51 Buotis．．．．．．．．．．．．．．．．．．．．．．	4.2	20.0	3748	
1261	．．．．．．．．．．	D．M， 2884 ．．．．．．．．．．．．．．．．．．．．．	5.7	20.1	4542	
12822	5085	9 Serpeatis ．．．．．．．．．．．．．．．．．． r $^{\text {I }}$	4.7	20.2	1551	
1283		Draconis	5.9	20.4	$62 \quad 27$	3380 Rad．
1264	5091	Draconit	5.9	20.6	6347	
1265	5094	13 Urs．Minor ．．．．．．．．．．．．．．．． $\boldsymbol{y}_{\text {－}}$	28	20.9	$72 \quad 16$	
1260		Brotis ．．．．．．．．．．．．．．．（410 B．）．．	5.9	21.7	344	15h， 81 P ．
1267	5097	12 Draconis ．．．．．．．．．．．．．．．．．．．．．．	3.1	21.8	5983	
12088		Coron＊．．．．．．．．．．．．（13 B．）．．	5.9	22.5	2531	154，83 P．
1200	5098	3 Coronax．．．．．．．．．．．．．．．．．．．．3．．	4.2	22.9	2931	－
187.		D．M．\＄227 ．．．．．．．．	5.4	24.9	4738	
1271	51.22	52 Beotis（or 4 Hercalis）．．．．．．．	45	26.6	11 14	
1878	5119	11 Serpontis．．．．．．．．．．．．．．．．A1．．	5.9	26.8	－0 0	
1273	5130	53 Bootis ．．．．．．．．．．．．．．．． $\mathrm{v}^{2}$. ．	4.7	27.5	4118	
1874	5131	4 Cozons ．．．．．．．．．．．．．．．．．．．．．． ．$^{\text {．}}$	5.4	28.1	$31 \quad 46$	
1275	5135	13 Sorpestigt ．．．．．．．．．．．．．．．．．．．${ }^{\text {d }}$ ．	3.5	29.1	1057	
1204	5147	Dreconis ．．．．．．．．．．．．．（75 B．）．	5.5	w． 4	64.35	
187	5143	5 Cozon的 ．．．．．．．．．．．．．．．．．．．．．．a．	1.9	99.6	${ }^{27}$－ 07	
1278	5106	15 Sexpentig ．．．．．．．．．．．．．．．．	5.9	30.1	18.03	
190	315		4.9	15.30 .9	33 解	

[^3]Doublo dz，weme sime，$=0.0 y^{2}+3^{\prime \prime}$ in Dec．

List of stars for latitude-observations-Continned.

No.	B. A.C.	Constellation.	Magnitude.	Right ascen. sion, 1860.0 .	$\begin{gathered} \text { Declination. } \\ 1830.0 . \end{gathered}$	Various.
				h. m.		
1280	5153	18 Serpeatis................. ${ }^{5} .{ }^{\text {a }}$	5.9	1531.0	1631	
1281		Draconis.	5.9	32.1	5420	3418 Raci.
1238		D. M. 1886	5.9	32.7	5288	
1283		D. M. $1766 . . .$. ..............	5.9	32.9	5501	
1284	5168	Bootis ..........................	4.9	33.5	4045	
1285		Draconis.	5.9	34.4	5455	3426 Rad .
1286	517	Bootís	5.4	34.5	1712	F. 870.
1287	5178	7 Coronæ .....................5..	4.4	34.9	3702	.
1288	5191	15 Ors. Minor ............... $\boldsymbol{\theta}_{\text {. }}$	4.9	35.0	745	
1289	5181	Draco (or Bootis) ...... .....-	5.9	35.0	5048	
1290	5180	Serpontis .................. ${ }^{6} .$.	5.9	35.5	3626	
1291	5185	20 Serpentis..................x...	5. 4	36.1	1314	
1292	5167	Serpentis ...................i.	4.3	36.2	$20 \quad 03$	
1293	5189	22 Serpentis ................ $\tau^{7}$.	5. 9	36.5	1852	
1294		Urs. Minor.....................	5.9	37.4	6940	15584 A. Oe.
1295	5192	8 Coronx ..................... $\mathrm{\gamma}$.	4.2	37.7	2641	
1296	5196	24 Serpentis .....................	2.5	38.4	648	
1297	5210	Draconia	4. 9	39.6	5245	
1298	5206	25 serpentis ................ $\mathrm{A}^{2}$. ${ }^{\text {a }}$	5.4	39.9	-126	
1209	5214	27 Serpentic.................. $\lambda$. .	4.9	40.6	744	
1300	5216	28 Serpentis.................. $\beta .$.	3.5	40.7	- 1548	
1301	5293	31 Serpentis ..................v..	5.9	41.7	1430	
1302	5234	Serpentis ...................к. .	5.9	43.3	1831	
1303	5230	Coronæ................(50 B.)..	4.9	43.6	2831	
1304	5238	34 Serpentis.....................	5.5. var.	44.2	233	
1305	5248	Draconis......................	5.9	44.6	5544	
1306	5244	10 Corone . . . . . . . . . . . . . . . . . ...	4.5	44.6	$26 \quad 26$	
1307	5245	37 Serpentis .................. ع	3.7	44.8	450	
1308	5249	Draconis.	5.5	44. B	6258	12 B
1309		Draconia ............. (89 B.) ...	5.9	45.2	59 5\%	3459 Rad.
1310	5252	38 Serpentis ..................p..	4.9	46.0	2120	
1211	5259	11 Coronæ ....................к..	4. 9	46.7	3602	
1312	5271	1 Herculis.................. x $^{\text {- }}$	4. 3	48.6	4247	
1313	5285	Ure. Minor . . . . . . . . . . . . . . $5 .$.	4.6	50.7	$78 \quad 10$	
1314	5287	2 Herculis ......................	5.4	50.7	4330	
1315	5284	41 Serpentis .................. . .	3.8	50.9	1603	
1316	5293	12 Coronm ..................... ${ }^{\text {. }}$.	5.4	51.4	38.18	
1317	5998	4 Hereulia ...................	5.9	51.5	4254	
1318	5293	Serpentis .................. ¢ . $^{\text {S }}$	5.9	55.7	$14 \quad 46$	
1319	5302	13 Corone .......................	4.2	52.6	2714	
1320	5310	Coronat............... 688 B.).-	5.5	54, 5	36.58	
1321	5313	Draconis......................	5.0	55.0	5505	
1332	5316	Tootis.	5.9	55.7	5015	D. M. 2239.
1323	5315	5 Herculis...................r.	4.9	55.9	18.09	
1324	5319	15 Corosue ....................p.	5.4	56.5	33.40	
1325	53221	14 Coronx ..................... 1.	4.9	56.7	3011	
13286	5392	44 Serpentia ..................	4.5	57.1	23.08	
1327	5341	Iraconis. ......................	5.9	59.0	5915	
1328	5338	6 Hercalis ...... .............v..	4.2	59.1	46	
1389	5348		3.7	$15 \quad 50.7$	58. 53	
1330	5367	7 Herculis ................... $\mathrm{k}_{\text {. }}$	5.4	16 2.7	1722	
1331	5385	16 Coronæ ....................t..	4.9	-4.6	364	
1332	3388	11 Hercalis . ................. $\phi$. .	3.8	53	1515	
1338	3406	Draconis .............e(87 B.)..	5.9	6.0	68	
1334	5399	10 Herculis.	3.9	6.5	9248	
1335	\$405	9 Ferculin	3. 5	7.3	50	
1336		Ura Minor.	5.9	7.6	770	Sten red.
1337		Hercalis	5.9	29	391	s 8.
1338	5406	6 Hercvils .......................	5.9	10.2	310	
1339	5432	17 Ceronse .................... . .	5.4	- 10.2	3410	
1540	54.40	18 Coront..... ................ .-	5.4	16140	097	

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magni. tude.	Right asoension, 1880.0 .	$\begin{array}{\|c} \text { Declination. } \\ 1880.0 . \end{array}$	Various.
				h. m.	0	
1341	5462	19 Urs Minor..	5. 9	1614.2	7611	
1342	5459	Draconis .............. 92 B. $\mathrm{j}_{\text {- }}$	5.2	15.3	$60 \quad 04$	
1343	5460	Herculis.............. (49 B.)..	5.4	15.7	39 53	
1344	5456	50 Serpentis...................0.-	4.9	16.0	119	
1345	5463	22 Herculis ................... ${ }^{\text {. }}$.	3.7	16.1	4636	
1346	5466	20 Herculis ...... ............ $\gamma$.	3.1	16.6	1926	
1347	5473	19 Corons ..................... $\}$.	5.0	17.4	3110	
1348	5479	20 C (10nx......................	5.1	17.8	3465	
1349	5480	21 Coronæ....................ver	5.3	18.0	$33 \quad 59$	
1350	5481	21 Herculis ....................0..	5.9	18.4	713	
1351	5490	24 Hercnlis . . . . . . . . . . . . . . . . .	5.1	19.9	$14 \quad 19$	
1352	5511	21 Urs. Minor ....................	5.2	21.0	7602	
:353	5496	25 Herculis ... ..................	5.5	21.1	3740	
1354	5502	Draconis ............. (98 B.)..	5.4	21.8	5520	
1355	5514	Draconis ............ (102 B.)..	5.4	22.2	6924	
1356	5512	14 Draconis*......................	2.7	22.4	6147	
1357		Ophiuchi .............(11 B.)..	5.9	22.5	055	$16 \mathrm{ta}, 39 \mathrm{~W}$
1358	3523	30 Herculis ...... ...........g..	4.7	24.7	4209	
1359	5520	10 Ophinchi .....................	4.2	24.9	215	
1360	5525	37 Hercnlis .................. i. $^{\text {. }}$	2.7	25.1	2145	
1361	5527	Hercalis ....... ............s.	5.9	25.4	20.45	F. 492.
1362	5531	28 Herculis..................n.	5.7	26.7	546	
1363	5535	34 Herculis ...................	5.5	20.8	4914	
1364	5532	29 Herculis ...... ............ h. $^{\text {. }}$	5.1	27.0	11 45	
1365	5545	15 Draconis ................... A.	5.1	28.2	6002	
1366		Hercalis .... ... .... (5 5063 )..	5.4	88.3	$45 \quad 53$	$16^{\text {b }}, 810 \mathrm{~W}$.
1367	5552	35 Mercnlis ..................a..	4.2	30.2	4242	
1368	5560	Draconis . ............ (106 B.)..	5.9	30.7	6105	
1369	5553	Hercalis .............	5.9	32.3	1356	107 B.
1370	5592	Urs. Minor.	5.4	32.4	79	
1371	5568	Hercalis	5.9	32.8	${ }^{46} \quad 52$	
1372	5574	16 Draconis.	5.2	33.4	5308	
1373	5575	17 Draconis.......................	4.9	33.4	5310	
1374	5587	Herculia ............. (121 B.)..	5.9	35. 3	12.39	
1375	5596	42 Herculis......................	4.9	35.5	4920	
1376	5599	Dracomis............. (110 B.)..	5.2	35.6	$\begin{array}{ll}56 & 15\end{array}$	
1377	5597	Hercalis.... ........(125 B.)..	5.9	36.0.	2505	
1378	5604	40 Herealis. ... ...............5.	3.1	36.8	31.49	
1379	5602	39 Hervalis.......................	5.9	36.8	2709	
1380	5617	44 Herenils .....................n.	3.1	38.8	3909	
1331	5619	Herculis .... . . . . . . . (138 B.)..	5.9	39.4	$34 \quad 16$	
1382	5698	18 Draconis................... $0 .$.	5.1	40.1	6449	
1383	5621	43 Hercalis ...................i.	5.4	40.1	848	
1384		Herculis......................	5.9	11.1	4326	16, 2289 W.
1385	5631	45 Herculis ................... 1.	5.3	41.9	534	
1388		Herculia .......................	5. 7	42.6	13 48	$142 \mathrm{B}$.
1387	5643	Draconis .............(114 B.)	4.9	43.0	5700	F. 294.
1388	5647	Herculis.......................	5.4	44.0	13.29	F. 294.
1309	5648	47 Herealis. .......................	5. 9	44.5	728	
1390	5659	21 Ophinchi ......................	5.9	45.3	18	
1391	5667	52 Herculis .......................	4.9	45.7	46	
1309	5673	51 Hercalis ......................	5.3	46.8	44.58	
1389	5068	35 Ophinohi...................e..	4.2	48.3	10 22	
1394	5705	Ure. Minor....................	5.9	48.4	$\begin{array}{ll}7 & 42 \\ 81 & 11\end{array}$	164, 1513 W .
1309		Hercalis.............. (174 3.).-	5.9	49.7	21.14	16, 313 W .
1306	5702	54 Hercalis ......................	4.7	50.1	18.38	
1387	570e	27 Ophinchi ..................k..	3. 1	52.0	$\begin{array}{rr}9 & 34 \\ 65 & 19\end{array}$	
1sme	5740	10 Draconts..................h.	5.3	55.4	65.19	
1509	5731	58 Hercolis.................. 4.	3.7 5.6	$\begin{array}{r}55.7 \\ \mathbf{5} 5.9 \\ \hline\end{array}$	3105	$16^{6}, 1688$ W.
1400	5420	Herealis ........... (101 B.).	5.6	16.57 .2	568	

