REPORT OF THE SUPERINTENDENT

OF THE
 U. S. COAST AND GEODETIC SURVEY
 sHOWING

THE PROGRESS OF THE WORK

DURING THE
$Q B$
296
45
1883

FISCAL YEAR ENDING WITH

JUNE, 1883.
\qquad

WASHINGTON: GOVERNMENT PRINTING OFFICE. 1884.

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.
LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 10, 2003

LETTER

from

THE SECRETARY 0F THE TREASURY, transmitting,

In compliance with section 4690, Revised Statutes of the United States, the report of the Superintendent of the United States Coast and Geodetic Survey, showing the progress made during the fiscal year ending June 30, 1883.

December 19, 1883.-Ordered to lie on the table and be printed.

Treasury Department,
December 18, 1883.
Sir: In compliance with section 4690, Revised Statutes of the United States, I have the honor to transmit herewith, for the information of the Senate, a report addressed to this Department by J. E. Hilgard, Superintendent United States Coast and Geodetic Survey, showing the progress made in that work during the fiscal year ending June 30,1883 , and accompanied with a map illus. trating the general advance in the operations of the Survey.

Very respectfully,
H. F. FRENCH, Acting Secretary.

Hon. George f. Edmunds,

 President of the Senate.
ABSTRACT OF CONTENTS OF REPORT.

Report of progress of the work of the Coast and Geodetic Survey for year ending with Jnne, 1883, submitted, p. 1; Part I, pp. 1-11; Réaumé of work prosecuted, p. 1. General Statement of Progress in Field Work on the Atlantic Coast, pp. 2, 3; on Pacific Coast, p. 3; in the Interior States, pp. 3, 4. Office Work, p. 4; Miscellaneous Scientife Work, pp. 6-8. Total Solar Eclipse of May 6, 1883, p. 6; Field Catalogue of 1,278 Time and Circumpolar Stars, p. 6; Determinations of Gravity, pp. 6, 7; Results for the Length of the Yolo Base, p. 7; Verification of the Northern boundary of Wyoming Territory, p. 7; Physical Hydrography, pp. 7, 8; Maxima and Minima TidePredicting Machine, p. 8; Harmonic Analysis of the Tides of Sandy Hook, p. 8; Deep Sea Explorations in the Western Part of the North Atlantic Ocean, p. 8. General and special remarks on subject of estimates for fiscal year ending June 30, 1885, pp. 8, 9. Estimates in detall, pp. 9-11. Part II, pp. 12-74.

Field work, progress in.
Sretion I.-Triangulation and topography of Machias Bay and River, Me., pp. 12, 13. Topography of islands in Moos-a-bec Reach, and shore-line of Chandler's Bay, Me., p. 13. Topography of the shores of Pleasant River, Me., p. 13. Hydrographic surveys in Nartaguagus and Pigeon Hill Bays; soundings off Gouldsborough Bay and in Dyer's Bay and Rockland Harbor, Me., pp. 13, 14. Tidal observations at station in Pulpit Cove, North Haven Island, Me., p. 14. Primary triangulation for the connection of the station upon Mount Washington, N. H., with the triangulation of Maine, and of the Fudson River and Lake Champlain, p. 15. Occupation of stations for determining points in the triangulation of New Hampshire, p. 15. Stations occupied in continuation of the triangulation of the State of Vermont, p. 16. Line of deep-sea soundings from off Nantucket across the Gulf Stream, p. 16. Tidal observations at Providence, R. I., p. 16.

Shction II.-Deep-sea soundings from the vicinity of Montsuk Point to the Bermuda Islands, and lines of soundings normal to the coast off the south shore of Long-Islaud, pp. 17-20. Hydrography of eastern entrance to Long Island Sound, p. 20. Tidal observations at Block Island, p. 20. Re.establishment of points of old triangulation, and determination of new points from Watch Hill westward for the re-survey of Long Island Sound, p. 21. Topographical survey of Fisher's Island, Long: Island Sound, p. 21. Hydrographic re-survey of Fisher's Island Sound, and New London Harbor, pp. 21, 22. Topographic re-survey of the north shore of Long Island Sound to the eastward of the Thames River, pp. 22, 23. Topographic re-survey of New London and vicinity, p. 23. Tidal observations at New London, Conn., p. 23. Re-establishment of points of former triangulation, and determination of new points on the south shore of Long Island Sound, in the vicinity of Montank Point and Gardiners Bay, p. 23. Topographic and hydrographic re-survey of the eastern part of the south shore of Long Island Sound, pp. 23, 24. Hydrographic re-survey of Gardiner's Bay and approaches, south coast of Long Island Sonnd, pp. 24, 25. Determination of the geographical position of the new observatory of Yale College, p. 25. Determination of points for the re-survey of the north shore of Long Island Sound from the vicinity of Bridgeport, Conn., westward, pp. \%\%, \%6. Recovery mad marking of triangulation points on the north shore of Long Island, between Hempatead Herbor and Horton's Point, N. Y., p. 26. Topographic and hydrographic re-surves of the western part of Long Island Sound, in the vicinity of Throg's Neck, p. 26 . Hydrographic re-survey of the approaches to New York Harbor, p. 26. Series of tidal observations continu ed with self-registering tide-gauge at Sandy Hook, N. J., pp. 26, 27. Determinations of the force of gravity at Montreal, Canada; Albany, N. Y.; and Hoboken, N. J., p. 27. Hydrography off south ceast of Long Island, and lines of deep-ses sonndings in the vicinity of New York Bay entrance, p. 27. Verification of hydrography for the Atlantic Coast Pilot, pp. 28, 29. Leveling operations for connecting the Coast Survey reference mark at Albany, N. Y., with the primary triangulation station on Monnt Mansfield, Vt., p. 29. Primary triangulation across the State of New York for connecting the triangnlation of the Hudson Eiver and Lake Champlain with that of the survey of the Great Lakes, pp. 29, 30. Continuation of the triangulation of the northern part of the State of New Jersey, p. 30. Additions of topographical details to original sheets of the survey of the New Jersey Coast between the Highlands of Navesink and Tom's River, p. 31. Triangalation of Dolaware Bay and River, p. 31. Physical survey of Delaware Bay and River, pp. 31,32 Hydrographic re-enrvey of Delaware Bay and River, pp. 32, 33. Re-survey of topography in the vicinity of Cape Henlopen, Dol., Pp. 33, 34. Continnation of the hydrographic ro-survey of Lower Delaware Bay, p. 34. Topo-

Sxction If.-Conhinued.
graphic re-survey of the New Jersey shore of Delaware Bay continued, pp, 34, 35. Continuation of the topographic re-survey of the west shore of the Delaware River and Bay from New Castle southward, p. 35. Keconnaissance aud extension westward of the triangulation of the State of Fennsylvania, p. 36. Determination of boundary line between Pennsylvania and West Virginia, p. 36.

Secrion MI.-Determinations of gravity by pendulam experiments at Baltimore and Washington, pe. 36,37. Okservations of the Transit of Venus, at Washington, D. C., p. 37. Continuation of the detailed topographical survey of the District of Columbia, p. 37. Examination of the monunents of the Trial Base Line at Fort Myer reservation, Virginia, p.38. Special survey for the Fish Commission near the Great Falls of the Potomac, p. 38. Contimuation of topographic survey of the south shore of Hampton Roads, between Craney Island and Nansemond River, p.38. Observations of currents at stations near the entrance of Chesapeake Bay and thence southward p.38. Determination of the longitute of the University of Virginia, Charlottesvilie, by exchange of telegraphic siguale with Washington, and of the latitude of the Charlottesville station, pp. 38, 39. Conpection of the astronomical station at the University of Virginis with the primary triangulation, p.39. Reconnaissance, triangulation, and hypsometric observations in the region about Washington, D. C., for the construction of a general map, p. 39. Reconnaissance for the extension of the primary triangulation near the thirty-ninth parallel westward in West Virginia, Ohio, and Kentucky, pp. 39, 40.

Section IV.-Lines of deep-sea soundings and temperatures off the Atlantic coast of the United States, p. 40. Hydrographic surveys of Cape Fear River entrance and in Croatan and Pamplico Sounds, pp. 40, 41.

Gection V.-Hydrographic surver in the vicinity of Cape Romain, S. C., p.41. Oecupation of the station at Savannah, Ga., for the determination of the longitude of Saint Augustine, Fla., by exchange of telegraphic signals, PP. 41, 42.

Section VI,-IHydrographic re-survey of Saint John's River and Bar, p. 42. Determination of the longitude of the Transit of Venns station at Saint Augustine, Fla,, by exchange of telegraphic signals with Savannah, p. 42. Reconnaissance of the Saint John's River, from Lake Monroe to Lake Washington, pp. 42, 43. Survey of the eastern coast of Florida from Indian River Inlet south ward, pp. 43, 44. Survey of the shores and lagoons of East Florida from Key Biscayne, worthward, pp. 44, 45. Hydrographic survey between Jupiter Inlet and Key Biscayne, p. 45. Observations of currents at atations off Jupiter Inlet, Fla., pp. 45, 46. Deep-sea soundings, with serial temperatures, between the Bahamas and the Bermudas, pp. 46, 47. Topographic and hydrographic survey of the west coast of Florida between Charlette Harbor and Tampa Bay, p. 47. Hydrograpliy off the west coasi of Florida to the northward and southward of Tampa Bay, pp. 47, 48.
Section VIII.-Reconnaissance for the connection of the Gulf coast triangulation on Mobile Bay, Ala., and vicinity with the primary triangulation at or near Atlanta, Ga., p. 48. Continuation of the survey of the coast of Louisiana, west of the Mississippi River, pp. 48, 49. Survey of the coast of Lonisiana from Sabine Pass eastward, p.49. Determination of the longitude of Little Rock, Ark., by exchange of telegraphiesignals with Saiut Louis, Mo., pp. 49, 50 .

Section IX.-Hydrography of the coast of Texas, from Galveston entrance, eastward, pp. 50,51. Topography of the shores of Nueces Bay; triangulation in the vicinity of Matagorda Bay; measurement of a base of verification and observations for agimnth, p. 51.

SECTion X.-Estahlishment of a magnetic self-registering record station at Los Angeles, Cal., pp. 51, 52. Continuation of the primary triangulation northward from Point Concopeion, pp. 52, 53. Hgdrographic survey from Monterey sonthward, p. 53. Operations at San Francisco, Cal., for the determination of the longitude of the Transit of Venus Station near Fort Selden, N. Mex., by exchanges of telegraphic signals. Observations of the transit at San Krancisce, Pp. 53, 54. Completion of the supplementary survey of the San Francisco Peninsula, p. 54. Determinations of the force of gravity and of relative magnetic intensity at San Francisco, Cal., in connection with similar determinations to be made at Point Barrow, Alaska, p. 54. Determinations of the force of gravity at San Francisco ir connection with similar determinations at the Transit of Venns Station in New Zealand, and at stations in Australia and Eastern Asia, pp. 54, 55. Tidal observations with self-registering tide guage coutinued at Saucelito, near San Francisco Bay entrance, 1. 55. Occupation of a station of the primary triangulation north of San Francisco Bay, pp. 55, 56. Continuation of the hydrographic survey in the vicinity of Point Arena, Cal., po. 66, 57. Hydrographic survey in the vicinity of Mendocine City, Cal., p. 97. Continaation of the primary triangulation of the north coast of California, p. 57.

SxCron XI.-Triangulation and topography of the Umpquah River and approaches, Orege, pp. 57, 58. Contwation of the survey of the Columbia River and tribataries, p. 58. Hydrographic surveys of Gray's Harbor and in the Straits of F'uca and Admiraity Inlet, pp. 58,59. Continuation of the triangulation of Hood's Canal, Puget Sonnd, Wauh. Ter, p. 59.

SECTIOR XII--Continuation of the hydrographic reconnaisennes of the shote-line ma harbors of Gontheastern Alsbika, pp. 59, 60. Tidal observations continued, with self-registering tide guage, at Saint Panl, Kadiak Igland, Alagka. p. 61. Determinations of the fore of gtavity, and relative magnetic intensity at Point Barrow, Alakka, p. 61 Longitude of Point Barrow, Alaska, p. 61.

Section XIII,-Occupation of the longitade station at Louisville, Ky., for the determination of the longitude of additional stations in Kentucky by exchanges of telegraphic sigunis. Observations for the latitude of these stations, p. 61. Reconnaissance for the extension of the triangulation of the State of Kentucky, p. 62. Occupation of stations in continnation of the triangulation of the State of Tennessee, pu. 62, 63.

Section XIV.-Reconnaissance for the primary triangulation near the thirty-ninth parallel extended from West Virginia into Otio, p. 63. Occupation of stations in continuation of the triangulation of the State of Ohio, p. 63. Reconnaissance for the extension of the triangulation of the State of Indiana, p. 63. Determinations of the latitude and longitude of stations in Indiaua aud Illinois, p. 63. 'Transcontinental line of geodesic leveling extendod from Mitchell, Ind., to Saint Lonis, Mo., and thence westward to Etlah, Mo., pp. 63, 64. Continuation to the eastward of the primary triangulation in Illinois near the thirty-ninth parallel, pp. 64, 65. Occupation of stations in continuation of the triangulation of the State of Wisconsin, pp. 65, 66.

Section XV.-Occupation of the longitude station in Saint Louis, Mo., for the determination of the longitudes of points in Arkansas, Missouri, Nebraska, Kentncky, Indiana, and Illinois by exchanges of tolegraphic signals. Determinations of the latitudes of these points, pp. 66, 67. Continuation to the westward of the primary triangulation in Missouri near the thirty-ninth parallel, pp. 67, 68. Transcontinental line of geodesic leveling carried westward from Saint Louis toward Kansas City, Mo., p. 68.

SECTION XVI.-Primary triangulation in Nevada and Utah, near the thirty-ninth parallel extended eastward, pp. 68, 69. Reconnaissance for the extension eastward of the primary triangulation near the thirty-ninth parallel in Colorado, pp. 69, 70. Olservations of the Transit of Venus at Cerro Roblero, near Fort Selden, N. Mex., p. 70.

SECTION XVII.-Completion of the work of verification of the northern boundary of Wyoming Territory, pp. 70, 71.
Sphclal Operations -Observatious of the Transit of Venus at Anckland, New Zealand. Also, determinationg of the force of gravity at the Transit of Venus station, and at stations in New South Wales, British India, and Japan, pp. 71, 72. Observations in connection with those made at Caroline Island, South Pacitic Ocean, of the total eclipse of the sun, May 6, 1883. Also, determinations of the foree of gravity at the eclipse station, and at stations in the Sandwich Islands, and in San Francisco, pp. 72, 73. Tidal observations at Honolulu, Sandwich Lslands, p. 73.

Coast and Geodetic Survey Office, pp. 73, 74. Assistant in charge and officers on duty, pp. 73, 74.
Part III.--Appendices to the report, Nos. 1-19, pp. 77-486.

CONTENTS OF APPENDICES.

No. 1. Distribution of surveying parties upon the Atlantic, Gulf of Mexico, and Pacific coasts and the

Page.interior of the United States, during the fiscal year 1882-'83
77-84
No. 2. Statistrics of field and office work of the United States Coast and Geodetic Survey for the year end ing June 30, 1883
85,86
No. 3. Information furnished from the office of the Coast and Geodetic Survey in reply to special calls during the year ending June 30, 188387-92
No. 4. Report of the assistant in charge of office and topography for the year ending June 30, 1883..No. 5. Report of the Hydrographic Inspector for the year ending June 30, 1883
No. 6. Descriptive catalogue of publications relating to the Coast and Geodetic Survey and to standard measures. Conmiled by Edward Goodfellow, Assistant
No. 7. A table of depths for the harbors on the coasts of the United State6...
No. 8. The estuany of the Delaware. A report by Henry Mitchell, Assistant 137-237
No. 8. Lhe entary of the Delawar. A mo.
No. 9. Report on the Harmonic analysis of the tides at Sandy Hook, by Prof. William Ferrel........
No. 10. Description of a maxima and minima tide-predicting machine, by Prof. William Ferrel..........
No. 11. Results for the length of the primary base-line in Yolo County, Califormia. Measured in 1881 by the party of George Davidson, Assistant. Computation and discussion of results by Charles A. Schott, Assistant
asults of observations for atmospheric refraction on the line Mount Diablo to Martinez, Cal. in connection with hypsometric measures by spirit-lerel, the vertical circle, and the barometer, made in March and April, 1880, by George Davidson, Assistant. Discussion by Charles A. Schott, Assistant \qquad iscussion of magnetic observations at the United States Polar Station at Ooglaamie, Alaska, by C. A. Schott, Assistaut
No. 14. Report on the preparation of standard topographical drawings. By E. Hergegheimer, Assistant
No. 15. The Transit of Mercury, 1881. By George Davidson, Assistant ..
No. 16. The Transir of Venus, 1882. By C. A. Schott, B. A. Colonna, William Eimbeck, and J. S. Lawson, Assistants
239-245
247-251
253-272
273-288
289-321
323-365
367-368
369-370
371-378
No. 17. The Total Solar Eclipse, 1883. By E. D. Preston, Aid.. 379-381
No. 18. Mran places of 1278 time and circumpolar stars for epoch 1885.0. By George Davidson, Assistant.
No. 19. Determinations of Gravity at Allegheny, Ebensburgh, and York, Pa., in 1879 and 1880. By C. S. Peirce, Assistant

383-472
473-486

ALPHABETICAL INDEX.

A.
abstracis of localities of work on atlantic. GULF, AND PACIFIC COASTS, AND INTERIOR, Ip. 12-71. ACABOMOCK HARBOR. Changes in depth of water and channel in Gardiner's Bay, south of, p. 34.
ACKERMAN, A. A., MIDSHIPMAN, U.S. N. Services in Section II, p. 25.
ADDISON'S POINT YILLAGE, PLEASANT RTVER, ME., p. 13. ADDITIONS OF TOPOGRAPHICAL DETAILS TO ORIGINAL sheets of the survey of the new jersey coast BETWEEN THE HIGHLANDS OF NAVESINK AND TOMS RIVER, p. 3 .
adie magnetographs. Reference to, p. 51.
admiralty inlet, washington territory. Progress of murvey in, p. 358.
ADVISORY BOARD OF HARBOR COMMISSIONERS AT NORFOLK AND PORTSMOUTH, VA. Assistant Boutelle appointed member of, p. 30.
AIDS TO NAVIGATION, p. 12.
AID TO STATE SURVEYS. Reference to, in estimates, p. 9.
ALASKA. Progress of work on coast of p. 3; gravity determinations at, p. 7 ; reference in estimates for steamship for coast of, p. 9; tidal observations at, p. 61 ; information relative to, furnished by Mr. Dall, p. 74.
ALASEA COMMERCLAL COMPANT. Facilities extended to officers of the survey by, p. 61; loan of tide-gauge to, Appendix No, 4, p. 97.
ALASKA SALMON PACKING AND FUR COMPANy. Thanks to officers of the survey for valuable charts and information, $p .60$.
aLbany, N. Y. Pendulam observations and leveling operations at, pp. 2, 6, 27. 29, 36, 42.
ALEXANDER, MR. W. D., SUPERINTENDENT OF HA. WAMAN GOFERNMENT SURVEX. Conrtogios extended by, p. 73.

ALEXANDRIA, VA. Examination of beacons in the Potombe near, p. 28.
ALLEGHENY, PA. Results for force of gravity at; pp. 27-37; Appendix No. 19, pp. 475-486.
ALLEN, W. F., RNSIGN, U.S.N. Servicer in Section II, p. 33 ; in Section V. p. 41.
ALLENTOWN, PA., p. 36.
AMAGANSETT, LONG 1SLAND. Triangulation near, p. 23.
AMERICAN BOTTOM BASE, p. 64.
AMERICAN AND ENGLISH. Initial gravity stations, p. 7; pendulam operations, p. 37.
AMEREICAN EPHEMERIS. Reference to selection of time stars from, p. 67.
american parer for charts. Relative to economy in use of, Appendix No. 4, p. 0 B.
ANALYSIS (HARMONIC) OF THE TIDES OF SANDY HOOK, p. 8; see report on, by Prof. William Ferrel, Appendir No. 9, pp. 247-251.
ANASTASLA ISLAND. Determination of position of new lighthoube on, p. 42.
\triangle PPENDICEES Nos 1 to 19. For titles, from, mee page preceding Alphabetical Index. Relative to free distribation of, in parphiet form; Appendix No. 4. p. 108.
S. Ex. 29-II

APPENDICES-No. 1, pp. 77m84; No. 2, pp. 85, 86; No. 3, pp. 87-92; No. 4, pp. 93-111; No. 5, pp. 113-119; No. 6, pp. 121-135; No. 7, pp. 137237; No. 8, pp. 239-245; No. 9. pp.247-251; No. 10, pp. 253-272; No. 11, pp. 273-288; No. 12, pp. 289-321 ; No. 13, pp. 323-365; No. 14, pp. 367-368; No. 15, pp. 369-370; No. 16, pp. 371-378; No. 17, pp. 379381; No. 18, pp. 383-472; No. 19, pp. 473-486.
APPENDIX-No. 1, reference to, pp. 1, 12; No. 3, reference to, \mathbf{p}. 73; No. 4, reference to, pp. 12, 73; No. 5, refereace to, p. 12; No. 7, reference to, in p. 28; also in Appendix No. 4, p. 95; No. 8, reference to, pp. 8.32; No. 10, reference to, p. 8; No. 11, reference to, p. 7; No. 16, reference to, pp. 5, 37, 53, 69; Nos. 17, 18, roference to, p. 6; No. 19, reference to, p. 27; Nos. 0, 11, of 1878, reference to, p. 8 ; No. 13, of 1879, reference to, p. 7; No. 11, of 1880, reference to, p. 64 ; No. 11, of 1882, pp, 64, 88 ; also in Appendix No. 4 of thie report, p. 95.

APPLE, TENN. Triangriation station, p. 62.
APPOQUINIMINK CREEK, DEL., p. 35.
APPROPRIATIONS REQUIRED FOR THE WORK OF THB COAST AND GEODETIC SURVEY DURDNG FISCAL YEAR 1884-85, pp. 2-11.
ARAGO (steamer). Use of, in Section II, p. 34; see also Appendix No. 5, p. 115.
arch Creek, Fla., p. 45.
ARCHIVES OF THE COAST AND GEODETIC SURVEY OFFICE. Report of Assictant Davidson on the Transit of Venus preserved in, p. 70; report from Custodian of, Appendix No. 4, pp. 109, 110.
ARKANSAS. Determinations of longitnde of points in, pp. 4, 66.
ARLINGTON RTLOMETER BASE, VA. Examination of, pp. 3, 38.
ARNOLD'S POINT, DELAWARE BAY, p. 33.
ATMOSPHERIC REFRACTION ON THE LINE MOUNT DIablo to martinez, Cal., ETC., by george david. SON, ASSISTANT. Discursion by C. A. Schott, Assistant, Appeudix No. 12, pp. 289-321.
ASSISTANT IN CHARGE OF OFFICE AND TOPOGRAPHY FOR THE XEAR ENDING JUNE 30,1883 . R. D. Cutts, report from. Appendix No. 4, pp. 83. 111.
a TABLE OF DEPTHS FOR TEE HARBORS ON THE COASTS OF THE CNITED STATES. Appendix No. 7, pp. 137-237.
ATHENS, OHIO. Trigonometrical station near, 63, 64.
ATKINS, J. W.D., AID. Serviees in Section II, p. 29; in Section XIII, p. 62; in Computing Division of Coast and Geodetic Survey Offies, A ppendix No. 4, pp. 95, 97.
atlanta, ga. Primary triangulation at or near, pp.3, 48; refer. ence to, in estimates, p. 10.
ATLANTIC BASIN, pp. 8, 46.
ATLANTIC CITY, p. 31.
ATLANTIC COAST. Progress of field-work on, pp. 2,3; model of bottom of, p. 8; soundings off, p. 40 ; reference to, in estimates, p. 10; tides on the, p. 14.
ATLANTIC COAST. Seetion I, pp. 12-10; Section 11, pp. 17-36; Section IIL, pp, 36-40; Section IV, pp. 40, 41; Section V, pp.41, 42; Section VI, pp. 42-48.
atlantic coast and great lakers. Progrese of triangulation between the, pp. 2, 30 .
ATLANTIC AND PACIFIC COASTS. PTogress of qeodetic work between, pp. 2, 3, 12; referonce to, in eatimateb, p. 10.
atlantic coast pilot, pp. 2,4,28,29,74.
ATLANTIC LOCAL COAST PILOT. p. 28.
ATLANTIC, GULF, and PaOIFIC COASTS OF THE UNITED STATES. Estimates for work on, pp. 9-11; Distribution of sur veying parties upon the and the Interior of the United States, dur. ing the fiscal year 1882-83, appendix No. 1, pp. 77-84.
AUCKLAND, NEW ZEALAND. Observations of Transit of v_{e} nus of 1882 at, p. 4, 5, 54, 71, 73; pendulum operations at, pp. 4, 6 . AUGUSTINE CREEK, DEL., p. 35.
AUSTRALIA. Scientifie stativins in, py. 54, 72.
ATERY, R.S. In charge of Tidal Division of Coast and Geodetic Survey Office. Report of, Appendix No. 4, pp. 97-99.
AZIMUTH. Observations, pp. 44, 45,49, 55, 56, 71.

B.

BACHE (eteamer). Wse of, in Section II, p. 26; in Section VI, pp. 45, 48; see, also, Appendis No. 5, pp, 113, 114.
RACHE (schooner). Use of, in Section II, p. 28; see Appendir No. 5, p. 113.
BACHE, C. M., ASSISTANT. Additions of topographical details to original sheets of the survey of the New Jersey coast between the Highlands of Navesink and Tom's River, p. 31; continuation of topographic surrey of the south shore of Hampion Roads between Craney Island and Nansemond River, p. 38.
BACHE, R. M., ASSISTANT. Topographic re-survey of the New
Jersey ahore of Delaware Bay continued, pp. 34, 35; serrices in office of assistant in charge of office, Appandix No. 4, p. 94.
bacon, henty, assistant engineer in charge of IMPROVEMENTS OF CAPE FEAR RIVER ENTRANCE.
Conrtesies extended by, to officers of the survey, p. 41.
BAHAMAS. Deep-gea soundinge near, pp. 3, 8, 46; temperature observations near, pp. 3, 46.
BAIRD, PROF. S. F., U. S. FISH COMMISSIONER. Special survey by officers of Coast and Geodetic Survey near Great Falls of Potomac on application of, p. 38.
BAKER, LUCIUS, AID. Services in Section X, p. 59.
BAKER, MARCUS. In charge of observatory at Los Angeles, Cal., pp.51, 52.
BALD BLUFF, WIS. Station, pp. 65, 66.
BALD HEAD SHOAL, CAPE FEAR RIVER, p. 40.
BALD EILL, N.J., p. 30 .
BALTIMORF, MD. Pendulum experiments at, pp. 2, 6, 36.
BANFORD, J. W. Tidal observation at Saudy Hook, N.J., pp. 26, 27.
baratarid (ateamer). Use of, in Section VIII, pp. 48, 48; see Appendiz No. 5, p. 114.
barataria bay, La., p. 48.
RARBOUR, PROF. V. G. Geodetic operations in Vermont, p. 16.
barr. J. C. Drawing Ditision, Coast and Geodetio Survey Office, A ppetdix No. 4, p. 100.
hartce, R. F. Engraving Division, Coast and Geodetic Surveg Office, Appendix No. 4, p. 103.
BARTLETT, J. R., COMMANDER, U.S.N. Reference to work of, deep-sea soundings in the Blake, p.16,20; transfers command if Blake to Lieut. Cominander Brownson, p. 20; livee of deep-sea soundings and temperature observations off Atlantic Coast, p. 40; neo Appendix No. 5, p, 113.
bascom, MAJOR, U.S.A. Military egcort for Assistant David son, in New Mexico, furnished by, p. 70.
BASE APPARATUS. URe of new compensation, p. 7.
BASE LINE. Reference to measurement of Yolo primary, p. 7; see, ulso, Appendix No. 11; examination of trial, at Fort Myer, Fa., p. 38.

BASGETT, R. T. Miscellaneons Division, Coast and Geodetic Survey Office, Appoxdix No. 4, p. 108.
batavia, Java. Reforence to, p. 72.
BAYLOR, J. B., SUBASSISTANT. Services in Section 1I, p. 30; instruction in magnetic observing to officers of Signal Cerps, Appendix No. 4, p. 95.
bayou la fourche, la. Reference to, in estimates, p. 10.
BAYPORT, FLA. Reforence to, in setimates, p. 10.
bear fort station, N. J., p. 30.
BEAVER MOUNTAIN, UTAB, p. 68
BEAVER STATION. UTA H, p. 69.
BELLL STATION, FLA. Maguetic obserfations at, p. 44.
BELOIT, WIS., p. 65.
belort astronomical orservatory. WIS., p. 6.

BENNER, F. W. Engraving Division, Coast and Geodetic Survey Office, Appeudix No. 4, p, 103.
BERKELEY COUNTY, W. VA. Reconnaissance of streame in, p. 39.
berlin catalogre of stars. Reference to, pp. 6, 67.
BERMCDA ISLANDS. Progress of deep-sea sonndings near, pp. $2,3,8,17-19,40,46$; advisability of establishing tidal station at, $\mathbf{\Delta p}$ pendix No. 4, p. 98.
BIBB, P. B., MIDSHIPMAN, U.S. N. Services in Section X, p. 53. BIG PASS, TAMPA BAY, FLA., p. 47.
BIRD, G. F., AID. Services in Section VIII, p. 49; in Section XVI, p. 69.

BISCAXNE BAT, FLA. Topographic survey of, p. 45.
BLACKBIRD CREEK, DEL., p. 35.
BLACKSPOT, NEAR READING, PA. Triangulation near, p. 30.
BLAIR, H. W. In oftice of assistani in charge of office. Appendix No. 4, p. 94.
BLAKE (steamer). Use of, in Section I, p. 16; in Section II, pp. 17, 18, 27; in Section IV, p. 40; in Section YI, p. 46; see Appendix No. 5, pp. 113-115.
BLIND PASS, TAMPA BAY, FLA., p. 47.
block house, adceland, New zealand. Pendalum observations at, p. 72.
BLOCK ISLAND. Tide-gauge established at, pp. 2, 20; sec, also Appendix No. 4, p. 97.
BLOCK ISLAND SOUND. Hydrography near, p. 20.
BLUE JOB, N. H. Triangulation station, p. 15.
BLUFF POINT, LONG ISLAND, p. 22.
BOCILLA PASS, FLA.. p. 47.
BODEGA BAY, CAL., p. 56 .
bOISBUBERT HARBOR AND ISLAND, ME., pp. 13, 14.
BOLLES, T. DIX, LIEUTENANT, U. S. N. Hydrographic anr. veys of Gray's Harbor, and in the Strait of Fuca and Admiralty Inlet, pp. 58, 59; see Appendix No. 5, p. 114.
BOMBAY HOOK LIGHT-HOUSE. Triangulation near, pp. 31, 32, 35.

BOMBAT HOOK POINT, p. 32.
BOONTON, MORRIS COUNTX, N.J., p. 30.
BORDEN, T. P., AID. Services in Section VI, p. 44; in Section XIV, f. 65 ; in Section XVIL, p. 71.
BOSDING STATION, ILL., pp. 64, 65.
BOSTON. Prediction of tides of 1884 for, p. 8.
BOSTWICK BAT, LONG ISLAND SOUND. Good harbor, p. 24. bOSTWICK, F. M., ENSIGN, U. S. N. Services in Section XII p. 60.

BOUTELLE, C. O., ASSISTANT. Primary triangulation across the State of New York for connecting the triangulation of the Hudson River and Lake Champlain with that of the survey of the Great Lakes, pp. 29, 30.
bovtelle, J. B., EXTRA ORserver. Services in Section II, p. 30.

BOWSER, PROF. E. A., ACTING ASSISTANT. Contiduation of triangulation of northern part of State of New Jersey, p. 30.
BOYD, C. H., ASSISTANT. Triangulation and topography of Machias Bay and River, Me., pp. 12, 13; reference to previous work in Florida, $p .43$; continuation of the sarvey of the coast of Lonisiana west of Mississippi River, pp. 48, 48; see, also, Appendix No. 5, p. 114; in office of assistant in charge, Appendix No. 4, p. 94.

BRADFORD, GERSHOM, ASSISTANT. Determination of pointa for re-survey of the north shore of Loug Island Sound from vicin ity of Bridgeport, Conn., westward, p. 25 ; in the offiee of the as. sistant in charge of the office, Appendix No. 4, p.04.
BRADFORD, J. S., ASSISTANT. Verification of hydrography for the Atlantic Coast Pilot, pp. 28, 29; nee Appendix No. 5; \mathbf{p}. 113.

BRAID, ANDREW, ASSISTANT. Transoontinental line of geo. desic leveling extended from Mitchell, Ind., to Saint Louis, Mo., and thence westward to Etlah, Mo., pp. 63,64 (aee Appendix No. 11, of report of 1880); geodectic leveling in Miesourch, p. 88 ; in office of assistant in charge of office, Appendix No. 4, p. 04
BRANDYWINE SHOAL LIGHT.HOUSE, p. 31.
BREAKWATER, CAPE HENLOPEN, p. 28.
BRIDGEPORT, CONN. Pregress of re-sirvay near, pp. 2,25 .
BRIGHT, W. T. In charge of Drawing Division, Coust and Geo. detic Survey Offee, ior report see Appondix Ko. 4, pp. Dg-102.
brisbane, AUSTRALLA. Reforembe to, p. 72.

BRITISH INDIA. Pendulam experiments in, pp. 6, 71.
BRONADGH, W. V., ENSIGN, U.S. N. Services in Section XII, p 60.

BROOKFIELD, N. H., p. 15.
BROOKLXN NAVY. YARD, N. Y. The Drift laid up at, p. $2 e$. BROOK'S STATION, OHIO, p. 63 .
BROWN. R. H., AID. Services in Section III, p. 39.
BROWN, S. J., ENSIGN, U.S. N. Services in special operations, p. 73.

BROWNSON, W. H., COMMANDER, U.S.N. Reports dangerous sunken wreck on New Jersey coast, p. 5 ; line of deep-sea soundings off Nantacket across the Gulf Stream, p. 16; reports for duty in command of the Blake. pp. 18, 20; hydrography of eastern entrance to Long Island Sound, p. 20; hydrography off south coast of Long Island and lines of deep-sea soundings in vicinity of New York Bay entrance, p. 27; see, also, A ppendix No. 5, pp. 113, 114; deep sea soundings, with serial temperatures, between the Bahamas and the Bermudas, pp. 46, 47.
BRUMBY, T. M., ENSIGN, U.S. N. Services in Section IX, p. 51.
BRUSH DYNAMO, No. 4. Use of, in deep-sea soundings, p. 19.
buchanan, prof. A. H. Geodetic operations in Teunessee, p. 62.

BULL'S BAY, S. C., p. 41.
BURLINGTON, VT. Leveling operations néar, p. 29.
BURNHAM, NEW ZEALAND. Latitude and longitude observations at, $\mathbf{p} .72$.
burton, A. E., AID. Services in Section II, p. 21.
buZZard's bay. Tidal survey of, p. 20.
c.

CADEL, MISS F. Drawing Division, Coast and Geodetic Survey Office, Appendix No. 5, p. 100.
CALCASIEU PASS, LA., p. 49.
CALDWELL. Triangulation station in Missouri, p. 67.
CALENDER PRESS FOR FINISHING CHARTS. Appendix No. 4, p. 93.
CALIFORNTA. Prozress of work in, p. 3; survey of coast of, pp. 3, 53; reference to in estimates, p. 10; continuation of primary triangulation in, p. 57; results for the length of the primary baseline in Yolo County, measurement in 1881 by George Davidson, Assistant, see Appendix No. 11, pp. 273-288.
CALIFORNIA ACADEMY OF SCIENCES. Reference to, p. 54. CAMEL'S RUMP, ME., p. 15.
CAMERON PARISH, LA. Reference to marshes and sand ridges of, p. 22.
CAMPBELL, PROF. J. L. Reconnaiesance for the extension of the triangnlation of Indiana, p. 63.
CANADA. Pendnlum experiments in, pp. 6, 27 ; triaggulation near boundary of, p. 15.
Canfield, w. C., midshipman, U.S. N. Services in Section II, pp. 20, 22; in Section IX, p. 31.
CANY BAYOU, TEX. Examination for stations near, p. 51.
CAPE FEAR. Carrent observations at, pp. 38, 45.
CAPE FEAAR RIVER ENTRANCE. Progrebs of survey of, pp. 3, 40.
CAPE FLORIDA. Current observationg at, p. 38; triangulation near, p. 44.
CAPE FOX, ALASKA. Hydrographic survey near, p. 60.
CAPE HATTERAS. Deep-bea sonndings off, pp. 17,40 ; tompera tare observations off, pp. 18, 49; current observations off, $p .38$.
CAPE EENLOPEN, DFL. Progrees of re-survey near, pp. 2, 31, 28; thdal observations at. p. 8; reviaion of sailing directions for, pp. 28, 20; a refuge to the schooner Bache in storm. p. 28.
CAPE FRNRY. Deop-sak soundings off, pp. 17, 18; revision of sailing directions for, pp. 28, 29; loss of anchor of schooner Drift off, p. 38; current obeervations off, p. 45.
CAPE LOOROUT. Current observations near, p. 38.
CAPE MAY. Tidal observations at; \mathbf{p}. 8 ; triangalation near, p. 31; hydrography near, p, 33; curront observations at, $p .46$.
CAPE PARTRTDGE. Fatrance to Puget aound, hydrograptic survey near, p .58.
Caff romatn, s. C. Progrean of aurvey near, pp. 3; 41.
Caprrton, W. B., ENSIGN, U. S. N. Sarvices in Section II, p. 20 ; tu Soction VI, pp. $45,48$.
CAPE SAN MARTIN, CAL. Referenoe to, in estimates, p. 10.
CAVITT, N. Y. Miscollaneoxs Diviston, Coast and Geodetic Survey Onfice, Appendix 4, p. 108.

CEDAR POINT, L. I., p. 24.
CERRO ROBLERO, N. MEX. Observations of transit of Veuus of December, 1882, at, pp. 4, 5, 70, see Appendix No. 16; reference to, p. 53; longitude of, noted, p. 54.
CHALLENGER BANK, BERMODA. Soundings off, p. 48.
CHALMETTE (steamship). Reference to captain of, p. 5.
CHance, Liedtenant, U.S. a. Fort Selden, N. Mex., p. 70.
CHANDELEUR ISLANDS. Survey of, referred to in eatimates, p. 10.

CHANDLER'S BAY, ME. Progress of work in, pp. 2, 13; reference to, in estimates, p. 9.
CHANEY FORK, TENN., p. 62.
CHAPMAN, D. C. Photographer of Commission to observe Transit of Venus at Cerro Roblero, New Mexico, p. 70; in Computing Division, Coast and Geodetic Snrvey Otfice, Appendir No. 4, p. 95.
CHARLOTTE HARBOR, FLA. Progress of survey at, pp. 3-47.
CHARLOTTESVILLE, FA. Determination of longitude of university at, pp.3,38, 39.
CHARTS COMPLETED OR IN PROGRESS DURING THE FIS. CAL fear ending JUNE 30, 1883, Appendix No.4, pp. 101, 102 ; report of sales of, p. 107.
CHERRY ISLAND FLATS, DELA W ARE RIVER, p. 33.
CHERRY Valley, N. Y. Triangulation in, p. 30.
CHESAPEAKE BAT. Progress of hydrography in, pp.2,28; cur. rent observations in, p. 3 ; reference to, in estimates, pp. $9,10$.
CHESTER, C. M., COMMANDER, U. S. N. Hydrographic In. spector Coast and Geodetic Survey, p. 12; for report nee Appendix No. 5, pp. 113-120,
CHESTNUT MOUNTAIN, TENN., p. 62.
CHILTON, W. B., CLERK TO SUPERINTENDENT OF COAST AND GEODETIC SURVEY, p. 74.
CHINCOTEAGUE BAY, MD. Reference to, in estimates, p. 10.
CHRISTIE, ALEX. S. Computing Division Coast and Geodetic Survey Office, Appendix No. 4, p. 96.
CIRCUMPOLAR STARS FOR EPOCH 1885.0. Mean places of 1278 time and, by George Davidoon, Absistant. Appendix No. 18, pp. 383-472.
CITY DIRECTRIX, SAINT LOUIS, MO. Bench-mark at, p. 64.
CITY ISLAND, LONG ISLAND SOUND. Ro-eurvey near, p. 26.
CLARK, JOHN. Reconstruction of theodolite No. 10 (14-inch Wurdemann) by, Appendix No. 4, p. 111.
CLARK COUNTX, IND. Reconnaissance in, p. 63.
CLARKE COUNTY, VA. Special surveysin, p. 39.
CLARVOE, G. W. Miscellaneons Division, Coast and Geodetic Survey Office, Appendix No. 4, p. 108.
CLOSING LeE VELS, Appendix No. 4, p. 93.
CLOVER, RICHARDSON, LIEUTENANT, U. S. N. Develop. ment of dangerous rock at entrance to Fisher's Island Sound, pp. 5, 21 ; preparation of plans, \&c., for new steamer Patterson for the Pacific coast, p. 12; Bee, also, Appendix No. 5, p. 117; hydrographic resurvey of Fisher's Island Sound and Now London Harbor, pp. 21, 22 ; establishment of tide.gange at New London, Conn, p. 23 ; see, also, Appendix No. 5, p. 113 ; "Instruction for hydrographic Parties" by, Appendix No. 5, p. 117.
CLFDE, Station of Lake Survey, New York, p. 30,
COAST AND GEODETIC SURVEY. Remarks on progrese and condition of, for year ending June 30, 1883, pp. 1-4; abstracts of progress of work, pp. 12-73; officers of, and office work, pp. 73, 74, see, also, Appendices Nos. 1, 4, 5; estimates for field and office work, pp. 9-11; general estimates for repatrs and maintenance of vessels, p. 11; statistics of field and office work for the year ending June 30, 1883, Appendix No. 2, pp. 85, 86.
COAST AND GEODETIC SURVEY OFFICL. Progress of work in the, pp. 4-8; officers and employes of, pp. 73, 74; see, aleo, A ppen. dix No. 4; estimates for pay of officers of, pp. 10, 11; information furnished from the, in reply to special calls during the year ending June 30, 1883, Appendix No. 3, pp. 87-92.
COAST survey reference mark at albany, N. Y., p. 29.

COAST OF ALASKA. Progres of survey of, p. 3.
COASTS OF UNITED STATES. A table of depths for harbore on the, Appendix, No. 7, pp. 137-237.
COAST PILOTS. Work on, p.4; reforred to in estimates, pp. 8, 10; verification of hydrography for Atlantic, pp. 28, 29 ; of Californis, Oregon, and Washington Territory, new edition, complled by Assiatant George Davidson, p. 56; reference to publication of third Folume of Atlantic, p. 74; relative to sales of, Appendix Na. 4, pp. 107, 108.

COFFIN, F. W., ENSIGN, U. S. N. Servicee in Section XII, p. 60. COHANSET CREEK, p. 32.
COHANSEY LIGHT-HOUSE. Triangulation near, p. 31.
COLBY, H. G. O., LIEUTENANT, T. S. N. Hydrographic surveys in Narraguagus and Pigeon Hill Bays, pp. 13, 14: see, also, Appendix No. 5, p. 114; rulieved from duty on the Coast and Geodetic Survey, Appendix No. 5, p. 114.
COLLINS BEACH, Del., p. 32.
COLONNA, B. A., ASSISTANT. Observation of the transit of Ve. nus at Wrashington, D. C., p. 37 ; survey of the eastern coast of Florida from Indian River Inlet southward, pp. 43,44; see, also, Appendix No. 5, p. 114 ; instruction to tidal observers at Saint Paul. Ka. diak Island Alaska, p. 61; completion of the work of verification of the northern boundary of Wyoming Territory, pp. 70, 71; "The transit of Venus," 1882. by C. A. Schott and, Appendix No. 16. pp. 371-378.
COLORADO. Extension of primary triangulation in, pp. 4, 69.
COLUMBLA FALLS VILLAGE, ME, p. 13.
COLUMBIA RIVER. Progress of survey of, pp. 3, 58; reference to, in eatimates, p. 10; comparison with Umpquab River, Oreg. p. 58.

COLUMBDS, OBIO, p. 63.
COMMISSION OF OBSERVATION OF TRANSIT OF VEN US
OF 1882. Reference to, p. 5.
COMPLETION OF TEE SUPPLEMENTARY SURVEY OF
THE SAN FRANCISCO PENTNSULA, p. 54.
COMPLETION OF THE WORK OF VERIFICATION OF THE
NORTHERN BOUNDARY OF W YOMING, pp. $1,4,7,70,71$.
GOMPTON, JAMES, DISTRICT SUPERINTENDENT OF WESTERN UNION TELEGRAPH. Facilities extended officers of the acrrvey, $b y$, p. 82.
COMPUTATION AND DISUUSSION OF THE LENGTH OF THE YOLO BASE, BY C. A. SCHOTT, ASSISTANT. Ap. pendix No. 4, p. 95 ; see, albo, Appendix No. 11, pp. 273-288.
COMPUTING DIVISION, COAST AND GEODETIC SURVET
OFFICE. Reference to work of, p. 4: for report from, see Appendir No. 4, p. 95.
CONLEY, J. M. Tidal observations at IBlock Island, p. 20.
"CONNAISSANCE DES TEMPS." Reference to, p. b.
CONNECTICUT. Reference to Fish Commission of State of, pp. 21, 25.
CONNECTION OF THE ASTRONOMICAL STATION AT THE UNIVERSTTY OF VIRGINIA WITE PRIMARY TRIAN. GULATION OF VIRGINLA, p. 39 .
CONSLANT, W. M. ENSIGN, U. S. N. Services in Section II, p. 27 ; in Section VI, p. 46.

CONTINUATION OF THE TRIANGULATION OF THE NORTHERN PART UF THE STATE OF NEW JERSEY, p. 30.

CONTINUATION OF THE HYDROGRAPHIC RESURVEY OF LOWER DELAWARE BAX, p. 24
CONTINUATION OF THE TUPOGRAPHIC RE-SURVEY OF THE WEST SHORE OF THE DELAWARE RIVER AND BAY FROM NEW CASTLE SOUTHWARD, p. 35 .
CONTINUATION OF THE DETATLED TOPOGRAPHICAL SURVEX OF THE DISTPICT OF COLUMBIA, p. 37.
CONTINUATION OF TOPOGRAPHIC SURVEY OF THE SODTH SHORE OF HAMPTON ROADS BETWEEN CRANEY ISLAND AND NANSEMOND RIVER, p. 38.
CONTINUATYON OT THE SURVEY OF THE COAST OF LOUISLANA WEST OF THE MISSISSIPH1 RIVER p. 48.
CONTINUATION OF TEE PRIMARY TRIANGULATION NORTHWARD FROM POINT CONCEPCION, CAL., p. 52.
CONTINUATION OF THE HYDROGRAPHIC SURVEY IN THE VICINITY OF POINT ARENA, CAL., p. 56.
CONTINUATION OF THE PRIMARY TRIANGULATION OF THE NORTH COAST OF CALIFORNLA, P. 57.
CONTINDATION OF THE SURVEY OF THE COLUMBLA RIVER AND TRIBUTARIES, p. 68.
CONTINUATION OF THE TRIANGULATION OF HOOD'S CANAI, PUGET SOUND, WASE. TER., p. 59.
CONTLNUATION OF THE HYDROGRAPHIC RECONNAIS.
SANCE OF THE SHORE-LINE AND HARBORSOF ROUTH. EASTIRN ALASKA, p. 59.
CONTINDATION TO THE EASTW ARD OF TEE PRMMARY
TRIANGULATION IN ILLINOIS NEAR TBE THIRTY-
NINTH PARALLILL, p. B4.

CONTINUATION TO THE WESTWARD OF THE PRIMARY TRIANGULATION IN MISSOURI NEAR THE THIRTY. NINTH PARALLEL, p. 67.
COOPER'S POINT, CAL. Completion of hydrography near, p. 53.
COOS BAY STEAMSHIP COMPANY. Acknowledgment of kindness from, p. 58.
COPPER ISLAND, BERLNG SEA. Tidal station not heard from, Appendix No. 4, p. 97.
CORPUS CHRISTI AND BAY, TEX. Survey of, p. 51.
COTTONWOOD, TEX. Triangulation station, p. 51.
COURTENAY, EDWARD H. Computing Division, Coast and Geodetic Survey Office, Appendix No. 4, pp. 95, 96.
COURTENAT,F. Engraving Division, Coast and Geodetio Survey Office, Appendix No. 4, p. 103.
COX, G. F. Miscellaneons Division, Coast and Geodetic Sarvey Office, Appendix No. 4, p. 108.
CRAB ORCHARD RANGE OF MOUNTAINS, TENNESSEE, p. 62.

CRANEY ISLAND. Progress of survey near, pp. 3, 38.
CROATAN I.IGHT-HOESE p .41.
GROATAN SOUND. Progrese of survey in, pp. 3, 40, 41.
CROSS ISLAND, MACHIAS BAY, ME., p. 13.
CROSSLEDGE LIGHT•HOUSE, DELAWARE BAY, p, 31.
CULYER's GAP, X. J. Sigaal station, p. 30.
COMBERLAND MOUNTAIN TABLE LAND, p. 62.
CUMBERLAND RIVER, TENN., p. it.
CURRENT OBSERVATIONS. Progrese of, p. 3; in Gulf Stream, pp. 17. 18, 45.
CUTIER, W. G., MASTER, U. S. N. Services in Section II, p. 34. CUTTS, RICHARD D. Assistant in charge of Office and Topo. graphy, Coast and Geodetic Survey, p. 12; for report from, see Appendix No. 4, pp. 93. 94 ; triangulation in New Hampshire, in charge of, $p .15$; reference to report of, p. 73.
CUTTS, R. M., LIEUTENANT U. S. N. Loan of scientifio inatrumenta obtained from Washington navy-yard by, Appendix No. 4, p. 04 .

B.

DALL, W. H., ASSISTANT. Work on Alaska Coast Pilot by, p. 74.

DALLAS BANK, WASH. TER., p. 58.
DAMRELL, A. N., CAPTAIN, U. S. ENGLNEERS. Acknowledgment of services rendered by, p. 48 .
DANGERS TO NAVIGATION. Examination of, pp. 5, 14, $21,22$. DANIELS, DAVID, ENSIGN, D. S. N. Services in Section I, p. 14; ia Seetion VI, p. 42.
DAUPHIN ISLAND, MOBILE RAY. Search for monuments on, marking primary base line of 1847, p. 48.
DAVIDSON, GEORGE, ASSISTANT. Reference to organization of party for observing transit of Venur of 1882 in New Mexico by, p. 52 ; determination of longitnde of station at Cerro Roblero, N. Mex., pp. 53,54 ; instructions as to the swinging of pendulums at several stations, pp. 54, 55 ; occupation of a station of the primary triangulation north of San Francinco Bay, pp. 55, 56 ; instruction in use of the tide gange for Alaska, by, p. 61 ; observations of the transit of Venas at Cerro Roblero, near Fort Selden, N. Mex., p. 70 ; series of pendulam experiments at station in Japan selected by, p. 72; resulta for the length of the primary base line in Yolo Connty, Cal., measurement in 1881 by, see Appendix No. 11, pp. 273-288; reuults of observationd for atmospheric refraction on the line Monnt Diablo to Martibez, Cal., in connection with hypsemetric measures by spirit-level, the vertical circle, and the bs. rometer, made in March and April, 1880, by, see Appendix No. 12, pp. 289-304; the transit of Mercury, 1881, by, Appandix No. 15, pp. 388-370; mean places of 1278 time and circampolar atars for epach 1885.0 by, Appendix No, 18, pp. 383-472.
DAVIDSON, MRS. GEORGE. One of the observers of trandt of Vonus of 1882, at San Francigco, Cal., p. 54,
DAVIDSON MERIDLAN INSTRUMENT, No. 1. Ure of in Seetion X, p. 5 a.
DAYIDSON OBSERFATORY, SAN FRANCHSCO, CAL. Observation of trangit of Venus of 1882 at, pp. 8,54 .
DAVIDSON QUADRLLATERALG. Discuesion of by C. A. Sohott Ansiatent, Appendix No. 4, p. 95.
DAVIRS, PROF.J. F. Ocoupation of stations in contimation of the triangulation of the State of Wisconsin, pp. 65, 66.

DAVIS, W. H. Engraving Division, Coast and Geodetic Survey Once. Appendix No. 4, p. 103.
DEAN, G. W., ASSISTANT. Determination of the longitude of Little Rock, Ark., by exchange of telegraphic signals with Saint Louis, Mo., pp. 49, 50; longítude observatione at Louisville and Saint Loair under direction of, pp. 61, 62; occupation of the longitude station in Saint Lonis, Mo, for the determination of the longitude of points in Arkansas, Missouri, Nebraska, Kentucky, Indiana and Dlinois, by exchanges of telegraphic signals, pp. 66, 67.
DECLINATION. Observations for magnetic, pp. 52.
DEEP-SEA EXPLORATIONS IN WESTERN PART OF NORTH ATLANTIC OCEAN, p. 8 .
DEEP-SEA SOUNDINGS. Off Nantucket, across the Gulf Stream, p. 16; from vicinity of Montauk Point to the Bermuda Islands, and lines of soundings normal to the coast off the south shore of Long Island, pp. 17-19; linss of, and temperatures off, Atlantic cosit of United States, pp-40, 41; with nerial temperatures be tween the Bahamas and the Bermndas, p. 46.
DEEP-WATER POTNT, DELAWARE BAY, p. 33.
DE FREYCLNET. Pendulum observations at stations occupied in 1819 by, pp. 6, 73.
DELAFLELD. Station of United States Lake Surfey, p. 66.
DELAWARE. Pregreas of work on coast of, p. 2.
DELAWARE BAY A ND RIVER. Remarks on approaching completion of re-survey of, p. 1; progress of re-survey, pp. 2, 7; reference to, in estimates, p. 9 ; examination of, for subdivision 15 of Coast Pilot, p. 28 ; printing of table of depths for, p. 29 ; triangulation of, p. 31 ; physical survey of, pp. 32,32 ; hydrographic re-surrey of, pp. 32-34; topegraphic re-survey of, pp. 34, 35.
DRLAWARE BREAKWATER. Tide-gauge at, p. 8; accident to the schooner Bache at, p. 28.
LRLAWARE ENTRANCE. Publication of table of depths of, p. 29; hydrographic aurvey at, p. 33.

DELAW ARE RIVER. NOW data furnished for improvement of navigation of, and reclamation of tide lands, p. 7; estuary of, a report by Hemry Mitchell, Assistant, Appendix No. 8, pp. 230245.

DELAWARE AND HUDSON CANAL COMPANY. Line of levels on track of p. 29.
DENNIS, W. H., ASSISTANT. Topographic re-survey of New London and vicinity, p. 23; in office of assistant in charge of office. Appendix No. 4, p. 94.
DEPARTMENTS OF TEE GOVERNMENT. Charts supplied to, p. 4.

DEPARTMENT OF THE INTERIOR. Report on verification of boundary of W yoxaing Territory transmitted to Secretary of, p. 71. DEPTHS FOR THE HARBORS ON THE COASTS OF THE UNITED STATES. A talde of, Appendix No. 7, pp. 137-237.
DRSCRIPTION OF A MAXIMA AND MINIMA TIDEPRE.
DICTING MACHINE. By Professor William Ferrel, Appendix No. 10, pp. 253-272.
DESCRIPTIVE CATALOGUE OF PUBLICATIONS RELAT. DNG TO THE COAST AND GRODETIC SURVEY AND TO STANDARD MEASURES. Compiled by Edward Goodfellow, Absiatant, Appendix No.6. pp. 121-135.
DESFORGES, CAPTAIN. Diplioate of his records of longitude of transit of Venae atation at Saint Augustine, Fla., for archives of Conet and Geodetie Burref, p. 42.
DETERMINATION OF BOUNDARY LINE BETWEEN PENN. SFLF ANIA AND WEST VIRGINIA. p. 36.
DETERMINATION OF POTNTS FOR TEE RESURVEY OF TELE NORTH SHORE OF IONG ISLAND SOCND FROM TEE VICLNITY OF BRIDGEPORT, CONN., WESTWARD, p. 25.

DETERMINATION OF THE GEOGRAPHICAL POSITION OF THE NEW OBSERY ATORY OF YALE COLLEGE; p. 25.
DRTERMINATIONS OF FORCR OF GRAVITY. Reference to, pp. 1, 4, 6; at Montreal, Canadn, Albamy, N. Y., and Hoboken, N. J., p. 27; at Baitimore ond Washington, D. C., pp. 36, 37; and of celative mapnetic Intensity at San Francisco, Cal., in connertion with similar determinations to be made at Point Barrow, Alaska, p. 54 ; at Allogheny, Zbonaburgh, bud York, Pa., pp. $473-486$.

DRTERMTNATIONS OF LONGITUDE AND LATITUDR, At stations in the Western States, pp. 3, 4, 60; of the Uaiversity of Firghule, st Chaxlotios ville by exchangeof telegraphic gignais with Waalington, nad of the Intitaide of Charlottesville tation, pp. 38 , 39; of tranalt of Yenus station at Saint Augustine, Fla., p. 47; of

DETERMTNATIONS OF LONGITUDE AND LATITUDE Continued.
Little Rock, Ark., pp. 49, 50; at San Frapcisco in connection with similar determinations at the transit of Veuus stations in New Zealand and in Australia and Eastern A sia, pp. 54, 55; and relative magnetic intensity at Point Barrow, Alaska, p. 61 ; of gtations in Indiana and Mlinois, p. 63.
DEVOL, PROF, R. S., ACTING ASSISTANT, Geodetic operptions in Ohio, p. 63.
DE WOLF., J., EXTRA OBSERVER. Services in Spetion VIIL, p 49.
DICKINS, E. F., ASSISTANT. Of the party of observers of transit of Venus of 1882, p. 54; services in Section X, p. 56.
DISBERSING AGENT, UNITED STATES COAST AND GEO. GETIC SURVEY, W. B. MORGAN, p. 74.
DISCOVERIES AND DEVELOPMENTS. Reforrod to in Part I, pp. 1, 5 .
DISCREPANGIES IN NOMENCLATURE BETWEEN COAST SURVEY CHARTS AND PUBLYCATIONS OF THE LIGET. HOUSE BOARD FOR THE FACIFIC COAST, p. 29.
DISCUSSION OF MAGNETIC OBSERVATIONS AT THE UNITED STATES POLAR STATION AT OOGLAAMIE, ALASKA. By C. A. Schott, Assistant, Appendix No. 13, pp. 323-365.
DISTRIBUTION OF SURVEYING PARTIES ON THE AT. LANTIC, GULF OF MEXICO AND PACIFIC COASTS, AND THE INTERIOR OF THE UNITED STATES, DURING THE FISCAL YEAR 1882-'83. Appendix No. 1, pp. 77-84.
DISTRICI OF COLUMBIA. Progress of detailed topographie surver of, 3 ; continuation of survey, p. 37.
DIVISIONS A, B, C, D, OF COAST PILOT. Reference to engraving views for, pp. 28, 29.
DIVISION OF INSTRU MENTS AND REPAIRS. See Appendix No. 4, p. 111.
DIVISION OF TIDES. See Appendix No. 4, pp. 97-99.
DIVISION OF TOPOGRAPIHY, In charge of assistant in charge of the office, see Appendix No. 4, pp. 93, 94.
DODGE, O. G., ENSIGN, U. S. N. Services in Section I, p. 14 in Section VI, p. 42.
DONA BAY, FLA., p. 47.
DONN, F. C. Hydrographic Division, Coast and Geodetic Survey Office, Appendix No. 5, pp. 117, 118.
DONN, J. W., ASSISTANT. Continuation of the detailed topographical survey of District of Columbia, p. 37.
DOOLITILE, MYRICK H. Computing Division, Coast and feodetie Survey Oflice, Appeadix No. 4, y. 96.
DODGHERTY, JOHN A., MIDSHIPMAN, U.S. N. Services in Section II, p. 32 ; in Section VI, p. 45.
DOWNES, J. Late of Tidal Division, Coast and Geodetic Survey Office, Appendix No. 4. p. 98 ; death of, noted, p 99.
DRAKE, JAMES G., MIDSHIPMAN, U. S. N. Services in section VIII, p. 49.
DRA WING DIVISION, COAST AND GEODETIC SURVEX OF. FICES. Reference to, in estimates, p. 11; calls on Computing Division from, Appendix No. 4, p. 95; report from, Appendix No. 4, pp. 99-102; list of charts completed or in progrem to JInne 30, 1883, pp. 101, 102.
DRAWINGS. Standard Topographical, by E. Hergesheimer, As. siatant, Appendix No. 14, pp. 367-368.
DRIFI (sohooner). Use of in Section II, pp. 23, 26; in Section III, p. 38 ; in Section VI, pp. 45, 46; see Appendix No. 5, pp. 113, 114. DUCK CREAEK, DELATWARE BAY. Tide-gange at, p. 32; width of entrance to, p. 35.
DUDLEF OBSERVATORY, N. Y. Pendulum observations at, p. 27.

DUMFOU NDING. Latitude of triangulation station, in Florida, p. 45; Bay, Florida, p. 45.
DYER'S BAY, ME. Progress of socnadings off, pp. 2, 13; examina. tion of doubtful bpot in, p. 14.
DYER'S COVE, DELA WARE BAY, p. 32,
DYNAMO-ELEOTRIC MACHINE. Appendix No. 4, pp. 94, 94.駺。

EAGRE (schooner). Use of, in Sention I, p. 13; in Section VI, p. 42; see, also, Appendix No. 5, pp. 113, 114.
EARNEST (80hooner). Use of in Sention XI, pp. 58, 59 ; Appendir No. 5, pp. $118,114$.

EAST BASE, MOBILE BAY. Monaments of base-line of 1874 found apart and ont of position, p. 48.
EAST COAST OF FLORIDA. Survey of lagoons and, pp. 3, 43-45.
EASTERN FLORIDA. Increage of trade and transit in interior of, pp. 9, 43.
EAST INDIES. Pendulum operations at stations in, p. 1.
EAST ROCK STATION, CONN, p. 25.
EAST SAI:T LOU1S, MO. Line of levels at, p. 64.
HBENSBURGH, PENN. Experiments for force of gravity at, pp. 27, 37
ECLIPSE (TOTAL) OF THE SUN MAF 6, 1883. Expedition to observe at Caroline Island, South Pacific Ocean, pp. 4, 6, 72, 73.
EGG ROUK, p. 14.
EGG ISLAND, DELA WARE BAY 1_{1} p. 33.
EGMONT KEY, FLA. Tide-gauge at, p. 47 .
EGMONT LIGHT. Beuch-mark at, p. 47.
EICHHOLTZ, HUGO G. Miscellaneons Division, Coast and Geodetic Surver Office, A ppendix No. 4, p. 108.
ELMBECK, WILLTAM, ASSISTANT. Primary triangulation in Nevada and Utah near the thity-ninth parailel extendert east ward, pp. $68,69$.
ELECTROTYPING AND PHOTOGRAPHING. Reference to, p. 4; reference to, in estimates, p. 11; see report from Enyraving Division, Appendix 4, pp. 102-104; reference to dynamo-elentric ma chine for, Appendix 4, p. 93.
ELIZABETH CITY, N. C., p. 41.
ELLICOTT, EDGENE, ASSISTANT. Topography of islands in Moos-a-bec Reach, and shore-line of Chandler's Bay, Me., p. 13; special survey for the Fish Commission near the Great Falls of the Potomac, p. 38; reconnaissance of the Saint Juhn's River from Lake Monroe to Lake Wasbington. pp. 42, 43; reforence to former work of, in Washington Territory, p., 59; in oftice of assistant in charge or the otfice, Appendir No. 4, p. 94.
ELLIOTT, W. P., LIEUTENANT, U. S. N. Services in Section X, pp. 53, 57.
ELSINGBOROUGH POINT, N. J. Shore of Delaware Bay, p. 34. ENDEAVOR (steamer). Use of, in Section II, pp. 32, 33; in Section V, p. 41 ; see, also, Appendix No. 5, pp. 113, 114.
ENGINEER COMMISSIONER OF THE DISTEICT OF COLUMBIA. Survey at request of, p. 37.
ENGLISH (AMERICAN AND PENDULUM WORK, p. 37.
ENGRAVING DIVISION, COAST AND GEODETIC SURVEY OFFICE. Reference to, p. 4 ; in estimates, p. 11 ; reference to calls on Computing Division from, Appendix No. 4, p. 95; report from, Appendix No. 4, pp. 104-107; list of impressions from, p. 103.

ENTHOFFER, J. Engraving Division, Coast and Geodetic Survey Oftice, Appendix No. 4, p. 103.
EPOCH 1885.0. Mean placss of 1278 time and circumpolar stars for, by George Davidson, Assistant, A ppendix No. 18, pp. 383-472
ERICHSEN, F. Drawing Division, Coast and Geodetic Survey Office, Appendix No. 4, p. 100.
ERIE CANAL, N. Y. Relative to canal levels of p. 29.
ESHLEMAN, E. Instrument Division, Coast and Geodetic Survey Office. Reconstruction of theodolites 82 and 127 by, Appendix No. 4, p. 111.
RSQUIMALT, ALASKA, p. 60.
RSTIMATES. Explanation of, pp. 8, 9; in detail, pp. 9-11.
ESTUARY OF THE DELA WARE. A report by Henry Mitehell, Assistant, on, Appendix No. 8, pp. 239-245.
ETLAH, FRANKLIN COUNTY, MO. Geodesic leveling as far as, pp. 63, 94, 68.
KVANS, H. C. Eugraving Division, Coast and Geodetic Survey Office, Appondix No. 4, p. 103.
GXAMINATION OF THE MONUMENTS OF THE TRIAL BASE LINE AT FORT MXER RESERVATION, VA., p. 38.
EXAMINATIONS FOR COAST PHLOT, pp. 28, 29 referenee to, in estimatea, p. 10.
EXECUTION ROCK, LONG ISLAND, p. 26.
EXPLORATIONS OF THE GULF STREAM, pp.2,17-20.

F.

FAGIN, V. J. Computing Division, Coast and Geodetic Survey Office, Appendix No. 4, p. 97 ; in Drawing Division, and tranaferrea to office of dishrraing agent, p. 100.
FAIRFIELD, GEORGE A., ASSISTANT. Continuation to the onstrard of the primary triangulation in mlimoda near the thirtywinth parallel, ppet, 65.

FAIRFIELD, W. B., EXTRA OBSERVER. Services in Section II, p. 31; in Section III, p. 40; in Section VI, pp. $43,44$.
FARMINGTON, STAFFORD COUNTY, N. H. Triangulation station near, p. 15.
FARQUHAR, HENRY. Compnting Division, Coast and Geotetic Survey Office, Appendix No. 4, pp. 96, 97.
FATEINGER, J. J., RECORDER. Services in Section XVI, p. 69.
FAUTH, MR. Facilities furnished officers of the Coast and Geodetic Survey by, p. 37.
HAUTH'S OBSERVATORY, WASHINGTON, D.U. Observations of transit of Venus at, pp. 5, 37.
FECH'RELER, A. F., NNSIGN, U. S. N. Services in Section II, p. 24.

FENNER STATION, p. 30.
FERNANDINA, FLA., p. 46.
FERREL, PROF. WILLIAM, Reference to tide-predicting machine by Appendix No. 4, p. 98 ; report on the harmonic analysis of the tides at Sandy Hook, by, Appendix No. 9, pp. 247-251; Description of a maxima and minima tide-predicting machine by, Appendix No. 10, pp. 253-272.
FLELD AND OFFICE WORE OF THE UNITED STATES COAST AND GEODETIC SURVEY FOR THE YEAR ENDING JUNE 30, 1883. Statistics of, A ppendix No. 2, pp. 85, 86.
FIELI CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS, p. 6; see, aleo, Appendix No. 18, by George Daridson, Assistant, pp. 383-472; relative to completion of work on, p. 56.
FIELD OPERATIONS IN COURSE OF THE FISCAL FIEAR ENDING JUNE 30, 1883, pp. 2-4; reference to, in extimates, pp. 9-11.
FINN'S POINT, N. J., p. 34.
FISCFER, LOUIS. Instrument Diviaion, Coast and Geodetic Survey Office, Appendix No. 4, p. 111.
FISH COMMISSION (UNITED STATES). Special survey near Great Falls of the Potomae for, pp. 3, 38; in Comnecticut, pp. 21, 25, 26.
FISHER, E. N., ENSIGN, U. S. N. Services in Section II, p. 33 ; in Section \bar{Y}., p. 41.
FISHER. W.J., TIDAL OBSERVER AT ST. PAUL, KADIAK ISLAND, ALASKA., p. 61.
FISHERIES EXPOSITION (INTERNATIONAL). Model of bot. tom of Atlantic coast and Galf of Mexico constructed at Coast and Geodetic Surrey Office, and exhibited at, p. 8.
FISHER'S ISLAND, LONG ISLAND SOUND. Progress of sar vey. of, pp. 2, 21.
FISHER'S ISLAND SOUND. Progtess of re-survey of. pp. 2, 21. 22 ; dangerous rocks in, p. 2; repurted and located, pp. 5, 21.
FISHING CREEK, DELA WARE BAY, N. J., p. 34.
FIVE-FATHOM BANK, NEW JRRSEY COAST. Caution relative to sunken ressels off, p. 5.
FLORENCE STATION, p. 30.
FLORIDA, EAST AND WEST COAST. Progress of survey of pp. 3, 43-45, 47, 48; reference to, in entimates, p. 10; notice of wreck partly out of water in track of vessele on east coast of, p. 5; current observations off, p. 38.
FLOYD COUNTY, IND. Reconnaissance in, p. 68.
FLYNNE, LUUTEN, MASTER, U. S. N. Services in Section II, p. 27; in Section VI, p. 46 ; in Section VIII, p. 49.

FOGGY POINT, ALASKA, p. 60.
FOLGER, HON. C. J., SECRETARY OF TREASURY. Report of Superintendent of Coast and Geodetic Survey addreased to, p. 74.

FORCE OF GRAVITY. Results for, by C. S. Peirce, Assigtant Appendix No. 19, pp. 473-486.
FURNEY, STEHMAN, ASSISTANT. Servioes in Seation X, and in suboffice, San Francisco, Cal., p. 57.
FORT MONTGOMERY, LAKE CHAMPLAIN, p. 29.
FORT MORGAN, MOBILE BAY, p. 48.
FORT MYER, VA. Examination of the monuments of the trial-
base at, p. 38.
FORT POINT STATION, CAL. Tidal observations at, p. 55.
FORT POND BAY, LOSG ISLAND SOUND, p. 23.
FORT SELDEN, NEW MEXICO. Detemination of longitnde of Transit of Venus station near, p. 3; observations of trensit, December, 1882, pp. 4, 5, 53, 54, 70.
FORT TRUMBULL. CONN. Tidal obseryations at, pp. 2,23. FORT WHIPPLE. Name changed to Fort Myer, p. 38.

FORT WOOSTER, CONN, p. 25.
FOWLER, E. H. Drawing Division and Division of Topography,
Coast and Geodetic Surver Office, Appendix No. 4, p. 100.
FRANKFORT, KY., p. 62.
FRANKLIN PUBLIC SCHOOL KANSAS UITY, p. 66.
FREMONT, JR.,JOHN C., MASTER, U.S. N. Services in Sectinn
II, pp. 24, 26 ; see, also, Appendix No. 5, p.113; observations of currents at stations near the entranes of Chesapeake Bay and thence southward, p. 38; current observations at stations off Jupiter lulet, Fla, pp. 45, 46.
FRENCH, HON. H. F., ACTING SECRETARY OF TREAS.
URY. Letter transmitting to Congress Report of Const and Geodetic Survey for year ending June, 1883 , p. iii.
FRENCH, G. R., ENSIGN, D. S. N. Services in Section II, p. 34.
FRENCH, W. B. In office of assistant in charge of the office
Appendix No. 4, p. 94.
FUCA (steam-launch). Services in Section XI, p. 59.
FUCA STRAIT, WASH. TER. Progress of survey of, pp. 3, 58; reference to, in estimates. p. 10.

G.

GALVESTON, TEX., p. 50.
GALVESTON ENTRANCE, TEX. Hydrography of coast near, pp. 3, 50.
GALVESTON ISLAND, p. 51; вearch for triangulation points of survey of $1853-{ }^{\prime} 55$, p. 51.
GARDINER'S BAY. Examination for triangalation points in vicinity of, and re-surrey of, 24, pp. 2, 23, 24.
GARDINER'S ISLAND AND LIGHT-HOLSE, pp. 23, 24.
GARDINER, UMPQUAH RIVER, OREGON, p. 58.
Garland, h. k., Recorder. Services in Section II, p. 25.
Garst, PERRY, LIEUTENANT, U. S. N. Preparing for sum. mer's work at Olympia, Wash. Tor., A ppendix No. 5, p. 113; relieved from duty on Coast Survey, p. 114.
GEDNEY, C. D. Services in Section XVII, p. 71; in office of Superintendent of Coast and Geodetic Survey, p. 74.
GEDNET (steamer). Use of in Section II, pp. 20, 25; in Section IX, pp. 50, 51; see Appendix No. 5, pp. 113, 114.
GENERAL EXPENSES, ESTIMATES FOR, p. 11.
GEODESIC LEVELING, pp. 4, 64, 65; reference to, in estimates,
p. 10; westward from Saint Louis towards Kansas Citr. Mo., p. 68. GEODETIC OPERATIONS. Observations on, p. 1; in Western
States, p. 4; in New Hamprhire, p. 15 ; in Vermont, p. 16 ; in New Yofk, pp. 29, 30; in New Jersey, p. 30; in Pennsylvania, p. 36; in West Virginia, Ohio, Kentucky, pp. 39, 40, 63; in California, pp. 52, 55-57 ; in Kentncky and Tennessee, p. 62 ; in Indiana and Illinois, pp. 63, 64; in Wisconsin, p. 65; in Miseouri, p. 67; in Nevada and Utah, pp. 68, 69 ; in Colorado, p. 69.
GEORGIA. Operatione on coast of, p. 3; reference to base-line in, pp. 39, 48.
GERDES, F. H., ASSISTANT. Recovery and marking of triangulation points on the north shore of Long Island, between Hempstead Harbor and Horton's Point, N. Y., p. 26.
GIBSON, F. M, CAPTAIN SEVENTH CAVALRY, U.S. A. Ae knowledgment of obligations to, p. 71.
GILBERT, N. Y. State sarvey station, p. 30 . .
GILBERT, J.J., ASSISTANT. Observation of transit of Venas
at San Francisco etation, pp. 53, 54 ; continuation of the triangulation of Hood's Canal, Puget Sound, Wash. Ter., p. 59.
GOFF'S ISLA ND, p. 24.
GOODFELLOW, EDWARD, ASSISTANT, Reference to stomes to mark position of astronomical station at Utah placed in 1868-'69 by, p. 66: assistance rendered in complling present report, p. 74 ; descriptive catalogue of publications relatiug to the Coast and Geodetic Survey and to standard measures, compiled by, Appendix No. 6, pp. 121-135.
gOSHEN POLNT, FIEHER'S ISLAND SOUND, p. 21.
gost-dTe station, UTAh, p. 6 .
GOULD STATION, OHIO, p. 63.
GOULDsBOROUGH BAX. Progress of mondings off, pp. 2,13, 14. GOVERNOR DICK. Triangulation station in Pentisylvania, p. 36.
GRAFTON, W. VA., p. 64.
GRAHAM, A. B. Drawiag Division, Const and Geodetic Survey Offer, Appendix No. 4, p. 100.
"GRAND TERRE," STATION OF 1876, p. 48

GRANGER, F. D., ASSISTANT. Services in Section II., p. 32; continuation to the westward of the primary triangulation in Missouri near the thirts-ninth parallel, pp. 67, 68.
GRa VITY DETERMINATIONS. Progress of, pp. 2, 4, 6, 36, 71, 73; see alno Appendix No. 19, br C. S. Peirce, Assistant.
GRAY, E. Tidal observations at Saucelito, Cal. p. 55.
GRAY'S HARBOR, WASH. TER. Survey of, pp. 3,58,53.
Great bridge, saint louls, Mo., p, 64.
great caspar station, CaL., p. 57.
GREat Falls, of the fotomac. Special survey near, for U. S. Fish Cemmission, pp. $3,38$.

GREAT LAKES. Connection of triangulation between Athantic coast and the, p. 1; connection of triangulation of Hudson River and Lake Champlain with the, pp. 2, 29, 30.
great falley of califormia, p. 52.
GREAT WASS ISLAND, ME., p. 13.
GREENPORT, LONG ISLAND, pp. 24, 26.
GREENSBERG, GREENE COTNTX, KY., p. 62.
GREENVILLE, BOND COUNTX, MLL., pp. 64, 85.
GREENWELL, W. E., ASSISTANT. Reference to tertiary triangulation in 1878 by, p. 53.
GREENWICH, ENGLAND. Observatory reference to, p. 6.
GRIFFIN, THOMAS D., ENSIGN, U. S. N. Services in Section II p. 22.
GROTON, CONN., p. 23.
GROTON LONG POINT, LONG ISLAND SOLND, p. 22.
GELF COAST Geodefic connection between, and that of Atlautic and Pacific, p. 1; reconnaissance for geodetic purposes of, to Atlanta, Ga., pp. 3, 48; reference in estimates to tidal and magnetic observations on, p. 10.
GULF OF MEXICO. Model of hottom of Athantic coast and, constructed at Coast and Geodetic Surver Office and exhilited at International Fisheries Exposition, London, p. 8; reconnaissance for geodetic purposes between, and Atlanta, Ga., p. 48, distribution of surveying parties upon the Atlantic, and Pacifo coasts, during fiseal year 1882-'83, Appendix No. 1, pp. 77-84; tides of, see Appendix No. 4, p. 88.
GULF STREAM. Progress of deep-sea soundings across, pp. 2, 17-20; reference to, in estimates, p. 10; reference in estimater to current observations in, p. 9; current observations in, pp. 38, 45.
GULL ROCKS, PIGEON HILL BAY, ME., p. 14.
GUNSTOCK, N. H. Station on, p. 15.
GUTHRLE, KY., p. 66.

H.

HAGERSTOWN, MD. Geodesic leveling near, pp. 63, 64. Halifax station, windham county, vi., p. 16. HALL, F. B., AID. Services in Section II, p. 27. HALL STATION, TENN., p. 62.
HALTER, R. E., ASSISTANT. Topography of the shores of Nueces Bay; triangulation in the vicinity of Matagorda Bay; measurement of a bise of verification, and observations for azimath, p. 51.
hamburg station, sussex CoUnty, N.J., p. 30.
HAMILTON STATION, N. Y., p. 29.
HAMMOCKS (THE), LONG ISLAND SOUND, p. 21.
HAMPTON RUADS, VA. Topographic surver near, pp. 3, 28, 38.
HANUS, G. C., LIEUTENANT, U.S. N. Development of dangerous rock in Surge Narrows. Peril Strait, Southenst Alanka, p. 5 ; continuation of the hydrographic re-surver of Lower Delaware Bay, p. 34; see also Appendix No. 5, p. 115.
harbors on the coast of the dnited states. a table of depthe for the, Appendix No. 7, pp. 137-237.
harmonic analysis of the tides at sandy hook. By Prof. William Ferrel, Appendix No. 9, pp. 247-251.
HARMONY STATION, WIS., p. 65.
HARNET, LAEE, FLA. Deacription of, pp. 4243.
HARPER, CAPT. T. Acknowledgment of conrtesies extended by. p. 40.
HARPER, JAMES S., RECORDER. Services in Seetion XIV, p. 65.

HART ISLAND, N. Y., p. 26.
HARTFORD (U. S. steamer). Reference to, p. 73.
hartilin station, ill., p. 64.
HASSLER (steamer). New boilers for, reference to in estimaies, p.
9; nse of, in Section XII, p.60; вee Appendix No. 5, p. 114.

HASSLER EQUATORIAL. Reference to use of, in Soction XVI, p. 70.

HaRVARD COLLEGE OBSERVATORY. Reference to, p.f.
HATTERAS, CAPE. Soundings off, pp. 19, 40 ; observations on winds off, p. 19.
HAVERHILL, SCIOTO COUNTY, OHIO, p. 63.
Hafstack mountain, wilmington, vt., p. 16.
HAYTI. Soundings near, p. 46.
HEAD HARBOR TSLAND, ME., p. 13
HEALD, E. D. F., LIEUTENANT, U.S.N. Hydrographic re-sur vey of Saint John's River and Bay, p. 42; comfnand of the behooner Eagre, Appendic No. 5, p. 115.
heard station, mo., p. 67.
HELDERBERG STATION, N. Y., pp. 29, 30.
HEMPSTEAD HARBOR, Progrees of work near, p. 2; marking of triangulation pointe near, p. 26.
hendersion, Ky., p. 66.
henderson, c. W., Late in computing division, COAST AND GEODETIC SURVEY. Reference to death of, Appendix No. 4, pp. 95, 97.
herbert, w, a., accountant in coast and geo DETIC SURVEY OFFICE, p. 74.
HEREFORD INLET, NEW JERSEY COAST, p. 31.
HERGESHEIMER, EDWIN, ASSISTANT. Topographical surver of Fisher's Island, Long Island Sound,p.21; standard topographical drawings by; Appendix No. 14, pp. 367-368.
HERGESHEIMER, JOSEPF, SUBASSISTANT. Topographic and hydrographic survey of the west coast of Florida between Charlotte Harbor and Tampa Bay, p.47; see also Appendix No5.p. 114.
herschel, lieutenant-colonei, royal engineers. Keference to pendulum operations by, p. 72.
HIGHLANDS OF NA TESINK. Additional topographical đetaila to original sheets of the survey of the New Jersey const between, and Tom's River. p. 31.
"HIGH POINT TEBO" STATION, MISSOURI, p. 67.
HILGARD, J. E., SUPERINTENDENT UNITED STATES COAST AND GEODETIC SURVEY. Report for year ending June 30, 1883, sabmitted to Hon. Chas. J. Folger, Secretary of the Treasury, pp. 1-74; letter from Secretary of the Interior to, on bondary line of Wyoming, p. 71.
HILL, C. B., RECORDER. Services in Section X, pp. 53, 54, 56 ; in Section XII, p. 61; special operations, p. 73.
Hillsborough, Fla., p. 45.
HITCHCOCK (steamer). Use of, in Section VIII, p. 49; sre also Appendix No. 5, p. 114.
Hoboken, N. J. Pendulum experimente at, pp. 2, 6, 27, 36, 42.
HODGKINS, W.C., SUBASSISTANT. Topographio re-survey of the north shore of Long Island Sound to the castward of Thames River, p. 22 ; survey near Sabine Pase, La., p. 49.
hoile station, ML., pp. 64, 65.
HOLDEN, PROF. EDWARD S., DIRECTOR OF WASHBURN OBSERYATORY. In charge of observation of total eclipse of the sun in South Pacific Ocean, p. 72.
HONG-KONG, CHINA, p. 72.
honoldlu, sandwich islands. Pendulum observatione at, pp. 6, 73 ; reference to tidal observations at, p. 73; see also Ap pendix No. 4, p. 97.
HOOD'S CANAL, WASH. TER. Progress of triangulation of, pp. $3,59$.
Hoover, D. N. Eugraving Division, Coast and Geodetic Survey Office, Appendix No 4, p. 103.
HoRTON'S POINT, N. Y. Progress of work at, p. 2; triangula tion points near, p. 26.
HOSMER, CHARLES, ASSISTANT. Topographic and hydrogruphic re-sarvey of the eastern part of south shores of Long Island Sound, pp. 23, 24; of the western shore of Long Island Sound, p. 26; see aleo Appendix No. 5, p. 115; in office of assietant in charge of the office, Appendix No. 4, p. 94.
HOWARD STATION, MR., p. 13.
HoWLETT STATION, NEAR SYRACUSE, N. Y., p. 30.
HUDSON RIVER. Progress of triangulation near, pp. 2, 20.
HUGHES, EDWARD M., LIEUT., U.S. N. Hydrographic re-survey of Gardiner's Bay and approaches, soath coast of Long Island Sound, pp. 24, 25 ; bee albo Appendix No. 5, p. 113; hydrography of the coast of Texas from Galveston entrance, castward, pp. 50 , 51; in command of the Gedney, Appendix No. 5, p. 114.

HUMPBACK STATION, VA., p. 30.
HUNTER'S POINT, SARASOTA BAT, FLA., p. 47.
HYDROGRAPHIC DIVISION, COAST AND GEOOETIC SUR VEY OFFICE. Reference to, p. 4; calls for work on Computing Division, Appendix No. 4, p. 95; special report, Appendix No. 5 , pp. 113-119.
HYDROGRAPHIC INSPECTOR, p. 12; reference to, in estimates, p. 11 ; report of the, for the year ending June 30, 1883, Appendix No. 5, pp. 113-119.
hydrographic re-surveys. Progress of, pp. 2,3; of Fisher's Island and New London Harbor, pp. 21, 22; of Gardiner's Bay and approaches, south coast of Long Island Sound, p.24; of western shore of Long Island Sound, p.26; of the approachen to New York Harbor, p 26; of Delaware Bay and River, pp. 32, 33; of Lower Delaware Bay, p. 34 ; of Saint John's River and Bar, Fla., p. 42.
hydrographic surveys. Progteas of, pp. 2, 3; in Narragaagus and Pigeon Hill Bays, pp. 13, 14; of eastern entrance to Long Island Sound, p. 20; burvey of Cape Fear River entrance and in Croatan and Pamplico Sounds, p. 40; in the vicinity of Cape Romain, S.C., p. 41; between Jupiter Inlet and Key Biscayne, p. 45; of weat coast of Florids, between Charlotte Harbor and Tampa Bay, p. 47 ; from Monterey, Cal.. southward, p. 53 ; in vicinity of Point Arena, Cal,, pp. 56, 57; in vicinity of Mendocino City, Cal., p. 57; of Gray's Harbor and in the Strait of Fuca and Admiralty Inlet, pp. 58, 59 ; of Sontheastern Alaska, p. 60.
HYDROGRAPHY. General statement of progress, pp. 2, 3; physical, p. 7; off south coast of Long Island and lines of depp-sea soundings in vicinity of New York Bay entrance, p. 27; verification of, for Atlantic Cosast Pilot, p. 28; of eosst of Texas, from Gal veston entrance, eastward, p. 50 .
hypsometric measures by spirtt-level, the verTICAL CIRCLE ANDTHE BAROMETER, MADE IN MARCH AND APRIL, 1880, BY GEORGE DAVIDSON, ASSISTANT. Discussion by Charles A. Schott, Assistant. Results of observa tions for Atmospheric Refraction on the line Mount Diablo to Martinez, California, in connection with, Appendix No. 12, pp. 289-321.
HYPSOMETRIC OBSERVATIONS NEAR WASHINGTON CITY, D. C., p. 39. I.

IARDELLA, C. T., ASSISTANT. Continuation of the topographic re-survey of weet shore of the Delaware River and Bay, from New Castle, sonthward, p. 35.
ILLINOIS. Bxtension of primary triangulation in, pp. 4, 64:68; determination of latitude and longitude atations in, p. 63.
indIA. Pendulum observations in British, p. 6.
INDIANA. Extension of triangulation in, pp. 4, 63; determination of latitude and longitude of stations in, pp. 63, 66 .
INDI A N A POLIS, IND. Longitude of, p. 67.
indian river, Fla. Navigation of, p. 43
indian river inlet, fla. Progress of survey of, pp. 3, 43, 44; survey of eastern coast of Florida from, quathward, pp. 43, 44. INFORMATION FURNISHED FROM THE OFFICE OF THE COAST AND GEODETIC SURVEY IN REPLY TO SPECIAL CALLS DURING THE YEAR ENDING JUNE $30,1888$. Appondix No. 3, pp. 87-92.
TNSTRUMENTS AND REPAIRS. Reference to, in estimates, p. 11; see Appendir No. 4, p. 111; Appendix No. 5, pp. 115-117.
INTERAATIONAL POLAR COMMISSION STATION, POINT BARROW, ALASKA, p. 61.
interior department of the united states. verification of the survey of northern boundary of Wyoming Territery by officers of the survey at request of the, pp. 1, 7, 70, 71.
INTERIOR STATES. Geodetio work in, and across, pp. 3, 4.
IRONTON, LAW RENCE COUNTX, OHIO, p. 63.
ISLAND HEIGHTS, TOM'S RIVER, p. 31.

I.

JACKSONVILIE, FLA., p. 42.
JAMESTOWN (U.S.S.). Obeervatione of Gulf stream by officors of the, $p .19$.
JANESVILLE STATION, WIS., p. 65.
JAPAN. Detormination of force of gravity in, pp. 1, 8, $0,71,72$.
JAPAN STREAM. Carrent observations in, p.g.
JARMAN'S STATION, VA., p. 30.
JAVA HARTHQUAKE. Reported by tidal obnervera, pp, 05, 61.

JEFF. DAVIS PEAK. Primary triangulation near, pp. 68, 69.
JEFFRLES, ALFRED, ENSIGN, U.S. N. Services in Section I,
p. 14; in Section VI, p. 42.

JELLICO, WHITELY COUNTY, KY., STATION, p. 62.
"JOE FLOGGER SHOAL." Examination of, p. 28
JOHNSON, J. A., ACTING ATD. Services in Section XV, p. 68.
JOHNSON STATION, WEST OF QUINCY, LEWIS COUNTY, KY., $\mathbf{F} .40$.
JONES, W. O., ACTING AID. Services in Section II, p. 29; in Section VIII, p. 48.
JONESPORT, ME., p. 13
JORDAN, J. N., ENSIGN, U.S. N. Services in Section XI, p. 50.
JUNCTION STATION, FLA., pp. 43,44
JUNKEN, C. Drawing Division, Coast and Geodetic Survey Office,
and in office of Hydrographic Inspector, Appendix No. 4, p. 100 ; Appendix No. 5, pp. 117, 118.
JUPITER INLET. Hydrographic aurvey between, and Key Bis-
cayne, p p. 3, 45; current obserrations off, pp. 3, $38,45,46$.
JUPITER LIGHT-HOUSE. Triangulation near pp. 43; 44.
JUPITER RIVER. Topography of, p. 43.

E.

KADIAK ISLAND, ALASKA. Tidal observations at, pp.61,73; Appendix No. 4, p. 97.
KANSAS CITY, MO. Geodesic levelng near, pp. 4, 68; latitude of station at, 66, 67; longitude of, p. 67.
KANSAS-COLORADO BOUNDARY, p. 69.
KANSAS PACIFIC RAILROAD. Surveying camps on line of, p. 69.

KARCHER, LOUIS. Drawing IVivision, Coast and Geodetic Survey Office, Appendix No. 4, p. 100.
KASKASKIA RIVER. Geodesic leveling near, p. 65.
KATER INVARIABLE PENDULUMS. Operations of the, pp.6, 54, 55, 72.
KATO, PRESIDENT OF UNIVERSITY OF TOKIO, TAPAN.
Facilities offered officers of the survey while in Japan, p. 72.
KATZ, E. M., ENSIGN, U.S. N. Services in Section II, p. 32; in Section VI, p. 45.
KeARNEX, S. Instrument Division, Coast and Geodotic Survey Office, Appendir No. 4, p. 111.
FELLOGG, FRANCIS W., MIDSEIPMAN, U. S. N. Services in Section II, p. 25.
KENDRICK STATION, MO., p. 67.
KENESAW-CARNES, ALA. Base-line, p. 48.
KENTUCKY. Progress of triangulation in, pp. 3, 4, 30, 40, 62, 68 ; determination of longitude stations in, pp. 61, 62, 66.
KENTUCKY AGRICULTURAL AND MECHANICAL COLLEGE AT LEXINGTON. Astronomical station in grounds of, p. 61.
"KETTLE-BOTTOMS." Examination of depths of, p. 28.
KICW, FNGLAND. Pendulum experiments at, p. 6.
KEY BISCAYNE BAY. Survey of Florida coast near, pp. 44, 45 ; hydrographic survey between Jupiter Inlet and, p. 45.
KEYPORT, N.J., p. 8.
KET WEST, FIA., p. 47.
KILLINGTON MOUNTAIN. Triangulation station on, pp. 15, 16.
KING PEAK, HUMBOLDT COUNTY, CAL, p. 57.
KNAPP, HARRY S, ENSIGN, D. S. N. Servicen in Section II, pp. 20,27 ; in Section VI, p. 47.
KNIGHT, H. M. Engraving Division, Coast and Geodetic Survey Office, Appondix No. 4, p. 103.
KNOBNOSTER STATION, MO., pp. 67, 68.
KNOXVILLE, TENN., p. 62.
KOCH, E., SERGEANT, U. S. A. Tidal observer at Fort Trumbull, New London, Conn., p. 23.
KUMMELI, CEARLES H. Computing Diviaion, Coast and Geodetic Survey Office, Appendix No. 4, p. 96 .

喠。

LABRADOR CURRENT. Passage under the Gulf Stremm of, p. 10. LAEAYETTE PARK, SAN FRANCISCO,CAL. Cant and GeO. detic Survey astronomical station at, p. 33 ; pendulum experiments at, p. 5 ; observations for titue at, p. 61 .
LAHAINA, ISLAND OF MAUI, PACIFIC OCEAN, p. 73.
LAER CHAMPLAIN. Conneotion of triangulation of, with that of the Great Lakes, ppi 2,29, 30; with triangulation of Maine and Hudson River y. 15; leveling operations between Kris Canal and, p. 29.
S. Ex. 29 -III

LAKE HARNEY, FLA. Description of, p. 43.
LAKE JESCP, FLA. Description of, p. 43.
LAKE MONROE, FLA., pp. 3, 42, 43.
LAKE NORTH CUT, FLA., p. 45.
LAKE POINSETT, FLA. Description of, p. 43.
LAKE SURVEY STATIONS, p. 30.
LAKE WASHINGTON, FLA., pp. 3, 42, 43.
LAKE WINDER, FLA. Degeription of, p. 43.
LAKE WORTH, FLA. Topography in vicinity of, p. 44.
LANDSMAN--FIRST VIEW. Primary triangulation line, p. 69.
LASSAC STATION, CAL., p. 57.
LATITUDE OBSERYATIONS. At Washington, D. C., p. 37; in
Virginia, p. 39; in Mibsonri and Arkansas, p.49; in Indiana ant
Illinois, pp. 63, 64; at Caroline Isiand, Pacific Ocean, p. 73.
LAUDERDALE STATION, FLA., p. 45.
LAWSON, JAMES S., ASSISTANT. Magnetic observatory erected in State Normal School grounds, Los Angeles, Cal. p. 51 ; continuation of primary triangulation northward from Point Concepcion, Cal., pp. 52, 53; assistant astronomer on party to observe the transit of Venus in New Mexico, p. 70.
LAY, CAPTAIN T., U. S. REVENUE MARINE. Services ren ${ }^{-}$ dered officers of the survey by, p. 48.
LEAGUE ISLAND, DELAWARE RIVER, p. 7.
LABANON, LEBANON COUNTY, PENN., p. 36.
LEDGES AND SHOALS DEVELOPED, pp. 5, 14, 21, 33 ; reference to, in estimates, p. 9.
LeEAVOR, F. H., MASTER, U.S.N. Servicez in Section X, pp. 53, 57.

LEHMAN RANCH, NEV. Observation of transit of Venus, at, pp. $5,68,69$.
LEIPER, E. F., ENSIGN, D. S. N. Services in Section II, p. 34 .
LEIPSIC CREEK, DELAW ARE BAY, p. $\mathbf{3 2}$.
LEMON BAY, FLA., p. 47.
'LEO" (achooner). Use of, in Section X, p. 54.
JEVELING. Georiesic, p. 4; reference to, in estimates, p. 10; for connection of Coast Survey reference mark at Albany, N. Y., with the stations on Mount Mansfield, Vt., p. 29; westward from Saint
Lonis towarde Kanaus City, Mo., p. 68.
LEWES, DEL., p. 31 .
LEWES CREEK, p. 33.
LEXINGTON, KY. Astronomical station established in gronnds
of Agricultural and Mechanical College at, p. 61.
LIBBY ISLANDS, MACHIASBAY, p. 13.
LICK OBSERVATORY, AT MOUNT HAMILTON, CAL., p. 55.
LIFE-SA VING STATION, NO. 10. Triangulation near, p. 23.
LIGHTHOUSE BOARD. Special surreys for, referted to in esti-
mates, p. 10 ; reference to the, pp. 12, 29; determination of posi-
tion of spindle fixed by, on Jordan's Delight, Pigeon Hill Bay, p. 14.
LINDENEOHL, A. Drawing Division, Coast and Geodetic Surrey Offer, Appendix No. 4, p. 99.
LINDENKOHL, H. Drawing Dirision, Coast and Geodetic Sarrey Office, Appendix No. 4, p. 100.
LINE OF DEEP-SEA SOUNDINGS FROM OFF NANTUCKET ACROSS THE GULF STREAM, pp. 16, 46.
IINES OF DEEP.SEA SOUNDINGS AND TEMPERATURES OFE THE ATLANTIC COAST OF THE UNY'CED STATES, p. 40.

LITTLE NARRAGANSETT BAY, p. 2 .
LITTLE ROCK, ARK. Longitude observations at, pp. 49, 50, 66.
LITTLE SARASOTA BAY, FLA., p. 47.
LLOYD'S METEOD. Reference to, p. 44.
LONDON, ENGLAND. Use of Kater invariable penculum at, p. 6; exhibit by the Coast Survey at the recent International Exposition at, p. 8.
LONDON, KY. Longitude observations at p. 66.
LONG BEACH POINT, N. Y., p. 24.
LONG BRANCH, N.J. Relative to use of iron pier of Ocean Pier Company at, for self-rogulating tide-gange, Appendix No. 4, p. 98.
LONGFELLOW, A. W., ASSISTANT. Topography of shores of Pleasant River, Me., p. 13; in offce of assistant in charge of the offiee, Appendix No. 4, p. 94.
LONG ISLAND. Re-survey of, pp. $2,16,20,21,23$; lines of sounding normal to coast aff south shore of, p. 17; re-establishment of points of former triangalation and determination of new points on shores of $\mathbf{~ p p . 2 3 , 2 6 .}$
LONG ISLAND SOUND. Re-survey of, pp. 1, 2, 20-25; reference to, in eatimates, p.9.

ALPHABETICAL INDEX.

LONGITUDE OBSERVATTONS. In Fliridr, pr. 3, 41, 42; in Ken tucky, p. 3; at. Washington, D. C., p. 37 ; in Yirginia, p. 39; in Missouri and Arkansas, pp. 49, 50, 66; at Point Batow, Alaska, p. 61; at Louisville, Ky., pp. 61, 62; in Indiana and Minois, pp. 63, 64; at Saint Lonis, Mo., for determination of points in Arkausas, Missoari, Nebraska, Kentucky, Iudiana, and Illinois, pp. 66, 67; at the Caroline Islands. Iacific Ocean, p, 73.
LOOMIS STATION, p. 30.
LOS A NGELES, CAL., p. 1^{2}; establishment of a magnetic self-registering record station at, p. 51.
LOSPE STATTON, CALL, pp. 52, 53.
LOUDOUN COUNTY, VA. Special survers in, p. 39.
LOUISA, LATRENCE COUNTT, KY., p. 6 ?
LOUISIANA. Survey of coast of, pp 3, 48, 49; reference to, in estimates, p. 10.
LOUISVILLE, KY. Determinations of longitude at, pp. 3, 81.
LOWELL, ME. Recovery of triagulation station of 1862, p. 13.
lower cedar foint, potomac kiver, p. 28.
LOWER DELAWARE BAT. Re-survey of, p 34.
Lower machodoc rlyer, p. 28.
LYMAN, C. W., AID. Services in Section I, p. 13.

M.

MaChras bay and RIVER, ME. Progress of work in, p. 2 ; abstracts of work on Atlantic coast from, to Texas, pp. 12-51; triangulation and topography of, pp.12, 13.
MACHIASPORT, ME., pp. 12. 13.
Mackentio, generale, U.S. A., p. 70.
MAD RIVER SUMMIT, CAL., p. 57.
MADISON, WIS., p. 65.
MaEdel, E. A. Engraving Division, Coast and Geodetic Survey Ollice, Aypendix No. 4, p. 103.
MAGNETIC DECLINATION. At stations in California, p. 52; distribution of, in the United States at the epoch, January, 1885, Appendix No. 13, by C. A. Schutt, Assistant, reference to, Appendix Nu. 4, p. 95.
Magnetic observations. At Point Barrow, Alaska, p. 6 ; discussion of, at the United States Polar Station at Ooglaamie, Alaska, by C. A. Schott, Assistant, A ppendis No. 13, pp. 323-365.
MAHONS RIVER LIGHT, p. 32 .
MAINE. Triangulation in, pp.2,15; surrey of coast of, referred to in estimates, p. 9 .
MANATEE RIVER, FLA., 1-47.
MANN, TL B, AID. Services iu Section III, p. 39.
MANNSVILLE. Lake Survey Station, p. 30 .
Mansfieli, H. B., LIEUTENANT, U. S. N. Hydrography of eastern entrauce to Long Island Sound, pp. 20,31; hydrographic re survey of Delawart liay aud River, p. 33 ; Eee also A ppendix No. 5, p. 113 ; hydrographic survey between Jupiter Inlet and Key Biscayue, Fla., p.45; hydrography of west coast of Florida to northward and soothwarl of Tampa Bay, p.47; command of steamer Bache, Appentix No.5, p. 114.
MAP OF THE UNITED STATES. Suggested by Assistant R. D. Cuts and approred by the Superintendent, p. 74; reference to, in Appendix No.4, p. 94; commenced in Drawing Difision, Coast and Geodetic Survey Office, p. 99.
Maklguana. Soumings off, p, 4 g.
Marindin, il. L., ASSISTANT. Relerence to, p. 31 ; information relative to physical surver of Delaware River furnished U.S. Advisory Comaission?loy, p. 投; hydrographic re-survey of Delaware Bayand hiver, p. 32 ; see also Appendix No. 5, p. 113.
MaRION, Marion CoUnty, omio, p 63.
MARR. RObERT A., AID. Services in Section MII, pp. 36,37; in Section X, pp. $54-56$; in Section XIL, p. 61; acting assistant in Sectien XVI, p. 69.
MARTINEZ, CAL. Results of observations for atmospheric refraction on the line Mount Diablo to, in connection with hypsomotric monsures by spirit-level, the vertical eirele, and the barometer, made in March aud April, 1880, by George Davidson, Assistant. Discussion by Charles A Schott, Assistant, Appendix No. 12, pp. 289-321.
mary island, revillagigedo channel, alaska, p. 80.

MARYLAND. Operations of the survey in, p.2; base line ceferred to, pp. 39, 48.
MASHUMUCK POINT, GARDINER'S BAY, p. 24.

MASSACHOSETTS (ateamer). Development of dangerous rock on which the, had struck in entrance to Fisher's Islaud Sound, p. 21.

MATAGORDA BAY, TEX. Triangulation in vicinity of, p.3,51; abstracts of work on Atlautic coast from Maine to, pp.12-51,
matagorda peninsula, p. 51.
mati, an iscand of pactific ocean, pp. 6, 73.
MAXIMA AND MINIMA TIDE-PREDICTING MACHINE, p 8 ; description of, by Prof. William Ferrel, Appendix No. 10, pp. 253-272.
Mazatlan, Mexico. Tidal station at, not heard from, Appen. dix No. 4, p. 97.
MCARTHTR (steamer). Use of, in Section X, pp. 53, 56, 57; Appendix No. 5 pp. 113, 114.
McCalldm, Captain of royal engineers. Conrtesies extended nfficers of Coast Survey in British India by. p. 72.
McClain, C. S., ENsign, U. S. N. Serviees in Section II, p. 26; in Nection VI, pp. 45, 48.
McCORKLE, S. C., ASSISTANT. Reestablishment of points of old triangulation, and determination of new points from Watch Hill westward, for the re-survey of Long Islaud Sound, p. 21; reference to work below Reedy light-house, p. 31; reconiaissance for the connection of the Grlf-coast triangulation on Mobile Bay, Ala., and vicinity with the primary triangulation at or near atlanta, Ga., p. 48.
McCORMICK OBSERVATORY, UNIVERSITY OF VIRGINIA, p. 39.

McDANIEL STATION, OHIO, p. 63.
mcgill college, CANADA. Pendulum experiments at, p. 27.
MoGrath, J. E., AID. Services in Section IX, p. 61; in Section XV, p. 68.
MCNICOL, JOHN A. Recomaissance along boundary of Tnited States in Maine and New Hampshire, p. 15.
MEAN PLACES OF 1278 TIME AND CIRCUMPOLAR STARS FOR IEPOCH 1885.0, Appendix No. 18, pp. 383-472.
meascrement of force of gravity, pp. 8, 27.
MEASUREMENT IN 1881 OF PRIMARY BASE LINE IN YOLO COUNTY, CAL. By George Davidson, Assistant. Appendix No. 11, pp. ${ }^{\text {'273-288. }}$
MENDOCINO CITY, CAL. Hydographte survey in vicinity of, pp. 3, 57.
mentz, G. W., Liedtenant, U.'S. N. Serrices in Section II, pp. 20, 27; in Section VI. p. 46.
MERCURT. The Transit of, 1881. By George Davidson, Assistant. Appendix No. 15, pp. 369-370.
MERMENTEAU PASS., LA. Survey of coast near, referred to in estimates, p. 10.
MERRIMAN, PROF. MANSFIELD, ACTING ASSISTANT. Reconnaissance and extension westward of the triangolation of State of Pennsylvania, p. 36.
mexico, GULF of. Model of the bottom of, exhibited at Iaternational Fieleries Exposition in London, p. 8; triangulation between Mobile Bay and, p. 48; distribution of surveying parties upon the Atlantic and Pacific coasts, and the interior of the United States during the fiscal year 1882-'83, Appendix No. 1 , pp. 77-84.
MIAMI, FLA., p. 45.
MILKHOUSE FORD ROAD, D.C., p. 37.
MILLER-CASELLA DEEP-SEA THERMOMETER, p. 18.
milton, J.b., heutenant, U. S. N. Services in Seetion X, pp. 53, 57.
MLSCELLANEOUS DIVISION, COAST AND GEODETIC SURVEY OFFICE. Report from M. W. Wines, chief of, Appendix No. 4, pp. 107-109.
MISPILLION CREEK. Reference to light-honse at, p. 31.
MISSISSIPPI RIVER. Survey of coast of Louisiana west of, pp. 3, 48, 49; reference to in eatimates, p. 10 ; lines of level across, at Saint Louis, p. 64; stations west of, necessary to complete data for Gulf tides, Appendix No. 4. p. 88.
MISSOTRL. Determination of longitude pointe in, pp. 4 ; 68 ; continuation to the westward of the primary triangulation in, near the thirty-ninth parallel, p. 67.
MITCHELLL, HENRY, ASSISTANT. Resignatiou of position as member of Advisory Board of Harbor Commisaioners of Norfolk and Portamouth, p. 30; physical survey of Delaware Bay and River, pp. 31, 32; the estuary of the Delaware; a report by, Appexdix No. 8, pp. 239-245.
mitueell, ind. Geodesic leveling near, pp.4, 63, 64, 68.
MOBLLE ALA. For continuing primary triangulation from Atlanta to, p. 48; reference to, in estimates, p. 10.
mobile bAy. Reconnaissance in, pp. 3, 48; examination of changes in, p.48; reference to, in estimates, p. 10.
MOLKOW, B., DRAWING DIVISION, AND DIVISION OF
TOPQGRAPHY, COAST AND GEODETIC SURYEY OFFICE,
Appendir No. 4, p. 100.
MONROE LAKE, FLA. Soundingein, pp. 42,43.
Montalk Light, pp. 17, 23.
MONTAUK POINT, LONG ISLAND. Deep-sea soundings off, pp. 2, 17: determination of points of former triangulation and new points near, p. 23.
monterex, Cal. Hydrographic survey near, pp. 3, 33.
MONTREAL, CANADA. Determination of force of gravity at, pp. 27, 36, 42.
MOORE, F., ENGRAVING DIVISION, COAST AND GEO. DETIC SURVEY OFFICE, Appendix No. 4, p. 103.
MOORE, JUSTIN P., VICE-PRESIDENT OF CALIFORNIA
aCADEMY OF SCIENCES. Observation of transit of Vedus on Mount Diablo by, p. 54.
MOORE, M. N., bench-mark at Mitchell, Ind., cut on window-sill of, p. 64.
MOOS-A-BEC REACH. Topography of islauds in, pp. 2, 13.
moose molntain, n. H., p 15.
morgan, W. B., disbursing agent, Coast and Geodetic Survey, p. 74.

MORRILL, FENRY, MASTER, U. S. N. Serrices in Section II, p. 27; in Section VI, p. 46.

MORSE, FREMONT, AID. Services in Section XII, p. 60.
MOSMAN, A. T., ASSISTANT. Triangulation of Delaware Bay and River, p. 31; reconnaissance for the extension of the primary triangulation near the thirty-ninth parallel westward, in West Virginiu, Ohio, and Kentucky pp. 39, 40; also from West Virginia into Ohio, p. 63; on duty in office of assistant iu charge of Const and Geodetic Survey Offee, Appendix No. 4, p. 94.
MOTHER CAREX'S CHICEENS, p. 19.
MOUNT ANTHONX, VT., p. 16.
MOUNT AZISCHOHOS, ME., p. 15.
MOUNT BLUE, ME., p. 15.
MOUNT DIABLO, CAL , pp. 54-56; see Appendix No. 12. pp. 289321.

MOUNT GUNSTOCK, N. H., p. 15.
MOUNT HAMILTON, CAL. Lick Observatory at, p. 55.
MOUNT HAMILTON, N. Y., p. 30.
MOUNT KILLINGTON, VT., pp. 15, 16.
MOUNT LORE STATION, TENN., p. 62.
moUni mansfield, $\mathbf{\text { mt }}$. Primary triangulation on, pp. 2, 15 , 16, 89.
moUnt nebo, utah, p. 68.
MOUNT OLIVE, N. J., p. 30.
MoUnt pleasant, me., p. 15.
MOUNT TAMALPAIS, CAL., pp. $55,56$.
MOUNT WASHINGTON, N. H. Primary triangulation station on, pp. 2, 15, 14.
MYSTIC RIVER. Topography of wharf lines of, p. 22.
MYSTIC HARBOR. Dangerous rocks reported in approach to, p. 5.

N.

NANSEMOND RIVER. Topographic survey of sbore of pp. 3, 38. NANTUCKET. Deep-sea soundings off, pp. 2, 16, 27.
NANTUCKET SHOALS. Deop-sea soundings near, p. 47.
NAPATREE POINT, $p .22$.
NAPEAGUE HARBOR AND BAY, pp. 23, 24.
NARRAGANSETT BAY. Tidal survey of, p. 20.
NARRAGUAGUS BAY: Hydregraphic survey of, pp. 2, 13.
NATIONAL ACADEMY OF SGIENCES. Observation of total eclipse of sun, May, 1883, under auspices of, p. 6.
NAUTICAL ALMANAC. Reference to standari stars of, English and American, p.b.
NAVAL OBSERVATORY, WASHINGTON, D. C., p. 39.
NAVESINK, THE BIGHLANDS OF, pp. 2, 31; lighte of, p. 18.
NAVIDAD BANK, p. 46.
NAVY DEPARTMENT. Lnaan of ateam-launch to the Coast Sur. vey by, p. 24.

NAVY. Officers of the U.S., attached to the Coast and Geodetic Sursey, p. 12; reference to, in estimates, pp. 9, 10; for list of, see Appendix No. 5, pp. 118, 119.
NEBRASKA. Determination of Iongitude points in, pp. 4, 00.
NEVADA. Primary triangulation in, pp. 4, 68.
NEW CASTLE, DEL., p. 35.
newcastle, ohio, primary triangulation sta. TION, p. 63.
NEW DUNGENESS, PCGET SOUND, p. 58.
NEW ENGLAND STATES. Operations of the Survey in, and on the coast of, p. 2.
NEW HAMPSHIRE. Primary triangulation in, p. 15.
NEW HAVEN REGION. Relative to triangulation of, p. 25.
NEW JERSET. Re-survey of coast of, in limits of, pp. 2, 31; reference to, in estimates, 9; triangulation in northern part of, pp. 30. 32, 34; notice of sunken wreck in track of vessels on coast of, p. 5; tidal observations on coast of, p. 8; publication of Coast Pilot relating to, p. 29.
NEW LONDON, CONN. Resurvey of, pp. 2, 21-23; tidal observa-
tious, pp. 2, 23; see also Appendix No. 4, p. 97 ; rocks reported iu approaches to harbor of, pp. 5. 21.
NEW MEXICO. Observations of Transit of Yenus of Jecember, 1382, near Fort Selden, pp. 4, 5, $\overline{2} 2,53,56,70$.
NEW ORLEANS, LA. Steamer Barataria laid up at, p. 49; the Gedney docked for repairs at, p. 50.
NEW PASS, FLA., p. 47.
NEW RIVER, FLA., p. 45.
NEW SOUTH WALES, Determinations of force of gravity at, pp. 3, 0, 71, 72.
NEWTON, JOHN T., ENSIGN, C. S. N. Serrices in Section II, p. 33.

NEWTON, PROF. H. A., OF YALE COLLEGE. Determination of geographical position of new observatory at Yale College at request of, p. 25.
NEW YORK. Work on coast of, and within limits of, p. 2; primary triangulation across State of, pp. 29, 30.
NEW YORK BAY. Deep-sea soundings off, pp. 2, 27; publication of Atlantic Coast Pilot from, to the Chesapeake, p. 29.
NEW YORK CITY. Deep-sea soundings in approaches to, p. 47.
NEW YORK HARBOR. Re-surveg of, pp. 2. 26.
NEW ZEALAND. Pendulum observations at stations for obeerving the transit of Venus in, pp. 1, 3, 5, 6, 54, 71.
NEW ZEALAND TRIGONOMETRICAL SURVEY, p. 72.
NIANTIC BAY, LONG ISLAND SOUND, p. 18.
NICHOLS, H. E., LIEUTENANT-COMMANDER, U.S. N. COntinuation of the hydrographic reconaissance of the shore-line and harbors of Southeastern Slaska, p. $60 ;$ see Appendix No. 5 p. 113.

NOANK, CONN., pp. 21, 22.
NORFOLK, VA. Survey near, p. 31; steamer Endeavor prepared
for work at, p. 33.
NORMAL SCHOOL BUTLDING, WARRENSBURG, MO., pp. 67, 68.

NOREIS CUT, FLA., p. 44.
NORTH AMERICA. Magnetic map of, referred to in estimates, p. 9.

NORTH ATLLANTIC BASIN, pp, 1, 46.
NORTE ATLANTIC OCEAN. Deep-sea explorations in western part of, p. 8 .
NORTH CAROLINA. Opbrations of the Survey on coast of, and in, p. 2; reference to, in estimates, p. 10; deep-sea sonudings and temperature observations off coast of, p. 3.
nortir haven island, pesobscot bay, me. Tidal ob servations at, p. 14; Appeudix No. 4, p. 97.
VORTH MONUMENT, KEY BISCAYNE, FLA. Of primary
base-line of 1855, found undisturbed, p. 44.
NORTH MOUNTAIN, MD., p. 39.
NORTH SHEFFIELD COLLEGE OBSERVATORY, p. 25.
NOTICES TO MARINERS. Discoveries and develipments of dangers to navigation, pp. 5. 21.
NUECES BAX, TEX. Topography of, pp. 3, 51.
o.

OAHU, HONOLULTV. Pendulum experiments at, p. 73.
OAKLAND CREEK, CAK., p. 54.

OBSERVATIONS FOR LATITUDE AND LONGITUDE, pp. 38 , $41,42,49,50,61,66,67$.
OBSERVATIONS IN CONNECTION WITH THOSE MADE AT CAROLINE ISLAND, SOUTH PACIFIC OCEAN, OF THE TOTAL ECLIPSE OF THE SUN, May 6, 1883, p. 72.
OBSERFATIONS OF CERRENTS. At stations near the entrance to Chesapeake Fay and thence southward, p. 38; off Jupiter Inlet, Fla., p. 45.
GBSERVATIONS OF THE TRANSIT OF VENUS. At Wash. ington, D. C., p. 37; see Appendix No. 16, pp. 371-378; at San Franctaco, Cal., p. 53; at Cerro Roblero, near Fort Selden. New Mexico, p. 70; at Auckland, Now Zealand, pp. 71, 72.
OBSERVATORI OF GREENWICH, ENGLAND, p. 6.
OBSERYATORY OF TALE COLLEGE. Geographical position cietermined, pp. 2, 25.
OCCUPATION OF' STATIONS. For determining points in the triangulation of New Hampshire, $p .15$; of the primary triangulation north of San Francisco Bay, p. 55; in continuation of triangulation of Temnessee; $p .62$; in continuation of triangulation of Ohio, p. 63 ; in continuation of triangulation of Wiaconsin, p. 65. OCOUPATION OF THE STATION AT SAVANNAR, GA. FOR THE DETERMINATION OF THE LONGITUDE OF SAINT AUGUSTINE, FLA., by exchange of telegraphic signals, p. 41; at Louisville, Ky., for determination of longitnde of additional stations in Kentucky, p. 61; of longitude atation in Saint Louis, Mo., for determination of longitade in Arkansas, Missouri, Nebraska, Kentacky, Indiana, and Illinois, and of latitude, p. 66.
OCEAN CERRENTS. Observations of, p. 3; reference to, in estimates, p. 9.
OCEAN PLATEAK, SOUNDINGS, p. 46.
OCRACOKE INLET. Bnoys out of place in, p. 41.
ODESSA, APPOQUINTMINK CREFK, DEL., p 35.
OFFICE EXPENSES. Explamation of estimates for, p. 9 ; reference to, in estimates, pp. $10,11$.
OFFICE REPORTS FOR TEE YEAR ENDING TUNE 30, 1883 , See Report of the assistant in charge of offee and topography, Appendix No. 4, pp. 63-11.
OFFICE WORK, p. 4.
OGDEN, H. G., ASSISTANT. Examination of the monaments of the Trial Base Line at Fort Myer Reservation, Va, p. 38. In charge of Engraving Division, Coast and Geodetic Survey Office, Appendix No. 4, pp. 302-107.
OH1O. Keconalssance for extension of primary triangulation in, pp. 3, 4, 39, 40,63.
OBIO AND MISSISSIPPI RATLROAD. Geodesic leveling near, p. 64 ; bench-mark on pier of bridge of, p. 65.

OHIO RIVER. Reconnaissance near, pp. 40,62.
"OLD TOWER-SHOAL POINT," FLA, p. 44.
OLYMPLA, WASEI.TER. The Fuca laid np at, p. 50.
OMAHA, NEBR., pp. 86, 67.
OOGLAAMIE, POINT BARROW, ALASKA, p. 54; Digeumion of Magnetic Observationg at the United States Polar Station at, by C. A. Schott, Assistant, A ppondix Mo. 13, pp. 323-305.
OPERATIONS AT SAN FRANCISCO, CAL., FOR THE DETERMIN ATION OF LONGITUNE OF TRANSIT OF VENUS STATION AT FORT SELDEN, N. MEX., by exchanges of tele. graphic sigasis, p. 53.
ORCHARD, J. M., ENSIGN, U, S. N. Service in Section II, p. 26 ; in Section VI, pp. 45, 48 .
OREGON. Opurations of the Sarver within and on the coast of, pp. 3,57,58; reforence to, in estimates, p. 10; Coast Pilot for, p. 58.
ORGAN MOUNTATNS, N. MEX., p. 70.
ORIENT BAY, p. 24.
OSBORNE, PHOFESSOR, PRYNOTPAT OF MISSOURI STATE NORMAL SCHOOL. Thanks for interest taken it work of offcers of the Surrey, p. 68.
OSTERHAUS, MUGO, LIEUTENANT, D. S. N. Servicea in Seotion LI, p. 32: hydrographic re-survey of Delaware Bay and River, F. 33; command of the Endesvor, Appendix No. 5, p. 113; relieved from daty on the Coast Survey, p. 114.
O'STLLIVAN. T. J., DRAWING DIVISION, COAST AND GEODeTIO SURVET OFFICE, Appendix No. $4, p .100$.
OTSEGO STATION, CHERRY VALLET, N. Y. p. 30.
OXFORD MOUNT, CANADA, p. 15.
OXSTER OREKK, TEX. Triangulation atation of 1851 reeovered, p. 51.

P.

PACIFIC COAST. Triangulation between the Athantic and, pp. 1,64 ; referred to, in estimates $p .10$; progress of work on the, p. 3 ; tides of the, reierred to, in estimates p. 10; also magnetic observations. Determinations of gravity by means of pendalum observations on, p. 1 ; observations of transit of Fenus on, p. 54; Distribution of surveying parties upon the Atlantic, Galf of Mexico, and, and the interior of the United States duriag the fiscalyear 1882-'83, Appendix No. 1, pp. 81, 82.
PALINURUS (schooner). Use of, in Section II, p. 21; see, also, Appendix No. 5, pp. 113, 115.
PALMYRA, JEEFERSON COUNTY, WIS., p. 65.
PAMPLICOSOUND, N. C., FYDROGRAPHIC SURVEY IN, pp. 3, 40, 41.
"PAN HANDLE," W. VA., p. 36.
PARKER, I. P., ENSIGN, U. S. N. Serviees in Section V, p. 41. PARSONS, F. H., SUBASSISTANT. Services in Section YTI p. 39; in Section VIII, p. 50 ; in Section XIII, pp. 61, 62 ; in Section XV, pp. 66, 67.
PARSONS, JOHN W., WRITER TO THE COAST PILOT, p. 28; accountant to disbarsing agent of Coast and Geodetic Survey, p. 74.

PART 1. Report for 1883, pp. 1-11; Part T1. Report for 1883, pp. 12-74; Part III, Appendices to Report, pp. 75-535.
PATTERSON (steamer). For transfer of the, to waters of Alaska, reference to, in egtimates, p. 10 ; plans and specifications for the, by Lieut. Richardson Clover, U.S. N., p. 12.
PEA PATCH ISLAND. Notable increage in gige of, rad causeb, p. 35.

PEIRCE, CHARLES S., ASSISTANT. Determinations of the force of gravity at Montreal, Canada; Albany, N. Y.; and Hoboken, N.J., p. 27 ; see, also, A ppentix No. 19, Results for Force of Gravity, by, pp. 473-488. Observations at Baltimore and Waskington, pp. 36, 37; eccupation of the station at Savannah, Ga., for determination of lomgitude of Saint Angustine, Fla, by telegraphic signals, pp. 41, 42; longitude of station at Saint Augustine, Fla., p. 42.
PELICAN ISLAND, MOBILE BAY. Not found, p. 48.
PENDULUM EXPERIMENTS, p. 1; at Albany, N. Y., at Hoboken, N.J., pp. 6, 27; at Beltimore and Wabhington. pp. 2, 6, 36, 37 ; st San Francisco, Cal., pp. 3, 6, 54 ; at Saint Angustine, Fla., pp. 6, 42 ; at Point Barrow, Alaska, pp. 3, 7, 54, 61; at Auckland, New Zealand, pp. 4, 6. 54. 72; at Caroline Island, South Pacifie Ocean, pp. 4, 72, 73 ; in Montreal, Canada, pp. 6, 27; at Sydney, Now South Wales; at Singapore, British India, at Tokio, Japan, pp. 6, 72.
PENFIELD REEF, CONN., SEORE OF LONG ISL.AND SOUND, p. 25.

PEN MOUNT STATION, N. Y., p. 30.
PENNSVILLE, N.J., p. 34.
PENNSYLVANIA. Progrese of work of survey in, p. 2; tetermi, nation of boundary line between Weat Firgivia and, pp. 2, 38; reconnafasance, and exteasion westward of triangulation in, p. 36.
PENOBSCOT BAT. Relative to dimenssion of tides in, p. 8 (ses also A ppendix No. 11, of Report for 1878). Tidal observations in, p. 14.

PERKINS, F. WALLET, ASSISTANT. Snrvay of coast of Loniniana from Sabiue Pass, eatward, p. 49; reconnaismance for extension eastward of primary triangulation near the thicty-ninth parallel in Colorado, p. 69 ; in office of asaistant in charge of the office, Appendix No. 4, p. 94; Appendix No. 5, p. 144.
PERRIER, COLONEL, CHIEF OF THE GEOGRAPRTCAL SERVICE OF THE FRENCH ARMY. Observations of transit of Vents at Saint Augustine, Fla., pp. 41, 42.
PETERSEN, A., ENGRAVING DIVLSION, COAST AND GEO. DETIC SURVEY OFTICE, Appendix No. 4, p. 108.
PETIT MANAN BAR AND POINT, p. 14.
PHELPS, HARRY, MIDSHIPMĄN, U. S. N. Services in Seetion II, p. 22 ; in Section IF, p. 41.
PEILADELPEIA, PENN. Examination of banke and ehannels between Whimington, Del., and, p. 28; location of postwardon lines of herbor of, p. 32; the Endeavor fitted out at, p. 41.
PHYSICAL HYDROGRAPHY, pp. 7, 8; of Delaware Bay and Hiver, pp. 7, 31-35.
PIGRON HILL BAY, ME, Hydrographic survey of, pp, 2, 18 ; dangere to asvigation in, p. 14.

PILLSBURY，J．E．，LIEUTENANT，U．S．N．，ASSISTANT HY． DROGRAPHIC INSPECTOR，p．12：in Hydrographic Division， Coast and Geodetic Survey Office，Appendix No．5，pp．115， 117. PINE ISLAND CHANNEL．Rocks and ledge in，p． 21.
PINEY－PIGEON．Primary triangulation line in West Virginia，p． 40.

PIOCHE STATION，UTAM，p， 68.
PLATES．Completed，continued，or commenced，during fiscal year ending June 30，1883，Appendix No．4，pp．104－107．
PLATTSBURG，LAKE CHAMPLAIN，p． 29.
PLEASANT RIVER，ME．Topography of，pp．2， 13.
PLOSSL．Use of reconnoitering telescope of，p． 37.
PLOVER BAY，ALASKA．Observationg for time at，p． 61.
PLYMODTH，SBEROYGAN COUNTY，W1S．，p． 65.
POINSETT，FLA．，p． 43.
POINT ARENA，CAL．Continnation of survey near，pp．3，56， 57.
POINT BARROW，ALASKA．Determination of magnetic in．
tensity and force of gravity at，pp．3，7，54，61；longitude of，p． 61.
POIN＇T CONCEPTION．Primary triangulation north of，pp．3， 52.
PONNT HIGGINS，ALASKA，p． 60.
POINT HIGHFLELD，ALASKA，p． 60.
POINT HUDSON，WASH．TER．Astronomical station established at，p． 59.
POINT PARTRIDGE，PUGET SOUND，p． 58.
POINT PIEDRAS BLANCAS．Survey of，referred to，in esti－ mates，p． 10.
POINT PINOS，CAL．，p． 53.
POINT PLEASANT，p． 31.
POLAR STATION AT OOGLAAMIE，ALASKA．Discussion of magnetic observations at，by C．A．Schott，Asaistant．Appendix No．13．pp．323－365．
POND，C．F．，ENSIGN，U，S．N．Services in Section XIL，p． 60.
POND ISLAND，PIGEON HTLL BAY，ME．，p． 14.
PORTAGE BAY，ALASKA，p． 60.
PORT DISCOVERY，PUGET SOUND．Observation of tides at， p． 59.
PORTER，DR．，JERMAIN G．Reference to services in Section III，p． $3^{\text {r }}$ ；Computing Division，Coast and Geodetic Survey Office， Appendix No．4，pp． $05,86$.
PORT HENRY，LAKE CHAMPLAIN，p． 29.
PORT HOUGHTON，ALASKA，p． 60.
PORTLAND，OREG．Preparations at，to resume work on the Columbia River，p． 58.
PORTO RICO．Deep－sea sonndings north of，pp．8，46．
PORTSMOUTH，SCIOTO COUNTY，OHIO，pp．40， 63 ．
PORT TOWNSEND，PUGET SOUND．Observations of tides at， p． 59 ；the Fuca removed to，p． 59.
PORT WRANGEL，ALASKA，p． 60.
POSSESSION SOUND，WASH．TER．Reference to，in estimates， p． 10.
POTOMAC RIVER．Syecial survey for the Fish Commission near the Great Falls of，pp．3，38；examination of new beacons at Lower Cedar Point on the， 28.
POWELL，LIECTENANT，SXGNAI SERVICE．Command of relief expedition of 1882，p． 61.
POWER，J．C．，Computing Diviaion，Coast and Geodetic Suryey Office．Appendix No．4，p． 97.
PRAIMLE－XENNER，TEX．Old triangulation line re－established， p． 51 ．
PRATT，J．F．，SUBASSISTANT，Services in Section X，p，55， observation of great comet of 1882，p． 66 ；latitude of Mt．Tamal． pais from obeervations by，p． 59 ；services in Section XVI，p．70； in Compating Diviaion，Coast and Geodetic Survey Offce，Appen－ dix No．4；p． 97.
PRESIDIO MAGNETIC STATION，CAL．，p． 54.
PRESTON，\％．D．，AID．Services in Section II，p．27；in Section III，pp．36，37；in Section V，pp．41， 42 ；reference to，in Section VI， p．42；in Seetion X．p．66．Special operations，pp．72， 78 ；the Total Solar Eelipse，1883，by，Appendix No．17；pp．379－381．
PRIMARY BABE LINE IN YOLO COUNTY，CALIFORNLA． See Appendix No．11，pp．273－288．
PRIMARY TRIANGULATION．Progress of，in Intarior States， pp．1－4， 40 ；for connection of station on Monnt Washington，N．H． with the triamgulation of Maine，aud of the Hudson River and Lake Champlain，p．15；leveling operations to connect reforence－ mark at Albany，with；in Vermont，p．29；across State of Mew Yoxik，connectiag triangniation of Hudson River and Lake Oham．

PRIMARY TKIANGULATION．－Continned．
plain with that of the survey of the Great Lakes，p． 29 ；connec． tion of astronomical station of University of Virginia with，p． 39 ； reconnaigsance for connection of Gulf coast triangulation on Mo－ bile Ray，Alabama，with，at or near Atlanta，Ga．，p． 48 ；north of San Francisco Bay，p． 55 ；north coast of California，p． 57 ；extell． sion of，of Kentucky and Tennessee，p． 62 ；reconnaissauce for near thirty－ninth parallel，extending from Weat Virginia to Ohio， p．63；extension of，of State of Indiana，p．63；contiouation of，in Illinois，pp．64，65；of Wisconsin，p．65；in Missouri，near thirty－ ninth parallel，p．67；in Nevada and Utah，p．68；near thirty－ninth parallel in Colorado，p． 69.
PRITCHETT，PROF．H．S．，OF WASHINGTON UNTVERSITY， SAINT LOUIS，MO．Reference to determinations of force of gravity at New Zealand，and other stations in the East，p．54， 55 ； special operations with Transit of Venus Commission at Auck－ land，New Zealand，pp．71， 72.
PROCTOR，PROF．JOHN R．，STATE GEOLOGIST OF KEN． TUCKY．Determination of longitude pointe in Kentacky，pp．61， 62.

PROSPECT POINT，LONG ISLAND SHORE，p． 26.
PROSPECT STATION，N．Y．，pp．29， 30.
PROVIDENCE，R．I．Tidal observations at，pp．2，16；see also Ap－ pendix No．4．p．97；the Blake prepared for survey of Long Isl－ and at，p． 16.
PUBLICATIONS RELATING TO THE COAST AND GEO． DETIC SURVEY，AND TO STANDARD MEASURES．De－ scriptive Catalogre of，compiled by Edward Goodfellow，Assist－ ant，Appendix No．6，pp．121－135．
PUGET SOUND．Survey of，p．58；referred to，in estimates，p． 10 ； continuation of triangulation near，p． 59.
PULPIT COVE，NORTH HAVEN ISLAND，PENOBSCOT BAT Meteorological and tidal observations at，pp．2， 14.
PUTNAM STATION，LAKE CHAMPLAIN．Leveling opera－ tions near，p． 29.

4.

QUICK（schooner）．Use of，in Section VI，p．47；see also Appendix No．5，pp．114， 116.
QUTMBY，PROF，E．T．，ACTING ASSISTANT．Ocenpation of stations for determining points in the triangulation of New Hampsbire，p． 15.
QUINCY，LEWIS COUNTY，KY．，p． 40.
QUODDY HEAD，COAST OF MAINE．Reference to，in esti． mates，p． 9.

駐。

RAM ISLAND．Marked changes in shore line of，p． 24.
READ，CAPTAIN F．，of steamship Chalmette．Gives notine of a wreck in track of vessels along the coast of Florida，p． 5.
READING，PA．，p． 36.
READT（schooner）．Jge of，in Section II，pp．31，32；in Section VI p．44；see also Appendix No．5，pp．113， 114.
RECONNAISSANCE．An extension westward of the triangula－ tion of the State of Penusylvania，p． 36 ；triangnlation and hypso－ metric observations in the region abont Washington，D．C．，p． 39 ； for the extension of the primary triangulation near the thirty－ minth parallel westward in Woat Virginia，Ohio，and Kentucky，pp． 39， 40 ；of the Saint John＇s River from Lake Monroe to Lake Wash－ ington，p． 42 ；for connection of the Gulf coast triangulation on Mo－ bile Ba，r，Ala．，and vicinity，with the primary triangulation at or near A tianta，Ga．，p．48；for the extension of triangulation of State of Indiana，p． 63 ；for the extension eastward of the primary tri－ angulation noar the thirty－ninth parallel in Colorado，p． 69.
REEDY ISLAND LIGHT－HOUSE，p． 31.
REESTABLLSHMENT OF POINTS OF OLD TRIANGULA． TION AND DETERMINATION OF NEW POINTS FROM WATCH HILL WESTWARD FOR THE RESURVEY OF LONG ISLAND SOUND，p． 21.
REEVES，MR．ROLLIN J．Reference to survey of northern boundary of Wyoming Territory，p． 71.
REFUGE STATION，FLA．，p． 44.
REHOBOTH BKACE，N．J．，pp．31，33．
REPAIRS ANI MAINTENANCE OF VESSELS．Reference to， in estimstes，p．11；gee also Appendix No． 5 ，pp．115－117．
REPORTG．Of the Assistant in charge of office and topography for the yeur onding June 30,1833 ，Appendix No．4，pp．日3－111；of the

REPORTS-Continued.
Hydrographic Inspector for the year ending June 30, 1883, Appendix No. 5 , pp. 113-119; on the lammonic analysio of the tides at Sandy Hook, by Prof. William Ferrel, pp. 24T-251.
RESEARCH (schooner). See Appendix No. 5, mp. 117, 119.
RESULTS FOR THE LENGTH OF THE YOLOBASE, p. 7 ; for the primary base-line in Folo County, Cal,, measurement in 1881 by George Daridson, Assistant. Computation and discussion of results, by Charles A.Schott, Assistant, Appendix No. 11, pp. 273288; wf ohservations for atmospheric refraction on the line Mount Diabo to Martinez, Cal., in connection with bypsometric measares by spinit-level, \&c., made in March and April, 1880, by George Davidson, Assistant. Appendix No. 12, pp. 289-321. For force of gravity, by C. S. Peiree, Assistant, Appendix No. 10, pp. 473-486.
RETHSAM, A. C. ENGRAVING DIVISION, COAST AND
GEODEPIC SURVEY OFFICE, A ppendix No, 4, p. 103.
FEVILLAGIGEDO CHANNEL, ALASKA, p. 60.
GEYBOLD STATION, DEL., p. 35.
REYNOLDS, L. K., ENSIGN, U. S. N. Services in Section II, p. 22.
RHODE ISLAND. Assistant Henry Mitchell appointed member of Advisory Councils of State of, p. 31.
RIO IHEL NORTE, NEW MEXICO. Station on the, aelected for observation of transil of Venus, pp. 5, 70.
ROANOKE MARSHES LIGHT, N. C., p. 41 .
ROBERTS BAY, FLA., p. 47.
KOCK CREEK VALLEY, D.C., p. 37.
ROCKLAND HARBOR, ME.
ROCK LEDGE, FLA., p. 43.
ROCK RIVER VALLEY, ILL., p. 65.
ROCKS AND DANGERS DEVELOPED, pp. 5, 14, 21, 40.
ROCKWELL. CLEVEL AND, ASSISTANT. Continuation of the survey of Columbia liver and tributaries, p. 58.
ROCKY MOUND, CAL. Sigual station, p. 55.
HODGERS, A. F., ASSISTANT. Continuation of the primary triangulation of the north coast of California, p. 57.
RONQUILLE BAF,LA., p. 48.
ROUND ISLAND, DELA WARE BAY, p. 34.
ROUSE'S POINT, LAKE CHAMPLAIN, VT. Leveling operations near. p. 29.
ROMPF, DR. GOTTLIEB. Roference to death of, Appendix No. 4, p. 95.

RUSSELL, H. C., DIRECTOR OF THE SYDNEY OBSERVA TORY. Facilities oxtended by, in peudulum work at Sydney, New South Wales, p. 72.

s.

SABINE PASS. Continuation of survey of, pp. 3, 49, 50.
SACRAMENTO RIVER, p. 58.
SAEGMULLER, G. N., CHIEF MECHANICTAN, COAST AND GEODETIC SURVEY OFEICE. Appendix No. 4, p. ©3; report from, in Appendis No. 4, p. 111.
SAG HARBOR. Directions for anchoring in, p. 24.
SAIN'T A CGUSTINE, FLA. Determination of longitudo of transit of Yenus station at, pp. 3,41, 42; pendulum observations at, p. 6.
SAINT GEORGE'S CREEK. Description of, p. 3.
SAINT HELENS, COLUMBLA RIVER, p. 38.
SAINT JOHN'S RIVER AND BAR, FLA. Re-survey of, pp. 3, 42; reference to, in estimates, p. 10.
SAINT LOUIS, MO. Leveling operations near, pp. 1, 4, 63, 64, 68, sfe A ppendix No. 4, p. 95 ; longitude observations at, pp. 4, 49, 50 , 63, 66, 67.
Saini lucie river, fla. Topography near, pp. 43, 44.
SAINT PAUL, KADIAK ISLAND, ALASKA. Tidal observa-
tions at, pp.3, 61; see A ppendix No. 4, p. 98.
SAINT THOMAS. Deep-sea soundigge near, p. 8.
SALEM, ILLL., p. 64.
SALEM, N. J., p. 35.
SALEM CREEK, p. 28.
SALT LaKE CITY, UTAH, pp. 08, 6.
SALT LAKE LANDING, FLA., p. 43.
SALT RIVER, OHIO, p. 62.
SAMANA PROMONTORY. Soundiags near, p. 46.
SAN ANTONIO, TEX., p. 51.
san carlos entrance, fla. Reference to, in estimates p. 10.

SAN DIEGO, CAL. Topography near, reference to, in estimatea,
p. 10; relative to publication of Coast Pilot of coast near, p. 56.

SAND POINT, LONG ISLAND SOUND, p. 26.
SANDWICH ISLANDS. Pendulnm observations at, pp. 1, 3, 4, 6, 72, 73. Tidal observations at, p. 73.
SANDY CREEK BASE, p. 30.
SANDY BOOK, N. J. Tidal olservations at, pp.2, 8, 26, Appendix No. 4, p. 97; preference of Long Branch as tidal station instead of, Appendix No. 4, p. 98 . Line of levels at, pp. 29, 65, 64, 68, Appendix No. 4, p. 95. Report on the harmonic analysis of the tides at, by Prof. William Ferrel, Appendix No. 9, pp. 247-251.
SANDY POINT, STUNINGTON HARBOR, CONN., p, 22.
SANDY POINT, COAST OF LOUISIANA. p. 48.
SAN FRANCISCO, CAL. Longitude obeerrations at, pp. 3, 53; pendulum observations at, pp.3, 4, 6, 7, 54, 72, 73; observation of transit of Venns at, p. 5; sorveys near, p. 54, reference to, in estimates, p. 10 publication of Coast Pilot of coast from San Diego to. p. 56. Return of the Transit of venus Parts to, p. 72.
SAN FRANCISCO BAY. Primary triangulation north of, p. 3 tidal observations, pp. 55, 73.
SANHEDRIM STATION, CAL., p. 57.
SAN LUIS ORISPO. Prinary triangulation near, referred to, in estimates, p. 10.
SANTA CLARA. Primary triangulation near, referred to, in estimates, p. 10.
SANTA LUCIA, GAL., p. 5.
SARASOTA BAT. Topographic survey of, p. 47.
SAUCELTTO, CAL. Tidal observations at, pp. 3, 55, Appendix No. 4, pp. $97,98$.
SAVANNAH, GA. Occupation of station at, for lougitude determinations, pp. 3, 41, 42. Temperature of Gulf Stream off, p. 19.
SCHENK, CARL, ACTING ASSISTANT. Reconaaissance for the extension of the triangulation of the State of Kentucky, p. 62. SCHNACKENBERG, MO. Triangalation station, p. 67.
SCHOONER LEDGE, DELAWARE RIVER, p. 33.
SCHOTR, CHARLES A., ASSISTANT. Observation of the transit of Venus at Washington, D. C., p. 37. See also Appendix No. 16, pp. 371-378. Reporton resulta of geodesic leveling by, p. 68; see also Appendix No. 11, of report of 1882. Computation and discuesion of Yolo base line and Davidson's Quadrilaterals, A ppendix No. 4; p. 95; see also parts of Appendix No. 11, pp. 273-268. Results of observations for Atmospheric Refraction, \&e., made by Georgo Davidson, Assistant, discussed by, Appandix No. 12, pp. 289-321. Discussion of Magnetic Observations at the United States Polar station at Ooglaamie, Alaska, by, Appendix No. 13, pp. 323-365. Report from Compating Division. Coast and Geodetic Saryey Office, contaised in A ppendix No. 4, pp, 95-97.
SCIOTO STA'TION, OHIO, pp.40,63.
SCHWERTN, R. P., ENSIGN, U. S. N. Services in Section II, p. 26.

SCORESBY (schooner). Use of, in Long Island Sonnd, Appendir No. 5, pp. 115, 119.
SCOTTSBURG, UMPQUAH RIVER, OREG., p. 58.
SEA-BREEZE WHARF, N J., pp. 32, 33.
SEATTLE, WASH. TER., p. 59.
SECRETARY OF THE INTERIOR OF THE UNITED STATES. Verification of the northern boundary of Wyoming Territory at request of, pp. 7, 74.
SEDALIA, MO., p. 67.
SENGTELLER, A., ENGRAVING, DIVISION COAST AND GeODetic survey office. Appendix No. 4, p. 103.
SENGTELLER, LOUIS A., ASSISTANT. Completion of the smp. plementary surver of the San Francisco peninsnla, p. 54; triangulation and topography of the Umpquah River and approaches, pp. 57, 58.
SERIES OF TIDAL OBSERVATIONS CONNECTED WITH SELF-REGISTERING TIDE-GAUGE AT SANDY HOOK, N. J., p. 26.

SHEFFIELD ISLAND, CONN., p. 25.
SHELL-FISHERY COMMISSION OF CONNECTICUT, p. 25.
SHEPHEARD, F. W. Tidal observations at Sandy Hook by, p. 26. Sherman, francis'h., ENSIGN, U. S. N. Sorviees in Section IV, p. 41.
SHIDX, L. P., Tidal Divieion, Coast and Geodetie Survey Office, Appendix No. 4, pp. 98, 99.
SHOAL POINT, FLA., p. 44,
SIKMAN'S APPARATUS. Reference to use of, p. 20.
SIERRA MARINA, CAL., p. 55.
SIERRA NEVADA, p. 55.

SIGNAL OFFICE. Magnetic observations in connection with work of, pp. 51, 61; observers instructed in magnetic work by officers of the Survey, Appendix No. 4, p. 95.
SIGNAL SERVICE RELIEF EXPEDITION. Reference to, p. 54. SILLIMAN (schooner). Dse of, in Section II, p. 24 ; in Section IV, pp. 40, 41; see Appendix No. 5, pp. 113, 114, 119.
SILVER.LAKE, OR THOMPSON'S POND, p. 33.
SIMON, DR. Courtesies extended by, in charge of hospital at Singapore, p. 72.
SIMPSON, EDWARD, ENSIGN, U. S. N. Services in Soction VI, p. 44.

SINCLATR, C. H., SUBASSISTANT. Determination of boundaryline between Pennsylvania and West Virginia, p. 36; determination of longitude of the Oniversity of Virginia, Charlottesville, by exchange of telegraphic signals, and latitude of Charlottesville station, pp. 38, 30 ; conncotion of the astronomical station at University of Virginia with the primary triangulation, p. 39 ; services in Section XV, pp. 66, 67.
SINGAPORE, STRAITS SETTLEMENTS, BRITISH INDIA. Pendulum observations at, pp. 6, 72.
SIPE, E. H., Engraving Division, Coast and Geodetic Survey Office, Appendix No. 4, p. 103.
SKOFIEI.D'S BAYOU, GULF SHORE OF LOUISIANA, p. 48.
SLAUGH'TER CREEK. Changes in topography of, p. 33.
SLoAN, R. S., MIDSHIPMAN, U. S. N. Services in Section II, p. 20.

SMEE'S AND WALKER'S BATIERIES. Appendix No.4, p.98.
SMITH, EDWIN, ASSISTANT. Determinations of gravity, pp. 36, 37; determinations of force of gravity at San Francisco in connection with similar determinations at the transit of Vemus star tion in New Zealand and at stations in Australia and Eastern Assia, pp. 54, 55, 71, 72.
SMITH, J. L. Engraving Division, Coast and Geodetic Surver Office, Appendix No. 4, p. 103.
SMITH, PERCY, ASSISTANT SURVEYOR-GENERAL, NEW ZEALAND, p. 72.
SMITH, PROFESSOR. Director of Beloit Obsorvatory, Missouri, p. 65.

SMITH RIVER. Tributary of Umpquah River, p. 58.
SMITH'S GAP, PA. Triaugulation near, p. 36.
SMITHSONIAN INSTITUTION. Pendulum station erected at, pp. 36, 72.
SMII'HVILLE, N. C., pp. 40, 50.
SMOOL, J. H. Engraving Division, Coast and Goodetic Survey Offlec, Appendix No. 4, p. 104.
SMYRNA, DEL., p. 35.
SMYRNA CREEK, p. 31.
SNAKE VALLEY, U?AB, p. 68.
fOLSTOI BAY, AFASKA, p. 60 .
SOMMRER, E. J. Drawing Division, Coast and Geodetic Survey Othee, Appendix Fo. 4, p. 100.
SOUTH AMERICA. Pendulum observationsin, p. 1.
SOUTH CAROLINA. Work on the coast, and within boundary of, p. 2; referred to, in estimates, p. 10.

SOUTHEASTERN ALASKA. Continuation of bydrography of, reconnaisance of shore-line, and harbors of, p. 59; necessary revision of Coast Pilot of, p. 74.
SOUTHERN ATLAN'IC COAST OF UNITED STATES. Neces. sity for permanent tidal station on, Appendix No. 4, p. 98.
SOUTH JUPITER NARKOWS. Eydrographic work near, p. 44.
SOUTH PACIFIC. Observation of total solar eclipse of May, 1883, in the, pp. 1.4, \mathbf{B}.
SPANISH CAY, LITTLE BAHAMAS. Line of soundings near, p. 46.

SPARTA, WHITE COONTY, OEIO, p. 62.
SPAULDING, J. G. Tidal observations at Pulpit Cove, Penobscot Bay, Me., p. 14; in Tidal Division, Coast and Geodetic Sarvey Ofice, Appendix No. 4, p. 98; and as tidal observer, p. 90.
SPECIAL OPRRATIONS. In determinations of gravity, p. 55.
SPECLAL SCIENTLFIC WORK, pp. 5, 55.
SPECLAL SURVEY. For the Finh Commission, near the Great Falls of the Petomac, p. 38.
SPILLMAN, B.D., HIRUTENANT SEVENTH CAVALRY, U.S. A. Roferonce to, p. 71.

SPRINGEIELD, IIL. Pp. 68, 66.

STANDARD MEASURES. Descriptive catalogue of publications relating to the Coast and Geodetic Survey, and to, compiled by Edward Goodfellow, dssistant, Appendix No. 6. pp. 121-135.
STANDARD TOPOGRAPHICAL DRAWINGS, BY E. HERGESHELMER, ASSLSTANT. Appendix No. 14, pp. 307, 308.
STANSBURY, P. R. Computing Division, Coast and Geodetic Survey Office. Appendix No. 4, pp. 95, 97.
STARS FOR EPOCH 1885.0. Mean places of 1278 thme and cir. cumpolar, by George Davidson, Assistant, Appendix No. 18, pp. $383-472$.
STATIONS OCCUPIEO IN CONTINUATION OF THE TRIAN GULATION OF STATE OF VERMONT, p. 16.
STATISTICS OF FIELD AND OFFICE WORK OF THE UNITED STATES COAST AND GEODETIC SERVEY FOR THE YEAR ENDING JUNE 30, 1883, Appendix No. 2, pp. 85, 86.

STEADFAST (sloop). See Appendix No. 5, pp. 114, 119.
STEAMER BAY, ALASKA, p. 60.
STEELE'S HARBOR ISLAND, ME., p. 13.
STEVENS INSTITUTE, HOBOKEN, N. J. Pendulum obserrations at, p. 27.
STEVENSON, H. N, PASSED ASSISTANT ENGINEER. Serv. ices in oftice of Hydrographic Inspector, Appendix No. 5, pp. 117, 118.

STEWART, GORDON A.. CUSTODIAN OF ARCHIVES OF COAST AND GEODETIC SURVEY. Report from, Appeudix No. 4, pp. 199, 110.
"STONE FENCE." Dangeroum rocks at Cape Fear eutrance. p. 40 STONINGTON, CONN., pp. 21, 22.
STONEY INLET, OR FISHING CREEK, N. J., p. 34.
STORF, ACGUSTUS. Photographer on transit of Vonus Conmission to New Zealand, p. 71.
STOW CREEE, NEW JERSEY SHORE, p. 32.
STRAIT OF FUCA. Hydrographic Survey, pr. 3, 58.
STUMP PASS, FLA. Hydrography of, p. 47.
SUBSTITUTE STATION, CAL. Of Tertiary triangulation of 1878, p. 53.
SUESE, WERNER, MECHANICIAN, COAST AND GEODETIC SURVEY OFFLCE. Estabhishment of maguetic self-registering record station at Los Angeles, Cal., p. 51.
SULLIVAN, J. A., ACTING ASSISTANT. Determination of the geographical position of the dew observatory of Yale College, p 25 ; serrices in Section II, b. 32.
SULEIVAN, JOHN T., LIEUTENANT, U. S. N. Services in Section II, p. 33; hydrographic survey in vicinity of Cape Romain, S. C., p. 41 ; in command of steamer "Endeavor," Appendix No. 5, p. 114.
SURGE NARROWS, PERLL STRAIT, SOUTHEASTERN ALASKA. Dangerous rocks in, p. 5.
SUKVEYING PARTIES UPON TII ATLANTIC, GULF OF MEXICO, AND PACLFIC COASTS, AND THE INTERIOR OF THE UNI'TED STATES DURING THE FISCAL YEAR 1882-83. Distribution of, Appendix No. 1, pp. 77-84; reference to, p. 1 .
SURVEY OF THE EASTERN COAST OF FLORIDA FROM INDIAN RTVER INLET SOUTHW ARD, p. 43.
SURVEY OF THE SHOKES ANDLAGOONSOF EAST FLOKIDA FROM KEX BISCAYNE NORTHWARD, p. 44.
SURVEY OF THE COAST OF LOUISIANA FROM SABINE PASS EASTWARD, p. 49.
SWINBURNE, W. T., LIEUTENANT, U. S. N. Hydrographic survey from Monterey southward, p. 53; continuation of the hy drographie survey in the vicinity of Point A rena, Cal., pp. 56, 67 duty at Mare Island, Cal., Appendix No. 5, p. 113.
SYDNEY, NEW SOUTH WLLES. Pendulum observations at, p. 6; longitude oluservations at olseervatory at, p. 72.
SYRACUSE, N. Y., p. 30.
T.

TABLE OF DEPTHS FOR ATLANTIC AND PACIFIC COASTS OF UNITED STATES, pp. 28, 29; Appendix No. 7 , pp. 137-237.
TAMALPAIS, MT. Compatation of latitude of, p. 59.
TAMPA BAY, FLA. Surver of, pp. 3, 47.
TANET, E. L., ATD. Services in Section I, p. 13; in Section VI, Pp. 43, 44.

ALPHABETICAL INDEX.

TAPPAN, T. S. Photographer to transit of Venus Party in New Mexico, p. 70.
TASHUA HILL, CONN., p. 25.
TASSEL HILL. N. Y., p. 30.
taussig, e. D., Lifeutenant, T.S. n. Services in Section X, p. 57; command of the Mcarthar, and survey in vicinity of Mendocino City, Cal., p. 57.
TELEGRAPHIC LONGITUDES. In Virginia, pp. 3, 38, 39; in Kentuekr, pp. 3, 61, 62, 66, 67 : in Arkansas, Missouri, 以inois. Nebraska, Tp. 4, 49, 50, 66, 67 ; in Nevada, p. 4; of station at Saint Augustine, Fla.. ph. 41,42: of Fort Selden, New Mexico, pp. 53, 54; determinations in Thdiana and Ihinois, pp. 63, 66, 67.
TELLER, HON. H. M., SECRETARy OF THE INTERIOR. Copy of letter from, relative to houndary of Wyoming Territory, p. 71

TENNESSEE. Contimuation of triangulation is, p . 62.
TEN STATION, FLA. Azimuth measured at, p. 44.
TEPUSQUET STATION, CAL. Observation of transit of Venus at, pp. $5,52,53$; continnation of triangulation near, p. 52.
TERREstrial magnetism. See Appendix No. 4, p. 95.
TERRY, JR., CARLISLE, AID. Services in Section MI, p. 36; in Section XIII, p^{p} 61; in Section XIV, p. 65; in Section XV, pp. 66, 67.

TEXAS. Survey of coast of, pp. 3, 50; reference to, in estimates, p. 10.

THAMES RIVER. Re-survey vear, pp. 2, 21, 22.
"THE DOMAIN." Station for observation of transit of Vemus established in portion of city of Auckland, New Zealand, known as, p. 71 .
THIELKUHL, GUSTAVE. Photograper to transit of Venus party at New Zealand, p. 71.
THOMAS, EDGENE B., LIEUTENANT-COMMANDER, T.S.N. Hydrographic re-survey of approaches to New York Harbor, p. 26 ; relieved from duty on Coast and Geodetic Surrey, Appendix No.
5, pp. 113, 114.
THOMAS, M. Tidal Division, Coast and Geodetic Surrey Offce, Appendix No 4, pp. 98, 99.
THOMSON, SIR C. WYVILLE. Reference to his account of the "Voyage of the Challonger," p. 18.
THOMPSON, J. 6. Engraving Division, Coast and Geodetic Sarvey Ollice, Appendix No.4, p. 103.
THOMPSON, W. A. Engraving Division, Coast and Geodetic Sar. vey Office, Appendix No. 4, p. 103.
THOMPSON'S POND, OR SILVER LAKE, SOUTH OF REHOBOTH, N.J., p. 33.
THREE.MILE HARBOR, p. 24.
THROG'S NECK, LONG ISLAND SOUND. Re-survey near, pp. 2, 26.
TIDAL DIVISION, COAST AND GEODETIC SURVEX OFFICE. Reference to, p.4. Report from chief of, contained in Appendix No. 4, pp. 97-99.
TIDAL OBSERVATIONS. Relative to progress in, p. 2; reference tn, in estimates, pp. 9, 10; at Pulpit Cove, Me., pp. 2, 14; at Providence, K. I., p. 10; at Block Island, p. 20; at Saucelito, Cal., pp. 3, 55 ; at Kadiak Island, Alaska, pp. 3, 61; at Saudy Hook, N. J., pp. 8, 26,27 ; see also Appendix No. 9, pp. 247-251; at New London, Conn., p. 23 ; on coast of Lonisiana, p. 48; at Hozolulu, Sandwich Islaudk, p. 73 : see also A ppendix No. 4, pp. $97,08$.
tIDEPREDICTING MACHINE, BY PROF. WILLIAM FER. REL. Description of a masima and minima, Appendix No. 10, pp. 253-272.
TIDES AT SANDY HOOK. Report on the harmouic analysis of, by Prof. William Ferrel, Appendix No. 9, pp. 247-251.
TIDE.TABLES. Publication of pp 4, 8; for Athatic and Pacitic coast for 1884, and relative to anle of A ppendix No, 4, pp.98. 107, 108.

TLLLAMOOK BAY, OREG. Re-survey of, p. 59.
TITTMANN, O. H., ASSISTANT. Leveling operations for con neeting reference-mark at Albany, N. Y.. with the primary trian ${ }^{-}$ gulation station on Mount Mansfield, $\bar{\nabla} t$., p. 29; sarvey of the shores and lagoons of East Florida from Key Biscayne northward, pp. 44, 45; in command of schooner Ready, Appendix No. 5, p. 114 TITUSVILLE, INDIAN RIVER, p. 43.
TOBACCO LOT BAY, LONG ISLAND SOUND, p. 23. TOKIO, JAPAN. Pendulum observations at, pp. 6, 72.
TOM'S RIVER. Survey zear, pp. 2, 31.

TOPOGRAPHY. Of Machias Bay and River, pp. 2, 12; of islands in Moos-a-bec Reach, and Chandler's Bay, pp. 2, 13; of shores of Pleasant River, Me., p. 13; of shores of Long Island Sound, pp. 2,22;23,26; of New London and vicinity, pp. 2, 23; of Delaware Bay and River, pp-2, 35; of vicinity of Cape Henlopen, pp. 2, 31, 33; of Fisher's Island, Long Island Sound, n. 21; of New Jersey shore of Delaware Bay, p. 34; of Tampa Bay, p.47; of shores of Nueces Bay, Tex., p. 51.
TOPOGRAPHICAL DRA WINGS. Standard, by E. Hergesheimer, Assistant, Appendix No. 14, pp. $367,368$.
TOTAL SOLAR ECLIfSE OF MAY, 1883. Reference to ohservations of, pp. 1, 4, 6; observations at Caroline Island, Sonth Pacitic Ocean, pp.72, 73; see Appendix No. 17, pp. 379-381, by E. D. Preston, Aid.
TOWNSEND INLET, N.J. Daugerous wreck in track of vessels off, p. 5.
trabue, george w., general superintendent of WESTERN TNION TELEGRAPH COMPANY. Acknowledgment of courtesies extended party of Assistant Dean, p. 62.
transcontinental geodetic Work, pp. 1, 4, 63, 64, 68; reference to, in estimates, pp. 9,10 ; ses also Appendix No. 4, p. 95. TRANSIT OF MERCURY, 1881. By George Davidson, Assistant, Appendix No. 15, pp. 369, 370.
TRANSIT OF VENUS OF DECEMBER, 1882. Reference to commission to observe, and observatious, pp. 1,2,5; determination of longitude of station at Saint Augustine, Fla, to observe, pp. 3,41,42; of station at Fort Selden, Now Mexico, pp. 3, 53, 54 ; pendulum observations at, station in New Zealand, pp. 3, 6; ob servations of, pp. 4, 5, 54, 55, 71, 72; observations of, at Fort Seiden, New Mexico, pp. $4,54,55,70$; at Washington, D.C., p. 37; at Tepusquet Station, Cal., pp. 52, 53; at Davidson'e Observatory, San Francisco, and at Mount Diallo, p. 54; in Illinois, pp. 64, 65, at Lehman's Ranch, p. 69 ; see also appendix No. 16.
trial base line at fort myer reservation, va. Examination of monuments of, p. 38.
triangulation. Of Machias Bay and River, Me., pp. 2,12; in New Hampshire and Vermont, pp. 2, 15, 16; of Long Island Sound, and across New York State, p. 2; between Pennsylvania and West Virginia, pp. 2, 36; in the District of Columbia, pp. 3, 39 ; in West Virginia, Ohio, Kentucky, pp. 3, 39, 40, 63; on coast of Texas, pp. 3, 51 ; of Hood's Canal, Wabh. Ter., pp. 3, 59; in Kentncky and Tennessee, pp. 3, 62; in Ohio and Kentucky, pp. 4, 63; in Llinois, pp.4, 64; in Wisconsin, pp. 4, 65; of Delaware Bay and River, p. 31; of State of Pennsylvania, p. 36; in Virginia, p. 39; between Atlanta, Ga., and Gulf coast, p. 48; in vicinity of Matagorda Bay. Tex., p. 51 ; northern part of Califormia coast, pp. 52, 55, 57; Dmpquah Bay. Oreg., pp. 57, 58; in Indiana, p. 63; of Missouri, p. 67; of Nevada and Utah, pp. 68, 69; of Coloraito, p. 69.
IKINIDAD. Triangulation near, referred to in estimates, p. 10.
TROUGHTON AND SIMMS' TRANSIT, No. 3. Use of, p. 53.
TRUXTUN, WILLIAM, U.S.N. Serviges in Section II, p. 20; in Section IX, p. 51.
TURK'S ISLAND, WEST INDIES. Soundings near, p. 46.
TURNBULL, C. B. Computing Division, Coast and Geodetic Sur. vey Office, pp. 97, 88.
TURTON, H., OF LAHAINA, SANDWICH ISLANDS. Acknowledgment of courtesies extended to observers of total eclipse of the man of 1883, by, p. 73.
TYRREL, J. B. Drawing Division, Coast and Geodetic Survey Office, Appendix No. 4, p. 100.

U.

UMPQUAH RIVER, OREG. Survey of, p. 3; reference to, in estimates, $p .10$; triangulation and topography of, and approaches, pp. $57,58$.
UNDERHILL TRAIL, MOUNT MANSFIELD, VT., p. 29.
UNITED STATES. Complition of data for general map of the, p. 74, referred te in estimates, pp. 10, 11. See also suggestion of Agsistant R. D. Cutta, Appendix No. 4, p. 94.
UNITED STATES AND CANADA. Triangulation stations selected along boundary-line between, p. 15.
UNITED STATES ADVISORY COUNCLLS GF STATE OF RHODE ISLAND, p. 31; of State of Penneylvania, p. 32.
UNIVERSITY OF TOKIO, JAPAN. Pendulum observations at, p. 72.

UNIVERSITY OF VLRGINIA, AT CHARLOTTESVILLE, VA-
Determination of longitude of, pp. 3, 38, 39.
UPTON, WINSLOW, OF SIGNAL SERVICE. Longitude determinations given by, pp. 61, 73.
UTAF. Primary triangulation in, extended eastward, near the thirty-ninth parallel, p. 68.

v.

VANDALIA RAILROAD. Geodesic leveling on track of, ps 65. VAN DUZER, L. S., MIDSHIPMAN, U.S. N. Services in Section II, p. 32; in Section VI, p. 45.
VAN ORDEN, C. H., SUBASSISTANT. Services in Section II, pp. 23, 36.
VENUS. Relative to work of Commission appointed to observe transit of, of December, 1882, pp. 1,5,70,72; observation of transit of, at Washington, D. C., pp. 2, 5, 37; determination of longitude of obserfation station in New Mexico, pp. 3, 53; observation of transit of, in New Mexico, pp. 4, 5, 52-54, 70 ; at Auckland, New Zealand, pp. 4, 5, pendulum observations at same station, pp. 6, 54, 71, in San Fraucisco, at transit of, station, p. 5; at transit of, in British India, and Japan, p. 71, at Sydney, p. 72. Observations of Transit of, at Saint Angnstine, Fla., p. 41, determination of longilude of station at Saint Augustine, p. 42; observation of transit of, at Tepusquet station, Cal., p. 53, on the California coast, p. 54, in Illinois, p. 64, at Lehman's Ranch, p. 69. See also Appendix No. 16, pp. 371-378. By Assistants C. A. Schott, B. A. Colonna, W. Eimbeck, and J. S. Lawson.
VERIFICATION. Of the northern boundary of Wyoming Territory, pp. 7,70,77; of tho hsdrography for the Atlantic Coast Pilot. p. 28.

VERMILION BAY, LAA. Survey of, referred to in estimates, p. 10.
VERMONT. Continuation of triangulation of, pp. 2, 16, 29.
VESSELS OF COAST AND GEODETIC SURVEX. List of, with tonnage, \&c., A ppendix No. 5, p. 119.
VLERBUCHEN, P. Instrument Division, Coast and Geodetic Survey Office, A ppendix No. 4, pp. 111.
VINAL, W. I., SUBASSISTANT. Services in Section II, p. 32; re survey of topography in the vicinity of Cape Henlopen, Del., pp. 33, 34.
VINCENNES, IND. Geodesic leveling near, p. 63.
VINEYARD SOUND. Examination of dangers and changea in, Teferred to in estimates, p. 9.
VIRGINIA. Work of survey in, p. 2; primary triangulation in, p. 39.

VIXRN LEDGE. Development of, p. 21.
"vOYAGE OF THE CHALLENGER," by Sir C. Wyville Thomson, reference to, p. 18.

W.

WADHAMS, A. V., LIEUTENANT, U. S. N. Resumption of survey of Stonington Harbor, Conn., p. 22; see also Appendix No. 5, p. 115.

WAHSATCH MOUNTAINS. Primary triangulation acrobs, pp. 68, 69.
WAINWRIGHT, D. B., ASSISTANT. Services in Section III, p. 37.

WAKENSHAW, H. C., ENSIGN, U.S.N. Services in Seotion II, pp. 26, 27; in Section VI, p. 46.
WALKER STATION, TENN., p. 62.
WALLING, H. F. Reconnaissance, triangulation, and hypsometric observations in the vicinity of Washington, D. C., for construction of a general map by, p. 39.
WALTER'S HOUSE-SCHMIDT'S HOUSE. Line in primary triangulation in Colorado, p. 69.
WARD COVE, SOUTHEASTERN ALASKA, p. 60.
WARRENSBURG, MO., pp. 67, 68.
WASHBURN OBSERVATORY, p. 72.
WASHINGTON AQUEDUCT. Survey for Engineer Commisaion of the District with reference to extengion of, $p .37$.
WASHINGTON CITY, D. C. Penduhum experiments at, pp. 2, 6, $27,36,42$; observation of transit of Venus at, pp. 2, 5, 37; reconnaissance, triangulation, and hypsometrie observations near, pp. 3, 39; erchange of tolegraphic signals between Charlotterville and, to determine longitnde of University of Virginia, pp- 38, 39.
WASHINGTON NAVY.XARD. Loan to the Coast Sarvey of a Weston dynamo-eleotrionschine, Appendix NT0.4, p. 94 .

WASHINGTON TERRERORY. Work on coast of, and within, y . 3, referonce to in estimates, p. 10; compilation of material for new edition of Coast Pilot for, p. 56.
WASHINGTON CNIVERSITY, SAINT LOUIS, Mu. p. 71.
W ASSERBAOH, T. Engraving Division, Coast and Geodetie Survey Office, Appendix No.4, p. 103.
WATCE HILL. Ro-establishment of points of olf tuingulation, and determination of new points from, for re-survey of Long Island Sound, pp.2,21, 22; rock off, located, p. 21.
WELR, JOHN B., SUBASSISTANT. Services in Section RI, p. 45 ; in Section XIV, pp. 64, 65.
WELKER, P. A., AID. Services in Section X, pp. 52, 53.
WEST BASE, GALVESTON ISLAND, p. 51.
WEST BASE, MOBILE BAY. Granite blocks marking, of primary base of 1847 not found, p. 48; latitude of station determined. p. 49.

WESTERN UNION TELEGPAPH COMPANY. Fucilitien aiforded officers of the Survey by superintendent of $p .62$.
WEST MILFORD, PASSAIC COUNTY, N.J., p. 30.
WESTDAHL, FERDINAND. Sorvices in Section X, pp. 54, $\mathbf{0 6}$; in Section XII, p. 61.
WESTON DYNAMOELECTRIC MACIINE. Loaved to the Coast Survey by the oflicers of nary gard, Washington, Appendix No. 4, p. 94.
WEST RIVER. ME. Topography near, p. 13.
WEST ROCK STATION. Hemarked, p. 2.
WEST VIRGINIA. Determination of boundary between Pennsylrania and, pp. 2, 36 : extension of primary triangulation near thirty-ninth parallel westwatd in, pp. 3, 4, 39, 40, 63; survey of streams of, in Berkeley County, p. 39.
WHALE" (The). Dangerons rock in Pigeon Hill Bay, Me.. p. 14. WHITEHALL, N. J., p. 29.
' WHITE HORSE ' STATION, PENN. p. 36.
WHITE PINE STATION. In primary triangulation in Nevada and Ctah, p. 68.
WHORTLEBEREY ISLAND, LONG ISLAND SOGND, p. 26. WICOPESSET ISLAND, LONG ISLAND SOUND, p. 91.
WILDER, MR. DAVID, SECRETARY OF ALASEA SALMON PACKING AND FUR COMPANY. Acknowledgment from, of valuable information furnished the company by offcers of the Coast Survoy, p. 60.
WILLAMETTE RIVER. Survey of, p. 58; referred to in estimates, p. 10.
WILLENBUCHER, E., HYDROGRAPHIC DIVISION, COAST AND GEODETIC SURVEY OFFICE, Appendix No. 5. pp.117, 118.

WILLENBUCHER, W. C., DRAUGHTSMAN, COAST AND GEODETIC SURVEY OFFICE. Services in Section II p. 22 ; in Hydrographic Division, Appendix No. 5, pp. 117, 118.
WILLETS POINT. Shore-line survey on Long Igland thore as far as, p. 26.
WILMINGTON, DEL., p. 28.
WILMINGTUN, VT. Triangulation station on Haystack Mount. ain in town of, p. 16.
WILNER, FRANK A., MASTER, U. S. N. Services in Section II, p. 26; hydrographic surveys of Cape Fear River entrance, and in Croatan and Pamplico Sounds, pp. 40, 41 ; in command of the Silli. man. Appendix No. 5, p. 114.
WINCHESTER BAY, NEAR MOUTH OF UMPQUAH EIVER, OREG., p. 58.
WINCHESTRR HILL. Yale College Obserratory on, p. 25.
WINES, M. W., CHIEF OF MISCELIANEOUS DIVISION, COAST AND GEODETIC SURVEY OFFICE. Report from, Appendix No. 4, pp. 107-109.
WLNSLOW, C. McR., MASTl:T. U. S. N. Setviceg in Section II, p. 20 ; in Section IX, p. 51.

WINSTON, ISAAC, AID. Services in Section XIV, p. 65: aud
with Assistant Dall in Alaskan work, p. 74.
WINYAF BAY, S. O., p. 41.
WISCONSIN. Continuation of triangulation of, pp.4,65.
WITZRL, H. M., ENSIGN, U. S. N. Services in Section II, p 26; in Section VI, pp, 45, 48 .
WOHLFORD, NEAR BELOIT, WIS., p. 65.
WOODWORTH, S. E., ENSIGN, U. S. N. Services in Section
XII, p. 60.
S. Ex. 29 -IV

WORRALI, COL. JAMES, OHAIRMAN OF JOINT COMMISSION OF STATES OF PENNSELVANIA AND WEST VIR. GINIA FOR DETERMIMATION OF BOUNDARY BETWEEN THOSE STATES, p. 36.
WRANGEL STRAITS, ALASKA. p. 60.
WISAY STATION, OHIO, p. 63.
WYOMLNG TERRITORY. Completion of rerification of nortlifm boundary of, pp. 1, 4, 7, 70, 71.

Y.

YALE COLLEGE. Determination of geographical position of new ohservatory of, pp. 2, 25.
YEATMAN, A. Miscellaneons Division of Coast and Geodetic Surver Oflice, Appendix No. 4, p. 108.

FOLO BASE LINE, CAL. Results for the length of the, p. 7; see, also, Appendix No. 11, pp. 273-288; primary triangulation in connection with, p. 55. Return to State of California of five-meter field standard used in measurement of, Appendix No. 4, p. 95.
z.

ZIWET, ALEXANDER. Computing Division, Coast and Geodetic Survey Office, Appendix No. 4, pp. $95,97$.
ZUMBROCK, DR. A., ELECTROTYPIST, ENGRAVING DI. VISION, COAST AND GEODETIC SURVEX OFFICE, Appendix No. 4, p. 104.

R $\mathrm{FP} \boldsymbol{P} \mathrm{R} \boldsymbol{\mathrm { T }}$.

United States Coast and Geodetic Survey Office, Washington, December 17, 1883.

Sir: In conformity with law and with the regulations of the Treasury Department, I have the honor to present herewith my report of the progress made in the work of the Coast and Geodetic Survey during the fiscal year ending with June, 1883.

The three parts into which this report is divided are arranged thus:
Part I is mainly occupied with a general statement of progress under the several heads of Field-work, Ofice-work, Discoveries and Developments, and Special Scientific work; with the estimates in detail for the next fiscal year, and with an explanation of those estimates.

Part II is devoted to detailed recitals of field-work begun, continued, or completed during the fiscal year, concluding with a reference to the office-work.

In Part III are comprised the several appendices relating to work in the field and office which appear annually, and other papers deemed worthy of publication as presenting discassions of the methods and results of the Survey.

PART I.

An examination of Appendix No. 1, which exhibits the distribution of the surveying paries, will show that there has been steady progress in the Survey in all of its branches, and it is believed that by a close and rigid scrutiny of expenditure the utmost results have been secured that the limited appropriations would admit of.

Among the more important operations during the past fiscal year mar be enumerated the connection of the triangulation of the Atlantic coast with that of the Great Lakes; the resurvey of Long Island Sonnd, upon which, as demanded by the extensive commercial interests involved, a large force was concentrated; the approach to completion of the resurvey of Delaware Bay and River; the continuation of the explorations of the North Atlantic Basin by lines of deep-sea sounding and observations of surface, serial, and bottom temperatures; the extension of the line of transcontinental leveling of precision to Saint Louis, Mo.; the progress made in the geodetic surveys of the interior States and in the primary triangulation near the thirty-ninth parallel, intended to unite the triangulations of the Atlantic, Gulf, and Pacific coasts in one geodetic system; the verification for the Interior Department of the survey of the northern boundary of Wyoming Territory; the observations of the Transit of Venus of December, 1882, at stations in the United States, and at a station of the Transit of Veuas Commission in New Zealand; the obserration of the Total Eclipse of the Sun of May, 1883 , at a station in the South Pacific, and the determinations of the force of gravity by means of pendulum observations at stations on the Atlantic and Pacific coasts, at stations of the Transit of Venus Commission in Sonth A merica and New Zealand, aud at other stations in the East Indios, Japan, and the Sandwich Islands.
S. Ex. 29-1

GENERALSTATEMENT OF PROGRESS.

I.-FIELD-WORK.

Atlantic Coast.-During the year ending June 30,1883 , the work of the Survey has included the following operations upon the coasts and within the borders of the New England States: Triangulation and topography of Machias Bay and River, Me.; topography of islands in Moos-a-bec Reach and shore-line of Chandler's Bay, Me.; topography of the shores of Pleasant River, Me.; hydrographic surveys in Narraguagus and Pigeon Hill Bays; soundings off Gouldsborough Bay and in Dyer's Bay and Rockland Harbor, Me.; series of tidal observations with self-registering tide-gauge continued, and meteorological observations recorded at Pulpit Cove, North Haven Island, Penobscot Bay; primary triangulation for the connection of the station upon Mount Washington, N. H., with the triangulation of Maine and of the Hudson River and Lake Champlain; occupation of statious for determining points in the triangulation of New Hampshire; stations occupied in continuation of the triangulation of the State of Vermont; line of deep-sea soundings run from off Nantucket across the Gulf Stream; observations continued at Providence, R. I., with a self-registering tide-gauge loaned to the city engineer; hydrography of the eastern entrance to Long Island Sound; self-registering tide-gauge established on the breakwater, Block Island; re-establishment of points of the old triangulation and determination of new points from Watch Hill westward for the resurvey of Loug Island Sound; bydrographic resurvey of Fisber's Island Sound and New London and Stonington Harbors; topographic resurvey of the north shore of Long Island Sound to the eastward of Thames River; topographic resurvey of New London and vicinity; self-registering tide-gauge established at Fort Trumbull, New London, Conn.; determination of the geographical position of the new observatory of Yale College, and determination of points for the resurvey of the north shore of Long Island from the vicinity of Bridgeport, Conn., westward.

Work upon the coasts and within the limits of the States of New York, New Jersey, Pennsylvania, and Delaware has included a line of deep-sea soundings from the vicinity of Montauk Point, L. I., to the Bermuda Islands, and lines of soundings normal to the coast off the south shore of Long Island; a topographical survey of Fisher's Island, Long Island Sound; re-establishment of points of former triangulation and determination of new points on the south shores of Long Island Sound, in the vicinity of Montauk Point and Gardiner's Bay; topographic and hydrographic resur. vey of the eastern part of the south shores of Long Island Sound; hydrographic resurvey of Gardiner's Bay and approaches; recovery and marking of triangulation points on the north shore of Long Island, between Hempstead Harbor and Horton's Point, N. Y.; topographic and hydrographic resurvey of the western part of Long Island Sound, in the vicinity of Throg's Neck; hydrographic resurvey of the approaches to New York Harbor; series of tidal observations continued with selfregistering tide-gauge at Sandy Hook, N. J.; determinations of the force of gravity at Hoboken, N. J., and at Albany, N. Y.; lines of deep-sea soundings in the vicinity of New York Bay entrance; leveling operations for connecting the Coast and Geodetic Survey reference-mark at Albany, N. Y., with the primary triangulation station on Mount Mansfield, Vt.; primary triangulation across the State of New York for connecting the triangulation of Hudson River and Lake Champlain with that of the survey of the Great Lakes; continuation of the triangulation of the northern part of the State of New Jersey; additions of topographical details to original sheets of survey of the New Jersey coast between the highlands of Navesink and Tom's River; verification of hydrography in Delaware and Chesapeake Bays for the Atlantic Coast Pilot; triangulation, topography, and hydrography for the resurvey of Delaware River and Bay; resurvey of topography in the vicinity of Cape Henlopen, Del.; reconnaissance and extension westward of the triangulation of the State of Pennsylvania, and determination of the boundary line between Pennsylvania and West Virginia.

Within the District of Columbia and the State of West Virginia, and apon the coasts and within the boundaries of the States of Maryland, Virginia, and North and Soath Carolina, the operations of the Survey have included determinations of gravity by pendulum experiments at Baltimore and Washington; observations of the Transit of Venus at Washington, D. O.; con-
tinuation of the detailed topographical survey of the District of Columbia; examination of the monuments of the Arlington kilometer base, Va.; special survey for the Fish Commission near the Great Falls of the Potomac; continuation of topographic survey of the south shore of Hampton Roads, between Oraney Island and Nansemond River; current observations at stations near the entrance of Chesapeake Bay, and thence southward; determination of the longitude of the University of Virginia, Oharlottesville, and of the latitude also, and connection of the astronomical station with the primary triangulation; reconnaissance, triangalation, and hypsometric observations in the regiou about Washington, D. C., for the construction of a general map; reconnaissance for the extension of the primary triangulation near the thirty-ninth parallel westward in West Virginia and Ohio; lines of deep-sea soundings and temperatures off the coast of North Carolina; hydrographic surveys of Cape Fear River entrance and in Croatan and Pamplico Sounds, and a hydrographic survey in the vicinity of Cape Romain, S. C.

Upon the coast of Georgia, the east and west coasts of Florida; in the approaches to this coast; and upon the coasts and within the limits of the Gulf States, the following operations were in progress: occupation of the station at Savannah, Ga., for the determination of the longitude of the Transit of Venus station at Saint Augustine, Fla., by exchange of telegraphic signals; hydrographic resurvey of Saint John's River and Bar; reconnaissance of Saint John's River from Lake Monroe to Lake Washington; survey of the shores and lagoons of East Florida from Indian River Inlet southward, and from Key Biscayne northward; hydrographic survey between Jupiter Inlet and Key Biscayne; observations of currents at stations off Jupiter Inlet; deep-sea soundings, with serial temperatures, between the Bahamas and the Bermudas; topographic and hydrographic survey of the west coast of Florida between Oharlotte Harbor and Tampa Bay; hydrography off the west coast of Florida to the northward and southward of Tampa Bay; reconnaissance for the connection of the Gulf coast triangulation in Mobile Bay, Ala., and vicinity, with the primary triangulation at or near Atlanta, Ga.; continuation of the survey of the coast of Louisiana west of the Mississippi River; survey of the coast of Louisiana from Sabine Pass eastward; hydrography of the coast of Texas from Galveston entrance eastward; topography of the shores of Nueces Bay, and triangulation in the vicinity of Matagorda Bay, Tex.; measurement of a base of verification and observations for azimuth.

Pacific Coast,-Upon the coasts and within the boundaries of the States of California and Oregon, of Washington Territory, and of Alaska, field-work has included the establishment of a magnetic self-registering record station at Los Angeles, Cal.; continuation of the primary triangalation northward from Point Concepcion; hydrographic survey from Monterey southward; observations at San Francisco, Cal., for the determination of the longitude of the Transit of Venus station near Fort Selden, N. Mex. ; completion of the supplementary survey of the San Francisco Peninsula; determiuations of the force of gravity at San Francisco, in connection with similar determinations at the Transit of Venus station in New Zealand, and at stations in New South Wales, the East Indies, Japan, and the Sandwich Islands; determinations of relative magnetic intensity and of the force of gravity at San Francisco, in connection with similar observations to be made at Point Barrow, Alaska; tidal observations with self-registering tide-gauge continued at Sancelito, Bay of San Francisco; occupation of stations of the primary triangulation north of San Francisco Bay; continuation of hydrographic survey in the vicinity of Point Arena, Cal.; hydrographic surver in the vicinity of Mendocino City, Cal.; continuation of the primary triangulation of the north coast of California; survey of the Umpquah River, Oreg.; continuation of the survey of Columbia River and tributaries; hydrographic surveys of Gray's Harbor and in the Straits of Fuca and Admiralty Inlet, W. T.; triangulation of Hood's Canal, W. T.; continuation of the hydrographie recomaissance of the shore-line and harbors of Southeastern Alaska, and tidal observations continued with self-registering tide-gange at Saint Paul, Kadiak Island, Alaska.

Interior States.-Work in localities between the Atlantic and Pacific coasts has included the occupation of the longitude station at Louisville, Ky., for the determination of the longitudes of additional stations in Kentncky by exchanges of telegraphic signals; observations for the latitades of these stations; reconnaissance for the extension of the triangulation of the State of Kentuoky; occupation of stations in continuation of the triangulation of the State of Tennessee; recon-
naissance for the primary triangulation near the thirty-ninth parallel extended from West Virginia into Ohio and Kentucky ; occupation of stations in continuation of the triangulation of the State of Ohio; reconnaissance for the extension of the triangulation of the State of Indiana; determina. tions of the latitude and longitude of stations in Indiana; transcontinental line of geodesic leveling extended from Mitchell, Ind., to Saint Louis, and thence to Kansas City, Mo.; continuation to the eastward of the primary triangulation in Illinois near the thirty-ninth parallel; occupation of statious in continuation of the triangulation of the State of Wisconsin; determinations of the longitudes of points in Arkansas, Missouri, Illinois, and Nebraska by exchange of telegraphic signals with Saint Louis, Mo. ; continuation to the westward of the primary triangulation in Missouri near the thirty-ninth parallel ; primary triangulation near this parallel in Nevada extended eastward, and a reconnaissance made for the extension eastward of the primary triangulation near the same parallel in Colorado; observation of the Transit of Venns of December, 1882, at Cerro Roblero, near Fort Selden, N. Mex., and completion of the work of verification of the northern boundary of Wyoming Territory.

The observations of the Transit of Venus at Auckland, New Zealand, were in charge of an Assistant in the Survey, under the direction of the Transit of Venus Commission. Advantage was taken of the opportunity to obtain determinations of the force of gravity at this distant station, and at other stations in the eastern hemisphere, for comparison with similar determinations at San Fraucisco aud at Washington.

A special appropriation having been made by Congress for the observation of the Total Eclipse of the Sun at an island in the South Pacific, one of the younger officers of the Survey was ordered to join the expedition and to make at the eclipse station selected (Caroline Island) a series of pendulum experiments for the determination of gravity. Returning, he was instructed to obtain comparative determinations at stations in the Sandwich Islands and at San Francisco, Cal.

1I.-OFEICE-WORK.

The records of field-work of the fiscal year ending June 30,1883 , received at the office have been duly distributed to the several divisions for examination and deduction of results, to be used in the production of the charts and other publications of the Survey.

In accordance with the office organization, the records which pertain to astronomical, geodetic, and magnetic observations are referred to the Computing Division; those relating to tidal observations, to topographic and hydrographic surveys, are referred to the Tidal, the Drawing, and the Hydrographic Divisions, respectively. The office labor proper consists in the verification of field records and computations; in the drawings and reductions for the preparation of the charts; in the engraving, electrotyping, printing, and issuing of the charts; in the computations for the prediction of tides, and the publication of Tide Tables; in the labor of the preparation and publication of the Coast Pilot; in the care of the records of the work, and in the making and maintenance of the geodetic instruments used on the survey.

Tide Tables of the principal ports of the United States for the year 1884, based on the reductions and discussious of the observations already made, have been published.

The drawings of forty-two charts have been in progress, and of this number twenty-eight have been finished, including fourteen for publication by photolithography.

Drawings have been made of five instruments of precision to accompany the annual reports, together with eighteen miscellaneous sketches and diagrams for the illustration of scientific papers.

Fifteen copper-plate engravings of charts and thirty-four of sketches and illustrations have been begun; four handred and thirty-seven plates of charts and sketches have received corrections; the engraving of nineteen plates of charts has been continued; the plates of twenty-seven charts and eight sketches and illustrations have been completed. Forty-eight thousand three hundred and twenty prints were made from copper plates; of this number, fourteen thousand one hundred and sixty-five were charts and views illustrating the Atlantic Coast Pilot, and one handred and eighty-two were transfer proofs, to be printed frem stone. Eighteen alto and twenty-two basso electrotype plates were made for the office daring the jear, and twelve alto and fourteen basso plates for other Departments of Government.

III.-DISCOVERIES AND DEVELOPMENTS.

All obstructions or dangers to navigation discovered in the progress of the work are promptly reported to the Supenintendent, and Notices to Mariners are issued for wide and free distribution, in which are stated the locality of the langer and the best way of a voiding it. Reference is mate also to the charts of the Survey affected by the notice.

Six such notices were issued during the past fiscal year, numbered from 34 to 39 , inclusive, in the regular series.

No. 34, dated August 24, 1882, gave the location and description of a dangerous rock in the eastern entrance to Fisher's Island Sound, as furnished by Lient. Richardson Clover, U. S. N., Assistant, Coast Survey.

No. 35, bearing date of January 4, 1883, described dangerous rocks, reported by the same officer, in the western part of Fisher's Island Sound, and in the approaches to New London and Mystic Harbors.

No. 36, May 14, 1883, gives notice of a sunken wreck in the track of ressels along the New Jersey coast, reported and determined in position by Lieut. Commauder W. H. Brownson, U. S. N., Assistant, Coast Survey.

In No 37 , June 8 , notice was given of a wreck partly out of water in the track of vessels along the east coast of Florida, reported by Capt. F. Read, commanding the steamship Chalmette.

No. 38, June 19, gave an account of a dangerous rock, hitherto unknown, in Surge Narrows, Peril Strait. Southeastern Alaska, described in a communication received from Lieut. G. C. Hanus, U. S N., Assistant, Coast Survey.

No. 39, June 22, 1883, cautioned coasting vessels standing inside of the Five-Fathom Bank against a sunken vessel in their track off Townsend Inlet, N. J.

IV.-SPECIALSCIENTIFICWORK.

THE TRANSIT OF VENUS.
The results for the solar parallax, deduced from observations of the Transit of Venus of 1874, and considerations thence derived in regard to the best methods of observing the Transit of 1882, induced the Commission authorized by Cougress to take early action in the organization of parties, and in the publication of detailed instructions for the observation of this event, so important both to astronomy and geodesy.

Observations of the Transit were made by officers of the Coast Survey at a number of stations, some of which were specially designated by the Transit of Venus Commission.

At Washington, D. C., a station was occupied at Fauth's Observatory, nearly opposite the southwest corner of the lower Capitol Park. The weather on the day of the Transit (December 6) being generally favorable, all four contacts were observed.

A station in New Mexico having been decided upon by the Commission, one was selected at Cerro Roblero, an isolated mountain mass rising abruptly to a height of nearly 1,700 feet from the right bank of the Rio del Norte, and about four miles from the military post at Fort Selden. Satisfactory observations were obtained of all four contacts at Cerro Roblero, under very favorable atmospheric conditions.

The transit was observed at the Davidson Observatory, in San Francisco, Cal.; at the Coast and Geodetic Survey station, Tepusquete, Cal., and at Lehman Rauch, Nev.

Ubservations of the Transit were made at Auckland, New Zealand, one of the stations of the Commission. But partial success attended the observations made at this station, the sun being at no time during the Transit entirely free from clouds.

Reports of the observations of the Transit made at the stations of the Transit of Venus Commission have been transmitted to the president of the Commission; duplicates of these reports will be preserved in the archives of the Survey,

Reports of observations made by officers of the Survey at other stations will appear as Appendix No. 16 to this report.

THE TOTAL SOLAR ECLIPSE OF MAY 6, 1883.
Under the provisions of a clause in the act of March 3,1883 , making an appropriation for the observation of the Total Eclipse of the Sun of May 6, at a station in the South Pacific Ocean, by au expedition to be organized for that purpose under the auspices of the National Academy of Sciences, with the co-operation of the Coast and Geodetic Surver, an officer of the Survey was ordered to report for duty on this expedition.

The observation of this eclipse was regarded with special interest, because of its having the longest totality of any that had ever been observed, nearly five and a half minutes. The opportunity for studying the physical phenomena of the eclipse would therefore be an exceptional one.

Caroline Island, a chain of small islands of coral formation in the South Pacific, was selected as the point of observation. The weather was clear during the totality, except a slight haze for a minute or two at beginuing, and all four contacts were successfully observed.

Details are given in an abstract of the observer's report, which appears as Appendix No. 17.
FLELD CATALOGUE OF 1,278 TME AND CIRCUMPOLAR STARS.
The first edition of a Field Oatalogue of Time and Circumpolar Stars, prepared for the use of observers with portable instrumen's in the temporary observatories of the Survey, was published in 1874. It contained 983 stars. A new edition has been compiled, and is now ready for publication, which contaius 1,278 stars, their mean places being given for the epoch 1885.0 -the right ascensions to the nearest tenth of a second of time, and the declinations to the nearest second of arc. It includes the standard stars of the American Ephemeris and Nautical Almanac, of the English Nautical Almanac, of the Connaissance des Temps, and of the Berliner Astronomische Jahrbuch, together with stars selected from the standard catalogues, giving the preference to those of the Naval Observatory, Harvard College Observatory, and the Observatory of Greenwich.

Of the 1,278 stars iu this catalogue, the apparent places of 752 are given in the ephemerides.
For the convenience of observers the catalogue is to be published separately in octavo form, and will also appear as Appendix No. 18 to this report.

DETERMINATIONS OF GRAVITY.

Determinations of the force of gravity, both absolute and relative, by means of pendulum experiments and observations, bave been continued during the year. As an important factor in the investigation of the figure of the earth, such determinations have always formed an essential part of a geodetic survey.

In the United States the principal stations at which pendulums were oscillated were Albany, Hoboken, Baltimore, Washington, Saint Augustine, and San Francisco. A station was also occupied in Montreal, Canada.

Advantage was taken of the presence of observers experienced in pendulum work with the national expeditions for the observation of the Transit of Venus and the Total Solar Eclipse to obtain results for gravity at stations widely distributed over the earth's surface, thus adding valaable data for the determination of the compression of the earth at comparatively small cost.

At the Transit of Venus station in Auckland, New Zealand, were swung the three Kater iuvariable pendulums. These pendulums, of historic importance, which had been oscillated at Greenwich, Kew, and London, and subsequently at the Coast and Geodetic Survey stations in Hoboken and Washington, having been left in the custody of the Survey, the opportunity of obtainIng by means of them observations strictly comparable, at stations geographically far apart, was a most valuable one. In accordance with instructions, the party of observation, on their return trip, swung the Kater pendulums at Sydney, New South Wales, at Singapore, Straits Settlements, British India, at Tokio, Japan, and at San Francisco.

The officer of the Survey who accompanied the Total Solar Eclipse expedition to Caroline Island, in the South Pacific, had in his charge pendulum No. 3, with instructions to oscillate it at the eclipse station, and also, upon his homeward voyage, at a station occupied upon the island of Maui by De Freycinet in 1819, and at a station in Honolula, Sandwich Islands.

In order to obtain certain necessary observations supplementary to and completing the opera-
tions formerly executed for the purpose of connecting the American and English initial gravity stations, a Coast and Geodetic Survey officer was sent to Europe in May, 1883.

In the spring of 1883 instructions were issued for obtaining at San Francisco a series of gravity determinations to be made at Point Barrow, Alaska, by an observer of the Coast Survey attached to the Signal Service relief expedition which sailed from San Francisco about the middle of June.

RESUL'AS FOR THE LENGTH OF THE YOLO BASE.
A full account of the measurement of the primary base-line in Tolo County, Cal., with the new compensation base apparatus, was given in my last annual report. The results for length of the base as deduced from the measurements and comparisons are discussed in a paper which is published as Appendix No. 11 to this report.

The accuracy of the final result appears greater than that of any obtained for any other baseline on the survey. This is attributed mainly to the very careful handling of the apparatus during the measurement, and also to the precautions taken to secure daily comparisons with the standard.

The author of the paper expresses his belief that the question whether a base apparatus compensated for changes of temperature or one uncompensated would prove to be the most desirable is still unsolved. This is in consequence of the irregular contraction of the zinc bars as experienced in the present apparatus, the effects of which were only overcome by extra labor of comparison with the standard. The fact that the degree of accuracy actually reached is far greater than can be preserved, even in the very perfect measures of the angles of the tirst quadrilateral, does not, set at rest the question of the most effective base apparatus, since besides accuracy, rapidity, and ease of handling, in a word, economy in measurement is also a very important factor.

VERIFICATION OF THE NORTHERN BOUNDARY OF WYOMING TERRITORX.

The occasion of the detail of an officer of the Coast and Geodetic Survey, at the request of the Interior Department, to make an examination upon the ground of the survey of the northern boundary of Wyoming Territory, made for that Department under coutract, was fully stated in my last annual report.

At the beginning of the fiscal year 1882-83 the work of verification was in full progress. By the close of August the field examination was finished. It was conducted under special instructions drawn up in accordance with the conclusions arrived at by the Commission appointed during the previous winter, and the work was executed in a manner entirely to the satisfaction of myself and the Secretary of the Interior.

PHYSICAL HYDROGRAPHY.

Much attention has been given during the past year to the study of questions in physical hydrography, the solation of which promises practical usefulness in connection with navigation and proposed public works.

