REPORT OF THE SUPERINTENDENT

uss COAST AND GEODETIC SURVEY

SHOWING

THE PROGRESS OF THE WORK

FROM

JULY I, I9OO, TO JUNE 3O, IgOr.

WASHINGTON
GOVERNMENTPRINTINGOFFICE
I 902

National Oceanic and Atmospheric Administration

Annual Report of the Superintendent of the

 Coast Survey
ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
March 22, 2005

LETTER

FROM

THE SECRETARY OF THE TREASURY

TRANSMITTIING
The Report of the Superintendent of the United States Coast and Geodetic Survey.

Treasury Department, Office of the Secretary, Washington, D. C., December 6, 190I.

SIR: In compliance with the requirements of section 4690 , Revised Statutes, I have the honor to transmit herewith, for the information of Congress, a Report transmitted to this Department by Mr. O. H. Tittmann, Superintendent of the Coast and Geodetic Survey, showing the progress made in that work during the fiscal year ended June 30 ; rgor. It is accompanied by maps illustrating the general advance in the operations of the Survey up to that date.

Respectfully,
L. J. Gagn, Secretary.

The President of the Senate.

LETTER

FROM THE

SUPERITTENDENT OF THE UNTED STATES COAST AND GEDEETC SURVEY

sUBMITTING THE
Annual Report for the fiscal year ended June 30, ıоог.

United States Coast and Geodetic Survey, Washington, D. C., December 3, гоол.

SIR: In conformity with law and with the regulations of the Treasury Department, I have the honor to submit herewith, for transmission to Congress, the Annual Report of progress in the United States Coast and Geodetic Survey for the fiscal year ended June 30 , 1901. It is accompanied by maps illustrating the general advance in the field work of the Survey up to that date.
Respectfully,
O. H. Tittmann,
Superintendent.
The Honorable the Secretary of the Treasury.

CONTENTS.

REPORT OF THE SUPERINTENDENT.
Page
OFFICE OF SUPERINTENDENT 11
I. Office of Assistant in Charge 15
II. Office of Inspector of Hydrography and Topography 16
III. Office of Inspector of Geodetic Work 20
IV. Office of Inspector of Magnetic Work 21
V. Office of Disbursing Agent 22
VI. Office of Editor of Publications 52
VII. Office of Inspector of Weights and Measures 53
APPENDIX No. I. Details of Field Operations 57
No. 2. Details of Office Operations 203
No. 3. The Measurement of Nine Base Lines along the Ninety-eighth Meridian 229
No. 4. Extension of Tables for the Computation of Geodetic Positions to the Equator 303
No. 5. Determination of the Relative Values of Gravity in Europe and the United States in 1900. 341
No. 6. Triangulation northward along the Ninety-eighth Meridian in Kansas and Nebraska 357

ILLUSTRATIONS.

Page.

1. Topography and triangulation, Eastern Bay, Maryland 78
2. Topography of Elk Neck, Chesapeake Bay 79
2a. Topography and triangulation, Little Choptank River, Maryland 80
3. Triangulation, Portsmouth Harbor 81
4. Triangulation, Port Royal Entrance, South Carolina. 81
5. Connection, Coast and Blue Ridge Triangulations 83
6. ' $o p o g r a p h y$, mouth of Little Choptank River, Maryland 88
7. Hydrography, topography, and triangulation, mouth of Savannah River, Georgia. 92
8. Hydrography, Diamond Shoal, North Carolina. 93
9. Hydrography and Topography, Thames River, Connecticut 98
10. Topography, vicinity Portsmouth, New Hampshire 99
ir. Topography, Sassafras River, Maryland 100
11. Topography and hydrography, Newark Bay, New York. $10 S$
12. Triangulation, Choptank River, Maryland III
13. Triangulation and hydrography, Lower Chesapeake Bay. 113
14. Twenty-fathom trial course, Chesapeake Bay. 116
15. Triangulation and hydrography, Dry Tortugas, Florida. 117
16. Triangulation in Nebraska 127
17. Triangulation, Nebraska and South Dakota 127
18. Triangulation along the ninety-eighth meridian in Kansas 129
19. Speed-trial course, Santa Barbara Channel 136
20. Hydrography and topography, Columbia River 139
21. Triangulation, Columbia River 139
22. Triangulation, topography, and hydrography, Norton Sound, Alaska 149
23. Triangulation, topography, and hydrography, Aleutian Island Passes, Alaska 150
24. Triangulation, topography, and hydrography, Golofnin Bay to Port Clarence 155
25. Triangulation, Icy Strait and Cross Sound 157
26. Triangulation, topography, and hydrography, Prince William Sound I59
27. Triangulation, Sannak Island and vicinity 162
28. Triangulation, topography, and hydrography, east end of Porto Rico 165
29. Hydrography, southwestern coast of Porto Rico 168
30. Topography and triangulation, Vieques Island, Porto Rico 170
31. Triangulation, west end of Porto Rico 171
32. Triangulation, southeast coast of Porto Rico 172
33. Triangulation and topography, San Juan to Point Jiguero, Porto Rico. 174
34. Triangulation, topography, and hydrography, Sual Harbor, Luzon, P. I 180
35. Topography and hydrography, Cagayan River entrance, Luzon, P. I 180
36. Triangulation and topography, Bolinao Harbor, Luzon, P. I 18I
37. Triangulation, topography, and hydrography, San Fernando Harbor, Luzon, P. I 181
38. Triangulation, topography, and hydrography, Santo Tomas Harbor, Luzon, P. I 182
39. Topography and hydrography, Balayan Anchorage, Luzon, P. I. 182
Page.
40. Topography and hydrography, Darigayos Inlet, Luzon, P. I 183
41. Triangulation, topography, and hydrography, Tacloban Harbor, Luzon, P. I 184
42. Triangulation, Vigan, Luzon, P. I 185
43. Triangulation, Candon, Luzon; P. I 185
44. Triangulation, Manila, Luzon, P. I 186
45. Speed-trial course, Delaware Breakwater. 193
Sketch of general progress, Eastern sheet In pocket.
Sketch of general progress, Eastern sheet In pocket.
Sketch of general progress, Alaskn In pocket
Sketch of general progress, outlying possessions In pocket.

REPORT OF THE SUPERINTENDENT.

H. S. PRITCHETT, Superintendent, July i to Nov. 30.
O. H. TITTMANN, Superintendent, Dec. I to June 30.
O. H. TITTMANN, Assistant Superintendent, July I to Nov. 30. FRANK WALLEY PERKINS, Assistant Superintendent, Feb. I I to June 30. OFFICE OF THF SUPERINTENDENT.
Frank Walley Perkins, Executive Officer, Oct. I9 to Feb. 10.
D. B. Wainwright, Assistant, July I to Oct. Ig.
W. B. Chilton. Clerk.
H. M. Fitch, Confidential Clerk.

Dr. Henry Smith Pritchett served as Superintendent from July i to November 30, on which date his resignation took effect. He left the service to accept the position of president of the Massachusetts Institute of Technology.

THE WORK OF THE YEAR.
A notable event during the year was the inauguration of the survey of the coasts of the Philippine Islands.

Acting upon the information obtained by an officer of the Survey sent to the islands for the purpose of reporting upon existing conditions, an assistant of the Coast and Geodetic Survey was sent to Manila with authority to organize a suboffice and establish the necessary facilities for preparing the data obtained by the surveying parties in the field for immediate publication in the form of preliminary charts.

The Director of Coast Surveys in the Philippine Islands was also authorized to publish Notices to Mariners and all information useful to mariners as soon as practicable.

A small body of trained officers was assigned to duty in this region and the existing conditions made it desirable to adopt the plan of making detached harbor surveys at all important places as the first step in carrying out the plan of the survey.

A report of the results accomplished during the year will be found in Appendix No. I to this Report.

From the foundation of the Bureau of Weights and Measures, in 1831, the Superintendent of the Coast and Geodetic Survey has been charged with the custody of the standard weights and measures of the United States. The constantly increasing demands upon the Bureau and the necessity for increased facilities and equipment induced Congress to establish the National Bureau of Standards by a law which was approved March 3, 1901, but did not become fully operative until after the close of the fiscal year. A more detailed reference to this subject will be found in the report of the Office of Standard Weights and Measures.

On March 13, 1901, the necessary connections between triangulation in widely separated localities having been made and the computations being sufficiently advanced to afford the basis for such decision, the Coast and Geodetic Survey adopted a standard datum, to be known as the "U.S. Standard Datum," to which all geographic positions throughout the United States will be reduced, whenever possible, as rapidly as practicable, so as to make such positions strictly comparable in all portions of the country.

In October, 1900, a notable publication was issued by the Survey under the title of "The Transcontinental Triangulation and American Arc of the Parallel."

The Hon. Lyman J. Gage, Secretary of the Treasury, honored the Survey in authorizing the publication of the following, over his signature, as the preface to the volume:

The volume which is here presented to the scientific world contains the results of the most extensive piece of geodetic work attempted by any nation, a geodetic triangulation across the continent and the resulting arc of the parallel. This work has been conducted with the greatest care, and many improvements in the means of observation have marked its progress.

In presenting this complete record of a great undertaking, carried througb by a bureau of the Treasury Department, the executive officers of the Department feel that it will prove a contribution to the science of the world worthy of the United States.

The preparation of another important contribution to the subject of geodesy was completed during the year under the title of "The Eastern Oblique Arc of the United States," and contains the discussion of an oblique arc extending from Maine to Louisiạna.

The act of Congress making appropriations for sundry civil expenses of the Government for the fiscal year ending June 30, 1901, approved June 6, 1900, contained an item of appropriation for all necessary employees to man and equip the vessels of the Coast and Geodetic Survey. This legislation involved a radical change in the organization of the parties afloat, as the vessels of the Survey were manned with enlisted men of the Navy.

The change was anticipated and had been prepared for as far as it was in the power of the Survey to make such preparations in advance of the date, July i, ig00, when the law authorizing it went into effect. On July i some of the vessels were en route to Alaska and others were returning from Porto Rico, and consequently the transfer from the naval to a civil basis could not be effected on that date. The plan agreed upon was that all the crews were to remain under their naval enlistment until such time as each ship should reach a home port, when the transfer would be made as soon as practicable, and that the Survey should repay to the Navy Department all of the expense incurred after July 1 . This plan was carried out and the crew of the last vessel from Alaska was transferred in November and the records of all the men under naval enlistment were closed in the following month.

The constant changes of the coast line and of the depths in rivers, harbors, and ocean bars, the increase in the draft of ships, the new features continually added by commercial and other developments make it necessary to resurvey many parts of the coast at intervals more or less frequent.

In the Eastern Division, hydrographic work was done on the coasts of Massachusetts, Connecticut, Delaware, North Carolina, South Carolina, Georgia, and Florida; topographic work in Maine, New Hampshire, Connecticut, New York, Maryland, and

South Carolina; triangulation in Massachusetts, New Hampshire, Florida, Georgia, and Maine; elevations were determined by leveling in South Carolina, Kentucky, Tennessee, and Alabama, and magnetic work was done in North Carolina, Maryland, District of Columbia, Pennsylvania, Illinois, Kentucky, Virginia, Tennessee, Mississippi, Indiana, Michigan, and Ohio. A permanent magnetic observatory was established at Cheltenham, Md., to be used as a base station. A continuous tide record was obtained at New York, Philadelphia, Washington, and Fernandina.

In the Middle Division, the triangulation was extended along the ninety-eighth meridian in Nebraska and Kansas; nine base lines were measured in Nebraska, Kansas, Oklahoma Territory, and Texas, with primary accuracy and, unrivaled speed and economy, and magnetic observations were made in Louisiana, Texas, Arkansas, Missouri, Kansas, Nebraska, Iowa, Minnesota, and South Dakota.

In the Western Division, triangulation, topographic, and hydrographic work was done in Oregon and Washington. A continuous tide record was obtained at San Francisco, Cal., and at Seattle, Wash., and a speed trial course was established in the Santa Barbara Channel. Magnetic observations were made in Washington and Oregon.

In Alaska, surveys were made along the coast of Seward Peninsula, including Port Clarence and Norton Sound. The survey of Prince William Sound was continued, and toward the end of the year the important work of surveying the principal passes through the Aleutian Islands into Bering Sea was begun, as well as the survey of Icy Straits and Cross Sound.

In Porto Rico, hydrographic work was continued in the harbors and bays and off shore. The triangulation around the island and topographic surveys of the shore line were continued. The topographic survey of Vieques Island was completed.

In the Hawaiian Islands, the work of separating the records relating to the Coast Survey from the Land Office records was begun, and also the compilation of a list of the geographic names used in the islands.

In the Philippine Islands, astronomic observations were made at fourteen stations, and the longitude, latitude, and azimuth determined. Magnetic observations we're also made at these stations and tide observations were made at ten different places. Three charts and three notices to mariners were issued. Six additional charts (four from Coast and Geodetic Survey work and two Spanish charts needing republication with additions) were ready for publication on July i. A steamer was purchased by the Philippine Commission for the use of the Coast and Geodetic Survey, and money wasuappropriated by the Commission to repair and equip this vessel.

MAGNETIC SURVEY.

The determination of the magnetic elements was made in 340 different localities, embracing 376 stations (65 of which were in localities previously occupied) distributed over 31 States and Territories, from Maryland to Alaska, including the Hawaiian Islands, the Philippines, Porto Rico, and British Columbia, and the local disturbances affecting the mariner's compass in the waters along the coast of southeast Alaska were examined.

The principal magnetic observatory or base station at Cheltenham, Md., 16 miles southeast of Washington, was completed, the instruments were installed and photographic records of the magnetic variations were obtained after April, 1901. A
photographic self-recording instrument was installed in an extemporized building at Baldwin, Kans., and records of the magnetic variations were obtained after August, 1900.

Declination variations were observed in an extemporized building at Sitka, Alaska, after October, 1900, and special simultaneous magnetic observations were made by all the magnetic parties at various times and especially in connection with the total solar eclipse May 17 and 18.

In addition to their regular work, these observatories will cooperate, at the formal request of the German Government, with the international magnetic work to be carried out during the time of the Antarctic expeditions which have been sent out from Germany and Great Britain.

COAST PILOTS.
Owing to the Spanish war, officers engaged in the preparation of the Coast Pilots were detached, the work was interrupted, and some time was required to reorganize this special branch of the service.

During the fiscal year, the Coast Pilot relating to southeast Alaska was thoroughly revised in the field and prepared for the printer. The field revision of the Coast Pilot between San Diego and San Francisco was completed and new editions of sections relating to the Atlantic coast were published and the revision and issue of other numbers is progressing as fast as the available force will permit.

INTERNATIONAL LATITUDE SERVICE.

Satisfactory results have been obtained at the astronomical observatories maintained under the direction of the Survey at international expense at Gaithersburg, Md., and Ukiah, Cal., for the purpose of determining the variation of latitude.

SPECIAL WORK.
Speed trial courses for the use of ships and torpedo boats were established in Delaware and Chesapeake bays, and the Santa Barbara Channel course was extended.

One officer of the Survey continued to serve as a member of the Mississippi River Commission, another was sent to the meeting of the International Geodetic Association held at Paris, France, in September, ig00, as the representative of the United States, and others investigated the methods of making hydrographic surveys and the printing of charts in foreign countries. In the demarkation of the provisional boundary between Alaska and British Columbia, one officer acted as commissioner and another as engineer on the part of the United States. Two officers of the Survey were appointed by the United States Supreme Court as members of a commission to retrace and mark the boundary line between the States of Virginia and Tennessee, and one officer was engaged on the resurvey of Mason and Dixon's Lire under an assignment requested by a commission of the States of Maryland and Penusylvania.

One officer completed the connnection of gravity stations in the United States and Europe and another had charge of the Survey Exhibit at the Pan-American Exposition in Buffalo, N. Y.

Details in regard to the field work of the year will be found in Appendix No. I to this Report.

The appropriations made for the U.S. Coast and Geodetic Survey on account of the fiscal year of rgor amounted to $\$ 902,830$. Of this amount $\$ 10,885$ was for the use of the Office of Standard Weights and Measures, which by later legislation has been merged into the National Bureau of Standards. Sixty thousand dollars was for the rebuilding of the U.S. Coast and Geodetic Survey steamer A. D. Bache, and the sum of $\$ 20,000$ for the building of a small steamer, while $\$ 210,245$ was for the pay of the officers and men of the Coast and Geodetic Survey vessels, and $\$ 54,600$ for repairs of vessels. For Office expenses, including the purchase of new engraving machines, the sum of $\$ 38,000$ was provided, and the remainder of the appropriation was about equally divided between party expenses and salaries.

The statement of the expenditures during the fiscal year is given on pp. 24-51.

I. OFFICE OF ASSISTANT IN CHARGE.

Andrew Braid, Assistant in Charge.
The usual work in the Office was continued.
The work of reducing the geographic positions in southeast Alaska to a uniform standard was almost completed. The computation of more than 1000 miles of precise leveling lines was made.

A United States Standard Datum, to which all connected geographic positions are to be reduced, was adopted and the positions of the primary points along the thirty-ninth parallel triangulation along the eastern oblique arc and along the western oblique arc were reduced to this datum before the close of the fiscal year. The discussion of "The eastern oblique arc of the United States" was completed and submitted for publication.

Bulletin No. 41, "The magnetic survey of North Carolina," was prepared for publication. The preparation of a new edition of the Magnetic Declination Tables was begun and the revision of the computation of all magnetic observations previously made by the Survey was undertaken and considerable progress made.

The annual volume of tide tables for the year 1902 was prepared and published with the usual separates for the Atlantic coast and for the Pacific coast. It contains predictions for 70 principal and about 3000 subordinate stations throughout the world.

Harmonic analysis of several series of tide observations were made, aggregating five years of continuous record. An aggregate of thirty-five years of record from automatic tide gauges was received, examined, and registered.

The drawings for 13 new charts and for 9 new editions of charts were completed.
The copperplates for 7 new charts and 51 new editions of charts were also completed,
Nine hundred and ninety-two plates were corrected for printing, and 75330 impressions were made from the engraved plates.

A new edition of the Chart Catalogue was prepared, published, and issued. Fifteen new charts published by lithography were issued.

The usual monthly Notices to Mariners were prepared. published, and issued.
An electrical apparatus for indicating changes in water level at any distance from the point of observation was purchased for use in the office of the Philadelphia Maritime Exchange, and the changes and improvements necessary to adapt it for use as a tide indicator were completed.

Details under this head will be found in Appendix No. 2 to this report.

II. OFFICE OF INSPECTOR OF HYDROGRAPHY AND TOPOGRAPHY.

H. G. Ogden, Inspector of Hydrography and Topography.
A.-INSPECTION.

Personnel.

The inspection of the field work during the first half of the fiscal year was confined to the personal supervision, by Assistant Ogden, of the operations of the steamer Endeavor, Assistant F. A. Young, commanding, engaged upon an examination of the bars and channels in the Delaware River above Bombay Hook. The work involved the determination of the availability of channels that differed about i foot in depth.

The duties of the Inspector in the Office were more than usually onerous during the year. The act of Congress making appropriations for sundry civil expenses of the Government for the fiscal year ending June 30, 1901, approved June 6, 1900, contained an item of appropriation for all necessary employees to man and equip the vessels of the Coast and Geodetic Survey. This legislation involved a radical change in the organization of the parties afloat, as the vessels of the Survey were manned with enlisted men of the Navy.

This change was anticipated and had been prepared for as far as it was in the power of the Survey to make such preparations in advance of the date, July i, 1900, when the law authorizing it went into effect.

On July i, some of the vessels were en route to Alaska and others were returning from Porto Rico, and consequently the transfer from the naval to a civil basis could not be effected on that date. (The plan agreed upon was that all the crews were to remain under their naval enlistment until such time as each ship should reach a home port, when the transfer would be made as soon as practicable and that the Survey should repay to the Navy Department all of the expense incurred after July i.) This plan was carried out and the crew of the last vessel from Alaska was transferred in November and the records of all the men under naval enlistment were closed in the following month.

The successful execution of this plan is largely due to the courteous consideration of Paymaster M. M. Ramsay, U.S. N., and to his clerk, Mr. H. C. Jordan, who remained in charge of the accounts until the final settlement.

The preparation of the necessary rules and forms for the record of the civil crews required by the scheme adopted under the provisions of Treasury Department Circular No. ini, dated July 13, 1900, involved a large amount of labor of an unusual kind, and Assistant Ogden expresses his appreciation of the earnest and efficient work of Mr. J. H. Roeth, clerk, in this connection.

Assistant Ogden sailed from New York on March 2, under instructions to proceed to Porto Rico and inspect the hydrographic and topographic work in progress in that locality. He visited the parties of Assistants Nelson, Flower, Boutelle, and Forney and
issued such instructions as were found to be desirable on account of the local conditions and the objects to be accomplished. He sailed from San Juan, P. R., for New York on May 8.

On October 20, 1900, a contract was entered into with the Towsend \& Downey Shipbuilding and Repair Company, of New York, to rebuild the steamer Bache, and on March I9, Igor, a contract made with the James Reilly Repair and Supply Company for building a small steamer under authority granted by Congress, and work on both these vessels was in progress at the close of the fiscal year.

The special appropriation for repairs to the steamer Gedney put the hull of the vessel in first-class condition, and a contract was made for a new boiler for this vessel, to be installed after the return of the ship from work in Alaska during the field season of 1901 .

The other vessels of the Survey received repairs during the year as they became necessary and were authorized by the appropriation for that purpose.

The following is a list of the ships in service during the year, with a chronological statement of their changes of station:

Steamer Bache:

July 1. At work on Chesapeake Bay, below Potomac River.
August 24. Sailed for Baltimore, Md.
August 25. Arrived at Baltimore, Md.
September 4. Sailed for Barren Island to establish trial course for United States Navy Department.
September 14. Returned to Baltimore, Md.
September 26. Sailed from Baltimore to resume work on Chesapeake Bay.
September 27. Arrived at working grounds.
October 25. Sailed for Baltimore to dock vessel.
October 26. Arrived at Baltimore, Md.
November I4. Sailed for Lower Chesapeake Bay for hydrographic work.
November 14. Arrived at working grounds.
November 28. Returned to Baltimore, Md.
December 17. Sailed for Shooters Island, New York, to be rebuilt.
December 19. Arrived at Shooters Island.
June 30 . Still undergoing repairs.
Steamer Blake:
July I. At St. Thomas, Danish West Indies.
July 3. Sailed from San Juan for examination of Tybee Bar, Georgia.
July 8. Arrived Tybee Roads, Savannah River, Georgia.
July 20. Sailed from Tybee Roads for Baltimore to dock.
July 26. Arrived at Baltimore, Md.
August 5. Sailed from Baltimore for examination of Hatteras Shoals.
August 9. Arrived at Cape Hatteras.
August 30 . Sailed for Washington.
September I. Arrived at Washington, D. C.
September 12. Sailed for Baltimore, Md.
September 13. Arrived at Baltimore, Md.
September 26. Sailed from Baltimore to establish trial course for United States Navy Department at Barren Island.
October 2I. Returned to Baltimore, Md.
December 17. Sailed for Dry Tortugas, Fla., for resurvey of that locality.
December 29. Arrived at Dry Tortugas.
June I. Sailed from Key West for Baltimore, Md.
June 6. Arrived at Baltimore, Md.
June 3c. At Baltimore, Md.
S. Doc. $50-2$

Schooner Eagre:

July 1. At Baltimore, Md.
August 5. Sailed for New York for repairs.
August 10. Arrived at New York.
September 17. Proceeded to Irvington on Hudson for resurvey of Hudson River.
November 5. Sailed for Baltimore to prepare for Porto Rico.
November 13. Arrived at Baltimore, Md.
December 3. Sailed from Baltimore for San Juan, P. R.
December 2o. Arrived at San Juan, P. R.
June ir. Sailed from San Juan for Baltimore, Md.
June 20. Arrived at Baltimore, Md.
June 30. At Baltimore, Md.
Steamer Findeavor:
July s. At work on the Delaware River resurvey with headquarters at Philadelphia, Pa.
November 28. Sailed for Baltimore for repairs.
November 29. Arrived at Baltimore, Md.
March 22. Sailed for working ground in Upper Chesapeake Bay.
April 13. Returned to Baltimore, Md.
June 24. Sailed for working ground in Lower Chesapeake Bay.
June 30. At work in Lower Chesapeake Bay with headquarters at Newport News.
Steamer Gedney:
July 1. At the Puget Sound Naval Station undergoing repairs.
December 8. Sailed for San Francisco, via Seattle.
December 26. Arrived at San Francisco.
January 29. Sailed from San Francisco with Coast Pilot party for points on the coist south of San Francisco.
March 9. Returned to San Francisco.
May 25. Sailed for Seattle on the way to Alaskan working grounds.
May 29. Arrived at Seattle.
June 13. Sailed for working grounds in Icy Straits, Alaska.
June 30. At work in Alaska.
Schooner Matchless.
July i. Engaged on resurvey of Charleston Harbor.
July 28. Sailed for Baltimore, Md.
August 7. Arrived at Baltimore, Md.
October 2. Sailed for New York for repairs.
October 8. Arrived at New York.
December 3. Sailed for Ponce, P. R.
June 8. Sailed from Mayaguez, P. R., for Baltimore, Md.
June i7. Arrived at Baltimore, Md.
June 30. At Baltimore, Md.

Steamer McArthur:

July I. At San Francisco.
August 28. Sailed for Seattle to get Coast Pilot party.
September I. Arrived at Seattle.
September 6. Sailed from Seattle with Coast Pilot party for cruise in southeast Alaska.
November I, Returned to Seattle.
December 9. Sailed for San Francisco.
December 15. Arrived at San Francisco.
May 4. Sailed for Alaskan working grounds via Seattle.
May 9. Arrived Seattle.
May 16. Sailed for working grounds in Sannak Islands.
June 30 . On working ground.

Steamer Pathfinder:
July i. At St. Michael, Alaska.
October 5. Sailed for San Francisco, from Dutch Harbor. October 14. Arrived San Francisco.
April 18. Sailed for Dutch Harbor via Seattle.
April 25. Arrived Seattle via Port Angeles and Port Stanley.
May 9. Sailed for Dutch Harbor.
May 16. Arrived Dutch Harbor.
June jo. On working grounds at Dutch Harbor.
Steamer Patterson:
July r. At working grounds in Alaska.
October 20. Sailed from Dutch Harbor for Seattle.
October 29. Arrived at Seattle.
May 16. Sailed from Seattle for Alaskan working grounds.
June 30. On working grounds in Alaska.
B.-COAST PILOT PARTY.

Personnel.

Name.	Occupation.
John Ross	Nąutical expert, chief of party.
H. C. Graves	Nautical expert.
H. L. Ford .	Do.
Talbot O. Pulizzi.	Writer.

The work of the party covered the coast waters of the Atlantic coast, Pacific coast, and the coast and inland passages of southeastern Alaska, the Fox Island Passes, Unalaska Bay, and Bering Sea.

One member of the party was employed in each of the three divisions and was assisted by the others whenever it was necessary to expedite work in any particular locality.

An account of the work in the field will be found under the name of the officer in charge in Appendix No. 1, which contains the details of the field work. The following is an account of the work of compiling, publishing, and issuing the data collected in the field.

Mr. Ross was on field duty November 23 to December 26. Mr. Graves was on field duty July I to November 27, and Mr. Ford was on field duty December 15 to July 1.

Capt. E. H. Francis, Alaska pilot, was on temporary duty from January 28 to April 6, assisting in the revision of the third edition of the Alaska Coast Pilot. Mr. W. B. Proctor was temporarily detailed for duty ten days in September in compiling data for use in the preparation of the second edition of United States Coast Pilot, Atlantic Coast, Part VIII.

The usual work of the party in the line of preparing publications for the printer, reading proof, and correcting Coast Pilot volumes to date of issue was executed during the year.

The manuscript for the following publications was sent to the printer on the dates stated:

August 14.--United States Coast Pilot, Atlantic Coast, Part VII, 2d edition.
December 19.-United States Coast Pilot, Atlantic Coast, Part V, reprint and supplement.
March 6.-Bulletin No. 40, 3d edition.
March 22.-United States Coast Pilot, Atlantic Coast, Part VIII, 2d edition.

A leaflet describing the preparation of Coast Pilots and a Notice to Mariners, stating changes in the sailing directions for Delaware River, were prepared for the printer. Specifications for rebuilding the steamer Bache and for rebuilding the steamer Hydrographer were also prepared.

On June 30 the United States Coast Pilot, Pacific Coast, Alaska, Part I, had been prepared and was ready for the printer.

The following publications, prepared by the Coast Pilot party, were issued during the year:

United States Coast Pilot, Atlantic Coast, Part V (reprint).
United States Coast Piiot, Atlantic Coast, Part VII (2 d edition).
United States Coast Pilot, Atlantic Coast, Part VIII (2d edition).
Supplement to United States Coast Pilot, Atlantic Coast, Part V.
Bulletin No. 4o. Coast Pilot notes on the Fox Island Passes, Unalaska Bay, Bering Sea, and Arctic Ocean as far as Point Barrow (3d edition).

Leaflet on Coast Pilots for Pan-American Exposition.
Notice to Mariners of changes in Delaware River.
Assistant Ogden expresses his appreciation of the very satisfactory services rendered by the clerks in his office, and the great interest and earnest energy shown by the officers of the Coast Pilot party in the preparation of the work intrusted to them.

III. OFFICE OF INSPECTOR OF GEODETIC WORK.

J. F. Hayford, Inspector of Geodetic Work.

The inspection of the geodetic work is made, in the main, without leaving the office, in the form of a careful examination of the correspondence and monthly reports from field parties, and of the records and computations received from time to time. The Inspector of Geodetic Work is also the chief of the Computing Division, and is able to utilize as an efficient form of inspection the careful examination to which every record is necessarily subjected when the office computation is being made. The Inspector, therefore, only occasionally finds it necessary to visit parties in the field.

For the purpose of inspecting the operations of the base measuring party at work on the Alice Base Line, in Texas, Assistant Hayford left Washington on December 4 and proceeded to Alice, Tex.

He reached the base line on the 7 th and thoroughly inspected all of the operations of the measurement and was much impressed by the skill which had been developed by the party during the season's work.

The plan of operation followed has resulted in very rapid measurement, with an accuracy in the determined length far above the limit absolutely demanded by the triangulation.

Prof. A. E. Burton, of the Massachusetts Institute of Technology, taking advantage of the presence of the Inspector of Geodetic Work at the Alice Base, joined the party on December 8 for the purpose of submitting the tape apparatus constructed by the institute to a practical test in field use. This apparatus has been developed by the students of the institute during the past thirteen years, Messrs. Henry E. Warren and Geofge C. Whipple having taken the principal part in this operation.

Authority was given for this test in order to determine whether this form of
apparatus could be used to advantage in measuring any base line which may be required in the work of the Coast and Geodetic Survey. The following is extracted from the report on this test submitted by the Inspector of Geodetic Work:

The important feature of this form of tape apparatus is the device for obtaining the temperature of the tape. The whole length of the ico-meter tape and an approximately equal length of German silver wire form two of the arms of a Wheatstone bridge. The two variable arms of the bridge, together with the telephone which is substituted in the place usually occupied by a galvanometer, and the necessary interrupter, batteries, and connections form the thermophone proper.

The electrical resistance of the steel tape varies more rapidly with a change of temperature than does that of the German silver. The ratio of the resistance of the tape to that of the German silver is therefore the measure of their temperatures; or, with sufficient accuracy, it is a measure of the temperature of the tape, provided the German silver is similarly exposed so as to have approximately the same temperature as the tape. The thermophone dial, over which moves a pointer which indicates the position of the contact point regulating to two variable arms of the bridge, is graduated so as to indicate the temperature of the tape in Fahrenheit degrees. This method of determining the temperature of the tape has three very important advantages over the use of mercurial thermometers either fastened to the tape or swung in the air near it.
i. It determines the actual temperature of the tape regardless of whether the heat reaches the tape in the radiant form or otherwise.
2. The thermophone furnishes an instantaneous determination of the temperature of the tape.
3. The thermophone furnishes a measure of the actual mean temperature of the whole leugth of the tape.

The apparatus was also tested in Washington, before going to the field, by making repeated readings on a single tape length, extending over many hours of sunshine, shade, and darkness, covering two entire days. The Inspector was much impressed by the desirability of using this apparatus after certain modifications have been made, and commends the various good features combined in it at present.

The Inspector also visited the leveling party at work in Alabama, under charge of Aid W. H. Burger, and found the work progressing in a very satisfactory manner.

IV. OFFICE OF THE INSPECTOR OF MAGNETIC WORK.

L. A. Bauer, Inspector of Magnetic Work.

The work of inspection consisted mainly in duties incidental to the supervision of the field work in Terrestrial Magnetism, such as the preparation of the necessary directions and information for the use of the field parties, the critical examination of the records of the magnetic observations made in the field, and the writing of the summaries and reports of progress.

Personal inspection of the field work was made at various times, and during the fall of 1900 an examination of available sites for magnetic observatories in Alaska and in the Hawaiian Islands was made, as described in Appendix No. I to this Report.

The entire activity in the field work under the head of Terrestrial Magnetism is briefly summarized in the following table:

Summary of magnetic work executed between July 1, 1900, and June 30, 1901.

State or Territory.	Number of localities.	Number of stations.	Oid localities reoccupied.	Declinations observed.	Jnclinations observed.	Intensities observed.
Alaska.	35	57	12	40	47	27
Arkansas	15	15	1	15	15	15
California	1	1	1	1	1	I
Colorado..	9	9	0	9	9	9
District of Columbia .	3	3	2	3	2	2
Hawaiian Islands. . .	10	II	2	9	8	5
Illinois	4	4	1	4	4	4
Indiana.	16	16	5	16	16	16
Iowa. .	37	38	4	38	38	38
Kansas	8	8	2	8	8	8
Kentucky	2	2	1	2	2	2
Louisiana	3	3	1	3	2	3
Maryland .	7	15	6	15	13	13
Michigan .	3	4	2	4	3	3
Minnesota	16	16	4	16	16	16
Mississippi	11	11	3	11	11	11
Missouri	9	9	1	9	9	9
Nebraska	4 I	42	2	42	41	41
North Carolina	23	23	\bigcirc	23	23	23
Ohio...	10	11	1	1 I	10	10
Oklahoura	4	4	-	4	4	4
Oregon........	1	1	1	1	1	
Philippine Islands	13	13	\bigcirc	13	o	\bigcirc
Porto Rico	16	16	2	16.	\bigcirc	\bigcirc
Tennessee	1	1	1	1	1	1
Texas..	22	22	3	22	22	22
South Dakota	5	5	1	5	5	5
Virginia . .	10	10	3	10	10	10
Washington.	4	5	1	5	5	4
Wisconsin .	3	3	2	3	3	3
British Columbia	3	3	0	3	2	\bigcirc
Total	345	38I	65	362	331	306

V. OFFICE OF THE DISBURSING AGENT.

Scotit Nesbit, Disbursing Agent.

Personnel.

Name.	Occupation.
N. G. Henry.	Confidential clerk and cashier.
Ida M. Peck	Typewriter and clerk.
Jennie H. Fitch	Clerk.

The disbursement of the funds of the Coast and Geodetic Survey is made not only by payments directly from the Disbursing Agent, but also largely through the medium of its Assistants and other officers, when acting as chiefs of parties. These officers, on
approval of the Superintendent, receive advances of public funds from the Disbursing Agent in lump sums, under authority of an Executive order dated March 26, 1886, as follows:

Executive Mansion, Washington, D. C., March 26, 5886.
Under authority of section 3648 of the Revised Statutes of the United States, permission is hereby given that needful advances of money be made to officers of the Navy detailed to duty as chiefs of parties in the service of the United States Coast and Geodetic Survey, and to all Assistants, SubAssistants, and Acting Assistants, or officers of the Coast and Geodetic Survey acting as chiefs of parties and engaged under instructions from the Superintendent of such Survey upon any work or operations of said Survey.

No compensation shall be allowed for the disbursement of any moneys hereby authorized to be advanced, and the officers or persons authorized to receive and disburse moneys so advanced shall be subject to all the terms, provisions, and conditions of law as to the custody, disbursement, and rendering of accounts of public money of the United States.

But no advances of money shall be made to a civilian chief of any party in the service of said United States Coast and Geodetic Survey unless a bond of such civilian officer shall be given in the penai sum of $\$ 2000$ with two sureties who shall have qualified in that sum, and which bond shall contain the usual condition of the bond required by law from disbursing agents or clerks, and shall be approved by the Solicitor of the Treasury, and be filed in his office, and shall from time to time be renewed, strengthened, or increased, as the Secretary of the Treasury may direct.

Grover Cleveland.
In conformity to this order there are now 57 officers of this Survey bonded in the sum of $\$ 2000$, or more, each. When acting as chiefs of parties these officers receive, from time to time, such advances of public funds from the Disbursing Agent as are required to meet the necessary current expenses of the work in hand.

A ledger account is kept in the office of the Disbursing Agent with each chief of party receiving an advance, each one being charged with all advances made to him, and on the other hand receiving credit for all proper expenditures made by him when presented on regularly supported vouchers, and after such accounts have been audited in the office of the Disbursing Agent and found to be correct. All of these accounts, with their supporting vouchers, are then sent to the First Auditor of the Treasury for examination and audit by him.

This system has met the needs of this service and results, in the main, in economy and good order in its expenditures.

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 1901.
[Prepared pursuant to the act approved March 3, 1853.]
SALARIES-PAY OF FIELD OFFICERS, 1901.

To whom paid.	Time employed.	Amount.
SUPERINTENDENT.		
Henry S. Pritchett.	Five months.	\$2078.80
Otto H. Tittmann	Seven months	292 I .20
ASSISTANTS.		
Chas. A. Schott.	Tent months and twenty-two days	3571.40
Aug. F. Rodgers	One year	4000.00
Otto H. Tittmann	Five months.	1330.45
Andrew Braid	One vear	3107.08
A. T. Mosman do	3 0ro. 00
Herbert G. Ogden do	3000.00
Will Ward Duffield	. do	3000.00
John F. Hayford	do	3000.00
W. D. Alexander.	Five months.	1241.70
Erasmus D. Preston	One year	2060.40
Cephas H. Sinclair. do .	2500.00
William Eimbeck	. .do	2486.42
Frank D. Granger	. .do	2500.00
L. A. Bauer.do	2500.00
Herman S. Davis	Thirty days.	195.65
Frank Walley Perkins	One year.	2 294. 59
J. J. Gilbert do .	$2 \text { 200.00 }$
Henry L. Marindin do	2200.00
John F. Pratt. do	2 200.00
Edmund F. Dickins do	2 200.00
Dallas B. Wainwright. do	2 200.00
Isaac Winston.......	. . do	2086.41
William C. Hodgkins	. . do	2 200.00
Philip A. Welker . . .	do	2107.59
James B. Baylor	.do	2000.00
John Nelsondo	2000.00
John A. Flemer.	Five months (furlough)	
Fremont Morse	One year	2000.00
Stehman Forney	. . . do	2000.00
Gershom Bradford.	. . . do	2. 000.00
Oscar W. Ferguson do	2000.00
John E. McGrath. .	. .do	1630.42
Edwin Smith	.do	1630.42
Walter B. Fairfield	. do	I 800.co
W. Irving Vinal	. do	I 800.00
George R. Putnam.	. do	1775.50
Fred A. Young .	. do	1600.00
Ferdinand Westdahl.	. .do	I 600.00
Homer P. Ritter do	I 600.00
John B. Boutelle	.do	1 600000
E. B. Latham.	. do	1400.00
Robert L. Faris	. do	1400.00
Charles C. Yates.	. . do	1400.00
Geo. L. Flower.	. . do	I 200.00
Owen B. French	do	1200.00
William Bowie	. do	I 200.00
Harry F. Flynn	do	1200.00
Frank W. Edmonds.	.do	I 200.00
Frank M. Little . .	. do	1200.00

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal

 year ended June 30, r901-Continued.SALARIES-PAY OF FIELD OFFICERS, igor-Continued.

To whom paid.	Time employed.	Amount.
assistants-continued.		
Hugh C. Denson.	Seven months.	\$687. 23
R. B. Derickson.	.do	687.23
AIDS.		
Hugh C. Denson.	Five months.	374. 20
R. B. Dericksondo	374.20
Edgar R. Frisby	Six months and six days.	460.10
H. W. Rhodes .	One year	900.00
Benj. E. Tilton	. . . do .	900.00
F.F. Weld	do	900.00
Gurley S. Phelps	Three months and ten days.	197.60
Hugh C. Mitchell.	One year	816.90
Clarence W. Noble	Thirteen days.	25.41
Frank H. Brundage	One year . . .	805.50
John A. Fleming do	816. 90
William H. Burger do	720.00
B. A. Baird	. do	720.00
Walter C. Dibrell	. . .do	720.00
Ora Miner Leland	do	675.05
Thos. E. Vaughn	Thirty days.	58.80
John S. Coombs do . . .	59. 74
M. B. Thornton.	.do	59. 74
Thos. Nelson Page, jr	.do	60.00
James A. French . . .	One month and five days	70.00
L. IL. Jones . . .	Thirty days.	56.00
Richard W. Walker.	Four months and seventeen days.	272.41
W. A. Naghton . .	Four months and four days...	245.60
William E. Parker	Four months and eleven days.	264.00
E. Mercer French	Eighteen days	36.00
Ossian E. Carr.	Three months and seventeen days.	213.01
Geo. E. Selby.	Twenty-five days.	
John Kenneth Mills	Sixteen days...	31.65
Expenditures		112874.75
Appropriation.		116460.00
Expenditures		112874.75
Unexpended balan		3585.25

SALARIES-PAY OF OFFICE FORCE, Igoi.

Scott Nesbit	One year	\$2 200.00
CHIEF OF DIVISION OF LIBRARY AND ARCHIVES.		
Edw. L. Burchard.	One year	I 800.00
CLERKS.		
	One year	$\text { I } 647.44$
Nicholas G. Henry.do	1650.00

Statcment of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, roor-Continued.
SALARIES—PAY OF OFFICE FORCE, I90I-Continued.

To whom paid.	Time employed.	Amount.
CLERKS-continued.		
William C. Maupin	One year	\$1 397.29
Adelbert B. Simons	. . . do	I 400.00
J. Henry Roeth.	. . . do	1388.05
Herbert M. Fitch	. . . do	I 393.48
John H. Smoot.	. . do	1 206. 52
Eugene B. Wills.	. do	1197.21
Ida M. Peck.do	I 195.34
James M. Griffin.	. do	I 200.00
Geo. A. Fairfield.	. . .do	I 200.00
Harlan C. Allen	. . .do	1200.00
Jennie H. Fitch	. . . do	11000.00
Alice G. Reville	. . . do	1000.00
Joseph B. Quinlan	. do	998.06
CHART CORRECTORS.		
Henry R. Garland	One year	1200.00
Lily A. Mapes....	. . . do . .	1200.00
Mary L. Handlan.	.do	619.05
Virginia F゙. Campbell	. do	720.00
Writers.		
Kate Lawn.	One year	898.60
Albert F. Zust do . .	900.00
J. H. Millsaps	do	900. 00
Archie Upperman	. do	800.00
Calvin W. Jones	. . do	720.00
Eugene Meads	. . . do	720.00
El Bie K. Foltz	\ldots do	720.00
William H. Davis.	Two months and nineteen days.	138.81
Fannie Cox.	Thirty days.	58.70
E. C. Mewshaw. do	58. 70
Geo. H. Draper .	One month and twenty-two days	100. 00
Arthur S. Barnes	Three months and three days...	192. 50
Susie C. Mahany	Twenty days.	39. 56
Mary A. Grant .	One year...	600.00
BUOY COLORIST.		
A. B. Simons, jr .	One year	669. 12
DRAFTSMEN.		
Edwin H. Fowler	One year	2400.00
Henry Lindenkohl do	2 196. 5^{8}
Adolph Lindenkohl. do	2000.00
William C. Willenbucher do	1998.45
Ernest J. Sommer do	1800.00
Frank C. Donn do	I 800.00
David M. Hildreth do	I 800.00
Charles H. Deetz do	I 600.00
Edmund P. Ellis	. . do	1 600.00
John T, Watkins. do	1400.00
Harlow Bacon... do	I 400.00
James P. Keleher do	1 199. 53

SALARIES-PAY OF OFFICE FORCE, 1901 -Continued.

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, r甲or-Continued.

SALARIES-PAY OF OFFICE FORCE, Igoi-Continued.

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, rgor-Continued.

SALARIES-PAY OF OFFICE FORCE, Igol-Continued.

To whom paid.	Time employed.	Amount.
LABORERS.		
Horace Dyer	One year	\$635.80
Frank Thomas do .	628.72
Harrison Murray	. .do	630.00
Hans Bowdwin..	.do	630.00
John H. Mason.	.do	596. 80
Samuel B. Wallacedo	550.00
Ransom Smart.	Eleven months and twenty days	533.59
Charles H. Strothers.	Eleven months and eight days..	450.23
Virginia McGliney	I year....	365.00
John W. Brown . .	6 months and 27 days.	209. 28
Expenditures.		140175.49
Appropriation		141640.00
Expenditures.		140175.49
Unexpended bala		I 464.51

RECAPITLIATION

Pay of field officers	\$112874. 75
Pay of office force	140175.49
Expenditures	253 O50. 24
Total sum appropriated for salaries.	258100.00
Total sum expended for salaries.	253 O50. 24
Unexpended balance.	5049.76

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 190I-Continued.

PARTY EXPENSES, 1901.
TIDES ETC.

To whom paid.	On what account.	Amount.
Geo. W. Clarvoe.	Philadelphia tidal.	\$10. 49
E. F. Dickins..	Seattle tidal	68.00
Fred A. Kummell	Washington tidal	720.00 -
F. M. Little.	Philadelphia and Fernandina tidal	229.97
H. E. Olsen.	Philadelphia tidal.	195.61
J. F. Pratt .	Seattle tidal	400.00
August F. Rodgers	San Francisco tidal	1 064.09
L. P. Shidy...	Washington tidal ..	58.95
J. G. Spaulding	Fort Hamilton tidal.	1 102. 23
B. W. Weeks . .	Fernandina tidal.	616. 10
Amount disbursed .		4465.44
		. 35
Expenditures		4465.79
Appropriation		5000.00
		4465.79
Unexpended balance		534. 2 I

OFFSHORE WORK, ETC.

To whom paid.	On what account.	Amount.
R. D. Chase.	Services	\$899. 65
E. F. Dickins	Coast pilot.	62.00
H. L. Ford.	Services and travel.	1506.05
H. C. Graves. do	1907.65
Talbot Pulizzi	Services	1080.00
John Ross do	2100.00
Ferd. Westdahl.	Coast pilot.	104. 55
E. H. Wyvill.	Services...	1500.00
Expenditures		9159.90
Appropriation		10 100.00
Expenditures		9159.90
Unexpended balance		940. 10

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, Igor-Continued.

PARTY EXPENSES, 1goi-Continued.
STATE SURVEYS, ETC.

To whom paid.	On what account.	Amount.
Adams Express Co	Transportation.	\$25.42
A L. Baldwin	Base measurements	7052.04
L. A. Bauer.	Magnetics	13082.86
J. B. Baylor	\ldots...do	202.28
Blue Line Transfer Co	Transportation.	157. 16
Wn. H. Burger.	Precise leveling	2578.76
Chasselon ${ }^{\text {a Paris }}$	Magnetic instruments	647.68
W. C. Dibrell .	Magnetics. .	787.90
Harry M. W. Edmonds	Traveling expenses.	116.30
O. W. Ferguson. . .	Precise leveling....	1935.74
J. A. Fleming. .	Magnetics and building observatory.	7560.36
O. B. French	Traveling expenses.	77. 15
Geo. W. Knox Express Co	Transportation.	-91.87
F. D. Granger .	Triangulation.	4814.74
John F. Hayford	Traveling expenses.	150.68
L. G. Jennings. .	Storage...	8. 50
F. M. Little .	Magnetics	337.90
A. T. Mosman	Triangulation.	5653.97
C. H. Myers .	Rent.	10.00
J. A. Nicholson \& Son	Tents	136. 24
S. K. Paul. .	Services	38.00
Pennsylvania Railroad Co	Transportation	1.49
Henry S. Pritchett.	Traveling expenses.	100. 09
Revenue-Cutter Service	Flags	6.95
Aug. F. Rodgers	Repairing instruments.	4. 50
C. H. Sinclair	Longitudes	295.69
Ludwig Tesdorpf	Magnetic instruments	528.67
B. A. Thompson .	Storage	3.00
Benj. E. Tilton .	Precise leveling.	1582.48
Otto Toepfer	Magnetic instruments	1521.64
United States Express Co	Transportation.	21.81
Wm. Weinrich, jr.....do	1. 75
Isaac Winston..	Storage	36.00
Amount disbursed . Railroad accounts referred	for settlement	$\begin{array}{r} 49569.62 \\ 350.3 I \end{array}$
Expenditures..		49919.93
Appropriation Expenditures.		$\begin{aligned} & 50000.00 \\ & 49919.93 \end{aligned}$
Unexpended balanc		80.07

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, rgor-Continued.

PARTY EXPENSES, 1901-Continued.
nayy travel. Etc.

To whom paid.	On what account.	Armount.
J B Boutelle		
J. B. Boutelle ..	Traveling expenses.	\$6. 85
F. W. Edmonds.	Special survey ...	346. 16
W. B. Fairfield	$\cdots \cdots$ do	960.85
J. F. Hayford	Traveling expenses	8. 25
G. S. Lewis.do	37. 20
W. I. Vinal .	Special surveys	93 I .12
P. A. Walker	Traveling expenses.	30. 30
Charles C. Yates	Special survey	449. 75
Amount disbursed Railroad accounts referred to Auditor for settlement		2770.48
		81. 94
Account settled by Auditor for work done at Port Royal naval station.........		35.31
Expenditures		2887.73
Appropriation Expenditures.		3400.00
		2887.73
Unexpended balance.		512.27

objects not named.

To whom paia.	On what account.	Amount.
Adams Express Co	Transportation.	\$1. 25
Wm. W. Cloud...	Notary fees . . .	7.50
R. L. Faris. .	Traveling expenses.	63.54
E. G. Fischerdo	6.06
E. H. Fowler	Commutation of subsistance	77.50
N. G. Herry .	Notary fee.	. 50
Geo. W. Knox Express Co	Transportation. .	4.69
F. M. Little.	Establishing compass ranges.	84.00
John Ross	Traveling expenses	36. 45
D. B. Wainwright	. . . do	15.41
Isaac Winston.	Commutation and traveling expenses.	217.80
Chas. C. Yates	Traveling expenses.	138.84
Expenditures		653.54
Appropriation Expenditures		$\begin{array}{r} 4000.00 \\ 653.54 \end{array}$
Unexpended balance		3346.46

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June so; rgor-Continued.

PARTY EXPENSES, 1901-Continued.
RECAPITULATION:
[Showing expenditures in gross by sub-items.]

CLASSIFICATION OF EXPENDITURES FOR PARTY FXPENSES, IgoI.

On what account.	Amount.
Tidal operations	\$4 465.79
Coast pilot.	9159.90
Triangulation.	10 866. 12
Geographical positions	372.84
Magnetics (including observatories)	24867.84
Base measurements	7668.65
Precise leveling.	6144.48
Special surveys Traveling expense	2723.19 818.08
Total.	67086.89

REPAIRS OF VESSELS, 1901.

To whom paid.	On what account.	Amount.
C. V. Archambault.	Steamer Gedney	\$50.00
Atlantic Iron Works Co............	Steamer Blake	372.88
Baltimore Marine Railway Machine and Boiler Works.	Steamer Endeavor	2005.35
C. F. Bennett	Launch Rudy.	60.01
Ernest Betzdo	39.00
J. B. Boutelle	Schooner Eagre and Launch Inspector	860.75
E. F. Dickins.	Steamer Gedney	554. 75
G. L. Flower	Schooner Matchiess	88. 26
Forsberg \& Murray	Launch Rudy	53.09
Gas Engine and Power Co. and Chas. L. Seabury Co., Consolidated.	Repairs of launch	388.45

S. Doc. $50-3$

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 1901-Continued.

REPAIRS OF VESSELS, Igoi-Continued.

To whom paid.	On what account.	Amount.
J. J. Gilbert	Steamer Pathfinder.	\$3 890.00
Wm. Gokey \& Son	Schooners Matchless and Eagre	7830.02
W. C. Hodgkins	Steamer Blake	34. 77
John M. Rodgers Boat, Gauge, and Drill Works.	Steamer McArthur	300. 92
S. R. Karr \& Co	Steamer Blake .	180.00
H. G. Ogden	Traveling expenses and schooner Transit.	126.51
J. F. Pratt . .	Steamer Patterson.	1247.20
Roberts Safety Water Tube Boiler Co.	Schooner Eagre..	572. 15
J. H. Roeth.	Traveling expenses.	2.30 16.55
John Ross.	Schooner Eagre. .	16. 55
Spedden Shipbuilding Co	Steamer Gedney .	2. 00
W. I. Vinal.	Steamer Bache and schooner Matchless. .	72. 27
P. A. Welker	Steamers Blake and Bache	2197.64
Ferdinand Westdahl.	Steamer McArthur	2547.61
Wm. E. Woodall \& Co	Steamer Blake and schooners Matchless and Eagre.	1737.54
Fred. A. Young	Steamer Endeavor.	639.27
Amount disbursed ..		25 1579.29 15 6
Expenditures		4 I 434.41
AppropriationExpenditures		54600.00
		41434.41
Unexpended balance		13165.59

ClASSIFICATION OF EXPENDITURES FOR REPAIRS OF VESSELS.

Name of vessel.	Amount.
Steamer Bache.	\$92. 36
Steamer Blake	3 372. 72
Schooner Eagre.	608 I .87
Steamer Endeavor	2644.62
Steamer Gedney	$16 \quad 261.87$
Schooner Matchless.	4 031. 92
Steamer McArthur	2848.53
Steamer Pathfinder	3890.00
Steamer Patterson	1247.20
Schooner Transit	30.00
Steam and naphtha launches.	834.51
Traveling expenses of inspection officers	98.81
Total	41434.41

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 1901-Continued.

PUBLISHING OBSERVATIONS, IgoI.

To whom paid.	On what account.	Amount.
Arthur F. Belitz	Services	\$1000.00
Expenditures.		1 000.00
Appropriation		1000.00
Expenditures		1000.00

GENERAL EXPENSES, 1901.

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 1gor-Continued.

GENERAL EXPENSES, Igor-Continued.

ro whom paid.	On what account.	Amount.
Thomas A. Dobyns	Contingencies .	\$0.60
Dodd, Meade \& Co	Books .	5.95
P. Dougherty . . .	Office horse	150.00
Dulin \& Martin Co	Contingencies	1. 20
M. Du Perow	Instrument shop, etc	18. 65
C. R. Edmonston	Contingencies ...	15.80
Eimer \& Amend.	Instrument shopand photograph supplies.	12. 66
Elliott Electric Blue Print Co.	Drawing division and photograph supplies	39. 17
E. Morrison Paper Co	Chart paper, etc.	I 260. 29
Geo. T. Ennis \& Co	Instrument shop	: 50.78
John B. Espey.	Instrument and carpenter shops	316.85
Evening Star Newspaper Co.	Advertising. .	3.30
Felt \& Tarrant Manufacturing	Stationery, etc.	50. 9.5
Geo. W. Knox Express Co.	Transportation. .	59.08
Gerstenderfer Bros.	Carpenter shop	13.85
Henry F. Getz	Repairs .	102. 25
Chas. U. Gibson	\cdots. ${ }^{\text {do }}$	13.00
Z. D. Gillman.	Photograph supplies, etc.	179.43
Jas. D. Goldsmith	Contingencies	3.50
Andrew B. Graham.	Photolithographing	2249.46
L. M. Graham	Repairs, etc	17.00
Henry J. Green.	Instruments	62.00
Hanlan \& Goodman	Carpenter shop	1. 85
Harris \& Shafer Co.	Instruments ...	134.40
Louis Hartig	Carpenter shop, etc	3.78
Harvard University	Suhscriptions.... . .	2. 00
G. Hasler.	Instruments	109. 17
Jeremiah Hawkins.	Extra labor.	600.00
Hellman Oil Co	Contingencies	6.00
Mrs. A. Hellmuth	Washing	160.80
G. N. Henderson	Extra labor	600. 00
J. W. Hurley.	Repairs	978.00
J. Hillengassdo .	200. 00
H. E. Hooper	Book.	8. 75
N. Humphrey.	Contingencies	1. 30
Elwood Ivins.	Instrument shop	11. 29
James H. Johnson.	Repairs, etc.	226.00
Jones \& Laughlin, Limited	Instrument shop	. 93
Jordan \& Christie	Contingencies .	7.00
M. E. Kahler	Instruments and instrument shop	${ }^{1} 55.50$
S. Kann, Sons \& Co.	Contingencies	42.68
C. Ashton Kay .	Instruments. .	38.00
Thos. Keely . . .	Contingencies	6.00
Keuffel \& Esser Co	Drawing division, photograph supplies,etc	681.14
Richard L. Lamb.	Instrument shop	27.00
James B. Lambie	Instrument and carpenter shops, etc. .	90. 76
Lansburgh \& Bro.	Contingencies	138.48
Nanny D. Lee do 75
Lemcke \& Buechner	Books and subscriptions	115.61
Arthur Leslie.	Repairs, etc.	30. 00
Library Bureau.	Stationery, etc.	177.94
Melville Lindsay	Photograph supplies.	17.39
T. L. Lindsay.	Contingencies	. 50
Mrs. M. E. Little	Office furniture, etc	20. 25
W. H. Lowdermilk \& Co	Books and subscriptions	97. 70
Lufton Rule Co.	Instrument shop.....	15.00
Lutz \& Co	Office horse and wagon.	51. 60
Mackall Bros.	Electric supplies, etc....................	201. 41

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 190r-Continued.

GENERAL EXPENSES, IgOI-Continued.

To whom paid.	On what account.	Amount.
E. W. Mackintosh	Stationery, etc.	\$13.05
W. E. Maloney	Repairs	110.00
Matthiessen \& Hegeler Zinc Co .	Zinc	163.79
F. P. May \& Co.	Carpenter shop, etc	11.00
McDermott Carriage Co.	Office wagon	3.00
James H. McGill	Instrument shop and drayage.	18.70
W. H. Mehler	Repairs	43. 50
Geo. Meier \& Co	Printing supplies	1. 50
F. H. Melville	Stationery......	1.41
A. A. Meredith	Extra labor	154.84
Chas. E. Miller \& Bro	Contingencies	27.35
Francis Miller.	Carpenter shop, etc	210. 32
Moore Bros.	Contingeacies	50
F. J. Monrote.	Instruments and repairs	19.75
W. B. Moses \& Sons	Office furniture, etc	721.18
C. A. Muddiman \& Co	Repairs	$2 . \infty$
Multiscope and Film Co	Photograph supplies	39.35
P. Munn \& Co.	Books and subscriptions	9. 00
C. A. Murdock \& Co	Stationery ..	5. 40
N. Murray	Subscriptions	7.50
Geo. F. Muth \& Co	Drawing and printing supplies and carpenter shop.	633.36
J. M. Myers.	Stationery .	90. 00
National Electric Supply Co	Stationery, etc	10. 55
National Mosaic Co.	Repairs	144.00
Guy M. Neely.	Contingencies	. 30
T. S. \& J. D. Negus.	Instruments	9. 00
E. S. Newman	Stationery	2.50
New York Steel and Copper Plate Co.	Copper plates.	I 282.95
F. E. Okie Co	Printing supplies	12.00
Ottawa Literary and Scientific Society.	Books.	1. 68
V. L. Ourdan	Engraving machines, etc.	6008.40
John C. Parker	Books and stationery	43. 20
Parsons Paper Co	Contingencies	5.40
J. A. Pierpoint		36. 92
Postal Telegraph Cable Co	Telegrams....	14.79 36.54
Postmaster, Washington, D. C	Box rent.	16.00
J. D. Potter	Book.	5. 46
Professional Photograph Publishing Co .	Subscription	1.00
E. J. Puilman	Photograph supplies	1061.57
G. R. Putnam	Maps.	73.38
Queen \& Co., Incorporated	Photograph and engraving supplies	61. 50
John C. Rau	Repairs, etc.	483.41
Reading Paper Mills	Chart paper.	2657.56
Josephine Reed.	Extra labor.	180.00
Parker G. Reed Fred Rees	Contingencies	3.75
Fred Rees. ${ }^{\text {Hugh Reilly }}$	Carpenter shop.	c. 8. 98
Hugh Reilly ... F. J. Reutlinger	Carpenter shop..	8. 98
F. J. Reutlinger........	Instrument shop	10. 80
Herbert L. Rice .	Book.	3. 50
E. S. Ritchie \& Sons	Instruments	180.00
Rochester Optical and Camera Co .	Photograph supplies.	
Aug. F. Rogers.	Suboffice expenses, etc	246.44
Dr. John Rome...........	Office horse.	10. 0

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 190I-Continued.
GENERAL EXPENSES, 190I-Continued.

To whom paid.	On what account.	Amount.
Rudolph, West \& Co	Carpenter shop, etc.	\$114. 18
Julius F. Sachse. .	Maps.	3. 00
E. G. Schafer \& Co	Repairs, etc.	33.81
Schmedtie Bros	Instruments	3. 00
Fred A. Schmidt	Drawing and engraving supplies, stationery, etc.	1 838.52
John Sellers \& Sons	Instrument shop.........	30.00
Seth Thomas Clock Co	Instruments .	25. 20
Chas. W. Sever \& Co.	Stationery.	2. 25
B. F. Shaw	Office horse.	268. 00
Geo. A. Shehan	Carpenter shop	465.22
Shoemaker \& Busch	Contingencies .	12. 98
M. Sickles \& Sonsdo .	2. 95
M. Silverberg \& Co	Carpenter shop	27. 55
Francis E. Smith	Repairs	18. 20
W. A. Smith	Books..	1. 39
Smithsonian Institution	Transportation exchange	357.85
Soule Photo Co	Photographs	3.33
Standard Oil Co.	Contingencies	15.38
Gustav E. Stechert	Books, charts, and subscription	374.93
Sutherland \& Carr	Instrument shop, etc.	3. 75
Guiseppe Tagliabue	Instruments	70.30
The Capital Traction Co	Office travel	51.00
The Chesapeake and Potomac Telephone Co.	Exchange rental and calls.	77.23
The Evening Star Newspaper Co...	Advertising.	3.90
The Fuchs \& Jang Manufacturing Co.	Copper .	10. 20
The Grove Lime and Coal Co	Contingencies	5.80
The J. C. Ergood Codo	23.09
The Julius Lansburgh Furniture and Carpet Co.	Office furniture .	15.66
The L.A. Starrett Co.	Instruments	27.50
The Macmillan Co	Subscriptions	10.00
The McDermott Carriage Co	Office wagon	7.00
The Monumental Label Co.	Instrument shop	2.50
The Newberry Library.	Books	75.00
The Red " ${ }^{\text {c ', Oil Manufacturing Co. }}$	Contingencies	25. 70
The Scovell \& Adams Co. of New York.	Photograph supplies	276.00
The Shaw-Walker Co	Contingencies	6.91
The Strowger Automatic Telephone Exchange.	Rent of telephones.	162.00
The University of Chicago Press.	Subscriptions	4.00
The United States Marine-Hospital Service.	Printing supplies	43. 37
The Waterproof Paint Co	Contingencies	2. 50
The Woolaeger Manufacturing Co	. . . do..........	48. 75
James S. Topham.	Instruments, etc	26. 50
R. J. Trostler	Extra labor.	216.67
United States Electric Lighting Co.	Electricity : . .	221. 54
United States Express Co...	Transportation.	21.40
United States Naval Institute	Subscriptions.	3.50
United States Typewriter and Supply Co.	Typewriter .	92. 25
Chas. C. Van Horn	Contingencies	18.30
W. H. Veerhoff.do. .	15.00
Wm. Waple .	Extra labor	140. 32

Statcment of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June zo, rgor-Continued.

GENERAL EXPENSES, IgOI-Continued.

Classification or fxipmindrures for General expenses, 190 .

On what account.	Amount.
Instruments and repairs of same	\$3 487. 98
Instrument shop and carpenter shop	2044.09
Drawing division	39. 19
Books, maps, charts, and subscriptions.	$\begin{array}{r}832.30 \\ 750 \\ \hline\end{array}$
Copper plates and zinc	1 3
Engraving, printing, photographing, and elect	$4 \mathrm{gl9.89}$
Photolithographing and printing from stone and	2238.96
Stationery.	I 726.46
Office horse and wagon.	515.49
Transportation of instruments and supplies	490.83
Fuel	1047.75
Gas.	774.40
Electricity	221. 54
Telegrams.	357. 01
Ice	267.45
Washing	165.29
Telephones.	306. 18
Miscellaneous expenses and contingencies of	1424.39
Office furniture	576.57
Repairs	2661.36
Extra labor	1891.83
Traveling expenses (office)	73.10
Automatic engraving machines	6000.00
Total.	37812.74

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, roor-Continued.

SALARIES—OFFICE OF STANDARD WEIGHTS AND MEASURES, 1901.

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal

 year ended June 30, r90I-Continued.CONTINGENT EXPENSES, OFFICE OF STANDARD WEIGHTS AND MEASURES, IgOI.
MATERIAIS AND APPARATUS AND INCIDENTAL EXPENSES.

To whom paid.	On what	Amount.
Arthur H. Thomas Co.	Contingencies	\$6.00
Brown \& Sharps Manufacturing Co	Apparatus.	17.45
M. Du Perow	Contingencies	27. 27
Louis A. Fischer.	Traveling expenses.	19. 75
George W. Knox Express Co	Transportation.	14.80
Z. D. Gilman	Contingencies	4.40
International Bureat of Weights and Measures.	Apparatus	77.69
James B. Lambie	Contingencies	. 40
Library Bureau. do . .	2.25
A. C. McClurg \& Co	. .do	1. 85
Chas. E. Miller \& Bro	. do	1.25
Francis Miller.	. do	2.70
W. B. Moses \& Sons.	. do	31.00
Postal Telegraph Cable Co	Telegram.	. 20
R. P. Clarke Co.	Contingencies	7.10
Wm. Stocket \& Co	. . . do 90
S. W. Stratton . . .	Traveling expenses	219.50
United States Express Co	Transportation.....	J. 71
The Chespeake and Potomac Telephone Co.	Telephone... .	. 50
Expenditures.		436. 72
Appropriation Expenditures		$\begin{array}{r} 475.00 \\ 436.72 \end{array}$
Unexpended balance		1038.28

PARTY EXPENSES.

ATIANTIC COAST, FTC.

To whom paid.	On what account.	Amount.
Adams Express Co	Transportation	\$72.85
Pedro Alvarez....	Services	60.00
Baltimore and Ohio Railroad Co.	Transportation.	13. 02
Baltimore Marine, Railway, Machine and Boiler Works.	Repairs of launches	5 10. 70
D. Bernhardt.	Stores for Spy and Quick	12. 75
W. H. H. Bixler \& Co	Outfit for launches	3.50
Blickensderfer Manufacturing Co.	Typewriter	45. 10
Blue Line Transfer Co	Transportation.	3. 96
Wmi. H. Bohning.	Oil for vessels	I. 50
J. B. Boutelle ...	Combined operations, schooner Eagre	7172.24
Wm. Bowie	Traveling expenses.	2.60
Robert Boyd	Medicines	4.00
Wm. F. Butler	Building whaleboat	293.00
P. B. Castles	Services	463. 10
John Clay.	Storage.	22.71
Capt. J. T. Crabbe, quartermaster, U.S. A.	Forage .	90. 93

Statement of expenditures of the United States Coast and Geodeti, Survey for the fiscal year ended June 30, 190I-Continued.

PARTY EXPENSES-Continued
atlantic coast, etc.-Continued.

To whom paid.	On what account.	Amount.
L. P. Delcroix	Freight on launch.	\$15.00
John W. Dickey	Storage	15.00
M. P. Dimpfel	do	30.00
John W. Donn	Topography	4819.24
C. Durm \& Son	Storage	205.65
Lewis Ehrman	Water for launches.	5.25
Harry Ely	Traveling expenses	7.85
W. B. Fairfield	Triangulation.	3843.19
R. L. Faris	Traveling expenses.	24.32
Geo. L. Flower	Combined operations, schooner Matchless.	4124.34
H. F. Flynn	Traveling expenses	56.65
Forbes Co	Outfit for Eagre and Matchless	211.80
Stehman Forney	Combined operations.	5994.31
O. B. French .	Hydrography	1703.99
Geo. F. Blake Manufacturing Co	Repairing launch	2. 10
Geo. W. Knox Express Co	Transportation.	3.34
W. F. Glover	Traveling expense	10.90
Graham's Wharehouses	Storage..	9.00
C. L. Green.	Traveling expenses	18. 55
Chas. E. Hansen	Services	500. 75
W. C. Hodgkins.	Hydrography ...	36. 59
John Hubert	Oil feeder for launch	2. 06
James Clark Co	Repairing launch	18. 37
James Reilly Repair and Supply Co.	Outfit for steamer Hydrographer.... . . . -	1 070. 75
John L. Martin Co.	Storage. .	7.00
S. M. Johnson \& Son.	Coal for Hydrographer	60.03
John M. Rodgers Boat, Gauge and Drill Works.	Repairing launches	1564.86
James J. Lacy \& Co.	Repairing launch .	7.75
E. B. Latham.	Topography .	103.02
Lebanon Chain Works	Outfit, steamer Hydrographer	233. 38
John E. McGrath	Triangulation and topography	2359.59
James A. McGregor.	Traveling expenses..........	2. 75
Mechanical Fabric Co	Outfit, steamer Hydrographer	67.45
T. S. and J. D. Negus do	393.50
John Nelson.	Triangulation and topography	7027.42
New York and Porto Rico Steam Ship Co.	Transportation.	234.34
H. G. Ogden.	Traveling expenses	323.07
Chas. Culliber \& Bro.	Crating launch.	10.00
Pennsylvania Railroad Co.	Transportation .	32.00
James F. Pfau.	Services	182.25
E. D. Preston.	Triangulation.	712.56
Revenue Cutter Service	Flags and bunting	337.64
Rogers \& Curran	Coal for Hydrographer	54.90
John Ross	Hydrography and topography	457. 79
C. S. Rossiter \& Co	Building dinghy	I 10.00
J. E. Shepherd .	Traveling expenses.	45. 44
Edwin Smith	Triangulation.	260.35
H. S. Smith	Traveling expenses.	10. 27
V. Sournin	Services . . .	368. 51
Spedden Shipbuilding Co	Repairing launch	62. 04
Standard Oil Co	Oil for schooner Matchless.	119.23
W. Stebbins \& Sons	Repairs and outfit for launch	8.86
Stevenson \& McGee	Repairing launch	45.00

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 3o, rqor-Continued.

PARTY EXPENSES-Continued.

ATLANTIC COAST, ETC.-Continued.

To whom paid.	On what account.	Amount.
C. A. Thompson	Traveling expenses.	\$3.80
O. H. Tittmann do	37.85
United States Express Co	Transportation	7.82
United States Marine Hospital Service.	Medical stores for Matchless	8. 13
W. I. Vinal .	Combined operations, steamer Bache .	4093.63
D. B. Wainwright	Combined operations.	748. 62
A. L. Webb.	Traveling expenses.	18. 50
F. F. Weld	Topography	2330.90
P. A. Welker	Combined operations, steamer Blake	11831.12
Edwin F. White	Traveling expenses..	1. 62
Win. E. Woodall \& Co	Storage and repairing boats.	254. 61
Fred A. Young	Hydrography, steamer Endeavor.	4458.25
Amount disbursed		70393.71
Railroad accounts referred for settle		104.90
Accounts for medical stores settled b	Auditor	81. 77
Fxpenditures		71310.38
Balance on hand, report for 1900		$64 \quad 785.87$
Appropriation, sundry civil act Marc	3, 1901	70000.00
Repayment from appropriation, pay Survey, 1901.	etc., of officers and men, vessels Coa	645.45
- Total amount available		135431.32
Expenditures as above		71310.38
Present unexpended balance		64120.94

PACIFIC COASTS FITC.

To whom paid.	On what account.	Amount.
Adams Express Co.	Transportation.	\$74.97
Adams Bros	Outift.	3. 00
W. D. Alexander	Combined operations.	59.00
American Steel and Wire Co	Sounding wire for Pathfinder	25. 50
S. Applegate	Services.	500.00
D. Ballauf.	Sounding tubes for Patterson	21. 00
Blue Line Transfer Co	Transportation. .	19.00
Wm. H. Burger	Traveling expenses.	19.00
H. C. Denson	Combined operations	936. 70
E. F. Dickins do .	6310.91
F. W. Edimonds	Traveling expenses.	38. 75
L. H. Emmert	Lumber and hardware.	20. 7.5
R. L. Faris.	Traveling expenses..	108. 50
H. L. Ford.	Hydrography .	444.00
E. H. Francis	Services .	360.00
J. J. Gilbert.	Combined operations, steamer Pathfinder.	20872.42
J. Kilpatrick	Storage .	-34.00
Marine Engine and Machine Co.	Outfit, steamer Pathfinder	39. 50

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, ryor-Continued.

PARTY EXPENSES-Continued.
PACIFIC COAST, ETC.-Continued.

To whom paid.	On what account.	Amount.
H. C. Mitchell	Combined operations.	\$407. 08
Fremont Morse.	Topography and hydrography	7861.25
Ostheimer Bros	Oufit, steamer Pathfinder... .	260.00
Pennsylvania Railroad Co	Transportation.	5. 14
J. F. Pratt	Combined operations, Steamer Patterson.	16321.31
G. R. Putnam.	. ${ }^{\text {c. }}$ do	12368.48
Revenue-Cutter Service	Hydrography	59.60
H. W. Rhodes	Combined operations	375.30
Homer P. Ritter do	18 501. 10
Aug. F. Rodgersdo . .	I 198. 14
United States Express Co	Transportation.	126.52
Ferdinand Westdahl....	Combined operations, Steamer McArthur.	9654.94
C. C. Yates	Traveling expenses..	70.61
Amount disbursed		97096.47
Railroad accounts referred	nent	1295.47
Accounts for medical stor	Auditor	858.20
Expenditures		99250.14
Balance on hand, report for		91685.28
Appropriation, sundry civ	3,1901.	107500.00
Repayment from appropr Survey, igaI	etc., of officers and men, vessels Coast	3399.07
Total amount a vaila		202584.35
Expenditures as above		99250.14
Present unexpended balance. .		103 334.21

SPECIAL SUR VEYS.

To whom paid.	On what account.	Amount.
O. B. French	Traveling expenses.	\$16.40
C. H. Sinclair	Northwest Boundary Survey.	4519.58
Amount disbursed Railroad accounts referred for settlement. Expenditures		4535.98
		224. 15
		4760.13
Appropriation, sundry civil act, Mar. 3, 1901 . \| ${ }^{\text {Expenditures as above . }}$.		13400.00
		4760.13
Unexpended balance.		8639.87

Statement of expenditures of the Unitcd States Coast and Geodetic Survey for the fiscal year ended June 30, 190I-Continued.

PARTY EXPENSES-Continued.
RECAPITUIATION.
[Showing expenditures in gross by sub-items.]

On what account.	Amount.
Atlantic coast, etc.	\$70 393.71
Pacific coast, etc. .	97096.47
Special surveys.	4535.98
Amount disbursed	172026.16
Railroad accounts referred for settlement.	I 624.52
Accounts for medical stores settled by Auditor	1 669.97
Expenditures.	175320.65
Balance on hand, report for 1900.	15647115
Appropriation, sundry civil act, March 3, 1901 .	190900.00
Repayment from appropriation, Pay, etc., of officers and men, vessels, Coast Survey, igor.	4044.52
Total amount available. Expenditures.	$\begin{array}{ll} 351 & 415.67 \\ 175 & 320.65 \end{array}$
Present unexpended balance.	176095.02

CLASSIFICATION OF EXPENDITURES FOR PARTY EXPENSES.

Triangulation	\$47 145.26
Topography .	56 055.18
Hydrography	67 360.08
Astronomic.	4760.13
Total	175320.65

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, rgor-Continued.

PAY, ETC., OF OFFICERS AND MEN, VESSELS, COAST SURVEY, 1901.
PAY OF WATCH OFFICERS.

To whom paid.	Time employed.	Amount.
Charles F. Adae	One year	\$1 380.00
Frank H. Ainsworth	. . . do .	I 500.00
William G. Appleton	. . do	I 620.00
William M. Atkinson	. . do	1420.00
Byron J. Crowley.	Eleven months	I $375.00{ }^{\circ}$
John L. Dunn. do . . .	I 2655.00
Arthur H. Dutton	. . .do	I 540.00
Whitney I. Eisler	One year	r 560.00
Christopher W. Fitzgerald	. . . do	I 550.00
Lawrence M. Furman. .	. . do	1 500.00
Canon L. Green	. . . do	I 615.00
William F. Glover	. . . do	1615.00
Victor R. Lyle	. . .do	1 615.00
Charles Lyman	. . do	I 495.00
Joseph W. McGrath.	Eleven months.	1210.00
William B. Proctor	One year	1 179.67
George F. Thomae.	Two months	245.00
Charles A. Thompson.	One year	1 435.00
Expenditures		25119.67
Appropriation		27 500.00
Expenditures		25119.67
Unexpended balance		2380.33

PAY JF OFFICERS AND MEN.

To whom paid.	On what account.	Amount.
William Bauman, jr	Pay	\$415.16
J. B. Boutelle	Pay rolls, schooner Eagre	II 672.59
Robert Boyd	Pay	35.00
Gershom Bradford, 2d do	23. 23
E. F. Dickins	Pay rolls, steamer Gedney	12124.20
Harry M. W. Edmonds.	Pay	875.00
George L. Flower	Pay rolls, schooner Matchless	8051.29
Owen B. French	Pay rolls, steamer Blake.	1241.64
J. J. Gilbert.	Pay rolls, steamer Pathfinder	21362.76
Robert H. Hawkes	Pay	138. 39
W. C. Hodgkins	Pay rolls, steamer Blake	763.52
J. G. Maupin	Pay	14.52
Fremont Morse	Pay of deck officer	236.67
John Nelson	Pay	50.00
J. F. Pratt .	Pay rolls, steamer Patterson	13428.41
George R. Putnam	Pay rolls, steamer Research	1380.61
Louis C. Ritchie	Pay	795.97
William Sangerdo	693.00
W. Irving Vinal	Pay rolls, schooners Eagre and Matchless and steamer Bache.	14 301. 79
P. A. Welker	Pay rolls, steamers Bache and Blake	20 215.8I

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, rgor-Continued.

PAY, ETC., OF OFFICERS AND MEN, VESSELS, COAST SURVEY, igoi-Continued.
PAY OF OFFICERS AND MEN-Continued.

To whom paid.	On what account.	Amount.
Ferd. Westdahl	Pay rolls, steamer McArthur.	\$14 751. 39
Fred. A. Young Pay rolls, steamer Endeavor Amount disbursed \qquad Account of Matts Solvin, deceased, settled by auditor \square		12587.66
		134558.61
		16. 66
Transferred to appropriation, "Party expenses, Coast and Geodetic Survey," amount expended from that appropriation for pay of officers and men. Transferred to Navy appropriations amount expended by Paymaster M. M. Ramsey, U. S. N., for pay of officers and men.		4044.52
		30652.16
Expenditures		169271.95
Appropriation		182745.00
		169271.95
Unexpended balance		13473.05

RECAPITULATION.

Pay of watch officers	\$25 119.67
Pay of officers and men	169271.95
Total expenditures	194 391.62
Total sum appropriated for pay of officers and men.	210245.00
Total sum expended for pay of officers and men.	194 391. 62
Unexpended balance	15853.38

STEAMER BACHE, COAST SURVEY.

To whom paid.	On what account.	Amount.
L. B. Friendt.	Services and traveling expenses.	\$2 018.90
Chas. C. Fulton \& Co.	Advertising.	3.90
Journal Newspaper Co.	. \therefore. do	5.40
New York Press Co., Limited.	- ...do do	13. 20
Herbert G. Ogden.	Traveling expenses.	68.25
Edw. L. Peacock.	Rebuilding steamer Bache	50.00
The Norfolk Landmark	Advertising.	2.73
The Press Company. do	7.20
The Times Company.	- ... do	1. 95
O. H. Tittmann......	Traveling expenses.	35.80
Townsend \& Downey Shipbuilding and Repair Co.	Rebuilding Bache.	32810.50
Expenditures.		$35 \quad 017.83$
Appropriation Expenditures		$\begin{array}{lll} 60 & 000.00 \\ 35 & 017.83 \end{array}$
Unexpended balance		24982.17

Slatement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, ryor-Continued.

STEAMER FOR COAST SURVEY.

To whompaid.	On what account.	Amount.
James Reilly Repair and Supply Co.	Building steamer Hydrographer.	\$19 500.00
Appropriation		20 000.00
Expenditures.		19500.00
Unexpended balance		500.00

PARTY EXPENSES, 1899. objECTS NOT NAMED.

To whom paid.	On what account.	Amount.
W. C. Hodgkins.	Hydrography, steamer Blake	\$11.58
Balance on hand, report for 1900 \qquad Expended since, as above \qquad Present unexpended balance.		675.52
		II. 58
		663.94

RECAPITULATION.
[Showing expenditures in gross by sub-items.]

Objects not named	\$11.58
Balance on hand, report for 1900	2750.32
Expended since, as above.	II. 58
Present unexpended balance	2738.74

CONTINGENT EXPENSES, OFFICE OF STANDARD WEIGHTS AND MEASURES, i899.
Materials and apparatus and incidental expenses.

To whom paid.	On what account.	Amount.
A. A. Michaelson.	Traveling expenses.	\$336.00
Balance on hand, report for 1900		494.42
Expended since, as above.		336.00
Present unexpended balance		158.42

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, 190I-Continued.

GENERAL EXPENSES, 1899.

To whom paid.	On what account.	Amount.
Western Union Telegraph Co	Telegrams	\$3. 56.
Balance on hand, report for 1900 Expended since, as above. Present unexpended balance.		60. 20
		3. 56
		56.64

PARTY EXPENSES, I900.
state surveys, etc.

NAVY TRAVEL. ETC.

To whom paid.	On what	Amonnt.
Present unexpended balance		143.74

objects not named.

To whom paid.	On wh	Anomint.
L. B. Fr.endt	Plans for steamer	\$150.00
Balance on hand, report for 1900. Expended since, as above Present unexpended balance		675. 52
		150.00
		525.52

S. Doc. $50-4$

Statcment of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended Junie 30, 190r-Continued.

PARTY EXPENSES, I900-Continued. RECAPITULATION.
[Showing expenditures in gross by sub-items.]

On what account.	Amount.
State surveys, etc	\$1. 95
Navy travel, etc	107.25
Objects not named	150.00
Expenditures.	259. 20
Balance on hand, report for 1900.	2935.50
Expended since, as above	259.20
Present unexpended balance.	2676.30

REPAIRS OF VESSELS, 1900.

To whom paid. On what account.	Amount.
Moran Bros. Co Repairs, steamer Patterson	\$4064.00
Amount disbursed Accounts settled by Auditor for repairs to steamer Gedney.	$\begin{aligned} & 4064.00 \\ & 3 \\ & 300.00 \end{aligned}$
Expenditures	7 364.00
Balance on hand, report for 1900 Expended since, as above $\ldots .$.	$\begin{array}{ll} 7 & 420.51 \\ 7 & 364.00 \end{array}$
Present unexpended balance.	56. 51

CONTINGENT EXPENSES, OFFICE OF STANDARD WEIGHTS AND MEASURES, Ig00.
MATERIALS AND APPARATUS AND INCIDENTAL EXPENSES.

To whom paid.	On what account.	Amount.
United States Express Co	Transportation	\$0. 80
Balance on hand, report for 1900. Expended since, as above. Present unexpended balance.		530.82
		. 80
		530. 02

Statement of expenditures of the United States Coast and Geodetic Survey for the fiscal year ended June 30, I90I-Continued.

GENERAL EXPENSES, 1900.

To whom paid.	On what account.	Amount.
S. C. Chandler	Books	\$5.00
Lemcke \& Buechner	Subscription	4. 70
John C. Parker.	Book . .	5.00
G. E. Stechert	Books and subscriptions	12.00
The International Arithmachine Co.	Adding machine	36.00
The Macmillan Co	Book	2. 50
United States Express Co	Transportation.	I. 55
Western Union Telegraph Co	Telegrams	5. 45
Expenditures		72. 20
Balance on hand, report for 1900.		402.60
Expenditures since, as above		72. 20
Present unexpended balance.		330.40

GENERAL RECAPITUI,ATION.
[Showing appropriations and balances for the fiscal year ended June 30,190 , and for all other accounts included in this report.]

Treasury Department,
Office of the Coast and Geodetic Survey, Washington, D. C., December IQ, гоог.
I certify that the foregoing statement is a correct exhibit of all expenditures made by nie for the United States Coast and Geodetic Survey and for the Office of Standard Weights and Measures, for the fiscal year ended June 30, igor, and for preceding years, including all accounts paid to the close of business on November 30, 1901.

> Scotr Nesbit, Disbursing Agent.

Approved:
O. H. Tititmann, Superintendent United States Coast and Geodetic Survey.

VI. OFFICE OF EDITOR OF PUBLICATIONS.

E. D. Preston, Editor, July i to Mar. 4. Isaac Winston, Editor, Mar. 5 to June 30. Arthur F. Belitz, Stenographer and Typewriter.
The Annual Report for 1899 was completed under the direction of Assistant Preston, and the proof of Special Publication No. 4, "The Trauscontinental Triangulation," was read. The MS. for Special Publication No. 6, "Notes Relative to the Use of Charts," was prepared, sent to the printer, and the proof was read. Progress was made in the preparation of the Annual Report for 1900, but owing to the illness of the editor, Assistant Preston, its completion was delayed.

On assuming the duties of editor on March 5 Assistant Winston found the Annual Report for 1900 still incomplete.

The plan upon which it had been prepared was examined and revised in order to make it accord more nearly with existing conditions, and the preparation of the illustrations was continued until May 15, when the completed MS. was sent to the Public Printer.

In the latter part of May the MS. of a special publication (869 pages) covering the discussion of the eastern oblique arc of the United States, by Assistant Charles A. Schott, was received and prepared for publication, except the illustrations, which were not all completed before June 30 .

Abstracts of the reports of field parties for the first half of the fiscal year were prepared for the Annual Report for 190 .

The MS. for all publications of the Survey passes through the office of the editor and the proof is received and sent to the proper division of the office for revision. The Tidal Division reads the proof of the Tide Tables, the Chart Division that of the monthly Notices to Mariners, and the Coast Pilot Party that of the Coast Pilots and Supplements.

The following publications were received and issued during the year: .
Tide Tables for 190 .
Tide Tables for 1902.
United States Coast Pilot, Part V (reprint).
United States Coast Pilot, Part VII (2d edition).

United States Coast Pilot, Part VIII (2d edition).
Supplement to United States Coast Pilot, Part V.
Bulletin No. 40, Coast Pilot Notes on Fox Islands, etc. (3d edition).
Bulletin No. 4r, Magnetic Survey of North Carolina.
Annual Report of the Superintendent 1899, with Appendices Nos. 3, 4, 5, 6, 7, 8, 9 and Io, also as separates.
Special Publication No. 3. An Atlas of the Philippine Islands.
Special Publication No. 4. The Transcontinental Triangulation.
Special Publication No. 6. Notes Relative to the Use of Charts.
Special Publication No. 6, 2d edition. Notes Relative to the Use of Charts.
Catalogue of Charts, 1900.
Twelve monthly Notices to Mariners.
Fourteen leaflets describing the work of the Coast and Geodetic Survey, for the Pan American Exposition, English edition.

VII. OFFICE OF STANDARD WEIGHTS AND MEASURES.

S. W. Stratton, Inspector of Weights and Measures.

Louis A. Fischer, Adjuster.
Frank A. Wolff, jr., Verifier.
Otto Storm, Mechanician.
W. S. Rich, Adjuster's Helper.

Geo. S. Draper, Stenographer and Typewriter.
Jas. A. McDowell, Watchman.
George Newmann, Messenger.
The Office continued under the general direction of the Superintendent, Coast and Geodetic Survey, with Inspector Stratton in immediate charge until June 30, igor.

During the previous fiscal year an attempt was made to enlarge and reorganize the Office of Standard Weights and Measures in order to meet the constantly increasing demands upon it more efficiently, and the draft of a bill providing for the establishment of a National Standardizing Bureat was submitted to Congress by the Secretary of the Treasury, with an appended statement of the conditions necessitating such legislation. This bill received a favorable report by the House Committee on Coinage, Weights, and Measures, and was under consideration by the Senate Committee on Commerce at the adjournment of the first session of the Fifty-sixth Congress.

A great deal of interest was taken in the measure by manufacturers, scientists, and others throughout the country, and it was favorably considered and passed by Congress in a somewhat modified form, and became a law on March 3, 1901. The act provides that the Office of Standard Weights and Measures shall be known as the National Bureau of Standards, the duties to be as follows:

1. Custody of the Standards.
2. Comparison of the Standards used in scientific investigations, engineering, manufacturing, commercial, and educational institutions with the standards adopted or recognized by the Governnent.
3. The construction, when necessary, of standards, their multiples and subdivisions.
4. The testing and calibration of standard measuring apparatus.
5. The solution of problems which arise in connection with standards.
6. The determination of physical constants and the properties of materials when such data are of great importance and not to be obtained of sufficient accuracy elsewhere.
The Bureau will exercise its functions for the Government of the United States, for any State or municipal govermment within the United States, or for any scientific
society, educational institution, firm, corporation, or individual within the United States requiring the use of standards or standard measuring apparatus. For all comparisons, calibrations, tests, or investigations, except those performed for the Government of the United States or State governments within the United States, a reasonable fee will be charged. Provision is also made for the purchase of a site, the erection of a suitable laboratory, its equipment with the most improved facilities, and the personnel necessary for the organization of the Bureau.

Although the bill did not become fully operative until July i, preliminary plans were immediately prepared by the Office of Standard Weights and Measures for carrying out the provisions of the act. This involved the examination of numerous sites, and investigations as to equipment, personnel, and the immediate development of some of the more important lines to be taken up by the new Bureau. Preliminary investigations were made as to the construction and equipment of the more important laboratories of this and other countries, and of the work that must, of necessity, be developed as soon as possible after the organization of the new Bureau. A large number of sites were very carefully inspected with reference to their freedom from mechanical and electrical disturbances and accessibility, in order that a selection might be made as soon as possible after July i, rgor.

On account of the many requests for information received from Congressional committees and individuals in public and private life, the work of the Office of Standard Weights and Measures was greatly increased. Nevertheless the regular work of the Office was not allowed to suffer, and the usual number of adjustments and verifications of apparatus were made for the Executive Departments, for the States, and for others.

Numerous requests for information concerning the origin and present status of the metric system were received, showing that the country is considering the commercial advantages of the system in its transactions with European and South American nations.

The use of this system in the Philippines, Porto Rico, and Cuba, and the close relations existing between these islands and the United States since the war with Spain, has doubtless much to do with the interest now manifested in the subject.

The division of the work of the Office into two sections was continued during the year.

Section I.

The usual number of verifications was made for the Executivc Departments, for the State authorities, for manufacturers, and others. In addition, a 5 -meter standard was determined for the Japanese Government, a roo-foot steel tape for the chief surveyor of the Straits Settlements, and two 50-meter tapes for the Mexican Government.

The following is a summary of the work done:

[^0]62 polariscope tubes verified.
I magnetometer deflection bar compared.
I 5-meter standard compared.
600 sugar flasks graduated and verified.
123 requests for information complied with.
983 Total number of calls.

Section II.

A large portion of the time was devoted to making plans for increasing the range of comparisons and for new lines of work to be undertaken.

A second complete intercomparison of all the resistance standards of the Office, including two new i-ohm coils, shortly before verified at the P. T. Reichsanstalt, were made during the year, and showed a gratifying constancy of the preliminary standards adopted. With a new intercomparison in contemplation, sufficient information concerning the rate of change of the coils will be at hand to allow suitable corrections to be applied and to enable the Office to guarantee results to within sufficiently small limits of accuracy to meet the most exacting demands, which is at present impossible on account of the absence of such information.

The various resistance boxes of the Office were also recompared and the master standards of a number of manufacturers of scientific apparatus were verified.

APPENDIX No. 1.

DETAILS OF FIELD OPERATIONS.

CONTENTS.

Page.
Tabular Index of Field Work. 6I
Technical Index of Field Work 68
Details of Field Work: 70
Eastern Division
122
Western Division 133
Division of Alaska 145
Outlying Territory 163
Special Duty IS9

TABULAR INDEX OF FIELD WORK.

EASTERN DIVISION-EAST OF THE MISSISSIPPI RIVER.

1. Maine.	10. West Virginia.	19. Michigan.
2. New Hampshire.	II. Maryland.	20. Wisconsin.
3. Vermont.	12. District of Columbia.	21. Illinois.
4. Massachusetts.	13. Delaware.	22. Indiana.
5. Rhode Island.	14. Virginia.	23. Ohio.
6. Connecticut.	15. North Carolina.	24. Kentucky.
7. New York.	16. South Carolina.	25. Tennessee.
8. New Jersey.	17. Georgia.	26. Alabama.
9. Pennsylvania.	I8. Florida.	27. Mississippi.

EASTERN DIVISION-EAST OF THE MISSISSIPPI RIVER-Continued.

$\left\|\begin{array}{c} \text { Nul } \\ \text { merical } \\ \text { No. } \end{array}\right\|$	Character of work.	Locality.	Chief of party.	Name of vessel.	Page.
7	Triangulation.	Maine. New Hampshire. Massachusetts. South Carolina.	Fairfiela.		SI
8	Direct measurement. Triangulation. Trigonometric leveling.	South Carolina. Georgia.	Fairfield.		S2
9	Leveling.	Kentucky. Tennessee. Alabama.	Ferguson.		S_{4}
10	Magnetic.	Maryland.	Fleming.		S_{5}
II	Hydrographic. Magnetic. Tide. Topographic. Triangulation.	Massachusetts. Georgia. Florida. Illinois.	French.		S6
12	Topographic.	Maryland.	Forney.		88
13	Leveling.	District of Columbia.	Hayford.		90
14	Hydrographic. Reconnaissance. Topographic. Triangulation.	North Carolina. Georgia.	Hodgkins.		9 I
15	「opographic.	Maryland.	Jatham.		95
16	Tide.	Pennsylvania. Delaware. North Carolina. Florida.	I, ittle.		96
17	Topographic.	New York.	McGrath.		97
18	Hydrographic. Topographic.	Commecticut.	Marindin.		98
19	Topographic.	Maine. New Hampshire. Maryland.	Nelson.		99

EASTERN DIVISION-EAST OF THE MISSISSIPPI RIVER-Continued.

$\begin{array}{\|c\|} \text { Nu- } \\ \text { merical } \\ \text { No. } \end{array}$	Character of work.	I,ocality.	Chief of party:	Name of vessel.	Page.
20 \|	Hydrographic. Reconnaissance. Topographic. Triangulation.	Massachusetts. Rhode Island. Georgia.	Preston.		101
21	Coast Pilot.	Florida. Alabama. Mississippi. Louisiana.	Ross.		103
22	Longitude.	Wisconsin.	Sinclair.		104
23	Reconnaissance.	Maryland. Virginia.	Smith.		105
24	Tide observations (continuous).	New York. Pennsylvania. District of Colum Florida.			106
25	Hydrographic. Leveling. Topographic.	South Carolina.	Vinal.	Matchless.	107
26	Hydrographic. Topographic.	New Jersey.	Vinal.	Bache.	108
27	Topographic. Triangulation.	Delaware. South Carolina.	Wainwright.		110
28	Topographic. Triangulation.	Maryland.	Weld.		III
29	Hydrographic. Special duty Triangulation.	Maryland.	Welker.	Bache.	I 12
30	Hydrographic. Special duty. Topographic.	Maryland. Florida.	Welker.	Blake.	115
31	Hydrographic.	South Carolina.	Yates.		118
32	Hydrographic. Triangulation.	Delaware River. Chesapeake Bay	Young.	Encleavor.	120

MIDDLE DIVISION-BETWEEN THE MTSSISSIPPI RIVEK AND THE ROCKY MOUNTAINS.
28. I_ouisiana.
29. Arkansas.
3o. Missouri.
31. Iowa.

$\left\lvert\, \begin{gathered} \mathrm{Nu} \\ \text { merical } \\ \text { No. } \end{gathered}\right.$	Character of work.	I,ocality.	Chief of party.	Name of vessel.	Page.
33	Base measurement.	Nebraska. Kansas. Oklahoma Territory. Texas.	Baldwin.		122
34	Magnetic.	Louisiana. Arkansas. Missouri. Iowa. Minnesota. South Dakota. Nebraska. Kansas. Texas.	Bauer.		124
35	Magnetic.	Kansas. Oklahoma Territory. Texas.	Dibrell.		126
36	Reconnaissance. Triangulation.	Nebraska. South Dakota.	Granger:		127
37	Magnetic.	Texas.	Little.		128
38	Triangulation.	Kansas.	Mosman.		129
39	Coast Pilot.	Louisiana. Texas.	Ross.		131
40	Leveling.	Nebraska. Kansas.	Tilton.		132

WESTERN DIVISION-WEST OF THE ROCKY MOUNTAINS.
40. New Mexico.
41. Arizona.
44. Montana.
4S. California.
42. Colorado.
45. Idaho.
49. Oregon.
43. Wyoming.
46. Utah.
50. Washington.

$\left\|\begin{array}{c} \text { Nu- } \\ \text { merical } \\ \text { No. } \end{array}\right\|$	Character of work.	L.ocality.	Chief of party.	Name of vessel.	Page.
41	Magnetic.	California. Oregon.	Bauer.		133
42	Magnetic.	Washington. Colorado.	Dibrell.		I 34
43	Coast Pilot.	California.	Dickins.	Gedney.	135
44	Extension of Speed Trial Course.	California.	Edmonds.		136
45	Coast Pilot.	California.	Ford.		137
46	Hydrographic. Reconnaissance. Topographic. Triangulation.	Oregon. Washington.	Morse.		138
47	Charge of Sub-Office. Tide.	California.	Rodgers.		141
48	Astronomic.	Western Division. Northwest Boundary.	Sinclair.		142
49	Hydrographic.	California. Washington.	Westdahl.	McArthur.	144

DIVISION OF ALASKA.

S. Doc. $50-5$

DIVISION OF ALASKA-Continued.

OUTLYING TERRITORY.

5^{8}	Register of Geographic Names. Register of Geographic Positions. Tide.	Hawaii.	Alexander.		163
59	Magnetic.	Hawaii.	Bauer.		I64
60	Hydrographic. Reconnaissance. Tide. Topographic. Triangulation.	Porto Rico.	Boutelle.	Eagre.	165

OUTL YING TERRITORY-Continued.

$\begin{array}{\|c} \text { Nu. } \\ \text { merical } \\ \text { No. } \end{array}$	Character of work.	Locality.	Chief	Name of vessel.	Page.
61	Hydrographic. Tide.	Porto Rico.	Flower.	Matchless.	167
62	Magnetic. Topographic. Triangulation.	Porto Rico.	Forney.		169
63	Base line. Reconnaissance. Triangulation.	Porto Rico.	McGrath.		171
64	Magnetic. Reconnaissance. Topographic. Triangulation.	Porto Rico.	Nelson.		174
65	Collecting information.	Philippine Islands.	Perkins.		176
66	Astronomic. Base line. Hydrographic. Magnetic. Topographic. Triangulation.	Philippine Islands.	Putnam.		177

SPECIAL DUTY.

Character of work.	Name.	Page.
Processes used in production of charts in England and France.	Fowler, E. H.	I89
Resurvey of Mason and Dixon's line.	Hodgkins, W. C.	190
Marking the Virginia and Tennessee boundary line.	YHodgkins, W. C. \|Baylor, J. B.	191
Marking proposed avenue through The Mall, District of Columbia.	McGrath, John E.	192
Establishing speed-trial course, Delaware Bay.	Marindin, H. L.	193
Member of Mississippi River Commission.	Marindin, H. L.	194
Gravity measures, London, England; Potsdam, Germany; Paris, France.	Putnam, G. R.	195
Latitude observations for International Geodetic Association.	Smith, Edwin.	196
Marking provisional boundary between Alaska and British Columbia.	$\left\{\begin{array}{l} \text { Tittmann, O. H. } \\ \text { French, O. B. } \end{array}\right.$	$\} 197$
Establishing tide gauges, Delaware River.	Wainwright, D. B.	198
Charge of exhibit at Pan-American Exposition.	Wainwright, D. B.	199
Delegate to International Geodetic Association meeting; examination of instruments of precision at Paris Exposition.	Winstor, Isaac.	200
Examination of hydrographic methods in use in Europe.	Yates, C. C.	201

TECHNICAL INDEX OF FIELD WORK.

Classification.	Page.
F. Tide-Continued.	
Philippine Islands .	177
Porto Rico	165, 162
Washington.	138
G. Topographic:	
Alaska	
Florida	86
Gecrgia.	91
Maine 99	
Maryland....... 78, 88, 95, 99, 111, 115	
New York 74,97	
Oregon	138
Philippine IslandsPorto RicoR	
South Carolina In7, rio	
Washington.	
H. Special Duty:	
Speed trial course, Chesapeake	
Bay..................... 112, 115	
Examination of process of chart making in England and France 189	

Classification.
H. Special Duty-Contimued.

Boundary, Pennslyvania and Maryland .
Boundary, Tennessee and Virginia
Marking avenue, District of CoColumbia
Speed trial course, Delaware Bay.
Mississippi River Commission...
Gravity measures, England, France, and Germany
International Latitude Service ..
Marking provisional boundary, Marking provisional boundary Alaska and British Columbia..
stablishing tide gauges, Delaware River................... Survey exhibit, Pan-American Exposition
Delegate to International Geodetic Association meeting
Examination of instruments, Paris Exposition..................... Examination of hydrographic methods in use in Enrope...

Page.

DETAILED STATEMENT OF FIELD WORK.

EASTERN DIVISION.

Magnetic.

MARYLAND.
L. A. Bauer.

DISTRICT OF COLUMBIA.
virginia.
MICHIGAN.
wisconsin.
illinois.
indiana.
онio.
kentucky.
TENNESSEE.
MISSISSIPPI.
J. B. Baylor, Assistant. May if-i8.
W. M. Brown, Magnetic Observer.
W. G. Cady, Magnetic Observer.
C. W. Dawson, Recorder.
H. M. W. Edmonds, Maguctic Observer.
C. K. Edmunds, Magnetic Observer.
J. A. Fleming, Aid.
H. F. Gioetzner, Recorder.
D. L. Hazard, Computer.
F. H. Loud, Magnetic Observer.
J. W. Milier, Jr., Magnetic Observer.
R. W. Walker, Temporary Aid.
R. W. Walker, Magnetic Observer.
W. F. Waldis, Magnetic Observer.
W. Weinrich, Jr., Magnetic Observer.

July 1 to Aug. 2.
Oct. 3 I to Jan. 30.
Aug. 6 to Sept. 12.
Nov. 28 to June 30.
July i to July 3 I.
Apr. 5 to June 16 .
Aug. 25 to Sept. 8.
Mar. 25 to May 5.
July 1 to Sept. 29.
Nov. 19 to Apr. 15.
May 2, 3, 17 , and 18 .
July 1 to Aug. 5.
July I to Aug. 17.
Oct. 30 to Nov. 5.
June : 7 to June 30.
May 15 to May 21.
June 14 to June 30 .
Dec. 2 to Apr. 12.
May 24 to June 30.
July I to Aug. 3 I.
Dec. 3 to Apr. so.

The determination of the constants and the comparison of various instruments were made by Assistant Batuer, at the office in Washington, and he also occupied the base station for the magnetic survey of Maryland, at Linden, Montgomery County, on three occasions in July, May, and June.

Some special observations were made at Cheltenham, Md., by Assistant J. B. Baylor.

The magnetic elements and bearings of lines were determined for the use of surveyors at the following stations in Virginia: Elkton, Front Royal, Luray, Madison, Stanardsville, and Washington, by Magnetic Observer W. M. Brown, July 1 to 12. From July 13 to August 2, and from October 31 to January 3I, he was temporarily engaged at Washington, D. C., in reducing field observations and determining constants and comparing instruments. Mr. Brown resigned on February i.

Magnetic Observer W. G. Cady was on temporary duty at Washington, D. C., from August 6 to September 12 and November 28 to January 7, receiving instructions in magnetic work and determining constants, comparing instruments, and in reducing observations. From October 29 to November 27 he determined the magnetic elements and established meridian lines in Wisconsin, at La Crosse, Prairie du Chien, and Madison; in Illinois, at Chicago; in Indiana, at Michigan City, and in Michigan, at Kalamazoo and Detroit. From January 8 to June 30 he was in charge of the magnetic observatory at Cheltenham, Md.

Recorder Dawson assisted Mr. W. M. Brown July 1 to 16 , and Assistant L. A. Bauer July i7 to 3i.

Magnetic Observer H. M. W. Edmonds was on temporary duty at Washington, D. C., April 5 to 19, receiving instructions in magnetic work. From April 20 to June 16 he was assigned to duty at the magnetic observatory at Cheltenham, Md. On June 17 he started to Sitka, Alaska, to take charge of the magnetic observatory at that place.

Magnetic Observer C. K. Edmunds was on temporary duty at Washington, D. C., August 25 to September 8, making magnetic observations and in making reductions.

Aid J. A. Fleming was stationed at the magnetic observatory at Cheltenham, Md., March 25 to May 5, assisting in the work. He was also engaged in preparing plans for magnetic observatories at Sitka, Alaska, and in the Hawaiian Islands.

Recorder Gloetzner was employed in making observations of the magnetic declination daily, except Sunday, at Gaithersburg, Md., July I to 6, August 4 to September 29, and November 19 to April 6. He was temporarily employed at Washington in reducing field work July 7 to August 3, November 16 to 18, and April 7 to 15.

Special observations at Washington, D. C., May 2 to 3, and at Gaithersburg, Md., May 17 to 18, were made by Computer D. L Hazard.

Observations of the declination at Gaithersburg, Md., July I to August 5, were made by Magnetic Observer F. H. Loud.

Magnetic Observer J. W. Miller, jr., was engaged in making magnetic observations and determining lines for surveyors' use July 1 to August 17 in Kentucky, at Grayson; in Ohio, at Portsmouth, Chillicothe, Washington Court-House, Bellefontaine, Marion, Ashland, Akron, Cleveland, Jefferson, and Warren; and in Virginia, at Round Hill, Leesburg, Fairfax, and Stafford. He was temporarily employed in Washington, D. C., October 30 to November 5 and on June 17 in reducing field observations. From June I8 to 30 he assisted in the magnetic observatory work at Cheltenham, Md.

Magnetic Observer R. W. Walker assisted in the magnetic observatory work at Cheltenham, Md., May 15 to 21, and from June 14 to 30 he was on temporary duty at Washington, D. C., under instruction in magnetic work.

Magnetic observations were made and meridian lines were established December 2 to 13 in Illinois, at Nashville and McLeansboro; in Indiana, at Evansville; and in

Kentucky, at Hawesville, by Magnetic Observer W. F. Wallis. From December 2 I to February 25 he was on duty at the magnetic observatory at Cheltenham, Md., and from December 17 to 20, February 26 to April 12, and May 24 to June 30 he was on temporary duty at Washington, D. C., determining constants, comparing instruments, and reducing field observations.

Magnetic Observer W. Weinrich, jr., was on temporary duty at Washington, D. C., July 1 to August 8, August 17 to 3I, and December 3 to February 21, engaged in receiving instructions in magnetic work and in reducing field observations. From August 9 to 16 he assisted Magnetic Observer J. W. Miller in his work in Virginia. He determined the magnetic elements and established meridian lines February 22 to April 10 in Tennessee, at Memphis; and in Mississippi, at Holly Springs, Oxford, Tupelo West Point, Winona, Yazoo, Jackson, Brookhaven, Forest, Meridian, and Ellisville.

Magnetic.
MARYLAND.
J. B. Baylor.

NORTH CAROLINA.

State.	County	Town.
North Carolina	Alexander	Taylorsville.
Do	Alleghany	Sparta.
Do.	Ashe . .	Jefferson.
Do	Burke	Morganton.
Do	Caldwell	Lenoir.
Do	Camden	Camden.
Do	Caswell	Yanceyville.
Do	Catawba	Newton.
Do	Clay.	Hayesville.
Do	Davidson	Lexington.
Do	Davie.	Mocksville.
Do	Gaston	Dallas.
Do	Graham	Robbinsville.
Do	Haywood	Waynesville.
Do	Henderson	Hendersonville.
Do	Jones	Trenton.
Do	Mitchell	Bakersville.
Do	Polk.	Columbus.
Do	Stanley	Albemarle.
Do	Stokes.	Danbury.
Do	Watauga	Boone.
Do	Yadkin	Yadkinville.
Do	Yancey	Burnsville.

On the ist of July Assistant Baylor was making magnetic observations at Rockville, Md. A meridian line was established and the ends marked with granite monuments.

The magnetic declination was then determined by using a declinometer over this line. Upon the completion of the work Assistant Baylor returned to the Office on July 3 . On July 24 he proceeded to North Carolina to complete the magnetic survey of that State, which had been undertaken during the previous fiscal year in cooperation with the State authorities. This work was successfully completed before the close of the fiscal year.
Hydrographic. New york. J. B. Boutelle, Commanaing,
Topographic.
schooner Eagre.

SUMMARY OF RESULTS.
I6 miles shore line surveyed.
7 miles of roads and railroads surveyed.
1 mile of creeks surveyed.
117 miles of sounding lines completed.
3 tide stations established.
From July 1 to August 4 the Eagre was at Baltimore, Md., making repairs, and the party was employed in completing the records of the past season's work in Porto Rico. In accordance with instructions, Assistant Boutelle took the vessel to New York for repairs, sailing on the 5 th of August and arriving on the roth. The vessel was placed in the dry dock for repairs, which were completed on September 12.

On September 17 the vessel proceeded to Irvington on the Hudson, and the resurvey of the river at that point was begun. Watch Officer Proctor reported on board on September 19 and Assistant Little on September 29. The triangulation was taken up at the stations Hook Mountain and Pagoda, and extended up the river to Stony Point Light-house.

The hydrographic work was completed from Ardsley and Piermont to a point opposite Hook Mountain.

The topography was extended from Ardsley and Piermont to a point above Tarrytown on the east side and to Nyack on the west side. On the east side the topography extends to the railroad track and on the west side to the road between Piermont and Nyack. The weather was extremely unfavorable for field work on account of fog and rain.

The work for the season closed on November 5, and the vessel sailed for Baltimore, Md., to fit out for work in Porto Rico. The vessel reached Baltimore on November 13.

SUMMARY OF RESULTS.
315 miles completed line.
77 permanent bench marks established.
In order to extend the standard levels of the Survey, Aid W. H. Burger left Washington on July 15 and proceeded to Somerset, Ky., where the arrangements for the season's work were completed and a party was organized. The work began on July 23, and the line of levels was carried sonthward from Somerset, Ky., along the line of the Cincinnati, New Orleans and Texas Pacific Railway to Harriman Junction, Tenn., and thence eastward along the Southern Railway to Knoxville, Tenn. While engaged in this work very little time was lost on account of bad weather, but the inconvenient schedule of trains used in transporting the party caused some delay. The route passed through a mountainons and sparsely settled portion of Kentucky and Tennessee, and the towns affording accommodations for the party were far apart.

The grades on the railway were heavy, the trestles were long and numerous, and in the first hundred miles of the route the railway passed through 24 tunnels. The topography of the country rendered it impracticable to carry the levels around these tunnels and it was difficult to level through them. Various devices were used to illuminate the leveling rods while at work in the tunnel, and an acetylene gas lamp, such as used on bicycles, was found to be more satisfactory than any other device on dark days and when the tunnels were not straight. In straight tumnels, when the sun was shining, a mirror was placed at each end of the tunnel and the rods were illuminated by reflected sunlight.

From a point near Elverton, Tenn., the levels, were carried over a branch line 12 miles long to a triangulation station on Melton Hill.

The levels were connected with bench marks established by the U. S. Geological Survey at Knoxville, and the party then proceeded to Woodville, Ala., under instructions to carry the levels from that point to Birminghan, Ala., via Decatur, Ala.

The route followed the Southern Railway as far as Decatur, where the levels were connected with bench marks established there by the Corps of Engineers, U. S. A. The route then followed the Louisville and Nashville Railway to Birmingham, where connection was made with bench marks established there by the Corps of Engineers, U. S. A., and the work for the season closed on January 12.

The work described above forms a portion of the leveling operations between Cincinnati, Ohio, and Birmingham, Ala., undertaken to connect the elevations determined at the former place by the U. S. Coast and Geodetic Survey with those determined at Knoxville and Chattanooga, Teun., by the U. S. Geological Survey, and those at Decatur and Birmingham, Ala., determined by the Corps of Engineers, U. S. A.

> PENNSYLVANIA. INDIANA.
> MICHIGAN.
W. C. Dibrell.

Stations "ecupied.

state.	County.	Town.
Pemnsylvania	Montgomery	Hatboro.
Indiana	Wayne	Richmond.
Do.	Decatur.	Greensburg.
Do	Jefferson.	Madison.
Do	Orange	${ }_{\text {Ploomfield }}$
Do.	Vigo....	Terre Haute.
Do.	Morgan.	Martinsville.
Do	Marion	Indianapolis.
Do	Montgomery	Crawfordsville.
	Howard.	Kokomo.
Do	Blackford. Allen.....	Hartford City. Fort Wayne.
Do	Kosciusko	Wart Wayne.
Michigan.	St. Joseph.	Sturgis.
Indiana	do.	South Bend.

On July i Aid Dibrell, attached to the party of Aid J. A. Fleming, was making magnetic observations at Hatboro, Pennsylvania. The observations were completed on July 2, and on July 3 he reported at the Office. On September 4 he started to the field to make magnetic observations in Indiana and Michigan.

Observations were made to determine the three elements of the earth's magnetism at the fifteen stations named above, and the stations were all marked with a stone post suitably lettered.

On September 29, at Terre Haute, Ind., special declination readings were made at intervals of five minutes throughout the entire day, and the temperature was read and recorded at intervals of fifteen minutes, seventy-fifth meridian time being used. Similar observations were made by other magnetic parties in different parts of the country in execution of a plan to determine the areas over which the diurnal variation of the declination is the same. The work in this Division closed on October 16, and Aid Dibrell started on the 17 th to continue his season's work by making observations in the Middle Division.

summary of results july i to january 7.
 3 triangulation stations occupied.
 IO3 square miles area of topography.
 157 miles shore-line topography.
 115 miles roads.
 to miles railroads.
 SUMMARY OF RESUlis may 6 TO JUNF 30.