*Double. $9 \mathrm{da}=+0.4$.
14. 18x, 183——21

List of stars for latitude observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	Right ascension, 1820.0.	Declination, 1880.0.	Farious.
				h. m.		
1402	5747	59 Herculis.................. ${ }^{\text {d }}$.	5.0	1657.2	$33 \quad 45$	
1403		Hercalis . . . . . . . . . (200 B.)..	5. 9	57.4	2541	16h, 17\% W.
1404	5749	Herculis......................	4.7	57.6	14.18	
1403	5780	Uts. Minor.................e..	4.2	58.3	8214	
1406	5769	Ure Minor.	5.9	58.6	7317	
1407	5760	Ophiuchi ........... (l20 B.?)..	5.5	59.3	-0 43	
1408		Hercalis............ (251 B.)..	5.9	59.3	1946	164, 1791 W.
1409	5765	60 Herculis	4. 5	1659.8	1254	
1410		93 Herculis............(212 B.)..	5.9	$17 \quad 1.2$	2215	16b, 1844 W.
1411	5776	9. Herculis	5.5	1.7	4859	
1412	5780	Draconis	4. 7	28	5438	
1413	5738	Eerenlis	5. 4	3.8	3606	
1414	5811	Urs. Major ...........(77 B.)..	5.5	5.5	$75 \quad 27$	
1415		Hereulis ............. (228 B.)..	5.1	3.7	4056	17, 114 W.
1416	5802	37 Ophiuchi	5.5	6.8	$10 \quad 4$	
1417		Draconis	5.9	7.9	5233	31378 L. L.
1418	5893	22 Draconis...................s..	3.1	8.4	65 52	
1419	5821	64 Herculis*..................a..	3.1	0.2	1432	
1420	5888	Herculis .................... d.. $^{\text {. }}$	var. 3.1	10.1	2459	
1421		Ophiuchi	5.4	10.5	121	17, 143 W ${ }^{\text {\% }}$
1422	5836	41 Ophinchi	4.3	10.5	-0.18	
1423	5834	Hercalis...................n..	3.1	10.9	$36 \quad 57$	
1424	5840	Draconis ........... (131 B.) .-	5.5	11.6	6301	
1420		Hereulis........... (245 В.)..	5.9	12.8	17.27	176, 308 W.
1425	5842	68 Herculis .....................	4.9	12.9	3314	
1427	5841	Opbiuchi...................e..	4.9	13.0	1100	
1428	5847	69 Herculis ...................e..	4.6	13.5	3725	
1429		Mercalis . ... . . . . . . - (252 B.)..	5.5	14.1	2856	31545 L. L.
1430		Ferculfe ....... ....(288 B.)..	5.9	14.4	3850	17b, 377 W.
1431	5856 ?	Herculis ...... ...... (256 B.)..	5.4	15.0	1813	
1432		Herculis . . . . . . . . . . (259 B.). .	5.9	15.3	2539	173, 405 W.
1433	5860	70 Herculis	5.9	16.0	2436	
1434	5663	72 Herculis .................w. ${ }^{\text {\% }}$.	5.4	16.2	32 38	
1435	5871	74 Hercnlis	5.4	17.1	4621	
1436	5874	Hercnlis ............ (271 B.).	5.1	17.9	4305	
1437	5883	73 Herculia.............	5.5	19.1	2305	
1438		Ophuchi ............ (201 B.)..	5.4	19.1	16.26	154,516 W.
1439		Dracenis	5.9	19.2	53.32	1937 B .
1440	5886	75 Herculis	4.2	19.6	3716	
1411	5803	49 Ophinchi .................. ..	4.2	80.6	415	
1448	5900	Herculis............. (27 ) B.)	5.4	21.6	90 12	
1443	5903	Ophinchi .... ....... (214 B.)..	5.4	22.7	087	
1444.	5911	77 Herculis...................x.	5.9	23.6	4383	
1445	5917	Dracomis	5.4	24.2	6069	
1446	5910	Ophinehi. ............ (: 21 B.)..	5.3	24.2	-0 57	
1447	5978	Draconis.	5.9	24.3	5846	
148	5919	Ophiuchi . . . . . . . . . . (2258 B.) ..	5.4	25.3	250	
144	5988	76 Herenlig.................... $\lambda$.	4.9	23.1	2312	
1450	5027	Hercnlis.	5.5	26.4	3125	F.499
1451	5931	78 Herculis ......................	5.4	27.1	20	
1452	5937	23 Draconis ...................B..	3.1	27.7	52.23	
1453		Hercalis . . . . . . . . . (e9s B.).	4.9	28.1	19.21	75, 013 W
1454		Ophituchi.............(238 8.).-	4.9	283	169	3015 L. 4
1455	5944	Herculis............. (997 8.)..	5.4	20.3	420	
1456	59	55 Ophinchi ....................a..	1.9	29.4	123	
457	5050	24 Draconis......... ........... ${ }^{2}$	3.1	88	50.16	
1458	5951	25 Draconis...... .............ver	5.1	60.9	415	
1459		Heroulis .............(299 B.).	\%	30.9	2105	74,914
1600	5898	Herowlis ............. (906 B.)..	5.9	38.	308	
1661	5972	57 Draconis ........ ..........7.	51	325	6813	
1489	seer	79 Fereulis.	5.8	17 簖6	\% 9	

Boublo - $=$ gin my $+0,2$

List of stars for latitude observations-Continued.

No.	B. A. C.	Constellation.	Magni. tude.	Right ascension, 1880.0 .	Declination, 1880.0.	Various.
				i1. $m$.	- ,	
1463	5975	82 Herculis................... $\gamma$.	5.9	$17 \quad 33.5$	$48 \quad 40$	
1464	5978	26 Draconis	5.9	33.8	6158	
1465		Ophinchi...... .-.... (263 1.) ..	5.9	3.7	1514	154, 1110 W.
1406	5990	85 Heroulis......................	4. 2	36.1	$46 \quad 04$	
1467	5591	74 Ophiuchi ............ (267 B.) .-	5.0	36.6	1602	
1468	5999	83 Hereulis	5.9	37.6	2438	
1469	5096	c9 Ophizchi.................. B. $^{\text {. }}$	3.1	37.6	437	
1470	6006	28 Draconis .....................	4. 7	37.7	c8 49	
1471		Ophiuchi . . . . . . . . (271 B.?)..	5.9	37.9	1421	
1472	.......	Draconis.	5.9	38.6	5153	32455 L L L.
1473		Ophinchi ............. (275 B.)..	5.9	38.8	1428	32408 L L L.
1474		D. M. 800.	5.9	39.4	7231	
1475		Draconis.	5. 4	41.6	5350	389766 L L. L.
1476	6021	86 Herculis......................	3.7	41.8	2748	
147\%		Herculis . . . . . . . . . (332 B.).	5.4	41.8	1747	12h, 1324 Tr.
1478		Herculis . ............ (336 В.)..	5. 9	41.9	3856	17h, 1334 W .
1479	6020	62 Ophiuehi ................... \% - $^{\text {. }}$	3.7	41.9	245	
1480		Hercalis . . . . . . . . . . (337 B.)..	5.9	42.0	3928	17b, 1342 W.
1481		Herculis ............	5.5	43.3	$20 \quad 35$	20, 3576 W.
1482	6030	Hercutis ............ (339 B.).-	5.9	43.6	$19 \quad 17$	
1483	6033	87 Hercalis......................	5.4	44.0	$25 \quad 40$	
1484	6047	31 Draconis.	4.7	44.1	7212	
1485		Herculis ............ (349 B.)..	5.9	45.7	2922	1:i, 1438 W .
1486	6032	30 Draconis-.....................	4.9	46.2	5050	
1487		Ophinehi ............ (297 B.)..	5.9	46.5	121	
1488		Ophiuchi .............. ......	5.7	47.4	607	39707 L L 4
1489	6008	90 Hercahis .................. $f$.	4.9	49.5	4002	
1490	6069	Ophiuchi	5. 5	50.2	042	
1491	6073	89 Herculis	5.4	50.6	${ }_{2}{ }^{2} \quad 05$	
1492		Hercalis.	4.9	50.8		154, 1591 W
1493	6079		3.7	51.5	5054	
1494	6082	9t Hercalis...................t...	3.8	521	$37 \quad 16$	
1495	6094	92 Herculis............ ......	4.2	53.1	99 16	
14\#t	6091	33 Draconis ................... $\boldsymbol{\gamma}$..	2.5	53.8	5130	
1447	6087	94 Herculis.................. ${ }^{\text {, }}$.	4.5	53.9	3012	
1498	6089	66 Ophiuehi .....................	5.3	54.3	423	
1499		Hercolis	5.9	54.5	$36 \quad 17$	17h, 1719 W.
1500	6094	93 Herculis.	4.7	54.7	$16 \quad 46$	
1501	6092	67 Ophiachi ....................	4.2	54.7	256	
1502	6114	35 Draconis.	5.1	54.8	7659	
1503	6101	68 Opliuchi ...........	4.5	55.7	1.18	
1504		Hercalis............. (387 B.).	5. 4	56.2	3313	174, 1764 W
1505	6106	95 Herculis ......................	4.3	56.5	$\begin{array}{lll} & 81 & 37\end{array}$	
1506	6109	Hercalis............. (391 B.)..	5.9	56. 6	4531	
1507		D. M. 3099	5.9	57.2	3320	
1508	6110	96 Hereulis .......................	5.1	57.3	$20 \quad 50$	
1509	6122	34 Draconis. ................4 $4^{2}$.	5.9	57.4	7200	
1510	6123	70 Ophiuchi ${ }^{\text {a }}$....................	4.2	1750.4	238	
1511	6134	98 Herculis ......................	5.1	1818	$22 \quad 12$	
1512		Hercuits.............(404 B.).	5.9	1.4	3214	174, 1941 W.
1513	6142	71 Ophiachi......................	4.9	1.6	843	
1514	6143	\% Ophinchi. .....................	3.5	1.7	933	
1515	6147	99 Herculis...................b.	4.9	2.5	3033	
1516	6150	103 Herculis...................0..	3.9	29	2845	
1517	6151	100 Herculis	5.7	3.0	2605	
1518	6157	102 Herenlis	4.3	3.6	20.9	
1519	6159	101 Heronlis . . . . . . . . . . . . . . . . .	5.4	3.7	20.03	
1590	...........	Hercalis	5.7	3.9	368	184, 76 W
15 El	0168	Hereulis. ......................	5.1	4.0	4387	
15920			5.9	4.7	3 18 18	
1588		Hercalis............. (177 B.)..	5.9	$18 \quad 4.8$	$16 \cdot 97$	33412 L L.