A special investigation has been called for in the progress of the pbysical survey of Delaware Bay and River. This survey has now so nearly advanced to completion that a classification of its results has become possible with reference to the determinations of mean depth, areas of crosssection, and the laws which govern the changes in channel-ways and the movement of the tides.

In a report which was printed as Appendix No. 13 to the report for 1879 , three rules were pointed out which simplified the conception of the physical scheme of Delaware Bay. They were deduced from a study of the printed charts, based upon the surveys of nearly forty years ago, but the new surveys, made with all modern refinements, confirm these rules in the most satisfactory manuer. The author now furnishes the following statement, worked out from large collections of new data, which cannot fail to be valuable in considering plans for improvement to navigation or for the reclamation of tide-lands:
"In the estuary of the Delaware, from League Island to the submerged delta, fifty miles below, the mean depth is constant; the widths and seetions vary with the square of the distance, and the retard of the tide can be cxactly stated in terms of the mean depth and width."

It is the first instance, perhaps, in which, with a constancy of mean depth, the effect of width upon the rate of tidal propagation could be accurately determined. In Appendix No. 9 to the report for 1878 the details of this investigation were given, and in Appendix No. 8 to my report for the present year are stated the conclusions derived from a careful study of the recent surveys.
maxima and minima tide-predicting machine.
A description, with drawings, of a machine for compating tides, devised and constructed for the use of the Coast and Geodetic Survey, will be given in Appeudix No. 10 to this report. With it can be determined mechanically the times and heights of high and low water at the numerous ports apon our coast for which Tide Tables are published a year in alvance. These times and heights are given directly in figures upon a dial aud scale, to be tabulated by the operator. The working capacity of the machine is estimated to be at least that of twenty computers. Results obtained by means of it for the Boston tides of 1884, and compared with results from computation, presented a satisfactory agreement.

HARMONIC ANALYSIS OF THE TIDES OF SANDY HOOK.

Abstract

At Sandy Hook, N. J., which is a port of reference for the tides on the south coast of Long Island, for those on the New Jersey coast between Keyport and Cape May, and for the tides at Cape Henlopen and the Delaware Breakwater, a self-registering tide-gauge has been maintained for several years. In order to deduce a series of tidal constants which will serve in future for the close prediction of tides at this important station, the hourly co ordinates of the heights of the tide as measured from the curves recorded for six years (1875 to 1881, inclusive) have been treated by the method of harmonic analysis. This paper appears as Appendix No. 9 to this report.

In a report on a discussion of the tides of Penobscot Bay (Appendix No. 11 for 1878) a full account was given of the method of applying the harmonic analysis to the investigation of the laws of tidal action.

DEEP-SEA EXPLORATIONS IN THE WESTERN PART OF THE NORTH ATLANTLC OCEAN.

The deep-sea explorations which have been prosecuted for several years past in the western part of the North Atlantic Ocean have been continued. For the special purpose of developing the limits and general character of that part of the Atlantic Basin between Bermuda and the Bahamas, and to the eastward as far as St. Thomas, a systematic investigation of the configura tion of the ocean bed in those localities was made during the past winter by deep-sea sounding and dredging, with observations of surface, serial, and bottom temperatures.

Many interesting results were obtained during this crnise, one of the most noteworthy of which was the successful sounding taken at the great depth of four thousand five hundred and sixty-one fathoms about seventy-five miles to the northward of Porto Rico. The temperature at this deptle was found to be 364° Fahr., and the specimen-cup brought up brown ooze. No record is known of any sounding from which bottom specimen and temperature have been obtained at a depth equaling this.

A moilel of the bottom of our Atlantic coast and the Gulf of Mexico, based upon the Coast Surcey soundings, was constructed at this office, and being exhibited at the recent Iuternational Fisheries Exposition in London attracted much notice and received great commendation. r

EXPLANATION OF ESTIMATES.

With the detailed estimates for the fiscal year ending June 30, 1885, which were transmitted to the Treasury Department in November last, was submitted the following statement:

In submitting the estimates for the Coast and Geodetic Survey for the fiscal year 1884-85, I beg leave to bring to your attention the points in which they differ trom the appropriations for the corrent fiscal year, and to ask your approval of the same.

The aggregate amount asked is $\$ 070,500$, while the aggregate appropriation for the current year is $\$ 655,290$. There is no great disparity in these amounts, but it must be noted that this year's appropriation contains an amount of $\$ 100,000$ for the building of a new steamship for the coast of Alaska.

The chief increase in the estimates is for the item of "party expenses," which comprise the pay of those temporarily employed as recorders, signal-men, hands, cooks, drivers or boatmen, as the case may be, the subsistence and transportation of the parties, and all requisite materials, tents, boats, and all other necessary expenses incident to the work.

The object of proposing this increase is to obtain a proper economic proportion between the expense of putting the surveying parties in the field and the length of time that they can be kept at work. This should be as long as permitted by the season favorable for field work in the several localities. In order to n eet this condition it is necessary that the amount available for "party expenses" should be at least half as large again as it has been of late years, and I am constrained by a consideration of reasonable economy to submit estimates for au increased amount.

As compared with the vast extent of our coast, the localities at which the work is going on are few and far between, and the only other mode of doing the work with due economy, with the present means, would be to discontinue the survey for the present at many points where it is now in progress.

The next item in the appropriation, that for "transcontinental geodetic work," is slightly increased for the same considerations.

The item for "aid to State surveys" is increased by $\$ 4,000$, owing to the growing demand for this means of verifying the surveys of the different States.

In the item of "pay in field" the small increase in the estimate is rendered necessary by the reasonable expectation of advancement in the lower grades. The probable diminution of expenditure from natural causes in the higher grades may make the additional expenditure unnecessary.

The aggregate of the "pay in office" remains unchanged, although variations may occur in details.

The "rent" charges equally remain unchanged.
The amount for "office expenses" is increased by about $\$ 6,400$, owing to the constantly growing demand for the results of the work.

The item for "repairs of vessels" is increased by $\$ 3,000$, to bring it up to the ordinary amount (reduced 10 per cent. last year), and by $\$ 12,000$ for putting new boilers in the steamer Hassler, which has now been in service twelve years.

I trust that the foregoing explanations will warrant your approval of the estimates sabmitted.
Estimates ior fisene Yum /\&\&b

For every expenditure requisite for and incident to the surver of the Atlantic, Gulf, and Pacific coasts of the United States, including the survey of rivers to the head of tide-water or ship navigation; deep-sea soundings, temperature, and current observations along the coasts and throughout the Gulf Stream and Japan Stream flowing off the said coasts; tidal observations; the necessary resurveys; the preparation of the Coast Pilot; a magnetic map of North America, and the compilation of data or a general map of the United States; and including compensation, not otherwise appropriated for, of persons employed on the field-work, in conformity with the regulations for the government of the Coast and Geodetic Survey adopted by the Secretary of the Treasury, and including allowance for subsistence to officers of the Nary attached to the Survey, not exceeding one dollar per day, as allowed by act of Congress approved June 12 , 1858; and also including the repairs, outfit, and equipment of vessels ased in the Survey, to be expended under the following heads:
For Party Expenses.-For continuing the survey of the unsurveyed portions of the coast of Maine eastward from Chandler's River towards Quoddy Head; for examination of reported dangers and changes on the eastern coast and Vineyard Sound; for continuing resurvey of Loug Island Sound; for completing resurvey of Delaware Bay, including current observations; for continuing examination of changes and resurvegs on the sea-coast of New.Jersey; tor surveys of estuaries of Chess-
S. Ex. 29-2

For Party Expenses-Continued.
peake Bay, including Chincoteague Bay, Md., and of sounds and tide-water passages in North and South Carolina not heretofore sturveyed; for continuing the survey of the sounds on the eastern coast of Florida, including the Saint John's River; for continuing the survey of the western coast of Florida from San Carlos entrance southward, and from Bayport southward, and hydrography of same; for examining the changes in Mobile Bay, and surveying around the Chandeleur Islands and the waters on the east coast of Louisiana; for continuing the survey of the coast of Louisiana from Bayou La Fourche westward, and between Vermilion Bay and Mermenteau Pass, including hydrography on the coasts of Texas and Louisiana west of the Mississippi River; for making the requisite verification of the work and for reexamiuations of entrances on the coast of Texas; to make off-shore soundings along the Atlantic coast, and current and temperature observations in the Gulf Stream ; for continning the researches in physical hydrography relating to harbors and bars; for determinations of geographical positions (Iongitude party); to continue the primary triangulation from Atlanta towards Mobile; for continuing an exact line of levels from the Gulf to the transcontinental line of levels between the Atlantic and Pacific Oceans; to continue tide observations on the Atlantic and Gulf coasts, and researches relating thereto; to continue magnetic observations on the Atlantic and Gulf coasts; to continue gravity experiments; to continue the compilation of the Coast Pilot and to make special hydrographic examinations for the same; for compilation of data for a general map of the United States; for continuing the survey of the coast of California, namely, for topography from San Luis Capistrano towards San Diego, from Point Piedras Blancas to Cape San Martin, and supplementary surveys near San Francisco; for primary triangulation from San Luis Obispo northward, from Santa Clara southward, and from Trinidad northward, including a line of precise levels from Sancelito to the transcontinental line of levels; for hydrography off the same coast; for continuing the survey of the coast of Oregon, namely, survey from Umpquah River southward, and including such river mouths as may be specially called for, and off-shore hydrography, and the survey of Columbia River and Willamette River to the head of ship navigation; for continuing the survey of the coast of Washington Territory, namely, continuing the triangulation, topography, and hydrography of Fuca Strait, of the estuaries of Puget Sound, and of Possession Sound; for the transfer of the steamer Patterson to the waters of Alaska, the preparation for and making hydrographic surveys in the same; for miscellaneous work and contingencies of all kinds, including traveling expenses of officers and men of the Navy on duty not specified in the above, and for any special surveys that may be required by the Light-House Board or other proper authority ; for continuing tide observations on the Pacific coast; for mag. netic observations on the Pacific coast; for traveling expenses of the Superintendent and his party on duty of inspection, and for objects not hereinbefore named that may be deemed urgent; iu all for party expenses....
Transoontinental Geodetic Work.-For transcontinental geodetic work, including line of leveling between the Atlantic and Pacific Oceans
\$246, 000
hurnishing Points for State Surveys.-For furnishing points for State surveys.
Pay of Field Officers.-For pay of the Superintendent and forty-six Assistants, nine Subassistants, and twelve aids, constitnting the normal force of the Survey, in conformity with Treasury Regulations of March 18, 1881
Pay of Office Force.-For pay of persons employed in the Office of the Ooast and Geodetic Survey, under the regulations of the Secretary of the Treasury:
For pay of mathematicians and computers employed in the reduction and discussion of field-work; of draughtsmen; of engravers, copper-plate printers, and electrotypers; of computers for the discussion and prediction of tides; of persons employed in collecting, verifying, and arranging the data for the Coast Pilots; of the hydro-

Pay of Office Foroe-Continued.
graphic draughtsmen in office of hydrographic inspector; of the disbursing agent and accountants; of the mechanicians in the instrument shop; for the reconstruction and repairs of instruments, including carpentry; and of persons employed in the official correspondence; writing and copying reports and records; preservation of the records of the Survey; distribution and sale of charts; the pay of watchmen, messengers, and packers.

GENERAL EXPENSES, COASTAND GEODETIC SURVEY.

Rent of Builldings:

For rent of buildings for offices, work-rooms, and work-shops in Washington........
For rent of fire-proof building No 205 New Jersey avenue, including rooms for standard weights and measures; for the safe-keeping and preservation of the criginal astronomical, magnetic, hydrographic, and other records; of the original topographical and bydrographic maps and charts; of instruments, engraved plates, and other valuable property of the Coast and Geodetic Survey
Office Expenses.-For the purchase of new instruments; for materials and supplies required in the instrument shop for reconstruction and repairs, and for books, maps, and charts, including subscriptions; for materials for the Drawing Division and for chart-mounting, including drawing-paper; for copper plates; chart paper; printer's ink; copper, zinc, and other materials for electrotyping; engraver's and printer's supplies; materials for carpenter's shop; for extra engraving, inclinding map of the United States, and the necessary copper plates therefor; and for photolithographing charts for immediate use; for stationery for the office and field parties; transportation of instruments, supplies, \&c.; office wagon; fuel; gas; telegrams; ice; washing; extra labor; office furniture and repairs; and for allowances to the Assistants in charge of the office details, in accordance with the regulations of the Secretary of the Treasury; for miscellaneous expenses; contingencies of all kinds; and for traveling expenses of Assistants and others employed in the office sent on special duty in the service of the office.
Publishing Observations.-For continuing the publication of observations and their discussions made in the progress of the Coast and Geodetic Survey, including compensation of civilians engaged in the work, the publication to be made at the Government Printing Office.
Repairs and Maintenance of Vessels.-For repairs and maintenance of vessels used in the Coast and Geodetic Survey, including new boilers for the steamer Hassler

42,000
Total amount estimated for Coast and Geodetic Survey for 1884-85
670,500
Total amount appropriated for Coast and Geodetic Survey for 1883-s4..... 655, 290

PARTII.

In this part of the report are given condensed statements of the operations of the field parties of the Surrey in the several localities upon the Atlantic and Pacific coasts and in the interior States. These statements are arranged in a geographical order, under the headings of the several sections. Upon the Atlantic coast they include localities between Machias Bay, Me., and Matagorda Bay Tex.; and upon the Pacific, portions of that coast between Los Angeles, Cal., and Point Barrow, Alaska.

In the interior States the geodetic surveys which are intended to complete the connection between the work on the eastern and western coasts, and those in progress for the purpose of furnishing points to State surveys, are referred to in sections, each of which comprises two or more States, beginning with those nearest the Atlantic coast.

Appendix No. 1 exhibits in tabular form the distribution of the surveying parties, the names of persons conducting field-work, and the nature of the work performed.

Assistant Richard D. Cutts, in charge of the Coast and Geodetic Survey Office, presents in Appendix No. 4 a comprehensive report of the operations of the office duriug the fiscal rear, and accompanies it with the reports of the chiefs of the several office divisions. The close relation between efficient administration in the office and results commensurate with the means employed in the field has been fully recognized by Assistant Cutts, and my indebtedness to him for constant and cordial co operation is very great.

The report of Commander C. M. Chester, U.S. N., Hydrographic Inspector, appears in A ppendix No. 5. I have committed to him all matters pertaining to the arrangement of hydrographic work, the assigument to duty of naval officers attached to the Survey, the care and disposition of vessels, and the direction of the labors of the hydrographic draughtsmen. His aid and counsel in this branch of the service I have found invaluable. With his report is given a list of the officers of the Navy on duty in the Survey during the fiscal year, a statement of the condition of the vessels engaged in the work, and a summary of the work accomplished by the hydrographic draughtsmen employed in the office.

Lieut. J. E. Pillsbury, U. S. N., was on duty during the year as assistant hydrographic inspector. By his systematic and earnest efforts the office was enabled to keep the charts of the Survey up to the latest dates in respect to changes made or contemplated in Aids to Navigation. In these efforts he had the hearty co-operation of the Light-House Board, through its secretaries. For early information in regard to such changes Commander Chester expresses his thanks to those officers.

Lieut. Richardson Clover, U. S. N., Assistant, Coast Survey, was on duty part of the year, and assisted in the preparation of the plans and specifications for the new steamer for the Pacific coast.

SECTION I.

MAINE, NEW HAMPSHIRE, VERMONT, MASSACHUSETTS, AND RHODE ISLAND, INCLUDING COAST and sea-ports, Bays, and rivers, (Sketches Nos. 1 and 3.)

Triangulation and topography of Machias Bay and River, Me.-As soon after the beginning of the fiscal year as practicable, Assistant C. H. Boyd proceeded to Machias Port, Me., under instructions to take up the survey of Machias Bay and River. Mr. Boyd's first efforts upon his arrival,
early in August, 1882, were directed towards the recovery of stations of the triangulation began in 1862 but interrupted at that time by the course of public events. Two of these stations, "Howard" and "Lowell," were identified, and with the base thus obtained all needed triangulation points were determined.

The shore-lines of the bay and rivers with the islands in the vicinity were delineated upon two topographic sheets, extending from Cross and Libby Islands, at Machias Bay entrance (and including Machias Port), to the bridges over the Machias and East Machias Rivers, some fifteen miles from the sea. Field-work was closed on the 10th of November. Mr. E. L. Taney, aid, served very acceptably in the party during the entire season ; Mr. C. W. Lyman during part of the season.. The statistics of the work are as follows:
Shore-line surveyed, miles 66
Roads, miles 5
Area of topography, square miles 3
Stations occupied in triaugulation 9
Positions determined 24

Reference will be made to the work of Assistant Boyd during the winter season on the coast of Louisiana under the head of Section VIII.

Topograpky of islands in Moos-a-bec Reach, and shore line of Chandler's Bay, Me.-It being desirable to fill certain gaps in the topographic survey of the islands near the eastern entrance to Moos-a-bec Reach, and of the northern shore of the reach in the vicinity of Jonesport, Assistant Eugene Ellicott was directed to take up this work, and arrived at Jonesport early in August. After completing the survey of the outer face of Head Harbor Island, Steele's Harbor Island, and Great Wass Island, Mr. Elicott took up the unfinished topography of the northern shores of the reach, near Jonesport, and between West River and Carrying-Place Cove. Much cutting had to be done here, the country being densely wooded. This portion of the survey was finished towards the close of October, and work apon the Chandler's Bay sheet was in progress when Mr. Elicott's services were required in another field of labor, and under instructions November 11, further operations were suspended. Following are the statistics of the survey :

```
Shore-line surveyed, miles32
```

Area of topography, square miles 13

Work executed by Mr. Ellicott under subsequent assignments will be referred to under the heads of Sections III and VI.

Topography of the shores of Pleasant River, Me.-The completion of the topographical survey of the shores of Pleasant River, Me., to the head of tide-water, having been assigued to Assistant A. W. Longfellow, that officer took the field as soon as funds were available for the work, and, beginning about a mile below Addison's Point Village, extended the topography of the river-shores to a little above Columbia Falls Village, including the mill-poud there. Vertical angles for contour curves gave an elevation for this pond of 17.4 feet above high water.

Both Addison's Point and Columbia Falls have been ship-building localities. Vessels of one hundred and fifty tons can load at the Falls, and two were built there during the preceding season. The Pleasant River is a tidal stream up to the Falls, winding through salt marshes, which are generally diked, but subject to overflow at spring and storm tides to their limits at the upland. The survey was completed on the 24th of November. Statistics are as follows:

Shore-line surveyed, miles . 33
Streams and brooks traced, miles . 22
Roads, miles . 37
Area of topography, square miles............ ... 14
Hydrographic surveys in Narraguagus and Pigeon Hill Bays; soundings off Gouldsborough Bay and in Dyer's Bay and Rockland Harbor, Me.-Under instructions directing a hydrographic survey of Pigeon Hill Bay and its eastern approaches, with other hydrographic work in the adjoining bays and in Rockland Harbor, Lieut. H. G. O. Colby, U. S. N., Assistant in the Coast and Geodetic Survey, arrived with his party in the schooner Eagre in Pigeon Hill Bay (sometimes called Boisbu-
bert Harbor) early in July, 1882. Having selected an anchorage abont half a mile above Gnil Rocks, and established a tide-gauge which was referred to a bench-mark upon Boisbobert Island, soundings were begun, and the work was prosecuted as rapidly as good results would allow. Great care was takeu to find all hidden dangers; ledges and rocks were buoyed and developed separately; fishermen and local pilots were consulted as to names familiar by long usage in the locality.

Lieutenant Colby remarks in regard to Boisbubert Harbor that it is spoken of as a place much exposed in southerly gales, and that such is the impression formed at first sight, and in a measure true, the formation of the land giving little protection from the wind. But from the sea the protection is almost perfect, the rocks and ledges which make this harbor so difficult of access from the southward forming a brea' water, so that during the heary winter gales nothing more than "a chop" is experienced.

The following extracts from Lieutenant Colby's report will be of interest:
"Petit Manan Bar, which extends from Petit Manan Point to the islands, is one continuous line of ledges and rocks; there are two channels over the bar, one close in to the point and the other about two-thirds of the distance to the islands. The former is crooked and narrow, with several detached rocks, not fit for strangers; the latter is buoyed and can be used by vessels of light draught after two hours' flood. * ** The tide runs nearly east and west across the bar. In anything more than ordinary weather there is one line of breakers the entire length of the bar, and it cannot be crossed with safety."
"The 'Whale' is a rock which lies about half a mile south of Egg Rock; it is one of the principal dangers of Pigeon Hill Bay, as at high water, with little or no swell, there is nothing to mark the locality of this rock. Between the Whale and Egg Rock no dangers were found, which leads to the belief that there is a good channel here by keeping clear of the rocky point making off to the southward of Egg Rock. This ledge was developed by placing two buoys on the two shoalest spots, and running lines across nearly at right angles, in order to show as nearly as possible the shape and formation, which at half-tide has, as the name implies, the appearance of a large whale.
"To the north of Egg Rock, between it and Little Bubert, the bottom is very irregular, composed of ledges and large bowlders, and is not a safe place for vessels of any size."

The hydrography of Pigeon Hill Bay was completed before the close of the season, with the exception of some sonudings to the northeast of Pond Island and the ledge known as Jordan's Delight. Daring the summer an irou spindle was fixed by the Light-House Board upon the southern point of this ledge. The spindle was carefully established in position by the hydrographic party and used as a sigual.

Additional work executed by Lieutenant Colby included soundings for a more complete development of the bottom off Gouldsborough Bay, examination of a doubtful spot in Dyer's Bay, and sonndings needed to complete the survey of Rockland Harbor, Me.

During the season ending in November, 1882, the following-named officers were attached to the party: Ensigns David Daniels, O. G. Dodge, and A. Jeffries, U. S. N. Of the ability and readiness with which the duties assigned to these gentlemen were performed Lieutenant Colby expresses his appreciation in his report.

Statistics of the season's work are as follows:

```
Miles run in sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Angles measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 476
Number of sonndings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 055
```

Tidal observations.-As heretofore for several years past, the series of tidal and meteorological observations at Pulpit Cove, North Haren Island, Penobscot Bay, has been kept up by Mr. J. G. Spaulding. A continuation of this series for about six years longer will be desirable at this fundamental station, in order to obtain data which will fulfill the conditions required for investigating the laws of the tides on the Atlantic coast of the United States. But few interruptions of the record have occurred since its beginning in 1870 , the self-registering tide-gauge being supplied with a hotwater apparatus, which has kept it in action in the coldest winter weather.

Primary triangulation for the connection of the station upon Mount Wrashington, N. H., with the triangulation of Maine and of the Hudson River and Lake Champlain.-The tower and tripoderected over the Coast and Geodetic Survey station on the summit of Mount Washington were used during the season of 1881 for the secondary triangulation of New Hampshire. There still remained, however, to be observed at that station the primary lines connecting the triangulation of Maine with the series covering the valleys of the Hudson River and Lake Champlain; and for the purpose of avoiding a not improbable risk of the overturning or tilting of the tower by the violent storms of winter, it was deemed advisable to hare the remaining and actually necessary observations made there at as early a date as possible.

Accordingly, at the beginning of the fiscal year, Assistant Richard D. Cutts was instructed to organize a party to take charge of this special work, and to direct it in person in the field at such times and for such periods as his duties as Assistant in charge of the office would permit.

Mount Blue, in Maine, Mount Mansfield, in Vermont, and other statious to be selected in the northern part of New Hampshire and Maine and along the boundary line between the United States and Canada were to be included in the scheme of work, which, as thus laid out, inrolved an extensive reconnaissance. Under the direction of Assistant Cutts this recomaissance was made by Mr. John A. McNicol during the month of July. Many points were examined and the positions of seven stations were approximately fixed, including Oxford Mount, in Canada, and Camels Rump and Mount Azischohos, in Maine. At this last-named station a signal was erected and observed upon from Mount Washington. The summits of the other mountains were so densely woodel that it was not possible to open the different lines and to observe from Mount Washington during the same season.

Near the close of July the occupation of Mount Washingtou station began. Heliotropers had been posted on Mount Blue and Mount Pleasant, Me.; Gunstock, N. H.; Mounts Killington aud Mansfield, Vt. Every favorable opportunity was taken to advance the work, and upon reaching the station, August 10, Assistant Cutts assumed personal charge of the party.

The directions of the five principal stations were each determined by thirty-five observations taken in seven positions of the instrument; vertical angles were also measured on the same summits, and a few on other sammits, the total number of such measurements being one hundred and sixty-two.

Observations were completed September 13. The lengths of the lines observed from Mount Washington are as follows:
Miles.
To Killiugton 88.5
To Mount Mansfield . 77.0
To Mount Azischohos . 46.0
To Mount Blue . 57.0
To Monnt Pleasant . 29.5
To Gunstock Mountain . 52. 0

Occupation of stations for determining points in the triangulation of New Hampshire.-A reconnaissance of the eastern part of the State of New Hampshire for extending the triangulation of that State was beguu by Prof. E. T. Quimby, Acting Assistant, in accordance with instructions issued at the beginning of the fiscal yedr. Catamount Monntain, in Pittsfield, Merrimac County, having been selected as the first station, was occupied between the middle of July and the close of August, and early in September Professor Quimby moved his party to station Blue Job, in Farmington, Stafford County, making in the intervals of occupation of these two stations a reconnaissance still further eastward.

Observations at Blue Job met with frequent interruptions from storms, severe gales of wind, and fog, but they were finally completed before the close of the season in October, and arrangements were then made for the occapation during the next season of Moose Mountain, in Brookfield, Darroll County. Statistics are:

Horizontal directions determined. 200
Vertical angles measured . 30

Stations occupied in continuation of the triangulation of the State of Vermont.-The duty of continuing the triangulation in the southern part of the state of Vermont having betn assigned to Prof. V. G. Barbour, Acting Assistant, by instructions dated July 1, 1882, preparations were begun in the early part of the month for the occupation of Halifax station, in Windham Connty. The observations of horizontal and vertical angles required at this station were completed by the close of July, and a few days early in Angust were oceupied in stationing beliotropers on Mounts Mans. field and Killington for the primary triangulation party on Mount Washington referred to under a previous headiug in this section.

Preliminary arrangements were at the same time made for the occupation of Haystack Mountain, in the town of Wilmington. A temporary camp was established at the foot of the mountain until a road could be cut to a point half a mile distant from the summit. At this point, eight hundred feet below the summit, the camp of occupation was established. From the camp to the station, the ascent being too steep for horses or oxen to travel, the observing tent and instruments were carried by hand. Ubservations were begun A agust 18 and completed on the 30th, eight signals and the church spires of three villages having been observed.

Mount Anthony, in Bennington County, was the last station occupied, and on the 14 th of September, field-work was closed. Statistics are:

$$
\text { Horizontal angles measured. } 816
$$

$$
\text { Vertical angles measured . } 360
$$

Line of deep-sea soundings from off Nantucket across the Gulf Stream. -In continuation of the investigations relating to the depth and temperature of the western part of the North Atlantic, Lient.Commander W. H. Brownson, U. S. N., Assistant Coast and Geodetic Survey, upon assuming charge of the hydrographic party on board the steamer Blake in August, 1882, was instracted to run a line of soundings, with serial temperatures, from the vicinity of Nantucket across the course of the Gulf Stream. The Blake had already been engaged in similar work under the direction of Commander J. R. Bartlett, U. S. N., Assistant Coast and Geodetic Survey. For reference to this see Sections II and VI. The vessel being fitted with all needful apparatus, the work assigned to Lieutenant-Commander Brownson occupied but a few days, and was completed August 24. His line of soundings began off Nantucket, in latitude $40^{\circ} 52^{\prime}$, longitude $699^{\circ} 49^{\prime}$ west of Greenwich, and ended in latitude $37^{\circ} 19^{\prime}$, longitude $66^{\circ} 35^{\prime}$ west of Greenwich. At this point a depth of two thousand seven hundred and fifty-six fathoms was sonuded, the temperature at this depth being $36 \frac{1}{2}^{\circ}$ Fahr. Returning towards the coast, a shorter line of soundings was run, and the Blake then proceeded to Providence, R. I., where preparations were made for off-shore work south of Long Island.

The statistics presented by Lieutenant-Commander Brownson in his report are as follows:

Tidal observations.-Records of tidal carves, from the self-registering tide-gange loaned by the Coast Survey to the engineers of the city of Providence in 1872, are transmitted at intervals to this office. Results of value have already been obtained from a discussion of these observations, and it is hoped that nothing will occur to prevent the completion of the series.

$$
\begin{aligned}
& \text { Length of sounding lines, in miles... } 332 \\
& \text { Number of soundings taken. } 40 \\
& \text { Serial temperature stations, number of. } 27 \\
& \text { Water temperatures observed, surface. } 44 \\
& \text { Water temperatures observed, intermediate } 173 \\
& \text { Water temperatures observed, bottom } 24 \\
& \text { Specimens of bottom, number of.............. } 17
\end{aligned}
$$

SECTION II.
CONNECTICUT, NEW YORK, NEW JERSEY, PENNSYLVANIA, AND DELAWARE, INCLUDING COAST, bays, and RIVERS. (Shetches Nos. 1, 3, and 4.)

Deep-sea soundings from the vicinity of Montauk Point to the Bermuda Islands and lines of soundings normal to the coast off the south shore of Long Island. - At the beginning of the fiscal year the steamer Blake had been thoroughly equipped for deep-sea explorations under the direction of Commander of J. R. Bartlett, U. S. N., Assistant Coast and Geodetic Survey. The interesting results obtained by that officer during the preceding season, in the course of his explorations of the Gulf Stream, were stated at leugth in my last annual report. In continuation of these investigations, under instructions dated in June, 1882, Commander Bartlett, with his party in the Blake, left New York July 15, and the next day began a line of soundings with surface, bottom, and serial temperatures from off Montauk Point towards the Bermudas.

Three additional lines were run before the return of the steamer to New York in August, one from the Bermudas to Cape Hatteras, one from Cape Henry to the outer limits of the Gulf Stream, and one from the last station reached on this line to New York, where the Blake arrived August 14.

The leading facts of the cruise are stated in the following extracts from Commander Bartlett's report:
"The first sounding taken on this line (from off Montauk Point to the Bermudas) was just beyond the one hundred-fathom curve in two hundred and sixty-six fathoms. Soundings were then taken every twenty miles until July 20; after this date we made only an occasional sounding. * * We crossed the ordinary limit of the Gulf Stream in latitude $39{ }^{\circ} 15^{\prime}$ north, longitude 70° west. From our departure from Montauk light, I steered direct for the Bermudas, being a course SSE. (T. M.); this course I intended changing on entering the Stream to allow for the set of the current. I crossed the imaginary limit, and continued the same course of SSE, until reaching latitude $38^{\circ} 45^{\prime}$ north, longitude $70^{\circ} 13^{\prime}$ west. The temperature of the surface water just outside of the one hundred-fathom curve was 68°; it gradually rose to $70^{\circ}, 72^{\circ}$, and 73°, and at last to 75°, when the course was changed to S. by W. (T. M.) to allow for a two-knot current and the time necessary to cross the Stream to its southern limit.
"No easterly current was detected on this new course until reaching the vicinity of latitude $37 \circ 02^{\prime}$ north, longitude $70{ }^{\circ} 40^{\prime}$ west. During the time that we were in the current we had no observations of sufficient value to give its direction or force. The wind was fresh from the southwest and the current northeasterly at least three miles per hour. We lost the current again in about latitude $36^{\circ} 35^{\prime}$ north, longitude $69^{\circ} 25^{\prime}$ west. On the southern side of the Stream I observed immense quantities of the Gulf weed extending in long lines with the wind and sea. * * * The character of the bottom of the several soundings was a light gray ooze, as previously found by H. B. M. S. Challenger. * * The temperature of the surface water was taken at every mile of distance.run, by means of an ordinary thermometer, the water for that purpose being drawn over the stern, where it was stirred up by the propeller. The temperature of the suface was also taken forward at each sounding and serial station.
"The surface temperatures taken did not indicate any bifurcation of the Stream into warm and cold bands, as had been previously reported. The temperature of the surface increased gradually from 68° near the hundred fathom line to 75°, and remained at 74° and 75° until we entered the Stream when it rose as high as 80° and 81°, and continued at nearly the same temperature all the way to the Bermudas. There was a slight rise and fall of the temperature of the surface water between day and night, and also a fall during heavy squalls of rain, but even when we found the fall of temperature at the surface, it was not indicated at five and ten fathoms.
"At every sounding the temperature at the bottom was obtained by a Miller-Oasella thermometer attached to the stray line about ten feet above the sinker. The temperature of the bottom at the first sounding of two hundred and sixty-six fathoms was $401{ }^{\circ}$. I found as low a temperature as this close to the shore in twenty-four fathoms, but it increased two or three degrees as the water deepened towards the one hundred fathom line. At eleven hundred and seventy-four fathoms the
S. Ex. $29 \longrightarrow 3$
bottom temperature was 372°; at fifteen hundred fathoms from 36° to $36 \frac{10}{\circ}$; at greater depths it was 36° and 351_{2}°, which was the lowest that we obtained.
"From the first sounding, a series of temperatures were" taken every ten miles to a depth of twenty-five fathoms, temperatures being taken five, ten, fifteen, and twenty-ive fathoms. * * * The temperatures below the surface on all lines were taken with the Miller-Casella thermometers The readings of these thermometers have not been corrected for any error owing to pressure, but those in use were compared each day with a standard, and any which did not record accurately, or in which the mercury was broken, were laid on one side.
"After steaming eighty miles, and just before reaching the supposed ordinary limit of the Stream, the serials to twenty-five fathoms were increased so as to be only five miles apart on the remainder of the line to the Bermudas. A serial was taken every ten miles to two hundred fathoms at the following depths: Fifty, seventy-five, one hundred, one hundred and fifty, and two hundred fathoms; a serial to eight hundred fathoms every twenty miles, at three hundred, four hundred, six hundred, and eight hundred fathoms, each serial being complete from the surface to the greatest depth. All of the temperatures below the surface were taken with the thermometer fastened to the steel sounding wire, a thirty-six pound lead being used as a sinker."

Commander Bartlett arrived at the Bermudas on the afternoon of July 25, and remained in port only long enough to swing the vessel so as to determine any change in the deviation of the compass since swinging at Niantic Bay, Long Island Sound, before starting on the cruise. He found a slight change in the deviation, which he attributed to the effect of the dynamo-machine connected with the electric light.

Leaving the Bermudas, a line for temperatures only was run to Cape Hatteras, temperatures of the surface being taken every mile; those to twenty-five fathoms every ten miles; those to four hundred fathoms every thirty miles, and to eight hundred fathoms every sixty miles. Upon entering the current of the Gulf Stream the deep serials were taken at half the above distances.

Bad weather was encountered upon nearing Hatteras, and the position of the last serial which could be obtained in the heavy sea having been established, the steamer put into Hampton Roads Angust 2. Here Lieutenant-Commander W. H. Brownson reported on board for duty in anticipation of taking command of the Blake, and on the 10th of August Commander Bartlett began a line of soundings due east from Cape Henry light. The soundings were taken every five miles to the one hundred fathom curve; at this point two and a half miles apart, and then five miles apart to the end of the line. The temperature of the surface was taken every mile; to twenty-five fathoms every five miles, and to four hundred fathoms every ten miles.

With reference to this line Commander Bartlett remarks that he did not find the warm water or the Gulf Stream current until he had nearly crossed the imaginary Stream as represented on the chart. On reaching the Stream he shaped a course for Navesink lights, taking soundings and serials as on the previous line.

Some additional extracts from Commander Bartlett's report are here given, as presenting his views, derived from facts observed during the cruise. He says very justly, however, after stating that he has endeavored to draw attention to the most important facts, that no definite conclusion can be drawn from data obtained on only two lines crossing the Stream, and that the volume, direction, temperature, etc., is only for a particular date, and under especial conditions of wind and weather.
"In regard to the results of the investigation of this last season's work I have been particularly interested in what I was expected to find; that is, the bifurcation of the Strean into warm and cold bands. The warm and cold bands have been accepted for so long a time as a fact, and have been reported by such reliable authorities, that there must have been different conditions of weather during our observations. I have already stated that our observations did not indicate anything of the kind. From the time we entered the Stream on line O (the first line run) until leaving it, the wind was fresh from the southwest, and the current and warm water was in a very narrow stream. Sir C. Wyville Thomson says, in his Voyage of the Challenger: 'In crossing the Gulf Stream in both directions the alternate bands or interdigitations of warm and cold water were very perceptible.' In a study of the surface temperatures obtained by the Challenger I do not see
any change in the Stream itself, but there are warm and cold streaks well inside, near the one hundred fathom curve. Our temperatures also indicate these latter.
"The U. S. S. Jamestown crossed the Stream in May, 1832 , and the officers report having observed the cold bands, but they also state that when the cold surface water was observed it was during a perfect deluge of rain. I have often observed that a heary fall of rain changed the tem. perature of the surface water several degrees, but the temperature at five and ten fathoms did not show any change.
"I bave examined eight log-books of our men-o'war who erossed the Stream in the month of June in the same general locality as in line O. The prevailing wind was sonthwest, and in no case was I able to find anything like a bifurcation. The force of the current, its direction and even temperature, is certainly very much iufluenced by the wind and weather. The prevailing wind along our coast, as far north as Hatteras, is southwest during the summer months, and this was the season in which our observations were taken. In my report for the season 1881 I gave the change of direction of the general course of the Stream owing to a temporary change of the direction of the wind.
"In reference to the temperatures below the surface, the isothermals show only cold water on line O, until nearing the Stream, when they descend gradually and in the Stream abruptly to their greatest depth.
"Instead of the warm Stream water thinning away as it was reported to do when spread out, at the time of our crossing the Stream it was not much over fifty miles in width, as shown by the current and high surface temperatures.
"The general temperature at the bottom off Savannah, in the Gulf Stream, the depth being four hundred fathoms, was 45°; and at eight hundred fathoms outside and bejond the current, 391웅. On line O, the temperature in the Stream, at four hundred fathoms, was as high as 55°, and 40° at eight hundred fathoms. On the sonthern side of the Stream the temperature, at four hundred fathoms, rose as high as 60°, and to 42° at eight hundred fathows. Just north of the Stream the temperature at four hundred fathoms was 391° to 40°.
"The isothermals remained at the same depths from the Stream to the Bermudas, with the exception of a slight rise near the islands.
"On the line from the Bermadas to Hatteras the isothermals were at the same depths as on line 0 , south of the Stream. As we entered the current of Hatteras they were not quite as deep, boing $48^{\circ}, 47^{\circ}$, and 44° at four hundred fathoms, and 39° at eight hundred fathoms. It would appear that the Labrador current does not pass under the Stream until near Hatteras, when it would naturally follow the one thousand fathom curve, and go under the Stream at this point as I suggested in my last report.
"The two lines last run give only the temperatures of the Labrador current. They correspond with those taken on line O inside of the Stream, the temperature at four hundred fathoms being $38 \frac{1}{2}{ }^{\circ}$ "

Mention is made in the report of the great usefulness of the electric lights in sounding at night. These lights were run by a No. 4 Brush dynamo, the motive power being a small upright engine connecting by belt. The governor of the engine was arranged to give twelve hundred and fifty revolutions to the dynamo per minute. The two lights, of two thousand candle-power each, were hung from iron cranes lashed in the fore-rigging, and extending beyond the vessel's side so as to throw the beams of light around the sounding wire where it entered the water. When the vessel stopped for a sounding or a serial at night, the dynamo was started and run during the time of stopping only. Soundings and serials were then taken and the records kept on deck with as much ease as in broad daylight. The dynamo was situated about fifteen feet from the standard compass. At that distance, when running, it affected the compass about one-half a point, the compass returning to its normal condition when the dynamo was at rest.

All of the Mother Carey chickens that were in sight were attracted by the light, and after it had been in operation from twenty minutes to half an hour the water immediately underneath became crowded with squid and small fish.

Owing to the lateness of the season when the work began, Commander Bartlett made but two
trials with the Siemens apparatus, and then only to verify the readings of the Miller-Casella deepsea thermometers.

Commander Bartlett acknowledges the aid of Lient. G. W. Mentz, U. S. N., and Ensign H. S. Knapp, U. S. N., in the arduous work of the cruise, and in closing his report expresses the great regret that he feels in retiring from the command of the Blake and duty under the Coast Survey. This regret I fully share, in view of the loss to the Survey of the experience gained by this able officer in deep-sea investigations during his four years' service.

Statistics of the work are as follows:
Deep-sea soundings, number of lines run. 4
Length of lines in nautical miles. 1, 800
Number of soundings with wire taken 61
Air temperatures observed, with dry bulb. 241
Air temperatures observed, with wet bulb 241
Serial stations occupied. 222
Water temperatures observed, surface 2,331
Water temperatures observed, intermediate 1,511
Water temperatures observed, bottom 61

As already stated, under the head of Section I, the charge of the hydrographic party on board the Blake was transferred by Commander Bartlett to Lieut. Commander W. H. Brownson, U. S. N., Assistant Coast and Geodetic Survey, in August, 1882.

Hydrographic work executed by these officers in the Blake off the coast of Long Island will be referred to later in this section, and the deep-sea soundings between the Bahamas and Bermudas under the heading of Section VI.

Hydrography of eastern entrance to Long Island Sound.-In pursuance of instructions dated July 19, 1882, directing Lieut. Commander W. H. Brownson, U. S. N., Assistant Coast and Geodetic Survey, then in command of the steamer Gedney, to make a hydrographic resurvey of the eastern entrance to Long Island Sound, work had been begun by that officer but a few days before the exigencies of the service made it expedient to transfer him to the steamer Blake, and to assign Lieut. H. B. Mansfield, U. S. N., Assistant Coast and Geodetic Survey, to the charge of the hydrographic party on board the Gedney. Lieutenant-Commander Brownson was relieved by Lieutenant Mansfield August 1.

Between this date and November 6, when the work was completed, an area of four hundred and teu square miles was sounded, the limits of the sheet comprising that portion of the eastern entrance to Loug Island Sound which is known as Block Island Sound. The plane of reference for the soundings was established by observations at the tidal station on Block Island. Statistics of the work are:

$$
\begin{aligned}
& \text { Miles run in sounding .. } 583 \\
& \text { Angles measured 1, } 737 \\
& \text { Number of soundings .. 7,509 }
\end{aligned}
$$

The following-named officers served in the hydrographic party: Master C. McR. Winslow, U. S. N.; Ensign W. B. Caperton, U. S. N., and Midshipmen W. C. Canfield, R. S. Sloan, and William Truxtun, U. S. N. A report of the hydrographic work executed during the winter season by Lieutenant Mansfield, off the east and west coasts of Florida, will be found under the head of Section VI.

Tidal observations.-Observations of tides were begun at Block Island on July 27, 1882, with the same self-registering tide-gauge that had been used in 1879, and at the same station on the breakwater at the eastern end of the island. The record was kept up by the observer, Mr \bar{U}, Ir. Conley, througnout the winter, with but little interruption. It is proposed to keep this gange in operation while the resurvey of Long Island Sound is in progress, and thus make Block Island the base of the tidal survey of that sound and the waters connecting with it, as it was formerly made the base for the tidal survey of Buzzard's Bay and Narragansett Bay.

Re-establishment of points of old triangulation and determination of new points from Watsh Hill westward for the resurvey of Long Island Sound.-In order to furnish points for the topographic and hydrographic resurveys of the north shore of Long Island Sound from Watch Hill westward, Assistant S. C. McCorkle, under instructions of July 31, 1882, proceeded to that part of the coast, and having after careful search recovered six stations of the former triangulation, began observations for the determination of new points on the 23d of August.

High winds and smoky atmosphere retarded somewhat the progress of the work, but by the 9 th of November, when field operations closed, it had been pushed far enough to furnish the determinations required. For the computation of results, Mr. McCorkle used Watch Hill-Mount Prospect (2)-a base line of the primary triangulation. Statistics of the work are as follows:

Number of stations occupied... 18
Number of angles measured . 233
Number of observations 2, 2, 340
Number of points determined.. . . . 41
During the winter season, Assistant McCorkle was assigned to duty which will be referred to under the head of Section VIII, and towards the close of the fiscal year was directed to resume work on the shores of Long Island Sound.

Topographical survey of Fisher's Island, Long Island Sound.-Whe field-work assigned to Assistant Edwin Hergesheimer upon being detached from office duty towards the close of July, 1882, was a topographic survey of Fisher's Island, near the eastern entrance to Long Island Sound. Much of the month of August was occupied in erecting signals, determining heights, and in fixing the positions of beacons and spindles for the use of the hydrographic parties at work in the vicinity. As completed on the 9 th of November, the survey included the whole area of Fisher's Island, and the small islands, Wicopesset, and the Hammocks to the east and north of it. Mr. A. E. Burton served as aid during part of the season. Statistics are as follows:

Length of shore-line, including creeks and ponds, miles......... 60
Length of roads, miles . 14
Area in square miles (Fisher's Island) 4.36
Upon returning to the office Assistant Hergesheimer, after inking his topographic sheet, resumed drawing for the topographical manual. Towards the close of the fiscal year he was instructed to proceed to Noank, Conn., in anticipation of a resumption of field-work upon the northern shore of Long Island Sound.

Hydrographic resurvey of Fisher's Island Sound and New London Harbor.-Lieut. Richardson Clover, U. S. N., Assistant Coast and Geodetic Survey, having been assigned to the charge of the hydrographic party on board the Coast Survey schooner Palinurus, and directed to make a hydrographic resurvey of Fisher's Island Sound and New London Harbor, arrived in New London early in July. The Palinurus had been in the service of the Fish Commission of the State of Connecticut, and while the vessel was being refitted and docked, search was made by Lieutenant Clover for a rock reported off Watch Hill, between the buoys in the channel entrance to Fisher's Island Sound. This rock, which had been struck by the steamer Massachusetts, was found and located without delay, and a detailed "Notice to Mariners" respecting it was soon after issued by the office. Soundings were begun in the Thames River, above the navy-yard, on the 1st of August, the lines being run on ranges one hundred meters apart, and continued at this distance until reaching the Sound, when the distance was gradually increased to two hundred and fifty meters; the lines crossing these at right angles were two hundred meters apart. Care was taken to develop all shoals and rocks by special systems of lines.

In the course of the survey, which included two hydrographic sheets, extending from Goshen Point eastward to Stonington, the southern limit being Fisher's Island, some rocks were found very dangerous to navigation which were before unknown, the most important of which were Vixen Ledge, half a mile southeast of Pine Island, and a cluster of rocks and a ledge, each with less than thirteen feet of water, and directly in the track of vessels using Pine Island Channel.

Due publicity was given to the existence of these dangers to navigation by the issue from the office of a "Notice to Mariners."

The plane of reference for the soundings was obtained by observation with staff-gauges set up at New London, Noank, and Stonington; at New London a self-registering gauge was also established under Lieutenant Clover's direction. Early in December the formation of ice interfered with the progress of the survey and it was brought to a close. Following are the statistics of the work:

Miles run in soundings	444
Angles measured.	5, 721
Number of soundings	25, 284

Efficient service was rendered in the party by Ensign L. K. Reynolds, U. S. N., Midshipman Harry Phelps, U.S. N., and by W. C. Willenbucher, of the Coast and Geodetic Survey Office.

Early in the winter Lientenant Clover was relieved from the command of the Palinurus and ordered to duty in the office.

Towards the close of the fiscal year the survey was resumed in Stonington Harbor under the direction of Lieut. A. V. Wadhams, U. S. N., Assistant Coast and Geodetic Survey, with the aid of Ensigus Thomas D. Griffin and W. C. Canfield, U. S. N. Between June 12th and 30th, 1883, Lieutenant Wadhams reports the following progress:

```
Miles run in soanding16
```

Angles measured.
358

Number of soundings.. 1, 888
Topographic resurvey of the north shore of Long Island Sound to the eastward of the Thames River.-In pursuance of instructions dated July 29, 1882, Subassistant W. C. Hodgkins began, early in the following month, a topographic resurvey of that part of the north shore of Long Island Sound which may be specially described as the north shore of Fisher's Island Sound east of Bluff Point.

With reference to the general aspect of this portion of the coast, Mr. Hodgkins remarks that it is very irregular, being deeply indented by coves and rivers which form a succession of peninsulas and islands. That the drift formation is the prevailing one, though there are occasional outcrops of rock in place, and that the presence of innumerable bowlders is the most characteristic feature of the surface, these bowlders being fonnd especially along the shore where the gravel and sand have been washed from under and around them. When lying on shoal ground at a distance from the shore they form reefs dangerous to narigation. The salt marshes, though frequently found along the shores of the coves, especially near the mouths of the larger streams, are not extensive enough to be considered a feature of great importance on this part of the coast. At Groton Long Point Mr. Hodgkins observes that the marshes and sand ridges present a formation curiously similar on a small scale to the alternate marshes and ridges of Cameron Parish on the south western coast of Louisiana. As the easteru limit of the work is approached, the character of the shore suddenly changes from the rocky shores of Stonington Harbor to the sea-formed sand-spit known as Napatree Point, at the western extremity of which a low hill of drift formation is reached, and turning suddenly to the north the spit continnes a mile and a half farther to the extremity known as Sandy Point, the southern point of entrance to Little Narragansett Bay. Old residents state that for many years this point did not change materially, but that more recently there has been a rapid growth to the northward. The gain in this direction has been nearly six hundred meters since the surrey of 1839 .

A prevalence of rain and high winds somewhat retarded the progress of the survey. At the 30th of November, when it closed for the season, the topography included the shore-line from Blaff Point to a point east of Stonington, the harbor and wharf lines of Noank, Mystic, and Stonington, both shores of Napatree Point, and the outer shore eastward to a point a mile east of Watch Hill. The statistics are as follows:
Shore-line surveyed, miles 65
Pouds and streams, miles 8
Roads (including railroads), miles 20
Area of completed topography, square miles 2

During the winter season Subassistant Hodgkins was assigned to field-service which will be referred to under the heading of Section VIII, and towards the close of the fiscal year received
instructions to prepare for the resumption of topographical work on the shores of Long Island Sound.

Topographic resurvey of Nex London and vicinity.-Field-work for the topographic survey in the vicinity of New London was begun by Assistant W. H. Dennis about the middle of August, 1882, the entire shore-line included in the sheet from Thames River entrance to a distance of about two miles and a quarter north of New London being first surveyed for the use of the hydrographic party, after which details of topography were filled in. These included the streets of the city of New London and the town of Groton. Uufavorable weather prevailed during the greater part of the season, there being but thirteen days available for field-work in September and but serenteen in October. By the 9 th of December, when the season closed, the statistics presented were as follows:

Shore-line surveyed, miles ... 48
Roads, length of, miles . 33
Area of survey, square miles............ 7
During the winter season, Assistant Denvis was engaged on office duty, and under instructions received towards the close of the fiscal year prepared for completing unfinished details of the New London work and for the prosecution of the survey to the westward.

Tidal observations.-Early in October, 1882, a self-registering tide gauge was established at Fort Trumbull, New London, Conn., and, under the direction of Lient. Richardson Clover, U. S. N., Assistant Coast and Geodetic Survey, Sergeant E. Koch, stationed at the fort, was placed in charge. The record was kept up during the winter by the observer with but few interruptions. It will be important to continue these observations until the completion of the resurvey of Long Island Sound, New London being the principal port to which all others on the sound are referred in the tidal reductions and predictions.

Re-establishment of points of former triangulation, and determination of new points on the south shores of Long Island Sound, in the vicinity of Montauk Point and Gardiner's Bay.-For the use of the topographic and hydrographic parties engaged in the resurvey of the south shores of Long Island Sound, it became necessary to recover as many points of the former triangulation as practicable, and to determine a number of new points. This duty was accomplished by Subassistant C. H. Van Orden, who organized his triangulation party at Amagansett, Long Island, early in August, 1882, and starting from the bases, Gardiner's Island-Montauk light-bouse, and Gardiner's IslandMontank (2), carried a series of secondary and tertiary triangles westward to Life-Saring Station No. 10, and northward to Gardiner's Island light-house, checking his determinations of new points as often as possible by the stations of the old triangulation, which he succeeded in re-establishing. Following the general course of the shore, the distance covered is about fifty miles. Work was closed for the season November 25. The statistics are:

$$
\begin{aligned}
& \text { Stations occupied, number of . } 963 \\
& \text { Directions measured }
\end{aligned}
$$

Duty subsequently assigued to Subassistant Van Ordeu will be referred to later in this section, and also under the heading of Section VIII.

Topographic and hydrographic resurvey of the eastern part of the south shores of Long Island Sound.-Assistant Charles Hosmer, having been directed to take charge of the schooner Drift, organized his party on board of that vessel towards the middle of August, 1882, and began a topographic and hydrographic resurvey of the east end of Long Island and of Gardiner's Island. Work in these localities was prosecuted until the 20th of October, when, in consequence of stormy weather, it could be continued to advantage no longer on this part of the Long Island coast, and Assistant Hosmer transferred his party to the western part of the Sound.

At the date just mentioned the topography and inshore hydrography of the eastern part of Long Island had been completed from Montauk Point light-house to a point about balf way between Fort Pond Bay and Napeague Harbor; also the topography of Gardiner's Island, and the inshore hydrography of its eastern face from Gardiner's Island light-house to the southern part of Tobaccolot Bay.

In the execution of the hydrography, Assistant Hosmer acknowledges the valuable assistance rendered by Master John C. Fremont, jr., U. S. N., and by Ensign A. F. Fechteler, U. S. N.

Statistics of this portion of the season's work will be included in those given later under the heading of this section with a report of the survey in the western part of the Sound.

Hydrographic resurvey of Gardiner's Bay and approaches, south coast of Long Island Sound.-In the plan for the resurvey of Long Island Sound, the hydrography of Gardiner's Bay and its approaches was assigned to Lieut. Edward M. Hughes, U. S. N., Assistant Coast and Geodetic Survey. His party was organized on board of the schooner Silliman, and had the use of a steamlaunch loaned for the work by the Navy Department. Leaving New York July 24, 1882, Lieutenant Hughes anchored at Greenport, Long Island, July 29, and began work two days later.

In the course of the resurvey the need of it was not unfrequently shown by the changes which were found to have occurred during the lapse of from thirty-five to forty years. Some extracts from Lieutenant Hughes's report which bear upon this fact will be of interest:
" Marked changes in shore-line are frequently noticeable, as in the cases of Gardiner's Island, Ram Island, Long Beach Point, Cedar Point, and vicinity of entrance to Napeague Harbor. Particular attention is called to the great change in depth of water and channels found in that part of Gardiner's Bay lying to the southward of a line drawn from Acabomock Harbor to Ram Island, and to the westward of a line drawn from Ram Island to Goffe's Island. To the group of five menhaden oil-factories situated on the west side of the peninsula between Napeague Harbor and Gardiner's Bay, known as ' the promised land,' nineteen and one-half feet of water may be carried by vessels entering from Napeague Bay. * * An increase in the number of buoys in this vicinity is desirable."

With reference to the character of the anchorages in the locality of the surveg, Lieutenant Hughes remarks as follows:
"Excellent holding ground is to be found off Acabomock Harbor in all weather by anchoring in three and one-half to four fathoms, muddy bottom; anchoring too near the edge of the flats to the eastward should be avoided, as the anchor is apt to drag, owing to kelp on the bottom and its accumulating around the anchor.
" Vessels find excellent shelter from easterly winds in Bostwick Bay and Gardiner's Island bight to the southward, but the holding ground is not good and in strong westerly blows small fishing craft frequently drag up on the beach, on which account the anchorage in Gardiner's Island bight is avoided by fishermen.
"In anchoring in Sag Harbor entrance in northerly gales, Cedar Island light-house should by small craft be brought to bear N. $\frac{3}{4}$ E. (magnetic), where snug shelter may be found; and no vessel should anchor in mid-channel, as in northerly storms no part of Gardiner's Bay is as rough and uncomfortable as that part of the channel lying between Mashomuck Point and Cedar Island on an ebb tide."

For obtaining a plane of reference for the soundings, the principal tidal observations were made during the month of Augnst at the tide-gauge established at Greenport, Long Island. Four auxiliary gauges were also established and connected with the principal gauge by special observations.

The work on the Gardiner's Bay sheet had been completed, including the surveys of Napeague Bay and Harbor and Three-Mile Harbor, and preparations had been made for beginning the hydrography of Greenport Harbor and Orient Bay, when instructions were received to close operations for the season. At the date of closing, November 9 , the statistics show that the following amount of work had been accomplished:
Miles run in sounding 695
Angles measured for fixing position of sounding-lines 4,962
Number of soundings 26, 485
Shore-signals established. 97
Angles observed for location of shore signals 691
Buoys located 12
Specimens of bottom obtained 37

Midshipmen Francis W. Kellogg and A. A. Ackerman, U. S. N., were attached to the party, and rendered service the efficiency of which is acknowledged by their commanding officer.

During the winter season Lieutenant Hughes was in command of the steamer Gedney and in charge of hydrographic work on the coast of Texas. This will be referred to under the head of Section IX.

Determination of the geographical position of the new observatory of Yale College.-At the request of Prof. H. A. Newton, of Yale College, the geographical position of the new observatory of the college, in course of erection on Winchester Hill, was determined by connecting it with the triangulation of the New Haven region. Acting Assistant J. A. Sullivan was charged with this duty, and, in pursuance of it, put up the signals needed, and occupied stations East Rock and West Rock, from which he determined Fort Wooster and a station, Winchester Hill, quite near the new observatory. Measurements with steel tape were made from Winchester Hill to the observatory, the proximity of caluable shade-trees not permitting direct observation from the stations occupied.

Two small observatories in the Yard of North Sheffield College were also connected with the triangulation. Mr. Sullivan found that the station at West Rock was in danger of being lost, owing to the effect of fires made by visitors on the ledge, which canse the surface of the rock to crack and "shell off," so that the inch copper bolt marking the station was exposed for more than half its length. He inserted three half-inch copper reference-bolts at suitable distances in a ledge of solid rock noticeably lower thau the one at the station.

Field-work was concluded October 20. The statistics are :
Number of stations occupied 6
Number of new points determined 8
Number of observations 850

After forwarding to the office his records and computations, Mr. Sullivan resumed office-work in the party of Assistant Henry Mitchell.

Determination of points for the resurvey of the north shore of Long Island Sound from the vicinity of Bridgeport, Conn., westward.-In accordance with an understanding had with the Shell-Fishery Commission of the State of Connecticat, in virtue of which the triangulation of the Connecticut shore of Long Island Sound from Penfield Reef westward to the State boundary was to be carried on so that the results would be available for the purposes of the Commission in the location of oyster-grounds under their jurisdiction, as well as for use in the hydrography of the Sound, Assistant Gershom Bradford, who had during the previous season executed work for the Commission and was in charge of such work at the beginuing of the fiscal year, was directed early in July, 1882, to begin a triangulation near Bridgeport, Conn., and to carry it westward along the shore of the Sound to Captaiu's Island.

A sufficient number of points of the former triaugulation near the shore upon which to start from not having been fonnd, Mr. Bradford selected the line Tashua Hill-Bald Hill of the old primary triangulation as a base of operations, and by a careful recounaissance succeeded in connerting the statious newly selected along the shore as far westward as Sheffield Island. Additional stations between Sheffield Island and Captain's Island were determined from the line Bald Hill-Stamford light-house. Station Round Hill of the primary triangulation could not be recovered, but a station was established there which can doubtless be checked in position ultimately from the old primary line Bald Hill-West Hills.

The latter part of the season being favorable, field-work was continued till January 16, by which time such results as were available for the purposes of the Fish Commission had been supplied to it. The statistics are:

$$
\begin{aligned}
& \text { Number of points determined . } 40 \\
& \text { Number of angles measured . } 225 \\
& \text { Nutnber of observations . 5, } 268
\end{aligned}
$$

Mr. H. R. Garland served as recorder in the party.
During the remainder of the fiscal year, Assistant Bradford was occupied in the office-work S. Ex. 29-4
needed to complete his computations, and in preparing for the Fish Commission copies of his records and results.

Recovery and marking of triangulation points on the north shore of Long Island, Detween Hempstead Harbor and Horton's Point, N. Y.-For the purposes of the resurvey of Long Island Sound, it became desirable to re establish as many stations of the old triangulation as practicable on the north shore of Long Island. This duty, upon that section of the coast between Hempstead Harbor and Horton's Point was assigned to Assistant F. H. Gerdes during the winter of 1832-93. Mr. Gerdes arrived upon the ground in January, 1883, and though suffering from the infirmities incident to his advanced age and from the exposure due to the supervision of work in ground frozen and often covered with snow, he remained in the field until the middle of March, prosecuting the search at every available opportunity. A severe attack of illness occurring about this time, compelled his recall from field-service.

Topographic and hydrographic resurvey of the western part of Long Island Sound, in the vicinity of Throg's Neck.-The work of the party under the direction of Assistant Charles Hosmer, commanding the schooner Drift, in the eastern part of Long Island Sound, has already been referred to in this section, and mention made of the transfer of the party to the western part of the Sound towards the close of October. On the 1st of November Mr. Hosmer began a resurvey of the hydrography between Hart Island and City Island, and continned it till December $\tilde{5}$, when extreme cold weather compelled a suspension of field operations.

During the winter, the Drift was laid up at the nary-yard, Brooklyn, in charge of Master J. C. Fremont.jr., U. S. N., aud Assistant Hosmer was occupied in office-work.

Early in May, 1883, the work was resumed by Assistant Hosmer, in the Drift, with the aid of Ensigns H. C. Wakenshaw and R. P. Schwerin, U. S. N. By the 27 th of June, the shore-line survey from Willets Point to Prospect Point on the Long Island shore, and from Throg's Neck to a point near Whortleberry Island, on the north shore, including the islands in the vicinity, had been completed; also the hydrography between Sand Point, Execution Rock, and Whortleberry Island on the east, to Throg's Neck on the west. Preparations were then made by Mr. Hosmer for the resumption of the resurvey in the vicinity of Greenport. Statistics to the close of the fiscal year are as follows:

Shore-line surreyed, miles	93
Roads, miles	5
Miles run in sounding	335
Angles measured	1,616
Number of sonndings	13,978

Hydrographic resurvey of the approaches to New York Harbor.-In accordance with instructions issued towards the close of July, 1882, Lieut. Commander Eugene B. Thouras, U. S. N., Assistant, Coast and Geodetic Surrey, having organized his party upon the steamer Bache, began early in August a hydrographic resurvey of the approaches to New York Harbor. This work was steadily prosecuted until early in November, when the advance of the season rendered it advisable to suspend operations afloat. Lientenant-Commander Thomas reports the weather as exceptionally unfavorable during the time occupied by the survey. He had the aid of the following named officers, whom he commends without exception for zeal and intelligence in the performance of dnty: Master Frank A. Wilner, U.S. N., and Ensigns H. M. Witzel, J. M. Orchard, and O. S. McClain, U. S. N. The statistics of the seasou's work are:

$$
\begin{aligned}
& \text { Miles run in sounding ... } 1,104 \\
& \text { Angles measured } \\
& \text { 4,004 } \\
& \text { Number of soundings....................... } 18,932
\end{aligned}
$$

Lieutenant-Commander Thomas was detached from the Survey November 25.
Series of tidal observations continued with self-registering tide-gauge at Sandy Hook, N.J.-On the 1st of July, 1882, Mr. J. W. Banford, who had been in charge of the self-registering tidal station at Sandy Hook for several years, resigned, and was succeeded by Mr. F. W. Shepheard. Duriug
a violent storm on the 12 th of September, the wharf upon which the tide-house stood was broken down, carrying the tido-house, tide-gauge, and the record for a number of days with it. After the storm subsided, the tide-house and gange were recovered, repaired, and established upon a wharf which since then has been rebuilt and strengthened with new piles, so that there is now a fair prespect of a continuous record for some years to come. The loss of the record while the gauge was being put into working order again was partly remedied by staff observations.

Determinations of the force of gravity at Montreal, Canada, Albany, N. Y., and Hoboken, N. J.-Determinations of the force of gravity, both absolute and relative, were continued by Assistant Charles S. Peirce during the fiscal year. At the station Stevens, Lustitute, Hoboken, a regular determination of the absolate force of gravity was made with the Repsold apparatus. Two new invariable reversible pendulums were oscillated; the same that were used at the stations in Washington. These pendulums were then transported to Montreal, Canada, and oscillated at the station selected with the permission of the authorities of McGill College in the basement of the College Observatory. Thence in September they were taken to Albany, where they were oscillated in the transit room of the Dudley Observatory.

In these experiments Mr. Peirce had the aid of Messrs E. D. Preston and F. B. Hall.
In February, 1883, the Stevens Institute Station, Hoboken, was reocenpied in order to continue the work of comparing the yard and the meter by means of reversible pendulums numbered 2 and 3 , the latter being the yard pendulum.

Other determinations of gravity made by Mr. Peirce will be referred to under the heads of Sections III and VI.

In Appendix No. 19 is given a paper by Mr. Peirce which was intended for publication as one of the Appendices to my Report for last year, but was omitted for want of space. It relates to results for force of gravity obtained by him at Allegheny, Ebensburg, and York, Pa.

Hydrography off south coast of Long Island, and lines of deep-sea soundings in the vicinity of New York Bay entrance.-Upon the completion of the line of deep-sea soundings off Nantucket, reference to which has been made under the heading of Section I, Lieutenant-Commander Brownson was instructed to run a series of lines of soundings normal to the coast off the south shore of Long Island, at distances apart of from seven to tell miles, and far enough out to include the one-hundred-fathom curve. This daty was successfully accomplished in the steamer Blake between September 6 aud October 11, 188\%. At the date last named, when further work was prevented by bad weather, sixteen lines of soundings had been run. The Blake was then ordered to New York, where her commander prepared ber for deep-sea sounding work between the Bahamas and the Bermudas. This will be referred to under the heading of Section VI.

The following-named officers attached to the Blake served in hydrographic duty during the season off the Long Island coast: Lieut. G. W. Mentz, U. S. N.; Masters Henry Morrell and Lacian Flynne, U. S. N.; Ensigns H. C. Wakenshaw, W. M. Constant, and Harry S. Knapp, U. S. N.

Upon the completion of her southern work in the spring of 1883 , the Blake returned to New York and, under instructions issued April 16, took up deep-sea sounding work in the approaches to New York Harbor.

For the off-shore and deep-sea sounding work executed in the Blake during the fiscal year ending with June, 1883, Lieutenant-Commander Brownson furnishes the following statisties:

Length of lines in miles........... 1, 671
Number of deep-sea soundings . 191
Number of water temperatures (surface) . 877
Number of water temperatures (intermediate) 346
Number of water temperatures (bottom) 159
Number of serial temperatures ... 52
Number of air temperatures (dry bulb) 756
Number of air temperatures (wet bulb) . 711
Number of specimens of bottom preserved... 3, 477
For the inshore hydrography ex ecuted during the same period the statistics are:
Miles of soundings run . 3,946
Number of soundings . 4,024

Verification of hydrography for the Atlantic Coast Pilot.-For the purpose of expediting the publication of the third volume of the Atlantic Coast Pilot, embracing the coast between New York and Chesapeake Bay, Assistant J. S. Bradford was directed, in July, 1882, to organize a party and proceed to verify by actual inspection the sailing directions of so much of the work as had already been published, and.the manuscript of those portions which were nearly ready for the printer. The schooner George M. Bache was assigned as a means of transportation for the party. Owing to unexpected delays in the repairs and outfit of the vessel, Assistant Bradford was unable to start upon his iuspection duty till near the close of August. Proceeding then from Alexandria to Lower Cedar Point on the Potomac, a day was spent in examining the new beacons which had superseded the old spindles and buoys in that vicinity, and in verifying the depths across the "Kettle-bottoms." The Lower Machodoc River was next examined, and haviug subsequently put. into Norfolk for water, the Bache was detained there by adverse winds till September 8, when she passed out of the Chesapeake and headed for Delaware Bay. Light winds and calms prevailed, and delayed the ressel till the 10th instant, when a heary northeast gale came up; the sea rose with great rapidity, and abont an hour before sunset the fore-topmast was carried away. The topmast and main-topmast were in imminent danger of sharing the same fate, but by extraordinary efforts were finally secured. At seven o'clock p. m. the wind suddenly shifted to east-sontheast, blowing with great riolence, and setting the ship directly towards the beach. No alternative remained except to crowd on all sail at the risk of foundering and try to get off sbore. At this time the water was up to the tops of the lower berths on the berth-deck, and there was eighteen inches of water on the cabin and wardroom decks, the sea washing completely over the vessel, so that officers and men were most of the time up to their waists in water. For a while it seemed that nothing could prevent the beaching of the ressel, but gradually she began to claw off; the wind canted a couple of points to the southward, and finally Cape Henlopen was made, and on the afternoon of the 11th the Bache was anchored in the Breakwater.

While at anchor here a second gale sprang up from NW. by N., against which the Breakwater offered no protection. In this gale the best boat of the ship, while secured at the davits, was broken in two and dashed on shore, a mass of splintered timbers; all of the ship's provisions were ruined, and the delays thus occasioned for refitting and repair, together with the illness of Mr. Bradford, resulting from exposure, prevented the beginning of the hydrographic examinations contemplated in Delaware Bay till early in October.

These examinations included Salem Creek, "Joe Flogger" Shoal, and the banks and channels between Wilmington and Philadelphia, with such notes of changes and additions of aids to navigation as were required to complete Subdivision $1 \tilde{5}$ (Delaware Bay and tributaries) of the Atlantic Coast Pilot.

Similar work was done in Chesapeake Bay after the arrrival of the Bache in Hampton Roads on the $\mathscr{2}$ of November. Data and material were collected for the revision of sailing directions and descriptions for the coast between Cape Henlopen and Cape Henry, and for the Chesapeake Bay and its tributaries, these localities being included in Subdivisions 16 and 17 of the Atlantic Coast Pilot. In February, 1883, field-work was closed, the Bache turned over to the care of a shipkeeper, and Assistant Bradford, proceeding to the office, took immediate charge of the work of preparing for publication the manuscripts of Subdivisious 16 and 17 of the Coast Pilot.

As organized for office duty, his party at the beginning of the fiscal year consisted of Mr. John W. Parsons, writer to the Coast Pilot, and Mr. John R. Barker, dranghtsman and artist. Until the date of his detachment from the Coast Pilot division and transfer to the office of the disbursing agent, March 17,1883 , Mr. Parsons was engaged in completing the preparation for publication of the reprints of Subdivisions Nos. 2, 4, 5, and 6 of the Atlantic Local Coast Pilot; in a revision and rearrangement of a part of the "Table of Depths" for the Atlantic and Pacific coasts of the United States, and in making an index to Subdivision 15, Atlantic Local Coast Pilot. The manuscript of this subdivision was completed for the printer by Assistant Bradford towards the close of January, 1883. The Table of Depths is published as Appendix No. 7 to this Report.

Mr. John R. Barker remained as usual in charge of the etching and engraving of the coast and harbor views for the Atlantic coast. During most of the year he was employed on the views for Division D of the Atlantic Coast Pilot, but he rendered valuable service in retonching those
belonging to Division B (Boston to New York), and in re-engraving some views belonging to Division A (Eastport to Boston). These views were originally printed by what is termed the "graphic process."

Assistant Bradford, after the completion of Subdivision 15 of the Ooast Pilot, gave his personal attention to the preparation of the Table of Depths for the printer, to proof-reading for the Coast Pilot, and to the compilation of a report upon Discrepancies in Nomenclature between the Coast Survey Charts and the publications of the Light-House Board for the Pacific coast.

On the 26th of May Mr. W. O. Jones was assigned to duty with Mr. Bradford, and served satisfactorily till June 30 , when he was ordered to field duty.

The Table of Depths was finally completed on the 20 th of June; the manuscript of Division C of the Atlantic Coast Pilot (New York to the Chesapeake) as far as and including Delaware Bay and River, has been printed, but only that portion relating to the New Jersey coast between New York and Delaware Entrance has been published; it is expected, however, that the manuseript descriptive of the coast between Cape Henlopen and Cape Benry will shortly be ready for the printer and that the publication of Subdivision 15, Delaware Bay and Tributaries, will not be longer delayed.

Leveling operations for connecting the Coast Survey reference mark at Albany, N. Y., with the primary triangulation station on Mount Mansfield, Vt.-In order to connect the levels of the northern line of Coast Survey triangulation with the tide level at Sandy Hook by way of the Hudsou River and Lake Champlain, Assistant O. H. Tittmam was instructed, towards the close of August, 1882, to proceed to Albany, N. Y., and organize a party for rumning a line of levels from the bench-mark at that place to Burlington, V t., and thence to the primary triangulation station on Mount Mans. field, Vt. He was also directed to obtain for purposes of comparison the canal levels between the Erie Canal and Lake Champlain.

In pursuance of this duty Assistant Tittmanu carried a line of levels from the Albany bench. mark to W Whitehall, at the southern extremity of Lake Champlain, and thence along the west shore of the Lake on the track of the Delaware and Hudson Canal Company's railroad as far as Putnam station, about thirteen miles north of Whitehall. In accordance with the general tenor of his instructions, which contemplated the determination of the relative elevations of selected points along the lake by its surface water level, Putnain station was adopted as the provisioual terminus of the spirit-leveling, and gauges were established at this station and at Port Henry, Plattsburg, Rouse's Point, and Burlington. Observations on the stage of water were kept up at these gauges from November 4 to November 18. During this time the work of levelng down Mount Mansfield was begun, and continued until it was interrupted by the severity of the weather. A permanent bench-mark was established on the west side of the mountain on the Uuderhill trail about four hundred metres below the summit.

At the different points along the lake above mentioned, bench-marks were established and connected with the hydrographic reference-marks which had been fixed during the survey of the lake in 1873 and 1874 ; connection was also made at Fort Montgomery with that point on the water-sill of the fort which was used as a reference point for the observations conducted for a period of twelve years under the direction of the Corps of Engineers.

Messrs. J. W. D. Atkins and W. O. Jones served in the party as rodmen. Field operations were closed November 20. After depositing in the office the records and computations relating to the leveling work, Assistant Tittmann was assigned to duty, a report of which will be given under the heading of Section VI.

Primary triangulation across the State of New Fork for connecting the triangulation of the Hudson River and Lake Champlain with that of the survey of the Great Lakes.--The seheme proposed by Assistant C. O. Boutelle for the continuation of the triaugulation across the northern part of the State of New York having been approved, he was authorized to take the field at the beginning of the fiscal year.

Five directions, at four stations, remained to be observed upon Hamilton Station; to obtain the three directions from Prospect and Helderberg Mr. Boutelle occupied these stations between the 6th of July and the 13 th of August. At Prospect the work was greatly delayed by smoke.

At Prospect station the magnetic elements were determined by observations made during three days by Subassistant J. B. Baylor; similar determinations were also made by him at Otsego station in Cherry Valley. Station Pen Mount was occupied by Mr. J. B. Boutelle with the twentyinch theodolite to obtain the directions needed to Mount Hamilton, and later in August Mr. Baylor occupied Tassel Hill for a similar purpose.

Before the occupation by the chief of the party of Prospect and Helderberg a reconnaissance was made by Mr. J. B. Boutelle under his direction, to determine the most available point intermediate between Fenuer and Clyde, the latter point being one of the stations of the Lake Survey. The station finally selected was Howlett, near Syracuse, which makes a very good connection mith the Lake Survey stations. With the selection of station Loomis, to the northward of the State survey station Gilbert, the scheme wasc ompleted. During September, station Fenner was occupied, and during October, station Florence, these two stations forming a quadrilateral with Loomis and Howlett. Early in November field operations for the season were closed.

On the 4th of September, Assistant Boutelle was appointed a member of the Advisory Board of Harbor Commissioners of Norfolk and Portsmouth, in place of Assistant Henry Mitchell, who had desired to be relieved from that service. Duty in this connection, and in the proparation of the records and results of his season's work, occupied him during the winter and early spring.

In May and June, 1883, the connection of the Coast Survey with the Lake Survey triangulation was pressed forwards to a conclusion by the occupation of Loomis station. Observations here were completed early in July, and preparations made for the occupation of Howlett. From Loomis the Lake Survey station Mannsville was found to be visible, thus giving a direct connection with the Sandy Creek base of that Survey. Preliminary compntations from the observations obtained at Loomis indicate a close and satisfactory agreement of results at the junction of the two systems of triangulation; an agreement which is the more satisfactory since each system is an absolutely independent work, starting from bases widely separated on the Atlantic coast and on the Great Lakes, and carried on by independent methods, instruments, and observers.

Continuation of the trianguiation of the northern part of the State of Neu Jersey.-Three stations were occupied by Prof. E. A. Bowser, Acting Assistant, during the summer and autumn of 1882, under instructions to push forward to completion, as far as practicable, the geodetic survey of the northern part of the State of New Jersey.

Observations were begun at Hamburg station, near the town of that name in Sussex County, on the 1st of July, the instrument being mounted upon a tripod thirty-two feet high, in order to see the station at Bear Fort. Signals were erected at stations Mount Olive, Culver's Gap, High Point, Bear Fort, and Bald Hill, and on July 7 a heliotrope was set up at Munt Olive. Every advantage being taken of favorable weather, the observations at Hamburg station were finished August 14, and the party was then transferred to Bear Fort, on the ridge so named, near the town of West Milford, Passaic County. Access to this station was extremely difficult, a road two miles long having to be cut over very rough couglomerate rocks from the main road to the station. Over this road the instruments, tents, and baggage had to be carried by hand to the summit of the ridge.

Preparations for observing had all been made when, on the 19th of August, the woods on the mountain were discovered to be on fire, and it was only after two days of the most strenuous effort that the fire was kept back from the camp. Some delay was thus occasioned in the work; observations were nevertheless completed on the 4 th of September, and within a few days later the party was established at Bald Hill station, about seven miles to the northeast of Boontou, Morris County. Upon the completion of the observations at this station, October 31, field operations were closed.

Professor Bowser has presented the following statistics of the work, the numbers of sets given including observations upon secondary aud tertiary as well as upon primary stations:
At Hamburg, number of sets of observations 71
At Bear Fort, number of sets of observations 56
At Bald Hill, number of sets of observations 85

Additions of topographical details to original sheets of the survey of the New Jersey coast between the Highlands of Navesink and Tom's River.-Examinations of the New Jersey coast between Tom's River and the Highlands of Navesink were made by Assistant C. M. Bache during the latter part of the summer and in the autumn of 1882 , for the purpose of ascertaining the extent and character of the changes, natural and artificial, that had taken place along that portion of the coast since the earlier surceys, and of reporting upon the best method of obtaining surveys of the changes, by means of which, in connection with the existing original maps, the representations of the coast could be brought up to the present time.

The most rapid and effective method of completing the triangulation, topography, and hydrog. raphy of the area of that coast yet remaining to be surveyed was also investigated by Mr. Bacbe. This area is contained between a point about four miles south of Atlantic City and a point about two miles north of Hereford Inlet. The recommendations made in his report have been duly considered; and as a preliminary step to the adoption of a portion of them, the construction of a barge to serve as a floating camp was ordered, the barge Beauty, which had been in use several years for this purpose, having been condemned and sold.

In November Mr. Bache marked upon the original topographical sheets the new railroads constructed upon the coast in the vicinity of Tom's River, and surveyed the settlement Island Heights on that river; other details of topographs of recent origin were added to the sheet as far north as Point Pleasant. The changes between Tom's River and the Highlands of Navesink were found to be limited to a narrow strip of land immediately on the coast. This is being rapidly built up to supply the demand for summer resorts. But fuw changes were found in the high-water line of the beach, except in the immediate neighborhood of the inlets, and in the strip of beach opposite the Highlands. Field operations were closed November 15. Duty subsequently assigned to Assistant Bache in the vicinity of Norfolk, Va., will be referred to under the heading of Section III.

Triangulation of Delavare Bay and River.-Assistant A. T. Mosman, having been charged with the duty of continuing the triangulation of the Delaware Bay and River in aid of the topographic and hydrographic surveys in progress there at the beginning of the fiscal year, established himself and party, by invitation of Assistant H. L. Marindin, on board the schooner Ready, lying in Smyrna Creek, and taking as a base, the line Cohansey light-house-Bombay light-house, extended the triangulation up the bay to connect with the work of Assistant McCorkle at the line NornyStoney, about two miles below Reedy Island light-house. It was extended also down the bay to the line Cross Ledge light-house-Mahon light-house; determining all of the signals erected by the hydrographic parties of Assistant Marindin and of Lieut. H. B. Mansfield, U. S. N., Assistant, Coast and Geodetic Survey.

As the work advanced down the bay, the party was transferred to Lewes, Del.; Cross Ledge light-house, and Brandywine Shoal light-house, screw-pile structures on shoals in the middle of the bay were occupied, and also the shore light-houses at Mispillion Creek and Cape Henlopen. By Angust 24 all of the stations required for the topographic and hydrographic parties on the river and bay had been determined, including a number of new points near Cape May and Lewes, and some points on Rehoboth Beach. All of the principal stations were securely marked. The statistics are:

Number of points determined. 60
Number of stations marked. 20
Number of angles measured . 3, 338
Special mention is made by Assistant Mosman in his report of the accurate and efficient service rendered by Mr. W. B. Fairfield, attached to the party as extra observer.

Duty assigned to Assistant Mosman later in the season will be referred to under the heading of Section III.

Physical survey of Delaware Bay and River. - The special investigations called for in the progress of the physical survey of Delaware Bay and River have already been referred to in Part I of this report under the heading "Plıysical Hydrography." These investigations have been made under the immediate direction of Assistant Henry Mitchell. As a member of the Mississippi River Commission, and of the U. S. Advisory Conncils of the State of Khode Island, and of the cities of

Philadelphia and Boston, Mr. Mitchell has not unfrequently been called away from the regular work of the Coast and Geodetic Survey, but has deroted much time to the study of the estuary of the Delaware. His conclusions, as deduced from the results of the recent surveys, are stated in Appendix No. 8 .

In the harbor of Philadelphia, the location of port-warden lines is a problem complicated by the artificial changes on the city front; in the study of this subject so that the lines may be located in a way to balance as nearly as possible conflicting interests, the United States Adrisory Commission found it necessary to avail itself of the experience and personal knowledge of the river acquired during the conduct of the physical survey by Assistant H. L. Marindin, who had been on duty with the party of Assistant Mitchell for several seasons.

Application having been made to me by the Commission for his detail as consulting engineer, the request was promptly complied with.

With reference to the elaborate comparison of the recent survey of the river and bay with that made by the Coast Survey forty years ago, Mr. Marindin finds that these forty years discover no fundamental changes but a complicated shifting of the shoals, and that while the mean depth for any given space greater than a square mile is rarely changed, the contours are all found out of register when one chart is placed over another, and in many cases the change in the course of the channel shows how very essential the resurvey had become in the interests of navigation.

In the office-work of his party Mr. Mitchell had the aid of Assistants Marindin and Granger during the intervals between their field-work. Mr. J. A. Sullivan, for many years an Assistant in the Coast and Geodetic Survey, was employed continuonsly in the party, except during a short detail for field-work, and almost exclusively upon the critical studies of sections, \&c., referred to above.

Hydrographic resurvey of Delaware Bay and River.-The arrangement referred to in my last annual report, by which the hydrographic resurvey of Delaware Bay and River was carried on by Assistant H. L. Marindin, working in connection with a naval officer in charge of a separate party, remained in force during the season beginning with May, 1882. At the opening of the fiscal year Mr. Marindin, with his party on the schooner Ready, was actively engaged in the hydrography of that portion of the river between Collins' Beach, on the Delaware shore, and the moath of Stow Creek, on the New Jersey shore. Bench-marks for tidal reference were established at Bombay Hook light-house, close to the tide-gauge at the mouth of Duck Creek, and all of the soundings on the hydrographic sheet were referred to the plaue of mean low water as brought down from the gange at Collins' Beach. About the 18 th of July, the first-named sheet having been completed, work was begun upon a sheet with limits on the Delaware shore from Bombay Hook Point to Mahon's River light, and on the New Jersey shore from the mouth of Cohansey Creek to near Dyer's Cove. Tidal observations for plane of reference between Duck Oreek aud Leipsic Creek, where a tide-gauge had been established, were made, and later in the season a gange was put up at Sea-Breeze Wharf, on the New Jersey side of the bay, and referred to Duck Creek to obtain the same plane of reference for the east side of the bay.

This hydrographic sheet was completed October 11; and an nutinished hydrographic sheet having been transferred to Mr. Marindin by Lieutenant Osterhaus, U. S. N., commanding the steamer Endeavor, some progress was made with it, but the weather being now very unfavorable for further operations, the work was suspended for the winter. The statistics are as follows:

Miles run in sounding 690
Angles measured 4,740
Number of soundings . 28,357
Subassistant W. I. Vinal was attached to the party from June 1 till August 15, when he received instructions for topographical duty. reference to which will be made later under the heading of this section. Ensign E. M. Katz, U. S. N., was a member of the party during the whole of the season. Midshipmen John A. Dougherty and L. S. Van Duzer, U. S. N., were attached to it, the latter from August 22 and the former from the first part of October. Mr. Marindin's report
makes acknowledgment of his appreciation of the efficient cooperation of these officers in both field and office work.

Hydrographic resurvey of Delaware Bay and River.-At the beginning of the fiscal year Lieut. H. B. Mansfield, U. S. N., Assistant, Coast Surrer, commanding the steamer Endeavor, was in charge of one of the hydrographic parties engaged in the resurvey of Delaware Bay and River. On the 1st of August, 1882, he was relieved by Lient. Hugo Osterhaus, U. S. N., Assistant, Coast Survey, who continued the work until the suspension of operations in November. The work upon one hydrographic sheet had been completed; the next one undertaken included that portion of the bay between Arnold's Point and Sea-Breeze Wharf; a third sheet, extending from Deep-Water Point to Egg Island, was then taken up and partly finished, but laid aside to execute the hydrog. raphy at Delaware Entrance, in the vicinity of Cape May. This was finished on the 13th of November, when the working season closed.

In the course of the survey, as opportunity offered, examination was made of dredged channels and ledges in Delaware River. These examinations included Schooner Ledge, a dredged channel through Cherry Island Flats, and a dredged channel near New Castle, Del.

The statisties of the hydrography executed are:

$$
\begin{aligned}
& \text { Miles run in somading . } 984 \\
& \text { Angles measured. } 5,078 \\
& \text { Number of soundings 27, } 105
\end{aligned}
$$

Ensigns W. H. Allen and E. N. Fisher, U. S. N., were attached to the party during the season; Ensign John T. Newton, U. S. N., joined it after the 15th of August. About the close of November, the Endeavor, Lieutenant Osterhaus commanding, was taken to Norfolk, Va., to be prepared for work off the southern coast, which will be referred to under the head of Section V. Soon after the arrival of the steamer in Norfolk, Lieutenant Osterhaus was relieved in command by Lieut. John T. Sullivan.

Resurvey of topography in the vicinity of Cape Henlopen, Del.-That portion of the resurvey of the shores of Delaware Bay in the vicinity of Cape Henlopen was committed to Subassistant W. I. Vinal, by instructions dated August 23, 1882.

Mr. Vinal remarks in his report that the most noticeable changes in the topography in the vicinity of the cape are:
(1) The closing of the entrance to Slaughter Creek; (2) the extension northward of the peninsula separating Lewes Creek from the ocean; (3) the change in position southward of the high sand-hills west of Cape Henlopen light-house; (4) the establishment of a summer resort at Rehoboth Beach, about seven miles below Lewes; (5) the interruption of the continuity of Lewes Creek in several places by drifting sands, and the connection of the separated parts by canals and ditches.

At high tides, when the wind is easterly, the marshes in this vicinity are completely submerged; this is the case also with the large sandy area just south of Cape Henlopen.

The resurvey was completed November 30. It included on one sheet, scale $1-20000$, the topography for about three miles inland from Slaughter Creek (now closed) on the shore of the bay to the Beacon, and thence on the ocean shore to Thompson's Pond or Silver Lake, just south of Rehoboth. The statistics are:
Miles of shore-line surveyed, ocean and bay 20
Miles of shore-line surveyed, large creeks 31
Miles of shore-line surveyed, small creeks 52
Miles of shore-line surveyed, ponds 11
Miles of shore-line surveged, marsh outlines 75
Miles of shore-line survesed, ditches on reclaimed marsh 25
Main roads, miles 33
Secondary roads, miles 39
Railroads, miles 10
Streets (Lewes and Rehoboth), miles 9
Area surveyed in square miles 30
S. Ex. 29-5

During the winter Mr. Vinal was engaged on office duty, and toward the close of the fiscal year was ordered to topographical duty on the coast of Maine.

Continuation of the hydrographic resurvey of Lover Delaware Bay.-In pursuance of instructions issued towards the close of April, 1883, Lieut. G. C. Hanus, U. S. N., Assistant Ooast Survey, assumed command of the steamer Arago, and having prepared her for service, proceeded in her to lower Delaware Bay to complete the hydrography of that locality. The work was in active prosecution during the last month of the fiscal year. Up to June 30,1883 , the statistics are as follows:

$$
\begin{aligned}
& \text { Miles run in sounding . } 201 \\
& \text { Angles measured. } 732
\end{aligned}
$$

The following-named officers were attached to the party: Master W. G. Cutler, U. S. N.; Ensigns E. F. Leiper and G. R. French, U. S. N.

Lieutenant Hanus has applied to the setting of hydrographic signals a method'frequently adopted in sinking piles in sand or mud covered by water. The pole intended to be put down as a sigual_has fastened to it a gas-pipe nozzle. This pipe should be long, enongh to reach the surface of the water when the signal is down. It is attached to the spar or signal by split rope-yarns, and steadied in line by nails driven_on either side. When the end of the signal rests on the bottom, water is driven through the pipe by means of a force-pump; a hole is thus excavated in the sand into which the end of the signal sinks, and when the needed depth is reached, the force-pump being withdrawn, the sand packs round the lower part of the signal. To this part flanges or projecting pieces are usually secured before the spar is put down soas to obtain a stronger hold.

In,'deep water a pine spar needs guys on its head to steady it in an upright position, and the weight of a man or two hanging on to sink it. Oak or other heavy woods will go down by their own weight or a very little additional force at the rate of about one foot per minute in ordinary sand. When the pole is well embedded in the sand the gas pipe can be withdrawn. Signals of this description can be placed in any depth of water up to about fifteen feet. The bottom must be sandy or muddy, and the greater the depth the smoother must be the sea while the pole is being pat in position.

Topographic resurvey of the New Jersey shore of Delavare Bay continued.-At the beginning of the fiscal year Assistant R. M. Bache was in the tield with his party, engaged in carrying the topographic resurvey of the New Jersey shore of Delaware River and Bay from Pemnsville southward.
Mr. Bache remarks in his report that the symmetrical delineation of the shores, if regarded as forming a continuous map, required the topography to be carried well inland over the convex sweep, of the shore at Finn's Point, and that with this exception a verysmall margin of topographical delineation was taken, that below Elsingborough Point being simply designed to show clearly where the diked-in arable lands suddenly cease and wild marsh begins, and below that to correct, as it does in some places, the imperfect representation on the old chart of the mouths and lower reaches of some well-known creeks.

By the 1st of December, 1882, the survey had been carriedfrom Pennsville to Round Island, below Fishing Creek, called Stony Inlet in the earlier survey. Field work was then closed for the
seasou. The statistics of the topography, as shown upon three sheets, with scales of 1-5000, 1-10000, and 1-20000, respectively, are:

Shore-line surveyed, wiles . 77
Streets and roads, miles . 66
Area in square miles 13
During the winter Assistant Bache was engaged in office-work, and in May, 1883, received instructions to proceed to Salem, N. J., and make preparations for coutinuing the topographic survey from the close of his work of the previons seasom southward. He was thus occupied at the end of the fiscal year.

Contimuation of the topographic resurvey of the west shore of the Deluware River and Bay from New Castle southward.-Upon the west shore of the Delaware River the topographic resurvey was resumed at New Castle, Del, by Assistant C. T. Jardella, in June, 1882. From New Castle to Rey. bold station, near the cove of that name, there is but little rising ground, and twenty-feet curves sufficed for its delineation. From Reybold station to Bombar Hook light, where the work termi nated for the season, the country is entirely flat and the greater portion of it is marsh covered with water at half-tide.

Some of the distinguishing features of the creeks surveyed in the progress of the work are thus reported by Mr. Lardella:
"Saint George's Creek.-This creek is eutirely closed at its entrance by flood-gates and banks. There are innumerable ditches to drain the water from the meadows into the creek.
"Augustine Creek is very narrow at its entrance; vessels camot enter ou account of the bridge about half a mile long built on piles driven into the marsh. I found it difficult to get my boat to the bridge, the entrance being nearly bare at low water, but after passing the bridge about one handred feet nearly fourteen feet of water can be had at high tide for some teu miles.
"Appoquinimink Creek is oue huudred and forty meters wide at its entrauce, and is navigable to Odessa, a steamer making three trips a week from that place to Philadelphia. Six feet of water can be carried from the entrance of the creek to the main channel in Delaware River.
"Blackbird Creek, at its entrance, is one hundred and forty meters wide, and is navigable for vessels drawing six feet for nearly ten miles.
"Duck Creek is one hundred and fifty meters wide at its entrance, and bas an average width of seventy-five meters to Smyrua. Vessels drawing seven feet can readily pass over the outer bar at high tide; from the entrance good water can be carried to Smyrna."

Mr. Iardella states that Pea Patch Island is increasing in size owing to the large quantities of mud that are dumped on the western shore from the wharves and entrances of the locks of the Delaware and Chesapeake Canal. A flat extends from the island to the western channel, a distance of three hundred and eighty meters. Bold water can be found on the eastern side along the shore for the whole length of the island.

The following statistics are reported for the field-work which closed December 5, and which was shown upon two topographic sheets, scales $1-10000$ and $1-20000$ respectively:
Miles of shore-line surveyed 32
Miles of low-water line 24
Miles of roads 37
Miles of marsh-line 27
Miles of ditches 42
Miles of streams 1
Miles of creeks 4
Miles of railroad i
Area in square miles 13

Assistant Iardella was occupied in office work during the winter. He will begin the extensiou of the topographic resurvey southward toward Delaware Entrance at the opening of the fiscal year.

Reconnaissance and extension westward of the triangulation of the State of Pennsylvania.-The continuation to the westward of the triangulation of the State of Pennsylvania was committed to Professor Mansfield Merrimau, Acting Assistant. He took the field July 1, 1882, starting from the line Gor. Dick-White Horse. The first station occupied was Gov. Dick, a point about six miles south of Lebanon, Lebanon County. Work here was finished Augnst 5, and the party moved to station White Horse, at which a tower thirty-five feet high had been erected for the support of the instrument. The observations at White Horse were completed August 31. Measurements of a single angle being necessary at stations Blackspot, near Reading, and Smith's Gap, about fifteen north of Allentown, these two stations were occupied between September 1 and 21. During the remainder of the season, which closed October 11, four stations were visited to examine their marking; at three of these no station marks had been established, the general locality only having beeu determined by previous reconnaissance. Professor Merriman had their positions located and carefully marked. He reports that for the due development of the triangulation northward a special reconnaissance is desirable. Statistics of the work are as follows:

$$
\begin{aligned}
& \text { Positions of stations determined (primary) } 14 \\
& \text { Secondary stations (spires, steeples, \&c.) determined . } 44 \\
& \text { Number of measurements of angles.. 1, } 613
\end{aligned}
$$

The records of the work have beeu trausmitted to the oftice.
Determination of boundary line between Pennsylvania and West Virginia. - In compliance with a request from the Joint Commission of the States of Penusyl rania and West Virginia for the detail of officers of the Coast and Geodetic Survey to execute the work of tracing ont the boundary line between Pennsylvania and the "Pan Handle" of West Virginia, Subassistant C. H. Sinelair was directed in April, 1883, to proceed with Col. James Worrall, the chairman of the Commission, to Pittsburgh, and to attend the meeting held there of the Joint Commissioners, in order to be fully informed of their views, and to give such information in regard to the mode of tracing and marking the boundary line, and the degree of accuracy which I deemed useful and practicable, as might be called for by the conference.

Instrnctions subsequently issued directed Mr. Sinclair to run the meridian line required, taking offisets to such of the old monuments as might be found. Subassistant C. H. Van Orden was assigued to duty with the party in order to execute the topography in the immediate vicinity of the monuments.

The work was making good progress at the date at which this report closes.

SECTION III.
MARYLAND, VIRGINIA, AND WEST VIRGINIA, INCLUOING BAYS, SEAPORTS, AND RIVERS. (SKETCHES Nos. 1, 4, 5, AND 6.)

Determinations of gravity by pendulum experiments at Baltimore and Washington.-In continuation of the work of the gravitation party previously authorized, Assistant Charles S. Peirce was directed at the beginning of the fiscal year to make comparative observations of gravity between Baltimore and Washington. This duty occupied the greater part of the month of July. Instructions then issued to Mr. Peirce involved gravity determinations at stations already mentioned under the heading of Section II. Upon his return to Washington in October, the work of measuring the pendulums used during the summer was continned and completed; the observations for the flexure of the Baltimore piers were finished, and the installation of a peudulum station at the Smithsonian Institution was begun. A stone structure having been erected for the pendulum sapport, two new invariable reversible pendulums were swung here and also at the Coast and Geodetic Survey Office. As already mentioned under the heading of Section II, the same pendulums were oscillated at the stations in Montreal, Albany, and Hoboken.

In this work Messrs. E. D. Preston, Carlisle Terry; jr., and Robert A. Marr, aids in the Survey, assisted Mr. Peirce. He gave instruction and general supervision to the parties of Messrs. Smith,

Preston, and Marr, referred to in Part I of this Report under the heading "Determinations of Gravity."

Mr. Peirce devoted such time as could be spared from field operations to oficice work. He read proof for papers relating to gravity determinations; prepared for publication a report on the pendulum work at three stations, Allegheny, Ebensburg, and York, in Pemsylvania; prepared a memor on the spectrum meter; edited the report of the pendulum conference, and prepared a memoir on the effect of the flexure of pendulums themselves.

In pursuance of instructions dated April 23, 1883, Mr. Peirce left for Europe in May in order to make for the Coast and Geodetic Survey certain observations necessary for completing the connection of the American and English pendulum work and to obtain some additional pendulum apparatus of special construction. He is still abroad upon this duty at the date of closing this report.

Observations of the Transit of Venus at Washington, D. C. -The Transit of Venus of 1882, December 6, was observed at Washingtou by Assistants Charles A. Schott and B. A. Colonna. The place of observation, selected by Mr. Schott, was Fauth's observatory, at the southeast corner of First street west and B street south. Elevation of station above the sea, about 20 feet; geographical position as follows: Latitude, $38^{\circ} 53^{\prime} 23^{\prime \prime} .2$ north; longitude, $77^{\circ} 00^{\prime} 33^{\prime \prime} .5$ west from Greenwich.

Through the kindness of Mr. Fanth, Assistant Schott had the use of a new equatorial of his construction. It is driven by clock-work, and has an aperture of 15.25 centimeters (6 inches) and a focal length of 2.5 meters (8.2 feet). For the morning observation it was used with a magnifying power of 102 , and for tie afternoon observations with a power of 127 . Full aperture was used in connection with a solar eye-piece, the prism of which deflected so much of the sun's heat and light that a light shade glass sufficed for the protection of the eye. Dr. J. G. Porter, of the Computing Division, recorded time for Mr. Schott.

Light clouds prevailed during the day, with an atmosphere quite unsteady at times. The first contact was lost by clouds, and of the last contact the observation was uncertain on account of the extreme atmospheric tremor. The two interior coutacts were satisfactorily observed. Full details are given in Assistant Schott's report, which appears as part of Appendix No. $\mathbf{1 0}$.

In this Appendix is included also the report of Assistant Colonna, who observed the Transit at the same station, with a recounoitering telescope by Plossl, having a clear aperture of 9 centimeters (3.5 inches) and a focal length of 0.96 meters (38 inches). Mr. Colonna obtamed observations of the two internal contacts and of the last contact.

Continuation of the detailed topographical survey of the District of Columbia.-The detailed topographical survey of the District of Columbia was carricl on continuously during the fiscal year by the party in charge of Assistant John W. Donn. The area surveyed embraces some of the most intricate and difticult parts of the topography.

In accordance with the request of the Eugineer Commissioners of the District, operatious during the early part of the fiscal year were chiefly directed to the survey of the region orer or under which the extension of the Washington aqueduct has been projected for the additional water supply; that is, from Rock Creek Valley to the ristributing reservcir west of Georgetown. In October, 1882, this work was finished and a tracing was furnished to the Engineer Commissioners. This tracing covered the line of the proposed aqueduct from its western extremity to Smith's Valley, the site intended for the new reservoir, to the east of the line of Sixth street (northwest) extended.

Work was then resumed in the valley of hock Creck, where during the cold weather a shelter was afforded which permitted the plane-table to be used almost without interruption from the winds. Another winter's work, Mr. Donn thinks, will advance the survey to the crossing of the Milkhouse Ford road, beyoud which the hills are comparatively bare and less abrupt. During the months of May and June the work was carried over the open country east of Rock Creek, between Seventh street and Fourteenth street roads, and on the eastern border of the site of the new Observatory.

A map submitted by Assistant Donn with his report shows the area completed at the close of the fiscal year. Upon the scale of the survey, $1-4800$, the area covered during the year was about five square miles; the length of roads measured twelve miles, and of creeks fifteen miles.

Assistant D. B. Wainwright aided in the work and showed great interest in its development.

Examination of the monuments of the Triul Base Line at Fort Myer reservation, Virginia,-It having been reported that the monuments at the ends of the Trial Base Line established in 1879 at the military reservation of Fort Myer (then Fort Whipple), in Virginia, were in need of repair, and perhaps of resetting, Assistant H. G. Ogden was directed in May, 1883, to examine their condition. The brick-work of both monuments was found to need repointing, and water had settled in the sight-tubes for the underground marks. These tubes can, however, be readily kept free from water by the introduction of additional drain pipes. The south monment was perpendicalar and unchanged in position; the north monument had a slight iuclination, due, as Assistant Ogden concludes, to the combined action of frost and unequal compression of the earth-filling. No pos sible movement of the monuments on their foundation can affect the underground marks, but steps will be taken to secure for the surface-marks the ntwost degree of stability.

Special surcey for the Fish Commission near the Great Falls of the Potomac.-Application having been made by the United States Fish Commission for the detail of an officer of the Coast and Geodetic Survey to make a special topographical survey in the vicinity of the Great Falls of the Potomac, Assistant Engene Ellicott was directed to report to the Commissioner, Prof. S. F. Baird. Having done so on the 17 th of November, 1882 , he began the survey soon after on a scale of $1-600$, or fifty feet to the inch, running contour lines one foot apart. The work covered a part of the bed of the river, which is bare, or nearly so, at low stages of water. Unfavorable weather, with temperatures seldom above the freezing point and rocks inerusted with ice, delayed progress; but the field and office work required was completed about the middle of January, and the topographical sheet was then turned over to the Commission.

Other field duty to which Assistant Ellicott was assigned during the year is referred to under the heading of Sections I and VI.

Continuation of topographic survey of the south shore of Hampton Roads, between Craney Island "nd Nansemond River.-Field-work in continuation of the topographic survey of the south shore of Hampton Roads, hetween Craney Island and Nansemond River, was begun by Assistant Charles M. Bache early in May, 1883, and continned until the party was disbanded under instructions on the 6th of Jume. The topography delineated is shown on one field sheet, scale 1-10000, for which the following statistics are given:

$$
\text { Roads surveyed, miles . } 47
$$

(Creeks, miles . 17
Area of topography, square miles....... 6
Mr. J. H. Tumer, acting aid, rendered acceptable service in the work.
Duty assigned to Assistant Bache on the New Jersey coast is referred to under the head of Section II.

Observations of currents at stations near the entrance of Chesapeake Bay and thence southward.Under instructions issued in February, 1883, Master J. C. Fremont, jr., U. S. N., Assistant, Coast Survey, having organized his party on board the schooner Drift, proceeded to occupy a series of current stations along the eastern coast of the United States, beginning near the entrance to Chesapeake Bay and passing thence to the sonthward. The additional stations provided for in the instructions were at points near Cape Hatteras, Cape Fear, and Cape Lookout; in the Florida chanmel normal to the Gulf Stream at Cape Florida, and at Jupiter Inlet.

During the occupation of the first station, about 80 miles northeast of Cape Henry, the port anchor was lost in a heavy gale and nough sea, compelling the return of the Drift to Norfolk. This was on the 2sth of February, after the station had been occupied twelve hours. The second station, occupied March 28 and 29, was about 43 miles sontheast of Cape Henry; the third off Cape Lookout, the fourth off Cape Fear, these two stations being occupied April 12 and April 19, respectively.

Reference will be made, under the head of Section VI, to the current stations occupied by Master Fremont oft the eastern coast of Florida.

Determination of the longitude of the University of Virginia, Charlottesville, by exchange of telegraphic signals with Washington, and of the latitude of the Charlottesville station.-As stated in my last annual report, the preliminary arrangements for the determination of the longitude of a station
at the University of Virginia, Charlottesville, were in progress at the beginning of the present fiscal year.

Subassistant C. H. Sinclair had general charge of the work, and directed personally the construction of an observatory and the building of a pier at the station selected in the grounds of the University. The observatory was of a more substantial character than is usual with the temporary stations of the Coast and Geodetic Survey, it heing intended for use subsequently by the McCormick Observatory.

Subassistant F. H. Parsons was directed to report to Mr. Sinclair, and was placed in charge of the details of the work at the Const and Geoletic Survey station in the grounds of the Faval Observatory, Washington.

Longitude signals were exchanged by telegraph between Messrs. Sinclair and Parsons on the nights of July 15, 24, and 25 . The observers then changed stations, and longitude signals were again exchanged on the nights of Jnly 27 , August 7,10 , and 11. The latitude of the station in Oharlottesville was determined by Sulassistant Parsons, seventy-nine observations on sixteen pains of stars being made for this purpose. By the measurement of a short base and the obserration of the necessary angles, the position of the station in latitude and lougitude was referred to the dome of the University.

Other duty assigned to Mr. Sinclair is mentioned under the heads of Sections II and XV, and ander Sections VIII, XIII, and XIV will be found statements of work executed by Mr. Parsons.

Connection of the astromomical station at the Unirersity of Virginia with the primary triangula. tion.-Stations Humpback and Jarmans of the primary triangulation in Virgiuia were oocupied in March, 1883 , by Subassistant C. H. Sinclair, in order to conuect the astronomical station at the McCormick Observatory, University of Virginia, with the scheme of triangulation between the Maryland and Georgia base lines.

Tripod signals were erected at the necessary points, and all of the observations needed (138 in number) were obtained in the course of about two weeks.

Reconnaissance, triangulation, and hypsometric observations in the region about Washington, D. C., for the construction of a general map.-Surreys for the completion of the sheet of topography previonsly undertakeu by Mr. H. F. Walling, and referred to in my last annual report, were begun by him in July, 1882, and the map substantially completed as far west as the North Mountain.

No trustworthy maps of the territory being arailable, special survers were required of all the topographical features to be represented. Accordingly traverse surveys were made of all the roads; of the railroads where the engineer's plans were unattainable, and of the streams throughout the entire county of Berkeley, West Virginia, and of those portions of Frederick, Clarke, aud Loudoun Comties, Virginia, lying north of the parallel of $39^{\circ} 4^{\prime}$ north latitude. Distances along the roads were measured by odometer; directions of roads ascertained by the surveyor's compass; the streams were also traversed, a chain being run along the larger creeks and ricers, while the minor streams, requiring less precise measurement, were located between road crossings br pacing. Thaverses were also made up many mountain ravines and along or uear the tops of ridges and spurs, advantage being taken for that purpose of wood roads whenever practicable. The positions of about thirty triangulation points hare been fixed from time to time at conrenient localities among these surveys, and the traverses have been carefully connected with them. Frequent observations with the aneroid barometer were made, a stationary record having been kept on working days every hour. The approximate elevations thus obtained along roads at summits, stream crossings, along ridges and valley lines having been marked in position, contour lines with vertical intervals of one bundred feet were traced by interpolation upon the map.

Progress was made also in the field-work required for the map of Washington and vicinity. New surveys were undertaken for the delination of all topographical features, except those shown upon plane-table sheets in the archives of the Coast and Geodetic Surver.

The scale of publication for the proposed maps will be 1-100000.
Mr. Walling was efficiently aided in his work by Messrs. N. B. K. Hoffiman, R. H. Brown, J. A. Miller, and T. B. Mann.

Reconnaissance for the extension of the primary triangulation near the thirty-ninth parallel westward in West Virginia, Ohio, and Kentucky.-The reconnaissance referred to in my last annual
report as having been begun by Assistant A. T. Mosman for carying the scheme of primary triangulation near the thirty-ninth parallel toward the Ohio River was resumed by that officer in September, 18s2. Starting from the line, Piney-Pigeon, in the Kanawha region of West Virginia, Mr. Mosman examined a country cat into deep ravines throngh which flow the nomerous small streams emptying into the Ohio River, and with ranges of hills between these streams of nearly uniform height and heavily wooded either with large timber or covered with a second growth of small trees and bushes. These are so thickly erowded together as to be very difficult to penetrate, and are not high enough to afford a view of the country from their tops.

Much time was necessarily spent in searching for stations that could be made intervisible, and, as the roads were few aud rery rough, travel in wagon or on horseback was slow, and almost all detailed examinations were made on foot. Flags in trees at heights of from thirty-five to one hundred and twenty-five feet above ground marked the stations as selected. All angles were measured from the tops of these trees with an azimuth compass and pocket sextant, and relative heights were determined with the aneroid barometer.

A practicable scheme was finally developed for extending the triangulation in the shortest time and at the least expense possible from the starting line in West Virginia, through parts of Southeastern Ohio and Northeastern Kentncky, to a line, Scioto-Johnson. The station Scioto is near the town of Portsmouth, Scioto Comuty, Ohio; station Johnson is about four miles west of Quincy, Lewis County, Kentucky.

Field operations closed December 16. Special mention is made by Assistant Mosman in his report of the zeal, activity, and good judgment shown by Extra Observer W. B. Fairfield in overcoming the many difficulties presented by the reconnaissance.

In May, 1883, Assistant Mosman took the field, in pursuance of instructions, to organize a party for the continuation of the triaugulation in accordance with the scheme developed by his reconnaissance, and was so engaged at the close of the fiscal year. Subassistant J. F. Pratt was temporarily attached to his party.

SEOTION IV.

NORTH CAROLINA, iNCLUDING COAST, SOUNDS, SEAPORTS, AND RIVERS. (SKETCHES Nos. $1,5,6$ and 7.)
Lines of decp-sea soundinys and temperatures off the Atlantic coast of the United States.—Full mention has already been made under the heading of Section II of the cruise of the steamer Blake in the summer of 188. , under the command of Commander J. R. Bartlett, J. S. N., Assistant Coast Surrer. In addition to the lines of deep-sea soundings and temperatures run by the Blake, a line for temperatures only was run from the Bermudas to Cape Hatteras, the temperatures of the surface being taken every mile; temperatures at twenty-five fathoms depth every ten miles; at four hundred fathoms every thirty miles, and at eight hundred fathoms every sixty miles. When entering the current of the stream the deep serials were taken at half of these distances.

For statements of other deep-sea investigations made by the Blake, see Sections I, II, and VI.
Hydrographic surveys of Cape Fear River entrance and in Croatan and Pamplico Sounds.-Upon arriving in Hampton Roads in command of the Schooner Silliman, Lieut. F. A. Wilner, U. S. N., Assistant, Coast Survey, was directed to proceed to Smithville, N. O., and make a hydrographic survey of the bar at Cape Fear River entrance. In pursuance of this duty Lieutenant Wilner reached Smithville February 4, 1883. He remarks in his report that the shifting character of this bar is too well known to call for special mention; that the channels are well buoyed, so that the only dangers a stranger will hare to contend with will be found in the very strong tidal currents, and in the presence of a most dangerous pile of rocks known as the "Stove Fence," situated off the point of Bald Head Shoal, and just at the edge of the channel. These rocks are awash at half tide and entirely covered at high water, so that not even a ripple indicates their position. In approaching them from the northward or sonthward the soundings will not show their vicinity until too late to avoid them if coming with the tide.

Lieutenant Wilner expresses his acknowledgments for information received from Mr. Henry Bacon, assistant engineer in charge of the improvements at the entrance for the Engineer Bureau, and to Capts. J. H. and T. Harper for many courtesies extended during the course of his survey.

Leaving Smithville April 10, Lieutenant Wilner proceeded with the vessel and party to Pamplico Sound to make a resurvey of the main channel from the Croatan to the Roanoke Marshes light, and to complete certain unfinished portions of the survey of Pamplico Sound. He passed into Pamplico Sound through Ocracocke Inlet, finding that the buoys were much out of place, and that unless wind and tide were both favorable, six and one-half feet of water could hardly be carried through. The main channel through Croatan Sound was found to be but little changed, except at the southern end, where new islands have formed and old ones have disappeared. Representations were made to Lieutenant Wilner while at Elizabeth City, N. C., of a desire on the part of navigators of the waters of Croatan and Pamplico Sounds for a change in the location of Croatan lighthouse; the reasons for the desired change are stated clearly by Lieutenant Wilner, but without expressing himself as in favor of it.

The hydrographic surveys required were completed by the 18 th of May, soon after which the Silliman sailed for New York. Three hydrographic sheets showing the results of the work have been registered in the archives. Statistics are as follows:
Miles run in sounding 769
Angles measured 10,772
Number of soundings 59, 740
Ensigns Francis H. Sherman and Harry Phelps, U. S. N., aided in the survey,

SECTIONV.
SOUTH CAROLINA AND GEORGIA, inCluding COAST, SEA-WATER CHANNELS, SOUNDS, HARBORS, AND RIVERS. (Sketches Nos. 1, 6, and 7.)
-Hydrographic survey in the vicinity of Cape Romain, S. C.-Between the end of February and the beginning of May, 1883, a hydrographic survey off the coast of South Carolina in the vicinity of Cape Romain was made by the party in charge of Lieut. J. T. Sullivan, U. S. N., Assistant Coast Survey, commanding the steamer Endeavor. The area sounded included the immediate approaches to that portion of the coast between Winyah Bay and Bull's Bay. A hydrographic sheet, scale $1-10,000$, showing the results of the survey, has been deposited for registry in the archives. The statistics are:

Miles run in sounding	164
Angles measured	1,678
Number of soundings	17, 204

Lieutenant Sullivau was aided by Ensigus W. H. Allen, E. N. Fisher, and J. P. Parker, U. S. N.
About the 10th of May the Endeavor proceeded to Philadelphia, and under Lieutenant Sullivan's direction was prepared for a season's work in Section II.

Occupation of the station at Savannah, Ga., for the determination of the longitude of Naint Augustine, Fla., by exchange of telegraphic signals.-In co-operation with the party sent out by the French Government for the observation of the Transit of Venus at Saint Augustine, Assistant C. S. Peirce was directed to determine the longitude of the Transit of Venus station. For this purpose he detached Mr. E. D. Preston of his party with letters to Colonel Perrier, Chief of the Geographical Service of the French army, who was in charge of the observing corpt at Saint Augustine.

All arrangements having been completed for the longitude observations, the station at Savan-nah-the same as that of 1874 -was occupied by Mr. Preston, and at the station at Saint Augustine the observations were made by Captain Desforges. The location of the Saint Augustine station was in the middle of the north rampart of Fort Marion, the same pier being used as for the meridian circle of the Transit of Venus party.

For the first series of exchanges, results for longitude were obtained on the nights of November S. Ex. $29-6$

30, December 1, and December 3; the observers then changed places, and signals were again successfully exchanged on the uights of December 16, 17, and 18. These completed the number of determinations required.

Before leaving Saint Augustine, Mr. Preston, by direction of Assistant Peirce, made a set of observations with the two new invariable reversible pendulums which had been swung at Montreal, Albany, Hoboken, and Washington, D. O. For this purpose the station occupied was in the chapel of the fort. He also determined the geographical position of the new light-house on Anastasia Island, Saint Augustine Harbor, and the beight above mean tide of the Transit of Venus and pendulom statious.

SECTION VI.

PENINSULA OF FLORIDA, FROM SAINT MARY'S RIVER, ON THE EABT COAST, TO ANCLOTE KEYS ON THE WEST COAST, INCLCDING THE COAST APPROAOHES, REEFS, KEYS, SEAPORTS, AND RIVERS. (Skerches Nos. 1. s, 9, 10, AND 11.)

Hydrograplit resurvey of Saint John's River and Bar.-Under instructions dated in December, 1889, and January, 1883, lieut. E. D. F. Heald, U. S. N., Assistant Coast Survey, having organized his party on board the schooner Eagre, proceeded to the Saint John's River, Florida, for the purpose of making a hydrographic resurvey of that river and the bar at its entrance. The necessary signals having beeu established, soundings were begun January 30 , and though many delays occurred from bad weather and thick atmosphere occasioned by fires in the forest adjacent, Lieutenant Heald was able to report the completion of the resurvey April 24.

Three hydrographic sheets, on a scale of 1-10,000, showing the results of the work, have been registered in the archives. They show the river from the entrance to a point just sonth of Jacksonville. On the bar the least depth was found to be six and a balf feet at mean low water, the mean rise and fall of the tide at the entrance being four feet and six-tenths. The statistics are:

$$
\begin{aligned}
& \text { Miles run in sounding . } 126 \\
& \text { Angles measured. } 1,812 \\
& \text { Number of soundings. 10, } 784
\end{aligned}
$$

Lieut. David Daniels, U. S. N., and Ensigns O. G. Dodge and Alfred Jeffiries, U. S. N., were attached to the hydrographic party. Upon leaving the Saint Johu's River, Lieutenant Heald was directed to take the Eagre to New York and prepare for a season's work on the coast of Maine.

Determination of the longitude of the Transit of Venus station at Saint Augustine, Fla, by exchange of telegraphic siguals with Savannah.-Full reference has already been made, under the head of Section V, to observations made by Mr. E. D. Preston, under the direction of Assistant Charles S. Peirce, at Saint Augustine and at Savamnah, for the determination of the longitude of the French Transit of Vemus station at Saint Augustine, in co-operation with Col. F. Perrier, Chief of the Geographical Service of France, who was in charge of the Transit of Venus party sent to Saint Augustine by the French Government.

Duplicates of the records and results of the observations, made by Mr. Preston and by Captain Desforges, with whom he was immediately associated, will be deposited in the archives of the Coast and Geodetic Survey.

Reconnaissance of the Saint John's River from Lake Monroe to Lake Washington.-The conrse of the Saint John's River from Jacksonville to Lake Mouroe is shown upou the recommaissance map, published in 1878 and sobsequently in another issue, with additions to 1881. Iu February, 1883, Assistant Eugene Ellicott was directed to extend this reconnaissance from Lake Monroe to Lake Washiugton, the rapid development of Southern Florida having created a demand for a chart of the river to the head of narigation.

Mr. Ellicott's survey was begun February 27. Some extracts from his report will be of interest:
"From Lake Monroe to Lake Harney the river is comparatively bold and deep, with an average width of two hundred and fifty feet. The least depth of water encountered in a single line of soundings between Monroe and Harney is six feet; the greatest, twenty-two feet. The least depth
occurs where the riser enters Lake Monroe. At the time the soundings were made the river was within a foot or two of its lowest stage.
"Lake Jessup is a beautiful body of water, and promises to become of some importance because of the good land on its south and west shores. It is, however, difficult of approach, as the depth of water abont its mouth is meager, indeed insufficient for steamers other than the smallest at a low stage of water.
"The shores of Lake Harney are bold, as bold shores go in southern waters, and sandy. The maximum depth is twelve feet, the soundings not varying from this figure for an area of one square mile in the middle of the lake. As the river is again approached my line of soundings showed a decrease to five feet. The bottom of Lake Haruey is hard white sand.
"From Harney to Nalt Lake Landing the river is exceedingly crooked, but the steamers at present engaged in the trade of Indian River experience no undue difficulty in making their trips. This landing is the point of shipment for the Titusville section of Indian River. The distance across is eight miles.
"Lake Poinsett is like other lakes on the river, excepting that the shores are shelving and marshy. A mile east of Poinsett is a small creck or lake where is situated the landing of that name. From this landing it is three miles across to the west shore of Indian River. There is a seattering settlement (with post-office) known as Rock Ledge.
"From Lake Poinsett, up river, the difficulties attending uavigation constantly diminish. The stretch of river between Lakes Poinsett and Winder is much better than in many parts near Jacksonville. The width is about four hundred feet; depth of water, eighteen to twenty-two feet, the banks bold, and the directions remarkably straight.
"The bar which must be crossed in entering the river above Lake Winder has (according to a single line of soundings) six feet of water, and I am inclined to think that a closer survey would show eight or nine feet.
"From this point up river, or to the southward, the conditions remain favorable to navigation, ample width of river and depth of water till the 'floating islands' are encountered, four or five miles above Lake Winder.
"These 'islands,' as they are called by the river men, consist of a dense vegetable mat, of a foot in depth, floating on the surface of the water, the decomposed vegetable matter having so welded the float together as to have admitted the growth of small willows four to six feet in height."

In the small steamer which had been hired for the survey, Assistant Ellicott succeeded in cutting through a Hoat of 300 or 400 meters, and entering clear water, which only lasted half a mile, when another float appeared. The outlines of the northern shore of Lake Washington came in sight about three miles beyond, and here the work was closed.

Mr. Ellicott's report gives detailed statements showing the great and steady increase in the means of inland communication and in the trade and travel in the interior of Eastern Florida. Arrangements will be made for the early publication of his reconnaissance map.

Otlier surveys executed by Assistant Ellicott are referred to under the heads of Sections I and III.

Survey of the eastern coast of Florida from Indian River Inlet southward.-In accordance with instructions issued towards the close of November, 1882, Assistant B. A. Colonna proceeded to the east coast of Florida, and organized his party for executing the triangulation, beach-measurement, topography and hydrography of the east coast of Florida included between the limits of latitude 97025^{\prime} and $26^{\circ} 13^{\prime}$ north.

The triangulation, in connection with the beach-measurement, was begun by Mr. Colonua from the limits of Assistant Boyd's work of the previous season near Indian River Inlet, and carried by him to the sonthward as far as Jupiter light-house, about thirty-five miles. Thence from Jupiter light-house it was carried fifty miles sonthward to Junction Station by Mr. W. B. Fairfeld, extra observer, under Mr. Colonna's direction.

The topograply was taken up near Indian River Inlet, and extended to the southward to about eight miles south of Jupiter light-house, including the shores of Saint Lucie and Jupiter Rivers, and covering three topographical sheets on a scale of $1-20,000$. This work was executed by Mr. E. L. Taney, Aid in the party.

Later in the season the topography in the vicinity of Lake Worth was taken up by Mr. T. P. Borden, Aid in the party. This sheet had been partly completed when field operations closed.

The beach-measurement was committed to the care of Mr. Borden, who carried it from Ten Station (latitude $97^{\circ} 05^{\prime}$), to Junction triaugulation station, a distance of about sixty-two miles. Mr. W. B. Fairfield aided Mr. Borden in this measurement.

Assistant Colonna measured an azimuth at Teu Station, Jupiter light being used as an azimuth mark. Two magnetic stations were established, one at Refuge Station, and one at Bell Station; at these points were determined the maguetic declination, dip, and relative total intensity, the latter by Lloyd's method.

Early in May the hydrographic work was taken up. It covers the waters from Indian River Inlet to South Jupiter Narrows, including Saint Lucie River and Peck's Lake. The results are shown upon two full hydrographic sheets, and part of a third sheet, scale 1-20,000. About one balf of the hydrography was executed by Mr. Colonna personally; the remainder by Mr. W. B. Fairfield.

Field operations closed early in June. In his report Assistant Colonna expresses his hearty appreciation of the carnest and efficient manner in which all work entrusted to his Aids, Messrs. Borden, Taner, and W. B. Fairtield was executed. During part of the season, and until his detachment April 30, Ensign Edward Simpson, U. S. N., rendered valuable service. The statistics of the season's work are:
Stations occupied for azimuth 1
Stations occupied for magnetic determinations 2
Stations occupied in triangulation 31
Pointings with theodolite. 12, 228
Miles of beach-measurement with wire 62
Geographical positions determined 53
Miles of shore-line of rivers, ponds, \&e 342
Area of topography in square miles 70
Tidal stations and bench-marks established 6
Mides run in sounding 451
Number of soundings 24, 274

Duty in which Assistant Colonna was occupied at the beginning of the fiscal year is referred to under the head of Section XVII.

Survey of the shores and lagoons of East Florida from Key Biscayne northward.-The survey referred to in the preceding paragraphs, under the direction of Assistant B. A. Colonna, and carried southward along the coast of East Florida, met at Junction Station (latitude $26^{\circ} 13^{\prime}$ north) a survey of a similar character carried from Key Biscayne Bay to the northward by the party in charge of Assistant O. H. Tittmann.

The schooner Ready, with Mr. Tittmann and party on board, arrived at Key Biscayne Bay early in February, and a search for the stations of the triangulation of 1849-50 in that vicinity was at once begun. The North Monument established in 1855 to mark one of the ends of the pri. mary base-line measured in that year was found undisturbed; the South Monument had been washed away, and was found lying on the bottom in several feet of water. Stations "Key Biscayne" and "Shoal Point" were recovered; the latter, with the old light-house tower on Cape Florida, furnished a base-line for the triangulation required to connect the old work with the proposed beach-measurement. This tower, ninety feet high, overtopped the tall mangrove growth on Key Biscayne, and thus served admirably the purpose of a central station for the triangulation.

In order to establish points on the beach for hydrographic purposes, it was deemed advisable to begin the beach-measurement at "Norris Cut" in latitude $25^{\circ}{ }^{\circ}{ }^{\prime \prime}$ ' (nearly). This line of measurement followed generally the high-water mark, and its direction was preserved by aligning with a four-inch universal instrument, which was carried from bench to bench, and plumbed over each one successively. At the same time the difference of elevation between the benches was determined by means of this iustrument. The beach-measurement was begun Febraary 22, and completed April 4, at Junction Station, the distance between the two points being about thirty-two miles.

The orientation of the survey, depending on the azimuth of the line "Old Tower-Shoal Point,"
was preserved by means of angles measured between the principal signals established along the beach.

A tertiary triangulation for checking the distances measured on the beach was carried from station "Dumfounding," in latitude $25^{\circ} 57^{\prime}$ north (nearly), to station "Lauderdale," near latitude $26^{\circ} 06^{\prime}$ north. At "Lauderdale" an astronomical azimuth was determined by two nights' observations made with a six-inch Gambey upou Polaris, direct, and reflected in mercury.

The topographical survey extended from the head of Key Biscayne Bay to station Lauderdale, and was finished May 10. It includes the shore-line of New River and its bayous, as well as that of the bead of Biscayne Bay, Dumfounding Bay, and the upper portions of Snake and Arch Creeks.

New River, between its inlet and "Lauderdale," was sounder out, and some additional soundings required off Miami were made. Field operations were closed May 15.

Subassistant John B. Weir, Ensign E. M. Katz, U. S. N., and Midshipmen John A. Dougherty and L. S. Van Duzer, U. S. N., were attached to the party.

Duty assigned to Assistant Tittmann earlier in the tiscal year is referred to under the heading of Section II.

Hydrographic survey between Jupiter Inlet and Key Biscayne.-A hydrographic survey of the east coast of Florida between Jupiter Inlet and Key Biscayne was completed in May, 1883, by Lieut. H. B. Mansfield, U. S. N., Assistant Coast Survey, commanding the steamer A. D. Bache. Lines were run norinal to the coast abont one mile apart, always as far as the fifteen-fathom, and with but few exceptions as far as the twenty-fathom curve, every tenth line being extended to the one-hundred-fathom curve.

From Jupiter Inlet to Hillsborough Lientenant Mansfield found the shore very clean, the three-fathom curve about one-eighth of a mile from the beach slanting gradually up to the beach, except sonth of Lake North Cut, where a narrow ridge runs at the edge of the three fathom curve about ten miles to the southward. From the three-fathom curve the water deepens rapidly until an average depth of eleven fathoms is attained; it then shoals up to a ridge with nothing less than eight or ten fathoms about a mile from shore, and then falls off almost at a cast to sixteen and then to twenty fathoms, \&c.

Between Hillsborough and Key Biscayne it is not so clean; the inshore reef slanting at Hillsborough has usually from three to four fathoms inside, and shoals again in some places to but five or six feet, not unfrequently extending nearly three-fourths of a mile from shore.

Three hydrographic sheets on a scale of $1-40,000$ emborly the results of the survey, the statistics of which are:

$$
\text { Miles run in sounding . } 295
$$

Angles measured. 1,902
Number of soundings.... 8, 136
Ensigns W. B. Caperton, H. M. Wetzel, J. M. Orchard, and O. S. McClain, U. S. N., aided in the work.

Upon the completion of the survey the Bache was taken to New York for refitting and repairs. Hydrographic work upon the west coast of Florida executed by Lieutenant Mansfield earlier in the season will be presently referred to under the heading of this section; duty previously performed by him is stated under the heading of Section II.

Observations of currents at stations off Jupiter Inlet, Fla.-The instructions issued in February, 1883, in relation to observations of currents off the eastern coast of the United States by Master J. C. Fremont, jr., U. S. N., commanding the schooner Drift, have already been referred to under the heading of Section III. Having occupied four current stations at points between Cape Henry and Cape Fear, Master Fremont established his fifth station May 8, 1883, in the Gulf Stream oft Jupiter Inlet, anchoring in one hundred fathoms, favorable conditions of observation prevailing, a smooth sea and a light wind. This station was occupied twenty-six and one-half hours. The sixth station was also in the Stream off Jupiter Inlet; depth, two hundred fathoms; time of occupation, twenty-four hours; date, May 10. The seventh station, in the axis of the Stream at a depth of about foar huudred fathoms, was occupied during thirty-one and one-half hours; after completing
the observations at this station, the loss of an anchor through the giving way of the windlass made it advisable to return with the Drift to Fernandina. At this port orders reached Master Fremont on the 18th of May directing him to take the vessel to New York, where she was prepared for service in a cruise for observations of currents between Montank Point and Cape May.

Deep-sea soundings, with serial temper,tures, betueen the Bahamas and the Bermudas.-The deepsea sounding work executed by the hydrographic party on board of the steamer Blake, early in the fiscal year, has already been referred to under the headings of Sections II and IV. On the 9th of December, 1882, the vessel left New York under command of Lieutenant Commander W. H. Brownson, U. S. N., Assistant Coast Surver. His instructions were to run a line of deep-sea soundings from the Bermuda Islands to the Bahamas, and then a series of normals to the northern face of the Bahamas, far enough to develop the two-thousand-fathom curve.

The Blake anchored off Bermuda on the night of December 13, and after a delay of some days by bad weather, Lieutenant-Commander Brownson left Hamilton, and obtained his tirst sounding December 18, on Challenger Bank, depth, twenty-eight fathoms. This was at $7 \mathrm{~h} .50 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. Two hours later a sounding gare bottom at four hundred and sixty nine fathoms, and at 7 h .20 m . next moruing a sounding was obtained in two thousand six hundred and thirty-two fathoms. With some delays, occasioned by loss of wire and thermometers, the line was completed to the Bahamas, surface, serial, and bottom temperatures being obtained in connection with the soundings whenever practicable. On this line the greatest depth sonnded was three thousand and seven fathoms; the lowest temperature of bottom observed was $3 \bar{a}_{2} \mathrm{O}$ Fahr.

Soundings were subsequently obtained on lines from Mariguana to Ocean Plateau; thence down through Turk's Island to the coast of Hayti. Another line was run from Samana Promontory to Navidad Bank, and thence out to Ocean Plateau.

Upon his arrival at St. Thomas, Lieutenaut-Commander Brownson inferred from an inspection of the chart to the northward of Porto Rico, in connection with the results which he had obtained on the last line run and from the soundings of the Challenger, that very deep water would extend to the westward. His inference was soon after verified. On the 27 th of January, in latitude $19 \circ 40^{\prime} 50^{\prime \prime}$ north, longitude $66^{\circ} 23^{\prime} 40^{\prime \prime}$ west of Greenwich, seventy-one miles west of the Challenger's greatest depth, he sounded in four thonsand five hundred and sixty-one fathoms, finding the bottom to be brown ooze and the temperature 364° Fahr. This is believed to be the greatest depth from which bottom specimens and temperature have been obtained.

Fifteen and a half miles southeast of the latter station another sounding was taken in four thousand two hundred and twenty-three fathoms, the specimen brought up being of ooze in two layers, brown on top with an under strata of gray. Temperature at bottom was $36^{\circ} \mathrm{Fahr}$.

Lieutenant-Commander Brownson remarks in his report:
"The lines of soundings normal to the general direction of the Bahamas show the remarkable manner in which these islands rise up from the Ocean Plateau. With the exception of the line off Spanish Cay, Little Bahamas, in no case was the two thousand-fathom curve more than fourteen miles from the nearest land, and in one instance we found one thousand nine hundred and seveutysix fathoms only two and one-half miles trom land. This would give a declivity of 38°. Referring to the deep sounding four thousand five hundred and sixty-one fathoms taken north of Porto Rico, it is probable that deeper water can be found north and east of it, and I trust it may soon be investigated."

From the data furnished by this and previous cruises of the Blake was constructed a model of the western part of the North Atlantic Basin. The statistics of the work are:
Number of soundings with wire 151
Serial temperature stations occupied 27
Water temperatures observed, surface 141
Water temperatures observed, intermediate 174
Water temperatures observed, bottom 126

The followingr-named ofticers were attached to the Blake: Lieut. G. W. Mentz, U. S. N.; Masters Henry Morrill and Lucian Flynne, U. S. N.; Ensigns H. C. Wakenshaw, W. M. Constant, and
H. S. Knapp, U. S. N. The commanding officer expresses his appreciation of the great interest taken in the work by all the officers.

Arriving in New York early in February, Lieutenant-Commander Brownson received instructions to prepare the steamer for deep-sea sounding work and off-shore hydrography in the approaches to New York and in the vicinity of Nantucket Shoals.

Topographic and hydrographic survey of the west coast of Florida between Charlotte Harbor and Tampa Bay.-Having organized his party on board the sehooner Quick at Manatee, Florida, early in December, 1882, Subassistant Joseph Hergesheimer proceeded to execute instructions directing him to make a topographic and hydrographic survey of the west coast of Florida between Tampa Bay and Charlotte Harbor.

The topographic survey was began at Hunter's Point, Sarasota Bay, on January 1, 1883, and completed to Bocilla Pass at the entrance of Lemon Bay, on the 4th of June. During this period the weather was favorable for the work, the season being remarkable for an almost entire absence of the heary northers which are usually of frequent occurrence during the winter. The inside hydrography also was fimished by June 1; it included the hydrography of Sarasota and Little Sarasota Bays, Dona Bay, and Roberts Bay, and that of the bar and harbor of Stump Pass. That of Lemon Bay was postponed, owing to the lateness of the season.

Tidal observations were recorded at seven stations which were connected with each other and with the bench-mark established at Egmont light in 1873. Statistics of the season's work are as follows:

$$
\text { Miles of shore-line surveyed } 368
$$

Miles of roads . 45
Area of topography in square miles.. 58
Miles run in sounding... 564
Angles measured......................... 3, 903
Number of soundings ... 52,302
Mr. J. B. Boutelle, extra observer, rendered efficient service in the party.
Hydrography off the west coast of Florida to the northoard and southward of Tampa Bay.-In pursuance of instructions issued to Lieut. A. B. Mansfield, U. S. N., Assistant Coast Survey, he proceeded with his party on board of that vessel to the west coast of Florida, to continue the hydrography off that coast, northward and southward of Tampa Bay.

Arriving in Tampa Bay January 17, 1883, he tablished a tide-gange at Egmont Key and began soundings. One double hydrographic sheet, seale 1-40,000, showing the hydrography between Blind Pass and Big Pass was finished February 17. With reference to the characteristics of this part of the coast, Lieutenant Mansfield remarks:
"The bottom is irregular and in ridges to five or six fathoms, and then deepens gradually. The shore is low, and the hills back of the beach are usually, in clear weather, just seen from the ten-fathom curve. In running this work to the limits of the five-fathom curve, the currents were found to be tidal. Ontside the prevailing current, was found a slight one from the south ward along the coast. In calms this current had a rate of about three-tenths of a knot, increasing to six-tenths in a fresh breeze from soath aronnd to west. It would be-checked after northerly winds, and in a few cases, after a heavy norther, it had a slight set to the southward."

After atrip to Key West for coal aud stores, work was taken up on that part of the coast between Bocilla Pass and New Pass, March 2. Within half a mile of the shore, the water was found to deepen to four or five fathoms, except off the passes. Beyond that depth the deepening was gradual, as on the upper sheet. The same current effect was noted. The hydrographic sheet, a double one, scale $1-40,000$, was finished April 10. Previous to this date, some soundings had been made in the west channel of the Manatee River; these are shown upon a separate sheet, scale 1-10,000.

For the work apon the west coast of Florida, the statistics of the season are:

$$
\text { Miles ran in sounding . } 1,022
$$

Angles measured... 2, 411
Number of soundings. 22, 928

Ensigns W. B. Caperton, H. M. Wetzel, J. M. Orchard, and C. S. McClain, U. S. N., were attached to the hydrographic party on board the Bache. Work upon the east coast of Florida, executed by Lieutenant Mansfield and party after the completion of the west coast work, has already been referred to under the heading of this section.

SEOTION VIII.

alabama, mississippi, loUisiana, and arkansas, including gulf coast, ports, and rivers. (Sketches Nos. 1, 6, 13, 14, And 24.)

Reconnaissance for the connection of the Gulf coast triangulation on Mobile Bay, Ala., and vicinity with the primary triangulation at or near Atlanta, Ga.-Having beeu charged with making a reconnaissance for a triangulation between the Gulf of Mexico at or near Mobile Bay, and the primary triangulation near Atlanta, Ga., Assistant S. C. McCorkle proceeded to Mobile, Ala., in January, 1883, and began a careful search to ascertain what points of the old triangulation could be found with which to connect the scheme of reconnaissance.

For transportation, which greatly facilitated his labors, Mr. McCorkle acknowledges his indebtedness to Capt. A. N. Damrell, United States Engineers, and to Capt. T. W. Lay, United States Revenue Marine.

In the explorations for the old triangulation marks on and near Mobile Bay, great changes of shore-line aud other topographical features were found. The coast has been visited by gales of great severity since the former survey, and the shores of the bay, especially at the points and bluffs where statious were generally established, have been washed away from thirty to sixty feet. Upon Dauphin Island, where search was made for the monuments marking the ends of the primary baseline measured in 1847, the granite blocks at East Base were found, but were lying on their sides apart from each other and entirely out of position. Search was made unsuccessfully for the anderground marks. The blocks which had marked the West Base could not be found. Nearly twothirds of the island on the south side has beeu entirely submerged, and the south shore has been very largely washed away, while the north shore-line seems to have been greatly extended. Pelican Island has entirely disappeared.

Having identified five points of the former triangulation, one of which was the station at Fort Morgan, Assistant McCorkle began his reconnaissance of the country between Mobile and Atlanta. This duty occupied him during the months of March and April. His report gives full details in regard to the features of the country, with statements of the location, general direction, and eleva. tion of the ridges, and concludes by recommending the adoption of either Kenesaw-Carnes or Carnes-Indian Mountain, lines of the primary triangulation between the Maryland and Georgia base-lines, as bases for the triangulation between Atlanta and the Gulf of Mexico.

Mr. W. O. Jones served as acting Aid in the party. In the earlier part of the fiscal year Assistant McCorkle was engaged in duty which is referred to under the heading of Section 11 .

Continuation of the survey of the coast of Louisiana, west of the Mississippi River.-A topographic and hydrographic survey of the south coast of Louisiana, from Barataria Bay eastward towards the Mississippi Passes, was carried on by Assistant C. H. Boyd during February, March, and part of April, 1883. Having organized his party on board the steamer Barataria, Mr. Boyd arrived in Barataria Bay February 7, and began work by a search for stations of the triangulation of 1876, which might serve as a base of operations. Having recovered "N. E. Base" and "Grand Terre," a triangulation solely fer the determination of topographic and hydrographic points was carried from this line as a base as far as Sandy Point, near the present mouths of the "jump." as soon as points enongh conld be determined, the shore line survey was begun at Ronquille Bay, and followed the triangulation on the outer islands, and the bays and bayous adjacent thereto, covering ground enough to develop the characteristics of the Gulf shore as far as Skofield's Bayou.

Soundings were made in the bayous and shoal-water bays inclosed by the topographieal sheets. Tidal records were kept near each anchorage of the steamer during the time that this work was in progress.

Field-work was closed in accordance with instructions April 24, and the steamer laid up at New Orleans.

Midshipman James C. Drake, U. S. N., rendered acceptable service in the party; Mr. J. De Wolf, extra observer, served efficiently in topographical duty.

Scale of execution of topography and hydrography, $1-30,000$. Statistics are as follows :
Shore-line surveyed, miles.
100
Area of topography, square miles...... ... 50
Lines run in sounding, miles..................... 70
Number of soundings 5, 5000
Duty in which Assistant Boyd was engaged earlier in the fiscal year is referred to under the heading of Section I.

Survey of the coast of Louisiana from Sabine Pass eastward.-U Uder the direction of Assistant F. Walley Perkins, and in pursuance of instructions issued in November, 1882, a party was organized for the extension of the survey of the coast of Louisiana from Sabine Pass to Calcasieu Pass.

Mr. Perkins organized his party and began preliminary arrangements for the work in December, but actual operations were delayed for a time by heavy rains, producing an orerflow of the country and rendering the marshes almost impassable. As soon as the weather would admit, the survey was pushed vigorously in its several brauches. About the middle of January the stations in the vicinity of Sabiue Pass were occupied to begin the triangulation by Mr. G. F. Bird, Aid in the party. The topographical survey was commenced near the Pass at the same time by Subassistant W. C. Hodgkins.

During parts of February and March a base-line of verification was twice measured; the two measurements were found to be in close accord.

The latitude of West Base Station was determined with the meridian telescope, and the azimuth of the base-line was established by observations npon α Urs. Min., 51 Cephei, and δ Urs. Min. This work, with the continuation of the triangulation and topography towards Calcasieu light, and a hydrographic survey of a portion of Calcasieu Pass, occupied the party until near the end of May, when field operations were closed.

Assistant Perkins' report contains suggestions derived from his experience in the field as to the best methods of prosecuting the survey on this part of the coast. He presents the following statistics of work accomplished:

Length of base-line measured in meters . 4, 134. 1
Number of pairs of stars observed for latitude . 26
Number of observations for latitude...... 83
Number of pointings on stars for azimuth 132
Number of stars observed for time 100
Geographical positions determined. 34
Directions determined . 153
Number of pointings made in triangulation . 6, 6, 822
Total number of miles of shore-line delineated . 582
Miles of railroad . 9
Miles of roads . 41
Area surveyed in square miles 200
The scale of the three sheets, showing results of the topographic survey, is $1-20,000$.
In the bydrographic work, Assistant Perkins had the aid of Lieut. Lucian Flyune, U. S. N., who reported for duty, with the steamer Hitchenek, about the end of March.

The statistics presented bear witness to the energy displayed by the party of Assistant Perkins in the conduct of the survey. Work executed by him earlier in the fiscal year is referred to under the heading of Section XVI.

Determination of the longitude of Little Rock, Ark., by exchange of telegraphic signals with Saint Louis, Mo.-In November, 1882, a determination of the longitude of Little Rock, Ark., was made by exchanges of telegraphic signals with Saint Louis, Mo. The station at Saint Louis was occupied during the summer and autumn of 1882 by the party of Assistant G. W. Dean for the exchange of
S. Ex. 29-7
longitude signals with a number of stations in the interior States. At Saint Louis the observations were made by Carlisle Terry, jr., Aid in the Surver, attached to Mr. Dean's party; at Little Rock Snbassistant F. H. Parsons established the longitude station and made the observations.

Little Rock being one of the secondary stations in the scheme of operations, the observers did not change places. Very satisfactory results were obtained by the three nights' exchanges, November 6,7 , and 10 .

The latitude of the station was determined by eighty-one observations upon fifteen pairs of stars. Reference is made to other stations occupied by Mr. Parsous under the headings of Sections XIII and XIV.

SECTION IX.

TEXAS AND INDIAN TERRITOMY, INCLUDING GULF COAST, BAYS, AND RIVERS. (Sketches Nos. 1 and 14.)

Hydrography of the coast of Texas, from Galveston entrance, eastuard.-Lieut. E. M. Hughes, U. S. N., Assistant Coast Surrey, having assumed command of the steamer Gedney, in pursuance of instructions issued in December, 1882, proceeded to Galveston, Tex., and organized his Iarty on board that vessel for the extension of the hydrography of the coast of Texas from Galveston entrance to the limits of the completed triangulation.

On the passage from New York the steamer encountered very bad weather and sustained damages which compelled her commander to put into Sinithville for shelter, and to have her docked at New Orleans for repairs. It was therefore not until February 14 that field-work could be begun.

The work executed between this date and the close of the season, April 30, comprised a survey of Galveston inner bar, the erection of signals along the beach for a distance of forty miles eastward of Galveston, and the completion of off-shore sonndings, to include the ten-fathom curve, to a point thirty miles to the eastward of Galveston entrance. This leaves twenty-five miles of hydrographic work yet to be done to complete the hydrography to Sabine Pass. .

Lieutenant Hughes has submitted a compreheusive report of his survey, complete as regards all details of its execution, and stating the leading features and peculiarities of the coast. Some extracts from this report are here given:
"The coast eastward from Galveston being extremely low, large signals were necessary, and these were built in the most substantial manner to withstand the northers and the southeast gales prevailing during the winter months. For the first twenty-five miles from Galveston no signals were found, but the points were recovered with no trouble whatever, owing to the fact of each one being marked by a bushel or two of white shells on the surface. The signals erected are trom forty to sixty feet in height, and will undoubtedly be found standing during the coming winter.
"During the past season the weather was extremely unpropitious, February being foggy and March and April stormy, with much haze and fog. In almost every instance, where the sea was smooth enongh for working, the weather was so thick that signals could not be seen two miles off shore. Nearly all the work accomplished was achieved only by going out on the back of a norther and putting in every available moment, for as the northerly wind died out it invariably hauled around to the eastward, and within forty eight hours blew up heavily from southeast.
"No regular current stations were made, but the current was measured on anchoring, before getting under way, and, at times, at the end of a line off shore. On the shoal area, extending well off the coast near Galveston, the current is largely controlled by the wind in directiou, and its strength is variable, in so marked a degree that the result obtained in one place is of not the least value in forecasting that at another five miles further out orin. The maximum current eucountered was on April 18, steaming to the westward for Galveston, about four miles off shore. Hor a period of 6.2 hours we stemmed a mean current of 1.6 kuots per hour, setting ENE. (Wiud SSW.4-6.)"

The results of the survey are shown upon two hydrographic sheets upon scales of $1-80,000$ for the coast approaches and $1-10,000$ for the inner bar of Galveston. Statistics are as follows:
Miles ruı in soundiug 714
Angles measured 1,026
Number of soundings 10,276
Number of specimens of bottom preserved 39

Lieut. C. McR. Winslow, U. S. N., and Eusigns T. M. Brumby, W. C. Caufield, and William Truxtun, U. S. N., were attached to the hydrographic party under the direction of Lieutenant Hughes. After the close of the season, the Gedney proceeded to New York, where she was prepared for service on Long lsland Sound. Duty performed by Lieutenant Hughes earlier in the fiscal-year is referred to uuder the heading of Section II.

Topography of the shores of Nueces Bay ; triangulation in the vicinity of Matagorda Bay; measurement of a base of verification and observations for azimuth.-With a view of resuming work upon the coast of Texas at the earliest date that the abatement of the yellow-fever epidemic on that coast rendered desirable, Assistant R. E. Halter proceeded to San Antonio, Tex., and thence to Corpus Christi, in the autumn of 1882 , in pursuance of instructions directing him to complete the survey of Corpus Christi Bay. He took up work on the shores of Nueces Bay (the upper part of Corpus Christi Bay) late in October, and finished the topography needed, early in Jannary, 1883. He was then directed to organize his party at Matagorda, Tex., for the verification of the old triangulation between the head of Matagorda Bay and the terminal points of the primary triangulation from Galveston Island southwestward. For this purpose he first made search for two or more points of the triangnlations of 1853 and 1855 , and connected them by a new triangulation, depending upon a new base, the site of which was selected by him on Matagorda Peninsula and its length measured. All of the old station points immediately on the coast of the Gulf had been washed away or destroyed, but on the mainland the old lines, Seven Mile-Live Oak and Prairie-Kenner, were re-established, connected with the new-base, and the direction of the base-line determined by observations of azimuth.

Later in the season search was made for stations of the triangulation of 1851 between Cany Baron and West Base, Galveston Island, but without other success than that of finding two points, "Cottonwood" and "Oyster Creek," both on the side of the main land. Field operations were closed early in June, and arrangements made to continue the work in the following autumn.

Assistant Halter has submitted the following statistics of the season:

$$
\begin{aligned}
& \text { Shore-line surveyed, miles . } 43 \\
& \text { Roads, length of, in miles . } 17 \\
& \text { Area of topography, in square miles ... } 5 \\
& \text { Number of observations in triaugulation . 1, } 610 \\
& \text { Number of observations for time } 366 \\
& \text { Number of observations on star and on mark for azimuth } 174 \\
& \text { Length of base-line, in meters . 3, 386 }
\end{aligned}
$$

Mr. J. E. McGrath served as Aid in the party.

SECTION X.

CALIFORNIA, INCLUDING THE COAST, BAYS, HARBORS, AND RIVERS. (Sketches Nos. 2, 15, 16, 17, and 24.)
Establishment of a magnetic self.registering-record station at Los Angeles, Cal.-Reference was made in my last annual report to the site selected for a permanent magnetic station for observations to be made in co-operation with the work of the Signal Office and with that of the International Polar Commission. In pursuance of instructions issued in July, 1882, Mr. Werner Suess, of the Coast and Geodetic Survey, proceeded to Los Angeles, Cal., and took temporary charge of the magnetic observatory, which had been erected by Assistant Janes S. Lawson in the grounds of the State Normal School.

Immediately upon his arrival Mr. Suess began preparations for placing the self-registering record instraments (the Adie maguetographs) in position and adjnstment. The main pillars for the clock, the declinometer, the horizontal and vertical force magnets having been set before the erection of the building, it remained only to place the pillars for the lamps and reading telescopes. For this purpose Mr. Buess mounted the instruments temporarily, and by the close of July had secured the slate and marble bases on their respective columns. The final adjustments were made with the co-operation of Mr. Marcus Baker, Acting Assistant, who arrived in Los Angeles early in

August to take charge of the observatory. By the 28th of September, the sensitive photographic paper was in place upon the cylinders in readiness for the adjustments of the driving clock, of illumination, and for testing the chemical processes. In October the actual registry with the magnetograph began, and a continuous record of the magnetic eluments was obtained photographically.

Determinations of the absolute values of the magnetic declination, dip, and intensity were made in September on the usual term days, and were continued monthly. For this purpose a temporary building was put up at some distance from the one containing the differential instruments.

The changes of magnetic declination, changes of horizontal force, and changes of vertical force recorded by the magnetographs on separate sheets have been developed successfully during each month up to the date at which this report closes. The tabulations have also been made and the means calculated.

A thermograph record, on which the temperature of the magnet room is recorded automatically every half-hour, has been kept continuously since November, 188\%. Time observations for the regu. lation of the standard chronometer have been taken regularly each month.

Following is a summary of the various observations, from the date of beginning in September, 1882, to June 30, 1883:

Number of observations for time 328
Number of observations for azimuth. 98
Number of angles observed . 14
Number of temperature observations . 2, 270
Number of observations for magnetie constants . 826
Number of observations for absolute declination 1, 028
Number of observations for absolute dip . 3, 270
Number of observations for absolute intensity................ 1, 330
Number of unifilar observations. 6, 620
Number of bifilar observations 6, 418
Number of vertical-force observations . 6, 450
Since January, 1883 , Mr. Lucius Baker has aided in the routine work of the observatory.
Continuation of the primary triangulation northward from Point Concepcion.-Assistant James S. Lawson, upon his return in Angast, 1882, from Los Angeles, Cal., where he had superintended the building of a magnetic observatory, was assigned to the charge of the primary triangulation northward of Point Concepcion. The scheme, as laid out, involved the occupation of a series of primary points, connecting with "Santa Lacia," one of the southern stations of Assistant Davidson's work, and starting from the line "Lospe-Tepusquet."

Having posted heliotropers at the stations to be olserved upon, Assistant Lawson occupied "Tepusquet." Progress was much delayed at this station by the thick and smoky condition of the atmosphere, and by a prevalence of strong east and northeast winds bringing dense clouds of dust from the Great Valley of California. In many instances these dust storms would so envelop the country that in a few hours even the tops of the nearest ridges, half to three-quarters of a mile distant, were barely visible. Much injury was done to the camp by the violence of the winds, two tents and the flies of others being blown to pieces.

While at Tepusquet, Assistant Lawson was directed to report temporarily to Assistant George Davidson for duty in the party organized by him for the observation of the Transit of Venus at a station in New Mexico. Leaving his party in charge of his aid, Mr. P. A. Welker, in November, 1882, Mr. Lawson, upon his return in January, 1883, found that the work at Tepusquet had been completed and that the occupation of Lospe bad just been begun. At this station a succession of fogs, quite unusual for the season, was experienced, the greater number of days in March and April being foggy.

All of the observations needed at Lospe were obtained by the 26 th of May, when field operations closed. Mr. Lawson and his aid returned to San Francisco, and, in accordance with instructions, they reported to Assistant George Davidson for duty under his direction.

The statistics of the work accomplished at the two primary stations are as follows:
Number of pointings for horizontal direction 1, 384
Number of pointings for vertical angles (double zenith distances)............ 1, 536
Number of nights on which stars were observed for azimuth.. 13 -

- Number of stars observed for time....... 35

Number of observations for time 298
Number of pairs of stars observed for latitude... 45
Not included in the above summary are the numerons sets of observations taken for the determination of instrumental constants.

At Tepusquet the third and fourth contacts of the Transit of Venus, December 6, 1882, were observed by Mr. Welker. For details, see Appendix No. 16.

Near Lospe Station was found Substitute Station of the tertiary triangulation of Assistant Greenwell in 1878. This was connected with the primary triangulation both by measures of angles and of distances from Lospe by a steel tape.

Reference will be made under the heading of Section XVI to the work of Mr. Lawson as assistant astronomer in the party under the charge of Assistant George Davidson for the observation of the Transit of Venus at Cerro Roblero, N. Mex.

Hydrographic survey from Monterey southward.-In continuation of the hydrographic survey of the coast of California, Lieut. W. T. Swinburne, U. S. N., Assistant Coast Survey, commanding the steamer McArthur, proceeded with his party on board that vessel to Monterey, Cal., early in January, 1883, in accordance with instructions issued during the previous month.

Having located his tidal station and begun a set of observations to obtain a plane of reference for his soundings, Lieutenant Swinburne took advantage of the favorable weather which prevailed generally during the season and completed the hydrography from Point Pinos to Cooper's Point between the 5th of January and the 16 th of May. This tidal station was referred to the Coast Survey bench-mark established near Monterey in 1854.

The results of the survey are shown upon five hydrographic sheets-each upon a scale of $1-10,000$. The statistics are:

Miles run in sounding	652
Angles observed	2,722
Number of soundings	11,510

The depths sounded ranged from one foot to five hundred and forty fathoms.
The following-named officers were attached to the hydrographic party on board of the McArthur: Lieuts. J. B. Milton and W. P. Elliott, U. S. N.; Master F. H. Lefavor, U. S. N.; and Midshipman P. B. Bibb, U. S. N.

Duty assigned to Lieutenant Swinburne on the California coast in other portions of the fiscal year until his detachment from the Survey in May, 1883, will be referred to later, under the heading of this section:

Operations at San Francisco, Cal., for the determination of the longitude of the Transit of Venus Station near Fort Selden, N. M., by exchanges of telegraphic signals. . Observations of the Transit at San Francisco.-After the completion of the observations of the Transit of Venus of December, 1882, at Cerro Roblero, near Fort Selden, New Mexico, under the direction of Assistant George Davidson, arrangements were made by Mr. Davidson for the determination of the longitude of his station by exchanges of telegraphic signals with San Francisco.

The station of observation on the summit of Cerro Roblero was referred by triangulation to a station at Fort Selden, and this latter station was connected by telegraph line with the astronomical station of the Coast and Geodetic Survey at Lafayette Park, San Francisco.

Assistants Davidson and Lawson made the observations for time at Fort Selden, using the Davidson meridian instrument No. 1. The charge of the work at the San Francisco station was assigned to Assistant J. J. Gilbert, with Mr. C. B. Hill as recorder. Time was determined with the Troughton and Simms transit No. 3. Clock signals were exchanged upon five successive nights, complete sets of time determinations being obtained before and after each exchange of signals. Assistants Davidson and Gilbert subsequeutly observed upon three nights for personal equation.

Assistant Davidson gives the following results for the longitudes of Fort Selden and the Transit of Venus Station from the field reductions:

Telegraphie longitude, Fort Selden Station, $\boldsymbol{7}^{\mathrm{h}} 07^{\mathrm{ma}} 40^{\text {a }} .56$ west of Greenwich.
Telegraphic longitude, Cerro Roblero, $7^{\mathrm{h}} 07^{\mathrm{m}} 41^{\mathrm{s}} .24$ west of Greenwich.
At the Davidson Observatory in San Francisco, and elsewhere upon the Pacific coast, an unusually steady atmosphere prevailed upon the day of the Transit of Venus, and successful obser. vations were made at the station just named by Assistant Gilbert, who had been assigned to the charge of the work.

Mr. Gilbert, aided by Mr. Ferdinand Westdahl, used the 6.4 -inch equatorial in making measures of the polar and equatorial diameters of the planet on the sun's disk, the distance apart of the cusps, and the III and IV contacts. The other observers at this station, with other instruments, were Assistant E. F. Dickins, Mr. C. B. Hill, and Mrs. George Davidson.

At the Coast and Geodetic Station on Mount Diablo, Cal., observations of the Transit were made by Mr. Justin P. Moore, vice president of the California Academy of Sciences.

Detailed reports of the observations at the Oalifornia stations are included in the full report of Δ ssistant Davidson, which has been transmitted to the Superintendent and to the President of the Transit of Venus Commission.

Reference will be made later under the heading of this section to the occupation of Mount Tamalpais and to other duty in the field and in the office executed by the party of Assistant Davidson.

Completion of the supplementary survey of the San Francisco Peninsula.-As stated in my last amnual report, the supplementary topographical surcey of the San Francisco Peninsula, which had been committed to the charge of Assistant Louis A. Sengteller, was nearly completed at the beginning of the present fiscal year. A hydrographic examination of the city front of San Francisco and of Oakland Creek and its approaches was in progress at the end of June and was fimished early in July, 1882. With this, it was deemed that all necessary work had been accomplished.

The hydrographic sheet was finished at the San Francisco suboffice by Mr. Ferdinand Westdahl, draughtsman, under Assistant Sengteller's direction, and transmitted to Washington about the middle of Angust.

Duty subsequeutly assigned to Assistant Sengteller will be referred to under the heading of Section XI.

Determinations of the force of gravity and of relative magnetic intensity at San Francisco, Cal., in connection with similar determinations to be made at Point Barrow, Alaska.-In furtherance of plans initiated during the preceding year, by virtue of which the Coast and Geodetic Survey cooperated with the Sigual Service in establishing a station of the International Polar Commissiou at Point Barrow, Alaska, Mr. R. A. Marr, Actiug Assist:nt, was directed in May, 1883, to proceed to San Francisco, Cal., and thence to Point Barrow with the Signal Service Relief Expedition, appointed to sail from the former port in June, 1883.

Before leaving San Francisco Mr. Marr was instructed to swing his pendulum (Peirce No. 4) at such station as shonld be selected by Assistant Davidson as a permanent pendulum station, and to vibrate the magnet of his magnetometer on several days with a view of determining the relative horizonal intensity between San Francisco and Point Barrow.

Six sets of oscillations were obtained for the gravity determinations at the pendulum station, corner of Clay and Octavia streets, a pier having been set up, and a small building constructed for that purpose. The magnet of magnetometer No. 6 was vibrated upon four successive days at the Presidio Magnetic Station.

On the 16th of June Mr. Marr left San Francisco on the schooner Leo for Ooglaamie, Point Barrow, Alaska.

Determinations of the force of gravity at San Franciseo in connection with similar determinations at the Transit of Venus Station in New Zealand, and at stations in Australia and Eastern Asia.Assistant Edwin Smith, who had been in charge of the party for the observation of the Transit of Venus at Auckland, New Zealand, and by whom had been made sets of observations with the Kater invariable pendulums at the Transit of Venus Station and at other stations in the east, arrived at San Francisco with his assistant, Prof. H. S. Prichett, on the 31st of May, 1883. He
bronght with him the Kater pendulums, to be swung, in accordance with instructions, at the pendulum station selected by Assistant Davidson at the corner of Clay and Octavia streets, San Francisco. Having rendered some assistance to Mr. Marr, whose prospective work in Alaska has just been referred to, Mr. Smith swung the three Kater pendulums continnously from June 20 to June 26, observations for time being made on each night. Professor Prichett aided in the work antil his detachment June 22, after which Mr. Smith had the aid of Assistant E. F. Dickins.

Further reference is made to the valuable comparative determinations of gravity obtained by means of these pendulums in Part I of this report, under the heading of "Special Scientific Work," and again towards the close of Part II, under the heading "Special Operations."

Tidal observations with self-registering tide-gauge continued at Saucelito, near San Francisco Bay entrance.-The self-registering tide-gauge at Saucelito, just inside of the entrance to the bay of San Francisco, has been run very successfully and without interruption by Mr. E. Gray. The work has been done under the direction of Assistant Davidson, who transferred the gange and the datum plane in 1877 from the Fort Point Station, where tidal observations had been continued for about twenty-three years. This datum plane bas been adopted as a plane of reference by the city of San Francisco, the State Board of Harbor Commissioners, and the railroad companies. Constant application is made for data from the observatious.

The earthquake waves from the great Java earthquake were reported from this tidal station before any notice of earthquake or volcauic eruption had been made known.

Occupation of a station of the primary triangulation north of San Francisco Bay.-In continuation of the primary triangulation north of San Francisco Bay, and to complete the series of directions in the Davidson quadrilaterals coming from the Yolo Base Line, Assistant George Daridson had made arrangements, at the beginning of the tiscal year, for the occupation of Mount Tamalpais. As mentioned in my last annual report, the station was prepared for occupation by Subassistant Pratt, and upon Mr. Davidson's arrival, August 24, observations were begun.

The work included a full series of horizontal directions upon seven main stations and four primary and secondary stations. One of these was the dome of the Lick Observatory at Mount Hamilton; observations from Sierra Mariua will determine its geographical position.

With reference to the weather experienced at Mount Tamalpais and the methods of ubservation, \&c., some extracts from A ssistant Davidson's report are given:
"The season was exceptionally unfavorable for triangulation, the worst I bave met with for many years. The smoky atmosphere was persistent to four thousand or five thousand feet eleva. tion; the winds at the height of our station were rarely strong, and the smoke was seldom cleared away. For days and days it was frequently impossible to see over five miles. I never saw the signal on Rocky Mound, distant only nineteen and one half miles, and finally had to use a heliotrope there. The smallest heliotrope I used during the season was three inches square; six inches square failed to penetrate forty miles in what was the medium condition of the smoke. This smoke comes from the burning forests in the north and in the Sierra Nevada, and from the burning of the high grain stubble of the many valleys. The fogs below us were usually one thousand two hundred to one thousand six houdred feet deep, and when they rose higher they seemed to increase the trouble by creating a bright haze. When the fogs would clear from the valleys and variable winds blow, the heliotrope signals would appear as flames or boiling objects of thirty-five to fifty seconds diameter.
"The total number of observations upon the main stations is nine bundred and forty-two in twenty-three positions of the instrument, the plan involving two observatious in each position; broken series necessarily increased the number on some stations. The number of ocular pointings was three thousand fire hundred and fifty.
"For my initial direction I used Mount Diablo, thirty eight miles distant, observing upon it in connection with the azinuth observations. In all of these observations I used the ocular micrometer readings; the heliotropes were freqnently twenty, twenty-five, and thirty seconds in diameter, very irregular, and boiling or flaming without any nucleus; when smaller, jumpiug if ve to ten seconds each side of the cross hairs, or slowly moving five seconds, so slowly that I could not decide sometimes where the mean lay. Without using the ocular micrometer to correct the initial pointing I should frequently have been compelled to forego observing, and thus protract the work.

In its use I feel a certainty and confidence which have greatly impressed me with the value of the method, and the results confirm my judgment. Even when all the signals are showing, the method has never prevented me from making all the observations necessary at any morning or afternoon work."

For azimuth, observations were made upon B. A. C. 4165 at western elongation, and a Urs. Min. at eastern elongation, the position of the instrument being changed for each star. From Mount Tamalpais the light of the six-inch plano-convex azimuth lens at Mount Diablo (thirty-eight miles distant) was frequently visible to the naked eye, and was sometimes observed through moderate smoke. The ocular micrometer readings were used on the Mount Diablo light, but not on the star. At the close of each night's work the direction of the light on the S. E. Farallon was observed.

For azimuth two hundred and sixty-seven observations were made on the mark aud three hundred and seventy-six on the stars. The number of ocular pointings was one thousand.

For time and latitude, the observations were made by Subassistant J. F. Pratt, with meridiau instrument No. 1 and zenith telescope No. 1. For latitude, twenty eight pairs of stars were observed on an average of seven nights, and for time, two hundred and forty-two observations were made on twenty-two nights. The usual observations for instrumental constants were made.

Subassistant E. F. Dickins was assigned to duty in Mr. Davidson's party on the 29th of July. He assisted in the preparations for field-work, examined several main trianguiation stations and posted the heliotropers, set up the azimuth lens at Mount Diablo, and observed the vertical angles to all of the main stations. For this purpose four hundred and twenty-six double zenith distances were observed upon eight objects.

At this station Assistant Davidson and Subassistant Pratt observed upou the great comet of 1882, making meridian observations for right ascension and declination ou three days, and subsequently a large number of observations for altitude and azimuth.

Mr. C. B. Hill kept the records of observation of horizontal directions and of azimuths, and aided Mr. Davidson and his assistants in the current work of the party. By the 9th of October, all observations needed at Mount Tamalpais were completed. It had been expected to occups Sierra Marina as the next station in the series, but the delays cansed by bad weather, and the necessity of beginning at once preparations for the organization of the party to observe the Transit of Venus at a station in New Mexico, made a postponement of that occupation unavoidable.

Full reference is made in Part I of this report, and under the heading of Section XVI in this part, to the observation of the Transit under the direction of Assistant Davidson.

After his return from that duty early in 1883 to the close of the fiscal year he was occupied in the preparation of his report upon the observation of the Transit, in the completion of his "Field Catalogue of 1278 Time and Circumpolar Stars," and in the compilation of material for a new edition (the fourth) of the Coast Pilot of California, Oregon, and Washington Territory. The great amount of new material nvailable since the publication of the edition of 1869 has made it necessary to rewrite this Directory, and the usual office duties have retarded its speedy completion. The first part, comprising the coast from San Diego to San Francisco, will be put in print whilst the second part is in preparation.

In answering calls for information upon the suboffice at San Francisco, Assistant Davidson had the aid of Messrs. Ferdinand Westdahl and C. B. Hill; the former aided also in Coast Pilot work, and the latter in general office work and at the observatory.

During the year, assistance was rendered by Assistant Davidson to the parties of Assistant Smith and of Mr. Preston and Mr. Marr in making their pendulum experiments at the Lafayette Park station, where a.temporary building had been erected for this work and for conaparing basebars.

Continuation of the hydrographic survey in the vicinity of Point Arena, Oab., Early in July, 1882, Lieut. W. T. Swinburne, U. S. N., Assistant Coast Surrey, was instructed to make ready for sea the steamer Mcarthur under his command, and to proceed to the vicinity of Point Arena, Cal., in order to make a hydrographic survey in continuation of that made by his party during the preceding season. To this survey between Bodega Bay and Point Arena, reference was made in my last annual report.

The hydrography executed between October 5 and November 23,1882 , extends from Point Arena to Salmon Point, and is comprised in three sheets on a scale of $1 \mathbf{1 0 , 0 0 0}$, ranging in latitude from $33^{\circ} 55^{\prime}$ to $39^{\circ} 13^{\prime}$ north, and in longitude from $123^{\circ} 40^{\prime}$ to $123^{\circ} 49^{\prime}$ west of Greenwich. Statistics of the work are:

Miles run in sọunding 312
Angles measured . 1, 170
Number of soundings . 6, 458
In this work Lieutenant Swinburne had the aid of Lieuts. J. B. Milton and W. P. Elliott, U.S. N., and of Master F. H. Lefavor, U. S. N.

Other service performed in the McArthur by Lieutenant Swinburne and by liis successor in command, Lieut. E. D. Taussig, is reported under the heading of this section.

Hydrographic survey in the vicinity of Mendocino City, Cal.-In May, 1883, Lieut. E. D. Taussig, U. S. N., Assistant Coast Survey, was directed to take command of the steamer McArthur, relieving Lieut. W. T. Swinburne; aud after making the ressel ready for sea was instructed to proceed to the vicinity of Mendocino City, Cal., and make a hydrographic survey in accordance with a scheme to be sent to him from the office. The progress of this work will be stated in my next annual report.

Continuation of the primary triangulation of the north coast of California.-.The scheme for the extension of the triangulation of the north coast of California presented by Assistant A. F. Rod. gers as the result of his reconnaissance of the previous year having been accepted, he was instructed in July, 1882, to occupy the stations in the order deemed best as soon as the resumption of the work became practicable.

Having organized his party for the field, he established his camp upon King Peak, Humboldt County, California, a mountain of about four thousand one hundred feet in height, and began observations. This station forms a quadrilateral with the primary stations Great Caspar, Sanhedrim, and Lassic to the sonth and east, and another quadrilateral with Bear Ridge, Mad River Summit, and Lassic to the north and east. (See Sketch No. 17.)

The season proved exceptionally unfavorable on account of smoke and fog, the former being so dense that for days at a time not even the outlines of mountains four or five miles distant were visible. This constant prevalence of smoke, more or less dense, during the months when access to the elévated peaks of the north coast range is practicable, presents a serious obstacle to the satisfactory progress of the primary triangulation, and some method of overcoming it remains to be devised.

All of the observations of horizontal directions and vertical angles desired were obtained at King Peak by the 28th of October, and arrangements were at once begun by Assistant Rodgers for the occupation of "Lassic," a station six thousand two hundred feet in height. Part of the equipments had been packed down the mountain trail, when a storm of rain, hail, and snow came on, which, for severity and duration, exceeded any that Mr. Rodgers had experienced during twenty-five years of camp life. He was storm-bound with his party for ten days at King Peak, After the storm abated, it was found impracticable to approach "Lassic."; hence the occupation of that station was necessarily deferred to another season.

Assistant Rodgers expresses his high appreciation of the services of Assistant Stehman Forney who aided him in the field work at King Peak, and subsequently in the revision of the record: and in the compntations of results. In this duty, and in collating the original field-notes relating to descriptions of stations of the north coast tertiary triangulation, Messrs. Rodgers and Forney were occupied at the suboffice in San Francisco until the close of the fiscal year.

SECTION XI.
OREGON AND WASHINGTON TERRITORY, INCLUDING COAST, INTERIOR BAYS, PORTS, AND RIVERS. (Sketches Nos. 2, 17, and 18.)

Triangulation and topography of the Umpquah River and approaches, Oreg.-In accordance with instructions received toward the close of July, 1882, Assistant L. A. Sengteller left San Francisco S. Ex. $29 — 8$

August 11 to begin a survey of the Umpquah River, Oreg. This is the largest stream which enters the Pacific between the Sacramento and Colnmbia Rivers. A preliminary survey of the entrance was published in 18 ä4.

Through the kindness of the Coos Bay Steamship Company, Mr. Sengteller and his party were landed at Gardiner, on the Umpquah River, Angust 15, and the next morning he established his camp at Winchester Bay, near the mouth of the river.

Field operations were begun by locating a preliminary base upou the sand dunes lying upon the north bank of the river aud extending from the mouth northward. Pending the arrival of the subsidiary base apparatus, a measurement of the base was made with steel tape. Observations of horizontal angles were then begun, a sufficient number of triangulation stations having been established; and about the middle of September the topography of the shores of the river and approaches was commenced. In October the base-line, one thousand one hundred and ninety-two meters in length, was measured with the subsidiary base apparatus. Observations of horizontal angles and plane-table work were continued till November 17, when field operations were closed.

Assistant Sengteller remarks that in crossing the bar all sailing vessels are now towed in and out by powerful tugs, practically removing the dangers attendant upon passing a narrow channel with strong currents and usually heavy swells. Both the bar and entrance are constantly shifting, but at the time of his survey could be safely crossed, except in rough weather, by vessels drawing thirteen to fourteen feet water. The river is navigable to Gardiner, a large mill site, abont seven miles above its mouth, for any vessel which can cross the bar, while to Scottsburg, which is practically the head of navigation, and twenty-five miles above its mouth, seven feet may be carried.

About a mile above Gardiner a large tributary-Smith River-empties into the Umpquab, affording about the same advantages of navigation as the main river.

At the beginning of the season dense smoke from the many forest fires raging along the coast materially impeded the progress of the work, and towards the close delays occurred owing to heary and protracted rains.

The statistics of the partly completed survey are:
Number of angles measured 186
Number of observations made 3, 713
Miles of ocean shore line surveyed 4
Miles of shore line of rivers and streams surveyed 11
Miles of trails surveyed 5
Area of topography in square miles 6

After disbanding his field party Assistant Sengteller proceeded to San Francisco, and was occupied until the close of the fiscal year in the preparation and completion of the records and results of his field-work. He will resune the Umpquah River survey at the earliest date practicable.

Continuation of the survey of the Columbia River and tributaries.-At the beginning of the fiscal year Assistant Cleveland Rockwell was engaged in making a topographical survey of the Columbia River lowlands between Saint Helens and the mouth of the Willamette. About three-fourths of the work was completed by the 28th of October, when field operations closed.

Mr. Rockwell was theu directed to report for duty at the suboffice in San Francisco, and was engaged there until June in inking and duplicating records of field-work. Early in that month he was instructed to proceed to Portland, Oreg., preparatory to resuming charge of the Columbia River survey. The progress of that work and of other examinations and surveys assigned to Assistant Rockwell will be stated in my next anuual report.

Hydrographic surveys of Gray's Harbor and in the Straits of Fuca and Admiralty Inlet.-Having received the requisite instructions, Lieut. T. Dix Bolles, U. S. N., Assistant Coast Survey, proceeded with his party, organized on board of the schooner Earnest, to make a hydrographic surrey near Cape Partridge, at the entrance to Puget Sound. He was also directed to make such additional soundings between Point Partridge and New Dungeness as were needed to complete the hydrography, including that of Dallas Bank.

A hydrographic sheet, scale 1-20,000, including in its limits a distance of one mile west of New Dungeness and three miles east of Point Partridge, was began on the 28 th of Angast, 1882, and
finished about the middle of December. A plane of reference for the soundings was obtained by observations of tides at Port Discovery and at Port Townsend. Upon the completion of this work the vessel was laid up for the winter.

In April, 1883, Lieutenant Bolles was directed to reorgamze his party on board of the Earnest, and, as soon as the weather would permit, to proceed to Gray's Harbor, Wash. T., and to Tillamook Bay, Oreg., for the purpose of making resurveys of the bars and as much of the harbors as might be found necessary to correct and complete the charts of those localities. These resurveys were begun at Gray's Harbor May 28, and the party was still occupied in that harbor at the close of the fiscal year.

During the year ending June 30,1883 , the statistics of work reported by the commander of the Earnest are as follows:
Miles run in sounding .

Lieutenant Bolles had the aid of Ensign J. N. Jordan, U. S. N.
Continuation of the triangulation of Hood's Canal, Puget Sound, Wash. T.-For the more economical and effective prosecution of the survey of Hood's Canal and other waters in Puget Sound, the construction of a steam launch had been ordered. At the beginning of the fiscal year Assistant J. J. Gilbert, under orders to continue the triangulation of Hood's Canal, was at Seattle, Wash. T., acting as inspector on behalf of the United States of the work upon the launch.

Early in September the steam lannch, the Fuca, was in readiness, and Assistant Gilbert, having organized his party on board of her, began the triangulation, starting from the last two stations established by Assistant Ellicott in 1881. The season, though sometimes rainy and often foggy and cloudy, was upon the whole a favorable one, and by November 3 the triangulation of the canal was completed to its head.

Assistant Gilbert, in pursuance of instructions, then proceeded to Rort Townsend and marked a new station to take the place of the old astronomical station on Point Hudson, the site of which has been covered by recent improvements. The new station was referred to the old, and a description of it made.

Having disbanded his party for the winter, Assistant Gilbert laid up the Fuca at Olympia, Wash. T. (she was afterward removed to Port Townsend), and left for San Fruncisco, where he reported for duty, as directed, to Assistant George Davidson, and was assigned to service in connection with the Transit of Venus party of observation in charge of that officer. Mr. Gilbert's work in this connection is referred to under the heading of Sections X and XVI.

After the completion of this field duty in December, and until the close of the fiscal year, Assistant Gilbert remained attached to the party of Mr. Davidson, and was employed in office-work relating to the computation of the observations for time and longitude in connection with the Trunsit, and in the computations of his triangulation of Hood's Canal. He made also a computation of the latitude of Mount Tamalpais from observations made by Subassistant Pratt in 1882, under Assistant Davidson's direction.

All of the records and computations of the Hood's Canal work have been forwarded to the office. Following are the statistics:

Number of angles measured 264
Number of observations made . 1, 643
Number of secondary readings . 107
Number of geographical positions determined .. 52

SEOTION XII.

alaska, including the coast and the aleutian islands. (Sketch No. 19.)
Continuation of the hydrographic reconnaissance of the shore-line and harbors of Southeastern Alaska.-In pursuance of instructions directing as early a resumption in the fiscal year as practicable
of the hydrographic surveys in the waters of Southeastern Alaska, Lieut. Commander H. E. Nichols, U.S. N., Assistant Coast Survey, had brought the steamer Hassler, under his command, to an auchorage at the north end of Mary Island, Revillagigedo Channel, on the 6th of July, 1882. His working parties were immediately organized, astronomical observations were made, a base-line was measured on Mary Island, and the triangulation, sketching-in of shore-line, and the hydrography begun.

On August 3 the anchorage was shifted to Hassler Harbor; at this station also astronomical observations were made, and the work was carried on from here until September 27, when the anchorage was shifted to Ward Cove.

The work of the survey of Revillagigedo Channel from Foggy Point to Point Higgins was completed October 6, and on that day the Hassler left Ward Cove for Port Wrangel, anchoring that night in folstoi Bay, which was sketched and a few soundings taken; the next night an anchorage was made in Steamer Bay, which was also sketched and sounded, and on October 8 the Hassler anchored in Port Wrangel Harbor. A plane-table survey of this harbor was made with numerous soundings. It was Lieutenant-Commander Nichols intention to carry this survey around Point Highfield in order to settle a disputed point regarding its latitude. Bad weather, however, compelled the postponement of this part of the work, and the original sheet has been retained on board till another season.

- Haring renewed his supply of coal at Port Wrangel, Lieutenant-Commander Nichols steamed to Port Wrangel Straits October 21, and anchored there to verify the astronomical observation of 1881; theu passiug through the straits he entered Portage Bay, of which he made a complete survey. Learing Portage Bay November 6, he anchored the same night in Port Houghton, which was sketched; a few soundings also were taken. Returning by way of Wrangel Straits the Hassler came to anchor off Port Wrangel November 10. Some additions were made to the partly completed sursey of that port, but the weather became too stormy for the advantageous prosecution of the work, and on the 20th of November Lieutenant-Commander Nichols started on his return to San Francisco, stopping at Esquimalt for astronomical observations, and at Departure Bay for coal, and arriving at San Francisco December 20.

During the winter the party of Lieutenant-Commander Nichols was engaged in office work, and the steamer was under repairs. Towards the close of March, in pursuance of instructions to resume the survey of the coast-line and inland waters of Southern Alaska, the hydrographic party on board of the Hassler was reorganized, and towards the close of May, 1883, Lieutenaut-Commander Nichols had begun a hydrographic survey the in vicinity of Cape Fox. This survey was continued throughout the month of June, and will be connected with work of the previous season. A report of this and other surveys is necessarily deferred until my next annual report. For the season of 1882 , the statistics are:

The following-named officers, attached to the Hassler, rendered effective service in the work of the party: Ensigns F. W. Coffin, C. F. Pond, S. E. Woodworth, W. V. Bronaugh, and F. M. Bostwick, U. S. N. The observations for time, latitude, and azimuth were made by Mr. Fremont Morse, of the Coast and Geodetic Survey.

Acknowledgment has been made by the Alaska Salmon Packing and Fur Company, through its secretary, Mr. David Wilder, for valuable information furnished to the company by LientenantCommander Nichols, with my sanction. His examination of Naha Bay, where the fisheries of this company are located, and his charts of that vicinity, proofs of which were furnished to Mr. Wilder, enabled the company to decide upon the proper point for building a new wharf at which large steamers might load with safety.

Tidal observations continued, with self-registering tide-gauge, at Saint Paul, Kadiak Island, Alaska.-The aelf-registering tide gauge at the town of Saint Paul, in the island of Kadiak, Alaska, has made a continuous record to date. At the outset of the work, Mr. W. J. Fisher, the observer, was fully instructed by Assistants Davidson and Colonna, aud through the liberality and courtesy of the Alaska Commercial Company he erected the tidal house and gauge on the company's wharf. The curves and tabulated results have been very satisfactory ; the meteorological record is valuable in giving the percentage of cloudy weather, the rainfall, \&c. Sketches of the localities adjacent lave been made by the observer. The work is under the direction of Assistant Davidson.

The earthquake waves of the great Java earthquake were exhibited upon the tidal curve at this station, but not so markedly or distinctly as upou the record of the San Francisco gauge.

Determinations of the force of gravity, and relative magnetic intensity at Point Barrow, Alaska.Reference has already been made uuder the heading of Section X to the co operation of the Coast and Geodetic Survey with the Signal Office in the establishment of a station of the International Polar Commission at Point Barrow, Alaska, and to the observations for the determination of gravity and of relative magnetic intensity at San Francisco, Cal., made by Mr. R. A. Marr, Acting Assistant, previous to his departure for Point Barrow.

Mr. Marr will transmit full reports of the observations made by him at stations en route to Point Barrow and after his arrival there. These will be the subject of mention in my next annual report. He left San Francisco June 16, 1883.

Longitude of Point Barroic, Alaska.-The station of the International Polar Commission at Point Barrow was visited during the summer of 1882 by a relief expedition under the command of Lieutenant Powell, of the Signal Service. Adrantage was taken of this trip to determiue as closely as practicable the longitude of the Point Barrow Station by the transportation of chrouometers. Observations for time, and comparisons of the four chronometers ased, were made June 19, 20, and 21, 1882, by Messrs. F. Westdahl and C. B. Hill, of the Coast and Geodetic Survey, at the Lafayette Park Olservatory in San Francisco. The rates were again determined by observations at Plover Bay and at Point Barrow on both the outward and return voyages by Lieutenant Powell, and finally by observations, October 27 and 28, on the arrival of the expedition at San Francisco.

On account of very unfavorable weather at the Plover Bay and Point Barrow Stations, but partial observations could be obtained; hence the determination of chronometer rates depending on these observations was not very satisfactory. A discussion of the results by Mr. Winslow Upton, of the Signal Service, gives the following longitude for the Point Barrow Station: $10^{\mathrm{h}} 26^{\mathrm{m}}$ 39^{8} west of Greenwich. This value is subject to future revision, and its uncertainty may be greatly diminished by observations of moon culminations at Point Barrow.

SECTIONXIII.

KENTUCKY AND TENNESSEE. (Sifetcies Nos. $1,4,6,20$, and 24.)
Occupation of the longitude station at Louisville, Ky., for the determination of the longitude of additional stations in Kentucky by exchanges of telegraphic signals. Observations for the latitude of these stations.-In compliance with a request from Prof. John R. Procter, State Geologist of Kentucky, arrangements were made in May, 1883, for the determination of a number of points in Kentucky in longitade by exchanges of telegraphic signals with the station established in 1879 at Louisville.

Assistant George W. Dean was charged with the direction of the work at Louisville, and Subassistant F. H. Parsons with that at the several stations to be determined in geographical position. The observations at Louisville were made by Mr. Dean's assistant, Carlisle Terry, jr., Aid in the Survey.

Work was begun at Louisville by observations for personal equation between Messrs. Parsons and Terry. For this purpose sixty-five stars were observed on the nights of May $8,11,12$, and 14. Mr. Parsons then proceeded to Lexington, Ky., and established an astronomical station in the groands of the Kentucky Agricultural and Mechanical College. Longitnde signals were
exchanged with Louisville on the nights of May 24,25 , and 28 , and the latitude was determined by observing tweuty-eight pairs of stars on three nights.

Louisa, Lawrence County, Kentucky, at the fork of the Big Sandy River, was the next station occupied; exchanges of longitude signals with Louisville were had upon four nights between June 8 and 16 , and thirty-four pairs of stars were observed for latitude on five nights.

At the next station, Greensburg, Green County, longitude signals were exchanged with Louisville on the nights of June 22,23 , and 25 , and thirty-two pairs of stars were observed for latitude on four nights.

Preparations were then made by Subassistant Parsons for the occupation of a station at Jellico, Whitley County, Kentucky, in order to determine the geographical position of the 59th stone in the Kentucky and Tennessee boundary line. This work will be referred to in my report for the next fiseal year.

Mr. J. W. G. Atkins, Acting Aid, rendered acceptable service in the party of Subassistant Parsons. The statistics of the work at his stations are as follows:

Number of nights of observations for time.. 19
Number of stars observed for time . 290
Number of nights on which longitude signals were exchanged.................... 10
Number of nights of observations for latitude.. 12
Number of pairs of stars observed for latitude. 94
Reference is made under the heading of Section XV to determinations of the latitude of additional stations in Kentucky by Subassistant Parsons in connection with determinations of their longitudes by exchanges of telegraphic siguals with the longitude party at Saint Louis, Mo., in charge of Assistant Dean. The original records and reductions of the work at Louisville and at the stations dependent upon it have been transmitted to the office.

In his report, Assistant Dean acknowledges his obligations to Professor Procter for information relating to the stations, and to Mr. Geo. W. Trabue, General Buperintendent, and Mr. James Compton, district superintendent, of the Western Union Telegraph, for their friendly co-operation in extending to the astronomical parties every facility in their power.

Reconnaissance for the extension of the triangulation of the State of Kentucky.—In July, 1882, a reconnaissance for the extension of the triangulation of the State of Kentucky was begun by Mr. Carl Schenk, Acting Assistant. His explorations were contined to that part of the State Iying to the south and west of Frankfort, between the Ohio and Salt Rivers. Mr. Schenk has submitted a report of his reconuaissance, with a sketch showing the intervisible stations developed by it, and steps will be taken at the earliest date practicable to resume the triangulation.

Occupation of stations in continuation of the triangulation of the State of Tennessee.-Field-work for the extension of the triangulation of the State of Tennessee was begun by Prof. A. H. Buchanan, Acting Assistant, in July, 1882, by the occupation of station Apple, between the Cumberland River and the Chaney Fork of that river. Previous to the occupation of Apple, the signal at Hull Station, which had been destroyed by lightning, was rebailt.

Observations at station Apple were closed early in Angust, and the party transferred to Chestnut Mountain, about thirteen miles to the eastward of the town of Sparta, in White County. This station had been previonsly occupied; its reoccupation was found necessary in order to get observations upon station Walker for the better development of the scheme of triangulation. To see the signal at Wailker a cutting of three and a half miles had to be made. Early in September observations upon Walker were fiuished and work begun at Mount Lore Station, about eight miles to the westward of Sparta. All of the horizontal and vertical angles needed at Mount Lore having veen olotained by October 1 , the party was transferred to Walker Station October 5 . With the completion of work at this station, October 24, field operations closed for the season.

The occupation of Walker finished work at all of the primary stations in the system of triangulation west of the Crab Orchard range of mountains on the eastern edge of the Cumberland Mountain table-land, and connecting the cities of Nashville and Knoxville.

In June, 1883, field-work was resumed by the erection of signals in continuation of the State
triangulation at two stations, and the work was in progress at the close of the fiscal year. The statistics for the season are:
Horizontal angles measured 25

- Vertical angles measured 25
Number of observations of horizontal angles 858
Number of observations of vertical angles 750

SECTION XIV.

OHIO, INDIANA, ILLINOIS, MICHIGAN, AND WISCONSIN. (Sketches Nos. $1,4,20,21,2$, and 24 .)
Reconnaissance for the primary triangulation near the thirty-ninth parallel extended from West Jirginia into Ohio.-An acconnt has already been given under the heading of Section III of this report of the reconnaissance executed by Assistant A. T. Mosman during the autumn and part of the winter of 1882 for the extension of the primary triangulation along or near the thirty ninth parallel from West Virginia westward into Ohio and Kentucky.

The stations selected in Ohio were Wray, about three miles east of Marion, Marion County; Newcastle, three miles to the northward of Ironton, Lawrence County; Gould, two miles north of Haverhill, Scioto County ; and Scioto, about three miles northwest of Portsmouth, Scioto County. Some of these stations were provisionally located ; their final incorporation in the scheme will be determined during the next seasol.

Occupation of stations in continuation of the triangulation of the State of Ohio.-The triangulation of the State of Ohio was advanced from Athens towards Columbus in July, August, and Septem ber, 1882 , by Prof. R. S. Devol, Acting Assistant. As mentioned in my report of last year, observations at Brooks Station, abont thirteen miles northwest of Athens, had been partly completed when the season closed. Between the middle of July and the middle of August, 1882, Brooks Station was re-occupied by Professor Devol. Upon the completion of observations at that point the party was transferred to McDaniel Station, thirteen miles westward from Athens, and the weather being favorable, the work at this station was finished September 9 .

The barometric observations begun last year for obtaining the comparative heights of the triangulation points were continued during the season; daily readings of two aneroids being taken at Brooks and McDaniel Statious.

The number of angular measurements at these two stations was one thousand and eighty-five. Records of the observations have been forwarded to the office.

Reconnaissance for the extension of the triangulation of the state of Indiana.-Prof. J. L. Camp. bell, Acting Assistant, who had been temporarily relieved from the charge of the triangulation of the State of Indiana, in order to assume the direction of works undertaken for the reclamation of the swamp lands of the State, spent parts of the winter and spring of 1882-'83 in a reconnaissance in Clark and Floyd Counties with a view to the expected resumption of geodesic operations in the State at the earliest date practicable in the fiscal year 1883-84.

The result of his reconuaissance will tend to the enlargement and improvement of the scheme of triangulation.

Determinations of the latitude and longitude of stations in Indiana and Illinois.-A full statement will be made under the heading of Section XV, in the account of the occupation of the station at Saint Louis, Mo., of the exchanges of longitude siguals between that station and the stations established in November and December, 1882, at Springfield, Ill., and Indianapolis, Ind. Also, of the observations made for latitude at these points.

Transcontinental line of geodesic leveling extended from Mitchell, Ind., to Saint Louis, Mo., and thence westucard to Etlah, Mo.-At the beginning of the fiscal year, Assistant Andrew Braid had nearly completed the line of leveling of precision from Vincennes, Ind., to Mitchell, Ind., the terminal point of the season of 1879 . The several sections of this line from the sea-level to Mitchell are:
I. From Sandy Hook, N. J., to Hagerstown, Md.
II. From Hagerstown, Md., to Grafton, W. Va.
III. From Grafton, W. Va., to Athens, Ohio.
IV. From Athens, Ohio, to Mitchell, Ind. Upon reaching the town of Mitchell, primary bench-mark X was cut on the sill of a window of M. N. Moore, as fully described in the record, and the line was started for Saint Louis, following the track of the Ohio and Mississippi Railroad.

Section V, from Mitchell, Ind., to Saint Louis, was run according to the method described in detail by Mr. Braid in Appendix No. 11 to the Report for 1880. It is the same as that employed in the sections previously run, two simultaneous lines being carried in the same direction with the rods at different distances from the instrument, and alternate sections of the line being run in opposite directions to neutralize any tendency to cumulative error dae to direction.

At Caseyville, Saint Clair County, Ill., a branck line or offset was run to counect with the north end of the "American Bottom Base," and a bench-mark was established on the head of the copper bolt in the north base monument.

Upon reaching East Saint Louis, arrangements were made for carrying the line of levels across the Mississippi River on the Saint Louis bridge by three independent methods. For this purpose two instruments and two observers were needed, and Subassistant J. B. Weir was directed to report to Assistant Braid. The methods employed were: 1. Leveling over the top of the bridge; 2. Simultaneous sights across the river by two observers stationed on opposite banks; and, 3. Water-level observations.

The results deduced were based entirely upon the two methods first named, and the agreement of the separate results is quite satisfactory.

At Saint Louis Mr. Braid connected with the bench-mark known as the "Oity Directrix," and established two duplicates of it, in elevation, on the east and west land-piers of the "Great Bridge." These bench-marks are bronze plates an inch thick, and with a surface of eight by twelve inches, set into the granite on the south faces of the east and west piers, respectively, and secured by cement and screw-bolts.

Appendix No. 11, Coast and Geodetic Survey Report for 1882, gives descriptions of these and all other bench-marks established on the line between Sandy Hook and Saint Louis, with a statement of the results of the leveling as made ont by Assistant Charles A. Schott.

Before closing field operations in December, Assistant Braid continued the work westward to Etlah, Franklin County, Missouri, about seventy-five miles from Saint Louis. In March, 1883, Assistant Braid was directed to report for duty to R. D. Cutts, Assistant in charge of the offlce and topography.

Continuation to the eastward of the primary triangulation in Illinois near the thirty-ninth par-allel.-The primary triangulation in the State of Illinois along or near the thirty-ninth parallel, which forms part of the geodetic connection between the Atlantic and Pacific coast work, was advanced to the eastward in 1882 by Assistant George A. Fairfield. Arrangements were made early in the fiscal year for the occupation of Hoile Station, near the town of Greenville, Bond County. Before the arrival of Mr. Fairfield, August 7, the observations at Hoile were made by Subassistant J. B. Weir. Siguals being needed at Hartlin, Bording, and other stations, a sigualbuilding party was organized and kept constantly occupied till about the middle of October.

All of the observations of horizontal directions at Hoile and the other stations occupied were made by night upon the lights shown by the student lamps, the atmosphere by day being too smoky to admit of satisfactory work. Hoile Station was finished September 3, and the party was transferred to Bording Station, near the town of Carlyle, Clinton County. At Bording, observations were made for horizontal directions, and for time, latitude, and azimuth. All work at this station was completed November 14; and Mr. Fairfield immediately moved his camp to Hartlin Station, about six miles north of the town of Salem, Marion County. The occupation of this station finished field-work for the season, which closed December 3. At that date all of the horizontal directions required had been observed.