Elk Neck.
13 square miles area of topography. 22 miles of roads and railroads.
3 miles of creeks (tidal).

Little Choptank River.

I3 square miles area of topography.
35 miles of shore line surveyed.
26 stations occupied and determined.
The work begun by Extra Observer Donn during the previous fiscal year was continued by him after July 1.

The triangulation and the shore-line and adjacent details of Miles River, and the several creeks flowing into it from the east, were finished at the end of July, in addition to a large portion of the work on the south side of the river, between McDaniel and Bloomfield, the south margin being the Baltimore, Chesapeake and Atlantic Railroad.

In August all the interior work north of the Miles River and extending to the heads of the creeks flowing into the Back Wye, including the heads of Leeds and Hunting creeks, was completed.

In September the work was advanced in all the branches of the Wye River, from points previously determined from the Eastern Bay and Miles River triangulation. The work in this vicinity was completed, and on October 28 the party moved to Elkton.

The survey of Elk Neck began on November i. Much delay resulted from the difficulty of landing on the shore from a boat, the eel grass growing in the water covering the approach out to a depth of 6 feet in many places, and while using a team, from the necessity of driving long distances over bad roads to reach portions of the
shore line. The work closed on January 7, and Extra Observer Donn was instructed to complete the records and topographic sheets resulting from the season's work in the field.

No. 2.
隹

On May 6 he organized a party and resumed topographic work on Elk Neck.
Unfavorable weather prevailed over the greater portion of the month, but in spite of all obstacles the survey was completed on May 31 .

The party then proceeded to Little Choptank River, and began operations in that vicinity on June 4. Two old triangulation stations, James Point and Hills Point, were recovered, signals were erected, and the triangulation was extended as far as the entrance to Hudson Creek on the north side and Woolford Creek on the south side.

The topographic survey was advanced from station Travers southward to Meekins Neck station. The survey was then carried around Oyster Creek and up the south shore of the river to Slaughter Creek, and up that stream to the bridge at Taylors Island post-office.

The work was in progress at the close of the fiscal year.

Triangulation.

MAINE.

W. B, Fairfifid.

NEW HAMPSHIRE.
 MASSACHUSETTS.
 SOUTH CAROLINA.
 SUMMARY OF RESULTS.

Maine, New Hampshire, and Massachusetts.
8 old stations recovered.
27 stations occupied.
56 geographic positions determined.

South Carolina.

6 old stations recovered.
7 stations occupied.
27 geographic positions determined.
Under instructions to determine such positions as were required for the topographic work in the vicinity of Portsmouth, N. H., and then to redetermine the position of the Isle of Shoals Light-House, Assistant Fairfield proceeded to that place on July 18.

Operations in the field began on July 20, and on August 23 the geographic position of all the points required for the work had been determined, computed, and furnished to the topographic party.

On August 24 the work of recovering triangulation points began, and continued until three old stations were found undisturbed.

On August 3I Assistant Fairfield went to Isle of Shoals Light-House, and the observations there were made between September 5 and 15 . The sea was too rough for him to leave the Light-House until the 2oth, when he returued to Portsmouth. Much delay at the next station resulted from unfavorable weather, and the necessary observations were not completed until October 12. On this date he received instructions to close work and report at the office, and immediately proceeded to do so.

On October 25 he proceeded to Beaufort, S. C., under instructions to determine the geographic position of the points required for making a hydrographic survey of the entrance to Port Royal and of the Range Beacons on Hilton Head and Paris Island.

Field operations began on the 27 th, and all the necessary observations were completed on December 3r. Some of the triangulation points were difficult to reach, and at several of them it was necessary to erect high tripods and scaffolds for observing. Assistant Fairfield makes special mention of the aid rendered and courtesies extended to him by Admiral Sumner and the other naval officers at the Port Royal Naval Station.

$$
\text { S. Doc. } 50-6
$$

Direct measurement. Trigonometric leveling. Triangulation.

SOUTH CAROLINA.
GEORGIA.

SUMMARY OF RESULTS.
32 stations occupied.
34 positions determined.
99 miles tape measurement.
99 miles of leveling (by vertical angles).

Operations began on January 14 under instructions to undertake the connections of the coast triangulation with that in the Blue Ridge Mountains by extending the work from the coast triangulation to Augusta, Ga., and the work was assigned to Assistant Fairfield.

The line Port Royal to Church in the coast triangulation was used as a base for the work, and two other old stations, Parry and Brooklyn, were used in determining the position of a new station, Salt Bridge, on the Çharleston and Western Carolina Railroad, a short distance from Beaufort, from which a direct measurement was made along the railroad to a station Beach, near Beach Island, and a short distance from Augusta.

The line was measured along the straight portions of the railroad and prolonged off the track to a junction of the tangents, where a change in direction occurred. The railroad is comparatively straight from Salt Bridge to Allendale, but there are fifteen curves in the next 25 miles, and the tangents range from one-half mile to 6 miles in length.

This condition made it necessary to establish and occupy a large number of stations on this portion of the line. The remainder of the line was measured along a tangent 20 miles long to Beach Island, where final observations were made on June ir.

The direct measurement was made with a steel tape lying on top of one of the rails along the straight portions of the railroad track and supported on wooden posts set at intervals of 25 meters when it was necessary to extend the measurement off the track to reach a station placed at the intersection of the two tangents wherever the railroad changed its direction.

The tape measurement began on March 9, and was continued after that date whenever the weather permitted until April i8, when it was completed to Beach Island station.

The measurement was all made at night, except two short tangents which were measured on a cloudy afternoon. The line was measured twice, once in each direction, and the measures were made on different nights. The elevations were determined by measuring double zenith distances on every 200 -meter mark on the portion of the line on the railroad, and on the 50 -meter marks on the portion not on the track where the tape was supported by the posts. These observations were made while the tape measurement was in progress.

The azimuth was carried from the line Salt Bridge to Church by measuring horizontal angles at all the stations established at the points where the line changed direction and at some interpolated stations on the long tangents. These observations were made in the daytime or at night, as was found most convenient, using heliotropes by day and lamps at night.

Assistant Fairfield expresses his appreciation of the efficient service rendered by Signalman Jasper S. Bilby in performing the duties assigned to him. He also reports the courtesy shown by the authorities of the Atlantic Coast Line Railway in stopping all trains between stations to take on or put off the party in going to and from work.

This was a great convenience and greatly facilitated the work. The operations closed on June 22, and on June 24 Assistant Fairfield reported in person at the Office.

The leveling party in charge of Assistant Ferguson was at work in the field on July i, extending the standard levels south from Cincinnati, Ohio, and had completed the work as far as Corinth, Ky.

The work was completed to Somerset, Ky., on the 3ist of August, and connected with bench marks established at that place by Aid W. H. Burger in starting his leveling work a short time before.

The party then moved forward to Harriman, Tenn., where the necessary bench marks were established from which to carry the line on toward the southern terminus.

The route followed the Cincinnati, New Orleans and Texas Pacific Railway to Chattanooga, Tenn., where the levels were connected with bench marks established at this place by the Corps of Engineers, U. S. A., and by the U. S. Geological Survey.

The levels were then carried along the Memphis and Charleston branch of the Southern Railway to Woodville, Ala., where connection was made with bench marks established by Aid W. H. Burger, from which he started his levels toward Birmingham, Ala.

The work described above forms a portion of the leveling operations betwen Cincinnati, Ohio, and Birmingham, Ala., undertaken to connect the elevations determined at the former place by the U. S. Coast and Geodetic Survey with those determined at Knoxville and Chattanooga, Tenn., by the U. S. Geological Survey, and those at Decatur and Birmingham, Ala., determined by the Corps of Engineers, U. S. A.

After completing the work as far as Woodville, Ala., Assistant Ferguson ran a branch line of levels from that place to determine the elevation of the triangulation station on Gunters Mountain. The field work closed on December 3, and Assistant Ferguson reported at the Office on the 7 th.

Magnetic.

The preparatory operations leading to the erection of permanent magnetic observatory buildings at Cheltenham, Md., were assigned to Aid Fleming on July 12.

Under the direction of the Inspector of Magnetic Work an examination of the plans and methods of past and existing magnetic observatories was made. The result of his examination indicated the following as the chief requisites desirable in the location and erection of a magnetic observatory.

The selection of a site without local magnetic disturbances, and well removed from all probable future artificial magnetic disturbances; the elimination, in the construction of the buildings, of all materials showing any magnetic properties; the arrangements for absolute and variation instruments to be such that mutual interaction of the different instruments would be inappreciable; the building or buildings for the measurement of absolute values to be so constructed as to admit of a number of simultaneous determinations without danger of appreciable mutual interaction of the magnets of the various instruments; the building for variation observations to be constructed so as to have, without extensive heating, a uniform temperature throughout the year as nearly as possible; the buildings for the variation observatory to have accommodations for at least two sets of instruments, one eye-reading and one self-registering, both rooms to be of sufficient size to meet all reasonable demands.

A site was selected at Cheltenham, Prince George County, Md., and maguetic observations were made in nine places within its limits to determine whether any local magnetic disturbances existed in this vicinity.

The plans were made and the buildings were erected in practical accordance with the requirements mentioned above. The unusual character of the buildings rendered it impracticable to construct them by contract, as all of the bids were in excess of the estimated cost and of the available funds. It was consequently decided to purchase the material and to erect the buildings by hiring the necessary labor.

The work of excavating for the foundations and piers began on September 19, and the buildings were completed and ready for the installation of the instruments on December 22.

Hyidrographic.
Magnetic.
Tide.
Topographic.
Triangllation.
On September 29, Assistant French left Washington for the field, as a member of the party under charge of Assistant C. H. Sinclair, to be engaged in determining the latitude and longitude of the Yerkes Observatory near Chicago.

This work was completed on October 28, and on the 29th Assistant French proceeded to Danville, Ill., under instructions, to determine the magnetic elements, and to establish a meridian line at that place.

This work was completed on November 4, and he proceeded to the Office in Washington, reporting for duty on the reth.

On March 15 he left Washington under instructions to proceed to Pensacola, Fla., and transfer the schooner Transit to Madisonville, La., and to make an inspection of the schoouers Quick and Spy and the naphtha launch which were in charge of a ship keeper at that place. This work was successfully accomplished, and Assistant French proceeded to Darien, Ga., to complete the work assigned to Assistant E. D. Preston, who was relieved some time previously on account of ill health. He reached there on April i and immediately began operations for the purpose of determining the geographic position of Sapelo Light-House and other objects near the entrance of Doboy Sound.

The old triangulation stations Spalding (recovered by Assistant Preston), Fox, and Marsh were recovered, utilized, and remarked. Several objects formerly determined as secondary points were also utilized.

A small sloop, hired for the purpose, was used as the means of transportation for two weeks, but it proved unsatisfactory on account of contrary winds, and a small steamer was used during the remainder of the season.

The geographic position of the Light-House was determined and also the position of several old beacons, four range marks set for use in opening a proposed channel through the bar, and several other prominent objects. The unfavorable atmospheric condition caused considerable delay in the progress of the work. After completing this work Assistant French proceeded to Pensacola, Fla., under instructions to make a hydrographic examination of the channel into Pensacola Bay in the vicinity of the point where the U. S. S. Massachusetts had grounded.

Deck Officer Roeth, Captain's Clerk Sanger, and a leadsman were ordered to report to him at Pensacola and aid him in the work. Active field operations began on May i and ended on May 23.

Three triangulation stations were occupied and the necessary positions determined for use in the hydrographic examination. Lines of soundings were run across the channel at the entrance to Pensacola Bay in several directions.

In addition to this work, lines were run so as to develop the dredged channel through Caucus Shoal and the channel from this shoal to deep water in the bay.

No work could be done on the bar after noon, and usually it was necessary to suspend work at io o'clock in the morning on account of rough water caused by wind. Whenever the bar became too rough for the work, the party was employed in topographic and hydrographic work in the bay. The topography of the western end of Santa Rosa Island and around Fort McRae was completed and plotted ou the hydrographic sheet. The soundings covered the lower bay west of the navy-yard in a general way to show what changes had occurred since the former survey.

Two tide gauges were established at the eritrance of the bay and referred to bench marks previously established in connection with the reduction of soundings to a common plane of reference. Soundings were also made to develop the increase in depth of water near the wharves resulting from the dredging done by the Louisville and Nashville Railroad Company.

As soon as this work was completed, Assistant French disbanded the party and proceeded to Washington, D. C., reaching there on May 25.

He commends the efficient service of Messrs. Sauger, Roeth, and Nelsen.
On May 30 Assistant Freuch left Washington under instructions to make a hydrographic examination of Nantucket Sound in the vicinity of Horse Shoe Shoal, and southwest of this shoal to Great Point.

Through the courtesy of the Chief of the Revenue-Cutter Service, the revenue cutter Dexter was detailed to transport the party and the commanding officer was directed to furuish the necessary assistance in preparing for the work.
C. L. Green, first watch officer, William Sanger, captain's clerk, A. C. L. Roeth, deck officer, first class, and Joan Patterson, leadsman, were detached temporarily from the Survey vessels on which they were serving and ordered to report to Assistant French ou board the Dexter.

The Dexter proceeded to Nautucket Sound on June 3 and the work began on the following day. Tide gauges were erected at Nantucket and Edgartown, and tide observations were made at both places during the day for a period of fifteen days.

A tide gauge was also erected on Horse Shoe Shoal, and observations were made on it while the soundings were in progress. On June 24 the Dexter was required for other duty and the work was suspended. The party was disbanded and the members of it returned to their respective stations. Assistant French proceeded to Washington and reported at the Office on June 25 .

His report states that Captain Hand and the officers of the Dexter did everything in their power to expedite his operations, and commends them highly for making it possible to accomplish so much in the few days available for the work.

SUMMARY OF RESULTS.
21 square miles area covered. 5 miles of shore line of rivers.

The topographic resurvey of the eastern shore of Chesapeake Bay, from Hills Point, at the mouth of the Little Choptank River, southward, was taken up on August 27 by Assistant Forney.

The party left Washington on the launch $R u d y$, on the date stated, and reached Cambridge, Md., on September 3, having been compelled to stop twice for repairs on the way. Field operations began at once, but owing to the unsatisfactory condition of the launch and the ill-health of the chief, very little work was completed by the party during the season.

Assistant Forney reported himself sick on October 7, and was ordered to close work at once.

The party was disbanded on October 12, and Assistant Forney reported by letter.

In response to a request from Col. Theo. A. Bingham, U. S. A., Superintendent of Public Buildings and Grounds in the District of Columbia, Assistant Hayford was directed to check the elevation of the permament bench mark established by this Survey near the Washington Monument, and to determine the elevation of the four corners of the Washington Monument.

The field work was done on April i and 2, by Aid O. E. Carr, under the direction of Assistant Hayford, and indicated no change in the elevation of the bench mark as determined in 1899 .

90

Hydrographic.
Reconnaissance.
Topographic.
Triangulation.
north carolina. W. C. Hodgkins, Commanding,
georgia.
steamer Blake.

On July 1 the Blake, Assistant W. C. Hodgkins, commanding, was at St. Thomas, Danish West Indies, and on the same day sailed to San Juan, P. R. Two days were spent preparing for sea, and on the 3 d of July the ship sailed for the Savannal River, Georgia, and reached there on the gth. The work covered by the statistics given above began on the roth and was completed on the 20 th. The operations included a hydrographic examination of the bar at the entrance to develop the 3 -fathom curve on each side of the channel, as far as buoy No. 3, the determination of the position of the range lights on Bloody Point, the southern end of Daufuskie Island, the resurvey of the shore line of the eastern part of Tybee Island, the resurvey of the inner bar at the entrance of the jetties, and the inner anchorage near Fort Scieven wharf.

The temperature was very high and the excessive heat caused cousiderable suffering and delay.

After completing the work in the Savannah River the Blake sailed for Norfolk, Va., on July 20 and reached that port on the 23 d. Assistant Hodgkins received instructions to proceed as soon as practicable to Cape Hatteras, North Carolina, and make hydrographic examination of the Diamond Shoal off that cape for the purpose of

Entrance Savannah River.
determining its extent and selecting the best anchorage for the new Diamond Shoal lightship. It was impracticable to have the necessary repairs to the ship made at Norfolk without delay and the vessel proceeded to Baltimore, Md., arriving there on July 26.

The repairs were completed on August 1, and on the 5 th the vessel sailed for Norfolk, Va., reaching there on the 6th.

The ship was coaled and ready for sea on the 8 th, and sailed on that day for Cape Hatteras. After much delay, on account of the dense bank of smoke hanging over the coast and ocean, the Blake reached Hatteras Cove on August 9.

Owing to the conformation of the coast and the distance of the work from the shore, the difficulty of accurately locating the ship while sounding would have been great under the best conditions, but this difficulty was vastly increased by the very unfavorable atmospheric conditions which prevailed while the work was in progress.

Authority was granted by the Light House Board to station an observer at Cape Hatteras Light-House and on Diamond Shoal Light-Ship, and to moor the Blake to the stern of the Light Ship at night when the weather permitted. The Superintendent of the Life Saving Service gave authority to call on the crew at the Hatteras station for assistance in landing observers, etc., when it did not interfere with the regular duties. The officials of the Weather Service agreed to give prompt notice of the approach of storms. All these were necessary precautions on account of the exposed position of
the work and the very dangerous character of this locality in rough weather. Very fortunately, however, no occasion for such a warning arose, the weather during almost the whole month of August being very moderate and the sea very smooth, though the atmospheric conditions were most unfavorable.

The work was successfully completed on August 30 , in spite of the difficulties under which it was executed, and gave a very satisfactory delineation of this previously unknown area, and developed the existence of an extensive mud bank, with a little more than 30 fathoms of water on it, in a good position in which to anchor the light-ship.

The work closed on August 30, and the vessel sailed the same day for Norfolk, Va., and reached there on the 3 rst.

From Norfolk the Blake proceeded to Washington, D. C., and was at anchor there from September 1 to 12, when she sailed for Baltimore, arriving there on the following day.

SUMMARY OF RESULTS.
45 square miles area revised.
60 miles of roads revised.
Under instructions to complete the topographic sheet which had been partly finished by Aid Weld during his recent season in the field, by revising the interior topographic work executed many years ago, Assistant Latham left Washington on November 30 and proceeded to Royal Oak, Md.

A party was organized immediately, and the work progressed until December 24, when operations closed, and the party was disbanded.

The shore line and some of the interior work on the sheet had been surveyed by Aid Weld, and Assistant Latham's work consisted in checking the roads and other topographic features as represented in topographic survey made many years ago by sextant angles and sketching.

A summary of the results of this work is given above. Upon the completion of the duty assigned him Assistant Latham returned to Washington and reported in person at the Office on December 26.

Tide.

```
PENNSYLVANIA.
F. M. Little.
DELAWARE.
NORTH CAROLINA.
FLORIDA.
```

The erection of an automatic tide gauge at Philadelphia, Pa., was in progress on July i, under the direction of Assistant Little.

This work was completed on July 7, and the gauge was left in charge of Mr. H. E. Olson, tide observer, and Assistant Little proceeded to Washington and reported at the Office on the 8th.

Under instructions to establish deviation range marks on the Delaware Breakwater for the use of vessels in adjusting their compasses, Assistant Little made the preliminary arrangements and left Washington on the 14th, arriving at the breakwater on the 16 th.

After this date he was engaged in establishing and marking the position of the range marks on the breakwater and in work connected therewith until December 6, when he left without erecting the range marks, as the result of the delay in their delivery on the breakwater, and reported at the Office on the 7 th. On January is he started to Fernandina, Fla., under instructions to examine the tide gauge at that place and place it in good order, giving any instructions that might be necessary to the tide observer.

He completed the work at Fernandina, and left on February 15 for Jacksonville, N. C., under instruction to collect the tidal and current data in New River and New River Inlet necessary for the study oi the tide in this locality. Four tide gauges were established and observations made during several days, and a portion of the time the observations were also made during the night. The necessary current observations were also made.

The work closed on March 4, and Assistant Little reported at the Office on the 5th.

NEW YORK.
John E. McGrath.
The revision of the topography along the coast of Long Island was taken up in July and the work assigned to Assistant McGrath, who was instructed to note such changes as had taken place since the former topographic survey was made, with particular reference to the construction of wharves, buildings, etc., which should be shown on the charts. The preliminary arrangements were completed and on July 20 he proceeded to Brooklyn, N. Y., and field operations began in the vicinity of that city on July 2 r . The work progressed without interruption until October 20 , when the field operations closed. As many of the old triangulation points were recovered as possible, and from these various objects, including new stations, were located, which served to fix town plans, roads, etc., in position, so that these could be plotted on the old topographic sheets or on new projections.

Numerous field notes and sketches were also made to cover the region examined, and the position of all prominent buildings in the towns was noted on the town plans obtained from the officials of each place.

In this way such work can be done very rapidly, and with the required degree of accuracy. During the season the details were revised on fifty-one topographic sheets, covering the coast of Long Island on the south and east, from Coney Island to Montauk Poini.

After closing work Assistant McGrath returned to Washington and reported at the Office on October 22.

Thames River, Connecticut.

Hydrographic. connecticut. Henry L. Marindin. Topographic.
F. M. Litti, Assistant.
F. H. Ainsworth, First Watch Officer.

Dyek Smith, Recorder.

SUMMARY OF RESULTS.

> $23 / 4$ square miles area covered by hydrography. II7 miles of lines sounded.

> 4 hydrographic sheets completed.
> 6 miles of shore line of river surveyed.
> 4 miles of roads surveyed.
> I topographic sheet completed.

The revision of the hydrography and topography on the Thames River, Connecticut, with a determination of the position of the river lights and buoys between New London and Norwich, was taken up in August and the work was assigned to Assistant Marindin.

He left Washington on August 4, and field operations began on the 5 th.

The necessary signals were erected, and tide staffs were established at five points in the river.

The hydrographic work above New London includes a resurvey of that part of the Thames River from the railroad bridge at New London to the upper limits of the United States naval station, and from this point to Norwich a hydrographic reconnaissance of the channel in connection with the determination of the position of the range lights and buoys.

The position of the buoys and of 20 range lights was determined by using a plane table and the topographic sheets of the original survey. A resurvey was made locating the shore line and railroad on the left bank of the river between the New London railroad bridge and Allyns Point, by using a plane table.

A hydrographic examination was made of the best channel across the shoal ground situated between the 30 -foot contour in the sound at the mouth of the Thames River and the deep hole below the railroad bridge at New London. A weighted rope, 500 feet long, with each end attached to the stern of a tugboat, was dragged along this channel, covering in all a width of about 600 feet, without discovering any obstructions.

An examination was also made to discover a rock reported as an obstruction to navigation in Greens Harbor, a portion of New London Harbor. The rock was dis covered and its position determined.

Upon the completion of the work outlined above, Assistant Marindin closed the field operations on September 24 and reported at the office in Washington on the 25 th.

MAINE.

John Nelson.

NEW HAMPSHIRE.

MARYLAND.
SUMMARY OF RESULTS.
42 square miles area covered by topography.
I5 miles of coast line surveyed.
28 miles of shore line of rivers surveyed.
II5 miles of shore line of creeks and ponds and marshes surveyed.
78 miles of railroad.
3 topographic sheets completed.

The completion of the topography in the vicinity of Portsmouth, N. H., was taken up in July by Assistant Nelson, and he left Washington on July is.

The preliminary operations were completed and the plane-table work began on July 19.

On August 24 the survey of the main shore line and the shore line of the rivers, creeks, and ponds, and also the topography within reach from the shore, on the Portsmouth Harbor sheet was completed. The party then moved to Greenacre, Me., and began work on the survey of the shore line and adjacent topography of the Piscataqua River in Maine and New Hampshire, from the Portsmouth bridge to about 4 miles above Dover Point. This work was continued until September 26, when the operations closed

and Assistant Nelson proceeded to Galena, Md., and on October 2 organized a party under instructions to complete the topographic sheet which he had not been able to complete before the close of his previous season's work in this locality.

The sheet covers the headwaters of the Sassafras River, and was completed on November 30, and the party was disbanded immediately.

Assistant Nelson proceeded to Washington and reported for duty on December 1.

Hydrographic.	massachusetts.	E. D. Preston.
Reconnaissance.	rhode island.	
Topographic.	Georgia.	

Georgia

> 200 square miles area covered by reconnaissance. 12 stations selected. 4 observing tripods and scaffolds built. 15 old stations visited and searched for. 3 old stations recovered.

The examination of the territory included in the current edition of Chart 244, covering the vicinity of Salem, Mass., on which no topography is shown, was assigned to Assistant Preston and he was directed to report what steps should be taken to bring the topography up to date. He was also directed to ascertain whether any existing data could be supplemented by phototopographic methods. He left Washington on October 5; the examination was made as directed, and a report submitted covering all the necessary details.

Five stations were occupied with the phototopographic camera, and 18 negatives obtained which indicate that it is not desirable to use the method for the purpose desired in this region. Ten trigonomic points were visited and the report states their present condition.

The published maps of the region can be relied on to furnish much information which will aid in the compilation of topographic details when a new edition of the chart is prepared.

Assistant Preston proceeded to Providence, R. I., after completing the work in the vicinity of Salem, under instructions to procure data relating to changes in the hydrography of the harbor due to dredging.

Through the kindness of the city engineer, Mr. O. F. Clapp, all necessary information covering this work which was done by the city was obtained and sent to the Office. Mr. Clapp showed a most intelligent interest in the work of the Survey, and furnished data from the records on file in his office of all recent improvements on the water front of the city for use on the new edition of the chart.

Upon the completion of the work at Providence, Assistant Preston proceeded to Newport and made an examination of the changes recently made in certain topographic details on Conanicut Island, which resulted in locating some important roads on the chart of the region.

He reports the kindness and material aid extended to him by Capt. J. P. Cotton, a civil engineer, who is thoroughly informed in regard to the improvements which have
been made on the island during recent years, and who furnished such information as was desired. A great many changes have been made on the island, but Assistant Preston bears testimony to the faithful and accurate character of the original topographic work.

After completing this duty, he returned to Washington on November 10.
On January 8 he was again sent to the field under instructions to proceed to Darien, Ga., and organize a party to determine the geographic position of Sapelo Light, and make a trigonometric connection with the special survey made at that point by the Corps of Engineers, U. S. A.

Assistant Preston reached Darien on January 8, and continued field operations until February 22, on which date he was forced to suspend work on account of sickness.

The statistics of the work accomplished are given above.

On November 22 Nautical Expert John Ross left Washington under instructions to make an examination of the principal ports on the Gulf coast of the United States, for the purpose of collecting such information as would be useful in revising the Coast Pilot of this region. He arrived in Pensacola, Fla., on the 24 th, and made arrangements to examine the bar off the entrance to the harbor.

The pilots stationed at Warrington offered him the use of their steam tug, and to assist him in any way in their power. This generous offer was accepted, and Mr. Ross proceeded to sound the Caucus Channel. Four lines of soundings were run up and down the channel on ranges, and angles were measured to locate the positions on the ranges. Mr. Ross reports the very valuable assistance rendered him by the pilots.

Dredging operations in the channel were in progress under the direction of an officer of the Corps of Engineers, U. S. A. Mr. Ross proceeded to Mobile, Ala., and to Pascagoula, Miss., where he obtained information covering the vicinity, and reached New Orleans, La., on December 2.

He remained in New Orleans until December 7, collecting information, and during this period visited Gulfport, West End, and Algiers. Mr. Ross left New Orleans for Galveston, Tex., on December 7. and the account of his work during the remainder of the season will be found in the account of the work in the Middle Division.

LONGITUDF. WISCONSIN. C. H. Sinclair.
O. B. French, Assistant.

The determination of the difference in longitude between St. Louis, Mo., and the Yerkes Observatory at Williams Bay, Wis., was undertaken in September, and the work assigned to Assistant Sinclair.

Assistant French was instructed to report to Assistant Sinclair to aid him in this work, and was directed to begin work at St. Louis, while Assistant Sinclair went first to the Yerkes Observatory.

The necessary preparations were completed, and observations were made on October 4 ;

After making observations and interchanging telegraphic signals on four nights, the observers exchanged stations, and on the 16 th observations on four more nights had been made, and the determination of the difference of longitude was thus completed.

After finishing the records and computations, Assistant Sinclair returned to Washington and reported for duty on October 22, leaving Assistant French at the Yerkes Observatory to make observations to determine the latitude of the transit pier. The latitude observations began on October 17 and were completer on the 27 th, tweuty-five pairs of stars having been observed on six nights.

A topographic reconnaissance of the Potomac River was made by Assistant Smith June 4 to 7 on a trip down the river and back to Washington on a passenger boat.

The positions of piers, wharves, and prominent buildings were plotted approximately when not found on the charts, and notes were made of such facts as would be useful in a resurvey of the river.

On June is Assistant Smith left Washington under instructions to take up triangulation work between Washington, D. C., and Mount Vernon, Va.

He made a reconnaissance and selected seven stations to cover the distance indicated. Signals were erected at six stations and the work was in progress at the close of the fiscal year.

TIDE OBSERVATIONS.

NEW YORK.
pennsylvania.
district of columbia.
florida.
Automatic tide gauges were kept in operation throughout the year at the following places:

Fort Hamilton, N. Y., J. G. Spaulding, observer; Philadelphia, Pa., H. E. Olson, observer; Washington, D. C., F. A. Kummel, observer; Fernandina, Fla., B. W. Weeks, observer
Hydrographic. South carolina. W. I. Vinal, Commanding,
Leveling.
Schooner Matchless.

Leveling. Topographic.

F. H. Ainsworth, First Watch Officer. Wm. Sanger, Chief Yeoman. John W. Cliff, Chief Yeoman. George Olsen, Chief Yeoman. Swepson Earle, Yeoman First Class. R. Mcd. Moser, Kecorder.

SUMMARY OF RFSULTS.
io square miles area covered by sounding. 89 miles of lines sounded. I hydrographic sheet completed. 3 miles of leveling work completed. 2 square miles area covered by topography 20 miles of coast line surveyed.

Theschooner Matchless, Assistant W. I.Vinal, commanding, reached Charleston, S. C., on June 14. Assistant Vinal was instructed to make a new survey of the old channel entrance to Charleston Harbor, in response to a request from the United States Light House Board, to furnish information upon which any change in existing lights and buoys could be based, or any new ones established could be located. The survey of the old channel was limited by adopting its intersection with the main channel for the northern limit of the work, and the 4 -fathom curve to the southward of the bar as the southern limit.

He was also instructed to make a plane-table survey of the outside shore line from Cummings Point southward to the limit of the hydrographic sheet furnished for the work. The geographic positions for this work were determined by a triangulation party and furnished to Assistant Vinal.

The tide gauge established at Fort Sumter was referred to Cummings Point and connected by levels with Charleston Light-House, where a mark was established. A tide staff was attached to the wharf on the north side of Light-House Inlet and referred to the bench mark, to furnish a plane of reference for the soundings.

A plane-table survey was made of the shore line of Morris and Folly islands, from Cummings Point southward to the limit of the hydrographic sheet. The work was completed on July 27, and the Matchless sailed for Baltimore on July 28, and reached that place on August 7. The vessel was placed on a dry dock for examination and temporary repairs.

After coming out of the dock, the vessel was anchored off Sea Girt, and the party was engaged in completing the records of field work until September 21, when Assistant Vinal was relieved of the command of the vessel by Assistant George L. Flower.

Hydrographic.
Topographic.

NEW JERSEY.
C. I. Green, First Watch Officer:
W. F. Glover, Second Watch Officer.
J. E. Shepherd, Surgeon.
H. J. Atwell, Junior Captain's Clerk.

SUMMARE OF RESULTS.

5 square miles area covered by plane-table triangulation.
33 positions determined with the plane table.
i square mile area covered by topography.
9 miles coast line surveyed.
I mile of creeks surveyed.
2 miles of road surveyed.
I square mile area covered by hydrography.
20 miles of lines sounded.
3 tide stations established.

108

On December 17 the steamer Bache, W. I. Vinal, Assistant, Coast and Geodetic Survey, commanding, left Baltimore and arrived at Shooters Island, New York, on the igth. The ship was placed in the dock of the Townsend and Downey Shipbuilding and Repair Company, who had been awarded the contract for building a new hull, and remained there during the remainder of the fiscal year.

Assistant Vinal continued in command of the ship, with a reduced crew, to care for the Government property and render such assistance as might be in his power to hasten the completion of the new hull.

On April 18 he began the survey of the shore line and the hydrography of lower Newark Bay and Kill von Kull. This work was continued whenever the weather conditions permitted until May 3I, when some of the officers were needed for more urgent work, and operations were suspended and not continued until after the close of the fiscal year.

Topographic.
Trianguiation.

DELAWARE.
SOUTH CAROLINA.
B. E. Tiriton, Aid.

SUMMARY OF RESULTS.

$1 / 4$ square mile area covered by topography.
I mile of coast line surveyed.
I mile of shore line of river surveyed.
2 miles of shore line of creeks surveyed.
2 miles of road surveyed.
I topograpbic sheet completed.
I base line measured with tape.
$1 / 2$ mile of beach measured with tape.
4 square miles area covar d by triangulation.
9 stations occupied.
8 geographic positions determined.

An examination to determine the desirability of establishing compass deviation range marks at Delaware Breakwater for the use of vessels in adjusting their compasses was made by Assistant Wainwright July 5 to 7 . This work was completed and he returned to the Office and resumed his regular duties.

On October 22 he again left the Office and proceeded to Charleston, S. C., under instructions to organize a party and make a special survey in that vicinity in accordance with a request from the Navy Department for the information of the Naval Board, " organized for the purpose of examining into the expediency of changing the location of the naval station now at Port Royal, S. C., to some point in the State of South Carolina, at or near the city of Charleston.'" A topographic survey on a large scale was made of the locality known as the Lawton plantation, which is situated on the right bank of the Cooper River, about 6 miles from the custom-house wharf, and extends from Chicora Park southeastward along the river for nearly i mile.

A very small contour interval was adopted as the one most suitable for the topographic work. A number of bench marks were established by spirit leveling and used by the topographer in his work. The plane table and wye level were both used in delineating the details.

The topography was controlled by nine triangulation points, whose positions were determined for this purpose and the determined distances depend on a base line measured twice with a steel tape.

Assistant Wainwright reports that the services of Aid Tilton were particularly valuable, on account of his familiarity with leveling operations, and states that with some additional experience he will become a competent topographer.

He also makes special mention of Mr. R. J. Emory, jr., for the zeal and intelligence with which he executed all the duties assigned to him.

Having completed the work assigned to him, Assistant Wainwright proceeded to Washington and reported for duty at the Office on December 27.

THE NOPRIS PETERS CO. PHOTOLLTHO, WNSHINOTON. O. C.

E. B. Latham, Assistant.

SUMMARY OF RESULTS.
375 miles of shore-line of rivers surveyed. 20 miles of roads surveyed.
2 topographic sheets completed. 54 triangulation stations occupied. 60 geographic positions determined.

The duty of making a resurvey of the Choptank River and tributaries was assigned to Aid Weld, and he left Washington for Tilghman, Md., on July 1 .

After some preliminary work he organized a party on July 16 and began at once to erect the signals necessary to extend the triangulation from a line already determined by the Chesapeake Bay triangulation. The naphtha launch assigned to thee us of the party was not ready for use unti! August 27, and much delay resulted from the use of sailboats previous to that date.

On August 29 a subparty was organized and placed under direction of Assistant Latham, who used a sailboat until October 13, when a launch was available for his use. The triangulation was extended up the Choptank River, to Cabin Creek, so miles above Cambridge, Md., and also up the larger tributaries. The shore line was surveyed by using a plane table and such adjacent topography was done as could be easily reached from the shore line.

The survey extends from Force Point, on the Chesapeake Bay, just below Poplar Island, to Hills Point, and then up the Choptank River to Cabin Creek.

A good deal of the interior topography, as shown on the topographic sheets of the former survey, made in 1847, was examined and the changes noted in order to transfer it to the new sheets.

Aid Weld left the work in charge of Assistant Latham on November 15 and proceeded to the Office in Washington.

Aid Weld commends Assistant Latham for his zeal in executing the duties assigned to him.

The work was continued by Assistant Latham until November 21, when he closed work and reported at the Office in Washington on the 22d.

HYDROGRAPHIC. MARYLAND
Spectal Work.
Triangulation.

> G. L. Flower, dssistaut, C. L. Green, First Watch Officer, H. C. Mitchell, Ald,
> C. F. Adae, Second Watch Officer,
> W. F. Glover, Second Watch Officer,
> H. S. Smith, Deck Offecr, First Class, Geo. Oisen, Deck Officer, First Class, J. E. Shepherd, Surgeon,
> Harry Ely, Engineer, Third Class,
> H. I. McCrea, Deck Officer, Third Class,
> H. J. Atwel, Jurior Captain's Clerk,
P. A. Whlker, Commanding, Steamer Bache.

July	1 to Sept. 22.
July	1 to Dec. 14.
Sept.	22 to Nov. 13.
July	I to Sept. 18.
Dec.	4 to Dec. 19.
July	I to Jan.
Sept.	8 to Dec.
July	1 to Dec. 19.
July	1 to Mar. 31.
July	1 to Nov. 21
July	1 to Dec. 19

July 1 to Dec. 14. Sept. 22 to Nov. 13.
July i to Sept. IS.
Dec. 4 to Dec. 19.
July i to Jan. 9 .
Sept. i8 to Dec. 3.
July I to Dec. 19.
July 1 to Nov 21
July I to Dec. Ig.

On July I the steamer Bache, P. A. Welker, Assistant, Coast and Geodetic Survey, commanding, was at work in Chesapeake Bay below the mouth of the Potomac River, engaged in executing the triangulation required for the resurvey of the hydrography of this portion of the bay. A reference to the progress in this work before July r is contained in the Report for 1900.

It was continued without interruption until July 24, when preparations began to transfer the men on the Bache from the Navy pay roll to that of the Coast and Geodetic Survey.

The transfer was completed and the necessary recruits to fill vacancies caused by discharges were secured by August 6, and field work was resumed. On September 4 Lieut. Commander Charles E. Vreeland, U. S. N., member of the Board of Inspection and Survey, Navy Department, was taken on board at Annapolis, Md., for the purpose of making an examination of Chesapeake Bay to the westward of Barren Island, with a view of establishing a trial course, i mile long, for torpedo boats. The assignment of the ship for this work was made at the request of the Navy Department. The examination was completed on the 3 th and the vessel returned to the lower bay after landing Lieutenant Commander Vreeland at Annapolis.

Preparations were made for a change in the command of the ship, and on September 15 Assistant Welker was relieved and ordered to command the steamer Blake.

First Watch Officer Green assumed temporary command of the Bache on September 15 and remained in command until September 21 , when he was relieved by Assistant W. I. Vinal, who took command on that date at Baltimore, Md.

On September 26 the Bache left Baltimore, and on the 27 th landed H. C. Mitchell, aid, at New Point Comfort light-house to continue the observations at that station.

After repairing the damage to the triangulation signals resulting from a recent storm, the vessel returned to Baltimore and was held open to inspection of bidders for

S. Doc. $50-8$
the contract to reconstruct the ship, under the authority granted by Congress to do this necessary work, until October 6. Coal and provision were taken on board, and on October io the vessel returned to the working ground, where the work was continued until the 25 th, when the ship returned to Baltimore to permit measurements, etc., to be made by those wishing to bid on the contract for reconstruction, and was detained there until November 14, when she again returned to the lower bay and resumed active work in the field, which was continued until the 28 th, when the work closed and the vessel returned to Baltimore.

On December 17 the Bache sailed for New York, and reached Mariner Harbor, Staten Island, on the rgth. The vessel was then placed in the hands of the ship builders who had been awarded the contract to rebuild the ship.

Hydrographic.	maryland.	P. A. Welker, Commanding,
Special duty.	florida.	Steamer Blake.

Triangulation.
W. W. Dcfrield, Assistant,

Sept. 24 to Oct. 5.
C. C. Yates, Assistant,
H. F. Flynn, Assistant,
W. F. Gtover, First Watch Officer,
C. A. Thompson, First Watch Officer,
C. A. Thompson, Second Watch Officer,
J. I. Duns, Second Watch Officer,
J. A. McGregor, Deck Officer, First Class,
R. McD. Moser, Deck Officer, Firist Class,

Geo. Oisen, Deck Officer, First Class,
L. McD. Hopkins, Chief Engineer, Second Class,
G. E. Marchand, Assistant Surgcon,
H. J. Atwell., Junior Captain's Clerk,
P. B. Castles, Draftsman,

Sept. 24 to Oct. 5. Dec. 14 to Mar. 6.
Sept. 17 to Nov. 30 . Dec. I to June 30 . Sept. 17 to Nov. 30 . Dec. i to June 30 . Sept. 17 to June 30. Oct. 14 to Dec. I. Dec. 3 to June 30 . Sept. 17 to June 30. Sept. 17 to June 30. Sept. 17 to Dec. II. Dec. 15 to June 30.
summaky of results.
Mary/and.
I speed trial course established and marked.
4 triangulation stations occupied.
20 geographic positions determined.
Florida.
Triangulation:
48 square miles area covered.
5 stations occupied.
25 geographic positions determined.
Hydrography:
71 square miles area covered.
I 668 miles of lines sounded.
4 sheets completed.
I tide station established.
On September 17 Assistant Welker assumed command of the Blake, relieving Assistant W. C. Hodgkins. The necessary preparations for field work were made and on September 26 the Blake left for Baltimore, under instructions to establish a trial course I nautical mile in length in the vicinity of Barren 'Island, in Chesapeake Bay, and this duty was assigned to Assistant C. C. Yates by the commanding officer.

It was found to be impracticable to measure a bace line on the island and a nautical mile was determined by triangulation from the line Cedar Point Light, Cove Point Light; this distance having been determined in the triangulation of the bay. The work was checked by introducing Drum Point Light into the scheme as an additional triangulation station.

Ranges were established and on October 5 the vessel returned to Baltimore.
On October 16 the vessel went to Barren Island under instructions to erect two pile beacons as outer range marks. These beacons were completed on October 2I, and the vessel again returned to Baltimore.

Assistant Welker testifies to the energy and efficiency displayed by Assistant Yates in executing this duty.

20 Fathom Trial Course, Chesapeake Ray.
Some necessary repairs were made to the vessel and all necessary preparations were made for field work in the Gulf of Mexico.

On December 17 the Blake left Baltimore under instructions to make a hydrographic survey in the vicinity of Dry Tortugas, Fla., and reached her destination on the 29th, after several clays delay at Key West, to obtain necessary supplies and make some slight repairs to the ship.

Active field operations began at once, and by January 12 all the necessary signals for use in the hydrographic survey were erected, the observations for their determination

FLORIDA

were in progress, and a sufficient number of positions had been determined to start the hydrographic work. Four signals offshore were found to be necessary and were erected with difficulty in water 6 to 25 feet deep.

The bottom was found to be of a hard, coral formation, and iron pipes could not be pumped down as usual in such cases.

Where the water was less than 12 feet deep a wooden tripod was framed, supported by boats, and lowered into the water with the bottom heavily weighted. A pole with targets attached was secured to the top of this tripod and held in place by guys attached to anchors. In deeper water a gas pipe $21 / 2$ inches in diameter, heavily weighted at the bottom, was dropped overboard and secured in an upright position by guys with anchors, as mentioned above, the usual targets being fastened to the top. Three of these signals were destroyed by a gale before serving the purpose for which they were erected, and it was necessary to replace them.

On February 9 Assistant Welker received telegraphic instructions, sent at the request of the Light-House Inspector of this district, directing him to replace the Texas Rock buoy, which had gone adrift and was then stranded in the southeast channel near the entrance. The buoy was recovered on the irth, but was in such bad condition that it was necessary for the vessel to visit Key West to obtain a new one. The new buoy was placed in position on the 18 th, and in executing this work one of the ship's anchors was lost. Two large hydrographic signals were carried away in a heavy squall on the rgth. This squall developed into a violent " norther" during the following night, and five of the signals on the outer reefs were carried away by the heavy sea.

Stormy weather prevailed during the remainder of the month and early part of March, and little progress was made.

On March 9 the vessel sailed for Tampa, Fla., to obtain a steam launch which had been sent by rail to that place for the use of the party. Special arrangements for transporting the lannch were made, and it was necessary to wait for favorable weather for the return trip on account of the weight of the launch and the consequent danger of the lashings giving away. These conditions caused so much delay that the launch could not be placed in the water at Dry Tortugas until March i8. Rapid progress was made with the work during the early part of April, but after the 16 th the weather was again stormy and more signals were carried away, causing much delay. During May, more progress was made than in the previous three months, and on May 24 the hydrographic survey of all the approaches to Dry Tortugas was completed.

The ship sailed next for Key West towing the launch. The launch was put in proper condition for storage and turned over to the commandant at the United States naval station for safe-keeping. The necessary supplies were taken on board and the Blake sailed for Baltimore on June I and reached that port on June 6. The rest of the month was spent in putting the ship in condition for work on Nantucket shoals and in making necessary preliminary preparations. Assistant Welker reports that Assistant Flynn performed valuable and efficient service in navigating the ship, in the triangulation and hydrographic work, and in directing the office work of the ward-room officers.

The Blake was at Baltimore at the close of the fiscal year.

Hydrographic.
 SOC:Th CAROLINA.
 C. C. Yates.

A. C. L. Roeth, Deck Officer: Wm. Sanger, Captain's Clew.

SUMMARY OF RESULTS.
2 square miles area covered. 34 miles of lines sounded. 2 tide stations established.
I sheet completed.
A hydrographic examination of the bar off the entrance to Port Royal, S. C., to determine whether certain reported changes since the last survey existed in fact was made in December under the direction of Assistant Yates.

The two officers mentioned above and a leadsman were ordered to join the party, and the revenue cutter Forward was instructed, through the courtesy of Capt. C. F. Shoemaker, Chief of the Revenue Cutter Service, to take the party on board and to render every possible assistance to Assistant Yates in the prosecution of the work assigned to him.

The work began on December 5 and was continued whenever the weather conditions permitted until it was completed on December 28.

The location of nearly all the signals used in connection with the work had been determined by triangulation from the shore and the location of the other signals was determined by measuring sextant angles on two of the triangulation points.

Tide observations were made at the Port Royal Naval Station and on the bar during all the time that the soundings were being made.

The observations on the bar were made on a tide staff attached to the wreck of a vessel lying about 3 miles inside of the bell buoy.

The plane of reference used for the reduction of the soundings and the time correction for the clistanice of the water tide staff from the bar were determined from simultaneous tide observations at the outer tide staff and at the Port Royal Naval Station.

All the soundings were obtained with a well-seasoned lead line, which was carefully tested before and after the soundings were made. The leadsman was an expert with many years of experience, and the soundings were made only when the water was smooth. Especial care was taken to determine the height of long ground swells. The examination was made for a special purpose, and consequently no attempt was made to develop anything but the best practicable channel over the bar and the relation of this channel to the buoys in position at the time the work was in progress.

At the beginning of the work it was found that the location of the ranges did not indicate the deepest water over the bar, and it was decided to adopt the chamel used
by the local pilots as the base for the development of the examination. The location of the pilot's channel was determined by having a pilot, who was selected by the local pilot association, take the vessel four times across the bar through what he considered the deepest water. The position of the vessel was determined at every minute while running these lines, and soundings were made every twenty secouds. The development of this channel did not change the results obtained.

Upon the completion of the work Assistant Yates returned to Washington.
His report expresses his appreciation of the effective aid rendered him by Capt. J. C. Mitchell, First Lieut. F. S. Van Boskerck, jr., and Chief Engineer H. C. Barrows, officers of the cutter Forward, and the interest they showed in the work.

Hydrographic.	delaware river. F. A. Yousg, Commanding,
Triangulation.	Chesapeake bay.

July ito Nouember 26.
A. L. Green, First Watch Officer.
M. F. Fiannery, Chief Engineer, Third Class.
G. H. Pheips, Junior Alid.
A. C. L. Rofth, Deck Officer, First Class.
D. B. Wainwright, Junior Deck Officer, First Class.

Wm. Bauman, Junior Captain's Clerk.
SUMMARY OF RLSULTS-DEIAWARE RIVFR.
28 square miles area covered by soundings.
370 miles of line sounded.
6 tide stations establisher.
4 hydrographic sheets completed.
3 triangulation stations occupied.
March 22 to June 30.
M. F. Flannery, Chicf Enginecr, Third Class
A. C. L. Roeth, Deck Officer, First Class.
H. S. Smith, Deck Officer, First Class.

Gershom Bradforn, Junior Deck Officer, Third Class. June 6 to June 30.
H. J. Arwell, Jumior Captain's Clerk.

Mar. 22 to Mar. 30.
WM. SANGER, Junior Caplain's Clerk.
Apr. I to Apr. 26.

SUMMARY OF RESEITS-CHESAPEAKE BAY.

13 signals erected.
29 miles of line sounded.
4 tide stations established.

The steamer Endeavor, with Assistant Young in command, was engaged in making hydrographic examinations and surveys in the Delaware River between Chester, Pa., and Bombay Hook from July 1 to November 26 . The work involved the determination of the availability of the channels that differed about I foot in depth, and restlited in showing that changes in depth had taken place since the previous survey upon which the ranges for the use of shipping were based.

The work was greatly facilitated by the data furnished by Lieut. Col. Charles W. Raymond, Corps of Engineers, U. S. A., in charge of improvements on the river, which included a large number of geographic positions, blue prints of hydrographic surveys, and other information.

The triangulation executed under his direction was connected with the triangulation of the Coast and Geodetic Survey, and can be used in the future as a part of the Survey system.

All recent hydrographic surveys of the Engineers were a guide to the special localities examined and rendered it possible to eliminate large areas from consideration. Assistant H. G. Ogden, Inspector of Hydrography and Topography, was on board the Endeavor during this examination and supervised the operations.

During the season two obstructions to navigation were discovered just off the channel below Pennville by using a long fishing net. This net was weighted and allowed to float downstream, being so arranged that when the bottom caught on any obstruction the float immediately above the object would disappear beneath the surface of the water. The sounding boats followed the net downstream and located the obstructions.

On November 28 the vessel started to Baltimore, Md., via the Delaware and Chesapeak Canal, and reached that place on the 29 th.

Assistant Young commends the efficiency displayed by the officers under his command in performing the duties assigned to them.

The Endeavor remained at Baltimore from December 5 to March 21, and minor repairs were made to the vessel.

On March 22 Assistant Young left Baltimore under instructions to make a hydrographic examination at the entrance of Sassafras and Elk Rivers in Chesapeake Bay. The necessary signals were erected and tide gauges were established at Pooles Island, Betterton, Reybolds Wharf, and Town Point. Observations of the tide were made by simultaneous readings on the gauges at these stations between March 23 and 28.

The gauges were referred, by spirit leveling, to bench marks established in the previous work, for the purpose of comparing the results with those formerly obtained. On account of unfavorable weather, soundings were made on only four days, but a number of lines were sounded. The soundings at mouth of Sassafras River were referred to ticle observations at Betterton, and those at the mouth of Elk River to tide observations at Betterton and at Reybolds Wharf. On April i 7 the Endcavor returned to Baltimore for additional repairs, which were not completed until June 22. On June 23 the Endeavor again left Baltimore, under instructions to continue the hydrographic reconnaissance begun during the preceding fiscal year by Assistant Vinal in Lower Chesapeake Bay.

Thirteen triangulation stations were visited and the signals were repaired.
This work was in progress at the close of the fiscal year.

MIDDLE DIVISION.

BASE MEASUREMENT.	NEBRASKA. A. L. BALIDWIN.
KANSAS.	
OKIAHOMA TERRITORY.	
TEXAS.	

Willitam Bowie, Assistant.
F. H. Brundage, Aid.
O. M. Leland, Aid.
L. A. Fischer. July 16 to Aug. 12.
L. S. SMITH.

July 16 to Aug. 3 I.
R. S. Ferguson.

Sept. io to Jan. 16.
SUMMARY OF RESELITS.
9 hase lines measured.
A party was organ zed under the direction of Computer A. L. Baldwin to measure 9 base lines, distributed along the 98 th meridian. These base lines had been located and the ends marked during the progress of the reconaissance for the triangulation.

The work began on July 16 and the following base lines were measured during the seasou: Shelton base, near Shelton, Nebr.; Page base, Holt County, Nebr.; Anthony base, Harper County, Kans.; El Reno base, Canadian County, Okla.; Bowie base, Montague and Clay counties, Tex.; Stephenville base, Erath County, Tex.; Lampasas base, Lampasas County, Tex.; Alice base, Nueces County, Tex.; Seguin base, Guadalupe County, Tex.

Five base apparatus were used in measuring each base, two 50 -meter tapes, two roo-meter tapes, and the duplex bars.

At the first base a comparator, ioo meters long, was prepared and measured with the standard bar in melting ice. On this comparator each apparatus was standardized before beginning the base measurement. At the last base a comparator was established in a similar manner, and the operation of comparing each apparatus with the standard bar was repeated.

At every base I kilometer was measured once with each apparatus as the means of comparison, and one-fifth of the remaining length of the base depends upon measurements made with each apparatus. The portion measured with the duplex bars was remeasured with these bars. A double portion was measured with one 50 -meter tape and remeasured with the other, and a double portion was measured with one roo-meter tape and remeasured with the other. This programme was successfully carried out, and on January 16, 1901, six months after the work began, the last comparison was made, after completing the measurement of the last base line, and a notable record in the measurement of base lines for primary triangulation was an accomplished fact.

The nine base lines aggregate 69 kilometers or 43 statute miles in length, and are
so widely distributed along the meridian that twenty-six days of the time during the season were necessarily used in moving the party and outfit from base to base.

In addition to the officers, five laborers were used in the measurement.
At the first base advantage was taken of the comparator established there to standardize two 100 -meter steel tapes for the Japanese Government, this work being done under the direction of Mr. Louis A. Fischer, adjuster of weights and measures, in the Office of Standard Weights and Measures. At the Anthony base, the party was inspected while at work by Dr. H. S. Pritchett, then Superintendent of the Coast and Geodetic Survey, and at the Alice base Assistant John F. Hayford, Inspector of Geodetic Work, visited the party and inspected all the details of the measurement.

Prof. A. E. Burton, of the Massachusetts Institute of Technology, accompanied Assistant Hayford, and during their stay with the party some field tests were made with thermophone tape apparatus belonging to the institute.

As an instance of the rapidity with which some of the work was done, it may be mentioned that at the Stephenville base, 6.3 kilometers long, the interval between the arrival of the party on the line and the departure therefrom was eleven days, two of which were Sundays, on which no work was done.

Mr. Baldwin reported in person at the office on January 3 I .

> LOUISIANA.
> ARKANSAS.
> MISSOURI.
> IOWA.
> MINNESOTA.
> SOUTH DAKOTA.
> NEBRASKA.
> KANSAS.
> TEEXAS.
L. A. Balek.

W. C. Bauer, Magnetic Obserier.	July i to June 30 (at intervals).
W. M. Brown, Magnetic Obserier.	Aug. 5 to Oct. 28.
W. G. Cady, Magnetic Observer.	Sept. 12 to Oct. 27.
C. K. Edmunds, Magnetic Obserzer.	July 1 to Aug. 21.
F. M. Lirtrle, Assistant.	Apr. I5 to May 14.
J. W. Minder, Magnetic Observer.	Aug. 21 to Oct. 27.
W. F. Wallis, Magnetic Obseraer.	July it to Dec. I, Apr. 15 to May 21.
W. Weinkich, jr., Magnetic	Apr. il to June 30.

Magnetic Observer W. C. Batuer assisted in the magnetic observatory work at Baldwin, K'ans., July I to August 2, and August 17 to 21. From August 3 to 16 he made magnetic observations and established lines for surveyors' use in Kansas at Holton and Marysville, and in Nebraska at St. Paul and York. From August 22 to June 30 he was in charge of the magnetic observatory at Baldwin, Kans., devoting about ten days each month to observatory work.

Magnetic observations were made and lines for surveyors' use were established August 5 to October 28 in Nebraska by Magnetic Observer W. M. Brown at the following places: Albion, Ainsworth, Alliance, Bartlett, Brewster, Bridgeport, Broken Bow, Burwell, Chappell, Gandy, Gering, Harrisburg, Harrison, Hartman, Hewitt, Hyannis, Kennedy, Keystone Ranch, Kimball, Marsland, Merriman, Mullen, Neligh, Newport, Ogallala, Omaha, O'Neill, Seventh Parallel, Rock County, Rushville, School Section No. 36, Schuyler, Sidney, Springview, Thedford, Tryon, and Valentine.

Magnetic Observer W. G. Cady was on duty at the magnetic observatory at Baldwin, Kans., from September 14 to October 15. From October 16 to 27 he assisted Magnetic Observer J. W. Miller at work in Minnesota.

Magnetic Observer C. K. Edmunds was in charge of the magnetic observatory at Baldwin, Kans., July 1 to August 2 I.

Assistant Little was at work in Texas under the direction of Megnetic Observer Wallis April 15 to May 14.

Magnetic observations were made and lines for surveyors' use were established by Magnetic Observer J. W. Miller August 22 to October 27 in Kansas at Hiawatha; in Nebraska at Lincoln; in South Dakota at Gettysburg, Huron, Redfield, Sioux Falls, and

Watertown; in Minnesota at Alexandria, Benson, Brainerd, Breckenridge, Crookston, Detroit City, Glyndon, Granite Falls, Heron Lake, Lake Benton, Mankato, Mantorville, Minneapolis, St. Cloud, Wadena, and Walker.

Magnetic observations were made and lines for surveyors' use were established by Magnetic Observer W. F. Wallis July I to December I, in Iowa at Anamosa, Atlantic, Boone, Burlington, Carroll, Charles City, Cherokee, Corydon, Council Bluffs, Creston, Decorah, Dubuque, Eldora, Emmetsburg, Fairfield, Fonda, Fort Dodge, Garner, Hampton, Hartley, Idagrove, Keokuk, Lancaster, Lemars, Logan, Manchester, Marengo, Menlo, Newton, Northwood, Onawa, Osceola, Oskaloosa, Perkins, Red Oak, Washington, Waterloo, and West Union; in Nebrasha at Omaha; in Missouri at Chillicothe, Harrisonville, Hermann, Kansas City, Macon, Palmyra, St. Louis, and Sedalia. From November 3 to 16 he was at Baldwin, Kans., comparing his instruments and assisting in the observatory work. He made magnetic observations and established meridian lines April 15 to May 21, in Texas at Austin, Belton, Coleman, Groesbeck, Kaufman, Lampasas, and Stephenville, and assisted Magnetic Observer Weinrich at work in Arkansas.

Magnetic observations were made and lines for surveyors' use were established by Magnetic Observer W. Weinrich, jr., April In to June 30, in Louisiana at Alexandria, Columbia, and New Orleans; and in Arkansas at Batesville, Camden, Corning, Evening Shade, Jonesboro, Little Rock, Malvern, Monticello, Murfreesboro, Newport, Paragould, Pine Bluff, Searcy, Texarkana, and Walnut Ridge.

Stations occupied.

State.	County.	Town.
Kansas	Nortoll.	Richfield.
Do.	Stevens	Liberal.
Oklahoma Territ	Beaver.	Beaver.
Do	Woodward	Woodward.
Do	Roger Mills	Cheyenne.
Do	Greer. . . .	Mangum.
Texas	Wilbarger.	Vernon.
Do	Baylor	Seymour.
Do	Stonewall	Aspermont.
Do	Mitchell	Colorado.

Magnetic observations were begun by Aid Dibrell in this division at Richfield, Kans., on November 17. The stations named above were occupied and observations were made to determine the three elements of the earth's magnetism. The stations were marked with stone posts wherever it was practicable to obtain them, and with cedar posts at the other stations.

The work for the season closed on December 19, and Aid Dibrell proceeded to Coleman, Tex., under instructions to store the outfit, and completed this duty on December 22, and then proceeded to Washington, D. C.

Reconnaissance. Triangulation.

NEBRASKA.
SOUTH DAKOTA.

F. D. Granger.

summary of results.

1485 square miles area covered by reconnaissance.
Io triangulation stations selected.
9 triangulation stations occupied.
21 geographic positions determined.
958 square miles area covered by triangulation.
The continnation of the triangulation along the ninety-eighth meridian was in progress under the direction of Assistant Granger on July i at Ono triangulation station, Wheeler County, Nebr., and the work progressed without serious interruption until the close of observations at station Old, Holt County, Nebr., on October 17. This work is the continuation of Assistant Granger's previous work along this meridian.

The actual time required in making the observations of horizontal and vertical angles at the nine stations occupied was fifty-nine days, or an average of six and onehalf days to a station. The number of directions observed at a station ranged from 4 to 8 , with an average of 5 . After closing observations at station Old, and storing the instruments and outfit at Page, Nebr., Assistant Granger took up the work of reconnaissance northward from the line Walnut to Sparta, and selected two new stations which formed a quadrilateral with the two already named.

Field operations were closed on November 8, and Assistant Granger reported at the Office for duty on November 12.

On April 13, rgor, Assistant Granger left New York for Page, Nebr., under instructions to continue his work of the previous season on the extension of the triangulation along the ninety-eighth meridian northward through Nebraska and South Dakota.

He reached Page on the 15 th and immediately prepared for reconnaissance work. He continued the reconnaissance until June 20 , when he returned to triaugulation point Walnut and prepared to occupy the station.

The observations at this station were in progress at the close of the fiscal year.
Assistant Granger expresses his appreciation of the efficient service rendered by E. E. Torrey, foreman, and D. A. Lewis, driver.

Magnetic.

Stations occupicd.

statc.	County	Town.
'I'exas	Runnels	Ballinger.
Do	Bandera	Bandera.
Do	McCulloch	Brady.
Do	Coleman.	Coleman.
Do	Gillespie.	Fredericksburg.
Do	Kerr	Kerrville.
Do	Llano	Llano.
Do	Mason.	Mason.
Do	Concho.	Paintrock.
Do	Edwards.	Rock Springs.
Do	San Saba	San Saba.

The determination of the magnetic elements at a number of places in Texas was assigned to Assistant Little. He began this work on May is and continued it during the remainder of the fiscal year.

He used a wagon and team as the means of transportation, and visited those places, which are not easily accessible, as they are away from the railroad.

At each of the stations observations were made to determine the magnetic elements, and a meridan line for surveyors' use was established.

The work was in progress at the close of the fiscal year.

Triangulation.

KANSAS.
A. T. Mosman.

SUMMARY OF RFSUITS.

> 8 stations occupied for horizontal measures.
> I9 geographic positions determined.
> 777 square miles area covered by triangulation.

The extension of the triangulation southward, from the transcontinental triangulation, along the ninety-eighth meridian was placed under the direction of Assistant Mosman.

He reached Salina, Kans., on July 7, and preparations for the season's work began immediately and continued untnl the 22d, when the first observations were made at the station Iron Mound. Stations Heath, Wilson, Central, Little River, and Chase were occupied during the season in the order named, and observations were finished at Chase on October 25.
S. Doc. $50-9$

On October 3 I final disposition had been made of the outfit for the winter, and on November i Assistant Mosman started to Washington and reported at the Office on the 6th.

Assistant Mosman left Washington on May 17 under instructions to proceed to Sterling, Kans., and resume work on the triangulation along the ninety-eighth meridian in continuation of his work of the previous season.

Signalman Bilby was sent to the field a few days earlier to secure outfit and make necessary preliminary arrangements.

He built tripods and scaffolds at Sunflower, Pretty Prairie, Kingman, and Cheney stations and finished the structure at Arlington.

The scaffolds at Arlington and Kingman stations were extended above the tripod to a height sufficient to allow the heliotropes mounted on top to be seen from other stations, where it would otherwise have been necessary to mount the observing instruments so high above the ground that it would have been dangerous to occupy the stations on account of strong wind when the screens were in place during the observations.

The screens were necessarily used on all scaffolds while observing, as the prevailing wind in this region capsed too much vibration of the instruments to permit observations without them.

On June 3 and 4 the camp outfit was moved from storage to Savage Station and the station was ready for observations on the 8 th. Strong wind prevented work until June 12 and the observations were completed on the 14 th.

It was difficult to procure teams for transportation to Station Gilmore, and this station was not ready to begin observing until the 2 Ist.

Unfavorable weather caused a delay of two days, but the observations were completed on the 25 th. More time was lost in finding teams to transport the outfit to Station Partridge, and this station was not ready for observation until June 30.

Harvesting the crops goes on at this season in Kansas and all available transportation and labor are engaged.

At the end of the fiscal year the work was in progress.

In continuation of the work described in the Eastern Division, Nautical Expert Ross left New Orleans on December 7 for Galveston, Tex., visiting Morgan City, Sabine, Rockport, and Aransas Pass en route. While at Sabine he made a trip through the Port Arthur Ship Canal.

He reached Galveston on December 14 and organized a party to make a hydrographic examination of the bar off the entrance to the harbor. In connection with this work, Mr. Ross reports the courtesy extended to him by Capt. C. H. Riché, Corps Engineers, U. S. A., and the valuable assistance rendered by his orders.

He was given every facility to examine the original records of surveys made by the Engineer Corps, and an assistant engineer and several employees were detailed to assist him in making the hydrographic examination of the bar.

The soundings made were more for the purpose of comparison and to note any indication of changes in the buoyed chaunel which might have occurred during the two months which had elapsed since the survey than to develop the contours of depth over the bar.

The bar buoys were relocated during the progress of the work. The steamer Pherabe, of Galveston, was hired and Mr. Ross was fortunate in having a day for the work when there was no sea or swell on the bar, a rare condition at the season of the year.

After completing the duty assigned to him, Mr. Ross returned to Washington on December 26.

SUMMARY OF RESULTS.
202 miles of levels completed.
44 permanent bench marks established.
The leveling work under the direction of Aid Tilton was in progress on July i at Hadir, Nebr., and the party was at work continuing the line of levels between Norfolk and Page, Nebr., as referred to in the Report for 1900 . The line was completed to Page and connected with the south end of the Page base line of the triangulation along the ninety-eighth meridian on July 28.

On the same day the party started to Solomon, Kans., to extend the levels south from that place. The route from Solomon to Anthony, Kans., followed the Union Pacific Railway to Salina, over the route of the transcontinental line of levels, thence along a branch of the same road to McPherson, from which place the route followed the Atchison, Topeka and Santa Fé Railway to Anthony, Kans., where the work was closed for the season on October 14.

A branch line was run from Pretty Prairie, Kans., to a point near the selected triangulation station of the same name, and from Kingman, Kans., to a point near the selected triangulation station, also of the same name. As these stations had not been occupied and marked, a stone bench mark was established at the end of each one of these branch lines.

The line was connected with the stone marking the southeast end of the Anthony .base line of the triangulation along the ninety-eighth meridian.

Aid Tilton reported in Washington on October 17 .

WESTERN DIVISION

Magnetic.	california.
orfgon.	
washington.	

W. Whinrich, Jr., Magnetic Obserter:

Nov. 7 to Nov. 27.
An examination was made on Mount Hamilton, California, by Assistant Bauer, November 2 to 3 , to determine whether it was available for a magnetic observatory, and he also determined the magnetic elements.

Magnetic observations were made and lines for surveyors' use were established by Magnetic Observer W. Weintich, jr., November 7 to 27 , in Washington at Everett, Mount Vernon, New Whatcom, and Seattle; and in Oregon at Portland.

Stations occupied.

State.	County	Town.
Colorado	Logan	Sterling.
Do	Washington	Akron.
Do	Yuma . .	Yuma.
Do	Kit Carson.	Burlington.
Do	Arapahoe	Gerdts.
Do	Cheyenne	Chevenne Wells.
Do	Iowa	Sheridan Lake.
Do	Prowers	Iamar.
Do .	Baca.	Springfield.

Various preliminary arrangements were made and magnetic observations in this division were begun at Sterling by Aid Dibrell on October 29.

While engaged in this work a wagon and horses were used as a means of trausportation. The stations named above were occupied and observations were made to determine the elements of terrestrial magnetism. .The stations were marked with stone posts wherever it was practicable to obtain them, and with cedar posts at the other stations.

On October 30, at Sterling, special declination readings were made at intervals of five minutes throughout the entire day, and the temperature read and recorded at intervals of fifteen minutes, seventy-fifth meridian time being used. These observations were made by other magnetic parties in different parts of the country in execution of a plan to determine the areas over which the diurnal variation of the declination is the same. The work in this division was closed on the 16 th of November.
C. W. Firzgerald, First Watch Officer.
J. W. McGrath, Second Watch Officer.
F. G. Crist, Deck Officer, First Class.
W. W. Markoe, Assistant Surgeon.

On July i extensive repairs were being made to the steamer Gedney at the Port Orchard Naval Station, Wash. These repairs were completed on December 6, and preparations for a cruise were made at that place and at Seattle.

The vessel sailed for San Francisco, Cal., under the command of E. F. Dickins, Assistant, Coast and Geodetic Survey, on the 17 th of December, and reached that port on the 26th, having spent four days at Port Angeles, Wash., waiting for suitable weather to go to sea.

Assistant Dickins immediately began preparations for a cruise along the coast of California, to the southward as far as San Diego, conveying Nautical Expert H. L. Ford, who had been instructed to report on board and to collect all necessary data for the revision of the Coast Pilot volume covering this region. The officers of the ship assisted Mr. Ford in performing the duty assigned to him, and the details of the work accomplished will be found in this Report under the proper heading. The vessel returned to San Francisco and anchored in the harbor on March 9.

During the voyage the vessel visited all the landings and anchorages of importance along the coast and on the shores of the islands off the coast of southern California.

Santa Barbara Speed-Trial california. Frank W. Edmonds. Course, Extension of.

SUMMARY OF RESULTS.
6 triangulation stations occupied.
${ }^{4}$ geographic positions determined.
8 square miles area covered by triangulation.

Speed Trial Course. Santa Barbara Channel.
The extension of the Santa Barbara speed-trial course having been requested, Assistant Edmonds was assigned to the work, and on August 23 he proceeded to Santa Barbara, Cal., under instructions to prepare a 32 -mile (nautical) speed-trial course in the Santa Barbara channel, for use in the builder's trial of the U. S. S. Wisconsin.

Having made all necessary preliminary arrangements, he began field operations on September 3, and the work proceeded without interruption. A distance of 32 nautical miles was determined, and ranges were established marking the ends.

The work was completed on September 21, and on the 22d Assistant Edmonds proceeded to San Francisco, Cal.

A new edition of the Coast Pilot for California, Oregon, and Washington being necessary, Nautical Expert Ford left Wrashington on December 2o, under instructions to proceed to the western coast for the purpose of collecting the information required for the work of revision. 'Assistant Dickins, commanding the steamer Gedney, was directed to take Mr. Ford on board and afford him all necessary assistance in his work. While waiting for the Gedney to sail, information was collected in San Francisco.

Mr. Ford reported on board the Gedncy on January 16, and on the 28th the vessel sailed from San Francisco fon a cruise to the southward to verify the sailing directions and Coast Pilot notes prepared in advance, covering the coast from San Francisco to the Mexican boundary. The ports south of San Francisco were visited, new wharves were located, and all necessary information was collected. The Gedney returned to San Francisco on March 9, having completed the necessary work south of that port.

After returning to San Francisco, Mr. Ford was engaged for some time in completing the compilation of the notes made in the field. On May 16 he was detached from the Gedney, and established headquarters in San Francisco and prepared to take up the work on the coast north of that port, using local transportation as the best available means of obtaining the desired information.

From May 25 to June 30 the necessary verification of data relating to the coast between San Francisco and Trinidad Head was completed, except for a small part of minor importance immediately to the northward of Point Reyes.

The work was in progress at the close of the fiscal year.

September 5 to December 7.

B. A. Baird, Aid.
F. G. Crist, Deck Officer.
J. N. Fahnestock, Recorder.

SUMMARY OF RESULTS.
6 square miles area covered by hydirography. 156 miles of lines sounded.

I hydrographic sheet completed.
5 square miles area covered by topography.
42 miles of shore line of river surveyed.
5 miles of shore line of creeks surveyed.
II miles of shore line of ponds surveyed.
8 miles of roads surveyed.
I topographic sheet completed.
April 20 to June 30.
E B. Latham, Assistant.

SUMMARY OF RESULTS.

36 square miles area covered by reconnaissance. 18 triangulation stations selected.
19 square miles area covered by triangulation. io stations occupied.
Io geographic positions determined.
3 square miles area covered by hydrography.
57 miles lines sounded.
The survey of the Columbia River between Vancouver and the Cascade Locks was assigned to Assistant Morse. He left San Francisco, Cal., on September 5, and proceeded to Portland, Oreg., to organize a party for the work.

On September 20, all the necessary preliminary arrangements having been completed and the party established in camp, the work of recovering old stations and the erection of signals was taken up.

Tide staffs were set up to determine the plane of reference between Vancouver and the Cascade Locks, and the low-water plane established at Vancouver by the Corps of Engineers, U. S. A., during the previous year was adopted for the work. The hydrographic and topographic survey of the Columbia River between Portland and the Cascades proceeded without interruption until December 7 , on which date the last soundings for the season were made.

The camp was stored and Assistant Morse proceeded to San Francisco, accompanied by Aid Baird, where they arrived on December 13. He reports the kindness of Capt. William W. Harts, Corps of Engineers, U. S. A., in charge of the work of improving

the Columbia River, in furnishing information relating to the tidal plane previously established at Vancouver and the Cascade Locks, and acknowledges the courtesy and kindness of Mr. W. G. Brown, the overseer of the Cascade Locks, to himself and the members of his party.

Assistant Morse left San Francisco on April 18, under instructions to resume work on the Columbia River and extend the triangulation, topography, and hydrography from the point to which it had been completed during the previous season. He reached

Portland, Oreg., on the 20th, where he organized a party and made all necessary preparations for the season's work. The party left Portland on the 22d and proceeded to Camas, Wash., where camp was pitched and active field operations began immediately. Signals for use in the hydrographic work were erected and soundings were made until May 9 , when an unfinished sheet of the previous season was completed.

Assistant Latham reported on April 30 and was assigned immediately to active duty. On May 9 the river was already high and rising rapidly to the regular flood stage caused by melting snow in the mountains, and consequently the hydrography had to be suspended and no topography could be done. Stations were selected for triangulation points and at five of these the necessary observations were made. On Jume 8 the party moved to Prindle's Landing, where the camp was pitched and the work of reconnaissance was resumed.

By June 27 the scheme had been developed as far as Bonneville, 4 miles below the Cascade Locks.

Three stations were occupied and observations were in progress at the close of the fiscal year.

The Sub-Office of the Survey in San Francisco vas continued under the charge of Assistant Rodgers. Numerous duties, largely of a routine character, were assigned to him in comnection with this duty. Government property, not needed for immediate use in the field, is stored under his care by the officers from time to time, and the supply is drawn upon by requisition to furnish or complete the outfit of parties going to the field. This property includes instruments as well as camp equipage. In addition to the charge of the Sub-Office, Assistant Rodgers supervised the tide observations at the Presidio Station and kept the tide indicator on Alcatraz Island in order.

Mr. John S. Blough reported to him on October 22 as writer, and served the remainder of the year. W. J. Diercks served as messenger throughout the year. Information of interest to the Survey, collected by Assistant Rodgers, was promptly transmitted to the Office.

In accordance with the request of the Secretary of State, the Secretary of the Treasury and the Secretary of the Interior assigned to the Superintendent of the Coast and Geodetic Survey and the Director of the Geological Survey the duty of making a reconnaissance along the forty-ninth parallel, and especially from the Rocky Mountains to the westward. These officers received more specific instructions from the Secretary of State, and with his approval detailed officers of their bureaus to carry out the reconnaissance. The following statement deals only with the work executed by Assistant Sinclair and the party under his direction, except as stated in the paragraph referring to the opening of the vista.

During February, March, and April Assistant Sinclair made an examination of the records and other material relating to the northwest boundary of the United States, on file in the State Department and deposited in the Congressional Library. He also prepared a list of stars for latitude observations covering twenty-four hours of time, and made all necessary preparations that could be made in Washington for taking up an examination of the northwest boundary for the purpose of recovering the monuments established by the International Commission and making the desired reconnaissance. The principal work assigned Assistant Sinclair was the reoccupation of such old astronomic stations as could be found and the determination of such new stations as might be found desirable to establish.

He left Washington accompanied by Assistant H. F. Flynn, as a member of his party, on May 7, and proceeded to Seattle, Wash., where the preparations for the season's work were completed and a party was organized.

The party left Seattle on May 16 and proceeded by way of New Whatcom and Sumas to Chilliwack, British Columbia. A pack train was secured and the party started on May 22 over 12 miles of road and 20 miles of trail to the boundary observation station of 1859 on Silicia Creek, near which a number of mining claims had been located. The trail was in very bad condition from constant rains and lack of repairs and was traversed with difficulty. Several of the animals rolled down steep slopes, but fortunately without serious damage to themselves or their packs. The astronomic station was recovered and observations made which identified it beyond question. From this station the distance stated in the old field notes was measured and the adjacent mark on the boundary was recovered. Rain and clouds seriously retarded the work and satisfactory observations were not obtained before June 15. The constant rains also retarded the work of clearing the vista along the line to such an extent that comparatively little was accomplished. It was desirable to extend the vista from this boundary mark in both directions to the adjacent marks, but the summits of the mountains in the vicinity were covered with deep snow and it was impracticable to do so at this season of the year.

There were no trails open to the points east and west in June. but a party of Canadian surveyors were reported working their way along the Chilliwack River toward Chilliwack Lake.

A line was cut through the heavy timber 4000 feet west and 6000 feet east of the starting point by the conjoint parties, and four wrought-iron posts were placed in position to indicate the random line forming the axis of the vista opened by cutting the timber. These posts are 4 feet long and $31 / 2$ inches in diameter with a flange to inches wide at the bottom. Each post has a bronze cap with two lines and the figures' " 1901 " cut in the top, and the intersection of these lines marks the random line.

An iron post suitably marked was also established near to, and due west of, the old latitude station and a witness mark was made on a large bowlder a short distance to the southeast of the station. The old wooden block is in bad condition and these marks were established to assist in recovering the station at any future time.

On June 23 the pack train with the outfit started to Chilliwack and reached there the following day. On the 26 th the party left Chilliwack by steamer and proceeded via the Columbia River and the Canadian Pacific Railway to Midway, British Columbia, arriving there on the 27 th. Preparations were made to extend the work to the eastward of Midway and the work was.in progress on June 30.

Assistant Sinclair calls special attention to the valuable service of Assistant Flymn and mentions in detail the work executed by him and states that his previous experience in the field and office made him particularly valuable on this expedition.

Hydrographic.	california.
washington. Westdahl, Commanding.	
Steamer McArthur.	

B. J. Crowley, First Watch Officer. James Stilinvan, Chief Machinist.
R. H. Hawkes, Hospital Steward.
L. H. Westdahl, Yeoman, First Class.
F. G. Crist, Chicf Ycoman.
B. J. Crowley, First Watch Officer. Chas. Livman, Second Watch Officer. James Sulinivan, Chief Engineer, Third Class.

Nov. 1 to IJec. 15. R. H. Hawkes, Assistant Surgeon.
L. H. Westdahi, Deck Officer, Fijst Class.

StMMARY OF RESUITS.
Washington.
2 square miles of area covered by hydrography.
163 miles of lines sounded.
I sheet completed.
On July 1 the McArthur, under command of Assistant Ferdinand Westdahl, was at Sausalito, Cal., engaged in completing the resurvey of the bar off the entrance to San Francisco Bay.

On July if the work was suspended for the season on account of the prevailing fog and other unfavorable weather conditions. Only a portion of five days had been suitable for the work during the month. A more detailed account of this work is published in the Report for 1900.

The vessel was taken to Oakland, where the boiler was cleaned and repaired, and other necessary repairs to the ship were made. The transfer of the new crew from the Navy pay roll to a civil establishment was effected. While engaged on this work, orders were received on August 21 to proceed with the ship to Seattle, Wash.

After returning from the cruise in Alaska with the Coast Pilot party, Assistant Westdahl received instructions to take up the hydrographic survey along the water front at Seattle, Wash. Active field operations began on November 12 and were completed on December 6.

The 'weather was stormy, cold, and very unfavorable to rapid progress. - After obtaining the results mentioned in the above summary, the work was closed because the weather conditions indicated that thick weather and fog would prevail for a long period.

The McArthur left Seattle on December 9 and reached San Francisco on the 15 th.
Various repairs were made, and the ship was ready for work on March i5. Active field operations in making supplementary surveys to complete seven hydrographic sheets of former work, covering portions of San Francisco and San Pablo bays, began on March 22 and continued until April 12, when the work assigned to the ship was completed, and the $M c A r t h u r$ returned to Oakland Harbor in order to complete the field records for transmission to the Office.

DIVISION OF ALASKA.

Magnetic. alaska.
W. Weinkich, Jr., Magnetic Observer.
S. K. Paul, Recorder.
L. A. Bauer.

Sept. 5 to Oct. 27.
Oct. I to June 30 .

The selection of a suitable location for a magnetic observatory to serve as a base station in the magnetic survey of Alaska was assigned to Assistant Bauer. He left Seattle, Wash., on September 12 and made a magnetic examination at Fort Wrangel, Juneau, Skagway, and Sitka. He was at Sitka from September 20 to October 4, and made a thorough examination of all available sites in this vicinity, determining the magnetic elements at four stations. The observations indicated that the distribution of the earth's magnetism was fairly uniform in the region covered by the stations, and it was decided to locate the observatory at Sitka.

On the return trip to Seattle he made magnetic observations at Dundas Bay and Killisnoo and at variousstations in Gastineau Channel. He left Juneau on October 9 and reached Seattle on the 12 th.

In order to make such magnetic observations as circumstances permitted during a cruise of the steamer $M c A r t h u c r$ in Alaska with a Coast Pilot party on board, Magnetic Observer W. Weinrich, jr., reported for this duty at Seattle, Wash., on September 5, and continued the work until the end of the cruise on November I.

He made magnetic observations at Bartletts Bay, Battery Point, Chasinia Point, Dixon Harbor, Dolomite, Juneau Isle, Carta Bay, Killisnoo, Ketchikan, McLean Arm, Port Chester, Port Snettisham, Skawl Point, Sitka, Spasskaia Island, and William Henry Bay. He also aided in the determination of the amount and direction of the unusual local disturbance of the compass existing in Peril Strait, Lynn Canal, near Battery Point, in Gastineau Channel, and at Port Snettisham. Magnetic observations were also made at Comox, British Columbia.

Daily (except Sunday) declination readings at Sitka were made by Recorder Paul from $7 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$. October I to June 30.

RECONNAISSANCE.

E. F. Dickins, Commanding, Steamer Gedney.

C. W. Fitzgerald, First Watch Officer. W. H. Burger, Aid.

Mar. 2, to Jan. 15.
J. W. McGrath, Second-Watch Officer.
F. G. Crist, Deck Officer, Second Class.
W. W. Markoe, Assistant Surgeon.

The steamer Gedney, Assistant E. F. Dickins commanding, remained in San Francisco Bay March to to May 24, having repairs made and attending to routine matters. On May 25 the vessel sailed for Seattle and reached there on the 29th. Bids were obtained for a new boiler and a contract for one was completed on June 12. On June 13 the vessel proceeded to Victoria, B. C., and during the night Mr. Fitzgerald, first watch officer, was attacked by pleurisy and it was necessary to return to Port Townsend and place him in the marine hospital at that place. This was accomplished, and on June I6 the vessel sailed for Alaska.

The vessel reached Cross Sound, the working ground, on the 27 th, having stopped for coal at Union Bay, B. C., and at Juneau, Alaska, for coal, water, and lumber.

The work of the season began immediately and was in progress at the close of the fiscal year.

For the purpose of locating a magnetic observatory at Sitka, Alaska, and making arrangements for the erection of the necessary buildings Aid Fleming proceeded to that place in May. He reached Sitka on June i, aud remained there until the close of the fiscal year. A final selection of the observatory site, and bids for the construction of the observatory were obtained from Seattle, Juneau, Skagway, and Sitka. Estimates of the cost of labor and material were also obtained.

The selection of the observatory site involved the examination of five proposed building sites. Special magnetic observations were made to determine the local disturbance, if any, and also to determine the effect of iron ships anchoring in the harbor or lying at the wharf.

The necessary preliminary work was completed during the month.

July / to October 14.
H. F. Fifyns, Assistant.
A. H. Dutron, First Watch Officer.
J. T. Goldsborough, Chief Engineer.
E. R. Frisby, Aid.
C. W. Fitzgerald, .Second Watch Officer.
W. M Atkinson, Third Watch Officer.
C. F. Deichman, Chief Yeoman.
J. J. Murphy, Hospital Steward.
R. C. MeGregor, Recorder.
J. T. Watkins, Draftsman.

SUMMARY OF RESULTS.

Norton Sound and Bay.
24 triangulation stations occupied.
32 geographic positions determined.
2600 square miles area covered by triangulation.
I 969 square miles of area sounded.
1121 miles of lines sounded.
5 tide stations established.
6 hydrographic sheets completed.
144 square miles area surveyed.
440 miles of shore-line surveyed.
ro topographic sheets completed.
I magnetic station occupied.
I pendulum station occupied.
April s to June zo.
C. C. Yates, Assistant.
W. M. Atkinson, Second Watch Officer.
L. M. Furman, Third watch Officer.
J. T. Goldsborough, Chief Enginect.
F. H. Brundage, Aid.
J. J. Murphy, Suggeon.

Cari, F. Deichman, Captain's clerk.
F. Prav, Draftsman.
R. C. McGregor, Deck Officer, Third Class.

148

TRIANGULATION TOPOGRAPHY AND HYDROGRAPHY

NORTON SOUND

ALASKA

Shore line re-surveyed shown by heavy line.

$$
163^{\circ}
$$

SUMMARY OY RESUITS.

Fo.r Island Group.

25 triangulation stations established.
I base line measured.
45 square miles area covered by triangulation. 15 triangulation stations occupied. 27 square miles area surveyed by topography. 42 miles general coast line surveyed. 979 soundings made (not plotted June 30). 4 tide stations established.

On July i the steamer Pathfinder, under command of J. J. Gilbert, Assistant, Coast and Geodetic Survey, was at St. Michael; Alaska, engaged in preparation for the season's work. The small steamer Yukon and two launches which had been hauled out of the water at this place in the preceding year were launched.

On the evening of July 4 a party was sent in a launch to place buoys in the approach to the Apoon entrance to the Yukon River, and on the 6 th the work of constructing signals began.

Having recently arrived from Nome, against which a quarantine had been established, the vessel was required to remain at the quarantine station fourteen days or keep away from St. Michael during that period. The latter alternative was adopted, and the topographic work began near Toik station instead of in St. Michael Bay.

Signals were erected and observations began in all branches of the work, every effort being made to accomplish as much as possible during the short season available for the work.

Assistant Flynn returned on the 14th of July, after successfully placing buoys to mark the Apoon entrance to the Yukon River. His work was much delayed by the launch breaking down and the difficulty of covering the long distance traveled in safety. The Yukon, with the necessary complement of men, was assigned to Assistant Flynn, and he was put in charge of the triangulation work. He occupied 24 stations, most of which were difficult of access, and connected the triangulation at St. Michael with that of Golofnin Bay.

It was evident that in order to complete the survey of the shoreline between St. Michael and Golofnin Bay and of Golofnin Sound in one short season, the usual method of executing such work would have to be abandoned and a more expeditious one adopted. It was decided to proceed without waiting for geographic positions, to dispense with projections, and to run the shoreline as carefully as these conditions permitted, using sufficient expedition to accomplish the work as outlined above, and to adjust the topographic work to the triangulation when the positions became available. All the shore line was run by Assistant Gilbert and Aid Frisby, working from the ship to a point a short distance beyond Cape Denbigh, when the work proved to be too far away from the ship's anchorage and it becanie necessary to use a tent.

Watch Officer Fitzgerald was placed in charge of the hydrographic work.
Owing to the great distance to be covered, it was decided not to extend the hydrography beyond the 6 -fathom curve, except on a few lines to verify the soundings shown on the charts beyond that depth.

At the close of the season, while waiting to haul out the Yukon, a more careful survey of the harbor at St . Michael was completed, and a special effort was made to locate a sunken scow, but without success.

The survey of Golofnin Sound proved that it is not more than one-third of the size shown on the published chart, in use at the time, and that more than half of it is too shallow to be used except by small craft.

After completing the work the vessel returned to St. Michael for the purpose of housing and storing all the boats and other property. Owing to unfavorable weather, this work was not completed until September 21. On the 22d the ship went to Egg Island and made a topographic survey of it on the 24th. On the 25th soundings were made between Egg Island and Cape Darby.

All the members of the U. S. Geological Survey party, who were to return on the Pathfinder, were on board by September 28, and the vessel started to Dutch Harbor during the night.

The vessel reached Dutch Harbor on October 2, was delayed three days coaling, sailed for San Francisco on October 5, and arrived at that place on October 14.

The Pathfinder remained in San Francisco Harbor until April 18, and on that day sailed for Seattle. The vessel stopped at Port Stanley and the Government property stored there was examined and disposed of, the useless articles being sold at public auction and the remaining property taken on board and carried to Seattle for storage or shipment to Washington.

The vessel reached Seattle on the 25th and remained there until May 2, when she sailed for Alaska, stopping for coal at Comox, British Columbia, and at Victoria, British Columbia, where a "submarine sentry" was purchased. Attention was called to this useful device by Captain Welbron of the steamer Quadra, who referred to its value in exploring unknown waters and strongly recommended it as a safeguard in such work as the vessel would have to do during the season. Assistant Gilbert was enabled to purchase the device through the good will of the Canadian Pacific Navigation Company, the owners. The voyage north was a stormy one, but was attended by no greater disaster than the loss of one of the boat booms, which was washed away, and the vessel anchored in Dutch Harbor on May 16.

The work was at once begun by the erection of an automatic tide gauge. The great obstacle to work of any kind in this vicinity is the constant fog which covers all the hills the greater portion of the time, and never disappears entirely at this season.

The line Flat to Grove was used as a base for work in Unalaska Bay and a base line was measured in English Bay and the triangulation extended to the passes. An examination was then made as far east as Ugamuk Island, and a number of signals were built to be used in extending the triangulation through the channel between the Tagalda groups of islands and Akutan and Akur Islands. This channel was examined with the sentry and found to be free from dangers.

The observation of angles and topagraphic work was continued whenever the weather permitted. Tide gauges were erected around Unalaska Island and tide observations were made.

The shores of the island are extremely interesting, the many picturesque bays, the remarkable cliffs and bluffs of basalt, and the hundreds of outlying rocks, large and

small, and of all shapes, the snow-capped mountains now and then showing through the clouds, and the continual succession of waterfalls, all contribute to impress the visitor.

The "submarine sentry" proved to be very valuable. The device is set to give warning when any required depth is reached, and when the vessel passes over a spot with that depth of water on it, the sentry bell rings and a "kite" is tripped and comes to the surface, thus giving warning in time to steer away from danger. The "sentry" is reliable for any depth up to 25 fathoms with one "kite" and 40 fathoms with the other, and it is also provided with a tube for sounding in same manner as with the Kelvin machine.

This region offers few facilities for camping along the shore on account of the difficulties of moving, as it is not possible to land except in sheltered places and most of the work was necessarily done from the vessel.

Assis, ant Gilbert reports that Assistant Yates, in addition to other duties, performed those of executive officer in a very satisfactory manner, and the other officers were equally attentive and efficient in their positions.

The work was in progress at the close of the fiscal year.

Coast Pilot. alaska. H. C. Graves.
A new edition of the United States Coast Pilot, Pacific Coast, Alaska, having become necessary, Nautical Expert Graves was assigned to the work, and on July i, 1900, was on board the U.S. Light-House Tender Columbine in Alaskan waters collecting the material needed for the revision of the former edition.

Mr. E. H. Francis, the well-known pilot for Alaskan waters, was associated with Mr. Graves in this work.

The Columbine left Sitka on July 6 for Unalaska on light-house inspection work and visited the Fox Island passes and Unalaska Bay. A pilot from Unalaska was on board while the vessel was cruising in the Fox Island passes. Advantage was taken of every available opportunity to acquire personal knowledge, and copious notes were made of information useful to mariners.

The Columbine returned to Sitka on July 24 and sailed on the 27 th for buoy and inspection work in southeast Alaska. The route included all of the important channels of commerce. The weather was exceptionally good and the runs were nearly all made in daylight. The Coast Pilot information is practically complete for the principal channels where the surveys are good.

Commander W. P. Day, U.S. N., and Capt. William C. Langfitt, U. S. A., the Light-House Inspectors, and Captain Richardson and the officers of the Columbine kindly aided in the work to the extent permitted by their regular duties.

The Columbine reached Seattle on August ${ }_{15}$, and Messrs Graves and Francis left the vessel and reported at the suboffice. They were occupied with office work in connection with their work in the field until September 2 , when they reported on board the steamer McArthur in accordance with instructions dated August 22.

The McArthur sailed on the 6th for Coast Pilot duty in Alaska, being used as a transport for Messrs Graves and Francis.

On this trip the ship steamed 3600 nautical miles and visited 87 harbors and anchorages in southeastern Alaska and British Columbia. The weather was generally good until October 6, but after that date it was quite the reverse until November i, when the voyage ended at Seattle.

Coast Pilot notes were made on all the waters visited, and numerous photographs and sketches were made. As much information was collected as the conditions permitted without unduly delaying the voyage. Mr. Graves left the ship on November 7 and Mr. Francis on November in.

Abstract

Astronomic. ALASKA. Base line. Hydrographic. Magnetic. Reconnaissance. Tide. Topographic. Triangulation.

July r to October 29.
R. L. Faris, Assistant.
W. G. Appleton, First Watch officer.
H. S. Powfll; Chief Engineer.
R. B. Dekickson, Aid.
H. W. Rhones, Aid,
W. I. Eisi, er, Second Watch Officer.
L. M. Furman, Whird Watch Officer.
F. H. Thompson, Surgeon.
A. L. Giacomini, Chief Yeoman.
R. J. Christman, Draftsman.
C. E. Morforn, Recorder.

[^1]R. B. Derickson, Assistant.
W. G. Appleton, First Watch Officer.
W. I. Eisler, Second Watch Officer.
F. H. Thompson, Surgeon.
W. E. Parker, Aid.
A. L. Giacomini, Deck Officer, First Class.
L. H. Wfestdahl, Deck Officer, First Class.
R. J. Christman, Drafisman.

SUMMARY OF RESULTS.
Icy Strait.

590 square miles area covered by reconnaissance.
540 square miles area covered by triangulation.
I3 triangulation stations occupied.
27 geographic positions determined.
2 magnetic stations occupied.
2 tide stations established.
On July I the steamer Patterson, commanded by J. F. Pratt, Assistant, Coast and Geodetic Survey, was making the voyage to Nome, Alaska, and reached that place on July 6.

Mr. E. C. Barnard, Topographer, U. S. Geological Survey, and his three assistants, had been authorized to take passage on the Patterson, in the wardroom, from Seattle to Nome, Alaska, and the eleven hands belonging to his party were carried in the forecastle.

A portion of the supplies and outfit for this party was landed at the United States Army post on Nome River. The party and the remainder of their outfit, and nearly all the remaining portion of their supplies, were landed at Chignick, Golofnin Bay.

At Mr. Barnard's request a small portion of their supplies was kept on board to be delivered to the party later in the season at Port Clarence.

During the season forage for the party was taken from the army post at Nome and landed at Quartz Creek, in the vicinity of Cape Rodney. In addition to carrying out his instructions in regard to transporting this party and outfit, Assistant Pratt furnished them with a spare ship's cutter and during the season supplied them with all the information and data in his hands which they needed to facilitate the work of the survey Mr. Barnard was making.

The survey work of the season began on July 9, when the triangulation of Golofnin Bay was taken up. It was extended across the high peninsula on the west side of the bay and then westward along the coast. The hydrographic and topographic work progressed at the same time, and an effort was made to keep each branch of the work up with the others.

The season was an unusual one, and from the time the snow melted until late in August there was no rain.

The tundra became so dry that fires, starting from the camp fires kindled by the numerous prospectors in this region, spread and smoldered in all directions, and the country between Rocky Cape and Cape Nome was enveloped in snoke the greater portion of the time for a period of five weeks. This atmospheric condition greatly delayed the progress of all classes of the work, and kept the triangulation behind all the other classes.

During the season the following triangulation work was done. A chain of figures beginning on the east side of Golofnin Bay was extended to the westward along the coast to Sledge Island, a distance of about 96 miles. This work is checked by a base line about I mile long, measured with a steel tape on the beach between Nome and Snake rivers. The observations were made under difficult and dangerous conditions, as it was necessary for the observing party to land every day through the surf on an outside unprotected coast.

Another scheme of triangulation starts from a base line, measured with a steel tape near the Teller reindeer station in the northeast corner of Port Clarence, and covers all of Port Clarence, Grantley Harbor, Imurook Passage, and Imurook Basin, forming a continuous chain 58 miles in length. The triangulation work was done by Aids Derickson and Rhodes.

The topography was taken up at the point where work was suspended at the close of the season in the previous year, just inside Rocky Cape, Golofnin Bay, and extended westward to Sledge Island, and a survey of this island was also made.

This wark was also executed under extremely dangerous conditions, as it was necessary for the topographic party to land through the surf on the outside unprotected coast under many unfavorable weather conditions. A topographic survey of Port Clarence, Grantley Harbor, Imurook Passage, and Imurook Basin was made.

The topographic work was done by Assistant R. L. Faris.
The hydrographic work was extended along the coast covered by the triangulation and topography.

That portion between Golofnin Bay and Sledge Island is called the " Gold Coast," along which the landing of stores and provisions has been made at short intervals. A careful hydrographic survey was made of the coast between Rocky Cape and Sledge Island, from just outside the breakers out to a depth of from 5 to 7 fathoms of water, covering the ground with lines normal to the coast and about one-half mile apart. The steam launches were used on this work and lines normal to the coast were sounded by using the ship out to the limits of the hydrographic sheets at intervals of about $2 \mathrm{I} / 2$. miles. At intervals of 5 miles the lines of soundings extended to a distance of 25 to 30 miles offshore.

It was evident that a change had occurred in the entrance to Port Clarence, and consequently a careful survey was made and plotted on a large scale. Diligent search was made for the shoal reported to be about 8 miles west of Cape Nome, and $12 / 3$ miles offshore, but it was not discovered. All of the hydrographic work resulting from the use of the launches and boats was done by Messrs. Appleton, Eisler, Furman, and Giacomini.

A self-registering tide gauge was erected at Tapkok, behind the rocky projection at the southeast corner of the headland, at the United States Army post at Nome, at Sledge Island, and at Cape Riley, Port Clarence. The record obtained by using the gauges was supplemented by two tide staffs erected near the camps, from which all the survey work was done in Imurook Basin.

The work in Port Clarence and Grantley Harbor was done in the tempestuous weather of early winter.

Imurook Basin was about 25 miles from the nearest anchorage for the ship, too far to make the survey from the ship, and consequently rough camps were established.

In referring to the officers under his command, Assistant Pratt's report contains the following:

Abstract

The triangulation was executed by Messrs Derickson and Rhodes, aids, and it becomes my agreeable duty to call attention to the persistent and painstaking manner in which they did their work and the excellent manner in which they handled their boat crews.

Successful surf landing under almost all weather conditions brings to light the good judgment and capacity of the young officer to handle men, and I have the pleasure of stating that both of these young gentlemen demonstrated their possession of these qualifications far above the average.

Too much credit can not be given them for the hard and hazardous duty that they have so successfully performed.

I especially desire to call attention to the topographic work of Assistant Faris on account of its comprehensiveness and the great rapidity with which it was executed, and also to the unusual capacity he possesses for the execution of all the different classes of the field work of the Survey, and to the excellent judgment that he has displayed in handling work, officers, and crew. Assistant Faris was constituted official and responsible navigator of the ship, and performed this work with unusual promptness and precision.

It is with pleasure that I have to report that all the watch officers, chief engineer, yeoman, surgeon, and draftsman were always more than willing to take hold, irrespective of what or how disagreeable the duties might be, whenever their services could be made available.

The survey of Icy Strait and Cross Sound was assigned to Assistant J. F. Pratt, commanding the steamer Patterson. He completed all necessary preparations and sailed from Seattle, Wash., May 16, under instructions to proceed to southeast Alaska and take up the work.

Assistant E. F. Dickins, commanding the steamer Gedney, was also assigned to this work under Assistant Pratt's direction, but he was delayed in San Francisco and Seattle securing bids for a new boiler for his vessel and did not report at Bartlett Bay until June 25. The details of the work of the Gedney are stated elsewhere in the extract from the report of Assistant Dickins.

On May 18 coal was taken on board the Patterson at Union Bay, British Columbia, and the vessel then proceeded to Sitka, via Junean, and reached that place on May 26. The steamer Cosmos was put in order and launched, and on May 30 the Patterson started to the field of work with the Cosmos in tow.

A hurried recomaissance was made of Icy Strait as far west as Bartlett Bay before sending Pilot E. H. Francis back to Seattle to bring up the steamer Geduey. On June I the Patterson took Pilot Francis to Juneau, and returned to the field of work on June 3. Assistant Derickson was placed in command of the Cosmos, and made observations at triangulation points which it was impracticable to reach from the Patterson.

The triangulation points at the eastern entrance to Icy Strait could not be found, and the line Don to Calm, on the eastern side of Chatham Strait, was used as a base from which to extend the work. From this base the reconnaissance was carried as far west as Dundas Bay, and the triangulation was completed as far west as Glacier Bay.

Whenever practicable, magnetic observations were made at the triangulation points with a compass declinometer.

Self-registering tide gauges were established at Funter Bay and Hooniah, for the purpose of transferring the plane of reference for soundings to Hooniah.

When the report closed only three anchorages-Swansons Harbor, Hooniah, and the head of Port Althorp-had been found free from icebergs. Three others had been utilized-Bartlett Bay, Mud Bay, and Dundas Bay-into which large icebergs floated.

The currents were very much stronger than anticipated, and in the anchorages ranged from slack water to $21 / 2$ knots. The ice varied in size from small float ice to bergs which grounded in 30 fathoms of water, and rendered the anchorages dangerous when the icebergs could approach the vessel with a 2 -knot current. In Mud Bay the vessel was anchored in 9 fathoms of water, and pieces of ice grounded about one-quarter of a mile outside the vessel. The strong ebb and flood currents running 4 to 5 knots collect the ice and mass it across the passages, at times completely blocking them. The narrow passages are full of swirls and eddies, and it was dangerous to use them. In going through the passage to the north and west of Lemesurier Island one night in order to anchor in Bartlett Bay, a windrow of ice in one of these swirls was encountered, and a large piece struck the stem of the Patterson and carried off sideways the upper part of her cutwater.

The work was in progress at the close of the fiscal year.

SUMMARY OF RESULTS.
I 295 square miles area covered by triangulation. 90 triangulation stations occupied. 86 geographic positions determined. 35 elevations determined by vertical angles. 125 miles general shore line surveyed.
The survey of Prince William Sound was in active progress on July r, with Assistant Ritter in charge of the work.

The work continued without interruption until the close of the season, October 10.
The party left Orca on the following day and reached San Francisco on October 25.
The following statement refers to the whole season, while the statistics given above cover only that part of the work completed after July 1 , the statistics covering the first part of the season having been included in the Report for 1900.

The work of the season consisted of triangulation, hydrography, and shore-line topography, including the location of prominent mountain peaks and the determination of their elevation. A base line was measured with a steel tape line at the western end of Hawkins Island, for the purpose of checking the triangulation already completed and to serve as a base for the work in progress.

Astronomic observations to determine the azimuth of a line were made at Orca.
Magnetic observations to determine the declination were made at Orca and at stations no and 30 miles west of Orca.

Photographs for general and topographic use, and the usual tide and meteorologic observations were made. The triangulation was extended from the head of Cordova Bay to Point Johnstone, the north point of Hinchinbrook Island. It was connected with the triangulation of 1899 at Orca and at Station Pond, which is near the check base line. On a few days, when the clouds did not obscure the mountains, observations of horizontal and vertical angles were made on them. All the observations of angles were made by Aid Denson. The areas sounded during the season comprised Hawkins Island cut-off from the eastern end, where it joins the work of the previous season, to the northwestern extremity where it connects with Prince William Sound.

The so-called Middle Ground Shoal was developed. This shoal extends from Makaka Point on the east, in a westerly direction toward Point Johnstone, and in a northerly direction toward Gravina Bay. From Makaka Point sounding lines were run embracing the area to the eastward as far as the eastern end and head of Sheep Bay.

The hydrography of the upper end of Cordova Bay, joining and extending the work executed in 1897 by the U.S. Fish Commission steamer Albatross, was developed.

The topographic work consisted mainly in delineating, by using a plane table, the shore line, the rocks, and the adjacent topography. The localities thus mapped included the western end of Hawkins Island cut-off, the south shore of Prince William Sound from a point 5 miles west of Salmo Point to Point Johnstone, and the north shore of the sound in the vicinity of Sheep Bay.

Thirteen stations were occupied with a phototopographic camera, most of these being triangulation stations.

The survey of Prince William Sound was continued in April by Assistant Ritter and his party. He arrived at Orca on April in, and field operations began immediately.

It was decided to extend the triangulation from the line Makaka to Point Johnstone, as a base, northward and then along the eastern shore of the sound, using stations on the main land and adjacent islands. The camp was set up at Snug Corner Cove, a sheltered harbor at the southwestern extremity of Port Fidalgo, 20 miles from Point Johnstone and 45 miles from Orca. From this camp the work was completed south to the base line and 15 miles to the northward.

On June 7 the camp was moved to the mouth of Jacks Bay, on the south shore of Valdez Arm, 18 miles from Valdez, and the triangulation was completed to Jacks Bay at the end of the fiscal year.

In selecting the stations care was exercised in placing them in such positions that future extensions of the work will be comparatively easy at the points where such extensions will be necessary.

Auxiliary positions were determined wherever they were necessary to control the shore line topography. In Galena and Jacks Bay, the angles in the subsidiary triangulation were measured by using a sextant.

The position of each prominent and characteristic momntain peak visible from two or more triangulation stations was determined and the elevation obtained by measuring vertical angles.

The work was in progress at the close of the fiscal year.
Base Line. \quad alaska. F. Westdahl, Commanding,
Coast Pilot.
Reamer McArthur.

Coast Pilot. Steamer McArthur.
Reconnaissance.
Triangulation.
September 6 to November s.
B. J. Crowley, First Watch Officer: Charles Lyman, Second Watch Officer. James Suldivan, Chief Engincer, Third Class. R. H. Hawnes, Assisiant Surgeon. Aug. 21 to Sept. ' 4 .
w. W. Markoe, Assistant Surgeon.

Sept. 4 to Nov. 12.
L. H. Westdahl, Deck Officer, First Class. F. G. Crist, Deck Officer, First Class. Aug. 2I to Sept. 4.

$$
\text { May }{ }_{4} \text { to June } 30 .
$$

R. I. Faris, Assistant.
B. J. Crowley, First Watch Officer. Charles lyman, Second Watch Officer. James Sullivan, Chief Engineer, Third Class. R. H. Hawkes, Assistant Surgeon. O. M. Leland, Aid.

SUMMARY OF RESULTS.
670 square miles area covered by reconnaissance.
19 triangulation points selected.
I base line measured.
I triangulation station occupied.
On August 21, Assistant Ferdinand Westdahl, commanding the steamer McArthur, received instruction to proceed with the vessel to Seattle, Wash., for the purpose of conveying H. C. Graves, nautical expert, and E. H. Francis, Alaska pilot, to Alaska and along the southeastern coast to enable Mr. Graves to collect the data required in a revision of the Coast Pilot covering this region.

All the necessary preparations were made and the vessel left San Francisco on August 28. The McArthur reached Seattle on September I, and Messrs. Graves and Francis came on board on the following day.

Mr. William Weinrich, jr., magnetic observer, came on board on September 5 . The vessel left Seattle on September 6 and went to Union Bay, near Comox, British Columbia, where a supply of coal was taken on board, and on September 8 sailed for southeastern Alaska. On this cruise the ship steamed 3,600 nautical miles and visited 87 harbors and anchorages in southeastern Alaska and British Columbia.

The weather was generally good until October 6, but after that date it was quite the reverse until the voyage ended at Seattle, Wash., on November i.

The vessel on this cruise was used exclusively as a transport for the Coast Pilot party, and the work accomplished will be reported in detail by Mr. Graves, Nautical Expert. All possible assistance was extended to him and the ship was practically under his orders during the cruise.

$$
\text { S. Doc. } 50-11
$$

Messrs Graves and Weinrich left the ship on November 7 and Mr. Francis on November II, and the vessel afterwards proceeded to San Francisco and was engaged in supplemental survey work in the bay.

Preparations for work in Alaska were completed, and the steamer McArthur, F. Westdah1, Assistant, Coast and Geodetic Survey, commanding, left San Francisco on May 4 and reached Seattle on the 9 th. The steamer Patterson was almost ready to sail for Alaska with a pilot on board and the McArthur waited to follow her. Both ships sailed on the 16 th and reached Juneau, Alaska, on May 23, having taken on coal at Union Bay, British Columbia.

The McArthur filled her coal bunkers again and both ships proceeded to Funter Bay on the 25 th and anchored for the night. On the following day the ships separated, and the McArthur passed through Icy Strait and Cross Sound to the Pacific Ocean. A good deal of floating ice was encountered and the land was covered with snow to the water's edge. The ship reached Kodiak on the 29th and replenished the supply of coal and water and engaged Paul W. Pavlof as pilot. The waters to be' surveyed were not familiar to the officers of the ship and were said to contain many dangerous rocks. The ship proceeded to the working ground and reached there on Junc 6, after a very stormy passage, being forced to seek shelter several times and to remain in Kuprianof Harbor for two days.

Field operations began on June 7 and continued until the end of the fiscal year, but very little work was accomplished. A recomaissance was made and nineteen triangulation stations were selected.

A base line was measured and lumber was landed through the surf for the erection of signals. Only one triangulation station was occupied. The weather continued stormy, and most of the time was spent in looking after the safety of the ship, as many of the anchorages were roadsteads without much protection.

On June 13 it was necessary to proceed to Dutch Harbor for coal. While at that port an unsuccessful effort was made to observe for a time at the astronomic station. A comparison of the ship's chronometers was made with those on the steamer Pathfinder and also with those on the U. S. Army transport Warren.

The McArthur left Dutch Harbor on June 19 and anchored in Acherk Harbor on the following day.

The erection of signals continued whenever the weather conditions permitted. The field of work was a difficult one with no safe harbors near, and no anchorages were available where the ship was not liable to exposure to danger at any time from a sudden change in the direction of the wind.

Safety in the open sea could not be considered on account of the dangerous rocks in the area off the coast and the prevailing thick weather. The local knowledge of the pilot was very useful, but could not be wholly relied on as to the safety of the anchorages. His presence aided materially in advancing the work.

Views of the land for the Coast Pilot were made whenever the conditions permitted and all other useful information collected as opportunity offered. The work was actively in progress at the close of the fiscal year.

Assistant Westdahl commends Watch Officer Crowley, Second Watch Officer Lyman, and Chief Engineer Sullivan for their attention to duty and interest in their work, and mentions particularly the care with which Watch Officer Crowley prepared the accounts of the ship's expenses.

On January 31, fgor, Prof. W. D. Alexander took the oath of office as Assistant in the Coast and Geodetic Survey. For many years previous to this date he held the office of surveyor-general of the Hawaiian Islands, before and after the annexation of the islands by the United States.

After his appointment in the Coast and Geodetic Survey he continued to supervise the preparation of a large scale map for the Territorial government and had directions of the tide observations made in the islands.

He prepared a list of the geographic positions already determined on the islands, except the islands of Kauai and Niihau, reducing the latitudes and longitudes to one uniform mean standard and converting the distance from feet to meters.

He also began the preparation of a dictionary of Hawaiian geographic names and performed various duties in connection with the transfer of records and instruments from the surveyor-general's office to the Coast and Geodetic Survey.

He was engaged in performing the above duties at the close of the fiscal year.

Magnetic.
HAWAIIAN ISLANDS.
L. A. Bauer.

The selection of a location for the magnetic observatory in the Hawaiian Islands to serve as a base station in the magnetic survey was assigned to Assistant Bauer, and he left San Francisco on October 17 under instructions to make the necessary examination. He examined various sites on Oahu and Hawaii Islands and selected a point on the extensive coral plain in the southwestern part of Oahu Island, near Sisal, as the best available site. He also made magnetic observations at Kahuku, Waialua, Honouliuli Ranch (two stations), Eiwa Mill, Sisal (two stations), Honolulu, Diamond Head, Puuloa Railroad Station, and Puuloa Point (Pearl Harbor) on the island of Oahu, and at Kilauea on the island of Hawaii.

He returned to San Francisco on November 29.
164

TRIANGULATION, TOPOGRAPHY AND HYDROGRAPHY
EAST END OF PORTO RICO
June 30, 1901
Hydrographic. porto rico. J. B. Boutelle, Commanding,
Reconnaissance.
Schooner Eagre.

Tide.
Topographic.
Triangulation.
V. R. Lyle, First Watch Officer.
F. F. Weld, Aid.

Wm. B. Proctor, Second Watch Officer.
J. H. Ullrich, Assistant Surgeon.
R. McD. Moser, Deck Officer, First Class.
D. B. Wainkight, Deck Officer, First Class.
V. Sourinin, Draftsman.

SUMMARY OF RESUITS.

73 square imiles area of recomnaissance.
73 square miles area of triangulation.
22 triangulation stations occupied.
26 geographic positions determined. is square miles area covered by topography. 87 miles general coast line surveyed. 2 miles river shore line surveyed.
22 miles roads surveyed.
5 topographic sheets completed. 55 square miles area covered by hydrography.
r 697 miles of sounding lines completed.
3 tide stations established.
3 hydrographic sheets completed.
The schooner Eagre, Assistant J. B. Boutelle, commanding, sailed from Baltimore on December 3 and reached San Juan, Porto Rico, on December 20. The vessel remained at San Juan until January 8, taking on coal, lumber, and stores, making repairs to the steam launch Inspector, and other necessary preparations for the season's work.

The vessel left San Juan on January 8 and proceeded to Fajardo, on the east coast of Porto Rico. Signals were erected along the Cordilleras Reef and southward along the coast to Ensenada Honda, and the triangulation, topography, and hydrography in this vicinity was commenced. The topography was extended from the work of the previous year to the eastern extremity of the Cordilleras Reef and southward to the vicinity of Cabras Island. The hydrographic work was extended from Cape San Juan Head to the Piraguas Rocks and about 6 miles to the eastward, off shore. On March 7 the vessel was moved to Ensenada Honda and the work was then extended from the above limits southward. The triangulation and topography were completed as far as Punta Yeguas, the southeast point of Porto Rico, and the hydrographic work to a line
running a little west of south from the outer Piraguas Rock to Vieques Island, and from the west side of Punta Arenas to Punta Cascajo, at the south side of Ensenada Honda.