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellatiou.	Magni. tude.	Right ascension, 1880.0 .	$\begin{gathered} \text { Declination, } \\ 1880.0 . \end{gathered}$	Various.
1524		Hercults.............(425 B.).	5.9	$\begin{array}{cc}\text { h. } & \text { m. } \\ 18 & 5.8\end{array}$	$\begin{array}{cc} c & \prime \\ 36 & 26 \end{array}$	18h, 137 W.
1595	6178	104 Herculis .................. A.	4.9	7.4	3122	
1526	6185	Draconis ............ (157 B.)..	5.9	8.1	5415	
1527		Lyræ...................(2 B.)..	5.5	8.9	4108	33612 L L.
1528	6193	Lyra..................3 B )..	5.9	9.1	$38 \quad 46$	
1529		Urs. Major. ................ठ..	4.5	11.0	8637	
1530	6203	Lyгæ.................. (5 B.)..	5.4	11.9	4208	
1531	6224		4.9	13.2	6421	.
1532	6218	Lугө.................... (8. В.)..	5.9	13.3	$40 \quad 53$	
1533	6213	Ophinchi......................	5.5	13.4	713	
1534	6223	105 Herculis....... .....	5.4	14.3	2424	
1535	6227	74 Ophinchi.	5.4	15.0	320	
1536	6231	106 Hercalia.	5.9	15.2	2155	
1337		24 Urs. Minor ....................	5.9	15.5	26 59	
1538	6235	1 Lyre ............................	4.6	15. 7	3601	
1539	6243	37 Draconis	5.9	16.1	6842	
1540	6237	108 Hercalis	5.4	16.3	2948	
1541	6238	107 Herculis .......................	4. 7	16.3	1849	
1542	..........	Ophiuchi.......................	5.9	17.0	1159	33295 L. L.
1543	6245	Herculis............. (447 B.).	5.1	17.5	17.46	
1544	6255	Draconis ............. (168 B.) .-	5.0	18.5	4904	
1545	$6 \% 51$	109 Herculis .......................	4.5	18.6	2143	
1546		Ophiachi......................	5.5	19.9	758	3\$062 L. L
1547	6268	2 Lyrx ..........................	5.0	20.3	3927	3.062
1548	6269	59 Serpentis .-................d. ${ }^{\text {. }}$	5.3	21.1	008	
1549	6899	39 Draconis...................b...	4.7	22.2	5344	
1550	6297	43 Draeonis .................. ${ }^{\text {¢ }}$.	4.6	22.5	7116	
1551	6302	44 Draconis ..................x...	3.8	23.2	7241	
1552	6300	Hereulis ............(460 B.)..	5.9	24.6	2347	
1553	6316	42 Draconis. ...........	4.9	25. 6	6.59	
1554	.....	Herculis............ (462 B.)..	5.4	\$5.7	1651	18h, 703 W.
1555	6322	Herculis.............. (464 B.)..	5.9	27.8	$23 \quad 32$	12, 0 W.
1556	...........	Lyrw-................ (28 B.)..	5.4	28.3	3028	18h, 794 W.
1557	6348	45 Draconis ..................d.	5.2	30.5	5657	18, 7 W.
1558	6341	Hercalis	5.9	30.5	2302	
1559		Ophiuchi............	5.3	30.7	9 O	$18 \mathrm{~L}, 710 \mathrm{~W}$.
1560		Ophluchi.......................	5.5	30.8.	634	34436 L. L.
1561	6350	Draconis ............ (190 B.)..	5.4	31.2	5215	
1562		Serpentim. ......... (196 B.) e...	5.4	31.4	-025	34499 L. L.
1563		Lyret.................. (38 B.)..	5.5	32.2	3322	18h, 934 TV.
1564	6355		5.3	32.9	3840	
1585		Iyrx.................. (42 B.)..	5.9	3. 1	4308	3995 Rad.
1566		Draconis.....................	5.9	35.8	6522	34817 L. $\mathbf{L}$.
1567	.....	Draconis......................	5.4	36. 5	6225	16518 A.Oe.
1568	6372	Draconis ............. (193 B.)..	5.4	37.2	3205	-510 A.O.
1569	6379	4 Aquifre .......................	4.9	38.8	1. 56	
1570	.....	Lутæ................ (53 В.)..	5.4	39.4	3149	34853 L. L.
1571	6368	46 Draconis..................e e..	5.3	40.3	5525	Jixa 1.
1572	6390	4 Lyræ.....................es. ${ }^{1}$	4.3	40.4	3930	
1573	6391	5 Lymx.....................e.e..	4.5	40.4	3989	i.
1574	6387	110 Feroalis . . . . . . . . . . . . . .	4.2	40.5	20.26	
1575	6392	6 Lyrw....................... S. ${ }^{1}$	4.4	40.6	3789	
1576	6364		5.4	40.7	37.28	
1577		D. M. \%126.... .....................	${ }^{*} 9$	40.9	5345	
1578 1579	6397	111 Hyrexcnlis..............(63 B.)..	4.7	41.2	2639	184, 1218 W.
1579	63371	111 Hexcolis ......................	4.2	41.7	1803	
1580	6404	161 Drucoaie...........................	5.9	493	419	
1582	* 6410	161 Drucoute......................	5.9	425 430	54.46	16018.4 .0 m
1583		Isre ......................67 B.).	5.9	43.5	31.30	35045 L. L
1594		Lyra ..........................	5.9	18443	24	68 B.

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitude.	Right ascen. sion, 1880.0 .	Deelination, 1880.0.	Various.
				h. $m$.		
1585	6428	Draconis . . . . . . . . . 206 B.) .-	5.9	1845.1	4857	
1586	6487	9 Lyran .......................r. ${ }^{2}$	5.4	45.4	3225	
1587	6429	10 Lугャ..........................	2.8 var.	45. 7	3313	
1588		Aquilæ............... (10 B.)..	5.7	46.5	1350	$45150 \mathrm{~L} . \mathrm{L}$.
1589	6438	112 Hercnils	5.4	47.1	$21 \quad 17$	
1590		F. 85.	5.3	48.8	7387	
1591	6452	Draconis . . . . . . . . . (209 B.)..	5.4	48.9	5249	
1592	6463	47 Draconis...................0..	4.3	49.4	5914	
1593	6451	62 Serpentis....	5.5	49.6	628	
1594	6453	113 Herculis	4.9	49,7	22.30	
1595	6478	50 Dramonis.	5.6	50, 2	$75 \quad 17$	
1596	6460	63 Serpentis .................. $\theta$..	4.2	50.2	403	
1597	6470	Draconis ............ (213 B.) -.	5.1	50.3	5034	
1598	6466	12 Lyra........................ d2 $^{\text {a }}$	4.5	- 50.3	3645	
1599		Hercalis ............ (493 B.)..	5.7	50.8	1758	18b, 1528 W.
1600	6473	Lyra.................. 98 в.) ..	5.4	51.0	$\begin{array}{ll}41 & 27\end{array}$	
1601	6471	64 Serpentis ......................	5.5	51,2	223	
1602	6476	Draconis .............(214 B.)..	5. 4	51.7	4843	
1603	6475	13 Lyre ..........................	4.9 rar.	51.7	43 47	
1604		Aquilm ...............(18 B.)..	5.5	52.9	1712	35492 L. L.
1605		Herculis ...............	5.5	53.5	1938	494 B.
1606	6483	11 Aquilm ..............	5.3	53. 6	13 \%	
1607	6487	13 Aquitm .....................s..	3.9	54.2	$14 \quad 54$	
1608	6491	14 Lyrx ....................... . $\%$.	3.4	54.5	3232	
1609	6496	48 Draconis......................	5.5	54.7	5739	
1610.		Lyrex................. (102 B.)..	5.5	54.3	2004	181, 1670 W.
1611	6497	15 Lyra ....................... ${ }^{\text {. }}$.	5.5	55.5	3159	
1612	6510	52 Draconis...................v.	5.3	55.9	7108	
1613		Draconis.	5.4	50.0	$65 \quad 07$	18836 A.Oe.
1614		D. M. 4022.	5.9	36.2	$20 \quad 10$	
1615		Draconis.	4.7	57.2	502	33681 L. L.
1616		Aquila. ............. (30 B.).	5.9	57.5	138	135598 L. L.
1617		1. M. 3888	5.9	57.7	$19 \%$	
1618	6520	16 Lyrae ....	5.4	58.0	$46 \quad 47$	
1619	6522	49 Draconis........................	5.4	58.4	$55 \quad 29$	
1620	6528		3.1	$18 \quad 59.9$	1341	
1621	6534	50 Lyre................. (122 B.)..	5.9	$19 \quad 0.4$	3134	
1622	6543	18 Aquilm ......................	5.1	1.3	$10 \quad 53$	
1623	6542	Vulpe .................. (2 B.)..	5.3	1.6	2404	
1624		Aqnilm................ (47 B.)..	5.4	1.6	1641	35851 L. L.
1825	6547	Lyræ................. (125 B.)..	5.4	1.9	$28 \quad 26$	
1096	6551	51 Draconis	5.2	22	5314	
1627	6553	17 Lyrx .........................	5.9	2.9	3218	
1628	6556	18 Lyre .......................i..	5. 1	3.0	$35 \quad 55$	
1629			5.9	6.6	8212	
1630	6571	19 Leyre ..........................	5.9	7.2	3105	$34853 \mathrm{~L} . \mathrm{L}$.
1671	6574	Herculis (or Vulpe)...........	5. 9	7.5	2121	(F. 273.)
1632	6572	21 Aquila ........ ................	5. 4	7.7	205	
1633	6583	53 Draconis. ......................	5.4	9.4	5639	
1634	6581		4.5	0.7	3856	
1635	6582	Wripe..........................	5.9	9.8	2000	9 B .
1038	65893	1 Vulpe (or Sagitte) . . . . . . . . .	5.9	10.1	2101	
1637	6585	122 Aquile ........................	5.4 5.5	10.6	438 30	
1638		Lfre................. (145 B.).-	5.5	10.8	$\begin{array}{ll}30 & 19\end{array}$	36282 L. L.
1639	0002	2 Vunipe ..............................	5.7	11.0	$14 \quad 30$	
1641	6601	54 Draconis . . . . . . . . . . . . . . .	4.6 5.2	11.1	$\begin{array}{ll}21 & 11 \\ 57 & 30\end{array}$	
1842	.6599	81 Lyme..................... 0.	4.6	12.2	37 55	
1843	6595	25 Aquil80..............x.......00.	5.3	12.2	11.23	
165	- 6597	23 Aquile ........................	4.9	12.4	152	
3645	6612	57 Dreounis .....................d.	3.5	19125	$67 \quad 27$	

List of stars for latitude-obscrvations-Continued.

No.	R. A. C.	Constellation.	Magni tude.	Right ascension, 1880.0.	Declination, 1880.0.	Various.
1646		Aquilm	5.9	$\begin{array}{cc} \hline h . & \text { m. } \\ 19 & 13.2 \end{array}$	$924$	80 B.
1647	6625	59 Draconis.	5.4	13.5	7621	
1648	6615	28 Aquilæ .....................A.	5.4	14.0	1209	
1649	6653	1 Cygai.........................	4.5	14.3	5309	
1650	6618	27 Aquilæ ....................d. ${ }^{\text {a }}$	5.3	14.4	-1 107	
1651		Aquilæ...............(88 B.)..	4.9	16.2	-030	36489 L. L.
1652	6650	60 Draconia....................	4. 3	17.9	7308	
1653	6637	3 Vulpe.........................	5. 4	17.9	2602	
1654	6640	Draconis ............. (245 B.) ..	5.9	18.1	5725	
1655	6642	2 Sagitte ......................	5.5	19.0	$16 \quad 43$	
1656	6644	31 Aquilab -................... b.	5.4	19.3	1141	
1657	6648	2 Cygni ........................	5.2	19.4	2983	
1658	6846	30 Aquilm.................... d. $_{\text {. }}$	3, 4	19.5	953	
1659	6662	Draconis ..................x..	5.3	20.1	6589	
1660	6656	Lyгø................. (170 B.)..	5.4	20.2	4309	
1661	6654	1 Vulpe	4.9	20.2	1934	
1662	6653	32 Aquils ....................v..	4.9	20.4	0. 06	
1663		Aquils............... (100 B.)..	5.9	20.8	1248	${ }^{36715}$ L. L.
1664	6687	4 Cygni.........................	4.0	21.8	3605	
1665		Aquilm	5.9	22.0	1402	36781 L. L.
1666	6074	6 Vulpe ......................a..	4.3	23.7	2425	
1667		Aquile...............(115 B.)..	5.9	23.9	1421	36866 L. L.
1668	6690	6 Cygni ...................... ${ }^{\text {a }}$.	3.1	25.9	2743	
1669	6687	7 Cygni...........................	4.2	26. 7	5158	
1670	6698	8 Cygni............................	4.5	27.4	3412	
1671		Oggni..........................	5.9	92	$50 \quad 03$	19337 A. Oe.
1672	6701	38 Aquibx.........................	4.7	28.2	708	
1673	6709	9 Vulpe ...........................	5.5	29.3	19.31	
1674		133 Aquils .........................	5.9	30.0	15.21	
1675	6714		5.5	30.1	2912	
1676		Cephei...............	5.9	30.2	8314	3268 Rad.
1677	6715	41 Aquiks ...................... 4.	4.3	30.5	-133	
1678	6718	Gygni..........................	5.5	30.8	4208	(F. 423.)
1679	6723	Cygni ................. (47 B.)..	5.9	31.2	5050	
1680	6722	11 Cygni..........................	5.9	31.5	3641	
1681	0724	4 Sagittre .....................c..	5.1	31.9	1612	
1682	673	61 Draconis......................	4.9	32.6	的 27	
1683	6731	Cygni --..............(54 B.)..	5.3	32.9	4426	
1684	6734	13 Cygni.....................e...	4.7	332	49.57	
1685	6740	12 Cygni ...................... ¢ . . $^{\text {}}$	5.2	34,6	2953	
1686	6736	45 Aquils ........................	5.5	34.6	-0 54	
1687	6739	5 Sagittre................. ...a..	4.4	34.7	174	
1668		Aquilæ.............. (150 B.)	5.5	35. 5	13.33	194, $884 \mathrm{~W}^{2}$.
1689	6745	14 Cygni.........................	5.9	35. 6	4232	
1690	6744	6 Sagittro...........................	4.4	35.7	1712	
1691	6748	Cygri ................. (65 B.)..	5. 6	36.1	5441	
1692	6749	47 Aquilm..................-x.-	5.4	36.9	1138	
1693	6754	Cygui .................. (66 B.)..	5.4	37.2	4514	
1894		Cggni ................. (67 B.)..	5.9	38.1	3209	37587 L L.
1693	6738	10 Vilpe ........................	5.5	38.7	25.29	
1695	6759	48 Aquilse .................... \% .	5.9	39.0	1301	
1697	6769	Cggni .............-. (78 B.)	5.9	39.8	419	
1698	6767	49 Aquiks...................v...	5.9	33.8	719	
1699	6771	15 Cygni..........................	5.3	40.0	3704	
1700	6772	50 Agnilat .................... $\boldsymbol{y}_{\text {- }}$	3.1	40.6	10.19	
1701	6779	18 Cygri..................... d.n $^{\text {d }}$	3.1	41.2	4450	
1702	6764	17 Cygai .....................x.-	32	41.9	3387	
1763	6783	7 Sagittee . ....................d..	42	12.1	18.4	
1794	6789	58 Agxilim.................... x	35	- 43.2	11.31	
3705	6794	8 Sagittse.................. ${ }^{\text {a }}$	4.9	03.7	1855	
1706	C802	53 Aquilve ....................a..	1.1	1943.8	835	