Extremely cold weather was encountered while at Hartlin. On the night of December 2 Mr. Fairfield observed for six hours while the mercury stood at 12° above zero (Fahr.). On the 6th of Decomber, the day of the Transit of Venus, the sky was entirely overcast, and the weather comparatively mild until about $4 \mathrm{p} . \mathrm{m}$., when the mercury began to fall very rapidly, the wind blowing
a gale from the northwest. On the 7th the thermometer during the whole day did not rise higher than 2° below zero, and at $10 \mathrm{p} . \mathrm{m}$. it marked 15° below. This severe cold delayed packing, so that it was not till the 13th of December that the tents were stored.

Mr. Fairfield reports four quite perceptible shocks of earthquake during the season: one on September 27, two on October 14, and one on November 14. None of them occurred while he was observing, and no damage was done to any of the high signals.

While field operations were in progress, Subassistant Weir connected Hoile Station with a bench-mark of the transcontinental line of geodesic leveling on the Vandalia Railroad track at the depot in Greenville. He connected also in the same manner (by a line of levels) the station at Bording with the bench-mark established on the east pier of the Ohio and Mississippi Railroad bridge across the Kaskaskia River, near the town of Carlyle. Following are the statistics of work accomplished:

$$
\begin{aligned}
& \text { Tripod and seaffold signals erected (one } 45 \text { feet high, two } 75 \text { feet, one } 80 \text { feet).. } 4 \\
& \text { Number of observations for horizontal directions 1,256 } \\
& \text { Number of nights on which observations for latitude were made.............. } 8 \\
& \text { Number of pairs of stars observed for latitude } 100 \\
& \text { Number of nights on which observations for azimuth were made.............. } 5 \\
& \text { Number of observations for azimuth......................... } 136 \\
& \text { Number of stars observed for time. ... } 90
\end{aligned}
$$

Assistant Fairfield makes cordial acknowledgment in his report of the efficient and faithful service rendered by the members of his party, Subassistant J. B. Weir and Messrs. Carlile Terry, jr., and T. P. Borden, Aids. Mr. James S. Harper acted as recorder. During the winter Mr. Fairfield was occupied in completing the records and computations of his season's work. All of these have been transmitted to the office. In the spring of 1883 he received instructions to prepare for the resumption of field-work, and at the date at which this report closes had advanced the triangulation in Illinois eastward by the occupation of both primary and secondary stations. In this duty he was assisted by Isaac Winston, Aid, and James S. Harper, recorder. A statement of the progress of this work will be given in my next annual report.

Occupation of stations in continuation of the triangulation of the State of Wisconsin.-The triangulation of the State of Wisconsin was resumed in July, 1882, bs Prof. John E. Davies, Acting Assistant. One of the principal objects of the season's work was a determination of the geographical positions of the Beloit Astronomical Observatory and of one or more of the monuments marking the boundary line between Wisconsin and Illinois. Finding that the Beloit Observatory was not visible from any one of the surrounding primary stations, owing to its location in the Rock River Valley, it was decided, after conference with Professor Smith, Director of the Observatory, to determine by careful observation the position of the spire of the Congregational Ohurch, which is a conspicuous object from several primary stations, and to refer this by measurement to the observatory. This work was successfully accomplished. Two of the monuments remaining upon the State line were also determined in position.

An examination of the notes of the original survey of this important boundary line, on file in the State land-office at Madison, Wis., was made by Professor Davies. The results of his geodetic work in the vicinity of the boundary line show discrepancies, amonnting in some cases to from one-half to three-quarters of a mile, between the line as actually marked out and the parallel of $42^{\circ} 30^{\prime}$, which is prescribed as the bonndary line by the constitutions of the two States. Additional stations on and near the boundary will have to be occupied to determine its actual position. It has been ascertained that a copy of the original report of survey of the line made by the United States Commissioner to the President of the United States January 29, 1833, is on file in the General Land Office.

The stations occupied by Professor Davies were Janesville, near the town of that name, in Rock County; Plymouth, in Shebosgan County; Wohlford, near Beloit (a subsidiary station); Harmony, about five miles east of Janesville, and Bald Bluff, in Palmyra, Jefferson County, Wis-
S. Ex. $29-9$
consin. From Bald Blaff can be seen two of the triangulation stations established by the Cuited States Lake Survey-Delafield and Waterford. Statistics of the season's work are:

Number of high tripors erected for observing.................................... 4
Number of horizontal angles observed 174
Number of vertical angles observed........ 25
Number of repetitions of horizontal angles 7,182
Number of repetitions of vertical angles....................................... 900
Professor Davies has submitted a scheme for the continuation of the triangulation which will be followed in the execution of the work in the next season.

SECTION XV.
MISSOURI, KANSAS, IOWA, NEbRASKA, MINNESOTA, AND DAKOTA. (Shetches Nos. 1, \%, and 24.)
Occupation of the longitude station in Sicint Louis, Mo., for the determination of the longitudes of points in Arkiansas, Missouri, Nebraska, Kentucky, Indiana, and lllinois by exchanges of telegraphic signals. Determinations of the latitudes of these points.-The scheme of longitude operations adopted for the autumn and part of the winter of 1882 iuvolved the assignment of Assistant George W. Dean to the charge of the station at Saint Louis and to the general direction of the work depending upon it; the assignment of Subassistant C. H. Sinclair to the charge of the corresponding party for primary work, and the detail of Subassistant F. H. Parsons to the charge of a secondary party. Carlisle Terry, jr., Aid, on duty with the party of Assistant Dean, made the observations at the Saint Louis station and exchanged places during the season with Subassistant Sinclair.

Messrs. Dean and Terry completed all preparations needed at the Saint Louis station soon after the middle of September. Kansas City was the first of the primary stations to be determined. Subassistant Sinclair was in readiness there for exchange of signals with Saint Louis by September 15. He had obtained permission of the superintendent of the Board of Education to establish his statiou in the grounds of the Franklin public school. Unfavorable weather delayed observations for a few days. On the nights of September $21,23,26$, and 29 , longitude signals were transmitted to and from Saint Louis; after which, in order to eliminate personal equation, the observers changed places, and longitnde signals were exchanged in their new positions on the nights of October 3, 5, 6, 11, and 13.

For the latitude of the Kansas City station, Subassistant Siuclair made sisty-five observations upon fourteen pairs of stars ou six nights.

Between Saint Louis and the station, first occupied by the secondary party in charge of Subassistant Parsons at London, Ky., signals for longitude were exchanged on the nights of September 23, October 4 and 5 , and between Saint Louis and the next secondary station, Gutbrie, Ky., on the nights of October 13,14 , and 15. Determinations of the latitude of these two stations were made by Mr. Parsons.

Upon the completion of the primary work between Saint Louis and Kansas City, the party at the latter station, under the immediate charge of Mr. Terry, moved to Omaha, Nebr., to exchange signals with Saint Louis. The stone block put down by Assistant Edward Goodfellow to mark the position of the astronomical station established at Omaha in 1868-69 had been destroyed during the grading of the grounds in 1875, but the lower stone of the north meridian mark, fixed in 1869, was undisturbed, and by measurement back from this mark the center of transit was established almost exactly in the same position as that of 1868-69. The exchange of longiture signals with Saint Louis began October 20, and by October 27 five nights had been obtained, whereupon the observers changed places and five more exchanges were had between November 6 and Novem. ber 21.

The party at Saint Louis exchanged longitude signals with Mr. Parsons at Henderson, Ky., on the nights of October 20, 21, and 23, and with the same observer at Little Roek, Ark., on the mights of November 6,7 , and 10 . Determinations of the latitude of these two stations were made by Mr. Parsons. Upou his removal to the next station, Springfield, M., he exchanged signals
upon the nights of November 20 and 21 with Saint Lonis, and on November 23 with the party at Omaha.

It was deemed advisable to include the line Kausas City-Omaha as a check determination, this being the third side of the longitude triangle Saint Lonis-Kansas City-Omaha. Arrangements having been made for this work by Assistant Dean, Mr. Terry proceeded to Kausas City with the astronomical instruments and telegraphic apparatus which had been in use at Saint Louis. The first exchange of signals for longitude betreen Kansas City and Omaha was had ou the 26th of November.

Assistant Dean having been relieved from duty at his own request, Mr. Terry was placed in charge of one of the longitude parties apon his recommendation, and continned the work in co-operation with Mr. Sinclair. Between November 29 and December 2 four more mght exchanges were had. The observers then changed places, and the final exchanges of the season at the primary stations were obtained between December 10 and January 1. Extremely cold weather at Omaha made the work one of much hardship and exposnre.

For the longitude of Indianapolis, the last secondary station occupied by Mr. Parsons, signals were exchanged with Mr. Terry at Kansas City on three nights, closing December 2. Observations for the latitude of the Indianapolis station were made also.

With reforence to the instruments and methods employed at the primary stations, Assistant Dean remarks that the new diagonal cye-pieces, having a magmfying power of about ninety five, which had been applied to transits Nos. 4 and 6 , were more satisfactory to the observers than the eye-pieces of higher power used during the previons season. All of the stars which were to be observed for determining time were selected from the American Ephemeris and from the Berlin Star Catalogne, particular care being taken to arrange each group, consisting of one circumpolar and four time stars, so that the corrections depending upon the north and south zenith distances should be as nearly equal as possible: Whenever the weather permitted, two groups of five stars were observed at each station (one with transit lamp east, the other west) before exchanging longitude signals. These signals were immediately followed by observing two similar groups, which com: pleted the work for the uight.

The arrangements made with the telegraph companies rendered it advisable to limit the time of occupation of the lines to not more than five or ten minutes each night. The clock signals were therefore abandoned, and only arbitrary signals were exchanged.

Assistant Dean has submitted with his report an abstract of results for difference of longitude between the primary stations. He acknowledges the cordial co-operation of Subassistants Sinclair and Parsons and of Mr. Terry in the work of the season. The original and duplicate records and computations have been deposited in the office.

Continuation to the westward of the primary triangulation in Missouri near the thirty-ninth par-allel.-Instructions issued to Assistant F. D. Granger, in July, 1882, direeted him to proceed to Sedalia, Mo., and organize a party to take the field for the continuation of the triangulation west. ward from that vicinity, in accordance with the scheme developed by his recounaissance of the preceding season.

The extreme violence of the storms which prevail in this section of the country made it desirable to avoid building very high tripods at the stations to be occupied, two of those already bnilt having been destrosed. An interior point, "Kendrick," was therefore selected in the quadrilateral Heard-Schnackenberg-High Point Tebo-Knobnoster (see sketch No. 22), and signals of twentyfive feet in height were put up at "Kendrick," and "Knobnoster," At the three stations first named, observing tripods and scaffolds fifty feet in height were erected. At "Oaldwell," one of forty feet was put up, and at "Warrensburg" (both stations in the next quadrilateral westward) a pole was placed upon top of the large chimney of the Normal School bnilding.

Observations were begun by the re-occupation of "Heard" for determinations of the primary directions to Schnackenberg, Kendrick, and Knobnoster. This station being completed September 1, the camp equipage and instruments were then forwarded to "Schnackenberg," At this station five primary directions were determined. Upon its completion, "Kendrick" was occupied, observations being begun September 26, and finished October 4, when the party was transferred to "High Point Tebo." Observations upon five primary and four tertiary points having been completed at
this station October 20, "Knobnoster" was next occupied. By November 15, field operations were closed, observations having been obtained upon five primary, two secondary, and three tertiary points. Mr. J. E. McGrath, Aid, and Mr. J. A. Johnson, Acting Aid, served in the party.

During the winter and part of the spring of 1882-'83 Assistant Grauger was on duty with the party of Assistant Henry Mitchell, at Boston, Mass. In May, 1883, in aceordance with instructions, he re-organized his party in Missouri for continuing the primary triangulation to the westward. Tripod and scaffold signals were erected in advance of the stations to be first occupied, and by the 15 th of June all was in readiness for the occupation of station "Normal." The point selected for this station, with the permission of the regents of the school, was the top of the chimney of the Missouri State Normal School building, at Warrensburg. This chimney being nearly ninety feet high, and capped with heary blocks of sandstone, offered an excellent substitnte for the ordinary observing tripod. To the regents and to the principal of the School, Professor Osborne, Mr. Granger expresses his acknowledgments for kindly interest and courtesies.

Observations at "Normal" were nearly completed at the close of the fiscal year. The progress of this work will be referred to in my next annual report. For the fiscal year the statistics are:

Number of observing tripods erected .. 12
Number of observations for horizontal directions 2, 484
Number of double zenith distances
323
Transcontinental line of geodesic leveling carried westward from Saint Louis towards Kansas City, Mo.-Full reference has already been made, under the leading of Section XIV, to the extension of the transcontinental line of geodesic leveling from Mitchell, Ind., to Saint Louis, Mo., and thence towards Kansas City, as far as Etlal, Franklin County, Missouri. The results of this work, which was executed with great care and according to the most approved methods by Assistant Andrew Braid, have been given in a report by Assistant Charles A. Schott, published as Appendix No. 11 to my report for 1882. His discussion takes up the work at its starting-point-Sandy Hook, N. J.-in December, 1881, and closes with the establishment of the primary bench-mark at Saint Louis, Mo., in October, 1882.

SECTION XVI.

NEVADA, UTAH, COLORADO, ARIZONA, AND NEW MEXICO. (Sketches Nos. 2, 23, and 24.)
Primary triangulation in Nevada and Utah, near the thirty-ninth parallel, extended eastward.-In July, 1882, Assistant William Eimbeck was instructed to visit Mount Nebo and Beaver Mountain, in Utah, and to examine the country from these stations with a view of extending to the eastward the primary triangulation across the Walisatch Monntains. Upon the completion of this duty he was directed to occupy Jeff. Davis Peak, near the thirty-ninth parallel, about fifteen miles to the west of the eastern boundary of Nevada.

In pursuance of this duty Mr. Eimbeck reached Salt Lake City, Utah, early in August, and at once occupied himself with the preparations needed for the reconnaissance from the summits of Mounts Nebo and Beaver, and for the posting of heliotropers apon these elevated summits. Having accomplished this duty, Mr. Eimbeck organized his party for the occupation of Jeff. Davis Peak, a mountain station thirteen thonsand one hundred feet in beight. Arrangements were made for the transportation of camp outfit and instruments to Lehman's Ranch, in Suake Valley, near the northeastern base of the mountain. Mr. Eimbeck arrived at this ranch on the $22 d$ of September, and, having explored the mountain for the best location of a trail to the top, established two camps: the first at an altitude of seven thousand eight hundred feet, distant about seven miles from the summit; the second about two miles below the summit and at an altitude of eleven thousand feet. The trail having been opened and instruments and camp outfit packed to the top of the peak, heliotroping parties were dispatched to Gosi-ute, Pioche, and White Pine Stations. The work at Jeff. Davis Peak involved the determination of horizontal directions from that station to five other limiting points of a great hexagon, the longest side of which was the line Jeff. Davis Peak-Monnt Nebo, one hundred and fifty miles, and the shortest, Jeff. Davis Peak-Gosi-ute, sixty-three miles.

Preparations for observing were delayed by violent storms. On the morning of October 5, after one of these storms, the mercury fell to thirteen degrees above zero, and the suow at camp was a foot deep. The work was pushed, however, at every opportunity of favorable weather, and by November 23 the observations for horizontalydirections and for the magnetic elements had been completed. A few days more sufficed to obtain all needful observations for double zenith distances. During November the lowest temperature recorded was twenty degrees below zero (Fahr.). Field operations were closed aud the party disbanded early in December. While at Lehman's Ranch, successful observations of the Transit of Venus were obtained by Mr. Eimbeck. For details see Appendix No. 16.

Assistant Eimbeck was efficiently aided throughout the season by Acting Assistant R. A. Marr. During the following winter and spring Mr. Eimbeck was engaged in completing the records and results of his field-work. In April, 1883, he was instructed to extend the reconnaissance to the eastward of the line Mount Nebo-Beaver by occupying such points as would determine definitely the most ad vantageous figure for continuing the main triangulation across the Wahsatch Mountains. A change in the position of station "Beaver" for the proper development of this figure appearing unavoidable from previous examinations, he was authorized to establish a new station upon one of the neighboring peaks, so located as not to affect the essential geometrical conditions of the great hexagon, and to refer the observed direction Jeff. Daris-Beaver to the new station by the re-occupation of Jeff. Davis Peak.

Assistant Eimbeck reached Salt Lake City in June, and at the date at which this report closes was actively engaged in the prosecution of the reconnaissance.

Reconnaissance for the extension eastward of the primary triangulation near the thirty-ninth parallel in Colorado.-In August, 1882, Assistant F. W. Perkins was directed to organize a party for the continuation to the eastward of the primary triangulation near the thirty-ninth parallel in Colorado and Kansas. Starting from the line Landsman-First View, which marked the terminal points reached in 1881, Mr. Perkins established movable camps at points on the line of the Kansas Pacific Railroad where water could be obtained, and from these camps sent out exploring parties in different directions, with the lightest possible equipment, officers and men sleeping upon the ground without shelter, other than their blankets and buffalo robes, until the latter part of the season.

About twenty-seven miles to the eastward of the starting-points, the boundary line between Colorado and Kansas was crossed. The scheme of triangulation developed by the reconnaissance involves a series of triangle sides extending on both sides of the Kansas Pacific Railroad from the line Landsman-First View to the line Teeter's Hill-Sheridan, about thirty-five miles to the eastward of the Kansas-Colorado boundary. Beyond this line the railroad passes to the north of the thirtyninth parallel, and the triangulation is developed south of that parallel to the line Walters HouseSchmidt's House, about two and a half degrees of longitude to the eastward of the points of departure. The reconnaissance was closed early in November, fourteen primary and nine secondary points having been selected.

With reference to the character of the country over which his work extended, Mr. Perkins remarks that it is a plain, destitute of timber, slightly undulating, and deeply seamed by the streams, which, though dry during the greater portion of the year, have cut deep and wide bottoms, with walls generally rising at a sharp angle to the level of the plain. Owing to the strong winds which sweep over these plains, it is not practicable to use high observing tripods, and in cases where the instrument has of necessity to be mounted even a few feet above the ground, very heavy timber should be used in constructing the tripods.

Mr. Perkins refers in his report to the difficulty of recovering triangulation points in a country practically uninhabited, and almost entirely destitute of well-marked natural objects, and recommends special care in marking the stations, and their careful reference to the corners of the land sections, thus making it the interest of every settler to preserve them. His suggestions as to the details of marking are of much practical value.

Mr. George F. Bird served as Aid in the party ; Mr. J. J. Fatzinger as recorder, both in a manner highly satisfactory to their chief.

Duty assigned to Assistant Perkins during the succeeding winter is referred to under the heading of Section VIII.

Observations of the Transit of Venus at Cerro Roblero, near Fort Selden, N. Mex.-In July 1882, Assistant George Davidson, then on special duty in Washingtou, was appointed by the Transit of Veuus Commission chief astronomer of a party to be organized for the observation of the Transit at a station in New Mexico. The meteorological conditions were more likely to be favorable in the internor of the continent, and Assistant Davidson's experience in observing in high altitudes suggested a station embracing these conditions. Upon his return to the Pacific coast he traveled by the southern route to study the best location for a station at a great elevatiou where all four contacts could be successfully observed.

After a careful personal examination of the country as far south as the latitude of the highest peaks of the Organ Mountains, Mr. Davidson selected as the most available station the summit. of Cerro Roblero, an isolated mountain mass rising abruptly to a height of nearly seventeen hundred feet from the right bank of the Rio Grande del Norte, and abont four miles from Fort Selden, N. Mex.

Anthority for military assistance at Fort Selden having been olotained from General Mackenzie, every support and advice was rendered by Major Bascom, commanding that post at the time of Mr. Davidson's reconiaissance, and subsequently during the occupation of the station by Lieutenant Ohance, who succeeded Major Bascom in command.

Haring organized his party by the selection of Assistant James S. Lawson and Subassistant John F. Pratt as assistant astronomers, and accompanied by Messrs. D. C. Cbapman and T. S. Tappan as photographers, Assistant Davidson arrived at Fort Selden early in November. Instruments, lumber, camp outfit, aud all supplies for the observers and men having to be packed on. mules to the summit of Cerro Roblero, over a rough mountain trail, extraordinary efforts were required to have all the instruments in position before the day of the Transit. All preparations were completed, however, ou the 5 th of December, and a programme of operations had been matured for the next day.

Special care had been taken to obtain satisfactory adjustments for the horizontal photoheliograph, a method of observation which in the opinion of the Commission offered as much accuracy as that of observing contacts, and presented many more chances of success. The atmospheric conditions had been gradually becoming more favorable during the first few days in December, and on the 6 th the air was clear and all outlines sharply defined. About six minutes before first contact the sun appeared above the crest of the Organ Mountains, and, although at this time the atmosphere was slightly disturbed near those crests, a good observation was obtained, and during the rest of the Transit the steadiness and sharpness of the limbs of the planet and sun were improving.

All four contacts were observed by Assistant Davidson with the five-inch Clark equatorial, No. 862 ; the first and second contacts were observed by Mr. Lawson, and the third aud fourth contacts by Mr. Pratt with the Coast and Geodetic Survey Hassler equatorial, of three inches aperture. The systematic exposure of two hundred and sixteen plates resulted in very superior photo. graphs, every one of which was available for measurement.

Assistant Davidson has submitted an elaborate report of the observation of the Trausit, including a statement of the subsequent operations for determining the latitude and longitude of the station, and accompanied by views, drawings, and photographs. This report has been transmitted to the President of the Transit of Venus Commission; a copy of it will be preserved in the archives of the Survey.

SECTION XVII.

idaho, wyoming, and montana territories. (Sketch No. 2.)
Completion of the work of verification of the northern boundary of Wyoming Territory.-As. already stated in Part I of this report, the work of verification of the northern bonndary of Wyoming Territory for the Interior Department was completed in the field at the close of August, 1882. Assistant B. A. Colonna, to whom this important duty was intrusted, has made to me a full report
accompanying the records and results of his work for transmission to the Department of the Interior. His examinations on the ground involved determinations of time, latitude and azimuth, and of the magnetic declination, relative total intensity, and dip at the northeast corner of Wyoning Territory. Thence he prolonged a tangent west, to and beyond the little Missouri River, testing the aligument of the mile-posts on the boundary and their latitude. Observations were then made for time, latitude, azimuth, and the magnetic elements at the Little Missouri River, near mile-post 329 , thus checking the work and uniting the two stations by means of the tangent prolonged from the northeast corner. Similar determinations were made at the three hundred and sixth mile-post; in the vicinity of the two hundred and eighty-third-two hundred and eighty-fourth mile-post; at the one hundred and eighty-fifth mile post, and at the forty-second mile post. The seventeenth mile-post was examined, and various measures were made to check distances between the several mile-posts.

Mr. Colonna expresses his great obligations to the commander of the escort furnished to him at my request-Capt. F. M. Gibson, of the Seventh Cavalry, United States Army ; also to his second in command, Lieut. B. D. Spillman. These gentlemen afforded valuable assistance in the conduct of the expedition.

Mr. Colomm's report makes special mention of the able and faithful service reudered in his party by Mr. T. P. Borden, Aid. For a part of the time Mr. C. D. Gedney was attached to the party. He has duplicated the records and results of the work, and furnished sketches to accompany the field-notes.

In reference to the service rendered to the Interior Department by this special investigation, the following letter was received from the Secretary of the Interior:
" Department of the Interior,
"Washington, December 7, 1882.
"SIR: Your communication of the 4th instant containing the result, under date of the 29th ultimo, of the investigation of Mr. Rollin J. Reeves' survey of the northern boundary of Wyoming, conducted in the field by your assistant, Mr. Colonna, in accordance with my predecessor's request of August 25, 1881, is received.
"This Department feels under great obligations to your office for the services rendered, because of the thoroughness of the examivation of the line of survey and the fulluess of the field-notes, which leave in the possession of this Department a complete history of the line for future use. I desire, therefore, to pat on record my appreciation of your valuable aid in establishing this important boundary line, and of the ability aud thoroughness with which the investigation was made.
"Very respectfully,

> "H. M. TELLER,
> "Secretary.
"Prof. J. E. Hilgard,
"Superintendent of United States Coast and Geodetic Survey.
A communication of similar import was received from the Commissioner of the General Land Office.

SPECIAL OPERATIONS.

Observations of the Transit of Venus at Auckland, New Zealand. Also, determinations of the Force of Gravity at the Transit of Venus Station and at stations in New South Wales, British India, and Japan.-In Part I of this report, reference was made to the town of Auckland. New Zealand, as one of the stations selected by the Transit of Venus Commission for the observation of the Transit. Assistant Edwin Smith having been appointed to take charge of the expedition to New Zealand, reported for that duty August 7. Prof. H. S. Prichett, of the Washington University, Saint Louis, Mo., was attached to the party as assistant astronomer, and Messrs. Augustus Story and Gustave Thielkahl as photographers.

Leaving San Francisco September 19, the expedition arrived at Auckland October 15. With the permission of the authorities of the city of Auckland, Mr. Smith established his station on a reservation known as "The Domain," in the eastern portion of the city. Its geographical position
was determined by the assistant surveyor general, Mr. Percy Smith, who connected it with the New Zealand Trigonometrical Survey. His results were, approximately : latitude $36^{\circ} 51^{\prime} 55^{\prime \prime}$ south, longitude $174^{\circ} 46^{\prime} 47^{\prime \prime}$ east of Greenwich. The height of the ground at the observing pier was found to be two hundred and sixty-two feet above high water.

While preparations for the Transit were in active progress, the latitude was obtained directly by observations upou eleven pairs of stars, and the longitude by exchanges of telegraphic signals with an English party of observation at Burnham, this party having exchanged signals with the observatory at Sydney, New South Wales.

On the day of the Transit the weather was clear at intervals only, and success but partial. The son rose in clouds; these partly dispersed as Venus advanced on the sun's disk, and seventyfour negatives were secured with the horizontal photoheliograph; but at no time during the Transit was the sun free from clouds, and all of the photographs show their presence. A few moments before third contact the clouds became quite thin, and both third and fourth contacts were observed by Messrs. Smith and Prichett with their equatorial telescopes.

A full report of the observations has been prepared for transmission to the president of the Transit of Venus Commission. Mr. Smith has also prepared a report of the determinations of the force of gravity at Auckland with the three Kater invariable pendulums. These pendulums were swung continuously from Novenber 27 to December 4, inclusive, in a small brick building known as the "Block House," near the Transit of Venus Station.

Leaving Auckland towards the close of December, 1882, Messrs. Smith and Prichett arrived at Sydney, New South Wales, January 2, 1883. Every facility for pendulum work was afforded to the party by the kindness of H. C. Russell, esq., Director of the Sydney Observatory. The pendulums were swung in the cellar of the observatory under the trausit room from January 5 to January 11, inclusive. The conditions of observatiou were exceedingly favorable, the room being dry and the changes of temperature during the experiments not exceeding three degrees Fahrenheit.

From Sydney Mr. Smith proceeded, by way of Brisbane, Australia, and Batavia, Java, to Singapore, Straits Settlements, British India. Permission was granted by the governor of the Straits Settlements to swing the pendulums at the European Hospital. The station was established in the laboratory of the hospital, where the pendulams were swang continuously from March 2 to March 7 inclusive. Acknowledgment is made by Mr. Smith of the hospitable attentions received from Dr. Simon, in charge of the hospital, and for liberal assistance rendered by Captain McCallum, R. E., in charge of the office of the Colonial Engineers. At the request of this officer a meridian line was established for the use of the Colonial Survey.

Proceeding thence to Hong-Kong, China, en route to Yokohama and Tokio, Japan, President Kato, of the University of Tokio, offered every facility for the observations, and caused a stone pier to be erected for the apparatus in a new fire-proof building but a short distance from the physical laboratory. A continuous series of observations was secured from April 24 to May 1 inclusive. Professor Paul, of the Tokio University, took great interest in the success of the work, and rendered personal assistance and hospitality to the observers.

Leaving Tokio May 15 the party arrived at San Francisco May 31, and, as already mentioned under the heading of Section X, made a series of gravity determinations at the station selected there by Assistant Davidson. To complete the series it is intended to swing these pendulums at the Smithsoniau Institution, where they had previously been swang by Lientenant-Colonel Herschel, Royal Engineers.

Observations in connection with those made at Caroline 1sland, South Pacific Ocean, of the Total Eclipse of the Sun, May 6, 1883. Also determinations of the Force of Gravity at the Eclipse station, and at stations in the Sandwich Islands, and in San Francisco.-The special expedition organized for the observation of the Total Solar Eclipse at Caroline Island in the South Pacific, mention of which was made in Part I of this report, was placed in charge of Prof. Edward S. Holden, Director of the Washbarn Observatory. Mr. E. D. Preston, of the Coast and Geodetic Survey, was ordered to report to Professor Holden as a member of the expedition. The United States ship Hartford conveyed the party to Caroline Island, arriving there on the 20th of April.

Preparations for the work were at once begun, each observer having had a special duty allotted to him by Professor Holdeu. To Mr. Preston were assigned the determinations of time for the
eclipse, observations for latitude by the method of equal zenith distances, and the observation of the four contacts. As given approximately by the field computations, the geographical position of the station was found to be: Latitude $10^{\circ} 00^{\prime} 01^{\prime \prime}$ south; longitude $10^{\mathrm{h}} 00^{\mathrm{min}} 56^{8}$ west of Green. wich. The longitude is from the observations of Mr. Winslow Upton, of the Signal Service, who was a member of the party.

On the day of the eclipse the weather was clear during totality, except a slight haze for a minute or two at begiuning. All four contacts were observed by Mr. Preston, using a small telescope of about two and a half inches aperture and three feet in focal length, with a magnifying power of about 115.

Referring to the appearance of the first ray of sunlight after the darkness of the long totality, Mr. Preston remarks that it was like a flash of the electric light as contrasted with the iutense color of the chromosphere on the western edge of the moon for the few seconds preceding third contact.

In addition to the observations pertaining to the eclipse, Mr. Preston was charged, on behalf of the Coast and Geodetic Surver, with determinations of gravity at Caroline Island, and at stations in the Sandwich Islands on his homeward voyage. For this purpose, pendulum No. 3 was swung on eight nights at the Eclipse station. On the 9th of May, Mr. Preston left the Caroline Istands for Honolulu on board the Hartford, and upon his arrival received instructions to determine the force of gravity at the station on the island of Maui, oceupied by De Freycinet in 1 s19. At this station (Lahaina) the pendulum was swung on ten nights, and the latitude determined by one hundred and fourteen observations on thirty-five pairs of stars. A second station was occupied at Honolulu (Oahn) where the pendulum was swung during three consecutive days and nights, and a limited number of observations for latitude were obtained, but little time being available before the departure of the steamer for San Francisco.

Upon reaching San Francisco July 9, comparative determinations of gravity were begun at the station established there by Assistant Davidson. Mr. C. B. Hill, of Mr. Davidson's party, was assigned to aid Mr. Preston in his observations. The work was prosecuted between July 15 and 27, with many interruptions from unfavorable weather.

Mr Preston acknowledges the efficient assistance of Ensign S. J. Brown, U.S. N., in the work at the Caroline and Sandwich Islands, and expresses his obligations for many kind attentions receired from Mr. H. Turton. of Lahaina; from W. D. Alexander, esq., Superintendent of the Hawaian Government survey, and from the Governor of Uahu.

An abstract of the report of Mr. Preston appears as Appendix No. 17.
Tidal observations at Honolulu, Sandwich Islands.-In order to obtain a record of the Sandwich Island tides for comparison with the tides of the Pacific coast, a self registering tide gange, loned by the Coast Survey to the Superintendent of the Hawaian Government surrey, has been kept in operation under the direction of that officer since June, 1877. Records from this tide-gange are sent from time to time to this office, the latest received bringing up the series to near the close of July, 1882. In connection with the tidal records from the self-registering ganges on San Francisco Bay and at Kadiak Island, Alaska, this series will have a special value.

COAST AND GEODETIC SURVEY OFFICE.

It will appear from the report of Assistant Richard D. Cutts, in charge of the Office and Topography (Appendix No. 4), that all of the material received from the field has been put rapidly into shape for record and pablication. Consideration has been given and experiments made with a view to the introduction of improvements in methods and processes. The demands upon the office for the charts and other publications of the Survey are increasing year by year, as also are applications for special information, transcripts from original surveys, \&c, from persons not connected with the work. A tabular statement of information furnished is given in Appendix No. 3.

To the report of Assistant Cutts are appended the reports of the chiefs of the several office divisions. Accompanying these are tables giving the titles of the charts and engraved plates begun, completed, and continued during the year; also a list of the publications of the Survey received from the Government Printer and an account of their distribution.
S. Ex. 29-10

Assistant Cutts refers to the collections of geographical data in the office which are now available for the construction of a map of the United States, and suggests that, under the authority of Congress, steps be taken toward the construction of such a map, based upon a scientific framework and executed upon an appropriate scale. This suggestion meets with my cordial approval.

The progress made in the prepatation for publication of the third volume of the Atlantic Coast Pilot (Division C), including the coast from New York to the Obesapeake, has been already referred to in Part II of this report, under the heading of Section II.

Numerous additions have been made to our knowledge of Southeastern Alaska since 1879; it has been necessary therefore to revise portions of the text of the mannscript of the Coast Pilot of Alaska and to make additions or corrections to the charts in order to bring them up to date. Assistant W. H. Dall has been engaged in this work during the past fiscal year, his knowledge of that coast acquired by his own long service there making him peculiarly fitted for it. The manuscript is now in the hands of the printer. It relates to or describes about 8,800 miles of shore-line. The collection of material has compelled frequent reference to works in the Russian, Spanish, German, French, and other languages, in order that no information of value might be overlooked.

Cpon the request of four committees of Congress, special information on the Alaskan region was furnished to them, under my direction, by Mr. Dall; responses were also made to a large number of requests relating to this region by private individuals. During the period from Angust 18, 1882, to April 30, 1883, Mr. Dall was aided by Mr. Isaac Winston.

Mr. W. B. Morgan has continued in the position of disbursing agent of the Survey. Mr. Morgan has been assisted by Messrs. John W. Parsons and W. A. Herbert as accountants; the latter during the fiscal year, the former since March last.

In the preparation of this report I have had the aid of Assistant Edward Goodfellow. The clerical duties in my office have been performed by Messrs. W. B. Chilton and C. D. Gedney.

Respectfully submitted.

J. E. HILGARD,
Superintendent.

Hon. U. J. Folger, Secretary of the Treasury.

PART III.

APPENDICES.

Appendix No. 1.
Distribution of surveying parties upon the Atlantic, Gulf of Mexico, and Pacific coasts, and the interior of the United States during the fiscal year 1882-'83.

\begin{tabular}{|c|c|c|c|c|}
\hline Sections. \& Parties. \& Operations. \& Persons conducting operations. \& Localities of work. \\
\hline \multirow[t]{5}{*}{Maine, New Hampshire, Vermont, Massachusetts, aud Rhorle Island, including conat and seaports, bays and rivers.} \& No. 1 \& \begin{tabular}{l}
Triangulation and topography. \\
Topography \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
C. H. Bovd, assistant ; E.L. Taney, aid. \\
Engene Ellicott, assistant
\end{tabular} \& \begin{tabular}{l}
Triangulation and topography of Machias Bay and Rirer, Me. (See also Section VIII.) \\
Topography of islands in Moos a-bec Reach and shore line of Chandler's Bay, Me." (See also Sections III and VI.)
\end{tabular} \\
\hline \& 3
4

5 \& Topography
Mydrography \ldots

Tidal obserrations \& \begin{tabular}{l}
A. Wr. Longfellow, assistant Lieut. H. G. O. Colby, U.S. N., ns. sistant; Eusigns David Daniels, O. G. Dorge, and A. Jeffries, U. S. N.

J. G. Spaulding. \qquad

 \&

Topography of the shores of Plessant River, Me. Hydrographic surveys in Narraguagus and Pigeon Hill Bays:' soundings off Gonldsbor. ough Bay and in Dyer's Bay and Rockland Harbor, Me.

Series of tidal obserrations with self-registering tide-gauge continued, and meteorological observations recorded at Pulpit Cove, North Haven Island, Peuobscot Bar.
\end{tabular}

\hline \& 6 \& Triangulation \& Richard D. Cutts, arsistant ; John: A. McNicol. \& Psimary triangulation for the connection of the station upon Mount Washington, N. H., with the triangulation of Maine, and of the Hudson River and Lake Champlain.

\hline \& 8 \& Geodetic.......... \& | Prof. E. T. Quimby, acting assistant. |
| :--- |
| Prof... V."(x.' Barbour, acting assistant. | \& | Occupation of stations for determining points in the triangulation of New Hampshire. |
| :--- |
| Stations occupiell in continuation of the triangulation of the State of Vermont. |

\hline \& 9
10 \& Deep-sea soand-
ings.

Tidal observations \& \begin{tabular}{l}
Lieut. Commander W. H. Brown-

: son, U. S. N., assistant.

 \&

Line of deep-sea souudings from off Nantucket across the Gult Stream. (Seo also Sections II and VI.)

Observations continued at Providence, R. I. with a self-registering tide-gauge loaned to the city engiveer.
\end{tabular}

\hline \multirow[t]{3}{*}{| Section II. |
| :--- |
| Connecticut, New York, New Jerbey, Pennaylvania and Delaware, including coast, buys, and rivers. |} \& \& \& \&

\hline \& \multirow[t]{2}{*}{No. 1} \& Deep-sea and offshore soundings. \& CommanderJ.R. Bartlett. U.S.N., - assistant; Lient.Commander W. H. Brownzon, U.S. N., assistant; Lient. G. W. Meatz, U. S. N.; Ensign H.S. Knapp, U.S. N. \& Deep-sea soundinge from vicinity of Montank Point to the Iermuda Islands, and lines of soundings normal to coast off sonth shore of Long Islaid. (See also Sections I and VI.)

\hline \& \& Hydrography \& Lient.Commander W. H. Browason, U. S. N., aesistant; Lieut. H. B. Mansfield, U. S. N., assistant; Master C. R. McWinslow, U. S. N.; Ensign W. B. Caperton, U. S. N.; Midehipmen W. C. Canfleld, R. S. Sloan, and Wm. Truxtan, U. S. N. \& | Hydragraphy of eastern entrance to Long Island |
| :--- |
| Sonnd. (See also Sections I and VI.) |

\hline
\end{tabular}

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

Sections.	Parties.	Operations.	Persons conducting operations.	Localities of work.
Suction X-Continued.	No. 3	Hydrography	Lieat. W. T. Swinburne, U. S. N., masistant; Lients. J. B. Milton and W. P. EHiott, U. S. N.; Master F. H. Lefavor, U.S.N.; Midshipman P. B. Bibb, U. S. N.	Hydrographic survey from Monterey southward.
		Telegraphic longitudes and observation of the Transit of Venus	George Davidson, assistant; J. J. Gilbert, assistant; E. F. Dickins, subassistant; C. B. Hill.	Observations at San Francisco, Cal., for the determination of the longitude of the Transit of Venus station, near Fort Selden, N. Mex., by exchange of telegraphic signals. Observations of the Transitat San Francisco. (See aleo Section XVI.)
	5	Hydrography.....	Louis A. Sengteller, agsistant; Ferdinand Westdahl.	Completion of the aupplementary survey of the San Francisco Peninsula. (See also Section XI.)
	6	Force of gravity and magnetic observations. Force of gravity.-	R. A. Marr, acting assistant; A. D. Schindler, acting aid.	Determinations of the force of gravity and of relative magnetic intensity at San Francisco, Cal., in connection with similar observations at Point Barrow, Alaska.
	7		Edwin Smith, assistant; Prof. H. S. Prichett.	Determinations of the force of gravity at San Francisco in connection with similar determinations at the Transit of Venus etation in Now Zealand, wad at stations in Australia and eastern Asia.
	8	Tidalobservations	E. Gray	Tidal observations, with self-registering tidogange, continued at Saucelito, near San Francieco Bay entrance.
	9	Triangulation	George Davidson, assistant; E. F. Dickins, assistant; J. F. Pratt, subassistant; C.B. Hill.	Occapation of stations of the primary triangalation north of San Francisco Bay. (See also Section XVI.)
	10	Hydrography.....	Lient. W. T. Swinburne, U. S. N., assistant; Lieuts. J. B. Milton and W. R. Eliott, U. S. N.; Master F. H. Lefevor, U.S. N.	Continuation of hydrographic survey in the vicinity of Point Arena, Cal.
	11	Hydrography.	Lient. E. D. Taussig, U.S. N., assistant.	Hydrographic survey in the vicinity of Mendocino City, Cal.
	12	Triangulation	A. F. Rodgers, assistant ; Stehman Forney, assistant.	Continuation of the primary triangulation of the north coast of California.
Oregon and Wazhington Territory, including const, in terior bays, ports, and rivers. Srction XII.	No. 1	Triangulation and and topography. Triangulation and topography.	L. A. Sengteller, assistant Cleveland Rockwell, aesistant \qquad	Sarvey of the Umpquah River, Oreg. (Noe aliso Section \mathbf{X}.)
	2			Continuation of the Survey of Colambia River and tributaries.
	3		Lieut. T. Dix Bolles, U. S. N., asaistant; Ensign J. N. Jordan, U. S. N. J. J. Gilbert aesistant.	Hydrographic surveys of Gray'e Harbor, and in the Straite of Fuce and Admiralty Inlpt, Wash. Tor. Triangulation of Hood's Camal, Wagh. Ter. (See also Section X.)
	4	Triangulation		
Alaska, including the coast and the Alentian Islands.	No. 1	Hydrographic reconnaissance and magnetic observations. Tidal observations	Lieut. H. E. Nichols, U. S. N., assistant; Ensigns F. W. Coffn, C. F. Pond, S. E. Wood worth, and W. V. Bronangh, U. S. N.; Fremont Morse, sid. W.J. Fisher \qquad	Continaation of the hydrographic reconnaiseance of ehore line and harbors of ecathoastern Alagke.
				Tidal observations continued with eelf-registering tide-gauge at Saint Paul, Kadiak Xoland, Alaske.
		Force of gravity and magnetic observations. Longitade \qquad	R. A. Marr, meting amaiatant; A. D. Bchindler, acting aid.	Determinations of the force of gravity, and relatfve magnetir intemsity at Polat Barrow, Almike. (See alioo Section X.) Longitude of Point Barrow, Aleske.
			Winslow Upton, Signal Service; F. Weatdahl aad C. B. Hill Coast and Geodetio Survey.	

APPENDIX No. 1-Continued.

Sections.	Parties.	Operations.	Persons conducting operations.	Localities of work.
Sxction XIII.				
Kentucky and Tennessee. .	No.	Telegraphic longi. tndes.	George W. Dean, assistant; Francis H. Parsons, subassistant; Carlisle Terry, jr., aid ; J. W. G. Atkins, acting aid.	Occupation of the lougitude station at Lonisville, Ky., for the determination of the longitudes of additional stations in Kentucky by exchanges of telegraphic signals. Determinations of the latitudes of these stations. (See also Sections XIV and XV.)
		Geodetic........... Geodetic \qquad	Carl Schenck, acting assistant....	Reconnaisaance for the extension of the triangulation of the State of Kentucky.
			Prof. A. H. Buchanan, acting assistant.	Occupation of stations in continuation of the triangulation of the State of Tennessee.
Section XIV.				
Ohio, Indiana, Illnois, Michigan, and Wiscan. sin. Section XV.	No. 1	Reconnaissance...	A. T. Mosman, assistant; W. B. Fainfield, extra observer.	Reconnaissance for the primary triangulation near the thirty-ninth parallel extended from West Virginia into Ohio and Kentucky. (See also Sections II and III.)
	2	Geodetic..........	Prof. R. S. Devol, acting assistant.	Occupation of stations in continuation of the triangulation of the State of Ohio.
	3	Geodetic..........	Prof. J. L. Campbell, acting as sistant.	Reconnaissance for the extension of the triangulation of the State of Indiana.
	4	Geographical posi. tions.	Francis H. Parsons, sobsssistant.	Determinations of the latitade and longitade of stations in Indiana. (See also Sections III, VIII, and XIII.)
	5	Geodesic leveling.	Andrew Braid, assistant..........	Transcontinental line of geodesic leveling ex. tended from Mitchell, Ind., to Saint Louis, Mo. (See also Section XV.)
	6	Triangulation	G. A. Fairfield, assistant ; J. B. Weir, subassistant; Carlisle Terry, jr., aid (part of season); T. P. Borden, aid (part of season).	Continuation to the eastward of the primary triangalation in Illinois, near the thirty-ninth parallel.
	7	Geodetic..........	Prof. J. E. Davies, acting assist. ant.	Occupation of stations in continuation of the triangulation of the State of Wisconsin.
Missouri, Kansas, Iowa, Nebraska, Minnesota, and Dakota.	No. 1	Telegraphiclongitudes, and determinations of latitudes.	George W. Dean, assistant; C. H. Sinclair, subassistant; F. H. Parsons, subassistant; Carlisle Terry. jr., aid.	Occupation of the longitude station in Saint Louis, Mo., for the determination of the lorgitudes of points in Arkansas, Missouri, Ne. braska, Kentucky, Indiana, and Illinois, by exchanges of telegraphic signals. Determinations of the latitudes of these points. (See alao Sections XIII and XIV.)
		Triangulation.....	F. D. Granger, assistant; J. E. MoGrath, aid; J. A. Johnson.	Continuation to the westward of the primary triangulation in Missouri near the thirty-ninth parallel.
Suction XVI.		Geodesic leveling.	Andrew Braid, assistant; J. B. Weir, subsasistant.	Transcontinental line of gendesic leveling carried westward from Saint Louis towards Kansas City, Mo. (See also Section XIV.)
Nevade, Otak, Colorado, Arizona, and New Mexico.	2	Recomaraissance...	William Eimbeck, assistant; R. A. Marr, aid. F. W. Perkins, asmistant; G. F. Bird, aid.	Primary triangulation in Nevade naar the thirtyninth parallel extended esatwurd. Reconnalssance for the extension eastward of the primary triangulation near the thirtyninth parallel in Colorado. (See also Section VIII.)
	8	Observations of the Tranit of Venus.	George Davidson, asaistant; James S. Lawson, masistant; J. F. Pratt, subasaistant; D. C. Chapman and T. S. Tappan, photographers.	Obearvation of the Tranalt of Venus at Cerro Roblero, near Fort Selden, N. Mox. (See almo Seotion X.)
Suction XVIL				
Idaho, Wyoming, and Monthas Territory.	Kro. 1	Verification of boundary.	B. A. Colonas, aedistant; T. P. Borden, add; C. D. Gedney.	Completion of the work of vexiflation of the northorn boundary of Wyoming Territory. (See almo Section VI.)

APPENDIX No. 1-Continued.

Sections.	Parties.	Operations.	Persons conducting operations.	Locslities of work.
Sprclal Operations.				
Auckland, Now Zaaland, and statious in Eastern Asia.		Observations of the Transit of Venus and determinations of the force of gravity.	Frdwin Smith, acsiatant; Prof. H. S. Prichett.	Observations of the Transit of Veaus at Auckland, New Zealand. Also determinations of the force of gravity at the Transit of Venus station, and at stations in New South Wales, British India, and Japan.
Caroline Island, South Pacific Ocean.		Observations of the Total Solar Eclipse and determinations of the force of gravity.	E D. Preston, aid	Observations in connection with those made at Caroline Island, Sonth Pacific Ocean, of the Tutal Eclipse of the Sun, May 6, 1883. Aleo determinations of the force of gravity at the Eclipse station, and at stations in the Bandwich Talands, and in San Franiciaco, Cal.
Honolala, Sandwich Ial. ands.		Tidal obsorva. tions.		Tidal record from the self-regintering tide pauge established at Honolulu, Sand wich Islanda.

Appendix No. 2 .

Statistics of field and office work of the United States Coast and Geodetic Survey for the year ending June 30, 1883.

APPENDIX No. 2-Continued.

	Total to June 30. 1882.	Total during year.	Total to June 30, 1883.
Hydroaraphy-Continued.			
Current parties, n imber of		1	
Specimens of botiom, number of.	11,784	308	12, 092
Triangulation, originals, number of volumes.	8,738	272	4,010
Astronomical observations, originals, number of volumes	1, 589	62	1, 651
Magnetic observations, originals, number of volumes	525	11	536
Duplicates of above, number of volumes	3, 879	321	4,200
Compatations, number of volumes	3,420	159	3, 579
Hydrographic soundings and angles, originals, number of volumes	8,450	257	8,707
Hydrographic soundings and angles, duplicates, number of volumes	1,508	191	1,099
Tidal and corrent observations, originals, number of volumes.	3,377	85	3, 462
Tidal and current observations, daplicates, number of volumes	2, 186	76	2, 262
Sheets from self-registering tideganges, number of	2, 853	71	2,924
Tidal reductions, number of volumes.	1,850	30	1,880
Thememand charts.			
Topographical mape, originals.	1,625	17	1,642
Hydrographic charts, originals	1,671	60	1,721
Reductions from original sheets	913	14	927
Total number of manuscript maps and charts	2,674	14	2,688
Number of sketches made in field and office	3, 164	42	3, 206
engraving and printing.			
Engraved plates of finished charts, number of	257	10	267
Engraved plates of preliminary charts, sketches, and diagrams for the Coast and Geodetic Survey reports, number of	632	7	639
Electrotype plates made.	1,624	39	1,663
Finished charts published	364	27	391
Engraved plates of Coast Pilot charts	61	1	62
Engraved plates of Coast Pilot views.	78		78
Printed sheeta of maps and charts distributed.	501, 183	32,012	533, 205
Printed sheets of maps and charts deposited with asle agents	195, 450	16,612	212, 062

Appendix No. 3.

Information furnished from the office of the Ooast and Geodetic Survey in reply to special calls during the year ending June 30, 1883.

APPENDIX No. 3-Continued.

APPENDIX No. 3-Continued.

Date.		Name.	Data furnimhed.
1882.			
	27	Mississippi River Commission	Geographical positions of the Mississippi River between Natchez and Donaldsonville.
	28	Mississippi River Commission	Elevation of several bench-marks.
	29	V. Calvin, superintendent Adirondack Survey, N. Y	Description of Coast and Geodetic Survey gtations, vicinity of Lake Champlain.
	31	Col. Johu Newton, United States Corps of Engineers	Hydrographic survey of Stony Point Bay and Peekstill Harbor, Hudson River, N. Y.
Nor.	7	Lieutenant Smith S. Leach, secretary Mississippi River Commission, Saint Louis.	Two printed reports on tidal discussions.
	11	Mississippi River Commission	Description of trigonometrical stations on the Mississippi River, between Vicksburg and Natchez.
	13	Commander Henry H. Gorringe, United States Navy	Topographical and bydrographic survey of Arthor Kill, vicinity of Rossville, Staten Islaud, N. Y.
	14	Mr. William H. Doolittle, Washington	Area, length, and width of Salter's Islaud, near entrance to Kennebec River, Me.
	14	United States Census Bureau	Geographical positions of a number of towus.
	16	Prof. N. S. Shaler, Cambridge, Mass	Topographical survey of part of the island of Rhode Island, 1870.
	17	C. P. E. Burgwyn, engineer, James River Improvement..-	Results of Coast Survey tidal observations at Rockett's wharf in 1852.
	18	H. Vance, assistant engineer to Major Suter, United States Engineers.	Geographical position of Tavern Rock and Cedar, Mo.
	20	Mississippi River Commission	Description of trigonometrical stations on the Mississippi River be tween Natchez and Fort Adams.
	21	P. H. Baermann, assistant superintendent Water Commis sioner's office, Troy, N. Y.	Information relating to self-registering tide-gauge.
	22	Prof. R. W. Wilson, astronomer Yale College Observatory, New Haven, Conn.	Geographical position of observatory, azimuths and distances.
	22	H. E. Magruder, Keswick Depot, Va	Magnetic declination at Charlottesville, Va.
	22	Mr. Calvin W. Pool, Rockport, Mass	Hydrography and shore line of Cape Ann, Mass., from Andrews on to Cape Holge.
	23	C. H. Bunce, city engineer, Hartford, Conn	Geographical positions in Hartferd for use of the German Transit of Venus party.
	24	F. L. Pope, solicitor of patents, 32 Park Place, New Tork.	Geographical position of New York City Hall.
	27	City of Portland, Me.	Topographical survey of the Hog Islands, Casco Bay, Me.
	28	Advisory Board for Norfolk Harbor	Hydrographic sarveys from above the Navy-Yard to Norfolk and Western Railroad bridge.
Dec.	1	J. P. Bogart, engineer, New Haven, Conn	Geographical position of Branford Congregational Church.
	1	C. H. Rockwell, Tarrytown, N. Y	Geographical position of Tarrytown school-house.
	1	Mr. George C. Burgess, assessor, Portland, Me	Topographical survey of Peske's Island, Portland Harbor, Me.
	2	H. Gansett, chief geographer United States Geological Survey.	Distance triangulation stations Benn-Poore, N. C.
	2	J. Fioklin, University of the State of Missouri, Columbia, Mo.	Proper motion of Stars 1683 and 1855 of Coast Survey catalogue.
	5	Lientenant Snith S. Leach, secretary Mississippi River Commiseion.	Six rolls tide-gauge paper sent to W. G. Price, Ocean Springs. Miss.
	6	E. S. Martin, Wilmington, N. C	Position of astronomical station at Wilmington, and description of same.
	11	J. T. Sprague, for Major Hains, Potomac Flats Survey...	Information relating to self-registering tide-gauges.
	22	W. A. Allon, engineer of the Maine Central Railroad, Portiand.	Bench-marks on the Coast of Maine.
	28	J. S. Leach, Seotland post-office, Mass	Formula for seculat variation of the magnetic declination in Plymouth Connty, Mass.
	28	Mr. S. K. Abbott, 93 Federal street, Boston, Mass	Area, in acres, of Petit Manan Point and Irafton's Island, Me.
	2	Xenos Clark, Boston, Mass	Information relating to the new tide-predieting machine.
	8	Dunham \& Payne, Cleveland, Ohio	List of heights above sea-level in Penusylvania.
	-	Mr. T. B. Brooks, Newburgh, N. Y	Shore-line survey of the shores of the Hadson River, Stony Point to West Point, from survegs between 1854 and 1882.
	10	V. Colvin, experintendent Adirondmok Survey.	Geographical positions to the eant and sonth of the Adirondmoks.
	10	H. S. Daval, State Engineer, Jucksonville, Fla	Notes on magnetic deolingtion at month of the Saint John's River and geographical pesitions of light-houses.
	10	W. Kvans, Moorentown, N. J.	Geographical position of Moorentown oharch.
		- 8.Ex.20-12	

APPENDIX No. 3-Continued.

		Name.	Data furnished.
$1888 .$			
Jan.		War Department, Adjutant-General's Offce	Tracing of Narrows, New York Harbor, giving distances between Fort Tompkins light-house, Fort Hamilton flag-staff, and upper Quarautine.
	16	Mr. J. Reed, Chincoteague, Accomac Countr, Va	Hydrography of Chincoteague Bay, vicinity of Chincoteague Island, 1880.
	17	Geo. E. Waring, expert and special agent Tenth Census.	Autographic map of Newport and vicinity, 1872, scale 1-10000.
	18	C. C. Perkins, office city surreyor, Boston, Mass	Description of station Prospect Hill.
	26	F. E. Idley, Consolidated Electric Light Company	Horizontal maguetic intensity, New York and Brooklyn.
	29	W. H. Richavds, Now London Water Works	Information on magnetic declination at New London.
	30	Cornell Univer	Statement of leugth of 4-meter base bars A and B
	30	F. B. Brooks, Newburgh,	Magnetic declination ou the Hudson River, middle and lower part.
Feb.	1	J.P. Bogart, engineer Shell FishCommission, New Haven, Conn.	Geographical position of Eaton Neck light-house.
	3	Prof. W. P. Trowbridge, School of Mines, Columbia College, N. Y.	Compiled topographical map, bordering Hell Gate, Harlem and East Rivers.
	5	R. E. Peary, civil engineer United States Nary, Key West, Fla.	Hydrographic survey part of Key West Harbor, 1882.
	6	T. B. Brooks, Newhurgh, N. Y	Geographical positions, vicinity of Bear Mountain, Crow's Nest, and Newburgh, with descriptions of trigonometrical stations.
	10	Prof. C. F. Emerson, Dartmouth Coll	Magnetic horizontal intensity at Dartmoath College Observatory.
	10	Hon. D. Ermentrout	Geographical positions in Berks County, Pa.
	10	W. C. Kerr, State Geologi	Position of a number of prominent mountain peaks in North Carolina.
	10	C.C. Royce, Bureau of Ethoclogy, Smithsonian Institation.	Tides in Saint Mary's River, Fla.
	12	H. Best \& Son, Dayton,	Difference of longitude, Dayton and Columbus, Ohio.
	16	W. C. Kerr, State Geologist of N. O	Height of Mitchell's Peak, N.C.
	18	Messrs. Whitman \& Breck, civil engineers and surreyors, Boston, Mass.	Topographical sarver of part of Cape Ann, vicinity of Gloucester, Mass., 1851.
	23	O. S. Wilson, New York State Surrer, Albany	Geodetic data with reference to stations Helderberg and Rafinesque.
	24	J. K. Rhees, Columbia College, N. Y.	Magnetic declination at Coney Island, Long Island, at two epochs.
	24	General Wm. B. Hazen, Chief Signal-Officer	Magnetic chart of Smith Sound, Kennedy and Robeson Channels, North Greenland, 188).
	27	George E. Waring, jr., consulting engineer	Tracing of Thames River, vicinity of Norwich, Conn.
Mar.	1	Lieutenant-Commander C. H. Davis, United States Navy.	Description of Coast Survey astronomical station at Galventon Bay, Tex., and telegrapbic longitude of same.
	1	Prof. J. R. Eastman, United States Naval Obse	Information respecting Coast Survey astronomical station, Cedar Keys, Fla.
	3	Prof. Alexander Agassiz	Preliminary plotting of the steamer Blake's deep-sea soundinge, season of 1882-'83, with a profle.
	5	T. J. Long, engineer Department of Docks, New For	The average tidal curve at Sandy Hook.
	6	H. J. Lovick, survejor, Now Berne, N. C	Magnetic declination from 1760 to present time.
	6	Publisher of "Science"	Section of deep-sea soundings by steamer Blake, seale 1-5000000, with 25 profles.
	7	H. T. Bradford, surreyor, Lebanon, Ohio	Information about terrestrial magnetiom.
	9	Mississippi River Commission ;..........................	Description of trigonometrical stations between Baton Rouge and Dunaldsonville.
	9	F. W. Schwartz, assistant engineer. United States Engineer office, New Orleans.	Results of spirit levels, Greenville to Carrollton.
	12	J. P. Bogart, New Haven, Conn	Annual variation of the magnetic declination at New Haven.
	12	Mr. W. W. Coe, chief engineer Norfolk and Western Railroad.	Topographical survey of the eastern shore of Elizabeth River from Lambert's Creek to Tanner's Creek.
	13	Lieutenant Smith S. Leach, secretary of Mississippi River Commission.	Three blauk tide-rolls sent at his request to G. B. Fewell, gaugekeoper at Biloxi, Miss.
	14	Commander tlagghip Tenoessee.	Hydrography of Norfolk Harbor, from Craney Island to Naval Hospital.
	14	Prof. C. Abbe, Tnited States Signal Corps	Geographical positions of 98 points.
	19	J. B. Hoeing, Kentacky Geological Survey	Position of astronomical station at Goodson, Va. (Bristol, Tepu).
	20	J. P. Bogart, Shell-Fish Commission, Connecticut	Geographical position of a spire in Weest Heven.
	21	J. P. Little, anrreyor, Belzoin, Miss	Advice respecting magnetic chart.
	23	M. Sharpless, Philudelphia.	Information respecting local deflection of vertical at atation yard.
	26	J. P. Bogart, engineer, Shell Fish Commission	Two projections, scale 1-20000, of the Connecticat aborp, from near Rye Point eastward to Pine Creek Point, with ahure line.

APPENDIX No. 3-Continued.

APPENDIX No. 3-Continued.

Abstract

APPENDIX No. 4. report of the assistant in charge of office and topography for the fear ending JUNE 30, 1883.

Washington, June 30, 1883.
Sir: I submit herewith the reports of the chiefs of divisions of the office, showing the general character and extent of the work executed during the fiscal year ending June 30, 1883.

Beside the regular operations of the office, as given in appendices 2 and 3 , and in these reports, I beg leave to refer to a few special results of the year, in the introduction of new instruments and of valuable additions to our facilities for prompt aud superior out-turn of work.

TIDE-PREDICTING MACHINE.
The maxima and minima tide predicting machine, designed by Mr. William Ferrel, of this office, has been completed. A full description of this intricate labor-saving machine, with the necessary illustrations, will appear as Appendix No. 10 to your annual report for this year. I deem it only necessary to add here the fact that the principles on which it was constructed and the construction itself have been tested, and the results, compared with those deduced from the long processes of computation, have been satisfactory.

CLOSING LEVELS.

A new mathod of making and closing glass tube levels has been lately adopted, at the suggestion of G. N. Saegmuller, chief mechanician. The tubes are made with a short neck, as in the case of a vial, in which a closely fitting ground glass stopper is inserted, and then hermetically sealed by the usual simple means. The improvement consists in the facility with which the tube can be opened and cleared of impurities, or resupplied with ether in case of leakage.

```
CALENDER PRESS.
```

A large calender press or machine for finishing, by pressure, the surface of the largest charts issued by the Survey has been lately added to the printing office. Independent of the improved appearance of the charts resulting from a pressure of nearly 250 tons, the paper is hardened and made tougher; the ink is more fixed, the distortion is more uniform, and hence sheats intended to be joined can be more correctly put together; and, it is believed, that further experiments and comparisons between the hand and machine made paper will result in the use of American paper, which would be a step favorable to economy.

ELEMTROTYPING.

An increase in our capacity for electrotyping the engraved plates of the Survey has been long needed and discussed. Inquiries and personal examinations were made during the year, at some of the principal electrotype establishments in New York and elsewhere, in regard to the dynamo. electric machine, with a view to its substitation for the combination of Smee's and Walker's batteries now in use. The information obtained was not conclasive. The electrotyping of plates as
large as those of the Coast Surrey had not even been attempted. As a last resort, we obtained from the nary-yard, Washington, throngh the courtesy of Lieutenant R. M. Cutts, U.S. N., the temporary use of a 10 -inch Weston dynamo-electric machine, and employed as the motive power our two-horse Baxter steam-engine. The results were quite satisfactory on the small scale necessarily adopted. Nevertheless, taking into consideration the expense of the outlay and of additional labor, as well as the uncertainty in regard to large plates, it was deemed advisable to await further developments, and, in the mean time, to add two cells to our present batteries.

MAP OF THE UNITED STATES.
The accumulation of geographical data in the office of the Survey resulting from its own operations, as well as from other Government, State, and private survers, would seem to suggest that, under the authority of Congress, initial steps should be taken toward the construction of a map of the United States.

Such a map, or rather atlas of maps, based on a scientific and unchangeable frame-work, executed on a scale appropriate to the extent of the country, and with all possible care and judgment in the selection and combination of the data, would constitute an official map of special value to the Government. Eventually, in the distant future, the different States will be in a condition to undertake a thorough surrey of their respective areas, but uutil that time arrives, the official map will prove of acknowledged usefulness.

With a view to ascertain the practicability of the plan and of the probable time and expense to be incurred, experiments have been made both as regards the data and drawing, and so far with such promise of success that I do not hesitate to recommend that Congress should be requested to make a special appropriation for this particular work.

An estimate of the time and expense which will be required for the construction of the atlas, with a specimen of the style and scale proposed, will be presented in time for consideration at the coming session of Congress.

Besides the regular force permanently attached to and employed in the office, the following field officers were detailed by the Superintendent at different dates during the fiscal year for duty in the office of the Assistant in Charge, and were employed in the inking of topographical sheets, in bringing up the party records, and in the computations required before the field-work could be turned in to the office:

Assistant A. W. Longfellow, January 11 to February 14.
Assistant A. T. Mosman, January 1 to April 30.
Assistant W. H. Dennis, January 1 to June 30.
Assistant Charles Hosmer, January and February.
Assistant Andrew Braid, January and February.
Assistant Gershom Bradford, February 1 to June 30.
Assistant R. M. Bache, April 1 to June 30.
Assistant E. Ellicott, April 22 to June 30.
Assistant C. H. Boyd, May 20 to June 30.
Assistant F. W. Perkins, June.
It gives me sincere pleasure to refer to the zeal, efficiency, and promptness with which the chiefs of division have performed the various duties assigned to them.

In the office of the Assistant in Charge Assistant H. W. Blair served as his Assistant from July 1, 1882, to March 12, 1883, and Assistant Andrew Braid from March 12 to June 30, and I beg to acknowledge their valuable assistance and constant interest in the conduct of the office.

Mr. William B. French also deserves my thanks for the fidelity with which he has performed Lis clerical duties.

Yours, respectfully,
RIOHD. D. CUTTS,
Assistant in Charge Office and Topography.

Prof. J. E. Hilgard, Superintendent United States Coast and Geodetic Survey.

anNual report of the competing difision, coast and geodetic survey office, for the FEAR ENDING JUNE 30, 1883.

Computing Division, Coast and Geodetic Survey Office, Washington, June 30, 1883.

Dear Sir: In conformity with regulations, I herewith respectfully submit the usual annual report of work done by the several computers during the year ending June 30, 1883.

The charge of the Computing Division has been continued with the undersigned, and no material change took place in its organization or management. With two exceptions the personnel is the same as in the closing month of last year. Mr. Alexander Ziwet was given the place vacated by the death of Dr. Rumpf, and the place of copyist or clerk, formerly held by Mr. C. W. Henderson was, after his decease (on December 24, 1882), filled first by Mr. J. W. G. Atkins temporarily, and afterwards permanently by Mr. P. R. Stansbury. There was also some temporary assistance given by persons assigned to the Computing Division when not on field duty.

Almost the whole of my spare time, after attending to the mere routine work of the Computing Division, was taken up by the discussion, report, and preparation for the press of certain geodetic and magnetic matter, viz: An account of the construction of a new compensation primary base, apparatus, including the determiuation of the length of the accompanying five-meter standard bars. Accompanying the description there are two large plates of illustrations and some small diagrams. This paper forms Appendix No. 7 of the annual report of the Survey for the fiscal year ending with June, 1882. In connection with this paper numerous comparisons were made under my direction by Messrs. D. C. Chapman, J. G. Porter, and A. Ziwet, of the six-meter and the five-meter plus onemeter staudards, also of the two five-meter standards, and one of the five-meter standards with five joined meters. After the completion of this work in the comparing room the five-meter field standard, which had been used in the measure of the Yolo base, California, was returned to that State. The title of a second paper presented is "Computation and discussion of the length of the Yolo base, \&c." The report made on the results of the transcontinental line of geodetic spiritleveling, Parts I to V inclusive, or from Sandy Hook, N. J., to Saint Louis, Mo., forms Appendix No. 11 of the annual report for 1882. The discussion of the Davidson quadrilaterals (of the primary triangulation in Califoruia) was adranced as far as the state of the field-work permitted.

Respecting terrestrial magnetism, a fifth edition of the paper on the secular variation of the magnetic declination was brought ont (illustrated with four plates). In this greatly enlarged edition about 837 declinations, observed at eighty-two stations, are fully discussed; this paper forms Appendix No. 12 in the annual report for 1882. The next paper brought out, and forming Appendix No. 13 of the same report, is entitled "Distribution of the magnetic declination in the United States at the epoch January, 1885, with three isogonic charts and one plate." This paper contains a table of all magnetic declinations taken in the country (as far as kuown to me) ap to date-about $2,360-$ and reduced to the same epoch.

Magnetic observations were made on two days at the magnetic observatory in this city, and practical instructions were given under my direction by Subassistant Baylor to certain Signal Corps observers intended to participate in the magnetic work at the two polar stations.

The number of applicatious for scientific information from persons not connected with the Survey has been on the increase for some time. The ordinary office correspondence, the reporting of results of compatations, the demands from the Drawing Division for geographical positions, of the Engraving Division for geodetic, astronomical, and magnetic data for the charts, and of the Hydrographic Division for description of geodetic stations, were promptly attended to. The registers of the duplicate records of the Survey were kept up to date.

The work, in detail, performed by each computer during the fiscal year is given below, together with a statement of the work done by those temporarily attached to the division.

Mr. Edward H. Courtenay computed part of the supplementary triaugulation of Long Island Sound, 1882, also of 1873 to 1877 , and fitted the old work of 1833 in this locality to the new data; computed the supplementary triangulation of Delaware Bay, 1882, and brought to the same uniform
data the older results of the triangulations of 1840-'41-75-77-91; compnted part of the triangulation near Tillamook Head, Oreg., 1875; computed the supplementary triangulation of Norfolk Harbor, Va., 1882; revised the results for magnetic intensity obtained by means of magnetometers No. 3 and No. 8 ; computed the absolute values for magnetic declination, dip, and intensity at Ooglaamie, Alaska, 1881-'82; arranged about fifty volumes of computations for the binder; had charge of the duplicate records; attended to the insertion of resulting geographical positions in the reg. isters of this and of the Drawing Division; prepared geodetic data called for by field parties; and assisted in the preparation of the aunual geodetic statistics.

Mr. Myrick H. Doolittle adjusted the triangulation of the east coast of Florida south of Saint Angustine, inclnding the Indian River, of 1860-'61, of 1880-81, and of 1882 and computed the trar-erse-work south of Indian River Inlet, 1882; computed the main triangulation in Western New York, intended to connect the triangulation of Lakes Champlain and Ontario, 1880-81-'82; fitted the secondary triangulation of Lake Champlain of $1870-71-72$ to the primary work; revised the triangulation connecting Jacksonville, Fla., with the sea-coast, 1854-'55; supplied a few additional positions of the old survey of Sa vannah River, and of Charleston Harbor and Saint Augustine, 1882, computed the triangulation at Sabine Pass, Tex., 1882; computed the base-line at Laguna Madre, Tex., 1852, and connected it with the triangulation; computed the traverse and geodetic work coast of Texas between Gatveston and Sabine Pass, 1882; computed the triangulation of the coast of Oregon between Tillamook Head and Tillamook Bay, 1875, and of Tillamook Bay, 1866; assisted in the preparation of the annual geodetic statistics, and made progress with the reduction of the vertical angles of the primary triangulation of California.

Dr. Jermain G. Porter prepared the least-square abstract of resulting horizontal directions at primary stations Mount Como, Nev., 1879, Mount Grant, Nev., 1879, Oarson Sink, Nev., 1880, Vaca, Cal., 1880, and Mount Tamalpais, Cal., 1882; revised the computations for latitude of Northwest Yolo base station ; computed the magnetic observations of 1875 , and of the northern boundary of Wyoming of 1882 ; assisted me in the reduction of the magnetic declinations to epoch 1885; made some miscellaneous magnetic computations and solved the normal equations containing the distribution of the declinations in Alaska; computed the spirit levels, Mount Diablo to Martinez East, Cal., 1880; assisted in the comparisons of the five- and six-meter standards (already referred to), and in the computations relating thereto; assisted me in the computation of the length of the Yolo Base, Cal., 1881 ; made the computation connecting the Yale College Observatory with the coast triangulation ; supplied some miscellaneous geographical positions; prepared revised abstracts of resulting angles at all the stations of Pennsylvania and New Jersey, forming the so-called horseshoe triangulation, and established the first set of conditional equations for its adjustment.

Mr. Alexander S. Christie computed time and astronomical azimuth at the following stations: Northwest base Yolo, Cal., 1880; Monticello, Cal., 1880; Vaca, Cal., 1880; Venado, Tex., 1881; North base Laguna Madre, Tex., 1882, and made progress with station Mount Tamalpais, Cal., 1882; computed latitude and azimuth of station Ooglaamie, Alaska, 1881-82; applied correction for changes of temperature to spirit level results between Hagerstown, Md., and Athens, Ohio, and prepared abstract of results for the whole liue between Sandy Hook, N. J., and Saint Louis, Mo., as printed in Appendix No. 11, report for 1882 . Mr. Christie supplied the mean places of stars required by our astronomical parties.

Mr. Gharles H. Kummell made the office computation of the following differences of longitudes as determined by the electric telegraph, viz: Nashville, Temn., and Oolumbus, Ohio, 1877; Columbus, Ohio, and Washington, D. C., 1877; Columbus, Ohio, and Cambridge, Mass., 1871; Columbus, Ohio, and Cleveland, Ohio, 1871; Cleveland, Ohio, and Cambridge, Mass., 1871; Savannah, Ga., and Oedar Keys, Fla., 1874; Savannab, Ga., and Panta Rasa, Fla., 1874; Oakland, Ky., and Cambridge, Mass., 1871 ; Shelbyville, Ky., and Cambridge, Mass., 1871; Falmouth, Ky., and Cambridge, Mass., 1871; and commenced Baton Ronge, La., and Atlanta, Ga., 1880. Mr. Kummell also furnished some star places for field parties and revised vertical angles at Mount Diablo, Oal., 1880.

Mr. Henry Farquhar completed the computation for magnetic declination in Califoruia, Oregon, Washington Territory, and Idaho in 1881; computed the spirit levelings of Yolo Base, Cal., and of the line between Saudy Hook, N. J., and Hagerstown, Md.; revised the computations for two astronomical azimuths in Texas, 1881-982, and computed the latitudes of Monticello, Cal., 1880, of

Carson Sink, Nev., 1880, and of Toiyabe Dome, Nev., 1880. He also computed the spirit-leveling between Flora, Ill., and Saint Louis, Mo., and made some progress with the continuation of this line to Etlah, Mo.; he also gave some attention to pendulum matters in charge of Assistant \mathbf{C}. s. Peirce.

Mr. Alexander Ziwet was assigued to the Computing Divisiou August 15, 1882, and has been engaged on the following work: The determination of the run of micrometers used at stations, Monticello, Cal., Vaca, Cal., and Como, Nev.; the computation of geographical positions (under Mr. Courtenay's special direction) coast of Connecticut, Long Island Sound, Delaware River and Bay, 1881-82, and Norfolk Harbor, 1882; assisted in checking computations in connection with the length of Yolo base and other miscellaneous computations; plotted the position of the magnetic declinations for the new isogonic; charts, and nearly completed the computation and adjustment of the triangulation connecting Suisun Bay, Cal., with Mount Diablo, 1880. He also assisted in the metric comparisons.

Mr. C. W. Henderson atteuded to the clerical duties of the Computing Division, chiefly furnishing copies of descriptions of stations and copying star-places for field parties, entering geographical positions in the registers of the Computing and Drawing Divisions, \&e.

Mr. J. W. G. Atkins succeeded Mr. Henderson December 26, 1882, as copyist ; he was ordered to field duty May 1, 1883.

Mr. V.J. Fagin acted temporarily as clerk to the Computing Division between May 10 and May 21, 1883.

Mr. P. R. Stansbury reported for clerical work in the Computing Division May 23, and contimued to discharge this duty to the close of the year.

The following computers were temporarily assigned for duty in the Computing Dirision:
I. Winston between July 1 aud July 18, and two days in August, 1882, was engaged on revision of magnetic computations.
C. B. Turnbull between July 7 and July 19, 1882, was engaged on miscellaneous copying.

Subassistant J. F. Pratt reported for duty January 11 and continued to May 25; was engaged on miscellaneous computations; computed geographical positions on the Saint John's River and other localities, and made satisfactory progress with the reduction of the spirit-levels between Mitchell, Ind., and Saint Louis, Mo.

Mr. J. C. Power was assigned to the Computing Division January 10, and continued to April 28, 1883; was mostly engaged in copying and some light computations.

OHAS. A. SCHOTT,
Assistant in Oharge Computing Division.
R. D. Curts, Esq.,

Assistant in Charge of Office and Topography.
anndal report on the field and office work relating to the tides for the year ENDING JUNE 30, 1883.

Tidal Division, Coast and Geodetic Survey Office,

 June 30, 1883.Dear Sir : I respectfully submit this report on the work of the Tidal Division, of which I have beeu in charge during the vear.
observations.
Self-registering tide-gauges have been nsed at the following stations: North Haven, Me.; Providence, R. I.; Block Island, R. I.; New London, Conn.; Sandy Hook, N. J.; Saucelito, Cal.; Kadiak, Alaska; and Honolulu, Sandwich Islands. Nothing more has been learned about the observations at Mazatlan, Mexico. The Alaska Commercial Company was furnished some time ago with a box gauge for temporary use at Copper Island, off the Asiatic coast of Bering Sea, but no return has yet been received.
S. Ex. 29-13

So soon as a permanent tidal station shall be re-established on the Southern Atlantic coast of the United States, it would be advisable to establish a similar one on the island of Bermuda with a view to simultaneous observations for two or three years, in order to obtain data for a more full and general discussion of the tides.

To complete the data for a full investigation of the tides of the Gulf of Mexico, it will be necessary to occupy two or three new stations west of the Mississippi for a year each.

While at Long Branch last year I inspected the iron pier of the Ocean Pier Company there, and it seemed to me that a self-registering tide-gange might be used on it successfully, by employing an iron pile for a float tube. As a permanent station the place appears to be free from some of the objectionable circumstances at Sandy Hook, and if, after a fair trial, the gauge should be found to work well, the Sandy Hook gange could be stopped.

As full information has been given in the tidal notices under the different sections of the surrey, of the observations made with self-registering gauges during the year, it is not necessary to give details here.

The following table gives the stations occupied by self-registering tide-gauges, and the da'es and period of the observations.

A self-registering tide-gauge is now being repaired and fitted for use in the Delaware River below Philadelphia, in accordance with an arrangement with the United States Engineers, and there are two more in the office for which clocks are needed.

The tidal observations made by the hydrographic parties of the Coast Survey are inspected as soon as received, and mostly reduced in the Tidal Division. Notices of them will be found in the accounts of work done in the different sections of the Survey. They are generally made with a staff or a box-gauge, and are usually day observations only, and sometimes in disconnected groups. Where the diurnal inequality is large, this mode of working sometimes resulis in imperfectly reduced soundings. The only sure remedy is more continuous work kept up day and night.

OPFICE-WORK.

The observers using self-registering gauges are now generally required to tabulate the high and low waters and hourly readings from the curves before sending these to the office, and to send the tables and curves at different times to prevent losses by accidents. The observers in this way have become more skillful and careful, and the work in the office is considerably reduced. The observations received from the self registering gauges and hydrographic parties are reduced as soon as they can be conveniently, and the results used in prediction work, chart making, and for other purposes. The reductions and discussions that have been made enable the Division to furnish a large amount of information relating to tides to officers of the Survey, civil and United States Engineers, and others, the demand for which is rapidly increasing.
"Tide Trables" containing the predictions for the Atlantic and Pacific coasts of the United States for the year 1884 have been computed by the Tidal Division, and have been published, making the eighteenth year of the series.

The computers employed in this division in the coarse of the year were R. S. Avery, L. P. Shidy, M. Thomas, and C. B. Turnbull in the office, and J. Dowues and J. G. Spaulding out of it.

Mr. Avery, being in charge of the division, inspected all tidal observations when received and prepared them for reduction, attended to the correspondence relating to tides, planned and supervised the work on tides and tidegauges, prepared the predictions for printing and read the proofs, and computed when not otherwise engaged.

Mr. Shidy reduced many observations received from hydrographic parties, predicted for places where the diurnal inequality is large and some others, and aided in a large amount of miscellaneous work.

Miss Thomas worked on the simplest reductions and on the hourly ordinates for permanent stations, aiding sometimes on miscellaneous work and copying.

Miss Turnbull has been employed copying, tracing, tabulating tides, and sometimes on easy reductions.

Mr. Downes, by a special contract, was predicting for certain places ou the Atlantic Coast, but died before the work was completed.

Mr. Spaulding computed the predictions for Boston, as he has done in past years, in addition to his services as a tidal observer at North Haven.

R. S. -AVERY゙,
In Charge Tidal Division.

R. D. Outts, Esq., Assistant in Charge of Office and Topography.

ANNOAL REPORT OF THE DRAWING DIVISION, COAST AND GEODETIC SURVEY OFFICE, FOR THE YEAR ENDING JUNE 30, 1883.

Drawing Division, Coast and Geodetic Survey Office, Washington, June 30, 1883.

Dear Sir: I have the honor to submit the following summary of work performed under my direction in the Drawing Division during the year ending June 30, 1883.

In the detailed statement accompanying is given, in tabular form, a list in geographical sequence of the charts completed, contiuned, or commencel, with the particular kind of work executed and the names of draughtsmen eugaged thereon. In Appeudix No. 3 has been incorporated a statement of the information furuished and the names of persons to whom given, in reply to special requests made to this office for tracings, transcripts of records, \&c.

The division, has maintained its efficiency, and, by the close, faithful application of its attachés to the duties assigued them, has met all the requirements of the yearly increase in the demands upon its service.

The personnel has been about the same as in past years with regard to skill and numbers, and only a few minor changes have taken place.

The photolithographic process, quick and reliable in its results, has become more and more a very important feature with us, and, as usual, much time has been given to the construction and inking of charts and drawings designed for reproduction and publication, by a method which facilitates our efforts to provide the public with charts of every locality at an early date after the comple. tion of the surveys.

The general features of the work allotted to the draughtsmen and other employés are stated below:

Mr. A. Lindenkohl, in the compilation of the finer scale-drawings, has displayed his usual skill and celerity. Most of the small scale charts, especially those requiring rare judgment for their execution, have been intrusted to him, his long experience enabling him to meet successfully the geographical and other difficulties not infrequent in compiling from data of various dates, kinds, and scales. An elaborate map of the United States, from the latest authorities, based upon our own surveys, has been began by Mr. Lindenkohl, on a scale of ten miles to the inch. A chart of
the harbors of Washington and Georgetown was completed by him during the year. He has kept the Progress Sketches supplied with all additions up to date.

Mr. H. Lindenkohl, equally accomplished as draitghtsman and engraver, has been occupied principally with the preparation of standard drawings of harbor and coast charts for photolithographing, besides engraving on stone several diagrams and sketches required for illustrations to the appendices accompanying the annnal report of the Survey.

Mr. Louis Karcher, notwithstanding the great number of projections called for during the year, has execnted most of them with dispatch, and found time to construct the many projects needed by the office, and to execute numerous diagrams and other miscellaneous work.

Mr. E. J. Sommer was employed in a variety of ways: making projections on paper and on copper, preparing tracings, and reducing topography and hydrography.

Mr. P. Eichsen has drawn topographical details on engraved outlines, and made drawings of instruments of precision, perspective and otherwise, some of them of quite an elaborate character.

Mr. C. Junkeu, whom the Superintendent had detailed for special duty in surveying and mapping a tract of land in W,the Connty, Virginia, for the United States Fish Commission, was engaged in the performance thereof until its completion, in July, when he reported back to the division, whence he was detached November 11, and assigued to the Hydrographic Inspector. Between July and November, Mr. Junken gave his attention to hydrographic reductions.

Mr. T. J. O'Sullivan has been engaged almost exclusively in the preparation of charts and Irawings for publication by photolithography. He also made diagrams, projects, and tracings, and did geueral letteriug.

Mr. A. B. Graham, in addition to constructing projections for the use of hydrographic parties, has reduced and transferred the shore-line upon nearly all projections made in the offlce during the year. Triangulation sketches, diagrains, \&c., have all received a share of Mr. Grabam's time.

Mr. J. B. Tyrrell was employed wholly in coloring buoys, light-houses, and other aids to navigation upon the printed charts until March 21, 1883, when he was transferred and worked under the direction of Assistant Andrew Braid.

Miss F. Cadel also did duty in this division, in coloring buoys and light-houses, until March 21, 1883, when she was transferred to the immediate direction of Assistant Andrew Braid.

Messrs. E. H. Fowler and E. Molkow, who were detached from the Drawing Division, in July, 1881, and assigned to the then newly created Division of Topography, were returned to this division in October, 1882, and have been engaged since then mostly in inking plane-table sheets.

Mr. V. J. Fagin joined the division in February, 1883, and performed the clerical duties required by me quite acceptably till the 1?th of March, following, at which date he was transferred to the office of the disborsing agent.

Mr. J. C. Barr became re-attached to the division on the 12 th of March, 1883 , since which time he has acted as clerk, and done duty in coloring published charts and making corrections, when required, to the aids to navigation on the same.

Yours, respectfully,

W. T. BRIGHT, In Charge Drawing Division.

R. D. Cutts, Esq.,
Assistant in Charge of Office and Topography.

DRAWING DIVISION.

Charts completed or in progress during the year ending June 30, 1883.

DRAWING DIVISION-Continued.

REPORT OF THE ENGRAVING DIVISION FOR THE FEAR ENDING JUNE 30, 1883.

U. S. Coasir and Geodetic Survey Office, Washington, June 30, 1883.

Sir: I respectfully submit the following report of work executed in the Engraring Division during the fiscal year ending June 30, 1883.

> Number of plates completed:
> Charts
> Sketches and illustrations 5
> Number of plates continued:
> Charts. 19
> Sketches and illustrations ... 3
Number of plates commenced:
Charts 13
New editions of charts 2
Sketches and illustrations 34
Number of plates corrected:
Charts 423
Sketches 14
Total number of plates worked upon 540
Number of unfinished plates on hand at the close of the year:
Charts 41
Sketches and illustrations 50

Of the 27 completed chart plates, 10 are new charts, 13 new editions, and 4 reissues. I append hereto a list showing in detail the plates that were completed, continued, or commenced during the year.

The corrections to the plates of the published charts were not so unmerous as during the preceding year, although this class of corrections required the handling of 423 plates.

As a rule, a few hour's work suffices to make the changes indicated.
In addition to the engraving, we have had the usual amount of cleaning electrotypes, erasures from altos, drawing and arranging titles, general lettering and notes, marking instruments, \&e.

The force of the division remains as at the beginning of the year, and has been employed as follows: Messrs. J. Enthoffer, A. Sengteller, and R. F. Bartle, on topography ; Messrs. E. A. Maedel, A. Petersen, J. G. Thompson, and F. Courtenay, on lettering; Messrs. W. A. Thompson and H. C. Evans, on topography and sanding ; Messrs. E. H. Sipe, W. H. Davis, and A. C. Reubsam, on lettering and miscellaneous corrections; Messrs. H. M. Knight and F. W. Benner, ou sanding ; and Mr. T. Wasserbach, on sanding and miscellaneous corrections.

The work of the printing office has been conducted as described in ny report of last year. The addition to the force of one helper has permitted running the third press almost constantly since that time. The two large presses have remained, as heretofore, in charge of Mr. F. Moore and D. N. Hoover. The third press was placed in charge of Mr. J. L. Smith, and has been used principally in printing the Coast Pilot work and the smaller chart plates.

The new paper press mounted in April has proved most satisfactory. It does all that the builders claimed for it and greatly euhances the artistic appearance of the charts.

The great annoyance arising from sending plates to lithographers for transfer proofs, led me to attempt pulling our own transfers. I am pleased to report the result as entirely satisfactory, and am confident we can now furnish transfers of the finest work, that in the hands of skilled workmen will not fail on the stone.

The following is a summary of the printing during the year:
Number of impressions for chart room.. 26,767

Number of impressions for lithographers (transfer proof)... 182
Number of impressions of Atlantic Coast Pilot charts and views 14, 165
48,320
The general superintendence of the electrotyping of the office plates, placed under my charge in December last, has received my close attentioh. The plans you have approved for increasing the facilities of this work are in preparation, and it is my hope will be in successful operation sufficiently early to show a marked increase in the coming year's results. It is a question of quantity, as we can hardly expect any improvement in the excellent quality of the plates now turned out.

Dr. A. Zumbrock, electrotypist, furnishes the following statistics of the electrotyping and photographing during the year:

For the Survey, 18 altos weighing 401 pounds, with a plate surface of 21,012 square inches, and 21 bassos weighing $710 \frac{1}{2}$ pounds, with a plate surface of 23,762 square inches.

For the Hydrographic Office, United States Navy, 2 altos weighing 44 pounds, with a surface of 2,264 square inches, and 4 bassos weighing 108 pounds, with a surface of 3,426 square inches.

For the Engineer's Office, United States Army, 10 altos weighing 220 pounds, with a surface of 11,472 square inches, and 10 bassos weighing 365 pounds, with a surface of 11,472 square inches.

Total number of plates electrotyped, sixty-five, weighing $1,848 \frac{1}{2}$ pounds, with a plate surface of 73,408 square inches.

Besides these electrotypes an alto and basso were made of a seal for the General Land Office, and two clock faces for instrument shop; 69 plates were steel-faced, 56 negatives were taken of maps and instruments, and 163 prints were made.

Mr. J. H. Smoot has attended to the clerical duties of the division in a most satisfactory manner.

Yours, very respectfully,
HERBERT G. OGDEN,
Assistant in Charge of Engraving Division.
R. D. Cuttrs, Esq.,

Assistant in Charge of Office and Topography.

Plates completed, continued, or commenced during the fiscal year ending June 30, 1883.

> 1. Outline. 2. Topography. 3. Sounding. 4. Lettering.

Cata- logue No.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Title.	Scale.	Engravers.	Date of completion or issue.
		completrd.			
11	1429	Cape Eatteras to Cape Romain	1-400, 000	1, 2. W. A. Thompson. 4. J.G. Thompson.	November 23, 1882.
13	1456	Saint Mary's entrance to Cape Canaveral.	1-400,000	1. 3. W. A. Thempson. 4. E. A. Maedel, A. Petersen, and J. G. Thompson.	October 24, 1882.
103	1113	Frenchman's and Blne Hill Bays	1-80,000	1, 2. J. Enthoffer. 3. H. M. Knight. 4. E. A. Maedel and J. G. Thompson.	May 31, 1883.
142	1272	Pamplico Sound, Roanoke Island to Hatteras Inlet.	1-30,000	1, 3. W. A. Thompson. 3. F. W. Benner. 4. E. A. Maedel, J. G. Thompson, and A. C. Ruebsam.	June, 1883.
158	1234	Saint Mary's entrance southward to latitude 30° north.	1-80, 000	1, 2, 3. W. A. Thompron. 4. J. G. Thompson and T. Wasserbach.	November 29, 1882.
159	1411	Saint Augustine Inlet to Halifax River.	1-80,000	4. J. G. Thompron and A. C. Ruebsam.	Augnst 4, 1882
160	1526	Halifax River to Mosquito Lagoon	1-80,000	4. J. Q. Thompson and T. Whaserbach.	September 23,1882.
161	1602	Cape Canaveral, Fla	1-80,000	3. W. A. Thompson, R. F. Bartle. 4, E. A. Maedel, A. Petersen, and J. G. Thompson.	March 17,1883.
344	1716	Monomoy Paskage, Mass	1-40, 060	1,2,3. H.C. Evaus. 4. F. Courtenay and A. C. Ruebsam.	June, 1883.
$371 a$	1713	Topographical map, West Point, N. Y edition of 1882.	1-4,800	1,2. H. C. Evans. 4. E. A. Maedel.	June 11, 1883.
129	1286	Chincoteague Inlet to Hog Island Light	1-80,000	1, 2, 3. H. M. Knight. 4. E. H. Sipe.	Decermber, 1888.
348	779	Wood's Holl, Mass	1-20,000	4. T. Wasserbach	July, 1882
352	1033	Port of Providence, R. I	1-10, 000	3, 4. T. Wasserbach	September, 188\%.
390	1148	Potomac River No. 3, Lower Cedar. Point to Indian Head.	1-80,000	1, 2. A. Sengteller. 3. W. A. Thompson. 4. J. G. Thompson, W.H. Davis, and A. C. Ruebsam.	November, 1888.
488	699	Saint Andrew's Bay, Fla	1-40,000	3. W. A. Thompson. 4. W. H. Davis and A.C. Ruebsam.	November, 1882.
023	1006	San Pablo Bay, Cal		3,4. T. Wasserbach. 4. A. C. Ruebeam	November, 189\%.

Plates completed, continued, or commenced during the fiscal year ending June 30, 1883—Continued.

$\begin{gathered} \text { Cata- } \\ \text { logue } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Title.	scale.	Engravers.	Date of completion or issne.
		Retissued 1882.			
349	1005	Sippican Harbor	1-20,000	4. W. H. Daris	December, 1882
622	1074	San Francisco Bay,	1-50, 000	4. W. H. Davis and A. C. Ruehsam	November, 1882.
183	1681	Apalachicola Bay to Cape San Blas..	1-80, 000	4. A. Petersen and A. C. Ruebsam	May, 1883.
186	1290	Choctawhatchee Inlet to Peasacola entrance. .	1-80, 000	3. W. A. Thompson and H. M. Knight. 4. H. M. Knight.	January, 1883.
346	169	Edgartown Harbor	1-20, 000	1,2, 3. W. A. Thompson. 4. H. W. Davis	January, 1883.
369	1639	New York Bay and Harbor (apper)	1-40,000	1, 3. H. M. Knight. 2, 3. W. A. Thompson. 4. E. A. Maedel and H. M. Knight.	June, 1883.
369	1641	New York Bay and Harbor (lower)	1-40,000	1,2. W. A Thompson. 4. E. A Maedel.	June, 1888.
391	1319	Potomac River No. 4, Indian Head to Georgetown.	1-40,000	1, 2. E.J. Enthoffer. 2. W. A. Thompson. 3, 4. T. Wasserbach. 4. A.C. Ruebsam.	Feloruary, 1883.
643	931	Gray's Harb	1-40, 000	1,3,4. J. G. Thompson	June, 1883.
421	1018	Core Sound and Straits	1-40,000	4. W. H. Davis	June, 1883.
629	864	Drake's Bay	1-40,000	4. H. M. Knight .	June, 1883.
	1697	Atlantic Corst Pilot, vol. 1, entrance to Portland Harbor.		Etching ly J. R. Barker. 4. W. H. Davis..... 4. E. A. Maedel and J. G. Thompson............	October, 1882.
	1703	Topographical specimen, The Dalles, Columbia River.		September 1882. July, 1882. August, 1882. May, 1883.
	1692	Plate of squares, decimal division		4. W. A. Thompson and E. H. Sipe	
	1708	Magnetic or chart compass		4. J. G. Thompson	
	1743	Conventional signs and symbols		2. W. A. Thompson. 4. H. M. Knight	
D	1653	Gulf of Mexic	1-2, 100, 000	1, 4. J. G. Thompson	
17	$\begin{aligned} & 1603 \\ & 1090 \end{aligned}$	Tampa Bay to Cape San Blas	1-400, 000	4. A. Petersen	
21		Galveston to the Rio Grando	1-400, 000	1, 2,3. W. A. Thompson. 3. H. M. Fnight. 4. E. A. Maedel and A. Petersen.	
143	1190	Pamplico Sound, Ocracoke Inlet to Pamplico River.	1-80,000	3. I. M. Knight and F. W. Benuer. 4. E. A. Maedel.	
153	1503	Wingah Bay to Long Island	1-80,000	4. F. Courtenay	
175	1093	Charlotte Harbor and San Carlos Bay	1-80,000	3. H. C. Erans and H. M. Knight. 4. E. A. Maedel and A. Petersen.	
182	1447	Apalachee Bay and Saint George's Sound	1-80,000	3. H.C.Evans. 2, 3. H. M. Knight. 4. E. A. Maedel, F. Courtenay, and A. C. Rnebsam.	
184	1601	Saint Joseph's Bay to Saint Andrew's Bay ... Saint Andrew's Bay to Choctawhatchee Inlet.		4. F. Courtenay	
185	1498		$\begin{aligned} & 1-80,060 \\ & 1-80,000 \end{aligned}$	1, 2. B. C. Evans and W. A. Thompson. 3. T. Wasserbach. 4. A. Petersen and A. C. Ruebsam.	
192	1537	Chandeleur and Breton Island Sonnds	1-80, 000	1,2,3. W. A. Thompron	
195	1314	Mississippi River, from Grand Prairie to New Orleans.	1-80,000	4. H. M. Knight	
208	1247	Pass Cavallo, Lavaca and San Antonio Bays..	1-80, 000	3. F. W. Benner. 4. A.C. Ruebsam	
209	1248	Aransas Pass, Aransas and Copano Bays...	1-80,000	4. A. C. Ruebsam	
308	1186	Frenchman's Bay and Somes' Sound..........	1-40,000	2. R. F. Bartle. 3. H. C. Evang. 4. A. Petersen and E. H. Sipe.	
307	1265	Blue Hill and Union River Bays	1-40,000	1,2. H. C. Evans. 4. A. Petersen, R. F. Bartle, and E. H. Sipe. 2. R. F. Bartle. 4. J. G. Thompson	
308	1376	Approaches to Blue Hill Bay and Eggemoggin Reach.	1-40,000		
401d	1864	James River, No. 4, City Point to Kingland's Creek.	1-20,000	2. E. J. Enthoffer. 3. H. M. Knight...........	
4016	1678	James River, No. 5, Kingland's Creek to Richmond.	1-20,000	1, 2. J. Enthoffer. 2. E. J. Enthoffer	
621a	$\begin{aligned} & 1532 \\ & 1565 \end{aligned}$	San Francisoo Bay entrance. \qquad Alaska Cosst Pllot ohart, Cape Madge to Cape Commerell.	$\begin{array}{r} 1-40,000 \\ 1-510,720 \end{array}$	1,2. W. A. Thompson. 4. A. Petersen....... 4. A. C. Ruebsam	
		Ex. 29-14			

Plates completed, continued, or commenced during the fiscal year ending June 30, 1883-Continued.

$\begin{aligned} & \text { Cata } \\ & \text { logue } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Title.	Scale.	Engravers	Date of completion or issue.
		Continued-Continued.			
	1566	d laska Coast Pilot chart, Cape Commerell to Foint Walker.	1-510, 720	4. A. C. Ruebsam	
	1567	dlanka Coast Pilot chart, Point Walker to Swanson Bay.	1-510, 720	4. A. C. Ruebsam	
		commencers.			
102	1742	Seal Island te Petit Manan	1-80,000	1, 2. J. Enthoffer. 4. J. G. Thompson	
145	1725	Cape Hatteras	$1-80,000$	4. A. Petersen	
151	1695	Little River Tnlet and the coast of Long Bay	1-80,000	1, 2. J. Eathoffer. 2. W. A. Thompson. 4. E. A. Maedel, J. G. Thompson, and F. Courtenay.	
152	1696	Winyah Bay to Cape Romain, \&c., east part..	1-80,000	1, 2. A. Sengteller.	
180	1746	Cedar Keys to Dead Man's Bay	1-80,000	1, 2. H.C. Evans. 4. A. C. Ruebsam .	
212	1715	Mrazos Santiago, de	1-80, 000	1. E. J. Enthoffer. 2. J. Enthoffer. 4. A. Petersen, F. Courtenay, and A. C. Ruebsam.	
344	1716	Mononsoy Passage, Mass	1-40, 000	1, 2, 3. H. C. Evang. 4. F. Courtenay and A. C. Ruebsam.	
371 a	1713	Topographical map, West Point, N. Y.	1-4, 800	1, 2. H. Erans. 4. E. A. Maedel .	
4556	1704	Saint Johv's River, No. 3. Jacksonville to Hibernia.	1-40,000	J, 2, 3. R. F. Bartle. 4. F. Courtenay, E. A. Maedel, and J. G. Thompson.	
4550	1729	Saint John's River, No. 4, Hibernia to Racey's Point.	1-40,000	1, 2. I. F. Bartle. 4. E. A. Maedel and J. G. Thompson.	
$600 b$	1754	San Francisco to Cape Flattery.	1-1, 200, 000		
$600 a$	1755	San Diego to San Francisco.	1-1, 200, 000		
676	1741	San Francisen to Point Arena	1-200,000	1,2. W. A. Thompson.	
		new elitione.			
469	1736	Key Weat Harbor	1-50,000	4. H. C. Evans.	
628	1758	Suisun Bay	1-40, 000	4. T. Wasserbach.	
		Atlantic Coast Pilot riew:			
	171	Volume 1 , Monhegan Island from the east- ward.		Etching by J. R. Barker...........	
	1722	Volune 1, approaches'to Muscle Ridge Channel.		. .do	
	1721	Volume 1, Muscle Ridge Channel off Metinic Island.		do	
	1720	Yolume 1, entrance to Carver's Harbor, \&c..			
	1718	Volume 1, Muscle Ridge Channel and Rockland Harbor. do	
	1707	Volume 1, approaches to Saint George's River, $\& c$.		do	
	1703	Volume 1, approachee to John's Bay, \&c.		. ${ }^{\text {do }}$	
	1710	Volume 1, entrance to Sheepscot River, \&c...		. do	
	1711	Volume 1, approaches to Kennebec and Sheepscot Rivers.		. do	
	1698	Volume 1, Wood Island		do	
	1785	Volume 1, Cape Ann from eastward and northward.		do	
	1694	Volume 1, entrance to Salem by main channel, \&c.		.do	
	1702	Volume 3, Fort Washington, Potomac River..		do	
	1701	Volnme 4, entrance to North Edisto River, \&e.	do	
	1723	Volume 4, Beaufort, S.C.			
	1726	Volume 4, Tybee entrance, Tybee Roads, \&c..		do	
	1728	Volume 4, city of Savannsh and Thunderbolt.		do	
-	1732	Volame 4, Waseaw entrance, Ossabaw Sound, \&e.		...do ..	
	1733	Volume 4, Saint Catherine's Sonud, de			
	1735	Volume 4, Doboy and Altamaha Sounds, de.		...do	
	1737	Volume 4, Saint Simon's Sound and Brunswick Harbor, Ga.		. do ...	

Plates completed, continued, or commenced during the fiscal year ending June 30, 1883-Continued.

anNual report of the miscellantous division for the Year ending june 30,1 183.

> United States Coast and Geodetic Survey Office, Washington, D. C., August $1,1883$.

Dear Sir: I have the honor to submit herewith the annual report of this division for the year ending June 30, 1883 :

The work of the division has included, as heretofore, the correspondence with sale agents relating to the supply and sale of Charts, Coast Pilots, and Tide Tables; the purchase, custody, and issue of stationery; the printing and distribution of the blank forms, record books, \&e., used in the office and in the field-work, and of the annual reports and other publieations of the Survey; the supervision and care of the office buildings; the general charge of camp equipage, \&e.; the general direction of work in the carpenter-shop, and such other special duties as have been assigned from time to time by the Superintendent and the assistant in charge of office and topography.

Satisfactory progress was made during the year in the publication of the Annual Reports, which from a variety of cause had fallen far behind current dates, and those for the sears 1878,1879 , and 1880 were printed and distributed. The text of the Report for 1881 was also printed, but its issue before the close of the year was prevented by the failure of the contractor for the lithographing to furnish the sketches and illustrations.

There were received from the Public Printer during the year the following aggregates of publications of the Survey:

Copies.

Appendices to the Annual Reports (extra copies) . 10, 200

Atlantic Coast Pilot, Subdivisions 2, 4, 5, and 6 (second editions) 848
Deep-Sea Sounding and Dredging (reprint)....................... 374
A Treatise on Projections. 1,000
General Instructions for Hydrographic Work . 500
Summary of Report of Superintendent for 1882 500
A detailed statement concerning the foregoing publications is appended hereto.

Subdivision 15 of the Atlantic Coast Pilot was sent to press.
The usual distribution of the various publications of the Survey was made to the Departments of Government, and the sale agencies were regularly supplied with charts, the A tlantic Coast Pilot and its subdivisions, and the Tide Tables for the Atlantic and Pacific coasts. The Appendices to the Annual Reports, of which extra copies in pamphlet form have been published for free distribution, were furnished to all proper applicants. The Notices to Mariners were also distributed gratuitously, as soon as practicable after their publication.

Three thousand and seventy-six copies of the Annual Reports were distributed during the year; also 690 copies of the Atlantic Coast Pilot, including subdivisions.

Second editions of the following snbdivisions of the Atlantic Coast Pilot were published, viz: No. 2. "Frenchman's Bay to Isle au Haut;" No. 4. "White Head Island to Cape Small Point;" No. 5. "Cape Small Point to Cape Ann;" No. 6. "Cape Ann to Cohasset." The edition of "DeepSea Sounding and Dredging" having been exhansted, a reprint of that work, with the addition of a suphlementary chapter on improvements made in the apparatus used in deep-sea work, subsequent to the publication of the original, was brought out.

New editions of "General Instructions for Hydrographic Work," and of the "Catalogue of Charts," were also published.

There were received in the chart room, during the year, 31,527 sheets of charts, of which 24,720 were copper-plate impressions, and 6,757 were printed from stone. Twelve thousand five hundred and nine copies were issued to the several Departments of Government and to Senators and Representatives, and 16,612 copies were supplied to sale agents. The total distribution of charts during the year was 32,012 copies, being an increase of 2,963 copies over the preceding year. (See statement appeuded hereto.)

Mr. Hugo G. Eichholtz has continued in charge of the chart-room, and the issue of charts has been made under his immediate supervision.

The carpenter-work of the office, including the wood-work of instruments and their packing for transportation, the construction of frames, vats, \&c., for the laboratory, repairs of furniture, and repairs to the office buildings, dc., was done by Mr. A. Yeatman, assisted, as heretofore, by Messrs. G. F. Cox and G. W. Clarvoe.

Mr. R. T. Bassett has been in charge of the work in the map-mounting room, and the duties of janitor were performed br Mr. N. Y. Cavitt.

The fidelity and zeal displayed in the discharge of their duties by the messengers and laborers employed in the office deserve special commendation.

Yours, respectfully,

M. W. WINES, Chief of Miscellaneous Division.

R. D. Cutts, Esq., Assistant in Charge of Office and Topography.

List of the publications of the Coast and Geodetic Survey received from the Public Printer during the fiscal year ending June 30, 18`3.

Name of publication.	No. of copies.	Name of publication.	No. of copies.
Annual Report for 1878	1,306	Atlantic Coast Pilot, Subdivision 4-"White Heal Island to	200
Annnal Report for 1879	2,966	Cape Small Point' (second edition).	
Anmual Report for 1880	2,782	Atlantic Coast Piot, Subdivision 5-w"Cape Small Point to	200
Tide Tables, Atlantic const, for 1884	2,500	Cape Ann" (second edition).	
Tide Tables, Pacific coast, for 1884	2,000	Atlantic Coast Pilot, Subdivision 6-"Cape Ann to Cohasmet"	250
Catalogue of Charts (edition of 1883).	600	(second edition.)	
Atlantic Coast Pilot, Subdivision 2-"Frenchman's Bay to	198	Deep-Sea Sounding and Dredging (reprint)	374
Isle au Haut."		A Treatise on Projections.	1.000

List of the publications of the Coast and Geodetic Survey received from the Public Printer, de.-Cont'd.

Name of publication.	iNo. of copies.	Name of publication.	No. of copies.
General Instructions for Hydrographic	500	No. 18-"An attempt to solve the problem of the first landing	1,000
Summary of Report of Superinteudent for 1882 (8 vo, paper). . noficre to mariners.	500	place of Columbus in the New Wortd." No. 19-"An inquiry into the variation of the compass off the Bahama Islands at the time of the landfall of Co-	1,000
No.34-"Dangerous rock in eastern entrance to Fieher's Island Sound."	500	mbus in 1492.'	
No. 35-"Dangerous rocks in western part of Fisher's Island Sound, approaches to New London and Mystie, Harbors."	500	appendices to heport foh 1881. No. 6-"General index of scientitic papers contained in the annual reports of the United States Coast and Geo-	1,000
No. 36--'Sunken wreck in the track of vesselda along the New Jersey coast."	500	detie Survey from 1845 to 1880 , inclusive." No. 7-"Type forms of topography, Columbia River"	200
No. 37-"Wreck in the track of vessels alung the enst const of Fhorida."	500	No. 8-"Directions for measurement of terrestrial magnettism."	1,000
No. 38-"Discovery of a rock in Surge (er Southein) Narrows, Peril Strait, Southeast Alaska."	500.	No. $9-$ "Terrestrial magnetism. Collection of results for declination, dip, and intensity from olservations	500
No. 39- "W reek in the track of coasting vessels off Now Jersey." AYPENDICES TO REPORT FOR 1880.	500	made by the United States Coast and Geodetic Survey between 1833 and July, 1882." No. 10-" Meteorological researches (Part 3), barometric hyn-	500
No. 9-"Comparison of the surveys of the Delaware River in front of Philadelphia, 1843 and 1878."	300	sonetry and reduction of the barometer to the sea level."	
No. 13-"A treatise on the plane table and its use in topograpical surveying."	1,000	No.11-" Report on the ofster beds of the James River, Va., and of Tangier and Pocomoke Sounds. Maryland	500
No. 14-"Determination of time, longitude, latitude, and azimuth."	800	and Virginia." No. 12-"On the length of a nautical mile"	500
No. 15-"A review of varions projections for charts in connection with the polyconic projection used in the	300	No.13-"On a method of readily transferring the undergronnd terminal marks of a base line."	500
Coast and Geodetic Survey." No. 17-"An account of a perfected form of the contact-slide	300	Nos. 14, 15, 16, and 17 (bound together)-"Pendulum experiments."	500
base apparatne used in the Coast and Geodetic Survey."		No. 18-"Report on a new ruie for currents in Delaware Bay and River."	300

Report of charts received in and issucd from chart room during the fiscal year ending June 30, 1883.

To whon issued.	Number of sheets.			
	Recoived.	Issued.	On band.	
			July 1.	$\begin{aligned} & \text { June } 30, \\ & 1883 . \end{aligned}$
	31, 527		36,256	35,771
Executive Departments		10,601		
Senators and Representatives		1,908
Institutions..		841	
Foreign Governments		464		
Sale agents		16,612		
Miscellancous		1,586		
Totals	31, 527	32, 012	36, 256	35,771

archives. united states coast and geodetic survey office-annual report for the FISCAL FEAR ENDING JUNE 30, 1883.

Sir: In compliance with the regulations of the Survey, I herewith respectfully submit, in the following tabulated form, the annual report of the receipt and registry in the Archives of all original and duplicate records and computations, topographic and hydrographic sheets, and specimens of sea bottom turned into the office during the fiscal year ending June 30, 1883.

I.-Records and computations.

GEODETIC WORK.

ASTRONOMICAL WORK.

MAGNETIC WORK.

HYDROGRAPHIC WORK.

Observations for soundings	209	162		371
Observatious of angles	38	39	77
Descriptions of hydrographic signals	11	4	15
Specimenr of sea hottom	308			308
Tidal observations	94	70		170

II.-Topographic and hydrographic surveys.

By referring to the foregoing lists it will be found that there were registered in the Archives during the past fiscal year, 636 volumes of geodetic observations and computations; 151 volumes astronomical observations and computations; 38 volumes magnetic observations and computations; 633 volumes hydrographic observations; 308 specimens of sea bottom; 16 original topographic sheets, and 54 original hydrographic sheets, making an aggregate, in volumes, specimens, and sheets, combined, of 1,836 .

Respectfully sulmitted.
GORDON A. STEWART, Custodian.
Richard D. Cutts, Esq.,
Assistant in Oharge of Office and Topography.

REPORT OF WORK DONE IN THE INSTRUMEXT DIVISION DURING THE FEAR ENIING JUNE 30, 1883.

United States Coast and Geodetio Survey Office,
 Washington, June 30, 1883.

Dear Sir: I have the honor herewith to submit a report of work done in the instrument shop during the last fiscal year.

In addition to the usual routine work of keeping the records and superintending the repairing, adjusting, and sending out of instruments, a great part of my time was occupied with the dividing engine and in graduating a number of instruments. The tide-predicting machine was also fully finished, and it is now in perfect order and can be used at any time. During the year I perfected also a new method of closing level vials, an account of which appears in this report.

Of other special work done in the instrument shop, I mention the entire reconstruction, by Mr. John Clark, of Theodolite No. 10 (14 -inch Wurdemaun); its whole superstructure has been changed, a new graduation having been put on some time ago, and Assistant Granger prononnces it one of the best theodolites in the service.

The larger repeating theodolitis have nearly all received new tangent screws.
Mr. E. Eshleman, besides his regular work of getting instruments ready for the field, has reconstructed Theodolites Nos. 82 and 127. The former instrument had had a fall, and although badly injured, it was repaired so thoroughly that the officer who afterward used it pronounces it first class. The instrument received a latitude level and circle, and also a micrometer ere-piece, and is now adapted for time and latitude observations, and it was used on the boundary survey between Pennsylvania and West Virginia.

Mr. P. Vierbuchen overhauled the 4 -meter base-bars, and tested and adjusted meter-chains. He also reconstructed a number of the older protractors and commenced the making of 6 new ones.

Louis Fischer rendered valuable assistance to me while working on the dividing engine in taking micrometer readings. He also prepared the silver surfaces ready for graduations. The experimental work on the new machine for grinding fine levels antomatically was all done by him under my direction. A description of this machine will be submitted at an early day. An apparatus for testing micrometer screws, which proved of great utility, was also his work.
S. Kearnes was kept busy with overhauling all our heliotropes and making back-mirrors and plumb-bobs. He also made all the needed brass work for tripods and telemeters, besides repairing the drawing instruments and executing miscellaneous work called for by the office.

Yours, respectfully,

G. N. SAEGMULLER, Chief Mechanician.

R. D. Cutis, Esq., Assistant in Charge of Office and Topography.

Appendix No. 5.
REPORT OF THE HFDROGRAPHIC INSPLGTOR FOR THE YEAR ENDING JUNE 30, 188.

United States Coast and Geodetic Survey Office,
 Washington, August 1, 1883.

Sir: I have the honor to make the following report of hydrography under my charge for the fiscal year ending June, 1883.

The commencement of the year found the vessels situated as follows:
The steamer Blake, Commander J. R. Bartlett, U. S. N., at work-deep-sea soundings-off Montauk Point.

The steamer A. D. Bache, Lieut. Commander E. B. Thomas, U. S. N., at New York preparing for summer's work off New York entrance.

The steamer Gedney, Lieut. Commander W. H. Brownson, U. S. N., at New York preparing for summer's work off New York entrance.

The steamer Endeavor, Lieut. H. B. Mansfield, U. S. N., at work, Delaware River.
The schooner Eagre, Lieut. H. G. O. Colby, U. S. N., at work, coast of Maine.
The schooner Silliman, Lieut. E. M. Hughes, U. S. N., at New York preparing for summer's work, Long Island Sound.

The schooner Drift, Master J. C. Fremont, jr., U. S. N., at New York preparing for work, Long Island Sound.

The schooner Ready, Assistant H. L. Marindin, commanding, preparing for work in Delaware River.

On the Pacific coast:
The steamer Hassler, Lient. Commander H. E. Nichols, U. S. N., commanding, at work in Alaska waters.

The steamer McArthur, Lieut. W. T. Swinburne, U. S. N., commanding, at Mare Island preparing for summer's work.

The schooner Earnest, Lieut. Perry Garst, U. S. N., commanding, at Olympia, Washington Territory, preparing for summer's work.

All the remaining vessels of the Survey were laid up or under repairs.
The schooner Palinurus, however, was put in commission under command of Lieut. R. Clover, U. S. N., and during the summer was engaged in the survey of Long Island Sound; and the schooner G. M. Bache, under the command of Assistant J. S. Bradford, was engaged in Ooast Pilot work.

Commander Bartlett, after commencing the season in command of the steamer Blake, running a line of deep-sea soundings and temperatures from Nantucket to Bermuda, and thence to Cape Hatteras, was compelled to succumb to the great strain upou his system during over four years' command of the vessel, and was relieved October 1, 1882, by Lieut. Commander W. H. Brownson. who had previously been ordered by you to the vessel to become acquainted with the methods of carrying on the work.

Lieut. Commander Brownson's place as commanding officer of the steamer Gedney was filled by the transfer of Lieut. H. B. Mansfield from the cominand of the steamer Enileavor, and his place in turn was filled by the promotion of Lient. Hugo Osterhaus, the senior Assistant on board the Endeavor.
S. Ex. 29——15

After assuming command, Lieut. Commander Brownson, in the Blake, ran a line of deep-sea soundings to the eastward of Nantucket, and then returned to the southern coast of Long Island, continuing the work upon which the party was engaged at the commencement of the fiscal year.

Lieut. P. Garst's time having expired, he was relieved from duty in the Coast Survey on July 2,1882 , and the command of the schooner Earnest was given to Lieut. T. Dix Bolles, U. S. N., transferred from the steamer Hassler.

The various parties remained at work in the northern waters as long as the weather permitted, or until about November 1, when they prepared for the winter season in the sonthern waters. This time was taken to make some changes in the organization of the parties, necessitated by the expiration of the terms of service of some of the naval officers attached to the Survey.

Lient. Commander E. B. Thomas' very efficient service, first as commander of the steamer Endeavor and lastly' of the steamer Bache, having been completed, he was relieved by the Nary Department November 25, 1882, and the command of the latter vessel assumed, under your instructions, by Lieut. H. B. Mansfield, while the command of the Gedney devolved upon Lieut. E. M. Hughes.

Lieut. H. G. O. Colby, U. S. N., very much to the regret of this office, was, after over two years' service as chief of party in command of the schooner Eagre, withdrawn for regular naval duties and his place taken by Lieut. E. D. F. Heald, U. S. N.

Lient. Hugo Osterhaus's services were about the same time lost to the Survey by the expiration of his three years' service, and Lieut. John T. Sullivan, U. S. N., having been ordered to the Survey by the Navy Department, was assigned to the command of the steamer Endeavor in his place. The racancy in the command of the schooner Silliman, made by the transfer of Lient. E. M. Hughes to the Gedney, was filled by Lieut. F. A. Wilner, the senior Assistant on the Bache.

I will append to this report a complete list of the naval officers on Coast Survey service during the fiscal year, giving the dates of their attachment and detachment, with the names of those officers still on daty in the Survey. Also, a list of the vessels belonging to the work, their tonnage, \&c.

During the winter the ressels were engaged in surveys at the following points:
The Blake, in deep-sea somdings, between Bermuda and the Bahamas, and along the outside of the Bahama Banks.

The steamer A. D. Bache, during the earlier part of the season on the west coast of Florida, and later on the cast coast.

The steamer Gedney surveyed Galveston inner bar and continued the outside work from Galveston entrance to the eastward.

The steaner Endeavor, in the vicinity of Cape Romain, Sonth Carolina.
The steamer Hitchcock, in charge of Assistant F. W. Perkins, in Sabine Pass and Calcasieu River.

The steamer Barataria, in charge of Assistant C. H. Boyd, in the bayous of Louisiana, to the westward of the Jump.

The schooner Eagre, in the Saint John's River from Jacksonville to the bar.
The schooner Quick, in charge of Subassistant J. Hergesheimer, in the vicinity of Sarasota, Fla.

The schooner Silliman, at Cape Fear entrance, North Carolina, and later in Pamplico Sonnd.
The schooner Drift, engaged in obtaining current observations off the coast, from Cape Charles to Cape Florida.

The schooner Ready, in charge of Assistant O. H. Tittmann, in Key Biscayne Bay, Fla.
The sloop Steadfast, in charge of Assistant B. A. Colonna, in Indian River, Fla.
On the Pacific coast the steamer Hassler, having returned from Alaska about December 1, was preparing during the winter for a continuation of the important work on that coast as soon as the weather would permit, and sailed about the middle of April.

The steamer McArthur continued the survey of the coast of Oalifornia from Monterey southward.

The vessels actually at work continued until abont May 15 , when they were withdrawn to prepare for the summer season.

During the latter part of the fiscal year the following vessels were at work in northern waters: The Blake, off New York entrance;
The Arago, under command of Lieut. G. C. Hanus, in Delaware Bay;
The Scoresby, in charge of Assistant Charles Hosmer, at Hart and City Islands, Long Island Sound; and

The Palinurus, Lieut. A. V. Wadhams commanding, at Stonington, Conn.
All the other vessels were, at the close of the fiscal year, either laid up or were engaged in active preparation for commencing the summer season's work at an early date after July 1.

The results of the various surveys are given in the detailed reports of the chiefs of parties.

REPAIRS.

The very small appropriation at the disposal of the office in caring for a feet of twenty-five vessels, with nearly double the number in commission than there have been in previous years, has rendered it only possible to make the most important repairs. The machinery of the larger steamers (Blake, Bache, Gedney, Hassler, and McArthur) alone reguires a good share of the $\$ 30,000$ to keep it in order. Particularly is this the case on the western coast, where this class of work is very expensive.

The schooners, such as the Research, Drift, Palinurus, Ready, Brisk, Quick, \&c., being what are known as composite ressels, require to be stripped of their copper at about the end of five years (or the average age at which copper sheathing lasts), so that the iron bolts may be renewed where the fastenings have been loosened and galvanic action going on, yet nearly all the vessels are ten or twelve years old now, and the Silliman is the first one that bas been remetaled. This vessel, although one of the class having wooden frames, was found to require new metal before going south last year, and the result proved that in addition to the cost of replacing the metal (a matter of some $\$ 1,200$ or $\$ 1,500$) the expense was much increased by the number of bolts that were found corroded. This loosened the planks and the vessel had to be docked several times, stripping a good portion of her copper each time before she was made tight again. In this case, the work being done under contract, the expense of the additional labor was met by the contractors. This action between the copper and the iron having taken place in a wooden vessel much more expense is anticipated in remetaling the vessels with iron frames, where larger masses of irou are exposed to the galvanic action between the two substances.

While the usual allowance of $\$ 30,000$ for repairs of vessels is sufficient for the ordinary wear and tear of material, these and other causes make it necessary for me to submit for your consideration an additional estimate for the extraordinary exigencies of the service. During the year the steamer Arago has been supplied with new boilers. In taking the old ones out it was found that many sheets of her bottom plating were nearly eaten through, and twenty-one of them, covering a good portion of her bottom, had to be replaced. These extensive repairs have put her iron hull in very good condition, but the expenses ran up to such a sum that little or nothing conld be done to the wood-work, which is sadly in need of repairs, and when made the ressel will be in very good condition.

The steamer Blake has had only enough repairs to make her tide over another season, when, it is thought, a considerable anount of money will have to be expended upon her or the vessel put out of commission.

About five years ago the boilers of this vessel were reported as requiring replacing, but an examination made it advisable to put extensive repairs upon them which would carry her through two years' more service. Since that time they have been kept running, until now they have gotten to such a point that it is dangerous to run them except under a low, and not an economical, pressure of steam.

Her apper deck has in a like manner been patched up to await the removal of her boilers, when a good portion of it would have to be replaced anyway, and economy demands that this should be done at the same time. This will be a matter of $\$ 10,000$ or $\$ 12,000$, and if required to come out of the general appropriation leaves a very small proportion for the rest of the fleet.

The steamer Bache, in addition to incidental expenses, such as a new boat, new awnings. slight repairs to the machinery before starting south for the survey of the coast of Florida, returned in June requiring new braces and extensive patches on the boiler and other portions of the machinery,
and also a general overhauling. This, through the courtesy of the commandant of the New York navy-yard, has been doue for less than any outside contractor would do the work, and it is believed that a better job has been made than otherwise would have been done. The boiler of this vessel is beginning to show its age (over ten years), and within a short time will have to be replaced.

The steamer Hassler, as has already been mentioned, was compelled to have her repairs made in an expensive market on the Pacific coast, and the $\$ 5,000$ or $\$ 6,000$ expended upou her has allowed but little more than an extensive overhauling of the boilers, machinery, and hull to fit her for her long season's work in Alaskan waters; and it is thought the end of this season will find her boilers in such a condition as to make it unsafe for further demands to be made upon them.

In renewing the boilers of this vessel there will be required, as in the Blake, a new upper deck. This vessel was built of iron of $\frac{1}{4}$ inch thickness, in 1872 , and the question of sheathing her with wood, as was done in the case of the steamer Bache, will soon have to be taken up. Four inches of oak or Oregon fir over this iron would make her a most efficient vessel, of great streugth, and much more liable to escape serious injury in grounding (an accident that is very likely to occur to a surveying vessel). The iron bottom now compels docking the vessel once in six months at least, to clear the extensive growth of barnacles, grass, \&c.; in fact, after two months the speed of the vessel has been reduced to such an extent by fouling, that economy would demand docking to save the expense of coal wasted. Of course this would be unnecessary with the wooden sheathing covored with metal, and it is thought it would take only a few years to make up the difference in consumption of coal, docking expenses, \&c. It would seem very much to the interest of the Government to execute both of these extensive repairs at the same time.

The steamer Gedney has had during the year some general repairs to machinery and hull, new masts, new sails, and two new boats; has been fitted with a distiller for condensing fresh water for the crew, thereby benefiting the sanitary condition of the ship and saving much time usually required in replenishing the tanks. Steam heaters have been fitted throughout the vessel, which proved conducive both to the health of the crew and safety of the ship. This vessel, with the exception of her propeller and shoe, which have gradually become corroded by the galvanic action going on between its iron and the copper of the ressel's bottom, is in very good condition.

The McArthur's repairs have been slight during the year, and with the exception of some improvements to be made to the fittings of the vessel, such as a steam windlass, will probably be slight during the coming year.

The steamer Endeavor has had quite extensive repairs on the machinery, consisting of lining up shaft, new brasses, and new fittings required to an engine of old design and imperfect attachments. The lower part of her hull is in good condition, with the exception of the rudder, which is likely to require replacing at the end of this season. Some repairs may be anticipated upon the luull and rigging also.

The steamer Hitchcock was found to require some general repairs upon preparing for the last winter's work, such as a new stem, a number of new planks, repairs to stern-post, \&c. The vessel was fitted out quite inexpensively throughout by Lieutenant Flynne, who, with some old sails belonging to the Brisk, made new ones for this vessel, as well as fitting rigging, \&c., by the ship's crew. She is likely to require some slight repairs before taking the field again.

The schooner Eagre, formerly the yacht Mohawk, has had nearly a complete set of new sails during the year, and as far as they are concerned she is in good order, but her hull begins to show signs of weakness. A vessel of her size and build requires all her parts in good condition. Lientenant Heald reports that on the passage north from the Saint Joln's River, during a gale of wind, while she showed qualities that her officers and crew were compelled to admire, yet the indications were that some defect existed that could not be seen, since she leaked as much as twenty-four inches a day. Before subjecting her to so severe a strain again, it will be necessary to remove the old copper, calk the vessel, and put new metal on the bottom, and Lieutenant Heald reports that new decks will also be required. This is a matter of $\$ 5,000$ or $\$ 6,000$.

Besides these vessels, the steamer Barataria, schooners Earnest, Scoresby, Quick, G. M. Bache, Drift, Palinurus, Ready, and sloop Steadfast have been in commission and required more or less repairs, as indicated in the statement of the disbursing agent of amount of money expended on each vessel. The steamer Barataria is likely to require extensive repairs before again taking the
field. One of the two vessels, Palinurus or Ready, should be entirely remetalled this ycar, and one the next, until which time ther shoul t not be exposed to much outside weather.

The schooner Research, after replacing some rotten planking and fittings, with new sails and equipments, will be ready for such work as she is likely to be called upon for. The Yukon has been fitted out for harbor work only, but can stand the short passages she may have to make.

The following vessels have bean laid up during the whole year:
Stemer Fathomer, at Washington. Her machinery is of a peculiar type and could be put in order at a moderate expense, but the hull will require $\$ 1,000$ to $\$ 1,500$ to prepare her for inside work.

The schooner Brisk, at New Orleans. In attempting to fit this vessel out for service in the fall of 1882 , the estimates came to nearly as much as a new vessel wonld cost to put her into only fair order. I would recommend that she be sohd, as of no fortner use to the Survey. She is not. likely to bring more than $\$ 200$ when the equipuents that can be used elsewhere are removed from her.

In addition to these vessels the steam lamehes belonging to the Surver, fifteen in number, have bad more or less repairs. In this commection I desire to state that the service has derived much henefit from the use of four steam launches loaned to it through the chicf constructor of the Navy, as well as the facilities that have been constantly extended by the commandants of the several nary-yards for repairing vessels, de:

H:DRGGRAPIIO DIVISION.

The usual routine duties of the office have continued. The aids to navigation, as will be seen by the catalogue recently published, are indicated on the charts to the latest date. This part of the office duties has been under the direction of Lieut. J. E. Pillsbury, U. S. N., who brought to the office on his re-entry into the Survey in July, 1882, an experience in the handling of charts seldom had by one officer, and his system and zeal have enabled the office to keep our charts to the latest dates. I would call your attention to the hearty co-operation of the Light-House Board, through its secretaries, in informing this office at the earliest moment of changes or contemplated changes in aids to navigation. Upon authority being given by the Board to one of the light-house inspectors, in any way relating to aids to navigation, the Naval Secretary sends to this office a chart showing the proposed change or addition, and this office returns at once a fresh copy of the chart sent, in order that the files of the Board may be complete.

The plotting and preparation of the hydrographic sheets from the data sent in by the parties have been carried on in the usual efficient manner by Messrs. E. Willenbucher, W. C. Willenbucher, F. C. Donn, and since his assignment, by Mr. Charles Junken.

The latter, in addition to his regular work referred to in the report from the Drawing Division, was engaged in revising miscellaneous projections, verifying proofs of sailing charts, \&c., while the others were employed in making transfers and in the plotting of angles and soundings. I give a synopsis of the hydrography plotted by the Messrs. Willenbucher and by Mr. Donn.

Lient. Richardson Clover, since returning from field-work in January last, has been engaged upon the preparation of the second edition of the "Instructions for Hydrographic Parties," and from him I have received much assistance in the preparation of the plaus and specifications for the new steamer Patterson. Passed Assistant Engineer H. N. Stevenson, since his assignment
to Coast Survey duty in March, 1883 , has reudered valuable assistance in the steam engineering department of this vessel, preparing the plans for the boilers and engines, with what results the data which have received your approval will show.

Respectfully submitted.
C. M. CHESTER, Commander, United States Nacy, Hydrographic Inspector Coast Survey. J. E. Hilgard, Superintendent Coast and Geodetic Survey.

Errata in the report of the Hydrographic Tnspector for the fiscal year ending June 30, 188\%.
In Coast and Geodetic Survey Report for 1882-
Page 98, line 32, "steamer Eudeavor," should be "steamer Gedney."
Page 90 , lines 41 and 42 , the address "Genl. R. D. Cutts," \&c., should be "Prof. J. E. Hilgard, Superintendent Coast and Geodetic Survey."

Page 100, line 28, the name of "J. C. Fremont, jr.," should be omitted from the list of lieutenants.

Officers of the Nuvy on Coast Survey service during the fiscal year ending June 30, 1883.

Name and rank.	Date of attachment.	Remarks.	Nance and rank.	Date of attachnent.	Remarks.
commanders.			Exsigns-Continued.		
J. R. Bartlett.	Oct. 23, 1878	Detached November 1, 1882.	W. H. All	June 27, 1879	Detached June 27, 1883.
C. M. Chester.	Oct. 2,1877	Still in service.	E. M. Katz	Nov. 22, 1881	Still in service.
hieltenant-commani-			H. T. May	May 1,1879	Detached July 13, 188.
ERE.			John T. Newton.	Aug. 19, 1882	Still in service.
W. H. Brownson	Aug. 11, 1881	Still in service.	C. F. Pond	May 1,1879	Detached March 12, 1883.
H. E. Nichols	Jan. 22, 1879	Io.	L. I. Reypulds	July 13, 1882	Detached January 18, 1883.
E. B. Thomas	Oct. 8,1879	Detached November 25, 1882.	E. N. Fisher	Fel. 10, 1882	Still in service.
			T. D. Griffin	May 20, 1883	Do.
heltenants.			F. H. Sherman	Oct. 31, 1882	Do.
W. T. Swinburue	May 5, 1879	Detached May 24, 1883.	H. M. Weitzel	Feb. 10, 1882	Do.
John T. Sullivan	Nov. 21, 1882	Still in service.	O. G. Dotge	May 10, 1881	lo.
H. B. Manafield.	Feb. 28, 1881	bo.	J. M. Orchard	Feb. 10, 1882	Do.
E. D. F. Heald.	Mar. 23, 1882	Do.	J. N. Jordan	Jab. 25, 1881	Do.
Richardson Clover	Juty 26, 1881	Do.	J. P. Parker	Mar. 5, 1883	Do.
H. G. O. Colby	Oot. 7,1880	Detached December 20, 1882.	H.C. Wakensha	June 23, 1882	Do.
E. D. Tansaig	$\Delta \mathrm{pr}$ 30, 1803	Still in rervice.	A. F. Fechteler	June 24, 1882	Do.
J. E. Pillsbury	July 13, 1882	Do.	T. M. Brumby	Dec. 21, 1882	Do.
A. V. Wadhams	A pr. 18, 1883	Do.	S. E. Woodworth	June 9,1882	Detached April 19, 1883.
G. Blocklinger	Jan. 30, 1883	Do.	Alfred Jeftreys..	July 17,1882	Still in service.
Perry Garat.	Aug. 29, 1879	Detached July 17, 1882.	W. V. Bronaugh.	Aug. 12, 1881	Do.
T. Dix Bolles	Apr. 5, 1881	Still in service.	F. M. Bostwick	Sept. 38, 1881	Do.
E. M. Hughes.	June 22, 1882	Do.	W. M. Constaut	June 5,1882	Detached Norember 4, 1882.
Huge Onterhaus	July 31, 1879	Detached November 25, 1882.	A. L. Hall	May 1, 1883	Still in service.
F. M. Crosby	Nov. 17, 1882	Still in service.	J. H. Fillmore	Jan. 24, 1883	Do.
G. W. Mentz	dug. 19, 1879	Detacher Novarnber 23, 1882.	C. S. McClain.	Δ pr. 14, 1882	Do.
J. B. Milton.	Sept. 6,1882	Still in service.	Harry is. Knapp	July 6,1882	Do.
G. C. Hawas	Mar. 20.	Do.	P. P. Bibb	ov. 30, 1882	Do.
W. B. Elliott	Jan. 25, 1879	Do.	W.C. Canfield	Sept. 20, 1882	Do.
F. H. Lefavor ..	Sept. 6, 1882	Do.	W. P. Whit	Feb. 10, 1883	Do.
J. C. Fremont, jr	May 21, 1881	Do.	J. H. Hetherington	June 19, 1883	Do.
F. A. Wilner	Nov. -, 1880	Do.	R.P. Schwerin	May 3, 1883	Do.
Harry Morrell	Dec. 8, 1879	Detached June 14, 1883.	J. A. Dongherty	Oet 7,1882	Detached Jude 26, 1883.
H. F. Reich	May 1, 1879	Detached Octoler 16, 1882.	Harry Phelps.	June 30, 1882	Still in service.
Lucian Flymo	Mar. 7, 1881	Still in service.	F. W. Kellogg	Aug. 23, 1882	Do.
W. B. Cutter	Mar. 29, 1883	Do.	A. A. Ackerman	June 30, 1882	Detached Novernber 30, 1882.
C. Me. R. Winslow	Aug. 16, 1881	Do.	William Truxtun	July 3,1882	Still in service.
M. L. Wood	Sept. 19, 1878	Detached July 25, 1882.	I. S. Van Duser	Aug. 22, 1882	Do.
David Daniels	Apr. 21, 1882	Still in service.	E. Simpson, jr	Oct. 21, 1882	Do.
bebione.			E. F. Leiper	Apr. 26, 1883	Do.
F. W. Coffin	May 24, 1880	Detached February 22, 1883.	J.C. Drake	Dec. 18, 1882	Detached June 21, 1883.
W. B. Caperton	Nov. 11, 1880	Still in service.	T.G. Dewey	June 19, 1883	Still in service.

Offers of the Navy on Coast Survey service during the fiscal year ending June 30, 1883—Continued.

Name and rank.	Date of attachment.	Remarks.	Name and rank.	Date of attachment.	Remarks.
Ensigns-Continued. George R. French.....	May 4,1883	Still in service.	paymaster. W.J. Thomson	Dec. 18, 1880	Still in service
M. C. Gorgas	Oct. 26, 1882	Do.	ed amsistant en.		
Gny M. Brown	Dec. 26, 1882	Do.	ginters.		
PAgsED A8SIBTANT BURGEONS.			C. H. Greenleaf. John F. Binghanu.	Aug. 19, 1880 Mar. 4,1882	Detached May 28, 1883. Detached February 24, 1883
Eara Y. Derr	Sept. 7,1881	Still in service.	H. Main	May 29, 1883	Still in service.
D. O. Lewis.	Nov. 16, 1881	Detached June 6, 1883.	H. N. Stevenson .	Mar. 10, 1883	Do.
R. M. McCarty	Apr. 8,1881	Still in service.	G. H. Kearney......	Oct. 5,1881	Do.
S. W. Battle .	Nor. 17, 1881	Do.	R. W. Galt .-........	Nov. 26, 1879	Do.
H.C. Beyer.	May 31, 1882	Do.	Edgar T. Warburton.	Feb. 24, 1883	Do.
F.C. Dale	June 6,1883	Do.	R. I. Reid	June 9,1882	Do.
SUMMARY.					
Lientenant-commanders					
Lientenants					
Ensigus					
Passed assistant surgeons					
Paymaster....					
Passed assistant engincers					

Names of vessels, their tonnage, de., in the service of the Coast Survey during the fiscal year ending June 30, 1883.

No.	Name.	Tonnage.	Complement of -	
			Officers.	Mou.
1	Steamer Blake..	218	8	36
2	Steamer A. D. Baehe	186	7	33
3	Steamer Gedney .	133	7	29
4	Steamer Hassler.	243	9	34
5	Steamer Mcarthur	112	7	29
6	Steamer Arago .	38	3	15
7	Steamer Endeavor.	105	4	17
8	Steamer Barataria .	50	1	15
9	Steamer Hitchcock	83	3	15
10	Steamer Fathomer (laid up)	50		
1	Schooner'G. N. Bache.	46	2	10
2	Schooner Eagre..	202	4	18
3	Schooner Silliman	72	3	14
4	Schooner Drift.	87	4	14
5	Schooner Earnest .	80	2	12
6	Schooner Palinurus.	76	3	14
7	Schooner Ready	80	3	14
8	Schooner Scoreeby.	72	2	12
9	Schooner Quick..	38	2	14
10	Schooner Yukon (laid np).	78		
11	Schooner Brisk (laid up)..	38		
12	Schooner Research.	76	3	14
1	Sloop Steadfant	39	1	12
2	Sloop Kincheloe (laid up)	30		
1	Barge Beauty (civilian party)	28		

Whole number of vessels:	RECAPITULATION.
Steamers......	10
Sohooners	12
Sloops..	2
Barge	1
Total.	25
Nunber of vessels in active 21

Appendix No. 6.

DESCRIPTIVE CATALOGUE OF PUBLICATIONS RELATING TO THE COAST AND GEODETIC SURVEY AND TO STANDARD MEASURES.

Compiled by WDW ARD GOODFELLOW, Assistant.

CLASSINICATIUN.

I.-Annual Reports and other documents of the Unittd States Coast and Geodetic survey and Staudard Weights and Measures. 1807 to 1881.
II.-Weneral Index of Scientific Papers contained in the Aunnal Reports of the United States Coast and Geodetic Survey from 1845 to 18e0, inclusive. (Published as Appendix No. 6 to the Report for 1881.)
III.-List of Tide-Tables from the date of earliest publication in the Survey to the year 1×81.
IV.-Catalogue of Coast Pilots for the Atlantic and Pacific Coasts of the Linited States from the date of earliest pub. lication to the year 1881.
V.-Chart Catalogues. Catalogues of Maps and Charts published by the Survey between the years 1835 and 1881. VI.-Notices to Mariners.
VII.-Special publications.
I.

ANNUAL REPORTS AND OTHER DOCUMENTS OF THE U. S. COAST AND GEODETIC SCRIEY dND STANDARD WEIGHTS AND MEASURES. 1807 TO 1881.

U. S. Coast survey.

REPORTS AND OTHER DOCUMENTS.

Date.	Subject.	Number of pages and size.
1807.		
Fehruary 10	An act to provide for survesing the coast of the United States.	
March 25	Circular letter addressed by the Secretary of tho Treasury to F. R. Hassier, requesting that he would suggest the outlines of a plan for the surrey of the const-such as would unite correctness and practicability. [Transactions American Pbilosophichl Society. Vol. II. New series.]	2, quarto.
April 2	Letter of Mr. Hassler to the Secretary of the Treasury, transmitting a plan for puting into operation the survey of the coast of the United States. [Transactions American Philosophical Society, Vol. II. New series.]	13, quarte.
May 15. 1816.	Communication made to the Secretary of the Treasury by F. R. Massler, on the measues necessary to be taken to putinto immediate operation such portions of the work as could be undertaken during the coming season.	\cdots
June 11, 18; July 12; August $3,18$.	Correspondence with the Treasury Department and articles of engagement bet ween the Treasury Dejurtment of the United States and F. R. Hassier, relative to the survey of the coast of the Vnited States.	9, octavo.
Norember $23,30$.	First Report of F. R. Hassler, Superintendent of the Survey of the Coast of the United States, to the Secretary of the Treasury npon the progress of the work.	3, octavo.
April $9 . \begin{array}{r}1818 .\end{array}$	Letter of Mr. Hassler to the Secretary of the Treasury, discussing the objects of the survey of the coast and reviewing the progress of the work.	5, octavo.
S. Ex.	$29 \sim 16$ - 121	

REPORTS AND OTHER DOCTMENTS-Centinued.

*An act to repeal part of the act entitled "An act to previde for surveying the coasts of the United States." Approved April 14, 1818.

United States Coast Survey and Standard Weights and Measures.

ANNUAL REPORTS.
Frrdinand R. Hassler, Superintendent.

Nove.-The reports and other papers named in the preceding list, beginning with June, 1816, have been collected and bound together in two octavo volumes, which are deposited in the Coast Survey archives. The titles of these volumes are: "Principal Doraments relating to the Survey of the Coast of the United States since 1816. Publighed by F. R. Hassler, Superintendent of the Survey, 1834;" aud "Coast Survey Weight and Measure Documents, 1832 to 1843."

* Report in regard to progress and expenditnres.
\dagger Reports of select committee of the House of Representatives upon progress and expenditure in the Coast Surrea.
! Last report of F. R. Hassler, as Superintendent of the Coast Survey, transmittod January 29, 184, by the Secretary of the Treasury to Congress.

United States Coast Survey.
ANNUAL REPORTS.
Alexander Dallas bache, Superintendent.

Report for year ending-	Number of pages and size.	Number of appendices.	Number of illustrations.	Designation as a public document.
Nov., 1844	22, octavo		4	Twenty-eighth Congreas, secoud seasion, No. 25, House of Kepresent-atives-Treasury Department.
1845	44, octavo	4	3	Twenty-ninth Congress, first session, No. 38, House of RepresentativesTreasury Department.
$\begin{array}{r}1846 \\ \hline 0.6\end{array}$	74, oclavo	11	9	Twenty-ninth Congress, secoud session, No. 6, House of Represent-atives-Treasury, Department.
Oct., 1847..	88, octavo	18	11	Thirtioth Congress, first session, Senate, Executive No. 6.
Nov., 1848	120, oetavo	19	16	Thirtieth Congress, second session, Senate, Executive No. 1.
1849	88, octave	20	16	Thirty-first Congress, first session, Senate, Executive No. 5.
1850.	134, octavo.	37	27	Thirty-first Congress, second session, Honse of Representatives, Executive Document No. 12.
1851.	559, octavo.	57	58	Thirty second Congress, first session, Senate, Executive Decument No. 3.
1852.........	173, quarto	52	37	Thirty-second Congress, second session, House of Representatives, Executive No. 64.
Oct., 1853.	186, quarto.	58	54	Thirty-third Congress, first session, Senate, Executive No. 14.
1854.	288, quarto..	73	58	Thirty-third Congress, second session, House of Representativen, Ex. ecutive Document No. 20.
1855. 1856	420, quarto...	86	60	Thirty-fourth Congress, first session, House of Representatives, Executive Docament No. 6.
1856.	358, quarto.	86	67	Thirty fourth Congress, third session, Senste, Executive Document No. 19.

Report for year ending-	Number of pages and size.	Nimber of appendices	Number of illastrations.	Desiguation as a public document.
Oct., 1857.	448, quarto.	65	72	Thirty-fifth Congress, first session, Senate, Executive Document No. 33.
1858.	464, yuarto.	50	40	Thirty-fifth Congress, second session, Semate, Executive Document No. 14.
1859.	371, guarto.	43	40	Thirty-sisth Congress, first session, House of Representatives, Executive Document No. 41.
1800.	409, quarto.	45	30	Thirtr-sixth Congress, second session, Senate, Executive Docmment.
1861.	270, quarto...	34	31	Thirty-sevemth Congress, second session, Sewate, Executive Dochment.
1862.	434, quarto.	40	41	Thirty-seventh Congress, third session, Honse of Representatives. Es. ecutive Document No. 70.
1863.	218, quarto..	29	30	Thirty-eighth Congress, first session, Senate, Execntive Ducument.
1864	315, quarto..	24	39	Thirty-eighth Congresk, second session, Senate.

Julics E. Higgard, Acting Superintendent.

Benjamin Peirce, Superintendent.

Carlile P. Patterson, Superintendent.

June, 1874	242 quarto	18	24	Forty-third Congress, second session, House of Representatives, Execative Docmment No. 100.
1875	412, quarto.......	20	37	Forty-fourth Congress, first session, House of Representatives, Execative Document No. 81.
1876.	410, quarto.	23	37	Forty-fourth Congress, second session, Senate, Executive Document No. 37.
1877.	102, quarto........	15	25	Forty-fifth Congreas, second sessiou, Genate, Executive Ducument No. 12.

United States Coast and Geodetic Survey.

Note - At the date of publication of this Descriptive Catalogue the reports for the fears onding Iune 30,1881 and 1882, J. E. Hheard Superintendent, have been published.

United States Standard Weights and Measures.

REPORTS AND OTIIER DOCUMENTS.

[^0]
REPORTS AND OTHER DOCUMENTS-Continued.

\begin{tabular}{|c|c|c|}
\hline Date. \& Subject. \& Number of pages and size. \\
\hline \begin{tabular}{l}
1843 and 1844. \\
Nov. 12, 1843, and Jan. \(30,1844\).
\end{tabular} \& \begin{tabular}{l}
Report of F. R. Haskler, as superintendent of the construction of standards of weight and measure npon the progress of the works in the construction of standards since December, 1842. Report transmitted to Congress by the Secretary of the Treasury after the death of Mr. Hassler, together with a tabular statement of the work executed for the system of uniform standards for the United States from the beginning of the year 1836 to June, 1842, with their state at that epoch, and the additions made until November, 1843. Six illustrations. \\
[Document No. 94, House of Representatives, Twenty-eighth Congress, first session.]
\end{tabular} \& 31, ootavo. \\
\hline 1845.
Feb. 26, \(27 \ldots \ldots \ldots\)
1846. \& \begin{tabular}{l}
Report of Alexander Dallas Bache, Superintendent, on the construction of standard weights, measures, and balances, for the year 1844. \\
[Senate Document 149, Twenty-eighth Congress, second session.]
\end{tabular} \& 32, octavo. \\
\hline Ajr. 25, Ang. 7 \& \begin{tabular}{l}
Report upon the progress made in the construction of standard weights, measnres, and halances, in the year 1845, under the superintendence of \(A\). D. Bache. \\
[Senate Dqcument 483, Twenty-ninth Congress, first session.]
\end{tabular} \& 23, octavo. \\
\hline 1848.
July 30, Aug. 12

8851. \& | Report to the Treasury Department, by A. D. Bache, on the progress of the work of constructing standards of weights and measures, and balances, in the years 1846 and 1847. Four illustrations. |
| :--- |
| [Senate Executive No. 73, Thirtieth Congress, first session.] | \& 29, octavo.

\hline Fels. 7, $10 \ldots \ldots$. \& | Letter from A. D. Bache, Superintendent of Weights and Measures, communicating a report of the computation of a manual of tables to be used with the hydrometers recently adopted in the United States custom-honses. With six illnstrations. |
| :--- |
| [Senate Executive Document28, Thirty-first Congrees, recond session.] | \& 168, octavo.

\hline Dee. $31 . \ldots$. \& | Report to the Treasury Department of progress made under the superintendence of Alexander D. Bache, in the constraction and distribution of standards of weights and measures, and supply of hydrometers to custom houses; also of balances made and distributed to the States, and the laws severally enacted therein relative to standard weights and measures from the 1st of January, 1848, to the 31st of December, 1856. Six illustrations. |
| :--- |
| [Senate Executive Document 27, Thirty-fourth Congress, third session.] | \& 218, octavo.

\hline November 15.
1876. \& Report by Beujamin Peiree, Superintendent of Standard Weights and Measures, to the Secretary of the Treasury, upon the progress made in the construction of metric standards of length, weight, and capacity, in pursuance of a joint resolution of Congress of July 27, 1866. \& 4, octavo.

\hline March 1..... \& | Papers relating to metric standards distributed to the States of the Union under a joint resolution of Congress of July 27, 1866, including a description of the metric standards, with directions for their use, by J. E. Hilgard, inspector United States standard weights and measures. |
| :--- |
| The relation of the lawful standards of measure of the United States to those of Great Britain and France; J. E. Hilgard. (Published as Appendix No. 22 to United States Coast Survey Report for 1876.$)$ | \& 6, octaro.

5, quarto.

\hline 1877. \& Comparison of American and British standard yards: J. E. Hilgard. (Published as Appendix No. 12 to United States Coast Survey Report for 1877.) \& 33, quarto.

\hline March 21, 23, 28. \& | Letters of C. P. Fatterson, Superintendent Coast Survey, and of J. E. Hilgard, Assistant Coast Sur vey and Inspector United States Standard Weights and Measures, in relation to the proposition for making the use of the metrical system of weights and measures obligatory in all governmental and individual transactions, embodied, with other statements, in a communication from the Secretary of the Treasury, in response to a rebolution of the House of Representatives. |
| :--- |
| [Executive Docnment No. 71, House of Representatives, Forty-fifth Congress, second session.] | \& 7, octavo.

37, octavo.

\hline May 8, $18 \ldots \ldots$ \& | Statement of J. E. Hilgard, inspector United States standard weights and measures, before the Committee on Coinage, Weights, and Measures of the House of Representatives, concerning the standard weights and meanures of the United States. |
| :--- |
| [Mis. Doc. No. 61, House of Representatives, Forty-fifth Congress, second session.] | \& 12, actavo.

\hline
\end{tabular}

GENERAL INDEX OF SCIENTIFIC JAPERS CONTAINED IN THE ANNTAL TEPORTS of THE UNITED STATES COAST AND GEODETIC SURFEY FROM 1845 TO 1880 INCLUSIVE.

The General Index referred to in this title was published as Appendix No. 6 to the Report for 1831.
A large edition of this Appendix having been printed separately from the report, copies of it will be available for distribntion for some years to come. It has not been deemed advisable therefore to reprint it here. In the pages immediately following is given a list, properly classified, of Appendices to the Reports for the years 1881, 1882, and 1883.

CLASSIFIED INDEX OF APPENDICES TO THE REPORTS FOR 1881, 1882, 188. -SU13.JECTS:
Geodesy :-Gravity; Base Lines and Standards of Length; Triangulation and Instruments; Time.
Hypsometry:-Spirit-leveling.
Surveying :-Topography; Hydrography.
Physical Hydrografhy:-Tides, Currents, and Winds; Deep-sea Sonndings and Temperatures.
Tfrrestrial Magnetism.
Astronomy.
Special.
Statistics.
(HODSSY.
ghavity.

Year.	Appendix.	Pages.	Subject and anthor.
1881.	14	359-441	On the flexure of pendnlum nupports. By C.S. Peirce. Assistant.
1881.	15	442-456	On the deduction of the ellipticity of the earth, from pendulum experiments. By C. S. Peirce, Assistant.
1881..	16	457-460	On a method of obserring the coincidence of vibrations of two pendulums. By C. S. Peirce, Assistant.
1881.	17	461-463	On the value of gravity at Paris. By C. S. Peirce, Aspistant.
1882.	22	503-516	Report of a conference on gravity determinatione, lield at Washington, D. C., in May, 1882.
1883.	17		Determinations of grarity and other observations made in connection with the Solar Eclipse Expedition, May, 1883, to Caroline Island. A report by E. D. Preston.
1883.	19		Determinations of gravity at Alleghany, Ebensburgh, and York, Pa, By C. S. Peiroe, Assistant.

base-Lines and standardo of lengta.

TRIANGULATION AND INSTREMENTS.

	9 10	$\begin{aligned} & 151-197 \\ & 109-208 \end{aligned}$	Field-work of the triangulation, third edition; R. D. Cutts, Assistant. On the construction of observing tripeds and scaffolds. C. O. Boutelle, Aseistant.
	TIME.		
1883.	18		Field catalogue of 1278 time and ciroumpolar stars; mean places for 1885. 0. By George Davidson, Assistant.

ASTRONOMY.

Year.	Appendix.	Pages.	Subject and author.
1882.	20	463-468	The total solar eclipse of January 11, 1880, as observed at Santa Lucia, Cal. By George David. son, Assistant.
1882	21	469-502	A new reduction of La Caille's obscrvations of fundamental stars in the southern heavens, 1749-1757. By C. A. Powalky.
1883.	15		The transit of Mercury of November 7, 1881, as observed at Yolo base, Cal. By George Davidson and J. J. Gilbert, Assistants.
1883	16		Observations of the trausit of Venus of December 6, 1882, at Washington, D.C.; at Tepusquet Station, Cal. ; and at Lehmam's Ranch, Nev.
SPMCIAL.			
1882	24	5,5-363	Tribute to the memory of Carlile P. Patterson, Superintendent of the Coast and Geodetic Surrey from 1874 to 1881.
STATISTICS.			
1881	1	67-72	Distribution of surveying parties upon the A tlantic, Gulf of Mexico, and Pacife coasty and interior of the United States during the year ending June 30, 1881.
188:	1	71-76	The sante, 1881-1882.
1883.	1		The same, 1862-1883.
1881.	2	73-74	Statistics of field and oftice work of the United States Coast and Geodetic Survey for the year ending December 31, 1880.
1882.	2	77-78	The same for the eighteen montlis ending June 30, 1882.
1883	2		Tho same for the year ending June 30, 1883.
1881.	3	75-80	Information furnished from the Coast and Geodetic Survey Office from original sheets, transcripts, records, \&c., in reply to special calls daring the year ending June $30,188 \mathrm{~L}$.
1882.	3	70-84	Information furnished from the Coast and Geodetic Survey Office in reply to special calls during the year ending June 30, 1882.
1883	3		The same, 1883.
1881.	4	81-83	Drawing Division.-Charts completed or in progress during the fear ending June 30, 1881.
1882	4	85-86	The same, 1882.
1881.	5	84-90	Engraving Division.-_Platos completed, continued, or commenced during the year ending June 30, 1881.
1882.	5	87-93	The same, 1882.
1881.	6	91-123	General index of scientific papers, methods, and results contained in the appendices to the annual reports of the United States Coast and Geodetic Surver, from 1845 to 1880 , inclusive. Compiled by C. H. Sinclair, Subassistant.
1882.	6	95-106	Office reports for the fiscal year ending June 30, 1882.
1883.	4		Report of the Assistant in charge of the office and topography for the fiscal year ending June 30,1883.
1883.	5		Report of the Hydrographic Inspector for the fiscal year onding June 30, 1883.
1883.	6		Descriptire catalogue of publications relating to the Coast and Geodetic Survey and to standard measures. Compiled by Edward Goodfellow, Assistant.

III.

LIST OF TIDE TABLES FROM THE DATE OF EARLIEST PUBLICATION IN THE SURIEY TO THE YEAR 1881. United States Coast Survey.

Toar of publication.	Description',	No. of pages and size.	Mode of publication.
1854.	Tide tables for the United States; prepared from the Coast Sur-	4, quarto..	Appendix No. 26, report for 1853.
1855.	Tide tables for the coast of the United States	10, guarto.	Appendix No. 51, report for 1854.
1856.	Tide tables for the use of navigators; prepared from the Coast Surrey observations by A. D. Bache, Superintendent.	12, quarto..	Appendix No. 53, report for 1855.
1856.do ..	14, quarto..	Appendix No. 17, report for 1856.
1858	.do	21, quarto..	Appendix No. 20, report for 1857.
1859.	.do	22, quarto..	Appendix No. 43, report for 1858.
1860.	. .do	32, quarto.	Appendix No.14, report for 1859.
1861.	...do	34, quarto..	Appendix No. 16, report for 1860.
1862	..do	34, quarto..	Appendix No. 9, report for 1861 .
1864	do	34, quarto.	Appendix No. 8, report for 1862.
1864.	do	34, quarto.	Appendix No. 12, report for 1863.
1866	...do	33, quarto..	Appendix No. 8, report for 1864.
S. Ex. 29 -17			

TIDE TABLES FROM THE DATE OF EARLIEST PUBLICATION, fc.-Continued.

Year of pablication.	Description.	No. of pages and size.	Mode of pablication.
1860..........	Tide tables for the Atlantic Coast of the United States for the jear 1867.	101, 12mo...	Pamphlet [Government Printing Office].
1860...........	Tide tables for the Pacific Coast of the United States for the year 1867.	32,12mo....	Do.
1867	Tide tables for the Atlantic Coast of the United States for the year 1868	109, 12mo....	Do.
1867.	Tide tables for the Pacific Coast of the United States for the year 1868.	58, 12mo....	Do.
1868.	Tide tables for the A tlantic Coast of the United States for the јеат 1869.	110,12mo....	Do.
1868..........	Tide tables for the Pacific Coast of the United States for the year 1869.	58,12mo....	Do.
1869.	Tide tables for the Atlantic Coast of the Onited States for the уеаг 1870.	111, 12mo....	Do.
1869..	Tide tables for the Pacific Coast of the United States for the year 1870.	59,12mo....	Do.
1870..........	Tide tables for the Atlantic Coast of the United States for the уеаг 1871.	112, 12mo....	Do.
1870.	Tide tables for the Pacific Coast of the United States for the year 1871.	59, 12mo....	Do.
$18 \% 1$.	Tide tables for the Atlantic Coast of the United States for the year 1872.	119, 12mo....	Do.
1871..	Tide tables for the Pacific Coast of the United States for the year 1872.	59,12mo....	Do.
1874.	Tide tables for the Atlantic Coast of the United States for the уеar 1873.	121, 12mo....	Do.
1872....	Tide tables for the Pacific Coast of the United States for the year 1873.	60, 12mo....	Do.
1873..	Tide tables for the Atlantic Coast of the United States for the year 1874.	122, $12 \mathrm{mo} \ldots$.	Do.
1873..	Tide tables for the Pacific Coast of the United States for the year 1874.	60,12mo....	Do.
1874.	Tide tables for the Atlantic Coast of the United States for the year 1875.	122, $12 \mathrm{mo} \ldots$.	Do.
1874.	Tide tables for the Pacific Coast of the United States for the year 1875.	61, 12mo....	10.
1875	Tide tables for the Atlantic Coast of the United States for the year 1876.	109, 12mo....	Do.
1875..	Tide tables for the Paciffc Coast of the United States for the year 1876.	61 12mo....	Do.
1876..	Tide tables for the Atlantic Coast of the United States for the year 1877.	124, 12mo....	Do.
1876..	Tide tables for the Pacific Coast of the United States for the year 1877.	61, 12mo....	Do.
1877.......	Tide tables for the Atlantic Coast of the United States for the year 1878.	124, 12mo....	Do.
$1877 .$	Tide tables for the Pacific Coast of the United States for the year 1878.	$61,12 \mathrm{mo} . .$.	Do.
1878	Tide tables for the Athntic Coast of the United States for the year 1870.	128,12mo....	Do.
1878........	Tide tables for the Pacific Coast of the United States for the year 1879.	65, 12mo....	Do.

United States Coast and Grodetic Survey.

1879	Tide tables for the Atlantic Coast of the United States for the year 1880.	129,12mo...	Pamphet [Government lrintiag Office].
1879.........	Tide tables for the Pacific Coast of the United Staten for the year 1880.	65, 12mo....	Do.
1880...	Tide tables for the Atlantic Coast of the United States for the year 1881.	129, 12mo....	Do.
1880	Tide tablee for the Pacific Coast of the United States for the year 1881.	65,12mo...	Do.

IV.

catalogue of coast pilots for the atlantic and pacific coasts of the united states FROM THE D.ATE OF EALLIEST I'UBLICATION BY THE COAST SURVEY TO THE YEAR 1881.

United States Coast Survey.

Year of publication.	Title.	No. of pages and size.	No. of charts, views, \&c.	Mode of publication.
1859..........	Directory for the Pacific Coast of the United States, reported to the Superintendent of the United States Coast Survey by George Davidson. Assistant. (First edition.)	162, quarto ..		Coast Survey report. 1858. Appendix 44.
1864	The same. (Second edition)	163, quarto		Coast Survey report, 1862. Appendix 39.
1869..........	Pacific Coast. Coast Pilot of California, Oregon, and Washington Territory. By George Davidson, Assist. ant, Coast Survey.	262, quarto . .	33	1 volume, Government Printing Office, 1809.
1869...........	Pacific Coast. Coast Pilot of Alaska. (First part.) From southern boundary to Cook's Inlet. By George Davidson, A asistant, Coast Survey.	251, omarto..	8	1 volume, Government Printing Othice, 1869.
1875...........	Coast Pilot for the Atlantic sea board. Gulf of Maine and its coast from Eastport to Boston. 1874. By J. S. Bradford ${ }_{4}$ Assistant.	960, quarto..	12	1 volume, Government Priuting Oftice, 1875.
1878	A tlantic Const Pilot. Boston Bay 10 New York	628. guarto..	55	1 volume, Government Printing Office, 1878.
1879.	Atlantic Coast Pilot. Boston Bay to Monomoy.	92, quarto..	4	1 volume, Government Printing Office, 1879.
1879.	Atlantic Coast Pilot. Nantucket and Vineyard Sounds.	107, quarto ..-	7	1 volnme, Government Printing Office, 1879.
1879.	Atlantic Coast Pilot. Buzzard's and Narragansett Bays.	122, quarto . .	4	1 volume, Government Printing Ofice, 1879.
1879.	Atlantic Coast Pilot. Block Island and Fisher's Island Sounds, Gardiner's and Peconic Bays.	66, quarto ..	4	1 volume. Govermment Printing Oftice, 1879.
1879...........	Athantic Coast Pilot. Long Island Sound and East River.	86, quarto ..	6	1 volume, Gorernment Printing Office, 1870.
1879.	Atlantic Coast Pilot. Harbors in Long Island Sound...	112, quarto ..	4	1 volume, Government Printing Office, 1879.
1879.	Atlantic Coast Pilot. South coast of Long Island, New York Bay, and Hudson River.	90, quarto..	29	1 volume, Government Printing Office, 1879.
	Note.-The seven volumes above named, published early in the year 1878, comprise a series intended to meet local wants, and are all contained in the one volume of the A tlantic Coast Pilot for 1878, compiled and verified by J. S. Bradford, Assistant.			"

United States Coast and Geodetic Survey.

1879..	A tlantic Coast Pilot. Division A. Eastport to Boston. (Second edition.)	694, guarto..	56	1 volume, Government Printing Office, 1879.
1879.	Atlantic Local Coast Pilot. Subdivision 1. Paesamaquoddy Bay to Schoodic.	115, guarto . .	10	1 volume, Government Printing Office, 1879.
1879.	Atlantic Local Coast Pilot. Subdivision 2. Frenchman's Bay to Isle-au-haut.	190, quarto.	7	1 volume, Government Printing Office, 1870.
1879.	Athantic Local Coast Pilot. Suldivision 3. Penobscot Bay and tributaries. (First edition.)	121, quarto.	18	1 volume, Government Printing Office, 1879.
1879	Atlantic Local Coast Pilot. Subdiviaion 4. White Head Island to Cape Small Point.	126, quarto . .	6	1 volume, Government Printing Office, 1870.
1879.	A tlantic Local Coast Pilot. Subdivision 5. Cape Small Point to Cape Ann.	141, quarto .-	10	1 volume, Government Printing Office, 1879.
1879.	Atlantic Local Coast Pilot. Subdivision 6. Cape Ann to Cohasset. Notr.-The six volumes of the Atlantic Loonl Coast Pilot named above and published about the middle of the year 1879 appear as separate parts of the large volume "Atlantic Coast Pilot, Division A, Eastport to Boston" (second edition), compiled by J. S. Bradford, Assigtant.	107, quarto ..	5	1 volume, Government Printing Office, 1879.
1879..........	Pacific Conat Pilot. Coast and islands of Alaska. Second series. Appendix 1. Meteorology and bibliography. By W. H. Dall, Assistant.	375, quarto ..	27	1 volume, Government Printing Office, 1879.

CATALOGUE OF COAST PILOTS FOR THE ATLANTIC AND PACIFIC COASTS, de.-Continued.

Year of phllication.	Title.	No. of pages and size.	No. of charts, views, \&e.	Mode of publication.
1880.....	Atlantic Coast Pilot. Division B. Boston to New York. (Second edition.)	675, quarto..	53	1 volume, Government lrinting Office, 1880.
1880	Athantic Local Coast Pilot. Subdivision 7. Boston to Monomos.	86, quarto...	5	I volnme, Govermment Printing Office, 1880.
1880..........	Atlantic Local Coast Pilot. Subdirision 8. Nantacket and Vineyard Sounds.	110, quarto..	9	1 volume, Government Printing Oftice, 1880.
1880.	Atlantic Local Coast Pilot. Subdivision 9. Buzzard's and Narmagansett Bays.	131, quarto.	5	1 volume, Government. Printing Oftice, 1880.
1880..........	Atlantic Local Coast Pilot. Subdivision 10. Bloek Island and Fisher's Island Sounds; Gardiner's and Peconie Bays.	70, quarta...	5	1 volume, Goverument Printing Olice, 1880.
1880..	Atlantic Local Coast Pilot. Subdivision 11. Long Inland Sound and East River.	99, quarto...	c	1 volume, Government Printing Oftice, 1880.
1880..	Atdantic Local Coast Pilot. Subdivision 12. Harbors in Long Islamd Sound.	126, quarto..	4	1 volume, Goverument I'rinting Onice, 1880.
1880.	Athantic Local Coast Pilot. Subdivision 13. South Coast of Long Island, New York Bay, and Hudson River. Note.-The volumes of the Atlantic Local Coast Pilot numbered as Suldivisions 7 to 13 inclusive, and ennmerated as above, appear as separate parts of the large volume Atlantic Coast Pilot, Division B, Boston to New York (second edition), and like that volnme were compiled and prepared for publication by J. S. Bradford. Assistant.	95, quarto...	21	1 volume, Government Printing Office, 1880.

V.

CATALOGUES OF MAIS AND CHARTS PUBLISHED BY THE COAST AND GEODETIC SURVEY BETWEEN THE FEARS 1835 AND 1881.

United States Coast Survey.

cataloget of MAPS $A N D$ CHARTS, fe.-Continued.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Dates of ppres \& blication. \& \multirow[t]{2}{*}{Title of catalogue.} \& \multirow[t]{2}{*}{No. of pages and size.} \& \multirow[t]{2}{*}{No. of maps and charts} \& \multirow[t]{2}{*}{Mode of publication.}

\hline Catalogue. \& Charts. \& \& \& \&

\hline 1854 \& 1842-1853.. \& List of Coast Survey maps, sketches, and preliminary charts. \& 2, quarto.. \& 129 \& Thirty-third Congress, tirst session, Executive 14, Senate. (Report of Superintendent Coast Survey for 1853. Appendix 5.)

\hline 1855... \& 1842-1854. \& .do \& 3, quarto.... \& 147 \& Thirty-third Congress, second session. Execn tive 20, House of Representatices. (Report of Superintendent Coast Survay for 1854. Appendix 31.)

\hline 1850 \& 1842-1855. \& . ${ }^{\text {do }}$ \& 4, quarto.... \& 192 \& Thirty-fourth Congress, first session, Fxecaltive 6. House of Representatives. (Report of Superintendent Coast Survey for 1855. Appendix 36.)

\hline 1856 \& 1842-1856 . \& List of Const Survey maps, preliminary charts, and sketches, engraved, geographically arranged. \& 5, quarto.... \& 221 \& Thirty-fourth Congress, third session, Executive 12, Senate. (Report of Superintendent Coast Survey for 1856 . Appendix 19.)

\hline 1858. \& 1842-1857. \& \& 6, quarto.... \& 240 \& Thirty-filth Congress, first Bession, Executive 33, Senate. (Report of Superintendent Coast Survey for 1857. Appendix 22.)

\hline 1859.. \& 1842-1858.. \& List of Coast Surver mapa, preiminary charts, and sketches, engravel, geographically arranged. \& 6, quarto.... \& 260 \& Thirty-fifth Congress, second session, Executivo 14, Senate. (Ruport of S"perintendent Coast Survey for 1858. A preadix 19.)

\hline 1860. \& 1842-1850. \& do \& 6, quarto.... \& 268 \& Thirty-sixth Congress, first nession, Executive 41. House of Representatives. (Report if Superintendent Coast Surrey for 1859. Ap. pendis 17.)

\hline 1861. \& 1842-1860.. \& . .do \& 6, quarto.... \& 278 \& Thirty-sixth Congress, second session, Executiro -, Senate. (Report of Superintendent Coast Survey for 1860. A ppendix 19.)

\hline 1862. \& 1843-1861.. \& . do \& 6, quarto.... \& 290 \& Thirty-seventh Congress, second session, Executire - Senate. (Report of Superintend ent Coast Survey for 1861. Appendix 12.)

\hline 1803... \& 1846-1803.. \& Catalogue of hydrographic maps, charts, and sketches published by the United States Coast Survey. A. D. Bache, Superintendent. 186s. \& 17, quarto... \& 242 \& Washington. Government Printing Office. 1863.

\hline 1860... \& 1846-1864.. \& Catalogue of hydrographic maps, charts, and sketches published by the United States Coast Survey. A. D. Bache, Superintendent. 1866. \& 17, guarto... \& 242 \& Wasbington. Government Printing Office.

\hline 1807. \& 1846-1867.. \& Same. Benjamin Peirce, Superintendent. 1867. \& 18, quarto... \& 276 \& Do.

\hline 1870..... \& 1846-1872 \& Same. Benjamin Peirce, Superintendent. 1872. \& 20, quarto... \& 278 \& Do.

\hline $1875 . \ldots$.

1877 \& 1851-1875.. \& United States Coast Survey. Carlile P. Patterson, Superintendent. Catalogne of charts. 1875. \& 28, quarto... \& 299 \& Do.

\hline 1877...... \& 1851-1877.. \& Catalogue of charts of the United States Const Survey, 1877. Carlile P. Pattorson, Superintendent. \& 29, quarto ... \& 325 \& Do.

\hline 1880........ \& 1846-1880.. \& United States Coast and Gendetic Survey. Catalogne of chaite. 1880. Carile P. l’atterson, Superintendent. \& 45, quarto ... \& 409 \& Do.

\hline
\end{tabular}

Notr.-At the date of publication of this list, the latest edition of the Catalogue of Charts published is that for 188., J. E. Hilgard, Superintendent.

VI.
 NOTICES TO MARINERS FROM THE DATE OF EARLIEST PUBLICATION BY THE COAST SURVEY TO THE YEAR 1881.

United States Coast Survey.

No.	Date of notice.	Title.
	1869, July 12	Notice to Mariners. Pacific Coast. Shoal off Cape Reyes, Cal.
	1872, Jan. 22	Notice to Mariners. Atlantic Coast. East coast of Florida. Saint Lucie Shoal.
	1874, Jime 20	Notice to Mariners. Northwest coast of America. Aleutian Islands.
	1874, Oct. 10	Notice to Mariners. Atlantic Coast. Long Island Sound.
1	1875, Jan. 14	Notice to Mariners, No.1. Atlantic Coast. Sailing directions for Saint Augustine Harbor.
2	1875, Jan. 20	Notice to Mariners, No. 2. Pacific Coast. Sailing directions for Mack's Shelter, Oreg.
3	1875. Fels. 10	Notice to Mariners, No. 3. Pacific Coast. Sunken rock off the boundary of California and Oregon.
4	1875, May 4	Notice to Mariners, No.4. Pacific Coast. Additional peaks, Noonday Rock. Entrance to San Francisco Bay, Cal.
5	1875, May 7	Noticerto Mariners, No.5. Pacific Coast. Sunken rock off Cape Mendocino, Cal.
6	1875, May 20	Notice to Mariners, Nó. 6. Pacitic Const. Sunken Rocks. San Luis Obispo Bay, Cal.
7	1875, July 24	Notice to Mariners, No. 7. Pacitic Coast. Shoal near South Farallon.
8	1875, Sept. 4	Notice to Mariners, No. 8. Pacific Coast. Dangerous Shoal in the northern approach to San Mignel Passage.
9	1875, Sept. 20	Notice to Mariners, No. 9. A tlantic Coast. Approaches to Chesapeake Bay. Wreck 12 miles to the sonthward and east. ward of Cape Menry.
10	1875, Nov. 4	Notice to Mariners, No.10. Atlantic Coast. Ledge in Delaware River.
11	1876, Feb. 8	Notice to Mariners, No. 11. Gulf of Mexico. Positions of wrecks at the entrance of Pensacola Bay, Fla.
12	1877, May 16	Notice to Mariuers, No. 12. Atlantic Coast. Chesapeake Bay. Wreck off New Point Comfort, Va.
13	1877, Dec. 15	Notice to Mariners, No.13. Atlantic Coast. Wreck off Currituck Beach, N. C.
14	1877, Dec. 21	Notice to Mariners, No.14. Gulf of Mexico. Observations upon northers and southeast gales.
15	1878, Mar. 7	Notice to Mariners, No. 15. Gulf of Maine. Tidal currents at entrance.
15	1878, June 15	Notice to Marinera, No. 15. Gulf of Maine. Tidal currenta at entrance. [Seoond edition.]
16	1878, May 9	Notice to Mariners, No. 16. Atlantic Coast. Florida Reefs. Disappearance of a beacon.
17	1878, July 16	Notice to Mariners, No.17. Atlantic Coast. Nantucket Sound. Wreek in Hyannis Harbor.

Note.-This list begins with the earliest separate publication of these notices on file in the Coast and Geodetic Survey Office. The $a^{\text {nnual }}$ reports previous to 1869 contain many such notices in the form of commanications from the Superintendent to the Secretary of the Treasnry, with requests that anthority be given to publish for the benefit of mariners. The separate publications of these noticen since 1869 are for special distribution, and are supplamentary to the publication formerly made and still continued in the leading conmercial and matical journals.

For geueral lists of discoveries and developments see the Ktports from 1850 to 1864, inclusive.

United States Coast and Geodetic Survey.

18	1879, June 27	Notice to Mariners, No.18. Pacific Coast. Depth of water over the bar at entrance of Wilmington Harbor, Cal.
19	1879, June 27	Notice to Mariners, No. 19. Coast of Alaska. Location of Keen Rock in the widdle passage to Sitka Harbor, Alaska.
20	1879, June 27	Notice to Mariners, No. 20. Atlantio Coast. Closing of New Inlet, mouth of Cape Fear River, N. C.
21	1879, July	Notice to Marivers, No. 21. Atlantic Coast. Increased depth of water at entrance of Cape Fear River, N. C.
2	1879, July 14	Notice to Mariners, No. 22. Atlantic Coast. Sunken wreck in the track of vessels running along the New Jersey coast.
23	1879, July 25	Notice to Marivers, No. 23. Atlantic Coast. Development of Johnson's Rock, Casco Bay, Me.
24	1879, Oct. 14	Notice to Mariners, No. 24, Atlantic Cosat. Dangerous rock near Isle or Wight Shoal. Coast of Maryland.
25	1879, Nor. 15	Notice to Mariners, No.25. Atlantic Coast. Development of Schayler's Lerlge, off Sakonnet Point, R. I.
25	1880, June 7	Notice to Mariners, No. 26. Pacific Coast. Development of dangerous rotks near Fort Ross, Cal.
27	1880, Dec. 16	Notice to Mariners, No. 27. Atlantic Coast. Sunken wreck in entrance to Rappahannock River, Va.
28	1881, Apr. 26	Notice to Mariners, No.28. Atlantic Coast. Improvements of rivers and harbors on the coasts of Maine and Massachusetts, under the direction of Gen. George Thom, Engineer Corps, United Statee Army.
29	1881, Apr. 27	Notice to Mariners, No. 29. Atlantic Cuast. Connecticut. Breakwater in process of constriction to the westward of Bartlett's Reef. Fisher's Island Sound.

Note.-The greater mumber of the above-named notices are printed somewhat as handbills, in large type for easy reading, and oecupy abon tone page quarto.
VII.
special publications.
United States Coast Survey.

Year of publication.	Title.	No. of pages and size.	Mode of publication.
1838.	Laws relating to the survey of the coast of the United States, with the plan of reorganization of 1843, and regulations by the Treasury Department.	25, octavo.	Public Printer, 1858.
1862.	Standard places of fundamental stars. (First editi	15, quarto.	Washington, Govermment Printing Office, 1862.
1866.	The same.	15, quarto.	Washington, Government Printing Office, 1866.
1869.	Statutes relating to the Survey of the Coast of the United States, with the plan of roorganization of 1843, and regulations by the Troasury Depart ment.	27, duodecimo.	Washington, Government Printing Office, 1869.
1874.	United States Coast Survey. Carlile P. Patterson, Superintendent. The Star factors A, B, C, for reducing Transit observations, 1874.	69, quarto	Washington, Government Printing Office, 1874.
1874.	United States Coast Survey. Field catalogne of 983 transit stars. Mean places for 1870.0 .	32, octavo	Do.
1874.	United Statos Coast Suryey Report, 1874. Appondix. Tidal researches. By William Ferrel, A. M., nember of the National Academy of Scicnces, Assistant United States Coast Survey. (With four illustrations.)	268, quarto.	Do.
1874....	United States Coast Survey. On the air contained in sea water, by Oscar Jacobsen. Republished for the United Statos Coast Survey, from Annals Ch. and Ph., Vol. 167, 1873.	16. guarto.	Do.
1874...	Enited States Coast Survey. Report on the Nicaragua route for an interoceanic ship-canal, with a review of other proposed routes; made by Maximilian Von Sonnenstern to the minister of public works of Nicaragua. (One illustration.) (Translated for the United States Coast Survey.)	22, quarto.......	Do.
1875..	General Instructions in regard to the hydrographic work of the Coast Survey. Four illustrations. (Printed for the use only of the hydrographic parties.)	25, octavo.	Washington, Government Printing Office, 1875.
1875...	On tides and tidal action in harbors, by Prof. J. E. Hilgard, of the United States Coast Survey. (Reprinted from the Smithsonian Report for 1874.)	22, octavo.......	Do.
1877...	United States Coast Survey. Cariile P. Patterson, Superintendent. Methods, discussions, and results. Field-work of the triangulation. By Richard D. Cutte, assistant. (Reprinted, with additions from the Coast Survey report for 1868.)	45, quarto	Washington, Goverument Printing Oftice, 1877.
1878..	General Instructions in regard to inshore hydrographic work of the Coast Surver, 1878.	50, octavo.	Washington, Government Printing Office, 1878.
1879	Cost of certain surveys.	4, octavo........	Forty-fifth Congress, third session, House of Representatives, Execu tive Document 29.
1879.	United States Coast and Geodetic Survey. Carlile P. Patterson, Superintendent. Methods and Resnits. Secular change of magnetic declination in the United States and at some foreign stations. (Third edition. With two plates.)	50, quarto.......	Washington, Government Printing Office, 1879.
1880.	United Stater Coast and Geodetic Survey. Carlile P. Patterson, Superintendent. Deep-sea sounding and dredging. A deecription and diseassion of the methods and appliances used on board the Coast and Geodetic Survey steamer Blake. By Charles D. Sigrbee, Heutenant-commander, U. S. Navy, Asgistant in the Coast, and Geodetic Survey. (With 54 illnstrations.)	221, quarto.	Washington, Government Printing Office, 1880.
1881.	United States Coast and Geodetic Survey, Carlile P. Patterson, Superintendent. Methods and Results. General properties of the equations of steady motion.	26, quarto.......	Washington, Government Printing Office, 1881.
1881...	Laws and Regalations relating to the Coast and Geodetic Surrey of the United States.	42, octavo.......	Treasury Department, Document 110, Coast and Geodetic Survey.
1881...	Laws of general application for the use of the United States Coast and Geodetic Sarvey.	52, octavo......	Treasury Department, Document 167, Coast and Geodetic Survey.

Appendix No. 7.

a table of depths for the harbors on the coasts of the united states.
The following table, showing the best water that can be taken through the entrances and up to the usual anchorages in the harbors of the United States and those of the immediately adjacent coasts, was first prepared in outline (under instructions from the Superintendent) by Commander Edward P. Lull, U. S. Nays, Hydrographic Inspector United States Coast and Geodetic Survey, and afterwards expanded and perfected in detail by Assistant J. S. Bradford, aided by Mr. Jno. W. Parsons.

TIDES

I. From Eastport, Me, to Suint Augustine, Fla., the tides are of the semi-diurnal trpe, the iwo tides of the same day being practically equal in range. There is, however, a marked difference between the range of "spring" tides (that is, those which follow the full and change of the moon) and that of the "neap" tides (those following her first and third quarters), the range of the former being above, and that of the latter below the average.
II. Passing southward from Saint Augnstine, the range of the tides is considerably diminished, and the modification due to the moon's declination becomes more and more apparent: That is, near the periods of the moon's greatest declination north or south there is an inequality in the range of the two tides of the same day, which disappears as the moon approaches and crosses the equator.
III. Passing up the vestern cbast of the peninsula of Florida, the semi-diurnal tides gradually disappear. To the northward and westward of Cedar Keys, and thence to the mouth of the Rio Grande, there is but one astronomical tide during each lunar day, and that of small range. This tide is of greatest range at and near the periods of the mon's greatest declination north or south, and disappears at the time of the moon's crossing the equator. "Wind-tides" are very markedsoutherly winds (particularly if prevailing for several days) raising the level of the water, and northerly winds having the opposite effect.
IV. On the Pacific coast (including the southern coast of Alaska), the tides are of the semi-diurnal type, the two tides of the same day having different ranges. The inequality increases as the moon moves north or south from the equator; is greatest at the moon's greatest declination; decreases as she approaches the equator; and disappears at the period of no declination. There is also a sensibe modification of the tides following the moon's phases. Thus, when the full or change occurs at or near the time of greatest declination, the rauge of tide will be somewhat augmented; and, on the other hand, if neap tides occur at the same period the range will be diminished.
S. Ex. $29 — 18$

TABLE OT DTVTIIS.
ATLANTIC COAST.
nova scotla.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Places.} \& \multirow{3}{*}{Limita between which depths are given.} \& \multicolumn{4}{|c|}{Least water in channel.} \& \multirow{3}{*}{Authmities.}

\hline \& \& \multicolumn{2}{|r|}{Mean.} \& \multicolumn{2}{|l|}{Spring tides.} \&

\hline \& \& $$
\begin{gathered}
\text { Low } \\
\text { water. }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Hich } \\
& \text { water. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Low } \\
& \text { wat }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { High } \\
& \text { water. }
\end{aligned}
$$ \&

\hline \& \& Feet. \& Foct. \& Feet. \& Fect. \&

\hline Halifax Harbor \& To anchorage off George Island.................. \& : 6 \& 414 \& 358 \& 414 \& British Admiralty, 1803.

\hline Sambro Harbor \& To anchorage \& 24 \& 30 \& 238 \& 30 \& British Admiralty, 1867.

\hline Pennant Hartor \& ...fo \& 42 \& 45 \& 41_{4}^{3} \& $4{ }^{\text {易 }}$ \& Do.

\hline 'Tennant's Harbor \& . ${ }^{\text {d }}$ \& 42 \& 48 \& 419 \& 483 \& Dritish Alminaly, 1801.

\hline Shater May \& . . 10 \& 42 \& 48 \& 413 \& 48. \& Do.

\hline Bhind Bay \& do \& 34 \& 36 \& 293 \& 363 \& Do.

\hline Dover lort \& To anchrrago inside Tayler's Island \& 42 \& 48 \& 414 \& 483 \& I\%.

\hline \multirow[t]{5}{*}{Munaret's Buy} \& To anclarage inside Jullimores Island \& 36 \& 36 \& 293 \& 36 \& IN.

\hline \& To anchorave in French Cove \& 42 \& 48 \& 413 \& 483 \& On.

\hline \& To anchorage in Head Harbor \& 36 \& 42 \& $3{ }^{3}$ \& $4{ }^{4}$ \& 1\%.

\hline \& To anchorage in Hubbert's Cove.................. \& 30 \& 36 \& 294 \& 809 \& Do.

\hline \& To anchorage in Northwest Harbor inside Horse Island \& 36 \& 42 \& 353 \& 423 \& Do.

\hline \multirow[t]{11}{*}{Mahone Bay} \& To auchorare under Tancook Islands \& 42 \& 48 \& 413 \& 483 \& Do.

\hline \& To anchorage off town of Chester \& 42 \& 473 \& 413 \& 483 \& 1\%.

\hline \& To anchorage in Mahone Harlor \& 42 \& 48 \& 414 \& 483 \& Do.

\hline \& To anchorage in A spotagoen River \& 18 \& 24 \& 17a \& $24 \frac{3}{4}$ \& Do.

\hline \& To anchorage in East Rivor Bay \& 45 \& 51 \& 443 \& 513 \& 1o.

\hline \& To anchorage in Scotch Cove \& 48 \& 539 \& $4{ }^{3}$ \& $54 \frac{3}{2}$ \& Do.

\hline \& To a chorage in West Chester bay \& 42 \& 473 \& 413 \& $48 \frac{1}{2}$ \& Do.

\hline \& To anchorage in Chester Basin \& 24 \& 29. \& 233 \& 314 \& Do.

\hline \& T". ancherage under Oak Island \& 21 \& $26{ }^{3}$ \& 20.8 \& $27 \frac{1}{2}$ \& Do.

\hline \& Toanchorage in Deep Cove. \& 30 \& 36 \& 993 \& 364 \& Do.

\hline \& Tu auchorage in Prince's Inlet \& 42 \& 48 \& 417 \& 483 \& Do.

\hline \multirow[t]{2}{*}{Mataguash Bay} \& To anchorage off town of Lumenburs \& 24 \& 30 \& 23.3 \& 303 \& Do.

\hline \& At anchorage under Ovens Puint \& 30 \& 42 \& 35 \& 424 \& Do.

\hline Rose Bay \& At anchomare \& 27 \& 33 \& 26^{3} \& 33 \& Do.

\hline Le Have River. \& To anclomage undtr Let's Point \& 1. \& 21 \& 143 \& 218 \& Do.

\hline Grem Ray \& To anchorage \& 33 \& 39 \& 32 4 \& 39. \& British Aiminalty, 1867.

\hline \multirow[t]{2}{*}{Port Metway} \& At anclurage inside Neil's Point \& 18 \& 23 \& 1712 \& 2 F \& 10.

\hline \& At anchorame in Northwest Bay \& 15 \& 20 \& 144 \& 228 \& 10.

\hline \multirow[t]{2}{*}{Liverpool Bay} \& At anchorage off Brookly (Herring Core) \& 18 \& $2 ?$ \& $17 \frac{1}{4}$ \& 254 \& Do.

\hline \& At anchorage off Liverpool \& 12 \& 17 \& 114 \& 109 \& Do.

\hline \multirow[t]{3}{*}{Port Monton} \& To anchorage under western shore of Mouton Island \qquad \& \& 4缺 \& $41 \frac{1}{2}$ \& 49 \& Do.

\hline \& To anchorage west of the Spectacles.. \& 42 \& 472 \& 414 \& 48 \& Do.

\hline \& To anchorage through Western Channel \& 21 \& 263 \& 208 \& 28 \& Eritish Admiralty, 1861.

\hline Port Ebert \& To anchorage off Shingle Point \& 15 \& 21 \& $14 \frac{1}{4}$ \& 218 \& British Admiralty, 1867

\hline Rugged Island Harbor \& To anchorage oft Clam Island. \& 21 \& 27 \& 201 \& 273 \& Do.

\hline Green Harbor \& To anchorage off Homin Island \& 21 \& 27 \& 204 \& 278 \& Do.

\hline Jordan River \& To anchorage \& $22 \frac{1}{2}$ \& $28 \frac{1}{2}$ \& 224 \& 294 \& Do.

\hline Sluelburne Harbor \& To anchorace within half a mile of the town -..... \& 33 \& 38. \& $32 \frac{1}{2}$ \& 39 \& Do.

\hline \multirow[t]{2}{*}{Negro Harbor} \& At anchorage between East Point and Xerro Island At anchorage between Negro Island and Purgatory Point \qquad \& 33
87 \& 381
328 \& 32%

263 \& 39 \& Do.

\hline \& tory Point \& 27
21 \& $32 \frac{1}{2}$
$26 \frac{1}{2}$ \& 2038 \& 331
274 \& Do.

\hline lavrington lay \& To anchorage of Beach Point. \& 21 \& 27 \& 204 \& 273 \& 10.

\hline \multirow[t]{2}{*}{rathen Harbor (Cape Sable In:(14.1)} \& To anchorage \& 21 \& 30 \& 20.1 \& 304 \& British Admitalty, 1865.

\hline \& To anchorage off sortheast point of Sable Itland.. \& 18 \& 27 \& 17 $\frac{1}{2}$ \& $27 \frac{1}{1}$ \& Do.

\hline \multirow[t]{2}{*}{Samt Marya Bay .} \& \& 36 \& 53 \& 35 \& 54 \& Do.

\hline \& To anchorage off Weymonth. \& $$
42
$$ \& \[

594

\] \& \[

41
\] \& 604 \& Do.

\hline
\end{tabular}

Talle of depths, Atlantic Coast-Continued.
NOVA SCOTIA, NEW BRUNSWICK, AND MAINE.

Table of depths, Atlantic Coast-Continued.
Malve.

Places.	Limits between which deptha are givell.	Least water ip chazinel.				Authorities.
		Mean.		Spring tudes.		
		Low water.	$\begin{aligned} & \text { Hagh } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water.	
East shore of Campolello Island Continued.	To anchorages in Head Harbor: 1. At north end.	Fcet.	Feet. 24	Feet.	Feet. 255	Coast Survey, 1861.
	2. At south end	9	27	$7{ }^{\text {7 }}$	288	Do.
	3. Three-quarters of a mile up	6	24	43	255	Do.
	To anchorage in Great Duck Pomd	8	26	$6{ }_{3}$	274	Const Survey, 1860
Deer Island....................	In entrance to Little Harbor	6	24	43	253	Coast Survey, 1861. Do.
	At the anchorage	9	27	73	285	
Northwent Harbor	de	6	24	48	$25 \frac{3}{3}$	Do.
Saint Croix Liver..	'lo "The Divide"	30	53	29	53	Atlantic Coast Pilot, 1874.
	To "The Ledge"	12	34	10	35	Do.
	To Calais	8	$30 \frac{1}{3}$	$5 \frac{1}{1}$	31	Do.
Bayley's Mistile	At the anchorage.	24	40	23	41	Do.
Moost: River.	From entrance to anchorage	30	46	29	47	Do.
Little Piver	To anthorage off Ackley's Poiut	24	39	23	40	Do.
Little Machian May	From entrince to anchorage.	2415	39	23	40	Do.
Machias Bay	Through Main Chanuel to Mackiasport From Machiasport to the draw-bridge From the draw-bridge to Machiss Western channel-Avery's Rock to Machiasport Tbrough Cross Island Nurrows		30	14	31	
		12	27	11	28	Do.
		10	24	9	25	Do.
		15	30	1423	3140	Do.
		24	39			Do.
Litte Kennebec River	From entrance, through Ram Ialand Pasage to anchorage		32	17	33	Do.
Englishman's Bay	एp Chandler's River to Jueshoro' Entrauce, from the weatward (ontside all dangers) to Squier's Point \qquad	18	12	3	13	Do.
			36	336	37	
Moor-a-ber Reach-	From eastward pyer Moos-a bee Bar \qquad Segruin Passage. \qquad Channel Reach \qquad Western entrance, through Tabbott's Narrows. At anchorage in Moos a-bec Reach \qquad	7	183			
		2513	363	6 24	$\begin{aligned} & 19 \frac{1}{1} \\ & 37 \frac{1}{2} \end{aligned}$	Coast Survey, 1870-71. Do.
			24.	24 12	$\begin{aligned} & 37 \frac{1}{2} \\ & 25 \frac{1}{2} \end{aligned}$	Do.
		13 27		26	391	
		19	309	18	$31 \frac{1}{2}$	
Head Harbor	To anchorage in "The Cow Yard"	12	23 \%	11	24.	Atlantic Coast Pilot 1874.
Cape S_{p} lit Harlor Beal's Harbor.....	To nachorage off Wright's $\mathbf{P}_{\text {oint }}$... To anchorage in the Harbor To anchorage between Fisher's Island and Rip- ley's Neck	53154	$\begin{aligned} & 647 \\ & 27 \end{aligned}$	52	$\begin{aligned} & 65 \frac{1}{3} \\ & 28 \end{aligned}$	Coast Survey, 1870-71. Do.
Harrington River		12	23			Atlantic Coast Pilot 1874.
				11	24	
	To anchorage off Nash's Point	6	17	5	18	Do.
Narraguagus Day	To anchorage off Steamboat Wharf To anchorage off Patterson's Point Through Dyer's Island Narrows to anchorage ...	128	2320	118	24	Do.
					21	
		12	23	11	24	Do.
Pigeòn Hill bay	Throagh Mnin Channel to anohorage, aloove Chitman's roint \qquad From the Westward (outside Petit Manan Island) to anchorage \qquad		32	20	33	Do.
		21	32	20	38	Do.
	From the westward (inside Petit Manan Island) : 1. Over cater bar 2. Over inner bar					
		9	20	6	2119	Do.
Donglass Tsland Harbor Dyer's Bay	To anchorage \qquad do Entering from eastward (outside Petit Manan Ibl.	24	35	23	80	Do.
		24	35	23	36	Do.
Gonldaboro' Bay		24	35	23	30	Do.
	Entering from westward, to northward or nouthward of Moulton's Ledge \qquad	18	29	17	30	Do.

Table of depths, Atlantic Coast-Continued.
Maine.

Trable of depths, Atlantic Coast-Continued.
MAINe.

*Little shelter, and rarely uzed.

Table of derths, Atlantic Coast-Continued.

Table of depths, Atlantic Coast-Continued.
MAINE.

" Hany ledges and rocke. \quad Bar formed by deposit of alabe and aatrdust from the mille at Hilswerth.

Table of depths, Atlantic Coast-Continued.

Table of depths, Atlantic Coast-Contimued.
$+$
MAINE.

* Dangarous is soatherly winds

Table of depths, Atlantic Coast-Continued.
MaIne.

- Dangerone; many ledges.
(Sometimes called Lawrence's Bay.

Table of depths, Atlantic Coast-Coutinued.
MAINE.

Table of depths, Atlantic Coast-Continued.
MAINE.