The weather was much more favorable than during the previous season, light southerly winds prevailing much of the time instead of the regular easterly trades; but the hydrographic work was very much delayed by frequent repairs which were necessarily made to keep the boiler of the steam launch in running order. The rainy season began in the latter part of April, and after that date rain showers were of frequent occurrence. Field work closed on May 31 and the vessel proceeded to San Juan. The vessel sailed from San Juan for Baltimore on June II, reaching there on the 20th, and remained there until the close of the fiscal year.

Hydrographic. \quad porto rico. Geo. L. Flower, Commanding,
Tidf.
F. H. Ainsworth, First Watch Officer.
A. F. Adae, Second Watch Officer.
S. Earle, Deck Officer, Second Class.
H. S. McCrae, Deck Jficer, Third Class.
E. V. Miller, Junior Caplain's Clerk.

SUMMARY OF RESULTS.

> I54 square miles area covered by sounding. I 203 miles of lines sounded. 5 tide stations established.

The Matchless was undergoing repairs at New York October 8 to November 26, when the repairs were completed. Preparations for survey work in Porto Rico were completed, and the vessel sailed on December 3 for Ponce, Porto Rico, under the command of George L. Flower, Assistant, Coast and Geodetic Survey. The Matchless reached that port on the 2 ist and field operations began immediately.

A tide gauge was erected at Ponce and in Guanica Harbor, and the hydrographic survey of the harbor began on December 25. The soundings were made by using a whaleboat, as no launch was available, and the party was too small to man two sounding boats.

- Much time was lost while at work on the southern coast in making trips to Ponce for water and stores, as it was the only port at which they could be obtained. The work progressed as rapidly as circumstances permitted, and the boat work was completed on January 16. The vessel sailed the same day for Ponce for water and stores, and then proceeded to Guayanilla Harbor and began the survey of the harbor on January 22, and the boat work was completed on February 14. This harbor possesses a fine, deep entrance, well protected, and affords a safe refuge for vessels.

On February 16 work began at Tallaboa Bay, still using the whale boat for the sounding party. The bay is only partially protected by a few small islands, and the progress of the work was much retarded by rough water. The sounding work at this place was completed on March 5, and on the following day work with the schooner began off the southern coast.

The water was continually rough and the soundings were made without waiting for smooth water.

On March 26 the launch Rudy arrived at Ponce, and afterwards aided materially in advancing the work.

The development of the south coast from Ratones Island to Point Brea out to the 28 -fathom curve was completed on April 12 . On the 13th the vessel sailed for the west coast, under instructions to develop the shoals and channels between Cabo Rojo and

Mayaguez. A general reconnaissance of this portion of the coast was made, and an automatic tide gauge was established at Puerto Real, but it was impracticable to place it in charge of anyone on shore, as no one could be found with sufficient intelligence in the vicinity.

The sounding work began on April 23 and continued until June 4. During this time lines of soundings, normal to the shore line, averaging 400 meters apart, and extending to a point approximately 5 miles off shore, were run between Cabo Rojo and Mayaguez, and the shoals developed.

In addition to this work a survey was made of Puerto Real. The northeast winds of the northern coast meeting the southeast winds of the southern coast made the wind of the west coast so variable that it was impracticable to work with the schooner. Several attempts were made to locate the outlying shoals indicated on the chart.

Some of these were found, but the rainy season was so far advanced and the coast so much hidden by rain squalls and haze that the attempts to locate them proved unsuccessful.

Water and stores were procured at Mayaguez while working on the west coast.
On June 6 the launch was stored at Mayaguez, and on June 8 the vessel sailed for Baltimore and reached her destination on June 17.

```
Magnetic.
Topographic.
Triangulation.
    W. C. Dibrell, Aid.
                SUMMARY OF RESULTS.
                12 square miles area covered by triangulation.
    4 triangulation stations occupied.
    3 \text { geographic positions determined.}
29 stations occupied for triangulation, with plane table.
34 positions determined, with plane table.
60 squart miles area covered by triangulation, with plane table.
6 3 \text { square miles area surveyed.}
69 miles of coast line surveyed.
I2 miles of shore line of rivers surveyed.
.15 miles of shore line of ponds surveyed
59 miles of roads surveyed.
    2 topographic sheets completed.
    5magnetic stations occupied.
```

The topographic survey of Vieques Island, Porto Rico, was assigned to Assistant Fornes, and he was also directed to occupy a station in the main triangulation, located on the island.

Stores and supplies were obtained in New York and the party sailed for San Juau, Porto Rico, on January 5, and reached that port on January 10.

It was necessary to remain in San Juan until the 17 th, in order to take passage on the next steamer for Vieques Island. During this period of delay, Aid Dibrell occupied one of the triangulation stations in this vicinity and made observations to determine the magnetic elements. On the 17 th the party proceeded to Vieques Island and pitched camp on the ramparts of the old Spanish fort south of the town of Isabel Segunda.

A reconnaissance of the island was made and the triangulation points established and determined by Assistant Hodgkins were recovered.

Triangulation stations were occupied to complete the connection with the triangulation previously executed and to connect two light-houses, Puerto Mulos and Puerto Ferro. A plane-table triangulation was then executed, based upon the points already determined, for the purpose of determining the additional positions necessary for the topographic iwork.

On the topographic sheets the heights were expressed in meters and refer to mean high water. The contour interval was fixed at 10 meters. The interior ridges and valleys were shown by form contours depending upon a topographic reconnaissance with the plane table. The Spanish names used on the plane-table sheet were obtained from Clandomino Flores, a native of Vieques Island, who acted as pilot for Admiral Sampson, U. S. N., while he was cruising in these waters during the war with Spain.

Some confusion of names exists in this region and the island is called "Crab Island '" on many published charts, while the inhabitants and the old inhabitants of the island of Porto Rico use the name "Isla de Vieques."

Large numbers of land crabs are found on the island and the name Crab Island probably originated from this condition. Tide observations extending over a lunar month were made at Puerto Ferro on the south coast.

Magnetic observations were made at a station near Isabel Segunda, at Great Harbor, Culebra Island, at Ponce, and at Aibonita.

Assistant Forney expresses his appreciation of the service rendered during the season by Aid Dibrell, who joined the party well informed on the theory of the plane table and soon became proficient in its use in the field. Mpst of the topographic work on the island was executed by him.

The work for the season closed on June 13. The camp outfit was packed, transported to San Juan, and shipped by steamer to Washington. The party started to Washington and reached New York on June 30.

PORTO RICO.
John E. McGrath. Magnetic.
Reconnaissance.
Triangulation.
Thomas Nelnon Page, Jr., Acting Aid.
SUMMAKY OF RESULTS.
997 square miles area covered by reconnaissance.
3 I triangulation stations selected.
997 square miles area covered by triangulation.
20 triangulation stations occupied.
45 geographic positions determined.
I base line measured.
The determination of the geographic position of Mona Light-House, Monita Island, and Desecheo Island, and the extension of the west coast triangulation to Point Borinquen and the connection of the triangulation east of Ponce along the south coast with the work which had been extended south and west from St. Thomas and Culebra islands to Point Lima, Porto Rico, and Mount Pirata, Vieques Island, were assigned to Assistant McGrath.

He spent two days in New York completing his outfit, then sailed for Porto Rico on January 5 and reached San Juan on January io. Three days were spent in San Juan, and during this time arrangements were made to obtain supplies from the Quartermaster and Commissary Departments of the Army, and information was obtained from the Light-House Department.

Assistant McGrath makes special report of his cordial reception by Col. Joln L. Clem, chief quartermaster, U. S. A., at San Juan, and states that the Survey is greatly indebted to him for the liberdl arrangenents made by him which greatly facilitated the work. The Light-House Engineer and the Inspector were both absent on cluty, but the request for information was honored as fully as possible at their office. The party reached Mayaguez on January 14, and the deputy collector of customs in charge of the port, Mr. F. Cuebas, kindly passed the outfit through the custom-house without delay.

Active field operations began at once and the position of Mona Light-House and the offshore islands was determined by occupying the triangulation points at Mariquita, Mesa, and Atalaya, which positions had been determined during the previous year.

The observations at the stations named above were completed on February 3, after many delays and considerable hardship from lack of proper accommodations.

In connection with the determination of the offshore islands, several mountain peaks were located and tangents were observed to coast lines of Mona, Monita, and Desecheo islands. An effort was made to occupy Desecheo Island, and with this in view a fisherman at Aguadilla who had more experience and local knowledge of the

island than anyone else on the coast was engaged to transport the party to the island whenever the proper weather conditions prevailed to make a landing possible. The triangulation was then extended from the point reached during the previous year to Point Borinquen, and all notable points between Point Rincon and Point Borinquen that were visible from the triangulation stations and which seemed to be of importance for geographic or topographic purposes were located. Observations for magnetic declination were made with a declinometer at three of the triangulation stations.

While the work was in progress Assistant McGrath was ready at all times to respond to a summons from the fisherman at Aguadilla when the conditions for visiting Desecheo Island were favorable, and did respond to one call, but found upon arrival that an interval of two hours had so changed the conditions as to make the trip hopeless. After completing the triangulation to Point Borinquen, and having no immediate prospect of securing the proper weather conditions, the plan of occupying Desecheo Island was abandoned. Several of the signals at triangulation points on the west coast were found undisturbed. The respect with which the signals and station marks on this coast are treated by the native population is very satisfactory, and is in keeping with the consideration and courtesy shown the party in all their relations with these people.

When the work on the west coast was completed the party proceeded to Guayamas, and reached there on March 8.

A reconnaissance of the coast was made, and the line Corazon to Point Figuras Light-House was selected as the base from which to extend the work. The necessary observations to extend the triangulation to Point Lima and complete the work assigned to the party were finished on May 3.

It was not necessary to use lamps as siguals except at stations Guayanes, Candelero, and Lima, where they were necessary in observing from Mount Pirata, which station was occupied by Assistant Forney in comnection with his topographic survey of Vieques Island.

The work was delayed by the lack of accommodation, the very inferior facilities for transportation, the poor roads, and the necessity of using trails where there were no roads.

Assistant McGrath makes special mention of his aid, Thomas Nelson Page, jr., who proved to be a faithful, earnest, diligent, and ambitious worker, and showed a most gratifying interest in his duties. After completing the work the party proceeded to San Juan, and sailed for New York on May 14.

Assistant McGrath reached Washington on May 22 and reported in person at the Office.

> 450 square miles area covered by reconnaissance. 43 triangulation points selected. 300 square miles area covered by triangulation. 43 triangulation stations occupied. 77 geographic positions determined. 55 square miles area surveyed. Ioi miles of coast line surveyed. 68 miles of shore line of rivers, creeks, and ponds surveyed. 73 miles of roads surveyed. 7 topographic sheets completed. 5 magnetic stations occupied.

The triangulation, topographic, and magnetic work on the northwest coast of Porto Rico was assigned to Assistant Nelson. He spent three days in New York purchasing supplies and outfit and then proceeded, on January 5, to San Juan, P. R., and reached that port on January 10.

A party was immediately organized and field work began without delay.
The triangulation points from which it was necessary to extend the work to the westward were not conveniently located, and much time was spent in making a reconnaissance and clearing the lines.

Observations in all three branches of the work began on January 22, and steady progress was made until the close of the season. The party moved from San Juan to Toa Baja, about 20 miles to the westward, on January 28 . The lack of roads and bridges and the primitive methods of transportation greatly retarded the work throughout the season. Fortunately the railroad extends from San Juan 60 miles along the coast to the westward, and this made it possible to complete the work to a junction with that of the previous season, at Point Jiguero.

The roads are simply bull-cart tracks and trails all the way from San Juan to Aguadilla and even to Anasco.

A few pieces of road were begun between Arecibo and Utuada and between Manati and Ciales, but never completed, and landslides have since occurred which have rendered these roads practically useless. The party moved to Vega Baja on February 28, to the Manati River on March 14, to Arecibo light-house on April 4, and to Amador plantation, near Camuy, on April 27. The railroad ends at Camuy, and the road to the westward hardly deserves the name at any time, and becomesalmost impassable in the rainy season. It was over this road that the last move was made to Aguadilla, a distance of 26 miles, when, with the assistance of ten bull carts and a relay of bulls and drivers at the Fortuna plantation, about the middle point, the trip was made in twenty-six hours.

The reconnaissance and triangulation preceded the topography, and numerous obstacles had to be overcome, and at all interior points it was necessary to cut lines in all directions.

The difficulties in the way of triangulation increased as the work progressed to the west, and Borinquen Light-House and Aguadilla were so unfavorably located that it was almost impossible to make a connection with them from the east.

The plane-table work began near the eastern entrance to San Juan Harbor, and was extended to Point Jiguero, on the west coast, where it joined the work executed during the previous season. This was accomplished with comparative ease, as the coast line consists largely of sand beach, with intervening cliffs and bluffs of soft limestone not over 50 or 60 feet high. There are numerous outlying rocks of small size in places, and along the beach sand dunes ranging from to to 30 feet in height were found, which were difficult to represent on the topographic sheet. Aguadilla Bay is an open arm of the sea, and vessels can approach to about one-quarter of a mile of shore.

The Arecibo anchorage is only suitable for small craft. The swell and surf are heary at all seasons of the year. In fact. the surf is so strong on the entire northern coast that it is dangerous for small boats to land except behind Point Salinas and at one other point near Camuy. The bar across the mouth of the Rio Grande de Arecibo prevents anything but lighters and rowboats from going in or out.

The Rio Plata is the first river west of San Juan, and is the largest and lougest on the island. It is very turbulent and treacherous during the rainy season. There are two small towns, ToalBaja and Dorado, near its mouth. There are no bridges over this river except the railroad bridge, and it is not possible to cross over this with animals. The Manati is the next river of importance, and is considered the most dangerous on the island. The partially completed railroad bridge was the only one over the river, and it was necessary to use the ferry in crossing.

While in camp near this river in March, a hurricane visited this portion of the island and lasted about ten hours. The camp was in danger of being washed away, as the water rose 15 feet in six hours, but fortunately only one tent was lost, though the party was cut off from field work for two days.

The mouth of the Rio Grande at Arecibo is about half a mile wide at high water, but at low water is bare except the chamel, which changes with every rain as the water pours down out of the mountain gorges.

Sugar plantations extend along the valleys of all these rivers, and also for some distance along the coast; at intervals, from Bayamon to Camuy River. The country from Camuy west consists of irregular ridges heavily covered with brush, and in many places with cocoanut trees, royal palms, mangoes, coffee, and banana trees.

Magnetic observations were made at the following places: Fraile, Baja, Amador, Point Caracoles, and Aguadilla.

Assistant Nelson makes special mention of the kindness and aid extended to him by Col. John L. Clem, chief quartermaster, U. S. A., at San Juan, in furnishing forage and transportation and in facilitating the work to the extent of his ability.

The rainy season began about April 15, and after that date there was rain every afternoon. In spite of every obstacle, such as those mentioned above and others equally as troublesome and difficult to overcome, the work was pushed steadily forward to completion and a junction was effected in June.

On June ig Assistant Nelson sailed with the officers of his party from San Juan for New York, and reported in person on the 25 th at the Office in Washington.

Collecting information philippine islands. Frank Walley Perkins. relating to surveys.

As stated in the Report for 1900, Assistant Perkins was at Manila, P. I., on July r, engaged in the investigation of the existing conditions relating to surveys and in collecting information as to the future needs of the Philippine Islands.

Several interesting communications were submitted by him containing important information upon which to base the plans for the future survey of the islands, as demanded by the necessities of the situation.

An abstract from his reports is given in the Report for 1900 , under the heading " Special duty."

On July 15 he sailed for the United States on the U. S. transport Sherman, via Nagasaki, Japan, and arrived in San Francisco, Cal., on August 6. He was detained on duty in San Francisco until August I6, when he started to Washington and reported for duty at the Office on August 28.

Astronomic.
PHILIPPINZ ISLANDS.
G. R. Putnam

Base line.
Hydrographic.
Magnetic.
Topographic.
Triangulation.
F. W. Edmonds, Assistant.
H. C. Denson, Assistant.
H. W. Rhodes, Aid.
H. C. Mitchell, Aid.
C. E. Morford, Recorder.
J. S. Hili, Recorder.
h. O. Pixley, Recorder.
alexander Colt, Recorder.
Henry Bernhardt, Recorder.
H. S. Hodgson, Recorder.

Williams Welch, Chief Draftsman.
Potenciana Alonzo, Draftsman.
Jose Asuncion, Draftsman.
Jose Salanga, Copyist.
Ethan E. Alien, Acting Chief Engineer.
Pablo Carpio, Messenger.
SUMMARY OF RESULTS.
Astronomic work.
13 longitudes determined (by telegraph).
I longitude determined (by chronometer).
15 latitudes determined.
14 azimuths measured.
14 meridian lines established.
Base lines.
2 measured.
Hydrographic work.
253 miles sounding lines.
7 sheets completed
Magnetic work.
13 stations occupied with compass declinometer.
Topographic work.
76 square miles area covered.
119 miles general coast line surveyed.
35 miles roads surveyed.
8 sheets completed.
S. Doc. $50-12$

Triangulation.

78 stations occupied.
123 geographic positions determined.
The inauguration of the survey of the Philippine Islands and the establishment of a suboffice in Manila, P. I., was assigned to Assistant Putnam.

After making all necessary preparations in Washington and San Francisco, he sailed from San Francisco for Manila, P. I., on November i6, and reached his destination on December 15. Two assistants, Edmonds and Denson, one aid, Rhodes, and five recorders, Morford, Hill, Pixley, Colt, and Bernhardt, accompanied him as members of his party. H. C. Mitchell, aid, and Williams Welch, draftsman, sailed at a later date and reached Manila on December 31 .

The additional members of the party mentioned above were employed at various dates between January 14 and March 22, as their services became necessary and suitable men could be found. General instructions were given Assistant Putnam to make all necessary arrangements for the inauguration of a survey of the coasts of the Philippine Islands. A suboffice was established at Manila as headquarters from which the work of surveying the coast could be managed and a place where all data could be collated for the preparation and publication of preliminary results, when such publication would be of immediate benefit to commerce and navigation.

Assistant Putnam presented his credentials promptly to the Commanding General and as soon as practicable called on the President and members of the Philippine Commission, on the Admiral of the Fleet, and on the officers of the Military Government. The requests that it was necessary to make were granted, receiving such consideration as could be expected in view of the disturbed condition of the country.

The Survey is especially indebted for assistance in its work to the United States Philippine Commission, the Adjutant-General, Chief Quartermaster, Chief Signal Officer, Chief Engineer Officer, Chief Commissary, Depot Quartermaster, Captain of the Port, and other officers of the Division of the Philippines, as well as to the officers of the Eastern Extension Australasia and China Telegraph Company and to the managing director of the Campañia Maritima.

Messrs. Edmonds, Denson, Rhodes, Mitchell, Morford, and Hill were assigued to the charge of parties in the field away from Manila during the year by Assistant Putnam, and he remained at Manila in charge of the suboffice and executed such field work in the vicinity as was found to be desirable and practicable. The field work was considerably retarded by lack of transportation facilities about the islands, by the condition of the telegraph lines, by the lack of suitable boats for hydrographic work, and, toward the close of the year, by unfavorable weather. No difficulty was experienced on account of the insurgents, though Batangas was fired upon while a party was at work in the town. At two places a party lived in towns not garrisoned. The work was delayed only to a slight extent by sickness, as the general health of the party was good. The plan of work followed comprised the determination of geographic positions and the making of detached harbor surveys. This plan was demanded by the existing conditions and the small force and the limited equipment available for the work.

Great difficulty was experienced in obtaining suitable boats for hydrographic work
and at one important place no boat could be obtained for this work. The native boats are long and slender, with wide bamboo outriggers, and can not be used for hydrographic work.

All the field parties received great assistance from the commanding officers of military posts and other military and civil officers.

The following is a condensed statement of the work accomplished by the various parties before the end of the fiscal year.

The statement of the work executed is presented in this form as a matter of convenience.

The officers on duty under Assistant Putnam's direction were placed in charge of parties by him and were entirely dependent on their own ability and resources in carrying out the instructions for the work assigned to them as chiefs of parties.

LONGITUDES DETERMINED.
by telegraphic method.

Place.	Island.	In field.	At Manila.
Sual	Luzon.	Edmonds. .	Putnain.
Vigan	.do	Rhodes.	Do.
Subig	. . do do	Do.
Iba do	. do	Pixley.
Santa Cruz.	. do	. .do	Do.
Batangas do	. do	Do.
Balayan.do	. do	Putno.
Iloilo ...	Panay Luzon	Mitchell.	Putnam.
San Fernando do	. do	Pixley.
Candondo	Do.
Cape Bojeador Cebu (not completed)	. ${ }_{\text {Cebun }}$	Hill. .	Do.

By chronometric method.
Aparri (approximate determination).
Mitchell.

LATITUDES BY ZENITH TELESCOPE OBSERVATIONS.

Observations for latitude were made at all longitude stations except Cebu by the observers in the field and at Manila (Putnam, observer), making fifteen stations in all.

AZIMCTH OBSERVATIONS.

Azimuths were derived from the time observations at all the longitude stations except Cape Bojeador, and meridian lines were permanently marked on the ground except in a few cases where this was impracticable, and in such cases the azimuth of some other marked line was derived as above stated. To control local triangulation, azimuths were determined by theodolite observations on Polaris at Manila (Putnam) and at Bolinao (Denson), and by theodolite observations on the sun at Santo Tomas (Denson) and at Darigayos (Denson).

MAGNETIC OBSERVATIONS.
Observations with a compass declinometer were made at all the longitude stations except Cape Bojeador.

HARBOR SURVEYS.

Local harbor surveys, or reconnaissances, were made as follows (name of officer in charge in parentheses):
Port Sual, Luzon (Denson).
Triangulation, hydrography and topography. (Hydrography of approaches not completed.)

No. 36.

Entrance Cagayan River, Luzon Island, P. I.
Cagayan River Entrance, Aparri, Luzon (Rhodes).
Reconnaissance, topography and hydrography.

Bolinao Harbor, Luzon (Denson).
Triangulation and topography.
San Fernando Harbor, Luzon (Denson).
Triangulation, topography and hydrography (north harbor).
Santo Tomas Harbor, Luzon (Denson).
Triangulation, topography and hydrography.

Bolinao Harbor, P. I.

Balayan Anchorage, Luzon (Rhodes).
Reconnaissance, topography and hydrography.
Darigayos Inlet, Luzon (Denson).
Topography and hydrography.
Tacloban Harbor, Leyte (Morford).
Triangulation, topography and hydrography. (Survey in progress June 30.)

Balayan Anchorage, Luzon Island, P.I.

No.41.

No. 42.

Tacloban Harbor. P. I.

TRIANGULATION NOT INCLUDED IN HARBOR SURVEYS.

Vigan, Luzon (Rhodes).
Longitude station to the coast.
Candon, Luzon (Mitchell).
Longitude station to the coast.
Manila, Luzon (Putnam).
Connection of important points along the coast between Manila, Cavite, and Malabon and Corregidor Light-House.

1 No. 43 .

Vigan, Luzon Island, P. 1
No. 44.

Candon, Luzon Island, P. I.

Vicinity of Manila, P.I.

TIDE OBSERVATIONS.

Observations were made as follows:
Manila, Luzon, February in to June 30. Sual, Luzon, January 30 to March 6.
San Fernando, Luzon, January 26 to March 14.
Santo Tomas, Luzon, May 6 to May 23.
Darigayos, Luzon, June 17 to June 20.
Aparri, Luzon, January 3 to April 10.
Balayan, Luzon, May 14 to May 16.
Tacloban, Leyte (dates not given).

Reports were made by each chief of party, in which the details of the work executed were stated. Office work was undertaken as soon as necessary quarters and furniture could be obtained. The supply of many necessities for sale is very limited, and no desks could be obtained for more than a month after the party reached Manila. The demands upon Assistant Putnam were very exacting and his time was fully occupied with the numerous details involved in directing the surveys in the field, in addition to the routine work necessary in conducting the office, involving correspondence, computation, furnishing information on request, preparing results for publication, disbursement of funds, and many other details too numerous to mention.

Draftsman Welch was placed in charge of the Drawing Division and two Filipino draftsmen were employed to assist hint.

Five charts were drawn and traced with lithographic ink, as follows:

Four charts were completed ready for tracing with lithographic ink, as follows:

	scale.
Balayan Anchorage	1: 5000
San Fernando Harbor	1:15000
Port Santo Tomas	1:20000
Darigavos Inlet	1: 5000

Five tracings were prepared for the Captain of the Port, one for the Captain of the transport Sheridan, and one for the Collector of Customs at San Fernando.

Considerable work in plotting and verifying hydrographic sheets and some inking of original sheets was done. When the tracing of a chart with lithographic ink on lithographic paper was completed, the tracing was placed face down on a clean lithographic stone, which was run through the press several times. This transferred the ink to the stone and the paper can then be washed away without removing any of the ink. The characters for sand, trees, swamp, hachures, lettering (in part), and the projection were drawn directly on the stone. About ioo blue prints of various sketches were made and distributed on request of the Captain of the Port and other officials. After overcoming many obstacles, three charts were published by lithography, and publication was then suspended until suitable paper could be obtained, as there was none for sale in Manila or Hongkong.

Six additional charts, four from Coast and Geodetic Survey work and two from Spanish charts needing publication with additions, were prepared for publication.

About 200 copies of the advance prints of the three charts mentioned above were distributed. Three numbers of a Notice to Mariners, dated March r, April I, and July I, were prepared and published in an edition of 500 copies, and most of these were distributed to the various officials, including the collector of customs at every port. The Spanish board of trade republished these notices in Spanish and they were received with favor by others.

In response to a request addressed to the President of the United States Philippine Commission, under date of December 24, 1901, the Commission, on March 8, 1901, made an appropriation to purchase a small steamer for the use of the Coast and Geodetic Survey, and subsequently appropriated money for repairing and refitting the steamer and also an amount to purchase coal for the use of the steamer. The steamer Research was purchased and at the close of the fiscal year was still undergoing alterations, as it was found impossible to avoid long delays from lack of facilities and other causes.

The different classes of work were actively in progress at the close of the fiscal year.

Processes used in the pro-	england.	E. H. Fowler.
duction of charts in	france.	
england and france.		

Advantage was taken of the presence of the chief draftsman, Mr. Edwin H. Fowler, in London and Paris, during his vacation, to instruct him to make an examination of the methods of photo-engraving and the reproduction of topographic charts and drawings and other processes used in the production of charts, with the view of collecting information which would result in the improvement of the methods used by this Survey.

He began the work on August I and continued it during the remainder of his stay in Paris and London, and reported at the Office on September 8 to resume his regular duties in the Drawing and Engraving Division.

In Paris he secured an introduction to M. Emile Levasseur, member of the Institute of France, and professor in the College of France, through the courtesy of the United States Ambassador, Gen. Horace Porter. M. Levasseur gave him letters of introduction which secured the authority and facilities he desired in the prosecution of his work. He visited the office of the "Service Géographique de l'Armée," the office of the "Service Hydrographique," and the office of the "Directeur de la Carte de France et du Statistique Graphique," where every courtesy was shown him as the result of presenting the letters given him by M. Levasseur.

While in London Mr. Fowler visited the Admiralty Office and several of the large publishing houses. Information was obtained bearing upon the subject under investigation and the details reported by Mr. Fowler after his return to the Office.

The resurvey of Mason and Dixon's line, the boundary line between the States of Pennsylvania and Maryland, having become desirable, a commission was authorized by the legislature of the respective States to undertake the work.

This commission is composed of three members, the Superintendent of the United States Coast and Geodetic Survey, the Secretary of Internal Affairs of Pennsylvania, and the State Geologist of Maryland. Assistant W. C. Hodgkins was selected to execute the necessary work in the field, and he was detached from duty at the Office for that purpose.

He left Washington on October 21 and proceeded to Cumberland, Md., and on the following day began a reconnaissance of the region adjacent to the boundary.

As a result of this work he decided to begin operations at the northwest corner of Maryland, and the actual running of the trial line began on November 5. Unfortunately, winter weather was experienced at an unusually early date, and progress was delayed by frost and snow. The work proceeded until December 20, when the party was disbanded and operations were suspended to wait for more favorable conditions.

Assistant Hodgkins proceeded to Washington and was engaged on other work until April 8, when he resumed the survey of the boundary to the eastward of the Susquehanna River. This portion of the line between Cecil County, Md., and Chester and Lancaster Counties, Pa., was originally marked by monuments of cut stone, approximately I mile apart. Most of these monuments were found in place, but nearly all of them had been disturbed, and many of them were in a mutilated condition. When any monument; or portion of a monument, was found in its original position, this was assumed to be the boundary line, and the position was marked in a much more permanent manner than that originally adopted.

Notes were made along the line in order to prepare a topographic sketch in its vicinity. The progress of the work was seriously retarded by long-continued and heavy rains, and to some extent by extremely hot weather in June.

On June 30 this work was still in progress, and a section 23 miles long had been covered.

While engaged in this work Assistant Hodgkins was named as a member of the commission appointed by the United States Supreme Court to re-mark the boundary line between Virginia and Tennessee, and was absent on that duty May 17 to 22 and June io to 26 . During his absence the party continued at work under his assistant, Robert H. Blain. The incidental expense of this work was paid by the States interested.

Marking the virginia and
TENNESSEE BOUNDARY.
virginia.
TENNESSEE.
W. C. Hodgkins.
J. B. Baylor.

On April 30, 1900, a decree was announced for the United States Supreme Court by Mr. Chief Justice Fuller which ordered the re-marking of the boundary line between the States of Virginia and Tennessee, established in $1801-1803$ by the joint action of these States, commonly known as the "diamond line," as the "real, certain, and true boundary between the said States." In this decree William C. Hodgkins, of Massachusetts, James B. Baylor, of Virginia, and Andrew H. Buchanan, of Tennessee, were appointed a Commission "to ascertain, retrace, re-mark and reestablish saịd boundary line, but without authority to run or establish any other or new line."
W. C. Hodgkins and James B. Baylor are Assistants in the United States Coast and Geodetic Survey, and they were detailed to perform the duties imposed by this decree whenever the necessary conditions permitted.

On May i 7, rgor, funds for field expenses provided by the States interested having become available, the Commission met at Coast and Geodetic Survey Office in Washington and organized by electing Assistant Hodgkins, chairman; Assistant Baylor, secretary, and Professor Buchanan, treasurer.

A considerable amount of preparatory work had already been accomplished by the Commissioners through correspondence. The necessary instruments and outfit were furnished by the United States Coast and Geodetic Survey to the extent permitted by the available supply.

On May 20 Assistant Baylor and Professor Buchanan proceeded to Bristol, Temn., to begin active field operations, and Assistant Hodgkins returned to his work on the Pennsylvania and Maryland boundary. Assistant Baylor continued on the work during the remainder of the fiscal year, and the work was still in progress on June 30. Assistant Hodgkins was engaged on this work in the field from June ro to 25 .

Marking proposed avenue district of columbia.

John E. McGrath. ACROSS THE MALL.

In the latter part of May a request was made by the Senate Committee on the District of Columbia, through its clerk, that an officer be detailed to mark by flags the lines of a proposed avenue across the Mall, between the Capitol and the Washington Monument, in the City of Washington. This work was executed for the information of a Commission for the Improvement of the Parks of the District of Columbia recently created by Congress. Assistant McGrath was assigned to this work and completed it on June I and 3, to the satisfaction of the Commission.

EsTABLISHING SPEED TRIAL COURSE DELAWARE BAY.

On May 8 Assistant Marindin left Washington under instructions to cooperate with Commander C. E. Vreeland, U. S. N., representing the Board of Inspection and Survey of the Navy Department in laying out, at the expense of the Messrs Cramp \& Sons, of

Speed Trial Course, Delaware Breakwater.
Philadelphia, a mile course in the Delaware for use in connection with the trial of vessels built for the Navy. This work was successfully accomplished at the Delaware Breakwater during the month, and a special report was submitted covering the necessary operations.
S. Doc. $50-13$

COMMISSION.
Assistant Marindin has continued to serve as a member of the Mississippi River Conmission under the appointment of the President.

The month of July was spent in attending to his duties as a member of the Commission. On November 7 he went to St. Louis and attended a meeting of the Commission on the 9th,' and accompanied the Commission on a low-water inspection trip to New Orleans. He was selected to prepare the annual report of the Commission, and did so after his return to Washington. The Commission disbanded, and Assistant Marindin returned to Washington, reporting at the Office on the 21 st. He was engaged upon routine matters connected with the Commission and other temporary duties until April, when he again went down the river on an inspection trip which lasted from the 8 th to the 20 th.

From June 2 to 24 he was again attending to his duties as a member of the Commission, during which time he completed the annual report, and submitted it to the Commission at a meeting held in St. Louis.

```
Graviry measures.
LONDON, ENGLAND.
G. R. Putnam.
POTSDAN, GERMANY.
    pARIS, FRANCE.
```

In continuation of the work of connecting the base station for gravity determinations in the United States with the base stations for such work in Europe, Assistant Putnam made observations at the above stations in July and August.

The Survey was requested to undertake this work, by the International Geodetic Association, and all the incidental party expenses were paid out of funds furnished by the association.
'The work in Europe was completed, and Assistant Putnam returned to Washington, reporting for duty at the Office on September 2 I .

He was clirected to prepare the results for transmission to the association and to complete the connection by making the final set of observations in Washington. These observations were made early in October, and on October i2 a report on the work was submitted.

Latitude observations for interEdwin Smith.

NATIONAL GEODETIC ASSOCIATION.

The charge of the International Geodetic Association latitude station at Gaithersburg, Md., was assigned to Assistant Smith from July 1 to January 4.

This special duty was assigned to him under the authority of the honorable Secretary of the Treasury on July 1, 1899. As stated in the Report for 1900, the latitude stations at Gaithersburg, Md., and at Ukiah, Cal., are under the direction of the Superintendent of the Coast and Geodetic Survey, who undertook this supervision in compliance with a request from the association.

The party expenses at the Gaithersburg station were paid out of funds furnished by the association for this purpose.

The records and reports were forwarded to the Central Bureau of the association for discussion and publication.

On January 5 Dr. Herman S. Davis relieved Assistant Smith and assumed charge of the station.

The work of marking the provisional boundary between Alaska and British Columbia as defined in the modus vivendi agreed to by the United States and Great Britain under date of October 20 , 1899 , was continued under the direction of Mr. O. H. Tittmann, assistant superintendent, United States Coast and Geodetic Survey, commissioner of the United States, and Mr. W. F. King, British commissioner, after July I until the end of the month, when the demarcation of the temporary boundary was completed.

Assistant O. B. French continued under Mr. Tittmann's direction as United States engineer and executed the necessary field work on the part of the United States.

Mr. Tittmann returned to Washington and reported at the office on August 20.

In order to comply with a request from the Philadelphia Maritime Exchange for the establishment of tide staffs in the Delaware River for the use of shipping Assistant Wainwright was instructed to make the necessary arrangement and execute the work. He left Washington on April io and erected large tide staffs, or gauges, on the principal wharf at Chester, Pa., on the wharf of the United States Oil Company, near Marcus Hook, and on the naval magazine wharf, near Fort Mifflin.

Each gauge was an inch board 9 inches wide and I_{3} inches long, firmly attached to the outer face of the wharf. The face of the gauge was painted in square blocks I foot high, alternately black and white, with large figures on the squares of the opposite color. Provision was made for the removal of the gauges when necessary to repaint them and for replacing them in the same position.

The work was successfully completed on April 19, and Assistant Wainwright returned to Washington. A steam tug was furnished by the maritime exchange and was used as the means of transportation.

On December 27 Assistant Wainwright was instructed to resume charge of matters elating to the preparation of the exhibit intended for the Pan-American Exposition at Buffalo, N. Y. He had already devoted such time as was necessary to this work when permitted to do so by other duties assigned to him. He continued the work under the conditions stated above until April 23, when he left Washington for Buffalo to instal the exhibit. After this was completed he remained at Buffalo in charge of the exhibit until the close of the fiscal year.

Delegate to the international europe. Isaac Winston. GEODETIC ASSOCIATION.
Examination of instruments of precision at the paris exposition.

The duty of representing the United States as delegate to the meeting of the International Geodetic Association at Paris, France, was assigned to Assistant Winston, and he was directed to make the necessary preparations to attend the thirteenth General Conference of the Association, which was to assemble at Paris on September 25.

While in Paris he was directed to avail himself of the opportunity presented by the exhibit at the Paris Exposition and to examine and report upon the instruments of precision which might be used in the various operations of this service.

He left the Office on August 17 and sailed the following day from New York for Paris, where he arrived on September I3, having spent some time in England en route.

The examination of the instruments exhibited at the Exposition began on the 14 th, and this work continued until the 23 d .

On the $24^{\text {th }}$ preparations to attend the sessions of the International Geodetic Association were made and on the 25 th the opening session was held. Assistant Winston attended all the sessions of the conference until it adjourned on the 6th of October. He then continued the examination of instruments and completed this work on October 14.

After spending some time in Europe, on leave of absence, Assistant Winston returned to Washington and reported for duty at the Office on December 6.

He submitted a report upon the instruments examined and also a report giving a résumé of the work of the International Geodetic Association.

The association publishes the proceedings of each conference in detail and consequently no extracts from this résumé are stated in this place.

He makes special acknowledgment of the many courtesies extended to him as delegate of the United States by the officials of the French Republic and by the French Geodetic Association.

Advantage was taken of the presence abroad of Assistant Yates, and he was instructed to make an examination which would enable him to submit a report upon the hydrographic surveys of England, France, and Germany, and upon the heliographic methods of making copper plates for printing maps in use by the Military Geographic Institute at Vienna, Austria.

He was also instructed to investigate the desirability of establishing foreign agencies for the sale of Coast and Geodetic Surrey Charts.

A reference was made to this work in the previous Annual Report.
As a result of presenting his credentials, Assistant Yates was granted unusual authority to pursue the investigations under his charge and many courtesies were extended to him by the representatives of the United States abroad and the officials of the Govermment in the countries visited.

Many delays occurred and the investigation extended far beyond the date anticipated in the beginning.

Various offices and institutions were visited and time was spent on board the survey vessels of England and France, by special permission, watching the methods in actual use in the field. Assistant Yates visited Berlin and Vienna, and, having completed the duty assigned to him, returned to the United States and reported at the Office on August 20.

He expresses his great appreciation of the courtesy and kind attention shown him and reports a long list of officials and others to whom the thanks of the Survey are due for the aid extended to him in the prosecution of his work.

Blank page retained for pagination

APPENDIX No. 2.

REPORT 1901.

DETAILS OF OFFICE OPERATIONS.

Blank page retained for pagination

CONTENTS.

Page.Oiffice of assistant in Charge 207
Computing Division. 210
Division of Terrestrial Magnetism 212
Tidal Division 213
Drawing and Engraving Division 214
Chart Division 220
Instrument Division 222
Jibrary and Archives 223
Miscellaneous Division 224
Special Duty. 227

Blank page retained for pagination

APPENDIX No. 2.

DETAILS OF OFFICE OPERATIONS.

OFFICE OF THE ASSISTANT IN CHARGE.

Andrew Braid, Assistant in Charge.
The Assistant in Charge of the Office has direct supervision of the routine work of the different divisions of the Office.

- The following persons were employed under his immediate direction:

Name.	Occupation.
George A. Fairfield,	Clerk.
A. B. Simons,	Do.
F. W. Wills.	Clerk (January 6 to June 30).
Miss Kate Lawn.	Writer.
TEMPORARY FORCE.	
Miss E. M. French,	Vriter.
Miss L. Helen,	Do.
Miss E. L. Mewshaw,	Do.

An extract from the report of the Assistant in Charge is given below:
The Annual Report of the Office for the fiscal year ending June 30 , 190r, is accompanied by the Annual Reports of the various divisions thereof, namely: Computing Division, Division of Terrestrial Magnetism, Tidal Division, Drawing and Engraving Division, Chart Division, Instrument Division, Library and Archives Division, Miscellaneous Division, and Special Duty.

The Computing Division continued under the direction of Assistant J. F. Hayford, whose report shows a creditable amount of work accomplished, especially considering the limited force at his disposal. The Division has, as heretofore, been reinforced from time to time by the temporary detail of Assistants and Aids when not actively engaged on field duty. The regular employees of the Division and the field officers temporarily detailed for office duty are given in Mr. Hayford's report and need not be enumerated here, and the usual statistical information concerning the correspondence and routine work are also furnished. Among the most important items of work accomplished may be mentioned the following.

The work of reducing the geographic positions in southeast Alaska to a uniform standard was almost completed.

The computation of more than 1,000 miles of precise leveling was made.
A United States Datum, to which all commected geographic positions are to be reduced, was adopted, and the positions of the primary points along the thirty-ninth parallel triaugulation, along
the eastern oblique arc, and along the western oblique arc were reduced to this datum before the close of the fiscal year.

The Division of Terrestrial Magnetism continued under the charge of Assistant L. A. Bauer. His report contains the usual detailed account of the correspondence, routine work, and distribution of magnetic information. During his absences on field inspection the office work of the Division was attended to by Mr. D. L. Hazard. Bulletin No. 4I, "Magnetic Survey of North Carolina," was prepared for publication; various magnetic instruments were carefully examined and their constants determined; plans were prepared for magnetic observatories at Sitka, Alaska, and Honolulu, Hawaiian Islands; the preparation of a new edition of the Magnetic Declination Tables was begun, and a revision of all field magnetic observations to date was undertaken and good progress made. Mention may also be made of the wide distribution of a circular to surveyors, professors of engineering, etc., requesting information relative to magnetic declination, secular change allowed for in relocating old boundary lines, etc. The large correspondence resulting from this circular has been critically examined and the information derived therefrom has been tabulated for publication.

The Tidal Division, as heretofore, remained under the charge of Mr. L. P. Shidy, and his report gives full details as to work accomplished during the year. The annual volume of Tide Tables (for 1902) was prepared, verified, and published, and the usual reprints for the Atlantic and Pacific coasts were issued; the usual reductions and discussions of tides were attended to and information furnished for tide notes of charts; tidal information has been furnished in response to numerous inquiries, etc. Dr. R. A. Harris prepared for publication, as an Appendix to the Annual Report for igoo, a paper entitled, "Outlines of Tidal Theory," and also a leaflet on tides and tidal currents for distribution at the Buffalo Pan-American Exposition. Mr. Shidy also revised and extended the portion of "General instructions for Hydrographic Parties" relating to tides and currents. In the 'ride Tables for 1902 several new features were introduced, anong which two current diagrans for New York harbor and tables for finding the height of the sea at any time between high and low water are worthy of special inention.

The Drawing and Engraving Division continued under the charge of Assistant W. W. Duffield, and his report shows in detail the work accomplished by each of the five sections of the Division, and gives the usual statistical information as to information furnished, etc. In the Engraving Section the work of chart production has been facilitated and expedited by the introduction of the new engraving machines. The one for engraving soundings especially has proved a great labor-saving device and shortens very materially the time required for putting hydrography on copper. In the Drawing Section, under the immediate supervision of Chief Draftsman E. H. Fowler, the principle of transfer from negatives or copper plates has been successfully applied in the matter of making titles to original shects and in adding sanding, etc., to drawings for photolithographic reproduction. This has resulted in a considerable saving of draftsmen's time and has enabled the section better to keep up with the increasing demands upon it. In addition to the regular work of the section, a map of the world, 8 feet by 20 feet, on which the Colonial possessions of all the great nations are shown in appropriate colors, was prepared for the use of the President. In the Printing Section, under the inmediate direction of Foreman D. N. Hoover, the regular work has been kept up as usual and some progress made in printing bond copies for the fles of the old plates in the archives with a view of properly cataloguing the same and eliminating useless plates. The facilities of the Photographing Section have been increased by the purchase of necessary new outfit and by the removal to the more commodious quarters in the attic of the main building. The increase of facilities, the new equipment and the improvement of processes have resulted in a gratifying increase of the output and improvement in quality of work of this section. The usual amount of work has been accomplished in the Electrotyping Section.

The Chart Division, consisting of the Chart Section and the Hydrographic Section, has remained under the charge of Assistant Gershom Bradford, the Inspector of Charts. In the Chart Section the voluminous correspondence relating to charts, the keeping of the accounts with sales agents, the general issue of charts, coast pilots, and tide tables to Departments of the Government and to the ontside public, the hand corrections of charts from recent information, and the coloring by hand of lights and buoys, have received careful and prompt attention. The usual statistical information concerning the work of the section and the distribution of charts, etc., is given in Mr. Bradford's report.

In the Hydrographic Section the usual monthly Notices to Mariners have been prepared for publication, the aids to navigation were kept up to latest information on our various charts, numerous hydrographic sheets of field parties were plotted or verified, and much miscellaneous work was done. The Hydrographic Section was aided to some extent by occasional details for short periods of field draftsmen, who, however, were usually confined to the work of the party from which they were detailed.

In the Instrument Division, under the charge of Chief Mechanician E. G. Fischer, the usual amount of work has been accomplished. This consisted of repairs to instruments, the construction of such new instruments as are not obtainable in the open market, the issue of instruments, camp outfit, and general property of the Survey, including the checking of the annual inventories. Minor repairs to buildings, repairs of office furniture, construction of cases for library, etc., and the care of office bells, pneumatic clocks, etc., also received due attention. The complete work of the Division during the year is given in detail in Mr. Fischer's report in statistical form. Mr. Fischer also modified and improved an electrical tide indicator and attended to its installation at the rooms of the Philadelphia Maritime Exchange, supervised the construction of a 5 -meter iced bar and base tape apparatus for the Japanese Government, and subsequently aided in the standardization of the same. He also performed like functions in connection with the construction and standardization of a roo-meter base tape apparatus for the Trigonometrical Survey of the Straits Settlements. Much of the work of preparation of the Coast and Geodetic Survey exhibit for the Pan-American Exposition also devolved on this Division.

The Library and Archives Division has continued under the charge of Mr. E. L. Burchard and his report gives full statistical information in regard to the books, pamphlets, serials, maps, and charts purchased, donated, or received in exchange, and the original sheets and records received from field parties. Good progress has been made in the indexing of the archives.

The Miscellaneous Division has as heretofore attended to the purchase and distribution of supplies required for the Office and making requisitions for printing and binding, the issue of stationery to field parties and Office Divisions, the custody of the publications of the Survey, and the keeping of the records relative to their distribution. The report is submitted in the usual statistical form.

The special assignment of Assistant C. A. Schott was continued, but, owing to his illness in the latter part of the fiscal year, the report of the work accomplished was submitted for him by Miss Lilian Pike. The computation and discussion of the Eastern Oblique Arc from Maine to Louisiana occupied the greater part of the year, and was finally completed and the report submitted for publication. The computation of geographic positions in the New England States was also completed and the Tennessee triangulation adjusted. The proof reading of Special Publication No. 4, the Transcontinental Arc, was also completed and work resumed on the reduction of the California arc.

In the immediate Office of the Assistant in Charge Mr. George A. Fairfield has assisted in the correspondence and attended generally to routine business; Mr. A. B. Simons, in addition to his clerical duties and the keeping of the accounts of moneys received from sale of publications, sale of old condenned property, and for work done for outside parties, has had general charge of the watchmen, the messengers, and labor force, and the keeping in order of the Survey buildings. Mr. E. B. Wills has kept the time records of the Office and Field employees, the express and freight matters, and the registered mail records. Miss Kate Lawn has in general attended to the typewriting and copying for the Office and miscellaneous clerical duty. She has also attended to the distribution of Notice to Mariners and largely to the distribution of other publications of the Survey. She has been assisted in this work by temporary appointees-Miss E. M. French, Miss I_{1}. Helen, and Miss F. L. Mewshawtheir terms of service aggregating sixty-six days.

In conclusion I take pleasure in reporting that the condition of the Office is in general very satisfactory and the reports of the various Divisions show an unusually large amount of work accomplished during the year. This is in part due to the introduction of new facilities, the improvement of the methods, and the adopting of labor-saving devices, but due credit must also be given to the hearty and efficient cooperation of all the chiefs of Divisions. Strenuous efforts have been made to expedite the work of the Survey, particularly in the matter of preparation of charts for publication, and also to so systematize the work as to eliminate as far as possible sources of error.

[^2]The following extracts from the reports of the chiefs of Divisions contain additional details:

COMPUTING DIVISION.
Personnel.

Name.	Occupation.
J. F. Hayford . .	Chief of Division.
E. H. Courtenay	Computer.
M. H. Doolittle .	Do.
A. L. Baldwin .	Do.
W. H. Dennis.	Do.
J. H. Millsaps.	Writer.
TEMPORARY FORCE.	
A. T. Mosman	Assistant.
Wm. Eimbeck	1 Do.
C. H. Sinclair.	Do.
F. D. Granger	Do.
Isaac Winston.	Do.
S. Forney . .	Do.
E. Smith . .	Do.
J. E. McGrath	Do.
R. L. Faris	Do.
O. B. French	Do.
E. B. Latham	Do.
F. M. Little .	Do.
H. F. Flynn	Do.
W. Bowie..	Do.
H. S. Davis.	Do.
E. R. Frisby .	Aid.
W. H. Burger.	Do.
O. M. Leland.	Do.
F. H. Brundage.	Do.
W. E. Parker	Do.
O. E. Cart .	Do.
G. E. Selby.	Do.
J. K. Mills. .	Do.

The work of this Division may be divided into four classes:
(r) Supplying information of various kinds to the field parties and to persons outside the Survey.
(2) Final computations or revisions of computations in connection with recent field operations:
(3) Computations which are necessary to reduce older field work to a standard datum.
(4) The preparation of results for publication.

The detail of the temporary force was made for short periods from time to time as the necessities of the field operations permitted, and many of this temporary force were engaged in completing their records of field work while attached to the Computing Division. Consequently these temporary details only brought the average effective force of the Division up to 8 men besides the chief.

The average effective force for the different months varied from 3 in August to 15 in March. From December 5 to 22, Assistant William Eimbeck acted as chief of

Division, and from May 3 I to June 30 Mr . A. L. Baldwin, computer, occupied this position. During the first period Assistant Hayford was absent on field duty and during the second period he was on leave of absence. Within the limits of this report it is possible to state only a few of the more important results reached in the work of the Division during the year.

The routine work of answering correspondents and furnishing information to field parties has always been heavy and is steadily increasing. For considerable periods it has absorbed nearly all the energy of the Division. Some idea of the volume of the correspondence may be obtained from the statement that during the year 2319 geographic positions and I 185 descriptions of stations were furnished to various parties. In judging of the work involved in these descriptions and positions, it should be borne in mind that the data required must be collected from numerous volumes covering the operations of the Survey in past years, that nearly all the descriptions of stations require accompanying sketches, and that many letters require special computations to be made before an answer can be prepared.

Aside from this routine work and other routine computations necessary to make the results of recent field work available, notable progress was made in the following work :

The work of reducing the positions in southeast Alaska to a uniform standard was almost completed, and about 1300 of the geographic positions were entered in the register.

During the year more than I 000 miles of precise leveling lines were completed, and the Office computations made.

On March 13, 1gor, a United States Standard Datum, to which all connected geographic positions are to be reduced, was adopted. This datum is the one already used by the Coast and Geodetic Survey in publishing the geographic positions of several of the Eastern States. The positions of the primary points along the 39 th parallel triangulation, along the eastern oblique arc to Mobile, and along the western oblique arc, were reduced to this datum before the close of the fiscal year.

The tables for the computation of geodetic positions published in Coast and Geodetic Survey Report for 1894, Appendix No. 9, extend from 18° to 72° of latitude. The computation necessary to extend these tables from 18° to the equator was made, and the result is published in Appendix No. 4 to this Report. This extension makes the table available for all latitudes from 72° north to 72° south.

Assistant Hayford mentions the individuals of the regular force of the Division by name, and highly commends the value of their service, and the ability and efficiency with which they have executed the duties assigned to them.

DIVISION OF TERRESTRIAL .MANETISM.
Personnel.

Name.	Occupation.
L. A. Bauer	Chief of Division.
D. I. Hazard	Computer.
W. H. Davis.	Clerk (July 1 to Aug. I).
Miss L. L. Jones	Clerk (Jan. 30 to Feb. 24).
A. S. Barnes.	Clerk (Mar. I to May 3I).
Miss J. E. Haslup	Clerk (June 21 to June 30).
TEMPORARY DUTY.	
J. B. Baylor	Assistant.
J. A. Fleming	Aid.
W. C. Dibell.	Aıd.
R. W. Walker	Temporary aid.
G. H. Draper	Clerk.

The work of this Division was continued on the same lines as during the previous. fiscal year. It was largely routine work and included furnishing a large number of compass directions for the charts issued by the Survey, supplying declinations for the Coast Pilots, and correcting the position of the isogonic lines on charts of Alaska for secular change.

Numerous calls for information relating to magnetic declination and its secular change were received and answered. The demand for information of this character is steadily increasing.

A circular requesting information relating to magnetic declination and the amount of secular change allowed in relocating old boundary lines was widely distributed over the United States by being sent to surveyors and professors of engineering and mechanics and the information received in reply was critically examined and tabulated for publication.

Bulletin No. 4i, "Magnetic Survey of North Carolina," was prepared for publication, and the proof of Appendixes Nos. 9 and io, Report 1899, was read. The preparation of a new edition of the Magnetic Declination Tables was begun, and the revision of the computation of all magnetic observations previously made by the Survey was undertaken, and nearly all the declinations were completed. Progress was made in the preparation of the isogonic chart of the United States for 1902.

Various magnetic instruments were compared and their constants were determined.
Plans were prepared for magnetic observatories at Sitka, Alaska, and at Honolulu, Hawaiian Islands.

Mr. D. L. Hazard acted as Chief of Division from September 5 to December io, and also at other times when Assistant Bauer was absent on short trips of inspection.

About one-half of Assistant Bauer's time was devoted to duties relating to the direction and inspection of field work which devolved upon him as Inspector of Magnetic Work. A.ssistant Bauer commends the able manuer in which Mr. Hazard performed the various duties assigned to him.

TIDAL DIVISION.
Personnel.

Name.	טecupation.
L. P. Shidy	Chief of Division.
R. A. Harris.	Computer.
J. C. Hoyt.	Do.
Artemas Martin	Do.
D. S. Bliss.	Do.
Alice G. Reville	Clerk.
Virginia E. Campbell	Writer.
Mary A. Grant. . . .	Writer (July a to June 6).
Fred A. Kummell	Tide observer.

The annual volume of Tide Tables for the year 1902 was prepared and published. The separates for the Atlantic coast and for the Pacific coast were also published. The volume has several new features, among which may be mentioned two current diagrams for New York Harbor and some tables for finding the height of the sea at any intermediate time between high and low water.

Sixty-one volumes of tidal records were prepared for binding. Nonharmonic reductions were made for 64 stations with about one month's observations at a station. Harmonic analyses were completed for a year of hourly ordinates at each of three stations and also for several short series, which, together with the work in progress at the close of the last fiscal year, brings the total to an equivalent of the complete analysis of five years' continuous record. The plane of reference was determined for 54 stations. About twelve years of automatic tide-gauge record was tabulated as high and low waters and also as hourly heights of the sea.

- Tide notes were prepared for a large number of stations upon charts and hydrographic sheets. Tidal information was prepared in response to requests from numerous field parties and persons not comnected with the Survey. This involved the preparation of tidal data for 566 stations and descriptions of 264 bench marks.

The following records were received during the fiscal year:
One year's record from the automatic gauges at Fort Hamilton, N. Y.. Philadelphia, Pa., Reedy Island, Del., Washington, D. C., Fernandina, Fla., Presidio, San Francisco Bay, California, and Seattle, Wash. One year's record at Providence, R. I., from the city engineer. One year's record from 3 stations at Habana Harbor, Cuba, from the Corps Engineers, United States Army. Records covering shorter periods from automatic gauges and staff and box gauges were received from 37 stations in the Eastern Division, 16 stations in the Western Division, 14 stations in Alaska, 16 stations in Porto Rico, and 4 stations in the Philippine Islands.

An aggregate of thirty-five years of record from automatic tide gauges was received, examined, and registered. In addition to the above, an aggregate of two years' record from staff and box gauges at 77 stations was received.

A tracing of the original tide record at Wellington, New Zealand, for one year, and a table of high and low water times and heights for three additional years were received from an official of the Government. The above observations cover an aggregate of thirty-seven years' tide observations, all of which were examined and registered.

A leaflet on Tides and Tidal Currents was prepared for distribution at the PanAmerican Exposition and the portion of the General Instructions for Hydrographic Parties, relating to tides and currents, was revised and extended.

DRAWING AND ENGFAVING DIVISION.
Personnel.

Name.	Occupation.
W. W. Duffield	Chief of Division.
James M. Griffin	Clerk.
E. Meads ...	Writer.
Edwin H. Fowler	Chief draftsman.
Harlow Bacon	Draftsman.
J. N. Baker.	Draftsman (Jan. I6 to June 30).
P. B. Castles	Draftsman (Aug. 16 to Dec. I).
Chas. H. Deetz	Draftsman.
D. Derickson.	Draftsman (July if to Sept. Io).
F. C. Donn.	Draftsman.
E. P. Ellis	Do.
P. Von Erichson	Do.
C. M. Hahn	Draftsman (Jan. 2 to June 30).
D. M. Hildreth	Draftsman.
Jas. P. Keleher	Do.
A. Lindenkohl	Do.
H. Lindenkohl	Do
J. W. McGuire	Draftsman (Jan. 28 to June 30).
Chas. Mahon.	Draftsman.
S. B. Maize.	Do.
J. F. Pfau..	Draftsman (Sept. 25 to Apr.6).
E. J. Sommer.	Draftsman.
V. Sournin.	Draftsman (July I to Oct. 10).
R. W. Walker	Draftsman (Nov. 26 to Mar. 25).
J. T. Watkins	Draftsman (absent from Oct. 2 to Nov. 26) .
Williams Welch	Draftsman (July I to Nov. 21).
W. H. Davis	Engraver.
H. E. Franke	Do.
R. H. Ford.	Do.
P. H. Geddes.	Do.
F. Geoghegan.	Do.
Geo. Hergesheimer	Do.
W. H. Holmes	Do.
H. M. Knight	Do.
Wm. Mackenzie	Do.
W. F. Peabody	Do.
A. H. Sefton	Do.
E. H. Sipe	Do.
H. L. Thompson	Do.
W. A. Thompson .	Do.
W. A. Van Doren.	Do.
Theo. Wasserbach.	Do.
F. G. Wurdemann .	Do.
D. N. Hoover	Foreman of printing.
E. F. Campbell.	Plate printer.
W. M. Conn. .	Do.
R. J. Fondren	Do.
Eberhard Fordan	Do.
C. J. Harlow	Do.
C. J. Locraft	Do.
C. W. Buckingham	Printers' helper.
E. M. Kline	Printers' helper (Aug. 23 to June 30).
R. F. Le Mat.	Printers' helper (July i to Aug. 30).
W. B. Mehler	Printers' helper (July 1 to July 18).

DRAWING AND ENGRAVING DIVISION-Continued.
Personnel-Continued.

Name.	Occupation.
C. F. Blacklidge	Photographer and electrotyper (July I8 to June 30).
L. P. Keyser	Assistant photographer.
Roy Thomas.	Assistant electrotyper.
George Newman	Messenger.
W. J. Bickford	Laborer.
Hans Bowdwin	Do.
H. Murray .	Do.
Frank Thomas	Do.
A. A. Meredith	Extra laborer (Mar. 29 to June 30).
R. J. Trostler.	Extra laborer (July I to Dec. Io).
W. Waple .	Extra laborer (Jan. 3 to Mar. 28).
TEMPORARY FORCF.	
J. A. French	Aid (Jan. 14 to Feb. I5).
W. Sanger.	Captain's clerk (Sept. 24 to Nov. 26).

This Division is divided into five sections--the Drawing, the Engraving, the Printing, the Photographing, and the Electrotyping sections. Each section executed the work indicated by its title and the combined result is shown in the charts published by the Survey.

DRAWING SECTION.
The following statements and tables show in detail the work accomplished in this section, which was continued under the personal direction of Mr. E. H. Fowler, chief draftsman. Several changes in the method of work were introduced to increase the output without lowering the high standard of excellence in execution heretofore maintained. The process of transferring to original sheets the notes, titles, and general lettering which are common to all has been perfected so that the work of preparing these sheets for approval and registration is reduced to a minimum and results in saving much labor and expense.

A new sheet of standard letters (Roman capitals), accompanied by a self-spacing device, was completed and the resulting method of building up titles will eventually insure uniformity in the titles of all the field sheets and all the charts published by photolithography and also result in saving much time in their preparation, thus reducing the cost of publication.

A large map of the world, 8 feet by 20 feet, was prepared for the use of the President, on which the colonial possessions of the great powers are shown by appropriate colors.

The work of the Division, as a whole, is commended by its Chief, and Messrs Fowler and H. Lindenkohl are specially mentioned for the energy and ability displayed by them.

During the year the following drawings were completed for photolithographing or engraving:

Chart No.	Title.	Scale.
79	Chesapeake Bay	1-200 000
293	New London Harbor and Naval Station	1-10 000
517	Sabine Pass and Lake.	1-40 000
577	Fernandina to Jacksonville	1-40000
908	San Juan Harbor, Porto Rico.	1-10000
911	Ponce Harbor, Porto Rico.	I-20 000
913	Great Harbor, Culebra Island, West Indies.	1-6 500
919	Fajardo Harbor, Porto Rico	1-10 000
1007	Gulf of Mexico.	Mercator.
4104	Malaea Bay, Maui Island, Hawaiian Islands .	1-10000
4105	Kahului Harbor and approaches, Hawaiian Islands	$1-10000$
4106	Kaunakakai Harbor, Hawaiian Islands. . . .	1-10 000
4231	Port of Manila, Philippine Islands.	1-10 000
5984	Coos Bay, Oregon	1-20 000
6195	Grays Harbor, Washington	1-40 000
8244	Sitka Harbor, Alaska.	1-10 000
9007	Unalaska Bay, Alaska.	1-40 000
9370	Cape Romanzof to St. Michael	I-300 000
9372	Yukon River, Apoon Mouth to Head of Passes	I-80 000
9373	Yukon River, Kwiklowak Mouth	I-80 000
9375	St. Michael Bay, Alaska	1-20 000
9380	Norton Sound, Alaska	1-400 000

The following drawings are in progress:

Chart No.	Title.	scale.
109	Boston Bay and approaches	1-80 000
281	Hudson River-New York to Haverstraw	1-40 000
920	Porto Rico	Mercator.
5532	Entrance to San Francisco Bay	1-40000
6381	Roche Harbor, Washington	1-10 000
6445	Seattle Harbor, Washington	1-20 000
7002	Cape Flattery to Dixon Entrance	Mercator.
8002	Dixon Entrance to Cape St. Elias	Mercator.
8502	Cape St. Elias to Shumagin Islands	Mercator.

Number of drawings finished for new charts. 13
Number of drawings finished for new editions 9
Number of drawings corrected for new prints 5
Number of drawings unfinished for new charts S
Number of drawings unfinished for new editions 1

Four hundred and thirty-three charts were revised, corrected, and verified for new editions or reprints from copper plates. Thirty-six topographic and 44 hydrographic projections were constructed for the use of the Office and the field parties and 12 projections were made on copper plates. Nearly 400 illustrations were made for the Annual Report and the Special Publications (including the Coast Pilot).

ENGRAVING SECTION.

The work in this Section continued under the personal direction of the Chief of Division. During the year three engraving machines were installed and put into use. The machine for engraving soundings works well, and makes it possible to engrave the
hydrography of a chart in a short time (one to three days). A large border cutting and tinting machine and a new and improved compass cutting machine have added to the efficiency of the Division by increasing the output of charts.

Several charts were published by transfer from copper plates cut by machine work, except the sanding, fathom curves, and bottom characteristics engraved by hand, and the topography, notes, title, etc., which were added by photolithography from drawings made to fit the engraved plates.

This process proved very successful and is very useful in the publication of preliminary editions. The following tables show the work of the section in detail.

The following original plates were completed:

The following plates for new editions of charts were completed:

Chart No.	Title.	Scale.
T	General chart of Alaska	1-3 600 000
14	Cape Canaveral to Fowey Rocks	1-400 000
113	Cuttyhunk to Block Island.	1-80 000
114	Newport to Plum Island	1-80 000
146	Ocracoke Inlet to Beaufort	1-80 000
154	Isle of Palms to Kiunting Island	1-80 000
157	Sapelo Island to Annelia Island	1-80 000
157	. . . do .	I-80 000
158	St. Mary's Entrance to latitude 30° north.	I-80 000
169	Newfound Harbor Key to Boca Grande Ke	1-80 000
169	- ... do	1-80 000
170	Key West to Rebecca Shoals	1-80 000
171	Rebecca Shoals to Dry Tortugas	I-80 000
177	Tampa Ray.	1-80 000
203	Sabine Pass to High Island	I-80 000
203do	I-80 000
204	Galveston Bay	1-80 000
204do	1-80 000
205	Galveston Bay to Oyster Bay	$1-80000$
205 do .	1-80 000
210	Aransas Pass and Corpus Christi Bay	1-80 000
246	Boston Harbor	1-20 000

Chart No.	Title.	Scale.
246	Boston Harbor	1-20 000
255	Higganum to Rocky Hill	1-20 000
256	Rocky Hill to Hartford	1-20 000
337	Boston Harbor. . .	1-40 000
348	Woods Hole, Mass	1-10 000
352	Port of Providence	1-10 000
353	Narragansett Bay.	1-40 000
359	New London Harbor and Approaches.	1-20 000
380	Philadelphia water front, Delaware River	1-9 600
381	Philadelphia water front, Schuylkill River	1-9 600
424	Cape Fear River, entrance to Reeves Point	$1-40000$
43 I	Charleston Harbor, South Carolina	1-30 000
431	...do	1-30 000
445	Charleston and Vicinity.	1-20 000
455 C	St. Johns River, Hibernia to Racys Point	1-40 000
$455 d$	St. Johns River, Tocoi to San Mateo	1-40 000
469	Key West Harbor	1-50 000
469 do.	1-50 000
520	Galveston Entrance	1-40 000
571	Port Royal Sound .	I-40 000
909	Jobos Harbor, Porto Rico	1-20 000
5002	San Diego to Point St. George	Mercator.
5052	San Francisco to Cape Flattery	Mercator.
5106	San Diego Bay	1-40 000
6100	Cape Lookout to Grays Harbor	I-200 000
6140	Columbia River, entrance to Upper Astoria	I-40 000
6145	Columbia River, Fales Landing to Portland	I-40 000
6400	Seacoast and interior waters of Whshington	1-300 000
8800	Alaska Peninsula	1-1 200000

Number of plates for new charts completed. 7
Number of plates for new editions of charts completed................................ 5 I
Number of new miscellaneous plates completed 2
Number of plates for new charts commenced. 9
Number of plates for new editions of charts commenced.............................. . . . 4 r
Number of new miscellaneous plates commenced. 12
Number of plates corrected for printing. 992
Number of unfinished plates for new charts. 14
Number of unfinished plates for new editions. 23

PRINTING SECTION.

In addition to the regular work of this Section, file copies on bond paper from I 395 old plates and similar copies from all plates for new charts and new editions of charts were made, which accounts for the large number of bond proofs in the tabular list. A file of five copies of each plate is maintained.

Number of impressions made for distribution . * 59287	
proofs.....	7950
standards	65
transfers, i	
Section	517
on bond paper	7511
Total number of impressions.	75330

[^3]In addition to the number of charts printed from copper plates, the following charts were published by contract with photo-lithographers:

NEW CHARTS.

NEW EDITIONS.

Chart No.	Title.	Scale.
244	Salem Harbor and Approaches	1-20 000
268	Sheffield Island to Westcott Cove	1-10 000
269	Stamford Harbor to Little Captain Island	1-10 000
468	Palatka to Lake Monroe	1-80 000
517	Sabine Pass and Lake	1-40 000
549	Approaches to Baltimore Harbor	1-40 000
571.	Port Royal Sound	1-40 000
908	Sath Juan Harbor, Porto Rico.	1-10 000
9 II	Ponce Harbor, Porto Rico.	1-20 000
I OOI	Chesapeake Bay to Jupiter Inlet.	Mercator.
3089	Olympia. Wash., to Mount St. Elias.	1-1 200000
4100	Hawailan Islands.	1-600 000
4202	Guam Island.	1-80 000
5002	San Diego to Point St. George	Mercator.
5052	San Francisco to Cape Flattery	Mercator.
5832 6 6	Humboldt Bay, California	1-30 000
6195 6400	Grays Harbor, Washington...............	1-40 000
6400	Seacoast and Interior Waters of Washington	1-300 000
7000 8050	Cape Flattery to Dixon Entrance.....	I-1 200000
81050 8 8	Dixon Entrance to Head of Lynn Canal Port McArthur, Washington	$\begin{array}{r}\text { I-600 } 000 \\ \text { I-10 } \\ \hline 1000\end{array}$
9007	Unalaska Bay, Alaska ...	1-40 000
9302	Bering Sea, eastern part.	Mercator.
9372	Yukon River, Apoon Mouth	1-80 000
9373	Yukon River, Kwiklowaks Mouth	$1-80000$
9375	St. Michael Bay, Alaska	1-20 000
9380	Norton Sound, Alaska	1-400000

PHOTOGRAPHING SECTION.

The facilities of this Section were increased by moving it into larger and more convenient quarters. Numerous negatives were made as required in the various operations of the Office and more than I 000 prints were mounted. The work in this Section greatly facilitates the work in the other Sections of the Division.

ELECTROTYPING SECTION.

Work in this Section was in constant demand and much depends upon the prompt execution of all demands upon it.

> Number of pounds of copper deposited . 46 Number of alto plates made

CHART DIVISION.
Personnel.

Name.	Occupation.
Gershom Bradford	Inspector of Charts and Chief of Division.
Miss L. A. Mapes	Chief of Chart Section.
W. C. Willenbucher	Draftsman.
E. H. Wyvill	Chart Corrector.
H. R. Garland	Chart Corrector.
J. B. Quinlan	Clerk.
Neil Bryant.	Clerk (July I to Dec. 25).
Miss M. L. Handlan	I3uoy Colorist.
A. B. Simons, jr	Buoy Colorist.
R. F. Le Mat ..	Buoy Colorist (Sept. I to Jan. 30).
Wm. A. Naghten	Buoy Colorist (Feb. 4 to June 30).
M. W. Long	Buoy Colorist (May 9 to June 7).
Archie Upperman	Map Mounter.
S. B. Wallace . . .	Messenger.
TEMPORARY FORCE.	
V. Sournin	Draftsman (Oct. 16 to Nov. 27).
Wm. Bauman, jr	Draftsman (Dec. 15 to Mar. 23).
P. B. Castles .	Draftsman (June 29 to June 30).

The Chief of this Division gave personal attention to the final inspection of new charts and new editions in their various stages of progress. The work of the Division was divided into two sections, the Chart Section and the Hydrographic Section.

In this Section all correspondence relating to charts was carried on, and the accounts' with sales agents were kept. Corrections to printed charts were made before they were issued to the persons requiring them. The work of coloring buoys on the charts, of mounting maps and charts, and other routine work was done in this Section. A new edition of the Chart Catalogue for 1900 was prepared and published. Copies of 15 new charts, printed by photolithography, were received for distribution. Forty-six new copperplate editions, and 22 new lithographic editions, 7 I in all, were received for issue.

Sale agencies.

Agencies established	5
Agencies discontinued.	1
Agencies now existing	175
Publications sent to sale agencies.	
	Volumes.
United States Coast Pilot, Atlantic coast	1193
Pacific Coast Pilot, California, Oregon, and Washington.	46
Total issue	.. 1239
Tide Tables, United States and foreign ports.	592
Tide Tables, Atlantic coast	611
Tide Tables, Pacific coast.	. 5050
Total issue	. 6253

These figures represent only the volumes issued for sale. Omitting the issues for 1898 and 1899 , when the issue of charts was abnormal on account of the war with Spain, the total issue for the fiscal year ending June 30 , 1901 , was 14 per cent larger than the average issue (1889 to 1901). The net sales were 16 per cent larger and the net value 20 per cent larger for the same period.

Charts were received as follows:

From Drawing and Engraving Division	53125
From lithographers	15009
	68134
Charts were issued as follows:	
	No. of charts
Sales agents	34795
Sales at the Office.	1018
Congressional account	2712
Hydrographic Office, United States Navy	11991
Light House Board.	2321
Coast and Geodetic Survey Office	6049
Coast and Geodetic Survey Sub-Office at Manila	108
Executive Departments	$+042$
Foreign govermments	420
Libraries .	104
Miscellaneous	936
Total	64496

HYDROGRAPHIC SECTION

The work in this Section is shown in the following tabular statement. Messrs. Willenbucher and Wyvill executed the work with the aid of the temporary force assigned to the Division from time to time for short periods.

A notice to mariners was prepared and issued each month. The hydrographic sheets received from the field parties were examined and verified and the work necessary to complete them was done. This involved a large amount of plotting, as shown in the tabular statement:

Charts corrected	2034
Volumes of field records examined.	214
Angles plotted or examined	54279
Soundings plotted	179092
Miles of sounding lines plotted	6276
Original sheets prepared	14
Sheets verified	21
Sheets protracted	2
Miscellaneous drawings and tracings made	48
Reductions of hydrography verified	48
Proofs overhauled	37

INSTRUMENT DIVISION.
Personnel.

Name.	Occupation.
E. G. Fischer	Chief of Division.
W.C. Maupin	Clerk.
C. Jacomini .	Instrument maker.
W. R. Whitman	Do.
M. Lauxmann	Do.
J. A. Clark	Do.
O. St. Marie.	Instrument maker (June 18 to June 30).
H. O. French	Carpenter.
G. W. Clarvoe.	Do.
C. N. Darnall	Do.
J. W. Hunter.	Messenger (July I to Dec. 24).
Jere Hawkins	Messenger (Dec. 25 to June 30).

The accounting for the instruments and general property of the Survey was done in this Division. This involved the checking of the inventories submitted annually by all parties having charge of Government property in use by the Survey and the entry on the books of the Office of all property purchased by those employed in the Survey in executing the work assigned to them.

All instruments received from the field were examined and the necessary repairs made before sending them out for use in the field. During the year more than i 600 instruments of various kinds were cleaned, adjusted, and sent to the field. Minor repairs to the Office buildings and to the office furniture were made.

The construction of twelve new plane table Alidades was undertaken and considerable progress made.

Two meridan telescopes (Nos. 2 and 16) were remodeled and repolished, and several changes were made to improve the instruments. Considerable time was spent in preparing the instruments loaned to the Baldwin-Zeigler Polar Expedition and in instructing the observer in their use.

An electric apparatus for indicating changes in water level at any distance from the point of observation was purchased for use in the Office of the Philadelphia Maritime Exchange, and the changes and improvements necessary to adapt it for use as a tide indicator were completed.

The Japanese Government having requested the Survey to supervise the construction of a 5 -meter iced bar and base tape apparatus by a private firm, the Chief of this Division was assigned to that duty, and it was successfully performed. He also took part in the comparisons necessary to standardize this apparatus. He performed similar duty in connection with the construction of a roo-meter base tape apparatus for the Trigonometical Survey of the Straits Settlement.

The exhibit of the Coast and Geodetic Survey at the Pan-American Exposition was prepared and packed for shipment.

LIBRARY AND AKCHIVES.
Personnel.

Name.	Occupation.
Edw. L. Burchard.	Chief of Division.
J. H. Smioot	Clerk.
A. F. Zust.	Writer.
E. K. Foltz.	Writer.
Mrs. M. A. Grant	Writer (June 7 to June 30).
W. H. Butler	Messenger.

The library is essentially for the purpose of reference, and this use of it involved. much labor on the part of the personnel.

The daily calls upon the archives for original records also requires much time in charging the records issued to individuals using them and in crediting them when returned. The system used enables the librarian to quickly locate the records in use when they are not found on the shelves.

The indexing of the archives made steady progress, and during the year all of the astronomic records and half of the geodetic records and computations were examined and indexed. The principal growth of the library during the year was from exchanges with various foreign institutions, as shown in the following table:

Items.	Purchased.	Donated.	Exchanged.	Total.
Books	208	4I	99	348
Pamphlets	29	311	333	673
Serials....	69	303	710	1 082
Maps and charts.	57	396	I 267	I 720
Total	363	I. 051	2409	3823

The issues from the library and archives were as follows:
Books and pamphlets 1745
Serials 458
Records 2371
Original sheets 2793
Maps and charts I 221
Total S 588

The following list shows the original records received:

	Volumes.	Cahiers.	Shects.
Astrononly	9		16
Goedesy.	137		
Gravity	4		
Hypsonnetry	132		
Magnetics		428	
Hydrography	23°		57
Tides .	100		100
Topography		134	48
Miscellaneous	115		
'rotal.	727	562	22 I

Three hundred and fifty-nine books (including records) were sent to the bindery to be bound.

MISCELLANEOUS DIVISION.
Personnel.

Name.	Occupation.
H. C. Allen.	Clerk.
E. B. Willis	Clerk (July 1 to Jant. 5).
C. W. Jones.	Writer (Jan. 9 to June 30).
Thomas McGoines	Messenger.

By direction of the Superintendent, Mr. Scott Nesbit, Disbursing Agent, performed the duties of Chief of this Division during the year.

The Division was charged with the purchase and distribution of the supplies required for use in the Office and of such supplies as are furnished to the field parties on requisition; also with the making of requisitions for printing and binding, and the custody of blank forms, stationery, etc., these duties having formed the greater part of the occupation of the clerical force of the Division.

In addition to the above, the Division was charged with the distribution of the Reports of the Superintendent, and of all other publications of the Coast and Geodetic Survey, with the exception of charts.

The following is a statement of the publications received and issued during the year:

The following publications were received from the Public Printer:
Report of the Superintendent of the Coast and Geodetic Survey showing the progress of the work from July 1,1898 , to June 30,1899
Geodesy. The International Geodetic Association for the Measurement of the Earth, by Erasmus D. Preston, Appendix No. 3, Report for 1898-99 400
Geodesy. Determination of Gravity at Worcester, Mass., and New York City, by Edwin Smith, Assistant. Appendix No. 4, Report for 189S-99 150
Hypsometry. Resulting Elevations from Spirit Leveling between Denver, Colo.,and Rock Creek, Wyo., from Observations by Isaac Winston, Assistant, betweenMay and October, 1899, by Isaac Winston, Assistant, Appendix No. 5, Report for1898-99.150Hypsometry. Resulting Elevations from Spirit Leveling between Abilene, Kans.,and Norfolk, Nebr., from Observations by A. L. Baldwini, Assistant, and B. E.Tilton, Aid, between May 8 and October 17, 1899, by 1. E. Tilton, Aid, Appen-dix No. 6, Report for 1898-99150
Hypsometry. Resulting Elevations from Spirit Leveling between Gibraltar, Mich.,and Cincinnati, Ohio, from Observations by O. W. Ferguson, Assistant, betweenJune 3 and November 28, 1899, by O. W. Ferguson, Assistant, Appendix No. 7,Report for $1898-99$150Hypsometry. Precise Leveling in the United States, by John F. Hayford, Assistant,Inspector of Geodetic Work, and Chief of Computing Division, Appendix No. S,Report for $1898-99$2000
Terrestrial Magnetism. General Report on the Magnetic Survey of North Carolina,by James B. Baylor and Daniel L. Hazard, under the direction of L. A. Bauer,Assistant, Inspector of Magnetic Work, and Chief of Division of Terrestrial Mag-netism, Appendix No. 9, Report for $1898-99$1000
Terrestrial Magnetism. The Magnetic Work of the United States Coast and Geo-detic Survey, by L. A. Bauer, Assistant, Inspector of Magnetic Work, and Chiefof Division of Terrestrial Magnetism, Appendix No. Io, Report for 1898-99.Tide Tables for the Pacific Coast of the United States, including British Columbiaand Alaska, reprinted from Tide Tables for 1901Tile Tables for the Atlantic Coast of the United States, including Canada and theWest Indies, reprinted from Tide Tables for IgoI.Tide Tables for the year 19013120Tide Tables for the Pacific Coast of the United States, together with a number offoreign ports in the Pacific Ocean, reprinted from Tide Tables for $1902 . . .$.Tide Tables for the Atlantic Coast of the United States, including Canada and the7080
West Indies, reprinted from Tide Tables for 1902 3000
Tide Tables for the year 1902. 2025
Special l'ublication No. 3, Atlas of the Philippine Islands. 1500
The Transcontinental Triangulation and the American Are of the Parallel, by Chas. A. Schott, Chief of the Computing Division, Special Publication No. 4.. 3 or
Special Publication No. 6, Notes relative to the use of charts 7005
Bulletin No. 4o, Third Edition; with additions and changes. Alaska. Coast Pilot Notes on the Fox Islands Passes, Unalaska Bay, Bering Sea and Arctic Ocean, as far as Point Barrow 1500
Bulletin No. 41. Magnetic Survey of North Carolina. Values of the magnetic declination at the county seats from 1750 to 1910 . Prepared by D. L. Hazard, Computer, Division of Terrestrial Magnetism 1000
Catalogue of Charts, Coast Pilots, and Tide Tables, 1900. 2500
Supplement to the reprint of Second Edition United States Coast Pilot, Atlantic Coast, Part V, from New York to Chesapeake Bay Entrance, December ig, igoo. 600
United States Coast Pilot, Atlantic Coast, Part VII, from Chesapeake Bay Entrance to Key West 1400
United States Coast Pilot, Atlantic Coast, Part V, from New York to Chesapeake Bay Entrance, Second Edition, reprint, with supplement 612
United States Coast Pilot, Atlantic Coast, Part VIII, Second Edition, Gulf of Mexico, from Key West to the Rio Grande. I 500
S. Doc. $50-15$

The publications issued were as follows:
Annual Reports (covering the years 185r to 1899).. 2864
Appendices to Annual Reports.......... .. 2473
Bulletins... 2172

Tide Tables, General, 1899... ${ }_{2}$

Tide Tables, General, 1901.. I 250
Tide Tables, General, 1902... 52
Tide Tables, Atlantic Coast, 1893 .. 2

Tide Tables, Atlantic Coast, I895... 2
Tide Tables, Atlantic Coast, Igvo. 4

Tide Tables, Atlantic Coast, Ig02.. 4
Tide Tables, Pac fic Coast, 1896 . 2
Tide Tables, Pacific Coast, igoo . 307
Tide Tables, Pacific Coast, Igo1 .. 5368
United States Coast Pilot, Atlantic Coast, Parts I-II. 214
United States Coast Pilot, Atlantic Coast, Part III..................................... 241
United States Coast Pilot, Atlantic Coast, Part IV................................... 480
United States Coast Pilot, Atlantic Coast, Part V..................................... 189
United States Coast Pilot, Atlantic Coast, Part VI....................................... Io4
United States Coast Pilot, Atlantir Coast, Part VII. 299
United States Coast Pilot, Atlantic Coast, Part VIII 30
Pacific Coast Pilot, California, Oregon, and Washington.............................. 3 I
Pacific Coast Pilot, Alaska. 5
Catalogue of Charts, Coast Filots and Tide Tables . I II I
Supplement to Coast Pilot Rules of the Road at Sea.................................... I
Notice to Mariners, Nos. 259 to 272 59412
Special Publication No. I.. 18
Spectal 『ublication No. 2.. 120

Special Publication No. 6.. 5140
Rules Governing Routine and Discipline aboard Ship II
The Star liactors, A B C for Reducing Transit Observation....................... 3
Laws and Regulations relating to the Coast and Geodetic Survey of the United
States.. I6
Laws of General Application .
Treatise on Projections, Craig... 18
Deep-Sea Soundings and Dredgings, Sigsbee . 5
Pillsbury's Gulf Stream . 12 .
General Instructions for Hydrographic Parties. 37
General Instructions for Hydrographic Work. I
Tables for Converting Customary and Metric Weights and Measures 232

SPECIAL DUTY.
Personnel.

| Name. | Occupation. |
| :---: | :---: | :---: |
| C. A. Schott. .
 Miss L. Pike.
 C.
 C. Duvarge of computation of arc measures.
 Comer.
 Do. | |

Assistant Schott continued in charge of the discussion of arc measures in the United States and the preparation of the results for publication.

The completion for publication of the computation and discussion of the eastern oblique arc of the United States required almost the entire time of the personnel until the MS. was submitted for publication on March I, igor. This arc extends from Maine to Louisiana along the eastern coast of the United States, and the discussion is based upon observations made from time to time as the necessity of extending the surver of the coast became urgent, covering nearly the whole period of the existence of the survey.

In consequence, the examination of records and reduction of results were exceptionally laborious.

The final proof of Special Publication No. 4, "The Transcontinental Triangulation," was read and the publication was issued in October, 1900. After March I the reduction of the arc along the western coast of the United States was taken up and the adjustment of the triangulation between the transcontinental triangulation and the Los Angeles base net, involving the solution of fifty-six normal equations, was completed.

The computation of latitude observations at three stations, not previously reduced, was completed, and the computation at four other stations nearly completed. The revision of former computations at other stations was in progress. On March 21 Assistant Schott was compelled to give up work on account of ill health and was not on duty at the Office after that date, though he continued to direct the work during the remainder of the fiscal year.

Miss Lilian Pike, computer, was in immediate charge of the work during this period, and executed Assistant Schott's directions.

Blank page retained for pagination

APPENDIX No. 3.

on the measurement of Nine base lines ALONG THE NINETY-EIGHTH MERIDIAN.

$13{ }^{\circ}$

A. L. BALDWIN, Computer and Chief of Party.
with preface by

JOHN F. HAYFORD, Inspector of Geodetic Work.

Blank page retained for pagination

CONTENTS.

Page
Page
Preface
Plans for the base measures 235
The Massachusetts Institute Tape Apparatus 238
General statement 241
Party organization 242
Time table 242
Unit of length 243
The Shelton IOO-meter comparator 244
Results of measures of the Shelton comparator interval 244
Discussion of results of the Shelton comparator measures. 245
Seguin 100-meter comparator 246
Results of measures of the Seguin comparator interval 246
Discussion of results of the Seguin comparator measures 2!,
The duplex bars 247
Thermometer corrections. 248
Field trestles in use with the duplex apparatus 248
Shelton determination of the length of the duplex bars 249
Seguin determination of the length of the duplex bars 250
Discussion of results of duplex comparisons 251
Field procedure with the duplex bars 252
Results of duplex measures of nine test kilometers 253
Results of remaining duplex measures 254
Discussion of results from duplex measures 257
Steel tape apparatus 257
The field procedure with the steel tapes 259
Method of determining length of tapes 259
Determination of length of tapes 260
Determination of coefficients of expansion 263
Adopted equations of tapes 265
The Shelton Base 266
The Page Base 268
The Anthony Base 270
The El Reno Base 273
The Bowie Base 275
The Stephenville Base 277
The Lampasas Base 279
The Alice Base 28I
The Seguin Base 283
Summary of results. 285
Cost of base-line measurements 285
Speed attained with bars and tapes 286
Errors of the duplex measures. 290
Temperature errors of the duplex measures 291
Constant temperature errors of the duplex measures 294
Page.
Iirrors of steel tape measures 295
Temperature errors of the tape measures 295
Constancy of steel tapes 297
Maximum grade of steel tapes and breaking of grades 297
Wind effect on tapes 298
Errors duè to tension of tapes 298
Ten-meter intervals for tape supports versus $\mathbf{2 5}$-meter intervals 299
Tapes versus bars 299
Fifty-meter versus ioo-meter tapes 300
Conclusions. 301

ILLUSTRATIONS.

No. I Location of bases2. Stone for marking end of comparator. 44241
3. Support of end microscope of comparator 244
4. Iced barin use 244
5. Aligning iced bar with striding level 244
6. Duplex measures. Aligning bar horizontally and vertically 252
7. Duplex measures. Making final contact 252
8. Duplex measures. Ready for launching rear bar 252
9. Duplex measures. Carrying bar ahead 252
10. Aligning support nails for tapes. 25 §
II. Contact at rear end of tape 259
11. Forward end of tape moving ahead 259
12. Cut-off in use at night 259
13. Tape contact at end of comparator 260
14. Tape contact at middle of comparator 260
15. Crossing a ravine with a roo-meter tape. 27.3
16. Lampasas Base Line. 297

Blank page retained for pagination

PREFACE.

Early in 1899 the writer was requested by Dr. H. S. Pritchett, then Superintendent, to consider the general questions involved in deciding upon the location and number of the bases which should control the length of the triangle sides in the ninety-eighth meridian triangulation, and to prepare instructions for the measurement of these bases. Among the suggestions made by Dr. Pritchett at this time, three were especially emphasized, namely: That it would be better to measure many bases at comparatively short intervals along the triangulation with a moderate degree of accuracy than to measure few at longer intervals with a very high degree of accuracy; that the bases could be measured at a much smaller cost if one party measured as many as possible in a single season in advance of the triangulation than if the customary plan were followed of measuring one base at a time as the connections with the triangulation were completed, and that the degree of accuracy in the base measures which it is necessary or desirable to attain should be ascertained, and the plans for the measurement made with reference to securing this accuracy as quickly and economically as possible. These suggestions have been followed faithfully.

Looking upon the methods of fixing the lengths in triangulation in the broad-minded manner forced upon one by these suggestions, one important point in regard to the selection of base sites appeared to call for an immediate decision and action.

An examination of the manner in which errors of leugth in a triangulation accumulate in passing from a base to a remote triangle side shows clearly that the most accurate part of the operation is the base measurement; that the accumulation of error is most rapid in passing from the base to the border lines of the base net, since poor geometrical conditions are necessarily encountered in the expansion from the base, and that the errors of length accumulate much more slowly in the chain of triangles between base nets than in the base nets, but that even here the errors are large in comparison with those involved in the base measures. If, then, in making a reconnaissance for a base it is found that two sites are available, on one of which the grades are small and uniform and the connection with the main chain of triangulation is difficult, and on the other heavy and rapidly changing grades are encountered but the geometrical conditions in the base figure are relatively good, it is evident that to select the second site is to weaken the base measures, which are the most accurate portion of the operation of fixing the lengths in the triangulation, and at the same time to strengthen the triangulation in the base net, which is the least accurate operation. Rough bases and good base nets are much to be preferred to smooth bases and poor base nets. Accordingly the recomaissance party, which was about to select the sites for the bases from Kansas to southern Texas, was instructed to pay especial attention to securing good geometrical conditions in the base nets, even at a sacrifice of accuracy. in the bases, and was informed that the accuracy of the base measures could be kept up to the required standard on any grade not exceeding 5 per cent, and that narrow, deep
ravines or valleys should not be considered as obstructions to the base measures. These instructions had a decided effect in fixing the location of bases, and account for the relatively rough ground over which many of the bases were measured. The Lampasas Base * is a good example of a rough base in a good base net.

What degree of accuracy is it desirable to strive for in the measurement of base lines of which the sole function is to control the lengths in a triangulation? In the transcontinental triangulation the computed probable errors for the ten bases vary from I part in 128000 (Kent Island Base) to 1 part in 1600000 (Salt Lake Base) and for only one base beside the Kent Island Base is the probable error greater than i part in 500000 , namely, the American Bottom Base, of which the probable error is 1 part in 353000 . The probable errors of the border lines of the base nets in the transcontinental triangulation vary from i part in 78000 in the American Bottom base net to i part in 365000 in the Yolo base net. After omitting the Kent Island base net because its base was measured with a very low degree of accuracy, in each of the remaining nine base nets the accumulation of error was so rapid that the probable errors of the border lines of the net, expressed as proportional parts, were from two to five times as great as the probable error of the base itself expressed in the same manner. The probable error of the lines in the triangulation most remote from the base varies from I part in 45000 (Cape May to Cape Henlopen) to i part in 220000 (Toiyabe Dome to Lone Mountain, between the Salt Lake and Yolo bases). From these figures, \dagger and from similar indications from other triangulations in the United States and in foreign countries, it was evident that very little increase in the average accuracy of the lengths of the triangle sides of the ninety-eighth meridian triangulation would result from increasing the accuracy of the base measurement beyond that represented by a probable error of i part in 500000 . It was therefore decided to use this standard of accuracy in writing the instructions for the base measures.

A constant endeavor was made in planning for and making the base measures to keep the accuracy up to the standard by strengthening the methods of the past at their weakest points, while, at the same time, increasing the rapidity of the operation by such omissions of refinements and of additional measures as would have simply the effect of reducing the strength of the past methods at their strongest points.

A careful study of the past base measures, in which the writer was ably assisted by Mr. A. L. Baldwin, indicated clearly that although such measures are ordinarily of more than sufficient accuracy in so far as accidental errors are concerned, they have two weak points with reference to constant errors. Each base has usually been measured with but one set of base apparatus, or, at least, with but one type of apparatus. The apparatus is usually standardized under one set of conditions at headquarters, and used under another set of conditions in the field.

In so far as the writer is aware, there has been no exception to the rule that, whenever a base or part of a base has been measured with two different types of base-measuring apparatus, discrepancies between the measures have developed which were larger than could be accounted for by the accidental errors and too large to be consistent with the degree of accuracy which was supposed to be attainable with the apparatus. All of the

[^4]evidence available indicates strongly that each type of base apparatus, and possibly each particular apparatus even of one type, should be suspected of being subject to an error peculiar to itself. In the base measures of 1900 it was determined to reduce such errors to smaller proportions by making the length of each base depend on several sets of apparatus of two different types.

A study in detail of the primary base measures made by the Coast and Geodetic Survey during the last ten years, namely, of the Holton, St. Albans, Salina, Salt Lake, and Versailles bases, and of the manner in which the apparatus was standardized in each case, left little room for doubt that there is an intimate relation between the conditions under which the apparatus is used or standardized and the systematic or constant errors in the results obtained. The evidence is very strong that the more serious errors are those due to erroneous determinations of the temperature of the measuring bar or tape. In general it seems to be true that the bar thermometer and the bar do not have the same temperature, and similarly mercurial thermometers seldom give the temperature of a tape accurately. It is not certain that, even with the duplex bar apparatus used independently of the thermometers, the temperature deduced from the relative expansion of the two bars was accurate. The evidence indicated strongly that the errors in temperature to be feared were dependent upon whether the apparatus was in sunlight, shade, or darkness; in rapidly rising, stationary, or falling temperatures, or inside a building, shed, or yard, or in the open fields. It was apparent that it was unsafe to assume that the length of either a bar or a tape as determined at the Office under a selected set of conditions supposed to be favorable to great accuracy, as, for example, at night under a shed and with nearly constant temperatures, is applicable to that same apparatus under the widely different conditions encountered in the field. It seemed obvious that the proper procedure is to standardize the apparatus in the field under conditions as nearly as possible corresponding to those encountered in the base measures.

The Woodward iced bar is the only apparatus in the possession of the Coast and Geodetic Survey to which the above statements do not apply.

In the instructions for the base measurement quoted at the beginning of the following report there are four points on which especial stress is laid and of the importance of which the preceding paragraph should be sufficient explanation: First, the time and money to be used in both the standardization and the base measurement are limited strictly to the amounts necessary to keep the accidental errors down to the limit indicated by a probable error of i part in 500 ooo; second, five sets of apparatus of two different types are to be used on each base; third, the five sets of apparatus are each standardized at the beginning and end of the season and intercompared on each base on the so-called test kilometer, and therefore these measures afford unusual opportunities to determine the actual accuracy attained; fourth, the standardizing in the field is done under conditions which are as nearly as possible identical with those encountered in the base measures.

It was confidently expected that the unusual skill which would be acquired by a party making measurements of several bases in quick succession would help greatly in making the required measures rapidly and at a small cost. It may be noted also that the instructions or orders as written and enforced prohibited experimenting and striving for unnecessary accuracy, and encouraged the neglect of unessential precautions.

The writer feels that he can fearlessly invite a critical examination of the facts set forth fully and fairly in the following report. He believes that under such a critical examination these base measures will be found to have been made with a rapidity and economy that is unexcelled; that in so far as accidental errors are concerned they are more accurate than is necessary, the excess of accuracy having been attained, however, by the use of judgment and skill rather than time and money; and that in so far as systematic or constant errors are concerned, they bear within themselves positive evidence of their degree of reliability, and that this degree of reliability is certainly not less than in any of the base measurements of the past.

The writer desires to acknowledge here his full appreciation of the fact that the success of the base measurements of 1900 is due to the zeal, ability, and faithfulness with which the field operations were carried on by Mr. A. L. Baldwin and his party.

THE MASSACHUSETTS INSTITUTE TAPE APPARATUS.

It being known to the Superintendent that there had been developed at the Massachusetts Institute of Technology a new form of tape apparatus of great promise, the writer was authorized to use the opportunity afforded by a visit of inspection to the base party at Alice, Tex., in December, 1900, to make a test of this apparatus to determine its adaptability to the measurement of primary bases. The President of the Massachusetts Institute kindly loaned the apparatus to the Coast and Geodetic Survey for that purpose. Certain tests were made at Washington in November, ig00. In December the writer and Prof. A. E. Burton, of the Massachusetts Institute, aided by the base party, made other tests of the apparatus on the Alice base. As these tests are closely associated with the base measures here reported, it seems appropriate that the conclusions derived from them should be stated here.

Little has yet been published in regard to this apparatus.* It has been developed gradually during the last fourteen years by students of the Massachusetts Institute of Technology, acting under the direction of Prof. A. E. Burton, several theses having been written on different phases of this subject.

The important feature of this form of tape apparatus is the device for obtaining the temperature of the tape. The whole length of the roo-meter tape and an approximately equal length of German-silver wire form two of the arms of a Wheatstone bridge. The two variable arms of the bridge, together with the telephone which is substituted in the place usually occupied by a galvanometer, and the necessary interrupter, batteries, and connections form the thermophone proper. The thermophone has been patented by Messrs. Henry E. Warren and George C. Whipple, and is manufactured by E. S. Ritchie \& Sons. It has been used for determinations of temperatures in various ways, and the work of the students at the Massachusetts Institute now under consideration is mainly that of developing this apparatus to use with long measuring tapes.

The electrical resistance of the steel tape varies more rapidly with a change of temperature than does that of the German silver. The ratio of the resistance of the tape

* For a short account of the apparatus, together with a statement of the 1900 tests, see Technology Quarterly, June, 1901, p. 82.
to that of the German silver is therefore a measure of their temperatures. Or, with sufficient accuracy, it is a measure of the temperature of the tape, provided the German silver is similarly exposed, so as to have approximately the same temperature as the tape. This ratio is the quantity really measured by the thermophone. The thermophone dial, over which moves a pointer which indicates the position of the contact point regulating the two variable arms of the bridge, is graduated so as to indicate the temperature of the tape in Falrrenheit degrees.

In regard to the Massachusetts Institute tape apparatus as a whole, the writer is convinced:
I. That with the themophone apparatus in its present form, and using all refinements, measures can be made even in daylight, and when the temperatures are varying rapidly, with a much higher degree of accuracy than is possible with tapes and mercurial thermometers even under good conditions at night.
2. That after the apparatus has been modified and strengthened at certain points with reference to making it proof against comparatively rough usage and capable of quicker manipulation, certain refinements being omitted, much more rapid measures can be made with it than with any form of bars, and probably more rapid than with the present form of tape apparatus if the tripod method rather than the stake method is used.
3. That it can be used efficiently with no more previous preparation of the ground than is necessary for bar measurement by substituting tripods for the marking stakes at the tape ends and for the intermediate supports.

A few remarks may be necessary to explain the reference above to a possible tripod method of measurement with tapes. Base measurements with bars have ordinarily been made with the bars supported upon portable tripods. It has not been feasible to measure primary bases with tapes similarly supported upon tripods, since it was absolutely necessary to make the measures at night to secure the necessary degree of accuracy with the means heretofore available for determining the temperature. The thermophone apparatus determines the temperature with all necessary accuracy in daylight. Hence, it is now possible to substitute tripods or other portable supports, which may be placed in position as the measurement progresses, for the fixed stakes which have heretofore been used. With a well-organized base party, familiar with the work, the setting of the stakes requires considerably more time than the subsequent double-tape measure of the base.

John F. Hayford, Inspector of Geodetic Work.

Blank page retained for pagination

ON THE MEASUREMENT OF NINE BASES ALONG THE NINETY-EIGHTH MERIDIAN.

By A. L. Baldwin, Computer and Chief of Party.

GENERAL STATEMENT.
The general plan for the measurement of nine bases along the ninety-eighth meridian was presented to the writer in the form of instructions from Dr. Henry S. Pritchett, at that time Superintendent of the Coast and Geodetic Survey. A thorough understanding of the campaign will be hastened by printing an extract from these instructions, dated in May and July, 1900:

You will be detailed to take charge of a field party which is to measure nine bases along the ninety-eighth meridian, of which Page Base at the north, and Alice Base at the south end, are the extremes.

Four steel tapes, two 100 meters in length, and two $50-m e t e r$ tapes, and the duplex base bars, are to be used in the measurement of the bases. A portion of each base, about I kilometer in length, is to be measured with all five sets of apparatus, and of the remainder of the base a portion is to be measured with the tapes and a portion with the bars.

Very little increase in the average accuracy of the lengths of the triangle sides of the ninetyeighth meridian triangulation will result from increasing the accuracy of the base measurement beyond that represented by a probable error of I part in 500000 . The following limits of accuracy on each operation are selected with a view to attaining a probable error but little if any greater than I part in 500000 on each base. You will strive to keep as far within these limits as is possible by the use of good judgment and skill, but you will restrict the time and money expended upon each operation substantially to that required to keep barely within these limits.

You will standardize each tape and the duplex bars at the beginning of the field season upon a roo-meter comparator, which you will establish near Shelton Base for that purpose, by measuring the length of the comparator at least four times with each base apparatus. The measurements by each apparatus must not all be made on a single day or night. If four measures do not suffice to reduce the probable error of the mean for any apparatus below i part in 300 oco, additional measures will be made until the probable error is reduced below that limit. The length of the comparator is to be determined by measuring it with the iced bar at such times that the longest interval between any such measurement and any measure with a piece of base apparatus for the purpose of standardization shall not exceed thirty-six hours. In computing the length of the bars and tapes, the length of the comparator shall not be assumed constant, but instead will at the time of each duplex or tape measurement be assumed to be that given by the nearest measurement with the iced bar, or by the mean of the last preceding and first following measurements. The bars and tapes are to be re-standardized in the same manner at or near the end of the field season. The conditions under which each form of apparatus is standardized should approximate as near as is feasible to those under which it is used in the actual measures of the base.

One kilometer of each base, to be known as the test kilometer, is to be measured with the duplex bars and once with each of the tapes. If any onc of these five measures showsa residual from the mean of more than 17 milimeters, an additional measure of the test kilometer shall be made with that apparatus. Residuals of more than 17 milimeters on the test kilometer, which persist even after a remeasurement, shall be considered to indicate the desirability of re-standardization, but in no case shall the apparatus be standardized without special authorization, except at the beginning and ending of the season as indicated above.

Of the remainder of each base not less than one-tenth nor more than one-third is to be measured twice with the duplex bars; not less than one-fifth nor more than two-thirds is to be measured once with each 50 -meter tape; and not less than one-fifth nor more than two-thirds is to be measured once with each loo-meter tape. Additional measures shall be made if the discrepancy between the two measures on any section exceeds $20^{\mathrm{mn}} K$ (in which K is length of the section in kilometers) until two measures are obtained which agree within that limit. About one-fifth of the total length of all the bases after the test kilometers are deducted should be measured with the duplex bars, and about two-fifths each with the 50-meter tapes and the 100 -meter tapes.

Such precaution should be taken to secure accurate horizontal and vertical alignment of the tapes and of the bars as is necessary to insure that the errors arising from this source on any section of the base shall be less than I part in I 000 oors. It is not desirable, however, to use any more time on this part of the operation than that necessary to keep well within the limit stated. This principle should also be applied to the determination of the tension on the tape while in use.

PARTY ORGANIZATION.

An effort was made to so arrange the party that the illness or disability of one man should not stop the work. A working force of ten persons was decided on and this number was varied only at the first base, where Mr. L. A. Fischer, Adjuster, of the Office of Standard Weights and Measures, had immediate charge of the preparations for and measures with the iced-bar apparatus, and when the employment of occasional day labor would increase the party's efficiency. The personnel of the party included the following:
A. L. Baldwin, Computer and Chief of Party, made all the contacts between the duplex components and forward contacts on all tape measures.

William Bowie, Assistant, aligned the bars for the duplex measures, made rear contact on tape measures, and had immediate charge of the setting of the tape supports.

Frank H. Brundage, Aid, spaced the trestles for the bar measures, ranged out the bases, aligned the tape supports in the vertical, and recorded for the tape measures.

Ora M. Leland, Aid, kept the record of the duplex bar measures and leveled the bases for tape grades and profile.

Prof. L. S. Smith, succeeded by R. S. Ferguson, Recorder, read the bar inclinations, thermometers, and assisted in the leveling operations.

Five laborers completed the party.
TIME TABLE.
The base map shows at once the general location of the nine bases, and the railroad lines there shown indicate the route followed by the party. July 16,1900 , was the date of the arrival and organization of the party at Shelton, Nebr., and after this date twenty-six days must be charged for each member of the party to the delays incident to the transportation from each base site to the one next in order of measurement. The movements of the party may be conveniently shown in tabular form.

Name of base.	Date of arrival.	Interval in days.	Remarks.
Shelton	July 16	3 I	Includes all comparator preparations and standardizations.
Page	Aug. 16	25	
Anthony	Sept. 10	17	
El Reno.	Sept. 27	25	
Bowie	Oct. 22	16	
Stephenville	Nov. 7	13	
Lampasas	Nov. 20	17 14	
Seguin	Dec. 21	. I8	Includes all comparator preparations and standardizations.

The departure from the Seguin base began on January i8, 1901, so that, excluding the time spent in traveling, the average time spent at each base, not excluding Sundays and holidays, was 15.6 days.

UNIT OF LENGTH.

The 5 -meter steel bar No. 17 , designated as B_{17}, when immersed in melting ice, was the unit to which all determinations of length were directly referred. This bar No. ${ }_{17} 7$ has been compared directly with Prototype Meter No. 21 , designated as M_{21}, and known in terms of the International Meter. This makes, then, but two intermediate standards between the bars and tapes actually used on the base, and the international standard of length, the International Meter. Appendix No. 8, Report for 1892, pages 351-393, contains the complete description of the various determinations of its length in terms of the Prototype Meter No. 21, which were made previous to 1900 . The length of the bar at the temperature of melting ice was there found to be 5 meters - $16.2 \mu^{*}$. The probable error when referred to the Prototype Meter No. 21 is $\pm 0.4 \mu$, but when referred to the International Meter, including the uncertainties of M_{21}, is $\pm 1.1 \mu$, or one part in 4500000.

While this result was entirely satisfactory, the standardization of a similar bar for the Government of Japan, by the Office of Standard Weights and Measures, made the opportunity for a very desirable check on the constancy of B_{17}. These comparisons were made in July, 1900, by Mr. L. A. Fischer, of the Office of Standard Weights and Measures.

The Japanese 5 -meter steel bar is identical in form and material with B_{17}, but has not the defect of having defining lines of unequal width, \dagger these being, on the contrary, of uniform and equal width on the Japanese bar. A determination of the length of this bar, designated as J, was made to depend, first, upon comparisons with B_{77}, and second, upon comparisons with Prototype Meter No. 21 .

Nine comparisons with B_{17}, five with B_{17} direct, and four with it reversed (turned end for end), gave the value of J in terms of $M_{s i}$,

$$
\mathrm{J}=5 \mathrm{M}_{21}-22 \mu \pm 0.5 \mu
$$

[^5]Eight direct comparisons with $M_{2 i}$ in the manner fully described in sections is and 14 of Appendix No. 8, Report for 1892, were made with the resulting value of J in terms of M_{21},

$$
J=5 \mathrm{M}_{22}-24.5 \mu \pm \mathrm{I} .04 \mu
$$

This result would indicate that the old value for B_{17} is too large by 2.5μ, or one part in 2000000 , but when judged in the light of the probable errors no such conclusion can be reached. Viewed as a check this result is eminently satisfactory, and if weighted according to its probable error it would have little effect on the adopted length.

THE SHELTON IOO-METER COMPARATOR.
This comparator was a line 100 meters long, prepared for measurement with the iced-bar apparatus. Nineteen well-seasoned pine posts, $\mathrm{I}^{\mathrm{mb}} \cdot 8$ long and 15^{cm} by 5^{cm} in cross section, to hold the intermediate microscopes, were set firmly in the ground with $0^{m \cdot 9} 9$ projecting. The posts were accurately aligued and spaced with their centers $5^{\text {m }}$ apart, and the tops were sawed to the same horizontal plane. The ends of the line were marked by spherical-headed brass bolts cemented into the top of limestone blocks of peculiar shape designed to give them great stability in the direction of the line. These end monuments were 76^{cm} deep with a base 76^{cm} by 20^{cm} and top 20^{cm} by 20^{cn} (see illustration No. 2). They were set on a thin layer of gravel and rammed into position with the long side parallel to the line of the comparator. The end microscopes were mounted on heavy plates bolted to wooden piers constructed from four posts like the intermediate posts, well framed together (see illustration No. 3).

Alongside of the posts three sections of portable track were moved along the line with the progress of the measurement and supported on posts set midway between the microscope posts.

The site was chosen for the comparator by the writer in the level pasture of Mr . Joseph Owens, nearly a mile west of the town of Shelton, Nebr., and near Shelton East Base. It is parallel to the baseline and distant only about 30 meters from it.

The stability of these posts, piers, and stones may be inferred from the measures of the comparator interval which follow.

RESULTS OF MEASURES OF THE SHELTON COMPARATOR INTERVAL.

A detailed description of the iced-bar base apparatus, with instructions for its use and specimens of record and computation, may be found in Coast and Geodetic Survey Report for 1892 , pages 338 to 350 . Illustration No. 4 shows the apparatus in use on the Shelton comparator, and illustration No. 5 shows the method of aligning the bar in its trough horizontally, using a striding level resting on plugs about a meter apart. The speed of measurement varied only slightly from 100^{m} per hour, although single measures of the comparator interval were recorded in 50 minutes. The alignment of the bars in the vertical was accomplished by mounting a theodolite in the line of the end microscopes and bringing the intermediate microscopes into position as each was adjusted. Cut-off cylinder No. I was used at both ends of the line and its length was I^{m}.or, and the value of the level $2^{\prime \prime} .43$.

The end microscopes A and B, now called Nos. I and 2, have a value of one turn equivalent to 72.06μ and 71.2μ, respectively. The intermediate microscopes now numbered $3,4,5$, and 6 have a value of one division equal to 1μ.

STONE FOR MARKING END OF COMPARATOR.

NO. 5 .

The distance between the terminal splieres of the Shelton comparator was measured ro times with B_{17} in melting ice, between July 26 and August io. A measure as here designated means a determination of the comparator interval with readings both before and after the interchange of observers in reading on the ends of the bar. This interchange was made in all cases whether the observers were Fischer and Baldwin, as on the first two days, or Fischer and Bowie, as on the last three days.

Table No. I gives all the data for the length of the comparator. The first and second columns give the date and time of day of observations. The third column gives the direction in which the measure proceeded. The fourth column gives the results for the length from the single measures after the correction for the length of B_{n} has been applied, (20) (-16.2μ), and the fifth column gives the mean result for the day.

Table No. i. - Results for length of Shelton aoometer comparator.

DISCUSSION OF RESULTS OF THE SHELTON COMPARATOR MEASURES.
An inspection of these results shows no movement of the terminal spheres during the entire period and therefore a constant length for the comparator. The inspection also shows a decided tendency toward a large result when measuring away from the sun.

In considering this peculiarity it must be remembered that the practice followed throughout these measures was to shade the microscopes and iron caps which supported them while they were holding the measure. As soon as the microscope is shaded the side of the iron cap toward the sun begins to cool rapidly and the microscope begins to move toward the sun. The effect of this will be that, when the measurement proceeds toward the sun, too short a length for the comparator interval will be obtained, and vice versa. As there is no exception on the five days to this tendency, and as the observations made when the sun was farthest from the meridian show it most decidedly, it is apparent that a measure in each direction with the sun in the same position is necessary for a correct determination of the comparator interval.

The probable error of a single measure of 100 meters with this apparatus, when the entire comparator was protected from the sun, has been with various observers as follows:'

The residual from the mean, in the case of the tenth determination, exceeds five times the mean of these probable errors and would become a subject for rejection if the evidence of the sun's effect should be neglected. Moreover, the result for the length of the comparator interval will be 100 meters $+22^{m m} .30$ whether the mean be taken by days or individually.

The evidence is sufficient to show that each value in column 5 of Table No. i must be accepted as a single observation for the reason that it is necessary to take the mean of two consecutive measures in opposite directions to eliminate the effect of movement of microscopes. From the residuals from column 5 of Table No. I the probable error of the mean was deduced, $\pm 0^{\mathrm{mm}} .02$, and the probable error of each value, $\pm 0^{\mathrm{mm}} .04$.

THE SEGUIN IOO-METER COMPARATOR.

This comparator was a line 100 meters long prepared for measurement with the iced-bar apparatus in exactly the manner previously described for the Shelton 100 -meter comparator. The site of the comparator was chosen by the writer in the pasture of Mr. Henry Soefje, 8 miles north of the town of Seguin, Tex. The line of the comparator is nearly parallel to the Seguin Base Line, about roo meters south of it and I kilometer from East Base. The terminal monuments were similar to those already described for the Shelton comparator except that they were of granite.

RESULTS OF MEASURES OF THE SEGUIN COMPARATOR INTERVAL.

The distance between the terminal spheres of the Seguin comparator was measured five times with B_{17} in melting ice between January 14 and 16 . The new cut-off cylinder No. 2 was used here for the first time. It was used at the east end of the line with a length of $I^{m} .04$, while No. I was used at the west end with a length of $I^{m} .07$. No. 2 carries a level with one division equivalent to $2^{\prime \prime} .33$, and is similar to No. I except that its millimeter scale is extended to permit a reading of $12{ }^{\mathrm{cm}}$. The three measures on January 14 and 15 were made with Baldwin and Bowie observers, interchanging between the first and second readings on the ends of the bar in each position. In the measures of January 16 observers Baldwin and Leland exchanged in the same manner. Table No. 2 gives the data for the length of the comparator. The results for the length of the comparator in the fourth and fifth columns is given after the application of the correction for the length of twenty bars of $\mathrm{B}_{17}\left(-3^{24} \mu\right)$.

Table No. 2.-Results for length of Seguin roo-meter comparator.