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magni-	Right ascension, 1880.0 .	Declination, 1880.0.	Various.
				h. m.	- ,	
1707	6799	Cygni.	5.5	19 44.)	4738	
1708	6805	54 Aqnilm ........................	5.4	45.3	$10 \quad 0 \%$	
1709	6810	12 Vulpe .........................	5.4	45.9	2218	
1710	6800 ?	Cygui.........................	6 var.	46.0	3237	
1711	6813	19 Cygai.	5.4	46.4	$38 \quad 25$	
1712	6811	55 Aquilx . . . . . . . . . . . . . . . $\quad$.	3.8 var.	46.4	042	
1713	6817	Crgni ................ (91 B.) --	5.4	46.5	$40 \quad 18$	
1714		Vulpe.........................	5.4	47.0	2441	194, 1501 W .
1715	6834		5.3	17.0	5241	
1716		Cygni........................	5.5	48.4	4643	19720 A. Oe.
1717	6887	13 Vnipe.	4.5	48.4	2346	
1718	6825		5.1	48.3	809	
1719	6836		3.8	48.6	6957	
1730.	$6 \times 26$	58 Aquilx	5.9	48.6	-0 02	
1721	6830	Cygni . . . . . . . . . . . . 99 B.) . .	5.5	48.7	$17 \quad 39$	
1722		Vulpe.	5. 7	49.4	2400	(F.22.)
1723	6833	60 Aquilw .................... $\beta .$.	4.2	49.4	6 Of	
1724		Cygni...............(104 B.)..	5.9	50.4	$36 \quad 41$	32039 I. L.
1725	6838	${ }^{61}$ Aquilm.................... . $^{\text {. }}$	5.4	50.4	11 O6	
1726	0839	10 Sagitte........................	5.1	50.6	$16 \quad 19$	
1727	6847	23 Cygni..........................	5.2	50.8	$57 \quad 12$	
1728	6852	Cygai (or Draco)..............	5.5	51.4	59	
1723	6849	22 Cygui	5.4	51.6	$38 \quad 10$	
1730	6851	21 Cygni...........................	4.3	51.8	$34 \quad 46$	
1731	6853	11 Sagitte ........................	5.5	52.3	$16 \quad 29$	
1732	6856	24 Cggni...................... 4.	5.4	52.6	5207	
1733	6857		5.5	53.1	$40 \quad 03$	
1734	6658	12 Sagitw.................... $\%$.	3.8	53.4	$19 \quad 10$	
1735	6667	Cygni (or Cephei) .............	5.0	53.6	$\begin{array}{lll}58 & 32\end{array}$	
1736		Cygni..........................	5.5	53.9	$30 \quad 39$	19k, 1739 W.
1737	6866	14 Vulpe ........................	5.7	54.0	2240	
1738	6868	13 Sagittse .......................	5.8	54.6	1711	
1739	6876	Cygai ................ (120 B.) ..	5.5	55.5	$45 \quad 27$	
1740	6875	25 Cygri.	5.5	55.5	3643	
1741	6879	15 Vulpe..........................	4.9	56.2	2786	
1749	6383	16 Vulpe.........................	5.4	56.9	2436	
1743	6895	26 Oygai.....................e.e.	5.0	58.0	4946	
1744	6890	14 Sagitts........................	4.9	58.0	1512	
1745	6803	63 Aquilse ......................t.-	5.9	58.3.	657	
1746		Cygui...........................	5.9	58.7	2935	19h, 1910 W.
2747	6897	15 Sugittue ........................	5.4	58.7	$16 \quad 45$	
1748	6901	16 Sagittex......................-	5.4	59.8	1939	
1749		Cygni ................ (134 B.)..	5.9	59.9	3153	19b, 4957 W.
1750	..........	Aquilm.............. (281 B.)..	5.0	1959.9	1510	
1751	0905	64 Draconis...................e.e.	4.9	$20 \quad 0.2$	6429	
1752	6912	17 Vulpe ..........................	5.1	1.7	2316	
1753	0915	27 Cygmi ...................... ${ }^{1}$.-	5.4	1.9	$35 \quad 38$	-
1754	6996	67 Draconia....................p.-	5.0	2.3	6732	
1755	..........	A.quilm............... (2888 B.)..	5.9	29	1022	$38554 \mathrm{~L} . \mathrm{L}$.
1756	6936	69 Draconis.......................	5.9	3.0	7608	
1757	6528	Cygni ...............(141 B.).	5. 7	3.1	5249	
1758		Cygni ................ (140 B.)..	5.9	3.1	3404	98588 L L. L
1759	0992	66 Draconia........................	4.9	3.6	6138	
1760	0957	\% Cyguit...................... ${ }^{\text {b }}$	5.4	5.0	3689	
1701	6084	6s Aquile .................... $\theta$...	3.5	5.1	- 111	
1762	090	18 Fulpe..........................	5.4	5.5	2633	
1763		Fripe.........................	5.9	6.1	2131	74 B.
1764	1943	10 Volpe.........................	5.5	6.8	2687	
1765	08	67 Aquilw ....................p.	4.9	8.7	14.50	
1780	6977	21 Vulpe........................	5.9	9.3	2898	
1701	Que.	Cyeni .........an.......... $0^{1}$	4.9	$20 \quad 9.5$	469	

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitude.	Right ascension, 1880.0 .	$\begin{gathered} \text { Dechnation, } \\ 1880.0 \text {. } \end{gathered}$	Farions.
				h. $\quad \mathrm{m}$.	$\bigcirc$ -	
1768	6970	68 Draconis........................	5.5	$20 \quad 9.6$	61.43	
1769	6965?	31 Cygni ....................... $\mathrm{o}^{2}$.	4.2	9.9	$46 \quad 23$	
1770	6967	29 Cygii ...................... $\mathbf{b}^{3}$ -	5.2	10.1	3627	
1771	6966	Vulpe.............................	5.1	10. 2	$25 \quad 14$	(16 \#.)
1772	6968	22 Fulpe.	5.4	10.3	2308	
1773	6976	33 Cygni.	4.5	10.6	51312	
1774	6973	23 Vnlpe....-.......................	4.7	10.8	$27 \quad 27$	
1775	6975	18 Sagittu	5.9	11.1	21.14	-
1776	6980	Draconis	5.9	11.3	60 17	D. M. 2099.
1777		24 Vulpe............................	5.9	11.7	2418	
1778	6983	32 Cygni	4.9	11.8	4721	
1779	6986	Lyтв.................. (166 B.)..	5.3	12.5	$39 \quad 59$	
1780	7005	1 Gephei*..........................	4.7	12.0	77181	
1781	6990	34 Cygni.	5.3	13.4	3783 ?	
1782		Delphini................. 1 17.)	5.4	13.9	1252	201, 302 W.
1783	6998	35 Cygni	5.3	14.0	3437	
1784		Cygni.	5.9	15.5	5501	4734 Rad .
1785	7014	Aquils	5.4	17.2	458	(23 H.)
1786		Delphini ................ (5 B.)..	5.5	17.3	1409	39188 L. L.
1787	7024	71 Draconis.	5.5	17.6	6152	
1788	7022	37 Cygni ........................ $\gamma$.	2.8	17.9	$39 \quad 52$	
1789		Cygni................ (182 B.)..	6.5	18.2	$45 \quad 24$	20430 A. Oe.
1790	7027	Cygni................. (183 B.)..	5.9	18.5	$40 \quad 39$	
1791	7029	39 Cygri..................	4.9	19.1	3148	
1792		Cygni ....... .......... (190 B.)..	5.9	19.3	3705	20h, 665 W.
1793		D. M. 1618.	5.7	19.5	63 37	
1794	7037	Draconis ............. (275 B.)..	5.9	19.6	6830	
1795		Vulpe.................. (90 B.)..	5.4	20.4	2101	39329 L. L.
1796	7061	40 Cygni ..............-..............	5.9	23. 1	3803	
1797	7062	43 Cygni.......................... ${ }^{\text {²}}$..	5.9	\$3.3	4859	
1798	7067	41 Cygni.............................	4.3	24.5	2958	
1799	7079	1 Delphini .........................	5.5	24.6	10 30.	
1800	7085	45 Oygni ..................... . . $12 .$.	4.9	26.3	$48 \quad 33$	
1801	7086	Cygni (or Cephes)	5.9	26.4	5540	
1608		Valpe.	5.9	26.8	23.24	39594 L.
1803	7088	2 Delphini....................e.e.	3.8	27.5	$10 \quad 54$	
1804	7098	2 Cephei...................... 日. $^{\text {. }}$	4.2	97.6	6235	
1805	7001	46 Cygni ......... ............... ${ }^{3}$.-	5.7	27.6	4849	
1806		Cygni.	5.9	27. 9	5154	212 B
1807	7094	3 Delphini	5.9	28.3	1238	
1808	7103	47 Oygui..	5.3	29.3	34.51	
1809	7107		4.5	29.7	$14 \begin{array}{ll}16\end{array}$	
1810	7112	Cygni ................ (217 B.)..	5.9	30.0	$46 \quad 17$	
1811	7121	6 Delphint..........................	3.7	31.9	1411	
1812		27 Vnipe.............................	5.9	32.0	$\begin{array}{ll}16 & 03\end{array}$	
1813	7122	71 Aquilse	4.6	321	$-132$	
1814	7125	5 Delphin . .....................t.	4.9	32.1	1058	
1815		Oygri .................. (\%2\% B.). .	5.9	32.9	$37 \quad 55$	39885 L. 4
1818	7137	8 Delphini...................... 6. .	5.4	33.1	12.54	
1817	7156	73 Iraconis.	5.4	33.2	$74 \begin{array}{ll}72\end{array}$	$\because \quad$
1818	7140	\% Vripe.............................	4.6	33.2	2047	
1819	7143	\& Vulpe.............................	5.5	33.3	43 42	
1820	714	7 Delphini.....................x...	5.4	33.3	940	
1821	7138	1 Aquarii ............................	5.3	32.3	0 O 04	
1829	7346	Delphini........................	5.9	33.5	15.86	32 B .
1823		Vnlpe.................(105 B.)..	5.9	33.8	21 24	\$0\%, 1116W.
1894	7149	9 Dolphini..........................	3.7	341	15.9	
1825	71581	Cygni ................ (026 B.)..	5.9	358	10.0	
1896	7100	10 Delphini.....................--	50	35.6	1411	
189	7178	75 Dracoinin...................0.....	35	35.7	0101	
1898			5.9	20.35	+6. 0	20t, 1108 W.