Table of depths, Atlantic Coast-Continued.
MAINE

Places.	Limits between which depthe are given.	Least water in channel.				Authorities.
		Moan.		Spring tides.		
		Low water.	High water.	$\underset{\text { water. }}{\text { Low }}$	$\begin{gathered} \text { High } \\ \text { water. } \end{gathered}$	
West penobscot bay (Harhora and Anchorages)Continued.		Feet.	Feet.	Feet.	Feet.	
	Island ...	36	45*	357	$46 \frac{1}{4}$	Coast Survor, 1871.
	At anchorage in Ames' Cove...	9	183	88	19\%	Do.
	At anchorage in Cradle Cove	11	203	101	214	Do.
	At anchorags in cove east of Thrumbcap........	7	163	84	$17 \frac{1}{6}$	Do.
	At anchorage off Spruce Island.	32	418	31\%	42t	Do.
	At anchorage in mouth of Broad Cove	11	208	101	21	Do.
	At anchorage between Spruce and Warren's Islands \qquad	8	178	71	18	Do.
	At anchorage under Spruce Head (Duck Trap Harbor) \qquad	31%	414	314	42	Coast Survey, 1865.
	Atanchorageabreast of "The Beach" (Lincolnville)	33	421	325	$43 \frac{1}{4}$	Do.
	At anchorage in Crow Core (South Islesboro') ...	14	233	131	24.	Coast Survey. 1871.
	At anchorage in Saturday Cove	21	308	201	314	Coast Survey, 1865.
	At anchorage in Seal Harbor (North Islesboro') ...	34	431	334	44	Coast Survey, 1871.
	At anchorage east of Seal Island	33	421	$32 \frac{1}{2}$	43	Din.
	Through Hog Island Narrows	30	391	291	40	Do.
	At anchorage in Turtle Cove Harbor.	221	32	22	321	Coast Surver, 1872.
	At anchorage in Sprague's Cove	8	171	71	1818	Do.
	To anchornge in Belfast Bar, below the town..	$19 \frac{1}{4}$	29.	18	30	Do.
	Up the bay to Patterson's Point	16	25.	154	261	Do.
	At the anchorage off the town	17	263	163	27	No.
	To the anchorage off the town.	13	22\%	124	231	Do.
	To the lower bridge.	9	183	81	101	Do.
	To the upper bridge	2	112	11	124	Do.
	At anchorage in Searsport Har bor.	8	171	7	181	Coast Survey. 1878.
	At anchorage in Long Cove.	15	24.	14.	251	Da.
	At anchorage abreast of Mack's Point.	27	36	262	37	Do.
Paneagee connecting Eastiand West Penobecot Bays: (with anchorage thereln).	Fox Islands Thoroughfare:					
	1. In Western Entrance	58	68.8		$68 \frac{7}{2}$	Coast Survey, 1868.
	2. In Eastern Entrance \qquad From eastward through the Thoroughfare to Widow's Island :	63	72\%	624	733	Do.
	1. North of Channel Rock		659		502	
	2. South of Cbannel Rock	431	531	43	538	Do.
	From abreast of Widow's Island to Iron Point ..	42	517	41\%	523	Do,
	From abreast of Iron Point to Young's Point.....	19	*291	19	293	Da.
	From abreast of Young's Point to West Penob. scot Bay : 1. Between Brown's Read and the Sugar.					
	Loaves.	311	412	31	414	Do.
	2. Weat of the Sugar-Loaves	33	424	324	43	Do.
	Throngh Little Thoronghfare to a breast of Calderwood's Foint \qquad	18	$\dagger 274$	171	288	Do.
	At anchorage in Carver's Cove...................	16	258	151	261	Do.
	At anchorage in Kent's Cove......................	2-14	187-234	84-134	191-243	Do.
	At anchorage in Waterman's Cove	8	174	71	184	Do.
	At anchorage off North Haven village............	21	308	201	314	Do.
	At anchorage under Zeike's Point	28	374	271	389	Do.
	At anchorage abreast of Hopkins' Point..........	25	342	24	358	Do.
	At anchorage in Perry's Cove.....................	114	214	11	214	Do.
	At anchorage in mouth of Mill River.	14	23?	134	24	Do.
	At anchorage in Seal Cove	10-36	193-453	91-35	201-40	Do.
	In entrance to Sonthern Harbor	38		${ }^{351}$	$4{ }^{408}$	Do.
	At anchorage abreast of Dumpling Islands \qquad At anchorage above Lobster Island \qquad	$\begin{aligned} & 104 \\ & 14 \end{aligned}$	293 23:	19 1314	294	Do
*Between Grindstone and Iron Point Ledges. Elsowhere not lem than seven fathoma. t Dangerona.						

Table of depths, Atlantic Coast-Continued.
MAINE.

Places,	Limils between which depths are given.	Least water in channel.				A othoritien.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\underset{\text { water. }}{\substack{\text { High }}}$	$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
Passages connecting East and West Penobecot Bays : with anchorages therein.	Fox Islands Thoroughfare:	Feet.	Feet.	Feet.	Feet.	
	At anchorage in month of A mos' Creek......	10	193	91	202	Coast Survar, 1808.
	At anchorage north of Crabtree Point Ledge.	$31 \frac{1}{3}$	412	31	414	Do.
	At anchorage in cove south of Brown's Head	* 10	198	9	201	Do.
	At anchorage anath of Stand-in Point	*16	24.	141	254	Do.
	Passage between Eagle and North Haven Islands:					
	Through to the northward of Spoon Ledge	4012	494	40	80	Coast Survey, 1873-74
	Through to the southward of Spoon Ledge...	288	375	28	38	Do.
	Between Oak and Burnt Islands	36	44	85\%	45	Du.
	Paesage between Beach and Spruce Head Islands: Through to the eastward of Colt's Head......	36	44	854	451.	D.
	Between Colt's Head and Mark Island......	69	77\%	681	789	Do.
	Pussage between Hog and Beach Islands: Through from the southward.	${ }^{68}$	744	651	75	Du.
	Through from Eggemoggin Reach	58	662	571	67	Do.
	Northern Pasrage: Through between Cape Rosier and Pond Island. Outside Passage between Vinal Haven and Outly. ing Islets:	114	1224	1124	1234	Do.
	1. Entering between Sheep aud Carrer's Islands 2. Between Shoep Ialand Ledge and Carrer'	52	618	11	0	Comat Surrey, 1808.
	Island	86	454	85	48	Do.
	8. Between Carver's Islaxd and Middle Leige	48	64.	45	65	Do.
	4. Between Midde Ledge and Hay Islands.... 8. From nbreast of Carver's Island into Weat	39	48\%	38	40	Do.
	Penobscot Bay	30	3914	29	40	Do.
Clark's Cove (near Tenmant's Harbor).	In entrance north of Clark's Island Ledge	15	248	142	25	Coast Survey, 1867.
	In entrance south of Clark's Island Ledge.	16	251	154	20	Do.
	At the anchorage.	13	2%	121	23	Do.
Long Cove (nemr Tennant's Harbor)	In entrance between Clark' Island and The Spectaclen	10.	28.	10	291	Do.
	In entrance between The Spectacles and High Island	7	181	6	17	Do.
	In entrance west of Northern Island......	14	234	131	24	Do.
	At anchorage abreast of The Spectacles: 1. East gide	22	314	21	32	Do.
	2. West side	13	224	124	23	De.
	St anchorage off northwest end of Clark's Island	11	201	101	21	Do.
	At anchorage off north end of Clark's Island	13	221	12	23	Do.
	At upper anchorage	${ }^{18}$	153	6	104	Do.
Tennant's Harbor.	At amchorage auder Hart's Nock	18	251	151	28	Do.
	At anchorage off Lower Wharf	14	23	1312	24	Do.
	At npper anchorage off the rillage................	0	181	88	19	Do.
	Over the bar between Southern Ibland and Hart's Neck	2	114	11	12	Do.
Mosquito Harbor	In entrance between Mosquito Head and Mosquito Island (Main Chansel) \qquad	251	94	25	85	Coat Survay, 1885.
	In entrance over bar west of Mosquito Island	9	181	81	10	Do.
	At lower anchorage .	21	304	202	31	Do.
saint Geonge's Rtvor fohasnels).	To anchornge in Inner Harbor...................	9	181	81	19	Do.
	Through passage between Mosqui'o Lsland and The Brothers to Marshall's Point	24	234	231	4	Do.
	From abreast of Marshall's Point between Hooper's Island and Allen's Ledge.	45	543	441	65	Do.
	From abreast of Marehall's Point, through Herring Gut, to anchorage off South Salnt George.. * Obatructed by rocks. Not eafe for	30 	res.	294	40	Do.

Table of depths, Atlantic Coast-Continued.
MAINE.

Table of depths, Atlantic Coast-Continued.

Teble of depths, Atlantic Coast-Continued.
Maine.

Table of depths, Atlantic Coast-Continued.
MAINE.

Places.	Limits between which depths aregiven,	Least water in chanuel.				$\Delta u t h o r i t i e s$.
		Moan.		Spring tides.		
		$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	Hiph water.	$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	Higla water.	
John's Bay and River-Cout'd	Throngla "Thread of Life" Narrows:	Fect.	Feet.	Feet.	Feet.	
	1. Between Crow and Hay Islands	42	5012	411	51	Coast Survey, 1867.
	2. Betwreu Ilay and Birch Islunds	7	15	$6 \frac{1}{3}$	16	Do.
	In entranco to Pemaquit Harbor	48	56.	472	57	D .
	At, anchorage.	18.87	261-453	171-36	27-46	no.
	In mouth of Pemaquill River	21	$20 \frac{1}{2}$	$20 \frac{1}{2}$	30	Do.
	To lower anchorage in the river	21	293	201	30	Do.
	To auchorage off Coombs' Cuve	9	172	81	18	Ho.
	In entrance to McFarling's Cove	32	401	31	41	Do.
	Through Narrows between Daris' and Rutherford's Islands \qquad	1919	28	19	281	Do.
	At northern anchorage in oore	254	34	25	34d	Do.
	At southern anchorage	21	294	201	30	Do.
	In entrance to Robinson's Covo	40	481	394	49	Do.
	At lower anchorage in cove	17	254	164	26	Do.
	To upper anchorage	12	201	111	21	Do.
	At upper anchorage	13	$21\}$	121	22	Do.
	In entranco to Western Branch.	15	231	14i	24	Do.
	To anchorage in Western Mranch	10	185	91	19	Do.
	In entrance to Foster's Cove	16	24	151	25	D_{0}.
	At anchorage under Foster's Island	21	291	201	30	Do.
Damariscotia River (Channels)	In Main Entrance:					
	1. From the eastward 2. From the westward	57 78	651 864	564 774	66	Coast Survey. 1860. Do.
	2. From tho westward In entrance through Inner Heron Island Channel	5	601	53	83	Do.
	In entrance through Whit, Islamil Pasange	60	681	59	69	Do.
	In entrance between Damiscore and Outer Heron Lsland	78	86	771	87	Do.
	In entrance between Damiscove and Fisherman's Island	30	384	20.4	39	Do.
	In entrance through Fishermon's Islaud Channel	314	40	31	40.4	Do.
	Up the river to Faruum's Point	341	43	34	434	Do.
	From Farnum's Point to The Narrows	42	501	$41 \frac{1}{1}$	51	Do.
	Through The Narrows	311	40	31	401	Do.
	From The Narrows to diller'e Island	42	501	414	51	Do.
	Through letwcen Miller's and Carlisle Islands ...	51	591	501	60	Do.
	From Miller's Islad to Merry Island.............	39	471	381	48	Do.
	From abreast of Merry Island to "The Ledges".	36	44	351	45	Do.
	From The Ledges to Perking' Point	14.4.	23	14	231	Coast Sarroy, 1860-66.
	From off Perking' Point to Newcastle	10	181	913	19	Coast Survey, 1866.
Damariscotta River (Aarlors and Anchorages)	In entrance to Little River .	18	261	17\%	27	Coast Survey, 1860.Do.
	At eantern anchorage (nader Reed's Island)......	7	151	61	16	
	To upper ancborage	0	171	81	18	Do.
	At upper ancherage	18	264	171	27	Do.
	In entrance to Christmas Cove	504	64	55	64	Do.
	At the outer anchorage	36	44	351	45	Do.
	To the inner anchorage	17	251	161	26	Do.
	At the inner anchorame	21	294	203	30	Do.
	At auchorage in Furnum's Cove	8	161	7	17	Do.
	At anclurage in Joncs' Covo	0	171	81	18	Do.
	At anchorage off Holrdon's Mills	24	331	231	33	Do.
	At anchorage in Meadow Cove	24	321	231	33	Do.
	Atanchorage in Back Narrows.	24	321	231	33	Do.
	At anchorage in Seal Cove........................	15-21	231-291	141-20)	24-30	Do.
	At anchorage in Long Cove	15	2314	14	24	Do.
	At pastern anchorage in Clarke's Cove	24	324	$23{ }^{\frac{1}{2}}$	33	Coart Survey, 1886.
	At western anchorage in Clarke's Covo...........	27	251	261	${ }^{36}$	Do.
	At anchorage in Pleasant Cove.	14-17	\|221-285	131-164	23-26	Do.

Table of depths, Atlantic Coast.-Continued.
MAINE.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Placos.} \& \multirow{3}{*}{Limits between which depths are giren.} \& \multicolumn{4}{|c|}{Lerst water in channel.} \& \multirow{3}{*}{Authorities.} \\
\hline \& \& \& an. \& Spriz \& tides. \& \\
\hline \& \& \[
\begin{aligned}
\& \text { Low } \\
\& \text { water. }
\end{aligned}
\] \& High water \& \[
\begin{aligned}
\& \text { Low } \\
\& \text { water. }
\end{aligned}
\] \& High water \& \\
\hline \multirow[t]{7}{*}{Damariscotia River (Hariors and Anchorages)-Contin'd.} \& \& Feet.
13 \& Feet. \& Feet. \& Feet. \& Coast Surrey, 1860. \\
\hline \& In mouth of Salt-Marsh Cove. \& 14 \& \(22 \downarrow\) \& 13 \& 23 \& Do. \\
\hline \& At anchorage in Mears' Bight \& 21 \& 294 \& 20ı \& 30 \& Do. \\
\hline \& At anchorage in Fitch's Core. \& 13 \& 213 \& 121 \& 22 \& Do. \\
\hline \& To anchorage in Fitc'.s Cove \& 11 \& 191 \& 101 \& 20 \& Do. \\
\hline \& At anchorage off Newcastle \& 13-21 \& 21-291 \& 121-203 \& 22-30 \& Do. \\
\hline \& To the anchorage \& 10 \& 184 \& 9, \& 18 \& Do. \\
\hline \multirow[t]{26}{*}{Booth Bay and tributaries} \& In entrance through Fisherman's Island Channel Channel between Damiscove and Fisherman's \& \(31 \frac{1}{8}\) \& 40 \& 31 \& 401 \& Coast Survey, 1880. \\
\hline \& IHland \& 30 \& 381 \& 294 \& 39 \& Do. \\
\hline \& Cbannel east of Squirrel Island \& 66 \& 741 \& 651 \& 75 \& Do. \\
\hline \& \multirow[t]{2}{*}{\begin{tabular}{l}
Channel west of Squirrel Island \\
From Squirrel Island, by main channel, to Mc-
\end{tabular}} \& 66 \& 743 \& 654 \& 75 \& Do. \\
\hline \& \& 30 \& 384 \& 291 \& 38 \& Do. \\
\hline \& Kown's Point Through channel rest of Burnt Island \& 39 \& 473 \& 38\% \& 48 \& Do. \\
\hline \& Channel into Linekiu's Bay \& 96 \& 104 \& 851 \& 1052 \& Do. \\
\hline \& \multirow[t]{2}{*}{Channel between the Cuckolds and Cape Island.. At anchorage in Damiscove Harbor} \& 39 \& 47 \& 384 \& \(48 \pm\) \& Do. \\
\hline \& \& 11 \& \(19 \frac{18}{1}\) \& 101 \& 201 \& Do. \\
\hline \& At anchorage in Squirrcl Cove \& 39 \& 471 \& 384 \& 481 \& Do. \\
\hline \& \multirow[t]{2}{*}{At anchorage in Pig Cove \(\qquad\) At anchorage between Burnt and Mouse Islands.} \& 27 \& 85 \({ }^{\text {d }}\) \& 261 \& 364 \& Do. \\
\hline \& \& 30 \& 381 \& 291 \& 307 \& Do. \\
\hline \& At anchorage in Card's Core \& 39 \& 471 \& 384 \& \(48 \pm\) \& Do. \\
\hline \& \multirow[t]{2}{*}{\begin{tabular}{l}
In entrance to Linekin's Bay: \\
1. Throngh Main Channel \\
2. Between Spruce Point and Spruce Point Ledges
\end{tabular}} \& \& \& \& \& \\
\hline \& \& 96
39 \& 104
47 \& 921

881 \& 1051
$48 t$ \& Do.
Do.

\hline \& Up Linekin's Bay to Calbbage Island \& 54 \& 62 \& 534 \& 035 \& Do.

\hline \& Through channul west of Cabbage Island......... \& 36 \& 443 \& 351 \& 451 \& Do.

\hline \& Up the bay to anchorage at its head \& 21 \& 292 \& 204 \& 301 \& Do.

\hline \& At anchorage abreant of Fish-Hawk Laland..... \& 27 \& 351 \& 264 \& 362 \& Do.

\hline \& At anchorage in Lewis' Cove \& 21 \& 291 \& 201 \& 302 \& Do.

\hline \& At lower anchorage under north shore of Linekin's Point \& 45 \& 531 \& 442 \& 54 \& Do.

\hline \& At anchorage in Eastern Harbot off Town's End. \& 191-281 \& 28-37 \& 12-28 \& 288-374 \& Do.

\hline \& At anchorage in Mill Creck \& 9 \& 171 \& 81 \& 183 \& Do.

\hline \& At anchorage in Campbell's Creek \& 21 \& 291 \& 204 \& 302 \& Do.

\hline \& Atanchorage in Western Iarbor \& 22 \& 301 \& 211 \& 313 \& Do.

\hline \& Through Town's End Gut to Sheepscot River.... \& 21 \& 29 \& 204 \& 302 \& Do.

\hline \multirow[t]{2}{*}{Sbeepscot River and tribukarien.} \& Up river to abreast of Jewett's Cove \& * 75 \& 833 \& 74 \& $84 \frac{1}{2}$ \& Coast Surrey, 1858-'60

\hline \& From abreast of Jewett's Cove to Cross River.... \& 66 \& 743 \& 654 \& 75 \& Do.

\hline \& From off Crose River to The Narrows \& 54 \& 62: \& 534 \& 631 \& Do.

\hline \& Throngh The Narrowe \& 60 \& 683 \& 594 \& 694 \& Do.

\hline \& At anchorage in Wiscasset Bay off Wiscaseet \& 28-33 \& 3等-41 \& 271-324 \& $$
371-421
$$ \& Do.

\hline \& At anchorage in Grifflh's Cove \& 0 \& 174 \& 81 \& $$
181
$$ \& Coast Survey, 1860

\hline \& Atanchorage between Griffith's Head and Onter Head \& 12 \& 208 \& 114 \& 21 \& Do.

\hline \& At anchorage in Cape Harbor \& 13 \& 213 \& 121 \& 224 \& Do.

\hline \& At anchorage in moulb of Christmas Cove \& 33 \& 412 \& 324 \& 424 \& Coast Surrey, 1860.

\hline \& In southern entrance to Hendrick's Harbor \& 251 \& 342 \& 25 \& 35 \& Coast Survey, 1866.

\hline \& In northern entrance to Hendrick's Harlur. \& 281 \& 374 \& 28 \& 38 \& Do.

\hline \& At anchorage in the harbor.......... \& 9-16 \& 174-248 \& 87-15 \& 184-251 \& Do.

\hline \& At anchorage in Hermun's Harlor \& 13-42 \& 21-509 \& 12t-41 \& 224-51 \& Do.

\hline \& In entrance to Herman's Harbor... \& $2 \cdot \frac{18}{8}$ \& 34 \& 25 \& 35 \& Comet Survey, 1860.

\hline \& In entrance to Five Isiaud Harhor: \& \& \& \& \&

\hline \& 1. By the Northern or \mathbf{M} :in Chaunel \& 51 \& 508 \& 501 \& 601 \& Coast Survey, 1868.

\hline \& 2. By the Southeru Pasmary \& 27 \& 35 \& 20% \& 36 \& Do.

\hline \& *Off Hendriok's Head. Not lesen than 21 fathom \& shawh \& re on thi \& la line. \& \&

\hline
\end{tabular}

Table of depths, Atlantic Coast-Continued.

* Dangerous.-Tery strong currenta, eapecially on ebb tiden.

Table of depths, Atlantic Coast-Continued.
MAINE.

Table of depths, Atlantic Coast-Continued.

MaINE.

Table of depths, Atlantic Coast-Continued.
MAINE.

Table of depths, Atlantic Coast-Continued.
MAINE.

Table of depths, Atlantic Coast-Continued.
Maine

Table of depths, Atlantic Coast-Continued.

maine.						
Places.	Limits between which depths are given.	Least water in channal.				Anthoritiea.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water } \end{aligned}$	High water.	Low water.	High water	
Tributaries of CASCO BAY (Portland Harbor).	mortland Head Light-house to	Feet.	Feet.	Feet.	Feet.	
	Light-house	21	30	201	304	Coast Survey, 1854.
	Cbannel south of Middle Ground	19	28	$18 \frac{1}{3}$	281	Coast Surves, 1868.
	Hetween Middie Ground and wharves	19	28	184	284	Coast Survoy, 1869.
	To Portland, Saco and Portamouth Railroad Bridge	19	28	181	28!	Do.
	To Vaughan's Bridge	16	25	151	25t	Do.
	To upper Railroad Bridge.	14	23	134	234	De.
	To Westbrook Bridge	4	13	31	134	Do.
	At anchorage in the harbor	21	30	$20 \frac{1}{3}$	304	Do.
	To anchorage in Hog Island Roads	24-39	33-48	231-384	331-481	Coast Survey, 1867.
	Channel to Railroad Bridge.	19	28	184	281	Do.
	Channel to Tukey's Bridge	15	24	141	$24 \frac{1}{4}$	Coast Survey, 1834
	Channel to Back Cove Wharf	1	10	t	104	Coast Survey, 1809.
	Channel to Martin's Point Bridge (Presumpscot					
	River)	8	17	76	171	Coast Survey, 1868.
	Channel to Casco Iron Works	6	15	54	154	Do.
	To Cape Elizabeth wharves	3	12	21	124	Coast Survey, 1854.
Harbors on Cape Elizabeth Shore.	At anchorage in Seal Cove:					
	1. Northeast of Seal Rocks.	24	38	233	34	Coast Survey, 1850.
	2. Southwest of Seal Rocks.	14	23	134	24	Do.
	Richmond's Island:					
	To anchorage in Broad Cove ..	10	19	94	20	Do.
	To anchorage in Muscle Cove \qquad To anchorage in Richmond's Island Harbor	21	30	204	31	Do.
	west of Breakwater	24	33	234	34	Do.
Saco Bay (Harbora and An. vhorages).	To anchorage off mouth of Sace River............	21	294	201	81	Do.
	To anchorage under Prout's Nock................	22	304	214	32	Do.
	In entrance to Wood Island or Winter Harbor: 1. Between Wood Island and Gooseberry Island \qquad					
	2. Between Wood Island and Stage Island....	16	$24{ }^{3}$	15	254	Coast Survey, 1871. Do.
	3. Between Stage Island and Basket Island ..	3	111	2	$12 \pm$	Do.
	To anchorage abreast of "Biddeford Pool" Village.	16	244	15	251	Do.
	In entrance to Biddeford Pool	61	148	5	15	Do.
	In entrance to Saco River between Ram Island and Ram Island Ledge \qquad	171	25%	181	26\%	Coast Survey, 1806.
	Passage north of Basket Imland...................	71	16	81	178	Do.
	Pasgage between Ram Island and Sharp's Rock..	12	204	11	21.4	Do.
	Up river to Jordan's Pier.	21	11	11	114	Coast Survey, 1807.
	From Jordan's Pier to Chandler's Point	61	15	512	15	Do.
	From Chandler's Point to Johnson's Wharf	37	124	24	13	Do.
	From Johnson's Wharf to Potter's Pier	9	171	8	184	Do.
	From Potter's Pier to Thunder Island...	61	15	54	153	Do.
	From Thunder Island to Factory Island	3 x	11\%	24	124	Do.
Stage Island Harbor...	Passage around Seal Rocks	71	158	6	16.	Coast Surves, 1871.
	To anchorage........................	8	164	7	174	Do.
Cape Porpoite Harbor	Entrance north of Old Prince Ledge.	19	25	183	253	Do.
	Entrance south of Old Prince Ledge	24	30	234	308	Do.
	To anchorage below Light-house	18	24	174	24.	Do.
	To anchorage above Light-bouse	12	18	113	182	
Kenmebunle River ...	From entrance to anchorage	4	10	34	10.	U. S. Enginears, 1881.
Cape Neddlick Roads	To anchorage	224	288	21	294	Coast Survey, 1858.
Cove north of Cape Neddick		21	27	207	273	Do.
Cove mouth of Cape Neddick	. do	18	24	173	24.	Do.

Table of depths, Atlantic Coast-Continued.
MAINE, NEW HAMPSHIRE, AND MASSACHUSETTS.

Places.	Limits betoeen which depths are given	Least water in chaunel.				Authorities.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water	Low water.	High water	
York River	Channel to Rock's Nose	Feet. 13	Feet. 21	Feet. 12	Feet. 22	Coast Surrer, 1853.
	Channel to Barrell's Wharf	8	16	7	17	Do.
	Channel to Denneit's Wharf.....................	7	15	6	16	Do.
	To anchorage in York River Harbor	10	18	9	19	Do.
Portsmonth Harbor (New Hampshire).	From Whate's Back to Fort Washiugton	42	503	$41 \frac{1}{2}$	514	Coast Surver, 1851-57.
	From Fort Washington to The Bridge	36	44,	351	45.	Do.
	Off the City Wharves	63	712	622	724	Do.
	Passage through Little Harbor to Sagamore Creek	3	117	21	124	Do.
	Passage to Sagamore Creek Bridge	1	91	$\frac{1}{2}$	103	Do.
	To anshorage in Little Harbor	98	18	9	183	Do.
	To anchorage in Spruce Creek:					
	1. Below Fittery Bridge	$28 \frac{1}{2}$	37	28	374	Do.
	2. Above Kittery Bridge	21	291	$20 \frac{1}{2}$	304	Do.
	To anchorage in Pepperell's Cove.	$7 \frac{1}{1}$	10	7	163	Do.
Isies of Shoals (Maine and New Hampshire).	Passage between Hog Island and Smutty Nese	24	321	223	334	Coast Survey, 1874. Do.
	Passage east of Lunging Island	54	$62 \frac{1}{3}$	$53 \frac{1}{3}$	634	
	Passage west of Star Island	33	41/	327	424	Do.
	Passage between Star and Cedar Islands	6	14i	51	154	Do.
	To anchorage in Cosport Harbor	21-51	291-591	201-502	301-601	Do.
Rye Harbor	To anchorage	3	11	$2 \frac{1}{2}$	1112	Coast Survey, 1870.
	. .do	18	26	172	261	Do.
Cove south of Great Boar's Head.	. .do	9	17	$8 \frac{1}{2}$	17.	Do.
Hampton Harbor and River (Masanchusetta)	From Old Cellar Rock to Town Rocks	* 4	11 年	$3 \frac{1}{2}$	123	Do.
	At the anchorage	5	124	$4 \frac{1}{2}$	134	Do.
Newhuyport Harbor	Over the Bar	* 4	117	34	124	L't.House Board, 1881
	Chandel to Town Wharves	12	194	111	201	Do.
Ipswich Bay and tributaries.	Channel to Ipswich River	*5	134	41	14	Coast Survey, 1852. Do.
	At anchorage beyond Breakers..	9	171	84	18	
	At anchorage in Plum Island Sound under Great Neck	191			28	Do.
	To the anchorage	13	21	117	21.	Do.
	In entrance to Essex River over bar	*6	15	5	16	Coast Survey, 1856
	At the anchorage in Essex River	21	30	20	31	Do.
	In Channel over Annisquam Bar to Jones River..	${ }^{6}$ 6	15	51	161	Do.
	At the anchorage abreast of the Village..	21	30	20	31	Do.
	To anchorage	7	15t	6	162	Coant Survey, 1857.
Rockport Harbor	In main entrance to Harbor	15	234	14	243	Do.
	To wharves	5	134	4	$14 \frac{1}{2}$	Do.
	At anchorage inside Breakwater	11	191	10	201	Do.
	At anchorage in Sandy Bay	18	$28 \frac{1}{2}$	17	27	Do.
	Over bar, from Westward, between Gap Head and Straitsmouth Island		$11 \frac{1}{2}$	2	121	Do.
	From the Southwavd over Milk Island Bar	71	16	$6 \frac{1}{2}$	108	Coast Surv 3y, 1873.
	Between Straitsmouth Island and A very's Ledge	34	421	33	434	Coast Surv $9,1857$.
Whale Cove	To anchorage.....................................	11	194.	10	201	Do.
Loblolly Cove..do	13	$21 \frac{1}{2}$	12	228	Do.
MASSACHUSETTS BAY (Harboza and Anchorages) -	Brace's Cove:					
	At anchorage	7	10	61	164	Coast Survey, 1858.
	Gloucenter Harbor: Up the harbor to Ten Pound Ieland Light-house From Ten-Pound Islaud Light-house to Fort	30	39	294	302	Do.
	Point From Fort Point to Spindle on Fire-Pound Island	19 3	28 12	181 24	283 129	Do.

Table of depths, Atlantic Coast-Continued.

Table of depths, Atlantic Coast-Continued.
MASSACHUSETTS

Table of depths, Atlantic Coast-Continued.
MASSACHUSETTS.

Places.	Limits between which depths are giren.	Least water in channel.				Anthorities.
		Mean.		Spring tide.		
		$\underset{\text { water. }}{\text { Low }}$	High water.	$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	High water.	
Plymonth Harbor-Coutinued. Barnstable Harbor.	To anchorage in Warren's Cove	Feet.13	Feet. 224	Feet. 12	Feet. 231	Coast Survey, 1870, Coast Survey, 1861.
	Over the bar*.	72	163	6	$17 \frac{1}{4}$	
	Channel to Red Rock	64	154	$\begin{array}{r} 5 t \\ -i \end{array}$	164	Coast Survey, 1861. Do.
Wellteet Harbor	Channel to Calves-Pasture Point	$\frac{1}{1}$	97		$\begin{array}{r} 104 \\ 24-46 \end{array}$	Do.
	Anchorage off Sandy Neck Light-house.	14-36	$\left\|\begin{array}{c} 234-454 \\ 10 \end{array}\right\|$	$\left\lvert\, \begin{gathered} -\frac{1}{2} \\ 13!-354 \end{gathered}\right.$		Do.
	Over outer bar*.	14-36		6	$\begin{gathered} 24-46 \\ 20 \end{gathered}$	
	Over inner bar	11	$22 \pm$	93	23	Do.
	To Mayo's Rocks	7	182	53	19	Do.
	To anchorage behind Billingsgate Shoal	24	354	223	36	Do.
	To anchorage outside lower bar	17	281	15	29	Do.
	To anchorage between the bars..................	15	$\begin{aligned} & 264 \\ & 382 \end{aligned}$	$\begin{aligned} & 133 \\ & 25 z \end{aligned}$	2739	Do.
	To anchorage above Billinggate Light-house	27$36-60$				Do. Coast Survey, 1868.
Prosincetown Harbor \qquad NANTUCEET AND VINEI ARD SOUNDS (Channels).	To anchorage		$\left\lvert\, \begin{gathered} 38 \pm \\ 45 \frac{1}{4}-69 \frac{1}{4} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 253 \\ 351-594 \end{gathered}\right.$	$\begin{gathered} 39 \\ 46-70 \end{gathered}$	
	Through North Channel into Butler's Hole between Pollock Rip and its Broken Part..... ..	21	$24 \frac{4}{4}$	$20 \frac{1}{1}$	253	Coast Survey, 1879.
	Through North Channel into Butler's Hole from Pollock Rip Light-vessel to Shovelful Lightvessel	24	278	231	283	Do.
	Passage between Broken Part of Pollock Rip and Twelve Feet Shoal to Pollock Rip Light-vessel..	19	228	182	238	Do.
	Through North Channel from Shovelful Lightvossel to Handkerchief Light-vessel	45	482	44t	492	Do.
	Through North Channel from Handkerchief Lightvessel to Bishop and Clerk's Light-honse .	22	25	214	25t	Do.
	Through North Channel from Bishop and Clerk's Light-house to Succonesset Shoal Light-vessel..	19	20%	181	21	Do.
	Light-vessel to Nobska Point Light-house	21	223	209	23	Do.
	From Nobska Point through Vineyard Sound	52	542	514	56	
	Through Beach Channel into Butler's Hole	18113	222	18	238	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
	Through Beacs Chanuel around Monomoy Point .		169	124205	178	Do.
	Through Main Channel to Cross Rip Light-vessel. From Cross Rip Light-vessel to West Chop Light-	26	${ }^{29}{ }^{\text {d }}$			Do.
	house	42	439	413	44	Do.
	Through from Handlerchief Light-vessel to Cross Rip Light-vessel	27	30	268	301	Do.
	Through Midde Channel (between L'Homme Dien Shoal and "The Hedge Fence")	21	223	208	23	Do.
	Through Middle Channel from Succonesset Shoal Light-vessel to Nobska Point.	21	224	202	23	Do.
	Through Muskeget Channel:					
	1. By the Main Pasbage	19	20	18	21	Coast Survey, 1851. Do. Do. Do.
	2. Between Waeque Bluff and Skiff Island ...	19	202	189	21	
	3. Between Muskeget Rock and Mutton Shoal.	15	163	148	17	
	4. Between Norton's Shoal and Long Shoal....	22		218	24	
NANTCCKET AND VINE. YARD SOUNDS (Harbors and Anoborages).	Into Chatham Roads from Butler's Hole by the pasaage between Monomoy Point and "The Handkerohief ' \qquad					
		$\stackrel{22}{19-33}$	$\left\lvert\, \begin{gathered} 25 z \\ 223-36 i \end{gathered}\right.$	21.	264	Coast Surrey, 1872.
	At anchorage in Chatham Roads..................			18t-32t 23i-37t		Coast Survey, 1874. Do.
	Over the bar into Stage Harbor...................	19-33	[224-36ı	21	71	
	At the anchorage in Stage Harbor................	12	154	114	164	Do.
	At anchorage in Bass River Roads nnder Break- water \qquad	818	113	7 7	$12 \pm$	Coast Survey, 1872. Do.
	At outer anchorage		21	17\%	224	
	Over bar into Nantucket Harbor to Brant Point Light-bouse	4	7	39	7	Atlantic Coast Pilot

Table of depths, Atlantic Coast-Continued.

Table of depths, Atlantic Coast-Continued.
MASSACHUSETTS AND RHODE ISLAND.

Table of dep:les. Atlantic Coast-Continued.

Table of depths, Atlantic Coast-Continued.
Connecticut and new yohk.

Places.	Limits between which depths are giten.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		Low water	$\begin{gathered} \text { High } \\ \text { water. } \end{gathered}$	$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	High water.	
BHOCK TSLAND SOUND Ancliorages).		Feet.	Feet.	Feet. Feet.		
	To anchorace in Fort Pond Bay	24	27	234	28	Coast Survey, 1845.
	To anchorage in southern part of Napeague lay	24	2π	23年	28	Do.
	To anchorage in Aapeague Harbor	8	11	7	12	Do.
	'Through Lam Island Passage into Gardiner's Bay	12	15	113	16	Do.
	To anchorage in Tobacco-Lot Bay	7	10	的	11	Do.
Ftilleas 1siand sousir (Chamels).	Through Wateh Hill Passage into the Main Channel	$27 \frac{1}{4}$	30	27	304	Coast Surves, 18:8. Coast Surrey, 1877.
	By Main Chanmel through the Sound............	27	294	263	30	
	Through Sugar Reef Passage into the Main Channel	23	253		26	
	Through Caturab Passage into the Main Channel	30	$\begin{aligned} & 323 \\ & 294 \end{aligned}$	223 298	33	Do.
	Through Lord's Passage into the Main Channel ... Through Wicopesset l'assuge into the Main Chan-	21		$\begin{aligned} & 298 \\ & 209 \end{aligned}$	24	Do.
	nel	16	183	15	19	Do.
	Through North Cbamnel into Long Island Sound from Stonington	11	137	109	14	Do.
	Throngh the Soath Chaunel into Long Island Sonad	19	218	189	22	Atlantic Coast Pilot,
Fistuer's Inland sound	Little Narragansett Bay:					1880.
(llabomand Ambhorayes).	To anchorage.	84	93	688	10	Coast Surver, 1839.
	To anchorage off Sandy Point		11		114	Do.
	To anchorage in Pawcatuck River by Nortb Channel throngh the Bay \qquad	3	33	23	6	Do.
	To anchorage in Pawcatucl River by Sonth Channel through the Bay \qquad	4	63	3	7	Do.
	Stonington Harbor:					
	To anchorage.	7	93	63	10	Coast Surrey, 1874.
	To anchorage off Tpper wharres	4	7	4	74	Do.
	To anchorage in East Harbor	10	123	9	13	Coast Survey, 1839.
	To anchorage in West Harbor	8	10	$7{ }^{7}$	11	Do.
	To anchorage in Mystic River	12	14.	114	15	Do.
	To Mystic Bridge.	111	14	11	142	Do.
	To anchorage in Mumford's Cove ...	10	123	98	13	Do.
LONG ISLAND SOUND (Cbannels).	Through Main Cbannd from "The Race" to abreast of Cornficld Point Light-vessel	120	125	110 ${ }^{\text {d }}$	1261	Do.
	'Throngh Main Chanuel fronn Cornfield Point Light-vessel to abreast of Straf ford Point Light-	391	45			
	house .			39	451	Do.
	Through Main Cbannel from Stratford Point Light-louse to Throg's Neek	391	45	39	451	Do.
	Through North Channel from "The Race" to abreast of the southern end of Saybroot Bar.	48	53.	474	54	Do.
	Through North Channel from off Saybroook Bar to abreast of Stratford Point (junction with the					
	Main Channel)	211	27	21	, 273	Do.
	Through "The Thimbles" Changel Through the South Channel from "The Race" to	27t	33	27	331	Do.
	abreast of Cornfill Point Lipht-resse!	72	78	72	781	Do.
	Through the Sonth Channel from Cornfield Point Light-vessel to abreast of Oyster Bay (junction with the Main Chansel *	24.	30	24	301	Do. Comet Surver, 1874
	Passage through Pium Gut into Gardiner's Bay .. Thames River and New Loudon Hay bor:	48	51	48	511	Coast Surver, 1874
long Island sound (Harbornand Anchorages).	Thames River and New Loudon Hay bor: Throngl Main Channel from Long Island Sound to anchorage off New Loudou....... At wharves of New Lundon At Groton wharves	25				Coast Surver. 1839. Do. Do.
		11	274134114	24%1038383	281412	

*This depth is found only off Eaton's Point. Elsewhere on this line there is not less than nine fathomes.

Table of depths, Atlantic Coast-Continued.
CONNECTICCT AND NEW YORK.

Places.	Limits between which depthe are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	Low	$\begin{aligned} & \text { Bigh } \\ & \text { water. } \end{aligned}$	
LONG ISLAND SOUND (Harbors and Anchorages).	Thames River and New London Harbor-Con't'd Through Pine Island Channel from Fisher's Island Sound . From off Groton to abreast of Cow Point From off Cow Point to abreast of Clarke's Cove by the East Chanuel	Feet.	Freet.	Feet.	Feet.	Coast Surres, 1839. Do.
		21	$23 \frac{1}{2}$	208	24	
			26.	238	27	
		24	172	148	18	Coast Sarvey, 1874.
	From of Cow Point to ubreast of Clarke's Cove by the West Channel	13	$15 \frac{1}{2}$	127	16	Do.
	From off Clarke's Cove to abreast of Trading Cove	101	13	10404	134	Do.
	From off Traling Cove to Norwich		$9 \frac{1}{2}$		10	Do.
	To the Upper Bridge-Shetucket River.......	7	91	64	10	Do.
	At entrance to Trading Cove ..	14	4	11	4	Do.
	To anchorage in Trading Cove.	52	8	54	$8 \frac{1}{2}$	Do.
	To anchorage in Paquatannock Cove	2	41	14	5	Do. Do.
	To anchorage in Horton's Cove	$2 \frac{12}{12}$	5	24	$5 \frac{1}{2}$	
	To anclurage in Winthrop's Cove	10	$12 \frac{1}{1}$	98	13	Coast Survey, 1838.
	Tn anchorage in Green's Harbor..	7	94	63	10	Do.
	Niantic Bay :			14 ${ }^{\text {a }}$		Coast Survey, 1836. Do.
	To anchorage	15	$17 \frac{1}{2}$		18	
	To mouth of Niantic River ..	10.	123	10	131	
	Connecticat River: Orer Saybrook Bar	$\%$	11	$6 \frac{1}{2}$	$11 \frac{1}{2}$	U. S. Engineers, 1880.
	After passing Bar to anchorage off Saybrook Point	18	22			
	To anchorage in Wentbrook Harbor	7	11	$\begin{gathered} 17 \frac{1}{2} \\ 6 \frac{1}{2} \end{gathered}$	$\begin{aligned} & 22 \frac{1}{2} \\ & 11 \frac{1}{2} \end{aligned}$	Coast Sarvey, 1838
	Duck Island Harbor:	13	17	124	174	Cobst Survey, 1877.
	To anchorage					
	Through Passage between Duck Island and Menanketesuck Point	20	24	1913	24.	Do.
	Through Passage between Duck Island and Kelsey's Point	154	192	15	20	Do.
	Through Passage betwenn Stone Island Reef and East Ledge. \qquad	19	23	18	234	
	To Pier Head, Lewis' Landing.	7	11	$6{ }^{1}$	112	
	To anchorage in Killingworth Harbor.	8	12	71	124	
	To anchorage in Guilford Harbor.		12	71	$12 \frac{1}{3}$	Do.
	Sachem's Head Harbor:					
	In the entrance	19	24.	184	25	Do.
	To anchorage	19	24.	181	25	Do.
	Passage north of Goose Rocks	13	18.4	121	19	Do.bo.
	To Thimbles Anchnrage	253	307	25	31	
	Branford Harbor:					
	In the entrance.	10	15.	91	16	Do.Do.
	To the landing.	6	11%	54	12	
	To anchorage in Outer Harbor.	13	181	121	19	Do.
	To anchorage in Inner Harbor	6	112	51	12	Do.
	New Haven Harbor: Throngh Main Channel from Long Island Sound to Lower Bridge.. Into Quinnipiac River and up to wharres Into Quinnipiac River and to Upper Bridge .. Into Mill Rirer through drawbeidge to the Middle-Ground bet ween the bridges .. Into Mill River and to Upper Bridge To Osster Point Wharves \qquad To Ofster Point Bridge. 'To aurhorage in Morris' Core \qquad					
		13	19	12t	193	Coast Survey 1872
		7	13	61	132	Do.Do.
		1	7	1	7	
		2	8	11/	84	Do.
		1	7	1	74	Do.
		2	7	$\frac{1}{2}$	72	Do.
			814	11	82	Do.
		8				

Table of depths, Atlantic Coast-Continued.
CONNECTICUT AND NEW YORE.

Table of depths Atlantic Coast-Continned.

Table of depths，Attantic Coast－Continned．
XEW YORK．

Pinces．	Limits betwerl which depths are given．	Least water in chamel．				Amblarities
		Mean．		Spring tides．		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { yight } \\ & \text { water } \end{aligned}$	$\operatorname{Low}_{\text {water. }}$	Migh	
daELHNES＇S BAY and tri－ hataites（Chamels）－Cont＇d．	Passage throuth Sleiter Ishat sumber past Buy Harbri，into Little Peconic Bas	Fcet．	Yuet． 174	Seet．	Fect． 1%	Conet Surver， 1839.
	To anchorage in Orient liamor	1518	173	15	18	Do
	Greenport Harior：					
	＇Wunchoraye	218	993	$\underline{1}$	24	bo．
	To Greenport wharves．	7	93	7	10	Du，
	To anchorage in Pines Cove	18.	20.3	18	2	1b．
	Toanchorage in Southuld Bay	154	13	15	15	Lo．
	Sag Harbor：					
	Toanchorage	13 L	15_{3}	13	13	Ho．
	To Sag Harbor wharveg	104	123	10	13	Do．
	To anchorare in Noyack Day Little leconic Bay：	214	238	1	24	Do．
	Passage through the bay ．．．．．．．．．．．．．．．．．．	19	214	19	22	Do．
	Tounchorage on cast side of Little Moy Neck	138	153	13	16	H0．
	To anchorage in Cutchogut Harlor．．．．．．．．．．	10.4	123	10	13	Do．
	Great Peconic Bay：					
	Chamel through the bay	133	10^{3}	13	16	Do．
	Te anchorage	$16 \frac{1}{7}$	1.2	16	19	Do．
	Chanel to Jamesport．	104	123	10	13	1% ．
meth coast of long ISLAND（Haribrs and An－ chora ensi．						
Fire Isiaud Inlet＊．．．．．．．．．．	Main Channel over Bar．．．．．．．．．．．．．．．．．．．．．．．．．．	12	13^{3}	113	14	Coast Survey， 1873
	Channel to abreast of Light－house Wharf ．．．．．．．	11	129	$10 \stackrel{3}{3}$	13	Do．
Great South Bay	From aloreast of Fire Islam Lisht house to the Fite Ielinda	8	93	73	10	10．
	From Fire Islanis to Smith＇s Whart＇．．．．．．．．．．．	3	43	23	5	Do．
	From Fire Islands to Nicoll＇s P＇out．	6	注	$5{ }^{\text {a }}$	8	Do．
	From Nicoll＇s Point to Howells Point	7	83	63	9	Ho．
	From Howell＇s Point to Belle Dock	5	9	43	7	Do．
	From Bell＇s Ouck to Smith＇s Point	2	33	13	4	Du．
	In the entrance to Connetquot River	3	4	23	5	Do．
	To anchorage in Nicoll＇s Bay，off mouth of Con－ netquot River	7	${ }_{8}{ }^{2}$	${ }^{63}$	9	1ho．
Gilgo Inlet＊	In the entrance．．．．．．．．．．．．．．．．．．	11	1：3	103	13	Coast survey， 1835.
Ni：w Inlet＊．．．．．	r_{2}. do ．．．．．．．．．	3	$2 \frac{1}{2}$	六	23	Do．
Rockaway Iulet＊	．．．．．do ．．．．．．．．．．．	13	17	123	$17 \frac{1}{4}$	Coast Survey， 1×77
Jamaica Bay．．．．．	Through Big Channel to alreast of Canarsie．	6	108	6	103	D_{6}.
	To Canarsie Landing	$4 \frac{1}{4}$	8	4	81	Dis．
	Through Isand Channel to Canarsie Landing．．．．	21	$6{ }_{4}^{1}$	24	62	1 m ．
	Throngh Big Fisbkill Channel to Duck Point Marshes．．．．	64	10	6	10.1	1）${ }^{\text {a }}$
	Through Duck Poiat Chanacl	38	$7 \frac{1}{2}$	31	74	Do．
	Throurh Beach Channel to Broad Cbannel ．．．．．．．	18	22	173	224	Do．
	At Rockavay Wharves．	7	11	61	11%	Do．
	Passage over Long Bar ．．．．．．．．．．．．．．．．．．．．．．．	9	131	9	133	13．
	From Long Bar＇to Sloop Bar．．．．．．．．．．．．．．．．．．．．．．．	63	101	6	103	Do．
	Through Grass Hassock Channel to Norton＇s Point	3	7	2k	$7 \frac{1}{4}$	Do．
	Through Broad Chnnnel to Hell－Gate．．．．．．．．．．．．．	7	11	$6{ }^{1}$	114	Do．
	Through Hell－Gate to Nigger Puint ．．．．．．．．．．．．．．	64	1012	0	103	Do．
	Through Hassock Creek to Green Point ．．．．．．．．	$3 \frac{1}{2}$	$7 \frac{1}{2}$	3	73	Do．
	Through＂The Raunt＂to Goose IIml Chanmel ．．	4	8	31	81	Do．
	Through the Prmpkin Patch Chamel ．．．．．．．．．．．．	5d	91	5	积	Do．
Dean forse Inlet＊	Orer the Bar ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$4{ }^{4}$	81	4	8	Do．
	Through Deep Creok tind Irish Channel to Island Cbaunel（Jamaica Bay）	31	7	3	73	Do．

Table of depths, Atlantic Coast-Continued.
NEW YORK AND NEW JERSEY.

Talle of depths, Atlantic Coast-Continued.
NEW YORK AND VERMONT.

Table of depths, Atlantic Coast-Continued.
NEW YORK AND VERMONT.

Table of depths, Atlantic Coast-Continued.
NEW JERSEY AND DELAWARE.

Table of depths, Atlantic Coast-Continned.

NEW JERSEY, DELAWADE, pENNSYLVANIA AND virginia.

Places.	Limits between which deptles are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		Low water.	High water.	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water.	
DELAWALE BAY AND hiver (Channels)-Contd.	Through Cano May Chand Eutering lyy the Through Chanuel	Feet.	Feet.	Feet.	Feet.254	Coast Surver, J841-4i.
		20	$24 \frac{1}{4}$			
		$\underline{0}$	24.15	$10 \frac{1}{2}$	251	$\begin{aligned} & \text { Do. } \\ & \text { Coast Surver, } 1841-43 \\ & \text { Wo. } \end{aligned}$
	Through Ricorl's Channel	15	198	1435	201	
	Through Bhut's Channel	14	188	134	194	
	Through Blake's Chaunel	15	19	141	$19{ }^{2}$	A11. Coast I'ilot, 188:. Du.
	Through the Delaware Shore Chanuel	8	12	$7 \frac{1}{2}$	124	
	Entering by the Heu and Chickens Chamel	16	20.2	154	214	Do.
	From Ricord's Chamel across the flats, to Fonr. teen Fert Bank Light-vessel	151	$19 \frac{1}{3}$	15	204	Do.
	From Blunt's Chanel to Cross Ledge Lighthouse	$12 \frac{1}{2}$	$16 \frac{1}{3}$		174	Do.
	Through Passave just north of Cross Ledre.	14	18	131	$18 \frac{1}{4}$	Do.
	From abrast of Ship Johu shoal Light house, through Main Chanuel (on the Ranges), to Phiatulphia	20	26	197		
Tributaries to Defawate bay and River. (Maurice River) \qquad	Through Delaware City Chanuel	1912	$25 \frac{1}{3}$	19	264	Coast Surver, 1881. Coast Surver, 1875.
	To tho Wharf at Lewes.	85	12.	$7 \frac{1}{2}$	134	Coast Survey, 1875. Coast Survey, 1841-4:
	Entrance to River		11/	4	113	Coast Surrey, 1841-4: Atl. Coast Pilot, 1882.
	Channel to Port Norris	15	214	$14 \frac{3}{2}$	214	Do.
	Channel to Mauricetown	15	2114	1412	214	Do.
(Mahon's River)	Over Bar at entrance	5		4,	11.	Do.
	Channel to abreast of Light-house	6	121		123	
(Doma liver)	In the entrance	5	1118	4 $\frac{1}{2}$	114	Do.Do.Do.Do.
	Chaunel to Dona Landing	12		111	182	
(Cohansey Creek)	Over Bar at entrance		$13 \frac{1}{2}$ 198 	713	$\begin{aligned} & 14 \\ & 20 \end{aligned}$	
	Channel to Greenwich Whar	$13 \frac{1}{2}$				
(1)ack Cruek)	Entrances to Creek	$6 \frac{1}{4}$	122	6	13	Do. Do. Do. Coast Surrey, 1843.
	Chamel to Short's Landing	64		6	13	Do.
(Salem Creek)	Entrance over the Rar.	7	$\begin{aligned} & 12 \mathrm{y} \\ & 13 \end{aligned}$	$6 \frac{1}{2}$	1313	Atl. Coast Pilot, 1882. Do.
	Channel to Salem	10	16	91	164	
(Christiama Creeh)	From Eatrance to Lrandywine Creek	13	19	124	194	Do. Do.
	Channel to Wilmington.........	12	18	118	18.	
	Chanuel to Railroad Bridge (Brandywine Crook)..	$5 \frac{1}{2}$	11.	5	114	Coast Survey, 1841.
(Schaylkill Miver)	To Penrese Ferry Bridge	20	259	103	264	U. S. Engineers, 1882. Do. Const Sarvey, 1871. Da.
	To Gras's Ferry Bridge	16	217	154	$22!$	
	To Market Street Bridge .	13	183	122	$19 z$	
	Tu Fairmount Bridge.....		162	109	172	
COAST FROM CAPE HENLOPEN TO CAPE CHARLES. Indian River Inlet*						
	Over Bar at Entrance To mouth of Indian River To Rehoboth Bay	24343124	74847474	2	77	Atl. Coast Pilot, 1882. Coast Survey, 1847. Do.
				3	$8{ }^{3}$	
				2	74	
Chinenteague Anchorage	To anchorage under the Shoals, off mouth of the Inlet		213	188	22	Coast Survey, 1851. Do.
Chincoteague Inlot * . .	Orer the Bar.	8			11	
	Toanchorage inside the Bar	18	102	78 7 178	217	Do.
Aswawoman infet*...	Orer the Bar		03	$3{ }^{3}$		Do. Do. Coast Survey, 1802.
Gargathy Iult ${ }^{*}$		7	-64	38	7	
Matomkin Inler*.				$6{ }^{6}$	114	
	Through Folly Creek to Landing.	6	91	枒	107	Coast Survey, 1802. Do.
	Through Matomkin Bay to month of Parker's Creck To anchorage inside the Bar	$\begin{array}{r} 5 \\ 20 \end{array}$	81 23		91 248	Do. Do.

Table of depths, Atlantic Coast-Continned.
virginia.

Places.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Sipring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water.	Low water.	Hith water.	
COAST FROM CAPE HEN.						
LOPEN TO CAPE charlis. (Wachapreague Iulet*).......	Over Mar through East Channel	Feet.	Feet.	Feet.	Feet.	Coast Survey, 185.
		8	124	71	13	
(Wachapreague Iulvt*).......	Over Bar through North Channel.	9	13.	$8{ }^{8}$	14	1 o
	To amelorage inside the Bar	21°	25	$20 \frac{1}{2}$	26	Coast Survey, 1871.
	Passage Nirough Black Lock Reach	12	362	114	17	Do.
	Through Finneys Creek to Landiug	4	$8 \frac{1}{2}$	31	9	Do.
	Passage through Horse Shoo Lead.	26	30.	2 F 2	31	Do.
	Through Milistone Channel ...	12	16ı	112	17	Do.
	Throagh Bralford's Channel	9	13.4	$8 \frac{1}{1}$	14	Do.
(Little Machipongo Inlet*)	Over Bar through North Channel	12	164	$11 \frac{1}{2}$	$17 \frac{1}{2}$	Coast Survey, 1871
	Over Bar through East Channel	7	$11 \frac{1}{2}$	$6 \frac{1}{2}$	122	Do.
	To anchorage in Sandy Island Channel	20	$30 \frac{1}{2}$	$25 \frac{1}{2}$	$31 \frac{1}{2}$	Do.
	Through Sandy Islad Channd to Lower Gap,	25	29.	$24 \frac{1}{2}$	$30 \frac{1}{2}$	Do.
	To anclorage in North Inlet...	26	304	$25 \frac{1}{2}$	313	Do.
	Throngh North Inletinto Great Machipongo River:	6	104	$5 \frac{1}{2}$	114	I\%.
(Great Machipongo Inlet*)...	Over Bar through East Chamel	11	15.	10.	16.	Cowst Survey, 1883
	Over Bar through Beach Chamel	12	16. $\frac{1}{8}$	$11 \frac{1}{2}$	172	Do.
	Over Bar through South Chamel................	7	$11 \frac{1}{2}$	$6 \frac{1}{2}$	121	Do.
	Through Great Machiponizo River to abreast of Castle Ritge Creek	23	$22^{2} \frac{1}{2}$	223	2812	Coast Surrey, 1871.
	Throngh Great Machiponro River to Bell's Nock	17	$21 \frac{1}{2}$	$16 \frac{1}{2}$	22×1	$1{ }^{1} \mathrm{O}$.
	Through "The Deeps" to Poist Creek.	91	25.	$20 \frac{1}{2}$	26.	1 m .
	To anchorage inside the Bar	20	$24 \frac{1}{2}$	192	20.4	$1{ }^{1}$
(Saml Shoal Thlet*)	Over the Bar	13	174	124	173	Coast Survey, 1853.
	Through Sand Shoal Channel to The Thoroughfme	30	344	291	343	Coast Surves, 1870.
	Through The Thoroughfare to Marothy Bay.....	16	$20 \frac{1}{4}$	154	203	Jo.
		24	273	$23 \frac{1}{3}$	284	Do.
	Through Eckichy Channel to "The Forks"..... To anchorage in Lone Channel, ahreast of Cobl's	27	303	266	$31 \frac{1}{2}$	Do.
	Landing \qquad	19 8	223	183	234	Do.
(Ship Shoal Inlet*)	Over the Bar. \qquad At anchorame inside the Bar.	8 28	114 274	${ }^{73}$	124	Att. Coast Pilot, 1882.
	At anchorage inside the Bar.......................... Tbrough Ship Shoal Channel into Smith's Island	21	274	233	281	Do.
	Bay...................	15	18t	143	191	Coast Surver, 1870.
(Smith's Island Inlet and Bay*'.	Over the Bar	7	98	63	10	Coast Survey, 1858.
	At anchorage on west side of Smith's Island	19	214	18	22	Coast Surver, 1869.
	Through Magothy Bay to "The Thoroughfare" (Sand Shoal Channel) \qquad	14	162	134	17	Do.
	Through Magothy Bay to Ship Shoal Channel	2	4	14	5	Do.
CGRSAPEAKE BAY (Channels).	From entrance through Main Ship Channel to Hampton Roads \qquad	30	321	293	33	Cosst Survey, 1859-73.
	From entranee through Main Ship Channel to abreast of Wolf Trap Lighthouse	30	$32 \frac{1}{2}$	293	33	Do.
	Through North Channel around Cape Charles to abreast of Wolf Trap Light-house	21	234	203	24	Do.
	Throagh Middle-Ground Channel to abreast of Wolf Trap Light-house.	13	211	187	22	Do.
	Throngh Main Ship Channel up the Bay from Wolf Trap Light-house to abreast of Smith's Point Light-honse \qquad	26	$27 \frac{1}{1}$	257	28	Coast Survey, 1854.

*Shifting sand-bars.

Table of depths, Atlantic Coast-Continued.
MARTIAND AND VIRGINIA.

Table of depths, Atlantic Coast-Continued.
VIRGDNIA AND MARYIAND.

Plaves.	Limits luetwen which depths nes given.	Leayt water in chanmel.				Authoritieg.
		Mcan.		Spring tides.		
		$\underset{\text { water. }}{\text { Low }}$	$\underset{\text { water. }}{\text { High }}$	$\begin{array}{r} \text { Low } \\ \text { water. } \end{array}$	$\begin{gathered} \text { High } \\ \text { water. } \end{gathered}$	
Tributuries to Chesapeake Bay: (James River--Coutinued)		Feet.	Feet.	Feet.	Fect.	
	Throngh Graveyard Reach	13	16	122	$16 \frac{1}{2}$	Coast Survey, 1880.
	From Graverarl Reach to Rockett's	13	16	12	102	U. S. Edemineers, 18su.
	In the entrance to Appomattox River.	$1 \mathrm{It}^{2}$	18.4	$15 \frac{1}{4}$	$18 \frac{1}{2}$	Coast Survey, 1850.
	Ep Δ ppobattox River to Port Walthall	14	163	183	17	Const Survey, 1852.
	Entering Chickabominy River by chamel along north shore under Barrat's Foint	14	16	13	16ง	Coast Survey, 1874.
	Across the main bar at entrance to Cliekalominy River	7	9	$6 \frac{1}{2}$	$9{ }^{1}$	Der
	Up Chickahominy Fiver from Earrct's Point to Yarmouth Creek	15	17	143	17\%	Do.
	Pagan Creek, from entrance to smithtield wharves \qquad	7	$9 \frac{1}{2}$	$6 \frac{1}{2}$	10	Coast Survey, 1572.
(Back River)	Warwick River, from entrance to Potash Creek ..	4	61	31	7	bo.
	To anchorage off Newpert News	40	$4{ }^{24}$	$39 \frac{1}{2}$	43	Cuast Surver, 1874.
	Over the Outer Bar	11	$13 \frac{1}{4}$	103	14	Coast Surrey, 18bs.
	Over the Inner Bar	7	92	$6{ }^{6}$	10	Do.
	To Booker's Point	62	9	61	93	Do.
Poquosin River.	From entrance to Lamb's Creek	7	91	6.	10	Do.
	To anchorage off York Point	15	$17 \frac{1}{1}$	148	18	Do.
(York River)	From entrance to Yorktown	34	365	33	37	Coast survey, 1857.
	From Yorktown to Terrapin Point	19	$21 \frac{1}{2}$	188	22	Do.
	From Terrapin Point to West Point	13	$15 \frac{1}{2}$	123	16	Do.
(Mubjaek Bay)	To anchorage just above Too's Point Light-House.	30	323	993	33	Do.
	From entrance to mouth of North River....	18	191	173	20	Coast Survey, 1854, 68
	To anchorage off month of Severn River	18	19.	178	20	Coast Surres, 1868.
	To anchorage off month of East River	16	174	159	18	Do.
(Cherrystone Iulet)	Up Severn River from entrance to Eastern and Western Brauches	19	201	$18{ }^{3}$	21	Do.
	To Wilson's Creek (Waro River)	10	171	153	18	No.
	Up North River, five miles above entrance	8	91	$7{ }^{3}$	10	Do.
	Over the bar at mouth of East River	14	151	13 \%	16	Do.
	To Pull-in Creek, East River........	14	154	13	16	Do.
	From entrance to Cherrystone Light-House	12	134	118	14	Coust Survey, 1873.
(Huuger's Creek) (Naswaddox Creek)	To Cherrystono Wharf	9	104	83	11	Do.
	From entrance to "The Divide".	$6{ }^{1}$	72	61	83	Coast Survey, 1868.
	From entrance to Warehouse Creelk	4	$5 \frac{1}{4}$	$3{ }^{\text {a }}$	6	Do.
(Piankatant River)	From entrance to Wilton Point	19	204	18.3	21	Coast Survey, 1869.
	From Wilton Point to Ferry Point.	15	$16 \frac{1}{4}$	14.4	17	Do.
	From Ferry Point to Deep Puint	61	74	64	$8 \frac{1}{2}$	Do.
	To anchorage in \#ills Bay	10	204	$18 \frac{8}{4}$	32	Do.
	To anchorage in Godfrey's Bay	19	201	183	21	Do.
	To anchorage in Fishing Bay ...	19	204	183	21	Do.
	Ta the entrance to Milford Haven	34	4	3	52	Do.
	At anchorage in Milford Haven	8	94	73	10	Do.
Ocechannock Creek)	To Heath's Landing .	9	104	88	11	Coast Surrer, 1868.
(Rappahannoek River)........	To nbreast of Sandy Point	$6 \frac{1}{18}$	7	64	$8 \frac{18}{12}$	Do.
	From entrance to Tappahannock.........	111	13	114	132	Coast Survey, 1853-57.
	From Tappahanoock to Occupacia Creek.........	74	83	71	91	Do.
	From Ocoapecia Creek to Saunders' Wharf	17	181	162	19	Do.
	From Saunders' Wharf to Long Point	14	153	133	16	Do.
	From Long Point to Port Royal	72	9	73	91	Do.
	From Port Royal to Spring Hill	6	73	$5{ }^{5}$	8	Do.
	From Spring Hill to Mansfield....................	4	51	38	6	Do.

Table of depths, Atlantic Coast-Contimned.
VIRGINIA AND MARYLAND.

Plams.	Limits letween which tepthsaregiven.	Inast water in chamel.				Anthorities.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\underset{\text { water. }}{\substack{\text { Hieh }}}$	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { witer. } \end{aligned}$	
Tributaries to Chesapeak Bay: (Rappahanomk River--Cont'd.)	From Mansfield to Fredericksburg	Feet. 3	Fect. 4.2	Fect. 23	Fect. 5	Coast Surver, 183n-37.
	Cormontan Hiver, from antrane to abreast of The Eastern Draneh	16	171	13	18	Crast Survey, 1869.
(1.itte Bay)...........	To anchorage off Nurtle Point.	18	194	174	20	1 mo
	In the entrance to Antoprison Creek	7	84	$6{ }_{4}$	9	Do.
(Himers (rack)	In the entamed	17	143	123	15	Do.
	To the landing	\bigcirc	104	84	11	Do.
(hadian Creht	Fromentrance two min's np	16	17	15	18	Do.
(thwitime Crents)	Fron entrance to "The Divide"	15	168	143	17	Do.
(心.amd:a Creek)	From entrauce to Carratuck Creek	7	$8{ }_{4}$	64	9	Coast surver, 18 se .
I'ungotagac Crok)	To almeast of the wharyes	14	15.4	131	16	Coast Surver, 1851, ${ }^{6} 88$.
	To the rillage of Ouancock	41	5	4	0	Coast Survey, 1869.
(flese plessex Crek)......... (fitat Wixamico River)	To abreast of Tobacco Istand	7	87	63	9	Do.
	From cntranee to Barrett's Creek	19	204	18.4	21	Do.
	Tu thelomge iu Ingram's Bay	15	16^{4}	14.	17	Do.
	Iu the entrance to Mill Creek.	13	14.	123	15	Ino.
	In the entrance to Cochle's Creek.	14	154	133	10	Do.
(Patomac Biver)	From Point Lookout to Wicomice River	23	$24 \frac{1}{2}$	223	25	Const Surres, 1860-69.
	From Wieouico River to Lower Ceiar Point	20	218	192	22	Coast Survey, 1869.
	From Lower Cedar Point to Ludian Hrad.	19	$20 \frac{1}{2}$	183	21	Coast Survey, 18c.-'63.
	Fron Indian Head to Giesboro' Point.	21	238	204	24	Coast Survey, 1863.
	From Giesboro' Point to Washington wharses	15	173	14^{3}	18:	7. S. Engineers, 1880.
	From Giesbore' Point to Georgetown wharecs.	14	163	133	17.1	Do.
	From Giesboro' Point to Buzzard's Point (IDasteru Branch)	20	223	197	235	Do.
	From Buzzard's Point to Navy-yard (Eastern Branch) \qquad Tonanchorage in Cornfield Harbor \qquad	10	18	15	191	$\xrightarrow{\text { Oo. }}$
		15	$16 \frac{1}{4}$	$14{ }^{3}$	17	Coast Survey, 1860.
	In the entrance to Coan River	18	19.	173	20	Coast Sarvey, 1868.
	Channel into Yeocomico River, and up to Kinalo.	8	$9 \frac{1}{2}$	73	10	no.
	To anchorage in Yeoconico River ofl laru Point.	10	174	153	18	Do.
	Saint Mary's River, from entrance to Saint Mary's	21	22.1	203	23	Coast Surver, 18 i7.
	Channel into Saint Inizo's Creek ..	13	142,	124	15	Coast survey, is59, 68.
	Channel into Saint George's Creek..............	14	154	133	16	Do.
	Passage into Lower Machodoc River as far as Glebe Creek \qquad	13	143,	123	15	Do.
	To anctorage in Nomini Bay	10	172	152	18	Do.
		8	91	73	10	Do.
	To anchorage in Breton's Bay, off Protestant Point	14	$15 \frac{1}{4}$	13.	16	Do.
	Channel into Saint Clament's Bay up to Guest's Point.	13	144	123	15	Dr.
	Wicomico River, from entrance to Bramleigh's Creek.	22	238	212	243	Coast Sarvey, 1800, 68
	To anchorage in Wicomico River off Lancaster's..	18	198	171	201	Do.
	Channel to Deep Point, Port Tobacco River	71	9	72	97	Coast Survey, 862
	Chimnel to railioad depot, Aquia Creek...........	,	$8{ }_{3}$	63	9	Do.
	At Alexandia wharves..........................	18	203	173	214	Coast Survey, 1863.
(Pocomoke Sound)	From off Watts' Island to abreast of Guilford's Flats	21	22.	209	23	Coast Survey, ${ }^{1855 .}$
	To anchorage mider east shore of Watts' Island..	14	151	134	16	Do.
	To the entrance to Pocomoke River	7	81	0^{4}	9	Do.
	Across "The Mud" to Williams' Point, Pocomoke River. \qquad	3	4 4	24	5	Coast Survey, 1860.
	Channel into Messongo Creek	8	9	7	10	Do.
	Channel into Guilford Creek	7	84	6	9	Do.
	Chamuel into Hunting Creek.......................	7	81	槁	9	Do.

Table of depths, Atlantic Coast-Continned.
virginia and mariland.

Table of depths Atlantic Coast-Continued.

Place.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		Low water.	$\begin{aligned} & \text { Hirlh } \\ & \text { water } \end{aligned}$	Low water.	$\underset{\text { water. }}{\text { High }}$	
Tributaries to Cherapeake Bay: (Eastern Bay-Continned)....		Fect.	Feet.	Feet.	Feet.	Conet Survey, 1847.
	Channel into Front Wye River up to Pickering's Creek.	19	20	183	204	
	Through back Wye River to W ye Narrows	8	8	73	94	Do.
	Through Back Wye River to Big Wye River.....	12	13	113	134	1 D .
	Channel into Coxe's Creek	9	10	88	101	Io.
	Passage east of Poplar Island	8	9	7	9	Coast Survey, 1846.
	To anchorare under Kent Point	19	20	188	204	Do.
(West River)	From entrance to mouth of Rhode River	13	14	123	143	Do.
	From Rhode River to Gale's Creek	9	10	88	102	Do.
	Rhode River. from entrance to Water Creek	9	10	$8{ }^{3}$	104	Do.
(South River)	From entrance to the bridice	15	16	$14 \frac{3}{4}$	104	10.
	To anchorage off Turkes Point	15	16	$14 \frac{1}{4}$	164	1 o.
	To anchorage in Selby's Bay.....	7	8	63	84	Do.
(Severn River and Annapolis Harbor.)	From entrance to abreast of the city of Annapolis.	19	20	$18 \frac{8}{4}$	203	Coast Survey, 1844, 70. Do. Do. Do. Do.
	To anchorage in Annapolis Roads	22	23	218	238	
	To anchorage in Annapolis Harbor	13	14	123	$14 \frac{1}{3}$	
	Tp the river from Annapolis to Ronnd Bay.	19	20	18	204	
	To auchorage in Little Loond Bay..	16	17	153	$17 \pm$	
	To anchorage between Hackett's Point and Greenbury's Point	18	19	178	193	
(Magothy River)	From entrance to Hulde's Point	11	113	103	12	Coast Surves, 1845.
	Chanur 1 on West side of Gibsou's Island	9	97	83	10	De. Io. Coast Survey, 1846, 70.
	To anchorage inside the entrance................	10	103	97	11	
(Cheater River)	Throngh main entrance north of Love Point Light. house \qquad	21	22	$20 \frac{1}{2}$	224	Coast Survey, 1846, '70.
	Entrance across shoals south of Love Point Light. house	818	92	8	時	Do.
	To anchorage under Love Point	19	20	184	204	Do.
	Channel up the rirer to Deep Point.	24	23	231	254	Do.
	From Deep Point to Chestertown...	9	10	82	102	Do.
	Channel intu Queenstown Creek ..	4	5	3.	$5 \frac{1}{2}$	U. S. Engineers.
	Into Corsica Creek up to Emory's Cove....... .	10	11	93	11	Coast Survey, 1846, ${ }^{7} 70$.
	Channel into Grey's Inn Creek	11	12	103	124	Do.
	Langfurd's Creek to "The Forks".	8	9	73	93	Do. ${ }_{\text {Dos }}$
(Patapsco River and Baltimore	Through the Craighill Channel	24	253	233	251	U. S. Eugineers, 1874.
Harbor.)	Through the Brewerton Channel	24	2024	238	254	Do. ${ }_{\text {Di }}$
	From Brewerton Cbannel to Lazaretto Point...	$\stackrel{4}{4}$	254	238	25희	Coast, Suivey, 1880.
	Into Baltimore Harbor and up to main wharves at Locast Point		254		$25 \frac{1}{2}$	Do.
	To Fell's Point wharves	20	214	19.	214	Do.
	To head of "The Basin'	1.4	154	13	151	Do.
	Channel south of Fort McHenry to Long Bridge (Spring Garden)	13	143	124	148	Do.
	Channel into Rock Creek	11	121	103	124	Coast Survey, 1869,
	Into Stous Creek	14	151	138	151	Do.
	Entrance to Curtis' Creek	21	224	208	221	Do.
	Up Cartis' Creek to Marly Creek....	19	202	18	201	Do.
	To anchorage in Old Road Bay......	13	142	124	14.	Do.
	Up Beard Creek to Lovg Point...................	14	154	13	15.5	Do.
	Channel into Humpbrey's Creek..................	12	138	113	13.	Do.
(Back River)	Through Hawk Cove to entrance, and up to Potter's Point \qquad	8	9	73	時	Coast Survey, 1845-46
	Up to railroad briuge	5	0	4	6	Do.
	To auchorage in Hawk Cove	8	9	7	94	1 l .
(Midule River)	From entrance to Galloway's Creek.	8	9	79	${ }^{214}$	Do. Da.

Table of depths, Atlantic Coast-Continued.
MARTLAND VIrginia, and NORTH CAROLINA.

Table of depths, Atlantic Coast-Continued.
NORTH CAROLTNA.

Nots-Fiftecn frof can be taken into this bay; but the cbannel is narrow and rans close along the dangerous fats, maklag off fron Cedar 1sland Point, and is danserons to use.

Table of depths, Atlantic Coast-Continued.

*Shifting sand, requires a pilot to orome.
\dagger This Sound cannot be traversed without a pilot.

Tuble of depths, Atlantic Coast-Continued.
SOUTH CAROLINA.

Places.	Limits between which depths are given.	Loast water in channel.				Authorities.
		Mean.		Spring tides.		
		Low	$\mathrm{Hig} \mathrm{c}_{\mathrm{l}}$ water.	Low water.	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
Winyah Bay and Georgotown Harbor.		Feet.	Feet.	Feet.	Feet.	
	house	$6 \frac{1}{1}$	10	6.1	104	Coast Survey, 1876.
	Midde Channel: Over Bar to abreast of the lighthouse	$7 \frac{1}{2}$	11	71	111	Do.
	Bottle Channel: Over Ear to abreast of the Lighthouse	618	10	63	101	Do.
	Southeast Channelt: From Georgetown Lightbouse to Frazier's Point	13	16t	$12 \frac{2}{4}$	$16 \frac{3}{4}$	Do.
	Same distauce by Midule Channel	9	122	88	123	Do.
	Same distance by West Channel.	10	133	83	13.	Do.
	From Frazier's Point to Georsetown	10	131	93	139	Do.
	Over Bar at entrance to Southeast Channel	7	101	垁	11	Do.
South Santee River	From the entrance up to Alligator Creek	5	9	48	91	Coast Surver, 1873.
	At the anchorage	11	15	108	131	Do.
	From Alligator Creek to Jleasant Creek	7	11	68	11	Do.
	From Pleasant Creek to Six-Mile Creek...........	6	10	5	101	Do.
	From Six-Mile Crrek to Canseway Canal	2	6	12	6 k	Do.
	Passage through Causeway Canal.................	$\frac{1}{2}$	$4 \frac{1}{3}$	$\frac{1}{6}$	5	Do.
	Passage throngh Six-Mile Creel...................	0	13	83	131	Do.
	Dark Creek and Canal to North Santee	3	7	9	$7 \frac{1}{1}$	Do.
	Passage through Pleasant Creek	$6 \frac{1}{3}$	107	$6{ }_{6}$	11	Do.
	Passare through Alligator Creek	3	7	$2{ }^{2}$	71	Do.
North Santee River	From the entrance to Big Duck Criek	61	8	$6{ }_{3}$	81	Do.
	At the anchorage	11	12\%	$10 \frac{3}{4}$	123	Do.
	From Big Duck Creek to Caus way Canal	124	14	$12 \frac{1}{3}$	$14 \frac{1}{3}$	Do.
	Passage throagh Big Duck Creek.	5	68	49	69	Do.
	Passage through Atchison Creek to South Santee. Passage through Upper Branch of Big Duck	3	48	28	43	Do.
	Creek	4	6	$4 \frac{1}{3}$	61	Do.
	Passage from North Santee Bny to Minim Creek.. Passage through Minim Creek to North Santee	3	5	33	54	Do.
	River	6	8	63	10	Do.
	Passage through Bclla Creok to North Santee River.	11	3	11	7	Do.
Cape Romain and vicinity	Alligator Creek: From entrance to South Santee River	3	73	24	87	Coast Surrey, 1874.
	Passage through "The Neelles"..............	5	99	4	103	Do.
	Casino Creek: From entrance to Duck Creek.....	4	87	3	93	Do.
	Congarce Boat Creek to Mad Bay	14	188	138	192	Do.
	From Mill Creek to "The Needles"	2	69	18	7	Do.
	Channel between Devil's Den and Mill Den from entrance to Oyster Bay \qquad	91	143	${ }_{0}$	154	Do.
	At the anchorage	16	204	154	214	Do.
	Passage through Oyster Bay......	63	111	6	124	Do.
	Passage through lam's Ho:n Creek	$\frac{1}{1}$	51	1	68	Do.
Cape Romain River............	At the entrance.	8	124	74	13 \%	Do.
	At the anchorage .	15	191	14\%	202	Do.
	From the entrance to Five-Fathom Creek	$7{ }^{7}$	121	7	131	Do.
	Passage through Sett Creek	31	81	3	98	Do-
	From the river through Clark's Creek to ite mouth	11	${ }_{6}{ }^{1}$	1	71	Do.
	Passage through Bay Creek	31	81	3	01	Do.
	Passage through Key's Creek......................	6	109	58	113	Do.

Table of depths, Atlantic Coast-Contiuned.
SOUTH CAROLINA.

Places.	Limita between which depthe arogiven.	Least water jn chamuel.				Authorities.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water.	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
Bull's Bay and tributaries	At the anchorage inside of Bird Island Bull's Harbor : Over the Bar*	$8 \frac{1}{2}$	Feet.	Feet.	Feet.	Coast Survey, 1859.
			$13 \frac{1}{3}$	8	137	
		1725	$21 \frac{1}{3}$	163	223	Do.
	At the anchorage		299	248	323	Do.
	From entrance to Bull Creek	7	119	63	129	Do.
	Bull Creek: Through creek to Seweo Bay	7	119	63	123	Coast Surver, 1875.
	Bull Narrows: Through to Price's Inlet		93	4	$10 \pm$	Ho.
	Sewee Creek:	$4 \frac{1}{2}$				
	Over the Bar*	8	123	73	$13 \frac{3}{4}$	Coast Surrey, 1859.
	Through creek to Sowee Bay	7	$11{ }^{\frac{3}{7}}$	63	12.	Coast Survey, 1875.
	Van Ross Creek : through creek to Sewee Bay	7	118	63	123	Do.
	Belvedere Crueh, over Bar.	1	53			Coast Surres, 1859.
	Salt Pond Creek, over Bar.	0	43	$\frac{1}{3}$	53	Do.
	Grabam's Creek, over Bar .	1	5	I	$6{ }_{2}$	Do.
	Five Fathom Creek:					
	Over Bar	3	73	23	83	Do.
	Up to Town Creek.	14	183	13	193	Coast Survey, 1875.
	Through to Oyster Bay	i	51	0	54	Do.
	Bull River:*					
	Over Bar	d	54	\pm	5	Coast Survey, 1859. Coast Survey, 1875.
	To Five Fathom Creek	61	$11 \frac{1}{3}$	6	11.	
	Sett Creek from Bull River to Five Fathom Creek	37		3	$8{ }^{3}$	Coast Survey, 1875. Do. Io.
	Long Creek, over Bar.....................	3	7	27	84	Io.
	Harbor River:					
	Over Bar	1	$4{ }^{4}$	z	5	Coast Survey, 1859.
	At the anchorage.....	162	201	164	207	Coast Survey, 1875. Do.
	Channel to Matthew's Cut	7	103	$6{ }^{4}$	11	
	Owendaw Creek:					
	Over Bar	1	53	$\frac{3}{4}$	63	Coast Surrey, 1859. Coast Surver, 1875.
	From mouth to Head Bridge	14	61	1	$6 \frac{1}{2}$	
Price's Inlet.	Over Bar*	7	113	66^{3}	123	Const Survey, 1857. Coast Survey, 1875.
	From entrauce to Clauson Creck	14	183	123	194	
	Throngh to Sewee Bay.	2 ${ }^{2}$		2	83	Coast Suivey, 1875. 1 o.
Santee Pasa..	From Price's Inlet to Caper's Inlet	2	63			Do.
Cupers Inlet.	Over Bar*...	5	9	$4{ }^{4}$	103	Coast Survor, 1887.
	From entrance to Toomer's Creek	8	123	$7{ }^{7}$	13	Coast Surves, 1875.
	Into Bull yard Sound..	4	81	33	93	Do. no.
	Passage through Bull-yard Sound	1	53	3	63	
	Passage through Caper's Creek to Mark Bay ..	6	108	54	113	Do.
	Through Tooner's Creek to Copabee Sound	61	$11 \frac{3}{3}$	6	121	Do.
Dewens Inlet.	Passage through Copahee Sound.	\pm		0	61	Do.
	Over Bar*..	1	93	43	104	Coast Survey, 1857.
	From entravce to Long Creek	23	274	223	287	Coast Survey, 1875.
	Through the Seren Reaches to Gray's Bay....	7	173	63	124	Do.
	Throngh Long Island Narrows to Breach Inlet ...	1	0	0	69	Do.
	Through Pushee Creek to Copahee Sound	6	113	51	124	Do.
	Through Pushee Creek to Hamin Sound		117	54	123	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
	Into Bull-i ard Sound......................		143	81	$\begin{aligned} & 154 \\ & 18 \pm \end{aligned}$	
	Through Dewees' Creek to Hamlin Sound........	12	178	11		Do.
Breach Inlet.	Through Long Creek to Gray's Bay...............	4	119	$5 \frac{1}{4}$337	124	$\begin{gathered} \text { Do. } \\ \text { Coast Survey, } 1857 \end{gathered}$
	Over Bar*		88		97	
	Through Swinton's Creek to Hamlin Sound	1	59	3 3 3	69	Coast Survey, 1857 Coast Survey, 1875
	Through Hamlin Creek to Gray's Bay	1	58	4		Do.
	Through Conch Creek to Inlet Creek..............		69	-	5 ${ }^{\text {\% }}$	Do. Do.

* Shifting sand-bar.

Table of depths, Atlantic Coast-Continued.
SOUTH CAROLINA.

* Ghifting aand-bar.

Tuble of depths, Atlantio Coast-Continued.
SOUTH CAROLINA AND GEORGIA.

Places.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		Low	$\underset{\text { water. }}{\text { High }}$	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\underset{\text { wiquer. }}{\text { Hig }}$	
Suint IIelena Sound and Tribu-taries-Continued.	Through Whale Branch to Broad	Feet. 8	Feet.	Feet.	Feel. 143	Coast Survey, 18
	Ashepoo River: to Rock Creek Entrance	12	18	$11 \frac{1}{3}$	191	Coast Surves, 1873
	Op Combahee liver to Old Cheehaw Creek	11	17	103	$18 \frac{1}{2}$	Coast Surrer, 1871-73.
	Through Cheehaw Creeks	1	7	\%	81	Do.
Wripp's Inlet	Up Bull River to Williams' Island	14	20	$13 \frac{1}{3}$	$21 \frac{1}{2}$	Coast Sarrey, 1873.
	Over the Bar*.	4	103	$3 \frac{1}{2}$	112	Coast Survey, 1850-'57.
	Through the Inlet to Harbor Piver	8	143	$7 \frac{1}{2}$	$15 \frac{1}{4}$	Coast Surves, 1863.
	Through Story River to Trenchard's Inlet	6	123	$5 \frac{1}{2}$	134	Do.
Trenchard's Inlet.	Over the Bar*	10	163	91	174	Do.
	Through the Inlet to the mouth of Station Creek	18	$24{ }^{3}$	17212	254	Do.
	Through Station Creek to Port Royal Sound.....	6	123	53	134	Do.
PORT ROYAL SOUND and Tribotaries.	Over Bar by East Channelt .	16	229	15.4	234	Do.
	Orer Bar by Southeast Channel	21	274	$20 \frac{1}{2}$	288	Do.
	Orer bar by South Channel.	19	$25{ }^{3}$	182	264	Do.
	At the anchorago off Hilton Head	48	543	$47 \frac{1}{1}$	551	Coast Surrey, 1862-63.
	At the anchorage off Bay Point.	42	483	412	40.	Do.
	Up Beaufort River to Beaufort	13	19%	122	204	Coast Survey, 1869.
	Up Broad River to Whale Branch \dagger	13	197	124	204	Do.
	Up Broad River to Pocotaligo.	9	15.	$8 \frac{1}{2}$	16.4	Coast Surrey, 1865.
	Chechessee River to upper end of Lemon Island..	7	133	$6 \frac{1}{4}$	$14 \frac{1}{4}$	Coast Survey, 1850, 1870
	Colleton liver to Callawassie Island	19	253	181	264	Do.
	Skill Creek to Calibogue Sound			164	25	Coast Survey, 1861-'62.
Callbogue Sonnd	Over Bar* from Tybee Light..	9	16	$8 \frac{1}{2}$	17	Coast Surver, 1862-'66.
	From inside Bar to May River.	19	20	$18 \frac{1}{2}$	27	Coast Survey, 1862.
	Up May River to Bluffton......	12	19	114	20	Coast Survey, 1870.
	Op Cooper River to New River	12	19	11%	20	Do.
	From Cooper River through Bull's Creek, to May River	6	13	$5 \frac{1}{3}$	14	Do.
	From Cooper River through Rams-horn Creek to New River.		14		15	Do.
Sew Hiver	Over Bar		16	$8 \frac{1}{1}$	17	Do.
	Through to Cooper River	12	19	112	20	Do.
TVDEE $10 \angle D$ AND SA. YANNAII RIVER.	Over Bar by North Slue Channel......		22	$14 \frac{1}{1}$		
	Over Bar by Main Cbanuel.......	17	24	16	25	Do.
	At the anchorage in The Roads.	22	29	21	30	Do.
	Up Savannah River to the City	9	16	$8{ }^{3}$	17	Coast Survey, 1874.
	Through Lazaretto Creek to Tybee River	7	14	$6{ }^{2}$	15	Coast Survey, 1863.
	Up Wright's River to Wall's Cat	7	14	64	15	Coast Surrey, 1874.
	Through Saint Augustine's Creek to Tybee River.	10	17	91	18	Do.
Wameaw Sound and tibutaries.	Orer Bar*	14	218	134	22	Coast Surver, 1864.
	At the anchorage off Wassaw Island. Tybee River:	25	324	$24 \frac{1}{8}$	33	Coast Surver, 1863.
	Over Bar from Wassaw	10	174	91	18	Do.
	To junction with Saint Augustine's Creek	13	204	$12 \ddagger$	21	Do.
	Wilmington River, from the Sound to mouth of Skiddaway River \qquad	21	281	201	29	Coast Sarvory, 1865.
	Whmington River, through to Savannah River....	10	177^{7}	91	18	Do.
	Stiddaway River, through to Vernon River	1	84	d	9	Do.
	Paesage through Turner's Creek to Tybee River	7	147	61	15	Do.
	Romerly Marsh Creek to Odingsell River	4	117	34	12	Coast Survey, 1856.
	Through Adams' Creek to Ossabaw Sound.........	8	157	73	16	Coast Survey, 1860.
*Shifting aaxd-bar. \dagger Not buoyed, and unaafe.						

Table of depths, Atlantic Coast-Continued.
georgla.

*Shifting sand-bar.

Table of depths, Atlantic Coast-Contiuued.
GEORGLA.

Places.	Linits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		Low water.	$\begin{gathered} \text { High } \\ \text { water } \end{gathered}$	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
Doloy Sound and tribntariegContinnod.	Through Little Mud River to Altamaha Sound Up South River to Rockdedandy River.	Feet.		Feet.	Feet. 13	Coast Survey, 180%. Do. Do.
			$12 \frac{1}{4}$	43	13	
		5	121	$4 \frac{1}{3}$	13	
	Through Rockdedundy to Darien River	6	134	54	14	
	Op Darien River to Darien	8	154	$7 \frac{1}{3}$	16	Coast Surwy, 1872.
	Up Back River to North River	8	154	$7{ }^{3}$	16	Coast Survey. 18:8.
	Through Back River to South River	8	151	$7 \frac{1}{3}$	10	Do.
	Throngl Back River to Darien River..	10	$17 \frac{1}{4}$	93	18	Do.
	Through back River to Rockidedundy River	8	153	$7 \frac{1}{3}$	16	Do.
	U_{p} North River to May Hall Creek	10	174	03	18	Do.
	Through May Hall Creek to Darien River	4	114	$3{ }^{3}$	12	Do.
	Up North River to Catfish Creek	8	154	$7 \frac{1}{3}$	16	Do.
	Through Catfish Creek to Darion River	4	114	33	12	Do.
	From North Liver up Darien River to Darien	8	15	$7{ }^{1}$	153	Coast Survey, 1872.
	Through New Teakettle Creek to Mud River.	8	15	$7 \frac{1}{3}$	153	Coast Survey, 1868.
	Throngh Old Teakettle Creek to Mud Hiver.	6	13	$5 \frac{3}{3}$	134	Do.
	Up Doboy River to Connegan River	13	20.1	123	21	Do.
	Tbrough Connegan River to North River	8	154	7	16	Do.
	Op Doboy River to Hudson's Creek	13	208	$12 \frac{1}{3}$	21	Do.
	Op Atwood's Creek to Bay of Islands	11	184	$10 \frac{3}{3}$	19	Do.
Altamaha Sonnd and tributaries.	Over Bar* hy Main Channel.	11	$18 \frac{1}{4}$	$10 \frac{1}{3}$	19	Coast Survey, 1860.
	Over Bar* by Buttermilk Chanuel	7	14.	63	15	Do.
	At anchorage under Little Saint Simon's Island	30	374	293	38	Do.
	Frum the Sound to the month of Lititle Mud Rivor	8	154	73	16	Io.
	Through the Sound to mouth of Altamaha River.	4	113	$3{ }^{3}$	12	Coast Survey, 1872.
	Up Altamaha River to Butler's Island.	4	114	$3 \frac{3}{3}$	12	Do.
	Throngh Wood Cut to South Altamaha River...	4	111	$3 \frac{1}{3}$	12	Do.
	Through the Sound to Buttermilk Sound		164	83	17	Do.
	Throngh Battermilk Sound to junction of South Altamaha and Frederica Rirers		15	73	16	Do.
	Up Sonth Altamaha to Wood Cut.	8	141	63	15	Do.
	Through Frederica River to Saint Simon's Sound	8	154	73	16	Do.
	Through Mackay's River to Saint Simon's Sonnd.	9	$16 \frac{1}{2}$	83	17	Do.
Hampton River	Over Bar*	5	124	43	13	Coast Pilot, 1877.
	Through to Frederica River	10	174	9	18	Coast Survey, 1800.
	Passage through Tillage Creek to Biack Bank River	13	201	121	21	Do.
	Through Black Bank River to sea	1	81	$\frac{1}{3}$	9	Do.
Saint Simon'a Sound and tribro. taries.	Over Bar*...	16	23	17 7	$23 \frac{1}{2}$	Comst Surrey. 1872.
	At the anchorage sonthwest of the Light-house..	35	42	$34 \frac{1}{2}$	424	Coast Survey, 1856-57.
	Through the Sound to Mouth of Frederica River.	13	20	127	201	Do.
	Through the Sound to mouth of Mackay's River..	23	30	221	34	Coast Surver, 1872.
	Up Brusswick River to month of Tartle River ...	24	31	231	$31 \frac{13}{2}$	Do.
	Up Brunswick River to Bronswick..............	9	16	82	17	Coast Survey, 1856.
	Up Turtle River to Hermitage Point	13	20	121	21	Coast Surver, 1856-57.
	Through Jekyl Creek to Jekryl Soand	3	10	21	11	Do.
	Through Cedar Hammook Creek to Jointer's Creek.	2	9	11.	10	Do.
	Through Jointer's Creek to Jekyl Sound	2	82	17	91	Coast Surrey, 1800
	Through Back River to Mackay's River.	4	11	34	$11 \frac{1}{2}$	Coast Survey, 1802.
Saint Anlrew's and Jokgl Sounds.	Orer Saint Andrew's Bar*	$\begin{aligned} & 15 \\ & 25 \frac{1}{4} \end{aligned}$	217	141	228	Coast Surrer, 1869.
	At the anchorage under Little Cumberland Island.		324	25	323	Coast Survey, 1870.
	At the anchorage in Jekyl Sound under west shore of Jetyl Island	312	351	31	389	Do.
	Through Crmberland River to Cumberland Sound	64	13	碇	$1{ }^{1}$	Do.
	Through Briek-kiln River to Cumberland River ..	$\begin{array}{r} 6 \\ 18 \end{array}$	124	$5 \frac{1}{1}$	133	Do.
	Through Jekyl Sound to Jekyl Creek entrance *Shifting bamd-bar.		243	171	251	Do.

Table of depths, Atlantic Coast-Continued.
georgia and florida.

*This bar shifta so oftw buth in direction and depth that no soundings reliable for any length of time can be given. \dagger Shifting sam t-bar.
TThe depths on these two bars cannot be dependef on for any length of time. Th bars slift conatantly both in iepth and dimetion.

Table of depths, Atlantic Coast-Continued.
Florida.

*The depthe on these two bars cannot be depended on for any length of time. The bars shift constantly both in depth and direction. IShifting sand-bar.

Table of depths, Atlantic Coast-Continued.

FLORIDA.						
Places.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		$\underset{\text { water. }}{\text { Low }}$	High water.	Low water.	High water.	
Banana River-Continued Indian River Inlet.		Feet.	Fect.	Feet.	Feet.	
	At anchorage under Cape Canaveral	14	19	13	19	Coast Surver, 187\%.
	Over Bar* by the Northern entrance	11	4			Coast Suryey, 1861.
	Over Bay* by the Southern entrance.	$1{ }^{1 /}$	4			Do.
Key Biscayne Bay	Over Bar* at Bear's Cut.	5	7	51	73	Coast Survey, 1876.
	Over Bart to Bloy No. 2, Main Channel through Reef Passage $1 \frac{1}{4}$ miles southeast of Cape Florida	7	88	7	89	Const Survey, 1853. Do.
	Over Bar by Main entrance, to Red Buoy No. $2 . .$.	7	81	7	$8 \frac{8}{4}$	
	From Red Buoy No. 2 through North Channel (close to Cape Floridu)	7	81	7	89	Coast Survey, 1852.
	From Red Buoy No. 2 through South Channel	9	10.	9	108	Do.
	Up the Bay to abreast of Fort Dallas..........	7	73	7	73	Do.
	'Through Casar's Creek between Elliott's aud Oid Rhoden' Keys.	8	91	8	93	Coast Survey, 1853.
RAWK CHANNEL (inside Florida Reefs).	Orer The Reef toward Soldier's Key............. Main entrance from abreast of Virginia Key to	221	24	224	243	Coast Surves, 1852.
	Soldier Key....................................	18	191	18	199	Do.
	From abreast of Soldier Key to CæAar's Creek Bank	13	141	13	143	Do.
	Legar'́ Anchorage:					
	In entrance from north ward	194	21	191	211	Do
	Entering north of Triumph Reff	20	2112	20	218	Do.
	Entering south of Triumph Reef	22	236	22	23 \%	Do.
	At the anchorage	2716	$28 \frac{1}{2}$	16	173	Do.
	From Hawh Cbannel to the anchorage........		$17 \mathbf{1}$			
	From abreast of Cxaar's Creek Bank to Alligator Reef Light-houes \qquad	13	14.	13	14.	Coast Survey, 1854-63.
	Tnrtle Harbor:					
	Entering from sea	30	311	30	317	Coast Survey, 1852. Do. Do. Coast Survey, 1860-'82.
	Entering from Hawk Channel	16	174	16	178	
	At the anchorage	281	30	284	312	
	From abreast of Alligator Reef to Long Key....	18	17	16	174	Coast Survey, 1860-62.
	From abreast of Long Key to "East Wasber. woman" \qquad		21	191	21.	Comst Survey, 1851, 67.
	From abreast of East Washerwoman to "West Washerwoman" \qquad	18	194	18	194	Do.
	From abreast of West Washerwoman to Key West entrance.	221	234	221	24	D.
	Through the Sontbwest Channel from Key West to Boca Grande Key \qquad	311	323	31.	33	Do.
	Cofin's Patchos: In entrance	18	201	19	208	Coast Survey, 1854.
	Coffin's Patches: At the anchorage	18	19	18	198	Do.
	Bahia Honda Harbor: In entrance.......	19	201	19	20%	Coast Survey, 1857.
	Bahia Honda Harbor: At the anchorage..	17	181	17	183.	De.
	In entrance to New-Found Harbor.	7	83	7	81	Do.
	At anchorage in New-Found Harbor	19	201	18	201	Do.
	Pyots Harbor: In entrance	9	104	θ	10	Casst Survey, 1856
	Pyo's Harbor: At the anchorage	8	91	8	98,	Do.
KET WEST HARBOR	Through the East Channel to Whitehead's Point. Through the Mato Ship Channel to Whitehead's	28	293	28	294	Comet Survey, 1851, 52
	Peint	27	2 St	27	284	Do. Do.
	Throngh Pook Key Channel to Whiteheed's Point.	191	203	104	21	
	Through Sand Key Channol to Whitohead's Point. Through the Southwest Channel to Whitebead's	27	284	27	291	Do.
	Point .	3027	311	$\begin{aligned} & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 31+ \\ & \text { 284 } \end{aligned}$	Do. Da:
	Through the West Channel to Whitehead's Point.					
	* Shifting eand bar.					

Table of depths, Atlantic Coast-Continued.
FLorida.

- Places.	Limits between which depths are given.	Least water in channel.				Anthorities.
		Mean.		Spring tides.		
		Low water.	High water.	Low water.	$\underset{\text { wigh }}{\text { witer }}$	
EEY WEST HARBOR-CODtinued.		Feet.	Feet.	Feet.	Fect.	
		22	23 䂞	22 3	24	Coast Sarrey, 1851-'52.
	At the anchorage off Lazarotto	30	$31 \frac{13}{3}$	30	314	Do.
	At the anchorage in Man-o'-war Harbor....	24	254	24	254	Do.
	Δt the anchorage near Northwest Passage Lighthouse \qquad	20	$21 \frac{13}{3}$	20	214	Do.
	Through the Northwest Passage to abreast of the Light-house	17	181	17	$18 \frac{1}{2}$	Coast Survey, 1873.
	Through the Northwest Passage to the Gulf of Mexico \qquad	12	133	12	131	Do.
Tortugas Harbor	Through the Southeast Channel \qquad Through the Sonthwest Channel to Bird Kes	45	468	45	463	Coast Survey, 1807-70.
	Harbor	19	20.1	19	201	Do.
	Through the Northwest Channel to Bird Key Harbor	42	$43 \pm$	42	434	Do.
	At the anchorage in North Key Harbor	33	34	33	34	Coast Survey, 1875.
	In the entrance to Bird Key Harbor, east of Fort Jefferson	22:	239	221	24	Coast Surter, 1873.
	In the entrance to Bird Key Harlor, west of Fort Jefferson	36	374	36	37	Do.
	At the anchorage in Bird Key Harbor...........	30	312	30	314	Do.

GULFCOAST.
FLORIDA.

San Carlos Bay (Caloosa Entrauce).	From the entrance up to Panta Rasa	7	89	6	84	Coast Survey, 1866-67.
	At the anchorage under Sanibel Island	21	223	203	223	Do.
	At the anchorage off Punta Rasa	21	228	208	224	Do.
	To abreast of Middle Point	13	142	124	148	Do.
	U_{p} the Bay to abreast of Sword Point	7	89	64	$8{ }^{3}$	Do.
	Through to Matanzas Pass.......................	11	128	108	124	Do.
	From Punta Raea to mouth of Caloosa River. ...	$6 \frac{1}{1}$	84	$6{ }_{6}$	83	Do.
Charlotte Harbor	Entrance through Boea Grande.	184	$19 \frac{1}{3}$	18	193	Coast Survey, 1803.
	At the anchorage inside	16	17	153	17\%	Do.
	Through to Punta Blanco.......	7	8	01	83	Do.
	At anchorage under Gasparilla Island	27	28	263	288	Do.
TAMPA BAY..............	Through Passage Key Inlet*	10	11.	98	$12 \$$	Coast Survey, 1885.
	Through Southwest Channel	16	$17 \frac{1}{2}$	151	184	Do.
	Through North Chanuel	21	224	20	231	Do.
	Throngh Päss a Grille to Boca Ceiga Bay	7	8	64	91	Coast Survey, 1873-75.
	At anchorage under Mullet Key	21	223	201	231	Do.
	At anchorage under Western Shore of Egmont Keg \qquad	9	101	87	111	Do.
	At anchorage under Northern Shore of Anna Maris or Palm Key \qquad	10	111	97	121	Do.
	Up the Bay to Point Pinelos	21	22.	207	234	Do.
	At anchorage in Boca Ceiga Bay.	10	204	184	21	Do.
	Through Boes Ceiga Bay to Trmpa Bay	61	8	54	9	Do.
	Through Sarasota Pass to Palmasols Bay	31	5	3	6	Coast Survey, 1875.
	At the anchorage in Palmasola Bay	9	101	$8{ }^{2}$	113	Do.
	Up Manatee River to abreast of Palmetto Landing.	8	明	78	104	Cosst Survey, 1873.
	At the landing	51	7	5	8	Do.
	Up Manatee River to abreast of Manatee Landing.	54	7	51 54	8	Ho. Do.

Table of depths，Gulf Coast－Continued．
FLORIDA．

Plucem	Limits between which depths are given．	Least water in channel．				Authoritiea.
		Mean．		Spring tides．		
		Low water．	$\begin{aligned} & \text { High } \\ & \text { water } \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\underset{\text { water }}{\text { High }}$ water．	
TAMPA BAY－Continued．．．		Fect．	Feet．	Feet．	Feet．	
	Entrance to Terraceia Bay	41	6	43	7	Coast Survey， 1875. Do．
	At anchorage in Terraceia Bay ．．．．．．．．．．．．．．．．．．	8	93	73	101	
	Up the Bay to its junction with Old Tampa and Hillsboro Rays．	19	$20 \frac{1}{2}$	183	$21 \frac{1}{2}$	Coast Survey， 1870.
boca Ceiga Bay ．．．．．．．．．．．．．．．	Through Hillsboro Bay and up to Tampa wharves （Hillsboro River） \qquad	5	64	47	7 t	Do． Coast Survey， 1875.
	Dp Old Tampa Bay to its head at De Sote Bayon．	712	9	$6{ }^{3}$	10	
	Entrance from Tampa Bay		8	53	9	Coast Survey， 1875. Coast Survey， 1873.
	Entrance through Pass à Grille	612	昭	83	91	Do． Do． Do． Do．
	Through Blind Pass to the Bay	$6 \frac{1}{2}$	$3{ }^{1}$		489	
	Passage through John＇s Pass．．		8	63		
	Entrance by Yudian Pass．．．．	t	2	\pm	3	
	Passage through The Narrows to Clearwater Harbor \qquad	1	2			Do．
Clearwater HarborWacamassa Bay ．	Entrance through Little Pass	4t	6	$\stackrel{4}{4}$	3	Do．
	Over Inner Flats．	3	4．	23	54	Do．
	Through the harbor to The Narrows	1	2	$\frac{1}{3}$	3	Do．
	Through the harbor to Big Pass Channel	3	$4 \frac{1}{2}$	27	54	Do． Do． Do． Do．
	Entrance through Big Pass．．．．．．．．．．．．．．．	8	91	73	10	
	Up the harbor to Clearwater Bluff ．．．．．．．．．．．．．	5	$6 \frac{1}{3}$	43	78	
	At the anchorage below Little Pass ．．．．．．．．．．．．．	$6{ }^{6}$	8	$0 \frac{1}{3}$	9	
	Chanuel into the harbor ．．．．．．．．．．．．．．．．．．．．．．．．	6	83	59	83	Coast Survey，18，it－＇57
Wacamassa Bay	At the anchorage in Waccasassa Harbor ．．．．．．．	9	11	83	114	Do． Do． Do．
	Up the Bay to Grassy Point．．．．．．．．．．．．．．．．．．．．．．	3	51	27	53	
	Throngb to Oyster Bay．．．．．．．．．．．．．．．．．．．．．．．．．．．	4	61	37	62	
CELAK KEYs	Sea－Horse Key Channel to Railroad Wharf ．．．．．．．	${ }^{9}$	111	83	112	Coast Survey，1860， 71. Do． Do．
	Througis North Key Channel to Railroad Wharf．	5	8	518	$8{ }^{3}$	
	Through Northwest Channel to Railroad Wharf．．		84	5	87	
	At the anchorage between Depot Key and Rail． road Whart．	16	183	153	183	
	In Steinhatchie River ．．．．．	3	$5 \frac{1}{2}$	27	53	Do． Coast Surver，18\％a．
Ocilla River Apalachee Bay	In the entratce	31	6	34	$6{ }_{6}$	Do．
	Through the Bay to month of Saint Mark＇s River	9	11．	83	119	Coast Survey， 1876.
	Actoss the Bay to mouth of Ochlockonee Bay ．．．．	${ }^{61}$		6		Do． Do．
	At the anchorage off Sbell Point． \qquad Entraneo to Saint Mark＇s River over the＂Devil＇s		${ }^{15\}}$	124	104	
	Elbow＂	61	83	64	02	Coast Surrey， 1875.
	Up Saint Mark＇s River to the village of Saint Mark＇s．	7	94	$6{ }^{6}$	87	Do． Do．
	Up the river from Devil＇s Elbow to Hanting Rayou．	12t	14.	124	154	
	At the anchorage below the Devil＇s Elbow	12	144	11%	144	Do． Do．
	Entrance to East River ．．．．．．．．．．．．	8	104	73	10.	Do．
	Up East River to Denham＇s Bayou ．．．．．．．．．．．．．．．	1	32	4	3	Do．
	Entrance from Apalachee Bay to Orster Bay，by the East Channel		88.	64	時	Coast Survey， 1876.
	Entrance to same bay by West Channe！．．．．．．．．．			63	92	Do．
	At the anchorage off Piney Ifland．．．．．．．．．．．．．．．	11	134	10.	$13 \frac{1}{2}$	Do．
	Passage between Piney and Porter＇s Islands into Dickson＇s Bay \qquad	1	31	3	39	Do．
	At anchorage in Dickron＇s Bay ．．．．．．．．．．．．．．．．．	7	01	63	92	Do．
	From Dickson＇s Bay to entrance to King＇s Bay ．．．	3	8	2468	54	
亏	At anchorage in Kiug＇s Bay ．．．．．．．．．．．．．．．．．．．．．				88	Do．
	From Apalachee Bay to entrance to Ocklockonee Bay	64	$8{ }^{8}$	6	9	Do． Da． D_{o} ． Dor
	At the anchorage between Upper and Lower Bars．	9	114	83	118710	
	Over the Upper Bar ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	4	6	8		
	Through the Bay to Oekiockonee River．．．．．．．．．．．）					

Table of depths, Gulf Coast-Continued.
FLORIDA.

Places.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		$\underset{\text { water. }}{\text { Low }}$	$\underset{\text { water }}{\text { High }}$	Low water.	$\underset{\text { water }}{\text { Higu }}$	
A palachee Bay-Continued	Up Ocklockonee River tonorthern end of Thom's Island	Feet.	Feet.	Fret.	Feet.	
		11	13	103	14	Coast Survey, 1876
Saint George's Sound	Entrance to the Sound by Dog Island Channel At the anchorage in Pilot's Core Entrance to the Sound through East Pass	13	$14 \frac{3}{}$	123	142	Coast Surver, 1872
		21	224	203	223	Do.
		$15 \frac{15}{15}$	16	154	174	Coast Survey, 1858.
	At anchorage under Saint George's Island At anchorage between the west end of Dog Island and Crooked River \qquad	15	164	143	104	Do.
		19	203	18	203	Do.
	Over the Bar and in the entrance to Crooked River by the East Channel Into Crooked River by the West Channel. .	4	$5 \frac{3}{3}$	33	53	Do.
		3	43	$2{ }^{2}$	$4{ }^{4}$	Do.
	Through Crooked River to Ocklockonce River .. Throggh the Sound from Dog Island Channel to	2	$3 \frac{1}{3}$	13	33	Coast Surver, 1878.
		15	163	143	169	Coast Survey, 1858, ${ }^{\text {'71 }}$
	Through the Sound from abreast of East Pass to "The Bulkhead"	7	$8 \frac{1}{3}$	$6 \frac{3}{4}$	83	Do.
	Over the Bulkhead to Apalachicola Bay	0	73	51	$7{ }_{6}$	Coast Surrey, 1871.
	At anchorage in "The Gap" (Saint George's Islaud) In entrance to Alligator Harbor	11	123	109	123	Coast Survey, 1858.
		7	83	6	83	Coast Surver, 1871.
	Over Inside Flats	5	$6 \frac{1}{3}$	43	6	Do.
	At the anchorage ...	61	7	63	$8 \frac{1}{3}$	Do.
APALACBICOLA BAY...	Entrance over Bulkhead from Saint George's Sound	6	73	5	7	Do.
	Through Nerf Inlet* to the Bay	7	8	$6{ }^{6}$	83	Coast Survey, 1873.
	Entrance, through Sand Island PassMain entrance, through West Pasa*	1	2	4	22	Coast Survey, 1860.
		15	158	15	159	Coust Sarvey, 1875.
	At lower anchorage under Saint George's Island. Through the Bay from the Bulkhead to entrance to Saint Vincent's Sound.	18	183	18	184	Coast Survey, 1856.
		7	$7{ }^{4}$	7	7	Do.
	In entrance to Saint Vincent's Sound............	5	5	5	5	Do.
	From the Bulkhead to East Bay Across the Bay from the Bulkhend to Apalachicola entrance	5	53	5	53	Coast Survey, 1860.
		7	$7{ }^{7}$	7	73	Coast Surves, 1850.
	At upper anchorage	10	108	10	103	Do.
	From TVest Pass to Eust Bay	6	6砋	6	67	Coast Survey, 1860.
	Up East Bay to its head	5	53	5	5	Do.
	From West Pass to Apalachicola entrance. Up Apalachicola River to the Town Wharves by the Straight Channel	7	73	7	78	Coast Survey, 1856-'60.
		4	48	4	48	Do.
	Up Apalachicola River to Town Wharves by Crooked Channel	4	43	4	4	Do.
Saint Vinceut's Sound	Entrance from Apalachicola Bay..................	5	59			Coast Survey, 1874.
	Entrance through Indian Pass f..................	7	73		Coast Survey, 1874-75.
	Through the Sound from Apalachicola Bay to Indian Pass.	4	4\%			Coast Survey, 1875.
	At eastern anchorage abreast of Saint Vincent's Point \qquad	8	$8{ }^{3}$		Coast Survey, 1874.
	At western anchorage under North Shore of Saint	9	09			Do.
Sidut Joseph'm Bay	Vincent's Island, near Indian Pass In the entrance	19	20.3	183	201	Coast Survey, 1875.
	Op the Bay to abreast of Saiut Joseph's.........	28	294	274	293	Do.
	At the anchorage off Saint Joseph's	28	293	27	29181	Do.
Saint Andiow's Sound.	At the anchorage in Eagle Harbor Entrance by Main Ship Channelt Entrance by Beach Channel Orer Ianer Bar At manorage under North Shore of Crooked Island	21	221	209	$22 \frac{1}{2}$	Do.
		61	8	61	84	Comat Survey, 1877.
		8	日 ${ }^{1}$	73	97	Do.
		8	01	73	94	Do.
		18	202	182	2012	Do.
8. Ex Shlthing bar. \quad t Shifting channel.		This is the only channel buoyed.				

S. Ex. $29-26$

Talle of depths, Gulf Coast-Continued.
FLORIDA.

Table of depths, Gulf Coast-Continued.
FLORIDA AND ALABAMA.

Places.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	$\underset{\text { water. }}{\text { High }}$	$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
CHOCTAWHATCHEE BAY and tributaries-Continued.	Inogtown Bayou to its Head	$\begin{gathered} \text { Feet. } \\ 6 \\ 11 \\ 16 \mathbf{d} \end{gathered}$	Feet. 7	53	Feet. 71	
	Δt anchorage in Bayou		$\begin{array}{r} 7 \\ 12 \end{array}$	$\begin{aligned} & 103 \\ & 16 \end{aligned}$	121	Coast Surver, 1872. Do. Do.
	At entrance to Bayou		17it		18	
	Entrance to "The Basin"	3	4	$\begin{aligned} & 27 \\ & 5 \frac{7}{2} \\ & 5 \frac{1}{2} \end{aligned}$	413	Do. Do.
	Anchorage in "The Basin"	6	7		71	Do.
	Alaqua Bayon to its Head	5	6	4t	62	Do.
	Entrance to Bayou.	5	6	4 ${ }^{2}$	6	Do.
	La Grange Bayou to its Head	3	4	24	$4 \frac{1}{2}$	Do.
	At entrance to Bayou	81	93	81	10	Do.
	Into Four-Mile Creek	5	6	42		Do.
	Up Four-Mile Creek to "The Divide"............	9	10	8	$\begin{array}{r} 6 \frac{1}{2} \\ 10 \frac{1}{2} \end{array}$	Do.
	Jolly Bay to ite Head	4	5	34	5t	Do.
	At entrance to Pay	71	81	7	9	Do.
	Black Creek: at the entrance	6	7	51	78	
	Up the creck to Mouth of Mitchells River	0	10	81	101	Do.
	Black Creek to Russian Cut-off	81	91	8	10	Do.
	For Ouc-and-a-half Miles above the Cut-off.	10	11	9	111	Do.
	At the entrance to Mitchell's River.	9	10	81	1012	Do.
	Up the River to Russian Cat-off.	11	12	104	121	Do.
	From Russian Cut-off to Live-Oak Cut-off.	10	11	$\begin{aligned} & 8 \% \\ & 8, ~ \end{aligned}$	$11 \frac{1}{2}$	Do.
	Through Rassian Cat-off to Black Croek Through Live Oak Cut-off to Choctawhatchee	9	10		102	Do.
	River	7	8	63	81	Do.
	From Live-Oak Cut-off to junction of Mitchell's River with the Choctawhatchee	9	10	83	$10 \frac{1}{1}$	Do.
	Entrance to Nancy's Gut	27	校	2	4	no.
	Through the Gut to Mitehell's River	71	8)	7		Do.
	Entrance to Indian River.........................	31	4	3	5	Do.
	To junction of Indian River with Jones' Creek .. To junction of Indian River with Choctawhatchee	9	10	82	102	Do.
	River	97	101	08	11	Do.
	Up Jones' Creek to its Head......................	10	11	82	111	Do.
	Entrance to Cypress-Top River...................	4	5	34	51	Do.
	Through the River to Indian River Entrance to Choctawhatchee River through	6	7	51	71	Do.
	Straight River of the Delta.	3	4	24	4.4	Do.
	Entrance to same River through Middle River of the Delta	8	4	21	41	Do.
	Entrance to same River through First River of the Delta \qquad	21	31	2	4	Do.
	Up Choctawhatchee River to junction with Indian River. \qquad	11	12	10\%	124	Do.
	From Indian River to Live-Oak Cut-off...........	14t	154	142	16	Do.
	From Live-Oak Cat-off to Janction with Mitoheln's River \qquad	15	16	144	361	Do.
	Pewch Creek, entrance to........	7	71	6	8	Do.Do.
	Up the Creek to Tucker's Bayou.		8	${ }^{618}$	818	
	Entrance by Main Channel (Pensacola Bay)	19	20		$20 \frac{1}{2}$	Cosat Survey, 1858.
	Entrance by Narrows from Choctawhatchee Bay-	5	6	4	61	Coast Surver, 1871.
	From Ponsacola ontranos to Doer Point	19	20	181	201	Conat Survey, 1856.
	From Deer Point to Two Pointe	17	18	161	18	
	From Two Points to Manates Point (entrance to Narrows)		79	51818	71	Do.
	From abreast of Deer Point to Pensacola Wharvee At the anchorage in Fishing Bend	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		74 164	$17 \frac{1}{2}$	Coast Survey, 1856

Table of depths，Gulf Coust－Continued．
FLORIDA，ALABAMA，AND MISSISSIPPI．

Places．	Linits between which depths aregiven．	Least water in claannel．				Authorities．
		Mean．		Spring tides．		
		L．0w water．	IIIgh Water．	Low	High Fater．	
PENSACOLA BAY and tri－ butarices．		Feet．	Feet．	Feet．	Feet．	Coast Survey， 1858.
	Entrance by Main Clannel	1912	$20 \frac{1}{2}$	191	21	
	From entrance to Deer Point	19	20	183	${ }^{2} 0 \frac{1}{2}$	Do． Coast Survey， 1860.
	Up to anchorage off Wartington Nary－yard．．．．．	30	31	298	$31 \frac{1}{4}$	
	At anchorage off the Navy－yard	33	34	323	34.1	Coast Surrey， 1860. Do．
	Up the Bay to Pensacola	30	31	297	3112	Do．
	At anchorage off Pensacola	223	231	22	24	
	Up the Bay to eatrance to Last Day	$19 \frac{1}{2}$	20 年	183	214	Do．
	Through East bay to Escribano Point（entrance to Blackwater Bay）	81	97	73	$10 \frac{1}{4}$	Do．
	Up Pensacola Bay to entrance to Escambia Bay－	18	193	$17 \frac{1}{3}$	193	Do．
	Throngh Escambia Bay to Live－Oak Point	71	87	6	91	Do．
	dt anchorame off Devil＇s Point	9	103	81	103	Do．
	At anchorage in Old Navy Core（Pen acola Bay）．	15	16	141	$16 \frac{1}{2}$	Do．
Perdido River（Boundary line）．	Orer Bar＊	013	$8{ }^{2}$	6	94	Coast Survey，1867．
	At the anchoraze	－	114	81	113	Coast Survey，1847－52．
Mobile bay	Over Ear by Main Ship Channcl．	194	20년	194	204	
	Over Bar＊by the Swash Chanuel	61	$7{ }^{7}$	63	73	Coast Survey，1847－48． Do．
	Over Bar＊through＂The Gat＂．．．．．．．．．．．．．．．．．．	6	7	53	74	
	Over Little Pelican Chamel Bar＊to Sand Island Channel	11	12	103	121	Do．
	Through Sand Island Channel to Main Ship Channel	12a	131	12	131	Do．
	Over Bar^{+}by Middle Channel into Pelican Bar．．．	124	134	12	13.	Do．
	From Pelican Bay to Main Channel of Mobile Bay	83	912	83	93	Do．
	Orer Bar，＊by Pelican Clannel，into Pelican Bay－	14	15	133	151	Do．
	At anchorage in Pelican Hay ．．．．．．．．．．．．．．．．．．．	18	19	173	193	Do．
	From Pelican Bay acrors Dauphine Shoals to Main Ship Channel	81	91	81	98	Do．
	From Pelican Bay across Prlican Island Shoals to Sand Island Channcl	12	13	114	132	Do．
	From inside Moblle Bar to Grant＇s Pass（entrance to Mississippi Sound） \qquad	9	101	88	11	Do．
	From inside the Bar to anchorage at The Lower Fleet \qquad	193	201	192	202	Do．
	From The Lower Fleet to abreast of Mullet Point From abreast of Mullet Point to anchorage at The	124	131	124	132	Do．
	Upper Fleet ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	121	$13 \frac{1}{3}$	124	132	Da．
	From The Upper Fleet to the elty of Mobile ．．．．．	8	9	74	98	Do．
	Lower Flet to Choctaw Point．	18	18	174	192	U．S．Fingineers， 1883.
	After crossing Dog River Bar to Mobile wharres	12	13	112	134	Coast Survey， 1860.
	At the anchorage in Nary Core under north shore of Mobile Point	13	14	123	141	Coant Sarrey，1：47－＇18．
	Entrance to Bon Secours Bay	12	13	114	193	Coant Survey， 18%
	At anchorage in Bon Secours Bay	94	104	91	10.	Do．
	Entrance to Fish Piver	41	${ }^{6}$	4	51	Do．
	At anchorage in Fish River．．	81	91	83	94	Comet Surves，1848－50
	At anchorage in Weeks＇Bay	31		32	絞	Do．
	In entrance to Dog River ．．．	34	$4 \frac{1}{2}$	84	待	Do．
	Over Bar into Blakely River ．．．．．．．．．．．．．．．．．．．．	6	6	4	68	Coath Sarver， 1860.
	Up Blakely River to junction with Apalarhee River．	114	124	112	124	Do．
	Passnge to Minotta Bay	7	8	64	81	Do．
	d nehorage in Minetta bay ．．．．．	73	\＆ 1	73	8	Do．

Notr．－From Pensacola westrard，on the Gulf coast，there is generally but oue tide in a day－that due to the moonin dachnafloa．The then are wach affected by the winds．

Table of depths, Gulf Coast-Continued.
ALABAMA AND MISSISSIPPI.

Placos.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides.		
		$\underset{\text { Water. }}{\text { Low }}$	High water.	Low water.	High water.	
MOBILE BAY-Continued	Over Bar into Apalachee River by East Channel.	Feet.	Feet.	Feet.	Feet.	Coast Surver, 1850.
	Orer Bar into A palachee River by West Channel	$4 \frac{3}{3}$	$5{ }_{3}$	$4 \frac{1}{1}$	5	Do.
	Op the River to junction with Blakely River.....	12	13	113	132	Do.
	From Blakely River to junction with Tensaw River	1913	204	191	203	Do.
	Channel into Big Battean Bay	64	7	6	71	Do.
	Channel into Chacaloochee Bay.	4	54	4	51	Do.
	Entrance to Tensaw River from Mobilo Bay	112	123	11	12\$	Do.
	Up Tensaw River to junction with Apalachee River	13	14	123	144	Do.
	Entrance to Spanish River from Mobile Bay	124	134	12	132	Coast Survey, $18 \% 0$
	Up Spanish River to Grand Bay	7	8	69	84	Do.
	Up Spanish River to entradee to Raft River.	16	17	157	$17 \frac{1}{4}$	Do.
	Up Spanish River to junction with Alabama River.	16	17	15	174	Do.
	In Levan's Bay .	23	34	21	4	Do.
	In Blind Bay	13	24	$1 \frac{1}{1}$	3	Do.
	In Grand Bay	$4 \frac{1}{2}$	54	42	5	Do.
	Op Molile River to Alabama River...	13	14	12	142	Do.
MISSISSIPPI SOUND*	Through Grant's Pass from Mobile Bay	54	$6{ }^{4}$	41	71	Coast Surver, 1848-48.
	Through Pass aux Huitres from Mobile Ray	14	3	\pm	34	Do.
	Through Horn Island Pass	16	17\%	15	18	Coast Sarvey, 185?-53.
	Throngh Dauphive Island Pass \dagger	88	102	8	10.8	Do.
	Passage between Ship Island \dagger aud Horn Island.	13	142	121	15	D_{0}.
	Through Main Channel over Ship Island Bar....	21	22	201	23	Coast Survey, 1848.
	Through East Channel orer Ship Island Bar...	18	$10 \frac{1}{3}$	17\%	20	Do.
	Through South Channel over Ship Island Bar	21	224	$20 \frac{1}{3}$	23	Do.
	At the anchorage	21	224	$20 \frac{1}{2}$	23	Do.
	Over Cat Island Bar.	16	173	15	18	Do.
	Through Cat Island Channel to South Pass......	15	163	14	17	Do.
	At the anchorage off South spit of Cat Island	21	224	204	23	Do.
	From Grant's Pass through the Sound to abreast of IAle aux Herbes	78	9	64	92	Do. Coast Surver, 1848-'4f,
	Fromabreast Isle anx Herbes to Horn Yshand Pass.	13	144	124	153	Coast Survey, 1852-'m3
	At the anchorace inside of Horn Island	19	201	181	21	Do.
	From Hoirn Island Pass to abreast of Round Taland Throngh the Sound from abrenst of Runnd Ieland	14	154	131	16	Do.
	to Cat Island	11	123	104	13	Coast Survey, 1848.
	From abreast of Cat Island to Pass Marianne .	8	時	71	10	Do.
	Through Pass Marianne	10	113	$9{ }^{9}$	12	Do.
	From Pass Marianne to Saint Joseph's Island	8	94	71	10	Do.
	In Grand Island Pass to Lake Borgne	21	223	201	23	Do.
	Passage from Mississippi Sound to Grand Bay ...	7	81	61	9	Do.
	At anchorage in Bay....................... ...	7	81	61	8	Do.
	Channel into Puint aux Chenes Lay	71	9	62	91	Do.
	At anchorage in Bay	64	8	54	81	Do.
	From Grand Batture Ibland Shoal to East Pascagoala Wharf.	$7{ }^{1}$	9	62	94	Coast Sarver, 1852-'63
	Into Pascagoula River.	5	81	42	7	Do.
	Up Pascagoula River to Krebs Lake.............	5	8	4	7	Do.
	gonla River	$1 \frac{1}{1}$	3	3	31	Do.
	From off Round Ialand to entrance to Biloxi Bay. Over Billoxi Bar:	7	81	64	0	Coast Survey, 1855
	Rast Channel.	${ }^{6}$	71	51	8	Do.
	Weet Channel ..	4	51	31	6	Do.
	At the anchorage nnder Deer Island........	8	91	74	10	Da.
* Itse and fall of tiden fa greatest when the moon's declinalion is greatest, either north or gouth. t Not buoyed.						

Table of depths, Gulf Coast-Continued.
MISSISSIPPI AND LOUISIANA.

Table of depths, Gulf Coast-Continued.
MISSISSIPPI AND LOCISIANA.

Table of depths, Gulf Coast-Continued.
lodisiana.

*No tides. Depth of water influenced solely by freahets and crevasses. \dagger A bout a mile below Hahnville.
\oint Shifting bar.
; No hydrographic survejs completed above this polat.
$\|$ Dangerous in wert and southwent gales, easi must not
be attempted by a stranger withoat s pilot.

Table of depths, Gulf Coast-Continued.
LOUISLANA AND TEXAS.

Flaces.	Limits between which depthe are given.	Least water in channel.				Authorities.
		Mean.		Spring tidea.		
		Low water.	$\underset{\text { Water. }}{\underset{\text { Migh }}{ }}$	Low	High water.	
ATCHAFALAXA BAY*Continued.	In the entrance to Wax Lake off west end of Belle Isle	Feet.	Feet.	Feet.	Feet.	Coast Surver, 1858-'80.
		27	283	263	29	
	Throagh the Bay to entrance to East Bay \dagger	5	$6 \frac{1}{4}$	$4{ }^{2}$	7	Do.
	Anchorage in East Bay..	6	8	6	84	Do.
	From "The Narrows" to entrance to Shell Island Pass (Little Bay)	51	7	5	71	Do.
	At anchorage in Little Bay.	13	143	124	15	Do.
	From "The Narrows" through the South Bay to abreast of Fishing Point	4	$5 \frac{1}{1}$	34	6	Do.
	Anchorage in the South Bay, between Turn Point and Point an Fer	5	64	412	6	Do.
	Through the bay to Morrison's Cut-off	61	8	6	81	Do.
	In the Cut-off......	8	918	$7{ }^{7}$	10	Du.
	From Morrison's Cut-off to entrance to Cote Blanche Bay.	5	618	41	7	Do.
	Passage between Bird Key and Rabbit Island.... Channel to the weatward of Birl Key, from	7	81	$6 \frac{1}{2}$	9	Do.
	Atchafalaya Ray to abreast of the Key.......	5	$6{ }^{6}$	$4 \frac{1}{4}$	7	Do.
	From abreast of Bird Key to Cote Blanche Bay . . Channel from the Gulf close under west end of	5	$6{ }_{6}$	$4 \frac{1}{2}$	7	Do.
	Marsh Island to Cote Blanche Bay	7	88	61	8	Do.
	From Bird Key Channel to Salt Point	$3{ }^{4}$	5	3	51	Do.
Vermilion Bay	Over Bar ${ }_{+}$	8	918	73	10	Coast Survey, ${ }^{1805}$
	At the anchorage inside the bar................	27	28ı	268	29	Do.
	At the anchorage nearly half a mile N. by E. of Old Light-tower on Marsh Island \qquad	39	$40 \frac{1}{2}$	381	41	Do.
Calcasien River	Orer Bar \ddagger.	5	$6{ }^{1}$	4	7	Do.
	At anchorage abreast of Light-house	15	162	14.	17	Do.
Sabine I'ass (Boundary)	In the entrancet.	71	9	7	91	Coast Survey, 1853.
	At the anchorage abreast of Light-house.	15	1613	148	17	Do.
liAlveston bay and trib.	Over the Bar, \ddagger by channel of $1879 . . .$.	11.	12	103	123	Coast Survey, 1879.
utaries.	Over the Bar, \ddagger by Fort Point Chamel	$8{ }^{\prime}$	9	73	91.	Coast Surves, 1887.
	Over the Bar, ${ }^{\text {b }}$ b Northeast Channel	9	10	82	101	Dn.
	At the anchorage outside the Bar	42	43	414	434	Do.
	At the anchorage north of Pelican Spit.	40	41	391	418	Do.
	At the anchorage west of southwest point of Bolivar Point \qquad	13	14	123	$14 \frac{1}{3}$	Do.
	From Quarantine Buoy to anchorage off the city From the light-vessel to "The Turn" abreast of	24	25	233	254	Do.
	"Turn Buoy"	23	24	224	243	Do.
	Across Fort Point Bar to Quarantine Buoy....... Through the Bolivar Channel§ from Tarn Buoy	181	101	188	197	Coast Surrey, 1885.
	to First Channel-buoy	36	37	354	374	Coast Survey, 1867.
	Through Dreiged Channel ¢ to Ked Fish Bar.....	9	10	87	101	U. S. Engineers, 1881.
	Over Red Fish Bar§	9	10	81	101	Do.
	Through Upper Bay to Turtle Bay..............	64	7t	0%	71	Coast Surrey, 1835.
	At anchorage in Upper Bay off Turtle Bay Bar ..	9	10	8	101	- Do.
	Over Har into Turtle Bay.........................	$2 \ddagger$	$3{ }^{3}$	24	4	Do.
	At anchorage in the bay	4	5	37	51	Do.
	Through Dpper Bay to entrance to San Jacinto Bay Dredged Channul§ to Morgan's Point......	9	10	81	104	U. S. Engineers, 1882.
	In entrance to San Jacinto Bay	18	19	174	19.	Coast Survey, 1855.
	Acrose Hamnah's Reef to East Bay	54	61	54	62 81 8	Coast Survey, 1854. Do.

* Dangeroas in W. and BW. gales, and must not be attempted without a pilot.
f From the Narrotrs.
: Shlfting mand-bar. \quad The United Statea Engineere expect to have this channel 100 feet wide and 12 feet deop by June 30, 1888. S. Ex. $29-27$

Table of depths, Gulf Coast-Continued.
TEXAS.

Places.	Limits between which depths are given.	Least water in chanuel.				Authorities.
		Mean.		Spring tides.		
		$\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	$\underset{\text { waw }}{\text { water }}$	$\begin{aligned} & \text { High } \\ & \text { water. } \end{aligned}$	
galveston bay and trib-utaries-Coutinued.		Feet.	Feet.	Feet.	Feet.	Coast Survey, 1854.
	Dp East Bay from Elm Grove to Marsh Point ..	6	7	5	$7{ }^{7}$	
	From Marsh Point to Head of Bay	3	4	23	$4 \frac{1}{3}$	Do.
	Through West bay to Railroad Briuge	5	6	$4{ }^{4}$	$6{ }^{6}$	Coast Survey, 1867.
	From Railroad Bridge to Caronkamay Reef	3	4	23	43	Do.
	From Caronkaway Reef to San Luis Pass.......	$5 \frac{1}{3}$	$6 \frac{1}{2}$	$5 \frac{1}{4}$	$6{ }_{4}^{3}$	Do.
	At anchorage in West Bay, between Caronkaway Point and the Deer Islands	4	5	$3{ }^{3}$	51	Do.
	At the anchorage off entrance to Chocolate Bay .	5	6	43	$6{ }^{1}$	Do.
	Over Bar into San Luis Pass	$7 \frac{1}{1}$	$8{ }^{1}$	73	8^{2}	Coast Survey, 1853.
Prazus Iivar	At the anchorage above San Luis Island	16	17	15	$17 \frac{1}{2}$	Coast Surver, 1867. Do.
	Through to Oyster Bay	2	3	17.	31	
	Over Bar*.....	7	8	6	83	Coast Surrey, 1858. Do.
	Up to Velasco.	11	12	$10{ }^{3}$	123	
	At the anchorage	13	14	124	$14 \frac{1}{3}$	Do.
MATA(GORDA BAY andmib. utaries.	Eutrance over Bar* through Pass Cavallo.	6.3	8	67	8	Coast Survey, 18it. Do.
	From Inner Bar Buoy to abreast of Pelican Island t	13	$14 \frac{1}{2}$	123	14.	
	At the anchorage under north shore of Decro's Point \qquad	33	$34 \frac{1}{2}$	$32{ }^{3}$	$34{ }^{3}$	130.
	From abreast of Pelican Island to Swash Buoy...	101	12	$10 \frac{1}{3}$	123	Do.
	From Swash Buoy to Half-Moon Reef Light-house From abreast of Half-Moon Reef Light to Dog	10	$11 \frac{1}{2}$	时	113	Coast Survey, 1806-7\%
	Island Reef.....	7	73	(\ddagger	${ }_{(+)}$	Coast Surver, 1850.
	Over the Reef	2	23	$\stackrel{(}{+}$	$\left({ }^{(}\right)$	Do.
	From Dog Island Reef to anchorage off Matagorda From Matagorda to Dressing Point (entrance to	6	63	(\ddagger	(${ }_{+}$	10.
	LireOak Bay)	5	53	${ }^{(}+$	${ }^{(} \ddagger$	Coast Survey, 1871-72.
	In Live Oak Bay..................................	21	31	(\ddagger	(${ }^{(1)}$	Do.
	Fiom abreast of Dressing Point to Head of the Bay \qquad	31	4	$\stackrel{(}{+})$	$\stackrel{(}{4})$	Do.
	Anchorage for Strangers, Outside Barf Tbrough MeHenry's Bayou to Espiritu Santo	42	433	413	431	L't-House Board, 1890.
	Bay-Over Bar	43	43	$3{ }^{3}$	51	Const Survey, 1874.
	In the Bayou	8	81	71	9	Do.
	From Swash Buoy to Iudianola Wharves .	9	9	$8 \frac{1}{4}$	10	Coast Survey, 1880.
	From Smash Buoy to entrance to Lavaca Bay....	8	81	74	9	Coast Survey, 1871.
	Over Bar by East Channol into Lavaca Bay	6	63	6	71	Do.
	Over Bar by West Channel into Lavaca Bay......	9	98	84	10	Do.
	Over Bar by Midde Channel into Lavaca Bay....	8	$8 \frac{1}{3}$	73	9	Do.
	At anchorage in Lavaca Bay	8	83	\% ${ }^{\text {a }}$	0	Do.
	Up the Bay to Point Comfort Bar.................	71	71	63	83	Do.
-	Over Point Comfort Bar...	7	71	61	8	Do.
	From Point Comfort Bar to Port Lavaca.	7	73	63	8	Do.
	'To Head of Bay	3	31	21	4	Do.
	At anchorage in Cox's Bay	4	43	34	5	Do.
	In entrance to Keller's Bay	5	53	43	6	Do.
	At anchorage in Keller's Bay .	5	$5 \frac{1}{2}$	$4 \frac{3}{3}$	6	Do.
	Over Bar into Carankaway Bay	14	21	(t)	(\ddagger	Do.
	At the anchorage	7	7	(7)	(${ }_{\text {(}}$	Do.
	To the Head of the Bay	3	38	$\left.{ }^{(}\right)$	(\ddagger	Do.
	Entrance to Turtle Bay over Wells' Point Bar....	4	43	(\ddagger	(${ }^{(1)}$	Do.
	At the anchorage abreast of Starboard Point	43	54	(${ }^{(1)}$	(\#)	Do.
	To Head of Turtle Bay............................ Entrance to Tres Palacios Bay..............	13	21	(${ }_{\text {(})}^{\text {(})}$	(($)$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$

* Constantly changing; camnot be entered without a pilot.
i Not only the bar but the shape of Pelican Island changes often. Strangers must anchor ontaile and walt for a pilot. \ddagger Not sufficient data as yet olbtained for Spring Tides.

Table of depths, Gulf Coast-Continued.
TEXAS.

Table of depths, Gulf Coast-Coutinued.
TEXAS.

*Shtfing bar
\dagger Shifting and dangerous bar.
t No hrarngraphlo anrvay.
A bont $1 \frac{1}{\text { fent may bo taken through to Point Isabl. }}$

Table of depths, vicinity of Atlantic and Gulf Coasts.
FOREIGN HARBORS ADJACENT TO THE ATLANTIC AND GULF COASTS.-MEXICO.

Places.	Limits between which depths are given.	Leest water in channel.				Authoritica.
		Mean.		Spring tides.		
		$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	High water.	$\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$	Hich water.	
MEXICO, Gulf Coast-Continued. Coatzacualeos Rino \qquad	To anchorage in riverTo anchorage off the town	Feet.	Feet.	Feet.	Feet.	U. S. Hydr. Office, 1848. U. S. Hydr. Office, 1873.
		$\begin{aligned} & 12 \mathrm{k} \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \frac{1}{2} \\ & 131 \end{aligned}$	12	15	
Laguna de Terminos						
MEXICO, PACIFIC COAST.			$31 \frac{1}{2}$	261	32	
Siazallan Mabor	To anchorage inside Bloseom Rocks	27				British Admiralty, 1828 U. S. Hydr. Office, 1874.
Guaymas Harbor	To anchorage off Pajaros Island	42	446	414	45	
LOWER CALIFORNIA.						
La Paz Bay.	To anchorage off the	18	21	Lit	21 ${ }^{\frac{1}{4}}$	Do
San Jose del Cabo Bay.	To the anchorage	85	89	84	89	British Admiralty, 1839
San Lucas Day	To the anchorage	66	70	653	705	Coast Surrey, 1871.
Aimejas Bay...	Through Rehusa Channel to anchorage	24	28	233	283	C. S. Hydr. Office, 1873
Maglalena Bay	To auchorage in Man-0'-war Cove	58.	624	58	6.3	Coast Survey, 1871.
	To anchorage, Eastern Part of Bay	30	34	2912	343	Do.
Santa Maria Bay	To the anchorage.	60	64	59.	645	U. S. Hydr. Office. 187 ?
San Juanico	To the anchorage under San Juanice Point	30	34	293	34	Do.
Ballenas Bay	To anchorage off mouth of San Ignacio Lagoon....	27	31	202	313	J. S. Hydr. Oftice, 1875.
San IIypolito Bay	To anchorage under San Hypolito Point.	33	37	33 客	378	Do.
San Bartolomeo Bay .	To anchorage	48	544	473	55	U. S. Mydr Office, 1873.
llaya Maia Bay	To the anchorage............................ ..	33	394	32\%	410	Brilish ddmiralty, 1847.
Jort Say Quentin.	To the anchorage above Sextant Point.........	132	18	13	18	O. S. Hydr. Office, 1875.
San Martin Island	To anchorage in Hassier Cove .	48	$51 \frac{1}{2}$	48	517	Do.
Comett liay.	To the anchorage	42	46	42	46	Do.
Sin Tomas Anchorago	To the anchorage	45	50	448	503	Do.
Todos Santor Bay	To Enseliads Anchoragu.	30	331	30	837	Do.

TABLE OF DEPTHS, PACIFIC COAST.

CALIfORNIA.*

Placea.	Limits between which depths are given.	Least water in channel.				Authorities.
		Mean.		Spring tides, at, moon's greatest declination.		
		Lower low water	Hiah water	$\begin{aligned} & \text { Lower } \\ & \text { low } \\ & \text { water. } \end{aligned}$	Higher high water.	
San Diego Bay	Over the Bar	$\begin{gathered} \text { Feet. } \\ 21 \end{gathered}$	Feet.	Feet. 181	Feet. 27	Coast Survey, 1856, '76. Do.
	From Inside Bar to La Playa	20	243	$17 \frac{1}{2}$	$26 \frac{1}{2}$	
	At the anchorage between Ballast Puint and La Playa.	$34 \frac{1}{2}$	394	32	$\begin{array}{l\|l\|} 41 \\ 41 \frac{1}{2} \end{array}$	Coast Survey, 1856.
	Fromabreast of La Playa Wharf to Now San Diego	35	399			Do.
	At New San Diego Wharves....................	14-16	183-202	112-131	201-22 ${ }^{2}$	Do.
	Anchorage off New San Diego	42	463	394	488	Do.
	From abreast of New San Diego to abreast of Sweet-Water Valloy \qquad	19	233	164	$25 \frac{1}{2}$	Do.
	Δ nchorage off Sweet-Water Valley	21	25	181	271	Do.
	To Head of Bay.	1	5	-1	73	Do.
False Bay	Over Bart	3	72	1	91	Do. Do.
Newport Bay	At the anchorage	17	213	142	231	
	Over Bar \ddagger.	4	8	2	11	Coast Survey, 1878.
	From inside Bar to Newport Landing.		81	21	$11 \frac{1}{2}$	Do.
	At the anchorage ontside the Bar	54	574	$51 \frac{1}{2}$	$60 \frac{1}{2}$	Do.
San Pedro Bay-	At the anchorage between the Landing and Deadmay's Island	13	173	$11 \frac{1}{3}$	$20 \frac{1}{2}$	Coast Survey, 1873.
Catalina Marbor	Up to Ballast Point.	24	289	$22 \frac{1}{1}$	318	Coast Survey, 1870. Do.
Isthrnus Core..................	At the anchorage	30	34	28.	374	
	At the anchorage.......	48	523	46\%	$55_{3}^{3}$$553$	Coast Suryey, 1873. Do.
	Anchorage in Fisherman's Harbor		529	$46 \frac{1}{2}$		
Sanclemente Ishind and Harbors.	At anchorage in Smuggler's Cove or Southeast Anchorage.	54	583	53	$60 \frac{1}{4}$	Coast Survey, 1878-70. Coast Survey, 1879.
	At anchorage in Northwest Harbor	284	331	$27 \frac{1}{1}$	35	
Monica Bay	At anchorage in Malaga Cove	24	29	23	304	Coast Survey, 1879. Coast Survey, 1876.
	At anchorage off Santa Monica Wharf	21	28	20	274	Coast Survey, 1876. Do. Do. Do. Do.
	At end of wharf.	22	27	21	284	
	At anchorage in Keller's Sbelter $\$$	36	41	35	424	
	At anchorage in Dame Cove.......................	36	41	35	422	
Anacaja Inland and Marbors ..	At anchorage sonth of eastern end of the tsland..	39	4312	38	45	Coast Survey, 1855 Do. Do.
	At anchorage south of the Boat Passage........	66	701878	652	72	
	Through the Boat Passage				${ }^{9}$	
Santa Craz Ysland and Harbors	At anchorage in Smagrler's Cove (eastern end of island) \qquad	191	24	181		Do. Do. Do. Do.
	At Onter Anchorage north of the Cove........	60	644	59	63	
	At Inner Anchorage north of the Cove	48	521	47	54	
	At Shaw's Anchorage	27	$31 \frac{1}{8}$	28	38	
	In Forney's Cove . . .	30	343	29	38	Coast Survey, 1874.
	At anchorage in Prisoner's Harbor	72	764	71	78	Coast Survey, 1875.
	At Tuner Anchorage off Steamboat Wharf.	31	86	301	374	Do. Do. Do.
	At end of wharf	21	7	11	84	
	Δt anchorage in Tinker's Harbor.................	30	344	29	38	
	Through Anacapa Passage	198	2024	197	204	Coast Surrey, 1855.
	Through Santa Cruz Channel.	144	1481	143	150	Coast Surpey, 1873-74.
Santa Rosa Inland and Harbors		393911133624	34 43 $15 \frac{1}{4}$ 172 402 282	29 38 10 12 35 23	$\begin{aligned} & 36 \\ & 45 \\ & 17 \\ & 19 \\ & 42 \\ & 30 \end{aligned}$	Coast Survey, 1876. Coast Survey, 1873-74. Coant Survey, 1876. Do. Do. Do.
	At southeast anchorage in Beecher's Bay.					
	At end of wharf in Northwest anchorage					
	At anchorage mider Black Point ..					
	At anchorage in "Johnson's Lee ".................					
	At anchorage under Ford Point					

[^1]Table of depths, Pacific Coast-Continued.
OALIFORNIA.

- Holding-ground not good; hard mad.
\dagger Rarely uned. Not marked; and no sufficient tidal data.

Table of depths, Pacific Coust-Continued.
californla.

Table of depths, Pacific Const-Continned.
CALHIORNIA.

Phaces.		Least water in channel.				Authoritits.
	Limits intwen which depthe ategiven.	Mean.		Sprinutides at moon sreatest declination.		
		Lower low water.	High Water.	$\begin{aligned} & \text { lower } \\ & \text { low } \\ & \text { water. } \end{aligned}$	$\begin{aligned} & \text { Higher } \\ & \text { hight } \\ & \text { water. } \end{aligned}$	
SAN FRANCISCO BAY and tributaries-Continued.		Feet.	Ftet.	Feet.	Fect.	Coast Survey, 1860. Do. Do. Do.
	- slough	19	25.	18	$20{ }^{2}$	
	From Napa Slough to Bull Ishand Slongh	10	16t	9	172	
	From Bull Island Slough to Suscol Ferry	3	91	2	10늘	
	From Suscol Ferry to Napa City.	1	$7 \frac{1}{2}$	0	$8{ }_{1}$	
	Passage through Raccoon Straits	co	65	59	66	Coast Survey, 1855.
	Through the Struits of Karquines to Benicia	60	66	59.	67	Coast Surver, 1857-76
	At the anchorage off Benicia	33	39	3:4	403	Coast Survey, 1860-76.
	From abreast of Denicia to Suisun Day	33	39	324	404	Do.
	At Benicia Wharves	6-18	11-24	5-17	12-25	Coast Survey, 1860-67.
	Up Suisun Bay from Army Point to mouth of Suisun Creek	12	18	14	$19 \frac{1}{3}$	Vo.
	Ep Suisua Bay to Suisun Cut-off	13	19	123	203	Do.
	Through Suisun Catoff	13	19	$12 \frac{1}{3}$	2013	Do.
	From Suisun Cut-off to Simmons' Point	21	27	203	283	Do.
	Op Suisun Bay from Army Point by Suuth Channel to Middle Point	13	19	123	$20 \frac{1}{3}$	Coast Survey, 1866-76.
	From abrcast of Midde roint to Simmons' Point From abreast of Simmons' roint to Sherman Isl-	14	20	13	213	Do.
	and (mouth of San Joaquin River)	33	33	321	$40 \frac{1}{3}$	Do.
	From abreast of Simmona' Point to mouth of Sacramento Hiver \qquad	11	17	103	183	Do.
	From Army Point through channel to northward of Roe Island to Gillespie's Point.	11	17	103	$18 \frac{1}{3}$	Do.
	From Army Puint thtouyh Main Clannel to Gillespie's Point.	194	$25 \frac{1}{2}$	$18 \pm$	263	Do.
	From abreast Gillespie's Pơint to Sherman 1sland	21	27	201	283	Do.
	In entrauce to Suisun Creek	7	13	63	143	Coast Survey, 186i.
	Up Suisun Creek to Suisun City	2	$7 \frac{1}{2}$	17	91	Do.
	In Western Eitranco to Montezuma Creek...	10	15	01	$15 \frac{1}{4}$	Do.
	At anchorage under Seal Island......	27	33	263	34\}	Do.
	At entrance to Roaring River \qquad Through Roaning River to junction with Monte-	13	$6 \frac{1}{2}$	1	61	D.
	zuma Creck	3	8	21	$8 \frac{1}{4}$	Do.
	Throngh Spoonbill Creek	2	7	$1 \frac{1}{2}$	T	Do.
	Througl Mallard Slough.....	1	6	$\frac{1}{2}$	$6{ }_{6}$	Do.
	Up New York Slough to Pitteborgh Landing.	5	10	43	104	Coast surves, 1871.
	Through New York Slough to San Joaquin River. Through Middle Slough from Suisun Bay to San	5	10	4.	10.4	Do.
	Joaquin River	7	12	6	121	Do.
	Thoogh Middle Slough to Pittsburgh Landing . Up Montezuma Creek by Eastern Eatrance from	7	12	$6 \pm$	124	Do.
	Tongue Shoal to Roaring River.	4	$9 \frac{1}{2}$	4	43	Coast Surrey, 1807.
	Though Rook Creck from Roaring River to Honker Bay	43	91	4	時	Do.
	Up Montezuma Creek from mouth of Roaring River to Tule Island	3	8	2\#	81	Do.
	At Collinsville Wharf (entrance to Sacramento River) \qquad	11	10	104	10%	Const Surrey, 1866.
	In month of Sacramento River	221	278	22	27	Do.
	Ep the river for two miles*.	16	21	15in	21	Caust Survey, 1867.
	Secramento River to Perry's Landing	14	19	132	191	Do.
	In month or San Joaquin River	40	45	304	458	Do.
	Up the river to New York Slough	224	27\%	22	- 278	Do.

S. Ex. 29 - 28

Table of depths, Pacific Coast-Continued.
califonsia.

Places.	Limita between which deptis are given.	Least water in chamel.				Antherities.
		Mean.		Sprinctides at moon's greatest declination.		
		Lower low Fater.	High water.	$\begin{aligned} & \text { Lower } \\ & \text { low } \\ & \text { water. } \end{aligned}$	$\begin{gathered} \text { Higher } \\ \text { bight } \\ \text { water. } \end{gathered}$	
SAN FRANCISCO BAY and tributaries-Continded.		Fect.	Feet.	Fect.	Feet.	Const Survey, 18 mt . Do.
	ing.	25^{3}	$30 \frac{1}{2}$	25	303	
	Up San Joaquin River to Kimball's Island	224	$27 \frac{1}{2}$	20	278	
	From Kimball's Island to eastern end of West 1sland	$31 \frac{1}{2}$	303	31	307	1 Do .
	At anchorage off Antioch	461	$51 \frac{1}{3}$	40	514	Do.
	At Antioch Wharves.	18	23	1712	234	Do.
Bailenas Day	At the anchorage	33	38	32	$3{ }^{4}$	Coast Survey, 18:4.
Corthll Bank (oty Point Reyes)	Shoalest water on the bank	150	\ldots	Comst Snrvey 187.
	Decpest water on the bank	210				Do.
Draket hay	At the ancborage under eastern shore of Point Reyes.	- 21	26	20	27.	Coast Surver, 18 mo .
	At anchorage one mile to the westward of Drake's Estero	28.	331	271	35	Do.
	In entrance to Drake's Istero	8	13	7	144	Do.
	At auchorage inside	10	15	9	$16 \frac{1}{3}$	Ho.
Tomulua Bay	Over barat entrance	10	148	9	16	Cuast Surrey, 1-61.
	From inside the bar to Hog Island	$\times 10$	143	9	10.4	10,
	From abreast of Hog Island to Muldrow City	+16	204	15	223	Hos.
	From abreast of Muldrow City to Rancheria..	19	2, ${ }^{3}$	18	243	1 m .
	From abreast of Rancheria to head of bay	1	54	0	$7{ }^{7}$	10.
	Through Tom's Point Chanael to abreast of Smith's Landing.	7	113	6	123	Do.
	At wharves at Smith's Landing.	0	4	-1	4	Do.
	At anchorage in bay abreast of Tom's Point....	24	28a	23	203	Do.
	In mouth of Arroyo San Antonio.	3	72	2	et	Do.
	In White Gulels .	18	2䢒	17	238	Do.
	At anchorage of M Muldrow City	18	223	17	233	Do.
	At anchorage off Raucheria	27	318	26	30	Do.
Bodega Ray	At the Outer Anchorage	24	29	233	31	Coast Surrey, 1869 .Do.
	Ocer the bart into Inner Bay	8	13	73	15	
	Through Inner Bay to its head	2	7	$1{ }^{1}$		Do.
	At anchorage southwest of wharves at Bay Head	13	18	125	20	Do.
	At the wharves	5	10	43	12	Do.
Shether Cove.	At the Outer Anchorage.	181	234	173	254	Cnast Survery, 1880 . Do.
	At Inner anchorage....	5	9	4	114.	
Mentocho Bay	At anchorage in Outer Bay .	33	373	$32 \frac{1}{4}$	303	Coast Surver, 1872
	At anchorage above the wharves	8	122	7	148	Do.
	At Railroad Wharves	13-18	174-239	124-183	193-258	Do.
Humbutalt Bay	In the entrance§	12	173)	11	18.	Coast Surrey, 1875
	Over Innor Bar by Weat Channel.	13	$18 \frac{1}{2}$	13	1912	Coast Survey, 1871.Do.
	Thruugh East Channel from entrance to Bucksport At anchorage in West Channel abreast of Light.	7	123	6	134	
	House \qquad At anchorage in East Channel off mouth of Elk	254	31	$24 \frac{1}{2}$	32	Do.
	River	36	418	34	424	no.
	At anchorage alireast of tiumboldt.....	104	25	182	28	Do.
	From abreast of Rucksport to Eureka. .	7	124	6	1312	$1{ }^{1}$
	at Eureka Wharvea	0	111	5	123	10.
	From abreast of Eureka to Arcata Whari	4	92	3	10.1	Do.
	At Arcsta Wharf...........	4	9.	3	$10{ }^{2}$	Do.
	At anchorage of Bucksport	224	28	21\%	29	1 m .
	Channel through sonthom aro of Bay to its head (Meyer's Landing).	0	5 t	-1	64	Do.

* Over har abreast of Saud Point. tover Hog Islapil Bar. \ddagger Shifting saud-bar
\$This bar shife comatamy, both in oupth and diroction. It canuot bo entered withoal a pilot, and then only in tine weather.,

Table of depths, Pacific Coast-Continned.
CALIFORNIA AND OREGON.

[^2] \dagger Hulding-gownd not good.
\ddagger Shifts constantly. lepthe given repiescat the condition of the bar in October, 1865.
\$ Constantly shifing. Cannot be entercd without a pllos.

Tuble of depths，Pacific Coast－Continued．
oregon．

Places．	Limits between which depths are given．	Least water in clannel．				Authorities．
		Mcan．		Spring tides at moon＇s greatest declination．		
		cower	$\underset{\text { water．}}{\text { Hicc］}}$	Lower low water．	Hipher high water．	
Umpqualn River－Continued	From Winchester Bay by East Channel to Middle Ground \qquad	Feet． 13	Feet．	Feet．	Feet． 20	Coast Survey， 1853.Do.
	Whrough channel cast of Middle Ground ．．．．．．．．	10	18	91	17	
	Throngh Westera Channel to janction above the Midale Ground＊	3	9	$2{ }^{2}$	10	Do． Do．
	At auchorage abreast of Δ stronomical Station ．	16	22	152	23	
Alseya River	Over barf ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	73	$15 \frac{1}{2}$	64	17	U．S．Engineers， 1880. Do．
	At anchurage on eqstern side of Alseya Spit	15	293	14	244	
Yaquinna Bay and River	Over bart．	9	164	8	173	Lt．Honse Board， 1870. Coast Surves， 1868.
	At the anchorage off Newport	30	374	29	387	
	From the anchorage by Main（borthern）Cbannel to Coquille Point（entrance to Yaquina River）	16	231	14\％	24.3	Do．
	From the anchorage through South Channel to Coquille Point	$\S 5$	124	4	134	Do．
	Through the passage between Mul Flatand Sand Flat	23	93	2	11	Do． Do． Do． Do．
	From abreast of Coquille Point to Idlewild Point．	18	$2{ }^{3}$	16현	$20 \frac{1}{2}$	
	From Idlewild Point to Oyatervile．	13	20.	$13 \frac{1}{2}$	212	
	In Hoxie＇s Cove ．．．．．．．．．．．．．．．．．．．．．．．．．．	1－7	84－154	－ $1-138$	92－102	
Tillamook Bay	Overbar｜｜	14	20	123	213	Const Survey，1866－67．
	At the anchorage nuder Kincheloo l＇oint	16	22	14	233	Do． Do．
	At the anchorage under Memaluct Head	11	174	93	$18 \frac{3}{3}$	
	Through the East Channel to Sandstone Point	81	16498	7413	$\begin{gathered} 174 \\ 108 \end{gathered}$	Do．Do．
	From abreast of Sandstone Point to Sbell Point From abieast of Shell Point to Rock Point（at head of bay） \qquad	3				
		1	7	$-\frac{1}{3}$	83	Do．
	Through the Mitdle Channel to Shell Point．．．．．．．	6	123	48	139898	Do．
	From abreast of Shell Point to Rock Point．．．	14	$8 \frac{3}{3}$	$\frac{1}{4}$		
	Through the Weatern Chamel to Pitcher Point．．	7	13.	52	143 ${ }^{\text {明 }}$	Do．
	From abreast of Pitcher Point to Rock Point．．．．	2	87	4		Do．
columbia river	Over bar by the North Channell Over bar by the Sonth Channell	22	294	21	304	U．S．Engineers， 1880 ． Do．
		19	$26 \frac{1}{4}$	18	274	
	Through North Channel into Baker＇s Bay	26	$33 \frac{1}{4}$	25	344	Do． Coast Survey， 1868.
	Through South Channel into Baker＇s Bay ．．．．．．．．．	17	$24 \frac{1}{2}$	16	254	Coast Survey， 1868. Do． Do．
	At anchorage of Fort Stevons Wharf．．．．．．．．．．．． At anchorage under Cape Disappointment in Maker＇s Bay． \qquad	36	431	35	444	
			311	23	321	Do． Do． Do． Do．
	Up river from Point Adams to Astoria At the anchorage off Astoria．	22	293			
		27	34	26	385	
	At Astoria Wharf In entrance to Young＇s Bay Through the bay to mouth of Yonug＇s River In entrance to Young＇s River． From abreast of Sand Island by Northern Channel to Point Ellice	19	26	18	283	
		13.1	21	124	$\begin{aligned} & 221 \\ & 224 \end{aligned}$	
		13	201	12		
		24	311	23	334	Do． Do． Do． Do． Coast Sarvey，1876－77． Do． Do．
					43	Coast Survey， 1868.Do.
	Up river from Astoria to Tongue Point． Through Northern Channel from Point Ellice to Gray＇s Point \qquad	348 191	417 264	337	273	
		13	26	124	21圭	Do． Do． Do． Coast Survoy，1807－的
	To anchorage on weatern shore of Gray＇s Bay．．．． Through Gray＇s Bay to Alamiont River From Point Ellice to Tongue Point \qquad	36	43		144 14.	
		614	13			
			31	$\begin{array}{r}51 \\ \hline 134 \\ \hline 18\end{array}$	$22 \frac{1}{3}$	
	From Point Ellice to Comentrillo Lower Wharf．	12	19	114	204.	Casast Surrey，1867－棸 Do．
	Thmagh Wondy Island Channel from Tongue Point to jnnetion with Cordell Channel． Through Cordell Channel． \qquad		191 234	113 154	$\begin{aligned} & 20 \\ & 24 \end{aligned}$	Do． Da． HShifting mainds
＊No natrey abore this． t Constantly shiftiag．Cannot be entered without a pllot．			Midule Ground．			

Table of Repths, Pacific Coast-Continued.
OREGON AND WASHINGTON TERRITORY.

Places.	Limits between which depthe are given.	Least water in channel.				A uthorities.
		Mean.		Spring tides at moon's greatest declination.		
		Lower low water.	High water.	Lower 10w water.	Hicher high water.	
OLDIBIA RIVER-Contd.	Throngh Woody Island Channel from junction with Cordell Channel to Woody Istand.........	Feet.	Feet.	Feet.	Feet.	Coast Survey, 1867-68
		15	214	138	22	
	Through North Channel from Gray's Point across Portuguese Bar.		18	108	193	Do.
	From Portugaese Bar to abreast of Yellow Blaffs.	19	$26 \frac{1}{2}$	184	27	Do.
	From abreast of Jellow Blufis to Jim Crow Point (junction of all channcis)	20	263	18	27	Do.
	From Tongue Point through Cathlamet Bay to John Day's Point.		$\begin{aligned} & 13 \frac{1}{4} \\ & 134 \end{aligned}$	73	10	Coast Survey, 1876.
	In mouth of John Day's River.	9		58104	14	Do.
	Through Cathlamet Bay from John Days Point to Settler's Point (South Shore Channel)	12	184		19	Do.
	From Settler's Point to Prairie Channel	6	124	4	13	no.
	Channel from Tongue Point to entrance to Prairie Channel	15	214	138	22	Do.
	Through Prairie Channel to Warren's Landing...	15	214	137	22	Do.
	By Northenn Passage in Prairie Chamel under Sonth Shore of Marsh Islaud.	17	234	153	24	Do.
	From Warren's Landing to Southwestern end of Long Island	8	143	63	15	Do.
	Through Prairie Channel to eastorn end of Woody Island.	18	243	164	25	Do.
	From Prairio Island Channel acress the flats to Main Chanuel at Willow Island	9	157	78	16	Do.
	Marsh Island Creek from Woody Island Channel to Prairic Channel	2	8	\%	9	Do.
	Through Main Channel from Jim Crow Puint to Three Tree Point	39	454	374	46	Do.
	Fromabreast of Three Tree Puint to Puget Island	37	434	36	44	Do.
	Through Multnomah Slough to Main Channel ...	9	154	8	16	Do.
	From Cathlamet Point, S. of Tenasillihee Island, to Puget Island	10	16	9	174	Do.
	Through Main Channel from west end of Puget Island to Cape Horn	24	291	23	311	Do.
	Through Cathlamet Channel to Cape Horn	15	20	14.	22	Do.
	At anchorage off Cathlamet.	42	47	411	49	
	At Cathlamet Wharves	12	17	111	19	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
	In entrance to Westport Slough (Main Cbannel)	$19 \frac{1}{2}$	25	18\%	27	Do.
	At anchorage off mouth of Slough...............	191	25	184	27	Do.
	Up Westport Slough to Westport................	18	23131	17	$25 \frac{1}{1}$	Do.
	At anchorage off Westport..			24 t	33	Do.
	At Westport Wharf	11	161	10	184	
	Through Westport Slough to Wallace's Island Channel	5	4	44	11	Coast Survey, 1878-77.
	In entrance to Wallace's Isiand Channel from Main Channel	$1 i$5	$\begin{gathered} 203 \\ 91 \end{gathered}$	154		Do. Do.
	Through Wallace's Island Channel			4	$\begin{aligned} & 22 \\ & 11 \end{aligned}$	
	Main Channel, from abreast of Cape Horn to Bradbary Slough		3331	29		Coast Survey, 1876. Coast Surver, 1876-77.
	Through Bradbury Slough	31 17	214	164	$\begin{aligned} & 371 \\ & 23 \end{aligned}$	
	From abreast of weat end of Grim's Island to Big Slough.	45	504			Coast Survog. 1876. Do.
	Anoborage in Big Slough	22	27	24	29	
	Main Chanuel. from of Big Slough to lower end of Walker's Island	22	251	$21 \frac{1}{2}$	26	Coast Survey, 1877. Do. Da.
	At anchorage off Cleareland's Lauding. Through Fisher's Island Channel	$\begin{aligned} & 22 \\ & 14 \end{aligned}$	264 174	${ }^{213}$	26 18	

Table of depths, Pacific Const-Continued.
oregon and wasilington.

* Not anfficient data

I Nemly nipeast of Coffin Rock.
One milk above Burke's Slough. Constantly shifting; cannot be entered wid
No surver above thin (18s3).
| Three-quarters of a mile below Martin's Bluff.

Table of depths, Pacific Coast-Continued.
OREGON AND WASHINGTON TERRITORY.

Table of depths, Pacific Coast-Continued.
WASHINGTON TERRITORY.

Table of depths, Pacific Coast-Continned.
WASHINGTON TERRITORY.

S. Ex. 29——29

* Not sufficient data.

Table of depths, Pacific Coast-Continned.
WASHINGTON TERRITORY AND BRTTISH COLUMBLA

* Not sufficient data

IAt heal of bey \quad All of thear depthe on North Shore sulyect to correction when the aurveys are completed by U. Somptarter
§ Mauy shoals $\|$ Great care must be takes in eelectiug an anchorage in the Canal or the harbors that apme from it:

Table of depths, Pacific Coast-Continued.
WASHINGTON TERRITORY AND FRITISH COLUMBIA.

Tabie of depils, Pacific Coast-Contiuued.
Washington terbitory and british columbla.

Table of depths, Pacific Coast-Continued.
W \triangle SHINGTON TERRITORY AND BRITISB COLUMBIA

* Graat care should be exprcised in selecting an anchorage in any of theee channels.

Table of depths, Pacific Coast-Continuerl.

BRITISH COLUMBIA.

Port San Juan	At the anchorage	36	(t)	:...	British Admiralty, ${ }^{1847 .}$
Barclay Sound	To anchorago in Bamfleld Creek	86	(${ }^{(1)}$	British Admiralty, 1881.
	To Entrance Anchorage	36	(${ }^{(1)}$		Do.
	To anchorage in Kelp Bay	36	(${ }^{(1)}$		Do.
	To nnchomae in Christie Bay	E	(t)	-	Do.
	Throurh Shark leass toanchorage in Dodre's Core.	18	(1		Do.
* Great care must be takon in selectiog an anchorage in any of theye chanuels.		\| Nut sufficient date for tides.			Many shoolm.

Table of depths, Pacific Coast-Continned.
BRITISE COLCMBIA.

- Not mufficient data for tidees.

Table of depths, Pacific Coast-Continued. british columbia ani alaska.

ALASKA.

Table of depths, Pacific Coast-Continued.
AlASKa.

Table of depths, Pacific Coast-Continued.

Table of depths, Pacific Coust-Continued.

-Approximate mean rise and fall given.

Table of depths, Pacific Coast-Continued.
ALASKA.

Places.	Limits hetween which derths are given.	Least wator in channel.				Authorities.
		Мван.		Spring tides at moon's greatert declination.		
		Lower luw water.	$\underset{\text { water. }}{\text { High }}$	Lower low water.	Higher water.	
UNALASHKA ISLAND and Harbora-Continued.	Passage from Iliulink Harbor to Port Levanheff ..	Fcet. 24	Fect. $28 t$	Fect.	Fect.	Coast Survey, 1872. Do.
	Δt anchorage in Port Levasheff	${ }^{36}{ }^{36}{ }^{\text {* }}$	$40 \dagger$			
	At auchorage under Eider l'oint					Coast Survey, 1874.
	To anchorage in Makushin Bay	36^{*}				Saricheff, 1792.
	To anchorage in Kah she ga Bay	36*				Do.
	In citrance to Cliernoffisk Bay	102*				Do.
	At anchorage in Chernoffeky Bay	$78 *$				Do.
	In entrance to Kuliliak Ray	66*				De.
	At anchorage in Kuliliak Bay	36^{*}				Do.
	At anchorage in Udamat Bay	54*				Do.
	At anchorage in Ugalek Bay.	84^{*}				Do.
	At anchorage in Udagak Strait	102*				Do.
	To anchorage in Kisselen bay	72^{*}				Do.
	To anchorage in Ke-ka-kalen Day	138*				Do.
	To anchorage in Agamguk Bay.	30*				Do.
	In entrance to Samganuda Bay	120*				Cook, 1778.
	At anchorage in Samganuda Bay	42*				Do.
Aulia Island	In entrance to Sviochnikoff Harbor	108*				Tebenkoff, 1849.
	At the anchorage	48*				Do.
Atka lsland and Harbors	Tu anchorage in Nazan Bay	72^{*}				Do.
	To ínner anchorage in Korovinski Bay					Do.
	To outer anchorage in Korovinski Bay					Do.
	To auchorage in Sandy bay .	36^{*}				Do.
	To anchorage in Saramua bay.	18*				Do.
Adakh 1sland and Hiarbors (Aleutians)	In Northern Eutrance to Bay of Islands In Northwestern Eutrance to Bay of Islands	30^{*} 544^{*}			Coast Survey, 1873. Do.
	In Northwestern Eutrance to Bay of Islands	90^{+}				Do. Do.
	At anchorage in lay of Islands.......	84^{*}				Do.
	At anchorage in Bay of Waterfalls.	42*				U. S. Pac. Sur. Ex., 1855
	At anclorage in Tanaga Bay	60^{*}				Saricheff, 1792.
Auchitka lstind (Aleutians)	At anchorage in Constantine Harbor	48-66*				Coast Starvey, 1873.
Altu Island............... ...	To auchorage in Massacre Harbor	12**				Bielieff.
	Over Bar in Chichagoff Entrance.	192******				U. S. Pac. Sur. Ex., 1855.
	At the anchorage in Chichagoff Harbor	30^{*}				Do.
	In entrance to Port Möler.	$54 *$			Ruscian Surveys.
	At anchorage in Port Möller.	60^{*}				Do.
Great Kyska Island (Alentians)	To anchorage in Kyska Harbor	36	404^{+}			Coast Survey, 1873.
	To anchorage on southern shore of harbor	431	$48 \dagger$			Do.
Briatol bay and Harbors (Beringer Sest).	To anchorage in Mouth of Ugazhak River	12*			Tebenkoff, 1849.
	To anchorage in Mouth of Ugiagik Kiver........ To anchorage in Mouth of Nakuek River	$\begin{array}{\|l\|} 24^{\star} \\ 12^{\star} \end{array}$				Do. De.
	To anchorage in Nublegak River, one mile from Fort Alexander \qquad	12**				Bryant, 1889.
Kulukak Bay (Bering Sea)	To anchorage in bay	18*				Tebenkoff, 1840.
	To anchorage W. of Hagenmelster Island	90^{*}				Do.
Pribiloff Islands	At anchorage in Southweet Bay (Saint George)...					Comet Survey, 1874
	At anchorage in Garden Cove (Saint Oeorge)	54*				Do.
	At Northern Auchorage (Saint George)	102*				Do.
	At machorage W. of Red Point (Saint Paul)	42				Do.
	At anchorage E. of Reef Point (Saint Paul)	48*				Do.
	At anchorage S. of Sea-lion Point (Saint Paul)	48^{*}				Do.
	At anchorage W. of Northeast Point (Saint Paul)	30^{*}				Do.
Grod Nows Bay (east coast. Bering Sea).	In entrance to bay	21*				Tebenk 0 盛1849.
	At the anchorage	12*				Do.

Talle of depths, P'ucific and Arctic Coasts.

PACIFIC AND ARCTIC COABTG OF ALAGKA AND ASIA.

gastern coagt of asia.

* Not sufficient data for tides.

Appendix No. 8.

THE ESTUARY OF THE DELAWARE.

A report by HFNNRY MITCHELIL, Assistant.

In a report made in March, 1881, which was published as Appendix No. 13 of the Annual Report of the Coast and Geodetic Survey for 1879 , I called your attention to three rules which answer well for over 60 miles of the Delaware below League Island. These rules are:
"1st. The transverse section is directly proportional to the discharge.
"2d. The width is proportional to the discharge.
"3d. The mean-depth is the same in all sections."
These rules were based upon survejs made forty years ago, and I dared not, therefore, employ the data except in large gronps, not only becanse I donbted the accuracy of the field-work, but also because the soundings did not cover the ground uniformly, so that discrepancies were found to exist among smaller groups.

I have now in my hands the portion of the new survey from Philadelphia to a point 52 miles below. This portion I shall call the estuary for distinction, because below this we come upon a submerged delta where the stream splits into numerons channels not unlike the passes of the Mississippi, or more like those of the Ganges after its issue upon the Bay of Bengal.

In my earlier work my data were grouped for reaches of 5 miles each, but in my work upon the new survey I have increased the number of my groups by diminishing the distance covered by each group to one nautical mile. This I have done at some risk of discord arising from bend effects. The bends in the course of a stream flowing through alluvium canse deepening at the apices and corresponding shoaling at reversions. This was found to be true in the Lower Mississippi, both as regards mean-depth and channel-depth. The widths are also similarly affected. In order, therefore, to obtain the broadest view of the river's dimensions, each group of data shonld be large enough to include at least one bend and one inflection, or equal multiples of similar bends and inflections. Practically this can only be realized in large groups, where inequalities of reverse curvatures dis. appear.

Nevertheless, with this new survey in my hands, as perfect in its details as I could ask, I have felt that I could afford to let occasional contradictions go uncancelled, rather than lose the benefit of number in evidence.

At the close of this report the compiled data are furnished for the estuary of the Delaware from 734 cross sections with widths varying from 1 to 5 miles and including many thousand soundings. It was a vast work to compile accurately so many measures of width and depth, and compute the area of every section separately; but happily you had assigned for this work one whose long experience as Assistant upon the Coast and Geodetic Survey rendered him a judge and an expert in such matters. Mr. J. A. Sullivan, the person to whom I refer, has seen no occasion to reject any observed data, and he has, at my request, prefaced his tables ly notes upon his method, which materially add to the strength of the testimony. These notes and a statement of the data consulted appear at the end of this paper.

In a table and diagram that immediately follow I reprodnce some of the data to which I bave referred, and add some computed curves generalizing the results.

Estuary of the Delaware, half-tide dimensions.

x Distance in nautical miles from Fort Miftin Light.	Obsarved mean-depth in feet.	Mean-width.		Mean-area of soction.	
		Observed feat.	$\begin{gathered} 10.1 x^{2}+ \\ 5,100 . \end{gathered}$	Observed. arquare feet.	$\begin{array}{r} 188 \mathrm{x}^{2}+ \\ 95,000 . \end{array}$
1	- 18	5,300	5,100	95,400	95,000
2	19.4	5,000	5,100	97, 000	95,000
3	17.0	5,400	5, 200	91, 800	96, 000
4	16. 7	5,900	5, 300	98,500	98,000
5	19.6	5,000	5.400	98,000	100,000
6	19.5	6,400	5,500	124, 000	102,000
7	20.1	5,300	5,600	106,500	104, 000
8	18.5	6, 500	5,700	120,200	106,000
9	23. 0	5,200	5,900	119,600	109, 000
10	19.8	5,900	6,100	116,800	114, 000
11	19.6	6,200	6,300	121, 600	118,000
12	20.1	6,400	6,600	128,600	121, 000
13	20.8	6,400	6,800	133, 100	127, 000
14	20.1	7,000	7,100	140, 700	132,000
1.5	20.8	6,700	7,400	139,400	137, 000
16	14.7	7,700	7,700	151,800	143, 000
17	16.7	9,900	8.000	165, 000	149, 000
18	17.1	9,500	8,400	162, 000	156, 000
19	24.1	6,000	8,700	144, 000	163,000
20	21.7	7,200	9, 100	156, 000	170,000
21	20.37	8, 600	9,690	175, 000	178, 000
22	21.05	8,700	10,000	183,000	186, 000
23	22. 31	8,700	10,400	194,000	194,000
24	13. 22	11,200	10,900	215, 000	205,000
25	15. 85	14,600	11,400	231, 000	213, 000
26	14.64	15,900	11,900	232, 000	222,000
27	15. 78	13,400	12,500	211,000	232, 000
28	16.51	13,900	13,000	230, 000	242, 000
29	1595	15,500	13,660	247, 000	253, 000
30	20.92	11,300	14,200	236,000	264,000
31	21.18	11,700	14,800	248, 000	276, 000
32	21. 88	12, 100	15,400	264,000	288,000
33	18.01	16, 800	16, 100	302,000	300, 000
34	16. 28	19,900	16,800	325, 000	312,000
35	17. 20	18,800	17,500	322,000	325,000
36	18.83	16,800	18,200	317, 000	339,000
37	18.94	17,500	18,900	332,000	352, 000
38	18. 28	19,700	19,700	300, 000	368, 000
39	17.59	21,700	20, 500	381, 000	381, 000
40	17.50	22,700	21, 300	398,000	396,000
41	17.98	23, 200	22, 100	417,000	411, 000
42	19.30	23,400	22,900	452,000	427, 090
43	17.65	25,400	23,800	449,000	443,000
44	19.42	23,600	24,700	458,000	459,000
45	20.17	23,000	25,600	464,000	470,000
46	19.17	25,700	26,500	488, 000	493,090
47	17.72				
48	19.32			
49	20.57				
50	20.25				
51	18.00				
52	17.62				

The point of greatest interest and physical importance is the constancy of mean-depth. In the first figure of the diagram (p. 241), which represents the mean-depth for each nantical mile, any one must admit, I think, that a horizontal straight line best represents the generalized result, there being no order of recurrence in the fluctuations above and below.

These fluctuations in the mean depth are mostly due to inequalities in the nature of the soil. At Deep-water Point (nineteenth mile of our table), for instance, gravel and stones brought down by the ice, perhaps, have held the bank against the stream, while in other places the soft banks have sloughed away under the action of waves. These peculiar sections might have been rejected as anomalous, but I have preferred to accept all the testimony precisely as furnished by the surveyors, letting the stony points and sloughing banks offiset each other, which they do very well. Some of the smaller fluctuations are, no doubt, due to uncancelled bend effects. The grand mean, including all the soundings for 46 nautical miles, is 18.64 feet.

The width of the estuary must, however, be regarded as the independent variable of our table, and for this reason the equation of a curve which should sweep ont its irregularities has been sought, with a view to using it as a factor in generalizing the variations of sectional areas. Happily a very simple expression was found to answer, viz: the square of the distance in nautical miles multiplied by 10.1 , and this multiplied again by 18.64 (the constant of mean-depth) is the curve of sectional areas.

These curves, I submit, are just as real in nature as the constant of mean-depth. No ingenuity has been employed, and the harmony of these expressions with fundamental laws of motion simply indieates that running water has adjusted its bed to its own demands, for the tide is the working agent here.

S. Ex. $29 \longrightarrow 31$

Under the parabolic expression for the increments of width that has been given, the increments of surface area should follow the third power of the distance, and the rule of the former report, "width proportional to discharge," could not hold good were it not that the range of the tide declines with distance (at first in a marked degree and then slightly, as indicated by the observations of the United States Enginoers), so that to obtain the increments of discharge we should not multiply the areas by a constant, but by a diminishing quantity.

It will be observed that the ratio of perimeter to sectional area remains essentially the same throughout the estuary ; I do not, however, regard this as a primary condition making my rule for discharge possible, but as a rosultant. Tidal streams, augmenting their discharge as they approach the sea, must necessarily make their deposits so as to form shallow and divergent estuaries, for there is no disposition to deepen if there is no restraint at the sides; but the contrary, as when a stream issues upon the sea, or a lake, it widens at the expense of its depth of flow. In the estuary of the Delaware we have a remarkable case of equilibrium resulting in a constancy of mean-depth.

Of course it may be safely inferred from our rule that the mean velocities for our cross-sections are the same, but we have no observations upon the transverse curves of velocities from which to predict the drift through the ship channel. The importance of making such observations you have already seen, and I need not remind you that, aside from the direct advantage to the navigator from the better tables we shall be able to furnish, we shall discover in the profiles of these curves the changes that induce or reflect the variations of channel depth.

I have spoken of the adjustment of the mold of the estuary to the tidal currents; but I hasten to say that in this adjustment cause and effect are convertible terms. The reaction of the bed and banks is measured in the retard of the tide-wave.

The remarkable uniformity of mean depth, and the recurrent sameness of channel depth for the 46 miles under consideration should lead us to expect that the tidal retardation, so far as affected by depth, should also be uniform, and this appears to be the case. But the formula for the times of high water given in a former report (Appendix No. 18, Annual Report Coast and Geodetic Surrey, 1881) contains two terms, one of which may be regarded as reflecting the uniform resistance of the bed, while the other indicates a continual increment of resistance, which I submit is due to the converging width of the estuary. The formula referred to is $y=2.2 x+0.018 x^{2}$, which gives almost exactly, in minutes, the delay of the tide from the breakwater (from which the distance x is measured in nautical miles) to Philadelphia, as shown in the subjoined table, quoted from the former report:

Progress of the tide in Delaware Bay and River.

Number of data.	$\begin{gathered} \text { Distances } \\ \text { in } \\ \text { mautical } \\ \text { miles. } \end{gathered}$	Localities.	Obserred time of bigh water.	Curve by formula.	Difference of observed and computed times.	Observed time of low water.	Curve by formula.	Difference of observed and computed times.
			Minutes.		Minutes.	Minutes.		Minutes.
659	0	Breakwater	0	0		0	0	
20	42.1	Collins' Beach ...	125	124t	04	167	175	8 -
28	49.4	Port Penn..	151	152 ${ }^{\text {d }}$	11	210	212	2
17	54. 2	Fort Delaware.	171	172	1	237	237	0
21	58.9	New Castle.	191	192	1	284	2627	$1 \frac{1}{2}$
21	61.9	Pigeon Point.	206	205	1	285	278 ¢	51
127	64.7	Edgemoor	216	2174	11	297	295	2
109	70.4	Marcas Hook	243	244	1	330	328\%	1
6	73.7	Chester.	259	260	1	350	348	2
88	79.0	Billingsport	284	288	2	378	381	3
104	80.9	Fort Mifflin.	296	29510	0	391	393	2
23	92.1	Five-mile Point.	356	355	1	461	465.8	5
13	112.4	Bordentown	483	$474{ }^{\text {r }}$	84	605	6098	4

In the above table there also appear the times of low-water for which the formula was

$$
y^{1}=3.4 x+0.018 x^{2}
$$

in which the aniform resistance dependent upon depth has increased its coefficient with the fall of the tide, while the second term has remained nnchanged, because the width has declined very little, comparatively, and this without altering the law of its variation.

We may, at the expense of simplicity and extent of application, introduce the width instead of the distance into this second term of the tidal formula. If we transfer the origin from the Breakwater to Fort Mifflin, and measure the distances and times in the opposite direction, the expression for high water becomes $5.11 x-0.018 x^{2}$; and now introducing instead of x^{2} its value from the width formula $\left(10.1 x^{2}+5100\right)$ we have, strictly within our limits-
5.11 distance -0.0018 width +92 minutes. In this form each term has its distinct physical meaning, which was not the case before.

I think this is the first instance where uniformity of depth has afforded the opportunity to measure the distinct influence of width upon the tidal propagation in a funnel-shaped arenue.

It remains to show what practical value these inquiries may have-not because their intrinsie interest would not have justified the time and labor given to them, but because they were undertaken with practical purposes in riew.

This persistent tendency to constancy of mean depth throughout the whole length of the estuary would seem to discourage the hope of improcement by dredging. There is a spell upon the scene which must be broken if permanent increase of depth over the bars is demanded by commerce. Except for two or three shallow reaches of short extent, there is plenty of water from the ocean to Philadelphia, and at these obstructed reaches artificial contractions of the water-way may be made without altering the course of the stream or sensibly reducing the tidal rolume; so that deepening may be induced where required without changing the conditious elsewhere.

The advantage of dredging over indirect mothods lies, of course, in the confinement of the expenditure to the channel. The method by contraction induces scour over the whole section in about the proportion of depth, and the work done by this means elsewhere than in the ship channel is of little or no benefit. The economic question, howerer, is-which will give the best result?

The diagonal bars at the nodes of reverse curves in the course of the river may be obliterated by contraction, and the channel centralized. This is an important economical consideration, because wherever we find a single midway chanuel the width affects the depth proportionally for every ordinate of the profile. If, for instance, the cross-section is a parabola (and this it often is), reduction of the surface chord induces 50 per cent. more deepening in the channel than in the mean-depth. Comparisous between mean-depth and channel-depth for the estuary of the Delaware show that the maximum depth in the cross-section is 1.84 times the mean-depth-of conrse, in these comparisons the bend effects for reverse curves do not cancel. In our mile groups there are only eight where this ratio sinks below 1.50 , and none below 1.40.

This is as far as my province extends into engineering.
November 1, 1883.
Very respectfully yours,

Mr. J. E. Hilgard, Superintendent Coast and Geodetic Survey.

The resumé of computations furnished in the subjoined table is based upon the following lyydrographical sheets, viz:

Fort Mifflin to Tinicum Island, 1881, 1-5000. H. L. Marindin, Assistant.
Tinicum Island to Chester Island Bar, 1881, 1-5000. Lient. H. B. Mansfield, U. S. N.
Chester Island Bar to Raccoon Creek, 1881, 1-5000. Lieut. H. B. Mansfield, U. S. N.
Raccoon Oreek to Old Man's Creek, 1881, 1-5000. H. L. Mariudin, Assistant.
Old Man's Oreek to Penn's Grove, 1881, 1-5000. H. L. Marindin, Assistant.

Penn's Grove to Deep Water Point, 1881, 1-5000. Lieut. H. B. Mansfield, U. S. N. Deep Water Point to New Castle, 1881, 1-5000. H. L. Marindin, Assistant. New Castle to Reedy Point, 1881, 1-10000. Lieut. H. B. Mansfield, U. S. N. Reedy Point to Reedy Island light-house, 1881, 1-10000. H. L. Marindin, Assistant. Reedy Island light-house to Collins' Beach, 1881, 1-10000. Lieut. H. B. Mansfield, U. S. N. Collins' Beach to Bombay Hook, 1882, 1-10000. H. L. Marindin, Assistant.
Arnold's Point to Cohansey light-house, 1882, 1-10000. Lieut. H. B. Mansfield, U. S. N.
Bombay Hook to Mahon's Ditch, 1882, 1-20000. H. L. Marindin, Assistant.
Main Ship Channel from Cohansey light-house to Mahon's River light-house and approaches to Cohansey Creek, 1880, 1-20000. Lieut. E. B. Thomas, U. S. N.

The lines of soundings upon these sheets were made from shore to shore, at distances apart in mid-river of about 280 feet where the survey was upon the scale of $1-5000 ;-550$ feet upon $1-10000 ; 870$ feet upon 1-20000; and in general were at right angles to the axis of the stream. In exceptional cases, where the bends in the river were sharp, the lines did not represent always the shorter distance from shore to shore, through slight irregularity in divergence, while still maintaining very closely their relative position in the middle of the river. The average number of lines of soundings per nautical mile was 21 where the survey was on the scale of $1-5000,11$ on 1-10000, 7 on 1-20000; the twenty-third mile, where the scales of 1-5000 and 1-10000 joined, having 16 lines.

In computing the mean depth from these surveys, a paper scale was applied to each crosssectional line of soundings, beginning at low-water line on the right bank, and a depth read at each 200 feet throughout the 734 sections from Fort Mifflin to about the end of the forty-sixth mile, opposite Cohansey light-house. The sum of the depths thus obtained in a cross-section, minus half the sum of the first and last reading at an even space, was multiplied by 200 and divided by the width of the section. In case of a fractional distance at the end of a line the area of the fractional section was computed, and its area and length added to that of the previous spaces. From Cohansey light-house to Mahon's Ditch, that is, from the seven hundred and thirty-fifth to the seven hundred and seventy-fifth section, inclusively, where the survey was upon the scale of $1-20000,400$ feet spaces were used in computing the sections.

In a few cases the lines of soundings on either side of an island were not coincident. In obtaining a cross-section in these places the scale was extended across the sheet from one of the lines and the proportional depths nsed between adjacent lines of soundings on the prolongation.

The half-tide area of cross-section was found by adding to the low-water area of the section the low-water width, multiplied by 3 feet, the half range of tide. To this sum was arded the widths between low water and the 3 -foot elevation multiplied by $\frac{3}{2}$. The 3 -foot elevation is not designated always on the chart. In these cases the approximate half-tide width beyond the lowwater line was obtained by using half the distance from low water to high water where the highwater line has been designated by recent surveys, and where the new topographical survey is not completed, an estimate of the strand was made from general knowledge of the shore line as defined by previous surveys.

Beginning at Fort Mifflin light-house a mid-stream line was drawn upon the charts, upon which the river was divided into nautical miles of 6,076 feet.

The mean depth of each nautical mile was obtained by dividing the arithmetical mean of the areas of the cross-sections in each mile by the arithmetical mean of the widths of these sections. The last cross-section in each mile group was used as the first cross-section in the next mile group.

From the extreme accuracy with which the bed of the river is developed by this survey any but a slight or proportional variation in the area or depth of adjacent sections attracted attention, and such variation was found on re-examination of the section upon the chart to be due to some obvious natural peculiarity, either in the banks or the bed of the river.

Estuary of the Delaware.

		Low water.			Half tide.			Moan channel deputi per mile at llow water.	Remarks.
		Mean width per mile.	Mean area per mile.	$\begin{gathered} \text { Mean } \\ \text { depthper } \\ \text { mile.: } \end{gathered}$	Mean width per mile.	Mean area per mile.	$\begin{aligned} & \text { Mean } \\ & \text { depth per } \\ & \text { mile. } \end{aligned}$		
1		Feet.	Square feet.	Feet.	Feet.	Square fect.	Feet.		
	20	5,026. 50		16.05	5.341 .00	96, 228.05	18.02	Feet. 33.6	
2	24	4,615.00	83,845. 81	18.17	5.075.10	98, 360.97	19.39	27.5	Maider Sslami.
3	20	4, 877.31	78, 761.26	15.82	5,586.44	94, 6fte, 88	16. 94	43.7	Upper end Tinicum Island.
4	19	5, 247. 63	85, 661, 20	16.32	6, 144.42	102, 749. 28	16.72	37.4	
5	23	4,726.09	88, 427. 97	18.92	5,334.78	104,519.27	19.39	30.7	
6	23	5, 369.57	99, 634. 05	18.56	$5,996.24$	110, 682. 76	19.46	32.2	Lowere end Tinicum Leland.
7	21	4,675. 95	95, 456. 28	20.42	5,407. 38	110, 581.27	20.43	40.7	Clester Island lar begins.
8	22	5,686. 82	101, 449. 43	17.84	6. 503.41	119, 743.77	18.41	34.5	Chester Island Bar ends.
9	22	4,777. 27	104, 012.57	21.77	5, 177.27	118, 944.39	22.98	30.7	Schomer Lidge.
10	22	5,513. 64	99, 761.50	18.09	6, 131. 36	117, 229,00	19.12	$2 \overline{2}, 5$	
11	23	5, 817. 83	102, 553.15	17.63	$6,432.17$	120,928. 15	18.81	26.6	
12	22	5,915.91	109, 503.39	18.51	6,502.05	128, 130.32	19.71	28.5	
13	23	5,911. 74	115, 110.43	19.47	6,341.30	133, 490.00	21.05	26.9	
14	22	6,515.45	120, 126, 86	18.44	7,018.64	140,474.36	20.01	25.9	
15	20	6, 244. 50	119, 205, 28	19. 10	6, 624, 50	138, 508.78	20.62	26.8	
16	20	7, 278.00	129, 549.95	17.80	7, 557, $\mathbf{3} 0$	151, 803. 20	20.09	26.8	
17	21	9,656. 19	136, 725, 76	14.16	10, 143. 33	166, 425.05	16.47	25.1	
18	21	8, 604.76	136, 032.95	15.81	9, 211,43	162, 257.24	17.67	25.1	Christiana Cuenk.
19	22	5,652. 27	127, 867.73	22. 62	6, 414. 09	145, 967.27	22.76	42.4	Decp Watar Point.
20	20	6,273.00	136, 908.00	21.82	7,072.25	150, 925.87	22.19	41.2	
21	20	8, 203. 50	$150,090.85$	18.30	8,606.00	$175,305.10$	20.37	30.4	
22	22	8,090.91	158, 676. 61	19.61	$8,514.55$	183, 584.80	21.50	27.9	
23	16	8, 363. 13	167, 726.34	20.06	8. 651.87	193,248. 84	22.34	31.2	
24	11	10, 868.18	182, 036.82	16. 75	11, 195.45	$215,132.27$	19.92	27.7	
25	13	14, 193.08	188, 694.31	13.29	14, 486. 92	231, 714.31	15.99	30.6	
26	11	14, 707. 27	185, 766. 36	1263	15,500.00	231, 077.27	14.91	36.9	Fort Delaware Ishand hegine.
27	12	11,566.67	173, 368.42	14.99	12, 833. 33	209, 968.42	16.36	38.9	Fort Delaware Island eads.
28	12	13, 576. 67	188, 430. 29	13.88	13,881.67	229, 617. 79	16. 54	29.0	
29	14	15, 122. 86	201, 425.36	13.32	$15,457.14$	247, 295. 30	16.00	26.1	
30	13	10.923, 08	202, 626. 38	18.55	11,327.69	230, 002. 54	20.83	41.5	
31	12	11, 440.83	213,694. 71	18.68	11,811.67	248, 657.46	21.05	48.5	Reedy Istand hergins.
32	13	11,619.23	227, 727.92	19.60	12, 149.23	263,380.62	21.68	37.2	-
33	13	16, 295. 38	251, 776. 73	15.45	16, 767. 69	301, 386.35	17.97	24.8	Reedy tuland mods.
34	12	19,549. 58	265, 433.00	13. 58	10, 949. 58	324, 681.75	16.28	23.8	
35	12	18,307. 08	206, 314.71	14.55	18, 707.08	321, 835.96	17.20	23.2	
30	- 12	16, 421.67	267, 409.75	16. 28	16,821.67	317, 274, 75	18.86	20.8	
37	13	17, 106. 92	279, 638.31	16.35	17, 506. 92	331, 550.08	18.94	27.8	
38	13	19,313.85	301, 862.92	15.63	19,713.85	360, 404.46	18.28	26.1	
39	13	21, 269.23	316, 901.31	14.90	21,669. 23	381, 309.00°	17.60	23.:	Collins Beach.
40	13	22,346. 15	330, 403. 85	14.79	22,740.15	398, 042.31	17.50	23.9	
41	13	22, 784. 62	347, 881, 54	15.27	23, 184.62	416, 835.38	17.98	27.6	
42	12	23, 033.33	382, 503. 33	16.61	23, 433.33	452, 203. 33	19.30	30.3	
43	11	25, 032.73	373, 298.45	14.91	25,432.73	448, 946. 64	17.65	30.1	
44	13	23, 153. 85	387, 284.46	16.73	23, 553.85	457, 346. 01	10.42	34.0	
45	13	22, 582. 31	395, 178. 69	17.50	22,982. 31	463, 525. 62	20.17	38.8	Bombay Howk.
46	13	$25,313.85$	416, 380.08	16.45	25,713.85	492, 921.62	19.17	40.4	Cohansey Light-House.
47		11, 949.38	$\begin{gathered} 195,106.34 \\ 16.33 \end{gathered}$	17.08	12,448.11	$\begin{gathered} 231,705.93 \\ 18.61 \end{gathered}$	19.00	31.3	Arithmetical mean of 46 mites. Mean from mean area of 46 mileg divided by mean width of 46 miles.
	8	33,400,00	403, 048. 75	14. 91	$33,800.00$	598, 848.75	17,72	42.0	
48	8	32, 037.50	530, 118.75	16. 55	32,437.50	626, 831, 25	19.32	41.7	
49	7	31,471. 40	560, 520.00	17.81	31,871. 40	655, 594. 29	20.57	41.7	
50	8	35,212. 50	610, 938.75	17.35	35,612. 50	717, 176. 25	20.11	46.6	
$\begin{aligned} & 51 \\ & 52 \end{aligned}$	7	46,000.00	600, 402.86	15.01	47,000.00	839,80286	17.87	47.1	
		52, 157.10	768, 792.86	14.74	52,557. 14	925, 864.28	17.62	50.5	Mahon's Ditch.
		15, 010.5t	$\begin{gathered} 243,129.11 \\ 16.20 \end{gathered}$	16.97	15,497.91	$\begin{gathered} 288,894,82 \\ 18.64 \end{gathered}$	18.98	32. 8	Arithmetical mean of 52 miles. Moan from mean area of 52 miles divided by wean width of 52 miles.