Date.	Time of day.	Direction of measure.	Results for length of comparator.	Mean result for the day.
$\begin{aligned} & \text { 1901. } \\ & \text { Jan. } \\ & \hline \end{aligned}$	$\stackrel{\mathrm{h}}{\mathrm{~h}} .$	E. to W.	100 meters +1.54	$100 \text { meters }+\begin{array}{r} \mathrm{m} .54 \end{array}$
15	1.8 p.m.	W, to E.	+1.41	
15	3.0 p. m.	E. to W.	+1.55	+1. 48
16	2.7 p.m.	W. to E.	+1.69	
16	4. $1 \mathrm{p} . \mathrm{m}$.	E. to W.	+1.72	+1.70
			Mean $=100^{\text {mi }}+\mathrm{I} .58$	

DISCUSSION OF RESULTS OF THE SEGUIN COMPARATOR MEASURES.
The agreement of the two measures in opposite directions on the 15 th, and again on the 16 th, is so close as to show that there was very little, if any, systematic movement of the microscopes tending to make the measurements too short when proceeding toward the sun, as noted in connection with the Shelton comparator. If the small discrepancies between the two results in each pair is attributed to such a movement of the microscopes, the movement is in the reverse direction. The explanation of the different action of the microscopes at Seguin from that at Shelton is simple when it is known that to obtain proper illumination for the microscope pointings the shade was not used during the measures of January I5, while on the 16 th the day was overcast. To satisfy the instructions not to assume the comparator length a constant, the length of the comparator interval was assumed to have changed, and $100^{m}+I^{m m} .54$ was used as its length for any comparisons before the 14 th, $100^{m}+1{ }^{m m} .5^{1}$ between the $14^{\text {th }}$ and 15 th, and $100^{\mathrm{m}}+\mathrm{I}^{\mathrm{mm}} .59$ between the 15 th and 16 th.

The probable error of the direct mean $\pm 0^{n m} .04$, being the most unfavorable to the accuracy, is adopted as the probable error of the length of the comparator used in standardizing the apparatus.

The probable error of the Shelton comparator being $\pm 0^{\mathrm{mm}} .02$, and of the Seguin comparator $\pm 0^{\mathrm{mm}} .04$, the probable error therefore of the mean length is not greater than $\pm 0^{\mathrm{mmm}} .03$. As the length of each apparatus depends on the mean of the two comparators the probable error of each hundred meters measured, in so far as the determination of the lengths of the comparators is concerned, is $\sqrt{(.03)^{2}+(.022)^{2}}= \pm 0^{m m} .037$, or one part in 2700000 . The probable error $\pm 0^{m i n} .022$ is the probable error of $\mathrm{B}_{17} \pm 1.1 \mu$, multiplied by 20 , the number of bar lengths in 100 meters.

THE DUPLEX BARS.

The combined length of the duplex bars Nos. 15 and 16 , with their coefficients, has been determined twice since their construction. The reader is referred to United States Coast and Geodetic Survey Special Publication No. 4, "The 'Transcontinental Triangulation," pages 19I-197, for the results of these comparisons. The determinations of September, 1896 , made on the 50 -meter office test line after the return of the apparatus from the Salt Lake Base, might be expected to give a working length for the apparatus. No use had been made of the apparatus during the interval between that date and the Shelton determinations. However, it must be noted that the duplex contact slide apparatus was used during this comparison for the first time without protection from the direct rays of the sun. A complete description of the apparatus, by Assistant William Eimbeck, the designer, is given in Appendix No. ir, Coast and Geodetic Survey Report for 1897 , pages $737-752$. The directions for its use in the field as there stated were slightly modified as shown in the description of the field procedure given on page 25^{2}.

The results from the measurement of the Salt Lake Base* showed that the lengths resulting from the use of thermometers were more accordant than those from the use of the duplex method depending entirely on the difference of expansion of the steel and brass bars. They also showed that the three partially independent results were desir-

[^6]able especially as they furnish information as to the thermic behavior of the apparatus. The thermometers were therefore used throughout this work.

THERMOMETER CORRECTIONS.

The thermometers used in the determinations of tape lengths, and lengths of the duplex bars Nos. 15 and 16 , are the same as those used in the field measures. They are centigrade thermometers, graduated to half degrees and were read by estimation to $0^{\circ} .05$.

The following table gives the corrections necessary to reduce the observed readings of these thermometers to the hydrogen scale as determined by the Office of Standard Weights and Measures, July 27 and October 31, 1900, and February 8, 1901.

On August I_{1} and August 30, and again on January 15, the readings of these thermometers when packed in melting ice were determined. The only appreciable change was noted in No. 724 I , which changed from $0^{\circ} .00$ on August 30 to $-0^{\circ} .15$ on January 15, and on examining the record it was found that on November 2 this thermometer was heated to unite a parted column, and observations after that date in comparison with others indicate such a change.

In the application of the thermometer corrections the mean of the determinations by the Office of Standard Weights and Measures was accepted, except as noted for No. 724 . Thermometers for which only one set of corrections is shown were broken during the field season.

FIELD TRESTLES IN USE WITH THE DUPLEX APPARATUS.

The trestles which were used on the Holton, Salina, and Versailles Bases, belonging to the secondary monometallic bars Nos. 13 and I4, were again used. The cradle arms, namely, the fixed portion of the trestle above the tripod head, were found to be too weak and flexible for the double-contact pressure of the duplex bars when used with that apparatus at the Salt Lake Base.*

[^7]Before the apparatus left the Office for the work under discussion, new cradle arms with double the cross section of the old were substituted for them. A single trial of their relative flexibility was made by applying a horizontal pull at the top. This comparison showed a reduction of at least one-half in the horizontal flexure. In all other respects the trestles retained their original form. The comparisons on the roo-meter comparators were made with the bars supported on these field trestles, without footplates, exactly as they were used in the measurement of the base lines.

SHELTON DETERMINATION OF THE LENGTH OF THE DUPLEX BARS.

Five measures of the comparator interval were made with the duplex bars, on four different days, and at temperatures ranging from 22° to $33^{\circ} \mathrm{C}$. The atmospheric conditions were as varied as it was possible to secure without delaying the work. The reiative readings of the middle and end thermometers show that on the first measure the middle thermometer indicated a temperature about $\mathrm{r}^{\circ} .5$ ligher than the end thermometers, while on the second, third, and fifth measures they were close together. The contacts between the components were all made by the writer and in the same manner as in all previous measures with this apparatus.

The vertical aligmment of the bars was controlled by pointing the adjusted aligning telescopes on the barrels of the end microscope as each bar was placed in position.

The inclination of each bar was measured in the usual way by means of the attached sectors.

Table No. 3 contains the data for the length of 20 bars of the duplex apparatus, obtained at the beginning of the season on the Shelton roo-meter comparator. The first column gives the number of the measure; the second and third, the date and hour of the day; the fourth, the direction of the measure; the fifth shows whether the face of the apparatus was up or down; the sixth gives the mean temperature as indicated by the three thermometers in each bar; the seventh and eighth, the length of 20 bars of steel minus 100 meters at the temperature of observation and after reducing to the duplex temperature $26^{\circ} .45$; columns nine and ten furnish the same information for the brass bars; while eleven and twelve furnish the gain of brass in the too meters, and the consequent length of the 20 bars when the steel and brass components are of equal length. In these determinations and those at Seguin, the coefficients of expansion, ir $.54 \mu$ per meter for steel, 18.45μ per meter for brass, and the duplex coefficient i.668, were used. These coefficients were determined from 32 measures of the Office 50 -meter comparator in November, 1896.*

The duplex coefficient is the ratio of the coefficient of expansion of steel to the difference of the coefficients of brass and steel. Necessarily it is independent of any temperature. The duplex length is the length of the bar when the steel and brass components are of equal length and at the same temperature. It is evident that the duplex length can be determined without reference to any thermometer indication by the application of the duplex coefficient to the difference between the brass and steel set-ups in the measurement of the comparator interval. When the duplex length is once known, the length of any section may be computed from the gain of brass over steel as measured by the readings of the scales which show the relative positions of the

[^8]brass and steel bars. This can be most readily shown by a numerical example. In the first measure, on October 16, of the west half of section 8 of the El Reno Base (see Table 6), the brass component lost during the measurement $30^{\prime \prime \prime \prime} .84$, as compared with steel. In other words, during this measure the length of 100 brass bars was $30^{\mathrm{mm}} .84$ less than the lenth of roo steel bars. The length of the ioo steel bars was less than that of the 100 bars at duplex length by the duplex coefficient times $30^{\text {m" }} .84$.
Length of the section $=100$ (duplex-length of bar) $-30^{\mathrm{mm}} .84$ (duplex coef.) $-\Sigma$ grade corr's.
\[

$$
\begin{aligned}
& =100\left(5^{\mathrm{m}}+0^{\mathrm{min} 1} .0715\right)-30^{\mathrm{min}} .84(1.668)-17^{\mathrm{mm} 1} .45 \\
& =499^{\mathrm{m}} .9382
\end{aligned}
$$
\]

The derivation of the last two columns of Tables Nos. 3 and 4 furnishes a furtherillustration of the use of the duplex coefficient. The first value, -4.89 , in column II , is the +9.38 of column 7 minus the +14.27 in column 9. This value, -4.89 , is both the difference between steel and brass set-ups and the difference between the length of 20 bars of steel and the 20 bars of brass during the measurement. The first value in the last column, namely, $+\mathrm{r}^{\mathrm{mm}} .22$, is $+9^{m \mathrm{~mm}} .38-4^{\text {m"nn }} .89$ (I .668), the factor I .668 being the duplex coefficient.

SEGUIN DETERMINATION OF THE LENGTH OF THE DUPLEX BARS.

At the conclusion of the base measures, four measures of the Seguin roo-meter comparator were made with the duplex bars. These four measures were made on two different days and in the same manner as described for the Shelton determinations. The temperature ranged from 23°, to 12° and, although the first two measures were made under a cloudless sky, the thermometers were more consistent than at Shelton. The last measures were made in cloudy weather with the temperature nearly constant.

Table No. 4 contains the results of these measures.
Table No. 3.-Standardization of the bars Nos. 15 and it of the Duplex Apparatus over the soo-meter Comparator at Shelton.

Table No. 4. -Standardization of the bars Nos. 15 and ib of the Duplex Apparatus over the Ioo-meter Comparator at Seguin.

No.	Date.	Hour.		Face.	Mean temperature. C.	Steel.		Brass.		Duplex.		
						I,ength of 20 bars. 100 meters	$\begin{gathered} \text { L.engen } \\ \text { of } 20 \\ \text { bars } \\ \text { reduced } \\ \text { to } \\ 260.45 \mathrm{C} \\ 100 \\ \text { meters } \end{gathered}$	Length of 20 bars. 100 meters	Length of 20 bars reduced to 260.45 C. 100 meters	$\begin{aligned} & \text { Scale } \\ & \mathbf{S}-\mathbf{B} . \end{aligned}$	Length of 20 bars when equal. meters	
		3.8 p. mı.			22. 52			mim.	mm. +1.50 1.50	mmı$+\quad 2.67$	mmı.+r .37	
		-- 5. 75										
	" 14		4.9 p. m.	W	D	22. 89			- 4.96	+1.6I	+ 2.35	+1.31
3	"، 16	9. $5 \mathrm{a} . \mathrm{mm}$.	E	D	II. 95	-15.09 + 1.66		-25. 16	+1. 59	$+10.07$	+1. 71	
4	" 16	10. 5 a. m.	W	U	12.03	$\|-15.22\|+\mathrm{I} .42$		-25.09	$\underline{+1} 5$	$+9.87$	+ 1.24	
					Means. - +1.51				+1. 55		+I. 41	

DISCUSSION OF RESULTS OF DUPLEX COMPARISONS.
It seemed clesirable to examine the results first to discover whether or not any modification in the coefficients already adopted was necessary. If the assumed coefficients were wrong the lengths reduced to a fixed temperature should vary with the temperatures at which they were determined, or in the case of the duplex with the amount of the scale difference. At Shelton no such grouping of the results was found. At Seguin a most satisfactory check was obtained. For the twenty bars of steel the mean of the two values determined at 12° only differs by $0^{m m} .06$ from the mean of those at $22^{\circ} .7$ when reduced to $26^{\circ} .45$, as shown in Table No. 4. For the twenty bars of brass these two results are identical, and from the scale readings alone the two results differ only $o^{m+1 n}$.r3. As these facts showed that any change in the coefficients would be minute and not authorized by the probable error of these results, the temperature at which the steel and brass components are of equal length, called the duplex temperature, was computed from the nine comparisons on the two comparators taken as one group. The results were then reduced to this temperature, $26^{\circ} .45$, for the steel and brass components, and the mean result, $100^{m}+1^{m m m} .43$ for twenty bars of steel and brass, has a probable error of $\pm 0^{m m \prime} .05$, or I part in 2000000 . Computing the length of the twenty bars independently of thermometers, we get an identical result, $100^{m}+r^{m m} \cdot 43$, but with a probable error of $\pm 0^{m " 1 \prime}$. 10 , or I part in 1000000 .

It should be noted that the use of the bars during the season has apparently lengthened the twenty bars of steel by $o^{m m} .14$, and of brass by $o^{m m} .20$, but when computed independently of thermometers they seem to have shortened $o^{\mathrm{mm}} .04$. The range in the results at Shelton being great enough to contain the entire group of results at Seguin, it is uncertain that any change has taken place. The duplex bars had not been in use since the determination of their lengths in September, i896, when the lengths of the twenty steel and brass components reduced to the temperature $26^{\circ} .45$ were $+r^{\mathrm{mm}} .44$ for steel and $+2^{m m m} .04$ for brass. No reason has been discovered for this shortening of the brass component equivalent to 1 part in 170000.

FIELD PROCFDIVRI: WITH THE DUPLEX BARS.

The modus operandi so carefully described by Assistant Eimbeck on pages 763-764, Appendix No. 12, and the directions for the use of the apparatus on pages 747-751, Appendix No. II, Coast and Geodetic Survey Report for 1897, were carefully studied. In certain particulars it was decided to modify these to suit the changed conditions and to omit many readings in order to increase the speed. On starting a measurement, the trestles having been arranged at the convenient height but in the rear of the section mark, the zero bar (No. 15 in every instance) was aligned and in position " face up," the front end of the component which is in line of the base brought over the section mark. Transit No. 149, in both direct and reversed position, was used at a distance of about 30 feet and at right angles to the bar, in referring to the section mark. The other component was theu set normal, either by the plane mirror or with the front scale, whose reading when normal was known. The components are said to be set normal when their front agates are in the same plane normal to the bars. The bar scales on this bar were then read, recorded, and checked. The temperature was noted, and if higher or lower than the duplex temperature, $26^{\circ} .45$, the brass component was shifted backward or forward by an amount sufficient to permit the measuring of 250 meters if possible without another set-back or set-up. This was done to make as few delays as possible in the measurement. Next, the first bar of the measure was placed on the trestles and simultaneously with the rough alignment by the observer at the forward end, the rear end of the bar was raised or lowered by means of the sliding wedge (see illustration No. 6), and securely clamped when at the correct height. The preliminary contact was then established by seizing the bar under the left arm and sliding it backward bodily while the contact slides are held back and protected as much as possible with the forefinger of the left hand. The signal "Ready for line" was given when this approximate contact was begun, and generally with its completion the perfect alignment was completed by the forward observer, who bisected the line flag at the next section post ahead, which had previously been set five-eighths of an inch from the line, which is one-half the space between the components. It will thus be seen that one of the components traveled in the exact line of the base. The final contacts were then established between the components as quickly as possible by means of the contact screws (see illustration No. 7), and at the same time the mercurial thermometers and the inclination sectors were read and recorded. This completed the laying of the first bar.

Unless a set-up or set-back of brass became necessary no more scale readings were taken until the end of the half section, usually after the laying of the hundredth bar.

Next the zero bar was launched (see illustration No. 8) and carried ahead by the two men (see illustration No. 9), called "bar men," and brought into line and contact as the second bar of the measure. The inclination sectors were read, checked, and recorded, and the thermometers again read and recorded.

On the third bar and until the ninth was reached the thermometer readings were omitted, the mean temperature from eight sets not differing materially from that from twenty.

The observer in charge of the trestles spaced them and made them stable. The gain in speed over former bar measures was in a great measure due to the observer aligning the trestles simultaneously with the rough bar alignment, so that when he

No. 8.

finally left the bar it was certain that the trestles ahead were in line. He then went to the front trestle, and by sighting under the fixed bar set its roller at the general grade of the ground. This enabled the forward bar man to immediately clamp his forward trestle and assist in the work at the rear trestle. At the conclusion of the measurement of 250 meters (or a quarter section), and at 750 meters, the bars were both reversed with care but no scale readings were made unless a shift of brass was required to equalize the amount of projection of the components beyond the protecting case.

At the end of the half section, where a stop was usually made, the forward agate of the steel component was referred to the ground and the scales of the last bar were read and checked. The brass component was then shifted to normal with steel, the scales read, and the bars left standing.

On resuming the measure the front agate was referred to the ground mark and the start made as described for the beginning of the section. When transferring to the ground the readings were never made on a scale, but the end of the measurement was preserved by a mark on a copper tack so that the set-ups (or set-backs) could be checked at any time with a quarter-meter scale and dividers.

RESULTS OF DUPLEX MEASURES OF NINE TEST KIJOMETERS.
One kilometer of each base called the test kilometor was measured once with the duplex bar apparatus and once with each of the four steel tapes: The duplex measures of these nine test kilometers, the first of them made August 1 and 2, 1900, and the last January 5, I90I, will first be treated. Table No. 5 contains the data resulting from these measures. The first column gives the name of the base; the second the date; the third the mean temperature as indicated by six thermoneters, whose bulbs were midway between the components; the fourth and fifth the temperature at the beginning and end of each half section; the sixth the length of the section computed independently of the thermometers; the seventh the length from the steel bars in conjunction with the thermometer readings; the eighth the length from the brass bars and thermometers; while in the ninth and tenth are the differences between the results, steel minus duplex, and brass minus steel, respectively.

Table No. 5.

Name of base-	Date.	Observed temperature.			Length of section.			Differences.			
		Corrected mean rom six ther-mometers. C.	At be-ginning. C.	At end.	From duplex.	From steel.	From brass.	S-D.	B-s.		
Shelton.....Page.	1900-1901.	$26.92:\left\{\begin{array}{l} 21.0 \\ 20.9 \end{array}\right.$		33.7 3 I. 5	$\left\{\begin{array}{l} \mathrm{ml}: \\ 1 \\ 000.2579 \end{array}\right.$	$\frac{\mathrm{m} .}{\mathrm{I} 000.2612}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 000.263 \end{gathered}$	$\begin{array}{r} \mathrm{mm} \\ +3.3 \end{array}$	$\begin{array}{r} \mathrm{mm} . \\ +\mathrm{I} .9 \end{array}$		
	Aug. I, 2										
	Aug. 3I	$31.82\left\{\begin{array}{l} 27.5 \\ 33.3 \end{array}\right.$		$\left.\begin{array}{l}32.0 \\ 34.0\end{array}\right\}$	\} 1000.2081	. 2093	. $2101{ }^{1}+1.2$		+o. 8		
Anthony . . .	Sept. 15,17	26.32	$\left\{\begin{array}{l}38.3 \\ 13.5\end{array}\right.$	\|34.3 18.9	\} 999.9192	. 9187	. 9185!-0.5		-0.2		
El Reno	Oct. 13	20.64	$\left\{\begin{array}{l}\text { 111.8 } \\ 26.0 \\ 11.5\end{array}\right.$	26.0 ${ }^{\prime}$	1000.0816	. 0821	. 082	-0. 5	+-0. 4		
Bowie	Nov. 3	20. 30	$\left\{\begin{array}{l}111.5 \\ 23.2\end{array}\right.$	$\left.\begin{array}{\|}\text { 18.7 } \\ 26.2 \\ 26.3\end{array}\right\}$	999.7866	. 7889	$.7904+2.3$		+1. 5		
Stephenville	Nov. 14	21. 96	$\left\lvert\,\left\{\begin{array}{l}16.1 \\ 24.5\end{array}\right.\right.$	21.3 3 2. 3 1	\} 999.9428	. 946 I	. $9481+3.3$		+2.0		
Lampasas...	Dec. $\quad 1$	20. 36	$\left\{\begin{array}{l}14.1 \\ 21.5\end{array}\right.$	$\left.\left\lvert\, \begin{array}{l}21.3 \\ 19.2 \\ 23.1\end{array}\right.\right\}$	999.8524	. 8555	. $8573+3.1$		$\underline{+1.8}$		
Alice	$\begin{array}{lr} \text { Dec. } & 14 \\ \text { Jan. } & 5 \end{array}$	15. 28 *	$\left\{\begin{array}{l} { }^{*} 14.9 \\ 13.9 \\ 20.0 \end{array}\right.$	$\left.\begin{array}{r} { }^{*} 15.0 \\ 17.2 \\ 21.3 \end{array}\right\} \begin{aligned} & 999.9810 \\ & 99.9222 \end{aligned}$		$\begin{aligned} & .9809 \\ & .9219 \end{aligned}$			$\begin{array}{r} 0.0 \\ -0.1 \end{array}$		
Seguin.		$\text { 17. } 95$									
				\|			Means	1. 62	0. 97		

A full discussion of these results and the adoption of a mean for each section must be postponed until the i3 sections on which duplicate measures were made can be treated.

RESULTS OF REMAINING DUPLEX MEASURES.

Table No. 6 contains the data for the length of 22 sections and half sections with an average length of 543 meters. The table is identical with Table No. 5 in form, except that in the seventh, ninth, and eleventh columns are added the differences between the two measures.

TABLe No. 6.

In Table No. 7 the thirteen sections as they enter the base computation are treated. These are the same measures shown in Table No. 6, where they were treated in the shortest possible sections to display the residuals most completely. The tenth column contains the adopted length of the sections, obtained by taking a weighted mean of the results from duplex, steel, and brass. The weights assigned to the results from duplex, steel, and brass, namely, io, 5 , and 2 , respectively, were determined as shown in the discussion which follows.

Table No. 7.

DISCUSSION OF RESULTS FROM DUPIEX MEASURES.

An inspection of the results in Tables Nos. 5, 6, and 7 reveals one specially important feature of the results from duplex, steel, and brass, namely, that they are always arranged in a certain order, with the result from steel between that from duplex and that from brass. Moreover, the differences, steel minus duplex and brass minus steel, bear a fixed relation to each other. This mean ratio in the case of Table No. 5 is $\frac{\mathrm{S}-\mathrm{D}}{\mathrm{B}-\mathrm{S}}=1.67$, and in Table No. $6=1.66$, and the individual values of this ratio in the tables agree closely with this mean. Under the section Tempcrature errors of the duplex measures (p. 29I) this discussion is continued at some length. At this point it is deemed sufficient to compute the probable error of a single measure from the double measures of each section, first neglecting the thermometers, second using the steel bars with the thermometers, and third the brass bars with the thermometers. The probable error of a single measure of a mean section (543 meters) in Table No. 6 becomes $\pm 1^{\mathrm{mmn}} .0$ for duplex, $\pm \mathrm{I}^{\mathrm{mm}} .2$ for steel, and $\pm \mathrm{I}^{\mathrm{mm}} .7$ for brass.

In Table No. 7 (921 meters) these probable errors increase to $\pm \mathrm{I}^{\mathrm{mm}} .2$ for duplex, $\pm \mathrm{I}^{\mathrm{mm}} \cdot 7$ for steel, and $\pm 2^{\mathrm{mmn}} .6$ for brass.

The weights assigned were inversely proportional to the squares of the probable errors derived from Table No. 7, namely: For duplex 10, for steel 5, and for brass 2.

A weighted mean, derived in the same manner as in Table No. 7, can now be taken and adopted for the duplex lengths of the nine test kilometers shown in Table No. 5, as follows:

Shelton	1000.2595
Page	1000.2087
Anthony	999.9190
El Reno	1000.0819
Bowie	999.7877
Stephenville	999.9444
Jampasas	999.8539
Alice	999.9810
Seguin.	999.922 I

As a further check on the values adopted for the coefficients of expansion, the relative results on section 6 of the Seguin Base and section 6 of the Shelton Base should be noted. The lowest temperatures of the season were encountered on the section at Seguin, with the result that on the first measure, when the total rise of temperature was $3^{\circ} \cdot 3$, the result from brass was 2^{mm} above the duplex, but on the second measure, when the total fall of temperature was $0^{\circ} .8$, the result from brass was $I^{m m} .5$ lozver than the duplex. On the west half of section 6 at Shelton the temperature was practically constant, and 25° above that on the Seguin section, but the duplex and brass differ only $0^{m n \prime} \cdot 3$. Therefore the coefficients can not be appreciably in error.

THE STEEL TAPE APPARATUS.

The roo-meter tapes Nos. 85 and 88 were used in the measurement of the Holton and St. Albans base lines in 1891 and 1892 . Their cross section is $6^{\mathrm{mm}} \cdot 34$ by $0^{\mathrm{mm}} .47$, and the weight per meter of length was 22.3^{2} grams originally, and had decreased to 22.29 for Γ_{85} and 22.07 for T_{88} when tested after the completion of the nine bases under discussion.
S. Doc. $50-17$

The 50 -meter tapes Nos. 247 and 248 were cut from a steel ribbon of the same approximate cross section as the 100 -meter tapes. They are about $51^{\text {m }}$. o meters in length, and No. 247 weighs 21.8 grams per meter, and No. 24820.9 grams. Instead of graduations ruled on the tape itself there are end graduations ruled on silver sleeves riveted to the tape. These tapes carry no intermediate graduations.

The tape stretchers used to give tension and alignment to the tape are described and illustrated on pages 414 and 415 of Appendix No. 8, Coast and Geodetic Survey Report for 1892 . The spring balance attached to the stretcher was similar to the one there described, except that it was a metric balance reading directly to 25 grams, and which could be easily held to 12 grams. Only one stretcher was used, the end of the tape being held by a simple staff in the rear. As a tension of 15 kilograms was applied to the tape, the breaking link could safely be omitted, because there was little danger of a tension over 15 kilograms being applied in carrying and manipulating the tape. A strip of cotton cloth, which would not twist, was substituted for the breaking link.

The thermometers, which have already been described, were tied in a horizontal position, with their metal backs in contact with the tape, and about i meter from the marking sleeve.

A comparison of thermometers attached in this way with thermometers whose bulbs were inclosed in steel sheaths was made in October, 1897 , on the 50 -meter office test line, and continued through twenty-four hours. The thermometers with protected bulbs were hung with these bulbs at the height of the tape alongside those tied to the tape, as described. The length of the tape from thirty-seven determinations, as indicated by the thermometers with protected bulbs, was omm.o8 less than that from thirtyeight determinations with thermometers tied to the tape. Moreover, the maxinrum residual was $0^{1 m \mathrm{~m}} .50$ (and four residuals exceeded $0^{\mathrm{mm}} \cdot 40$) in the first case and only $0^{\mathrm{mm}} .28$ in the second, while the signs of corresponding residuals from the two sets of thermometers were nearly always the same. The $0^{m m} .08$ showed that the indicated temperatures differed $0^{\circ} .15$ centigrade, and the residual $0^{m m} .50$ is equivalent to $0^{\circ} .9^{2}$ in temperature.

When in use for measuring a line or for a determination of its length, the tape was supported at equal intervals of 25 meters throughout its length. The intermediate supports consisted of steel wire nails driven into 2 by 4 inch stakes set at these intervals along the line. These support nails were ranged into a straight line for any tape length by means of one telescope of the binoculars brought to the right height at the forward end of the tape (see illustration No io). At the forward end the tape was supported and aligned over the marking stake by the tape stretcher. These marking stakes were wooden posts 4 by 4 inches in cross section, securely driven to the proper height and with the top surface about parallel with the surface of the ground. Instead of the zinc plates, as used at Holton, copper strips* $55^{m m}$ by $I^{m m}$ and with a thickness of $I^{\text {tum }} .4$ were nailed on top of these posts parallel to the line of the base and distant from it half the width of the marking sleeve of the tape. The height of these strips brought their top surfaces into the plane of the marking sleeve aud allowed the tape graduation to be prolonged onto this strip by means of a sharp awl and without the use of a try-square. The rear-end graduation of the tape was supported and held by a plain staff and brought into coincidence with these successive marks.

[^9]NO. 10

ALIGNING SUPPORT NAILS FOR TAPES.

contact at rear end of tape

THE FIELD PROCEDURF WITH THE STEEL '「APES.
The marking and support stakes for the measuement were ranged out and adjusted beforehand. For this alignment an 8 -inch theodolite was used.

The measurements were all made at night. Eight men for the 50 -meter tapes and twelve for the 100 -meter tapes were used when possible in the measurement.*

A description of the persounel for measuring with the 50 -meter tapes will suffice for the roo-meter tapes when four extra men are added to carry the tape ahead. There were required two observers, one at the front and one at the rear end of the tape, who also read the thermometers, and the observer at the front end helped to carry the tape ahead; one recorder, who also furnished the light for reading the tension and led the party to the next marking post ahead; two men to apply the tension at the front end and hold it in the rear; and three men to handle lamps and carry the tape ahead. The cooperation of the observers was secured by word of mouth, passed along by the man in the center when the wind was unfavorable. When the stretcher at the front end had brought his balance to the proper height and nearly to the proper reading the observer at the front end called "Tension." As soon as the rear-end observer had adjusted the rear-end graduation of the tape to coincidence with the proper mark on the copper strip he called "Contact." The tension was made perfect, and when the position of the front graduation had been marked he called "All done," and both observers read the thermometers. The thermometer readings were repeated by the recorder when he entered them in the record. The observer at the front end unhooked the tape from the balance, and at the command "Come ahead" each carried the tape above his head as it was moved to the next marking stake. The mean speed attained in this process was 2 kilometers per hour and a single kilometer was measured in 15 minutes. The copper strips were put in position when the marking tables were set and aligned. When a displacement, called set-up or set-back, became necessary or desirable by reason of the expansion or contraction of the tape, a new mark was made and noted by the recorder. By daylight these set-ups and set-backs were measured with a quarter-meter scale and dividers.

The record of the tape measures consisted, for each tape length of the designation of that tape length with the corresponding readings of thermometers, and a record of the set-ups and set-backs, with an occasional record of the time and weather conditious.

ME゚ГHOD OF DFTERMINING LENGTHS OF TAPES.

The lengths of the roo-meter and 50 -meter tapes were determined by measuring the interval of the roo-meter comparator, already described, in the same way as any similar section of the base was measured, except that with the end microscopes pointings were made on the end graduations of the tape, after making the readings on the cut-off (see illustration No. I3).

The tape stretcher was mounted on a section of the car track and the graduated surface of the tape brought into the focus of the microscope, while the rear end was so fixed in position by tying it to a fixed staff that its graduation could be observed. The tapes were stipported at intervals of 25 meters in the focal plane of the microscopes.

[^10]The thermometers were tied to the tape in the manner described for the actual base measurement. When the tape was put under tension on its supports and aligued it was first brought to focus under the microscopes. At the signal " Ready' ' from the observer at the front end both observers made pointings, and at the word "Contact" from the rear observer (see illustration No. 14), the front observer calling "Finished," the thermometers were immediately read and recorded. The observers then exchanged places, each checking the other's micrometer reading on arriving at the new position. These pointings were repeated and one determination of the tape length was completed, depending on two sets of readings and thermometer indications.

The programme for the 50 -meter tapes was necessarily modified. A mark on the usual copper strip was made in the center of the comparator and a contact made by an observer as at the rear end of the tape in actual measurement. To relieve a man from holding contact here a staff that could be swung out of the way was provided, and after the tension had been applied the final contact was obtained by driving a small wedge alongside this staff (see illustration No. 15). When the tape was under tension and the contact made perfect by the observer in the center of the comparator (or rear end of the tape) a pointing was made on the graduation, the reading recorded, and both thermometers were read. The observers exchanged places and the same operation was repeated. The tape was then moved to the other end of the comparator, the tension applied at the opposite end of the comparator, and the same exchange of observers occurred here. A single determination of a double tape length was thus obtained, which depended on four contacts, four microscope pointings, and eight thermometer readings.

The standard tension adopted for all the steel tapes was 15.0 kilograms. Before it left Washington, spring balance No. ioo was set in accordance with determinations by the Weights and Measures Office so as to give a correct tension of 15 kilograms when in a horizontal position, and was carefully kept throughout the season as a standard. The working balances were tested by this one at the beginning of each night's work and at its close, if the index reading showed that a new comparison was desirable.

In February, after the return of the party from the field, a new determination by the Office of Weights and Measures showed that at the close of the season a tension in excess of is kilograms had been applied, amounting to 33 grams. This extra tension means that on the last measures the derived length for the roo-meter tape or double 50 -meter tape is 0^{mm}. 08 , or one part in I 250000 , too great. To avoid the labor of distributing this amount through the season, one-half this quantity was added to the length from the Shelton and one-half subtracted from the length from the Seguin comparisons.

DETERMINATION OF LENGTHS OF TAPES.

The first column of Tables Nos. 8, 9, Io, and if contains the date; the second the time of day; the third the mean temperature as indicated by two thermometers; the fourth the observed length of the tape (or of two tapes in the case of the 50-meter tapes); the fifth the residuals in the sense of computed minus observed value, which result from the equations of the tapes deduced later, and the sixth, the remarks as to location and weather conditions.

TAPE CONTACT AT END OF COMPARATOR.

TAPE CONTACT AT MIDDLE OF COMPARATOR.

Table No. 8.-Results of observations for length of roo-meter steel tape No. 88.

Date.	Time of day.	Corrected temperature from two thermometers. c.	Observed length of tape 100 meters +	Residual (computed minus observed value).	Remarks.
July	h. m.	\bigcirc	mm .	mm	
	12 05 a. mı.	21.40	32. 21	-0. 01	At beginning of season on Shelton
	12 I 3	2 I .07	32. 31	-0. 46	comparator. Moderate wind.
	1215	21.60	32. 53	-0. 12	No dew.
	1226	21. 60	32. 57	-0. 16	
July 28	$900 \mathrm{p} . \mathrm{ml}$.	15.51	25. 19.	+o. 81	Calm.
	914	15. 26	25. 36	+o. 38	
	921	15. 5^{8}	25. $\mathrm{S8}$	+o. 19	Wind rising.
	925	15. II	25. 66	-0.08	Heavy dew.
	930	14. 78	25.46	-0. 23	
$\begin{aligned} & \text { IgoI. } \\ & \text { Jan. } \end{aligned}$	73 Sp.m.	12.00	22. 22	+o. 08	At end of season on Seguin com-
	749	11. 86	22. 02	+o. 14	parator.
	759	1:. 80	22. O_{4}	$+0.05$	No dew.
	S II	11. 31	21. 52	+o. 06	Clear and calm.
Jan. 15	$831 \mathrm{p} . \mathrm{m}$.	13. 15	23. 75	-0.24	
	838	I3. 47	23. 96	-0. 11	Partly cloudy, with light wind.
	845	13.90	24.37	-0.07	
	853	14. 53	25. 19	-0. 23	

Table No. 9.-Results of observations for length of roo-meter stecl tape No. 85.

Date.	Time of day.	Corrected temperature from two thermometers. C.	observed length of tape. 100 meters +	Residual (computed minus observed value).	Kemarks.
$\text { July }^{1900 .} 27$	1. m .	\bigcirc	mm.	mm .	
	$9.30 \mathrm{p} . \mathrm{m}$.	23. 27	31. 29	-o. 17	At beginning of season on Shelton
	948	22. 62	30.61	-0.19	comparator. Moderate wind.
	1000	22.51	30. 44	-0. 14	No dew.
	1015	22. 64	3 -. 37	+0.07	
	19 24	22. 5 I	30.42	-0. 12	
	1035	22. 3^{S}	30, 24	-0.07	
July 28	$955 \mathrm{p} . \mathrm{m}$.	14. 96	21.57	+o. 67	Calm.
	1005	14. 79	21. 33	+o. 73	
	1012	14. 92	21.66	+o. 54	Heavy dew.
	1018	14. 74	21.62	+0. 39	
	1023	14. 56	21.60	-+O. 21	
	1027	14.64	21.60	+0. 30	
$\begin{aligned} & \text { IgoI. } \\ & \text { Jan. } \end{aligned}$	$852 \text { p. m. }$	10. 18	17.27		At end of season on Seguin com-
	902	10. 25	17.33	-0. 12	parator.
	908	10. 45	17.55	-0. 13	No dew.
	925	10. 55	17.65	-0. 12	Clear with light wind.
Jan. 15	$744 \mathrm{p} . \mathrm{mm}$.	13. 15	20.71	-0. 40	
	751	13. 31	20.84	-0. 36 -0.33	Clear with light wind.
	759 806	13.31 13.70	20.81 21.44	-0.33	

Table No. 1o. - Results of observations for double length of 50-meter steel tape No. 247.

Date.	Time of day.	$\|$Corrected temperature from two thermome- ters. C.	Ohscryed length of two tapes. too meters +	Kesidual (computed minus observed value).	Remarks.
$\text { July } 30$	h. m.	\bigcirc	mm.	mm.	At beginning of season on Shelton comparator.
	10 10 p. m.	20.90	+9.31	-0. 37	
	10 23	20. 85	+9.19	-0. 30	
	1025	21.01	+9.27 +9.94	-0. 21	
	10 40	20.60	$\cdots \cdot 9.04$	-0. 41	
July $3^{\text {r }}$	$1020 \mathrm{p} . \mathrm{ml}$.	21.47	--8.98	+0. 56	
	10 30	21. 17	- +8.36	--0. 87	
	1038	20.90	- 8.45	+0. 49	
	Io 47	20.66	+ 8.11	$+0.58$	
Aug. I	$835 \mathrm{p.mm}$.	25.32	+13.83	-0. 26	
	855	24.99	+13.41	-0. IS	
	857	24.81	-13.12	--0. 08	
	903	24. 74	$\div 13.18$	-0.22	
$\begin{aligned} & \text { 190T. } \\ & \text { Jan. } 12 \end{aligned}$					At end of season on Seguin comparator. Partly cloudy with light wind.
	$\begin{array}{ll}715 \mathrm{p} . \mathrm{m} . \\ 7 & 33\end{array}$	8.03 7.32	-4.63 -5.15	$\begin{aligned} & \text { +o. Io } \\ & -\mathrm{o.} \mathrm{I} 2 \end{aligned}$	
	753	6. 42	-6.21	-0.01	
	805	6.28	--6.31	-0.06	
Jan. 15	IO $25 \mathrm{p} . \mathrm{ml}$.	13. 70	+1.43	-0. 02	No dew. Cloudy with light wind
	10 35	13.49	+1. 1.26	-0.07	
	1046	12.99	+0.72	-0.06	
	1056	12. 59	+ 0.47	-0. 23	Calm.

Table No. $11 .-$ Results of obscrvations for double length of $50-$ meter steel tape No. 248.

Date.	Time of day.	Corrected temperature from two thermome- ters. c.	Observed length of two tapes. 100 meters +	Residual (computed minints observed value).	Remarks.
$\begin{aligned} & 1900 . \\ & \text { July } 30 \end{aligned}$	h. m.	\bigcirc	mı.	mm.	
	$913 \mathrm{p} . \mathrm{m}$.	21. 38	+8.43	-0.40	At the leginning of season on
	925	21. 77	+ 8.93	--0. 49	Shelton comparator.
	940	21.57	$+8.46$	-0. 23	
	955	2I. 19	+ 8.05	-0. 22	Clear.
July 3	$903 \mathrm{p} . \mathrm{m}$.	23. 27	${ }^{+}-10.04$	-0.02	
	926	22. 51	-- 8.75	$\bigcirc \cdot 0.47$	Clear.
	9.38	22.07	$\begin{array}{r} \\ +8.52 \\ \hline\end{array}$	+o. 23	
	945	21. 98	+ 8.66	+o. 15	
Aug.	$920 \mathrm{p.m}$.	24. 93	-11. 73	$+\mathrm{O} .04$	
	928	25. 18	-11.90	--0. 13	
	939	25. 28	-12.00	+o. 14	
	948	25.32	+12.04	+-0. 14	
$\begin{aligned} & \text { 1901. } \\ & \text { Jani. } 12 \end{aligned}$	$842 \mathrm{p} . \mathrm{m}$.	6.71	-- 7.49	+o. 06	At end of season on Seguin com-
	853 p.m.	6.06	- 8.27	+o. 15	parator.
	910	5.23	- 9. 14	+o. 14	Some dew. Partly cloudy with
	919	4.88	-- 9.42	+0.05	light winds.
Jan. I5	$9 \mathrm{IS} \mathrm{p.m}$.	14.47	-0.82	-0. 08	Cloudy with light wind.
	939	14.07	+ 0.38	-0.06	
	951.	13.48	-0.29	-0.01	No dew.
	1083	13.43	-- 0.19	-0. 16	

In order to simplify the computation it will be assumed that there was no change in length of the tapes during the season.

It is then possible to take a mean of all the observed lengths $\left(x_{0}\right)$ for the mean of all temperatures (t_{0}) and leave the coefficient of expansion to be settled by a later discussion. The following values are thus derived for the four tapes from Tables Nos. 8, 9, 10, and II:

$$
\begin{aligned}
\mathrm{T}_{88} & =100+26^{\mathrm{mm}} .01 \text { at } 15.52 \mathrm{C} . \\
\mathrm{T}_{85} & =100+23^{\mathrm{mm}} .32 \text { at } 15.97 \mathrm{C} . \\
2 \mathrm{~T}_{247} & =100+5^{\mathrm{mm}} .29 \text { at } 17.4 \mathrm{C} . \\
2 \mathrm{~T}_{248} & =100+4^{\mathrm{mm} .19} \text { at } 17.74 \mathrm{C} .
\end{aligned}
$$

DETERMINATION OF COEFFICIENTS* OF EXPANSION OF THE STEEL TAPES.

The coefficient of expansion for the two roo-meter tapes was determined by Prof. R. S. Woodward in i891, at Holton, Ind., and the results found, with their probable errors, were, for Tape No. 88, $y=\mathrm{r}^{\mathrm{mm}} .0914 \pm 0^{\mathrm{mm}} .0032$, and for No. $35, y^{\prime}=\mathrm{r}^{\mathrm{mm}} .0947$ $\pm 0^{\text {ram }} .002 \mathrm{I}$. Although the probable errors were small, these coefficients, when applied to the results in Tables 8,9, IO, and xI , are evidently too large. The discussion of the i891 results seemed to tend toward greater uncertainty and larger residuals for determinations made during the daylight hours, doubtless due to radiation effects. It had been the experience of the writer that these uncertainties of temperature during the day were not eliminated by the protection of a shed, as on the office test line and on the Holton roo-meter comparator. It was therefore determined to again solve the observation equations (from the Tables V and $V I \dagger$), omitting the day observations. From Table V there remain 26 observations on 9 different nights. These, treated in exactly the manner in which the full group of observations was originally treated, give the following equation:

$$
\mathrm{T}_{85}=20 \mathrm{~B}_{17}+16^{\mathrm{mm}} .42 \pm 0^{\mathrm{mm}} .023+\left(1^{\mathrm{mm}} .068 \pm 0^{\mathrm{mm} \mathrm{~m}} .0040\right)\left(t-\mathrm{II}^{\circ} .53 \mathrm{C} .\right)
$$

From Table VI, 24 remaining observations on 8 different nights give

$$
\mathrm{T}_{88}=20 \mathrm{~B}_{17}+16^{\mathrm{min}} .62 \pm 0^{\mathrm{mmn}} .028+\left(\mathrm{I}^{\mathrm{mmn}} .048 \pm 0^{\mathrm{mmn}} .0056\right)\left(t-9^{\circ} .49 \mathrm{C} .\right)
$$

It will be noted that when only the night observations, approximately one-third the whole group, are used, the probable error of the length is scarcely affected, being increased from $\pm 0^{m n} .020$ to $\pm 0^{m n} .023$ in the case of T_{85}, and from $\pm 0^{m n n} .024$ to $\pm 0^{m m} .028$ in the case of T_{88}. Moreover, the probable error of a single determination is decreased from $\pm 0^{m m} .22$ to $\pm 0^{m m} .14$ for $T_{88}^{\prime \prime}$, and from $\pm 0^{m m n} .17$ to $\pm 0^{m m 1} .13$ for T_{85}. The writer believes that he can not be justly criticised, therefore, for using this newly determined coefficient in conjunction with others, as all the measures and determinations with these steel tapes were made at night during the measurement of the 9 bases under discussion.

When similarly treated, the data in Tables Nos. 8, 9, 10, and II of this Appendix give for the coefficients of the 4 tapes the following results:

$$
\begin{aligned}
& \text { For } \mathrm{T}_{88}, y=1.075 \pm 0.012 \\
& \text { For } \mathrm{T}_{85}, y=1.069 \pm 0.01 \mathrm{~mm} \\
& \text { For } \mathrm{T}_{247}, y=1.044 \pm 0.008 \\
& \text { For } \mathrm{T}_{248}, y=1.056 \pm 0.005
\end{aligned}
$$

[^11]By comparison with the duplex bars, on the nine test kilometers, it is possible to get still another determination of this coefficient. Using the data from the abstracts of these test kilometers, which are found in their proper places in succeeding pages, equations of the form $\left(t-t_{0}\right) y+c=\left(l-l_{0}\right)$ where t is the observed temperature; t_{0} is the mean temperature of standardization; c is an unknown, representing the constant difference between the bar length and the tape length under consideration; l is the length of a tape at the observed temperature, as given by one-tenth of the kilometer, and l_{J} is the corresponding length x_{0} from Tables Nos. 8,9 , ro and ${ }_{1 i}$, so corrected for inclinations and set-ups as to be comparable with l. For Tape No. 88 the following equations were formed:

Shelton	$-0.4+y-c=-\frac{\mathrm{min}}{\mathrm{I}} \text {. So }$	$\begin{aligned} & \text { Residinals. } \\ & -0.50 \end{aligned}$
Page	$+2.70 y+c=+2.30$	-0. 30
Anthony	$+3.69 y+c=+3.50$	-0. 44
El Reno	$-9.00 y+c=-10.59$	$\div 0.29$
Bowie	$+3.64 y+c=+3.48$	-0. 49
Stephenville	$-6.07 y+c=-7.58$	+o. 36
Lampasas	$-6.50 y+c=-7.58$	-0.41
Alice	$-\mathrm{1.05y}+\mathrm{-} \cdot \mathrm{c}=-3.15$	+1. 21
Seguin	$-11.74 y-\dot{-}-c=-12.52$	-0.66

The resulting values of c and y are: $c=-0^{m m} .84$ and $y=I^{\mathrm{mm}} .05 \mathrm{I} \pm \mathrm{o}^{\mathrm{mm}} .028$. For Tape No. 85 the following equations were formed:
\(\left.$$
\begin{array}{lll} & & \begin{array}{c}\text { Kesiduals. } \\
\text { mm. }\end{array}
$$

Shelton \& -0.34 y+c=-1.17 \& +\mathbf{o . 1 9}\end{array}\right]\)| Page | $+1.33 y+c=+0.84$ | -0.05 |
| :--- | :--- | :--- |
| Anthony | $+2.26 y+c=+2.15$ | -0.37 |
| El Reno | $-8.87 y+c=-9.97$ | -0.05 |
| Bowie | $+2.60 y+c=+2.48$ | -0.34 |
| Stephenville $-9.62 y+c=-10.7 S$ | -0.04 | |
| Lampasas | $-6.16 y+c=-7.37$ | +0.22 |
| Alice | $-1.18 y+c=-2.56$ | +0.69 |
| Seguin | $-12.52 y+c=-13.62$ | -0.27 |

The resulting values of c and y are: $c=-0^{m m m} .62$ and $y=1^{m m m} .060 \pm 0^{m m n} .015$. For Tape No. 247 the following equations were formed:

		Residuals. min.
Shelton	$+6.79 y+c=+6.30$	+ o. 30
Page	$+1.15 y+c=+0.36$	+0.26
Anthony	$-5.98 y+c=-6.64$	-0.30
El Reno	$-9.48 y-c=-10.99$	+0.34
Bowie	$+2.59 y+c=+2.83$	-0.68
Stephenville	$-7.46 y+c=-8.67$	+0.16
Lampasas	$-9.35 y+c=-10.25$	-0.26
Alice	$-2.98 y+c=-4.26$	+0.50
Seguin	$-4.62 y+c=-5.21$	-0.29

The resulting values of c and y are: $c=-0^{m m n} .60$ and $y=1^{m m} .060 \pm 0^{m m n} .018$.

For Tape No. 248 the following equations were formed:

	\quadmm.	Residuals. mm.
Shelton	$+4.28 y+c=+2.96$	+0.59
Page	$+1.12 y+c=+0.91$	-0.56
Anthony	$-5.91 y+c=-6.43$	-0.35
El Reno	$-9.17 y+c=-10.72$	+0.63
Bowie	$-1.51 y+c=+0.99$	-0.25
Stephenville $-4.04 y+c=-4.96$	+0.07	
Lampasas $-9.27 y+c=-9.98$	-0.21	
Alice	$-3.18 y+c=-3.98$	-0.03
Seguin	$-4.24 y+c=-5.09$	0.00

The resulting values of c and y are: $c=-0^{\text {mm }} .79$ and $y=1^{m \mathrm{~m}} .014 \pm 0^{\mathrm{mm}} .022$.
Collecting the several values of y, we have for the four, tapes the following coefficients of expansion with their probable errors:

	No. 88.	No. 85.	No. 247.	No. 248.
	mmm.	mm .	mm.	mim.
Observations onl comparators.	1.075士0.012	1. 069 ± 0.011	I. 044 ± 0.008	1. 056 ± 0.005
I891 observations.. Nine test kilometer	1.048 ± 0.0056 1.051 ± 0.028	1. 068 ± 0.004	I. 060 ± 0.018	
Nine test kilometer	1.051	1.06010 .015	1.060 -0.018	1.014 ± 0.022
Weighted means.	1. 053 ± 0.005	1.068士0.001	I. 047 ± 0.004	1. 054 ± 0.006

ADOPTED EQUATIONS OF TAPES.

Adopting, then, these weighted means as the respective coefficients for the four steel tapes, and using these values in Tables Nos. 8, 9, 10, and 11 , the residuals in the fifth column are obtained.

The probable error of a single determination of a tape length (or of two tape lengths in the case of the 50 -meter tapes) from these residuals becomes for $\mathrm{T}_{88}, \pm 0^{m m} .19$; for $T_{85}, \pm \dot{O}^{m m 12} .24 ;$ for $T_{247}, \pm 0^{m m} .24 ;$ and for $T_{248}, \pm 0^{m m} .15$.

From these residuals any change in the length of the apparatus from use during the season may be detected. Tape No 88 , for instance, has a sum of the residuals at Shelton equal to $+0^{\text {mun }} .32$, or an average of $o^{\text {mm }} .03$, while at Seguin the residuals sum up to $-0^{\text {man }} \cdot 3^{2}$, or an average of $-0^{m n t} .04$. This tends to show a lengthening of the tape equal to $0^{m m} .07$, or 1 part in 1400000 . In like manner Tape No. 85 has an average plus residual of $0^{n m m} .18$ at Shelton and an average minus one of $o^{m m} .27$ at Seguin. This seems to be good evidence that No. 85 has increased in length $o^{m m} .45$, or one part in 220000 . However, the residuals from the test kilometers display no apparent change, and for this reason it seems desirable to accept the mean. The residuals for No. 247 indicate a slight elongation of a double tape amounting to 0^{mm}. 10 , or 1 part in 1000000 , while No. 248 by its residuals shows no appreciable change.

The equation for each tape may now be written as follows:

$$
\begin{aligned}
& \mathrm{T}_{88}=100^{\mathrm{mL}}+26^{\mathrm{nm}} .0 \mathrm{I} \pm \mathrm{o}^{\mathrm{mm} / .045+\left(\mathrm{I}^{\mathrm{mm}} .053 \pm 0^{\mathrm{mm}} .005\right)\left(t-15^{\circ} .5^{2} \mathrm{C} .\right) ~} \\
& \mathrm{~T}_{85}=100^{\mathrm{m}}+23^{\mathrm{mm}} .32 \pm 0^{\mathrm{mm}} .054+\left(\mathrm{I}^{\mathrm{mm}} .068 \pm 0^{\mathrm{mm}} .00 \mathrm{I}\right)\left(t-15^{\circ} .97 \mathrm{C} .\right) \\
& 2 \mathrm{~T}_{247}=100^{\mathrm{ml}}+5^{\mathrm{mmm}} .29 \pm 0^{\mathrm{mm}} .052+\left(\mathrm{I}^{\mathrm{mm}} .047 \pm 0^{\mathrm{mmu}} .004\right)\left(t-17^{\circ} .4 \mathrm{IC} \text { C }\right) \\
& 2 \mathrm{~T}_{248}=100^{\mathrm{m}}+4^{\mathrm{mml}} .19 \pm 0^{\mathrm{mmu}} .034+\left(\mathrm{I}^{\mathrm{mmu}} .054 \pm 0^{\mathrm{mm}} .006\right)\left(t-17^{\circ} .74 \mathrm{C} .\right)
\end{aligned}
$$

At the mean remperature of standardization the largest probable error for any tape is 1 part in 1900000 . At the extreme temperatures of observation the largest probable error for any tape is I part in I 100000 .

shelton base line.

The site of the Shelton Base Line was selected in April, 1899, by Assistant F. D. Granger. It is located in the valley of the Platte River and is parallel to the Union Pacific Railroad track, between the towns of Shelton and Gibbon, in Buffalo County, Nebr. Its middle point is in latitude $40^{\circ} 46^{\prime}$ and in longitude $98^{\circ} 47^{\prime}$, and its elevation above the ocean is about 608 meters. The leugth of the base is approximately 7.89 kilometers and its mean azimuth is $70^{\circ} \mathrm{oz}^{\prime}$.

The terminal markings, which are 56.3 feet north of the north rail of the railroad track, were put in position when the line was connected with the triangulation in May, 1899. The tripods and scaffolds were in place when the measuring party reached the line, so that the surface marks, consisting of copper bolts with cross lines in limestone posts 8 inches square and 2.5 feet long, were undisturbed. Since 1899 a fence, 8 feet from the line, had been erected, which placed it in the public highway for its entire length.

East Base monument was used as a bench mark in a line of precise levels run in 1899 and the connection with the West Base monument was made by Prof. L. S. Smith, a member of the base line party. It would be hard to imagine a more perfect base site when considered topographically, no roo-meter length having a difference of elevation as much as a meter. The only impediment to the progress of the measurement was the team traffic along the line and the high winds encountered when measuring with the duplex bar apparatus. Several thermometer readings over $44^{\circ} .5 \mathrm{C}$. were recorded while working with the bars.

The base was divided into eight sections, five of which were I kilometer in length; the third (from East Base), 600 meters; the fifth, 1200 meters, and the sixth, i 084 meters. Between sections 3 and 4 , and 5 and 6 , permanent marks were established by using duplicates of the stone marking the ends of the Ioo-meter comparator. Instead of the brass, spherical-headed bolts, brass screws were cemented into the top surface of the stones. The other section marks were crosses in copper rivets in the top of 6 by 6 inch pine posts, set with 4 feet of their length below the surface.

Sections 3 and 6 (aggregating i 684 meters) were measured in each direction with the duplex bar apparatus. Sections 2 and 7 (2000 meters) were measured in one direction with 50 -meter tape No. 247 and in the opposite directiou with No. 248 . Sections 4,5 , and 8 (3200 meters) were similarly measured with roo-meter tapes Nos. 85 and 88 .

The test kilometer, section I, was measured once with each apparatus. Of the entire base, therefore, 0.24 depends upon the length of the duplex bar apparatus; 0.23 on each 100 -meter tape, and 0.15 on each 50 -meter tape. The fractional part of a bar length on section 6 was measured with 3 -meter steel bar No. I, whose corrections are known. Table 12 contains the results of the measures of the Shelton Base.

Table No. 12.-Results of measures of Shelton Base.

* The hours of tape measures refer to p . m .

To reduce the measured length to the sea level, the height of Shelton East Base is taken from the precise leveling as 616.1 meters. The levelings of the base in July and Angust, 1900, gives the mean height of the eight sections and the corresponding reduction to sea level.

And the total reduction for the entire base becomes - 0.7684 meters.
An inspection of the residuals developed on the test kilometer, where five apparatus are involved, in comparison with the residuals on the other seven sections, where but two, or in the case of the duplex but one, apparatus was used, is sufficient to decide how the probable error should be computed. The errors of manipulation are evidently very small compared with those which are constant for each apparatus.

Therefore, two measures with any single apparatus are regarded as one, and from the probable error of a single measure of a kilometer section, determined from the residuals on the test kilometer, the probable error of the entire length is computed. This probable error of a single measure from the test kilometer is $\pm 4^{\mathrm{mm}} .0$, and the probable error of the whole length, therefore, is $\pm 8^{\mathrm{mm}} \cdot 5$.

Thus, p. e. of whole base $=$

$$
\left(\frac{(4 \cdot 0)^{2}}{5}+\frac{(4.0)^{2}}{2}+\frac{0.6(4.0)^{2}}{1}+\frac{(4.0)^{2}}{2}+\frac{1.2(4.0)^{2}}{2}+\frac{1.1(4.0)^{2}}{1}+\frac{(4 \cdot 0)^{2}}{2}+\frac{(4.0)^{2}}{2}\right)^{1}= \pm 8^{\mathrm{mmom}} \cdot 5 .
$$

If, on the other hand, the probable errors of the single measures had been taken from the discord of the measures on each section and each divided by the square root of the number of apparatus involved, the total probable error for the base would then become only $\pm 2^{\mathrm{mm}} \cdot 3$, a quantity which is without doubt too small.

It is quite possible that in the case of the probable error $\pm 2^{\mathrm{mm}} \cdot 3$ for the base, computed from the discord of the individual measures on each section, there should be added the uncertainty of the comparisons of each apparatus with the 100 -meter comparator. Moreover, it is evident that these uncertainties are already measured in the probable error of a single measure of the test kilometer $\pm 4^{m m} .0$, and therefore should not be combined with the probable error $\pm 8^{\mathrm{mm}} \cdot 5$, which is already a combination of the probable error of measurement, and the probable error of measuring the comparator interval with the different apparatus.

Summing up, the adopted probable error of the entire base becomes,

Adopted probable error. ± 9.0
which is about i/ $8 j 6000$ of the length.

Length of the Shelton Base	7884. 7223 meters.
	± 90
And its logarithm	3. 8967864
	± 5

PAGE BASE LINE.
In the valley of the Elkhorn River north of the town of Page, in Holt County, Nebr., the site of the Page Base Line was chosen. A reconnaissance by F. D. Granger, Assistant, Coast and Geodetic Survey, in May, 1900, decided its exact location. Its middle point is in latitude $42^{\circ} 27^{\prime}$ and longitude $98^{\circ} 24^{\prime}$ west, and about 592 meters above the sea level. At its southwest end it attains its greatest elevation, 627 meters. There is a general slope of the ground downward toward its northeast terminus of nearly 46 meters. The length is approximately 8.25 kilometers, and the mean azimuth $39^{\circ} .9$. At 2.40 kilometers from southwest base a small ridge was crossed, on the northeast face of which the maximum grade was encountered. The correction to the 50 -meter tape at this point for the 3.03 meters difference of elevation was 92.1 millimeters. The major part of the line was unbroken prairie used either as pasture or meadow. Twelve barbed-wire fences and five cornfields were crossed in the measurement.

The terminal marks were placed in position before the measurement began. They consist of limestone blocks 6 by 6 by 8 inches in dimensions, set below the surface, while blocks 24 by 24 inches and 14 inches deep, mark the stations at the surface. These monuments, securely set in cement, are lettered and have copper bolts inserted at the centers of their upper surfaces with cross lines marking the ends of the base. The
ends of the sections were marked with copper rivets in the top of 4 by 6 inch posts set at least 3 feet in the ground. Exceptions to this marking were made at each end of the "test kilometer" section 6, where limestone blocks 54 inches long, dressed to 6 by 6 inches at the top, carrying copper bolts with cross lines were used.

After the surface monument at Southwest Base had been placed in position, it was comected with bench mark M_{2} (1900), thus becoming a bench mark of the precise level line. By means of a forward and backward line the Northeast Base monument was connected with it by Aid O. M. Leland, using precise level No. 5.

The base was divided into eight sections for convenience of measurement. The first, second, fourth, fifth, sixth, and seventh from the southwest end are each I kilometer in length, the third I o50 meters, and the eighth i 201 meters.

The first three sections were measured in one direction with one 50 -meter tape and in the opposite direction with the other 50 -meter tape. Sections 4 and 5 were similarly measured with the roo-meter tapes. Sections 7 and 8 were measured in each direction with the duplex bars, while section 6 became the test kilometer. Of the length 0.29 , therefore, depends on the duplex bar apparatus; 0.21 on each 50 -meter tape, and 0.15 on each roo-meter tape. An extra measure of section 4 with Tape No. 88 was made to detect a supposed error in the first measure. A mean of the two was accepted and no extra weight assigned the result.

Table No. 13 contains the results of the measures made on the Page Base.
Table No. 13.-Results of measures of Page Base.

To reduce the measured length to the sea level, the height of Page Southwest Base, taken from the precise leveling, is 626.6 meters. From the levelings of the base in August and September the mean heights of the eight sections and the corresponding reductions to sea level are as follows:

and the total reduction for the entire base becomes -0.7689 meters.
In the same manner as at Shelton Base the probable error of a single apparatus on a kilometer as derived from the residuals on the test kilometer is $\pm 2^{m m} .1$, and likewise the probable error of the whole base is $\pm 4^{\mathrm{mm}} .7$. The probable error of the base from the discord of the measures on each section is also $\pm 4^{\mathrm{mm}} \cdot 7$. Combining this probable error with the uncertainty in reduction to sea level and the length of the comparator, the adopted probable error of the whole base becomes:

Probable error of standardization and measurement.	
Probable error of reduction to sea level.	\pm. I
Probable error of 82.5 times comparator, 82.5 ($\mathrm{o}^{\mathrm{mm} \mathrm{\prime}} .037$)	
Adopted probable error	± 5.6

which is about Ií 473000 part of the length.

Length of Page Base	8 250. 9880 meters.
	$\pm \quad 56$
And its logarithm	3. 9165060
	\pm

ANTHONY BASE LINE.

The site of the Anthony Base was determined in a reconnaissance by Stehman Forney, Assistant, Coast and Geodetic Survey, in the summer of 1899 . The base is about parallel to Bluff Creek in Harper County, Kans. Its southeast terminal is directly north of the schoolhouse in the town of Anthony and $11 / 8$ miles from it. The northwest terminal is on land belonging to W. W. Millican, of Thorntown, Ind., about equally distant from the towns of Anthony and Harper. The permanent marks at the base ends were put in position when the base was located. Below the surface a limestone block 6 by 6 inches in cross section and 1 foot long (21 inches long at Northwest Base) was set in concrete with its top 4 feet below the surface. Into the top surface of this post a copper bolt was secured, and the center of the station (underground) is a millimeter hole in this bolt.

At the surface a hard limestone block 23 by 23 inches and 16 inches high, weighing 700 pounds, set in a mass of concrete 4 feet square and 4 feet deep, carries at the center of its top surface a bronze station mark, the millimeter hole in the center of which marks the end of the base.

These station marks are made of a composition of copper and brass, and have a shank $7^{\mathrm{mm}} .6$ long with a slit in its lower end into which a brass wedge is inserted, so that when the bolt is driven home it bulges out at the bottom of the hole, which is made
larger there than at the top, and in this manner is securely fastened in place. The top of the station mark is 80^{mm} in diameter, with an inner circle (countersunk) 37^{mm} in diameter. The letters "U.S. C. \& G. S." are cast on the space between the inner and outer circles.

Between the bottom of the surface monument and the bolt marking the point below the surface there is an earthenware drainpipe 7 inches in diameter and 25 inches long. This drainpipe is embedded in the upper mass of concrete and covered with a piece of galvanized iron to prevent anything from falling on the underground mark.

The latitude of the middle point of the base is $37^{\circ}{ }_{11} 1^{\prime}$, and the longitude $98^{\circ} \circ 3^{\prime}$. The height of its highest point is 423 meters above the sea level, while the azimuth of the line is about $142^{\circ} .5$. The length is approximately 6.03 kilometers. At 2.40 kilometers and again at 2.70 kilometers from Southeast Base the measurement crossed sharp ravines with the tape hung on tall supports 15 to 18 feet in height, and at 3.9 kilometers crossed Spring Creek.

The approach to this creek from the southeast is comparatively gentle, but to leave it necessitated the breaking of the grade of the roo-meter tape length between stakes 79 and 81 , where the difference in elevation on 75 meters of the length is 6.57 meters, requiring a grade correction of $96^{m m 11} .1$ for a 25 -meter span. These sections of the line could not have been measured with any form of bar apparatus without expensive preparations. In general, the line traversed cultivated fields except at the northwest end, where there was some unbroken prairie.

It was divided into six sections-sections 1,3 , and 5 being a kilometer in length; section 2, I 052 meters; section 4, 996 meters, and section 7,987 meters.

Section I, though by no means level, was used as the test kilometer, and its northwest end was permanently marked by a stone 3.5 feet long and 6 by 6 inches in cross section, set on solid rock and cemented in position with I foot of its height projecting above the surface. A cross in a copper rivet set in the stone marks the exact point. Section 2 was measured once with each of the 50 -meter tapes. Sections 3,4 , and 5 were similarly measured with the 100 -meter tapes, except that on section 3 two measures with each tape were made. Section 6 was measured in each direction with the duplex bar apparatus. The fractional measures-less than 5 meters-on sections 2, 4, and 6 were made with the 3 -meter fractional bar No. I.

The monuments at Southeast Base and at the end of the test kilometer were used as bench marks in a precise level line (1900) and, incidental to the work of determining the tape grades, the pier at Northwest Base was connected with the levels during the progress of the work by Mr. R. S. Ferguson, Recorder, using precise level No. 5.

Table No. 14 contains the results of the measures of the Authony Base.

Table No. 14.-Results of measurcs of Anthony Base.

* The hours of tape measures refer to p . m.
tThe individual results from the measures of this section are as follows: Tape 85, 999.9628 and 999.9633. Tape 89, 999.9728 and 999.9723 .

The probable error of a single measure from the residuals on the test kilometer is $\pm 2^{\mathrm{mm}} \cdot 4$, and therefore the probable error of the whole base becomes $\pm 4^{\mathrm{mm}} \cdot 3$.

From the discord of the individual measures on each section the probable error of the whole base, $\pm 3^{\text {mnn }} .9$, is deduced. Adopting the larger value and combining this with the uncertainty in the sea level reduction and in the length of the comparator, the adopted probable error of the whole base reduced to sea level becomes:

Probable error of standardization and measurement.	$\begin{array}{r} \mathrm{mm} . \\ =4.3 \end{array}$
Probable error of reduction to sea level.	\pm - I
Probable error of 60.3 times comparator, 60.3 ($0^{\mathrm{mm}} .037$)	± 2.2
Adopted probable error	± 4.8

which is about I/ 1257000 part of the length.
The unreduced length is

$$
\begin{aligned}
& \text { 6035.10I I meters. } \\
& \pm 48
\end{aligned}
$$

From the levelings of the base in September, the mean heights of the six sections and corresponding reductions to sea level are as follows:

	mm.	mm.		m.		
Sec. 1.	419.6	65.9	Sec. 4.	$413 . \mathrm{Jm}$	64.6	
2.	420.0	69.4	5.	418.4	65.7	
3.	414.9	65.2	6.	422.8	65.5	

and the total reduction for the entire base becomes - $396^{\text {m"n }} \cdot 3$.

Length of the Anthony Base reduced to	6034.7048 meters $\pm \quad 4 \mathrm{~S}$
And its logarithm.	3. 7806560
	± 3

EI RENO BASE LINE.

On the divide between the Canadian River and the North Fork of the Canadian is located the longest base in the ninty-eighth meridian triangulation-the El Reno Base.

The reconnaissance by Stehman Forney, Assistant, in 1899, decided its location, and the terminals were permanently marked by hin. It is in Canadian County, Okla., southwest of the city of El Reno.

Its middle point is in approximate latitude $35^{\circ} 28^{\prime}$ and longitude $98^{\circ} \mathrm{o} 2^{\prime}$ west and is about 425 meters above sea level. The length is 12.9 kilometers and the azimuth of the line is roughly 110°.

The western terminal is the highest point on the line, and the descent from this point is 36 meters in the first kilometer. From this point the line retains this general elevation for 7 kilometers. The last 5 kilometers are comparatively smooth, with a rise in the last kilometer of 13 meters to East Base. 'The western half is broken by two sharp ravines, where 18 -foot supports were needed for the 100 -meter tapes. At the approach to one of these ravines on section 4 the steepest grade was encountered, where the difference in elevation in a 25 -meter span was 2.85 meters and the corresponding correction for grade was $162^{\mathrm{min}} \cdot 7$. About fifty wire fences intersect the line and two large straw piles had to be removed before the measurement was made. At i. 2 kilometers from East Base the line crosses the track of the Chicago, Rock Island and Pacific Railway.

East Base is on the land of Mr. G. L. Newman, and the piers are similar to those described for the Anthony Base. The surface, monument is a red sandstone 2 by 2 feet in cross section, I foot high, and weighs 600 pounds. A bronze station mark similar to that used at Anthony in the center of this stone marks the end of the base. This mark is 48 inches above the bolt in the limestone block which marks the station below the surface.

At West Base a similar monument 'on the land of Mr. J. T. Seawell marks the end of the base. It is on the summit of a prominent hill $21 / 2$ miles south and $63 / 4$ west of the Rock Island depot in El Reno.

The leveling for the tape grades and for the mean height of the thirteen sections was not connected with any known bench mark. The end monuments, which are bench marks of the most permanent character, will ultimately be connected with the precise level net of the Coast and Geodetic Survey.

The base was divided into thirteen sections, numbered from West Base. Section 7 is 444 meters, and section 9 , 1450 meters long, while the other eleven sections are approximately 1 kilometer in length.

Sections 1, 2, 3, 4, and 5 were measured once with each roo-meter tape; sections 9, IO, II, I2, and I3 were similarly measured, using the 50 -meter tapes, and sections 7 and 8 were measured in each direction with the duplex bars. Section 6 was chosen as the test kilometer, being most easily accessible from the camp, and was measured
S. Doc. $50-18$
with each apparatus in the usual way, except that two extra measures were made with roo-meter tape No. 88, as additional checks on the constancy of its length, but the mean of the three results used as one.

The base therefore depends for its length as follows: 0.13 on the duplex bar apparatus, 0.21 on each 100 -meter tape, and 0.23 on each 50 -meter tape.

Table No. is contains the results of the base measures.
Table No. 15.-Results of measures of El Reno Base.

1. W. B. to 20	$\begin{array}{cr} { }^{\text {oct. }} \begin{array}{ll} 19000 & \\ 5 \end{array} & \\ \hline \end{array}$	$\begin{aligned} & \text { h. m. h. m. m. } \\ & 843-91 . \\ & 935-10 \text { o2 } \end{aligned}$	$\begin{aligned} & E \text { to } W \text {. } \\ & \text { W. to } E . \end{aligned}$	Tape 85 Tape 88	21.62 22.06	0.8 0.8 0.8	R. R .	$\stackrel{\text { F. }}{\text { F. }} \mathrm{W}$ W.	$\begin{aligned} & \mathrm{ml} . \\ & 999 . \\ & 9940 \\ & .2094 \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ +2.7 \\ -2.7 \end{gathered}$
2. 20 to 40	$\begin{array}{ll}\text { Oct. } & 5 \\ & 5\end{array}$	$\begin{array}{rr} 8 & 03-8 \\ 10 & 10-10 \\ \hline \end{array}$	$\begin{aligned} & E, \text { to } W . \\ & W, \text { to } E . \end{aligned}$	Tape 85 Tape 88	20. 09 21.83	0.7 0.8	$\underset{\underset{Y}{\mathrm{~K}} .}{\text { R. }}$	F. W.	$\begin{array}{r} 906.4257 \\ .4300 \end{array}$	+2.1
8. 40 to 60	Oct.5 	$\begin{array}{rl}7635-8 & 80 \\ 10 \\ 45-11 & 10\end{array}$	$\begin{aligned} & \mathbf{F} . \text { to } \mathbf{W} . \\ & \mathbf{W} . \text { to } \mathbf{E} . \end{aligned}$	Tape 85 Tape 88	$\begin{aligned} & 21.82 \\ & 21.27 \end{aligned}$	1.2 0.5	$\underset{\mathrm{F}}{\mathrm{~F}}$	$\begin{aligned} & \text { F. } \mathbf{w} . \\ & \text { I: } . \end{aligned}$	$\begin{array}{r} 999.7729 \\ .7783 \end{array}$	$\begin{array}{\|} +2.7 \\ -2.7 \end{array}$
4. 60 to So	Oct. $\quad 6$	$737-820$ $80-908$	E. ${ }_{\text {W. }}^{\text {W }}$ W. E .	Tape 88 Tape 85	19.13 18.26	I. 1.0 1	$\underset{\mathrm{F}}{\mathrm{F}}$	F. F W.	$\begin{array}{r} 994.6343 \\ .6320 \end{array}$	-1.1
5. So to 100	Oct.6 		E. to W.	Tape 88 Tape 85	$\begin{aligned} & 19.95 \\ & 17.34 \end{aligned}$	0.6 1.0	$\underset{\mathrm{F}}{\mathrm{~F}}$	F. W.	1000.3244 .3190	+2.7 -2.7 +2.7
6. 100 to $120 \dagger$	$\begin{array}{rrrr}\text { Oct. } \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 13\end{array}$			Tape 248 Tape 247 Tape 85 Tape 88 Tape 88 Tape 88 Duplex	8.57 7.93 7.10 6.86 6.64 6.07 20.64	1.4 0.8 0.7 1.0 0.9 1.9 7.8	R. $\begin{gathered}\text { R. } \\ \text { R } \\ \text { R. } \\ \text { R. }\end{gathered}$	F. F. F. F. F. F. c. c.	$\begin{array}{r} 1000.0924 \\ .0925 \\ .0869 \\ .0930 \\ .0819 \end{array}$	-3.1 -3.2 +2.4 -3.7 +7.4
7. 120 to 128	$\begin{array}{ll} \text { Oct. } & 15! \\ & 16 \end{array}$	$\begin{aligned} & \text { a. m. } \\ & \text { a. m. } . \end{aligned}$	$\begin{aligned} & \mathrm{F} . \text { to } \mathrm{W} . \\ & \mathbf{W} . \text { to } \mathrm{E} . \end{aligned}$	Duplex Duplex	$\begin{aligned} & 16.88 \\ & 16.16 \end{aligned}$	2.2 1.3	$\begin{aligned} & \mathbf{R} . \\ & \mathbf{R} . \end{aligned}$	c.	$\begin{array}{r} 444 \cdot 3209 \\ \cdot 3196 \end{array}$	-0.7
8. 128 to 148	Oct. 16, 17	a.m. m ¢.	W. to E . E. to W.	Duplex	15.88 17.72	0.9 6.4	R. R.	c.	1000.2122 .2102	-1.0
9. 148 to 177	Oct. $\quad \begin{array}{ll}11 \\ & 11\end{array}$	$\begin{array}{rr} 8 & 11-845 \\ 10 & 07-10 \\ 32 \end{array}$	W. to E. E. to W.	Tape 248	$\begin{aligned} & \text { 9. } 18 \\ & 7.65 \end{aligned}$	3.1 2.9	$\begin{aligned} & \text { F.R. } \\ & \text { R. } \\ & \text { F. } \end{aligned}$	$\underset{\mathrm{F} .}{\mathrm{F} .}$	$\begin{array}{r} 449.8521 \\ .8578 \end{array}$	+2.9
10. 177 to 197	Oct. ${ }^{11}$	$\begin{array}{llll} 9 & 00-9 & 3.5 \\ 9 & 38-10 & 0.5 \end{array}$	W. to \mathbf{E}. F. to W.	Tape 248 Tape 247	8. 8. 8. 8	4.4 3.3	R. F .	$\underset{\mathrm{F}}{\mathrm{F}}$.	$\begin{aligned} & 999.9762 \\ & .9743 \end{aligned}$	-1.0
11. 197 to 217	Oct. $\quad 9 \quad 9$	$\begin{array}{r} 7 \text { 55- } 820 \\ 1042-1108 \end{array}$	W. to E. F. to W.	Tape 248「ape 247	$\begin{aligned} & 8.06 \\ & 7.45 \end{aligned}$	$\begin{aligned} & \text { 1. } 1 \\ & 0.7 \end{aligned}$	$\mathbf{F} \cdot \mathbf{k}$	C. D.	$\begin{array}{r} 999.9038 \\ .9062 \end{array}$	$\xrightarrow{+1.2}$
12. 217 to 237	oct. $\quad{ }_{9}$	$\begin{array}{r} 822-850 \\ 1027-1040 \end{array}$	$\underset{\text { E. to } \mathrm{W} .}{\substack{\mathrm{W} \\ \hline}}$	$\begin{aligned} & \text { Tape } 248 \\ & \text { Tape } 247 \end{aligned}$	8.94 8.94 7.10	$\begin{aligned} & 0.6 \\ & 0.9 \end{aligned}$	$\underset{\mathbf{R} .}{\mathrm{R} . \mathrm{F}}$	$\begin{aligned} & \mathrm{C} \cdot \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{array}{r} 1002.9765 \\ \quad .9796 \end{array}$	${ }_{-1.6}^{+1.5}$
18. 237 to E. H .	Oct.¢ 	$\begin{aligned} & 852-925 \\ & 937-1005 \end{aligned}$	W. to E. E. to W.	Tape 248 Tape 247	$\begin{aligned} & 855 \\ & 7.50 \end{aligned}$	$\begin{array}{r} 1.6 \\ 2.5 \end{array}$	$\underset{\mathrm{F} . \mathrm{K} .}{ }$	$\begin{gathered} \mathrm{C} \cdot \mathrm{D} \\ \mathrm{C} . \\ \mathrm{D} \end{gathered}$	$\begin{array}{r} 999.8387 \\ \quad .8422 \\ \hline \end{array}$	${ }_{-1.8}^{+1.7}$
Total length									12887.5393	

*The hours of tape neasures refer to p. m.
\dagger The individual results from the measures of this section with Tape 88 are as follows: $1000 \mathrm{~m} .0962,1000 \mathrm{~m} .0927$, and 1000 in. 0902 .

The probable error of a single measure from the residuals on the test kilometer is $\pm 3^{\mathrm{mm}} \cdot 2$, and therefore the probable error of the length of the whole base becomes $\pm 8^{\mathrm{mm}} \cdot 4$.

From the discord of the individual measures on each section the probable error of the whole base, $\pm 5^{\mathrm{nm}} . \mathrm{o}$, is deduced.

Adopting the larger value and combining with the uncertainty in the comparator, the adopted probable error of the base becomes

Probable error of standardization and pneasurement	± 8.4
Probable error of 128.9 times comparator, 128.9 ($0^{m m} .037$)	± 4.8
Adopted probable error	± 9.7

which is about I! 1329000 part of the length.
The length not reduced to sea level is $\quad 12887.5393$ meters ± 97
A provisional height was assumed for West Base of 46 I meters, and the resulting heights and corrections to reduce the thirteen sections to sea level are:

and the total reduction for the entire base becomes -0.8556 meters.

BOWIE BASE LINE.
During a reconnaissance by Stehman Forney, Assistant, in 1899, a site for the Bowie Base was located on the divide south of the Red River in Clay and Montague counties, Tex. It is west of the city of Bowie and south of the town of Bellevue. Its middle point is in approximate latitude $33^{\circ} 36^{\prime}$ and very near the meridian of 98° west. The length of the line is 8.20 kilometers and its azimuth about 160°.

The northeast terminal is I mile southeast of the town of Bellevue, in Clay County, on a prominent knoll on the farm belonging to the Orton Brothers. It is almost exactly 6 meters below the southeast terminal which is on the highest part of a prominent ridge on the farm of C. H. Bodeker.

The marks at the ends of the base are of the most permanent character. The piers at the surface and the marks underground are duplicates of those described for the El Reno Base, with a single exception. At Northwest Base the native rock was found at 3 feet below the surface and a copper bolt in this rock was made the underground mark.

Nothing unusual in the topography was encountered. Beginning at the southeast end, the line falls 20 meters in the first 700 meters, rises gradually for the next kilometer, crosses several little creeks, and falls to its minimum height where it crosses a small creek at 5.7 kilometers. The heaviest grades are on section 8 approaching Northwest base, where in i 100 meters there is a rise of 27 meters. The maximum grade occurs in a 25 -meter span on which the difference in elevation is 1.64 meters and the corresponding correction 54^{min}. o.

The grades and profile were determined by leveling in duplicate with precise level No. 5 , but as there were no bench marks in the immediate vicinity, the end piers pre-
serve the base height for future determinations. The height of the northwest terminal is about 317 meters above the sea level.

The base was divided into eight sections, beginuing at Southeast Base, the first six being I kilometer in length, the seventh I 098 meters, and the eighth i 099. meters.

Sections 1,2 , and 3 were measured once with each roo-meter tape. Sections 4, 6, and 8 were similarly measured with the 50 -meter tapes. Section 7 was measured in each direction with the duplex bar apparatus. Section 5 became the test kilometer on account of its convenient location rather than its topography. The measurement of this section with the bar apparatus involved the necessity of using very heavy grades. amounting in one instance to $4^{\circ} 4 r^{\prime}$. With the tapes, it became necessary to have a different grade for the 50 -meter tape from that of the 100 -meter tape in order to cross two small ravines without high marking stakes.

The base depends for its length as follows: 0.16 on the duplex bar apparatus; 0.21 on each roo-meter tape, and 0.21 on each 50 -meter tape.

Table No. 16 contains the results of all the various measures made on the Bowie Base.

Table No. 16.-Results of measures of Bowic Base.

	نٌّ			河						
1. SE. IB. to 20	Oct. 25 2.5	$\begin{gathered} \text { h.m. h. m. m. } \\ 926-9947 \\ 1002-10 \\ 10 \end{gathered}$	NW. to SE S .	$\begin{aligned} & \text { Tape } 88 \\ & \text { Tape } 85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text {. } \\ & 19.41 \\ & 19.48 \end{aligned}$	0 0.5 0.3	$\underset{\mathrm{F}}{\mathrm{R}} \mathrm{F}$	$\underset{\mathrm{F}}{\mathrm{~F}}$	$\begin{gathered} \mathrm{ml} . \\ 999.8493 \\ .8459 \end{gathered}$	$\begin{gathered} 1112 . \\ -1.7 \\ +1.7 \end{gathered}$
2. 20 to 40	$\begin{array}{ll}\text { Oct. } & 25 \\ & 25\end{array}$	$903-484$ 10 $30-10$ 36	NW. to SE. SE. to NW.	Tape 88 Tape 85	19.51 18.70	0.4 0.6	$\underset{\mathrm{F}}{\mathrm{F}}$.	$\stackrel{\mathrm{F}}{\mathrm{F}}$.	999.9549 .9561	+0.6 -0.6
3. 40 to 60	$\begin{array}{ll} \text { Oct. } & 25 \\ & 25 \end{array}$	$\begin{array}{r}842-9021 \\ 1058-11 \\ \hline 86\end{array}$	NW. to SE.	Tape 88 Tape 85	19.78 18.42	0.5 0.1	$\underset{\mathrm{F}}{\mathrm{F}}$.	F.W.	999.9375 .9310	-3.3 -3.2
4. 60 to 80	Oct. 27 27 		NW. to SE.	Tape 248 「rape 247	$\begin{aligned} & 19.3 .5 \\ & 19.27 \end{aligned}$	0.7 0.3	FR. F F.	c.	999.6968 .6951	-0.8 +0.9 -0.9
5. So to 100	Oct. 2	$\begin{array}{r} 8 \text { on- } 825 \\ 1011-10474 \\ 822-853 \\ 904-940 \\ \text { a.m. } 4 . \mathrm{p} . \mathrm{m} . \end{array}$	Nw. to Sle SE. to NW NW. to SE: SIE. to NW. NW. to SE.	Tape 85 Tape 8x Tape 2 . 8 Tape 247 Duplex.	$\begin{aligned} & 18.57 \\ & 19.16 \\ & 19.25 \\ & 20.00 \\ & 20.30 \end{aligned}$	$\begin{array}{r} 2.0 \\ 0.4 \\ 1.3 \\ 0.7 \\ 10.2 \end{array}$	\xrightarrow{R}	c.	999.7905	-0.7 -1.2 -1.2
							R.	F.	. 7934	- -3.6
							R.	$\underset{F}{\mathrm{~F}}$	- 7882	+3.6
	Nov. 3						k .	F	.7877	+2.1
6. 100 to 120	$\begin{array}{ll}\text { Oct. } & 29 \\ & 29\end{array}$	$751-820$ 9 9 4 $42-10$	NW. to SE SF. to NW.	Tape 248 rape 247	$\begin{aligned} & 19.21 \\ & 1952 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 03 \end{aligned}$	$\underset{\mathrm{F} . \mathrm{R}}{\mathrm{F}}$	$\underset{\mathrm{F}}{\mathrm{~F}} .$	$\begin{array}{r} 999.4917 \\ \hline 4900 \end{array}$	-0.9
7. 120 to 142	Nov. $\begin{aligned} & \text { I } \\ & \\ & \\ & 2\end{aligned}$	a.m. ※p.m. a.m. \& p.m.	SF. to NW. NW. to SE.	Duplex Duplex	$\begin{aligned} & 19.19 \\ & 16.34 \end{aligned}$	8.9 12.2	$\begin{aligned} & \mathrm{k} . \\ & \mathrm{k} . \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{array}{r} 1098.1478 \\ 1438 \end{array}$	$\begin{array}{r} -2.0 \\ +2.0 \end{array}$
8. 142 to NW. B.	Oct. $\quad 3$		NW. to SE sli, to NW.	rape 247 rape 248	$\begin{aligned} & 8.00 \\ & 7 . \infty \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.8 \end{aligned}$	$\underset{\mathrm{v}}{\mathrm{~F}}$	$\underset{\mathrm{F}}{\mathrm{~F}}$	$\begin{array}{r} 1099.5830 \\ \quad 5774 \end{array}$	$\begin{aligned} & { }_{-2.8} \\ & +2.8 \end{aligned}$
									8196.4299	

The probable error of a single measure from the residuals on the test kilometer is $\pm I^{\mathrm{mm}} \cdot 9$, and therefore the probable error of the length of the whole base becomes $\pm 4^{\mathrm{mm}} .0$.

From the discord of the indiviclual measures on each section, the probable error of the whole base, $\pm 3^{\text {m"m }} \cdot 9$, is deduced.

Adopting the larger value and combining it with the uncertainty in the comparator, the adopted probable error of the whole base becomes:

Probable error of standardization and measurement	mm -4.0
Probable error of S 2 times comparator, S 2.0 ($\mathrm{o}^{\mathrm{mmm} .037 \text {) }}$. 0
Adopted probable error	

which is about i i 639000 part of the length.
The length before reducing to sea level is
8196.4299 meters $\pm \quad 50$
Assuming a height for Northwest Base equivalent to 316.68 meters, the resulting heights of and corrections to reduce the eight sections to sea level are:

and the total reduction for the entire base becomes - 0.3876 meters.

STEPHENVILLE BASE LINE.
The Stephenville Base was located by Stehman Forney, Assistant, Coast and Geodetic Survey, in the summer of 1899 . It is on the eastern side of the Bosque River, Erath County, Tex. Its southern end is about three-fourths mile west of the town of Selden, on a ridge between Indian and Simms creeks. It follows closely the crest of this ridge until it culminates at North Base in a prominent knoll known locally as Bunker Hill. The line is 7 miles southeast of the town of Stephenville. Its middle point has an approximate latitude of $32^{\circ} 10^{\prime}$ and is close to the ninety-eighth meridian. Its azimuth is roughly 4° I 5^{\prime} and its highest point is North Base, which is 442 meters above sea level. Its length is 6.3 kilometers. The grades over the entire length were gentle, the maximum being 1.42 meters in a span of 25 meters with a correction of 4^{min}.o.

The permanent marks at the ends of the base were put in position by the reconnaissance party in 1899 . The underground marks are small drill holes in the end of copper bolts cemented into the tops of hard limestone posts. These posts are 14 inches long and 6 inches square, and are set with their tops 34 inches below the surface, with a mass of concrete 24 inches square surrounding them. Above the top of this mark the mass of concrete is 4 feet square, and embedded in it, at the surface, is a hard limestone block 24 inches square and 14 inches thick, weighing 600 pounds. The center of the station at the surface is secured by a metal station mark, a duplicate of that described for the marks at the Anthony Base (page 270). North Base is $51 / 2$ miles east of the Court-House in Stephenville, and a half mile north of the road leading to Skippers Gap. It is on the summit of Bunker Hill, on land belonging to Geo. W. Gentry, of Selden, Tex. South Base is located on land of Mr. Willie Funk, of Midland, Tex.,
and is near the public road between Stephenville and Hyco, Tex. A line cleared through the timber, made by the measuring party, will readily guide one to the station.

The grades and profile of the line were determined by leveling in duplicate with precise level No. 5. There being no bench marks in the vicinity, the end piers preserve the height of the base for future determinations. The base was divided into six sections. Beginning at North Base, the first three were each I ooo meters, the fourth I ioo meters, the fifth 1 ooo meters, and the sixth I 156 meters in length. Sections 1 and 2 were measured once with each roo-meter tape. Sections 3 and 4 were measured with each 50 -meter tape. Section 6 was measured in each direction with the duplex bar apparatus. Section 5 was used as the test kilometer and was therefore measured once with each apparatus.

The base depends for its length as follows: 0.21 on the duplex bar apparatus, 0.20 on each 50-meter tape, and o. iy on each roo-meter tape.

Table No. 17 contains the results of all the measures made on the Stephenville base.
Table No. 17.-Results of measures of Stephcnville Base.

*'Tle hours of tape neasures refer to p. m.
The probable error of a single measure, from the residuals on the test kilometer, is $\pm 3^{1 \mathrm{~mm}}$. . , and therefore the probable error of the length of the whole base becomes $\pm 5^{\mathrm{mm}}$. 5 。

From the discord of the individual measures on each section the probable error of the whole base would be only $\pm \mathbf{2}^{\mathrm{mm}} \cdot 3$.

Adopting the larger probable error and combining with the uncertainty in the length of the comparator, the adopted probable error for the Stephenville Base becomes:

Probable error of standardization and measurement.	$\begin{array}{r} \mathrm{min} \\ \pm 5.5 \end{array}$
Probable error of 62.5 times comparator, 62.5 ($0^{m m \mathrm{~m}} .037$)	± 2.3
Adopted probable error.	± 6.0

which is about r/I 043 ooo part of the length.

A provisional height for North Base was assumed at 442 meters and the resulting heights and corrections to reduce the six sections to sea level are:

	m	mm			11	11 m
Sec. 1.	435. 5	68.5		Sec. 4.	420. 5	72.8
2.	424. 9	66.9		5.	419. I	66.0
3.	422.5	66.5		6.	416.6	75. S

and the total reduction for the entire base becomes -0.4165 meter.

LAMPASAS BASE LINE.
The problem of the selection of a site for a primary base along the arc of the ninety-eighth meridian near the thirty-first parallel of latitude was solved by Assistant Stehman Forney in $\mathbf{1 8 9 9}$. The Lampasas Base lies across the drainage, with its northeastern terminal about 2 miles east of the city of Lampasas, in Lampasas County, Tex. The southwestern end is on the brow of a prominent hill about 2 miles south of the city and nearly a inile west of the Austin road. The character of the topography along the line of measurement makes it the roughest base yet selected in the meridian arc, while its length, 6 kilometers, makes it also the shortest. The middle point of the line is in latitude 31° o2' and its azimuth is 215°.

The highest point of the base is its southwest terminal, and the difference of elevation between the two ends exceeds 66 meters. Appended to this report is a profile of the line and a sketch of the base figure. Although this base is the roughest and shortest of the nine measured, its accuracy in proportional parts is exceeded by only two of the nine. This indicates that the principle on which the reconnaissance party acted is correct, namely, that it was more desirable to secure good geometric conditions in the base net than to get the most favorable topugraphy for the base.

While the abruptness of the grades may seem startling, the results show that such inequalities of the line are easily surmounted when the measuring apparatus consists of long tapes. The maximum grade occurs in the first section, where it exceeds 3 . I meters in a 25 -meter span and has a corresponding correction equal to $200^{\text {mum }}$. For I mile at the northeast end the line required clearing, as it was covered with low, scrubby oaks.

The permanent marks were already in place when the measuring party arrived. At Northeast Base, the sub-surface mark is a metal station mark, as described under the heading Anthony Base (page 270), cemented into solid rock. A similar mark in the top of a limestone block 24 by 24 inches and I_{3} inches thick marks the station at the surface. This surface block is securely set in a body of concrete 48 by 48 inches, the solid rock being cut away a few inches to allow the upper surface of the block to be placed even with the ground.

At the southwest terminal, the underground mark is 6 by 6 inches and 12 inches long, embedded in concrete with its top surface 24 inches below the top of the surface stone.

This surface stone is of limestone and 24 inches square and 14 inches deep. It is embedded in a mass of concrete 48 by 48 inches, 22 inches deep. Both stoues carry the station marks, the lower one being protected by a wooden box 8 inches long with a board over the top. Northeast Base is about 250 meters north of the Belton road in a pasture belonging to Mr. Howard, of Lampasas, and is near the northeastern brow of a timbered hill. Southwest Base is in what is known as the Craft pasture.

As no bench marks exist in the vicinity, the grades and profile were determined by leveling in duplicate with precise level No. 5 between the end piers, which will preserve the provisional height of the base for future determination.

The base was divided into six sections beginning at Southwest Base; the first, second, fifth, and sixth were each I 000 meters, the third 1449 meters, and the fourth 515 meters in length.

Sections I and 2 were measured once with each 50 -meter tape; sections 3 and 6 once with each roo-meter tape; section 4 was measured in each direction with the duplex bar apparatus. Section 5 became the test kilometer, and was measured once with each of the tapes and once with the duplex bar apparatus.

The base depends for its length as follows: 0.12 on the duplex bar apparatus; 0.24 on each roo-meter tape, and 0.20 on each 50 -meter tape.

Table No. 18 contains the results of the measures made on the Lampasas Base.
Table No. 18.-Results of measures of Lampasas Basc.

* The hours of tape measures refer to p. m.

The probable error of a single measure from the residuals on the test kilometer is $\pm 2^{\mathrm{mm}} .0$, and thus the probable error of the whole base becomes $\pm 3^{\mathrm{mim}} \cdot 4$.

From the discord of the individual measures on each section the probable error of the whole base would be but $\pm 2^{\mathrm{mm}} \cdot 5$.

Adopting the larger probable error and combining with it the uncertainty in the length of the comparator, the adopted probable error of the Lampasas Base becomes:

which is about I/I 454000 part of the length.
The length not reduced to sea level is

$$
5961.4973 \text { meters. }
$$

$$
\pm 4 \mathrm{I}
$$

A provisional height was assumed for Southwest Base equal to 420 meters, and the resulting heights and corrections to reduce the six sections to sea level are:

| | m. | mm. | | m. | mm. |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sec. 1. | 420.4 | 63.2 | Sec. 4. | 384.4 | 31.1 |
| 2. | 394.8 | 62.0 | 5. | 38 I .5 | 60.0 |
| 3. | 392.1 | 89.3 | 6. | 363.0 | 57.0 |

and the total reduction for the entire base becomes -0.3626 meters.

		$\pm 4 \mathrm{I}$
	And its logarithm	3. $77532 \mathrm{S9}$

ALICE BASE LINE.
About 7 miles south of the town of Alice, in Nueces County, Tex., the Alice Base Line was located in 1899 by Assistant Stehman Forney. Its middle point is in latitude $27^{\circ} 46^{\prime}$ near the ninety-eighth meridian, and its azimuth is approximately 90°.

The height of the base above sea level is approximately σ_{4} meters, and its length 7 kilometers.

The line is smooth, traversing pasture land covered with scattering mesquite brush and cactus. There is a very gradual slope from west to east, amounting to but 9.44 meters in the whole length of the line. The terminals were perpetuated in the same manner as at Lampasas Southwest Base, and these piers were made bench marks for future comnection with the level net of the United States.

The West Base pier is only 300 meters from the house of Luciano Garcia, to whom the land belongs, and is 3888 meters west of the center of the Alice and Brownsville stage road.

There are no prominent objects in the vicinity of East Base, which is 3083 meters east of the center of the stage road.

The base was divided into seven sections, beginning at the east end. The first four and the last two sections are each i kilometer long, while the fifth is 971 meters.

Sections I, 2, and 3 were measured once with each ioo-meter tape, sections 6 and 7 were measured once with each 50 -meter tape, section 5 was measured in each direction with the duplex bar apparatus, while the test kilometer, section 4 , was measured once with each of the tapes and once with the duplex bar apparatus.

The base depends for its length as follows: 0.17 on the duplex bar apparatus, 0.24 on each 100 -meter tape, and 0.17 on each 50 -meter tape.

Table No. ig contains the restults of the measures made on the Alice Base.

Table No. 19.-Results of measures of Alice Base.

*The hours of tape measures refer to p. m.
The probable error of a single measure from the residuals on the test kilometer is $\pm 5^{\mathrm{mm}} . \mathrm{I}$, and thus the probable error of the whole base becomes $\pm 9^{\mathrm{mm}} .8$. This probable error is larger than that of any other of the nine base lines measured, although the conditions of topography and wenther were most nearly perfect.

From the discord of the inuividua, measures on each section the probable error would be but $3^{\mathrm{mm}} \cdot 7$. Adopting the larger probable error and combining vith it the uncertainty in the length of the comparator, the adopted probable error of the Alice Base becomes:

Probable error of standardization and measurement	± 9.8
Probable error of 70 times comparator, 70 ($\mathrm{o}^{\mathrm{mm}} .037$)	± 2.6
Adopted probable error	± 10.1

which is about $I 690000$ part of the length.
The length not reduced to sea level is

$$
6 \text { 971.7581 meters. }
$$ $\pm \mathrm{IO}$

A provisional height was assumed for the station mark at east base equal to 60 meters and the resulting heights and corrections to reduce the seven sections to sea level are:

	ml	mm.		m.	mm.
Sec. I.	59.9	9.4	Sec. 5.	65.3	9.9
2.	62.0	9.7	6.	66.7	10.5
3.	63.0	9.9	7.	68.3	10.7
4.	63.0	9.9			

and the total reduction for the entire base becomes - 0.0700 meters.

SEGUIN BASE JINE.
The site of the Seguin Base Line was chosen in 1899 by Assistant Stehman Forney, in the valley of the Guadalupe River, in Guadalupe County, Tex. It is about midway between the cities of Seguin and New Braunfels and on the east side of the river. Its middle point is in latitude $29^{\circ} 40^{\prime}$ and its eastern terminal is very near the meridian of 98°.

The height of the base above sea level approximates 165 meters, and its length is 6.8 kilometers. While lying at right angles to the course of the drainage, the entire range in the elevations along the line is less than 14 meters. The maximum grade was 3.56 meters in 50 meters, necessitating a correction of $127^{\mathrm{mm}} . \mathrm{o}$. The western terminal is on a small hill, covered with scattering mesquite brush, on the land of Henry Steinman, I 100 meters west of the Seguin-New Braunfels road and about 400 meters east of the Guadalupe River. The eastern terminal is on the land of Henry Soefje, at the western edge of the live-oak timber about 2 miles northwest of Von Beckman's store and gin. It is I 050 meters east of the main road between Von Beckman's and New Braunfels, and the line crosses the road at the northwest corner of Mr. Soefje's dooryard.

During the year, between the location of the base and its measurements an enterprising farmer erected a baru directly on the line i 464 meters from west base, but being on a slope where the line of sight was not interrupted, it was a simple matter to remove a board on the line and measure with the tape through the barn. Twenty-six fences, most of them of barbed wire, were crossed by the line.

The permanent marks were put in position when the location was chosen and are similar to those described for the Anthony Base (p. 270), with the exception that at East Base the underground mark is a copper bolt cenrented into the natural sandstone rock about 32 inches below the surface. The mass of concrete in which the capstone was set was kept clear of the bolt by means of a box 9 inches square.

The base was divided into seven sections, beginning at West Base, sections I, 2, 5, and 7 being each i kilometer in length, section 3, 700 meters, section 4, i 200 meters, and section 6, 895 meters in length. Between sections 6 and 7 and on the line a hole in the top of a stone post 6 by 6 by 12 inches and o. 6 meter below the surface serves as a witness mark for the recovery of the eastern terminal. The other section marks were copper rivets in 4 by 6 inch posts securely set in the ground.

Sections 1, 2, and 3 were measured once with each 50 -meter tape and section 4 similarly measured using the roo-meter tapes. Sections 6 and 7 were measured in each direction with the duplex bar apparatus, and section 5 was adopted as the test kilometer, and a single measure with each tape and the bar apparatus was made over it.

It was impracticable to comnect the terminal monuments with any precise level bench marks, and the surface monuments were therefore left to preserve the provisional height of the base for future connection with the precise level net of the Survey. The connection between the two terminals was made in duplicate (by running in each direc-
tion) using precise level No. 5, as such leveling was necessary to determine the tape grades as well as the mean height of the base.

The base depends for its length as follows: 0.3 I on the length of the duplex bar apparatus, 0.23 on each 50 -meter tape, and 0.12 on each roo-meter tape.

Table No. 20 contains the results of the measures of the base.
Table No. 20.-Results of measures of Seguin Base.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \dot{\Sigma} \\
& \dot{E}
\end{aligned}
$$ \& Time of day.* \& \& 关 \& Mean temperature. \& \& \& \&

\hline 1. W. 13. to 20 \& 1900.
Dec.

29 \& \& F. to W
W. to
E. \& - Tape 248 \& ${ }^{\circ} \mathrm{C}$.
4.

4.14 \& $$
\begin{array}{l|l}
0.3 \\
0.6 & 1 \\
0 .
\end{array}
$$ \& c. w \& 111

999.8345
.8 .406 \& $\operatorname{mim}_{\substack{\text { a } \\ \text { +3. } \\-3.0}}$

\hline 2. 20 to 40 \& 1Jec. $\begin{aligned} & 29 \\ & \\ & 29\end{aligned}$ \& \& E. to $\begin{aligned} & \text { W. } \\ & \text { to } \\ & \text { a }\end{aligned}$ \& | Tape 245 |
| :--- |
| Trape 247 | \& 4.13

4.05 \& | 0.3 | R. | |
| :--- | :--- | :--- |
| 0.2 | R. | |
| 0.2 | | | \& c. w.

c.

W. \& $$
\begin{array}{r}
999.7870 \\
.7893
\end{array}
$$ \& $\xrightarrow{+1.2}$

\hline 3. 40 to 54 \& Dec. $\quad 291$ \& $\begin{array}{rrrr}7300 & 7 & 51 \\ 1017-10 & 34\end{array}$ \& E. to W.
W. to E \& Tape 248 Trape 247 \& 4.03
3.93 \& \& c. W. \& 700.0337
.0375 \& $+22-22$

\hline 4. 54 to -5 \& Dec. | 29 |
| :--- |
| |
| 29 | \& $\begin{array}{|rrrr|}648-715 \\ 10 & 47-11 & 10\end{array}$ \& F. to W. \& Tape ${ }^{\text {Tap }}$

Tape \& $4.02!$

3.86 \& | 0.3 | R |
| :--- | :--- |
| 0.4 | F |
| 0 | | \& c. W. \& 1200.1798

.1819 \& $\underbrace{1.0}_{-1.1}$

\hline 5. 7 S to 9 S \& $\begin{array}{cr}\text { Dec. } & 29 \\ \\ \text { 190ı. } & \\ \end{array}$ \& \& E. to W. \& Tape S5
Tape ${ }^{\text {S }}$ (\& 3.45

3.78 \& 0.6. $\mathrm{F} . \mathrm{R}$, \& c. W. \& $$
\begin{array}{r}
999.9245 \\
.9236
\end{array}
$$ \& $\stackrel{+1.1}{+1.1}$

\hline \& $$
\begin{array}{ll}
\text { Jan. } & 4 \\
& 4 \\
& 5
\end{array}
$$ \& \& E. to W W.

W. to F

F. W . \& | Tape 248 |
| :--- |
| - Tape 247 Duplex | \& \[

$$
\begin{aligned}
& \text { 13. } 49 \\
& \text { 13. } 19 \\
& 17.95
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
0.3 & 1 \\
0.5 & F \\
4.6 & \text { R. }
\end{array}
$$

\] \& \[

\stackrel{\mathrm{c}}{\mathrm{C}}

\] \& \[

$$
\begin{array}{r}
.9281_{1} \\
.9299 \\
.9221
\end{array}
$$

\] \& | -2 5 |
| :---: |
| -4.3 |
| +3.5 |

\hline 6. gs to 116 \& $$
\begin{array}{ll}
\text { Jan. } & 2,3 \\
3,4
\end{array}
$$ \& \[

$$
\begin{array}{lll}
\text { p.m. \& } \operatorname{a.m} . \mathrm{m} \\
\text { a.m. }
\end{array}
$$

\] \& E. to W. \& | Duplex |
| :--- |
| Duplex | \& 7.56

10.76 \& \& C. \& $$
\begin{array}{r}
895 \cdot 1726 \\
.1745
\end{array}
$$ \& \[

\left\lvert\, $$
\begin{aligned}
& +1.0 \\
& -0.9
\end{aligned}
$$\right.
\]

\hline 7. 116 to F. 13. \& JR11. ${ }^{4}$ \& \& \[
$$
\begin{aligned}
& \text { W. to } \mathrm{E} . \\
& \text { F. to } \mathrm{W} .
\end{aligned}
$$

\] \& | Duplex |
| :--- |
| Duplex | \& \[

$$
\begin{array}{r}
16.3 .5 \\
20.94
\end{array}
$$

\] \& \[

$$
\begin{array}{c:c}
3.8 & \mathrm{~K} . \\
1.2 & \mathrm{~F} . \mathrm{R} . \\
\hline
\end{array}
$$

\] \& | c. |
| :--- |
| c. | \& \[

$$
\begin{array}{r}
999.8511 \\
.8486
\end{array}
$$
\] \& +1.3 $\begin{aligned} & -1.9 \\ & +1.2\end{aligned}$

\hline Total length \& \& \& \& \& \& \& \& 6794.7905 \&

\hline
\end{tabular}

* The hours of tape measures refer to p. m.

The probable error of a single measure as deduced from the residuals on the test kilometer is $\pm 2^{\text {m"Mn }} .2$, and therefore the probable error of the length of the whole base becomes $\pm 4^{\text {""'" }} .4$.

From the discord of the individual measures on each section a smaller probable error for the whole base, namely, $\pm 3^{m m} \cdot 4$, may be deduced.

Adopting the probable error as first deduced and combining with the uncertainty in the length of the comparator, the adopted probable error of the base becomes:

Probable error of standardization and measurement	mm ± 4.4
Probable error of 68 times comparator, 68 ($0^{\text {tun }} .037$)	± 2.5
Adopted probable error.	± 5.1

which is about $1 / \mathrm{I} 333000$ part of the length.
The length not reduced to sea level is
6794.7905 meters.
$\pm 5 \mathrm{I}$
A provisional height was assumed for West Base of 170 meters, and the resulting
heights and corrections to reduce the seven sections to sea level are here given to correspond to this assumption:

and the total reduction for the entire base becomes -0.1794 meters.

SUMMARY OF RESULITS.
To aid the reader in judging the value and extent of the work accomplished in this field season of six months a brief summary is added.
B_{17}, whose length when immersed in melting ice was known with a probable error of i part in 4500000 , became the unit of length for all these measures. From this unit of length two ioo-meter comparators were prepared, 750 miles apart, and their lengths determined with an average probable error of I part in 2700000 .

Five sets of apparatus were determined on each of these comparators, with an iverage probable error of approximately I part in 2000000.

The nine base lines here tabulated were measured in such a way that on the average one-fifth of each base depends on the length of each apparatus.

Name of base.	Probable error.	Length.	Probable error as proportional part.
	nım.	m.	
Shelton	± 9.0	7884.72	1/876000
Page	± 5.6	8250.99	1/1 473000
Anthony	± 4.8	6034.70	1/1 257000
El Reno	± 9.7	12 S86. 68	$1 / 1329000$
Bowie	± 5.0	8 196.04	$1 / 1639000$
Stephenville	± 6.0	6 255. oS	I/1 1042000
Lampasas .	± 4.1	5961. 13	I/I 454000
Alice	± 10.1	6971.69	1/690 000
Seguin	± 5.1	6794.61	1/1 333000

These bases, aggregating 69.2 kilometers, with an average length of 7.7 kilometers, have an average probable error of i part in I 200000 , which was attained without the expenditure of either time or money in excess of that necessary for the lesser accuracy required by the instructions, namely, i part in 500 ooo. They, in connection with the Salina Base of the transcontinental triangulation, control the lengths on 1 ion miles of the arc of the ninety-eighth meridian.
cost of the base line measurements.
It is now deemed advisable to show the total cost of the work which has just been summarized. The total amount expended for field expenses was $\$ 751 \mathrm{I} .65$. These field expenses include all items of transportation, freight, etc., beginning and ending in Washington, all material, camp equipage, and pay and subsistence of entire party,
except salaries of officers. Adding the pay of the officers, which is the only item of expense not included in the field expenses, $\$ 2546.84$,* there results $\$ 10058.50$, which is the entire amount expended for field expenses on the nine bases. Approximately 25 per cent of the $\$ 7500$ was spent for transportation of the party and outfit by train and wagon, but this proportion of necessary travel and freight would have been considerably greater if all the bases had not been measured in one season's work. The cost of preparing the results for printing, including all computations made at the Office, $\$ 1,016.28$, would bring the total cost of the bases to $\$ 11,074.78$, which would be $\$ 1,230.53$ per base, or $\$ 160$ per kilometer. The above amounts include all the cost of standardizing the apparatus.

SPEED ATTAINED WITH BARS AND TAPES.
The actual speed of measurement during this season can be most readily shown in tabular form. In Table No. 21 all the bar measurements where 400 meters or more were measured consecutively have been tabulated. In column 3 there is slown the total time which elapsed between the completion of the reference to the ground mark at the start and the beginning of the reference at the end of the section. In column 6 the average number of bars per hour for each of the seven months in which measurements were made is shown.

In Tables Nos. 22 and 23 similar information is tabulated for the 100 -meter and $50-$ meter tapes. In columns 5 and 6 the speed is expressed in kilometers per hour.

Table No. 21.-Showing the increasing speed of duplex measurements.

[^12]Table No. 21.-Showing the increasing spéed of duplex measurements.-Continued.

TABLE No. 22.-Showing speed of measurement with roo-meter tapes.

TABLE NO. 23.-Showing speed of measurement with 50-meter tapes.

Date.	Name of base.	$\begin{gathered} \text { Time of } \\ \text { mensure- } \\ \text { ment. } \\ \text { including } \\ \text { delays } \\ \text { except as } \\ \text { noted. } \end{gathered}$	I.ellgth of continuous measurement.	$\begin{gathered} \text { Kilo- } \\ \text { meters } \\ \text { per hour. } \end{gathered}$	Mean kilometers per hour for each	Remarks.
$$	Shelton do . . .	hirs. I. 22 I. 17	$\begin{aligned} & \mathrm{km} . \\ & 2.00 \\ & 2.00 \end{aligned}$	$\begin{aligned} & \text { I. } 64 \\ & \text { I. } 71 \end{aligned}$	1. 67	Delayed i8 minutes to reset support.
Aug. 11 I	. . do	0. 52	I. 00	I. 92		
	. . .do	o. 53	1.00	I. 89		
	! Page	I. 58	2.00	I. 27		
 do	1. 3^{8}	2.00	I. 45	1. 46	
 do	0. 72	1.05	I. 46		
 do	o. 75	1. 05	1. 40		
 do	o. 73	I. 00	I. 37		
 do	o. 87	I. 00	1. 15		
Sept. $\begin{array}{r}16 \\ 16 \\ 17 \\ 17 \\ 17\end{array}$	Anthony	o. 55	1. 00	I. 82		
 do .	o. 55	I. 00	I. 82	1. 70	
 do	o. 68	1. 05	I. 54	1.70	
 do	o. 63	1. O 5	r. 67		
Oct.	El Reno.	o. 53	1. 00	I. 89		
 do	o. 53	1. 00	1. 89		
 do	I. 50	3.00	2.00		
 do	I. 52	3.00	1. 97		
 do	I. 40	2.45	1. 75		
do	1. 13	2. 45	2. 17	I. 93	
	Bowie	o. 47	1. 00	2. 13		
do	o. 58	I. 00	I. 72		
 do	I. 03	2.00	I. 94		
 do	I. 17	2.00	1.71		
 do do	o. 47	I. 10	2. 13		
 do .	o. 58	1. 10	I. 72		
Nov. 13	Stephenville	1.43	3. 10	2. 17		
 do	1. 48	3. 10	2. 09	1. 96	
	Lampasas	o. 53 0.70	I. 00 1. 00	I. 89 1. 43		
		0. 70 !	1.00	1.43		
Dec. $\begin{array}{rr}1 \\ & 1 \\ & 10 \\ & 10 \\ & 15 \\ 15 \\ & 29 \\ & 29\end{array}$ do	I. 10	2. ∞	I. 82		
 do	I. 28	2.00	I. 56		
	Alice..	O. 50	I. 00	2. 00		
 do	0. 48	1. 00	2. 08	1. 90	I hour 8 minutes deducted.
		1. 03	2.00	$\text { I. } 94$	1.90	
 do Seguin	O. 88 I. 42	$\begin{aligned} & 2.00 \\ & 2.70 \end{aligned}$	$\begin{aligned} & \text { 2. } 27 \\ & \text { I. } 90 \end{aligned}$		
 do	I. 43	2.70	I. 89		
Jan. 4	$\begin{aligned} & \text {. . . . do } \\ & \ldots \text { do } \end{aligned}$	$\begin{aligned} & \text { o. } 43 \\ & \text { o. } 55 \end{aligned}$	$\begin{aligned} & 1.00 \\ & \text { 1. } 00 \end{aligned}$	$\begin{aligned} & \text { 2. } 33 \\ & \text { 1. } 82 \end{aligned}$	2. 04	
	Mean			1.81		

S. Doc. $50-19$

ERRORS OF THE DUPLEX MEASURES.

At the conclusion of his consideration* of the behavior of the duplex bar apparatus the designer says: "The duplex may be regarded as equally perfect and efficient both as a bimetallic and a thermometric apparatus." This conclusion was necessarily based on results from the use of the apparatus when fully protected from the sun and wind by means of the "Salt Lake sled," which was a movable tent. The errors which were not apparent under these ideal circumstances must now be considered as well as errors which may have been in those measures and which are indicated by the additional evidence of this season.