- Doubler 2 2 ster $-+217 \cdot \cdot 45$ in Dec.

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	Right ascension, 1880.0.	Doclination, 1880.0.	Various.
				h. m.	-	
1329	7164	49 Cygni ..................... .-	5.9	$20 \quad 36.2$	3153	
1330	7171	50 Cygni .....................a.	1.5	37.3	4451	
1831	7174	Cygni ............... (232 B.)..	5.3	37.6	418	
1332	7173	14 Delphini.................. d. $^{\text {. }}$	4.3	37.9	1439	
1833	7162	51 Cygui.........................	5.4	3 E .5	4955	
1334	7188	30 Valpe..........................	5.4	39.7	24.51	
1835	72010	12 Delphini................... $\gamma_{\text {-. }}$	3.7	40.1	15.42	
1836	7194	52 Cygni.........................	4.3	40.7	3017	
1837	$7189 ?$	Cephei........................	5.9	41.1	$56 \quad 03$	
1338	7204		2.8	41.4	3331	
1839	7211	4 Cephei	5.4	41.7	$66 \quad 13$	
1840	7215	Cephei.	4.5	42.4	5709	(6 H.)
1841		Cygni........................	5. 9	42.4	3355	20, 1373 W.
1842	7213	54 Cygni .......................	4.6	42.7	3603	
1843	7220	3 Cephei........................	3.8	42.9	6122	
1844		Cygni.	5.4	43.9	4723	21126 A. Oe.
1845	7293	15 Delphini......	5.4	43.9	1207	
1846	7222	14 Delphini..	5.4	43.9	725	
1847		Cygni ............... (947 В.).	5.9	44.3	5150	21140 A.Oe.
1848	7233	55 Cygui.	5.4	44.9	4540	
1849		Csgni.	5.9	45.1	5128	21161 A.Oe.
1850	7241	56 Cygni.........................	5.4	45.9	4336	
1851		Delphini .............. (\%0 B.)..	6.0	47.0	1734	$20^{n}, 1483 \mathrm{~W}$.
1852	7246	31 Vulpe.................. ..	4.0	47.0	26 38	
1853	7253	57 Cygni.	5.3	49.0	4356	
1854		Cygui.	5.9	49.0	3259	32h, 3980 B.
1855	7256	32 Vulpe.	5.3	49.5	2736	
1856	7255 ?	Equalei	5.4	49.7	404	
1857	7258	17 Delphini.	5. 4	49.9	1316	
1858	7257	16 Delphini.	5.4	49.9	12 dt	
1859		76 Draconis.	5.9	51.2	88 05	
1860	2078	Crgni.	5.9	51.8	$46 \quad 58$	
1861	7278	Cygni . . . . . . . . . . (275 B.).	5.4	52.6	$50 \quad 16$	
1862	2277	58 Cygni.........................	4.2	527	$40 \quad 42$	
1863	7271	18 Delphini...	5.1	59.7	10.24	
1864	7275	33 Tulpe.	5.0	52.9	9152	
1865		Draconis	5.2	53.0	8006	5066 rad .
1866	7976	1 Equalei	5.4	53.1	350	
1867		Cephei.	5.9	53.1	5626	
1268	720	Cygii	5.9	54.0	4400	
1869	7204	Cygni............... (2 2741)..	5.4	54.6	$50 \quad 00$	
1870		Delphint . ............ (55 B.)..	5.7	55.0	$18 \quad 52$	40682 L. L,
1871	7301	59 Cygai ....... .............f..	5.2	55.7	$47 \mathrm{C3}$	
1872	7311	Cephei ............... (85 B.)..	5.9	56.2	7587	
1873	7310	Cephei........................	5.4	56.6	$58 \quad 58$	
1874	7306	60 Cygni.......................	5.4	57.0	1341	
1875	7350	Cygni.........................	5.9	53.4	38.11	
1876	7318	3 Equalei.......................	5.4	58.6	501	
1877		Cephei. ............... (83 B.)..	5.5	2058.9	5611	5091 Rad .
1878	7339	Cygni . .............. (294 B.)..	5.4	$21 \quad 0.1$	5249	
1879	7333	62 Cygni...... .-..................	4.2	0.6	438	
1880	7338	301 cgrvi ................ 5	4.9	1.5	$38 \quad 09$	
1891	7337	\} 01 Csgni.......................	5.2	1.5	3809	
1888		Cygmi...........................	5.4	1.5	3042	40951 LL L.
1883	7345	63 Cggni ....................ff..	4.5	25	4710	
1884	7350	5 Equulei .................... $\%$.	4.2	4. 5	939	
1885	783	Cephei.........................	5.9	5.6	$70 \quad 57$	
18\%	7365	Osgai................ (304 B.)..	5.4	6.5	5304	
788	7368	64 Crgri..................... ${ }^{\text {b }}$.-	3.1	7.8	29.44	
1888	7372	7 Equalei..... .............. $\delta^{\text {. }}$	4.6 5.9	$\begin{gathered} 8.7 \\ 21 \quad 8.8 \end{gathered}$	$\begin{array}{rrr}9 & 31 \\ 50 & 28\end{array}$	
1830	7377	Cuphti........................	5.9			

H. Ex. 133-22

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	R土ght ascension, 1880.0.	$\begin{gathered} \text { Declination, } \\ 1880.0 \text {. } \end{gathered}$	Various.
				t. m.	-	
1890	7330	8 Equulei ...................a...	4.5	$21 \quad 9.8$	445	
1891	7385		4.2	10.0	$37 \quad 32$	
1898	7398	67 Oygni......................ar.	4.5	12.7	3853	
1893	7399	66 Cygui......................v.	4.3	13. 0	$34 \quad 24$	
1894			5.5	13.3	5330	
1895	7401	Cephei .............. (100 E.)..	5.9	13.7	$55 \quad 17$	100 B
1895	3402	68 Cygni .................... A..!	5.3	14.1	$43 \quad 26$	
1897		Pegasi................. (11 B.)...	5.9	14.8	21.32	$21^{\text {h, }}, 319 \mathrm{~W}$.
1898	2405	9 Equulei........................	5.9	15. 1	652	
1899	7411	Cggni . . . . . . . . . . . (325 B.)..	5.3	15. 4	4900	
1900	7410?	34 Vulpe..........................	5.7	15.6	23121	F. 2.
1901	7416	5 Cephoi......................a.	3.1	15.7	6205	
1902		Cygni ............... (336 в.)..	5.9	16.3	3206	41554 L L. L.
1903	7418	1 Pegasi.........................	4.3	16. 5	$19 \quad 18$	
1904	7428	6 Cephei ..........................	5.4	16. 9	6422	
1905	7421	10 Equulei ................... $\beta_{\text {. }}$	5.0	16.9	618	
1906	7438	Draconis ............ (107 B.) ..	5.9	17.1	$76 \quad 30$	
1907	7431	Cygni................. $331 \mathrm{B)} .$.	5. 4	17.9	$48 \quad 52$	
1908	7437	Pegani.................(15 B.)..)	5.5	18.6	$23 \quad 46$	
1903		Cygni ................ (334 B.) -.	5.9	18.9	$36 \quad 50$	
1910	7444	Vulpe............... (131 B.)..	4.9	19.3	$25 \quad 41$	
1911	7455	Cygni.	5.9	20.9	$46 \quad 12$	
1912	7453	69 Cygni .	5.9	20.9	$36 \quad 09$	
1913	7462	70 Cygni.........................	4.9	22.4	$36 \quad 36$	
1014	7461	35 Vnlpe ........................	4.3	22.4	2705	
1915		Cygni........................	5.4	226	4819	22275 A. Oe.
1916	7468	Cygni ................ (347 B.)..	5.5	288	52.22	
1917	7465	Cygni .-.............. (346 B.).	5.5	23.1	3142	
1018		Pegagi................ (21 B.)..	5.4	23.5	3140	$2{ }^{\text {th, }}$, 33 f W.
1919	7474	2 Pegasi.........................	4.5	24.5	2306	
1920	7430	71 Cygui......................g.	5.3	25.0	4601	
1921		Pegasi................. (26 B.)..	5.9	25.3	1137	21, 557 W.
1922	7482	7 Cephei................	5.4	25.6	$66 \quad 17$	
1923		Cephei ........................	3.1	27.1	$70 \quad 02$	
1924	7495	Cephei .............. (116 B.)..	5.4	27.7	5956	
1925	7510	Cephei ...............(122 B.)..	5.9	28.4	7947	
1926		Cygni.........................	5.9	28. 7	4925	22436 A. O0.
1927	7503	73 Cygui. .......................	4.0	29.5	4504	
1928	7505	72 Cygni........................	4.9	20.9	3800	
1929	7520	5 Pegasi .........................	3.5	32.1	1847	
1930	7521	74 Oygni.	4.9	32.2	3952	
1931		Pegasi .........................	5.9	33.4	19.4	48109 L. L.
1983	7527	25 Aquarii....................d.	4.9	33.5	143	
1933	7542	9 Cephei........................	4.9	34.7	6132	
1834	7544	75 Cygni.........................	5.1	35.4	4244	
1835	7546	26 Aquaril.	5.5	36.1	045	
1936	7547	7 Pegasi ..........................	5.4	36.3	508	
1937	7555	Cephei ............... (132 B.)..	5.9	36.7	5420	
1838	75.54	Cygni ....... ........ (377 B.)..	5.7	37.5	$40 \quad 32$	
1939	7530	80 Cygni....................nt.	5.0	37.8	$50 \quad 38$	
1940		Cygni..........................	5.0	38.3	4037	(F. 94.)
1941	7561	8 Pegasi .........................	26	38.3	919	
1942	7566	79 Cygni.........................	5.3	38.5	3744	
1943	7568	78 Cygui .........................	4.5	38.8	$28 \quad 12$	
1944	7587	9 Pegasi .........................	4.2	-38.8	$16 \quad 48$	
1945	7581	10 Pegasi...................... .	4.2	- 39.2	2504	
1946	75828	Cephei........................	4.9 var.	40.0	5814	
1947	7588	11 Cepbet........................	4.9	40.2	70.45	
1948	7585	12 Pegari ........................	4.9	40.6	92.24	
1949	7587	27 Aquarii........... (11 Pegasi)..	5.4	11.2	2 0e	
1950			5.9	21.41 .4	18.39	

List of stars for latitude-observations-Continued.