APPENDIX No. 9.
 REPORT ON THE HARMONIC ANALYSIS OF THE TIDES AT SANDY HOOR.

Wasimngton, I. C., July 31, 1883.
Sir: I have the honor to submit to you the following report on the harmonic analysis of the hourly co-ordinates of the heights of the tide at Sandy Hook for the years 1876-1881, inclusive. The situation of the tide-station, with regard to the entrance to New York Harbor and the hydrography of the vicinity are best understood from the accompanying chart. The hourly co-ordinates were measured off from the carves of the self-registering tide-gauge in the tidal division of the office and furnished to me by Mr. R. S. Avery, the chief of the division.

The method of analysis is precisely the same as that adopted heretofore, a full account of which is given in my report on the Discussion of Tides in Penobscot Bar, contained in Appendix No. 11, report for 1878. Everything having been there given in detail with regard to methods, formulæ, and auxiliary tables used in the reductions, illustrative examples, de., it will be unnecessary to go over the whole ground again here; and for these things references will simply be made to that report. It will therefore only be necessary to give in this paper the constants for the several tide components for each of the several years, together with a few theoretical deductions from them, interesting in connection with the general theory of the tides and useful in explaining any local peculiarity in the type of the tide at the station and the cause of its variation from that of tides at other stations.

The comparison of the constants for each of the several years gives a very good idea of the probable errors of the constants deduced from one year's hourly co-ordinates. From this it will be seen that a long series of observations, or of hourly co-ordinates measured from the curves, is not necessary to obtain the constants with sufficient accuracy for practical purposes. The constants here given, with certain reductions of the epochs to adapt them to any given year, will serve for all future time in the prediction of the tides for the station, either by computation or by means of the tide-machine, which, for this purpose, must be set in accordance with these constants.

I have the honor to be, very respectfully, yours,
WILLIAM FERREL.

Prof. J. E. Hilgard, Superintendent United States Coast and Geodetic Survey.

RESULTS OF THE HARMONIC ANALYSIS OF THE TIDES AT SANDY HOOK.
The following are the amplitudes and epochs of the tidecomponents at Sandy Hook, with all the usual reductions applied. With these reductions the constants should be the same for each year, and hence the results of the several years are comparable.

M-mide.						
1876.	1877.	1878.	1879.	1880.	1881.	Mean.
$\mathrm{A}_{1}=.013$. 027	. 032	. 042	. 026	. 016	. 026
$\varepsilon_{1}=107^{\circ}$	80	347°	25°	$356{ }^{\circ}$	$228{ }^{\circ}$	
$\mathrm{A}_{2}=2.238$	2. 230	2. 272	2.244	2.229	2. 250	2.246
$\varepsilon_{2}=217^{\circ} .0$	$218{ }^{\circ} 0$	$217^{\circ} .8$	2170.5	2150.3	$216^{\circ} .3$	2170.0
$\mathrm{A}_{3}=.025$. 022	. 021	. 035	. 029	. 030	. 027
$\varepsilon_{3}=191{ }^{\circ}$	$196{ }^{\circ}$	2020	$192{ }^{\circ}$	222°	206°	2010.5
$A_{4}=.020$. 016	. 017	. 020	. 024	. 027	. 021
$\varepsilon_{4}=3490$	$339{ }^{\circ}$	$336{ }^{\circ}$	321°	$335{ }^{\circ}$	3290	335°
$\mathrm{A}_{6}=.049$. 048	. 053	. 046	. 057	. 059	. 052
$\varepsilon_{8}=352^{\circ}$	355°	$351{ }^{\circ}$	$344{ }^{\circ}$	344°	$342{ }^{\circ}$	$348{ }^{\circ}$

$\mathrm{A}_{1}=.026$. 028	. 028	. 025	. 088	. 049	. 032
$\varepsilon_{1}=2250$	242°	254°	$216{ }^{\circ}$	255°	237°	$235{ }^{\circ}$
$\mathrm{A}_{2}=.439$. 432	. 436	. 445	. 416	. 435	. 434
$\varepsilon_{2}=246^{\circ} .0$	2440.5	2480.0	2450.4	2420.1	$249^{\circ} .4$	2450.9
$\mathrm{A}_{3}=.051$. 047	. 049	. 050	. 037	. 045	. 047
$\varepsilon_{2}=79^{\circ}$	$72{ }^{\circ}$	$74{ }^{\circ}$	88°	72°	86°	76°
$\mathrm{A}_{4}=.036$. 047	. 033	. 033	. 037	. 041	. 038
$\varepsilon_{4}=65^{\circ}$	64°	83°	81°	68°	52°	69°

K-TIDE.

$\Lambda_{1}=.322$.330	.340	.337	.333	.342	.334
$\varepsilon_{1}=910.0$	910.2	890.6	910.4	$87^{\circ} .8$	890.5	900.1
$\Lambda_{2}=.129$.126	.113	.114	.130	.160	.129
$\varepsilon_{2}=45^{\circ} .3$	340.2	300.2	390.8	340.9	$40^{\circ} .2$	370.4

L-TIDE.

$\Lambda_{2}=$.103	.110	.108	.084	.075	.072
$\varepsilon_{2}=51^{\circ} .5$	$46^{\circ} .5$	290.5	$34^{\circ} .9$	0.9	0.0	$21^{\circ} .3$

N-TIDE.

$\mathrm{A}_{2}=.470$. 507	. 532	. 500	. 457	. 475	. 490
$\varepsilon_{2}=197^{\circ} .7$	$195{ }^{\circ} .5$	1980.9	202 ${ }^{\circ} 1$	$199{ }^{\circ} .3$	1980.9	1980. 7
O-tide.						
$\mathrm{A}_{1}=.178$. 167	. 163	. 157	. 177	. 176	. 170
$\varepsilon_{1}=030.5$	95.3	$98 \bigcirc 6$	$101{ }^{\circ} .4$	$90^{\circ} .1$	$100^{\circ} .3$	$96{ }^{\circ} .5$
P-tide.						
$\mathrm{A}_{1}=.103$. 123	. 091	. 100	. 102	. 100	. 103
$\varepsilon_{1}=970.3$	1020.0	$103{ }^{\circ} .0$	$106{ }^{\circ} .9$	105 ${ }^{\circ} .7$	1070.7	1030.8
μ-TIDE.						
$\mathrm{A}_{2}=.072$. 063	. 094	. 061	. 083	. 039	. 069

$\varepsilon_{2}=$	221°	216°	235°	207°	249°	236°

λ-TIDE.

$\mathrm{A}_{2}=$. 012	. 039	. 030	. 024	. 042	. 062	. 036
$\varepsilon_{2}=$	15°	26°	26°	69°	60°	13°	35°
	γ-TIDE.						
$\mathbf{A}_{2}=$. 045	. 124	. 167	. 153	. 065	. 077	. 105

$\varepsilon_{2}=$	178°	238°	198°	170°	149°	253°

R-TIDE.

$\mathrm{A}_{2}=$. 020	. 030	. 010	. 011	. 073	. 037
$\varepsilon_{2}=$	$324{ }^{\circ}$	$241{ }^{\circ}$	190	$16{ }^{\circ}$	$318{ }^{\circ}$	9°
		T-TIDE.				
$\mathrm{A}_{2}=$. 098	. 105	. 046	. 075	. 111	. 058
$\varepsilon_{2}=$	116°	34°	306°	155°	94°	230

J-Tide.							
$\mathrm{A}_{1}=$. 013	. 024	. 014	. 014	. 009	. 025	016
$\varepsilon_{1}=$	86°	125°	145°	1110	107°	1340	118°
Q-tide.							
$\mathrm{A}_{1}=$. 039	. 039	. 029	. 033	. 033	. 037	. 035
$\varepsilon_{1}=$	118°	$131{ }^{\circ}$	107°	1330	$98{ }^{\circ}$	134°	1200
MS-tide (shallow water).							
$\mathrm{A}_{2}=$. 045	. 037	. 050	. 039	. 041	. 040	. 042
$\varepsilon_{2}=$	116°	122°	107°	$116{ }^{\circ}$	104°	114°	113°
2 SM-TIDE (shallow water).							
$\mathbf{A}_{2}=$. 018	. 014	. 007	. 021	. 010	. 005	
$\varepsilon_{2}=$	138°	158°	66°	237°	$338{ }^{\circ}$	$323{ }^{\circ}$	
Annual Inequality (meteorological).							
$\mathrm{A}_{1}=$. 083	. 066	. 066	. 072	. 060	. 058	. 068
$\varepsilon_{1}=$	$224{ }^{\circ}$	2250	1640	2030	2360	1980	2080
MS-tide (fortnightly).							
$\mathrm{A}_{1}=$. 030	. 014	. 010	. 042	. 011	. 014	
$\varepsilon_{1}=$	410	1710	3320	$224{ }^{\circ}$	230°	23°	
	1876.	1877.	1878.	1879.	1880.	1881.	Mean.

The range of the whole tide at Sandy Hook being small, the most of the preceding results are of little importance practically, or even in the study of the theoretical relations. The analysis, however, has been carried regularly through all the compouents for each of the six years. It will hardly be worth while to do this hereafter in any of the small-range tides along the coast south of Cape Cod on to the Gulf of Mexico.

The first component of the mean lunar or M-tide is a true theoretical tide, but so small that it has been only imperfectly brought ont in the aualysis, as the seattering values of the epochs ε_{1} for the several years indicate. The mean amplitude is only about one-third of an inch. The next one, of which the amplitude is \mathbf{A}_{2}, is the mean lunar tidal component, and is the principal one of all. The mean amplitude, 2.246 feet, is almost precisely the same as was obtained for Governor's Island from the discussion of the tides there by the old methods. The greatest difference between this and the amplitudes deduced for each year is ouly .026 of a foot, or 0.3 of an inch. Hence either one of these amplitudes is sufficiently accurate for practical purposes. The epochs ε_{2} are also brought out with great regularity. The other components of this tide are shal-low-water components, and are very small and of no importance practically, though they are clearly brought out in the analysis, as the epochs, agreeing so nearly for so small components, indicate.

The mean solar or s-tide is very small, not ouly absolutely, but relatively to the mean lunar tide, the amplitude \mathbf{A}_{2} of the principal component being less than one-fifth of that of the mean lunar tide. This is a peculiarity which is found along our whole Atlantic coast. The small component in the S-tide of which the amplitude is A_{1}, is a real component, and is well bronght out in the analysis, as the nearly-agreeing values of both the amplitudes and epochs for the several years show. The small shallow-water components, of which the amplitudes are A_{3} and A_{4}, are also clearly brought out, though they are very small.

The K-tide is composed of a diurnal and of a semi-diurual component, the former being the principal of all the diurnal components. The amplitude of this, A_{1}, is small, being only 4 inches. S. Ex. 29—— 32

The smallness of all these diurnals components, it is known, is a peculiarity of the Atlantic tides. The semi-diurnal component is the declinational component of the semi-diurnal tide, and the amplitude is only about 1.5 inches.

The L-tide and N-tide form a pair of components depending upon lunar parallax. As the epochs differ nearly 180°, these are somewhat opposite to each other in their effects at the time of perigee and apogee of the moon. The amplitude of the latter, it is seen, is greater than that of the mean solar tide. It is a peculiarity of our tides, especially along the New England coast, that the parallactic inequality in the lunar tide is larger and of more importance than the whole solar semi-diurnal tide.

The \mathbf{O}-tide and P-tide are also diurnal components still smaller than the diurnal component of the K-tide. The effect of these diurnal components is to cause a difference in the heights of the forenoon and afternoon tides of the same day when the moon is not on or near the equator, and also an inequality in the intervals between high and low waters. The J-tide and Q-tide are also diuraal components, but the amplitudes of these tides at Sandy Hook are so small that they are of no practical importance, but the analysis shows that there are really such components.

The shallow-water components of these tides, the amplitudes of the principal of which are A_{4} aud A_{6} of the M-tide and S-tide, and A_{2} of the MS-tide and 2 SM-tide, are very small, the amplitudes of none of them amounting to 0.05 of a foot, and hence are of no importance for practical purposes.

The annual inequality, depending mostly upon meteorological causes, such as annual inequalities in the barometric pressure and the winds, and also in the ocean currents, is much smaller at Sandy Hook than it is along the New England coast, and the maximum, towards the last of July, is a little earlier.

The following are the amplitudes and epochs of all the components which it is necessary to use in the prediction of tides, including all the componeuts of which the amplitudes, according to the preceding result, amount to one half tenth of a foot. These are given here, together with the designations of the components as engraved on the tide-machine, for the convenience of application in setting the machine.

Designation of component.	Amplitude, A.	Epoch, e.
	Feet.	0
M2...........................	2. 246	217.0
S_{2}	0.434	245.9
K2	0.129	37.4
L2.	0.092	30.5
N_{2}	0.490	198.7
μ_{2}	0.069	227.0
ν_{2}.	0.105	198
K1	0. 334	90.1
O_{1}	0.170	96.5
\mathbf{P}_{1}	0.103	103.8
Annoal inequality..	0.068	208.

The suffixes 1 and 2 to the designating letters of the components denote diurnal and semidiurnal components respectively.

The amplitudes and epochs of the components $M_{2}, \mathrm{~K}_{2}, \mathrm{~K}_{1}$, and O_{1} are affected by the inclination of the lunar orbit to the ecliptic, and the values given here are the mean values, such as we would have if the moon moved in the ecliptic. Before these are used they must be reduced to the value for the given year, by a process just the reverse of that given in the Discussion of Tides in Penobscot Bay, $\S \$ 25$ and 26 , by which they were reduced from the values obtained from the analysis of each year's observation to the mean values. Besides these reductions all the epochs must be reduced to the given year by subtracting the corresponding numbers found in Table II of the paper just referred to.

From the theoretical relations for the three principal components given in § 31 of that paper, we form in the same manner for the tides of Sandy Hook the following three relations for the diurnal components:

$$
\begin{aligned}
.334-0.66 \delta \mu & =(.5306-13.1 \delta \mu)(1+.230 \mathrm{E}) \mathrm{A}_{0} \\
.170 & =\left(.3813(1-.2 .30 \mathrm{E}) \mathrm{A}_{0}\right. \\
.103 & =(.1730-13.6 \delta \mu)(1+.196 \mathrm{E}) \mathrm{A}_{0}
\end{aligned}
$$

The solution of these equations gives $\delta \mu=.00047$ and $\mathrm{E}=.753$. The assumed mass of the moon being .0125 , this correction makes it $.01297=\frac{1}{77}$ nearly. Notwithstanding the smalluess of the amplitudes of the compouents forming the first members of the equations above, these theoretical relations give a mass of the moon, so far as we know, not much in error. The mass of the moon obtained in the same manner from the tides of Penobscot Bay was 83 . The value of the constant E is here large and positive, while in Penobscot Bay it is - . 233 . This shows that the type of the diumal tide at Sandy Hook is different from that of Penobscot Bay, an increase in the period of the component increasing the amplitude at the latter, but decreasing it at the former, station.

From the relations of the first two equations in $\S 32$ of that paper we get for these tides, with the epochs of K_{1} and O_{1} in the preceding results

$$
\begin{aligned}
& 90.1=\mathrm{L}_{0}+13.18 \mathrm{G} \\
& 96.5=\mathrm{L}_{0}-13.18 \mathrm{G}
\end{aligned}
$$

These give $\mathbf{G}=-0.25$, which indicates that the maximum of the tide occurs one fourth of a day before the maximum of the forces. This is an unusual result, but entrely in accordance with theory.

From the relations of $\S 33$ of the paper referred to we get for these tides

$$
\begin{aligned}
& .1931 \mathrm{c}=(.4852-36.2 \delta \mu)(1+.495 \mathrm{E}) \\
& .0573 \mathrm{c}=(.1256-3.2 \delta \mu)(1+.460 \mathrm{E}) \\
& .2218 \mathrm{c}=.1922(1-228 \mathrm{E})
\end{aligned}
$$

The solution of these equations gives $\mathbf{c}=1.1038, \mathrm{E}=-1.167$, and $\delta \mu=.00106$. With this latter we get $\mu=.0125+.00106=.01356=\frac{1}{74}$ for the moon's mass. The value of the constant c for Penobscot Bay, is 1.166. This constant being greater than unity indicates that the inequalitics are smaller than the principal lunar component in proportion to the force, which is a result of friction diminishing large tides more in proportion than small ones.

The value of E is negative and very nearly the same as in Penobscot Bay. Upon the large negative value of this constant depends the peculiar type of the semi-diumal tide all along our coast, in which the solar tide is very small, and the honar parallactic inequalities very large. On this account the tides at Boston are 20 inches higher when the moon is in perigee than when it is in apogee, and there is about the same difference in Penobscot Bay. At Sandy Hook the difference in proportion to the whole range is abont the same, but on account of the small range of the tides at the latter place, of course, the absolute difference is only about half as great.

From the relations of the first two equations of $\$ 34$ of the paper referred to above we get for the Sandy Hook station

$$
\begin{aligned}
& 217.0=\mathrm{L}_{0} \\
& 245.9=\mathrm{L}_{0}+24.4 \mathrm{G}
\end{aligned}
$$

These give $G=1.18$, which indicates that the maximum of the semi-diurnal tide occurs 1.2 days nearly after the maximum of the forces, or after the conjunction of the mean moon and sun in the case of the lunar and solar components.

Appendix No. 10.
 DESCRIPTION OF A MAXIMA AND MINIMA TIDE-PREDICTING MACHINE.
 By WILIIAM FERREL.
 Washington, November 30, 1883.

SIR: I have the honor to submit the following report on the maxima and minima tide-predicting machine:

I hare thought it best to go somewhat into detail in presenting the theory, construction, and method of operating it, so that those who shall have to use it hereafter may be able to understand not merely rules aud directions, but also somethiug of the mathematical theory upon which it is based. In a form suitable for determining the maxima and minima of the tides aud their times of occurrence, the theory becomes much more complex than in the case in which the co-ordinates of height are required for given times. Still it will be seen from the following report with what great facility and rapidity the required results cau be obtained from this complexity by means of the machine, the time required being little more than what is necessary for recording them.

The mathematical theory within itself, regarded merely as a tidal paper, will not be without interest and value, for the formulx used in the machine are those best adapted to obtain the results accurately by computation. This, however, involves so great an amonnt of labor that it has been necessary heretofore to use more simple formula, requiring much less labor in computation, but which give often only very rough approximations to the true results. These cau now be pretty accurately obtained with scarcely any labor.

I have the honor to be, very respectfully, yours,
WILLIAM FERREL.
J. E. Hilgard, Esq.,

Superintendent Ooast and Geodetic Survey.

THE MAXIMA AND MINIMA TIDE-PREDICTING MACHINE.

INTRODUCTION.

1. The first machine for predicting tides was inrented by Sir William Thomson about eight years ago. It was so constructed as to be run by clock-work and to give the tidal curve for a whole year or more on a long strip of paper wound on rollers. From this the height of the tide at any given time, or the times and heights of high and low waters only, may be read off. This machine, it seems, has never been used in the regnlar prediction of tides, and is said to be now on exhibition at the South Kensington Museum.

Subsequently Mr. E. Roberts, of the Nautical Almanac office, London, had another machine constructed upon nearly the same plan, but larger and with some improvements introduced. This machine has been successfully used for several years in predicting the tides of the principal commercial ports of India. A description of this machine was published in The Engineer of December 19, 1879.

The general principles and the plan upon which these machines have been constructed may be explained as follows:

The height of the tide, h, at any given time, t, is expressed by a series of harmomic terms of the following form:

$$
\begin{equation*}
h=\mathrm{H}_{0}+\mathrm{A}_{1} \cos \left(i_{1} t+c_{1}\right)+\mathrm{A}_{3} \cos \left(i_{2} t+c_{2}\right)+\mathcal{E} \mathrm{e}=\mathrm{H}_{0}+\Sigma \mathrm{A}_{\mathrm{e}} \cos \left(i_{\mathrm{e}} t+\mathrm{c}_{\mathrm{e}}\right) \tag{1}
\end{equation*}
$$

in which
$\mathrm{H}_{0}=$ the height of mean tide above an assumed plane,
$A_{e}=$ the amplitude of any component of which the characteristic is e, $c_{e}=$ the ralue of the angle at any origin of t, as midnight, Jaunary 1 , $i_{\mathrm{e}}=$ the rate of chauge of the angle.

The number of components in the expression of h, if we include very small terms, is very great; but the number of those which are of any practical importance is generally only about fifteen or twenty, often less. The ralues of $i_{\text {e }}$ are obtained from astronomical developments, and they depend upon the known periods and other elements of the lunar and terrestrial orbits and the period of the earth's rotation ou its axis. The ralues of A_{e} and c_{e} have to be obtained for each tide station from an analysis of the hourly values of h, for a year or more, obtained directly from observation, or from the curves of a self-registering tide-gauge. The method of doing this has been given in detail in Appendix No. 11, Report of Coast and Geodetic Survey for 1878.

With the values of these constants for any given station, and the known values of i_{e}, the values of h at any given time t, can be computed from the preceding expression. The amount of labor, however, involved in such a computation for fifteen or twenty components it is readily seen is very great.

The times and heights of the maxima and minima of h cannot be directly computed, since tho time or value of t in the expression of h for high or low water is not known, but is one of the things required. To obtain this, therefore, it is necessary to compute several hourly co-ordinates near this time, which is always approximately known, and then from these the maxima or minima and the time of its taking place can be obtained by well-known methods.
2. By the machines of Sir William Thomson and Mr. Roberts the function h is represented graphically by means of the tide curve, in which the co-ordinates are the times t and the heights h. The summation of the effects of the sereral components upon the value of h at any time is accomplished in the following manner: Let a fine chain or very flexible wire be fastened at one end as at a, Fig. 1, Plate I, and pass over the pullers $1,2,3,4$, \&c. If these pulleys are attached to crauks and axles, as represented on Plate II, and these axles are made to turn by means of machinery in periods which have the same relations to one another as the periods in the components of h in the preceding expression, and the centers of the pulleys are thrown out on the cranks at distances from the center which have the same relations to one another as the amplitudes A_{0} of the several components, and the initial angles, or directions of the cranks from the centers, correspond with the angles c_{θ} at the epoch or time of $t=o$, then, if the machinery is kept in motion, the other end of the chain, at b, describes upon paper wound off on cylinders, kept turning also in connection with the rest of the machinery, a curve $b, c, d, e, f, \& c$., which represents the tide curve. From this curve the heights of high and low waters, $f, e, d, \& c$., above any assumed plane, which is usually that of mean low water, as represented by $g h$ in Fig. 1 , can be measured, and the approximate times of high and low waters can be estimated by the abscissas on the line gh, which are in proportion to the time.

If only one of the pulleys were thrown out from the center, say that of the mean lunar semidiurnal component, which is generally much larger than any of the others, wo should then have a regular curve $b, c^{\prime}, d^{\prime}, \& c$., following the law of cosines, and the heights of all high and all low waters would be the same and their times would be at regular intervals of 12 lunar hours. The effect of all the other comparatively small components is to distort the regularity of the curve, causing the heights of both high and low waters to difter at different times and the high and low waters to occur at irregular intervals.

If there are one or more diurnal components superimposed thon the semi-diurnal, the effect is to cause considerable differences between the two high or the two low waters of the same day, and also to cause great irregularities in the intervals of high and low waters of the same day, as represented by the curve f, e, d, c, , \&e., in Fig. 1.

The distances between each of the cranks and pulless from the points of suspension as of (1) from (a) and (2), or (2) from (1) and (3), Fig. 1, must be so great in comparison with the distances to which the pulleys are thrown out from the center that the deriation from parallelism of the strands of cbain or wire between the pulleys will not affect sensibly the measured distances. The pulley, therefore, belonging to the mean lunar semi-diurnal component, say pulley (1) in Fig. 1, shonld be at a considerable distance from the points of suspension, (a) and (2). Of course the arrangement of the pulleys and distances apart may be varied in an infinite number of ways to suit best the space to be occupied by them, and the effect and the principles involvel will remain the same.

In Mr. Roberts' machine the pulleys are not swung around on cranks, but are made to oscillate vertically by means of pins which are thrown out on the cranks to their proper distances, and which work in grooves of horizontal beams to which the pulleys are attached. Of course, with this arrangement, the strands are always parallel, and distance from the points of suspension need not come into consideration.

In Sir William Thomson's machine only ten of the larger components are taken into account These, however, are all that are of much practical importance generally, especially if the range of the tides is not very great. In Mr. Roberts' machine twenty components are provided for, but the amplitudes of some of these are so small, ereu in tides of large range, that they are of little importance taken separately, but still the resultant of all these, together with all the numerous components which are necessarily neglected, may be considerable.
3. The plan of the maxima and minima tide-predicting machine is very different from that of the machines just referred to, though comprising some of their features. The clock-work and the graphic representation of the tide on paper are dispensed with. The machinery is run by the left hand, by means of a crank at the side of the machine, and the heights of high and low waters and the times of their occurrence are read from the face of the instrument, as they are reached in turning, and recorded by the right hand in blanks ready for the printer. It does not give the intervening heights of the tide, at least directly from the face, and it is therefore called the maxima and minima predicting machine.

The theory and plan of this machine were first submitted to the Superintendent of the Cnited States Coast and Geodetic Survey in the spring of 1880. It received a farorable consideration, and the construction of a machine upon the plan submitted was at once decided upon. A paper was also read in the following August before the American Association for the Adrancement of Scieuce in session at Boston, Mass., in which the theory and plan were briefly explained.

There were varions delaysin engaging a mechanist and in making all the preliminary arrangements for the construction of the machine. It was finally undertakeu by Fuath \& Co. of this city, under the supervision of Mr. G. N. Saegmuller, of the Coast and Geodetic Survey. The work, however, was not commenced until late in the summer of 1881, and it was not completed until the fall of the next year.

MATHEMATICAL THEORY OF THE TIDE PREDICTINQ MACHINE.

4. By a transformation of the last term of the second member of (1), given in the introduction, we have

$$
\begin{align*}
h & =\mathrm{H}_{0}+\sum \mathrm{A}_{\mathrm{e}} \cos \left\{\left(i_{1} t+c_{1}\right)+\left(\left(i_{\mathrm{e}}-i_{1}\right) t+c_{\mathrm{e}}-c_{1}\right)\right\} \tag{2}\\
& =\mathrm{H}_{0}+\cos \left(i_{1} t+c_{1}\right) \sum \mathrm{A}_{\mathrm{e}} \cos \left(\left(i_{\mathrm{e}}-i_{1}\right) t+c_{\mathrm{e}}-c_{1}\right)-\sin \left(i_{1} t+c_{1}\right) \Sigma \mathrm{A}_{\mathrm{e}} \sin \left(\left(i_{\mathrm{e}}-i_{1}\right) t+c_{\mathrm{e}}-c_{1}\right) \\
& =\mathrm{H}_{0}+\cos \left(i_{1} t+c_{1}\right) \mathrm{M}-\sin \left(i_{1} t+c_{1}\right) \mathrm{N}
\end{align*}
$$

in which

$$
\left\{\begin{array}{l}
\mathrm{M}=\mathrm{A}_{1}+\sum \mathrm{A}_{\mathrm{e}} \cos \left(u_{\mathrm{e}} t+\mathrm{C}_{\mathrm{e}}\right) \\
\mathrm{N}=0+\sum A_{\mathrm{e}} \sin \left(u_{\mathrm{e}} t+\mathrm{C}_{\mathrm{e}}\right) \tag{3}\\
u_{\mathrm{e}}=i_{\mathrm{e}}-i_{1} \\
\mathrm{C}_{\mathrm{e}}=c_{\mathrm{e}}-c_{\mathrm{e}}
\end{array}\right.
$$

In these expressions A_{1}, i_{1} and c_{1} are supposed to belong to the mean semi-diurnal lunar component, which is, in general, the principal component in (1), and only the other, generally smaller, components are comprised under the sign Σ in the expressions of M and N.

By a still further transformation of the last form of the preceding expressions of h, we get

$$
\begin{equation*}
h=\mathbf{H}_{0}+\mathbf{R} \cos \left(i_{1} t+c_{1}+\beta\right) \tag{4}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{R}=\sqrt{\mathrm{M}^{2}+\mathrm{N}^{2}} \quad \tan \beta=\frac{\mathrm{N}}{\bar{M}} \tag{5}
\end{equation*}
$$

If in the preceding expressions we knew the value of t for the times of high and low waters, we could, with the known values of i_{e}, and the values of A_{e} and c_{e} obtained for each station from observation, compute the values of h at these times. The next step, therefore, is to determine the times of the maxima and minima of h.

From the second form of the preceding expression of h, we get ${ }^{*}$

$$
\begin{aligned}
&-\frac{d h}{i_{1} d t}=\sin \left(i_{1} t+c_{1}\right) \sum \bar{i}_{i_{1}} \\
& A_{\mathrm{c}} \cos \left(\left(i_{\mathrm{e}}-i_{1}\right) t+c_{\mathrm{e}}-c_{1}\right)+\cos \left(i_{1} t+c_{1}\right) \geq \frac{i_{\mathrm{e}}}{i_{1}} \mathrm{~A}_{\mathrm{e}} \sin \left(\left(i_{\mathrm{e}}-i_{\mathrm{i}}\right) t+c_{\mathrm{e}}-c_{3}\right) \\
&=\sin \left(i_{1} t+c_{1}\right) \mathrm{M}^{\prime}+\cos \left(i_{1} t+c_{1}\right) \mathrm{N}^{\prime}
\end{aligned}
$$

in which

$$
\left\{\begin{array}{l}
\mathrm{M}^{\prime}=\mathrm{A}_{1}+\Sigma \sum^{i_{\mathrm{e}}} \mathrm{~A}_{\mathrm{e}} \cos \left(u_{\mathrm{e}} t+\mathrm{C}_{\mathrm{e}}\right) \tag{6}\\
\mathrm{N}^{\prime}=0+\Sigma \frac{i_{\mathrm{e}}}{i_{1}} \mathrm{~A}_{\mathrm{e}} \sin \left(u_{\mathrm{e}} t+\mathrm{C}_{\mathrm{e}}\right)
\end{array}\right.
$$

At the times of maxima and minima the first member of tbe preceding equation vanishes, and it can then be expressed in the following form :

$$
\begin{equation*}
0=R^{\prime} \sin \left(i_{1} \tau+c_{1}+\beta^{\prime}\right) \tag{7}
\end{equation*}
$$

in which

$$
\left\{\begin{array}{l}
R^{\prime}=\sqrt{M^{\prime 2}+N^{\prime 2}} \tag{8}\\
\tan \beta^{\prime}=\frac{N^{\prime}}{\bar{M}^{\prime}}
\end{array}\right.
$$

and in which τ is the calue of t at the times of maxima or minima.
Equation (7) is satisfied with

$$
i_{1} \tau+c_{1}+\beta^{\prime}=n \pi
$$

n being o or any integral number, and consequently we have

$$
\begin{equation*}
i_{1} \tau=n \pi-\left(c_{1}+F^{\prime}\right) \tag{9}
\end{equation*}
$$

With this expression of $i_{1} \tau$, which is the value $i_{1} t$ at high or low waters, we get from (4), putting H for the value of h at those times,

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{0} \pm \mathrm{R} \cos \left(\beta-\beta^{\prime}\right) \tag{10}
\end{equation*}
$$

i^{n} which the positive sign belongs to high waters and the negative to low waters, and in which the multiples of $n \pi$ are neglected since they do not affect the cosine, except to make each alter. nate one negative, as indicated by the double sigu \pm.

With the values of R and β obtained from (3) and (5) and that of β^{\prime} from (0) and (82), both with $t=\tau$, (10) would give the value of H ; but τ, which is needed at the very outset in the computation, is not known, but is one of the things required, and can only be obtained from $(6),\left(8_{2}\right)$, and (9) by a series of approximations; and although a second, or at most a third
approximation is generally sufficient, yet as the expressions of (6) usually comprise fifteen or twenty terms, the amount of computation for each of the four diurnal values of r is very great.
5. The value of $\left(\beta-\beta^{\prime}\right)$ is generally so small, especially in the Atlantic tides, that its cosine can be put equal to unity, and then (10) becomes

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{0} \pm \mathrm{R} \tag{11}
\end{equation*}
$$

It is seen from (3) and (6) that the amplitudes of the.components in the expressions differ by the factor $i_{\mathrm{e}}: i_{1}$. This for all the semi-diurnal components differs little from unity, but for the diurnal components in which i_{e} is only about one-half of i_{1}, this factor differs but little from onebalf of unity. Hence the differences between M and N in (3) and those of M^{\prime} and N^{\prime} in (6), and consequently the difference between β and β^{\prime}, depends almost entirels on the diurnal components, for the quarter-diurnal and other components of short period, in which the factor $i_{e}: i_{1}$ is greater than unity, are generally very small. In the Atlantic tides, therefore, in which the diurnal componeuts are very small, the angle ($\beta-\beta^{\prime}$) is likewise small.

In the Gulf of Mexico, however, and on the Pacific coast of North America, where the diurnal components are very large in comparison with the semi-diurnal, the value of ($\beta-\beta^{\prime}$) may be very large, even approximating to 180°. When it is greater than 90° the last term of (10) changes sign, and one high water is below mean level, or one low water above it.
6. In (10) the values of R, β and β^{\prime} to be used are those corresponding to $t=\tau$ in (6) and (8) , τ being the time of high or low water. But it is seen by comparing (10) and (11) that this value of R in the latter is too great to give the true high or low water, and that it requires to be multiplied into $\cos \left(\beta-\beta^{\prime}\right)$. It becomes important, therefore, to determine at what time \mathbf{R} has a value so as to make (11) strictly correct, so as to dispense with the factor $\cos \left(\beta-\beta^{\prime}\right)$ in (10).

Putting R_{τ} for the value of R at the time $t=\tau$, we must, for this purpose, have

$$
\mathrm{R}_{\tau}-\delta \mathrm{R}=\mathrm{R}_{\tau} \cos \left(\beta-\beta^{\prime}\right)=\mathbf{R}_{\tau}-\frac{1}{2} \mathrm{R}_{\tau} \sin ^{2}\left(\beta-\xi^{\prime}\right)+\frac{1}{\beta} \mathrm{R}_{\tau} \sin ^{4}\left(\beta-\beta_{1}\right)-\text { etc. }
$$

or, neglecting small terms in the development, we have

$$
\begin{equation*}
\delta R=\frac{1}{2} \mathbf{R}_{r} \sin ^{2}\left(\beta-\beta^{\prime}\right) \tag{12}
\end{equation*}
$$

From (3) and (5) we get by differentiation at time τ

$$
\begin{equation*}
d \mathrm{R}=-\Sigma \mathrm{A}_{\mathrm{e}} \sin \left(u_{\mathrm{e}} \tau+\mathrm{C}_{\mathrm{e}}\right) u_{\mathrm{e}} d t \tag{13}
\end{equation*}
$$

From this we get

$$
\begin{equation*}
\delta \mathrm{R}=-\Sigma \mathrm{A}_{\mathrm{e}} \sin \left(u_{\mathrm{e}} \tau+\mathrm{C}_{\mathrm{e}}\right) u_{\mathrm{e}}\left(\tau^{\prime}-\tau\right) \tag{14}
\end{equation*}
$$

in which τ^{\prime} is the value of t which satisfies (12), or which makes $\mathrm{R}_{\tau}{ }^{\prime}=\mathrm{R}_{\tau} \cos \left(\beta-\beta^{\prime}\right)$. In this expression $u_{e}\left(\tau^{\prime}-\tau\right)$ must not be so large that $\cos u_{\theta}\left(\tau^{\prime}-\tau\right)$ cannot be taken equal unity, or sin $u_{\mathrm{e}}\left(\tau^{\prime}-\tau\right)$ cannot be regraded as equal to the arc.

From (4) we get at the time τ, since then $d h=0$,

$$
0=d \mathrm{R} \cos \left(i_{1} \tau+c_{1}+\beta\right)+\mathbf{R}_{\tau} i_{1} \sin \left(i_{1} \tau+c_{1}+\beta\right) d t
$$

or putting for i_{1}, τ its value in (9), neglecting the multiple $n \pi$, since it does not effect siues or cosines if we consider either high or low waters separately, we get by putting $\cos \left(\beta-\beta^{\prime}\right)=1$, and $\sin \left(\beta-\beta^{\prime}\right)=\left(\beta-\beta^{\prime}\right)$

$$
d \mathbf{R}=-\mathbf{R}_{\tau} i_{1}\left(\beta-\beta^{\prime}\right) d t
$$

From this and (13) we get

$$
\Sigma A_{\theta} \sin \left(u_{\mathrm{e}} \tau+\mathrm{U}_{\mathrm{\theta}}\right) u_{\mathrm{\theta}}=\mathrm{R}_{\tau} i_{1}\left(\beta-\beta^{\prime}\right)
$$

From this, (14) and (12), we get

$$
\left(i_{1} \tau^{\prime}-\tau\right)=-\frac{1}{2}\left(\beta-\beta^{\prime}\right)
$$

Putting $\tau^{\prime \prime}$ for the value of t when in (4) $\left(i_{1} t+c_{1}+\beta\right)=0$.
S. Ex. 29——33

$$
\begin{equation*}
i_{1} \tau^{\prime \prime}=n \pi-\left(c_{1}+\beta\right) \tag{15}
\end{equation*}
$$

From this and (9) we get

$$
\beta-\beta^{\prime}=i_{1}\left(\tau^{\prime \prime}-\tau\right)
$$

With this value the preceding equation gives

$$
\begin{equation*}
\tau^{\prime}=\tau+\frac{1}{2}\left(\tau^{\prime \prime}-\tau\right)=\frac{1}{2}\left(\tau+\tau^{\prime \prime}\right) \tag{16}
\end{equation*}
$$

Hence (11) becomes strictly correct if we use the value of R belonging to the time $t=\tau^{\prime}$, and hence we have

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{0}+\mathbf{R} \boldsymbol{\tau}^{\prime} \tag{17}
\end{equation*}
$$

in which τ^{\prime} is determined by (16). This time is at equal intervals from τ and $\tau^{\prime \prime}$. It must be remembered, however, that this cannot be used, except approximately, if $\beta-\beta^{\prime}=i_{1}\left(\tau^{\prime \prime}-\tau^{\prime}\right)$ is so large that unity cannot be nsed for its cosine and the are for its sine.
7. From what precedes it is necessary to compute the times of high and low waters τ from (8) and (9), which implies the computation of M^{\prime} and N^{\prime} in (6), which, as has been stated, requires a second or third approximation, since the value of t to be used in (6) is that of τ, which is the quantity sought. With this value, however, when obtained, and the value of β^{\prime} already obtained, (3), (5) and (10) give directly the value of H, the height of high or low water.

For a very numerous class of tides, however, embracing nearly all those of our Atlantic coast, in which, on account of the smallness of the diurnal components, the values of M and N, (3) and those of M^{\prime} and $N^{\prime}(6)$, and consequently the values of R and β and those of R^{\prime} and β^{\prime}, differ but little in the two sets of formulæ, we can, at a very small sacrifice of accuracy, so small as to be of no importance, adopt compromise formula which will answer for both, and from which both the times and heights of high and low waters may be computed.

If for the values of M and N, or for those of M^{\prime} and N^{\prime} we put $M^{\prime \prime}+\delta M^{\prime \prime}$ and $N^{\prime \prime}+\delta N^{\prime \prime}, \delta M^{\prime \prime}$ and $\delta \mathrm{N}^{\prime \prime}$ being small corrections of $\mathrm{M}^{\prime \prime}$ and $\mathrm{N}^{\prime \prime}$ to get the true values, and if we also pat $\delta \mathrm{R}^{\prime \prime}$ and $\delta \beta^{\prime \prime}$ for the corresponding corrections of $\mathrm{R}^{\prime \prime}$ and $\beta^{\prime \prime}$ the new values of R and β, we get from the development of the expression (5) or (8), neglecting quantities of the third and lower orders,

$$
\left\{\begin{array}{l}
\delta \mathbf{R}^{\prime \prime}=\frac{\mathbf{M}^{\prime \prime} \delta \mathbf{M}^{\prime \prime}+\mathbf{N}^{\prime \prime} \delta \mathbf{N}^{\prime \prime}}{\mathbf{R}^{\prime \prime}} \tag{18}\\
\delta \beta^{\prime \prime}=\frac{\mathbf{M}^{\prime \prime} \delta \mathbf{N}^{\prime \prime}-\mathbf{N}^{\prime \prime} \delta \mathbf{M}^{\prime \prime}}{\mathbf{R}^{\prime 2}}
\end{array}\right.
$$

Since in the class of tides referred to, the value of $\mathrm{N}^{\prime \prime}$ is much smaller than that of $\mathrm{M}^{\prime \prime}$, on acconnt of the constant $A,(3)$ and (6), which is the amplitude of the mean Iunar component, and comes in the expression of the latter and not that of N, it is seen from (17) that $\delta \mathrm{R}^{\prime \prime}$ depends mostly on $\delta \mathrm{M}^{\prime \prime}$, an error in $\mathrm{M}^{\prime \prime}$, while that of $\delta \beta^{\prime \prime}$, and consequently of the times, depends mostly pron the error of $\mathrm{N}^{\prime \prime}$, that is, upon $\delta \mathrm{N}^{\prime \prime}$.

If we therefore put

$$
\left\{\begin{array}{l}
M^{\prime \prime}=M=\Sigma A_{e} \cos \left(u_{e} t+C_{e}\right) \tag{19}\\
N^{\prime \prime}=\frac{1}{2}\left(N+N^{\prime}\right)=\Sigma \frac{i_{1}+i_{e}}{2 i_{1}} A_{e} \sin \left(u_{e} t+C_{e}\right)
\end{array}\right.
$$

and use these values instead of M and N in (3) or of M^{\prime} and N^{\prime} in (6), we shall have in the case of high waters computed by (3)
$\delta \mathrm{M}^{\prime \prime}=0$
$\delta \mathbf{N}^{\prime \prime}=\frac{1}{2}\left(\mathbf{N}-\mathbf{N}^{\prime}\right)$
With the values of (18) and (19) we get from (18), in this case,

$$
\left\{\begin{array}{l}
\delta \mathbf{R}^{\prime \prime}=\frac{\frac{1}{2} \mathbf{N}^{\prime \prime}\left(N-N^{\prime}\right)}{R^{\prime \prime}} \tag{21}\\
\delta \beta^{\prime \prime}=\frac{\frac{1}{2} M^{\prime \prime}\left(N-N^{\prime}\right)}{\mathbf{R}^{\prime \prime 2}}
\end{array}\right.
$$

In the case of β^{\prime} in (6) the error of $M^{\prime \prime}$, or $\delta M^{\prime \prime}$, would be (M - M^{\prime}), and the value of $\delta 夕^{\prime \prime}$ in this case would be more accurately given by $\left(18_{2}\right)$, using this value, than by (21_{2}), but since, as has been explained, a small error in M^{\prime} has a very little effect upon the value of β^{\prime}, in the class of tides here considered, $\left(\mathbf{2 0}_{2}\right)$ can be used in this case also without much error.

From (3_{2}) and (6_{2}) we get

$$
\begin{equation*}
\mathrm{N}-\mathrm{N}^{\prime}=-\Sigma \mathrm{A}_{\mathrm{e}} \frac{\mathrm{e}}{i_{1}} \sin \left(u_{\mathrm{e}} t+\mathrm{C}_{\mathrm{e}}\right) \tag{22}
\end{equation*}
$$

Since the values of i_{i} are very nearly the same for all the semi-diurnal components, and consequently differ but little from $i_{1}\left(3_{3}\right)$, this makes the terms in (21) depending upon the semi-diurnal components very nearly vanish, and since the values of i_{e} for the diurnal components are very nearly equal to $\frac{1}{2} i_{1}$, the value of the factor $u_{e}: i_{1}$ is rery nearly $\frac{1}{2}$. The value of ($N-N^{\prime}$) therefore depends almost entirely upon the diurnal components, and hence when the amplitudes A_{0} of these are small ($N-N^{\prime}$) must be small, and, consequently, the corrections or errors given by (21) are small.
8. From (3) and (8) we get approximately, for the kind of tides here considered,

$$
\begin{equation*}
\beta-\beta^{\prime}=\frac{\mathrm{N}-\mathbf{N}^{\prime}}{\mathbf{R}} \tag{23}
\end{equation*}
$$

Heuce by (21) the value of ($\beta-\beta^{1}$) depends almost entirely upon the diurnal components, and is small where these are small, and sensibly vanishes when they vanish.

With the values of M, N, and M^{\prime}, N^{\prime}, and by means of these the values of $M^{\prime \prime}, N^{\prime \prime}$, and $\delta M^{\prime \prime}$ and $\delta N^{\prime \prime},(5)$ gives with $M^{\prime \prime}$ and $N^{\prime \prime}$ instead of M and N, the value of $R^{\prime \prime}$, and then (21) gives the amount of error in the heights and times pertaining to the compromise formula.

The amplitude of the maximum lunar diurnal tide at Boston Harbor is 0.58 feet. This oceurs when the maxima of the two lunar components coincide about the time of greatest declination. Hence by (22) we shall have, so far as these two components are concerned, $\mathrm{N}-\mathrm{N}^{\prime}= \pm 0.29$ feet at the maximum. The mean maximum value of N is 1.0 feet nearly, and $\mathrm{R}^{\prime \prime}=5$ feet approximately. With these data (20) gives $\delta \mathbf{R}^{\prime \prime}$, equal about one-third of an inch for the error in the heights, and $\delta \beta^{\prime \prime}=0.03$ in are in terms of the radius corresponding to 10.7 in arc, or about 3.5 minutes in time for the error in the times of high or low water. The effect of the solar diurnal tide in snmmer and winter would be about one-third of this, which would sometimes combine with the lunar diurual components and increase the effect a little, but at other times counteract and diminish it. The preceding may be regarded as the mean of the maximum errors of the compromise formulx for all the large-range tides along the New England coast.

At New York Harbor the value of $\mathrm{R}^{\prime \prime}$ is about 2.23 feet, and the mean maximum value, as at Boston about $\frac{1}{s} \mathrm{R}^{\prime \prime}$. The amplitude of the mean maximum of the diurnal tide here is 0.43 feet, and hence $N-N^{\prime}= \pm 0.21$ feet. With these values (20) gives $\delta \mathrm{R}^{\prime \prime}=0.26$ inch, and $\delta \beta=.048$ in are, corresponding to about 5 minutes in time for the mean maximum of the errors of the compromise formalæ, the former for those of the heights and the latter for the times of high and lowwaters in New York Harbor.

In the same manner the formula can be tested for each tide station. It is probable that the error for none of the stations of the Atlantic coast would amount to as much as a half inch in the heights, bat in the short range flat tides the times might be in error ten minutes or more. This latter, however, is an error more in appearance than in reality, for the heights for ten minutes before or after high or low waters, do not change one-tenth of an inch, even with an amplitude of tide as great as in New York Harbor.

If in (19) we put $N^{\prime \prime}=N^{\prime}$ instead of $\frac{1}{2}\left(N+N^{\prime}\right)$, it will give the times accurately, with a very small increase of the error in the heights, which would still be too small to be of any consequence in most, if not all, of our Atlantic tides. Or the value of $\mathrm{N}^{\prime \prime}$ can be so taken as to throw a little of the error in the times, bat less than that given by (19).

In the short range semi-diurnal tides of the Gulf of Mexico and the Pacific coast, with diurnal tides which have comparatively a very large range, the compromise values of (19) cannot be used, but in such tides the values of the times must be obtained from (8) and (9), and then with these
the heights obtained from (3), (5), and (10). With the values, however, of τ and $\tau^{\prime \prime}$ from (9) and (15), we get that of τ^{\prime} from (16), which in (3) and (5), gives $R \tau^{\prime}$, with which (17) gives H, thus dispensing with the factor $\cos \left(\beta-\beta^{\prime}\right)$ in (10). This, however, in computation would involve a vast amount of labor for so small a matter, but in the mechanical solution of the problem it will be seen that it can be done in an instant of time.

It rarely happens that (17) cannot be used with sufficient accuracy, but sometimes the value of $\left(\beta-\beta^{\prime}\right)$ becomes such that unity cannot be used instead of its cosine or the are instead of its sine, and then (17) is not strictly correct, since these restrictions of the value of ($\beta-\beta^{\prime}$) were introduced in obtaining that expression of H. In such cases (10) must be used, but they only oocur when R or $R \tau$ are very small, and the height of high or low water is very nearly that of mean level, and the value of $\beta-\beta^{2}$) and the times of high or low waters are somewhat uncertain on account of the tide ware being very flat. But the whole value of $\mathrm{K} \cos \left(\beta-\beta^{\prime}\right)$ in (10) is then very small.
9. So far we have gone upon the hypothesis that the amplitude of the resultant of two or more tide components, superimposed upon one another, is equal to the sum of the amplitudes of the several components. This, however, is never strictly the case, and the amplitude of the resultant is often considerably less than this snm. This is due to the fact that friction is not proportioned to the velocity, but to a power of the velocity somewhere between tine first and second powers. The effect of this is to diminish large tides more in proportion than the smaller ones, and consequently to cause the amplitude of the large tides to be smaller, and of the small tides to be larger, than they would be if the effect of friction were proportional to the amplitude and velocities.

In the variations of amplitude of the resultant of one principal component and a number of smaller ones, the preceding effect of friction is the same as if the amplitude of each of the smaller components was diminished by a certain amount when superimposed upon the larger and principal component, so as to have the phases coincide. But when the phases differ 90°, the amplitude of the resultant is very nearly that of the principal component, and we then simply have the average effect of friction, and the effect of the smaller component in changing the times of the maxima and minima is that of the component with undiminished amplitude. Hence, this effect of friction does not affect the times of high and low waters of the resultant tide, but simply causes a little flattening where one or more of the smaller components are superimposed upon the principal component.

In the tides of Boston Harbor, froman analysis and discussion of nineteen years of observations, it was found that this effect of friction on high and low waters was that which would be caused by a diminution of the amplitudes of the smaller components when superimposed upon the principal one, in the ratio of 1 to .634 . In New York Harbor, from the same number of observations, this ratio was found to be as 1 to .75 , or a diminution of one-fourth. At Brest, however, the effect was found to be very small. Of course, it depends very much upon depth of water and other local circumstances.

In the form of the tidal expression in (4) the preceding effect of friction is taken into account pretty nearly, especially where N is small, by decreasing the amplitudes A_{e} in the expression of M in (3), where the ratio of reduction is known from a discussion of observations. It is seen from (5) that the amplitude R of the resultant tide, when N is small, as it generally is in our Atlantic tides, depends mostly upon M. Where the exact ratio of rednction is not known it is best to diminish these amplitudes a little, for a better agreement of computation with observation is generally obtained when this is done.

It should be remarked here that the amplitudes A_{0} of the smaller components, comprising all except the mean lunar and principal one, as-obtained by the harmonic analysis of hourly co-ordinates, are diminished by one-half the maximum effect, which occurs when their phases coincide with that of the principal component, since these amplitades are obtained from measurements for all the different relations between the phases. The amplitudes, therefore, which are to be nsed in (3) should be a little less than those in the expression of M, but as much greater in that of N. From an actual comparison of computation with observations of the heights and times of high and low waters at Boston Harbor, it has been found that the expressions of (10) and (9) will not give both accurately unless the values of A_{θ} in the expression of M in (3) are one-third less than the values which have to be used in the expression of N, to give the times correctly.

MECHANICAL SOLUTION OF THE PROBLEM.

10. In order to obtain the times τ of high or low waters from (9) it is necessary first to determine the angle f^{\prime}. This is given by the geometrical construction of a right-angled triangle $c m^{\prime} n^{\prime}$, Fig. 2, Plate I, in which $c m^{\prime}=M^{\prime}$ and $m^{\prime} n^{\prime}=N^{\prime}$ in (6), as is seen from the expressions of (8). By comparing the expressions of M^{\prime} and N^{\prime} in (6) with that of h in (1) it is seen that they are similar except that the expression of N^{\prime} has sines instead of cosines and has no constant term corresponding to that of H_{0} in (1) or that of A_{1} in the expression of M^{\prime} in (6). The value of M^{\prime}, therefore, at any time t may be obtained mechanically by the same method as that by which k iu (1) is oltained, as explained in the introduction. Since the number of variable terms and the periods in the expression of N^{\prime} are the same as those in the expression of M^{\prime}, its value can be obtained mechanically in the same way by having a chain passing over pulleys on cranks at the other end of the same axles, and placing these cranks at right angles to the former, so as to give the function represented by sines instead of that of cosines.

In Fig. 2, Plate I, let $c m^{\prime}=M^{\prime}$ be the co-ordinate given at any time by the part of the machine adapted to cosines, just as h is given by Mr. Roberts' machine, the part co being the amplitude A_{1} of the mean lunar and principal semi-diurnal component, and $o m^{\prime}$ the resultant of all the other terms in the expression of M^{\prime}, comprising all the other, generally much smaller, components. Also let $m^{\prime} n^{\prime}=\mathrm{N}^{\prime}$ be the other co-ordinate at any given time, t, given by the part of the machine adapted to the sines. lu order to obtain mechanically the value of the angle $\beta^{\prime}=m^{\prime} c n^{\prime}$, it is necessary to have an arrangement by which the values of M^{\prime} and N^{\prime} are not only represented by linear measures, but also that these measures be given on lines at right angles, as on lines in the direc. tions of $c m^{\prime}$ and $m^{\prime} n^{\prime}$. The point n^{\prime} then determines the direction of the line $c n^{\prime}$, aud the angle $m^{\prime} e n^{\prime}=F^{\prime}$, which can be measured on the circle $f d e a$, counting from the point f. In order to this, instead of a pen or pencil, as at b, Fig. 1, oscillating vertically above the line of mean level, we must have a horizontal bar with a slit in it oscillating vertically above and below the point o, by means of a sliding frame, as represented in Fig. 3, Plate I, this frame being controlled by the chain from the cranks adapted to the cosines and connected with the frame at the point e. The mere weight of the frame gives the chain sufficient tension. The space $c m^{\prime}$ represents the value of M^{\prime} at any time and is one of the co-ordinates which determines the point n^{\prime}. If now we have another bar with a slit in it placed vertically and oscillating horizontally about the central line $c m^{\prime}$ by means of a sliding frame, as represented, with the chain passing over the pulleys on the cranks adapted to the sines and attached to the frame at b, the distance $m^{\prime} n^{\prime}$ will be the measure of the other co-ordinate N^{\prime}, and the intersection of the two slits determines the position of the point n^{\prime} and of the line $c n^{\prime}$. The frame moving horizontally must have a chain attached to it on the other side, which passes over some fixed pulley and has a weight suspended which gives it sufficient tension. Since the expression of N^{\prime} has no constant term the point n^{\prime} will fall equally on different sides of the central line $c m^{\prime}$, and consequently the value of β^{\prime} may be either positive or negative.

If, while the machinery is in motion giving at different times different positions of the line $c n^{\prime}$ and values of the angle β^{\prime}, there is an index $c e$, Fig. 2, made to turn around the center c in each lunar lialf day, the motions of the axles and cranks being arranged in accordance with this measure of time, the angle described by the index $c e$ in the time t will be $i_{1} t$, and the degrees as measured on the circle $f d e a$, counting from f, will be $i_{1} t+c_{1}$, if the index is set at the time $t=0$, as 0^{h} of January 1, so as to make the angle $f d b e=c_{1}$, the phase of the mean lunar semi-diurnal component in (1). When ce coincides with cf we have $i_{1} t+c_{1}=n \pi$, or $i_{1} t=n \pi-c_{1}$, the value of n being o, or any integral number equal to twice the number of lunar half days which have elapsed since the epoch. The values of t given by this equation for any integral value of n, are the times of the high waters of the mean lunar semi-diurnal tide, and they must necessarily occur at regular equal intervals of time.

But the times τ of high or low waters are determined by the condition of (9), and hence they occur at the times when $c e$ is in conjunction with $c a$ or with $c a$ produced back to b, since in the former case the condition of (9) is satisfied for even values of n, and in the latter for the odd values, corresponding to the low waters. Hence the times of high or low waters are determined mechanically by simply watching the conjunctions of the lunar index $c e$ with ca, or with ca pro-
duced back, and noting the times. Hence we see with what great facility and little labor these times can be determined mechanically, whereas by computation, we have seen, the amount of labor is immense, involving the computation of M^{\prime} and N^{\prime} from (6) for fifteen or twenty terms for assumed values of t in several approximations. We have a case similar to this, though comparatively very simple, in the determination of the time when the hour and minute hand of a clock come together. A novice in analysis might be puzzled to determine it analytically, but to do it mechanically all he has to do is to turn the minute hand until it comes in conjunction with the hour hand, and then read off the time from the dial. With the same facility are the times of high and low water determined by the method explained above.

The principle involved in the determination of τ, both by computation and mechanically, is the same. In the computation we proceed with a series of assumptions and verifications until an assumption of t is made which satisfies (9) with sufficient accuracy. So each part of the motion of the machine is an assumption which has to be rerified, but as the machine makes all the computations simultaneously with the assumptions, all we have to do is to continue the motion until the verification takes place, which is when $c e$ comes in conjunction with $c a$, or $c a$ produced back, for then, as we have seen, the condition of (9) is satisfied.

It should be observed here that for the conditions of (9) to be satisfied when the conjunctions take place, it is necessary, since β^{\prime} in (9) has the negative sign, that the positive values of N^{\prime} should be to the left in Fig. 2, in the direction of $m^{\prime} n^{\prime}$.

Since the index ce performs a revolution each lunar half day, any arrangement for reading off the time from the circle $f d e a$ would necessarily have to give lunar time. In order to have the solar time, therefore, it is necessary to have a second index, $c d$, called the solar index, the motion of which has sach a relation to that of ce as to reduce the lunar to solar time. When the lunar index occupies such a position as to make the angle $f d b e=c_{1}$, as at the time of the epoch, or $t=0$, then $c d$ should coincide with of and denote 0^{h} of solar time. As ce moves around toward ca or ca produced back, $c d$ moves a little faster and points out the time clapsed in solar time, and when oe comes in conjunction with $c a$ or $c a$ produced back, it indicates the time of high or low water in solar time.
11. Having the time $\tau,(10)$ gires the value of H, and this requires the solution mechanically of the expressions of M and N in (3) and of the right-angled triangle by (5), which is done in precisely the same manner as in the case of M^{\prime} and N^{\prime} in (6) and of the right-angled triangle in (8). In the former case we needed β^{\prime}, one of the angles of the triangle, but in this case we need the hypothenuse R. This value is needed at the times $t=\tau$; and hence its value must be read off at the times τ, and multiplied into $\cos \left(\beta-\beta^{\prime}\right)$, if this varies sensibly from unity.

By comparing the expressions of M and N in this case with those of M^{\prime} and N^{\prime} it is seen that the only change to be made is to throw the pulleys out on the cranks in accordance with the amplitudes A_{e} instead of $A_{e} \frac{i_{e}}{i_{1}}$, and this, unless great accuracy is required, needs a change only in the amplitudes of the diurnal components, since for the others the factor $i_{e}: i_{1}$ differs but little from unity. In this case, instead of the coordinates M^{\prime} and N^{\prime}, represented in Fig. $2 \mathrm{by} \mathrm{cm}^{\prime}$ and $m^{\prime} n^{\prime}$, we have M and N represented by cm and $m n$, differing but little from the others unless the diurnal components are large.

The angle β is determined mechanically by observing the value of the angle $m e n$, Fig. 2 , at the time of conjunction of the index $c e$ with $c a^{\prime}$, just as β^{\prime} is, by observing the value of the angle $m^{\prime} c n^{\prime}$ at the time of conjunction with ca. When ($\beta-\beta^{\prime}$) does not exceed 30°, or the times of the two conjunctions differ more than about one hour of time, which they rarely do, formula (17) can be used, which requires that the value of R be observed at the time τ^{\prime} given by (16). The time τ having been observed and recorded in determining the times of high and low waters with the first setting of the machine, after the small change has betn made in the setting for getting the heights, the value of $\tau^{\prime \prime}$ is the time of conjunction of $c e$ with $c a^{\prime}$, and then at half the interval of time from $\tau^{\prime \prime}$ to τ is the time of reading the value of R. This, by (17), applied to H_{0} gives H , the height of high or low water sought. For convenience there must be an arrangement by which the distance R is measured on some scale together with the constant H_{0}, so that the value of H can be read directly from the scale by means of an index.

Where (19) is used, as it may in most of our Atlantic tides, the machine is set at the start for both the times and heights of high and low waters, and both are read at the time of conjunction of the index ce with a line, indicated by the machine, which falls intermediate at equal intervals from $c a$ and $c a^{\prime}$. This time, therefore, corresponds with the time given by (16), which is the time of reading the value of R, where (17) is used.

CONSTRUCTION OF THE MACHINE.

12. In the construction of the machine are embraced nineteen of the largest tidecomponents and all which are of any practical importance. The designations of these components and the hourly rates of change of the angles, denoted by i_{e} in the preceding formula, and also the values of $u_{\text {e }}$, are given in the following table:

Table I.

*Shallow-water components. .
These components are mostly the same as those given in Schedule I of the Discussion or Tides in Penobscot Bay, Appendix No. 11, of the Repport of the Coast and Geodetic Survey for 1878. A few of the very small components given there are omitted, and two others, considered of more importance, and designated by u_{2} and 2_{1}^{\prime} have been added. The former is one of a pair of sualli com. ponents depending upon the lunar declination and perigee which, on account of the small value of i_{e}, gives a sensible tide along our Atlantic coast, although the coefficient of the corresponding term in the development of the tidal forces is small and would not give a sensible tide with an ordinary value of $i_{\mathbf{e}}$. The other, $Q^{\prime}{ }_{1}$, depends upon the solar ellipticity of orbit, and has a value of i very nearly $\frac{1}{2} i$, and it is found, in the analysis of tide observations, to give often a very sensible component. The component desiguated by S^{\prime} is an annual inequality in the heights of the tides arising from an annual inequality of mean level, due almost entirely to meteorological causes, and is generally found to have an amplitude of two or three inches. The value of i_{e} given in the table for this component is the diurnal rate of change of angle.

Besides the components in the preceding table, the four components in the schedule referred to above, designated by M_{1} and M_{3} in the semi-diurnal components, in which the values of i_{e} are almost the same as those of M_{2} and K_{2} in the preceding table, and the two diurnal components designated by M_{3} and M_{6}^{\prime}, of which the values of i_{0} are very nearly the same as those of K_{1} and O_{1} above, are combined with the components in the preceding table which have nearly the same values of i_{e} and cousequently nearly the same period. These components with periods differing very little from
others arise from the slow motion of the moon's node. To take them into the account with the others it is only necessary to change the amplitudes and epochs a little for the several years of the nodal period, for which tables will be given. There are, therefore, these four other components also taken into account, but not by means of separate axles and cranks.

The suffixes $1,2,3, \& c$., to the letters of designation of the several tide components in the preceding table indicate, respectively, diurnal, semi-diurnal, \&c., components.
13. In any machine for the solution of equation (1), the periods of revolution have to be diurnal, semidiurnal, \&c., the hourly rates of change of the angles being i_{e} given in the preceding table. But it is seen from (3) and (6) that the hourly rates of change of the angles are u_{e}, which by the preceding table are comparatively very small for the semi-diurnal components, so that instead of semi-diurnal periods we have only monthly and half monthly periods. The mechanical solution of the equation, therefore, as transformed in (4) requires comparatively very slow motions of the machinery for the semi-diurnal components. For the diurnal components, however, we still have the diurnal priods. It is also seen from (3) and (6) that for the mean lunar and principal semidiurnal component we have simply the constant A_{1}, needing no axle and cranks, so that these are required for the components only which are generally very small in comparison, and which can be regarded simply asperturbations of this principal component.
14. In the construction of the part of the machine containing the axles, cranks, and pulleys, and the wheel-work most directly connected with them, two brass plates, 16 inches wide and 22 inches in height, are placed in a vertical position about 2.5 inches apart, the edges of which ab and $a^{\prime} b^{\prime}$ are seen in Plate II, which is a side view of the machine, the front being on the right. A back and front view of these plates are seen on Plates III and IV, with all unnecessary parts cut out, learing simply a framework to support the wheels and axles. An axle for each tide-component with crank and pulley at each end, as represented in perspective at the bottom of Plate II, is supported by these plates, and is connected by wheel-work with an axle in the front part of the machine, moved by a crank at the side. This connection is such as to give the exact relative period of revolution to each axle with cranks attached.

Commencing at a small stationary pulley at c, Plate III, a light chain passes over the stationary pulleys d and e until it arrives at the pulley of the tide-component at f, and then, passing successively over all the pulleys, first up and then down, around the large central space cut out of the supporting plates, it comes to the pulley of the last component at g, and then, passing over several stationary pulleys, it comes to h, where it is connected with the upper part of the sliding frame moving vertically, a small part only of which is visible on Plate III, but is all represented in Fig. 3, Plate I. The horizontal slit in the bar of this frame determines the one side cm^{2} or cm^{\prime} of the right-angled triangle, the former if the machine is set according to the amplitudes in (3) and the latter if set according to those of (6). When the pulleys are all at the center the adjustment must be so made by turning the palley c, Plate III, by an arrangement for that parpose, that the height of the horizontal slit shall correspond with A_{1}, which is determined by means of an index attached to the chain and small scale just above c, not visible.

Commencing again at the point a, on Plate $I V$, which is a representation of the back brass plate and the pulleys on the cranks on the other end of the axles, a chain passes in the same manner over all the pulleys until it comes aronnd to b, and then by d and e to the side of the frame sliding horizontally, only parts of which are seen on this plate, but all is seen in Fig. 3, Plate I, the connection of the chain with it being at b ou the right of this front view of it. The slit in the vertical bar of this frame, oscillating horizontally, determines in the right-angled triangle of Fig. 2, or Fig. 3, the other side $m n$ or $m^{\prime} n^{\prime}$ according as the machine is set to the amplitudes of N in (3) or N^{\prime} in (6). In these expressions there are no constants corresponding to A_{1} in those of M and M^{\prime}, and hence, when the pulleys are all thrown in to the center, the adjastment must be such that the vertical slit occupies a central position, corresponding to the point c, in Fig. 2, Plate I and Plate IV.

The arrangement with regard to the distances between each pulley and the two from which it is suspended is such that those belonging to the tide components $K, \mathrm{~S}_{2}, \mathrm{~N}_{2}$, \&c., which have the largest amplitudes, are farthest from the points of suspension, so that the measurements may not be sensibly affected from a want of parallelism of the strands of chain with a vertical line. The
axles and pulleys of all the smaller tide-components are placed above with correspondingly short spaces between. The two pulleys from which S_{2} is suspended are larger than the others in order that K_{1}, \mathbf{S}_{2}, and \mathbf{N}_{2}, which generally have large amplitudes, may have a wider space to swing in extreme cases.
15. The value of R in (5), (10), and (17), corresponding to cm , Fig. 2, Plate I , is given by the distance of chain on of Plate IV. The end of a fine chain attached to the end of a pin controlled by the two sliding frames, and kept at the intersection of the two slits, and always representing the point n or n^{\prime} in Fig. 2, Plate I, passes through a small eye or central hole at c of Plate IV, and then over several palleys in the interior of the machine, and controls the rertical movement of the index on the left side of Plate V, which is a perspective view of the front and left side of the machine as finished. As the distance between c and n increases or decreases the index rises or falls the same amount on the scale, from which is read oft the height of high or low water, the former on the left part and the latter on the right part of the scale, the negative direction of the latter being upward. As these readings are generally from some plane below mean level, as that of mean low water, which is represented by H_{0} in the preceding expression of L, the zero of the left scale must be thrown down by that distance, and the other as much up. For this purpose the scales are made adjustable by means of a small toothed wheel between the scales, by which, when the left scale is thrown down, the other is thrown up just as much.

The construction of the machine is such that for tides of large range, not exceeding about 12 feet, a foot of tide corresponds to an inch of the scale. The scales, however, have a double graduation, in which in the one a foot of tides corresponds to 2 inches of the scale, so that tides of smaller range, not exceeding about 6 feet, may be read from this scale, the pulleys in this case being thrown out twice as far on the cranks for the same amplitudes. If, however, the range of the tide is very great, the half amplitudes must be used in setting, and the readings from the scale of closest graduation, must then be doubled.
16. The whole machinery is moved with the left hand by means of a crank represented on the left side of the machine in Plate V, and on the right side of Plate IV in a back view. This crank turns a horizontal axle passing from side to side, mostly visible in the lower part of the front riew. By means of a connection between this axle and two upright shafts k and l, Plate III, the one on the left, k, is made to turn twice in a lunar day, and the one on the right, l, once in a lunar day. By means of a connection of three wheels and an endless screw between the shaft k and each of the axles of the semi-diurnal tide-components, which are all arranged on that side, each of these axles is made to turn in its proper relative period with regard to that shaft, which is given in the preceding table. The numerators and denominators of the fractions representing these relations very nearly are the number of teeth in the wheels used in making the connections, the unity of the one fraction being represented by the endless screw. The comections on the other side between l and each of the axles of the diurnal and other components, which are all arranged on that side, are made by means of four wheels, of which the number of teeth correspond with the numerators and denominators of the fractions, representing the relations very nearly between the motion of the upright shaft and each of the axles of the components. The relations between the proper motions of these axles and the shaft on the other side are given in the preceding table, and therefore to get the relations to the other shaft, since it turns only one-half as fast, the relations in the table must be doubled, which is done by omitting the fraction $\frac{1}{2}$. The parts of the true relations which are not satisfied in these connections are given by the decimal added to the other fractions in the table. The amount of error in degrees of the indices of the several components, which are represented on Plate IV, is found by multiplying these decimals into $28^{\circ} .984$ and the number of hours the machine has run. The amount of error for one year is given in the last column of the table. By placing the relations of the cranks for cosines and sines differently for positive and negative angles, it has been arranged to have all the indices turned in the same direction, aud the signs of the errors given indicate gain or loss in the motion of the indices without regard to the sigus of the original angles.

The absolute errors in the heights of the tides arising from these errors of course depend upon the amplitude of the component. In our Atlantic tides, in which the amplitudes of the solar and S. Ex. $29-34$
all the other components except the lunar are less than 1 foot, except at Eastport, and the diurnal amplitudes everywhere are especially small, the machine might be run through ten years and the error in any one component wonld not amount to 1 inch in the heights of the tides, though of course the errors of several might combine and make the whole error more than that.

On the Pacific coast, where the diurnal components are very large, on account of the less accuracy of the relation in O_{1}, the machine could not be run nearly so long without incurring the same amount of error.
17. Just in front of the two sliding frames is a lever turning on the central point of the machine, represented by c in the back view of Plate $I V$, which contains a groove, in which one end of the pin at the intersection of the two slits of the sliding frames moves up and down and always controls its direction, so that it always has a direction corresponding to on or cn^{\prime} of Fig. 2, Plate I. By means of a connection of wheel-work the needle on the face of the dial, Plate V, always has the same direction as $c n$ or $c n^{\prime}$ or the lever behind. Hence the angle between this needle and the vertical, which can be read in lunar time or in degrees from the graduated circles, is that cor responding to β or β^{\prime} in Fig. 2, Plate I.

The index on the dial, Plate V, pointing to the left a little below the figure 9 , and corresponding to ce in Fig. 2, Plate I, is the lunar index already explained in § 10. The other index pointing to 12 , and corresponding to $o d$ in Fig. 2 is the solar index, which indicates the solar time. When this points to 12 , and the small index directly below the center points downward, it is midnight; but if the small index points upward, it is noon. Although the lunar index moves according to lunar mean time, yet it does not point out this time on the dial, but indicates the phases of the mean lunar tide, and the high water of this tide occurs when the index points to 12 . It consequently'points out the lunar time which has elapsed since the last high water of the mean lunar semi-diurnal tide.

The ratio between the motions of the solar and the lunar index is that of

$$
\frac{30.000000}{28.984104}=\frac{40 \times 110}{39 \times 109} \text { very nearly. }
$$

The latter is so nearly correct that the error in the reduction of lumar to solar time amounts to only abont one minnte in two years. The fractions in the second number, expressing this important relation, were discovered here independently, but it was afterwards found that they had been previously discovered by Mr. Roberts. The wheel work, with the number of the teeth corresponding to the unmerators and denominators of these fractions, and by which the solar and lunar indexes are caused to have their proper relations to each other, and that by which the needle is kept parallel with the lever behind it, already explained, are partially seen in the central part of the dial of Plate V.

The longer index, in the upper left-hand corner, moves around the circle in three hundred and sixty-five days, and keeps a record of the day of the year. Between the other end of the axle which controls this index and the axle of the small toothed wheel, between the two scales on the left of the face of the machine, there is a connection by means of a small crank and a rod which turns a little the latter axle, by which the annual inequality of mean level of the sea is taken into account. During one part of the year the left scale is thrown down a little and the other up, the effect of which is to increase the readings of both high and low waters. During the other part of the year the effect is the reverse. The smaller index is used in setting the axle and crank in accordance with the epoch of maximum of this annual irregularity.

The index of this and the indices of the other three dials in the other corners are controlled by means of conuections between their axles and the horizontal shaft below, which is turned directly, with the left hand, by means of the crank attached to it. The uses of the other three indices will be understood from the inscriptions on the dials.

The thermometer on the right side, Plate V, is no essential part of the machine, but is placed there because it is a convenient place to keep a thermometer to give the temperature of the room, and, also, because it gives symmetry to the face of the machine by corresponding to the scale on the right.

The whole is included within a glass case which opens in front. The whole case can also be lifted up and laid aside when it is desirable either to set the machine or for any other purpose.

DIRECTIONS FOR SETTING AND USING.

18. In the first adjustments of the machine the palleys on the cranks must all be thrown into the center, and the vertically-oscillating frame must be let down by means of an arrangement near c, Plate III, until the middle of the horizontal slit coincides exactly with the center at c, Plate IV. The small index above e, Plate III, attached to the chain, must be then so adjusted that it will -point to zero of the small scale belonging to it. A small screw at a, Plate IV, at the beginning of the other chain, shonld also be turned until the middle of the vertical slit coincides with the center c. In these adjustments there is a slight yielding of the parts with a change of tension, so that they should be mado by coming to the positions from both sides and taking the mean of the small difference. These adjustments, being once made, should not require any change; but it is well to verify them occasionally, for in the use of the machine some small changes in the rigidity of the different parts might gradually take place.

In the harmonic analysis of tidal observations it is nsual to give the constants of the expression of the tidal function h, in the following form:

(a)

$$
h=\mathrm{H}_{0}+\sum \mathrm{A}_{\mathrm{e}} \cos \left(i_{\mathrm{e}} t-\varepsilon_{\mathrm{e}}\right)
$$

But the value of ε_{e} is the epoch in angle from the time of the passage of the fictitious moon of each component over the meridian, to the time of high water of that component. Hence at the time of this meridian passage we have for each component $t=0$, or some number of eren periods. In the expression of h in (1), however, we have $t=0$, for all the components at the same time, which is usually assumed to be January $1,0^{11}$ (leap year January $2,0^{11}$). The values of ε_{e}, therefore, in the preceding expression must be reduced to those corresponding to this epoch of $t=0$. This reduction is made by means of equation (9), "Discussion of Tides in Penobscot Bay,"* with the values of $c_{\mathrm{n}}=s c_{0}$ contained in the Table II of that paper. The following table is the latter part of that table, somewhat modified in form and notation, more convenient for practical application here, and extended to the end of the century. The constant $s c_{e}$ of that table is here denoted by k_{e}

Table II contains the values of the constants k_{e} for the several components, and also the longitude of the moon's ascending node (ω), angle of moon's phase (a), the moon's mean anomaly (b), and the angle of the moon's place from the equatorial node (c), for the first of each year. The values of k_{e} for the shallow-water components are, for (MS) $)_{4}$, equal to k_{1}, for M_{4}, equal to $2 k_{1}$, and for M_{6}, equal to $3 k, k_{1}$ being the value of k_{e} for the component \mathbf{M}_{2}. For the solar component it is equal 0 .

Table II.

Year.	M ${ }_{2}$	K_{2}	L_{2}	N_{2}	$\lambda 2$	ν_{2}	μ	π	U_{2}	Kı	O_{1}	P_{1}	Q1	Q	ω	a	b	c
	\bigcirc	\bigcirc	-	-	-	-		\bigcirc	-	\bigcirc	-				o	-	-	\bigcirc
1880	243.6	202.4	162.2	324.8	81.2	45.8	127.2	350.6	6.0	11.2	232.3	348.8	313.6	92.5	285.9	238	279	169
1881	344.3	202.8	351.8	336.8	352.6	336.0	328.6	359.9	119.2	11.0	333.3	349.0	325. 9	3.6	266.6	8	7	301
1882	85.1	201.4	181.2	348.8	263.8	266.2	170.2	0.2	232.5	10.7	74.3	349.2	338.1	274.5	247.2	137	96	68
1883	185.8	201.0	10.8	1.0	175.0	196.6	11.6	0.4	345.5	10.5	175.3	349.5	350.4	185.6	\%27.9	267	185	196
1884	262.2	202.4	188.8	335.4	73.4	91.0	164.4	359.6	35.2	11.2	250.9	348.7	324.3	84.6	208.5	49	287	334
1885	3.0	202.0	18.4	347.6	344.6	21.2	5.8	359.9	148.5	11.0	351.9	349.0	336.5	355.6	189.2	179	15	100
1886	103.7	201, 6	207.8	359.6	255.8	311.5	207.4	0.2	261.7	10.8	92.9	349.2	348.8	266.7	169.9	308	104	227
1887	204.4	201.0	37.3	11.6	167.2	241.8	48.9	0.5	14.9	10.5	193.9	349.5	1.1	175.7	150.5	178	193	353
1888	280.8	202.6	215.4	346.2	65.4	136. 2	201.6	359.8	64.4	11.3	269.5	348.7	334.9	76.6	131.2	220	295	133
1889	21.0	202.0	45.0	358.2	336.6	66.4	43.1	0.0	177.7	11.0	10.5	349.0	347.2	347.7	111.8	349	23	260
1890	120. 3	201.6	234, 4	10.2	248.0	356.8	244. 6	0.2	291.0	10.8	111.5	349.2	359.4	258.1	92.5	119	112	28
1891	223.0	201.0	63.8	22.3	159.3	287.0	88.1	0.5	44.1	10.5	212.5	349.5	11.7	169.7	73.1	348	201	159
1892	299.4	202.6	242.0	356.9	57.5	181.4	238.8	359.8	93.6	11.3	288.1	348.7	345.6	68.0	53.8	30	302	304
1893	40.2	202.0	71.6	8.9	328.7	111.6	80.3	0.0	206.9	11.0	29.1	349.0	357.8	339.7	34.4	159	31	76
1894	140.9	201.7	261.0	20.8	240.1	42.0	281.8	0.2	320.2	10.8	130.1	349.2	10.1	250.1	15.1	290	120	209
1895	241.6	201.2	90.4	33.0	151.4	332.2	123.3	0.5	73.3	10.6	281.1	349.5	22.4	161.7	355.7	159	209	340
1896	318.0	202.9	208.0	7.6	49.8	226.0	178.0	359.8	122.8	11.4	306.7	348.7	356.2	60.6	336.4	201	311	126
1897	58.8	202.3	98.2	19.5	320.8	156.8	117.5	0.0	236.1	11.1	47.7	348.0	8.5	331.7	317.0	331	39	259
1898	159.5	20L. 8	287.6	31.5	232.2	87.2	319.0	0.2	349.4	10.9	148.7	349.2	20.7	242.2	297.7	100	128	31
1890	260.2	201.3	117.0	43.6	143.5	17.4	160.5	0.5	102.5	10.6	249.7	349.5	33.0	153.7	278.3	330	217	101
1900	336.6	203.0	295.2	18.2	41.7	271.8	213.2	359.8	$15 \% 0$	11.5	325.3	348.7	6.9	52.6	259.0	12	318	303

* Appendix 11, Report for 1878.

Designating by ε^{\prime} the value of ε_{e} with the preceding reductions applied, instead of (a) we have

$$
\begin{equation*}
h=H_{0}+\sum \mathbf{A}_{6} \cos \left(i_{\mathrm{e}} t-\varepsilon^{\prime}\right) \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{\mathrm{e}}^{\prime}=\varepsilon_{\mathrm{e}}-k_{\mathrm{e}} \tag{c}
\end{equation*}
$$

19. In the four components $\mathrm{M}_{2}, \mathrm{~K}_{2}, \mathrm{~K}_{1}$, and O_{1} it is usual to combine with cach the small component of nearly the same period, referred to in § 12 , and use through the year the amplitnde and epoch of the resultant for the middle of the year. From the amplitnde and epoch of the principal component, those of the resultant are obtained by multiplying the former by the factor F, and adding to the latter the correction $\delta \varepsilon$ contained in the following table.

Table III.-Containing the factors F, and the corrections $\delta \varepsilon_{\varepsilon}$ used in reductions of M_{2}, K_{2}, K_{1}, and O_{1}.

Argul ment ω	The factors F .				Corrections $\delta 8$.				Argriment ω
	M 2 .	K_{2}.	K.	O_{1}.	M ${ }_{\text {. }}$.	K2.	K_{1}.	O_{1}.	
\bigcirc					5	\bigcirc	0	\bigcirc	\bigcirc
0	0.964	1.28	1.14	1.22	± 0.0	± 0.0	± 0.0	∓ 0.0	360
10	0.964	1. 28	1.13	1.22	0.4	2.2	1.2	1.8	350
20	0. 976	1.27	1.13	1.21	0.7	4.4	2.3	3.6	340
30	0.969	1. 26	1.12	1. 20	1.1	6.5	3.4	5.3	330
40	0.973	1.23	1.11	1.18	1.4	8.6	4.5	6.9	320
50	0.977	1. 20	1. 09	1.15	1.6	10.5	5.4	8.4	310
60	0.981	1.17	1.07	1.13	1.8	12.2	6.2	0.8	300
70	0.987	1.13	1.05	1.10	2.0	13.7	6.8	10.9	290
80	0.995	1.10	1.03	1.06	2. C	15.0	7.3	11.8	280
90	1. 000	1.05	1.00	1.03	2.1	16.0	7.6	12.4	270
100	1.007	1.00	0.99	0.99	2.0	16.5	7.7	12.7	260
110	1.013	0.94	0.96	0.95	1.9	16.6	7.5	12.6	250
120	1.019	0.89	0. 94	0.91	1.7	16.1	7.1	12.1	240
130	1.024	0.85	0.92	0.87	1.5	15.0	6.4	11.1	230
140	1.028	0.80	0.90	0.84	1.3	13.2	5.5	9.7	220
150	1.031	0.76	0.89	0.82	1.0	10.7	4.4	7.7	210
160	1.034	0.74	0.87	0.79	0.7	7.6	3.0	5.4	200
170	1.035	0.72	0.87	0.78	0.3	4.0	1. 6	2.8	190
180	1.036	0.71	0.87	0.78	± 0.0	± 0.0	± 0.0	∓ 0.0	180

The argument w in this table must be obtained from Table II for the middle of the year, and when this argument is fonnd on the left in this table the upper one of the double signs must be used, but if the argument is found on the right, the lower sign must be used.

The amplitudes of these four components must be multiplied in to the factor F in this table, and to the epochs must be added the corrections $\delta \varepsilon$, before being used in b and c, or in the following equations (d) and (e).
20. In (1) the constant of the angle is positive, and is the value of the angle when $t=0$. This is, therefore, the most convenient form to be used in the machine. In order to have (b) in that form, it is necessary to put $c_{\mathrm{c}}=-\varepsilon^{\prime}$, and we then get instead of (b)

$$
\begin{equation*}
h=\mathrm{H}_{0}+\Sigma \mathrm{A}_{\mathrm{e}} \cos \left(i t+c_{\mathrm{e}}\right) \tag{d}
\end{equation*}
$$

in which
(e)

$$
c_{\mathrm{e}}=k_{\mathrm{e}}-\varepsilon_{\mathrm{e}}
$$

With the values of A_{e} and ε_{c} in these expressions, obtained from the analysis of observations, and corrected by means of Table III, for the components $\mathrm{M}_{2}, \mathrm{~K}_{2}, \mathrm{~K}_{1}$, and O_{1}, and with the values of $i_{\mathrm{e}}: i_{1}$ in Table I, we obtain the values of $\mathrm{A}_{\mathrm{e}}{ }^{i_{0}} i_{1}$ and from (3_{4}) the values of O_{e}, contained in (3) and (6), to which the machine has to be set.

The following is an example of the method of obtaining these constants for the year 1886.

The values of A_{e} and ε_{c} are those of the tides of Port Townsend, Washington Territory, obtained from an analysis of the observed hourly co-ordinates for three years, and with the corrections of Table III applied. The values of k_{c} are taken from Table II for each component. The values of c_{e} are then given by (e).

$\begin{aligned} & \text { Compo } \\ & \text { ment. } \end{aligned}$	A	$i_{\text {. }}$: i_{1}.	$A_{r_{i 1}}^{i_{i_{1}}}$	¢ .	k...	c.	Ce.
				\bigcirc	\bigcirc	\bigcirc	0
M2	2. 30	1.000	2. 30	108.5	1113.7	355.2	0
S_{2}	0.55	1. 035	0.57	129.5	0.9	230.5	235.3
K.	0.11	1.037	0.11	132.1	201. fi	69.5	74.3
$1 a$	0.09	1.018	0.09	340.8	207.8	227.0	231.8
N_{2}	0.45	0. 980	0.44	80.4	359.6	279.2	284.0
к2	0.09	0.983	0.09	86.0	311.5	225.5	330.3
${ }^{2}$	0.08	0. 957	0.08	358.3	207.4	209.1	213.9
Kı	2.15	0.519	1. 17	148.6	10.8	222.2	227.1
O_{1}	1.10	0.481	0.53	131.0	32.9	321.9	326.7
P_{1}	0.77	0.516	0.39	146.7	349.2	202.5	207.3
Q1	0.30	0.462	0.14	122.3	348.8	226.5	231:3
Q'	0.22	0. 500	0.11	139.8	266.7		
M_{1}	0.12	2.000	0.24	296.7	207.4	270.7	275.5

The whole reduction above is carried out completely, but it is seen that the result would be practically the same if unity had been used for $i_{0}: i_{1}$ in the semi-diurnal components and $\frac{1}{2}$ in the diurnal components. If the machine is set according to A_{e}, this will answer in (6) for the times of high water, in all the semi-diurnal components.
21. Besides the preceding rednctions, there is also another one necessary for many tide-stations, referred to and explained in $\S 9$, in order to get the best results. This, as we have seen, requires the amplitudes, except A_{1}, to be diminished a little in (3) and to be increased as much in (6). The amonnt of this decrease and increase at Boston Harbor, and Penobscot Bay, and probably along the whole New England coast, is about one-sixth or one-seventh of the whole amplitude; but at New York Harbor it is one-eighth, and on the California coast still less.
22. With the constants thus obtained the machine must be set according to the different types or forms of the tide at the several stations. For the large range tides of our Atlantic coast with small diurnal components, the palleys are thrown out on the cranks according to the formula of (19), making small corrections in the values of A_{e}, for the effects of friction explained in the preceding paragraph, where this is known. The indexes at the back part of the machine mast be set according to the valnes of $\mathrm{C}_{\text {e }}$, or their supplements for those components in which the augles, in Table I, § 12 , increase negatively, for reasons given. For the amplitude A_{1} of the mean lunar and principal component the machine is set by turning a milled head at the side of the machine just above c, Plate III, until the index on the chain stands on the scale at a point corresponding to the value of this amplitude. The horizontal slit in the frame oscillating vertically then stands at that height above the central part of the machine, which corresponds to the mean level of the tide. The lunar iudex, on the face of the machine, must be set to the degree corresponding to e_{1}. The solar index mast be moved to the figure 12 on the dial, and the small index below must be turned down to midnight. The index in the upper left-hand corner must be placed at January 1. The small index on the same dial must be set to the supplement of the angle ε in the ammal inequality of mean level. For instance, if $\varepsilon=270^{\circ}$, it must point to about the 1 st of April. The other indices in the other three corners, showing the angle of phase, the moon's mean anomaly, and angle of moon's place from the equatorial node, can be set approximately by the last three columns of Table II. These require little accuracy, since the results do not depend upon them. While the machine is being set the two upright shafts, one on each side, must be clamped by means of the milled heads, for that purpose, in order to keep every part in position, as set, while this is being done.
23. The machine being thus set (which requires about one hour), and placed on the top of a desk, with blanks in front for recording the results in a form ready for the printer, and the clamps
on the sides haring been loosened, you first turn the crank with your left hand until the lunar index comes in conjunction with one end of the needle. If this is the upper end, the solar index then points out the time of the first high water, and the index on the left-hand side of the face of the machine, read off on the left part of the scale, gives the height of this high water. Then turn until the lunar index comes in conjunction with the lower end of the needle. This is the time of the next low water. The solar index then points out the time of this low water, and the index on the side, read off now from the right-hand part of the scale, gives the height of this low water. Then turn until the lunar index comes in conjunction again with the upper end of the needle. This is the time of the second high water, the times and heights of which are read off as before. Continue thus through the year from high to low and from low to high water, reading off and recording the results as read off.

Where the range of the mean tide is less than about 5 feet, as is the case mostly on all stations south of Cape Cod, the pulleys on the cranks can be thrown out to double the distance of the amplitudes, and the heights then read from the inner graduation of the scales, which is 2 inches of the scale to a foot of tide.
24. Where the tide has large diurnal components in comparison with the semi-diurnal, such as to make the errors according to (21) too large, as may be the case in the tides of the Gulf of Mexico or the Pacific coast, set the machine first in accordance with formula (6) and run through for a year, reading and recording the times only of high and low waters. Then set according to (3), which requires, unless great accuracy is wanted, merely the changing of the amplitudes of the diurnal and quarter-diurnal, \&c., components. Turn the crank then until a conjunction of the lunar index with the needle takes place, and observe the time from the solar index. Then turn, forward or back as the case may be, until the time pointed out by the solar index is that half way between this time and the recorded time of high water, and then read off the height of high or low water, as the case may be, from the scale on the left, and make the record. Continue this through the year.

In all cases the values of the constants, C_{e}, should be determined for both the beginning and end of the year, and after rumning through, it should be observed whether the indices stand in accordance with the values of C_{e} at the end of the year. If not, either the index was not set right at the start or there has been some slip, and it will be necessary to go over it again.
25. Where the diurnal components are small, as in the Atlautic tides, the upper end of the needle has an irregular half-monthly oscillation about the figure 12 on the dial, being sometimes on the one side and at others on the other. This answers to the half-monthly incquality in the times. There is a corresponding inequality in the height of the index on the left of the face, indicating a similar inequality in the heights. There is also, in connection with this inequality, a small diurnal inequality of both the times and heights, indicated by the motion of the needle and the index on the scale.

If the diurual components are large, there is a large oscillation of the needle from one side to the other and back every day, corresponding to the diurnal inequality in the times, and also a large vertical oscillation of the index at the side, corresponding to the alternate higher and lower high or low waters of the same day.

Where the diurnal components are so large as to cause the movable point n, Fig. 2, Plate I, to come around below the center c in the second setting in which the heights are read, the height of one high water may fall below, or of one low water above, mean sea level. The value of ($\beta-\beta$) then in the table of the Appendix becomes greater than 90°, and the term $\mathrm{R} \cos \left(\beta-\beta^{\prime}\right)$ given in the table has the contrary sign and must be applied to H_{0} accordingly.

Where the amplitudes of the diurnal components are so large as to bring the point n around below c in the first setting, the needle is made to move entirely around each day, and there can be only two conjunctions of the lunar index with the needle in a day, one with each end. There is in this case only one high and one low water each day.

There is one critical case in which the machine fails. This is where the point n would pass exactly through the point c. This is a case which sometimes occurs, and a little aid is then required
to help it pass. This occurs mostly when the large diurnal tide brings one of the high waters down to about mean tide level. The wave is then very flat and the times from observation, and as given by the machine, are both somewhat uncertain.

EFFIOIENCY OF THE MACHINE.

26. The results given by the machine have been compared with both computation and obser. vation. In a comparison with computation for one month of the tides of Boston Harbor the difference in the heights rarely amounted to more than 0.1 foot, and in the times, to more than three or four minutes. These arise from a slight yielding of some parts of the machine with increase or decrease of teusion in the chains over the pulleys on account of the axles and cranks not having quite rigidity enough. This, however, conld be remedied by making the axles and cranks of the larger components, which have to do the most work, a little stronger. In all short-range tides, which can be worked on the scale of 2 inches to the foot of tide, these defects are diminished one-half, and in no case are they of any consequence in comparison with the various abmomal disturbances of changes of winds and barometric pressure, which cannot be taken into account.

In a comparison of the resnlts given by the machine for three months of the tides of San Diego, with the times and heights as given by obserration, the average of the difierences in the times and the heights taken without regard to signs were as follows:

Of course these differences are due mostly to the meteorological disturbances, and only in a smallmeasure to the errors of the machine. The comparisons, also, are for the winter months, in which these abnormal disturbances are always found to be the greatest.

The averages of the differences in the times are very much increased on account of the large diurnal tide, making the tide-wave often very flat at the times of one of the high and low waters of the day, when the exact times of maxima and minima become very uncertain.

The machine has also been tested in its application to the very singular tides of Papeete, of the island of Tahiti, in which the times of high water sometimes follow the moon, as usual, but at other times the sun. An explanation of these tides has been given in my Tidal Researches, published as a separate appendix to the Coast Survey Report for 1874. The observations of these tides extend ouly from the 1st of June, 1856, until about the middle of October. The peculiarity of these tides consists in the solar semi-diurnal tide beingingeneral larger than the lunar. During the month of June, with maximum declination of the sun, this tide, however, was a little less, and then the times were controlled by the lunar tide, and the times of high water followed, though at very irregular intervals, the moon. In July, however, and especially about the time of the autumnal equinox, the solar tide became larger than the lunar, so that the point n, Fig. 2, Plate I, passed around c, carrying the needle around with it in such a manner as to cause the times of high water, as read off from the solar index, to fall all the time at nearly the same hours of the day, and soon after 12 of noon and midnight. The heights, as read off, were a maximum, as they should be, near the times of the syzigies, but nearly vauished at the quadratures.

The machine is now being used in the prediction of the tides for the year 1885 to be used in the Tide Tables, published annually by the Coast and Geodetic Survey, and, with the exception of the very small defects referred to, is found to give entire satisfaction.

The capacity of the machine for doing work is at least that of 30 or 40 computers, if these were to take into account everything which the machine does.

APPENDIX.

By Mr. L. P. Siminy.
[Contaning table of the product $\mathrm{R} \cos \left(\beta-\beta^{\prime}\right)$ of the formula (10) $\mathrm{H}=\mathrm{H}_{0} \pm \mathrm{R} \cos \left(\beta-\beta^{\prime}\right)$ which is to be used where it is necessary to use formula (10), as ocurs in some raremases. Tho npper sign is nswe for high and the lower one for low waters. H $=$ the required height, H_{0} $=$ difference between plane of reference and mean sea level. $R=$ difference betweon center of small cog-wheel and position of pointer on height scale. $\beta=$ reading needlo, aud $\beta^{\prime}=$ lname hand.]

Fig. 1

Fig. 2

Plate 1

PLATE III

Appendix No. 11.

RESULTS FOR THE LENGTH OF THE PRIMARY BASE-LINE IN YOLO COUNTY, CALIFORNIA, MEASURED IN 1881 BY THE PARTY OF GEORGE DAVIDSON, ASSISTANT.

Computation and Disoussion of Results, by CHARIES A. SCHOTT, Assistant.
A full account of the measurement of the Yolo base and of the construction and description of the apparatus used has been given in Appendices Nos. 7 and 8 to the report for 1882 ; the first by the present writer, on the apparatus used; the second by Assistant George Davidson on the operation of measure. To these the reader may be referred once for all. The paper herewith presented contains a condensed account of the results reached by the computer for the length of the base, with a discussion of its probable error and other matter of interest connected therewith, and forms part of a series of reports* on the measure and length of the primary base lines of the Coast and Geodetic Survey.

The site of the base is in Yolo County, California, about 28 kilometers (or $17 \frac{1}{2}$ statute miles) to the westward of Sacramento City ; the astronomical latitude of its southern terminus is $38^{\circ} 31^{\prime}$ $34^{\prime \prime} .19 \pm 0^{\prime \prime} .07$, and of its northern terminus $38^{\circ} 40^{\prime} 37^{\prime \prime} .23 \pm 0^{\prime \prime} .07$; the astronomical azimuth of the line at Southeast base is $163^{\circ} 07^{\prime} 13^{\prime \prime} .45 \pm 0^{\prime \prime} .18$ and that at Northwest base $343^{\circ} 05^{\prime} 00^{\prime \prime \prime} .37 \pm 0^{\prime \prime} .14$, making the base inclined to the meridian at its middle point about $16^{\circ} 53^{\prime} .9$. The longitude of this point is about $121^{\circ} 49^{\prime} .7$. The length of the line is about 17.5 kilometers (or a little short of 11 statute miles); the ground at Southeast base is abont 21.6 meters (or 71 feet), and at Northwest base about 46.6 meters (or 153 feet) above the mean tidal level of the Pacific Ocean. The soil is a rich, dark loam, more sandy near Southeast base and stiff clay near Northwest base; the grade is very easy, almost level, except when nearing the upper end, where for about 100 meters the ascending slope is about 4°; the maximum inclination of a bar was $5^{\circ} 21^{\prime} .5$. Underneath the monuments marking the ends of the base there are granite blocks; inserted in these a copper bolt, with a fine drill hole in its upper surface, defines the terminus of the base at each end. The line was measured twice and in opposite directions, and some parts of it thrice; the time spent in the first measure was twenty days, in the second eighteen, and in the third eight working days. - The measurement commenced September 19 and was completed November 24, 1881.

In the annual report for 1882, Appendix No. 7, there is given an account of the construction of the base apparatus and of the standard bars and the length of the field standard is shown to be

$$
\begin{gathered}
5 \mathrm{~m}+1163^{\mu} .0+57^{\mu} .47\left(t-17^{\circ} .07 \mathrm{C}\right) \\
\pm 2.1 \pm .21
\end{gathered}
$$

Also the value of one turn of Fauth \& Co's screw contact-level comparators III and IV, viz:

$$
\begin{array}{cc}
254^{\mu} .528+0^{\mu} .002\left(t-20^{\circ} \mathrm{O}\right) & \text { and } 254^{\mu} .535+0^{\mu} .002\left(t-20^{\circ} \mathrm{O}\right) \\
\pm 9
\end{array}
$$

respectively. In these expressions μ stands for a micron or the millionth part of a meter, C indicates centigrade thermometric scale, and the quantity following the plus or minus sign the probable error of the respective quantity above $i t$. We also transcribe from the same appendix the

[^3]table of corrections to the graduation of the mercurial inclined thermometers attached to the standard and the bars, viz:

The highest temperature during which a bar was laid was $32^{\circ} .4$ C. (September 30) and the lowest 30.0 C. (November 22); for the outer air (in the shade) these extremes were of course much exceeded.

As already stated, the unit of length upon which the geodetic work of the Survey depends is the iron committee meter of 1799, the property of the American Philosophical Society, at Philadelphia; the length of the 5 -meter field standard is given in terms of this meter. It will be easy hereafter to express our lengths in terms of the new international meter as soon as the latter shall have been distributed and compared; in the mean time, if desirable, we may refer to the late direct comparison* of the committee meter with the platinum meter of the Conservatoire at Paris, in August, 1867.

For an incestigation of the permanency of the indications of the Borda scales attached to the office and field 5 -meter standards, see $A d d e n d u m(A)$ at the close of this report.

LeNGTH OF THE BASE-bARS 1 and 2.

The length of the base will be made to depend upon the leugth of the base-bars as derived directly from their comparisons with the field standard made every morning before commencing the measure on the base. Generally two sets of comparisons were made, and these at a time when the bars had arrived at or near their daily minimum temperature, as indicated by the mercurial thermometers. This happened near the hours of 7 and $8 \mathrm{a} . \mathrm{m}$.

The results of these comparisons are given in the following table:
Daily results for length of base-bars $=5$ meters + tabular quantity in microns.

1881.	Time. an m.	Corrected temperature.			Leagth of		1881.	Time. a. m .	Corrected temperature.			Length of	
		Stand ard.	Bar 1.	Bar 2.	Bar 1.	B			Stand ard.	Bar 1.	Bar 2.	Bar 1.	Bar 2.
	h.	- 0	00.	$\bigcirc 0$.	μ.	μ.		h. m.	- C.	$\bigcirc 0$.	- 0.	μ.	μ.
Sept. 18	6	18.2	14.2	14.9	$+30.5$	+ +304.7	Oct. 7	802	16.0	15.7	15.8	+75.1	$+350.5$
18	745	17.7	14.4	15.2	45.8	312.0	Oct. 8	730	13.2	11.6	11.7	56.0	341.0
Mear....	716	18.0	14.3	15.0	38.2	308.4	8	800	13.3	12.0	12.2	61.4	340.8
Sept. 19	85	16.3	13.4	13.7	47.0	293.1	Mean ...	745	13.2	11.8	12.0	58.7	340.9
22	836	19.5	17.2	17.1	55.1	311.0	Oct. 10	730	13.7	11.4	11.6	38.1	337.9
24	758	13.7	12.5	12.6	43.7	303.3	10	745	13.7	11.6	11.9	52.1	353.9
27	800	15.4	14.0	14.3	59.2	332.5	Mean ...	738	13.7	11.5	11.8	45.1	345.0
28	851	17.6	16.9	17.2	63.8	324.9	Oct. 11	740	18.4	16.9	16.9	46.7	388.6
29	725	16.0	14.9	15.0	46.6	315.1	11	800	18.4	17.0	17.1	46.2	340.6
30	725	15.7	13.1	13.5	49.8	323.8	Mean ...	750	18.4	17.0	17.0	46.4	339.6
Oct. 1	700	17.1	14.3	13.9	31.4	311.1	Oct. 12	800	11.4	10.2	10.4	71.7	336.6
	908	7.5	16.2	16.3	62.0	317.8	12	815	11.6	10.6	10.7	65.9	335.6
4	723	10.7	8.7	8.7	49.4	307.3	Mean ...	808	11.5	10.4	10.6	68.8	336.1
5	706	11.4	9.6	9.7	60. 2	316.0	Oct. 18	830	10.5	8.8	9.2	35.9	311.5
Oct. 6	733	13.7	12.1	12.5	56.9	346.3	13	850	10.6	9.1	9.4	38.4	318.6
6	820	13.8	12.7	13.1	58.9	335.8	Mean...	840	10.6	0.0	0.8	87.2	315.0
Mean.	750	13.8	12.4	12.8	67.9	341.0	Oct. 14	800	7.8	6.6	6.8	51.1	348.7

[^4]| 1881. | Time. a. m. | Corrected temperature. | | | Length of | | 1881. | Time.
 a. m. | Corrected temperature. | | | Length of | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Standard. | Bar 1. | Bar 2. | Bar 1. | Bar 2. | | | Standard. | Bar 1. | Bar 2. | Bar 1. | Bar 2. |
| | h.m. | $\bigcirc 0$. | $\bigcirc 0$. | $\bigcirc \mathrm{C}$. | μ | μ. | | h. m. | $\bigcirc 0$. | - 0. | $\bigcirc 0$. | μ. | H. |
| Oct. 14 | 830 | 7.9 | 6.8 | 7.1 | $+52.4$ | +335.4 | Moan. | 730 | 10.7 | 8.7 | 8.6 | +29.2 | +322. 3 |
| Mean. | 815 | 7.8 | 6.7 | 7.0 | 51,8 | 339.6 | Nov, 3 | 730 | 7.9 | 6.1 | 5.6 | 35.4 | 317.9 |
| Oct. 15 | 854 | 7.1 | 6.3 | 6.2 | 55.8 | 328.1 | 3 | 750 | 7.9 | 6.2 | 5.7 | 49.1 | 328.8 |
| 15 | 938 | 8.0 | 7.7 | 7.8 | 64.6 | 355.5 | M | 740 | 7.9 | 6.2 | 5.6 | 42.2 | 323.4 |
| Mean ... | 916 | 7.6 | 7.0 | 7.0 | 60.2 | 341.8 | Nov. 4 | 750 | 13.1 | 12.8 | 12.4 | 58.8 | 333.9 |
| Oet. 17 | 820 | 9.2 | 8.3 | 8.5 | 58.2 | 329.5 | 4 | 810 | 13.2 | 12.9 | 12.5 | 64.9 | 336.7 |
| 17 | 840 | 9.3 | 8.6 | 8.8 | 63.9 | 334.9 | Mean | 800 | 13.2 | 12.8 | 12.4 | 61.8 | 335.3 |
| Mean. | 830 | 9.2 | 8.4 | 8.6 | 61.0 | 332.2 | Nov. 5 | 810 | 8.1 | 6.4 | 6.0 | 49.2 | 318.4 |
| Oct. 18 | 850 | 10.2 | 9.6 | 8.9 | 66.0 | 336.0 | Nov. 7 | 755 | 10.0 | 8.8 | 8.5 | 45.1 | 316.9 |
| 18 | 910 | 10.4 | 10.1 | 9.4 | 79.8 | 344.0 | | 810 | 10.0 | 9.1 | 8.7 | 44.1 | 324.5 |
| Mean... | 900 | 10.3 | 9.8 | 9.2 | 72.9 | 340.0 | Mean ... | 802 | 10.0 | 9.0 | 8.6 | 44.6 | 320.7 |
| Oct. 19 | 800 | 12.4 | 11.0 | 10.5 | 56.8 | 333.2 | Nov. 8 | 750 | 11.1 | 10.2 | 10.2 | 64.0 | 331.7 |
| 19 | 825 | 12.5 | 11.4 | 10.9 | 60.9 | 339.4 | 8 | 830 | 11.2 | 10.4 | 10.5 | 57.4 | 341.1 |
| Mean... | 812 | 12.4 | 11.2 | 10.7 | 58.8 | 336.3 | Mean | 810 | 11.2 ; | 10.3 | 10.4 | 60.7 | 336.4 |
| Oct. 20 | 800 | 15.4 | 12.9 | 12.7 | 43.9 | 325.4 | Nov. 11 | 740 | 7.2 | 5.0 | 4.6 | 47.1 | 325.5 |
| 20 | 825 | 15.4 | 13.0 | 12.8 | 53.6 | 329.4 | 11 | 755 | 7.1 | 5.1 | 4.8 | 48.9 | 340.8 |
| Mean.. | 812 | 15.4 | 13.0 | 12.8 | 48.8 | 327.4 | Mean | 748 | 7.2 | 5.0 | 4.7 | 48.0 | 333.2 |
| Oct. 21 | 810 | 14.6 | 13.8 | 13. 2 | 62.4 | 334.7 | Nov. 12 | 735 | 5.1 | 3.2 | 3.1 | 38.5 | 327.1 |
| 21 | 825 | 14.6 | 14.0 | 13.4 | 67.7 | 338.5 | 12 | 750 | 5.0 | 3.4 | 3.3 | 40.5 | 333.9 |
| Mean.. | 818 | 14.6 | 13.9 | 13.3 | 65.0 | 336.6 | Mean | 742 | 5.0 | 3.3 | 3.2 | 39.5 | 330.5 |
| Oct. 22 | 750 | 11.1 | 9.4 | 8.8 | 66.6 | 322.9 | Nov. 14 | 800 | 10.7 | 8.7 | 8.5 | 44.6 | 351.3 |
| 22 | 810 | 11.2 | 9.7 | 0.1 | 80.0 | 340.9 | 14 | 820 | 10.8 | 9.1 | 9.0 | 52.4 | 360.9 |
| Mean .. | 800 | 11.2 | 9.6 | 9.0 | 73.3 | 331.9 | Mean | 810 | 10.8 | 8.9 | 8.8 | 48.5 | 356.1 |
| Oct. 24 | 715 | 10.0 | 7.2 | 7.2 | 71.5 | 334.7 | Nov. 16 | 920 | 6.6 | 5.5 | 5.7 | 51.0 | 332.0 |
| 24 | 735 | 9.9 | 7.2 | 7.3 | 71.4 | 329.4 | 16 | 940 | 6.8 | 5.9 | 5.9 | 59.2 | 345.3 |
| Mean :. | 725 | 10.0 | 7.2 | 7.2 | 71.4 | 332.0 | Mean | 930 | 6.7 | 5.7 | 5.8 | 55.1 | 338.6 |
| Oot. 25 | 725 | 13.2 | 11.8 | 11.7 | 49.3 | 327.3 | Nov. 18 | 850 | 3.4 | 2.9 | 3.1 | 67.9 | 347.1 |
| 25 | 745 | 13.2 | 11.9 | 11.8 | 57.5 | 329.8 | 18 | 905 | 3.5 | 3.0 | 3.3 | 62.2 | 346.5 |
| Mean. | 735 | 13.2 | 11.8 | 11.8 | 53.4 | 328.6 | Mean | 858 | 3.4 | 3.0 | 3.2 | 65.0 | 346.8 |
| Oct. 26 | 710 | 14.9 | 13.7 | 13.7 | 52.6 | 346.8 | Nov. 19 | 820 | 3.7 | 2.8 | 2.4 | 63.8 | 333.8 |
| 26 | 730 | 14.9 | 13.7 | 13.7 | 59.5 | 347.3 | 19 | 850 | 3.7 | 3.2 | 2.5 | 54.8 | 319.3 |
| Mean . . | 720 | 14.9 | 13.7 | 13.7 | 56.0 | 347.0 | Mean | 835 | 3.7 | 3.0 | 2.5 | 59.3 | 326.6 |
| * Oct. 27 | $\left[\begin{array}{lll}1 & 10\end{array}\right]$ | 14.1 | 14.3 | 14.2 | [82.5] | [355, 1] | Nov. 21 | 750 | 3.4 | 2.0 | 1.8 | 56.0 | 337.2 |
| 27 | [1125] | 14. 3 | 14.4 | 14.3 | [80. 5] | [365.6] | 21 | 810 | 3.3 | 2.1 | 2.0 | 61.4 | 347.2 |
| Mean | [118) | 14.2 | 14.4 | 14.2 | [81. 5] | [360. 4] | Mean. | 800 | 3.4 | 2.0 | 1.9 | 58.7 | 342.2 |
| Oct. 28 | 800 | 13.3 | 12.4 | 12.3 | 63.9 | 358.8 | Nov. 22 | 810 | 3.4 | 2.4 | 2.2 | 48.8 | 323.2 |
| 28 | 815 | 13.3 | 12. 5 | 12.4 | 59.1 | 338.3 | | 825 | 3.5 | 2.6 | 2.3 | 48.7 | 341. 4 |
| Mean . | 808 | 13.3 | 12.4 | 12.4 | 61.5 | 338.6 | Mean | 818 | 3.4 | 2.5 | 2.2 | 48.8 | 332.3 |
| Oct. 29 | 710 | 12.2 | 11.0 | 11.0 | 47.1 | 336.4 | Nov. 23 | 700 | 4.8 | 29 | 2.7 | 64.7 | 327.3 |
| 29 | 730 | 12.2 | 11.0 | 11.0 | 52.4 | 347.1 | 23 | 756 | 4.3 | 2.8 | 2.4 | 58.0 | 329.8 |
| Mean ... | 720 | 12.2 | 11.0 | 11.0 | 49.8 | 341.8 | Mean | 728 | 4.6 | 2.8 | 2.6 | 61.4 | 328.3 |
| Oct. 31 | 710 | 10.3 | 8.4 | 8.4 | 41.7 | 321.4 | Nov. 24 | 702 | 3.9 | 2. 3 | 1.9 | 62.0 | 321.1 |
| 31 | 725 | 10.2 | 8.4 | 8. 3 | 38.8 | 323.6 | 24 | 802 | 3.5 | 2.3 | 1.6 | 54.0 | 336.8 |
| Mean... | 718 | 10.2 | 8.4 | 8.4 | 40.2 | 322.5 | Mean | 732 | 3.7 | 2.3 | 1.8 | 58.0 | 329.0 |
| Nov. 2 | 720 | 10.8 | 8.7 | 8.7 | 31.6 | 325.7 | | | | | | | |
| 2 | 740 | 10.6 | 8.7 | 8.6 | 26.7 | 318.9 | | | | | | | |

* October 27, there were no observations in the morning.

Assuming that the bars were stationary, or nearly so, about the times of comparison, we may deduce the mean error of a comparison of the standard with a base bar from the observed differences of the two corresponding sets of observations.
then
we find for

$$
\begin{aligned}
& d=\text { this difference, in microns, } \\
& n=\text { number of such differences or days, } \\
& e=\text { mean error of a comparison or set, } \\
& \varepsilon=\text { mean error resulting from two sets, } \\
& e=\sqrt{\frac{[d d]}{2 n} \text { and } \varepsilon=\frac{e}{\sqrt{2}}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { base-bar } 1 & e= \pm 5.4 \mu \text { and } \varepsilon= \pm 3.8 \mu \\
\text { base-bar } 2 & e= \pm 7.4 \mu \text { and } \varepsilon= \pm 5.2 \mu
\end{array}
$$

Looking over the table we first notice (Diagram 3, Illustration No. 32) a systematic difference between the temperatures of the standard and of the bars, the former being 10.47 higher, on the average, while the latter agree within $0^{\circ} .08$. This is entirely due to the fact that the standard was better protected against changes of temperature than the bars, the box containing the former being covered with an additional "steam felting" three-fourths of an inch thick. At or about the maximum temperature of the day the sign of the difference reverses, and the standard is then of lower temperature than the bars.

We next notice, after ploting the tabular results (Diagram 4, Illustration No. 32) that upon the whole the temperature steadily declined between September 18 and November 25 about $15^{\circ} \mathrm{C}$., Whereas the length of the base-bars remained, and if not exactly the same, at most showed but a trifling increase in length. From this, however, we are not to infer that the compensation of the bars was perfect, or nearly so, as will be shown in the discussion of the observations specially made to test the question of the degree of compensation, and which reveals a peculiarity in the behavior of zinc, more fully noticed further on.

DIURNAL FARIATION IN THE LENGTH OF THE BASE-BARS DUE TO THE DIURNAL VARIATION OF THE ATMOSPHERIC TEMPERATURE.

From numerous comparisons made of the base-bars with the standard it became evident that their length was subject to a periodic change depending on the daily temperature variation; but what is of more importance with regard to the length of the base is the fact that this periodic change was, during September, of very small amplitude, and after the middle of October and throughout November it had become permanent and remained apparently constant, but showing a relatively large amplitude. The first period comprises the time of the first measure, the second period that of the second and partial third measure.

In the investigation of the diarnal variation of the length of the base-bars we only need the form of the curve representing the variation, so that there is no need of referring the bi-hourly values taken on different days to the same index. The comparisons were not made at the exact even hour, but the results could be grouped and means taken referring nearly to full hours. The corresponding temperatures of the bars are given as read from the mercurial thermometers. On September 18 there are hourly observations from $5^{\mathrm{h}} 40^{\mathrm{m}}$ a. m. to $5^{\mathrm{h}} 40^{\mathrm{m}} \mathrm{p} . \mathrm{m}$. ; the mean for two adjacent odd hours was combined with the value for the intermediate even hour and set down in the table. On September 16 and 18 the observations do not extend over tweuty-four hours, and to eliminate the effect of any change of index or any constant deviation from the arerage variation on other days (of twelve equidistant comparisons) the mean hourly difference for each of these two days from the corresponding hours on the full days was ascertained and applied as a constant. The same simple process is gone through with for the observed temperatures.

Diurnal variation in the length of the base-bars before the base measure.

1881.	Bar.	$\begin{gathered} \text { Mid- } \\ \text { night. } \end{gathered}$	$2^{\text {b }}$.	4.	$8^{8 .}$	$8{ }^{\text {k }}$.	$10^{\text {b }}$	Noon.	$2^{\text {H. }}$	4 t .	8 b	$8{ }^{\text {b }}$	10 h .
Sept. 1	1	57	56	68	39	51	8	-10	0	1	6	16	32
	2	129	129	155	136	120	82	84	81	106	90	90	95
	1	32	18	19	4	45	40	40	31	33	36	27	29
2	2	87	68	65	128	135	135	144	140	97	112	112	112
3	1	$\left\{\begin{array}{l}34 \\ 35\end{array}\right.$	34	38	26	15	23	35	23	38	34	48	37
3	2	$\left\{\begin{array}{l}108 \\ 118\end{array}\right.$	$\} 108$	107	113	112	98	114	112	122	130	123	133
16	1				46	56	80	59	67	52	60		
16	2			\ldots	312	348	350	344	336	337	331		
18	1				35	44	74	71	67	56			
18	2				320	314	327	319	308	298			
Mean.	1	40	36	42	26	30	29	27	26	24	27	30	33
Mean.	2	110	102	100	117	121	. 114	117	111	106	110	108	118

This mean diurnal variation in the length of the base-bars in shown graphically by Diagram 5 , Illustration No. 32.

Diurnal variation in the temperature of the base-bars at the above comparisons before the base measure, by mercurial thermometers with centigrade scale.

1881.	Bar.	Mid. night.	$3^{\text {b }}$	$4{ }^{\text {b }}$.	$6{ }^{\text {b }}$.	$8^{\text {b }}$.	$10^{\text {b }}$.	Noon.	2^{5}	4^{6}.	$6{ }^{6}$	$8{ }^{\text {b }}$	$10^{\text {b }}$.
		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
Sept. 1	1	22.5	20.1	17.8	15.9	16.2	19.8	23.4	26. 6	28.7	28.5	26.5	23.9
	2	22.7	20.3	18.2	16.4	15.7	1.8. 3	21.7	25.2	28.1	28.6	26.8	24.2
2	1	21.8	19.6	18.1	16.3	16. 6	19.6	22.7	24.9	26.3	26.1	24.1	21.7
2	2	21.9	19.7	18.3	16.4	16. 1	18.1	20.9	23.7	25.8	25.9	24.1	21.8
3	1	$\left\{\begin{array}{l}19.4 \\ 18.1\end{array}\right.$	17.1	14.8	13.3	14.0	17.0	19.5	22, 3	24.1	24.6	23.3	20.4
3	2	$\left\{\begin{array}{l}10.5 \\ 18.4\end{array}\right.$	17.3	15.1	13.4	13.4	15.5	17.8	20.8	23.4	24.1	23.4	20.9
16	1				17.5	17.1	19.7	24.0	28.2	32.1	33.8		
16	2				17.8	17.7	20.7	24.5	28.2	31.2	32.6		
18	1				15.0	14.4	17.0	20.4	24.2	27.4			
15	2				15.6	15.2	17.9	21.0	24.1	26.5			
Mean	1	20.4	18.8	16.9	14.8	14.9	17.8	21. 2	24.5	26.9	27.8	24.6	22.0
Mean	2	20.6	19.1	17.2	15.1	14.8	17.3	20.4	23.6	26.2	27.2	24.8	22.3

The protection of bar 2 is slightly better than that of bar 1. Mean daily range $12^{\circ} .6$.
Diurnal variation in the length of the base-bars during the base measure (after the first measure).
Length $=5$ meters + tabular quantities in microns.

1881.	Bar.	Mid. night-	$1^{\text {b }}$.	b.	$3^{\text {b }}$.	$4^{\text {b }}$.	$5{ }^{\text {h. }}$	$6^{\text {b }}$.	$7^{\text {b }}$.	$8{ }^{\text {b }}$	$9{ }^{\text {h }}$	$10^{\text {b }}$.	11 ${ }^{\text {b }}$
Oct. 15	1										55.8	64.6	77.3
15	2										328.1	355. 5	367.2
Nov. 22	1												
22	2												
23	1	48.4	55.8	54.6	61.9	61.0	60.9	64.7	64.7	58.0	80.4	67.1	90.4
23	2	332.2	327.1	330.5	335.2	322.1	321.0	333.5	327.3	329.3	341.3	348.1	353.0
24	1	54.2	67. 5	67.7	72.1	57.5	63.6	55.2	62.0	54.0	59.9	71.3	80.6
24	2	326.3	332.7	335.7	338.6	329.5	334.9	333.9	321.1	336.8	334.3	343.9	353.4
Mean.	1	51.3	61.7	61.2	67.0	59.2	62.2	60.0	63.4	56.0	68.6	70.9	86.0
Mean	2	329.2	329.9	333.1	336.9	325.8	328.0	333.7	324.2	333.0	335.9	350.5	359.2

1881.	Bar.	Noon.	1h.	$2^{\text {h }}$	3^{3}.	$4^{\text {b }}$	$5{ }^{\text {b }}$	$6^{\text {h }}$.	7 F	$8{ }^{\text {b }}$	9 .	10 h.	$11^{\text {b }}$
Oet. 15	1	78.7	80.8	82.9	66.8	62.5	55.7						
15	2	361.7	350.6	357.8	352.3	339.4	334.7						
Nov. 22	1					98.8	80.9	78.8	82.8	65. 8	55.8	71.1	63.7
22	2					378.3	347.1	329.3	330.4	325.4	323.5	328.4	330.4
23	1	89.1	88.3	84.2	81.9	82.1	66.1	69.8	67.2	61.2	72. 1	53.9	58.6
23	2	368.5	365.9	368.5	366.6	353.4	352.6	332.5	332.1	331.7	327.4	323.1	334.7
24	1	74. 9	80.3	88.5	80.7	73.1	68.2	69.4					
24	2	360.2	357.9	365.6	362.1	360.9	341.5	347.1					
Meay	1	84.1	86.3	88.4	79.7	78.9	68.6	68.4	75.0	63.5	64.0	62.5	61.2
Mean	2	363.1	359.4	365.2	361.7	355.4	345.1	335.4	331.2	328.6	325.4	325.8	332.6

This mean diurnal variation in the length of the bars is shown graphically by Diagram 6, Illustration No. 32.

Diurnal variation in the temperature of the base-bars at the above comparisons, after the first measure
of the base, as indicated by mercurial thermometers with centigrade scale.
[The last line contains the corresponding temperature, by mercurial thermometer, of the standard bar.]

1881.	Bar.	Midnight.	$1^{\text {b }}$.	$2^{\text {b }}$.	$3{ }^{\text {b }}$.	$4{ }^{\text {b }}$.	5 .	$6{ }^{\text {b }}$	$7{ }^{\text {b }}$.	$8{ }^{\text {b }}$	$9{ }^{\text {b }}$.	$10^{\text {b }}$	$11^{\mathbf{k}}$.
Oct. $\begin{aligned} & 15 \\ & 15\end{aligned}$		-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{6.3}$	$\stackrel{9}{7.7}$	$\stackrel{\circ}{10.2}$
	2									..	6.2	7.8	10.3
Nov. 22	1								..	2.5			
2223	2									2.2			
	1	8.1	7.2	6.4	5.7	5.0	4.2	3.6	2.9	2.8	3.6	5.2	7.3
23	2	7.9	6.9	6.2	5.4	4.6	3.9	3.3	2.7	2.4	2.8	4.3	6.2
24	1	6.7	5.9	5.2	4.7	4.0	3.3	2.8	2.3	2.3	3.2	4.8	6.9
24	2	6.3	5.5	4.8	4.1	3.6	3.0	2.4	1.9	1.6	2.4	3.9	5.9
Mean Mean.	1	7.4	6.6	5.8	5.2	4.5	3.8	3.2	2.6	2.5	3.3	4.8	7.0
	2	7.1	6.2	5.5	4.8	4.1	3.4	2.8	2.3	2.1	2.6	4.1	6.2
Mean, standard		8.4	7.8	7.2	6.6	6.0	5.4	4.9	4.4	3.9	3.7	4.5	5.8

1881.	Bar,	Noon.	$1^{\text {b }}$.	$2{ }^{\text {b }}$.	$3^{\text {b }}$.	$4{ }^{\text {b }}$.	$5{ }^{\text {h }}$.	$6^{\text {b }}$	$7{ }^{\text {b }}$.	$8{ }^{\text {b }}$	$9{ }^{\text {a }}$.	10t.	11^{14}
Oct. 15	1	12.3	14.0	15.7	16.7	16.7	16.4						
15	2	12.3	14.0	15.6	18.5	16.6	16.3						
Nov. 22	1					13.8	13.7	13.1	12.5	11.6	10.7	9.8	8.8
22	2					14. 4	14.2	13.5	12.6	11.6	10.9	9.6	8.7
23	1	9.1	11.0	12.5	12.9	13.2	12.8	11.9	10.8	9.9	9.1	8.4	7.5
23	2	8.2	10.2	12.2	13.0	13.3	12.7	11.9	10.7	9.8	9.8	8.1	7.2
24	1	9.0	10.3	11.6	12.6	12.8	12.6	12.0					
24	2	8.1	9.7	11.3	12.4	12.8	12.6	11.9					
Mean .	1	9.0	10.7	12.2	13.0	13.3	13.0	12.2	11.6	10.8	9.9	9.1	8.2
Mean	2	8.2	10.0	11.8	12.7	13.2	12.9	12.3	11.6	10.7	9.7	8.9	8.0
Mean, standard		7.3	8.6	9.8	10.8	11.2	11.5	11.0	10.9	10.6	10.1	9.6	9.0

Mean daily range of base-bars $11^{\circ} .0 \mathrm{C}$. and of standard $7^{\circ} .8 \mathrm{C}$.; the difference is due to the heavier protecting cover of the standard; also the epochs of maximum and minimum are later with the standard than with the base-bars; these relations are shown on Diagram 7, Illustration No. 32.

An examination of the Borda scale readings of the base-bars (mean value) showed that they lagged behind the corresponding (in time) readings of the standard, a fact which is explained by the position of the zine bar in the base apparatus where it lies between two steel bars, and is thus partly protected from changes of temperature; the Borda scale readings of the base-bars are therefore unreliable in consequeuce of the unequal temperature of the two metals composing the same. No use was made of them.

The observed lengthening of the base-bars with rise of temperature, as shown on Diagram 6, Illustration No. 32, would lead to the inference that the apparatus would be found shorter at the close of the base measure than at the leginning in consequence of the gradual lowering of the temperature, whereas direct comparisons with the standard showed no such effect (Diagram 4, Illustration No. 32). This behavior can only be explained by a molecular change in the zinc bars producing a shortening, and consequently making the base-bars longer. This is the same phe nomenon already noticed in other zine bars, confirming their liability to take up a new set or a succession of changes.

The length of the base-bars during the measure is determined as follows: For any one day it will depend on the morning comparison of the standard; to this is added differentially the diurnal range for the particular hour taken from the normal range, multiplied by a factor showing the ratio of the range of the temperature on the particular day to the normal range; all ordinates are thus multiplied with this ratio for the whole day. We have seen that before the base measure the nor. mal diurnal range was hardly perceptible (Diagram 5, Illustration No. 32), but during the second and partial third measure it developed into a constant sensible quantity (Diagram 6, Illustration No. 32). The simplest supposition that could be made was to suppose the change from one into
the other took place gradually and uniformly between October 5 and October 15, keeping the small observed daily range up to October 4, on which day the change appears to have commenced (Diagram 4, Illustration No. 32). A table was constructed of normal diurnal range for every day between October 4 and October 15, which thus comprises about one-half of the first measure of the base; atter this time the normal diurnal range remained constant. Only that part of the diurnal variation in the length of the apparatus is needed which falls between the hours of $7 \mathrm{a} . \mathrm{m}$. and p. m, and in order to smooth out the curve or to free it from effect of observing error it was expressed by an analytical formula, viz: $\mathrm{L}=l+x+y h+z h^{2}$, where $h=$ number of hours after $7 \mathrm{a} . \mathrm{m}$., and $L=$ resulting length of apparatus (the indices of the bars are not the same for the two epochs, the differential range only being required).

Day before base measure:

$$
\begin{array}{ll}
\text { Base-bar 1, } & \mathrm{L}_{1}=5 \mathrm{~m}+30.5-1.18 h+0.073 h^{2} \\
\text { Base-bar } 2, & \mathrm{~L}_{2}=5 \mathrm{~m}+121.2-1.85 h+0.060 h^{2}
\end{array}
$$

During second and partial third measure:

$$
\begin{array}{ll}
\text { Base-bar 1, } & \mathrm{L}_{1}=5 \mathrm{~m}+57.2+7.83 h-0.584 h^{2} \\
\text { Base-bar } 2, & \mathrm{~L}_{2}=5 \mathrm{~m}+320.8+13.23 h-1.051 h^{2}
\end{array}
$$

The observed and computed values for daily variation in length of bars are given in the following table; also the hourly differences from the values at 7 a. m., respectively, near which hour the bars are nearly stationary :

*Figares in this columan are to be used only for days between October 4 and October 14, or for the time of the second half of the firat meamare.

The method of finding the length of the base-bars is best illustrated by an example. Suppose it is required to find the length of an average bar October 10 , between the hours $1^{\mathrm{n}} 52^{\mathrm{m}}$ and $2^{\mathrm{L}} 22^{\mathrm{m}}$, between which time 22 bars were laid, or 11 with each measuring bar, twenty-two being the usual number united into a mean :

Range of temperature October $10,27^{\circ}-12^{\circ}=15^{\circ}$; normal range, $12^{\circ} .0$; ratio $=1.25$.
Normal daily range of length between $7^{\mathrm{h}} 38^{\mathrm{m}}$ a. m. and $2^{\mathrm{h}} 07^{\mathrm{m}}$ p. m., October 10, for
average bar, $14.8-2.8=+12$,

$$
\text { and } 1.25 \times 12=+15
$$

Length of average bar from comparisons at $7^{\mathrm{h}} 38^{\mathrm{m}}$ a.m., October $10 \ldots \ldots \ldots \ldots \ldots .5 \mathrm{~m}+196 \mu$

$$
\text { Resulting length . } 5 \mathrm{5m}+211 \mu
$$

In this way the whole of the base was computed.
THE MEASURE OF FRACTIONAL LENGTHS OF BASE-BARS.
These occur at the eud of the base and at intermediate stones placed in line of fences. In connection with these measures the following results are taken from the office computation:

Length of Brumner centremeter scale $=10001.0+0.178\left(t-20^{\circ} \mathrm{C}.\right)$ microns.
Value of one turn of micrometer microscopes A and B of Pratt's beam compass comparator $=83.25 \mu$ and of one division $=1.388 \mu$. No sensible difference between A and B .

Length of nickel-plated brass meter, $=1 \mathrm{~m}+17.76 \mu(t-3 \circ .50 \mathrm{C}$.
Length of transfer meters on steel rod, first $=1 \mathrm{~m}+11.2 \mu(t+90.78$ C.)

$$
\begin{aligned}
& \text { second }=1 \mathrm{~m}+11.2 \mu(t+130.780 .) \\
& \text { third }=1 \mathrm{~m}+11.2 \mu(t+130.17 \mathrm{O} .)
\end{aligned}
$$

Length of brass meter scale for fractional parts of a meter was found the same as the length of the nickel-plated meter, or $1 \mathrm{~m}+17.76 \mu\left(t-3^{\circ} .50 \mathrm{C}\right.$.)

The small ivory scale divided into half millimeters and used in transfers must be taken as sensibly correct.

HEIGHT OF THE YOLO BASE AND REDUCTION TO SEA-LEVEL.
The work of leveling the base-line and connecting the same with a bench-mark at Woodland was executed by Assistant Colonna in August, 1880, with the following results: Ground at Northwest base above ground at Southeast base, by first measure, 81.933 feet; by second measure, in opposite direction, 82.124 feet; mean, 82.028 feet, or 25.002 meters.

Also railroad engineers' bench-mark on California Pacific Railroad at Woodland above ground at Northwest base, from first measure, 94.759 feet; from second measure, in opposite direction, 94.740 feet; mean, 94.750 feet; or 28.880 meters. From levels by the railroad engineers this bench-mark at Woodland is 60.6 feet above mean low water at San Fravcisco Bay, and from our tidal observations (Coast Survey Report for 1862, page 97) we have the mean rise and fall about $4 \frac{1}{2}$ feet; hence bench-mark at Woodland 58.35 feet, or 17.785 meters abore the half-tide level of the ocean.

This gives for the height of Northwest base above mean tide-level 46.665 meters, and of Soitheast base 21.663 meters.

We have also the average height of the measuring bars above ground 1.25 meters.
If $l=$ length of a base-bar or of any part of the base,
$h=i t s$ elevation above the half-tide or mean sea level,
$\rho=$ radius of curvature in the direction of the line and for the latitude of its middle point, then the reduction to the sea level

And for the whole base

$$
\Delta l=l\left(-\frac{h}{\rho}+\frac{h^{2}}{\rho^{2}}-\cdots\right)
$$

$$
\Delta \mathrm{L}=-\Sigma \frac{l h}{\rho}+\Sigma \frac{l h^{2}}{\rho^{2}} \ldots
$$

The second term is inappreciable for the Yolo base. We have from Coast Survey Report for 1876, Appendix No. 18, for $\varphi=38^{\circ} 36^{\prime}$ and $\alpha=16^{\circ} 54^{\prime} \log \rho=6.803623$. With these data and
the result of the levels the reduction of the whole line to the sea-level was found to be - 68.055 millimeters, with the separate values for the subdivisions:

TABLE OF RESULTS OF MEASURE.
The following table contains the several results for distance between the kilometer stones, their resulting value, and the final result of the whole base, as computed by Mr. J. G. Porter,* of the computing division. These tabnlar results are reduced to the sea-level, and with them there are also given the differences from the mean value for each kilometer for the purpose of computing the probable error of the base measure. The second measure was in a direction opposite to that of the first; the third measure was evenly divided in regard to direction:

Kilo- meters.	First meas ure.	Second meas. ure.	Third meas. ure.	Mean.	Δ,	Δ,	$\lambda_{1 / \prime}$
	Mcters.	Meters.	Metcrs.	Meters.	$\begin{aligned} & \text { Mili:- } \\ & \text { meters. } \end{aligned}$	$\begin{aligned} & \text { Milli- } \\ & \text { meters. } \end{aligned}$	meters.
1	999.93857	999.93674	999.92230	999.93920	$+0.63$	$+2.40$	-3.10
2	999. 86546	909.86257	909.86442	. 86415	-1.31	+1.58	-0.27
3	909.91967	999.92053		. 92010	+0.43	-0.43	
4	009. 95517	999.95337		. 95427	-0.90	+0.60	
5	900.93661	999.93455		. 93558	-1.03	+1.03	
6	999.99326	999.99240		. 09283	-0.43	+0.43	
7	990.91055	909.91154		. 91104	$+0.49$	-0. 50	
8	999. 94847	999.95099		. 94973	$+1.26$	-1.26	
9	999. 90121	999.96586		. 96354	+2.33	-2. 32	
10	999.97348	909.97517		. 97432	$+0.84$	-0.85	
11	099.91185	999.90945		. 91065	-1.20	+1.20	
12	999.91450	999,91703		. 91576	+1.20	-1.27	
13	909. 93028	999.93114	909.93243	. 93195	-0. 33	+0.81	-0.48
14	999.95792	999.95412	999. 95857	. 95687	-1.05	+2.75	-1.70
15	999. 90340	909.89077	999.90253	. 90192	-1.54	+2.15	-0.61
10	909.87582	909.87270	009.87350	. 87404	-1.78	+1.34	+0.45
17	999.93622	999.93333	909.93454	399.93470	-1.52	+1.37	+0.16
(18)	487. 68351	487.67934	487.68100	487.68128	-2.23	+1.94	+0.28
Σ	17480.51801	17486. 50060	17486. 51193			

t Counted from Sontheast base monumeat.
It will be noticed that the effect of tne introauction of the third partial measure or of the third measure of 8 kilometers was to increase the mean of the first and second measures by only 2.6 millimeters; it is also apparent that the first mensure is 17.4 millimeters greater than the second; this may be regarded as accidental, since for some of the intermediate kilometer measures the first one is less than the second. The differences from the respective means are given in the columns headed $\Delta_{1} \Delta_{\prime \prime} \Delta_{\prime \prime}$; they keep fairly within a certain reasonable limit, and it is by these that the probable error of the base is computed, i. e., so far as this depends upon the pure measuring error.

These differences do not seem to have any reference to the average temperatures of the bars during the measures, as may be seen from the following table of average temperature for each kilometer:

$\begin{aligned} & \text { Kilo- } \\ & \text { meter. } \end{aligned}$	First measure.	Second measure.	Third measure.	Mean.	$\begin{aligned} & \text { Kilo- } \\ & \text { meter. } \end{aligned}$	$\begin{gathered} \text { First } \\ \text { measure. } \end{gathered}$	Socond measire.	Third. measure.	Mean.
	$=0$.	$\bigcirc 0$.	co.	\bigcirc		00.	$\bigcirc 0$.	$\bigcirc 0$.	$\bigcirc 0$.
1	23.9	18.3	13.0	18.4	11				
2	19.8	15.0	11.2	15.3	12	21.0	14.3	…-	17.6
3	20.3	17.2		18.8	13	21.9	20.2	9.7	17.3
4	24.5	16.5	20.5	14	24.1	19.3	6.6	16.7
5	21.7	16.7	\ldots	19.2	15	19.0	21.6	8.7	16.4
6	23.2	15.0		19.1	15	17.5	20.0	8.0	15.2
7	24.0	15.9		20.0	17	14.1	19.3	15. 2	16.2
8	17.8	17.4		17.0	18	10.9	17.7	13.2	13.9
9	17.3	15.0	16.2	Mean	20.1	17.3	17.5
10	19.2	14.8	\ldots	17.0					

Excepting the last 4 kilometers the temperature during the second measure was lower than during the first measure, but during the third measure it was considerably lower than during the second; the greatest difference of temperature occurred during the first and third measure of kilometer 14 , when it reached $17^{\circ} .5 \mathrm{C}$.; yet the results are not sensibly affected thereby, and it may be juferred in general that the value of the coefficient of expansion of the standard as determined at the office at Washington must be fairly correct.

Besides the kilometer stones there were also so-called "fence stones" or subdivisions of the line at the crossing of 9 fences, where they are better protected from the plow than in the open fields. The measures of these stones are given in the following table, computed in the same way as the kilometer stones:

Collecting these results, we have the distances of the several fence stones from Southeast base, as follows :

First	Meters. 886.5137
Second	2205.8751
Third	3896.3933
Fourth	6417.3389
Fifth	7271.9349
Sixth	10645.9334
Seventh	12399.0600
Eighth	14023.2506
Ninth	15718.2867

The differences from the mean $\Delta^{\prime} \Delta^{\prime \prime} \Delta^{\prime \prime \prime}$ have been added to show that they are of the same order of magnitude as the former difference $\Delta_{,} \Delta_{\prime \prime} \Delta_{\prime \prime}$ and would therefore lead to the same probable error of the measure.

DETERMINATION OF THE PROBABLE ERROR OF THE MEASURE OF THE BASE.
The probable error due to the measure proper, which includes contact error, transfer error (end of bar to the ground aud back to bar), error in measure of fractional parts of bars, errors in inclination, and in assigned length of the bars, \&c., is found by the formula :

$$
r_{1}=0.674 \sqrt{\left[\frac{\Sigma\left(\sigma_{,}-s_{j}\right)^{2}}{n_{i}\left(n_{1}-1\right)}+\frac{\Sigma\left(\sigma_{\prime \prime}-s_{I \prime}\right)^{2}}{n_{I \prime}\left(n_{I}-1\right)}+\ldots . \frac{\Sigma\left(\sigma_{\mathrm{i}}-s_{\mathrm{i}}\right)^{2}}{n_{\mathrm{i}}\left(n_{\mathrm{i}}-1\right)}\right]}
$$

Where $s^{\prime} s^{\prime} s^{\prime \prime \prime}$. . . are the several results of n measures of a section of the base and

$$
\sigma=\frac{s^{\prime}+s^{\prime \prime}+s^{\prime \prime \prime}+. .}{n}
$$

then the probable error r_{1} for the whole base of i sections is given by the above expression. We find r_{1} from the differences $\Delta_{,} \Delta_{\prime \prime} \Delta_{\prime \prime}$ which represent the values of $\sigma_{i}-s_{i}$

$$
r_{1}=0.674 \sqrt{22.97}= \pm 3^{\mathrm{mm}} .23
$$

In case of but two measures* of the base the above formula reduces to $0.337 \sqrt{\Sigma \delta^{2}}$ where $\delta=$ difdifference in the two measures of a section and $n=$ number of sections.

[^5]Combining in this way our triple measures we can form the following talule of length of kilometers:

$\begin{gathered} \text { Kilo- } \\ \text { meters. } \end{gathered}$	a_{3}.	$b 1$.	δ.	$\underset{\text { Kilo- }}{\text { meters. }}$	α_{3}.	b.	δ.	$\begin{aligned} & \text { Kilo- } \\ & \text { meters. } \end{aligned}$	at.	b.	δ.
	Meters.		$\begin{aligned} & \text { nithli- } \\ & \text { meters. } \end{aligned}$		Meters.		Millimeters.		Meters.		Milli. meters.
1	999.9398	. 9386	+1.2	8	999,9485	. 9510	-2. 5	15	999.9032	9007	+2.5
2	. 8651	. 8632	+1.9	9	. 9612	. 9059	-4.7	16	. 8751	. 8730	+2.1
3	. 9197	. 9205	-0.8	10	. 9735	. 9752	-1.7	17	. 9357	. 9337	$+2.0$
4	. 9552	. 9534	+1.8	11	. 9118	. 9094	$+2.4$	18	487,6826	. 6799	+2.8
5	. 9366	. 9346	+2.0	12	. 9145	. 9170	-2. 5	Σ	17486. 5168	. 5071	$+0.7$
6	. 9833	. 9924	$+0.9$	13	. 9323	. 9315	+0.8	Mean	17486. 5119		
7	. 9106	. 9115	-0.9	14	. 9581	. 9556	+2.5				

With the preceding probable error there needs to be combined the error arising from the trans fer of length from the standard to the base-bars. There are 86 comparisons of each bar with the standard and from those taken in pairs we have the means of finding the probable error of a single comparison in the field.

Let $d=$ observed difference between the results of the two corresponding sets as observed in the morning before the measure of the base commenced on that day, $n=$ number of such differences or days of observation,
$\mathrm{D}=$ mean difference, hence $\mathrm{D}^{2}=\frac{[d d]}{n}$ also $\mathrm{D}^{2}=2 e^{2}$ where
$e=$ mean error of an observation or of a set, then
$\varepsilon=\sqrt{\frac{d \bar{d}]}{2 n}}$
We have from 38 differences for bar $_{1} \quad e_{1}=\sqrt{\frac{2234}{76}}= \pm 5.4 \mu$
and from the same number of differences for bar ${ }_{2} \quad e_{2}=\sqrt{\frac{4158}{76}}= \pm 7.4 \mu$
hence the probable error of an average bar $\pm 6.4 \times \frac{2}{3}= \pm 4.3 \mu$
and for the mean of 172 comparisons $\pm 0.33 \mu$
hence for the whole base or 3497 arerage bars $\quad \pm 0.33 \times 3497= \pm 1^{1 \mathrm{~mm}} .16=r_{2}$.
In estimating the probable error of the base some allowance should be made for the effect of an uncertainty in the hypothesis adopted with regard to the change from no daily variation to a fixed daily variation in the length of the average bar ; our result depends on the assumption that the change from one into the other took place between October 4 and October 14 ; had we adopted September 18 instead of October 4 the result would have been a systematic greater value of each kilometer in the first measure as compared with the second, and the length of the first measure would have been $17486^{\mathrm{n}} .5499$ instead of $17486^{\mathrm{m}} .5180$, or 31.9 millimeters greater than the adopted value, the second measure and the third partial measure remaining the same. The probable error would also be raised from $r_{1}= \pm 3^{\text {min }} .23$ to $\pm 3^{\text {min }} .68$; the distribution of the daily variation over the greater interval is therefore injurious to the result and was abandoned. Its effect, however, on the whole length would have been an increase of $17486^{\mathrm{m}} .5269-17486^{\mathrm{m}} .5119=15^{\mathrm{mm}} .0$, and I propose to include one-third of this as an estimate of the uncertainty in question; hence $r_{3}= \pm 5^{\mathrm{mm}} .0$

We come next to the principal probable error, namely, tbat arising from the uncertainty in the length of the standard. It has been shown that its uncertainty is $\pm 2.1 \mu$, the effect on the base is consequently $\pm 2 \mu .1 \times 3497$ or $\pm 7^{\mathrm{mm}} .344$, which we put $=r_{4}$. There is also a minute error introduced through the uncertainty in the value of the expansion coefficient $57^{\mu} .47(t-170.07)$ The $\pm .21$
mean temperature of measure of the Yolo base is $17^{\circ} .5 \mathrm{C}$., so that the effect of but $0^{\circ} .4 \mathrm{C}$. is hardly noticeable; it amounts to $r_{5}= \pm 0^{\text {wm }} .3$

If we estimate the uncertainty in the leveling and in the height of the half-tide or average level of the sea at $\pm 0^{\mathrm{m}} .35$, we have a probable error in the reduction to the sea-level of $r_{6}= \pm 0^{\mathrm{mm} .94}$. The error due to imperfect alignment is inappreciable.

Collecting our separate values $r_{1} r_{2} r_{3} r_{4} r_{5} \quad r_{6}$ we have $r=\sqrt{ }[r r]= \pm 9^{\mathrm{mm}} .57$
This probable error of the computed length of the base of $\pm 9^{\operatorname{man}} .57$ in 17486.5119 meters is equivalent to $\pm \frac{1}{1} 827200$ part of the length, or when expressed in a more convenient form it equals ± 0.547 millimeters per kilometer, or what is the same (notation adopted in Clarke's Geodesy), it equals $\pm 0.55 \mu$ per meter. The probable error may also be stated as ± 0.035 inch per English statute mile; the length of the base being 10.8657 statute miles.

The probable error of the measure of the Yolo base, viz, $\pm 0.55 \mu$ may be compared with similar quantities reached heretofore in our primary base lines; they are given on page 131, Coast Survey Report for 1873 , and range from $\pm 2.44 \mu$ to 1.77μ (for the Atlanta or Peach Tree Ridge base, 1872-73, measured three times).

Addenda C and D contain some remarks on the probable errors of contact or coincidence of lines and of a transfer of bar-end to ground, or of the reverse operation.

FINAL LENGTH OF THE YOLO BASE.
$17486^{\mathrm{m}} .51193$

$\pm \quad .00957$ and its logarithm | 4.2427031885 |
| ---: |
| $\pm \quad 2377$ |

The probable error of the logarithm is checked by $\pm \frac{\Delta l}{l} \mathbf{M}$, where Δl, the probable error (in meters), l the length of the base, and M the modulus for common logarithms.

```
(A.)-Investigation of tHE permanency of the indications of borda scales fozmed
    OF ZINC AND IRON.
```

Although the metallic thermometers depending on the differential expansion of zinc and iron, which were used in connection with the Bessel base apparatus, apparently gave satisfactory results; doubts have been raised within a few years past as to the reliability of zine with respect to permanency of length and of coefficient of expansion after exposure to varying temperatures, artificial or natural. The question being one of importance, it is proposed to give in the following pages au account of the experiences gathered in comnection with the new base apparatus. Up to the present time our experience does not extend over more than two years, but it is proposed hereafter to examine at least the standard bars at suitable times, in order that experimental evidence may be had whether or not the bars ultimately attain that permanence of condition which would place their fitness for metallic thermometers beyond doubt.

Borda scales of the five-meter office standard.

We have from direct observations the following corresponding mean values of the mean of the two Borda scales or $\frac{1}{2}(\mathrm{~A}+\mathrm{B})$, and the mean temperature by corrected mercurial thermometers:

No.	Date.	$\frac{1}{2}(\mathrm{~A}+\mathrm{B})$.	Temp. by ther.
	1881.	Milli. meters.	${ }^{\circ} \mathrm{C}$.
1	April 22 to May 2.	7. 460	20.42
2	May 4.	7.416	19.17
3	Jane 15 to 16.	7. 616	22.97
4	June 18 to 20.	7. 677	24.11
5	June 21.	7.703	24.70
	1882.		
6	Fobruary 13 to March 3.	7. 268	16.91
7	May 22 to June 10.	7.479	21.40
8	June 20, 22, 26.	7.681	25.83
8	Auguet 25 to Septomber 4.	7.652	24.78
10	September 16 to 26.	7.498	21.81
11	October 14 to 25.	7. 316	18.18
12	December 11 to 16. 1883.	7. 095	13.85
13	January 15 to February 1.	7.023	12.67
14	February 1 to 28.	7.194	16.11

Ploting these values (see accompanying plate, Diagram 1) it became evident that a change took place in the index and expansion between the sixth and seventh series, or between March and May, 1882, at a time when the bar remained on the platform in the comparing room.

Taking means we have for first series $7{ }^{\mathrm{mm}} 524$ and $21^{\circ} .38$, now forming the respective differences between each result and the mean and changing signs when needed to make all values + , the sums are $0^{\mathrm{mm}} .846$ and $15^{\circ} .28$; hence change of Borda scale for change of $1^{\circ} \mathrm{C} .=0^{\mathrm{mmu} .0554}$

Similarly mean for secoud series, $7^{\mathrm{mm}} .367$ and $19^{\circ} .33$; change of scale for $1^{\circ} \mathrm{C}=0^{\text {imm }} .0510$

With these values we compute the temperatures corresponding to the observed Borda scales, whence the following comparisons in which B indicates temperature derived from Borda scale, and M from mercurial thermometer:

No	B.	M.	$M-B$.
	0	0	$0 C$.
1	20.33	20.42	+.09
2	19.43	19.17	-.26
3	23.04	22.97	-.07
4	24.14	24.11	-.08
5	24.61	24.70	+.09
6	16.76	16.91	+.15

No.	\mathbf{B}.	\mathbf{M}.	$\mathbf{M}-\mathrm{B}$.
	0	0	00.
1	21.53	21.40	-.13
2	25.49	25.83	+.34
3	24.92	24.78	-.14
4	21.90	21.81	-.09
5	18.31	18.18	-.13
6	14.00	13.85	-.15
7	12.59	12.67	+.08
8	15.94	16.11	+.17

Since we have proof that the steel bar remained unchanged, there must have occurred a molecular change in the zinc bars about April, 1882. In consequence of these bars taking a new set the index error changed 41 microns, the zine bars having become shorter and the coefficient of expansion smaller. Before and after the change the correspondence between the metallic and mer curial thermometers appears satisfactory, as shown in the columns $M-B$ in the above table.

Borda scales of the five-meter field standard.

For this bar we have the following corresponding mean values of the mean of the two Borda scales or $\frac{1}{2}(\mathbf{C}+\mathrm{D})$ and the mean temperature by corrected mercurial thermometers.

No.	Date.	$\frac{1}{2}(\mathrm{C}+\mathrm{D}$.	Temp.	No.	Date.	$\frac{1}{2}(\mathrm{C}+\mathrm{D})$.	Temp. by ther.
	1881.	Milli. meters.	${ }^{\circ} \mathrm{O}$.		1881.	Millimeters.	${ }^{\circ} \mathrm{O}$.
1	April 22 to May 2.	7. 516	20.50	15	October 17 to 20.	6.974	10.67
2	June 15, 16, 18 to 20.	7.700	23.60	16	Octobor 20 to 28.	7.088	13.34
3	Augnst 16 to 18.	7.460	19.90	17	October 28 to November 3.	7. 016	11. 61
4	August 18.	7.918	28.87	18	November 3 to 16.	6. 901	9.15
5	August 18 to 23.	7. 405	18.62	19	November 16 to 22.	6.635	4.13
6	Angust 23 to 26.	7. 563	22.00	20	November 22 to 23.	6.929	10.29
7	August 26 to 31.	7. 536	21.65	21	November 23.	6. 719	5. 89
8	August 31 to Soptember 2.	7.643	23.54	22	November 23.	6. 932	10.38
0	September 2, 3, 4.	7. 489	20.60	23	November 23 to 24.	6. 704	5. 59
10	September 16 to 17.	7.659	24.15	24	November 24.	6. 901	9. 60
11	September 18 to 19.	7.480	20.83		1883.		
12	September 19 to October 9.	7.271	16. 53	25	January 15 to February 1.	7.059	12.69
13	October 4 to 12.	7.161	14.21	26	Febraary 11 to 23.	7.265	16.98
14	October 12 to 17.	6. 090	11.18				

The two Diagrams, Nos. 1 and 2 show that the zinc bars were subject to two changes, the first between series 2 and 3 , or in July, 1881, when the field standard was transported by railroad to California, a journey of more than 3000 statute miles.

A second change took place in California after the natural temperature had reached its minimum of about 2° C. on November 21, 1881 (series No. 19 of the table). After this date the bars did not fully recover their leugth. Taking means as before we have:

First series, mean reading of scales, $7^{\mathrm{mm}} .608$; of thermometers, $22^{\circ} .05$ C.; change of scale for 1° C. $=.0594$

Second series, mean reading of scales, $7^{\mathrm{mm}} .306$; of thermometers, $17^{\circ} .12 \mathrm{C}$. ; change of scale for $1^{\circ} 0 .=.0522$

Third series, mean roading of scales, $6^{\mathrm{mm}} .928$; of thermometers, $100^{\circ} .200$; change of seale for $1^{\circ} \mathrm{C} .=.0485$

Table of comparisons of temperature of bar by metallic and mercurial thermometers.

No.	B.	M.	M-B.	No.	B.	M	M-B.	No.	B.	M.	M-B.	No.	B.	M	M-B.
	-	-			-	-	- C.		-	-	- C.		\bigcirc	\bigcirc	C.
1	20.50	20.50	\ldots	1	20.07	19.90	-. 17	9	20.64	20.93	+. 29	1	10.22	10.29	$+.05$
2	23.60	23. 60	\ldots	2	28.84	28.87	$+.03$	10	16.45	16.53	+. 08	2	5. 89	5.80	. 00
				3	19.02	18.62	-. 40	11	14.34	14. 21	$-.13$	3	10.28	10.38	+. 10
				4	22.04	22.00	-. 04	12	11.07	11.18	+. 11	4	5.58	5.89	+.09
				5	21.52	21.65	+. 13	13	10.76	10.67	-. 09	5	9.64	9.60	-. 04
				6	23.57	23.54	-. 03	14	12.95	13. 34	+. 39	6	12.70	12.69	-. 01
				7	20.62	20.60	-. 02	15	11. 57	11.61	+. 04	7	17.15	16.96	-. 19
				8	23.88	24.15	+. 27	16	9.36	9.15	-. 21				
								17	4.27	4. 13	-. 14				

As in the case of the first standard, with each change or shortening, the coefficient of expansion became smaller-the first shortening was 45 microns; the second 24 -and it is noteworthy that the bar suffered no change whatever on the return journey from the western to the eastern coast in October, 1882. In general we notice a tolerably fair correspondence between the metallic aud mercurial thermometers. The mean error or difference dednced from the above 38 cases* is

$$
\sqrt{\frac{\Sigma \Delta^{2}}{38-4}}= \pm 00.17 \mathrm{C}
$$

but we must be certain that the condition of the zinc bar remained unchanged. The mercurial thermometers alone were used for the determination of the length of the base-bars.

(B.)-Results of rough and preliminary values for lengtif of the yolo bast.

In August, 1880 , in connection with the spirit-leveling of the line, Assistant Colonna measured the length of the base by means of a 50 -meter steel wire under constant strain ; this wire he standarded by means of the 4 -meter secondary base-bars Nos. 3 and 4, and found for the length 17485.4 meters, a value about 1.1 meters in defect. The error amounts to $\frac{1}{160 \overline{0}} \mathbf{0}$ of the length, nearly.

A second wire measurement was made in September, 1881, by Assistant Gilbert, aided by Subassistants Blair and Dickins preparatory to the base measure with the 5 -meter bars, by means of which the wire was standarded. The wire was 100 meters in length, and, stretched with a constant force, the measure fell short of the true length of the base 0.6 meters, which is equivalent to $\overline{2} \varepsilon^{\frac{1}{0} \overline{0}} \overline{0}$ of the length, nearly.

The field compatation by Mr. Blair and Mr. Gilbert, made during the measure (and after the reduction to the sea-level had been applied), gave the length $17486^{m} .559$, only 47 millimeters in excess

The value used provisionally in the office computations up to this time (May, 1883) for the length of the base was that derived from the Pulgas base, south of San Francisco Bay, as measured by Assistant Outts in 1853, and brought forward throngh partly incomplete triangnation to the Yolo base, it was $17486^{\mathrm{m}} .36$; it exceeds the true length only $0^{\mathrm{m}} .35$ which is equivalent to $\frac{5}{5} \frac{1}{0} 0 \overline{0} 0$ of the length, nearly. Since all charts and maps in the vicinity of San Francisco and south of it to Monterey, as well as the preliminary computation of the triangulation extending across Nevada to the Utah boundary, depend for their scales and distances on the Pulgas base, it is satisfactory to have the assurance of the reliability of this old base.

(C.)-Probable error of "making contact" or of "coinomence of lines" of the contact slides of the base-bars.

Observations for the contact error were made at Washington June 15, 16, 1881, for bar 1, and June 18, 20, 1881, for bar 2. In these observations made in the comparing room the bar was left in position, bat repeated contact was made with one of the Bessel-Repsold screw-contact level comparators, the contact being made and broken in succession. A hand-glass of low magnifying power was used to establish coincidence of lines.

* On the average each case consists of a mean of 17 separate readings.

Base bar 1: From 120 observations made in 24 sets the sum of the squares of the differences from their respective mean was .02073 turns of micrometer. One turn of micrometer I equals 276.1μ, and of II, 276.3μ; hence

$$
e_{1}=\sqrt{\frac{.455 \times .02073}{120-24}}= \pm 0.0099 \text { turns }= \pm 2.73 \mu
$$

Base bar 2: From 120 observations made in 24 sets we have

$$
e_{2}=\sqrt{\frac{.455 \times .02473}{120-24}}= \pm 0.0108 \text { turns }= \pm 2.98 \mu
$$

These values of e_{1} and e_{2} include the error of making physical contact and of reading off the Bessel-Repsold comparators. This last probable error was found from 73 observations in 24 sets, for bar 1, equal to $\pm .0022$ turn or $\pm 0.61 \mu$, and from 73 observations in 24 sets (dates as above), for bar 2 , equal $\pm .0019$ turn or $\pm 0.52 \mu$; hence

Probable error of a coincidence of contact slide for bar $1 \quad \sqrt{(2.73)^{2}-(.61)^{2}}= \pm 2.66 \mu$.
Probable error of a coincidence of contact slide for bar $2 \sqrt{(2.98)^{2}-(.52)^{2}}= \pm 2.93 \mu$.
Mean or final value for probable error of "making contact" $= \pm 2.80 \mu$.
In the length of a kilometer it amounts to ± 39.6 microns, and for the whole Yolo base to $2.5013497= \pm 165$ microns-practically a vanishing quantity.

(D.)-Probable error of a "transfer of end of bar to ground or of the reverse operation."

An observation consists of a pointing on the end of the bar and then on the ivory half-millimeter scale on the ground, with the theodolite, say clamp north, and of the same operation with clamp south, in order to eliminate any defect in the horizontality of the axis of the sector or any defect in collimation. The fractional part of a scale subdivision is estimated; the telescope is set equidistant (or nearly so) from bar end and scale, and its focal adjustment answers for both objects. Before each observation the ivory scale is taken off and reset with its 20 -division mark over the line in the copper tack or bolt.

On September 8, 1881, in the camp near the middle of the base, 23 observations on four different parts of the scale were made by various observers; from these we find

$$
e= \pm 0.845 \frac{\Sigma \Delta}{n-4}= \pm 0^{\mathrm{cm} .010 \text { or } \pm 0^{\mathrm{mm}} .10}
$$

for the probable error of a transfer. The same amount is inv. ved in picking up the ground mark, hence, the whole probable error $\pm 0^{\mathrm{mm}} .14$ Supposing, as for the Yolo base, 18 working days for one measure of the line and that 18 double transfers are involved, the probable error arising would be

$$
0.14 \sqrt{18}=0^{\mathrm{mu}} .60
$$

a quantity small enough to be neglected.
In conclasion, I beg leave to add a few remarks relating to any futnre use of the base apparatus. Notwithstanding the small probable error reached in the measure of the Yolo base, and which I attribute in a great measure to the extreme care taken by the party in charge of the work, the fact brought out of the unexpectedly capricious and otherwise irregular behavior of the zine bars of the apparatus with respect to heat, renders it doubtful in my mind whether this form of the apparatus would not better be abandoned for either a partly compensating apparatas or a wholly uncompensated one. If we were to replace the zine bar of the apparatus by a brass bar, we sacrifice 50 per cent. of the compensation, but would probably not be confronted with irregularities which may be troublesome and possibly impracticable to deal with. On the other hand an uncompensated single steel bar put in the place of the present compound bar, if well protected against change of temperature, may lead to results not inferior to those already reached. Whatever may be decided on, I should recommend abandoning the Borda scales and not to neglect taking a comparison with the field standard at the beginning and close of each day's measure.

ERRATA.

[Appendix No. 12, Coast and Geodetic Survey Report, 1893.]
Page 309. In formula, line 13 from bottom, the ε in the term $\boldsymbol{n}_{1} \varepsilon$ dropped out in the press work.

Page 311. In last colnmn of table, for 2 p. m . the + sign is wanting.

Appendix No. 12.

RESULTS OF OBSERVATIONS FOR ATMOSPHERIC REFRACTION ON THE LINE MOLNT DIABLO TO MARTINEZ, CALIFORNIA, IN CONNECTION WITH HYPSOMETRIC MEASURES BY SPIRIT-LEVEL, THE VERTICAL CIRCLE AND THE BAROMETER, MADE IN MARCH AND APRIL, 1880, BY GEORGE DAVID. SON, ASSISTANT.

Reported by CHARLES A. SCHOTT, Assistant.

Coast and Geodetic Survey Office, Computing Division, June 5, 1884.

INTRODUCTION.

This important series of systematic observations, continued hourly day and uight, weather permitting, between March 21 and April 28, 1880, forms the third contribution of materials by Assistant Davidson for the study of the diurnal variation of the atmospheric refraction in connection with comparative hypsometric measures by different iustruments and methods. His first observations of this kind were undertaken in March, 1860, at Bodega Head and Ross Mountain, ou the coast of California; his second measures were made in September and October, 1879, at Round Top and Jackson Butte, on the western slope of the Sierra Nevada; and the present third series was executed in March and April, 1880, at Mount Diablo and Martinez East, south of Suisun Bay, distant about 50 kilometers (31 statute miles) from the sea-coast. The line passes over the northwestern slope of Mount Diablo, which is steep in the direction toward Martinez. With respect to climate, the region is of a character intermediate between that of the coast and that of the valley of the Sacramento and San Joaquin Rivers, the heat of the ralley being here tempered by the indow of cool air through the Golden Gate. The observers at Martinez East were: G. Davidson, aided by J. J. Gilbert, Assistant; the observers at Monnt Diablo were B. A. Colonna, Assistant, aided by J. F. Pratt, Sub-assistant. Martinez East is about 57 meters (or 187 feet), and Mount Diablo about 1173 meters (or 3849 feet) abore the arerage sea-lerel. To determine the relative position of the stations, a small triangulation was executed in 1880, by Assistant J. J. Gilbert, which depended for its linear measures on the side Goodyear to Island of the triangulation of Suisun Bay in 1864. The resulting geographical positions are as follows:

Distance Mount Diablo to Martinez East, $24260^{\mathrm{m}} .6$ or about 15.1 statute miles.
Between May 10 and May 26, 1880, Assistant B. A. Colonna connected the two stations by lines of spirit-levels, oue up, the other down the mountain. The office computation gave the results 3661.618 and 3661.864 feet ± 0.090 feet, hence the mean difference 3661.741 feet or 1116.09 meters ± 0.03 meter. The bench-mark at Martinez East was connected with the tidal bench-mark at the Benicia Arsenal, across the strait, by means of reciprocal and simultaneons vertical angles, measured May 27, 1880, at Martinez East, by J. J. Gilbert, and at the arsenal station by B. A. Colonua. The half-tide level is given by Assistant G. Bradford from six days' continuous tidal observations at Benicia, and checked by reference to a long series of tidal observations recorded at the Mare Is.
land gauge. From these data the Benicia Arsenal bench-mark was found to be 5.83 feet above the half-tide level of the Pacific, and the Martinez bench-mark 181.22 feet above the Benicia mark, hence Martinez East Δ above the average sea level 187.05 feet or 57.01 meters, and Mount Diablo Δ abore the average sea-level 3848.79 feet or 1173.10 meters. These heights refer to the surface of the ground at the triangulation stations.

In consequence of the large diurual inequality in the tides and the contracted volume of water in the Strait of Karquinas, I estimate the probable error of the hejght of the average sea-level not less than ± 0.15 meter.

The weather proved to be abnormally bad while the observations were being made, and the amount of rain which fell in the first twenty-three days of April (10.5 inches or 267 millimeters) is unprecedented, though the observations terminated before the close of the rainy season.

OBSERVATIONS OF DOUBLE ZENITH DISTANGES FOR THE MEASURE OF REFRACTION AND OF DIFFERENCE OF HEIGHT.

For the measure of the reciprocal and simultaneous zenith distances at the two stations, each observer showed when possible heliotrope light, and during the night lantern-light, for fifteen minutes before the full hour, and read the levels of his vertical circle, after which he observed three repetitions of double zenith distance followed by a second set; the levels were then read again, also the barometer, and other meteorological instruments. The two sets of zenith distances occupied from six to seren minutes, and the mean of the tro results will nearly gire the zenith distance of the opposite station at the full hour.

At Mount Diablo the sum would rise on March 21 st, by computation supposing the horizon unobstructed, about $5^{\mathrm{h}} 56^{\mathrm{m}}$, and on April 29 h about $5^{\mathrm{h}} 0^{\mathrm{m}}$; it would set on the first-named day about $6^{\mathrm{h}} 19^{\mathrm{m}}$ and on the last day of the series about $6^{\mathrm{b}} 55^{\mathrm{m}}$. At the lower station, Martinez Last, suurise would take place about 5^{m} later and suuset about the same difference earlier than at Mount Diablo.

At Mount Diablo the zenith distances were measured with (30 -centimeter) vertical circle No. 37 , made by Gambey ; it is graduated to 5^{\prime} and is read by four verniers to $3^{\prime \prime}$ each; value of one division of level $=3^{\prime \prime} .50$. The horizontal axis of the vertical circle, the center of the heliotrope, the center of the lens of the lantern, and the center of the target were 2.04 meters abore the top of the copper bolt or Mount Diablo station mark. Consequently all zenith distances (ζ) measured at Mount Diablo have to be diminished by $17^{\prime \prime} .34$, corresponding to a lorering of 2.04 metres; and the total correction to ζ when the Martinez East heliotrope was observed becomes

$$
-17^{\prime \prime} .34+11^{\prime \prime} .91-4^{\prime \prime} .79=-10^{\prime \prime} .22
$$

and when the lantern was observed

$$
-17^{\prime \prime} .34+11^{\prime \prime} .91-5^{\prime \prime} .86=-11^{\prime \prime} .29
$$

At Martinez East the zenith distances were measured with (25-centimetre) vertical circle No. 80 , made by Gambey; it is graduated to 5^{\prime} and is read by four veruiers to $3^{\prime \prime}$ each; value of one division of level $=3^{\prime \prime} .84$; but it appeared that the observer preferred to give less weight to one ${ }^{*}$ of his six measures, hence the value adopted $=3^{\prime \prime} .56$. A letter received from Assistant Davidson, dated San Francisco, September 3, 1883, gave the following information: Top of pier, 3.485 feet above surface of copper bolt which marks the height of the station; height of center of vertical circle above top of pier 1.110 feet, hence center of vertical circle above spirit-level bench-mark 4.595 feet, or 1.400 meters. We have, also, heliotrope below center of vertical circle $22_{1} \frac{3}{6}$ inches $=0.563$ meter, corresponding to an angular reduction of $-4^{\prime \prime} .79$, and similarly for the lantern 27.13 iuches $=$ 0.689 meter, or - $5^{\prime \prime} .86$, and for the day-mark target 20.19 inches $=0.513$ metre, or $-4^{\prime \prime} .36$; consequently, all \%'s measured at Martinez East need diminishing by $11^{\prime \prime} .91$.for lowering of 1.40 meters, and the total correction to \leftrightarrows becomes

$$
-11^{\prime \prime} .91+17^{\prime \prime} .34=+5^{\prime \prime} .43
$$

The following tables, I and II, contain all resulting zenith distances observed and reduced to the copper bolts or bench-marks at both stations.

[^6]Table I.-Zenith distances of Martinez East observed at Mount Diablo and reduced to station marks at both stations, Mareh and April, 1880.
$\zeta=92^{\circ} 43^{\prime}+$ tabular quantity expressed in seconds.

Hour.	Mar. 21.	Mar. 22	Mar. 23.	Mar. 20.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31.	Apr. 6.	Apr. 7.	Apr. 8.	Apr. 9.
A. M.													
1		30.1	24.5		34.8		...	30.4	14.4			36.3	20.7
2		20.2	26.0		40.3			26.5	14.0			28.1	30.9
3		30.2	22.0					26.6	19.2			29.6	30.9
4		26.9	21.5					26.8	24.1			30.9	35.4
5		26.6	20.4					25.1	[25.7]			32.2	39.6*
6		24.9	24.3	32.7			55	27.6					36.3
7		24.0	11.2	31.9			38.8	31.8					
8		26.7	[12.4]	40.0			35.0	30.4					
\bigcirc		27.7	[14.7]	42.9			36.2	30.4					
10	$\overline{39.7}$	30.3		42.7			41.0	34.4				$34.7 \times$	
11	34.7	31.9		43.5		36.6	41.6				40.2	39.5*
Yoon	38.0	37.1		42.2		47. 1^{*}	39.9	42.7				33.7	42.1
P. M.													
1	45.1	43.2	24.6	33.6		44.8	42.0	42.9			40.8	47.0	
2	45.5	45.3	19.7	42.5		45.0	[44.4]	45.9			47.0	46.2	
3	46.6	47.0	10.2	42.6		45.4	44.0	46.8			40.9	48.4	
4	48.0	46.6	42.7		44.4	46.1	47.9			39.6	45.5	
5	46.5	46.6	165	42.1			43.0	30.2			32.2	45.6	
6	37.2	38.7					[37.0]	33.2			27.9	37.5	
7	30.4	36.2	18.9	34.5			[35.6]	21.7			28.5	36.1	
8	26.8	34.4	\%27.1*	33.2			35.2	17.8		20.7*	28.1	38.9	
9	31.0	33.9	…n+."	33.6			[26.8]	13.8			30.4	34.4	
10	31.3	33.5	28.9			19.3	17.8			34.1	34.3
11	26.5	29.3		33.2			27.4	20.2			33.3	34.6	
Midn't	26.5	29.0		29.6			32.9	14.4			33.1	32.4	

Hoar.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18:	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27	Apr. 28	Apr. 29.
A. M.														
1		22.1	42.9				26.6	,	32.1	20.1	28.1	29.2	32.1	23.1
2		20.6	39.2				27.3		35.0	21.6	28.9	24.8	33.6	24.8
3		11.5					31.7		30.3	15.0	22.7	27.1	22.7	[23.8]
4		14.7	37, 2				33.9		34.0	10.9	24.8	24.0	17.1	25.4
5		29.3					329		28.5	19.0	21.2	25.9	20.2	26.3
6	20.0	33.3				35.9*	31.0		31.4	21.1	[26. 2]	26.6	24.0	26.6
7	12. 9	28.4	36.3		37.0	39.5	31.7		31.0	[18.8]	28.4	21.8	22. 4	27.2
8		25.6	38.9			39.6			35.5	19.4	25.4	28.1	22.5	28.0
θ	29.8	33.5				[41.9]			32.3	22.7	27.2	27.9	29.5	31.7
10	35.1	83.5				43.5			33.1	17.3	27.5	30.8	31.5	34.5
11	43.9	37.1	45.1*		42.0	45.5			39.4	32.6	[36.0]	38.1	38.3	37.1
Noon	40.8	47.9	44.9		42.4	48.6		47.0	49.0	30.6	41.7	37.5	37.3	32.1
P. M.														
1	47.1		48.3		44.2	42.9		47.0	50.1	34.1	45.0	36.6	41.1	32.5
2	40.8				44.4	45.2		48.0	50.3	33.3	48.7	46.8	51.4	33.2
3	40.2			46.6*		45.2		47.0	48.6	34.6	47.3	47.2	51.3	29.6
4	37.3		44.8		44.1		47.6	46.6	39.8	43.2	44.2	48.5	26.9
5	39.3			44.0		42.3		46.3	44.2	39.5	40.7	40.9	47.3	22.6
6	31.6					26.3		43.7	36. 2	33.2	30.7	36.8	48.4	24.4
7	30.6					31.2		33.1	23.3	28.7	21.8	33.1	41.5	28.1
8	30.8					30.2		34.9	23.3	26.7	25.9	29.6	38.4	25.2
9	33.9	36.0				31.1		33.0	26.8	21.4	21.9	32.0	33.7	
10	32.0	40.7				24.8		34.7	28.2	19.3	29.7	32.2	30.3	
11	12.4	40.3				29.5		32.1	18. 6	15.0	38.4	29.4	30.6	
Midn'川	20.6	41.2				29.5		31.5	18.8	23.8	26.3	27.5	27.7	

There were also observed April 4, at 9 a. m., $50^{\prime \prime} .4$; at $10 \mathrm{a} . \mathrm{m} ., 53^{\prime \prime} .2$, and April 5, at noon. $47^{\prime \prime} .3$.
Values marked by an asterisk (*) are omitted in the discussion for want of corresponding observations at Martinez East.
Values within rectangular brackets are interpolations explained further on.
The ahort horisontal bars include periode of 24 hours or multiples thereat.

Table II.-Zenith distances of Mount Diablo, observed at Martinez East and reduced to station marks at both stations, March and April, 1880.
= $=87^{\circ} 26^{\prime}+$ tabular quantity expressed in seconds.

Hour.	Mar. 21	Mar. 22	Mar. 23.	Mar. 26.	Mar. 27.	Mar. 28. Mar. 29.	Mar. 30.	Mar. 31.	Apr. 6.	Apr. 7.	Apr. 8.	Apr. 9.
A. M.												
1		36.4	34.3		54.9		52.0	59.7			44.0	39.2
2		20.5	29.4		58.4		51.5	59.0			46.7	33.2
3		20.7	24.8				49.3	58.2			49.2	31.3
4		21.1	30.1				48.4	63.0			47.6	43.6
5		20.2	43.0				40.3	(64.2)			48.3	
6		21.6	47.8	67.2		... [69.1]	51.9					39,5
7		28.3	40.3	70.4		... 71.4	56.4		$58.2{ }^{*}$			
8		34.6	[46.5]	73.6		71.6	69.6					
9		25.1	[48.9]	75.9		74.9	69.8		56. 8^{*}			
10	55.3	30.0		73.1		. 73.2	68.8					
11	64.6	43.1	63.0^{*}	72.3		70.7	701				71.6	
Noon	68.8	48.6		69.1	 76.3	70.7				74.0	52.2
P. M.												
1	70.0	57.2	66.6	72.7		$77.5 \quad 72.5$	74. 5			70.9	77.1	
2	68.8	60.8	68.6	71.6		76.0 [72.0]	79.3			70.6	75.6	
3	73.9	62.8	65.8	73.1		72.8 $\mathbf{7 0 . 5}$	77.9			72.8	75.7	
4	68.0	63.5	65. 8^{*}	72.4		73.5	74.5			71.6	73.6	
5	66.3	67.8	62.9	68.9		73.1	80.2			67.7	67.5	
6	57.8	64.7	$59.1{ }^{*}$... [67.7]	75.1			62.6	69.6	
7	50.8	51.6	60.7	61.6		[67.3]	70.3			50.1	66.4	
8	43.8	58.8		63.6		- 64.2	60.5			62.0	62.2	
9	42.6	43.3		61.2		. [61.0]	57.4			53.9	59.8	
10	30.6	43.3		55.8		59.2	59.0			48.7	44.8	
11	25.0	31.2		57.1		60.6	54.4			48.4	48.5	
Midn't	32.4	31.3		57.5		59.5	51.9			48.8	50.6	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28.	A pr. 20.
A. M.														
1		56.9	65.8				43.3		49.7	42.8	51.2	43.5	27.7	28.3
2		58.6	63. 8				52.8		49.9	42.3	49.7	33.5	33.5	27.7
3		57.5					56.3		33.8	42.1	45.8	32.1	26.0	[19.6]
4		50.0	65.8				60.1		49.8	42.0	52.5	24.8	30.0	16.6
5		59.5					62.5		49.7	44.2	46.2	31.7	26.4	24.1
6	52.0	63.9	$65.4 *$				61.4		43.5	47.9	51.2	37.1	30.2	30.5
7	50.1	59.0	66.0	71.7*	74.3	73.7	[56.0]		45.7	[48. 8]	60.4	39.4	[27.2]	32.5
8	63.8*	65.8	72.8			74. 5	54. ${ }^{*}$		58.5	53.5	60.7	54.4	28.1	36.8
9	68.4	73.3				[76.8]			64.5	63.6	60.3	54.1	33.4	36.2
10	73.2	75.2				78.3			68.7	61.6	65.6	60.4	41.3	28.1
11	76.8	77.8			76.8	78.1			69.2	67.4	69.9	62.4	48.7	37.2
Noon	76.2	78.0	72.5		78.1	77.2		81.6	74.4	68.8	72.8	55.7	60.0	46.6
1	79.6		74.8		77.5	78.0		83.8	77.7	67.4	70.9	53, 6	67.4	48.9
2	77.8		76.1*		78.2	75.6		82.8	76.6	68.6	72.8	64.0	73.6	57.8
3	77.5				74.4*	73.1		83.5	73.2	67. 6	74.7	67.0	73.4	57.8
4	75.0			73.1		74.3		83.6	72.7	71.0	70.4	64.3	69.4	56.2
5	76.2			73.6		69.5		79.3	79.8	68.5	70.8	60.2	68.6	58.6
0	73.0					67.6		72.2	75.8	63.4	59.4	50.6	59.4	46.8
7	71.7					64.9		65.2	68.8	59.8	54.0	46.5	51.6	42.1
8	68.5					62.7		55.6	45.8	60.5	57.8	41.1	41.2	45.2
9	70.0	65.3				57.9		48.1	49.3	48.2	55.1	42.0	38.6	
10	68.9	65.5				61.2		51.2	52.1	50.2	48.8	88.2	39.4	
11	58.5	655				56.8		48.3	40.0	51.8	40.4	84.3	40.6	
Midn't	00.8	64.3				54.4		45.5	44.4	49.4	41.1	31.8	85.1	

Values marked by an asterisk (*) are omitted in the discussion for want of corresponding observations at Mount Dinblo.
Falues within rectangular bracketa are interpolationa explainod further on.
The short horizontal bars include periods of tweaty-four hours or maltiples thereof.
The causes of the larger interruptions of the obserratione were the following: March 24 to 28 , Moant Diablo eapped by clonds, ratn, and snowentorme ; April 1 to 6, stormy weather, Mount Diablo in clouds; Aprl 14 to 17, heavy rain storma; April 20 to 23 , rain and ninow storma.

COMBINATION OF THE PRECEDING TABULAR ZENITH DISTANCES TO OBTAIN A HOMOGENEOUS SERIES OF HOURLY MEAN VALUES.

Before the tabular results could be conveniently submitted to combinatiou and disenssion, which in consequence of the breaks and irregular distribution of the observations would be a laborious task, they required to be molded into a systematic series of hourly values. Such a series must extribit the diurnal variation in ζ and in the angle of refraction as smoothly as the broken record will admit; the process, however, must involve nothing arbitrary, and must apply alike to the two stations. Were there no interruptions, the simple hourly means during the whole time of occupa. tion would give the series; we therefore first select the number of days of twenty-four consecutive (hourly) observations, irrespective of the hour of beginning; of such there are twelre, provided we first supply by interpolation a few gaps of one hour each, and in two cases of two cousecutive hours. These interpolated values are indicated in the preceding tables, and the begiuning and end. ing of each twenty-four hour period is shown by short horizontal bars. For interpolation of au intermediate hour comparison is made with the preceding, and, if practicable, also with the following hour throughout the series and the mean result is set down; thus to illustrate the principle let it be required to find $\boldsymbol{\sigma}$ for 8 a. m., March 23, at Mount Diablo: We hare the mean difference for the hours 7 and 8 from twelve days equal $+1^{\prime \prime} .2$, hence interpolated value $11^{\prime \prime} .2+1^{\prime \prime} .2=12^{\prime \prime} .4$; simi. larly mean difference for hours 8 and 9 from eleven days equal $+2^{\prime \prime} .3$, hence interpolated value for 9 a. m., $14^{\prime \prime} .7$. This series from twelve complete days is called the mean series, and the next step is to join to it all broken series, in order that every observation may be represented in the final valnes. This is readily done by referring all observations (not yet used) on any day to "the mean series," by comparing the respective means for homologous hours and applying the differ. ence of these means as a constant to every observation on that dar ; thus for March 23, the mean of the fourteen observed values (inclusive of the two in brackets) at Mount Diablo is $19^{\prime \prime} .1$, the mean for the same hours in the mean series is $31^{\prime \prime} .6$, hence correction to each of the 5 values on March 23 , between 1 and $7 \mathrm{p} . \mathrm{m}$., equals $+12^{\prime \prime} .5$. The referred values so obtaiued were tabulated and the sums and means were taken for each hour throughout the record, and consequently include the unchanged values belonging to the twelve complete days. Tables III and IV contain the mean series, the number n of days of observation at each hour, and the resulting homogeneous series for the two stations.

Table III.-Observations at Mount Diablo, California, March and April, 1880.
Resulting hourly series of zenith distances \mathbf{z}^{\prime} of Martinez East, $92^{\circ} 43^{\prime}+$ tabular seconds.

Hour.	$\begin{aligned} & 12-\text { day } \\ & \text { mean se- } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.	Hour.	$\begin{aligned} & 12 \text { day } \\ & \text { mean se. } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.
A. M.	"		"	P. AH .	"		"
1	26.1	16	26.3	1	48.1	20	41. 5
2	25.0	16	26.2	2	4.5	19	43.7
3	23.6	14	23.8	*	45.5	18	43.0
4	23.7	15	24.5	4	45.0	18	43.4
5	25.1	13	25.8	5	42.7	18	40.3
6	27.7	15	47.7	6	36.1	15	35.0
7	26.3	17	28.8	7	30.6	17	30.8
8	27.4	14	28.2	8	29.5	16	28.8
0	29.3	14	30.2	9	28.3	18	29.0
10	33.2	14	38.5	10	27.8	16	28.8
11	38.0	16	37.8	11	25.8	16	27.6
Noon	41.2	10	30.7	Mads't	25.7	16	27.2

Table IV.-Olservations at Martinez East, California.
Resulting hourly series of zenith distances ζ of Mount Diablo, $87^{\circ} 26^{\prime}+$ tabular seconde.

Hour.	$\begin{gathered} 12-\text { day } \\ \text { mean be } \\ \text { ques. } \end{gathered}$	n.	$\begin{aligned} & n \text { rlag } \\ & \text { resntiting } \\ & \text { serites. } \end{aligned}$	Hour.	$\begin{aligned} & \text { 12-day } \\ & \text { mean se- } \\ & \text { ries. } \end{aligned}$	\boldsymbol{n}.	n day resulting series.
A. M.	"		"	P. M.	"		"
1	43.7	16	43.9	1	70.8	20	69.9
2	42.4	16	42.8	2	72.8	19	72.1
3	39.4	14	39.7	3	73.0	18	72.4
4	41.5	15	42.8	4	71.6	18	71.2
5	42.7	13	42.8	5	71.7	18	70.3
0	40.3	15	40.9	6	05.6	15	65.4
7	47.1	17	50.1	7.	60.2	17	59.8
8	54.6	14	55.5	8	55.0	16	56.2
g	56.3	14	57.2	9	51.3	16	51.7
10	58.7	14	59.2	10	50.2	16	49.3
11	63.2	16	63.5	11	45.7	16	46.2
Noon	69.3	19	66. 9	Midn't	44.8	16	46.3

Diurnal variation in the angle of refraction. -In order to exhibit the angle of refraction at an ${ }^{\boldsymbol{y}}$ hour we need to know the true zenith distances at each station of the other; these we find by means of the expressions:

$$
\frac{1}{2}\left(z^{\prime}+z\right)=90^{\circ}+\frac{8}{2 \rho \sin 1^{\prime \prime}} \quad \frac{1}{2}\left(z^{\prime}-z\right)=\tan ^{-1}\left\{\frac{h^{\prime}-h}{s}\left(1-\frac{h^{\prime}+h}{2 \rho}-\frac{s^{2}}{12 \rho^{2}}\right)\right\}
$$

Where $z z^{\prime}=$ the true zenith distances in case of no refraction,
$h h^{\prime}=$ the leights above sea-level, of the lower and upper stations or $h=57^{\mathrm{m}} .01$ and $h^{\prime}=1173^{\mathrm{m}} .10$
$s=$ linear distance at the sea-level between the two stations, $\log s=4.3840011$
$\rho=$ radius of currature to the earth's surface for the middle latitude of the stations and for the azimuth of the line of junction.
We have for Clarke's spheroid with $\varphi=37^{\circ} 57^{\prime}$ and $\alpha=129^{\circ} 16^{\prime}$
$\log \rho=6.504518$
bence with h and h^{\prime} as given by the spirit-level

$$
\begin{gathered}
z^{\prime}=92^{\circ} 44^{\prime} 33^{\prime \prime} .89=\text { true zenith distance at Mount Diablo, } \\
z=87 \quad 28 \quad 30 \quad .99=\text { true zenith distance at Martinez East; }
\end{gathered}
$$

hence the angles of refraction $\triangle z^{\prime}$ and $\triangle z$ or the difference of the true and apparent zenith distances, become

$$
\begin{aligned}
& \triangle z^{\prime}=z^{\prime}-\zeta^{\prime} \text { at Mount Diablo, } \\
& \triangle z=z-\zeta \text { at Martinez East. }
\end{aligned}
$$

The numerical ralues are given in Table V.
Diurnal variation in the coefficient of refraction.-For the computation of the coefficient of re fraction m we have the simple expressions for the upper and lower station:

$$
m^{\prime}=\frac{\Delta z^{\prime}}{\psi} \text { and } m=\frac{\triangle z}{\psi}
$$

and for the mean coefficient

$$
m_{0}=0.5-\frac{z+z^{\prime}-180}{2 \psi}
$$

where $\psi=$ horizontal distance expressed in angular value or

$$
\psi=\frac{8}{\rho \sin 1^{\prime \prime}}=784^{\prime \prime} .89
$$

The numerical values of m^{\prime}, m, m_{0} are given in Table ∇.

Resulting difference of height of the two stations depending on the measured zenith distances and diurnal variation of error of computed height.-The difference of height deducible from zenith dis. tances is given by

$$
\Delta h=h^{\prime}-h=s \tan \frac{1}{2}\left(\zeta^{\prime}-\zeta\right)\left[1+\frac{h+h^{\prime}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}\right]
$$

the numerical value of which is given for each hour in Table V.
Table V.-Diurnal variations in the angle of refraction, in the cocficient of refraction and in error of computed difference of height.

In the above table an asterisk (*) indicates a maximum and a dagger (\dagger) a minimum value.
From the contents of this table we arrive at the following conclusions: First, in regard to the angle of refraction. This angle, for all hours of day and night, is larger at the lower station than at the upper station, which is in conformity with the increased deusity of the air at the lower station. The difference is a maximum at 3 o'clock a. m., or at a time preceding the coldest part of the day by one or two hours, and the difference is a minimum at 6 oclock p. m., appareully following the warmest part of the day by three or four hours. The diurnal range of the angle of refraction is less at the upper station $\left(19^{\prime \prime} .9\right)$ than at the lower station ($33^{\prime \prime} .7$). The same laws necessarily hold with respect to the coefficient of refraction, $i . e$. , at the lower station we have the greater coefficient and greater daily range; at the upper station the smaller amount and less variation. Maximum value of coefficient about $3 \mathrm{a} . \mathrm{m}$., and minimum ralue abont $2: 30 \mathrm{p}$. m., closely approximating to the epochs of the diurnal extremes of temperature. At Bodega Head and Ross Mountain, California,* the refraction was a minimum as early as $10 \mathrm{a} . \mathrm{m}$., and for the greater number of hours during darlight the angle of refraction was larger at the upper station than at the lower one-facts which we now recognize as local and temporary anomalies. At Ragged

[^7]Mountain,* Maine, the refraction was near a minimum throughont the hours $10 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$., and the observations (as yet unpublished) at Round Top and Jackson Butte, California, give a minimum refraction at $2: 30 \mathrm{p} . \mathrm{m}$. With respect to the computed difference of height, we find it too great, as compared with the true difference given by the spirit-level for all hours of the day and night, but less in excess during the day (1.58 m . at $6 \mathrm{p} . \mathrm{m}$.) and more during the night hours (2.42 m . at $3 \mathrm{a} . \mathrm{m}$.). This may be traced to the erroneous assumptions, involved in the formula, of equal angles of refraction at the stations, and of considering the line of sight as part of an are of a circle instead of assigning to it a shorter radius of curvature toward the lower station, where it is more bent than at the opposite end. The hourly excess of computed over true height follows the same law as the hourly excess of the angle of refraction at the lower over that of the upper station.

The leading numbers of Table V are shown graphically on accompanying plate.
For further discussion of our data, we need the meteorological observations made in connection with the zenith distances; these are contained in the following pages:

Metcorological record at Mount Diablo, March and April, 1880.-The barometer used was Qreen, No. 1357; its cistern was in the same horizontal plane as the copper bolt marking the station. On several occasions the instrument had to be taken for safety to a sbelter $4 \frac{1}{2}$ feet below the mark, for which the corresponding correction is - . 004 inch. Index correction from March 21 to March 23, inclusive, - .003 inch. During the stormy days of the 24 th and 25 th moisture got into the cistern, and, after cleaning the instrument on the 26th, the index correction was found to be +.092 inch, depending on comparisons made at San Francisco after the return of the party. There is no reference to any correction to readiugs of attached thermometer. The two thermometers, Nos. 447 and 448 , are said to have no index correction; one of these was used for dry, the other for wet bulb. There was also a boiling point apparatus, C. S. No. 3, placed 2 meters below the station mark. All the meteorological instruments were hang in a wooden box, with sides of lattice work, roofed in, and large enough for an observer to crawl in from underneath. The bulbs of the thermometers were exposed to the surface radiation within the open structare The wind and state of the atmosphere were noted.

Meteorological record at Martinez East, March and April, 1880.-The barometer used was Green No. 2017 (of Smithsonian pattern); when taken from San Francisco it had an index correction of +0.063 inch as compared with the Signal Service barometer. Its cistern was $24 \frac{3}{4}$ inches, or 0.629 meter below the axis of the vertical circle, hence 0.77 meter above station mark, and its reduction is +.003 inch. There is no information respecting index corrections to any of the thermometers at this place. The wet and dry bulb thermometers, by J. Green, were placed in the north-northwest side of the observatory and protected as far as practicable from the effects of radiation. They were read from the inside through a pane of glass, which, in case of little or no wind, was moved aside to permit circulation of air. The boiling. water thermometer, No. 16017, by J. Green, was placed in the north-northwest corner of the observatory, with its bulb $26 \frac{1}{2}$ inches below the axis of the vertical circle. A solar radiation thermometer was placed in a box south of the observatory and $2 \frac{1}{2}$ feet above ground; a minimum thermometer was on the north side of the building, 6 inches above the surface of the ground.

Tables VI and VII contain the results of all observations made for atmospheric pressure; Tables VILI aud IX the resilts of all observations made for atmospheric temperature, and Tables X and XI the record for atmospheric moisture.

[^8]Table V I.-Atmospheric pressure observed at Mount Diablo, Mareh and April, 1880.
Mercarial column rednced to temperature $0^{\circ} \mathrm{C}$.; corrections for index error and reduction to station mark are applied. The obserrationa were generally taken about ten minutes after the full bour. The short horizontal bars indicate the same periods of twenty fuur honrs or multiples thereof as explained in correction with the observations of the zenith distances. Values in parenthesis are interpolated.

25 inches + tabular quantity.

Hoar.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28.	Apr. 29.
A. m.														
1		1.246	1.130				1.178		1.246	1. 191	1.190	1. 176	1.129	1. 149
2		1.243	1. 120				1. 172		1. 241	1. 177	1. 193	1.163	1. 124	1. 136
3		1. 248					1.184		1.232	1. 174	1. 182	1.159	1.130	(1.150)
4		1. 255	1. 136				1.744		1. 229	1. 170	1.179	1.153	1.133	1. 140
5		1.258					1. 164		1. 225	1. 172	1.188	1.146	1. 131	1. 128
6	1. 201	1. 264				1.113	1.170		1. 238	1. 176	(1.204)	1. 158	1.138	1. 141
7	1.216	1. 268	1.116		0.837	1.123	1.158		1. 249	(1.183)	1.211	1. 157	1.147	1. 154
8		1. 267	1.111			1.144			1.263	1. 200	1. 216	1.158	1.150	1.164
9	1. 239	1. 270				(1.171)			1. 264	1. 200	1.216	1.170	1.166	1.177
10	1.203	1. 265				1.194			1.276	1. 211	1. 229	1. 174	1.174	1. 181
11	1.258	1. 207	1. 129		1.014	1.205			1.276	1.215	(1.227)	1.176	1.177	1.193
Noon	1.257	1. 258	1.103		1.013	1. 213		1. 275	1.270	1.212	1. 225	1.177	1. 172	1. 203
1	1.245		1.078		1.001	1. 214		1.262	1.269	1. 214	1. 228	1. 177	1. 174	1. 191
2	1. 242				1.010	1. 218		1.263	1. 262	1.209	1. 226	1.169	1.166	1. 186
3	1. 230			149		1. 222		1. 268	1. 244	1. 200	1.213	1.159	1. 157	1. 183
4	1. 233			1.147		1.219		1. 265	1.235	1. 200	1.207	1.159	1. 149	1. 181
6	1.228			1.126		1.210		1. 262	1.225	1.192	1. 199	1.143	1. 136	1. 170
6	1. 425					1.209		1.263	1. 219	1. 182	1. 102	1. 137	1.138	1. 171
7	1. 224					1.216		1.282	1. 223	1. 185	1. 197	1. 141	1.152	1. 169
8	1. 235					1. 228		1.287	1. 227	1. 198	1. 199	1.154	1.162	1. 185
g	1.239	1.161				1.228		1.292	1.225	1. 204	1. 215	1. 157	1.168	
10	1. 297	1. 150				1.211		1. 278	1. 220	1. 206	1. 198	1. 147	1.160	
11	1.244	1.145				1. 206		1.278	1. 213	1. 204	1. 193	1.148	1.174	
Midn't	1. 252	1.185				1.188		1. 267	1. 206	1. 203	1.188	1. 147	1.167	

The following additional observations were made: April 4, 9 a. m., 1.222; 10 a. m., 1.229 and April 5, noon, 1.157.
S. Ex. 29-38

Table VII.-Atmospheric pressure observed at Martinez East, March and April, 1880.