There was, during all of the duplex bar measurements of igoo-or now under discussion, no protection from the wind or from the direct rays of the sun except when an umbrella was held to shade the contact ends to enable the observer to see the contact lines more clearly.

The three sources of error described by Assistant Schott (p. 200, "Transcontinental Triangulation'') can here be neglected as practically nil. The first, due to the push of the contact slide spring at the time of contact, was diminished to less than one-half by the strengthening of the cradle arms, page 249. Furthermore, the pressure of the springs was throughout the season the same during the base measures as during the standardization. The same trestles were used in the standardization measures, at about the average height used on the bases, and any push of the contact springs would have had the same effect on the duplex measures of the comparator intervals as they had on the field measures of the bases. Finally, the springs were used with much less strength than heretofore, being only strong enough to insure a contact between the agates when in use. No oil was applied to these contact slides, and in consequence very little trouble from an accumulation of dirt was encountered even on the days when the wind and dust were troublesome.

As to the second source of error, due to the wear of the knife edges during the season, the restandardization at the end of the season revealed no such wearing away, or an amount so small as to be absorbed in the errors of standardization. Formerly such wear was plainly discernible in the blunt appearance of the knife edges, whereas, at the conclusion of this season the agate knife edges presented the same appearance under the microscope as at the beginning of the season.

The third source of error is that due to the change in position of the components relative to the point of support of the metallic casing during the time of laying the bar. This source of error was rendered less effective by increasing materially the rapidity of the base measure, and by reading thermometers at the time of contact at the front end of the bar instead of at the rear, as has been the practice heretofore. It is evident that the change in the time of reading the thermometers affects only the results from the bars as a thermometric apparatus. The amount of this error is dependent on the rate of change of the temperature and on the manner of yielding of the trestles. Its effect on the duplex result may be readily computed, if we assume that the friction on the roller is so great as to preclude the possibility of the brass casing of the bar advancing on the roller with the small increases in temperature. In other words, the center of expansion of the brass casing is at the center of the bar instead of at the knife edge of the rear trestle. The

[^13]steel and brass components are held against the rear end of the casing by springs at a point 2.44 meters from the center of the bar. Between the beginning of any measure and the end, an increase of temperature of the brass casing will pull back the front end of the bars an amount equal to the expansion of the brass casing for this 2.44 meters and for the whole range of temperature during the measure. As an example: During the measure of the test kilometer at Shelton, p. 254, the temperature rose $23^{\circ} \cdot 3$. The correction to the measured length of the kilometer from this source of error would be:
$$
\text { corrin. }=-.0000185(2.44) 23.3=-1^{m \pi} .05
$$

Thus, in one of the most extreme cases of the season, the error from this source is only one part in a million.

At this point it should be noted that the accuracy is greater for the thermometric results than for the duplex result, when only the measures of the comparator interval are considered. In the actual measures the probable errors for a single duplex measure of a mean section of 543 meters (Table No. 6) was $\pm 1^{\text {mim }} .0$, from which would be expected a corresponding probable error of $\pm \frac{1.0}{\sqrt{5.43}} \mathrm{~mm}$. or $\pm 0^{\mathrm{mm}} .43$ for any section roo meters long. In a similar manner from the probable error of a single duplex measure of a mean section of 921 meters (Table No.7), equal to $\pm \mathrm{r}^{\mathrm{mm}} .2$, we would expect $\pm \frac{\mathrm{I} .2}{\sqrt{ } 9.2 \mathrm{I}} \mathrm{mm}$., or $\pm 0^{\mathrm{mm}} .40$ for any section 100 meters long. The probable error of such a single measure actually deduced from the nine observations on the roo-meter comparators in Tables Nos. 3 and 4 was $\pm 0^{\mathrm{mm}} \cdot 30$.

Let the probable error of the steel be treated in the same manner, and the probable error of a single measure of 100 meters from the nine observations on the comparators is $\pm 0^{\text {min }} .15$; deduced from 543 -meter sections is $\pm \frac{1.2}{\sqrt{5.43}} \mathrm{~mm}$. or $\pm O^{\mathrm{min}} \cdot 5^{2}$, and deduced from sections 92 I meters long is $\pm \frac{\mathrm{I} .7}{\sqrt{9.2 \mathrm{I}}} \mathrm{mm}$. or $\pm 0^{\mathrm{mm}} \cdot 56$. Treating the probable errors of the brass in the same manner, the three corresponding probable errors are $\pm 0^{\mathrm{mim}} .15, \pm 0^{\mathrm{mm}} \cdot 73$, and $\pm \mathrm{o}^{\mathrm{mm}} .86$.

The only conclusion possible from these figures is that the results from the duplex follow closely the laws of the accidental errors, the probable errors increasing but little faster than the square root of the lengths. With the steel and brass it is quite different. In the case of the steel, the errors increase very closely as the length, while with the brass the errors increase more rapidly than the length. The evidence of systematic or constant errors is therefor greatest in the results from brass and steel, while the duplex result is apparently not entirely free from such errors.

TEMPERATURE ERRORS OF THE DUPLEX MEASURES.
The discussion of the results shown in detail in Tables Nos. 5, 6, and 7 may now be resumed. It is certainly true that the part of the accidental errors which would affect the measure from brass differently from that of steel, such as faulty contacts, a lack of contact between either set of components, and errors in reading and setting the scales on which the set-ups and set-backs are measured, would make the ratio $\begin{aligned} & \mathrm{S}-\mathrm{D} \\ & \mathrm{B}-\mathrm{S}\end{aligned}$ vary from its mean value 1.67 (see p. 257). Referring to Tables Nos. 5 and 6, we may see that in
the fifty-three sets of differences there displayed, in not one case is there a reversal of sign (S-D is always plus when B-S is plus) even when these differences are less than $0^{m m} \cdot 5$, and in all the results of the duplex bar measures (see Tables Nos. 5 and 6) there is not a single case in which a correction of less than $o^{m n} .2$ to one of the results will not produce exactly the ratio 1.67 . This feature can hardly fail to surprise anyone familiar with the use of any measuring bars where the contact slide is involved, and when it is remembered that from 200 to 400 contacts are involved.

Attention should here be called to the fact that this peculiarity of the ratio also checks the computation. For instance, if one tries to compute the length of a section, where 199 bars had been laid, as if it liad been an entire kilometer, the result from the scale reading (the gain or loss of brass over steel) would be so wild as to detect an error at once. Again, suppose an error equivalent to 0°. 1 centigrade or more was made in reducing the length of the steel from the mean temperature to the temperature of observation, the changed ratio would detect the error. As a curicus example of this, the reader is referred to the "abstract of field results" on the Salt Lake Base (p. 774 of Appendix No. 12, Coast and Geodetic Survey Report for 1897), where the observer rejected the result from the duplex on the second measurement of Section VI in computing the probable error, doubtless because the residual was suspiciously large. An examination of the ratio shows something obviously wrong in the value of the ratio $\frac{\mathrm{S}-\mathrm{D}}{\mathrm{B}-\mathrm{S}}=\frac{9802-9779}{9804-9802}=10.5$. But the office computation showed that an error had been made in the field computation of the length from the steel component, and that the rejected duplex value was correct.

An inspection of the results of the Salt Lake Base (pp. 198 and 199 of the "Transcontinental Triangulation'") reveals this same ratio, even when the bars were carefully protected from inequalities of weather. The correction to preserve exactly this ratio $\underset{B-S}{S-D}=1.67$ in any one of the twenty-two single measures would not exceed $0^{\text {mann. }} 2$. These results, in conjunction with those of this season, make up all that have been obtained with the duplex bar apparatus. It is obvious, therefore, that the accidental errors which affect the two components differently, such as faulty contacts, errors of reading scales, etc., are of a much smaller magnitude than those which affect the bar as a whole, such as are due to transfer measures, the inclination of the bars, etc.

What then has been the effect of removing the protection (movable tent) and subjecting the bars to steep gradients (even exceeding $4^{\circ}+0^{\prime}$) in all conditions of weather?

In the Salt Lake measures the probable error of a single measure of a section (i 000 meters) is for the duplex $\pm 1^{m m} .14$, and for the steel and brass somewhat less, but on the thirteen sections (averaging 921 meters) measured during the past season, on the nine different lines, the probable error of a single measure of a section is very little greater for the duplex, $\pm 1^{\mathrm{mm}} .2$, but the probable errors from steel and brass increased to $\pm \mathrm{I}^{\mathrm{mm}} \cdot 7$ and $\pm 2^{\text {mim }} .6$, respectively.

It is the opinion of the writer that a computation of the Salt Lake measures by half sections, where the temperature was in one case rising and in the other falling, would show probable errors much more favorable to the duplex result than to those from steel and brass.

The evidence that the duplex result deserves more weight than the results from
steel and brass is convincing. First, because the probable errors of the results of the field measures from Tables Nos. 6 and 7 are much less than for either steel or brass. Second, because the probable errors of the duplex results follow more closely the laws of accidental errors, while for steel and brass the probable errors follow the laws of constant errors more nearly, varying in direct proportion to the length. And lastly, because by the removal of the tent and the subjection of the bars to different conditions of the weather, the probable errors have not been much affected for the duplex result, but the probable errors of the steel and brass have increased greatly.

In Tables Nos. 5 and 6 it is apparent that wherever the range in the temperature is least the results from the three methods are most nearly in accord. In special cases, such as the test kilometer at Alice Base, section 6 at Stephenville Base, and the northwest half of section 6 at Anthony Base, where the temperature was either stationary or varied little, the accord is perfect. With the one exception of November 2, when the canvas jacketing had become wet with dew during the preceding night, there was a decided tendency to have a large result from brass and steel when the temperature was rising and the reverse when the temperature was falling. In other words, when the temperature is rising the results stand in the order brass, steel, duplex, the brass being the highest.

It may occur to the reader to inquire why the evidence does not require the steel and brass results to be rejected and show the assumption true that the thermometers record the temperature in advance of the brass and steel components, but that these bars are of the same temperature. Let us first assume seven cases when the temperature is rising, where at least two of three involved temperatures are alike. In the first one, let the thermometers and the brass component have equal temperatures, both above that of steel, thus: $\begin{array}{r}\text { Thermometer }=\text { Brass } \\ \text { Steel }\end{array}$. As the thermometer indication is higher than the steel temperature, it follows that the result from steel would be greater than that from the brass, which in this case is the correct result. Also, the temperature of the brass being higher than that of steel, the gain of the brass component is too great, and when multiplied by the factor 1.668, or duplex coefficient, would give a result from the duplex Duplex
method greater than either. The three results would stand Steel. This order and Brass
the ratio of these results may be shown by a numerical example: Suppose the thermometer and brass temperature to be $0^{\circ} .2$ above that of steel. The resulting value of the ratio would be $\frac{\text { Error }_{\text {steel }}-\text { Error }_{\text {dupilex }}}{\text { Error }_{\text {brass }}-\text { Error }_{\text {steel }}}=\frac{0.2(1.15)-0.2(1.84)\left(\frac{1.15}{1.84-1.15}\right)}{-0.2(1.15)}=1.67$. The seven assumptions with the order of their results are given below.

Ther. = Brass Steel. (1)	$\begin{gathered} \text { Steel } \\ \text { Ther. }=\text { Brass. } \\ (2) \end{gathered}$	Ther. $=$ steel Brass. (3)	Brass Ther. $=$ Steel. (4)	Brassasteel Ther. (5)	Ther. Brass=Stecl. (5)	All alike. (7)
Duplex	Brass	Brass	Duplex	Duplex	Brass	
Steel	Steel	Steel	Steel	Steel	Steel	Agree
Brass	Duplex	Duplex	Brass	Brass	Duplex	

The ratio $\frac{\text { Error }_{\text {steel }}-\text { Error }_{\text {duplex }}}{\text { Error }_{\text {brass }}-\text { Error }_{\text {stecl }}}$ would in every'case reduce to 1.67 , which is the ratio between results actually obtained (see p. 257), and is identical with the duplex coefficient. Moreover, assumptions 2, 3, and 6 would therefore correspond with the facts, the results having the right order and the same ratio. In a similar manner, by assuming the temperatures all different, two cases out of a possible eight were found where the order of the results and this ratio of the differences between the results would agree with the facts.

In view of the fact that with a rising temperature five out of a total of fifteen assumptions of the relation of the three involved temperatures would agree with the relation as found, it would seem to the writer too radical to assert that assumption No. 6, where the duplex result is correct and the thermometer is in error, is the only one possible, and reject the other four as impossible. Not being certain, then, that the two metals have exactly equal temperatures, it is not certain that the steel and brass measures should be rejected and the duplex results alone retained. The three results have been tried on their merits and the weights assigned inversely as the squares of the probable errors.

CONSTANT TEMPERATURE ERRORS OF THE DUPLEX MEASURES.

The presence of constant errors in any base measure due to a defective knowledge of the temperature of the bars has been explained in previous base measures by assuming a lag of the mercurial or bimetallic thermometers. The variety of temperatures encountered in the Shelton comparisons affords an opportunity to look for evidence of such a lag of either themometric or bar temperature. On July 27, and the first measure of July 28 (Table No. 3, p. 250), the temperature was rising at the rate of $0^{\circ} .05$ centigrade or more per minute, and these are the only two determinations of eithel comparator interval with the duplex apparatus made with rapidly rising temperature. Comparing the mean of these results with the mean of all for each method, the result from steel is $0^{m m} .12$ higher than the mean, the brass result $0^{m m} .14$ lower and the mean of the two determinations for the duplex method, becomes $100^{m}+1^{m m} .99$ for the 20 bars, independently of thermometers. This is $0^{m i n} .56$ longer than the adopted value.

The evidence of these two determinations with rapidly rising temperature indicates that the temperatures as given by the thermometers on the 27 th were too low and on the 28 th too high, but on both days the brass temperature is apparently, from giving the shorter result, greater than that of steel. On the other hand, with falling temperatures, as on July 26 and August 4, the brass temperature is lower than that of steel (shown by the greater result). In other words, brass seems to take the temperature in advance of steel. This would mean that the duplex result, which is dependent on an equality of temperature between the brass and steel components, is also affected by a constant error from this cause.

Now, in the actual measurement on the nine test kilometers, the temperature conditions at Shelton and Bowie Bases and on half of the section at Page, El Reno, Stephenville, Lampasas, and Seguin Bases were the same as those on July 27 and 28. The duplex length of these sections would be, therefore, increased in millimeters as follows, to correspond with the fact that the comparator determinations show the bars under these conditions to be $0^{m m} .56$ per 100 meters longer than usual: at Shelton and

Bowie Bases by $5^{m m} .6$, and at Page, El Reno, Stephenville, Lampasas and Seguin Bases by $2^{\text {man }} .8$. Such a change would place the duplex result among the tape results in three of the seven cases, and the agreement of the bars and tapes would be improved in each case.

ERRORS OF STEEL TAPE MEASURES.

The errors affecting measurements with long steel tapes have been fully treated in the pages discussing the tape measures of the Holton Base (Appendix No. 8, Coast and Geodetic Survey Report for 1892, Part II).

As to errors in grade corrections they are of the compensating class. Errors in determining the differences in altitude of consecutive marking tables are as likely to be of one sign as another. Throughout this season's work the interval between support nails has been 25 meters, and on nearly all the bases the differences of elevation were determined for each 25 -meter interval, and thus the small cumulative error due to imperfections in the alignment of these support nails to a uniform slope has been eliminated.

The errors of alignment are necessarily very minute, as a lack of parallelism with the base of any 50 -meter tape to the extent of a decimeter would give rise to an error of only $o^{\text {mm }}$. 10 . A decimeter is an impossible quantity, as each marking table and support nail was aligned with an 8 -inch theodolite to within I centimeter. Any departure of the intermediate supports of the tape from a vertical plane through its ends would give rise to errors of the same sort and sign. Supposing an extreme and impossible case of a centimeter out of alignment on each support, the total accumulation could be but $0^{m m} .8$ on a kilometer, or I part in I 200000.

The question of economy, presented to the Superintendent when the plans were made for measuring the Versailles Base, brought about a change in the interval between supports from io meters to 25 meters. This was made possible by the increase in the applied tension from II. 5 kilograms to 15 .

TEMPERATURE ERRORS OF THE TAPIS MEASURES.

The method of attaching the thermometers directly to the tape in hotizontal position was first used in measurements of primary bases at the Versailles Base.

This departure from the exact duplication of the Holton Base methods, it is believed, has at least not increased the uncertainties in the tape temperatures.

That the day measures are more uncertain than the night measures has been thoroughly established. Without doubt this is due to the differing capacities of the tape and thermometer for absorbing and radiating heat under varying conditions. Some evidences of errors of this sort may therefore be expected even where all measures and standardization are carried on between sunset and daylight. These may be distinguished as errors due to time of night. As the aim of the party was to attain results which should conform in accuracy to the limits prescribed in the instructions and not to experiment, there may not be data sufficient to come to any definite conclusion. Whatever errors of temperature are present in the actual measurement on the base ought also to be present in the standardization, which was made at similar times and under similar conditions.

Referring to the results in Tables Nos. 8, 9, 10, and II, the reader needs to be reminded that in these determinations of length there was no protection from the
weather, and the results show considerable effect of the wind during the Shelton comparisons. But the Seguin comparisons are all free from wind effect and these alone should be used in discussing temperature errors. The maximum residual at the Seguin comparator is $0^{m m} .17$ for Tape $85,0^{m m n} .20$ for 88 , $0^{m m n} .16$ for 248 and $o^{m n n} .17$ for 247, without any rejected observation and including observations on three nights which were quite different in their atmospheric conditions. On the 12 th of January there was dew and a few clouds, the r4th was perfectly clear with no dew, and on the 15 th it began clear but became entirely overcast with storm clouds during the observations. The probable error of a single determination of a tape length from the Seguin comparisons only, in the case of the roo-meter tape, or of two tape lengths in the case of the 50 -meter tapes, is therefore $\pm 0^{m m}$. og for $T_{85}, \pm 0^{m m}$. 10 for $T_{88}, \pm 0^{m n n} .07$ for T_{288}, and $\pm 0^{\mathrm{mm}}$. o6 for $\mathrm{T}_{347^{\circ}}$. The largest probable error of a single determination at Seguin is only one part in 1000000 . When compared with the probable error of a single determination, where only the night comparisons at the Holton comparator were used (p. 263), the temperature errors here displayed are less.

The probable error of a single measure of a kilometer as deduced for the measures on the Holton Base was $\pm I^{m+n} \cdot 74$. In a similar manner the probable error of a single measure of a kilometer from the tape measures on the Versailles Base was $\pm \mathrm{r}^{\mathrm{mm}} \cdot 20$. From the results of all the measurements on the nine base lines under discussion the probable error of a single measure of a kilometer section can be computed, for the 50 -meter tapes $\pm I^{\mathrm{mmn}} .7$, and for the roo-meter tapes $\pm \mathrm{I}^{\mathrm{mmn}} .8$. It is shown, then, that even though these probable errors are computed from sections which have been repeated by a second tape and involve errors of standardization, the probable errors have not increased over that attained in the Holton Base measures.

A comparative test of the two methods of handling the thermometers has already been made on p. 258, which is entirely favorable to the method of attaching the thermometer to the tape in a horizontal position, as compared with the Holton Base method of incasing the bulbs in steel sheaths and holding at the height of the tape.

The departure, therefore, from the Holton Base method of handling the thermometers, and of increasing the tension and distance between supports, is justified by the resulting probable errors.

The liability of showing a constant error in tape measures from a lag of the mercurial thermometers is not great. because the range of temperature during the measure of a section is small.

An unsuccessful attempt was made to discover a lag of thermometers with respect to the tape. There is apparently no decided lag effect either in the Versailles Base measures or in the measures during this season. The results of the comparator determinations and on the sections where measures were made on different nights show a tendency to constant errors which does not correspond to an assumed lag of the mercurial thermometer, but is probably due to a changed relation or persistent difference between the thermometer and tape temperature due to atmospheric conditions. The magnitude of these errors is hard to determine, but from the residuals on the test kilometers, on sections involving measures on different nights and on the comparators, they are of about the size indicated for the duplex result on the comparators ('Tables Nos. 3 and 4). The maximum residual for any one of the four tapes is $0^{n m m} .87$, and for the duplex result it is $0^{m m} .86$. For 50 -meter Tape No. 248 the maximum residual is $0^{m m} .47$, and the

probable error of a single determination of 100 meters is $\pm 0^{m m a n} .15$, the same as for the steel and brass components of the duplex.

It seems desirable to examine the tape results with a view to discovering constant errors peculiar to different nights. On July 28 measures were made with Tapes 88 and 85 on the same night as the comparisons. Referring to Tables Nos. 8 and 9, the observations on 85 for this night make the tape $0 .{ }^{m m} 47$ shorter than the mean, while on 88 this night's observations make the tape $0^{\prime \prime \prime m} .21$ shorter than the mean. Applying these two corrections to the measures of the Shelton test kilometer and the correction $*+5^{\text {min }} .6$ to the duplex result (p. 254) there result these values:

| Tape $88 \ldots \ldots \ldots$ | 1000.2708 |
| :--- | :--- | ---: |
| Tape $85 \ldots \ldots \ldots$ | .2629 |
| Duplex $\ldots \ldots \ldots \ldots$ | .2635 |

The range in the results from these three sets of apparatus in Table No. $12,13^{\mathrm{mm} .4 .}$ is thus reduced to $7^{\text {m"m. }} 9$, the result from Tape 85 dgreeing closely with that from the duplex.

CONSTANCY OF STEEL TAPES.

Although the 100 -meter tapes used at the Holton and St. Albans Bases were again used in this work, their equations can not be directly compared. The tension has been increased from in. 5 kilograms to 15.0 kilograms, and the interval between supports from 10 meters to 25 . On July 19, before any of the standardizing of this season began, when unreeling tape No. 85 an undiscovered defect in the reel caused a kink in the tape which could not be entirely removed. The difference between the tapes, $\mathrm{T}_{88}-\mathrm{T}_{85}$, was at Holton $2^{m \mathrm{~mm}} \cdot 45$, at St. Albans $2^{\mathrm{mm}} \cdot 57$, and throughout this season $3^{m \mathrm{~mm}} \cdot 16$. The test of constancy is greatest in this season's work, extending as it does through six months and involving nine base lines. The reader is again referred to the section, "Adopted lengths of tapes' to note that three of the tapes, 88,247 , and 248 , show no change during the season over I part in I 000 ooo, while Tape 85 apparently increased in length $0^{m n} \cdot 45$, or I part in 220000 . Again 50 -meter Tape No. 204 was tested both before and after the measurement of the Versailles Base (p.226, "Transcontinental Triangulation ''), with almost identical values for its length, which indicates that the tension of 15 kilograms is not excessive.

MAXIMUM GRADES FOR STEEL TAPES, AND BREAKING OF GRADES.

The rather unusual topography for a base line encountered on four of the nine lines, as shown by the maximum grade corrections, mentioned in connection with each base, will cause comment, and the manner in which it was overcome should be explained and justified. As an exhibition of this the reader is referred to illustration No. 17, the profile of the Lampasas Base. No grading to ease the grades on any of the lines was attempted, and the 25 -meter spans of the tape measurement are nearly parallel to the surface of the ground traversed, except where such parallelism would necessitate placing an intermediate tape support below the grade of the marking tables, a tall support being substituted in all such cases. On section i of the Lampasas line it was necessary to break the grade (have the middle support above the grade of the marking tables) on three-fifths of the section. Also, on this section the maximum grade of the entire season was encountered, 3.15 meters in 25 meters, involving a correction to the measured length

[^14]equivalent to 201 millimeters. An improbable error of 5 millimeters in determining this difference of elevation would cause an uncertainty of $o^{m m} .3$. As has been pointed out these errors are not cumulative and moreover occur but seldom.

When tapes are inclined in this manner it is plain that the distance between the terminal marks will be greater than when the line is horizontal. The investigation of this question, pages 487,488 , Report for 1892, Part II, shows that for grades of 5 per cent or differences of elevation of less than 1.25 meters for each 25 -meter span this correction may be regarded as insensible, being considerably less than I part in I 000000 . On this, the extreme of all sections measured during this season, only thirteen of the forty spans exceed this 5 per cent grade, and for these the corrections due to such slope could be readily computed and applied. The correction would be about $o^{m m} .8$ in the extreme case.

Any possible criticism of the method of breaking the tape grades may be most readily disposed of by referring the reader to the test kilometer of the Bowie Base. On this section the ioo-meter tapes were practically unbroken from end to end of the section. but for the 50 -meter tape four broken grades occur, making the grade corrections for the 50 -meter tapes 234^{mm}. 1 , and for the 100 -meter tapes $197^{\mathrm{mm}} .2$, yet the mean of the length from the 50 -meter tapes differs only $0^{m m} .9$ from the length from the 100 -meter tapes. It may be concluded from this and other similar cases that the increased friction on the support nails has not produced errors of appreciable magnitude. In perfecting the tension for the final contact it is as probable in a given case that the man applying the tension will have to slack off a few grams as to take it up, and thus the errors from the increased friction on the supports would be as likely of one sign as the other.

WIND EFFECT ON TAPES.

Very little attention has been paid to the effect of wind on tape measurements, except to avoid making measures while a strong breeze was blowing, such measures being not at all trustworthy. At the Shelton comparator delays were caused by high winds which failed to subside with the setting of the sun. Observations were made on the tapes for determinations of their lengths when the wind was disturbing the tape very much. The effect seems to be that the results are erratic and necessarily not as trustworthy as those on calm nights. Experience soon taught the observers that when using the tape under the conditions of tension and supports here used any wind which did not set the tape to vibrating violently would not seriously affect the results. When it is explained that during the five months after the completion of the Shelton Base practically no delays to the progress of the base measurement were made necessary by the wind, the liability of delays from wind will not be urged as an objection to measures with long tapes.

ERRORS DUE TO TENSION ON THE TAPES.

The errors due to erroneously holding the pointer of the dial to the exact tension are obviously not of the cumulative class. Any personal equation of the man applying the tension in persistently applying too much (or too little) tension is eliminated by having the same man apply the tension in the determinations on the comparator as in the base measures, which was the practice during the season, with two or three minor exceptions.

TEN-METER INTERVALS FOR TAPE SUPPORTS VERSUS TWENTY-FIVE METER INTERVALS.

Very little discussion is required to point out the advantage of the longer interval of twenty-five meters over that of ten meters. The evidence already produced is deemed sufficient to prove that there was no loss of accuracy from the change.

On the work of setting stakes and preparing for tape measurement a direct comparison can be made by taking the figures in the table on page 332 of Coast and Geodetic Survey Report for 1892 . According to this table, for the 5.5 kilometers of the Holton Base 53.5 days for one man were required, or 9.7 days per kilometer. In the work under discussion, where the interval was 25 meters between tape supports, 201 days for one man were spent in cutting and setting the tape supports for measuring 57 kilometers, or 3.5 days per kilometer. As a matter of economy this chauge, then, shows a reduction in labor of preparation of something over one-half by reducing the number of tape supports in a kilometer from 100 to 40 . If the reduction in the lumber and cost of transporting it were added, the comparison would become still more favorable to the long interval between supports.

The setting of the tape supports was done by a party of from four to five persons, consisting of one officer who had immediate charge of the work and handled the forward end of the tape, one officer who aligned the tape supports, and two or three men. The time necessary for such a party to set one kilometer of tape supports varied from two to six hours.

TAPFS VERSUS BARS.
For a proper discussion of the relative merits of the duplex bar apparatus and the long steel tapes, it is necessary to state the relative cost of the two.

The cost, when computed in terms of a day of labor for an officer or laborer, of measuring 57 kilometers of double measure with steel tapes was 406 days. For measuring $161 / 2$ kilometers of double measure with the duplex apparatus the cost was 321 days; that is, 7.1 days' work for one man was required to measure a kilometer twice with the tapes and 19.5 days' with the duplex apparatus. In making this comparison one-half of all the time required for the leveling was charged to the tape measures and none to the duplex measures, because the profile of the line necessary when bar measures only were made would require much less time than the leveling for the grade of the tape.

The item of 406 days is made up of three parts, as follows: 20I days in cutting and setting the tape supports, 122 days in the actual measurement, and 93 days for the extra leveling required. There were 61 days spent in opening the lines and aligning the few points required on the base, which were necessary for either type of apparatus. The three to five hours during the evening were called a half day in making this comparison. From these figures the labor of the bar measurement is two and three-quarter times as great as that of the tape measurement.

When comparison is made of the probable errors of a single measure of a kilometer section, that from the Salt Lake Base, $\pm I^{m m} .14$, and from this season, $\pm r^{m m} .2$, for the duplex result, are practically identical with that attained in the measurement of the Versailles Base for the 50 -meter tape, $\pm \mathrm{I}^{\mathrm{mm}} .2$. It is true, however, that viewed in the light of these probable errors the accuracy is greater from the duplex, for two reasons,
viz, the duplex gives three results which, although they are not independent, are desirable checks on a portion of the accidental errors to which the apparatus is subject, and, second, because the errors due to determinations of the grade are displayed in the case of the bar apparatus, while in the case of the tape measures such errors would affect both measures alike.

FIFTY-METER TAPES VERSUS ONE-HUNDRED-METER TAPES.

The probable errors may be expected to reveal the relative merits of using a 50 -meter and a 100 -meter tape. The probable error of a single determination of the comparator interval was for the two 100 -meter tapes $\pm 0^{m \mathrm{~mm}} .19$ and $\pm 0^{m \mathrm{~mm}} .24$, respectively, and for the 50 -meter tapes $\pm 0^{\mathrm{mm}} .24$ and $\pm 0^{\mathrm{mmm}} .15$, respectively, which is slightly favorable to the shorter tape. Again, the probable error of a single measure of a kilometer when computed from all sections was $\pm 1^{\mathrm{mm}} \cdot 7^{*}$ in the case of the 50 -meter tapes, and $\pm \mathrm{I}^{\mathrm{mm}} .8^{*}$ in the case of the 100 -meter tapes.

While this gain in accuracy is small for the 50-meter tape over the roo-meter tape, it is nevertheless instructive as showing that the accidental errors of the thermometer indications are not decreased with a multiplication of the thermometer readings. As the accidental errors of making twice the number of contacts made necessary by the use of the 50 -meter tape instead of the 100 -meter tape are so small \dagger as to make no showing in the probable error, it would naturally be supposed that the double number of thermometer indications recorded for the 50 -meter tapes would have a great effect on the probable error. Such is not the case, however.

The ease with which 50 -meter tapes may be adapted to obstructions of topography makes the labor of setting the supports about equal to that required for the roometer tapes.

The choice between the two must be made, then, in the comparison of the number of operatives required with each length of tape. The minimum number of operatives for the 100 -meter tape is eight, and for the 50 -meter tape six, which means that it always takes one-third more help to manipulate tne longer tape.

While the speed of measurement with the roo-meter tape is about one-fifth faster than with the 50-meter tape (see Tables Nos. 22 and 23), this is umimportant for two reasons: First, because the time required for the measurement is much less than that required for the preparation of the line for measurement; and, second, it is always desirable to keep the measurement following closely the setting of the supports. In measurements through pasture the tape supports were so frequently disturbed that it was found convenient to complete the measurement as soon as 3 kilometers had been prepared for measurement. The work of measuring 3 kilometers in each direction was readily accomplished during an evening without regard to whether it was with the 100 -meter or 50 -meter tape.

The conclusion therefore is that the roo-meter tape has few if any advantages over the 50 -meter tape, and requires a party at least one-third larger for its manipulation.

[^15]
CONCLUSIONS.

The history of geodesy presents few if any examples of a base measured with more than one apparatus which do not show outstanding differences very large in comparison with those which are displayed by repeating the measurement with the same apparatus. These constant errors, which are only detected by the use of several sets of apparatus, have been revealed in this season, and it may be inferred that the absolute accuracy is therefore at least as great as in previous bases where but one type of apparatus is involved. These constant errors are shown in the results of the measures of the nine test kilometers. The maximum range in the results was 20^{min}, the tapes, as would be expected, agreeing among themselves more often than with the bars. The bars give a smaller result than the mean, ranging in the kilometer from $2^{\text {mmm }} \cdot 1$ to $10^{\mathrm{mmm}} \cdot 3$. This outstanding difference between the duplex result and the mean of all is i part in 175000 on the average. In like manner, roo-meter tape No. 88 shows a tendency to give the largest result, being above the mean in seven of the nine cases and averaging I part in 385000 on the entire 9 kilometers. The source of these constant errors is still problematic.

In concluding this report of a geodetic operation of this magnitude, in which in a single season of six months nine primary bases were measured, the opinions of the writer may not be amiss.

The accomplishment of the work was made easy by the complete cooperation of every member of the party, and its success is due in great measure to their untiring support. Special acknowledgment of the valuable advice and assistance of Assistant Bowie should be made.

The benefits accruing from keeping the same party throughout the season are incalculable. Evidences of the increasing efficiency of the party were the rapid preparation of the base sites; the record of the stub-setting party in setting i 300 meters of marking posts and intermediate supports at proper intervals and in accurate alignment for the 50 -meter tapes in one hundred and forty-three minutes on the Alice Base; and, finally, the attainment of the unprecedented speed of 100 bars (500 meters) in sixty minutes for the duplex measurement at Seguin was the culmination of the increasing experience on the eight bases which preceded.

The general conclusion, from a consideration of all the work done with the iced-bar apparatus, must be its superiority over all types of base-measuring apparatus, displaying no errors of the systematic or constant class. Also, that two to six measures under the most trying conditions and without the protection of a shed will give an accuracy equal to that represented by a probable error of I part in 2500000 .

The duplex apparatus in use under the most trying conditions has shown itself to be entitled to probably first rank among contact-slide bar apparatus. Its double contact feature has proved no hindrance, and the results have shown that it is possible to use it in high winds in which the secondary apparatus could not be used. This greater stability is probably due to the greater weight of the duplex. An examination of the resuits from duplicate measures and in competition with the tapes reveals constant errors of some magnitude. These constant errors can be most nearly overcome by duplicating the field conditions of temperature and atmosphere on the comparator determinations.

In summing up all the errors of tape measurements, except those involving the
grades, and which are necessarily small, the real criterion is the probable error of a single measure of a section where the observations extend through more than one day or a variety of weather. Such a test occurred on nearly every section of the Versailles Base,* and these errors were shown to be small. During this season such tests, occurred on but few sections, but the indications.from these agreed with the Versailles experience. It is not maintained that no constant errors are in evidence in the results of the tape measures, but it is not believed that they are larger than those which affect the duplex bar measures.

It is apparent that a field comparator whose interval should be measured with the iced-bar apparatus is a positive necessity when an absolute accuracy of 1 part in 500000 is desired. It is also necessary with either the duplex bar or tape apparatus to have the conditions of temperature and weather the same in the actual measures as in the standardization. This duplication of conditions could be more readily attained with the tape apparatus than with the duplex bars.

In future base measures with a field comparator at each base it would be feasible to measure the comparator interval with the tape on each of the two to four nights when measures were made on the base. In this manner a party no larger than the one of this season could use two or three 50 -meter tapes and have a 50 -meter comparator at each base with no greater cost than in these measures, and attain an absolute accuracy still greater than here attained.

* Page 230, "Transcontinental Triangulation."

APPENDIX No. 4.

```
REPORT 1801.
```


EXTENSION OF TABLES FOR THE COMPUTATION OF GEODETIC POSITIONS TO THE EQUATOR.

Blank page retained for pagination

CONTENTS.

Page.
General statement 307
Formule 307
Example of computation 315
Table of corrections to longitude for difference in are and sine 318
Table of $\log \sec 1 / 2(\Delta \varphi)$ 319
Formula and table for computing the spherical excess 319
Constants 320
Table of factors A, B, C, D, E, F. 322
S. Doc. $50-20$ 305

Blank page retained for pagination

EXTENSION OF TABLES FOR THE COMPUTATION OF GEODETIC POSITIONS TO THE EQUATOR.

By John F. Hayford, Chief of Computing Division.

These tables are an extension of those published in Appendix No. 9, of the Report for 1894 , which are applicable between latitudes 18° and 72°. The tables here printed extend from 18° to the equator. They are based on the same constants as the tables in the 1894 Report, namely, upon the Clarke Spheroid of 1866, of which the equatorial radius is 6378206.4 meters, and the polar semiaxis 6356583.8 meters.

For the purpose of making these tables complete in themselves the derivation of the formulæ on which they are based is reproduced from the 1894 Report.

To apply these tables to the computation of positions south of the equator it is only necessary to bear in mind in using the formule that all south latitudes are negative. Whenever $\Delta \varphi$ as computed in these formulx is negative it indicates a numerical increase in the latitude. In using the formula for $\Delta \boldsymbol{\alpha}$ it should be noted that for the Southern Hemisphere the term $\sin 1 / 2\left(\phi+\phi^{\prime}\right)$ is alwas's negative and therefore $\Delta \alpha$ and $\Delta \lambda$ always have the same sign in the Southern Hemisphere, whereas they have opposite signs in the Northern Hemisphere.

To apply these tables to the computation of positions in east longitude it is only necessary to consider that all east longitudes are negative.

These formulæ and tables, with those in 1894 Report, keeping in mind the above statements, apply to the computation of geodetic positions over the whole sphere, except in latitudes greater than 72° north or south.

In the logarithms given in the tables a minus sign over the characteristic indicates that 10 is to be subtracted from the characteristic as printed, and a double minus sign. indicates that 20 is to be subtracted from the characteristic as printed.

FORMUL F FOR THE COMPUTATION OF GEODETIC LATITUDES, LONGITUDES, AND AZIMUTHS.

When the geographical coordinates of latitude and longitude of a point on the earth's surface and the distance and azimuth to another point are known, the problem of computing the latitude and longitude of the second point and the reverse azimuth may be treated in two different ways.

We may either solve the spheroidal triangle formed by the two points and the pole, as a whole, arriving at trigonometrical functions of the required co-latitude, azimuth, and difference of longitude, or we may develop expressions for the differences of the required and the given quantities.

The former or direct method has the inconvenience of requiring the use of ten places of decimals in the computation, in order to give the positions with a degree of exactness corresponding to that of the known distance between the two points, while the second leads to very convenient expressions, on account of the smallness of the differential arcs in ordinary triangulation.

When, however, the arc between the two points reaches several degrees in length, the direct method must be resorted to. This solution has been very completely and elegantly effected by Bessel, and is given in Astronomische Nachrichten, No. 36, 1826.

Adopting the second method, we follow in the main Puissant (Traité de Géodésie)* in the development of the difference of latitude of two points on the spheroid in terms of the distance, azimuth, and latitude of the given point. It will be desirable first to recall the expressions of several lines of an ellipse in terms involving the latitude φ which is the angle the normal to any point on the ellipse makes with the major axis.

Fig. 1.
Designating the major or equatorial semiaxis by a and the minor or polar semiaxis by b then the ellipticity ε or the ratio of their differences to the former is

$$
\varepsilon=\frac{a-b}{a}
$$

The eccentricity e is expressed by

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}
$$

and shown in fig. I by $c f$, the distance from the center to the focus.
The normal $n l$ terminating at the major axis equals

$$
\begin{gathered}
a\left(1-e^{2}\right) \\
\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}
\end{gathered}
$$

The normal nm produced to the minor axis is

$$
N=\left(1-e^{a} \sin ^{a} \phi\right)^{1 / 2}
$$

* Traité de Géodésie, par L. Puissant, troisième édition, Tome I, Chapter XV, page 347 and fol., Paris, 1842.

The abscissa $c d$ or $n o$ equals $N \cos \varphi$. This is the radius of a parallel on the spheroid. The tangent $n t$ ending at the minor axis equals $N \cot \phi$.
The ordinate $n d$ equals

$$
\frac{a\left(1-c^{2}\right) \sin \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{1 / 2}}
$$

The reduced latitude being ψ, we have

$$
\tan \psi=\frac{b}{a} \tan \varphi
$$

The radius vector $\rho=a\left(1-c^{2} \sin ^{2} \psi\right)^{1 / 2}$,
The radius of curvature $r p, r^{\prime \prime} p^{\prime}, r^{\prime \prime} p^{\prime \prime}$. . at any point of the ellipse $r, r^{\prime}, r^{\prime \prime}$. . . is

$$
R=\begin{gathered}
a\left(\mathrm{I}-c^{2}\right) \\
\left(\mathrm{I}-e^{2} \sin ^{2} \psi\right)
\end{gathered}
$$

Fig. ${ }^{2}$
The terminal points $f, p, p^{\prime}, p^{\prime \prime}, q$ form an evolute; at the equator where $\sin \phi=0$, $R=\frac{b^{2}}{a}$ and the center of curvature is in the focus; at the pole, where $\sin \varphi=1, R=\frac{a^{2}}{b}$.

The radius of curvature R and the normal N are principal quantities used in geodesy. It will be observed that radii of curvature for different latitudes do not intersect unless produced, and that when they lie in different meridional planes on the spheroid they will not intersect at all.

A and B in Fig. 2 are two points on a spheroid of revolution, having the latitudes $\varphi, \varphi^{\prime}$, and joined by the geodetic line $\mathrm{AB}=s$, making the angles with the meridian $\mathrm{PAB}=180^{\circ}-\alpha$, and $\mathrm{PBA}=\alpha^{\prime}-180^{\circ}$. The azimuths α, α^{\prime} are reckoned from south around by west in consequence of the latitudes being reckoned, by settled custom, from the equator toward the poles, otherwise the meridional coordinate of a point would be more properly measured from the pole and the azinuth of a line reckoned from the north. The angle APB between the two meridional planes passing through A and B is the
difference of their longitudes $\lambda, \lambda^{\prime}$, which being reckoned positive to the westward we have $\lambda^{\prime}-\lambda=\Delta \lambda$. Furthermore, $\mathrm{An}, \mathrm{Bn}^{\prime}, \mathrm{Ar}, \mathrm{Br}^{\prime}$ indicate the normals N, N^{\prime}, and the radii of curvature in the meridian R, R^{\prime}, at the points A and B .

This being premised and the latitude φ of the point \dot{A} being given, as well as the length s of the geodetic line AB and its azimuth α, we propose to find the latitude ϕ^{\prime} of the point B , the angle $\Delta \lambda$, and the reverse azimuth α^{\prime}, by solving the geodetic triangle ABP. Writing γ, γ^{\prime}, for the co-latitudes, ξ for $180-\alpha$, and σ for the arc Al3 referred to radius $=\mathrm{I}$, we have in a spherical triangle for γ^{\prime} the following equation:

$$
\cos \gamma^{\prime}=\cos \gamma \cos \sigma+\sin \gamma \sin \sigma \cos \xi
$$

Observing now that σ is always a small arc, rarely exceeding I°, and generally less than 30^{\prime}, we can develop the increment of γ with reference to that of σ in a rapidly converging series, and will have, by 'Taylor's theorem,

$$
\begin{equation*}
\gamma^{\prime}=\gamma+\frac{d \gamma}{d \sigma} \sigma+\frac{d^{2}}{2} d \sigma^{2}+\frac{1}{d} d \sigma^{3} \underline{\sigma^{3}} \overline{3}^{3}+\ldots . \tag{a}
\end{equation*}
$$

In order to determine the differential coefficients, we consider a differential spherical triangle having the sides $\gamma, d \sigma$, and $\gamma+d \gamma$, in which

$$
\cos (\gamma+d \gamma)=\cos \gamma \cos d \sigma+\sin \gamma \sin d \sigma \cos \xi
$$

and developing, as usual, by the differential calculus, we find

$$
\frac{d \gamma}{d \sigma}=-\cos \xi, \quad \frac{d^{2} \gamma}{d \sigma^{2}}=\sin ^{2} \xi \cot \gamma, \quad \frac{d^{3} \gamma}{d \sigma^{3}}=\sin ^{2} \xi \cos \xi\left(1+3 \cot ^{2} \gamma\right)
$$

Introducing these values in (a) we obtain

$$
\gamma^{\prime}-\gamma=-\sigma \cos \xi+\frac{1}{2} \sigma^{2} \sin ^{2} \dot{\xi} \cot \gamma+\frac{1}{8} \sigma^{3} \sin ^{2} \xi \cos \xi\left(\mathrm{I}+3 \cot ^{2} \gamma\right)+. . .
$$

and substituting φ, ϕ^{\prime}, and α in this expression, we have for the difference of latitude

$$
\begin{equation*}
\varphi-\varphi^{\prime}=\sigma \cos \alpha+\frac{1}{2} \sigma^{2} \sin ^{2} \alpha \tan \varphi-\frac{1}{6} \sigma^{3} \sin ^{2} \alpha \cos \alpha\left(\mathrm{I}+3 \tan ^{2} \varphi\right)+ \tag{b}
\end{equation*}
$$

It will be readily seen that the first term expresses the distance on the meridian $P B$ from B to p, the foot of the perpendicular from A; the second term, the distance, very nearly, from p to the parallel passing through A; while the third term is a further approximation, and so on.

Keferring now our case to an imaginary sphere of radius equal to N, with its center at the point where the normal An intersects the polar diameter of the spheroid, we have

$$
\sigma=\stackrel{s}{N}
$$

substituting which, we get

This difference of latitude is, however, referred to a sphere whose radius is N and requires still to be transformed by referring it to one whose radius is R_{m}, the radius of curvature in the meridian for the middle latitude. Since we do not at first know the middle latitude, it is more convenient to refer to the radius of curvature R of the starting point, the latitude of which is known, and then find the small correction due to the ratio of R to R_{tu}.

Multiplying then equation (c) by $\frac{N}{R}$ and dividing, moreover, by arc $\mathrm{I}^{\prime \prime}$ in order to
express $\varphi-\psi^{\prime}$ in seconds of arc, we get

$$
\begin{align*}
& + \tag{d}
\end{align*}
$$

The computation of this series is facilitated by tables giving the logarithms of the following factors to the argument of φ, viz:

$$
B=\frac{\mathrm{I}}{R \operatorname{arc} \mathrm{I}^{\prime \prime}} \quad C=\frac{\tan \varphi}{2 R N \operatorname{arc}}
$$

Moreover, substituting in the third term the value of the first term, designated by h, we can write it

$$
\frac{1}{6} h \cdot \frac{s^{2} \sin ^{2} \alpha}{N^{2}-\left(1+3 \tan ^{2} \varphi\right)}
$$

and tabulate another factor

$$
E=\frac{1+3 \tan ^{2} \varphi}{6 \bar{N}^{2}},
$$

when our formula for computation becomes

$$
\begin{equation*}
-\delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C-h \cdot s^{2} \sin ^{2} \alpha \cdot E+. . . \tag{e}
\end{equation*}
$$

In order, finally, to obtain the true $\Delta \varphi$ referred to R_{m} we must increase $\delta \varphi$ by $\xrightarrow[R_{\mathrm{m}}]{R-R_{\mathrm{m}} \delta \boldsymbol{\varphi}}$

Now

$$
\begin{aligned}
& R-R_{\mathrm{m}}=a\left(\mathrm{I}-e^{8}\right)\left(\begin{array}{c}
\mathrm{I} \\
\left(\mathrm{I}-\epsilon^{2} \sin ^{2} \varphi\right)^{\mathrm{B}}
\end{array} \frac{\mathrm{I}}{\left(\mathrm{I}-e^{2} \sin ^{2} \overline{\psi_{\mathrm{m}}}\right)^{3}}\right) \\
& =a\left(\mathrm{I}-c^{2}\right) \frac{\frac{3}{2} c^{2}\left(\sin ^{2} \varphi-\sin ^{2} \varphi_{m}\right)}{\left.\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}\left(\mathrm{I}-e^{2} \sin ^{2}\right.} \varphi_{101}\right)^{\frac{1}{2}}}
\end{aligned}
$$

by developing and neglecting terms involving higher powers of e^{2}; but

$$
\sin ^{2} \varphi-\sin ^{2} \varphi_{\mathrm{m}}=\sin \left(\varphi-\varphi_{\mathrm{m}}\right) \sin \left(\varphi+\varphi_{\mathrm{m}}\right)=\delta \varphi \operatorname{sin1} \mathrm{I}^{\prime \prime} \sin \varphi \cos \varphi
$$

very nearly, because $1 / 2 \sin 2 \varphi=\sin \varphi \cos \varphi$; hence we write
 nearly, but making

$$
D=\frac{\frac{3}{2} e^{2} \sin \varphi \cos \varphi \operatorname{arc} I^{\prime \prime}}{\left(1-e^{2} \sin ^{2} \varphi\right)^{1}}
$$

we get for the desired corrective term *

$$
\frac{R-R_{\mathrm{m}}}{R_{\mathrm{m}}} \delta \varphi=(\delta \varphi)^{2} D
$$

and we finally have for the true difference of latitude

$$
\begin{equation*}
-\Delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C+(\delta \varphi)^{2} \cdot D-h \cdot s^{2} \sin ^{3} \alpha \cdot E \tag{I}
\end{equation*}
$$

[^16]which formula, although of a somewhat complicated derivation, is very simple and convenient in practical computation with the aid of the tabulated \log. factors B, C, D, E. The term $*(\delta \phi)^{2} D$ is here interposed between the second and third terms of the series proper, because the latter is frequently not required, being insensible when the distance s is less than about ro statute miles or $\log s$, in meters, less than 4.23. The term $(\delta \psi)^{2} D$ should be used whenever $\log h$ exceeds 2.3 I , and h^{2} may be substituted for $(\delta \varphi)^{2}$ in all cases where $\log s$ does not exceed 4.93 .

The term depending on the fourth differential coefficient, neglected in equation (a) never exceeds $0^{\prime \prime} .002$ for $\sigma=1^{\circ}$ or $s=100$ kilometers, and may therefore be safely neglected in practice. \dagger

* This term was devised by the writer of this article in 1846, while arranging the formule for use in the Coast Survey and putting them into the form above given, in which they have been employed ever since. -J. E. H.
\dagger This additional term has, however, been lately developed by Mr. M. H. Doolittle, of the Computing Division, who finds that it can be given as a function of the factors A, C, and E of the tables, thus requiring no special tabulation. It is as follows:

The additional term of Taylor's theorem

$$
\frac{1}{24} \frac{d^{4} \gamma}{d \sigma^{4}} \sigma^{4}=-\frac{1}{24} \sigma^{4} \sin ^{2} \xi \cot \gamma\left[\left(1-3 \cos ^{2} \xi\right)\left(1+3 \cot ^{2} \gamma\right)-6 \cos ^{2} \xi \operatorname{cosec}^{2} \gamma\right]
$$

Substituting $90^{\circ}-\varphi$ for $\gamma, 180^{\circ}-\alpha$ for $\xi, \frac{s}{N}$ for σ, and multiplying by $\frac{N}{\mathcal{R} \text { arc } I^{\prime \prime}}$ in the same manner as for the other terms

$$
\begin{aligned}
\frac{1}{24} \frac{d^{4} \gamma}{d \sigma^{4}} \sigma^{4}= & -\frac{1}{24} R N^{3} \operatorname{sarc} \mathrm{I}^{\prime \prime} \sin ^{2} \alpha \tan \varphi\left(1+3 \tan ^{2} \varphi\right) \\
& +\frac{1}{8} R N^{s} \operatorname{src} \mathrm{I}^{\prime \prime} \sin ^{2} \alpha \cos ^{2} \alpha \tan \varphi\left(1+3 \tan ^{2} \varphi\right) \\
& +\frac{1}{4} R N^{54} \operatorname{sarc} 1^{\prime \prime} \sin ^{2} \alpha \cos ^{2} \alpha \tan \varphi \sec ^{2} \varphi
\end{aligned}
$$

Denoting the second term $s^{2} \sin ^{2} \alpha C$ in formula (e) by C_{i}

$$
\begin{aligned}
& C_{1} E=\frac{s^{2} \sin ^{2} \alpha \tan \varphi\left(\mathrm{I}+3 \tan ^{2} \varphi\right)}{12 N^{3} \operatorname{arc} \mathrm{I}^{\prime \prime}} \\
& A^{2} C_{1}=\frac{s^{2} \sin ^{2} \alpha \tan \varphi}{2 A^{\prime i}-\operatorname{arc} 1^{\prime \prime}}
\end{aligned}
$$

and we finally obtain

$$
\begin{gathered}
\left.-\Delta p=s \cos \alpha B-s^{2} \sin ^{2} \alpha C+(\delta \varphi)^{2} /\right)-h \cdot s^{2} \sin ^{2} \alpha E \\
-\frac{1}{2} s^{2} C_{1} E+\frac{3}{2} s^{2} \cos ^{2} \alpha C_{1} E+\frac{1}{2} s^{2} \cos ^{2} \alpha \sec ^{2} \varphi \cdot A^{2} C_{1} \operatorname{arc}^{2} 1^{\prime \prime}
\end{gathered}
$$

In the line from Ibepah to Ogden, in Utah, 230 kilometers long, the additional term amounted to $o^{\prime \prime} .038$. In Puissant's time no such long lines had to be provided for as have since been observed in triangulations; e.g., in California, Nevada, Utah, and Colorado, where several sides reach to nearly 2° in length, or slightly surpass this limit, with a maximum sight of 234°. The formulx applicable for the computation of the largest triangles that it is possible to measure, given in Clarke's Geodesy (Oxford, 1880) and in Appendix No. 9, Coast and Geodetic Survey Report for 1885, pages 462-464, and employed in the British Ordnance Survey, also in the extension of La Caille's arc in South Africa, may be employed for a check computation, but they demand the use of not less than 9 -place logarithms.

For distances greater than any that can be directly observed, see development of formulx in series by Dr. F. R. Helmert, "Theorieen der Höheren Geodäsie, Leipzig, 1880," Vol. I, pages 296-298. It includes terms of the fifth order.

December, 1894.

For secondary triangulation and when the sides do not exceed about 12 statute miles, or say 20 kilometers, the formula (1) may be advantageously reduced to the following:

$$
\begin{equation*}
-\Delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C+h^{2} \cdot D \tag{2}
\end{equation*}
$$

In order next to deduce the angle APB (Fig. 2) between the meridional planes passing through A and B and intersecting in the polar axis, or the difference $\Delta \lambda$ of the longitudes λ and λ^{\prime} of the points A and B, counted from east to west, we avail ourselves of the latitude φ^{\prime} of B, which has become known by the previous calculation, and have simply, using the same notation as before,

$$
\sin \gamma^{\prime}: \sin \xi=\sin \sigma: \sin \Delta \lambda
$$

Referring σ to a sphere the radius of which is the normal $\mathrm{Bn}^{\prime}=N^{\prime}$, we have $\sigma=\stackrel{s}{N^{\prime}}$ and assuming for the present the small ares σ and $\Delta \lambda$ proportional to their sines, we obtain

$$
\begin{equation*}
\Delta \lambda=\frac{s \sin \alpha}{N^{\prime} \cos \varphi^{\prime} \operatorname{arc} \mathrm{I}^{\prime \prime}} \ldots \tag{3}
\end{equation*}
$$

dividing by arc $\mathrm{I}^{\prime \prime}$ in order to obtain $\Delta \lambda$ expressed in seconds of arc. The table gives the logarithm of the factor $A=\frac{\text { I }}{N^{\prime} \operatorname{arc} \mathrm{I}^{\prime \prime}}$, which must be taken out for φ^{\prime}. We have

$$
\Delta \lambda=\frac{s \sin \alpha}{\cos \psi^{\prime}} A
$$

In order to correct for the assumption that the small arcs s and $\Delta \lambda$ are proportional to their sines we use a table giving the differences of the logarithms of the arcs and sines. This table is given before the tabulation of the factors A to F. In using it take out the differences for the arguments $\log s$ and $\log \Delta \lambda$, the first with a negative, the second with a positive sign, and add their algebraic sum to $\log \Delta \lambda$.

We obtain finally the reverse azimuth $\alpha^{\prime \prime}$ by considering that in the spherical triangle APB (Fig. 2) we have the following relation

$$
\cot 1 / 2\left(\xi+\xi^{\prime}\right)=\tan 1 / 2(\Delta \lambda) \frac{\cos 1 / 2\left(\gamma^{\prime}+\gamma\right)}{\cos 1 / 2\left(\gamma^{\prime}-\gamma^{\prime}\right)}=\tan 1 / 2(\Delta \lambda) \frac{\sin 1 / 2\left(\varphi^{\prime}+\psi\right)}{\cos 1 / 2\left(\varphi^{\prime}-\psi\right)}
$$

but $\xi=180^{\circ}-\alpha$, therefore

$$
\cot 1 / 2\left(180^{\circ}-\alpha+\xi^{\prime}\right)=-\tan 1 / 2\left(\xi^{\prime}-\alpha\right)
$$

and

$$
-\tan 1 / 2(\Delta \alpha)=\tan 1 / 2(\Delta \lambda) \frac{\sin 1 / 2\left(\phi^{\prime}+\phi\right)}{\cos 1 / 2\left(\psi^{\prime}-\phi\right)}
$$

Assuming the tangents of $1 / 2 \Delta \alpha$ and $1 / 2 \Delta \lambda$ proportional to their arcs, and writirg $\varphi_{\mathrm{m}}=1 / 2\left(\varphi+\phi^{\prime}\right)$ for the middle latitude, we have

$$
-\Delta \alpha=\Delta \lambda \frac{\sin \phi_{\text {min }}}{\cos \frac{1 / 2}{2}(\Delta \varphi)} \text { and } \alpha^{\prime}=\alpha+180^{\circ}+\Delta \alpha
$$

When the difference of longitude is very large it becomes necessary to correct \ldots....: error in the assumption that $\tan 1 / 2(\Delta \alpha): \tan 1 / 2(\Delta \lambda)=\Delta \alpha: \Delta \lambda$. By an obvious transformation we find the correction to be $\mathrm{I}^{1} 2(\Delta \lambda)^{3} \sin \varphi_{\mathrm{m}} \cos ^{2} \varphi_{\mathrm{n}} \sin ^{2} \mathrm{I}^{\prime \prime}$, for which we write $(\Delta \lambda)^{3} F$ where $\log . F$ is to be taken from the table (see last column of table of factors). This term is only $o^{\prime \prime}$.on when $\log . \Delta \lambda=3.36$ and need never be used for secondary triangulation. A convenient table for finding the reciprocal of $\cos 1 / 2(\Delta \varphi)$ is appended,

The following examples will illustrate the use of the formulæ and tables:
The formulæ for the computation of the geodetic differences in latitude $\Delta \varphi$, in longitude $\Delta \lambda$, and in azimuth $\Delta \alpha$ are as follows:

$$
\left\{\begin{aligned}
-\Delta \psi & =s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C+(\delta \varphi)^{2} D-h \cdot s^{2} \sin ^{2} \alpha \cdot E \\
\Delta \lambda & =s \sin \alpha \sec \varphi^{\prime} \cdot A \\
-\Delta \alpha & =\Delta \lambda \sin 1 / 2\left(\varphi+\varphi^{\prime}\right) \sec 1 / 2(\Delta \varphi)+(\Delta \lambda)^{3} F
\end{aligned}\right.
$$

where

$$
\left\{\begin{array} { l }
{ \phi ^ { \prime } = \phi + \Delta \varphi } \\
{ \lambda ^ { \prime } = \lambda + \Delta \lambda } \\
{ \alpha ^ { \prime } = \alpha + \Delta \alpha + 1 8 0 ^ { \circ } }
\end{array} \quad \text { and } \left\{\begin{array}{c}
-\delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C-h \cdot s^{2} \sin ^{2} \alpha . E \\
\text { also } h=s \cos \alpha \cdot B
\end{array}\right.\right.
$$

For subordinate triangulation when the sides do not exceed say 25 kilometers, or about 15 statute miles, the term involving E in $\Delta \varphi$ and the factor sec $1 / 2$ ($\Delta \varphi$), as well as the term involving F in $\Delta \alpha$, may be omitted.

Our formulæ can also be used for the solution of the inverse problem, viz, given the positions of two points on the spheriod, to find their distance and mutual azimuths, i. e., given $\varphi, \lambda, \varphi^{\prime}, \lambda^{\prime}\left(\right.$ or $\left.\varphi, \varphi^{\prime}, \Delta \lambda\right)$, to find s, α, and α^{\prime}. For its direct solution put

$$
\left\{\begin{array}{l}
s \cos \alpha=x=-\frac{1}{B}\left[\Delta \psi+C \cdot y^{2}+D(\Delta \psi)^{2}+E(\Delta \psi) y^{2}+E . C \cdot y^{\prime}\right] \\
s \sin \alpha=y=\frac{\Delta \lambda \cos \psi^{\prime}}{A}
\end{array}\right.
$$

whence

$$
\tan \alpha=y: x \text { and } s=x \sec \alpha=y \operatorname{cosec} \alpha
$$

Position computation: Given, φ, λ, s, and $\alpha ;$ required, $\varphi^{\prime}, \lambda^{\prime}, \alpha^{\prime}$.
FORM FOR PRIMARY TRIANGULATION.

N. B. -Take out A from table for φ^{\prime}.

Position computation: Given, φ, λ, s, and α; required, $\varphi^{\prime}, \lambda^{\prime}, \alpha^{\prime}$.-Continued.
Form for subordinate triangulation.

$\begin{gathered} \stackrel{s}{\sin \alpha} \begin{array}{c} A \\ \sec \phi^{\prime} \end{array} \end{gathered}$	4. 1651480 9. 5148602 8. 5091611 o. 1052810	$\begin{gathered} \Delta \lambda \\ \sin 1 / 2\left(\varphi+\varphi^{\prime}\right) \end{gathered}$	$\begin{aligned} & \text { 2. } 29445 \\ & 9.79168 \end{aligned}$
$\Delta \lambda$	$\begin{aligned} & \text { 2. } 294,4503 \\ & +196.993 \end{aligned}$	$-\Delta x$	$\begin{array}{r} 2.08613 \\ +121.9 \end{array}$

N. B.-Take out A from table for φ^{\prime}.

The inverse problem.- Cases frequently occur where the distance and mutual azimuths are demanded of two points whose latitudes and longitudes only are known. It has not been found necessary to prepare special formulæ and blank forms for this computation, as it can readily be made with the help of the preceding forms. It is done by dividing $\Delta \lambda=s \sin \alpha . A . \sec \phi^{\prime}$ by the first term for $\Delta \varphi, h=s \cos \alpha . B$, whence we get

$$
\tan \alpha=\frac{\Delta \lambda \cdot B}{A \sec \varphi^{\prime} / h}
$$

This would give the azimuth at once, provided we knew h, since $\Delta \lambda$ is given. We therefore compute the smaller terms for the difference of latitude in order to obtain h by subtracting them from the known value of $\Delta \varphi$. The only addition to the usual form

APPENDIX NO. 4. TABLES FOR COMPUTATION OF GEODETIC POSITIONS. 3 I 7
is the term $\log \tan \alpha=\log (s \sin \alpha)-\log (s \cos \alpha)$. The value of s will best be taken from the term h when $\sin \alpha$ exceeds $\cos \alpha$, and from the term $\Delta \lambda$ when the reverse is the case. When the distance s is large, as in primary triangulation, it will be necessary to introduce the correction for $\Delta \lambda$ due to difference of ratio between sine and arc, using the form for primary work, inversely, as inclicated above.

Distance and azimuth computation: Given, $\phi, \phi^{\prime}, \lambda, \lambda^{\prime}$; required, $s, \alpha, \alpha^{\prime}$.

Table of corrections to longitude for difference in arc and sine.*

$\log s(-) \log$ difference. $\log \Delta \lambda(+)$				$\log s(-) \log$ difference. $\log د \lambda(+)$				$\operatorname{loggs}_{s}(-)$	\log difference. $\log \Delta \lambda(+)$		
3. 876	0. 000	¢01	2. 385	4. 87 I	0. 000	0098	3.380	5. 172	0. 000	0392	3.681
4.026		02	2. 535	4. 882		103	3. 391	5. 178		402	3. 687
4. 114		03	2.623	4. 892		108	3. 401	5. 183	\cdots	412	3. 692
4. 177		04	2. 686	4. 903		114	3.412	5. 188		422	3. 697
4. 225		O5	2. 734	4.913		119	3.422	5. 193		433	3. 702
4. 265		06	2. 774	4. 922		124	3. 4.3 I	5. 199		443	3.708
4. 298		07	2. 807	4. 932		130	3. 441	5. 204		453	3.713
4. 327		08	2. 836	4. 941		136	3.450	5. 209		464	3.718
4. 353		∞	2. 862	4. 950		142	3. 459	5. 214		474	3. 723
4. 376		10	2. 885	4. 959		147	3. 468	5.219		486	3. 728
4. 396		II	2. 905	4. 968		153	3. 477	5. 223		497	3. 732
4. 415		12	2. 924	4.976		160	3. 485	5. 228		508	3. 737
4. 433		13	2. 942	4. 985		166	3. 494	5. 233		519	3. 742
4.449		14	2. 958	4. 993		172	3. 502	5. 238		530	3. 747
4. 464		15	2. 973	5.002		179	3.511	5. 242		541	3. 751
4. 478		16	2. 987	5. 010		186	3. 519	5. 247		553	3. 756
4. 491		17	3.000	5.017		192	3. 526	5.251		565	3. 760
4. 503		18	3.012	5.025		199	3. 534	5. 256		577	3. 765
4. 526		20	3. 035	5.033		206	3. 542	5. 260		588	3. 769
4. 548		23	3. 057	5.040		213	3. 549	5. 265		600	3. 774
4. 570		25	3. 079	5. 047		221	3. 556	5. 269		613	3. 778
4. 591		27	3. 100	5.054		228	3. 563	5.273		625	3. 782
4. 612		30	3. 121	5. 062		236	3. 571	5. 278		637	3. 787
4. 631		33	3. 140	5. 068		243	3. 577	5. 282		650	3.791
4.649		36	3. 158	5. 075		251	3. 584	5. 286		663	3. 795
4. 667		39	3. 176	5. 082		259	3.591	5.290		674	3. 799
4. 684		42	3. 193	5. 088		267	3. 597	5. 294		687	3. 803
4. 701		45	3. 210	5. 095		275	3.604	5. 299		702	3. 808
4. 716		48	3. 225	5. 102		284	3.611	5.303		716	3. 812
4. 732		52	3. 24 I	5. 108		292	3.617	$5 \cdot 307$		729	3.816
4. 746		56	3. 255	5. 114		300	3. 623	5.311		743	3. 820
4.761		59	3. 270	5. 120		309	3. 629	5.315		757	3. 324
4. 774		63	3. 283	5. 126		318	3. 635	5. 319		771	3. 828
4. 788		67	3. 297	5. 132		327	3. 641	5. 323		785	3. 832
4. 801		71	3.310	5.138		336	3.647	5. 327		800	3. 836
4. 813		75	3. 322	5. 144		345	3. 653	5.331		814	3. 840
4. 825		80	3. 334	5. 150		354	3. 659	5. 335		829	3. 844
4.834		84	3. 343	5. 156		364	3. 665	5. 339		845	3. 848
4. 849		89	3. 358	5. 16I		373	3. 670	5. 343		861	3. 852
4. 860		94	3. 369	5. 167		383	3. 676	5. 347		877	3. 8.56

*From $\sin x=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$. . . we have with sufficient accuracy for our purpose $\log \sin x=\log x-\lambda 1^{2-2}$, and $\log (\log x-\log \sin x)=\log \left(M_{\frac{x 2}{6}}^{6}\right)$.

Substituting the value of M or modulus of common \log 's, and putting \boldsymbol{x} sin $\boldsymbol{x}^{\prime \prime}$ for \boldsymbol{x}, when expressed in seconds, we get $\log \left(M^{x^{2}}-2=2 \log x+8.23078\right.$; hence the expression $\log (\log$ diff. $)=3.2308+2 \log \Delta \lambda$. By taking and average value for $\log A$, say 8.5090 , we get by means of $\log s$ (in seconds) $=\log A+\log s$ (in meters), the corresponding expression $\log (\log$ diff. $)=2 \log s+5.2488$, and the numerical difference of the corresponding tabular values of $\log s$ and $\log \Delta \lambda$ equals I.4910.-J. F, H., March, 1902.

Table of values of $\log \sec 1 / 2(\Delta \psi)$.

$\Delta \varphi$	$\begin{gathered} \log \sec 1 / 2 \\ (\Delta \varphi) \end{gathered}$	$\Delta \varphi$	$\underset{(1 \Phi)}{\log \sec 1 / 2}$	$\Delta \varnothing$	$\log _{(\Delta(D)} \sec 1 / 2$	$\Delta \boldsymbol{P}$	$\begin{gathered} \log \sec 1 / 2 \\ (\Delta \varphi) \end{gathered}$	$\Delta \mathscr{P}$	$\underset{(\Delta \varphi)}{\log \sec 1 / 2}$
,		'		,		;		'	
10	0.000000	28	0. 000004	46	0.000 010	64	0.000019	82	0. 0×0031
11	1	29	4	47	10	65	19	83	3^{2}
12	1	30	4	48	11	66	20	84	32
13	1	31	4	49	I J	67	21	85	33
14	1	32	5	50	11	68	21	86	34
15	I	33	5	51	12	69	22	S7	35
16	I	34	5	52	12	70	22	88	36
17	1	35	6	53	13	- 71	23	89	36
18	1	36	6	54	13	72	24	90	37
19	2	37	6	55	14	73	24	91.	3 S
20	2	38	7	56	14	74	25	92	39
21	2	39	7	57	15	75	26	93	40
22	2	40	7	58	15	76	26	94	41
23	2	41	8	59	16	77	27	95	41
24	3	42	8	60	16	78	28	96	42
25	3	43	8	61	17	79	29	97	43
26	3	44	9	62	18	80	29	98	44
27	3	45	9	63		8 I	30	99	45

To convert:			To convert:	
	Meters to feet.	Feet to meters.	Kilometers to statute miles.	statute miles to kilometers.
	= 3.280 833	$1=0.3048006$	$1=0.621 .3699$	$\mathrm{I}=\mathrm{I} .609347$
2	6. 561667	20.6096012	2 I. $2 \downarrow 27399$	$2 \quad 3.218694$
3	9. 842500	3 0. 9144018	3 I. 8641098	$3 \quad 4.828042$
4	13. 123333	4 1. 2192024	4 2. 4854798	$4 \quad 6.437 \quad 389$
5	16.404 166	5 1. $52+0030$	$5 \quad 3.1068497$	$5 \quad 8.046736$
6	19.685 000	$6 \quad 1 . \mathrm{S} 28 \mathrm{So37}$	$6 \quad 3.7282196$	$6 \quad 9.656 \quad 083$
7	22. 965833	$7{ }^{7}$ 2. 1336043	$7 \quad 4.3495896$	$7 \quad 11.265430$
	26. 246666	$8 \quad 2.4384049$	S 4.970 9595	S 12.874 778
9	29.527 500	$9 \quad 2.7432055$	$9 \quad 5.5923295$	$9 \quad 14.484125$

FORMUIA AND TABLE FOR COMPUTING THE SHHERICAI EXCESS OF TRIANGLES.
In every spherical triangle the excess of the sum of the three angles over 180° bears the same ratio to eight right angles as the area of the triangle bears to that of the whole sphere. Putting r for radius, ε for the excess, we have $\frac{\varepsilon}{4 \pi}=\frac{a r r a}{4 r^{2} \pi}$, hence $\varepsilon=\frac{a r c a}{r}$. In order to express ε in seconds, of arc, we must divide the expression by sin I". The area of the triangle, when it is small in relation to the whole sphere, as is the case in all geodetic triangles, may be expressed with sufficient accuracy for this purpose by $1 / 2 a_{1} b_{1} \sin C_{i}$ where a_{1} and b_{1} are two sides and C_{1} the included angle. We then have

$$
\varepsilon=\begin{aligned}
& a_{1} b_{1} \sin C_{7} r^{2} r^{2} \sin 1^{\prime \prime}
\end{aligned}
$$

In determining ε in a triangle on the terrestrial spheroid, we can refer it to an osculating sphere, the radius of which is taken as $\sqrt{ } R N$, where R equals radius of
curvature in the meridian and N equals radius of curvature in the prime vertical at the center of the triangle. These are respectively

$$
R=\frac{a\left(\mathrm{I}-e^{2}\right)}{\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)^{2}} \quad N=\frac{a}{\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}}}
$$

using the notation of the preceding formulæ for position computation.
We have, therefore, for the spherical triangle,

$$
\varepsilon=\frac{a_{\mathrm{I}} b_{\mathrm{I}} \sin C_{\mathrm{x}}}{2 R N \sin \mathrm{I}^{\prime \prime}}=\frac{a_{1} b_{\mathrm{x}} \sin C_{\mathrm{x}}}{2 a^{2}\left(\mathrm{I}-e^{2}\right) \sin \mathrm{I}^{\prime \prime}}\left[\mathrm{I}-e^{2} \sin ^{2} \varphi\right]^{2}
$$

for which we write $\varepsilon=a_{1} b_{1} \sin C_{\mathrm{r}} \times m$, and tabulate the logarithms of $m=\frac{\left[1-e^{2} \sin ^{2} \varphi\right]^{2}}{2 a^{2}\left(1-e^{2}\right) \sin } A^{\prime \prime}$. for different latitudes.

Table of $\log m$.

Lat.		$\log \mathrm{m}_{1}$	Lat.		$\log \mathrm{m}$
\bigcirc			2	,	
o		1. 40695	9	30	I. 40679
-	30	1. 40695	10	00	1. 40677
1	00	1. 40695	10	30	1. 40675
1	30	I. 40694	11	∞	I. 40673
2		I. 40694	11	30	1. 40671
2	30	1. 40694	12	-	1. 40669
3		I. 40693	12	30	I. 40667
3	30	I. 40693	13	∞	I. 40665
4		1.40692	13	30	I. 40663
$+$		1. 40691	14	OO	I. 40660
5	-	1. 40690	14	30	I. 40658
5	30	I. 40689	15	00	I. 40655
6	no	I. 40688	15	30	I. 40653
6		I. 40687	16	OO	I. 40650
7		1. 40686	16	30	I. 40647
	30	1. 40685	17	-	1. $406+4$
8	-	1. 40683	17	30	I. 40642
S		I. 40682	18	-	J. 40639
9	\bigcirc	1. 406.80			I. 40636

CONSTANTS.

$$
\begin{aligned}
& A=\frac{\left(\mathrm{I}-\mathcal{C}^{2} \sin ^{2} \varphi\right)}{a \operatorname{arc} \mathrm{I}^{\prime \prime}} \\
& B=\frac{\left(1-e^{2} \sin ^{2} \varphi\right) \theta}{a\left(1-e^{2}\right) \operatorname{arc} \mathrm{I}^{\prime \prime}} \\
& C=\frac{\left(\mathrm{I}-\mathcal{C}^{2} \sin ^{2} \varphi\right)^{2} \tan \varphi}{2 a^{2}\left(1-\overline{e^{2}}\right) \operatorname{arc} \mathrm{I}^{\prime \prime}} \\
& D=\frac{3 e^{2} \sin \varphi \cos \varphi \operatorname{arc} \jmath^{\prime \prime}}{1-\epsilon^{2} \sin ^{2} \varphi} \\
& E=\frac{\left(1+3 \tan ^{2} \varphi\right)\left(1-c^{2} \sin ^{2} \varphi\right)}{6 a^{2}} \\
& F=\mathrm{I}^{\frac{1}{2}} \sin \varphi \cos ^{2} \varphi \operatorname{arc}^{2} \mathrm{I}^{\prime \prime} \\
& \log a=6.80469857 \\
& \log b=6.80322378 \\
& \log e^{\infty}=\overline{7} .83050257 \\
& \log \underset{a}{a} \frac{1}{\operatorname{arc} 1^{\prime \prime}}=\overline{8} .50972656 \\
& \log _{a\left(1-e^{2}\right) \operatorname{arc} 1^{\prime \prime}}=8.51267615 \\
& \log _{2 a^{2}\left(\mathrm{i}-e^{2}\right)} \operatorname{arct}^{\mathrm{I}} \mathrm{a}^{\prime \prime}=\mathrm{T} .4069476 \\
& \log \left(\underline{3}^{3} c^{2} \operatorname{arc} \mathrm{I}^{\prime \prime}\right)=\overline{\mathrm{z}} .6921687 \\
& \log \frac{1}{6 a^{4}}=\overline{\overline{5}} .61245 \\
& \log \left(\mathrm{r}_{\mathrm{I}} \operatorname{arc}^{2} \mathrm{I}^{\prime \prime}\right)=\overline{8} .29196
\end{aligned}
$$

The constants as printed above were those used in computing the tables given in the report for 1894 . For greater convenience in computation they have been transformed as indicated below, by Mr. M. H. Doolittle, Computer.

$$
\begin{aligned}
& N=\frac{a}{\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)^{1 / 2}},(\text { see p. } 320), \text { hence }\left(\mathrm{I}--e^{2} \sin ^{2} \varphi\right)^{1 / 2}=\frac{a}{N} \\
& \log \frac{N}{a}=\log \frac{1}{\left(1-e^{2} \sin ^{2} \psi\right)^{\overline{3 / 2}}}=-1 / 2 \log \left(1-e^{2} \sin ^{2} \phi\right) \\
& =1 / 2 M e^{2} \sin ^{2} \varphi+1 / 4 M e^{4} \sin ^{4} \varphi+1 / 6 M e^{6} \sin ^{6} \varphi \& \mathrm{c} \text {, in which } M=\text { modulus } \\
& \text { of logarithms. } \\
& \text { Let } 1 / 2 M e^{2} \sin ^{2} \varphi=m ; 1 / 4 M e^{4} \sin ^{4} \varphi=n ; 1 / 6 M e^{6} \sin ^{6} \varphi=p \\
& \log 1 / 2=9.6989700 \quad \log 1 / 4=9.397940 \quad \log 1 / 6=9.2218 \\
& \log M=9.6377843 \quad \log M=9.637784 \quad \log M=9.6378 \\
& \log e^{2}=\frac{7.8305026}{7.1672569} \quad \log c^{4}=\underset{5.661005}{4.69673} \quad \log \quad e^{6}=\frac{3.4915}{2.351} \\
& \log m=2 \log \sin \phi+7.1672569 \\
& \log n=4 \log \sin \varphi+4.69673=2 \log m+0.36222-10 \\
& \log p=6 \log \sin \varphi+2.35 \mathrm{I}=3 \log m+0.849-20 \\
& \log -\frac{N}{a}=m+n+p \\
& \log A=\log \frac{\mathrm{I}}{a \operatorname{arc\mathrm {I}}{ }^{\prime}}+\log \frac{a}{N}=8.50972656-\log \frac{N}{a} \\
& \log B=\log a\left(\mathrm{I}-c^{2}\right) \operatorname{arc} \mathrm{I}^{\prime \prime}+3 \log \frac{a}{N}=8.51267615-3 \log \frac{N}{a} \\
& \log C=\log \frac{1}{2 a^{2}\left(\mathrm{I}-c^{2}\right) \operatorname{arc} \mathrm{I}^{\prime \prime}}+\log \tan \varphi+4 \log \underset{N}{\underset{N}{a}} \\
& =1.4069476+\log \tan \varphi-4 \log \frac{N}{a} \\
& \log D=\log \sin 2 \varphi-\log 2+\log \left(\frac{3}{2} e^{2} \operatorname{arc} 1^{\prime \prime}\right)-2 \log \frac{a}{N} \\
& =2.3911387+\log \sin 2 \varphi+2 \log \frac{N}{a} \\
& \log E=\log \frac{1}{6 a^{2}}+\log \left(1+3 \tan ^{2} \phi\right)+2 \log \underset{N}{a} \\
& =5.6 \mathrm{I} 245 \mathrm{I} 6+\log \left(1+3 \tan ^{2} \psi\right)-2 \log \frac{N}{a} \\
& \text { S. Doc. } 50-21
\end{aligned}
$$

LATITCDE O°.

Lat.	$\log A$	$\log B$	$\log C$	$\log D$	$\log E$	$\log F$
\bigcirc						
$\infty \quad \infty$	8. 5097266	8. 5126761	$-\infty$	$-\infty$	$\overline{5} .6125$	$-\infty$
1	66	61	$\overline{\overline{7}} .8707$	¢9. 156	5	
2	66	61	$\overline{\overline{8}} .1717$	457	5	
3	66	61	3477	633	5	
4	66	61	4727	758	5	
05	66	61	5696	855	5	
6	66	61	6488	¢. 9334	5	
7	66	61	7158	\%. 001	5	
8	66	61	7740	059	5	
9	66	61	8249	110	5	
10	8. 5097266	8. 512676 I	8.8707	-. 156	5.6125	
II	8.55	61	9121	197	5	
12	65	61	9499	235	5	
13	65	6 I	8.9846	270	5	
14	65	61	9.0168	302	5	
15	65	6I	0468	332	5	
16	65	61	0748	360	5	
17	65	60	IOI 1	386	5	
18	65	60	1259	4 II	5	
19	65	60	1494	435	5	
20	8. 5097265	8. 5126760	9. 1717	0. 457	5.6125	6. 057
21	65	60	1929	478	5	
22	65	60	2I3I	498	5	
23	65	60	2324	518	5	
24	65	59	2509	536	5	
25	65	59	2686	554	5	
26	65	59	2857	571	5	
27	65	59	3020	587	5	
28	65	59	3178	603	5	
29	65	58	3331	618	5	
30	8. 5097265	8. 5126758	9. 3478	0. 633		
31	8.54	- 58	3620 3758	647	-6	
32	64	58	3758	661	6	
33	64	57	9.3892	674	6	
34	64	57	9.4022	687	6	
	64	57	4148	700	6	
36	64	57	4270	712	6	
37	64	56	4389	724	6	
38	64	56	4505	736	6	
39	64	56	4618	747	6	
40	8. 5097264	8. 5126756	9. 4728	-. 758	5.6126	6. 358
41	64	55	4835	769	6 6	
42	64	55	9. 4939	779	6	
43	64	55	9. 5042	789	6	
44	63	54	5141	799	7	
45	63	54	5239		7	
46	63	54	5335	819 828	7	
47	63	53	5428	828	7	
48	63	53	5519	837	7	
49	63	53	5609	846	7	
50	8. 5097263	8. 5126752	9. 5697	0. 855	5.6127	
51	63	52	5783	863	7	
52	62	51	5866	872	7	
53	62	51	9. 5950	880	8	
54	62	5 I	9.603I	888	8	
55	62	50	6111	896	8	
56	62	50	6189	904	8	
57	62	49	6266	912	8	
58	61	49	6341	919	8	
59	61	49	6416	927	8	
60	8. 5097261	8. 5126748	9.6489	0. 934	5.6128	6. 534

LATITUDE I°.

Lat.	$\log A$	$\log B$	$\log C$	$\log \mathrm{D}$	loges:	$\log 1$
-						
100	8. 5097261	¢. 5126748	$\overline{\text { ¢ }} .6489$	\%. 934	5. 612 S	6. 534
I		48	560	941	29	
2	61	47	631	948	29	
3	61	47	701	955	29	
4	61	46	769	962	29	
05	60	46	836	969	29	
6	60	45	903	975	29	
7	60	45	9. 6968	982	29	
8	60	44	9.7032	988	30	
9	60	44	096	-. 995	30	
10	8. 5097260	8. 5126743	9. 7158	1. 001	5.6130	
II	59	43	220	007	30	
12	59	42	281	013	30	
13	59	42	34 I	019	30	
14	59	41	400	025	31	
15	59	41	458	031	31	
16	58	40	516	037	31	
17	58	39	572	0.42	3 I	
15	58	39	628	048	3 I	
19	58	38	684	053	31	
20	8. 5097258	8. 5126738	9. 7738	1. 059	5.6132	6. 658
21	57	37	792	064	32	
22	57	36	846	070	32	
23	57	36	898	075	32	
24	57	35	9. 7950	080	32	
25	57	35	9. 8002	085	32	
26	56	34	- 053	090	33	
27	56	33	103	095	33	
28	56	33	152	100	33	
29	56	32	202	105	33	
30	8. 5097256	8. 5126731	9. 8250	I. 110	5. 6133	
3 I	55	3 I	298	115	34	
32	55	30	346	I 19	34	
33	55	29	393	124	34	
34	55	29	439	129	34	
35	54	28	485	133	34	
36	54	27	53 I	138	35	
37	54	26	576	142	35	
38	54	26	620	147	35	
39	53	25	664	151	35	
40	8.5097253	8. 5126724	9. 8708	1. 156	5.6136	6. 755
41	53	23	751	160	36	
42	53	23	794	164	36	
43	52	22	836	168	36	
44	52	21	878	173	36	
45	52	20	920	177	37	
46	52	20	961	181	37	
47	5 I	19	9.9002	185	37	
48	51	18	042	189	37	
49	5 I	17	082	193	38	
50	8. 509725 I	8. 5126716	9. 9122	I. 197	5.6138	
51	50	16	161	201	38	
52	50	15	200	205	38	
53	50	14	239	209	39	
54	49	13	277	2 i 2	39	
55	49	12	315	216	39	
56	49	11	353	220	39	
57	49	10	390	224	40	
58	48	10	427	227	40	
59	48	09	464	231	40	
60	8. 5097248	8. 5126708	9. 9500	1. 23.347	5.6140	6. 334

LATITUDE: 2°.

I, at.	$\log A$	$\log \mathrm{B}$	$\log C$	$\log D$	$\log \mathrm{F}$	$\log \mathrm{F}$
20	8. 5097248	§. 5126708	$\overline{\mathbf{9}} .95002$	1. 2347	ड. 6140	$\overline{\overline{6}} .834$
1	47	. 07	5363	383	$+1$	
2	47	06	5721	419	41	
3	47	0.5	6076	454	41	
4	47	04	6428	489	41	
05	46	O3	6777	524	42	
. 6	46	02	7123	559	42	
7	46	01	7467	593	$+2$	
8	45	6700	7808	627	43	
9	45	6699	8146	661	4.3	
10	8. 5097245	8. 5126698	¢. 95482	I. 2694	5.6143	
11	44	97	8815	727	43	
12	44	97	9145	760	44	
13	44	96	9473	793	44	
14	43	95	$\overline{\text { ¢ }} .99799$	826	44	
15	43	94	¢. 00122	S5S	45	
16	43	93	0443	S90	45	
17	42	91	0762	922	45	
18	42	90	1078	953	45	
19	42	S9	1392	J. 2984	46	
20	8. 5097241	8. 5126688	0. 01703	1. 3015	5.6146	6.901
21	41	87	2013	046	46	
22	41	86	2320	077	47	
23	40	85	2625	107	47	
24	40	84	2928	138	47	
25	40	83	3229	168	48	
26	39	82	3528	197	48	
27	39	8 I	3825	227	48	
28	38	80	4119	256	49	
29	38	79	4412	285	49	
30	8. 509723 S	8. 5126678	0. 04703	I. 3314	5.6149	
31	37	76	4992	343	50	
32	37	75	5279	372	50	
33	37	74	5564	400	50	
34	36	73	5847	428	51	
35	36	72	6129	456	51	
36	35	71	6408	484	51	
37	35	70	6686	512	52	
38	35	68	6962	539	52	
39	34	67	7237	567	52	
40	8. 5097234	8. 5126666	0. 07509	1. 3594	5.6153	6. 959
41	33	65	7780	621	53	
42	33	64	Soso	648	53	
43	33	62	8317	674	54	
44	32	61	$\mathrm{S}_{5} 83$	701	54	
45	32.	60	SS_{48}	727	54	
46	3 I	59	9111	753	55	
47	31	58	9372	779	55	
45	31	56	9631	Yo5	56	
49	30	55	0.09890	831	56	
50	8. 5097230	8. 5126654	o. 10146	1. 3^{856}	5.6156	
51	29	52	O40I	882	57	
52	29	51	0655	907	57	
53	28	50	0907	932	57	
54	28	49	1158	957	58	
55	28	47	1407	J. 3982	58	
56	27	46	1655	1. 4007	59	
57	27	45	1902	031	59	
58	26	43	2147	055	59	
59	26	42	2390	0 O\%	60	
60	8. 5097225	8. 5126641	0. 12633	1. 4104	5.6160	7. 010

1,ATITUDE 3°.

I,at.	$\log A$	$\log \mathrm{B}$ $1^{\prime \prime}=-0.03$	$\log C$	$\log D$	$\log E$	$\log F$
300	8. 5097225	8. 5126641	\%. 12633	I. 4104	$\overline{\mathbf{5}} .6160$	$\overline{\overline{7}}$. 010
1	. 25	39	2874	28	61	
2	24	38	3113	52	61	
3	24	37	3352	75	61	
4	24	35	3589	1. 4199	62	
05	23	34	3825	1. 4222	62	.
6	23	33	4059	46	62	
7	22	31	4293	69	63	
8	22	30	4525	1. 4292	63	
9	2 I	28	4756	I. 4315	64	
10	8. 509722 I	8. 5126627	4985	I. 4338	64	
11	- 20	26	5214	. 60	65	
12	20	24	5441	1. 4383	65	
. I3	19	23	5667	I. 4405	65	
14	19	21	5892	28	66	
15	18	20	6116	50	66	
16	18	18	6338	72	67	
17	17	17	6560	I. 4494	67	
18	17	15	6780	I. 45^{16}	68	
19	16	14	6999	38	68	
20	8. 5097216	8.512 6612	-. 17217	1. 4560	5.6168	$7.05 \overline{5}$
21	15	11	7434	1. 458 I	69	
22	15	$\bigcirc 9$	7650	I. 4603	69	
23	14	08	7665	24	70	
24	14	06	8079	45	70	
25	13	O5	8292	66	71	
26	13	O3	8504	I. 4687	71	
27	12	02	8715	I. 4708	72	
28	12	6600	8925	29	72	
29	II	6599	9133	50	72	
30	8. 5097211	8. 5126597	o. 19341	I. 4770	5.6173	
31	10	96	9548	1. 4791	73	
32	10	94	9754	I. 481 I	74	
33	09	92	19959	32	74	
34	09	91	20163	52	75	
35	-8	- 89	0366	72	75	
36	08	88	0568	I. 4892	76	
37	07	86	0769	1. 4912	76	
38	07	84	0969	32	77	
39	06	83	1168	52	77	
40	8. 5097206	8. 512658 I	0. 21367	I. 4971	5.6178	7.096
41	O5	80	1564	I. 4991	78	
42	04	78	1761	1. 5011	79	
43	04	76	1956	30	79	
44	03	75	2151	49	80	
45	03	73	2345	68	80	
46	02	71	2538	I. 5088	81	
47	02	69	2731	1. 5107	8 I	
48	OI	68	2922	26	8I	
49	OI	66	3I13	45	82	
50	8. 5097200	8. 5126564	0. 23302	1. 5163	5.6182	
51	7199	63	3491	I. 5182	83	
52	99	61	3680	1. 5201	84	
53	98	59	3867	19	84	
54	98	58	4053	38	85	
55	97	56	4239	56	85	
56	96	54	4424	75	86	
57	96	52	4608	I. 5293	86	
58	95	50	4792	I. 53 II	87	
59	95	49	4974	29	87	
60	8. 5097194	8. 5126547	0. 25156	I. 5347	5.618S	7. 133

I,ATITEDF: 4°.

I,ATITUDF 5°

Lat.	$\log A$	$\begin{aligned} & \log B \\ & \text { diff. } 1^{\prime \prime}=-0.04 \end{aligned}$	$\log C$	$\stackrel{\log \mathrm{D}}{\text { diff. }} 1$	$\log \mathrm{F}$	$\log \mathrm{F}$
- ,						
500	8. 5097154	8. 5126427	o. 34885	I. 6308	5. 6223	$\overline{7} .229$
1	53	24	5030	23	24	
2	53	22	5175	37	24	
3	52	20	5320	51	25	
4	51	18	5464	65	26	
05	50	15	5607	79	26	
6	49	13	5750	1. 6393	27	
7	49	1 I	5892	1. 6407	28	
8	48	08	6034	- 21	28	
9	47	06	6176	35	29	
10	8. 5097146	8. 5126404	0. 36317	1. 6449	5.6230	
1 I	46	6402	6457	63	30	
12	45	6399	6597	77	31	
13	44	97	6737	I. 649 I	32	
14	43	95	6876	1. 6504	32	
15	43	92	7015	18	33	
16	42	90	7154	32	34	
17	41	88	7292	45	34	
18	40	85	7429	59	35	
19	39	83	7566	72	36	
20	8. 5097139	8. 5126381	0. 37703	1. 6586	5. 6236	7. 256
21	48	78	7839	1. 6599	37	
22	37	76	7975	1.6612	38	
23	36	73	8111	26	38	
24	35	71	8246	39	39	
25	35	69	8380	52	40	
26	34	66	8514	65	41	
27	33	64	8648	$\begin{array}{r}78 \\ \hline 669\end{array}$	41	
28	32	61	8781	I. 6692	42	
29	31	59	8914	I. 6705	43	
30	8. 5097131	8. 5126356	0. 39047	I. 6718	5. 6243	
31	8. 30	54	9179	3 I	44	
32	29	52	9311	44	45	
33	28	49	9442	56	46	
34	27	47	9573	69	46	
35	27	44	9704	82	47	
36	26	42	9834	I. 6795	48	
37	25	39	O. 39964	I. 6808	48	
38	24	37	o. 40094	20	49	
39	23	34	0223	33	50	
40	8. 5097122	8. 5126332	0. 40351	1. 6846	5.625I	7.282
4 I	21	29	0480	58	51	
42	21	27	0608	71	52	
43	20	24	0735	83 689	53	
44	19	2 I	0863	I. 6896	54	
45	18	19	0990	I. 6908	54	
46	17	16	1116	21	55	
47	16	14	1242	33	56	
48	16	11	1368	45	57	
49	15	09	1493	58	57	
50	8. 5097114	8.512 6306	0.41619	I. 6970	5.6258	
51	13	\%33	1743 1868	82	59	
52	12	6301	1868	I. 6994	60	
53	1 I	6298	1992 2115	1. 7006	61	
54	10	96	215	19		
55	\bigcirc	- 93	2239	31	62	
56	09	90	2362	43	63 63	
57 58	08	85	2607	67	64	
59	06	82	2729	79	65	
60	8. 5097105	8. 5126280	0. 42850	1. 7090	5.6266	$7 \cdot 306$

LATITUDE 6°.

I, ATITUDF 7°.

Lat.	$\text { diff. } \mathrm{I}^{\prime \prime}=-0.02$	$\text { diff. } \mathrm{l}^{\log B}=-0.06$	$\log \mathrm{C}$	diff. $\begin{aligned} & \log \mathrm{B} \\ & \mathrm{I} \\ & =+0.16\end{aligned}$	$\log E$	$\log F$
$7 \quad 0$	8. 5097047	8. 5126107	ō. 49600	I. 7749	5.6316	$\overline{7} \cdot 371$
1	46	03	705	59	17	
2	- 45	6100	809	69	18	
3	44	6097	-. 49913	79	19	
4	43	94	0. 50016	89	20	
05	42	91	II9	1. 7799	21	
6	41	88	222	1. 7809	22	
7	40	85	325	19	23	
8	39	82	428	29	23	
9	38	78	530	39	24	
10	8.509 7037	8.512 6075	0. 50632	1. 7849	5. 6325	
11	36	72	734	59	26	
12	35	69	836	68	27	
13	34	66	0. 50937	78	28	
14	33	62	o. 51039	88	29	
15	32	59	140	1. 7898	30	
16	30	56	240	1. 7908	31	
17	29	53	341	17	32	
18	28	50	44 I	27	33	
19	27	46	541	37	34	
20	8.5097026	8.512 6043	0. 5164 I	I. 7946	5. 6335	7.391
21	25	40	741	56	36	
22	24	37	840	66	37	
23	23	33	0. 51939	75	37	
24	22	30	0. 52038	85	38	
25	21	27	137	I. 7994	39	
26	20	23	236	I. 8004	40	
27	19	20	334	13	41	
28	17	17	432	23	42	
29	16	14	530	32	43	
30	8. 5097015	8.512 6010	-. 52628	1. 8042	5.6344	
31	14	07	725	51	45	
32	13	04	822	61	46	
33	12	6000	0. 52919	70	47	
34	II	5997	-. 53016	79	48	
35	10	94	113		49	
36	O9	90	209	r. 8098	50	
37	07	87	306	I. 8107	51	
38	06	83	402	17 26	52	
39	05	80	497	26	53	
40	8. 5097004	8. 5125977		I. 8135	5.6354	7.409
41	03	73	688	44	55	
42	02	70	784 879	53	56	
43	01	66	879	63	57	
44	7000	63	-. 53973	72	58	
45	6998	60	o. 54068	81	59	
46	97	56	162	90	60	
47	96	53	257	1.8199	61	
48	95	49	351	r. 8208	62	
49	94	46	444	17	63	
50	8.509 699.3	8. 5125942		1. 8226	5.6364	
51	91	39	631	35	65	
52	90	35	725 818	44	66	
53	89	32	818	53	67	
54	88	28	o. 54911	62	68	
55	87 86	25	0. 55003	71	69	
56	86	21	096	80	70	
57	84	18	188	89	71	
58	83	14	280	I. 8298	72	
59.	82	II	372	I. 8307	73	
60	8. 5096981	8. 5125907	0.55464	I. 8315	5. 6374	7. 427

LATITUDF: 80.

Leat.	$\operatorname{diff}_{\mathrm{l}^{\prime \prime}}^{\log A}=-0.02$	diff. $\mathrm{I}^{\log B}=-0.06$	$\log C$	$\stackrel{\log \mathrm{D}}{\operatorname{diff} \cdot{ }^{\prime}=+0.14}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } t^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathrm{F}$
$\begin{array}{lc} \circ \\ 8 & \prime \\ \hline \end{array}$	8. 509698 I	8. 5125907	¢. 55464	I. 8315	5. 6374	$\overline{\overline{7}} .427$
1	80	04	555	24	75	
2	79	5900	646	33	76	
3	77	5897	738	42	77	
4	76	93	829	50	78	
05	75	90	0. 55919	59	79	
6	74	86	0. 56010	68	80	
7	73	82	100	77	81	
8	71	79	191	85	82	
9	70	75	28 I	1. 8394	83	
10	8. 5096969	8. 5125872	0. 56371	1. 8403	5.6384	
II	8. 68	8.58	460	12	85	
12	67	64	- 550	20	86	
13	65	61	639	28	87	
14	64	57	728	37	88	
15	63	54	817	45	90	
16	62	50	900	54	91	
17	61	46	o. 56995	62	92	
18	59	43	0. 57083	71	93	
19	58	39	172	79	94	
20	8. 5096957	8. 5125835	-. 57260	1. 8488	5. 6395	7.444
21	56	32	348	1. 8496	96	
22	54	28	436	1. 8505	97	
23	53	24	523	13	98	
24	52	20	6 II	21	99	
25	51	17	698	30	5. 6400	
26	49	13	785	38	5.6401	
27	48	09	872	46	n2	
28	47	06	O. 57959	55	03	
29	46	5802	0. 588045	63	04	
30	8. 5096945	8. 5125798	o. 58132	I. 857 I	5.6406	
31	43	94	218	80	07	
32	42	91	304	88	08	
33	41	87	390	I. 8596	09	
34	39	83	476	I. 8604	10	
35	38	79	562	13	11	
36	37	75	647	21	12	
37	36	72	732	29	13	
38	34	68	8.8	37	14	
39	33	64	903	45	${ }^{15}$	
40	8. 5096932	8. 5125760	-. 58987	1. 8653	5.6416	7.46I
41	31	56	-. 59072	61	18	
42	29	53	157	69	19	
43	28	49	241	77	20	
44	27	45	325	85	21	
45	25	41	409	1. 8693	22	
46	24	37	493	I. 8701	23	
47	23	33	577	09	24	
48	22	29	660	17	25	
49	20	26	744	25	26	
50	8. 5096919	8. 5125722	-. 59827	I. 8733	5.6428	
51	18	18	910	41	29	
52	16	14	-. 59993	49	30	
53	15	10	0.60076	57	31	
54	14	06	159	65	32	
55	12	5702	241	73	33	
56	11	5698	324	81	34	
57	10	94	406	89	35	
58	09	90	488	1. 8796	37	
59	07	86	570	1. 8804	38	
60	8. 5096906	8. 5125682	0. 60652	I. 8812	5. 6439	7.476

latitude 9°.

İat.	$\log A$ diff. $1^{\prime \prime}$ $=-0.02$	$\operatorname{diff}{ }_{\mathrm{l}^{\prime}}^{\log B}=-0.07$	$\log C$	$\begin{gathered} \log D \\ \text { diff. } 1^{\prime}=+0.12 \end{gathered}$	$\text { diff. }{ }^{\log E}=-0.02$	$\log 1 \times$
$\begin{array}{cc} \circ & \prime \\ 9 & 00 \end{array}$	8. 5096906	8. 5125682	$\overline{\text { or. }} 60652$	1. 8812	$\stackrel{\overline{\overline{5}} .6439}{ }$	$\overline{\overline{7}} .476$
	05	78	733	20	40	
2	03	74	815	27	41	
3	02	70	S96	35	42	
4	6901	66	0. 60977	43	44	
$\bigcirc 5$	6899	62	o. 61058	51	45	
6	98	58	139	58	46	
7	97	54	220	66	47	
8	95	50	301	74	48	
9	94	46	881	81	49	
10	8. 5096893	8. 512.5642	0.6146I	I. 8889	5. 6450	
11	91	38	542	1. 8897	52	
12	90	34	622	I. 8904	53	
13	89	30	702	12	54	
14	57	26	781	19	55	
15	86	22	861	27	56	
16	84	I 8	o. 6194I	34	57	
17	83	14	0. 62020	42	59	
IS	S2	10	099	50	60	
19	So	06	178	57	61	
20	8. 5096.879	8. 5125602	0. 62257	I. 8964	5. 6462	7.490
21	78	5598	336	72	63	
22	76	93	415	79	65	
23	75	89.	493	87	66	
24	74	S5	572	I. 8994	67	
25	72	81	650	1. 9002	68	
26	71	77	728	09	69	
27	69	73	806	17	70	
28	68	69	884	24	72	
29	67	64	0. 62962	31	73	
30	8. 5096865	8.512 5560	o. 63039	1. 9039	5. 6474	
31	64	56	117	46	75	
32	62	52	194	53	76	
33	61	48	271	61	78	
34	60	43	349	68	79	
35	58	39	426	75	So	
36	57	35	502	82	81	
37	55	31	579	90	${ }_{8} 8$	
38	54	27	656	1. 9097	84	
39	53	22	732	I. 9104	85	
40	8. 5096851	8. 5125518	0. 63808	I. 9111	5. 6486	7.505
41	50	14	885	19	87	
42	48	IO	0. 63961	26	S9	
43	47	05	o. 64037	33	90	
44	45	5501	112	40	91	
45	44	5497	188	47	92	
46	$+3$	92	264	54	94	
47	41	88	$339{ }^{\circ}$	61	95	
48	40	84	415	69	96	
49	38	80	490	76	97	
50	8. 5096837	8. 5125475	-. 64565	1. 9183	5. 6498	
51	35	71	640	90	5.6500	
52	34	67	715	1. 9197	O1	
53	33	62	789	I. 9204	02	
54	31	58	S64	II	03	
55	30	54	0. 64938	18	OS	
56	28	49	0. 65013	25	06	
57	27	45	087	32	07	
58	25	40	161	39	08	
59	24	36	235	46	10	,
60	8. 5096822	8. 5125432	0. 65309	1. 9253	5.64 II	7.518

LATITUDE 10°

I,at.	$\text { diff. } \begin{aligned} & \log \mathrm{A} A \\ & \mathrm{x}^{\prime \prime}=0.03 \end{aligned}$	$\begin{gathered} \log B \\ \text { diff. }{ }^{7}=-0 . \infty \end{gathered}$	loge C	diff. $\left.\log ^{\log } 1\right)$ (1F. $\mathrm{s}^{\prime \cdots}+\mathrm{o} .11$	$\underset{\operatorname{diff}^{T} \mathrm{~s}^{\prime}=+0.02}{\log E}$	$\log \mathrm{F}$
\circ 10 10	8. 5096822	8. 5125432	$\overline{0} .65309$	T. 9253	$\overline{\overline{5}} .6511$	$\overline{7} \cdot 51 \%$
-	21	27	$3{ }^{\text {S3 }}$	60	12	
2	19	23	456	67	13	
3	18	19	530	74	15	
4	17	14	603.	80	16	
05	15	10	677	87	17	
5	14	05	750	1.9294	18	
7	12	5401	823	1.9301	20	
8	11	5396	896	o8	21	
9	09	92	o. 65968	15	22	
10	8. 5096808	8. 5125388	o. 66041	I. 9322	5. 6524	
11	06	83	114	28	25	
12	05	79	186	35	26	
13	03	74	259	42	27	
14	02	70	33 I	49	29	
I5	6800	65	403	56	30	
16	6799	61	475	62	31	
17	97	56	547	69	33	
18	96	52	619	76	34	
19	94	47	691	82	35	
20	8. 5096793	8. 5125343	0. 66762	1. 9389	5. 6536	7.532
21	91	- 38	834	1. 9396	38	
22	90	33	995	I. 9403	39	
23	88	29	0. 66976	09	40	
24	87	24	0. 67047	16	42	
-25	85	20	118	23	43	
-26	84	15	189	29	44	
27	82	11	260	36	46	
28	81	06	331	42	47	
29	79	5302	40 I	49	48	
30	8. 5096777	8. 5125297	0. 67472	1. 9456	5.6549	
31	86	- 92	542	62	51	
32	74.	88	613	69	52	
33	73	83	683	75	53	
34	71	79	753	82	55	
	70	74	823	88	56	
36	68	69	-893	I. 9495	57	
37	67	65	0. 67962	I. 9501	59	
38	65	60	0.68032	08	60	
39	64	55	102	14	61	
40	8. 5096762	8.5125251	0. 68171	1. 9521	5. 6563	7.544
41	60	46	240	27	64	
42	59	41	310	34	65	
43	57	37	379	40	67	
44	56	32	44^{8}	47	68	
	54	27	517	53	69	
46	53	23	586	60	71	
47	51	18	654	66	72	
48	50	13	723	72	73	
49	48	08	791	79	75	
50	8. 5096746	8. 5125204	0. 68860	I. 9585	5.6576	
51	45	5199	${ }^{928}$	91	78	
52	43	94	0. 68996	1. 9598	79	
53	42	89	0. 69064	1. 9604	80	
54	40	85	132	10	82	
	38	80	200	17	83	
56	37	75	268	23	84	
57	35	70	336	29	86	
58	34	66	404	36	87	
59	32	6:	471	42	88	
60	8. 5096730	8. 5125156	0. 69539	1. 9648	5. 6590	7.556

latitude i°.

LATITVDE: I°.

LATITUDE 13°.

Lat.	$\begin{gathered} \log A \\ \text { diff. } 1^{\prime}=-0.03 \end{gathered}$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.10 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.93 \end{gathered}$	$\underset{\text { diff. } \mathrm{r}^{\prime}{ }^{\prime}=+0.08}{ }$	$\begin{gathered} \log E \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.03 \end{gathered}$	$\log \mathrm{F}$
$13 \quad 00$	8. 5096522	8. 5124530	ō. 77001	2. 0331	$\overline{\overline{5}} .6767$	$\overline{\overline{7}} .62 \mathrm{I}$
1	20	24	059	36	69	
2	15	19	116	42	70	
3	16	13	174	47	72	
4	14	07	231	52	74	
05	12	4502	288	57	75	
6	10	4496	346	62	77	
7	09	90	403	67	78	
8	07	85	460	73	80	
9	05	79	517	78	82	
10	8. 5096503	S. 5124473	-. 77574	2. 0383	5.6783	
11	6501	67	630	88	85	
12	6499	62	687	93	86	
13	97	56	744	2. 0398	88	
14	95	50	Soi	2. 0403	90	
15	93	45	S57	08	91	
16	9 I	39	914	13	93	
17	90	33	- 0. $7797{ }^{\circ}$	18	94	
18	88	27	o. 78027	23	96	
19	86	22	083	28	98	
20	8.509 6484	8. 5124416	-. 78139	2. 0433	5.6799	7.631
21	82	10	195	38	5.6801	
22	80	440.4	251	44	O3	
23	78	4399	307	49	04	
24	76	93	363	54	06	
25	74	87	419	59	07	
26	72	81	475	64	09	
27	70	76	531	69	I I	
28	68	70	587	74	12	
29	66	64	642	78	14	
30	8. 5096464	8. 5124358	-. 78698	2. 0483	5.6816	
31	63	52	754	88	17	
32	61	46	809	93	19	
33	59	4 I	865	2. 0498	20	
34	57	35	920	2. 0503	22	
35	55	29	o. 78975	08	24	
36	53	23	o. 79030	13	25	
37	51	17	086	18	27	
38	49	11	141	23	29	
39	47	4305	196	28	30	
40	8. 5096445	8. 5124299	o. 79251	2. 0533	5.6832	7.640
41	43	94	306	38	34	
42	4 I	88	360	42	35	
43	39	82	415	47	37	
44	37	76	470	52	39	
45	35	70	525	57	40	
46	33	64	579	62	42	
47	31	58	634	67	44	
48	29	- 52	588	72	45	
49	27	46	743	76	47	
50	S. 5096425	8. 5124240	o. 79797	2. 0581	5. 6849	
51	23	34	851	86	50	
52	2 I	28	905	9.9	52	
53	19	22	0. 79960	2. 0596	54	
54	17	16	o. 80014	2. 0601	55	
55	15	10	068	05	57	
56	13	4204	122	10	59	
57	1 I	4198	176	15	60	
58	09	92	230	20	62	
59	$\bigcirc 7$	86	284	24	64	
60	8.5096405	8. 5124150	-. $\operatorname{So3} 37$	2. 0629	5.6865	7.649

LA'TITCDDF 15°

Lat.	diff. ${ }^{\log } \mathrm{i}^{\prime}=-0.04$		$\text { diff. }_{2}^{\text {logg } \mathrm{c}}=+0 . \mathrm{S}_{2}$	${\text { diff. } \mathrm{I}^{\prime}=+0.07}_{\log \mathrm{D}}$	$\begin{aligned} & \operatorname{difff} 1^{\prime}{ }^{10 g} E+0.03 \end{aligned}$	I.og F
$15 \propto 0$	\$. 509 6281	8. 5123807	б. 8346 I	г. 0903	$\overline{5} .6970$	$\stackrel{\overline{7}}{7} .675$
,	79	3501	511	07	72	
2	77	3794	561	12	73	
3	74	88	612	16	75	
4	72	8 I	662	21	77	
05	$7{ }^{7}$	75	712	25	79	
6	68		762	29	80	
7	66	62	813	34	82	
8	64	56	563	38	84	
9	62	49	913	42	86	
10	8. 5096259	8. 5123743	0. 83963	2. 0947	5. 6988	
11	57	86	o. 84012	51	89	
12	55	30	062	55	91	
13	53	23	112	59	93	
14	51	J 7	162	64	95	
15	49	10	212	68	97	
16	46	3704	261	72	5. 6999	
17	44	3697	311	77	5. 7000	
18	42	91	361	81	02	
19	40	84	410	85	O4	
20	8. 5096238	8. 5123677	o. 84460	2. 0 ¢,90	5. 7006	7.683
21	35	71	509	94	OS	
22	33	64	558	2. 0998	09	
23	31	55	608	2. 1002	11	
24	29	51	657	-7	13	
25	27	45	706	11	15	
26	24	35	755	15	17	
27	22	31	8 SO	19	19	
28	20 18	25 18	854	23 28	20	
29	18		903	28	22	
30	8. 5096216	8. 5123612	o. 849.52	2. $103{ }^{2}$	5. 7024	
31	14	3605	o. 85001	36	26	
32	1 I	3598	049	40	28	
33	$\bigcirc 9$	92	098	44	30	
34	07	85	147	49	31	
35	05	79	196	53	33	
36	02	72	245	57	35	
37	6200	65	293	61	37	
38	6198	59	342	65	39	
39	96	52	390	69	41	
40	8. 5096194	8.512 3545	o. 85439	2. 1074	5. 7042	7.691
41	$9{ }^{1}$	39	487	78	44	
42	89	32	536	82	46	
43	87	25	584	86	48	
44	85	19	633	90	50	
45	S_{2}	12	681	94	52	
46	80	3505	729	2. 1099	54	
47	78	3498	777	2. 1103	55	
48	76	92	825	07	57	
49	73	85	S74	11	59	
50	8. 509617 I	8. 5123478	o. 85922	2. 1115	5.7061	
51	69	71	o. 85970	19	63	
52	67	65	o. 86018	23	65	
53	64	58	066	27	67	
54	62	51	113	31	69	
55	${ }^{60}$	44	161	35	70	
56	58	38	209	39	72	
57	55	31	257	44	74	
58	53	24	304	48	76	
59	51	17	352	52	78	
60	8. 5096149	8.512 3411	o. 86400	2. 1156	5. 7080	7.698

S. Doc. 5^{0-22}
I.ATITLDAF 16°

LATITUDE 17°.

L, at.	$\operatorname{liff}_{\mathrm{i}^{\prime \prime}}^{\log \mathrm{A}}$	$\underset{\operatorname{diff} . \mathrm{agg}^{\prime \prime}=-0.12}{ }$	$\log C$		$\begin{gathered} \log \mathrm{F} \\ \text { diiff. } 1^{\prime \prime}==\dot{+} 0.03 \end{gathered}$	$\log F$
	$\overline{8} 509600$					
1700	8. 5096009	8. 512 2991	C. 89178	2. 1390	5. 7196	7.719
I	06	S4	223	93	97	
2	04	77	268	2. 1397	99	
3	6002	70	313	2. 1401	5. 720 I	
4	5999	62	358	O4	O3	
05	97	55	403	o8	05	
6	94	48	448	12	07	
7	92	41	493	16	$\bigcirc 9$	
S	90	34	538	19	11	
9	87	26	583	23	13	
10	8. 5095985	8. 5122919	-. 89627	2. 1427	5.7215	
11	82	12	672	30	17	
12	So	2905	717	34	19	
13	78	2897	761	38	21	
14	75	90	So6	42	23	
15	73	. 83	850	45	25	
16	70	76	895	49	27	
17	68	68	939	53	29	
18	65	61	-. 99984	56	31	
19	63	54	o. 90028	60	33	
20	S. 509 5961	8. 5122846	o. 90072	2. 1464	5.7235	7. 726
21	58	39	117	67	37	
22	56	32	161	71	39	
23	53	24	205	75	4 I	
24	51	17	249	78	43	
25	48	10	294	S2	45	
26	46	2802	338	85	47	
27	44	2795	$3{ }^{\text {S2 }}$	89	49	
28	4 I	88	426	93	5 I	
29	39	So	470	2. 1496	53	
30	8. 5095936	8. 5122773	0. 90514	2. 1500	5. 7255	
31	34	66	558	$\bigcirc 4$	57	
32	3 I	58	602	07	59	
33	29	5 I	646	11	61	
34	26	44	689	14	$64^{.}$	
35	24	36	733	18	66	
36	21	29	777	22	68	
37	19	21	S2I	25	70	
38	16	14	864	29	72	
39	14	2707	908	32	74	
40	8. 5095912	8. 5122699	0. 90952	2. 1536	5. 7276	7.732
41	09	92	0.90995	39	78	
42	$\bigcirc 7$	84	0. 91039	43	80	
43	04	77	082	47	82	
44	5902	69	126	50	84	
45	5899	62	169	54	S6	
46	97	55	212	57	88	
47	94	47	256	61	90	
48	92	40	299	64	92	
49	89	32	342	68	94	
50	S. 5095857	8. 5122625	0. 91386	2. 1571	5. 7296	
51	84	17	429	75	5. 7298	
52	82	10	472	78	5. 7.300	
53	79	2602	515	S2	02	
54	77	2595	55^{8}	85	04	
5.5	74	87	601	89	06	
56	72	So	644	92	O8	
57	69	72	687	96	1 I	
58	67	65	730	2. 1599	13	
59	64	57	773	2. 1603	15	
60	8. 5095862	8. 5122550	0. 918i6	2. 1606	5.7317	7.738

Blank page retained for pagination

DETERMINATION OF RELATIVE VALUE OF GRAVITY IN EUROPE AND THE UNITED STATES
 IN IoOO.
 ${ }^{13} \cdot$

G. R. PUTNAM, Assistant.

Blank page retained for pagination

CONTENTS.