No.	B. A. C.	Constellation.	Magnitude.	Right ascension, 1880.0 .	Declination, 18ะ0.0.	Tarious.
				h. m.	0 -	
1951	7507	Cepheifor 78 Dracolis)	5.4	$21 \quad 41.6$	7146	(16 H.)
1952	7595	10 Cephei. ......................	4.5	42.0	$60 \quad 34$	
1953	7398	81 Cygui .......................rr${ }^{2}$.	4.5	42.4	4845	
1954	7605	12 Cephei...........................	5.9	43.9	6009	
1955	77606	13 Pegasi ...........................	5.4	44.4	$16 \quad 45$	
1956	7607	14 Pegari ....-. .....................	5.2	44. 5	$29 \quad 37$	
1957		Pegasi................. (72 B.)..	5.4	45.9	1916	$21 \mathrm{th}, 1096 \mathrm{~W}$.
1958	7623	15 Pegasi	5. 7	47. 2	2814	
1959	7627	16 Pegasi...........................	5. 4	47.6	$25 \quad 21$	
1960	7631	Cephri ....(147 B.) ( $\Sigma \mathrm{A} 10) .$.	5.9	48.0	5514	
1961		Pegasi ................ (78 13.)..	5.5	48.0	1906	21b, 1136 W.
1962	........ .-	D. M. 5046........................	5.5	50.8	20 4is	
1963	7641	17 Pegasi ...........................	5.9	51.1	1132	
1964	7658	Cephei............................-	5.4	53.2	6303	
1965	7659	18 Peqasi ......................... .	5.9	54.1	609	
1966	7660	28 Aquarii........................	5.9	55.0	002	
1967	7662	19 Pegasi . . . . . . . . . . . . . . . . . . . . .	5.5	55.2	$7 \quad 41$	
1968	7664	20 Pegasi . . . . . . . . . . . . . . . . . . . .	5.9	55.3	1233	
1969	7676	Cygni............................	5.3	57.4	5218	
1970	7686	16 Cephei.........................	4.9	57.5	$72 \quad 36$	
1971	7681	Lacertre . . . . . . . . . . . . (4 B.)..	5. 9	58.2	$4 \pm 04$	
1972	7685	32 Aquarii..........................	5.9	58.6	-128	
1973	7689	22 Pegasi ......................v..	4.9	59.6	428	
1974	7688	34 Aquarii.............................	2.8	$21 \quad 59.6$	- 054	
1975	7693	23 Pegasi	5.7	220.2	18 23	
1976	7700	17 Cephei..... ................ ${ }^{\text {\% }}$.	4.5	0.3	6403	
1977	7699	18 Cephei...........................	5. 7	0.3	6236	
1978	7705	Lacertæ. . . . . . . . . . . . $(10 \mathrm{~B}$.$) .$	4.6	1.2	$44 \quad 26$	
1979	7707	20 Cephei ..........................	5.9	1.4	6211	
1980	7700	94 Pegati .......................	4.2	1.4	2446	
1981	7708	19 Cephui...........................	5.9	1.5	6142	
1982	7712	25 Pegasi . . . . . . . . . . . . . . . . . . . . .	5.7	2.2	2107	
1983	7731	27 Pegasi .......... . . . . . . . . $\pi^{11}$.	5.4	3.9	$32 \quad 35$	
1984	7723	26 Pegasi ...................... $\theta_{\text {. }}$	3.5	4.2	$5 \quad 36$	
1985	7731	Pegasi . ..................... $\pi^{2}$.	3.8	4.7	3235	
1986		Pegasi . . . . . . . . . . . . . (130 B.).-	5.9	4.8	1102	$22 \mathrm{t}, 53 \mathrm{~W}$.
1987	7733	28 Pegasi ...........................	5.9	4.9	$20 \quad 23$	
1988	7746	Iacertre...............(17 B.).	5.9	6.5	$50 \quad 14$	
1989	7749	21. Cephei. .......................5.	4.2	6. 7	$57 \quad 37$	
1990	7758	24 Cephei ..........................	5.1	7.5	7145	
1991	7754 ?	$\because \quad$ Cephei . . . . . . . . . ....(188 B.)..	5. 9	7.5	56	
1932	77537	Pegasi ..............(145 B.)..	5.5	7.5	4401	
1993	7155	22 Cephei..........................	5.4	7.6	$58 \quad 49$	
1994	7760 ?	Cephif ............... (189 B.)..	5.7	7.9	6932	
1995	7759	Cephel. . . . . . . . .-. . . . . . . . . .	5.3	8.1	6016	
1996		Lacertæ .......................	4.7	8.7	3907	(1 H.)
1997	.-....-...-	Iavertw . . . . . . . . . . . . (92 B.)..	5.9	8.8	$44 \quad 51$	5614 Rad.
1998	7770	Lacertm . . . . . . . . . . . . (24 B.)..	5.9	9.7	4221	
1999	778	23 Cephei . . . . . . . . . . . . . . . . 6.	5.0	10.6	$56 \quad 27$	
9000	\$777	1 Lacertre .........................	4.8	10.7	3709	
2001	7789	25 Cephei..--......................	5.3	14.3	6211	
2002	7796	31. Pogrsi ., ..........................	5.4	15.6	1136	
2003	7788	32 Pogbid ............................	4.9	15.8	2744	
20004	7800	2 Lacertio . . . . . . .-. ..............	4.9	16.1	4556	
. 9005	7807	33 Pegasi ............................	5.9	17.9	2014	
2006	7815	3 Iacerta ........................	4.6	18.9	5138	
2007	7814	52 Aquarii ............................	4.5	19.2	$0 \quad 46$	
2008	7880 ?	4 Iacerts ..........................	4.9	19.7	$48 \quad 52$	
8009	7683	34 Pegasi. ............................	5.9	20.5	3 47	
2010	7808	35 Pegrai .............................	4.7	21,8	406	
2011		Lueertw . . . . . . . . . . . . . . . . . . .	5.9	2282	$30 \quad 12$	122l, 467 W.

List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Magnitude.	Right ascen. sion, 1880.	Declination, 1880.0 .	Various
				m. m.	a	
2012	7851	Cequei (or Urs, Minor) ........	4.9	22.227	8530	(32 H.)
2013		Cephei.	5.9	227	$70 \quad 03$	24148 A .00.
2014	7832	55 Aquarii ................... 5 .	3.5	22.7	-0 38	
2015	7833		5.5	93. 1	831	
2016	7837	20 Cephei........................	5.5	23.3	6.431	-
2017		Pegasi ............... (188 B.)..	5.4	23.5	2609	$22 \mathrm{r}, 120 \mathrm{P}$.
2018	7843	38 Pegasi	5.9	24.5	3157	
2019	2845	5 Lavertac ......................	4.7	24.6	4706	
2020	7848	27 Cephei..................... . .	3.8 var.	24.7	5748	
2021	7850	6 Lacorta .......................	4.9	25.3	4230	
2022	7857	28 Cephei	5.9	25.8	7810	
2023	7855	7 Lacerta ................... a $^{\text {- }}$	4.2	26.4	4940	
2024	7874	29 Cephei.....................p...	5.4	28. 9	7812	
2025	7868	62 Agurai ...................n...	3.8	29.2	-0 44	
2026	7876	Cephei . ............. (223 B.).-	5.9	29.6	6916	
2027	7881	Cephei ............. .i226 B.) ..	5.4	30.2	75 35	
2028	Tex	8 Lacerta ......................	5.4	30.6	3901	
2029	7888	9 Lacerta ......................;	5.4	32.5	5056	
2030	7896	31 Cephei........................	5. 4	32.8	7301	
2031	7833	20 Pegasi .........................	5.9	33.1	$18 \quad 56$	
2032		Cephei .............. (297 B.) -.	5.9	33.9	5610	5781 Rad.
2033	7901	10 Lacertw ........................	4.9	33.9	3826	
2034		Lacerta	5.9	34.2	3658	$44342 \mathrm{~L} . \mathrm{L}$.
9035	7392	30 Cepluei.	5.2	31.4	6258	
2036	7912 ?	Pegasi ............. (224 B.).	5.5	34.9	1355	22h, 186 P
2037		Lacerte	5.9	35. 4	5313	5791 Rad.
2038	7906	11 Lacertre	4. 7	35.4	4338	
2039	7908		3.7	35. 5	1011	
2040	7915	12 Lacerta	5.3	36. 1	3937	
2041	7914	43 Pegasi ........................	4.5	36.1	2840	
2042		D. M. 2960	5.9	37.4	5310	
2043	7923	44 Pegasi.....................n..	3.4	37.4	2933	
2044	7932	13 Lacertæ ......................	5.1	38.9	4112	
2045	7943	46 Pegasi ..........................	4.7	40.7	1133	
9046	7948	Lacerts .............. (60 B.).	5.9	40.8	4355	223, 927 W.
2047	7945	47 Pegasi .........................	3.9	40.9	22 56	
2048		D. M. 4933	5.9	42.7	3640	
2049		Lacerta .......................	5.9	43.8	5347	5839 Rad.
2050		Cephei ................(238 B.).-	5.9	44.2	6218	$5812 \mathrm{Rad}$.
2051	7958	48 Pegrai........................	3.9	44.2	2358	
2052	7961	Cephei.........................	5.7	44.8	5.) 16	
2053	7967	32 Cephet .............. ...... ..	6.8	4.4	65.34	
2054	7971	49 Pegasi ........................	4.9	46.3	913	-
2055	7973	Cephei ............... (241 B.)..	5.9	46.7	6103	
2056	7972	15 Lacerti .......................	4.9	46. 7	4239	
2057	7975	Pegani . ........ .... (254 B.)..	5.4	47.1	1612	
9058		Cophei............ ...........	4.9	47.9	8231	
2059	7983	Laeertex	5.9	4 E .3	4407	
2060	7984	Lacertw .......................	5.5	48.6	3944	
2061	7968	50 Pegasi......................p..	4.5	49.2	811	
2062		Lacertax	5.7	48.5	3697	\%2m, 1121 w.
2063		Lavertw ......................	5.9	50.2	3544	22m, 1133 W.
2004	7893 ?	Lacertex . . . . . . . . . . . (8. 64)..	4.5	51.2	4906	(T. 64.)
2005	7997	51 Pegasi .......................	4.9	51.6	2908	
2006	7899	Lacerte ............. (1.65)..	5.2	- 51.8	48	(F. 65.)
8067	8005	2 Pisciam	5.9	- 53.3	020	
2068		D. M. 3514 .....................	5.9	54.0	5900	
8009		Pegasi .............. (373 B.)..	5.9	55.0	$30: 27$	273 B.
2070		Cophei (for Caxsiop.) ...........	5.9	55.1	58.18	D. 35. 2033.
9071	$\cdots$	Cephei . . . . . . . . . . . (36\%.)..	4.9	55.4	4 4	(36 H.)
2078	8023	1 Androm ................... $0^{1}$.	3.8	22.36 .4	414	

List of stars for latitude-observations-Continued.


List of stars for latitude-observations-Continued.

No.	B. A.C.	Constellation.	Mamintude.	Right ascen. sion, 1880.0 .	Declioation, 1880.0.	Various,
				h. m.	- ,	
2134	8243	18 Piscium ...... ............. ${ }^{\text {. }}$	4. 5	$23 \quad 35.9$	107	
2135		D. M. 2038.	5.9	36.7	6351	
2136	8250	${ }_{77} \mathrm{Pegas}$ i.	4.9	37.3	940	
2137	8256	78 Pegasi.........................	5.1	32.0	2342	
2133	8261	20 Androm................... 4.	5. 1	40.1	4545	
2139		Casmiop	5.9	11.2	5647	26023 A. Oe.
2140	8968	5 Cassiop ....................t.	5. 2	41.2	5759	
2141	8273	Cephei........................	5.4	42.2	6709	
2142	8279	c Cassiop .......................	5. 7	43.1	6132	
2143		Androm ......................	57	43.6	3546	$46676 \mathrm{~L} . \mathrm{L}$.
2144	E990	Pegasi.........................	5.5	46.3	2100	
2145	8299	81 Pegasi ................... ¢ $_{\text {. }}$	4.9	46.4	1827	
2146	8300	82 Pegasi.........................	5.5	46.5	1016	
2147	8310	7 Cassiop....................p..	4.9	48.5	5649	
2148		D. M. 4214.....................	5.7	49.5	4641	
2149		Pegasi ..............(420 13.)..	5.9	50.6	2159	23n, 235 P .
2150	8321	Cephei..............	5.9	50.9	8231	
2151		Audrom............... (32 R.)..	5.9	51.0	4159	6326 Rad
2152	2322	Cassiop............... (16 B.)..	5.9	51.2	$\begin{array}{ll}53 & 03\end{array}$	
2153	8324	84 Pegasi .................... $\psi .$.	4.3	51.6	248	
2154	8330	8 Cassiop	4.9	53.0	$55^{5} 05$	
2155	8331		4.4	53.2	$6 \quad 12$	
2154		Androm ......................	5.5	53.4	3304	2861 S
2157		D. M. $4538 . \ldots .$. . .............	5.9	54.6	4135	
2158	8344	Cassiop ..... ........ (22 IB.)..	5.9	55.5	60 3s	
2159	........	Pegasi............... (435 R.)...	5.9	57.1	$1{ }^{10} 585$	435 B .
2160	8259	0 Cassioy	5.4	58.1	6137	
2161		Cepheim............(313 13.)..	5.9	58.5	6689	6293 Lad.
2162		Androma ..... ................	3.9	58.5	4123	D. M. 4933.
2163	83f6	Casoiop ............... (25) B)..	5.9	58.9	6039	
2164	8370	86 Pegaвi .........................	5.1	2359.6	1244	

Annual precession in declination.