[^9]29 inches + tabular quantity.

Hour.	Mar. 21,	Mar. 22.	Mat. 23.	Mar. 26.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31	Apr. 6.	Apr. 7.	Apr, 8.	Apr. 9.
A. M.													
1		0.980	0.793		1.085			1.056	1.027			0.923	0.895
2		0.968	0.778		1.069			1.052	; 011			0.925	0.888
3		0.855	0.779		1.051			1.045	1.005			0.922	0.875
4		0.957	0.780		1.022			1.050	0.979			0. 921	0. 875
5		0.962	0.802					1.065	0.980			0.921	0.863
6	1. 093	0. 973	0.811	1.091			(1.029)	1.086	0.994			0.964	0.857
7		0.959	0.820	1.096			1.042	1.098	0.992				0.893
8		0.961	0.827	1.111			1.053	1.110	0.991				0.891
9	1.119	0.975	0.814	1. 180			1.067	1.110				0.952	0.875
10	1. 107	0.978	0.834	1.171			1.068	1.113				0. 987	0.842
11	1.098	0.950	0.821	1. 176			1.059	1. 103			1.016	0.955	0.848
Nom	1.089	0.912	0.810	1. 188			1.057	1.096			0.092	0.947	0.822
F. M.													
1	1.055	0. 892	0.804	1. 182		0.887	1.055	1. 085			0.976	0.935	
2	1. 029	0.852	0.802	1.156		0.862	1.046	1.071			0.948	0.805	
3	1.006	0.832	0.787	1.136		0.864	1. 026	1. 053			0.920	0.880	
4	0.986	0.821	0.785	1. 131	0. 891	1.0	1. 050			0.903	0.876	
5	0.995	0.793	0.777	1.143		0.891	1.027	1.057			0.908	0.853	
6	1.002	0.807	0.756	1.137		0.907	1. 038	1. 064			0.922	0.863	
7	0.976	0.802	0.769	1.130			(1.042)	1. 062		1. 035	0.922	0.832	
8	0.991	0.811	0.759	1. 122		0.898	1. 045	1. 089		1. 039	0.918	0.842	
9	1.004	0.826	0.759	1. 138		0.899	1. 055	1. 050		1. 041	0.926	0.868	
10	0.989	0.824	0.757	1.123		0.928	1.048	1. 047		1. 049	0.939	0.873	
11	0.988	0.819	0.737	1.109			1. 065	1.039			0.942	0.907	
Midn't	0.979	0.805	0.739	1. 095			1.048	1.032			0.944	0.910	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28.	Apr. 20.
A. M.														
1		1.016	0.912	0.807			0.991		1. 010	0.922	0.943	0.882	0.785	0.772
2		0.909	0.913	0.805			0.986		1.019	0.904	0. 954	0.852	0.781	0.768
3		1.010	0.885	0.823			1.000		1.015	0.895	0.931	0.851	0.791	0.783
4		1.000	0.876	0.819			0.957		1. 004	0.917	0.944	0.853	0.793	0.761
5		1.012	0.875	0.849			0.864		1. 006	0.029	0.949	0.857	0.780	(0.760)
6	0.972	1.023	0.879	0. 858		0.968	0.971	1.038	1. 017	0.934	0.966	0.882	0.830	0.780
7	0.978	1.030	0.893	0.890	0.750	0.959	(0.959)	1.062	1. 020	0.925	0.962	0.882	0.825	0.800
8	0.987	1.017	0.870	0.893	0.766	0.964	0.970	1.041	1.020	0.948	0.954	0.879	0. 821	(0.804)
9	0.972	1.022	0.874	0.932		0.991		1.076	1.039	0.976	0.962	0.877	0.814	0.808
10	1.018	1.022	0.837	0.938		1. 014		1. 074	1. 019	0.959	0.873	0.846	0.818	0.808
11	(1.010)	1. 011	0.861	0.937	0.798	1.011		1.078	1. 036	0.955	0.962	0.838	0.813	0.804
Noon	1.009	0.988	0.817	0.834	0.773	1.005		1. 066	0. 988	0.953	0.936	0.821	0.791	0.795
P. \mathbf{M}.														
1	(1.004)	0.068	0.789	0.935	0.807	1. 027		1. 046	0. 894	0. 937	0.819	0.826	0.776	0.785
2	1. 002	0.935	0.795	0.957	0. 796	1.007		1.035	0.967	0.905	0.908	0.824	0.762	0. 785
3	0. 984	0.939	0.781	0.957	0.789	1.021		1.032	0.947	0. 207	0. 898	0.785	0.737	0.772
4	0. 981	0.936	0.782	0.922	0.777	1.018		0.997	0.829	0.895	0.895	0.782	0.727	6.774
5	0. 986	0.933	0.790	0.934	0.774	1.018		0.999	0.934	0.898	0.882	0.778	0.724	0.778
0	0.991	0. 943	0.793	0.937		1.024		1.001	0.021	${ }^{0} 0.812$	0. 889	0.783	0.734	0.772
7	0.989	0.907		0.965		0.995		1.010	0.937	0.928	0.886	0.774	0.741	0.817
8	0. 295	0.915	0.806	0. 953		1.056		1.028	0.925	0.925	0.880	0.767	0.746	0.820
9	1. 005	0.920	0.811	0. 951		1. 033		1. 033	0.927	0.943	0. 888	0.783	0.754	0.860
10	1. 021	0.977	0.795			1. 022		1.029	0.928	0.827	0.803	0.783	0.777	
11	1. 022	0.976	0.825			1.010		1.033	0.928	0.936	0.883	0. 784	0.803
Midn't	1.022	0.923	0. 803			1.013		1. 003	0.932	0.857	0.875	0.786	0.778	

Table VIII.-Atmospheric temperature observed at Mount Diablo, March and April, 1880.
The tabular values are expressed in degrees of Fahrenhelt's scale. No correction is required. Falues in parenthesis are interpolated.

Hoar.	Mar. 21.	Mar. 22.	Mar. 23.	Mar. 26.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31.	Apr. 6.	Apr. 7.	Apr. 8.	Apr. 9.
A. M.	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	0	-	-	\bigcirc
1		48.5	49.0		30.5			25.5	33.7			49.4	52.5
2		48.8	48.4		30.5			26.5	34.5			50.4	52.6
3		48.4	48.2					25.4	36.6			49.3	52.0
4		47.6	48.0					25.5	36.5			49.6	52.5
5		50.0	48.0					25.4	(36.3)			50.5	48.5
0		51.4	46.8	25.9			25.5	26.4					50.5
7		57.0	47.8	20.5			26.5	28.7					
8		61.0	(50.8)	27.5			28.5	33.5		44.8			
8		63.4	(52. 3)	29.0			29.8[7]	36.5	39.0				
10	54.8	64.0		30.6			32.5	39.5	41.5			54.5	
11	57.8	63.5		34.5			32.2	42.3				53.6	50.0
Noon	61.8	63.5		34.0		32.5	37.4	44.5	43.7			50.0	52.1
P. M. 1	60.1	$63.3{ }^{\circ}$	47.8	33.0		34.0	39.0	44.0			60.0	59.9	
2	58.0	63.8	45.1	36.0		35.4	33.0	42.2			56.9	59.9	
3	58.1	61.8	41.8	36.3	34.8	34.0	43.0			56.0	57.9	
4	55.6	62.0	40.8	34.6		32.3	32.2	41.4			55.9	58.0	
5	53.2	56.9	38.8	32.4		32.0	32. 2	36.1			53.7	58.0	
6	51.0	52.1	40.3				32.0	37.3			52.8	56.3	
7	50.0	51.8	39.8	31.8			(30.0)	37.4			52.1	56.5	
8	50.0	51.6	34.0	31.1			28.0	35.0			52.0	55.8	
9	49.0	51.2		31.3			28.0	37.8			51.8	56.1	
: 10	49.8	50.0		31.3			26.7	35.5			51.4	54.8	
11	49.4	49.9		31.0			26. 9	37.0			51.8	53.2	
Midn't	48.9	49.8		30.9			27.2	34.9			51.0	53.3	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28.	Apr. 28.
A. M.	-	-	-	-	-	-	-	-	-	0	\bigcirc	-	-	\bigcirc
1		37.0	33.5				30.5		38.0	46.8	44.9	48.5	54.0	59.8
2		40.5	32.5				30.6		38.3	46.0	44.0	48.8	52.8	59.5
3		41.2					30.4		37.9	46.9	43.0	49.0	52.2	(58.4)
4		41.8	32.5				30.0		37.2	44.2	43.2	49.5	49.8	57.0
5		39.2					32.0		36.0	44.9	41.9	48.8	50.8	57.2
6	43.5	39.6				27.0	31.2		38.9	47.2	$(42,3)$	50.0	54.0	57.9
7	45.0	40.5	34.0		29.0	27.5	31.5		40.9	(49.6)	44.9	52.0	60.9	60.3
8		42.5	36.3			29.5			46.0	52.4	48.8	52.7	64.7	64.7
9	48.8	46.2				(32.2)			47.6	52.3	52.3	54.2	63.8	64.3
10	45.2	51.6				35.0			47.7	52.1	57.3	57.8	65.6	69.2
11	49.7	51.5	37.5		36.0	35. 6			51.0	51.7	(57.0)	61.2	63.1	69.8
Noon	48.5	49.2	38.5		32.5	35.5		40.0	53.9	55.0	577	62.1	66.1	62.8
$\begin{gathered} \text { P. M. } \\ 1 \end{gathered}$	45.0		39.0		32.0	37.8		43.0	53.8	52.6	57.3	63.2	65.2	65.0
2	46.4				31.8	35.4		43.3	54.2	53.9	57.1	62.8	62.6	65.4
3	45.3			34.0		35.2		44.0	54.8	54.9	56.1	62.1	61.8	64.9
4	46.9			33.9		34.0		43.9	50.3	49.8	54.9	60.2	61.5	65.9
5	43.2			32.0		33.8		43.2	47.8	48.2	52.8	56.2	64.6	64.0
6	40.0					32.2		42.0	47.0	45.0	49.0	54.8	60.8	61.8
7	39.8					31.5	39.1	47.0	41.8	46.5	55.8	57.8	60.0
8	36.9					31.0		38.6	46.1	42.9	48.0	53.5	56.8	59.0
0	34.9	34.8				31.0		38.1	45.8	45.0	47.0	54.6	56.0	
10	35.6	33.6				30.5		39.0	45.5	44.1	49.0	54.6	56.2	
11	38.7	33.0				31.4		39.5	46.0	44.9	48.2	54.2	58.0	
Midn't	88.6	33.0				31.1		39.2	47.2	44.5	48.0	54.0	59.0	

Table IX.—Atmospheric temperature observed at Martinez East, March and April, 1880.
The tabalar values are expressed in degrees of Fahrenheit's scale. No correction is required. Values in parenthesis are intorpolated Observations on March 24 and 25, and on April 4 and 22 not tabulated.

Hour.	$\text { Mar. } 21 .$	Mar. 22.	Mar. 23.	Mar. 26.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31.	Apr. 6.	Apr. 7.	Apr, 8.	A pr. 9.
A. M.	-	-	\bigcirc	-	-	-	\bigcirc	-	-	\bigcirc	-	-	-
1		45.5	44.8		43.9			39.9	45.9			52.2	$52^{\circ} .8$
2		44.2	42.4		45.2			39.7	45.5			51.9	52.8
3		43.6	42.6		44.8			39.7	45.5			51.1	53.6
4		41.5	42.7		47.3			38.2	45.9			50.7	53.7
5		41.3	43.4		45.9			38.6	46.0			51.3	53.3
6		41.6	42.8	40.8	43.8		(39.2)	38.1	45.8			49.4	58.9 [7]
7		43.0	44.8	43.5			41.3	40.1	45.9				53.8
8		44.8	46.7	45.1			44.2	41.8	47.6				55.8
9	.-..	47.7	47.5	48.2			46.6	44.8	49.0			58.8	55.6
10	49.2	48.6	48.8	49.3			47.9	46.7	52.3			61.8	58.0
11	55.6	51.4	51.0	50.1			47.9	48.8	54.3		56.9	66.0	61.4
Nom	58.7	55.6	53.0	51.2			49,3	51.0	56.3		60.3	68.7	58.2
P. M.													
1	63.2	60.1	54.2	53.0	53.0	51.1	53.0	56.7	58.9	68.8	
2	65.3	61.0	55.8	53.2		53.8	53.6	53.2	55.3		61.8	68.9	
3	68.9	64.8	54.8	53.8		52.8	54.2	56.3	54.9		62.6	71.1	
4	63.6	64. 2	53.1	51.4		52.1	53.2	56.1	55.9		. 63.5	68.7	
5	62.7	63.7	51.7	49.7		49.1	49.8	52.4	54, 2		62.1	67.7	
6	58.7	59.2	48.6	48.3		47.0	47.7	47.9			56.5	67.9	
7	57.0	56.3	46.6	45.2			(44.3)	45.7		49.8	55.0	65.0	
8	55.8	51.9	46. 9	45.5		43.2	43.2	44.8		49.6	55.5	63.7	
9	51.6	50.2	47.2	45.3			42.3	44.3		48.9	54.8	61.7	
10	49.1	48.4	48.6	44.8			41.6	45.1		48.4	53.8	54.7	
11	48.5	46.7	48.9	43.6			41.6	44.9			52.7	53.3	
Midn't	46.2	45.9	48.6	43.2			40.6	45.2			53.2	53.4	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28	Apr. 29.
A. M.	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc	-
1		46.7	48.5	43.9			41.1		49.8	45.9	46.3	49.6	49.8	51.1
2		46.0	49.1	43.6			41.9		47.8	45.8	46.8	49.2	49.2	50.0
3		48.5	48.6	41.8			42.3		47.8	45.3	45.5	48.3	48.4	49.3
4		47.2	49.8	41.8			43.3		45.9	44.8	46.2	46.9	46.3	49.3
5		48.2	50.5	42.4			45.1		45.3	45.5	45.6	47.7	45.7	49.2
6	43.8	48.3	49.6	42.5			44.7	42.3	47.1	46.5	47.2	48.3	47.0	49.4
7	47.2	50.0	51.8	44.9	42.8	42.4	(45.0)	45.3	51.2	49.9	51.4	50.8	49.2	62.2
8	48.4	52.3	52.7	48.0	44.0	44.8	43.6	47.3	53.8	53.4	55.1	52.7	51.7	53.9
9	52.1	56.0	53.9	50.0		46.0		49.5	55.5	55.6	55.2	55.3	53.1	55.2
19	53.7	57.6	56.4	51.4	-	47.8		52.0	59.7	59.1	56.1	57.5	56.8	57.0
11	54.4	59.3	57.1	52.2	49.9	49.6		54.0	60.9	60.2	58.2	60.3	61.2	59.3
Noon	57.2	65.3	58.9	52.9	52.7	51.6		56.2	62.5	60.6	60.9	64.2	67.3	63.6
P. M,	57.6	62.4	59.2	55.2	50.1	55.2		58.6	65.8	64.1	63.2	63.3	70.7	64.9
2	58.9	62.5	55.6	54.7	48.4	56.3		60.4	68.7	65.0	65.2	65.1	75.1	66.1
3	60.2	61.9	51.6	54.0	49.7	57.1		61.0	67.2	65.7	65.9	66.3	74.8	66.8
4	58.9	65.4	50.0	54.8	48.0	55.8		60.1	66.7	59.8	67.9	65.2	74.3	67.4
5	56.3	61.7	50.0	51.9		51.1		60.0	63.2	61.2	65.2	63.9	74.6	04.0
6	52.9	56.0	49.0	50.8		48.4		53.0	57.7	57.7	61.9	61.3	67.6	60.0
7	50.0	51.6	..	48.2		46.1		53.6	52.3	52.7	57.5	59.2	59.9	55.9
8	48.2	50.3	45.3	47.3		45.0		51.7	50.9	50.8	57.0	56.8	57.0	51.8
9	47.4	49.2	45.3	47.3		44.3		52.7	50.8	49.4	56.6	54.5	55. 5	51.3
10	47.7	48.7	44.6			42.7		49.8	48.2	40.4	53.8	53.0	54.6
11	46.6	48.1	44.1			41.6		49.7	46.6	47.8	51.7	51.0	53.6
Midn't	46.8	48.3	43.4			39.7		48.5	46.5	48.0	50.4	50.5	52.4**

Table X.—Observations for atmospheric humidity at Mount Diablo, March and April, 18.0.
Readings of wet-bulb thermometer in degrees of Fahrenheit. No correction required. Values in parenthesis are interpolated.

Hour.	Mar. 21.	Mar. 22.	Mar. 23.	Mar. 26.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31.	Apr. 6.	Apr. 7.	Apr 8.	Apr. 9.
A. M.	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	\bigcirc	-
1		36.3	38.5		30.4			25.6	27.5			47.5	41.0
2		38.2	38.6		30.5			25.8	25.8			45.3	39.8
3		38.2	38.5					24.3	32.2			44.7	41.5
4		38.5	37.0					23.8	31.9			45.5	42.5
5		38.2	37.0					24.0	(33.2)			46.3	41.5
6		39.0	36.0	24.8			25.5	25.5					49.4
7		44.4	38.5	25.0			26.5	27.5					
8		46.7	(38.5)	27.0			28.6	31.0		39.8			
9		48.3	(38.4)	28.5			30.5	32.0	38.5				
10	42.5	49.3		30.0			32.0	32.4	40.5			48.6	
11	44.7	48.4		31.5			31.8	37.8				47.9	46.3
Noon	47.5	48.7		34.0		32.0	32.3	39.5	43.0			48.6	47.0
P. M.													
1	46.8	50.0	38.1	32.0		32.0	32.1	38.9			55.0	57.4	
2	45.0	50.0	39.8	32.0		32.9	32.1	36.9			63.9	49.9	
3	45.7	47.7	36.8	34.6		34.3	32.3	36.8			52.6	51.8	
4	43.0	49.0	37.8	33.8		32.1	32.2	36.6			55.9	54.0	
5	41.3	48.0	36.4	32.0	……	30.9	31.8	31.5			52.8	50.3	
6	39.4	43.2	36.5				30.0	31.9			47.0	50.0	
7	38.9	42.0	37.0	32.0			29.0	32.1			41.4	50.3	
8	38.8	41.2	34.0	31.1			28.0	27.0			42.0	49.6	
9	38.2	41.9		30.9			27.8	28.0			42. 5	46.3	
10	37.8	41.0		30.9			26.5	27.9			41.6	40.0	
11	36.8	40.0		30.9			26.5	28.1			43.0	49.0	
Midn't	36.8	40.2		30.9			27.2	26.9			46.0	44.2	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	A pr. 28.	Apr 29.
A. M.	\bigcirc	\bigcirc	-	\bigcirc	0	-	\bigcirc	-	-	-	\bigcirc	-	\bigcirc	0.
1		34.3	31.5				29.8		36. 5	35. 2	38.7	43.8	47.9	43.7
2		36.0	30.7				30.5		35.7	34.9	38.2	42.7	42.3	43.6
3		36.5					29.9		33.0	34.4	38.1	42.6	42.3	(43.5)
4		36.8	32.5				29.4		33.0	35. 2	37.7	40.9	41.3	43.4
5		35.5					31.1		33.0	35.3	-37.2	41.0	41.5	41.9
6	32.2	36.8				26.5	28.8		34.9	45.7	(40.2)	43.0	44.0	44.1
7	32. 3	38.6	34.0		28.0	27.5	$\underline{29.0}$		36.8	(43.4)	43.2	48.8	48.0	47.3
8		40.2	36.0			29.5			40.9	41.0	45.8	44.0	49.5	49.4
9	37.6	43.0				(32.0)			41.9	40.9	47.8	45.9	48.3	50.0
10	37.1	45.8				34.5			42.3	43.1	51.0	46.5	49.6	53.3
11	41.2	46.4	37.0		32.0	35.2			44.0	42.2	(51.0)	49.0	41.0	54.0
Noon	44.5	45.3	37.5		32.0	35.4		39.8	46.0	48.2	50.9	50.0	48.9	52.8
P. M.														
1	41.2		37.5		32.0	36.0		41.6	46.0	46.2	50.5	51.6	50.8	52.6
2	39.2				31.5	34.5		42.0	47.4	47.7	49.8	52.0	50.2	51.8
3	35.3			33.9		32.7		42.9	47.7	48.9	49.0	52.1	46.0	54.3
4	35.3			33.9		32.8		42.9	45.4	44.8	49.0	54.9	47.8	51.6
5	35.6			32.0		32.8		42.2	42.0	40.8	47.1	52.0	51.8	47.7
0	30.2					31.7		41.3	40.9	40.6	46.2	44.5	50.2	48.2
7	29.0					26.5		36.8	39.8	37.5	44.8	44.6	47.0	61.1
8	31.0					26.5		35.5	30.0	38.9	44.0	43.8	46.8	51.8
9	81.5	34.8				28.2		35.3	38.0	40.0	42.5	44.2	44.9	
10	32.0	31.2				25.7		35.0	38.0	41.0	44.2	44.0	44.5	
11	31.9	31.8				26.4		35.0	39.5	40.8	43.8	43.8	43.0	
Midn't	32.3	30.9				28.3	35. 3	38.8	39.9	44.1	43.0	42.0	

Table XI.-Observations for atmospheric humidity at Martinez East, March and April, 1880.
Readings of wet-bulb thermometer in degrees of Fahrenheit. No correction required. Values in parenthesis are interpolated.

Hour.	Mar. 21.	Mar. 22.	Mar. 23.	Mar. 26.	Mar. 27.	Mar. 28.	Mar. 29.	Mar. 30.	Mar. 31	Apr. 6.	Apr. 7.	Apr. 8.	Apr. 9.
A. M.	\bigcirc	-	0	\bigcirc	0	0	0	0	0	0	-	\bigcirc	-
1		44.9	44.6		42.4			38.7	42.8			51.7	51.0
2		43.2	42.1		41.9			38.7	42.3			51.5	51.9
3		42,3	41.6		41.9			38.6	42.6		.	50.6	52.4
4		40.9	42.4		44.4			37.3	43.8			50.5	52.9
5		40.5	42.4		43.0			35.9	44.3			50.7	52.5
6		41.2	41.9	37.7	41.3		(37.4)	36.4	43.8		.	49,4	56.2(i)
7		42.7	43.4	39.3			39.2	38.8	43.1				52.8
8		44.6	44.8	40.6			42.1	37.8	45.0				53.9
9		46.3	45.0	42.9			42.7	40.8	48.4			57.4	54.0
10	47.6	47.2	45.8	43.7			43.2	41.6	50.6			58.9	57.0
11	50.0	49.1	47.3	44.6			43.8	42.8	51.8		54.3	60.7	59.0
Noon	51.9	51.6	48.2	45.4			43.8	48.2	50.8		55.6	61.3	57.8
P. M.													
1	53.1	53.1	48.8	46. 5		46.3	45.8	49.6	52.1	56.2	62.3	
2	53.7	55.5	49.5	46.7		47.8	45.9	45.0	51.5	-......	58.7	62.7	.
3	53.8	53.3	48.0	47.0		46, 7	46.1	45.8	52.6		58.8	63.7	
4	53.4	54, 6	47.9	45.2		45.4	44.1	47.4	53.6		59.6	62.8	
5	51.9	52.2	47.4	44.7		43.7	43.6	45.6	52.5		58.3	62.1	
6	48.7	49.9	45.2	43.8		43.0	41.9	42.8			54.8	61.8	
7	47.8	49.8	43.5	42.6			(41.0)	41.3		48.0	54.0	61.9	
8	45.8	48.7	43.8	42.0		40.8	40.1	40.8		47.8	54.1	60.2 -.
9	46. 7	47.5	43.8	42.5			39.8	40.5		47.6	53.7	58.7	
10	46. 8	46. 6	45.5	42.0			37.5	41.0		48.8	52.8	52.8	
11	46.6	45.8	44.9	41.6			39.4	41.0			52.2	52.1	
Midn't	45.6	45.6	44.2	41.7			38.7	41. 4			52.3	51.7	

Hour.	Apr. 10.	Apr. 11.	Apr. 12.	Apr. 13.	Apr. 17.	Apr. 18.	Apr. 19.	Apr. 23.	Apr. 24.	Apr. 25.	Apr. 26.	Apr. 27.	Apr. 28.	Apr. 20.
A. M.	0	\bigcirc	0	0	-	0								
1		45.8	43.4	41.4			39.6		47.5	44.9	45.2	48.7	49.5	60.8
2		45.3	45.3	41.3			40.3		47.4	44.0	45.4	48.7	48.8	50.0
3		45.4	46.7	40.0		.	41.1		47.4	44.4	44. 4	47.8	48.2	49.3
4		46.0	47.3	40.6			41.9		44.9	43.9	45.2	46.6	46.3	48.3
5		46.7	47.8	41.0			42.0		44.2	44.3	44.6	46.9	45.5	48.6
6	42.8	46.9	46.8	41.0		-	41.6	42.2	45.4	45.0	46.0	47. 8	46.8	48.9
7	46.8	48.4	48.5	42.7	40.6	40.2	(41.8)	43.7	49.8	47.8	49.6	50.1	49.2	51.3
8	47.7	51.4	48.0	44.0	40.7	41.8	42.0	45.8	50.8	50.6	51.0	51.6	30.9	53.2
9	49.9	51.7	19.9	45.4		41.6		47.0	52.0	51.4	52.3	53.5	51.7	54.3
10	50.0	52.7	51.4	48.7		42.3		48.3	52.9	54.2	53.6	54.9	54.9	55.5
11	51.4	58.8	51.4	48.9	44.0	42.4		49.8	53.9	54.0	55.7	56.9	58.0	57.2
Noon	52.7	58.3	52.2	48.6	46. 2	44.9		51.5	55.8	54.7	57.0	59.4	62.2	50.8
1	53.4	56.3	59.4	49.0	45.0	48.8		52.6	54.4	57.6	58.8	58.1	61.9	60.2
2	63.4	57.3	50.8	48.8	44. 7	48.9		53. 2	57.8	57.8	59.8	59.1	64.1	60.6
3	54.3	56.5	49.8	48.5	45.7	49.4		53.4	57.0	58.9	59.7	60.2	61.7	60.8
4	53.2	58.2	47.5	47.3	44.3	47.8		53.6	50.8	54.5	60.8	60.2	61.6	61.2
5	51.7	55.3	45.0	45.9		44.3		53.2	53.7	55.0	59.0	58.6	61.2	50.8
6	49.3	53.0	44.0	45. 4		44.7		52.5	52.7	52.7	57.0	88.3	62.2	56.6
7	46.8	47.7		44.3		42.0		48.7	49.3	48.6	53.5	55, 6	57.2	52.9
8	45.8	46.8	42.0	44.3		41.1		47.6	48.5	47.5	52.0	54.0	54.8	50.4
9	45.5	46.3	42.4	44.3		40.2		47.8	47.5	46.8	50.8	53.3	53.9	40.4
10	45.2	45.3	49.1			40.2		48.2	46. 7	47.3	51.3	52.0	63.4	
11	44.8	44.4	41.5			39.7		47.4	45.0	46.2	51.3	50.3	52.9	
Midn't	45.8	43.5	41.2			38.3		46.8	45.3	45.9	49.5	50.1	51.8	.

Combination of the meteorological data to obtain a homogeneous series of hourly mean values.-The combination of the broken record of observations into a systematic series of results has been effected precisely in the same way as was followed in the case of the zenith distances, in order
that we may secure a strictly comparable and simultaneous set of data for analysis and discussion. An additional reduction had to be supplied, i. e., for the full hour, the obserrations at Mount Diablo being about ten minutes and those at Martinez East about five minutes late.

Table XII.—Observations at Mount Diablo, California, March and April, 1880.
Resulting hourly series of atmospheric pressure (P^{\prime}).

Hoar.	$\begin{gathered} \text { 12-day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	$\left.\begin{array}{\|c\|} n \text { day } \\ \text { resalting } \\ \text { series. } \end{array} \right\rvert\,$	Reduced to full hour.	P^{\prime}.	Hour.	$\begin{gathered} \text { 12-day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	$\left\lvert\, \begin{gathered} n \text { day } \\ \text { resulling } \\ \text { series. } \end{gathered}\right.$		\mathbf{P}^{\prime}.
A. M.4	Inches.		Inches.	Inches.	$\begin{aligned} & \text { Milli. } \\ & \text { meters. } \end{aligned}$	P. M.	Inches.		Inches.	Inches.	Milli meters.
1	26.181	16	26.186	26. 186	665.12	1	26. 223	20	26.218	26.219	665.96
2	. 174	16	. 180	. 181	5.00	2	. 217	10	. 215	. 215	5.88
3	. 172	14	. 178	. 178	4.92	3	. 212	18	. 207	. 208	5.68
4	. 168	15	. 177	. 177	4.90	4	. 207	18	. 204	. 204	5.58
5	. 167	13	. 171	. 172	4. 77	5	. 198	18	. 193	. 195	-5. 26
6	. 174	15	. 173	. 173	4.79	6	. 195	15	. 194	. 194	5.33
7	. 179	17	. 175	. 175	4.84	7	. 198	17	. 192	. 192	5.28
8	. 186	14	. 185	. 183	5.05	8	. 203	16	. 202	. 200	5.48
9	. 188	14	. 196	. 194	5. 33	9	. 206	16	. 200	. 200	5. 48
10	. 225	14	. 225	. 220	5. 99	10	. 199	16	. 194	. 195	5.35
11	. 225	16	. 227	. 227	6.17	11	. 198	16	. 191	. 191	5.25
Noon	. 231	19	. 225	. 225	6.11	Midn't	. 192	16	. 186	. 187	5.15

Table XIII-Observations at Martinez East.
Resulting hourly series of atmospheric pressure (\mathbf{P}).

Hour.	$\begin{gathered} \text { 12-day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	n day resulting series.	$\begin{aligned} & \text { Reduced } \\ & \text { full hour. } \end{aligned}$	P.	Hour.	12-day mean bories.	n.	n day resulting series.	$\begin{aligned} & \text { Reduced } \\ & \text { foll hour. } \end{aligned}$	P.
A. \mathbf{M}.	Inches.		Inches.	Inches.	$\begin{aligned} & \text { Milli- } \\ & \text { meters. } \end{aligned}$	P. M.	Inches.		Inckes.	Inches.	$\underset{\text { meters. }}{\text { Milli- }}$
1	29.931	16	29, 939	29.938	760.43	1	29.968	20	29.960	29.960	760.98
2	. 923	16	. 031	. 031	0.25	2	. 951	19	. 945	. 946	0.63
3	. 922	14	. 926	. 926	0.12	3	. 936	18	. 929	. 930	0.22
4	. 915	15	. 923	. 923	0.04	4	. 925	18	. 921	. 822	760.02
5	. 923	13	. 926	. 926	0.12	5	. 924	18	. 919	. 819	759.94
6	. 942	15	. 936	. 935	0.35	6	. 930	15	. 922	. 922	760.02
7	. 944	17	. 938	. 938	0.43	7	. 928	17	. 922	. 922	0.02
8	. 946	14	. 944	. 044	0.58	8	. 934	16	. 927	. 927	0.15
9	. 950	14	. 954	. 953	0.81	9	. 942	16	. 934	. 933	0. 30
10	. 877	14	. 978	. 974	1.34	10	. 942	16	. 938	. 938	0.43
11	. 970	16	. 972	. 972	1.28	11	. 943	16	. 941	. 941	0.50
Noon	. 978	19	. 960	. 981	1.01	Midn't	. 938	16	. 931	. 932	0.27

Table XIV.-Observations at Mount Diablo, California, March and April, 1880.
Resulting hourly series of atmospheric temperature (T^{\prime}).

Hour.	$\begin{gathered} 12 \text { day } \\ \text { mean se-. } \\ \text { ries. } \end{gathered}$	n.	$\begin{gathered} n \text { day } \\ \text { resulting } \\ \text { series. } \end{gathered}$	Reduced to full hour.	' ${ }^{\prime}$.	Hour.	$\begin{gathered} \text { 12-day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	n day resulting series.	Reduced to full hour.	T'.
A. M.	$\bigcirc F$.		- F.	${ }^{\circ} \mathrm{F}$.	\bigcirc	P. M.	${ }^{\circ} \boldsymbol{F}$.		${ }^{\circ} \mathrm{F}$.	$\bigcirc \boldsymbol{F}$.	\bigcirc
1	43.10	16	43. 19	43. 23	+6.24	1	52.08	20	51. 28	51.27	+10.70
2	43.23	16	43.29	43.27	6.26	2	51.07	19	50.65	50.75	10.42
3	43.13	14	43.05	43.09	6.17	3	50.93	18	50.21	50. 28	10.16
4	42.53	15	42.67	42.73	5.96	4	49.40	18	49. 44	49.57	9.75
5	42.47	13	42. 41	42.45	5.80	5	47.35	18	47. 03	49.43	8.58
8	42. 60	15	42.93	42.84	B. 02	6	45. 27	15	45.50	45.75	7. 64
7	45.06	17	45.14	44.77	7.09	7	44. 03	17	44.28	44.48	6. 93
8	47.98	14	47.59	47.18	8.43	8	43. 20	16	43.81	43.89	6. 61
9	49.80	14	49.51	49.10	9.56	9	43.20	16	43.56	43. 60	6. 44
10	51.78	14	51.67	51.31	10.72	10	43.03	16	43.25	43.30	6. 28
11	62.90	16	52. 54	52.40	11.33	11	43. 67	16	43. 60	43. 54	6.41
Noon	52.17	18	51.20	51.42	10.80	Midn't	43.53	16	43. 44	43. 47	0.37

Table XV.-Observations at Martinez East, Oalifornia.
Resulting hourly series of atmospheric temperature (T).

Homr.	$\begin{aligned} & 12 \text {-day } \\ & \text { mean se. } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.	Reduced to full hour.	T.	Hour.	$\begin{aligned} & 12 \text { day } \\ & \text { mean se- } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.	Reduced to full hoar.	T.
A. M.	${ }^{\circ} \mathrm{F}$.		${ }^{\circ} \mathrm{F}$.	$\bigcirc F$.	- 0.	P. M.	$\bigcirc F$.		$\bigcirc F$.	$\bigcirc F$.	$\bigcirc 0$.
1	46.37	16	46.07	46. 15	$+7.86$	1	60. 50	20	59.92	59.76	$+15.43$
2	45.70	16	45.68	45. 71	7.62	2	02. 32	19	61.52	61.39	16.33.
3	45. 40	14	45.29	45.32	7.40	3	63.53	18	62.74	62.64	17.03
4	44. 85	15	44.95	44.98	7.21	4	62.15	18	61.80	61.88	16.60
5	45.13	13	44.99	44.99	7.21	5	60.33	18	59.71	59.88	15.49
6	45.02	15	45.60	45. 55	7.53	6	56. 60	15	56.61	56. 87	13. 81
7	47.40	17	48.00	47.80	8.78	7	52.88	17	52.89	53. 20	11.78
8	49.60	14	49.74	49.60	9.78	8	51.05	16	51.29	51.42	10.79
9	51. 22	14	51.60	51.45	10. 80	9	49.97	16	50.24	50.33	10.18
10	53.33	14	53.61	53.44	11.91	10	48. 57	16	48.63	48.76	9.31
11	55, 65	16	50.04	55.84	13.25	11	47.53	16	47.58	47.67	8.70
Noon	57.93	19	57.96	57.80	14.33	Midn't	46. 73	16	47.00	47. 05	8.36

Table XVI.-Observations at Mount Diablo, California, March and April, 1880.
Resulting hourly series for atmospheric humidity, temperature of wet bulb (t^{\prime}).

Hour.	$\begin{gathered} 12 \text {-day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	n day rosulting series.	Reduced to full hour.	t^{\prime}.	Hour.	$\begin{aligned} & 12 \cdot d a j \\ & \text { mean se- } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.	Reduced to full hour.	t^{\prime}.
A. M.	${ }^{\circ} \mathrm{F}$.		${ }^{\circ} \mathrm{F}$.	- F.	- 0.	P. M.	$\bigcirc \ldots$		$\bigcirc F$.	0 F .	00.
1	36.48	16	36. 48	36.43	$+2.46$	1	44.32	20	44. 01	43. 87	+6.65
2	36. 25	16	36. 05	36.12	2.29	2	43.90	19	43. 42	43. 52	6. 40
3	36. 12	14	36. 00	36.01	2.23	3	43.09	18	43.11	43. 16	6. 20
4	35. 74	15	35.93	35.94	2.19	4	42.81	18	43.17	43.16	6. 20
5	35. 74	13	35.80	35.82	2.12	5	41. 24	18	41.05	41.40	5.22
6	36.98	15	37. 23	36.99	2.77	6	39.18	15	39. 22	39.52	4.18
7	39. 34	17	38.82	38.56	3. 64	7	37.34	17	37.86	38. 09	3.38
8	40.42	14	40.20	39.97	4.42	8	36. 78	16	87. 39	37.47	3.04
9	41.12	14	41.08	40.98	4. 06	9	36.54	16	36. 60	36. 73	2. 63
10	42.80	14	42.82	42. 53	5.85	10	36.46	16	36. 30	36.43	2.46
11	43.36	16	43. 33	43.25	6.25	11	36. 31	16	36. 40	36.40	2.44
Noon	44. 31	10	43. 77	43. 70	6. 50	Midn't	36. 24	16	36. 18	36. 22	2. 34

Table XVII.-Observations at Martinez East, Galifornia.
Resulting honrly series for atmospheric humidity, temperature of wet bulb (i).

Hour.	$\begin{aligned} & \text { 12-day } \\ & \text { mean se- } \\ & \text { ries. } \end{aligned}$	n.	n day resulting series.	Reduced to full hour.	t.	Hoar.	$\begin{gathered} 12 \text { day } \\ \text { mean se- } \\ \text { ries. } \end{gathered}$	n.	n day resulting serien.	Reduced to fall hour.	t.
A. M.	$\bigcirc F$.		${ }^{\circ} \mathrm{F}$.	$\bigcirc{ }^{\circ}$.	- 0.	F. M.	$\bigcirc \%$		- 7 .	$\bigcirc{ }^{\circ} \mathrm{F}$	00.
1	45.25	16	44.84	44.88	$+7.16$	1	53.94	20	53.48	63.43	$+11.90$
2	44. 74	16	44. 58	44. 60	7.00	2	54.52	19	64. 22	54.16	12. 31
3	44.42	14	44. 26	44.29	6.83	3	54.46	18	54.23	54.28	12.35
4	44.04	15	44.15	44.16	6.76	4	54.00	18	63. 81	53.94	12.18
5	43.82	13	43. 69	43.73	6.52	5	52. 41	18	52.43	52.85	11.42
6	43.78	15	44.07	44.04	6.69	6	51.06	15	51.08	51.19	10.66
7	46.01	17	46.36	46. 18	7.88	7	48.46	17	48.61	48.88	0.34
8	47. 55	14	47.51	47.41	8.56	8	47. 22	16	47. 50	47,59	8.63
9	48.46	14	48. 63	48. 54	0.19	9	46.69	16	47.01	47.05	8.38
10	49.82	14	49.98	49.82	9.90	10	46. 35	16	46.23	48. 29	7.94
11	51.26	16	51.38	51.26	10.70	11	45.88	16	45. 71	45.76	7.64
Noon	52.81	19	52. 87	52.75	11. 63	Midn't	45.40	16	45. 28	45.38	7.40

Before proceeding with the investigation of the atmospheric refraction in comnection with heights determined by zenith distances, it will be convenient first to present the results for difference of height as deduced from the observed pressure and temperature of the atmosphere at the two stations.

BAROMETRIC DIFFERENCE OF HEIGHT.-For the computation of the hourly series of barometric observations I propose to use the formula given by Dr. Jordan* in preference to that given by Dr. Riohlmann, \dagger for the reason that the first-named formula, with the same strictness, is somewhat easier of application, besides it will facilitate the discussion of the atmospheric refraction in connection with a theory published by Dr. Jordan in the Astronomische Nachrichten No. 2095 (1876), and which will be referred to in connection with our observations at Mount Diablo-Martinez East.

It is as follows:

$$
\Delta h=18400 \log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}(1+.003665 t)\left(1+.377 \frac{e}{p}\right)(1+.002573 \cos 2 \phi)\left(1+\frac{2 \mathrm{H}}{r}\right)
$$

where P^{\prime} and P are the observed pressures at the upper and lower station, respectively; these values must be corrected for variation in gravity with latitude and altitude before introducing their values into the formula. A table is provided giving this reduction, with the arguments, pressure (in millimeters), and approximate height of station above the sea (in meters).
t represents the mean atmospheric temperature at the upper and lower stations, or the value $\frac{T+T^{\prime}}{2}$ expressed in centigrade degrees.
e represents the mean vapor pressure, and p the mean atmospheric pressure at the stations. A table is provided for finding e when the readings of the dry and the wet bulb thermometers are given.
φ is the mean latitude, and H the average height of the two stations above the sea.
r stands for the earth's mean radius, roughly equal to 6370000 meters.
Δh is the resulting difference of height in meters.
The logarithms of each of the four terms in parenthesis are obtained from tables accompanying the formula.

The results of the computation are presented in the following table, in which, for comparison, we have also introduced the results of Riihlmanu's formula. The column headed "Required mean temperature" shows the temperature which is demanded by the barometric formua, in order to satisty the condition of giving the true height as found by spirit-leveling.

Table XVIII.

Hour.				$\begin{aligned} & \text { E } \\ & \text { ent } \\ & 0 \end{aligned}$		
A. M.	Meters.	Meters.	Meters.	- 0.	$\bigcirc 0$.	$\bigcirc 0$.
1	1104.4	103.6	-11.7	+7.05	+10.00	-2.95
2	03.4	02.6	12.7	8. 94	10.15	3.21
3	02.4	01.5	13.7	6. 78	10.25	3.47
4	01.0	00.1	35.1	6. 58	10.40	3.82
5	08.1	02.3	13.0	6. 50	0.79	3. 29
6	06.6	15.7	9.5	6.78	9.18	2.40
7	11.7	10.8	4.4	7.94	9.05	1.11
8	15.3	14.5	-0.8	8.10	9.30	-0.20
9	18.6	17.8	+2.5	10.18	9.54	+0.64
10	20.8	19.9	4.7	11.32	10. 13	1.19
11	21.8	21.0	5.8	12.29	10.83	1.46
Noon	20.9	20.0	4.8	12.56	11.35	1.21

[^10]Table XVIII-Continued.

Hous:						
P. M.	Meters.	Meters.	Meters.	$\bigcirc 0$	$\bigcirc 0$.	\bigcirc
1	24.5	23.6	8.4	13.06	10.94	2. 12
2	23.1	22.1	7.0	13. 38	11.60	1.78
3	21.6	90.6	5.5	13. 60	12.20	1.40
4	19.0	18.0	2.9	13.18	12.43	0.75
5	16. 2	15.3	$+0.1$	15.04	12.01	$+0.03$
6	12.2	11.3	-39	11.72	11.71	-0. 99
7	07.3	06.4	8.8	9. 36	11.61	2.25
\checkmark	03.5	02.5	12.0	8. 70	11.91	3.21
9	03. 5	02.6	12.6	8.31	11.51	3. 20
10	04.5	03.6	11.6	7.80	10.73	2.93
11	05.5	04.6	10.0	7.56	10.24	2.68
Midn't	03.5	02.7	-12.6	7. 36	10.56	-3.20
Mean	1111.4	1110.5		$\div 9.54$	$+10.73$	
True h	1116.1					

We notice the following facts :
(1.) The barometric measures give the difference of height, on the daily average, 4.7 meters in defect (error 1 in 237 meters), whereas the measure of reciprocal and simultaneous zenith distances made the difference in height on the daily average 1.96 meters in excess (error 1 in 569 meters). Between the results by Jordan's and Riihmann's formulx there is a difference of 0.9 meter ± 0.1 meter, the first set having slightly the advantage over the second. This difference is not greater than might be expected between any two formulæ aiming at great precision.
(2.) The computed hourly heights exhibit the usual excess over the true valne during the warmer part of the day and the usual deficiency during the colder part.
(3.) Diurnal range in values of $h, 23.5$ meters. Times when correct values are reached, $8 \frac{1}{2}$ a. m . and $5 \mathrm{p} . \mathrm{m}$. The range is of arerage magnitude (about one forty-seventh of the height), and the hours most favorable for barometric measures according to Rühlmann-73 a. m. and $6 \frac{1}{2} \mathrm{p} . \mathrm{m}$. (for March and April)-do not differ more from the above hours than could be accounted for by ordinary variability.
(3.) The temperature required in order that the true difference of height may result shows less diumal range (30.4) than is observed at either station (mean range 70.1), and the mean value for the day (100.73) approximates nearer to the mean temperature of the day at the lower station $\left(+11^{\circ} .15 \mathrm{C}.\right)$ than to that of the upper station (+70.94 C.$\left.\right)$.

On the immediate sea-coast, as at Bodega Head and Ross Mountain, the computed diurnal rauge of the temperature of the intervening stratum of air was too small to be perceptible between the hours 7 a. m. and 5 p. m., the observations being discontinued during the night. At Martinez East and Mount Diablo, about 50 kilometers (say 30 statute miles) from the coast, the range is two-fifths of the range as observed near the surface of the gronnd, and farther in the interior, or in the Califorvia Valley, the difference between the observed and required temperature of the air between two stations will undoubtedly be found to become still less.

The effect of a small error in the mean temperature of the air on the compnted beight (h) is given by the equation

$$
d h=\frac{\varepsilon}{1+\varepsilon t} h d t
$$

and putting $:=.003665, t=+10^{\circ} \mathrm{C}$., and $h=1116$ meters, we Lud $d h=3.95 d t$, or an effect of nearly 4 meters for a change of 1° in the temperature.
(4.) The last column, headed apparent error in mean temperature t, contains also the apparent error of the observed temperatures at the two stations, supposing them affected alike; that this equality, however, does not hold is proved by the anomaly that the observed temperatures at Mount Diablo, when thus corrected, would show higher temperatures (by about 1o) during the night than during the day; in fact the distribution of the error as given in that column is unequal as regards the two stations, and the lower one is undoubtedy much more affected than the upper one. The numbers plainly show that during the hours of insolation, between $9 \mathrm{a} . \mathrm{m}$. and 5 p . m ., the observed temperatures are too high by fully 20 (. in maximo (at $1 \mathrm{p}, \mathrm{m}$.) , and during the other hours they are too low by fully $33^{\circ} \mathrm{C}$. in maximo (at 4 a. m.). Applied with reversed sigu as corrections, the numbers in this column may advantageously be applied to other barometric measures in the same climatic region, especially if attention be paid to unequal distribution for the two stations. The correction to t of $\frac{1}{12}\left(n_{2}-n_{1}\right) \in h$, as proposed by Ir. Jordan, where $n_{i} n_{1}$ equal the rate of change of temperature with height at the upper and lower station (as explained further on), does not appear to be sustained in our case, certainly not during the night hours, and roughly only for a few hours near noon.

Application to hypsometry of Dr. von. Bayernfeind's theory of atmosimerie refracion and comparison with observations at Mount Diablo-Martinez East.For reference to this theory, which makes use of the meteorological condition of the atmosphere in connection with an expression for the carvature of the path of light between two statious where reciprocal zenith distances have been measured, see Astronomische Nachrichten, Nos. 1478-1480 (vol. 62, 1864), and Nos. 1587-1590 (vol. 67, 1866), and formulæ and application of the same in Coast Survey Report for 1876 , Appendix No. 16 , where I have applied it to the case of hypsometric researches at Bodega Head and Ross Mountain, California. This theory enables us to compute the difference of height from the measured zenith distances and the observed barometric pressure and the temperature and humidity of the air at each station, and two results can be given, one from the observations at the upper and one from the observations at the lower station. It would be needless to repeat here the formula and their explanation, as they can be conveniently referred to in the report for 1876 , inasmuch as the results deduced do not fully come up to the expectations which might be demanded from such a theory, and the canse of this shortcoming would seem to lie in the circumstance that the theory has not sufficient flexibility to accommodate itself to the rarious plysical conditions existing at the time. The results and comparisons are given in the following tables:
Table XIX.-Comparison of Bauernfeind's theory of refraction with observations at Mount Diablo and Martinez East.

N. B.-An asterisk (*) indicates a maximum and a dagger () a miniman value.

Table XIX.-Comparison of Bauernfeind's theory of refraction with observations at Mount Diablo and Martinez East-Contimued.

N. B.-An asterisk (') indjcates a maximam and a dagger (\dagger) a minimum value.

The results of the comparison, as shown in Table XIX, indicate but a slight improvement ($0^{\mathrm{m}} .20$) in the compnted difference of height, while the departures from the true angle of refraction at both stations (and consequently also in the coefficients of refraction) exhibit most conspicuously a want of accord with facts as observed at Mount Diablo and Martinez East; thus, computed range of angle of refraction at the upper station $2^{\prime \prime} .15$, observed range, $19^{\prime \prime} .9$ (Table V); same for the lower station, computed, $4^{\prime \prime} .66$, observed, $32^{\prime \prime} .7$. Columns 11 and 12 of the preceding table show the discord in the computed and observed difference in the angles of refraction, while in columns 13 and 14 the smallness of the range of diurnal variation in the coefficients of refraction is prominently brought out. The theory assumes a uniform decrease of the atmospheric temperature with an increase of altitude, about 00.58 C. for each 100 meters, a condition which does not hold good in any particular case, and probably the fundamental relation postulated between absolute temperature and deusity of air is not in snfficient accord with facts. It is, however, certain that the atmospheric temperatures observed near the ground are seriously affected by this circumstance and must lead to faulty conclusions respecting the temperature of the stratum of air intervening between the stations.

We now proceed to test another theory of refraction, in which special attention is given to the rate of decrease of temperature with increase of height.
application and comparison with observation of Dr. Jordan's theory of repraction in connection with hypsometry.-Referring for the development of this theory to the author's "Handbuch" cited above, we at once transfer the leading expressions required for application; they are the following:

From the computation of the barometric observati ons for height we take the value

$$
\mathrm{K}=18400\left(1+.37 \frac{e}{p}\right)(1+.002573 \cos 2 \varphi)\left(1+\frac{2 H}{r}\right)
$$

and adopting the notation, for the lower and upper station, respectively:
$P_{1} \quad P_{2}=$ the atmospheric pressure expressed in millimeters and height of column of mercury reduced to temperature 0° C., and referred to intensity of gravity in latitude 45° and to the sea-level,
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}=$ the atmospheric temperature expressed in degrees of the centigrade scale,
$n_{1} \quad n_{2}=$ the change of temperature of the air at the stations for unit of height (or for one meter),
$k_{1} \quad k_{2}=$ values, in general, of the coefficient of refraction, $k^{\prime} k^{\prime \prime}$ special ralues of the same (half of this value is regarded on the survey as the coefficieut of refraction),
$\Delta z_{1} \Delta z_{2}=$ angle of refraction,
$\geqslant_{1} \quad v_{2}=$ measured zenith distances,
$h_{1} \quad h_{2}=$ altitudes of the stations above the sea, in meters,
with the following constants:
$c=\frac{.00029286}{760} ; \log c=3.58585-10$,
$\mathrm{M}=.43429$, the modulus of common logarithms; $\log \mathrm{M}=9.63778-10$,
$\varepsilon=.003665$, the coefficient of expansion of air,
$t=$ angle at earth's center, between verticals to stations, or $\frac{8}{\rho \sin I^{\prime \prime}}$. when expressed in seconds,
$\rho=$ radius of curvature to intervening horizontal are at sea-level,
$s_{,}=$the length of this arc at an altitude of H, or $\frac{h_{1}+h_{2}}{2}$ above the sea $=s \frac{\rho+\mathrm{H}}{\rho}$,
$r=\rho+\mathrm{H}$,
we then have
For lower station :

For upper station :
and

$$
k_{1}=c \frac{\mathrm{P}_{1}}{1+\varepsilon \mathrm{T}_{1}}\left(\frac{1-\varepsilon \mathbf{T}_{1}}{\mathbf{M} \mathrm{~K}}-n_{1}\right) r
$$

$$
\begin{aligned}
& k_{2}=c \frac{\mathrm{P}_{2}}{1+\varepsilon \mathrm{T}_{2}}\left(\frac{1-\varepsilon \mathrm{T}_{2}}{\mathrm{MK}}-n_{2} \varepsilon\right) r \\
& k^{\prime}=\frac{2 k_{1}+k_{2}}{3} \quad \Delta z_{1}=\frac{k^{\prime}}{2^{\prime}}
\end{aligned}
$$

and

$$
k^{\prime \prime}=\frac{2 k_{2}+k_{1}}{3} \quad \Delta z_{2}=\frac{k^{\prime \prime}}{2} \psi
$$

In case the separate values $n_{1} n_{3}$ are not obtainable, we have to put

$$
n_{1}=n_{2}=\frac{T_{1}-T_{2}}{\Delta h}
$$

but supposing that reciprocal and simultaneonsly observed zenith distances are on hand, these values may be determined by inversion of the formulæ involving $k_{1} k_{3} k^{\prime} k^{\prime \prime}$, and doducing $n_{1} n_{2}$ from the known values $\Delta z_{1} \Delta z_{2}$.

The difference of height Δh is then found by either expression

$$
h_{2}-h_{1}=8, \cot \left(z_{1}+\Delta z_{1}\right)+\frac{8_{1}^{2}}{2 r}
$$

$$
h_{2}-h_{1}=x_{1} \cot s_{1}+\frac{1-k^{\prime}}{2 r} s_{1}^{2}
$$

$$
h_{1}-h_{2}=s_{1} \cot \left(\sigma_{2}+\Delta z_{i}\right)+\frac{s_{1}}{2 r}
$$

Or by

$$
+\frac{1-k^{\prime}}{2 r} s_{1}^{2} \quad h_{1}-h_{3}=s_{1} \cot z_{2}+\frac{1-k^{\prime \prime}}{2 r} x_{1}^{2}
$$

Applying these formulæ to the observations on hand and putting $n_{1}=n_{2}=n$ we hare the results of

TABLE XX.-Comparison of Jordan's theory of refraction with observations at Mount Diablo and Martinez East.

Comparing the contents of Tables XIX and XX we find but little difference in the hourly values of resulting difference of height, the two theories giving about the same result; with respect to the angle of refraction, however, there is a considerable difference, the errors in the angles being more equally distributed between the two stations in Tordan's than in the Bauernfeind's theory. We also notice a marked improvement in the diurnal variation of the coefficient of refraction as given in Table $X X$, and which compares more favorably with the results m_{0} of Table V. The more important part of the theory is that involving the rate of change of temperature with increase of height. These results are given in Table XXI.

Table XXI.-Rate of change of temperature with altitude for the stratum of air between Martinez East and Mount Diablo.

These tabular results are remarkable and would have been unexpected but for the large observed difference in the angles of refraction at the lower and upper station (as shown in Table V). First, we notice that at the lower station the temperature rises (sign of n_{1} negative) with the altitude, which might be explained by the continned influx at a low level of cold air through the Goldeu Gate and with an effect much greater during the hours of night than during the hours of daylight. A rise in temperature with rise in altitude is not noted here for the first time; in the discussion of the observations at the stations Kupferkuhle and Brocken, as given by Dr. Jordan, there is au increase of temperature with height at the earliest hour of observation ($6^{1 \mathrm{l}} 35^{\mathrm{m}}$) in the morning, and had the observations been continued during the night the law of the diurnal variation would then necessarily have given negative values of n. The same occurred in the observations at Bodega Head and Ross Mountain, as presented by Captain H. Hartl,* who, in 1881 reviewed the article in the Coast Survey Report for 1876, Appendix No. 16, containing the discussion of the observations made at these stations by Assistant Davidson in March, 1860. His results being supplementary to our article I transfer them to this paper. It will be seen that Captain Hartlex. tended the comparison of mean temperatures, as observed and required, to the temperatures at each station, thus: let $\tau_{1} \tau_{2}$ be the required or trae temperature of the air inmediately resting on the lower and upper station as derived from the inversion of the barometric formula (see values of $\frac{1}{2}\left(\tau_{1}+\tau_{2}\right)$ in columu 6 of Table XVIII for the case Martinez East and Mount Diablo), which gires $\tau_{1}+\tau_{2}$. A value for the difference $\tau_{1}-\tau_{2}$ is obtained by multiplying the average rate of change of temperature or $\frac{1}{2}\left(n_{1}+n_{2}\right)$ by the difference of height which gives the total change of $t\left(n_{1}+n_{2}\right) \Delta h=\tau_{1}-\tau_{2}$ as found by inversion of the refraction formula (columns 2 and 3 of Table XXI for our case). Having the sum and difference the separate values τ_{1} and τ_{2} are computed. This process presupposes that the suppositions involved in the theory respecting the condition of

[^11]the atmosphere, and especially the law of distribution of its temperature, hold for particular cases; comparisons therefore at many places in different climates and at different seasons would be most desirable contributions to our knowledge of hypsometry.

Table XXI (b).-Rate of change of temperature with altitude for the stratum of air between Bodega Head and Ross Mountain, California, and comparison of observed and computed temperatures at these stations.

Hour.	Computed n.	Observed \boldsymbol{n}.	Compated minus observed. Δn	Observed temperature at Bodega Head.	Observed temperature at Ross Mt.	Required correc. tion by theory.	
						Bodega Head.	Ross Mountain
4. M.	0	\bigcirc	0	00.	- 0 .	-	-
7	-. 0031	+.0016	-. 0047	+8.44	$+7.50$	-1.4	+1.4
8	-. 0007	+. 0036	-. 0043	10.17	8.00	-2.4	+0.2
9	$+.0034$	+.0026	$+.0008$	11.56	10.00	-3.0	-3.4
10	$+.0036$	+.0033	$+.0003$	12.89	10.94	-4.0	-4. 2
11	+.0027	+.0021	$+.0006$	13.22	12.00	-4.5	-4.9
Noon	$+.0021$	+. 0007	+. 0014	13.33	12.89	-4.5	-5.3
F. M.							
1	$+.0013$	-. 0001	+.0014	13.44	13.50	-5.1	-5.9
2	$+.0005$	+. 0001	$+.0004$	12. 94	12.89	-5. 0	-5. 2
3	$+.0008$	-. 0006	+.0014	12. 33	12, 67	-4.4	-5.2
4	$+.0014$	+.0005	+.0009	11.81	11.67	-3.8	-4.4
5	-. 0011	+.0024	-. 0035	$+11.50$	$+10.06$	-3.6	-1.6

It is to be regretted that this series comprises only daylight obervations, but apparently the diurnal law in the mean value n for these stations also points to negative values during the hours of the night.

We next observe the largeness of the individual values n_{1} and n_{2} and the comparative smallness of the mean amount or $\frac{n_{1}+n_{2}}{2}$ in conformity with the small observed values $\frac{T_{1}-T_{2}}{\Delta h}$. The rate of decrease of temperature with increase of altitude is usually taken as 0.60 C . per 100 meters ; the Martinez East aud Mount Diablo observations yield only 00.29 C ., though in the diurnal variation the value $0^{\circ} .62$ is reached, in maximo, at $5 \mathrm{p} . \mathrm{mm}$.

Table XXII contains the apparent corrections required by the observed temperatures at Martinez East aud at Mount Diablo as demanded by theory and depending ou a combination of the observed difference of height by spirit-level, of the observed zenith distances, and of the observed atmospheric pressures.

Table XXII.-Comparison of deduced and observed temperatures of the air at the observing stations Martinez East and Mount IViablo.

Hour.	Observed tempera. turea.		Required temperatures.		Differnce or appareut correction.	
	$\underset{\substack{\text { Ti } \\ \text { Martinez } \\ \text { East. }}}{ }$		11	τ	71-T:	$\mathrm{T}_{2}-\mathrm{T}_{2}$
A. M.	\bigcirc	$\bigcirc 0$	\bigcirc	\bigcirc	c	\bigcirc
1	$+7.86$	+6.24	$+9.44$	$+10.50$	+ 1.58	$+4.32$
2	7.62	6. 26	9.48	10.82	$+1.86$	$+4.50$
3	7.40	6. 17	9. 02	11.48	+1.62	+5.31
4	7.21	5.96	9.50	11.30	+ 2.29	+ 5.34
5	7.21	5.80	9.06	10. 52	$+1.85$	+ 4.72
6	7.53	6.02	9.07	9. 29	$+1.54$	$+3.27$
7	8.78	7.09	8. 94	9.16	$+0.16$	$+2.07$
8	9.78	8.43	9. 74	8. 86	-0.04	+ 0.48
9	10.80	0.56	10.32	8. 76	-0.48	-0.80
10	11.91	10.79	11.42	8.84	-0.49	-1.88
11	13.25	11.33	13.85	8.71	-0.30	-2.62
Noon	14.33	10.80	14.03	8. 67	-0.30	-2.13
P. M.						
1	15.43	10.70	14.06	7.82	--1.3;	-2.88
2	16.33	10.42	15.17	8.03	-1.16	-2.39
3	17.03	10.16	15.66	8.74	-1.37	- 1.42
4	16. 60	9.75	15. 84	9.02	-076	-0.73
5	15. 49	8.58	15.08	8.94	-0. 0.41	$+0.36$
6	13.81	7. 64.	13.78	9. 64	-0.03	+2.00
7	11.78	6.93	12.72	10.50	$+0.94$	+ 3.57
8	10.79	6. 61	12.69	11.13	$+1.90$	+ 4.52
9	10.18	6. 44	11.84	11.18	$+1.66$	+4.74
10	9.31	6. 28	10.84	10.62	$+1.53$	$+4.34$
11	8.70	6. 41	9.96	10.52	$+1.26$	+ 4.11
Midn't	8.36	6. 37	10.88	10.84	+1.92	+ 4.47

These apparent corrections compare favorably in sign and magnitude with similar quantities deduced from observations at stations Kupferkulle-Brocken ($\Delta h=970.92$ meters), as cited by Dr. Jordan, and with the results at stations Bodega Head-Ross Mountain, California ($\Delta h=598.74$ meters.)

The observations made by Assistant G. Davidson at Jackson Butte-Round Top, California, of September and October, 1879 , will be presented and discussed as soon as the required spirit-levels have been executed, and it is intended to utilize the results of these researches for the computa. tion of the heights of the trigonometrical stations in this part of California.

In the present paper the mean results only were brought out and submitted to aualysis, but should it become desirable to work up the individual observations, and scrutinize the results day by day the meteorological conditions require to be fully known, and for this purpose the following table of the direction and force of the wind and other information relating to the state of the sky have been appended. Some of the leading results are shown graphically on the accompanying plate. [Illustration No. 33.]
S. Ex. 29—— 40

Table XXIII.-Observations of the direction and force of the wind and state of the sky at Martinez East, California, March ant April 1880.

Abbreviations used.-Wind: 0 , calm; 1, very light ; 2, moderate; 3 , strong; \mathbf{v}, variable; sf, squally. Sky: c, clear; h, haze; s, smoky; f, fog; clds, clouds; cldy, clouly; r, rain. A duplication of a letter indicates an intensifed state.

Hour.	March 21.	March 22.	March 23.	March 26.	March 27.	March 28.	March 29.
A. M.							
1 \{		W. N.W.1	\cdots	S. 1	.-...	.
2 ,		W. N.W. 1	S. 1
3 ;		N. W. 1	W. 1		S.by E. 1	.-......	
			h	clds	
4)			W. N. W. 1	S. by E. 3	
					cldy		
5)			N. W. 2	S. by E. 2
			1		
0	0	W. N. W. 1	N. W. 1	S. W. 1	S.S.E. 3	S.
	f		clds	cldy	cldy		clay
			v. 1	S. W. 1	-.......		S. S.W 1
,			elds			cldy
			N. W. 3	S. W: 2
8			clds	h	
9		W. 2	W. by N. 2	N. W. 2	.-......	S. W. 1
			cldy	clds	clds
10)	N. N. W. 1	W. 2	W.by N. 2	N. W. 2	\ldots	S. W. 1
	1		cldy	cldy	-.......	clds
11 \{	W. N. W. 1	W. 2	W. by N. 3	W.I		W. N. W. 2
11 ,	h	h	cldy	cldy	.-......	clds
Noon	W. N. W. 1	W. 2	W.by N. 2	W.S. W. 1		W. N. W. 2
Noom			cldy	cldy	\ldots	clds
1 ,	W. N. W. 1	W. N. W. 2	W. by N. 2	S. W. 1	W. 2	W. N. W. 2
	c	h 8		clde	...-....	c	clds
2)	W.N.W. 1	W.N.W. 2	W.by N. 3	S. W. by W. 1	W. S. W. 3	W.N.W. 2
	1	b s	clds	cldy	clds	clds
3 \{	S. W. 1	W.S. W. 3	W. 2
				eldy	clds	cha
4 ,	W. 1	W. N. W. 1	N. W. 3	W. S. W. 3	W. 2
-	κ	hs	clds	clds	clds
59	W. 2	W.N.W.1	N. W. 2	W.S.W. 2	W. S. W. 3	W. 2
5	s	h A	clds	cldy	clds	.
6	W. 2	W. N. W. 1	W. 2	W.S. W. 2	W. 2
	$\mathrm{h} s$		clds
7 7	W. 2	W. N. W. 1	S. by E. 1
	8	
$8\{$	W. 2					S. W. 1	W. N. W. 1
,	c		clds	c
0 9		S. E. 1	W. N. W. 1	S. by E. 1	S. W. 1	W.by N. 2
-		h	clds	clds	.-......	clds	.
10 \{		N. W. 1	S. W. 2	W. 1	S. W. 1	N. W. 1
10 ?	h		clds		clds	-
11 \{	W. N. W. 2	W. N. W. 2	S. W. 3	S. 1	N. W. 1
		8	日q	clds
Mdn't $\{$	W. N. W. 2	W. N. W. 2	S. W. 3	S. 1	N. W. 1
Mat		h	clda	clds		0

Table XXIII.-Observations of the direction and force of the wind, de.-Continued.

Hour.	March 30.	March 31.	A pril 6.	April ${ }^{\text {a }}$.	April 8.	April 9.	April 10.
- A.M.							
	c	cidy	c	clds
2 $\}$	N. W. 1	W.S. W. 1	W. 1	N. W. 1
2 ,	c	clds	c	cldy
(N. W. 1	S. W. 1	S. 1	N. W. 1	.
3	c	cldy	\ldots	c	cldy
	N. W. 1	S. W. 1	N. 1	N. W. 1	
	c	cldy	c	cldy
,	N. W. 1	S. 1	N. 1	N. W. 1	
	c	r	0	r
	N. W. 1	S. by E. 1	N. E. 1	W. S. W. 1	0
6 \%	c	cldy	ff	r	c
	N. W. 1	S. by E. 1	\ldots	N. W. 1	N. N. W. 2
	c	cldy		- \cdot......	r	chls
	N. W. 1	S. W. 1	---....	N. W. 1	N. W. 1
	c	cldy	-......	r	clds
	N. W. 1	N. E. 1	N.E. 1	N. W. 1	N. W. 1
	c	cldy	f	rr	chls
10	N. W. 1	N. E. 1	E. N. E. I	S. 1	N. W. I
	c	cldy			f	rr	clds
$11\}$	N. W, 1	N.E. 1	W. 1	E. N. E. 1	S. F.	N. W. 1
	\%	cldy	clds	h		chls
	N. 1	N. E. I	N.W. 1	E. N. E. 1	N. E. 1	N.W. 1
Noon $\}$	e	cldy		clds	h	r	clis
1	N. 1	N. by E. 1	W.by N. 1	N. N. E. 1	N. W. 1
		cldy	c	clds	clds
2	N. W. 1	N.by E. 1	.-......	N. W. 1	N. E. 1		N. W. 1
	----....	r		clds	clds
3	N. W. 1	S. E. 1	N.N.W.1	N. E. 1		N. W. 1
		r	clds	clds		clds
	W. N. W. 2	S. E. 1	N. W. 1	N. E. 1	W. S. W. 1
	cldy	chds	clds		cldy
5	W. 2	0		N. W. 1	N. E. 1		W. S. W. 1
	cldy	clits	elds		cldy
	W. 1	N. W. 1	0	-.......	W.S. W. 1
	clds	clds	chas	cldy
7 \%	W. 1	W. 1	W. N. W. 1	0		W. 1
	clds		cldy	cldy	clds		clde
8	W. by S. 1		W. 2	S. 1	0	S. 1
			oldy	clds	c		c
93	W. by S. 2		W. 2	N. W. 1	N. W. 1		S. W. 1
	clds	...	cldy	clds	c	c
10	S. W. 2		W. 2	W. 1	N. N. W. 1		W. 1
	clds		cldy	clds	c		c
11 \{	N. 2		W. 1	N. N. W. 1		0
	olds			clids			c
Mdn't	W. 1	W. 1	N. W. by N. 1		S. E. 1
	cldy	cld ${ }^{\text {d }}$	cldy		clds

TABLE XXIII.-Observations of the direction and force of the wind, dc.-Continued.

Hour.	A pril 17.	April 12.	April 13.	April 17.	April 18.	April 19.	April 23.
A. M.							
\}	S. 1	W. by S. 1	W. 2		S. 1
1 ,	clds	cids	clds	h
	s. E. 1	W. by S. 1	W. by N. 1	S. 1
\{	clds	clds	clds	clde	-
	S. E. 1	S. W. 1	W. 1	S. 1
3 ,	clds	cldy	clds	cldy
	S. 1	W.by S. 1	S. W. 1	S. 1
4	clds	cldy	clds	cldy	--......
	W. 1	W.by S. 1	W. 1	S.S.E. 2
5 ,	clds	cldy	clds	clds
	W. 1	S. W. 1	W. 1	S.S.E. 1
6	clds	clds	r
	S. W. 1	W.S. W. 1	W. 1	W.N. W. 2	W. N. W. 1	
	clds	clds	...	clds	cids
	N. 1	W. N. W. 1	W. 2	W. 2	W. br N. 1	S.S.E. 1	...- ...
	clds	clds	clds	r	
	- W. 1	S. W. 2	W. by S. 2	W. by N. 1
8	clas	clds	clds	clds	
	N. W. by W. 1	W.S. W. 2	W. 2	N. W. 1	
	clds	clds	I	\ldots	
-	W. by N. 1	W.S. W. 2	W. N. W. 2	N. W. 2	N. W. 1	
	clde	clds	r	clds \cdot......	
	W.S. W. 1	W. 3	W. N. W. 2	N. W. 2	N.N. W. 1	N. 1
N00n $\{$	clds	clds	r	clds	clds	clds
¢, M.		W. S. W. 2	W. 2	W. by S. 3	W. 1	*	N. N. W. 1
	clds	clas			clds		clds
	W. 2	W. 2	W. 2	W. 9	W. by S. 1	N. W. 1
2 ,	clds	r	-......	x	clds		
	S. W. 2	W. N. W. 2	W. 2	W.by S. 3	W. by S. 1	N. W. 1
	clds	I		clds	clds	clds
4	S. W. 2	W.S. W. 2	W. 2	W. 3	W. 1	.-......	N. W. 2
	clds	\mathbf{r}	clds	clds	clds
	W.S. W. 2	W.	W. 2	W.S. W. 1		N. W. 1
	clds		cids	clds	.-......
6		W.	W. N. W. 2	W. 1		W. N. W. 1
		clds	cldy	clde
7 \%	W. 2		W.S. W. 1	W. 1	W.N. W. 1
	clds		clds		clde		c
8)	W. 2	W. by N. 2	W. 1		W.S. W. 1		W. N. W. 1
	clds	clds	clds	c	c
$9\{$	W. 2	W. 2	W.by S. 1	W.S. W. 1	N.W. 1
	clds	clds	clads		clds		0
10	W.S. W. 1	W. 2		S. 1		W.N. W. 1
	c	c				c
11 \{	W.S. W. 1	W. N. W. 2			S. 1		0
	c	clds				c
Mdn't	W. S. W. 1	W. 2		S. W. 1	0
	c	c			clds		-

Table XXIII.-Observations of the direction and force of the wind, de.-Continued.

Table XXIV.-Observations of the direction and force of the wind and state of the sky at Mount Diablo, California, March and April, 1880.
 misty : f, fog ; clds, clouds; cldy, cloudy ; r, rain ; s, sle日t ; hl, hail; sn, snow. Duplication of letter indicates intensified state.

Table XXIV.-Observations of the direction and force of the wiad, dc.-Continued.

Hour.	March 30.	March 31.	April 6.	April 7.	April 8.	April 9.	April 10.
A. M.							
1 ,	N. W. 2 .	S. W. 3	S. 2	...
	c	cldy	c
2	\cdots			
\}	3			S. 3	
3 3	clds	c
S	S. W. by W. 3	S. 3	
4 ,	cldy and f	r	
$5\{$	\ldots	
\}	-.......	r	
65	-	W. by S. 1
${ }^{1}$	f	r	c
7	-........	$\ldots . .$.	$\ldots . .$.	
8	0 -	\ldots
9
	clds
10 \{	-	\cdots	\cdots
10 ?--	-......-	clds	f
113	--	S.S.E. 3		-.......
	c	clds	f
Noon			S. 4	S. to W. 1
Noon		-			clds	
P. M.	0		...	W. 1	S.S.E. 1	...	S. W. 2
1 ,			.	f	h		bh
	S. 1		
2 2	clds	clàs	
$\}$	E. 1	S. 3	..	
3 3	clds	hh		
	N. 1		S. E. 1			$\cdots \cdots$
43	h			h	\cdots
	N. W. 1						clds
$5\}$	hh	Storming	...
	
6 \%	W. 1	-	-........	-.......	hard
- 2	clds	
7 \%	S. W. 1	S. S. E. 1	at	S. W. 3
7 7	elds		cldy			
	S. W. 3		W.by N. 1	dark	S. W. 3
8 \%		c				c
	S. W. 3					on	W. 3
93							
	Sser	April	
11	S. W. 3-.	S.S.E. 2	April
11	S. W. 3	-.......		the	.-.....
Midn't	S. W. 3		...	S. E. 1	S. 3	ninth.	W. 3

Table XXIV.—Observation of the direction and force of the wind, dec.-Continued.

Hour.	April 11.	April 12.	April 13.	April 17.	April 18.	April. 19.	April 23.
A. M.							
$1\}$	N. W. 1	clds	Since. \cdot.	Observations.
${ }_{2}$ \%		clds	Jast	\cdots	\ldots
3			observation		been
4	0	at	S. W. 2	prevented
4 \{	c	f					
5		2 p.m.			since
${ }^{5}$ \%		f	-....... \cdot......
\{			yesterday		N. W. 2	7 am m
$0\{$		f		(*)	clds \dagger	eldy	
	N. W. 1		Martinez	W. by N		sesterday
7 ,	cldy	-.......	clds ${ }_{\text {+ }}$	
8	has been	\ldots	.	by
9 \{	W. 3	shut off		snow and
	e	\ldots	-	f	-.....
10	by fog and	rain
11 \{	N. W. 3	--......	by rain	N. W. 1	$\ldots .$.		storms.
		cldy	f	
Noon $\{$		and	N.E. 2
	.-......	f		sn	©
	N. W. 3		snow		
\}	-	cldy		h. \& sn
		storms.	\cdots
2 2	f	clds
,	-	.-.	W. by S		
${ }^{3}$ \}	clds		m		
4
4	clds	f	cldy		
5 \{	f....	\ldots	- clds.
,	f
63	$\cdots{ }^{\text {f.... }}$		\ldots
,	I
7	\ldots
8	-..	
9				
10		...			\ldots		
			W. by S. 3	N. 3
11 ,	f			c		-
Mdn't	\ldots	\ldots-.......
	I	-.....-.				

[^12]Table XXIV.-Observations of the direction and force of the wind, dc.-Continued.

Hoar.	April 24.	A pril 25.	A pril 26.	April 27.	April 28.	April 29.
A.M. - M - -						
1 \{	N.E. 3	N. 3	E.S.E. 1
	-........	\cdots	hh	b	h
$2\{$	W. 2
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	f	\ldots	h, clds
	N. 6	N. W. 2
	h, clds	f
4,
	${ }^{1}$	f
5 5	N. 2	N. E. 1
	clds	f	1	clds
6 \}	. \cdot	\cdots
	.	cids	f	1	h
7 \%	N. 2	N. N. E. 2	\cdots	\cdots
	c	clds	1	f
8)	N. 3
	f	elds	clds	1
-
	-	clds	\ldots	cldy
10	N.E. 1	-.......
	clds	.-. -...	hh
11 \{
	f
Noon $\{$	0
	clds	hh
1	0	0
	N. 1
2
3)	h	hh	h	.	-....
4 ,		N. 1
	hh	h
5	N. 3	\ldots	0	-
	hh	hh	h	h	
6 9		N. 3		
	h	h	h	-..
7 9		W.N.W.8		N. 3	--	...
	c
8
0
	0
10		c	...
11
Mdn't			S. E. 1

S. Ex. 29——41
Appendix No. 13.ACCOUNT AND RESULTS OF MAGNETIC OBSERVATIONS MADE UNDER THE DIRECTION OF THEUNITED STATES COAST AND GEODETIC SURVEY IN CO-OPERATION WITH THE UNITED STATESSIGNAL OFFICE, AT THE UNITED STATES POLAR SIATION OOGLAAMIE, POINT BARROW, ALASKA;lievt. P. henky ray, a. s. o., COMmANDING post.
Reduotion and Disoussion by CHARIFAS A. SCHOTI, Assistant Coast and Geodetio Survey.
TABLE OF OONTENTS
General historical statement.-Account of the proposed co-operation in the magnetic researches by the United Page.States Coast and Geodetic Survey and the United States Signal Corps with the Interna-
tional Polar Commission 324
Part I.-Introduction 324
Limits of co-operation with the magnetic work of the International Polar Commission, espe- cially in the first year, in consequence of insufficient instrumental means and lack of trained observers 324
Full co-operation at home by the establishment of a magnetic observatory at Los Angeles, Cal., by the Coast and Geodetic Survey 324
Practical instructions and notes for the guidance of abservers to be stationed at Point Barrow, Alaska, and at Lady Frankin Bay, Grinnell Land, Northeast Aretic America 325
Instrumental ontfit of both parties; disposition and adjnstment of instruments, absolute and differential ; directions for observing 326
Differential instruments sent out to Point Barrow in the second year, description of declinom- eter, bifilar and balance-force maguetometers 328
Geographical position of Ooglaamie Station, Point Barrow, Alaska; resulting latitude and longitude 333
General account of the magnetic work at Ooglaamie, 1881-88-83; defeat, by unfavorable state of the weather and ice, of proposed magnetic verification work by Coast and Geodetic Survey party sent out in the summer of 1883 334
Part II.-Magnetic work at Ooglaamie. Absolute measures 336
Results of the magnetic declination ; monthly means from August, 1882, to August, 1883 337
Discussion of the annual change of the declination. 338
Resnlts of the magnetic dip, monthly means from December, 1881, to August, 1883 339
Diecussion of the annual change of the dip. 339
Results of the horizontal and vertical components of the magnetic force; constants of magnet- ometer; results of horizontal force from oscillations and deflections; results of the same by means of the dip circle ; monthly mean of the horizontal force December, 1881, to August, 1883 340
Table of dip, horizontal, vertical, and total forces 343
Annual change in the horizontal, vertical, and total forces 344
Part III.-Magnetic work at Ooglaamie. Differential measures. 344
Remarks explanatory of differential observations of the first year, constants of the declinom-eter; recapitulation of monthly mean values of the hourly readings between September 12 ,1882, and Angust 27, 1883 ; solar diurnal variation of the declination (inclusive of disturb-ances); comparison of results; preliminary remarks on separation of the larger disturbances.
Constants of the bifilar magnetometer and recapitulation of monthly mean values of thehourly readings between September 12, 1882, and August 27, 1883; observed solar diurnalvariation of the horizontal force (inclusive of disturbances); table of hourly mean valuesof the temperature, and discussion of the temperatare coefficient; solar diurnal variationcorrected for changes of temperature and comparison of results349
Combination of the variations in declination and in horizontal force; diarnal variation of the whole deflecting force acting in the horizontal plane 356
Constants of the balance-force magnetometer, and recapitulation of the monthly mean values of the hourly readings between September 12, 1882, and August 27,1883 ; observed solar diarnal variation of the vertical force (inclusive of disturbances) ; discussion of the tem- perature coefficient, solar diurnal variation corrected for changes of temperature 361
Solar diarnal variations of the magnetic dip and total intensity 364
Table showing frequency and diurnal distribution of anrore at Ooglaamie 366
These parts are illustrated by eleven aketehes and diagrams and a map of the region about Point Barrow.
N. B.-Discussion to be continned in anbsequent parts and so much of the magnetic differential record of 1881-'82 will be given as may here be desirable. The record and computation of the astronomical work, and of the absolate measures for declination, dip, and intensity, 1881-'22-'83, are preserved in manuscript.
This paper, twith full record, inclusive of the term-day observations, will be printed by the United States Signal Office, to form part of the International Polar Researches.

Computing Division, Coast and Geodetic Survey Office,

 May 6, 1884.Dear Sir: Towards the end of March, 1881, Mr. Carlile P. Patterson, then Superintendent of the United States Coast and Geodetic Survey, was inviter to aid and co-operate in the researches proposed by the International Polar Commission, which held its second session at Bern, Switzerland, in August, 1880, H. Wild, president. General W. B. Hazen, Chief of the United States Signal Corps, U. S. A., having notified the Commission that the United States would take part in the undertaking, caused two expeditions to be fitted out, one to proceed to Point Barrow, Alaska, the other to Lady Franklin Bay, Grinnell Land. The Coast and Geodetic Survey was to co operate in the magnetic work which these parties were to execute by furnishing such magnetic and other iustruments as were then available, and by instructing three or four obserrers of the Signal Corps in their use, besides bearing a part of the expense of the firstnamed expedition, the second expedition having been provided for by special appropriation of Congress.

Part I.-Introduction.

It was not until near the close of April that these preliminary arrangements were concluded and it was well understood, in consequence of the want of suitable magnetic instruments, and in particular of differential instruments, and owing to the fact that no trained scientific observers were at the time arailable, that the Coast and Geodetic Survey could not then follow the minute instructions which had been prepared for the guidance of the various expeditions which were to take part in the work of the Commission. In the words of the Superintendent, we were simply to do for terrestrial magnetism the best that was possible at the time. For the first year at Point Barrow, and during the entire absence of the other expedition, the assistance of the Survey was more incidental than fully co-operative, but this condition was considerably improved in the second year at Point Barrow, when we were able to send a set of differential instruments with a newly instructed observer. In the summer of 1883 a special observer was sent in charge of pendulum work, and particularly to verify the magnetic work as well as to redetermine the geographical position and the true meridian or azimuth, but unfortunately he was unable to accomplish anything in consequence of the continued rain, fog, or cloudiness of the sky during the few days he could stay at the place, the state of the ice and the damaged condition of the vessel demanding a speedy embarkation of the whole party.

That under these circumstances the magnetic work should fall somewhat short of the accuracy which the Commission had desired it should possess is not surprising; indeed, the Polar Conference found afterwards that so far as the first year's magnetic work was concerned it appeared to have been undertaken rather prematurely, inasmuch as it could not be supposed that differential instruments of a particular description were ready at hand, nor was there sufficient time to procure them. Disclaiming therefore such close co-operation as would have been desirable but which was impossible under the circumstances, the records and results herewith presented are the outcome of faithful labor, and are belieced to be an acceptable contribution to our knowledge of magnetism in high latitudes, and it is thought that in the second year, at least, these records will prove to be a valuable part of the material accumulated by the several expeditions.

Later on, in full co-operation with the work undertaken by the International Polar Commis. sion, the Coast and Geodetic Survey established at Los Angeles, Cal., a magnetic observatory and equipped it with a set of Adie's self-recording magnetometers of the Kew pattern. In the spring of 1882 the adobe building had been constructed by Assistant J. S. Lawson, and in July following the instruments were mounted and the photographic process was arranged by Mr. W. Suess, mechanician Coast and Geodetic Survey. The observatory was then permanently turned over to the charge of Mr. Marcus Baker, Coast and Geodetic Survey, under whose direction the absolate and differential measures have been made uninterruptedly from about the end of September, 1882, to the present time, and it is the intention to continue the work for some years.

In May, 1881, Mr. J. B. Baylor, and, in June following, Mr. M. Baker, of the Geodetic and Coast Survey, were detailed to instruct, at Washington, Sergeants E. Israel, J. Cassidy, J. Murdoch, and M. Smith, Signal Corps, United States Army, in the use of the sextant and the
altazimuth for the determination of time, latitude, longitude, and azimuth, and in the requisite computations; 1hey were likewise instructed in the use of those magnetic instruments which they were to take with them. Mr. A. C. Dark was instructed at San Francisco in astronomical observations by Sub-assistant J. F. Pratt, Coast and Geodetic Surrey. With the exception of Sergeant Israel, who proceeded to Lady Franklin Bay, the above-named observers formed part of the personnel of the Point Barrow party. These observers made the best use of the short time available for their instruction.

In May, 1882, J. Palmarts and Sergt. J. E. Maxfield, Signal Corps, United States Army, received instructions from Mr. Baker in the use of the sextant and the theodolite, and in June they practiced under Assistant Eimbeck, Coast and Geodetic Survey, with the Brooke differential instruments, which left the office for Point Barrow June 14, 1882.

The following instructions to the parties were drawn up (June 9, 1881) by the writer, under direction of Superintendent C. P. Patterson:

"INSTRUCTIONS AND NOTES FOR THE GUIDANCE OF THE OBSERVERS TO BE STATIONED AT POINT BARROW, ALASKA, AND AT LADY FRANKLIN BAY, NORTH OF SMITH SOUND, ARCTIC

 OCEAN."As soon as the quarters of the expedition have been fixed upon, a magnetic house will be erected, in which the regular magnetic observations, as described below, will be made; other observations will be made when on boat or sledge trips.
"Instruments.-For the use of the magnetic observatory there will be provided a magnetometer for absolute and differential declination and for horizontal maguetic intensity, to be permanently monnted on a stone pier. In connection with this instrument a meridian or azimuth mark will be established a short distance off the observatory and visible from it through an opening in its wall. The astronomical bearing of this mark will be carefully determined by means of an altazimuth instrument and solar observations. In the same house, but on a separate pier, will be mounted a Kew dip circle, and in the case of Point Barrow a third instrument, a bifilar magnetometer, will also be permanently mounted on its pier. At Point Barrow the magnetometer (or unifilar) and the bifilar instruments will be mounted in the magnetic meridian and at a distance apart not less than 12 feet, and the dip circle will be mounted equidistant from these instruments, forming an equilateral triangle. At Lady Franklin Bay the two instruments will be mounted in the plane of the magnetic prime vertical and not less than 12 feet apart. No iron is to be used in the coustruction of these buildings, and they should not be nearer than 50 yards to any other building, or double that distance to any large mass of iron. Special reading lamps (of copper) must be provided for use with the instruments, and they must be tested to make sure that they do not affect the position of the magnets. The use of candles, stuck in wooden blocks, is preferable to lamps.
"When on boat or sledge journeys the party will carry a chronometer, a small altazimuth instrument, with circles of about 3 inches diameter (as constructed by Fauth \& Co., of Washington, or Casella, of London), provided with a magnetic needle or compass mounted over its vertical axis, and a dip circle.
"Observations at the permanent station.-Hourly observations will be made for declination and diurnal variation with the magnetometer on three consecutive days about the middle of each month; besides these observations, extending over seventy-two hours, there will be made at any conrenient intermediate time each day (of the three) one set of deflections, followed immediately by a set of oscillations for the determination of the horizontal intensity. At Point Barrow the bifilar will be read immediately after the unifilar. There will also be made at any intermediate time each day (of the three) a set of dip observations. In connection with the declination, the mark will be read once each day (unless the instrument should accidentally be disturbed), but it suffices to determine the magnetic axis of the declination magnet on one of three days. The instramental constants of the magnetometer will be determined before learing Washington, and the observer will use the Coast and Geodetic Survey magnetic blank forms for their records, or in case no special forms are provided they will use small (octavo) note-books; they will also compute,
as soon as the observations are completed each month, the magnetic mean declination, diurnal range, and turning hours, also the horizontal force in absolute measure (English units) and the dip, tabulating the results for each das.
"Extra observations on other than the three days about the middle of each month will be made during all occurrences of auroral displays, but as they are likely to be very numerous at Point Barrow, observers there may confine their extra obserrations to the more conspicuous displays ouly. On these occasions the declinometer (and the bifilar) at Point Barrow will be read every ten minutes, or oftener or less often, as the state of the needle may appear to Cemand, the object being to ascertain the relation and establish a connection between the appearance of the aurora and the motion of the magnetic needle.
"When landing, on a boat journey or during a sledge journey, at suitable stations (not less than 10 or 15 miles apart), the time, latitude, and azimuth will be determined by the altazimuth instrament, and the declination by the same instrument (the hour and minute of the observation is to be noted in order that the diurnal rariation mas be allowed for); the dip will also be observed, and, in case time is pressing, reversal of circle, rerersal of face of needle, and reversal of polarity of needle may be dispensed with, but the needed corrections to the result from the single position of the instrument must be ascertained at the permanent station. Observations of deffections with mag. wetic needle (and with weights) will be made with the dip circle as arranged for relative and absolute total force, the data for the latter to be supplied at the permanent station.
"It is highly desirable, especially in the case of the Lady Franklin Bay party, that all stations within reach and formerly occupied by other parties for magnetic purposes be revisited in order to furnish material from which to deduce the secular change during the interval; besides, all opportunities should be taken when landing on the way up to secure observations for declination, dip, and intensity; the latter best by oscillations of the intensity magnet. The winter quarters of the late English expedition should be connected magnetically with the present quarters.
"All magnetic observations will be made on Göttingen time, as provided for by the Hamburg Conference.*
"All magnetic work will be kept strictly in conformity with "Notes on measurements of terrestrial magnetism," United States Coast Surver, Washington, D. C., 1877, \dagger and other records in connection therewith should be equally clear and complete, and all computations should be made by the observer in separate books. Duplicates of all records will be made, compared with the original, and the latter returned annually, \ddagger if practicable, to the Superintendent of the Coast and Geodetic Survey, Washington, D. C. The observers should also provide themselves with copies of the 'Admiralty Manual of Scientific Enquiry'' the 'Arctic Manual and Instructions, 1875;' and 'Auroræ, their Character and Spectra, by J. R. Capron, 1880 ;' also . with 'Terrestrial and Cosmical Magnetism, by E. Walker, 1866,' and any other work they may require for their information."

Besides the above paper, which is printed pages 12-14 in "Instructions No. 72, War Department, Office of the Chief Signal Officer, Washington, D. C., June 17, 1881," the parties received additional instructions, headed "(2) Obligatory observations in the domain of terrestrial magnetism," and "(3) Elective observations," contained in the same order. Among these optional observations are mentioned observations of tides and of earth currents; for both of these phenomena returns were made.

The Point Barrow party was also provided with a plan of the magnetic house, and received the following note respecting the adjustment of the bifilar magnetometer, which had been hastily constructed from some remains of an older instrument.
"The portable bifilar magnetometer.-This instrument was reconstructed from such parts as could be found from an old instrument. A collimator magnet was provided, also a new bifilar suspension, adjustable by means of a right and left handed screw in the place of a disk, as originally supplied; the projecting arms, indicating that the instrument had been arranged tor an induction inclinometer, were removed.

[^13]"It is to be used differentially, or for variations only of the horizontal component of the magnetic force. The instrument is to be adjusted with the axis of the collimator magnet in the magnetic prime-rertical, and the variations of the horizontal force are observed by readings of the scale.
"If $\mathrm{H}=$ horizontal magnetic force, $\Delta \mathrm{H}=$ variation of the same, $v=$ angle of t wist in the biflar : suspension (usually between 40° and 70°), $\Delta v=$ rariation of this angle (expressed in parts of radius), then
$$
\frac{\Delta \mathrm{H}}{\mathrm{H}}=\cot v \Delta v
$$

"If $n_{0}=$ reading of the scale of any fixed part-say of the magnetic axis of the collimator, $n=$ any reading at another time, $a=$ value of one division of the scale in parts of radius (or angular value in minutes times .000291) then
$$
\triangle v=\left(n-n_{n}\right) a
$$
"To correct for changes in the value of $\frac{\Delta H}{H}$ for change of temperature of magnet, let $q=$ change of magnetic moment of magnet corresponding to a change of 10 Fah., we have then the correction $q\left(t-t_{0}\right)$ where $t_{0}=$ normal temperature adopted and $t=$ any other temperature. The value of q may be found by a series of observations of oscillations at high and low temperatures, the magnet being suspended as in the unifilar magnetometer. Putting $l=a \cot v$ we have
$$
\frac{\Delta \mathrm{H}}{\mathrm{H}}=k\left(n-n_{0}\right)+q\left(t-t_{0}\right)
$$
"The value of k may be about . 00025 and it should be so arranged, by varying the distance of the threads that the least integer reading of the scale should indicate about $\frac{1}{1000}$ to $\frac{1}{5000}$ part of the horizontal force. The observed variation in the horizontal component of the magnetic force will be true only in case the magnetic moment of the suspended magnet remains unchanged during the time of observations, but as every magnet gradually loses magnetism a further correction for loss of magnetic moment is needed; this may be determined by comparing differences of values
of horizontal force as determined by means of the unifilar magnetometer at certain times (and after long intervals) with a series of corresponding readings of the differential instrument. The magnet being an old one, it seems best to examine and readjust the bifilar at the end of each year or sooner in case of necessity.
"The north end of the magnet may be turned either to the right or left of the meridian, but it will be desirable to choose that side which will make increasing horizontal force correspond to in. creasing scale readings.
"The principal adjustments of the instrument may be summed up as follows:
"Level; suspend magnet as uniflar; focus telescope; place scale horizontal and adjust light for distinct vision; take torsion out of suspension ; put plane of detorsion in magnetic meridian ; determine axis of collimator; determine scale value or value of one division in minutes of are; point on axis and note corresponding scale reading of magnetic meridian ; take off unifilar and substitute bifilar tube; place plane of bifilar suspension in magnetic meridian; point on axis and read torsion circle; test this by turning telescope 180° in azimuth and bringing the magnet in the reversed position, north end to the south, and read torsion scale; if it reads as before the plane of threads was truly in the magnetic meridian; repeat adjustment if necessary; turn telescope 90° or iuto the magnetic prime-vertical, and turn in the same direction the torsion circle until the axis of the collimator appears pointed in telescope; read the torsion circle, it will be $90^{\circ}+v$ from the meridian value; compute the value of k and alter the distance of threads by tarning the screw until a satisfactory value for k is found.
"The observers will remember that at Point Barrow the horizontal force is about one-half of what it is at Washington. They may also consult Lloyd's Treatise on Magnetism (London, 1874)."

With reference to co-operation with the Polar Commission during the second year of occupation of the Point Barrow station directions were given by yon, May 23, 1882, to prepare the old Brooke magnetograpbs for immediate service. These instruments had been used for many years, first at Key West, Fla.,* and latels at Madison, Wis., and required thorough overhauling ; moreover, photographic registration being out of the question in the Polar regions, they were changed and remounted according to a plan devised by me for direct eye-observations. By extra exertion, with the assistance of Fauth \& Co., instrument makers, and W. Suess, mechanician, this was expeditiously done, and the instruments left Washington June 14, 1882.

The following memorandum was handed to the relief party before starting for Point Barrow:

$$
\text { "MAY 26, } 1882 .
$$

"The magnetic instruments intended for Point Barrow will be the modified Brooke magnetometers, viz: declinometer, biflar or horizontal force magnetometer, and Lloyd's balance or vertical force magnetometer, to be relatively disposed of in a building, as shown in the accompanying diagram.
"The size of the observatory was to be 3 by 5 meters, or about 10 feet by $16 \frac{1}{2}$ feet inside, and $6 \frac{1}{2}$ to $7 \frac{1}{2}$ feet high; size of the brick piers, 0.3 meter square and about 1 meter high; cross-section of telescope pier 0.15 meter by 0.6 long, and of the same height as the instrument piers; the brass cylindrical vessels in the axis of which the magnets are suspended, except the knife-edge of the Lloyd balance which passes through the center, are each of 40 centimeters diameter. This new observatory should be distant from the older one at least 8 meters."

[^14]

The following notes were prepared for the guidance of the party May 31, 1882:
"NOTES ON THE MOUNTING, THE ADJUSIMENT, AND THE DETERMINATION OF INSTRUMENTAL CONSTANIS OF THE BROOKE DIFFERENTIAL MAGNETOMETERS.

1. The declinometer or unifllar magnetometer.

"Take out the torsion of the suspension skein or wire, suspending alternately maget and weight, until the telescope readings are the same; adjust fixed mirror to read 50 of seale, which is to be recorded as 500 ; adjust movable mirror to read the same for average position between daily extremes; note reading t of torsion circle. Measure torsion of suspeusion by turning off β degrees to right and to left, and reading the seale (through telescope); turn torsion circle back to reating t.

Let $l=$ length of a division of scale,
$r=$ radius or distance from face of scale to surface of mirror (if of glass silvered on back, two-thirds of the thickness of the glass must be added), then the angular value of one division of scale,
$a=3437^{\prime} .75 \frac{l}{2 r}$
,
"For the magnetometers the value of l is uniformly 1 millimeter, and the angular value $a=1$ ', the radius r being $=1.719$ meters, which has to be carefully measured off for each instrument. To determine the torsion coefficient $\frac{h}{f}$ let $\alpha=$ angle through which the, magnet was deflected, and $\beta=$ angle through which the torsion circle had been turned, then ${ }_{f}^{h}=\frac{\alpha}{\beta-\alpha}$; hence scale value $a\left(1+\frac{h}{f}\right)$ expressed in minutes of arc. Increasing numbers of seale should correspond
S. Ex. 29-42
to a motion of the north end of the magnet to the east. The scale is numbered from 20 to 80 (which uumbers are to be read 200 and 800), and thus has a range of 50 on either side of the normal position. Two spare scales, divided on white bristol-board, about 15 centimeters long (giving additional extent of 21°), should be made, and in case of necessity fastened to the ends of the reading scale. The vertical cross-thread of the telescope is to be kept on the 500 mark as reffected from the fixed mirror,* a remark which applies to each of the instruments. The dividing line or narrow space between the fixed and movable mirrors is in the plane of the optical axis of the telescope. The instrument is placed under a zinc cover.

2. The horizontal force or bifilar magnetometer.

"P'ut plane of detorsion in the magnetic meridian, turn torsion circle with weight suspended approximately iu plane of meridian, and read circle. Remove weight, suspend magnet, and again
 read circle. If the same as before, the plane of detorsion is in the magnetic meridian; if not, repeat the process until the result is satisfactory. It is recommended to mark out in the observatory the directions of the magnetic meridian and of the magnetic prime-vertical by threads or fine strings stretched from wall to wall; these threads would also aid in the setting of the piers. Let $m^{\prime \prime}=$ reading of torsion circle for plane of detortion in the meridian; suspend weight and turn torsion circle to $90^{\circ}+m^{01}$, turn movable mirror until the middle line or 50 of the scale is bisected, in which position of the telescope the fixed mirror will reflect division 50 (to be read and recorded as before, 500). Suspend magnet in place of the weight, turn torsion to $m^{\prime \prime}$, until middle line of scale is again bisected, then $m^{\prime \prime}-\left(90^{\circ}+m^{\prime \prime}\right)=z$ (see annexed diagram, where $u=90^{\circ}$). Let $\mathrm{H}=$ horizontal component of the earth's magnetic force, $m=$ maguetic moment of magnet, $W=$ weight of magnet and appendages (compensation bar, mirror, stirrup, and part of suspension), $2 a$ and $2 b$ the distances of the threads above and below and $l=$ length of suspension, then

$$
\frac{\mathrm{W} a b}{l} \sin z=\mathrm{H} m
$$

now let H and z vary by $\delta \mathrm{H}$ and δz and the ratio $\frac{\delta H}{\mathrm{H}}$ or the variation of the horizontal force ex. pressed in parts of the force is given by the relation

$$
\frac{\delta \mathrm{H}}{\mathrm{H}}=\cot z \delta z
$$

"Suppose the scale division to be 1 millimeter, and the distance of the scale and mirror=r millitueter, then $\delta z=\frac{1}{2 r}$. Now, putting for δz its equivalent $a\left(n-n_{0}\right)$ where $a=$ value of one division of scale in terms of radius and $n-n_{0}=$ the difference of any two scale readings, and making $k=$ $a \cot z$, the ratio $\frac{\delta}{\mathrm{H}^{-}}$becomes $k\left(n-n_{0}\right)$. A second method for determining the scale value is as follows: Let $w=\frac{W}{100}$ or let it be equal to any other convenient fraction of W, and add w to the suspended magnet, then the difference of the two readings of the scale, that is, before and after the small weight was added, or for weight W and for weight $\mathrm{W}+w$ will correspond to $\frac{1}{100}$ of the horizontal force. To give the instrument any desired sensitiveness compate the angle of deflection z corresponding to it, and set the torsion circle accordingly; then by means of the upper suspension screw (with its two sets of opposing screw-threads) the suspension-threads are to be brought to that distance which will bring the middle of the scale (50) on the vertical thread of the telescope.

[^15]Using the second method a weight has to be provided corresponding to the desired sensitiveness and the suspension threads must be regulated in order that the additional weight may produce a change of a certain number of divisions of scale when it is added and taken off.
"The instrument is provided with a mechanical compensation for changes of temperature; in view of the extreme low temperatures which are likely to be experienced at Point Barrow, however, and under the present circumstances it will be better to deduce the corrections for any outstanding amount, not compensated, differentially from the observations of the horizontal force themselves, than to attempt a complete mechanical compensation. The latter operates as follows:

Referring to accompanying figure, suppose the temperature increases, the effective force of the magnet will diminish, the differential expansion of glass and zinc (which materials form the compensation) will push the zinc end in, which brings the suspension threads closer together and thus diminishes the torsion force, balancing H in the same ratio as II itself diminishes. Increasing scale readings should correspond to increasing horizontal magnetic force or to a movement of the north end of the magnet toward the north. The narrow space dividing the fixed from the movable mirror is in the plane of the optical axis of the telescope. The instrument is placed under a zinc cover.

3. The vertical forde or balance magnetometer.

"Put the knife-edge supporting the magnet in the magnetic meridian and level support, the magnet will then be free to oscillate in the magnetic prime-vertical; balance the magnet and its appendages (mirror, knife-edge, balancing weights, compensation bar, etc.) horizontally by means of two weights on opposite sides of the knife-edge, next bring the center of gravity of the system to that particular position close to and below the knife-edge, which corresponds to the desired sensitiveness; this is done by raising or lowering the central ball or weight. Set the mirror so that the middle of the
 seale (50) is reflected on the thread of the telescope when the magnet is level; at the same time this center division must remain bisected as seen in the fixed mirror.

Let $\quad V=$ the vertical component of the earth's force,
$d=$ the horizontal distance of center of gravity of the system from the plane of sup-
port passing through the knife-edge,
$\mathrm{W}=$ weight of magnet and appendages,
$m=$ the magnetic moment of magnet,
then $\quad \mathrm{V} m=\mathrm{W} d$.
"Now suppose the magnet inclined through the small angle ψ and let $h=$ distance of center of gravity of the system below plane of knife-edge, then

$$
\delta \mathrm{V}=\frac{h}{d} \psi
$$

"To determine the ratio $\frac{h}{d}$ we oscillate the magnet and appendages in its vertical plane and let $T=$ time of an oscillation when in that position; we then take the magnet off its support and suspend it (with its appendages) by a single thread (determining torsion and allowing for it) as iu the case of a free declination maguet, observing that the sides which were vertical when on its bearings will now be horizontal. The moment of inertia will be the same as before. Let $T,=$ the time of a horizontal oscillation, then

$$
\frac{\delta V}{\nabla}=\frac{T_{t}^{2}}{T^{2}} \cot \text { dip. } \psi=\frac{T_{i}^{2}}{T^{2}} \psi \cot \theta
$$

where $A=$ dip. For one linear unit of scale and r units of distance to mirror the value of $\psi={ }_{2}^{1} r$. The dip is to lee determined by means of the dip circle. For a particular scale value, T, having been determined, we alter the position of the center of gravity by the adjusting screw, until by trial the desired value of T is produced. The scale value may also be ascertained by means of deflections, the magnet being first in a horizontal and next in a vertical position (see page 65 of second part of bulletin, St. Petersburg, 1882).*
"The temperature compensation originally with the Brooke balancing magnetometer consisted of a glass thermometer tube filled with mercury; this has been removed, and a brass arm was substituted as in the Adie instrument. The compensation operates as follows: Suppose the temperature is rising, the magnetic energy of the horizontal magnet will diminish and gravity will consequently pull the south or unmarked end of the magnet down and thas elevate the marked end, but this is counteracted and the balance restored by the expausion of the brass arm which is directed to or ou the same side as the marked end; the diminution of magnetic moment is thus counteracted by the increased leverage of the extended brass arm.
"Increasing scale readings should correspond to increasing vertical magnetic force or to a movement of the north end of the magnet donnwards. The instrument is placed under cover of a thick plate-glass.
"Referring to the diagram of the magnetic observatory containing the modified Brooke differ. ential or variation instruments, it will be seen that the north seeking or marked ends of the magnets turn all to the inside or toward the telescope pier. The directions in which the scale numbers increase are also there indicated.
"Time being wanting for an accurate mechanical compensation of the force magnetometers, it is the intention that only the greater part of the change should be so compensated and corrections applied for the remainder; for this purpose thermometers are inserted, which are to be read in con. nection with the scales. The data for outstanding temperature correction will be had from the ordinary hourly observations."

The Point Barrow party was also put in possession of the resolutions adopted at the third session of the International Polar Conference, held at St. Petersburg, August, 1881. From this publication the following notes were taken:

The differential magnetic observations for changes of declination, horizontal and vertical components of the earth's magnetic force are to be made hourly and continuously, commencing as soon as possible on or after August 1, 1882, and closing as late as practicable before or ou September 1, 1883.

These hourly onservations may be made either with reference to local time or with reference to any other meridian. [The full hours of local mean time are recommended, and the instruments are to be read in the order, bifilar one and one-half minutes before and after, unifilar one minute before and one minute after, and balance magnetometer one half minute before and one minute after each full hour.]

Term-day olservations.-Term days are the 1st and 15th of each month (excepting January 1, when January 2 will be taken). The differential instruments on term days are observed every five mimutes throughont the twenty-four hours, and strictly according to Göttingen mean civil time, beginning with $0^{1 n} 0^{m}$ (or midnight at Göttingen). The three instruments will be read as rapidly as possible, one after another, in the order given above, the declinometer being read at the exact full fifth minute.

Additional observations on term days during one hour, specified as below. Declination observations will be made every twenty seconds, beginning with the full hour and minute of Güttingen mean civil time.

[^16]

If three observers are arailable all three instruments will be observed.
Absolute magnetic measures of declination, dip, and intensity.-Observations are to be made as often as necessary to furnish the absolute values needed for the differential measures. [Unless some change is suspected in the latter it will suffice to observe for absolute values the declination, the dip, and horizontal intensity (oscillations and deflections) on the day before each term day; declination observations will then be made about 8 a. m. and 1 p . m., local time, aud for these and the intermediate hours the corresponding readings of the scales of the differential and absolute instruments will be given; observations for dip and intensity may be made at any convenient time of the day.]

Tests are to be made for possible local deffection before selecting the position for the absolute instruments.

Scale values of differential instruments.-The mifilar or declinometer should have a sensitiveness such that 1 millimeter on the scale will correspond to a variation in declination (1) equal to 1^{\prime}, hence $\delta \mathrm{D}=1^{\prime}$. For the bifilar or horizontal force magnetometer, at a place where the dip is A, one millimeter of its scale will be made to correspond to a variation of the horizontal component (Π) of the magnetic force $=0.001 \cos \theta$, hence $\delta \mathrm{H}=.001 \cos \theta$ expressed in the metric units of the force mm., mg., s. For the vertical force or the balance magnetometer 1 millimeter of the scale will be made to correspond to a variation of the vertical component (V) of the force $=0.001$, hence $\delta V=.001$ in the same units as above.*

For absolute measures the Point Barrow party had Coast and Geodetic Surrey magnetometer No. 11 and the Lady Franklin Bay party magnetometer No. 12, both new instruments made hy Fanth \& Co., of Washington; Kew dip circle No. 23 was taken to the former place and Kew dip circle No. 19 to the latter, both instruments the property of the Coast and Geodetic Survey. The magnetometers are described and figured (plate No. 36) in Coast and Geodetic Survey Report for 1881, Appendix No. 8. The Kew dip and intensity circles with needles 9 eentimeters in length are well known.

GEOGRAPHICAL POSITION OF OOGLAAMIE STATION, ALASKA.

The two United States Polar expeditions which had been organized under the orders of W. B. Hazen, Brigadier and Brevet Major General, U. S. A., and Chief Signal Officer, left for their respective destinations early in the summer of 1881 , the one for Alaska, in command of P. II. Ray, lieutenant, U. S. A., the other for Lady Franklin Bay, in command of A. W. Greely, Lientenant, U. S. A.

[^17]Lieutenant Ray's party sailed from San Francisco in the Golden Fleece July 18, and arriv Ooglaamie, near Point Barrow, September 8. The meteorological and magnetic station was established near the small Esquimaux settlement of that name, ${ }^{*}$ about 17 kilometers, or $10 \frac{1}{2}$ statute miles, from Point Barrow and to the southward and westward of it, about 150 meters from the coast of the Arctic Ocean and at an elevation of about is meters above its level.

The geographical position of the station as derived from dead reckoning on board the Golden Fleece is given by Lieutenant Ray, \dagger as follows: latitude $71^{\circ} 17^{\prime} 50^{\prime \prime}$, longitude $156^{\circ} 23^{\prime} 45^{\prime \prime}$ west of Greenwich. The astronomieal observations at Ooglaamie for position and direction of meridian were made by A. C. Dark, and are contained in Appendix I, but are not submitted with this report. Observations found defective or unreliable from whatever cause have been omitted in this appendix. The latitude here adopted results from two sets of observations; one, of a series of double altitudes of the sun on April 28, 1882, the other, of two sets of single altitudes of the sun about upper and at lower culmination on June 24, 1882. The first value, from sextant observations, has been given the weight 4 , and the second value, from theodolite observations, the weight 1 ; the resulting latitude becomes $\phi=71^{\circ} 17^{\prime} .7$ with an estimated probable error. of $\pm 0^{\prime} .3$. According to British Admiralty Chart 2164 the position of Plover Point, where the English relief expedition under Commander R. Maguire, R. N., was stationed in 1852-'3-4, is in latitude $71^{\circ} 21^{\prime} 25^{\prime \prime}$ and in longitude $156^{\circ} 16^{\prime} 06^{\prime \prime}$ west of Greenwich. Following the trend of the coast between the cemetery and the summer camp down to Ooglaamie and converting the linear measures of the chart into difference of latitude $\Delta \varphi$ and difference of longitude $\triangle \lambda$ we find for the latitude of Ooglaamie station $71^{\circ} 21^{\prime} .4-3^{\prime} .5=71^{\circ} 17^{\prime} .9$, and for the longitude of the station $156^{\circ} 16^{\prime} .1+28^{\prime} .4=156^{\circ} 44^{\prime} .5$ west of Greenwich. Since neither the first (nautical result) nor the last result (depending on estimated direction and distance) can compare in accuracy with the value deduced at the station I shall adopt the value $\varphi=71^{\circ} 17^{\prime} .7$.

The longitude adopted results from a chronometric determination made by the supply expedition in the summer of 1882 in the Leo, under the command of Lieutenant Powell, Signal Corps, U.S. A. The result as worked out by Mr. W. Upton, computer in the office of the Chief Signal Officer, is given in his report appended to "Signal Service Notes No. V. Work of the Signal Service in the Arctic Regions; prepared under the direction of General Hazen, Washington, 1883." It depends on four chronometers, the sea rates of which could be established from observations at San Francisco before and after the voyage and at Plover Bay, East Siberia, during the voyage, though neither at Plover Bay nor at Ooglaamie did the weather prove finvorable. Mr. Upton's result is $10^{\mathrm{h}} 26^{m} 39^{\mathrm{s}} \pm 10^{\mathrm{s}}$ or $156^{\circ} 39^{\prime} 45^{\prime \prime} \pm 2^{\prime} 30^{\prime \prime}$. It will be seen that this result is intermediate between that derived from dead reckoning on board the Golden Fleece and from the Euglish determination of their station in 1853 to the southward and eastward of Barrow Point and referred to our station. Moreover, we have two sets of lunar distances from the sun July 7,1882 , with the resulting longitude $10^{\mathrm{h}} 25^{\mathrm{m}} 57^{\mathrm{s}}$, and a set of lunar distances from Jupiter as observed at Point Barrow and referred to Ooglaamie by the addition of $1^{\mathrm{m}} 25^{\mathrm{a}}$, giving the result $10^{\mathrm{h}} 27^{\mathrm{m}} 14^{8}$. The mean of these two astronomical determinations is $10^{\mathrm{h}} 26^{\mathrm{na}} 36^{\mathrm{n}}$, which agrees so well with the above chronometric value that I have adopted the latter, viz:
$\lambda=10^{\mathrm{h}} 26^{\mathrm{m}} 39^{\mathrm{s}}$ or $156^{\circ} 39^{\prime} 45^{\prime \prime}$ west of Greenwich.
For the magnetic work we need the difference of longitude between Ooglaamie and Göttingen, Germany. Taking the latter place, $0^{h} 39^{\mathrm{m}} 46^{\circ} .2$ east of Greenwich, we have the required difference $11^{\mathrm{h}} 06^{\mathrm{m}} 25^{\mathrm{h}} \pm 10^{\mathrm{s}}$, by which amount Göttingen is east of Ooglaamie.

The magnetic work at Ooglaamie, 1881-2-3.-The necessary buildings were erected without delay. October 3, 1881, the party was housed. October 17 the meteorological observations were commenced and the instruments were mounted in accordance with the plan furnished with the

[^18]instructions, but it was not till the 1st of December that the magnetometers were adjusted and the regular hourly magnetic observations were recorded. Lieutenant Ray remarks : *
"The three maguetic instruments were mounted on wooden piers, the season being too far advanced to place masonry. Posts 12 inches square were set into the frozen earth to a denth of 1 foot and cemented into their place by pouring water around them and allowing it to freaze. These piers answered every purpose, were perfectly solid, and did not change their position in the slightest degree, and when the observatory was taken down this summer I found the ice around their base unmelted. As soon as the weather was warm enough, brick piers capped with stone were placed, and the instruments are now all in position on permanent piers."

This operation occasioned an interruption in the hourly observations from July 22 to July 30 , 1882. This first series closed with September 9, 1882. It includes term-day olservations, also hourly observations of dipping needle deflected by a constant weight as a substitute for a vertical force measure. These latter observations of relative total force, while of small value as differential measures, may nevertheless supply means for computing changes in the inteusity which otherwise would have been wanting.

The supply party in the Leo arrived oft Ooglaamie August 20,1882 , with the Brooke mag netometers. They were mounted on brick piers in a building specially erected for them, and their relative position was in strict conformity with the plan contained in the instructions. So long as thawing weather continued these piers lacked somewhat in stability, but the frost soon rendered them immovable. These instruments having been adjusted, the hourly series of observations commenced September 12, 1882, and was continued without interruption to August 27, 1883. The termday observations and those for absolute measure were continued throughout the second year of the occupation of the place.

It has already been mentioned that in consequence of unfavorable conditions between August 22 and August 29 (when the station was abandoned) no verification of the magnetic work could be made by Mr. R. A. Marr, but on the return vovage some maguetic observations were secured at Unalashka, and after the return of the instruments to Washington some additional verification work was done by Sergeant Maxfield in January and February, 1884.

The accompanying sketch shows the location of the magnetic observations and the position of the instruments.

The first position of the magnetic observatory was a little to the westward of the new position shown on the sketch; the change was made in July, 1882.

* In his report to the Chief Signal Officer, dated at Ooglaamie August 25, 1862.

Part II.-Absolute measures.
MONTHLY V.lleEs of THE MAGNETIC DECLINATION, DIF, AND INTENSITY AT ooglaAMIE, DECEMBER, 1881, TO AUGUST, 1383.
RESULTS OF THE MAGNE'IC DECLINATION.

The horizontal direction of the magnetic force at Ooglaamie was determined by means of Fanth $\&$ Co's magnetometer, Ooast and Geodetic Survey, No. 11, mounted on the northern pier of the magnetic observatory, built soon after the arrival of the party; in $\mathrm{Jnly}, 1889$, it was shifted to a new position, where it remained to the close of the work. This instrument served for the absolute as well as for differential or variation measures; the latter observations, however, were discontiuned on the arrival in the second vear of the Brooke variation instruments. The instru. ment was not well adapted for differential work, as has been stated.

From returns brought home in the "Leo" it was evident that the declinations were defective, for some reason not then apparent; also that the magnet, which was a new one, had parted with much of its magnetism. It became desirable, therefore, practically to test the condition of the instrument for accnrate work as soon as this could be done. It was returned to the office at Washiugton, January 12, 1884, and after uudergoing some tritling repairs due to defective packing, Sergeant Maxfield was directed to determine the declination with it at the magnetic observatory in this city, ${ }^{*}$ also to furnish some additional measures of the iustrumental constants, those obtained by Sergeant Smith in June, 1881, not being deemed sufficient. These measures proved that the instrument was still in a satisfactory condition.

When the full returns came to hand it became evident that the discrepancies noticed in the monthly values of the declination were due to a want of attention to the suspension fiber. The plane of detorsion was apparently placed in the magnetic meridian in December, 1881, but no further test or adjustment was made till March, 1883 ; during this period the force of torsion had gradually increased (from unknown causes) and affected the declination to the amount of nearly $5 \frac{2}{2}$ in September, 1882 ; after this date this deflection remained perfectly steady until removed in March, 1883.

For the first six months the monthly results refer to the mean declination of the day (from twenty-four hourly values), but after the arrival of the Brooke differential instruments the declinations were referred to the mean of the respective months through hourly corresponding readings of the Fauth \& Co. maguetometer No. 11 and the Brooke declinometer. These corresponding readings generally extend over six hours on each day of observation.

The record and computation of the absolute measares are contained in Appendix II, not submitted herewith. Placing little reliance on the determination in December, 1881, on account of a weak astronomical azimuth, and omitting for the present all results of 1882 and those for 1883 u^{p} to the middle of March, we have the following reliable values, which rest on a new astronomical azimuth determined July 25,1882 , and which are roughly checked by a second measure taken on the Brooke declination pier August 31, 1882, the same mark \dagger being used and all distances being known. The observations of July 31 are rejected, there being apparently an error of about 42°.

[^19]Table of resulting magnetic declinations at Ooglanmie station.
[Values reduced to mean of month by means of the differential observations.]

Bate.	Declination.	Monthly noan values.	Corresponding mean of readings of Brooke declinometer.
1883.	\bigcirc ',	18*3.	Divisions.
Mar. 31	3533.3 E .	Mareh - 35 33.:	484.7
Apr. 14	3531.7	April 20	48.1
Apr. 30	3526.4	May \ldots...... ${ }^{\text {2 }}$ 8.6	476.0
May 14	3530.8	Junt....... 11.	475.7
May 31	$85 \div 6.3$	July 47.8	474.0
Tune 14	35×5.2	August..... 30.	473.5
June 30	3458.3	Mean $\mathrm{I}=-3530.1$	Mean 477.6 $-r_{t}$
Tuly 14	3547.8		
Aug. 14	3530.1	Corresponding to the epo	Jund 1, 1883.

The following results, except the first, are those affected by torsion; some of these we prope to use differentially; they are all reduced to the mean of the month respectively:

Date.	Declination.	Remarks.
1881.	0 ,	(New position of instrument, and new azimuth used here.
Dec. 11	3515.7 E .	
188%.		
Jan. 24	3728.8	
Apr. 18	3949.9	
May 24	3006.1	
June 17,18	3947.4	
July 19, 20	3954.0	
Aug. 10	4114	
Aug 31	4123.4	
Sept. 14	4110.7	
Sept. 30	4135.5	
Oct. 14	4128.0	
Oct. 31	4117.7	
Nor. ${ }^{16}$	41 18.7	
ov. 30	4114.7	
ec. 14	4108.8	
1883.		
Jan. 1	41. 15.1	
Jan. 14	4110.3	
Јan. 31	4124.7	
Feb. 14	4126.1	
Feb. 98	4016.7	Torsion partially removed by observer.
Mar. 14*	3602.0	Observer attempted to take out the torsion.

* After this date the maguet was suspended on a single fiber; it had previously been suspended on two tibers.

Towards the middle of August, 1882, the deflecting force of torsion had become constant aud remained so to the middle of February in the following year. For this period we have the following S. Ex. $29-43$
means, and the corresponding monthly means of the readings r of the Brooke differential magnetometer, the mean correction to the absolute results is then found as shown below :

Date.	$\begin{gathered} \mathrm{D}^{\prime} \\ \text { obscrved } \\ \text { declination. } \end{gathered}$	Brooke declinometer r.	$\triangle \boldsymbol{r}=\mathrm{r}_{0}-\boldsymbol{r}$.	$\mathrm{D}+\Delta r$.	Correction for torsion.	Corrected declination
1882.	$\bigcirc 1$,	$\bigcirc 1$	- '	\bigcirc
Ang. 19,31	-41.19.2	\ldots	-.......	-35 44.6
Sept. 14,30	24.6	(498.0)	-20.4	-3550.5	$+534.1$	50.0
Oot. 14,31	20.4	(495. 6)	18.0	48.1	32.3	45.8
Nor. 16, 30	16.7	489.8	12.2	42.3	34.4	42.1
Dee. 14	08.8	489.9	12.3	42.4	26.4	34.2
1889 Jan. 1, 14,31	16.7	488.1	10.5	40.6	36. 1	42.1
Feb. 14	26.1	489.4	11.8	41.9	44.2	51.5
				Mean	+ 534.6	

The two values within parenthesis in column headed r are interpolated: Mean reading of declinometer for the last five months $476^{d} .2$ and for the preceding five months $488^{\mathrm{d}} .4$, hence difference for five months $12^{\text {d }} .2$ or monthly change 2 '. 4 , and the first interpolated value becomes $4 \times 2.4+488.4=498.0$. The fifth column gives the computed declination corresponding to difference $r_{0}-r$ or for the reading r, and the torsion correction is determined by the difference $D-D^{\prime}$. Our completed series when compared with the preceding series (March to August, 1883) exhibits necessarily a trace of the comparatively rapid monthly decrease in the differential series between February, 1883 (mean 489.5), and May, 1883 (476.1), but the magnitude of the errors of observation of the absolute measures forbids any attempt at correction of the differential series. Omitting the value for August, 1882, we finally have the table of absolute values as follows:

Resulting monthly means of the magnetic declination at Ooglaamie.

Date.	Monthly mean.	Date.	Monthly mean.
1882.	$0 \quad$,	1883.	0.
September.	-3550.0	March.	-3533.3
October.	45.8	April.	29.0
November.	42.1	May.	28.6
December.	34.2	June.	11.8
1883.		July.	47.8
January.	42.1	August.	30.1
February.	51.5		-3537.2^{2}

[^20]1882, to August, 1883 , wonld give the value $+28^{\prime} .4$, which is known to be much too great, and it we fall back on the differential series we obtain a value but a trifle less and undoubtedly affected by torsion in the suspension skein of the declinometer, which was never re-examined after the first adjustment had been made. Omitting the readings between March and April, when the torsion was most pronounced, a discussion of the five monthly means, November, 1882, to February, 1883 , inclusive give a monthly change $m=-0^{\prime} .97$, and a discussion of the four monthly means, for May, June, July, and August, 1883, give $m=-1^{\prime} .15$, but if April be included $m=-1^{1} .92$, mean $=-1^{\prime} .53$; mean of first and last value $-1^{\prime} .25$, hence aunual change $-15^{\prime} .0$, which is adopted as the most probable value.

RESULTS OF THE MAGNETIC DIP.
The observations were made with Kew dip circle,* L. Casella (London), No. 4370, or Coast and Geodetic Survey No. 23. It remained mounted on its pier in the small magnetic observatory during the stay at Ooglaamie. The instrument left Washington June 23,1881 , and was returned Jannary 12, 1884, only sustaining the breakage of one of the dipping needles. Test obserratious made by Sergeant Maxfield at Washington in January and February, 1884, on four days, gave very satisfactory results. (See results for intensity.)

Observations were generally made on three days each month. The series commences with November 30, 1881, and ends with August 14, 1883. It does not appear that there is any appreciable difference in the results by needles 1 and 2 ; they are therefore combined indiscrimiflately. The following monthly means are made up from the individual results, and they are here arranged with a view of deducing, if practicable, from the monthly values taken at an interval of a year, a value for the amnal change of the dip, independent of any annual variation :
1.-Table of resulting dip at Ooglaamie.

Date of observations.		Observed $\operatorname{dip} \theta$.	Date of ob	servations.	Observed $\operatorname{dip} \theta_{1,}$.	Annual change. $\boldsymbol{\theta}_{1,} \rightarrow \boldsymbol{\theta}_{\text {r }}$.	
$\begin{gathered} 1881 . \\ \text { December-1,17, 18, } 19 . \\ 1882 . \end{gathered}$		8124.6	1882.		\bigcirc -	,	
		Decembe	er 14	8122.4	-2.2		
		1883.					
January	18, 19, 20		22.4	January	1,14,31	22.0	-0.4
February	16,17, 18		27.1	Februar	y 14,28	24.8	-2.3
March	17, 18, 19	27.6	March	14,25	25.0	-2.6	
April	17,18, 19	24.3	April	-1, 14, 30	24.5	$+0.2$	
May	$17,18,19$	22.2	May	14,23	22.6	$+0.4$	
June	16, 18, 19	24.0	Tune	-1, 14, 30	23.9	-0.1	
Juls	17,18, 19	21.5	July	14, $\frac{1}{2}\left\{\begin{array}{l}31 \\ 45\end{array}\right\}$	19.2	-2. 3	
August	17,18, 19	22.8					
September	-1,14,30	22.2	Means		8123.4	-1.2	
October	14,31	22.6					
November	16, 30	22.8				-	

Mean dip from twenty months of observation, $81^{\circ} 23^{\prime} .4$, answering to the epoch October $1,188 \%$. Aunual diminution of the dip $1^{\prime} .2$

Applying the effect of the secular variation, or, more properly, of the annual change to the mean monthly values, i. e., to $\frac{1}{2}\left(\theta_{1}+\theta_{1 \prime}\right)$ for the months from December to July, inclusive, and to θ, the correction - $0^{\prime} .6$ for the months of Aagust, September, October, and November, we obtain the following table of monthly dip values, all reduced to the same epoch and which, therefore, should indicate any annual variation that may exist, unless in cousequence of the smallness of such variation it be hidden by the observing errors.
*Figured in Coast and Geodetic Survey Report for 1881, Appendix No. 8, Plate No. 37.
2. Table of mean monthly dips reduced to the same epoch (December, 1882).

Hate, midelle of month.	Mean dip.	Correction for annual elange.	Dipreferred to epoch.
	-	,	c
Dec., 1881 \& 1882.	8123.5	-0.6	8192.9
Jan's, 188\% \& 188\%.	22. 2	-0.5	21.7
Feb., " ${ }^{\text {c }}$ "	25.9	-0.4	25.5
Mat., " * *	26.3	-0.3	26.0
Apr., " "	24.4	-0.2	24.2
May. " ${ }^{\text {a }}$ "	22.4	-0.1	20.3
Junes, " ${ }^{\text {der }}$	$2 \% .9$	+0.1	24.0
July, " " "	20.4	$\div 0.2$	20.6
Aug., 1882+6mouths.	22.2	+0.3	22.5
Sept., "	21.6	+0.4	22.0
Oet. "	22.0	+ 0.5	29.5
Nov., : "	22. 2	+0.6	22.8

If the results exhibited in the last column of the table can be trusted for such small differences from the mean ($81^{\circ} 23^{\prime} .1$), they wond indicate a slightly greater dip about the time of the verual equinox and a slightly smaller dip about the time of the autumnal equinox.

The probable uncertainty of a monthly determination of the dip, i. e., of any one of the values H_{3} or $A_{1 \prime}$ is found to be $\frac{2^{\prime} \cdot 5}{\sqrt{3}}= \pm 1^{\prime} .4$ about.

Observations at Washington, D. U.; at Toronto, Canada; at Madison, Wis.; at Esquimault, British Columbia; at Sitka, Alaska, and at many intermediate places (see preface to "Diary of a magnetic survey of a portion of the Dominion of Canada," by General Sir J. H. Lefroy, London, 1883), show that the dip as well as the total intensity of the magnetic force are at the present time, and have been far some vears past, slowly decreasing, and our result at Ooglaamie is conformable with this general and extended action of the secular change. General Lefroy also states that at Fort Rae, Great Slave Lake, the present rate of the secular variation is- $1^{\prime} .7$ per annum, determined from comparisons of observations by Capt. H. P. Dawson with an earlier deduction. Both at Washington and Toronto the dip reached a maximum in 1859, at which time it is nearly certain that the total force had been declining for some years. In 1853, Captain Maguire, R. N., foumd the dip at Plover Point, about $2 \frac{1}{2}$ nantical miles southeast of Parrow Point, $81^{\circ} 36^{\prime}$ (Phil. Trans. Royal Society, 1857, vol. 147, Part II, London, 1858), indicating an apparent diminution of 13^{r} in twenty-nine years, but it is highly probable that since Captain Maguire's occupation of this point the dip was on the increase for a few years before its present reversed motion commenced.

HORIZONTAL COMPONENT, VERTICAL COMPONEN'L AND TOTAL MAGNETIC FOROE.
The observations for horizontal force were made with magnetometer Coast and Geodetic Survey No. 11, monnted on its pier in the small magnetic observatory. On its return to Washington in January, 1834 , the glass tube was found broken; it was replaced by a spare tube, and after repairing some trifling damages, additional observations were made here by Sergeant Maxfield for a better determination of the instrument constants.* He also made the observations of deflections by glavity and by magnetism with the Lloyd needle of dip circle $N_{0} .23$, which were required to furnish the constant for converting relative total intensity into absolute measure.

Constants of magnetometer No. 11.-Mass of ring 300.767 grains, onter diameter 3.799 centimeters, inner diameter 2.953 centimeters, thickness 0.529 centimeters, measured April 29,1881 at 77° Fah.;

[^21]again, from measures on April 30 at 73° Fab., outer diameter 1.4895 inches, imer diameter 1.160 inches, thickness 0.208 inch; the ring is of bronze. Moment of wass M, at any temperature f (Fah.) in units of feet and grains $=0.93070[1+.00002(t-750)]$. From observations of oscillations of long or intensity magnet L 11 with and withont ing, by Sergeants Smith, in June, 1881, and Maxfield in January, 1884, we have at the temperature of 62° Fah.:

Hence M for any temperature t (Fah.)

$$
\mathrm{M}=0.87694[1+.0000136(t-62 \bigcirc)]
$$

Length of collimator magnet L11, 2.48 inches, diameter 0.33 inch, about; length of shorter mag. net S11, 2.04 inches, diameter 0.34 inch, about. Scale of declination magnet L11, 80 divisious; angular value of a scale division $3^{3} .69$ The temperature coefficient determined from the monthly observations of the intensity at Ooglamie was found to equal $q=.00085$, a ralue rather large and probably related to the rapid loss of maguetism of L11 when first magnetized; the maguetic moment, m, of this magnet changed from about 0.0693 (English units) in December, 1881, to 0.0671 in January, 1884.

From the monthly observations at Ooglaamie the following results were deduced:

Table of resulting values for magnetic horizontal force (H) at Ooglaamie, as determined by magnetometer No. 11 from oscillations and deflections, and expressed in English units.

Mean horizontal component of magnetic intensity from 21 monthe of olservation 1.939 (English units), for epoch October (middle) 1882.

Annual apparent increase +0.015
From evidence similar to that given for the dip, but less conclusive, it is probable that H is on the increase, though the above amount appears far too large. In the discussion of Captain Maguire's observations at Barrow Point in 1852-3-'4, Sir Edward Sabine assumes H for that epoch about 1.79 ; this value, when compared with the above, would indicate an annnal increase of about $+\mathbf{0 . 0 0 5}$

SECOND AND INDEPENDENT IETERMINATION OF THE HORIZONTAL FOROE BY MEANS OF THE KEW DIP CIRCLE, ACCORDING TO DR. LLOYD'S METHOD* OF DEFLECTIONS BY GRAVITY AND BY MAGNETISM IN CONJUNCTION WITH DIP OBSERVATIONS.

This method has the great advantage of being independent of the temperature and of any loss of magnetism of the needle, and applies well for stations in high magnetic latitude.

The monthly observations for intensity with the dip circle at Ooglaamie commence in June, 1882, and terminate with August, 1883.

Washington, D. C., was selected as a base station and the value of the constant

$$
\mathbf{A}=\mathrm{H}_{0} \sec \theta_{0} \sqrt{\sin u_{0} \sin \boldsymbol{u}_{0}^{\prime} \sec \eta_{0}}
$$

becane known from the observations of Sergeant Maxfield in January and February, 1884. We have for the deflecting weight employed at Ooglaamie previous to September, 1882, the values:
$\eta_{0}=41^{\circ} 04^{\prime} .4$ from 12 sets of obserrations, Lloyd's needle No. 4 weighted; February $15,1884$.
$A_{0}=70^{\circ} 39.4$ from annual observations for eighteen years, 1867 to 1884 , reduced ot February, 1884.
$u_{0}=29^{\circ} 3 \tilde{5}^{\prime} .0$
$u^{\prime}{ }_{0}=37^{\circ} 19^{\prime}$. from 12 sets of observations, Lloyd's needle No. 4, deflecting No. 3, February 15, 1884.
Hence $\log A=0.92055$ using $\Pi_{0}=4.378$ as dednced from annual observations for eiphteen years, 1867 to 1884, rednced to Februars, 1884.
For the deflecting weight employed at Ooglamie after August, 1882, we have:
$y_{0}=41^{\circ} 34^{\prime} .6$ from 7 sets of observations, Lloyd's needle No. 4 weighted; January 30, 31, Febrnary 1, 2, 1884.
$\theta_{0}=70^{\circ} 37^{\prime} .3$ from 10 sets of observations, dip circle No. 23.
$u_{0}=29^{\circ} 02.7$
$u^{\prime}{ }_{0}=37^{\circ} 16^{\prime} .0$ from 7 sets of observations, Lloyd's needle No. 4, deflecting No. 3; dates as above.
Hence $\log A=0.91759$
The results at Ooglaamie are then worked out by the formula:

$$
\mathrm{H}=\mathrm{A} \cos \theta \sqrt{\cos \eta \operatorname{cosec} u \operatorname{cosec} u^{\prime}}
$$

which were tabnated as follows:
Table of resulting values for magnetic horizontal force (H) at Ooglaamic, as determined by Kew dip circle No. 23, from gravity and magnetic deflections.

Date of observations.	H.	Date of olservations.	II.
1882.		1883.	
June $\quad 16,18,19$.	1.945	Febrnary 14, 28.	1. 922
July 17, 18, 19.	1.958	March 14, 31.	1.928
August 17, 18, 19.	1.930	A pril 14, 30.	1.918
September-1, 14, 30.	1.934	May 14, 31.	1. 928
October 14,31.	1.958	June 14, 30.	1.929
November 16, 30.	1. 930	July 14, 31.	1.935
Decenther 14.	1.928	August 14.	1.933
1883.		Mean	1.935
January 1, 14, 31.	1.944		

Mean horizontal component of magnetic intensity from fifteen months of observations 1.935 (English units) for the epoch January (middle), 1883, with apparently an annal diminution.

[^22]The mean values for H by the two instruments and methods agree well, and the monthly values may therefore advantageously be united as shown below :

Date.	H by magnetometer.	H ly dip circle.	Mean adopted.	Date.	H by mas. netometer.	H by dip circle.	Mean adopted.	Apparent an nual chance.
1881.				1882.				
December.	1. 932			December.	1.955	1. 9.9	1. 441	+.009
January.	1. 916	-.....	...-.	Jamuary.	1. 930	1.944	1. 937	$\uparrow .021$
February.	1. 930	----.	-.-.-.	February.	1.942	1.922	1.932	$+.002$
March.	1. 912	March.	1.928	1. 925	1. 928	$\uparrow .016$
April.	1.946		April.	1. 956	1.918	1. 987	-. 009
May.	1. 923	May.	1.954	1.928	1. 941	$+.018$
June.	1. 936	1. 945	1,940	June.	1.955	1.929	1. 942	+.002
July.	1.924	1.958	1. 041	Juls.	1.930	1.935	1.982	-. 009
Auguet.	1.948	1. 930	1. 939	August.	1. 956	1.933	1.944	$+.005$
September.	1.939	1.934	1. 936			Mean	1.936	$+006$
October.	1. 936	1. 958	1. 947					
November.	1. 972	1. 930	1.951					

Mean H from twenty-one months of observation 1.936, answering to the epoch October (middle) 1582. Annual increase, approximately, 0.006

The following table contains the resulting monthly values for the horizontal, the vertical, and the total intensity, the last two quantities computed from the relations

$$
\mathrm{V}=\mathrm{H} \tan \theta \quad \text { and } \quad \mathrm{F}=\mathrm{H} \sec \theta
$$

In order to facilitate comparisons of similar quantities at other stations, using different units of measure, the values of H, V, F at Ooglaamie are given in the table expressed in the three different systems of units at present in use, viz, the English system, in feet, grain, second units; the Gaussian system, in mm., mg., second units; and the British Association, or C. G. S., in cm., gm., s. units, or dynes.

Resulting horizontal, vertical and total magnetic force at Ooglaamie.

Date.	Dip θ.	Horizontal force, H,			Vertical force, V.			Total force F .		
		English units.	Gaussian units.	C. G. S. dynes.	English units.	Gaussian nnits.	C. G. S. dynes.	English units.	Gaussian units.	C. G. S. dynes.
1881.										
December. 1882.	8124.6	1. 932	0.8008	. 08908	12. 790	5. 897	5897	12. 935	5. 964	. 5964
January.	22.4	1.916	0.8834	. 08834	12. 629	5. 823	. 5823	12. 774	5.890	. 5890
February.	27.1	1. 930	0.8899	. 08899	12.840	5. 020	. 5920	12.984	5.987	. 5987
March.	27.6	1.912	0.8816	. 08816	12.733	5.871	. 5871	12.875	5.936	. 5936
April.	24.3	1.946	${ }^{*} 0.8973$. 08973	12.875	5.936	. 5836	13.021	6. 004	. 6004
May.	22.2	1.923	0.8867	. 08867	12.670	5. 842	. 5842	12.816	5.909	. 5909
June.	24.0	1.940	0.8945	. 08945	12.828	5. 915	. 5915	12.974	5.982	. 5982
July.	21.5	1. 941	0.8050	. 08950	12.772	5. 889	. 5889	12.918	5. 956	. 5956
Augast.	22.8	1.939	0.8940	. 08940	12. 791	5. 898	. 5898	12. 937	5. 965	. 5965
September.	22.2	1.936	0.8927	. 08927	12.750	5. 882	. 5882	12.902	5.949	. 5949
October.	22.6	1.947	0.8977	. 08877	12.839	5. 920	. 5820	12.986	5.988	. 5988
November.	22.8	1.851	0.8996	. 08996	12.870	5.934	. 5934	13.017	6. 002	. 6002
December. 1883.	224	1.941.	0.8950	. 08950	12.794	5. 899	. 5899	12.941	5.967	. 5997
January.	22.0	1.937	0.8831	. 08931	12.758	5.882	. 5882	12. 904	5. 950	. 5950
February,	24.8	1.932	0.8908	. 08908	12.795	5. 900	. 5900	12.940	5. 966	. 5966
March.	25.0	1.928	0.8890	. 08890	12.774	5. 890	. 5890	12.918	5. 956	. 5956
April.	24.5	1.937	0.8931	. 08931	12.820	5.911	. 5911	12. 966	5. 978	. 5978
May.	22.6	1.941	0. 8954	. 08950	12.799	5.901	. 5901	12. 946	5.969	. 5969
June.	23.9	1. 942	0.8954	. 08954	12.838	5.919	5919	12.984	5.987	. 5987
July.	19.2	1. 832	0.8908	. 08908	12.655	5. 835	5835	12.802	5. 903	. 5903
August.	81 (22.2)	1. 944	0.8963	. 08963	12. 809	5. 906	. 5906	12.956	5.974	. 5974
Mean, (Oct., 1882)	$81 \quad 36.4$	1.936	0.8927	. 08927	12.786	5.895	. 5895	12.932	5. 963	. 5963

To an annual change of $\delta \theta$ in the dip θ and an annual change $\delta \mathrm{H}$ in the horizontal component of the force H there correspond annual changes of $\delta \mathrm{V}$ and $\delta \mathrm{F}$ in the vertical component, V , and in the total force, F, respectively, viz:

$$
\delta \mathrm{V}=\tan \theta \delta \mathrm{H}+\mathrm{H} \sec ^{2} \theta d \theta \quad \delta \mathrm{~F}=\sec \theta \delta \mathrm{H}+\mathrm{H} \sin \theta \sec ^{2} \theta d \theta
$$

hence for $\delta \theta=-1^{1} .2$ and $\delta \mathrm{H}=+0.006$, we find $\delta \mathrm{V}=+0.010$ and $\delta F=+0.010$ in English units, and in dynes with $\delta \mathrm{H}=+.00028, \delta \mathrm{~V}=.00046$ and $\delta \mathrm{F}=.00046$

The topography of the accompanying map is compiled from surveys of 1853 (by Captain Maguire, R. N.), and of 1881-83 (by Lieutenant Ray, U. S. A.); for the positions and names of the small lakes northeast of Ooglaamie I am indebted to Sergeant Murdoch. The two astronomical stations are laid down by their observed latitudes aud longitudes. The distribution of the magnetic declination for 1883 is shown by two isogouic lines, the direction and distance of which are taken from my paper on the distribution of magnetism in the United States (Coast and Geodetic Survey Report for 188*, Appendix No. 13). The isoclinic and isodynamic (horizontal force) lines incline about 50° west of north, or about 50 more than the isogonic lines, but no precise data are available.

> Part III.-Differential measures.

HOURLY VARIATIONS OF THE DECLINATION, HORIZONTAL AND VERTICAL INTENSITIES FITH BI-MONTHLF TERM-DAF READINGS, IT OOGLAAMIE; DECEMBER, 1881, TO AUGUST, 1883,

DIFFERENTIAL MAGNETIC OBSERVATIONS AT OOGLAAMIE, NEAR POINT BARROW, ALASKA.
I. The observations of the first year of occupation consist of hourly readings of the Fanth \& Co. magnetometer, Coast and Geodetic Survey No. 11; of the bifilar magnetometer, Coast and Geodetic Survey No. 2 ; and of dip circle, Coast and Geodetic Survey No. 23, comprising variations in the magnetic declination, in the horizontal and in the total intensities between December, 1881, and September, 1882; together with term-day readings at the beginning and middle of each month, as agreed upon for the Polar stations. There were four observers, viz: Sergt. James Cassidy, Sergt. John Murdoch, Sergt. Middleton Smith, and A. C. Dark. They took regular turns, each observing four hours at a time. Fifteen readings were taken each hour, five for each instrument, viz: six minutes and three minutes before and after and at the full hour, commencing with the declinometer and immediately followed by readings of the bifilar and dip instruments. The temperature was noted. The presence of an aurora is indicated by an asterisk.

The instrumental outfit of the second year of occupation being far more complete than that of the first year, ouly so much of the record and discussion of the first year's work will be given here as seems desirable; further cousideration will be given to this year's record after the presentation of the second year's work.
II. The observations of the second year of occupation consist of hourly readings of the Brooke magnetometers, comprising variations in the magnetic declination, in the horizontal intensity and in the rertical intensity between September, 1882, and August, 1883, together with termday readings on the 1 st and 15 th of each month, as agreed upon for the Polar stations. The observations were made by six observers, viz: Sergeants Murdoch and Smith and Mr. Dark, as in the previons year, and Sergt. J. E. Maxfield with Privates C. Ancor and J. Guzman; they took watches of four hours each in regular rotation. Six readings were taken every hour, viz: the horizontal force magnetometer was read one and one-half minutes before and again one and onehalf minutes after the full hour, the declinometer was read one minute before and one minute after, and the vertical-force magnetometer one-half minute before and one-half minute after the full hour. The temperature was noted by two thermometers suspended inside the cases or zine covers of the horizontal-force magnetometer and of the declinometer. Suitable centigrade thermometers had been ordered, but they were not received in time and none was placed inside the case of the vertical-force magnetometer; the temperature of this magnet can be inferred from the mean of the readings of the thermometers of the other instruments, which rarely deviated more than half a . degree. The presence of an aurora is indicated by an asterisk.

ADJUSTMENT OF THE BROOKE DIFFERENTIAL MAGNETOMETERS.

The Unifilar Magnetoneter.

The length of one division of the scale is 1 millimeter; the radius, mirror to scale is 1.719 meters ; hence the angular value of one division of the scale $=1^{\prime}$.
(1.) Observations for torsion coefficient, September 9, 1882, $1^{\text {h }}$ 1. m. When in the magnetic meridian the plane of detorsion read $164^{\circ} 30^{\prime}$, and by turning the torsion circle 90°, first backward, * next forward, and again to first position, we have the readings:

Torsion oircle.	Scale readings.	Mean.	Differences.
	d. $\quad d$.	d.	d.
16430	530 left, 519 right	524.5	88.5 for 90
7430	456 left, 416 right	436.0	155.5 for 180
25430	684 left, 499 right	591.5	88.5 for 90
16430	770 left, 238 right	503.0	

Mean deflection, $\alpha=83^{\prime} .1$, for $\beta=90^{\circ}$; hence $\frac{\hbar}{f}=\frac{83.1}{5316.9}=0.01503$; and the scale ralue $a=1^{\prime} .016$
The fixed mirror was set to show scale division 50 bisected, and at $0^{\mathrm{b}} 08^{\mathrm{mi}}$ (September 10) a. m., Göttingen mean time, the magnetometer (movable mirror) was set to read 524.
(2.) On November 1, $4^{\mathrm{h}} 52^{\mathrm{m}}$ p. m., Göttingen time, both mirrors set to read 500.
(3.) The instrument was readjusted November $3,6^{\mathrm{h}} 10^{\mathrm{m}} \mathrm{p} . \mathrm{m}$. At $3^{\mathrm{h}} 47^{\mathrm{m}}$ p.m. the plane of detorsion was found to read $51^{\circ} 52^{\prime}$, when the following observations were made :

Torsion circle.	Scale readings.	Differences.	
0	,	a.	d.
51	0		
142	482	108 for 90	
321	52	392	208 for 180
51	52	487	103 for 90

Mean deflection, $a=104^{\prime} .3$, for $\beta=90^{\circ}$; henec $\frac{h}{f}=\frac{104.3}{5295.7}=0.01970 ;$ and the new scale value $a=1^{\prime} .020$
Fixed mirror reads 500, and magnetometer (movable mirror) was set to 493 at $5^{\mathrm{L}} 16^{\mathrm{m}}$ a. m ., November 4, Göttingen time.

Increasing scale divisions denote increasing easterly declination.
Recapitulation of monthly mean values (inclusive of disturbances) of hourly readings of the Brooke declinometer at Ooglaamie, Alaska, 1882-93.

\footnotetext{
[Note.-For the parposes of this report it has been deemed sufficient to give the monthly mean values of the hourly readinge of the Brooke declinometer. These values are tabulated as follows. The average scale reading 484.7 corresponds approximately to $355^{\circ} 37^{\prime} .2$ east declination.]

Göttingen civil time.	0.	$1^{\text {n }}$.	${ }^{2}$.	$3{ }^{\text {h }}$	$4{ }^{\text {h }}$.	$5{ }^{\text {b }}$.	$6{ }^{4}$.	$7{ }^{\text {b }}$.	$8{ }^{\text {b }}$	9 b.	$10^{\text {b }}$.	114.
Ooglaamie civil time.	$\begin{gathered} 12^{\mathrm{b} 53^{\mathrm{mm}} .6} \\ \mathrm{Non}+53^{\mathrm{m} .6} .6 \end{gathered}$	$13^{\text {b } 53}{ }^{\text {ma }} 6$	$14^{4688 m} .6$	$15^{\text {b }} 33^{\mathrm{m} .6}$	$16^{\text {b } 53 m .0 ~}$	$17^{\text {b } 53 m} .6$	$18^{8} 53^{\text {m }} .6$	$19^{9} 533^{\text {m. }} 6$	$20^{2053}{ }^{\text {m. }} .6$	$21 \mathrm{~b} 53^{\mathrm{m}} .6$	$22^{\text {a } 53 m .6 ~}$	$23^{26} 53^{\text {a }}$. 6
1882.	Divisions.											
September (21).	491.7	492.3	495.8	483.8	491.7	492.8	490.4	496.0	495.8	487.0	474.7	492.8
October.	492.1	490.5	495.1	488.7	493.4	488.5	490.2	491.5	488.4	486.8	482.8	475.8
November.	485.8	484.8	484.7	487.0	481.3	479.9	488.1	480.5	471.4	466.2	493.4	454.3
December.	487.9	481.5	484.1	484.5	483.8	489.2	484.9	485.1	487.7	485.6	487, 3	476.4
1883. January.	474.2	479.6	479, 1	479.7	482.2	482.3	483.1	485.5	486.9	481.9	470.6	478.4
Fobruary.	476.2	476.0	479.3	479.8	478.9	479.0	481.4	478.2	489.1	478.0	485.6	483.7
March.	478.7	477.3	478.5	472.5	472.0	475.5	475.5	471.5	475.3	469.8	483.8	477.6

S. Ex. 29——44

Recapitulation of monthly mean values, dic.-Continued.

G6ttingen civil time.		0^{6}.	$1{ }^{\text {k }}$.	$2^{\text {b }}$.	$3^{\text {h }}$.	$4^{\text {h }}$.	5.	6 .	$7{ }^{\text {b }}$.	$8{ }^{\text {b }}$	$9^{\text {h }}$.	10^{h}.	$11^{\text {b }}$.
Ooglaamie civil time.	$\begin{gathered} 12^{\mathrm{n} 53} 3^{\mathrm{m}, 6} \\ \mathrm{coon}+53^{\mathrm{m}} \cdot 6 \end{gathered}$		$13^{n} 53^{\text {ma }} .6$	$1^{14^{5} 53^{\mathrm{m} .6}}$	$15^{\text {h }} 33^{\text {m }} .6$	$10^{\text {L }} 53{ }^{\text {m. } .6}$	$17^{\mathrm{m}} 53^{\mathrm{m}} .6$	$18^{\text {h }} 33^{\mathrm{m}} .6$	$19^{\text {b } 53 m} .6$	$20^{\text {b } 53{ }^{\text {m }} .6}$	$21^{\text {b } 533^{\text {m }} .6}$	$22^{3} 3^{\text {m }}$. 6	23 5 3 m .6
1883. April. May. June. July. August (14). April to September, inclusivo. October to March, inclusive. Year.		474.8	473.1	471.2	467.2	467.0	467.6	471.7	474.3	472.8	471.6	470.4	472.3
		465.0	470.7	466.8	464.1	462.5	404.0	464.6	406.0	464.8	469.6	462.2	459.6
		467.2	470.0	464.0	461.7	462.8	463.7	464.0	471.3	405.8	459.2	458.0	461.6
		471.0	464.8	467.9	463.5	458.9	459.2	459.6	461.9	450.7	463.3	467.1	461.1
		464.2	463.5	462.2	464.2	463.1	462.2	463.7	476.4	470.7	466.1	462.8	461.6
		472.3	472.4	471.3	469.1	467.7	468.2	469.0	474.3	470.1	469.5	465.9	468.2
		482.5	481.6	483.5	482.0	481.9	481.4	483.5	483.1	483.1	478.1	485.4	474.4
		477.4	477.0	477.4	475.6	474.8	474.8	476.3	478.7	476.6	473.8	475.6	471.3
Götlingen civil time.	Noon.	$13^{\text {h }}$.	$14^{\text {b }}$.	$15^{\text {b }}$	$16^{\text {b }}$.	17^{1}.	$18{ }^{1}$.	$19^{\text {b }}$.	20^{h}.	$21^{\text {b }}$.	$22^{\text {b }}$.	$23^{\text {h }}$.	
Ooglasmie civil time.	$00^{4.53 m} .6$	${ }^{1453}{ }^{\text {m }} .6$	$2 \mathrm{~h} 3^{\text {m. }} 6$	$3^{\mathrm{n} 53^{\mathrm{m}} .6}$	$4^{\mathrm{h}} 53^{\mathrm{m} .6}$	$5^{\mathrm{h} 53}{ }^{\mathrm{m}} .6$	$6^{\mathrm{h} 53}{ }^{\mathrm{m} .6}$	$7^{\mathrm{b} 53} \mathrm{~m} .6$	$8^{\mathrm{h} 53}{ }^{\mathrm{m} .6}$	$9 \mathrm{~b} 3^{\mathrm{m} .6}$	$10^{\mathrm{h}} 3^{\mathrm{m}} .6$	$11^{\text {b }} 33^{\text {m }} .6$	
1882.													
September (21).	492.0	499.5	500.0	507.2	509. 2	506.9	518.3	512.4	506.5	502.4	497.9	492.8	497.5
October.	474.7	495.0	512.5	500.7	508.5	508.9	510.7	527.3	512.5	501.4	492.5	485.8	495.6
November.	474.2	495.1	470.6	493.5	517.6	504.0	538.9	517.8	514.9	498.3	487.4	483.0	489.8
December.	474.8	497.0	409.5	499.0	498.3	504.4	499.9	507, 7	504.8	491.8	484. 6	484.5	489.9
1883.		477.1	498.7	495.7	502.6	514.9	499.1	506.2	511.1	494.7	481.9	477.0	488.1
January,	476.4	476.6	507.7	491.6	507.9	513.6	513.6	513.8	494.5	505.4	491.1	487.6	489.4
March.	474.3	467.5	487.5	408.3	497.0	506.8	505.9	513.2	506.4	495.6	493.6	478.8	484.7
April.	476.6	479.2	487.7	485.8	494.7	503.9	506.8	514.4	500.6	485.7	492.6	479.0	482.1
May.	462.7	470.8	479.5	484.9	492.6	504.6	509.1	504.4	500.8	483.6	480.8	468.9	476.0
June.	456.8	467.3	472.5	478.7	487.6	508.0	518.1	502.0	512.7	493.2	482.5	468.8	475.7
Juls.	462.2	466.6	463.1	477.9	486.0	504.7	508.6	518.2	514.5	484.3	469.4	472.5	474.0
August.	456.4	465.6	476.8	477.6	485.9	495.0	500.0	499, 0	495.9	487.9	475.5	467.4	473.5
April to September, inclusive	467.8	474.8	479.9	485.4	492.7	503.8	510.2	508.4	505.2	491.2	483.1	474.9	479.8
October to March, inclusive.	476.0	484.7	496.1	496.5	505.3	508.8	511.4	514.3	507.4	497.9	489.0	482.8	489.6
Year.	471.9	479.8	488.0	490.9	499.0	506. 3	510.8	511.4	506.3	494.6	486.1	478.8	484.7

SOLAR-DIURNAL VARIATION OF THE DECLINATION, INCLUSIVE OF DISTURBANCES.

The daily variation of the magnetic declination is found by subtracting each hourly mean from the respective daily mean, and is giren in the following table for the whole year, as well as for the half years, i. e., with sun in north declination, and sun in south declination :

Apparent diurnal range:
Six months, sun north of equator 44'. 3
Six months, sun sonth of equator $\mathbf{3 9 . 0}$
Year 40.1

The most pronounced feature of the diurnal variation is the morning extreme easterly deflection between 7 and $8 \mathrm{a} . \mathrm{m}$.; this is in perfect accord with the times of eastern elongation at stations in lower latitudes, thus at Sitka* 8 a. m.; at Madison, Wis., $8 \frac{1}{4}$; at Toronto, $7 \frac{3}{4}$; at Philadelphia, $7 \frac{3}{4}$; and at Key West, $8 \frac{1}{4}$. The afternoon westerly deflection, however, appears to be delayed when compared with statious to the south of Ooglaamie; we have a maximum about $5 \mathrm{p} . \mathrm{m}$., and a

second and greater maximum about miduight, undoubtedly produced by disturbances, as shown in the accompanying diagram. At Sitka the westerly elongation occurs about $3 \frac{1}{2}$ p. m.; at Madi-

[^23]Diurnal variation (inclusive of disturbanows) of the declination observed at Sitka, Alaska, from ten years of observations. [A + sign indicates deflection of north end of needle to the west; a - sign the opposite direction.]

Hour.	Variation.	Hour.	Variation.	Hour.	Variation.
	,		,		
Midn't	+0.6	0	-5.3	17	+3.8
1	-0.2	10	-3.0	18	+3.2
2	-1.0	11	-0.6	19	+2.4
3	-1.4	Noon	+2.1	20	+1.4
4	-2.0	13	+3.2	21	+0.8
5	-2.9	14	+4.2	29	+0.4
6	-4.2	15	+4.6	23	+0.6
7	-5.3	16	+4.6	Midn't	+0.6
8	-6.0				

son, $1 \frac{1}{2}$ p. m. ; at Toronto, 03 P. m. ; at Philadelphia, $1 \frac{1}{4}$; and at Key West, $1 \frac{3}{4}$. At Sitka there is no trace of the irregular western deflections recorded at Ooglaamie between $8 \mathrm{p} . \mathrm{m}$. and about $2 \mathrm{a} . \mathrm{m} .$, as shown by the table in the foot-note. If we now refer to the observations made at Point Barrow during 1852-'53-54 (Phil. Trans., vol. 147, 1857) we find $8 \mathrm{a} . \mathrm{m}$. to be distinctly the hour of the maximum of the easterly disturbances which thus re-enforce the regular solar diurnal variation about this time and produce the great easterly deviation exhibited by the diagram. On the other hand, the westerly disturbances reach their maximum between the hours $11 \mathrm{p} . \mathrm{m}$. , midnight, and $1 \mathrm{a} . \mathrm{m}$., when they obliterate the regular solar diurnal variation. Retaining the disturbances the eastern maximum deflection is recorded between 7 and $8 \mathrm{a} . \mathrm{m}$.; excluding the larger ones it occurs near $7 \mathrm{a} . \mathrm{m}$. ; the western maximum, disturbances included, is recorded at 5 p . m . (with a second maximum between 10 and 11 p. m.), but excluding the larger ones the elongation reverts to $1 . \mathrm{p} . \mathrm{m}$.

It is also a noteworthy fact that the diurnal variation seems to depend little on the season, the deviations from the annual course for the half year with sun north of the equator and for the half year with sun south of the equator being small.

SEPARATION OF THE LARGER MAGNETIC VARIATIONS OR SO-CALLED DISTURBANCES, AND THEIR DISCUSSION.

In the present state of our knowledge there appears to be no other means of recognizing socalled disturbances in a series of observations except by their magnitude; that is, for any one observation or reading takeu at random it is impossible to say how much of the measured quantity is due to the regular daily variations and how much to other variations following different laws. Having formed preliminarily for any one month hourly arerage or normal values and compared each observation at any hour with the normal at that hour, the series of differences so obtained will disclose the amount of the so-called disturbances, and a certain limiting value requires to be found which shall separate the apparently regular values from the supposed disturbed values, i.e., those following different laws from the others.

In the discussion of that large body of magnetic material which had accumulated, mainly through the support of the British Government, about the middle of the present century, General Sir Edward Sabine was guided in his selection of a limiting value simply by practical considerations or by experience, and the eminent success which he had fully justified his method, yet when a number of simultaneous observations made at different stations, as in the case of the present Polar researches, require strict intercomparability of results, a more definite proceeding appears desirable.

I had made use of Peirce's criterion for the rejection of doubtful observations* -or, here more appropriately expressed, for the separation of observations deviating largely in amount by reason of their following different laws from those to which the ordinary observations are subject-and in using the criterion in such a case it was put forward only with a view of securing some definite rule, uniformly applicable.

The criterion was first employed by me in the discussion of - Dr. Kane's magnetic observations of 1853-54-'55 at Van Rensselaer Harbor, North Greenland ; \dagger afterwards for Dr. Bache's magnetic observations of $1840-45$ at Philadelphia, \ddagger and for the United States Coast Survey magnetic series of 1860-'66 at Key West, Florida.§ In these applications, where no great precision is required, its method of application mas be much simplified; thus the mean deviation or the mean difference of any hourly value from its hourly normal may be found, without the trouble of forming squares, by the simple expression $\varepsilon=1.25 \frac{[\Delta]}{N-1}$ and the limiting value given by the criterion will be $=x \varepsilon$, the value of x being a tabular value for the case $\mu=1$, and readily had from Chauvenet's Table \mathbf{X}.

[^24]The limit so found will be the widest one that way be employed, but in special applications it may require contraction, for the reason that the number of the largest disturbances is found to be insufficient for their successful discussion. Instead of using Peirce's criterion we can, however, arrive at an equally satisfactory fixation of a limit by means of the expressions of either the probable or the mean error of an observation.* We may define the widest limit as that deviation or difference from the mean which exceeds 3.5 times the probable rariability or probable deviation of an observation; this limit corresponds to $\frac{3.5}{1.483}$ or to 2.36 times the mean deviation (as already used in connection with the criterion). Thus $2 \frac{1}{3}$ times the mean deviation would be a superior limit, whereas Dr. Lloyd (1874) adopts for the discussion of the disturbances a limit of $1 \frac{1}{2}$ times the average departure of a reading from its normal. By taking this lower limit we necessarily include a number of disturbances of lesser magnitude, but should the limit be drawn still closer there is danger of confusing the results with values following different laws from those which govern the larger disturbances. It would be most desirable to investigate the disturbances by a series of graduated limits and falling between these extremes. A limit somewhere between 2 and $1 \frac{1}{2}$ times the mean deviation will probably be found most satisfactory. To find the mean deviation $\varepsilon=1.25 \frac{\sum \Delta}{n-1}$ say from an hourly series of observations extending over one year, the diurnal as well as the annual variations of the disturbances must be taken into account, and it will suffice to deduce 24 numerical values for ε, using for the first month the hours 0 and 12 , for the second month the hours 1 and 13 , for the third the hours 2 and 14, etc., and, finally, to take the average (ε) from the 24 individual values so obtained.

Discussing the lourly variations of the declination recorded in the second year at Ooglaamie, where the horizontal components $H=1.936$ English units ($=0.8927$ Gaussian units, or 0.08927 dynes) for October, 1882, the value of ε equals $18^{\prime} .4$ nearly; hence limit by Peirce's criterion $=44^{\prime}$, and the same for $2 \frac{1}{3}$ times ε; for twice ε the limit is 37^{\prime}, and for $1 \frac{1}{2} \varepsilon$ it is 28^{\prime}, which limits separate, respectively, 1 disturbed observation in 17 observations, 1 in 12 , and 1 in 8 . General Sabine's limit in the discussion of Captain Maguire's observations of 1852-'53-'54 was $22^{\prime} .87$, and the nomber of disturbances separated was between one fifth and one-sixth of the whole number, but it should be remarked here that at that time we were approaching an epoch of a sun-spot minimum, whereas at present we have just passed through a sun-spot maximum, during which the disturbances are greater.

- It has been noticed that a limit adopted for a station in low magnetic latitude will not serre to deduce a limit for a station in high magnetic latitude when having regard only to the supposition that the limits are inversely proportional to the magnitude of the horizontal components of their respective magnetic intensities. The disturbances appear to increase in greater ratio as we approach the magnetic Polar regions. \dagger

The further discussion of the differential observations must be deferred until after a decision has been reached by the Fourth International Polar Conference (to meet shortly at Vienna) respecting the limit of recognition of disturbances (A pril 5, 1884).

The Bifilar Magnetometer.

The length of one division of the scale is 1 millimetre; the radius mirror to scale is 1.719 metres; hence angular value of one division of scale $=1^{\prime}$.
(1.) Adjustment and determination of scale value September 11, 1882, 1^{h} p. m. With plane of detorsion in the magnetic meridian the torsion circle read $54^{\circ} 42^{\prime}$. It was then turned, with the suspended weight, 90°, and read $324^{\circ} 42^{\prime}$, in which position the fixed as well as the movable

[^25]mirrors were made to read 500 on the scale. The torsion weight was then removed and the magnet inserted, and the torsion circle turned to read $248^{\circ} 35^{\prime}$. The movable mirror was uext brought to read 500 by means of the screw regulating the distance between the two suspension threads. The angle $z=324^{\circ} 42^{\prime}-248^{\circ} 35^{\prime}=76^{\circ} 07^{\prime}$ was calculated to answer the desired value of one division of the scale to represent a variation of the horizontal force of $.001 \cos \theta$ expressed in metric units, mm., mg., s. By inadvertence, a mistake was made by the observers in their calculation (in the value of H), so that the scale value neither for the horizontal nor for the vertical force corresponds to the value proposed by the president of the Polar Commission. This was not discovered by them until near the close of the observations, when they judged it best to adhere to the old value. The magnetometers were thus given a sensitiveness fully double of what it was intended they should have. The consequence was that many of the largest disturbances in the horizontal and vertical components failed to be registered, the deflections falling beyond the range of the instruments. We have the scale value k in parts of the horizontal force $=\cot \boldsymbol{z}$ times $\mathbf{1}^{\prime}$ $=.00007190$, and multiplying by H or 1.939 the scale value becomes .0001394 English units.
(2.) September $18,1882,2^{\mathrm{h}}$ a. m. to $3^{\mathrm{h}} 15^{\mathrm{m}}$ a. m., Göttingen time, readjusted bifilar instrument. Plane of detorsion read $60^{\circ} 41^{\prime}$, turned torsion circle to $330^{\circ} 41^{\prime}$, and movable mirror made to read 50 ; magnet inserted and torsion circle turned to $254^{\circ} 34^{\prime}$, movable mirror brought to read 50 by means of the adjusting screw. The angle z equals $76^{\circ} 07^{\prime}$; hence k or the scale value remains as above. The apparent changè in the plane of detorsion of $5^{\circ} 59^{\prime}$ is due to shift of instrument.
(3.) November $6,1882,10^{\mathrm{h}} \mathrm{p}$. m., to November $7,2^{\mathrm{b}} 31^{\mathrm{m}}$ a. m., Göttingen time, readjusted instrument. With plane of detorsion in meridian torsion circle read $52^{\circ} 46^{\prime}$, adjusted movable mirror to 50 , when torsion circle read $322^{\circ} 46^{\prime}$. Suspended magnet and made torsion circle read $247^{\circ} 12^{\prime}$, brought movable mirror to 50 by means of adjusting screw. $z=75^{\circ} 34^{\prime}$; hence $k=.00007487$ parts of the horizontal force, and multiplying by H the scale value becomes .0001452 English units.
(4.) February 27, $1883,3^{\text {h }} 05^{11}$ a. m. to $6^{\mathrm{h}} 55^{\mathrm{m}}$ a. m., Göttingen time, readjusted instrument. Plane of detorsion in magnetic meridian torsion circle reads $52^{\circ} 35^{\prime}$; movable and fixed mirror adjusted to 50 with torsion circle $322 \circ 35^{\prime}$; suspended magnet and turned circle to $247 \circ 14^{\prime}$, and brought movable mirror again to 50 by means of the adjusting screw. $z=75^{\circ} 21$; hence $k=.00007604$ parts of the horizontal force and the scale value .0001474 English units.
(5.) February 28, 1883, $1^{\mathrm{h}} 13^{\mathrm{m}}$ a. m. to $3^{\mathrm{h}} 37^{\text {mi }}$ a. m., Göttingen time, readjusted instrument. Plane of detorsion in magnetic meridian $40^{\circ} 22^{\prime}$; turned to $310^{\circ} 22^{\prime}$ with fixed and movable mirror at 50 ; suspended magnet, and turned to $235^{\circ} 01^{\prime}$ with movable mirror at 50 by means of the screw. $z=75^{\circ} 21^{\prime}$; hence scale values as in preceding case.
(6.) At $6^{\text {h }}$ p. m., March 23, Göttingen time, suspended mirror touched fixed mirror owing to stretching of threads; raised suspension at $6^{\mathrm{h}} 45^{\mathrm{m}} \mathrm{p} . \mathrm{m}$.
(7.) At $6^{\mathrm{h}} 45^{\mathrm{m}}$ a. m., March 25 , Göttingen time, suspension further shortened; again at $7^{\mathrm{h}} 10^{\mathrm{m}}$ p. m. same day.
(8.) At 3 a. m., April 21, Göttingen time, fixed mirror read 486; changed to 500 before taking the $3 \mathrm{a}, \mathrm{m}$. observation.

Increasing scale readings denote increase of horizontal force.
sCale values.

The monthly means of the bifilar readings appear quite irregular, produced by large disturb. ances and by change in adjustment; the latter became necessary in consequence of the efficet of temperature and moisture on the suspension. During the winter the observatory became thickly coated with ice on its sides and roof, which, during thawing weather kept the interior atmosphere in a state of extreme moisture; the observed rariations in the length of the suspension fibers and in the torsion of the two declination instruments may be thas accounted for, and the greater or less stiffness of the fibers was probably occasioned by moisture deposited upon it, freezing and thawing alternately. The effects on the readings of changes of temperature and gradual loss of magnetism* of the magnet or of secular change, are small compared with the above irregularities from other causes. It would seem desirable to use metallic suspeusion in the place of silk.

The September mean (619.5) was corrected to 519.1 by application of a rough correction of -318 divisions to the readings of the first six days, found by comparisou with the mean of the succeeding six days.

In August, 1883, the mean reading was higher (639.7) than at any other time, and it was evident that the adjustment of the instrument had from some unknown cause been disturbed; one of the observers (Mr. Maxfield) states that when he took down the instrument on the 27th he found the adjusting screw which holds the thread and determines the distance between the threads worked rather loosely in its bearings, whereas it was very tight when the instrument was first set up. It is difficult to fix upon a particular time when the rapid increase in the readings commenced, but it was most probably between August 7 and 8 , and lasted for two or three days before the instrument settled again to a fixed condition ; a slow progressive motion is apparent from the last days of July. For our present purpose the matter is of little importance, since we shall deal strictly in a differential way, only aiming at roughly comparable absolute readings. In order to reduce the monthly readings during August roughly to a uniform scale a correction of - 187.0 divisions was applied.

[^26]Recapitulation of monthly mean values (inclusive of disturbances and uncorrected for changes of temperature and variations in scale value) of the hourly readings of the Brooke bifilar magnetometer at Ooglaamie, Alaska, 1882-1883.

Solar diurnal variation of the horizontal force (inclusive of disturbances), expressed in scale divisions and uncorrected for changes in temperature, 1882-83.

S. Ex. $29-45$

Monthly mean values of the hourly readings of the thermometer attached to the bifilar magnetometer and expressed in degrees of Fahrenheit's scale.

$\left\{\begin{array}{c} \text { Göttingen civilu. } \\ \text { time. } \end{array}\right\}$	0^{6}.	$1{ }^{\text {l }}$.	$2{ }^{\text {b }}$.	$3{ }^{\text {b }}$.	$4{ }^{\text {b }}$.	$5^{\text {b }}$.	$6^{\text {b }}$.	$7{ }^{\text {b }}$.	$8{ }^{\text {h }}$.	9 .	$10^{\text {b }}$.	11.
$\begin{gathered} \text { Ooglamiecivil } \\ \text { ime. } \end{gathered}$	N. +53 m .6	$13^{\text {b }}+53 \mathrm{~m} .6$	$14^{\text {m }}+53^{\text {m}} .6$	$15^{\text {b }}+53^{m} .6$	$16^{\mathrm{h}}+53^{\mathrm{m} .6}$	$17^{\text {b }}+53 \mathrm{~mm} .6$	$18^{\mathrm{h}}+53^{\mathrm{m}} .6$	$19^{\mathrm{b}}+53^{\mathrm{m}} .6$	$30^{\text {s }}+53^{\mathrm{m}} .6$	$21^{\text {b }}+53^{\text {m }} .6$	$23^{2 m}+53 \mathrm{~m} .6$	$23^{\text {b }}+53^{m} .6$
$1882 .$												
September	36.4 19.6	37.0	37.2 20.9	37.1 20.8	37.6 21.0	36.4 20.3	35.9 20.0	35.4	34.7	34.5	33.8 17.0	33.8 17.0
November.	3.8	3.9	4. 1	4.2	4.6	4.3	4.5	3.5	2.5	1.9	1.5	1.3
December.	-7.8	-7.5	-7.1	-7.0	-6.4	-6.5	-6.6	-6.8	-7.9	-8.5	-8.9	- 9.0
1883.												
January.	-5.3	-4.8	-4.5	- 4.7	-4.5	- 4.4	- 4.4	-4.4	-5.7	-6.4	-0.9	-7.3
February.	3.7	5.1	5.5	5.4	5.9	6.1	6.1	6.0	4.5	3.7	3.1	2.5
March.	2.6	3.5	4.2	4.6	5.9	5.4	4.7	3.9	2.8	2.0	1.0	0.3
April.	15.5	16. 3	17.2	17.0	18.0	17.6	17.1	15.8	14.2	12.8	11.5	10.0
May.	37.0	37.3	38.0	37.0	37.0	36.6	33.6	34.5	33.1	31.9	30.7	29.5
June.	47.8	48.1	48.7	48.5	48.0	47.6	46.6	44.8	43.9	42.8	41.8	40.9
July.	49.1	49.5	50.0	49.6	49.4	48.8	48.1	46.5	46.0	45.1	44.1	43.2
Augast.	47.7	48.3	48.6	48.4	48.5	484	48.0	47.2	46.3	45.4	44.8	44.3
April-Septem-	38.9	39.4	40.0	39.6	39.8	39.2	38.6	37.4	36.4	35.4	34.4	33.6
October-March,	2.8	3.4	3.8	3.8	4.4	4.2	4.0	3.6	2.4	1.7	1.1	0.8
Whole year.	20.8	21.4	21.9	21.8	22. 1	21.7	21.3	20.5	19. 4	18.6	17.8	17.2

$\left\{\begin{array}{c} \text { Göttingen civil } \\ \text { time. } \end{array}\right\}$	Noon.	13^{3}.	$14^{\text {h }}$.	$15^{\text {b }}$	$16^{\text {b }}$.	$17^{\text {b }}$.	18.	$18^{\text {b }}$.	$20^{\text {b }}$.	$21^{\text {b }}$.	$22^{\text {b }}$.	$23^{\text {b }}$.	最
$\begin{aligned} & \text { Ooglaamie cirit } \\ & \text { time. } \end{aligned}$	$0^{60}+53^{\text {m }} .6$	$1^{14}+53^{m} .6$	$2^{\text {b }}+53^{\text {m }} .6$	$3^{3}+53^{\text {m }} 6$	+53m. 6	$5^{\text {b }}+53^{\mathrm{m} .6}$	$6^{\mathrm{h}}+53^{\mathrm{m} .6}$	$7^{\text {b }}+53^{\text {min }} 6$	$8^{\text {b }}+53^{\text {m }} .6$	$9^{\text {b }}+53^{\text {m }} .6$	$10^{\text {b }}+53 \mathrm{~mm}$	$11^{\text {b }}+53^{\text {m} .6}$	号
1882.													-
September.	34.1	34.0	34.0	33.7	33.9	33.8	33.9	33.8	34.4	34.9	35.3	35.8	+35.1
Octaber.	17.2	17.3	17.3	17.1	17.4	17.5	17.6	17.5	17.4	17.5	17.7	18,4	+18.4
Norember.	1.6	1.5	1.5	1.5	1.5	2.7	2.3	2.3	2.3	2.5	2.6	2.9	+ 2.7
December. 1883	-8.9	-2.0	-9.0	-9.0	-8.8	-8.7	- 7.5	-7.9	-8.0	-8.1	- 8.1	-8.2	-8.0
January.	-7.1	- 7.1	- 6.9	-7.0	- 6.6	-6.4	- 5.4	-5.6	-5.7	-5.7	- 5.8	- 5.4	- 5.8
February.	2.5	2.3	2.2	2.0	2.2	2.2	3.0	2.6	2.5	2.8	3.5	4.0	+ 3.7
March.	-0.1	-0.5	-0.9	- 1.2	- 1.4	- 2.5	-0.9	-0.8	-0.6	0.0	0.9	2.1	+1.5
April.	8.9	8.2	7.3	6.8	6.6	6.7	7.6	8.0	9.5	11.0	12.8	14.5	+12.1
May.	28.8	28.2	27.6	27.7	28.2	29.0	20.8	31.1	32.4	33.8	35.5	37.3	+32.8
Jane.	40.3	39.8	39.6	39.4	39.4	39.8	40.6	41.6	42.7	44.0	45.4	47.0	+43.7
July.	43.0	42.6	42.2	424	42.3	42.5	43.3	43.9	45.0	46.1	47.4	48.4	+45.8
August.	44.0	43.3	43.1	42.9	42.7	42.5	42.8	43.1	43.8	44.7	45.9	47.1	+45.5
April-September, incluaive.	33.2	32.7	32.3	322	32.2	32.4	33.0	33.6	34.6	35.8	37.0	38.4	$+35.8$
October-March,	0.9	0.8	0.7	0.6	0.7	0.8	1.5	1.3	1.3	1.5	1.8	2.3	+ 2.1
Whole jear.	17.0	16.7	16.5	16.4	10.4	16.6	17.3	17.5	18.0	18.6	19.4	20.3	+19.0

Temperature coefficient.-There were no special observations made to ascertain the effect of changes of temperature on the magnetic moment of the biflar magnet; the instrument was mechanically compensated as near as could be judged; we have therefore to determine the outstanding effect by means of the ordinary hourly readings. During 1882 one lamp was continuons'y burning in the observatory, but early next year three lamps were kept burning, the supply of oil being greater than was at first supposed. The annual average temperature in the observatory, as shown by a Fahrenbeit thermometer inside the zinc cover of the bifilar, was $+19^{\circ} .0$ or -70.22 C .

In consequence of the irregularities in the state of the instrument, as shown by the monthly mean readings, the only available method for deducing the temperature coefficient q appeared to be that of selecting a number of consecutive and undisturbed days at times when the temperature
was rapidly changing, and finding for each case the apparent change of the daily means in scale divisions corresponding to a change of 1° in temperature. The following values were thus found:

Date.	Change.	Corre. sponding change.	$\begin{aligned} & \text { Change } \\ & \text { for } \\ & \text { for } \end{aligned}$
1882.	d.	\bigcirc	d.
Oct. 30-31	+ 55	+13.4	$+4.1$
Nov. 10-11	$+26$	-8.0	-3.3
Dec. 1-2	$+27$	-7.3	-3.7
Dec. 14-15	- 39	+ 11.0	-3.5
$\begin{gathered} \text { Dec. } 15-16 \\ 1883 . \end{gathered}$	$+44$	-10.3	-4.3
Feb. 9-10	$+40$	-7.4	- 5.3
Mar. 11-12	$+16$	$+6.8$	+2.4
July 12-20	+ 37	8.3	-4.5

It is proposed to adopt provisionally the mean value - 2.2 ± 0.8, which is equivalent to a decrease of 0.000165 parts of the horizontal force for an increase of temperature of $1^{\circ} \mathrm{Fah}$. or $q=0.000165$

In the following table the values in column $3,4,5$ are uncorrected for changes of temperature; the next three columns show the temperature differences for which corrections were required, and the last three columns give the diurnal variations th:us corrected. They are laid down on the accompanying diagram.

Solar-diurnal variation of the horizontal force, inclusive of disturbances, and expressed in parts of the force, Ooglaamie, 1882-'83.

Göttingen civil time.	Ooglaamie civil time.	Sixmonths, sun north of eqnator.	Six months, sun sonth of equator.	Whole year.	Temperatare difference.			Solar diurnal variation.		
					$\begin{gathered} t-35^{0} .8 \\ \odot \mathrm{n} . \end{gathered}$	$\begin{gathered} t-2^{2} .1 \\ \odot 8 . \end{gathered}$	$\begin{gathered} t-19^{\circ} .0 \\ \text { year. } \end{gathered}$	Half year, sun north of equator.	Half year, san soath of equator	Whole year.
h.	$\begin{gathered} h . m . \\ \text { Noon }+53.6 \end{gathered}$	+. 00017	+. 00348	+. 00184	+3.1	- +0.7	- +1.8	+. 00069	+. 00360	+. 00214
1	$13+53.6$	081	389	236	$+3.6$	+1.3	+2.4	140	410	276
2	$14+53.6$	170	424	298	+4.2	+1.7	+2.9	239	452	346
3	$15+53.6$	377	506	442	+3.8	+1.8	+2.8	440	536	488
4	$16+53.6$	497	586	542	+4.0	+2.3	+3.1	563	024	593
5	$17+53.6$	538	548	544	+3.4	+2.1	+2.7	594	583	589
6	$18+53.6$	630	497	563	+2.8	+1.9	$+2.3$	676	528	601
7	$19+53.6$	556	366	461	+1.6	+1.5	$+1.5$	582	391	486
8	20+53. 6	471	236	353	+0.6	+0.3	+0.4	481	241	360
0	$21+53.6$	376	+ 138	257	-0.4	-0.4	-0.4	369	+ 131	250
10	$22+53.6$	151	- 065	+ 042	-1.4	-1.0	-1.2	+ 128	- 081	+ 022
11	$23+53.6$	+ 034	173	071	-2.2	-1.3	-1.8	- 002	194	- 101
Noon	$0+53.6$	- 070	136	103	-2.6	-1.2	-2.0	113	156	136
13	$1+53.6$	175	247	211	-3.1	-1.3	-2.3	226	268	249
14	$2+53.6$	248	454	352	-3.5	-1.4	-2 5	306	477	393
15	$3+53.6$	279	416	347	-3.6	-1.3	-2.6	338	441	390
16	$4+53.6$	354	427	301	-3.6	-1.4	-2. 6	413	450	434
17	$5+53.6$	564	510	537	-3.4	-1.3	-2.4	620	531	577
18	$6+53.6$	680	657	608	-2. 8	-0.6	-1.7	706	567	636
19	$7+53.6$	587	540	564	-2.2	-0.8	-1.5	623	553	589
20	$8+53.6$	453	461	458	-1.2	-0.8	-1.0	473	474	474
21	8+53.6	268	- 266	267	0.0	-0.6	-0.4	268	- 278	274
22	$10+53.6$	179	+ 011	- 083	+1.2	-0.3	+0.4	159	+ 006	- 076
23	$11+53.6$	- 059	+ 205	+ 073	+2.6	+0.2	$+1.3$	- 016	+ 208	+ 094

At Ooglaamie the daily maximum ralue of the horizontal force occurs between the hours 5 and $7 \mathrm{p} . \mathrm{m}$., and the daily minimum about $7 \mathrm{a} . \mathrm{m}$. ; there is also a very slight indication of a secondary disturbance in the regular progression between 3 and 5 a . m., corresponding probably to a secondary maximum about 6 a. m., as exhibited at Toronto, and more strongly at Philadelphia at $5 \frac{3}{4} \mathrm{a} . \mathrm{m}$. , where it constitutes the principal maximum, the secondary occurring at $4 \mathrm{p} \cdot \mathrm{m}$. The maximum at Toronto takes place between 4 and $5 \mathrm{p} . \mathrm{m}$., and the minimum about $10 \mathrm{a} . \mathrm{m}$.

The diurnal inequality in the whole deflecting force acting in the horizoutal plane may be exhibited graphically both in direction and magnitude as in the annexed diagram.

The origin of the co-ordinates represents the normal declination and horizontal force, and any line drawn from it to any part of the curve will represent its direction and magnitude (according to scale of diagram), the deflecting force acting at the time marked against that point. If for any time the angle ψ equals the westerly deflection of the horizontal needle, the deflecting force producing the same is $\mathrm{H} \sin \psi$, and when expressed in parts of the horizontal force, simply sin ψ. A deflection of ψ minutes corresponds to $\frac{\psi}{3437.7}$ or 0.000291ψ parts nearly. The table of the solar diurnal variation of the declination contains the values of ψ for every hour of the day, and the corresponding change in the force at right angles thereto is contained in the preceding table of the variations of the horizontal force; these two components, the westerly and northerly, appear combined in the diagram. It will be seen that the disturbing forces act more energetically in a plane approaching closer to the true than to the magnetic meridian, and that the usual character of the representation is changed by their action, that half of the curve containing the hours 21 ($9 \mathrm{p} . \mathrm{m}$.) to $2 \frac{1}{2} \mathrm{a} . \mathrm{m}$. being thrown far to the westward, forming a loop, and beyond the branch containing noon; on the other hand the great extension of the deflecting force between 7 and 8 a. m. is wholly due to the great activity of the easterly distarbances about these hours. This will become clear when the disturbances have been separated from the normal deflecting forces, and a diagram for the latter alone is presented.

Diurnal variation in the whole deflecting force acting in the horizontal plane.
[The intensity of the whole horizontal deflecting force is expressed in parte of H and all disturbances are included. 1

The Vertical Fonce Magnetometer.
The length of one division of the scale is 1 millimeter; the radius mirror to scale is 1.719 meters, hence angular value of one division of scale $=1^{\prime}$. In consequence of the great sensitiveness given to the instrument, which was nearly double of what it was intended it should have, a few of the largest disturbances during November were beyond the range of the instrument and thus failed to be recorded.
(1.) Adjustment and determination of scale value September 9,1882 , noou. The kmife-edge was brought into the magnetic meridian on the leveled agate supports, the magnet was balanced, and at $11^{\mathrm{L}} 22^{\mathrm{m}} \mathrm{p}$. m., Göttingen time, the fixed and movable mirrors were made to read 500.

Observations for time of one oscillation of magnet and appendages.

MAGNET SUPPORTED ON KNIFE-EDGE.

Number of oscillations,*	Time.
	m.
10.	218.0
16.	325.5
16.	328.0
16.	333.5
58.	1245.0

* By chronometer Bond 188.
magnet suspended br threads.

Hence $T_{1} \stackrel{* \text { By chronometer Bond } 188 .}{ }=17{ }^{4} .664$ (uncorrected for torsion).

Hence $T=13^{8} .190$, and value of one division of the scale in parts of the vertical force (for $\log \psi^{\prime}=\log 1^{\prime}$).

$$
\frac{\mathrm{T}_{1}^{2}\left(1+\frac{h}{f}\right)}{\mathrm{T}^{2}} \cot \theta \cdot \psi=0.00008028
$$

And multiplying by $\mathrm{V}=12.786$, value of one division of scale $=0.001026$ (English units).

OBSERVATIONS FOR TORSION OF THREAD.

Torgion circle.	Scale extremes.	Mean.	Diff.	
0	d.	d.	d.	d.
15	488 and 711	600	84	
285	708	323	516	174
105	625	754	690	89
15	480	714	597	

Value of one division $=1^{\prime} ; \quad 351 \div 4=87^{\prime} .8$;

$$
\text { hence corrected time } \mathrm{T}_{1}=17^{\mathrm{e}} .664 \sqrt{1+\frac{h}{f}}
$$

$$
=17^{8 .} 807
$$

(2.) Readjustment November $3,102^{\mathrm{h}} \mathrm{p}$.m. (G̈̈ttingen time), to November 4, $42^{\frac{1}{\mathrm{~h}}}$ a. m. (Göttingen time). Instrument releveled, fixed mirror made to read 500; also movable mirror adjusted to division $50,5^{14} 20^{\text {in }}$ p. m. (local time).

Obsercations for time of one oscillation of magnet and appendages.

magnet suspended by threads.

Number of oscillations.*	Time.
10..	$\begin{array}{cc} \text { m. } & . \\ 257.8 \end{array}$
10....	259.0
20.	556.8

* By chronometer Bond 188.

Hence $T_{l}=17^{\mathrm{s}} .840$ (uncorrected for torsion).

Hence $T,=18^{n} .002$ value of one division of the scale in parts of the vertical force $=0.00008163$ which is equal to 0.001044 English units.
(3.) Balance magnetometer adjusted Novmber 14, 1882, $7^{\text {h }}$ p. m., Göttingen time, so as to oscillate in $9^{\mathrm{s} .060}$ and to read 500 at $10^{\mathrm{h}} 05^{\mathrm{m}} \mathrm{p} . \mathrm{m}$. (Göttingen time). This value for T was derived from 20 oscillations; no particulars are recorded. No observations of oscillations with magnet suspended. With $T_{1}=18^{8} .002$ and $T=9^{s} .060$ we have scale value in parts of the vertical force 0.0001739 which is equal to 0.002223 English units.
(4.) Readjustment of balance magnetometer March 4, 1883. Instrument leveled with supporting edge in magnetic prime vertical 7^{h} a. m., Göttingen time ; magnet balanced by means of weights and both mirrors brought to scale 50 (8^{h} a. m., Göttingen time); magnet brought to oscillate in 11.850 by means of adjusting weight on upright stem ($8 \frac{1}{2}$ a. m., Göttingen time).

With $T_{1}=18^{8.002}$ and $T=11^{8} .850$ we hare value of one division of scale in parts of the vertical force 0.0001017 , which equals 0.001300

English units.

Hence $T=11^{8 .} 850$
(5.) March 29, 1883, about 4^{h} a. m. Göttingen time, magnet removed, cleaned of slight frost that had collected on it, and replaced between 4 and $5 \mathrm{p} . \mathrm{m}$.
(6.) April 15,1883 , magnet raised from support and lowered between $6^{\mathrm{L}} \overline{5}^{\mathrm{m}}$ and $\boldsymbol{\gamma}^{\mathrm{h}^{\mathrm{h}}} 00^{\mathrm{m}} \mathrm{p} . \mathrm{m}$., Göttingen time.
(7.) Readjustment of the balance magnetometer April 27, 1883 ; instrument leveled. Supporting edge in magnetic meridian for oscillations in horizontal plane at $2^{\mathrm{h}} 12^{\mathrm{m}} \mathrm{a}$. m. Göttingen time. Between $4^{\mathrm{h}} 10^{\mathrm{m}}$ and $5^{\mathrm{h}} 40^{\mathrm{m}}$ a. m., adjusted fixed and movable mirrors to scale division 50 .

Number of oscillations.	Time br Bond 188.
	h. m. 8 .
$0 .$.	63829.0
6.	3915.0
13.	4002.5
19.	4041.5

Time of one oscillation $=0^{\circ} .974$

torsfon circle.

Hence $T,=18^{8} .295$

Hence scale value for the time preceding April 27 , using $T=7^{\mathrm{s}} .816$, one division $=0.0002413$ parts of the vertical force or 0.003086 English units, and after April 27 using $T=0^{s} .974$, one division $=0.0003031$ parts of the force or 0.003376 English units.
(8.) May 3, 1883, magnet of balance magnetometer raised on support and lowered between 11 and $12 \mathrm{p} . \mathrm{m}$. (Göttingen time). Found time of one oscillation in the vertical plane $=8^{\circ} .750$, hence with $T,=18^{\mathrm{s}} .295$ one division of the scale $=0.0001926$ parts of the vertical force or 0.002462 English units.
(9.) May 21, 1883, at 3 a. m., Göttingen time, magnet fell off support; replaced it, and determined time of one oscillation $8^{8} .700$; hence one division of scale $=0.0001948$ parts of the vertical force or 0.002490 English units.

Increasing scale readings denote increasing vertical force.
[Note,-It having been deemed adrisable, for the purposes of this report, to omit the hourly readings of the Brooke magnetometer and to give only their monthly mean values, these values will be found in the tables following:]

SCALE VALUES.

	English units.	Gaussian units.	B. A. units or dyues.
Value of one division of scale between			
September 9, 1882, and November 3, 1882.	. 00103	. 000473	. 000047
November 3, 1882, and November 14, 1882.	. 00104	. 000481	. 000048
November 14, 1882, and March 4, 1883.	. 00222	. 00102	. 000102
March 4, 1883, and April 15, 1883.	. 00130	. 00060	. 000060
April - 15, 1883, and April 27, 1883.	. 00309	. 00142	. 000142
April 27, 1883, and May 3,1883.	. 00388	. 00179	. 000179
May 3,1883, and May 21, 1883.	. 00246	. 00114	. 000114
May 21, 1883, to close of series.	. 00249	. 00115	. 000115
The average scale reading 523 corresponds approximately to vertical intensity.	12.792	5. 898	0.5898

Recapitulation of monthly mean values (inclusive of disturbances and uncorrected for changes of temperature and variations in scale value) of the hourly readings of the balance magnetometer a Ooglaamie, Alaska, 1882-'33.