General statement
Descriptions of stations 345Page.
Instruments and methods of observation 341345Rates of chronometers
Reduction of observations 348
Summary of corrected periods 350 350
Results. 354

Blank page retained for pagination

DETERMINATION OF RELATIVE VALUE OF GRAVITY IN EUROPE AND THE UNITED STATES IN igoo.

By G. R. Putnam, Assistant.

This work was carried out for the purpose of more definitely connecting Washington, used as a base for the American pendulum observations, with several of the more important European base stations. The cost of the field work was paid from a grant made by the International Geodetic Association, while the instruments and time of the observer were supplied by the United States Coast and Geodetic Survey, with the approval of the Secretary of the Treasury.

Ir accordance with the suggestions of Prof. F. R. Helmert, Director of the Central Bureau of the Geodetic Association, the European stations were restricted to the three localities, London, Paris, and Berlin, to some one of which most of the earlier observations had been referred, and with which more recent base stations in other countries have in general been carefully connected. In the vicinity of London observations were made at three stations: Greenwich Observatory, Kew Observatory, and the Polytechnic Institute (near Portland Place), so as to somnect the three important English base stations, on which depend, often independently, extensive series of observations. The lack of a satisfactory connection between these three points has been a difficulty encountered in discussing pendulum observations. (See Clarke's Geoclesy, p. 344.) Even the more recent connections have not given entirely accordant results. Observations were made at Potsdam, instead of Berlin, because of the present geodetic importance of the former station, which has also been most carefully connected with Berlin.

Acknowledgment is made of the great courtesy received from the Directors and Assistants of the various institutions visited, in the matter of accommodations and facilities for carrying on the work, and in the furnishing of clock rates and comparisons. In London the work was rendered practicable by the special arrangements made by the General Post Office (Telegraph Department) for transmission of time signals direct to the ricinity of the station. Acknowledgment is also due to the North German Lloyd Steamship Company for courtesy in the matter of transportation to Europe.

DESCRIPTIONS OF STATIONS.
Very favorable locations were obtained for the observations at all stations, both with respect to uniformity of temperature and stability of support. The total range of temperature at the six stations was $6^{\circ} .85 \mathrm{C}$., so that the effect of any uncertainty in the temperature coefficient should be small. The extreme range of temperature during the observations at each individual station is given below, the largest being only $I^{\circ} \cdot 3 \mathrm{C}$.

At each place the pendulum case was mounted on solid stone, masonry, or concrete foundations, as detailed under the separate descriptions. The flexure of the support, including case and foundation, is also given below, as measured statically by observing with a microscope the displacement of the knife edge in microns when a force of 1.5 kilograms was applied horizontally in the plane of oscillation of the pendulum. It is believed that the slight flexure observed was mostly due to the case itself, and that there was no considerable flexure in the foundations at any of the stations. The apparatus used for measuring the flexure is not sufficiently delicate to determine accurately very slight differences, and those obtained between these stations are not unlikely due to uncertainty of observation. As, however, the total range in the flexure corrections applied at these stations is less than one millionth of the period, it is practically a negligible quantity as far as the present work is concerned. The locations of the stations, in general well removed from the lines of heavy traffic, rendered them satisfactorily free from earth vibrations due to this cause, with the possible exception of London. Here the point of observation was but 48 meters from Regent street, an important thoroughfare, but no resulting effect on the oscillation of the pendulum was noticed, nor is there any marked discrepancy between the observations made during the night and during the day. The results with the separate pendulums are, however, somewhat less accordant at this station. (Table D.)

Washington, D. C., Office of United States Coast and Geodetic Survey, pendulum room in southwest corner of lowest bascment, north pier (a massive brich pier with cap-stone).-This station was connected with the former base station at the Smithsonian Institution in 1893. (See Report United States Coast and Geodetic Survey for 1894, Part II, p. 42.) The geographic position and the elevation of the station are derived from points established on the Survey Office building.

Kew Observatory, Old Deer Park, Richmond, Surrey, England.-This is now a part of the National Physical Laboratory. Observations were made in the seismograph room in the basement. This is a small room partitioned off from a large octagonal room in the center of the south side of the building. The apparatus was mounted on the concrete floor in the same position used by Mr. E. G. Constable in the pendulum observations of 1888 under direction of Gen. J. T. Walker. and slightly north of the position used by Capt. W. J. Heaviside, 1873-74. This room is immediately west of and at the same level as the southeast corner room used in the English observations of 1864 and 1873, and by Col. R. D. von Sterneck in 1893 . The geographic position is from that
given for the Observatory in the American Ephemeris, and the elevation is derived from an Ordnance Survey bench mark near the northeast corner of the building.

Greenzich Observatory, London, England.-Observations were made in the record room at the northeast corner of the old observatory building. The apparatus was mounted on a low brick and stone pier built on the stone floor. The pier is in the same position, but not so high as that used by Von Sterneck in 1893. Some of the later English pendulum observations have been made in this room, but other parts of the building have also been used for this purpose. The geographic position is from that given in the American Ephemeris, the pendulum station being about 19 meters east of the meridian circle. The elevation is derived from an Ordnance Survey bench :nark near the entrance gate of the Observatory.

London Polytechnic Institute, 309 Regent street, London, W., England.-Observations were made near the south side of the plumber shop in the lowest basement of this building and about 48 meters west from the building line of Regent street. The apparatus was mounted on the concrete floor. The geographic position is taken from the Ordnance Survey map (London, Sheet VII S. W., scale 6 inches to I mile). The elevation is derived from that given on the large-scale Ordnance Survey map (London, Sheet VII 5_{2}, scale ${ }_{5}$ feet to i mile). This station was selected as the nearest convenient locality to the former stations at Mr. Henry Browne's house in Portland Place (used by Sabine, Kater, and others), and at No. i All Souls Place (used by Herschel), both in private residences. (For locations of these stations see Philosophical Transactions, Royal Society, 1818, p. 93, and 1890 A, p. 558; also Sabine's "Account of Experiments to Determine the Figure of the Earth,'" p. 343.) The station at the Polytechnic Institute is $5^{\prime \prime} .7$ of latitude south of Herschel's station and $8^{\prime \prime} .2$ south of Sabine's station.

Potsdan, Germany, "Königliches Preussisches Geodätisches Institut."-Observations were made in the northeast basement room ("Nord-Ost-Keller"). The apparatus was mounted on a low stone pier built on the concrete floor. This roon has been used for the relative pendulum observations made at the Geodetic Institute, but it is east of and lower than the inner room in which are being carried out the elaborate absolute determinations of the force of gravity. The geographic position and elevation of the station were furnished by the Director of the Institute.

Paris Obse vatory, France.-Observations were made in the octagonal room used by Commandant G. Defforges and described by him as "Observatoire, rez-de-chaussée de la tour de l'Est." It is a room with massive masonry walls, on the ground floor, southeast of the main north entrance to the Observatory, and west of the meridian circle. The apparatus was mounted on a massive cubical stone block near the center of the room. Observations have been made in other parts of the building by earlier observers. The geographic position is from that given in the American Ephemeris, and the elevation is derived from a bench mark of the Nivellement général de la France, east of the north entrance of the Observatory.

INSTRUMENTS AND METHODS OF OBSERVATION.
The half-second pendulum apparatus and pendulums A_{4}, A_{5}, and A_{6} were used in this work. These pendulums have a record of extensive service and long voyages, and from their first use at Washington, in 1894, have shown a nearly constant period.

There has been in this time apparently a slight diminution of about one millionth of a second. This apparatus is described in the United States Coast and Geodetic Survey Reports for 1891, Appendix 15; 1894, Appendix 1; and 1897, Appendix 6. The methods of observation, as modified in 1895 and described in the last two of the above reports, were followed in this work, with the partial exception of the plan of swinging the pendulums for the entire interval between time observations. At the European stations the observer did not make his own observations for time, but in general depended on the regular work of the observatories for this service, and at Kew and London used the time signals sent out during the day by telegraph from Greenwich Observatory. In some cases, therefore, the pendulum swings did not cover the entire interval between the epochs of the star observations for time, but a study of the rates of the standard observatory clocks at Greenwich and Paris indicates that probably very little uncertainty is introduced by depending on them. At Potsdam and Washington special time observations were made and the pendulum swings cover the entire interval between these determinations (ninety-six hours at Potsdam).

Briefly stated, the method of observation was to swing successively three pendulums in two positions each, making in all six swings of eight hours each (twice this number were made at Potsdam). Pendulum A_{4} was swung on knife edge II, and A_{5} and A_{6} on knife edge I . The swings were made with a nearly uniform arc, diminishing from about 55^{\prime} to 20^{\prime} (this is the total or double arc), and at a nearly uniform pressure, about 60^{mm} of mercury. The thermometer, inserted in a dummy pendulum in the case, had its corrections determined before and after the work. As a precaution a free thermometer was also suspended in the case.

RATES OF CHRONOMETERS.

The periods of the pendulums were obtained by means of coincidence observations made with two break-circuit chronometers, used alternately in the flash apparatus circuit. At Washington both chronometers were sidereal, but at the European stations one sidereal and one mean time chronometer were used, the latter giving a more convenient coincidence interval in the higher latitudes where the force of gravity is greater and the period of these pendulums more nearly approaches the sidereal half second. The separate observations and computations with the two chronometers afford a convenient check on the work, though in general increasing the accuracy of the final result but little, for at none of these stations do the mean periods derived from the two chronometers differ more than $\sigma^{s} .0000002$. The rates of the chronometers used in the pendulum observations were obtained as detailed below:

Washington, D. C.-Starobservations for time were made in the Coast and Geodetic Survey Office Observatory with an astronomic transit, the observations and chrouometer comparisons being recorded chronographically. In June and October observations were obtained each night of the work, and the same star list was used throughout each group of observations.

Kew Observatory.-The standard mean time clock "French" of Kew Observatory was compared each day at io a. m. and I p. m. with time siguals received by telegraph from Greenwich Observatory. The comparisons at Kew were made on a tape recorder, and at Greenwich the sending of the signals was compared with their standard clock by a chronographic record. The chronometers at Kew were compared with each other and
with the clock "French" by eye and ear comparisons of coincidence of beats. The corrections to the signals sent from Greenwich, as resulting from the final time computations, were furnished by the Astronomer Royal. The mean of the two daily telegraphic comparisons was adopted in deriving the rate of the standard clock "French."

Greenwich Observatory.-Sidereal chronometer 1829 was compared chronographically each evening with the standard sidereal clock of the Observatory, the corrections to which were derived directly from the meridian circle observations. The two chronometers were compared by coincidences of beats. Meridian circle observations were obtained by the Observatory Assistants on the evenings of July 3, 4, and 6. The final clock corrections were furnished by the Astronomer Royal.

London Polytechnic Institute.-Mean time chronometer 1840 was compared twice daily with the time signals sent by telegraph from Greenwich Observatory, the comparisons being made on a tape recorder. The two chronometers were intercompared by coincidence of beats. The sending of the signals was recorded chronographically at Greenwich, and the corrections, as resulting from the final time computations, were furnished by the Astronomer Royal. Special arrangements for the sending of the time signals to a point convenient for this work, and for installing the necessary receiving apparatus, were made by the Engineer in Chief, General Post Office (telegraphs).

Potsdam, Geodetic Institute.-Star observations for time were made by Herr E. Borrass on the evenings of July $2 \mathrm{I}, 24$, and 25 , from which were computed the corrections to the standard sidereal clock Dencker 27. The two chronometers were compared with this clock on the tape chronograph each evening. The corrections and rates of clock Dencker 27 were furnished by the Geodetic Institute.

Paris Observatory.-Star observations for time were made by the Observatory staff on the evenings of July 3I, August I (partial set), August 3, and August 4. The chronometers were compared by coincidence of beats with the standard sidereal clock used in these observations. The computed corrections to the clock were furnished by the Director.

Some idea of the possible uncertainty of the chronometer rates may be obtained from the pendulum results themselves. A certain combination of pendulums was always swung during each twenty-four hours, either $A_{4} R, A_{4} D$, and $A_{5} R$; or $A_{5} D, A_{6} R$, and $A_{6} D$. A separate chronometer rate connection was used for the interval of each such group. Therefore, if the results be combined by these groups instead of by the separate pendulums, the discrepancies between such results may be attributed to errors in rate, though undoubtedly they also include other sources of error. An examination of the present observations in this manner shows discrepancies which if due entirely to rate would indicate an average uncertainty of rate of 0.05 second per day, and a maximum at any of the six stations of o. Io second per day (corresponding to an uncertainty of about the 1430,000 part in the resulting value of g).

Table A.-Summary of rates of chronometers on sidereal time.
[The rate of the mean time chronometer is given in sidereal seconds on sidereal time.]

REDUCTION OF OBSERVATIONS.
The computations were made in the same manner as heretofore, the periods of the pendulums being reduced to the standard conditions, sidereal time, arc infinitely small, temperature $15^{\circ} \mathrm{C}$., pressure $60^{\prime m m}$ of mercury at $0^{\circ} \mathrm{C}$., inflexible support. The following is a summary of the corrections applied to the observed period:

Rate correction $=+0.0000157 R P$, where P is period and R is daily rate in sidereal seconds on sidereal time (+ if losing, - if gaining) .

Arc correction $=-\frac{P M \sin \left(\varphi+\phi^{\prime}\right) \sin \left(\phi-\varphi^{\prime}\right)}{3^{2} \log \sin \phi-\log \sin \varphi^{\prime}}$, where P is period, M is modulus of common logarithmic system, φ and ψ^{\prime} are initial and final semi-ares (2ψ and $2 \psi^{\prime}$ are the quantities given in Table B).

Temperature correction $=+0.00000837 P\left(15^{\circ}-T^{\circ}\right)$, where P is period, and T is observed temperature in degrees centigrade.

Pressure correction $=+0.000000202 P\left(60-\frac{P r}{1+.00367 .} T^{\circ}\right)$ where P is period, Pr is observed pressure in millimeters, and T is centigrade temperature.

Flexure correction $=-0.00000130 P D$, where P is period, and D is observed displacement of knife-edge in microns, when force of 1.5 kilograms is applied horizontally in the plane of oscillation.

The above temperature, pressure, and flexure coefficients were determined by experiment in 1894.
'Table B gives a detailed summary of the observations and corrections, and in Table C are collected the mean periods of the pendulums and the differences of each from the mean, for the separate stations.

Table B.-Pendulum obscrvations and reductions.

COAST AND GEOUETIC SURVEY REPORT, 1901.

GENERAL PROGRESS SKETCH

IONDON, POI,YTECHNIC INSTITLTE. FNGLAND.

Table C.-Summary of corrected periods.

station.	Date.	Periods.				Differences from mean (seventh decimal place).
		Pendulum A_{4} knifeerge II.	Penditlum A_{5}. knifeedge I.	Pendalum A6. knifeedge I.	Mean of three penduhams.	$A_{4 .} \quad \mid A_{5 .}{ }^{\prime}$ A6.
	1900.	s.	s.	5.		
Washington	May 20-22	. 5008390	. 5006660	. 5006302	. 5007117	+1273 -457
Kew	June 28-30	5609	3886	3519	4338	+1271-452-819
Greenwich	July 3-5	5639	3918	3552	4370	-1269 -1262
London	July $12-14$	5596	3884	3522	4334	$+1262-450$
Potsdam	July 21-25	5415	3694	3331	4147	+1268 $-453 \mid-816$
Paris	Aug. 1-3	6261	4542	4184	4996	$-1265-454-812$
Washington	Oct. 5-7	8386	6662	6294	7114	$+1272-45^{2}$ 1 -820

RESULTS.
Table D gives for each station the value of g computed from the periods of each pendulum separately and from the means of the three pendulums, with the differences of the individual results from the mean. The latter are to some extent a measure of the accuracy of the work, but not entirely so, as there are errors, such as flexure, which might affect all three pendulums alike. These values of g are based, as indicated, on the value provisionally adopted for Washington in 1892. In Table E are given the data as to the positions of the stations and the values of g as above, and also those based on the result tentatively obtained at Potsclam in the elaborate determinations of the absolute force of gravity now in progress there, but not yet completed. $*$ This, which is probably the best value of the absolute force of gravity now available, indicates that the provisional value for Washington and all values based thereon will need to be increased by about 0.013 dyne or centimeter, or about the i 75000 part.

The connection between the three London stations indicates, in accordance with previous experience, that marked and sudden changes in the amount of the force of gravity are not likely to be found between near points. Greenwich is distant from Kew 2 I .6 kilometers (13.4 miles) and from London Polytechnic Institute 10.8 kilometers (6.7 miles). Greenwich is 42 meters (138 feet) higher than Kew and 24 meters (79 feet) higher than London. Greenwich is $0^{\prime} 32^{\prime \prime}$ of latitude north of Kew and $2^{\prime} 2 I^{\prime \prime}$ south of London. Resulting from these differences in elevation and latitude we should have the following theoretical differences in the force of gravity as compared with those found by the present observations:

[^17]Table D.-Values of g computed from cach pendulum.

Table E.-Summary of results (not reduced to sea level).

Blank page retained for pagination

APPENDIX No. 6. REPORT 1801.

TRIANGULATION NORTHWARD ALONG THE NINETY-EIGHTH MERIDIAN IN KANSAS AND NEBRASKA.

JOHN F. HAYFORD, Inspector of Geodetic Work.

Blank page retained for pagination

CONTENTS.

Page.General statement 361
Methods and instruments used in the measurement of horizontal angles 362
Programme of occupation of stations 366
Statement of adjustments 365
The corrections to directions. 373
Accuracy as indicated by corrections to angles and closures of triangles 376
The accord of bases and the accuracy of the lengths. 385
Accuracy and economy 387
Explanation of positions, lengths, and azimuths, and of the United States Standard Datum. 388
Index to positions, descriptions, and elevations 391
Table of positions, azimuths, and lengths 394
Descriptions of stations. 402
General statement in regard to the determination of elevations 416
Computation, adjustment, and accuracy of the elevations 417
Table of elevations. 42 I

Blank page retained for pagination

TRIANGULATION NORTHWARD ALONG THE NINETY-EIGHTH MERIDIAN IN KANSAS AND NEBRASKA.

By John F. Hayford, Inspector of Geodetic Work.

GENERAL STATEMENT.
It is proposed to extend a chain of primary triangulation northward and southward from the transcontinental triangulation in the vicinity of the ninety-eighth meridian approximately along that meridian to the Canadian border to the northward and to the Rio Grande to the southward. This triangulation, which may for convenience be called the ninety-eighth meridian triangulation, when completed from Canada to Mexico, from latitude 49° to latitude 26°, will pass through North Dakota, South Dakota, Nebraska, Kansas, Oklahoma Territory, Indian Territory, and Texas. For the engineer, this triangulation will, in combination with the transcontinental triangulation, form the main framework for the control of all the triangulation in the United States. For the scientist it will furnish incidentally a great arc of a meridian having an amplitude of 23°, and passing over a region in which the surface indications are that the local deflections of the vertical are probably small. The Mexican Government has already in progress a triangulation along the same meridian which it is expected will extend the arc southward from latitude 26° to latitude 17°, at which point this meridian intersects the Pacific coast. It is also possible for the Canadian Government to extend this arc far to the northward.

The present state of the ninety-eighth meridian triangulation within the limits of the United States is as follows:

The reconnaissance is complete from the Rio Grande to points in North Dakota in latitude $431^{1 / 2^{\circ}}$, over an arc of $171^{1 / 2^{\circ}}$.

All the necessary bases between these points have been measured save one which is near the Rio Grande. The ten bases measured are, in order, from south to north: Alice Base (Texas), Seguin Base (Texas), Lampasas Base (Texas), Stephenville Base (Texas), Bowie Base (Texas), El Reno Base (Oklahoma), Anthony Base (Kansas), Salina Base (Kansas), Shelton Base (Nebraska), and Page Base (Nebraska), the name of the base indicating its location near a town of the same name in each case. A report on the measurement of nine of these bases during the season of 1900 may be found in Appendix No. 3 of this Report. The remaining base is that at Salina, in Kansas, which was measured in connection with the transcontinental triangulation*. As this base line lies near the intersection of the thirty-ninth parallel and the ninety-eighth meridian, it belongs essentially to both triangulations.

[^18]The measures of horizontal and vertical angles are complete from the transcontinental triangulation northward to latitude $433^{1 / 4^{\circ}}$, in South Dakota, three figures beyond the Page Base, and from the transcontinental triangulation southward to the vicinity of the Anthony Base near the Kansas-Oklahoma line in latitude 37°. The connection with the Anthony Base is not complete.

No astronomic determinations have yet been made, and hence the portion of the triangulation which has been completed is not yet available for use as an arc in determining the figure of the earth.

It is proposed to publish the results of the ninety-eighth meridian triangulation from time to time as complete sections between bases become available for that purpose. It is desirable to make the publication in such sections since the lengths between bases are not completely fixed until the second base has been connected with. This Appendix contains a complete statement of the results for the two sections from the Salina Base to the Shelton Base and from the Shelton Base to the Page Base*, including all secondary and tertiary points determined, as well as the primary points, and including the vertical as well as the horizontal measures. It includes the republication of certain information in regard to the triangulation between the Salina Base and the stations Meades Ranch and Waldo, which is common to the transcontinental triangulation and the ninety-eighth meridian triangulation.

The first recounaissauce for the triangulation to the vorthward was made during the autumn of 1896, between August 17 and November 9, and during the spring of 1897 between April 10 and June 20, by a party under the direction of Assistant F. D. Granger. : Afterwards, during the seasons of 1897-1901, the comparatively little additional reconnaissance which was found necessary to supplement or extend this reconnaissance was done during the field seasons, which were devoted mainly to the measurement of horizontal and vertical angles.

The measures of horizontal and vertical angles in the triangulation to the northward were all made by Assistant F. D. Granger during the seasous of 1897, 1898, 1899, and 1900 with one exception. The station Walnut, which was necessary to complete the connection with the Page Base, was occupied by the same observer in 1901.

THE METHODS AND INSTRUMENTS USED IN THE MEASUREMENT OF HORIZONTAL ANGLES.

All of the angle measures were made by the direction method. Each series of observations consists of successive pointings on the various stations in order, from left to right, with corresponding readings of the horizontal circle with three micrometer microscopes followed immediately by pointings on the same stations in the reverse order after reversing the position of the telescope by transiting it through the wyes and turning the alidade $\mathrm{I} 80^{\circ}$ in azimuth, each pivot remaining in contact with the same wye as before. Each observation of au angle consists, therefore, of two pointings on each station involved, one in each position of the telescope, together with the corresponding micrometer readings, 24 in all, both a forward and a backward reading of each micrometer being made in each of its positions.

[^19]At each station in the triangulation under consideration which was occupied in 1890, 1891 , or 1892 , theodolite No. ro was used in seventeeen positions and two series of observations were taken in each position, making the total number of measures of each angle thirty-four. The horizontal circle of this theodolite is 35^{cm} in diameter and carries a 10^{\prime} graduation read directly by three micrometer microscopes to single seconds. The telescope has a clear aperture of $21 / 8$ inches (equals $5^{\mathrm{cm}} .4$) a focal length of $241 / 4$ inches (equals $6 I^{\mathrm{cm}} .6$) and a magnifying power of 36 . At only one of these stations was it found necessary to place the instrument more than 50 feet above the ground-namely, at Heath (57 feet).

During the measures of 1896 , all in the vicinity of the Salina Base and serving to connect it with the main triangulation, theodolite No. II 8 was used in seventeen positions and two series of observations taken in each position, or thirty-four measures in all. The horizontal circle of this theodolite is 30^{cm} in dianeter, is graduated to 5^{\prime} spaces and is read directly to single seconds by three micrometer microscopes. The telescope has a clear aperture of 6^{cm}, a focal length of 58^{cm}, and a magnifying power of 35. The instrument was not elevated more than 35 feet above the ground at any station.

During the measures of 1897, commencing with the station Waldo and ending with Lebanon, theodolite No. in 8 was used in eleven positions and two series of observations were taken in each position, or twenty-two measures in all. The instrument was less than 18 feet above the ground at each station.

During the season of 1898 , commencing with station Brown and ending with Prosser, theodolite No. iI8 was used in thirteen positions, two series being taken in each position, or twenty-six measures in all. At only three stations was the instrument elevated more than 50 feet above the ground, namely, at Brown (70 feet), Cooper (66 feet), Blue Hill (66 feet). In three cases, however, the pointings were made upon very tall poles. The pole observed at Cooper from Brown was in 8 feet high. On the line Herrick-Sand Creek there is an obstructing ridge at about the middle of the line. In order to see from instrument to instrument, it would have been necessary to build each instrument tripod about 80 feet high. To save expense, instead of building the instrument tripods to this height, they were each made 50 feet high and a pole 126 feet high was observed at Sand Creek from Herrick; similarly, one 12 I feet high was observed at Herrick from Sand Creek. In each of these cases the pole was supported by the scaffold upon which the observer stands and which is entirely independent of the instrument tripod and was held securely in position by suitable wire guys.

During i899, at the six stations in the Shelton base net, theodolite No. 146 was used in thirteen positions, two series being taken in each position, or twenty-six observations in all upon each angle. Theodolite No. 146^{*} carries a horizontal carcle 30^{cm} in diameter, graduated to 5^{\prime} spaces and read directly by three micrometer microscopes to single seconds. The clear aperture of the telescope is $6 \mathrm{I}^{\mathrm{mm}}$ and its focal length 74^{cm}. Three eye-pieces, magnifying 30,45 , and 60 diameters, respectively, were furnished with the telescope. The highest elevation for the instrument anywhere in the base net was 43 feet at Shelton East Base.

In all the observations thus far indicated the circle was used in seventeen, eleven,

[^20]or thirteen positions with the readings on the initial station uniformly distributed over 360°. Commencing at station Pompey in 1899 , this plan was radically changed, as indicated below, and was again changed at the beginning of 1900.

Commencing with station Pompey in 1899, during the remainder of the season the instrument was used in the twenty-four positions indicated below, one measure only being made in each position.

Position.	Reading on initial.	Position.	Reading on initial.		
No. 1	$\begin{array}{ccc}\circ & \prime & \prime \prime \\ 0 & 00 & 00\end{array}$	No. 33	187	32	30
2	150000	14	202	32	30
3	$30 \quad 00001$	15	217	32	30
4	$45 \quad 00 \infty$	16	232	32	30
5	$62 \quad 30 \quad 50:$	17	250	03	20
6	$77 \quad 30$	18	265	03	20
7	$92 \quad 30 \quad 50$	19	280	03	20
8	$10730 \quad 50$!	20	295	03	20
9	125 OI 40 !	2 I	312	34	IO
10	140 O1 40 :	22	327	34	10
II	155 or $40 \vdots$	23	342	34	10
12	170 OI 40	24	357	34	10

The purpose of this change is indicated in the paragraphs following the instructions for 1900 and 1901, given below.

At Pompey and the five following stations occupied in 1899 and ending with Brayton the instrument was never more than 50 feet above the ground.

During the seasons of 1900 and 1901 theodolite No. 146 was again used and the observer was acting under the following instructions:

In making the measurements of horizontal directions, you will measure each direction in the primary scheme sixteen times, a direct and a reverse reading being considered one measurement, and sixteen positions of the circle are to be used, corresponding approximately to the following readings upon the initial signal:

Position.	Reading on initial.	Position.	Reading initial.	
No. 1	$\begin{array}{ccc}\circ & \prime & \prime \prime \prime \\ 0 & \infty & 40\end{array}$	No. 9	\circ 128 co	
2	15 or 50	10	143 ol	50
3	$\begin{array}{llll}30 & 03 & 10\end{array}$	11	158	10
4	$\begin{array}{llll}45 & 04 & 20\end{array}$	12	$173 \quad 04$	20
5		13	192 ¢	40
7	79 or 50 il	14	207 or	50
7	$\begin{array}{lll}94 & 03 & 10 \\ 109 & 04 & 20\end{array}$	15 16	$\begin{array}{ll}222 \\ 237 & 03 \\ 23\end{array}$	10 20
8	$109 \quad 04 \quad 20$	16	23704	20

When a broken series is observed the missing signals are to be observed later in connection with the chosen initial, or with some other one, and only one, of the stations already observed in that series. In selecting the conditions under which to observe, you should proceed upon the assumption that the maximum speed consistent with the requirement that the closing error of a triangle in the primary scheme shall seldom exceed three seconds, and that the average closing error shall be but little greater than one second, is what is desired rather than a greater accuracy than that indicated.

In regard to the positions specified in these instructions, it is important to note three points:
I. In each of the four groups of four positions each, the readings of the three microscopes on the circle corresponding to pointings on the initial station will be nearly uniformly spaced at intervals of approximately 15° over the whole 360°, and therefore the mean values of the angles from each group of four positions will be but little affected by periodic errors of graduation. In comnection with this statement it is necessary to keep in mind that, during each measure, the alidade is turned 180° between the direct and reverse readings when the position of the telescope is changed, and therefore the three microscopes which are at intervals of 120° furnish readings at nearly uniform intervals of 60° during each measure.
2. In each group of four positions the micrometer readings corresponding to the initial station, and therefore those corresponding to each station, are nearly uniformly distributed over the 5^{\prime} interval covered by the micrometer. The effect of this is to insure that if a correction for run is applied, the algebraic sum of such corrections for each micrometer corresponding, to pointings on each station will be nearly zero. In other words, the mean value of any angle from observations in four positions uncorrected for run is almost independant of the run. An examination in detail of the observations at two or three stations showed that it was entirely unnecessary to apply any correction for run to observatious made under these instructions, and considerable time was thereby saved in making the computation.
3. No microscope ever returns for pointings on a given station to any position on the circle which it has formerly occupied. When the observations in sixteen positions have been completed, the circle has been read at ninety-six points, scattered at intervals of three or four degrees over the whole circumference for each station observed. This insures that the mean value of each angle from sixteen positions is still more completely freed from the effect of periodic errors than are the means from the separate groups of four positions each.

Looking back now to the statement of the twenty-four positions used during the latter part of the season of 1899 , it will be seen that many of the good points of the 1900 programme had already been secured in 1899. In 1899 the effect of the run of the micrometers was not eliminated in each group of four positions but was almost completely eliminated from the mean of the twenty-four positions.

The total number of measures was reduced from twenty-four in 1899 to sixteen in 1900 after a careftul study in detail of the 1899 observations, and a general study of the relation between the accuracy secured and the number of measures made in previous observations in the United States. It was concluded that the additional measures after sixteen are obtained increase the accuracy of the results very little.

At the stations occupied in 1900 the instrument was never placed more than 30 feet above the ground. At station Walnut in igor it was placed only is feet above the ground.

The preceding statements apply to observations at the primary stations only. In observing upon points determined by intersection from primary stations, which will for convenience be called tertiary points, from one to three positions were used. For a few secondary points which were occupied to reach other points, but which did not form a part of the primary scheme, an intermediate programme was used.

In all the triangulation here treated the pointings were made upon poles, as a rule, being supplemented by pointings upon heliotropes when much difficulty was encountered in seeing the poles.

PROGRAMME OF OCCUPATION OF STATIONS.
In the following table the stations are arranged approximately in the order in which they were occupied. The second column indicates the days on which observations on primary stations were taken, the third column the number of such days, and the fourth column is added here for convenience to indicate the height of signals. In .general, the pole observed upon was but a few feet higher than the instrument at a given station. The few extraordinary cases in which the pole was extended far above the top of the instrument tripod are mentioned under the previous heading. The height of signal must be considered in connection with the rate of progress, both because the work may be delayed in waiting for the building of signals, and because there is likely to be more delay on account of wind when observing from a high signal than when observing from a low one.

It will be noted that the station Iron Mound was occupied twice, once during the progress of the main triangulation, and once for the purpose of connecting with the Salina Base. Similarly, Meades Ranch and Waldo were each occupied twice, first in connection with the transcontinental triangulation, and later at the beginning of the ninety-eighth meridian triangulation. Station Prosser was also occupied twice, once in 1898, and again after the signals at the Shelton Base had been built in 1899. In the table and in the statements following it, each new occupation of a station is counted as if it were an occupation of a new station, as it is virtually equivalent to a new station at which few directions were observed.

Station.	Days on which observations of primary horizontal angles were made.	Number of days.	Height of instrument above ground.
Vine Creek	$\begin{aligned} & \text { I890 June 28-30, July } 1,2,4,6-8,10,12-14 \text {, } \\ & 16-18,20,21 \text {. } \end{aligned}$	18	$\begin{gathered} \text { Fect. } \\ 20 \end{gathered}$
Iron Mound	1890 July 30, 3 r , August i, 3-13.	14	6
Iron Mound	1896 May 16, 19-22.	5	5
Salina West Base	1896 May 4-10.	7	20
Salina East Base	1896 May 26, 28-31*	5	35
North Pole Mound	IS96 June 5, 7-10.	5	25
Heath	IS91 July 8, 10, 12-17, 19-25.	15	57
Thompson	1891 August 6-10.	5	6
Lincoln	IS91 Alugust 22, 25, 27-31.	7	20
Golden Belt	189ı September 12, 13, 15-21, 23.	Io	6
Wilson	1891 October 24-27, 30, 31, November 1, 4, 6, 7, 9.	II	50
Bunker Hill	1892 May 26, 2ś, 29, June 1-3, 6-S, II, 1316.	14	40
Allen	I892 July 13-25.	13	24
Blue Hill	1892 October 6, 13-19, 22-26.	13	15
Waldo	1892 June 23-25, 27-30, July 1, 2, 5-7.	12	6
Waldo	1897 July 8, io, í.	3	5
Meades Ranch	1891 September 29, October 2-10, 13-16.	14	5
Meades Ranch	IS97 July 16, 18-22.	6	6
Dial	1897 July 28-31, August 1.	5	5
Kill Creek	1897 August 8-1.	4	17
Lawrence 2	1897 August 17-20, 27-31, September 1.	10	6
Old Well 2	1897 September 4, 7-16.	1 I	17
Lebanon	1897 Seplember 22-26.	5	14
Brown	1898 May 20-26.	7	70
Lipps	1898 June 4-10, 13-16.	11	26
Cooper	ı 898 June 24-27, 29.	5	66
Blue Hill	1898 July 9-12, 14-16, 18-20.	10	66
Herrick	I898 July 26, 28-31, August 1, 2.	7	51
Lars	IS98 August 16, 18, 19.	3	30
Sand Creek	1898 August 25-29, September 3, 4, 6.	8	50
Wanda	1898 September 13-20.	8	25
Mason	1893 September 28-30, October 2, 3 .	5	40
Prosser	1898 October 28-31, November 1, 2, 4.	7	39
Prosser	1 S99 April 29, May I, 3-5.	5	6
Shelton West Base	I899 May 8-12.	5	24
Shelton East Base	1899 May 15-18.	4	43
Lowell	1899 May 29-31, June 4-7.	7	20
Valley	I S99 June 12, 14-16, 19-24, 27.	11	26
Cameron	1899 July $1,3,6-11$.	8	35
Pompey	I899 July 19, 21, 22, 24-29.	9	21
Deer	1899 August 8-13, 16-20.	11	20
Divide	1899 August 26, 27, 29, September 2-5.	7	25
Yale	1899 September 12, 16, 17, 19-23, 25.	9	35
Elm	1899 October 3, 4, 7-10.	6	20
Brayton	1899 October 16-19, 22, 25, 26.	7	50
Daily	1900 May 29, 31, June i, 2.	4	5
Custer	1900 June 9, II-15.	6	21
Ono	1900 June 28, 29, July 2, 3, 5, 6.	6	30
Buffalo	1900 July 18-21.	4	30
McClure	1900 July 3I, August i-3, 6-8.	7	15
Deloit	1900 August 14-19.	6	14
Hall	1900 August 25, 27-31.	6	13
Page Southwest Base	1900 September 13, 15, 17, 19, 20.	5	21
Page Northeast Base	1900 September 22, 25-27.	4	15
Prairie	1900 October 5-7.	3	9
Old	1900 October $12,13,15,16$.	4	9
Walnut	1901 June $26,28,29$, July 1-3, 5.	7	15

The following data, compiled from the above table and from the preceding statement of the number of observations at each station, show clearly how much reduction may be expected in the time spent at the station when the number of observations is reduced. A comparison between the heavy (thirty-four observations) and the light (sixteen observations) programme is especially fair in this case, since all the observations were made by one man who already had many years of experience, and were made under the same general conditions as to length of lines, height of signals, topography, and climatic conditions.

It is evident that upon an average the reduction of the number of observations from 34 to 16 saved 5.3 observing days at each station. For the whole group of station here treated, 1890-1901, the total number of observing days was 434, and the total number of days from the first day of observation to the last day of observation inclusive at each station was 555 . Hence the ratio of the number of observing days at a station to the total number of days at the station, exclusive of the time before the first observation and after the last observation, is 434 to 555 , or 0.78 . Therefore, the saving of 5.3 observing days at each station i_{δ} equivalent on an average to a saving of nearly seven days of occupation at each station under the average conditions involved in this triangulation.

It is noteworthy that in the three separate groups of triangulation treated the percentage of observation days in each of the groups agrees with the above-mentioned percentage (0.78) within one-half of one per cent.

The question whether the reduction in the number of observations has appreciably affected the accuracy of the work, will be treated later.

There were eight stations at which the instrument was elevated 50 feet or more above the ground. At four of these, namely, Heath, Blue Hill, Sand Creek, and Wilson, the time of occupation was longer; at three, namely, Brown, Herrick, and Brayton, the time of occupation was the same, aud at one, Cooper, the time of occupation was shorter than for the average of the group. It is thus evident that there is a slight tendency for the observations at the high stations to be slower than at the lower stations.

STATEMENT OF ADJUSTMENTS.
For the stations involved in the transcontinental triangulation local adjustments* were made.

From the stations from Meades Ranch-Waldo northward along the ninety-eighth meridian to the Page Base but few local adjustments have been made. The computer

[^21]made local adjustments at a few stations where the proportion of broken series was greatest, these being the cases in which the local adjustment will in general produce the greatest changes in the angles. These extraordinary cases being carefully studied indicated that the effect of the local adjustment at the remaining stations would in general be simply to change the angles in the hundredths of seconds, the tenths being seldom affected. It was therefore considered that the time would not be well spent in making these local adjustments, the effects of which would be so small as to be entirely masked by the corrections inevitably applied in the figure adjustments. For the greater number of stations the directions used in the figure adjustments are therefore those resulting directly from the observations after the mere taking of means.

The figure adjustment was made in five sections, viz, the Salina base net, from the Salina base net to the El Paso base net, from Meades Ranch-Waldo to the Shelton base net, the Shelton base net, from the Shelton base net to the Page Base. The adjustment of the Salina base net is fully set forth in "The Transcontinental Triangulation," pages $182-188$. The stations involved are Vine Creek, Iron Mound, Salina East Base, Salina West Base, North Pole Mound, Thompson, and Heath. (See illustration No. i, at the end of this Appendix.) The only fixed line in the figure was the base. The number of observed directions involved was thirty. There were thirteen rigid conditions to be satisfied, nine relating to the closures of the triangles and four to the ratios of sides.

The stations west of the Salina base net to and including Blue Hill and Allen, as shown in illustration No. I at the end of this Appendix, form a part of the KansasColorado series of triangles between the Salina and El Paso bases, of which the adjustment is shown in "The Transcontinental Triangulation," pages 5r4-55 I . Two hundred and twenty-five observed directions were involved, and these were connected by ninetynine conditions, of which seventy related $\ddagger 0$ closures of triangles, twenty-eight to ratios of sides, and the last condition was that the length carried through from Thompson-Heath at the edge of the Salina base net must agree with the length of the line Holcolm HillsBig Springs at the edge of the El Paso base net.

The adjustment of the triangulation (see illustration No. 2) from the fixed line Meades Ranch-Waldo to the fixed line Lowell-Prosser of the Shelton base net, which had previously been adjusted, involves seventy-six observed directions connected by twenty-nine rigid conditions, as indicated below, of which twenty-two referred to closures of triangles and six referred to ratios of sides, and the last is that the length carried from Meades Ranch-Waldo must agree with the fixed length of LowellProsser. In the following condition equations the numbers assigned to the directions correspond to those shown in illustration No. 2.

$$
\text { S. Doc. } 50-24
$$

CONDITION EQUATIONS.

Meades Ranch-Waldo to Shelton base net.

No.	
I	$0=+0.83-(1)+(2)-(5)+(6)-(10)+(11)$
2	$0=-0.82-(4)+(5)+(7)-(11)-(13)+(14)$
3	$0=-0.58-(7)+(8)-(12)+\left(\mathrm{r}_{3}\right)-(18)+(19)$
4	$\mathrm{o}=-\mathrm{I} .01-(2)+(3)-(9)+(10)-(20)+(21)$
5	$\mathrm{o}=+\mathrm{1} .42-(8)+(9)-(17)+(18)-(21)+(22)$
6	$0=-0.89-(16)+(17)-(22)+(23)-(26)+(27)$
7	$0=-0.05-(23)+(24)-(25)+(26)-(30)+(31)$
8	$0=-0.99-(15)+(16)-(27)+(28)-(41)+(42)$
9	$0=+0.55+(25)-(29)-(3 \mathrm{I})+(32)-(33)+(34)$
10	$0=-0.54-(28)+(29)-(34)+(35)-(40)+(41)$
11	$0=-0.43-(35)+(37)-(39)+(40)-(48)+(49)$
12	$0=+0.08-(36)+(37)-(45)+(46)-(48)+(50)$
13	$0=+0.07-(38)+(39)-(45)+(47)-(49)+(50)$
14	$0=+0.09-(44)+(45)-(50)+(51)-(58)+(59)$
15	$0=-0.63-(43)+(44)+(54)-(59)-(61)+(62)$
16	$0=-0.14-(54)+(55)-(60)+(61)-(64)+(65)$
17	$0=-0.47-(55)+(56)-(63)+(64)-(66)+(67)$
18	$0=-0.27-(51)+(53)-(57)+(58)-(71)+(72)$
19	$0=-0.08-(52)+(53)-(69)+(70)-(71)+(73)$
20	$0=-0.15-(56)+(57)+(66)-(69)-(72)+(73)$
21	$0=-0.64-(68)+(69)-(73)+(74)-(75)+(76)$
22	$0=+0.55+(63)-(67)+(68)-(76)$
23	$\begin{aligned} 0= & -10.3-4.89(1)+5.32(2)-0.43(3)-1.55(4)+3.58(5)-2.03(6)+0.34(12)+1.48(13)-1.82(14) \\ & +0.28(17)+4.97(18)-5.25(19)-4.25(20)+6.40(.21)-2.15(22) \end{aligned}$
24	$\begin{aligned} 0= & -2.4-4.57(15)+6.82(16)-2.25(17)-0.40(22)+2.84(23)-2.44(24)-1.14(30)+1.05(31) \\ & +0.09(32)-2.37(33)+3.10(34)-0.73(35)-1.37(40)+5.24(41)-3.87(42) \end{aligned}$
25	$\begin{aligned} 0= & -7.1-1.17(35)+4.11(36)-294(37)-4.23(38)+4.74(39)-0.51(40)-0.95(48)+3.03(49) \\ & -2.08(50) \end{aligned}$
26	$\begin{aligned} \mathrm{o}= & +6.9-2.41(43)+3.24(44)-0.83(45)-1.37(50)+5.39(5 \mathrm{I})-4.02(52)-0.83(60)+2.37(6 \mathrm{I}) \\ & -1.54(62)-1.58(63)+3.17(64)-1.59(65)+2.91(66)-0.51(67)-2.40(70) \end{aligned}$
27	$\begin{aligned} 0= & -7.7-4.02(51)+8.62(52)-4.60(53)-4.45(56)+3.63(57)+0.82(58)-0.25(71)+2.84(72) \\ & -2.59(73) \end{aligned}$
28	$\begin{aligned} 0= & -0.5-1.73(55)+-5.36(56)-3.63(57)+4.43(63)-1.58(64)-2.84(72)+4.44(73)-1.60(74) \\ & -1.44(75)+3.56(76) \end{aligned}$
29	$\begin{aligned} 0= & -9.0-0.43(2)+0.43(3)-2.03(5)+2.03(6)-2.71(8)+2.71(9)-0.79(10)+0.79(11)-4.57(15) \\ & +4.57(16)-0.28(17)+0.28(18)+4.25(20)-4.25(21)-0.40(22)+0.40(23)+1.33(26)-1.33(27) \\ & -1.63(28)+1.63(29)+0.73(34)-0.73(35)-2.94(36)+2.94(37)-0.51(38)+0.51(40)+3.87(41) \\ & -3.87(42)-0.83(44)+0.83(45)+2.29(46)-2.29(47)+0.95(48)-0.95(50)-4.02(51)+4.02(52) \\ & -1.73(55)+1.73(56)+1.49(58)-1.49(59)+1.58(63)-1.58(64)-2.40(66)+0.33(67)-0.33(68) \\ & +2.40(70)+2.12(76) \end{aligned}$

In the adjustment of the Shelton base net (see illustration No. 3) the base was the only fixed line. For the measurement and length of this line, see Appendix No. 3 of this Report. The adjustment involves twenty-four directions between six stations connected by twelve rigid conditions shown below, of which eight relate to the closure of triangles and four to the ratios of sides.

CONDITION EQUATIONS.

Shelton base net.

No.	
1	$0=+0.77-(b)+(2)-(7)+(a)-(20)+(21)$
2	$0=+0.66-(6)+(7)-(16)+(18)-(21)+(22)$
3	$0=+1.63-(\mathrm{b})+(\mathrm{r})-(6)+(\mathrm{s})-(17)+(18)$
4	$0=-0.49-(5)+(7)-(10)+(12)-(21)+(23)$
5	$0=-0.61-(10)+(11)+(16)-(19)-(22)+(23)$
6	$0=-2.07-(1)+(3)-(9)+(11)+(17)-(19)$
7	$0=-0.56-(8)+(10)-(14)+(15)-(23)+(24)$
8	$0=-0.46-(2)+(4)-(13)+(14)+(20)-(24)$
9	$0=+0.76+0.12(b)-0.69(1)+0.57(2)+0.54(6)-0.78(7)+0.24(\mathrm{a})+0.37(16)-0.30(17)-0.07(18)$
10	$\begin{aligned} 0= & -0.41+0.34(5)-0.54(6)+0.20(7)+0.13(10)-0.33(11)+0.20(12)-0.09(16)+0.07(18) \\ & +0.02(19) \end{aligned}$
11	$\begin{aligned} 0= & -0.31+0.01(1)-0.69(2)+0.68(3)+0.32(9)-0.33(10)+0.01(11)+0.16(20)+0.00(22) \\ & -0.16(23) \end{aligned}$
12	$\begin{aligned} 0= & -0.78+0.69(1)-0.92(2)+0.23(4)+0.10(8)-0.43(10)+0.33(11)+0.33(13)-0.57(14) \\ & +0.24(15)-0.28(16)+0.30(17)-0.02(19) \end{aligned}$

The adjustment of the triangulation northward from the Shelton base net starts with the two fixed lines Valley-Cameron and Cameron-Prosser at the edge of the Shelton base net and closes on the Page Base, of which the length was fixed by a measurement by a party under Mr. A. L. Baldwin in 1900. (See Appendix 3 of this Report.) The adjustment involves uinety-six directions connected by forty-three rigid conditions, as indicated below, of which No. I to No. 30 relate to triangle closures and No. 32 to No. 42 to ratios of sides. The thirty-first is the condition that the length of Cameron-Prosser as computed from Valley-Cameron shall agree with its fixed value, and the last condition is that the Page Base as computed from the line Valley-Cameron at the edge of the Shelton base net shall agree with its measured value.

CONDITION EQUATIONS.

Shelton base net to Page Base.
No.

```
0=+0.4I+(1)-(6)-(7)+(8)
0=-0.34-(3)+(5)-(12)+(13)
0=+0.10-(5)+(6)-(8)+(9)-(II)+(12)
0=-0.8r-(2)+(4)-(19)+(20)
0=-0.21-(2)+(3)-(13)+(14)-(18)+(20)
0=-0.10- (9)+(10)+(11)-(16)-(21)+(22)
0=-1.08-(14)+(15)-(17)+-(18)-(30)+(31)
0=+0.56-(15)+(16)-(22)+(23)-(29)+(30)
0=-0.65-(23)+(24)-(28)+(29)-(33)+(34)
0=+0.43-(23)+(25)-(27)+(29)-(36)+(38)
O=+1.2I-(24)+(25)-(32)+(33)-(36)+(37)
0=+0.18-(26)+(28)-(34)+(35)-(45)+(46)
0=+1.76-(26)+(27)-(39)+(39)-(44)+(46)
0=+1.07-(39)+(40)-(42)+(44)-(55)+(56)
0=-0.73-(39)+(41)-(43)+(44)-(47)+(48)
0=-0.46-(40)+(41)-(47)+(49)-(54)+(55)
0=-1.28-(49)+(51)-(53)+(54)-(62)+(63)
0=-0.92-(49)+(50)-(52)+(54)-(60)+(61)
```


condition equations-Continued.

No.

$$
\begin{aligned}
& 0=-0.20-(50)+(5 \mathrm{I})-(59)-(60)-(62)+(64) \\
& 0=+0.16-(58)+(59)-(64)+(66)--(67)+(68) \\
& 0=-0.04-(57)+(59)-(64)+(65)-(77)+(78) \\
& 0=-1.56-(65)+(66)-\cdots(67)+(69)-(76)-(77) \\
& 0=-0.38-(69)+(70)-(75)+(76)-(79)+(80) \\
& 0=\cdots-0.63-(69)+(71)-(74)+(76)-(84)-(86) \\
& 0=-0.78--(70)+(71)+(79)-(83)-(84)+(85) \\
& 0=-0.59-(72)+(75)-(80)+(82)--(90)-(92) \\
& 0=+0.21-(S 2)+(83)-(85)+(88)-(89)+(90) \\
& 0=-0.37-(73)+(75)-(80)+(81)+(93) \cdot-(96) \\
& 0=+0.12-(72)+(73)-(91)+(92)-(93)+(94) \\
& 0=+0.27-(8 \mathrm{I})+(83)-(85)+(87)-(95)+(96) \\
& 0=-1.3+3.85(1)+1.72(3)+3.42(7)-4.34(8)+0.92(9)-2.00(11)-5.59(12)+3.59(1.3) \\
& 0=-2.0-3.87(2)+5.59(3)+3.96(4)-4.29(5)-1.41(18)+1.83(19)-0.42(20) \\
& 0=-5.3-3.96(4)+4.84(5)--0.88(5)-0.92(8)+2.36(9)-1.44(10)-0.35(17)+2.18(18)--\mathrm{I} .83(19) \\
& -1.75(21) 4-3.00(22)-1.25(23)-1.61(29)+5.02(30)-3.41(31) \\
& 0=+3.42-0.143(23) \div \cdot 0.497(24)-0.354(25)-4.713(27)+5.212(28)-0.499(29) \cdot-0.127(36) \\
& +1.434(37)-1.307(38) \\
& 0=\div 6.4-1.43(23)+4.97(24)-3.54(25)-2.38(26)+7.37(28)-4.99(29)-1.27(36)+3.01(37) \\
& --1.74(.39)-6.18(44)+6.5 \mathrm{I}(45)-0.33(46) \\
& \mathrm{o}=-3.5+0.03(39)+\mathrm{I} .88(40)-\mathrm{I} .9 \mathrm{I}(4 \mathrm{I})-\mathrm{I} .95(42)+4.58(43)-2.63(44)-2.59(54)+2.56(55) \\
& +0.03(56) \\
& 0=+4.8-0.63(49)+5.09(50)-4.46(5 \mathrm{I})-4.30(52)+5.30(53)-1.00(54)-1.6 \mathrm{I}(59)-1.48(60) \\
& \text { +0.13(61) } \\
& 0=-5.0-0.01(57)+2.09(58)-2.08(59)-3.25(67)+2.84(68)+0.41(69)-2.63(76)+5.96(77) \\
& -3.33\left(7^{8}\right) \\
& 0=+16.1-3.18(69)+11.04(70)-7.86(7 \mathrm{I})-4.10(74)+5.15(75)-1.05(76)--5.93(84)+1 \mathrm{If} .3 \mathrm{I}(85) \\
& -5.3^{8}(86) \\
& 0=-0.26-0.189(72)+0.573(73)+0.384(75)-0.227(80)+1.082(81)-0 . \mathrm{S}_{55}(82)-1.47 \mathrm{~S}(90) \\
& +1.744(91)-0.266(92) \\
& 0=+0.044-0.019(72)+0.814(73)--0.795(74)-\mathrm{I} .490(86)+\mathrm{I} .523(87)-0.033(88)-0.013(89) \\
& +0.040(91)-0.027(92) \\
& 0=-6.4-1.89\left(7^{2}\right)+5.73(73)-3.84(75)-2.27(80)+2.32(81)-0.05(83)-5.17(85)-8.42(87) \\
& \text { | }-3.25(88) \cdots 1.30(89)+3.96(91)-2.66(92) \\
& 0=+5.3-1.72(3)-0.88(5)+0.88(6)+0.92(8)-2.36(9)+1.44(10)+3.59(12)-3.59(13)-0.84(15) \\
& +0.84(16)-1.75(21)-1.75(22)-0.12(23)+0.12(25)-2.61(26)+2.61(27)+1.61(29)-1.61(30) \\
& +0.85(36)-0.85(38)-1.88(40)+1.88(41)-0.15(42)-0.21(44)+0.36(46)-0.09(47)-0.54(49) \\
& +0.63(51)-4.30(52)+4.30(53)+1.68(55)-1.68(56)-2.14(57)+2.14(58)-0.13(59)+0.13(61) \\
& +2.33(62)-2.33(63) \div 0.30(64)-0.30(66)+2.84(67)-2.84(68)-3.18(69)+3.18(70)-0.72(76) \\
& -0.72(78)+0.26(79)-2.53(80)+2.27(81)+0.70(93)-0.70(96)
\end{aligned}
$$

The ordinary practice in the Coast and Geodetic Survey in adjusting a piece of triangulation comprising two base nets and the intervening triangulation has been, to first adjust each base net by itself independently, then to adjust the intervening triangulation to fit the fixed lines at the borders of the two base nets. In the adjustment indicated above there is a radical departure from this practice. The adjustment starts with the fixed lines on the edge of the Shelton base net, in accordance with the former practice, but ends at the Page Base itself, including both the intervening triangulation and the Page base net in a single adjustment without any distinction between them.

The advantages of the former practice were twofold. First, the adjustment was symmetrical. It began and ended with a border line, or lines, of a base net, whereas
the new practice is unsymmetrical, begiming with a border line or lines of a base net and ending with a measured base in the midst of another base net. Second, the work of adjustment was somewhat lighter under the former practice than is the case now, since the smaller the number of equations dealt with in each group solved simultaneously the lighter is the computation. The new practice substitutes a single group for two groups of equations, namely, one corresponding to the intervening triangulation and one corresponding to the base net. The increase in computation thus produced is small, though doubtless real.

The advantage of the new practice is that greater accuracy is secured. In general, the larger the number of triangles dealt with in a single group of equations, the greater the accuracy attained, since the breaking into groups of triangles necessarily involves the neglect or mutilation of certain rigid conditions actually existing which must be fulfilled by the observed directions. In the case under consideration, the neglected condition is an important one. In the former practice the length equation, expressing the condition that the length of a given base, as computed from a preceding base, must agree with the measured length, is only used between the base nets. In other words, the distortion of the measured angles necessary to make the two bases agree is all forced into the triangulation intervening between base nets, whereas it is a well-known fact that errors in length accumulate more rapidy as a rule within the base net itself, where poor geonetric conditions necessarily occur, than in the main chain of triangles between base nets. Thus, under the former practice, the error of length which had accumulated in the whole chain of triangles from base to base was in the adjustment dissipated by distorting the measured angles on the part of the chain in which the rate of accumulation of length error is probably least, leaving the part of the chain in which the rate of accumulation of length error was probably greatest without any adjustment in so far as the length equation is concerned. Under the new practice there is a length equation rumning through each base net.

ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS.

The corrections to directions resulting from the three adjustments of the ninetyeighth meridian triangulation and outlined above are as follows. The numbers of the directions refer to illustrations Nos. 2, 3, and 4 .

Meades Ranch-Waldo to Shelton base net.

Number of direction.	Correction to direction.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { direction. } \end{aligned}$	Correction to direction.
	/		"
1	-0. 300	39	+o. 440
2	+o. 067	40	+0. 001
3	+o. 233	41	+0.050
4	-0.369	42	+o. III
5	+0. 490	43	-0. 176
6	-0. 122	44	-0.058
7	-0. 125	45	+o. 148
8	+o. 102	46	+o. 250
9	+0. 022	47	-o. I64
10	+o. 293	48	-0. 177
11	-o. 293	49	+o. 422
12	-0.320	50	-0. 379
13	+0. 261	51	-0.431
14	+o. 059	52	+o. 567
15	--0.619	53	-0.002
16	+o. 195	54	+0.046
17	+-0.457	55	-0. 186
18	+0.098	56	--0.005
19	-0. 132	57	+o. 303
20	-0.167	58	+0.039
21	+0.403	59	-0. 207
22	-0. 580	60	-0. 139
23	+o. 135	61	-0.060
24	+o. 209	62	+o. 199
25	-0.031	63	+o. 014
26	-0.082	64	-0. 142
27	-0. 165	65	+o. 153
28	-0. 053	66	-0. 289
29	+o. 331	67	+o. 145
30	-0. 045	68	-0.137
31	-0.017	69	-0. 120
32	+0.062	70	+0. 401
33	+0.043'	71	-0. I38
34	-0. 223	72	-0.034
35	-0. 115	73	-0. 011
36	+o. 138	74	+o. 183
37	+0. 157	75	-0. 145
38	-0.603	76	+o. 282

Shelton base net.

	11		
b	+0.099	12	+0.668
1	-0.176	13	+0.011
2	-0.457	14	-0.262
3	+0.285	15	+0.251
4	+0.249	16	0.000
5	+0.223	17	+0.875
6	-0.299	18	-0.592
7	+0.262	19	-0.284
a	-0.187	20	+0.023
8	-0.093	21	+0.259
9	-0.536	22	-0.370
10	+0.048	23	+0.090
11	-0.086	24	-0.003

Shelton base net to Page Base.

Number of direction.	Correction to direction.	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { direction. } \end{array}\right\|$	Correction to direction.
	11		"
I	-0. 291	49	-0. 423
2	-0. 504	50	-0. 114
3	$+0.302$	51	+0.316
4	+o. 110	52	+0.090
5	+o. 332	53	-0. 422
6	+o. 02 I	54	+0.048
7	+0.030	55	+o.871
8	-0.069	56	-0. 588
9	+0. 230	57	-0.410
10	-0.191	58	+0. 509
11	-0. 068	59	--0. 049
12	-0. 156	60	-0.351
13	+o. 151	61	+0.301
14	-0. 240	62	-0. 068
15	+o. 376	63	+0.001
16	-0.063	64	+0.003
17	-0. 317	65	-0. 047
18	+o. 305	66	+-0. 111
19	-0.092	67	-0.413
20	+o. 104	68	-0. 123
21	-0.170	69	+o. 300
22	--0. 355	70	-0. 106
23	-0.015	71	+0. 342
24	--0. 130	72	-0. 266
25	-0. 301	73	-0. 062
26	+0.416	74	+-0. 193
27	+o. 066	75	-0. 388
28	-0.480	76	-0. 196
29	-0.113	77	+o. 495
30	+0.134	78	+o. 224
31	-0.023	79	-0. 532
32	-0.03I	80	+o. 063
33	-0. 258	81	+o. 206
34	-0. 116	82	+o. 468
35	+o. 405	83	-0. 205
36	$\div 0.402$	84	+o. 358
37	-0. 149	85	-0. 547
38	+o. 440	86	+0. 072
39	-0. 510	87	+0.171
40	-0. 005	88	-0. 053
4 I	-0. 178	89	-0. 106
42	+o. 257	90	-0. 139
43	+o. 434	91	+0.075
44	+o. 142	92	+o. 170
45	--0. 513	93	+o. 238
46	--0. 320	94	-0. 182
47	-0. 234	95	+o. 260
48	+0. 455	96	-0.316

The maximum correction to any direction is $0^{\prime \prime} .875$ to Prosser observed from Shelton West Base.

The probable error of an adjusted direction is

$$
d=0.674 \sqrt{\frac{\sum v^{2}}{c}}
$$

in which Σv^{2} is the sum of the squares of the corrections to the directions and c is the number of conditions. For each of the three groups the value of d is

For the purpose of comparison it may be noted that the same quantity for the Salina base net was $\pm 0^{\prime \prime} .44$ and for the Kansas-Colorado series of triangles, which includes the triangulation westward from the Salina base net to Meades Ranch-Waldo, was $\pm \mathrm{o}^{\prime \prime}$.50.*

For comparison it may also be noted that in the twenty-one sections into which the transcontinental triangulation was divided the maximum value of d was $\pm \mathrm{o}^{\prime \prime} .82$ in the American Bottom base net; the minimum value was $\pm 0^{\prime \prime} .23$ in the NevadaCalifornia series of triangles, and the average value was $\pm 0^{\prime \prime} .44 . *$

By inspection of the formula for the probable error, d, of an adjusted direction given above it may be seen that if the ratio of the number of directions to the number of conditions is the same in two groups of adjusted triangles the values of d^{2} are proportional to the average values of v^{2}. Under these conditions, then, the average value of the correction to a direction may be used as a rough means of comparing the accuracy of any one group with any part of some other group, since the probable error of an adjusted direction will be nearly proportional to the average value of corrections to directions in such groups.

The values of the ratio, number of directions divided by number of conditions, in the five groups of adjusted triangles here treated are: in the Salina base net, $\frac{30}{13}=2.3$; between Salina base net and the El Paso base net, $\frac{225}{99}=\mathbf{2 . 3}$; between Meades RanchWaldo and the Shelton base net, $\frac{76}{29}=2.6$; in the Shelton base net, $\frac{26}{12}=2.2$, and between the Shelton base net and Page Base, $\frac{96}{43}=2.2$. Hence the mean value of a correction to a direction may be used as an approximate measure of the relative accuracy of the different parts of the triangulation.

It is desirable to determine whether the accuracy has been affected appreciably by the reduction in the number of observations of each direction, accompanied, as indicated on page 368 , by a corresponding reduction in the number of days on which the observations were taken. Dividing the whole triangulation from Salina Base to Page Base

[^22]into three groups in order of decreasing number of observations, the following comparisou is obtained:

	Number of observations of each direction	Average number of days of observation.	Years.	Number of directions.	Average correction to adirection, without regard to sign.	Maximum correction to a direction.
					/	11
Group No. I	34	10. 5	1890-91-92,96	76	0. 416	I. 374
Group No. 2	22 to 26	7.0	1897-98-99	135	o. 217	o. 875
Group No. 3	16	5.2	1900-OI	57	o. 266	0. 871

This evidence is a strong indication that there has been no appreciable reduction in accuracy.

ACCURACY AS INDICATED BY CORRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES.
The correction to each angle is the algebraic sum of the corrections to two directions. In order to make it possible to study the corrections to the separate angles, they are shown in the following table for every triangle in the primary scheme from the Salina Base to the Page Base, together with the error of closure of the triangles, the corrected spherical angles, and the spherical excess. The plus sign prefixed to the error of closure of a triangle indicates that the sum of the angles is less than 180° plus the spherical excess. The spherical excess is a convenient indication of the size of the triangle, since it is proportional to the area.

Statious.	Corrections to angles.	Error of closure of: triangle.	Corrected spherical angles.			Spherical excess.
	//	"	-	,	"	/
Iron Mound	-o. 34		44	16	26. 7^{8}	
Salina West Base	-0. 53	-0. 93	52	50	52.02	O. 12
Salina East Base	-0.06		82	52	41.32	
North Pole Mound	+0.09		34	23	08. 78	
Salina East Base	+0. 32	+o. 3^{8}	74	29	25.53	o. 18
Salina West Base	-0. 03		71	07	25.87	
North Pole Mound	-0.30		25	14	27.73	
Iron Mound	-0. 39	-1.25	30	47	14.60	o. 22
Salina West Base	--. 56		123	58	17.89	
North Pole Mound	+o. 40		9	08	41.06	
Salina East Base	+o. 26	$\bigcirc{ }^{+} \mathbf{0} 70$	${ }^{1} 57$	22	06. 85	0. 08
Iron Mound	+o. 04		13	29	12. 17	
Heath	+1. 12		22	19	31.82	
North Pole Mound	-0. 14	+o. 93	100	28	05.85	1. 8 :
Iron Mound	-0. 05		57	12	24. 14	
Thompson	+0. 65		92	56	25.90	
North Pole Mound	+o. 56	+o. 18	51	50	59.36	1. 85
Heath	-1.03		35	12	36. 59	
Thompsonf	-0.67		80	49	10. 90	
Iron Mound	-0.46	-1. 04	4 I	38	43. 86	3. 17
Heath	+0.09		57	32	08.41	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles.	Error of closure of triangle.	Corrected spherical angles.			Spherical excess.
	$1 /$	//	-	,	/1	//
Thompson	t-1. 32		12	07	15.00	
North Pole Mound	+o. 43	+2. 15	152	19	05. 22	0. 49
Iron Mound	+0. 40		15	33	40. 27	
Vine Creek	-0.98		30	57	42. 95	
Iron Mound	+0.41	-0.71	45	39	52.41	1. 13
North Pole Mound	-o. 14		103	22	25.77	
Thompson	-0. 14		51	50	46.87	
Vine Creek	-0.02	+o. 65	66	55	43.51	3. 06
Iron Mound	+o. 81		61	I 3	32.68	
Vine Creek	+o. 95		35	58	00. 55	
North Pole Mound	-0. 29	-0.80	104	18	29. OI	1. 43
Thompson	-I. 46		39	43	31. 87	
Vine Crrek	+o. 73		14	40	50. 83	
North Pole Mound	--0. 27	+1.76	156	-9	2S. 37	1. 04
Heath	+-0. 76		9	09	41.84	
Thompson	-0.81		132	39	57. 77	
Vine Creek	--0. 23	-2. 37	21	17	09. 73	2. 2.5
Heath	-I. 79		26	O2	54. 75	
Vine Creek	-0. 25		45	38	33. 78	
Iron Mound	+o. 35	+1.98	102	52	16.54	3. 98
Heath	+1.88		31	29	I3. 66	
Lincoln	+o. 8_{7}		75	35	24. 17	
Thompson	+o. 30	+0.98	58	20	09. 39	I. n
Heath	-0. 19		46	04	28. 04	
Goiden Belt	-0.77.		47	38	58. 45	
Thompson	+o. 64	+0. 94	38	54	03.07	2. 15
Heath	+1.07		93	27	00. 63	
Golden Belt	+o. 32		68	30		
Lincoln	-0. 77	+o. 8r	64	07	O1. 47	I. 39
Heath	+1. 26		47	22	32. 59	
Lincoln	+o. 10		139	42	25.64	
Thompson	-0. 33	$+0.86$	19	26	06. 33	o. 85
Golden Belt	$+1.09$		20	51	2S. 88	
Wilson	+o. 24		40	O5	15.19	
Lincoln	+0. 95	+1. 73	62	10	34. 15	2.62
Heath	+o. 54		77	44	13. 28	
Wilson	+1. 15		42	11	49.43	
Golden Belt	+0.09	+o. 52	107	26	31. 19	I. 31
Heath	-0.72		30	2 I	40.69	
Golden Belt	+o. 41		175	56	56. 52	
İincoln	-I. 72	-0. 40	1	56	27.32	0. 0 Q
Wilson	+o. 91		2	06	34. 24	
Meades Ranch	+0. 12		62	23	31. 39	
Lincoln	-0.91	-0. 44	57	53	14. 39	3.71
Wilson	+o. 35		59	43	17.93	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles. "	Errot of closure of triangle. //	Corrected spherical angles.			spherical excess. "
			-	,	"	
Meades Ranch	+1. 36		23	36	46. 06	
Lincoln	+o. 04	+o. 88	120	O3	48. 54	2. 5°
Heath	-0. 52		36		27.90	
Wilson	+o. 59		99	48	33. 12	
Meades Ranch	-1.25	+o. 41	38	46	45. 32	3.83
Heath	+1.07		$4{ }^{1}$	24	45.39	
Golden Belt	-0. 44		9 J	44	40.68	
Meades Ranch	-0.93	-0. 56	32	18	34. 14	I. 89
Lincoln	+o.81		55	56	47.07	
Golden Belt	-0. 12		160	15	O8. oi	
Meades Ranch	-2.30	-0.63	8	41	48.07	0. 78
Heath	+1. 79		1 I	03	04. 70	
Wilson	-0. 56		57	36	43. 69	
Meades Ranch	+1.05	+o. 52	30	04	57. 25	I. 74
Golden Belt	+o. 03		92	18	20. 80	
Bunker Hill	-0. 75		72	27	18. 10	
Meades Ranch	+o. 32	-0.91	26	40	18.98	1. 91
Wilson	-0. 48		So	52	24.83	
Waldo	+o. 73		62	59	56. 95	
Meades Ranch	-0. 16	+0. 59	82	10	52.71	2. 61
Wilson	+o. 02		34	49	12. 95	
Waldo	+o. 06		86	20	54.50	
Meades Ranch	-0. 48	-0. 10	55	30	33. 73	2. 25
Bunker Hill	+o. 5^{2}		38	08	34. 02	
Bunker Hill	-0. 23		110	35	52. 12	
Waldo	-0.67	-1. 40	23	20	57.55	I. 55
Wilson	-0.50		46	03	II. 88	
Blue Hill	+o. 58		60	58	20. 39	
Waldo	+o. 19	-0. 17	67	20	20. 77	2. 49
Bunker Hill	-0. 94		5 I	41	21. 33	
Blue Hill	+o. 42		49	O1	11. 30	
Meades Ranch	-0. 02	-0. 02	4 I	08	57. 19	3. 84
Bunker Hill	-0. 42		89	49	55. 35	
Waldo	+o. 25		153	41	15.27	
Meades Ranch	-0. 46	-0.05	14	21	36. 54	0. 90
Blue Hill	+o. 16		11	57	09.09	
Allen	-0. 99		65	34	07. 55	
Waldo	-1.51	-1.46	23	48	19. 98	1. 33
Bunker Hill	+1. 04		90	37	33.80	
Allen	+1. 11		54	05	0. 20	
Blue Hill	-1. 19	+1.62	82	23	OI. O	2. 04
Waldo	+1.70		43	32	0. 79	
Allen	to. 11		119	39	07. 74	
Blue Hill	-1.77	+o. 33	21	24	40. 66	o. 88
Bunker Hill	+1.99		38	56	I2.48	

APPENDIX NO. 6. TRIANGULATION ALONG NINETY-EIGHTH MERIDIAN.

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

stations.	Corrections to angles.	Error of closure of triangle.	Corrected spherical angles.			Spherical excess.
	"	"	-	"	"	"
Dial	-0. 59		110	45	14.94	
Meades Ranch	+o. 37	-o. 83	23	17	45.49	0. 51
Waldo	-0.61		45	57		
Kill Creek	-0. 20		49	04	30. 14	
Dial	+o. 16	$+0.82$	77	I3	23. 42	0. 31
Waldo	+o. 86		53	42	06. 75	
Lawrence 2	-0. 23		21	51	01. 19	
Dial	+o. 23	+0. 58	59	02	43.51	0. 78
Kill Creek	+o. 5^{8}		99	06	16.08	
Old Well 2	+o. 57		26	23	OS. 44	
Meades Ranch	+0. 17	+ I .0 or	78	27	04. 84	2. 12
Dial	+0. 27		75	09	48.84	
Lawrence 2	-0. 36		97	46	28.42	
Old Well 2	-0. 98	-1. 4^{2}	44	24	44.40	2. 10
Dial	-0. 08		37	48	49. 28	
Brown	-0. 08		57	46	36. 35	
Old Well 2	+o. 71	+0. 89	79	06	16. 20	I. 47
Lawrence 2	+0. 26		43	07	08. 92	
Lebanon	+o. 03		61	35	19. 99	
Old Well 2	+0.07	+o. 05	40	50	35. 14	o. 88
Brown	-0.05		77	34	05.75	
Lipps	+o. 06		28	31	43. 25	
Brown	+o. 11	+o. 99	126	43	24. 95	1. 76
Lawrence 2	+o. 82		24	44	53. 56	
Cooper	-0. 27		41	39	12. 34	
Lebanon	+o. 08	-0. 55	92	33	05. 33	0. 72
Brown	-0.36		45	47	43. 05	
Lipps	+o. 05		56	59	14.95	
Cooper	+o. II	+o. 54	70	52	36. 52	1. 35
Brown	+o. 38		52	08	09.90	
Herrick	-0.41		42	34	59.77	
Cooper	+o. 25	+ +0. 44	60	49	27.30	1. 68
Lipps	+0.60		76	35	34.61	
Blue Hill	+o. 60		30		08. 46	
Cooper	+o 27	+o. 43	96	26	24. 46	2.06
Lipps	-0. 44		52.	38	29. 14	
Blue Hill	-0. 20		65	41	j. 44	
Cooper	+0.02	-0.08	35	36	57. 16	1. 74
Herrick	+0. 10		78	42	O1. 14	
Herrick	-0.31		121	17	00.91	
Blue Hill	-0. 80	-0.07	34	45	54.98	I. 36
Lipps	$+1.04$		23	57	05.47	
Sand Creek	-0. 25		54	33	54. 73	
Blue Hill	-0.05	-0.09	57	00	20. 11	1. 08
Herrick	+0.2I		68	25.	46. 24	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles.	Error of closure of triangle.	Corrected spherical angles.			Spherical excess.
			-	,	"	//
Lars	+o. 26		53	48	43. 77	
Sand ${ }^{\text {Creek }}$	+o. 25	+o. 63	85	08	34.39	-. 97
Herrick	+0. 12					
			41	02	42. SI_{1}	
Lowell	+o. 29		52	56	45. 55	
Sand Creek	-0. 23	+-0. 14	58	37	52. 92	-. 79
Lars	+0.08		68	25	22. 32	
Wanda	+o. 43		76	22	46. 47	
Sand Creek	+o. 19	+-0. 47	50	28	31.41	0. 68
Lowell	-0.15		53	O8	42.80	
Wanda	-0.69		41	11	37.61	
Blue Hill	-1. I . 00	+o. 34	27	37	16. 82	-. 97
Sand Creek	--\%. 03		111	II	06. 54	
Masor	+o . 10		46	45	16. 42	
Blue Hill	+o. 43	+0. 27	52	12	56. 86	1. 58
Sand Creek	-0. 26		81	OI	48. 30	
Mason	+-0. 13		83	20	47.30	
Blue Hill	-0. 57	$\dagger 0.08$	24	35	40. 04	I. 18
Wanda	+o. 5^{2}		72	O3	33. 84	
Wanda	--. 17		113 36	15 35	11. 45	
Mason	+o. 02	+0. 15	36	35	30.87	0. 57
Sand Creek	+o. 30		30	${ }^{\circ} 9$	18. 25	
Prosser	+0. 43		55	34	07. 17	
Mason	+o. 19	+o. 64	52	47	11. 76	0. 48
Wanda	+o. 02		71	38	41.55	
Prosser	-0. 28		44	47	25.06	
Wanda	-0. 28	-0. 55	98	43	20.53	0. 57
Lowell	+o. OI		36	29	14.98	
Shelton West Base	-1. 47		73	47	49.73	
Prosser	-0. 27	-I. 63	43	O4	33. 76	0. 85
Lowell	+o. 11		63	-7	37. 36	
Shelton East Base	+o. 24		78	20	41. 39	
Prosser	-0. 56	-0. 77	60	04	17.66	0. 78
Lowell	-0.45		41	35	or. 73	
Shelton East Base	--. 39		127	48	20.31	
Prosser	-0. 28	+o.21	16	59	43.91	o. 25
Shelton West Base	+o. 88		35	1	56.03	
Shelton East Base	-0.63		49	27	38.92	
Lowell	+o. 56	-0. 66	21	32	35. 63	o. 3 I
Shelton West Base	-0. 59		108	59	45.76	
Valley	+1. 20		46	40	12.62	
Prosser	+o. 19	+o. 98	60	26	37. о	I. 53
Lowell	-0.41		72	53	11.90	
Valley	+o. 62		46	16	25. 93	
Shelton East Base	-0. 17	+0. 49	102	25	24.63	o. 73
Lowell	+o. 04		31		I. 17	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles.	Error of closure of triangle.	Corrected spherical angles.			Spherical excess
	"	"	-	,	"	"
Valley	-0. 13		32	34	59.51	
Shelton East Base	+0.46	+o. 61	52	57	45.71	0. 23
Shelton West Base	+0. 28		94	27	15. O1	
Valley	+o. 75		13	41	26. 42	
Shelton West Base	+o. 31	+o. 54	156	32	59. 23	0. 19
Lowell	-0. 52		9	45	34. 54	
Valley	+o. 45		32	58	46. 20	
Prosser	+0.46	+2.07	17	22	03. 25	0. 49
Shelton West Base	+1. 16		129	39	II. 04	
Valley	+o. 55		-	23	46. 66	
Prosser	+o. 74	+1. 25	-	22	19.34	o. OI
Shelton East Base	-0.04		I79	13	54. OI	
Cameron	--0. 24		74	12	25. 15	
Prosser	-0.03	-0. 22	42	32	20.76	I. 45
Valley	-0. 43		63	15	15.54	
Cameron	-0. 27		32	32	47.08	
Prosser	$+0.71$	+0. 46	42	54	40. 10	o. 75
Shelton East Base	+0.02		104	32	33. 57	
Cameron	+o. 51		41	39	38.07	
Shelton East Base	-0. 09	+o. 56	74	41	20.41	0. 70
Valley	+o. 14		63	39	02. 22	
Pompey	-0. 10		31	35	29. 45	
Prosser	-0. 29	-0.41	28	40	06. 73	1. 5.5
Cameron	-0.02		119	44	25. 40	
Deer	+o. 31		30	26	23. 34	
Cameron	+o. 33	+o. 34	98	49	26. 37	1. 72
Valley	-0.30		50	44	12.01	
Pompey	+o. 30		66	18	56.77	
Cameron	-0.31	-0. 10	67 46	13 27	43.08 22.09	1. 9.4
Divide	+0. 20		29	52	3S.07	
Cameron	+o. 11	+o. 8i	70	49	44. 17	2. 12
Valley	+0. 50		79	17	39.88	
Divide	-0. 20		78	53	52.34	
Deer	-0. 39	+o. 21	72	32	41. So	2.101
Valley	+o. 80		28	33	27. 87	
Deer	-0.08		102	59	05. 14	
Cameron	+0. 22	-0. 26	27	59	42. 20	1. 6I
Divide	-0.40		49	OI	14.27	
Brayton	+-0. 52		50	12	18.98	
Pompey	-0. 42	+o. 10	55	30	25. 3^{1}	2. 7^{8}
Deer	0. 00		74	17	18. 49	
Yale	-0. 16		31	38	52.50	
Deer	+0.62	$+1.08$	67	56	-0. 69	1.79
Divide	+0.62		80	24	59.60	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles.	Error of closure of triangle.	Corrected sphericalangles.			spherical excess.
	"	"	-	,	"	"
Yale	+o. 25		52	31	05. 77	
Brayton	-0. 37	-0. 56	59	-8	52. 75	3. 12
Deer	-0. 44		68	20	04.60	
Daily	+0. 14		101	18	33. 19	
Brayton	+o. 14	+o. 65	55	49	38. 77	1. 39
Yale	+0. 37		22	5	49.43	
Custer	+0.04		68	-	38. 18	
Brayton	-0. 29	-0. 43	86	34	06. 75	1. 97
Yale	-0.18		25	25	17.04	
Custer	-0. 55		58	51	20.63	
Brayton	-0. 43	-I. 21	30	44	27.98	0. 40
Daily	-0. 23		90	24	11. 79	
Daily	+o. 08		168	17	15.01	
Yale	-0. 55	+o. 12	2	33	27.61	o. 17
Custer	+0. 59		9	09	17.55	
Elm	+o. 19		8 I	05	14.24	
Daily	+0. 52	-0. 18	57	26	22.73	1. 71
Yale	-0.89		41	28	24.74	
Elm	-0.46		99	52	55. 37	
Custer	-0. 95	-1.76	43	12	09. 58	2.07
Yale	-0. 35		38	54	57.12	
Custer	-0. 36		50	21	27. 13	
Daily	-0.44	-1. 46	110	50	52. 28	o. 53
Elm	-0. 66		18	47	41. 12	
Buffalo	-1.46		51	24	14.46	
Custer	+0. 50	-r. 07	42	44	10. 53	1. 74
Elm	-0. 11		85	5	36.75	
Ono	+o. 69		50	24	22. 18	
Custer	+o. 33	+o. 73	90	54	21. 49	I. 63
Elm	-0. 29		38	41	17.96	
Ono	-0.19		92	24	14. 23	
Custer	-0. 17	+0.46	48	10	10. 96	1. 55
Buffalo	+o. 82		39	25	36. 36	
Buffalo	-0.64		90	49	50.82	
Ono	-0. 88	-r. 34	4	59	52. 05	I. 66
Elm	+0. 18		47	10	18. 79	
Deloit	+o.07		42	O5	27. 21	
Ono	+o. 74	+r. 28	73	J6	18.00	2. 34
Buffalo	+0.47		64	38	17. 13	
McClure	+o. 65		38	29	04. 98	
Ono	+0.31	$+\mathrm{ob} 92$	50	47	38.98	2. 26
Buffalo	-0.04		90	43	18.30	
McClure	+o. 35		93	27	53.40	
Deloit	-0. 00	-0. 16	60	27	06. 85	I. 42
Buffalo	-0.51			05	O1. 17	

Accuracy as indicated by corrections to angles and closures of triangles-Continued.

Stations.	Corrections to angles.	Hrror of closure of triangle.	Corrected spherical angles.			Spherical excess.
	"	11	\bigcirc	1	"	"
Deloit	+o. 07		102	32	34.06	
Ono	+o. 43	+0. 20	22	28	39. 02	I. 50
McClure	-0.30		54	58	48. 42	
Hall	+o. 29		36	35	52.40	
Deloit	+o. 11	-0. 16	98	10	31.61	o. 85
McClure	-0. 56		45	13	36.84	
Page Southwest Base	-0. 27		32	19	40. 45	
Deloit	-0.05	+o. 04	57	52	10. 43	I. 14
McClure	+0. 36		89	48	10. 26	
Page Southwest Base	+0. 42		71	-	46.63	
Hall	+o. 43	+1. 77	64	24	41. 28	I. 33
McClure	+0. 92		44	34	33. 4^{2}	
Hall	+o. 71		101	00	33.67	
Deloit	+o. 16	+1. 56	40	18	21. 18	I. O 3
Page Southwest Base	+0.69		38	4 I	06. 18	
Old	+0. 60		83	06	09. 38	
Hall	-0.41	+0.38	33	27	49.80	0. 54
Page Southwest Base	+o. 19		63	26	or. 36	
Walnut	-0. 28		40	53	48. 88	
Hall	+0.04	-0.63	48	27	16.52	1. 25
Page Southwest Base	-0. 39		90	38	55.85	
Old	-0. 33		145	28	51. 30	
Walnut	-0.90	-0. 78	19	31	42. 37	O. 39
Hall	+o. 45		14	59	26. 72	
Old	-0. 27		131	24	59. 32	
Page Southwest Base	-0. 58	-0. 23	27	12	54. 49	0. 32
Walnut	+0. 62		21	22	06.51	
Prairie	+o. 31		46	30	23.03	
Old	+o. 40	+0. 59	56	36	41. 37	-. 38
Page Southwest Base	-0. 12		76	52	55.98	
Prairie	-0.03		50	04	48. OI	
Walnut	+0. 49	-0. 21	55	06	54. 59	0. 55
Old	-0. 67		74	48	17.95	
Prairie	+o. 28		96		11.04	
Walnut	-0. 13	+0.6I	33	44	48. 08	0.61
Page Southwest Base	+0. 46		49	40	OI. 49	
Page Northeast Base	+o. 56		108	29	18.81	
Old	+o. 14	+o. 37	42	46	43.91	0.12
Page Southwest Base	-0. 33		28	43	57.40	
Page Northeast Base	-0. 42		93	27		
Page Southwest Base	+o. 20	-0. 12	48	08	58. 57	0. 21
Prairie	+o. 10		38	23	41.73	
Page Northeast Base	-0. 13		158	03	21. 29	
Prairie	+o. 21	+o. 34	8	06	41.30	0. 05
Old	+o. 26		13	49	57.46	

Accuracy as indicated by corrections to angles and closures of triangles--Continued.

station*	Corrections to angles.	Etror of closure of triangle.	Corrected spherical angles.			spherical excess.
	/'	/	-	,	"	/'
Page Northeast Base	-0. 58		69	If	94. 26	
Walnut	-..0. 72	-0. 27	22	10	40. 54	0. 21
Old	--0. 41		88	38	15.41	
Page Northeast Base	-0. 44		88	52	17.02	
Prairie	+0.1s	$\therefore 0.40$	58	11	29. 31	0. 39
Walnut	-0. 22		32	56	14.06	
Page Northeast Rase	--0. 02		177	4 O	23.07	
Walnut	\cdots-0. 10	:-0. 33	o	48	34.03	O. I
Page Southwest Base	-0. 25		I	3 I	02.91	

The maximum correction to any angle is $-2^{\prime \prime} .30$ to the angle at Meades Ranch between Heath and Golden Belt measured in 1891 .

The triangles show 69 closing errors of the plus sign and 46 of the minus sign.
The average closing error of a triangle for this whole triangulation, without regard to sign, is $o^{\prime \prime} .68$ (115 triangles). For comparison it may be noted that the average closing error for the whole transcontinental triangulation is $\mathrm{I}^{\prime \prime} .06$, and that the average closing error for the 2 I sections into which that triangulation was divided varies from a minimum of $o^{\prime \prime} .57$ in the Nevada-California section to a maximum of $2^{\prime \prime} .22$ in the American Bottom base net (see "Transcontinental Triangulation," p. 16).

The mean error of an angle, namely, $\sqrt{\frac{\sum \overline{L^{2}}}{3^{n}}}$, in which $\sum \Delta^{2}$ is the sum of the squares of the closing errors of the triangles, and n is the number of triangles, is for this triangulation and for the separate groups into which it is divided:

For the whole triangulation, Salina Base to Page Base . $=$ - 0.49	
For the triangulation from Meades Ranch-Waldo to Page Base	0. 42
For Salina base net	-. 75
For triangulation fronm Salina hase net to Meades Ranch-Waldo	0. 49
For the triangulation Meades Ranch-Waldo to the Shelton base	O. 35
For the Shelton base net	.0. 45
For the triangulatio	-0. 44

In the transcontinental triangulation the mean error of an angle, computed as indicated above, varies from $\pm \mathrm{o}^{\prime \prime} .42$ to $\pm \mathrm{I}^{\prime \prime} \cdot 59$, and its average value is $\pm \mathrm{o}^{\prime \prime} .77$. (See "Transcontinental Triangulation," p. 613.)

The mean error of an angle as thus computed from the triangle closures may be rendered comparable with the probable error of the resulting direction by multiplying it by $\sqrt{\frac{1}{2}}$ to take account of the fact that an angle is the difference of two directions, and by the factor 0.674 , to reduce from a mean error to a probable error.

The mean error of an angle, a, for the triangulation between Meades Ranch-Waldo and Page Base, namely, $\pm 0^{\prime \prime} .42$, when reduced to a probable error of direction is $\pm 0^{\prime \prime} .20$, whereas the probable error of direction as computed from the figure adjustment for the same section is $\pm o^{\prime \prime} .29$. (See page 375.) The excess of the second of these values over the first is an indication of the magnitude of the errors which were put in evidence by
the rigid conditions relating to the ratios of sides and the accord in length between bases, and which do not appear from the triangle closures alone.

To secure further evidence as to whether the accuracy of the triangulation has been appreciably affected by the reduction of the number of observations of each direction, the following table, similar to that shown on page 376 , has been compiled. Certain triangles belong to two different seasons. In such cases the triangle has been credited to the season during which two of its three stations were occupied.

This evidence again indicates clearly that no appreciable reduction in accuracy has occurred on account of the reduction in the number of observations.

No attempt has been made here to set forth the agreement of the separate measures of each direction as a criterion of accuracy, since it is well known that it is of little value for that purpose. A close agreement of the separate measures of a given direction is of little consequence, since such measures are usually subject to constant errors of considerable size, which become evident as soon as the closures of the triangles are studied or an attempt is made to adjust a figure. For example, the probable error of a direction computed from the figure adjustment, and therefore including the constant as well as the accidental errors of the measures, is for the observations of 1900-1901, $\pm 0^{\prime \prime} .29$ (see page 375). This probable error refers to the mean of 16 measures. Hence the probable error of a single measure of a direction should be four times as great, namely, $\pm I^{\prime \prime} .16$, and for a single measure of an angle should be $\sqrt{2}$ tines as large, namely, $\pm i^{\prime \prime} .64$. If this probable error were due in the main to accidental errors in the angle measures, the range of such measures should occasionally approach or exceed seven times this value, or $I^{\prime \prime} .5$. As a matter of fact, the range of such measures at these stations never exceeds $7^{\prime \prime} .5$, and seldom exceeds $6^{\prime \prime} .5$. This triangulation is therefore no exception to the general rule that the accidental errors in the angle measures are less serious than the constant errors.

THE ACCORD OF THE BASES AND THE ACCURACY OF THE LENGTHS.
In solving the normal equations of the figure adjustment, between Meades RanchWaldo and the line Lowell-Prosser of the Shelton base net, the length equation was as usual assigned the last place, so that the discrepancy in length, after all the conditions relating to closures of triangles and ratios of lengths had been satisfied, became known. It thus became evident that the Shelton base, as computed from the line Meades RanchWaldo, which in turn depends for its length on the Salina and El Paso bases (but mainly on the former) was shorter by 1 part in 58000 than its measured length (represented by 75 in the seventh decimal place of logarithms). In other words, after the angles
have been adjusted to close all triangles and to make the computed length of each side the same, whatever one of the several possible chains of triangles are used, the best length which can be derived for the Shelton Base from the triangulation from the southward differs from its measured length by 1 part in 58000 .

Similarly the best length which can be derived for the Page Base as computed from the triangulation connecting it with the Shelton Base is I part in 270000 longer than its measured length. (This discrepancy is represented by 16 in the seventh decimal place of logarithms.)

For comparison it may be noted that the nine discrepancies of this nature between bases on the transcontinental triangulation varied from I part in 724000 to 1 part in 25700 .* Five out of the nine discrepancies were greater than that between the Salina and Shelton bases and seven greater than that between the Shelton and Page bases.

To put the accuracy with which the leugth are determined in evidence, the probable errors for certain lines have been computed from the probable errors of the base measures and of the angle measures.

The length of the line Thompson-Heath at the edge of the Salina base net, depending on the measures of the Salina Base and the angle measures in the base net, is $3^{1} 563^{\mathrm{mI}} .7 \mathrm{I} \pm \mathrm{o}^{\mathrm{mI}} .16$, its probable error being, therefore, 1 part in 200000.

Similarly the length of the line Meades Ranch-Waldo from the adjustment is 25783^{m}. I I and its probable error is $\pm \mathrm{o}^{\mathrm{m}} .204$, or I part in 126000 . This probable error has been computed as if Meades Ranch-Waldo depended for its length on the Salina Base alone, whereas its length is really dependent on both the Salina and El Paso bases. As the Salina Base is, however, very much nearer than the El Paso Base, the above probable error is but little too large.

The adjusted length of the line Lipps-Cooper which is about midway between Meades Ranch-Waldo and Lowell-Prosser, the two fixed lines in the adjustment, is $22983^{\mathrm{mI} \mathrm{\prime}} .18$. The probable error of this line, when computed from the southward only, depends upon the probable error of Meades Ranch-Waldo, as shown above, and the additional errors accumulated in the intervening angle measures and is $\pm \mathrm{o}^{\mathrm{m} .227}$, or I part in ior 000 . Its probable error when computed from the northward alone depends upon the probable error of the line Lowell-Prosser, as shown below, and the errors accumulated in the intervening angle measures, and is $\pm 0^{\mathrm{m}} .135$, or i part in 170000 . The length of the line Lipps-Cooper as fixed in the adjustment is necessarily nearly a mean between its two possible independent lengths, as computed from the southward and northward, respectively. Hence, with sufficient accuracy the probable error of the adjusted length of the line Lipps-Cooper is $1 / 2 \sqrt{(0.227)^{2}+(0.135)^{2}}$, or a part in 174000 .

We may note here that twice I part in 174000 , or I part in 87000 , represents the probable error of the discrepancy between the two bases, Salina and Shelton, as brought together on this line, since the probable error of the difference of the two quantities is necessarily double the probable error of their mean. The actual discrepancy between the bases is i part in 58000 , not very different from its probable error, but somewhat in excess of it. The lengths of the lines Lowell-Prosser and Valley-Cameron at the edge of the Shelton base net are respectively 22944.02 and 21 I 80.56 meters and their

[^23]probable errors are $\pm 0^{\mathrm{m}} .069$ and $\pm 0^{\mathrm{m}} .05 \mathrm{I}$, or I part in 333000 and I part in 415000 , respectively. These probable errors are computed from the probable error of the Shelton base measures and the computed errors of the angle measures in the Shelton base net.

Similarly the length of the line Prairie-Walnut, near the Page Base, and its probable error, as computed from the uncertainties as in measures of the Page Base and in the angles concerned, are $18196^{\mathrm{m}} .70$ and $\pm 0^{\mathrm{m}} .030$, or the probable error is I part in 607000 .

The line Buffalo-Ono is about midway between the two fixed lines in the adjustment covering this region. It is eight triangles from Valley-Cameron and six triangles from the Page Base. The probable error of its length, as computed from the southward only, including the uncertainty in the length of Valley-Cameron, shown above, is $\pm 0^{m} .164$. The probable error of its length, as computed from the northward only, depending upon the uncertainties of the Page Base measures and the uncertainties in the angle measures in the intervening triangulation, is $\pm \mathrm{o}^{\mathrm{m}} .167$. The length of this line as fixed by the adjustment being necessarily nearly a mean between its two possible independent lengths, computed from the southward and northward, its probable error is $\pm 0^{\mathrm{m}} .117$, or I part in 229000 , its adjusted length being $26747^{\mathrm{m}} .68$.

The probable error of the discrepancy between the Shelton and the Page bases is 2 parts in 229000 , or I part in 114000 . The actual discrepancy is I part in 270000 , very much smaller than its probable error.

ACCURACY AND ECONOMY.

In fixing the method of triangulation along the ninety-eighth meridian the aim has constantly been to hold the accuracy up to the standard fixed by the best half of the transcontinental triangulation, a standard of accuracy which compares very favorably with that actually attained in any country. With equal constancy there has been kept in view the desirability of reducing the cost of the triangulation and the time required for it as much as possible while holding the accuracy up to this high standard. The time required for, and the cost of, the office computations have been kept in mind.

That the accuracy has been kept up to the selected standard and above it is put in evidence by the corrections to directions, closures of triangles, accord between bases, and probable errors of lengths as set forth in the preceding pages. It is also noticeable that the accuracy has not decreased with the gradual change of methods as the triangulation proceeds northward.

A considerable amount of time has been saved in the office part of the work by omitting all corrections for run during the latter part of the work and by making very few local adjustments, the former being entirely unnecessary with the present programme of observation and the latter but seldom needed. A small amount of time has also been saved in the field by utilizing the field computation as an insurance against loss and making no duplicates of records except of the descriptious of stations.

The principal saving in the field in time and money has been in the reduction of the number of observations of each direction. The reduction from 34 to 16 observations saves ou an average seven days at each station. During 1900 it took on an average fourteen days to make the observations at a station and to move to the next and prepare
for observation. If the change were made back from the 16 -observation programme of 1900 to the 34 -observation programine of 1896 it would take seven days, or 50 per cent, longer at each station, the cost would be increased in nearly that ratio, and the increase in accuracy would be imperceptible. Even to go back to the programme of from 22 to 26 observations used in 1897-1899 would increase the time at each station by more than two days, or 14 per cent, with a corresponding increase of cost.

EXPLANATION OF POSITIONS, LENGTHS, AND AZIMUTHS, AND OF THE UNITED STATES STANDARD DATUM.
The lengths, as already fully explained in connection with the adjustments, all depend upon the Page, Shelton, Salina, and El Paso Bases, the last mentioned having but little effect upon the lengths.

The positions-that is, the latitudes, longitudes, and the azimuths-need a special explanation.

All of the positions and azimuths have been computed upon the Clark spheroid of 1866, which has been in use in the Coast and Geodetic Survey for many years.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience let the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, be called the geodetic datzom.

The primary triangulation in the United States was commenced at various points, and existed at first as a number of detached portions in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California in the latitude of San Francisco, in the vicinity of Santa Barbara Channel, and in the vicinity of San Diego. With the lapse of time these separate pieces have expanded until they have touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in i899, joins all of the detached portions mentioned and makes them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one datum for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this is a very heavy piece of work, and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the Superintendent adopted what is now known as the United States Standard Datum, and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption will not affect the positions which have been used for geographic purposes in New England* and along the Atlantic coast to North Carolina, or those in the States of

* Many such positions are published in Appendix No. 8, Report for 1885 , Appendix No. 8, for i8S8, and Appendix No. Io, for 1594.

New York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in "The Transcontinental Triangulation" and in "The Eastern Oblique Arc of the United States," publications which deal primarily with the purely scientific problem of the determination of the figure of the earth.

As the adoption of such a standard datum is a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of geographic positions (latitudes and longitudes), of accurately determined elevations, and of distances and azimuths to engineers connected with the Coast and Geodetic Survey and to other organizations; third, the determination of the figure of the earth. The first two of these objects are purely practical; the third is purely scientific. For the first and second objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the area covered, nor that the adopted geodetic datum should be absolutely the best that can be derived from the astronomic observations at hand. It is desirable simply that the reference spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observatians which are now or may become available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one spheroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function it is also highly desirable that when a certain spheriod and geodetic datum have been adopted for a country they should be rigidly adhered to without change for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positious of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are therefore concerned in this problem. It is, however, in marked contrast to the statements made in preceding paragraphs, desirable in dealing with this problem, that with each new important accession of data, a new spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard Datum was adopted with reference to positions furnished for geographic purposes, but has no reference to the problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions, and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, the adopted datum should not differ widely from the ideal datum in which the sum of the station errors in latitude. longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in
the publications of the Survey, including its charts; and third, it was desirable, other things being equal, to adopt that datum which allowed the maximum number of positions already in the office registers to remain unchanged, and therefore vecessitated a miminum amount of new computation. These considerations led to the adoption as the United States Standard of the datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far as North Carolina.

An examination of the approximate station errors available on the United States Standard Datum at 204 latitude stations, 68 longitude stations, and 126 azimuth stations, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely to the ideal with which the algebraic sum of the station errors of each class would be zero. How closely it approaches to that ideal will be set forth in a later publication.

The adopted United States Standard Datum, upon which the positions and azinuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch, as follows:

$$
\begin{array}{llll}
\boldsymbol{q} & =39 & 13 & 26.686 \\
\lambda & =98 & 32 & 30.506 \\
\alpha \text { to Waldo } & =75 & 28 & 14.52
\end{array}
$$

The positions here published on the United States Standard Datum therefore differ considerably from those given in the "Transcontinental Triangulation" (pp. 854-865), which depend upon a special geodetic datum which was adopted for the special purpose of that publication, and which was based upon the astronomic obseryations connected with that triangulation alone.

The position given for the station Meades Ranch, in the "Transcontinental Triangulation" (p.862), is-

$$
\begin{array}{llll}
\varphi & =39 & 13 & 25.006 \\
\lambda & =98 & 32 & 30.469 \\
\alpha \text { to Waldo } & =75 & 28 & 16.52
\end{array}
$$

The corrections to reduce this position to the United States Standard Datum are-

$$
\begin{aligned}
& \prime \prime \\
& \Delta \varphi=+1.680 \\
& \Delta \lambda=+0.037 \\
& \Delta \alpha=-2.00
\end{aligned}
$$

Such corrections to reduce from a position on one datum to one on another are not constant, but vary slightly from station to station.

Index to positions, descriptions, and clevations.
STATIONS IN KANSAS.

Station.	Position.	Description	Elevation.
	Page.	Fage.	Page.
Allen	395	406	422
Blue Hill	395	406	422
Blue Hill, U. S. G. S	396	414	423
Brown.	397	408	422
Bunker Hill	395	406	422
Bunker Hill Flouring Mill	396		
Bunker Hill Schoolhouse	396		423
Bunker Hill Methodist Church	396		423
Bunker Hill Water Tower	396		423
Cooper	397	408	422
Covert.	398	415	423
Dial.............	396	407	422
Ellsworth Astronomic Station.	395		
Ellsworth North Base	395		
Ellsworth South Base	395		
Elisworth Schoolhouse	395		
Ellsworth Water Tower.	395		423
Golden Belt	395	405	422
Hardilee, U. S. G. S	398	415	423
Heath	394	405	422
Iron Mound	394	404	422
Kansas and Nebraska State Line A	399	415	
Kansas and Nebraska State Line B	399	415	423
Kansas and Nebraska State Line C	399	415	423
Kansas and, Nebraska State Line I.	399	415	423
Kansas and Nebraska State Line 2	399	415	423
Kill Creek.	396	407	422
Lawrence 2.......	396	407	422
Lewrence, U.S. G. S	398	407	
Lebanon Methodist Church.	399		422
Lebanon Schoolhouse	399		
Lincoln ...	395	405	42
Jincoln College.	395		423
Lipps	397	408	422
Lone Tree....	396		423
Meades Ranch	395	406	422
Medicine Peak	398		423
New Cambria Stone Church	396		
North Pole Mound	394	404	422
Oak Canyon	401		
Old Well 2.	397	408	422
Old Well, U. S. G. S	398	407	
Russell High School.	396		423
Russell North School.	396		423
Russell Northwest Base.	396		422
Russell Southeast Base	'396		422
Russell Southeast Base Astronomic Station	396		
Russell Tripod..	396		423
Salina East Base	394	404	422
Salina Paper Mill	396		
Salina, Phillip's House	395.		423
Salina, St. John's Military College	395		423
Salina West Base................	394	404	422
Small Peak	395		423
Section 13, T. IT, R. I, SW. corner	396		
Section 16, T. 5, R. 11 , SE. corner...	398		
Section 22, T. 14, R. 14, NW. corner.	396		

Index to positions, descriptions, and elevations-Continued.
stations in kansas-Continued.

Station.	Position.	Description.	Elevation.
	Page.	Page.	Page.
Section 31, T. 13, R. 12, SW. corner	396		
Smith Center Court-House	399		
Smith Center Standpipe	398		423
Soldier Cap Mound.....	395		423
Sugar Loaf Mound	395		423
Thompson.	394	405	422
Tipton, U. S. G. S	398	414	423
Turkey Point	395		423
Vine Creek	394	403	422
Waldo	395	406	422
Wilson	395	405	422

STATIONS IN NEBRASKA.

Bartlett Windmill (Rishop's)	401		
Belfry and Spire	400		
Bladen Congregational Church.	399		
Blue Hill	397	408	422
Blue Hill Schoolhouse.	399		
Blue Hill Standpipe.	399		423
Brayton	397	412	422
Buffalo .	398	412	423
Cameron	397	4.10	422
Campbell Schoolhouse	399		
Campbell Smokestack	399		
Carter	399	415	423
Chadwick	401		423
Cherry	401	415	423
Clark	402	416	423
Custer.	398	412	423
Daily	398	412	422
Danish Lutheran Church	399	416	
Deer	397	411	422
Deloit	398	413	423
Divide	397	411	422
Doniphan Chimney	401		423
Elin.	398	411	423
Ericson	401	416	423
Evan's House	402		
Gibbon Elevator	401		
Gibbon Railway Windmill	401		
Grand Island Presbyterian Church	401		
Grand Island Standpipe	401		423
Greeley Center Catholic Church	401		
Hall.....	398	413	423
Hastings Court-House	400		
Hastings Presbyterian Church	400		
Hastings Schoolhouse	400		
Hastings Standpipe	400		423
Hartwell Elevator.	400		
Herrick	397	408	422
Insane Asylum.	400		
Insane Asylum Standpipe	400		423
Kansas and Nebraska State Line A	399		
Kansas and Nebraska State Line B	399	415	423

Index to positions, descriptions, and elevations-Continued.
STATIONS IN NEMRASKA-Continued.

Station.	Position, Description.		Elevation.
	Pagre.	Page.	Page.
Kansas and Nebraska State Line C	399	415	423
Kansas and Nebraska State Line 1	399	415	423
Kansas and Nebraska State Line 2	399	415	423
Kearney.	400	415	423
Kearney Reform School Standpipe	400		423
Kenesaw Elevator..............	401		
Kenesaw Schoolhouse.	400		
Lars.	397	409	422
Lowell	397	410	422
Madden	399	415	423
Mason.	397	409	422
McClure.	398	413	423
Meisner's House	401		
Methodist Church.	399	$4: 6$	
Minden Catholic Church	400		
Minden Presbyterian Church	400		
Minden Schoolhouse	400		
Minden Standpipe	400		423
Minden West Schoolhouse	400		
Norman Church	400		
Norman Elevator	400		
Oak	401	416	423
Old	398	414	423
O'Neill Catholic Church	402		
O'Neill Court-House	402		
O'Neill Standpipe.	402		423
Ono ...d	398	412	423
Orchard Schoolhouse.	402		
Page Northeast Base	398	414	422 422
Page Southwest Base	398	413	422
Page Schoolhouse.	402		
Prairie Prosser	398	414	423:
Prosser Pompey	397 397	409 411	422 422
Red Cloud Standpipe	399		423
Sand Creek.	397	409	422
Schoolhouse	402		
Section 3, T. 17, R. II, SE. corner	402		
Section 4, T. it, R. 12, S. center.	402		
Section 6, T. ${ }^{\text {I }}$, R. 20, center	402		
Section 11, T. 7, R. 12, S. center.	402		
Section 16, T. 14, R. 15, NW. corner	402		
Section 2I, T. 27, R. 8, NE. corner.	402		
Section 24, T. 4, R. II, S. center	402		
Section 32, T. 6, R. I4, N. center	402		
Shelton East Base.	397	410	422
Shelton Elevator.	401		
Shelton Presbyterian Church	401		
Shelton West Base	397	410	422
Valley.	397	410	422
Venus Windmill	402		
Upland Elevator	399		
Walnut.	398 397	414	
White Spire	399	416	422
Wood River Church	401		
Yale	397	411	422

TABLE OF POSITIONS, AZIMUTHS, AND LENGTHS.

The following tables give the positions of all points, and the azimuths and lengths of all lines, fixed by the triangulation here treated.

These tables may be conveniently consulted by using as finders the four sketches at the end of this appendix and the preceding index. In the second column of the index will be found for each point, first a reference to the page on which its position is given, and following this a reference to each page on which the azimuth and length of any line radiating from this point may be found.

The positions of all points for which the latitudes and longitudes are given to thousandths of seconds have been fixed by a complete adjustment of the triangulation concerned, so as to make all the triangles close and remove all discrepancies between lengths, azimuths, and positions. Such adjustments are of a very high degree of accuracy, as indicated in the preceding pages, for points on the primary scheme, of a less degree of accuracy for secondary points, and of a still more approximate character for tertiary points determined by intersections only. In each class all discrepancies are removed to the limit given by the decimal place shown. The statements in regard to the various degrees of accuracy refer to the manner in which the discrepancies were removed.

If less than three decimal places are given in the latitudes and longitudes the point in question has not been fixed by fully adjusted triangulation, or is fixed in such a way as to furnish no check on its position, and the accuracy with which its position is known is indicated in part by the number of decimal places given.

The seconds in meters are given for the convenience of draftsmen.
In the columns giving azinuths, distances, and logarithms of distances various numbers of decimal places are given, the intention being to indicate the accuracy to a certain extent, it being understood that in each quantity two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, and in a few cases some doubt may be cast upon the third figure.

Station.	Latitude and longitude.	$\begin{gathered} \text { Seconds } \\ \text { in } \\ \text { meters. } \end{gathered}$	Azimuth.	Back szimuth.	To station.	Distance.	Logarithms.
Vine Creek	011		O, "	$\bigcirc 1$.		Meters.	
	$\begin{array}{llll}39 & 06 & 06.360 \\ 97 & 23 & 21.914\end{array}$	196.1 526.6					
Iron Mound	38 8 97 97 30	923.0 1002.5	1975747.76	180224.16	Vine Creek	34253.50	4.5347049
Thompson	$\begin{array}{lll}39 & 04 & 14.794 \\ 97 & 49 & 44.067\end{array}$	456.3 1059	$\begin{array}{llll}264 & 41 & 30.14 \\ 316 & 32 & 17.01\end{array}$	$\begin{array}{rrr}84 & 58 & 07.67 \\ 136 & 44 & 15.03\end{array}$	Vine Creek Iron Mound	38181.14 40075.82	4. 5818489
		1059.3	3163217.01	13644 15.08		40075.82	4.6028824
North Poie Mound	$\begin{array}{llll}38 & 57 & 09.869\end{array}$	304.3	2285150.08	49 150 17	Vine Creek	25183.03	
	973631.235	752. I	$\begin{array}{\|lll\|}332 & 14 \\ 124 & 15.85\end{array}$	$\begin{array}{llll}152 & 17 & 55.35 \\ 304 & 25 & \mathbf{0 2} .01\end{array}$	Iron Mound	18113.49 23142.19	4. 2580021
			1243321.07	3042502.01	Thompson	23142.19	4.3644044
Salina East Base	385225.110	774.2	34546 19.74	1654707.53	Iron Nound	7481.14	3. 8739678
	973157.754	1392.2	1430826.59 !	323 O5 34.80	North Pole Mound	10978.18	4.0405304
Salina West Base		236.6					
	9736 10. 840	261.4	24836 22. 26		Salina E. Base	6552.446	3.8164035
			3012714.28	1213040.75	Iron Mound	9313.81	3.9691274
Heath	385040.442	1247.0	$\begin{array}{lllll}217 & 13 & 08.57\end{array}$	372127.91		31563.71	4. 4991880
	980258.247	1404.7		634057.94	Vine Creek	63934. 06	4. 8057.323
			25225 4.5.16	724221.71	North Pole Mound	40084. 51	4. 6029766
			2744516.98 :	950531.22	Iron Mound	468800.33	$4.6710{ }^{4} 33$

Table of positions, azimuths, and lengths-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azinuth.	Back azimuth.	To station.	Distance.	Logarithms.
Lincoln	0 - "		- ' 1	"		Meters.	
	$3905 \quad 29183$	900.0	2753124.62	954137.30	'Thompson	23471.89	4.3705480
	980555.923	1344.0	351 o6 48.79	1710840.53	Heath	27737.76	4.4430713
Golden Belt	385842.872	1321.9	2350558.82	551350.26	Lincoln	21934.92	4.3411360
	981824488	589.4	25515727.70	761530.98	Thompson	42631.89	4.6297346
			30313626.15	1234607.94	Heath	26820.24	4.4284626
Wilson	$3^{8} 5150.913$	1569.9	23056 05. 33	510257.34	Golden Belt	20182.61	4.3049773
	981915.508	373.8	2330242.57	$\begin{array}{lllll}53 & 17 & 22.94\end{array}$	Lincoln	42091.26	4.6241919
			$27307 \quad 57.76$	932427.25	Heath	38094. 10	$4 \cdot 5808577$
Meades Ranch	391326.686	823.0	2905350.41	1111037.33	İincoln	41019.97	4.6129954
	983230.506	731.7	3143036.47	1344912.64	Heath	59933.30	4.7776682
			3231224.56	1432118.14	Golden Belt	34001.33	4. 5314959
			353178181	$1 \begin{array}{lll}73 & 19 & 24.64\end{array}$	Wilson	40232. 35	4.6045754
Bunker Hill	385216.436	506.8	1995129.13	195740.79	Meades Ranch	41661. 11	4.6197308
	984220.476	493.6	2721847.22	$92 \quad 2659.81$	Wilson	18940. 56	4.2773929
Waldo	$39 \% 955.645$	1716. 1	$\begin{array}{lllll}255 & 17 & 17.52\end{array}$	75 28-14.52	Meades Ranch	25783.11	4.4113352
	984950.128	1203.4	31817174.47	1383011.69	Wilson	44734.45	4.6506421
			3413812.02	1614255.11	Bunker Hill	34407.64	4. 5366549
Blue Hill	365857.310	1767.1	$228 \quad 48$ 22.76	$48 \quad 5832.79$	Waldo	30876.87	4.4896332
	99 0S 57.933	1394.4	2404531.84	610637.94	Meades Ranch	55185.00	4.7418210
	99 05 57.933	13	2894643.15	1100133.78	Bunker Hill	36312.86	4. 5600604
Allen	384935.689	1100.5	1311958.31	3111123.51	Blue Hill	26260. 11	4.4192965
	985218.705	451.2	1852458.50	52632.00	Waldo	37789. 35	4.5773694
			2505906.05	710521.30	Bunker Hill	15253.90	4. 1833810
Fllsworth Water Tower, pole*		320.7	1224045.3	30231408.7	Wilson	26357.5	4.420904
	$9813 \quad 55.32$	1336.2	2324552.8	525244.5	Heath	19903.0	4. 2984919
Ellsworth Astronomic Station*	384348.76	1503.5	1592928.4	33929 21.9	Ellsworth W.Tower	712.5	2.85280
	981344.98	1086.5					
Filsworth: North Base*	38435751	1773.3	290959	2090955	Ellsworth Astr. Sta.	309. 2	2. 49018
	$98133^{8.74}$	935.7	1344734	3144724	Eilsworth W.'Tower	564.0	2. 75132
Ellsworth South Base*	394352.21	1609.9	90617	1890616	Ellsworth Astr.Sta. Ellsworth N. Base	107.7	
	981344.28	1069.5	$\begin{array}{llll}219 & 14 & 25 \\ 154 & 34 & 30\end{array}$	391429 3343423	Ellsworth N. Base	211. 23	2. 32475 2. 79.320
Ellsworth Schoolhouse. cupola*			271626	20716 356 54 54	Ellsworth Astr.Sta. Ellsworth S. Base		
	981344.13	1065.8	$\begin{array}{llll}176 & 54 & 02 \\ 209 & 29 & 16\end{array}$	356 29 29	Ellsworth S. Base Ellsworth N. Base	66.4 264.1	1. 82239 2.42185
Salina, Phillips' House, dome	365020.26	624.7	1401511	$\begin{array}{llll}320 & 05 \\ 119 & 19\end{array}$	Thompson	33508.0 6951.0	
	973452.83	1274.2	19 299 91 91 16149	$\begin{array}{llll}119 & 19 & 26 \\ 270 & 43 & 50\end{array}$	Iron Mound Heath	6951.0 40652.0	3. 842046 4. 609082
			910127	2704350	Heath	40052.0	4.609002
Salina, St. John's Military College, vane on tower		1403.3	1402958	3202139	Thompson	29974.0	4.476745
	$97 \quad 3630.95$	746.2	3053330	1253709	Iron Mound	10362.8	$\text { 4. } 015479$
	- 3 30.		${ }_{87}$ of 15	2665139	Heath	38327.1	4.583506
Soldier Cap Mound*	384258.46	1802.6	176 0443	3560332	Thompson	39450.5	4. 596052
	974751.84	1252.5	2473420	674505	Iron Mound	26893.2	4.429643
Sugar Loaf Mound, rock pile		874.8	1021052	2820623	Heath	10564.5	4.023851
	975550.04	1207.	1535019	3334357	Lincoln	33025.4	4.518848
			197 272 272 2	$\begin{array}{llll}17 & 54 & 07 \\ 92 & 57 & 57\end{array}$	Thompson ${ }_{\text {Iron Mound }}$	$\begin{aligned} & 28720.0 \\ & 36437.5 \end{aligned}$	4.458185 4. 561549
			2724211	925757	Iron Mound	36437.5	4.561549
Lincoln College, cupola		1844.1			Heath		
	980850.84	1222.8	$\begin{array}{rrrr}6 \times 18 & 09 \\ 121 \quad 58 & 19\end{array}$	246 3012 301	Golden Belt Meades Ranch	15079.6 40143.6	4. 178391 4.603616
			$1215^{88} 19$	3014323	Meades Ranch	40143.6	4.603616
Turkey Point		534.4	112 09 202 15 104		Goiden Belt		
	$98 \text { 1o } 45.68$	1100.2	$\begin{array}{llll}202 & 15 & 04 \\ 244 & 00 & 57\end{array}$	$\begin{array}{llll}22 & 18 & 06 \\ 64 & 14 & 11\end{array}$	İincoln ${ }_{\text {Thompson }}$	$\begin{aligned} & 18390.1 \\ & 33739.1 \end{aligned}$	4. 264583 4. 528134
			$\begin{array}{llll} & 312 & 3^{8} \quad 26\end{array}$	1324319	Heath	15324.1	4. 185374
Small Peak		690.5	3004408	1205735	Lincoln	35677. 0	4. 552388
	982711.91	285.6	$33736 \quad 24$	1574157	Golden Belt	33325.4	4. 522776
			35500	1835342	Wilson	333627.4	4.639759
			645946	2445624	Meades Ranch	8432.6	3.925961

* No check on this position.