Itight ascen sion.	Annual pre cession.	Right ascension.	Right ascension.	Annual precession.	Right ascen. sion.
h. m.	"	h. m.	h. m.	"	h. m.
0 000	+ 20.05	2400	600	0.60	1800
30	19.88	30	30	- 2.62	30
i 00	19.37	2300	700	5.19	1700
30	18.53	30	30	7. 67	30
200	17.37	2200	800	10.03	1600
30	15. 91	30	30	12.21	30
300	14.18	2100	900	14. 18	15 69
30	12. 21	30	30	15.91	30
400	10. 03	2000	1000	17. 37	1400
30	2. 67	30	30	18. 53	30
500	5. 19	1900	1100	18. 37	1300
30	+ 2.62	30	30	19. 68	30
600	0.00	1800	1200	$-20.05$	1200

## APPENDIX No. 15.

ERRATA IN THE HEIS CATALOGUE OF STARS.
Page viii, note. For $\delta=30 \circ 27^{\prime}$ read $\delta=31^{\circ} 27^{\prime}$.
Page xii, line 2. For sexta read septima.
Page sii, line 5. Sentence inserted in Heis's Corrigenda.
Uorrigenda, first page, fifth line from bottom, for " $b$ loco $b^{1}$ " read "dele $b^{1}$ ".
Same page, fourth line from bottom, for " dele $b^{2}$ " read " $b$ loco $b^{2}$ ".
Second page of Corrigenda, fourth line from bottom, for "dele $g^{2}$ " read " $g^{1}$ loco $g$ ".
Same page, third line from bottom, for " $g$ loco $g^{2}$ " read " dele $g^{2}$ ".
Page 1, No. 14. For B. A. C. read R.
Page 1, No. 16. Dele asterisk.
Page 1, No. 20. 4966 B. A. C. $=8$ Urs. Min.
Page 3. No. 4. Add an asterisk.
Page 3, No. 8. This is 2 Draconis.
Page 3, No. 13. Dele second line.
Page 3, No. 16. For 4122 B. A. C. read 4112 B. A. C.
Page 3, No. 29. For 2983 R. read 2985 K., and change the place to R. A. 1970 7', Decl. $+68^{\circ} 3^{\prime}$.
Page 4, No. 37. For 26209 read $\left\{\begin{array}{l}+57 \circ 1498 \mathrm{~B} \\ +57 \circ 1499 \mathrm{~B}\end{array}\right\}$.
Page 4, No. 46. This is 294 of Struve's second catalogne.
Page 7, No. 142. Dele asterisk.
Page 7, No. 161. Dele 18.
Page 9, No. 216. $=7187$ B. A. C.
Page 9, No. 220. $=7299$ B. A. O.
Page 10, No. 33. $=440^{2}$.
Page 11, No. 40. The places should be-

A. R.	Decl.
$322^{\circ} 52^{\prime}$	$+66^{\circ} 5^{\prime}$
$392 \circ 54^{\prime}$	$+66^{\circ} 8^{\prime}$

Page 11, No. 51. $=\Sigma 2836$.
Page 11, No. 52. Strike out this star, which is Heis 196 Cygni .
Page 11, note. For " min. $5^{\mathrm{ma}}$ " read " min. 6 m .5 ".
Page 12, No. $76 .=7799$ B. A. C.
Page 12, No. 78. $=\Sigma 2903$.
Page 12, No. 88. For 7.99 B. A. C. read 7871 B. A. O.
Page 13, No. 99. Dele $+67^{\circ} 48^{\prime}$. This is $\Sigma 9947$.
Page 13, No. 101. $=\Sigma 2950$.
Page 13, No. 131. For B. A. C. read R.
Page 15, No. 19. $=\Sigma 3049$.
Page 16, No. 35. Transpose the designations of the two stars.
Page 16, No. 40. $=16$ Cassiopeæ.
Page 16, No. 46. Should be 175 B. A. C., R. A. $8022^{\prime}$, Decl. $+65^{\circ} 20^{\prime}$.
Page 17, No. 80. =35 Cassiopeæ.
Page 18, No. 99. Dele asterisk.
Page 18, No. 120. $=\Sigma 302$.
Page 10, No. 9. $=g$.
Page 19, No. 20. $=\Sigma 268$.
Page 19, No. 21. $=\Sigma 279$.
Page 20, No. 61. For B. A. C. read R.

Page 21, No. 80. Should be D. M. $+49^{\circ} 762$, A. R. $49 \circ 5^{\prime}$, Decl. $46^{\circ} 27^{\prime}$.
Page 21, No. 94. $=38$ Persei.
Page 22, No. 108. Should read 1219 B. A. C.
Page 22, No. 109. Should read 1228 B. A. C.
Page 22, No. 115. Should read $73^{\circ}$.
Page 23, No. 9. For 1415 B. A. C. read 3936 A. Oe.
Page 23, No. 19. Should read D. M. $+8^{\circ}$ 286, A. R. $54^{\circ}$ 29', Decl. +6803 .
Page 24, No. 29. Should read $58^{\circ} 310$ B., A. R. $58^{\circ} 35^{\prime},+68^{\circ} 8^{\prime}$.
Page 25 , No. 59. $=8$ Camelopardalis.
Page 25, No. 77. $=18$ Camelopardalis.
Page 25 , No. $79 .=19$ Camelopardalis.
Page 26, No. 114. For 2650 B. A. C. read 2059 R.
Page 26, No. 115. Should read 2650 B. A. C.
Page 26, No. 117. For 2092 R. read 9722 B. A. C.
Page 28, No. 2S. Dele $475^{2}$.
Page 28, No. 32. Should be 44484 L . L, A, R. $3399^{\circ} 1^{\prime 2}$, Ded. $+46024^{\prime}$
Page 30, No. 51. $=2732$ B. A. C.
Page 30, No. 56. $=30$ Lyucis.
Page 31, No. 65. Add an asterisk, and for 33 read 32.
Page 31, No. 67. Dele asterisk. This is 33 Lyncis.
Page 31, No. Insert as No. $388^{2}$, D. M. $47^{\circ} 1660$, mag. 6.7.
Page 34, No. 66. Heis has this star on maps III and IV.
Page 34, No. $66 .=521^{2}$.
Page 34, No. 80. Should be 2469 R., A. R. $15209^{\prime}$, Decl. $4 \div 010^{\prime}$.
Page $3 \overline{5}$, No. 115. Dele asterisk, and for 40 read 40.
Page 35, No. 12s. For B. A. C. read R., both lines.
Page 36, No. 148 . Should be 3904 B. A. C.
Page 37, No. 177. Dele 241*.
Page 38, No. $200 .=1300$ B. A. C.
Page 38, No. $20 \mathrm{~S}=4392$ B. A. C.
Page 40 , No. 43. 15 Can. Yen. $=4408$ B. A. C.; 17 Can. Ven. $=4415$ B. A. C.
Page 40, No. 45. $=261^{2}$.
Page 40, No. 57. Dele 269.
Page 40, No. 61. $=269^{2}$.
Page 41, Nos. 81 and 82 . Brace the star identified nith 82 as a part of 81 , and insert for 82 ,
4632 B. A. O., A. R. $206^{\circ} 21^{\prime}$, Decl. $+33^{\circ} 10^{\prime}$.
Page 42, No. $25 .=500^{\circ}$.
Page 43, No. 42. $=8345$ B. A. C.
Page 43, No. 61. $=26$ Androm. $=5^{2}$.
Page 44, No. $86 .=178$ E. A. C.
Page 44, No. 57. $=184$ B. A. C.
Page 44, No. 101. $=515^{2}$.
Page 45, No. 108. $=\Sigma 108$.
Page 46. All the stars of Equaleus, except 10, are wrongly identified. They should be as follows:

$$
\begin{aligned}
& \text { 1. }=7255 \mathrm{~B} . \mathrm{A} . \mathrm{C} \text {. } \\
& \text { 2. }=7276 \mathrm{B.} \mathrm{A.} \mathrm{С.} \\
& \text { 3. }=7302 \text { B. A. C. } \\
& \text { 4. }=40806 \mathrm{~L} . \mathrm{L} \text {. } \\
& \text { 5. }=7318 \text { B. A. C. } \\
& \text { 6. }=7324 \text { B. А. С. } \\
& \text { 7. }=20^{\mathrm{h}} 484 \mathrm{P} \text {. } \\
& \text { S. }=7350 \text { B. A. C. } \\
& \text { 9. }=\left\{\begin{array}{l}
41136 \text { L. L. } . \\
41147 \mathrm{~L} . \mathrm{L} .
\end{array}\right\} \\
& \text { 11. }=7372 \text { B. A. C. } \\
& \text { 12. }=7380 \text { B. A. C. } \\
& \text { 13. }=7405 \mathrm{~B} . \text { A. C. } \\
& \text { 14. }=41533 \mathrm{~L} . \mathrm{L} \text {. } \\
& \text { 15. }=7421 \text { B. A. C. } \\
& \text { 16. }=41615 \mathrm{~L} . \mathrm{L} \text {. }
\end{aligned}
$$

Page 47, No. 7. For $W$ read $W^{2}$.
Page 47, No. 11. For W read W".
Page 47, No. 17. $=7528$ B. A. C.
Page 47, No. 22. For $W$ read $W^{2}$.
Page 47, No. 26. For $W$ read $W^{2}$.
Page 47, No. 28. For $W$ read $W^{*}$.
Page 48, No. 38. For $W$ read $W^{2}$.
Page 48, No. 54. For W read W².
Page 48, No. 55. Add $\pi$. For 28 read 29.
Page 48, No. 56. Add 28.
Page 48, No. 62. For W read $W^{2}$.
Page 49, No. 64. For $W$ read $W^{2}$.
Page 49, No. 65. For W read $\mathrm{w}^{\text {re }}$.
Page 49, No. 83. For W read W.
Page 49, No. 84. For W read $W^{2}$.
Page 49, No. So. For $W$ read $W^{2}$.
Page 49, No. 89. For $W$ read $W^{2}$.
Page 49, No. 96. For $W$ read $W^{2}$.
Page 54, No. 71. $=299$ B. A. C.
Page 54, No. 77. $=321$ B. A. C.
Page 56, No. 12. Add 5.
Page 58, No. 42. $=834$ B. A. C.
Page 59, No. 54. Insert before $54: 54 a^{*}=45$ Arietis $=901$ B. A. C., AR. $41055^{\prime}$, Decl. $+75^{\circ}$
44'. Also, change 54 to $54 b$, and dele first line.
Page 60, No. 5 . Under $70^{\circ} 27^{\prime}$, in columu AR., place $70^{\circ} 16^{\prime}$, and brace. Under $+45^{\circ} 41^{\prime}$, in column Decl., place $+45^{\circ} 30^{\prime}$, and brace.

Page 61, No. 48. Above $5^{\mathrm{h}} 702 \mathrm{~W}$ place $5^{\mathrm{h}} 691 \mathrm{~W}$, and brace.
Page 61, No. 48. Above $81^{\circ} 4^{\prime}$ place $81^{\circ} 0^{\prime}$. Above $+32^{\circ} 38^{\prime}$ place $+32^{\circ} 42^{\prime}$, and brace.
Page 61, No. 56. For $+34^{\circ} 18^{\prime}$ read $54^{\circ} 18^{\prime}$.
Page 62, No. 56. Over 10569 L. L. write 10533 L. L.; under same write 10560 L. L., and brace. Over $82^{\circ} 30^{\prime}$ write $82^{\circ} 17^{\prime}$; under same write $37^{\circ} 54^{\prime}$, and brace.

Page 62, No. 72 . For 1857 B. A. C. read 1850 B. A. C.
Page 62, No. $75 .=1875$ B. A. C.
Page 62, No. 83. For $+48^{\circ} 51^{\prime}$ read $+48^{\circ} 57^{\prime}$.
Page 65, No. 35. For 1182 B. A. O. read 1177 B. A. C.; and for $507^{\prime}$ read 5509 .
Page 66, No. 59 . For $A^{1}$ read $A$.
Page 66, No. 61. Dele $A^{3}$.
Page 67, No. 89. For $4^{\text {h }} 311 \mathrm{~W}$ read 1342 B. A. C.
Page 67, No. 91. For $\delta^{1}$ read $\delta$.
Page 67, No. 92. For 1342 B. A. C. read $4^{h} 311$ W.
Page 67, No. 94. Dele $\delta^{2}$.
Page 67, No. 99. Dele $8^{8}$.
Page 67, No. 100. Dele $v^{1}$.
Page 68, No. 101. For $v^{2}$ read $v$.
Page 68, No. 130. For $c^{1}$ read c.
Page 69, No. 134. Dele $c^{2}$.
Page 70, No. 165. For $5^{\text {b }} 606 \mathrm{~W}$ read $173 \pm$ B. A. C.; for $80013^{\prime}$ read $81016^{\prime}$ : aud for $+18015{ }^{\prime}$ read $+18^{\circ} 26^{\prime}$.

Page 70, No. $175 .=1793$ B. A. C.
Page 71, No. 33. Under 39 write 40; under 2273 B. A. C. write 2278 B. A. C. ; fur $102038^{\prime}$ read $102^{\circ} 28^{\prime}$, and under it $102 \circ 38^{\prime}$; for $+26^{\circ} 6^{\prime}$ read $26^{\circ} 16^{\prime}$, and under it write $26^{\circ} 6^{\prime}$, and brace.