Güttingen civil time.	- ${ }^{\text {b }}$.	$1{ }^{\text {b }}$.	$2^{\text {h }}$.	$3^{\text {h }}$.	$4{ }^{\text {b }}$	$5{ }^{\text {h }}$.	$6{ }^{\text {b }}$	$7{ }^{\text {b }}$.	$8{ }^{\text {b }}$	${ }^{9}$.	$10^{\text {b }}$.	11^{14}
Ooglaamie civil time.	$0 \mathrm{n}+53^{\mathrm{m} .6}$	$13^{\mathrm{n} 53^{\mathrm{m}} .6}$	$14^{4} 53^{\text {m. }} .6$	$15453{ }^{\text {m }} .6$	$16^{55} 3^{\text {ma }}$. 6	$17^{\text {b }} 53 \mathrm{~m} .6$	38533m. 6	$19753{ }^{\text {m }} .6$	$20^{15} 53^{\text {m }} .6$	21453m. 6	$22^{4} 53^{\text {m }} .6$	$23{ }^{58 \mathrm{~mm} .6}$
1882.												
September 12 to 30.	517.3	516.0	516.6	516.8	514.9	513.9	515.1	514.4	513.3	512.3	514.0	515.5
October.	517.7	517.1	517.2	516.3	515.3	513.7	512.3	409.6	511.4	513.0	517.7	518.6
November.	512.2	512.5	511.5	509.2	507.6	506.8	507.2	504.6	504.9	514.9	515.2	521.7
December.	523.0	523.2	523.3	522.5	521.5	521.2	521.9	519.9	516.2	517.5	520.1	520.4
1883.												
January.	511.5	512.7	513.5	513.6	512.9	512.7	511.7	511.0	510.6	509.8	509.1	508.5
February.	503.2	504.0	502.8	501.7	502.0	500.4	438.9	498.4	496.9	497.6	498.2	498.3
March.	519.5	518.3	517.6	515.3	515.6	514.0	512.4	507.8	506.4	508.0	509.8	514.4
April.	509.6	509.4	508.9	507.6	506.7	505.8	505.3	500.4	506.9	507.4	509.0	510.7
May.	514.5	514.2	514.0	514.8	514.7	513.5	513.5	512.5	511.8	512.4	513.2	514.8
June.	528.4	528.3	528.6	528.1	527.3	527.8	527.1	524.9	525.5	527.1	529.7	530.6
July.	546.5	545.9	544.1	542.6	542.0	542.8	542.9	543.5	543.2	542.8	544.0	546.6
Angust 1 to 27, inclusive.	549.0	548.1	547.7	547.8	547.3	547.2	546.3	546.0	546.4	546.9	547.1	548.4

Göttingen civil time.	Noon.	$13^{\text {h. }}$	$14^{\text {b }}$.	$15^{\text {b }}$.	$16^{\text {b }}$.	$17^{\text {b }}$.	$18^{\text {b }}$.	$10^{\text {b }}$.	$20^{\text {b }}$.	$21^{\text {b }}$.	$22^{\text {b }}$.	$23{ }^{\text {². }}$	
Ooglaamie civil time.	$0^{6} 53{ }^{\text {ma }} .6$	$1^{\text {h } 533^{\text {m }} .6}$	$2^{463 \mathrm{~m} .6}$	$3^{3553 m} .6$	$4 \mathrm{t53}$ m. 6	$5^{\text {n }} 53^{\text {m. }} .6$	$6^{\text {b } 53}{ }^{\text {m} .6 ~} 6$	$7^{\text {b } 53}{ }^{\text {m. }} 6$	$8^{\text {n53m. }} .6$	$9^{\text {5 }} 3^{\text {m. }} 6$	$10^{\circ} 533^{m} .6$	$11^{12} 53$ m 6	
1882.													d.
September.	519.4	520.7	521.2	522.1	524.0	524.2	522.0	520.0	517.8	516.9	516.6	517.0	517.6
October.	524.0	526.8	528.9	529.2	529.9	529.5	525.6	522.8	524.7	520.0	519.0	318.5	520.0
November.	524.3	526.2	540.1	544.7	547.2	552.9	540.7	534.9	536.0	523.5	530.5	515.8	532.7
December. 1883.	525.2	527.6	529.6	530.6	529.4	530.4	529.3	526.1	523.8	523.1	521.5	522.3	523.7
January.	510.3	513.0	517.4	51.9	519.3	518.5	517.9	516.2	514.4	511.5	510.2	510.6	513.2
February.	501.6	505.9	509.4	511.7	514.4	513.8	513.5	512.3	607.4	504.3	504.8	502.3	504.3
March.	522.2	527.8	530.4	532.1	534.7	534.3	532.4	528.5	523.4	520.1	519.9	518.9	520.2
April,	513.3	515.8	518.3	519.6	520.5	521.6	521.5	520.6	518.3	516.5	515.3	513.5	512.9
May.	518.7	521.3	523.7	526.6	526.3	525.6	523.7	520.5	517.5	515.6	514.8	513.8	517.2
June.	532.8	534.0	535.7	537.6	538.8	539.8	538.7	535.6	531.9	629.6	528.5	528.0	531.0
July.	549.5	550.5	552.7	553.7	555.5	556.8	656. 7	555.0	552.8	550.2	548.2	547.1	548.2
August.	549.1	551.2	652.2	554.0	554.8	554.4	554.0	553.0	651.2	548.9	64.1	549.3	549.6

Solar-diurnal variation of the vertical force (inclusive of disturbunces), expressed in scale divisions and uncorrected for changes of temperature, 1882-'83.

Göttingen civil time.	$\left\\|\begin{array}{c} k \text { or } \\ \text { scale val } \end{array}\right\\|$	0^{6}.	$1^{1 .}$.	$2{ }^{\text {b }}$.	$3{ }^{\text {b }}$.	$4^{\text {b }}$.	5.	$6{ }^{4}$.	7.	8.	9 F	$10^{\text {b }}$.	113.
Ooglanmie civil time.	$\begin{aligned} & \text { of foree } \\ & 0.000 \end{aligned}$	Noon +53 m .6	$13^{3} 53^{\text {m }}$. 6	$14^{45} 3^{\mathrm{m}}$. 6	$5^{5033}{ }^{\text {m. }} 6$	$16^{653 m} .8$	$17^{453 m} .61$	$18^{653}{ }^{\text {m }}$.	$19^{\text {b }} 33^{\mathrm{m}} .6$	${ }^{204593} .6$	$3^{\text {mi. }} 6$	$22^{63} 3^{\text {m }}$. 6	$3{ }^{5} 53 \mathrm{~m}$. 6
1882.													
September.	0803	-0.3	-1.6	-1.0	-0.8	-2.7	-3.7	-2.5	-3.2	-4.3	-5.3	-3.6	-2.1
October.	0803	-2.3	-2.8	-2.8	-3.7	-4.7	-6.3	-7.7	-10.4	-8.6	-7.0	-2.3	-1.4
November.	1307	-10.5	-10.2	-11.2	-13.5	-15.1	-15.9	-15.5	-18.1	-17.8	-7.8	-7.5	-1.0
December. 1883.	1739	-0.7	-0.5	-0.4	-1.2	-2.2	-2.5	-1.8	-3.8	-7.5	- 0.2	-3.6	-3.3
January.	1739	1.7	-0.5	+ 0.3	+ 0.4	-0.3	-0.5	-1.5	-2.2	-2.0	-3.4	-4.1	-4.7
February.	1739	-1.1	-0.3	-1.5	-2.6	-2.3	- 3.9	-5.4	-5.9	-7.4	-6.7	-6.1	-6.0
March.	1087	0.7	-1.9	-2.6	-4.9	-4.6	-6.2	-7.8	-12.4	-13.8	-12.2	-10.3	-5.8
April.	1844	-3.3	-3.5	-4.0	-5.3	-6.2	-7.1	-7.0	-6.5	-6.0	-5.5	-3.0	-2.2
May.	2031	-2.7	-3.0	-3.2	-2.4	-2.5	-3.7	-3.7	-4.7	- 5.4	- 4.8	-4.0	-2.4
Jane.	1948	- 3.4	-3.3	- 2.4	-2.9	-3.7	-3.2	-3.9	-6.1	-5.5	-3.9	- 1.3	-0.4
July.	1948	-1.7	-2.3	-4.1	-5.6	-6.2	- 5.4	-5.3	-4.7	-5.0	-5.4	-4.2	-1.6
Angust.	1048	0.6	1.5	-1.9	-1.8	-2.6	- 2.4	-3.3	-3.6	-3.2	-2.7	-2.5	-1.2
April to September, inclusive.	1754	2.0	-2.5	-2.8	-3.1	-4.0	-4.2	-4.4	-4.8	-4.9	-4.6	- 3.2	-1.6
October to March, inclusive.	1402	-2.8	-2.7	-3.0	-4.2	-4.9	-5.9	-6.6	-8.8	-9.6	-7.2	-5.6	-3.7
Year.	1578	-2.4	-2.6	-2.9	-3.7	-4.4	-5.1	-5.5	-6.8	-7.3	-5.0	-4.4	-2.7

Göttingen civil time.	k or	Noon.	$13^{\text {b }}$.	$14{ }^{\text {b }}$.	$15^{\text {b }}$.	$16^{\text {b }}$.	17 h .	18.	$19^{\text {b }}$	$20^{\text {b }}$.	21^{5}.	22^{1}	$23^{\text {b }}$.
Ooglaamie civil time.	of force 0.000	$0^{\text {b } 535 .} 6$	$1^{\text {¹5 }}$ m. 6	2k53m. 6		$4^{\text {n53m. }} 6$	$5^{553 m .0}$	$6^{653}{ }^{\text {m }} 66$	$7^{7553 m} .6$	$8^{45} 3^{\text {w. }} 6$	${ }^{9653 \mathrm{~m}} .6$	$10^{553 m} .6$	11453m. 0
September.	0803	+1.8	+3.1	+3.6	$+4.5$	+6.4	$+6.6$	+4.4	+2.4	$+0.2$	-0.7	-1.0	-0.6
October.	0803	+4.0	+6.8	+8.9	+ 9.2	+ 9.9	+ 9.5	+ 5.6	+2.8	+ 4.7	0.0	-1.0	-1.5
November.	1307	$+1.6$	$+3.5$	+17.4	+22.0	+24.5	$+30.2$	+18.0	+12.2	+13.3	$+0.8$	$+7.8$	-6. 9
December. $1883 .$	1739	$+1.5$	+3.9	$+5.9$	+6.9	$+5.7$	$+6.7$	$+5.6$	+24	$+0.2$	-0.6	-2.2	-1.4
January.	1739	-2.9	-0.2	+4.2	± 6.7	$+6.1$	$+5.3$	$+4.7$	$+3.0$	$+1.2$	-1.7	-2.0	-2.6
Febraary.	1739	-2.7	+1.6	$+5.1$	+ 7.4	+10.1	$+9.5$	+9.2	$+8.0$	+3.1	0.0	+0.2	-2.0
March.	1087	+2.0	$+7.6$	+10.2	$+11.9$	+14.5	+14.1	+12.2	+8.3	+3.2	-0.1	-0.3	-1.3
April	1844	+0.4	+29	+ 5.4	+6.7	+ 7.6	+8.7	$+8.6$	+7.7	+5.4	$+3.6$	+2.4	+0.6
May.	2031	+1.5	+4.1	$+6.5$	$+9.4$	+ 0.1	+8.4	$+6.5$	+3.3	+0.3	-1.6	-2.4	-3.4
June.	1948	+1.8	+3.0	+4.7	+ 6.6	+ 7.8	+8.8	$+7.7$	+4.6	$+0.9$	-1.4	-2.5	-3.0
July.	1948	+1.3	+2.3	+ 4.5	+ 5.5	+ 7.3	+8.6	$+8.5$	+6.8	+4.7	$+20$	0.0	-1.1
Angust.	1948	-0.5	+1.6	+2.6	+ 4.4	+5.2	+ 4.8	+ 4.4	+3.4	+1.6	+0.3	-0.5	-0.3
April to September, inolusive.	1754	$+1.0$	+2.8	$+4.5$	+6.2	+ 7.2	$+7.6$	+6.7	+4.7	+2.2	$+0.4$	-0.7	-1.3
October to March, inclasive	1402	+0.6	+3.9	+8.6	+10.7	+11.8	+12.5	+ 9.2	+6.1	+ 4.3	-0.3	+0.2	-2.6
Year.	1578	$+0.8$	+3.4	+ 6.6	+8.4	+ 9.5	+10.1	$+8.0$	+5.4	$+3.2$	$+0.1$	-0.2	-1.9

Temperature coefficient.-There are no special observations made to determine the effect of change of temperature on the magnetic moment of the balance magnet. The instrument was mechanically compensated as near as could be judged, and there remains only to determine the outstanding effect by means of the ordinary readings. There was no thermometer in the case of the balance magnetometer, but the same temperature table as was given for the bifiar magnetometer answers, since the readings of the two thermometers-one with the unifilar, the other with
S. Ex. $29-46$
the bifilar-rarely differ more than half a degree, and less than 00.1 Fah, in the monthly means, Applying the same process as in the case of the bifilar we find:

It is proposed to adopt for the present the value $-0^{\mathrm{d}} .7 \pm 0.2$, which is equivalent to a decrease of $0.7 \times .0001584$ (or 0.7 times the average value for one division), or .000111 parts of the vertical force for an increase of temperature of $1^{\circ} \mathrm{Fah}$.

Solar diurnal variation of the vertical force (inclusive of disturbances) expressed in parts of the force, Ooglaamie, 1882-'83.

Göttingen civil time.	Ooglanmie civil time.	Six months, san north of equator.	Six months, sun south of equator.	Whole year.	Temperatare difference.			Solar diurnal variation.		
					$\begin{gathered} t-35^{\circ} .8 \\ \odot \mathrm{n} . \end{gathered}$	$\begin{gathered} t-2^{\circ} .1 \\ \odot 8 \end{gathered}$	$\begin{gathered} t-190.0 \\ \text { y year. } \end{gathered}$	Half year, sin north of equator.	Half year, sun south of equator	Whole year.
h.	h. m.				0	\bigcirc	-			
0	Noon +53.6	-. 00035	-.00039	-. 00038	+3.1	+0.7	+1.8	-. 00001	-. 00031	-. 00018
1	$13+53.6$	044	038	041	+3.6	$+1.3$	$+2.4$	004	024	014
2	$14+53.6$	049	042	046	+4.2	+1.7	$+2.9$	002	023	014
3	$15+53.6$	054	059	058	+3.8	$+1.8$	+2.8	012	039	027
4	$16+53.6$	070	069	060	+4.0	+2.3	+3.1	026	043	035
5	$17+53.6$	074	083	080	+3.4	+2.1	+2.7	036	060	050
6	$18+53.6$	077	093	087	+2.8	+1.9	+2.3	046	072	061
7	$19+53.6$	084	123	107	$+1.6$	$+1.5$	$+1.5$	066	106	090
8	$20+53.6$	086	135	115	+0.6	+0.3	+0.4	079	132	111
9	$21+53.6$	081	101	093	-0.4	-0.4	-0.4	085	105	097
10	$22+53.6$	056	079	069	-1.4	-1.0	-1.2	072	090	082
11	$23+53.0$	- 028	052	- 043	-2.2	-1.3	-1.8	052	066	063
Noon	$0+53.6$	+ 018	+ 008	+ 013	-2.6	-1.2	-2.0	- 011	- 005	- 0008
13	$1+53.6$	049	055	054	-3.1	-1.3	-2.3	+ 015	+ 041	+ 028
14	$2+53.6$	079	121	104	-3.5	-1.4	-2.5	040	105	076
15	$3+53.6$	109	150	133	-3.6	-1.5	-2.6	069	133	104
16	$4+53.6$	120	165	150	-3.6	-1.4	-2.6	086	149	121
17	$5+53.6$	133	175	159	-3.4	-1.3	-2.4	095	161	132
18	$6+53.6$	118	129	128	-2.8	-0.6	-1.7	087	122	107
19	$7+53.6$	082	086.	085	-2. 2	-0.8	-1.5	058	077	068
20	$8+53.6$	039	+ 060	050	-1.2	-0.8	-1.0	036	+ 051	+ 098
21	$9+53.6$	+ 007	004	+ 002	0.0	-0.6	-0.4	007	011	- 002
22	$10+53.6$	012	+ 003	- 003	+1.2	-0.8	+0.4	001	000	+ 001
23	$11+53.6$	-.00023	-. 00036	-.00030	+2.6	+0.2	+1.8	+.00006	-. 00034	-.00016

The numbers contained in the last three columns of this table were plotted on the accom panying diagram, which shows the vertical force to be in excess of its average value in the (local) morning hours, maximum about $6 \mathrm{a} . \mathrm{m}$. , and in deficiency in the (local) afternoon hours, minimum about $9 \mathrm{p} . \mathrm{m}$. Compared with the variation of the vertical force at more southern stations there appears to be a complete inversion of the hours of greater and of less intensity, which may be due to the action of disturbances, or, if regular, it may be somehow connected with the circumstance that Ooglaamie is near the central zone of maximum auroral display and a little to the north of $i t$. We note the apparent greater range of the diurnal variation in the half year including the winter than in the other six months, which is also an anomalous phenomenon.

The breakage of the magnetic and electric equilibrium in the vicinity of this auroral zone, resulting in an outburst of disturbances, probably occurs more frequently within this belt than outside of it, and possibly sudden changes of temperature may be favorable circumstances of disruption. The belt of maximum auroral development seems to be subject to fluctuations in position, and in studying the supposed connection of auroras with terrestrial magnetism attention should be directed to the local direction in which the aurora appears at a station, i. e., at Ooglaamie, whether to the south or to the north of the zenith.

The increased dip and total intensity in the Ooglaamie morning hours as contrasted with the diminished dip and intensity of the total force in the afternoou hours is corroborated by the observations made in the first year by means of the dip circle and deflecting weight.

SOLAR DIURNAL VARIATIONS IN THE MAGNETIC DIP AND IN THE TOTAL MAGNETIC INTENSITY.
These variations are readily obtained from the variations in the horizontal and in the vertical components of the force. If $\mathrm{F}=$ total force, H and V its horizontal and vertical components, then from the fundamental relations

$$
\mathrm{H}=\mathrm{F} \cos \theta \quad \mathrm{~V}=\mathrm{F} \sin \theta
$$

we find by differentiation and elimination the variation in the $\operatorname{dip} \triangle \theta$ and the variation in the total force (in parts of the force) $\frac{\Delta F}{F}$, viz :

$$
\Delta \theta=\sin \theta \cos \theta\left(\frac{\Delta V}{V}-\frac{\Delta H}{H}\right) \text { and } \frac{\Delta F}{F}=\cos ^{2} \theta \frac{\Delta H}{H}+\sin ^{2} \theta \frac{\Delta V}{V}
$$

Solar diurnal variations in the magnetic dip and in the total magnetic intensity, inclusive of disturbances. Annual mean values 1882-'83.

Ooglaamie civil time.	$\frac{\Delta H}{H}$	$\frac{\Delta V}{V}$	$\Delta \theta$	$\frac{\Delta F}{F}$	Ooglaamie civil time.	$\frac{\Delta H}{H}$	$\frac{\Delta \nabla}{V}$	Δ	$\frac{\Delta F}{F}$
h. $\quad \mathrm{m}$.			'		h. m.			,	
$0+53.6$	$-.00136$	-. 00009	$+0.65$	-. 00012	Noon +53.6	+.00214	-. 00018	-1.18	-. 00013
$1+53.6$	249	+ 028	+1.41	+ 021	$13+53.6$	276	014	-1.48	008
$2+53.6$	393	076	+2.39	+ 065	$14+53.6$	346	014	-1.83	006
$3+53.6$	390	104	+2.51	$+\quad 093$	$15+53.6$	488	027	-2.62	015
$4+53.6$	434	121	+2.88	+ 108	$16+53.6$	503	035	-3.20	021
$5+53.6$	577	132	+3.61	+ 116	$17+53.6$	589	050	-3.25	036
$6+53.6$	636	107	+3.78	+ 091	$18+53.6$	601	001	-3. 37	047
$7+53.6$	589	068	+3.34	+ 0 50 4	$19+53.6$	486	090	-2.93	077
$8+53.6$	474	+ 039	+2.61	+ 027	$20+53.6$	360	111	-2.40	101
$9+53.6$	274	002	+1.38	008	$21+53.0$	250	097	-1.77	089
$10+53.6$	076	+ 001	$+0.39$	001	$22+53.6$	+ 022	082	-0.53	080
$11+59.6$	+ 094	- 016	-0. 56	- 014	$23+53.6$	- 101	- 063	+0.19	- 064

In presenting the foregoing results of the three variation instruments I had two objects in view, viz : to be in a position to form a close estimate of the character and value of the whole series of observations preparatory to their full analysis and discussion, and, secondly, to give at once, but preliminarily, such leading results as could be deduced withont waiting for the publication of the conclusions of the conference for the uniform treatment of the magnetic work at the International Polar stations. What has been presented will in general enable the reader to form a judgment of the magnetic character of the Ooglaamie station and of the value of the work done.

As has been already pointed out, there were no well adapted magnetic variation instruments available in the first year; the range of the collimator scale was very limited, and the declinometer had frequently to be turned in azimuth in order to secure readings on days of disturbance, besides the great changes in the torsion of the suspension renders it impossible to produce a uniform series with respect to a fixed direction. The record for the first year of the biflar magnetometer has not yet been sufficiently examined to form an opinion as to its value, and at present I am still waiting for notes bearing on the adjustment and scale value of the instrument. There was then no vertical-force magnetometer, but hourly observations were made with a dipping needle deflected by a constant weight; corresponding values for the true dip or deflections by the same needle which had previously been used loaded were only made on two or three days each month, so that the value of this series as a differential measure of the total force may be regarded as small. It has, however, enabled me independently to verify the fact brought out by the balance magnetometer of the greater total intensity during the morning than in the afternoon hours. There is no record of the effect of temperature changes on the angle of deflection of the loaded needle.

In the year 1881-'82 there were but few stations with which to compare results, and to pablish the above-mentioned records in extenso would seem to me an expenditure of time and labor bardly to be recommended, and probably not warranted by the meager results the series may be capable of yielding. I would propose to set down the mean of the 10 readings (5 with
scale extreme left and 5 with scale extreme right) for each instrument, viz: the declinometer and bifilar and the mean of the 10 readings of the dipping needle (5 for south and 5 for north end) for each observing hour, and during term days it would suffice to give only the mean of the two extreme scale readings. But on these points the result of the deliberations at Vienna may be awaited.

I conclude this report with a table of frequency of the aurora as seen and recorded in con nection with the magnetic work at Ooglaamie:

Table of frequency of the aurora as observed at Ooglaamie, Alaska, between October, 1881, and August, 1883.
[The hours are local mean time hours at Ooglaamie, and the numbers indicate the number of days in each month when auroras wers seen at each of the hours indicated.]

	$0^{\text {br }}$	1 l .	2 b .	$3^{\text {h. }}$	4h.	$5^{\text {b }}$	$6{ }^{\text {b }}$	$7^{\text {b }}$.	$8^{\text {h }}$	$9{ }^{\text {b }}$	$10^{\text {b }}$.	$11^{\text {b }}$	N'n	$13^{\text {b }}$	$14{ }^{\text {b }}$	$15^{\text {b }}$	$16^{\text {b }}$	$17^{\text {b }}$.	18.	19 b.	$20^{\text {b }}$.	$21^{\text {b }}$	$22^{\text {b }}$	$23^{\text {h }}$	Total number of hours.
1881. September.																									\ldots
October.	2	2	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	3	3	2	21
November.	13	15	15	13	14	12	5	3	2	0	0	0	0	0	0	1	2	2	4	6	9	12	14	12	154
$\begin{gathered} \text { December. } \\ 1882 . \end{gathered}$	17	10	15	17	14	14	9	7	8	4	0	${ }^{\circ} 0$	0	0	0	0	1	3	17	12	14	15	15	15	207
January.	11	16	9	0	7	3	1	2	2	1	0	0	0	-	0	0	0	1	8	7	9	11	10	16	123
February.	17	16	13	12	14	11	1	0	0	0	0	0	0	0	0	0	0	0	6	9	16	13	17	20	165
March.	17	17	14	10	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	6	17	21	107
April.	7	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	8	21
May.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
June.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
July.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Augast.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
September.	2	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	5	7	23
October.	7	7	6	6	7	5	1	0	0	0	0	0	0	0	0	0	0	0	2	5	8	9	10	9	82
November.	14	14	14	12	12	12	11	9	0	0	0	0	0	-	0	0	2	4	5	7	12	12	16	10	175
December. $1883 .$	24	20	21	24	19	21	12	12	15	10	3	0	0	0	0	0	6	10	13	13	10	24	25	25	316
Januars.	20	22	23	20	19	18	17	18	12	2	0	0	0	0	0	0	0	10	9	11	17	20	22	21	282
February.	16	12	12	18	14	13	12	3	1	0	0	0	0	0	0	0	0	0	1	8	11	12	11	15	159
Match.	21	18	19	18	15	5	1	0	0	0	0	0	0	0	0	0	0	0	0	7	14	18	21	20	177
April.	6	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	7	27
May.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
June.	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
July.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
August.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sum, Oct., '81, to Ang., '82, 101 months.	84	79	71	63	53	40	16	12	12	5	0	0	0	0	0	1	3	6	36	35	51	60	77	94	798
Sum, Sept. '82, to Aug., '83, 12 months.	110	101	100	98	86	75	54	42	28	12	3		0		0	0	8	24	30	51	82	101	113	123	1241

Observations began October 17, 1881, and ended August 27, 1883.
The presence or absence of an aurora was noted a few minutes before each full hour. The total number of days when auroras were visible in the first ten and one-half months (1881-82) was 145, hence, the average duration five and one-half hours nearly; the total number of days when auroras were seen in the year ending August, 1883, was 169, hence, the average duration seven and one-third hours nearly.

In the tabulation and preparation of the manuscript record for the printer I had the assistance of Sergeant Maxfield and Private G. W. Knopf, of the Sigual Corps, who performed their task with much zeal and commendable industry; they have also prepared a complete duplicate of the hourly records submitted, but not printed, with this report.

Respectfully submitted by
OHAS. A. SOHOTT,

J. E. Hilqard, Esq.,
 Superintendent Ooast and Geodetic Survey.

DISTRIBUTIONOF MAGNETIC DECLINATION

ATPOINT BARROW, ALASKA

APPENDIX No. 14.
 REPORT ON THE PREPARATION OF STANDARD TOPOGRAPHICAL DRAWINGS.

By HDWIN HERGFSHEIMER, Assistant Coast and Geodetic Survey. SEOONDSERTES

United States Coast and Geodetic Survey Office,
Washington, February 12, 1884.
Dear Sir: I submit a second report upon the progress of the preparation of standard topographical drawing. Scale 1-10000.

The first report (Appendix 11, Coast and Geodetic Survey Report of 1879) dealt with the prerailing features (natural and artificial) of the Atlantic coast. The drawings herewith presented are special types, most of which are accompanied by views placed in their proper relation to the plan drawings. Little, therefore, need be said in addition to what is shown on their faces.

The drawings are:

1. A portion of the Potomac River and its banks, above Harper's Ferry, showing specially a railroad tunnel, water-worn rocks, middle drift sands, a river dam, and a mill-race to the former Government works at Harper's Ferry.
2. A gulch in disintegrated bituminous slate near Santa Cruz, Cal., with stratification of very gentle dip. This subject is drawn on $1-5000$ scale, to give the details of the gulch more distinctly.
3. Brown's Mountain, Mount Desert Island, Maine. A rounded summit of a granite mountain, believed to be the result of the planing action of ice and its transported rocks.
4. Robinson's Mountain, Mount Desert Island. Abraded rock faces of a granite mountain.
5. Echo Mountain, Mount Desert Island. Cliff of a granite mountain, and fresh-water lakes.
6. Eagle Cliff, Mount Desert Island. Crest, face, and talus of a granite cliff.
7. Cape Disappointment, Washington Territory. A basaltic promontory.
8. The Dalles of the Columbia River. A remarkable erosion of eruptive rocks, where a great river has cut through successive basaltic overflows, leaving a narrow gorge trough, and a succession of bold basaltic escarpments. Also, a representation of a rapid river torrent.

Other special types have been drawn:-the moraines of Fallen Leaf Lake, California, a portion of Table Mountain, California, illustrating the "Deep Placers," the vicinity of Plymouth, Mass., illustrating the eroded "Great Drift" of New England, and a sample of marine erosion of a headland on the Pacific coast. These will form part of a third report when engraved.

Respectfully yours,
E. HERGESHEIMER,

Assistant Coast and Geodetic Survey.

Prof. J. E. HLlgard, Superintendent Coast and Geodetic Survey.

Note.-It has been deemed advisable to republish with this the first series of standard topographical drawings, which appeared as Appendix No. 11, Report for 1879.

APPENDIX NO. 11.

report on the preparation of standard topographical drawings, by edwin hergesheimer, assistant coast and geode'tic survey.

FIRST SERIES.

[From the report for 1879.]
 Office of the United States Coast and Geodetic Survey, Washington, July 1, 1879.

SIR : In the preparation of topographical drawings to be used as gaides for inking the original plane-table sheets of the Coast and Geodetic Survey, selection was first made of such features, natural and artificial, as are most prevalent on our coasts.

The first subject was the representation of closely-built cities, comprising large public buildings, warehouses, \&c., and suburban villas and grounds of the first class. Newport, R. I., was selected for this parpose, where it was found desirable to discontinue the inking of large buildings in full black, and to confine the black to the exterior, representing the outer walls, and to tint the interior by fine lines closely ruled. Carriage-ways and walks of villa or public grounds are here represented in full light line, instead of the broken line formerly used. Fresh marsh is also represented in a style different from that heretofore in use. Its representation had previously been by irregularly distributed tufts of grass, underlined by free hand with water lines, which, drawn with taste, is perhaps the most artistic representation of the feature, but which is seldom represented the same by any two persons. It was therefore thought best to introduce a style that could be definitely described and required. For this purpose lines of the same strength and the same distance apart as those of the salt marsh are ruled and irregularly broken, then interlined and tufted by free hand with light short lines grouped irregularly, as shown in the first of the series of sketches accompanying this paper.

For the representation of a town sparsely settled, Brunswick, Ga., is given, on which salt marsh, pine woods, ditches, fences, undefined roads, and wagon tracks are shown.

For the representation of railroads, canals, iron bridges, bold faces of rock, mid-river drift, water-worn rocks, and distribution of mixed woods over close hill curves, the vicinity of Harper's Ferry is given. Here is illustrated the strengthening of the 100 feet hill carves for the more ready reading of the heights of hills.

For the representation of heavy oak timber, reclaimed marsh and orchards, a part of the New Jersey shore of the Delaware River is given.

For the representation of rice, and the dikes and ditches incident to its cultivation, a selec tion from Santee River is given.

For the representation of eroded drift banks with bowlders set free, and scrab deciduous woods, the western part of Martha's Vineyard, including Gay Head, is given.

For the representation of the rocky shores and intermediate sand and shingle beaches, beaches above high water, and eroded earth banks, characteristic of the coast of New England, roads, fences, residences, onthouses, shade-trees on the lines of roads, and the shading of low hills by normals, the extreme end of Nahant is given.

For the representation of a sandy beach, with low dunes, fresl-water ponds, meadow grass, sage-brush, fresh marsh, and eroded gullies (arroyas), a selection from the vicinity of San Imis Obispo was made.

Samples not yet engraved have also been drawn for various characters of eroded and fractured granite rocks, as shown at Mount Desert Island; hard, eruptive rocks, as shown at Cape Disappointment, Oregon, and eroded sedimentary forms at Arlington, Va. Respectfully, \&c.,

E. HERGESHETMER,

Assistant.
Oarlile P. Patterson, Superintendent.

TOPOGRAPHICAI. DRAWING
Scale wobo
Hy E.Hemgesheinuev Assistmat

TOPOGRAPHICAI. DRAWING
Scale a ${ }^{6} 0$
By E.Hergesheimav Astiatant

TOPOGRAPHCAM. DRAWING
Soule athoos

The Inallem,Columinae Hivar,Looking South-Eaatorly.

TOPOGRAPHICAL. DRAWING
Scale $0^{\frac{1}{6}} 0$
By E.Hergesheimer Ansistmat
Sparsely seuled Town, Salt Marsh, Fine Woods,Ditches, Fences, and Urulefned Roads Brus.swith Tro

S.COASTAND GEODETIC SURYEF
CPPattersor Superintenitert

TOPOGRAPHCAL DRAWING

TOPOGRAPHICAL DRAWING
Scale $10 \frac{1}{6}$ \%
By E. Hergesheimer Assistant.

TOPOGRAPMCAI, DRAWING

Scale 10^{2} ate

By E.Hergesheimer Assistant
Rice, Dykes and Ditches (Santee River)

TOPOGRAPHTCAL DRAWING

By E. Hergesheimer Assistant

TOPGGRAPHICAL DRAKING

TOPOGRAPHICAL DHAWING
Scale $10^{\frac{2}{0} 00}$
By E.Hergesheimer Assistant

Appendix No. 15.

THE 'TRANSIT OF MERCURY OF NOVEMBER 7, 1881, AS OBSERVED AT YOLO BASE, CALIFORNIA.

```
By GFORGE DAVIDSON and J. J. GIIMIBFIRT, AssistamLs.
```

At a point near the United States Coast and Geodetic Survey station "Sontheast Yolo base," I observed the II contact of Mercury at the transit of that planet over the sun's disk on the 7th of November, 1881.

I used a 3-inch Fraunhöfer telescope known as the "Hassler Equatorial" belonging to the Survey, and mean time pocket chronometer Widenham 900 . The eye-piece was direct, and had a power of 105 diameters.

The geographical position of the point of observation deduced from measures to the Yolo base station is

Latitude: $\quad 38^{\circ} 31^{\prime} 33^{\prime \prime} .8$ north.
Longitude : $121^{\circ} 47^{\prime} 56^{\prime \prime} .9$ west of Greenwich.
The chronometer was slow of local mean time at ingress $9^{\mathrm{m}} 52^{\mathrm{s}} .7$.
Having no position circle I was not looking at the right place on the smms limb at the time of I contact, and when I first saw the planet it had entered quite perceptibly on the sun. The atmosphere was moderately steady, and there were undulations of the limbs of Mercury and the sun, which gave a certain overlapping of borlers such as might be considered a "ligament." Nevertheless this disturhance was not great enough to prevent a good observation being made, and I noted
h. m. s.

II contact, at 20138.8 by chronometer.
Chronometer correction $=+952.7$
II contact, at
$211-31.5$ local mean time,
a 10 31.2 Washington mean time.
When the planet was one diameter on the sun's disk by estimation I noted the time, by the chronometer $2^{\mathrm{h}} 03^{\mathrm{m}} 20^{8}$.

The planet presented an intensely black disk, which in its regularity and color was in marked contrast with the solar spots near which it passed, and which would themselres be called quite regular in form and dark in color. There was no white spot on the planet, and no annulus of bright light around its disk, nor any indication of distortion.

The observations for the error of the chronometer were made with a Gambey sextant aud artificial horizon by Mr. C. B. Mill, attached to the main triangnlation party.
J. J. Gilbert assistant United States Coast and Geodetic Surver, was attached to my party, and at the time of the transit was at the Middle Base Camp, where he observed the transit of Mercury with a 3 inch Fraunhöfer reconnoitering telescope No. 12, United States Coast and Geodetic Suryey, lacking, Lowever, slow motion in the horizontal and rertical. The instrument is otherwise similar to the Hassler Equatorial, and was used with the same power.
S. Ex. 29-47

The geographical position of the telescope, by connection with the Yolo base was

> Latitude: $\quad 38^{\circ} 35^{\prime} 18^{\prime \prime} .2$ north.
> Longitude: $121049^{\prime} \quad 17^{\prime \prime} .0$ west of Greenwich.

The ohservers mateh was $2^{m} 49^{5} .6$ slow of local mean time. Having no fosition circle the observer did not see the planet until it was on the sun's limb, and made the following observations:

$$
\begin{aligned}
& \text { h. } m \text {. } s \text {. } \\
& \text { Observed time, } \quad I=20740.5 \text { plauet } \frac{1}{5} \text { diameter on sun. } \\
& \mathrm{II}=20849.5 \\
& \text { Correction to watch, } \quad+0249.6 \\
& \text { Then } \\
& I=21030.1 \text { local mean time (planet } \frac{1}{5} \text { diameter on sun). } \\
& \mathrm{II}=21139.1 \text { local mean time. } \\
& \text { Or, } \quad 51044.1 \text { Washington mean time. }
\end{aligned}
$$

The observations for the error of the watch were made by Messrs. Gilbert and Hill, using a Gambey sextant and artificial horizon.

Remarks.-The shy was clear and weather quite warm, but a rery strong north wind was blowing over the plains through the Sacramento Valley, so that the observers had to seek sheltered places for the telescopes. No extra preparation was made for the observations, because the regular work of the measurement of the Yolo base line of 11 miles' length was in progress. The elevation of the stations is about 75 or 80 feet above the sea level; the plains extend for 60 miles to the east, indefinitely to the north and south, and 12 miles to the west, to the Berryessa range of coast mountains, reaching 3,300 feet elevation at Berryessa Peak.

At the first station the sun's disk at the time of ingress was not sharp and well defined, but somewhat blurred, and the unsteadiness gave to the phenomenon of first internal contact the frequently reported appearance of distortion of the planet's limb next to the sun's limb, known by a variety of names such as the "black ligament," "black drop," \&c., bat never coming to the black drop depicted in many previons reports. But at the second station this appearance did not present itself, whilst the closeness of the two observed times indicated little disturbance in reality. The phenomenon of this atmospherie disturbance is familiar to Mr. Gilbert and myself from many years' observing during the day-time on signals of the Goedetic Surrey.

The intense blackness of the planet's disk and its regular form satisfied us both that a body of one-fourth of the diameter of Mercury, such as the problematical planet Vulcan, could be readily distinguished with the same telescopic means that we used, whilst its progress across the sun's disk, and its contrast with coutiguous solar spots would effectually prevent any mistake by an experienced observer.

The observations for time and their reduction were made by Mr. Hill, to whom I am also indebted for the reduction of the geographical positions from the base line.

Respectfully submitted.
GEORGE DAVIDSON,
Assistant United States Coast and Geodetic Survey.
J. E. Hilgard, Esq., Nuperintendent.

Aprendix No. 16.

OBSERVATIONS OF THE TRANSIT OF VENUS OF DECEMBER 6, 188. AT WASHINOTON, D. C., AND AT TEPUSQUET STATION, CALIFORNIA, AND AT LEHMANS RANCH, NEVADA.

United States Coast and Geodetic Survey Officki, Washington, I. C., December 6, 1882.

SIR: The following account of observations of the Transit of Venus made to day at Fauth's observatory, Washington, D. C., is herewith respectfully submitted.

The place of observation is the same as that occupied by me when observing the Transit of Mercury May 6, 1878, namely, opposite the southwest comer of the lower Capitol park,* by measure $8^{\prime \prime} .7$ soath and $9^{\prime \prime} .4$ west of the center of the dome of the Capitol, + or in latitude $35^{\circ} 53^{\prime} 14^{\prime \prime} .5$ and in longitude $77^{\circ} 00^{\prime} 42^{\prime \prime} .9$, or $5^{\text {n }} 05^{\mathrm{m}} 02^{3.9} .9$, which is 99.1 east of the dome of the Enited States Naval Observatory.

Through the Kindness of Mr. Fauth I had the use of his new equatorial (for which he was awarded a gold medal at the late Cincinnati Exposition) ; it is driven by clockwork, has an apertare of 15.25 contimeters (6 inches), a focal length of 2.5 meters (8.2 feet), and was used with a magnifying power of 102 for the morning observation, and with a power of 127 for the afternoon observations. Full aperture was used in connection with a solar eye-piece, the prism of which deffected so much of the sun's heat and light that a light shade-glass sufficed for the protection of the eye. I was assisted by Dr. J. G. Porter, computer in the Survey Office, who took charge of the chronometer (mean time chronometer, Bond \& Sons, No. 177), noting down the time and remarks made ly the observer.

In the morning the southeastern sky was covered with dense cirro stratus clouds; it was therefore fortunate that a fine focal adjustment of the telescope had been obtained the uight lefore ou Saturn, which focus had been preserved.

First external contact.-Very light yellow shade-glass over the eye piece. No distinct vision of the sun could be had until about two or three minutes after the predicted time of the contact. The eye was kept steadily at the spot where the planet was to appear, but the limb of the sum could only be seen faintly by glimpses and by slightly vibrating the telescope.
h.m. s.

Record : At 85415 (by chronometer) limb barely risible.
85647 notch seen.
The sun was then rising above the denser cloud bank and the seeing continually improved. This observation is of no value. Changed color of shade-glass to a light nentral tint.

First internal contact.-It was seen through thin clouds, the image of the outlines of sum and planet in a state of slow undulation and devoid of slampness, yet the observation appeared to the observer quite satisfactory considering the entire abseuce of any distorsion of figure or other disturbing phenomenon; in fact the appearance was that of a geometrical contact.
h. m. s.

Record: At 9130 (by chronometer); sun's image boiling, no sharp outline to Venus.
913 58 cusps nearly together.
91450 first momentary elosing of line of light.
91504.5 apparent permanent connection.

[^27]Just before the interual contact the cusps appeared blunted and were not finely drawn out. At $9^{h} 14^{\mathrm{m}} 50^{\mathrm{s}}$ the wary motion of the limb first united the cusps by a rather thick streak of light closing momentarily aronnd Venus, but the connection was not permanent antil at $9^{\mathrm{h}} \mathbf{1 5} \mathbf{5}^{\mathrm{ma}} 04^{4} .5$

In my judgment this first moment will represent the true time of first interior contact, thus $9^{h} 14^{m} 50^{8}$ plus chronometer correction (for which see further on), or $+1^{m} 30^{8} .5$, gives for inner contact $9^{\mathrm{h}} 16^{\mathrm{m}} 21^{\mathrm{s}}$ United States Naval Observatory mean time, with an estimated uncertainty of ± 5.

Second internal contact.-Was observed through a (darker) neutral tint shade-glass, very agreeable to the eye; only light clouds passing over the sun's disk, with occasional perfect clearness. The boiling motion of the image was, however, much more rapid than in the morning, yet the extent of the wave motion or tremor was very much less. Venus appeared with a jagged outline in a state of tremor, and of an even black color, as in the morning, no indication of any atmosphere or distorsion of figure being noticed, the phenomenon passing off very much as in the moruing ithout any disturbing features, except the boiling.
$h . m$. s.
Record: At 23747.5 (by chronometer) very thin line of light.
23808.5 first break of line of light.

23823 permanent break.
When the first momentary break occurred in the line of light it was still of sensible thickness throngh the effect of ware motion, and when the cusps had actually formed at $2^{\mathrm{h}} 38^{\mathrm{m}} 23^{\mathrm{n}}$ they were blunt, and not sharply pointed. Just before this time the connecting streak appeared like a collection of patches of light. I should judge the true internal contact took place about one or two seconds after the middle time noted, or at $2^{\mathrm{h}} 38^{\mathrm{mm}} 08^{s} .5+1^{\mathrm{s}} .5+$ chronometer correction $\left(+1^{\mathrm{m}}\right.$ $30^{4} .5$), hence, second inner contact at $2^{h} 39^{m} 41^{s}$ United States Naval Observatory mean time, with an estimated uncertainty of $\pm 5^{3}$. The observation is cousidered quite satisfactory by the observer.

The last contact.-The sky being clear or nearly clear, the only difficulty in observing this external contact was occasioned by the strong boiling motion of the sun's limb. The observer, keeping his eye steadily at the slowly diminishing notel, noted two phenomena, viz:

> h. m. s.

Record : At 25655.5 (by chronometer) notch disappearing momentarily through undulations.
25747 last appearance of something resembling a notch.
The first time is that when the notch began to be obliterated by passing waves and the last contact had apparently not yet occurred; the second time is that when the passing waves last failed to bring out a notch, and the last contact apparently had then taken place. I shonld think true exterval contact took place about that moment, or at $2^{\mathrm{h}} 57^{\mathrm{m}} 47^{\mathrm{s}}+1^{\mathrm{m}} 30^{\mathrm{s}} .5$, or last contact at $2^{\mathrm{h}} 59^{\mathrm{mL}} 18^{\mathrm{a}}$ United States Naval Observatory mean time. In consequence of the serrated outline of the sun the uncertainty of this phase I estimate at $\pm 20^{9}$.

While the observatious of the iuner coutacts may be takeu as fainly satisfactory, the presence of clouds at iugress prevented, and the atmospheric tremor at egress, detracted so much from the accuracy of the observation that the time of the exterual contact is considered to be of little value.

To obtain the chronometer correction the dropping of the noon time-ball at the Naval Observatory was observed as follows:
h. m. s.

> December 4. Ball coming down at.
> 115832.3 (Bond \& Son's 177.)
> 5. Ball coming down at 5830.5
> 6. Ball coming down at
> 58 29.5*

The original pencil notes are on file at the Survey Office, and the correct transcript of the record is attested over our signature.

> CHAS. A. SCHOTT, Assistant Coast and Geodetic Survey. J. G. PORTER, Computer Coast and Geodetic Survey Office.

To J. E. Hilgard, Superintendent.

* Note added after the report was written : Ball apparently not hoisted December 7 on account of high wind.
P. S.-On December 7, in the morning, Mr. B. A. Colonna, Assistant, handed me an account of his observations of the Transit, and 1 herewith append the same. Assistant Colonna was a member of the party stationed at Mr. Fauth's establishment, and used one of his instruments.
C. S .

Washington, D. C., December 7, 1882.
Srr : By invitation of Assistant O. A. Schott, muder whose direction suitable telescopes had been provided and placed in the yard of Fanth $\&$ Co.'s shop, at the sontheast corner of First and B streets southwest, I repaired to that place in due season on the 6th day of December, 1882.

From a number of telescopes that I found there I selected one of small size, not as being so powerful as the larger ones that were available, but principally because, while giving a moderately fair chance for good results, it had the advantage of having a fiuder attached to it. This fimder having a small magnifying power (about 10 diameters) was of service, in that while the thin clouds continued to pass the sun's disk aud obscure it entirely abont the time of first contact, I could rapidly scan any part that chanced to be showing for a moment. By means of this finder I think I obtained amougst the earliest views of the begimning of the Transit.

For a few minutes after sunrise on this occasion the sun's disk was beautifully clear and distinct, not a cloud was near it, and to the casual observer nothing would have been apparently more certain than complete success, but soon a long, low, narrow, black cloud formed, about 15° above the horizon and to the southward of the sun. This cloud gradually moved to the northward, spreading out to greater width, and at last totally obscuring the sun. This state of affairs continued until about fifteen minutes before first contact, wheu not only from the sun's increasel height, but also because the cloud began to break up aud disperse, we began to get occasioual glimpses of parts of the face and circumference of the sun, matters were gradually improving in this way at the time of first contact, at which time I could make out the circumference of the sun through thin clouds, using the finder without any colored glasses; then the clonds got a little thinner, and these were the circumstances under which I first saw Venus after she had slightly advanced on the sun's disk, using the finder and no colored glasses, as heretofore stated.

TRANSIT OF FENUS.
Station: Yard of Fauth \& Co's shop, Washington, D. O.
Observer and recorder: B. A. Colonna, Assistant Coast and Geodetic Survey.
INSTRUMENTS.
For time.-Mean time chronometer, Bond \& Sons slow, $1^{\text {m }} 30^{\text {a }}$ (Schott); Colomna's mean time watch (Crescent St. movement).

- For observation.-Reconnoitering telescope by "Ploessel in Wien," mounted on tripod stand, movement by hand and in any direction. Focal length 96.5 centimeters, or 38 inches. Clear aperture 90 millimeters. Magnifying power 140 diameters. Finder attached to reconnoitering telescope about 10 inches long, with magnifying power about 10 diameters.

Comparison of time pieces, a. m., December 6, 1882.

Instruments.	Before contacts.	After contacts.
	h. m. E .	h. m. 8.
Mean time chronometer, Bond \& Son, No. 177.	75700	91900
Colonna's mean time watch.	75835	92035
Mean time chronometer, Bond \& Son No. 177.	75800	92000
Colonna's mean time wath	75935.5	92135.2
Mean time chronometer, Bond \& Son No. 177	75900	92100
Colonna's menn time watch	76035.5	92235.5

1. First external contact.-Was over before clouds broke away. I noted it down when first seen, $8^{\mathrm{h}} \mathbf{5 8 ^ { m }} 00^{\mathrm{s}}$.

I judge that the planet was five minutes on before I saw her, on acconnt of clouds.
2. First internal contact :
h. m. s.
A. M. 91525 might be.

91620 apparently better.
91700 might be.
$9 \cdot 1615$ mean.
Colonna's watch fast
-0.5
Corrected time of observation 91610
At $9^{14} 33^{\text {m }} 30^{5}$ she was about one diameter on.
Note.-I an very sure that for the five minutes preceding first internal contact I saw the limb of the planet outside of the sun's disk. The atmosphere was tremulous. There were passing clouds which had totally obscured the sun for an hour before the Transit began. At the time of the first external contact the clouds were just beginning to clear away.

Comparison of time pieces, p. m., December 6, 1882.

Instruments.	Before contacts.	After coutacts.
	h. m. 8 .	h. m. \%
Mean time chronometer, Bond \& Son, No. 177	21300	30215
Colonna's mean time watch	214325	30348
Mean time chronometer, Bond \& Son, No. 177	21400	30300
Colonna's mean time watch.	21532.5	30432.5
Mean time chronometer, Bond \& Son, No. 177..............	21500	30330
Colonna's mean time watele.	21633	30502.5

h. m. 8

Mean time chronometer, No. 177, at comparison.. . . 21300
Correction to mean time chronometer slow.. 1,30
Corrected mean time of comparison. 21430
Colonna's mean time watch at comparison... 21432.5
Colonna's mean time watch fast. 00.5
3. Second interior contact:

$$
\begin{aligned}
& \text { h.m.s. } \\
& 23930 \text { perhaps. } \\
& 24003 \text { better, I think. } \\
& { }_{2} 4020 \text { perhaps. } \\
& \text { By Colonna's wateh } 23958 \text { mean. } \\
& \text { Colonna's watch fast }
\end{aligned}
$$

Note.-After the second interior contact I expected again to be able to see the disk of Vemus for five minutes after it had passed beyond the sun's disk, but I could not. The instrument is in the same focns as when used this $\mathrm{a} . \mathrm{m}$. The sun has been partially obscured for the preceding thirty minates, but is now entirely clear. The atmosphere is quite tremulous, more so, I think, than it was this morning. I failed to see any of the rolling appearance of the light when the thread became very tine that I have seen elsewhere on similar occasions.
4. Second exterior contact:

$$
\begin{aligned}
& \text { h. m. s. } \\
& \text { 2 } 5930 \\
& 59 \\
& 59 \\
& 60 \\
& \text { perhaps. } \\
& 59 \\
& 80
\end{aligned} \text { pether. }
$$

Time of observation by Colonna's watch 95956.7 mean.
Fast. 2.5

Corrected mean time of observation 25954.2
After this contact time was compared, as shown before, and my observations of the Transit of Venus were concluded.

Note.-As to the observer, I would state that he purposely abstained from all knowledge concerning the computed times of contact, of transit, and all other information at all calculated to influence his observations.

I have the honor to be jour obedient servant,

B. A. COLONNA,

Assistant.
Prof. J. E. Hilgard, Superintendent.

Station Lospe,
Santa Barbara County, California, January 27, 1833.
SIR : Mr. P. A. Welker reports to me his observations of IIId and IVth contacts of Transit of Venus, December 6, 1882, as follows :

Station: Tepusquet, Cal., latitude $34^{\circ} 54^{\prime} 30^{\prime \prime} .5$ north; longitude $120^{\circ} 11^{\prime \prime} 14^{\prime \prime} .9$ west of Greenwich.

Observer, P. A. Welker ; recorder, H. Stoddard.
Weather: Fair, cloudless. Atmosphere: Remarkably clear. Wind: calm.
Instrument: 12 inch theodolite, 131 (Fanth \& Co.). Total length of telescope, $\mathbf{2 6 . 0}$ inches; ajerture of telescope, 2.5 inches; magnifying power of eye piece, not determined. Chronometer, sidereal chronometer 207 (John Hutton). Two colored glasses taken from a sextant and phaced one over the other, were fastened to eye end of telescope.

Outlines of sun and planet were very sharp and distinct.
Just before Contact III a bright ring of light was seen between limbs of sun and planet Time was marked when this ring disappeared.

At time of IVth contact limbs of sun and Yenus well defined-no unusual disturbance.

After IV th contact Venus could not be seen.

Chronometer time of IIId contact	h. m. 8.	
Chronometer error at time of IIId contact	-	12.7
Sidereal time of IIId contact	1653	06.3
Chronometer time of IV th contact	1713	15.0
Chronometer error at time of IV th contact	-	12.8
Sidereal time of IVth contact	1713	02.2

Hourly rate of chronometer from observations before and after Transit of Venus $=0^{\circ} .248$ gaining.

Very respectfully,
J. E. Hilgard, Esq., Superintendent.

JAS. S. LAWSON, Assistant.

Lehman's Ranch, Nevada, December 7, 1882.

SIR: I beg leave to present the following report on the observations of the contacts at egress made at A. S. Lehman's ranch, in Nerada:

The geographical position of the station occupied was derived from a small triangulation executed for the purpose of connecting the State bonndary of Nevada and Utah with Jeff Davis Peak, a principal station of the geodetic survey of the thirty-ninth parallel of latitude, and the position of which depends upon the Coast Survey telegraphic longitude of San Francisco and several of the astronomical azimuths and latitudes observed in connection with the geodetic survey referred to

The geodetic positions of Jeff. Davis Peak and the Transit of Venus station as resulting from the field computations are as follows:

> Latitude. Longitude.
> Jeff. Daris Peak $+38^{\circ} 59^{\prime} 03^{\prime \prime} .00+114^{\circ} 18^{\prime} 47^{\prime \prime} .35$
> Transit of Venus station $+39^{\circ} 00^{\prime} 34^{\prime \prime} .74+114^{\circ} 11^{\prime} 04^{\prime \prime} .59$

These may be regarded as reliable to within about $1^{\prime \prime}$ in latitude and $2^{\prime \prime}$ in longitude. Whaterer corrections the final adjustment of the triangulation may yield for the position of Jeff. Davis Peak will apply in like manner to the position of the Transit of Venus station.

The altitude of the latter station above sea-level is 1900 meters nearly.
The contacts were observed with a Steinheil refracting telescope of 55 inches objective, using the full aperture, and a magnifying power of 250 diameters. The excessive glare of the sun's light was screened down to proper intensity by a small piece of "London-smoke" glass attached to the eve-piece. The focal adjustment of the telescope was made with precision by pointings upon the larger planets at night, and again, finally, by pointings upon Venus itself on the day of the Transit. The definition of the telescope thus focused was very satisfactory, notwithstanding the heating of the eye-piece by coutinued pointing upon the sun. The telescope, although equatorially mounted, was without a driving apparatus. It was kept properly pointed by means of the slow-motion movement worked by hand.

On the morning of the 6th of December the sky was generally clear, yet there hung threatening storm clonds upon the eastern horizon, shutting away from view the sun, and which on that account was never seen until the planet had shifted fully a diameter upon his disk. The atmosphere at this time seemed much disturbed and undulated strongly. Fortunately, as the day adranced matters changed greatly for the better, and by noon, as the great event of the day was rapidly drawing near, all clonds had vanished, leaving nothing but a thin sheet of haze in the southern skies, not dense enough to impair the distinct vision of the sun. At $17^{\mathrm{h}} \mathbf{1 0}^{\mathrm{m}}$ chronometer time, the final pointing of the telescope was made, and the progress of the Transit uninterruptedly watched until after occurrence of the third contact. There was now almost perfect calm, and as
the boiling of the atmosphere had well nigh entirely ceased the distinctness and steadiness of the images of both the planet and the sun were all that conld be wished for. In fact everything seemed to assure complete success. We were ready for the work.

The record times of the several phases noted are the following:

> h. m. s.

IIId contact. At 171730.0 contact rapidly nearing.
1801.5 doubt-not yet.
1808.5 contact, cusps persistently separated.
1815.0 contact plainly passed-cusps distinct and steady.

IV th contact. The phases of this last contact were noted as follows, viz:

$$
\begin{aligned}
& \text { h. m. s. } \\
& \text { At } 173808.0 \text { contact rapidly appronching. } \\
& 3830.0 \text { donbt-not yet. } \\
& 3836.5 \text { then-last contact. } \\
& 3842.5 \text { coutact certainly passed ; sun's limb undistorted and persist. } \\
& \text { ently complete. }
\end{aligned}
$$

This concluded the observations of the contacts at egress, the only ones visible at this station.
The times, as above noted, being in accordance with the face indications of sidereal chronometer Dent 2147 , require correction for arror aud rate to reduce them to local sidereal time. From star transits, observed with 30 inch meridian telescope, Coast Survey No. 5 , set up in the meridian of the equatorial, the error of this chronometer was foum to be:

$$
h . m . \quad \text { m. s. }
$$

December 3. At 2120 face time $=+151.20$ from 4 stars.
5. At 2300 face time $=+151.35$ from 10 stars.
6. At 2215 face time $=+151.33$ from 9 stars.

The probable uncertainties of these determinations do not exceed about one-tenth of a second. The ruming of the chronometer, it will be seen, was quite steady; assuming its rate zero and correcting accordingly, and reducing at the same time also to mean time-the local times of the principal phases of the Transit stand as follows:

Sidereal time.	Mean time.
h. m. 8 .	h. m. s.
IIId contact. 171610.2 doubt-not yet	01409.67
1617.2 contact	1416.65
IVth contact. 173638.7 doubt-not yet	03434.82
3645.2 contact	3441.30

It is important to remark that during the critical moments the observer kept his attention steadily fixed upon the progress of the Transit and announced the occurrence of the different phases observed, viva voce, to an experienced recorder, Mr. B. Christensen, who noted and recorded the times in accordance with the face iudications of the chronometer.

As regards the "black drop" no such phenomenon as it has been pictured by observers of former transits was seeu, nor even anything remotely resembling it. On the contrary, the imer coutact seemed to come about in a geometrical sort of way withont disturbauce or surprise, but very slowly. It was surprising to me to find, on examining the record after everything was over, that the lapse of time bedween the important phases as noted amounted to only about seven seconds, for my impression was that the interval seemed much greater-three times as great. I believe the observation of the contracts to be trustworthy and entitled to confidence. They were made under circnmstances quite favorable, especially as regards state of the atmosphere. Only in the matter of screening down the sun's excessive light it was found as the time of imer contact neared that the proper measure had been exceeded by neglecting to make allowance for the lesser intensity of the sun's light at the limb. Unfortunately the peculiar arrangement improvised for screening off the excess of solar light did not permit of correcting the mistake when noticed without hazarding the whole of the observations. Uwing to this excess of screening, and
S. Ex. 29- 48
likewise perhaps to the exceeding slowness with which the contacts seemed to come along, it is probable that I was late rather than otherwise in judging the moments of contacts. For these reasons it is my judgment, after mature reflection, that the means of the times of doubt and contact as noted may be regarded as representing more nearly the times of true geometrical contacts than the single contact times as actually noted.

In order to ascertain the error of the mean time chronometer 2404 , used by Mr. Marr, of my party, the following comparisons with sidereal chronometer Dent 2147 were made:
h. m. s. h. m. s.

December 6: Sidereal $180121.0=11459.25$ mean time.
(No. 2147) $225611.0=60858.75$ (No. 2404).
The errors of chronometer 2404 on local mean time were therefore respectively $+17^{m} 37^{8} .2$ and $+17^{\mathrm{m}} 3 \tilde{5}^{\mathrm{s}} .0$. Correcting Mr. Marr's observations accordingly, his contact times expressed in local mean time reduce to the following, viz :
h. m. s.

IIId contact $=01407.0$
IVth contact $=03421.9$
Both times several seconds earlier than as observed by myself, presumably in consequence of the inferior telescopic power used by him. Mr. Marr's own report will be found appended.

It may be proper to state in conclusion that the Trunsit occurred whilst the party was still engaged in packing down camp outfit and instruments from Jeff. Davis Peak and in storing them at Leliman's Ranch, and that the contact observations herein reported did not interfere with nor delay the regular work of the party nor canse extra expenses to the Survey.

The observations were made in conformity with the printed instructions issued by the Transit of Venns Commission as nearly as the means at hand and existing circumstances permitted.

Respectfully submitted by
WILLIAM EIMBEOK, Assistant.
Prof. J. E. Hilgard,
Superintendent United States Coast and Geodetic Survey, Washington, D. C.
Lehman's Ranch, White Pine County, Nevada, December 6, 1882.
Dear Sir : Observations of the third and fourth contacts of the Transit of Venus were made as follows :

A telescope by Bardon, Paris, of 23 inches aperture and power of 33 diameters was used. The instrument was firmly monnted in the meridian 28 meters north of your equatorial. The instrument remained quite steady during the observations.

Gentle northeasterly breeze. sun and planet seen through thin haze. Sun's limb slightly wavering. Time of contacts noted by mean time chronometer Dent No. 2404.

Black cambric was used over left eye and the eyeend of the telescope. A medium dark glass allowed good definition without any glare.

$$
\text { h. m. } \quad 8 .
$$

$$
\begin{aligned}
& \text { Time of third contact. } 123144.5 \\
& \text { Apparent middle of planet. } 124320.0 \\
& \text { Time of fourth contact. ... } 125159.5
\end{aligned}
$$

Just before third contact the limb of the planet nearest the sun's limh seemed to have a bright halo. The time of contact was uoted when the bright edge of the sun seemed broken, When the planet was about one-third across, the apparent noteh in the sun's limb seemed to be round on the edges. When about two-thirds across, that portion of the planet outlined on the sun seemed elliptical in shape.

The time of fourth contact was noted when the indentation in the sun's limb changed from at faint shadow to bright light, the limb of the sun unbroken.

Respectfully,
Mr. Eimbeck.
R. A. MARR, Aid.

Appendix No. 17.
 DETERMINATIONS OF GRAVITY AND OTHER OBSERVATIONS MADE IN CONNECTION WITH THE SOLAR ECLIPSE EXPEDITION, MAY, 1883, TO CAROLINE ISLAND, SOUTH PACIFIC OCEAN.
 A Report by F. D. PRESTON.
 United States Coast and Geodetic Survey Office, Washington, D. C., August 17, 1883.

Dear Sir: I have the honor to submit you the following report of my observations in connection with the United States Eclipse Expedition to Caroline Island, and those made for the determination of gravity at different points along the route.

In obedience to your instrantions I left Washington Febraary 28, and sailed from New York March 2, arriving at Aspinwall the morning of the 11th. At noon of the 12th we were at Panama, and at 5 p. m. passage was taken on the steamship Bolivia for Callao, Peru, which place was reached on the 19th. Our instruments were here transferred on board the United States man-of-war Hartford, and on the evening of the 22 d we set sail for Caroline Island. Between Callao and the island some preliminary computations were made. A list of stars suitable for time observations at either Flint Island or Caroline Island was selected and their coustants computed. Pairs of stars were also selected for latitude. On the moming of the 20th of April (twenty-ninth day out from Callao) land was sighted, and in the afternoon of the same day the landing of instruments was begun. On the $23 d$ the transit pier was finished and the instrument in place; but on account of bad weather no observations were made until the following eveuing, the day of the 24 th being employed in erecting the pendulum stand and tents in which it stood. From April 24 to May 9 observing went on regularly when not interrupted by bad weather. Time was determined as early in the evening and late in the morning as possible. The United States Coast and Geodetic Survey yard-pendulum No. 3 was swang between the two time observatious, and latitude was determined by the method of equal zenith distances. Gravity was determined ou eight uights, six with the heary end of the pendulum down and two with the same end up. In one of the experiments with heavy end down, however, no time was obtained in the morning. Latitude was determined on five nights, with an average of ten pairs on each night.

The morning of the eclipse (May 6) was cloudy; in fact, it was raining heavily forty minutes before the time of first contact; but fortunately it cleared off very suddenly, giving us a remarkably steady atmosphere, and all four contacts were satisfactorily observed-the last three particularly so. 'The first was observed by three persons, my own observation falling between the other two; the second and third were only observed by myself, and the fourth was noted by three persons, Mr. Rockwell's observation and wine differing but two-tenths of a second; the former was noted by "eye and ear" method, and the latter on the chronograph. Observing ended May 9 at 6 oclock a. m., and at 5 p . m. everything was aboard the Hartford and we were under way for Honolulu.

During the passage from Caroline Island to the Sand wich Islands the chronograph sheets were read and the definitive chronometer corrections were deduced by the application of the method of least squares. Apparent places of stars were also computed and most of the pairs worked up for latitude.

On arriving at the Sandwich Islands I received instructions from yon to proceed to the island of Maui and to determine the force of gravity at the station occupied by De Freycinet in 1819 . We arrived at Lahaina at 1 o'clock a. m., June 6. We discovered the foundation walls of the old brick house located in De Freycinet's sketch, and near which his observatory was erected; thanks to the assistance of Mr. S. E. Bishop, attached to the Hawaiian Government surver, and an old native, Kanaka, who himself had seen the experiments of 1819 made. At Lahaina the pendulum was swung seven nights with heavy end down and three nights with heary end up, besides one swing at a high temperature. Stars were observed morning and evening as at Caroline lsland. Latitude was also determined by obserrations on thirty-five pairs of stars, exteuding over eight uights, but not all the pairs were observed on any one night, the total number of measures of the latitude being 114. We desired to fix the position of Lahaina well, because Professor Alexander, superintendent of the Government survey, informed us that he had never had a latitude determined on Mani with the degree of precision attained by the modern method of equal zenith distances, and it is his intention to carry our Lahaina latitude back to Oahn by triangulation and compare it with determinations there made by Captain Tupman, of the British Transit of Venus Expedition of 1874. I have no doubt but that this operation will show a deflection of the plumb line on Maui of at least 8 or 10 seconds. The Pacific Ocean is rery deep around the Sandwich Islands and the mountains rise 4,000 feet bigh immediately back of Lahaina.

Our observations occupied as until the 23d, when we sailed again for Honolulu, arriving at 2 o'clock Sunday morning, the 24th. Before sailing for Mani a place to swing had been selected, and the pier having been erected during our absence no time was lost on our return, and everything was in readiness for the evening of the 25 th. Here a slight change was made in the usual programme. Instead of swinging the pendnlum from $7 \mathrm{p} . \mathrm{m}$. to 5 a . m., as was done at Oaroline Island and at Maui, it was swang continuously from the beginning to the end. There were two reasons for this: In the first place, the occupation of the cellar of the Young Men's Christian Association building gave us a place where the daily variation of temperatare was comparatively slight; and, secondly, after arriving at Honolulu only one week remained in which to set up the apparatus, make the experiments, and repack again for shipment. No stars being obtained on the 25 th, swinging was begun June 26 , after the time determination in the erening, and continued during three consecutive days and nights. Forty-eight hours were given to heavy end down and twenty-four to heavy end up. Stars were obtained after the pendulum observations and each night during their progress. Each night after the time observations, the instrument was turned over to Professor Alexander, who had expressed the desire to make some observations of latitude himself while the instrument was in Honolulu. However, on account of clouds and rain on all of the three nights very few pairs could be obtained.

We sailed from Honolulu on Monday, July 2, arriving in San Francisco the evening of the 9th. At this station we were rather unfortunate both in regard to weather and temperature. Swinging was begun Sunday evening, July 15, and continued without interruption for four days and nights, with heavy end down, before being able to get stars again. The pendulum was then turned from forward to back and swang for twenty-four hours more, time being determined again at the end. From July 21 st to 27 th no stars could be obtained, and this time was employed in reading sheets and making duplicates of the Lahaina and Honolulu work. On the 27th swinging was again resumed, with heavy end up, and continued for twenty-four hours. Time was determined before and after. The temperature was not very satisfactory; but swinging only during the night could not be done, because it was scarcely ever possible to get stars in the evening and also the following morning. This condition was realized only once during the experiments. From July 29 reading sheets and making duplicates weut on without interruption until August 10, when I left for Washington, arriving there on the 16 th .

The thermometers were compared at Caroline Island. They were again compared and the zero points of two of them determined on our arrival at Honolulu. This was again done at San Francisco. The barometer was compared before leaving Washington with a standard one, and again in San Francisco.

In the Caroline Islands, and in Maui and Honolulu, I was most efficiently assisted by Ensign
S. J. Brown, U. S. N., who took part in all the observations except those for time. At San Francisco Mr. C. B. Hill took Mr. Brown's place.

In closing this report I desire to express our thanks to Prof. W. D. Alexander, superintendent of the Hawaiian Government survey, for bis interest in the work and for his many kindnesves; also to Mr. H. Turton, of Lahaina, who did everything in his power to facilitate the work at that place; and finally to his excellency Governor Dominus, of Oahu, who very kindly placed his summer residence at Lahaina entirely at our disposal during the stay ou Mani.

I am, most respectfully, your obedient servant,
ERASMUS D. PRESTON, Aid United States Coast and Oeodetic Survey.
Prof. J. E. Hilgard,
Superintendent United States Coast and Geodetic Survey.

\author{
Appendix No. 18 .
 FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS. MEA PLACES FOR 1885.0.
 ```
By GFOORGE DAVIDSON, Asaistant.

```
}

The first edition of this working catalogue of Time and Circumpolar stars was published in 1854.* It was the outgrowth of the necessities of those field parties of the United States Coast and Geodetic Survey which were engaged in Geographical Recommaissance, Telegraphic Longitude. Latitude and Azimnth work, and special investigations demanding the determination of exact local time without the facilities and resources of a fixed Astronomical Observatory. It placed before the observer the Transit Stars of the different National Ephemerides; whilst the long time-intervals between these stars were filled in with stars from Standard Catalogues, so that the intervals of Right Ascension between time stars should not exceed two minutes, if practicable. In addition thereto, circumpolar stars were introduced in the order of their transits above and below the Pole.
This plan has not been changed except to insert additional time stars and especially to increase the number of the azimuth stars.

Within a few years the Ephemerides have notably extended their catalogues of stars. These Ephemerides give the apparent places of the time or clock stars for each tenth or twentieth day; and for every day for some of the close circumpolar stars. In the Standard Catalogues the mean star places only are given for specified epochs antedating their publication.
In order that these and other conditions may be presented clearly to the eye of the observer, the names of all stars for which no apparent places are given in the Ephemerides are printed in italics; the names of the circumpolar stars are denoted by heavier type, and their sub-polar transits indicated by the letters \(S\). P.. and also by the retention of the hour of their upper transit in the column of Right Ascensions, and by the Declinations being greater than \(90^{\circ}\).

For the epoch 1885.0 the Right Ascensions have been brought up to the nearest tenth of a second of time and the Declinations to the nearest

\footnotetext{
*U. S. Coast Survey, Field Catalogue of 983 Transit Stars, Meau Places 1870,0. George Uavidson, Assistant, Coast Sarvey, in charge Pacific Coast. "Washington: Government Printing Office. 1874.
}

\section*{FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.}
second of are. For the talular declination the natural number of the secant thereof has been given, mainly to enable the observer to calculate with reasouable closeness the times of passage of a slow-moving star at the side threads of the transit reticule.

In the determination of the mean places of the stars, it has been neces. sary to calculate the Right Ascension and the Declination from two or more Catalogues, to examine the different authorities for the proper motions, or to derive them from the tabulated positions; to compute the annual precession for the slow-moving stars; and thence to derive the annual variations in Right Asceusion and Declination.

The number of clock or time stars is 1126 , and the number of circumpolar or azimuth stars is 152 . There are very few stars so small as the 6-7 magnitudes, and all can be easily observed with the 30 -inch portable transit instrument of the Survey.

The magnitudes assigned to the stars have been given according to the old method, but a hyphen has been interplaced instead of a period when the star is considered to be between two whole magnitudes.

The right-hand page has been left partly blank for the insertion of memoranda, also to give space to the observer to note the altitude, or zenith distance setting for the stars, the chronometer times of transits, \&c.

With this working catalogue, and the table of the star factors \(A, B\), C,* for azimuth, inclination, and collimation, the observer in the field, even without a knowledge of the error of his chronometer, will generally have little trouble in placing his transit instrument within one second of time, or less, of the plane of the meridian, in half an hour; and within one quarter of a second of time, or less, of the meridian in one hour. By using the Davidson Transit and Equal Altitude Instrument, \(\dagger\) and the Table of Altitudes and Azimuths of Polaris, \(\ddagger\) the trausit instrument may readily be adjusted very closely to the plane of the meridian before sunset.

I have in preparation a list of double stars compiled solely to enable the observer to adjust and test the sidereal focus of his telescope. I have been better satisfied with this method than any other.

\footnotetext{
\({ }^{*}\) U. S. Coast Survey, C P. Patterson, Superintendent. The Star-Factors A, B, C., for Redncung Transit, Observations. George Davidson, Assistant, Coast Survey, in charge of Pacitic Coast. Washington: Government Printing Office. 1874.
(This publication contains 57,500 factors, computed to three places of decimals for all Latitudes and all Declinations to \(80^{\circ}\), and also for special circumpolars. A similar systematic table for stars having greater declination than \(80^{\circ}\); is being computed.)
† U. S. Coast and Geodetic Survey, C. P. Patterson, Superinteudent. Methorls and Results. Description of a New Meridian Instrument, by George Davidson, Assistant, U. S. Coast and Grodetic Survey, Appendix No. 7. Report for 1879. Washington : Government Printing Offee. 1881.
\(\ddagger\) [From the U. S. Coast Survey Report, 1879.] Appendix No. 22. Avimnth and Apparent Altitude of Polaris for field nse in placing the Meridian Instrument in the Plane of the Meridiav. Computed with North Polar Distance of \(1092 \prime\), and Mean Refraction, by George Davidson, Assistant, U. S. Coast Survey.
}

\section*{FIELI CATALOGUE OF 1278 TIME AND CIRCUMPOIAR STARS.}

The Ephemerides and Oatalogues consulted in the formation of this field list of stars, with the designating letter of each in the column of anthorities, are herewith enumerated.
The column of authorities does not necessarily give all those examined, except for such stars as have been less frequently observed in the catalogue to which access was practicable. Preference has been given to the Catalogues \(\mathbf{A}^{\prime}, \mathbf{N}, \mathbf{H}\), and \(\mathbf{G}\).
A.-The American Ephemeris and Nautical Almanac for the year 1885. First edition. Published in compliance with a Joint Resolu tion of the Forty-sixth Congress. Washington: Bureau of Nav. igation. 1882.
E.-The Nantical Almanac and Astronomical Ephemeris for the year 1882, for the meridian of the Royal Observatory at Greenwich. Published by order of the Lords Commissioners of the Admiralty. London. Printed by G. E. Lyre \& W. Spottiswood Her Majesty's Printers; and sold by John Murray, Albemarle street. 1878.
C.-Connaissance des Temps, ou des mouvements Célestes, à l'usage des Astronomes et des Navigateurs. Pour l'an 1882, pabliée par le Bureau des Longitudes. Paris, Ganthier-Villars, Im-primeur-Libraire du Burean des Longitudes de l'Ecole Polytechnique, Successeur de Mallet-Bachelier, Quai des Augustins, 55. Août 1880.
B.-Berliner astronomisches Jahrbuch für 1883 mit Ephemeriden der Planeten (1) - 217 für 1881. Herausgegeben von der König. lichen Sternwarte zu Berlin unter Redaction von W. Foerster und F. Zietjen. Berlin, Ferd. Dümmlers Verlagsbuchhand lung, Harrwitz und Gossmaun, 1881.

A'.-Washington Observations for 1870. Appendix III. On the Right Ascension of the Equatorial Fundamental Stars and the corrections necessary to reduce the Right Ascensions of different Catalogues to a mean homogeneous system. By Simon New. comb, Professor of Mathematics, U. S. N. Prepared at the U. S. Naval Observatory, by order of Iear-Admiral B. F. Sands, U. S. N., Superintendent. Washington: Government Printing Office. 1872.
N.-Catalogue of 1098 Clock and Zodiacal Stars. Prepared mnder the direction of Simon Newcomb, Professor, U. S. N., Superinteud ent American Ephemeris.

Hi.-Annals of the Astronomical Observatory of Harvard College. Vol. IV, rart I. Catalogue of Polar and Clock Stars. Printed from the Sturgis Fund. Cambridge: Welch, Bigelow \& Company, Printers to the University. \(1 \& 6 \%\).
S. Ex. 29-49

HUELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAK STAKS.
\(\mathrm{H}^{2}\) - Anuals of the Astronomical Observatory of Harvard College. Vol. X. Observations made with the Meridian Circle during the years 1871 and 1872, under the direction of the late Joseph Winlock, A. M., Phillips Professor of Astronomy and Director of the Observatory. By William A. Rogers, A. M., Assistant Professor of Astronomy in the Observatory. Printed from funds resulting from the will of Josiah Quincy, jr., who died in April, 1775 , leaving a name inseparably connected with the history of the American Revolution. Cambridge: Press of John Wilson \& Son. 1878.
\(\mathrm{H}^{3}\).-Aunals of the Astronomical Observatory of Harvard College. Vol. IV, Part II. Observations in Right Ascension of 505 Stars. Printed from the Sturgis Fund. Cambridge: Press of John Wilson \& Son. 1878.
H \(^{4}\).-Catalogue of 618 Stars observed at the Astronomical Observatory of Harvard College, with the Meridian Circle, during the years 1871-72, 1874, and 1875, and prepared for publication under the direction of Joseph Winlock and Edward O. Pickering, successive Directors of the Observatory. By William A. Rogers, Assistant Professor of Astronomy in the Observatory. Printed from the Sturgis Fund. Extracted from Volume XII of the Annals. Cambridge: John Wilson \& Son. University Press. 1880.

G1.-Catalogne of 2156 Stars, formed from observations made during twelve years, from 1836 to 1847, at the Royal Observatory, Greenwich. London: Printed by Palmer \& Clayton, Crane Court, Fleet street, and sold by J. Murray, Albemarle street. MDCOCXLIX.
\(G^{2}\).-Catalogue of 1576 Stars, formed from observations made during six years, from 1848 to 1853, at the Royal Observatory, Greenwich, and reduced to the epoch 1850. (Forming Appendix II to the volume of Greenwich Observations for the year 1854.) London: Priuted by George Edward Eyre and William Spottiswood, Printers to the Queen's most Excellent Majesty, for Her Majesty's Stationery Office. 1856.
\(\mathbf{G}^{3}\).-Seven-Year Catalogue of 202 Stars, deduced from observations extending from 1854 to 1860 at the Royal Observatory, Greenwich, and reduced to the epoch of 1860 . (Forming Appendix I to the volume of Green wich Observations for the year 1862.)
\(\mathbf{G}^{4}\).-New Seven-Year Catalogue of 2760 Stars, deduced from observa, tions extending from 1861 to 1867 at the Royal Observatory, Greenwich, and reduced to the epoch of 1864. (Forming Appendix II to the volume of Greenwich Observations for the year 1868.)

FIEID CATALOGUE OF 1278 TIMF AND CIRCUMPMLAR STARS
G \({ }^{5}\) - Nine-Year Catalogne of 2263 Stars, deduced from observations extending from 1868 to 1876 , made at the Royal Observatory, Greenwich, under the direction of Sir George Biddell Airy, K. C.B., M. A., LL. D., J. C. L., Astronomer Royal. Reduced to the epoch of 1872. (Forming Appendix I to the volume of Greenwich Observations for the year 1876.)
W.-Catalogue of Stars observed at the U. S. Naval Observatory during the years 1845 to 1875 , and prepared for publication by Professor M. Yarnall, U. S. N., by order of Rear-Admiral John Rodgers, U. S. N., Superintendent. Second edition, revised and stereotyped. Washington: Goverument Printing Office. 1878.

O'-The Cape Catalugue of 1159 Stars, deduced from observations at the Royal Observatory, Cape of Good Hope, 1856 to 1861, reduced to the epoch of 1860 , under the superintendence of \(E . J\). Stone, M. A., F. R. S., F. R. A. S. (late Fellow of Queen's College, Cambridge), Her Majesty's Astronomer at the Cape. Published by order of the Board of Admiralty, in obedience to Her Majesty's command. Cape Town: Sanl Solomon \& Co., 49 and 50 St. George street. 1873.
\(O^{2}\).-Results of A stronomical Observations at the Royal Observatory, Cape of Good Hope, during the year 1874, under the direction of Edward James Stone, M. A. Camb., F. R. S., F. R. A. S., C. M. de la Société Nationale des Sciences Naturelles de Cherbourg, Honorary Fellow of Queen's College, Cambridge, and Her Majesty's Astrouomer at the Cape of Good Hope. Published by order of the Board of Admiralty, in obedience to Her Majesty's command. Cape Town : Saul Solomon \& Co., 49 and 50 St. George street. 1877.
M.-First Melbourne General Catalogue of 1227 Stars, for the epoch 1870, deduced from observations extending from 1863 to 1870 , made at the Melbourne Observatory, under the direction of Robert L. J. Ellery, Government Astronomer to the Colony of Victoria. Reduced and prepared for publication by Mr. E. J. White, First Assistant Astronomer. Melbourne: John Ferres, Government Printer. 1874.

Bk.-Resultate aus Beobachtungen von 521 Bradley'schen Sternen am grossen Berliner Meridiankreise von Dr. E. Becker, erstem Observator der Königlichen Sternwarte zu Berlin. SeparatAbdruck aus den Astronomischen Beobachtungen auf der Kaniglichen Sternwarte zu Berlin. Berlin, 1871. A. W. Schade's Buchdruckerei (L. Schade), Stallschreiberstrasse, 45 und 46.

TIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
Rd.-The Radcliffe Catalogue of 6317 Stars, chiefly circumpolars, reduced to the epoch 1845.0; formed from observations made at the Radcliffe Observatory, under the superintendence of Manuel John Johnson, M. A., late Radcliffe Observer; with introduction, by Rev. Robert Main, M. A., Radcliffe Observer. Published by order of the Radcliffe Trustees. Oxford: J. H. and Jas. Parker. 1860.
R.-Places of 5345 Stars, observed from 1828 to 1854, at the Armagb Observatory. By Rev. T. R. Robinson, D. D., F. R. S., F. R. A. S., \&c. Printed at the expense of Her Majesty's Government ou the recommendation of the Royal Society. Dublin: Alex. Thorn \& Sons, Printers and Publishers, 87 and 88 Abbey street. 1859.

Gi.-Washington Observations for 1868. Appendix I. A Catalogue of 1963 Stars, reduced to the beginning of the year 1850, together. with a Catalogue of 290 Double Stars. The whole from observations made at Santiago, Chili, during the years 1850-51--52, by the U. S. Naval Astronomical Expedition to the Southern Hemisphere. Lieut. James M. Gilliss, LL. D., Superintendent; Lieut. Archibald MacRae, Master S. Ledyard Phelps, and Captain's Clerk E. R. Smith, Assistants. Published by the U. S. Naval Observatory, Commodore B. F. Sands, U. S. N., Superintendent. Washington: Government Priuting Office. 1870.

Wi.-Publications of the Washburn Observatory of the University of Wisconsin. Vol. I. Madison: David Atwood, State Printer. 1882.

S'-Catalogue of the Mean Declinations of 981 Stars, between twelve hours and twenty-six hours of Right Ascension, and \(30^{\circ}\) and \(60^{\circ}\) of North Declination, for January 1, 1875. Prepared under the direction of Bvt. Brig. Gen. C. B. Comstock, U. S. A., Major Corps of Engineers, in charge of the U. S. Lake Survey. By Professor T. H. Safford, Director of Dearborn Observatory. Washington: Government Printing Office. 1873.
\(S^{2}\).-Engineer Department, United States Army. Catalogue of the Mean Declinations of 2018 Stars, between \(0^{h}\) to \(2^{h}\) and \(12^{11}\) to \(24^{\text {b }}\) Right Ascension, and \(10^{\circ}\) and \(70^{\circ}\) of North Declination, for January 1, 1875. Prepared under direction of First Lieut. Geo. M. Wheeler, Corps of Engineers, U. S. A., in charge of U. S. Geographical Surveys West of 100 th Meridian. By T. H. Safford, Ph. D., Field Memorial Professor of Astronomy in Williams College, Massachusetts. Washington : Government Printing Office. 1879.

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\(W^{2}\).-Astronomical and Meteorological Observations made during the year 1878, at the United States Naval Observatory. Rear-Admiral John Rodgers, U.S. N., Superintendent. Published by authority of the Honorable Secretary of the Nary. Washing. ton: Government Printing Office. 1882.
\(B^{\prime}\).-Mittlere und scheinbare Oerter für das Jahr 1882.0 von 539 Sternen des Verzeichnisses I und II, welche nach der Vierteljahrsschrift der "Astronomischen Gesellschaft," IV. Jahrgang, 4. Heft 1869, für die Beobachtung der Sterne der nördlichen Halbkugel bis zur neunten Grösse als Grundlage dieneu soll. Unter Mitwirkung der "Astronomischen Gesellschaft" herausgegeben von der Redaction des Berliner Astronomischen Jahrbuchs. Berlin, Ferd. Dümmlers, Verlagsbuchhandlung, Harrwitz \& Gossmann. 1877.

The work upon this Catalogue has been done at intervals independently of the regular duties of the Survey, and consequently it has been a long time in hand.

GEORGE DAVIDSON. Assistant Coast and Geodetic Survey.

\section*{Davidson Observatory,} San Francisco, Cal., May 0, 1883.

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& \text { I885.0. }
\end{aligned}
\] & Annual Var. & Sec, \(\delta\) \\
\hline 1 & Groom. 4233 & 6-5 & \[
\begin{array}{ccc}
\text { h. m. } & \mathrm{s} . \\
0 & 00 & 28.2
\end{array}
\] & \[
\begin{gathered}
\mathrm{s} \\
+3 \cdot 08 \mathrm{o}
\end{gathered}
\] & \[
\begin{array}{r}
\circ \quad \prime \prime \\
+633323
\end{array}
\] & \[
\begin{gathered}
\prime \prime \\
+20.07
\end{gathered}
\] & 2. 51 \\
\hline 2 & \(a\) Andromedie & 2 & 0226.7 & 3.090 & + 282720 & 19.89 & 1. 04 \\
\hline 3 & \(\beta\) Cassiopeix & 2-3 & \(\mathrm{o}_{3} \mathrm{oz} .6\) & 3.170 & + \(5^{8} 3055\) & 19.85 & I. 91 \\
\hline 4 & 22 Andromeda & 5-6 & 0420.7 & \(3 \cdot 300\) & + 452555 & 20.04 & 1. 43 \\
\hline 5 & 0 Sculptoris & 5 & -05 53.1 & 3.057 & \(-354^{6} 37\) & 20. 14 & 1. 23 \\
\hline 636 & 4 Draco. S. P. & 5-4 & 120648.3 & +2.891 & \(\underline{+1014441}\) & +20.02 & 4.91 \\
\hline 6 & r Pegasi & 3-2 & 00718.9 & 3.083 & + 143239 & 20.03 & 1.03 \\
\hline 7 & 35 Piscium. & 6 & 0903.5 & 3.087 & + 81056 & 20.01 & 1. OI \\
\hline 8 & Groom. 29 & 6-7 & 0956.5 & \(3 \cdot 300\) & + 762812 & 20.01 & 4.23 \\
\hline 9 & (1) Andromeda. & 5-4 & 1105.2 & 3. 120 & \(+380236\) & 20.02 & 1. 27 \\
\hline 10 & \(\sigma\) Andromedæ & 4-3 & 01219.3 & \(+3.121\) & \(+350851\) & +19.99 & 1. 22 \\
\hline 644 & 5 Urs. Min., S. P. & 6 & 121329.4 & 1.831 & \(+925530\) & 20.02 & 19.60 \\
\hline 11 & - Ceti & 3-4 & 01334.0 & 3.053 & - 92743 & 19.96 & 1.01 \\
\hline 646 & 6 Urs. Min, S. P. & 6 & 121418.8 & 0.081 & +913945 & 19.95 & 34.47 \\
\hline 12 & d Piscium. & 6-5 & \({ }^{\circ} 11440.8\) & 3.084 & + 73305 & 20.03 & 1. O1 \\
\hline 13 & 1 Sculptoris & 5 & 1544.5 & +3.021 & - 295059 & +19.98 & 1. 15 \\
\hline 14 & 12 Cassiopeia & 6-5 & 1827.1 & 3. 269 & +611139 & 19.98 & 2.08 \\
\hline 15 & 44 Piscium & 6 & 1930.4 & 3.073 & + 11810 & 19.96 & 1. 00 \\
\hline 16 & \(\beta\) Hydri & 3 & 1941.4 & 3.238 & -775407 & 20. 29 & 4. 77 \\
\hline 17 & B. A. C. 86 . & 6 & 19.46 .4 & 3.702 & + 792455 & 19.95 & 5.44 \\
\hline 18 & 45 Piscium & 6 & 1946.2 & \(+3.088\) & + 70320 & \(+19.96\) & 1. 01 \\
\hline 19 & a Phoenecis & 2 & - 2035.7 & 2.978 & - 425554 & 19.61 & 1. 37 \\
\hline 20 & 10 Ceti & 6 & 2043.5 & 3.075 & -04112 & 19.98 & 1. 00 \\
\hline 21 & \(B, A . C .100\) & 5-6 & 2202.6 & 3.191 & \(+434531\) & 19.96 & 1. \(3^{8}\) \\
\hline 22 & B. A. C. 103 & 5-6 & 2213.5 & 2.980 & \(-333^{8} 3^{1}\) & 19.90 & 1.20 \\
\hline 23 & 12 Ceti & 6 & 24 10. 2 & +3.061 & - 43534 & +19.94 & 1.00 \\
\hline 24 & \(\kappa\) Cassiopeiæ & 4-5 & 02628.1 & 3. 366 & +621744 & 19.94 & 2. 15 \\
\hline 659 & \(\kappa\) Draco., S. P. . & 3-4 & \(12 \begin{array}{llll}1284 & 3\end{array}\) & 2. 594 & +109 3440 & 19.89 & 2.98 \\
\hline 25 & 13 Ceti & 6-5 & - 2919.7 & 3.086 & - 41334 & 19.86 & 1. 00 \\
\hline 26 & \(\zeta\) Cassiopeir & 4 & 3034.2 & 3.354 & +531549 & 19.86 & 1.67 \\
\hline 27 & \(\pi\) Andromedre & 4 & 3044.4 & +3.189 & \(+33510\) & +19.88 & 1.20 \\
\hline 28 & Groom. 100 & 6 & 3108.4 & 4.286 & +815125 & 19.85 & 6.58 \\
\hline 29 & B. A. C. 160 & 5-6 & 3125.8 & 3. 086 & - 252403 & 19.87 & 1. 11 \\
\hline 30 & \(\varepsilon\) Andron:edx & 4 & 3228.8 & 3159 & + 28 4114 & 19.61 & 1.14 \\
\hline 31 & \(d\) Andromedx & 3-4 & 3310.7 & 3. 194 & \(+301353\) & 19.74 & 1. 16 \\
\hline
\end{tabular}

FIELI CATALOGUE OF 1278 TIME ANI CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & - Notes. \\
\hline G \({ }^{5.1}\) R, \(\mathrm{S}^{2}\). . . . & 1 & 10 Cassiopeix. \\
\hline \(A^{1}\) E. C. B. N. \(\mathrm{H}^{4.211}\). & 2 & \\
\hline A. C. B. G \({ }^{6.32 .1}\). & - 3 & \\
\hline A. B. \(\mathrm{G}^{3} \mathrm{H}^{4.2} \mathrm{G}^{3}\). & 4 & \\
\hline W. M. . & 5 & \\
\hline A. B. N. \(\mathrm{H}^{4.3 .2}\). & 636 & \\
\hline A. E. C.B. N. H. & 6 & \(\mathrm{C}=2 \mathrm{mag} . \quad\left[-10^{\prime \prime} .4\right.\). \\
\hline N. \(\mathrm{H}^{4.2} \mathrm{G}^{3.1} \mathrm{~W}\). & 7 & 2d * \(71 / 2, \mathrm{mag} . \times+\mathrm{om} .40\) \\
\hline B. \(\mathrm{H}^{4} \mathrm{G}^{5.43} \mathrm{~W}\). . & 8 & Brad. 6; mag. \(5-6=\mathrm{G}^{6}\). \\
\hline \(\mathrm{H} * \mathrm{G}^{6.2}\) W. \(\mathrm{S}^{2.1}\). & 9 & \\
\hline A. G \({ }^{\text {ch }}\) W. R. . & 10 & \\
\hline \(\mathrm{G}^{2.1} \mathrm{H}^{3,1}\) W. Bk. . & 644 & \\
\hline A. E. B. \(\mathrm{H}^{4.2} \mathrm{Cr}^{5.4}\) & 11 & \\
\hline A. C. \(\mathrm{H}^{31} \mathrm{G}^{5.4 .3 .2 .1}\) & 646 & \\
\hline \(\mathrm{G}^{4.3,1} \mathrm{~N} . \mathrm{W} . \mathrm{O}^{1} \mathrm{R}\). & 12 & \\
\hline \(\mathrm{H}^{43.2} \cdot \mathrm{G}^{4-1} \mathrm{~W}\). & 13 & \\
\hline \(\mathrm{H}^{4.2} \mathrm{G}^{5.311}\) R. \(\mathrm{S}^{\mathbf{8}}\). & 14 & \\
\hline A. N. \(\mathrm{G}^{5.4 .3 .1} \mathrm{~W}\). & 15 & \\
\hline A. E. N. O2.1 M. . & 16 & \\
\hline Gs.6xi Rd. R. . & 17 & Brad. 24. \\
\hline N. G \({ }^{54.1}\) W. \(\mathrm{O}^{1} \mathrm{R}\). & 18 & \\
\hline C. H. W. \(\mathrm{O}^{1}\) M. . . & 19 & \\
\hline N. Grisk2. R.. . . & 20 & \\
\hline R. \(S^{2.1}\). . & 21 & \\
\hline \(\mathrm{G}^{3} \mathrm{H}^{4.2}\) W. M. . & 22 & \\
\hline A. E.C.B. N. G\%4.32.1 & 23 & \\
\hline  & 24 & \\
\hline A. B. N. \(\mathrm{H}^{4.3} \mathrm{G}^{\text {an, }}\), 3, 2.1. & 659 & \\
\hline C. N. \(\mathrm{H}^{2} \mathrm{G}^{5.4 .3 .2 .1}\) W. . & 25 & \\
\hline B. \(\mathrm{H}^{3} \mathrm{G}^{5.1}\) W. R. . & 26 & \\
\hline A. B. Grem W. R. . . & 27 & Comp. 9 mag.; \(3^{6 \prime \prime}\) \\
\hline \(\mathrm{H}^{3} \mathrm{G}^{3}\) W. Rd. R. . & 28 & \\
\hline \[
\text { C. } H^{4.2} G^{1} \text { W. R. . }
\] & 29 & \(\mathrm{C}=\) Prazzi \(\mathrm{O}^{\text {h }} \mathbf{1} 30\). \\
\hline B. \(\mathrm{G}^{6.43 .21} \mathrm{~W} . \mathrm{O}^{2} \mathrm{R}\). . & 30 & \\
\hline B. \(G^{5,2,1}\) W, R. S \({ }^{2}\). . & 3I & \\
\hline
\end{tabular}

FIELD CATAIOGUE OF 1278 TIME AND CIRCUMPOLAK STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Declination,
1885.o. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. 1 \\
\hline & & & h. m. s. & s. & 11 & 11 & \\
\hline 32 & \(a\) Cassiopeice & 2-3 & - 3359.2 & \(+3.37 \mathrm{I}\) & + 555423 & +19.79 & 1. 78 \\
\hline 33 & ¢ Cassiopeia & 6-5 & 3539.0 & 3. \(3^{18}\) & + 495255 & 19. 79 & 1. 55 \\
\hline 34 & \(\beta\) Ceti . & 2 & 3749.0 & 3. 014 & -183705 & 19.81 & 1.06 \\
\hline 35 & 21. Cassiopeiæ & 6 & 3803.9 & 3.850 & \(+742133\) & 19.76 & 3.71 \\
\hline 36 & - Cassiopeix & 5 & 3819.2 & 3. 316 & \(+473917\) & 19.76 & 1. 48 \\
\hline 37 & B. A. C. 205 & 6 & - 3932.8 & \(+3.056\) & - 51539 & \(+19.69\) & 1.00 \\
\hline 38 & \(\zeta\) Andromedx & 4 & 4114.7 & 3.171 & \(+233829\) & 19.62 & 1.09 \\
\hline 39 & 7 Cassiop. (pr.) & 4-3 & 4208.6 & 3. 583 & + 571220 & 19.23 & 1. 85 \\
\hline 40 & \(189 \mathrm{Piazzi},{ }^{\text {o }}\) & 6 & 4220.8 & 3.131 & 144120 & 18. 53 & 1. 00 \\
\hline 41 & § Piscium. & 4-5 & 4243.0 & 3. 107 & \(+65732\) & 19.66 & 1.01 \\
\hline 42 & \(v\) Andromedse & 4 & 4328.3 & +3.289 & \(+402709\) & +19.69 & 1. 31 \\
\hline 43 & Brad. 82 & 6 & 43 45-3 & 3. 579 & \(+633716\) & 19.67 & 2.25 \\
\hline 44 & B. A. C. 237 & 6 & 4523.0 & 3.086 & + 24540 & 19. 59 & 1. 00 \\
\hline 45 & 20 Ceti & 5 & 04707.8 & 3. 063 & - I 4608 & 19.65 & I. 00 \\
\hline 673 & 32 Camel.fol. S.P. & 5-4 & 124817.5 & -. 383 & + 955743 & 19.60 & 9.63 \\
\hline 46 & Y Cassiopeiz & 2 & - 4946.3 & +3.574 & +6005 \(3^{8}\) & \(+19.57\) & 2. OI \\
\hline 47 & \(\mu\) Andromedæ & 4 & - 5022.1 & 3. 309 & + 375231 & 19.63 & I. 27 \\
\hline 678 & 8 Draco., S. P & 5 & 125053.8 & 2. 413 & \(\underline{+1135615}\) & 19.61 & 2. \(4^{6}\) \\
\hline 48 & 4 Piscium 68 & 6 & 05136.7 & 3. 234 & + 282213 & 19. 54 & I. 14 \\
\hline 49 & B, A. C. 240 & \(6-7\) & 5157.2 & 13.987 & \(+882423\) & 19.48 & 35.96 \\
\hline 50 & a Sculptoris & 5-4 & 5304.8 & +2.893 & - 295847 & +19.51 & 1. 15 \\
\hline 51 & 43 Cepheí & 4-5 & 53 II. 5 & 7. 132 & \(+853^{823}\) & 19.52 & 13.15 \\
\hline 52 & iss \(\alpha^{11}, 1371\). & 6-7 & 5530.6 & 3. 219 & + 244037 & 19.47 & 1. 10 \\
\hline 53 & \(\varepsilon\) Piscium & 4 & 5658.5 & 3. 109 & + 71615 & 19.50 & 1. Or \\
\hline 54 & 72 Piscium & 6 & - 59 or. 1 & 3. 159 & +141938 & 19.47 & 1.03 \\
\hline 55 & \(\mu\) Cassiopeix . & 5-6 & 10037.5 & +3.950 & + 542123 & \(+17.78\) & 1.72 \\
\hline 56 & 44 Cephei & 6-5 & 0222.4 & 4.955 & \(+790340\) & 19.30 & \(5 \cdot 30\) \\
\hline 57 & f Piscium & 6-5 & 0226.6 & 3.085 & + 50228 & 19.13 & 1.00 \\
\hline 58 & \(\eta\) Ceti & 3 & 0248.6 & 3. 020 & - 10 4730 & 19.19 & 1.02 \\
\hline 59 & \(\beta\) Andromedx & 2-3 & 0317.7 & 3. 343 & \(+350037\) & 19.17 & 1.22 \\
\hline 60 & - Piscium. & 4 & 0317.7 & \(+3.344\) & + 325218 & +19.20 & 1. 19 \\
\hline 61 & \(\chi\) Piscium & 5-4 & 10516.4 & +3.217 & + 202523 & 19. 24 & 1.07 \\
\hline 687 & Gr. 2006, S. P. & 7 & 130647.6 & -9.621 & + 91 44 or & 19.23 & 33.06 \\
\hline 62 & B. A. C. \(3^{62}\) & \(6-7\) & 10657.1 & +2.830 & \(-3^{12442}\) & 19.07 & 1. 17 \\
\hline 63 & 37 Ceti & 6-5 & 10836.5 & +3.019 & - 83227 & 19.50 & 1. OI \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TMME AND CIRCUMPOIAR STAKS.
\begin{tabular}{|c|c|c|c|}
\hline Authorities. & No. & Notes. & \\
\hline A. E.C.B. N. H \({ }^{43.2 .6}\). & 32 & Mag. \(2 \frac{1}{4} 1023 / 4\). Per. irr. & \\
\hline \(\mathrm{H}^{4.2} \mathrm{C}^{5.4} \mathrm{R} . \mathrm{S}^{2.1}\) & 33 & & \\
\hline A. E. C. B. N. \(\mathrm{H}^{4.3 .2 .1}\). & 34 & & \\
\hline A.B.N. H \({ }^{4.2 .1} \mathrm{G}^{6.4} \mathrm{~W}\). & 35 & & \\
\hline A, B, G \({ }^{4} \mathrm{R} . \quad\). . & 36 & & \\
\hline R. . & 37 & Piaz. \(\mathrm{o}^{\text {h }}\), 171. & \\
\hline B. \(\mathrm{H}^{4.2} \mathrm{G}^{6.3 .3,211} \mathrm{~W}\). & 38 & \(\mathrm{G}^{4}=6\) mars. & \\
\hline B. \(\mathrm{H}^{4.3 .2} \mathrm{G}^{0.43 .3 .21} \mathrm{~W}\). & 39 & \(\left\{\begin{array}{l}\eta^{2}=71 / 2 \text { mag. }+0^{2} .9:-3^{\prime \prime} \cdot 4 \\ \text { Period } 222 \text { years. }\end{array}\right.\) & \\
\hline C. N. Gratl W. K. & 40 & B. A. C. 222 . & \\
\hline A. E. C. B. N. \(\mathrm{I}^{3}\) C \(\mathrm{C}^{5.1}\) & 41 & & \\
\hline C. \(\mathrm{H}^{4.2} \mathrm{G}^{\text {aj. }}\) W. R. \(\mathrm{S}^{2}\). & 42 & \[
\text { W. B. }(2)^{[-1,1062,7-8 \text { mag. }: ~}
\] & \\
\hline I. Bk. \(\mathrm{G}^{1}\) R. . & 43 & & \\
\hline N. \(\mathrm{H}^{+} \mathrm{G}^{5} \mathrm{~W}, \mathrm{R}\). . & 44 & \(\mathrm{K}=71 / 2 \mathrm{mag}\). & \\
\hline N. \(\mathrm{H}_{4.2} \mathrm{C}^{5.432 .1} \mathrm{~W}\). . & 45 & [-79.95: 17 \(^{\prime \prime} 90: \mathrm{G}^{5} 1872\). & \\
\hline A. N. \(\mathrm{H}^{3.2} \mathrm{G}^{5.8 .8 .1}\) W. . & 673 & Pr. \(*=5 \mathrm{mag}\). \(61 / 2 \mathrm{mag} .:\) & \\
\hline A. C. \(\mathrm{B} . \mathrm{H}^{4.3 .2 .1} \mathrm{G}^{5.3 .2 .1}\) & 46 & \(\left[+3{ }^{\text {E }} 5 \times 19^{\prime \prime}:\right.\) requires 6 -in. & \\
\hline A. B. \(\mathrm{H}^{3} \mathrm{G}^{5.4} \mathrm{~W} . \mathrm{S}^{2}\) & 47 & Comp. *-16 mag. & \\
\hline B. \(\mathrm{H}^{+} \mathrm{G}^{4.3} \mathrm{~W}\). & 678 & & \\
\hline  & 48 & & \\
\hline G5.2 Rd. K. . . . & 49 & & \\
\hline \(\mathrm{H}^{4} \%{ }^{2} \mathrm{G}^{3.1}\) W. \(\mathrm{O}^{1}\). & 50 & & \\
\hline A. B. \(\mathrm{H}^{1} \mathrm{G}^{5-1}\) W. R . & 51 & 2 Urs. Min. & \\
\hline H. R. S \({ }^{\text {P . . . }}\) & 52 & & \\
\hline A. E. C. B. \(\mathrm{H}^{4.02 .5}\). & 53 & & \\
\hline N. \(\mathrm{G}^{5.4} \mathrm{R} . \mathrm{S}^{2}\). . . & 54 & & \\
\hline C. \(\mathrm{H}^{4.2}\) (5.3.1 R.S. & 55 & Very large \(\mu\) and \(\mu^{\prime}\). & \\
\hline R. \(1{ }^{4.3} \mathrm{G}^{5.4} \mathrm{Rd}\). & 56 & Bras 117. & \\
\hline N. G \({ }^{5.4 .3 .2 .1 ~ W . ~} \mathrm{O}^{1} \mathrm{R}\). . & 57 & & \\
\hline B. G3.4 W. . . . & 58 & & \\
\hline A. E. C. B. N. \(\mathrm{H}^{4.3 .2}\). & 59 & & \\
\hline B. \(\mathrm{H}^{4.2} \mathrm{G}^{5.4} \mathrm{R}\). . & 60 & \(\mathrm{S}^{2}\) has not got this star. & \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{3}\) W. Rd. R. . . & 61 & & \\
\hline Gard. R. . . . . & 687 & & \\
\hline M. . . . . . & 62 & & \\
\hline \(\mathbf{H}^{4.2} \mathrm{G}^{1} \mathrm{Bk} . \mathrm{R}\). . . & 63 & Comp. \(71 / 2 \mathrm{mag} .5 \mathrm{I}^{\prime \prime}\). & \\
\hline
\end{tabular}
S. Ex. \(29-50\)

FHELD CATMAGUE OF 1278 TIME ANi CIRCUMIOLAK STARS.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., I885.0. & Annual
Tar.
I 885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. 0, " & " & \\
\hline 64 & 39 Ceti & 6 & 11043.0 & \(+3.046-30610\) & \(+19.09\) & 1. 00 \\
\hline 65 & \(f\) Piscium. & 5 & 1152.0 & \(3.089+30031\) & 19.05 & 1.00 \\
\hline 66 & \(\kappa\) Tucaniz. & 5 & 1152.1 & \(2.057-692913\) & 19.18 & 2.85 \\
\hline 67 & - Cassiopeia & 5-6 & 1251.3 & \(3.727+573735\) & 19.04 & I. 87 \\
\hline 68 & " Piscium. & 4 & 1308.8 & \(3.284+263934\) & 19.05 & I. 12 \\
\hline 69 & \(\xi\) Andromeda & 5-4 & 1534.2 & \(+3.506+445532\) & \(+18.96\) & I. 41 \\
\hline 70 & a Urs. Min. & 2 & 1635.8 & \(22.048+884144\) & 18.97 & 43.93 \\
\hline 71 & \(\psi\) Cassiopeiz & 5 & 1749.2 & \(4.158+673145\) & 18.92 & 2.62 \\
\hline 72 & \(\theta\) Ceti . & 3 & 1816.5 & \(2.997-84639\) & 18.68 & I. Or \\
\hline 73 & d Cassiopeia & 3 & 11818.1 & \(3.879+593814\) & 18.86 & 1. 98 \\
\hline 699 & Gr, 2007, S. P. & 7-6 & 1319919.6 & 2. \(500+943840\) & +18.87 & 12. 35 \\
\hline 74 & (1) Andromedic & 5 & I 2046.6 & \(+3.564+444845\) & 18.74 & 1. 41 \\
\hline 75 & 38 Cassiopeix & 607 & 12241.0 & \(4.37 \mathrm{I}+694020\) & 18.69 & 2.88 \\
\hline 703 & Gr.2001, S. P. & 6 & 132312.1 & 1. \(518+1070040\) & 18.77 & 3.42 \\
\hline 76 & A Andron. 49 & 6-5 & 12312.4 & \(3.573+462450\) & 18.72 & 1. 45 \\
\hline 77 & \(\gamma\) Phenicis & 3-4 & 2322.2 & \(+2.611-435426\) & +18.58 & I. 39 \\
\hline 78 & \(\eta\) Piscium. & 4-3 & \(25 \quad 19.8\) & \(3.202+144509\) & 18.67 & I. 04 \\
\hline 79 & B. A. C. 466 & 5-6 & 2747.5 & \(2.699-372724\) & 18. 52 & I. 26 \\
\hline So & 40 Cassiopeiæ & & 2920.6 & \(4.670+722712\) & 18. 54 & 3. \(3^{2}\) \\
\hline \(\delta_{1}\) & 50 Andromedx & 4 & 3003.0 & \(3 \cdot 502+404948\) & 18.16 & I. \(3^{2}\) \\
\hline 82 & 51 Andromedx & 4-5 & 3056.2 & \(+3.652+480242\) & +18.37 & 1. 50 \\
\hline 83 & \(\pi\) Piscium. & 6-5 & 3100.2 & \(3.174+113311\) & 18. 54 & 1. 02 \\
\hline 84 & a Eridani & 1 & 3325.5 & \(2.233-574917\) & 18.37 & I. 88 \\
\hline 85 & - Andromeda & 5 & 3347.6 & \(3 \cdot 523+395939\) & 18. 34 & 1. 30 \\
\hline 86 & 43 Cassiopeize & 6 & 13350.1 & \(4.359+672739\) & 18.40 & 2. 61 \\
\hline 715 & Gr.2029, S. P. & 6 & \(13 \quad 3425.3\) & \(+1.432+1081021\) & +18.37 & 3.21 \\
\hline 87 & \(\nu\) Piscium. & 5-4 & 13526.8 & \(3.117+45419\) & 18.34 & 1. 00 \\
\hline 88 & \(\dagger\) Andromeda & 4 & 3627.4 & \(3.733+500631\) & 18. 28 & 1. 56 \\
\hline 89 & B. A. C. 527 & 6 & 3658.0 & \(2.745-325423\) & 18.31 & 1. 19 \\
\hline 90 & \(\tau\) Ceti & 3-4 & 3843.5 & \(2.784-163237\) & 19.08 & 1. 04 \\
\hline 91 & - Piscium. & 4-5 & 3919.3 & \(+3.162+83442\) & +18.23 & 1.01 \\
\hline 92 & \(\varepsilon\) Sculptoris & 5 & \(40 \quad 15.7\) & \(2.819-253737\) & 18.18 & I. II \\
\hline 93 & B. A. C. 544 & 6-7 & 4151.7 & \(3.521+372247\) & 18.12 & 1. 26 \\
\hline 94 & \(\chi\) Ceti & 5-4 & 14356.3 & \(+2.943-111520\) & 17.93 & 1.02 \\
\hline 723 & Gr. 2063, S. P, & 6 & 134538.9 & \(-2.037+964013\) & 18.01 & 8.61 \\
\hline
\end{tabular}

FIELD CATAIGGUE OF 1278 TIME ANH CIRCUMPOLAR STARS.


HIELD CATAIGGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & ctar. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Declination, I885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Yar. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s . & - 11 & & \\
\hline 95 & Ceti & 3 & 14547.1 & +2.9 & - 105412 & +17.84 & 1.02 \\
\hline gó & Cassiopeix & 3-4 & \(46 \quad 07.9\) & 4. 255 & +63 of II & 17.95 & 2. 20 \\
\hline 97 & \({ }^{\prime}\) Trianguli & 4-3 & 46 31. 6 & 3.407 & + 290105 & 17.83 & 1.14 \\
\hline 98 & , Arietis & 4-3 & 4713.2 & 3. 280 & + 184346 & 17.82 & 1.06 \\
\hline 99 & \% l'iscium. & 4 & I 4736.1 & 3. 100 & \(+23710\) & 17.82 & 1.00 \\
\hline 726 & i Draconis, S.P. & 5 & \(134^{8} 04.4\) & +1.75 & +114 4230 & \(+17.88\) & 2. 39 \\
\hline 100 & \(\beta\) Arietis & 3 & 14817.3 & \(3 \cdot 30\) & + 201443 & 17.74 & 1.07 \\
\hline 101 & 56. Andromedu' & 5-6 & 4919.6 & 3. 54 & + \(3^{664113}\) & 17.86 & 1. 25 \\
\hline 102 & \% Arietis & 5-4 & 5131.3 & 3. 33 & + 230345 & 17.70 & 1.09 \\
\hline 103 & B. A. C. 607 & \(6-7\) & 5312.7 & 3. 327 & \(+202959\) & 17.56 & 1. 07 \\
\hline 104 & 50 Cassiopeiæ & 4 & 53.37 .8 & \(+5.00\) & + \(7^{1} 5^{151}\) & +17.66 & 3.21 \\
\hline 105 & 1: Ceti & 4 & 5435.2 & 2. 8 & - 213809 & 17. 58 & 1. 08 \\
\hline 106 & a Hyadri & 3 & 5508.8 & 1. 895 & - 620747 & 17.54 & 2. 14 \\
\hline 107 & a Piscium & 4 & \(56 \quad 05.9\) & 3. 102 & + 21228 & 17. 51 & 1. 00 \\
\hline 108 & \(y^{1}\) Andromedx & 2-3 & \({ }^{56} 50.4\) & 3.657 & \(1+414638\) & 17.46 & I. 34 \\
\hline 109 & Weisse \(/ h\), rort & 6-7 & I 5835.5 & \(+2.9\) & \(-122439\) & \(\underline{+17.43}\) & 1.02 \\
\hline \(73^{8}\) & a Draconis; S. P. & 3-4 & 14 or 16.6 & I. 62 & +115 0428 & 17.30 & 2. 36 \\
\hline 110 & a Arietis & 2 & 2 OI 41.5 & 3. 370 & + 225505 & 17.19 & 1.09 \\
\hline 111 & \(\beta\) Trianguli & 3 & 0242.1 & 3. 552 & + 342633 & 17.22 & 1. 21 \\
\hline 112 & Groom. 454. & \(6-7\) & 0246.1 & 5. 374 & + 732910 & 17.24 & 3.52 \\
\hline 11.3 & 15 Arietis & 6 & \(04 \times 5.3\) & \(+3.31\) & +185725 & +17.14 & 1. 06 \\
\hline 114 & 55 Cassiopeize & 6 & 0528.2 & 4. 63 I & + 655903 & 17.11 & 2.46 \\
\hline 115 & 6 Persei & \(6-5\) & 0557.6 & 3.95 & + 503150 & 16.90 & 1. 57 \\
\hline 136 & \(\xi^{\prime \prime}\) Ceti. & 4-5 & o6 54.3 & 3. 174 & + 81824 & 17.04 & 1.01 \\
\hline 117 & \(\mu\) Fornacis & 5 & 20750.5 & 2. 640 & \(-3115{ }^{2}\) & 16. 94 & 1. 17 \\
\hline 744 & 4 Urs. Min., S. P. & 5 & \(14 \quad 0918.8\) & -0. 334 & +101 5502 & \(+16.91\) & 4. 84 \\
\hline 118 & d Triangruii & 6-5 & 21002.1 & \(+3.647\) & \(+334451\) & 16.68 & 1.20 \\
\hline 119 & y Trianguli & 4-5 & 1028.7 & 3.549 & + 331852 & 16.87 & 1.20 \\
\hline 120 & 67 Cet & 6 & 1114.8 & 2. 989 & - 65710 & 16. 75 & I. OI \\
\hline 121 & () Arietis & \(6-5\) & II 43.8 & 3. 327 & + 192205 & 16.82 & 1. 06 \\
\hline 122 & a Ceti & Var. & 1332.2 & \(+3.026\) & - 33000 & \(+16.52\) & 1.00 \\
\hline 123 & B. A. C. 727 & 6 & 15.41 I & 3.721 & \(+405 z 26\) & 16. \(5^{6}\) & 1. 32 \\
\hline 124 & \(\kappa\) Fiornacis & \(6-5\) & 1717.2 & 2. 755 & - 242019 & 16.48 & 1. 10 \\
\hline 125 & \(\xi\) Arielis . . & & 1839.2 & 3.208 & \(+100521\) & 16.48 & 1.02 \\
\hline 126 & ¢ Cassiopeiz & 4 & 21935.8 & 4. 856 & \(\underline{+665304}\) & 16. 45 & 2. 55 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOHAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Nites. \\
\hline A. P. \(\mathrm{H}^{4.2}\) ( \({ }^{50.2} \mathrm{~W}\). & 95 & \\
\hline H. \(\mathrm{c}^{5.2} \mathrm{~W} . \mathrm{Kcl} . \mathrm{R}\). & 96 & +0r.1 \(-\quad 8^{\prime \prime}\) \\
\hline 13. G. \({ }^{621}\) W. R. S \({ }^{4}\). & 97 & Houble *; \(21=4\) mag. \\
\hline H. (3.3.2 W. R. . . & 98 & \\
\hline B. ( \({ }^{51.1}\) W. M. R. & 99 & \\
\hline I). \(\mathrm{H}^{4.3} \mathrm{Cr}^{5.31} \mathrm{~W}\). & 726 & \\
\hline A.E.C.B.N. \(\mathrm{H}^{3.1} \mathrm{C}^{5.4}\) & 100 & \\
\hline G \({ }^{5.4}\) W. R. Bk. & 101 & \(\left[+2^{4.0} ;\right.\) yl. bl \\
\hline \(\mathrm{H}^{4.2}\) (95.4 W. R. \(\mathrm{S}^{2}\) & 102 & \(\lambda^{2}=81 / 2\) mag.: \\
\hline \()^{3} \mathrm{~W} . \mathrm{O}^{1} \mathrm{R} \cdot \mathrm{S}^{2}\) & 103 & Piaz. I, 222. \\
\hline A. 13. N. \(\mathrm{H}^{4.3 .2} \mathrm{G}^{6}\) & 104 & \\
\hline B. \(\mathrm{H}^{43} \mathrm{C}^{3} \mathrm{R}\). & 105 & \\
\hline \(O^{1}\) M. Gi.. . & 106 &  \\
\hline Hs (6.4.2 W. Rd. R. & 107 & As one mass. Difi. R. A., \\
\hline A. B. \(1\left[4.3 .2 \mathrm{C}^{5,4.3 .1} \mathrm{~W}\right.\). & 108
109 & \[
\begin{aligned}
& y^{2}=5 \text { mag. }=9 \text { mag. (i.4: } \\
& {\left[+0^{8} .93+4^{\prime \prime} \cdot 7(1864 .)\right.} \\
& \text { LComp.closedouble: } 8 \mathrm{~m} \\
& \text { Lande } 3837 .
\end{aligned}
\] \\
\hline A. E. C. B. N. \(\mathrm{H}^{438}\) & 738 & \\
\hline \(A^{\prime}\). E. C. B. N. \({ }^{4.2 .1}\). & 110 & \\
\hline A. B. II \({ }^{4.2}\) (56.4.32.1 W. . & 111 & \\
\hline \(\mathrm{H}^{3} \mathrm{C}^{5} \mathrm{Rd}\). & 112 & \\
\hline N. G5.43 W. R. . & 113 & \\
\hline 13. \(\mathrm{H}^{4.2} \mathrm{G} \mathrm{G}^{54.1} \mathrm{Rd}\). R. . & 114 & \\
\hline B. \(\mathrm{H}^{4.2} \mathrm{G}^{5.4 .3} \mathrm{Kd} . \mathrm{R}\). & 115 & \\
\hline A. N. \(\mathrm{H}^{2} \mathrm{G}^{0.4 .3 .2 .1} \mathrm{~W}\). . & 116 & \\
\hline C. \(\mathrm{B} . \mathrm{G}^{2} \mathrm{O}^{1}\) & 117 & \\
\hline A. B. \(\mathrm{H}^{4} \mathrm{G}^{5.2}\) W. Bk. & 744 & \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{\text {aj. }{ }^{3}} \mathrm{R}\). . . & 1 I 8 & \\
\hline A. B. \(\mathrm{H}^{4.8} \mathrm{G}^{4} \mathrm{~W}\). & 119 & \\
\hline A. E. C. B. \({ }^{4.3 .2 .1}\) & 120 & \\
\hline B. N. G \({ }^{5.4 .3 .1} \mathrm{~W} . \mathrm{O}^{1}\) & 121 & \\
\hline C. B. \(\mathrm{H}^{4.32} \mathrm{G}^{4.3}\) W. . & 122 & \begin{tabular}{l}
["Very full sanguine." \\
[G4. See note in B. A. C. \\
Mag. \(13 / 4\) to \(9,1 / 2\). Per. 33 Id.
\end{tabular} \\
\hline G \({ }^{\text {n+t }}\) Rd. R. . & & Groom. \(504=7.4\) mag. : \\
\hline \(\mathrm{I}^{2} \mathrm{G} .1 \mathrm{l}\) W. . . . & & \(\left[+2^{8.6}+4^{\prime} 47^{\prime \prime}\right.\) \\
\hline N, G6.4.3.2.1 W.O \({ }^{1} \mathrm{R}\). . & & \(\left[+1^{8} .30:-2^{\prime \prime} .0, \mathrm{G}^{2}, 1872\right.\). \\
\hline A. B. N. \(\mathrm{H}^{4.3 .9} \mathrm{G}^{6.4 .3}\). & 126 & \begin{tabular}{l}
Fol. * = mag. \\
[Trip., \(4^{1 / 2}, 7,9 ; 1^{\prime \prime} .8,7^{\prime \prime} .8\).
\end{tabular} \\
\hline
\end{tabular}
field catalogue of 1278 time and circumpolar Stars.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
1885.0 .
\end{gathered}
\] & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Declination, } \\
\text { I } 885.0 .
\end{gathered}
\] & \[
\underset{\text { Var. }}{\substack{\text { Annual }}}
\] & Sec. \(\delta\) \\
\hline & & & h. m. & s. & , " & " & \\
\hline 127 & d Hydri & 4 & 21942.6 & +1.053 & -69 ⿺辶 58 & \(+16.46\) & 2.81 \\
\hline 128 & - Ceti & 5 & 2023.7 & 2.900 & - 124833 & 16. 39 & I. 02 \\
\hline 129 & c Triansuli & 6-5 & 2125.5 & 3. 502 & + 290920 & 16. 56 & I. 15 \\
\hline 130 & \(\xi^{2}\) Ceti & 4 & 2202.7 & 3. 183 & + 75638 & 16.31 & 1.01 \\
\hline 131 & 27 Arietis & 6-5 & 2431.7 & 3. 319 & +171140 & 16. 11 & 1.05 \\
\hline \({ }^{13}{ }^{2}\) & - Ceti & 4-5 & 2638.2 & +2.841 & -1544 54 & +16. 10 & 1. 04 \\
\hline 133 & 36 Cassiop. & 6-5 & 22707.2 & +5.574 & + 721851 & 16.08 & 3.29 \\
\hline 760 & 5 Urs. Min. S.P. & 5-4 & 142746.8 & -0. 195 & +103 4734 & 16 OI & 4. 19 \\
\hline 134 & B. A. C. 788 & 6 & 22818.6 & +2.489 & - 350926 & 15.95 & 1. 24 \\
\hline 135 & Piazzi II h. 123. & 6-7 & 2946.4 & 3. 280 & +62012 & 17.25 & I, or \\
\hline 136 & Ceti & 5 & 2950.2 & +3.137 & \(+50528\) & +15.89 & 1. 00 \\
\hline 137 & Groom. 527 & 6 & 3117.3 & 8. 249 & + 80 5732 & 15.84 & 6. \(3^{6}\) \\
\hline 138 & Si Ceti & 5-6 & 3154.2 & 3.022 & - 35339 & 15.82 & 1. 00 \\
\hline 139 & \(v\) Arietis & 6-5 & 3217.2 & 3. 396 & + 212749 & 15.78 & 1. 07 \\
\hline 140 & d Ceti & 4 & 3335.3 & 3.072 & - 0 10 06 & 15.72 & r. 0 \\
\hline 141 & \({ }_{\mu}\) Hydri & 6 & 3407.7 & -1. 455 & -793639 & \(+15.67\) & 5. 55 \\
\hline 142 & Brad. 366 & 7-6 & 3456.7 & \(+5.073\) & + 72006 & 15.61 & 2. 60 \\
\hline 143 & \(\mu\) Arietis & 6-5 & 3553.0 & 3. 372 & + 193114 & 15.54 & I. 06 \\
\hline 144 & \(\theta\) Persei & 4 & \(3^{6} 20.9\) & 4. 065 & + 484428 & 15.49 & I. 52 \\
\hline 145 & 33 Arietis & 5 & \(3^{6} 42.3\) & 3. 504 & +271301 & 15.54 & I. 13 \\
\hline 146 & \(\gamma^{2}\) Ceti (folli.) & 3-4 & 3720.5 & +3.103 & + 24502 & +15.35 & 1. 00 \\
\hline 147 & \(\pi\) Ceti & 4 & 3841.0 & 2.851 & - 142149 & 15.43 & I. 03 \\
\hline 148 & \(\mu\) Ceti & 4 & 3843.5 & 3. 234 & + 93739 & 15.40 & 1. 02 \\
\hline 149 & \(\tau\) Eridani & 4-5 & 3944.2 & 2. 798 & - 190336 & 15.40 & 1. 06 \\
\hline 150 & 39 Arietis & 4-5 & 4103.5 & 3. 550 & + 284608 & 15.31 & 1. 14 \\
\hline 151 & 7 Persei & 4-3 & 4218.8 & +4.335 & + 552502 & +15.20 & 1. 76 \\
\hline 152 & 41 Arietis & 4 & 4312.9 & 3. 516 & + 264708 & 15.07 & 12 \\
\hline 153 & \(\sigma\) Arietis & 6-5 & 4508.6 & 3. 304 & +14 \(3^{6} 27\) & 15.03 & 1.03 \\
\hline 154 & Tz Eridani. & 5-4 & 4539.3 & 2. 718 & - 212944 & 15.01 & 1. 07 \\
\hline 155 & Persei & 4 & 46 об. 4 & 4.216 & + 521726 & 15.07 & I. 63 \\
\hline 156 & B. A. C. 897 & 6 & 4847.5 & \(+4.026\) & \(+464109\) & +14.86 & 1. 46 \\
\hline 157 & \(\eta\) Eridani. & 3 & 5048.5 & 2.927 & - 92224 & 14.49 & 1. 02 \\
\hline 158 & 47 Cephei & 6-5 & 25050.6 & +7.688 & + 785745 & 14.75 & 5.22 \\
\hline 786 & \(\beta\) Urs. Min. S. P. & 2 & 145102.9 & -0.035 & +1052326 & 14.72 & 3.77 \\
\hline 159 & 4 Eritani & 5-6 & 25216.9 & +2.666 & -24 1923 & 14.58 & 1. 10 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME ANI CIRCUMPOLAK STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. \(29-51\)

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAK STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
\text { I885.0. }
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & 0 Urs. Min., S. P. & 5 & \(\begin{array}{ccc}\text { h. m. } & \text { S. } \\ 15 & 34 & 50.9\end{array}\) & \[
\begin{gathered}
\text { s. } \\
-\mathrm{I} .896
\end{gathered}
\] & \begin{tabular}{r}
0 \\
\hline 102 \\
+102
\end{tabular} 1606 & \[
\begin{gathered}
17 \\
+11.86
\end{gathered}
\] & 4.71 \\
\hline 190 & - Persei & 4 & 33706.5 & +3.747 & + 31 5522 & 11.71 & 1. 15 \\
\hline 191 & v Persei & 4 & 3723.0 & 4.056 & \(+421251\) & 11.69 & 1. 35 \\
\hline 192 & \(\delta\) Eridani. & 3-4 & 3744.4 & 2. 869 & - 100912 & 12.40 & 1. 02 \\
\hline 193 & 17 Tauri & 4-5 & 3802.8 & 3. 552 & \(\underline{+} 234503\) & 11. 58 & 1. 09 \\
\hline 194 & \(\gamma\) Camelop. & 4-5 & 3813.8 & \(+6.226\) & + 705834 & +11.61 & 3.07 \\
\hline 195 & \(\eta\) Tauri & 3 & 4038.9 & 3. 556 & + 234455 & 11. 40 & 1. 09 \\
\hline 196 & \(\tau^{6}\) Eridani & 4 & 4154.0 & 2. 579 & -23 3526 & 10. 84 & 1. 09 \\
\hline 197 & - Tauri & 5 & 4157.8 & 3. 282 & +104718 & 11. 31 & 1. 02 \\
\hline 198 & 27 Tauri & 4 & 4219.5 & 3. 556 & + \(2343 \mathrm{O2}\) & 11. 30 & 1. 09 \\
\hline 199 & \(\square^{7}\) Eridani & 5 & 42 43.0 & +2. 577 & \(-241353\) & +11. 34 & 1. 10 \\
\hline 200 & B.A.C. \(1199(f o l\). & 6 & 44 21. 3 & 2. 214 & \(-375820\) & 11.21 & 1. 27 \\
\hline 201 & \(u^{*}\) Taur & 6 & \(45 \quad 52.3\) & 3. 193 & + 61119 & II. 08 & 1. OI \\
\hline 202 & \(\zeta\) Persei & 3 & 46 54. 3 & 3. 759 & + 313228 & 10. 97 & 1. 17 \\
\hline 203 & 9 Camelopardalis. & 6-5 & 34720.2 & \(+5.071\) & \(\underline{+604614}\) & 10.97 & 2.04 \\
\hline \(8+4\) & \(\zeta\) Urs. Min., S. P. & 4 & 1548 11. 3 & -2. 256 & +1015108 & +10.91 & 4. 87 \\
\hline 204 & \(\gamma\) Hydri & 3 & 349 OI. 8 & -1.005 & -74 \(35 \quad 27\) & 10. 97 & 3.77 \\
\hline 205 & e Perse & 3 & 5008.1 & +4.008 & \(+394035\) & 10. 76 & 1. 30 \\
\hline 206 & oom. 746 & 5-6 & 5050.8 & 9.740 & + 80 2243 & 10. 76 & 5.97 \\
\hline 207 & ¢ Perse & 4 & 5130.3 & 3.878 & + 352733 & 10. 66 & I. 23 \\
\hline 208 & \(\gamma^{\prime}\) Eridani & 3 & 5239.9 & +2.798 & - 135011 & \(+10.46\) & 1.02 \\
\hline 209 & \(\lambda\) Tauri & Var. & 5418.6 & 3. 318 & + 120952 & 10. 43 & 1.02 \\
\hline 210 & \(v\) Tauri & 4 & \(57 \quad 02.4\) & 3. 186 & + 54009 & 10. 25 & . 0 \\
\hline 211 & \(A^{1}\) Tauri (37) & 5-4 & 5753.8 & 3. 539 & +214559 & 10. 10 & 1. 08 \\
\hline 212 & \(\lambda\) Persei & 4-5 & 58 or. 2 & 4.447 & + 500017 & 10. 13 & 1. \(5^{6}\) \\
\hline 213 & \(\psi\) Tauri & 6-5 & 35953.9 & \(+3.700\) & +284121 & +10.03 & 1. 14 \\
\hline 214 & c Persei & 4 & 40018.8 & +4.334 & \(+423545\) & 9. 98 & 1. 48 \\
\hline 855 & Rad.3523.S. P. & 7-6 & 160024.1 & -12.130 & +9422 12 & 10. 00 & 13.13 \\
\hline 215 & Groom. 750 & 6-7 & 40045.8 & 17.043 & + 85 1502 & 9.99 & 12. 08 \\
\hline 216 & B. A. C. 1273 . & 5-6 & \(\infty 53.0\) & 2. 456 & -2758 OI & 10. 04 & 1. 13 \\
\hline 217 & \(\omega^{1}\) Tauri & 6 & 0228.0 & \(+3.487\) & + 191814 & \(+9.80\) & 1. 06 \\
\hline 218 & p Tauri & 6 & 40349.7 & 3.644 & \(+261047\) & 9.69 & 1. 13 \\
\hline 861 & Gr. 2320, S. P. & 6-5 & 160600.5 & 0. 138 & +1115312 & 9. 50 & 2.68 \\
\hline 219 & \(0^{1}\) Eridan & 4-5 & 40615.0 & 2. 926 & -70818 & 9. 64 & 1. or \\
\hline 220 & \(\mu\) Persei & 4-5 & 0627.2 & \(4 \cdot 3^{81}\) & + 480657 & 9.49 & 1. 50 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 11 & " & \\
\hline 221 & A Eridani & 5 & 4 o8 55.4 & +2.851 & 103225 & + 9.46 & 1. 02 \\
\hline 222 & \(o^{3}\) Eridani. & 5-4 & o9 58.8 & 2. 762 & -74958 & 5.80 & I. OI \\
\hline 223 & B. A. C. 1313 & 6 & II 49.1 & 5.183 & +602742 & 9.24 & 2.03 \\
\hline 224 & 54 Persei & 6 & 1256.6 & 3.883 & + 341716 & 9.04 & 1.21 \\
\hline 225 & \(\gamma\) Tauri & 4 & 41315.0 & \(+3.409\) & + 152056 & 8. 98 & 1. 04 \\
\hline 865 & 19 Urs, Min. S. P. & 6 & \(16 \quad 1407.0\) & -1.786 & +103 50 or & \(+8.95\) & 4.18 \\
\hline 226 & \(\chi^{1}\) Tauri & 5 & 41535.1 & +3.644 & \(+252125\) & 8.79 & I. II \\
\hline 227 & \(\delta^{1}\) Tauri & 4 & 1618.2 & 3.454 & + \(17 \times 19\) & 8. 74 & 1.05 \\
\hline 228 & \(d^{2}\) Tauri & 6 & 1727.9 & 3.453 & + 171035 & 8.63 & 1. 05 \\
\hline 229 & \(\delta^{3}\) Tauri & 5 & 1850.2 & 3.465 & +173950 & 8. 53 & 1. 05 \\
\hline 230 & \(v^{6}\) Eridani & 4 & 19 43. 1 & +2.251 & \(-341703\) & +8. 59 & 1.21 \\
\hline 231 & Groom. 828 & 6-5 & 42011.2 & \(+6.866\) & + 721646 & 8.46 & 3.29 \\
\hline 872 & \(\eta\) Urs. Min., S.P. & 5 & 162052.6 & -1.825 & +103 \(5^{8} 48\) & 8. 13 & 4.19 \\
\hline 232 & \(\varepsilon\) Tauri & 4-3 & 42154.1 & -1-3.497 & + 1855 27 & 8.28 & 1. 06 \\
\hline 233 & 1 Camelop. (foll.) & 6 & 2255.4 & 4. 726 & \(+533935\) & 8.23 & 1. \(7^{\circ}\) \\
\hline 234 & 80 Tauri & 6 & 2335.2 & \(+3.414\) & + 152307 & +8.15 & I. 04 \\
\hline 235 & 85 Tauri . & 6 & 2517.7 & 3.421 & +153613 & 8.01 & I. 04 \\
\hline 236 & \(m\) Persei . & 6 & 2519.5 & +4.208 & +4249 or & 8.05 & 1. 37 \\
\hline 237 & \(\delta\) Mensæ & 6 & 2546.8 & -4.245 & - 80 2855 & 7.99 & 4.80 \\
\hline 238 & \(\rho\) Tauri & 5 & 42719.3 & \(+3.399\) & +143605 & 7.85 & 1. 03 \\
\hline 880 & A Draco. S. P. & 5 & \(16 \quad 28 \quad 12.9\) & -0.137 & +1105900 & + 7.80 & 2. 79 \\
\hline 239 & a Tauri & 1 & 42919.3 & +3.437 & \(+161637\) & 7.54 & 1. 04 \\
\hline 240 & \(v\) Eridani & 3-4 & \(3034 \cdot 3\) & 2.992 & - 33519 & 7.633 & 1. 00 \\
\hline 241 & * Eridani & 3-4 & 3104.8 & 2. 332 & - 304754 & \(7 \cdot 56\) & 1. 17 \\
\hline 242 & a Doradûs & \(3^{-2}\) & 3130.9 & 1.294 & - 551658 & \(7 \cdot 58\) & 1. \(7^{6}\) \\
\hline 243 & \(c^{1}\) Tauri . & 5-4 & \(3^{1} 43.9\) & \(+3.352\) & +121645 & + \(7 \cdot 52\) & 1. 02 \\
\hline 244 & 53 Eridani. & 4 & 3254.9 & 2. 747 & \(-143^{1} 47\) & \(7 \cdot 3^{8}\) & 1. 03 \\
\hline 245 & Groom 848 & 6 & 3322.7 & \(+7.975\) & + 754349 & 7.58 & . 06 \\
\hline 246 & T Tauri & 4-5 & 43520.6 & +3.595 & + 224406 & 7.21 & 1. 08 \\
\hline 886 & Cr. 2373, S. P, & 6 & 163535.2 & -2.774 & +102 1943 & 7.2I & 4.68 \\
\hline 247 & a Cali & 4-5 & 43651.5 & +1.932 & - 42 O5 OI & \(+7.07\) & 1. 35 \\
\hline 248 & \(\beta\) Cali & 5-6 & 3759.5 & 2.160 & - 372212 & 7.23 & 1, 26 \\
\hline 249 & 4 Camelopard. & 6-5 & 3825.6 & 4.980 & \(+563303\) & 6.73 & 1. 8 I \\
\hline 250 & Groom. 856 & 5-6 & \(3^{8} 51.9\) & 10. 990 & \(+810000\) & 6.95 & 6.39 \\
\hline 251 & \(\mu\) Eridani. & 4-3 & 43945.2 & 2. 998 & - 32800 & 6.8 r & 1. 00 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMIOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{aligned}
& \text { Right Ascen., } \\
& 1885.0 .
\end{aligned}
\] & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& \text { 1885.0. }
\end{aligned}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & 5. & - / \(/ 1\) & " & \\
\hline 252 & 1 Aurirue & 6 & 442 10. 2 & \(\div 4.030\) & \(\div 371703\) & \(+6.74\) & 1. 26 \\
\hline 253 & a Camelop. & 4 & 4237.2 & 5.922 & + 660844 & 6.64 & 2.46 \\
\hline 254 & \(\pi^{1}\) Orionis & 4 & 44335.0 & - +3.255 & + 64534 & 6. 58 & 1. oI \\
\hline 895 & Gr. 2388. S. P. & 6 & 164430.1 & -1. 368 & \(+1055416\) & 6.49 & 3.65 \\
\hline 255 & \(i\) Tauri & 5-6 & 44438.8 & \(+3.505\) & \(+183^{8} 35\) & 6.43 & 1. 05 \\
\hline 256 & \(\pi^{4}\) Orionis & 4-5 & 4504.9 & +3:191 & \(+52427\) & \(+6.45\) & 1. 00 \\
\hline 257 & \(0^{1}\) Orionis & 5-6 & 46 ol. 7 & 3. 390 & +140329 & 6.31 & I. 03 \\
\hline 258 & (1) Eriduni & 4-5 & 4702.8 & 2. 947 & - 53908 & 6.27 & 1. OI \\
\hline 259 & \(\pi^{5}\) Orionis & 4 & 4815.7 & 3. 122 & + 21505 & 6.18 & 1. 00 \\
\hline 260 & ¢ Aurigx & 3 & 49 30. 3 & 3.900 & \(+325902\) & 6.05 & 1. 19 \\
\hline 261 & \(k\) Tauri & 6-5 & 5107.2 & +3.657 & \(+245217\) & \(+5.87\) & 1. 10 \\
\hline 262 & Rad. 1311 & 6-7 & 5107.8 & 20.489 & \(+854^{823}\) & 5.94 & 13.68 \\
\hline 263 & \(\beta\) Camelopard. & 4 & 5311.6 & \(5 \cdot 317\) & \(+601621\) & 5.79 & 2. 02 \\
\hline 264 & \(\varepsilon\) Aurigæ & Var. & 53 43.0 & 4.295 & \(+433908\) & 5.87 & 1. \(3^{8}\) \\
\hline 265 & \(\zeta\) Aurigæ & 4 & 5426.4 & 4. 182 & + 405424 & 5.70 & 1. 32 \\
\hline 266 & ¢ Tauri & 5-4 & \(45^{6}\) 1 3.3 & +3.581 & +212528 & + 5.46 & 1.07 \\
\hline 906 & \(\varepsilon\) Urs. Min., S. P. & 4-5 & 165747.3 & \(-6.345\) & + 974631 & \(5 \cdot 38\) & 7.39 \\
\hline 267 & 11 Orionis & 5 & 45759.9 & \(+3.424\) & +151434 & \(5 \cdot 32\) & 1.04 \\
\hline 268 & \(\eta\) Aurigæ & \(4 \cdot 3\) & \(45^{8} 27.1\) & 4. 198 & + 410440 & 5.27 & 1. 33 \\
\hline 269 & \(\varepsilon\) Leporis & 4-3 & \(50035 \cdot 5\) & 2. 536 & - 223136 & 5.07 & 1. 08 \\
\hline 270 & \(\beta\) Eridani. & 3 & 0211.8 & +2.946 & --51409 & \(+4.89\) & 1.01 \\
\hline 271 & 19 Camelop. & 5 & 0337.5 & 9.768 & \(+790545\) & 5.03 & 5.29 \\
\hline 272 & 2 Eridani & 4 & 03 38.7 & 2.871 & - 85410 & 4.89 & 1.01 \\
\hline 273 & \(\mu\) Aurigx & \(6-5\) & 0533.6 & 4. 099 & \(+382048\) & 4.65 & 1. 28 \\
\hline 274 & a Aurigæ & 1 & 50811.7 & 4.424 & \(\underline{+455246}\) & 4.06 & 1. 44 \\
\hline 914 & \(\zeta\) Draco., S. & 3 & \(17 \quad 08 \quad 27.3\) & +0.167 & +1140835 & + 4.41 & 2.45 \\
\hline 275 & \(\beta\) Orionis & 1 & 50900.7 & 2.88I & - 82008 & 4.42 & I. OI \\
\hline 276 & \(\lambda\) Aurigæ & 5 & \(\begin{array}{ll}11 & 03.0\end{array}\) & 4. 212 & \(+395943\) & 3. 56 & \(1.3{ }^{\circ}\) \\
\hline 277 & \(\tau\) Orionis & 4 & 1201.4 & 2.914 & -65811 & 4. 18 & 1. OI \\
\hline 278 & - Colurnba & 6-5 & 1320.2 & 2. 166 & - 35 on 31 & 3.70 & 1.21 \\
\hline 279 & \(\lambda\) Leporis. & 4-5 & 1416.7 & \(+2.763\) & \(-131747\) & \(+3.94\) & 1. 02 \\
\hline 280 & \(\nu\) Leporis . & 6-5 & 1438.9 & 2. 783 & \(-122603\) & 3.94 & 1.02 \\
\hline 281 & - Orionis . & 5 & 1553.7 & 3. 065 & - 02938 & 3.83 & 1.00 \\
\hline 282 & \(m\) Orionis. & 5-6 & 1647.4 & 3.152 & + 32558 & 3. 75 & 1.00 \\
\hline 283 & \(\eta\) Orionis (mean). & 3-4 & 5184 r .7 & 3.012 & - 23029 & 3.6 n & 8.00 \\
\hline
\end{tabular}

FIEFD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR. STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& 1885.0
\end{aligned}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & S. & - / 11 & /' & \\
\hline 284 & \(\gamma\) Orionis & 2 & 51857.8 & +3.218 & + 61440 & + 3.53 & . OI \\
\hline 285 & \(\beta\) Tauri & 2 & 19 O1. 4 & 3.789 & + 283033 & 3. 39 & 1. 14 \\
\hline 286 & 17 Camelop. & 6 & 1918.6 & 5.650 & +62 58 og & 3. 55 & 2. 20 \\
\hline 287 & - Aurig & 5-6 & 20 or. 6 & 3. 978 & + 342235 & \(3 \cdot 43\) & 1. 21 \\
\hline 288 & \(\psi\) Orion & 5 & 2048.8 & 3. 145 & + 25942 & \(3 \cdot 41\) & 1. 00 \\
\hline 289 & \(\beta\) Leporis & 3-4 & 2319.0 & \(+2.570\) & \(-205107\) & \(+3.10\) & 1. 07 \\
\hline 290 & Groom. 966 & 6-7 & 2421.6 & 7.999 & + 745754 & 3.13 & 3.86 \\
\hline 291 & 64 Camelop. & 6 & 2514.3 & 18.604 & + 850809 & 3.03 & 11.79 \\
\hline 292 & \(\lambda\) Aurigæ & 5 & 2514.7 & 3.905 & \(+320631\) & 3.05 & 1. 18 \\
\hline 293 & \(\delta\) Orionis & Var. & 2607.9 & 3.063 & - 02307 & 2.95 & 1. 00 \\
\hline 294 & a Leporis & 3 & 52739.5 & +2.645 & \(-175420\) & \(+2.82\) & 1.05 \\
\hline 933 & Gr. 2456. S. P. & 6-7 & 172830.2 & \(-4.623\) & + 994549 & 2.77 & 5.90 \\
\hline 295 & \(\phi^{1}\) Orionis & 5 & 52830.4 & +3.290 & +
+92438 & 2. 75 & 1.01 \\
\hline 296 & \(\lambda 1\) Orionis & 4-5 & 2848.2 & 3.302 & + 95132 & 2.70 & 1.02 \\
\hline 297 & \(\theta^{1}\) Orioni & 5-4 & 2937.5 & 2.943 & - 52758 & 2.69 & I. 00 \\
\hline 298 & 日z Orionis & \(5 \cdot 4\) & 29 44. I & +2.945 & - 52934 & +2.66 & I. 01 \\
\hline 299 & t \(^{1}\) Orioni & 3 & 29 48.5 & 2.934 & - 55911 & 2.62 & I. 01 \\
\hline 300 & \(\varepsilon\) Orionis & 2 & 3022.7 & 3. 042 & - 11635 & 2. 59 & 1.00 \\
\hline 301 & \(\zeta\) Tauri & 3-4 & 53046.4 & +3.584 & + 210416 & 2. 51 & 1.07 \\
\hline 939 & \(f\) Draco. S. P & 5-6 & 173225.4 & -0.254 & +1114731 & 2.28 & 2.69 \\
\hline 302 & \(\sigma\) Orionis & 4-3 & 53258.3. & +3.009 & - 24003 & +2.38 & 1.00 \\
\hline 303 & \(\zeta^{2}\) Orionis & 2 & 3457.4 & 3.028 & - 20016 & 2. 16 & 1.00 \\
\hline 304 & a Columbx & 2 & 35 29.1 & 2. 173 & - 340810 & 2. 10 & 1. 21 \\
\hline 305 & - Aurigæ & \(6-5\) & 53659.5 & +4.642 & + 494627 & 1. 98 & 1. 55 \\
\hline 944 & \(\omega^{*}\) Draco. S, P. & 5 & 173737.6 & -0.356 & +1111120 & 1. 62 & 2.77 \\
\hline 306 & \(\gamma\) Leporis & 4 & 53940.1 & +2.499 & \(-222912\) & + 1. 40 & 1.08 \\
\hline 307 & Rad. 1553 & 6 & 4035.1 & 6. 747 & \(+682610\) & 1. 70 & 2. 72 \\
\hline 308 & \(\zeta\) Leporis & 4-3 & 4144.7 & 2.718 & -145157 & I. \(5^{8}\) & 1.03 \\
\hline 309 & \(k\) Orioni & \(3^{-2}\) & 4218.1 & 2. 844 & - 94242 & I. 53 & 1.02 \\
\hline 310 & \(v\) Aurigæ . . & 4 & 54.331 .0 & +4.155 & \(+390650\) & I. 49 & 1.29 \\
\hline 949 & \(\psi^{1}\) Draco.(pr.)S.P. & 4-5 & 1743 59.1 & -1.080 & \(+1074742\) & + 1. 67 & 3.27 \\
\hline 311 & \(\delta\) Doradûs & 4-5 & 54434.2 & +0. 105 & \(-654643\) & 1. 33 & 2.44 \\
\hline 312 & \({ }_{5}\) Aurigie & 5 & \(45 \quad 12.5\) & 5.019 & \(+554040\) & I. \(5^{8}\) & 1. 77 \\
\hline 313 & \(\delta\) Leporis . & 4 & 4622.5 & 2. 579 & - 205323 & 0. 52 & 1. 07 \\
\hline 314 & \(\beta\) Columba & 3 & 4654.4 & 2. 112 & - 354848 & I. 43 & I. 23 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 127 S TIME AND CIRCUMPOA AR STARS.

S. Ex. \(29=52\)

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Declination, } \\
\text { I } 885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & 5. & \% & \(1 /\) & \\
\hline 315 & a Orionis & Var. & 54856.8 & +3. 247 & + 72304 & + 0.97 & 1.01 \\
\hline 316 & d Aurige & 4.5 & 50.03 .5 & 4.937 & + 541627 & o. 77 & 1.73 \\
\hline 317 & \(\beta\) Auriga. & 2 & 5105.6 & 4.406 & \(+445603\) & o. 75 & I. 41 \\
\hline 318 & \({ }^{3}\) Leporis. & 4-3 & 5110.0 & 2.730 & - 141123 & 0.93 & 1. 03 \\
\hline 319 & (1) Aurigr & 3 & 5152.7 & 4.091 & \(+371210\) & 0. 60 & I. 25 \\
\hline 320 & \(\gamma\) Columbue & 4.5 & \(5327 \cdot 7\) & +2.127 & \(-351751\) & +0.53 & 1. 23 \\
\hline 321 & B. A.C. 1920 & 6-5 & 55336.9 & +2.855 & - 93402 & 0.49 & I, or \\
\hline 960 & 35 Draco., S. P. , & 5 & 175524.3 & -2.695 & +103 O1 22 & 0. 24 & 4.38 \\
\hline 322 & \(\mu\) Orionis & 5 & \(5 \quad 5603.4\) & \(+3.301\) & \(+93^{844}\) & o. 28 & 1. OI \\
\hline 323 & \(\chi^{4}\) Orionis & 5 & \(\begin{array}{lll}57 & 05.4\end{array}\) & 3. 562 & +200822 & o. 23 & 1, 06 \\
\hline 324 & 1 Geminorum & 5-4 & \(\begin{array}{lll}57 & 07.8\end{array}\) & +3.647 & \(+231606\) & \(+0.15\) & 1. 04 \\
\hline 325 & B. A. C. 1946 & 5-6 & 5837.7 & 2. 419 & \(-261702\) & 0. 27 & 1. 12 \\
\hline 326 & 66 Orionis & 6 & \(5 \quad 5853.8\) & 3. 168 & + 40951 & +0.12 & 1.00 \\
\hline 327 & \(v\) Orionis & 5-4 & 6 or 00.4 & 3.427 & \(+144^{6} 5^{2}\) & \(-0.08\) & 1. 03 \\
\hline 328 & 36 Camelop. . & 6-5 & 0116.7 & 6.030 & + 654421 & o. 14 & 2. 43 \\
\hline 329 & Gr. 1004 & 6-7 & O1 24.4 & \(+26.817\) & \(+864545\) & -0.20 & 17.71 \\
\hline \(33^{\circ}\) & B. A. C. 1974 & 6 & 0302.0 & 2. 809 & - II 0745 & 0.26 & 1.02 \\
\hline \(33^{1}\) & \(\theta\) Columba & 5 & 03 35. I & 2. 058 & \(-371413\) & 0. 28 & 1. 26 \\
\hline \(33^{2}\) & \(\xi\) Orionis & 5-4 & 05 24. I & \(3 \cdot 4^{16}\) & +141402 & 0. 51 & 1. 03 \\
\hline 333 & 22 Camelop. & 5-4 & 0609.6 & 6. 618 & +692129 & 0.66 & 2.84 \\
\hline 334 & 7 Geminorum & 3-4 & 60756.2 & +3.623 & \(+223220\) & -0.71 & 1.08 \\
\hline \(97^{\circ}\) & \(\delta\) Urs. Min., S. P. & 4-5 & 180924.9 & \(-19.435\) & \(+932322\) & 0.85 & 16.91 \\
\hline 335 & 2 I,yncis & 4-5 & 60928.6 & \(+5 \cdot 300\) & +590303 & o. 77 & 1. 94 \\
\hline \(33^{5}\) & \(k^{2}\) Orionis & 5-6 & o9 59.2 & \(3 \cdot 370\) & + 121812 & o. 68 & 1. 02 \\
\hline 337 & B. A. C. 2021 & 5-6 & 1111.9 & 4.009 & + 351504 & 1. 07 & 1. 22 \\
\hline \(33^{8}\) & \(k\) Columbie & 4-5 & 61227.7 & +2. 140 & \(-350618\) & 1. 12 & 1. 22 \\
\hline 974 & 36 Draco., S. F & 6 & \(18 \quad 1314.0\) & -0.853 & +108 4325 & 1. 98 & 2.31 \\
\hline 339 & 7 Monocerotis. & 6 & \(\begin{array}{llll}614 & 10.6\end{array}\) & +2.894 & - \(74^{632}\) & 1. 22 & 1.01 \\
\hline 340 & \(\zeta\) Canis Ma & \(3^{-2}\) & 15 54.0 & 2. 304 & -300047 & 1. 37 & 1. 16 \\
\hline 341 & \(\mu\) Geminorum. & 3 & 1600.2 & 3.632 & +223417 & 1. 51 & 1.08 \\
\hline \(34^{2}\) & \(\psi^{\prime}\) Aurige & 5-6 & 1602.5 & +4.627 & + 492051 & -1. 39 & 1. 53 \\
\hline 343 & \(\beta\) Canis Maj. . & \(3^{-2}\) & \(173^{8.2}\) & 2. 641 & - 175400 & 1. \(5^{6}\) & 1.05 \\
\hline 344 & 8 Monocerotis & 5-4 & 1740.5 & 3.180 & +439 or & 1. 53 & 1.00 \\
\hline 345 & 6 Lyncis & 6 & 2047.8 & 5. 225 & + 581442 & 2. 18 & 1. 90 \\
\hline 346 & a Argus & I & 62124.0 & 1.330 & \(-523759\) & 1. 86 & 1. 65 \\
\hline
\end{tabular}

UNITED STATES COAST AND GEODETIC SURVEY.

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOI AR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Declination, } \\
\cdot 1885.0 .
\end{gathered}
\] & \[
\begin{gathered}
\text { Amual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(d\) \\
\hline 347 & v Geminorum & 5-4 & \[
\begin{array}{lc}
\text { h. m. s. } \\
6 & 22 \\
08.1
\end{array}
\] & \[
\div 3.563
\] & \[
\begin{array}{r}
0,11 \\
+2017 \text { oI }
\end{array}
\] & \[
\begin{gathered}
11 \\
-1.96
\end{gathered}
\] & 1.07 \\
\hline 348 & 10 Monocerotis & 5 & 62216.8 & +2.962 & \(-44132\) & 1. 92 & 1. 00 \\
\hline 983 & ¢ Draco., S. P. & 4-5 & \(18 \quad 22 \quad 24.4\) & \(-0.853\) & +1084325 & 1. 98 & 3. 12 \\
\hline 985 & \(\chi\) Draco., S.P. & 4-5 & \(18 \quad 2307.6\) & - 1.070 & +107 19 03 & 1. 64 & \(3 \cdot 36\) \\
\hline 349 & B. A. C. 2109 & 4-5 & 62354.4 & + 2.222 & - 323026 & 2.01 & I. 19 \\
\hline 350 & 23 Camelop. . & 5-6 & 26 35. I & +10.415 & \(+794106\) & \(-2.98\) & 5. 59 \\
\hline 351 & 13 Monocerotis. & 5-4 & 2641.2 & 3.246 & + 72458 & 2. 35 & 1. 01 \\
\hline 352 & 8 Lyncis & 6 & \(27 \quad 10.7\) & \(5 \cdot 495\) & +613450 & 2.63 & 2. 10 \\
\hline 353 & B. A. C. 2147 & 5-6 & 28 20. 8 & 2. 245 & - 315632 & 2. 58 & 1. 18 \\
\hline 354 & \(\xi^{2}\) Canis Maj & 5 & 3014.2 & 2. 515 & \(-225228\) & 2.60 & 1.09 \\
\hline 355 & 51 Aurigre & 6.7 & 3041.4 & + 4.161 & \(+392927\) & \(-2.76\) & 1. 30 \\
\hline 356 & \(\gamma\) Geminorum. & 2-3 & 3104.1 & 3.467 & \(+162943\) & 2. 74 & 1. 04 \\
\hline 357 & \(\nu^{3}\) Canis Maj & 6 & 3250.1 & 2. 643 & - 180819 & 2.82 & 1.05 \\
\hline 358 & 15 Monocerotis & 4 & 34 38.7 & 3. 305 & + 101004 & 3.01 & 1. 02 \\
\hline 359 & 55 Auriga & 5 & 63442.8 & 4.373 & + 444040 & 3.06 & 1. 41 \\
\hline 993 & Gr.2655. S. P. & 6 & 1835 I 8.1 & -2.855 & +1023237 & --3.07 & 4. 61 \\
\hline 994 & Gr.2640.S. P. & 6 & 1835 51. 5 & +0. 187 & +114 3652 & 3. 15 & 2.42 \\
\hline 360 & \(\varepsilon\) Geminorum. & 3-4 & 63651.4 & 3.694 & + 251438 & 3.21 & 1. 11 \\
\hline 301 & \(\psi^{3}\) Auriga (56) & 6-5 & 3826.9 & 4.330 & + 434126 & 3.21 & 1. \(3^{8}\) \\
\hline 362 & \(\xi\) Geminorum. & 4-3 & 3850.1 & 3. 370 & + 13 or 06 & 3.58 & 1. 02 \\
\hline 363 & \(a\) Canis Maj. & 1 & 4004.8 & + 2.644 & - 163333 & -4.70 & 1. 04 \\
\hline 364 & 43 Camelop. . & 5 & 4118.0 & 6.503 & + 69 OI 12 & 3. 54 & 2. 79 \\
\hline 365 & 18 Monocerotis & 4 & 4151.9 & 3. 129 & + 23213 & 3. 64 & 1. 00 \\
\hline 36 & 58 Aurige & 5 & 4238.0 & 4. 247 & + 415455 & 3.84 & 1. 35 \\
\hline 367 & 24 Camelop. . & \(5 \cdot 4\) & 43 16.8 & 8.84I & \(+770716\) & 3.75 & 4.49 \\
\hline 368 & \(\theta\) Geminorum. & 3-4 & 45 12. 5 & \(+3.960\) & + 340555 & \(-3.98\) & 1. 21 \\
\hline 369 & 51 Cephei. & 5 & \(46 \quad 15.6\) & 30. 016 & + 871326 & 4.06 & 20. 65 \\
\hline 370 & B. A. C. 2252 & 5 & \(46 \quad 41.3\) & 2. 180 & - 341354 & 4.02 & I. 21 \\
\hline 371 & 15 Lyncis. & 5 & 47 19.0 & 5.214 & + \(5^{8} 3^{6} 34\) & 4.26 & 1. 92 \\
\hline 372 & e Gentinorum & 5 & \(48 \mathrm{og}\). & 3. \(3^{88}\) & +131923 & 4.24 & 1.02 \\
\hline 373 & \(\theta\) Canis Maj. . & 4-5 & 48 50. 1 & + 2.787 & - I1 5342 & \(-4.27\) & 1. 02 \\
\hline 374 & \(0^{1}\) Canis Maj.. & 5-4 & 49 21. 7 & + 2.490 & - 240228 & 4. 28 & I. 10 \\
\hline 375 & - Mensx & 6-5 & 64935.8 & \(-4.893\) & -80 \(\mathbf{4}^{126}\) & 4.23 & 6. 18 \\
\hline 1006 & 50 Draco., S. P. & 5-6 & 185004.6 & -1.906 & +104 4208 & 4.42 & 3.94 \\
\hline 376 & , Canis Maj. & & 6 51 00.6 & +2.674 & -16 5422 & 4.42 & 1.05 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF \(127^{8}\) TIME AND CIRCUMPOLAR STARS.


FTELD CATALOGUE OF 1278 TIME ANI CHCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities, & No. & Notes. \\
\hline \(A^{1}\) E. C. B. N. \(\mathrm{H}^{49} \mathrm{G}^{5.4}\) & 407 & \\
\hline \(\mathrm{H}^{4.8} \mathrm{G}^{3} \mathrm{R}\). & 408 & \\
\hline B. G \({ }^{81322.1}\) W. \(\mathrm{O}^{1} . \mathrm{Rd}\). & 409 & \\
\hline \(A^{1}\) E. C. B. N. \({ }^{4.2 .1}\). & 410 & \\
\hline A.E.C.B. \(\mathrm{H}^{4.3 .8}{ }^{1} \mathrm{G}^{5.4}\) & 1048 & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
B. N. \(H^{3.1} \mathrm{G}^{5.4} \mathrm{~W}\). \(\mathrm{H}^{4.2} \mathrm{G}^{4}\) W. R. \\
C. \(H^{31} \mathrm{G}^{5.43}\) W. Rd. \(\mathrm{H}^{4.2}\) W. R. . \\
E. C. \(\mathrm{H}^{3,2} \mathrm{G}^{5.4 .321} \mathrm{~W}\).
\end{tabular}} & 411 & \\
\hline & 412 & [Groom. III9: \\
\hline & 413 & \[
\left\{\begin{array}{l}
\mathrm{H}^{4}=4 \mathrm{Urs} . \mathrm{Min} . \\
6 \mathrm{mag} .=\mathrm{G}^{5}=755 .
\end{array}\right.
\] \\
\hline & 414 & [-15 \(5^{8} 4:-3^{\prime} 16^{\prime \prime}\) \\
\hline & 415 & Brad. \(1130=61 / 2 \mathrm{mag}\) : \\
\hline \multirow[t]{2}{*}{A. B. \(\mathrm{G}^{1}\) Bk. Rd. R. .} & 416 & \\
\hline & 417 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
C. \(\mathrm{G}^{3}\) W. R. \\
A. N. H48 G \({ }^{\text {ma. } 2.1}\) W
\end{tabular}} & 418 & \(C=6 \mathrm{mag}\). \\
\hline & 419 & \\
\hline \[
\mathrm{H}^{1} \mathrm{G}^{5} \mathrm{~W} . \mathrm{O}^{1}
\] & 420 & \\
\hline A. B. N. \(\mathrm{H}^{42} \mathrm{G}^{643.1}\). & 1058 & \[
\begin{aligned}
& {\left[-0^{4.02:+2^{\prime \prime} .6: \text { yel. bl. }}\right.} \\
& \text { Pr. } *=9.5 \text { mag.: }
\end{aligned}
\] \\
\hline \(\mathrm{H}^{3.1} \mathrm{G}^{1}\) W. Rd. & 42 I & Groom. 1359. \\
\hline N. \(\mathrm{H}^{2} \mathrm{G}^{\text {c.4.3.1 }}\) W. R. . & 422 & \\
\hline B. G \({ }^{5,4}\) W. Rd. R. & 423 & \\
\hline \(\mathrm{H}^{8} \mathrm{G}^{3}\) R. . . . . & 424 & \\
\hline \(\mathrm{O}^{\mathbf{I}} \mathrm{M} . . . . \quad . \quad . \quad\). & 425 & \\
\hline A. N. \(\mathrm{H}^{9} \mathrm{G}^{\text {b. }}\) R R. . . & 426 & \\
\hline E. C. B. N. \(\mathrm{H}^{2.1} \mathrm{G}^{5-1}\). & 427 & \(\mathrm{H}^{1}+\mathrm{B}=\kappa\) Geminorum. \\
\hline \multirow[t]{2}{*}{\[
\mathrm{H}^{3} \mathrm{O}^{1} \mathrm{M}
\]} & 428 & \\
\hline & 429 & \\
\hline B. \(\mathrm{G}^{\mathbf{2 1}}\) Bk. Rd. R. & 430 & \\
\hline N. \(\mathrm{H}^{7} \mathrm{G}^{\text {k.4 }}\) W. R. . . & 431 & \\
\hline A. N. H \({ }^{4} \mathrm{G}^{5.3}\) W. . & 432 & \(\mathrm{G}^{5}+\mathrm{Rd} .=55\) Camelop. \\
\hline A. E. C.B. N. \(\mathrm{H}^{431}\). & 433 & \[
\left\{\begin{array}{l}
\mathrm{C}=\rho \text { Argus }=3-4 \text { mag.: } \\
i \text { Navis }=H^{3} .
\end{array}\right.
\] \\
\hline N. Gras. \(\mathrm{W} . \mathrm{Ol}^{\mathbf{L}} \mathrm{R}\). . & 434 & \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{3} \mathrm{O}^{1} \mathrm{R}\). . . . & 435 & [-2mi \(45^{\text {a }}\).6: \(-34^{\prime \prime} .6\) \\
\hline B. H \({ }^{4} \mathrm{G}^{4.4} \mathrm{Rd}\). R. . . & 436 & Gr. \(1403=5 \mathrm{mag}\). \\
\hline A. N. H \({ }^{48} \mathrm{G}^{\text {s.4.3.1 }}\) W. & 437 & \(\zeta\) (double) \(=6\) mag. \\
\hline C. \(\mathrm{O}^{1} \mathrm{M}\). . . . . & 438 & B. A. C. \(2754=5\) mag. \\
\hline B. \(H^{48} \mathrm{G}^{3} \mathrm{O}^{1}\) R. . & 439 & \[
\left[3^{2 \mathrm{~d} \cdot 77} \times 8 \mathrm{mag} .3^{2^{\prime \prime}} \cdot 0\right.
\] \\
\hline
\end{tabular}
S. Fx. 29-53

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
\text { I885.0. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & Sec. \(\delta\) \\
\hline 440 & \(\beta\) Cancri & 4-3 & \[
\begin{array}{cc}
\text { h. m. } & \text { s. } \\
8 & 10 \\
16.7
\end{array}
\] & s.
+3.258 & \[
\begin{array}{r}
0111 \\
+\quad 93221
\end{array}
\] & \[
\begin{gathered}
11 \\
-10.84
\end{gathered}
\] & I. OI \\
\hline 1075 & Gr. 3402 S. P. . & Var. & 201150.8 & -49.281 & +911308 & 10.91 & 47.08 \\
\hline 1077 & \(\kappa\) Ceph (pr.)S.P. & 4-5 & 201244.6 & \(-1.916\) & \(\underline{+1023809}\) & 10. 98 & 4.57 \\
\hline 441 & \(x\) Cancri. & 6-5 & 81304.7 & \(+3.655\) & + 273521 & 11. 38 & 1. 13 \\
\hline 442 & \(q\) Puppis. & 5 & 1415.1 & 2.241 & \(-361814\) & 11.03 & I. 24 \\
\hline 443 & 3I Lyncis . & 5 & 81457.7 & + 4.131 & + 433321 & -11. 24 & 1. 43 \\
\hline 444 & \(d^{1}\) Cancri & 6-5 & 1646.7 & 3.442 & + 184202 & II. 30 & 1. 06 \\
\hline 445 & \({ }^{\text {w }}\) Puppis. & 5 & 1651.4 & 2.365 & \(-324121\) & 11.37 & 1. 19 \\
\hline 446 & B. A. C. 2825 & 4-3 & 1954.9 & 3.001 & - 33156 & II. 49 & 1.00 \\
\hline 447 & \(\varepsilon\) Arguls. & 2 & 2009.2 & 1. 232 & - 590822 & II. 48 & 1. 95 \\
\hline 448 & \(\bigcirc\) Urs. Maj. & 3-4 & 82042.1 & \(+5.035\) & +610603 & -11.70 & 2.07 \\
\hline 449 & Groom. 1418 & 6 & 2114.5 & 16.807 & + 852729 & 11. 59 & 12.63 \\
\hline 450 & 29 Cancri . . & 6 & 2212.2 & 3. 353 & +143526 & 11. 69 & 1. 03 \\
\hline 451 & B. A. C. 2846 & 6-7 & 2300.9 & +2.551 & - 254511 & 11.67 & 1. 12 \\
\hline 452 & \(\theta\) Chamæleon. & 5-4 & 2404.9 & -1.698 & \(-770647\) & 11.78 & 3.48 \\
\hline 453 & \(\theta\) Cancri & 6-5 & 82502.3 & + 3.428 & + 182856 & -11.93 & 1.05 \\
\hline 454 & Groom. 1450 & 6-7 & 25 26.3 & 3.911 & \(+382435\) & 12.09 & 1. 28 \\
\hline 455 & \(\eta\) Cancri . & 6 & 2603.5 & 3.479 & + 204951 & 11. 99 & 1. 07 \\
\hline 45 & Groom. 1446. & 6 & 2643.8 & 6.814 & + 740517 & 11.95 & 3.65 \\
\hline 457 & B. A. C. 2887 . & 5-6 & 82946.7 & \(+4.516\) & \(\underline{+534893}\) & 12.23 & 1. 69 \\
\hline 1090 & Gr. 3241, S. P. & \(6-7\) & 203029.8 & \(-0.217\) & +1075129 & -12.23 & 3.23 \\
\hline \(45^{8}\) & Groom. 1460 & 6 & & \(+4.472\) & \(+530649\) & 12.28 & 1. 66 \\
\hline 459 & \(\delta\) Hydre & 4-5 & 83134.0 & 3.181 & + 60614 & 12.30 & 1, 01 \\
\hline 46 & \(\sigma\) Hydra & 5 & 83244.9 & + 3.147 & + 34439 & 12.42 & 1.00 \\
\hline 1092 & 73 Draco. S. P. & 5-6 & 203300.9 & - 0.725 & +1052623 & 12.40 & 3.76 \\
\hline 461 & 6 Hydre & 6-5 & 83434.6 & + 2.843 & - 120410 & -12.54 & 1.02 \\
\hline 1097 & 75 Draco. S. P. & 5-6 & \(2035 \quad 24.4\) & - 3.514 & + 985819 & 12.57 & 6.41 \\
\hline 1099 & 74 Draco. S. P. & 6-7 & 203602.5 & - 3.244 & + 991843 & 12.85 & 6. 18 \\
\hline 462 & \(\gamma\) Cancri & 4-5 & 83637.8 & + 3.48 I & + 215253 & 12.71 & 1. 08 \\
\hline 463 & d Cancri & 4 & 3808.9 & 3.417 & + 183434 & 13.00 & 1.05 \\
\hline 464 & Groom. 1463 & 6 & \(8 \quad 3834.2\) & + 9.196 & +802726 & -12.80 & 6.03 \\
\hline 465 & a Mali. & 4 & \(3^{8} 58.5\) & 2.412 & -32 4622 & 12.74 & 1. 19 \\
\hline 466 & - Cancri & 4 & 3944.2 & 3. 644 & + 291047 & 12.90 & 1.14 \\
\hline 467 & e Hydre . . & 3-4 & 4041.2 & 3.182 & \(+65024\) & 12.99 & 1. OI \\
\hline 468 & \(\delta^{*}\) Argus . . & 3-2 & \(8 \quad 4131.8\) & 1.660 & -54 \(17 \begin{array}{lll}16\end{array}\) & 13.09 & 1.71 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen. 1885.0. & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & Declination,
1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & & " & " & \\
\hline 469 & \(\rho\) Aydra & 5 & 84220.4 & +3.182 & + 61543 & -13.10 & r. 01 \\
\hline 470 & 35 Lyncis . & 6-5 & 4413.6 & 4.05 I & + 440932 & 13. 14 & 1. 39 \\
\hline 471 & \(\rho^{2}\) Cancri & 6 & 4544.8 & 3. 587 & + 284609 & 13. 52 & I. 14 \\
\hline 472 & \(\sigma^{2}\) Cancri (mean). & 6-5 & 4713.5 & 3.673 & \(+310041\) & 13.39 & 1. 17 \\
\hline 473 & \(\zeta\) Hydre. & 3-4 & 84919.0 & \(+3.177\) & + 62256 & 13.51 & 1. OI \\
\hline 1114 & 76 Draco., S. P. . & 6 & 205050.7 & -4.014 & + 975344 & \(-13.62\) & 7.28 \\
\hline 474 & ¢ Urs. Maj. & 3 & 85119.8 & +4.135 & \(+482932\) & 13.89 & 1. 51 \\
\hline 475 & \(\rho\) Urs. Maj. & 5 & 5209.8 & 5.499 & + \(68043^{6}\) & 13.66 & 2.68 \\
\hline 476 & a Cancri & 4 & 85211.8 & +3.287 & + 121808 & 13.73 & 1. 02 \\
\hline 1115 & T.Y.C. 1879, S.P. . & 6-5 & 205246.4 & -2. 535 & + 995247 & 13.70 & 5.83 \\
\hline 477 & 10 Urs. Maj. & 4 & 85310.2 & \(+3.914\) & + 421413 & \({ }^{14.03}\) & 1. 35 \\
\hline 478 & Groom. 1480 & 6 & 53 58. 1 & 9.416 & +811715 & 13.80 & 6.60 \\
\hline 479 & Groom. 1501 & 6 & 5534.6 & 4.440 & + 5444 ro & 13.87 & 1.73 \\
\hline 480 & \(\kappa\) Urs. Maj. & 3-4 & 5546.0 & 4. 119 & + 473636 & 14.02 & 1. 48 \\
\hline 481 & \(\nu\) Cancri & 6-5 & 5600.8 & 3.518 & +245416 & 13.95 & 1. 10 \\
\hline 482 & B. A. C. 3097 . & 5 & 85912.9 & +3.846 & \(+385439\) & -14. 19 & 1. 29 \\
\hline 483 & \(\sigma^{2}\) Urs. Maj. . & 5 & 90015.7 & 5.361 & + 6736 or & 14.25 & 2.62 \\
\hline 484 & \(\kappa\) Cancri & 5 & or 31.1 & 3.256 & + 110749 & 14.28 & 1.02 \\
\hline 485 & \(\xi\) Cancri & 5 & 0243.8 & 3.408 & +223036 & 14.34 & 1.08 \\
\hline 486 & B. A. C. 3121 & 5-6 & 0300.1 & 2.638 & - 252342 & 14.37 & 1. 11 \\
\hline 487 & \(\lambda\) Argas & 3 & 90345.9 & +2. 202 & 425806 & -14.37 & I. 37 \\
\hline 488 & e Mali & 6-5 & 0504.0 & 2. 538 & - 295350 & 14.50 & 1. 15 \\
\hline 489 & 36 Lyncis & 5-6 & 90616.8 & +3.949 & + 434126 & 14.62 & 1. 38 \\
\hline 1126 & 77 Draco. S. P. . & 6 & 210745.7 & . 104 & +102 2025 & 14.69 & 4.68 \\
\hline 490 & \(\theta\) Hydre & 4 & 90822.9 & +3.126 & + 24755 & 14.96 & 1.00 \\
\hline 491 & \(3^{8}\) Lyncis & 4 & 9 II 41.0 & +3.750 & +371720 & -14.98 & 1. 26 \\
\hline 492 & \(\beta\) Argas & 1-2 & 1156.1 & 0. 683 & -6914 \(3^{6}\) & 14.78 & 2.82 \\
\hline 493 & 83 Cancri & 6 & 1233.0 & 3.315 & + \(18113{ }^{1}\) & 15.08 & 1.05 \\
\hline 494 & - Argas & 2 & 1400.5 & 1. 601 & - 584734 & 15.00 & 1.93 \\
\hline 495 & \(a\) Lyncis. & 3-4 & 1402.8 & 3.673 & + 345243 & 15.04 & 1.22 \\
\hline 496 & h Mali & 6-5 & 91624.2 & +2. 654 & - 252837 & \(-15.05\) & 1. 11 \\
\hline 497 & \(\kappa\) Leonis & 5-4 & 1757.4 & 3. 509 & + 264035 & 15.30 & 1.12 \\
\hline 498 & B. A. C. 3207 . & 5-6 & 1813.9 & 2.606 & -28 2035 & 15.25 & 1. 14 \\
\hline 499 & * Argas & 3-2 & 1833.2 & x. 853 & 54 31 11 & 15.26 & 1.64 \\
\hline 500 & A Hydra & 6 & 91939.0 & 3. 004 & o & 15.37 & 1.00 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
\text { I885.0. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Declination, } \\
\text { I885.0. }
\end{gathered}
\] & Annual
Var. & Sec. \(\delta\) \\
\hline 501 & 1 Draconis & 4-5 & \[
\begin{aligned}
& \text { h. m. s. } \\
& 920 \quad 36.8
\end{aligned}
\] & \[
\begin{array}{r}
\text { s. } \\
+ \text { g. } 063
\end{array}
\] & \[
\begin{array}{r}
0 \quad \prime \prime \prime \\
+8 \mathrm{I} 4959
\end{array}
\] & \[
\left.\right|_{-15.42} ^{\prime \prime}
\] & 7.04 \\
\hline 502 & a Hydra. & 2 & 92156.2 & + 2.949 & - 80938 & 15.44 & 1. 01 \\
\hline 1141 & B.A.C.7504S.P. & 6 & 212223.0 & -11.044 & +932627 & 15.50 & 16.66 \\
\hline 503 & \(h\) Urs. Maj. & 3-4 & 92227.1 & + 4.795 & + 633350 & 15.46 & 2. 25 \\
\hline 504 & d Urs. Maj. & 5-4 & 2417.7 & 5.408 & \(+702005\) & 15.54 & 2.97 \\
\hline 505 & \(\theta\) Urs. Maj. & 3 & 92509.6 & + 4.044 & + 521203 & \(-16.20\) & 1. 63 \\
\hline 506 & \(\xi\) Leonis . & 6 & 92534.8 & 3. 239 & + 114830 & 15.76 & 02 \\
\hline 1144 & \(\beta^{2}\) Cephel, S. P. . & 3 & 212710.3 & 0. 796 & +109 \(5^{6} 39\) & 15.75 & 2.93 \\
\hline 507 & so Leo. Min. & 5 & 92710.6 & 3.694 & + 365426 & 15.77 & 1. 25 \\
\hline 508 & 33 Hydra & 6 & 2848.4 & 2. 997 & - 52411 & 16.00 & 1.00 \\
\hline 509 & 10 Leonis & 5-6 & 93108.3 & +3.170 & + 72103 & -15.97 & 1.01 \\
\hline 510 & 42 Lyncis . & 6 & 3110.7 & 3.786 & + 404519 & 15.97 & 1. \(3^{2}\) \\
\hline 5 II & Groom. 1564. & 6 & 3223.2 & 5. 235 & +694536 & 16.10 & 2.89 \\
\hline 512 & Groom. 1562 & 6 & 3336.3 & 7.452 & + 793946 & 16.10 & 5.57 \\
\hline 513 & 1 Hydre & 4-5 & 3359.0 & 3. 067 & - - 3718 & 16.20 & 1.00 \\
\hline 514 & - Leonis & 4-3 & 93500.7 & + 3.207 & + 102454 & \(-16.22\) & 1.02 \\
\hline 515 & \(\zeta\) Chamæleon. & 5 & 37 14.2 & - I. 541 & -8025 28 & 16.30 & 6.01 \\
\hline 516 & \(\psi\) Leonis . & 6 & 37 28.1 & + 3.274 & + 143249 & 16.32 & 1.03 \\
\hline 517 & \& Leonis . . & 3 & 93919.4 & 3.416 & +241811 & 16.40 & 10 \\
\hline 1156 & 11 Cephei, S. P. . & 5 & 2140 14. I & 0. 903 & +109 1305 & 16. 54 & 3.04 \\
\hline 518 & \(v\) Urs. Maj. & 4-3 & 94248.3 & + 4.324 & + 593442 & -16.75 & 1. 97 \\
\hline 519 & \(v\) Arges . & 4-3 & 4413.6 & 1. 503 & -643219 & 16.65 & 2.33 \\
\hline 520 & - Urr. Maj. & 5-4 & 4416.5 & 4. 125 & + 543547 & 16.66 & 1. 73 \\
\hline 52 I & 6 Sextantis & 6 & 4526.4 & 3.025 & - 34218 & 16.70 & 1. 00 \\
\hline 522 & \(\mu\) Leonis. & 4 & 4613.3 & 3.423 & +263253 & 16.79 & 1. 12 \\
\hline 523 & B. A. C. 3385 . & 6 & 94748.8 & + 2.667 & -264740 & \(-16.71\) & 1. 12 \\
\hline 524 & Groom 1586. & 6-7 & 4804.7 & 5.494 & + 732532 & 16.86 & 3. 50 \\
\hline 525 & B. A. C. 3398 . & 6 & 50 20. I & 3. 186 & + 92739 & 16.89 & . 01 \\
\hline 526 & 19 Leo. Min. & 5 & 95038.2 & 3. 695 & + \(4^{1} 3^{6} 08\) & 16.96 & I. 34 \\
\hline 1166 & 79 A Draco. S.P. & 6-7 & 215126.0 & 0. 731 & \(+1065030\) & 17.01 & 3.45 \\
\hline 527 & \(\nu\) Leonis & 5 & 95202.3 & + 3.233 & +125936 & -17.04 & 1.02 \\
\hline 528 & \(\pi\) Leonis . & 5 & 54 08. I & 3. 175 & + 83544 & 17. 13 & 1.01 \\
\hline 529 & P. \(I X, 229\). & 6 & 5658.7 & 4.048 & + 542649 & 17.27 & 1. 72 \\
\hline 530 & B. A. C. 3428 . & 6 & 5659.0 & 2.917 & - 104427 & 17.23 & 1.02 \\
\hline 53 I & \(\vartheta^{2}\) Hydre. & 5 & 95931.4 & 2.922 & - 123025 & 17.36 & 1.02 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
\text { I885.0. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & \(\eta\) & & \[
\begin{gathered}
\text { h. m. s. } \\
\text { 10 o1. } 03.7
\end{gathered}
\] & 5.
+3.279 & \(\begin{array}{llll}0 & 11 \\ 7 & 19 & 23\end{array}\) & 17 17.41 & 1.05 \\
\hline & \({ }^{7}\) L Leonis & 1-2 & 0214.8 & +3.279
3.201 & 1
+123144 & & 1.02 \\
\hline 534 & \(\lambda\) Hydr & 4-5 & 0458.9 & 2. 924 & - 114710 & 17.69 & 1.02 \\
\hline 535 & 34 Leoni & 6 & 100527.1 & 3. 235 & +135521 & 17.63 & 1.03 \\
\hline 1180 & 24 Cep & 5-4 & 220735.6 & 1. 166 & +108 1757 & 17.68 & 3.20 \\
\hline 536 & B. A. C. 3488 & 6 & 100801.9 & +2.745 & \(-262720\) & \(-17.23\) & 1. 12 \\
\hline 537 & 32 Urs. Maj. & 6 & 0940.3 & 4.426 & \(+654053\) & 17.81 & 2.43 \\
\hline 538 & \(\lambda\) Urs. Maj. & 3-4 & 1009.4 & 3. 642 & + 432917 & 17.86 & 1. 38 \\
\hline 539 & \(\zeta\) Leon & 3 & 1017.5 & 3. 346 & + 235924 & 17.79 & I. 09 \\
\hline 540 & 22 Sextantis & 6 & 1155.0 & 2. 981 & - 72941 & 17.88 & 1. OI \\
\hline 541 & B. A. C. 3495 & 6-5 & 10 1246.8 & \(+9.664\) & \(+845007\) & \(-17.95\) & 11. 11 \\
\hline 542 & \(\gamma^{1}\) Leonis & 2 & 1337.9 & 3. 316 & + 202521 & 18.08 & 1.07 \\
\hline 543 & \(\mu\) Urs. Maj. & 3 & 15 28. 5 & 3. 596 & + 420438 & 18.00 & I. 35 \\
\hline 544 & 30 Urs. Ma & 5 & 1549.6 & 4. 395 & +660851 & 18.03 & 2.47 \\
\hline 545 & 30 Ca & 5 & 1657.4 & 7.868 & \(+830834\) & 18.07 & 8. 38 \\
\hline 546 & \(\gamma\) Antlia & 6-7 & 101838.5 & +2.754 & \(-290359\) & \(-18.13\) & 1. 14 \\
\hline 547 & \(\mu\) Hydra & 4 & 2031.7 & 2.898 & \(-161510\) & 18. 30 & 1.04 \\
\hline 548 & \(\beta\) Leo. Min. & 4-5 & 2113.9 & 3.488 & + 371746 & 18. 33 & I. 26 \\
\hline 549 & \(a\) & 4-5 & 102153.6 & +2.745 & \(-302900\) & 18. 25 & 1. 17 \\
\hline 1195 & B.A.C.7851,S & 5-6 & \(\begin{array}{lll}22 & 22 & 19.3\end{array}\) & -3.939 & + 942817 & 18. 31 & 12.83 \\
\hline 550 & 36 Urs, Maj. & 5 & 102315.7 & +3.880 & + 563411 & -18. 32 & 1. 82 \\
\hline 551 & 29 Sextantis & 5-6 & 2338.4 & 2 & - 20902 & 18. 3 I & 1. 00 \\
\hline 552 & \(\delta\) Antiz . & 5 & 2417.9 & 2. 759 & \(-300108\) & 18. 33 & 1.17 \\
\hline 553 & 9 Draoonis. & 5 & 2517.9 & 5.275 & \(+7618 \mathrm{r} 7\) & 18. \(3^{8}\) & 4.22 \\
\hline 554 & \(\rho\) Leonis & 4 & 2645.4 & 3. 865 & + 95353 & 18.43 & 1. 01 \\
\hline 555 & 37 Urs, Maj. & 5 & 102744.8 & +3.907 & \(+574028\) & -18.4I & 1. 87 \\
\hline 556 & 48 Leonis . . & \(6-5\) & 102848.0 & 3. 133 & + 73243 & 18.44 & 1. OI \\
\hline 1203 & 226 Cophel, S. & 5-6 & 223015.1 & 1. 079 & +1042158 & 18. 53 & 03 \\
\hline 557 & \$ Hyara. & 6 & 10 \(3^{\circ} 39.8\) & 2. 928 & -1544 57 & 18. 56 & 1.04 \\
\hline 558 & 37 Leo. Mifn. & 5-4 & 103215.0 & 3. 396 & + 323423 & 18.60 & 1. 18 \\
\hline 1205 & 31 Cephed, S.P. & 5 & 223255.7 & \(+1.488\) & +106 5713 & -18.64 & 3.43 \\
\hline 559 & \$ Hydra & 5 & 103258.8 & 2.919 & - 161647 & 18. 59 & 1. 04 \\
\hline 560 & 35 Urat Maj. (H). & 5 & 34 49.3 & 4. 386 & + 694614 & 18.68 & 2.89 \\
\hline 56 I & 33 Sextantis & \(6-7\) & 35 33.1 & 3.051 & - 10659 & 18.81 & 1.00 \\
\hline 562 & 34 Sextantis & \(6-7\) & 10 3641.2 & 3. 100 & + 41101 & 18.73 & I. 00 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
B. N. \(H^{42} G^{6.3 .1}\) W. \\
A. E. C. B. N. H \({ }^{4.1}\) \\
B. \(\mathrm{H}^{4.32} \mathrm{G}^{3} \mathrm{R}\). \\
N. G6.3. R. \\
B. \(\mathrm{H}^{4} \mathrm{G}^{5.4 .3 .9} \mathrm{~W} . \mathrm{Rd}\).
\end{tabular} & \[
\begin{array}{r}
532 \\
533 \\
534 \\
535 \\
1180
\end{array}
\] & ["Dist. attendant." Star 8-5 mag.: \\
\hline \(\mathrm{H}^{\mathbf{8}}\) W. M. . A. N. \(\mathrm{H}^{4.2} \mathrm{G}^{5.481} \mathrm{~W}\). A. C. B. \(H^{4.38} G^{5.3 .3 .1}\). B. G \({ }^{5.3}\) R. . \(\mathrm{H}^{5.2} \mathrm{G}^{5.1} \mathrm{R}\). &  &  \\
\hline \begin{tabular}{l}
Gs.39.1 W. Rd. R. . \\
A. E. C. N. H \({ }^{4.3 .2 .1}\) G. . \\
B. \(\mathrm{H}^{4.9} \mathrm{G}^{\mathrm{b} .42 .1} \mathrm{Rd}\). \\
B. \(G^{\alpha, 4,3}\) W. Rd. R. \\
B. \(H^{3.1} G^{6.2 .1}\) W. R.
\end{tabular} & 541
542
543
544
545 &  \\
\hline \begin{tabular}{l}
\(\mathrm{H}^{4.2} \mathrm{~W}\). \\
A. E. B. \(\mathrm{H}^{3.2} \mathrm{G}^{5.43 .2}\) \\
A. B. \(H^{4.2} G^{6.4 .3}\) W. \\
A. C. B. \(H^{12}\) Gas 3.1 \\
\(\mathrm{H}^{3} \mathrm{G}^{0.4 .88}\) W. Rd. R.
\end{tabular} & \[
\begin{array}{r}
546 \\
547 \\
548 \\
549 \\
1195
\end{array}
\] & 31 Leo. Min. \\
\hline \begin{tabular}{l}
B. G.42:1 W. Rd. . \(G^{s}\) Bk. R. . \(\mathrm{H}^{3} \mathrm{~W}\). . \\
A. B. N. \(\mathrm{H}^{129} \mathrm{G}^{6.4}\) \\
A. E. C. B. N. \(\mathrm{H}^{\mathbf{4 3 . 2 1}}\)
\end{tabular} & \[
\begin{aligned}
& 550 \\
& 551 \\
& 552 \\
& 553 \\
& 554
\end{aligned}
\] & Brad. 1446. \\
\hline B. G5.41 W. Rd. R. N. \(H^{4.2} G^{5.4 .1}\) W. A. N. \(\mathrm{H}^{42.2} \mathrm{C}^{5.4} \mathrm{~N}\). \(H^{48} \mathrm{G}^{4}\) R. . Gss W. R. . & \[
\begin{array}{r}
555 \\
556 \\
1203 \\
557 \\
558 \\
\hline
\end{array}
\] & Var. \\
\hline \begin{tabular}{l}
B. \(\mathrm{H}^{4} \mathrm{G}^{\text {®.4.3.1 }} \mathrm{W}\). Rd. . \(\mathrm{H}^{\mathbf{s}} \mathrm{G}^{\mathbf{4 s}} \mathrm{W} . \mathrm{R}\). \\
B. \(\mathrm{H}^{4.3} \mathrm{G}^{\mathrm{b}, 1} \mathrm{~W} . \mathrm{Rd}\). \\
B. Gse W. R. . \\
N. G6.ag.1 W. \(\mathrm{O}^{\text { }}\) Rd.
\end{tabular} & \[
\begin{array}{r}
1205 \\
559 \\
560 \\
561 \\
562
\end{array}
\] & Piaz. X, 126. \(K=\) var. \\
\hline
\end{tabular}
S. Ex. 29-54