Table of positions, azimuths, and lengths-Continued.

Station.	$\begin{gathered} \text { Latitude } \\ \text { and } \\ \text { angitude. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Seconds } \\ \text { in } \\ \text { meters. } \end{gathered}\right.$	Azimuth.	$\begin{gathered} \text { Back } \\ \text { azimuth. } \end{gathered}$	To station.	Distance.	Logarithms.
	- ' ${ }^{\prime}$		- '"	- '"		Meters.	
Lone Tree (cottonwood)*		1119.8 $117^{6.2}$	$\begin{array}{llll}71 & 27 & 54 \\ 11 & 33 & 53\end{array}$	251 291 290 30	Golden Belt Lincoln	28321.5 9483.7	4. 452116 3. 976979
Bunker Hill Water	$3^{8} 52 \begin{array}{rl}5 & 15.48\end{array}$		501306	230 Or 51	Fairmount	33923.6	4. 530502
Tower	984218.17	438.0	711537	2510920	Allen	15296.8	4. 184600
				2894734	Blue Hill	36374. 2	4.560794
			161 38 272 13 32 15		Waldo	34443.2 18883.7	$\begin{aligned} & 4 \cdot 537220 \\ & 4.276088 \end{aligned}$
Bunker Hill Method-	385234.29	1057.3	6932 or	2492538	Allen	15712.1	4. 196234
ist Church, spire	984208.46	203.9	160 374 374 2	340 34 9 10	Waldo	33978.7 38681.8	4.531207 4.27148
			2740217	94 to 22			
Bunker Hill School-	385234.81	1073.4	694151	2493524	Allen	15878.8	4. 200817
house, cupola .	9842 Or. 34	32.3	1604052	3403557	Waldo	34020.0	4.531734
			1993127	193727	Meades Ranch	40878.1	4. 612491
			2740734	941535	Wilson	18511.9	4.26745°
Bunker Fill Flouring	385230.80	949.7	49 27 24 69 25 06 1	229 16 13 249 8	Fairmount	34119.8 15322.8	4. 533007 4.185338 4.5858
Mill, iron chimney	984224.02	579.0	69 161 16706	$\begin{array}{llll}249 & 18 & 53 \\ 341 & 32 & 21\end{array}$	Allen	15322.8 33960.4	4. ${ }^{\text {4. } 53533973}$
Russell Tripod	385439.51	1218.3	2945135	1145543	Bunker Hill	10488.0	4. 020404
Russell	984854.96	1324.2	27418	2073900	Allen	${ }^{10578.2}$	4.024410
			1771901	3571826	Wald	28282.3	4.451514
Russell High School,	385319.51	601.6	1165025	2964126	Blue Hill	23131.2	4. 364199
cupola, pole	985140.44	974.6	184 216544 216	${ }^{4} 5653$	Waldo ${ }_{\text {Meades }}$	30832.4	4. 489008 4. 666249
			216 278 278 8	36 8215 8 14 15	Meades Ranch	46371.3 1363.2	4.134714
			73704	187 3640	Allen	6963.1	3. 8428802
			274517	2073954	Fairmount	26796. 6	4.428079
Russell Northwest	3853 36.93	1138.7	2832832	10333 o1	Bunker Hill	10623. I	4.026250
Base	984929.00	698.9	284937	2084750	Allen	8490.0	3.928910
			1123652	2922630	Blue Hill	25785.5	4.411376
			1790216	3590203	Waldo	30185.0	4.479791
Russell Southeast Base			662003	2461648	Allen	${ }^{8181.2}$	3. 912819
Russell Southeast Base	984708.07	194.6	1172207	2971017	Blue Hill	30622.8	4.486045
			1404305	3204136	Russell NW. Base	5364.4	3. 729521
			1733205	3533024	Waldo Will	39553.0	4. 53.38486
			$256 \quad 2619$	762920	Bunker Hill	7132.0	3.853213
Russell North School,	385353.99	1664.7	28000245	1000402	Russell NW. Base	3012.9	3.478980
tall cupola	985132.10	773.5	2824203	1024749	Bunker Hill	13631.5	4. 134543
			3061730	1262015	Russell SE. Base	7898.5	3. 897543
			1844312	44418	Waldo	29755.7	4.473570
Blue Hill, U. S. Geolog-	392029.64	914.0	3254925	1455741	Lincoln	33537. ${ }^{\text {i }}$	4.525527
ical Survey	$98 \quad 1859.83$	1432.8	3584726	1784749	Golden Belt	40306.9	4.605379
Russell SE. Base Astr. Sta.	$\begin{array}{lll} 38 & 51 & 22.30 \\ 98 & 47 & 07.81 \end{array}$	$\begin{aligned} & 687.6 \\ & 188.3 \end{aligned}$	90	270	Russell SE. Base	6.16	0. 78958
Salina Paper Mill, tall	385054.29	1674.1	1384138	3184128	Saltua West Base	549.4	2.739887
brick chimney	973555.80	1345.6	1754713	3554651	North Pole Mound	1612.9 8789	4. 064941
			3002343	12027 co	Irou Mound	8790.7	3. 944022
New Cambria Stone		${ }^{1358.0}$	25718	1825707	Iron Mound	7846. 2	
Church, white spire*	973024.78	597.3	1325430	3125040	North Pole Mound	12047. 2	4. 080887
Section 31, 'T. 13, R. 12, SW. cor., stone	$\begin{array}{lll} 38 & 52 & 15.02 \\ 98 & 42 & 22.88 \end{array}$	$\begin{aligned} & 463.2 \\ & 55 \pm .6 \end{aligned}$	2325337	525339	Bunker Hill	72.6	1. 86096
Section 13, T. II, R. I, NW. cor., stone	$\begin{array}{lll} 39 & 0 & 52.08 \\ 97 & 23 & 22.70 \end{array}$	$\begin{array}{r} 1606.0 \\ 545.4 \end{array}$	3521948	1721948	Vine Creek	142.2	2.15305
Section 22, T. 14, R. 14, NW. cor., stone	$\begin{array}{lll} 38 & 49 & 38.06 \\ 98 & 52 & 23.47 \end{array}$	$\begin{array}{r} 1173.6 \\ 566 .{ }^{2} \end{array}$	30227 II	1228714	Allen	136.2	2. 13413
Dial		$\begin{aligned} & 118.2 \\ & 175.4 \end{aligned}$	$\begin{array}{r} 278 \quad 37 \quad 23.35 \\ 292238.29 \end{array}$	$\begin{array}{rrr} 98 & 46 & 00.02 \\ 209 & 20 & 17.44 \end{array}$	Meades Ranch waldo	19817. 10 10904. 29	$\begin{aligned} & \text { 4. } 2970402 \\ & 4.0375973 \end{aligned}$
Kill Creek	$\begin{array}{ll} 39 & 16 \\ 97 & 51.330 \\ 53 & 52.373 \end{array}$	$\begin{aligned} & 1583.0 \\ & 1255.2 \end{aligned}$	$\begin{array}{lll} 286 & 31 & 07.37 \\ 335 & 35 & 37.51 \end{array}$	10636 or. 72	Dial Waldo	$\begin{aligned} & 1631.36 \\ & 14074.56 \end{aligned}$	4. 0656305 4. 1484348
Lawrence 2	$\begin{array}{lll} 39 & 31 & 13.088 \\ 98 & 51 & 27.586 \end{array}$	403.6 659.0	$\begin{array}{rl} 345 & 32.00 \\ 7 & 26 \\ 723.19 \end{array}$	$\begin{array}{llll} 165 & 38 & 45.23 \\ 187 & 24 & 51.29 \end{array}$	Dial Kill Creek	30858.07 26800.75	4. 4893688 4. 4281469

* No check on this position.

Table of positions, azimuths, and lengths-Continued.

Table of positions, azimuths, and lengths-Continued.

Station.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	l.ogarithms.
Custer	- , "		- , "	- '"		Meters.	
	413811.330	349.5	32723.03	$183 \quad 2650.37$	Brayton	18954.46	4. 2777115
	48 8	1043.2	7128 01. 21	251 0805.43	Yale	44075.97	4.6442019
Daily	413545.236	1395.6	2421437.63	621843.66	Custer	9688.99	3. 9862783
	98 38	1285.7	$332 \begin{array}{llll}38 & 49.42\end{array}$	1524222.39	Brayton	16222.91	4. 2101288
			$\begin{array}{r}73 \\ \hline 7\end{array}$	2534133.04	Yale	34544.82	4.5383829
E1m	414400.909	28.0	2922744.53	1124010.79	Custer	28104. 43	4. 4487748
	985127.207	623.8	3111525.66	1312345.34.	Daily	23157.70	4. 3646953
			322039.90	2121308.31	Vale	29471.05	4.4693956
Ono		876.5	$\begin{array}{llll}23 & 38 & 55.27\end{array}$	20334332.25	Custer	22797. 84	4. 3578937
	$95 \quad 2609.961$	229.9	740317.45	2534626.57	Eltn	36467.23	4.5619027
Buffalo	415547.859	1476.6	2955133.28	1160309.50	Ono	26747.68	4.4272861
	984332.927	758.6	3351709.64	$155 \quad 24$ 21. 3.3	Custer	3586.5 .46	4. 5546764
			264124.10	2064607.78	Elmi	24402.79	4. 3874394
Deloit	42 Of 41.579	1282.9	92217.69	1899 1927.50	Ono	36057.72	4. 5569988
	$9^{8} 2155.540$	1275.3	512744.90	$231 \quad 1316.15$	Buffalo	38214.93	4.5822331
McClure	42.1204 .636	143.0	2914714.74	1115451.75	Deloit	16833. 15	4. 2261653
	983316.247	372.7	3464603.16	1665048.48	Ono	42978. 35	4. 6332497
			$25 \quad 1508.14$	2050814.97	Buffalo	33305.61	4.5225174
Hall		105.6	30 10 18.17	2100503.35	Deloit	20043.58	4. 3019752
	$98814 \begin{array}{lllllll} & 36.834\end{array}$	843.7	664610.57	24633 37.90	McClure	27947.41	4.4463415
Page Southwest Base		787.4	31103 11.69	131 10 51.85	Hall	20743.59	4.3168839
	${ }^{4} 825$ 59.745	1365.8	3494417.87	1694702.18	Deloit	31477.62	4.4980019
			220358.32	2015904.48	McClure	26656.61	4.4258050
Old		1463.5	3443615.64	1643841.65	Hall	18688.67	4. 2715785
	$\begin{array}{lllllllllll}48 & 18 & 13.438\end{array}$	307.0	674225.02	$247 \quad 3710.33$	Page SW. Base	11521.60	4.0615129
Page Northeast Base	$42 \begin{array}{lll}42853.601\end{array}$	1653.9	2902627.20	1102908.93	Old	${ }_{58} 80.12$	3. 7664217
	9822 12.960	296.0	$3^{8} 5546.01$	$218 \quad 53 \quad 12.94$	Page SW. Base	8250.99	3.9165060
Walnut		314.3	3593802.40	1793808.36	Hall	31682.15	4.5008147
	931445.669	1041.3	190944.77	1990724.34	Old sw	${ }^{1} 4461.37$	4. 1602095
			403151.28	2202415.84	Page SW. Base	23713.36	4.3749931
			412025.31	2211522.93	lage NE. Base	15466.81	4. 1894007
Prairie	423229.6699	915.5	3041248.15	1241906.39	Old	15467.56	4. 1894218
	98 2733.286	759.5	3121929.45	1322305.91	Page NE. Base	9895.82	3. 9954517
			35043 ll 188	$17044 \begin{array}{llll}14.35\end{array}$	Page SW. Base	13260.80	4. 1225696
			2540800.14		Walnut	18196.70	4. 2599926
Lawrence, U. S. G. S.	393153.081	403.4	9327	27327	Lawrence 2	$3 \cdot 377$	0. 52853
	935: 27.445	655.6					
Old Well, U. S. G. S.		1320. 7			Iawrence, U.S.G.S		
	${ }^{8} 83359.502$	1419.4	2725231	$925^{2} 32$	Old well 2	30.875	1. 48961
Tipton, U. S. G. S.	$\begin{array}{llll}39 & 21 & 33 . & 77 \\ 94 & 31 & 56\end{array}$	1041.4			Meades Ranch Dial		$\begin{aligned} & \text { 4. } 177338 \\ & 4 \cdot 374231 \end{aligned}$
	$9^{3} 31$ 36 1	1348.1	59 122 128 38	$\begin{array}{llll}239 & 23 & 43 \\ 302 & 25 & 41\end{array}$	Dial ${ }_{\text {Lawrence } 2}$	23671.8 33222.6	$\begin{aligned} & 4.374231 \\ & 4.521433 \end{aligned}$
			174 O4 9	3540322	Old well 2	28184.4	4.450009
Medicine Peak		1153.4	475136	2274542	Dial	18072	4.25701
	${ }^{3} 364848$	1159.7	701829	2500740	Kill Creek	26066	4.41607
Covert	$39{ }^{21} 40.58$	125.4	231700	203544	Dial	13318.0	4. 124439
	984227.77	684.8	613102	2412348	Kill Creek	18568.3	4. 271104
			$1435^{2} 33^{\prime}$	3234648	Lawrence 2	21871.7	4.339882
			2033532	234056	old Well 2	30371.5	4.482466
section $16, T$. SE. corner	$\begin{array}{llll}39 & 36 & 39.57 \\ 98 & 33 & 39.12\end{array}$	1220.3 933.3	1021444	2821432	Old well 2	466.0	2.66839
Hardilee, U. S. G. S.	395052.82	1629. I	205485	255226	I,ipps	18089.5	4. 257426
	gi 5701.67	39.7	2902721	1103648	Brown	22478.6	4.351769
			3473740	1674113	Lawrence 2	37244.5	4.571063
Smith Center Standpipe					I,ipps	25082.2	4.399366
	944634.26	88	2704605	904850	Brown	6130.4	3. 787487
			134629	1934322	Lawrence 2	29426.6	4.468740

Table of positions, azimuths, and lengths-Continued.

* No check on this position.

Table of positions, azimuths, and lengths-Continued.

Table of positions, azimuths, and lengths-Continued.

Station.	Latitude and longitude.	$\left\lvert\, \begin{gathered} \text { seconds } \\ \text { in } \\ \text { meters. } \end{gathered}\right.$	Azimuth.	Back azimuth.	To station.	Distance.	Iogarithns.
Kenesaw Elevator	- ' $"$		- ' 1	- ' "		Meters.	
	$40 \begin{array}{llll}47 & 12.243\end{array}$	377.6	3375953.7	$\begin{array}{llll}158 & 00 & 38.8 \\ 193 & 49\end{array}$	Wanda	4353.5 2029.7	$3.633_{4} 0$
	983927.504	646.5		1934914.8 26357	Sand Creek	20299.7 14604.7	4. 307490 4. 164493
Shelton Presbyterian Church, spire	$4046 \quad 36,318$	1120.2	1952110.9	152335.2	Cameron	19488.0	4. 299765
	9844 O1, 783	41.8	3040219.9		Prosser	14777.1	4. 369.558
			23 O7 12.6	2030328.5	Lowell	20572.6	4.313290
			723503.8	2523112.8	Shelton West Base	8699.0	3.939469
			1213525.0	3012919.6	Valley	15375.1	4. 186519
Shelton Elevator	404647,912	${ }^{5477.8}$	225235.5	2024849.8	Lowvell west	20923.6	4.320637
	984359.404	1393.0	702913.1	2502520.5	Shelton West Base	8865.2	3.9476%
			1202007.8	3001400.8	Valley	15239.0	4. 182956
Meisner's House, cupola	404750.110	1545.6	95133.9	${ }^{189} 515123.2$	Shelton East Base	2245.3	3.351272
	984422.938	537.7	114 37 19544.9	294 18 18 56	Valley	13862.4	4.141838
			19853 56.4	185634.6	Cameron	17457.9	4. 241991
Gibbon Elevator	404457.900	1785.9	2480630.8	680700.4	Shelton West Base	1147.1	3. 059595
	985040.982	961.4	24953 31. 6	695727.8	Shelton East Base	9031.2	3.955744
			3551748.9	1751825.1	L.owell	15942.4	4. 2025.53
Gibbon Rwy. Windmill	404458.575	1806.8	2493415.7	6934 46. 1	Shelton West Base	1165.7	3. 066599
	985042.178	989.5	2500435.5	70.0832 .5	Shelton Fast Base	9050.4	3. 956668
			3551209.0	1751246.0	Lowell	15965.4	4. 203 I 80
Doniphan Chimney	404637.661	1261.7	215732.2	2015334.1	Masoln	22969.0	4.361142
	9822 05. 105	119.7	66 O1 40.9	2455302.0	Prosser	20427.7	4.310220
			1002905.4	2800839.5	Valley	44685.4	4.650166
			1261435.3	3060238.2	Cameron	31788.8	4.502274
			1684729.4	3484405.5	Pompey	37358.9	4.572394
Chadwick*		1491.9	1975423	175608	Brayton	11986.4	
	983613.12	304.9	3361437	1562031	Pomipey	31092.5	4.492655
Wood River Church, spire		668.8	3534929.7	1735010.0	Prosser	13460.5	4. 129060
	983621.863	512.4	9706 59.8	2765553.5	Valley	24055.5	4.381215
			1574546.0	3374309.4	Ca eron	14792.2	4. 170033
Grand Island Presbyterian Church, spire*	405554.58	1683.5	93 2034	273073^{6}	Cameron	27824.6	4.444429
	9820.33 .65	787.2	1545418	3340954	Pompey	21618.0	4.334816
Oak Canyon		1683.9	3200237.6	140 Io 42.2	Brayton	26397.4	4.421561
	984544.827	1037.3	565653.4	2364535.0	Yale	28284.3	4.451545
			1400430.1	3200042.2	Elm	12329. 1	4.090930
Grand Island Standnipe	$40 \quad 55$ 40. 139	1238.1		2194151.3	Prosser	32603.7	
	982030.110	704.5	792741.0	2590611.0	Valley Cameron	46956.5	4.671696
			$\begin{array}{r}94 \\ 14 \\ 154 \\ \hline 22\end{array}$	$\begin{array}{llll}274 & \text { O1 } & 44.2 \\ 334 & 28 & 27.6\end{array}$	Cameron Pompey	27936.7 22055.6	4.446175 4.343519
Cherry	410054.630	1685. 2	2455922.2	661009.6	Pompey	25174.8	4.400966
	984341.870	978.3	32 S 3451.1	1483702.7	Canmeron	9004.5	3. 954460
			362147.51	2161528.2	Valley	22876.0	4. 3.593^{81}
			1253138.1	$\begin{array}{llll}305 & 18 & 52.6 \\ 342 & 01 \\ 57.8\end{array}$	Divide	33344.7	4. 523027
			1620522.2	342 or 57.8	Deer	23544.8	4.371894
Oak	41.2101 .481	45.7	2403631.7	604723.8	Brayton	26259.6	4.419289
	985000.247	$5 \cdot 7$	3535636.4	173 2720.9	Deer	14912.8	4. 173560
			454138.0	2253259.5	Divide	25599.3	4.408229
			1344813.6	3143946.1	Yale	25064. 5	4.399059
Greeley Center Catholic Church, spire	4113303.591	110.8	130042.3	192.5940 .1	Brayton	9674. ז	3.985609
	983200.449	10.4	1172658.2	2972222.8	Daily	10832.4	4.034723
			1734732.9	3534703.2	Custer	9550. 2	3.980010
Ericson	414848.785	1505. 1	2654135.9	854932.1	Ono	16533.9	4. 218375
	$98 \quad 3804.377$	101.0	3392402.1	1592734.5	Custer	21005.8	4.322340
			24817.8 64 49 19.5	182 244 1943.5	Daily	24202.6	$4 \cdot 383862$
			$\begin{array}{rrrr}64 & 28 & 49.5 \\ 49 & 39 & 37.3\end{array}$	$\begin{array}{llll}244 & 19 & 54.6 \\ 329 & 35 & 57.9\end{array}$	Fim	20559.6	4.313014
			1493937.2	3293557.9	Buffalo	14985.9	4. 575684
Bartlett Windmill (Bishop's)	$4 \mathrm{~L} 5256,157$	1732.5	2075242.2	280012.3	Deloit	33018.2	4. 518754
	983307.906	182.3	3033440.8	$123 \quad 3919.7$	Ono	11577.1	4.063600
			1101452.6	29007 55. I	Buffalo	15349.0	4.186079

S. Doc. $50-26$

* No check on this position.

Table of positions, azimuths, and lengths-Continued.

Station.	Latitude and longitude.		Azimuth.	$\begin{gathered} \text { Back } \\ \text { azimuth. } \end{gathered}$	Tostation.	Distance.	Loga-
Clark	- , "	$\begin{aligned} & 969.4 \\ & 299.7 \end{aligned}$	- ' ${ }^{\prime}$	- ' "		Meters.	
			36 86 82 15	$\begin{array}{llll}216 & 24 & 22.9 \\ 261 & 57 & 28.0\end{array}$		20829.4 36736.4	4. 318677 4.565097
	981713.015		821504.2 1384002.0	$\begin{array}{llll}261 & 57 & 28.0 \\ 318 & 29 \\ 16.4\end{array}$	Buffalo meclure	36736.4 33460.8	4. 5650907 4.524 .536
			$\begin{array}{r}138 \\ 160 \\ 169 \\ 59 \\ \hline 17.9\end{array}$		Deloit	$\begin{array}{r}33460.8 \\ 19914.8 \\ \hline\end{array}$	4. 524.536 4.299176
			1853859.6	34 504044	Hall	36338.3	4.560365
Schoolhouse, belfry	$\begin{array}{llll}42 & 20 & 08.277 \\ 98 & 17 & 04.274\end{array}$	$\begin{array}{r} 255.4 \\ 97.9 \end{array}$	3184515.1	1384654.4	Hall	5122.6	3. 709489
			1284037.2	308 3 365 36 36 36.4	Page sw. Base	15680.7 17670.4	4.195366
			156 173 1738		Page NE. Base	17679.4 14255.4	4. 247448 4.153980
Orchard Schoolhouse, belfry	$\begin{array}{llll}42 & 20 & 14.088 \\ 98 & 14 & 17.181\end{array}$	433.2393.3	62224.5	1862211.3	Hall	4055.2	3. 608015
			$120{ }^{56} 36.9$	3004843.5	Page SW. Base	18727.0	4. 272467
				325 338 38 51 155 35.7	Page NE. Base	19374.4 14996.8	4.287229
			1505415.0				
Page Schoolhouse, belfry	42489825	$\begin{array}{r} 1592.4 \\ 153.2 \end{array}$	3510652.4	1710900.9	Deloit	28418.3	4.453598
			271509.3	2070939.8	McClure	24527.1	4. 369646
			1571728.0	3371652.2	Page SW. Base	3141.3	3.497116
Venus Windmill*	422637.24	1149.0	804812	2604131	Fage SW. Base	${ }_{1}^{13763.4}$	4. 135726
	981605.45	124.5	12632 or	3063034	Old	3639.3	3. 561018
O'Neill Catholic Church, spire	$\begin{array}{lll} 42 & 27 & 36.985 \\ 98 & 38 & 52.745 \end{array}$	$\begin{aligned} & 1141.2 \\ & I 205.2 \end{aligned}$	2394355.6	595134.6	Prairio	17951.4	4. 254099
			2825133.2			18726.5	4. 2588313
			2975050.4	11880711.7	Hall	37716.7	4.575333
			3445834.5	1650221.0	McClure	29781.3	4.473944
O'Neill Standpipe	$\begin{array}{llll}42 & 27 & 38.448 \\ 98 & 38 & 51.344\end{array}$	I 186.41172.4	2394816.4	595554.5	Prairic	17900.5	4. 252864
			283 O1 18.9	1030959.6	Page SW. Base	18104.7	4. $25779{ }^{2}$
			2975553.5	1181214.0	Hall	37709.0 28816.6	4.576445
			3450434.6	1650720.3	Mcclure	29816.6	4.47445^{8}
O'Neill Court-House,cupola*	422735.12983849.62	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} 33.8 .8$	2392732.0	593508.9	Prairie	17918.9	4. 253311
			$232+856.9$	${ }_{102} 5236.4$	Page sw. Base	18044.0	4. 256334
Evan's House, chimney*	$\begin{array}{llll}42 & 34 & 06.50 \\ 98 & 29 & 32.98\end{array}$	200.7752.2	3173357.6	1373518.0	Prairie	$\begin{array}{r}4047.8 \\ \hline 67068\end{array}$	3. 607215
			343 O7 43.6	1631007.6	Page SW. Base	16796.8	4. 225227
Section 24, T. 4, R. II, S. centerstone, Neb.	401730.82 $9830 \quad 36.16$	950.7854.2	19010	10 10	Blue Hill	76.53	1. 88384
Section 32, T. 6, R. 14, N. center stone	$\begin{array}{r} 4027 \quad 07.53 \\ 985521.52 \end{array}$	$\begin{aligned} & 232.3 \\ & 507.1 \end{aligned}$	$3^{88} 3$	21831	Lars	54.13	I. 73346
$\begin{aligned} & \text { Section 4, T. 11, R. I2, } \\ & \text { S. center } \end{aligned}$	$\begin{aligned} & 405644.85 \\ & 984029.09 \end{aligned}$	$\begin{array}{r} 1383.4 \\ 680.4 \end{array}$	26358	8358	Cameron	185.9	2. 26934
$\text { Section } 16, T .14, R .$ I5. NW. corner	$\begin{array}{lll} 41 & 11 & 31.76 \\ 99 & 03 & 06.78 \end{array}$	979.8 158.0	358 то	17810	Divide	328.6	2.51663
$\begin{gathered} \text { Sectiont 6, T. 13, R. 20, } \\ \text { center } \end{gathered}$	$\begin{array}{lll} 41 & 44 & 01.5 \\ 98 & 51 & 27.0 \end{array}$	46.3 624.0					
Section 3. T. 17, R. II, SE. corner	$\begin{array}{lll} 41 & 27 & 57.5 \\ 98 & 33 & 33.1 \end{array}$	$\begin{array}{r} 773.9 \\ 768.1 \end{array}$					
$\begin{aligned} & \text { Section 2I, T. 27, R. 8, } \\ & \text { NE. corner } \end{aligned}$	$\begin{array}{llll} 42 & 18 & 22.42 \\ 98 & 14 & 32.59 \end{array}$	$\begin{aligned} & \text { 6991. } 8 \\ & 746.4 \end{aligned}$	925	18925	Hall	594	2.77405
Section II, T. \% R. 12 , S. center, motud	$\begin{aligned} & 403455.95 \\ & 9838 \\ & 37.82 \end{aligned}$	$\begin{array}{r} 1725.8 \\ 419.1 \end{array}$	17720	35720	Wanda	167.5	2. 22401

* No check on this position.

DESCRIPTIONS OF STATIONS.
This list may be conveniently consulted by reference to the illustrations at the end of this appendix and the index on pages 39I-393.

In each description the tense used is appropriate to the date at which the description was written.

All directions in the descriptions are given in the form of azimuths reckoned continuously from south around by west to 360°, west being 90°, north 180°, and east 270°. The azimuths are true, not magnetic.

In general, the surface and underground marks described are not in contact, so that a disturbance of the surface mark will not, in general, affect the underground mark. The underground mark should be resorted to only when there is evidence that the surface mark has been disturbed.

GENERAL NOTES IN REGARD TO STATION MARKS.

Note . - For each station referred to this note the uuderground mark is a bottle filled with ashes and buried from 2.5 to 3 feet below the surface. The surface mark is a marble post 6 inches square and $21 / 4$ feet long, placed with its top flush with the ground and having two V-shaped grooves at right angles and the letters U.S.C.S. cut in its top. The witness marks are two hard limestone posts 6 inches square on top and $21 / 4$ feet long, marked by a diagonal groove terminating in an arrowhead pointing to the station, and both placed in the meridian of the station, one to the northward and one to the southward of it.

Note 2.-Around each station referred to this note a circular trench 5 or 6 feet in diameter, 9 to 12 inches deep, and 6 to 10 inches wide, was dug and partly filled with soft coal.

Note 3.-For each station referred to this note the marking is the same as that inclicated in Note I, except that the buried bottle is stated to be a stone bottle.

Note 4.-For each station referred to this note the underground mark is a stone jug buried from 2 to 3 feet below the surface and marked with a cross and small drill hole in its bottom.

Note 5.-For each station referred to this note the underground mark is a stone milk crock buried bottom upward from 2 to 3.6 feet below the surface and marked with small drill hole and sometimes also with a cross.

Note 6. -For each station referred to this note the surface mark is a marble post 8 inches square and 2.3 to 2.6 feet long, placed with its top flush with the ground, and having two V-shaped grooves at right angles and the letters U. S. C. S. cut in its top.

Note 7.-For each station referred to this note the surface mark is as indicated in Note 6, except that the material is a hard sandstone.

Note 8.-For each station referred to this note the underground mark is an earthenware crock, buried from 2.7 to 3.5 feet below the surface, with bottom upward and with a small drill hole in the bottom.

Note 9.-For each station referred to this note the surface mark is a marble post 6 inches square and 2.5 feet long, having V-shaped grooves at right angles and the letters U. S. C. S. cut in its top.

DESCRIPTIONS OF PRIMARY TRIANGULATION STATIONS, SALINA BASE TO MEADES

 RANCH-WALDO, ON THE THIRTY-NINTH PARALLEL TRIANGULATION.Vine Creek (Ottawa County, Kans., F. D. Granger, 1886).-This station is situated in NW. $1 / 4 \mathrm{sec}$. I 2, T. in S., R. i W. The nearest railroad stations are Vine Creek, $21 / 2$ miles to the northwest, and Manchester, 4 miles east, both on the Santa Fe Railroad. The geodetic point is marked by a bottle filled with ashes, buried 2.6 feet below the surface of the ground. Over this was placed a marble post, 6 inches square and 2.3 feet long, having two cross lines and the letters U.S.C.S. cut on its top surface, which was flush with the ground. As reference marks, two limestone posts, each 5
inches square and 2.5 feet long, with a single diagonal groove and arrowhead cut on top, were placed in the meridian of the station, one north and one south, each distant ro.or feet from the central marble post. The azimuths and distances to additional reference marks are as follows: The northeast corner of McDade's house, $53^{\circ} 30^{\prime}, 270.5$ feet; stone at northwest corner of section $13,172^{\circ} 19^{\prime}, 466.7$ feet; southwest corner of old stone stable 263° o8', 218.6 feet; stone on the sixth principal meridian at the southeast corner of the northeast quarter of section $13,292^{\circ} 48^{\prime}, 5680$ feet, and the northwest corner of stone "dugout," 294° 29', 124.6 feet.

Iron Mound (Saline County, Kans., F. D. Granger, 1886).-This station is situated on a prominent and well-known butte in the NW. $1 / 4$ sec. 26 , T. i4 S., R. 2 W., about 7 miles southeast of Salina. The geodetic point is marked by a stone ink bottle, filled with ashes and buried 2.7 feet below the surface of the ground. Over this was placed a marble post 6 inches square and 2.3 feet long, with cross lines and the letters U.S.C.S. cut on its top surface, which was flush with the ground. As reference marks, two hard limestone posts, each 5 inches square and 2.3 feet long and having a single diagonal groove and arrowhead cut on the top, were placed in the meridian of the station, one north and one south of the central marble post.

Salina West Base (Saline County, Kans., F. D. Granger, 1895).-This station is situated in the northeast part of Salina, east of the tanks of the Standard Oil Company. The geodetic point is marked by the intersection of cross lines on a copper bolt set in a limestone post, 6 inches square and 2 feet long, sunk 2.5 feet below the surface of the ground. About 5 inches of earth covers the top of the post. Above this, except for a space of 8 inches square over the post, is a layer of concrete 4 inches thick and 36 inches square, on which rests a limestone block 30 inches square and ro inches high, supporting another limestone 30 inches square and 15 inches high, with beveled top and having a copper bolt with cross lines and a small drill hole sunk into its top as a surface mark. The two blocks are cemented together and are surrounded by a body of concrete several inches thick. The exposed top of the block bears the iuscription U.S. C. \& G. Survey, 1896. The following distances are given as reference marks: The geodetic point is 42.75 feet northwest of the line of telegraph poles which follow on the north side of and parallel to the track of the Union Pacific Railroad, and no feet east of a north and south fence which marks the eastern limit of ground owned by the Standard Oil Company, 79 feet northwest of the north rail of the main track of the Union Pacific Railroad. It is also 79.7 feet west of a telegraph pole and 35.2 feet a little east of north of the fence corner of the Standard Oil Company's property.

Salina East Base (Saline County, Kans., F. D. Granger, 1895).-This station is situated about I mile west of the village of New Cambria, on land owned by Mrs. Mary Marlin, Salina. The geodetic point is marked, both under ground and at the surface, in practically the same manner as at West Base station, the only points of difference being that the under-ground post is 2.7 feet below the surface, with 8 inches of earth and 5 inches of concrete over it. The geodetic point is 78.8 feet a little south of west from a wire fence on the Marlin farm; 22.43 feet a little west of north of a wire fence alongside the railroad; 35.05 feet from the second telegraph pole, marked with a triangle, west of the gate entrance to the Marlin farm, and 70.3 feet in the same direction from the north rail of the Union Pacific Railroad track.

North Pole Mound (Saline County, Kans., F. D. Granger, 1890). -This station is
situated on a prominent and well-known hill in the NW. $1 / 4 \mathrm{sec} . \mathrm{I}, \mathrm{T} .14$ S., R. 3 W ., and about 8.5 miles north of Salina. The geodetic point is marked by a bottle filled with ashes, buried I foot below the surface of the ground. Over this was placed a limestone block, I foot square by 5 inches thick, with two cross lines and the letters U.S.C.S. cut on its top surface, which was covered with several inches of earth.

Heath (Ellsworth County, Kans., F. D. Granger, 1890).-This station is situated in the SW. $1 / 4 \mathrm{sec} .12$, T. 14 S., R. 7 W., on land owned by William Heath, who lives in a stone house about one-third of a mile to the southwest. The nearest towns are Brookville, 14 miles to the southeast, and Ellsworth, 18 miles to the southwest, both on the Union Pacific Railroad. The geodetic point is marked by a glass bottle filled with ashes, the top being three feet below the surface of the ground. Over this was placed a marble post 6 inches square and 2.25 feet long, having two cross lines and the letters U.S.C.S. cut on its top surface, which was flush with the ground. As reference marks, two hard limestone posts, each 6 inches square and 2.25 feet long, with a single diagonal groove and arrowhead cut on top, were placed in the meridian of the station, one 7.51 feet south and one 7.16 feet north of the central marble post.

Thompson (Ottawa County, Kans., F. D. Granger, 1890). -This station is situated about 12 miles southwest of the town of Minneapolis, in the NW. $1 / 4 \mathrm{sec} .25, \mathrm{~T}$. in S ., R. 5 W., on a prominent round-topped hill, belonging to Judge R. F. Thompson, of Minneapolis, Kans. The geodetic point is marked by a bottle filled with ashes, buried 3 feet below the surface of the ground. Over this was placed a marble post, 6 inches square and 2.25 feet long, having two cross lines and the letters U.S.C.S. cut on its top surface, which was flush with the ground. As reference marks, two hard limestone posts, each 6 inches square and 2.25 feet long, with a single diagonal groove and arrowhead cut on top, were placed in the meridian of the station, one 13.18 feet north and one 14. Io feet south of the central marble post.

Lincoln (Lincoln County, Kans., F. D. Granger, 1891). -This station is located ou the high prairie $3^{1 / 2}$ miles north and $3^{1 / 2}$ miles east of the town of Lincoln, and about 300 yards west and 40 yards north of the southeast corner of sec. 16, T. in S., R. 7 W., on land held by a mortgage and investment company of Lincoln. It is about 15 yards south of the main road from Lincoln to Barnard, and the nearest house, which is about one-half mile to the northeast on the Barnard road, is owned and occupied by Mr. Parks. The reference stones are 10.09 feet north and 11.41 feet south of the station. (See notes 1 and 2, p. 403.)

Golden Belt (Lincoln County, Kans., F. D. Granger, 1891).-This station is near the south end of the northernmost of two prominent hills situated in the SE. $1 / 4 \mathrm{sec} .27$, T. i2 S., R. 9 W., on land owned by Mr. Marshall, of Lincoln Center, and used as a cattle range. The station is ino yards from the north end and 20 yards from the south end of the hill on which it stands. There is an old stone quarry on the west face of the hill about 50 meters southwest of the station, and another about 200 yards to the southeast of the station on the northwest face of the southernmost hill. The two reference marks are placed 9.55 feet north and 9.0 feet south of the station. (See note 1, p. 403.)

Wilson (Russell County, Kans., F. D. Granger, 1891).-This station is situated in the SE. $1 / 4 \mathrm{sec}$. I, T. I4 S., R. in W., about one-half mile west and $25 / 2$ miles north of the town of Wilson, Ellsworth County, Kans. A road running north along the line,
separating Ellsworth and Russell counties, passes over the ridge within 100 yards to the west of the station. The two reference marks are placed one 8.03 feet north and the other 15.08 feet south of the station. (See note 1, p. 403.) Recovered 1899, W. Eimbeck.

Bunker Hill (Russell County, Kans., F. D. Granger, 1891).—This station is situated in the SW. $1 / 4 \mathrm{sec} .3 \mathrm{I}, \mathrm{T} . \mathrm{I}_{3} \mathrm{~S} ., \mathrm{R}$. 12 W ., in the southwest part of the town of Bunker Hill, in an open lot west of the town water tower. Tine nearest corner of the water tower is 187.4 feet from the station and the stone marking the southwest corner of sec. 31 , T. 13 S., R. 12 W ., is 238.2 feet from the station. The two reference marks are 8 feet north and 8 feet south of the station. (See notes 2 and 3, p. 403.)

Allen (Russell County, Kans., F. D. Granger, 1892).-This station is situated in the NW. $1 / 4$ sec. 22, T. 14 S., R. 14 W., and about one mile west and 4 miles south of Russell, Russell County, Kans., on land owned by Mr. Montgomery, of Ohio, and under the management of Mr. Clements, who lives one mile south of the station. The azimuths and distances to certain points are: To stone marking the northwest corner of section 22 is $122^{\circ} 27^{\prime} 14^{\prime \prime}, 446.8$ feet; to the north chimney of the house of Mr. H. A. Allen, who rents the land on which the station stands, $99^{\circ} 36^{\prime}$, about i50 yards; to the north chimmey of an old house is 158° I 8^{\prime}, and the southeast chimney of the house is go feet from the station. The station is 237 feet south of the center of the road. The reference marks are 9 feet north and 9 feet south of the station. (See notes 2 and 3, p. 403.)

Blue Hill (Ellis County, Kans., F. D. Granger, 1892). -This station is situated on a prominent ridge forming a part of the Blue Hills and in the south half of sec. 21, T. $12 \mathrm{~S} ., \mathrm{R} .16 \mathrm{~W}$. To reach the station from Walker, travel due north to the foot of the hills, thence to the northwest, passing to the eastward of a stone house and grove of small trees. Follow this road about 2 miles, and when well up on the ridge take the first trail bearing off to the west. This trail passes near the head of two deep canyons, which make up from the valley of the Saline River. After passing the head of the second canyon leave the trail and pass to the top of the ridge, which is narrow at the point and almost surrounded by ravines. There is a ravine in azimuth $63^{\circ} 46^{\prime}$ and distant in 2 feet; the head of a ravine in azimuth $133^{\circ} 34^{\prime}$, distant 154 feet; the head of a ravine in azimuth $254^{\circ} 25^{\prime}$, distant 213 feet; the head of a ravine in azimuth $288^{\circ} 34^{\prime}$, distant 342 feet; and an old sod house in azimuth $340^{\circ} 59^{\prime}$ from the station. The two reference marks are 8 feet north and 8 feet south of the station. (See notes 2 and 3, page 403.)

Waldo (Osborne County, Kans., F. D. Granger, 1892). -This station is situated on the highest ground in the SE. $1 / 4 \mathrm{sec} .24$, T. $10 \mathrm{~S} ., \mathrm{R} .14 \mathrm{~W}$., and about 4.5 miles northwest of Waldo, Russell County, Kans., on land said to belong to the Union Pacific Railroad Company. A well-traveled road from Waldo ascends the hill from the southwest, and turning north passes some 20 yards to the east of the station. The two reference marks are 9 feet north and 9 feet south of the station. (See note I, page 403.) Note 2 , page 403 , also applies, except that the circular trench is in feet in diameter and I $1 / 2$ feet deep. Recovered 1897, F. D. Granger.

Meades Ranch (Osborne County, Kans., F. D. Granger, I89I).-This station is on the highest part of a prominent ridge in sec. 34, T. 9 S., R. in W., and about one-half mile northeast of Meade's ranch house. A good road passes up from the house and crosses the hill within 100 feet west of the station. The nearest town is Lucas, or Elbon, 12 miles to the south on the Union Pacific Railroad, Lincoln Branch. The azimuths and distances to certain points are: To the chimney of Meade's Ranch house,

APPENDIX NO. 6. TRIANGULATION ALONG NINETY-EIGHTH MERIDIAN.
$8^{\circ} 36^{\prime}$, about one-half mile; to stoue marking southwest corner of sec. 34, T. 9. S., R. 1 W., $34^{\circ} 33^{\prime}, 625$ yards. The two reference marks are 8.70 feet north and 8.62 feet south of the station. (See notes I and 2, page 403.) Recovered 1897, F. D. Granger.

DESCRIPTIONS OF PRIMARY TRIANGULATION STATIONS, THIRTY-NINTH PARALLEL TRIANGULATION TO THE SHELTON BASE NET ON THE NINETY-EIGHTH MERIDian triangulation.
Dial (Osborne County, Kans., F. D. Granger, 1897). -This station is situated on a prominent hill locally known as Sand Mound, and is near the west center of the SW. $1 / 4 \mathrm{sec} .22$, T. 9 S., R. 13 W . A north and south section line road crosses Sand Mound at a short distance west of the station. The surface mark is a limestone post 6 inches square and 2 feet long, placed with its top flush with the surface, marked by the letters U.S.C.S. and with a drill hole marking the exact point, 6 inches deep, o. 7 inch in diameter, plugged with pine. The underground mark is a copper bolt 6 inches long and 0.6 inch diameter, set in a drill hole in a flat ledge of rock in its original position and firmly wedged in with wire nails. A cross is cut in top of the bolt to mark the exact point. The bolt is 2.03 feet below the top of the surface mark.

Kill Creck (Osborne County, Kans., F. D. Granger, 1897). -This station is situated about 880 feet north and 300 feet east of the southwest corner sec. 9, T. 9 S., R. I4 W,, on a prominent swell of ground. The land belongs to a loan company. The nearest house is distant about 0.2 mile west, and is owned and occupied by J. E. Harris. The station is on line between the center of an old well and the southwest corner of an old sod house, 19.8 feet from the former and 16.35 from the latter. The line from the old well to the house is approximately northwest. The azimuth of the stone marking the southwest corner of section 9 is $17^{\circ} 4^{\prime} 27^{\prime \prime}$, and of the stone marking the northwest corner of section 9 is $174^{\circ} 37^{\prime} 47^{\prime \prime}$. The surface mark is a copper bolt with cross lines set in a limestone post 6 inches square and 2 feet long, marked with the letters U. S. C. S. on its top surface. (See note 4, p. 403.)

Lawrence (U S. Geological Survey, Osborne County, Kans.).-This station is described in Bulletin No. 122, Results of Primary Triangulation, U. S. Geological Survey, as follows: "In Osborne County, Kans., on a swell of ground near the center of the west side of sec. 23, T. 6 S., R. 14 W., and about on the highest point. Permanent mark: Cross and U. S. G. S. cut on top on large flat stone Jug with cross cut on it is underneath the flat stone."

Recovered in 1897, F. D. Grauger. The flat stone referred to had been broken up, but the jug with cross cut on it remained undisturbed.

Lawrence 2 (Osborne County, Kans., F. D. Granger, IS97). The station is 3.377 meters jn azimuth $93^{\circ} 27^{\prime}$ from the station Lawrence (U.S. G. S.) described above. The surface mark is a limestone post I .6 feet long and 6 iuches square, with two rectangular curves and the letters U. S. C. S. cut on its top. (See note 5, p. 403).

Old Well (U. S. Geological Survey, Smith County, Kans.).-This station is described in Bulletin No. 122, Results of Primary Triangulation, U. S. Geological Survey, as follows: "In Smith County, Kans., in the SW. $1 / 4$ of the SE. $1 / 4 \mathrm{sec} .16$, T. 5 S., R. II W., and is 42 feet nortl and 138.75 feet west of the northwest corner of a stone foundation for a building. The permanent mark: Cross and U.S. G. S. cut in large rock, and a bottle top set underneath the rock." Recovered 1897, F. D. Granger.

Old Well 2 (Smith County, Kans., F. D. Granger, 1897). -The azimuths and distances to certain points are: From this station to Old Well (United States Geological Survey) described above, $92^{\circ} 52^{\prime} 32^{\prime \prime}, 30.875$ meters; to the stone marking the southwest corner of sec. $16,282^{\circ} 14^{\prime} 32^{\prime \prime}$, 466.0 meters; to the center of Mr. Okke Bohlen's house, $317^{\circ} 16^{\prime}, 21.94$ meters. The surface mark is a rough stone post 9.5 inches square and 2.2 feet long, with two V-shaped crosses at right angles and the letters U. S. C. S. cut on its top. (See note 4, p. 403.)

Lebanon (Smith County, Kans., F. D. Granger, 1897).-This station is near the northwest corner of the NE. $1 / 4$ of the NE. $1 / 4$ sec. 2 , T. 2 S., R. II W., and about $11 / 4$ miles north and $13 / 4$ miles east of Lebanon. It is in the line of an east and west wire fence on the south side of the section line road, about 200 feet east of the head of a small ravine which runs to the south, and about 1300 feet west of the northeast corner of the section. The highest ground in the vicinity lies about one-third mile to the north. The azimuths to certain points are: To Anderson's house, $21 I^{\circ} 35^{\prime}$; to the Church of the United Brethren, $268^{\circ} 59^{\prime} 42^{\prime \prime}$; to Mr. J. Housel's house, $314^{\circ} \mathrm{O} 2^{\prime}$. The surface mark is a Georgia marble post 6 inches square and 2 feet long, with two V-shaped grooves at right angles, and the letters U.S.C.S. cut on its top. (See note 4, p. 403.) To the north, in the exact projection of the line from Old Well 2 , at a distance of 2.832 meters, is a pine stub with a nail in it and underneath the stub at a depth of 30 inches a stone jug with the top upward.

Brown (Smith County, Kans., F. D. Granger, 1898). -This station is about 4 miles east of Smith Center, on high ground near the northwest corner of the SE. 1/4 sec. 20, T. 3 S., R. 12 W., on land owned by Mrs. M. A. Brown, 264 feet south of the hedge row on the south side of the east and west half-section line road. (See notes 5 and 6, p. 403.)

Lipps (Smith County, Kans., F. D. Granger, 1898). -This station is in the SW. $1 / 4 \mathrm{sec} . \mathrm{I}, \mathrm{T}$. I S., R. 14 W. , on land owned by Joseph Lipps, whose house stands near the center of the west side of the southwest quarter of the section. It is 600 feet east of the north and south road passing Mr. Lipps's house. (See notes 6 and 8, p. 403.)

Cooper (Smith County, Kans., F. D. Granger, 1898). -This station is near the center of the NE. $1 / 4$ of SW. $1 / 4$ sec. 8 , T. I S., R. I4 W., in a cultivated field belonging to Mr. E. M. Cooper, about 700 feet south and 325 feet west of the center of section 8 . Red Cloud, the nearest town, is about 7.5 miles east and 7 miles north of the station. (See notes 4 and 6, p. 403.)

Blue Hill (Webster County, Nebr., F. D. Granger, 1898).-This station is near the south center of sec. 24, T. 4 N., R. in W., on land owned by Peter Paugh. It is about $21 / 2$ miles south and 3 miles west of the town of Blue Hill: The azimuths and distances to certain points are: To the standpipe at Blue Hill, $228^{\circ} 33^{\prime} 2 \mathrm{I}^{\prime \prime}$; to W. W. Hogate's windmill, $339^{\circ} 24^{\prime}$; to Hogate's house, $348^{\circ} 19^{\prime}$; to the stone marking the south center of section $24,350^{\circ} \mathrm{r} 0^{\prime}, 25 \mathrm{I} .085$ feet; to stone marking n .rthwest corner of section $24,152^{\circ} \mathrm{O} 9^{\prime}$; to the wire fence, $90^{\circ}, 43.7$ feet. (See notes 5 and 6, p. 403.)

Herrick (Franklin County, Nebr., F. D. Granger, 1898). -This station is in the SW. $1 / 4$ of SE. $1 / 4 \mathrm{sec} .2$, T. 3 N., R. 13 W. , about $3^{1 / 2}$ miles south and $11 / 4$ miles west of the town of Campbell, on land owned by Lyman Herrick. The azimuths and distances to certain points are: To the stone marking the southeast corner of section 2 , $271^{\circ} 13^{\prime} .4$; to Lyman Herrick's windmill, $274^{\circ} 38^{\prime} .4$, 149.8 feet; to the stone marking the south center of section $2,84^{\circ} 27^{\prime} \cdot 4$; to the stone marking the southwest corner of
section 2, $88^{\circ} 2 \mathrm{I}^{\prime} .4$; to the belfry of the schoolhouse at Campbell, $196^{\circ}{ }_{21} 1^{\prime} 25^{\prime \prime}$; to the southwest corner of Mr. Herrick's house, 274°. 6 , 118.6 feet; to the wire fence to the southward of the station, 89.3 feet. (See notes 5 and 7 , p. 403.)

Lars (Kearney County, Nebr., F. D. Granger, 1898).-This station is near the northeast corner of the NW. $1 / 4 \mathrm{sec} .32$, T. 6 N., R. 14 W., on land owned by Lars Christianson, who lives in a small frame house about 200 yards to the southeast. Minden, the nearest town, is 3 miles north and i miles west. The azimuths and distances to certain points are: To the center of the road to the northward, 140 feet; to the stone marking the north center of section $32,218^{\circ} 3 \mathrm{I}^{\prime}, 177.6$ feet; to the half-section line to the eastward, 116 feet; to the fence to the northward on the south side of the road, 64.3 feet; to the east line of trees, 68 feet; to a cottonwood tree with triangle cut in the east side, 90°, 10.86 feet; to the chimney of Mr. Christianson's house, $296^{\circ} 21^{\prime}$; to Mr. Christianson's windmill, $299^{\circ} 34^{\prime}$; to the standpipe at Minden, $156^{\circ} 57^{\prime} 14^{\prime \prime}$. (See notes 5 and 7, p. 403.)

Sand Creek (Adams county, Nebr., F. D. Granger, 1898). -This station is near the northeast corner of the SW. $1 / 4 \mathrm{sec} .36, \mathrm{~T} .6 \mathrm{~N} ., \mathrm{R} .12 \mathrm{~W}$. , on the summit a prominent range of sand hills situated about I .5 miles south and 3 miles west of the town of Holstein. The azimuth to Burkholder's windmill is $26^{\circ} 42^{\prime}$; to the cupola of the schoolhouse at Holstein is $245^{\circ} 36^{\prime} 44^{\prime \prime}$. (See notes 5 and 7 , p. 403.)

Wanda (Adams County, Nebr., F. D. Granger, 1898). -This station is in the SE. $1 / 4$ of the SW. $1 / 4 \mathrm{sec}$. II, T. $7 \mathrm{~N} ., \mathrm{R} .12 \mathrm{~W}$. , about 3 miles south and I mile east of the town of Kenesaw, on land recently acquired by Henry Pohlke (or Bohlke), who lives about I mile to the southwest. It is on the highest ground in the section, and is 549 feet north and 24 feet west of the south center of section II. A north and south wire fence, following very nearly the half-section line, is 16.2 feet east of the station. The azimuths to certain points are: To the chimney of John Wycks's house, $72^{\circ}{ }^{\circ} 18^{\prime}$; to the elevator in Kenesaw, $158^{\circ} \circ 0^{\prime} 39^{\prime \prime}$; to the schoolhouse in Juniata, $267^{\circ} .8^{\prime} 8^{\prime} \mathbf{1 0}$; to the chimney of Fred Neinheuser's house, $33^{\circ} 8^{\circ} \circ 6^{\prime}$, and to the earth mound of south center of section II, $357^{\circ} 20^{\prime}$. (See notes 8 and 9, p. 403.)

Mason (Adams County, Nebr., F. D. Granger, 1898). This station is in the SE. 1/4 of the SW. $1 / 4 \mathrm{sec} .8, \mathrm{~T} .7$ N., R. io W., 2 miles east of Juniata, on land owned by Stephen Mason, of Hastings. The azimuths and distances to certain points are: To schoolhouse in Juniata, $97^{\circ} 48^{\prime} 1 \mathrm{I}^{\prime \prime}$; to the standpipe at the asylum, near Hastings, ${ }^{273} 3^{\circ}$ o1' $\mathrm{I}^{\prime \prime \prime}$; to the chimney at the east end of Mr. Mason's house, $359^{\circ} 30^{\prime}$; to the windmill near the house, $2^{\circ} 13^{\prime}$; to the fence corner; 495 feet; to the north side of Mr . Mason's house, 750 feet, and to the center of the road, 935 feet. A stone jug, with the center of its top serving as a reference point, was buried i foot below the surface of the ground 1.45 feet due south from the station; 2 feet north of the station a 4 by 6 pine stub projecting 2 feet above the ground was set to protect the station mark against injury. (See notes 6 and 8, p. 403.)

DESCRIPTIONS OF PRIMARY TRIANGULATION STATIONS, SHELTON BASE NET, ON THE NINETY-EIGHTH MERIDIAN TRIANGULATION.

Prosser (Hall County, Nebr., F. D. Granger, 1898). -This station is on the summit of a prominent sand hill. locally known as Bean Hill, in sec. 3r. T. 9 N., R. II W., about I mile northwest of the town of Prosser, Adams County, Nebr., on land
used as a cattle range. It is under the charge of Mr. A. W. Bradley, of Juniata. (See notes 6 and 8. p. 403.) A stone jug, with a tack in the center of the cork, was placed 0.9 foot below the first underground mark. Recovered 1899, F. D. Granger.

Shelton West Base (Buffalo County, Nebr., F. D. Granger, 1899).-This station is about one-half mile east of the town of Gibbon and 56.3 feet north of the north rail of the main track of the Union Pacific Railroad. The azimuths and distances to certain points are: To East Base (parallel to the Union Pacific track), 250° o9' $35^{\prime \prime}$; to a switch stand on the Union Pacific Railroad, $7^{\circ}{ }^{1} 5^{\prime}, 75.8$ feet; to the railroad windmill in Gibbon, $69^{\circ} 34^{\prime} 46^{\prime \prime}$; to a telephone pole blazed with a triangle on the side facing the station, $110^{\circ} 05^{\prime}, 64.1$ feet; to telephone pole No. 2, blazed with triangle on side facing station, $223^{\circ} 35^{\prime}$, 95. I feet. The surface mark is a copper bolt with cross lines set in a limestone post 8 inches square and 2.5 feet long. The top of the post is flush with the ground and is marked U.S.C.S. The underground mark is a copper bolt with aross lines set in a limestone block 15 inches square and 8 inches thick, 3 feet below the surface. Recovered 1900, A. L. Baldwin.

Shelton East Basc (Buffalo County, Nebr., F. D. Granger, 1899).-This station is about one-half mile west of the town of Shelton and 56.3 feet north of the north rail of the main track of the Union Pacific Railroad and about 74 yards west of railroad trestle 115. Azimuths and distances to certain points are: To a telegraph pole marked with a triangle on side facing the station, $0^{\circ} 00^{\prime}$; to West Base (parallel to railroad tracks), 70° I $3^{\prime} 01^{\prime \prime}$; to telephone pole No. I, blazed with triangle on side facing station, $140^{\circ} 53^{\prime}, 42.7$ feet; to telephone pole No. 2, blazed with triangle on side facing station, $230^{\circ} 30^{\prime}, 120.5$ feet. The surface mark is a copper bolt with cross lines set in a limestone post 8 inches square and 2.5 feet long. The top of the post is flush with the ground and 2.93 feet above the underground mark. The underground mark is a copper bolt with cross lines set in a limestone block 15 inches square and 8 inches thick. Recovered igoo, A. L. Baldwin.

Lowell (Kearney County, Nebr., F. D. Granger, I899).-Is in sec. 6, T. 8 N., R. I3 W., about 2.5 miles south and I mile east of Lowell, and about 2.5 miles north and 2 miles west of Hartwell, on the highest point of the most prominent sand hill of the range south of Lowell. The hill on which the station stands has a second summit to the westward of the station which is nearly as high as the station. (See notes 5 and 6, p. 403).

Valley (Buffalo County, Nebr., F. D. Granger, 1899). -This station is in sec. Io, T. io N., R. 14 W., near the center of the SW. $1 / 4$, about 7 miles north and 2.7 miles west of Gibbon, on the crest of a prominent ridge in Valley Township. The land is owned by Mrs. D. Riordin, of Illinois, and is at present occupied by Mr. Nicola Ellias Yanney, and is under cultivation. The station is nearly due west of the house occupied by Mr. Yanney. There are no roads leading to the point, which is difficult to reach on account of the rough and uneven character of the ground. The location of the station is known to Mr. Ashburn, of Gibbon, agent for the land. (See notes 6 and 8, p. 403.) The top of the surface mark was set 6 inches below the surface of the ground, and a 4 by 4 pine stub $21 / 2$ feet long was set 2 feet to the north, with its top projecting several inches above the ground.

- Cameron (Hall County, Nebr., F. D. Granger, 1899).-This station is near the south center of the SW. $1 / 4$ of the SE. $1 / 4 \mathrm{sec} .4$, T. II N., R. I2 W., about 2 miles

APPENDIX NO. 6. TRIANGULATION ALONG NINETY-EIGHTH MERIDIAN.

north and 2 miles west of Cameron, on the farm of Mr. Harry Chase, I38.2 feet east of the southeast corner of Mr. Chase's house and i foot north of the line of the south face of the house. The azimuths and distances to certain points are: To the south center of sec. $4,83^{\circ} 58^{\prime}, 610$ feet; to the southeast corner of Mr. Chase's house, $100^{\circ} 24^{\prime}, 138.2$ feet; to the well and windmill, $133^{\circ} 16^{\prime}, 121.7$ feet; to the southeast corner of the stable, ${ }^{17} 77^{\circ} 36^{\prime}$; to a fence to the eastward, $268^{\circ} 45^{\prime}, 30.4$ feet; to the southeast corner of sec. 4 , $272^{\circ} 13^{\prime}$; to the wire fence of the south side of the road, $358^{\circ} 45^{\prime}$, 102.0 feet. (See notes 6 and 8, p. 403).

DESCRIPTIONS OF PRIMARY TRIANGULATION STATIONS, SHELTON BASE NET TO PAGE BASE.

Pompcy (Howard County, Nebr., F. D. Granger, 1899).-This station is on the highest and most prominent sand hill of the range in the valley of the Loup River, between Grand Island and St. Paul, which is locally known as Mount Pompey (or Pompeii). It is near the center of the top of the hill, but not on its highest point. It is near the southwest corner of sec. 1o, T. 13 N., R. io W., about 7 miles due south of St. Paul, and one-half mile south and $41 / 2$ miles east of Damebrog. (See notes 6 and 8, p. 403).

Decr (Sherman County, Nebr., F. D. Granger, r899). -Is near the center of sec. 4, T. 1_{3} N., R. I3 W., about $1 / / 4$ miles west and 2 miles south of Ashton, near the north end of a cultivated field owned by Henry Heines, I o3o feet north of the northwest corner of the German Lutheran parsonage and 34 feet west of the line of its west face. The azimuths and distances to certain points are: To the chimney of Peter Glinsmann's house, $255^{\circ} 32^{\prime}$; to the chimney on the northeast corner of the German Lutheran church, $348^{\circ} 25^{\prime}$; to the chimney of the parsonage, $358^{\circ} 25^{\prime}$; to the northwest corner of the parsonage, $359^{\circ} \mathrm{Io}^{\prime}$, 1 o30 feet; to the east end of a row of small cottonwood trees, $26^{\circ} 39^{\prime}$, 545 feet; to the chimney on the north L of Claus Stulley's house, $32^{\circ} 25^{\prime}$. (See notes 6 and 8, p. 403.) After the station was occupied some young trees were set around it.

Divide (Sherman County, Nebr., F. D. Granger, 1899).-This station is the NW. $1 / 4 \mathrm{sec} .16$, T. 14 N., R. 15 W., 24 feet east and 1078 feet south of the northwest corner of the section, on the crest of the highest hill in the section and 0.7 mile east and 1.0 mile south of the town Divide, and about io miles southwest of Loup City. The azimuths to certain poins are: To the post-office at Divide, $140^{\circ} 14^{\prime} 03^{\prime \prime}$; to the northwest corner of sec. $16,178^{\circ}$ Io'; to the chimney of the yellow house on a hill north of Loup City, $217^{\circ} 38^{\prime} 47^{\prime \prime}$. (See notes 6 and 8, p. 403.)

Yale (Valley County, Nebr., F. D. Granger, 1899).-This station is on the crest of a prominent hill in the NE. $1 / 4 \mathrm{sec} .28$, T. I8 N., R. 15. W., about 600 feet east and 200 feet south of the north center of the section, and about 12 miles southwest of Ord, on land owned by the Burlington Railroad, and at present occupied by D. M. Ross, who lives about 2 miles to the northwest. The azimuths to certain points are: To A. L. Jewett's windmill, $36^{\circ} 36^{\prime} 34^{\prime \prime}$; to Charles Masou's windmill, $49^{\circ} 27^{\prime} 28^{\prime \prime}$; to windminl of post-office at Yale, $124^{\circ} 12^{\prime} 22^{\prime \prime}$; to the northeast corner of section $28,264^{\circ} 49^{\prime} 15^{\prime \prime}$. (See notes 6 and 8, p. 403.)

Elm (Valley County, Nebr., F. D. Granger, 1899).-This station is on the summit of the highest hill in the section, and is about 16 feet west and 60 feet south of the center of sec. 6, T. 13 N., R. 20 W., on land owned by Mr. Clinton Upham, who lives
in a sod house about 200 yards to the eastward at the foot of the hill. The country in the vicinity is very rough and broken, but there is a good trail from Upham's house to the Ord road. The distance to Ord is about 12 miles. The azimuths and distances to certain points are: To the church spire at Ord, $22^{\circ} 57^{\prime} 47^{\prime \prime}$; to a windmill at Bartlett, $236^{\circ} 50^{\prime} 37^{\prime \prime}$; to Mr. Upham's windmill, $265^{\circ} 33^{\prime} 08^{\prime \prime}$, about 200 yards. (See motes 6 and 8, p. 403.)

Brayton (Greeley County, Nebr., F. D. Granger, 1899).-This station is in the SE. $1 / 4 \mathrm{sec} .3$, T. 17 N., R. in W., about 60 feet north and 90 feet west of the southeast corner of the section, on a hill which is quite prominent as viewed from the northeast and east. It is 4 miles west and $1 / 4$ mile north of Brayton, and $51 / 2$ miles south and I mile west of Greeley Center, and is on land owned by the Burlington and Missouri River Railroad. The azimuths to certain points are: To a church spire at Greeley Center, $192^{\circ} 59^{\prime} 40^{\prime \prime}$; to chimney of Michael Gray's house, $243^{\circ} 25^{\prime} 46^{\prime \prime}$; to cupola of schoolhouse at Brayton, 272° o2' $44^{\prime \prime}$; to Cleary's windmill, $273^{\circ} 46^{\prime}$ I $1^{\prime \prime}$. (See notes 6 and 8, p. 403.)

Daily (Greeley County, Nebr., F. D. Granger, 1900). -This station is on the crest of a prominent hill in the NW. $1 / 4 \mathrm{sec} .25$, T. 19 N., R. $12 \mathrm{~W} ., 6$ miles west and 3.5 miles north of Greeley Center, $1 / 3$ mile to the southwest of the house owned and occupied by John Anderson, and on clay land owned by Mr. Daily. An old trail passes the southward of the station within 100 yards. The azimuths and distances to certain points are: To the head of a ravine, $280^{\circ} 35^{\prime}$, about 103 yards; to the spire of the Catholic Church in Greeley Center, $297^{\circ} 22^{\prime} 23^{\prime \prime}$; to the schoolhouse at Horace, $18^{\circ} 21^{\prime}$; to Everett's windmill, $168^{\circ} 22^{\prime}, 3 / 4$ mile; to John Anderson's windmill $221^{\circ} 3 \mathrm{I}^{\prime}, 1 / 3$ mile. (See notes 6 and 8, p. 403.)

Custer (Greeley County, Nebr., F. D. Granger, 1900). -This station is on the summit of a prominent hill in the NE. $1 / 4 \mathrm{sec}$. II. T. 19 N., R. II W., 3 miles east and 1 mile north of Belfast, and 0.5 mile west and 7 miles north of Greeley Center, on sandy land owned by McKinley \& Laning Loan and Trust Company, of Hastings, Nebr. The azimuths and distances to certain points are: To George Van Arsdell's windmill, $7 \mathrm{I}^{\circ} 45^{\prime},{ }^{4} / 5 \mathrm{mile}$; to the chimney of Mrs. Judge's house, $266^{\circ}{ }^{2} 5^{\prime}$; to Mrs. Judge's windmill, $268^{\circ} 59^{\prime}, 3 / 5$ mile; to the chimney at the east end of schoolhouse, $306^{\circ} 13^{\prime}, 1 / 3$ mile; to the spire of the Catholic Church in Greeley Center, $353^{\circ} 47^{\prime} 02^{\prime \prime}$. There are two underground marks, a jug top 3 feet below the top of the surface mark and a milk crock with cross lines and a small drill hole in the bottom 2.72 feet below the top of the surface mark. (See note 6, p. 403.)

Ono (Wheeler County, Nebr., F. D. Granger, 1900). -This station is is feet northwest of the highest point of a prominent sand hill situated in the NE. $1 / 4 \mathrm{sec} .2$, T. 21 N., R. io W., about 3.5 miles south and 6.5 miles east of Bartlett, about 1.5 miles west of Ono, and about 200 yards south of the mail route from Ono to Bartlett. The azimuths and distances to certain points are: To Leonard Caswell's house, $97^{\circ} 3 \mathrm{I}^{\prime}$, $3 / 4$ mile; to the remains of a sod house, $145^{\circ} 44^{\prime}, 600$ yards; to the remains of a sod house, $201^{\circ} 59^{\prime}, 325$ yards; to W. Fabian's windmill, $281^{\circ} 23^{\prime}$; to Henry Huff's grove, $345^{\circ} \circ 9^{\prime}, 2.5$ miles; to J. W. Huff's windmill, $10^{\circ} 05^{\prime}, 2.0$ miles. (See notes 6 and 8, p. 403.)

Buffalo (Wheeler County, Nebr., F. D. Granger, 1900).-This station is on the highest sand hill of a prominent range distant about 9 miles west and 3 miles north of Bartlett, near SW. corner sec. 28, T. 23, R. 12 W., and 2 miles east of the Garfield

County line. There are no residences within 4 or 5 miles of the station. One of the nearest houses, distant about 7 miles to the northeast, is surrounded by a conspicuous grove of cottonwood trees plainly visible from the station and is owned and occupied by Mr. S. B. French, who knows the location of the station. The land in the vicinity of the station is the property of the United States and about 25 square miles of it is fenced in and used as a cattle ranch. The azimuths and distances to certain points are: To a windmill, $311^{\circ} 16^{\prime}, 1 / 2$ mile; to a windmill, $351^{\circ}{ }^{\circ} 0^{\prime}, 2$ miles; to a cottonwood grove at Mr. French's house, $238^{\circ} 42^{\prime}, 7$ miles; to a windmill at Bartlett, 290° o7' $55^{\prime \prime}$, 9.6 miles. There is a "blowout" 15 feet deep on the slope of the hill to the eastward of the station. (See notes 6 and 8, p. 403.)

McClure (Holt County, Nebr, F. D. Granger, 1900).-This station is near the south end of a short range of sand hills in the NE. $1 / 4 \mathrm{sec} .26$, T. 26 N., R. in W., about 15 feet southeast of and about I foot lower than the highest point of the hill on which it stands. It is 4 miles south and II miles west of Ewing, and about 1.7 miles northeast of the present site of the Little post-office. Azimuths to certain points are: To the southeast corner of section $26,357^{\circ} 43^{\prime}$; to the chimney of J. H. Wilson's house, now the Little post-office, $69^{\circ}{ }^{\prime} I^{\prime}$; to the standpipe at O'Neill, which is visible only when the refraction is abnormally large, $165^{\circ} \circ 7^{\prime} 21^{\prime \prime}$. (See notes 6 and 8, p. 403.)

Deloit (Holt County, Nebr., F. D. Granger, 1900).-This station is on the crest of the highest and most prominent hill in Deloit Township, in the NE. $1 / 4 \mathrm{sec} .16$, T. 25 N., R. 9 W., about 0.5 mile east and 3.7 miles north of Deloit, and about imile west and 8 miles south of Ewing, on school land now rented and occupied by John Daniels. The azimuths and distances to certain points are: To W. W.. Bethea's windmill, $221^{\circ} 12^{\prime}$; to the northeast comer of section $16,247^{\circ} 14^{\prime}$; to the creamery at Deloit, $7^{\circ} 57^{\prime}$; to John Daniels's windmill, $89^{\circ} 44^{\prime}$; to the wire fence to the northward, 660 feet. (See note 6, p. 403.) The underground mark is a stone jug with a tack in the center of the cork, 2.9 feet below the top of the surface mark.

Hall (Antelope County, Nebr., F. D. Granger, 1900).-This station is in the NE. $1 / 4 \mathrm{sec} .21$, T. 27 N., R. 8 W., on land owned by an Eastern loan and trust company. The station is on the highest point in the vicinity, and from it the land slopes more rapidly to the north than in any other direction. It is 403 feet due west of the north-aud-south fence line on the east side of the section-line road leading to Orchard. The azimuths and distances to certain points are: To cupola of the schoolhouse at Orchard, $186^{\circ} 22^{\prime} 1 I^{\prime \prime}$, about 2 miles; to the northeast corner of section $21,189^{\circ} 25^{\prime}$, I 950 feet. (See notes 5 and 6, p. 403.)

Page Southzeest Base (Holt County, Nebr., F. D. Granger, A. L. Baldwin, 1900).This station is in the SW. $1 / 4 \mathrm{sec}$. I, T. 28 N., R. ro W., about 2 miles north and 0.7 mile west of the town of Page, and about 2 miles south and 12 miles east of O'Neill, on land owned by Mr. William Lord and near his dwelling. The azimuths and distances to certain points are: To the northwest corner of a granary, $288^{\circ} 23^{\prime}, 143$ feet; to the windmill, $305^{\circ} 08^{\prime}$; to the northwest corner of Mr. Lord's house, 188 feet; to the center of the section-line road to the southward, 393 feet; to precise level bench mark, $\mathrm{M}_{2} 320^{\circ} 07^{\prime}, 80.93$ meters. The bench mark is an Indiana Bedford stone post $41 / 2$ feet by 6 by 6 inches, the top 6 inches dressed to 6 by 6 inches. A square cut $11 / 4$ by $1 / 4$ by $11 / 4$ inches is made in the top and lettered U.S.B. M. The surface mark of the station is a stone 24 by 24 by 14 inches set in cement and with a copper bolt, marked with cross lines, set in its upper surface to mark the exact point. The under-
ground mark is a stone 6 by 6 by 8 inches, set in cement and carrying a copper bolt with cross lines to mark the exact point.

Page Northeast Base (Holt County, Nebr., F. D. Granger and A. L. Baldwin, 1900).-This station is in the SE. $1 / 4$ sec. 16, T. 29 N., R. 9 W., on the open prairie, on school land now rented by T.S. Roche, of Page. The land is nearly flat, and the only prominent object in the vicinity to which it can be referred is the northern end of a large "blowout" in azimuth 219° and 600 meters distant. The station marks are exact duplicates of those at Page Southwest Base.

Prairie (Holt County, Nebr., F. D. Granger, 1900). -This station is in the SW. $1 / 4$ sec. 26 , T. 30 N., R. Io W., 10 miles north and 2 miles west of Page, and about 12 miles northeast of O'Neill, on the open prairie, on the summit of a small elevation which rises about is feet above the general level. There is another similar summit to the southeastward of the station and within about 1000 feet. The azimuths and distances to certain points are: To the southwest corner of section $26,27^{\circ} 04^{\prime}$, about I 530 feet; to the standpipe at O^{\prime} Neill, $59^{\circ} 55^{\prime} 55^{\prime \prime}$; to Stanton's house, $100^{\circ} 54^{\prime}$, I mile; to the chimney of Evan's house, $137^{\circ} 35^{\prime} 18^{\prime \prime}, 2$ miles; to the cupola of barn on sheep ranch, $275^{\circ} 2 \mathrm{I}^{\prime}, 2.2$ miles. (See notes 6 and 8, p. 403.)

Old (Knox County, Nebr., F. D. Granger, 1900).-This station is on the crest of a small elevation in the NW. $1 / 4$ of the NW. $1 / 4 \mathrm{sec} .30$, T. 29 N., R. $8 \mathrm{~W} ., 2$ miles west and 0.6 mile north of Venus, on land which is under cultivation and owned by John Old. The nearest house, distant about 800 feet to the northwest, is owned and occupied by W. W. Carey. The azimuths and distances to certain points are: To W. W. Carey's windmill, $145^{\circ} 49^{\prime}$, about 785 feet; to the northwest corner of section 30 , $160^{\circ} 32^{\prime}$; to Venus post-office, $281^{\circ}{ }^{\circ} \mathrm{OI}^{\prime}, 2$ miles; to the center of the county-line road to the westward of the station, 376 feet. (See note 6, p. 403.) The underground mark is a stone jug, at a depth of 3.57 feet below the surface mark, with a tack in the center of the cork.

Walnut (Knox County, Nebr., F. D. Granger, 1901). -This station is in the west center of SW. $1 / 4 \mathrm{sec}$. $10, \mathrm{~T} .30 \mathrm{~N} ., \mathrm{R} .8 \mathrm{~W}$., on land owned by a land company of Norfolk, Nebr., on the highest point of a prominent range of hills in Washington Precinct, about I. 5 miles west and 4.5 miles north of Walnut post-office. The nearest house, situated in a ravine about $1 / 2$ mile to the southwest, is owned and occupied by Frank Vonasek. A trail branches at a point to the southwestward of the station, and the north-and-south branch passes about 270 feet to the westward of the station. The stone marking the southwest corner of sec. 10 , T. 30 N., R. 8 W . is about 0.3 mile a little south of west from the station, and is in the second ravine from the station and surrounded by bushes. (See note 6, p. 403.) The underground mark is a stone jug with a tack in the center of the cork, 3.34 feet below the top of the surface mark.

DESCRIPTIONS OF SECONDARY AND TERTIARY STATIONS BETVEEN MEADES RANCHWALDO AND PAGE BASE.

Blue Hill (Mitchell County, Kans., United States Geological Survey).-This station is described in Bulletin 122 of the United States Geological Survey, page 192, as follows: "Permanent marks: Rock with cross and U.S. G. S. cut in the top." Recovered i89i, F. D. Granger.

Tipton (Osborne County, Kans., United States Geological Survey). -This station is described in Bulletin 122 of the United States Geological Survey, page 192, as
follows: "In Osborne County, Kans., on the east side of sec. I5, T. 8, R. in, on high hill 2 miles west of the town. Permanent mark: Large limestone rock with cross cut and U. S. G. S. on top. Bottom of bottle placed 2 inches below the rock." Recovered 1897, F. D. Granger.

Hardilee (Smith County, Kans., United States Geological Survey).-This station is described ou page 193 of Bulletin 122 as follows: "In Smith County, Kans., on highest point of ground in sec: 20, T. 2, R. 14, near the center of the SE. 1/4. Permanent mark: White sandstone rock marked with a cross and U. S. G. S." Recovered 1897, F. D. Granger.

Covert (Osborne County Kans., F. D. Granger, 1897).-This station is in the NW. $1 / 4 \mathrm{sec} .18, \mathrm{~T} .8 \mathrm{~N} ., \mathrm{R} .12 \mathrm{~W}$. , near the south end of a prominent range of hills about 5 miles south and 0.7 mile west of Osborne. The surface mark is a rough stone post marked with a cross and the letters U.S.C.S. The underground mark is a jug top.

Kansas-Nebraska State Line C (F. D. Granger, 1898).-This station is an earth mound at the southeast corner of sec. 32, T. I N., R. II W., Webster County, Nebr. The underground mark is a stone jug buried 2 feet beneath the surface.

Kansas-Nebraska State Line A (F. D. Granger, 1898). -This station is a stone at the southwest corner of sec. 36, T. I N., R. i4 W., Franklin County, Nebr.

Kansas-Nebraska State Line B (F. D. Granger, 1898).-This station is a flag near the Kansas and Nebraska State line.

Kansas-Nebraska State Line I (F. D. Granger, (1898).-This station is a stone at the southeast corner of sec. 36, T. i N., R. 14 W., Franklin County, Nebr.

Kansas-Nebraska State Line 2 (F. D. Granger, 1898).-This station is a stone at the northeast corner of sec. i, T. i S., R. 14 W., Smith County, Kans.

Madden (Kearney County, Nebr., F. D. Granger, 1898).-This station is in the SE $1 / 4 \mathrm{sec} .36$, T. 5 N., R. 13 W ., on the line of an east and west wire fence, and is about 500 feet north and 500 feet east of the south center of sec. 36 , on land owned and occupied by Robert Madden. The surface mark is a pine stub 4 inches square and 20 inches long, with a nail in its top marking the exact center. The underground mark is a stone jug top buried 2 feet below the surface.

Kearncy (Kearney County, Nebr., F. D. Granger, 1898-99). -This station is in the NE. $1 / 4 \mathrm{sec} .35$, T. 8 N., R. is W., about 5 miles nearly due west of Kenesaw, on the highest point of a sand hill. There is an east and west wire fence 93 yards north of the station, which intersects with a north and south fence 145 yards to the northeast of the station. The surface mark is a pine stub 3.0 feet long projecting a few inches above the ground, with a nail in its center. The underground mark is a bottle top 3.5 feet below the surface.

Carter (Adans County, Nebr., F. D. Granger, 1899).-This station is I mile due east of Roseland, in the SE. $1 / 4 \mathrm{sec} .22$, T. 6 N., R. in W., on land owned by T. W. Carter, of Roseland. The surface mark is a nail in a triangle on the north side of a cottonwood tree. The underground mark is a jug 0.9 foot below the surface. The station point is 0.2 foot south and 0.5 foot east of the nail in the triangle on the cottonwood tree, and 0.6 foot south and 0.5 foot east of the center of the jug. An old frame house stands to the southward of the cottonwood tree.

Cherry (Buffalo County, Nebr., F. D. Granger, 1899). -This station is on a prominent round-topped sand hill with a deep "blow-out" on its west face, and is in the NW.
$1 / 4 \mathrm{sec} .13$, T. 12 N., R. 13 W. , about 1.75 miles southeast of St. Michael railroad station and I I miles east of Ravenna. Station is marked by bottle top buried 2.0 feet below the surface of the ground.

Methodist Church Spire (Adams County, Nebr., F. D. Granger, 1899).—This station is in sec. 2, T. 6 N., R. 12 W.

Danish Lutheran Church Spire (Kearney County, Nebr., F. D. Granger, 1899).This station is in sec. 8, T. 5 N., R. 14 W.

White Spire (Adams County, Nebr., F. D. Granger, 1899). -This station is in sec. 36, T. 7 N., R. 12 W.

Oak (Sherman County, Nebr., F. D. Granger, 1899). -This station is in sec. 18, T. 16 N., R. 13 W., on a round-shaped hill, about 6 miles east and 5.5 miles north of Loup City, and 4 miles west and 7.5 miles north of Ashton. The surface mark is a pine stub 4 by 6 inches and 2 feet long, having two diagonal grooves cut in its top. The underground mark is a jug with a tack in the center of the cork, set 2.5 feet below the surface.

Ericson (Wheeler County, Nebr., F. D. Granger, 1899-1900). -This station is on the highest sand hill in the vicinity of Ericson railroad station, about 3.5 miles to the northeast of that place, in sec. 5, T. 2 I N., R. in W. The underground mark isa stone jug with a tack in the center of the cork, 2 feet below the surface.

Clark (Antelope County, Nebr., F. D. Granger, 1900). -This station is in the SE. $1 / 4 \mathrm{sec} .7$, T. 23 N., R. 8 W ., on land owned by Lewis Clark, whose house stands on the southwest face of the hill, 250 yards from the station. Elgin is io miles nearly due east from the station. The distance east to a tree with a triangle cut on its west face is 28.2 feet, south to a wire fence is 180 feet, and south to the center of a road is about 900 feet. The underground mark is a stone jug with a tack in the center of the cork, 3.05 feet below the top of the surface mark. (See note 6, p. 403). The top of the surface mark projects about 4 inches above the ground.

GENERAL STATEMENT IN REGARD TO THE DETERMINATION OF ELEVATIONS ALONG THE NINETY-EIGHTH MERIDIAN.

While the measurement of horizontal angles was in progress at each station the vertical angles to each station of the primary scheme were also measured on as many days as possible. Vertical measures were also made to many secondary and tertiary stations. The observations in the primary scheme were reciprocal, but not simultaneous; that is, each line was observed in both directions, but at different times. The vertical measures were all made during the middle part of the day, when the refraction is near its minimum value and when its diurnal change is slow. The zenith distances of two or more of the stations visible from a given station were observed directly with a vertical circle. The vertical angles to the other visible stations were determined by measuring the differences of the zenith distance between these stations and the two or more of which the absolute measures had been made. For this purpose an eye-piece micrometer on the telescope of the theodolite used in measuring the horizontal angles was employed.

It is useless to aim at a high degree of accuracy in such vertical measures over lines from to to 30 miles long or longer, since the irregular variation of the refraction from hour to hour and day to day produces changes in vertical angles which affect the tens of seconds, and sometimes even the minutes. All differences of elevation computed
from such observations are subject to large errors, due to these atmospheric changes, regardless of the degree of refinement of the instrumental measures. The accuracy of the elevations determined along the ninety-eighth meridian would probably have been increased somewhat by extending the observations at each station over many days, but such slight increase in accuracy would not have justified the extra expenditure of time and money.

The accuracy of the elevations has been kept within such limits as to make them valuable for topographic and cartographic purposes by frequent comnection of the measures with bench marks of which the elevations have been accurately determined by precise leveling forming a part of the level net covering the eastern half of the United States.

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THF ELEVATIONS.
The zenith distances and the differences of the zenith distances directly observed at each station were first computed. At each station at which the zenith distances of two or more stations were observed, and differences of zenith distances were also measured, involving these stations as well as the remaining stations, certain rigid conditions existed between the observed quantities. An approximate adjustment was made to satisfy these conditions, and the resulting zenith distances for all stations derived. These zenith distances were corrected for height of object observed and of instrument so as to refer them all to the ground at each station, or to the station marks.

The difference of elevation of each pair of stations in the main scheme was then computed from the observations over the line adjoining them by the formula

$$
h_{2}-h_{x}=s \tan 1 / 2\left(\zeta_{2}-\xi_{1}\right)\left[\mathrm{I}+\frac{h_{2}+h_{2}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}\right]
$$

in which h_{2} and h_{1} are the elevations of the stations, ζ_{0} and ζ_{1} are the measured zenith distances, s is the horizontal distance between the stations, and ρ is the radius of curvature.

As there are always two or more lines to each new station, many rigid conditions existed between the observed differences of elevation, even if the connections with the precise leveling were ignored, and the least square adjustment furnishes the readiest accurate means of deriving the required elevations.

The least square adjustment was made in two sections. The first adjustment involved all stations in the priphary scheme from the Salina Base to and including the Shelton base net as shown in Illustrations Nos. 1, 2, and 3, and including also the secondary station Russell Southeast Base and Russell Northwest Base. The secoud adjustment involved all the remaining stations of the primary scheme to and including those in the Page base net.

In the following table the observed differences of elevations treated in the first adjustment are shown together with their adjusted values. The weight, p, assigued to each observed difference of elevation was made inversely proportional to the length s of the line between stations and was conveniently computed by the formula $\log p=$ $9-2 \log s$. The observed difference of elevation is given the sign of the elevation of the second station named minus the elevation of the first. The quantity v in the last column but one is the correction to be applied to observations to obtain the difference of adjusted elevations.
S. Doc. $50-27$

Station I .	Station 2.	$\begin{gathered} \text { weight } \\ p . \end{gathered}$	$\begin{gathered} \text { observed } \\ \text { diff.of eleva. } \\ h_{2}-h_{1} \end{gathered}$	Adjusted diff. of eleva. $h_{2}-h_{1}$	Adj.-Oths.	m^{2}
			17	m	m	17
North Pole Mound	Salina West Base	8. 02	-74.47	-74.66	-0. 19	0. 289
Iron Mound	Salina West Base	II. 53	-84.26	-84.35	-0.09	0.093
North Pole Mound	Salina East Base	8. 25	-81. 02	-So 74	-1.0. 28	0. 646
Iron Mound	Salina East Rase	17.86	--90. 44	-90.43	$+0.01$	o. CO 2
Thompson	North Pole Mound	I. 87	-39.93	-39.68	+0. 25	-. 117
Vine Creek	North Pole Mound	1.58	-13.19	-13.08	+0.11	0. 019
Iron Mound	North Pole Mound	3. 05	- 9.74	- 9.69	- +0.05	0.008
Vine Creek	Iron Mound	-. 85	-3.37	-3.39	-0.02	0. 000
Iron Mound	Heath	o. 45	+96. 52	+97.22	-0. 70	0. 220
Iron Mound	Thompson	0. 62	+29.51	+29.99	+o. 48	-. 143
Vine Creek	Heath	0. 24	+91. 10	$+93.83$	+2.73	1. 789
Vine Creek	Thompson	o. 69	$+27.76$	+26.60	-1. 16	0. 929
Heath	Thompson	1. 00	-67.50	-67.23	+0. 27	0.073
Heath	Lincoln	1. 30	-40.97	-40.57	+0. 40	-. 208
Heath	Meades Ranch	-. 28	+43.86	+45.56	+1.70	0. 809
Heath	Golden Belt	I. 39	-25.85	-26.06	-0. 21	0.061
Thompson	Golden Belt	-. 55	+42. 02	+41. 17	-0.85	-. 397
Thompson	Lincoln	Y. SI	+26. 79	+26.66	-0. 13	0.031
Lincoln	Golden Belt	2.08	+14.32	+14.51	+0. 19	0. 075
Lincoln	Meades Ranch	o. 59	+86. 27	+86. 13	-0. 14	0. 0.12
Golden Belt	Wilson	2.45	+40. 17	$+39.83$	-0. 34	o. 284
Golden Belt	Meades Ranch	o. 86	+71.08	+71.62	+0. 54	0. 251
Meades Ranch	Wilson	0.62	-32.70	-31.79	+0.91	0. 513
Meades Ranch	Bunker Hill	o. 58	-27.45	-28.98	-1. 53	1. 358
Meades Ranch	Blue Hill (Kans.)	- 33	+54. 24	$+53.31$	-0.93	o. 285
Meades Ranch	Waldo	1.51	+19.56	+19.63	+0.07	0. 007
Wilson	Bunker Hill	2. 79	+ 2.65	+2.81	+o. 16	o. 073
Wilson	Waldo	o. 50	+52.90	+51.42	-1. 48	1.0.05
Bunker Hill	Blue Hill (Kans.)	0. 76	+ S1. 85	+82. 29	+o. 44	o. 147
Bunker Hill	Waldo	o. 84	+49.64	+48.61	-1.03	0. 891
Bunker Hill	Allen	4.30	+9.93	+9.27	-0. 66	o. 015
Waldo	Russell NW. Base	1. 10	-57: 06	-57.89	-0. 83	-. 758
Waldo	Allen	o. 70	-39.51	-39.34	+o. 17	0. 020
Waldo	Blue Hill (Kans.)	1. 05	+33.89	+33.68	-0. 21	o. 046
Allen	Blue Hill (Kans.)	1. 45	+73.49	$+73.02$	-0. 47	0. 320
Allen	Russell NW. Base	13.87	-18.54	-18. 5.5	-0. OI	0. 001
Russell SE. Base	Waldo	-0. 84	+ 44.80	+45. 55	+0.75	o. 478
Russell SE. Base	Allen	14. 93	+6.25	+6.21	-0.04	0. 024
Russell SE. Base	Blue Hill (Kans.)	1. 07	+73.42	+79.23	+o.81	o. 702
Waldo	Kill Creek	5.06	+3.68	+ 4.12	+o. 44	-. 982
Waldo	Dial	8.40	$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	+ 4.95	-0. 24	o. 484
Meades Ranch	Dial	2. 55	+24.22	+24.58	+0. 36	o. 331
Meades Ranch	Old Well 2	o. 54	-50.65	-49.77	+o. 88	0. 418
Dial	Old Well 2	o. 52	-74.51	-74. 35	+o. 16	o. or 4
Dial	Lawrence 2	1.05	-55. OI	$--54.55$	+0. 46	0. 223
Dial	Kill Creek	7.38	-0.60	- 0.83	-0. 23	-. 390
Kill Creek	Lawrence 2	1. 39	-54. 11	-53.72	+0. 39	0. 211
Lawrence 2	Old Well 2	1.37	-19.86	-19.80	$+0.06$	0. 005
Old Well 2	Brown	2. Io	+39.59	+4n.15	+-0. 56	0. 659
Old Well 2	Lebanon	1.70	$+3^{8 .} 31$	$+37.99$	-0. 32	o. 174
Lawrence 2	Lipps	0. 36	+78.76	+82.33	$+3.57$	4. 588
Lawrence 2	Brown	1. OI	+20.68	+20.35	-0. 33	o. 110
Brown	Lipps	1. 32	+6I. 87	$+61.98$	+o. 11	o. 116
Brown	Cooper	1.68	+22.70	+22.93	+0. 23	0.089
Brown	Lebanon	3.78	-2. 24	- 2. 16	+0.08	0. 024
Cooper	Lebanon	3.27	-25.17	-25.09	+0.08	0. 021
Cooper	Lipps	1.90	+39.32 +26.22	+39.05	-0. 27	-. 139
Cooper	Herrick	-. 92	+26.22	+26.66	+o. 44	-. 178
Cooper	Blue Hill (Nebr.)	-. 79	$\begin{array}{r} \\ +\quad 9.39 \\ \hline 13.19\end{array}$	+9.72 +.2 .39	+0.33 +0.80	o. 086
Lipps	Herrick	1.14	-13.19.	-:2.39	+o. 80	0. 730

APPENDIX NO. 6. TRIANGULATION ALONG NINETY-EIGHTH MERIDIAN. 419

Station 1.	Station 2.	$\begin{gathered} \text { Weight } \\ p . \end{gathered}$	$\left\|\begin{array}{c}\text { Observed } \\ \text { diff. of eleva. } \\ h_{2}-h_{1} .\end{array}\right\|$	Adjusted diff. of eleva. $h_{2}-h_{1}$.	$\begin{gathered} \text { Adj. -Obs. } \\ \underset{y}{2} . \end{gathered}$	pr2.
			m.	m.	.	m.
Blue Hill (Nebr.)	Herrick	2. 24	+17.37	+16.94	-0. 43	0. 414
Blue Hill (Nebr.)	Sand Creek	1. 72	+ 9.76	+9.91	+o. 15	o. 039
Blue Hill (Nebr.)	Wanda	-. 86	+II. 99	+11. 76	-0. 23	0. 046
Blue Hill (Nebr.)	Mason	-. 94	-15.48	-15.37	+o. II	0. 011
Herrick	Lars	I. 39	$+38.42$	+38.52	+0. 10	0.014 ${ }^{-}$
Herrick	Sand Creek	2. 12	-7.12	-7.03	+0.09	0.017
Sand Creek	Lars	3. 19	+45.53	$+45.55$	+0.02	0.001
Sand Creek	Wanda	3. 47	+ I. 92	1 +1.85	-0.07	0. 017
Sand Creek	Mason	1. 47	-25.26	-25.28	-0.02	0. 001
Wanda	Prosser	5.25	+5.96	+6.17	+o. 21	-. 232
Wanda	Mason	4.90	-27.07	-27.13	-0.06	-. 0.18
Mason	Prosser	3. 70	$+33.36$	$+33.30$	-0.06	0.013
Lars	Lowell	2. 79	-19.35	-19.27	+0.08	0. 018
Sand Creek	Lowell	2. 30	+25.98	+26.28	+o. 30	0. 212
Wanda	Lowell	3. 73	+24.76	+24.43	-0. 33	0. 407
Prosser	Lowell	1. 90	+18.35	+18.26	-0.09	0. 015
Lowell	Shelton West Base	3. 75	-30.97	-31.38	-0.41	0.630
Prosser	Shelton West Base	2.20	-12.70	-13. 12	-0. 42	o. 387
Lowell	Shelton East Base	2. 42	-43.03	-42. 58	+o. 45	-. 490
Prosser	Shelton East Base	4. I3	-24.80	-24.32	+o. 48	o. 950
Lowell	Valley	I. 33	$+37.56$	+37.58	+o. 02	0. 001
Shelton West Base	Valley	7.31	+68.72	+68.96	+o. 24	0.421
Shelton East Base	Valley	4.70	$+80.51$	$+80.16$	-0. 35	-. 576
Prosser	Valley	I. 10	+55.64	+55.84	-0. 20	0. 044
Prosser	Cameron	I. 28	-1.04	- 1. 16	-0. 12	0.018
Shelton East Base	Cameron	2. 58	+23.19	+23.16	-0.03	0. 002
Valley	Cameron.	2.23	-57.10	-57.00	+o. 10	0.022

In the adjustment, of which the direct results are indicated above, the elevations of eight station marks were fixed by precise leveling as follows:

Stations.	Elevation above mean sea level.
Salina East Base,	Meters.
Salina West Base,	366.18
Bunker Hill,	372.26
Russell Southeast Base,	570.41
Russell Northwest Base,	573.47
Blue Hill (Nebr.),	561.13
Shelton East Base,	622.42
Shelton West Base,	616.03
	627.23

The elevations of 29 remaining stations indicated by the observations are the 29 unknowns determined by least squares from the 87 differences of elevations indicated above.

The probable error of an observation of weight unity as derived from the adjustment is ± 0.47 meter. In other words, the reciprocal observations over a line $19^{2 / 3}$ miles ($=3 \mathbf{1}^{\mathrm{k}: \mathrm{m}} .7$) long (this being the length of the line corresponding to unit weight) determined the difference of elevation of two points with such a degree of accuracy that it is an even chance whether the error is greater or less than 0.47 meter. The probable errors for lines of other lengths were assumed to be proportional to their lengths.

The probable errors of the elevations of the eight stations fixed by precise leveling are about ± 0.II meter. The probable error approaches this value for stations adjacent to those fixed by precise leveling and is greatest for the most remote stations. Station Brown was estimated to be the one least accurately determined and its probable error was therefore computed as a limiting value and found to be ± 0.28 meter from the vertical angle measures alone, or when combined with the probable error of the elevation furnished by precise leveling it was ± 0.30 meter.

In other words, for the least accurately determined station in the main scheme between the Salina and Shelton Bases there is about an even chance that the elevation is correct within 0.3 meter, or about I foot, and for most stations the accuracy is much greater than this.

The results of the second adjustment in which the stations concerned are those from Valley, Cameron, and Prosser on the edge of the Shelton base net to the Page Base, are shown below in the form used for the first adjustment.

Station 1.	Station 2.	$\underset{p .}{\text { Weight }}$	observed diff. of eleva. $h_{2}-h_{5}$.	Adjusted $h_{2}-h_{1}$.	$\frac{\text { Adj. -Obs. }}{v .}$	$p v^{2}$.
Valley	Divide	0. 62	m. +-26.40	m. +26.29	$\stackrel{m}{\text { - }}$ - 11	$\stackrel{11}{007}$
Valley	Deer	o. 59	-24. 72	-25.25	-0. 53	. 166
Cameron	Deer	-. 96	--30.96	+31.75	+o. 79	. 599
Cameron	Pompey	I. 52	-29.08	-29.27	-0. 19	. 055
Pompey	Deer	-. 94	$\cdots 60.91$	+61.02	+o. 11	. OII
Pompey	Brayton	o. 60	$+61.92$	+61.28	-c. 64	. 246
Deer	Divide	2.47	+51. 55	+51.54	-0. O	. 000
Deer	Brayton	o. 82	-0.44	\bigcirc	+o. 70	. 402
Divide	Yale	o. 79	+28.03	$+27.89$	-0. 14	. 016
Yale	Brayton	o. 60	-79.80	-79.17	+o. 63	. 238
Yale	Elm	I. 15	-12.13	-12.27	-0. 14	. 023
Yale	Custer	o. 5^{2}	-48.77	-49. 16	-0. 39	. 079
Yale	Daily	o. 84	-5\%. 49	-58.66	-0. 17	. 024
- Brayton	Daily	3.80	+20.36	--20.51	+0. 15	. o84
Brayton	Custer	2. 78	--30.00	--30.01	+0.01	. 000
Daily	Elm	I. 86	$+46.31$	+46.39	+0.08	. Oil
Daily	Custer	10. 67	+-9.47	+-9.50	$+0.03$. 011
Custer,	Elnı	I. 26	--36.96	- +36.89	$\cdots 0.07$. 006
Custer	Buffalo	0. 78	- 0.35	-0.03	+-0. 32	. 080
Elm	Buffalo	1. 63	-36. 36	-36.92	-0. 06	. 007
Elm	Ono	0. 75	-43.63	-43. 62	-0.01	. 000
Custer	Ono	I. 92	-6.70	-6. 73	-0.03	. 002
Ono	Buffalo	I. 40	$+6.82$	+ 6.70	-0. 12	. 020
Ono	Deloit	o. 77	-51.48	-51. 31	+o. 17	. 022
Buffalo	McClure	o. 90	-56.59	-56.60	-0. OL	. 000
Buffalo	Deloit	o. 69	-57.95	-58.01	-0. 06	. 003
Deloit	McClure	3. 53	+ 1. 37	\dagger 1. 41	+o. 04	. 007
Deloit	Page SW. Base	I. OI	-16.63	-16. 54	+0.09	. 008
Deloit	Hall	2.49	-18.44	-IS. 50	-0.06	. 010
McClure	Page SW. Base	1. 41	-17.97	-17.95	$+0.02$. 000
McClure	Hall	I. 28	-20.00	-19.91	+0.09	. 010
Hall	Page SW. Base	2.32	$+2.02$	+ 1.96	$\cdots 0.06$. 009
Hall	Old	2. 86	-46.6.5	--46.61	+o. 04	. 005
Page SW. Base	Old	7.55	-48.53	-48. 57	-0.04	. 015
Page NE. Jase	Old	29.38	-2.97	-- 2. 92	$\therefore 0.05$. 073
Page NF. Base	Prairie	10. 19	+15.85	+15.71	-0. 14	. 204
Page SW. Base	Prairie	5. 65	-29.93	-29.94	-0.01	. 000
Prairie	Old	4. 19	-18.28	- 18.63	-0. 35	
Page SW. Base	Page NE. Base	14. 69	-45. 54	-45.65	-0.11	.176

In this second adjustment the elevations of four stations were taken as fixed, namely: Valley and Cameron fixed by the previous adjustment, their elevations being 696.19 and 639. 19 meters respectively, and the stations Page Southwest Base and Page Northeast Base fixed by precise leveling, their elevations being 626.63 and 580.98 meters, respectively. The elevations of the fifteen remaining stations indicated by the observations are the fifteen unknowns determined by the least squares from the thirty-nine observed differences of elevations given in the above table.

The probable error of an observation of weight unity as derived from the adjustment is ± 0.23 meter. The length of line corresponding to unity weight was again 31.7 kilometers ($192 / 3$ miles). The probable error for the elevation of stations fixed by precise leveling is about ± 0. Io meter. The station Elm was estimated to be the one least accurately determined. Its probable error, computed from the vertical measures line, is ± 0.32 meter, or combined with the uncertainty of the elevatious fixed by precise leveling it is ± 0.34 meter. In this section, therefore, for the least accurately determined station in the main scheme there is about an even chance that the elevation is correct within 0.3 meter, or within I foot, and for most stations the accuracy is much greater than this.

It is interesting to note that in spite of the fact that the observations were made on a smaller number of days at each station, that the probable error corresponding to unit weight is much smaller than in the southern group of observations, being ± 0.23 meter as compared with $: \pm 0.47$ meter.

The elevations of various tertiary stations outside the primary scheme which were determined by observations of vertical angles from the primary stations were computed by using the following formula, which is applicable to the observations made in one direction only over each line,

$$
h_{2}-h_{:}=s \cot \zeta+\frac{1-2 m}{2 \rho} s^{2}+\frac{1-m}{\rho} s^{2} \cot ^{2} \zeta
$$

in which m is the coefficient of refraction.
The value of the coefficient of refraction used on each line was a mean value derived from a group of lines in the primary scheme in the general locality in question, it being assumed that the most important conditions affecting the coefficient which can be effectively taken into account are the influence of the region and of the climatic conditions of the particular year and months during which the observations were taken.

The computed differences of elevations being combined with the adjusted elevations at the primary stations, there were obtained for each tertiary station as many determinations of its elevations as there were lines to it. The weighted mean of these was adopted and is given in the following table of elevations. The weights assigned to the different lines were inversely proportional to the squares of the lengths of the lines. These tertiary elevations are of course of a much lower grade of accuracy than the elevations of the primary stations. Occasionally the separate determinations of the elevation of one of these points differ by as much as a meter.

TABLE OF ELEVATIONS.
The datum for all the elevations is mean sea level. The stations are in three classes.
First. Those fixed directly by the precise leveling and of which the elevation is subject to probable error of ± 0. I I meter.

Second. The primary stations fixed by reciprocal measures of vertical angles and which are subject to probable errors varying from ± 0.30 to ± 0.34 meter.

Third. The tertiary stations of which the elevations are fixed by measures of vertical angles which are not reciprocal, the tertiary stations not being occupied. These elevations are subject to probable errors which may be as great as ± 0.5 meter in some cases.

For more exact elevations of the stations fixed by precise leveling and for an exact statement of the points on each station mark to which such elevations are referred, the published results of precise leveling should be consulted.

Table of elevations.

Station.	Point to which elevation refers.	Elevation.
Salina East Base	Bolt	Meters. 366. I8
Salina West Base	Bolt	372. 26
Bunker Hill (or B. M. S.)	Stone	570.41
Russell SE. Base (or B. M. T.)	Stone	573.47
Russell NW. Base	Stone	561. 13
Blue Hill, Nebraska	Sione	622.42
Shelton East Base	Bolt	616.03
Shelton West Base	Bolt	627.23
Page SW. Base	Bolt	626.63
Page NE. Base	Bolt	580. 98
North Pole Mound	Stone	440́. 9
Iron Mound	Stone	456.6
Vine Creek	Stone	460. 0
Thompson	Stone	486.6
Heath	Stone	553.8
Lincoln	Stone	513.3
Golden Belt	Stone	527.8
Wilson	Stone	567.6
Meades Ranch	Stone	599.4
Allen	Stone	579.7
Blue Hill, Kansas	Stone	652. 7
Waldo	Stone	619.0
Dial	Stone	624.0
Kill Creek	Stone	623: 1
Lawrence 2	Stone	569.4
Old Well 2	Stone	549.6
Brown	Stone	589.8
Lebanon	Stone	587.6
Cooper	Stone	612.7
Lipps	Stone	651.8
Herrick	Stone	639.4
Sand Creek	Stone	632.3
Lars	Stone	677.9
Lowell	Stone	658.6
Wanda	Stone	634.2
Mason	Stone	607.0
Prosser	Stone	640.4
Valley	Stone	696. 2
Cameron	Stone	639.2
Deer	Stone	670.9
Pompey	Stone	609. 9
Divide	Stone	722. 5
Brayton	Stone	671.2
Yale	Stone	750.4
Daily	Stone	691.7

Const and Geodetic Survey Report 1901. Appendix No. 6.

Table of elevations-Continued.

Station.	Point to which elevation refers.	Elevation.
Custer	Stone	Meters. 701.2
Elnı	Stone	738.1
Buffalo	Stone	701. 2
Ono	Stone	694.5
Deloit	Stone	643.2
McClure	Stone	644.6
Hall	Stone	624.7
Old	Stone	578. I
Prairie	Stone	596. 7
Soldier Cap Mound	Ground	480.4
Sugar Loaf Mound	Ground	512.5
Salina, St. John's Military College	Top of cupola	403.7
Salina, Phillips' House	Top of dome	411. 6
Ellsworth Water Tower	Top	512.6
Turkey Point	Ground	532.6
Small Peak	Ground	564.1
Lincoln College	Top of cupola	452.6
Blue Hill, U. S. G. S.	Ground	535.3
Lone Tree	Ground	497. 2
Bunker Hill Water Tower	Tank	581.9
Russell High School	Top of cupola	585.4
Russell North School	Top of cupola	577.8
Russell Tripod	Ground	565.6
Bunker Hill Methodist Church	Spire	583.8
Bunker Hill Schoolhouse	Top of cupola	58 I .2
Tipton, U. S. G. S.	Ground	553. I
Covert	Ground	56 I .9
Medicine Peak	Ground	541.6
Smith Center Standpipe	Top	589.7
Hardilee	Ground	615.6
Red Cloud Standpipe	Top	562.9
Kansas-Nebraska State Line I	Stone	64 I. 5
Kansas-Nebraska State Line B	Ground	632.1
Kansas-Nebraska State Line 2	Stone	627.6
Kansas-Nebraska State Line C	Mound	590.6
Carter	Ground	598.0
Blue Hill Standpipe	Top	635.2
Madden	Ground	649.3
Kearney	Ground	656. 4
Hastings Standpipe	Top	626.7
Insane Asylum Standpipe	Top	627.0
Minden Standpipe	Top	.695. 9
Kearney Reformi School Standpipe	Top	731. 6
Doniphan Chimmey	Top	638.6
Grand Island Standpipe	Top	601.3
Cherry	Ground	64 I . 1
Chadwick	Ground	637.7
Oak	Ground	692.0
Ericson	Ground	702. 9
Clark	Ground	662.1
O'Neill Standpipe	Top	642.2

Blank page retained for pagination

ALPHABETICAL INDEX.

(Exclusive of Appendices 3 to 6.)
[For Trable of Contents see page 7. Tabular Index of Field Work on page 61.]

A.

ACHERK HARBOR, ALASKA, P. 161.
ADAE, C. F., pp. 112, 167.
ADJUTANT-GENERAL, DIVISION OF THE PHILIP-
PINES, p. 178.
ADMIRAL OF THE FLEET, PHILIPPINE ISLANDS, p. 178.

ADMIRALTY OFFICE, LONDON, ENGLAND, p. 189.
AGUADILLA, P. R., pp. 171, 174, 175. Magnetic observa-
tions, p. 175.
AGUADILLA BAY, P. R., p. 175.
AIbONITA, P. R. Magnetic observations, p. 170.
AINSWORTH, F. H., pp. 98, 107, 167.
AINSWORTH, NEBR. Magnetic observations, p. 124. AKRON, COI,O. Magnetic observations, p. 134. AKRON, OHIO. Magnctic observations, p. 71.
AKUR ISLAND, ALASKA, p. 150.
AKUTAN ISLAND, ALASKA, p. 150.
AI ABAMA. Coast Pilot, p. io3. Leveling, pp. 13, 21,76, 84. ALASKA, pp. 12, 13, 15, 16, 19. Astronomic work, pp. 153, 159. Base-line measurements, pp. 148, 153, 159, 16r. Coast Pilot, pp. 14, 152, 161. Geographic positions, pp. 207, 211. Hydrography, pp. 14S, 153, 159. Isogonic lines, p. 212. Magnetic observations, pp. 22, 145, 147, 148, 153, 159. Marking provisional boundary, pp. 14, 197. Reconnaissance, pp. 146, 148, 153. 159, 161. Site for magnetic observatory examined, p. 21. Tide observations, p. 153. Topography, pp. 148, 153, 159. Triangulation, pp. 148, 153, 159, 161.

ALASKA COAST PILOT, p. 19.
ALBATROSS, U. S. FISH COMMISSION STEAMER, p. 160.

ALBEMARLE, N. C. Magnetic observations, p. 73.
ALbION, NEBR. Magnetic observations, p. 124.
ALCATRAZ ISLAND, CAL., p. 14I.
ALEXANDER, W. D., p. 163.
ALEXANDRIA, LA. Magnetic observations, p. 125.
ALEXANDRIA, MINN. Magnetic observations, p. 125
ALEUTIAN ISLANDS, P. 13 .
ALGIERS, LA., p. 103.
ALICE, TEX., P. 20.
ALICE BASE, TEX., pp. 20, 122, 123.
ALLEN: ETHAN E., p. 177.
ALLEN, H. C., p. 224.
ALLENDALE. Triangulation station, p. 82.
ALLIANCE, NEBR. Magnetic observations, p. 124
ALLYNS POINT, CONN., p. g8.
ALONZO, POTENCIANA, p. 177.
AMADOR, P. R., p. :75.

AMADOR PLANTATION, P. R., p. 174.
ANAMOSA, IOWA. Magnetic observations, p. 125.
ANASCO, P. R., p. 174.
ANNAPOLIS, MD., p. in2.
ANTARCTIC EXPEDITIONS, p. 14.
ANTHONY BASE, KANS., pp. 122, 123, 132.
APARRI, LUZON, P. I. Astronomic observations, p. 179. Tide observations, p. 187.
APOON ENTRANCE, ALASKA, p. 149.
APPLETON, W. G., pp. 153, 154, 155.
APPROPRIATIONS, p. 15.
ARANSAS PASS, TEX., p. 131.
ARDSLEY, N. Y., p. 74.
ARECIBO, P. R., Pp. 174, 175.
ARECIBO LIGHT-HOUSE, p. 174.
ARKANSAS. Magnetic observations, pp. 13, 22, 124, 125.
ARLINGTON, KANS. Triangulation station, $p .130$.
ASHLAND, OHIO. Magnetic observations, p. 7 .
ASPERMONT, TEX. Magnetic observations, p. 126.
ASSISTANT IN CHARGE. Office of, report, p. 15. Report
of, p. 207.
ASUNCION, JOSE, p. 177.
ASTRONOMIC OBSERVATIONS.
Alaska, pp. 153, 160, 162. Dutch Harbor, p. 162. Orca, p. 160.

Missourt, p. 104. St. Louis, p. IO4.
Northzeest Boundary, p. 142.
Philippine Islands, pp. 177, 179. Bolinao, p. 179. Darigayos, p. 179. Manila, p. 179. Santo Tomas, p. 179.
Wisconsin, p. 104. Williams Bay, p. 104.
ATALAYA, P. R., p. r7.
ATCHISON, TOPEKA AND SANTA FE RAILWAY, p. 132. ATLANTIC, IOWA. Magnetic observations, p. 125.
ATLANTIC COAST. Sections of Coast Pilot relating to,
p. 14. Work of Coast Pilot Party, p. 19.