Page 71, No. 38. For $\omega^{1}$ read $\omega$.
Page 72, No. 45. Dele $\omega^{2}$.
Page 72, No. 70. Dele ${ }^{1}$.
H. Ex. 133-23

Page 74, No. 16. Dele $\dot{\delta}^{3}$.
Page 75, No. 28. For 2647 read 2636.
Page 75, No. 33. In column Dupl. Str. write 1168.
Page 75, No. 35. For 15667 L. L. read 2047 B. A. C.
Page 75, No. 35. For $118^{\circ} 30^{\prime}$ read $117^{\circ} 21^{\prime}$; for $+9^{\circ} 18^{\prime}$ read $+9^{\circ} 2^{2}$.
Page 75, No. 30. $=2673$ B. A. С.
Page 75, No. 37. For $9 \bigcirc 1860$ B read 1.5667 ; for $199^{\circ} 9^{\prime}$ read $118 \circ 30^{\prime}$; for $+9 \circ 41^{\prime}$ read $9^{\circ} 18^{\prime}$.
Page 75, No. 12. Dele $\mu^{1}$.
Page 75, No. 13. For $\mu^{2}$ read $:$
Page 76, No. 47. For $127^{\circ} 59^{\prime}$ read $128^{\circ} 9^{\prime}$.
Page 77, No. 57. $=2991$ B. A. C.
Page 77, No. 66. Dele $a^{1}$.
Page 77, No. 74. For $\alpha^{2}$ read $\alpha$.
Page 78, No. 8. For $+23034^{\prime}$ read $+23^{\circ} 36^{\prime}$.
Page 79, No. 27. For $9^{\text {h }} 809 \mathrm{~W}$ read $9^{\mathrm{p}} 780 \mathrm{~W}$; for $144^{\circ} 27^{\prime}$ read $144^{\circ} 6^{\prime}$; for $+19 \circ 21^{\prime}$ read $19^{\circ} 32^{\prime}$.

Page 79, No. 32. Add 20.
Page 80, No. 66. Add 49.
Page 33, No, 161. For $177032^{\prime}$ read $177034^{\prime}$.
Page 84, No. 1. Dele 1596.
Page 84, No. 2. In column Dupl. Str. place 1596.
Page 84, No. 13. Add $\left\{\begin{array}{c}9 . \\ 10 .\end{array}\right.$
Page 85, No. 14. $=4152$ B. A. C.
Page 85, No. 37. For 4232 B. A. C. read $11^{\prime \prime} 757 \mathrm{~W}$.
Page 87, No. 1. For $+13^{\circ} 10^{\prime}$ read $+13^{\circ} 16^{\prime}$.
Page 88, No. 28. For 140271 B. read 1402718 B.
Page 90, No. 102. In column Dapl. Str. place $288^{\circ}$.
Page 90, No. 103. In colamn Dupl. Str. place 2892.
Page 91, No. $135 .=508 \pm$ B. A. C .
Page 93, No. 9. Dele 10.
Page 93, No. 15̃. Add 14.
Page 93, No. 39. Add 34.
Page 94 , No. 48. After $16^{\text {h }} 147$ P. write 5504 B. A. C., and after $16^{\text {h }} 149$ P. write 5582 B. A. C.
Page 94, No. 63. $=5647$ B. A. C.
Page 94, No. 69. Dele 49.
Page 96 , No. 108. For $225^{2}$ read $323^{2}$.
Page 96, No. 110. For 31545 read 31544.
Page 96 , No. 117. For $\omega$ read $W$.
Page 98 , No. 192. For $615 \pm$ read 6151, and write under it 6152 B. A. O., aud brace.
lage 98, No. 197. In column Dupl. Str. place 344².
Page 101, No. $33 .=6455$ B. A. C.
Page 101, No. 35. In column Dupl. Str. place $525^{2}$.
Page 103, No. 41. In colamu Dupl. Str. place $290^{2}$.
Page 104, No. $\mathbf{7 0}$. In column Flamst. place 30 opposite 6962 , and 31 opposite 6065 , and dele bracket.

Page 105, No. 02. Add 43'.
Page 105, No. 98. For 7091 read 7085.
Page 105, No. 100. For 7083 read 7091.
Page 107, No. 159. In column Litt. Bas. al. place A.
Page 107, No. 161. Dele A.
Page 107, No. $179 .=7889$ B. A. C.
Page 113, No. 24. Add 14.
Page 113, No. 29. In column Litt. Bay. al. place $\varphi$ '.
Page 117, No. 156. Add 93.

```
Page 118, No. 25. For 997 B. A. C. read 59255 L. L.
Page 118, No. 27. For 1013 read 997.
Page 118, No. 29. \(=1013\) B. A. C.
Page 125, No. 120. Add 68.
Page 127, No. 18. \(=2070\) B. A. (.
Page 127, No. 19. For 2070 B. A. C. read 19278 L. L. At bottom of page read 1868 for 1850.
Page 128, No. 76. Add 24. In column Dupl. Str. place 169.
Page 128, No. 77. Dele 24.
Page 129, No. 105. For 10550 L. L. read 2825 B. A. C.
Page 132, No. 22. Add 6.
Page 133, No. 35. Add 12.
Page 134, No. 18. Add 1.
Page 139, No. 90. Dele \({ }^{1}\).
Page 139, No. 91. For \(2^{2}\) read \(i\).
Page 139, No. 113. Dele \(b^{2}\).
Page 139, No. 115. For \(b^{3}\) read \(b^{2}\).
Page 140, No. 117. For \(\chi^{1}\) read \(\chi\).
Page 140, No. 118. Dele \(f^{2}\).
Page 140, No. 143. Add 4 S .
Page 141, No. 1. \(=3286\) B. A. C.
Page 141, No. 18. For \(140 \circ 9^{\prime}\) read \(149^{\circ} 3^{\prime}\).
Page 141, No. 19. \(=3449\) B. A. C. Add 14.
Page 142, No. 35. For \(5^{\mathrm{h}}\) read \(10^{\mathrm{h}}\).
Page 143, No. 10. For \({ }^{2}\) read \(A^{2}\).
Page 143, No. 21. For \(503 \mathrm{Mread} 12^{21} 46 \mathrm{~W}^{z}\); for \(180^{\circ} 45^{\prime}\) read \(180^{\circ} 59^{\prime}\).
Page 144, No. \(38 .=4230\) B. A. C.
Page 147, No. \(136 .=4660\) B. A. C.
Page 147, No. 157. For \(v^{1}\) read \(v\).
Page 147, No. 159. Dele \(v^{2}\).
Page 149 , No. 27. \(=3995\) B. A. C.
Page 149, No. 33. For \(B^{2}\) read \(W^{2}\).
Page 152, No. 41. For \(B^{2}\) read 1 .
Page 154, No. 31. \(=5760\) B. A. C.
Page 154, No. 44. For ce read e.
Page 155, No. 66. For \(+13^{\circ} 59^{\prime}\) read \(+13^{\circ} 55^{\prime}\).
Page 155, No. 71. \(=5985\) B. A. C.
Page 156, No. 93. For \(268^{\circ} 16^{\prime}\) read \(268^{\circ} 21^{\prime}\).
Page 158, No. 30. For \(\omega^{1}\) read \(\omega\).
Page 158 , No. 35. Dele \(\omega^{*}\).
Page 159, No. \(50 .=6679\) B. A. C.
Page 159, No. 54. Dele 7.
Page 161, No. \(123 .=7130\) B. A. C.
Page 162, No. 14. Dele \(\xi^{1}\).
Page 162, No. 15. For \(\xi^{2}\) read \(\xi\).
Page 162, No. 35. Dele \(5^{1}\).
Page 162, No. 36. Dele \(5^{3}\).
Page 162, No. 38. For \(\zeta^{2}\) read \(:\)
Page 163, No. 2*. For \(\psi\) read \(\gamma\).
Page 163, No. 4*. For \(\xi\) read \(\mu\).
Page 164, No. 28. For \(d\) read \(c^{2}\).
Page 165, No. 12. \(=6161\) B. A. C.
Page 166, No. 28. \(=6343\) B. A. C; for \(-23^{\circ} 38^{\prime}\) read \(-23^{\circ} 31^{\prime}\).
Page 166, No. 43. Dele \(\xi^{1}\).
Page 166, No. 44. For \(\xi^{9}\) read \(\xi\).
```

Page 167 , No. 70. Dele $\pi^{1}$.
Page 167, No. 71. For $h_{i}^{*}$ read $h$.
Page 167, No. 76. Dele $e^{1}$.
Page 167, No. 77. For $e^{2}$ real $e$.
Page 167, No. 89. Add 65.
Page 168, No. $24 .=7221$ B. A. C.; for $-1304^{\prime}$ read $-133^{\circ} 5^{\prime}$.
Page 169, No. 37. Nor $314^{\circ} 49^{\prime}$ read $314^{\circ} 54^{\prime}$; for $-18^{\circ} 1^{\prime}$ read -180 $2^{\prime}$.
Page 170, No. 7. $=7242$ B. A. C.
Page 171, No. 42. $=76 \mathbf{7}_{2}^{2}$ B. A. C.
Page 171, No. 47. Add 36.
Page 172, No. 66. For 7793 read 7804 ; for $334^{\circ} 11^{\prime}$ read $333^{\circ} 59^{\prime}$; for $7^{\circ} 58^{\prime}$ read $7 \circ 56^{\prime}$.
Page 172, No. St. For $g^{1}$ read $g$.
Page 172, No. 85. Dele $g^{2}$.
Page 173, No. 96. For - $26^{\circ} 56^{\prime}$ read - $25^{\circ} 56^{\prime}$.
Page 175, No. 15. For 7986 read 7987.
Pages 176-177, Cepheus. In column $6^{\mathrm{m}}$, for 30 read 38.
Pages 176-177, Urs. Maj. In column $6^{\mathrm{m}} .7$, for 100 read 101.
Pages 176-177, Aries. In column 2, place 1; in column $2^{\mathrm{m}} .3$, dele 1 ; in column $6^{\mathrm{m}}$, for 22 read 23 ; in column Summa, for 80 read 81.

Pages 176-177, Cassiopere. In column 5 ". 4 , for $\tilde{y}$ read 4 ; and in column $6^{m}$, for 24 read 25.
Pages 176-177, Pegasus. In column $4^{\mathrm{m}}$, for 3 read 5 ; aud in column $4^{\mathrm{m} .5}$, for 5 read 3.
Pages $178-179$, Medir. In column $2^{m}$, for 7 read 8 ; in column $6^{m}$, for 584 read 585 ; in column Summa, for 2184 read 2185.

Pages 178-179, Omnes. In column ${ }^{2 m}$, for 27 read 28 ; in column $6^{m}$, for 1533 read 1534; in column Summa, for 5421 read 5422 .

## LIST OF SKETCHES.

## PROGRESS-SKETCHES.

No. 1. General progress.
2. Section I, northern part.
3. Section I, southern part.
4. Section II, Long Island Sound.
5. Section II, Coast of New Jersey.
6. Section III, Chesapeake Bay and tributaries.
7. Section IV, Coast of North Carolina and Pamplico Sound.
8. Section V, Coast of South Carolina aud Georgia.
9. Section VI, East Coast of Florida.
10. Section VII, West Coast of Florida.
11. Atlanta base-line and triangulation.
12. Section VIII, Coast of Louisiana, Mississippi, and Alabama.
13. Section IX, Coast of Texas.
14. Section $X$, Coast of California, southern sheet.
15. Section $X$, Coast of California, middle sheet.
16. Section X, upper sheet, and XI, lower sheet.

16 bis. Section XI, Coast of Washington Territory and Puget Sound.
illustrations.
17. Aleutian Islands.
18. Base-apparatus.

# National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey 

## Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.
NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910


[^0]:    * Memoirs of the American Academy, vol. iv, new series.

[^1]:    Prof. Benjamin Peirce, Superintendent of the United States Coast Surwey.

[^2]:    * Tho device of the level of contact is supposed to be duo to the elder Repsold, who applied it first to the comparingapparatus used by Bessel, in constrncting the Prussian standards of length. A duplicate of that comparator was procured for the Coast Survey, by F. R. Hassler, Superintendent, in 1842.-[Note add ed in 1875.]

[^3]:    $*$ Donbla，（atan $\operatorname{man}_{3}=+\mathrm{O}^{-1} \mathrm{H}^{\prime}-5^{\prime}, 9$ in Dcc．