FIELD CATALOGUE OF 1278 time and CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{aligned}
& \text { Right Ascen., } \\
& \text { I885.o. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Declination, } \\
& \text { I885.0. }
\end{aligned}
\] & \begin{tabular}{l}
Annual \\
Var.
\end{tabular} & Sec. \(\delta\) \\
\hline & & & h. m. s. & 5. & \begin{tabular}{r}
0 \\
\hline \(1 \prime \prime\) \\
+4648
\end{tabular} & \[
\begin{gathered}
11 \\
-18.82
\end{gathered}
\] & \\
\hline 563 & B. A. C. 3665 & 6 & 103647.2 & \(+3.553\) & \(+464830\) & & . 46 \\
\hline 564 & 41 Leo. Min. & 6-5 & \(\begin{array}{lll}37 & 09.7\end{array}\) & 3.272 & + 234724 & 18.73 & I. 09 \\
\hline 565 & \(\theta\) Argus & 3-4 & \(3^{8} 51.2\) & 2. 120 & \(-634733\) & 18.82 & 2.25 \\
\hline 566 & 42 Leo. Min. & 5-4 & 39 28. 1 & 3.350 & + 311714 & 18.87 & 1.17 \\
\hline 567 & 37 Sextantis & 6 & 4006.5 & 3. 129 & + 65844 & 18.89 & 1.01 \\
\hline 568 & 7 Argus & Var. & 104036.1 & +2.313 & - 590448 & -18.87 & 1. 94 \\
\hline 569 & If Hydre & 6 & 4114.0 & 2. 935 & - 16 4x 26 & 18.91 & 1. 04 \\
\hline 570 & \(\mu\) Arguts & 3-4 & 4149.5 & 2. 564 & -48 \(4^{8} 47\) & 18.98 & 1. 51 \\
\hline 571 & \(l\) Leonis & 5 & 4312.8 & 3. 159 & + 110912 & 18.97 & 1. 02 \\
\hline 572 & \(v\) Hydræ & 4-3 & 4357.0 & 2. 950 & - 153534 & 18.96 & 1.04 \\
\hline 573 & 41 Sextartis & 5-6 & 10 4432.0 & \(+3.011\) & - 81719 & \(-19.00\) & 1. OI \\
\hline 574 & \(\delta^{2}\) Chamaleon. & 5 & 10 44 41. 3 & 0.615 & -795602 & 19.00 & 5.72 \\
\hline 1218 & C Cephai, S.P. . & 4-3 & 224535.2 & 2. 121 & +114 2416 & 18.87 & 2.42 \\
\hline 575 & 46 Leo. Min. & 4 & 104652.7 & 3.371 & + 345005 & 19.28 & 1.22 \\
\hline 576 & \({ }_{\text {L }}\) Urs. Maj. & 5 & 104721.4 & +3.476 & \(+434806\) & 19:09 & 1. 38 \\
\hline 1220 & 34 Cephei, S. \(P^{p}\) & 5 & 224753.5 & \(-0.083\) & +972723 & -19. 12 & 7.71 \\
\hline 577 & 54 Leoni & 4-5 & 104923.1 & +3.260 & + 25.2146 & 19.10 & 11 \\
\hline 578 & Groom. 1706. & 6-5 & 5043.3 & 4.992 & +78.2309 & 9. 19 & 4.97 \\
\hline 579 & B. A. C. 3755 & 5-6 & 5121.6 & 2.78I & \(-363113\) & 19.3I & I. 24 \\
\hline 580 & 47 Urs. Maj & 6-5 & 53-01.7 & 3. 380 & \(+410239\) & 19. 11 & I. 33 \\
\hline 581 & a Crateris. & 4 & 105410.3 & +2.919 & - 17 41 It & -19.09 & 1.05 \\
\hline 582 & \(d\) Leonis & 5 & 5437.3 & 3. 100 & + 41404 & 19.27 & , \\
\hline 583 & \(\beta\) Urs. & 2-3 & 105453.9 & +3.662 & \(+5659.54\) & 19.22 & 1. 84 \\
\hline 1128 & 36 Cophoi, S. P. & 5-4 & 225517.1 & -0. 243 & + 961610 & 19. 25 & 9. 16 \\
\hline 584 & a Urs. Maj. & 2 & 10 5637.4 & +3.751 & \(+622218\) & 19.36 & 2. 16 \\
\hline 585 & \(\chi\) Leonis & 5 & 1059.05 .1 & +3.098 & + 75727 & -19.39 & 1. OI \\
\hline 586 & \(\eta\) Octantis & 6 & II 0004.6 & -0.272 & -83 \(583^{8}\) & 19.41 & 9. 53 \\
\hline 587 & ps Leomis & 6-5 & O1 02.2 & +3.061 & \(+23446\) & 19.48 & 1.00 \\
\hline 588 & \(\psi\) & 3-4 & 1 r 031 fr 8 & 3.395 & \(+450719\) & & 42 \\
\hline 1234 & \(\pi\) Cophet, 8.1 P. & 5 & 230414.5 & 1.888 & +105 1403 & 19.41 & 3.81 \\
\hline 589 & \(\beta\) Crateris & 4 & 110600.2 & +2.946 & -22 1154 & -19.62 & 1. 08 \\
\hline 590 & Groom. 1747 & 7-6 & 0739.9 & 4.623 & +785608 & 19.54 & 5.21 \\
\hline 591 & d Leonis & 2-3 & 0759.5 & 3. 199 & + 210913 & 19.68 & 1:07 \\
\hline 592 & \(\theta\) Leonis & 3-4 & 0812.3 & 3. 156 & +160329 & 19.6I & 1. 04 \\
\hline 593 & \(n\) Leonis & 6-5 & II 0950.9 & 3. 144 & +135603 & 19.60 & 1.03 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., I 885.0 . & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 111 & \(1 /\) & \\
\hline 594 & Groom. 1757 & 6 & 111012.8 & +3.409 & + 500614 & -19.59 & 1. 56 \\
\hline 595 & \(\xi^{1}\) Urs. Maj. & 4-3 & 1202.6 & 3. 212 & +32 10 34 & 20.21 & 1. 18 \\
\hline 596 & \(\nu\) Urs. Maj. & 3-4 & 1216.1 & 3. 259 & + 334317 & 19. 57 & 1.20 \\
\hline 597 & d Crateris & 3-4 &  & 2. 996 & -14 1423 & 19.46 & 1.03 \\
\hline 1241 & - Cephel, S. P. . & 6-5 & 231354.4 & 2.442 & +1123103 & 19.67 & 2.6I \\
\hline 598 & \(\sigma\) Leonis & 4 & 111512.4 & \(+3.096\) & \(+63934\) & -19.68 & 1. OI \\
\hline 599 & Groom. 1771. & 6 & 1600.7 & 3.603 & +645735 & 19.66 & 2. 36 \\
\hline 600 & \(\lambda\) Crateris & 6-5 & 1739.8 & 2. 969 & - 180853 & 19.76 & 1.05 \\
\hline 601 & ¢ Leonis & 4-3 & 1755.8 & 3. 130 & + II 09 45 & 19.80 & 1. 02 \\
\hline 602 & \(\gamma\) Crate & 4 & 1908.3 & 2.991 & -170308 & 19.73 & 1.05 \\
\hline 603 & B. A. C. \(3^{885}\) & 5 & 111927.6 & \(+3.435\) & + 562851 & -19.68 & 1.81 \\
\hline 604 & 83 Leonis & 7 & 2056.0 & 3.036 & + \(33^{824}\) & 19. 54 & 1.00 \\
\hline 605 & 7 Leonis & 5 & 22 01. 4 & 3.086 & \(\underline{+} 2923\) & 19.75 & 1.00 \\
\hline 606 & 202 Camelop. & 6 & 2342.4 & 4.480 & + 81 4536 & 19.78 & 6.98 \\
\hline 607 & 58 Urs. Maj. & 6 & 2416.6 & 3. 266 & \(+434816\) & 19.74 & 1. 39 \\
\hline 608 & e Leonis & 5-4 & II 2426.3 & \(+3.065\) & - 22209 & \(-19.83\) & 1.00 \\
\hline 609 & \(\lambda\) Draconis & 3-4 & 2433.9 & 3.626 & +695756 & 19.84 & 2.92 \\
\hline 610 & \(\xi\) Hydrx & 4 & 112720.8 & +2.940 & - 311318 & 19.88 & 1.17 \\
\hline 1251 & 39 Coph & 6 & 232750.2 & -0.059 & \(+931937\) & 19.87 & 17.23 \\
\hline 611 & B. A. C. 3934 & 6 & 112854.5 & \(+2.917\) & - 321323 & 19.10 & 1. 18 \\
\hline 612 & \(v\) Leonis & 5-4 & 113103.6 & \(+3.071\) & O Il 20 & \(-19.86\) & 1. 00 \\
\hline 613 & 4 Crateris. & 6-5 & 1132.49 .7 & 3.047 & - 123409 & .19.81 & 1. 02 \\
\hline 1258 & \(\gamma\) Cephei, S. P. & 3-4 & \(23 \quad 3437.9\) & 2.411 & +1030034 & 20.07 & 4.40 \\
\hline 614 & 62 Urs. & 6 & 113535.2 & 3. 140 & + 322257 & 19.91 & 1. 18 \\
\hline 615 & 3 D & 5-6 & 3603.1 & 3.402 & \(+672253\) & 19.91 & 2.60 \\
\hline 616 & B. A. C. 3973 . & 6-7 & 113731.7 & +3. 193 & + 422139 & -19.97 & 1. 35 \\
\hline 617 & \(\nu\) Virginis & 4-5 & 3956.9 & 3.085 & + 71025 & 20. 19 & 1. OI \\
\hline 618 & \(\chi\) Urs. Maj & 4 & 3958.5 & 3.192 & \(+482500\) & 19.98 & I. 51 \\
\hline 619 & \(A^{1}\) Virginis & 6-5 & 114200.4 & 3.084 & + 85304 & 20.06 & 1. 01 \\
\hline 1266 & 41 Cephei, S. P. . & 6 & 234224.9 & 2. 824 & +1124956 & 19.98 & 2. 58 \\
\hline 620 & \(\beta\) Leonis & 2 & II 4311.6 & +3.064 & +151253 & -20.12 & 1. 04 \\
\hline 621 & \(\beta\) Virginis & 3-4 & 44 42.3 & 3. 125 & + 22445 & 20.29 & 1.00 \\
\hline 2 & Groom. 1828 & 7 & 4508.4 & 3. 303 & +692829 & 20.01 & 2.85 \\
\hline 623 & Groom. 1830 & \(6-7\) & 4620.9 & 3.481 & + 383238 & 25.72 & 1. 28 \\
\hline 624 & \(\gamma\) Urs. Maj. & 2-3 & II 4746.8 & 3. 184 & \(+542003\) & 20.03 & 1.72 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
B. G4 W. Rd.R. \\
C. B. \(\mathrm{H}^{4.8} \mathrm{G}^{5.3 .2} \mathrm{~W}\). \\
A. B. G. \({ }^{3.2}\) W. R. \\
A.E.C.B.N. \(\mathrm{H}^{4.32 .1} \mathrm{G}\) \\
A. N. G \({ }^{6.4 .3 .1} \mathrm{H}^{4.3}\) W.
\end{tabular} & \[
\begin{array}{r}
594 \\
595 \\
596 \\
597 \\
1241
\end{array}
\] & \[
\left\{\begin{array}{c}
{\left[+0^{2} .20:+1^{\prime \prime} .2 \mathrm{G}^{5}\right.} \\
\xi^{2}=4-3 \text { mag. } \\
\mathrm{G}^{2}=5 \text { and } 5-6 \text { mags. : } \\
\text { [Period 61 years. }
\end{array}\right.
\] \\
\hline \begin{tabular}{l}
B. N. \(\mathrm{H}^{48} \mathrm{G}^{6.45 .21} \mathrm{~W}\). \\
B. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{a}_{4}} \mathrm{~W}\). Rd. . : \\
\(\mathrm{H}^{4.2} \mathrm{G}^{4}\) R. . . . \\
B. N. G \({ }^{8.32,1}\) W. \(\mathrm{O}^{1} \mathrm{Rd}\). \\
B. \(\mathrm{H}^{4.8} \mathrm{G}^{49}\) R.
\end{tabular} & \begin{tabular}{l}
598 \\
599 \\
600 \\
601 \\
602
\end{tabular} & \[
\begin{aligned}
& {\left[++^{\infty} .2:+0^{\prime \prime} .8(1870)\right. \text { yl.bl. }} \\
& \text { Comp. }=71 / 2 \text { mag.: }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\mathrm{H}^{8} \mathrm{G}^{3}\) Rd. R. . . . \\
C. N. G \({ }^{3.21}\) W. R. . \\
A. E. \(\mathrm{H}^{4.3 .8}\) N. \(\mathrm{G}^{5.4 .3 .2 .1}\) \\
\(H^{3,1} \mathrm{G}^{5} \mathrm{~W} . \mathrm{Rd}\). \\
B. \(G^{3}\) W. Rd. R. .
\end{tabular} & \begin{tabular}{l}
603 \\
604 \\
605 \\
606 \\
607
\end{tabular} & \begin{tabular}{l}
Piaz. XI, 59. [-25/'.6. \\
Foll. * 7-8 mag. +14.1 \\
Foll. \(x^{8} 8\) mag. \(+\mathrm{I}^{4} .0\). \\
Groom. 1782 [-1/32 \({ }^{\prime \prime}\).8.
\end{tabular} \\
\hline N. \(\mathrm{H}^{9} \mathrm{G}^{4.31}\) W. \(\mathrm{O}^{1}\) A. E.C.B. N. \(\mathrm{H}^{48}\) A. C. B. \(\mathrm{H}^{48} \mathrm{G}^{6.33}\) C. \(\mathrm{H}^{3.1} \mathrm{G}^{5.43 .1} \mathrm{Rd}\). R. \(\mathrm{H}^{4.9} \mathrm{G}^{5.3 .2}\). & \[
\begin{array}{r}
608 \\
609 \\
610 \\
1251 \\
611
\end{array}
\] & \[
H^{2}=\varepsilon:=87 \text { Leonis. }
\]
\[
\begin{aligned}
& \mathrm{C}=8213 \text { B. A. C. } \\
& =20 \text { Crat. : large } \mu \text { and } \mu^{\prime} . \\
& *=20 \text { Crat., \&., \&c. }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
A. E. C. B. N. H 4.3 .1 \(\mathrm{H}^{2} \mathrm{G}^{4}\) W.R. A.E.C.B.N. \(\mathrm{H}^{4.3,9} \mathrm{G}\) \(\mathrm{H}^{9} \mathrm{G}^{4}\) R. . \\
B. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{s}, 43}\) W. Rd.
\end{tabular} & \[
\begin{array}{r}
612 \\
6 \mathrm{r} 3 \\
1258 \\
6 \mathrm{I} 4 \\
6 \mathrm{r} 5
\end{array}
\] & \\
\hline \begin{tabular}{l}
\(\mathrm{H}^{* 8} \mathrm{G}^{6.4}\) Rd. . \\
N. G643.1 W. \(\mathrm{O}^{1}\) R. \\
A. B. \(\mathrm{H}^{4.3,8} \mathrm{G}^{8,2,1}\) W. \\
\(\mathrm{H}^{2}\) G5.3. W. R. \\
B. H4 GA4s W. Rd.
\end{tabular} & \[
\begin{array}{r}
616 \\
6 \mathrm{r} 7 \\
618 \\
6 \mathrm{I} 9 \\
1266
\end{array}
\] &  \\
\hline A \({ }^{1}\) E. C. B. N. H. 2.1 C. B. N. \(\mathrm{H}^{4.21} \mathrm{G}^{2 / 43.21}\) Rd. C. Gr.2.3.21 Rd. R. . A.E.C.B.N. \(H^{* 38.1} G\). & \begin{tabular}{l}
620 \\
621 \\
622 \\
623 \\
624
\end{tabular} & \begin{tabular}{l}
[ \(1^{4} .4+1^{\prime} 34^{\prime \prime}\) Burn. 1878. \\
(Comp. \(=13 \mathrm{mag} .:\) \\
\(\hat{\mathrm{Wb}} .=8\) mag. \\
Remarkably large \(\mu\) and \(\mu^{1}\).
\end{tabular} \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
\text { 1885.0. }
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & \(\mathrm{h}, \mathrm{m}\). s. & +2.86I & - 111 & /1 & \\
\hline 1272 & Gr.4163, S. P. & 7-6 & 234914.9 & +2.86I & +106 13 47 & \(-20.02\) & \(3 \cdot 58\) \\
\hline 625 & - Leonis & 6 & 11 4945.6 & 3.089 & +161713 & 19.97 & 1.04 \\
\hline 626 & B. A. C. 4037 & 6 & 5112.2 & 2. 983 & - 324116 & 21. 77 & I. 19 \\
\hline 627 & b Virginis & 6-5 & 115403.5 & 3.074 & + 41744 & 20.07 & 1.00 \\
\hline 1275 & 309 Cephei, S. P. & 6-7 & 235406.7 & 2. 614 & +935602 & 20.03 & 14.58 \\
\hline 628 & \(\pi\) Virginis & 4-5 & 115458.8 & +3.074 & + 71522 & \(-20.02\) & 1.01 \\
\hline 629 & 67 Urs. Maj. & 5-6 & 5616.2 & 3.064 & \(+434038\) & 20.01 & 1. \(3^{8}\) \\
\hline 630 & B. A. C. 4070 & \(6-7\) & 5856.8 & 3.081 & +861327 & 20.06 & 15.19 \\
\hline 631 & - Virginis & 4 & 59 21.1 & 3.058 & + 92218 & 20.02 & 1. OI \\
\hline 632 & Groom. 1852. & 6 & II 5923.5 & 3. \(133^{6}\) & + 773256 & 20. 17 & 4. 64 \\
\hline 633 & a Corvi & 4-5 & 120229.0 & \(+3.083\) & - 240514 & -20.10 & 1. 10 \\
\hline 634 & \(\varepsilon\) Corvi & 3 & 0412.7 & 3.077 & - 215848 & 20.04 & 1.08 \\
\hline 635 & 5 Coma & 6 & 0618.4 & 3.060 & \(\div 211057\) & 20.03 & 1.07 \\
\hline 636 & 4 Draconis & 5-4 & 0648.3 & 2.891 & + 781519 & 20.02 & 4.91 \\
\hline 637 & 1 Can. & 6 & 09 O1. 3 & 3.005 & + 540428 & 20.07 & 1.70 \\
\hline 638 & d Crucis & 3-4 & 120902.7 & \(+3.150\) & \(-580634\) & \(-20.08\) & 1.89 \\
\hline 639 & \(\delta\) Urs. Maj. & 3-4 & og 44.0 & 3.000 & \(+574016\) & 20.09 & 1. 87 \\
\hline 640 & y Corvi & 2-3 & 120953. & 3.079 & -1654 12 & 20.02 & 1.05 \\
\hline 8 & Gr. 29, S. P. & 6-7 & - 09 & 3.300 & \(+103.3948\) & 20.01 & 4.23 \\
\hline 641 & 2 Can. & 5-6 & 121021.7 & 3.024 & + 4118 ol & 20.07 & 1.33 \\
\hline 642 & B. A. C. 4128 & 5-6 & \(12 \quad 1043.4\) & \(+3.042\) & + 334214 & \(-20.03\) & 1.20 \\
\hline 643 & \(\beta\) Chamæleon. & 5 & 1136.2 & 3.365 & \(-784024\) & 19.98 & 5.09 \\
\hline 644 & 5 Urs. Min & 6 & 1329.4 & 1.831 & \(+870430\) & 20.0 & 19.60 \\
\hline 645 & \(\eta\) Virginis. . & 3-4 & 1401.4 & 3.069 & -. 0 ol 40 & 20.0 & 1.00 \\
\hline 646 & 6 Urs. Min. & 6 & 1418.8 & 0.08I & + 882015 & 19.95 & 34.47 \\
\hline 647 & 12 Coma & 5 & 121643.5 & \(+3.023\) & + 262904 & -20.00 & 1.12 \\
\hline 648 & 13 Coma & 5 & 121832.5 & 3.017 & + 264410 & 20.00 & 1. 12 \\
\hline 17 & 86, S. P. & 6 & 0 & 3. 702 & +100 3505 & 19.95 & 5.44 \\
\hline 649 & 6 Can. Ven. & 5-6 & 122011.0 & 2.969 & + 393924 & 20:00 & 1. \(3^{\circ}\) \\
\hline 650 & \(a^{1}\) Crucis & I & 2011.7 & 3. 269 & - 622742 & 20.02 & 2. 16 \\
\hline 651 & \(\gamma \operatorname{Comar}\) & 4-5 & 122112.3 & +2.997 & + 285428 & \(-20.06\) & 1. 14 \\
\hline 652 & \(\delta^{8}\) Corvi & 2-3 & 2355.0 & 3. 105 & \(-155231\) & 20. 10 & 1.04 \\
\hline 653 & 20 Comæ & 6 & 2356.6 & 3.021 & + 213159 & 19.96 & 1.08 \\
\hline 654 & 74 Urs. Maj. . & 6 & 2435.0 & 2. 828 & + 590219 & 19.84 & 1.94 \\
\hline 655 & \(\gamma\) Crucis . & 2 & 122447.5 & 3.290 & - 562807 & 20.24 & 1.81 \\
\hline
\end{tabular}

FIELD CATALOGUE OF \(1 \boldsymbol{2} \boldsymbol{7} 8\) TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
A. N. \(H^{43.8} \mathrm{G}^{6.43}\) \(\mathrm{H}^{2} \mathrm{G}^{6.4}\) R. . \(\mathrm{H}^{2} \mathrm{~W}\). \\
N. \(\mathrm{H}^{4.3 .2} \mathrm{G}^{8.4 .3 .9 .1} \mathrm{O}^{1}\) \(\mathrm{H}^{2} \mathrm{G}^{23} \mathrm{Rd}\). R.
\end{tabular} & \[
\begin{array}{r}
1272 \\
625 \\
626 \\
627 \\
1275
\end{array}
\] & Large \(\mu\) and \(\mu^{1}\). \\
\hline A. E.C. N. \(\mathrm{H}^{3} \mathrm{G}^{6.4 .2 .1}\) \(\mathrm{H}^{4.2} \mathrm{G}^{3,1}\) W. Rd. . . \(H^{3} \mathrm{G}^{813.2}\) W. Rd. R. . A. C. B. N. \(\mathrm{H}^{432} \mathrm{G}^{5}\) B. \(\mathrm{H}^{4} \mathrm{Rd}\). & \[
\begin{aligned}
& 628 \\
& 629 \\
& 630 \\
& 631 \\
& 632
\end{aligned}
\] & Groom. 1850. \\
\hline \begin{tabular}{l}
N. \(\mathrm{H}^{4.2} \mathrm{G}^{3}\) W. \(\mathrm{O}^{1}\) R. . A.E.C.B. \(\mathrm{H}^{4.3 .2 .1} \mathrm{G}^{6.4 .2}\) \(\mathrm{G}^{4}\) R. . \\
A. B. N. \(\mathrm{H}^{43.2} \mathrm{G}^{\text {8.43.1 }}\). \(H^{2} \mathrm{G}^{\boldsymbol{6}}\) Bk. Rd. R. S. .
\end{tabular} & \[
\begin{aligned}
& 633 \\
& 634 \\
& 635 \\
& 636 \\
& 637
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
\(\mathrm{O}^{1} \mathrm{M} . \mathrm{Gi}\). . \\
B. G \(\mathrm{G}^{6.1}\) W. Rd. R.S. \\
A. B. N. \(\mathrm{H}^{4.32} \mathrm{G}^{4.2} \mathrm{~W}\). \\
B. \(\mathrm{H}^{4} \mathrm{G}^{5,43}\) W. Rd. R. \\
A. B. \(\mathrm{H}^{3} \mathrm{G}^{3.2 .1}\) Rd. R.
\end{tabular} & \[
\begin{array}{r}
638 \\
639 \\
640 \\
8 \\
64 \mathrm{I}
\end{array}
\] & \[
\text { Comp. }=9 \text { mag. }\left[-3^{\prime \prime} \cdot 5 .\right.
\] \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{4.3}\) W. R. \(\mathrm{S}^{2.1}\) A. E. N. \(\mathrm{O}^{1}\) M. S. \(\mathrm{H}^{3.1} \mathrm{G}^{\mathbf{2 . 1}} \mathrm{W}\). Bk. Rd. A. E. C. B. N. \(\mathrm{H}^{4.32 .1}\) A. C. \(\mathrm{H}^{3.1} \mathrm{G}^{5.4 .3,21} \mathrm{~W}\). & \[
\begin{aligned}
& 642 \\
& 643 \\
& 644 \\
& 645 \\
& 646
\end{aligned}
\] & Brad. 1656.
\[
C=\text { B. А. С. } 4165 .
\] \\
\hline \begin{tabular}{l}
H43.9 G6.3 W. R. \(\mathrm{S}^{\mathbf{2}}\) \(H^{4.3 .2} \mathrm{G}^{3}\) R. \(\mathrm{S}^{\mathbf{2}}\) Gs.4.1 R. \\
B. \(\mathrm{G}^{2.1}\) Rd. R. . \\
A. E. C. N. \(\mathrm{O}^{1}\) M. Gi. .
\end{tabular} & \begin{tabular}{l}
647 \\
648 \\
17 \\
649 \\
650
\end{tabular} & \(\left[+1^{18} 1:-64^{\prime \prime}\right.\), yl. rd. Comp. \(=8\) mag. : \\
\hline \begin{tabular}{l}
\(\mathrm{H}^{4.38} \mathrm{C}^{6.43}\) R. S \({ }^{3}\). \\
A. E.C.B. H. \({ }^{4.38}\) G \(^{5.43 .32}\) \\
B. \(\mathrm{G}^{4}\) W. R. \\
B. \(\mathrm{G}^{4} \mathrm{Rd}\). R. \\
M.
\end{tabular} & \[
\begin{aligned}
& 651 \\
& 652 \\
& 653 \\
& 654 \\
& 655
\end{aligned}
\] &  \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{aligned}
& \text { Right Ascen., } \\
& \text { I885.0. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Declination, } \\
& \text { I } 885.0 \text {. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 11 & \(1 /\) & \\
\hline 656 & \(\eta\) Corvi & 5-4 & 122608.6 & +3.083 & \(-153332\) & -19.97 & 1. 04 \\
\hline 657 & \(\beta\) Can. Ven. & 4-5 & 2816.8 & 2.860 & +415856 & 19.62 & I. 35 \\
\hline 658 & \(\beta\) Corvi & 2-3 & 2820.8 & 3. 141 & - 224538 & 19.97 & 1.08 \\
\hline 659 & \(\kappa\) Draconis & 3-4 & 2834.3 & 2. 594 & + 702520 & 19.89 & 2. 98 \\
\hline 660 & 23 Comæ & 5 & 2907.6 & 3. 013 & \(+231545\) & 19.90 & I. 09 \\
\hline 661 & 24 Comæ (foll.) & 5 & 122921.7 & \(+3.013\) & + 190037 & \(-19.86\) & 1. 06 \\
\hline 662 & \(f\) Virginis & 6 & 123051.9 & 3.086 & - 51153 & 19.91 & 1.00 \\
\hline 28 & Gr. 100. S. P & 6 & 03108.4 & 4. 286 & \(+980835\) & 19.85 & 6. 58 \\
\hline 663 & \(\chi\) Virginis & 5 & 123318.6 & 3. 092 & -72146 & 19.89 & I. OI \\
\hline 664 & \(\gamma\) Centauri & \(3^{-2}\) & \(35 \quad 10.7\) & 3.280 & \(-481941\) & 19.85 & 1. \(5^{\circ}\) \\
\hline 665 & \(\gamma^{1}\) Virginis. & \(3^{-2}\) & 123550.0 & + 3.038 & - 04907 & \(-19.81\) & 1.00 \\
\hline 666 & 76 Urs. Maj. & 6 & \(3^{6} 32.3\) & 2.644 & \(+632040\) & 19.82 & 2.23 \\
\hline 667 & B. A. C. 4277 & 6 & 123743.6 & 3.076 & - 05637 & 19.78 \({ }^{8}\) & 1.00 \\
\hline 35 & 21. Cassiop., S. P. & 6 & - \(3^{8} 03.9\) & 3.850 & \begin{tabular}{ll}
+105 & \(3^{8}\) \\
\hline
\end{tabular} & 19.76 & 3.71 \\
\hline 668 & B. A. C. 4287 & 5-6 & 123943.4 & 3.832 & \(+460410\) & 19.73 & 1.44 \\
\hline 669 & \(\beta\) Crucis & 2 & 124100.8 & \(+3.460\) & - 590335 & -19.75 & 1.95 \\
\hline 670 & 35 Virginis . & 6 & 4200.1 & 3. 054 & + 41203 & 19.73 & 1.00 \\
\hline 671 & 30 Come . & 6 & 4341.2 & 2.928 & \(+281044\) & 19.66 & 1. 13 \\
\hline 672 & 31 Comæ. & 5-6 & 4606.0 & 2.939 & \(+281000\) & 19.65 & 1. 13 \\
\hline 673 & 32 Camelop, foll. & 5-4 & 4817.5 & 0. 383 & \(+840217\) & 19.60 & 9.63 \\
\hline 674 & \(\psi\) Virginis & 5 & 124822.2 & \(+3.107\) & - 85451 & \(-19.64\) & 1. OI \\
\hline 675 & e. Urs. Maj. & 2 & 4858.0 & 2. 658 & + 563502 & 19.66 & 1.82 \\
\hline 676 & \(\delta\) Virginis . & 3 & 49 48.7 & 3.022 & + 4 O121 & 19.67 & 1.00 \\
\hline 677 & 12 Can. Ven. (a)fol. & 3 & 5038.9 & 2.816 & + 385623 & 19. \(5^{2}\) & 1. 29 \\
\hline 678 & 8 Draconis & 5 & 125053.8 & 2.413 & + 660345 & 19.61 & 2.46 \\
\hline 49 & B.A.C.240,S.P. & 6-7 & - 5157.2 & +13.987 & + 9x 3537 & -19.48 & 35.96 \\
\hline 51 & 43 Cephei, S. P. . & 4-5 & - 53 II. 5 & 7.171 & + 942137 & 19.52 & 13.15 \\
\hline 679 & 36 Coma & 5-4 & 125314.3 & 2. 972 & + 18 or 47 & 19.48 & 1.05 \\
\hline 680 & \(\delta\) Musca & 4 & 5422.5 & 4.023 & - 70 5541 & 19.48 & 3.06 \\
\hline 681 & \(\varepsilon\) Virginis & 3-2 & 56 27. I & 2. 988 & + 113439 & 19.42 & 1. 02 \\
\hline 682 & 48 Virginis & 6 & 125758.9 & \(+3.086\) & - 30239 & \(-19.45\) & 1.00 \\
\hline 683 & 14 Can. Ven. & 5 & 130021.8 & 2.816 & \(+362451\) & 19.34 & 1.24 \\
\hline 56 & 44 Cephei, S. P. & 6-5 & 10222.4 & 4.955 & +1005620 & 19.30 & 5.30 \\
\hline 684 & \(\psi\) Hydra . & 5 & 130251.7 & 3. 227 & - 223010 & 19.37 & 1.08 \\
\hline 685 & \(\theta\) Virginis. & 4-5 & 130359.7 & 3. 101 & - 45529 & 19.32 & 1.00 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. \(29-55\)

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
1885.0 .
\end{gathered}
\] & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline 686 & & & h. m. s. & S. \({ }^{\text {2. }} 761\) & \begin{tabular}{ccc}
0 & \(\prime\) \\
\hline 9 & 06 & 37
\end{tabular} & 11 & \\
\hline 686 & 17 Can. Ven. & & & & + 390637 & 19.21 & 1.29 \\
\hline 687 & Groom. 2006. & 7 & 0647.6 & -9.621 & \(+881559\) & 19.22 & 33.06 \\
\hline 688 & \(\beta^{\text {b }}\) Comæ & 4 & 0630.4 & +2.806 & + 282741 & 18. 32 & 1. 14 \\
\hline 689 & B. A. C. 4433 & 5 & 0830.0 & 2. 729 & \(+404543\) & 19.15 & 1. \(3^{2}\) \\
\hline 690 & 19 Can . & 6-7 & 1021.7 & 2.717 & +412746 & 19.12 & I. 33 \\
\hline 691 & 20 Can. Ven. & 5-4 & 131223.0 & \(+2.700\) & + 411041 & \(-19.03\) & 1. 33 \\
\hline 692 & 6x Virginis. & 5-4 & 1223.4 & 3.130 & - 174016 & 20.10 & 1. 05 \\
\hline 693 & \(\gamma\) Hydræ & 3 & 1240.3 & 3. 253 & \(-223350\) & 19.06 & 1.08 \\
\hline 694 & ¢ Centauri & 3 & 1408.3 & 3. 354 & \(-360618\) & 19.12 & I. 24 \\
\hline 695 & 23 Can. Ven. & 6-5 & 131509.9 & 2. 702 & \(+404517\) & 18.99 & 1. 32 \\
\hline 70 & a Urs.Min., S.P. & 2 & 11635.8 & +22.048 & + 91 1816 & -18.97 & 43.93 \\
\hline 696 & 63 Virginis & 6 & 131651.6 & 3.207 & -170757 & 18.93 & 1.05 \\
\hline 71 & \(\boldsymbol{\psi}\) Cassiop., S. P. & 5 & 11749.2 & 4.158 & +11228 15 & 18.92 & 2. 62 \\
\hline 697 & a Virginis. & 1 & 1319 & 3. 153 & -10 1033 & 18.91 & 1.02 \\
\hline 698 & \(\zeta^{1}\) Urs. Maj & 3-2 & 1917.7 & 2.429 & + 553134 & 18.91 & 1. 77 \\
\hline 699 & Groom. 2007 & 7-6 & \(13 \quad 1919.6\) & 2. 500 & + 852120 & -18.87 & 12.35 \\
\hline 700 & i Virgitris & 6-5 & 2038.9 & \(+3.161\) & - 120633 & 18.87 & 1.02 \\
\hline 701 & \(\kappa\) Octantis. & 5 & 132231.3 & 8. 555 & -85 11 44 & 18.81 & 11. 94 \\
\hline 75 & 38 Camsiop., S. P. & 6-5 & 12241.0 & 4.370 & +110 1940 & 18.69 & 2.88 \\
\hline 702 & 70 Virginis & 5-6 & 132248.4 & 2. 934 & \(+142337\) & 19.62 & 1.03 \\
\hline 703 & Groom. 2001. & 6 & 132312.1 & +1.518 & +725920 & -18.77 & 3.42 \\
\hline 704 & 69 Urs. Maj. & 5-6 & 2413.8 & 2.213 & +603224 & 18.71 & 2.03 \\
\hline 705 & B. A. C. 4513 & 6 & 25 25. I & 2.847 & + 244950 & 18.67 & 1. 10 \\
\hline 706 & 73 Virginis & 6 & 2550.9 & 3. 229 & \(-180808\) & 18.67 & 1.08 \\
\hline 707 & h Virginis . & 5-6 & 2654.6 & 3. 152 & - 93419 & 18.67 & 1. OI \\
\hline 708 & \(\zeta\) Virginis & 3-4 & 132850.0 & \(+3.053\) & \(-00026\) & -18.49 & 1.00 \\
\hline 80 & 40 Casmiop., S. P. & 6 & 12920.6 & 4.670 & +107 3248 & 18. 54 & 3. 32 \\
\hline 709 & B. A. C. 4536 & 5 & 132939.7 & 2.683 & + 374619 & 18. 55 & 1. 26 \\
\hline 710 & 24 Cars. & 5 & 29 45.2 & 2.461 & + 493615 & 18. 57 & 1. 55 \\
\hline 711 & B. A. C. 4541. & 6-5 & 3025.2 & 3. 304 & - 2554 41 & 18.60 & 1. 11 \\
\hline 712 & 25 Can. Ven. & 5 & 1332 21. 2 & \(+2.677\) & \(+365249\) & \(-18.42\) & 1. 25 \\
\hline 713 & e Centauri & 2-3 & \(133^{2} 36.4\) & 3. 749 & - 525252 & 18. 55 & 1.65 \\
\hline 86 & 43 Cassiop., 8. P. & 6 & 13350.1 & 4. 359 & +1123221 & 18.40 & 2.61 \\
\hline 714 & W. B. XIII, 557 & 6 & 133354.5 & 2.965 & + 11: 1950 & 18.40 & 1.02 \\
\hline 715 & Groom. 2029. & 6 & 133425.3 & 1.432 & + 714939 & 18.37 & 3.21 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Declination, 1885.0. & Annual Var. & Sec. \(\delta\) \\
\hline & & & h.m. s. & s. & \[
0 \text {, /" }
\] & \({ }^{17}\) & \\
\hline 716 & \(m\) Virginis. . & 6-5 & 133534.6 & \[
+3.143
\] & 0720 & \(-18.30\) & 1.01 \\
\hline 717 & 83 Virginis . & 6 & 38 r7. 6 & 3. 228 & \(-153602\) & 18.27 & 1.04 \\
\hline 718 & 87 Virginis & 6 & 4110.1 & 3.253 & 170702 & 18.18 & 1. 05 \\
\hline 719 & \(\tau\) Bootis & 5-4 & 4147.8 & 2.851 & + 180149 & 18.06 & 1.05 \\
\hline 720 & \(\eta\) Urs. Maj. & 2 & 4300.6 & 2. 372 & \(+495315\) & 18.09 & 1. 55 \\
\hline 721 & 89 Virginis & 5 & 134337.4 & +3.248 & \(-173228\) & \(-18.08\) & 1.05 \\
\hline 722 & B. F. 1901. & 6 & 44 37.0 & +2.868 & +19 1205 & 18.00 & I. 06 \\
\hline 723 & Groom. 2063 & 6 & 4538.9 & -2. 037 & \(+831947\) & 18.01 & 8.6 r \\
\hline 724 & \(h\) Centauri & 4-5 & 4635.6 & +3.435 & \(-312134\) & 17.93 & I. 17 \\
\hline 725 & B. F. 1907. & 6-5 & 46 43. 1 & +2.652 & + 350051 & 17.92 & 1. 22 \\
\hline 726 & \(i\) Draconis & 5 & 134804.4 & +1.751 & +651730 & \(-17.88\) & 2. 39 \\
\hline 727 & \(\zeta\) Centauri & 3 & 4822.2 & 3.710 & \(-464316\) & 17.87 & 1. 46 \\
\hline 728 & \(\eta\) Bootis & 3 & 4912.6 & 2.857 & + 185829 & 18.18 & 1. 06 \\
\hline 729 & 9 Bootis . & 5 & 5119.5 & 2.742 & + 280323 & 17.78 & 1. 13 \\
\hline 730 & 48 Hydra . & 6 & 135333.8 & 3. 349 & -24 2654 & 17.73 & I. 10 \\
\hline 104 & 50 Cassiop., S. P. & 4 & I 5337.8 & +5.002 & +1080809 & -17.66 & 3.21 \\
\hline 731 & \(\theta\) Apodis . & 5 & 135409.5 & 5.652 & \(-761426\) & 17.62 & 4.20 \\
\hline 732 & \(\beta\) Centauri . & I & 5542.8 & 4.174 & - 594903 & 17.60 & 1.99 \\
\hline 733 & \(\tau\) Virginis. & 4 & 5547.6 & 050 & + 20604 & 17.62 & 1.00 \\
\hline 734 & II Bootis & 6 & 5558.6 & 2.722 & +275633 & 17.53 & 1. 13 \\
\hline 735 & B.A. C. 4679 & 6-7 & 135813.7 & +3.245 & -142459 & \(-17.47\) & 1.03 \\
\hline 736 & \(\pi\) Hydra & 4-3 & 5949.6 & 3. 407 & - 260743 & 17.52 & 1. 11 \\
\hline 737 & \(\theta\) Centauri & 3-2 & 135955.1 & 3.510 & \(-3548 \times 6\) & 18.01 & 1.23 \\
\hline 738 & a Draconis & \(3-4\) & 14 ol 16.6 & 1. 623 & +645532 & 17.30 & 2. 36 \\
\hline 112 & Gr. 454, S. P. . & \(6-7\) & 20246.1 & 5. 374 & +1063050 & 17.24 & 3.52 \\
\hline 739 & B. A. C. 4699 & 6-5 & 140319.9 & +2.409 & + 442405 & \(-17.37\) & 1.40 \\
\hline 740 & d Bootis . & 5 & 140509.3 & 2. 739 & \(\underline{+2538}\) & 17.19 & 1.11 \\
\hline 114 & 55 Cassiop., S. P. & 6 & 20528.2 & 4.63 I & \(+1140057\) & 17.11 & 2.46 \\
\hline 741 & \(\kappa\) Virginis. & 4-5 & 140645.7 & 3. 193 & - 94417 & 16. 94 & 1.01 \\
\hline 742 & 14 Bootis . & 6-5 & 0833.4 & 2.885 & +132957 & 16.92 & 1.03 \\
\hline 743 & \(\delta\) Octantis . & 5 & 140836.5 & +8.903 & \(-830821\) & \(-17.01\) & 1.03 \\
\hline 744 & 4 Ura Min., & 5 & 09 18.8 & -0.334 & + 780458 & 16.91 & 484 \\
\hline 745 & \(\ell\) Virginis. . & 4 & 0959.0 & +3.138 & - \(5^{27} 05\) & 17.34 & 1.01 \\
\hline 746 & \(a\) Bootis . . & 1 & 1025.0 & +2.735 & + 194654 & 18.89 & 1. 06 \\
\hline 747 & \(\lambda\) Bootis . . & 4 & 141200.7 & +2.285 & + \(463^{6} 5^{8}\) & 16.72 & 1. 46 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

* FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. & s. & - 11 & " & \\
\hline 748 & < Bootis & 4-5 &  & +2.127 & + 515353 & -16.73 & 1. 58 \\
\hline 749 & \(\lambda\) Virginis. & 5-4 & 1253.3 & 3. 237 & - 125029 & 16.76 & 1. 02 \\
\hline 750 & B. A. C. 4757 & 6 & 1526.5 & 3. 58 I & -34 15 \(3^{8}\) & I6. 44 & 1. 21 \\
\hline 751 & 2 Libra & 6 & 1714.4 & 3.220 & - 111118 & 16.64 & 1.02 \\
\hline 752 & B. A. C. 4776 . & 6-7 & 141910.1 & 3.443 & - 261946 & 16. 54 & 1. 12 \\
\hline 126 & \({ }_{6}\) Cassiop., S.P. & 4 & 21935.8 & +4.856 & +1130656 & \(-16.45\) & 2. 55 \\
\hline 753 & \(f\) Bootis & 5 & 1421006 & 2. 796 & + 194440 & 16. 33 & 1. 06 \\
\hline 754 & \(\theta\) Bootis . & 4-3 & 2117.0 & 2. 044 & + 522257 & 16. 77 & 1. 64 \\
\hline 755 & \(\phi\) Virginis. & 5 & 2216.6 & 3.085 & - 1 4243 & 16. 32 & 1. 00 \\
\hline 756 & \(B . A\). & 6 & 23 30.9 & 2. 496 & \(+364242\) & 16. 28 & 1. 25 \\
\hline 757 & B. A. C. 4805 & 6-7 & 142504.9 & +2. 366 & + 421859 & \(-16.40\) & 1. 35 \\
\hline 758 & \(\rho\) Bootis & 4-3 & 142652.5 & 2. 588 & + 305236 & 15.97 & 1. 18 \\
\hline 133 & 36 Cassiop., S. P. & 6-5 & 22707.2 & 5. 574 & +1074109 & 16.08 & 3.29 \\
\hline 759 & \(\gamma\) Bootis & 3-2 & 142727.0 & +2.422 & \(+3^{8} 4^{842}\) & 15.90 & 1. 28 \\
\hline 760 & 5 Urs. Min & 5-4 & 2746.8 & -0. 195 & +761226 & 16.01 & 4. 19 \\
\hline 761 & \(\eta\) Centauri & 3 & 142812.6 & +3.786 & \(-413905\) & -16.00 & 1. 34 \\
\hline 762 & Groom. 2125 & 6 & 2835.5 & 1. 622 & +604357 & 16.01 & 2.05 \\
\hline 763 & \(\sigma\) Boot & 5-4 & 142940.4 & 2.613 & \(+301443\) & 15.87 & 1. 16 \\
\hline 137 & 5 & 6 & 23117.3 & 8. 249 & + 990228 & 15.84 & 6. 36 \\
\hline 764 & \(a^{2}\) Centauri & I & 143148.8 & 4.043 & \(-602146\) & 15.39 & 2.02 \\
\hline 765 & 3 Libra & 6-7 & 143243.4 & +3.444 & - 243148 & \(-15.84\) & 1. 10 \\
\hline 766 & Piaz. XIV, 140 & 6 & 3253.2 & 2.789 & + 184758 & 15.76 & 1. 06 \\
\hline 767 & a Apodis . . & 5-4 & 33 37.4 & 7.150 & \(-783317\) & 15.75 & . 04 \\
\hline 768 & a Lupi & 3 & 34 17. 1 & 3. 959 & \(-465336\) & 15.71 & I. 46 \\
\hline 769 & 33 Bootis & 5-6 & 143433.4 & 2. 234 & + 445404 & 15.73 & 1. 41 \\
\hline 142 & Erad. 366,8.P. & 7-6 & 23456.7 & +5.073 & +1123954 & \(-15.61\) & 2.60 \\
\hline 770 & \(\pi\) Bootis (pr.) & 4 & 143519.3 & 2.818 & +165442 & 15.63 & 1. 05 \\
\hline 771 & \(\zeta\) Bootis & 3-4 & \(35 \quad 39.4\) & 2.862 & +14 1321 & 15.60 & 1.03 \\
\hline 772 & \(\mu\) Virginis & 4 & 37 00.0 & 3. 157 & - 50927 & 15.86 & 1.00 \\
\hline 773 & 34 Bootis . & 5-4 & \(3^{8} 22.5\) & 2.643 & + 27 O1 03 & 15.47 & 1. 12 \\
\hline 774 & \(\varepsilon^{9}\) Bootis & 2-3 & 143957.9 & +2.621 & +2733 34 & \(-15.35\) & 1. 13 \\
\hline 775 & 109 Virginis. & 4-3 & 4026.2 & 3.030 & + 22239 & 15. 36 & 1. 00 \\
\hline 776 & \(\boldsymbol{\mu}\) Libra & 6-5 & 4300.9 & 3.279 & - 134009 & 15. 22 & 1.03 \\
\hline 777 & 8 Libræ & 6 & 4419.6 & 3. 306 & -1531 07 & 15.21 & 1. 04 \\
\hline 778 & \(a^{2}\) Libre . & 2-3 & 144431.0 & 3.309 & -1533 48 & 15. 18 & 1.04 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 111 & " & \\
\hline 779 & \(\xi\) Bootis & 3-4 & 144605.1 & +2.767 & +193439 & \(-15.10\) & 1. 06 \\
\hline 780 & \(\xi^{1}\) Libra . & 6 & \(48 \quad 08.3\) & 3.248 & - 112542 & 14.92 & 1. 02 \\
\hline 781 & Groom. 2164 & 6 & \(4^{8} 31.4\) & 1. 516 & \(+594542\) & 14.70 & 1.99 \\
\hline 782 & 5 Librex & \(6-5\) & 5031.7 & 3.247 & - 105640 & 14.76 & 1. OI \\
\hline 783 & 212 Piazzi XIV. & 6 & 5045.0 & 3.487 & - 205343 & 16.43 & 1.07 \\
\hline 784 & 221 Piazzi XIV . & 6 & 145047.6 & +2.829 & +145442 & -14.73 & 1. 03 \\
\hline 158 & 47 Cephei, S. P. . & 6-5 & 25050.6 & 7.701 & +IOI 0215 & 14. 73 & 5.22 \\
\hline 785 & \(\beta\) Lupi & 3-4 & 1451 or.o & \(+3.899\) & - 4240 II & 14.88 & 1. 36 \\
\hline 786 & \(\beta\) Urs. Min. & 2 & 5102.9 & -0.235 & +743734 & 14.72 & 3.77 \\
\hline 787 & * Centauri & 3 & 5540.9 & \(+3.877\) & \(-413830\) & 14.70 & 1. 34 \\
\hline 788 & B. A. C. 4937 & 5-6 & 145233.8 & \(\pm 1.982\) & + 500556 & -14.88 & I. 56 \\
\hline 789 & \(\delta\) libra. & 4-5 & 5449.7 & 3. 198 & - 80343 & 14.50 & 1.01 \\
\hline 790 & 2 Ura. Min. & 5 & \(5545 \cdot 5\) & 0. 942 & + 662327 & 14.38 & 2.40 \\
\hline 791 & 20 Libre & 3-4 & 5720.4 & 3.498 & - 244945 & 14.40 & 1. 10 \\
\hline 792 & \(\beta\) Bootis & 3 & 5736.9 & 2. 260 & + 405040 & \(14 \cdot 37\) & I. 32 \\
\hline 793 & \(\psi\) Bootis & 4-5 & 145931.1 & +2.570 & \(+272348\) & -14.21 & 1. 13 \\
\hline 794 & c Bootis . & 5-4 & 150215.0 & +2.633 & + 251903 & 14. 20 & 1. 11 \\
\hline 795 & Groom. 2213 & 7-6 & 0321.3 & -6.701 & \(+842345\) & 13.97 & 10.24 \\
\hline 796 & \({ }^{1}\) Libre & 5-4 & 150540.0 & +3.409 & - 192121 & 13.88 & I. 06 \\
\hline 171 & 48 Cepheí, S. P. . & 6-7 & 30545.7 & 7.391 & +102 4126 & 13.77 & 4. 55 \\
\hline 797 & 1 Lupi \({ }^{\text {a }}\) & 6 & 150734.7 & +. 3.658 & - 310521 & -13.73 & 1. 17 \\
\hline 798 & \(\gamma\) Triang. Aus. . & 3-4 & 0811.4 & 5.510 & - 68 I5 1 I & 13.71 & 2. 70 \\
\hline 799 & B. A.C. 5026 . & 6 & 0912.8 & 2. 285 & \(+384146\) & 13.60 & 1. 28 \\
\hline 800 & 3 Serpentis . & 6 & 0928.4 & 2. 978 & + 522 or & 13.58 & 1.00 \\
\hline 801 & B.A.C. 5023 & 6 & 0942.9 & 3.461 & - 215941 & 13.66 & 1. 08 \\
\hline 802 & \(\beta\) Libre & 2 & 151049.1 & +3.221 & - 85728 & -13.53 & 1.01 \\
\hline 803 & \(\delta\) Bootis . & 3 & 10 52.0. & 2. 421 & \(+334440\) & 13.58 & 1.20 \\
\hline 804 & 1 Ura Min. & 5-6 & 1319.2 & 0. 663 & + 6747 or & 13.73 & 2.64 \\
\hline 805 & 5 Serpentis & 5-6 & 1325.9 & 3. 042 & + 21217 & 13.85 & 1.00 \\
\hline 806 & d Lucpi . . & 4-5 & 1349.5 & +3.920 & \(-401348\) & 13.31 & 1.31 \\
\hline 807 & 57 Urs. Min. . & \(6-7\) & 151436.4 & -21.642 & + 874026 & -13.21 & 24.64 \\
\hline 808 & \(\phi^{2} L u p i\). & 5-6 & 1548.6 & +3.813 & \(-3^{6} 2645\) & 13.24 & 1. 24 \\
\hline 809 & os Libras. & 6-5 & 1636.9 & 3. 337 & -14 4322 & 13.18 & 1.03 \\
\hline 810 & \(\rho\) Octantis . & 6 & 1656.1 & 12. 875 & - 840442 & 13.08 & 9.69 \\
\hline 811 & e Libra . & 5-6 & 151757.9 & +3.244 & - 95430 & 13.18 & 1. of \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. 29- 56

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& 1885.0 .
\end{aligned}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - / /1 & \(1 /\) & \\
\hline 812 & 7 Coronæ & 5 & \(15 \begin{array}{llll}18 & 27.2\end{array}\) & + 2.479 & + 304214 & -13.17 & 1. 16 \\
\hline 813 & \(\mu^{1}\) Bootis & 4-3 & \(20 \quad 08.8\) & 2. 266 & + 374652 & 12.79 & 1. 26 \\
\hline 814 & \(\tau^{2}\) Serpentis & 6 & 2027.4 & + 2.778 & +155000 & 12.86 & 1. 04 \\
\hline 815 & \(\gamma^{8}\) Urs. Min. . & 3 & 2055.1 & -0.137 & + 721436 & 12.81 & 3.28 \\
\hline 816 & \(\zeta\) Libræ & 6-7 & 2146.3 & \(+3.374\) & -161853 & 12.82 & I. 04 \\
\hline 817 & 1 Draconis & 3 & 152222.5 & +1.338 & \(+592210\) & -12.69 & 1. 96 \\
\hline 818 & \(\beta\) Coron. Bor.. & 4-3 & \(23 \quad 05.3\) & 2. 475 & + 293009 & 12.63 & 1. 15 \\
\hline 819 & B. A. C. \(5^{109}\) & 6-7 & 26 00. 5 & 3. 437 & - 191640 & 12.51 & 1. 06 \\
\hline 820 & \(\nu^{1}\) Bootis & 4-5 & 2647.9 & 2. 153 & + 41 1333 & 12.41 & 1. 33 \\
\hline 821 & \(v\) B Bootis & 4-5 & 2739.9 & 2. 145 & + 411725 & 12. 35 & 1. 33 \\
\hline 822 & \(\theta\) Coron. Bor.. & 4 & \(15 \quad 2817.4\) & +2.415 & + 314451 & -12.40 & 1. 18 \\
\hline 186 & Gr. 642, S. P. . & 6 & 32859.0 & 19. 503 & +93 4302 & 12.21 & 15.42 \\
\hline 823 & \(\gamma\) Libra & 4-5 &  & 3. 347 & - 142329 & 12. 26 & 1.03 \\
\hline 824 & \(\delta^{\prime}\) Serpentio & 3-4 & 2918.7 & 2. 869 & + 105524 & 12.20 & 1. 02 \\
\hline 825 & a Coron. Bor. . & 2 & 2949.2 & 2. 539 & \(+270608\) & 12. 32 & 1. 12 \\
\hline 826 & 14 Serpentis & 6 & 153034.8 & + 3.076 & 1040 & -12.15 & 1. 00 \\
\hline 827 & \(\psi^{1}\) Luppi & 5 & 3227.9 & 3. 792 & - 340211 & 12.07 & 1. 21 \\
\hline 828 & \(\dagger\) Bootis & 5 & 3341.8 & + 2. 154 & + 40434 I & 11.89 & 1. 32 \\
\hline 829 & \(\theta\) Urs. Win. & 5 & 3450.9 & - 1.896 & + 774354 & 11.86 & 4.71 \\
\hline 830 & \(\zeta\) Cor. Bor, foll. & 4 & \(35 \quad 02.8\) & + 2.256 & \(+370035\) & 11.86 & 1.25 \\
\hline 831 & c Libra & 5 & 153519.3 & +3.446 & \(-191818\) & -11.95 & 1. 06 \\
\hline 832 & \(\psi^{2} L_{u}{ }^{\text {mpi }}\) & 5-6 & 3521.4 & 3. 806 & \(-342021\) & 11.91 & 1. 21 \\
\hline 833 & - Serpentio & 5-4 & 3625.4 & 2. 673 & + 200227 & 11.78 & 1. 06 \\
\hline 834 & \(\gamma\) Coron. Bor. . & 4-3 & \(15 \quad 3754.8\) & 2. 256 & \(+26393^{8}\) & 11. 62 & 1. 12 \\
\hline 194 & \(\gamma\) Camolop.,S.P. & 4-5 & \(33^{8} \mathbf{1 3 . 8}\) & 6.216 & +109 01 26 & 11.64 & 3. 06 \\
\hline 835 & \(a\) Serpentis & 2-3 & \(15 \begin{array}{lll}58 & 36.2\end{array}\) & +2.951 & + 64717 & -11.54 & 1.01 \\
\hline 836 & \(\beta\) Serpentis & \(3-\) & 4052.8 & 2. 767 & + 154656 & 11. 57 & 1. 04 \\
\hline 837 & \(x\) Serpentis & 4 & 4333.8 & 2.698 & + 182951 & 11. 33 & 1.05 \\
\hline \(83^{8}\) & \(\mu \quad\) Serpentis & 4-3 & 4337.2 & 3. 127 & - 30438 & 11. 27 & 1.00 \\
\hline 839 & 12 Draconis & 5 & 4455.0 & 0. 902 & +625719 & 11.21 & 2.20 \\
\hline 840 & \(\beta\) Triang. Aus. & 3 & 1545 Or. 4 & + 5.232 & -630423 & -11.57 & 2.21 \\
\hline 841 & \(\varepsilon\) Serpentis & 3-4 & 4505.0 & 2. 987 & + 44929 & 11.07 & 1. 00 \\
\hline 842 & \(\lambda\) Libre . & 6-5 & 4639.4 & 3. 473 & -19 4920 & 11.06 & 1.06 \\
\hline 843 & \(\cdots\) Coron. Bor. & 5-4 & 4653.9 & + 2.258 & \(+360054\) & 11.33 & 1.24 \\
\hline 844 & 5 Urm Min. & & 1548 11. 3 & - 2.256 & + 780852 & 10.97 & 4.87 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h.m. s. & S. 286 & - 17 & \[
\begin{gathered}
11 \\
-10.82
\end{gathered}
\] & 1.20 \\
\hline 845 & \(\xi^{1}\) Lupi & 4-5 & 154932.4 & & - 333739 & & \\
\hline 206 & Gr. 746, S. P. & 5-6 & 35050.8 & 9.740 & \(+993717\) & 10. 76 & 5.97 \\
\hline 846 & \(\gamma\) Serpentis & 4-3 & \(15 \begin{array}{llll}51 & 08.5\end{array}\) & 2.769 & + 160216 & 11.96 & 1.04 \\
\hline 847 & \(\pi\) Scorpii & 3-4 & 5153.7 & 3.618 & - 254655 & 10.68 & 1. 11 \\
\hline 848 & E Coron. Bor.. & 4 & \(5247 \cdot 7\) & 2.483 & +27124I & 10.63 & 1.12 \\
\hline 849 & \(\delta\) Scorpii & 2-3 & 155332.1 & +3.538 & - 221736 & -10. 55 & 1. 08 \\
\hline 850 & 49 Libre & 5-6 & 5352.2 & 3. 355 & - 16 I1 \(3^{6}\) & 10.86 & 1.04 \\
\hline 851 & Groom. 2296 & 5-6 & 5503.6 & 1.410 & \(+550429\) & 10. 30 & 1.75 \\
\hline 852 & \(r\) Herculis & 6-5 & 56 04. 3 & 2.695 & + 180813 & 10. 16 & 1.05 \\
\hline 853 & \(\beta^{1}\) Scorpii . & 2 & 5845.1 & 3.480 & -19 2923 & 10. 16 & 1. 06 \\
\hline 854 & \(\theta\) Draconis & 4-3 & 155944.0 & +1.115 & \(+585221\) & \(-9.72\) & 1. 93 \\
\hline 855 & Rad. 3523. & 7-6 & \(160024 . \mathrm{I}\) & \(-12.130\) & + 853748 & 10.00 & 13.13 \\
\hline 215 & Gr. 750, S. P. & 6-7 & 40045.8 & +17.043 & + 944458 & 9.99 & 12.08 \\
\hline 856 & \(\kappa\) Herculis & 5 & 160253.1 & 2.702 & + 172115 & 9.81 & 1.05 \\
\hline 857 & \(\delta^{1}\) Apodis & 5-6 & 0311.8 & 8.731 & -7824 10 & 9.79 & 4.98 \\
\hline 858 & \(\tau\) Coron. Bor. & 4-5 & 160446.0 & \(+2.192\) & \(+364702\) & \(-9.33\) & 1. 25 \\
\hline 859 & ¢ Herculis & 4 & 0508.6 & 1.88 I & + \(4514 \times 3\) & 9.60 & 1. 42 \\
\hline 860 & \(\nu^{*}\) Scorpii . & 4-5 & 0518.7 & 3. 478 & - 190939 & 9.66 & 1.06 \\
\hline 861 & Groom 2320. & 6-5 & 0600.5 & -. \(13^{8}\) & \(+680648\) & 9.50 & 2.68 \\
\hline 862 & \(\delta\) Ophiuchi & 3 & 0819.2 & .3. 139 & - 32351 & 9. 53 & 1.00 \\
\hline 863 & \(\sigma\) Cor. Bor. (mean) & 6 & 161022.2 & +2.242 & \(+340902\) & 9.24 & 1. 21 \\
\hline 864 & \(\varepsilon\) Ophiuchi & 3-4 & 12142 & + 3.169 & - 42441 & 9.06 & r. 00 \\
\hline 865 & 19 Urs, Min. & 6 & 1407.0 & \(-1.786\) & + 760959 & 8.95 & 4. 18 \\
\hline 866 & \(\sigma\) Scorpii & 4-3 & 1411.9 & \(+3.636\) & -251757 & 8.96 & 1. 10 \\
\hline 867 & \(\gamma\) Apodis & 4-5 & 1550.4 & 8. 986 & \(-783808\) & 8.89 & 5.08 \\
\hline 868 & \(\tau\) Herculis. & 3-4 & 1616 I 7.1 & \(+1.801\) & \(+463515\) & -8.75 & 1.46 \\
\hline 869 & \(\gamma\) Herculis & 3 & 1650.8 & 2.644 & + 192526 & 8.68 & 1. 06 \\
\hline 870 & p Ophiuchi . & 5 & 1841.4 & 3. 588 & \(-231052\) & 8.62 & \(\underline{1.09}\) \\
\hline 871 & \(\omega\) Herculis & 5 & 162006.5 & 2. 765 & + 141756 & 8. 50 & 1.03 \\
\hline 231 & Gr. 828, S. P. & 6-5 & 42011.2 & \(+6.866\) & +107 4314 & 8.46 & 3.29 \\
\hline 872 & 7 Urs. Min. & 5 & 162052.6 & - 1.825 & + 76 01 12 & -8.13 & 4.19 \\
\hline 873 & Groom. 2343 & 6-5 & 2154.5 & +1.309 & \(+5528 \mathrm{oz}\) & 8. 34 & r. 77 \\
\hline 874 & \(a\) Scorpii . & 1-2 & 2221.4 & 3.670 & \(-261033\) & 8. 32 & 1. 17 \\
\hline 875 & \(\eta\) Draconis & & 2226.2 & 0. 805 & + 61 \(4^{6} 29\) & 8.23 & 2. 11 \\
\hline 876 & ¢ Ophiuchi & & \(16 \quad 2433.5\) & + 3.427 & - 162140 & 8. 16 & 1.04 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen. 1885.0. & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& \text { I885.0. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - ' " & " & \\
\hline 877 & \(\lambda\) Ophiuchi & 4-3 & 162506.8 & + 3.024 & + 21413 & . 1 & 1. 00 \\
\hline 878 & \(\beta\) Herculis & 2-3 & 2516.6 & 2. 577 & + 214427 & 8.07 & 1.07 \\
\hline 879 & \(n\) Herculis & 6-5 & 2656.2 & + 2.953 & + 546 or & 7.97 & 1. OI \\
\hline 880 & A Draconis & 5 & 2812.9 & - 0. 137 & + 69 or 00 & 7.80 & 2.79 \\
\hline 88I & \(\uparrow\) Scorpii & 3-4 & 2843.5 & + 3.727 & 35 & 7.82 & I. 13 \\
\hline 882 & - Herculis & 4 & 163023.8 & + 1.931 & + 424029 & 7.63 & I. 36 \\
\hline 883 & \(\zeta\) Ophiuch & 3-2 & 3049.6 & 299 & - 102000 & 7.59 & 1. or \\
\hline 884 & B. A. C. 5568 & 6-7 & 163250.0 & 1. 747 & + 465046 & 7.47 & 1. 46 \\
\hline 245 & Gr. 848, S. P & 6 & 43322.7 & 7.975 & +10416 11 & 7.58 & 4. 06 \\
\hline 885 & 24 Scorpii & 5 & 163455.3 & \(+3.462\) & -173105 & 7.26 & I. 05 \\
\hline 886 & Groom. 2373. & 6 & 163535.2 & 774 & + 774017 & 7. & 4.68 \\
\hline 887 & \(a\) Triang. A & 2 & 3629.8 & + 6.295 & -68 4852 & 7.20 & 2.77 \\
\hline 888 & \(\zeta\) Herculis & 3-2 & 163657.1 & 2. 263 & + 314843 & 6.66 & 1. 18 \\
\hline 250 & Gr. 856, S. P & 5-6 & 43851.9 & 10. 990 & + 990000 & 6.95 & 6. 39 \\
\hline 889 & \(\eta\) Herculis & 3 & 163857.2 & 2.054 & 0829 & 7.03 & I. 29 \\
\hline 890 & 18 Draconis & 5-6 & 164007.4 & +0.400 & 26 & 6.87 & 2. 35 \\
\hline 253 & a Camelop.,S.P. & 4 & 44237.2 & . 22 & +113516 & 6.64 & 2.47 \\
\hline 891 & \(\varepsilon\) Scorpii & 3 & 164243 . 0 & 875 & -340502 & 6.97 & 1.21 \\
\hline 892 & Groom. 2377 & 5 & 0 & 33 & + 565915 & 6. 56 & 1.84 \\
\hline 893 & 20 Ophiuchi & 5 & 4328.3 & 3.313 & 4 x & 6.65 & 1.0 \\
\hline 894 & \(\mu^{1}\) Scorp & 3 & 164404.7 & + 4.053 & - 374522 & -6.66 & 1. 26 \\
\hline 895 & Groom. 2388 & 7-6 & & - 1.368 & + 7 & \(+6.49\) & 3.65 \\
\hline 896 & \(k\) Herculis. & 6-5 & 4444.4 & + 2.912 & \(+\) & - 6 & 1. 01 \\
\hline 897 & \(\zeta\) ¢ & 3 & . 2 & 4. 201 & - 420945 & 6. 52 & 1. 35 \\
\hline 898 & 49 Herculis & 6 & 4650.7 & 2.728 & \(+151005\) & 6.28 & 1.0 \\
\hline 899 & 51 Herculis & 6-5 & 164659.2 & + 2.484 & 13 & 27 & 10 \\
\hline 900 & - Ophiuch & 4-5 & & 2.835 & 18 & 17 & . 02 \\
\hline 901 & 54 Herculis & 6-5 & 165018.9 & 2.633 & + 183707 & 95 & 1. 06 \\
\hline 262 & d. 1311,S. & 6-7 & 45107.8 & 20.489 & +94 1137 & . 94 & 13.68 \\
\hline 902 & к Ophiuchi & 3-4 & 165213.5 & 2.837 & + 93317 & 5.82 & 1. 01 \\
\hline 903 & 30 Ophiuchi & 6-5 & 165459.8 & + 3.156 & 40257 & 5.67 & . 0 \\
\hline 904 & \& Herculis & 3-4 & 5558.3 & 2. 293 & + 31 0548 & . 49 & . 57 \\
\hline 905 & d Herculis & 5 & 5721.6 & + 2.211 & + 334409 & 5.41 & 1.22 \\
\hline 906 & Ors. Min. & 4-5 & 165747.3 & - 6.345 & + 82 1329 & 5.38 & 7.39 \\
\hline 907 & 60 Herculis & 5 & \(17 \times 00.7\) & + 2.780 & + 125358 & 5. 18 & 1.03 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
C. B. \(H^{43.2} \mathrm{G}^{8.4 .8 .1}\) R. \\
A. C.B. N. \(\mathrm{H}^{3} \mathrm{G}^{\mathrm{A}}\) \(H^{2} \mathrm{G}^{4} \mathrm{R}\). \\
A. B. N. \(\mathrm{H}^{48.8} \mathrm{G}^{6.43}\). \\
C. N. H4.8. \(\mathrm{G}^{\mathrm{s} .43 .9 .1}\) W.
\end{tabular} & \[
\begin{aligned}
& 877 \\
& 878 \\
& 879 \\
& 880 \\
& 881
\end{aligned}
\] & \(\left\{\begin{array}{l}\text { [+0.05 }+\alpha^{\prime \prime} .9 \text { yl. bl. } \\ \text { Comp, } 6 \text { mag. } \\ \text { Hind's period } 95.9 \text { years. }\end{array}\right.\) \\
\hline B. Gas. W. Rd. R. A.E.B.N. \(\mathrm{H}^{4.38} \mathrm{G}^{5-1}\). \(\mathrm{H}^{8} \mathrm{Rd} . \mathrm{S}^{2.1}\) B. \(\mathrm{H}^{9}\) Gr. \(4 . \mathrm{Rd}\). R. H \({ }^{4.9}\) G4.4 W. R. & 882
883
884
245
885 & \\
\hline \begin{tabular}{l}
B. \(\mathrm{H}^{4.9} \mathrm{G}^{5} \mathrm{Rd}\). \\
A. E. N. O \({ }^{21}\) M. \\
E. C. B. \(\mathrm{H}^{43.2 .1} \mathrm{G}^{6.4 .9 .1}\) \(\mathrm{H}^{3} \mathrm{G}^{a \mathrm{~L}, \mathrm{I}} \mathrm{W}\). Rd. R. \\
A.B.N.H4.32 Gack. W W.
\end{tabular} & \[
\begin{array}{|l}
886 \\
887 \\
888 \\
250 \\
889
\end{array}
\] & \(\left[+{ }^{\circ} .0:-1^{\prime \prime} .0\right.\) per. 35 yrs.\(\) Comp. \(=6\) mag. \(:\) \\
\hline Gs.32.1 W. Rd. R.S \({ }^{2}\). A. B. N. \(\mathrm{H}^{4.39} \mathrm{G}^{5-2} \mathrm{Rd}\). C. \(\mathrm{H}^{2} 9 \mathrm{G}\) G4.4.21 W. \(\mathrm{O}^{1}\). B. H4s G \({ }^{6.43}\) Rd.R.S \({ }^{8.1}\) G \({ }^{\mathbf{3}}\) W.R. . & \begin{tabular}{l}
890 \\
253 \\
891 \\
892 \\
893
\end{tabular} & \\
\hline \begin{tabular}{l}
W. \(\mathrm{O}^{1}\). \\
Rd. \\
\(\mathrm{H}^{9} \mathrm{G}^{3} \mathrm{R}\). \\
\(\mathrm{H}^{3} \mathrm{O}^{1}\). \\
B. \(H^{48} G^{6.481}\) R. \(S^{8}\)
\end{tabular} & \begin{tabular}{l}
894 \\
895 \\
896 \\
897 \\
898
\end{tabular} & \[
\begin{aligned}
& {\left[-36^{6} .7:-25^{\prime \prime} .8 .\right.} \\
& \zeta^{1}=43 \text { mag. } \\
& G^{4}=\text { var. SHerc }=-11^{14.0,} \\
& {\left[\begin{array}{l}
1^{\prime \prime} .54 ; \text { var. } 5.9-12.2 \\
\text { [per. } 303 \text { days, } G^{6} .
\end{array}\right.}
\end{aligned}
\] \\
\hline \(\mathrm{H}^{8} \mathrm{G}^{4}\) W. R. \(\mathrm{S}^{8}\) \(\mathrm{H}^{43} \mathrm{G}^{\mathrm{san}}\) W. Bk. R. \(\mathrm{S}^{8}\) \(\mathrm{H}^{9} \mathrm{G}^{\mathrm{ar}}\) W. R. \(\mathrm{S}^{3}\). G4 Rd. A.E.C. B. \(\mathrm{N}^{4.38 .1} \mathrm{G}^{6}\) & \begin{tabular}{l}
899 \\
900 \\
901 \\
262 \\
902
\end{tabular} & \[
\mathrm{H}^{\mathrm{y}}=i
\] \\
\hline \begin{tabular}{l}
\(H^{3.9} \mathrm{G}^{1}\) W. Bk. R. \\
C. B. \(\mathrm{H}^{\text {c.2. }} \mathrm{G}^{8.4 .3 .11} \mathrm{~W}\). \\
A. \(H^{9} G^{5.4,11}\) N. W. \\
A.E.C.B.N. \(\mathrm{H}^{4.28 .1} \mathrm{G}\) \\
B. \(\mathrm{H}^{9} \mathrm{G}^{3}\) W.R. \(\mathrm{S}^{9}\)
\end{tabular} & \begin{tabular}{l}
903 \\
904 \\
905 \\
906 \\
907
\end{tabular} & \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. \(29-57\)

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen. 1885.0. & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
{ }_{1} 88_{5} .0 .
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & \(s\). & - , 11 & /1 & \\
\hline 940 & \(\kappa\) Scorpii. & 3 & 173432.0 & + 4.147 & \(-3^{8} 5^{8} \mathrm{I} 3\) & 2.24 & 1.29 \\
\hline 941 & - Serpentis & 5-4 & 3457.0 & 3. 368 & - 124846 & 2. 22 & 1.02 \\
\hline 942 & \(\iota\) Herculis & 3-4 & 3613.5 & 1. 703 & \(+4^{6} 0403\) & 2. 10 & I. 44 \\
\hline 943 & 58 Ophiuchi & 5 & \(3^{6} 32.4\) & \(+3.593\) & - 213734 & 2. II & 1. 08 \\
\hline 944 & \(\omega\) Draconis & 5 & 3737.6 & -0.356 & \(\underline{+684840}\) & 1. 62 & 2. 77 \\
\hline 945 & \(\beta\) Ophiuchi & 3 & \(173747 \cdot 4\) & +2.960 & \(+43700\) & -1.77 & 1. 00 \\
\hline 946 & 3 Sagittarii & 5 & 174019.3 & 3.772 & - 274709 & 1.75 & 1. 13 \\
\hline 307 & Rad.1553, S. P. & 6 & 54035.1 & 6.747 & +1113350 & 1. 70 & 2.72 \\
\hline 947 & \(\mu\) Herculis & 3-4 & 174157.5 & 2. 346 & + 274718 & 2. 34 & 1. 13 \\
\hline 948 & \(\gamma\) Ophiuchi & 4-3 & . 4207.6 & \(+3.005\) & + 24505 & 1.63 & 1. 00 \\
\hline 949 & \(\psi^{1}\) Draconis & 4-5 & 1743 59. 1 & -1.080 & + 721218 & -1.67 & 3.27 \\
\hline 950 & 87 Herculis & 6 & \(44 \quad 09.4\) & + 2.432 & + 253949 & 1. 18 & 1. 11 \\
\hline 951 & 30 Draconis & 5-6 & \(46 \quad 19.4\) & 1.427 & \(+504830\) & 1.03 & 1. 58 \\
\hline 952 & B. A. C. 6062 & 5-6 & \(48 \quad 20.2\) & 1. 952 & \(+400027\) & 0. 97 & 1.31 \\
\hline 953 & 89 Herculis & 6-5 & 5046.8 & 2. 420 & + 260405 & -. 78 & 1. 11 \\
\hline 954 & \(\xi\) Draconis & 3-4 & 175132.6 & +1.041 & + 565327 & \(-0.67\) & 1.81 \\
\hline 955 & \(\theta\) Herculis & 4 & 5218. & 2.055 & + 371559 & 0. 66 & 1. 26 \\
\hline 956 & \(\nu\) Ophiuchi & 3-4 & 5241.8 & 3. 304 & - 94530 & 0. 74 & 1.01 \\
\hline 957 & \(\xi\) Herculis & 4-3 & 5317.8 & 2. 330 & + 291539 & 0. 62 & 1.15 \\
\hline 958 & \(y\) Draconis & 2-3 & 53 56. 2 & 1. 391 & \(+513009\) & 0.62 & 1.61 \\
\hline 959 & 67 Ophiuchi & 4 & 175453.1 & + 3.004 & + 25616 & \(-0.51\) & 1.00 \\
\hline 960 & 35 Draconis & 5 & 55 24.3 & -2.695 & + 765838 & 0. 24 & 4.38 \\
\hline 961 & 68 Ophiuchi & 5 & 55 55. & + 3.043 & + 11832 & 0. 31 & 1.00 \\
\hline 962 & - Ophizuchi & 5 & 5650.4 & 270 & -8 ro 35 & 0. 26 & 1. OI \\
\hline 963 & \(\gamma^{2}\) Sagittarii . & 3-4 & 175825.2 & 851 & \(-302527\) & 0. 36 & 1. 16 \\
\hline 964 & \(p^{1}\) Ophiuchi, 70 & 4-5 & 175938.4 & \(+3.030\) & + 23139 & - 1.12 & 1.co \\
\hline 965 & B. A. C. 6127 & 5 & 180048.0 & 3. 795 & - 282809 & +0.02 & 1. 14 \\
\hline 328 & 36 Camelop., S.P. & 6-5 & 6 ol 16.7 & 6.030 & +1144421 & \(+0.14\) & 2.43 \\
\hline 329 & Gr. 1004, S. P. & \(6-7\) & 6 ol 24.4 & 26.817 & + \(9314{ }^{15}\) & \(-0.20\) & 17.71 \\
\hline 966 & 72 Ophiuchi & 3-4 & 18 or 53.8 & 2. 843 & + 93253 & \(+0.21\) & f. 01 \\
\hline 967 & - Herculis & 4-3 & 180303.4 & +2.339 & \(+284450\) & \(+0.28\) & 1.14 \\
\hline 333 & 22 Camelop., S.P. & 54 & 60609.6 & 6.618 & +110 3831 & 0. 66 & 2.84 \\
\hline 968 & \(\mu^{1}\) Sagittarii & 4 & 180653.2 & 3. 587 & -210516 & 0. 59 & 1.07 \\
\hline 969 & A Herculis, 104 & 5 & -07 34.6 & + 2.261 & \(+312236\) & 0. 58 & 1.17 \\
\hline 970 & \(\delta\) Urs. Min. & 4-5 & 180924.9 & -19.435 & + 863638 & 0. 85 & 16.91 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOIAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\underset{1885.0 .}{\text { Right Ascen., }}
\] & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 \text {. }
\end{gathered}
\] & \[
\underset{\text { Var. }}{\substack{\text { Annual }}}
\] & Sec. \({ }^{\text {d }}\) \\
\hline 369 & 51 Cephei, S. P. . & 5 & \[
\begin{aligned}
& \text { h. m. s. } \\
& 64^{6} \quad \frac{15.6}{}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{s} . \\
+30.016
\end{gathered}
\] & \[
\begin{array}{r}
0 \quad \prime \prime \prime \\
+924634
\end{array}
\] & 11
+4.06 & 20.65 \\
\hline 1003 & \(\sigma\) Sagittari & 2-3 & 1848 o8.1 & 3.722 & -26 2618 & 4. 10 & 1.12 \\
\hline 1004 & - Draconis & 5-4 & 4930.2 & o. 887 & + 591453 & 4.32 & 1. 96 \\
\hline 1005 & di Lyra & 5-6 & 4942.5 & + 2.095 & + 364942 & 4.31 & 1.25 \\
\hline 1006 & 50 Draconia & 5-6 & 5004.6 & - 1.906 & + 751752 & 4.42 & 3.94 \\
\hline 1007 & \(\theta\) Serpentis, pr. & 4 & 185030.1 & + 2.98 I & + 40318 & + 4.42 & 1. \(\infty\) \\
\hline 1008 & 13 Lyre & Var. & 5150.1 & + 1.826 & + 434742 & 4.57 & 1. 39 \\
\hline 1009 & Rad. 4208 & 6-7 & 5226.3 & -18.595 & + 863341 & 4.55 & 16.67 \\
\hline roro & \(\varepsilon\) Aquilæ & 4-3 & 54 24. I & +2.718 & + 145446 & 4.60 & 1.03 \\
\hline roir & \(\gamma\) Lyre & 3-4 & 5438.5 & 2.244 & + \(3^{2} 3^{156}\) & 4.76 & 1. 19 \\
\hline 1012 & \(\zeta\) Sagittarii & 3-4 & 185517.7 & +3.820 & \(-300235\) & + 4.78 & 1. 16 \\
\hline 1013 & \(v\) Draconis & 5-6 & 5548.2 & -0.716 & + 710836 & 4.87 & 3.09 \\
\hline 1014 & \(g\) Aquile & 6 & 5651.1 & + 3.165 & - 35151 & 4.95 & 1. 00 \\
\hline 1015 & 16 Lyra & 5-6 & 185811.0 & 1. 695 & + 464620 & 4.92 & 1.46 \\
\hline 1016 & \(\zeta\) Aquile & 3 & 190007.5 & 2.756 & +134136 & 5. 10 & 1. 03 \\
\hline 1017 & \(\lambda\) Aquilx & 3-4 & 190008.7 & + 3.186 & - 50314 & + 5.10 & 1. \(\infty\) \\
\hline 1018 & \(\pi\) Sagittarii & 3 & 0255.5 & 3.570 & - 211219 & 5.39 & 1.07 \\
\hline 1019 & , Lyre & 5 & 0311.9 & 2. 141 & + 355513 & 5.45 & 1. 23 \\
\hline 1020 & B. A. C. 656 r & 6 & 190535.9 & 3. 589 & - 215054 & 5.59 & 1. 08 \\
\hline 385 & 25 Camelop.,S.P. & 5 & 70649.6 & 13.030 & + 972214 & 5.80 & 7.78 \\
\hline 1021 & 19 Lyre & 6 & 190721.3 & + 2.300 & +310532 & + 5.79 & 1. 17 \\
\hline 1022 & \(\psi\) Sagittarii & 6-5 & 0829.3 & 3.682 & - 252712 & 5.86 & I. It \\
\hline 1023 & d Sagittarii & 5 & 1054.4 & 3.513 & - 190923 & 6.09 & 1. 06 \\
\hline 1024 & \(\theta\) Lyrx & 4-5 & 1220.7 & 2.082 & + 375545 & 6.22 & 1.27 \\
\hline 1025 & \(\omega\) Aquilæ & 6-5 & 1225.0 & 2.814 & + 112320 & 6.25 & 1.02 \\
\hline 1026 & \% Draconis & 3 & 191234.2 & \(+0.031\) & + 672732 & +6.31 & 2.61 \\
\hline 1027 & \(\kappa\) Cygni & 4-3 & 1426.6 & 1. 385 & \(+530923\) & 6. 50 & 1.67 \\
\hline 1028 & d Aquila & \(\sigma\) & 1439.6 & 3.099 & - 10618 & 6.26 & 1.00 \\
\hline 1029 & B. A. C. 6626 & 6 & 1533.7 & + 1.598 & + 492122. & 6.47 & 1. 53 \\
\hline 1030 & \(\tau\) Draconis & 4-5 & 1745.6 & -1.114 & + 730830 & 6. \(7^{8}\) & 3.45 \\
\hline 1031 & \(\boldsymbol{x}^{1}\) Sagittarii & 5-6 & 191816.6 & \(+3.656\) & \(-244350\) & \(+6.65\) & 1. 10 \\
\hline 395 & P.VIL, 67, S.P. & 5-6 & 71854.5 & 6.303 & +111806 & 6.81 & 2.76 \\
\hline 1032 & \(b\) Aquilæ & 5-6 & 191929.2 & 2.861 & + 114200 & 7.51 & 1. 02 \\
\hline 1033 & d Aquila & 3-4 & 1942.0 & 3.025 & +2.53 1 & 6.91 & 1.00 \\
\hline 1034 & 4 Cygni & 5-6 & 1922006 & 2. 159 & \(+360516\) & 7.04 & 1. 24 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline A.E.C.B.N. \({ }^{4.3 .2 .1} \mathrm{C}^{5-1}\) & 369 & \\
\hline A.C.B.N.H.3.3 \({ }^{\text {a }} \mathrm{C}^{5-1} \mathrm{~W}\). & & \\
\hline A.C.b.N.H. \({ }^{\text {d }}\) W. & 1 & [-12.I: \(+29^{\prime \prime} .0: \mathrm{Rd}\). \\
\hline B. \(\mathrm{H}^{3} \mathrm{G}^{6,3} \mathrm{Rd}\). R. . & 1004 & \({ }^{1}\) s same mag. \\
\hline \(\mathrm{H}^{4.2} \mathrm{G} \mathrm{M}^{\text {R. }} \mathrm{S}^{2.1}\). & 1005 & \(\mathrm{S}^{2}, \mathrm{~d}^{\prime}=4\) and 5 mag.: or. bl. \\
\hline A. \({ }^{4.3 .2} \mathrm{G}^{5.4 .3} \mathrm{~W} . \mathrm{Rd} . \mathrm{R}\). & 1006 & \\
\hline B. N. \(\mathrm{H}^{3} \mathrm{G}^{32.1}\) W. R. . & 1007 & \[
\begin{aligned}
& {\left[+1^{\mathrm{n}} \cdot 4:-5^{\prime \prime} .6 .\right.} \\
& \theta^{2}=4-3 \text { mag. }
\end{aligned}
\] \\
\hline B. \(\mathrm{H}^{4.2} \mathrm{G}^{504.3} \mathrm{Rd}\). R. \(\mathrm{S}^{2}\). & 1008 & \(\mathrm{B}=\mathrm{R}\) Lyræ, mag. 4-5. \\
\hline W. Rd. . . . & 1009 & \\
\hline E. B. \(\mathrm{H}^{4,3.2} \mathrm{G}^{5-1}\) W. \(\mathrm{O}^{2}\) & 1010 & \\
\hline A. C. B. \(\mathrm{H}^{3} \mathrm{G}^{98}\) W. R. & 1011 & \\
\hline C. N. \(\mathrm{G}^{3,1}\) W. O \({ }^{1}\) M. R. & 1012 & \\
\hline B. G \({ }^{\text {a3,2.i }}\) W. Rd. R. . & 1013 & \\
\hline \(\mathrm{H}^{4.8} \mathrm{G}^{4}\) W. R. . . . & 1014 & \\
\hline \(H^{3.9}\) Rd. R. S \({ }^{\text {. }}\) : . . & 1015 & \\
\hline A.E.C.B.N.H \({ }^{4.321} \mathrm{G}^{5-1}\) & 1016 & \\
\hline C. B. \(\mathrm{G}^{5.9} \mathrm{R}\). . & 1017 & \\
\hline C. B. N. \(\mathrm{H}^{43.9} \mathrm{G}^{5-1}\) W. & 1018 & \\
\hline A. B. \(H^{3} \mathrm{G}^{14}\) W. R. \(\mathrm{S}^{\mathbf{s}}\) & 1019 & \\
\hline \(\mathrm{H}^{4.9}\) W. R . . . & 1020 & \\
\hline A. \(\mathrm{H}^{3.1} \mathrm{G}^{5.4 .3 .1}\) W. Rd. & 385 & \\
\hline \(\mathrm{G}^{8.4}\) R. \(\mathrm{S}^{21}\). . & 1021 & . \\
\hline N. H \({ }^{4.8} \mathrm{G}^{5.43 .2} \mathrm{~W} . \mathrm{O}^{8.1}\) & 1022 & \\
\hline A. N. \(\mathrm{H}^{4.2} \mathrm{G}^{6.4 .3 .2 .1}\) W. & 1023 & \\
\hline A. B. \(\mathrm{H}^{3} \mathrm{G}^{5.3 .2 .1 ~ W . ~ R . ~}\) & 1024 & Comp. 10 mag. : yl. bl. \\
\hline E.C.B.H \({ }^{4.321} \mathrm{G}^{8.438} \mathrm{~W}\). & 1025 & \\
\hline A. C. B. N. \(\mathrm{H}^{43,2} \mathrm{G}^{\mathrm{K}-1}\) & 1026 & \\
\hline B. \(\mathrm{H}^{4.28} \mathrm{G}^{5-1}\) Rd. R. \(\mathrm{S}^{2}\) & 1027 & * \\
\hline \(\mathrm{H}^{9} \mathrm{G}^{1} \mathrm{Bk}\). R. . . . & 1028 & \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{6.4} \mathrm{Rd} . \mathrm{S}^{21}\). . & 1029 & Groom. 2815 \\
\hline A. B. N. \(\mathrm{H}^{4.3} \mathrm{G}^{6.43 .2}\) W. & 1030 & \\
\hline N. H**2 G5.4.8.1 W. Rd. & 1031 & \\
\hline A. B. N. \(\mathrm{H}^{4,9} \mathrm{G}^{53.8 .1} \mathrm{~W}\). & 395 & \\
\hline C. G \({ }^{6.31}\) R. \(\mathrm{S}^{2}\). . . & 1032 & \\
\hline A.E.C.B. N. \({ }^{4.32 .1}\). & 1033 & \\
\hline \(\mathrm{H}^{4.2} \mathrm{G}^{4}\) R. \(\mathrm{S}^{21}\). & 1034 & \\
\hline
\end{tabular}

FIELD CATALOGUE OF \(127^{8}\) TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
\text { 1885.0. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Declination, } \\
\text { I } 885.0 \text {. }
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 111 & 11 & \\
\hline 1035 & a Vulpecula . & 4-5 & 192355.2 & +2.494 & + 242558 & \(+7.09\) & 1. 10 \\
\hline 1056 & \(\beta^{1}\) Cygni & 3 & 2605.0 & 2.42 I & + 274308 & \(7 \cdot 36\) & I. 13 \\
\hline 1037 & ¢ Cygni & 5-6 & 2648.4 & 1.514 & + 51 2906 & 7.53 & 1. 60 \\
\hline 1038 & \(\mu\) Aquille & 5-4 & 2828.2 & +2.931 & + 70809 & 7.41 & 1.01 \\
\hline 1039 & Groom. 2900. & \(6-7\) & 2837.8 & \(-3.512\) & + 792217 & 7.56 & 5.42 \\
\hline 1040 & \(r^{2}\) Sagittarii & 5-4 & 192942.5 & +3.658 & -250811 & \(+7.62\) & 1.10 \\
\hline 1041 & \(\kappa\) Aquilz & 5 & 3042.3 & 3. 229 & 71656 & 7.73 & 1.01 \\
\hline 1042 & e Sagittre & 6 & \(3^{2} 05.0\) & 2.715 & \(+161220\) & 7.85 & 1. 04 \\
\hline 1043 & \(\theta\) Cygni & 5-4 & 33 21. 4 & 1.609 & + 495718 & 8.17 & 1. 55 \\
\hline 1044 & B. A. C. 6737 & 5-6 & 3332.8 & 0. 639 & \(+631042\) & 7.94 & 2. 22 \\
\hline 1045 & 14 Cygni & 4-5 & 193541.9 & +1.954 & \(+423312\) & +8.15 & 1. 36 \\
\hline 1046 & \(\beta\) Sagitta & 4-5 & 3553.0 & 2.695 & +171238 & 8. 14 & 1. 05 \\
\hline 1047 & B. A. C. 6755 & 5-6 & \(3^{8} 40.9\) & + 2.833 & \(-321106\) & 8. 31 & 1. 18 \\
\hline 1048 & \(\lambda\) Urs. Min. & 6-7 & \(3^{8} 56.5\) & -63.646 & +885722 & 8.41 & 54.90 \\
\hline 1049 & 15 Cygni & 5-6 & 4007.8 & + 2. 163 & \(+370437\) & 8. 52 & 1.25 \\
\hline 1050 & \(\gamma\) Aquilæ & 3 & 194047.5 & \(+2.852\) & +1020 or & \(+8.53\) & 1.02 \\
\hline 413 & B.A.C.2320, B.P. & 6-7 & 74050.8 & 70.110 & +91 oi 43 & 8. 54 & 55.71 \\
\hline 1051 & \(\delta\) Cygni & 3 & 19 4122.8 & 1.877 & + 44 5102 & 8. 58 & 1. 41 \\
\hline 1052 & \(\delta\) Sagitta & 4 & 4215.7 & 2. 679 & +181505 & 8.69 & 1.05 \\
\hline 1053 & \(\zeta\) Sagitta . . & 5 & 4352.4 & 2. 669 & +185116 & 8.81 & 1.06 \\
\hline 1054 & a Aquilæ & 1-2 & 1945 10. 3 & \(+2.928\) & \(+83355\) & \(+9.25\) & 1. 01 \\
\hline 417 & Gr. 1374, S. P. & 6-5 & 74624.5 & 7.293 & +1054645 & 9.01 & 3.68 \\
\hline 1055 & 7 Aquilx & Var. & 194636.9 & 3.058 & + 04128 & 8.97 & 1.00 \\
\hline 1056 & \(\varepsilon\) Pavon & 4 & 4717.0 & 7.056 & \(-731242\) & 8.94 & 3.46 \\
\hline 1057 & , Sagittarii & 4-5 & \(47 \quad 19.3\) & + 4.147 & \(-421009\) & 9. 10 & 1. 35 \\
\hline 1058 & \(\varepsilon\) Draconis & 4 & 194833.1 & -0.177 & \(+695830\) & +9.19 & 2. 92 \\
\hline 42 I & 156 Camelop., S. P. & 6 & 74916.4 & \(+15.167\) & + 953648 & 9.22 & 10. 23 \\
\hline 1059 & \(\beta\) Aquils & 4 & 194939.9 & 2.947 & + 60713 & 8.74 & 1.01 \\
\hline 1060 & \(g \quad\) Sagittarii & 6-5 & 5125.6 & 3.406 & \(-154744\) & 9. 28 & 1. 04 \\
\hline robr & \(\psi\) Cygni . . . & 5 & 5239.4 & 1. 551 & + 520802 & 9.41 & 1.63 \\
\hline 1062 & \(\gamma\) Sagittx & 4-3 & 195338.6 & +2.667 & + 191050 & \(+9.58\) & 1.06 \\
\hline 1063 & c Sagittarii . & 5-4 & 5535.2 & 3. 698 & - 28 ol 42 & 9.71 & 1. 13 \\
\hline 1064 & B. A. C. 6882 & 5 & 5652.4 & 2. 544 & + 242855 & 9.83 & 1. 10 \\
\hline 1065 & \(\tau\) Aquike & 6-5 & 195831.4 & 2.933 & + 65715 & 9.92 & x.or \\
\hline 1066 & e Draconis & 6-5 & 200015.4 & 0. 648 & +642946 & 10. 01 & 2. 32 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. 29- 58

FIELD CATALOGUE OF 1278 TLME AND CIRCUMPOLAR STARS. -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{aligned}
& \text { Right Ascen., } \\
& 1885.0 .
\end{aligned}
\] & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline 432 & 3 Urs. Maj.,S. P. & 6 & \[
\begin{aligned}
& \text { h. m. s. } \\
& 8 \text { ol } 21.5
\end{aligned}
\] & \[
\begin{aligned}
& 5 . \\
& +6.054
\end{aligned}
\] & \[
\begin{array}{r}
0 \prime \prime \prime \\
+1111121
\end{array}
\] & \[
\begin{gathered}
17 \\
+10.13
\end{gathered}
\] & 2.77 \\
\hline 1067 & B. A. C. 6924 & 6 & 200244.6 & 1. 363 & \(+560035\) & 10. 34 & 1. 79 \\
\hline 436 & Gr. 1408, S. P. & 5 & 80504.1 & 7.706 & +1035339 & 10.41 & 4.16 \\
\hline 1068 & \(\theta\) Aquilz & 3-4 & 200522.2 & 3.007 & - 10942 & 10.43 & 1. 00 \\
\hline 1069 & 20 Inipecula. & 6 & 0711.3 & 2.515 & + 260809 & 10. 56 & 1.11 \\
\hline 1070 & \(\rho\) Aquila . & 5 & 200857.3 & +2.774 & \(+145054\) & +10.77 & 1.03 \\
\hline 1071 & or Cygni, foll. . & 4-5 & 10 00.6 & 1.889 & \(+462334\) & 10.77 & 1.45 \\
\hline 1072 & 33 Cygni & 4-5 & 1043.5 & 1.400 & + \(56125^{8}\) & 10. 88 & 1.80 \\
\hline 1073 & \(a^{\text {l }}\) Capricorni . & 4 & 1116.4 & \(3 \cdot 328\) & \(-125145\) & 10.86 & 1.03 \\
\hline 1074 & \(a^{*}\) Capricorni & 3-4 & 1140.4 & +3.333 & -12 5402 & 10.90 & 1.03 \\
\hline 1075 & Groome 3402 & Var. & 201150.8 & -49.281 & \(+884^{6} 5^{2}\) & +10.91 & 47.08 \\
\hline 1076 & 24 Vulpeculx & 6 & 1151.8 & + 2.566 & + 241902 & 10.87 & 1.10 \\
\hline 1077 & \(x\) Cephei. & 4-5 & 1244.6 & - 1.916 & + 772153 & 11. 01 & 4.57 \\
\hline 1078 & \(\beta^{2}\) Capricorni . & 3-4 & 14329 & \(+3.376\) & - 150837 & II. 11 & 1.04 \\
\hline 1079 & B. A. C. 7008 & 6 & 1605.2 & 2. 172 & + 390228 & 11. 21 & I. 29 \\
\hline 1080 & \(a\) Pavonis & 2 & 2016 33. 1 & + 4787 & \(-570608\) & +11. 16 & 1.84 \\
\hline 1081 & \(\gamma\) Cygni & 3-2 & 18 6. 2 & 2. 154 & \(+395320\) & 11. 36 & 1. 30 \\
\hline 1082 & \(\pi\) Capricorni . & 5 & 202044.3 & \(3.44{ }^{\circ}\) & - 183516 & II. 54 & 1. 05 \\
\hline 449 & Gr. 1418, S. P. & 6 & 82114.5 & 16.807 & + \(94323^{1}\) & 11. 59 & 12.63 \\
\hline 1083 & \(\rho \quad\) Capricorni (pr, \()\). & 6 & 202218.0 & 3.428 & - 18 11 35 & I1. 65 & 1.05 \\
\hline 1084 & 41 Cygni . & 4-5 & 202441.8 & + 2.451 & + 295907 & +11.84 & 1. 15 \\
\hline 1085 & \(\omega^{0}\) Cygni . & 4.2 & \(20 \quad 26 \quad 29.9\) & 1.857 & + 483358 & I1. 96 & 1.51 \\
\hline 456 & Gr. 1446, 8. P. & 6-5 & 82643.8 & 6.814 & +105 5443 & 11. 95 & 3.65 \\
\hline 1086 & \(\theta\) Cephei . & 4 & 2027 & 1.017 & +623528 & 12.04 & 2.17 \\
\hline 1087 & e Delphini . . & 4 & 27 43. 2 & 2.867 & + 105447 & 12.03 & 1. OI \\
\hline 1088 & a Indi & 3 & 202928.4 & + 4.240 & \(-474128\) & +12.23 & 1.49 \\
\hline 1089 & \(\zeta\) Delphini & 5-4 & 2955.9 & + 2.806 & +141640 & 12.21 & 1.03 \\
\hline 1090 & Groom. 3241. & 6-7 & 3029.8 & \(-0.217\) & + 720831 & 12. 22 & 3.24 \\
\hline 1091 & \(\beta\) Delphini & 3-4 & 3209.3 & + 2.812 & +141144 & 12. 32 & 1.03 \\
\hline 1092 & 73 Draconis & 5-6 & 33 -0.9 & -0.725 & \(+743337\) & 12.40 & 3.76 \\
\hline 1093 & \(v\) Capricomi & 6-5 & 203330.2 & + 3.43I & - 183234 & +12.45 & 1. 05 \\
\hline 1094 & \(\kappa\) Delphini & 4-3 & 3332.6 & + 2.913 & + 94054 & 12.46 & 1.01 \\
\hline 1095 & a Delphini . & 4-3 & 3417.8 & + 2.788 & + 153026 & 12. 54 & 1.04 \\
\hline 1096 & \(\beta\) Pavonis . . & 3 & 3435.2 & + 5.48 a & \(-663652\) & 12.58 & 2.52 \\
\hline 1097 & 75 Draconis & 5-6 & 3524.4 & - 3. 514 & \(+8 r^{\text {or }}{ }^{1}\) & 12. 57 & 6. 41 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
A. N. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{s} 48} \mathrm{~W} . \mathrm{Rd}\). \\
 B. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{s} 4}\) Rd. R. . A.E.C.B. \(H^{4.8} G^{6432.1}\) \(\mathrm{H}^{48} \mathrm{G}^{\alpha 4}\) R. \(\mathrm{S}^{\mathbf{*}}\). \\
\(\mathrm{H}^{4.3 .5} \mathrm{G}^{\mathrm{a} .3 .9} \mathrm{~W} . \mathrm{R} . \mathrm{S}^{9}\). \\
A. B. G \({ }^{543.1}\) W. Rd. R. \\
B. G \({ }^{21}\) W. Rd. R. . \\
C. B. N. \(\mathrm{H}^{4.2 .1} \mathrm{G}^{\mathrm{s} .48 \mathrm{s.1}}\) \\
A.E.C.B. N. \(\mathrm{H}^{<81} \mathrm{G}^{\mathrm{s-1}}\) \\
Gass W. Rd. \\
B. \(G^{3} R\). \\
A.B.N.H4.3.8 \(G^{8.4 .51}{ }^{1} W\). \\
C. B. N. \(\mathrm{H}^{48} \mathrm{G}^{\alpha .4}\) W. . \\
\(\mathrm{H}^{4.3} \mathrm{G}^{6,43}\) Rd. R. \(\mathrm{S}^{8,1}\). \\
A. E. C. N. \(\mathrm{O}^{1}\) M. Gi. \\
A. C. B. N. H43s Gas \\
A. N. Hesse Gseme W. \\
\(\mathrm{H}^{3}\) G5.43. W. Rd. R. \\
E. C. B. N. \(\mathrm{H}^{4.2 ., 1} \mathrm{G}^{5-1}\) \\
\(\mathrm{H}^{48} \mathrm{G}^{\mathrm{A} 3}\) W. R. \(\mathrm{S}^{8}\) G \({ }^{3 / 3}\) W. R. Rd. \\
B. \(H^{4} G^{5} R d\). \\
B. \(\mathrm{H}^{3} \mathrm{G}^{4681} \mathrm{Rd}\). R. \(\mathrm{S}^{9}\) \\
A. E. B. N. H \({ }^{489} \mathrm{G}^{5-1}\) \\
\(\mathrm{O}^{1}\) M. Gi. . \\
\(\mathrm{H}^{4 / 3}\) Gall W. R. \(\mathrm{S}^{3}\) \\
A. N. \(H^{3} G^{64}\) W. R. . \\
B. \(H^{48} G^{\mathrm{Q}}, \mathbf{W}\). Bk. R. \\
B. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{a}} \mathrm{m}^{2.1}\) W. Rd. . \\
B. Gsas. W. \(\mathrm{O}^{1}\) Rd. . \\
B. \(G^{4} R\). \\
A. C. B. H \({ }^{\text {c.as }} \mathrm{G}^{\text {s.4a2. }}\) \\
A. \(\mathrm{O}^{21}\) M. . \\
GR48.1 Bk. Rd. R.
\end{tabular} & 432
1067
436
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1093
1094
1095
1096
1097
1084
1085
456
1083
1086
1087
1088
1089
1090
1091
1092 & \begin{tabular}{l}
\(\left[-19^{*} 4:+4^{\prime} 3^{2^{\prime}}\right.\) : \\
\(\mathrm{O}^{1}\) prec. \(=5\) mag. : \\
\(\left[\times 7-8 \mathrm{mag} .:+\mathrm{I}^{\prime \prime}:-1 / .5\right.\) \\
Comp. \(=16\) mag. \(: 5^{\prime \prime}\) Doubled by Alvan Clark.
\[
\left\{\begin{array}{l}
G^{5}+W=5 \text { mag. } \\
{\left[+\mathrm{r}^{4} .9 ;-4^{\prime \prime} .6,\right. \text { yl, bl. }} \\
k^{2}=8.5 \text { mag. } \\
\text { Comp. }=7 \text { mag. : } \\
\text { Gri4.0; } 10^{\prime \prime} .7 ; \text { yl. bl. } \\
\text { Groom. } 3^{140 .}
\end{array}\right.
\]
\[
\left[+8^{8} \cdot 4:-3^{\prime} 35^{\prime \prime} .\right.
\] \\
Brad. \(2627=7\) mag.
\[
\left[-1^{m} 22^{\prime} \cdot 2+56^{\prime \prime} \cdot 4\right.
\]
\end{tabular} \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & Annual Var. & \[
\begin{aligned}
& \text { Declination, } \\
& 1885.0 .
\end{aligned}
\] & Annual
Var. & Sec. \(\delta\) \\
\hline 980 & & 6 & \[
\begin{array}{ccc}
\text { h. m. s. } \\
2035 & 53.2
\end{array}
\] & \[
\begin{gathered}
\text { s. } \\
+2.813
\end{gathered}
\] & 0111
+141028 & \[
\begin{gathered}
11 \\
+12.65
\end{gathered}
\] & 1. 03 \\
\hline 1099 & 74 Draconis & 6-7 & 3602.5 & -3.244 & +804117 & 12.85 & 6.18 \\
\hline 1100 & a Cygni & 2-I & 3730.7 & +2.044 & + 4452 II & 12.71 & 1.41 \\
\hline 1101 & \(\delta\) Delphini & 4 & 203805.4 & 2.800 & +143945 & 12.71 & 1.03 \\
\hline 464 & Gr. 1463, S & 6 & 83834.2 & 9.196 & \(+993234\) & 12.80 & 6.03 \\
\hline 1102 & \(\psi\) Capricorni & 4-5 & 203917.1 & \(+3.562\) & - 254100 & +12.68 & I. II \\
\hline 1103 & 30 Vulpecula . & 6-5 & 3953.9 & 2. 597 & + 245134 & 12.71 & 1. 10 \\
\hline 1104 & \(\gamma\) Delphini, foll. & 3-4 & 4119.4 & 2. 782 & +154238 & 12.78 & 1.04 \\
\hline 1105 & \(\varepsilon\) Aquarii & 4-3 & 4126.9 & 3.250 & - \(9545^{8}\) & 12.96 & 1.02 \\
\hline 1106 & \(\varepsilon\) Cygni & 3-2 & 4133.4 & 2.427 & + \(333^{224}\) & 13.27 & 1.20 \\
\hline 1107 & 3 Aquarii . & 4-5 & 204140.1 & +3.171 & 52652 & +12.97 & 1.01 \\
\hline 1108 & Groom. 3281 & 5-4 & 4229.8 & 1. 488 & + 571002 & 12.81 & 1.84 \\
\hline 1109 & \(\lambda\) Cygni & 5-4 & 4255.7 & 2. 334 & + 360306 & 13.09 & 1.24 \\
\hline 1110 & \(\eta\) Cephei & 4-3 & 4257.0 & 1. 231 & + 61 2332 & 13.91 & 2.02 \\
\hline 1111 & \(\mu\) Aquarii . . & 5 & 4627.1 & 3. 240 & 924 5I & 13.27 & 1.01 \\
\hline 1112 & 19 Capricorni & 6 & 204817.9 & \(+3.397\) & -1821 29 & +13.42 & 1.05 \\
\hline 1113 & 32 Vulpeculx & 5-6 & 4939.2 & +2. 554 & + 273714 & 13.53 & 1. 13 \\
\hline 1114 & 76 Draconis & 6 & 5050.7 & -4.014 & +820616 & 13.62 & 7.28 \\
\hline 1115 & T. Y. C. 1879 & 6-5 & 205246.4 & -2. 535 & +80 07 13 & 13.70 & 5.83 \\
\hline 475 & \(\rho\) Urs. Maj., S.P. & 5 & 85209.8 & +5.499 & +1115524 & 13.66 & 2.68 \\
\hline 1116 & \(\nu\) Cygai . & 4 & 205253.2 & +2.234 & + 404329 & +13.71 & 1. 32 \\
\hline 478 & Gr. 1480, S. P. & 6 & 853 & 9.416 & + 984245 & 13.80 & 6.60 \\
\hline 1117 & B. A. C. 7294 & 6 & 2054 49.1 & 1.919 & \(+500056\) & 13.86 & 1. 56 \\
\hline 11 & \(f^{1} \mathrm{Cygri}\) & 5-6 & 5554.8 & 2.032 & \(+470420\) & 13.88 & r. 47 \\
\hline 1119 & \(\eta\) Capricorni & 5-6 & 5751.6 & 3.422 & \(-201833\) & 13.99 & 1.07 \\
\hline 1120 & \(\theta\) Capricorni . & 4-5 & 205929.0 & +3.379 & \(-174221\) & +14.07 & 1.05 \\
\hline 483 & \(0^{2}\) Urs. Maj., S.P. & 5 & 90015.7 & 3. 561 & +1122359 & 14. 25 & 2.62 \\
\hline 1121 & \(\xi\) Cygni & 4 & 210044.8 & 2. 178 & + 432809 & 14.22 & 1. 38 \\
\hline 1122 & GI \({ }^{1} \mathrm{Cygni}\) & 5-6 & or 44.5 & 2.683 & \(+3^{8} 1104\) & 17.52 & 1. 27 \\
\hline 1123 & \(\nu\) Aquarii . . & 4-5 & 0319.8 & 3. 273 & - 115012 & 14.37 & 1.02 \\
\hline 1184 & \(\gamma\) Equatio & 5-4 & 210445.0 & +2.919 & \(+94008\) & 14.3I & \(1 . \mathrm{OI}\) \\
\hline 1125 & \(3 P\) & 6 & 0628. & +3.569 & -2805 11 & 14.51 & 1.13 \\
\hline 1126 & 77 Draco & 6 & 0745.7 & -1. 104 & \(+773935\) & 14.69 & 4.68 \\
\hline 1127 & \(\zeta\) Cygni & 3 & 0802.5 & +2. 549 & \(+294520\) & 14.60 & 1.14 \\
\hline 1128 & Groom. 3415 & 6-5 & 0852.6 & +1. 529 & \(+593050\) & 44.70 & 1.97 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \(\mathrm{H}^{2} \mathrm{G}^{4}\) R. \(\mathrm{S}^{2}\). . & 1098 & \\
\hline \(\mathrm{H}^{3.1} \mathrm{G}^{5.43} \mathrm{Rd}\) R. R. . . & 1099 & \\
\hline A.E.C.B.N. \(\mathrm{H}^{1.21} \mathrm{G}^{4-1}\) & 1100 & \\
\hline B. Gs. \({ }^{\text {.1 R }}\) R. . . . & 1101 & - \\
\hline \(\mathrm{C}^{\text {a } 4.3 .8 \mathrm{Rd.}}\) & 464 & \\
\hline A. C. N. G \({ }^{\text {a.3.8 W }}\) W. \(\mathrm{O}^{1}\). & 1102 & \\
\hline \(\mathrm{H}^{2} \mathrm{Ga4}\) W. R. \(\mathrm{S}^{2}\). . & 1103 & [-0'.9: \(+o^{\prime \prime} .8\) \\
\hline B. Gs. W. R. . . . & 1104 & \(\mathrm{G}^{5} \mathrm{pr}\). star \(=7\) mag.: \\
\hline E. B. G6.4.2. \({ }^{\text {W }}\) W. \(\mathrm{O}^{ \pm}\) & I 105 & \\
\hline A. C. B. \(\mathrm{H}^{4.388} \mathrm{G}^{5.43 .9}\). & 1106 & \\
\hline C. G1 Bk. R. . . & 1107 & \\
\hline B. Rd. R. . . . & 1108 & \\
\hline B. \(\mathrm{H}^{3} \mathrm{G}^{5.5}\) W W. R. S. . & 1109 & \\
\hline B. \(\mathrm{H}^{4.38} \mathrm{G}^{6.4}{ }^{\text {S.1 }}\) W. Rd. & 1110 & \\
\hline A.C.N.H \({ }^{4.3} \mathrm{G}^{5.4 .32 .1}\) W. & IIII & \\
\hline N. \(\mathrm{H}^{\mathrm{a}} \mathrm{G}^{\text {s }}\) W.O. R. & 1112 & \\
\hline E.C.B. \(\mathrm{H}^{+1} \mathrm{G}^{\mathrm{s}-1} \mathrm{~W} . \mathrm{O}^{8}\) & 1113 & \\
\hline B. H \({ }^{33} \mathrm{G}^{0-1}\) W. Rd. R. & 1114 & \\
\hline A.B.N. \(\mathrm{H}^{4-1} \mathrm{G}^{8.4 .1} \mathrm{~W}\) W. & 1115 & Brad. 2749: Groom. 3373. \\
\hline B. G \({ }^{\alpha / 4}\) W. Rd. R. . & 475 & \\
\hline A,B.N. \(\mathrm{H}^{48} \mathrm{G}^{4.3 .3} \mathrm{~W} . \mathrm{O}^{1}\) & 1116 & \\
\hline G. 1 W. Rd. . . . & 478 & \[
\begin{aligned}
& {\left[G^{5} 72:\right. \text { observe 1st }} \\
& 2 \mathrm{zd}=+0^{0.14:+2^{\prime \prime} .2 .}
\end{aligned}
\] \\
\hline \(\mathrm{H}^{4.8} \mathrm{G}^{8} \mathrm{Rd} . \mathrm{S}^{2.1}\). . & 1117 & As one mass 6 mag. : \\
\hline \(\mathrm{G}^{\text {a-4.8.1 W.OIRd.R.S }}{ }^{81}\) & 1118 & Pr. star - 0 . 7 : - \(25^{\prime \prime}\). \\
\hline N. \(\mathrm{H}^{4.8} \mathrm{G}^{6.381} \mathrm{~W} . \mathrm{O}^{1} \mathrm{Rd}\). & 1119 & \\
\hline  & 1120 & \\
\hline A.B.N.H \({ }^{4.3 .9} \mathrm{G}^{5.3 s .1} \mathrm{~W}\). & 483 & \\
\hline B. G6.as.1 O'Rd.R. \(\mathrm{S}^{8}\) & 1121 & \(\left[+1^{4.5}:-8 / 1.0 \mathrm{G}^{6}\right.\) \\
\hline A.E.C.B.N.H \({ }^{4.8 .8 .1 \mathrm{G}^{5-8}}\) & 1122 & \(61^{2}\) Cygni \(=6\) mag.: \\
\hline  & 1123 & \\
\hline \[
\begin{aligned}
& H^{48} G^{43} \text { W. R. } \\
& H^{3} G^{2.1} \text { W. Bk. . }
\end{aligned}
\] & 1124 & \[
\begin{gathered}
{\left[+13^{4} .0:-5^{\prime} 1^{\prime \prime} .\right.} \\
G^{3}: 6 \text { Equulei }=6 \text { mag.: } \\
\text { [ } \gamma \text { doub. } 5.4 \text { and } 11: 2^{\prime \prime} .1 .
\end{gathered}
\] \\
\hline B. \(\mathrm{H}^{4} \mathrm{G}^{8.4} \mathrm{~W}\). Rd. R. . & 1126 & Gr. 3416. \(\mathrm{R}=\tau\) Drac. \\
\hline A.E.C.B.N. \(\mathrm{H}^{\text {4.3.g. } \mathrm{G}^{\text {E-1 }}}\) & 1127 & \\
\hline B. G \({ }^{\mathbf{3}}\) W. Rd. R. . . & 1128 & Doub. : 6.and 7 mags. : \(1^{\prime \prime}\) I. \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{array}{|c|}
\text { Right Ascen., } \\
1885.0 .
\end{array}
\] & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h.m. s. & s. & - 11 & 11 & \\
\hline 1129 & a Equalei. & 4 & 211004.5 & + 3.000 & \(+44622\) & +14.70 & 1. 00 \\
\hline 1130 & \(\tau\) Cygni & 4 & 1011.9 & 2. 392 & \(\begin{array}{llll}37 & 33 & 19\end{array}\) & 15.26 & 1. 26 \\
\hline 1131 & \(\sigma\) Cygni & 4-5 & 1253.9 & 2. 355 & \(3^{8} 5447\) & 14.93 & I. 29 \\
\hline 1132 & a Cephei & 3-2 & 1550.1 & 1. 437 & + 620555 & 15.17 & 2. 14 \\
\hline 1133 & - Capric & 4-5 & 1550.6 & 3. 348 & \(-171925\) & 15.13 & 1.05 \\
\hline 1134 & 1 Pegasi & 4-5 & 211646.1 & \(+2.772\) & +191847 & +15.23 & 1. 06 \\
\hline 1535 & \(\gamma\) Pavonis, & 3-4 & 1655.3 & 5.041 & -65 5312 & 16.03 & 2. 45 \\
\hline 1136 & 6 Cephei & 6-5 & 1658.9 & 1.255 & + 642303 & 15.19 & 2. 31 \\
\hline 1137 & Groom. 3441 & 6-5 & 1800.5 & 2.077 & + 485345 & 15.25 & 1. 52 \\
\hline 1138 & \(\zeta\) Capricorni & 4 & 212006.0 & 3.435 & \(-225432\) & 15.37 & 1.09 \\
\hline 501 & 1 Draconis, S.P. & 4-5 & 92036.8 & + 9.046 & \(+981000\) & \(+15.40\) & 7.04 \\
\hline 1139 & B. A. C. 7455 & 5-6 & 212106.2 & 2. 194 & + 461259 & 15.53 & 1.46 \\
\hline 1140 & b Capricorni & 5-4 & 2209.9 & \(+3.433\) & \(2218 \quad 26\) & 15.47 & 1.08 \\
\hline 1141 & B. A.C. 7504. & 6 & 212223.0 & -11.044 & \(+863333\) & 15.50 & 16. 66 \\
\hline 504 & d Urs. Maj., S.P. & 5-4 & 92417.7 & + 5.408 & \(+1093955\) & 15.54 & 2.97 \\
\hline 1142 & \(g\) Cygni & 5 & 212512.3 & + 2.208 & +46 oz or & +15.74 & 1.44 \\
\hline 1143 & \(\beta\) Aquarii . & 3 & 25 30. 3 & 3. 162 & - 60436 & 15.65 & 1.01 \\
\hline 1144 & \(\beta^{2}\) Cephel . & 3 & 27 10. 3 & 0. 796 & +7003 21 & 15.75 & 2.93 \\
\hline 1145 & B. A. C. 7488 & 6-7 & 2724.3 & 2.026 & + 514113 & 15.82 & 1.61 \\
\hline 1146 & \(\rho\) Cygri . . & 4-5 & 2939.3 & 2. 252 & + 45 O5 OI & 15.80 & 1.42 \\
\hline 1147 & \(\xi\) Aquarii. & 5-4 & 213137.8 & + 3.198 & \(-82210\) & +15.96 & 1.01 \\
\hline 1148 & 74 Cygni . & 5 & 213220.4 & 2.401 & + 395349 & 16.04 & 1.30 \\
\hline 511 & Gr. 1564, S. P. & 5-6 & 93223.2 & 5. 235 & +110 1424 & 16. 10 & 2.89 \\
\hline 1149 & \(\lambda 1\) Octantis & 5-6 & \(21 \quad 3309.3\) & 9.836 & \(-831446\) & 16.00 & \(1 \times .76\) \\
\hline 512 & Gr. 1562, S. P. . & 6 & 933 36. 3 & 7.452 & +100 2014 & 16. 10 & 5.57 \\
\hline 1150 & \(\gamma\) Capricorni & 4-3 & 213343.1 & +3.332 & -. 17 10 52 & \(+16.08\) & 1.05 \\
\hline 1151 & 13 Cephei & 6-5 & 3525.4 & 1. 860 & + 565809 & 16. 17 & 1.84 \\
\hline 1152 & 75 Cygni & 6-5 & \(35 \quad 38.3\) & 2. 348 & \(+424507\) & 16. 21 & 1. 36 \\
\hline 1153 & * Capricorn & 5 & 37 14. 1 & 3. 357 & - 192324 & 16. 22 & 1.06 \\
\hline 1154 & \(\varepsilon\) Pegasi & 2-3 & \(3^{8} 32.3\) & 2. 947 & + 92053 & 16. 35 & 1.01 \\
\hline 1155 & \(\kappa\) Pegasi & 4 & 213926.2 & +2.712 & \(+250700\) & +16.41 & 1. 10 \\
\hline 1156 & 11 Cephel. . & 5 & 4014.1 & 0.903 & +704655 & 16. 54 & 3.04 \\
\hline 1157 & \(\lambda\) Capricorni . & 5-6 & 4020.7 & 3. 235 & - \(11534^{6}\) & 16.43 & 1. 02 \\
\hline 1158 & \(\delta\) Capricorni & 3-4 & 4041.6 & 3.318 & - 16 38 55 & 16.15 & 1. 04 \\
\hline 1159 & \(\pi^{2}\) Cygni & 4-5 & 4232.7 & 2. 211 & + 484640 & 16. 54 & 1.52 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOIAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & \[
\begin{gathered}
\text { Right Ascen., } \\
1885.0 .
\end{gathered}
\] & Annual Var. & \[
\begin{gathered}
\text { Declination, } \\
\text { I885.0. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline T160 & 14 Pegasi & 5 & \[
\begin{array}{cc}
\text { h.m. } & \text { s. } \\
\text { 2I } & 45 \cdot 5
\end{array}
\] & \[
\begin{aligned}
& \text { s. } \\
& + \text { 2. } 645
\end{aligned}
\] & 0.11
\(+293^{820}\) & \[
\begin{gathered}
\prime \prime \\
+16.65
\end{gathered}
\] & 1. 15 \\
\hline 1161 & \(\gamma\) Gruis & 2-3 & 4658.1 & 3.648 & \(-375423\) & 16.78 & 1. 27 \\
\hline 1162 & \(\mu\) Capricorni . & 5 & 47 O1. 5 & 3. 277 & \(-140533\) & 16.77 & 1. 03 \\
\hline 1163 & 16 Pegasi & 5-6 & 214749.8 & 2. 728 & + 252303 & 16.80 & 1. 11 \\
\hline 524 & Gr. 1586, S. P. & 6-7 & 94804.7 & \(5 \cdot 494\) & 1063428 & 16.86 & 3.51 \\
\hline 1164 & B. A. C. 7636 & 6 & 2149145 & +2.017 & \(+554012\) & \(+16.83\) & 1. 77 \\
\hline 1165 & \(\mu\) Cephei & 5-6 & 5 I or. 3 & 2.010 & + 5604 01 & 16.95 & I. 79 \\
\hline 1166 & A Draconis (79) & 6-7 & 5126.0 & 0.731 & \(+730930\) & 17.01 & 3.45 \\
\hline 1167 & \(\eta\) Piscis Aus. & 5-6 & 5413.8 & 3. 457 & - 290018 & 17.10 & 1. 14 \\
\hline 1168 & 20 Pegasi & 6-5 & 5529.2 & 2. 923 & +123409 & 17. II & 1, 02 \\
\hline 1169 & - Aquarii. & 5-4 & 215722.0 & +3.106 & \(-24^{2} 3^{6}\) & +17.25 & \(1 . \infty\) \\
\hline 1170 & \(a\) Aquarii . & 3 & 215952.6 & 3.083 & \(05^{2} 4^{1}\) & 17.35 & 1.00 \\
\hline 1171 & ( Aquarii . & 4 & \(22 \quad 0013.6\) & 3. 246 & -1425 37 & 17.35 & 1.03 \\
\hline 1172 & \(a\) Gruis & 2 & ¢ 58.9 & 3. 808 & \(-473^{1} 02\) & 17.23 & 1.48 \\
\hline 1173 & zo Cephei . & 6 & Or 30.8 & 1. 820 & +621329 & 17.45 & 2. 15 \\
\hline 1174 & - Pegasi & 4 & 22 ol 39.4 & + 2.789 & \(+244702\) & +17.47 & 1. 10 \\
\hline 1175 & 15 Piscis Aus. . & 5-6 & 03 24.2 & 3. 541 & \(-330645\) & 17.52 & 1. 19 \\
\hline 1176 & \(\pi^{1}\) Pegasi & 5 & 0409.9 & 2.653 & \(+323^{6} 39\) & 17.48 & 1. 19 \\
\hline 1177 & \(\theta\) Pegasi & 3-4 & 0424.9 & 3.027 & + 53753 & 17.59 & 1.or \\
\hline 1178 & \(\pi^{2}\) Pegasi . & 4 & 0452.8 & 2.660 & \(+3^{2} 3^{6} 5\) & 17. 57 & 1. 19 \\
\hline 1179 & 5 Cephei & 4-3 & 220641.7 & +2.076 & +573804 & +17.64 & 1.87 \\
\hline 1180 & 24 Cephei . & 5-4 & 0735.6 & 1. 166 & + \(714^{6} 30\) & 17.68 & 3.20 \\
\hline 1181 & B. A. C. 7765 . & 5 & 0856. & 2. 568 & + 390840 & 17.74 & I. 29 \\
\hline 1182 & y Octantis & 6 & 220918.7 & 13. 326 & - 8633 or & 17.85 & 16.62 \\
\hline 537 & 32 Urs, Maj., S. P. & 6 & 100940.3 & 4.426 & +1141907 & 17.81 & 2.43 \\
\hline 1183 & a Tucanc. & 4-3 & 221036.9 & \(+4.163\) & \(-604956\) & +17.73 & 2.05 \\
\hline II84 & \(\theta\) Aquarii . & 4-5 & 221045.9 & 169 & 82120 & 17.79 & 1.01 \\
\hline 541 & B.A.C.3495,S.P. & 5-6 & 10 1246.8 & 9. 664 & + 950953 & 17.95 & 11. 11 \\
\hline 1185 & 45 Aquarii. & 6 & 221250.4 & 3. 226 & -13 5249 & 17.89 & 1.03 \\
\hline 1186 & \(\rho\) Aquarii. . & 5-6 & 1408.8 & 3. 161 & \(-82353^{\circ}\) & 17.95 & 1.01 \\
\hline 1187 & \(\gamma\) Aquarii . & 4-3 & 221542.9 & \(+3.100\) & - 15759 & +18.03 & 1.00 \\
\hline 544 & 30 Erb, Maj., S. P. & 5 & 10 1549.6 & 4. 395 & +1135109 & 18.03 & 2.47 \\
\hline 1188 & 31 Pegasi & 5-4 & \(22 \begin{array}{lllllll} & 51\end{array}\) & 2.950 & + 113734 & 18.02 & 1.02 \\
\hline 545 & 30 Camel, S. \(P\) & 5 & 101657.4 & 7.845 & +965126 & 18.03 & 8. 38 \\
\hline 1189 & 49 Aquarii. . & 6 & 221706.2 & 3. 358 & -25 2037 & 18.05 & 1.11 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.

S. Ex. \(29-59\)

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{aligned}
& \text { Annual } \\
& \text { Var. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Declination, } \\
1885.0 .
\end{gathered}
\] & Annual Var. & Sec. \(\delta\) \\
\hline & & & h. m. s. & S. & + 0111 & +18 & \\
\hline 1190 & B. A. C. 7803 & 6 & 221707.0 & +2.529 & + 430958 & +18.04 & 1.37 \\
\hline 1191 & \(\beta\) Lacertx. & 4-5 & 1902.3 & 2. 350 & + 513911 & 17.94 & 1.61 \\
\hline If92 & \(\pi\) Aquarii . & 5-4 & 1924.3 & 3.065 & + 04739 & 18.15 & 1.00 \\
\hline 1193 & B. A. C. 7824 & \(6-7\) & 2027.0 & 2. 383 & + 504016 & 18.18 & 1. 58 \\
\hline 1194 & B. A. C. \(7^{825}\) & 7 & 2046.1 & 2. 406 & \(+494903\) & 18. 19 & 1. 55 \\
\hline 1195 & B. A. C. 7851. & 5-6 & 222219.3 & -3.939 & \(+853143\) & +18.31 & 12.83 \\
\hline 1196 & \(\zeta\) Aquarii. & 3-4 & 2254.6 & +3.089 & - 03629 & 18. 32 & 1.00 \\
\hline 1197 & \(\sigma\) Aquarii . & 5-4 & 2433.6 & 3. 179 & - 11 1558 & 18.31 & 1.02 \\
\hline 1198 & d Cephei & 4 & 24 54. 1 & 2.216 & \(+574935\) & 18. 32 & 1.88 \\
\hline 1199 & \(\beta\) Piscis Aus. & 4 & 222458.0 & 3.424 & \(-325609\) & 18. 32 & 1. 19 \\
\hline 553 & 9 Draconis, S. P. & 5-4 & 102517.9 & \(+5.275\) & +1034143 & +18.38 & 4. 22 \\
\hline 1200 & a Lacertre. & 4 & 2226 33. I & 2.460 & \(+494128\) & 18.40 & 1. 55 \\
\hline 1201 & \(v\) Aquarii. & \(6-5\) & 2823.5 & 3.292 & - 21 1748 & 18.38 & 1.07 \\
\hline 1202 & 7 Aquarii . & 4-3 & 2926.8 & 3.084 & \(-04236\) & 18. 45 & 1. 00 \\
\hline 1203 & 226 Cephel . & 5-6 & 3015.1 & 1. 079 & \(+753802\) & 18. 53 & 4.03 \\
\hline 1204 & к Aquarii. & 5-6 & 223148.1 & +3.110 & - 44915 & +18.47 & 1.00 \\
\hline 1205 & 31 Cephei & 5 & 3255.7 & 1. 488 & + 730247 & 18.64 & 3.43 \\
\hline 1206 & 10 Lacertre. & 5 & 34 06. 1 & 2. 686 & \(+3^{8} 2707\) & 18.66 & 1. 28 \\
\hline 1207 & \(\beta\) Octantis. & 5-4 & 3414.0 & 6.512 & \(-815901\) & 18.67 & 7.17 \\
\hline 1208 & e Piscis Aus. . & 4 & 3417.7 & 3. 328 & \(-273835\) & 18.66 & 1. 13 \\
\hline 1209 & 30 Cephei & 5-6 & 223434.3 & +2.114 & +625912 & +18.63 & 2. 20 \\
\hline 56 & 35 Urs. Maj., S. P. & 5 & 10 3449.3 & 4.386 & +110 1346 & 18.68 & 2.89 \\
\hline 12 & 11 Lacerta. & 4-5 & 223528.2 & 2.615 & \(+434034\) & 18.69 & 1. \(3^{8}\) \\
\hline 1211 & 5 Pegasi & 3-4 & 3543.6 & 2.991 & +101353 & 18.70 & 1. 02 \\
\hline 1212 & \(\beta\) Grwis. & 2-3 & 3547.6 & 3.680 & - 472907 & 18.72 & 1. 49 \\
\hline 1213 & \(\eta\) Pegasi & 3 & 223736.7 & +2.808 & + 293712 & +18.76 & 1. 15 \\
\hline 1214 & 13 Lacerta. . & 6 & 3857.8 & 2.666 & + 411256 & 18.83 & 1.33 \\
\hline 1215 & \(\lambda\) Pegasi . . & 4-5 & 4059.5 & 2.883 & + 225739 & 18.87 & 1. 09 \\
\hline 1216 & \(\tau\) Aquarii . & 4 & 4330.2 & 3. 180 & -141158 & 18.90 & 1.03 \\
\hline 1217 & \(\mu\) Pegasi . . & 4 & 4427.0 & 2.878 & + 235940 & 18.95 & 1,09 \\
\hline 1218 & i Cephel & 4-3 & 2245 35. 2 & +2.128 & \(+653544\) & +18.87 & 2.42 \\
\hline 1219 & \(\lambda\) Aquarii. & 4 & 4636.9 & +3. 133 & - 81129 & 19.07 & 1. OI \\
\hline 1220 & 34 Cophoi & 5 & 4753.5 & \(-0.083\) & +823237 & 19. 12 & 7.71 \\
\hline 1221 & d Aquarii . & 3 & 4832.7 & +3. 186 & -1625 54 & 19.06 & 1. 04 \\
\hline 1222 & \(\rho\) Pegari . & 5-6 & 2249 23. 3 & \(+3.022\) & + 81210 & 19. 16 & 1. 01 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Declination, 1885.0. & Annual Var. & Sec. \(\delta\) \\
\hline 1223 & d Piscis Aus. & 5 & \[
\begin{gathered}
\text { h. m. s. } \\
224934-7
\end{gathered}
\] & \[
\begin{gathered}
s . \\
+3 \cdot 339
\end{gathered}
\] & \[
\begin{gathered}
\circ \quad \prime \prime \\
33 \mathrm{og} 09
\end{gathered}
\] & \[
\begin{gathered}
\prime \prime \\
+19.21
\end{gathered}
\] & 1. 19 \\
\hline 578 & Gr. 1706, S, P. & 6-5 & 10 5043.3 & 4.992 & +1013651 & 19. 19 & 4.97 \\
\hline 1224 & a Piscis Aus. & 1-2 & 225117.7 & 3. 326 & \(-301353\) & 18. 99 & 1. 16 \\
\hline 1225 & 51 Pegasi & 6-5 & 5149.1 & 2. 948 & + 200908 & 19.24 & 1.07 \\
\hline \(\mathbf{2 2 2 6}\) & 52 Ptgasi & 6 & 5326.6 & 3.001 & + 110653 & 19.20 & 1.02 \\
\hline 1227 & 3 Piscium. & 6 & 225443.9 & \(+3.072\) & - 02551 & \(+19.27\) & 1.00 \\
\hline 1228 & 36 Cephei & 5-4 & 5517.1 & -0. 243 & + 834350 & 19. 25 & 9. 16 \\
\hline 1229 & - Andromedr. & 4-3 & 5637.8 & +2.749 & + 41 4228 & 19. 26 & 1. 34 \\
\hline 1230 & \(\beta\) Pegasi & Var. & 5811.9 & 2.901 & + 272734 & 19.48 & 1. 13 \\
\hline 1231 & a Pegasi & 2 & 225902.0 & 2. 985 & +143512 & 19.30 & 1. 03 \\
\hline 1232 & 55 Pegasi & 5 & 23 O1 12.6 & +3.023 & + 84718 & +19.37 & 1. 01 \\
\hline 1233 & \(c^{2}\) Aquarii . & 4 & O3 18.8 & 3. 206 & - 214746 & 19. 46 & 1.08 \\
\hline 1234 & \(\pi\) Cephei. . & 5 & 0414.5 & 1. 888 & + 744557 & 19.4I & 3.81 \\
\hline 1235 & 59 Pegasi & 5 & 0555.8 & 3.027 & + 80544 & 19.49 & I. OI \\
\hline 1236 & Brad. 3077 & 6 & 230744.8 & 2.86 I & + 563200 & 19.80 & r. 8 I \\
\hline 590 & Gr. 1747, S. P. . & 7-6 & II 0739.9 & \(+4.623\) & +io1 0352 & +19.54 & 5.21 \\
\hline 1237 & ¢ Aquarii & 4-5. & 230822.0 & 3. 109 & - 64006 & 19. 35 & 1.01 \\
\hline 1238 & \(\psi^{\prime}\) Aqzarii. & 5-4 & 0952.0 & 3. 147 & - 94247 & 19. 57 & 1. OI \\
\hline 1239 & \(\gamma\) Piscium & 4 & 1112.6 & 3. 108 & + 23914 & 19.6r & 1. 00 \\
\hline 1240 & \(\psi^{3}\) Aquarii. . & 5 & 1258.8 & 3. 124 & 10 1422 & 19.63 & 1.02 \\
\hline 1241 & - Cephei . & 6-5 & 231354.4 & +2.442 & +672857 & +19.67 & 2.61 \\
\hline 1242 & \(\tau\) Pegasi & 5-4 & 231456.7 & 2.963 & + 230639 & 19.65 & 1.09 \\
\hline 599 & Gr. 1771, S.P. & 6 & \(\begin{array}{lllllllllll}11 & 1600.7\end{array}\) & 3.603 & +1150225 & 19.66 & 2. \(3^{6}\) \\
\hline 1243 & b1 Aquarii \(^{\text {a }}\) & 5-4 & 231655.8 & 3. 157 & \(-204342\) & 19.60 & 1. 07 \\
\hline 1244 & \(v\) Pegasi & 5-4 & 1938.4 & 2.987 & + 224616 & 19.78 & 1.08 \\
\hline 1245 & 4 Cassiopeiz & 6 & 231943.9 & \(+2.639\) & + 6r 3905 & +19.72 & 2. 11 \\
\hline 1246 & * Piscium & 5-4 & 2102.2 & 3.074 & + 03734 & 19.66 & 1.00 \\
\hline 1247 & \(\theta\) Piscium . & 4-5 & 2208.1 & 3.041 & + 54450 & 19.72 & 1.01 \\
\hline 1248 & 70 Pegasi . & 5 & 232320.3 & 3.028 & + 120734 & 19.83 & 1.02 \\
\hline 606 & 202 Camelop. . & 6 & 112342.4 & 4.480 & \(+981424\) & 19.78 & 6.98 \\
\hline 609 & \(\lambda\) Draconis, S. P. & 3-4 & 112433.9 & \(+3.626\) & +1100204 & +19.84 & 2.92 \\
\hline 1249 & B. A. C. 8188 & 5 & 232443.3 & +2.741 & \(+575454\) & 19.8r & 1.88 \\
\hline 1250 & \(b^{4}\) Aguarii & 5-4 & 2715.5 & +3. 145 & - \(2 \pm 3300\) & 19.86 & 1.08 \\
\hline 1251 & 39 Cephei. & 5-6 & 2750.2 & \(\bigcirc 0.059\) & \(+864023\) & 19.87 & 17.23 \\
\hline 1252 & 72 Pegasi & 6 & 232814.9 & +2.964 & + 304126 & 19.85 & 1. 16 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.


FIELD CATALOGUE OF 1278 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Star. & Mag. & Right Ascen., 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Declination, 1885.0. & \[
\begin{gathered}
\text { Annual } \\
\text { Var. }
\end{gathered}
\] & Sec. \(\delta\) \\
\hline & & & h. m. s. & s. & - 111 & /1 & \\
\hline 1253 & 15 Andromeda. & 5-6 & 232900.0 & +2.922 & \(+393610\) & \(+19.82\) & 1. 30 \\
\hline 1254 & 16 Piscium & 6 & 3031.2 & 3.060 & + 12750 & 19.93 & 1. 00 \\
\hline 1255 & \(\lambda\) Andromedæ & 4 & 3156.3 & 2. 920 & \(+455005\) & 19.45 & 1.44 \\
\hline 1256 & \(t\) Andromedæ & 4 & 3229.7 & 2. 924 & \(+423754\) & 19.93 & 1. 36 \\
\hline 1257 & \(\iota\) Piscium. & 4-5 & 34 02. 1 & 3. 084 & + 50011 & 19.47 & 1.00 \\
\hline 1258 & \(\gamma\) Cephei. & 3-4 & 233437.9 & +2.411 & \(+765926\) & +20.07 & 4.50 \\
\hline 1259 & \(\kappa\) Andromedr & 4 & 233444.7 & 2. 938 & + 434150 & 19.91 & 1. 38 \\
\hline 615 & 3 Draconis, S. P. & 5-6 & \(\begin{array}{ll}11 & 36\end{array} 03.1\) & 3.402 & +1123707 & 19.90 & 2.60 \\
\hline 1260 & \(\lambda\) Piscium & 5 & \(23 \quad 36 \quad 10.7\) & 3.060 & + 10843 & 19.76 & 1. 00 \\
\hline 1261 & \(\omega^{2}\) Aquarii . & 5-4 & \(3645 \cdot 5\) & 3.114 & + 151210 & 19.90 & 1.04 \\
\hline 1262 & 78 Pegasi & 5 & 233812.6 & \(+3.013\) & + 284330 & +19.98 & 1. 14 \\
\hline 1263 & i) Aquarii. & 5 & 3814.2 & 3.116 & -18 5455 & 19.96 & I. 06 \\
\hline 1264 & \(\psi\) Andromeda & 5 & 4020.2 & 2. 955 & + 454655 & 19.96 & 1.46 \\
\hline 1265 & 20 Piscium. & 6 & 42 O1. 8 & 3.084 & - 32403 & 19.99 & 1. 00 \\
\hline 1266 & 41 Cephei. . & 6 & 4224.9 & 2.824 & +671004 & 19.98 & 2. 58 \\
\hline 1267 & \(\delta\) Sculptoris & 4-5 & 234256.1 & \(+3.136\) & \(-284558\) & +19.90 & 1. 14 \\
\hline 1268 & B. A. C. 8289 & 6-7 & 234437.4 & 2. 948 & + 505859 & 19.97 & 1. 59 \\
\hline 622 & Gr. 1828, S. P. & 7 &  & 3. 303 & +11031 31 & 20.01 & 2.85 \\
\hline 1269 & \(\gamma^{1}\) Octantis & 5-6 & \(23 \quad 45 \quad 18.9\) & 3. 704 & -82 3929 & 19.99 & 7.83 \\
\hline 1270 & \(\phi_{\text {¢ }}\) Pegasi . & 6-5 & \(46 \quad 38.3\) & 3.046 & + 182854 & 20.00 & 1.05 \\
\hline 1271 & \(\rho\) Cassiopeiæ . . & 5 & 234838.5 & +2.969 & + 565133 & +20.02 & 1. 83 \\
\hline 1272 & Groom. 4163. & 7-6 & 4914.9 & 2. 861 & + 734613 & 20.02 & 3.58 \\
\hline 1273 & B. A. C. 8322 & 6 & 5120.9 & 2. 998 & + 550357 & 20.01 & 1. 75 \\
\hline 1274 & \(\omega\) Piscium. & 4 & 5324.4 & 3.078 & + 61336 & 19.93 & 1.01 \\
\hline 1275 & 309 Cephei . & \(6-7\) & 5406.7 & 2.614 & +860358 & 20.03 & 14. \(5^{8}\) \\
\hline 1276 & 30 Piscium & 5-4 & \(23 \begin{array}{llll} & 5 & 03.7\end{array}\) & +3.077 & \(-63912\) & +20.01 & 1. 01 \\
\hline 1277 & 2 Ceti & 4-5 & 235750.8 & 3.076 & - \(175^{8} 34\) & 20.05 & 1.05 \\
\hline 630 & B A.C.4070, S P. & 6-7 &  & 3.081 & + 934633 & 20.06 & 15.19 \\
\hline 632 & Gr. 1852, S. P. & 6 & 115923.5 & 3. 136 & +10227.04 & 20.17 & 4.64 \\
\hline 1278 & 33 Piscium. & 5 & 235926.9 & 3.071 & -62103 & 20.15 & 1. 01 \\
\hline
\end{tabular}

FIELD CATALOGUE OF 1273 TIME AND CIRCUMPOLAR STARS.
\begin{tabular}{|c|c|c|}
\hline Authorities. & No. & Notes. \\
\hline \begin{tabular}{l}
\(H^{3.2} \mathrm{G}^{5}\) Rd. R. \(\mathrm{S}^{2.1}\) N. G. W. R. . \\
A. B. \(\mathrm{H}^{2} \mathrm{G}^{31}\) Rd. R. \(\mathrm{S}^{2}\) \\
C. B. G \({ }^{5.4 .3 .2}\) W. Rd. R. \\
A.E.C.B.N. \(H^{4.32 .1} \mathrm{G}^{5-1}\) \\
A.E.C.B. N. \(\mathrm{H}^{4.3 .2} \mathrm{G}^{k-1}\) \\
B. \(\mathrm{G}^{3} \mathrm{Rd}\). R. \\
B. \(\mathrm{H}^{4} \mathrm{G}^{543}\) W. Rd, \\
N. \(\mathrm{H}^{2} \mathrm{G}^{\mathbf{5} 4.3 .2 .1}\) W.O.R. \\
B. G \({ }^{4}\) W. R. \\
\(\mathrm{G}^{5.3}\) R. \(\mathrm{S}^{2}\). \\
A. \(H^{48} G^{3} R\). \\
\(\mathrm{H}^{4.2} \mathrm{G}^{3.1}\) Rd. R. \(\mathrm{S}^{2.1}\). \\
N.G \({ }^{6.432 .1}\) W. \(O^{1}\) Rd.R. \\
B. \(\mathrm{H}^{4} \mathrm{G}^{\mathrm{k} .43}\) W. Rd. \\
A.E.C.B.H \({ }^{4.3 .2} \mathrm{G}^{6-1}\) W. \\
\(\mathrm{H}^{4.5}\) Rd. \(\mathrm{S}^{2.1}\) \\
Rd. \\
A. \(\mathrm{O}^{1} \mathrm{M}\). \\
B. \(\mathrm{H}^{4.3 .2} \mathrm{G}^{\mathrm{K} .4}\) R. \(\mathrm{S}^{2}\) \\
B. \(\mathrm{H}^{49} \mathrm{G}^{41}\) W. Rd. R. \\
A. \(H^{4.32} G^{a 6}{ }^{3}\) N.Rd.R. \(\mathrm{H}^{4.2} \mathrm{G}^{1} \mathrm{Bk}\). Rd. R. \\
A.E.C.B.N. \(\mathrm{H}^{4-1} \mathrm{G}^{6-1}\) \(H^{1}\) Gas Rd. R. . . \\
\(\mathrm{H}^{48} \mathrm{G}^{52 \mathrm{~s} .1}\) N. W. \(\mathrm{O}^{1}\). \\
C. \(\mathrm{H}^{48} \mathrm{G}^{\text {acsen }} \mathrm{W}\). R. \\
\(\mathrm{H}^{3} \mathrm{G}^{\mathrm{x}}\).s. 9 W. Rd. R. \\
B. H4 Rd. . \\
A. N. \(\mathrm{H}^{49} \mathrm{G}^{84.21} \mathrm{~W}\).
\end{tabular} & \begin{tabular}{r}
1253 \\
1254 \\
1255 \\
1256 \\
1257 \\
1258 \\
1259 \\
615 \\
1260 \\
1261 \\
1262 \\
1263 \\
1264 \\
1265 \\
1266 \\
\\
1267 \\
1268 \\
622 \\
1269 \\
1270 \\
1271 \\
1278 \\
1272 \\
1273 \\
1274 \\
\hline 1275 \\
\hline
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{H}^{2}=i
\] \\
\(\mathrm{G}^{6}=\) Brad. 3166. \\
[7-6 mag. \(-12^{\text {i. }} 8+8^{\prime} \mathrm{OZ}^{\prime \prime}\). \\
Brad. \(3185: \mathrm{Rd}=6225\). \\
Brad. 3194
\end{tabular} \\
\hline
\end{tabular}

Appendix No. 19.
DETERMINATIONS OF GRAVITY AT ALLEGHENY, EBENSBURGH, AND YORK, PA., IN 1879 AND 1880.
```

By CHLARLESS S. PHIRCE, Assistant.
I.-GRAVITY AT TEE ALLEGHENY OBSERVATORY.

```

The Allegheny Observatory is situated in-
Latitude \(40^{\circ} 27^{\prime} 41^{\prime \prime} .6\) north,
Longitude \(5^{\mathrm{b}} 20^{\mathrm{m}} 2^{\mathrm{s}} .93\) west of Greenwich.
It stands 1,140 feet ( \(=348\) meters) above the mean sea-level.* From a few yards in front of the observatory the descent is very sharp into the valley of the Ohio, and as this has been formed by erosion, it must be supposed to diminish the acceleration of gravity, perhaps by the one hundred thousandth part. Unfortunately the necessary calculation, which a topographical sketch would enable us to perform at once, remains impossible for the present.

The operations were conducted nearly as lescribed in my "Measurements of Gravity at Initial Stations." The Repsold reversible pendulum was oscillated in vacuo on the Geneva support, in the cellar of the observatory, the feet of the support resting on iron bars laid upon other bars let into the great pier of the equatorial at one end and into a stone wall at the other.

Measures of the length of the pendulum were commenced 1879 , Jauuary 2 ; but owing to the difficulty of maintaining a tolerably constant temperature in any part of the observatory that was otherwise suited for a comparing-room, no valuable results were obtained before January 18; and even after that date, it was found necessary to reject the work of several days, owing to bad conditions. The first series of measures of length was completed February 1. Four swingings of the pendulum were made on February 6 and 7 with heary end up, and two swingings on February 8 aud 9 with heary end down. On February 10, the position of the center of mass was determined and the knives were interchanged. Two days were then lost in trying to make the vacuum chamber stanch; after which two swingings were made with heavy end down, February 13 and 14, and four with heavy end up February 15, 16, and 17. On February 18 and 20, the flexure of the apparatus was measured, and these measures were supplemented by others on March 4. From February 22 to March 2, the pendulum was measured. The thermometers were compared from 1878, December 19 to 31, and again 1879, March 3.

The following table gives a synopsis of the results of the swingings, the period being corrected for the rate of the clock aud for arc of oscillation, and being reduced to \(15^{\circ} \mathrm{C}\). and to a pressure of one million absolute C. G. S. units. The approximate pressure in millimeters of mercury and the approximate tempurature centigrade are also shown. It is unnecessary to say that the air-pump was never brought into action during any swinging.

The agreement of the resulting periods is, as far as it goes, favorable to the plan of swinging in vacuo. It will be noticed that the oscillations were continued down to a small amplitude, but there seems to have been no increased error upon this account. Following the syuopsis will be found a table of the errors of the partial swingings formed by intermediate transits, as shown on pages 502-503. The errors given are differences from the following periods, deduced from the final results:
\[
\begin{array}{ll}
T_{d}\left(\text { knife 1) }=1^{s} .0064527\right. & T_{u}\left(\text { knife 2) }=1^{s} .0066434\right. \\
T_{d}(\text { knife 2) }=1.0064463 & T_{u}(\text { knife 1) }=1.0066370
\end{array}
\]

\footnotetext{
*The latitude and longitude here given have been extracted from the American Ephemeris. The elevation is from data furnished to Profeseor Langley by the Allegheny City surveyor aud by the engineer of the Pennsylvania Railway.
}
S. Ex. 29- 60

The errors are multiplied by the square roots of the number of oscillations, and the products are shown to be constant in the mean. It is also noticeable that this coustant has the same value whicherer end is up. Several obvions inferences might be made. In particular, it will be seen that the error of the result depends only on the total number of oscillations, no matter how they may be separated by intervals of rest.

HEAVY END UP. KNIFE No. 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Date.} & \multicolumn{2}{|l|}{Temperature.} & \multicolumn{2}{|l|}{Pressure.} & \multicolumn{2}{|l|}{Half arc in terms of radius.} & \multirow[t]{2}{*}{Number of oscillations.} & \multirow[t]{2}{*}{Corrected period.} \\
\hline & Maximum. & Minimum. & Beginning. & End. & Beginning. & End. & & \\
\hline \multirow[t]{6}{*}{1879.
February
6
6.
7.
7.} & \(\bigcirc\) & \(\bigcirc\) & mm. & mm. & & & & \(s\). \\
\hline & 0.3 & 0.3 & 23 & 25 & . 023 & . 003 & 20,891 & 1. 0066466 \\
\hline & 0.8 & 0.4 & 29 & 36 & . 030 & . 003 & 21, 406 & 1.0066428 \\
\hline & 0.5 & 0.3 & 43 & 46 & . 030 & . 002 & 21,420 & 1. 0066399 \\
\hline & 0.7 & 0.4 & 20 & 20 & . 034 & . 005 & 19, 742 & 1. 0066430 \\
\hline & & & & & & & 83, 459 & 1. 0066431 \\
\hline
\end{tabular}

HEAVY END DOWN. KNIFE No. 1.
\begin{tabular}{r|r|r|r|r|r|r|r|r}
\hline February \(8 \ldots .\). & 0.7 & 0.1 & 13 & 14 & .033 & .002 & 74,805 & 1.0064533 \\
\(9 \ldots .\). & 0.3 & -0.1 & 14 & 15 & .035 & .002 & 75,680 & 1.0064515 \\
& & & & & & & 150,485 & 1.0064524 \\
\hline
\end{tabular}

HEAVY END DOWN. KNIFE No. 2.
\begin{tabular}{r|r|r|r|r|r|r|r|r}
\hline February 13.... & 1.5 & -0.5 & & 17 & 40 & .033 & .002 & 61,844 \\
\(14 \ldots\) & -0.3 & -1.3 & 18 & 40 & .035 & .002 & 67,626 & 1.0064471 \\
& & & & & & & 129,470 & 1.0064470 \\
\hline
\end{tabular}

HEAVY END UP. KNIFE No. 1.
\begin{tabular}{r|r|r|r|l|l|l|l|l|l|}
\hline February \(15 \ldots . \ldots\) & -0.6 & -1.1 & 17 & 29 & .034 & .004 & 19,822 & 1.0066370 \\
\(16 \ldots\) & -1.0 & -1.2 & 17 & 35 & .034 & .004 & 20,766 & 1.0066337 \\
\(16 \ldots\) & -0.9 & -1.1 & 15 & 35 & .034 & .003 & 22,588 & 1.0066380 \\
\(17 \ldots\). & -0.7 & -0.9 & 21 & 37 & .036 & .003 & 20,848 & 1.0066411 \\
& & & & & & & 84,024 & 1.0066375 \\
\hline
\end{tabular}

Errors of partial and total swingings.


Time was observed by Mr. F. W. Very, Professor Langley's assistant, with the instruments of the observatory, a fine 8 -inch transit and the sidereal clock (Frodsham 1358). The chronometer, Negus 1589 , was used for the pendulum observations; and this chronometer as well as two others (Hutton 202 and Bond 380 ) were compared upon the chronograph with the clock three times a day, between 3 and 4 o'clock in the afternoon and between 9 and 10 morning and evening.

The corrections to the chronometer used were obtained by assuming that between certain dates certain time-pieces noved with absolute uniformity, the changes of rate being supposed to be sudden. This is the same method of reduction used in my previous work, and appears to me most consonant with observed facts in regard to the running of timepieces. The standards used were as follows:
\begin{tabular}{|c|c|c|}
\hline Date. & Sidereal time. & Timepiece assumed uniform from each time to next. \\
\hline February 4 & \[
\begin{array}{rl}
h . & m . \\
6 & 18
\end{array}
\] & Frodsham, 1358. \\
\hline 6 & 525 & Do. \\
\hline 9 & 647 & Do. \\
\hline 13 & 714 & Hutton, 202. \\
\hline 15. & 802 & Frodsham, 1358. \\
\hline 21 & 712 & \\
\hline
\end{tabular}

The results of the comparisons of the length of the pendulum with the pendulum meter were as follows:

Measures of Length.
FIRST SERIES.
\begin{tabular}{|c|c|c|}
\hline Date. & (1) & Pend. -standard. \\
\hline 1879. & & \(\mu\) \\
\hline January 18 & & +26.1 \\
\hline January 21 & & +24.6 \\
\hline January 22 & & +26.4 \\
\hline January 23 & & +20.3 \\
\hline Mean & & +24.3 \\
\hline
\end{tabular}

\section*{SECOND SERIES.}
\begin{tabular}{|c|c|}
\hline & \(\mu\) \\
\hline January 25 & +22.8 \\
\hline January 29 & \(+25.5\) \\
\hline January 31 & +23.2 \\
\hline February 1 & \(+18.6\) \\
\hline Mean & \(+22.5\) \\
\hline & \\
\hline February 22 & \(+11.3\) \\
\hline February 23 & \(+10.2\) \\
\hline February 24 & \(+9.9\) \\
\hline February 25 & \(+9.1\) \\
\hline February 26 & \(+12.1\) \\
\hline March 1 & \(+15.0\) \\
\hline March 2 & \(+11.6\) \\
\hline Mean & +11.3 \\
\hline
\end{tabular}

These results hare to be diminished by \(200^{\mu} .4\), becanse they are referred to the mean of the three lines \(999^{\mathrm{mm}} .7,999^{\mathrm{mm}} .8,999^{\mathrm{mm}} .9\) of the standard instead of to the meter. They have then to be increased by \(261^{\mu} .1\) in order to be referred to the meter adopted in my "Measurements of Gravity at Initial Stations." It follows that the length of the pendulum in terms of the meter arlopted in my previous work (which is now known to be erroneous, but which is for the present adhered to, in order to avoid confusion) was

> Before the interchange of knives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.000000732 After the interchange of knives . . . . . . . . . .

The difference of the distances of the center of mass from the two knife-edges was found to be \(0^{\mathrm{m}} .39303\), to which the correction, +.00014 , has to be applied.*

The experiments to determine the flexure of the support have already been published in the Coast Survey Report for 1881, pp. 375-377. The mean of the measurements of two observers shows that the flexure at the middle of the knife-edge, under a horizontal force equal to the weight of the pendulum, was \(38^{\mu} .8\).

We now proceed to calculate [ \(T^{2}\) Rev.] and [ \(T^{2}\) Inv.], as in the paper above referred to. Only, it is to be remarked that, in consequeuce of what is said on page 72 of that paper (page 271 of the Coast Survey Report for 1876), one-seventh of the viscosity effect has to be subtracted in order to eliminate the effect of the bells; that is to say, \(T_{d}\) has to be diminished by \(66 \times 10^{-7}\) and \(T_{u}\) by \(151 \times 10^{-7}\). The values have to be separately calculated for the experiments made before and after the interchange of the knives.

\section*{Before the interchange of knives.}
\begin{tabular}{|c|c|c|c|}
\hline & 8. & & 8. \\
\hline T \({ }_{\text {d }}\) & 1.0064524 & \(\mathrm{T}_{u}\). & 1.0066431 \\
\hline \multirow[t]{2}{*}{Bells and cylinder} & -145 & Bells and cylinder. & -321 \\
\hline & 1.0064379 & & 1.0066110 \\
\hline T's & 1.0129172 & \(\mathrm{T}_{u}{ }^{2}\) & 1.0132657 \\
\hline Flexure & -270 & Flexure & -118 \\
\hline Stretching & ..... & & \(+10\) \\
\hline Corrected \(\mathrm{T}^{2}{ }^{2}\). & 1.0128902 & Corrected T \({ }_{4}{ }^{2}\) & 1.0132549 \\
\hline
\end{tabular}

\footnotetext{
*See Measurements at Initial Stations, p. 114 (Coast Survey Report for 1876, p. 313), where the oorrection is, however, applied with the wrong sign.
}

After the interchange of knives.


The two values of [ \(T^{2}\) Rev.] combined with the two values of the length, give for the seconds' pendulum at Allegheny:
m.

Before the interchange of knives . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9930479
After the interchange of knives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9930461
Mean
0.9930470

This is the final result from this station alone. But the correction for the erroneous length of the meter, as provisionally stated in the Coast Survey Report for 1881 , page 463 , is \(-162 \times 10^{-7}\), giving
\(m\).
0.9930308 ;
and this may further be modified by the effect of measurements at other stations, and comparisons of \(\mid T^{2}\) Inv.]. There is, however, reason to believe that such modification would be, in this case, insiguificant.

Applying the correction for elevation, withont continental attraction, diminished by one-tenth part, and the correction for latitude, as in my paper (C. S. Report, 1881, p. 445), we have

Seconds' pendulum at Allegheny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9930308
Elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +979
Latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... -21903
Reduced to equator and sea-level
0.9909384

This would be increased if the effect of the valley were taken into account. A topographical sketch of this vicinity is the most pressing need of the work at this time.

The details of the work at the Allegheny Observatory are given in the tables appended to the edition of this Appendix, which has been published separately.

\section*{II.-DETERMINATION OF GRAVITY AT EBENSBURGE.}

Ebensbargh is the chief (though not the principal) town of Cambria County, Pennsylvania, in the Allegheny Mountains. The observations were made in the house and grounds of Mrs. Frances S. McDonald, on Centre street. The place is shown on the county map by Beers (1867),
where the house has marked under it "J. M. McDonald." It is at the southeast corner of the street next sonth from Highland street. The transit pier is \(23 \frac{1}{2}\) meters south of the northern boundary and \(28 \frac{1}{3}\) weters east of the western boundary of the lot. The pendulum was observed in the cellar of the house.

The latitude of the station, \(+40{ }^{\circ} 27^{\prime}\), was determined by Mr. Marcus Baker by sextant observations upon the Sun, Jupiter, and Polaris. The longitude was determined by telegraphic exchanges with the Allegheny Observatory, the observers being Mr. F. W. Very and Mr. H. Farquhar with the result:
\[
\begin{array}{lccc} 
& h . & m . & s . \\
\text { Ebensburgh east of Allegheny, } & 0 & 5 & 9.2 \\
\text { Ebensburgh west of Greenwich, } & 5 & 14 & 53.7
\end{array}
\]

The elevation of the station has been ascertained from that of the railway at the station, as communicated by the engineer of the Pennsylvania Railway. The pendulum station was connected with the railway by a line of levels. The elevation so found is 2,137 feet ( \(=651\) meters).

It was intended to conduct the operations as at Allegheny; but various difficulties compelled me to support the pendulum on the Repsold tripod, as at my European stations. The brass footrests were placed directly upon the hard clay floor of the cellar. The old knives which had been used in Europe and in the stations at Hoboken and at Allegheny were replaced by new ones, made by Messrs. Darling, Brown, and Sharpe, of Providence. The amplitude of oscillation was measured on a fine are by Messrs. Stackpole \& Brothers, which is divided into thousandths of the radius. The are and transits were observed with a reading telescope carrying an objective corrected for use at a short distance by Byrue, of New York. The same eye-piece was constantly used. The telescope was placed at a distance of two meters from the pendulum; and no screen was interposed between them.

The general order of the pendulum experiments was as follows:
1879.

August 14-21.-Measurements of length.
September 5.-Swinging, heavy end down; knife, 3-4. Swinging, heary end up; knife, 7-8.
September 6.-Swinging, heary end up; knife, 7-8. Swinging, heary end down; knife, \(3-4\). Center of mass determined. Interchange of knives. Center of mass determined.
September 7.-Swinging, heavy end down; knife, 7-8. Swinging, heavy end up; knife, 3-4.
September 8.-Swinging, heary end up; knife, 3-4. Swinging, heavy end down; knife, 7-8.
September 10-13.-Measurements of length.
September 14.-Swinging, heavy end down; knife, 7-8. Swinging, heavy end up; knife, 3-4.
September 15.-Swinging, heavy end up; knife, 3-4.
'Swinging, heavy end down; knife, 7-8.
September 16.-Determination of center of mass. Interchauge of knives. Determination of center of mass. Swinging, heavy end down; knife, 3-7. Swinging, heavy end up; knife, 7-8.
September 17.—Swinging, heavy end up; knife, 7-8. Swinging, heary end down; knife, 3-4.
September 18-25.-Measurements of length.
A synopsis of the periods of oscillation at Ebensburgh is given below. These periods have received not only the reductions for are, rate, temperature, and pressure, but also pecaliar à priori
corrections for flexure of the support, difference of knives, and injury to the pendulum. These I proceed to explain:

After half the swingings had been made, the pendulum was measured. In adjusting the microscopes a plumb-line was used; and to attach this it was necessary to remove the two forward nuts which bind the head of the support to the legs of the tripod. These were afterward replaced for the rest of the swingings, butinstead of being tightened by a wrench they were only tightened by hand. This negligence was only discovered after all the swingings were completed, and it was then too late to repeat them. Elaborate experiments (see Coast Survey Report for 1881, Appendix 14) were accordingly institated to determine the flexure of the support when the nuts in question were hand-tightened and when they were wrenched. The values given on page 388 of the Report have been used in the reductions, and the periods have accordingly received the following corrections:
\begin{tabular}{|c|c|c|}
\hline & Heavy end down. & Heavy end up. \\
\hline First four days & -. 0000832 & -. 0000362 \\
\hline Last four days. & . -. 0000895 & -.0000390 \\
\hline
\end{tabular}

The knives used at Ebensburgh and York, which are marked 3-4 and 7-8, have, at my request, been micrometrically examined by Assistant Edwin Smith, to determine the distance of the edges from the plane of the bearings. He obtained the following results:

Knife 3-4. At end marked 3, 122 . At end marked 4, \(12 \overline{5}^{\mu}\).
Knife 7-8. At end marked 7, 168 . At end marked 8, 170.
On September 11 the record notes that a small spring belonging to the attachment of the knife at the light end of the pendulum was found to be broken. In consequence of this the pendulum must have lost mass, and the center of mass should have been removed toward the heary end. In examining the measures of the position of the center of mass, we find that at York, the station occupied after Ebensburgh, the center of mass was distant \(0^{\mathrm{m}} .30333\) from the knife-edge at the heavy end. In fact, using an empirical correction for the relative positiou of the knives, the individual results ( 16 in number) show a probable error of \(\pm .000013\). At Ebensburgh, measures were made on September 6 and September 16. The four individual measures on September 16 , with the correction for position of knives, give for \(h_{u}\)

> m.
> 0.30330
> 0.30332
> 0.30330
> 0.30339

Rejecting the last observation, in which there seems to have been an erroneous reading, the others give \(0^{m} .30331\), not differing sensibly from the value at York. The measures of the 6 th give
\[
\begin{aligned}
& m . \\
& 0.30324 \\
& 0.30330 \\
& 0.30327 . \\
& -0.30328
\end{aligned}
\]

These show a value sensibly smaller than that of the 16 th. The difference is such as would be produced by the loss of something less than a gramme at the heavy end. The distance between the knife-edges not having changed, no other chauges cau affect the result from the pendulumconsidered as reversible-although the accident, whatever it was, must spoil the agreement of the different days. Although it does not affect the final result, I have, in the calculation, supposed that a gramme was lost at the heavy end, 2 centimeters beyond the knife-edge. The result of placing a small mass, \(m\), on the pendulum at a distance of \(x\) meters and \(l+x\) meters from the two knifeedges is easily found to be to increase the periods of oscillation by
\[
\begin{aligned}
& \Delta \mathrm{T}_{d}=\mathrm{T}_{a} \frac{m}{\mathrm{M}} \frac{x(l+x)}{2 h_{d} l} \\
& \Delta \mathrm{~T}_{*}=\mathrm{T}_{w} \frac{m}{\mathrm{M}} \frac{x(l+x)}{2 h_{u} l}
\end{aligned}
\]

Where \(M\) is the mass of the reversible pendulum, \(l\) the distance between the edges, \(h_{d}\) and \(h_{*}\) the distances of the center of mass from the two edges, and \(T_{d}\) and \(T_{u}\) the periods. In the present case we have \(m=-1, \mathrm{M}=6308, x=+.02, l=1, h_{d}=0.7, h_{u}=0.3, \mathrm{~T}_{d}=\mathrm{T}_{u}=1\). We have, therefore,
\[
\begin{aligned}
& \triangle \mathrm{T}_{u}=-.0000023 \\
& \Delta \mathrm{~T}_{u}=-.0000054
\end{aligned}
\]
and these corrections have been applied to the first four days, so as to reduce the pendulum to its state at the eud of the work at this station.

\section*{Synopsis of periods of oscillation.}
\begin{tabular}{|c|c|c|}
\hline 1879. & heayy end down. Knife, 7-8. & heavy rind UP Knife, 3-4. \\
\hline September 5 & 1.0064424 & 1.0065264 \\
\hline September 6 & 1.0064377 & 1.0065054 \\
\hline & Knife, 3-4. & Knife, 7-8. \\
\hline September 7 & 1.0064482 & 1.0065122 \\
\hline September 8 & 1.0064400 & 1.0064296 \\
\hline September 14 & 1.0064377 & 1.0065024 \\
\hline September 15 & 1.0064389 & 1.0064789 \\
\hline & Knife, 7-8. & Kuife, 3-4. \\
\hline September 16. & . 1.0064401 & 1.0065157 \\
\hline September 17. & . 1,0064385 & 1.0064895 \\
\hline
\end{tabular}

The period for September 8, with heavy end up, is obviously affected by an abnormal error. The Paris, Berlin, Kew, Hoboken observations show that the probable error of a period from a single swinging with heavy end up is \(\pm 0.000006\). The period for September 8 differs from the mean of the others by \(0^{*} .000077\), having thus an error about thirteen times the probable error, an event which would occur by chance only once in a million \(\times\) million \(\times\) million times. We may, therefore, safely say that on that day there was some extraordinary force tending to restore the pendulum to the vertical. The records of observations of are show the following times of decrement on different days:
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{array}{r}
\text { From } .0400 \\
\text { to } .0180 .
\end{array}
\] & \[
\begin{array}{r}
\text { From } .0180 \\
\text { to } .0080 .
\end{array}
\] \\
\hline September 5 & . . \(\stackrel{m}{20.9}\) & \({ }_{28.6}^{\text {m. }}\) \\
\hline September 6 & 20.7 & 28.8 \\
\hline September 7 & 21.1 & 28.4 \\
\hline September 8. & 17.1 & 21.3 \\
\hline September 14. & . 21.3 & 28.6 \\
\hline September 15 & 17.2 & 26.8 \\
\hline September 16. & . 21.1 & 28.8 \\
\hline September 17... & . . 19.7 & 27.0 \\
\hline Mean 5, 6, 7, 14, 16 & . 21.0 & 28.3 \\
\hline
\end{tabular}

It thus appears that on the 8 th there was some extraordinary force tending to bring the pendulum to rest. These facts suggest that a spider's line might on that day have connected the pendulum with the stand, and this supposition is somewhat strengthened by finding that on that day the operations commenced with oscillating the pendulum with heary end up in the position in which it had been left the night before. On the 15 th and 17 th , also, the are descended rapidly, the periods are very short, and the pendulum had been left over night with the heavy ond up ready for the oscillations which were begun in this position in the morning. If there were spider lines on these mornings, we should expect the disturbing influence to decrease as the are descended. Whether this is so in regard to the effect on the decrement on the 8th it is difficult to say, bat it certainly is so on the 15 th and 17 th. Transits were observed shortly after the arce reached \(\mathbf{0 4 0 0}\),
.0180 , and .0030 , so that there are two intervals from which periods can be deduced. These periods, corrected as in the synopsis, are
heavy end UP.
First interval. \(\quad\) Second interval.
\begin{tabular}{|c|c|c|}
\hline September 8 & \({ }^{8 .} 1.0064130\) & \({ }_{1}^{8.0064385}\) \\
\hline September 15 & 1.0064423 & 1.0064931 \\
\hline September 17 & 1.0064683 & 1.0065020 \\
\hline
\end{tabular}

These numbers certainly confirm the hypothesis of spider-lines; and I shall consequently entirely reject the work with heavy end up on September 8 and the first intervals on September 15 and 17 . With these rejectious the mean periods for pairs of days in which the circumstauces were the same, except the time of beginuing (for on alternate days the position of the pendulum at the first swinging alteruated), are as follows:
\begin{tabular}{cc} 
Heavy end down. & Heavy end up. \\
s. & 8.0065159 \\
1.0064400 & 1.0065122 \\
1.0064441 & 1.0065122 \\
1.0064383 & 1.0064978 \\
1.0064393 & 1.0065088 \\
\(\overline{1.0064404}\) & \\
\hline 1.0065087
\end{tabular}

The time observations at Ebensburg were made with transit No. 5 carrying a reticule divided on glass by Prof. W. A. Rogers. The equatorial intervals of the five middle wires are seusibly equal to 2 s.583. The pivot inequality was determined by Mr. Marcus Baker to be \(+0^{5} .030\) with illumination west. Both lamps were in place during the whole of the observations, which were made by Mr. Henry Farquhar. The reductions were made by least squares, using Mr. Schott's weights of 1872. Separate azimuths were assumed for the two positions. The chronograph was a fillet-reed instrument, by Breguet. The battery consisted of two sulphate of copper gravity cells.

Chronometer Negus 1589 was always used for the star and pendulum observations, as this was undoubtedly our best chronometer. Chronometers Frodsham 2490, Hutton 202, and Bond 380, were compared with Negus twice daily. The two former break every second omitting the 0 ; the two latter break every even second, and also at \(59^{5}\). Frodsham and Bond were wound at 8.30 a. m . ; Negus and Button at 8.30 p . m. at inst, afterward at \(9 \mathrm{p} . \mathrm{m}\). until September 23 , and after that at \(6 \mathrm{p} . \mathrm{m}\). Chronometers Negus, Frodsham, and Bond were in their external cases. All four rested firmly on sand heaped on the cellar floor about 15 cm . from an inner foundation wall and 30 cm . from one another. They were placed in this order: Negus, Hutton, Frodsham, Bond. The boxes of Hutton, Frodsham, and Bond were never opened except to wind them. The daily range of temperature in the cellar averaged less than \(5^{\circ} \mathrm{C}\). The chronometers were compared with the clock of the Allegheny Observatory twice daily.

The measurements of length before the first interchange of knives were as follows :
\begin{tabular}{|c|c|}
\hline & Pend.-standard. \\
\hline August 18. & \[
\begin{gathered}
\mu . \\
\ldots \\
\hline
\end{gathered}
\] \\
\hline 19. & \(\ldots . .16 .3\) \\
\hline 19. & \(\ldots+16.9\) \\
\hline 20 & \(\ldots+16.9\) \\
\hline 20 & \(\ldots . .21 .5\) \\
\hline 21. & \(\cdots+17.5\) \\
\hline Mean. & \(\ldots+17.6\) \\
\hline
\end{tabular}

But these measures are uncorrected for the difference of temperature between the pendulum and the standard; and in point of fact the former carried no thermometer. We may assume that the result should have a correction of \(+2^{\mu} .4\) on this account, because this is the mean value of the correction in the following series. With this correction the mean result is that the pendulum was longer than the standard by \(20^{\mu} .0\).
S. Ex. 29-61

After the first interchange the results were these:
\begin{tabular}{|c|c|}
\hline & Pend.-standard \\
\hline September 10. & \(\ldots\) +19.4 \\
\hline 11. & ... +18.6 \\
\hline 12. & \(\cdots+18.4\) \\
\hline 13. & . +19.5 \\
\hline Mean.. & \(\ldots+19.0\) \\
\hline
\end{tabular}

After the second interchange the results were as follows:
\begin{tabular}{|c|c|}
\hline & Pend. standard \\
\hline September 23. & \[
\begin{gathered}
\mu \\
+19.5
\end{gathered}
\] \\
\hline 23. & . +20.3 \\
\hline 24. & \(\ldots . .21 .5\) \\
\hline 24. & \(\ldots . .21 .3\) \\
\hline 25. & \(\ldots+17.0\) \\
\hline 25. & \(\ldots .\). \\
\hline Mean . & \(\ldots .+19.5\) \\
\hline
\end{tabular}

We conclude that the pendulum preserved the same length at all times, and was \(19 \mu .5\) longer than the standard. The latter at \(15^{\circ} \mathrm{C}\). is \(261^{\mu} .1\) longer than the meter assumed in the "Measurements of Gravity at Initial Stations"; so that in terms of that meter the length of the pendulum at \(15^{\circ}\) C. was
\[
1^{\mathrm{m}} .0002806 .
\]

The difference in the distances of the center of mass from the two knife-edges was found to be in one position
\[
0^{\mathrm{m}} .39351
\]
and in the other
\[
0^{\mathrm{m}} .39352
\]

To these values must be applied a small correction, +.14 mm, which in the "Measurements of Gravity at Initial Stations" is correctly given, but is applied with the wrong sign.

The following is the calculation of the length of the seconds pendulum from the first four and last four days' oscillations at Ebensburgh :
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
First days. \\
\({ }^{8}\)
\end{tabular} & \begin{tabular}{l}
Last days. \\
8
\end{tabular} \\
\hline T \({ }_{\text {d }}\) & 1.0064420 & 1.0064388 \\
\hline T & 1.0065140 & 1.0065033 \\
\hline \(\mathrm{T}_{\text {d }}{ }^{2}\) & 1.0129255 & 1.0129191 \\
\hline \(\mathrm{T}_{u}{ }^{2}\) & 1.0130704 & 1.0130489 \\
\hline Corr. stretching & 1.0130714 & 1.0130499 \\
\hline \(\frac{1}{2}\left(\mathrm{~T}^{2}+\mathrm{T}^{2}{ }^{2}\right)\) & 1.0129985 & 1.0129845 \\
\hline \(\frac{1}{2}\left(\mathrm{~T}_{\text {d }}{ }^{2}-\mathrm{T}^{4}{ }^{2}\right)\) & -730 & -654 \\
\hline \(\left(h_{d}+h_{u}\right):\left(h_{d}-h_{u}\right)\) & 2.54045 & 2.54097 \\
\hline [ \(\mathrm{T}^{2} \mathrm{Rev}\).] & 1.0128131 & 1.0128187 \\
\hline Same in mean tim & .1.0072880 & 1.0072936 \\
\hline Length pend & 1.0002806 & 1.0002806 \\
\hline Sec. pend & . 0.9930432 & 0.9930379 \\
\hline
\end{tabular}

This is expressed in terms of the erroneous meter baving the provisional correction \(\mathbf{- 1 6 2 \times 1 0 ^ { - 7 }}\). Applying as for Allegheny the corrections for elevation and latitude, we have


In the tables appended to the edition of this Appendix which has beeu published separately are given the details of the work at Ebensburgh.
```

III.-DETERMINATION OF GRAVITY AT YORK.

```

York, Pa., is situated east of the Alleghanies in a comparatively plain country. The peudulum was oscillated in the cellar of the factory of Mr. A. B. Farquhar, near the railway station, on Duke street. The transit was about a hundred yards to the east of the factory, on land belonging to Messrs. Billmeyer and Small, in Gay alley. The co-ordinates of the station are:

Latitude, \(39^{\circ} 58^{\prime}\) north.
Longitude, \(\mathbf{5}^{\mathrm{h}} \mathbf{0} 5^{\mathrm{m}} 54^{\mathrm{a}}\) west of Greenwich.
Elevation, 122 meters ( 373 feet).
The work at this station was conducted by Mr. Henry Farquhar, under my supervision. The pendulum observations were partly made according to a method of eye-and-ear coincidences invented by Mr. Farquhar. For the purpose of studying the effects of flexure, the Repsold reversible pendulum was oscillated on various supports, viz: 1st, on the Repsold tripod; 2d, on a solid support formed by bolting the head of the Repsold tripod to an oaken plank 2 inches thick; 3d, on the Geneva support and tripod, with the bells off and with the bells on (this to ascertain the effect of the bells); 4th, on the Repsold tripod monnted on a wooden support; 5th, on the Repsold tripod resting on pieces of India rubber.

Experiments were also made at this station upon the effect of substituting rollers for the knives as the bearings of the pendulum. The rollers were steel cylinders of \(5^{\text {ma }}\) diameter, backed by steel planes. They were well constructed by Messrs. Darling. Brown, and Sharpe. The utmost pains were taken (here as well as in later experiments in Baltimore) to avoid the inclusion of dust between the roller and its support. Nevertheless the decrement of the amplitude was very rapid for ares above 035 of the radius on each side of the vertical; and the periods show enormous variations.

The experiments on the effect of the bells of the Geneva support are also of interest, thongh they fail to give a very accurate evaluation of this constant.

The summary of the periods of oscillation at this station (except upon the Geneva support) has already been published in the Coast Survey Report for 1881, pages 423-424. This summary is here repeated, with the difference that the flexure corrections are now applied, that some errors of computation are corrected, \({ }^{*}\) and that the experiments relating to the effect of the bells are added.
*The following table shows these corrections:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Support. & Method of observation. & Position heary end. & Date. & Correction to last figure. & Cause of former error. \\
\hline \begin{tabular}{l}
Repsold .. \\
Do. \(\qquad\) \\
Do. \(\qquad\) \\
Stiffert \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Transits ... \\
Coincidencer \\
.... do \(\qquad\) \\
Trausits
\end{tabular} & \begin{tabular}{l}
Up .......... \\
Down. \(\qquad\) \\
...do \(\qquad\) \\
....do \(\qquad\)
\end{tabular} & \begin{tabular}{l}
May 2. \\
Mar. 19. \\
Mar. 21. \\
Apr. 4, bis.
\end{tabular} & \[
\begin{aligned}
& -9 \\
& -9 \\
& -1 \\
& -3
\end{aligned}
\] & \begin{tabular}{l}
Frror in subtraction had ocoasioned rejection of a transit. Error of computation. \\
Do. \\
Mr. Farquhar thinks he recorded the wrong minute, a fault to which he was liable. Changing the minate a rejected transit is brought into concordance with the others.
\end{tabular} \\
\hline
\end{tabular}

In drawing up the summary, besides the corrections for arc, pressure, temperature and rate, the following have been applied:
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Cause.} & \multirow{2}{*}{Authority for amount.} & \multicolumn{2}{|c|}{A mount.} \\
\hline & & Heavy end down. & Heavy end up. \\
\hline Knife, 7-8 (for 3-4, with reversed sign).. & See Ebensbargh report*. & -. 000006 & \(+.000015\) \\
\hline Flexure Repsold support & C. S. R., 1881, p. 424 & -. 000084 & -.000036 \\
\hline Flexure stiffest support & C. S. R., 1881, p. 423 & -. 000022 & -. 000009 \\
\hline Flexure Geneta support. & C. S. R., 1881, p. \(399 . .\). & -. 000020 & -. 000009 \\
\hline Flexure wooden support. & C. S. R., 1881, p. 423 & -. 000123 & -.000054 \\
\hline Flexure rubber support & do & -.000300 & -. 000131 \\
\hline Geneva cylinder. & C. S. R., 1876, p. 270 & -.000004 & -..000008 \\
\hline Geneva bells. & C. S. R., 1876, pp. 270, \(271 .\). & -. 000012 & -. 000028 \\
\hline
\end{tabular}

\footnotetext{
* At the time the paper on the flexure of peadulum supports was drawn up Mr. Smith had not measured the knives. It was consequently necessary to determine this correction a posteriori and alightly different corrections were thus used in the synopsis given in that report, viz, -.000004 and +.000012 .
}

\section*{Periods of Oscillation at York.}

\section*{REPSOLD SUPPORT.}

Method of transits.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1880. & & Heavy end down. Knife 7-8. \(s\). & 1880. & & Heavy end ut Knife 3-4. B. \\
\hline April & 7 & ..1.006413 & April & 7 & . 1.006467 \\
\hline April & 30. & ... 1.006405 & April & 30 & . 1.006446 \\
\hline & & Kuife 3-4. & & & Knife 7-8. \\
\hline May & 2. & .1.006418 & May & 2 & . 1,006486 \\
\hline May & 3. & . 1.006418 & May & 3. & . 1.006483 \\
\hline \multicolumn{6}{|c|}{Method of coincidences.} \\
\hline & & Kuife 3-4. & & & Knife 7-8 \\
\hline March & 19 & .1.006432 & March & 19 & 1,006490 \\
\hline March & 21 & .1.006407 & March & 21 & . 1.006440 \\
\hline June & 4 & .1.006413 & June & & . 1.006472 \\
\hline June & & . . 1.006407 & June & & . 1.006450 \\
\hline & & Knife 7-8. & & & Knife 3-4. \\
\hline March & 22. & .1.006422 & March & 22. & 1.006488 \\
\hline March & 23. & . 1.006406 & March & 23. & .1.006494 \\
\hline June & 6 & . . 1.006421 & June & 6. & .1.006472 \\
\hline June & 6 & ....1.006429 & June & & . 1.006466 \\
\hline \multicolumn{6}{|c|}{STIFFEST SUPPORT. Method of transits.} \\
\hline
\end{tabular}


WOODEN SUPPORT.
Method of coincidences.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Knife 7-8. & & & Knife 3-4. \\
\hline April & 24 & . 1.006420 & April & 24. & 1.006473 \\
\hline April & 25 & . 1.006417 & April & 25. & 1.006469 \\
\hline & & Kuife 3-4. & & & Kuife 7-8. \\
\hline April & 27 & . 1.006415 & April & 27. & 1.006470 \\
\hline April & 28. & .1.006417 & April & 28. & 1.006488 \\
\hline
\end{tabular}

RUBBER SUPPORT.
Method of coincidences.
\begin{tabular}{|c|c|c|c|}
\hline & Knife 7-8. & & Knife 3-4. \\
\hline & 8. & & 8. \\
\hline April 18. & 1.006404 & April 18. & 1.006484 \\
\hline April 20. & 1.006401 & April 20. & \(1.0064 \times 2\) \\
\hline
\end{tabular}

GENEVA SUPPORT; BELLS OFF.
Method of transits.
\begin{tabular}{|c|c|c|c|}
\hline & Knife 3-4. & & Knife 7-8 \\
\hline May 19. & . 1.006425 & May 19. & 1.006499 \\
\hline & Knife 7-8. & & Knife 3-4. \\
\hline May 22. & 1.006420 & May 22. & 1.006488 \\
\hline
\end{tabular}

Method of coincidences.


The means of the observed periods for the Repsold and stiffest supports are-

\section*{Method of transits.}
\begin{tabular}{|c|c|c|}
\hline & Heavy end down. B. & Heavy end up. s. \\
\hline Repsold support & .1.006413士1 & \(1.006470 \pm 5\) \\
\hline Stiffest support & \(\ldots 1.006415 \pm 1\) & \(1.006468 \pm 1\) \\
\hline Weighted mean. & \(1.006414 \pm 1\) & \(1.006468 \pm 1\) \\
\hline \multicolumn{3}{|c|}{Method of coincidences.} \\
\hline Repsold support & \(\ldots .1 .006417 \pm 3\) & \(1.006471 \pm 5\) \\
\hline Stiffest support & .. \(1.006419 \pm 2\) & \(1.006461 \pm 1\) \\
\hline Weighted mean. & . \(1.006418 \pm 2\) & \(1.006462 \pm 1\) \\
\hline General mean. . & ...... \(1.006416 \pm 1\) & \(1.006465 \pm 1\) \\
\hline
\end{tabular}

It will be seen that the method of eye and ear coincidences is greatly inferior in accuracy, the eight observations taken in this way on the Repsold support being less valuable than the four by transits; and there can be little doubt that the means would be brought nearer to the truth by rejecting all the observations by these coincidences. We shall accordingly allow observations with this method only one-fourth weight. With these weights, the above periods become-
\[
\text { Corrected periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1.006415 \quad 1.006468
\]

The observations on the Geneva support, with the bells off, give
\begin{tabular}{cc} 
Heary end down. & Heary end up. \\
\(s\). & \(s\). \\
1.006424 & 1.006492
\end{tabular}

The differences from the corrected periods just ascertained are-
\[
+.000009 \quad+.000024
\]

These numbers are in such a proportion as to indicate some force acting equalls on the pendulum in its two positions. Experiments subsequently made in Baltimore, to be described in another memoir, leave no doubt that the effect is connected with the supporting planes of the Geneva receiver.

The observations with the bells on, all made by the method of coincidences, give-
\begin{tabular}{cc} 
Heary end down. & Heary end up. \\
8. & 8. \\
1.006435 & 1.006485
\end{tabular}

From these numbers it would seem that the effect of the bells may be a little larger than was calculated; bat the error, if any, can hardly be sensible when the receiver is pumped out.

The time observations were made with the same transit instrument used at Hoboken and at Ebensburgh. The eye-piece not being quite steady, the variations of collimation were considerable, and the instrument could not be kept free from dust. Time was kept by the four chronometers:

Negus 1589
Frodsham 2490
Hutton 202
Bond 380
They seem to have required cleaning, and show large diurual variations. An attempt was made in the computations to take account of these, but not successfully.

The measurement of the pendulum on March 3 showed-
\[
\text { Pendulum }- \text { standard }=+26 . \mu 9
\]

On May 7 and 8 three sets were taken with heavy end up, on which account 1.0 has to be added to the results. (See "Measurements of Gravity at Initial Stations.") With this correction the results are as follows:
\[
\begin{aligned}
\text { Pendulum -standard }= & +26.9 \\
& +23.4 \\
& +25.8 \\
\text { Mean } & +\overline{25.3}
\end{aligned}
\]

On June 9 , the knives having been interchanged, four sets gave
\[
\begin{aligned}
\text { Pendalum-standard }= & +27.8 \\
& +25.5 \\
& +31.3 \\
& +30.0 \\
\text { Mean } & +\overline{28.6}
\end{aligned}
\]

These figures are uncorrected for the difference of thermometers on the pendulum and standard, because such correction would make the accordance of the measures much less good. We must assume the excess of length of the pendulum in the first position to have been \(+26^{\mu} .1\), and for the mean of the two positions \(+27^{\mu} .3\). Since the standard is \(+261^{\mu} .1\) longer at \(15^{\circ} \mathrm{C}\). than the assumed meter, it follows that the length of the pendulum in terms of that meter (now known to be false) was
\[
1^{\mathrm{m}} .0002884
\]

I prefer to retain the erroncous meter for the present, in order to avoid further coufusion.
The difference of the distances of the center of mass from the two edges was found to be


In the mean of the two positions of the knives we have 0.39348 , to which .00014 has to be added on account of the error of the standard. (See "Measurements of Gravity at Initial Stations.")

The following is the calculation of the length of the seconds' pendulum at York:
\[
\begin{array}{rr}
\mathrm{T}_{d}= & 1.006415 \\
\mathrm{~T}_{d}{ }^{2} & 1.012871 \\
\frac{1}{2}\left(\mathrm{~T}_{d}{ }^{2}+\mathrm{T}_{u}{ }^{2}\right) & 1.012925 \\
\frac{1}{2}\left(\mathrm{~T}_{d}{ }^{2}-\mathrm{T}_{u}{ }^{2}\right) & -54 \\
\frac{h_{d}+h_{u}}{h_{d}-h_{u}}\left(\mathrm{~T}_{d}{ }^{2}-\mathrm{T}_{u}{ }^{2}\right) & -137 \\
{\left[\mathrm{~T}^{2}{ }^{2} \mathrm{ReV} .\right]} & 1.012788
\end{array}
\]

Whence the length of the seconds' pendulum in York referred to the meter heretofore used is:
\begin{tabular}{|c|c|}
\hline & \(0^{\mathrm{m} .} .993073\) \\
\hline Provisionai correction to meter. & -16 \\
\hline Elevation & \(+104\) \\
\hline Latitude & -2146 \\
\hline Reduced to sea-level and equato & 0.991015 \\
\hline
\end{tabular}

These reductions have been made, like those of Alkegheny, in accordance with the principles of my memoir on the ellipticity of the earth (Coast Survey Report for 1881, Appendix No. 15).

Details of the work at York are printed in tables appended to the edition of this Appendix which has been published separately.

\section*{LIST OF SKETCHES.}

No. 1. Sketch of general progress (eastern sheet).
2. Sketch of general progress (western sheet).
3. Sections I and II. Triangulation between the St. Croix and Hudson Rivers and to Lake Ontario.
4. Sections II and III. Triangulation between the Hudson River and Cape Henry, and the Ohio River.
5. Section IV. Coasts and Sounds of North Carolina.
6. Sections III, IV, and V. Triangulation between the Maryland and Georgia base-lines (southern part), with extension westward and triangulation in Tennessee.
7. Section V. Coasts of South Carolina and Georgia.
8. Section VI. East Coast of Florida from Amelia Island to Halifax River.
9. Section VI. East Coast of Florida from Halifax River to Cape Canaveral.
10. Section VI. East Coast of Florida, Indian River to Cape Florida.
11. Section VI. West Coast of Florida, Tampa Bay and vicinity.
12. Section VII. West Coast of Florida, St. Joseph's Bay to Mobile Bay.
13. Section VIII. Triangulation of the Mississippi River.
14. Section IX. Texas.
15. Section \(X\) (lower sheet). Coast of California from San Diego to Point Sal.
16. Section \(X\) (middle sheet). Coast of California from Point Sal to Tomales Bay.
17. Section \(X\) (upper sheet). Coast of California from Tomales Bay to the Oregon line, and Section XI (lower sheet), coast of Oregon from the California line to Tillamook Bay.
18. Section XI (upper sheet). Coasts of Oregon and Washington Territory from Tillamook Bay to the boundary.
19. Section XII. Alaska (eastern part).
20. Sections XIII and XIV. Reconnaissance and triangulation in Kentucky aud Indiana.
21. Section XIV. Reconnaissance and triangulation in Wisconsin.
22. Sections XIV and XV. Geodetic connection of the coast triangulation of the Atlantic and Pacific, Missouri and Illinois.
23. Section XIV. Geodetic connection of the coast triangulation of the Atlantic and Pacific, Nevada.
24. Chart showing the positions of the telegraphic longitude stations in the United States.

ILLUSTRATIONS.
25. To Appeudix No. 8. The estuary of the Delaware.
26. To Appendix No. 9. Tidal station at Sandy Hook.
27. To Appendix No. 10. Maxima and minima tide-predicting machine, general diagram.
28. To Appendix No. 10. Maxima and minima tide-predicting machine, side view.
29. To Appendix No. 10. Maxima and minima tide-predicting machine, back view.
30. To Appendix No. 10. Maxima and minima tide-predicting machine, front view.
31. To Appendix No. 10. Maxima and minima tide-predicting machine, perspective view.
32. To Appendix No. 11. Diagram illustrating results of Yolo Base measurement.
33. To Appendix No. 12. United States polar station at Ooglaamie, Alaska.
34. To Appendix No. 13. Diagram of curves in refraction experiments.

35 to 50. To Appendix No. 14. Specimens of topographical drawing.

\title{
National Oceanic and Atmospheric Administration
}

\section*{Annual Report of the Superintendent of the Coast Survey}

\section*{Please Note:}

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.
NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910```


[^0]:    * In this volume have been collected the reports and ather papers named in the preceding list.

[^1]:    *The two high waters and two low waters of the same day vary in height as the mon's declination varies: That is, whe $n$ the declination is nothing the difference between any two successive high or low waters is very small; but when the declination is greatent either south or north the differuce is greatest. The depths given in this table are computed from the moan of the loweet low waters.
    $\dagger$ Dangerous except in amooth weather
    §No harbor here with wind anywhere to the weatwand of eouth.
    ; Shlfting bar. Cammot be entered by strangers.

[^2]:    - Many roeks and shoala.

[^3]:    "The last of these published forms Appendix No. 12, Report for 1873, on the length of the Peach Tree Ridge base, in Georgia, 1872.

[^4]:    * See Coast Survey Report for 1867, Appendix No. 7, p. 136.

[^5]:    * We may readily arrange our rosults into two sets by combining the third measure symuetrically with the first and the second measures, aud at tho same time preserving the mean as it resulted from the three measures; thus let $a, b$, $c$ equal the three successive measures of a section, then the combination to form but two values will lead to

    $$
    a_{1}=\frac{2 a+c}{3} \text { and } b_{1}=\frac{2 b+c}{3}
    $$

[^6]:    "Taken at Mount Lois in 1879.

[^7]:    " Coast Surrey Beport for 1876, Appendix No. 16.

[^8]:    * Coast Survey Report for 1876, Appendix No. 17.

[^9]:    Mercurial column reduced to temperature $0^{\circ}$; corrections for index error and reduction to station mark are applied. The observations were made on the arerage about five minutes past the full hour. Some observations taken on March 24 and March 25 are not tabulated for want of corresponding observations at Mount Diablo. Values in parenthesis are interpolated.

[^10]:    * Handbuch der Vermessungekunde von Dr. W. Jordan ; Stuttgart, 1877, vol. 1, p. 493. $\dagger$ Die Barometrischen Höhenmessungen vou Dr. R. Rühluavu: Leipzig, 1870.
    S. Ex. $29 — 39$

[^11]:    * Meterologische Zeitachrift, April Heft, 1881; Separatabdrucl aus dem XVI Bande.

[^12]:    * It has been storming hard since the last observation on the 18th, wind from S. E. to S. W.
    $\dagger$ About 5 inches of snow on Mount Diablo.
    : Snow 4 inches deep, and extends over two-thirds of the way down the mountain.

[^13]:    "This sentence I find added to original report.
    $\dagger$ A new edition, the third, has since appeared in Appendix No. 8, Coast and Geodetic Survey Report for 1881.
    $\ddagger$ It was then supposed that the parties would remain out for three years.

[^14]:    * For a description see Coast Survey Report for 1860, Appendix No. 26, or the original paper in Phil. Trans. Roy. Soc., 1847, Part 1, "On the automatic registration of magnetometers, etc., by photography. By Charles Brooke. June, 1846."

[^15]:    * An important addition to the Brooke instruments, as insuring the stability or fixity of the direction of the zero point of the Neale; the ilea was taken from the later Adie magnetograph. The circular windows of the three magnetometert were of Freneli plate-glass. By trial, on Felruary 14, 1884, 1 find that the transmitted rays for the exheme seale onts suffered but slight refraction by thrning the glass in its own plane; the deviation changed from 0 to 5 divisions in maxmo.

[^16]:    * If $\varepsilon=$ angle which the line joining the centers of gravity and of motion makes with the axis of the magnet, we have $\tan c \tan \theta=\frac{T_{1}^{2}}{\mathrm{~T}^{2}} ;$ aleo ${ }_{\mathrm{H}} \mathrm{V}=\tan \theta$, and since in onr ease $a=90^{\circ}$, formula (3) of page 63 changes to

    $$
    \delta \mathrm{V}=\mathrm{H} \underset{\mathrm{~T}^{2}}{\mathrm{~T}^{2}} \psi ; \text { hence } \frac{\partial \mathrm{V}}{\mathrm{~V}}=\frac{\mathrm{T}^{2}}{\mathrm{~T}^{2}} \psi \cot \theta
    $$

    as above.

[^17]:    ${ }^{*}$ Supposing, for the sake of illustration, that at Point Barrow $\mathrm{H}=0.95$ (in mm., mg., s. mits) and $\theta=81{ }^{\circ} \mathrm{D}$, then $\cos \theta=.1478$ and $\delta \mathrm{H}=.0001478=\frac{1}{6766}$ nearly, From $\cot z=\frac{\delta \mathrm{H}}{\mathrm{H} \text { are } 1^{\prime}}$ we have $\log \cot z=0 . z 2 e 29$, hence $z=61$ iz , and the whole angle to be turned off would be $90^{\circ}+z=151 \circ 52^{\prime}$. For the vertical force instrument we have from
     angular value of one division of each of the scales $=1^{\prime}$.

[^18]:    * Called Ootivakh on Ivon Petroff's map of Alaska; Tenth Censur of the United States; Washington, 1882. The name Kokmullit given on this map is that of an Esquimaux settlement at Point Barrow; it is called Noowook on the Admiralty chart of 1853 (No. 2164).
    $\dagger$ Report to Chief Signal Ofticer of September 15, 1881.

[^19]:    *The observations made Febriary 5 and 7, 1884, gave for the declination 3' 57 '. 9 west. The same computed from ammal doterminations made at Washington, D. C., since 1877 , is $4^{\circ} 00^{\prime} .4$ west; difference $2^{\prime} .5$. The measures for intensity were equally satisfactory.
    $\dagger$ Distauce magnetometer No. 11 to mark 90 feet, and to Brooko declinometer 39.5 feet. First position of instrument November 21, 1881 , azimuth of mark on honse $96^{\circ} 13^{\prime}$ west of north, from observations on Japiter ; second position of instrument Jaly $25,188^{2}$, mark $46^{\circ} 36^{\prime}$ east of north, from observations of the sun.

[^20]:    * Answering to the epoch March 1, 1883, which is preferred to the value deduced above for the epoch June 1 , 1883. The corresponding value of the Brooke declinometer reading is 487.7

    Respecting the annual change of the declination, due to the secular variation, we know from the general discussion of the secular variation, Appendix No. 12, Coast and Geodetic Survey Report for 1882, that the eastern declination in Alaska is now diminishing. The expression for the secular variation at the two stations nearest to Point Barrow, viz, Port Clarence, in $\varphi=65^{\circ} 17^{\prime}$ and $\lambda=166^{\circ} 19^{\prime}$ west of Greenwich, and Chamisso Island, in $\varphi=66^{\circ} 13^{\prime} .3$ and $\lambda=161^{\circ} 48^{\prime} .7$ west of Greenwich, give for the annual change in 1880 and 1885 the values $+10^{\prime} .3$ and $+11^{\prime} .3$ for Port Clarence, and $+10^{\prime} .7$ and $+12^{\prime} .0$ for Chamisso Island, and we have to expect a greater value at Point Barrow. Captain Maguire determined the declination at that place in 1853 and found $-40^{\circ} 21^{\prime}$, or, when reduced to Ooglaamie, about - $40^{\circ} 36^{\prime}$, which, compared with our value above, gives almost exactly a diminution of 50 between 1853.and 1883. It is known from the other stations that this declination has not passed through a maximum within the last thirty years, but has diminished gradually with an accelerating rate. For uniform speed the annual change would be $+10^{\prime}$; it is therefore probably near $+15^{\prime}$ for the present time. The absolute measures, September,

[^21]:    *The following results were deduced from Sergeant Maxfield's observations at Washington: January 28, 1884, $\mathbf{H}=$ 4.355 (English mits); dip January 30, 31, February 1, 2, 1884, $\theta=70^{\circ} 37^{\prime} .3$; hence $F=13,185$ These results compare favorably with the values deduced (and referred to same time) from eighteen years of annual determinations in the same place, viz:

    $$
    \mathrm{H}=4.378, \quad \theta=70039.4, \quad \mathrm{~F}=13.218
    $$

[^22]:    *Directions for measurement of terrestrial magnetism, Coast and Geodetic Sarvey Report for 1881, Appendix No. 8, p. 145, Art. (16).

[^23]:    *It is much to be regretted that the magnetic observations taken at Sitka, Alaska, between 1848 and 1864 have never been fully discussed. As it appeared to me highly desirable to compare the diurnal variation of the declination at Ooglaamie with that of Sitka, I have made a combination of the hourly readings from the broken and irregnlar series extending from 1848 to 1862 . (The material for this combination had been collected by Mr. M. Baker, of the Coast and Geodetic Survey, it March, 1882.)

[^24]:    * U. S. Coast Survey Report for 1854, pp. 131-138; Gould's Astronomical Journal No. 83, Cambridge, Mass., April 24, 1855. It is now most readily accessible in Chauvenet's "Manual of Spherical and Practical Astronomy," Vol. II (first edition, Philadelphia, 1863).
    $\dagger$ Smithsonian Contributions to Knowledge, Vol. X, 1858.
    $\ddagger$ U. S. Coast Survey Report for 1859, Appendix No. 22.
    § C. S. Coast Survey Report for 1874, Appendix No. 9.

[^25]:    * Here of course the differences of the tabnar hourly readings from their respective hourly normals do not, in any sonse, represent errors, every one being as correct as any other; they are variations governed by unknown laws probably of much complexity. The application of the formuls of the method of least squares to such phenomena is more or less precarious; the pure observing error may be regarded as insignificant.
    $\dagger$ Thus with the limit of $2^{\prime} .6$ at Key West ( $\mathrm{H}=6.74$ ) the Ooglamie limit would be $9^{\prime}$, about; with the limit of $3^{\prime} .6$ at Philadelphia ( $H=4.17$ ) the Ooglaamie limit would be $8^{\prime}$, about; with the limit of $5^{\prime} .0$ at Toronto ( $H=3.53$ ) the Ooglaamie limit would be $9^{\prime}$, about.

[^26]:    *The Brooke magnets are now over thirty years old : they were used at Washington in 1853.

[^27]:    * Southeast corner First street west and B street south; elevation above sea 20 feet, abont. $\dagger$ Latitude $38^{\circ} 53^{\prime} 23^{\prime \prime} .2$, lougitude $77^{\circ} 00^{\prime} 33^{\prime \prime} .5$, the most recent geodetic determination.