ATLANTIC COAST TIDE TABLEES, pp. 213, 208.
ATLANTIC COAST LINE RAIL, WAY, p. 83.
ATKINSON, W. M., p. 148 .
ATVEL,L, H. J., pp. 91, 108, 112, 115, 120.
AUGUSTA, GA., p. 82.

B.

BACHE, STFAMER, pp. 15, 108, 109, 112, 114. Log of, p. 17.
Contract to rebuild, p. 17. Expenditures, p. 47.
BACK WYE RIVER, p. 78
BACON, HARIOW, p. 214.
BAIRD, B. A., pp. 138, $139,159$.
BAJA, P. R. Magnetic observations, p. 175.
BAKER, J. N., p. 214.
bakERSVILLE, N. C. Magnetic observations, p. 73.

BALAYAN, IUUZON, P. I. Astronomic observations, p. 179.

Magnetic observations, p. 179. Tide observations, p. 187.
BAI,AYAN ANCHORAGE, LUZON, P.Y. Reconnaissance, Topography and Hydrography, p. I8ı.
BALDWIN, KANS., p. 14. Magnetic observations, pp. 124, 125.

BAL,DWIN. A. L.., pp. 122, 123, 210, 21 .
BALDWIN-ZEIGLER POI,AR EXPEDITION, p. 223.
BALIINGER, TEX. Magnetic observations, p. 128.
BALTIMORE, MD., pp. 74, 92.
BAI,TIMORE, CHESAPEAKF, AND ATLANTIC RAIIROAD, p. 78.
BANDERA, TEX. Magnetic observations, p. 128 .
BARNARD, E. C., U. S. Geological Survey, pp. 154, 156.
BARNES, A. S., p. 212.
BARREN ISLAND, MD., pp. in2, in6. Speed Trial Course established, p. 115 .
BARKOWS, H. C., Chief Engineer Revenue-Cutter Service, p. 119.

BARTLETT, NEBK., p. 124. Magnetic observations, p. 124. BARTIETTT BAY, ALASKA, pp. 145, 157, 158. Magnetic observations, p. 145 .
BASE MEASUREMENT.
Alaska, pp. 148, 153, 159, 161. English Bay, p. 150. Hawkins Island, p. 159. Makaka, p. 160. Nome River,
p. 155. Port Clarence, p. 155. Snake River, p. 155. Kansas, p. 122. Anthony Base, p. 122.
Nebraska, p. 122. Page Base, p, 122. Shelton Base, p. 122.

Oklahoma Territory, p. 122. El Reno Base, p. 122. Philippine Islands, p. 177.
Porto Rico, p. 173.
Texas, p. 122. Alice Base, p. 122. Bowie Base, p. 122. Lampasas Base, p. 122. Seguin Base, p. 122. Stephenville Base, p. 122.
BATANGAS, LUZON, P. I., p. i78. Astronomic observations, p. 179. Magnetic observations, p. 179.
BATESVILLE, ARK. Magnetic observations, p. 125.
BATTERY POINT, ALASKA. Magnetic observations, p 145.
BAUER, L. A., Pp. 21, 70, 71, 124, 133, 145, 164, 208, 212.
BAUER, W. C., P. 124.
BAUMAN, WM., pp. 120, 220.
BAYAMON, P. R., p. 175.
RAYLOR, J. B., pp. 70, 73, 191, 212.
BEACH, S. C., p. 82.
BEACH ISLAND, S. C., p. 82.
HEAVER, OKLA. Magnetic observations, p. 126.
BEAUFORT, S. C., pp. 81, 82.
BELITR, ARTHUR F., p. 52.
BELL L, OVID, p. 75.
BELLFFONTAINE, OHIO. Magnetic observations, p. 71.
BELTON, TEX. Magnetic observations, p. 125.
BENSON, MINN. Magnetic observations, p. 125.
BERING SEA, p. 13. Work of Coast Pilot Party, p. 19.
BERLIN, GERMANY, p. 201.
BERNHARDT, HENRY, pp. 177, 178
BETTER'TON, MD. Tide observations, p. 12 .
BICKFORD, W. J., p. 215.
BILBY, JASPER S., pp. 83. 130.
BINGHAM, COL. THEO. A., U. S. Army, n. 90.
BIRMINGHAM, ALA. Leveling, pp. 76, 84.
BLACKLIDGE, C. F., p. 215.
BLAIN, ROBERT H., p. 190.
BLAKE, STEAMER. I.Og of, p. 17. pp. 91, 92, 93, 94, 112, 117.

BLISS, D. S., p. 213.
2/LOODY POINT, GA., p. 91.

BLOOMFIELD, IND. Magnetic observations, p. 77.
BLOOMFIEI, D, MD. Triangulation, p. 78 .
BLOUGH, JOHN S., p. 141.
BLUE RIIJGE MOUNTAINS, p. 82.
BOARD OF INSPECTION AND SURVEY, NAVY DE-
РAKTMEN'「, pp. 112, 193.
BOLINAO, P. I. Astronomic observations. p. 179.
BOLINAO HARBOR, P. I. Triangulation and Topography, p. isi.
BOMRAY HOOK, pp. 16, 120.
BONNEVILI, E. Triangulation station, p. 140.
BOONE, IOWA. Magnetic observations, p. 125 .
BOONE, N. C. Maguetic observations, p. 73.
BORINQUEN LIGHT-HOUSE, P. R., p. 175.
BOUNDARY COMMISSION. Tomark Alaskan boundary, p. 197.

BOUNDARY SURVEYS, p. 14.
BOUTELLE, J. B., pp. 16, 74, 165.
HOWDWIN, HANS, p. 215 .
BOWIE, WII.LIAM, PP. 122, 159, 210.
BOWIE BASE, TEX., p. 122.
BRADFORD, GERSHOM, pp. 208, 220.
BRADFORD, GERSHOM, 2d, p. 120.
BRADY, TEX. Magnetic observations, p. 128.
BRAID, ANDRFW, p1. 15, 20%.
BRAINERD, MINN. Magnetic observations, p. 125.
BKECKENRIDGE, MINN. Magnetic observations, $p, 125$. BKEWSTER, NEBR. Magnetic observations, p. I24. BRIDGRPORT, NEBR. Magnetic observations, 1). 124. BRISTOI., 'IENN., p. 19I.
BRITISH COLUMBIA, D1. 13, 152. Boundary, p. 14. Mag netic observations, p. 22. Marking provisional boundary, p. 197.

BROKEN BOW, NEBR. Magnetic observations, p. 124. BROOKHAVEN, MISS. Magnetic observations, p. 72. BROOKLYN, N. Y., p. 97.
BROOKI, YN, S. C. Triangulation station, p. 82. BROOKS, MR. U. S. Geological Survey, p. 156. BROWN, W. G., p. 139.
BROWN: W. M.. pp. 70, 71, 124.
BRUNDAGE, F. H., pp. 122, 148, 210.
BRYANT, NEII., p. 220.
BCCHANAN, ANDREW H., p. 19 .
BUCKINGHAM, C. W., p. 214.
BUFFALO, N. Y., p. 14. Pan-American Exposition, pp. 199. 208.

BULLETIN NO. 41, p. 212.
BCRGER, WILLIAM İ., pp. 21, 75, 84, 146, 210.
BURI,INGTEN, COLO. Magnetic observations, p. 134 . BURLINGTON, IOWA. Magretic observations, p. 125. BURNSVILLE, N. C. Magnetic observations, p. 73. BURTON, A. E., pp. 20, 123.
HURWELL, NEBR. Magnetic observations, p. 124. BUTLER, W. H., p. 223.

C.

CABIN CREEK, MD., P. III.
CABO ROJO, P. K., pp. 167, 168.
CABRAS ISI, AND, P. R., p. 165.
CADY, W. G., pp. 70, 71, 124.
CAGAYAN RIVER ENTRANCE, APARRI, LUZON, P.I. Hydrography, p. i8o. Reconnaissance and topography, p. 180.

CALIFORNIA. Coast Pilot, pp. 135, 137. Magnetic observations, p. 133. Extension of Santa Barbara speed-trial course, p. 136. Sub Office and tidal observations, p. 141. Hydrography, p. 844.
CALIFOKNIA ARC, 1. 209.

CAMAS, WASH., p. 140
CAMBRIDGE, MD., pp. 89, IIs.
CAMDEN, ARK. Magnetic observations, p. 125.’
CAMDEN, N. C. Magnetic observations, p. 73 .
CAMPANIA MARITIMA, MANILA, P. Y., p. 178.
CAMPBELL, E. F., p. 214.
CAMPBELL, VIRGINIA E., p. 213.
CAMUY, P. R., pp. 174, 175.
CAMUY RIVER, P. R., p. 775.
CANADIAN PACIFIC NAVIGATION COMPANY, p. 150.
CANADIAN PACIFIC RAILWAY, p. 143.
CANDON, LUZON, P. I. Astronomic observations, p. 179.
Magnetic observations, p. 179. Triangulation, p. 184.
CAPE BOJFADOR, LUZON, P. I. Astronomic observations, p. 179.
CAPE DARBY, ALASKA, p. 150.
CAPE DENBIGH, p. 149.
CAPE hatteras, N. C., pp. 92, 93.
CAPE NOME. ALASKA, pp. 154, 155.
CAPE RILFY, AI,ASKA. Tide observations, p. 155.
CAPE RODNEY, ALASKA, pp. 154, 156.
CAPE SAN JUAN HEAD, P. R., p. 165.
CAPE SPENCER, ALASKA, p. 156.
CAPTAIN OF THE PORT, MANILA, P. I., p. 178. Trac-
ings prepared for, p. 187.
CARLSON, SEAMAN, p. 156.
CARPIO, PABLO, p. 177.
CARR, O. E., pp. 90, 210.
CARRIMAO, LUZON, P. I. Astronomic observations, r. 179. Magnetic observations, p. 179.

Carroll, IOWA. Magnetic observations, p. 125.
CARTA BAY, AI,ASKA. Magnetic observations, p. :45.
CASCADE LOCKS, COLUMBIA RIVER, pp. 138, 139, 140.

CASTLES, P. B.. pp. 115, 214, 220.
CAUCUS CHANNEL, FLA., p. 103.
CAUCUS SHOAL. FLA. Hydrography, p. 87.
CAVITE, LUZON, P. I. Triangulation, p. 184.
CEBU, P. I. Astronomic observations, p. 179. Magnetic observations, p. 179.
CECIL, COUNTY, MD., p. 190.
CEDAR POINT LIGHT, MD., p. 115.
CENTRAL, KANS. Triangulation station, p. 129.
CHAPPELL, NEBR. Magnetic observations, p. 124.
Charles CITY, IOWA. Magnetic observations, p. 125.
CHARLESTON, S. C.. pp. 107, 110.
CHARIESTON AND WESTERN CAROI,INA RAIL. ROAD, p. 82.
CHARLESTON HAKBOR. Hydrography, p. 107.
CHARLESTON LIGHT-HOUSE, S. C. Leveling, p. 107.
Chart division, pp. 207, 20S. Report of, p. 220.
CHART SECTION, CHART DIVISION, pp. 208, 220, 22 I.
CHARTS ISSUED, p. 221.
CHARTS PRINTED BY CONTRACT. New charts, p. 219 New editions, p. 219. New prints, p. 219.
CHARTS. Processes used in production in England and France, p. 189.
CHARTS RECEIVED, p. 22 .
CHASE, R. D., p. 16.
CHASE, KANS. Triangulation station, p. 129.
CHASINA POINT, ALASKA. Magnetic observations, p. 145.

CHATHAM STRAIT, ALASKA, p. 157.
Chattanooga, TENN., pp. 76,84 .
CHELTENHAM, MD., pf. 13, 70, 71, 72, 85 .
CHENEY, KANS. Triangulation station, p. 130.
CHEROKEE, IOWA. Maguetic observations, p. 125.
CHESAPEAKE BAY, pp. 88, 111, j12. Hydrography, p. 120. Speed trial course eatablished, p. 14.

CHESTER, PA., p. 120 . Erection of tide gauge, p. 198. CHESTER COUN'TY, PA., p. 190.
CHEYENNE, OKLA. Magnetic observations, p. 126
CHEYENNE WELLN, COLO. Magnetic observations, p. 134 .

CHICAGO, ILLL., p. 86. Magnetic observations, p. 7I.
CHIEF COMMISSARY, DIVISION OF THE PHILIP-
PINES, p. 178.
CHIEF ENGINEER OFFICER, DIVISION OF THE PHILIPPINES, p. 178.
CHIEF QUARTERMASTER, DIVISION OF THE PHILIPPINES, 1 . 178.
CHIEF SIGNAL OFFICER, DIVISION OF THE PHILIPPINES, p. 178.
CHIGNIK, GOLOFNIN BAY, ALASKA, p. I54.
CHILLICOTHE, MO. Magnetic observations, p. 125.
CHII,LICOTHE, OHIO. Magnetic observations, p. 71.
CHILLIWACK, B. C., p. 142.
CHILLIWACK LAKE, B. C., p. 143.
CHILLIWACK RIVER, B. C., p. 143
CHILTON, W. B., p. in.
CHOITANK RIVER, MD., p. IIT.
CIIRISTMAN, R. J., pp. 153, 154.
CHURCH, S. C. Triangulation station, pp. 82, 83.
CIAL.ES, P. R., p. 174.
CINCINNATI, OHIO. Leveling, pp. 76, 84.
CINCINNATI, NEW ORLFANS AND TEXAS PACIFIC
RAILWAY, pp. 75, 84.
ClaPP, O. F., p. 101.
CliARK, J. A., p. 222.
CLARVOE. G. W., p. 222.
CLASSIFICATION OF EXPENDITURES FOR PARTY EXPENSES, p. 33.
CLASSIFICATION OF EXPENDITURES FOR REPAIRS OF VESSELS, p. 34.
CLEM, COL. JOHN I.., U. S. Army; pp. 171, 175. .
CLEVELAND, GROVER. Executive order, p. 23.
CIEVELAND, OHIO. Magnetic observations, p. 71.
CLIFT, JOHN W., p. 107.
COAST PILOTS, p. 14.
COAST PILOT PARTY, p. 19.
COAS'T PILOT WORK:
Alabama, p. 103. Mobile, p. 103.
Alaska, pp. 152, 161. Acherk Harbor, p. 16r. Fox Island Passes, p. 152. Sitka, p. 152. Unalaska, p. 152. Unalaska Bny, p. 152.
California, pp. 135, 137. Point Reyes, p. 137. San Diego, p. 135. San Francisco, p. 135. Trinidad Head, p. 137.

Florida, p. 103. Pensacola, p. ıo3.
Louisiana, pp. 103, 131. Algiers, p. 103. Gulfport, p. 103. Morgan City, p. 13I. New Orleans, pp. 103. 131. West End, p. 103.

Mississippi, p. 103. Pascagoula, p. 103.
Philippine Islands, p. 177.
Texas, p. 13r. Aransas Pass, p. 13r. Galveston, p. 13 r. Rockport, p. 13I. Sabine, p. 13I.
COINAGE, WEIGHTS, AND MEASURES, HOUSE COMMIT'TEE, p. 53.
COLEMAN, TEX., p. 126. Magnetic observations, pp: 125, 528.

COLLECTOR OF CUSTOMS, SAN FERNANDO, P. I. Tracing prepared for, p. 187.
COLORADO. Magnetic observations, pp. 22, 134.
Col,orado, TeX. Magnetic observations, p. 126.
COI,T, AI,EXANDER, pp. 177, 178.
COLUMBIA, LA. Magnetic observations p. $: 25$.
COLUMBIA RIVER. Hydrography, pp. 138, 139. Topog-

COIUMBINE, U.S. IIGHT-HOUSE TENDER, p. 152. COLUMBUS, N. C. Magnetic observations, p. 73. COMMANDING GENERAL, DIVISION OF THE PHILIPPINES, p. 178.
COMMERCE, SENATE COMMITTEE, p. 53.
COMMISSARY DEPARTMENT, U. S. ARMY, p. 17 I .
COMMISSION FOR THE IMPROVEMENT OF THE
PARKS OF THE DISTRICT OF COLUMBIA, p. 192.
COMOX, B. C., p. 150 . Magnetic observations, p. 145. COMPITING DIVISION, p. 207. Report of, p. 210. CONANICUT ISLAND. Topography, p. ior. CONEY ISLAND, N. Y., p. 97.
CONGRESSIONAL, LIBRARY, p.I42.
CONN, W. M.. p. 214.
CONNECTICET. Hydrography, pp. 12, 98. Topography, pp. 12, 98.
CONTINGENT EXPENSES. I899, Office of Standard Weights and Measures, p. 48. 1900, Office of Stendard Weights and Measures, p. so.
COOPER RIVER, S. C., p. no.
CORAZON, P. R., P. I73.
CORDILLERAS REEF, P. R., p. 165.
CORDOVA BAY, ALASKA, p. 160 .
CORINTH, KY. Leveling, p. 84.
CORNING, ARK. Magnetic observations, p. 125.
CORPS OF ENGINEERS, U. S. Army, pp. 84, 102, 138, 213.
Bench marks, p. 76.
CORREGIDOR LIGHT-HOUSE, LUZON, P. I. Triangulation, p. 184 .
CORYDON, IOWA. Magnetic observations, p. 125.
COSMOS, STEAMER, p. 157.
COTTON, J. P., p. ior.
COUNCIL BLUFFS, IOWA. Magnetic observations, p. 125.

COURTENAY, E. H., p. 210.
COVE POINT LIGHT, MD., p. IIS.
CRAB ISLAND, p. 170 .
CRAMP \& SONS, p. 193.
CRAWFORDSVILLE, IND. Magnetic observations, p. 77.
CRESTON, IOWA. Magnetic observations, p. 125.
CRIST, F. G., Pp. 135, 138, 144, 146. 161.
CROOKSTON, MINN. Magnetic observations, p. iz5.
CROSS SOUND, ALASKA, p. 162. Hydrography, p. 157.
Reconnaissance, p. 146. Survey of, p. 13.
CROWLEY, B. J., pp. 144, 161, 162.
CUBA. Use of metric system, p. 54.
CUEBAS, F., p. 171.
CULEBRA ISLAND, p. 171.
CUMBERLAND, MD., p. 190.
CUMMINGS POINT, S. C. Leveling, p. 107. Topography, p. 107.

D.

DALLAS, N. C. Magnetic observations, p. 73. DANBURY, N. C. Magnetic observations, p. 73. DANVILLE, ILI. Magnetic observations, p. 86. DARLEN, GA. Triangulation, pp. 86, 102.
DARIGAYOS, LUZON, P. I. Astronomic observations, p. 179. Tide observations. p. 187.

DARIGAYOS INLET, LUZON, P. I. Hydrography and
Topography, p. I8I.
DARNALL, C. N., p. 222.
DATUM, U. S. STANDARD, p. 12.
DAUFUSKIE ISLAND, GA., p. gi.
DAVIS, HERMAN S., pp. 196, 210.
DAVIS, W. H., pp. 212, 214.
DAWSON, C. W., pp. 70, 71.
DAY, W. P., Commander, U. S. Navy, p. 152.
DECATUR, ALA. Leveling, pp. 76, 84.

DECORAH, IOWA. Magnetic observations, p. 125
DEETZ, CHAS. H., p. 214.
DEICHMAN, C. F., p. 148 .
DELAWARE. Compass-deviation examination, p. IIo., Hydrography, p. 12. Tide observations, p. 96.
DELAWARE AND CHESAPEAKE CANAL, P. 121.
DELAWARE BAY. Fstablishment of speed-trial course, pp. 14, 193.
DELAWARE BREAKWATER, p. 96. Compass deviation examinaticn, p.ino. Establishment of speed-trial course p. 193.

DEI,AWARE RIVER, p. 16. 'Hydrography and topography, p. 120. Establishment of tide gauges, p. 198.
DELEGATE TO INTERNATIONAL GEODETIC ASSOCRATION, p. 200.
DENNIS, W. H., p. 210.
DENSON, H. C., Pp, 159, 160, 177, 178, 179, 180, 181 .
DEPOT QUARTEKMASTER, MANILA, P. I., p. 178.
DERICKSON, D., p. 214.
DERICKSON, K. B., pp. 153, 154, 155, 157.
DFSECHEO ISI.AND, P. R., Pp. 171, 772 .
DETAILS OF OFFICF OPERATIONS, p. 207.
DETKOIT, MICH. Magnetic observations, p. 7 I . Detroit city, minn. Magnetic observations, p. 125. DEXTER, REVFNUE-CUTTER, p. 87. DIAMOND HEAD, H. I. Magnetic observations, p. 164. DIAMOND SHOAL, N.C. Hydrography, p. 92.
DIBRELL, W.C., pp. 77, 126, 134, 169, 170, 212.
DICKINS, F. F., PP. 135, 137, 146, 157.
DIERCKS, w. J., P. I4I.
directeur de la carte de france et du staTISTIQUE GRAPHIQUE, p. 189.
DIRECTOR OF COAST SURVEYS, TIIE. P. II.
DISBCRSING AGENT. Report of, p. 22.
DISTRICT OF COLUMBIA. Leveling, p. 90. Magnetic observations, pp. 13, 22, 70. 'ride observations, p. 106.
DIXON HAKBOR, ALASKA. Magnetic observations, p. ${ }^{1} 45$.
DOBOY SOUND, GA., p. 86.
DOLOMITE, AI,ASKA. Magnetic observations, p. 145 .
DONN, F. C., p. 214.
DONN, J. w., pp. 78, 79.
DOOLITTLE, M. H., p. 210.
DORADO, P.R., p. 175.
DOVER POINT, p. 100.
DRAPER, G. H., p. 212.
DRAPER, GEO. S., p. 53.
DRAWING AND ENGRAVING DIVISION, pp. 207, 208. Report of, p. 214.
DRAWING DIVISION, MANILA SUb-OFFICE. Work of, p. 187 .
DRAWING SECTION, DRAWING AND ENGRAVING DIVISION, pp. 208, 215.
DRAWINGS IN PROGRESS, p. 216.
DRUM POINT LIGHT, MD., p. 115 .
DRY TORTUGAS, FIA. Hydrography, pp. 116. 117.
DUBUQUE, IOWA. Magnetic observations, p. 125.
DUFFIELD, W. W., pp. 208, 214, 215.
DUNDAS BAY, ALASKA, p. 157. Magnetic observations, p. 145.

DUNN, J. L., pp. 74, II5.
DUTCH HARBOR, ALASKA, pp. 150, 162. Magnetic observations, p. 156.
DUTTON, A. H., p. 148.
DUVALL, C.R., p. 227.

F.

EAGRE, SCHOONER, pp. 74, 165. Log of, p. i8.
EARLE, SWEPSON, Pp. 107, 167.

EASTERN EXTENSION AUSTRALASIA AND CHINA TELIEGRAPH COMPANY, p. 178.
EASTERN OBLIQUE, ARC, pp. 12. 15, 209, 227.
EDGARTOWN, MASS. Tide observations, p. 87.
EDMONDS, F. W., pp. 136, 177, 178, 179.
EDMONDS, II. M. W., pp. 70, 71, 159.
FDMUNDS, C. K., pp. 70, 71, 124.
EGG ISI,AND, AIASKA. Topography, p. 550.
EISLERR, W. I., pp. 153, 154, 155.
EIMBECK, WM., p. 210.
EI,DORA, IOWA. Magnetic observations, p. 125.
ELECTROTYPING SECTION, DRAWING AND EN-
GRAVING DIVISION, pp. 209, 215, 220.
ELIIS, E. P., p. 214.
FLIJISVILIE, MISS. Magnetic observations, p. 7^{2}.
ELK NECK, MD., pp. 78, 79.
ELK RIVER, MD., P. 12 I.
ELKTON, VA. Magnetic observations, p. 7 r.
EL RENO BASE, OKI,A., p. 122.
ELVERTON, TENN. Leveling, p. 76 .
EITY, HARRY, p. in.
EMMETSBURG, IOWA. Magnetic observations, p. 125. FAORY, K. J., jr., p. 110 .
ENDEAVOR, STEAMER, pp. 120, 121. LOg of, p. 18.
ENGI,AND. Processes used in chart production, p. 189. Keport on Hydrographic survey, p. 201.
ENGIISH BAY, ALASKA. Base measurement and Triangulation, p. 150.
ENGRAVING SECTION, DRAWING ANDENGRAVING DIVISION, pp. 208,215. Original plates completed, p. 217. Plates for new edition of charts completed, p. 217 ;
FNTISTED MEN (Navy), p. 12.
ENSENADA HONDA, P. R., pp. $165,166$.
ERRATA. Keport for 1900, p. 440.
EVROPE, p. 200. Gravity determinations, p. 195. Examination of hydrographic methods in use in, p. 201.
EVANSVILI,l, IND. Magrietic observations, p. 71.
EVENING SHADE, ARK. Magnetic obscruations, p. 125. EVERETY, WASH. Magnetic observations, p. 133 .
EWA MILL, H. I. Magnetic observations, p. 164.
EXAMINATION OF INSTRUMEN'TS OF PRECISION AT PARIS EXIPOSITION, p. 200.
EXECLTIVE ORDER. Money to be advanced to chiefs of parties, p. 23.
EXHIBIT AT PAN-AMERICAN EXPOSITION, pp. i4, 209.

F.

FAHNESTOCK, J. N., p. i38.
FAIRFAS, VA. Magnetic observations, p. 71.
FAIRFIEI, D, GEORGE A., pp. 207, 209.
FAIRIIELD, W, B., pp. 85, 82, 83 .
FAIRFIELD, IOWA. Magnetic observations, p. 125.
FAJARDO, P. R., p. 165.
FARIS, R. I., pp. 153, 155, 157, 161, 210.
FERGUSON, O. W., pp. 84, 174.
FERGUSON, R. S., p. 122.
FERNANDINA, FIA., pp. 106, 213 . Tide record, p.13. Tide obsecrations, 1 . 96 .
FICK, CHAS., p. 159.
FIF'TY-SIXTH CONGRESS, p. 53.
FIRs'T AUIITTOR OF THE TREASURY, p. 23.
FISCHER, E. G., pl), 209, 222.
FISCHER, L. A., pp. 53. 122, 123.
FITCH, II. M., p. 11.
FITCH, JENNIF, H., p. 22.
FITZGERAI,D, C. W., ple. 135, 146, 148, 149.
FLANNERY, M. $\mathbf{F} .$, p. 120.
FLEMING, J. A., Pp. 70, 71, 77, 85, 147, 212.
FLORES, CLANDOMINO, 1. 169.

FI,ORIDA. Coast Pilot. p. 103. Hydrography, pp. 12, 86, ris. Special duty, p. 115. Tide observations, pp. 86, 96, 106. Topography, p. 86. Triangulation, p. 13 .

FLOWER, G. L., pp. 16, 107, 112, 167.
FLYNN, H. F., Pp. 115, 117, 142, 143, 148, 149, 210.
FOI,LY ISLAND, S. C., p. 107.
FOITZ, E. K., p. 223 .
FONDA, IOWA. Magnetic observations, p. 125.
FONDREN, R. J., p. 214.
FORCE POINT, ND., p. III.
FORD, H. L.., pp. 19. 135, 137.
FORD, R. H., p. 214.
FORDAN, EBERHARD, p. 254.
FOREST, MISS. Magnetic observations, p. 72.
FORNFY, STEHMAN, pp. 16, 88, 89, 169, 170, 173, 210. FORT DODGE, IOWA. Magnetic observations, p. 25.
FORT HAMILTON. N. Y'. Tide observations, pp. 106, 213.

FOR'T MCRAF, FLA., p. S7.
FORT MIFFI, Erection of tide gruge, p. igs.
FORT SCREVEN WHARF, p. 91.
FORT SUMTER, S. C. Tide gauge, p. 107.
FORT WAYNE, IND. Magnetic observations, p. 77.
FORT WKANGEI, ALASKA. Magnetic observations, p. 145.

FORTUNA PLANTATLON, p. 174.
FORTY-NINTH PARALLEI. Reconnaisance, p. 142.
FORWARD, STEAMER, REVENUE CUTTER, pp. II8, ing.
FOWLER, F. H., pp. ISg, 208, 214, 215.
FOX, GA. Triangulation station, p. 86 .
FOX ISI,AND PASSES, p. 152 . Work of Coast Pilot party, p. 19.
FRAILE, P. K. Magnetic observations, p. 175.
FRANCE. Processes used in chart production, p. I89. Re-
port on Hydrographic survey, p. 201.
FRANCIS, CAP'T. E. H., pp. 19, 152, 157, 161, 162.
FRANKE, H. F., p. 214.
FREDERICKSBURG, TEX. Magneticobservations, p. $12 S$. FRENCH, MISS F. M., pp. 207, 209.
FRENCH, H. O., p. 222.
FRENCH, J. A., p. 215.
FRENCH, O. B., pp. 86. 87, 104, 197, 210.
FRENCH GEODFTIC ASSOCIATION, p. 200.
FRENCH REPCBLIC, p. 200.
FRISBY, F. K., pp. 148, 149, 210 .
FRONT KOYAL, VA. Magnetic observations, p. 71.
FULLERR, CHILF JUSTICE, p. 19I.
FLNTER BAY, ALASKA, p. 162. Tide observations, p. 157.

FURMAN, I. M., pp. 14S, $153,155$.

G.

GAGE, I,YMAN J., p. 12.
GAITHERSBCRG, MD. Latitude station, p. 196. Mag-
netic observations, p. 71. Observatory, p. 14.
GAILENA, ALASKA, p. 160.
GAI.ENA, MD., p. 100.
GALVESTON, TEX., pp. 103, 131.
GANDY, NElBR. Magnetic observations, p. 124.
GARI,AND, H. K., p. 220.
GARNER, IOWA. Magnetic observations, p. 125.
GASTINEAU CHANNEL, ALASKA. Magnetic observations, p. 145.
GEDDES, P. H., p. 214.
GFDNEY, STEAMER, pp. 135, 137, 146, 157. Kepairs to,
p. 17. Log of, p. 18.

GENERAI EXPENSES. 1899, p. 49. 1900, p. 51. 1901,
pp. 35, 36, 37, 38, 39. Classification of, p. 39.

GENERAL RECAPITULATION OF EXPENDITURES, 1901, p. 5 I.
GEODETIC WORK. Inspector of, p. 20.
GEOGHEGAN, F., p. 214.
GEOLOCICAI, SURVEY, p. 84 .
GFOL OGICAL SURVEY, DIRECTOR OF, p. 142.
GEORGIA. Hydrography, pp. 12,91. Reconnaissance, p.
91. Trigonometric leveling, p. 82, Topography, pp. 86,
91. Triangulation, pp. 13, 82, 86, 9r, 10 .

GERDTS, COLO. Magnetic observations, p. 134.
GERING, NEBR. Magnetic observations, p. 124.
GERMAN GOVERNMENT, p. 14.
GERMANY, p. 14. Report on Hydrographic survey, p. 201. GETTYSBURG, S. D. Magnetic observations, p. 124. GIACOMINI, A. L., pp. 153, 154, 155.
GIL,BERT, J. J., pp. 148, 149, 150, 151.
GILMORE, KANS. Triangulation station, p. 130.
GLACIER BAY, p. 157.
GLOETZNER, H. F., pp. 70, 71.
GLOVER, W. F., pp. 91, 108, 112, 115.
GLYNDON, MINN. Magnetic observations, p. 125.
GOLDSBOROUGGF, J. T., p. 148.
GOLOFNIN BAY, ALASEA, p. 149. Triangulation, Topo-
graphy, and Hydrography, pp. 154, 155.
GOLOFNIN SOUND, AI,ASKA, pp. 149, 150.
GRANGER, Y. D., pp. 127, 210.
GRANITE FALLS, MINN. Maguetic observations, p. 125. GRANT, MRS. M. A., pp. 213, 223.
GRANTIEY HARBOR, ALASKA. Triangulation, p. 155.
Topography, p. 155. Astronomic observations, p. 156. GRAVES, H. C., pp. 19, 152, 161, 162 .
GRAVINA BAY, ALASKA, p. 160 .
GRAVITY STATIONS, p. 14 .
GRAYSON, KY. Magnetic observations, p. 7r.
GREAT BRITAIN, p. 14.
GREAT HARBOR, CUI,EBRA ISLAND, P.R. Magnetic
observations, p. 170.
GREAT, POINT, MASS., p. 87.
GREEN, C. L., pp. 87, 108, 112, 120.
GREENACRE, ME. Topography, p. 100.
GRFENSBURG, IND. Magnetic observations, p. 77. GREENS HARBOR, CONN. Hydrography, p. 98 . GRIFFIN, JAMES M., p. 214.
GROESBECK, TEX. Magnetic observations, p. 125. GUANICA HARBOR, P. R. Tide observations, p. 167. GUAYAMAS, P. R., pp. 172, 173 .
GUAYANILLA HARBOR, P. R. Hydrography, p. 167. GULE OF MEXICO, p. 116.
GULFPORT, LA., p. 103.
GUNTERS MOUNTALN, ALA. Triangulation station, p. 84 .

H.

HABANA HARBOR, CUBA. Tide record, p. 213. HADIR, NEBR. Leveling, $p .132$.
HAHN: C. M., p. 214.
HAMPTON, IOWA. Maguetic observations, p. 125. HAND, CAPTAYN, Revenue-Cutter Service, p. 87. HANDLAN, MISS M. L., p. 220.
HARLOW, C. J., p. 214.
HARRIMAN, TENN. Leveling, p. 84.
HARRIMAN JUNCTION, TENN. Leveling, p. 75. HARRIS, R. A., pp. 208, 213.
HARKISBURO, NEBR. Magnetic observations, p. 124. HARRISON, NEBR. Magnetic observations, p. 124. HARKISONVILLE, MO. Magnetic observations, p. $: 25$. HARTFORD CITY, IND. Magnetic observations, p. 77. HARTLEY, IOWA. Magnetic observations, p. 125. HARTMAN, NEBR. Magnetic observations, p. 124.

HAR'TS, CAPT. WILLIAM W., p. 139.
HASI, U'P, MISS J. E., p. 212.
HATBORO, PA. Magnetic observations, p. 77 .
HATTERAS COVE, p. 93.
HAWAII ISLAND, p. 93 .
HAWAIIAN ISLANDS, pp. 13.71. Magnetic observations, ppl. 22, 164. Register of geographic names and of geographic positions, p. 163. Site for magnetic observatory examined, p. 21. Tide observations, p. 163.
HAWESVILLE, KY. Magnetic observations, p. 72.
HAWKES, R. H., pp, 144, 16 I.
HAWKINS, JERE, p. 222.
HAWKINS ISLAND, ALASKA, p. 160. Base measurement, p. 159.
HAYESVILLE, N. C. Magnetic observations, p. 73.
HAYFORD. JOHN F., pp. 20, 90, 123, 207, 210, 211 ,
HAZARD, D. L., pp. 70, 71, 208, 212.
HEATH, KANS. Triangulation station, p. 129.
HEI,EN, MISS L., pp. 207, 209.
HENDFRSONVILLE, N. C. Magnetic observations, p. 73 .

HENRY, N. G., p. 22.
HERGESHEIMER, GEORGE, p. 214.
HERMANN, MO. Magnetic observations, p. 125.
HERON LAKF, MINN. Magnetic observatious, p. 125.
HEWITT, NERR. Magnetic observations, p. 124.
HIAWATHA, KANS. Magnetic observations, p. 124 . HILDRETH, D. M., p. 214.
HILL. J. S., pp. 177, 178, 179.
HILIS POINT, MD. Triangulation station, pp. 80, 88, 11 I. HII,TON HEAD, S. C., p. 8r,
HINCHINBROOK ISLAND, ALASKA, p. 160.
HODGKINS, W. C., pp. 91, 92, 115, 169, 190, 191.
HODGSON, H. S., p. 177.
HOLLY SPRINGS, MISS. Magnetic observations, p. 72. HOLMES, W., p. 214.
HOLTON, KANS. Magnetic observations, p. i24. HONGKONG, p. 18\%.
HONOLULU, H. I., pp. 164, 208. Magnetic observations, p. 164. Magnetic observatory, p. 212.

HONOULICII RANCF, H. I. Magnetic observations, p. 164.

HOONIAH, ALASKA. Tide observations, p. $\mathbf{1 5 \%}$.
HOOK MOUNTAIN, N. Y. Triangulation statiou, p. 74.
HOOVER, D. N., pp. 208, 214.
HOPKINS, L. M., pp. 91, 115.
HORSE SHOE SHOAL, MASS. Tide observations, p. 87 . HUDSON CREEK, p. 80.
HUNTTER, J. W., p. 222.
HUNTING CREEK, p. 78.
HUKON, S. D. Magnetic observations, p. 124.
HYANNIS, NEBR. Magnetic observations, p. 124.
HYDROGKAPHYAND TOPOGRAPHY, INSPECTOR OF, p, 16.
HYDROGRAPHIC METHODS IN USE IN ELROPE, Examination of, p. 201.
HYDROGRAPHIC SECTION, CHART DIVISION, pp. 20S, 209, 220, 222.

HYDROGRAPHY

Alaska, pp. 148, 153, 159. Apoon Entrance, p. 149. Cordova Bay, p. 160. Cross Sound, p. 157. Golofnin Bay, pp, ${ }^{154}$, I55. Golofnin Sound, p. I50. Gravina Bay, p. 160. Icy Strait, p. 157. Imurook Basin, p. 155 . Middle Ground Shoal, p. 150. Orca, pp. 159, 160. Port Ctarence, p. 155. Prince William Sound, pp. 159, 160. St. Michael, p. 150. Sheep Bay, 160. Yukon River, p. 149.
Californic, p. 144. San Francisco Bay, p. 144. San Pablo Bay, p. 144.

HYDROGRAPHY-Continued.
Connecticut, p. 9S. Greens Harbor, p. 98. New London, p. 98. Norwich, p. 98. Thames River, p. 98.
Delaware, p. 12 .
Florida, pp. 86, ェ5. Caucus Shoal, p. 86. Dry Tortugas, pp. 116, 117. Pensacola Bay, p. 86.
Georgia, p. 91. Savannah River, pp. 91, 92.
Maryland, pp. 112, ir5. Betterton, p. 121. Chesapeake Bay, p. 112. Elk River, p. 121. Sassafras River, P. 121.

Massachusetts, pp. 86, 101. Horse Shoe Shoal, p. 87. Nantucket Sound, p. 87.
New Jersey, p. 108. Newark Bay, p. 109.
New York, p. 74. Hudson River, p. 74. Kill von Kull, p. 109.

North Carolina, pp. 91, 92. Diamond Shoal, p. 92.
Oregon, pp. 138, 139. Columbia River, pp. 138, 139.
Pentisylvaitia, p. 120. Bombay Hook, p. 120. Chester, p. 120.

Philippine lslands, p. 177. Balayan Anchorage, Luzon. p. 18r. Darigayos Inlet, p. i81. Port Sual p. 180. San Fermando Harbor, p. 181. Santo Tomas Harbor, p. 18r. Tacloban Harbor, p. 18 i.

Porto Rico, pp. 165, 167. Ensenada Honda, pp. 165, 166. Fajardo, p. 165. Guayanilla Harbor, p. 167. Mayaguez, p. 168. Ponce, p. 167. Puerto Real, p. I68, Tallaboa Bay, p. 167.
Rhode Island, p. เoI. Providence, p. Ion.
Soulh Cavolina, pp. 107,118. Charleston Harbor, p. 107. Port Royal, 1.118.
Washington, pp. 138, 140, 143, 144. Seattle, p. 144.

I.

IBA, IUZON, P. I. Astronomic observations, p. 179. Magnetic observations, p. 179
ICY S'rRAIT, AI,ASKA, p. 162. Reconnaissance, pp. 154, 357. Magnetic observations, p. 154. Survey of, p. 13. Tide observations, p. 154. Triangulation, P. I54.
IDAGROVE, IOWA. Magnetic observations, p. 125
ILIINOLS. Magnetic observations, pp. 13, 22, 70, 71, 86 . ILOILO, PANAY, P. I. Astronomic observations, p. 179. Magnetic observations, p. rig.
IMUROOK BASIN, ALASKA. Astronomic observations, p. 156. Hydrography, p. 155. Magnetic observations, p. 156. Topography, p. 155. Triangulation, p. 155

IMUROOK PASSAGE, ALASKA. Topography and Tri, angulatiou, p. 155.
INDIANA. Maguetic observations, pp. 13, 22, 70, 71, 77.
INDIANAPOLIS, IND, Magnetic observations, p. 77.
INSPECTION, HYDROGRAPHIC AND TOPOGRAPHIC, p. 16.

INSPECTOR, STEAM LAUNCH, p. 165.
INSPECTOR OF CHARTS, p. 208.
INSPECTOR OF GEODETIC WORK, p. 20.
INSPECTOR OF HYDROGRAPHYAND TOPOGRAPHY, p. 16.

INSPECTOR OF MAGNETIC WORK, pp. 21, 85, 212. INSPECTOR OF WEIGHTS AND MEASURES, p. 53. INSTRUMEN'I DIVISION, pp. 207, 209. Report of, p. 222. INTERNATIONAL COMMISSION, p. 142
IN'TERNATIONAL GEZODFTIC ASSOCIATION, pP. I4, 195, 200.
INTERNATIONAL GEODETIC ASSOCIATION LATITLDE STATIONS, p. 196
INTERNATIONAL İATITUDE SERVICE, p. I4.
IOWA. Magnetic observations, pp. 14, 22, 124. 125
IKON MOUND, KANS. Triangulation station, 1 . 129.

IRVINGTON-ON-THE-HUDSON, N.,Y. Hydrography, p. 74.

ISABEL SEGUNDA, P. R., p. 169. Magnetic observations, p. 170.

ISLA DE VIFQUES, p. 170
ISLE OF SHOALS LIGHT-HOUSE, p. 8i.

J.

JACKS BAY, AI,ASKA., p. 160.
JACKSON, MISS. Magnetic observations, p. 72.
JACKSONVILLE, N. C., p. 96.
JACOMINI, C., p. 222.
JAMES POIN'T. 'rriangulation station, p. 80.
JAMES REILLY REPAIR AND SUPPLY COMPANY, p. 17.

JAPANESE GOVERNMENT, 1Pp. 54, 123, 209, 223. JEFFERSON, N. C. Magnetic observations, p. 73. JEFFERSON, OHIO. Magnetic observations, p. 71. JONES, C. W., p. 224.
JONES, MISS L. L.., p. 212.
JONESBORO, ARK. Magnetic observations, p. 125 .
JORDAN, H. C., P. 16.
JUNEAU, ALASKA, pp. 146, 147, 162. Magnetic observations, p. 145.
JUNEAU ISLE, ALASKA. Magnetic observations, p. I45

K.

KAHCKU, H. I. Magnetic observations, p. 164.
KALAMAZOO, MICH. Magnetic observations, p. 71
KANSAS, p. i30. Base measurement, pp. 13, 122. Level-
ing. p. 132. Magnetic observations, pp. 13, 22, 124, 126. Triangulation, pp. 13, 129.
KANSAS CITY, MO. Magnetic observations, p. 125
KAUAI, H. I., p. 163
KACFMAN, TEX. Magnetic observations, p. 125.
KELEHER, JAS. P., p. 214.
KEI,LEY, H. A., p. 84 .
KELVIN MACHINE, p. 151.
KENNEDY, NEBR. Magnetic observations, p. 124.
KENTUCKY. Leveling, pp. 13, 75, 84. Magnetic observa-
tions, pp. 13, 22, 70, 73, 72.
KEOKUK, IOWA. Magnetic observations, p. 125.
KERRVILLE, TEX. Magnetic observations, p. 128. KETCHIKAN, AI,ASKA. Magnetic observations, p. 145 .
KEYSER, I. P., p. 215
KEYSTON゙E RANCH, NEBR. Magnetic observations,
p. 124.

KEVWEST, IILA., pp. I16, II7.
KILAUEA, H. I. Magnetic observations, p. 164.
KII,LISNOO, ALASKA. Magnetic observations, p. 145.
KII,L VON KULL, p. Iog.
KIMBAI, L, NEBR. Magnetic observations, p. 124.
KING, W. F. British Commissioner, p. 197
KINGMAN, KANS. Leveling, p. 132. Triangulation station, p. 130.
KINGS ISI,AND, ALASKA, p. 156.
KLINE, E. M., p. 214.
KNIGHT, H. M., p. 214.
KNOXVILIE, TENN. Leveling, pp. 75, 76, 84.
KODIAK, ALASKA, p. 162.
KOKOMO, IND. Magnetic observations, p. 77
KUMMELL, F. A., pp. 106, 213.
KUPRIANOF HARBOR, AI,ASKA, p. 162.

L.

LA CROSSE, WIS. Magnetic observations, p. 71.
LAKE BENTON, MINN. Magnetic observations, p. 125

LAMAR, COLO. Magnetic observations, p. I34
LAMPASAS, TEX. Magnetic observations, p. 125.
LAMPASAS BASE, TEX., p. 122.
LANCASTER, IOWA. Magnetic observations, p. 125
lancas'ter County, pa., p. igo.
LANGFITT, william C., Captain, L. s. Army, p. 152.
LATHAM, E. B., DP. 95, $111,138,140,210$.
LAUXMAN, M., p. 222.
LAWN, MISS KATE, pp. 207, 209.
LAWTON PIANTATION, S. C., p. 1 io.
LEEDS CREFK, p. 7 S.
LEESBURG, VA. Magnetic observations, p. 7 t.
I,ELAND, O. M., pp. 122, 161, 210.
LEMARS, IOWA. Maguetic observations, p. 125.
LE MAT, R. F., Pp. 214, 220.
LEMESURIER ISLAND, p. 158.
LFNOIR, N. C. Magnetic observations, p. 73.
LEVASSEUR, M. EMILE, p. 189.
LEVEIING.
Alabama, pp. 75, 84. Birningham, pp. 76, 84. Decatur, pp. 76, 84 . Woodville, pp. 75. 84.
District of Columbia, p. go. Washington Monument, p. 90.

Kentucky, pp. 75, 84. Corinth, p. 84. Somerset, pp. 75, 84.
Kansas, p. 132. Anthony, p. 132. Kingman, p. 132. McPherson, p. 132. Pretty Prairie, p. 132. Salina, p. 132. Solomon, p. 132.

Nebraska, p. 132. Hadir, p. 132. Norfolk, p. 132. Page, p. 132.

Ohio, pp. 76, 84. Cincinnati, pp. 76, 84.
South Carolina, p. 107. Charleston lighthouse, p. 107. Cumming's Point, p. 107.
Tennessee. pp. 75, 84. Chattanooga, pp. 76, 84. Elverton, p. 76. Harriman, p. 84. Harriman Junction, p. 75. Knoxville, pp. 75, 76, 84.

LEWIS, D. A., p. 127.
LIBERAL, KANS. Magnetic observations, p. 126.
LIBRARY AND ARCHIVES DIVISION, pp. 207, 209. Report of, p. 223.
LIGHT-HOUSE BOARD, pp. 93, ${ }^{-107,171 .}$
LIGHT-HOUSE DEPARTMENT. (See LIGHT-HOUSE BOARD.)
LINCOLN, NEBR. Magnetic observations, p. 124.
IINDEN, MD., p. 70.
IINDENKOHI., A., p. 214.
IINDENKOHL, H., Pp. 214, 215.
1,ITTLE, F. M., pp. 74, 96, 98, 124, 128, 210.
IITTLE CHOPTANK RIVER, Pp. 78, 80, 88.
II'TTIE RIVER, KANS. Triangulation station, p. 129.
IITTLE ROCK, ARK. Maguetic observations, p. 125.
LlANO, TEX. Magnetic observations, p. 128.
I,OCRAFT, C. J., p. 214.
LoGAN, IOWA. Magnetic observations, p. 125 .
LONDON, ENGLAND, p. isg. Gravity determinations, p. t95.
LONG, M. W., p. 220.
LONG ISLAND, N. Y. Topography, p. 87.
I,OUD, F. H., Pp. 70, 7 I.
loUisiania, p. 12. Coast Pilot, pp. 103, 131. Magnetic observations, pp. 13, 22, 124, 125.

I.t:RAY, VA. Magnetic observations. p. 7 t.

LCZON, P. I. Astronomic observations, p. 179. Magnetic observations, p. 179.
LY1,E, V. R., pp. 74, 165.
I YMAN, CHAS., pp. 144, 161, 162.
LYNN CANAL, ALASKA. Maguetic observations, p. 145 .

M.

MACKENZIE, WMI, p. 214
MACON, MO. Magnetic observations, p. 125 Madison, IND. Magnetic observations, p. 77. MADISON, VA. Magnetic observations, p 71. Madison, WIS. Magnetic observations, p. 7r. MADISONVILLE, LA., p. 86.
MAGNETIC DECIINATION TARLES, MP. 15, 20 S, 212. MAGNETIC OBSERVATORY, p. I3.
MAGNETIC OBSERVATORIES, p. i4. MAGNFTIC OBSERVATIONS.

Alaska, pp. 147, 148, 153, 159. Bartletts Bay, p. 145. Battery Point, p. 145. Carta Bay, p. 145. Chasina Point, p. 145. Dixon Harbor, p. 145. Dolomite, p. 145. Dundas Bay, 1. 145. Dutch Harbor, p. 156. Fort Wrangel, p. 145. Gastincau Channel, p. 145. Icy Strait, p. 54 . Imurook Basin, p. 156. Juneau, p. r45. Juneau Iste, p. r45. Killisnoo. p. 145. Ketchikan, p. 145. Lynn Canal, p. 145. McLean Arm, p. 145. Orca, p. 160. Peril strait, p. 145. Point Spencer, p. 156. Port Chester, p. 145. Port Snettishatn, p. 145. Sitka, pp. 145. 147. Skagway, p. 145. Spasskaia Island, p. i45. William Henry Bay, p. 145.
Arkansas, pp. 124, 125. Batesville, p. 125. Camden, p. 125. Corning, p. 125. Evening Shade, p. 125. Jonesboro, p. 125. Little Rock, p. 125. Malvern, p. 125. Monticello, p. 125. Murfreesboro, p. 125. Newport, p. 125. Paragould, p. 125. Pine Bluff, p. 125. Searcy, p. 125. Texarkana, p. 125. Walnut Ridge, p. 125.

Brilish Columbia, p. 145. Comox, p. 145 .
California, p. 133. Mount Hamilton, p. I33.
Colorado, p. 134. Akron, p. 134. Burlington, p. 334. Cheyenne Wells, p. 134. Gerdts, p. 134. Lamar, p. 134. Sheridan Lake, p. 134. Springfield, p. 134. Sterling, p. 134. Yuma, p. 134 .
District of Columbia, p. 70. Washington, pp. 71, 133
Hawaitan Isländs, pp. 163, 164. Diamond Head, p. 164. Ewa Mill, p. I64. Honolulu, p. 164 . Honouliuli Kanch, p. 164. Kahuku, p. 164. Kilauea, p. 164. Pearl Harbor, p. 164 . Puuloa Point, p. 164. Puuloa Railroad Station, p. 164. Sisal, p. 164. Wainlua, p. 164.
Illinois, pp. 70. 71, 86. Chicago, p. 71. Danville, p. 86. McI, eansboro, p. 71. Nashville, p. 7 r .
Indiana, pp. 70, 71, 77. Bloomfield, p. 77. Crawfordsville, p. 77. Evallsville, p. 71. Fort Wayne, p. 77. Greensburg, p. 77. Hartford City, p. 77. Indianapoplis, p. 77. Kokomo, p. 77. Madison, p. 77. Martinsville, p. 77. Nichigan City, p. 71. Paoli, p. 77. Richmond, p. 77. South Bend, p. 77. Terre Haute, p. 77. Warsaw, p. 77.

Iozva, pp. 124, 125. Anamosa, p. 125. Atlantic, p. 125. Boone, p. 225 . Burlington, p. 125. Carroll, p. 125. Charles City, p. 125. Cherokee, p. 125. Corydon, p. 125. Council Bluffs, p. 125. Creston, p. 125. Decorah, p. 125. Dubuque, p. 125. Eldora, p. 125. Emmetsburg. p. 125. Fairfield, p. 125. Fonda, p. 125. Fort Dodge, p. 125. Garner, p. i25. Hampton, p. 125. Hartley, p. 125. Idagrove, p. 125. Keokuk, p. 125. Lancaster, p. 125 . Lemars, p. 125. T.ogan. p. 125. Manchester, p. 125. Marengo, p. 125. Menlo, p. 125. Newton, p. 125. Northwood, p. 125. Onawa, p. 125. Osceola, p. 125. Oskaloosa, p. 125. Perkins, p. 125. Red Oak, p. 125 . Washington, p. 125. Waterloo, p. 125. West Clition, p. 125.

Kansas, pp. 124, 126. Baldwin, pp. 124. 125. Hiawatha, 'p. 124. Holton, p. 124. Liberal, p. 126. Marysville, p. 124. Richfield, p. 126.

MAGNETIC OBSERVATIONS-Contimed.
Kentucky, pp. 70, 71, 72. Grayson, p. 7I. Hawesville, p. 7^{2}.

Louisiana, pp. 124, 125. Alexandrin, 1). 125. Columbia, p. 125. New Orleans, p. 125.

Maryland, pp. 70, 73, 85. Gaithersburg, p. 71. Kockville, p. 73 .
Michi!fan, pp. 70, 71, 77. Detroit. p. 71. Kalamazoo, p. 71. Sturgis, p. 77.
Minuesota, pp. 124,125. Alexandria, p. 125. Benson, p. 125. Erainerd, p. 125. Breckenridge, p. 125. Detroit City, p. 125. Ciookston, p. 125. Glyndon, p. 125. Granite Falls, 1. 125. Heron I, ake, p. 125. I ake Benton, p. 125. Mankato, p. 125. Mantorville, p. 125. Minneapolis, p. 125. St. Cloud, ए. 125. Wadena, p. 125. Walker, p. 125.

Mississippi, pp. 70, 72. Brookhaven, p. 72. Ellisville, 1. 72. Horest, p. 72. Holly Springs, p. 72. Jackson, p. 72. Meridian, p. 72. Oxford, p. 72. '「upelo, p. 72. West Point, p. 72. Winona, p. 72. Vazoo, p. 72.
Missouri, pp. 124, i25. Chillicothe, p. 125. Harrisonville, p. 125. Hermann, p. 125. Kansas City, p. 125. Macon, p. 125. Palinyra, p. 125. St. I.onis, p. 125. Sedalia, p. 125.
Nebraska, pp. 124,125. Ainsworth, p. 124. Albion, p. 124. Alliance, D. 124. Bartlett, p. 124. Brewster, p. 124. Bridgeport, p. 124. l3roken Bow, p. 124. Hurwell, p. 124. Chappell, p. 124. Gandy, p. 124. Gering, p. 124. Harrisburg, p. 124. Harrison, p. 124. Hartman, p. 124. Hewitt, p. 124. Hyannis, p. 124. Kennedy, p. 124. Keystone Kanch, p. 124. Kimball, p. 124. Lincoln, p. 124.* Marshland, p. 124. Merriman, p. 124. Mullen, p. 124. Neligh, p. 124. Newport, p. 124. Ogallala, p. 124. Omaha, p. 125. O'Neill, p. 124. Kock County, p. 124. Rushville, p. 124. St. Paul, p. 124. School tection No. 36, p. 124. Schnyler, p. 124. Seventh larallel, p. 124. Sidney, p. 124. Springview, p. 124. 'Thedford, p. 124. Tryon, p. 124. Valentine, p. 124. York, p. 124.
North Carolina, p. 73. Albemarle, p. 73. Bakersville, p. 73. Boone, p. 73. Burnsville, p. 73. Camden, p. 73. Columbus, p. 73. Dallas, p. 73. Danbury, p. 73. Hayesville, p. 73. Hendersonville, p. 73. Jefferson, p. 73. Ienoir, j). 73. Lexington, p. 73. Mocksville, p. 73. Morganton, p. 73. Newton, p. 73. Kobbinsville, p. 73. Sparta, p. 73. Taylorsville. p. 73. Trenton, p. 73. Waynesville, p. 73. Yadkinville, p. 73. Yanceyville, p. 73.
Ohio, pp. 70, 71, Akron, p. 71. Ashland, p. 7t. Bellefontaine, p. 71. Chillicothe, p. 71. Cleveland, p. 71. Jefferson, p. 71. Marion, p. 71. Portsmonth, p. 71. Warren, p. 71. Washington Court-Honse, p. 71.
Oklahoma Terrilovy, p. 126. Beaver, p. 126. Cheyenne, p. 126. Mangunn, p. i26. Woodward, p. 126.

Oregon, p. 133. Portland, p. 333.
Pennsılvania, p. 77. Hatboro, p. 77.
Philippine Islands, p. 177. Aparti, p. 179. Balayan, 1,1zon, p. 179. Batangas, I,uzon, p. 179. Candon, Luzon, i7g. Carrimao, Luzon, p, 179. Cape lsojeador, Luzon, p. 179. Cebu, Cebu, p. 179. Iba, Luzon, p. 179. Iloilo, Pansy, p. 179. Luzon, p. 179. P'anay, p. 179. San Fernando, Luzon, p. 179. Santa Cruz, I, uzon, p. 179. Sual, Luzon, p. 179. Subig, I, uzon, p. 179. Vigan, I.uzon, p. 179.

Porto Rico, pp. 169, 171, 174. Aguadilla, p. 175. Aibonita, p. 17o. 13aja, p. 175. Culebra Isle, p. 170. Fraile, p. 175. Great Harbor, p.17o. Isabel Segunda, p. 170. Point Caracoles, p. if5. Ponce, p. 170. San Juan, p. 16s.

MAGNETIC OHSERVATIONS-COntinued.
South Dakota, p. 124. Gettysburg, p. 124. Huron, p. 124. Redfield, p. 124. Sioux Falls, p. 124. Watertown, p. 125.

Tennessef, pı, 70, 72. Memphis, p. 72.
Texas, pp. 124, 125, 126, 128. Aspermont, p. 126. Ans. tin, p. 125. Hallinger, p. i28. Bandera, p. 128. Belton, p. 125. Brady, p. 128. Coleman, pp. 125. 128. Colorado, p. 126. Fredericksburg, 1. 128. Groesbeck, p. 125 . Kaufinali, p. 125. Kerrville, $p .128$. J, ampasas, p. 125. Llano, p. 128. Mason, p. 128. Paintrock, p. 128. Rock Springs, p. 128. San Saba, p. 128. Seymour, p. 126. Stephenville, p. 125. Ver11011, p. 126.
Virginia, pp. 70, 71. Elkton, p. 71. Fairfax, p. 71. Front Royal, p. 71. Ieesburg, p. 71. Iduray, p. 71. Madison, p. 7t. Konnd Hill, p. 71. Stafford, p. 71. Stanardsville, p. 7 I . Washington, p. 7 I .
Hashington, p. 133. Fiverett, p. 133. Mount Vernon, p. 133. New Whatcom, pp. 133, 134. Seattle, p. 133. Hisconsin, pp. 70,71. La Crosse, 1, 71. Madison, 12. 71. Prairie du Chien, p. 7 I.
MAGNETIC SURVEY. p. 13.
MAGNFIIC SURVFY OF NORTH CAROLINA, Pp. 15 208, 212.
MAHON, CHAS., p. 214.
MAINE, p. 1. Topography, pp. 12, 99. 'riangulation, pp. 13, 81.
MAIZE, S. I3., p. 214.
MAKAKA POINT, AI,ASKA. Base measurement, Hy(lrography and 'Triangulation, 1). 160.
MALABON, LUZON, P. I. Triangulation, p. is.
MAI, L. Proposed avente across, District of Columbia, p. 192.

MAIVERN, AKK. Magnetic observations, p. 125.
MANATI, P. K., p. 174.
MANATI RIVER, I. R., pp. 174, 175.
MANCHESTER, IOWA. Magnetic observations, p. 125.
MANIL,A, F. I., pp. $11,176,17$ S. Astronamic observations,

1. 179. 'ride observations, p. 187. Triangulation, p. Is4. MANGUM, OKI,A. Magnetic observations, p. 126.
MANKATO, MINN. Maguetic observations, p. 125.
MANTORVILLE, MINN. Magnetic observations, p. 125. MAPES, MISS L. A., p. 220.
MARCHAND, G. EE, pp. 91, 115.
MARCIS HOOK, PA. ETection of tide gauge, p. 1g's.
MARENGO, IOWA. Magnetic observations, p. 125 .
MARINDIN, HENRY I.., pp. gS, 193, 194.
MARINER HARBOR, N. Y., p. 114.
MARION, OHIO. Magnetic abservations, p. 7 .
MARIQUI'AA, P. R., p. 171 .
MAKKOE, W. W., pp. 135, 146, 16ı.
MARSH, GA. Triangulation station, ఛ. 86.
MARSHIAND, NFBR. Magnetic observations, p. 124.
MARTIN, ARTEMAS, p. 213.
MARTINSVII,I,E, IND. Magnetic observations, p. 77.
MAKYLAND. Boundary survey, pp. 14, 190. Hydrography, p. 112. Magnetic observations, pp. 13, 22, 70, 73, 55. Keconnaissance, p. 105. Special work, pp. 112, 115. Topography, pp. 12, 78, 88,95,99, 111. Triangulation, pp. 7S, 111, 112, 115.
MAKYIAND-PENNSYI,VANIA BOUNDARY, pp. 14, 190, 191.

MAKY'SVILLE, KANS. Magnetic observations, p. 124. MASON, TEX. Magnetic observations, p. $12 S$. MASON AND DIXON'S 1,INE. Resurvey of, pp. 14, 190. MASSACHUSETTS. Hydrography, pp. 12, S6. Reconmaissance, p. soi. Tide observations, p. 86. Triangulation, pp. 13, 81.

Massachuserts, v. s. s., p. S6.
MASSACHUSETTS INSTITETE OF TECINOIOGY,
pp. 18, 20, 123.
MATCHI, RSS, SCHOONER. pp. 1o7, 167. log of, p. 15.
MaUPIN, W. C., p. 222.
MAYAGUEZ, P. R.. pp. 164, 171.
MCARTHER, STFAMER. Jog of, p. if. pp. 144, 145, 152, t $6_{1,1}$, 62.
MCCRAF, H. I., pp. 112, 167.
MCDANIEL, MD, Triangulation, p. 7 א.
MCDOWELL, JAS. A.. p. 53 .
MCGOINES, THOMAS, p. 224.
MCGRATH, JOHN E., plp. 97, 171, 172, 173, 192, 210
McGratit. J. W., ple. 135. 146.
McGREGOR, J. A., pp. 91, 115.
MCCiREGOR, K. C., p. 44^{5}.
McGEIRE. J. W., p. 214.
MCLEAN ARM, ALASKA. Maguetic observations, p. 145. McLeANSRORO, If, Magnetic observations, p. 7 .
MCPHERSON, KANS. I, eveling, p. 132.
MFADS, 1\%, p. 214.
MEEKINS NECK. Triangulation station, p. ©o. MFHI,ER, W. B., p. 214.
MELTON HILR, TENN. Triangulation station. p. 76. MEMPHIS, TENN. Magnetic observations, p. 72. MFNi,O. IOWA. Magnetic observatione. p. i25. MERFDITM, A. A., D. 215.
MERIDRAN, MISS. Magnetic observations, p. 72. MERRIMAN, NEDR. Magnetic observations, p. i24. MESA, P. K., p. 171.
MFW'SHAW, MISS E. L.., pp 207. 209.
MEXICAN GOVEKNMENT. p. 54.
MIChiGas:- Maguetic observations, pp. 13, 22. 70, 71, 77. MICHIGAN CITY, ind. Magnetic observations. p. $7^{\text {r }}$. MODDLE GROC:ND SHOAL, AIASKA, p. i6O.
MIINWAY, B. C., p. 143.
Miles RIVER, MD. Triangulation, p. is.
MILITARV GEOGRAPHIC INSTITUTE, VIENNA, p. 201 .
MILI.ER, E. V., 1pp. 74. 167.
MILI,FR, J. W., pp. 72, 124.
MIL,LER, J. W., jr., Pp. 70, 7 1.
MILLS, J. K., p.'210.
MIIISAPS, J. H., p. 210
MINNEAPOLIS, MINN. Magnetic observations, p. 125.
MINNFSOTA. Magnetic observations, pp. 13. 22, 124, 225. MISCFII, ANEOUS DIVISION, pp. 207, 209. 224.
mississipil. Coast Pilot, p. io3. Magneticobservations, 111. 13. 22, 70, 72.

MISSISSIPII RIVER COMMISSION, pp. 14. 194.
misisotiri. Magnetic observations, pp. 13, 22. 124, 126.

Mitcheyd. J. C., Captain, Revenue-Cutter service, p. Is. mobilit, atia., p. ros.
MOCKSVILLE: N. C. Magnetic observations, p. 73.
MONA ISLAND. P. K., p. 171 .
MONA LIGHT-HOU'SE, P. R., p. 171
MONITA ISI,ANI, P. K., p. 17 .
montalk point, n. y., p. 97.
MONTICEI,LO, ARK. Magnetic observations, p. 125. MORFORD, C. E., pp. 153, 177, 178, 181.
MORGAN CITY, LA., p. 131 .
MORGANTON, N. C. Magnetic observatious, p. 73.
MOKRIS ISLAND, S. C., p. $1 C_{7}$.
MORSE, FREMONT, pp. 138, 139.
MOSER, R. MCD., pp. 107, 115 , 165.
Mosman, a. T., pp. $129, \mathrm{I}_{30}, 210$.
MOUNT HAMILTON, CAL. Magnetic observations, p. 133.

MOUNT PIRATA, VIEQUFS $151, A N I J .1$. R., D. 17%

MOUNT VERNON, VA.. p. 105
MOUNT UERNON, WASH. Magnetic observations, p. 133.

MLD BAY, ALASKA, pp. 157, 15\%.
MLILLEN, NEBR. Magnetic observations, p. 124.
MUKFREESBORO, ARK. Magnetic observations, p. 125. MUKPHY, J. J., P. 148.
MURRAY, H., p. 215.

N.

NAGASAKI, JAPAN, p. 176.
NAGHTEN, WM. A., p. 220.
NaNTLCKET, Mass. Tide observations. p. 8 .
NANTTUCKET SOCND, MASS. Ifydrograpiny, 8.87.
NASHVILIEE, III. Magnetic observations, p. 71.
NATIONAT BLGEAT OF STANDARDS, p. II. Appro-
priation, p. 15. Duties of, 1). 53 .
NATIONAL STANDARDIZING BUREAC, p. 53 .
NAVY, p. 12.
NAVY DEPARTMENT, pp. 12, 110. 112, 193.
NAVY TRAVEL. Expenditures, 1got, p. 32.
NEIBRASKA. Hase measurement. pp. 13, 122. Leveling, p. 132. Magneticonservations, pp. 13, 22, 124,126. Reconnaissance, p. 12\%. Triangulation, pp. 13, 127.
Neligh, NEBR. Magnetic observations, p. 124 NELSES. MR., ¢. S\%.
NELSON. JOHN, pp. 16, 99, 100, 174.
Nesibit, sCOTY, pp. 22, 52, 224.
NFWARK BAY, p. 109
NEW FNGIAND STATES, p. 209
NEW HAMPSHIKF. Topography, pp. 12, 39. Triangulation, pp. 13. 81.
NEW JERSFY: Hydrography and topography. p. ros. NEW LONDON, CONN., p. 9^{9}.
NHW IONDON HARBOR, CONN., p. gS.
NEWMAN, (FEORGE, Pp. 53.215 .
NEW ORIFANS, LA., pp. 103, 131, 194. Magnetic observatious. 3. 525.
NEW POINT COMFORT I,IGHT-HOUSE, p. 1.2.
NEWPORX, ARK. Magnetic observations, p. 125.
NEWPOKT, NEUR. Maguetic observations, p. 124.
NEWPORT, R. I. Topography, p. 101.
NEW KIVER, p. g6.
NEW RIVIER INIEET, p.g6.
NEWTOS, IOWA. Magmetic observations. p. 125.
NifuTON, N. C. Magnetic observations, p. 7.
NEW WHATCOM, WASli.. 1. [42. Yagnetic observa-
tions, p. ${ }^{2} 33$.
NEW YORK. Hydrography, p. 74. Tide observations, 3. 506. Tide tecord, 1. 13. Topography, pp. 12. 74. 97. Triangulation, p. 74.
NEW YOKK MARBOR, p. 205 .
NHHALI ISI,AND. H. I., p. 163.
Ninety-hightif mikidian. triangulation, pp. is. 127.

NOME, AI.A.SKA, pp. 149, 154. Tide observations, 1. 155 NOME RIVER, AIASKA, p. 155.
NORFOLK, NFBK. Ieveling, p. 132.
NORIFOLK, VA., pp. $92,94$.
NORTHCAROLINA. Hydrography, pp, 12, gr. Magnetic observationk, pp. 13. 22, 73. Tide observations, p. ϕ.
NORTHWEST HOUNDARY. Astronomic observations and retracing. p. 142.
NORTHWOOD, IOWA. Magnetic observations, p. 125.
NORTON SOUND, p. 13.
NORWICH, CONN., p. 9s.
NOTICES TOMARINERS; pp, it, zog. Philippine Islands. p. 1ss.

NYACK, N. צ., p. 74.

O.

OAHU ISLAND, H. I., p. 64.
OAKLAND, CAL., p. 144.
OBJECTS NOT NAMED. Expenditures, $1901, \mathrm{p} .32$.
OFFICE EXPENSES. Appropriation, p. 15.
OFFICE OF HDITOR OF PTBLICATIONS. Report of, p. 52.

OFFICE OF INSPECTOR OF GEODETIC WORK. REport of, 18.20.
OFFICE OF INSPECTOR OF HYDROGRAPHY AND TOPOGRAPHY. Keport of, p. 16.
OFFICE OF STANDARD WEIGHTSAND MEASURES, pp. 15. 54. Appropriation, p. 15. Keport of, p. 53. Contingent expenses, p. 41. Salaries, 1901 , p. 40.
OFFICE OF THE ASSISTANT IN CHARGF, p. 207.
OFFICE OF THE DISBCRSING AGENT. Report of, p. 22.

OFFICE OF THE INSPFCTOR OF MAGNFTIC WORK, Repcrt of, p. 21.
OFFICE OF THE SUPERINTFNDENT. P. II.
OFFICE OPERATIONS. Details of, p. 207.
OFFICERS AND 31 FN . Pay of pp. $15,46,47$.
OFFSHORE WORK. EXpenditures, 1go1, p. 30.
OGAII,A1,A, NEBBK. Magnetic observations, p. 12.4.
OGDEN, I. G., plp. 16, 20, 121.
OHIO. Magnetic observations, pp. 13, 22, 70, 71.
OKIAMOMA TERRITORY. Base measurement, pp. 13 ,
122. Magnetic olservations, yp. 22, 126.

O1,D, NEBR. Triangulation station, p. 127.
OLSHEN, GEORGF. pp. 107. 112, 115 .

OMAHA, NE1BR., pp. 124, 125.
ONAWA, IOWA. Maguetic observations, p. 125. O'NEILI, NEBK. Magnetic observations, p. 124. owo, Nenk. Triangulation station, p. 127.
ORCA, ATASEA, 1, t5y. Astronomic observations, p. 160. Magnetic observation, p. ifo.
ORIEGON, p. 137. Hydregraphy, pp. 13. 138. Magnetic observations, pp. 13. 22. 133. Reconnaissance, p. 13^{4}. Topography. pp. 13, t3h. Triangulation, plp. 13, 13 . OSCFOLA, IOWA. Magnetic ohservations, 1. 125. OSKAJ,OOSA, IOWA. Magnetic observations, p. 125 . OUTLINES OF TIDAI, THEORY, p. 209. OXFORD, MISS. Mognetic observations, p. 7^{2}. OYSTER CREEK, p. 力O.

1 .

PACIFIC COAST. Work of Const vilot party, p. dg . PACIFIC COAST TIDE: TABLESS, pp. 20%, 213: PACIFIC OCEAN. p. 162.
PACEF, NEBK., p. 127. Ieveling, p. 132.
PAGE. THOMAS NELAON, jr.. pp. 171, 173.
Patifi basi:, NEMR., D. $12 z$.
PAGODA. N. Y. Triangulation station, p. 74.
PAINTROCK, TFX. Magnetic observations, p. 128.
PALMYRA, MO. Magnetic observations. p. 225.
PAN-AMERICAN ENPOSICION, PP. 14, 199, 223.
PANAY. P. I. Astronomic observations, p. 179. Magnetic observations, p. 179 .
PAOLI, IND. Magnetic observations p. 77.
Paragould, ARK. Magnetic onservations, p. 125.
PAKIS, FKANCE, pp. 14, is9. Conference of Intermational Geodetis Associntion, p. 200. Gravity determinations, p. 195.

PARIS EXPOSITION, p. 200.
PARIS ISI.AND, S. C.. p. 81.
YARKER, W. E., pp. 154, 210.

PARRY, S. C. Triangulation station, p. S2.
PARTKIDGE, KANS. Triangulation station, p. 130.
PARTY FEXENSES. IS99, P. 4 S. 1900, p. 49. 1901, p. 30. Atlantic Coast, 1901, stateruent of, pp. 41. 42, 4.3. Classification, pp. 33, 45. Pacific Coast, 1901, statement of, pp. 43. 44. Recapitulation, pp. 33, 45. Special Surveys, p. 44. PASCAGOLI, A, M1SS., p. 103.
PATHFINDER, STEAMER. I, og of, p. 15, pit. 14s, 149, 162. PATTFRSON, JOAN, 1. 8\%.
PATTERSON, STEAMER. Log of, p. 19, pp. 153. 154, 157. 158, 162.
PACI, S. K., p. 145.
PAVLOF, PAUL, W., p. 162.
PAY OF OFFICERS AND MEN, pp. 46, 47. Recapitulation, p. 47.
PAY OF WATCH OFFICERS, p. 46.
PEABODY, W. F., P. 214.
PEARL, HARBOR, H. I. Magnetic observations, p. 164. PECK, IDA M., 1. 22.
PENNSYINANLA. Boundary survey, pp. 14, 190. Magnetic observations, pp. 13, 77. Tide observations, ppp. 96, 106.

PENNSYIV'ANIA-MARYLAND BOUNDARY' p. 198.
PINNSYLVANIA-MARYLAND BOUNDARY COMMLSSION, p. 190.
PENNVIIILE, PA., p. 121.
PENSACOI, 1 FIA., pp. 86, 103. Hydrography, p. S6.
PIENSACOLA BAY, NIA. Hydrography, p. N 6.
 PIERKINS, IOWA. Magnetic observations, p. 125.
JHRKINS, FRANK WALLEY, pp. In, 176.
PFACV, J. F., ple. 91, 149, 214.
PH1:1,PS, G. IH., p. :20.
PIERABE, STEAMER, P. 131.
PHILADFIIPIIA, PA. Tide observations, p. 106. Tide gange, pp. 13. 96, 213 .
PHIL,ADEI, PHIA MARITIME EXCHANGE, ppe 15, 198, 209. 223.

PHIT,IPLINE COMMISSION, pp. 13, 178, 1SS. President of, p. 1ss.

PHM,IPPINE ISI,ANDS. Pp. 1f, 13. Astronomic observations, p. 177. Base line, p. 177. Collecting information relative to survegs, b. 176. Hydrography, p. 17\%. Magnetic observations, pp. 22, 177. Survey; p. 178. Topography, p. 177. 'Triangulation, p. 172. Use of metric system, p. 54.

PHOTOGRAPHING SFCTION, DRAWING AND ENGRAVING DIVISION, pp. 20K, 255, 220.
PIERMONT, N. Y., p. is.
PIKE, LIIIAN, PP. 209, 227.
PINE MINUFF, ARK. Magnetic observations, p. 125.
PIRAGIAS ROCKS, 1P. R., pp. $165,166$.
piscataqua kiver, Me. and N. h. Topography, p. $1(x)$.

PINL,ND, H, O, pp. 177, 178, 179.
POINT BORINQUEN. P. R., pp. 171, 172.
POINT BKYA, P. K., p. 167.
POINT CARACOLFES, I. R. Magnctic observations, p. 175. POINT FIGLIRAS LIGHT-HOUSEF, p. 173.
POLNT JICUERO, P. K., p. 174. Topography, p. 175.
POINT JOHNSTONE, p. 160 .
PONCT LIMA, P. R., pp. 176; 173.
POINT REYYES, CAL.., p. 137.
POINT RINCON, P. R., p. 172.
POIN'r SALINAS, P. R., p. 175.
POINT SPFNCER, ALASKA. Magnetic observations, p. 156.

PONCE, P. K., p. 17. Hydrography, p. 167. Magnetic observations, p. 170. Tide observations, p. 167.

POOLES ISLAND, MD. Tide observations, p. 121.
POPLAR ISL,AND. MD., pyin.
PORT ALTHORP, AI,ASKA, p. 157.
PORT ANGEI,ES, WASH., p. 135 .
PORT AKTHUR SHIP CANAI., p. 131.
PORT CHFSTER, ALASKA. Magnetic observations, p. 145.

PORT CLARINNCE, pp. 13, 154, 155. 156.
POR'T FIDALGO, AI,ASKA, p. 160.
'PORT ORCHARD NAVAL STATION, WASH., p. 135.
PORT ROYAl S . ©., p. ito. Hydrography, pp. 81, ifs.
Triangulation station, p. 82.
POR'C ROYAL NAVAL STATION, p. 8ı. Hydrography,
p.ins. Tide observations, p. ins.

PORT SNETTISHAM, ALASKA. Magneticobservations, p. 145.

PORT STANLEX, ALASKA, p. 50°.
PORT SUAL. IVZON, P. I. Hydrography, p. iso. Topography, p. iso. Triangulation, p. 180.
PORTER, GEN. HORACE, p. IS9.
PORTLAND. OREG., p. i38. Magnetic observations, p. 133. PORTO RICO, pp. 12, 16. Base tinc, p. 171 . Hydrography, pp. 13, 165, 167. Magnetic observations, pp. 22. 169, 171, 174. Reconnaissance, pp. 165, 171, 174. Tide observations, pp. 165, 167. Topagraphy, pp. 13, 165, 169, 174. Triangulation, pp. 13. 165. 169, 171, 174. Ese of metric system, p. 54.

PORTSMOUTH, N. H., p. 8t. Topography, p. qو.
PORTSMOUTH, OHYO. Magnetic observations, p. 71 .
POTOMAC RIVER. Topographic reconmaissance, p. ros.
POTSDAM, GERMANX. Gravity determinations, p. 195.
POWELI., H. S., p. I53.
PRAIRIE DU CHIEN, WIS. Magnetic observations. p. 7 . PRATT, J. F., 1PP. 153, 154, 157.
PRESIDIO, SAN FRANCISCO BAY, CAI, Tide gauge record, p. 213.
PKESIDIO STATION, CAL. . Tide observations, p. 14 I .
PRESTON, E. D., pp. 52, 86. 10I, 102.
PRETTY PRAIRIE, KANS. Leveling. p. 132. Triangu. lation station, p. 130.
PRINCE WIIIIAM SOUND, AI,ASKA, p. ifo. Hydrog. raphy, p. 159. Survey of, P. 13.
PRINDLE'S I,ANDING, COLUMBIA RIVER, p. 140
PRINTING SECTION, DRAWING AND ENGRAVING
DIVISION, pp. 208, 215 . Charts printed, p. 218.
PRITCHET'T, H. S., pp. If, 123.
PROCTOR, W. 13., pp. 19. 74. 165.
PROVIDENCE. R. 1. Hydrography, p. sot. Tide record, p. $213 \ldots$

PUBLICATIONS. Coast Pilot, pe. 19. 20.
PUBIICATIONS ISSUED, pp. 52. 226.
PUBLICA'TIONS RECFIVED FROM PC゙BIIC PRINTFR, pp. 224, 225.
PGBI,ICATIONS SENT TO SALE AGENCIES, p. 221.
PUBLISHING OBSERVATIONS. Expenditures, Igot, p. 35 .

PUERTO FERRO, P.R. Tide observations. p. 170. PUERTO FERRO LIGHT-HOUSE, p. 169.
PUERTO MULOS LIGHT-HOUSE, P. R., p. 169.
PUERTO REAL, P. R. Tide observations, $p .168$.
PULIZZI, TAI, BOT O., p. 19.
PUNTA ARENAS, P. R., p. 166.
PUNTA CASCAJO, p. 166.
PUNTA YEGUAS, P. R., p. 165.
PUTNAM, G. R., pp. 177, 178, 179, 184, 187, 195.
PUUi,OA foint, H. I. Magnetic observations, p. 164. PUULOA RAILROAD STATION, H. I. Magnetic observations, $p, 164$:

Q.

QU'ADRA, STL:AMKR, 1, 150.
QUARTERMASTER DEPARTMENT, U.S.ARMY, p. 171.
QUAKTZ CREFK, ALASKA. p. 154.
QUICK, SCHOONER, p. 86.
QUINI,AN, J. B., p. 220.
R.
RAMSAY, M. M., Paymaster, U. S. Nrvy, p. 16.
RATONES ISLAND, P. K., p. 16%.
RAYMOND, LIEUT. COI. CIAS. W., p. 120.
RECONNAISSANCE.
Alaska, pp. 146, 148, 153, 159, 161. Akur Island, p. 150. Akutan Island, p. 150. Bartlett Bay, p. 157. Cross Sound, p. 146. Dundas Bay, p. 157. Tigalda Lslauds, p. 150. Ugamuk Istand, p. 550.

Forty-Ninth Parallel, p. 142.
Georgia. p. 91.
Maryland, p. 105.
Massachusetts, p. 101. Salem, p. 101.
Nebraska, p. 127.
Oregon, p. 13^{8}. Columbia River, p. 140.
Porto Rico, jpp. 165, 171, 174. Gudyamas, pp. 172, 173.
South Dakota, p. 127.
Víginia, 1. 105. Potomac River, p. 105.
Washington, p. 138.
REDPIFLD, S. DAK. Magnetic observations, p. 124.
RED OAK, IOWA. Magnetic observations, p. 125. RFEDYY ISLAND, DEL. Tide gruge record, p. 213. REPAIKS OFVESSEI.S. Expenditures, 1900; p. 50. 190I, pp. 33. 34. Classification of, p. 34.
KEPORT FOR 1894, p. 21 I.
REPOR'T FOR 1900 , Eirrata, p. 440.
RESEARCH, STEAMER, ग. 188.
REVTENCE-CUTCER SFRVICE, CHIEIF OI, p. 87.
KEVILLE, ALICI: G., p. 213 .
REYMOI,DS WHARF, MD. ride observations, p, 12 L . RHODE ISLAND. Topography and Hydrography, p. ioi. RHODFS, II. W., pp. 153, 155, 157, 177, 17S, 179, 180, 181, 184. RICH, W. s., p. 53 .
RICHARDSON, CAP'IAIN, p. 152.
RICHE:C. H., p. I3I.
KICHFIFI,D, KANS, Magnetic observations, 12, 126.
KICHMOND. FND. Magnetic observations, p. 77.
RIO GRANDF, DF ARFCIIBO, P. K., p. 175.
RIO PLATA, P. R., p. 175.
RITTER, H. P.. Pp. 159, I60.
ROBHINSVIILLE, N. C. Magnetic observations, p. 73. ROBINSON, J. H., P. ${ }^{5} 59$.
ROCK COUNTY, NEBR. Magnetic observations, p. 124. ROCKPORT, TFX., p, 131 .
ROCK SIPRNGS, TEX. Magnetic observations, p. 128. ROCKVIILE, MD. Magnetic observations, p. 73 . ROCKY CAPE, Alaska, pp. 154, 555.
RODCERS, AUG. F., P. 141 .
ROETH, A. C. I.. 11p. 86, 87, 118, 120 ,
ROET'H, J. H., p. 16.
ROSS, JOHN, pp. 19, 103, 131.
ROUND HILI, VA. Magnetic observations, p. 71. ROYAL OAK, MD., p. 95.
RUDY, LAUNCH, pp. 89, 167.
RUSHVILI.F. NEBR. Magnetic observations, p. r24.
S.

SAMNE. TEX., p. r31.
ST. CLOUD, MINN. Magnetic observations, p. 125. ST. LOUIS, MO., p. 194. Astronomic observations, p. 104. Magnetic observations, p. 125.

ST. MARIE, OHIO, p. 222.
ST. MICHAEI, ALASKA, p. 149. Harbor survey, p. I5o. ST. THOMAS, D. W. I., pp. 91, 171.
SALANGA. JOSE, D. 177.
SALARIES OF FIEI,D OFFICERS, 1901, p. 24.
SALARIES OF OFFICE FORCE, 1901, p. 25.
SALE AGENCIES FOR CHART'S. Reference to, p. 221.
SALEM, MASS. Reconnaissance, p. 10 .
SAIINA, KANS., p. 129. I, evaling, p. 132.
SALMO POIN' ALASKA, P. 160.
SAL'i'HRIDGE, S. C. Triangulation station, pp. 82, 83. SAMPSON, ADMIRAI, U. S. NAVV, p. 169.
SAN DIFGO, CAI., pp. 14, 135.
SAN FERNANDO. I,UZON, P. I. Astronomic observations, p. 179. Magnetic observations, p. 179. Tide observations, p. 187.
SAN FFRNANDO HARBOR, LUZON, P.I. Triangukation, Topography, and Hydrography, p. 181 .
SAN FRANCISCO, CAI., pp. 14. 135, 137. Sul-Office, p. 141. Tide record, p. 13.
SAN FRANCISCO BAY, CAI.., p. 146. Hydrography, p. J44.
SAN JUAN, P. R., pp. 17, 91, 165, 171, 174. Magnetic observations, p. 169.
SAN JUAN HARBOR, P. R., p. 175.
SAN PABLO BAY. CAI. Hydrography, p. 144.
SAN SABA. MEN. Magnetic observations, p. 128.
SANGER, WM., 1pp. 86, 87, 107, 118, 120, 215.
SAN'IA BARDARA, CAL., p. 136.
SANTA BARIBARA CHANNFL, pp. 13.14.
SAN'TA BARBARA SPFED-IRIAI, COURSE. Fxtension of, p. 136 .
SANTA CRUZ, I,UZON, P. I. Astronomic observations, p. 179. Magnetic observations, p. 179.

SAN'rA ROSA ISI,AND, FLA. 'ropography, p. 87.
SANTO TOMAS, LUZON, P. I, Astronomic observations, p. 179. 'l'ide observations, p. 187.
SANTO TOMAS HAKBOK, LUZON, P.I. Hydrography, Topography, and Triangulation, p. 181.
SAPELO LIGHT-HOUSE, GA., pp. 86. 102.
SASSAFRAS RIVER, MD., p. 12I. Topographý, p. 100.
SAUSALITO, CAL. Hydrograply, p. 144.
SAVAGE STATION, KAN'S. 'Iriangulation station, p. 130.
SAVANNAH RIVER. Hydrography, pp. $91,92$.
SCHOOL SECTION NO. 36, NEBR. Magnetic observations, p. 124.
SCHOTV, CHAS. A., pp. 52, 209, 227.
SCHUYLER, NEBR. Maynetic observations, p. 124 .
SEAKCY, ARK. Magnetic observations, \}. 125.
SEATMI,F, WASH., pp. 135, 142, 147. Hydrography, p. 144.
Magnetic observations, p. 133. 'Tide record, pp. 13, 213.
SECRETAARY OF STA'TE, p. 142.
SECRETARY OF THE TREASURY, 1 P. $12,53,142,196$.
SECRETARY OF TYFE INTERIOK, p. 142.
SEDALIA, MO. Magnetic observations, p. 125.
SEFTON, A. H., p. 214 .
SEGUIN BASE, TEX., p. 122.
SEI,BY, G.E., p. 210.
SENATE COMMITIEE ON THE DISTRICT OF COLUMBIA, p. 192.
SERVICE GEOGRAPHIQUE DE L'ARMEE, FRANCE, p. 189.

SERVICE HYDROGKAPHIQUE, FRANCE, p. 189.
SEVENTH PARALI,EL, NEBR. Magnetic observations, p. 124.

SEWARD PENINSUI,A. Survey, p. 13.
SEYMOUR, TEX. Magnetic observations, p. 126.
SHEEP BAY, ALASKA, p. 160.
SHELTTON, NEBR., p. 122.

SHELTON BASE, NEBR., p. 122.
SHEPHERD, J. E., pp. 108, II2.
SHFRIDAN LAKF, COLO. Magnetic observations, p. 134 SHERIDAN, U.S. TKANSPORT, D. IS7.
SHERMAN, U. S. TKANSPORT, p. 176.
SHIDY, I. P., pp. 208, 213.
SHOEMAKER, C. F., p. 118 .
SHOOTFRS ISLAND, N. Y., p. 109.
SIDNEY, NFBR. Magnetic observations, p. 124 .
SII,ICIA CREEK, p. 142.
SIMONS, A. B., pp. 207, 209.
SIMONS, A. H., jr., p. 220.
SINCLAIR, C. H., pp. S6, 104, 142, 143, 210.
SIOUX FALIS, S. DAK. Magnetic observations, p. 124. SIPE, E. H., p. 214.
SISAI, H. I. Magnetic observations, p. 164.
SI'TKA, AI,ASKA, pp. 15. 71, 152, 20S. Magnetic observa-
tions, pp. 145, t47. Magnetic observatory, p. 212.
SKAGWA․ ALASKA, p. i\& \vec{i}. Magnetic olservations, i). 145 .

SKAWI, POINT, AI,ASKA. Magnetic observations, p. 14.s. SI.AlGHTER CRFEK, p. 8o.
SI,FDGE: ISLAND, ALASKA. Tide observations, p. 155.
'Iriangulation, p. 155.
SMITH, DYER, p. و\%.
SMITH, EDWIN, 1), 105, 196, 240.
SMITH, H. S., pp. 112, 120.
SMITH, L. S., p. 122.
SMOOT, J. H., p. 223.
SNAKE RIVER, ALASKA, p. 155.
SNUG CORNTER COVF, ALASKA, p. 160.
SOL,OMON, KANS. Leveling, p. ${ }^{3} 3^{2}$.
SOMFRSET, KY. I,eveling, pp. 75, 84.
SOMMER, E. J., p. 214.
SOURN゙N, V., pp. 165, 2.54, 220.
SOTVH 1BENI, IND. Magnetic observations, p. 77.
SOUTH CAROI.INA. Direct measurement, p. Sz. Hydrog-
raphy, 1p. 12, 107, 118. Leveling, pp. 13, 107. Triangu-
lation, pp. 81, 82, 110 . Tide observations, p. I18. 'Trigo-
notnetric leveling, p. s2. Topography, pp. 13, 107, 110.
SOT"TH DAKOTA. Magnetic observations, pp. 13, 22, 124 Reconnaissance, p. 127.
SOETTHYHRN RAIIWAY, 1p, 75. 76, 84.
SPANISH BOARD OF' TRADE, Maniln, 1'. I., p. 188.
SPANISH WAR, p. 14.
SPARTA, N. C. Magnetic observations, p. 73.
SPAR'PA, NEBR. Triangulation station, p. 127.
SPASSKAIA ISI, AND, ALASKA. Magnetic observations, p. 145.

SPAI,DINC, GA. Triangulation, p. 86.
SPAUI,DING, J. C., p. 106.
SPECIAL DUTY, p. 207. Office of assistant in charge, p. 227.

SPFCIAL WORK, p. 14.
SPRINGFIEI,D, COIO. Magiretic observations, p. 134 . SIPRINGVIEW, NERR. Magnetic observations, p. 124. SPY', SCHOONER, p. 86. STAFFORD, VA. Magnetic observations, p. 71. STANARDSVIII,E. VA, Magnetic observations, 1. 71. S'ANDARDS, NATIONAI, BUREAU OF, p. it. STATE IEPARTMFN'L, p. 142.
STATE SURVEYS. FXpenditures, 1901, p. 31.
STATEMENT OF EXPENDITURES, 1901, p. 24. STEPHENVILIEE, TEX. Magnetic observations, p. 125. STEPHENVILLE BASE, TEX., pp. 122, 123. STERI,ING, COLO., Maguetic observations, p. 134 . STERLING, KANS., p. 130.
STONY POINT LIGHT-HOUSE, p. 74.

STORM, OTTO, p.s3.
STRAITS SETTIEMENTS, pp. 54, 209, 223.
stratton, s. W., p. 53.
sTURGIS, MICH. Magnetic observations, p. 77.
SUAI, I.UZON, P. I. Astronomic observations, p. 179.
Magnetic observations, p. 179. Tide observations p. 187
SUBIG, Litzon, P. I. Astronomic observations, p. 1/9.
Magnetic observations, p. ${ }_{79}$.
SUBMARINE SENTRY, use of, pp. 150, 151.
SUILLIVAN, JAMES, pp. 144, 161, 162.
SUMAS, WASH., p. 142.
SUMNER, ADMIRAL, p. II. $^{\text {. }}$
SUNFLOWER, KANS. 'Triangulation station, p. 130 .
SUPKEME COURT, pp. 190, r95.
SUSQUEHANNA RIVER, p. 190.
SURVEY FXHIBITAT PAN-AMERICAN EXPOSITION, p. 14.

SWANSONS HAKBOR, AIASKA, p. 157.

'I'

TACIOBAN, LEYTE, F' I., pp. 181, 187.
TAKV, STEAMFR, p. 159.
TAIIABOA BAY, I. R. Hydrography, p. 167.
TAMPA, FLA., D. 1 \%.
TAPKOK, ALASKA. Tide observations, p. 155.
TAPE APPARATCS. Description of, p. 21.
TARKYOON, N. Y., p. 74.
TAYLORS ISIAND, MD.. p. 8o.
TAYtorstitit, N.C. Magnetic observations, p. 73.

Magnetic observations, pp. 13, 22, 70, 72.
TENNESSl:E TRIANGLIATION. p. 209.
TENNFSSEE-VIRGINIA BOUNDARY, pp. igo, 19 g .
TENNESSEE-VIRGINIA BOUNDAKY COMMISSION, p. 19 r.

TVRRE HAVTY, IND. Magnetic observations, p. 77.
TERRESTRIAT, MAGNETISM, DIVISION OF. PR. 207, 209. Report of, p. 212.

TERRESTRIAI, MAGNETISM. Supervision of work, p. 2 I .

TERRITORIAT, GOVERNMENT. Hawaiian Islands, p. 163.

TFNARKANA, AKK. Magnetic olsermations, p. 125.
THNAS. Alice base line, p. 20. Base measurement, pp. 13, 122. Coast Pilot, 12. 131. Magnetic observations, pp. 13, 22, 124, 125, 126, 128 .
TRNAS ROCK BUOY, p. 17.
THAMES RIVER, CONN. Hydrography and topography. p. ys.

THEDFORI, NEBR. Magnetic observations, p. 124. THIRTY-NINTH PARAILEI, TRIANGLIATION, p.i5. THOMAS, FRANK, p. 215.
THOMAS, ROV, p. 215.
THOMPSON, C. A., pp. 91, 115.
THOMPSON, F. H., DP. 153, 154.
THOMPSON, II. L., p. 214.
THOMPSON, w. A., p: 214.
TIDAI, DIVISION, pp. 207, 208. Report of, p. 213.
TIDE RECORDS, p. 213.
TIDE TABLES, p. 208.
TIDES:
Alaska, pp. 148, 153. Cape Riley; p. 155. Dutch Harbor, p. 150. Funter Bay, p, 157. Hooniah, p, 157. Icy Strait, p. 154. Nome, p. 155. Sledge-Island, p. 155 . Tapkok, p. i55. Uganiuk island, p. I5o.
Calfornia, p. i4i. Alcatraz Istand, p. i4i. Presidio station, p. 141.

TIDF:S-Continued.
Detazare. p. g6.
District of Columbia, p. 106.
Florida, pp. 86, 96, 106. Fermandina, pp. 96, 106.
Hariaitian Istands, p. 163.
Maryland, p. 121. Betterton, p. 121. Pooles island, p. 12t. Reybolds Wharf, p. 121. Town Point, p. 121 . Massachuselts, p. 86. Edgartown, p. 77. Horseshoe Shoal. p. 87. Nantucket. p. 87.
Neze York, p. 106. Fort Hamilton, p. 106.
North Cavolina, p. go.
Pennsy/tania. pp. $火 6$, 106. Chester, p. 19s. Delaware River. p. 198. Fort Mifflin, p. 198. Marcus Hook, p. 19\%. Philadeiphia, j. 96.
Philippine Islands, p. 187. Aparri. Iuzon, p. 18̄7. Ralayan, Luzon, p. 187. Darigayos, 1.uzon, p. 187. Minila, p. s87. San Fernando, Luzon, p. 187. Santo Tomas, d, 18zon, p. 187. Sual, Luzon, p. 187. Tacloban, leyte, p. 187. -
Porto Riro, pp. 165, 167. Guanica Harbor, p. 167. Ponce p. 167. Puerto Ferro, p. 170. Puerto Real, p. 16 S.

Sonth Carolina, p. ion. Fort Sumter, p. 107.
Washington. p. is
TIDF:S. Expenditures, 1901, p. 30.
TIGAI,DA ISIANDS, AIASKA. Recoumaissance, p. 150 . THIGHMAN, MD., p. it.
TILTON, B. E., pp. 110, 132, 174.
TITMMAN, O. H., pp. 11, 52, 997.
TOA 13AJA, p1. 174, 175.
TOIK STATION, AMASKA. Triangulation station, p. 149. TOPOGRAPHY:

Ahaska, pp. 148, 153. 159. Cape Denbigh. p. 149. Ligh Island, p. 150. Grantley Harbor, p. 155. Golofnin Bay, pp. i54, 155. Hawkins Island, p. ifo. Imarook Basin, p. 155. Imurook Passage, p. 155 . Point Jolut stone, p. 160. Fort Clarence, p. 15.5. Prince William Sound, p. 160 . Kocky Cape, p. I5.5. Sahmo loint, p. 160. Sheep Bay, p. 16o. Sledge Island, p. 155. Soik station, p. 149.
Connectiout, p. gs. New Londen, p. 98. Norwich, p. 98. Thames River, p. 98.
Florida, p, 86. Sauta Rosa Istand, p. 57.
Goorgia, p. gr. Tybee island, p. gr.
Maine, p. 99. Gremacre, p. 100.
Maryland, pp. 7 K, 88, 95, 99, sir. Cambridge, p. 89. Chesapeake Bay, p. 8s. Choptank Kiver, p. IIt. इElk Neck, pp. 78,79 . Force Point, p. inf. Galcna, p. 100. Hills point, pp. 88, in. Little Choptank River, p. 8 S . Royal Oak, p. 95 Sassafras River, p. 100 .
Nerv Hampshire, p. 99. Piscatagua River, p. 100 . Portsmouth, p. 99.
Ncu, Jersey, p. 108. Newark Bay, p. 109.
Netu Jotk, pp. 74, 97. Kill von Kull, p. 109. Long Island, p. 97.
 pp. 3is, i39. Porthand, 17.13 .
Philippine stands, p. 177. Balayan Anchorage, Luzon, p. ixi. Bolinao Harbor, Inzon, p. isi. Cagayan Kiver Entrance, Iuzon, p. ito. Darigayos intet, Luzon, p. "ı\$ı. Port Sual, Luzon, p. isio. Sin Feruando Harbor, Luzon, p. i8t. Santo Tomas Harbor, p. 18ı. Tacloban Harbor, Levte, p. 18i.
Porto Rico, p19. 165, 169, 174 Aguadilla, pp. 174, 175. Amador Plantation, p. 174. Arecibo Iight-House, p. 174. Borinquen Light-IIonse, p. 175. Cabras Island, p. 165. Cordilleras Reef, p. 165. Vajnrdo, p. 165. Manati River, p. 174. Point Jiguero, p. 175. Point Yeguas, p. 165 . San Juan Harhor, p. 175. Vega Baja, p. 174. Vieques Island, pp. 169, 173 .

TOPOGPAPHY－Continued．

Rhode Island，p．ion．Conanicut Isiand，p．tot．New－ port．p．ion．
South Corolina，pp．109，ino．Charleston，p．ino．Cooper River，p．ino．Cummings Foint，p．107．Folly Island， p．107．Lawton Plantation，p．I 1o．Morris Island，p． 107.

Washington，p．138．Camas，p．140．Vancouver，p． 138. TORKEY，$\because \mathbf{F} . \mathrm{I}_{1}$, ，p． 127.
TOWN ICIN＇I，MD．Tide observations，p． 121 ．
TOWNSEND AND DOWNEY SHIPBUILDING AND
RTPAIR COMPANY，Pp．17，10g．
TKANSCON＇TINEN＇TAL ARC，p． 209.
TRANSCON＇IINENTAI，TRIANGEI，ATION，P1．12， 227.
TRANSIT，SCHOONER，p． 86
TRAVFRS，MD．Iriangulation station，p． 80.
TREASUKY DEPARTMENT CIRCULAR NO．III，p． 16.
TREN「TON，N．C．Magnetic observations，p． 73.
＇TRIANCULATION．
Alaska，pp．14S，153，159，161．Chatham Strait，p． 157. Cordova llay，p．160．English Hay，p．150．Galena， p．166．Glacier Bay，p．157．Golofnin lbay，pp．149， 154．Grantley Harbor，1pp．155．156．Ifinchinbrook Island，p．tso．Icy Strait，p．157．Imurook Ikasin，pp． 155，156．Imurook Passage，p．155．Jacks Bay，p．16o． Port Clarence，pp．155， 156.
Fovida．pp．86， 115 ．
Georgia，pp．S2，S6，91， 101.
Kansas，11）．129． 130.
Maine＇，p． 81.
Mar．vand，pp．78，111，In2，115．Choptank River，p．inf． Chesapeake Bay，1． 112.
Massachusetts，p．St．
Nebraska，1）． 127.
Netu Hampshire，p．Sr．
Neat lork．p． 74.
Oregon，p．138．Columbia River，pp．138， 139.
Pennsvivania，1． 120.
Philippine Islands．p．177．Bolinao Harbor，1，uzon，p． 181．Cagayan River Fintrance，I，uzon，1）iwo．Can－ don，I，uzon，p．184．Malabon，Luzon，p．184．Manila， Isuzon，p．184．Port Sual，Luzon，p．180．San leer－ nando Harbor，p．181．Santo Fomas Harbor，p．18t． Taclohan Harbor，levte，p．181．Vigan，1，11zon，1）．i84．
Porto Rico，pp．165，169．171，174．Cordilleras Reef，p． 165．Ensenada Honda，F．165．Fajatdo，P． 165. Vieques Island，P． 169 ．
South Carolina，pp．81，82， 110.
W＇ashingtou，p． 138 ．
TRICONOMETRICAI，SURVEY OF THL：STRAITS
SIF＇TIJMFN＇TS，pP．209， 223.
TKIN：DAD HEAI，CAI．．，p． 137 ．
TROSTI，FR，K．J．，p． 215.
TRION，NEBR．Magnetic observations，p． 124.
TLPFi，O，MISS．Magnetic olbservations，p． 72.
TYBEE ISLAND，GA．，p． 9 ．

C．

UGAMUK IBLAND，ALASKA，1． 150.
UKIAH，CAI．I，atitude station，p．1g6．Observatory，p．i4．
ULI，RICH，J．H．，pp．74，16s．
UITAI，ASKA，p． 152.
UNAI，ASKA MAY，AL，ASKA，D．152．Work of Coast Pilot
Party，p．19．＇Iriangulation，p． 250.
UNALASKA ISLAND，ALASKA．Tide observations， p． 150.
UIJALGA PASS，ALASkA，p． 156.
UNION BAY，BRITISH COLUMBIA，pp．146．16I， 162.

UNION PACIFIC RAILWAY．p． 132.
UNITFD STATES ST「ANDARD DATUM，pp．12，15，207， 211.

UPIERMAN，ARCHIF，p． 220.
UTUADA，P．R．，p． 174 ．

v.

VALDFZ，ALASKA， 1.160.
VALDEZ ARM，ALASKA，p． 160 ．
VAI，EN＇TINE，N゙FBK．Magnetic observations，p． 124.
VAN l3OSKl：KCK，F．S．，jr．，first lientenant，Revenue－ Cutter service，p． 119.
VANCOUV1FR，WASH．，pp． 3 3， 134.
VAN DOREN，W．A．，p． 214.
VECA MAJA，P．R．，1）． 174.
VERNON，TEX．Magnetic observations，p．I26．
VICTORIA，BRITISH COR，CMMIA，11）．146， 150.
VIEQUES ISI，AND，1．R．，pp．166，173．Topographic sur－ vey，1．13．Triangulation，p． 1 fy．
VIGAN，LUZON，I．I．Astronomical observations，p． 179. Magnetic observations，p． 179.
VIENNA，AUSTRIA，p． 201.
VINAI，W．I．，！p．107， 10% ， $109,112,121$ ．
VIRGINIA．Boundary，p．14．Maguetic observations，pp． 13，22，70，71，72．＇Reconnaissance，1． 105.
VIRGINIA－TENNRSSFY BOENDARE COMMISSION． p．191．
VIRGINIA－TENNESSEF BOENDARV SURVEV，pp． 190， 191.
VON ERICHSEN，P．，p． 214.
VRFFILAND，COMMANDFR CHARI．ES F．，U．S．Navy， pp．112， 193.

W．

WADIENA，MINN．Magnetic observations，p． 125.
WAIAT，U＇A，H．I．Magnetic observations，p．i64．
WAINWRIGHT＇，D．13．，pp．1t， 1 to，19 $\mathrm{S}_{1} 199$ ．
WAINWRIGH＇T，D．13．，JR．，1）．120，165．
WAIKKER，K．W．，Dp．70．7t，212， 214.
WALKER，MINN．Magnetic observations，p． 125 ．
WALLACF，s．13．，p． 220.

WAINE＇9，NEBR．Triangulation station，p． 127.
WAI．NITRIDGF，ARK．Magnetic observations，p． 125.
WAPI，1：W．，p． 215.
WAR MAT，p． 206.
WAR WITH SPAIN，p． 54 ．
WARKEN，IENRY 1E．，p． 20.
WARREN，OHIO．Magnetic observations，p．7t．
WARREN，U．S．ARMY TRANSI＇ORT，p． 162.
WARRINO＇ION，FI，A．，p． 103 ．
WARSAW，IND．Magnetic observations，p． 77.
WASHINGTON．IIydrograpliy，D1）．13，138，144．Magnetic observations，pp．13，22，133．Reconnaissance，p．13ל． ＇Iopography，pp．13，138．＇Iriangulation，pp．13．138．
WASHINGTON，D．C．Magnetic observations，p． 71.
Marking of proposed avenue across the Mall，p． 192.
＇Itde observations，p．1o6．＇Iide gauge record，1pp．13．213． WASHINGTON，IOWA．Nagnetic observations， 1 ． 125. WASHINCTON，VA．Magnetic observations，p． 7 ．
WASHING＇TON COERT－IOOUSH，OHIO．Magnetic obser－ vations，p． 7 ．
WASHING＇TON MONCMEN＇L． $1 \cdot 90$ ．
WASSI：RIBACH，THEO．，p． $2 I 4$.
WATCH OFFICERS．l＇AY Of，p． 45 ．
WATERLOO，IOW＇A．Magnetic observations，p． 125.
WATEKTOWN，S．DAK．Magnetic observations，p． 125.
WATKINS，J．＇1＇，Pp．148， 214.
WAYNESVII，LE，N．C．Magnetic observations，p． 73.

WEATHER SERVICE, p : 93 .
WEEKS, B. W., p. 106.
WEIGHTS AND MEASLRES, BUREAU OF, p. 11
WEINRICH, WM., jr., pp. 70, 72, 124, 125, 133, 145, 161, 162. WELBRON, CAPTAIN, p. 150.
WELCH, WILI,IAMS, pp. 177, 178, 187, 214.
WELD, F. F., pp. 95, 111, 165.
WELKER, P. A., pp. 112, 115, 116, 117.
WEIIIINGTON, NEW LEALAND. Tide record, p. 213.
WESTDAHL, F.. pp. 144, 26i, 162.
WESTDAHI, L. H., Pp. 344, 154, 16 1.
WEST END, LA., p. 103.
WESTPOINT, MISS. Magnetic observations, p. 72 WEST UNION, IOWA. Magnetic observations, p. I25. WHIPPI,E, GEORGE C., p. 20. WHITMAN, W. R., p. 222.
WIL.LENBUCHER, W. C. pp. 220, 222.
WII,IAAM HENRY RAY, ALASKA. Magnetic observations, p. 145.
WILIIIAMS BAY, WIS., p. 104.
WII,I.S, E. B., pp. 207, 209224.
wilson, kans. Triangulation station, p. 229.
WINONA, Miss. Magnetic observations, p. 72. WINSTON, ISAAC, pp. 52. 200, 210.
WISCONSIN. Astronomic observations, p. 104. Magnetic observations, pp. 22, 70, 71.

Wisconsin, U.S.s., p. iz6.
WOODVILLE, ALA. Leveling. pp. 76, 54.
WOODWARD, OKLA. Magnetic ohservations, p. 126. WOOI,FORD CREFK, p. So.
WOIFFF, FRANK A., jr., p. 53.
WORK OF THE YEAR, THE, p. II.
WURDEMANN, F. G., p. 214.
WYE RIVER, p. 78.
WYVILL, F. H., pp. 220, 222.

Y.

YADKINVILLE, N. C. Magnetic observations, p. 73. Yanceyvili, E. N. C. Magnetic observations, p. 73 . YATES, C. C., ppl..115, 116, 1IS, t19, 148, 151, 201.
VAZOO, MISS. Magnetic observations, p. 72.
YERKES OBSERVATORY, pp. S6, 104.
YOKK, NEBR. Magnetic observations, p. 124 . YOUNG, F. A., pp. 16, 120, 121.
YUKON RIVER, p. 149.
YUKON, STEAMEK, pp. 149, 150. YUMA, COI,O. Magnetic observations, p. 134.

Z.

ZUST, A. F., p. 223.

COAST AND GEODETIC SURVEY REPORT, 1900.

ERRATA.

Page 564 , line 5 , for t read x; to line 6 add "for the flood stream;" line 12 , for + , read \pm; line 13, for + read - ; line 14 , for κ^{2} read $-\kappa^{2}$; line 18 , for $\sin \alpha$ read $-\sin \alpha$; lines 20,22 , for α read --- κ.

Page 659, line 19 , for " line" read " little."
Page 677, No. 925 , for " 3,302 , 0, $332.5,22.17,21.77$," read " $186,120,178$, 153, 10.20 , 9.So."
Page $6 S_{4}$, ninth line from bottom, and page $6 S_{5}$, eleventh line from lottom, delete "amplitude of tide outside'".

[^0]: 59 tapes compared.
 18 single weights verified.
 13 sets of weights verified.
 5 capacity weights verified.
 53 thermometers compared.
 28 hydrometers verified.
 14 leveling rods compared.
 6 balances verified.

[^1]: I azimuth station occupied.
 1 latitude station occupied.
 I longitude (chronometric) determined.
 I 995 square miles area covered by sounding.
 2095 miles of lines sounded.
 .58 current stations occupied.
 Io hydrographic sheets finished.
 3 magnetic stations occupied.
 2 base lines measured.
 6 stations for observing tides occupied.
 850 square miles area covered by reconnaissance.
 3 I 3 miles of general coast line surveyed.
 561 square miles area surveyed.
 igo miles of shore line of rivers and creeks surveyed.
 2 miles of roads surveyed.
 Io topographic sheets completed.
 850 square miles area covered by triangulation.
 56 triangulation stations occupied.
 I 30 geographic positions determined.

[^2]: S. Doc. $50-14$

[^3]: *This number includes 561 copies of the Pan-American Exposition plate and 52 copies of the base map of the United States. Thirteen hundred aid thirty-six copies required two impressions and I 405 copies four impressions.

[^4]: * See page - and the illustration opposite page -.
 \dagger See the " Transcontinental Triangulation,'' pages 247, 350-351, 368, 395, 417, 434, 451, 480, 514, $551,567,592$, and 611.

[^5]: *The separate values for B_{17} in the sense A-end right or A-end left were neglected for this work as too small and uncertain to be taken into account and no attention was paid to reversing the bar.
 \dagger As described on page 340, Appendix No. 8, Report for 1892.

[^6]: * See Appendix No. 12, Report for 1897, and " Transcontinental Triangulation," pp. 198-200.

[^7]: * See p. 759, App. No. 12, Report for 1897, on the Measurement of the Salt Lake Base.

[^8]: *See "Transcontinental Triangulation," pp. 196 and 197.

[^9]: * These strips were first used in the Coast and Geodetic Survey by the writer in 1897 , on the Versailles Base.

[^10]: * It was seldom possible to use this number without delay to the leveling, and eight men were often used when measuring with the foo-meter tapes and only six with the 50 -meter tapes.

[^11]: *This term as used in the following discussion must be understood to mean the amount of expansion per hundred meters per degree centigrade.
 \dagger Pages 424-427 of Appendix No. 8 of the Report for 1892.

[^12]: * In computing this, one-eleventh was added to the actual pay, as shown by the salary tables, to sover the one month allowed for annual leave each year.

[^13]: *See Appendix No. 12 of the Coast and Geodetic Survey Report for 1897 , "Report on the Measurement of the Salt Lake Base," in Utah, p. 774.

[^14]: * As derived on pp. 294, 295.

[^15]: * These probable errors involve the errors of standardization and the constant errors of each tape, so are not comparable with the probable errors stated on page 296 , and therefore were not used in discussing the relative accuracy of bars and tapes.
 †See page 474, Report for 1892 .

[^16]: *In his "The Theory and Practice of Surveying" Prof. J. B. Johnson develops this corrective term in a direct manner as contrasted with the approximate and laborious method given in the text. and points out that the 3 -power in the denominator of $/ 7$ should be replaced by unity. This has been done in the appended tables; although the defect is not more than 0.001 of the value of this term, which is itself very small.-C. A. S.

[^17]: *"Bericht über die Thätigkeit des Centralbureaus der Internationalen Erdmessung im Jahre 1899" (Berlin, 1900), page 21, length of seconds pendulum at Potsdan, 994.2375 millimeters. The place where the relative observations were made at Potsdam is about 3.5 meters lower than where the above work is in progress. A slight correction is required on account of this difference of elevation.
 \dagger If the attraction term in Bouguer's formula is included, these theoretical differences become.$+ \infty 8$.

[^18]: "See "The Transcontinental Triangulation" (Special Publication No. 4), pp. I74-Igo.

[^19]: *See illustrations Nos. r-4 at the end of this Appendix.

[^20]: *For a full description of this instrument, see Appendix No. 8 of the Report for 1894, "Notes on some instruments recently made in the Instrument Division of the Coast and Geodetic Survey Office."

[^21]: *For a complete explanation of local adjustments, see "The Transcontinental Triangulation," pp. $36-46$.

[^22]: *The Transcontinental Triangulation, p. 613.

[^23]: *See the "Transcontinental Triangulation," pp. 6I3-6I4.

